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Summary

e main goal of this thesis was to develop mathematical programming tools to address the

design and planning of sustainable engineering systems and the modeling and optimization of

biological systems. is PhDdissertation is presented using ĕve articles that have been published

or are ready to be submitted to international peer reviewed journals.

e ĕrst part, which includes two publications, explores the combined use ofmulti-objective

optimization and geographic informational systems (GIS) to assist in the problem of utilization

of sewage sludge in Catalonia (north-east region of Spain). In the ĕrst paper (see .), we pro-

pose an approach that integrates GIS and multi-objective mixed-integer linear programming

(MILP) within a uniĕed framework that allows exploring, in a rigorous and systematic manner

a large number of alternatives for sewage sludge amendment from which the best ones (accord-

ing to the decision-makers’ preferences) are identiĕed. e capabilities of our methodology are

illustrated through its application to a real case study based on Catalonia. e tool presented

provides as output a set of optimal alternatives for sewage sludge distribution, each one achiev-

ing a unique combination of economic and environmental performance. Our ultimate goal is

to guide decision-makers towards the adoption of more sustainable patterns for sewage sludge

amendment.

e combined use of GIS and optimization tools gives rise to complex MILP models due to

the spatially explicit nature of the problems addressed. In theseMILPs, the decision variables are

deĕned for every pixel of the GISmap, thereby leading tomathematical models with a very large

number of variables and constraints. As an illustrative example, a GIS map with , pixels

leads to an MILP containing , continuous variables, , binary variables, and ,

equations (see ., section ). In our ĕrst paper, we overcame this limitation by considering a

GIS map with low resolution (i.e., that contain a low number of pixels). Although this strategy

simpliĕes the calculations, it offers no guarantee of convergence to the global optimum of the

original problem (i.e., the one with high resolution).

In the next work (see .), we proposed a rigorous decomposition algorithm for the efficient

solution of GIS-based MILPs that exploits their particular mathematical structure. is strategy

allows handling models based on GIS maps with high resolution. Our approach is based on de-
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composing the problem into two hierarchical levels between which our algorithm iterates until

a termination criterion is satisĕed. We illustrate the capabilities of our strategy via its applica-

tion to the optimal location of agricultural areas for sewage sludge amendment in Catalonia.

Numerical results show that our approach achieves reductions of orders of magnitude in CPU

time (compared to the full space GIS-based MILP) while still yielding near optimal solutions.

enext section of the PhDaddresses the optimal design of heat exchanger networks (HENs)

and energy production systems considering economic and environmental concerns. e design

task of a HEN is posed in mathematical terms as a multi-objective mixed integer non-linear

programming (MINLP) problem in which life cycle assessment (LCA) principles are used to

quantify the environmental impact (see .). One of the advantages of our approach is that it

accounts for the simultaneous minimization of several environmental metrics, as opposed to

other models that focus on minimizing a single aggregated indicator. A rigorous dimensionality

reductionmethod based on amixed-integer linear programming (MILP) formulation is applied

to aid the post-optimal analysis of the trade-off solutions []. e capabilities of our approach

are tested through two examples. We clearly illustrate how the use of a single overall aggregated

environmental metric is inadequate in the design of HENs, since it may leave solutions that are

potentially appealing for decision-makers out of the analysis. Ourmethod is aimed at facilitating

decision-making at the early stages of the design of HENs.

Next we applied our approach to the design of utility plants considering economic and en-

vironmental concerns simultaneously. e approach presented relies on the combined use of

multi-objective optimization, LCA analysis and dimensionality reduction methods (see .,

[]). We ĕrst pose the planning task as a multi-objective mixed integer linear problem (MILP)

that simultaneously accounts for the minimization of the cost and environmental impact of the

energy system. e environmental performance of the plant is quantiĕed using several LCA-

based indicators that measure the damage caused in different categories. We then apply a di-

mensionality reduction technique to facilitate the post-optimal analysis of the solutions found.

Numerical examples show that the number of environmental objectives can be greatly reduced

while still preserving the problem structure to a large extent. We clearly demonstrate that the use

of any single aggregated environmental metric is inadequate, as it might change the dominance

iv
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structure of the problem in a manner such that some solutions that are optimal in the original

space of objectives might be lost.

In the last part of the thesis we present a new optimization method based on Flux Balance

Analysis (FBA), that allows identifying meaningful biological objective functions driving the

cell’s metabolic machinery under different conditions (see .). Our approach, which is based

onmulti-level optimization coupledwithmixed-integer nonlinear programming (MINLP), iden-

tiĕes in a rigorous and systematic manner, the most probable objective functions for a given set

of experimental conditions. We benchmark the method by analyzing which combination of ob-

jective functions better explains a set ofmetabolic Ęuxes that were experimentally determined in

vivo. We conĕrm that biomass maximization is a fundamental objective function under any ex-

perimental condition. In addition, we found that its combination with additional criteria (e.g.,

Nicotinamide adenine dinucleotide (NADH) consumed), improves the predictive capabilities

of the FBA model.

e general approach and tools presented in this PhD esis can be applied to a wide vari-

ety of sectors such as energy, chemical, petrochemical, agricultural, metabolic, pharmaceutical

etc. evidencing the multidisciplinary character of the approach and the potential impact of this

esis.
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 Introduction

Multi-objective optimization is concerned with mathematical optimization problems involving

more than one objective function to be optimized simultaneously. Multi-objective optimization

has been applied in many ĕelds of science, including, among others, engineering, economics,

logistics and systems biology, where optimal decisions need to be taken in the presence of trade-

offs between two or more conĘicting objectives. During my PhD studies, I have focused on the

development of multi-objective optimization techniques as applied to sustainable engineering

and systems biology.

Traditionally, the optimization models devised by the process engineering to assist in the

operation and design of industrial processes have concentrated on maximizing the economic

beneĕt of the process. In recent years, however, there has been a growing awareness of the impor-

tance of incorporating environmental concerns along with traditional economic criteria within

the optimization procedure. To answer some of these engineering trends, intensive research

effort is currently being devoted for developing and adopt more sustainable design alternatives.

One of the most interesting problems in process systems engineering concerns the develop-

ment of decision support tools that incorporate various stakeholders’ interests during the sus-

tainable design and planning of industrial processes. In most cases, stakeholders have differ-

ent views of the problem and show conĘicting interests, making it difficult to ĕnd a consensus

among them.

In this thesis we have addressed this problem from different perspectives. First, we proposed

a systematic tool based onmathematical programming and spatial analysis techniques (i.e., GIS)

to support decision making in the management of sewage sludge in the region of Catalonia (see

.). Geographic informational systems (GIS) were initially developed as a tool for storing and

displaying all forms of geographically referenced information. In the recent past, however, there

has been a growing interest on the application of GIS in the solution of various social and eco-

nomic problems. Particularly, GIS has been used in the context of spatial decision analysis for

the assessment of potential locations for different types of systems considering various inputs

simultaneously, with a recent growing interest placed on its application to environmental prob-

lems. As an example, Nadal et al. [], Poggio et al. [] investigated the use of GIS for human


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health assessment, whereas Schriever et al. [], and Johnson et al. [] applied GIS in the assess-

ment of the ecological exposure and environmental risk of several systems.

GIS can be combined with multicriteria decision analysis (GIS-MCDA) to address problems

in which different (typically conĘictive) criteria like risks, costs, beneĕts and stakeholders’ views

must be accounted for in the analysis. In this kind of problems, decisions to bemade include the

selection of the best potential geographical locations among a set of alternatives. is approach

takes advantage of the complementary strengths of GIS (i.e., data acquisition, storage, retrieval,

manipulation and analysis) and MCDA (quantiĕcation of the decision maker’s preferences []).

Passuello et al. [] applied GIS and MCDA to the management of sewage sludge, whereas

Malczewski [] investigated the use of GIS-based tools in land-use suitability analysis. e ca-

pabilities of GIS and spatial analysis can be further enhanced through its integration with opti-

mization tools. Grabaum and Meyer [] investigated the use of GIS to support decision making

in planning problems. Wang et al. [] developed a GIS model to identify the best location for

future land uses in the Lake Erhai basin in China. Mapa et al. [] combined GIS and math-

ematical modeling for the solution of location-allocation problems arising in the management

of education facilities. Jung et al. [] integrated GIS and optimization tools for the effective

control of parcel delivery services. Marcoulaki et al. [] developed an integrated framework

based on stochastic optimization and GIS for the design of pipeline systems. Van den Broek et

al. [] integrated ArcGIS, a geographical information system with spatial and routing func-

tions, with MARKAL, an energy bottom-up model based on linear optimization for designing

a cost-effective CO storage infrastructure in e Netherlands.

One problem in which the combined use of GIS andmathematical programming holds good

promise is the treatment of sewage sludge in agricultural areas. e production of sewage sludge

(SS) has grown rapidly during the last years, mainly due to the increase of the world population.

Despite recent advances, the question on how to treat the SS still remains open. ere are differ-

ent alternatives for this, and one effective method is to reuse it as a fertilizer in the agricultural

sector, an alternative encouraged by the European Community, which promotes the recycling

of organic matter and nutrients to soils [].

Identifying the best agricultural areas for SS amendment is a difficult task because this strat-


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egy shows beneĕts to both soil and crops, but also disadvantages due to the potential contamina-

tion of the ĕelds. Furthermore, several environmental aspects, such as groundwater contamina-

tion by nitrates, open waters and soil protection, as well as human exposure to the contaminants

present in the sludge matrix must be considered along with economic aspects, making this task

quite challenging. is is because the management of this residue concerns different stakehold-

ers, with different views of the problem and conĘicting interests. In addition, they may ĕnd that

their interests are not reached, fact that leads to a low acceptance of the practice. Figure  brieĘy

describes the objectives of each stakeholder.

Environmental 

agency

Farmers

Private 

companies

Food 

quality

Stakeholders Concerns Objectives

Maximize 

soil 

suitabilty

Minimize 

management 

costs

Human 

exposure

Water 

quality

Soil 

quality

Profit

Figure : Relationship between the stakeholders and objectives.

Systematic tools based on multi-objective mathematical programming are well suited to

tackle problems of this type, as they allow screening in a rigorous and systematic manner a

large number of alternatives from which the best ones are identiĕed.

is thesis presented a systematic spatial decision-making tool for the optimal distribution


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of SS on agricultural areas based on the combined use of GIS and mathematical programming

( .). e task of identifying the best agricultural soils for SS amendment was formulated as

a mixed-integer linear programming (MILP) problem that seeks to optimize simultaneously

the economic and environmental performance of the system. e multi-objective optimization

model coupled with GIS data provides a comprehensive procedure to evaluate SS disposal op-

tions on agricultural areas for organic amendment.

e capabilities of our approach were tested through its application to a case study based on

Catalonia. Numerical results show that it is possible to improve the environmental performance

of the ĕnal solution by compromising the associated cost (Section  at .). Our methodology

is intended to assist decision-makers in such a challenging task.

One of themain advantages of our approach is that it produces solutions that reĘect precisely

the default preferences of the decision-makers involved in the problem. Furthermore, it relies on

a rigorous and systematic mathematical approach that avoids falling in sub-optimal solutions,

an undesired situation that might occur when applying heuristics or rules of thumb.

e combined use of GIS and optimization tools led to complex MILP models due to the

spatially explicit nature of the problem. In these MILPs, the decision variables are deĕned for

every pixel of the GISmap, thereby giving rise tomathematical models with a very large number

of variables and constraints. Hence, in the second work presented in this esis (see .), we

proposed a rigorous decomposition algorithm for the efficient solution of GIS-basedMILPs that

exploits their particular structure. is strategy allows handling models deĕned on the basis of

GIS maps with high resolution. Our approach decomposes the original MILP problem into two

hierarchical levels between which the algorithm iterates until a termination criterion is satisĕed.

Numerical results show that our approach achieves reductions of orders of magnitude in CPU

time (as compared to the full space GIS-based MILP), while still yielding near optimal solutions

(Section  at .).

Mathematical programming techniques offer a general modeling framework for including

environmental concerns in the synthesis and planning of industrial processes. Despite recent

progress in sustainable design, the selection of a suitable metric for the environmental assess-

ment of processes is still an open issue in the literature. According to Cano et al. [], there are



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



four main types of environmental objectives. ese are the minimization of

() the emissions of pollutants of concern [];

() the mass of waste generated [];

() the contribution to speciĕc environmental problems [];

() speciĕc aggregated indicators reĘecting the overall environmental impact [].

Regardless of the approach followed, what has become clear during the last years is that the

environmental performance of a process should be assessed over its entire life cycle. Traditional

process engineering approaches that included environmental concernswithin the decision-making

process focused at the plant level. is approach could lead to solutions that decrease the envi-

ronmental impact locally at the expense of increasing the environmental burdens in other stages

of the life cycle of the process, which could result in a worst overall environmental performance

[].

e life cycle assessment (LCA) methodology arose in response to this situation. LCA is an

objective methodology for evaluating the environmental loads associated with a product, pro-

cess, or activity over their entire life cycle []. ismethod is based on identifying and quantify-

ing the energy andmaterials used in a process in order to translate them into a set of meaningful

environmental indicators that inform about the impact caused in different categories (i.e., hu-

man health, eco-system quality, and resources). e performance in these damage categories is

employed to assess process alternatives leading to potential environmental improvements.

e combined use of multi-objective optimization (MOO) and LCA was ĕrst proposed by

Livingston and Pistikopoulous [, ], and then formally deĕned by Azapagic and Cli []. In

the recent past, this approach has been applied to a wide variety of industrial problems, such as

the design of chemical plants [], thermodynamic cycles [], the strategic planning of supply

chains [, , , ], the design of heat exchanger networks [], the design of solar energy

plants [], and the design of hydrogen infrastructures [, ], among others.

A critical issue in the combined use ofMOOand environmental assessmentmethods such as

LCA is the deĕnition of suitable eco-metrics to be minimized. No agreement has been reached

so far as to which universal LCA indicator should be employed in the calculations. Unfortu-

nately, the computational burden of MOO grows rapidly with the number of objectives, which
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prevents the inclusion of several LCA indicators in the optimization model. Selecting key LCA

metrics for optimization purposes that keep the problem in a manageable size while still quan-

tifying the environmental performance in an accurate manner is therefore very challenging. In

this thesis we accomplished this task by using a rigorous MILP-based dimensionality reduction

technique developed by Guillén-Gosálbez []. We applied this method to the sustainable de-

sign of heat exchanger networks (for further details see .) and utility plants (see .). is

approach distinguish between meaningful LCA objectives and redundant ones. e former are

kept in the analysis, while the later are eliminated. e method sheds light on the relationships

between LCA indicators, providing valuable insight into the trade-offs that inherently exist be-

tween economic and environmental criteria.

e design of heat exchanger networks (heat exchanger network synthesis, HENS) is an im-

portant ĕeld in process systems engineering and has been the subject of intensive research over

the past  years. Its signiĕcance can be attributed to its role in controlling the costs of energy

and providing environmental beneĕts for a process []. e most common methods to solve

the synthesis of HENs are the sequential and simultaneous approaches.

Sequential synthesis methods use the strategy of dividing the HEN design problem into a se-

ries of subproblems in order to reduce the computational requirements for obtaining a network

design. Sequential synthesis methods are further divided into two subcategories: () evolution-

ary design methods, such as the pinch design method (PDM) by Linnhoff et al. [, , ],

the dual temperature method by Trivedi [] , and pseudo-pinch methods by Trivedi et al. [];

and () mathematical programming techniques based on the sequential solution of continuous

and integer linear programs, like the approaches by Cerda et al. [] and Papoulias and Gross-

mann [], as well as nonlinear optimization problems, like the approach by Floudas et al. [].

e sequential synthesis method offers no guarantee of convergence to a HEN with minimum

annual cost.

Simultaneous HENS approaches attempt to ĕnd the optimal network without decompos-

ing the problem. Simultaneous synthesis methods rely primarily on MINLP formulations with

simplifying assumptions. One of the earliest simultaneous HENS formulations was proposed

by Yuan et al. []. e MINLP formulation proposed by Yee and Grossmann [], is one of
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the most widely used. In this case, the problem is divided into stages; in each stage any match

of process streams is allowed. In addition, any cold/hot utility and hot/cold process stream can

be used to heat and cool the process streams in every stage. e superstructure taken as a basis

in the development of the model is presented in Figure .

Most HENS methods focus only on optimizing the economic performance (mainly the total

cost), and disregard the environmental dimension of the problem. In this thesis we addressed the

optimal design of heat exchanger networks (HENs) with economic and environmental concerns

( .). e design task is posed in mathematical terms as a multi-objective mixed-integer non-

linear programming (MINLP) problem, inwhich life cycle assessment (LCA) principles are used

to quantify the environmental impact. One of the advantages of our approach is that it accounts

for the simultaneousminimization of several environmentalmetrics, as opposed to othermodels

that focus on minimizing a single aggregated indicator. A rigorous dimensionality reduction

method based on a mixed-integer linear programming (MILP) formulation [] is applied to

aid the post-optimal analysis of the trade-off solutions. e capabilities of our approach are

tested through two examples. We clearly illustrate how the use of a single overall aggregated

environmental metric is inadequate in the design of HENs, since it may leave some solutions

that are appealing for decision-makers out of the analysis (Section  at .).

We applied next a similar approach to the sustainable design of utility plants considering

several environmental metrics. Nowadays, a high percentage of the total human-originated

environmental impact is energy related. e design and planning of efficient energy systems

capable of satisfying the power and steam demand in the process industries is therefore a crucial

issue in sustainability [].

Several methods are available in the literature for the synthesis of utility plants. ey can

be roughly classiĕed into two main groups. e ĕrst are based on thermodynamic targets and

heuristics [, ]. As pointed out by Bruno et al. [], these methods have as major drawback

that even if the design with highest thermal efficiency is obtained, it may not be economically

attractive because capital costs may be too high. e second group, to which the present work

belongs, relies on rigorous optimization techniques based on mathematical programming (i.e.,

linear, non-linear, mixed-integer linear, and mixed-integer non-linear programming: LP, NLP,
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MILP and MINLP, respectively). Speciĕcally, the ĕrst optimization approaches based on LP and

MILP techniques were introduced by Nishio and Johnson [], Papoulias and Grossmann [],

and Petroulas and Reklaitis []. Following a similar approach, Hui and Natori [] applied

MINLP strategies to the optimization of site utility systems, while Bruno et al.[] proposed

another MINLP formulation for the design of utility systems.

Most of the strategies mentioned above optimize the system considering only the economic

performance and disregarding its environmental impact [, , ]. In this thesis we devel-

oped a multi-objective optimization model of an utility plan that considers explicitly several

environmental indicators ( .). To facilitate the calculations, we coupled this model with an

MILP-based dimensionality reduction approach [] that identiĕes key environmental metrics

whose optimization automatically results in the improvement of the system in all the remaining

damage categories.

is analysis reduces the complexity of the underlying multi-objective optimization prob-

lem from the viewpoints of generation and interpretation of its solutions. e capabilities of

this approach are illustrated through its application to two case studies. Results clearly illustrate

that signiĕcant reductions in the number of environmental objectives can be attained while still

preserving the main features of the problem (Section  at .). Our approach is aimed at facili-

tating the decision-making process in the design of energy systems with environmental impact

considerations.

e ĕnal part of this esis is dedicated to systems biology. System biology is a biology-

based inter-disciplinary ĕeld that studies complex interactions between biological systems and

their constituents, and which applies a holistic approach to biological and biomedical problems.

One of the outreaching aims of systems biology is to model and discover emergent properties

of cells, tissues and organisms using mathematical programming methods. In this thesis we

focused on shedding light on an open important problem in systems biology: the identiĕcation

of meaningful biological objective functions driving the operation of metabolic networks under

various environmental conditions. Determining such functions is a central topic in systems

biology. Research in this area might ultimately allow biologists to identify biological underlying

design principles [].
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In general, the choice of an analytical method in system biology depends on the availability

of biological knowledge. A steady state analysis can be done using only the network structure,

and without knowing the velocity rate constants for a particular reaction. For example, Ęux

balance analysis (FBA)was used to predict the switching of themetabolic pathway in Escherichia

coli under different nutritional conditions based on knowledge of only the metabolic network

structure []. On the contrary, stability analysis and sensitivity analysis provide insight into

how the system’s behavior changes in the face of some stimuli. Similarly, bifurcation analysis

provides dynamic information of a system [, ].

Several in silico frameworks for determining amost-likely objective function have been pro-

posed []. For example, ObjFind, was built under the assumption that natural systems optimize

a linear combination of biological objectives deĕned on the basis of some biological reactions

[] . ObjFind seeks to determine the values of the weights (coefficients of importance, CoI)

to be attached to a set of reaction Ęuxes such that when the resulting weighted sum of Ęuxes is

optimized, the difference between the optimal in silico Ęux distribution predicted by the model

and the experimentally observed distribution is minimized. In the ObjFind framework, a high

CoI indicates that a reaction is important for the cellular objective function, while a small weight

implies the opposite.

BOSS illustrates another type of optimization framework []. is method considers, as

potential objectives, de novo reactions added to the stoichiometry matrix of the target network.

In this approach, the objective reaction is not conĕned to be one of a subset of existing reactions,

but rather is allowed to take on any form (e.g. an existing reaction, a combination of existing

reactions, or a previously uncharacteristic reaction). is assumption provides more Ęexibility

to the framework andmakes the optimization process closer towhatmight have occurred during

biological evolution, where changes in regulation (optimizing the CoIs of existing reactions) can

be combined with gene duplication or deletion (adding new reactions to the network). A third

type of frameworkwas proposed by Knorr et al. []. is framework employs a Bayesian-based

technique to determine meaningful biological objective functions for a system.

e aforementioned types of frameworks rely on single-objective approaches that assume

the existence of a unique universal biological objective function. However, a recent study by
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Sauer and co-workers has shown that there might be more than one meaningful ĕtness function

driving the metabolic machinery [, ]. Particularly, these authors suggested the existence of

three main biological criteria that microorganisms might attempt to optimize simultaneously:

maximum ATP yield, maximum biomass yield, and minimum sum of absolute Ęuxes.

If we expect to understand the evolution and functional properties of complexmetabolic net-

works, it is important to develop a rigorous framework that can identify the criteria underlying

design selection in biological systems. In this thesiswe report the development of a novelMINLP

base optimization framework ( .) where the KarushKuhnTucker (KKT) conditions are used to

convert a bi-level optimization problem into a single-level optimization one. Hence, inspired by

the ObjFind method by Burgard and Maranas [], we propose an approach that identiĕes a set

of meaningful biological criteria that all together explain the operation of metabolic networks.

We test the capabilities of our method through its application to the study of in vivo Ęux

distribution in Escherichia coli’s central metabolism using data derived from C isotopomer

analysis []. We adapt a FBA model of that metabolism [], considering as surrogates for cel-

lular ĕtness functions biomass growth rate and a set of reaction Ęuxes that produce/consume

ATP (Adenosine triphosphate) and redox potential. Numerical results show that biomass max-

imization is a fundamental objective function under the observed experimental conditions. In

addition, we ĕnd that its combination with additional criteria improves the predictive capabil-

ities of the FBA model (i.e., the multi-objective FBA model provides results that better explain

the experimental observations). Our ĕndings may have signiĕcant implications in explaining

the emergence of alternative and seemingly equally ĕt solutions in replicate experiments of long

term evolution [].

. General objectives

e objectives of this thesis can be divided into two domains: sustainable engineering and sys-

tems biology. In sustainable engineering, the main objectives of the thesis are the following:

• Propose and apply, in different engineering problems, novel optimization frameworks

based on the combined use of multi-objective optimization (MOO), economic analysis,

and environmental assessment tools.
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• Develop a spatial decision-support tool for optimizing sewage sludge amendment by com-

bining Geographical Information Systems (GIS) and multi-objective Mixed-Integer Lin-

ear Programming (moMILP).

• Adapt and apply a bi-level decomposition algorithm to the solution of GIS-based mathe-

matical models in order to expedite their solution.

• Develop aMulti-ObjectiveOptimization (MOO) framework for the environmentally con-

scious design and planning of Heat Exchanger Networks (HEN).

• Develop a multi-objective optimization (MOO) framework for the environmentally con-

scious design and planning of utility plants.

• Develop and implement effective dimensionality reduction methods for facilitating the

solution of MOO problems with a large number of objectives.

e objectives regarding systems biology are:

• Develop an optimization method based on Flux Balance Analysis (FBA) for identifying

meaningful biological objective functions driving the metabolic machinery.

• Investigate the existence ofmeaningful biological objectives, in addition to biomass growth

rate maximization.

. Problem statement

In this section we formally describe the problems addressed in this thesis.

.. Combined use of GIS and multi-objective optimization.

e reuse of sewage sludge (SS) as an agricultural fertilizer has traditionally received increasing

interest. e SS matrix contains harm emissions, such as heavy metals and persistent organic

pollutants (POPs) that can contaminate the soil, crops, groundwater, open waters, and eventu-

ally reach the human food chain ( ., Section .., Figure ). e impact on the ĕeld depends

on its local characteristics. Two subcriteria are considered for soil: “soil structure” and “soil char-

acteristics” e subcriterion “soil structure” quantiĕes the ability of the soils to receive SS (for

instance, organic soils with a ĕne texture are preferred due to their buffer properties), while “soil
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characteristics” considermetal concentration andmobility in soil (bioavailability and lowermo-

bility for high pH and carbonate content). Spatial decision-making tools for land classiĕcation

are well suited for addressing the sewage sludge amendment problem, as they allow identifying

the best regions from information available in spatial databases ( ., Section .., Figure .).

e capabilities of our methodology are illustrated through its application to a case study

based on Catalonia (NE of Spain). Catalonia is a region in the Northeastern part of Spain that

covers an area of , km (Figure ). It extends from the Pyrenees southward along the

Mediterranean. Catalonia has a diversity of soil types, mostly calcareous sediments mixed with

alluvium and clay. e Catalonian agriculture was centered on the production of wine, wheat,

rice, barley, olive, grapes, fruits, nuts and vegetables. e agricultural area currently available

has more than . million ha ( ., Section , Figure .)

Tarragona

Lleida

Girona

Figure : e map of Catalonia.

We derived a mathematical model that is based on the superstructure shown in Figure .
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We considered a total area of , ha subdivided into , pixels, each one with a sur-

face of  ha. Each of these ĕelds is deĕned by a set of coordinates (in meters), an index of

suitability (SUI(j)) (see ., ., Section ..), which quantiĕes the ability of the land to re-

ceive SS, an acceptable capacity (CAP(j)) in tons per year of sludge, and an application cost (in

euro ton−1•year−1). We are also given the set of WWTPs (waste water treatment plants) lo-

cated in different cities of Catalonia ( ., Section , Figure .) In this study we have considered

the capitals of each provinces of Catalonia as the main producers of sludge (i.e., Barcelona, Tar-

ragona, Girona, and Lleida). Each of these cities is characterized by a pair of coordinates (x,y)

in meters and total production of SS in tons per year (denoted by parameter CAP(i)). e goal

of the analysis is to determine the optimal distribution of SS production among the Catalonian

agricultural areas that simultaneously optimizes the overall suitability and the total cost (for

more details see in ., Section .). e mathematical formulation is posed as a Mixed-Integer

Linear Programming (details can be found in ., Section .).

In this thesis, we also proposed a decomposition algorithm for GIS-based MILP models.

e capabilities of our approach are tested using the same case study, but this time considering

three different levels of aggregation in the problem (all of them for the same agricultural area

of , ha): ,; ,; and , pixels, each one with a surface of , , and  ha,

respectively. Additionally, we solved a set of problems of increasing complexity involving a dif-

ferent number of cities in Catalonia. We consider ĕrst the location of WWTPs in Barcelona,

Girona, Tarragona, and Lleida, and then solved the same problem considering additional loca-

tions (i.e., Terrasa, Vic, Amposta, and Montblanc). e goal of the analysis is to determine the

optimal distribution of SS production among a set of agricultural areas so that the total cost is

minimized (further details are available in ., Section )

.. Sustainable design of heat exchanger networks.

To formally state the problemof interest, we consider aHEN superstructure like the one depicted

in Figure , which is an extension of the superstructure introduced by Yee and Grossmann [].

e problem is divided into stages; in each stage any match of process streams is allowed. In

addition, there exists the possibility to use any cold/hot utility available for cooling/heating the

hot/cold process streams
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Figure : Superstructure of the supply chain problem.

Given are a set of hot and cold process streams to be cooled and heated, respectively, and

their associated inlet and outlet temperatures. e Ęow rates, heat capacities and ĕlm transfer

coefficients of the process streams are also provided, along with a set of available hot and cold

utilities and their temperature ranges. Given also is the cost information of the heat exchangers

units as well as the hot and cold utilities. Environmental data associated with every type of

utility and construction material are also provided by the Ecoinvent . database, which offers

international life cycle assessment (LCA) and life cycle management (LCM) data and services.

e intermediate temperatures of the process streams in the limits of each stage are regarded as
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Figure : Superstructure for the HEN synthesis for two cold and hot streams and two stages.

decision variables. We assume isothermal mixing of streams, which simpliĕes the calculations.

e goal of the analysis is to determine the optimal design and operating conditions that

minimize simultaneously the total cost and a set of environmental impacts, which are quantiĕed

via LCA principles. e capabilities of our approach are tested through two examples. e

problem solution is deĕned by a set of Pareto optimal designs, each one of them achieving a

unique combination of cost and environmental impact (see in ., Section ). emathematical

formulation can be found in ., Section  and Appendix A.

.. Sustainable design of utility plants.

Energy systems utilize fuel, air and other materials to generate electricity and steam demanded

by other process units in the industrial system. e system taken as reference in this work in-

cludes storage tanks to store the fuels, boilers that convert fuel into steam at high pressure and

turbines that expand higher pressure steam into lower pressure steam in order to generate elec-

tricity. e details of the system are presented in Figure .

Given are a set of demands of electricity and steam at various pressure levels to be satisĕed by

the utility plant. e objective is to determine the set of planning decisions that simultaneously

minimize the total cost and environmental impact. Environmental data associated with every


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Figure : Energy system taken as reference

type of fuel and the purchased electricity are also provided. Decisions to be made include the

amounts and types of fuels to be used in each boiler and turbine.

e capabilities of ourmodeling framework and solution strategy are illustrated through two

case studies that address the optimal planning of an energy system that includes two fuel tanks,

two boilers and two turbines (see Figure ). e given data can be found at . in Tables -.

Both case studies assume the same data concerning fuels, equipment units and energy demands,

but differ in the characteristics of the electricity purchased.

e initial demand of electricity is  MW/hr for both examples. e initial demand of

steam (HP, MP and LP) is  ton/hr,  ton/hr and  ton/hr, respectively. A  increase of

this demand is assumed in every time period. e model covers  periods of time of  hours

each. e parameters and energy requirements for the fuels are given in Tables  and  ..

e parameters associated with boilers and turbines are displayed in Tables  and  in .. e

capacity of tanks  and  are  and  tons, respectively. e maximum electricity power

provided by each turbine is  MW. e LCI data of the emission inventories associated with

the production of the different fuels are presented in Table  in ., while the impacts associated

with the external electricity are displayed in Table  .. e parameters of the damage model

were taken from the Ecoinvent . database. e mathematical formulation of the model can be

found in ., Section .


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Figure : Superstructure of case study.


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.. Identifying design principles in metabolic networks.

is problem belongs to the area of systems biology. Given a set of experimental Ęuxes obtained

under different conditions, the goal of the analysis is to determine a set of meaningful biological

objectives that drive the cell’s machinery. To the approach described later in this document, we

consider a previously reconstructed Ęux balance analysis model of the Escherichia coli central

carbon metabolism []. e metabolic network includes  reactions and  metabolites that

represent the major carbon Ęows through the cell. We consider as potential biological objec-

tives, all reaction Ęuxes associated with an energy dissipation (Adenosine triphosphate, ATP,

consumed), or redox potential dissipation (Nicotinamide adenine dinucleotide, NADH, con-

sumed), biomass growth and total ATP production (which includes  different reaction rates

that can generate ATP).

C-detected in vivo Ęux distributions from four growth aerobic conditions were consid-

ered in the analysis. Experiment A: batch growth on glucose under aerobic conditions with fast

growth (. h-); experiment B: chemostat growth . h-; experiment C: chemostat growth

. h-; experiment D: chemostat growth (. h-) under ammonium limitation []. Given

these experimental results, the main goal of the study is to identify the set of biological objective

functions that better describes the operation ofmetabolic networks (see ., Problem Statement

Section).
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 Materials and methods

. Mathematical programming

Mathematical programming deals with the problems of maximizing or minimizing objective

functions in the presence of inequality (gn(x)) and equality (hn′(x)) constraints. Consider the

following single objective (SO) minimization problem (Equation ) :

SO(X) =min
x∈X

(f(x))

subject to

gn(x) ≤ 0, n = 1, 2, . . . , N ()

hn′(x) = 0, n′ = 1, 2, . . . , N ′

where f(x) is the objective function. N is the number of inequality constraints, and N ′ is the

number of equality constraints. X is the search space, while x is the vector of decision vari-

ables. Different types of models arise depending on the structure of the objective function and

the constraints. Linear programming (LP) problems have a linear objective function and linear

equality and inequality constraints. Nonlinear programming problems (NLP) contain at least

one nonlinear equation, either in the objective function or the constraints. Mixed integer linear

programming (MILP) and mixed integer non-linear programming (MINLP) contain are LPs

and NLPs, respectively, that contain at least one binary variable. e models presented in this

thesis are MINLPs and MILPs, which are the most complex ones to solve . ese models can be

found in Section  in ., in Section  and  in ., in . Section , in . Section  and .

Materials and Methods Section.

. Tool and Solvers for solving MINLP and MILP problems.

e MILP and MINLP models presented in this thesis were implemented in the General Al-

gebraic Modeling System (GAMS) [] version . GAMS is a high-level modeling system

for mathematical optimization. It is designed for modeling and solving linear, nonlinear, and

mixed-integer optimization problems. e system, which is tailored for complex, large-scale

modeling applications, allows to build large maintainable models that can be adapted to differ-
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ent situations. It is based on an integrated development environment (IDE) that allows the user

to express optimization models in a special programming language called Algebraic Modeling

Language (AML). GAMS interfaces with appropriate solvers that identify the optimal solution

of a model within a given accuracy. MILPs were solved with CPLEX v, while MINLP models

were solved by DICOPT v and SBB v.

. Multi-objective optimization and Pareto front.

A standardmulti-objective optimization problem (MOO), denoted byMO(X), can be expressed

as follows (Equation ):

MO(X) =min
x∈X

(F (x) = {f1(x), . . . , fk(x), . . . , fO(x)})

subject to

gn(x) ≤ 0, n = 1, 2, . . . , N ()

hn′(x) = 0, n′ = 1, 2, . . . , N ′

whereO are the objective functions to be optimized, while F (x) denotes the vector of objective

functions fk(x). e set of values taken by the objective functions fk(x) in the feasible solutions

of MO(X) constitutes the feasible objective space Z . For example, in the context of sustainable

engineering, one objectives fk represents the economic performance (cost), whereas the others

quantify a set of environmental impacts.

In ., Section  the concept of Pareto optimality is presented. e Pareto optimal alterna-

tives (which constitute the Pareto front or Pareto frontier) show the property that it is impossi-

ble to improve them in one objective without necessarily worsening at least another criterion.

Figure  illustrates the concept of Pareto optimality for a case with two objectives (cost and suit-

ability) taken from the sewage sludge amendment problem. Points lying above the curve are

sub-optimal, since they are improved in both criteria simultaneously by the points lying in the

Pareto front. e region bellow the curve is infeasible, since no alternative shows better (lower)

cost and (higher) suitability simultaneously than the Pareto solutions. e ĕnal goal is to select

a solution from the ones in the curve. e shape of curve plays an important role in the selection

of the ĕnal solution. For example, from point A to point B in Figure , the slope of the curve
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increases sharply. In contrast, from B to C, the slope is rather smooth, so in this region marginal

increments in suitability are attained at the expense of a large increase in cost. Hence, the former

part of the curve is more appealing for decision-makers. Examples of othermulti-objective opti-

mization approaches applied to environmental multi-criteria problems can be found elsewhere

[], [].

Pareto front
Infeasible solutions 

Cost

S
u
it
a

b
ili

ty

A

B

C

Figure : Description of Pareto front.

.. ε-constraint method

ere are twomainmethods for solvingMOOproblems. ese are the weighted-sum and the ε-

constraint methods. Speciĕcally, both of them are based on formulating a single-objective prob-

lem from the original multi-objective one. is problem is then solved repeatedly for different

values of some auxiliary parameters introduced in the auxiliary model. In the weighted-sum
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method, which is only rigorous for the case of convex problems, these parameters take the form

of a vector of weighs thatmultiplies the vector of objectives. In the ε-constraintmethod, which is

rigorous for both cases, convex and nonconvex Pareto fronts, they represent the limits imposed

on the objectives that are transferred to the auxiliary constraints. Each single-objective problem

provides a weakly efficient point, which might be as well strongly efficient. is condition is

evaluated aer exploring the whole space of auxiliary parameters [].

In this work, the Pareto-optimal solutions are obtained bymeans of the ε-constraint method

[]. e ε-constraint method entails solving a set of single objective problems SOe(X), in

which one objective is kept as the objective function (e.g., f1) while the rest are transferred to

auxiliary constraints in which upper bounds are imposed on them using a set of ε-parameters

(Equation ):

SOe(X) =min
x∈X

(f1(x))

subject to gn(x) ≤ 0, n = 1, 2, . . . , N

hn′(x) = 0, n′ = 1, 2, . . . , N ′ ()

fk(x) ≤ εk,e k = 2, . . . , O

εk ≤ εk,e ≤ εk k = 2, . . . , O

Different Pareto solutions are obtained by solving repeatedly problem SOe(X) for different

values of εk,e. In environmental engineering problems, we typically retain the cost (k = 1) as

main objective and transfer the environmental indicators (k ̸= 1) to the auxiliary constraints.

e lower and upper limits of each ε-parameter are obtained from the minimization of each in-

dividual objective (e.g., in environmental engineering, the individual environmental objectives

refer to climate change, minerals extractions, ionizing radiations etc.), as shown in Equation .



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



sk =argmin
x∈X

(fk(x)), k ̸= 1

subject to gn(x) ≤ 0, n = 1, 2, . . . , N ()

hn′(x) = 0, n′ = 1, 2, . . . , N ′

Equation  deĕnes εk = fk(sk), k ̸= 1. e maximum values of every objective fk among

the solutions sk provide the upper bounds for ε-parameters.

Next, the intervals [εk, εk] are subdivided into |Ek| sub-intervals, and model SOe(X) is

solved for each of the limits of these sub-intervals, generating a different Pareto solution in each

run. e detailed explanation of the algorithm can be found in []. Application of this method

to other problems can be found in ., ., ..

.. Objective reduction in MOO problems

e complexity of MOO increases drastically with the number of objectives considered in the

problem from the viewpoints of generation and analysis of the Pareto solutions. []. One pos-

sible manner to overcome these difficulties is to eliminate redundant or non-essential objectives

from the analysis. is simpliĕes the calculations while at the same time preserving the domi-

nance structure of the problem. e concept of redundant objectives, and a measure for quan-

tifying changes in the original dominance structure of a problem taking place aer removing

them are presented in ., Section . and . Section ..

.. Objective reduction methods

Dimensionality reduction methods are widely used in many areas like statistics and data min-

ing. Unfortunately, these techniques are not directly applicable to MOO. Deb and Saxena []

proposed a method based on Principal Component Analysis (PCA) for decreasing the number

of objectives in MOO. eir approach identiĕes redundant objectives from the analysis of the

eigenvectors of the correlation matrix.

Brockhoff-Zitzler [, ] proposed an alternative approach for reducing the number of ob-

jectives that aims at preserving the initial dominance structure. e main idea is to replace the


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original set of objectives by a reduced set that is not conĘicting with the original one. An ap-

proximation error was deĕned by the authors to quantify the extent to which the dominance

structure of the problem changes when omitting objectives. ey deĕned two different prob-

lems: computing the minimum subset of objectives with a given delta value (i.e., approximation

error) and determining theminimumerror for an objective subset of given size. Two algorithms,

a greedy and an exact one, were proposed to solve the aforementioned problems. Based on sim-

ilar ideas, Guillén-Gosálbez [] developed a MILP-based objective reduction method to tackle

these problems. e details of these strategies are presented in ., Section . and ., Section

..

. Bi-level optimization (KKT reformulation)

Bi-level optimization is a special kind of optimization where one problem is embedded (nested)

within another. e outer optimization task is commonly referred to as the upper-level opti-

mization task, and the inner optimization task is commonly referred to as the lower-level op-

timization task. ese problems involve two kinds of variables, referred to as the upper-level

variables and the lower-level variables. ere are several methods to handle such type of prob-

lems. One way is to optimize every level step by step considering the results obtained in previous

levels as a constraint for the current level [].

Another solution methods consists of reformulating the bi-level problem as a single-level

optimization problem via the Karush–Kuhn–Tucker (KKT) conditions []. For example, con-

sider the following two nested single objective optimization problems SO1(Y ) and SO2(X),

where SO2(X) is the special condition to SO1(Y ).
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SO1(Y ) =min(f1(y))

s. t.

SO2(X) = min(f2(x))

s. t.

gn(x) ≤ 0, n = 1, 2, . . . , N ()

hn′(x) = 0, n′ = 1, 2, . . . , N ′

Where f1(y) and f2(x) are the objective functions, N is the number of inequality con-

straints, andN ′ is the number of equality constraints. X andY are the search spaces, andx and y

are vectors of decision variables. ProblemSO1(Y ) is called outer problem, whileSO2(X) is the

inner problem. In order to make this bi-level optimization problem computationally tractable,

we reformulate it as a single-level optimization problem via the Karush Kuhn Tucker (KKT)

conditions. e idea is to substitute the inner problems by their KKT conditions and solve the

outer problem subject to the KKT conditions of the inner models. e reformulated problem

takes the following form:

SO1(Y ) =min(f1(y))

s. t.

▽ f2(x) +
N ′∑
j=1

λn′ ▽ hn′(x) +
N∑
j=1

µn ▽ gn(x) = 0

gn(x) ≤ 0, n = 1, 2, . . . , N ()

hn′(x) = 0, n′ = 1, 2, . . . , N ′

µngn(x) = 0, n = 1, 2, . . . , N

µn ≥ 0, n = 1, 2, . . . , N

Where λn′ and µn are the Lagrangeanmultipliers associated with the equality and inequality
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constraints, respectively. us, the single level optimization problem seeks to minimize f1(y)

subject to the solution being in turn minimum in f2(x). Further details of this method are

described in ., Materials and Methods Section.

. Environmental assessment methods

In this thesis, the assessment of the environmental damage caused to lands receiving sewage

sludge was performed using the “Suitabity Index” (SUI) proposed by []. e SUI quantiĕes

the ability of land to receive the sewage sludge. Its value ranges between  (worst) and  (best).

e SUI assesses the potential impacts or alterations in the environmental matrices (soil, food

and water quality) and in human health. e SUI is determined from two main indexes: hu-

man exposure and environmental criteria. Human exposure quantiĕes the likelihood of causing

damage to human health, and considers “distance to urban areas”, and “crop type” as main cri-

teria. e environmental criteria index measurea the likelihood of contaminating soils, surface

water and groundwater, when soils are amended with SS. e aggregation tree of the selected

criteria is depicted in Figure . Further details of this method can be found in [] and .,

Section ...

Soil 

carbonates

Figure : Schematic representation of the model implementation.

e assessment of the environmental performance of heat exchanger networks (HEN) and

utility plants was conducted using life cycle assessment (LCA) principles. LCA is amethodology
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for evaluating the environmental loads associated with a product, process or activity over its

entire life cycle. Details on the application of LCA to our problems can be found in ., Section

.. LCA calculations are performed following a four step procedure:

. Goal and scope deĕnition. is phase deĕnes the goal of the study, system boundaries, al-

location methods, and impact categories. We perform a ”cradle-to-gate” analysis that embraces

all the activities associated with the construction and operation of the systems. Ten impact cat-

egories, as deĕned by the Eco-indicator , are considered in our work:

. Carcinogenic effects on humans.

. Respiratory effects on humans caused by organic substances.

. Damage to human health caused by climate change.

. Human health effects caused by ionizing radiations.

. Human health effects caused by ozone layer depletion.

. Damage to ecosystem quality caused by ecosystem toxic emissions.

. Damage to ecosystem quality caused by the combined effect of acidiĕcation and eutroph-

ication.

. Damage to ecosystem quality caused by land occupation and land conversion.

. Damage to resources caused by extraction of minerals.

. Damage to resources caused by extraction of fossil fuels.

. Inventory analysis. e second stage determines the most relevant inputs and outputs

Ęows of materials and energy associated with the main process. is information will be further

translated into environmental impacts. For the HEN example, the environmental burdens are

given by the production of the amount of stainless steel contained in the heat exchangers and

the generation of cold and hot utilities. e life cycle inventory (LCI) of inputs and outputs is

determined from the mass of stainless steel (continuous variable mass), and the amount of cold

(continuous variable qcu) and hot utilities (continuous variable qhu) consumed as follows:



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



LCIb =
∑
j

qhuj ω
HU
b +

∑
i

qcui ω
CU
b +mass ωM

b ()

In this equation, ωHU
b , ωCU

b , ωM
b denote the life cycle inventory entries (i.e., emissions re-

leased to the environment or resources taken from the ecosphere) associated with chemical b

per reference Ęow of activity (i.e., mass of steam, cooling water and steel generated). ese pa-

rameters are retrieved from environmental databases Ecoinvent ..

. Impact assessment. is stage quantiĕes the impact in a set of damage assessment cate-

gories. Following the ECO methodology, the damages in each impact category c (denoted by

IMc ) are evaluated as follows:

IMc =
∑
b

LCIb θbc ()

Where θbc is a damage factor that translates the results of the inventory phase into a set of

damages.

. Interpretation. Here, the results of the LCA are analyzed and a set of conclusions and

recommendations for the system are formulated. In our work, the preferences are articulated in

the post optimal analysis of the Pareto optimal solutions.

e details of this method can be found at ., Section . and ., Section ...
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 Results

A brief summary of the results obtained is next provided. Further details can be found in the

original publications attached to this document in ., ., ., ., . Chapters.

. Combined use of GIS andMILP for sustainable designof sewage

sludge amendment

We developed a multi-objective optimization model that combines GIS and mixed-integer lin-

ear programming for identifying optimal agricultural areas for sewage sludge amendment. e

MILP model was tested through its application to a real case study based on Catalonia. e

MILP included two objective functions: total annual cost and index of suitability (see .).

We obtained a set of Pareto solutions using the epsilon-constraint method (see . of this

esis). Every solution represents a different distribution alternative of SS coming from the

waste water plants and distributed among the set of agricultural ĕelds (i.e., a different trans-

portation plan, as shown in Figure  at . and explained in Section  of .). e results show

that signiĕcant environmental improvements can be attained at a marginal increase in cost, as

observed in Figure  in Section  of the paper in .. One of themain advantages of our approach

is that it produces solutions that reĘect precisely the default preferences of the decision-makers

involved in the problem. Furthermore, it relies on a rigorous and systematic mathematical ap-

proach that avoids falling in sub-optimal solutions, something thatmight happenwhen applying

heuristics or rules of thumb (Section  of the paper at .).

e model led to a copmlext MILP. As an illustrative example, for a GIS map with  

pixels, we deĕne anMILP containing , continuous variables, , binary variables, and

, equations (see ., Section ). e model size is hence quite sensitive to the number

of pixels, which grows rapidly as we increase the map resolution. erefore in the next work,

we devised a decomposition strategy for this special class of mixed-integer linear programming

(MILP) models. e bilevel decomposition algorithm used to solve such a complex MILP is

summarized in Figure , .. Numerical results show that our approach achieves reductions of

orders of magnitude in CPU time (as compared to the full space GIS-based MILP) while still

yielding near optimal solutions (Tables ,  and , at Chapter . ). Our approach allows for the



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



solution of complex and realistic problems that might be found in practice.

. Sustainable design of heat exchanger networks

We proposed a multi objective optimization model for the sustainable design of heat exchanger

networks (HEN) considering simultaneously economic and environmental concerns. e de-

sign task is posed inmathematical terms as amulti-objectivemixed integer non-linear program-

ming (MINLP) problem, in which life cycle assessment (LCA) principles are used to quantify

the environmental performance.

e capabilities of our approach are tested through two examples. We clearly illustrate how

the use of a single overall aggregated environmental metric is inadequate in the design of HENs,

since it may leave some solutions that are appealing for decision-makers out of the analysis (see

Figure , Figure  and Section  at .). We ĕnd that some individual LCA metrics are con-

Ęicting and can be aggregated into three main groups according to their behavior. e analysis

of the pair cost vs. overall an aggregated environmental metric (i.e., Eco-indicator ) does not

preserve the whole dominance structure of the problem (Figures , ,  and Figures , , 

in .).

To simplify the visualization and analysis of the Pareto solution, we investigated the use of a

rigorous dimensionality reduction method in the post-optimal analysis of the trade-off designs.

is technique enables the identiĕcation of redundant objectives that can be eliminated while

still keeping the problem structure to the extent possible. e results show that there are several

redundant environmental objectives that can be eliminated. e combination of total cost and

extraction ofminerals preserves the initial structure to themaximumextent possible. (see Figure

, Figure  and Section  at .).

. Sustainable design of utility plant

A systematic method based on mathematical programming was introduced to tackle the design

of an utility plant with economic and environmental concerns. e design task was formulated

as a bi-criteria MILP problem. We employ for the analysis several environmental impacts which

were calculated according to the LCA methodology.

e capabilities of the proposed method are illustrated through two cases studies. We ob-
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tained a set of Pareto alternatives using the epsilon-constraint method, and identiĕed operating

regions where signiĕcant environmental improvements can be attained at a marginal increase

in cost (see Figure  and Subsection . in . ). To facilitate the calculations, we employ an

MILP-based dimensionality reduction approach that allows identifying key environmental met-

rics that exhibit the property that their optimization automatically results in the improvement

of the system in all the remaining damage categories.

Numerical results show that in the ĕrst example all the environmental impacts behave simi-

larly, while the cost is conĘictive with them. Hence, the original multi-objective problem can be

replaced by a bi-criteria one (cost against any environmental impact) without signiĕcant changes

in the problem structure (see Figure , Table  and Section . in .). In the second example,

there is a conĘict between environmental metrics (see Figure  in .). Comparing with the

previous case, we notice that some solutions would be lost when optimizing in the space of cost

and Eco-indicator  are unique objectives (see Figure  at .. e rigorous dimensionality

reduction method shows that the problem structure can be kept by optimizing three objectives:

cost, respiratory effects (inorganic) and climate change, which simpliĕes the overall procedure

(see Table  at .).

. Identifying design principles in metabolic networks

Wedeveloped anMINLPmethodbased onbi-level optimization for identifying in a rigorous and

systematic manner the most probable biological objective functions driving the cell’s metabolic

machinery. To solve the bi-level problem efficiently, we reformulate it into a standard mixed-

integer nonlinear program (MINLP) by replacing the inner problems by their Karush Kuhn

Tucker conditions [].

We benchmark the method by analyzing which combination of objective functions better

explains a set of metabolic Ęuxes experimentally determined invivo. Our analysis conĕrms that

biomass maximization is a fundamental objective function under the experimental conditions

of the benchmark (see Figure ,  and , Results andDiscussion Section in .). In addition, our

optimizationmethod identiĕes additional sets of functional criteria that, taken together with the

optimization of the growth rate, improve the model ĕtting to the experimental data. e ĕtting

of FBA models to the experimental data improves with the number of objectives considered in
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the analysis, ĕrstly sharply and then marginally aer a certain number of criteria (Figures  and

, Results and Discussion Section at .).

We show also that there are several groups of objectives that behave similarly, which suggests

the existence of redundant biological criteria (see Table , Results andDiscussion, .). Our tool

can identify meaningful objective functions under various experiments simultaneously (Figures

 and , Results and Discussion, .).
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 Conclusions

In this thesis, we draw the following conclusions:

• e combineduse ofGIS andmathematical programmingprovides a comprehensive frame-

work to address the sustainable distribution of SS on agricultural areas.

• e sets of solutions obtained using the GIS-based MILP approach are guaranteed to be

optimal and reĘect precisely the default preferences of the decision-makers (Section  at

.).

• It is possible to improve the environmental performance of SS allocation by compromising

the associated cost (Figure  at .).

• e bi-level decompositionmethod for GIS-basedMILPs provides near optimal solutions

in a fraction of the CPU time required by the full space model (Tables ,  and , .).

• e systematic spatial decision-making tool based on the combined use of GIS,MILP and,

if necessary, coupled with the bi-level decomposition technique is general enough to be

applied to various regions, especially in the European Mediterranean area.

• e MINLP model for the sustainable design of HENs, which incorporates several envi-

ronmental LCA metrics, identiĕes design alternatives leading to signiĕcant environmen-

tal improvements.

• eMILPmodel of the utility plant (UP) that includes several LCA environmentalmetrics

is an efficient approach for the sustainable design of energy production systems.

• e use of an aggregated indicator (i.e., Eco-indicator ) is inadequate in the design of

HENs (see Figure , Figure  and Section  in .) and UP (see Figure  at .), since

it leaves solutions that may be appealing for decision makers out of the analysis.

• e use of dimensionality reduction techniques in the design of HENs and UPs shows

that some environmental objectives might be redundant and can be therefore le out of

the analysis without modifying signiĕcantly the problem structure (see Figure , Figure

 and Section  at .) and Table  , Section . at .).
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• Our approach can be applied to various types of energy systems (e.g., solar, wind, etc.) in

order to facilitate decision-making with environmental impact considerations.

• Our approach based on bi-level optimization coupled with mixed-integer nonlinear pro-

gramming (MINLP) identiĕes, in a rigorous and systematic manner, the most likely ob-

jective functions for a given set of experimental conditions.

• Weĕnd that biomassmaximization is a fundamental objective function in cellmetabolism.

Numerical results show also that the inclusion of additional sets of functional criteria,

along with growth rate maximization, improve the model ĕtting to experimental data (see

Figure ,  and , Results and Discussion Section in .).
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 Future work

A set of potential research lines related to thematerial presented in this thesis is presented below:

• Introduce uncertainty in the models using stochastic programming techniques. is will

increases their robustness and produce more realistic results.

• ApplyGIS-basedmulti-objective optimization to other spatial decision-making problems,

like the optimal allocation of crops in Spain, in order to reduce the amount of water used

for irrigation (i.e., water blue).

• Apply dimensionality reduction to other environmental problems, like the design of com-

pressors.

• Despite recent advances in the design of heat exchanger networks, we cannot guarantee

that the solutions found with the MINLP model are globally optimal. Hence, we will

explore the use of global optimization algorithms that will guarantee convergence to the

global optimum of the problem.

• In systems biology, we are planning to apply our MINLP-based bi-level optimization ap-

proach to identify meaningful biological objective functions in other kinetic metabolic

models.
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 Nomenclature

Abbreviations
AML algebraic modeling language

EI eco-indicator 

GAMS general algebraic modeling system

FBA Ęux balance analysis

HEN heat exchanger network

IDE integrated development environment

KKT Karush–Kuhn–Tucker

LCA life cycle assessment

LP linear programming

NLP nonlinear programming

MILP mixed-integer linear programming

MINLP mixed-integer nonlinear programming

SS sewage sludge

WWTP waste water treatment plant
Indices

e epsilon iterations

k objectives

n inequality constraints

n’ equality constraints
Sets

F set of objectives

g set of inequality constraints

h set of equality constraints
Parameters

N number of inequality constraints

N’ number of equality constraints

O number of objectives
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a b s t r a c t

This work proposes a systematic decision-making tool for identifying the best geographical areas for

sewage sludge (SS) amendment in terms of economic and environmental criteria. Our approach in-

tegrates GIS and multi-objective mixed-integer linear programming (MILP) within a unified framework

that allows exploring in a rigorous and systematic manner a large number of alternatives for sewage

sludge amendment from which the best ones (according to the decision-makers’ preferences) are finally

identified. The capabilities of our methodology are illustrated through its application to a case study

based on Catalonia (NE of Spain). The tool presented provides as output a set of optimal alternatives for

sewage sludge distribution, each one achieving a unique combination of economic and environmental

performance. Our ultimate goal is to guide decision-makers toward the adoption of more sustainable

patterns for sewage sludge amendment.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Wastewater treatment plants generate several contaminants,

such as grit, screenings and sludge (Fytili and Zabaniotou, 2008).

The production of sewage sludge (SS) has recently increased in

several countries due to the population growth, which has posed an

important environmental problem. In this general context, there is

a strong motivation for developing systematic tools to provide

decision-support for the management of sewage sludge, a topic

that has recently gained an increasing attention in the research

community (Passuello et al., 2010).

Several methods currently exist to dispose the residue of

wastewater plants: combustion, wet oxidation, pyrolysis, gasifica-

tion and co-combustion of sewage sludge with other materials for

further use as energy source. In addition, the reuse of SS as an

agricultural fertilizer has traditionally received increasing interest.

This last practice is environmentally appealing, as it recycles organic

matter and nutrients to soils (Werle andWilk, 2010). Unfortunately,

the SS matrix contains harm emissions, such as heavy metals and

persistent organic pollutants (POPs) that can contaminate the soil,

crops, groundwater, open waters, and eventually reach the human

food chain. The probability of contamination depends on the local

characteristics of the field. Spatial decision-making tools for land

classification are well suited for this problem, as they allow identi-

fying the best regions for SS amendment from information available

in spatial databases (Passuello et al., 2012).

One of themostwidely applied tools forhandlinggeographicdata

is the Geographic Information Systems (GIS). GIS have been exten-

sively employed in several environmental fields, such as vulnera-

bility (Kattaa et al., 2010), andhumanhealth assessment (Nadal et al.,

2006; Poggio and Vrscaj, 2009), as well as ecological exposure, and

risk assessment (Johnson et al., 2009; Schriever and Liess, 2007). The

concept of Spatial Multicriteria Decision Analysis (SMCA) refers to

the combined use of Multicriteria Decision Analysis (MCDA) tools

andGIS to solve spatial decision-making problems.MCDA allows the

combination of quantitative and qualitative inputs, like risks, costs,

benefits, and stakeholders views. This general approach has been

applied to a wide variety of environmental management problems,

such as agriculture application (Malczewski, 2004) andmanagement

of sewage sludge (Passuello et al., 2012).
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The capabilities of GIS can be further enhanced through its

integration with optimization tools. Grabaum and Meyer (1998)

investigated the use of GIS in the multi-criteria optimization of

landscapes. Wang et al. (2004) employed a GIS model to allocate

future land uses based on the results of an inexact-fuzzy multi-

objective linear programming (IFMOP) model. Ducheyne et al.

(2006) combined genetic algorithms and GIS for forest-

management optimization. van den Broek et al. (2010) integrated

ArcGIS, a geographical information systemwith spatial and routing

functions, with MARKAL, an energy bottom-up model based on

linear optimization for designing a cost-effective CO2 storage

infrastructure in the Netherlands.

Despite these recent advances, the literature on the combined

use of GIS and optimization techniques is quite scarce. In this work

we propose a systematic tool based on mathematical programming

and spatial analysis techniques (i.e., GIS) to support decision-

making in the management of sewage sludge. To the best of our

knowledge, this is the first contribution of this type in the area of SS

amendment. Given a certain amount of sludge to be treated and a

set of available agricultural areas, the goal of the analysis is to

identify the optimal agricultural fields for sewage sludge amend-

ment according to some economic and environmental criteria. The

capabilities of our tool are illustrated through its application to a

case study based on Catalonia (Northeast of Spain). The article is

organized as follows. Section 2 describes a case study in Catalonia

that is taken as a test bed to illustrate the capabilities of our

approach, while Section 3 describes our proposed methodology.

The numerical results are presented and discussed in Section 4,

while the conclusions of the work are finally drawn in Section 5.

2. Case study

Catalonia is a region in the Northeastern part of Spain that

covers an area of 32,114 km2 (Fig. 1). It extends from the Pyrenees

southward along the Mediterranean. The relief of Catalonia (NE of

Spain) is characterized by a diverse morphology, being mostly

mountainous in the north (Pyrenees) and flat at the center and the

coast (see Fig. 1). The region is also characterized by the presence of

a littoral mountain system, between the central depression and the

coast. In the central and cost areas summer is hot and winter is

warm with an annual average temperature of around 17 �C,

whereas in the Pyrenees region the annual temperature is around

5 �C.

The precipitation levels vary along the territory. The northern

and mountainous regions show the higher mean precipitation

levels (between 700 and 1250 mm year�1), while the southern and

the coastal regions are characterized by lower rainfall levels (be-

tween 450 and 700 mm year�1). The main basin of Catalonia is the

Ebro catchment. Catalonia has a diversity of soil types, mostly

calcareous sediments mixed with alluvium and clay. Catalonia’s

agriculture was centered on the production of wine, wheat, rice,

barley, olive, grapes, fruits, nuts and vegetables. The agricultural

area currently available has more than 1million ha. The largest area

is located in the central depression zone and the delta of the Ebro

river. More than 85% of this area is covered by fruit and cereal fields

(IDESCAT, 2009).

The official population of Catalonia is 7,354,411. It is adminis-

tratively divided in four provinces: Barcelona, Tarragona, Girona,

and Lleida, with a population of 5,416,447; 788,895; 731,864; and

426,872 people, respectively. Sewage sludge amendment is a

common practice in Catalonia. Reported data for 2007 showed that

140,000 tons of dryweight (dw) sludgewere produced in Catalonia,

83% of which (114,000 tons dw) were applied on agricultural soils

(ACA, 2008).

Deciding the best agricultural soils for SS amendment is not a

trivial task. Several environmental aspects, such as groundwater

contaminationby nitrates, openwaters and soil protection, aswell as

human exposure to the contaminants present in the sludge matrix

must be considered along with economic aspects, making this task

quite challenging. This is because the management of this residue

concerns different stakeholders, with different views of the problem

and conflicting interests. In addition, they may find that their in-

terests are not reached, fact that leads to a low acceptance of the

practice. Fig. 2 briefly describes the objectives of each stakeholder.

The environment agency is interested on managing the

increased amount of residues produced, considering that safe levels

are maintained for humans and as well as for the environment. In

this regard, the agency is concerned not only in having low

contamination levels on food but also in protecting soil and water

bodies from contamination, while at the same time keeping the

overall economic expenditures below an affordable level. To cut

down the management costs, external private companies are hired.

These companies shall transport the sewage sludge (SS) from the

wastewater treatment plants (WWTP) to the agricultural fields, and

apply the SS to the fields in appropriate levels. These companies

aim to make the maximum profit.

For the farmer, the amendment of soils with SS may represent a

profitable practice, as the land is fertilized with no extra costs. In

this regard, the farmer does not pay for fertilizers, or transport and

application costs, as the last two are covered by the hired company.

In this context, there is a strong concern about food quality, as

farmers must fulfill specific quality requirements determined by

the industry to prevent a reduction on their market share.

Furthermore, farmers should be aware about the risks related to the

practice. Soil quality has a strong connection with food quality and

must be thus carefully preserved.

Reaching a final solution satisfying all the decision-makers

involved is indeed very challenging. Systematic tools based on

multi-objective mathematical programming are well suited to

tackle this type of problems, as they allow screening in a rigorous

and systematic manner a large number of alternatives from which

the best ones are identified. The final goal is to calculate a set ofFig. 1. The map of Catalonia.
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Pareto optimal alternatives, that is, a set of solutions with the

property that it is impossible to improve them in one of the ob-

jectives without necessarily worsening at least another criterion.

Fig. 3 illustrates the concept of Pareto optimality for a simple case

with two objectives (cost and suitability). Points lying below the

curve are sub-optimal, since they can be improved in both criteria

simultaneously. The region above the curve is infeasible, since no

alternative shows better profit and suitability simultaneously than

the Pareto solutions. The final goal is to select a solution on the

curves. Examples of other multi-objective optimization approaches

applied to environmental multicriterial problems can be found

elsewhere (Fu et al., 2008; Kollat and Reed, 2007; Bourmistrova

et al., 2005). In the sections that follow, we introduce a system-

atic tool based on these principles that provides decision-support

for SS amendment.

3. Proposed approach: mixed-integer linear programming

model

In this section, we first formally state the problem of interest,

and then present a mathematical formulation that provides as

output the optimal distribution of SS.

3.1. Problem statement

SS amendment on agricultural soils is an activity that affects

several groups of interests, such as farmers, environmental

agencies, the general population, and wastewater treatment plants

(WWTPs), among others. Each of these groups of stakeholders

presents different concerns. For example, WWTPs are interested in

cheap procedures of disposal. The environmental agencies want to

keep good environmental levels on the different matrices (soil,

open waters, groundwater), while the general population expects

not to be exposed to contamination as well as to the bad odors

caused by the amendment. In order to respect all the stakeholders’

concerns, two groups of criteria were defined: suitability (that

comprises environmental and human exposure factors) and total

cost.

We consider a region of interest (i.e., the whole area of Cata-

lonia) that is subdivided into a certain number of fields (12,536 in

our case). Each of these fields is defined by a set of coordinates in

meters (x,y), an index of suitability, an acceptable capacity in tons

per year of sludge, and an application cost (in euro ton�1 year�1).

We are also given a set of WWTPs (waste water treatment plants).

In this study, andwithout loss of generality, we have considered the

capitals of each provinces of Catalonia as the main producer in each

province (i.e., Barcelona, Tarragona, Girona, and Lleida). Each of

these cities is characterized by a pair of coordinates and total pro-

duction of SS per year. The goal of the analysis is to determine the

optimal distribution of SS production among the Catalonian agri-

cultural areas that simultaneously optimizes the overall suitability

and the total cost.

3.2. Mixed-integer linear programming (MILP) formulation

A MILP model is constructed for the efficient solution of the

problem stated above. The formulation is derived based on the

superstructure shown in Fig. 4. We consider a set I, WWTPs that

generate SS, and a set J of agricultural areas that receive SS. Given a

certain amount of SS generated in the plants, the MILP seeks to

determine the optimal flows to be established between the plants

and agricultural fields. The model comprises two main sets of

equations: capacity constraints and objective function equations.

We describe next these sets of constraints in detail.

3.2.1. Capacity limitations

All the amount of SS generated by the WWT plants (parameter

CAP(i)) must be treated in the agricultural areas as shown in Eq. 1.

Furthermore, the amount of SS sent to agricultural soil j should not

exceed its capacity (parameter CAPf(j)).
X

j

xði; jÞ ¼ CAPðiÞ ci (1)

X

i

xði; jÞ � CAPf ðjÞ cj (2)

Here x(i,j) is a continuous variable that represents the amount of

SS sent from plant i to agricultural soil j. The amount of SS trans-

ported from i to j is constrained within lower and upper bounds if a

transportation link is established between them and must be zero

otherwise:

Environmental

agency

Farmers

Private

companies

Food

quality

Stakeholders Concerns Objectives

Maximize

soil

suitabilty

Minimize

management

costs

Human

exposure

Water

quality

Soil

quality

Profit

Fig. 2. Relationship between the stakeholders and objectives.

Fig. 3. Description of Pareto front.
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Xði; jÞ zði; jÞ � xði; jÞ � Xði; jÞzði; jÞ cj; i (3)

The existence of a transportation link between plant i and field j

is represented by binary variable z(i,j), which equals 1 if a trans-

portation link is established and 0 otherwise. In the same equation,

Xði; jÞ and Xði; jÞ denote the minimum and maximum allowable

flows of SS, respectively, that can be transported between i and j.

The total amount of SS sent to area j must lie within lower and

upper limits:

YðjÞ yðjÞ �
X

i

xði; jÞ � YðjÞyðjÞ cj (4)

In this equation, y(j) is a binary variable that takes the value of 1

if area j is used and 0 otherwise, while YðjÞ and YðjÞ are lower and

upper bounds, respectively, on the total amount of SS disposed on

field j.

3.2.2. Objective functions

The model considers two objective functions: suitability

(f1 ¼ SF) and economic performance (f2). The first is defined as the

total suitability among the agricultural areas used for sewage

sludge (SS) amendment.

f1 ¼ SF ¼
X

i

X

j

xði; jÞSUIðjÞ (5)

where the suitability index associated with each field (SUI(j)) is

multiplied by the amount of SS sent from plant i to agricultural soil j

(x(i,j)). The parameter SUI(j) is defined as proposed in Passuello

et al. (2012) and ranges between 0 (worst) and 1 (best areas).

This indicator considers a wide range of concerns related to the

environmental agency and farmers’ stakeholders (see Fig. 2). The SF

assesses the potential impacts or alterations in the environmental

matrices (soil, food and water quality) and the human exposure.

Following the work by Passuello et al. (2012), the suitability is

determined from two main indexes: human exposure and envi-

ronmental criteria. Human exposure quantifies the likelihood of

causing damage to human health, and considers “distance to urban

areas”, and “crop type”. The environmental criteria measure the

likelihood of contaminating soils, surface water and groundwater,

when soils are amended with SS. The tree of the selected criteria

can be seen on Fig. 5.

For soil criteria, two subcriteria are considered: “soil structure”

and “soil characteristics”. The subcriterion “soil structure” quan-

tifies the ability of the soils to receive SS (for instance, organic soils

with a fine texture are preferred due to their buffer properties),

while the “soil characteristics” consider metal concentration and

mobility in soil (bioavailability and lower mobility for high pH and

carbonate content). For the open waters criteria, two groups of

subcriteria were considered: “climatology”, which evaluates

contaminant degradation and mobility due to the local tempera-

ture and precipitation values; and “relief”, which quantifies the

likelihood of the contaminant to reach open waters. For this crite-

rion, two subcriteria are considered: the terrain “slope”, and the

proximity to open waters (“hydrology”).

The suitability index is calculated for all the areas considered in

the analysis following the decision rules and criteria weights pro-

posed by Passuello et al. (2012), inwhich the reader can find further

details.

The total cost, denoted by the continuous variable TC, accounts

for the transportation cost from the SS plants to the fields (TRC), as

Fig. 4. Superstructure of the supply chain problem.

Fig. 5. Schematic representation of the model implementation.
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well as the application cost (AC) associated with the disposal of SS

on the fields.

f2 ¼ TC ¼ TRC þ AC (6)

The total cost (TC) is included in the model to reflect the pref-

erences of the companies hired for managing the disposal of SS,

which are interested in a cheap process. The transportation cost is

calculated from the amount of SS sent from plants to soils and the

associated distance:

TRC ¼
X

i

X

j

tc xði; jÞlði; jÞ (7)

where, l(i,j) represents the distance between plant i and field j in

kilometers, tc is the cost of transporting 1 ton of SS per km of dis-

tance (euro ton�1 km�1), and x(i,j) denotes the amount of SS

transported from i to j expressed in ton per year (ton year�1).

The application cots are calculated from the amount of SS

disposed as follows:

AC ¼
X

i

X

j

acðjÞxði; jÞ (8)

where ac(j) represents the application cost of 1 ton of SS per year

(euro ton�1 year�1).

3.3. Solution method

The overall MILP can be finally expressed in compact form as

follows:

minf � f1ðx; y; zÞ; f2ðx; y; zÞg ðOPTTSÞ

s:t: constraints 1� 8

x3R y; z3f0;1g

where f1, f2 are the suitability and total cost, respectively (Section

3.2.2), constrains 1e8 correspond to Equations (1)e(8) (see Section

3.2.1), and x, y, z denote the continuous and binary variables,

respectively, of the model. Model OPTSS can be solved by anymulti-

objective optimizationmethod available in the literature (Raith and

Ehrgott, 2009). Without loss of generality, we apply here the

epsilon-constraint method (Ehrgott, 2005), which is based on

formulating an auxiliary model in which one objective is kept as

main objective and the remaining are transferred to auxiliary

constraints that impose epsilon bounds on their values. These

single-objective problems are solved for several epsilon values,

generating in each run a different Pareto solution. Further details of

this method can be found elsewhere (Ehrgott, 2005).

4. Results and discussion

The input data for the MILP were taken from Passuello et al.

(2012). We consider an area of 451,296 ha (12,536 pixels, each

one with a surface of 36 ha). All these areas show a suitability index

above 0.7. The agricultural areas are of different types: cereals,

fruits, vegetables, and pastures. Each MILP of the epsilon constraint

method contains 125,371 equations, 112,830 continuous variables,

and 62,680 binary variables. Fig. 6 shows the results of the Pareto

analysis for the two criteria considered (Total Cost and Suitability).

Ten Pareto points were generated following the procedure

mentioned before. It took around 7.52 CPU seconds to solve each

MILP on an AMD Athlon 2.99 GHz, 3.49 GB of RAM.

Note that each Pareto solution represents a different distribu-

tion alternative of SS from the water plants to the set of agricultural

fields (Fig. 6). As observed, there is a clear trade-off between overall

suitability and cost, as an improvement in one criterion is only

possible by worsening the other one. Two different zones can be

identified in the Pareto set. From point 1 to point 6, the slope of the

curve increases sharply. In contrast, from 6 to 10, the slope is rather

smooth, so increments in suitability are attained at a large increase

in cost. Fig. 6 shows also a breakdown of the cost for each Pareto

solution. As can be seen, the transportation cost represents the

largest contribution to the total cost (TC), and constantly increases

along the Pareto set, while the application cost stays approximately

constant.

Fig. 7 shows the solutions associated with points 1, 6 and 10 (a, b

and c, respectively, in Fig. 7), which correspond to the extreme

solutions and an intermediate alternative. The distribution of SS

denoted by variables x (i,j) (see Section 3.2.1) is given by the amount

of SS sent from plant i to agricultural soil j in ton per year. Every

agricultural soil used for sewage sludge amendment has its own

color (red, green, blue and violet) that depends on the city from

which it is receiving the SS. The intensity of the color depends on

the amount of SS applied to the soil. For a better understanding of

Fig. 7, please refer Fig. 1.

Fig. 7(a) shows the distribution for the minimum cost. As

observed, the disposal areas are located relatively close to thewater

treatment plants, since this configuration reduces the trans-

portation costs. It should be noticed that we only consider in our

analysis those agriculture areas with a suitability index above 0.7, a

minimum target value that is not fulfilled by many areas close to

the water treatment plants. For example, in Girona, the only suit-

able areas for SS amendment are located far away from the capital,

and close to the border with Barcelona.

Fig. 7(b) depicts the results for the intermediate point 6. As

observed, the disposal areas for Barcelona and Tarragona are far

away from the cities, and close to Lleida, a region with more suit-

able agricultural fields. Fig. 7(c) shows the results for the maximum

suitability solution (point 10 in Fig. 3). Recall that in this case the

cost does not play any role in the optimization. As a consequence, SS

from all the provinces is distributed in the most suitable areas of

Catalonia regardless of the distance from the treatment plants.

These areas are located mainly in Lleida.

As observed, our systematic approach provides as output a set of

candidate solutions from which the one to be implemented in

practice should be identified. Identifying these alternatives is by no

means a straightforward task, since many alternatives exist. The

main advantage of our strategy is that it ensures that the final
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solution implemented in practice is Pareto optimal, that is, that it

cannot be improved in all of the objectives simultaneously without

necessarily worsening at least one of the interests of the decision-

makers.

The question that arises at this point is how to choose the best

alternative from the set of Pareto solutions. The final choice should

be made by a panel of experts according to their experience, and

should ideally represent the views of the society or a group of

stakeholders. Themain advantage of our tool is that it provides a set

of solutions to be assessed by decision-makers, so they do not

spend extra time (and money) in generating them. Furthermore,

these alternatives are guaranteed to be optimal, so we avoid sub-

optimal solutions whose economic and environmental perfor-

mance can be improved simultaneously. Finally, including eco-

nomic aspects in the model along with environmental concerns

avoids potential conflicts between environmental agencies and

industry. These advantageous characteristics make our approach

quite appealing in this context.

5. Conclusion

This work has presented a systematic spatial decision-making

tool for the optimal distribution of SS on agricultural areas based

on the combined use of GIS and mathematical programming. The

task of identifying the best agricultural soils for SS amendment was

formulated as a mixed-integer linear programming (MILP) problem

that seeks to optimize simultaneously the economic and environ-

mental performance of the system. The multi-objective optimiza-

tion model coupled with GIS data provides a comprehensive

procedure to evaluate SS disposal options on agricultural areas for

organic amendment.

The capabilities of our approach were tested through its appli-

cation to a case study based on Catalonia. Numerical results show

that it is possible to improve the environmental performance of the

final solution by compromising the associated cost. Our method-

ology is intended to assist decision-makers in such a challenging

task. The tool presented is general enough to be applied to other

regions, especially in the European Mediterranean area, after per-

forming a careful adaptation to the local features and knowledge of

the region of interest.

One of the main advantages of our approach is that it produces

solutions that reflect precisely the default preferences of the

decision-makers involved in the problem. Furthermore, it relies on

a rigorous and systematic mathematical approach that avoids fall-

ing in sub-optimal solutions, something that might happen when

applying heuristics or rules of thumb. Finally, the approach pre-

sented may lead to significant savings in time and money when

solving such a challenging environmental engineering problem.
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Decomposition Algorithm for Geographic Information System Based
Mixed-Integer Linear Programming Models: Application to Sewage
Sludge Amendment
P. Vaskan, G. Guilleń-Gosaĺbez,* A. Kostin, and L. Jimeńez

Departament d’Enginyeria Química (EQ), Escola Tec̀nica Superior d’Enginyeria Química (ETSEQ), Universitat Rovira i Virgili
(URV), Campus Sescelades, Avinguda Països Catalans, 26, 43007 Tarragona, Spain

ABSTRACT: We present a decomposition strategy for mixed-integer linear programming (MILP) models that are formulated
on the basis of geographic information system (GIS) data. Our algorithm relies on decomposing the MILP into two levels, a
master problem and a slave problem between which we iterate until a termination criterion is satisfied. The former is constructed
using a K-clustering statistical aggregation method that reduces the computational burden of the model. The solution of this level
is used to guide the search in the slave model. A case study that addresses the optimal design of sewage sludge amendment in
Catalonia (NE of Spain) is introduced to illustrate the capabilities of the proposed approach.

1. INTRODUCTION

Geographic informational systems (GIS) were initially
developed as a tool for storing and displaying all forms of
geographically referenced information. In the recent past,
however, there has been a growing interest on the application
of GIS in the solution of various social and economic problems.
Particularly, GIS has been used in the context of spatial decision
analysis for the assessment of potential locations for different
types of systems considering various inputs simultaneously,
with a recent growing interest placed on its application to
environmental problems. As an example, Nadalet al.,1 Poggio
and Vrsčǎj2 investigated the use of GIS for human health
assessment, whereas Johnson et al.3 Schriever and Liess4

applied GIS in the assessment of the ecological exposure and
environmental risk of several systems.
GIS can be combined with multicriteria decision analysis

(GIS-MCDA) to address problems in which different (typically
conflictive) criteria must be accounted for in the analysis.
Malczewski5 investigated the use of GIS-based tools in land-use
suitability analysis, whereas Passuello et al.6 applied GIS and
MCDA to the management of sewage sludge.
The capabilities of GIS and spatial analysis can be further

enhanced through its integration with optimization tools.
Grabaum and Meyer7 investigated the use of GIS to support
decision making in planning problems. Wang et al.8 developed
a GIS model to identify the best location for future land uses in
the Lake Erhai basin in China. Mapa et al.9 combined GIS and
mathematical modeling for the solution of location-allocation
problems arising in the management of education facilities.
Jung et al.10 integrated GIS and optimization tools for the
effective control of parcel delivery services. Marcoulaki et al.11

developed an integrated framework based on stochastic
optimization and GIS for the design of pipeline systems.
One problem in which the combined use of GIS and

mathematical programming holds good promise is the
treatment of sewage sludge in agricultural areas. The
production of sewage sludge (SS) has grown rapidly during
the last years, mainly due to the increase of the world

population. Despite recent advances, the question on how to
treat the SS still remains open. One effective method for this is
to reuse it as a fertilizer in the agricultural sector, an alternative
encouraged by the European Community, which promotes the
recycling of organic matter and nutrients to soils.12 Identifying
the best agricultural areas for SS amendment is challenging
because this strategy shows not only benefits to both soil and
crops but also disadvantages due to the potential contamination
of the fields.
GIS tools for land classification are well suited for this

problem, as they allow identifying the best regions for SS
amendment from information available in spatial databases.6

These tools are mainly descriptive; that is, they provide valuable
information about the system, but no guidelines on how to
solve the underlying problem. In this general context, there is a
strong motivation for developing systematic tools that integrate
GIS and optimization to facilitate decision-support in this area.
Vaskan et al.13 investigated the combined use of GIS and

MILP (mixed-integer linear programming) for identifying
optimal agricultural areas for sewage sludge amendment in
the area of Catalonia. The combined use of GIS and
optimization tools led to complex MILP models due to the
spatially explicit nature of the problems addressed. In these
MILPs, the decision variables are defined for every pixel of the
GIS map, thereby giving rise to mathematical models with a
very large number of variables and constraints. In our previous
paper,13 we overcame this limitation by considering a GIS map
with low resolution. Although this strategy simplifies the
calculations, it offers no guarantee of convergence to the global
optimum of the original problem (i.e., the one defined for the
original map with high resolution).
In work, we propose a rigorous decomposition algorithm for

the efficient solution of GIS-based MILPs that exploits their
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particular structure. This strategy allows handling models based
on GIS maps with high resolution. Our approach is based on
decomposing the problem into two hierarchical levels between
which the algorithm iterates until a termination criterion is
satisfied. We illustrate the capabilities of our strategy via its
application to the optimal location of agricultural areas for
sewage sludge amendment. Numerical results show that our
approach achieves reductions of orders of magnitude in CPU
time (as compared to the full space GIS-based MILP) while still
yielding near optimal solutions.
The article is organized as follows. Section 2 formally states

the problem. Section 3 introduces a rigorous decomposition
algorithm to tackle GIS-based MILP problems. Some numerical
results are presented and discussed in section 4, and the
conclusions of the work are finally drawn in section 5.

2. PROBLEM STATEMENT
We consider as a test bed to illustrate the capabilities of our
approach the optimal allocation of agricultural areas for sewage
sludge (SS) amendment. We next formally state the problem of
interest before describing the MILP derived to solve it. To this
end, we consider a superstructure like the one depicted in
Figure 1. Given are a set of wastewater treatment plants

(WWTP) and a set of agricultural areas that can receive the
sludge sent by the plants. Each field is described by coordinates
expressed in meters, and it features an acceptable capacity
(CAPar(j)) in tons per year of sludge, and an application cost
(in euro ton−1year−1). In addition, every plant is characterized
by a pair of Cartesian coordinates and a total production of SS
per year (CAPpl(i)). The goal of the analysis is to determine

the optimal distribution of SS production among a set of
agricultural areas so that the total cost is minimized.

3. MODEL FORMULATION
The MILP used in this work, which is taken from Vaskan et
al.,13 is based on the superstructure showed in Figure 1. The
MILP seeks to determine the optimal flows to be established
between the wastewater treatment plants and the agricultural
fields considering the cost as unique criterion. This is a major
difference with respect to the original bicriteria model that
optimized the cost along with the environmental impact. For
the sake of completeness of this work, we next describe the
equations of the MILP. Further details can be found in our
previous publication.

3.1. MILP Model. 3.1.1. Capacity Limitations. We define
the continuous variable x(i,j), which denotes the amount of SS
sent from plant i to agricultural soil j. The total amount of
sludge sent from a plant to the fields is equal to the plant
capacity (represented by the parameter CAPpl), as shown in
the following equation:

∑ = ∀x i j i i( , ) CAPpl( )
j (1)

∑ ≤ ∀x i j j j( , ) CAPar( )
j (2)

Furthermore, the amount of SS sent to an agricultural field
must not exceed its capacity (parameter CAPar(j)) The
amount of SS sent from a plant to a field must lie within
lower and upper bounds if a transportation link is established
between them, and should be zero otherwise:

≤ ≤ ∀X i j z i j x i j X i j z i j j i( , ) ( , ) ( , ) ( , ) ( , ) , (3)

In this equation z(i,j) is a binary variable that represents the
existence of a transportation link between plant i and field j.
z(i,j) equals 1 if a transportation link is established, and 0
otherwise. In the same equation, X i j( , ) and X i j( , ) denote the
minimum and maximum allowable flows of SS, respectively,
that can be transported between i and j. The total amount of SS
sent to field j must lie within lower and upper limits, provided
the field is used for SS amendment:

∑≤ ≤ ∀Y j y j x i j Y j y j j( ) ( ) ( , ) ( ) ( )
i (4)

In this equation, y(j) is a binary variable that takes the value of
1 if area j is used and 0 otherwise, and Y j( ) and Y j( ) are lower
and upper bounds, respectively, on the total amount of SS
disposed on field j.

3.1.2. Objective Functions. The model minimizes the total
cost (TC), which is obtained as follows:

= +TC TRC AC (5)

Here TRC represents the transportation cost from the SS
plants to the fields (TRC) and AC is the application cost
associated with SS in the fields. The transportation cost is given
by

∑ ∑ λ= x i j i jTRC tc ( , ) ( , )
i j (6)

where λ(i,j) represents the distance between plant i and field j
in kilometers, tc is the cost of transporting 1 ton of SS per km

Figure 1. Superstructure of the supply chain problem.
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of distance (euro ton−1 km−1), and x(i,j) denotes the amount of
SS transported from i to j expressed in ton per year (ton
year−1).
The application cots are calculated from the amount of SS

disposed as follows:

∑ ∑= j x i jAC ac( ) ( , )
i j (7)

where ac(j) represents the application cost of 1 ton of SS per
year (euro ton−1 year−1).
The overall MILP can be expressed in compact form as

follows:

Mmin TC ( )

=

≤

⊂ ⊂

h x y

g x y

x y 1

s.t. ( , ) 0

( , ) 0

, 0,

where x are continuous variables and y binary ones. Functions
h(x,y) are equality constraints that model mass balances,
whereas g(x,y) are inequality constraints that define capacity
limitations. This MILP tends to be large because decision
variables need to be defined for every pixel of the GIS map. GIS
maps typically show thousands of pixels (or even hundreds of
thousands). Hence, they might lead to optimization models
showing a large computational burden. In the section that
follows, we introduce a method to expedite this type of GIS-
based MILPs.

4. BILEVEL DECOMPOSITION
In the MILP model presented above, the number of potential
areas for SS amendment depends on the number of pixels in
the GIS map. In other words, we consider the option of sending
the SS to as many different locations as pixels contained in the
GIS map. As an example, for a GIS map with 13 984 pixels, we
would define an MILP containing 55 940 continuous variables,
69 920 binary variables, and 153 832 equations. The model size
is hence quite sensitive to the number of pixels, which can grow
rapidly as we increase the map resolution. More precisely, the
total number of binary variables (BV) can be expressed as
follows:

= | | + | |I IJBV (8)

where |I| is the cardinality of the set of plants and |J| is the
cardinality of the set of fields.
To expedite the solution of this GIS-based MILP, we

propose an algorithm that decomposes the model into two
hierarchical levels, a master and a slave level, between which we
iterate until a stopping criterion is reached. The scheme of the
bilevel algorithm is shown in Figure 2. The master MILP
contains the same equations of the original MILP, but it is
defined for a smaller number of (aggregated) pixels. This MILP
identifies the aggregated regions where SS should be sent and
provides in turn a lower bound on the cost (LB problem). In
the lower lever, we disaggregate the aggregated pixels and
remove those regions discarded by the master MILP. This slave
MILP provides an upper bound on the cost (UB problem).
After the slave MILP is solved, an integer cut is added to the
master MILP to remove those solutions explored so far in
previous iterations. The master and slave MILPs are then
solved iteratively until a termination criterion is reached. We

describe in detail the two levels of the algorithm in the ensuing
sections.

4.1. Master MILP: k-Means Clustering Method. As
already mentioned, the master MILP is constructed by
aggregating pixels in the original model. To this end, we use
a k-means clustering method. The k-means clustering is a
partitioning method that aggregates data into clusters such that
observations within each cluster are as close to each other as
possible and as far from observations in other clusters as
possible. In the context of our application, each observation
corresponds to a pixel with a given location in the space of
coordinates. This makes such a clustering aggregation very
useful for spatially explicit problems.
Each cluster is defined by the centroid or center and its

member objects (pixels). The goal is to determine the centroid
with the minimum sum of distances from all objects in that
cluster. k-means uses an iterative algorithm that minimizes the
sum of distances from each object to its cluster centroid, over
all the clusters. This algorithm moves objects between clusters
until the sum cannot be decreased any further. The result is a
set of clusters that are as compact and as well-separated as
possible.
To clarify this technique we consider a simple example with

15 fields, each one defined by given coordinates. These fields
are aggregated into three clusters with minimum total sum of
distances between centroids and fields. After applying the k-
means strategy, we identify three clusters containing different
numbers of pixels (Figure 3). Further details on this method
can be found in Hartigan and Wong14 and Kanungo et al.,15

and implementation details are available in Matlab.16

After performing the aggregation, we slightly modify the
original MILP to accommodate the new aggregated clusters.
Let JK(k) be the set of pixels j contained in the aggregated
cluster k. To this end, we use the following equations:

=
⊂

k jac ( ) min ac( )
j JK

ML

(9)

Figure 2. Flow chart for the bilevel decomposition algorithm.
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λ λ=
⊂

i k i j( , ) min ( , )
j JK

ML

(10)

∑=
⊂

k jCAPar ( ) CAPar( )
j JK

ML

(11)

Hence, the values of the application cost (acML(k)) and
distance (λML(i,k)) of an aggregated pixel (i.e., k clusters) in the
master MILP correspond to the minimum values among the
pixels contained in the cluster (note that in this notation ML
stands for master level). Furthermore, the capacity of the
aggregated pixel (CAParML(i,k)) is given by the sum of
capacities of all of the pixels of the cluster. Because of the
manner in which it is constructed, the master MILP is
guaranteed to provide a rigorous lower bound on the total cost.
The master MILP identifies in a systematic and rigorous
manner the aggregated pixels that will receive the sludge from
the treatment plants. As will be shown in the next section, this
information is used to reduce the number of variables and
constraints of the slave MILP.
Note that the master MILP is defined for the k aggregated

clusters, rather than for the j fields. Apart from this, the master
MILP is identical to the MILP model described above. It
therefore includes the following equations:

∑ = ∀x i k i i( , ) CAPpl( )
k

ML

(12)

∑ ≤ ∀x i k k k( , ) CAPar ( )
i

ML ML

(13)

≤ ≤

∀

X i k z i k x i k X i k z i k

k i

( , ) ( , ) ( , ) ( , ) ( , )

,

ML ML ML ML

(14)

∑≤ ≤

∀

Y k y k x i k Y k y k

k

( ) ( ) ( , ) ( ) ( )ML

i

ML ML ML ML

(15)

The model minimizes the total cost (TCML), which is
obtained as follows:

= +TC TRC ACML ML ML (16)

∑ ∑ λ= x i k i kTRC tc ( , ) ( , )
i k

ML ML ML

(17)

∑ ∑= k x i kAC ac ( ) ( , )
i k

ML ML ML

(18)

4.2. Slave MILP. As already mentioned, the master problem
identifies the aggregated pixels where SS should be disposed. In
the slave problem, we disaggregate this information assuming
that the pixels belonging to the active clusters of the master
MILP (i.e., those for which yML(k) equals 1 in the master
MILP) can be utilized for SS amendment. In contrast, if a pixel
defined in the slave MILP does not belong to any of the
aggregated pixels selected in the master problem, then it is
removed from the slave model. The slave MILP contains
therefore the same equations of the original MILP, but fewer
constraints and variables, because pixels that are not selected in
the master MILP are omitted in the formulation. Let JAKit be
the set of pixels j contained in the aggregated clusters k that are
active in the solution of the mater MILP (those for which
yML(k) takes a value of one) in iteration it of the algorithm.
With this notation, the slave MILP includes the following
constraints:

∑ = ∀
⊂

x i j i i( , ) CAPpl( )
j JAK (19)

∑ ≤ ∀
⊂

x i j j j( , ) CAPar( )
j JAK (20)

≤ ≤ ∀ ⊂X i j z i j x i j X i j z i j j i( , ) ( , ) ( , ) ( , ) ( , ) JAK,
(21)

∑≤ ≤ ∀ ⊂Y j y j x i j Y j y j j( ) ( ) ( , ) ( ) ( ) JAKML

i

ML

(22)

The model minimizes the total cost (TC), which is obtained
as follows:

= +TC TRC AC (23)

Figure 3. k-means aggregation example.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie402471w | Ind. Eng. Chem. Res. 2013, 52, 17640−1764717643



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



∑ ∑ λ=
⊂

x i j i jTRC tc ( , ) ( , )
i j JAK (24)

∑ ∑=
⊂

j x i jAC ac( ) ( , )
i j JAK (25)

After calculating the master MILP, we next solve the slave
MILP minimizing the total cost and fixing the values of y(j) to
the values provided by the master problem (thereby
disaggregating the information obtained therein). Note that
the slave subproblem provides an upper bound on the cost.
This is because the slave MILP contains the same equations of
the original MILP, but it is solved in a reduced domain with a
smaller feasible space. Finally, after solving the slave MILP, we
derive an integer cut to exclude solutions identified so far in
previous iterations.
Hence, the master model works with data from the k-means

clustering aggregation, whereas the slave model works with
disaggregated clusters obtained from the solution of the master
model. Both problems (slave and master) are solved iteratively
until a termination criterion is satisfied.
In summary, the steps of the bilevel decomposition algorithm

are the following:

1. Aggregate the data into the desired number of clusters
using the k-means clustering aggregation.

2. Set iteration count it = 0, upper bound UB = +∞, lower
bound LB = −∞, and tolerance error = tol.

3. Set it = it + 1. Solve the MILP master problem (LP):
If problem (LP) is infeasible, then stop.
Otherwise, set the current lower bound to LB = LBit

4. Disaggregate the pixels of the master MILP and fix
variables yML(k) (eq 14) obtained from step 2, in the
slave problem and solve it.

5. Update the upper bound (UB) to UB = minit{UB
it}

where UBit represents the objective function value
associated with the optimal solution in iteration it.

6. Check the convergence criteria:
a. If (UB − LB)/UB < tol, then stop. The solution

corresponding to UB (i.e., the solution of the slave
model in the iteration with minimum cost) satisfies
the termination criterion (i.e., it can be regarded as
optimal within the predefined optimality gap).

b. Otherwise, go to step 3.

5. CASE STUDY: CATALONIA
We apply our method to a case study based on Catalonia.
Catalonia is a province of Spain located in the Northeastern
part of the Iberian Peninsula. The total area of Catalonia is 32
114 km2, with an agricultural area available for cultivation of
near 5000 km2. The relief is very different from the mountains
on the north, to the flat at the center and the coast (Figure 4).
The Mediterranean climate and precipitation levels favors the
existence of agricultural sectors. The Catalonian agriculture is
mainly based on the production of wine, wheat, rice, barley,
olive, grapes, fruits, nuts, and vegetables. The total population
of Catalonia is near 7 350 000 people. It is divided into four
provinces: Barcelona, Tarragona, Girona, and Lleida, with a
population of 5 416 447, 788 895, 731 864, and 426 872 people,
respectively. The production of sewage sludge (SS) has been
growing in the recent past and near 83% of the total production
of SS was applied on agricultural soils.6

6. RESULTS AND DISCUSSION
We illustrate the capabilities of our approach through its
application to a case study based on Catalonia. The input data
for the MILP were taken from ref 6. We consider three different

Figure 4. Map of Catalonia.
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levels of aggregation in the problem (all of them for the same
agricultural area of 505 176 ha): 126 294, 31 517, and 13 984
pixels, each one with a surface of 4, 16, and 36 ha, respectively.
The MILP model and the bilevel algorithm were both
implemented in GAMS and solved with CPLEX on an AMD
Athlon 2.99 GHz, 3.49 GB of RAM machine. The optimality
gap set for CPLEX was 3%, whereas the bilevel algorithm was
executed considering a tolerance (relative error between the
lower and upper bounds) of 3%.
We should make a remark concerning the use of models with

a large number of pixels. In general, it is desirable to include as
many pixels as possible in the analysis, because the decisions
involved might be rather sensitive to the scale of the map.
Moreover, the main characteristics of the map areas are in some
cases very sensitive to the scale, which motivates the need to
define a large number of pixels for a better assessment of the
performance of each alternative. Hence, back to our example, it
is more convenient for an adequate analysis to consider 4 ha for
every pixel (126 294 pixels in total) rather then 36 ha (13 984
pixels in total). Unfortunately, this leads to more complex
problems.
Particularly, we solved a set of problems of increasing

complexity involving a different number of cities in Catalonia.
We consider first the location of WWTPs in four main cities:
Barcelona, Girona, Tarragona, and Lleida, and then solve the
same problem considering additional locations (i.e., Terrasa,
Vic, Amposta, and Montblanc).
Numerical results for different levels of complexity are

presented in Tables 1−3. The goal is to illustrate the
performance of the algorithm as compared to the full-space
method. The objective in these problems was to minimize the
cost as single objective function. In all of the cases, the

optimality gap set for the bilevel algorithm (i.e., 3%) was
reached in one single iteration.
We start by generating results for the lowest resolution (i.e.,

13 984 pixels). As observed in Table 1, the proposed approach
shows better numerical performance than the full-space
method. First, the computational time is less for our bilevel
strategy because in every level of the algorithm we have less
number of equations and variables than in the full space
problem. Second, the value of the objective function obtained
from the bilevel strategy is very close to the value generated by
the full space problem. Note that although we fixed an
optimality gap of 3% for CPLEX, we obtain indeed the global
optimum in all the runs (i.e., we solved again fixing a 0% gap,
and we got the same results). On average, our bilevel algorithm
reduces the CPU time by a factor of almost 1 when compared
to the full space approach.
We next increase the map resolution and repeat the

calculations (Table 2). As seen, we get very similar results as
in the previous case. The CPU times of both methods increase
but are still within low limits. In addition, the bilevel method
still outperforms the full-space one, achieving almost 1 order of
reduction in the CPU time compared to the full space method.
Finally, Table 3 shows the results corresponding to the

maximum map resolution. As seen, the full space MILP gets
intractable when we increase further the number of pixels (i.e.,
126 294 pixels), which leads to a prohibitive computational
burden. As observed, the full space method must solve an
MILP with 631 470 binary variables and 505 192 continuous
variables, which turns out to be intractable. In contrast, our
bilevel strategy keeps the model size tractable and can thus
handle large problems in reasonable CPU times (CPU time
around 40−50 s), while still providing near optimal (i.e.,
optimality gap of 3%) solutions. Hence, our approach allows for

Table 1. Computational Results for 13 984 Pixels with GAP
3% (CPLEX)

binary
variables

continuous
variables equations

time
(s) cost (euro)

Four Plants
full space 69 920 55 940 153 832 5.58 6 425 371
bilevel
(UB)

12 980 10 386 28 562 0.81 6 436 821

LB 6 995 5 598 15 395 0.42 6 257 572
Five Plants

full space 83 904 69 924 181 801 7.66 5 381 347
bilevel
(UB)

15 540 12 952 33 677 1.2 5 393 824

LB 8 394 6 997 18 194 0.55 5 214 386
Six Plants

full space 97 888 83 908 209 770 9.64 5 138 030
bilevel
(UB)

18 102 15 518 38 798 1.23 5 149 251

LB 9 793 8 396 20 993 0.69 4 971 599
Seven Plants

full space 111 872 97 892 237 739 10.56 5 055 427
bilevel
(UB)

20 824 18 223 44 260 1.64 5 070 094

LB 11 192 9 795 23 792 0.8 4 889 444
Eight Plants

full space 125 856 111 876 265 708 11.2 5 000 648
bilevel
(UB)

23 652 21 026 49 942 1.8 5 015 416

LB 12 591 11 194 26 591 0.88 4 828 968

Table 2. Computational Results for 31 517 Pixels with GAP
3% (CPLEX)

binary
variables

continuous
variables equations

time
(s) cost (euro)

Four Plants
full space 157 585 126 072 346 695 14.44 6 392 357
bilevel
(UB)

28 795 23 038 63 355 1.91 6 399 849

LB 15 760 12 610 34 678 1.14 6 268 917
Five Plants

Full space 189 102 157 589 409 730 18.19 5 350 280
bilevel
(UB)

43 278 36 067 93 776 2.94 5 358 057

LB 18 912 15 762 40 983 1.2 5 227 879
Six Plants

full space 220 619 189 106 472 765 22.03 5 107 400
bilevel
(UB)

40 152 34 418 86 048 3.5 5 115 116

LB 22 064 18 914 47 288 1.63 4 985 148
Seven Plants

full space 252 136 220 623 535 800 24.97 5 021 803
bilevel
(UB)

46 248 40 469 98 286 4.36 5 031 313

LB 25 216 22 066 53 593 3.38 4 898 018
Eight Plants

full space 283 653 252 140 598 835 29.55 4 965 311
bilevel
(UB)

52 533 46 698 110 913 4.59 4 978 131

LB 28 368 25 218 59 898 1.86 4 839 344
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the solution of MILPs based on maps with higher resolution
while keeping the CPU time low.
As seen also in Tables 1−3, the complexity of the model, and

therefore the CPU time spent in its solution, increases with the
number of plants as well as the number of pixels, being the
second factor the most critical one.
Finally, we should note that for this particular problem the

objective function does not improve significantly as we increase
the map resolution (approximately 1%, which corresponds to
50 000 euros in absolute values). Note, however, that in general
it is not possible to predict an exact interval within which the
objective function will fall when we increase the number of
pixels. Hence, because this difference might be much larger in
other problems, it is always recommended to use the highest
map resolution available.

7. CONCLUSIONS

This work has proposed a decomposition method for MILPs
that are formulated on the basis of GIS maps. Our approach is
based on a bilevel decomposition strategy that makes use of a
clustering aggregation algorithm. In the first level, we solve a
lower bounding problem to identify the aggregated pixels that
will receive the sludge from the treatment plants. In the upper
bounding problem, this information is disaggregated to obtain a
rigorous upper bound on the cost.
We applied our method to a case study based on sewage

sludge amendment in Catalonia. Numerical examples showed
that our tool provides near optimal solutions in a fraction of the
CPU time required by the full space model. Our method thus
solves in an efficient manner large-scale MILPs based on GIS
maps with a high resolution. The strategy presented herein is
general enough to be applied to similar MILPs used in spatial-
decision analysis that address problems arising in chemical and
process industries.
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■ APPENDEX

Indices
i wastewater treatment plants
j agricultural soils
k aggregated soils (i.e., clusters)

JAKit Sets
I i:i is a wastewater treatment plants
J j:j is the agricultural soil contained in a pixel
JK k: set of pixels j contained in the aggregated cluster k
JAKit it: set of pixels j contained in the aggregated clusters k
that are active in the solution of the mater MILP (those for
which yML(k) takes a value of one) in iteration it of the
algorithm

Parameters
CAPpl(i) capacity of plant i
CAPar(j) capacity of field/pixel j
X i j( , ) minimum allowable flows of sewage sludge from
plant i to field j
X i j( , ) maximum allowable flows of sewage sludge from
plant i to field j
Y j( ) lower bound on the total amount of SS disposed on
field j
Y j( ) upper bound on the total amount of SS disposed on
field j
tc unitary transportation cost from plants to fields
λ(i,j) distance between plant i and field j

Table 3. Computational Results for 126 294 Pixels with GAP 3% (CPLEX)

binary variables continuous variables equations time (s) cost (euro)

Four Plants
full space 631 470 505 192 1 389 266 out of memory
bilevel (UB) 114 280 91 426 251 422 10.97 6 391 374
LB 63 150 50 522 138 936 5.06 6 326 472

Five Plants
full space 757 764 631 486 1 641 858 out of memory
bilevel (UB) 136 728 113 942 296 251 15.16 5 349 945
LB 75 780 63 152 164 197 6.89 5 284 988

Six Plants
full space 884 058 757 780 1 894 450 out of memory
bilevel (UB) 158 879 136 184 340 463 18.27 5 109 052
LB 88 410 75 782 189 458 8.02 5 044 526

Seven Plants
full space 1 010 352 884 074 2 147 042 out of memory
bilevel (UB) 183 064 160 183 389 020 20.36 5 025 745
LB 101 040 88 412 214 719 9.14 4 959 139

Eight Plants
full space 1 136 646 1 010 368 2 399 634 out of memory
bilevel (UB) 206 550 183 602 436 060 32.08 4 970 541
LB 113 670 101 042 239 980 14.28 4 901 357
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ac(j) application cost of SS in field/pixel j
acML(k) application cost defined for the aggregated pixel k
(master level)
λML(i,k) distance between plant i and cluster/aggregated
pixel k (master level)
CAParML(k) capacity of the aggregated pixel k (master level)
X i k( , )ML minimum allowable flows of sewage sludge from
plant i to cluster k (master level)

X i k( , )ML maximum allowable flows of sewage sludge from
plant i to cluster k (master level)
Y k( )ML lower bound on the total amount of SS disposed on
cluster k (master level)

Y k( )ML upper bound on the total amount of SS disposed on
cluster k (master level)

Variables
x(i,j) amount of SS sent from plant i to agricultural soil j
z(i,j) binary variable that represents the existence of a
transportation link between plant i and field j
y(j) binary variable that represents the use of field j
xML(i,k) amount of SS sent from plant i to cluster k (master
level)
zML(i,k) binary variable that represents the existence of a
transportation link between plant i and cluster k (master
level)
yML(k) binary variable that represents the use of a cluster k
(master level)
TRC total transportation cost
AC application cots of SS
TC total cost
TRCML total transportation cost (master level)
ACML application cots of SS (master level)
TCML total cost (master level)
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. Multi-objective design of heat-exchanger networks consid-

ering several life cycle impacts using a rigorous MILP-based

dimensionality reduction technique.
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considering several life cycle impacts using a rigorous MILP-based dimensionality reduction
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a b s t r a c t

This work addresses the optimal design of heat exchanger networks (HENs) considering economic and

environmental concerns. The design task is posed in mathematical terms as a multi-objective mixed-

integer non-linear programming (MINLP) problem, in which life cycle assessment (LCA) principles are

used to quantify the environmental impact. One of the advantages of our approach is that it accounts

for the simultaneous minimization of several environmental metrics, as opposed to other models that

focus on minimizing a single aggregated indicator. A rigorous dimensionality reduction method based

on a mixed-integer linear programming (MILP) formulation is applied to aid the post-optimal analysis

of the trade-off solutions. The capabilities of our approach are tested through two examples. We clearly

illustrate how the use of a single overall aggregated environmental metric is inadequate in the design of

HENs, since it may leave some solutions that are appealing for decision-makers out of the analysis. Our

method is aimed at facilitating decision-making at the early stages of the design of HENs.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The design of heat exchanger networks (HENs) is a theme long

considered in the process systems engineering (PSE) literature. This

topic started to attract attention during the oil crisis that took place

in the 70s. With the recent trend of developing more sustainable

processes, there has been a renewed interest on the design of these

systems [1,2]. Nowadays, the main methods for designing heat ex-

changer networks include thermodynamic approaches [3–6] and

mathematical programming techniques [7–9]. The latter approach,

which is the one followed in this work, relies on postulating a

superstructure of design alternatives from which the optimal one

is identified using rigorous mathematical programming tools based

on mixed-integer non-linear programming (MINLP). The over-

whelming majority of methods available for the design of HENs

have focused on optimizing the economic performance as unique

criterion. Environmental concerns are nowadays becoming a prior-

ity, mainly due to tighter governments’ regulations. HENs are by

themselves ‘‘environmentally friendly systems’’, since their ulti-

mate purpose is to reduce the energy consumption and conse-

quently the environmental damage. However, a trade-off arises in

their design, since larger energy savings can be obtained at the ex-

pense of compromising the economic performance. Hence, optimiz-

ing these systems in terms of a single economic indicator may lead

to solutions that do not fully exploit their large potential for reduc-

ing the environmental impact in process industries.

The selection of a suitable metric for the environmental assess-

ment of processes still remains as an open issue in the literature

[10]. Particularly, LCA has gained wider acceptance in the recent

past as an effective tool to support objective environmental assess-

ments. LCA is a methodology for evaluating the environmental

loads associated with a product, process or activity over its life cy-

cle. LCA first calculates the emissions and feedstock requirements

of a process, and then translates this information into environmen-

tal impacts pertaining to several damage categories. These impacts

can be employed within a multi-criteria optimization framework

to improve the environmental performance of a process. The com-

bined use of multi-objective optimization (MOO) and LCA was first

proposed by Livingston and Pistikopoulous [11,12], and then for-

mally defined by Azapagic and Clift [13]. This general approach

has been applied to a wide variety of chemical engineering prob-

lems, such as the design of cooling absorption cycles [14,15], the

design of chemical plants [16], the strategic planning of chemical

supply chains [17–21], the strategic planning of industrial net-

works for the production of biofuels [22], the design of bioprocess

[23] and the design of hydrogen infrastructures [24,25].

López-Maldonado et al. [26] were the first to investigate the

combined use of LCA and MOO in the design of HENs. The authors

focused on optimizing a single aggregated LCA metric that quanti-

fied the impact caused in several damage categories. Their model

accounted for the impact associated with the operation of the

HEN (which is mainly due to the utilities generation) and neglected

the emissions of the construction phase.
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A critical issue in the combined use of MOO and LCA is the def-

inition of suitable LCA-based metrics to be minimized. No agree-

ment has been reached so far in the literature regarding the use

of a universal LCA indicator. Unfortunately, the computational bur-

den of MOO grows rapidly with the number of objectives, which

prevents the simultaneous inclusion of many LCA indicators in

the optimization model. One way to overcome this limitation con-

sists of omitting some of them thereby reducing the associated

complexity. Alternatively, by aggregating a set of environmental

objectives into a single indicator, it is possible to alleviate the com-

putation burden of environmental MOO problems. This requires

defining weights for every environmental objective, which allows

for their translation into a single metric. The resulting bi-criteria

problems (i.e., economic vs. environmental performance) are easier

to calculate and analyze. Examples of aggregated environmental

metrics can be found elsewhere [27,28].

Aggregated LCA-based indicators based on weights defined by a

panel of experts have gained wider interest in the recent past. This

approach shows two major drawbacks. First, these weights do not

necessarily reflect the decision-makers’ preferences, since they are

fixed beforehand and cannot be modified at will. Second, optimiz-

ing aggregated metrics in multi-objective optimization has the ef-

fect of leaving some optimal solutions out of the analysis [29]. The

question that arises at this point is how to avoid their use while at

the same time keeping the problem in a manageable size.

Dimensionality reduction methods widely used in areas like

statistics and data mining [30] can be employed for omitting

redundant objectives in MOO, thereby reducing the computational

burden. Deb and Saxena [31] proposed a method based on PCA to

decrease the number of objectives in MOO. Their approach identi-

fies redundant objectives from the analysis of the eigenvectors of

the correlation matrix. Brockhoff and Zitzler [32] proposed an

alternative approach for reducing the number of objectives based

on replacing the original set of objectives by a reduced set that is

non-conflicting with the original one. An approximation error

was introduced by the authors to quantify to which extent the

dominance structure of the problem changes when omitting objec-

tives. They formally defined two different problems: computing

the minimum subset of objectives with a given delta value (i.e., er-

ror of the approximation) and determining the minimum approxi-

mation error for an objective subset of given size. Two algorithms,

a greedy and an exact one, were proposed to solve the aforemen-

tioned problems. Based on similar ideas, Guillén-Gosálbez [33]

developed a MILP-based objective reduction method to tackle

these problems.

This work addresses the multi-objective optimization of HENs

with economic and environmental concerns. Our approach builds

on the MINLP model presented by Yee and Grossmann [8], which

is adequately modified to quantify the environmental impact

through LCA principles. The contributions of this work are

threefold. First, we present a MINLP model for the design of

HENs that incorporates the impact caused during their construc-

tion. Second, our model accounts for the simultaneous minimiza-

tion of several LCA impacts that provide a complete picture of

the environmental performance of the HEN. Third, we investigate

the use of dimensionality reduction techniques in this context,

highlighting the existence of redundant environmental

objectives.

The remainder of this article is structured as follows: Section 2

provides a formal definition of the problem addressed in this pa-

per, while Section 3 describes the mathematical model. Section 4

presents the methodology proposed to solve the MINLP problem.

Two computational examples are then introduced in Section 5 to

test the capabilities of our approach, and the conclusions of the

work are finally drawn in Section 6.

2. Problem statement

To formally state the problem of interest, we consider a super-

structure like the one depicted in Fig. 1. Given are a set of hot pro-

cess streams (HPSs) and cold process streams (CPSs) to be cooled

and heated, respectively, and their associated inlet and outlet tem-

peratures. The flow rates, heat capacities and film transfer coeffi-

cients of the process streams are provided, along with a set of

available hot (HU) and cold (CU) utilities, their temperature ranges

and costs. Environmental data associated with every type of utility

and construction material are also given. The goal of the analysis is

to determine the optimal design and operating conditions that

minimize simultaneously the total cost and a set of environmental

impacts quantified via LCA principles. The problem solution is de-

fined by a set of Pareto optimal designs each one achieving a un-

ique combination of cost and environmental impact.

3. Model formulation

The model formulation used in this work is based on the super-

structure introduced by Yee and Grossmann [8] and the mixed-

integer non-linear programming (MINLP) model proposed by the

same authors. An example of a superstructure with two stages is

shown in Fig. 1. All possible combinations for heat transfer between

cold and hot process streams are allowed in each stage. Cooling and

heating utilities are available at the outlets of the superstructure.

The intermediate temperatures of the process streams in the limits

of each stage are regarded as decision variables. We assume iso-

thermal mixing of streams, which simplifies the calculations. Fur-

ther details of this model can be found in Biegler et al. [34].

For brevity, the complete mathematical formulation of the

model is given in Appendix A. We focus next on describing the

equations used for determining the economic and environmental

performance of the HEN.

3.1. Cost objective function

The total cost, denoted by the continuous variable TC, accounts

for the capital cost of the heat exchangers (CC) and the operation

cost (OC) associated with the consumption of hot and cold utilities.

TC ¼ CC þ OC ð1Þ

The operating cost is calculated from the amount of utilities

consumed as follows:

Fig. 1. Superstructure for the HEN synthesis for two cold and hot streams and two

stages.
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OC ¼
X

i2HP

CCU qcui year þ
X

j2CP

CHU qhuj year ð2Þ

where CCU and CHU represent the unit cost of cold and hot utilities

respectively, qcui and qhuj denote the amount of cold and hot util-

ities consumed, and year is the useful life of the HEN. HP and CP de-

note the set of hot and cold streams, respectively. The capital cost is

determined from the number and areas of the heat-exchangers as

follows:

CC¼
X

i2HP

X

j2CP

X

k2ST

CF i;jzi;j;kþ
X

i2HP

CFCU
i zcuiþ

X

j2CP

CFHU
j zhuj

þ
X

i2HP

X

j2CP

X

k2ST

Ci;jðAi;j;kÞ
bi;j þ

X

i2HP

CCU
i ACU

i

� �bCU
i
þ
X

j2CP

CHU
j AHU

j

� �bHU
j

ð3Þ

where CFi;j, CF
CU
i , CFHU

j represent the fixed cost terms associated

with the heat exchanger units; Ci;j, C
CU
i , CHU

j are area cost coeffi-

cients; zi,j,k, zcui, zhuj denote the existence of the exchangers; Ai;j,

ACU
i , AHU

j represent the areas of the exchangers, and bi;j; b
CU
i and

bHU
j are cost parameters.

The remaining process equations of the model are provided in

Appendix A. These include mass and energy balances and logic

constraints that model the existence of the heat exchangers.

3.2. Environmental impact objective function

LCA is an approach for evaluating the environmental loads asso-

ciated with a product, process or activity through its entire life cy-

cle. The life cycle assessment methodology [35] comprises four

main phases.

1. Goal and scope definition. This phase defines the goal of the

study, system boundaries, allocation methods and impact cate-

gories. We perform a ‘‘cradle-to-gate’’ analysis that embraces all

activities associated with the construction and operation of the

HEN. Ten impact categories, as defined by the Eco-indicator 99,

are considered in our work:

1. Carcinogenic effects on humans.

2. Respiratory effects on humans caused by organic and

inorganic substances.

3. Damage to human health caused by climate change.

4. Human health effects caused by ionizing radiations.

5. Human health effects caused by ozone layer depletion.

6. Damage to ecosystem quality caused by ecosystem toxic

emissions.

7. Damage to ecosystem quality caused by the combined

effect of acidification and eutrophication.

8. Damage to ecosystem quality caused by land occupation

and land conversion.

9. Damage to resources caused by extraction of minerals.

10. Damage to resources caused by extraction of fossil fuels.

2. Inventory analysis. The second stage determines the most rele-

vant inputs and outputs of mass and energy associated with

the main process. This information will be further translated

into environmental impacts. The environmental burdens are

given by the production of the amount of stainless steel con-

tained in the heat exchangers and the consumption of cold

and hot utilities. The life cycle inventory (LCI) of inputs and out-

puts is given by the mass of stainless steel (continuous variable

mass), and the amount of cold (continuous variable qcu) and

hot utilities (continuous variable qhu) consumed as follows:

LCIb ¼
P

j

qhujx
HU
b þ

P

i

qcuix
CU
b þmassxM

b ð4Þ

In this equation, xHU
b , xCU

b , xM
b denote the life cycle inventory

entries (i.e., emissions released to the environment or resources

taken from the ecosphere) associated with chemical b per refer-

ence flow of activity (i.e., mass of steam, cooling water and steel

generated). These parameters are retrieved from environmental

databases (e.g., ecoinvent [36]).

3. Impact assessment. This stage quantifies the impact in a set of

damage assessment categories. Following the Eco-indicator 99

methodology, the damages in each impact category c (denoted

by IMc) are evaluated as follows:

IMc ¼
P

b

LCIbhb;c ð5Þ

where hb,c is a damage factor that translates the results of the

inventory phase into a set of damages.

4. Interpretation. Here, the results of the LCA are analyzed and a set

of conclusions and recommendations for the system are formu-

lated. Note that in our approach the decision-makers’ prefer-

ences are articulated in the post optimal analysis of the

Pareto optimal solutions.

4. Solution method

4.1. �-constrain method

The MINLP can be expressed in compact form as follows:

min
x;y

TCðx; yÞ; EIðx; yÞ

s:t: constraints 1—33

x � R y � f0;1g

in which TC is the total cost, EI denotes the LCA impact, x and y are

continuous and binary variables representing design and operating

decisions and constraints 1–33 model the HEN performance (see

Appendix A for details).

In this work we solve this problem using the �-constrain meth-

od [37], which relies on formulating an auxiliary model in which

one objective is kept as main objective while the rest are trans-

ferred to auxiliary constraints that impose epsilon bounds on their

values. These single-objective problems are solved for several epsi-

lon values, generating in each run a different Pareto solution. We

follow herein the heuristic-based approach proposed by Kostin

et al. [38] that reduces the computational burden of the epsilon

constraint method by solving a series of bi-criteria models in

which the main objective is optimized against each single second-

ary objective separately.

4.2. Post-optimal analysis: dimensionality reduction methods

The application of the epsilon constraint method provides a

large number of Pareto alternatives. Visualizing and analyzing

them considering several objectives simultaneously is a highly dif-

ficult task. We describe next how dimensionality reduction meth-

ods can be employed in this context to facilitate the post-optimal

analysis of the Pareto solutions of the multi-objective model.

The goal of dimensionality reduction methods is to remove

redundant objectives from the MOO model in a manner such that

its main features are preserved to the extent possible. Our ap-

proach builds on the works by Brockhoff and Zitzler [29,32], which

are based on the concept of delta error. We provide next a brief

outline of this approach.

In what follows, we consider the weakly Pareto dominance rela-

tionship, that is, a solution A is said to be weakly efficient if there is

no other solution that is strictly better than A in all the objectives.

Consider a MOO problem with three solutions (solutions 1, 2 and

3) and three objectives F = {f1, f2, f3} that must be simultaneously

minimized. Fig. 2 is a parallel coordinates plot that depicts in the

bottom axis the objective functions and in the vertical axis the nor-

malized value attained by each solution in every objective.
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As observed, all the solutions are Pareto optimal, since there is

no one better than any of the others simultaneously in all the

objectives. Particularly, solution 3 is the best in objective 1, solu-

tion 2 in objective 2 and solution 1 in objective 3. If we omit the

third objective and work in the reduced space F0 = {f1, f2}, then

the dominance structure changes, as solution 1 is now dominated

by 2 (i.e., solution 2 is better than solution 1 in all objectives) (see

Fig. 3). That is, solution 1 would be lost, since it would become sub-

optimal in the reduced space of objectives. Alternatively, by

omitting the second objective from the original set (see Fig. 4),

the dominance structure is preserved, since no solution dominates

any of the others. In other words, by selecting the objectives to be

omitted in a smart way, it is possible to reduce the problem

complexity while still preserving its structure. Hence, the second

objective is redundant and can thus be discarded from the analysis.

The reduced objective set F00 = {f1,f3} is regarded as non-conflicting

with the original set F = {f1, f2, f3}, since they have the same domi-

nance structure. Thus, non conflicting sets can be replaced by each

other in MOO without losing information (i.e., Pareto solutions).

Brockhoff and Zitzler [29,32] proposed to calculate the error of

the approximation obtained when removing objectives in MOO.

Consider optimizing over the set F0 = {f1, f2}, in this case solution

2 would dominate solution 1 (Fig. 3). However, in the original set

F, solution 1 is better than 2 in objective 3. In fact solution 2 would

dominate 1 in the original 3-dimensional Pareto space F = {f1, f2, f3}

if it showed the same value in objective function 3 than solution 1.

The difference between the true value of objective 3 in solution 2

and that required to dominate solution 1 in the original space of

objectives can be used as a measure to quantify the change in

the dominance structure (see Fig. 2). This difference, referred to

as delta error [29,32] quantifies the change in the dominance

structure after omitting objectives. Hence, the delta value indicates

to which extent the initial dominance relationship is modified after

removing certain objectives.

The goal of dimensionality reduction methods is to identify a

set of objectives of given cardinality such that the delta error of

the approximation is minimized. In this work, we apply the MILP

method introduced by Guillén-Gosálbez [33] in the post-optimal

analysis of the solutions of the HEN problem. This technique iden-

tifies redundant objectives that can be omitted, shedding light on

the relationships between the environmental indicators. Further

details on this method can be found elsewhere [33].

5. Case study

We illustrate next the capabilities of the proposed approach

through its application to two case studies, in which we minimize

12 objectives (i.e., total cost and 11 LCA impacts). As environmen-

tal objectives, we consider the total Eco-indicator 99, which aggre-

gates the single impacts described in Section 3.2, and all its single

impact categories. The motivation for this is to analyze whether

the minimization of the aggregated impact is a good practice in

the design of HENs (i.e., it preserves the problem structure). The

MOO models was implemented in GAMS and solved with DICOPT

interfacing with CONOPT and CPLEX on a AMD Athlon 2.99 GHz,

3.49 GB of RAM.

5.1. Example 1

This example considers two hot and one cold process streams.

High-pressure steam and cold water are both available. The cost

data are presented in Table 1, whereas the environmental data

are displayed in Table 2.

We generated 220 Pareto points following the procedure men-

tioned before. The Pareto solutions were normalized dividing them

by the maximum value attained over all solutions. Fig. 5 shows the

Pareto points obtained from the bi-criteria problem cost vs. overall

Eco-indicator 99 (represented by blue1 squares in the figure). In the

same figure, we have depicted the solutions resulting from the
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Fig. 2. Dominance structure for the set f1, f2, f3. All solutions are weakly efficient.

1 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective functions

N
o

rm
a

liz
e

d
 v

a
lu

e

solution 1

solution 2

solution 3

Fig. 3. Dominance structure for the reduced set f1, f2. Solution 2 dominate solution

1, since 2 is better than 1 in all objectives. Solution 1 is therefore lost.
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1 For interpretation of color in Figs. 1–15, the reader is referred to the web version

of this article.
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bi-criteria optimization problems that trade-off cost vs. each single

impact. That is, this last set of solutions has been projected onto

the 2-D space cost, Eco-indicator 99 (red circles in the plot). As

observed, the bi-criteria problem cost vs. Eco-indicator 99 provides

only a subset of the solutions of the overall MOO problem. This is

because there are many solutions of other bi-criteria problems that

are sub-optimal in the 2-D space cost vs. Eco-indicator 99. Hence,

it seems clear that using the Eco-indicator 99 as unique indicator

is not a good practice, since we might lose solutions that show less

impact in other LCA impacts.

Fig. 6 depicts all the results obtained from solving all bi-criteria

problems (i.e., cost vs. each single environmental objective sepa-

rately). As observed, there are metrics that increase as the Eco-

indicator 99 decreases and others that behave in the opposite

manner, which indicates that some environmental objectives are

conflictive. This analysis reveals also that minimizing the Eco-

indicator 99 worsens the performance in some LCA impact

categories. Note that not all the impacts are decreased to the same

extent. For instance, ozone layer cannot be reduced below 10%

with respect to its maximum value, whereas the minimum acidifi-

cation value is around 45% of its maximum.

As seen, LCA metrics can be aggregated into three main groups

according to their behavior: (1) those that are monotically increas-

ing and behave in the same manner as the cost function (this group

includes climate change, fossil fuel and ozone layer depletion);. (2)

those that first decrease and then increase after a minimum value

(Eco-indicator 99, ionizing radiation, acidification and eutrophica-

tion, carcinogenic, respiratory effects and land occupation); and (3)

those that are monotically decreasing and therefore behave in a

manner opposite to the cost (mineral extraction and ecotoxicity

impacts).

Further analysis of these results reveals that the difference in

the metrics’ behavior is given by their dependence on the main

sources of impact. Particularly, there are two main sources of dam-

age: utilities generation and heat exchangers construction. The

consumption of utilities can be reduced by increasing the number

and size of heat exchangers, which increases in turn the amount of

stainless steel required for their construction. Hence, the first

group of impacts highly depends on the utilities consumption. In

contrast, impacts pertaining to the second group are mainly caused

by both, utilities generation and stainless steel production. Finally,

impacts of the third group are largely attributed to the generation

of stainless steel. Note that the optimization of each objective pro-

duces a different solution entailing a specific consumption rate of

utilities and number and sizes of heat exchangers. Fig. 6 indicates

also that the minimization of metrics of type (2) along with the

cost as unique criteria is not convenient, since it prevents the iden-

tification of Pareto points located after the minimum impact value

in the corresponding 2-D curve.

Note that the outcome of the analysis performed here depends

on the time horizon considered in the calculations. Fig. 7, which is

equivalent to Fig. 6, depicts the results obtained for a time horizon

of 15 years. As observed, for a lifetime of 15 years only minerals

and ecotoxicity impacts are conflicting with cost. This is because

both impacts largely depend on the mass of stainless steel,

whereas the remaining impacts along with the cost are highly

dependent on the utilities consumption. Hence, the Eco-indicator

99 and cost are mainly attributed to the generation of utilities. Be-

cause of this, the simultaneous minimization of both objectives

produces one single point in which the environmental and eco-

nomic indicators attain both their optimal values.

The MILP for dimensionality reduction [33] was next applied

iteratively, that is, calculating the best combination of objectives

of given size that minimized the delta error, and then executing

Table 1

Stream data for example 1.

Stream Tin, �C Tout, �C FCp, kW/c h, kW/m2
�C Cost, $/kW

HPS1 105 50 10 0.1 –

HPS2 185 70 15.4 0.1 –

CPS1 25 180 15.5 0.1 –

HU 185 185 – 0.1 300

CU 5 25 – 0.1 30

Table 2

Eco-indicator 99 from steam, cooling water and stainless steel.

Impacts, ecopoints Eco-indicator 99 from,

steem, ecopoints/kg

Eco-indicator 99 from cooling

water, ecopoints/kg

Eco-indicator 99 from stainless steel,

ecopoints/kg

Overall eco-indicator 99 0.005672 4.97 � 10�7 1.132

Carcinogenic 0.00005708 1.71 � 10�8 0.040332

Climate change 0.00053927 2.99 � 10�10 0.024494

Ionizing radiation 1.18 � 10�6 1.95 � 10�11 0.00050624

Ozone layer depletion 7.86 � 10�7 1.95 � 10�11 5.88 � 10�6

Respiratory effects 0.00065067 1.56 � 10�7 0.2876

Minerals 4.08 � 10�6 5.24 � 10�8 0.32362

Fossil fuel 0.0042286 1.56 � 10�8 0.09008

Acidification & eutrophication 6.20 � 10�6 8.30 � 10�8 0.0063917

Ecotoxicity 0.000086728 5.19 � 10�8 0.35336

Land occupation 0.000042142 1.23 � 10�8 0.0056452
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Fig. 5. Results obtained from the bi-criteria problem cost vs. overall Eco-indicator

99 (blue points) and from solving the bi-criteria problems cost vs. single impacts

(red points) for example 1.
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again the MILP with integer cuts added for removing solutions pre-

viously identified by the algorithm from subsequent iterations. We

repeated the calculations for different useful life times of 1, 5 and

15 years. The results are presented in Tables 3 and 4. Specifically,

the tables show the delta value corresponding to every possible

combination of cost vs. each single environmental impact for sets

of 2 and 3 objectives.

As observed, the delta values change with the life time and so

does the dominance structure. The combination of cost and miner-

als depletion yields a very small delta value. This is because both

metrics are conflicting. Hence, optimizing in the space of these

two objectives does not alter significantly the problem structure.

Furthermore, the triple cost, ozone layer depletion and minerals

yields a zero delta error for all life times. In contrast, the couple

cost and Eco-indicator 99 leads to large delta values in all the cases.

These results indicate that the use of the Eco-indicator 99 as single

environmental metric is inadequate in the design of HENs.

Fig. 8 shows the solutions obtained from solving the bi-criteria

problem cost vs. minerals for a lifetime of 15 years. As observed, al-

most all solutions of the bi-criteria problems can be reproduced in

the sub space cost vs. minerals depletion.

Figs. 9 and 10 show the heat exchangers networks with mini-

mum cost and minerals impact, respectively, while Table 5 dis-

plays the values of the main variables of both extreme solutions.

As observed, to reduce the impact in minerals, the model decides
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Fig. 6. Results obtained from the bi-criteria problems cost vs. single impacts for a lifetime of 1 year for example 1.
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Fig. 7. Results obtained from the bi-criteria problems cost vs. single impacts for a lifetime of 15 years for example 1.

Table 3

Delta values for example 1 for all combinations of two objectives.

Reduced set Delta

1 Year 5 Years 15 Years

1 2 60.7897 59.9457 52.7001

1 3 17.6811 59.9457 52.7001

1 4 60.7897 59.9457 52.7001

1 5 32.7695 59.9457 52.7001

1 6 60.7897 59.9457 52.7001

1 7 31.4228 59.9457 52.7001

1 8 1.4934 0.0153 0.0000

1 9 60.7897 59.9457 52.7001

1 10 60.7897 59.9457 52.7001

1 11 1.4934 11.5260 41.5601

1 12 60.7897 59.9457 52.7001
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to decrease the area of the heat exchangers and therefore the

amount of stainless steel required.

5.2. Example 2

This second example was presented by Isafiade and Fraser [39].

Two hot and one cold process streams are considered along with

cold and hot utilities. The operating data for this example are

shown in Table 6, whereas the environmental data are presented

in Table 2.

The results for a lifetime of 1 year are shown in Figs. 11 and 12.

Fig. 11 shows the points obtained when optimizing the Eco-indica-

tor 99 vs. cost (blue points), and those resulting from the remain-

ing bi-criteria problems projected onto the same subspace (i.e.,

cost vs. Eco-indicator 99) (red points). As in the previous example,

one branch of solutions would be discarded if cost and Eco-indica-

tor 99 were the only objectives optimized. Note, however, that in

this example the contribution of the utilities generation to the total

impact is larger. The objectives can be aggregated in three groups:

(1) dependent on utilities generation (i.e., Eco-indicator 99, carcin-

ogenic, climate change, respiratory effects, land occupation, ioniz-

ing radiation, acidification & eutrophication, fossil fuel and ozone

layer depletion); (2) dependent on both emission sources: utilities

and steel (cost and ecotoxicity); and (3) dependent on stainless

steel (mineral extraction). Note that, as in the previous example,

every curve has upper and lower branches.

Table 4

Delta values for example 1 for all combination of three objectives.

Reduced set Delta Reduced set Delta

1 Year 5 Years 15 Years 1 Year 5 Years 15 Years

1 2 3 17.6811 59.9457 52.7001 1 5 6 32.7695 59.9457 52.7001

1 2 4 60.7897 59.9457 52.7001 1 5 7 31.4228 59.9457 52.7001

1 2 5 32.7695 59.9457 52.7001 1 5 8 1.4934 0.0153 0.0000

1 2 6 60.7897 59.9457 52.7001 1 5 9 32.7695 59.9457 52.7001

1 2 7 31.4228 59.9457 52.7001 1 5 10 32.7695 59.9457 52.7001

1 2 8 0.7320 0.0153 0.0000 1 5 11 1.4934 11.5260 41.5601

1 2 9 60.7897 59.9457 52.7001 1 5 12 32.7695 59.9457 52.7001

1 2 10 60.7897 59.9457 52.7001 1 6 7 31.4228 59.9457 52.7001

1 2 11 1.0107 11.5260 41.5601 1 6 8 0.0000 0.0000 0.0000

1 2 12 60.7897 59.9457 52.7001 1 6 9 60.7897 59.9457 52.7001

1 3 4 17.6811 59.9457 52.7001 1 6 10 60.7897 59.9457 52.7001

1 3 5 17.6811 59.9457 52.7001 1 6 11 1.0107 11.5260 41.5601

1 3 6 17.6811 59.9457 52.7001 1 6 12 60.7897 59.9457 52.7001

1 3 7 17.6811 59.9457 52.7001 1 7 8 1.4934 0.0153 0.0000

1 3 8 1.4934 0.0153 0.0000 1 7 9 31.4228 59.9457 52.7001

1 3 9 17.6811 59.9457 52.7001 1 7 10 31.4228 59.9457 52.7001

1 3 10 17.6811 59.9457 52.7001 1 7 11 1.4934 11.5260 41.5601

1 3 11 1.4934 11.5260 41.5601 1 7 12 31.4228 59.9457 52.7001

1 3 12 17.6811 59.9457 52.7001 1 8 9 0.0251 0.0000 0.0000

1 4 5 32.7695 59.9457 52.7001 1 8 10 0.7320 0.0153 0.0000

1 4 6 60.7897 59.9457 52.7001 1 8 11 1.4934 0.0153 0.0000

1 4 7 31.4228 59.9457 52.7001 1 8 12 0.7320 0.0153 0.0000

1 4 8 0.1700 0.0151 0.0000 1 9 10 60.7897 59.9457 52.7001

1 4 9 60.7897 59.9457 52.7001 1 9 11 1.0107 11.5260 41.5601

1 4 10 60.7897 59.9457 52.7001 1 9 12 60.7897 59.9457 52.7001

1 4 11 1.0107 11.5260 41.5601 1 10 11 1.0107 11.5260 41.5601

1 4 12 60.78968 59.94572 52.70009 1 10 12 60.7897 59.9457 52.7001

1 11 12 1.0107 11.5260 41.5601
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Fig. 8. Results for problem cost vs. minerals for a lifetime of 15 years lifetime for example 1.
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Fig. 9. Network obtained from the bi-criteria problems cost vs. minerals impact for 15 years lifetime with minimum cost for example 1.
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Fig. 10. Network obtained from the bi-criteria problems cost vs. minerals impact for 15 years lifetime with minimum minerals for example 1.

Table 5

Results for example 1 obtained by solving problem cost vs. minerals for 15 years

lifetime.

Total

area, m2

Operation

cost, $

Capital

cost, $

Total

cost, $

Minerals impact,

ecopoints

Min minerals 1554.7 4,592,017 40,627.4 4,632,645 25,725.1

Min TC 1664.4 3,089,250 35,215.6 3,124,466 26,791.9

Table 6

Stream data for example 2.

Stream Tin, �C Tout, �C FCp, kW/c h, kW/m2
�C Cost, $/kW

HPS1 105 25 10 0.5 –

HPS2 185 35 5 0.5 –

CPS1 25 185 7.5 0.5 –

HU 210 209 – 5 160

CU 5 6 – 2.6 10
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The results for lifetimes of 15 years are shown in Fig. 13. The per-

centage of impact due to utilities generation increases as we move

to larger lifetimes. For a useful life of 15 years, minerals depletion is

the only impact that is conflictingwith cost, since it largely depends

on the mass of stainless steel, whereas the others are mainly given

by the amount of utilities consumed. Remarkably, there is no trade-

off between cost and Eco-indicator 99 for a lifetime of 15 years,

since both highly depend on the amount of utilities consumed.

The results obtained with the MILP are shown in Tables 7 and 8.

Similarly, as with the previous case, the combination cost vs.

depletion of minerals yields a very small error. There are also other

combinations of three objectives with small delta values. All these

combinations include the environmental impact minerals deple-

tion. As mentioned before, this is because this impact is highly con-

flicting with the remaining criteria. Fig. 14 shows the solutions

obtained from the bi-criteria problem cost vs. minerals for a life-

time of 15 years. As seen, when solving the MINLP problem with

these two objectives, all solutions are kept.

Fig. 15 shows the heat exchangers network with minimum cost

and minimum minerals impact (i.e, in this case both objective
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Fig. 11. Points resulting from the bi-criteria optimization cost vs. Eco-indicator 99

and cost vs. every single impact projected onto the subspace cost vs. Eco-indicator

99. Red points above the envelope of the blue ones would be lost if Eco-indicator 99

and cost were optimized as unique objectives (example 2).
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Fig. 12. Results obtained from the bi-criteria problems cost vs. single impacts for a lifetime of 1 year for example 2.
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Fig. 13. Results obtained from the bi-criteria problems cost vs. single impacts for a lifetime of 15 year. Depletion of minerals is the only conflicting objective with cost for

example 2.
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functions lead to the same values of the binary variables and there-

fore to the same structural design). Further details of these designs

are displayed in Table 9. Similarly, as in the previous case, the area

is decreased when the minerals impact is minimized.

Note that the results obtained in each case may depend on the

LCA data used in the analysis as well as the particular features of

the HEN under study. Having said that, we still think that the

insight obtained in the examples can be generalized to other HENs

problems, since in these systems there is a clear trade-off between

the impacts caused during the operation and construction phases.

The tool presented herein allows to properly asses such a trade-

off and classify the LCAmetrics according to their nature. This anal-

ysis reduces the problem complexity while still preserving its

structure.

Table 7

Delta values for example 2 for all combinations of two objectives.

Reduced set Delta

1 Year 5 Years 15 Years

1 2 36.7695 20.9273 4.6649

1 3 36.7695 20.9273 4.6649

1 4 36.7695 20.9273 4.6649

1 5 36.7695 20.9273 4.6649

1 6 36.7695 20.9273 4.6649

1 7 36.7695 20.9273 4.6649

1 8 65.6591 4.6835 0.0000

1 9 36.7695 20.273 4.6649

1 10 36.7695 20.9273 4.6649

1 11 65.6591 20.9273 4.6649

1 12 36.7695 20.9273 4.6649

Table 8

Delta values for example 2 for all combinations of three objectives.

Reduced set Delta Reduced set Delta

1 Year 5 Years 15 Years 1 Year 5 Years 15 Years

1 2 3 17.6811 59.9457 52.7001 1 5 6 32.7695 59.9457 52.7001

1 2 4 60.7897 59.9457 52.7001 1 5 7 31.4228 59.9457 52.7001

1 2 5 32.7695 59.9457 52.7001 1 5 8 1.4934 0.0153 0.0000

1 2 6 60.7897 59.9457 52.7001 1 5 9 32.7695 59.9457 52.7001

1 2 7 31.4228 59.9457 52.7001 1 5 10 32.7695 59.9457 52.7001

1 2 8 0.7320 0.0153 0.0000 1 5 11 1.4934 11.5260 41.5601

1 2 9 60.7897 59.9457 52.7001 1 5 12 32.7695 59.9457 52.7001

1 2 10 60.7897 59.9457 52.7001 1 6 7 31.4228 59.9457 52.7001

1 2 11 1.0107 11.5260 41.5601 1 6 8 0.0000 0.0000 0.0000

1 2 12 60.7897 59.9457 52.7001 1 6 9 60.7897 59.9457 52.7001

1 3 4 17.6811 59.9457 52.7001 1 6 10 60.7897 59.9457 52.7001

1 3 5 17.6811 59.9457 52.7001 1 6 11 1.0107 11.5260 41.5601

1 3 6 17.6811 59.9457 52.7001 1 6 12 60.7897 59.9457 52.7001

1 3 7 17.6811 59.9457 52.7001 1 7 8 1.4934 0.0153 0.0000

1 3 8 1.4934 0.0153 0.0000 1 7 9 31.4228 59.9457 52.7001

1 3 9 17.6811 59.9457 52.7001 1 7 10 31.4228 59.9457 52.7001

1 3 10 17.6811 59.9457 52.7001 1 7 11 1.4934 11.5260 41.5601

1 3 11 1.4934 11.5260 41.5601 1 7 12 31.4228 59.9457 52.7001

1 3 12 17.6811 59.9457 52.7001 1 8 9 0.0251 0.0000 0.0000

1 4 5 32.7695 59.9457 52.7001 1 8 10 0.7320 0.0153 0.0000

1 4 6 60.7897 59.9457 52.7001 1 8 11 1.4934 0.0153 0.0000

1 4 7 31.4228 59.9457 52.7001 1 8 12 0.7320 0.0153 0.0000

1 4 8 0.1700 0.0151 0.0000 1 9 10 60.7897 59.9457 52.7001

1 4 9 60.7897 59.9457 52.7001 1 9 11 1.0107 11.5260 41.5601

1 4 10 60.7897 59.9457 52.7001 1 9 12 60.7897 59.9457 52.7001

1 4 11 1.0107 11.5260 41.5601 1 10 11 1.0107 11.5260 41.5601

1 4 12 60.7897 59.9457 52.7001 1 10 12 60.7897 59.9457 52.7001

1 11 12 1.0107 11.5260 41.5601
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Fig. 14. Results for problem cost vs. minerals for 15 years lifetime. All solution are kept, example 2.
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6. Conclusion

This work has addressed the optimal design of HENs consider-

ing several environmental impacts quantified according to LCA

principles. It was clearly shown that the use of an aggregated indi-

cator (i.e., Eco-indicator 99) is inadequate in this context since it

leaves solutions that may be appealing for decision makers out of

the analysis.

To simplify the visualization and analysis of the Pareto solution,

we investigated the use of a rigorous dimensionality reduction

method in the post-optimal analysis of the trade-off designs. This

technique enables the identification of redundant objectives while

still keeping the problem structure to the extent possible. Our ap-

proach is aimed at aiding decision-making in the design of HENs

with environmental impact considerations.
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Appendix A

The MINLP model of Yee & Grossmann [8] has been used as a

test bed to illustrate the usefulness of dimensionality reduction

methods in the design of HEN. A detailed description of the equa-

tions of the model can be found in Biegler et al. [34]. We provide

next an outline of the formulation for the sake of completeness

of this work.

A.1. Indices

i hot process stream

j cold process stream

k stage in the superstructure

CU cooling utility

HU heating utility

A.2. Sets

HP (i:i is a hot stream)

CP (j:j is a cold utility)

ST (k:k is a stage in the superstructure)

A.3. Parameters

TIN inlet temperature of stream

F heat capacity flow rate

CCU unit cost for cold utility

(continued on next page)

HPS1

HPS2

CPS1

105º

35º

C1

185º 105º/105º

92º/85º 25º

HE1

185º

464,5 / 502,1kW

29,0   / 30,3 m2

145º/138º
H1

400,1 / 400,0 kW

67,1   / 50,1 m2

HE3

167,4 / 148,5 kW

25,5   / 17,9 m2

257,1 / 353,5 kW

15,8   / 17,7 m2

335,5 / 298,0 kW

51,1   / 36,0 m2

HE2 C2

25º

71º/75º

182,5 / 201,5 kW

9,6    / 10,2 m2

71º/75º

Fig. 15. Network obtained from the bi-criteria problems cost vs. minerals impact for 15 years lifetime with minimum cost/minerals for example 2.

Table 9

Results for example 2 obtained by solving problem cost vs. minerals impact for 15 years lifetime.

Total area, m2 Operation cost, $ Capital cost, $ Total cost, $ Minerals impact, ecopoints

Min minerals 162.1 953,960.8 187,507.4 1,141,468.2 6907.1

Min TC 198.1 810,012.3 229,574.7 1,039,587.0 7055.1
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CF fixed charge for exchangers

b exponent for area cost

X upper bound for heat exchange

TOUT outlet temperature of stream

U overall heat transfer coefficient

h film heat transfer coefficient

CHU unit cost of hot utility

C area cost coefficient

NOK total number of stages

C upper bound for temperature difference

A.4. Variables

TC total cost

OP operation cost

CC capital cost

dti,j,k temperature approach for match i, j at temperature

location k

dtcui temperature approach for the match of hot stream i

and cold utility

dthuj temperature approach for the match of cold stream j

and hot utility

qi,j,k heat exchanged between hot process stream i and cold

process stream j in stage k

qcui heat exchanged between hot process stream i and cold

utility

qhuj heat exchanged between hot utility and cold stream j

ti,k temperature of hot stream i at hot end of stage k

tj,k temperature of cold stream j at hot end of stage k

zi,j,k binary variable to denote existence of match i, j in stage

k

zcui binary variable (1 if stream i exchanges heat with the

cold utility, 0 otherwise)

zhuj binary variable (1 if stream j exchanges heat with the

hot utility, 0 otherwise)

Overall heat balance for each stream.

ðTINi � TOUT iÞF i ¼
X

k2ST

X

j2CP

qi;j;k þ qcui i 2 HP ð6Þ

ðTOUT j � TINjÞF j ¼
X

k2ST

X

i2HP

qi;j;k þ qhuj j 2 HP ð7Þ

Heat balance at each stage

ðti;k � ti;kþ1ÞF i ¼
X

j2CP

qi;j;k k 2 ST; i 2 HP ð8Þ

ðtj;k � tj;kþ1ÞF j ¼
X

i2HP

qi;j;k k 2 ST; j 2 CP ð9Þ

Assignment of superstructure inlet temperatures

TINi ¼ ti;1 ð10Þ

TINj ¼ tj;NOKþ1 ð11Þ

Feasibility of temperatures

ti;k P ti;kþ1 k 2 ST; i 2 HP ð12Þ

tj;k P tj;kþ1 k 2 ST; j 2 CP ð13Þ

TOUT i 6 ti;NOKþ1 i 2 HP ð14Þ

TOUT j P tj;1 j 2 CP ð15Þ

Hot and cold utility load.

ðti;NOKþ1 � TOUT iÞF i ¼ qcui i 2 HP ð16Þ

ðTOUT j � tj;1ÞF j ¼ qhuj j 2 CP ð17Þ

Logical constraints.

qi;j;k �Xzi;j;k 6 0 i 2 HP; j 2 CP; k 2 ST ð18Þ

qcui �Xzcui 6 0 i 2 HP ð19Þ

qhuj �Xzhuj 6 0 j 2 CP ð20Þ

zi;j;k; zcui; zhuj 2 f0;1g ð21Þ

Calculation of approach temperatures.

dti;j;k 6 ti;k � tj;k þ Cð1� zi;j;kÞ i 2 HP; j 2 CP; k 2 ST ð22Þ

dti;j;kþ1 6 ti;kþ1 � tj;kþ1 þ Cð1� zi;j;kÞ i 2 HP; j 2 CP; k 2 ST ð23Þ

dtcui 6 ti;NOKþ1 � TOUTCU þ Cð1� zcuiÞ i 2 HP ð24Þ

dthuj 6 TOUTHU � tj;1 þ Cð1� zhujÞ j 2 CP ð25Þ

dti;j;k P EMAT ð26Þ

Objective function.

Cost ¼
X

i2HP

CCU qcui year þ
X

j2CP

CHU qhuj yearþ

X

i2HP

X

j2CP

X

k2ST

CF i;jzi;j;k þ
X

i2HP

CFCU
i zcui þ

X

j2CP

CFHU
j zhujþ

X

i2HP

X

j2CP

X

k2ST

Ci;jðAi;j;kÞ
bi;j þ

X

i2HP

CCU
i ACU

i

� �bCU
i
þ
X

j2CP

CHU
j AHU

j

� �bHU
j

ð27Þ

Ai;j;k ¼
qi;j;k

Ui;j ðdti;j;kdti;j;kþ1Þ
1
2
ðdti;j;k þdti;j;kþ1Þ

� �1
3

ð28Þ

ACU
i ¼

qcui

UCU
i ðdtcuiÞðTOUT i �TINCUÞ

1
2
ðdtcui þðTOUT i �TINCUÞÞ

� �1
3

ð29Þ

AHU
j ¼

qhuj

UHU
j ðdthujÞðTINHU � TOUT jÞ

1
2
ðdthuj þðTINHU � TOUT jÞÞ

� �1
3

ð30Þ

1

Uij

¼
1

hi

þ
1

hj

ð31Þ

1

UCU
i

¼
1

hi

þ
1

hcu

ð32Þ

1

UHU
j

¼
1

hj

þ
1

hHU

ð33Þ
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Multi-objective optimization of utility plants under several1

environmental indicators using an MILP-based2

dimensionality reduction approach3
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4

a Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Avinguda Països Catalans 26,5

43007-Tarragona, Spain6

Abstract7

We address here the multi-objective optimization of utility plants with economic and en-

vironmental concerns. Rather than optimizing a single environmental metric, which was

the approach followed in the past, we focus on optimizing these systems considering

simultaneously several environmental indicators based on life cycle assessment (LCA)

principles. We couple the multi-objective model of the plant with an MILP-based dimen-

sionality reduction method that allows identifying key environmental metrics that exhibit

the property that their optimization will very likely improve the system simultaneously

in all of the remaining damage categories. This analysis reduces the complexity of the

underlying multi-objective optimization problem from the viewpoints of generation and

interpretation of its solutions. The capabilities of the proposed method are illustrated

through a case study based on a real industrial scenario, in which we show that a few

number of environmental indicators suffices to optimize the environmental performance

of the plant.

Keywords: dimensionality reduction method, energy systems, life cycle assessment,8

utility systems.9
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1. Introduction10

The adoption of more sustainable technologies in industry is a central topic in sustain-11

ability and green engineering. Particularly, the design and planning of efficient energy12

systems capable of satisfying a given power and steam demand has recently gained wider13

interest in this field [1].14

Several methods are available in the literature for the synthesis of utility plants. They15

can be roughly classified into two main groups. The first are based on thermodynamic16

targets and heuristics [2, 3]. As pointed out by Bruno et al. [4], their main drawback is17

that even if the design with highest thermal efficiency is obtained, it may not be econom-18

ically attractive because capital costs may be too high. The second group, to which the19

present work belongs, relies on rigorous optimization techniques based on mathematical20

programming (i.e., linear, non-linear, mixed-integer linear, and mixed-integer non-linear21

programming -LP, NLP, MILP and MINLP, respectively). Optimization approaches based22

on LP and MILP techniques were originally introduced by Nishio and Johnson [5], Pa-23

poulias and Grossmann [6], and Petroulas and Reklaitis [7]. Later on, Hui and Natori [8]24

developed an MINLP model for the optimization of site utility systems, while Bruno et25

al.[4] proposed an MINLP formulation for the design of utility systems.26

These strategies have traditionally focused on optimizing the utility plant consider-27

ing the economic performance as unique criterion and disregarding the environmental28
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impact [4, 9, 10]. The design task, however, can be rather formulated as a multi-objective29

decision-making problem that embeds environmental concerns. This approach allows30

identifying solutions in which the economic and environmental performance are both31

simultaneously optimized. A key point in the use of multi-objective optimization as ap-32

plied to the development of more sustainable processes concerns the assessment of the33

environmental performance of the system. Among the tools available, Life Cycle As-34

sessment (LCA) has recently gained wider attention in the environmental engineering35

community. The integration of LCA and multi-objective optimization results in a power-36

ful quantitative tool that facilitates the environmentally conscious design and planning37

of industrial processes.38

Livingston and Pistikopoulous [11, 12] were the first to propose the combined use39

of multi-objective optimization (MOO) and LCA principles. In the resent past, this ap-40

proach has been applied to a wide variety of industrial problems, such as the design of41

chemical plants [15], the strategic planning of supply chains [16–19], the design of heat42

exchanger networks[20], the design of solar energy plants [21], the design of hydrogen43

infrastructures [22, 23], and the design and planning of energy systems [1], among others.44

Defining a suitable LCA metric to drive the optimization of an energy system is of45

paramount importance. A plethora of LCA-based indicators are nowadays available for46

quantifying the impact in several damage categories. The simultaneous optimization47

of all of them would lead to highly complex models extremely difficult to solve. The48

prevalent approach to overcome this limitation is to use aggregated metrics that translate49

several environmental metrics into a single indicator defined by attaching weights to50
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them. Following this approach, most authors have developed bi-criteria models where51

the economic performance is traded-off against a single environmental indicator obtained52

as a weighted sum of individual impacts [24, 25]. This approach simplifies the analysis53

to a large extent, but has two main drawbacks. The first is that the weights used may not54

necessarily reflect the decision-makers’ preferences. The second is that their optimization55

might change the structure of the problem, in a manner such that some optimal solutions56

might be left out of the analysis.57

Multi-dimensionality reduction methods aim to overcome these limitations [26]. They58

allow identifying redundant objectives that can be omitted while still preserving the59

problem structure to the extent possible. Particularly, Deb and Saxena [29] were the first60

to investigate dimensionality reduction in MOO. They developed a statistical method61

based on principal component analysis (PCA) for eliminating non-essential objectives in62

MOO problems, thereby simplifying the associated calculations. Brockhoff-Zitzler [29]63

proposed an alternative dimensionality reduction approach based on identifying those64

objectives whose elimination changes to the minimum extent possible the dominance65

structure of the multi-objective problem. They formally stated two problems: calculat-66

ing the smallest objective subset that preserves the dominance structure considering a67

fixed approximation error; and computing the minimum error for a subset of objectives68

of given size. The same authors proposed two algorithms to solve these problems, one69

exhaustive and another one heuristic. More recently, Guillén-Gosálbez [30] proposed an70

alternative MILP-based method to solve both problems [20] that takes advantage of the71

latest branch-and-cut methods for MILP.72
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In this work we optimize utility plants under different environmental metrics and73

study the relationships between environmental indicators using a rigorous dimension-74

ality reduction strategy. The approach presented relies on the combined use of multi-75

objective optimization, LCA analysis and dimensionality reduction methods. We first76

pose the planning task as a multi-objective mixed-integer linear problem (MILP) that si-77

multaneously accounts for the minimization of the cost and environmental impact of the78

energy system. The environmental performance of the system is quantified using several79

LCA-based indicators that quantify the damage caused in different categories. We then80

apply a dimensionality reduction technique to facilitate the post-optimal analysis of the81

solutions found.82

The paper is organized as follows. Section 2 presents a formal definition of the prob-83

lem under study. In section 3, the mathematical formulation derived to address this prob-84

lem is presented. Section 4 describes the solution strategy employed to solve the MILP85

model and the dimensionality reduction strategy. In section 5 the capabilities of the pro-86

posed modeling framework and solution strategy are illustrated through two case stud-87

ies, while in Section 6 we present the conclusions of the work.88

2. Problem statement89

Given is an electricity and steam demand at various pressure levels to be satisfied En-90

vironmental data associated with the production and combustion of fuels as well as with91

the process of electricity generation are also provided. The objective is to determine the92

set of planning decisions that simultaneously minimize the total cost and the associated93
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environmental impact. Decisions to be made include the amounts and types of fuels to94

be burnt in the boilers and turbines of the system, along with the amount of electricity95

purchased from an external supplier. The formulation presented in the next section in-96

cludes empirical models for tanks, boilers and mixers that reproduce the behavior of a97

standard utility plant.98

3. Mathematical formulation99

Energy systems utilize fuel, air and other materials to generate electricity and steam100

demanded by other process units of an industrial system (see Figure 1). The system101

taken as reference in this work consists of storage tanks to store a set of fuels, boilers that102

convert fuels into steam at high pressure, and turbines that expand higher pressure steam103

into lower pressure steam in order to generate electricity.104

The flows of materials in the units are denoted by the continuous variables xFU
jltm (fuel),105

xHP
jlt , xMP

jlt , xLP
jlt (steam at high, medium and low pressure, respectively), xCO

jlt (condensate)106

and xEL
jlt (electricity). In these variables, the subscript j represents the process unit of the107

system to which the flow is referred (i.e., tanks, boilers or turbines), l denotes the state of108

the material (i.e., input or output), and t indicates the time period. Note that there are m109

different types of fuel available in the system.110

The overall problem is formulated as a generalized disjunctive programming (GDP)111

model that involves Boolean and continuous variables. In this GDP problem, logic de-112

cisions correspond to the selection of a specific fuel type from a set of available choices.113

The complete formulation is described in detail in the next sections.114
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3.1. Fuel tank models115

Fuel tanks can contain different types of fuels that are combusted in the boilers in116

order to generate HP steam. There are several reasons for considering alternative fuels117

instead of a single one. One of them is the lack of a certain fuel type due to problems in the118

supply in a given time period. Another possible reason is the inclusion of economically119

and/or environmentally attractive fuels in order to improve the economic performance120

of the system and/or minimize its environmental impact. Specifically, the selection of a121

specific fuel m in a tank j in period t, can be modeled via the following disjunction:122



Yjtm

TFCjtm = costFU
mt θxFU

jltm l = IN

INVjtm = INVjt−1m + θxFU
jltm−

θxFU
jl′tm l = IN, l′ = OUT

xFU
jltm ≤ xFU

jltm ≤ xFU
jltm l = IN,OUT

INVjtm ≤ INVjtm≤ INVjtm



∨



¬Yjtm

TFCjtm = 0

xFU
jltm = 0 l = IN,OUT

INVjtm = 0



Yjtm ∈ {True, False} ∀m, t, j ∈ TANKS (1)

If fuel m is stored in tank j in period t, then the Boolean variable Yjtm, will hold True,123

and the total fuel cost (TFCjtm) and the inventory level in the tank (INVjtm) will take on124
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positive values that will be calculated using specific equations. If Yjtm is False, all the125

constraints in the corresponding disjunction will be ignored, and the associated variables126

set to zero.127

The total fuel cost (TFCjtm) is calculated from the fuel consumption and the fuel cost128

in period t (costFU
mt ) if the Boolean variable is True, and it is set to zero otherwise. Here, θ129

represents the duration of each period t. The inventory level in the tank is given by the130

materials balance, which states that the initial inventory (INVjt−1) plus the amount of fuel131

introduced in the tank minus the amount transferred from the tank to the boilers must132

equal the final inventory. The disjunction imposes also lower and upper limits on the133

mass flows and inventory levels of the fuels (xFU
jltm, INVjtm, xFU

jltm and INVjtm, respectively),134

if the corresponding fuel is selected, and set them to zero otherwise.135

3.2. Boiler models136

Boilers generate high pressure steam by burning fuel. The combustion process gen-

erates environmentally harmful chemical substances such as SOx, NOx, and COx. These

units require electricity for operating the mechanical equipment and medium pressure

steam for heating the feed water. Similarly, as with the tanks, boilers can utilize different

fuels with some adjustments in the operating conditions of their equipment. The boilers
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are modeled via the following disjunctions:


Yjtm

xHP
jlt = hcm

ηjm
xFU

jl′tm l = OUT, l′ = IN

xFU
jltm ≤ xFU

jltm ≤ xFU
jltm l = IN

∨


¬Yjtm

xHP
jlt = 0 l = OUT

xFU
jltm = 0 l = IN



Yjtm ∈ {True, False} ∀m, t, j ∈ BOILERS (2)

As observed, when Yjtm is True, the amount of HP steam is calculated from the amount of137

fuel consumed, the heat of combustion of the selected fuel (hcm), and the boiler efficiency138

(ηjm). Besides, lower and upper bounds are imposed on the total fuel consumption. On139

the other hand, when Yjtm is False, the fuel consumption in the boiler and the amount of140

steam generated are both set to zero.141

The amount of HP steam generated is also a function of the consumption of MP steam142

and electricity, as stated in Eqs. 3 and 4.143

xHP
jlt = aMP

j xMP
jl′t ∀t, j ∈ BOILERS, l = OUT, l′ = IN (3)

xHP
jlt = aEL

j xEL
jl′t ∀t, j ∈ BOILERS, l = OUT, l′ = IN (4)
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In these equations, aMP
j and aEL

j represent the materials balance coefficients that relate144

the amount of HP steam generated in boiler j with the consumption of MP steam and145

electricity.146

The total amount of fuel consumed in the boilers must equal the amount sent from

the storage tanks:

∑
j∈BOILERS

xFU
jltm = ∑

j′∈TANKS
xFU

j′l′tm ∀t,m, l = IN, l′ = OUT (5)

Note that Eqs. 3 to 5 must be satisfied regardless of the fuel selected, and hence can be147

placed outside the disjunction.148

3.3. Turbine models149

Turbines expand steam at higher pressure converting the mechanical energy released

during the expansion into electricity. A typical multi-stage turbine receives HP steam

and produces electricity, MP and LP steams, and condensate, as shown in in Figure1.

Electricity generation in a turbine is a function of the amount of HP steam feed, and the

amounts of MP and LP steam, and condensate generated, as shown in Eq. 6.

xEL
jlt = bHP

j xHP
jl′t − gMP

j xMP
jlt − gLP

j xLP
jlt − gCO

j xCO
jlt

∀t, j ∈ TURBINES, l = OUT, l′ = IN

(6)

In Eq. 6, the coefficients bHP
j , gMP

j , gLP
j and gCO

j can be obtained by performing a statistical

analysis on the existing process data. The upper and lower bounds on the amount of



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



electricity generated in turbines are defined via Eq. 7.

xEL
jlt ≤ xjkl ≤ xEL

jlt ∀j, t, l = OUT (7)

The material balance around turbines is expressed in Eq. 8 8:

xHP
jlt = xMP

jl′t + xLP
jl′t + xCO

jl′t ∀t, j ∈ TURBINES, l = IN, l′ = OUT (8)

3.4. Demand satisfaction150

The demand of electricity, HP, MP and LP steam must be fulfilled in each time period,

as stated in constraints 9 to 12:

∑
j∈TURBINES

∑
l∈OUT

θxEL
jlt + EPUt − ∑

j∈BOILERS
∑

l∈IN
θxEL

jlt ≥ demEL
t (9)

∑
j∈BOILERS

∑
l∈OUT

θxHP
jlt − ∑

j∈TURBINES
∑

l∈IN
θxHP

jlt ≥ demHP
t (10)

∑
j∈TURBINES

∑
l∈OUT

θxMP
jlt − ∑

j∈BOILERS
∑

l∈IN
θxMP

jlt ≥ demMP
t (11)
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∑
j∈TURBINES

∑
l∈OUT

θxLP
jlt ≥ demLP

t (12)

Here demEL
t , demHP

t , demMP
t and demLP

t denote the demands of electricity, HP, MP and151

LP steam in period t, whereas EPUt represents the total amount of electricity purchased152

from the external supplier. Hence, Eq.9 considers that part of the electricity demand can153

be satisfied by an external supplier (i.e., outsourcing). Note that in Eq. 10, the amount of154

HP steam available is calculated from the steam generated in the boiler minus the amount155

consumed in the turbine. Similarly, in Eq. 11, the total amount of MP steam available is156

obtained by subtracting the consumption of steam in the boiler from the amount of MP157

steam produced in the turbine.158

3.5. Objective function159

The model presented must attain two targets: minimum cost and environmental im-160

pact. We next describe in detail how to determine both objectives.161

3.5.1. Total cost162

The total cost of the energy system includes the cost of the fuel purchased, the in-

ventory cost associated with holding fuel in the tanks, and the consumption of external
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electricity, as stated in Eq. 13:

TC = ∑
j∈TANKS

∑
t

∑
m

TFCjtm+

∑
j∈TANKS

∑
t

∑
m

costINV
mt

(
INVFU

jt−1m + INVFU
jtm

2

)
+ ∑

t
costEL

t EPUt

(13)

Here, costINV
mt represents the unitary inventory cost associated with fuel m and period t,163

and costEL
t is the electricity cost in period t.164

3.5.2. Environmental impact objective function.165

The environmental performance of the energy system is quantified according to the166

principles of Life Cycle Assessment (LCA) [31]. Specifically, this work makes use of the167

Eco-indicator 99 framework, which accounts for 11 impacts aggregated into three damage168

categories. The computation of this metric follows the four LCA phases: goal and scope169

definition, inventory analysis, impact assessment and interpretation. Such phases are170

described in detail in the next sections.171

1. Goal and scope definition. In this phase, the system boundaries and the impact cat-172

egories are identified. Specifically, we perform a "cradle-to-grave" analysis that embraces173

all the activities of the energy system, starting from the extraction of raw materials (i.e.,174

oil), and ending with the delivery of electricity and steam to the final customers. Eleven175

impact categories, as defined by the Eco-indicator 99, are considered:176

1. Carcinogenic effects on humans.177

2. Respiratory effects on humans caused by organic substances.178
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3. Respiratory effects on humans caused by inorganic substances.179

4. Damage to human health caused by climate change.180

5. Human health effects caused by ionizing radiations.181

6. Human health effects caused by ozone layer depletion.182

7. Damage to ecosystem quality caused by ecosystem toxic emissions.183

8. Damage to ecosystem quality caused by the combined effect of acidification and184

eutrophication.185

9. Damage to ecosystem quality caused by land occupation and land conversion.186

10. Damage to resources caused by extraction of minerals.187

11. Damage to resources caused by extraction of fossil fuels.188

2. Inventory analysis. The second phase of the LCA provides the inputs and outputs

of materials and energy associated with the process (Life Cycle Inventory), which are re-

quired to perform the environmental impact calculations. In the context of the energy

system, the environmental burdens are given by the production of fuels at the refiner-

ies (LCIFU
b ), the generation of the external electricity (LCIEL

b ), and the direct emissions

associated with the combustion of the fuels in the boilers (LCIDE
b ). Mathematically, the

inventory of emissions can be expressed as a function of some continuous decision vari-
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ables of the model, as stated in Eq. 14.

LCIb = LCIFU
b + LCIEL

b + LCIDE
b =

∑
j∈TANKS

∑
l=IN

∑
t

∑
m

ωFU
m θxFU

jltm + ∑
t

ωELEPUt+

∑
j∈BOILERS

∑
l=IN

∑
t

∑
m

ωDE
m θxFU

jltm

(14)

Here, ωFU
m , ωEL and ωDE

m denote the life cycle inventory entries (i.e., feedstock require-189

ments and emissions released) associated with chemical b per reference flow of activity.190

In the production of fuels and electricity, the reference flow is one unit of fuel (ton) and191

electricity(kW), respectively, generated. In the combustion of fuel, the reference flow is192

one unit of fuel combusted in the boilers.193

3. Impact assessment. In this step, we determine the environmental impact of the194

process using a damage assessment model. These impacts are further aggregated into195

three main damage categories: human health (expressed in DALYs), ecosystem quality196

(PDFm2yr), and damages to resources (MJ surplus energy). Mathematically, the damage197

caused in each impact category c belonging to damage category d (IMc) is calculated from198

the life cycle inventory and a set of damage factors (d fbc), as stated in Eq. 15.199

IMc = ∑
b

d fbcLCIb ∀c (15)

The damage factors link the LCI results with the damage in each impact category. There
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are three different damage models each of which reflects a different perspective based on

Cultural Theory [32]. The impact caused in each damage category can be calculated via

Eq. 16:

DAMd = ∑
c∈ID(d)

IMc ∀d (16)

Here, ID(d) denotes the set of impact categories c that contribute to damage d. Finally,

the damages are normalized and aggregated into a single impact factor (i.e., Eco-indicator

99), as stated in Eq. 17.

ECO99 = ∑
d

ndwd · DAMd (17)

This equation makes use of normalization (nd) and weighting (wd) factors specified in the200

Eco-indicator 99 methodology [32].201

4. Interpretation. Finally, in the fourth phase, the results are analyzed and a set of202

conclusions or recommendations are formulated. In our work, the decision-makers’ pref-203

erences are articulated in the post-optimal analysis of the Pareto optimal solutions.204
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4. Proposed approach205

The methodology followed to solve the multi-objective model describe above com-206

prises several steps. We start by generating a set of solutions of the original multi-207

objective model using a heuristic-based approach that decomposes it into a set of bi-208

criteria problems in which we optimize the cost against each single impact. The Pareto209

solutions generated in this manner are next normalized, and finally used to carry out an210

MILP-based dimensionality reduction analysis that identifies redundant objectives that211

can be omitted without disturbing the main features of the problem. We describe in the212

ensuing sections each of these steps in detail.213

5. Solution strategy214

5.1. ϵ - constrain method.215

The overall bi-criteria GDP can be expressed as follows:

min Z = (TC, EI(ECO99, EI1, EI2, ..., EI11))


Yi

hj(x) ≤ 0

cj = γj

∨


¬Yi

Bjx = 0

cj = 0

 i ∈ D

Ω(Y) = TRUE

x ≥ 0 cj ≥ 0 Yi ∈ {True, False}
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Using the convex hull reformulation technique [33], the GDP is reformulated into a bi-216

criteria mixed-integer linear programming (MILP) model of the following type:217

(MO) min
x,y

(TC, EI(ECO99, EI1, EI2, ..., EI11))

s.t. g(x,y) ≤ 0

h(x,y) = 0

x ∈ R ,y ∈ {0,1}

218

in which TC is the total cost, EI denotes the LCA impact (ECO99 is the overall en-219

vironmental impacts and EI1, EI2, .., EI11 represent 11 difference impact categories 3.5.2),220

while x denotes the continuous variables (mass flows, inventory levels and costs), and y221

the binary variables that replace the Boolean variables appearing in the GDP model.222

As already mentioned, the Pareto points of model MO are computed following an223

heuristic-based approach based on solving a series of bi-criteria problems in which the224

cost is traded-off against each single impact category [34]. Each of these bi-criteria prob-225

lems is calculated via the epsilon-constraint method [35], which solves a set of single226

objective problems, in each of which one objective is optimized and the other is trans-227

ferred to an auxiliary constraint that bounds it within some allowable levels. We then228

normalize the Pareto solutions by dividing each objective value by the maximum value229

attained by the objective in all of the solutions.230

5.2. Post-optimal analysis: dimensionality reduction methods.231

After normalizing the solutions, we apply a dimensionality reduction method based232

on the work by Guillén-Gosálbez [30]. The multi-objective model presented above con-233

tains a large number of environmental metrics, which makes it difficult to generate and234
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analyze the Pareto solutions. Dimensionality reduction methods identify redundant ob-235

jectives that can be removed, which facilitates the generation and post-optimal analysis236

of the solutions.237

We use a simple illustrative example to clarify how dimensionality reduction works.238

To derive our approach, we consider the concept of weakly Pareto efficiency. A solution239

A is called weakly efficient if there are no other solutions that are strictly better than A240

simultaneously in all of the objectives. Let us now consider 4 weakly efficient solutions241

of a multi-objective problem (solutions A, B, C and D) that optimize 4 objective functions242

F = f1, f2, f3, f4 (i.e., we aim to minimize all of them simultaneously). Figure 2 is a parallel243

coordinates plot which shows in the bottom axis the different objective functions and in244

the vertical axis the normalized values attained by each solution in every objective. As245

seen, in this case, the four solutions are weakly Pareto efficient. This is because no solu-246

tion improves any of the others simultaneously in all of the objectives. This is reflected247

also in the fact that all of the lines representing the Pareto solutions intersect in at least248

one point.249

Let us now assume that we remove one objective from the search space, let us say250

objective f4. Figure 3 depicts the dominance structure of the reduced space F′ = f1, f2, f3.251

We can see that now sol. C dominates solution D in the reduced space, since C is better252

than D in all of the objectives kept. Hence, removing f4 changes the dominance structure253

of the problem, as solution D becomes sub-optimal in the reduced space F′.254

B and Z proposed a metric to quantify the extent to which the initial dominance struc-255

ture of a problem changes after removing objectives. This metric, termed delta error, cor-256
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responds to the difference between the true value of objective f4 in solution C, and the257

value required to dominate solution D in the original space of objectives (see Figure 2). In258

our example, the reduced objective set F′ = f1, f2, f3, could therefore replace the original259

set F = f1, f2, f3, f4, assuming a delta error of 0.25.260

If we next omit two objectives, say f4 and f3, we find that solution C becomes dom-261

inated by solution D and B (see Figure 4). In this case, the delta error is 0.5, as it is the262

maximum value that we have to subtract to the solutions lost so as to be dominated in263

the original objectives space (and not only in the reduced objectives space) (see Figure264

2). Hence, it is clear that higher delta values imply greater changes in the dominance265

structure of the problem.266

Note that the delta value depends on the objectives removed. As an example, dis-267

carding the second and third objectives (reduced space F′′′ = f1, f4) produces no changes268

in the dominance structure, since all the solutions are kept (see Figure 5.). In this case,269

we say that the reduced objective set F′′′ = f1, f4 is non-conflicting with the original one270

F = f1, f2, f3, f4. That implies that F′′′ can be replaced by F without changing the dom-271

inance structure of the problem (delta error = 0). The goal of dimensionality reduction272

methods is therefore to identify objectives that can be removed with a minimum change273

in the dominance structure of the problem (i.e., minimum delta error).274

In this work we employ an MILP-based dimensionality reduction method introduced275

by Guillén-Gosálbez [30]. This method identifies redundant objectives that can be omit-276

ted from the analysis incurring in minimum delta error. Further details on this method277

can be found elsewhere [30], [20], [36], [37].278
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6. Case study279

We illustrate the capabilities of our modeling framework and solution strategy us-280

ing two case studies that address the optimal planning of an energy system with two281

fuel tanks, two boilers and two turbines (see Figure 6). Both case studies assume the282

same data concerning fuels types, equipment units and energy demands, but differ in283

the characteristics of the electricity purchased. We minimize 13 objectives (i.e., total cost284

and 12 LCA impacts). As environmental objectives, we consider the total Eco-indicator285

99, which combines 11 single impacts into a single aggregated metric. To calculate these286

LCA metrics, we employ data retrieved from environmental databases [38]. The mo-287

tivation for optimizing the Eco-indicator 99 along with its single impacts is to analyze288

whether the minimization of an aggregated impact is a good practice when optimizing289

utility systems (i.e., it preserves the problem structure). As will be shown next, the suit-290

ability of the Eco-indicator 99 depends on the problem data.291

The initial demand of electricity is 29 MW/hr for both examples. The initial demand292

of steam (HP, MP and LP) is 2 ton/hr, 92 ton/hr and 98 ton/hr, respectively. A 5% in-293

crease in this demand is assumed in every time period. The model covers 7 time periods294

of 48 hours each. Fuels data are given in Tables 1 and 2. The parameters associated with295

boilers and turbines are displayed in Tables 3 and 4. The capacity of tanks 1 and 2 are 120296

and 50 tons, respectively. The maximum electricity power provided by each turbine is 70297

MW. The LCI data associated with the production of the different fuels are presented in298

Table 5, while the impacts associated with the external electricity are displayed in Table299
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6. The parameters of the damage model were taken from the Eco-indicator 99 report [32],300

assuming the average weighting set and the hierarchic perspective.301

6.1. Example 1.302

In this example we consider an external electricity provider (i.e., electricity mix) with303

a high environmental impact (see Table 6) and low price (2 $/MWh). We calculate 240304

Pareto solutions by optimizing each single environmental objective vs the total cost. Fig-305

ure 7 is a parallel coordinates plot that depicts in the horizontal axis the different objective306

functions, and in the vertical axis the normalized value attained by each solution in ev-307

ery objective. The normalization is performed by dividing each objective value by the308

maximum one attained over all the solutions. As observed, the environmental objectives309

seem to be equivalent, as when one increases so do the others and vice-versa. Hence, the310

cost on the one hand, and the environmental impacts on the other, behave in an opposite311

manner, that is, decreasing the first increases the second ones and vice-versa.312

Figure 8 depicts the normalized results. The bottom axis shows the normalized total313

cost and the vertical one the normalized environmental impacts. In the figure, we de-314

pict all the solutions in the 2-D space (Eco-indicator 99, cost). The blue squares represent315

the solutions obtained when optimizing the Eco-indicator 99 against the cost, while the316

red circles are the solutions resulting from the optimization of the total cost against each317

single impact category. As observed, the optimization of the Eco-indicator 99 produces318

solutions that are quite close to those obtained when optimizing each single impact cate-319

gory separately. This observation is therefore consistent with the analysis of the parallel320
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coordinates plot, where we observed that all the indicators behave similarly.321

Note that every solution implies a different combination of fuel and electricity (see322

Table 7 ). For example, in solution A (i.e., minimum cost solution in Figure 8), one part of323

the electricity is purchased from an external supplier, whereas another part is generated324

from fuel 2. In solution B, the main part of electricity is generated from fuel 2, whereas325

in solution C the main part is generated from fuel 3. The reason why all of the envi-326

ronmental impacts behave similarly and the cost is conflictive with them is that the cost327

depends to a large extent on the amount of fuels purchased, while the environmental328

metrics depend largely on the electricity consumption.329

Turning back our attention to Figure 8, we can see how the Pareto curve Eco-indicator330

99 vs cost (blue circles in the figure) is rather smooth in the region that goes from B to C,331

whereas from A to B increases sharply (when the model decides to increase the amount332

of electricity purchased from outside).333

We use next the MILP for dimensionality reduction [20, 30] to uncover the relation-334

ships between the different environmental indicators. Figure 9 shows the minimum delta335

value for different number of objectives kept. As observed, the delta error diminishes336

with the number of objectives retained. From one to two, this drop is quite significant,337

while afterwards (as we increase further the number of objectives kept) is close to zero338

and flat. This is because, as mentioned before, all the impacts behave similarly and one339

of them is enough to capture the behavior of the remaining ones.340

Table 8 shows the delta value corresponding to every possible combination of cost341

vs. each single environmental impact. All combinations of cost and impact yield a very342
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small approximation error (delta value). Hence, the original multi-objective problem can343

be replaced by a bi-criteria one (that optimizes cost against any environmental impact)344

without significant changes in the problem structure.345

6.2. Example 2.346

Here we consider an external electricity with high price (243 $/MW*hr) and low en-347

vironmental impact (see Table 6). This electricity is assumed to be generated by wind348

energy. We calculate again 240 Pareto solutions by optimizing each single environmental349

objective vs. the total cost.350

Figure 10 presents the normalized values for every objective in a parallel coordinates351

plot. As observed, some objectives behave in a conflictive manner. Particularly, climate352

change is conflicting with other objectives, since solutions with low climate change im-353

pact show large impacts in other categories and vice-versa. As will be explained later,354

these conflicts arise when the same decision variable shows opposite contributions in355

different environmental impacts.356

In Figure 11, the bottom axis shows the normalized total cost and the vertical one the357

normalized Eco-indicator 99. The blue points are the solutions to the bi-criteria prob-358

lem Eco-indicator 99 vs. total cost, while red points are associated with the remaining359

bi-criteria problems (total cost vs. each single impact category). As oppose to the previ-360

ous example, in this case we notice that some solutions would be discarded if cost and361

Eco-indicator 99 were the only objectives being minimized. This is because solutions that362

are optimal in the space of individual objectives (when optimizing some individual ob-363
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jectives vs the total cost) would be lost if we optimized only the Eco-indicator 99 vs the364

total cost.365

Concerning the planning decisions behind each solution (see Table 9), we find that in366

solution A (i.e., minimum cost solution) the electricity is mainly generated from fuel 2,367

in solution B (an intermediate solution), electricity is generated from fuels 2 and 4, while368

solution C (minimum Eco-indicator 99 point) employs fuel 1.369

To shed further light on this issue, we next apply the MILP-based dimensionality370

reduction method. Figure 12 shows the minimum delta value for different sets of ob-371

jectives kept. As observed, the delta error diminishes with the number of objectives re-372

tained. Comparing with example 1 (Figure 9), we see that two objectives are not enough373

for keeping the problem structure, since no combination of two criteria preserves all the374

Pareto solutions.375

Table 10 displays the delta value corresponding to every possible combination of cost376

vs each single environmental impact, while Table 11 shows the same information, but this377

time for sets of 3 objectives. The best combination of two objectives is cost and climate378

change (1,6). For three objectives, the best combination of criteria is cost, respiratory379

effects (inorganic) and climate change (1, 5, 6), which yields a delta error close to zero. In380

contrast, the couple cost and Eco-indicator 99 leads to large delta values (i.e., 4.2). These381

results indicate that the use of the Eco-indicator 99 as unique environmental metric might382

be inadequate in the design of utility systems, since it might prevent the identification of383

Pareto solutions that minimize other impacts and that are therefore potentially appealing384

for decision-makers.385
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7. Conclusion386

This work proposed an approach to optimize utility plants considering the cost and387

several environmental indicators simultaneously. The environmental impact associated388

with the energy system has been assessed through the Eco-indicator 99, which is based on389

LCA principles. The overall problem was formulated as a multi-objective MILP featuring390

a large number of objectives.391

To overcome the numerical difficulties associated with the calculation and analysis392

of the Pareto solutions, we investigated the use of a rigorous dimensionality reduction393

method. Numerical examples show that the number of environmental objectives can be394

greatly reduced while still preserving the problem structure to a large extent. We ob-395

served also that the single optimization of aggregated metrics, such as the widely used396

Eco-indicator 99, might change the dominance structure of the problem in a manner such397

that some solutions that are optimal in the original space of LCA impacts, might be lost.398

Our overall approach is intended to facilitate the identification of more sustainable man-399

ufacturing patterns in industry.400

8. Acknowledgments401

The authors wish to acknowledge support from the Spanish Ministry of Education402

and Science (Projects (CTQ2012-37039-C02, DPI2012-37154-C02-02 and ENE2011-28269-403

C03-03) and the Generalitat de Catalunya (FI programs).404



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



[1] A. Eliceche, S. Corvalan, P. Martinez, Environmental life cycle impact as a tool for process optimisation405

of a utility plant, Computers & chemical engineering 31 (5-6) (2007) 648–656.406

[2] C. Chou, Y. Shih, A thermodynamic approach to the design and synthesis of plant utility systems,407

Industrial & engineering chemistry research 26 (6) (1987) 1100–1108.408

[3] M. Nishio, J. Itoh, K. Shiroko, T. Umeda, A thermodynamic approach to steam-power system design,409

Industrial & Engineering Chemistry Process Design and Development 19 (2) (1980) 306–312.410

[4] J. Bruno, F. Fernandez, F. Castells, I. Grossmann, A rigorous minlp model for the optimal synthesis411

and operation of utility plants, Chemical Engineering Research and Design 76 (3) (1998) 246–258.412

[5] M. Nishio, A. Johnson, Strategy for energy system expansion, Chemical Engineering Progress (1977)413

73–79.414

[6] S. Papoulias, I. Grossmann, A structural optimization approach in process synthesis–i:: Utility sys-415

tems, Computers & chemical engineering 7 (6) (1983) 695–706.416

[7] T. Petroulas, G. Reklaitis, Computer-aided synthesis and design of plant utility systems, AIChE jour-417

nal 30 (1) (1984) 69–78.418

[8] C. Hui, Y. Natori, An industrial application using mixed-integer programming technique: A multi-419

period utility system model, Computers & chemical engineering 20 (1996) S1577–S1582.420

[9] R. Iyer, I. Grossmann, Optimal multiperiod operational planning for utility systems, Computers &421

chemical engineering 21 (8) (1997) 787–800.422

[10] S. Micheletto, M. Carvalho, J. Pinto, Operational optimization of the utility system of an oil refinery,423

Computers & Chemical Engineering 32 (1-2) (2008) 170–185.424

[11] S. Stefanis, A. Buxton, A. Livingston, E. Pistikopoulos, A methodology for environmental impact425

minimization: Solvent design and reaction path synthesis issues, Computers & chemical engineering426

20 (1996) S1419–S1424.427

[12] S. Stefanis, A. Livingston, E. Pistikopoulos, Minimizing the environmental impact of process plants:428

a process systems methodology, Computers & chemical engineering 19 (1995) 39–44.429

[13] A. Azapagic, R. Clift, Application of life cycle assessment to process optimization, Computers &430



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



Chemical Engineering 23 (10) (1999) 1509–1526.431

[14] B. Gebreslassie, G. Guillén-Gosálbez, L. Jiménez, D. Boer, Design of environmentally conscious ab-432

sorption cooling systems via multi-objective optimization and life cycle assessment, Applied Energy433

86 (9) (2009) 1712–1722.434

[15] G. Guillén-Gosálbez, J. Caballero, L. Jiménez, Application of life cycle assessment to the structural435

optimization of process flowsheets, Industrial & Engineering Chemistry Research 47 (3) (2008) 777–436

789.437

[16] A. Hugo, E. Pistikopoulos, Environmentally conscious long-range planning and design of supply438

chain networks, Journal of Cleaner Production 13 (15) (2005) 1471–1491.439

[17] G. Guillén-Gosálbez, I. Grossmann, Optimal design and planning of sustainable chemical supply440

chains under uncertainty, AIChE Journal 55 (1) (2009) 99–121.441

[18] G. Guillén-Gosálbez, I. Grossmann, A global optimization strategy for the environmentally conscious442

design of chemical supply chains under uncertainty in the damage assessment model, Computers &443

Chemical Engineering 34 (1) (2010) 42–58.444

[19] L. Puigjaner, G. Guillén-Gosálbez, Towards an integrated framework for supply chain management445

in the batch chemical process industry, Computers & Chemical Engineering 32 (4-5) (2008) 650–670.446

[20] P. Vaskan, G. Guillén-Gosálbez, L. Jiménez, Multi-objective design of heat-exchanger networks con-447

sidering several life cycle impacts using a rigorous milp-based dimensionality reduction technique,448

Applied Energy 98 (2012) 149–161.449

[21] R. Salcedo, E. Antipova, D. Boer, L. Jimnez, G. Guilln-Goslbez, Multi-objective optimization of solar450

Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle envi-451

ronmental concerns, Desalination, 286 (2012) 358-371.452

[22] G. Guillén-Gosálbez, F. Mele, I. Grossmann, A bi-criterion optimization approach for the design and453

planning of hydrogen supply chains for vehicle use, AIChE Journal 56 (3) (2010) 650–667.454

[23] N. Sabio, A. Kostin, G. Guillén-Gosálbez, L. Jiménez, Holistic minimization of the life cycle environ-455

mental impact of hydrogen infrastructures using multi-objective optimization and principal compo-456



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



nent analysis, International Journal of Hydrogen Energy 37 (6) (2012) 5385–5405.457

[24] H. Cabezas, J. Bare, S. Mallick, Pollution prevention with chemical process simulators: the generalized458

waste reduction (war) algorithm–full version, Computers & chemical engineering 23 (4-5) (1999) 623–459

634.460

[25] S. Mallick, H. Cabezas, C. Jane, S. Sikdar, A pollution reduction methodology for chemical process461

simulators, Industrial & engineering chemistry research 35 (11) (1996) 4128–4138.462

[26] D. Brockhoff, E. Zitzler, Objective reduction in evolutionary multiobjective optimization: Theory and463

applications, Evolutionary Computation 17 (2) (2009) 135–166.464

[27] L. Van der Maaten, E. Postma, H. Van Den Herik, Dimensionality reduction: A comparative review,465

Journal of Machine Learning Research 10 (2009) 1–41.466

[28] K. Deb, D. Saxena, On finding pareto-optimal solutions through dimensionality reduction for certain467

large-dimensional multi-objective optimization problems, Kangal report 2005011.468

[29] D. Brockhoff, E. Zitzler, Are all objectives necessary? on dimensionality reduction in evolutionary469

multiobjective optimization, Parallel Problem Solving from Nature-PPSN IX (2006) 533–542.470

[30] G. Guillén-Gosálbez, A novel milp-based objective reduction method for multi-objective optimization:471

Application to environmental problems, Computers & Chemical Engineering 35 (8) (2011) 1469–1477.472

[31] S. Ryding, Iso 14042 environmental management - life cycle assessment, The International Journal of473

Life Cycle Assessment 4 (6) (1999) 307–307.474

[32] PR-Consultants, The eco-indicator 99, a damage oriented method for life cycle impact assessment.475

Methodology report and manual for designers, Tech. rep., PR Consultants, Amersfoort, The Nether-476

lands (2000).477

[33] M. Trkay, I. Grossmann, Logic-based minlp algorithms for the optimal synthesis of process networks,478

Computers and Chemical Engineering 20(8) (1996) 959–978.479

[34] M. Kostina, G. Guilln-Goslbez, D. Mele, L. Jimnez, Objective reduction in multi-criteria optimization480

of integrated bioethanol-sugar supply chains, 22nd European Symposium on Computer Aided Pro-481

cess Engineering, 17, (2012) 1.482



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



[35] M. Ehrgott, Multicriteria optimization, Vol. 491, Springer Verlag, 2005.483

[36] A. Kostin, G. Guilln-Goslbez, L. Jimnez, F. D. Mele, Identifying key life cycle assessment metrics in the484

multiobjective design of bioethanol supply chains using a rigorous mixed-integer linear programming485

approach, Industrial & Engineering Chemistry Research, 51(14) (2011) 5282-5291.486

[37] E. Antipova, D. Boer, L. F. Cabeza, G. Guilln-Goslbez, L. Jimnez, Uncovering relationships between487

environmental metrics in the multi-objective optimization of energy systems: A case study of a ther-488

mal solar Rankine reverse osmosis desalination plant, Energy, 51 (2013) 50-60.489

[38] E. C. portal, http://www.ecoinvent.com/, October, 2012.490



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



Notation491

Indices

b chemical species

c impact categories

d damage categories

j process units

l material state

m fuels

t time periods

Sets

ID(d) set of impacts c contributing to damage category d

Parameters

aMP
j material balance coefficient

aEL
j material balance coefficient

bHP
j material balance coefficient

costFU
mt cost of fuel m in period t

costINV
mt unitary inventory cost associated with fuel m and period t

costEL
t cost of the electricity in period t

demEL
t demand of electricity in period t

demHP
t demand of HP steam in period t
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demMP
t demand of MP steam in period t

demLP
t demand of LP steam in period t

d fbc damage factor associated with chemical b and impact c

gCO
j material balance coefficient

gLP
j material balance coefficient

gMP
j material balance coefficient

hcm heat of combustion of fuel m

nd normalization factor associated with damage category d

wd weighting factor associated with damage category d

INVjtm lower bound on the inventory of fuel m in unit j in period t

INVjtm upper bound on the inventory of fuel m in unit j in period t

xFU
jltm lower bound on the flow of fuel m in state l in unit j in period t

xFU
jltm upper bound on the flow of fuel m in state l in unit j in period t

xEL
jlt lower bound on the flow of electricity in state l in unit j in period t

xEL
jlt upper bound on the flow of electricity in state l in unit j in period t

ϵ auxiliary parameter employed in the epsilon constraint method

θ length of a time period

ηjm efficiency of boiler j combusting fuel m

ωFU
m life cycle inventory entry associated with chemical b
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per unit of fuel m generated

ωEL life cycle inventory entry associated with chemical b

per unit of external electricity generated

ωDE
m life cycle inventory entry associated with chemical b

per unit of fuel m combusted

Variables

DAMd impact in damage category d

ECO99 Eco-indicator 99 value

EPUt purchases of external electricity in period t

IMc damage in impact category c t

INVjtm inventory of fuel m in unit j in period t

LCIFU
b life cycle inventory associated with chemical b

LCIFU
b life cycle inventory associated with chemical b due to the generation of fuel

LCIEL
b life cycle inventory associated with chemical b

due to the consumption of external electricity

LCIDE
b life cycle inventory associated with chemical b due to the direct emissions

TFCjtm total cost of fuel m in unit j in period t

TC total cost

xFU
jltm flow rate of fuel m in state l in unit j in period t

xHP
jlt flow rate of high pressure steam in state l in unit j in period t
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xMP
jlt flow rate of medium pressure steam in state l in unit j in period t

xLP
jlt flow rate of low pressure steam in state l in unit j in period t

xCO
jlt flow rate of condensate in state l in unit j in period t

xEL
jlt flow rate of electricity in state l in unit j in period t

yjtm binary variable (1, if fuel m is selected in unit j in period t, 0 otherwise)
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Figure 1. Energy system taken as reference
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Figure 2. Dominance structure for the set f1, f2, f3, f4. All solutions are weakly efficient.
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Figure 3. Dominance structure for the reduced set f1, f2, f3. Solution C dominate solution D,
since C is better than D in all objectives. Solution D is therefore lost, with the Delta 1 (see Fig.
2).
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Figure 4. Dominance structure for the reduced set f1, f2. Solution C and B dominate solution
D, since C and B are better than D in all objectives. Solution D is therefore lost, with the Delta
2 (see Fig. 2).



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



1 4

0.25

0.5

0.75

1

Objective functions

N
or

m
al

iz
ed

 v
al

ue
s

 

 

A
B
C
D

sol.D

sol.A

sol.C

sol.B

Figure 5. Dominance structure for reduced set f1, f4. No solution dominates any of the others.
All solutions are Pareto optimal in the reduced search space, and the dominance structure is
preserved.
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Figure 6. Superstructure of case study.
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Figure 7. The parallel coordinate plot for Example 1. We show in the horizontal axis the differ-
ent objectives, and in the vertical one the normalized value of each solution in each objective.
Normalization is performed by subtracting the minimum value to each objective function
value and dividing by the difference between the maximum and the minimum attained over
all the solutions.
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Figure 8. Results obtained from the bi-criteria problem cost vs the overall Eco-indicator 99
(blue points) and from solving the bicriteria problems cost vs. single impacts (red points) for
Example 1.
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Figure 9. Minimum of delta value for different sets of number of objectives. Example 1.
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Figure 10. The parallel coordinate plot for Example 2.



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



Figure 11. Points resulting from the bi-criteria optimization cost vs. Eco-indicator 99 and
cost vs. every single impact projected onto the subspace cost vs Eco-indicator 99. Red points
above the envelope of the blue ones would be lost if Eco-indicator 99 and cost were optimized
as unique objectives. (Example 2).
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Figure 12. Minimum of delta value for different sets of kept objectives. Example 2.
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Table 1. Data for fuels: heat of combustion (hcm), green house gases content (ghgm), price
(costFU

mt ), and inventory cost (costINV
mt ).

hcm (kJ/ton) ghgm (kg/ton) costFU
mt ($/ton) costINV

mt ($/ton·hr)
Fuel 1 10.50 17 200 0.50
Fuel 2 9.65 5 76 0.19
Fuel 3 6.65 3 83 0.20
Fuel 4 10.20 10 145 0.35

Table 2. Data for boilers (I): boiler efficiency (ηjm)

ηjm (kJ/ton)

Fuel Boiler 1 Boiler 2
Fuel 1 0.59 0.58
Fuel 2 0.60 0.60
Fuel 3 0.56 0.57
Fuel 4 0.61 0.60

Table 3. Data for boilers (II): materials balance coefficients (aMP
j and aEL

j )

aMP
j (adim) aEL

j (ton/MW·hr)
Boiler 1 0.11 0.002
Boiler 2 0.12 0.003

Table 4. Data for turbines: materials balance coefficients (gLP
j , gMP

j , bHP
j , and gCO

j )

gLP
j (MW·hr/ton) gMP

j (MW·hr/ton) bHP
j (MW·hr/ton) gCO

j (MW·hr/ton)
Turbine 1 0.01 0.07 0.15 0.00
Turbine 2 0.01 0.08 0.18 0.00
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Table 5. Environmental data: production of fuels

Fuels (impact/kg)

1 2 3 4
Carcinogens (DALYs) 1.05×10−8 1.27×10−8 1.29×10−8 2.52×10−9

Respiratory effects (organic) (DALYs) 1.64×10−9 1.69×10−9 1.90×10−9 1.00×10−11

Respiratory effects (inorganic) (DALYs) 3.81×10−7 4.36×10−7 4.54×10−7 8.23×10−9

Climate change (DALYs) 7.18×10−8 8.73×10−8 8.85×10−8 1.92×10−9

Ionizing radiation (DALYs) 7.70×10−10 9.10×10−10 9.40×10−10 2.00×10−11

Ozone layer depletion (DALYs) 4.70×10−10 4.80×10−10 5.40×10−10 0.00×100

Ecotoxicity (PDF·m2·year) 4.71×10−2 6.08×10−2 5.88×10−3 8.15×10−4

Acidif./eutroph. (PDF·m2·year) 1.05×10−2 1.21×10−2 1.25×10−2 2.96×10−4

Land use (PDF·m2·year) 1.27×10−4 1.44×10−4 1.52×10−4 1.32×10−4

Minerals extraction (MJ) 3.09×10−5 2.50×10−5 2.05×10−5 2.99×10−7

Fossil fuels extraction (MJ) 6.92×100 7.07×100 8.02×100 8.38×10−3

Table 6. Environmental data: generation of electricity

Electricity

Example 1 (impact/MJ) Example 2 (impact/kWh)
Carcinogens (DALYs) 1.66×10−8 1.06×10−8

Respiratory effects (organic) (DALYs) 7.00×10−11 7.30×10−9

Respiratory effects (inorganic) (DALYs) 1.58×10−7 7.30×10−9

Climate change (DALYs) 3.15×10−8 2.36×10−9

Ionizing radiation (DALYs) 4.72×10−9 4.12×10−11

Ozone layer depletion (DALYs) 5.00×10−11 6.44×10−13

Ecotoxicity (PDF·m2·year) 2.12×10−3 1.80×10−4

Acidif./eutroph. (PDF·m2·year) 3.57×10−3 3.68×10−3

Land use (PDF·m2·year) 6.05×10−3 7.11×10−4

Minerals extraction (MJ) 2.43×10−4 5.93×10−3

Fossil fuels extraction (MJ) 5.20×10−2 5.38×10−3

Table 7. Consumption of fuel and external electricity in different solutions (see Figure 8) for
example 1.

Solutions Purchased electricity, MW Fuel1, ton Fuel2, ton Fuel3, ton Fuel4, ton

A 2498.88 0 4626.61 0 0
B 673.36 0 5233.41 0 0
C 673.36 0 0 7088.05 0
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Table 8. Delta values for Example 1 for all combinations of two objectives. Where 1 is total
cost, and other objectives are environmental impacts: 2 is overall Eco 99, 3 is carcinogenic, 4
is respiratory organic, 5 is respiratory inorganic, 6 is climate change, 7 is ionizing radiation, 8
is layer depletion, 9 is ecotoxity, 10 is acidification, 11 is landuse, 12 is extraction of minerals,
13 is fossil fuels.

Reduced set Delta
1 2 0.0081
1 3 0.2602
1 4 0.2602
1 5 0.2602
1 6 0.0031
1 7 0.2602
1 8 0.2602
1 9 0.1516
1 10 0.2602
1 11 0.2602
1 12 0.2602
1 13 0.2602

Table 9. Consumption of fuel and external electricity in different solutions (see Figure 11) for
example 2.

Solutions Purchased electricity, MW Fuel1, ton Fuel2, ton Fuel3, ton Fuel4, ton

A 673.36 0 5233.41 0 0
B 736.17 0 2511.72 0 3062.082
C 673.36 4729.59 0 0 0
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Table 10. Delta values for Example 2 for all combinations of two objectives. Where 1 is total
cost, and other objectives are environmental impacts: 2 is overall Eco 99, 3 is carcinogenic, 4
is respiratory organic, 5 is respiratory inorganic, 6 is climate change, 7 is ionizing radiation, 8
is layer depletion, 9 is ecotoxity, 10 is acidification, 11 is landuse, 12 is extraction of minerals,
13 is fossil fuels.

Reduced set Delta
1 2 4.2030
1 3 21.2638
1 4 21.2638
1 5 21.2638
1 6 3.5650
1 7 21.2638
1 8 21.2638
1 9 17.7041
1 10 21.2638
1 11 21.2638
1 12 21.2638
1 13 21.2638
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Table 11. Delta values for Example 2 for all combinations of three objectives. Where 1 is total
cost, and other objectives are environmental impacts: 2 is overall Eco 99, 3 is carcinogenic, 4
is respiratory organic, 5 is respiratory inorganic, 6 is climate change, 7 is ionizing radiation, 8
is layer depletion, 9 is ecotoxity, 10 is acidification, 11 is landuse, 12 is extraction of minerals,
13 is fossil fuels.

Reduced set Delta Reduced set Delta
1 2 3 4.2030 1 5 9 17.7041
1 2 4 4.2030 1 5 10 21.2638
1 2 5 4.2030 1 5 11 21.2638
1 2 6 3.5650 1 5 12 21.2638
1 2 7 4.2030 1 5 13 21.2638
1 2 8 4.2030 1 6 7 0.8065
1 2 9 4.2030 1 6 8 0.6852
1 2 10 4.2030 1 6 9 1.3056
1 2 11 4.2030 1 6 10 0.1869
1 2 12 4.2030 1 6 11 1.4190
1 2 13 4.2030 1 6 12 1.4190
1 3 4 21.2638 1 6 13 0.2524
1 3 5 21.2638 1 7 8 21.2638
1 3 6 0.2167 1 7 9 17.7041
1 3 7 21.2638 1 7 10 21.2638
1 3 8 21.2638 1 7 11 21.2638
1 3 9 17.7041 1 7 12 21.2638
1 3 10 21.2638 1 7 13 21.2638
1 3 11 21.2638 1 8 9 17.7041
1 3 12 21.2638 1 8 10 21.2638
1 3 13 21.2638 1 8 11 21.2638
1 4 5 21.2638 1 8 12 21.2638
1 4 6 0.8065 1 8 13 21.2638
1 4 7 21.2638 1 9 10 17.7041
1 4 8 21.2638 1 9 11 17.7041
1 4 9 17.7041 1 9 12 17.7041
1 4 10 21.2638 1 9 13 17.7041
1 4 11 21.2638 1 10 11 21.2638
1 4 12 21.2638 1 10 12 21.2638
1 4 13 21.2638 1 10 13 21.2638
1 5 6 0.1869 1 11 12 21.2638
1 5 7 21.2638 1 11 13 21.2638
1 5 8 21.2638 1 12 13 21.2638
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. Identifyingmulti-objective design principles inmetabolicnet-

works via a rigorous multi-level optimization framework.

Vaskan P., Guillén-Gosálbez G., Alves R., Jiménez L. Identifying multi-objective design prin-

ciples in metabolic networks via a rigorous multi-level optimization framework. Pending sub-

mission to PLOS Computational Biology.
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Identifying multi-objective design principles in metabolic
networks via a rigorous multi-level optimization framework
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Abstract

Flux Balance Analysis (FBA) provides a set of methods to study different aspects of the functioning
and evolution of microbial species assuming that biomass growth rate is typically optimized during
evolution. Recent work, however, has shown that there might be other meaningful efficiency criteria
leading to alternative fitness functions accounting for more than just growth rate. This work addresses
this fundamental question: how to identify meaningful biological objective functions that drive the cell’s
metabolic machinery under different conditions. To this end, we propose an approach that combines
bi-level optimization, FBA and mixed-integer nonlinear programming (MINLP) within a single unified
framework that enables the identification (in a rigorous and systematic manner) of objective functions
that will likely drive the cell’s machinery under the studied experimental conditions. We benchmark the
method by analyzing which combination of objective functions better explains a set of metabolic fluxes
experimentally determined in vivo. We confirm that biomass maximization is a fundamental objective
function under the experimental conditions we investigate. In addition, we identify additional sets of
functional criteria that, along with growth rate maximization, improve the model fitting to experimental
data. Overall, the fitting of FBA models improves with the number of objectives, firstly sharply, and
then marginally after a certain number of criteria. We show as well that several biological objectives
behave similarly, which suggests the existence of redundant biological criteria.

Author Summary

Evolution of cell metabolism is driven by random mutation processes, generating cells with alternative
metabolic phenotypes. These cells then compete for the natural resources of the environment and their
differential usage of those resources leads to the survival of the fittest cells with most efficient phenotype.
In view of this, a common assumption made in the past is that cells attempt to maximize the biomass
growth rate as their optimal function. Based on this assumption, FBA provides a set of methods to
study different aspects of the functioning and evolution of microbial species. Recent work, however, has
shown that there might be other meaningful efficiency criteria leading to alternative fitness functions
accounting for more than just growth rate maximization. Hence, a major challenge in biology concerns
the identification of these alternative functions and their relative contribution to fitness under various
environmental conditions. In this work we address this challenge by using a systematic framework that
combines rigorous mathematical programming techniques (i.e., bi-level optimization) with FBA. By ap-
plying this tool, we find that the inclusion of additional biological criteria (apart from biomass growth
rate maximization) improves the predictive capabilities of FBA.
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Introduction

In industrial settings, humans establish a clear objective function to be met, creating and optimizing
designs to attain that objective efficiently under specific constraints and conditions. In contrast, the
emergence of new designs in natural systems results from random mutation followed by natural selection.
One could argue that this process tends to optimize the structure and behavior of natural systems.
Unfortunately, the objective(s) function(s) and constraints (i.e., the optimization-like problem we call
natural selection) of this process remain unclear. Determining such a function and set of constraints
would allow biologists to identify biological design principles, a central topic in systems biology [1].

The identification of biological design principles can be posed as a reverse optimization problem for
which the solution (the actual system) is known, and the criteria (if any) that have been optimized to
arrive to that solution need to be determined. Several in silico frameworks for determining a most-likely
objective function have been proposed [2]. For example, ObjFind, was built under the assumption that
natural systems optimize a linear combination of biological objectives that are related to the fluxes of
biological reactions [3]. ObjFind seeks to determine the values of the weights (coefficients of importance,
CoI) to be attached to a set of reaction fluxes such that when the resulting weighted sum of fluxes is
optimized, the difference between the optimal in silico flux distribution predicted by the model and the
experimentally observed distribution is minimized. In the ObjFind framework, a high CoI indicates that
a reaction is important for the cellular objective function, while a small weight implies the opposite.

BOSS illustrates another type of optimization framework [4] that assumes that biological systems
can add new reactions to their metabolism in order to meet their biological objectives. Effectively, this is
implemented by allowing de novo reactions to be added to the stoichiometry matrix of the target network.
In this approach, the objective reaction is not confined to be one of a subset of existing reactions, but
rather is allowed to take on any form (e.g. an existing reaction, a combination of existing reactions,
or a previously uncharacteristic reaction). This assumption provides more flexibility to the framework
and makes the optimization process closer to what is thought to occur during biological evolution, where
changes in regulation (modeled by optimizing the CoIs of existing reactions) can be combined with gene
duplication or deletion (modeled by adding new reactions to the network). A third type of framework was
proposed by Knorr et al [5]. This approach employs a Bayesian-based technique to determine meaningful
biological objective functions for a system.

The aforementioned approaches rely on single-objective methods that assume the existence of a unique
universal biological objective function. Sauer and co-workers, however, suggested recently the existence
of more than one meaningful fitness function driving the metabolic machinery [6,7]. More precisely, they
identified three main biological criteria that microorganisms might attempt to optimize simultaneously:
maximum ATP yield, maximum biomass yield, and minimum sum of absolute fluxes.

If we expect to understand the evolution and functional properties of complex metabolic networks, it
is of paramount importance to develop a rigorous framework for identifying in a systematic and rigorous
manner the criteria underlying design selection in biological systems. Here we report the development
of a bi-level linear programming framework inspired on the work by Burgard and Maranas [3]. More
precisely, we have developed a method that given a set of experimental observations allows us to infer
the form of the multi-objective optimization problem that shapes the adaptation of microorganisms to
the environment. We pose this problem in mathematical terms as a bi-level linear program that includes
an outer problem and a set of inner models. The outer problem optimizes the least square difference
between the experimental observations and the optimal solution predicted in silico. The inner problems,
which are defined for each experimental condition, optimize a linear combination of objectives subject
to the weights imposed by the outer problem. The overall bi-level model identifies those combinations
of weights that make fitting of the model to each experimental condition optimal, considering several
objectives simultaneously. That is, the model looks for those objectives whose optimization produces
solutions that are as close as possible to the experimental observations. A nonzero weight implies that
the objective is biologically meaningful, while a zero weight implies the converse. Binary variables are
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added for controlling the number of plausible fitness functions. Efficient solution of the bi-level problem
is achieved by reformulating it as a standard MINLP.

Our approach represents a significant step forward with respect to the original work by Burgard
and Maranas [3] for the following two reasons: (i) it handles several objective functions (as opposed to
Burgard’s approach that only accounts for a single biological criterion); and (ii) it applies a reformulation
method that ensures convergence to the global optimum (i.e., our approach guarantees that the solution
of the model used to infer meaningful biological objectives is the best possible, while Burgard’s approach
can produce sub-optimal solutions that might lead to biological conclusions of less quality).

We test the capabilities of our method through its application to the study of an in vivo flux distribu-
tion in Escherichia colis central metabolism using data derived from 13C isotopomer analysis [8] and an
FBA model available in the literature [9] that considers biomass growth rate and a set of reaction fluxes
as surrogates for cellular fitness functions. Numerical results produced by our method are consistent
with the hypothesis that biomass maximization is a fundamental objective function under the observed
experimental conditions. In addition, we find that the combination of biomass growth rate with addi-
tional biological criteria improves the predictive capabilities of FBA (it better explains the experimental
observations). The fitting of the model to the experimental data improves with the number of objectives
considered, first sharply and then marginally after a certain point. Finally, we show that there are several
groups of objectives that behave similarly, which suggests a certain degree of redundancy among diverse
biological criteria. This may have significant implications in explaining the emergence of alternative and
seemingly equally fit solutions in replicate experiments of long term evolution [10].

Method

General overview

We have developed a method inspired on the approach by Burgard and Maranas [3] that can handle several
objective functions simultaneously. Particularly, given a set of experimental observations, our framework
allows us to infer the form of the multi-objective optimization problem that shapes the adaptation of
microorganisms to the environment. Hence, we assume the existence of the following multi-objective
model that drives the cells’ machinery:

(MOFBA) min {vj∈MO}
s.t. ∑

j∈M

Sijvj = 0 ∀i ∈ N

vj ≤ vj ≤ vj ∀j ∈ M

This model attempts to optimize a set of velocities (including biomass growth rate), subject to mass
balance equations (stoichiometric constraints), and equations imposing lower and upper bounds on the
velocities. In this formulation, Sij is the stoichiometric coefficient of metabolite i in reaction j, vj
represents the flux of reaction j, MO refers to the set of velocities that are considered surrogates for
cellular fitness functions (in principle, we assume that all velocities can be plausible biological objectives),
N is the set of metabolites, and M is the set of reactions. vj and vj are lower and upper bounds,
respectively, imposed on the velocities.

The solution to this problem is given by a set of Pareto optimal points representing the trade-off
between the criteria considered in the analysis. Figures 2a provides an example of a Pareto front that
divide the search space into sub-optimal and unfeasible solutions.

The Pareto front of our problem can be obtained using standard multi-objective optimization tech-
niques, such as the epsilon-constrain or weighted-sum methods [11], which are both valid for the case



UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ADVANCED MATHEMATICAL PROGRAMMING METHODS FOR SUSTAINABLE ENGINEERING AND SYSTEM BIOLOGY 
Pavel Vaskan 
Dipòsit Legal: T 952-2014 
 



of linear programming problems like the ones solved in FBA. The latter is based on solving a set of
single-objective models in each of which we optimize a linear combination of objectives as follows:

(MOS) min
∑

j∈MO

vjwj

s.t.∑
j∈M

Sijvj = 0 ∀i ∈ N

vj ≤ vj ≤ vj ∀j ∈ M

Where wj is the objective attached to velocity j. Each run of the single-objective model that optimizes
a linear combination of the original set of objectives generates a different Pareto point. By solving the
model for different weights, we obtain a set of Pareto points each achieving a unique combination of
objective function values.

Bearing in mind the concepts and ideas given above, we describe next in detail how our method works.
Figure 1 summarizes our systematic approach, which consecutively performs the following steps:

1. For each experimental observation, we define the weights to be attached to the different objectives
functions. Our goal is to identify the linear combination of weights whose optimization produces
results that are as close to the experimental observations as possible.

2. Solve the minimization problem whose objective function is given by the corresponding weighted
sum of objectives.

3. Obtain the optimal velocities for the given linear combination of weights.

4. Calculate the error, quantified by the Euclidean distance, between estimated and experimentally
determined rates.

5. Minimize the distance calculated in (4) by iteratively varying the weights proposed in (1).

6. At the end of the optimization, identify the objectives with large weight values and tag them as
biologically meaningful, while discarding objectives with low weight values.

Steps (1)-(6) can be automated using a bi-level linear program that includes an outer problem and a set
of inner models. The outer problem seeks to optimize the least square difference between the experimental
observations and the optimal solution predicted in silico. The inner problems, which are defined for each
experimental condition, optimize a linear combination of objectives, subject to the weights imposed by
the outer problem. Hence, the original bi-level problem has the following form:

(BIMO) min
wj ,xj

∑
j∈EX

(vj − vexpj )2

s.t.
min
vj

jup∑
j=1

(vjwj)

s.t.
M∑
j=1

Sijvj = 0 ∀i ∈ N

vj ≤ vj ≤ vj ∀j ∈ M


jup∑
j=1

wj = 1

0 ≤ wj ≤ wjxj ∀j ∈ M
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Where Sij is the stoichiometric coefficient of metabolite i in reaction j, vj represents the flux of
reaction j, vexpj is the experimental flux, and wj is a weight associated with objective j, which is given by
a reaction flux (note that we can also consider a combination of fluxes by defining aggregated velocities).
Set N refers to the set of metabolites, EX contains the set of experimentally determined fluxes, and M is
the set of reactions. Hence, the overall bi-level model seeks those combinations of weights wj that make
each experimental condition optimal, considering several objectives simultaneously. A nonzero weight
implies that the objective is biologically meaningful, while a zero weight implies the opposite.

To solve the bi-level program efficiently, we reformulate it into a standard MINLP by replacing the
inner problems by their corresponding KarushKuhnTucker conditions that are expressed in algebraic form
using auxiliary binary variables [12]. The multi-objective optimization problem (MOFBA) is therefore
reformulated as a Mixed-Integer Quadratically Constrained Program (MIQCP) with linear constraints
and a quadratic objective function. This MIQCP is a special type of MINLP that has a nonlinear
quadratic objective function and linear equality and inequality constraints. Binary variables are used for
controlling the number of plausible fitness functions. In addition, the KKT-based reformulation requires
the definition of one auxiliary binary variable for each inequality of the inner problem. Such binaries take
a value of one if the constraint is active in the optimal solution of the inner problem (i.e., it is satisfied
as an equality), and zero otherwise. The solution of the MIQCP, which can be obtained by standard
branch-and-cut methods, provides the set of meaningful objectives (and corresponding weights) under
several experimental conditions.

Our method in the context of Pareto optimality

We next clarify the theoretical connections between our approach and the concept of Pareto optimality.
To this end, we will use an illustrative example consisting of a system that is optimized following two
different approaches: minimizing objectives 1 and 2; and minimizing objectives 3 and 4. Figures 2a and
2b depict the Pareto front corresponding to the optimization of objectives 1 and 2. Points lying below
the curve are sub-optimal, since they can be improved in both criteria simultaneously by those lying on
the Pareto front (i.e., there are other solutions that are better simultaneously in both objectives). On
the other hand, the region above the curve is infeasible, because no alternative shows better values of
obj 1 and obj 2 (simultaneously) than the Pareto solutions. On the other hand, Figures 2c and 2d are
obtained by optimizing objectives 3 and 4.

It has been proposed that biological systems effectively evolve by finding the Pareto optimal front of
a multi-objective functional optimization [13]. Our method effectively identifies the Pareto front of the
biological problem to which it is applied by solving the multi-criteria FBA model in silico. Note that
selecting weights for the objectives is equivalent to moving along the Pareto set [11]. Hence, when our
approach calculates weights, it is indeed searching Pareto points according to some criteria.

We now address the question of how to represent experimental points in these bi-criteria plots and
how to quantify the error of the prediction made in silico when a given combination of objectives (and
associated weights) is considered in the analysis. Ideally, an experimental observation should lead to a
single point in the Pareto plot. Unfortunately, experimental observations are not fully defined, since some
fluxes are typically missing. Because of this, it is in practice extremely difficult (if not impossible) to
represent each of them as a single point in the space of objectives due to the lack of some experimental
fluxes values.

One possible manner to overcome this limitation consists of fixing the known velocities (i.e., those
measured experimentally) in the FBA model, and then maximize and minimize the values of all of
the objectives. These calculations would provide the limits of a ”experimental” square (in the space
of objectives) within which the experimental observations should fall. We found that this approach is
inadequate because it leads to unfeasible problems. That is, when we attempt to solve the FBA model
with the known fluxes fixed to their experimental values, we find that it usually renders unfeasible (i.e.,
there is no solution satisfying the mass balance equations and at the same time showing the same velocity
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values as those measured experimentally). This can be attributed to the presence of experimental errors
that make experimental fluxes inconsistent with the FBA model

To avoid these difficulties, we propose here to calculate the limits of the ”experimental” square assum-
ing a given allowable mismatch between the experimental fluxes and those calculated by the FBA model.
To this end, we optimize and minimize each objective subject to the condition that the ED (distance
between experimental fluxes and fluxes obtained in silico) must be below a given threshold. A zero ED
value implies a perfect match with experimental results, a situation that seldom arises in practice.

Note that the size of the ”experimental” square grows as we consider larger ED values. Hence, Figure
2b shows the same experimental points as Figure 2a, but considers a larger ED value. As seen, the square
in Figure 2b crosses the Pareto curve. This means that obj1 and obj2 are meaningful objectives if we
consider a maximum allowable error equal to ED2. Figures 2c and 2d are analogous to Figures 2a and
2b, but they are defined for other objectives. As seen, for these objectives, the ”experimental” square
does not cross the Pareto curve (even for the largest allowable ED error). Hence, the optimization of
these objectives does not explain the observed fluxed (considering a maximum allowable error bellow or
equal to ED2). As observed, depending on the objectives selected, and the ED value considered, the
”experimental” square may or may not touch the Pareto set calculated in silico.

Clarifying further the connection between our approach and the concept of Pareto optimality, we
state that if the experimental square touches the Pareto set resulting from the simultaneous optimization
of the two objectives in at least one point, then these objectives may be meaningful for explaining the
biological system in the experimental conditions considered. If the Pareto front does not intersect the
”experimental” square, such objectives are not meaningful under these conditions.

Figure 3 further illustrates this concept. As observed, the error required for a square to touch the
Pareto set depends on the combination of objectives being assessed. In addition, for a given combination
of objectives, there will always be an error for which the Pareto front will touch the ”experimental”
square (larger ED values lead to squares of larger size that will ultimately intersect the Pareto set). Our
approach systematically identifies those combinations of objectives for which the error is the minimum
possible. Note that this analysis is carried out considering several objectives simultaneously, and it is
therefore not restricted only to two criteria.

Hence, for the illustrative example containing two objectives, the method we propose would work as
follows. It would calculate all the Pareto fronts corresponding to every pair of objectives. It would then
determine the minimum square (i.e., the square with minimum Euclidean Distance) that would contain the
experimental observations for each such combination of objectives. To this end, our method would search
among the points contained in the Pareto front the one whose distance with respect to the ”experimental”
square is minimum, or equivalently, the point in the Pareto front touching the experimental square with
minimum ED. For the illustrative example, and considering a total number of allowable objectives equal
to two, the model would chose objectives 1 and 2 as the most meaningful ones. As already mentioned,
and further discussed later in the article, our approach performs all these calculations in a systematic
and automated manner, without the need to carry out iterations.

Results

To test our approach, we use a previously reconstructed flux balance analysis model of the E. coli central
carbon metabolism [9], with 102 reactions and 62 metabolites that represents the major carbon flows
through the cell (the complete model is provided as supplementary material). We consider as potential
biological objectives, all reaction fluxes associated with an energy dissipation (ATP consumed), or redox
potential dissipation (NADH consumed), biomass growth and total production of ATP (there are 21
different velocities that generate ATP). For our study, we employ 13C-detected in vivo flux distributions
from four growth aerobic conditions.
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Numerical experiments were carried out in the modeling systems GAMS. The Mixed-Integer Quadrat-
ically Constrained Programming model defined for a single experiment contains 794 continuous variables,
207 binary variables and 1,254 constraints. These MIQCPs were solved with the solver CPLEX on an
2x AMD Athlon 2.99 GHz processor, 3,49 GB of RAM. The CPU time varied according to the instance
being solved, but was always below 25-150 CPU seconds. The results generated in silico were compared
with the 13C detected in vivo flux distributions obtained under four different growth aerobic conditions.

Prediction of meaningful objectives considering one single experiment at once

We first apply our approach to each experimental data set separately. We consider for the analysis
the following four experiments: Experiment A: batch growth on glucose under aerobic conditions with
fast grow 0.6 h−1; experiment B: chemostat growth 0.02 h−1; experiment C: chemostat growth 0.4
h−1; experiment D: chemostat growth (0.4 h−1) under ammonium limitation. Further details on each
experiment can be found in [9].

Each individual velocity of the model is regarded as a potential objective function. Our method
automatically finds the optimal weights to be attached to a given maximum number of velocities such
that the optimization of this weighted combination of objectives is as close as possible to the experimental
results. We first solve the reformulated MIQCP for each data set (obtained under a set of specific
conditions) independently, and then consider all the experimental conditions simultaneously.

We start by allowing any number of objectives in the MIQCP, and then constrain the maximum
number of criteria to 4, 3, 2 and 1, respectively, imposing an upper bound on the number of binary
variables that can take a value of one (recall that these binary variables denote whether one objective
is meaningful and therefore optimized in the inner problems of the model). To avoid the calculation
of equivalent solutions, we enforce that the summation of all of the weights must equal one. Hence, a
weight close to one implies that the associated velocity/flux plays a role in the optimization (i.e., the
microorganism attempts to optimize it), while a low weight value implies the opposite.

Figures 4 and 5 (and Table S1 in additional material) summarize the results. Figure 4 shows the
Euclidean distance (ED) between the experimental fluxes and those predicted by the model for each
experiment. This distance quantifies the extent to which predicted fluxes match their experimental
values (lower distances imply more accurate predictions). As observed, the ED decreases as we increase
the maximum number of allowable objectives (Figure 4). Note, however, that in almost all of the cases
the addition of more objectives leads to marginal reductions in ED, which suggests the existence of a
small number of meaningful biological objectives.

To further investigate the importance of biomass maximization as a meaningful biological objective,
we repeated the calculations but this time fixing a zero weight for biomass growth rate. Figure 4 and Table
S2 (in additional materials) show the results obtained following the above commented procedure. The
comparison between the initial calculations and those performed fixing the weight for biomass growth to
zero shows that the ED between the best model solution and the experimental data increases drastically
for all of the experiments when biomass growth rate maximization is omitted. Hence, our results confirm
the importance of biomass growth rate maximization as a meaningful biological objective.

Figure 5 displays the weights calculated by our method for each objective function for the individual
experiments. The figure shows only those velocities with weights above 0.01 (the number of bars does
not always match with the number of objectives considered, because objectives with small weights are
not shown; the complete set of values are nevertheless given in supplementary Table S1). As observed,
in all of the experiments the MIQCP calculates a large weight for biomass growth (velocity 102). This is
in agreement with previous findings [3], in which biomass maximization was found to be a fundamental
biological objective driving the evolution of the cells machinery.

We next studied the robustness of the weights identified by the MIQCP for the case of biomass. For
this, we solved again the MIQCP by fixing the minimum ED obtained in every run of the model and
maximizing and minimizing the value of the weight attached to biomass growth rate. These calculations
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provide the minimum and maximum weight that should be attached to biomass growth rate so as to
produce estimated fluxes whose ED (i.e., error) with respect to experimental observations is bellow the
ED threshold defined beforehand. This is a necessary calculation because the bi-level model may have
alternative solutions (i.e., solutions showing different weight values), that produce the same ED value.
Hence, by performing this step, we establish the feasible limits of the weight attached to biomass growth
rate for a given ED value.

The results of this analysis are summarized in Figure 6 (see also supplementary Table S3). The
minimum and maximum weights for growth rate optimization are close to one in all of the cases, confirming
that this criterion is dominant under the tested experimental conditions. Although some variation is
observed in different experiments, the range of this variation is below 20 %, implying a substantial
robustness in the weights in all of the experimental conditions considered.

We finally investigate the existence of equivalent biological objective functions. To this end, we solve
our model iteratively, that is, we first identify a solution (i.e., combination of objectives) leading to
minimum error, and then remove it from the search space using integer cuts. An integer cut is a tailored
inequality that eliminates a given binary solution (see [14]). Hence, a combination of objectives cannot be
calculated twice during the calculations. The results obtained for experiment A, and 2, 3 and 4 objectives
are shown in Table 1 and Table S4 (we show only the first 6 solutions identified in the calculations). As
observed, there are several combinations of 2, 3 and 4 objectives leading to similar ED values, suggesting
that equivalent sets of biological objective functions may exist.

Prediction of meaningful objectives considering all of the experiments simul-
taneously

We next repeat the calculations considering all the experimental conditions simultaneously, that is, forcing
the model to select the same objectives for all of the experiments under study. The results obtained,
which are similar to the ones produced for each single experiment separately, are displayed in Figures 7
and 8, and Table S5 (see additional materials).

Figure 7 shows the Euclidean distance (ED) between experimental and in silico fluxes considering
all of the experiments simultaneously. Recall that lower ED values imply more accurate predictions. As
seen, the ED decreases as we increase the maximum number of allowable objectives. The ED values are
larger than those reported in Figure 4, in which we adjusted each individual experiment separately. This
was expected, since we are attempting to adjust more experimental points in each single run.

Figure 8 shows the weights calculated for each velocity for different numbers of allowed objectives.
Note that in this case the model must choose the same set of objectives for all of the experiments,
as opposed to what happens in Figure 5, in which the model can choose different objectives for each
experimental condition (although in practice some of these objectives appear several times under different
experimental conditions). Again, biomass growth (102) shows the largest weight.

Theoretical connections with the concept of Pareto optimality

Optimality goals are tailored for specific conditions and different, eventually competing, objectives cannot
be optimized simultaneously without compromising each other. As a result, cells face a trade-off that
is described by a Pareto front in which each Pareto optimal point achieves a unique combination of
objectives [13].

To investigate the relationship between our method and the concept of Pareto front we built the
Pareto plot for experiment A, considering velocities 102 (biomass growth) and 13 (Phosphoenolpyru-
vatesynthase), which yield the minimum ED (i.e., better fit with experimental data) for the case of 2
objectives.

Figure 9 shows the Pareto set v102 vs. v13 calculated in silico. In the same figure, we have depicted
also three squares associated with different ED values. These squares contain the set of feasible solutions
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of the FBA model (projected onto the space of the aforementioned two objectives) whose ED value
(distance with respect the experimental data) is bellow a given threshold. To obtain these squares, we
fix the ED in the model and then maximize and minimize each single objective separately. As seen, the
Pareto front intersects the squares corresponding to ED = 300,000 and ED = 150,000, but not the one
associated with ED= 100,000 (see Table S6, additional materials). This means that we cannot generate
in silico solutions (by solving the model for these two objectives) with an ED value (error with respect
to experimental data) bellow 100,000. Note that this is consistent with what we observed in Figure
2 , in which the error for the best combination of two objectives is above 100,000. Hence, these two
objectives are more successful in explaining the experimental observations than any other combination of
two criteria. Note, however, that the extent to which they may be regarded as ”biologically meaningful”
will depend on the maximum error (i.e., Euclidean distance) we are willing to assume in the calculations.

We now construct the Pareto set for velocities 69 and 3, and the feasible squares corresponding to
ED values equal to 150,000 and 400,000 (Figure 10 and Table S6 in additional materials). As opposed to
the previous case, the Pareto set does not intersect the feasible square with a ED=150,000, but it does
intersect the one defined for an ED equal to 400,000. Hence, it is clear that depending on the velocities
considered as objectives and the maximum allowable ED values, the ”experimental” square may or may
not intersect the Pareto set. If the square intersects the Pareto set, then the predictions made in silico fit
the experimental observations within the error considered in the calculations. Hence, for this particular
example, it turns out that the optimization of objectives v102 and v13 produces feasible solutions that
are closer to experimental data than those obtained by optimizing velocities v69 and v3. In practice, the
model automatically selects those velocities for which the ED is minimum, without the need of neither
calculating nor plotting the corresponding Pareto sets explicitly.

Conclusions

We have presented a novel framework that integrates network stoichiometry and experimental flux data
to determine the most likely set of objective functions for a given biological system. We illustrate the
utility of our method on a model of E. coli central metabolism, for which we identify the coefficients
of importance (i.e., extent to which each objective can explain the experimental observations) under
a variety of experimental conditions. The problem of identifying meaningful biological objectives is
mathematically posed as a bi-level optimization problem. We solve this model by reformulating it into
a single-level mixed-integer quadratically constrained program using the KarushKuhnTucker conditions.
This reformulated problem can then be solved by standard optimization algorithms.

We found that biomass growth rate maximization is the objective that better explains the experimental
observations (i.e., the one with the largest coefficient of importance). In addition, the error of the
approximation decrease as we include more biological objectives in the analysis. Thus, the maximization
of cellular biomass appears to be an important descriptor, although not the unique one, in explaining
the observed fluxes. Numerical results show also that experimental observations can be well explained by
a reduced number of objectives (i.e., around 3), and that there are different combinations of objectives
leading to similar errors.

Hence, we hypothesize that microorganism evolution optimizes simultaneously a subset of biological
criteria so as to stay as close as possible to the so called Pareto optimal frontier of a ”universal” multi-
objective model [15]. This implies that there is no single universal objective function for microorganisms;
rather, there is a set of fitness functions that cells seek to optimize simultaneously. The relative importance
of each of these functions depends on the external conditions. Under different conditions, different criteria
may emerge as predominantly controlling the optimization at the expense of worsening the remaining
objectives. In addition, the cell might seek regions where at least one objective can be improved without
necessarily worsening any of the others. That is, if one objective can be improved with no additional
performance drop in any other criterion, then the microorganism will move towards this win-win situation.
In this context, our method can be used to test the validity of different hypotheses leading to a better
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characterization of the underlying driving forces of cellular metabolism.

Materials and Methods

Our approach is built under the assumption that metabolic networks are designed to optimize simulta-
neously several objectives that are unknown. Hence, the goal of the method is to find these objectives
considering a set of experimental fluxes against which we compare the solutions produced in silico using
a multi-objective algorithm (i.e., weighted-sum approach). Flux Balance Analysis are steady-stage stoi-
chiometric models of metabolic networks that are based on linear programming (LP). The stoichiometric
information used to construct FBA models defines a feasible search space from which we need to identify
the solution that optimizes a given objective function, typically biomass growth rate maximization. In a
recent work, Sauer and co-workers [9] suggested that there might be more than one meaningful biological
objective driving the metabolic machinery. This hypothesis can be mathematically translated into the
following multi-objective FBA model (MOFBA):

(MOFBA) min U{vj , .., vjup}
s.t.

M∑
j=1

Sijvj = 0 ∀i ∈ N

vj ≤ vj ≤ vj ∀j ∈ M

Where U is the multi-dimensional objective function being optimized, jup is the number of objective
functions (which in our calculations was assumed to be equal to the number of reactions), N is the set of
metabolites and M is the set of reactions. Note that |MO| = jup. The solution to this problem is given
by a set of Pareto optimal points with the property that it is impossible to improve them in one objective
without necessarily worsening at least one of the others. We use here the weighted sum method to obtain
the Pareto-optimal solutions. This method relies on optimizing a linear combination of jup objectives by
solving a set of single-objective problems of the following form (for different values of the weights wj):

(MOS) min
jup∑
j=1

vjwj

s.t.

M∑
j=1

Sijvj = 0 ∀i ∈ N

vj ≤ vj ≤ vj ∀j ∈ M

Figure 1 illustrates the main idea underlying our approach. First, we define a set of weights wj to
be attached to the different objectives. We then minimize (or maximize) the linear combination of such
objectives to obtain the global optimum of the problem according to this objective. This solution is
guaranteed to be Pareto optimal, that is, there is no other point improving it simultaneously in both
criteria. This global optimum satisfies all the constraints of the model (i.e., steady state operation and
bounds on velocities) while minimizing at the same time the linear combination of objectives. We next
calculate the ED between this global optimum and the experimental observations by measuring the
distance between the fluxes calculated in silico and those obtained experimentally. Finally, we repeat the
calculations until the ED cannot be improved any further. The final goal is to identify the set of weights
to be attached to the different objectives such that when this linear combination is optimized, the ED
takes its minimum value. Every putative biological objective that is given a nonzero weight, plays a role,
while those that are assigned a zero weight are not biologically meaningful. As will be shown, this whole
procedure can be performed in one single step by reformulating the bi-level model.
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Our approach is inspired on the ObjFind method proposed by Burgard and Maranas [3], which is
based on a bi-level optimization model composed of an outer problem and inner problem. The outer
problem finds the best values of the weights to be attached to a set of velocities regarded as plausible
biological objectives. The objective of this outer problem is to minimize the sum-squared error between
experimentally-measured (in vivo) fluxes and framework-computed (in silico) fluxes. That is, the outer
problem must find the best weight values, understanding by best values those that show the following
property: when we optimize a weighted sum of velocities using these weight values, the distance between
the fluxes calculated in silico and the experimental ones is minimal.

The inner problems, which are defined for every experimental condition, minimize the linear combi-
nation of objectives proposed by the outer problem subject to steady state and stoichiometric constraints
and considering also lower and upper bounds on the velocities. Hence, the inner problems are single-
objective problems whose solutions are Pareto optimal in the space of the underlying multi-objective
FBA model. The original bi-level problem has the following form:

(BIMO) min
wj ,xj

∑
j∈EX

(vj − vexpj )2

s.t.
min
vj

jup∑
j=1

(vjwj)

s.t.
M∑
j=1

Sijvj = 0 ∀i ∈ N

vj ≤ vj ≤ vj ∀j ∈ M


jup∑
j=1

wj = 1

0 ≤ wj ≤ wjxj ∀j ∈ M

Where Sij is the stoichiometric coefficient of metabolite i in reaction j, represents the flux vj of
reaction j, vexpj is the experimental flux, and wj is a weight associated with objective j, which can be a
reaction flux or a combination of fluxes vj . Set N refers to the set of metabolites, EX contains the set
of experimentally determined fluxes, and M is the set of reactions. Thus, the goal of the bi-level model
is to determine the linear combination of reaction fluxes weighted by that explain in a better manner the
experimental fluxes.

In order to make this bi-level optimization problem computationally tractable, we reformulate it as a
single-level optimization problem via the KarushKuhnTucker (KKT) conditions (see [12]). The idea is to
substitute the inner problems by their KKT conditions and solve the outer problem subject to the KKT
conditions of the inner models. The bi-level optimization problem (MOO) is therefore reformulated as a
MIQCP. Note that by replacing the inner problems by the KKT conditions, we obtain a convex MINLP
model that can be solved to global optimality using standard MINLP solvers. This is a major advantage
with respect to the approach used by Burgard and Maranas [3] to reformulate the bi-level problem, which
led to a nonconvex model with multiple potential local minima. The main drawback of the latter method
is that standard optimization algorithms may get trapped in a local optimum during the search, thereby
leading to less meaningful conclusions. Another advantage of our method is that it can handle several
objectives simultaneously, as oppose to the approach by Burgard and Maranas [3] that considers only
one single objective function. Our tool can in turn consider at the same time several experimental data
sets obtained under various conditions.

In order to control the number of objectives in the outer problem, we add a binary variable that takes
the value of one if the objective is selected and zero otherwise. The reformulated problem takes finally
the following form:
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(BIMO) min
wj ,xj

∑
j∈EX

(vj − vexpj )2

s.t.

wj +
∑
i=1

Sijµi + λlo
j − λup

j = 0 ∀j ∈ M

M∑
j=1

Sijvj = 0 ∀i ∈ N

vj − vj + slackloj = 0 ∀j ∈ M

vj − vj + slackupj = 0 ∀j ∈ M

slackloj ≤ (vj − vj)(1− yj) ∀j ∈ M

slackupj ≤ (vj − vj)(1− yj) ∀j ∈ M

λlo
j ≤ yjλlo

j ∀j ∈ M

λup
j ≤ yjλ

up
j ∀j ∈ M

µi, λ
lo
j , λ

up
j , slackloj , slackupj ≤ 0 ∀j ∈ M


jup∑
j=1

wj = 1

0 ≤ wj ≤ wjxj ∀j ∈ M

Where µi and λj are the Lagrangean multipliers associated with the equality and inequality con-
straints, respectively. slackj is a slack variable that is zero if the inequality constraint is active and
positive otherwise. Y is a binary variable that is one if the inequality is active and it is zero otherwise.
Hence, the first equation inside the parenthesis (obtained after reformulating the inner problems) models
the stationary KKT conditions of the inner problems, the second enforces the steady-state of the network,
while the remaining ones are used in order to determine the values of the Lagrangian multipliers of the
inequality constraints. Note that we need to define one binary variable for each inequality constraint in
order to model the complementary slackness condition (i.e., if the inequality is inactive, its multiplier
is zero). Finally, the two last equations constrain the number of objectives through the addition of the
binary variable xj , which is one if the objective is included and zero otherwise.
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Figure 1. Scheme of the optimization steps carried out by our method. Our approach performs these
steps in a simultaneous fashion by reformulating the bi-level problem into a single algebraic
optimization model.
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Figure 2. Concept of Pareto optimality. Figures 2a and 2b show the Pareto curve Obj1 vs Obj2, for
different ED values, which leads to squares of different sizes. Note that the squares define the space of
points projected onto the space of objectives whose distance with respect to the experimental data is
bellow a given error. Figures 2c and 2d are analogous to 2a and 2b, but consider other objectives. As
observed, depending on the objectives considered, the experimental points may fall within or outside
the corresponding square for a given ED value.
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Figure 3. Pareto sets for different combinations of objectives and associated error
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Figure 4. Results for four experiments with and without biomass growth. The ED decreases as we
increase the number of objectives. The inclusion of biomass growth as a potential objective function
leads to better ED values.
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Figure 5. Weights calculated for all of the velocities with the MINLP for different limits on the total
number of objectives considered in the analysis. In all of the cases the weight attached to biomass
growth rate is above 0.8, which confirms its importance as a meaningful biological objective driving the
cell’s machinery. Velocity 70 is Acetaldehyde dehydrogenaseII R1, 71 is Acetaldehyde dehydrogenase
R2, 72 is Ethanol dehydrogenase, 73 is Alcohol dehydrogenase classIII, 102 is biomass production (see
additional materials).
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Figure 6. Results for the case of maximizing and minimizing the value of the weight attached to
biomass growth rate for different limits on the number of objectives. The interval gets wider as we
increase the number of objectives. The values of the biomass growth rate weight are quite large,
confirming its importance as a meaningful objective function.
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Figure 7. ED values for all the experiments simultaneously.
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Figure 8. Results for all the experiments simultaneously. In all of the cases the weight attached to
biomass growth rate is above 0.8, which confirms its importance as a meaningful biological objective
driving the cell’s machinery. Velocity 56 is NADH dehydrogenaseI, 69 is Acetaldehyde dehydrogenaseI
R1, 70 is Acetaldehyde dehydrogenaseII R1, 73 is Alcohol dehydrogenase classIII , 102 is biomass
production. For simplicity, velocities with weights lower than 0.01 are not shown.
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Figure 9. Results obtained from the bi-criteria problems biomass growth vs. velocity 13 and feasible
squares for a given ED
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Figure 10. Results obtained from the bi-criteria problems velocity 3 vs. velocity 69 and areas
bordered by extreme solutions
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Tables

Table 1. Results for integer cuts method for first experiments

2 obj 3 obj 4 obj
ED Velocities ED Velocities ED Velocities
152045.2 102, 13 144073.8 102, 56, 73 141425.4 102, 73, 13, 4
157980.2 102, 69 144073.8 102, 56, 70 142558.6 102, 3, 13, 73
157980.2 102, 73 144073.8 102, 56, 69 142558.6 102, 3, 13, 72
157980.2 102, 72 144073.8 102, 56, 71 144073.8 102, 101, 73, 56
157980.2 102, 70 144073.8 102, 56, 72 144073.8 102, 71, 56
157980.2 102, 71 148354 102, 13, 73 144073.8 102, 71, 56, 57
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