
Graph-based semi-supervised learning methods and

quick detection of central nodes

Marina Sokol

To cite this version:

Marina Sokol. Graph-based semi-supervised learning methods and quick detection of central
nodes. Other [cs.OH]. Université Nice Sophia Antipolis, 2014. English. ¡ NNT : 2014NICE4018
¿.

HAL Id: tel-00998394

https://tel.archives-ouvertes.fr/tel-00998394

Submitted on 2 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-00998394

Université de Nice - Sophia Antipolis – UFR Sciences
École Doctorale STIC

THÈSE

Présentée pour obtenir le titre de :

Docteur en Sciences de l’Université de Nice - Sophia Antipolis

Spécialité : INFORMATIQUE

par

Marina SOKOL

Équipe d’accueil : Maestro – INRIA Sophia Antipolis

GRAPH-BASED SEMI-SUPERVISED LEARNING METHODS

AND

QUICK DETECTION OF CENTRAL NODES

Thèse dirigée par Paulo GONÇALVES et Philippe NAIN

Soutenance à l’Inria le 29 Avril 2014, à 14:00 devant le jury composé de :

Président : Walid DABBOUS Inria Sophia Antipolis

Directeurs : Paulo GONÇALVES Inria Rhône-Alpes and ENS Lyon

Philippe NAIN Inria Sophia Antipolis

Rapporteurs : Ravi KUMAR Google Research

Stefano LEONARDI Sapienza University of Rome

Hichem SAHBI LTCI, CNRS, TELECOM ParisTech

THÈSE

MÉTHODES D’APPRENTISSAGE SEMI-SUPERVISÉ

BASÉ SUR LES GRAPHES ET

DÉTECTION RAPIDE DES NOEUDS CENTRAUX

MARINA SOKOL

Avril 2014

GRAPH-BASED SEMI-SUPERVISED LEARNING METHODS

AND

QUICK DETECTION OF CENTRAL NODES
by

Marina Sokol
Thesis advisors: Paulo Gonçalves and Philippe Nain

Maestro team, Inria Sophia Antipolis, France

ABSTRACT

Semi-supervised learning methods constitute a category of machine learning methods which use la-
belled points together with unlabelled data to tune the classifier. The main idea of the semi-supervised
methods is based on an assumption that the classification function should change smoothly over a sim-
ilarity graph, which represents relations among data points. This idea can be expressed using kernels
on graphs such as graph Laplacian. Different semi-supervised learning methods have different kernels
which reflect how the underlying similarity graph influences the classification results. In the first part of
the thesis, we propose a generalized optimization approach for the graph-based semi-supervised learn-
ing which implies as particular cases the Standard Laplacian, Normalized Laplacian and PageRank based
methods and extends to new ones, through the introduction of a free parameter. Using random walk
theory, we provide insights about the differences among the graph-based semi-supervised learning meth-
ods and give recommendations for the choice of the kernel parameters and labelled points. In particular,
it appears that it is preferable to choose a kernel based on the properties of the labelled points. We have
also characterized the limiting behaviour of the methods with respect to the regularization parameter.
We show that the PageRank based method is the only method among the methods of the considered
family which shows robustness when the classes are unbalanced. We have illustrated all theoretical
results with the help of synthetic and real data. As one example of real data we consider classification
of content and users in P2P systems. This application demonstrates that the proposed family of meth-
ods scales very well with the volume of data. Then, the second part of the thesis is devoted to quick
detection of network central nodes. The algorithms developed in the second part of the thesis can be
applied for the selection of quality labelled data but also have other applications in information retrieval.
Specifically, we propose random walk based algorithms for quick detection of large degree nodes and
nodes with large values of Personalized PageRank. We prove that on configuration type networks our
algorithm finds top degree nodes with high probability in sublinear time. We develop stopping criteria
which require very little knowledge of the network topology. Finally, in the end of the thesis we suggest
new centrality measure, which generalizes both the current flow betweenness centrality and PageRank.
This new measure is particularly well suited for detection of network vulnerability. For working with
large volumes of real data, like P2P data, we needed to write a java library, which is described in a
special section and can be useful for other researchers.

ACKNOWLEDGMENTS

I would like to thank my thesis advisors Paulo Gonçalves and Philippe Nain for their gen-

erous guidance and many helpful advices. I thank very much Konstantin Avrachenkov for

inspiring collaboration and emotional support. I also would like to thank Alcatel-Lucent for

providing scholarship and Ludovic Noirie from Alcatel-Lucent for motivating discussions. I am

very grateful to the thesis reviewers: Ravi Kumar, Stefano Leonardi and Hichem Sahbi, whose

comments and recommendations help to improve the presentation of the work. Also, I would

like to thank a lot Maestro team members and in particular Nicaise Choungmo Fofack, Laurie

Vermeersch and Valeria Neglia. Last but not least, I would like to thank from the bottom of my

heart my dad, Mikhail Sokol.

Marina Sokol

Marina.Sokol@inria.fr

Inria Sophia Antipolis, France

v

vi

DEDICATION

To my mother Tatiana Sokol.

CONTENTS

Abstract iii

Acknowledgements v

Figures xiv

Tables xvi

1 Introduction and summary of main results 3

I Graph-based Semi-supervised Learning Methods 9

2 Optimization framework for semi-supervised learning methods 11

2.1 Introduction and summary of the results . 11

2.2 Generalized Optimization Framework . 13

2.3 Experiments . 19

2.3.1 Les Miserables example . 19

2.3.2 Wikipedia-math example . 19

2.4 Conclusions . 23

3 Random walk approach for semi-supervised learning methods 27

3.1 Introduction and summary of the results . 27

3.2 General theoretical considerations . 29

3.3 Evaluation . 32

3.4 Conclusions and general recommendations . 37

4 Semi-supervised methods for P2P content and user classification 39

4.1 Introduction and summary of the results . 39

4.2 Datasets and method implementation description 41

4.3 Results of classification of content and users . 44

ix

x CONTENTS

4.4 Classification of Video plus Music subgraph . 46

4.5 Classification of untagged content . 47

4.6 The effect of σ and α . 49

4.7 Conclusions . 53

II Quick Detection of Central Nodes in Complex Networks 55

5 Quick detection of nodes with large degrees 57

5.1 Introduction and summary of the results . 57

5.2 Random walk with uniform jumps . 59

5.3 Estimating the largest degrees in the configuration network model 66

5.4 Stopping criteria . 69

5.5 Relaxation of top k lists . 72

5.6 Conclusions . 74

6 Quick detection of nodes with large values of PageRank 77

6.1 Introduction . 77

6.2 Monte Carlo methods . 79

6.3 Variance based performance comparison and CLT approximations 83

6.4 Convergence based on order . 86

6.5 Solution relaxation . 88

6.6 Conclusions . 91

7 Alpha current flow centrality 93

7.1 Introduction and summary of the results . 93

7.2 Alpha current flow betweenness . 95

7.3 Computation of α-CF betweenness . 98

7.4 Truncated α-CF betweenness . 99

7.5 Datasets . 101

7.6 Numerical results for α-CF betweenness . 102

7.7 Centrality measures and network vulnerability . 105

7.8 Conclusions . 107

8 Appendix: Software description 109

8.1 Summary . 109

8.2 Description . 109

8.2.1 The formats . 109

8.2.2 The namers . 110

CONTENTS xi

8.2.3 The algorithms . 110

8.2.4 The expert/seeds files . 111

8.2.5 The estimations . 112

8.2.6 How to write your own graph implementation 112

9 Conclusions and Future Research 115

10 Résumé en Français 119

Bibliography 120

xii CONTENTS

FIGURES

1.1 A link between two contents. 4

2.1 Fitting and smoothness terms. 17

2.2 Les Miserables example. 20

2.3 Wikipedia-math example: Modularity and Precision of the classification. 21

2.4 Wikipedia-math example: Modularity of the classification for different number

of labels. 24

2.5 Wikipedia-math example: Precision of the classification for different number of

labels. 25

3.1 Clustered Preferential Attachment Model: Precision of the classification. 35

3.2 Characteristic network model. 36

3.3 Handwritten digits: Precision of the classification. 36

4.1 Content P2P Graph: Precision of the classification. 51

4.2 User P2P Graph: Precision of the classification. 52

5.1 Histograms of hitting times in the PA network. 60

5.2 Average number of correctly detected elements in top-10 for PA. 72

5.3 Average number of correctly detected elements in top-10 for UK. 73

6.1 The number of correctly detected elements by MC End Point for seed nodes with

the same name. 81

6.2 The number of correctly detected elements for seed node Michael Jackson. 82

6.3 The number of correctly detected elements by MC End Point for two Web pages. . 82

7.1 The number of pairs s, t with x
(s,t)

(v,w)
> x over all pairs (s, t) (solid line) and only

pairs with v,w 6= s (dashed line). 99

7.2 Correlations between α-CF betweenness and truncated α-CF betweenness with

CF-betweenness as a function of α. 102

xiii

xiv FIGURES

7.3 Distribution of α-CF betweenness scores in the Enron graph, truncated (dashed

line) and not truncated (solid line). On the x-axis are the values of α-CF be-

tweenness, on the y-axis the number of edges/nodes with the score larger than

x. 103

7.4 Inverse average distance as a function of the fraction of removed top-nodes ac-

cording to different betweenness centrality measures. 105

7.5 The size of the largest connected component as a function of the fraction of

removed top-nodes according to different betweenness centrality measures. . . . 106

TABLES

3.1 Comparison between different methods in terms of classification errors 34

4.1 The content graphs after preprocessing. 41

4.2 The quantity of language base line expert classifications. 42

4.3 The quantity of topic base line expert classifications. 42

4.4 Accuracy of the classifications for the g(2, 10) dataset by languages. 45

4.5 Accuracy of the classifications for the g(2, 10) dataset by topics. 45

4.6 Accuracy of the classifications for the user dataset by languages. 45

4.7 Accuracy of the classifications for the user dataset by topics. 45

4.8 Accuracy and Cross-Validation (CV) matrix for music&audio vs video&movies

classification, α = 0.5. 46

4.9 Accuracy for “Other Video” subgraph classification, α = 0.5. 48

4.10 Cross-Validation matrix for “Other Video” subgraph classification, TopPR 10 la-

beled points, α = 0.5. 48

4.11 Cross-Validation matrix for “Other Video” subgraph classification, TopPR 15 la-

belled points, α = 0.5. 48

4.12 Statistics for accuracy for “Other Video” subgraph classification, α = 0.5, random

labeled points, 100 experiments. 48

4.13 Cross-Validation matrix for the user graph classification by languages, α = 0.1,

precision 83.71%. 50

4.14 Cross-Validation matrix for the user graph classification by languages, α = 0.95,

precision 68.92%. 50

4.15 Cross-Validation matrix for the user graph classification by languages, α = 0.999,

Precision 86.65%. 50

6.1 MC End Point for the Jim Jackson Web page: means and Standard Deviations. . . 85

7.1 Datasets characteristics. 101

7.2 Kendall tau for centrality measures in Dolphin social network. 103

xv

xvi TABLES

7.3 Kendall tau for centrality measures in the social graph VKontakte AMCP. 104

7.4 Kendall tau for centrality measures in the Watts-Strogatz graph (n=1000, k=12,

p=0.150). 104

TABLES 1

Publications of Marina Sokol:

Articles in journals:

� K. Avrachenkov, N. Litvak, M. Sokol and D. Towsley, “Quick detection of nodes with large

degrees”, Accepted to Internet Mathematics journal. To appear in 2014.

Articles in refereed conferences and workshops:

� K. Avrachenkov, P. Gonçalves and M. Sokol, “On the choice of kernel and labelled data

in semi-supervised learning methods”, In the 10th International Workshop on Algorithms

and Models for the Web Graph, WAW 2013.

� K. Avrachenkov, N. Litvak, V. Medyanikov and M. Sokol, “Alpha current flow betweenness

centrality”, In the 10th International Workshop on Algorithms and Models for the Web

Graph, WAW 2013.

� K. Avrachenkov, P. Gonçalves, A. Legout and M. Sokol, “Classification of content and users

in BitTorrent by semi-supervised learning methods”, In the IEEE IWCMC International

Workshop on Traffic Analysis and Characterization, TRAC 2012 (Best Paper Award).

� K. Avrachenkov, N. Litvak, M. Sokol and D. Towsley, “Quick detection of nodes with large

degrees”, In the 9th International Workshop on Algorithms and Models for the Web Graph,

WAW 2012.

� K. Avrachenkov, P. Gonçalves, A. Mishenin and M. Sokol, “Generalized optimization frame-

work for graph-based semi-supervised learning”, In the SIAM conference on Data Mining,

SDM 2012.

� K. Avrachenkov, P. Gonçalves, A. Legout and M. Sokol, “Graph based classification of

content and users in BitTorrent”, In the NIPS Big Learning Workshop, 2011.

� K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova and M. Sokol, “Quick detection

for top-k Personalized PageRank lists”, In the 8th International Workshop on Algorithms

and Models for the Web Graph, WAW 2011.

2 TABLES

1

INTRODUCTION AND SUMMARY OF MAIN

RESULTS

A recent patent [78] originated from Facebook proposes a method for detection of unau-

thorized content published by users of a social networking system. The method is in particular

based on the analysis of social ties. One can state the problem in a broader context. How to use

social/user ties to classify content according to some qualities. Examples of content qualities

are copyright infringement, content language, media type (e.g., audio, photo, video), content

type (e.g., video movie, video music clip, video lecture) and sub-types video drama movie,

video comic movie, video teleseries etc. Such classification can help not only to fight the distri-

bution of content with copyright violation but also to help the design of next generation search

engines and content aware networking.

To be more specific, let us start with a high level description of the content classification in

Peer-to-Peer (P2P) systems developed in the present thesis. Suppose we would like to classify

the content according to languages. Of course, the obvious thing that comes to our mind is to

use the title of the content. However, very often the language of the title is misleading. A title

can be spelled the same way in several European languages. For instance the movie “Inception”

has the same title in English and in French. Even if a movie is not in English language, it can

be tagged with an English translation of its original title. This can be explained by the fact

that some languages, like the Russian language, have non-latin alphabet and a user who tags

the content prefers to use the latin keyboard and an English language translation of the title.

Many Asian languages use logograms and it is much easier for the user to tag the content in

English translation or transliteration. As in the patent [78], we intend to use ties between users

and also between users and content to classify content and users. For instance, we establish a

3

4 Introduction and summary of main results

semantic link between two contents if these two contents are downloaded by at least one same

user (see Figure 1.1). A rationale behind such link creation process is that a user typically has

preference for a certain type of content and watches movies / read books mostly in his/her

native language. Thus, this way we can create a similarity or semantic graph for P2P content

and its respective adjacency matrix.

Figure 1.1: A link between two contents.

To classify P2P content and users, we propose to use the framework of the graph-based

semi-supervised learning. There are several excellent books and surveys devoted to the semi-

supervised learning, see e.g. [83, 85, 33, 4]. Let us recall the main principal ideas of the

semi-supervised and, in particular, graph-based semi-supervised learning technique. Typically,

the labelled data is rare and expensive to obtain. This is because one needs to organize the

work of several human experts and to use special devices and sensors. On contrary, nowadays

a huge amount of unlabelled data is available to us (effect of “Big Data”). The main idea of the

semi-supervised learning approach is to make a synergy between the labelled and unlabelled

data. In the context of the graph-based semi-supervised learning this is possible if a so-called

smoothness assumption or label consistency assumption takes place. This assumption says that

if two nodes of the similarity graph are connected by many weighted shortest paths, the data

points represented by those two nodes should very likely belong to the same class.

5

Denote by W the weighted adjacency (similarity) matrix representing relations among the

data points. Let N be the total number of data points, including the labelled points. In some

applications the similarity graph is naturally provided by the application in question (e.g., P2P

graphs, Hyper-text graphs, graph of social connections). In other applications, the data points

are represented by vectors of attributes (Xi, i = 1, ...,N) and the weights of the similarity matrix

can be calculated for instance using Radial Basis Function (RBF)

wij = exp(−||Xi − Xj||
2/γ),

or the adjacency matrix can be constructed using the k-Nearest Neighbors (kNN) method (see

e.g., [33]). Here we assume that W is symmetric and the underlying graph is connected.

Denote by D a diagonal matrix with its (i, i)-element equal to the sum of the i-th row of matrix

W: di =
∑N

j=1 wij.

Suppose we need to classify data points into K classes and assume P data points are labelled.

That is, we know the class to which each labelled point belongs. Denote by Vk, the set of

labelled points in class k = 1, ..., K. Thus, |V1|+ ... + |VK| = P.

Define an N× K matrix Y as

Yik =

1, if i ∈ Vk, i.e., point i is labelled as a class k point,

0, otherwise.

We refer to each column Y∗k of matrix Y as a labeling function. Also define an N × K matrix

F and call its columns F∗k classification functions. The general idea of the graph-based semi-

supervised learning is to find classification functions so that on the one hand they will be close to

the corresponding labeling function and on the other hand they will change smoothly over the

graph associated with the similarity matrix. This general idea can be expressed with the help of

optimization formulation. In particular, there are two widely used optimization formulations.

The first formulation, the Standard Laplacian based formulation [82], is as follows:

min
F

{

N∑

i=1

N∑

j=1

wij‖Fi∗ − Fj∗‖2 + µ

N∑

i=1

di‖Fi∗ − Yi∗‖2}, (1.1)

and the second, the Normalized Laplacian based formulation [81], is as follows:

min
F

{

N∑

i=1

N∑

j=1

wij‖
Fi∗√
di

−
Fj∗
√

dj

‖2 + µ

N∑

i=1

‖Fi∗ − Yi∗‖2}, (1.2)

where µ is a regularization parameter. In fact, the parameter µ represents a trade-off between

the closeness of the classification function to the labeling function and its smoothness over the

graph.

6 Introduction and summary of main results

In Chapter 2 we construct a generalized optimization framework, which has as particular

cases the two above mentioned formulations. Namely, we suggest the following optimization

criterion

min
F

{

N∑

i=1

N∑

j=1

wij‖di
σ−1Fi∗ − dj

σ−1Fj∗‖2 + µ

N∑

i=1

di
2σ−1‖Fi∗ − Yi∗‖2}. (1.3)

The introduction of a new parameter σ gives more flexibility in tuning the criterion. In addition

to the Standard Laplacian formulation (σ = 1) and the Normalized Laplacian formulation

(σ = 1/2), we obtain the third very interesting case when σ = 0. We show in Chapter 2 that

this particular case corresponds to PageRank based clustering [10].

In Chapter 2 we use power series to analyse the important limiting case when µ → 0.

The asymptotic analysis shows that only the PageRank based method (σ = 0) produces stable

classification in the case of unbalanced data. Then, we provide initial intuition about the effects

from the choice of various values of parameter σ. We illustrate theoretical considerations with

several numerical examples.

In Chapter 3 we continue to investigate the effect of the choice of σ and labelled data on

the results of classification. We make extensive use of the theory of random walks on graphs. In

particular, in our context it is helpful to consider a random walk with absorption {St ∈ {1, ...,N},

t = 0, 1, ...}. At each step with probability α = 2/(2 + µ) the random walk chooses next node

among its neighbours uniformly and with probability 1 − α goes into the absorbing state. The

probabilities of visiting nodes before absorption given the random walk starts at node j, S0 = j,

are provided by the distribution

ppr(j) = (1− α)eTj

(

I− αD−1W
)−1

, (1.4)

which is the Personalized PageRank vector with respect to seed node j [45] (the Personalized

PageRank will actually be one of the recurring topics of the thesis). Here ej denotes the j-th

element of the standard basis. The central result of Chapter 3 is the following theorem.

Theorem 1.1 Data point i is classified by the generalized semi-supervised learning method (1.3)

into class k, if ∑

p∈Vk

dσ
pqpi >

∑

s∈Vk ′

dσ
sqsi, ∀k ′ 6= k, (1.5)

where qpi is the probability of reaching state i by the random walk before absorption if S0 = p.

Theorem 1.1 has several important implications. First, it is very interesting to observe that,

using (1.5), one can decouple the effects from the choice of α (or µ) and σ. A change in the

value of α (or µ) only influences the factor qpi and a change in the value of σ only affects

the factor dσ
p. Second, if σ = 0 and |Vk| = const(k), one can expect that smaller classes will

attract a larger number of “border points” than larger classes. This effect, if needed, can be

7

compensated by increasing σ away from zero. And third, if labelled points have the same

degree (dp = d, p ∈ Vk, k = 1, ..., K), all considered semi-supervised learning methods provide

the same classification. These and other implications are discussed in detail in Chapter 3.

Also, all theoretical conclusions are confirmed by experiments with various synthetic and real

datasets.

The theoretical results of Chapter 3 help us to formulate main recommendations for tuning

of the semi-supervised learning method. We recommend, if possible, to choose labelled points

with large degrees. Then, adopt the Standard Laplacian method with α in the upper-middle

range of the interval (0, 1). If finding large degree points is not feasible or recall is more

important than precision for small classes, choose the PageRank based method. When using

the PageRank based method parameter α should be chosen rather close to one but at the same

time not too close to avoid numerical instability.

As mentioned in the very beginning of the Introduction, one of our motivating applications

is the classification of content and users in P2P systems. Thus, we dedicate a whole Chapter 4

to this particular application and use this application to demonstrate theoretical conclusions

obtained in the two preceding chapters. The graph-based semi-supervised learning appears to

be a very well suited technique for the classification of content and users in P2P systems. Just

to provide flavor of the results, in the dataset of 1 126 670 users, using only 50 labelled points

for each language, we are able to classify the users according to their preferred language with

more than 95% accuracy. One of the technical advantages of the graph-based semi-supervised

learning methods is their ability to scale very well with the data volume.

One of the main conclusions from Chapters 2-4 is that a good choice of labelled data can

significantly increase the quality of classification. We have noticed that data points with large

(weighted) degree or with large value of PageRank typically represent very well their respective

classes. Thus, in the second part of the thesis, in Chapters 5-7, we investigate the question how

to find quickly nodes with large centrality measures.

In particular, in Chapter 5 we propose a random walk based method for quick detection

of large degree nodes. Since once a random walk comes across a node, we know its degree,

the analysis of the algorithm is equivalent to the analysis of hitting events for a Markov chain.

We show that on configuration type random graphs our algorithm finds top degree nodes in

sublinear time. We design two stopping criteria which allow simple online implementation of

the algorithm without any a priori knowledge of the network topology. We also demonstrate

that our algorithm works well in practice. For instance, in the UK web graph (symmetrized

version) with 18 500 000 nodes, crawled in 2002, our algorithm finds the largest degree node

on average three orders of magnitude faster than the Heapsort type algorithm.

In Chapter 6 we suggest and analyse Monte Carlo type methods for quick detection of nodes

with large values of Standard and Personalized PageRanks. On one hand, this can be useful for

8 Introduction and summary of main results

quick selection of high quality labelled data points and on the other hand, we can apply the

method to discover quickly coarse classification or to find higher quality class representatives.

In [14] it is shown that Monte Carlo estimation for large PageRank values requires about the

same number of operations as one iteration of the power iteration method. In Chapter 6 we

show that the Monte Carlo algorithms require an incomparably smaller number of operations

when our goal is to detect a top-k list with k not large. In our test on the Wikipedia entity graph

with about 2 million nodes typically few thousands of operations are enough to detect the top-

10 list with just two or three erroneous elements. Hence, we obtain a relaxation of the top-10

list problem with just about 1-5% of operations required by one power iteration. We would like

to emphasize that the Monte Carlo approach allows easy online and parallel implementation.

As a by-product, we have also established a new matrix-form central limit theorem for Markov

chains.

Finally, in Chapter 7 we propose and analyse a new centrality measure — the alpha current

flow centrality. The alpha current flow centrality can be considered as a generalization unifying

betweenness centrality (see e.g., [28, 70]) and PageRank. Furthermore, our measure takes

into account not only shortest paths as the classical betweenness centrality does [28], but also

contribution from all paths, giving more weight to the contribution coming from shorter paths

[70]. As recently was pointed out in [63], the betweenness centrality type measure can be used

to improve the selection of the labelled data or even as classification function. Furthermore,

we demonstrate that the alpha current flow betweenness is a good measure to predict the

vulnerability of networks.

In Chapter 9 we conclude with main recommendations for the graph-based semi-supervised

learning and the detection of most central / important nodes in a network. We also discuss

possible future research directions.

In this introductory chapter we have cited only the main references on the studied topic. At

the beginning of each chapter we shall discuss in detail works related to the material of that

chapter.

Part I

Graph-based Semi-supervised Learning

Methods

9

2

OPTIMIZATION FRAMEWORK FOR

SEMI-SUPERVISED LEARNING METHODS

2.1 Introduction and summary of the results

Semi-supervised classification is a special form of classification. Traditional classifiers use

only labeled data to train. Semi-supervised learning methods use large amount of unlabeled

data, together with labeled data, to build better classifiers. Semi-supervised learning requires

less human effort and gives high accuracy. Graph-based semi-supervised methods use a graph

where the nodes are labeled and unlabeled instances in the dataset, and edges (may be weighted)

reflect the similarity of instances. These methods usually assume label smoothness over the

graph (see the excellent books on the graph-based semi-supervised learning [33, 85]). In this

work we often omit “graph-based” term as it is clear that we only consider graph-based semi-

supervised learning methods.

Up to the present, most literature on the graph-based semi-supervised learning studied the

following two methods: the Standard Laplacian based method (see e.g., [82]) and the Nor-

malized Laplacian based method (see e.g., [81]). Here we propose a generalized optimization

framework which implies the above two methods as particular cases. Moreover, our general-

ized optimization framework gives PageRank based method as another particular case. The

PageRank based methods have been proposed in [10] as a classification stage in a clustering

method for large hyper-text document collections. In [10] only a linear algebraic formulation

was proposed but not the optimization formulation. A great advantage of the PageRank based

method is that it has a quasi-linear complexity. We observe that if one takes the method of

11

12 Chapter 2: Optimization framework for semi-supervised learning methods

[7] for detecting local cuts and takes seeds in [7] as the labelled data and considers sweeps

as classification functions, then because the degrees of data points in different sweeps are the

same, the resulting method will be equivalent to the semi-supervised method proposed in [10].

In [34] another method based on PageRank has been proposed. However, the method of [34]

cannot be scaled to large datasets as it is based on the K-means method.

The generalized optimization framework allows us to provide intuitive interpretation of

the differences between particular cases. Using the terminology of random walks on graphs,

in Chapter 3 we discuss further differences among the semi-supervised learning methods. The

generalized optimization framework has only two free parameters to tune. By choosing the first

parameter, we vary the level of credit that we give to nodes with large degree. By choosing the

second parameter, the regularization parameter, we choose a trade-off between the closeness

of the classification function to the labeling function and the smoothness of the classification

function over the graph. We would like to note that the particular cases of our generalized

optimization framework (Standard Laplacian method and PageRank based method) are among

the best performing semi-supervised methods as reported in the very extensive comparative

study [40].

We study sensitivity of the methods with respect to the value of the regularization parameter.

We conclude that only the PageRank based method shows robustness with respect to the choice

of the value of the regularization parameter.

In this chapter we illustrate our theoretical results and obtain further insights from two

datasets. The first dataset is a graph of co-appearance of the characters in the novel Les Mis-

erables. The second data set is a collection of articles from Wikipedia for which we have

expert classification. We have compared the quality of classification of the graph-based semi-

supervised learning methods with the quality of classification based on Wikipedia categories. It

is remarkable to observe that with just few labeled points and only using the hyper-text links,

the graph-based semi-supervised methods perform nearly as good as Wikipedia categories in

terms of precision and even better in terms of recall. With the help of the two datasets we con-

firm that the PageRank based method is more robust than the other two methods with respect

to the value of the regularization parameter and with respect to the choice of labeled points.

This chapter is mainly based on the article:

K. Avrachenkov, P. Gonçalves, A. Mishenin and M. Sokol, “Generalized Optimization Frame-

works for Semi-supervised Learning”, In the SIAM conference on Data Mining, SDM 2012.

2.2 Generalized Optimization Framework 13

2.2 Generalized Optimization Framework

Suppose we need to classify N data points into K classes and assume P data points are

labelled. That is, we know the class to which each labelled point belongs. Denote by Vk, the set

of labelled points in class k = 1, ..., K. Thus, |V1| + ...+ |VK| = P.

The graph-based semi-supervised learning approach uses a weighted graph connecting data

points. The weight matrix, or similarity matrix, is denoted by W. Here we assume that W is

symmetric and the underlying graph is connected. Each element wi,j represents the degree of

similarity between data points i and j. Denote by D a diagonal matrix with its (i, i)-element

equal to the sum of the i-th row of matrix W: di =
∑N

j=1wi,j.

In some applications the similarity graph is naturally provided by the application in question

(e.g., P2P graphs, Hyper-text graphs, graph of social connections). In other applications, the

data points are represented by vectors of attributes (Xi, i = 1, ...,N) and the weights of the

similarity matrix can be calculated for instance using Radial Basis Function (RBF)

wij = exp(−||Xi − Xj||
2/γ),

or the adjacency matrix can be constructed using the k-Nearest Neighbors (kNN) method (see

e.g., [33]).

Define an N× K matrix Y as

Yik =

1, if i ∈ Vk, i.e., point i is labelled as a class k point,

0, otherwise.

We refer to each column Y∗k of matrix Y as a labeling function. Also define an N × K matrix

F and call its columns F∗k classification functions. The general idea of the graph-based semi-

supervised learning is to find classification functions so that on the one hand they will be close

to the corresponding labeling function and on the other hand they will change smoothly over

the graph associated with the similarity matrix. This general idea can be expressed with the help

of optimization formulation. In particular, there are two widely used optimization frameworks.

The first formulation, the Standard Laplacian based formulation [82], is as follows:

min
F

{

N∑

i=1

N∑

j=1

wij‖Fi∗ − Fj∗‖2 + µ

N∑

i=1

di‖Fi∗ − Yi∗‖2}, (2.1)

and the second, the Normalized Laplacian based formulation [81], is as follows:

min
F

{

N∑

i=1

N∑

j=1

wij‖
Fi∗√
di

−
Fj∗
√

dj

‖2 + µ

N∑

i=1

‖Fi∗ − Yi∗‖2}, (2.2)

where µ is a regularization parameter. In fact, the parameter µ represents a trade-off between

the closeness of the classification function to the labeling function and its smoothness.

14 Chapter 2: Optimization framework for semi-supervised learning methods

Once the classification functions are obtained, the points are classified according to the rule

Fik > Fik ′ ,∀k ′ 6= k ⇒ Point i is classified into class k = arg maxk ′ Fik ′ .

The ties can be broken in arbitrary fashion.

Here we propose a generalized optimization framework, which has as particular cases the

two above mentioned formulations. Namely, we suggest the following optimization formulation

min
F

{

N∑

i=1

N∑

j=1

wij‖di
σ−1Fi∗ − dj

σ−1Fj∗‖2 + µ

N∑

i=1

di
2σ−1‖Fi∗ − Yi∗‖2}. (2.3)

In addition to the Standard Laplacian formulation (σ = 1) and the Normalized Laplacian for-

mulation (σ = 1/2), we obtain the third very interesting case when σ = 0. We show below

that this particular case corresponds to PageRank based clustering [10], for which (2.3) can be

rewritten as:

min
F

N∑

i=1

N∑

j=1

wij‖
Fi∗

di
−

Fj∗

dj
‖2 + µ

N∑

i=1

1

di
‖Fi∗ − Yi∗‖2.

Since the objective function of the generalized optimization framework is a sum of a pos-

itive semi-definite quadratic form and a positive quadratic form, we can state the following

proposition.

Proposition 2.1 The objective of the generalized optimization framework for semi-supervised learn-

ing is a convex function.

One way to find F is to apply one of many efficient optimization methods for convex opti-

mization. Another way to find F is to find it as a solution of the first order optimality condition.

Fortunately, we can even find F in explicit form.

Proposition 2.2 The classification functions for the generalized semi-supervised learning are given

by

F∗k =
µ

2+ µ

(

I−
2

2+ µ
D−σWDσ−1

)−1

Y∗k, (2.4)

for k = 1, ..., K.

Proof: The objective function of the generalized semi-supervised learning framework can

be rewritten in the following matrix form

Q(F) = 2

K∑

k=1

FT∗kD
σ−1LDσ−1F∗k

+µ

K∑

k=1

(F∗k − Y∗k)
TD2σ−1(F∗k − Y∗k),

2.2 Generalized Optimization Framework 15

where L = D−W is the Standard Laplacian. The first order optimality condition DF∗kQ(F) = 0

gives

2FT∗k(D
σ−1LDσ−1 +Dσ−1LTDσ−1)

+2µ(F∗k − Y∗k)
TD2σ−1 = 0.

Multiplying the above expression from the right hand side by D−2σ+1, we obtain

2FT∗k(D
σ−1(L+ LT)D−σ) + 2µ(F∗k − Y∗k)

T = 0.

Then, substituting L = D −W and rearranging the terms yields

FT∗k(2I −Dσ−1(W +WT)D−σ + µI) − µYT
∗k = 0.

Since W is a symmetric matrix, we obtain

FT∗k(2I− 2Dσ−1WD−σ + µI) − µYT
∗k = 0.

Using the fact that 2I− 2Dσ−1WD−σ + µI is invertible matrix, we have

FT∗k = µYT
∗k(2I − 2Dσ−1WD−σ + µI)−1,

which proves the proposition.

As a corollary, we have explicit expressions for the classification functions for the three

mentioned above particular semi-supervised learning methods. Namely, from expression (2.4)

we derive

� if σ = 1, the Standard Laplacian method [82]:

F∗k =
µ

2+ µ
(I−

2

2+ µ
D−1W)−1Y∗k,

� if σ = 1/2, the Normalized Laplacian method [81]:

F∗k =
µ

2+ µ
(I−

2

2+ µ
D− 1

2WD− 1
2)−1Y∗k,

� if σ = 0, the PageRank based method [10]:

F∗k =
µ

2+ µ
(I −

2

2+ µ
WD−1)−1Y∗k.

Let us now explain why the case σ = 0 corresponds to the PageRank based clustering

method. Denote α = 2/(2+ µ) and write F∗k in a transposed form

FT∗k = (1− α)YT
∗k(I− αD−1W)−1.

16 Chapter 2: Optimization framework for semi-supervised learning methods

If the labeling functions are normalized, this is exactly an explicit expression for PageRank

[66, 54]. This expression was used in [10] but no optimization framework was provided.

Note that D−1W represents the transition probability matrix for the random walk on the

similarity graph. Then, the (i, j)-th element of the matrix (I − αD−1W)−1 gives the expected

number of visits to node j starting from node i until the random walk restarts with probability

1 − α. This observation provides the following probabilistic interpretation for the Standard

Laplacian and PageRank based methods. In the Standard Laplacian method, Fik gives up to

a multiplicative constant the expected number of visits before restart to the labeled nodes of

class k if the random walk starts from node i. In the PageRank based method with normalized

labeling functions, Fik gives up to a multiplicative constant the expected number of visits to

node i, if the random walk starts from a uniform distribution over the labeled nodes of class k.

The random walk approach can explain why in some cases Standard Laplacian and PageR-

ank based methods provide different classifications. For instance, consider a case when a node

v is directly connected to the labeled nodes k1 and k2 belonging to different classes. Further-

more, let the labeled node k1 have a higher degree than the node k2 and let the node k1 belong

to a denser cluster than node k2. From [13] we know that the expected number of visits to node

j starting from node i until the restart is equal to the product of the probability to visit node j

before the absorption and the expected number of returns to node j starting from node j. Then,

the PageRank based method will classify the node v into the class of the labeled node k2 as it

is more likely that the random walk misses the node v starting from node k1. In other words,

when the random walk starts from k2, there are less options how to choose a next node and it

is more likely to choose node v as a next node. In the Standard Laplacian method we need to

compare the average number of visits to the labeled nodes starting from the node v. Since the

random walk can reach either node k1 or node k2 in one step the probabilities of hitting these

nodes before absorption are similar and what matters is how dense are the classes. If the class

associated with the labeled node k1 is more dense than the class associated with the labeled

node k2, the node v will be classified to the class associated with k1. This reasoning will be

made rigorous in the next chapter.

Based on the formulation (2.3), we could give some further intuitive interpretation for

various cases of the generalized semi-supervised learning. Let us consider the first term in the

r.h.s. sum of (2.3), which corresponds to the smoothness component. Figure 2.1(a) shows that

if σ < 1 we do not give much credit to the connections between points with large degrees. Let

us now consider the second term which corresponds to the fitting function. Figure 2.1(b) shows

that σ < 1/2 does not give much credit to samples that pertain to a dense cluster of points (i.e.

dii is large), whereas samples that are relatively isolated in the feature space (corresponding to

small value of dii), are given higher confidence. If σ = 1, the node degree does not have any

influence. And if σ > 1/2, we consider that the nodes with higher weighted degree are more

2.2 Generalized Optimization Framework 17

(a) Smoothness term. (b) Fitting term.

Figure 2.1: Fitting and smoothness terms.

important than the nodes with smaller degree.

Next we analyze the limiting behavior of the semi-supervised learning methods when µ → 0

(α → 1). Towards this goal, we shall use the Blackwell series expansion [22, 74]

(1− α)
(

I− αD−1W
)−1

= 1π + (1− α)H+ o(1− α), (2.5)

where π is the stationary distribution of the standard random walk (πD−1W = π), 1 is a vector

of ones of appropriate dimension and H = (I − D−1W + 1π)−1 − 1π is the deviation matrix.

We note that since the similarity matrix W is symmetric, the random walk governed by the

transition matrix D−1W is time-reversible and its stationary distribution is given in the explicit

form

π = (1TD1)−11TD. (2.6)

We transform the expression (2.4) to a more convenient form.

F∗k =
µ

2+ µ

(

I −
2

2+ µ
D−σWDσ−1

)−1

Y∗k

=
µ

2+ µ

(

D−σ

(

I−
2

2+ µ
WD−1

)

Dσ

)−1

Y∗k

=
µ

2+ µ
D−σ

(

I−
2

2+ µ
WD−1

)−1

DσY∗k.

Transposing and using the fact that W is symmetric, we obtain

FT∗k = (1− α)YT
∗kD

σ
(

I− αD−1W
)−1

D−σ. (2.7)

Combining (2.7), (2.5) and (2.6), we can write

FT∗k = (1TD1)−1YT
∗kD

σ11TD1−σ + (1− α)YT
∗kD

σHD−σ + o(1− α).

18 Chapter 2: Optimization framework for semi-supervised learning methods

In particular, we have

Fik =
d1−σ
i∑N
j=1 dj

∑

p∈Vk

dσ
p + (1− α)d−σ

i

∑

p∈Vk

dσ
pHpi + o(1− α), (2.8)

and, consequently, if
∑

p∈Vk
dσ
p 6= ∑

p∈V ′

k
dσ
p for some k and k ′, in the case when the parameter

α is close to 1 (equivalently when µ is close to 0), then all points will be classified into the

classes with the largest value of
∑

p∈Vk
dσ
p. An interesting exception is the case when σ = 0

and |Vk| = const(k). In such a case, the zero order terms in the Blackwell expansions for the

classification functions are the same for all classes and we need to compare the first order terms.

Recall [52] that there is a connection between the mean first passage time of the standard

random walk from node i to node j, mij, and the elements of the deviation matrix, namely,

mij = (δij + Hjj − Hij)/πj, where δij is the Kronecker delta. If σ = 0 and |Vk| = const(k),

substituting (2.8) into Fik − Fik ′ > 0 with Hpi = Hii − πimpi for i 6= p results in the condition

∑

s∈Vk ′

msi >
∑

p∈Vk

mpi.

This condition has a clear probabilistic interpretation: point i is classified into class k if the sum

of mean passage times from the labelled points to point i is smallest for class k over all classes.

The conclusion is that the PageRank based method is more robust to the choice of the

regularization parameter than the other graph-based semi-supervised learning methods.

Illustrating example: to illustrate the limiting behaviour of the methods we generated an

artificial example of the planted partition random graph model [35] with two classes with

100 nodes in each class. The probability of link creation inside the first class is 0.3 and the

probability of link creation inside the second class is 0.1. So the first class is three times denser

than the second class. The probability of link creation between two classes is 0.05. We have

generated a sample of this random graph model. In each class we have chosen just one labelled

point. In the first class we have chosen as the labelled point the point with the smallest degree

(degree=28, 24 edges inside the class and 4 edges leading outside). In the second class we have

chosen as the labelled point the point with the largest degree (degree=31, 27 edges inside the

class and 4 edges leading outside). We have indeed observed that the second class attracts all

points when α is close to one for all semi-supervised methods except for the PageRank based

method. This is in accordance with theoretical conclusions as the labelled point in the second

class has a larger weight than the labelled point in the first class. It is interesting to observe

that in this example the first class looses all points when α is close to one even though the first

class is denser then the second one.

2.3 Experiments 19

2.3 Experiments

In this section we apply the developed theory to two datasets. The first dataset is the

network of interactions between major characters in the novel Les Miserables. If two characters

participate in one or more scenes, there is a link between these two characters. The second

dataset is a subset of Wikipedia pages. Wikipedia articles correspond to the data points and

hyper-text links correspond to the edges of the similarity graph. We disregard the direction of

the hyper-text links.

2.3.1 Les Miserables example

The graph of the interactions of Les Miserables characters has been compiled by Knuth

[53]. There are 77 nodes and 508 edges in the graph. Using the betweenness based algorithm

of Newman [71] we obtain 6 clusters which can be identified with the main characters: Val-

jean (17), Myriel (10), Gavroche (18), Cosette (10), Thenardier (12), Fantine (10), where in

brackets we give the number of nodes in the respective cluster. We have generated randomly

100 times labeled points (one labeled point per cluster). In Figure 2.2(a) we plot the modu-

larity measure averaged over 100 experiments as a function of α for methods with different

values of σ ranging from 0 to 1 with granularity 0.1. The modularity measure is based on the

inter-cluster link density and the average link density and reflects the quality of clustering [71].

From Figure 2.2(a) we conclude that on average the PageRank based method performs best in

terms of modularity and it is robust with respect to the choice of the regularization parameter.

In particular, we observe that as was predicted by the theory the Standard Laplacian method

and Normalized Laplacian method perform badly when α is close to 1 (one class attracts all

instances). The PageRank based method is robust even for the values of α which are very close

to one. We return to this example in the next chapter, discussing the interpretations based on

random walks.

2.3.2 Wikipedia-math example

The second dataset is derived from the English language Wikipedia. In this case, the sim-

ilarity graph is constructed by a slight modification of the hyper-text graph. Each Wikipedia

article typically contains links to other Wikipedia articles which are used to explain specific

terms and concepts. Thus, Wikipedia forms a graph whose nodes represent articles and whose

edges represent hyper-text inter-article links. For our experiments we took a snapshot (dump)

of Wikipedia from January 30, 20101. Based on this dump we have extracted outgoing links for

other articles. The links to special pages (categories, portals, etc.) have been ignored. In the

1http://download.wikimedia.org/enwiki/20100130

20 Chapter 2: Optimization framework for semi-supervised learning methods

(a) Modularity as a function of α.

(b) Difference in classifications.

Figure 2.2: Les Miserables example.

present experiment we did not use the information about the direction of links, so the graph in

our experiments is undirected. Then we have built a subgraph with mathematics related arti-

cles, a list of which was obtained from “List of mathematics articles” page from the same dump.

In the present experiments we have chosen the following three mathematical topics: “Discrete

mathematics” (DM), “Mathematical analysis” (MA), “Applied mathematics” (AM). With the help

of AMS MSC Classification 2 and experts we have classified related Wikipedia mathematical ar-

ticles into the three above mentioned topics. According to the expert annotation we have built

a subgraph of the Wikipedia mathematical articles providing imbalanced classes DM (106), MA

(368) and AM (435). The subgraph induced by these three topics is connected and contains

909 articles. Then, the similarity matrix W is just the adjacency matrix of this subgraph. Thus,

wij = 1 means that Wikipedia article i is connected with Wikipedia article j. Then, we have cho-

2http://www.ams.org/mathscinet/msc/msc2010.html

2.3 Experiments 21

sen uniformly at random 100 times 5 labeled nodes for each class. In Figure 2.3(a) we plot the

modularity averaged over 100 experiments as a function of α for methods with different values

of σ ranging from 0 to 1 with granularity 0.1. Figure 2.3(a) confirms the observations obtained

from Les Miserable dataset that the PageRank based method (σ = 0) has the best performance

in terms of the modularity measure. Next, in Figure 2.3(b) we plot the precision as a function

of the regularization parameter for each of the three methods with respect to the expert classifi-

cation. For the most values of α the PageRank based method performs better than all the other

methods and shows robust behaviour when the regularization parameter approaches one. This

is in agreement with the theoretical conclusions at the end of Section 2. Both Figure 2.3(a) and

Figure 2.3(b) demonstrate that the PageRank based method is also more robust than the other

two methods with respect to the choice of labeled points.

(a) Modularity as a function of α.

(b) Precision as a function of α.

Figure 2.3: Wikipedia-math example: Modularity and Precision of the classification.

22 Chapter 2: Optimization framework for semi-supervised learning methods

Figure 2.3(a) and Figure 2.3(b) also suggest that we can use the modularity measure as a

good criterion for the choice of the regularization parameter for the Standard Laplacian and

Normalized Laplacian methods. Now, let us investigate the effect of the quantity of the la-

belled data on the quality of the classification. Figures 2.4(a) 2.4(b) and 2.4(c) show that

on average the modularity of the classification increases when we increase the quantity of the

labelled data. Moreover, the quality of classification improves significantly when we increase

the quantity of labelled data for each class from few points to about 50 points. The further

increase of the quantity of the labelled data does not result in significant improvement in classi-

fication quality. The same behaviour manifests itself with respect to the precision measure (see

Figures 2.5(a) 2.5(b) and 2.5(c)).

Both Les Miserables and Wikipedia-math datasets indicate that for the PageRank based

method it is better to choose the value of the regularization parameter as close to one as possible

but at the same time keeping the system numerically stable and efficient. This is an example of

the singular perturbation phenomena [11, 80]

We have also compared the results obtained by the semi-supervised learning methods with

the classification provided by Wikipedia Categories. As Wikipedia categories we have cho-

sen: Applied mathematics, Mathematical analysis and Discrete mathematics. It turns

out that the precision of the Wikipedia categories with respect to the expert classification is 78%

(with 5 random labelled points the PageRank based method can achieve about 68%). However,

the recall of the Wikipedia categorization is 72%. With the help of the semi-supervised learning

approach we have classified all articles. It is quite interesting to observe that just using the link

information the semi-supervised learning can achieve precision nearly as good as the Wikipedia

categorization produced by hard work of many experts and the semi-supervised learning can

do even better in terms of recall.

2.4 Conclusions 23

2.4 Conclusions

We have developed a generalized optimization approach for the graph-based semi-supervised

learning which implies as particular cases the Standard Laplacian, Normalized Laplacian and

PageRank based methods and provides the new ones based on parameter σ. We have also char-

acterized the limiting behaviour of the methods as α → 1 which based on the weight of the

labelled points. We have illustrated theoretical results with the help of Les Miserables example

and Wikipedia-math example. Both theoretical and experimental results demonstrate that the

PageRank based method outperforms the other methods in terms of clustering modularity and

robustness when the labelled points are chosen randomly. We propose to use the modularity

measure for the choice of the regularization parameter in the cases of the Standard Laplacian

method and the Normalized Laplacian method. In the case of the Pagerank based method we

suggest to choose the value of the regularization parameter as close to one as possible but at

the same time keeping the system numerically stable and efficient. It appears that remarkably

we can classify the Wikipedia articles with very good precision and perfect recall employing

only the information about the hyper-text links.

24 Chapter 2: Optimization framework for semi-supervised learning methods

(a) Modularity as a function of α for PageRank.

(b) Modularity as a function of α for Normalized Laplacian.

(c) Modularity as a function of α for Standard Laplacian.

Figure 2.4: Wikipedia-math example: Modularity of the classification for different number of labels.

2.4 Conclusions 25

(a) Precision as a function of α for PageRank.

(b) Precision as a function of α for Normalized Laplacian.

(c) Precision as a function of α for Standard Laplacian.

Figure 2.5: Wikipedia-math example: Precision of the classification for different number of labels.

26 Chapter 2: Optimization framework for semi-supervised learning methods

3

RANDOM WALK APPROACH FOR

SEMI-SUPERVISED LEARNING METHODS

3.1 Introduction and summary of the results

In Chapter 2 we have proposed a generalized optimization formulation which gives as im-

portant particular cases: the Standard Laplacian method, the Normalized Laplacian method

and the PageRank based method. In the current chapter we provide more insights about the

differences among the semi-supervised learning methods based on random walk theory, and

give recommendations on how to choose the kernel and labelled points (of course, when there

is some freedom in the choice of labelled points). In particular, we try to answer the questions:

which kernel (or which values of σ and µ) one needs to choose? and which points to label if we

have some freedom with respect to labelling points? It turns out that these questions are not

independent and one has to choose the kernel depending on the information available while

labelling the points. We show that if the labelled points are chosen uniformly at random, the

PageRank based method is the best choice for the semi-supervised kernel. On the other hand,

if one can choose labelled points with large degrees or we know that labelled points given to

us have large degrees, the Standard Laplacian method is the best choice. We illustrate the the-

oretical conclusions on an analytically tractable characteristic network example, on clustered

preferential attachment model and with applications to handwritten digits classification and to

Les Miserables social network example. In particular, our theoretical results explain why sur-

prisingly all the semi-supervised methods produce very similar classifications on the dataset of

handwritten digits. We conclude the chapter with general recommendations on the choice of

27

28 Chapter 3: Random walk approach for semi-supervised learning methods

the semi-supervised learning method and labelled points.

In this chapter we extensively use the theory of random walks on graphs. For the back-

ground on the random walks on graphs we recommend the excellent survey [60] and the

online book [5].

This chapter is mainly based on the article:

K. Avrachenkov, P. Gonçalves and M. Sokol, “On the Choice of Kernel and Labelled Data in

Semi-supervised Learning Methods”, In the 10th International Workshop on Algorithms and

Models for the Web Graph, WAW 2013.

3.2 General theoretical considerations 29

3.2 General theoretical considerations

Let us use the theory of random walk on graph to understand the semi-supervised learning

methods. In particular, it is very helpful to consider a random walk with absorption {St ∈
{1, ...,N}, t = 0, 1, ...}. At each step with probability α the random walk chooses next node

among its neighbours uniformly and with probability 1 − α goes into the absorbing state. The

probabilities of visiting nodes before absorption given the random walk starts at node j, S0 = j,

are provided by the distribution

ppr(j) = (1− α)eTj

(

I− αD−1W
)−1

, (3.1)

which is the personalized PageRank vector with respect to seed node j [45]. Here ej denotes

the j-th element of the standard basis.

Now we are ready to formulate the first result explaining the classification by the semi-

supervised learning methods.

Theorem 3.1 Data point i is classified by the generalized semi-supervised learning method (2.3)

into class k, if ∑

p∈Vk

dσ
pqpi >

∑

s∈Vk ′

dσ
sqsi, ∀k ′ 6= k, (3.2)

where qpi is the probability of reaching state i before absorption if S0 = p.

Proof: Since YT
∗k =

∑
p∈Vk

eTp and Fik = FT∗kei, from (2.7) we obtain

Fik =
∑

p∈Vk

dσ
p(1− α)eTp

(

I− αD−1W
)−1

eid
−σ
i =

1

dσ
i

∑

p∈Vk

dσ
pppri(p). (3.3)

It has been shown in [13] that

(

I− αD−1W
)−1

pi
= qpi

(

I− αD−1W
)−1

ii
,

where (·)−1
pi denotes the (p, i)-th element of the inverse matrix. Multiplying the above equation

by (1− α) yields

ppri(p) = qpippri(i). (3.4)

Thus, using relation (3.4) and equation (3.3), we conclude that for point i to be classified into

class k we need

Fik − Fik ′ =
ppri(i)

dσ
i

∑

p∈Vk

dσ
pqpi −

∑

s∈Vk ′

dσ
sqsi

 > 0, ∀k ′ 6= k,

or, equivalently (3.2).

30 Chapter 3: Random walk approach for semi-supervised learning methods

Let us discuss the implications of Theorem 3.1. First, it is very interesting to observe that,

using (3.2), one can decouple the effects from the choice of α and σ. A change in the value of α

only influences the factor qpi and a change in the value of σ only affects the factor dσ
p. Second,

the results of Theorem 3.1 are consistent with the conclusions obtained with the help of the

Blackwell expansion. When α goes to one, qpi goes to one and indeed classes with the largest

value of
∑

p∈Vk
dσ
p attract all points. Thus, the case of σ = 0 and |Vk| = const(k) is especially

interesting. In this case there is stability of classification even when α is close to one. Third,

if σ = 0 and |Vk| = const(k), one can expect that smaller classes will attract a larger number

of “border points” than larger classes. Suppose that class k is smaller than class k ′. Then, it is

natural to expect that qpi > qsi with p ∈ Vk and s ∈ Vk ′ . This observation will be confirmed by

examples in the next section. This effect, if needed, can be compensated by increasing σ away

from zero. And finally, fourth, we have the following rather surprising conclusion.

Corollary 3.1 If labelled points have the same degree (dp = d, p ∈ Vk, k = 1, ..., K), all considered

semi-supervised learning methods provide the same classification.

Now with the help of the following lemma, we can obtain another alternative condition for

semi-supervised learning classification.

Lemma 3.1 If the graph is undirected (WT = W), then the following relation holds

pprj(i) =
dj

di
ppri(j). (3.5)

Proof: We can rewrite (3.1) as follows

ppr(i) = (1− α)eTi [D − αW]−1D,

and hence,

ppr(i)D−1 = (1− α)eTi [D − αW]−1.

Since matrix W is symmetric, [D − αW]−1 is also symmetric and we have

[ppr(i)D−1]j = (1− α)eTi [D − αW]−1ej = (1− α)eTj [D − αW]−1ei = [ppr(j)D−1]i.

Thus, pprj(i)/dj = ppri(j)/di, which completes the proof.

Theorem 3.2 Data point i is classified by the generalized semi-supervised learning method (2.3)

into class k, if
∑

p∈Vk

pprp(i)

d1−σ
p

>
∑

s∈Vk ′

pprs(i)

d1−σ
s

, ∀k ′ 6= k. (3.6)

3.2 General theoretical considerations 31

Proof: Follows from equation (3.3) and Lemma 3.1.

We note that in the statement of Theorem 3.2 the “reversed” PageRank is used instead of

the PageRank in (3.3). In particular, this provides another interesting interpretation of the

PageRank based method. If we set σ = 0 in (3.6), it appears that we need to compare the

reversed PageRanks divided by the degrees of the labelled points. As already mentioned in the

Introduction, if one considers the sweeps from [7] as classification functions, then the degrees

of the nodes to be classified are cancelled in the sweeps. However, if we now view the PageRank

method in terms of the reversed PageRank, the division by the degree of the PageRank values

remains essential. This provides another interesting interpretation of sweeps defined in [7].

32 Chapter 3: Random walk approach for semi-supervised learning methods

3.3 Evaluation

Let us illustrate the theoretical results with the help of a characteristic network example,

clustered preferential attachment graph and application to Les Miserables social network ex-

ample and handwritten digits classification.

Characteristic network example: Let us first consider an analytically tractable network

example. Despite its simplicity, it clearly demonstrates major properties of graph-based semi-

supervised learning methods. There are two classes, A and B with |A| = N1 and |B| = N2. Each

class is represented by a star network. The two classes are connected by a link connecting two

leaves. The graph of the model is given in Figure 3.2(a).

The central nodes with indices 1 and N1 + N2 are the obvious choice for labelled points.

In order to determine the classification functions analytically, we need to calculate the matrix

Z = [I − αD−1W]−1. It is easier to calculate the symmetric matrix C = [D − αW]−1. Once the

matrix C is calculated, we can immediately retrieve the elements of matrix Z by the formula

Zij = Cijdj. (3.7)

Thus we need to solve a system of equations [D − αW]C∗,j = ej. Since we have chosen the

central nodes as labelled points and due to the symmetry of the graph, we actually need to

solve only one system for j = 1 of six equations

(N1 − 1)C1,1 − (N1 − 2)αC2,1 − αCN1,1 = 1

C2,1 = αC1,1

CN1−1,1 = αC1,1

−αC1,1 + 2CN1,1 − αCN1+1,1 = 0

−αCN1,1 + 2CN1+1,1 − αCN1+N2,1 = 0

CN1+2,1 = αCN1+N2,1

−αCN1+1,1 − (N2 − 2)αCN1+2,1 + (N2 − 1)CN1+N2,1 = 0

Solving the above system, in particular, we obtain

CN1,1 =
α(2N2 − 2− α2(2N2 − 3))

R
, (3.8)

CN1+1,1 =
α2(N2 − 1− α2(N2 − 2))

R
, (3.9)

with

R = (1− α2)(−2α4N2 − 2α4N1 + 4α4 + α4N2N1 − 9α2

+7α2N2 + 7α2N1 − 5N2α
2N1 + 4N2N1 + 4− 4N1 − 4N2).

3.3 Evaluation 33

Consider first the PageRank based method (σ = 0). According to the theoretical consideration,

it is very likely that some points will be misclassified into a smaller class. Suppose that N1 < N2

and consider border points. The point N1 + 1 will be classified into class B by the PageRank

based method if and only if

Z1,N1+1

ZN1+N2,N1+1
=

C1,N1+1

CN1+N2,N1+1
< 1.

Using slightly more convenient notation ni = Ni−1, i = 1, 2, we can rewrite the above condition

as follows:
α(n2 − α2(n2 − 1))

2n1 − α2(2n1 − 1)
< 1,

or, equivalently, (1−n2)α
2+(2n1−n2)α+ 2n1 > 0. If 2n1+ 1 > n2, the above inequality holds

for any α ∈ (0, 1). And consequently, for any α ∈ (0, 1) the point N1 + 1 is classified into class

B. However, if 2n1 + 1 < n2 (class A is significantly smaller than class B), for α ∈ (ᾱ, 1) point

N1 + 1 will be erroneously classified into class A. The expression for ᾱ is given by

ᾱ =
−(n2 − 2n1) +

√

(2n1 + n2)2 − 8n1

2(n2 − 1)
.

If we fix the value of n1 and let n2 go to infinity, we get ᾱ → 0. Thus, if the sizes of A and B are

very different, the point N1 + 1 will be misclassified for nearly all values of the parameter α.

Now we analyse the performance of the Standard Laplacian method (σ = 1). According

to the general theoretical considerations, the Standard Laplacian method has a tendency to

classify more points into a larger class. We consider the classification of the point with index

N1 (still assuming N1 < N2). It will be classified correctly if and only if

ZN1,1

ZN1,N1+N2

> 1,

or, equivalently,
n1(2n2 − α2(2n2 − 1))

n2α(n1 − α2(n1 − 1))
> 1

which results in the following cubic inequality

α3n2(n1 − 1) − α2n1(2n2 − 1) − αn2n1 + 2n2n1 > 0.

Consider a linear scaling n2 = Kn1, K > 1. Then, the above inequality can be rewritten in the

form

α3

(

1−
1

n1

)

− α2

(

2−
1

Kn1

)

− α+ 2 > 0.

This inequality can be regarded as a regularly perturbed inequality with respect to 1/n1 (see

e.g., [11]). If we let n1 go to infinity, the limiting inequality can be easily factored, i.e.,(1 −

34 Chapter 3: Random walk approach for semi-supervised learning methods

α)(1+α)(2−α) > 0. Since the perturbation is regular, when n1 varies in the vicinity of infinity

the roots change slightly. In particular, using the implicit function theorem, we can find that

the root near 1 changes as follows:

¯̄α = 1−
K− 1

2K

1

n1
+ o

(

1

n1

)

.

In particular, this means that if the sizes of classes are large, the Standard Laplacian method

performs well for nearly all values of α from the interval (0, 1). This is in contrast with the

PageRank based method.

We summarize and illustrate various considered cases by means of numerical examples

presented in Table 3.1. Our main conclusion from this characteristic network model is that the

PageRank based method is a safe choice as it can misclassify at most one point in this particular

example whereas with α close to one the Standard Laplacian method can classify all points

in the largest class. On the other hand if parameter α is chosen appropriately, the Standard

Laplacian method gives a perfect classification for nearly all values of α, even when classes

have many points and very different sizes.

N1 N2 PR SL

20 100 vN1+1 7→ A if α ≥ ᾱ = 0.3849 vN1
7→ B if α ≥ ¯̄α = 0.9803, A 7→ B if α ≥ 0.9931

20 200 vN1+1 7→ A if α ≥ ᾱ = 0.1911 vN1
7→ B if α ≥ ¯̄α = 0.9780, A 7→ B if α ≥ 0.9923

200 2000 vN1+1 7→ A if α ≥ ᾱ = 0.1991 vN1
7→ B if α ≥ ¯̄α = 0.9978, A 7→ B if α ≥ 0.9992

Table 3.1: Comparison between different methods in terms of classification errors

Clustered Preferential Attachment model: Let us now consider a synthetic graph gener-

ated according to the clustered preferential attachment model. Our model has 5 unbalanced

classes (1500 / 240 / 120 / 100 / 50). Once a node is generated, it has two links which it

attaches independently with probability 0.98 within its class and with probability 0.02 outside

its class. In both cases a link is attached to a node with probability proportional to the number

of existing links. First, we test the case of random labelled points. Five labelled points were

chosen randomly for each class and results are averaged over 100 realizations. The precision

of classification for various values of σ and α is given in Figure 3.1(a). Then, in each class we

have chosen 5 labelled points with maximal degrees. The results of classification are given in

Figure 3.1(b). We obtain conclusions consistent with the characteristic network model. If no

information is available for assignment of the labelled points, the PageRank method is a safe

choice. If one can choose labelled points with large degrees, it is better to use the Standard

Laplacian method. There could be a significant gain in precision (roughly from 70% to 95%).

3.3 Evaluation 35

It can be observed that the Standard Laplacian method is not too sensitive to the value of α if

we stay well away from α = 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

P
re

ci
si

on
(α

)

σ = 0.0

σ = 0.1

σ = 0.2

σ = 0.3

σ = 0.4

σ = 0.5

σ = 0.6

σ = 0.7

σ = 0.8

σ = 0.9

σ = 1.0

(a) Random Labelled Points.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

P
re

ci
si

on
(α

)

σ = 0.0

σ = 0.1

σ = 0.2

σ = 0.3

σ = 0.4

σ = 0.5

σ = 0.6

σ = 0.7

σ = 0.8

σ = 0.9

σ = 1.0

(b) Max Degree Labelled Points.

Figure 3.1: Clustered Preferential Attachment Model: Precision of the classification.

Application to Les Miserables example: Let us use the random walk based interpretation

to explain differences between the Standard Laplacian based method and the PageRank based

method in Les Miserables example. Let us consider the node Woman 2 (see Figure 2.2(b)).

The node Woman 2 is connected with three other nodes: Valjean, Cosette and Javert. Suppose

we have chosen labeled points so that only the nodes Valjean and Cosette are labeled but not

Javert. Since the node Valjean has many more links than the node Cosette, the random walk

starting from the node Valjean will less likely hit the node Woman 2 than the random walk

starting from the node Cosette in some given time. Thus, the PageRank based method classifies

the node Woman 2 into the class corresponding to Cosette. Since the node Woman 2 is just one

link away from both Valjean and Cosette, the probability to hit these nodes before absorption is

approximately equal. Thus, if we apply the Standard Laplacian method the classification will be

determined by the expected number of returns to the labeled nodes before absorption. Since the

labeled node Valjean lies in the larger and denser class, the Standard Laplacian method classifies

the node Woman 2 into the class corresponding to Valjean. This example again confirms the fact

that the Standard Laplacian method classifies border points into a large class and the PageRank

based method on opposite classifies the border points into a small class.

Application to handwritten digits classification: We consider the classification of handwrit-

ten digits from ’0’ to ’9’ (USPS data set [49]). Class sizes are 1553, 1269, 929, 824,852, 716,

834, 792, 708, 821, respectively. We computed the weight matrix using Euclidean distance

between the vectors of pixels and chose 5 k-nearest neighbours to make the similarity graph

36 Chapter 3: Random walk approach for semi-supervised learning methods

N − 1

1

2

N

N + 2
N + 3

N + N − 1

N + 11

1

1
1

2

1

1 N + N1 2

Figure 3.2: Characteristic network model.

sparse and at the same time connected. Let us note that the similarity graph could be asym-

metric after kNN, so we symmetrize it by making unweighted two-direction links. As a result

we obtained a graph very close to regular (see the histogram in Figure 3.3(a)). We chose 5

labelled points for each class by max degree and randomly (averaged over 100 experiments).

As one can see from the results, Figures 3.3(c)-(d), the curves are almost the same. This can

be explained by our Corollary 3.1, as all data points and in particular labelled data points have

nearly the same degree.

4 6 8 10 12 14 16 18 20 22
0

500

1000

1500

2000

2500

3000

3500

4000

(a) Degree distribution. (b) Similarity graph.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

α

P
re

ci
si

on
(α

)

0
0.5
1

(c) Random Labelled Points.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

α

P
re

ci
si

on
(α

)

0
0.5
1

(d) Max Degree Labelled Points.

Figure 3.3: Handwritten digits: Precision of the classification.

3.4 Conclusions and general recommendations 37

3.4 Conclusions and general recommendations

Using random walk theory, we provide insights about different graph-based semi-supervised

learning methods. In particular, the Standard Laplacian method classifies border points into a

large class and the PageRank based method on opposite classifies the border points into a small

class. We also suggest the following general recommendations: If possible, choose labelled

points with large degrees. Then, adopt the Standard Laplacian method with α in the upper-

middle range of the interval (0, 1). If finding large degree points is not feasible or recall is more

important than precision for small classes, choose the PageRank based method.

38 Chapter 3: Random walk approach for semi-supervised learning methods

4

SEMI-SUPERVISED METHODS FOR P2P

CONTENT AND USER CLASSIFICATION

4.1 Introduction and summary of the results

P2P downloads still represent a large portion of today’s Internet traffic. As of 2010, more

than 100 million users operated BitTorrent and generated then more than 30% of the total

Internet traffic [56]. According to the Wikipedia article about BitTorrent [2] (accessed in 2012),

the traffic generated by BitTorrent was greater than the traffic generated by Netflix and Hulu

combined. Of course, nowadays online video services like YouTube are more popular than P2P

file download. We expect that the proposed semi-supervised learning methods if needed can

also be adapted to classification of online video.

Recently, a significant research effort has been done to develop tools for automatic classi-

fication of Internet traffic by application [58, 57, 73]. The purpose of the present work is to

provide a framework for subclassification of P2P traffic generated by the BitTorrent protocol.

Unlike previous works [58, 57, 73], we cannot rely on packet level characteristics (packet size,

packet interarrival time, etc). Instead we make use of the bipartite user-content graph. This is a

graph formed by two sets of nodes: the set of users (peers) and the set of contents (downloaded

files). From this basic bipartite graph we also construct the user graph, where two users are

connected if they download the same content, and the content graph, where two files are con-

nected if they are both downloaded by at least one user. Using methodology developed in [56]

we were able to use the snapshots of P2P downloads from the whole Internet. Even a snapshot

corresponding to half an hour duration represent a huge among of data. Without some filter-

39

40 Chapter 4: Semi-supervised methods for P2P content and user classification

ing technique, which will be explained later in the chapter we were even not able to operate

with the user graph constructed from a single snapshot. The content graph is smaller and we

were able to construct an aggregated content graph from several snapshots corresponding to

the week-long observation.

The general intuition is that the users with similar interests download similar contents. This

intuition can be rigorously formalized with the help of graph based semi-supervised learning ap-

proach. In particular, we have chosen to work with the three principal semi-supervised learning

methods: the Standard Laplacian method, the Normalized Laplacian method and the PageRank

based method. In the comprehensive comparative analysis [40] it has been shown that the

Standard Laplacian method and the PageRank based methods are among the best performing

semi-supervised learning methods. Thus, we concentrate in this chapter on these methods. It

is also very important that these methods have implementations with quasi-linear time com-

plexity and linear space complexity. This is a very important detail, as we deal in this chapter

with large volumes of data. Some data sets used in the present chapter are several orders of

magnitude larger than data sets typically used in the literature on graph based semi-supervised

learning. One more goal of the present chapter is to validate the theoretical results from the

previous chapter about the impact of the choice of the labelled nodes on classification result.

In particular, we test the following three options for the choice of the labelled points: randomly

chosen labelled points, labelled points with large degrees and labelled points with large PageR-

ank value. We demonstrate that in the context of P2P classification the choice of labeled points

with large degree or large PageRank values gives good results in the majority of classification

tasks.

This chapter is mainly based on the articles:

K. Avrachenkov, P. Gonçalves, A. Legout and M. Sokol, “Classification of content and users in

BitTorrent by Semi-supervised Learning methods”, In the IEEE IWCMC International Workshop

on Traffic Analysis and Characterization, TRAC 2012

and

K. Avrachenkov, P. Gonçalves, A. Legout and M. Sokol, “Graph Based Classification of Content

and Users in BitTorrent”, In the NIPS Big Learning Workshop, 2011.

4.2 Datasets and method implementation description 41

4.2 Datasets and method implementation description

We have several snapshots of the Torrents collected from the whole Internet using method-

ology described in [56]. Each snapshot contains half an hour of P2P transfers. In total, we have

about one week of observations. We have also an aggregate representing the transfers observed

during the whole week. To test the effect of NATs, to save memory and to reduce information

noise, the following filtering has been applied which we denote by g(X, Y): we filter out all IP

addresses with more than or equal to X ports (X = 0 means no filtering), and we filter out all

contents with less than or equal to Y IP addresses seen downloading the content (Y = 0 means

no filtering). Two users with the same IP addresses but with different ports could be the same

user. So the filtering by ports helps us to reduce the influence of counting the same user as

different ones. The second filter by IP address helps to remove unpopular contents which were

downloaded less than or equals to Y times.

Table 4.1: The content graphs after preprocessing.

Graph # nodes # edges

g(2,10) 200 413 50 726 946

g(0,10) 200 487 174 086 752

g(2,0) 624 552 92 399 318

We use the whole aggregate to create the content graph. Some files are tagged with infor-

mation about name, language, topic, login of the person who inserted these files. Those tags

correspond to the classification made by popular torrent sites like ThePirateBay [56]. If two

files are downloaded by the same user, we create an edge between these two files. The weight

of the edge shows how many users downloaded these two files. We filter out all links with the

weight equal to one to reduce the noise and memory usage. Without this filtering even the

PageRank based method with quasi-linear complexity cannot be applied on a standard desktop

computer.

We start with the smallest aggregated dataset g(2, 10) which contain information with small

noise. To evaluate the impact of the noise with respect to user identification we have also made

experiments with datasets g(0, 10) and g(2, 0).

The graph for g(2, 0) dataset after preprocessing contains three times more nodes and two

times more edges than the dataset g(2, 10). The graph for g(0, 10) dataset after preprocessing

contains two times more edges than the dataset g(2, 10).

Let us now describe how we construct the user graph. The user graph is constructed with

the help of HADOOP realization of MapReduce technology [1] from the basic user-content

bipartite graph from a single half an hour snapshot. The aggregated user graph is too large to

work with.

42 Chapter 4: Semi-supervised methods for P2P content and user classification

Table 4.2: The quantity of language base line expert classifications.

Language #content #user

English 36465 57632

Spanish 2481 2856

French 1824 2021

Italian 2450 3694

Japanese 720 416

Table 4.3: The quantity of topic base line expert classifications.

Topic # content # user

Audio Music 23639 13950

Video Movies 20686 43492

TV shows 12087 27260

Porn movies 8376 7082

App. Windows 4831 2874

Games PC 4527 8707

Books Ebooks 1185 281

The snapshot contains information on which content was downloaded by whom. In the

user graph an edge with the weight M signifies that two users download M same files. The

user graph has 3 228 410 nodes and 3 436 442 577 edges. The number of edges with weight one

is equal to 3 309 965 972. Also we have noticed that some users downloaded much more files

than a normal user would do. One user who has downloaded 655 727 files for sure is a robot.

Thus, we have decided remove all edges with weight one and the user-robot. The modified user

graph has 1 126 670 nodes and 124 753 790 edges. This filtering significantly reduces required

computing and memory resources. In fact, by doing this filtering we also remove some infor-

mation noise. If two users download only one common item it could be by pure chance, if they

both download more than two same files - it is more likely that they share same interests.

We classify contents and users by both language and topics. The considered languages and

topics are given in Tables 4.2 and 4.3.

Our base line expert classification is based on P2P content tags if they are available. For

instance, in the case of classification by language we consider that the content is in English if

it has only tag “English”. And we consider a user to be an English language user, if he or she

downloads only English language content.

We have implemented all the family of the proposed semi-supervised learning methods

(methods corresponding to any value of parameter σ) in the WebGraph framework [26]. The

4.2 Datasets and method implementation description 43

WebGraph framework has a very efficient graph compression technique which allows us to work

with very large graphs.

44 Chapter 4: Semi-supervised methods for P2P content and user classification

4.3 Results of classification of content and users

Using PageRank based classification method, we have performed four classification exper-

iments. We have used the aggregated graph of content g(2, 10) to classify the content into 5

classes according to the languages (see Table 4.2) and into 7 classes according to the content

type (see Table 4.3). The classification of the aggregated content graph has taken approxi-

mately 15 minutes on a 64-bit computer with Intel-Core7i processor and 6GB RAM. The results

of the classification evaluated in terms of accuracy are presented in Tables 4.4 and 4.5. Then,

we have performed the classification of users also into 5 classes of the languages and into 7

classes of the content preferred by users (see Tables 4.6 and 4.7). It has taken about 20 min-

utes on the same computer. However, the preprocessing of a single snapshop of the user graph

was much more demanding than the preprocessing of the aggregated content graph. Our main

conclusion is that the PageRank based classification method scales remarkably well with large

volumes of data. Then, our second important observation is that by using a very little amount

of information, we are able to classify the content and users with high accuracy. For instance,

in the dataset of 1 126 670 users, using only 50 labelled nodes for each language, using the

PageRank based method we are able to classify the users according to their preferred language

with 88% accuracy.

In all four classification experiment, we have tried three different options for the choice of

the labelled points. We have chosen the labelled points: (a) with largest standard PageRank

values; (b) with largest degree; and (c) randomly. When evaluating the performance with

the randomly chosen labelled points we have averaged the accuracy over 10 random samples

(because of the size of the data, making more than 10 samples for each of many experimental

setups was very time demanding) and we have also reported the worst (rand min column)

and the best (rand max column) accuracy. With respect to the choice of the labelled points,

our conclusion is that in the majority of cases the labelled points with large values of the

standard PageRank are the best picks (see topPR columns). In the case of classification with the

aggregated content graph, the labelled points with large degrees give results comparable with

the results obtained with the labelled points chosen according to PageRank. However, it was

interesting to observe that in the case of the classification of users, the classification based on

the labelled points with large degrees does not perform well at all. Our explanation is that in

that dataset the nodes with very large degrees are not representative. There is an independent

confirmation of this idea given in [19].

We would like to note that there is not much difference if one considers weighted or un-

weighted graph for content classification. As one can see from Table 4.4, the accuracy of content

classification by languages in the case of unweighted graph is 66.3% (choosing 50 labbelled

points for each class according to top PageRank values). We have repeated the experiment with

4.3 Results of classification of content and users 45

the weighted graph and have obtain 68.9% accuracy. We explain the relatively small difference

in accuracies by the fact that 88.3% of edges have weight 1 and then 7.1% of edges have weight

2. So the majority of edges have weight 1 and the other edges have also small weight.

Finally, we have observed that the classification using g(2, 10) filtering is one or two percent

better in terms of accuracy than the classification using g(0, 10) filtering. Thus, by doing the

filtering we not only reduce the amount of data required for processing, but also we reduce the

information noise.

To understand better how the graph based semi-supervised learning works let us consider

in the next two sections smaller subsets of content.

Table 4.4: Accuracy of the classifications for the g(2, 10) dataset by languages.

seeds topPR topDeg rand (10Exp) rand min rand max

5 0.579 0.573 0.51 0.44 0.578

50 0.663 0.647 0.634 0.614 0.649

500 0.688 0.676 0.658 0.653 0.663

Table 4.5: Accuracy of the classifications for the g(2, 10) dataset by topics.

seeds topPR topDeg rand(10Exp) rand min rand max

5 0.504 0.51 0.48 0.36 0.546

50 0.6344 0.6276 0.6278 0.604 0.645

500 0.7279 0.7182 0.6562 0.6525 0.6595

Table 4.6: Accuracy of the classifications for the user dataset by languages.

seeds topPR topDeg rand (10Exp) rand min rand max

5 0.788 0.765 0.732 0.613 0.817

50 0.88 0.78 0.834 0.82 0.85

500 0.853 0.535 0.901 0.896 0.907

Table 4.7: Accuracy of the classifications for the user dataset by topics.

seeds topPR topDeg rand(10Exp) rand min rand max

5 0.683 0.399 0.631 0.563 0.678

50 0.752 0.477 0.767 0.752 0.777

500 0.789 0.52 0.86 0.858 0.865

46 Chapter 4: Semi-supervised methods for P2P content and user classification

4.4 Classification of Video plus Music subgraph

We have constructed a subgraph which consists of all files which have in their tags “video”,

“movie”, “audio” or “music”. In Table 4.8 we see the results of classification “music”+“audio”

against “video”+“movie”. The results are quite good (accuracy 90% against accuracy 63.4% in

the case of 50 labelled points chosen according to the top PageRank values, see Tables 4.5 and 4.8).

The good classification is probably due to the fact that the dataset is smaller and the classes are

balanced. In particular it is interesting to observe how the files tagged “Music Video Clips” are

classified. 143 such files are classified into “music”, and 45 files are classified into “video”. This

is quite in agreement with intuition that “music video clips” are better related to music than to

video. On opposite only 20 “video movie clips” are classified as “music” and 125 “video movie

clips” are classified as “video”. This also agrees with our intuition since most of “video movie

clip” files are short extracts from movies.

seeds Accuracy CV matrix

50 0.90 music 30833 4337

topPR video 4775 50862

500 0.938 music 32008 3162

topPR video 2418 53219

1000 0.946 music 32705 2465

topPR video 2474 53163

500m/1000v 0.942 music 32423 2747

topPR video 2510 53127

Table 4.8: Accuracy and Cross-Validation (CV) matrix for music&audio vs video&movies classification,

α = 0.5.

4.5 Classification of untagged content 47

4.5 Classification of untagged content

We have also created “other video” subgraph from the whole content graph. We have taken

all nodes for which we have topic tags as “other video” and all edges induced by the supergraph.

The subgraph contains 1189 nodes and 20702 edges. We made the expert evaluation manually

by popular categories: “Sport Tutorials” [ST] (116), “Science Lectures” [SL] (127), “Japanese

Cartoons” [JC] (93), “Porno” [P] (81), “Software Tutorials” [SFT] (113), “Movies” [M] (129).

The results of the semi-supervised classification are presented in Tables 4.9, 4.10, 4.11. In

Table 4.9 we demonstrate the effect of the choice of the labelled points. As expected the more

labelled points we take the better. In Table 4.12 we compare in detail the random choice of

labelled points with the labelled points chosen according to their PageRank value. Specifically

we average the results over 100 experiments with random labelled points. We can see that the

precision corresponding to the labelled points chosen by PageRank is better than the average

precision corresponding to the random choice of the labelled points. The coefficient of variation

(CoV) for the random choice of the labelled points is significant (around 20%), which means

that if we choose labelled point randomly the result of the classification is much less reliable

than the result of the classification according to the labelled points with large PageRank values.

It was surprising to observe that choosing labelled points with large degree does not help much.

May be here we also face the phenomenon described in [19].

In Tables 4.10, 4.11 we present the Cross-Validation matrices for experiments with 10 and

15 labeled points chosen according to large PageRank values. In both tables we see strong

diagonal domination. It is nice to observe that we have good classification despite the fact that

nearly the half of the files do not belong to any of the mentioned above six classes. This can

be interpreted as robustness of graph based semi-supervised learning approach with significant

presence of noisy data.

Furthermore, it is interesting to observe that most of the “other video” files with the content

as “Dance Tutorials” (21 from 27) are classified into “Sport Tutorials” [ST], which seems to be

indeed related category. And all tutorials about gun shooting (13) are classified in “Sport Tu-

torials”, even though they have not initially been classified as “Sport Tutorials”. This automatic

classification appears to be quite logical and suggests the possibility of application of graph

based semi-supervised learning for refinement of P2P content categorization.

48 Chapter 4: Semi-supervised methods for P2P content and user classification

seeds TopPR TopDeg rand(100Exp) rand min rand max

1 0.56 0.519 0.45 0.21 0.64

5 0.66 0.53 0.62 0.53 0.7

10 0.70 0.66 0.685 0.623 0.73

15 0.731 0.68 0.72 0.66 0.75

Table 4.9: Accuracy for “Other Video” subgraph classification, α = 0.5.

Classified as→ JC M P SFT SL ST

JC 65 2 1 1 5 8

M 6 47 18 6 11 21

P 0 8 59 4 2 3

SFT 3 4 3 91 9 3

SL 5 5 3 10 85 19

ST 2 9 5 8 2 85

Table 4.10: Cross-Validation matrix for “Other Video” subgraph classification, TopPR 10 labeled points,

α = 0.5.

Classified as→ JC M P SFT SL ST

JC 77 3 1 0 4 3

M 9 54 13 4 6 25

P 0 8 57 5 3 3

SFT 4 4 0 98 5 2

SL 5 7 2 9 92 12

ST 10 9 5 7 1 82

Table 4.11: Cross-Validation matrix for “Other Video” subgraph classification, TopPR 15 labelled points,

α = 0.5.

Seeds Average Variance min max CoV

rand10 0.684 0.022 0.622 0.725 0.217

rand15 0.726 0.018 0.682 0.773 0.185

Table 4.12: Statistics for accuracy for “Other Video” subgraph classification, α = 0.5, random labeled

points, 100 experiments.

4.6 The effect of σ and α 49

4.6 The effect of σ and α

In this section we invetigate the effect of σ and α on the quality of classification. We provide

experiments for content and user graphs. For each class we have chosen 50 labelled points with

the maximal degree and pagerank within the ground truth points. Since we do not have ground

truth for all the points, it is assumed that choosing random points from the ground truth will not

be representative (popular content is more likely to be tagged). The precision of classification

for σ = 0.0; 0.5; 1.0 (Standard Laplacian, Normalized Laplacian and PageRank based methods)

and various values of α is given in Figures 4.1 4.2.

The Figure 4.1 is consistent with Figure 3.1(b). We could classify content with precision

more than 90% by languages and 70% by topics. In the case of language classification the

Standard Laplacian method shows the best results and significantly overperforms the PageRank

based method. But in case of topic classification PageRank method shows stable results and

nearly as good as others methods. We could notice that the labelled points chosen according

to PageRank values slightly increase precision in comparison with the case when the labelled

points chosen according to maximal degree.

We could classify users (Figure 4.2) with precision more than 95% by languages and 80%

by topics. Standard Laplacian method shows the best results and significantly outperforms the

PageRank method by languages and by topics. The labelled points chosen according to PageR-

ank values increase precision roughly by 5%. We obtained very interesting and rarely behaviour

for PageRank based method. We noticed that at first PageRank attract more items from English

language to others small classes. For Japanese and French languages it attracts much more

items than for Spanish and Italian languages. But after some α > 0.95 it unexpectedly starts to

give back those items to English language class as shown in Tables 4.6.

We are glad to observe that the experiments of the current chapter confirm the theoretical

results of the previous chapter. In particular, we maintain recommendation to choose the la-

belled points with large degree (or large values of PageRank) and use the Standard Laplacian

method with the parameter α in the upper-middle range of the interval (0, 1).

50 Chapter 4: Semi-supervised methods for P2P content and user classification

Class→ En Fr It Jp Sp

English 47201 2990 2461 4226 754

French 31 1965 9 15 1

Italian 29 2 3635 8 20

Japanese 48 21 5 342 0

Spanish 88 67 34 42 2625

Table 4.13: Cross-Validation matrix for the user

graph classification by languages, α = 0.1, pre-

cision 83.71%.

Class→ En Fr It Jp Sp

English 37145 6263 2430 11049 745

French 4 2006 6 5 0

Italian 11 1 3658 8 16

Japanese 7 23 1 385 0

Spanish 27 39 27 45 2718

Table 4.14: Cross-Validation matrix for the user

graph classification by languages, α = 0.95, pre-

cision 68.92%.

Class→ En Fr It Jp Sp

English 48925 4585 1774 1209 1139

French 7 2006 5 2 1

Italian 19 1 3654 1 19

Japanese 18 27 5 365 1

Spanish 55 4 11 10 2776

Table 4.15: Cross-Validation matrix for the user

graph classification by languages, α = 0.999,

Precision 86.65%.

4.6 The effect of σ and α 51

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

P
re

ci
si

on
(α

)

0
0.5
1

(a) Max Degree Labelled Points by Lan-

guages.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

P
re

ci
si

on
(α

)

0
0.5
1

(b) Max PageRank Labelled Points by

Languages.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

α

P
re

ci
si

on
(α

)

0
0.5
1

(c) Max Degree Labelled Points by Top-

ics.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

α

P
re

ci
si

on
(α

)

0
0.5
1

(d) Max PageRank Labelled Points by

Topics.

Figure 4.1: Content P2P Graph: Precision of the classification.

52 Chapter 4: Semi-supervised methods for P2P content and user classification

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

P
re

ci
si

on
(α

)

0
0.5
1

(a) Max Degree Labelled Points by Lan-

guages.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

α

P
re

ci
si

on
(α

)

0
0.5
1

(b) Max PageRank Labelled Points by

Languages.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

α

P
re

ci
si

on
(α

)

0
0.5
1

(c) Max Degree Labelled Points by Top-

ics.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

α

P
re

ci
si

on
(α

)

0
0.5
1

(d) Max PageRank Labelled Points by

Topics.

Figure 4.2: User P2P Graph: Precision of the classification.

4.7 Conclusions 53

4.7 Conclusions

We have proposed to apply the graph-based semi-supervised learning method to classify

P2P content and users. The proposed methods have appeared to be highly scalable. We were

able to deal with all world-wide torrents active in some point in time. With very few labelled

points we have achieved very high precision. We have confirmed the theoretical conclusions of

the previous chapter. One of our new recommendations is to choose labelled points with large

values of PageRank. We have also demonstrated that the graph-based semi-supervised methods

are very robust with respect to various types of noise in the data.

54 Chapter 4: Semi-supervised methods for P2P content and user classification

Part II

Quick Detection of Central Nodes in

Complex Networks

55

5

QUICK DETECTION OF NODES WITH

LARGE DEGREES

5.1 Introduction and summary of the results

Our goal in this chapter is to quickly find top k lists of nodes with the largest degrees

in large complex networks. Firstly, node degree is one of centrality measures used for the

analysis of complex networks. Secondly, large degree nodes can serve as proxies for central

nodes corresponding to the other centrality measures as betweenness centrality or closeness

centrality [79, 62]. Thirdly, as shown in Chapters 3-4, it is beneficial to select labelled data

points with large degrees in semi-supervised learning methods.

In the present chapter we restrict ourselves to undirected networks or symmetrized versions

of directed networks. In particular, this assumption is well justified in social networks. Typically,

friendship or acquaintance is a symmetric relation. Also, in our applications for the semi-

supervised learning methods we have considered undirected similarity graphs.

If the adjacency list of the network is known (not often the case in complex networks),

a deterministic algorithm to find the top k list of nodes with the largest degrees requires an

average complexity of O(n), where n is the number of nodes in the network. For instance,

if HeapSort is used to find the top k list of nodes with the largest degrees, the complexity

estimation can be specified as O(n + k log(n)). We assume that the degree is available when

accessing a node (if this is not the case, the complexity should be counted in terms of links).

However, even linear complexity can be very high for very large, possibly varying, complex

networks. Furthermore, when crawling some online social networks like Facebook or Twitter, a

57

58 Chapter 5: Quick detection of nodes with large degrees

crawler is constrained by a certain limit on the speed of crawling. For example, Twitter has the

limit of one access per minute for the rate of crawling for one standard account. Thus, to crawl

the entire network with more than 500 million users we need more than 950 years. Certainly

we would like to discover nodes with largest degrees well before the entire network is crawled.

In the present chapter we suggest using random walk based methods for detecting a small

number of nodes with the largest degree. The main idea is that the random walk very quickly

comes across large degree nodes. Thus, the analysis of our approach is equivalent to the analysis

of hitting times of a random walk. In our numerical experiments random walks outperform the

standard deterministic algorithms by orders of magnitude in terms of computational complexity.

For instance, in our experiments with the web graph of the UK domain (about 18 500 000

nodes) the random walk method spends on average only about 5 400 steps to detect the largest

degree node. Potential memory savings are also significant since the method does not require

knowledge of the entire network. In many practical applications we do not need a complete

ordering of the nodes and even, we can tolerate some errors in the top list of nodes. We observe

that the random walk method obtains many nodes in the top list correctly and even those nodes

that are erroneously placed in the top list have large degrees. Therefore, as typically happens

in randomized algorithms [65, 68], we trade off exact results for very good approximate results

or for exact results with high probability and gain significantly in computational efficiency.

The chapter is organized as follows: in the next section we introduce our basic random walk

with uniform jumps and demonstrate that it is able to quickly find large degree nodes. Then, in

Section 5.3 using configuration model we provide an estimate for the necessary number of steps

for the random walk. In particular, we prove that our algorithm has sublinear complexity on the

configuration network model. In Section 5.4 we propose stopping criteria that use very little

information about the network. In Section 5.5 we show the benefits of allowing few erroneous

elements in the top k list.

This chapter is mainly based on the articles:

K. Avrachenkov, N. Litvak, M. Sokol and D. Towsley, “Quick etection of nodes with large de-

grees”, In the 9th International Workshop on Algorithms and Models for the Web Graph, WAW

2012.

and

K. Avrachenkov, N. Litvak, M. Sokol and D. Towsley, “Quick detection of nodes with large de-

grees”, Accepted to Internet Mathematics journal. To appear in 2014.

5.2 Random walk with uniform jumps 59

5.2 Random walk with uniform jumps

Let us consider a random walk with uniform jumps which serves as a basic algorithm for

quick detection of large degree nodes. The random walk with uniform jumps is described by

the following transition probabilities [17]

pij =

{
α/n+1
di+α , if i has a link to j,
α/n
di+α

, if i does not have a link to j,
(5.1)

where di is the degree of node i. The random walk with uniform jumps can be regarded as a

random walk on a modified graph where all the nodes in the graph are connected by artificial

edges with a weight α/n. The parameter α controls the rate of jumps. Introduction of jumps

helps in a number of ways. As was shown in [17], it reduces the mixing time to stationarity.

It also solves a problem encountered by a random walk on a graph consisting of two or more

components, namely the inability to visit all nodes. The random walk with jumps also reduces

the variance of the network function estimator [17]. This random walk resembles the PageRank

random walk. However, unlike the PageRank random walk, the introduced random walk is

time reversible. One important consequence of the reversibility of the random walk is that its

stationary distribution is given by a simple formula

πi(α) =
di + α

2|E| + nα
∀i ∈ V, (5.2)

from which the stationary distribution of the unperturbed random walk can easily be retrieved.

We observe that the modification preserves the monotonicity of the stationary distribution with

respect to the node degree, which is particularly important for our application.

We illustrate on several network examples how the random walk helps us quickly detect

large degree nodes. We consider as examples one synthetic network generated by the pref-

erential attachment rule and two natural large networks. The Preferential Attachment (PA)

network combines 100 000 nodes. It has been generated according to the generalized preferen-

tial attachment mechanism [37]. The average degree of the PA network is two and the power

law exponent is 2.5. The first natural example is the symmetrized web graph of the whole UK

domain crawled in 2002 [26]. The UK network has 18 520 486 nodes and its average degree is

28.6. The second natural example is the network of co-authorships of DBLP [23]. Each node

represents an author and each link represents a co-authorship of at least one article. The DBLP

network has 986 324 nodes and its average degree is 6.8.

We carry out the following experiment: we initialize the random walk (5.1) at a node

chosen according to the uniform distribution and continue the random walk until we hit the

largest degree node. The largest degrees for the PA, UK and DBLP networks are 138, 194 955,

and 979, respectively. For the PA network we have made 10 000 experiments and for the UK

60 Chapter 5: Quick detection of nodes with large degrees

and DBLP networks we performed 1 000 experiments (these networks were too large to perform

more experiments).

In Figue 5.1 we plot the histograms of hitting times for the PA network. The first remarkable

observation is that when α = 0 (no restart) the average hitting time, which is equal to 123 000

steps, is nearly three orders of magnitude larger than 3 720, the hitting time when α = 2. The

second remarkable observation is that 3 720 is of the same order of magnitude as the value

1/πmax(α) = (2|E| + nα)/(dmax + α) = 2 857, which corresponds to the average return time to

the largest degree node in the random walk with jumps.

0 0.5 1 1.5 2 2.5

x 10
6

0

2000

4000

6000

8000

10000

(a) α = 0

0 1 2 3 4

x 10
4

0

1000

2000

3000

4000

5000

6000

(b) α = 2

Figure 5.1: Histograms of hitting times in the PA network.

We were not able to collect a representative number of experiments for the UK and DBLP

networks when α = 0. The reason for this is that the random walk gets stuck either in dis-

conected or weakly connected components of the networks. For the UK network we were

able to make 1 000 experiments with α = 0.001 and obtain the average hitting time 30 750.

Whereas if we take α = 28.6 for the UK network, we obtain the average hitting time 5 800.

Note that the expected return time to the largest degree node in the UK network is given by

1/πmax(α) = (2|E| + nα)/(dmax + α) = 5 432. For the DBLP graph we conducted 1 000 exper-

iments with α = 0.00001 and obtained an average hitting time of 41 131. Whereas if we take

α = 6.8, we obtain an average hitting time of 14 200. The expected return time to the largest

degree node in the DBLP network is given by 1/πmax(α) = (2|E| + nα)/(dmax + α) = 13 607.

The two natural network examples confirm our guess that the average hitting time for the

largest degree node is fairly close to the average return time to the largest degree node, which

is reciprocal to the value of the stationary distribution at the largest degree node. Next, using

asymptotic analysis, we show that if α is sufficiently large, the principal term in the asymptotic

expansion for the expected hitting time is close to the expected return time. Denote by Hj the

hitting time to node j.

Theorem 5.1 Without loss of generality, index the nodes such that node 1 is a node under consid-

5.2 Random walk with uniform jumps 61

eration, (1, i) ∈ E, i = 2, ..., s, s = d1 + 1, and let ν denote the initial distribution of the random

walk with jumps. Then, for sufficiently large α and small α/n, the expected hitting time to node 1

starting from an arbitrary initial distribution ν is given by

Eν[H1] =

∑n
i=2 di + (n − 1)α

d1 + 2α(1− 1/n)
+ O(1). (5.3)

Proof: The expected hitting time from distribution ν to node 1 is given by the formula

Eν[H1] = ν[I− P−1]
−11, (5.4)

where P−1 is a taboo probability matrix (i.e., matrix P with the 1-st row and 1-st column re-

moved). The matrix P−1 is substochastic but is very close to stochastic. Let us represent it as a

stochastic matrix minus some perturbation term:

P−1 = P̃ − εQ = P̃ −

1+2α/n
d2+α

0 0

0
. . .

1+2α/n
ds+α

2α/n
ds+1+α

. . . 0

0 0
2α/n
dn+α

We add missing probability mass to the diagonal of P̃, which corresponds to an increase in the

weights for self-loops. The matrix P̃ represents a reversible Markov chain with the stationary

distribution

π̃j =
dj + α

∑n
i=2 di + (n − 1)α

.

Now we can use the following result from the perturbation theory (see Lemma 1 in [9]):

[I− P̃ + εQ]−1 =
1π̃

π̃(εQ)1
+ X0 + εX1 + ... , (5.5)

where π̃ is the stationary distribution of the stochastic matrix P̃. In our case, the quantity

maxi=2,...,s{1/(di + α), 1/n} will play the role of ε. We apply the series (5.5) to approximate the

expected hitting time. Towards this goal, we calculate

π̃(εQ)1 =

n∑

j=2

π̃jεqjj

=

s∑

j=2

dj + α
∑n

i=2 di + (n − 1)α

1+ 2α/n

dj + α
+

n∑

j=s+1

dj + α
∑n

i=2 di + (n − 1)α

2α/n

dj + α

=
d1(1+ 2α/n) + (n − d1 − 1)(2α/n)

∑n
i=2 di + (n − 1)α

=
d1 + 2α(1− 1/n)
∑n

i=2 di + (n − 1)α
.

62 Chapter 5: Quick detection of nodes with large degrees

Observing that ν1π̃1 = 1, we obtain (5.3).

Indeed, the asymptotic expression (5.3) is very close to (2|E| + nα)/(d1 + α), which is the

expected return time to node 1.

Based on the notion of the hitting time we propose an efficient method for quick detection of

the top k list of largest degree nodes. The algorithm maintains a top k candidate list. Note that

once one of the k nodes with the largest degrees appears in this candidate list, it remains there

subsequently. Thus, we are interested in hitting events. We propose the following algorithm for

detecting the top k list of largest degree nodes.

Algorithm 5.1 Random walk with jumps and candidate list

1. Set k, α and m.

2. Execute a random walk step according to (5.1). If it is the first step, pick the initial node

arbitrarily (in particular, the initial node can be chosen by the uniform distribution).

3. Check if the current node has a larger degree than one of the nodes in the current top k

candidate list. If it is the case, insert the new node in the top-k candidate list and remove the

worst node out of the list.

4. If the number of random walk steps is less than m, return to Step 2 of the algorithm. Stop,

otherwise.

The value of parameter α is not crucial. In our experiments, we have observed that as long

as the value of α is neither too small nor too big, the algorithm performs well. According to our

observations, a good option for the choice of α is a value around the average node degree. Let

us explain this choice.

Consider a random walk {Wt}
∞

t=0 with transition probabilities (5.1). We denote by Pν(·)
the probability distribution of this Markov chain with initial distribution ν. Now assume that

the Markov chain is in a stationary regime (the stationary regime is achieved quickly when

the parameter α is not too small [17]). Then by the Bayes formula we derive two remarkable

equations:

Pπ[Wt = i|jump] =
Pπ[Wt = i, jump]

Pπ[jump]
=

Pπ[Wt = i]Pπ[jump|Wt = i]
∑n

j=1 Pπ[Wt = j]Pπ[jump|Wt = j]

=

di+α
2|E|+nα

α
di+α

∑n
j=1

dj+α

2|E|+nα
α

dj+α

=
1

n
, (5.6)

Pπ[Wt = i|no jump] =
Pπ[Wt = i,no jump]

Pπ[no jump]

5.2 Random walk with uniform jumps 63

=
Pπ[Wt = i]Pπ[no jump|Wt = i]

∑n
j=1 Pπ[Wt = j]Pπ[no jump|Wt = j]

=

di+α
2|E|+nα

di

di+α
∑n

j=1
dj+α

2|E|+nα

dj

dj+α

=
di

2|E|
= πi(0), i = 1, 2, . . . , n. (5.7)

Thus, in a stationary distribution, given that no jump occurred, the probability that [Wt = i] is

exactly πi(0)!

Next observe that Wt is a regenerative process, where regeneration points are the jumps to

the uniform distribution, and the regenerating cycles are independent. Concerning the choice

of α, there is a clear trade-off: if α is too small, then regenerating cycles are long and a random

walk can get entangled in some part of the network; but if α is too large, then the cycle will

often consist only of one step corresponding to a jump. Thus, we would like to maximize the

long-run fraction of independent observations from π(0). To this end, we note that given m ′

cycles, the mean total number of steps is

m ′E[cycle length] = m ′(Pπ[jump])−1.

Out of the random walk run with m ′ cycles, m ′ independent observations from π are generated,

from which on average m ′Pπ[jump] observations coincide with a jump. As will be discussed in

Section 4, we need to maximize the long-run fraction of independent observations, that are not

a jump, in a sample compared to the number of steps of a random walk:

m ′ −m ′Pπ[jump]

m ′(Pπ[jump])−1
= Pπ[jump](1− Pπ[jump]) → max .

Obviously, the maximum is achieved when

Pπ[jump] =
1

2
.

It remains to rewrite Pπ[jump] in terms of the algorithm parameters:

Pπ[jump] =

n∑

j=1

Pπ[Wt = j]Pπ[jump|Wt = j]

=

n∑

j=1

dj + α

2|E| + nα

α

dj + α
=

nα

2|E| + nα
=

α

d̄+ α
, (5.8)

where d̄ := 2|E|/n is the average degree. For the maximal efficiency, the last fraction above

must be equal to 1/2, which gives the optimal value for the parameter α

α∗ = d̄.

64 Chapter 5: Quick detection of nodes with large degrees

With this choice of α, the random walk contains the maximal possible fraction of independent

observations from the distribution πi(0).

The average degree is not necessarily known in advance. However, we may chose α based

on our knowledge of samples of similar nature, and then estimate the average degree using

(5.8) and the observed cycle length. Specifically, we can use the equation

Eu[T] =
1

Pπ[jump]
=

2|E|/n + α

α
. (5.9)

Then we can adjust α to its optimal value.

Theorem 5.1 demonstrates that the expected hitting time to a large degree node is approx-

imately equal to the reciprocal of the stationary probability. Below we obtain an upper bound

on the expected hitting time. Without loss of generality, let us consider node k from the top-k

list (d1 ≥ ... ≥ dk ≥ dk+1 ≥ ...). Assume also that the initial node is chosen according to the

uniform distribution. Let Hk be the hitting time to node k and let T be the time of the first jump

(to the uniform distribution). Then, using Wald’s identity, we can write

Eu[Hk] = Eu[#jumps on [0,Hk]]Eu[min{T,Hk}], (5.10)

where Eu[·] is the expectation given the random walk starts from the uniform distribution. We

note that

Eu[min{T,Hk}] ≤ Eu[T]. (5.11)

Next, we also note that

Eu[#jumps on [0,Hk]] =
1

Pu[Hk ≤ T]
. (5.12)

Next, we provide a lower bound for the probability Pu[Hk ≤ T]. This lower bound give a good

approximation, if we assume that node k is usually found within the first two steps of a cycle.

This is a natural assumption, if α is not too small, and consequently, the cycles are not too large.

In particular, this is the case if we choose the value of α as the average degree. Then, we have

Pu[Hk ≤ T] ≥ Pu[Hk ≤ min{T, 2}] =
1

n
+

1

n

∑

i:(i,k)∈E

α/n+ 1

di + α

>
dk

n
· 1

dk

∑

i:(i,k)∈E

α/n+ 1

di + α
≥ dk

n
· α/n + 1

d−1
k

∑
i:(i,k)∈E di + α

. (5.13)

Combining the above equation with (5.9)–(5.12), we obtain

Eu[Hk] ≤
n

dk
· d̄+ α

α
·
d−1
k

∑
i:(i,k)∈E di + α

α/n+ 1
. (5.14)

In particular, choosing α = d̄ in (5.14) yields

Eu[Hk] ≤
2n

dk
·
d−1
k

∑
i:(i,k)∈E di + d̄

d̄/n+ 1
. (5.15)

5.2 Random walk with uniform jumps 65

The number of random walk steps, m, is a crucial parameter. Our experiments indicate that

we obtain a top k list with many correct elements with high probability if we take the number

of random walk steps to be twice or thrice as large as the expected hitting time of the nodes in

the top k list. This observation can be made rigorous thanks to the result from [27, Ch.9,p.333]

that we can adapt for our situation as follows.

Proposition 5.1 Let H1, ..., Hk denote the hitting times to the top-k nodes with the largest degrees

(d1 ≥ ... ≥ dk ≥ dk+1 ≥ ...). Then, the expected time, Eu[H̃], for the random walk with transition

probabilities (5.1) and starting from the uniform distribution to detect a fraction β of top-k nodes

is bounded by

Eu[H̃] ≤ 1

1− β
Eu[Hk]. (5.16)

From Theorem 1 or bound (5.15), we know that the expected hitting time of a large degree

node is related to the value of the node’s degree. Thus, the problem of choosing m reduces

to the problem of estimating the values of the largest degrees. We address this problem in the

following section.

66 Chapter 5: Quick detection of nodes with large degrees

5.3 Estimating the largest degrees in the configuration network

model

The estimations for the values of the largest degrees can be derived in the configuration

network model [46] with a power law degree distribution. In some applications the knowledge

of the power law parameters might be available to us. For instance, it is known that web graphs

have power law degree distribution and we know typical ranges for the power law parameters

(see e.g., [20]).

We assume that the node degrees D1, . . . ,Dn are i.i.d. random variables with a power law

distribution F and finite expectation E[D]. Let us determine the number of links contained in

the top k nodes. Denote

F(x) = P[D ≤ x], F̄(x) = 1− F(x), x ≥ 0.

Further let D(1) ≥ . . . ≥ D(n) be the order statistics of D1, . . . ,Dn. Under the assumption that

Dj’s obey a power law, we use the results from the extreme value theory as presented in [64],

to state that there exist sequences of constants (an) and (bn) and a constant δ such that

lim
n→∞

nF̄(anx + bn) = (1+ δx)−1/δ. (5.17)

This implies the following approximation for high quantiles of F, with exceedance probability

close to zero [64]:

xp ≈ an
(pn)−δ − 1

δ
+ bn.

For the jth largest degree, where j = 2, . . . , k, the estimated exceedance probability equals

(j−1)/n, and thus we can use the quantile x(j−1)/n to approximate the degree D(j) of this node:

D(j) ≈ an
(j− 1)−δ − 1

δ
+ bn. (5.18)

The sequences (an) and (bn) are easy to find for a given shape of the tail of F. Below we

derive the corresponding results for the commonly accepted Pareto tail distribution of D, that

is,

F̄(x) = Cx−γ for x > x ′, (5.19)

where γ > 1 and x ′ is a fixed sufficiently large number so that the power law degree distribution

is observed for nodes with degree larger than x ′. In that case we have

lim
n→∞

nF̄(anx+ bn) = lim
n→∞

nC(anx+ bn)
−γ

= lim
n→∞

(C−1/γn−1/γanx+ C−1/γn−1/γbn)
−γ,

5.3 Estimating the largest degrees in the configuration network model 67

which directly gives (5.17) with

δ = 1/γ, an = δCδnδ, bn = Cδnδ. (5.20)

Substituting (5.20) into (5.18) we obtain the following prediction for D(j), j = 2, . . . , k, in the

case of the Pareto tail of the degree distribution:

D(j) ≈ C1/γ(j − 1)−1/γn1/γ. (5.21)

It remains to find an approximation for D(1), the maximal degree in the graph. From the

extreme value theory it is well known that if D1, . . . ,Dn obey a power law then

lim
n→∞

P

(

D(1) − bn

an
≤ x

)

= Hδ(x) = exp(−(1+ δx)−1/δ),

where, for Pareto tail, an, bn and δ are defined in (5.20). Thus, as an approximation for the

maximal node degree we can choose anx+bn where x can be chosen as either a mean, a median

or a mode of Hδ(x). If we choose the mode, ((1+δ)−δ−1)/δ, then we obtain an approximation,

which is smaller than the one for the 2nd largest degree. Further, the mean (Γ(1 − δ) − 1)/δ is

very sensitive to the value of δ = 1/γ, especially when γ is close to one, which is often the case

in complex networks. Besides, the parameter γ is hard to estimate with high precision. Thus,

we suggest to choose the median (log(2))−δ−1)/δ, which is less sensitive to the value of δ. This

yields

D(1) ≈ an
(log(2))−δ − 1

δ
+ bn = C1/γ(log(2))−1/γn1/γ. (5.22)

For instance, in the PA network γ = 2.5 and C = 3.7, which gives according to (5.22)

D(1) ≈ 195. (This is a reasonably good prediction even though the PA network is not generated

according to the configuration model. We also note that even though the extremum distribution

in the preferential attachment model is different from that of the configuration model their

ranges seem to be quite close [67].) This in turn suggests that for the PA network m should be

chosen in the range 6 000-18 000 if α = 2. As we can see from Figure 5.2 this is indeed a good

range for the number of random walk steps. In the UK network γ = 1.7 and C = 90, which gives

D(1) ≈ 329 820 and suggests a range of 20 000-30 000 for m if α = 28.6. Figure 5.3 confirms

that this is a good choice. The degree distribution of the DBLP network does not follow a power

law so we cannot apply the above reasoning to it.

We conclude this section with a remark that from equation (5.21), bound (5.15) and Propo-

sition 5.1, it follows that we can find a β fraction of top-k largest degree nodes in sublinear

expected time in the configuration model. That is, we have

Eu[H̃] ≤ 2

1− β
·
d−1
k

∑
i:(i,k)∈E di + d̄

d̄/n+ 1
· n

C1/γ(k− 1)−1/γn1/γ
.

68 Chapter 5: Quick detection of nodes with large degrees

In particular, the last fraction above is of the order C̃n
γ−1
γ . If γ is close to one (which is often the

case in complex networks), the computational savings compared to the deterministic approach

can be very significant. For instance, for the UK network with k = 10 and β = 0.8, the bound

(5.16) gives

Eu[H̃] ≤ 214150,

which means at least 86-fold computational savings.

5.4 Stopping criteria 69

5.4 Stopping criteria

Suppose now that we do not have any information about the range for the largest k degrees.

In this section we design stopping criteria that do not require knowledge about the structure of

the network. As we shall see, knowledge of the order of magnitude of the average degree might

help, but this knowledge is not imperative for a practical implementation of the algorithm.

Let us now assume that node j can be sampled independently with probability πj(α) as in

(5.2). There are at least two ways to achieve this practically. The first approach is to run the

random walk for a significant number of steps until it reaches the stationary distribution. If one

chooses α reasonably large, say the same order of magnitude as the average degree, then the

mixing time becomes quite small [17] and we can be sure to reach the stationary distribution

in a small number of steps. Then, the last step of a run of the random walk will produce an

i.i.d. sample from a distribution very close to (5.2). The second approach is to run the random

walk uninterruptedly, also with a significant value of α, and then perform Bernoulli sampling

with probability q after a small initial transient phase. If q is not too large, we shall have

nearly independent samples following the stationary distribution (5.2). In our experiment,

q ∈ [0.2, 0.5] gives good results when α has the same order of magnitude as the average degree.

We now estimate the probability of detecting correctly the top k list of nodes after m i.i.d.

samples from (5.2). Denote by Xi the number of hits at node i after m i.i.d. samples. We note

that if we use the second approach to generate i.i.d. samples, we spend approximately m/q

steps of the random walk. We correctly detect the top k list with the probability given by the

multinomial distribution

P[X1 ≥ 1, ..., Xk ≥ 1] =

∑

i1≥1,...,ik≥1

m!

i1! · · · ik!(m − i1 − ... − ik)!
πi1
1 · · ·πik

k (1−

k∑

i=1

πi)
m−i1−...−ik

but it is not feasible for any realistic computations. Therefore, we propose to use the Pois-

son approximation. Let Yj, j = 1, ..., n be independent Poisson random variables with means

πjm. That is, the random variable Yj has the following probability mass function P[Yj = r] =

e−mπj(mπj)
r/r!. It is convenient to work with the complementary event of not detecting cor-

rectly the top k list. Then, we have

P[{X1 = 0} ∪ ... ∪ {Xk = 0}] ≤ 2P[{Y1 = 0} ∪ ... ∪ {Yk = 0}]

= 2(1− P[{Y1 ≥ 1} ∩ ... ∩ {Yk ≥ 1}]) = 2(1−

k∏

j=1

P[{Yj ≥ 1}])

= 2(1 −

k∏

j=1

(1− P[{Yj = 0}])) = 2(1 −

k∏

j=1

(1− e−mπj)) =: a, (5.23)

70 Chapter 5: Quick detection of nodes with large degrees

where the first inequality follows from [65, Thm 5.10]. In fact, in our numerical experiments

we observed that the factor 2 in the first inequality is very conservative. For large values of m,

the Poisson bound without 2 works very well as proper approximation.

For example, if we would like to obtain the top 10 list with at most 10% probability of error,

we need to have on average 4.5 hits per each top element. This can be used to design the

stopping criteria for our random walk algorithm. Let ā ∈ (0, 1) be the admissible probability of

an error in the top k list. Now the idea is to stop the algorithm after m steps when the estimated

value of a for the first time is lower than the critical number ā. Clearly,

âm = 2(1−

k∏

j=1

(1− e−Xj))

is the maximum likelihood estimator for a, so we would like to choose m such that âm ≤ ā.

The problem, however, is that we do not know which Xj’s are the realisations of the number of

visits to the top k nodes. Then let Xj1 , ..., Xjk be the number of hits to the current elements in

the top k candidate list and consider the estimator

âm,0 = 2(1 −

k∏

i=1

(1− e−Xji)),

which is the maximum likelihood estimator of the quantity

2(1−

k∏

i=1

(1− e−mπji)) ≥ a.

(Here πji is a stationary probability of the node with the score Xji , i = 1, . . . , k). The estimator

âm,0 is computed without knowledge of the top k nodes or their degrees, and it is an estimator

of an upper bound of the estimated probability that there are errors in the top k list. This leads

to the following stopping rule.

Stopping rule 0. Stop at m = m0, where

m0 = arg min{m : âm,0 ≤ ā}.

The above stopping criterion can be simplified even further to avoid computation of âm,0.

Since

âm,1 := 2(1 − (1− e−Xjk)k) ≥ âm,0 ≥ â,

where Xjk is the number of hits of the worst element in the candidate list. The inequality

âm ≤ ā is guaranteed if âm,1 ≤ ā. This leads to the following stopping rule for the random

walk algorithm.

5.4 Stopping criteria 71

Stopping rule 1. Compute x0 = arg min{x ∈ N : (1− e−x)k ≥ 1− ā/2.} Stop at

m1 = arg min{m : Xjk = x0}.

We have observed in our numerical experiments that we obtain the best trade off between

the number of steps of the random walk and the accuracy if we take α around the average

degree and the sampling probability q around 0.5. Specifically, if we take ā/2 = 0.15 (x0 = 4)

in Stopping rule 1 for top 10 list, we obtain 87% accuracy for an average of 47 000 random

walk steps for the PA network; 92% accuracy for an average of 174 468 random walk steps for

the DBLP network; and 94% accuracy for an average of 247 166 random walk steps for the UK

network. We have averaged over 1000 experiments to obtain tight confidence intervals.

72 Chapter 5: Quick detection of nodes with large degrees

5.5 Relaxation of top k lists

In the stopping criteria of the previous section we have strived to detect all nodes in the top

k list. This costs us a lot of steps of the random walk. We can significantly gain in performance

by relaxing this strict requirement. For instance, we could just ask for list of k nodes that

contains 80% of top k nodes [16]. This way we can take an advantage of a generic 80/20 rule

that 80% of result can be achieved with 20% of effort.

Let us calculate the expected number of top k elements observed in the candidate list up to

trial m. Define by Xj the number of times we have observed node j after m trials and

Hj =

{
1, node j has been observed at least once,

0, node j has not been observed.

Assuming we sample in i.i.d. fashion from the distribution (5.2), we can write

E[

k∑

j=1

Hj] =

k∑

j=1

E[Hj] =

k∑

j=1

P[Xj ≥ 1]

=

k∑

j=1

(1− P[Xj = 0]) =

k∑

j=1

(1− (1− πj)
m). (5.24)

In Figure 5.2 we plot E[
∑k

j=1Hj] (the curve “I.I.D. sample”) as a function of m for k = 10 for

the PA network with α = 0 and α = 2. In Figure 5.3 we plot E[
∑k

j=1 Hj] as a function of m

for k = 10 for the UK network with α = 0.001 and α = 28.6. The results for the UK and DBLP

networks are similar in spirit.

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

m

Random Walk
I.I.D. sample

(a) α = 0

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

7

8

9

10

m

Random Walk
I.I.D. sample

(b) α = 2

Figure 5.2: Average number of correctly detected elements in top-10 for PA.

Here again we can use the Poisson approximation

E[

k∑

j=1

Hj] ≈
k∑

j=1

(1− e−mπj).

5.5 Relaxation of top k lists 73

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

7

8

9

m

Random Walk
I.I.D. sample

(a) α = 0.001

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6

7

m

Random Walk
I.I.D. sample

(b) α = 28.6

Figure 5.3: Average number of correctly detected elements in top-10 for UK.

In fact, the Poisson approximation is so good that if we plot it on Figures 5.2 and 5.3, it nearly

covers exactly the curves labeled “I.I.D. sample”, which correspond to the exact formula (5.24).

Similarly to the previous section, we can propose stopping criteria based on the Poisson approx-

imation. Denote

bm =

k∑

i=1

(1− e−Xji).

Stopping rule 2. Stop at m = m2, where

m2 = arg min{m : bm ≥ b̄}.

Now if we take b̄ = 7 in Stopping rule 2 for top-10 list, we obtain on average 8.89 correct

elements for an average of 16 725 random walk steps for the PA network; we obtain on average

9.28 correct elements for an average of 66 860 random walk steps for the DBLP network; and

we obtain on average 9.22 correct elements for an average of 65 802 random walk steps for the

UK network. (We have averaged over 1000 experiments for each network.) This makes for the

UK network the gain of more than two orders of magnitude in computational complexity with

respect to the deterministic algorithm.

74 Chapter 5: Quick detection of nodes with large degrees

5.6 Conclusions

We have proposed the random walk method with the candidate list for quick detection of

largest degree nodes and analyzed the complexity of the method by means of random walk

hitting times. Using Poisson approximation, we have supplied stopping criteria which do not

require knowledge of the graph structure. In the case of large networks, our algorithm finds

top-k list of largest degree nodes with few mistakes with the running time orders of magnitude

faster than the deterministic algorithms. In fact, for the configuration network model we have

proved that our algorithm has sublinear time complexity.

5.6 Conclusions 75

76 Chapter 5: Quick detection of nodes with large degrees

6

QUICK DETECTION OF NODES WITH

LARGE VALUES OF PAGERANK

6.1 Introduction

Personalized PageRank (PPR) or Topic-Sensitive PageRank [45] is a generalization of PageR-

ank [72], and is a stationary distribution of a random walk on an entity graph, with random

restart from a given personalization distribution. Originally designed for personalization of the

Web search results [45], PPR found a large number of network applications, e.g., in finding

related entities [32], graph clustering and finding local cuts [8, 10], link predictions in social

networks [59] and protein-protein interaction networks [77]. The application of PPR to the

person name disambiguation problem led to the first official place in the WePS 2010 challenge

[75]. In most of applications, e.g., in name disambiguation, one is mainly interested in detect-

ing top-k elements with the largest PPR and not in determining the exact values of PPR. This

work on detecting top-k elements is driven by the following two key observations:

Observation 1: Often it is extremely important to detect fast the top-k elements with the largest

PPR, while the exact order in the top-k list as well as the exact values of the PPR are by far not

so important. Application examples are given in the above mentioned references.

Observation 2: We may apply a relaxation that allows a small number of elements to be

placed erroneously in the top-k list. If the PPR values of these elements are of a similar order of

magnitude as in the top-k list, then such relaxation does not affect applications, but it enables

77

78 Chapter 6: Quick detection of nodes with large values of PageRank

us to take advantage of the generic “80/20 rule”: 80% of the result is achieved with 20% of

efforts.

We claim that the Monte Carlo approach naturally takes into account the two key obser-

vations. In [30] this approach was proposed for the computation of the standard PageRank.

The estimation of the convergence rate in [30] was very pessimistic. The implementation of

the Monte Carlo approach was improved in [39] and also applied there to PPR. Both [30] and

[39] only use end points of the random walks to compute the PageRank values. Moreover, [39]

requires extensive precomputation efforts and is very demanding in storage resource. In [18]

the authors have further improved the realization of the Monte Carlo method [39]. In [14] it is

shown that Monte Carlo estimation for large PageRank values requires about the same number

of operations as one iteration of the power iteration method. In this chapter we show that

the Monte Carlo algorithms require an incomparably smaller number of operations when our

goal is to detect a top-k list with k not large. In our test on the Wikipedia entity graph with

about 2 million nodes typically few thousands of operations are enough to detect the top-10

list with just two or three erroneous elements. Hence, we obtain a relaxation of the top-10 list

with just about 1-5% of operations required by one power iteration. Experimental results on

the Web graph appear to be even more striking. In the present work we provide theoretical

justifications for such remarkable efficiency. We would like to emphasize that the Monte Carlo

approach allows easy online and parallel implementation and does not require the knowledge

of the complete graph.

This chapter is mainly based on the article:

K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova and M. Sokol, “Quick detection for top-k

Personalized PageRank lists”, In the 8th International Workshop on Algorithms and Models for

the Web Graph, WAW 2011.

6.2 Monte Carlo methods 79

6.2 Monte Carlo methods

Given a directed or undirected graph connecting some entities, the Personalized PageRank

ppr(s, c) with a seed node s and a damping parameter α is defined as a solution of the following

equations

ppr(s, α) = αppr(s, α)P + (1− α)1T
s ,

n∑

j=1

pprj(s, α) = 1,

where 1T
s is a row unit vector with one in the sth entry and all the other elements equal to

zero, P is the transition matrix associated with the entity graph and n is the number of entities.

Equivalently, PPR can be given by [55]

ppr(s, α) = (1− α)1T
s [I− αP]−1. (6.1)

When the values of s and α are clear from the context we shall simply write ppr.

We note that PPR is often defined with a general distribution v in place of 1T
s . However,

typically v has a small support. Then, due to linearity, the problem of PPR with distribution v

reduces to computing PPR with distribution 1T
s [50].

In this work we consider two Monte Carlo algorithms. The first algorithm is inspired by the

following observation. Consider a random walk {Xt}t≥0 that starts from node s, i.e, X0 = s.

Let at each step the random walk terminate with probability 1 − α and make a transition

according to the matrix P with probability α. Then, the end-points of such a random walk has

the distribution ppr(s, α).

Algorithm 6.1 (MC End Point) Simulate m runs of the random walk {Xt}t≥0 initiated at node s.

Evaluate pprj as a fraction of m random walks which end at node j ∈ 1, . . . , n.

Next, we exploit the fact that the element (s, j) of the matrix [I−αP]−1 equals to the expected

number of visits to node j by the random walk initiated at state s with the run time geometrically

distributed with parameter c [14]. Thus, the formula (6.1) suggests the following estimator for

the PPR

^pprj(s, α) = (1− α)
1

m

m∑

r=1

Nj(s, r), (6.2)

where Nj(s, r) is the number of visits to state j during the run r of the random walk initiated at

node s and m is the number of runs. This leads to our second Monte Carlo algorithm.

Algorithm 6.2 (MC Complete Path) Simulate m runs of the random walk {Xt}t≥0 initiated at

node s. Evaluate pprj as the total number of visits to node j multiplied by (1− α)/m.

As outputs of the proposed algorithms we would like to obtain with high probability either

a top-k list of nodes or a top-k basket of nodes.

80 Chapter 6: Quick detection of nodes with large values of PageRank

Definition 6.1 The top-k list of nodes is a list of k nodes with largest PPR values arranged in a

descending order of their PPR values.

Definition 6.2 The top-k basket of nodes is a set of k nodes with largest PPR values with no

ordering required.

It turns out that it is beneficial to relax our goal and to obtain a top-k basket with a small

number of erroneous elements.

Definition 6.3 We call relaxation-l top-k basket a realization when we allow at most l erroneous

elements from top-k basket.

In the present work we aim to estimate the numbers of random walk runs m sufficient

for obtaining top-k list or top-k basket or relaxation-l top-k basket with high probability. In

particular, we demonstrate that ranking converges considerably faster than the values of PPR

and that a relaxation-l with quite small l helps significantly.

Throughout the chapter we illustrate the theoretical analysis with the help of experiments

on two large graphs: the Wikipedia entity graph and the Web graph. There is a number of rea-

sons why we have chosen the Wikipedia entity graph. Firstly, all elements of PPR can be com-

puted with high precision for the Wikipedia entity graph with the help of BVGraph/WebGraph

framework [26]. Secondly, the Wikipedia graph has already been used in several applications

related to finding top-k semantically related entities. Thirdly, since the Wikipedia entity graph

has a very small average distance [86], it represents a very challenging test for the Monte Carlo

methods. In just 3-4 steps the random walk can be very far from the starting node. Since the

Monte Carlo approach does not require the knowledge of a complete graph, we can apply our

algorithms to the actual Web graph. However, computing the exact values for the Pesonalized

PageRank of web pages is infeasible in our experiments. We can only obtain correct top-k lists

by Monte Carlo methods with very high probability as in [14, 39] using an ample number of

crawls.

Illustrating example with Wikipedia: Following our recent work [75] we illustrate PPR by ap-

plication to the person name disambiguation problem. One of the most common English names

is Jackson. We have selected three Jacksons who have entries in Wikipedia: Jim Jackson (ice

hockey), Jim Jackson (sportscaster) and Michael Jackson. Two Jacksons have even a common

given name and both worked in ice hockey, one as an ice hockey player and another as an ice

hockey sportscaster. In [15] we provide the exact lists of top-10 Wikipedia articles arranged ac-

cording to PPR vectors. We observe that an exact top-10 list identifies quite well its seed node.

Next, we run the Monte Carlo End Point method starting from each seed node. Notice that to

obtain a relaxed top-10 list with two or three erroneous elements we need different number of

6.2 Monte Carlo methods 81

runs for different seed nodes (50000 runs for Michael Jackson vs. 500 runs for Jim Jackson

(ice hockey)). Intuitively, the more immediate neighbours a node has, the larger number of

Monte Carlo steps is required. Indeed, if a seed node has many immediate neighbours then the

Monte Carlo method easily drifts away. In Figures 6.1-6.2.(a) we present examples of typical

runs of the Monte Carlo End Point method for the three different seed nodes. An example of

the Monte Carlo Complete Path method for the seed node Michael Jackson is given in Fig-

ure 6.2.(b). As expected, it outperforms the Monte Carlo End Point method. In the following

sections we shall quantify all the above qualitative observations.

Illustrating example with the Web: We have also tested our two Monte Carlo methods on

the Web. To see the difference in comparison with a “smaller” Wikipedia graph we have cho-

sen the official Web page of Michael Jackson http://www.michaeljackson.com and the Web

page of the hockey player statistics Jim Jackson hosted at http://www.hockeydb.com. In Fig-

ures 6.3.(a) and 6.3.(b) we present examples of typical runs of the Monte Carlo Complete Path

and End Point methods for, respectively, the Michael Jackson Web page and the Jim Jackson

Web page as a seed node. We have performed enough steps (6 × 105) to make sure that the

top-k lists of nodes are stabilized so that we could say with very high certainty that we know

the correct top-k lists. We observe that in comparison to the Wikipedia graph we need longer

runs. However, the amount of computational saving is still very impressive. Indeed, according

to even modest estimates, the size of the Web is more than 1010 pages. However, to get a good

top-k list for the Michael Jackson page we need about 105 steps with MC Complete Path. Thus,

we are using only 10−5 fraction of computational resources which are needed for just one power

iteration!

0 100 200 300 400 500
2

3

4

5

6

7

8

9

(a) Seed node Jim Jackson (ice

hockey).

0 1000 2000 3000 4000 5000
1

2

3

4

5

6

7

8

9

10

m

(b) Seed node Jim Jackson

(sportscaster).

Figure 6.1: The number of correctly detected elements by MC End Point for seed nodes with the same

name.

82 Chapter 6: Quick detection of nodes with large values of PageRank

0 1 2 3 4 5 6 7

x 10
4

1

2

3

4

5

6

7

8

9

10

m

(a) MC End Point

0 1 2 3 4 5 6 7

x 10
4

1

2

3

4

5

6

7

8

9

10

(b) MC Complete Path

Figure 6.2: The number of correctly detected elements for seed node Michael Jackson.

0 0.5 1 1.5 2 2.5 3

x 10
5

1

2

3

4

5

6

7

8

9

10

m

MC Complete Path
MC End Point

(a) Seed node Michael Jackson

Web page.

0 0.5 1 1.5 2 2.5 3

x 10
5

1

2

3

4

5

6

7

8

9

10

m

MC Complete Path
MC End Point

(b) Seed node Jim Jackson Web

page.

Figure 6.3: The number of correctly detected elements by MC End Point for two Web pages.

6.3 Variance based performance comparison and CLT approximations 83

6.3 Variance based performance comparison and CLT approxima-

tions

In the MC End Point algorithm the distribution of end points is multinomial [51]. Namely,

if we denote by Lj the number of paths that end at node j after m runs, then we have

P{L1 = l1, L2 = l2, . . . , Ln = ln} =
m!

l1!l2! · · · ln!
πl1
1 π

l2
2 · · ·πln

n . (6.3)

Thus, the standard deviation of the MC End Point estimator for the kth element is given by

σ(π̂k) = σ(Lk/m) =
1√
m

√

πk(1− πk). (6.4)

An expression for the standard deviation of the MC Complete Path is more complicated.

Define the matrix Z = (zij) = [I − αP]−1 and let Nj be the number of visits to node j by the

random walk with the run time geometrically distributed with parameter α. Further, denote

by Ei(·) a conditional expectation provided that the random walk starts at i = 1, . . . , n. From

(6.2), it follows that

σ(π̂k) =
(1− α)√

m
σ(Nk) =

(1− α)√
m

√

Es{N
2
k}− Ei{Nk}2. (6.5)

First, we recall that

Es{Nk} = zsk = πk(s)/(1− α). (6.6)

Then, from [52], it is known that Es{N
2
k} = [Z(2Zdg − I)]sk, where Zdg is a diagonal matrix

having as its diagonal the diagonal of matrix Z and [A]ik is the (i, k)th element of matrix A.

Thus, we write

Es{N
2
k} = 1T

sZ(2Zdg − I)1k =
1

1− α
π(s)(2Zdg − I)1k

=
1

1− α

(

1

1− α
πk(s)πk(k) − πk(s)

)

. (6.7)

Substituting (6.6) and (6.7) into (6.5), we obtain

σ(π̂k) =
1√
m

√

πk(s)(2πk(k) − (1− α) − πk(s)). (6.8)

Since πk(k) ≈ 1− α, we can approximate σ(π̂k) with

σ(π̂k) ≈
1√
m

√

πk(s)((1 − α) − πk(s)).

Comparing the latter expression with (6.4), we see that MC End Point requires approximately

1/(1 − α) walks more than MC Complete Path. This was expected as MC End Point uses only

84 Chapter 6: Quick detection of nodes with large values of PageRank

information from end points of the random walks. We would like to emphasize that 1/(1 − α)

can be a significant coefficient. For instance, if α = 0.85, then 1/(1− α) ≈ 6.7.

Now, for the MC End Point we can use CLT-type result given e.g. in [76]:

Theorem 6.1 [76] For large m and
∑n

i=1 li = m, a multivariate normal density approximation

to the multinomial distribution (6.3) is given by

f(l1, l2, . . . , ln) =

(

1

2πm

)(n−1)/2

×
(

1

nπ1π2 · · ·πn

)1/2

exp

{

−
1

2

n∑

i=1

(li −mπi)
2

mπi

}

. (6.9)

For the MC Complete Path, we note that N(s, r) = (N1(s, r), . . . ,Nn(s, r)), r = 1, 2, . . . ,

form a sequence of i.i.d. random vectors. Hence, we can apply the multivariate central limit

theorem. Denote

N̂(s,m) =
1

m

m∑

r=1

N(s, r). (6.10)

Theorem 6.2 Let m go to infinity. Then, we have the following convergence in distribution to a

multivariate normal distribution

√
m

(

N̂(s,m) − N̄
) D−→ N (0, Σ(s)),

where N̄(s) = 1T
sZ and Σ(s) = E{NT (s, r)N(s, r)} − N̄T (s)N̄(s) is a covariance matrix, which can

be expressed as

Σ(s) = Ω (s)Z+ ZTΩ (s) −Ω (s) − ZT1s1
T
sZ. (6.11)

where the matrix Ω(s) = {ωjk(s)} is defined by

ωjk(s) =

{
zsj, if j = k,

0, otherwise.

Proof The convergence follows from the standard multivariate central limit theorem. We only

need to establish the formula for the covariance matrix. The covariance matrix can be expressed

as follows [69]:

Σ(s) =

n∑

j=1

zsj (∆(j)Z + Z∆(j) − ∆(j)) − ZT1s1
T
sZ, (6.12)

where ∆(j) is defined by

δkl(j) =

{
1, if k = l = j,

0, otherwise.

Let us consider
∑n

j=1 zsj∆(j)Z in component form.

n∑

j=1

zsj

n∑

ϕ=1

δlϕ(j)zϕk =

n∑

j=1

zsjδljzjk = zslzlk =

n∑

j=1

ωlj(s)zjk,

6.3 Variance based performance comparison and CLT approximations 85

and it implies that
∑n

j=1 zsj∆(j)Z = Ω(s)Z. Symmetrically,
∑n

j=1 zsjZ∆(j) = ZTΩ(s). Equality
∑n

j=1 zsj∆(j) = Ω(s) can be easily established. This completes the proof.

We would like to note that in both cases we obtain the convergence to rank deficient (sin-

gular) multivariate normal distributions.

Illustrating example with the Web (cont.): In Table 1 we provide means and standard devia-

tions for the number of hits of MC End Point for top-10 nodes with the Jim Jackson Web page

as the seed node for the number of runs m = 104 and m = 105. We observe that the means are

very close to each other and the standard deviations are significant with respect to the values of

the means. This shows that a direct application of the central limit theorem and the confidence

intervals technique will lead to inadequate stopping criteria. In the ensuing sections we discuss

metrics and stopping criteria which are much more efficient for the present problem.

Table 6.1: MC End Point for the Jim Jackson Web page: means and Standard Deviations.

nr. runs 10000 100000

rank mean std mean std

1 0.79104 0.012531 0.79748 0.004834

2 0.006329 0.001622 0.006202 0.000569

3 0.005766 0.001075 0.005885 0.000354

4 0.006365 0.002103 0.006561 0.000704

5 0.005183 0.001664 0.005518 0.00055

6 0.005541 0.003766 0.005801 0.001257

7 0.007617 0.003633 0.006243 0.001266

8 0.007566 0.012384 0.005854 0.003969

9 0.006186 0.001468 0.006182 0.000547

10 0.00672 0.003492 0.006223 0.001132

86 Chapter 6: Quick detection of nodes with large values of PageRank

6.4 Convergence based on order

For the two introduced Monte Carlo methods we aim to calculate or estimate a probability

that after a given number of steps we correctly obtain top-k list or top-k basket. These are the

probabilities P{L1 > · · · > Lk > Lj,∀j > k} and P{Li > Lj,∀i, j : i ≤ k < j} respectively, where

Lk, k ∈ 1, . . . , n, can be either the Monte Carlo estimates or the ranked elements or their CLT

approximations. We refer to these probabilities as the ranking probabilities and we refer to

complementary probabilities as misranking probabilities [21]. Because of combinatorial explo-

sion, exact calculation of these probabilities is infeasible in non-trivial cases. Thus, we propose

estimation methods based on Bonferroni inequality. This approach works for reasonably large

values of m.

Drawing correctly the top-k basket is defined by the event
⋂

i≤k<j{Li > Lj}. Applying the Bon-

ferroni inequality P {
⋂

s As} ≥ 1 −
∑

s P
{
Ās

}
to this event, we obtain P

{
⋂

i≤k<j{Li > Lj}
}

≥
1 −

∑
i≤k<j P

{
{Li > Lj}

}
. Equivalently, we can write the following upper bound for the mis-

ranking probability

1− P

⋂

i≤k<j

{Li > Lj}

≤

∑

i≤k<j

P {Li ≤ Lj} . (6.13)

We note that the upper bound for the misranking probability is very useful, because it will

provide a guarantee on the performance of our algorithms. Since in the MC End Point method

the distribution of end points is multinomial (see (6.3)), for small m we can directly use the

formula

P{Li ≤ Lj} =
∑

li+lj≤m, li≤lj

m!

li!lj!(m − li − lj)!
πli
i π

lj
j (1− πi − πj)

m−li−lj . (6.14)

For large m it is computationally intractable. Hence, we now turn to the CLT approximations

for the both MC methods. Denote by Lj the original number of hits at node j and by Yj its

CLT approximation. First, we obtain a CLT based expression for the misranking probability

for two nodes P {Yi ≤ Yj}. Since the event {Yi ≤ Yj} coincides with the event {Yi − Yj ≤ 0} and

a difference of two normal random variables is again a normal random variable, we obtain

P {Yi ≤ Yj} = P {Yi − Yj ≤ 0} = 1−Φ(
√
mρij), where Φ(·) is the cumulative distribution function

for the standard normal random variable and

ρij =
E[Yi] − E[Yj]

√

σ2(Yi) − 2cov(Yi, Yj) + σ2(Yj)
.

For large m, the above expression can be bounded by P {Yi ≤ Yj} ≤
1√
2π

e−
ρ2ij
2

m. Since the

6.4 Convergence based on order 87

misranking probability for two nodes P {Yi ≤ Yj} decreases when j increases, we can write

1− P

⋂

i≤k<j

{Yi > Yj}

≤

k∑

i=1

j∗∑

j=k+1

P {Yi ≤ Yj}+

n∑

j=j∗+1

P {Yi ≤ Yj∗}

 ,

for some j∗. This gives the following upper bound

1− P

⋂

i≤k<j

{Yi > Yj}

≤

k∑

i=1

j∗∑

j=k+1

(1−Φ(
√
mρij)) +

n − j∗√
2π

k∑

i=1

e−
ρ2
ij∗

2
m. (6.15)

Since we have a finite number of terms in the right hand side of expression (6.15), we

conclude that

Theorem 6.3 The misranking probability of the top-k basket goes to zero with geometric rate,

1− P
{
⋂

i≤k<j{Yi > Yj}
}
≤ Cam, for some C > 0, a ∈ (0, 1).

We note that for the multinomial distribution, ρij has a simple expression

ρij =
πi − πj

√

πi(1− πi) + 2πiπj + πj(1− πj)
.

For MC Complete Path σ2(Yi) = Σii(s) and cov(Yi, Yj) = Σij(s) where Σii(s) and Σij(s) can be

calculated by (6.11). Similarly the Bonferroni inequality can be applied to the top-k list (see

[15]).

88 Chapter 6: Quick detection of nodes with large values of PageRank

6.5 Solution relaxation

In this section we analytically evaluate the relation between the number of experiments m

and the average number of correctly identified top-k nodes. We use the relaxation by allowing

the latter number to be smaller than k. We aim to mathematically justify the observed “80/20

behavior” of the algorithm: 80 percent of the top-k nodes are identified correctly in a very short

time.

Let M0 be a number of correctly identified elements in the top-k basket. In addition, denote

by Ki the number of nodes ranked not lower than i. Formally, Ki =
∑

j6=i 1{Lj ≥ Li}, i =

1, . . . , k, where 1{·} is an indicator function. Placing node i in the top-k basket is equivalent

to the event {Ki < k}, and thus E(M0) = E
(∑k

i=1 1{Ki < k}
)

=
∑k

i=1 P(Ki < k). Direct evalua-

tion of P(Ki < k) is computationally intractable in realistic scenarios, even with Markov chain

representation techniques [36]. Thus, we use approximation and Poissonisation.

The End Point algorithm is merely an occupancy scheme where each independent experi-

ment (random walk) results in placing one ball (visit) to an urn (node of the graph). Under

Poissonisation [42], we assume that the number of random walks is a Poisson random variable

M with given mean m. Because the number of hits in the Poissonised model is different from

the number of original hits, we use the notation Yi instead of Lj for the number of visits to page

j. Note that Yj is a Poisson random variable with parameter mπj and is independent of Yi for

i 6= j. The imposed independence of Yj’s greatly simplifies the analysis.

Next to Poissonisation, we also apply approximation of M0 by a closely related measure M1:

M1 = k −
∑k

i=1(K
′
i/k), where K ′

i denotes the number of pages outside the top-k list that are

ranked higher than node i = 1, . . . , k. Note that K ′
i is the number of mistakes with respect to

node i that lead to errors in the identified top-k list. Then the sum in the definition of M1 is

simply the average number of such mistakes with respect to each of the top-k nodes.

The measure M1 is more tractable than M0 because its average value E(M1) = k− 1
k

∑k
i=1 E(K

′
i)

involves only the average values of K ′
i and not their distributions, and because K ′

i depends only

on the nodes outside the top-k list. Then, we can make use of the following convenient measure

µ(y):

µ(y) := E(K ′
i |Yi = y) =

n∑

j=k+1

P(Yj ≥ y), i = 1, . . . , k,

which implies E(K ′
i) =

∑
∞

y=0 P(Yi = y)µ(y), i = 1, . . . , k. Therefore, we obtain the following

expression for E(M1):

E(M1) = k−
1

k

∞∑

y=0

µ(y)

k∑

i=1

P(Yi = y). (6.16)

Illustrating example with Wikipedia (cont.): Let us calculate E(M1) for the top-10 basket

6.5 Solution relaxation 89

corresponding to the seed node Jim Jackson (ice hockey). Using formula (6.16), for m =

8 × 103; 10 × 103; 15 × 103 we obtain E(M1) = 7.75; 9.36; 9.53. It took 2000 runs to move from

E(M1) = 7.75 to E(M1) = 9.36, but then 5000 runs is needed to advance from E(M1) = 9.36 to

E(M1) = 9.53. We see that we obtain quickly 2-relaxation or 1-relaxation of the top-10 basket

but then we need to spend a significant amount of effort to get the complete basket. This is

indeed in agreement with the Monte Carlo runs (see e.g., Figure 6.1). In the next theorem we

explain this “80/20 behavior” and provide indication for the choice of m.

Theorem 6.4 In the Poisonized End Point Monte Carlo algorithm, if all top-k nodes receive at least

y = ma > 1 visits and πk+1 = (1− ε)a, ε > 1/y, then

(i) to satisfy E(M1) > (1− β)k it is sufficient to have

n∑

j=k+1

(mπj)
y

y!
e−mπj

[

1+

∞∑

l=1

(mπj)
l

(y+ 1) · · · (y + l)

]

< βk.

(ii) Statement (i) is always satisfied if m > 2a−1ε−2[− log(επk+1βk)].

Proof (i) By definition of M1, to ensure that E(M1) ≤ (1−β)k it is sufficient that E(K ′
i |Yi) ≤ βk

for each Yi ≥ y and each i = 1, . . . , k. Now, (i) follows directly since for each Yi ≥ y we have

E(K ′
i |Yi) ≤ µ(y) and by definition of µ(y) under Poissonisation we have

µ(y) =

n∑

j=k+1

(mπj)
y

y!
e−mπj

[

1+

∞∑

l=1

(mπj)
l

(y + 1) · · · (y+ l)

]

. (6.17)

To prove (ii), using (6.17) and the conditions of the theorem, we obtain:

µ(y) ≤
n∑

j=k+1

(mπj)
y

y!
e−mπj

[

1+ (1− ε) + (1− ε)2 + · · ·
]

=
1

ε

n∑

j=k+1

(mπj)
y

y!
e−mπj =

1

ε

n∑

j=k+1

πj

myπy−1
j

y!
e−mπj

{1}

≤ 1

ε

myπ
y−1
k+1

y!
e−mπk+1

{2}

≤ 1

ε

1

πk+1

(

mπk+1

y

)y

ey−mπk+1

=
1

επk+1
[(1− ε)eε]ma . (6.18)

Here {1} holds because
∑

j≥k+1 πj ≤ 1 and (mπj)
y−1/(y−1)! exp{−mπj} is maximal at j = k+1.

The latter follows from the conditions of the theorem: mπk+1 = (1−ε)y ≤ y−1 when ε > 1/y.

In {2} we use that y! ≥ yy/ey.

Now, we want the last expression in (6.18) to be smaller than βk. Solving for m, we get:

ma(log(1− ε) + ε) < log(επk+1βk).

90 Chapter 6: Quick detection of nodes with large values of PageRank

Note that the expression under the logarithm on the right-hand side is always smaller than 1

since β < 1, ε < 1 and kπk+1 < 1. Using (log(1 − ε) + ε) = −
∑

∞

k=2 ε
k/k ≥ −ε2/2, we obtain

(ii).

From (i) we can already see that the 80/20 behavior of E(M1) (and, respectively, E(M0))

can be explained mainly by the fact that µ(y) drops drastically with y because the Poisson

probabilities decrease faster than exponentially.

The bound in (ii) shows that m should be roughly of the order 1/πk. The term ε−2 is not

defining since ε does not need to be small. For instance, by choosing ε = 1/2 we can filter

out the nodes with PPR not higher than πk/2. This often may be sufficient in applications.

Obviously, the logarithmic term is of a smaller order of magnitude.

We note that the bound in (ii) is quite rough because in its derivation we replaced πj, j > k,

by their maximum value πk+1. In realistic examples, m can be chosen much smaller than in (ii)

of Theorem 6.4. In fact, in our examples good top-k baskets are obtained if the algorithm is

terminated at the point when for some y, each node in the current top-k basket has received at

least y visits while the rest of the nodes have received at most y − d visits, where d is a small

number, say d = 2. Such choice of m satisfies (i) with reasonably small α. Without a formal

justification, this stopping rule can be understood since we have mπk+1 = ma(1−ε) ≈ ma−d,

which results in a small value of µ(y).

6.6 Conclusions 91

6.6 Conclusions

We have analyzed two Monte Carlo type methods (MC End Point and MC Complete Path) for

quick detection of top-k lists or baskets of nodes with largest values of Personalized PageRank.

Both methods have light complexity and can be easily implemented in a parallel fashion. We

have demonstrated that MC Complete Path is the superior method with respect to MC End

Point. Our analysis emphasizes that in this setting it is better to deal with order than with the

numerical values. Finally, we have shown that allowing a couple of mistakes in the top-k list or

basket significantly reduces computation time.

92 Chapter 6: Quick detection of nodes with large values of PageRank

7

ALPHA CURRENT FLOW CENTRALITY

7.1 Introduction and summary of the results

A class of centrality measures called betweenness centralities reflects degree of participation

of edges or nodes in communication between different parts of the network. The first notion

of betweenness centrality was introduced by Freeman [41]. Let s, t ∈ V be a pair of nodes

in an undirected graph G = (V, E). (In the present chapter we restrict our consideration to

undirected graphs.) We denote |V | = n, |E| = m, and let dv be the degree of node v. Let σs,t

be the number of shortest paths connecting nodes s and t and denote by σs,t(e) the number of

shortest paths connecting nodes s and t passing through edge e. Then betweenness centrality

of edge e is calculated as follows:

CB(e) =
1

n(n − 1)

∑

s,t∈V

σs,t(e)

σs,t
. (7.1)

Computational complexity of the best known algorithm for computing the betweenness in (7.1)

is O(mn) [28]. This limits its applicability for large graphs.

One shortcoming of the betweenness centrality in (7.1) is that it takes into accounts only

the shortest paths, ignoring the paths that might be one or two steps longer, while the edges on

such paths can be important for communication processes in the network. In order to take such

paths into account, Newman [70] and Brandes and Fleischer [29] introduced the current flow

betweenness centrality (CF-betweenness). In [70, 29] the graph is regarded as an electrical

network with edges being unit resistances. The CF-betweenness of an edge is the amount of

current that flows through it, averaged over all source-destination pairs, when one unit of

current is induced at the source, and the destination (sink) is connected to the ground. This

93

94 Chapter 7: Alpha current flow centrality

exploits the well known relation between electrical networks and reversible Markov chains, see

e.g., [5, 38].

The computational difficulty of Betweenness and the CF-betweenness is that the compu-

tations must be done over the set of all source-destination pairs. The best previously known

computational complexity for the CF-betweenness is O(I(n − 1) +mn logn) where I(n − 1) is

the complexity of the inversion of matrix of dimension n− 1.

In the present chapter we introduce and analyse new betweenness centrality measures: α-

current flow betweenness (α-CF betweenness) and its truncated version. The main purpose of

these new measures is to bring down the high cost of the CF-betweenness computation. Our

proposed measures are very close in performance to the CF-betweenness, but they are compa-

rable to the PageRank algorithm [31] in their modest computational complexity. Our goal is to

provide and analyze efficient algorithms for computing α-CF betweenness and truncated α-CF

betweenness, and to compare the α-CF betweenness to other centrality measures.

As we shall see, the new centrality measures are particularly well suited for detection of

network vulnerability. The betweenness centrality measures can also be used for classification

purposes [63].

This chapter is mainly based on the article:

K. Avrachenkov, N. Litvak, V. Medyanikov and M. Sokol, “Alpha current flow betweenness cen-

trality”, In the 10th International Workshop on Algorithms and Models for the Web Graph,

WAW 2013.

7.2 Alpha current flow betweenness 95

7.2 Alpha current flow betweenness

We view the graph G as an electrical network where each edge has resistance α−1, and each

node v is connected to the ground node, node n + 1, by an edge with resistance (1 − α)−1d−1
v .

This is in the spirit of PageRank. Indeed, the current (probability flow) is inversely proportional

to the resistance. Thus, the fraction α of the current from node v flows to the network, while

fraction (1 − α) of the current is directed to the sink. Since the graph is undirected, we use

a convention that (v,w) and (w, v) represent the same arc in E, but depending on the chosen

direction the current along this arc is considered to be positive or negative.

Assume that a unit of current is supplied to a source node s ∈ V , and there is a destination

node t ∈ V connected to the ground. Let ϕ
(s,t)
v denote the absolute potential of node v ∈ V , if

s is the source and t is the destination. Assume without loss of generality that s = 1 and t = n

(ϕ
(1,n)
n = ϕ

(1,n)
n+1 = 0, i.e., we set the ground potential to zero). The vector of absolute potentials

of the other nodes ϕ(1,n) = [ϕ
(1,n)
1 , ..., ϕ

(1,n)
n−1]

T is a solution of the following system of equations

(Kirchhoff’s current law):

[D̃ − αÃ]ϕ(1,n) = b̃, (7.2)

where D̃ and Ã are the degree and adjacency matrices of the graph without node n and b̃ =

[1, 0, ..., 0]T , see e.g., [29].

In the following theorem we demonstrate that we do not need to solve a separate linear

system for each source-destination pair, it suffies to invert the coefficient matrix [D − αA].

Theorem 7.1 The voltage drop along the edge (v,w) is given by

ϕ
(s,t)
v −ϕ

(s,t)
w = (cs,v − cs,w) +

cs,t

ct,t
(ct,w − ct,v), (7.3)

where (cv,w)v,w∈V , are the elements of the matrix C = [D− αA]−1.

Proof: Assume again without loss of generality that s = 1 and t = n. The matrix [D − αA] can

be written in the following block form

D − αA =

[

D̃ − αÃ −αã

−αãT dn

]

, with ã = [a1,n, a2,n, . . . , an−1,n]
T .

Then, divide accordingly the elements of the inverse matrix

C = [D − αA]−1 =

[

C̃ c̃

c̃T cn,n

]

.

Writing the relation [D − αA]C = I in the block form yields

[D̃ − αÃ]C̃− αãc̃T = I, (7.4)

96 Chapter 7: Alpha current flow centrality

[D̃− αÃ]c̃ − αãc̃n,n = 0. (7.5)

Premultiplying equation (7.4) by [D̃− αÃ]−1, we obtain

[D̃ − αÃ]−1 = C̃− α[D̃ − αÃ]−1ãc̃T . (7.6)

And premultiplying (7.5) by [D̃ − αÃ]−1, we obtain

α[D̃ − αÃ]−1ã =
1

cn,n
c̃. (7.7)

Combining both equations (7.6) and (7.7) gives

[D̃− αÃ]−1 = C̃−
1

cn,n
c̃c̃T ,

and hence ϕ(1,n) = [D̃− αÃ]−1b̃ = C̃∗,1 −
c1,n
cn,n

c̃. Thus, we can write

ϕ
(1,n)
v −ϕ

(1,n)
w = (cv,1 − cw,1) +

c1,n

cn,n
(cw,n − cv,n).

The above expression is symmetric and can be rewritten for any source-target pair (s, t). That

is,

ϕ
(s,t)
v −ϕ

(s,t)
w = (cv,s − cw,s) +

cs,t

ct,t
(cw,t − cv,t).

Furthermore, since matrix C is symmetric for undirected graphs, we can rewrite the above

equation as

ϕ
(s,t)
v −ϕ

(s,t)
w = (cs,v − cs,w) +

cs,t

ct,t
(ct,w − ct,v),

which completes the proof. �

The potentials ϕ
(s,t)
v , v, s, t ∈ V , have a clear probabilistic interpretation. Take again s = 1

and t = n. Then from (7.2) we readily obtain

ϕ
(1,n)
v = eTv [D̃ − αÃ]−1b̃ = eTv [I− αP̃]−1D̃−1b̃, (7.8)

where ev is a v-th standard basis column vector, and P̃ is the transition probability matrix for

a simple random walk on G with absorption in n. Compare this to the well-known expression

for the Personalized PageRank vector π(v) = (π1(v), . . . , πn(v)) with teleportation preference

concentrated in v and damping factor α: π(v) = (1 − α)eTv [I − αP]−1. Note that the vector

π̃(v) = (1−α)eTv [I− αP̃]−1 is very similar to π(v), except it nullifies the contribution of node n.

Now, recall that b̃ = (1, 0, . . . , 0)T to obtain

ϕ
(1,n)
v = (1− α)−1π̃1(v)d

−1
1 .

7.2 Alpha current flow betweenness 97

Furthermore, let 1 be a column vector of ones. Recall that the PageRank vector with uniform

teleportation can be written as π = 1−α
n

1T [I− αP]−1, and define a similar vector π̃ = 1−α
n

1T [I−

αP̃]−1. Then ∑

v∈V

ϕ
(1,n)
v = n(1− α)−1π̃1d

−1
1 .

It is well-known (see e.g., [43] and references therein) and is also confirmed by our experiments

that the PageRank of a node in an undirected graph is strongly correlated to the degree of the

node. Thus, with any choice of the source, the sum of the potentials is of similar magnitude,

except for the cases when the destination node has a large contribution into the PageRank mass

of the source.

Finally, we note that the source node has the highest potential, and from [5, Chapter 3, Sec-

tion 3] we find

ϕ
(1,n)
1 = [P(random walk returns to node 1 before absorption)]−1

= E(# returns to node 1 before absorption).

Now we are ready to define α-CF betweenness. The current I
(s,t)
e through edge e = (v,w) is

equal to α(ϕ
(s,t)
v −ϕ

(s,t)
w). Let

x
(s,t)
e = |ϕ

(s,t)
v −ϕ

(s,t)
w |, (v,w) ∈ E,

be the difference of potentials, that determines the absolute value of the current on the edge.

The α-CF betweenness of edge e is defined by

xαe =
1

n(n − 1)

∑

s,t∈V,s6=t

x
(s,t)
e , e ∈ E. (7.9)

Further, for each node v ∈ V its α-CF betweenness is defined as the sum of the α-CF between-

ness scores of its adjacent edges:

α-CF betweenness(v) =
∑

(v,w)∈E

xα(v,w), v ∈ V. (7.10)

With this definition, the node is central if a relatively large amount of current flows from this

node to the network. This is in accordance to the original CF-betweenness of [29, 70], except

we introduced the additional sink ground node n + 1. This mitigates the computational issues

because the original CF-betweenness requires the inversion of the ill-conditioned matrix [D̃−Ã],

while for computing α-CF betweenness we need to invert the matrix [D − αA], which is a

well posed problem, and has many efficient solutions (e.g., power iteration and Monte Carlo

methods). In fact, as we shall show below, we need to obtain just a few rows of the inverse

matrix [D−αA]−1. In the rest of the chapter we will discuss the computation and the properties

of the α-CF betweenness.

98 Chapter 7: Alpha current flow centrality

7.3 Computation of α-CF betweenness

Due to the presence of the auxiliary node n+ 1, the value of x
(s,t)
e on the right-hand side of

(7.9) can be computed efficiently with high precision for any source-destination pair. However,

the summation over all n(n − 1) pairs is a problem of prohibitive computational complexity

even for graphs of modest size. The solution is to perform the computations for sufficiently

many source-destination pairs. Since all source-destination pairs contribute equally in (7.9) we

choose to sample them uniformly at random. This results in the next algorithm for computing

the α-CF betweenness.

Algorithm 1.

1. Select a set of pairs of nodes (si, ti), i = 1, ...,N, uniformly at random;

2. For each si and ti, i = 1, ...,N compute the rows csi,∗, cti,∗ (this can be done either by

power iteration or by Monte Carlo algorithm);

3. For each edge e = (v,w) and each pair (si, ti), use (7.3) to compute

x
(si,ti)
e = |ϕ

(si,ti)
v −ϕ

(si,ti)
w |.

4. Average over source-destination pairs

x̄αe =
1

N

N∑

i=1

x
(si,ti)
e .

Since we chose the pairs (si, ti) uniformly at random then for every edge e, x̄αe is just a

sample average where all values are between zero and one. Then using the standard approach

for the analysis of the series of independent random variables we have the following result.

Theorem 7.2 Algorithm 1 approximates the alpha current flow betweenness in

O(m log(n)ε−2 log(ε)/ log(α)) time to within an absolute error of ε with arbitrarily high fixed

probability.

Proof: In addition to the proof of Theorem 3 in [29] we just need to note that we can compute

Personalized PageRank with precision ε in O(log(ε)/ log(α)) power iterations. �

We note that with fixed values of ε and α the computational complexity of Algorithm 1 is

O(m log(n)), which is much better than O(mn) for the standard betweenness centrality [28]

and also than O(I(n − 1) +mn logn) for the CF-betweenness [29, 70].

7.4 Truncated α-CF betweenness 99

7.4 Truncated α-CF betweenness

In the experiments we noticed that the values x
(s,t)
e have a high variance, which results in

poor precision when evaluating xαe . A closer analysis revealed that the edges adjacent to the

source s receive large values of x
(s,t)
e , especially when e = (v, s), where v has degree 1, so

(v, s) is its only edge, and s has a large degree. This can be explained using the random walk

interpretation. Consider a PageRank-type random walk on G. At each node, with probability α,

the random walk traverses a randomly chosen edge of this node, and with probability 1 − α it

jumps to the sink, node n+ 1. Denote by TB the number of steps of the random walk needed to

hit set B. It follows from Proposition 10 of [5, Chapter 3] that ϕ
(s,t)
v /ϕ

(s,t)
s = Pv(T{s} < T{t,n+1}),

where Pv(·) is a conditional probability given that the random walk starts at v. Hence, if s is

the only neighbor of v then ϕ
(s,t)
v /ϕ

(s,t)
s = α, the probability of no absorption before reaching

s. Thus, |ϕ
(s,t)
s − ϕ

(s,t)
v | = (1 − α)ϕ

(s,t)
s , which can be large if e.g. α = 0.8 because ϕ

(s,t)
s is the

largest potential in the network. In contrast, the original CF-betweenness corresponds to α = 1,

implying that the current in (v, s) is zero.

This prompts us to introduce the truncated version of α-CF betweenness where for each

edge (v,w) we only take into account the scores x
(s,t)

(v,w)
if v,w 6= s. In Fig. 7.1 we present

log-linear plots of the empirical complementary distribution function of x
(s,t)

(v,w)
over all pairs

(s, t) (solid line), and its truncated version (dashed line). The plots are given for two edges in

the Dolphin social network described in Section 7.5 below. Nodes 1 and 36 are central in the

network, so the high α-CF betweenness of (1,36) is expected. Node 60 has degree 1, so edge

(32,60) gains an unwanted high betweenness in the non-truncated version.

Figure 7.1: The number of pairs s, t with x
(s,t)

(v,w)
> x over all pairs (s, t) (solid line) and only pairs with

v,w 6= s (dashed line).

Since the truncated α-CF betweenness gives lower scores to the edges connected to nodes

of degree 1, one can expect that it has a higher correlation with CF-betweenness, especially

for middle-range values of α. This is confirmed below in Fig. 7.2. Moreover, the truncated

version removes outliers, and does not have large spread in values, thus standard statistical

procedures, based on the Central Limit Theorem can be applied. Also, because of the smaller

100 Chapter 7: Alpha current flow centrality

variance, Algorithm 1 achieves a desired precision with a smaller sample of source-destination

pairs.

7.5 Datasets 101

7.5 Datasets

We consider the four graphs described below.

Dolphin social network. This small graph represents a social network of frequent associa-

tions between 62 dolphins in a community living off Doubtful Sound, New Zealand [61].

Graph of VKontakte social network. We have collected data from a popular Russian social

network VKontakte. We were considering subgraph representing one of the connected compo-

nents of people who stated that they were studying at Applied Mathematics - Control Processes

Faculty at the St. Petersburg State University in different years. We ran the breadth-first search

(BFS) algorithm starting at one specific node of the network and then anonymized the obtained

users’ data leaving only information about connections between people. Collected network con-

sists of 2092 individuals out of total 8859 denoted the specified faculty in the Education field.

Watts-Strogatz model. As an artificial example, we used a random graph generated by

the Watts-Strogatz model. We have chosen this model as it combines high clustering and short

average path length, thus different centrality measures give very different results on this graph.

For other random models considered (Erdös-Rényi and Barabási-Albert) all measures are highly

correlated and behave very similarly to each other.

Enron graph. Enron email communication network is a well known test dataset. It covers

all the email communication within a dataset of around half million emails between Enron’s

employees. The node are e-mail addresses, and an edge appears if an e-mail message was sent

from one e-mail to another. Although this graph is small compared to, say, web or Twitter

samples, it is already prohibitively large for computing the CF-betweenness in its original form.

|V | |E| 〈deg(v)〉 diam(G) Cclustering 〈d(u, v)〉

Dolphin social network 62 159 5.13 8 0.259 3.357

VKontakte AMCP social graph 2092 14816 14.16 14 0.338 4.598

Watts-Strogatz 1000 6000 12.00 6 0.422 3.713

(n = 1000, k = 12, p = 0.150)

Enron 36692 183831 10.02 11 0.4970 ≈ 4.8

Table 7.1: Datasets characteristics.

102 Chapter 7: Alpha current flow centrality

7.6 Numerical results for α-CF betweenness

To begin with, we compare the two versions of α-CF betweenness (truncated and without

truncation) to the CF-betweenness scores defined as in [29, 70]. Fig. 7.2 presents the results

for the three smaller graphs, in which the latter measure could be computed. As a correlation

measure we use the Kendall tau rank correlation. We observe that the truncated version is better

Figure 7.2: Correlations between α-CF betweenness and truncated α-CF betweenness with CF-

betweenness as a function of α.

correlated with the CF-betweenness when α is not very close to one. As explained above, this is

because the high probability of absorption in the auxiliary node n+1 results in a relatively high

current in the edges connected to the source, which is not necessarily the case if absorption is

only possible in the destination node.

Next, we demonstrate that we can compute α-CF betweenness in the Enron graph, where

the computation of CF-betweenness is infeasible (at least, with our means). We have evaluated

α-CF betweenness, non-truncated and truncated, with α = 0.98. We have run Algorithm 1

using N = 20 · 106 source-destination pairs. In Fig. 7.3 we plot the complementary distribution

function in log-linear scale, of the score x0.98e across the edges.

Note that distribution over edges (the left plot in Fig. 7.3) does not have a large spread of

values, except one outlier edge that connects two most important hubs. Since the weights of

the edges are comparable, it is to be expected that in this graph the nodes of large degrees are

also the ones with highest betweenness. Indeed, the Kendall’s tau correlation between α-CF

betweenness and degree of the nodes turns out to be 0.808, which is higher than in the three

smaller graphs. The reason can be either the graph size or its structure. In future research we

7.6 Numerical results for α-CF betweenness 103

(a) 104 · x0.98e for edges e ∈ E. (b) α-CF betweenness (v) for v ∈ V.

Figure 7.3: Distribution of α-CF betweenness scores in the Enron graph, truncated (dashed line) and

not truncated (solid line). On the x-axis are the values of α-CF betweenness, on the y-axis the number

of edges/nodes with the score larger than x.

will investigate how the CF-betweenness score, e.g. its maximum value across the edges, scales

with the graph size in graphs with power law degrees.

We further present correlations between our proposed measures and other measures of

betweenness. These are computed on smaller graphs where we could obtain exact values of

all presented measures, see Tables 7.2–7.4. For completeness, we have also included PageRank

(PR) computed with α = 0.85 and a distance-base centrality measure – Closeness centrality:

CC(v) =
n − 1

∑
w∈V,w 6=v d(v,w)

,

where d(v,w) is the graph distance between v and w. Betweenness (Between.) is computed as

in (7.1).

Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.930 0.548 0.665 0.737 0.864 0.855 0.769

PageRank 0.930 1.000 0.458 0.658 0.733 0.872 0.827 0.757

Closeness 0.548 0.458 1.000 0.578 0.575 0.515 0.573 0.591

Between. 0.665 0.658 0.578 1.000 0.829 0.749 0.759 0.828

CF 0.737 0.733 0.575 0.829 1.000 0.798 0.820 0.939

αCF(0.8) 0.864 0.872 0.515 0.749 0.798 1.000 0.925 0.838

αCF-tr(0.8) 0.855 0.827 0.573 0.759 0.820 0.925 1.000 0.876

αCF(0.98) 0.769 0.757 0.591 0.828 0.939 0.838 0.876 1.000

Table 7.2: Kendall tau for centrality measures in Dolphin social network.

Note that α-CF betweenness is strongly correlated with CF-betweenness. The Closeness

Centrality does not agree well with the CF-betweenness, even the PageRank and the degrees

104 Chapter 7: Alpha current flow centrality

Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.655 0.679 0.521 0.545 0.659 0.668 0.599

PageRank 0.655 1.000 0.375 0.662 0.717 0.833 0.811 0.766

Closeness 0.679 0.375 1.000 0.382 0.356 0.424 0.445 0.395

Between. 0.521 0.662 0.382 1.000 0.761 0.760 0.749 0.778

CF 0.545 0.717 0.356 0.761 1.000 0.812 0.833 0.917

αCF(0.8) 0.659 0.833 0.424 0.760 0.812 1.000 0.938 0.878

αCF-tr(0.8) 0.668 0.811 0.445 0.749 0.833 0.938 1.000 0.903

αCF(0.98) 0.599 0.766 0.395 0.778 0.917 0.878 0.903 1.000

Table 7.3: Kendall tau for centrality measures in the social graph VKontakte AMCP.

Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.891 0.462 0.526 0.610 0.643 0.581 0.612

PageRank 0.891 1.000 0.415 0.485 0.565 0.610 0.546 0.567

Closeness 0.462 0.415 1.000 0.655 0.613 0.647 0.666 0.628

Between. 0.526 0.485 0.655 1.000 0.853 0.819 0.852 0.857

CF 0.610 0.565 0.613 0.853 1.000 0.910 0.914 0.979

αCF(0.8) 0.643 0.610 0.647 0.819 0.910 1.000 0.935 0.923

αCF-tr(0.8) 0.581 0.546 0.666 0.852 0.914 0.935 1.000 0.930

αCF(0.98) 0.612 0.567 0.628 0.857 0.979 0.923 0.930 1.000

Table 7.4: Kendall tau for centrality measures in the Watts-Strogatz graph (n=1000, k=12, p=0.150).

have a higher correlations with the CF-betweenness in real graphs. Recent paper [24] suggests

more measures based on distance, and efficient computation methods for such measures is

presented in [25]. In the future it will be interesting to compare these new measures to α-CF

betweenness.

7.7 Centrality measures and network vulnerability 105

7.7 Centrality measures and network vulnerability

We now consider how well the CF-betweenness and α-CF betweenness can indicate the

nodes responsible for maintaining connectivity of a network. We follow the methodology of

[47]. As measures of connectivity we choose the average inverse distance

< d−1 >=
1

n(n − 1)

∑

u,v∈V,u 6=v

1

d(u, v)

and the size of the largest connected component. In the experiment, we remove the top nodes

one by one, according to different centrality measures, and observe how the connectivity of the

network changes. In Fig. 7.4 the results are presented for the inversed average distance.

Figure 7.4: Inverse average distance as a function of the fraction of removed top-nodes according to

different betweenness centrality measures.

The results for the social graph VKontakte are especially interesting, because this network

turns out to be less vulnerable to the removal of nodes with large degree than nodes with large

betweenness and its modifications (CF-betweenness, α-CF betweenness, and truncated α-CF

betweenness). On the small Dolphin social network there is no much difference in vulnerability

with respect to different centrality measures. Finally, on the artificial Watts-Strogatz graph the

CF-betweenness and our proposed two versions of α-CF betweenness find the nodes that are

most essential for the network connectivity.

106 Chapter 7: Alpha current flow centrality

In Fig. 7.5 we plot the size of the largest connected components against the fraction of

removed top-nodes. We do not present the plot for the Watts-Strogatz graph because it re-

mains entirely connected, so the size of its largest connected component equals to the number

of remaining nodes irrespectively of which nodes are removed first. For the two real graphs,

the CF-betweenness is most efficient in reducing the size of the giant component. On the Dol-

phin graph, α-CF betweenness performs closely to CF-betweenness, except the interval when

13-18% of nodes are removed. On the graph VKontakte, α-CF betweenness and its truncated

version perform comparably to the CF-betweenness. Again, on this graph, degree and Closeness

centrality fail to reveal the nodes responsible for good network connectivity. The α-CF between-

Figure 7.5: The size of the largest connected component as a function of the fraction of removed top-

nodes according to different betweenness centrality measures.

ness with α = 0.98 appears to be a better indicator for vulnerability than the truncated α-CF

betweenness with α = 0.8. The latter however also gives good results, and can be computed

easier on large graphs due to the faster convergence of the power iteration algorithm.

We conclude that both α-CF betweenness and truncated α-CF betweenness provide an ad-

equate measure for the role of a node in network’s connectivity. Furthermore, their compu-

tational costs are lower than for known measures of betweenness, and the computations can

be done in parallel easily. Thus, α-CF betweenness can be applied in large graphs, for which

computation of other measures of betweenness is merely infeasible.

7.8 Conclusions 107

7.8 Conclusions

The original shortest-path betweenness centrality is based on counting shortest paths which

go through a node or an edge. One shortcoming of the shortest-path betweenness centrality is

that it ignores the paths that might be one or two hops longer than the shortest paths, while the

edges on such paths can be important for communication processes in the network. To rectify

this shortcoming a current flow betweenness centrality has been proposed. However, similarly

to the shortest-path betweenness, it has prohibitive computational complexity for large size

networks. We have proposed two regularizations of the current flow betweenness centrality, α-

current flow betweenness and truncated α-current flow betweenness, which can be computed

fast and correlate well with the original current flow betweenness. We have demonstrated that

the new centrality measures can efficiently be applied to study the network vulnerability.

108 Chapter 7: Alpha current flow centrality

8

APPENDIX: SOFTWARE DESCRIPTION

8.1 Summary

This library helps to apply semi-supervised learning methods [12] and Personalized PageR-

ank method to large graphs. The implementation could work with any kind of graph which

could be implemented from our graph interface. We supposed that the graph is without loops

and multiedges.

In particular, the library provides:

1. the convenient way to work with graphs in BVGraph[26] and simple readable format

2. the namers to make the nodes with names

3. the semi-supervised learning classification

4. the expert nodes/seed nodes format to load/save them

5. the estimations to get the precision, recall and confusion matrix

8.2 Description

8.2.1 The formats

The library provides the convenient way to work with graphs in BVGraph[26] and simple

readable format. Any type of graphs could be used, if they implements our graph interface.

109

110 Chapter 8: Appendix: Software description

BVGraph format

The load and save operations are very similar as in [26]. The directory yourpath contains

several files with the same prefix yourBVGraph. If exist files with suffix labels the weghted graph

will be loaded.

S t r ing fi leName = ”/ yourpath/ yourBVGraphPrefix ” ;

IGraph graph = new BVGGraphLoader () . load (fi leName) ;

BVGGraphSaver () . save (graph , f i leName) ;

Matlab format

This is a simple edge list with or without weights. The numeration of the nodes starts from

1. Each line of the file contains ”nodeFrom nodeTo weight” for weighted graphs and ”nodeFrom

nodeTo” for unweighted graphs.

S t r ing fi leName = ”/ yourpath/ yourmat l ab f i l e . t x t ”

graph = MatlabLoader () . load (fi leName) ;

MatLabSaver () . save (graph , f i leName) ;

8.2.2 The namers

The library provides the simple realization of graph namer. It is a file with a column of

names, each line contain one name of the node. The number of line corresponds to node id.

Also you can use a simple identical to node id namer. Note:To make it compatible with BVGraph

library the names should be sorted in alphabetical order, not necessary for our library.

S t r ing pathToNamer = ” yourGraphNamer . t x t ” ;

INodeNamer namer = NodeNamerImpl . load (new F i l e (pathToNamer)) ;

INodeNamer nameIdent = new IdenticalIdNodeNamer () ;

graph . g e t P r o p e r t i e s () . se tVa lue (IGraph .NODE NAMER, namer) ;

8.2.3 The algorithms

The library provides the implementation of semi-supervised methods in general case with

parameter sigma. Also the library provides the implementations of particular algorithms:

PageRank , Standard Laplacian, Normalized Laplacian methods, which could be significantly

faster for large graphs in BVG format. BVG format compress graph and any operation to access

the data could take time.

8.2 Description 111

Mainly use the general implementation to compute methods. If it is slow, then try the

particular implementations of the methods.

The personal pagerank calculation (the implementation of particular method)

L i s t <In teger> l i s t N o d e Id s ;

IPe r sona lVec to r pV = new Persona lVec tor (l i s tNode Ids , graph . numNodes ()) ;

Ca l cu l a to r InputDa ta setup = new Ca l cu l a to r InputData (alpha) ;

I C a l c u l a t o r pc = Ca l c u l a t o r F ac t o ry . getPageRankCalculator (graph , setup) ;

double [] ppr = pc . compute(pV . ge tPe r sona lVec to r ()) ;

The CalculatorInputData has defaults values as marked in Constants: epsilon 0.000001, max

number of iterations 100, alpha 0.5.

The general personal pagerank calculation (based on sigma parameter):

Calculator InputDataSigma setupS = new Calculator InputDataSigma (sigma , alpha) ;

// setupS . setWeighted (true) ;

I C a l c u l a t o r pc = Ca l c u l a t o r F ac t o ry . ge tGene ra lCa l cu l a to r (graph , setupS) ;

double [] gppr = pc . compute (pV . ge tPe r sona lVec to r ()) ;

The semi-supervised learning classification takes as input seeds and one of the methods, the

output is an array with values corresponds to class id, if value equals to -1, mean that item

unclassified.

SemiSupervisedLearningMethod sslm = new SemiSupervisedLearningMethod () ;

i n t [] nodeToClassId = sslm . run (seedsInput , pc) ;

8.2.4 The expert/seeds files

Provides a convinient way to work with seeds/expert files. The format for seeds/expert files

shown on example. The file contains an optional short explanation about classification, the

name of the class and the list of node names in it, then empty line and so on.

Short exp lanat ion about f i l e . Could be empty l i n e .

C l a s s Name A

NodeName1

NodeName2

Clas s Name B

NodeName3

112 Chapter 8: Appendix: Software description

I C l u s t e r i n g seeds = C l u s t e r i n g U t i l s . loadFromFile (new F i l e (seedsName)) ;

ISeedsInput seedsInput =

Clus te r ingConve r te r . c lu s te r ing2Seeds Inpu t (seeds , namer , graph . numNodes ()) ;

I C l u s t e r i n g r e s u l t C l a s s i f i c a t i o n =

Clus te r ingConve r te r . ar ray2Custe r ing (nodeToClassId , namer , seeds) ;

C l u s t e r i n g U t i l s . saveToF i le (r e s u l t C l a s s i f i c a t i o n , new F i l e (”someName. t x t ”)) ;

8.2.5 The estimations

Provides methods to get precision, recall and confusion matrix.

I C l u s t e r i n g exper t ; I C l u s t e r i n g a lg ;

C l u s t e r i n g P rep ro ce s s o r a l g C l u s t e r i n g = new Cl u s t e r i n g P r ep roc e s s o r (a lg) ;

P re c i s ionQuan t i t y prec =

new Prec i s ionQuan t i t y (new C l u s t e r i n g P r ep roce s s o r (exper t)) ;

Pair<Double , Double> r e s = prec . g e t P r e c i s i o n R e c a l l (a l g C l u s t e r i n g) ;

// re s . g e t F i r s t () −− prec i s ion , r e s . getSecond () −− r e c a l l

prec . pr in tConfus ionMatr ix (a l gC lu s te r ing , new P r in t Wr i t e r (System . out))

8.2.6 How to write your own graph implementation

The library could work with any kind of graph which could be implemented from our graph

interface. IGraph is a simple interface, which provides information about number of nodes,

node degrees and list of their outgoing nodes, named as the list of successors. For the com-

patibility with webgraph library the list of successors may contain more entries than the node

outdegree, and the list should be sorted in increasing order. The implementation of properties

could be taken from the library. Also, the library does not require the correct implementation

for the number of arcs.

i n t numNodes () ;

long numArcs () ;

i n t outdegree (i n t node) ;

i n t [] suc ce s so rAr ray (i n t node) ;

I P r o p e r t i e s g e t P r o p e r t i e s () ;

8.2 Description 113

114 Chapter 8: Appendix: Software description

9

CONCLUSIONS AND FUTURE RESEARCH

The thesis consists of two parts. In the first part, we have studied the graph-based semi-

supervised learning methods. We have proposed a new generalized optimization framework,

which gives as particular cases the Standard Laplacian method, the Normalized Laplacian

method and the PageRank based method. There was no optimization formation for the PageR-

ank based method. We have shown that among all methods which can be obtained from our

optimization framework, the PageRank method is the only method robust with respect to un-

balanced data. Using the theory of random walks on graphs, we have elaborated the following

recommendations: if possible, choose labelled points with large degrees. Then, adopt the Stan-

dard Laplacian method with α in the upper-middle range of the interval (0, 1). If finding large

degree points is not feasible or recall is more important than precision for small classes, choose

the PageRank based method. The theory of random walks on graph has also allowed us to

demonstrate a decomposition of the classification kernel with respect to the two basic parame-

ters (α and σ). We have also shown that if all the labelled points have the same degree, all the

semi-supervised learning methods from the analysed family give the same classification results.

In particular, this explains why the classification results of several semi-supervised learning

methods are nearly the same when the k-Nearest Neighbour algorithm is used to construct the

similarity matrix. All our theoretical results are illustrated by experiments with real and syn-

thetic data. In particular, we have performed extensive experiments with users and content

classification in P2P systems. We show that the semi-supervised learning approach gives excel-

lent classification result and the technique scales very well to large volumes of data. Just to give

an example, in the dataset of 1 126 670 users, using only 50 labelled points for each language,

we are able to classify the users according to their preferred language with more than 95%

accuracy. To operate with such large volumes of data, we needed to develop a java framework

115

116 Chapter 9: Conclusions and Future Research

with efficient implementation of the proposed methods. In the thesis we dedicate a special

section to the software description and make software publicly available.

Let us mention some open problems and future research directions for the first part. It

is worth trying to tune the main parameters of the methods in some automatic fashion. In

particular, it will be useful to find a method for joint optimization of the values of α and σ.

May be some version of the cross-validation approach is a way to go. In our experiments, we

have noticed that choosing the labelled data according to the standard PageRank is better than

choosing the labelled data according to the degree. A theoretical justification of this fact is

missing. More generally, it would be useful to develop a supervised learning approach where

the labelled data is chosen automatically and then the developed semi-supervised learning al-

gorithms are applied. Some initial steps have been done in [10]. However, this research is just

in the very beginning and methods with solid theoretical background have to be designed. In

[84] it was noticed that incorporating class prior information improves the classification qual-

ity. Initial quick experiments with our methods on our datasets, using the suggestion from [84],

also show good results. However, a more solid theoretical justification is missing. A research

direction, very useful for practice, is to extend our approach to inductive semi-supervised learn-

ing [6, 44], which will help us to work with newly arriving out-of-sample data. It would be nice

to analyse in full mathematical rigor the classification quality of the proposed semi-supervised

learning framework on the clustered preferential attachment model. In the experiments with

P2P data we have constructed the user graph and content graph from the original bipartite

graph. A natural question is: Could one work directly with the bipartite graph?

The second part of the thesis is dedicated to quick detection of central nodes. There is a

clear connection with the first part. Methods for quick detection of central nodes can be used

to select quickly high quality labelled points or candidates for labelled points. However, the

methods of the second part also have other applications in information retrieval and in net-

work analysis. In the first chapter of the second part we propose and analyse a random walk

based method for quick detection of large degree nodes. We show theoretically and by nu-

merical experiments that for large networks the random walk method finds good quality top

lists of nodes with high probability and with computational savings of orders of magnitude.

In particular, we prove that on the configuration network model, our algorithm has sublinear

complexity. We also propose stopping criteria for the random walk method which require very

little knowledge about the structure of the network. Then, in the next section we propose and

analyse Monte Carlo methods for quick detection of nodes with large values of the Personal-

ized PageRank. As a by-product, we obtain a new matrix form of a central limit theorem for

Markov chains. We also show that under fairly general conditions our Monte Carlo approach

has sublinear complexity. We illustrate the performance of our approach on large datasets such

as English-language Wikipedia. Finally, in the last chapter of the second part we propose a new

117

centrality measure — Alpha current flow betweenness centrality and its modification, truncated

version. The alpha current flow betweenness centrality is a generalization of the current flow

betweenness and PageRank. It combines good properties of the current flow betweenness, like

taking into account the contribution of short but not only shortest paths, and the computational

efficacy of PageRank. We demonstrate that the new centrality measure detects particularly well

the network vulnerability.

As the first part, the second part also opens a number of very interesting research directions.

Could the proposed method for quick detection of large degree nodes be extended to directed

networks? Specifically, what if one wants to detect quickly nodes with the largest incoming or

outgoing degrees? Or what if one would like to make a nonparametric or parametric estimation

of the tail of the degree distributions in directed/undirected network? How to estimate the

maximal size of the top-k list of nodes with the largest degrees or largest values of PageRank,

which can be efficiently detected with the random walk based algorithms? In [3, 48] the

authors have proposed diffusion type methods for online PageRank computation. It would be

interesting to make a theoretical comparative analysis of those diffusion type algorithms and

our proposed Monte Carlo algorithms. We have constructed a log-linear complexity algorithm

for the alpha current flow betweenness centrality. It would be great also to construct sublinear

complexity algorithms for quick detection of nodes with largest values of the alpha current flow

betweenness.

118 Chapter 9: Conclusions and Future Research

10

RÉSUMÉ EN FRANÇAIS

Les méthodes d’apprentissage semi-supervisé constituent une catégorie de méthodes de

l’apprentissage automatique qui utilisent des points étiquetés avec les données non étiquetées

pour régler le classificateur. Dans la première partie de la thèse, nous proposons une approche

d’optimisation généralisée pour les méthodes d’apprentissage semi-supervisé qui donne comme

des cas particuliers les méthodes de Laplacien Standard, Laplacien Normalisé et PageRank.

En utilisant la théorie de la marche aléatoire, nous fournissons un aperÃ§u sur les différences

entre les méthodes d’apprentissage semi-supervisé et donnons des conseils pour le choix des

paramètres du noyau et les points étiquetés. Nous avons illustré les résultats théoriques avec

des données synthétiques et réelles. Comme un exemple de données réelles, nous considérons

la classification des contenus et des utilisateurs dans les systèmes P2P. Cette application montre

que la famille des méthodes proposé passe a l’échelle très bien avec le volume de données. La

deuxième partie de la thèse est consacrée à la détection rapide des noeuds centraux du réseau.

Les algorithmes développés dans la deuxième partie de la thèse peuvent être appliquées pour

la sélection des données étiquetées, mais également aux autres applications dans la recherche

d’information. Plus précisément, nous proposons des algorithmes randomisé pour la détection

rapide des noeuds de grands degrés et des noeuds avec de grandes valeurs de PageRank per-

sonnalisé. A la fin de la thèse, nous proposons une nouvelle mesure de centralité, qui généralise

à la fois la centralité d’intermédiarité et PageRank. Cette nouvelle mesure est particulièrement

bien adapté pour la détection de la vulnérabilité de réseau.

119

120

BIBLIOGRAPHY

[1] Hadoop mapreduce software framework, http://hadoop.apache.org/mapreduce/. 2011.

41

[2] Wikipedia article bittorrent (protocol). 2011. 39

[3] S. Abiteboul, M. Preda, and G. Cobena. Adaptive on-line page importance computation.

In Proceedings of the 12th international conference on World Wide Web, pages 280–290.

ACM, 2003. 117

[4] S. Abney. Semisupervised Learning for Computational Linguistics. Chapman & Hall/CRC

Computer Science & Data Analysis. Taylor & Francis, 2008. 4

[5] D. Aldous and J. Fill. Reversible Markov chains and random walks on graphs. 1999. 28,

94, 97, 99

[6] Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learning for

structured variables. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural

Information Processing Systems 18, pages 33–40. MIT Press, Cambridge, MA, 2005. 116

[7] R. Andersen, F. Chung, and K. Lang. Using pagerank to locally partition a graph. Internet

Mathematics, 4(1):35–64, 2007. 12, 31

[8] R. Andersen, F. R. K. Chung, and K. J. Lang. Local graph partitioning using pagerank

vectors. In FOCS, pages 475–486, 2006. 77

[9] K. Avrachenkov, V. S. Borkar, and D. Nemirovsky. Quasi-stationary distributions as cen-

trality measures for the giant strongly connected component of a reducible graph. pages

3075–3090, 2010. 61

[10] K. Avrachenkov, V. Dobrynin, D. Nemirovsky, S. K. Pham, and E. Smirnova. Pagerank

based clustering of hypertext document collections. In Proceedings of the 31st annual

international ACM SIGIR conference on Research and development in information retrieval,

SIGIR ’08, pages 873–874. ACM, 2008. 6, 11, 12, 14, 15, 16, 77, 116

121

122

[11] K. Avrachenkov, J. Filar, and P. Howlett. Analytic Perturbation Theory and its Applications.

SIAM, Philadelphia, 2013. 22, 33

[12] K. Avrachenkov, P. Gonçalves, A. Mishenin, and M. Sokol. Generalized optimization

framework for graph-based semi-supervised learning. In Proceedings of SIAM Conference

on Data Mining (SDM’2012), 9 pages, 2012. 109

[13] K. Avrachenkov and N. Litvak. The effect of new links on Google PageRank. Stochastic

Models, 22(2):319–332, 2006. 16, 29

[14] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte Carlo methods in

pagerank computation: When one iteration is sufficient. pages 890–904, 2007. 8, 78, 79,

80

[15] K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova, and M. Sokol. Monte Carlo meth-

ods for top-k personalized pagerank lists and name disambiguation. 2010. 80, 87

[16] K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova, and M. Sokol. Quick detection of

top-k personalized pagerank lists. In WAW, pages 50–61, 2011. 72

[17] K. Avrachenkov, B. F. Ribeiro, and D. F. Towsley. Improving random walk estimation

accuracy with uniform restarts. In WAW, pages 98–109, 2010. 59, 62, 69

[18] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental and personalized pagerank.

pages 173–184, 2010. 78

[19] B. Ball, B. Karrer, and M. E. J. Newman. Efficient and principled method for detecting

communities in networks. Phys. Rev. E, 84:036103, Sep 2011. 44, 47

[20] A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286:509–

512, 1999. 66

[21] C. Barakat, G. Iannaccone, and C. Diot. Ranking flows from sampled traffic. In CoNEXT,

pages 188–199, 2005. 86

[22] D. Blackwell. Discrete dynamic programming. Ann. Math. Statist., 33:719–726, 1962. 17

[23] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: a multiresolu-

tion coordinate-free ordering for compressing social networks. In WWW, pages 587–596,

2011. 59

[24] P. Boldi and S. Vigna. Axioms for centrality. arXiv:1308.2140. 104

BIBLIOGRAPHY 123

[25] P. Boldi and S. Vigna. In-core computation of geometric centralities with hyperball: A

hundred billion nodes and beyond. arXiv:1308.2144. 104

[26] P. Boldi and S. Vigna. The webgraph framework i: compression techniques. In Proceedings

of the 13th international conference on World Wide Web, WWW ’04, pages 595–602, New

York, NY, USA, 2004. ACM. 42, 59, 80, 109, 110

[27] B. Bollobás. Modern graph theory. Springer-Verlag, New York, 1998. 65

[28] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Soci-

ology, 25(1994):163–177, 2001. 8, 93, 98

[29] U. Brandes and D. Fleischer. Centrality measures based on current flow. In Proceedings

of the 22nd annual conference on Theoretical Aspects of Computer Science, pages 533–544,

2005. 93, 95, 97, 98, 102

[30] L.A. Breyer. Markovian page ranking distributions: Some theory and simulations. 2002.

78

[31] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Com-

puter Networks and ISDN Systems, 30:107–117, 1998. 94

[32] S. Chakrabarti. Dynamic personalized pagerank in entity-relation graphs. In WWW, pages

571–580, 2007. 77

[33] O. Chapelle, B. Schölkopf, and A Zien. Semi-supervised learning, volume 2. MIT press

Cambridge, 2006. 4, 5, 11, 13

[34] F. Chung and A. Tsiatas. Finding and visualizing graph clusters using pagerank optimiza-

tion. In Ravi Kumar and Dandapani Sivakumar, editors, Algorithms and Models for the

Web-Graph, volume 6516 of LNCS, pages 86–97. Springer Berlin / Heidelberg, 2010. 12

[35] A. Condon and R. M. Karp. Algorithms for graph partitioning on the planted partition

model. Random Struct. Algorithms, 18(2):116–140, 2001. 18

[36] C.J. Corrado. The exact joint distribution for the multinomial maximum and minimum

and the exact distribution for the multinomial range. Ssrn research report, 2007. 88

[37] S. N. Dorogovtsev, J. F. F. Mendes, and A. Samukhin. Structure of Growing Networks:

Exact Solution of the Barabasi–Albert’s Model. Arxiv preprint cond-mat, January 2000. 59

[38] P.G. Doyle and J.L. Snell. Random walks and electric networks. Mathematical Association

of America, 1984. 94

124

[39] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. Towards scaling fully personalized pager-

ank: Algorithms, lower bounds, and experiments. pages 333–358, 2005. 78, 80

[40] F. Fouss, K. Francoisse, L. Yen, A. Pirotte, and M. Saerens. An experimental investigation

of kernels on graphs for collaborative recommendation and semisupervised classification.

Neural Networks, 31:53–72, 2012. 12, 40

[41] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 1977.

93

[42] A. Gnedin, B. Hansen, and J. Pitman. Notes on the occupancy problem with infinitely

many boxes: general asymptotics and power laws. Probab. Surv., 4:146–171, 2007. 88

[43] V. Grolmusz. A note on the pagerank of undirected graphs. arXiv preprint

arXiv:1205.1960, 2012. 97

[44] Z. Guo, Z. M. Zhang, E. P. Xing, and C. Faloutsos. Semi-supervised learning based on

semiparametric regularization. In SDM, pages 132–142, 2008. 116

[45] T. H. Haveliwala. Topic-sensitive pagerank. In Proceedings of the 11th International Con-

ference on World Wide Web (WWW’02), pages 517–526, 2002. 6, 29, 77

[46] R. V. D. Hofstad. Random graphs and complex networks. In In preparation, 2008. 66

[47] P. Holme, B.J. Kim, C.N. Yoon, and S.K. Han. Attack vulnerability of complex networks.

Physical review. E, Statistical, nonlinear, and soft matter physics, 65(5 Pt 2):056109, May

2002. 105

[48] D. Hong and P. Jacquet. Optimizing the eigenvector computation algorithm with diffusion

approach. arXiv preprint arXiv:1206.3177, 2012. 117

[49] J. J. Hull. A database for handwritten text recognition research. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 16(5):550–554, 1994. 35

[50] G. Jeh and J. Widom. Scaling personalized web search. In WWW, pages 271–279, 2003.

79

[51] N. L. Johnson, S. Kotz, and N. Balakrishnan. Discrete multivariate distributions. A Wiley-

Interscience publication. Wiley, New York, NY [u.a.], 1997. 83

[52] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Undergraduate Texts in Mathematics.

Springer, 1976. 18, 83

BIBLIOGRAPHY 125

[53] D. E. Knuth. The Stanford GraphBase: a platform for combinatorial computing. ACM, New

York, NY, USA, 1993. 19

[54] A. N. Langville and C. D. Meyer. Google page rank and beyond. Princeton University Press,

2006. 16

[55] A.N. Langville and C.D. Meyer. Google’s PageRank and Beyond: The Science of Search Engine

Rankings. Princeton University Press, Princeton, NJ, 2006. 79

[56] S. Le Blond, A. Legout, F. Lefessant, W. Dabbous, and M. A. Kaafar. Spying the world

from your laptop: identifying and profiling content providers and big downloaders in

bittorrent. In Proceedings of the 3rd USENIX conference on Large-scale exploits and emergent

threats: botnets, spyware, worms, and more, LEET’10, pages 4–4, Berkeley, CA, USA, 2010.

USENIX Association. 39, 41

[57] W. Li, M. Canini, A. W. Moore, and R. Bolla. Efficient application identification and the

temporal and spatial stability of classification schema. Comput. Netw., 53:790–809, April

2009. 39

[58] W. Li and A. W. Moore. A machine learning approach for efficient traffic classification. In

Proceedings of the 2007 15th International Symposium on Modeling, Analysis, and Simula-

tion of Computer and Telecommunication Systems, pages 310–317, Washington, DC, USA,

2007. IEEE Computer Society. 39

[59] D. Liben-Nowell and J. M. Kleinberg. The link prediction problem for social networks. In

CIKM, pages 556–559, 2003. 77

[60] L. Lovász. Random walks on graphs: A survey. Combinatorics, Paul erdos is eighty, 2(1):1–

46, 1993. 28

[61] D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, and S.M. Dawson. The bot-

tlenose dolphin community of Doubtful Sound features a large proportion of long-lasting

associations. Behavioral Ecology and Sociobiology, 54(4):396–405, September 2003. 101

[62] A. S. Maiya and T. Y. Berger-Wolf. Online sampling of high centrality individuals in social

networks. In PAKDD (1), pages 91–98, 2010. 57

[63] A. Mantrach, N. Van Zeebroeck, P. Francq, M. Shimbo, H. Bersini, and M. Saerens. Semi-

supervised classification and betweenness computation on large, sparse, directed graphs.

Pattern recognition, 44(6):1212–1224, 2011. 8, 94

[64] G. Matthys and J. Beirlant. Estimating the extreme value index and high quantiles with

exponential regression models. Statistica Sinica, 13(3):853–880, 2003. 66

126

[65] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and

Probabilistic Analysis. Cambridge University Press, Cambridge, 2005. 58, 70

[66] C. B. Moler. Numerical Computing with MATLAB. 2004. 16

[67] A. A. Moreira, J. S. Andrade, and L. A. Nunes. Extremum statistics in scale-free network

models. Phys. Rev. Lett., 89:268703, Dec 2002. 67

[68] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New

York, NY, USA, 1995. 58

[69] D. Nemirovsky. Tensor approach to mixed high-order moments of absorbing markov

chains. Linear Algebra and its Applications, 2011. 84

[70] M. E. J. Newman. A measure of betweenness centrality based on random walks. Social

networks, pages 1–15, 2005. 8, 93, 97, 98, 102

[71] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in net-

works. Phys. Rev. E, 69(2):026113, 2004. 19

[72] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing

order to the web. Technical Report 1999-66, Stanford InfoLab, November 1999. Previous

number = SIDL-WP-1999-0120. 77

[73] M. Pietrzyk, J. Costeux, G. Urvoy-Keller, and T. En-Najjary. Challenging statistical clas-

sification for operational usage: the adsl case. In Proceedings of the 9th ACM SIGCOMM

conference on Internet measurement conference, IMC ’09, pages 122–135, New York, NY,

USA, 2009. ACM. 39

[74] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994. 17

[75] E. Smirnova, K. Avrachenkov, and B. Trousse. Using web graph structure for person name

disambiguation. In CLEF (Notebook Papers/LABs/Workshops), 2010. 77, 80

[76] K. Tanabe and M. Sagae. An exact Cholesky decomposition and the generalized inverse of

the variance-covariance matrix of the multinomial distribution with applications. Journal

of the Royal Statistical Society. Series B (Methodological), 54(1):211–219, 1992. 84

[77] K. Voevodski, S. H. Teng, and Y. Xia. Spectral affinity in protein networks. BMC Systems

Biology, 3(1):112+, 2009. 77

BIBLIOGRAPHY 127

[78] Y. Wu, P. A. Ruibal, M. K. Jones, and C. Genzmer. Using social signals to identify unautho-

rized content on a social networking system, June 13 2013. US Patent 20,130,152,211.

3

[79] L. Yeon-Sup, D. S. Menasche, B. Ribeiro, D. Towsley, and P. Basu. Online estimating the

k central nodes of a network. In Proceedings of the 2011 IEEE Network Science Workshop,

NSW ’11, pages 118–122, Washington, DC, USA, 2011. IEEE Computer Society. 57

[80] G. Yin and Q. Zhang. Continuous-time Markov chains and applications: a singular pertur-

bation approach. Applications of mathematics. Springer, 1998. 22

[81] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and

global consistency. In Advances in Neural Information Processing Systems 16, pages 321–

328. MIT Press, 2004. 5, 11, 13, 15

[82] D. Zhou and C. J. C. Burges. Spectral clustering and transductive learning with multiple

views. In Proceedings of the 24th international conference on Machine learning, ICML ’07,

pages 1159–1166. ACM, 2007. 5, 11, 13, 15

[83] X. Zhu. Semi-supervised learning literature survey, 2006. 4

[84] X. Zhu, Z. Ghahramani, J. Lafferty, et al. Semi-supervised learning using gaussian fields

and harmonic functions. In ICML, volume 3, pages 912–919, 2003. 116

[85] X. Zhu and A. B. Goldberg. Introduction to semi-supervised learning. Synthesis Lectures

on Artificial Intelligence and Machine Learning, 3(1):1–130, 2009. 4, 11

[86] V. Zlatic, M. Bozicevic, H. Stefancic, and M. Domazet. Wikipedias: Collaborative web-

based encyclopedias as complex networks. Physical Review E, 74:016115, 2006. 80

