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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01127393


Contribution to
Dimension Reduction

Techniques: Application
to Object Tracking

Thèse soutenue le 16.07.2014
devant le jury composé de :

Christine GUILLEMOT
Directeur de Recherche, INRIA Rennes / Président

Didier COQUIN

Professeur, Universté de Savoie / Rapporteur

Denis HAMAD
Professeur, Université du Littoral Côte d'Opale / Rapporteur

Michèle GOUIFFES
Maître de conférences, Université Paris Sud 11 / Examinateur

RONSIN Joseph

Professeur, INSA de Rennes / Co-directeur

KPALMA Kidiyo
Professeur, INSA de Rennes / Directeur de thèse

THESE INSA Rennes
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de

DOCTEUR DE L’INSA DE RENNES

Spécialité : Traitement du signal et de l’image

présentée par

Weizhi LU
ECOLE DOCTORALE : MATISSE

LABORATOIRE : IETR





Contribution aux techniques de la réduction
de dimension: application au suivi d'objet

Weizhi LU





Acknowledgements

Foremost, I would like to express my appreciation to Prof. Joseph Ronsin and

Prof. Kidiyo Kpalma for offering me the opportunity of studying in France, for

giving me great freedom in research, and for helping me revise the papers over and

over again. I would also like to thank Mingqiang Yang for his help on my application

for this lab, my Master advisor Piming Ma for her sustainable encouragement and

guidance, and the CSC secretary Jingmei Zhao who is generous in giving help. I

would especially like to thank Prof. Rémi Gribonval who has kindly answered me a

number of questions on compressed sensing, and Prof. Jacek Cichon for his guidance

on the proof related to Bernoulli vector. I also want to thank my dissertation

committee for their time and insights on the thesis.

My special thanks go to the friends in Rennes. Thanks to Cong Bai and Hui

Ji who took me from the airport to campus on my first day in Rennes. Thanks

to Xiaohui Yi for offering me his room in the first summer vacation. Thanks to

Jinglin Zhang who is always ready to help others and spread happiness. Thanks

to Yi Liu, Hengyang Wei, Ming Liu, Lining Peng, Hua Fu and Tian Xia for their

helpful comments on my thesis presentation. There are many things that have deeply

impressed me over the last few years, while I can’t mention all of them here. Sincere

thanks are given to all friends who have helped me and brought me joy.

I would like to thank my family for the irreplaceable roles they have played.

Thanks to my parents for their love and unreserved support in all my pursuits.

Thanks to my wife Weiyu for always being there, accompanying me through these

hard days.

Finally, I would like to send my gratitude and blessing to my motherland, who

is funding thousands of youth like me chasing their dreams overseas.



2



Contents

Contents 3

List of Figures 7

List of Tables 9

1 Introduction 11

I Compressed Sensing 15

2 Fundamentals 17
2.1 Conditions on sensing matrices . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Spark and Coherence . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Null Space Property (NSP) . . . . . . . . . . . . . . . . . . . 20
2.1.3 Restricted Isometry Property (RIP) . . . . . . . . . . . . . . . 22

2.2 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Optimal binary sensing matrices 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Binary matrix characterized with bipartite graph . . . . . . . . . . . 31
3.3 Optimal binary sensing matrix . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 RIC of AL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 RIC of AE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Binary matrix with best RIP . . . . . . . . . . . . . . . . . . 37

3.4 Deterministic construction . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Estimation on the maximum column degree . . . . . . . . . . 39
3.4.2 Bipartite graph based construction algorithm . . . . . . . . . 40
3.4.3 Best RIP vs. best performance . . . . . . . . . . . . . . . . . 42

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.1 BGC vs. PEG . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3



4 Contents

3.5.2 Performance of the optimal binary matrix . . . . . . . . . . . 44
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.1 Proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . . . 47
3.7.2 Proof of Theorem 3.3.2 . . . . . . . . . . . . . . . . . . . . . . 49
3.7.3 Proof of Theorem 3.3.3 . . . . . . . . . . . . . . . . . . . . . . 51

4 Random Bernoulli matrices with high compression ratio 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Estimation methods based on average correlation vs. maximum cor-

relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Average column correlation of random Bernoulli matrix . . . . . . . . 57
4.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

II Random Projection 63

5 Sparse matrix based random projection for classification 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Johnson-Lindenstrauss (JL) lemma . . . . . . . . . . . . . . . 67
5.2.2 Sparse random projection matrices . . . . . . . . . . . . . . . 68

5.3 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.1 Difference between two distinct high-dimensional vectors . . . 70
5.3.2 Products between high-dimensional vectors and random sam-

pling vectors with varying sparsity . . . . . . . . . . . . . . . 71
5.4 Proposed sparse random matrix . . . . . . . . . . . . . . . . . . . . . 74
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.2 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5.3 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.7 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7.1 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . 83
5.7.2 Proof of Theorem 5.3.2 . . . . . . . . . . . . . . . . . . . . . 85
5.7.3 Proof of Theorem 5.3.3 . . . . . . . . . . . . . . . . . . . . . 90

III Sparse Representation 91

6 Single object tracking 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Sparse representation-based classification . . . . . . . . . . . . . . . 98
6.4 Proposed tracking scheme . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Random projection-based feature selection . . . . . . . . . . . 99



Contents 5

6.4.2 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.3 Object validation and template updating . . . . . . . . . . . . 102
6.4.4 Computation cost related to sparse representation . . . . . . . 105

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.1 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . 108
6.5.2 Qualitative evaluation . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Multiple objects tracking 115
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Tracking scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.1 Object detection and representation . . . . . . . . . . . . . . . 116
7.2.2 Overlapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.3 Online dictionary updating . . . . . . . . . . . . . . . . . . . . 117

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.1 Database PETS’09. . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.2 Database PETS’06 . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8 Conclusion 123

A Résumé étendu en français 125
A.1 Acquisition parcimonieuse . . . . . . . . . . . . . . . . . . . . . . . . 126

A.1.1 Présentation du problème . . . . . . . . . . . . . . . . . . . . 126
A.1.2 Fondamentaux . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.1.3 Méthodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.1.4 Expérimentations . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2 Projection aléatoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2.1 Présentation du problème . . . . . . . . . . . . . . . . . . . . 129
A.2.2 Fondamentaux . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.2.3 Méthodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2.4 Expérimentation . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.3 Représentation parcimonieuse . . . . . . . . . . . . . . . . . . . . . . 132
A.3.1 Présentation du problème . . . . . . . . . . . . . . . . . . . . 132
A.3.2 Fondamentaux . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.3.3 Méthodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.3.4 Expérimentations . . . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography 137



6 Contents



List of Figures

2.1 Single-pixel camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Bipartite graph vs. binary matrix . . . . . . . . . . . . . . . . . . . . 32

3.2 Distributions of elements of AT
ψAψ . . . . . . . . . . . . . . . . . . . 36

4.1 E(f) vs.
√

2/(πm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Performance floor of random Bernoulli matrices . . . . . . . . . . . . 61

4.3 Average correlation vs. maximum correlation . . . . . . . . . . . . . . 62

5.1 E(f) over varying s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Object retrieval vs. sparse representation error . . . . . . . . . . . . . 95

6.2 Object detection using sparse representation . . . . . . . . . . . . . . 100

6.3 Curves of tracking error . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Tracking video results . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1 Performance of 2-dimensional corrdinate . . . . . . . . . . . . . . . . 116

7.2 Objects overlapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Examples of identity switch . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Examples of object initialization and re-recognition . . . . . . . . . . 119

7.5 Tracking results for PETS’06 . . . . . . . . . . . . . . . . . . . . . . 120

A.1 Bipartite graph vs. binary matrix . . . . . . . . . . . . . . . . . . . . 128

A.2 Object detection using sparse representation . . . . . . . . . . . . . . 134

7



8 List of Figures



List of Tables

3.1 BGC vs. PEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Performance of optimal binary matrix . . . . . . . . . . . . . . . . . . 45

4.1 Performance floor of random Bernoulli matrices . . . . . . . . . . . . 61

5.1 Random projection on synthetic data . . . . . . . . . . . . . . . . . . 79

5.2 Random projection on face dataset . . . . . . . . . . . . . . . . . . . 80

5.3 Random projection on DNA dataset . . . . . . . . . . . . . . . . . . . 81

5.4 Random projection on Text dataset . . . . . . . . . . . . . . . . . . . 82

6.1 Average center location errors . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Average overlap rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1 Correct occurrences for objects entering or re-entering . . . . . . . . . 120

9



10 List of Tables



1
Introduction

With the development of data collection technology, high-dimensional data arise

in many research areas and pose severe challenge to computation and storage. For

instance, in the areas of signal processing and biostatistics we often cope with the

data of at least million dimensions, such as image and DNA. To overcome the curse

of dimension, we usually resort to the techniques of dimension reduction, which

attempt to project the high-dimensional data to a relatively low-dimensional space

while still preserving the information of interest [1]. This kind of techniques has

received considerable attentions in research as diverse as statistics, bioinformatics,

signal processing, computer vision, machine learning and so on. In this thesis,

we will focus our attention on three popular dimension reduction techniques [2]:

compressed sensing, random projection and sparse representation, which share the

same mathematical model y = Ax but operate for different purposes, where x

denotes a high-dimensional vector, y denotes a relatively low-dimensional vector,

and A is a projection matrix. The contributions of the thesis to these techniques

are briefly introduced in the sequel.

Compressed sensing is a novel technique aiming to recover the sparse signal

x from y with much fewer measurements than the conventional Nyquist-rate re-

quires [3] [4], which is of a wonderful prospect, since natural signals usually expose

sparse structures in the time, space or frequency domain. One major challenge of

this technique is to construct the underdetermined sensing matrix A with good per-

formance. It is known that some randomized matrices with elements i.i.d drawn from

some well-known distributions, such as Gaussian distribution and Bernoulli distri-

11



12 Chapter 1. Introduction

bution, can provide good sensing performance with high probability. However, their

hardware implementation is expensive. In practice, it is more interesting to explore

the zero-one binary matrix with deterministic structure. Recently some works have

been proposed to construct such kind of matrices, while the optimal binary matrix

remains unknown. In the thesis, this problem will be successfully addressed [5] [6].

Furthermore, another interesting problem of A with high compression ratio is also

investigated for compressed sensing.

Different from compressed sensing, random projection is developed to preserve

the pairwise distances of high-dimensional dataset of x in the low-dimensional pro-

jection space of y, such that the task of classification can be conducted [7] [8] [9].

In fact, this technique and related applications have been extensively studied in the

past decade. It is known that the random projection matrix A with high probability

satisfying the property of distance preservation, can be constructed with elements

i.i.d drawn from the symmetric distribution with zero mean and unit variance. In

practice, it is computationally attractive to reduce the density of A while without

lowering the performance of classification. Unfortunately, in theory the property

of distance preservation will degrade as the matrix density decreases, which seems

unfavorable for classification. However, it should be noted that the task of clas-

sification prefers to maximize the inter-class distance rather than to preserve the

distance. Based on this principle, the thesis presents so far the most sparse random

projection matrix, which is proved holding better feature selection performance than

other more dense random matrices [10].

Similarly to the recovery process of compressed sensing, sparse representation

assumes that a vector y of interest can be approximated by a linear combination of

few elements from an overcomplete dictionary A [11] [12], and so it shares the same

sparse solution algorithms with compressed sensing [11] [12]. But unlike compressed

sensing, exact sparse solution x generally does not exist in sparse representation,

since the sparse linear relation between y and A cannot be ensured in most appli-

cations. While the studies of two dimension reduction techniques above are mainly

at the theoretical level, the problems of sparse representation generally comes from

specific applications. There is no uniform criterion for the dictionary construction,
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which highly depends on the specific application. For instance, in image processing

the dictionary A is often constructed with a collection of elements of interests. The

sparse elements of x are used to measure the similarity between y and A, or to

identify the elements of A similar to y. In this thesis, sparse representation will

be studied in the context of visual object tracking, in which random projection is

also adopted as an efficient feature selection tool. Current tracking work mainly

focuses on the improvement of performance, while ignoring the computation load

introduced by sparse representation. In this thesis we are motivated to employ

sparse representation in terms of both effectiveness and efficiency [13].

The thesis is organized with three parts corresponding to the three dimension

reduction techniques mentioned above. In the first part, the fundamental knowl-

edge of compressed sensing is first reviewed in chapter 2, and then the deterministic

construction of optimal binary matrix is detailed in chapter 3. Finally, the perfor-

mance of random Bernoulli matrices with high compression rates is investigated in

chapter 4. In the second part, we propose so far the most sparse random projection

matrix as detailed in chapter 5. In the third part, we explore the application of

sparse representation to visual object tracking. A simple but effective single-object

tracking scheme is proposed in chapter 6, and a simple multi-object tracking scheme

is presented in chapter 7. Finally, the thesis is concluded and discussed in chapter

8.
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Part I

Compressed Sensing
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2
Fundamentals

Compressed sensing states that a sparse signal can be acquired/recovered with

an underdetermined matrix [3] [4], which is briefly described as follows. Let x ∈ R
n

be a vector with k ≪ n nonzero elements, typically called k-sparse signal or holding

sparsity k, and A ∈ R
m×n be a sensing matrix with m ≪ n, compressed sensing

states that the high-dimensional vector x can be perfectly recovered with both given

A and few linear measurements: y = Ax. In terms of basic linear algebra, there

should be infinitely many solutions to x. But if the additional condition of k-sparse

is considered, as will be detailed in next section, there will exist some A with m ≥ 2k

ensuring that the unique solution to x can be derived by solving the ℓ0-norm based

minimization problem below:

min
x̂

||x̂||0 s.t. y = Ax̂ (2.1)

where the ℓ0-norm of x̂ counts the number of nonzero elements in x̂ [14]. Un-

fortunately, the solution to the combinatorial optimization problem (2.1) is NP-

hard. In practice the unique solution can also be promised by relaxing (2.1) to

ℓ1-minimization based convex optimization problem (also referred to as basis pur-

suit [15])

min
x̂

||x̂||1 s.t. y = Ax̂ (2.2)

by imposing a relatively restrictive isometry on A [16]. The exact solution to formula

(2.2) can be well addressed with current convex optimization algorithms [17]. This

17



18 Chapter 2. Fundamentals

helps the ℓ1-minimization problem formula (2.2) attract much more attention than

ℓ0-minimization problem formula (2.1) in compressed sensing.

It is interesting to note that, the recovery process of compressed processing can

also be regarded as a process of sparse representation (also called sparse coding),

which has recently been intensively studied as an independent direction. Sparse rep-

resentation assumes that a vector y of interest can be represented with few atoms

of an overcomplete dictionary A. Thus it also shares the same sparse solution

algorithms with compressed sensing. Different from compressed sensing, sparse rep-

resentation has no uniform criterion on the construction of the matrix A, which

usually depends on the specific application. Generally, the matrix is either previ-

ously given or has to be learned with given y. Note that, exact sparse solution

usually cannot be derived for sparse representation, since for given matrix A, the

sparse solution x cannot be ensured for all possible y. It implies that the appli-

cation of sparse representation usually does not require strict theoretical support.

In contrast, to provide accurate sparse solution, compressed sensing presents more

challenges in theory. This explains why in this thesis we will focus our attention on

the theory of compressed sensing, but on the application of sparse representation.

According to the previous defintion, compressed sensing clearly presents two ma-

jor tasks. One is to explore the conditions on A that enable the unique solution to

formula (2.1) and formula (2.2), and the other is to develop efficient solution algo-

rithms for formulas (2.1) and (2.2). In the following parts, we will first address the

two problems above, and then demonstrate the application potential of compressed

sensing.

2.1 Conditions on sensing matrices

In this section we introduce several typical conditions on A that support the

exact recovery of k-sparse x through solving the ℓ0-minimization problem formula

(2.1) or ℓ1-minimization problem formula (2.2). As for the coincidence between ℓ0

and ℓ1, the interested readers could refer to [18–23]. In the following parts, the first

two terms, called spark and coherence, are related to the ℓ0-minimization problem,
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and the remaining two terms concerned with the ℓ1-minimization problem are named

null space property (NSP) and restricted isometry property (RIP).

2.1.1 Spark and Coherence

Definition 2.1.1 (Spark). The spark of a matrix A, denoted as Spark(A), is the

smallest number of linearly dependent columns of A.

Theorem 2.1.1. A k-sparse signal x can be uniquely recovered from y = Ax with

the ℓ0-minimization problem formula (2.1), if and only if the sparsity k < Spark(A)/2.

Proof. We first prove that k < Spark(A)/2 is necessary. Suppose k ≥ Spark(A)/2,

then there exists a nonzero vector v with ||v||0 = Spark(A) ≤ 2k, such that Av = 0.

Clearly v allows to be expressed as v = x − z with ||x||0 = k and ||z||0 = Spark(A)−
k ≤ k. This means Ax = Az, and the k-sparse x is not the unique ℓ0-minimization

solution of y = Ax due to ||z||0 ≤ k.

Now consider the ℓ0-minimization based recovery is unique under k < Spark(A)/2.

For the sake of contradiction, we first suppose that y = Ax with ||x||0 = k, and a

vector z 6= x with ||z||0 ≤ k exists such that y = Az. Then it can be derived that

A(x − z) = 0 with ||x − z||0 < Spark(A)

which contradicts the definition of Spark(A).

Note that Spark(A) ≤ m + 1 holds for arbitrary underdetermined matrix A.

It easily follows that k ≤ m/2 is necessary for exact recovery. It is clearly difficult

to characterize the spark of a given matrix, say nothing of building a matrix of

relatively large spark. Thus in practice we prefer another more practical parameter,

termed coherence defined as below [24–27].

Definition 2.1.2 (Coherence). The coherence of a matrix A is the largest absolute

correlation between arbitrary two distinct columns of A:

µ(A) = max
1≤i<j≤n

|〈ai, aj〉|
||ai||2||aj||2

(2.3)
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where ai denotes the i-th column of A.

Note that, for analysis convenience, in this thesis the sensing matrix is typically

assumed to be of normalized columns except for special explanation. So we often

simply say µ(A) = max
1≤i<j≤n

|〈ai, aj〉|. The sparsity k allowed by exact recovery is

upper bounded with µ(A) in the theorem below.

Theorem 2.1.2. If

k <
1

2
(µ(A)−1 + 1), (2.4)

a k-sparse signal x is the unique recovery of y = Ax with the ℓ0-minimization prob-

lem formula (2.1).

Proof. We first need to prove a critical property, that is Spark(A) ≥ 1 + µ(A)−1.

Let subset ψ ⊆ {1, 2, ..., n} with cardinality denoted as |ψ|, Aψ be a submatrix

of A with columns indexed by ψ, and AT
ψ be the transpose of Aψ. Consider the

Gram matrix G = AT
ψAψ ∈ R

|ψ|×|ψ|. Clearly its diagonal elements gii = 1, and off-

diagonal elements gij ≤ µ(A) ≤ 1, i 6= j. Recall that the columns of Aψ are linearly

independent if and if only Gram matrix G has positive determinant, equivalently

each eigenvalue is positive. With Gershgorin circle theorem [28], the i-th eigenvalue

of G is bounded in the interval [gii− ri, gii+ ri], where ri =
∑|ψ|
j=1;j 6=i |gij|. To render

all eigenvalues positive, we only require 1−(|ψ|−1)µ(A) > 0. In other words, for any

|ψ| < µ(A)−1 + 1, the columns of Aψ are linearly independent. From the definition

of spark, it can be easily deduced that Spark(A) ≥ µ(A)−1 + 1. By merging the

result with Theorem 2.1.1, we immediately derive the condition k < 1
2
(µ(A)−1 + 1)

for the unique solution based on ℓ0-minimization.

2.1.2 Null Space Property (NSP)

For easier reading, we begin with some basic notions. N (A) := {x : Ax = 0} is

called the null space of A. Let ψ ⊆ {1, 2, ..., n} with cardinality 1 ≤ |ψ| ≤ n and

ψc := {1, 2, ..., n} \ ψ, then we write xψ ∈ R
n as a vector keeping the elements of x

indexed by ψ while setting others to zero.
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Definition 2.1.3 (NSP of order k). A matrix A ∈ R
m×n satisfies NSP of order k,

if it holds

||xψ||1 < ||xψc||1 with |ψ| = k (2.5)

for all x ∈ N (A) \ {0}.

Theorem 2.1.3. A k-sparse signal x can be uniquely recovered from y = Ax with

the ℓ1-minimization problem (1.2), if and only if A satisfies the NSP of order k.

Proof. We first prove NSP is a sufficient condition. Assume A satisfies NSP of order

k and k-sparse x has nonzero coordinates on the set ψ. If there exists a vector z

such that Az = Ax, then we have Av = 0 with v =: z − x. With NSP, it follows

that

||z||1 = ||v + x||1
= ||vψ + xψ||1 + ||vψc + xψc||1
= ||vψ + x||1 + ||vψc||1
≥ ||x||1 − ||vψ||1 + ||vψc||1
> ||x||1.

Now we are ready to prove NSP is necessary. In contrast to NSP, assume |vψ| > |vψc |
for v ∈ N (A) \ {0}. Then we can write y := Avψ = A(−vψc). This means a |ψ|
sparse signal vψ cannot be derived with ℓ1-minimization since there exists another

solution −vψc with smaller ℓ1 norm.

The idea of NSP appeared early in [25] [26], and got its name in [14]. For a given

sensing matrix A, it is preferable to seek the largest k satisfying (2.5). But clearly

it is a NP-hard combinatorial problem. In practice, the term RIP detailed below

is more popular, since to some extent it can be analyzed even in the presence of

noise [29] [30]. So in the following chapter of matrix construction, RIP is exploited

as a performance evaluation tool.
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2.1.3 Restricted Isometry Property (RIP)

RIP also holds a critical parameter termed restricted isometry constant (RIC),

as defined below.

Definition 2.1.4 (RIC). The RIC of a matrix A ∈ R
m×n is defined as the smallest

δk ∈ (0, 1) such that the inequality

(1 − δk)||x||2 ≤ ||Ax||2 ≤ (1 + δk)||x||2 (2.6)

holds for all k-sparse signals x ∈ R
n.

RIP states that if the δk of A is small enough, the k-sparse signals can be

recovered with ℓ1-minimization problem (2.2) [16] [31]. In this case, the matrix is

often called satisfying RIP of order k. Note that δi ≤ δj, if i < j [32] [33]. It means

that RIP of order k in fact supports all signals of sparsity not larger than k. In

practice, a matrix of a relatively small δk is preferable since it affords a relatively

larger sparsity k. Then two interesting problems arise. First, it is desirable if

RIP holds a relatively large upper bound for δk. Recently a few bounds have been

successively derived in [14, 34–37]. However, they usually behave pessimistically

compared to the performance of actual matrices. Second, to seek a better sensing

matrix, we have to determine the δk for a given matrix. Unfortunately, like NSP, it

is proved NP-hard as well [38, 39]. But as detailed below, δk can be approximately

evaluated with the extreme eigenvalues of Gram matrix AT
ψAψ, where Aψ ∈ R

m×|ψ|

is a submatrix of A with columns indexed by ψ ⊆ {1, 2, ..., n}, and AT
ψ denotes the

transpose of Aψ. Specifically, (2.6) can be reformulated as

1 − δk ≤ λmin ≤ ‖Aψx‖2

‖x‖2
≤ λmax ≤ 1 + δk (2.7)

which holds for all |ψ| = k and x ∈ R
|ψ|. λmin and λmax here denote the two extreme

eigenvalues of AT
ψAψ. The pursuit to δk then turns to the solution to the extreme

eigenvalues of Gram matrix. Note that in practice the two extreme eigenvalues are

usually not symmetric about 1. But we can easily derive a symmetric form by scaling

A with
√

λmax+λmin

2
, thereby deriving δk = λmax−λmin

λmax+λmin
. So in practice we say a matrix
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satisfying RIP usually under the case where its some scale form satisfies the RIP. In

fact, δk ∈ (0, 1) can be derived so long as 0 < λmin < λmax < ∞.

Next, we discuss the solution problems of extreme eigenvalues. Note that, for

a given submatrix size |ψ|, it is difficult to exactly calculate the extreme eigenval-

ues of all possible Gram matrices AT
ψAψ . In practice, we intend to approximately

bound the extreme eigenvalues by analyzing the possible distribution of the elements

of AT
ψAψ [40]. Currently there are two major algorithms to address this problem,

namely Wigner semicircle law [41] [42] and Gershgorin circle theorem [28]. In prac-

tice, both of them present some limitations. To be specific, Wigner semicircle law

is proposed to approximately estimate the eigenvalues of random symmetric ma-

trix. Its solution is derived by assuming AT
ψAψ with infinite size. In practice, this

condition is hard to satisfy because the sparsity k of interest is usually small. As

for Gershgorin circle theorem, it can be used to bound each eigenvalue of square

matrix. The bounds cannot be really achieved until the following two conditions are

simultaneously satisfied: 1) the nonzero entries of the eigenvector share the same

magnitude; 2) the elementwise product between the eigenvector and the off-diagonal

elements in the corresponding row vector, has all elements with the same sign. In

practice, the two conditions above seem hard to satisfy. Furthermore, it is hard to

judge how well both conditions above are obeyed, even though the distribution of

AT
ψAψ is given.

In this chapter, to better bound the extreme eigenvalues of small-sized AT
ψAψ,

we will exploit a novel estimation method proposed in [43]. This method can accu-

rately bound the extreme eigenvalues of arbitrary-sized random symmetric matrix,

under the assumption that there exist some AT
ψAψ that could achieve some specific

distribution. The possibility that the required distributions can be well satisfied,

can also be roughly estimated by observing the actual distribution of given AT
ψAψ.

2.2 Solution Algorithm

In real applications, the exact solution to ℓ1-minimization problem (2.2) tends

to be impractical due to two major reasons. First, rather than being strictly sparse,
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real sparse signals are often compressible, namely with few significant elements and

many negligible small ones. Second, we generally have to face the presence of noises.

However, exact solution is usually not necessary for most applications related to

sparse presentation, such as signal detection, classification, and so on. So in practice

the ℓ1-minimization problem is often considered with the form of errors

min ||x̂||1 s.t. ||y − Ax̂||2 ≤ ǫ (2.8)

which is known as basis pursuit de-nosing (BPDN) [15]. In fact, similar optimization

principle, termed Lasso [44] has been early demonstrated in statistics for variable

selection, as below

min
x̂

||y − Ax̂||2 s.t. ||x̂||1 ≤ τ. (2.9)

These two problems (2.8) and (2.9) are equivalent, and can obtain the same solution

by tuning the constraint parameters. Additionally, in practice they are often studied

in a regularized form as below

min
x̂

1

2
||y − Ax̂||2 + λ||x̂||1. (2.10)

which coincides with (2.8) and (2.9) by adjusting the penalized parameters λ [45,

Theorem 27.4]. There are also some works concerning the selection of λ [46–49].

It is known that the three problems mentioned above can be successfully ad-

dressed with general-purpose convex optimization algorithms [17]. However, these

algorithms are computationally expensive. Thus a variety of improved algorithms

are specially proposed for ℓ1-minimization problem, such as gradient projection [50],

Homotopy [51] [52], LARS [53], and others [54] [55] [56] [57]. It is worth men-

tioning that in practice the greedy least-square algorithms, known as orthogonal

matching pursuit (OMP) algorithm, seems to be more popular due to its much

lower complexity but competitive performance. Here we mainly review the OMP

algorithm [58] [59] and its variants. For a general overview of solution algorithms,

see [60] [61] [33,62–65].

As sketched in Algorithm 2.1, OMP is a simple iteration algorithm, which de-
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Algorithm 2.1 Orthogonal Matching Pursuit (OMP) algorithm

Input: y and A with the i-th column denoted as ai;
Output: x̂ with nonzero coordinates x̂ψt = z;
Initialize: r0 = y and ψ0 = ∅;

for t=1; t=t+1 do
î = argmax

i
{|〈ai, rt−1〉|}, 1 ≤ i ≤ n;

ψt = ψt−1
⋃

î;
z = (A−1

ψt
Aψt)

TA−1
ψt

y;
rt = y − Az;
if rt or t reaches some given threshold, then

terminate the iteration;
end if

end for

termines the column of A the most correlated with the residual r at each iteration.

The coefficients of collected columns are derived by representing y with least-square

error. The algorithm will terminate if the representation error or the number of

nonzero coefficients achieves some given threshold. Note that the matrix inverse

operator involved in least-square can be simply decomposed into multiple vector

inverse operations [58]. OMP in fact only involves simple matrix-vector multiplica-

tion. Of course, the complexity advantage is obtained at the cost of performance.

Specifically, OMP does not support uniform recovery, and cannot ensure recovering

arbitrary distributions of sparse signals [66]. For instance, it works worse when the

sparse signal has the same nonzero elements in magnitude [59].

To overcome this problem, several variants of OMP are successively proposed

with provable performance guarantees. These algorithms are known as SP [67],

ROMP [68], CoSamp [32], and StOMP [69]. Their major difference from OMP lies

in that they are all implemented by selecting a few instead of one column of A at a

time. So the four algorithms above are similar in essence. For better understanding,

the flow of SP algorithm is illustrated in Algorithm 2.2. Note that except for ROMP,

the other three algorithms all require prior information either on signal sparsity or

on matrix-vector correlation. This clearly limits their practical application to some

extent, and also stimulates the emergence of sparsity-adaptive algorithms [70].
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Algorithm 2.2 Subspace Pursuit (SP) algorithm

Input: k, y and A;
Output: x̂ with nonzero coordinates x̂ψt = (A−1

ψt
Aψt)

TA−1
ψt

y;
Initialize: r0 = y and ψ0={indices of the first k largest magnitude entries of
ATrt−1};

for t=1; t=t+1 do
ψ̃t=ψt−1

⋃

{indices of the first k largest magnitude entries of A′rt−1};
z = (A−1

ψ̃t
Aψ̃t

)TA−1
ψ̃t

y;

ψt={indices of the first k largest magnitude entries of z};
z = (A−1

ψt
ATt)

TA−1
ψt

y;
rt = y − Az;
if ||rt|| ≥ ||rt−1|| then

let ψt = ψt−1 and terminate the iteration;
end if

end for

2.3 Applications

The ℓ1-minimization technique underlying compressed sensing naturally serves

two popular application fields: compression of sparse signals and sparse represen-

tation of interesting signals with overcomplete dictionary. We first discuss the ap-

plication on signal compression. This application is built on the fact that most

natural signals can be represented with a sparse or compressible form. The notion

of ’compressible’ generally means that the ordered elements of |x| decreases at an

exponential rate. For instance, the image can be sparsely represented with the dif-

ferences between adjacent rows or columns, and likewise, the sparse form can be

obtained from the adjacent frames of videos. More generally, it has been widely

shown that most signals x of interest are compressible over an orthogonal or over-

complete basis Φ [26] [25], namely x = Φc with c being compressible. In this case,

the sensing matrix transforms to AΦ from A. Luckily, AΦ still holds RIP if A is a

random matrix while Φ is an orthogonal matrix [33]. But if A is deterministic, AΦ

has to be considered specially. In this thesis, for analysis convenience, we simply

assume that x is sparse and only consider the property of A.

To better understand the procedure of compression, here we review the well-

known example of single-pixel camera in Figure 2.1 [71–73]. Let us first introduce

its critical part, the digital micromirror device (DMD) array. The array consists
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Figure 2.1: single-pixel camera [71].

of n micromirrors, each of them reflecting the light or not with the binary value

from the random number generator (RNG). Then the imaging process can be easily

understood as below. A n-pixel sparse image is first projected on the DMD array via

a biconvex lens, and then again via a biconvex lens, some pixels randomly reflected

by DMD array are focused/added on a photodiode, which outputs a voltage as

a measurement of the image. In fact, DMD array here acts as a row of random

binary sensing matrix. The n-pixel sparse image will be acquired after the pattern

of DMD array has varied m ≪ n times. It is apparent that this kind of camera

is low-cost since it only employs one photodiode. But it is is time-consuming since

m measurements have to be collected serially. This implies that it is of practical

interest to reduce the measurement number m as large as possible [74]. Compared

to conventional image compression, compressed sensing now exposes more practical

value in magnetic resonance imaging (MRI) [75]. For instance, it had been reported

speeding up pediatric MRI with a factor of seven, while preserving diagnostic quality

[76]. Another interesting problem should be noted that, for analysis convenience,

most of the literature has been assuming that the sparse signal x is discrete-valued,

though actual signals tend to be continuous in time or space. Recently this problem

begins to be considered [77]. In this thesis, however, we go on conducting the

research with discrete-valued x.
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3
Optimal binary sensing matrices

Compressed sensing aims to acquire sparse signals with an underdeterminded

sensing matrix. In practice, the deterministic construction of sensing matrix has

been a challenge. In this chapter, we propose the optimal binary matrix by searching

the best Restricted Isometry Property. For a binary matrix of given size, the optimal

zero-one distribution will be determined by the bipartite graph with as many edges as

possible but without cycles of length 4. A greedy algorithm, termed bipartite graph

based construction (BGC) algorithm, is specially developed to effectively construct

such kind of graph. The practically constructed optimal binary matrix achieves the

desired performance in simulation.

3.1 Introduction

Compressed sensing has recently been recognized due to its ability to recover

sparse signals with an underdetermined matrix [4]. Related theories in fact can be

traced back to the early study of variable selection [44] and sparse representation

[25] [26]. Since then, the sparse solution algorithms applicable to compressed sensing

have been extensively studied [60]. In this chapter, we will focus our attention on

the deterministic construction of sensing matrices, which is still an open problem in

compressed sensing.

To recover a k-sparse signal of length n, it has been proved that the optimal

matrix should have the number of measurements as few as O(k log(n/k)) [78]. It

is known that some randomized matrices and their sparse versions can provide the
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optimal performance with high probability [9, 16, 31, 79]. In practice, it is more

computationally attractive to deterministically construct the binary or ternary ma-

trices even with some loss of performance [80]. Currently these matrices are mainly

constructed with some known codes, such as BCH codes [81] [80], Reed-Solomon

codes [82], Reed-Muller codes [83–85], LDPC codes [86] [87], and so on. These codes

generally provide the codewords with relatively large mutual distances (equivalently,

relatively low mutual correlations), and so they are available for the construction of

sensing matrices. For compressed sensing, it is desirable to collect a set of codewords

with as large mutual distances as possible. Based on this principle, DeVore [88] pro-

posed the best known deterministic matrix with a sub-optimal performance [89].

An interesting question naturally arises: can we get the optimal binary or ternary

matrix with coding theory? The answer is pessimistic. It is necessary to point out

that in coding theory, to implement the parity-check decoding, the codewords are

generated only on the null-space of parity-check matrix over finite field. For com-

pressed sensing, however, it is reasonable to conjecture that a more orthogonal set of

zero-one vectors will be obtained from the whole vector space. Besides performance

limitation, the deterministic matrices based on coding theory are also imperfect on

complexity. Specifically, it is known that the matrix with competitive performance

allows to be very sparse in compressed sensing [79]. However, the desired sparsity

cannot be achieved by the coding theory which generally produces the codeword

with elements being 0 and 1 equiprobably. In addition, it is worth noting that

the arbitrary size of matrix is hard to be obtained from the coding theory which

generally cannot provide the codeword with arbitrary length.

Recently the bipartite graph has been used to seek the optimal binary matrix and

achieved some interesting results [90] [91]. For instance, Gilbert and Indyk simply

characterized the binary matrix of m = O(k log(n/k)) with an expander graph, while

the explicit construction of the graph is unknown [92]. Another seemingly practical

work by Dimakis and Khajehnejad, et al. [89] [93] demonstrated that the optimal

performance can be achieved by the bipartite graph with girth Ω(log(n)), where

the term girth denotes the minimum length of the shortest cycles in the bipartite

graph. Their conclusion that the larger girth implies the better performance was
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also supported by Liu and Xia in [94]. Unfortunately, the above result on girth

is still insufficient for us to determine the optimal binary matrix, since the binary

matrix cannot be accurately characterized only using the girth. In practice, most

known binary matrices share the same girth, i.e. an even value equal or slightly

larger than 4.

The rest of the chapter is organized as follows. In the next section, we character-

ize the binary matrix with bipartite graph. In section 3.3, the optimal binary matrix

with best RIP is derived. In section 3.4, a novel greedy algorithm is proposed to

construct the optimal binary matrix. The performance advantages of the proposed

construction algorithm and the optimal binary matrix are validated in section 3.5.

Finally, the chapter is concluded in section 3.6.

3.2 Binary matrix characterized with bipartite graph

We begin by introducing the basic notions of bipartite graph. As illustrated

in Figure 3.1, a bipartite graph consists of two classes of nodes, which are termed

as variable nodes and measurement nodes. It is associated with a binary matrix

by making the two classes of nodes correspond to the columns and rows of binary

matrix, respectively. The edges between both classes of nodes are determined by

the nonzero positions of binary matrix. If the nodes of each class have the same

number of edges, the graph and associated matrix are viewed as regular; otherwise,

they are called irregular. In this chapter, we mainly study regular binary matrices.

In terms of the equivalence between the binary matrix and bipartite graph, the two

notions are often used interchangeably. From each variable node, a subgraph with

multiple floors, as illustrated in Figure 3.1, can be generated by forward traversing

all connected nodes. The subgraph often includes some closed paths, termed as

cycles. The length of the cycle is measured with the number of edges, which can

only take even values not less than 4. Among all the subgraphs, the length of the

shortest cycles is defined as the girth of the bipartite graph. Empirically, as the

edge number increases, the shorter cycles are inevitable, and the girth immediately

becomes smaller. Here it is interesting to note that, in a subgraph as in Figure 3.1,
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Figure 3.1: From left to right: a binary matrix, the corresponding bipartite graph
and a subgraph expanded from a variable node. The variable nodes and measure-
ment nodes are denoted with circle and square, respectively. If two variable nodes
share two same nonzero positions in their corresponding columns, they will form a
shortest cycle of length 4 (dashed lines), as the dashed lines shown in the subgraph.

if the root variable node is further connected to a measurement node included in the

f -th floor of the graph, where f > 1, the generated new cycles will hold the length

of 2f . This property will be used to characterize the optimal binary matrix in the

next section.

For the convenience of analysis, in this thesis the binary matrix is divided into two

classes according to the distribution of girth, as detailed in the following Definitions

1 and 2:

Definition 3.2.1 (AL). AL ∈ {0, 1/
√
d}m×n represents an ensemble of regular bi-

nary matrices with girth larger than 4. It holds 2 ≤ d ≤ dmax nonzero entries per

column and nd/m nonzero entries per row, where dmax denotes the maximum col-

umn degree d allowed for AL. Any two distinct columns of AL share at most one

common nonzero position.

Definition 3.2.2 (AE). AE ∈ {0, 1/
√
d}m×n represents an ensemble of regular

binary matrices with girth equal to 4. It holds 3 ≤ d ≤ m − 2 nonzero entries

per column and nd/m nonzero entries per row. The maximum number of nonzero

positions overlapped between two distinct columns is 2 ≤ s ≤ d− 1.

To better understand the two Definitions above, it is necessary to clarify some crucial

parameters at first. In Definition 1, AL has an upper bound dmax on the column

degree d, because for a matrix of given size, the shortest cycles of length 4 are

inevitable as the edge number nd increases. The AL with dmax in fact corresponds
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to a regular bipartite graph with as many edges as possible, while with girth larger

than 4. To avoid producing the AE matrix with same columns, the ranges of d

and s are restricted in Definition 2. Now it is interesting to know what kind of

known matrices that the terms AL and AE actually correspond to. We have to

say that AE covers most known binary matrices, which are generally constructed

without strict correlation constraint as required for AL. Here we take the sparse

random matrix R ∈ {0, 1/
√
d}m×n as example, which presents comparable sensing

performance with Gaussian random matrices by randomly selecting d ≪ n nonzero

positions per column [79]. As demonstrated in Lemma 3.2.1, its each implementation

is an AE matrix because it will take all possible column correlations with some

probability. In contrast, the matrix AL is defined with column correlations being

binary, namely equal to 0 or 1/d with the probabilities shown in Lemma 3.2.2. To

the best of our knowledge, this kind of matrices is mainly explored in the study of

LDPC codes, where it is used as the parity-check matrix [95]. Note that, LDPC

codes are concerned only with relatively small d, i.e., usually d = 3 or 4. However,

in compressed sensing, as will be detailed in the next section, we are more interested

in the maximum column degree d, namely dmax.

Lemma 3.2.1 (column correlation of random binary matrices). Let ri and rj denote

the i-th and j-th columns of random binary matrix R ∈ {0, 1/
√
d}m×n. Then the

correlation between columns satisfies the distribution

rTi rj,j 6=i = z/d with probability η =
d!d!(m− d)!(m− d)!

(d− z)!(d− z)!z!(m− 2d+ z)!m!
(3.1)

where the integer z varies in the interval [0, d].

Proof. The correlation between two columns is determined by the number of nonzero

positions overlapped between them. The case where two columns have exactly z

same nonzero positions, 0 ≤ z ≤ d, occurs with the probability

η =

(

m
d−z

)(

m−(d−z)
d−z

)(

m−2(d−z)
z

)

(

m
d

)(

m
d

) =
d!d!(m− d)!(m− d)!

(d− z)!(d− z)!z!(m− 2d+ z)!m!

if d nonzero positions are selected uniformly at random in each column of R.
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Lemma 3.2.2 (column correlation of AL). Let ai and aj denote the i-th and j-th

columns of a matrix A ∈ AL. Then the correlations between columns of A follows

the distribution

aTi aj,j 6=i =











1/d with probability η = nd2−md
(n−1)m

0 with probability 1 − η
(3.2)

Proof. In the bipartite graph associated with A, any variable node vi, i ∈ {1, ..., n},

has d neighboring measurement nodes cbk
, 1 ≤ k ≤ d, where the subscript bk ∈ C

which contains the indices of d measurement nodes connected to vi. Each connected

measurement node cbk
also connects with other (nd/m− 1) variable nodes vj, where

j ∈ Vbk
which contains the indices of variable nodes connected to cbk

, except for

vi. Since the variable node vi has girth larger than 4, we have Vbe

⋂

Vbf
= ∅, where

e, f ∈ {1, ..., d} and e 6= f , and then derive |Vb1

⋃

Vb2

⋃

...
⋃

Vbd
| = d(nd/m − 1).

Therefore, in the set of n variable nodes excluding vi, there are (nd2 −md)/m nodes

each sharing exactly one common measurement node with vi. It implies that any

column of A has exactly (nd2 − md)/m correlated columns with correlation value

1/d. Then the probability that any two distinct columns correlate to each other is

derived as nd2−md
(n−1)m

.

3.3 Optimal binary sensing matrix

In this section, the matrix AL with d = dmax is derived as the optimal binary

matrix through searching the best RIP. Note that, for simplicity, we only calculate

the values of RIC, as the smaller RIC implies the better RIP.

3.3.1 RIC of AL

As stated before, the RIC-δk will be estimated by bounding the extreme eigen-

values of all possible Gram matrices AT
ψAψ with ψ ⊂ {1, 2, ..., n} and |ψ| = k.

According to the definition of AL, the elements of AT
ψAψ ∈ {0, 1, 1/d}k×k follow a

simple distribution as described below. The diagonal elements take the value 1, and
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the off-diagonal elements obey the distribution shown in Lemma 3.2.2. With the

distribution above, the RIC is immediately derived in Theorem 3.3.1.

Theorem 3.3.1 (RIC-1). Consider a matrix A ∈ AL. With the eigenvalue estima-

tion method [43], the RIC of A can be derived as

δk =
3k − 2

4d+ k − 2
. (3.3)

Proof. See Proof 3.7.1.

Remark: From the proof of Theorem 3.3.1, it can be inferred that the δk can-

not reasonably reflect the average performance of AL, especially as |ψ| increases,

because the extreme eigenvalues seem hard to approximate for most submatrices

Aψ. Specifically, to derive a sufficient condition, the eigenvalue estimation method

in [43] considers only two extreme cases where the proportion of nonzero entries in

the off-diagonal of AT
ψAψ, denoted as p, takes values 1 or 0.5. However, two cases

above will not occur for most submatrices Aψ, since with increasing |ψ|, the propor-

tion p defined above will center on η < 1 with higher property, as disclosed in Lemma

3.2.2. For better understanding, we test a real AL matrix with size (200, 400) and

d = 7 in Figure 3.2, where the distribution of p is tested for all possible AT
ψAψ

when the submatrix size |ψ| is fixed. It is clear that p will rapidly converge to the

theoretical value η = 0.2281 < 0.5, as the submatrix size increases. It implies that

the applied estimation method [43] is not reasonable when a relatively large spar-

sity k = |ψ| is available in compressed sensing. In this case, the Wigner semicircle

law [41] may be a better option, which works well as the guaranteed sparsity k is

sufficiently large. The corresponding RIC-2 is derived in Theorem 3.3.2. Note that,

in this thesis we are concerned only with the general case where the guaranteed

sparsity k is relatively small. So in the following comparison between AL and AE,

we will exploit RIC-1 instead of RIC-2.

Theorem 3.3.2 (RIC-2). Consider a matrix A ∈ AL. If the guaranteed sparsity
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Figure 3.2: Given a real AL matrix with size (200, 400) and d = 7. The proportion
p is tested for each set of submatrices Aψ with given size |ψ|. In (a), the maximum,
mean and minimum p that can be achieved by AT

ψAψ are depicted at each |ψ|. As
expected, the mean is equal to the theoretical value η = 0.2281, which is derived
with Lemma 3.2.2. The probability that p centers on η with error bound |p − η|/η
is presented in (b).

k → ∞, with the Wigner semicircle law, the RIC of A can be approximated as

δk =
kη + 2

√

kη(1 − η) + 1

kη − 2
√

kη(1 − η) + 2d+ 1
, (3.4)

where η = nd2−md
(n−1)m

as in Lemma 3.2.2.

Proof. See Proof 3.7.2.

3.3.2 RIC of AE

For a matrix A ∈ AE with given d and s, it can be observed that the Gram

matrix AT
ψAψ will take the value 1 in the diagonal, and take the values in the set

{0, 1/d, ..., s/d} in the off-diagonal. Then similarly to RIC-1, the RIC of AE is also

derived with the eigenvalue estimation method [43], as in Theorem 3.3.3.

Theorem 3.3.3 (RIC-3). Consider a matrix A ∈ AE with given d and s, 2 ≤ s ≤
d − 1 and 3 ≤ d ≤ m − 2. Then with the eigenvalue estimation method in [43], the

RIC of A can be derived as
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δk =















(3k−2)s

(k − 2)s+ 4d
if 3 ≤ d ≤ m

2
and 2 ≤ s ≤ d− 1

(3k−2)s+(k−2)(m−2d)

(k − 2)s− (m− 2d)k + 2m
if m

2
< d ≤ m− 2 and 2d−m ≤ s ≤ d− 1

(3.5)

Proof. See Proof 3.7.3.

Remark: Similarly to RIC-1, RIC-2 is also derived by considering only two

extreme cases. Precisely, the off-diagonal elements of AT
ψAψ are assumed to only take

the value s/d, or take binary values {0, s/d} with equal probability. However, for

random binary matrices, from Lemma 3.2.1, it can be observed that the probability

that AT
ψAψ satisfies the distribution above is very small. So it implies that, the δk

in fact only takes care of the submatrices Aψ of the worst performance, and ignores

other more typical submatrices. This explains why in practice the real average

performance usually behaves much better than the RIP expects.

3.3.3 Binary matrix with best RIP

This subsection demonstrates that the matrix AL with d = dmax should be the

optimal binary sensing matrix with the best RIP, by comparing the RIC between

AL and AE, as detailed in Theorem 3.3.4.

Theorem 3.3.4. Among all binary matrices, AL with d = dmax holds the smallest

RIC, except for two special cases on AE:

1) AE exists with d satisfying d/s > dmax, where dmax < d ≤ m/2 and 2 ≤ s ≤
d− 1;

2) AE exists with d satisfying (k+1)(2d−m)
6s+2(2d−m)

> dmax, where m/2 < d ≤ m − 2 and

2d−m ≤ s ≤ d− 1.

Proof. First, we need to prove that AL achieves its smallest RIC at d = dmax. This

result can be easily derived with RIC-1, in which the δk decreases as d increases.

Next we are ready to provide the condition that AL with d = dmax holds smaller

RIC than AE. Recall that AE is defined with 3 ≤ d ≤ m − 2, and dmax < m/2
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as will be derived in section 3.4.1. For clearer expression, in the following part,

AE is considered separately with three cases: 3 ≤ d ≤ dmax, dmax < d ≤ m/2,

and m/2 < d ≤ m − 2. Let us first consider the case of d ≤ dmax. By comparing

RIC-1 with the first equation of RIC-3, it can be derived that 3k−2
4d+k−2

< (3k−2)s
(k−2)s+4d

,

if 3 ≤ d ≤ dmax. This indicates that AL holds smaller RIC than AE, when they

share the same d ≤ dmax. It follows that AL with d = dmax holds smaller RIC

than all AE with d ≤ dmax. Subsequently, consider the case of dmax < d ≤ m/2.

Let RIC-1 with d = dmax smaller than the first equation in RIC-3, it follows that

dmax ≥ d/s. Let RIC-1 with d = dmax smaller than the second equation in RIC-3,

we can derive dmax ≥ (k+1)(2d−m)
6s+2(2d−m)

for the finial case of m/2 < d ≤ m − 2. Then the

proof is completed.

Remark:

1) Note that currently there is no explicit way to construct the two special AE

theoretically derived in Theorem 3.3.4. In fact, they probably do not really

exist. For instance, the impossibility of the first case AE with d/s > dmax

can be easily derived as follows. Suppose a matrix A ∈ AL with d = dmax.

If d increases to d = dmax + 1, the matrix A will become an AE matrix with

s ∈ {2, ..., d − 1}. In this case, dmax > d/s. As shown in Lemma 3.2.1,

empirically, s multiplies much faster than d. This implies that as d > dmax+1,

AE should maintain dmax > d/s rather than dmax < d/s. As for the second

case AE with (k+1)(2d−m)
6s+2(2d−m)

> dmax, it is apparent that this kind of matrices is

hard to analyze and construct.

2) Based on the fact above, it is reasonable to argue that AL with d = dmax

holds the best RIP, which naturally indicates the optimal performance. It is

necessary to note that, the condition that AL has uniform row degrees is not

necessary for us to define the optimal matrix with Theorems 3.3.1 and 3.3.3.

In fact, this condition is only used in Lemma 3.2.2 and Theorem 3.3.2 for the

convenience of analyzing the distribution of column correlations. So to obtain

a relatively large dmax, except for special explanation, the row degrees are not

restricted to be uniform in the following matrix construction. In addition,

it is worth mentioning another general case where the column degrees are
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not uniform either. In this case, we generally can construct an AL matrix

of average column degrees larger than the dmax derived on the uniform case,

as will be detailed in the next two sections. Intuitively, it should also present

better sensing performance than the optimal matrix AL with d = dmax. In this

chapter, we will not make a thorough inquiry into such kind of matrices, and

still focus our attention on the binary matrix with uniform column degrees.

3.4 Deterministic construction

3.4.1 Estimation on the maximum column degree

Currently, for an AL matrix of given size, it is still hard to exactly determine

the maximum column degree dmax. In theory, this kind of bipartite graphs has been

studied early as a combinatorial problem in [96] and the references therein. However,

these works have no practical use because they only consider the matrix with infinite

size. In practice, a rough estimation of dmax can be easily derived based on the fact

that in a subgraph, the number of variable nodes included in the first two floors is

not more than the total number of variable node [95]. Suppose the matrix is regular,

it simply follows that 1 + d(dn/m− 1) ≤ n, and then dmax <
√
m < m/2.

Here, we will propose a more reasonable estimation method. From the definition

of AL with uniform d = dmax, it can be inferred that the corresponding bipartite

graph with girth larger than 4 will achieve its maximum number of edges by ad-

ditionally adding not more than n − 1 new edges, because if we add n edges, the

column degree will turn into d = dmax+1 and the cycles of length 4 will occur. Here,

for the simplicity of analysis, we assume that the bipartite graph mentioned above

has achieved its maximum number of edges, and would produce the cycles of length

4, if only one edge is introduced. In this case, each subgraph should hold all cycles

of length 6 and include all the measurement nodes in its first two floors, such that

any new connected measurement node will introduce the cycles of length 4. Again,

suppose the bipartite graph is regular, it follows that

dmax + dmax(dmaxn/m− 1)(dmax − 1) = m. (3.6)
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Note that the equality above is achieved only when a bipartite graph with girth larger

than 4 can achieve its maximum number of edges with a regular form, but in fact this

condition is hard to satisfy. An interesting evidence is that, the solution of formula

(3.6) is usually not an integer. This implies that the AL matrix with nonuniform

column degrees probably get larger average column degrees than the dmax derived

on the uniform case, as previously mentioned in the remark of Theorem (3.3.4). Of

course, it also indicates that the estimation of formula (3.6) is not very accurate.

Empirically, if the matrix is regular, it behaves slightly better than the real dmax

that can be constructed with greedy algorithms; otherwise, it behaves pessimistically

compared to the real values, as will be detailed in the final simulations.

3.4.2 Bipartite graph based construction algorithm

In practice, the maximum column degree dmax can be approached with greedy

algorithms, although it is hard to be determined in theory. In this subsection, we will

present an efficient bipartite graph based construction (BGC) algorithm to generate

the bipartite graph with as many edges as possible, while with girth larger than 4.

Before detailing the BGC algorithm, we first introduce a known algorithm termed

progressive edge-growth (PEG) algorithm, which is initially proposed to constrct

the parity-check matrix of LDPC codes [95]. It can also be used to construct the

bipartite graph mentioned above, since it attempts to build a bipartite graph with

as few short cycles as possible. However, this algorithm is still imperfect in terms of

both performance and complexity. More precisely, given the matrix size and column

degrees, PEG can only construct the bipartite graph with large girth, rather than

with girth larger than 4. In this case, it is inevitable to involve more computation to

test the shortest cycles of each constructed matrix. To find the underlying maximum

column degree, we generally have to construct all smaller column degrees, until the

cycles of length 4 appear. Obviously, this enumerating process is computationally

expensive. Moreover, in practice it is interesting to construct the optimal AL matrix

with nonuniform degrees, because as analyzed in the former subsection, it probably

provide larger average column degrees and better sensing performance compared

to the optimal AL with uniform d = dmax. Obviously, the optimal distribution of
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Algorithm 3.1 Bipartite graph based construction (BGC) algorithm

Initializations: Let C and V refer to the set of m measurement nodes and the set
of n variable nodes, respectively. I is defined as the set of variable nodes still to be
updated in current bipartite graph, which is initialized as I = V . Ii indicates the
i-th element of I. Searching for new edges will stop if I turns to be empty. Three
subsets Ci with subscript 1 ≤ i ≤ 3 are further defined to contain the measurement
nodes appearing on the i-th floor of subgraph. If the subgraph has no measurement
nodes on floor-i, the corresponding Ci = ∅. The selected edges are collected in the
set E which is initialized as ∅.

1: for i=1 to m do
2: if I = ∅ then
3: break; // terminate the program and output the edge set E ;
4: end if
5: I ′ = I;
6: for j=1 to |I| do
7: Try to expand a subgraph from variable node I ′

j to floor-3 with current edge
set E ; and the the measurement nodes on the k-th floor are collected in the
empty-initialized set Ck, 1 ≤ k ≤ 3;

8: if C3 = ∅ then
9: if C\{C1

⋃ C2} 6= ∅ then
10: Introduce a new edge (I ′

j, c) to the edge set E by E = E ⋃(I ′
j, c), where

c is a measurement node randomly selected from the set C\{C1
⋃ C2};

11: else
12: Exclude the variable node Ij from I, namely I = I\Ij;
13: end if
14: end if
15: if C3 6= ∅ then
16: Introduce a new edge (I ′

j, c) to the edge set E by E = E ⋃(I ′
j, c), where c

is a measurement node randomly selected from the set C3;
17: end if
18: end for
19: end for

nonuniform column degrees is hard to be obtained by using PEG to enumerate all

the possible cases. To address these problems, in the following part we propose a

more efficient BGC algorithm, which can automatically provide the optimal uniform

or nonuniform column degrees with a much lower complexity.

The BGC algorithm can be simply described with an iterative process, as sketched

in Algorithm 3.1. At each iteration, each variable node is allowed to connect with

at most one measurement node. The measurement node is randomly selected in the

3-rd floor of current subgraph to generate the cycles of length 6, if the floor can be



42 Chapter 3. Optimal binary sensing matrices

achieved by the current subgraph. Otherwise, if the subgraph does not include all

measurement nodes, a measurement node outside the subgraph will be randomly

chosen to avoid generating the cycles of length 4. The procedure above is repeated

until no variable node has measurement nodes to update. According to the construc-

tion rule, the final generated bipartite graph will hold the following two properties:

1) each subgraph has two and only two floors containing all measurement nodes; 2)

any further added edge will lead to the shortest cycles of length 4. This means that

the generated bipartite graph indeed achieves its maximum number of edges under

the constraint of girth larger than 4. Note that, in this case the column degrees

are usually not uniform. The case of uniform column degrees can be easily derived

by simply modifying the final iteration of the BGC algorithm. Specifically, if the

number of edges selected in final iteration is less than the column number, these

edges should be abandoned and then the matrix with maximum uniform degree is

derived.

Compared to the PEG algorithm, it can be observed that the BGC algorithm

also presents obvious advantages of complexity. Specifically, to select an edge, the

BGC algorithm only needs to spread a subgraph with at most 3 floors; in contrast,

for PEG algorithm, the subgraph has to be expanded as deep as possible. More

importantly, the BGC can directly provide the optimal column degrees, while the

PEG algorithm has to construct all possible column degrees.

3.4.3 Best RIP vs. best performance

As stated in the former section, the RIP is derived by considering the worst

recovery case. So the best RIP does not certainly implies the best performance,

in the setting where the recovery error to some extent is tolerated and a good

average performance is preferred. Here, we give a real example, the PEG-constructed

AE matrix with d slightly larger than dmax, which is expected to provide better

average performance than the optimal matrix we present. Due to greediness of PEG

algorithm, the generated AE matrix will contain a relatively few cycles of length 4

as the d is slightly larger than dmax. In this case, the nonzero correlations between

distinct columns will take the value 1/d (< 1/dmax) with high probability, rather
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than s/d (> 1/dmax), where 2 ≤ s ≤ d− 1. This implies that with high probability,

the submatrix of the AE matrix described above will take better orthogonality than

the submatrix of optimal matrix. Then it should present better average performance.

This conjecture is indeed validated in the following simulations.

3.5 Simulations

The simulations are divided into two parts with two aims. In the first part, the

proposed BGC algorithm is compared with the PEG algorithm on the construction

of the optimal binary matrix. According to the definition of the optimal binary

matrix, it is clear that the larger column degree implies the better performance. In

the second part, the performance advantage of the optimal binary matrix over other

binary matrices is confirmed.

3.5.1 BGC vs. PEG

The optimal binary matrices with various sizes are constructed with BGC and

PEG, whose column degrees are shown in Table 3.1. The optimal cases with nonuni-

form column degrees are also constructed with BGC, whose average values are de-

noted by BGCn. As expected, the BGC indeed can provide the nonuniform column

degrees with average values larger than dmax. As for the construction of uniform

cases, the BGC presents the same and even better performance than the PEG. This

suggests that the BGC will be preferred in practice due to its significant advantage

of complexity, as stated in the former section.

The theoretical estimation of formula (3.6) is also presented in Table 3.1, denoted

by TE. Obviously, the estimation behaves pessimistically compared to the real values

we can achieve. The difference between theory and practice comes from the fact that

the formula (3.6) is derived on the assumption that the matrix is regular, while to

obtain relatively large column degrees, this condition is not followed by PEG or

BGC.
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Table 3.1: For the matrices with girth larger than 4, the maximum column de-
grees achieved by BGC and PEG are shown. The term BGCn denotes the average
of nonuniform column degrees constructed with BGC. The term TE denotes the
theoretical estimation of formula 3.6.

m/n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n

100

BGCn 1.45 2.37 3.2 3.99 4.68 5.27 5.93 6.55 7.21 7.69

BGC 1 2 3 3 4 5 5 6 7 7

PEG 1 2 3 3 4 5 5 6 7 7

TE 1.44 2.00 2.50 2.96 3.39 3.79 4.18 4.56 4.90 5.25

500

BGCn 2.68 4.45 5.99 7.40 8.67 9.86 10.99 12.08 13.07 14.21

BGC 2 4 5 7 8 9 10 12 13 14

PEG 2 4 5 7 8 9 10 11 12 13

TE 2.12 3.12 3.98 4.76 5.48 6.16 6.80 7.41 8.00 8.57

1000

BGCn 3.48 5.82 7.80 9.59 11.26 12.78 14.36 15.75 17.06 18.45

BGC 3 5 7 9 11 12 14 15 17 18

PEG 3 5 7 9 11 12 14 15 16 17

TE 2.55 3.83 4.91 5.88 6.78 7.63 8.43 9.20 9.93 10.64

3.5.2 Performance of the optimal binary matrix

The performance of the optimal matrix AL with d = dmax, is compared with

other AL and AE matrices. The better matrix should recover larger sparsity k.

Here for simulation simplicity, we only test the matrices of size (200, 400). The

AL matrices with 2 ≤ d ≤ dmax are constructed with PEG, and dmax = 7. Recall

that the BGC and PEG generally present the same dmax when the column degrees

are uniform. The AL matrix with nonuniform column degrees is constructed with

BGC, denoted by ALn, whose average column degree is derived as 7.96 > dmax.

As stated before, in practice the notion of AE covers most known binary sensing

matrices. Obviously, we cannot test all of them. Here we just explore the random

binary matrix R with column degrees 2 ≤ d ≤ 100, and the PEG-constructed AE

matrix with dmax < d ≤ 100. As it is known, the random binary matrix is typical

in compressed sensing and has achieved comparable performance with Gaussian

random matrices [79] [9]. The PEG-constructed AE matrix is adopted here because

it is expected to present better average performance than the optimal matrix in

the former section. For comparison, the performance of Gaussian random matrices,

denoted as G, is also provided here. Note that, to reduce the simulation load, AE

and R are not tested with all possible column degrees d. However, as shown latter,

the samples of d suffice to reflect the performance tendency.
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To present convincing results, we test four representative recovery algorithms:

orthogonal matching pursuit (OMP) algorithm [58] [59], iterative hard thresholding

(IHT) algorithm [97], subspace pursuit (SP) algorithm [98] and basis pursuit (BP)

algorithm [57]. Each simulation result is derived after 104 simulation runs. Both

random binary matrices and Gaussian random matrices are randomly generated at

each iteration. The sparse signals have nonzero elements i.i.d drawn from N(0, 1).

And the correct recovery rates are measured with 1 − ‖x̂ − x‖2/‖x‖2.

The simulation results are illustrated in Table 3.2, where the largest sparsity k

recovered with a probability larger than 99% is provided. As expected, the optimal

matrix AL with d = 7 achieves the best performance among all binary matrices,

except for some PEG-constructed AE matrices with d slightly larger than dmax. Note

that, although some AL matrices with d slightly less than dmax, also present the best

k with BP recovery, in fact their recovery rates are less than the optimal matrix.

A similar thing also happens to the BGC-constructed AL matrix with nonuniform

column degrees, which does not present obvious advantages over AL with d = dmax,

though it is expected to perform better due to its larger average column degree. As

for the fact that the optimal matrix performs a little worse compared to the PEG-

constructed AE matrices with d slightly larger than dmax, it has been explained

in the former section. This is because compared to the optimal matrix, the AE

matrices mentioned above possess smaller average column correlations. Thus it can

present better average performance, in the setting where 100% recovery rate is not

required.

Moreover, it can be observed that in most cases the optimal binary matrix also

presents better performance than Gaussian random matrices. Note that, the sensing

performance is generally sensitive to the signs of matrices and signals [99]. In fact,

the optimal binary matrix will present much better performance than Gaussian

random matrices, if the sparse signals have unsigned elements, rather than the signed

N(0, 1) elements as in the simulation.
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3.6 Conclusion

This chapter has successfully proposed and constructed the optimal binary ma-

trix, which even presents better performance over Gaussian random matrices in sim-

ulation. Based on the fact that the best RIP corresponds to the best performance,

we are allowed to define the optimal matrix, even though the exact performance still

cannot be derived with current theoretical methods. In terms of hardware-friendly

implementation, as it did for LDPC codes [100], the optimal binary matrix can also

be constructed with quasi-cyclic structure, which generally will suffer some perfor-

mance loss due to the decrease of the maximum column degree. In fact, as detailed

in [101], the result of this chapter can be simply extended to construct the optimal

ternary matrix, by assigning the binary values ±1 with equal probability to the

deterministic nonzero positions of optimal binary matrix.

3.7 Proof

3.7.1 Proof of Theorem 3.3.1

Proof. As stated before, the RIC-δk can be estimated with the extreme eigenvalues

of Gram matrix AT
ψAψ with size |ψ| = k. In this chapter we exploit the eigenvalue

estimation method in [43]. The k eigenvalues of AT
ψAψ are typically represented with

the order λ1 ≥ λ2 ≥ ... ≥ λk. In the following part, the two extreme eigenvalues λk

and λ1 are successively estimated.

1. Let B = AT
ψAψ − I, where I is an identity matrix. Then with definition of

AL, it is known that the symmetric matrix B ∈ {0, 1/d}k×k has the diagonal

elements Bii = 0 and the off-diagonal elements Bij,i6=j = 0 or 1/d. Assume

a normalized vector x = (x1, . . . , xk)
T is the eigenvector corresponding to the

minimal eigenvalue λk(B), which be formulated as

λk(B) = xTBx = 1
T [B ◦ (xxT )]1

where ◦ denotes the Hadamard product and 1 ∈ R
k is an all-ones vector. Since
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B is symmetric, with simultaneous permutations of the rows and columns of B,

we are allowed to suppose xi ≥ 0 for i = 1, . . . , t and xi < 0 for i = t+1, . . . , k.

Accordingly, xxT allows to be divided into four parts as below

xxT =







Xt×t Xt×(k−t)

X(k−t)×t X(k−t)×(k−t)







where the entries in Xn×n and X(k−n)×(k−n) are nonnegative, while the entries

in Xn×(k−n) and X(k−n)×n are nonpositive. Furthermore, we need to define a

matrix B̃ with size same to B

B̃ =







0 × Jt×t
1
d

× Jt×(k−t)

1
d

× J(k−t)×t 0 × J(k−t)×(k−t)







where Ja×b is an all-ones matrix with size a× b. It is easy to deduce that

λk(B̃) = min{yT B̃y : ‖y‖2 = 1} ≤ xT B̃x ≤ xTBx = λk(B).

Note that B̃ preserve a rank not larger than than 2, and so it has at most two

nonzero eigenvalues. Considering its trace and Frobenius norm, we have

λk(B̃) = −
√

t(k − t)

d2
, 0 ≤ t ≤ k.

If k is even, λk(B̃) ≥ − k
2d

, with equality for t = k/2.

If k is odd, λk(B̃) ≥ −
√
k2−1
2d

, with equality for t = (k − 1)/2 or t = (k + 1)/2.

Combining these two cases, it is derived that λk(B) ≥ λk(B̃) ≥ − k
2d

, with

equality for t = k/2, k is even. So we have the minimum eigenvalue λk(A
T
ψAψ) ≥

1 − k
2d

.

2. Let C = AT
ψAψ − d−1

d
I, then Cii = 1/d and Cij,i6=j = 0 or 1/d . Assume a

normalized vector x = (x1, . . . , xk)
T being the eigenvector corresponding to

λ1(C). By simultaneous permutations of C and x, we can suppose xi ≥ 0 for

i = 1, . . . , t and xi < 0 for i = t + 1, . . . , k, and the maximal eigenvalue is
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formulated as

λ1(C) = xTCx = 1
′[C ◦ (xxT )]1.

Further define

C̃ =







1
d

× Jt×n 0 × Jt×(k−t)

0 × J(k−t)×t
1
d

× J(k−t)×(k−t)







then

λ1(C̃) = max{yT C̃y : ‖y‖2 = 1} ≥ xT C̃x ≥ xTCx = λ1(C).

Note that C̃ has the rank not more than 2, and equivalently it has at most

two nonzero eigenvalues. Considering the trace and Frobenius norm, we have

λ1(C̃) = k+|k−2t|
2d

, and then

λ1(C) ≤ λ1(C̃) ≤ k

d

with equality for t = 0 or t = k. Thus, we can further derive

λ1(A
T
ψAψ) = λ1(C) +

d− 1

d
≤ k + d− 1

d
.

3. Finally, combining results of 1) and 2), the RIC is derived as

δk =
λ1(A

T
ψAψ) − λk(A

T
ψAψ)

λ1(AT
ψAψ) + λk(AT

ψAψ)
=

3k − 2

4d+ k − 2

.

3.7.2 Proof of Theorem 3.3.2

Proof. To derive the extreme eigenvalues of AT
ψAψ, we begin by seeking the extreme

eigenvalues of B = (AT
ψAψ−I), where I is an identity matrix. Then B is a symmetric

matrix with Bii = 0 and Bij,i6=j taking nonzero value 1/d with property η, as in

Lemma 2.
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Suppose

Q =
1

√

η(1 − η)
(dB − ηJ)

where J is an all-ones matrix. With Wigner semicircle law, the extreme eigenvalues

1√
k
Q with k = |ψ|, can be approximated as

−2 ≤ λ(
1√
k

Q) ≤ 2

namely,

−2
√

kη(1 − η) ≤ λ(dB − ηJ) ≤ 2
√

kη(1 − η),

if k → ∞ [102] [103].

Note that dB−ηJ and ηJ are Hermitian matrices, and ηJ is positive semi-definite

with rank equal to 1. With cauchy interlacing inequality [104], we can obtain

λi(dB − ηJ) ≤ λi(dB) ≤ λi−1(dB − ηJ)

for 1 < i ≤ k. Then it can be observed that

λ2(B) ≤ 1

d
· λ1(dB − ηJ) ≤ 2

d

√

kη(1 − η)

and

λk(B) ≥ 1

d
· λk(dB − ηJ) ≥ −2

d

√

kη(1 − η)

As for λ1(B), in [105] it is approximated as

λ1(B) ≈ 1

d
(kη + 1).

Now the extreme eigenvalues of AT
ψAψ can be approximately formulated as

λ1(A
T
ψAψ) = λ1(B) + 1 ≤ 1

d
(kη + 1) + 1
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and

λk(A
T
ψAψ) = λk(B) + 1 ≥ −2

d

√

kη(1 − η) + 1

Finally, the RIC of AT
ψAψ is deduced as

δk =
λ1 − λk
λ1 + λk

=
kη + 2

√

kη(1 − η) + 1

kη − 2
√

kη(1 − η) + 2d+ 1

3.7.3 Proof of Theorem 3.3.3

The proof is similar to Proof A. Here we just give a sketch.

Proof. Recall that the given sensing matrix A with size (m,n).

1. If 3 ≤ d ≤ m/2, it is known that (AT
ψAψ)ii = 1 and (AT

ψAψ)ij,i6=j ∈ {0, . . . , s/d},

2 ≤ s ≤ d− 1.

(a) Let B = AT
ψAψ − I, we can derive

λk(B) ≥











−sk/2d if k is even

−s
√
k2 − 1/2d if k is odd

and then

λk(A
T
ψAψ) = 1 + λk(B) ≥ 1 − sk

2d
.

(b) Let C = AT
ψAψ − (1 − s

d
)I, we can obtain λ1(C) ≤ ks/d, and then

λ1(A
T
ψAψ) ≤ (k − 1)s+ d

d
.

2. if m/2 < d ≤ m − 1, it is known that (AT
ψAψ)ii = 1 and (AT

ψAψ)ij,i6=j ∈
{(2d−m)/d, . . . , s/d}, where 2d−m ≤ s ≤ d− 1.

(a) Let B = AT
ψAψ − (1 − 2d−m

d
)I, it follows that

λk(B) ≥















k(2d−m−s)
2d

if k is even

k(2d−m)−
√

(2d−m)2−(k2−1)s2

2d
if k is odd
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With λk(B) ≥ −k(2d−m−s)
2d

, we have that

λk(A
T
ψAψ) ≥ k(2d−m− s) + 2(m− d)

2d

(b) Let C = AT
ψAψ − (1 − s

d
)I, we have λ1(C) ≤ ks/d, and then derive

λ1(A
T
ψAψ) ≤ (k − 1)s+ d

d
.

3. Finally, with δk = λ1−λk

λ1+λk
, it can be easily deduced that

δk =















(3k−2)s
(k−2)s+4d

if 3 ≤ d ≤ m
2

and 2 ≤ s ≤ d− 1

(3k−2)s+(k−2)(m−2d)
(k−2)s−(m−2d)k+2m

if m
2
< d ≤ m− 2 and 2d−m ≤ s ≤ d− 1



4
Random Bernoulli matrices with high compression

ratio

In this chapter we study the sensing performance of random Bernoulli matrices

with column size n much larger than row size m. It is observed that this kind of

matrices will present a performance floor as the compression rate n/m increases. Im-

portantly, the signal sparsity on the performance floor can be reasonably estimated

with 1
2
(
√

πm/2 + 1).

4.1 Introduction

In compressed sensing, it is natural to seek a sensing matrix with high compres-

sion ratio n/m. Empirically, the sensing performance will inevitably degrade with

the increase of compression ratio. A question of practical interests then arise: how

fast will the performance degrade as the compression ratio increases? This chapter

is motivated to address this problem for the random Bernoulli matrix, which is pop-

ular in compressed sensing and performs as well as Gaussian ones. Surprisingly, as

will be shown in the final simulation, the random Bernoulli matrix approximately

presents a ’performance floor’ regarding the increasing compression ratio. In other

words, the decreasing speed of guaranteed sparsity k is very slow, and can even be

ignored in the setting where m is fixed while n tends to infinity. This property

enables the significant compression of high-dimensional signal with sparsity lower

than the performance floor. Then it becomes interesting to theoretically evaluate

the performance floor, namely the guaranteed sparsity k. Unfortunately, the exact

53
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performance estimation is still an open problem in compressed sensing. Currently,

the guaranteed sparsity k is often simply estimated with

k <
1

2
(µm(A)−1 + 1), (4.1)

where the parameter µm(A) represents the maximum absolute correlation between

distinct columns of A [25]. However, as will be shown later, the formula (4.1) is

only a sufficient condition for perfect recovery, such that the estimated k is usually

much smaller than the real value we can achieve in practice. In this chapter, we

will prove that the formula (4.1) can be modified to be a sufficient and necessary

condition in the limit, if the maximum correlation µm(A) is replaced with the av-

erage absolute correlation between distinct columns of A, denoted by µa(A). This

improved estimation allows us to propose a simple formula 1
2
(
√

πm/2 + 1) to effec-

tively approximate the performance floor of random Bernoulli matrices with fixed

row size m. To the best of our knowledge, it is the first time that a theoretical es-

timation is reported being capable of reflecting the real sensing performance. Thus

the contribution of this chapter is of both practical and theoretical interests.

The rest of the chapter is organized as follows. In the next section, by analyzing

the proof process of formula (4.1), we demonstrate how the sufficient and necessary

condition is approached by the average correlation. In section 4.3, we first calculate

the average correlation of random Bernoulli matrix, then estimate its performance

floor. The numerical evidence is illustrated and discussed in section 4.4. Finally,

this chapter is concluded in section 4.5.

4.2 Estimation methods based on average corre-

lation vs. maximum correlation

This section demonstrates how the formula (4.1) is modified to be a sufficient

and necessary condition in the limit by analyzing its proof as shown in Theorem

1.1.2 in chapter 1. For easier reading, the theorem is reviewed below.
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Theorem 4.2.1 (Theorem 1.1.2 in Chapter 1). If

k <
1

2
(µm(A)−1 + 1),

a k-sparse signal x is the unique recovery of y = Ax with the ℓ0-minimization prob-

lem.

Proof. We first need to prove a critical property, that is Spark(A) ≥ 1 + µm(A)−1.

Let subset ψ ⊆ {1, 2, ..., n} with cardinality denoted as |ψ|, Aψ be a submatrix

of A with columns indexed by ψ, and AT
ψ be the transpose of Aψ. Consider the

Gram matrix G = AT
ψAψ ∈ R

|ψ|×|ψ|. Clearly its diagonal elements gii = 1, and off-

diagonal elements gij ≤ µm(A) ≤ 1, i 6= j. Recall that the columns of Aψ are linearly

independent if and only if Gram matrix G has positive determinant, equivalently

each eigenvalue is positive. With Gershgorin circle theorem [28], the i-th eigenvalue

of G is bounded in the interval [gii−ri, gii+ri], where ri =
∑|ψ|
j=1;j 6=i |gij|. To render all

eigenvalues positive, we only require 1− (|ψ|−1)µm(A) > 0. In other words, for any

|ψ| < µm(A)−1+1, the columns of Aψ are linear independent. From the definition of

Spark as in Theorem 1.1.1, it can be easily deduced that Spark(A) ≥ µm(A)−1 + 1.

By merging the result with Theorem 1.1.1, we immediately derive the condition

k < 1
2
(µm(A)−1 + 1) for the unique solution based on ℓ0-minimization.

Now we focus our attention on the analysis of the proof of Theorem 4.2.1. First,

we need to show how the maximum correlation µm(A) is involved. From the proof,

it can be observed that the following inequality

1 −
|ψ|
∑

j=1;j 6=i
|gij| > 0 (4.2)

must hold to ensure the Gram matrix AT
ψAψ being positive definite, where gij with

i 6= j denotes the correlation between the i-th and j-th columns of submatrix Aψ.

Considering |gij| ≤ µm(A), the condition in formula (4.2) is then simply relaxed to

1 − (|ψ| − 1)µm(A) > 0. (4.3)
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This relaxation process leads to the sufficient but unnecessary property of Theo-

rem 4.2.1, which makes the estimation of Theorem 4.2.1 far away from the real

performance.

To reflect the real performance, it is necessary to reduce the relaxation error

between
∑|ψ|
j=1;j 6=i |gij| and (|ψ| − 1)µm(A), such that the sufficient and necessary

condition can be approached for Theorem 4.2.1. To this end, we propose to replace

the maximum correlation µm(A) with the average correlation µa(A). In this case,

as proved in Theorem 4.2.2, the relaxation error will be close to zero with high

probability as the submatrix size |ψ| increases, if the average correlation of submatrix

Aψ with high probability can be approximated by the average correlation of A.

Intuitively, the condition above should be well satisfied, if the compression ratio of

A is sufficiently large. Thus the proposed method here is exploited to evaluate the

performance of random Bernoulli matrix with high compression ratio.

Theorem 4.2.2. Suppose ai ∈ [0, t] is arbitrarily distributed with mean of e < t

and variance of σ2. Then for k elements i.i.d drawn from the distribution, we have

Pr(
∑k
i=1 ai = ke) → 1 and Pr(

∑k
i=1 ai = kt) → 0, if k → ∞.

Proof. Suppose a binary distribution as below

a′
i =











0 with probability 1 − p

t with probability p

where p = e/t. Then it follows that Pr(ai = t) ≤ Pr(a′
i = t), and

Pr(
k
∑

i=1

ai = kt) ≤ Pr(
k
∑

i=1

a′
i = kt) = pk = (

e

t
)k

According to the law of large numbers, it is known that

lim
k→∞

Pr(|
k
∑

i=1

ai − ke| < kε) ≥ 1 − σ2

kε2

where ε is an arbitrarily small positive constant. Then the conclusion of the theorem

can be easily derived.
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4.3 Average column correlation of random Bernoulli

matrix

To evaluate the performance floor, this section calculates the average column

correlation of random Bernoulli matrices in Theorem 4.3.1. According to the law

of large numbers, the average column correlation of random Bernoulli matrix with

n ≫ m should be equivalent to the expected value of the absolute correlation between

two arbitrary Bernoulli vectors. Therefore in Theorem 4.3.1 we only calculate the

expected value mentioned above.

Theorem 4.3.1. Suppose v and w are two distinct normalized column vectors of

random Bernoulli matrix A ∈ R
m×n with i.i.d elements being ± 1√

m
equiprobably,

and f(v,w) = |vTw| denotes the correlation between them, then the expected value

of f is derived with the following two forms:

1)

E(f) =
2

m

1

2m

⌈

m

2

⌉

(

m

⌈m
2

⌉

)

(4.4)

2)

lim
m→∞

E(
√
mf) =

√

2

π
(4.5)

where ⌈∗⌉ denotes the minimum integer not smaller than ∗.

Proof. First, following from

f = |vTw| = |
m
∑

i=1

(viwi)|,

f is equivalently written as

f =
1

m
|
m
∑

i=1

zi|,

where zi being ±1 equiprobably. Then the expected value can be formulated as

E(f) =
1

m

1

2m

m
∑

i=1

(

(

m

i

)

|m− 2i|)

where
(

m
i

)

:= m!
(m−i)!i! . With
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(

m

i

)

|m− 2i| =



























































m
(

m−1
0

)

if i = 0

m
(

m−1
m−i−1

)

−m
(

m−1
i−1

)

if 1 ≤ i ≤ m
2

m
(

m−1
i−1

)

−m
(

m−1
m−i−1

)

if m
2
< i < m

m
(

m−1
m−1

)

if i = m

one can further derive that

m
∑

i=1

(

(

m

i

)

|m− 2i|) =



















2m
(

m−1
m
2

−1

)

if m is even

2m
(

m−1
m−1

2

)

if m is odd

Finally, with
(

m−1
i−1

)

= i
m

(

m
i

)

, it follows that

m
∑

i=1

(

(

m

i

)

|m− 2i|) = 2⌈m
2

⌉
(

m

⌈m
2

⌉

)

The first conclusion of the theorem is thus obtained as

E(f) =
2

m

1

2m
⌈m

2
⌉
(

m

⌈m
2

⌉

)

We now turn to proving the second conclusion. According to Stirling’s approxima-

tion:

m! =
√

2πm
(

m

e

)m

exp(λm), 1/(12m+ 1) < λm < 1/(12m)

E(f) can be described as

E(f) =
1

2m
m!
m
2

!m
2

!
=

√

2

πm
exp(λm − 2λm

2
)

if m is even; otherwise,

E(f) =
m+ 1

m

1

2m
m!

m+1
2

!m−1
2

!

=

√

2

πm

(

m2

m2 − 1

)
m
2

exp(λm − λm+1
2

− λm−1
2

)



4.3. Average column correlation of random Bernoulli matrix 59

Then we have lim
m→∞

E(
√
mf) =

√

2
π
, whenever m is even or odd. The proof is

completed.
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Figure 4.1: The values of E(f) in formula (4.4) and
√

2/(πm) over varying m.

Note that the formula (4.5) in fact converges very fast, and can be satisfied with

a relatively small m (on the order of tens). This implies that the expected value

E(f) in formula (4.4) allows to be approximately written as E(f) =
√

2/(πm). For

confirmation, the coincidence between E(f) and
√

2/(πm) is illustrated in Figure

4.3. Then the average correlation µa(A) of random Bernoulli matrices with n ≫ m

can also be approximated as
√

2/(πm). In this case, the guaranteed sparsity on the

performance floor of random Bernoulli matrices can be estimated with

kavr =
1

2
(
√

πm/2 + 1) (4.6)

which is derived by replacing µm(A) with µa(A) =
√

2/(πm) in formula (4.1). As

it is expected in the former section, kavr should be close to the real performance

floor. Note that the maximum correlation of random Bernoulli matrices without

same columns is equal to 1. For comparison, in the following simulation we also

consider the performance floor estimated with µm(A) = 1, which is simply derived
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as

kmax =
1

2
(1 + 1) = 1. (4.7)

by incorporating µm(A) = 1 into formula (4.1). As will be shown later, kavr performs

much better than kmax.

4.4 Numerical Simulations

In this section, we will show that the random Bernoulli matrix indeed approx-

imately presents a performance floor, which can be effectively estimated with kavr.

To illustrate the performance floor, the guaranteed sparsity k of random Bernoulli

matrices with fixed m and increasing n is derived in Table 4.1. Before analyzing

the data, we first briefly introduce the simulation setting. The sparse signal x with

sparsity k is randomly generated in each simulation, and recovered with subspace

pursuit algorithm [67]. The recovery rate is measured with 1-||x̂ − x||2/||x||2. Note

that here we only consider the largest k that can be recovered with rate larger than

0.99, because the perfect recovery is hard to be validated with simulation unless we

can enumerate all possible distributions of k nonzero elements. Each result in Table

4.1 is derived after 10000 simulation runs.

Note that in Table 4.1 the compression ratio n/m exponentially increases, while

the decreasing speed of k is very slow and can even be ignored compared with the fast

increasing n. Specifically, as n increases, the sparsity k will decrease in a step not

greater than 1. The relevant results are highlighted in red in Table 4.1. This implies

that there indeed approximately exists a performance floor for each row size m. For

better understanding, we further draw their performance curves in Figure 4.2. Note

that, due to the limitation of computer memory, as shown in Table 4.1, we cannot

test enough samples n to describe the performance floor, especially as m increases.

Here, the performance floor defined for each m is quantified only with the mean of

the first five k among the results labeled in red in Table 4.1. The quantified result is

denoted with pf . It is important to note that the gradual performance degradation

is inevitable with the fast increasing of n. In fact, the whole performance floor

is hard to be accurately reflected with the parameter pf which only considers five
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Table 4.1: The largest k guaranteed by random Bernoulli matrices of size (m,n)
with recovery rates larger than 0.99. For each m, all k with decreasing step smaller
than 2 are highlighted in bold red.

n/m 21 22 23 24 25 26 27 28 29 210 211 212 213

m

62 5 3 3 2 2 2 1 1 1 1 1 1 1

82 12 9 7 5 5 4 3 3 3 2 2 2 2

102 22 16 12 10 8 7 6 5 5 4 4 4 3

122 34 24 19 16 13 11 10 9 8 7 6 6 5

142 50 35 27 22 19 16 14 12 11 10 9 9 8

162 68 50 38 30 26 22 19 17 15 14 13 12 11

2 4096 8192
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k

 

 

m = 102

m = 122

m = 142

Figure 4.2: The performance curves of three random Bernoulli matrices from Table
4.1, with m=102, 122 and 142.

relatively good samples, especially when the matrix row size m is relatively large.

As m increases, pf should behave better than the real performance floor, since

with five samples it can only consider few relatively large k and ignores most other

smaller k on the performance floor. In this case, it is reasonable to infer that the

distance between pf and the estimation kavr will increase with the increasing of m,

if kavr is close to the real performance. This conjecture is validated in the following

simulation.

In Figure 4.3, we compare the two estimations kavr and kmax against the perfor-

mance floor measured with pf . As it is expected, the estimation kavr based on average

correlation performs much better than the estimation kmax based on maximum cor-
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Figure 4.3: The performance floor estimated with pf , and the theoretical estimations
kavr in formula (4.6) and kmax in formula (4.7).

relation. Precisely, the estimation kavr is very close to pf while the estimation kmax

is of no practical use. From Figure 4.3, it is also observed that the error between

pf and kavr tends to increase with the increasing of m. As stated before, this is

due to the fact that pf tends to behave better than the real performance floor as

m increases. In fact, the error between kavr and real performance floor should be

smaller than the result shown in Figure 4.3.

4.5 Conclusion

This chapter has shown that the random Bernoulli matrix approximately presents

a performance floor regarding the increasing compression ratio, which enables the

significant compression of high-dimensional sparse signals. More importantly, we

successfully estimated the performance floor by exploring the average correlation

between distinct columns of random Bernoulli matrix, instead of the traditional

maximum column correlation. Empirically, the result of this chapter also applies to

Gaussian random matrix.



Part II

Random Projection

63





5
Sparse matrix based random projection for

classification

As a typical dimensionality reduction technique, random projection can be sim-

ply implemented with linear projection, while preserving the pairwise distances of

high-dimensional data with high probability. Considering this technique is mainly

exploited for the task of classification, this chapter is developed to study the con-

struction of random matrix from the viewpoint of feature selection, rather than of

traditional distance preservation. This yields a somewhat surprising theoretical re-

sult, that is, the sparse random matrix with exactly one nonzero element per column,

can present better feature selection performance than other more dense matrices, if

the projection dimension is not much smaller than the number of feature elements.

The theoretical conjecture is confirmed with extensive classification experiments.

5.1 Introduction

Random projection attempts to project a set of high-dimensional data into a low-

dimensional subspace without distortion on pairwise distance. This brings attractive

computational advantages on the collection and processing of high-dimensional sig-

nals. In practice, it has been successfully applied in numerous fields concerning

categorization, as shown in [106] and the references therein. Currently the theoret-

ical study of this technique mainly falls into one of the following two topics. One is

concerned with the construction of random matrix in terms of distance preservation.

65
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In fact, this problem has been sufficiently addressed along with the emergence of

Johnson-Lindenstrauss (JL) lemma [7]. The other popular topic is about the design

of classifier combined with random projection, as detailed in [107] and the references

therein. Specifically, it may be worth mentioning that, recently the performance

consistency of SVM on random projection is proved by exploiting the underlying

connection between JL lemma and compressed sensing [108] [9].

Based on distance preservation, Gaussian random matrices [109] and a few of

sparse random matrices [8, 110, 111] have been sequentially proposed for random

projection. In terms of implementation complexity, it is clear that the sparse ran-

dom matrix is more attractive. Unfortunately, as it will be detailed in section 5.2.2,

theoretically the sparser matrix tends to yield weaker distance preservation. This

fact largely weakens our interests on the pursuit of sparser random matrix. How-

ever, it is necessary to mention a problem ignored for a long time, that is random

projection is mainly used for various tasks of classification, which prefer to maximize

the distances between different classes, rather than merely preserve their distances.

In this sense, it may be interesting to study random projection from the viewpoint

of feature selection, even with some loss on distance preservation. Of course, the JL

lemma cannot be absolutely ignored, and in fact it is still the premise of conducting

classification, as it promises the stability of data structure during random projection.

In this chapter, we indeed derive the random matrix with the best feature se-

lection performance, by analyzing the relation between the feature distribution of

high-dimensional data and the sparsity of random matrix. The proposed matrix

presents currently the most sparse structure with only one random nonzero position

per column. Theoretically, it is expected to provide better classification performance

over other more dense matrices, if the projection dimension is not much smaller than

the number of feature elements. This conjecture is confirmed with extensive exper-

iments on both synthetic and real data.

The rest of the chapter is organized as follows. In section 5.2, the JL lemma is first

introduced, and then the distance preservation property of sparse random matrix

over varying sparsity is evaluated. In section 5.3, a theoretical frame is proposed

to evaluate the relation between the feature distribution of high-dimensional data
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and the sparsity of random matrix. According to the theoretical results above, the

sparse matrix with better performance over other more dense matrices is derived and

analyzed in section 5.4. In section 5.5, the performance advantage of the proposed

sparse matrix is verified by performing binary classification on both synthetic data

and real data. The real data include three representative datasets in dimension

reduction: face image, DNA microarray and text document. Finally, this chapter is

concluded in section 5.6.

5.2 Preliminaries

This section first briefly reviews JL lemma, and then evaluates the distance

preservation of sparse random matrix over varying sparsity.

For easy reading, we begin by introducing some basic notations for this chapter.

A random matrix is denoted by R ∈ R
k×d, k < d. rij is used to represent the element

of R at the i-th row and the j-th column, and r ∈ R
d indicates the row vector of

R. Considering this chapter is concerned with binary classification, in the following

study we tend to define two samples v ∈ R
d and w ∈ R

d, randomly drawn from two

different patterns of high-dimensional datasets V ⊂ R
d and W ⊂ R

d, respectively.

The inner product between two vectors is typically written as 〈v,w〉. To distinguish

from scalar variable, the vector is written in bold. In the proofs of the following

theorems, we typically use Φ(∗) to denote the cumulative distribution function of

N(0, 1). The minimal integer not less than ∗, and the maximum integer not larger

than ∗ are denoted with ⌈∗⌉ and ⌊∗⌋.

5.2.1 Johnson-Lindenstrauss (JL) lemma

The distance preservation of random projection is supported by JL lemma. In

the past decades, several variants of JL lemma have been proposed in [112–114]. For

the convenience of the proof of the following Lemma 5.2.1, here we recall the version

of [114] in the following Theorem A.2.1. It is clear that the basic requirement of JL

lemma is to let E(rij) = 0 and E(r2
ij) = 1. In addition, to obtain a relatively good

distance preservation, JL lemma is expected to possess a tight concentration in the
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Theorem A.2.1.

Theorem 5.2.1. [114] Consider random matrix R ∈ R
k×d, with each entry rij

chosen independently from a distribution that is symmetric about the origin with

E(r2
ij) = 1. For any fixed vector v ∈ R

d, let v′ = 1√
k
Rv.

– Suppose B = E(r4
ij) < ∞. Then for any ǫ > 0,

Pr(‖v′‖2 ≤ (1 − ǫ)‖v‖2) ≤ e− (ǫ2
−ǫ3)k

2(B+1) (5.1)

– Suppose ∃L > 0 such that for any integer m > 0, E(r2m
ij ) ≤ (2m)!

2mm!
L2m. Then

for any ǫ > 0,

Pr(‖v′‖2 ≥ (1 + ǫ)L2‖v‖2) ≤ ((1 + ǫ)e−ǫ)k/2

≤ e−(ǫ2−ǫ3) k
4

(5.2)

5.2.2 Sparse random projection matrices

Up to now, only a few random matrices are theoretically proposed for random

projection. They can be roughly classified into two typical classes. One is the

Gaussian random matrix with entries i.i.d dawn from N(0, 1) , and the other is the

sparse random matrix with elements satisfying the distribution below:

rij =
√
q ×



























1 with probability 1/2q

0 with probability 1 − 1/q

−1 with probability 1/2q

(5.3)

where q is allowed to be 2, 3 [8] or
√
d [110]. Apparently the larger q indicates the

higher sparsity.

Naturally, an interesting question arises: can we continue improving the sparsity

of random projection? Unfortunately, as illustrated in Lemma 5.2.1, the concentra-

tion of JL lemma will decrease as the sparsity increases. In other words, the higher

sparsity leads to weaker performance on distance preservation. However, as it will be

disclosed in the following part, the classification tasks involving random projection

are more sensitive to feature selection rather than to distance preservation.
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Lemma 5.2.1. Consider a class of random matrices R ∈ R
k×d, with each entry rij

of the distribution as in formula (5.3), where q = k/s and 1 ≤ s ≤ k is an integer.

Then these matrices satisfy JL lemma with different levels: the more sparse matrix

(with smaller s) presents worse expectation on the pairwise distance preservation.

Proof. With formula (5.3), it is easy to derive that the proposed matrices satisfy

the distribution defined in Theorem A.2.1. In this sense, they also obey JL lemma if

the two constraints corresponding to formulas 5.1 and 5.2 could be further proved.

For the first constraint corresponding to formula (5.1):

B = E(r4
ij)

= (
√

k/s)4 × (s/2k) + (−
√

k/s)4 × (s/2k)

= k/s < ∞

(5.4)

then it is approved.

For the second constraint corresponding to formula (5.2):

for any integer m > 0, derive E(r2m) = (k/s)m−1, and

E(r2m
ij )

(2m)!L2m/(2mm!)
=

2mm!km−1

sm−1(2m)!L2m
.

Since (2m)! ≥ m!mm,

E(r2m
ij )

(2m)!L2m/(2mm!)
≤ 2mkm−1

sm−1mmL2m
,

let L = (2k/s)1/2 ≥
√

2(k/s)(m−1)/2m/
√
m, further derive

E(r2m
ij )

(2m)!L2m/(2mm!)
≤ 1.

Thus ∃L = (2k/s)1/2 > 0 such that

E(r2m
ij ) ≤ (2m)!

2mm!
L2m

for any integer m > 0. Then the second constraint is also proved.

Consequently, it is deduced that, as s decreases, B in formula (5.4) will increase, and
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subsequently the boundary error in formula (5.1) will get larger. And this implies

that the sparser the matrix is, the worse the JL property.

5.3 Theoretical Framework

As it will be shown latter, the feature selection performance can be simply indi-

cated by the products between the difference between two distinct high-dimensional

vectors and the sampling/row vectors of random matrix. For the convenience of

analysis, we first assume a general distribution for the feature difference between

two distinct high-dimensional vectors in subsection 5.3.1, and then in subsection

5.3.2, analyze the products mentioned above with respect to the sparsity of sam-

pling vectors, as illustrated in Theorems 5.3.1, 5.3.2 and 5.3.3. Note that to make

the thesis more readable, the proofs of the three theorems mentioned above are

included in the section Proof 5.7.

5.3.1 Difference between two distinct high-dimensional vec-

tors

From the viewpoint of feature selection, the random projection is expected to

maximize the difference between two arbitrary samples v and w from two different

datasets V and W , respectively. Usually the difference is measured with the Eu-

clidean distance denoted by ‖Rz‖2, z = v − w. Then the search for a good random

projection is equivalent to seeking the distribution of the row vector r̂ such that

r̂ = argmax
r

{|〈r, z〉|}, (5.5)

as the row vectors of R are mutually independent. So in the following part we need to

evaluate only the distribution of row vectors. For convenient analysis, the two classes

of high-dimensional data are further ideally divided into two parts, v = [vf vr] and

w = [wf wr], where vf and wf denote the feature elements containing the discrim-

inative information between v and w such that E(vfi − wfi ) 6= 0, while vr and wr

represent the redundant elements such that E(vri −wri ) = 0 with a tiny variance. Sub-
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sequently, r = [rf rr] and z = [zf zr] are also segmented into two parts corresponding

to the coordinates of feature elements and redundant elements, respectively. Then

the task of random projection can be reduced to maximizing |〈rf , zf〉|, which implies

that the redundant elements have no impact on the feature selection. Therefore, for

simpler expression, in the following part the high-dimensional data is assumed to

have only feature elements except for specific explanation, and the superscript f is

simply dropped. Note that, in this chapter the minimization of the difference be-

tween intra-class samples is not considered, and their difference is ideally assumed

to be zero.

To explore the desired r̂i in formula (5.5), it is necessary to know the distribution

of z. However, in practice the distribution is hard to be characterized since the

locations of feature elements are usually unknown. As a result, we have to make

a relaxed assumption on the distribution of z. For a given real dataset, the values

of vi and wi should be limited. This allows us to assume that their difference zi is

also bounded in amplitude, and acts as some unknown distribution. For the sake

of generality, in this thesis |zi| is regarded as approximately satisfying a Gaussian

distribution with a random sign. Then the distribution of zi can be formulated as

zi =











x with probability 1/2

−x with probability 1/2
(5.6)

where x ∈ N(µ, σ2), µ is a positive number, and Pr(x > 0) = 1 − ǫ, ǫ = Φ(−µ
σ
) is a

small positive number.

5.3.2 Products between high-dimensional vectors and ran-

dom sampling vectors with varying sparsity

This subsection mainly tests the feature selection performance of random row

vector with varying sparsity. For the sake of comparison, Gaussian random vectors

are also evaluated. Recall that under the basic requirement of JL lemma, that is

E(rij) = 0 and E(r2
ij) = 1, Gaussian matrix has elements i.i.d drawn from N(0, 1),

and sparse random matrix has elements distributed as in formula (5.3) with q ∈
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Figure 5.1: The process of 1
µ

√
d
E(f) converging to

√

2/π (≈ 0.7979) with increasing

s is described in (a); and in (b) the average value of two 1
µ

√
d
E(f) with adjacent

s (> 1), namely 1
2µ

√
d
(E(f)|s +E(f)|s+1), is approved very close to

√

2/π. Note that

E(f) is calculated with the formula provided in Theorem 5.3.1.

{d/s : 1 ≤ s ≤ d, s ∈ N}.

Then from the following Theorems 5.3.1, 5.3.2 and 5.3.3, we present two crucial

random projection results for the high-dimensional data with feature difference |zi|
varying within a certain range:

– Random matrices will achieve the best feature selection performance as only

one feature element is sampled by each row vector; in other words, the solution

to the formula (5.5) is obtained when r randomly has s = 1 nonzero elements;

– The desired sparse random matrix mentioned above can also obtain better

feature selection performance than Gaussian random matrices.

Note that, for better understanding, we first prove in Theorem 5.3.1 a relatively

simple case where zi ∈ {±µ}, and then in Theorem 5.3.2 expand to a more general

case as shown in formula (5.6). The performance of Gaussian matrix for zi ∈ {±µ}
is illustrated in Theorem 5.3.3.

Theorem 5.3.1. Let r = [r1, ..., rd] randomly have 1 ≤ s ≤ d nonzero elements

taking values ±
√

d/s with equal probability, and z = [z1, ..., zd] with elements being

±µ equiprobably, where µ is a positive constant. Given f(r, z) = |〈r, z〉|, there are

three results regarding the expected value of f(ri, z):

1) E(f) = 2µ
√

d
s

1
2s ⌈ s

2
⌉C⌈ s

2
⌉

s ;
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2) E(f)|s=1 = µ
√
d > E(f)|s>1;

3) lim
s→∞

1√
d
E(f) → µ

√

2
π
.

Proof. Please see Proof 5.7.1.

Remark on Theorem 5.3.1: This theorem discloses that the best feature selection

performance is obtained, when only one feature element is sampled by each row

vector. In contrast, the performance tends to converge to a lower level as the number

of sampled feature elements increases. However, in practice the desired sampling

process is hard to be implemented due to the few knowledge of feature location. As

it will be detailed in section 5.4, what we can really implement is to sample only one

feature element with high probability. Note that with the proof of this theorem, it

can also be proved that if s is odd, E(f) fast decreases to µ
√

2d/π with increasing

s; in contrast, if s is even, E(f) quickly increases towards µ
√

2d/π as s increases.

But for arbitrary two adjacent s larger than 1, their average value on E(f), namely

(E(f)|s + E(f)|s+1)/2, is very close to µ
√

2d/π. For clarity, the values of E(f) over

varying s are calculated and shown in Figure 5.1, where instead of E(f), 1
µ

√
d
E(f)

is described since only the varying s is concerned. The specific character of E(f)

ensures that one can still achieve better performance over others by sampling s = 1

element with a relative high probability, along with the occurrence of a sequence of

s slightly larger than 1 while being even or odd equiprobably.

Theorem 5.3.2. Let r = [r1, ..., rd] randomly have 1 ≤ s ≤ d nonzero elements tak-

ing values ±
√

d/s with equal probability, and z = [z1, ..., zd] with elements distributed

as in formula (5.6). Given f(r, z) = |〈r, z〉|, it is derived that:

E(f)|s=1 > E(f)|s>1

if (9
8
)

3
2 [
√

2
π

+ (1 +
√

3
4

) 2
π
(µ
σ
)−1] + 2Φ(−µ

σ
) ≤ 1.

Proof. Please see Proof 5.7.2.

Remark on Theorem 5.3.2: This theorem expands Theorem 5.3.1 to a more

general case where |zi| is allowed to vary in some range. In other words, there is an
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upper bound on σ
µ

for E(f)|s=1 > E(f)|s>1, since Φ(−µ
σ
) decreases monotonically

with respect to µ
σ
. Clearly the larger upper bound for σ

µ
allows more variation of

|zi|. In practice the real upper bound should be larger than that we have derived as

a sufficient condition in this theorem.

Theorem 5.3.3. Let r = [r1, ..., rd] have elements i.i.d drawn from N(0, 1), and

z = [z1, ..., zd] with elements being ±µ equiprobably, where µ is a positive constant.

Given f(r, z) = |〈r, z〉|, its expected value E(f) = µ
√

2d
π

.

Proof. Please see Proof 5.7.3.

Remark on Theorem 5.3.3: Comparing this theorem with Theorem 5.3.1, clearly

the row vector with Gaussian distribution shares the same feature selection level with

sparse row vector with a relatively large s. This explains why in practice the sparse

random matrices usually can present comparable classification performance with

Gaussian matrix. More importantly, it implies that the sparsest sampling process

provided in Theorem 5.3.1 should outperform Gaussian matrix on feature selection.

5.4 Proposed sparse random matrix

The theorems in section 5.3 have proved that the best feature selection perfor-

mance can be obtained, if only one feature element is sampled by each row vector of

random matrix. It is now interesting to know if the condition above can be satisfied

in the practical setting, where the high-dimensional data consists of both feature

elements and redundant elements, namely v = [vf vr] and w = [wf wr]. Accord-

ing to the theoretical condition mentioned above, it is known that the row vector

r = [rf rr] can obtain the best feature selection, only when ||rf ||0 = 1, where the

quasi-norm ℓ0 counts the number of nonzero elements in rf . Let rf ∈ R
df , and

rr ∈ R
dr , where d = df + dr. Then the desired row vector should have d/df uni-

formly distributed nonzero elements such that E(||rf ||0) = 1. However, in practice

the desired distribution for row vectors is often hard to be determined, since for a

real dataset the number of feature elements is usually unknown.
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In this sense, we are motivated to propose a general distribution for the matrix

elements, such that ||rf ||0 = 1 holds with high probability in the setting where

the feature distribution is unknown. In other words, the random matrix should

hold the distribution maximizing the ratio Pr(||rf ||0 = 1)/Pr(||rf ||0 ∈ {2, 3, ..., df}).

In practice, the desired distribution implies that the random matrix has exactly

one nonzero position per column, which can be simply derived as below. Assume

a random matrix R ∈ R
k×d randomly holding 1 ≤ s ≤ k nonzero elements per

column 1, equivalently sd/k nonzero elements per row, then one can derive that

Pr(||rf ||0 = 1)/Pr(||rf ||0 ∈ {2, 3, ..., df})

=
Pr(||rf ||0 = 1)

1 − Pr(||rf ||0 = 0) − Pr(||rf ||0 = 1)

=
C1
df
C
sd/k−1
dr

C
sd/k
d − C

sd/k
dr

− C1
df
C
sd/k−1
dr

=
dfdr!

d!(dr−sd/k+1)!
sd/k(d−sd/k)!

− dr!(dr−sd/k+1)
sd/k

− dfdr!

(5.7)

From the last equation in formula (5.7), it can be observed that sd/k is inversely

proportional to the value of formula (5.7). Hence we have to set s = 1 to maximize

the value. This indicates that the desired random matrix has only one nonzero

element per column.

The proposed random matrix with exactly one nonzero element per column

presents two obvious advantages, as detailed below.

– In complexity, the proposed matrix clearly presents much higher sparsity than

existing random projection matrices. Note that, theoretically the very sparse

random matrix with q =
√
d [110] has higher sparsity than the proposed matrix

when k <
√
d. However, in practice the case k <

√
d is usually not of practical

interest, due to the weak performance caused by large compression rate d/k

(>
√
d).

– In performance, it can be derived that the proposed matrix outperforms other

more dense matrices, if the projection dimension k is not much smaller than the

1. Note that in the former section the term s is used to represent the number of nonzero elements

per row.
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number df of feature elements included in the high-dimensional vector. To be

specific, with Figure 5.1, it can be derived that the dense matrices with column

weight s > 1 share comparable feature selection performance, because as s

increases they tend to sample more than one feature element (namely ||rf ||0 >
1) with higher probability. Then the proposed matrix with s = 1 will present

better performance than them, if k ensures ||rf ||0 = 1 with high probability, or

equivalently the ratio Pr(||rf ||0 = 1)/Pr(||rf ||0 ∈ {2, 3, ..., df}) being relatively

large. As shown in formula (5.7), the condition above can be better satisfied

as k increases. Inversely, as k decreases, the feature selection advantage of

the proposed matrix will degrade. Recall that the proposed matrix is weaker

than other more dense matrices on distance preservation, as demonstrated in

section 5.2.2. This means that the proposed matrix will perform worse than

others when its feature selection advantage is not obvious. In other words,

there should exist a lower bound for k to ensure the performance advantage

of the proposed matrix, which is also verified in the following experiments.

It can be roughly estimated that lower bound of k should be on the order

of df , since for the proposed matrix with column weight s = 1, the k = df

leads to E(||rf ||0) = d/k × df/d = 1. In practice, the performance advantage

seemingly can be maintained for a relatively small k(< df ). For instance, in

the following experiments on synthetic data, the lower bound of k is as small as

df/10. This recalls the fact that to obtain performance advantage, we merely

require Pr(||rf ||0 = 1) being relatively large rather than being equal to 1, as

detailed in the remark on Theorem 5.3.1.

5.5 Experiments

5.5.1 Setup

This section verifies the feature selection advantage of the proposed currently

most sparse matrix (MSM) over other popular matrices, by conducting binary clas-

sification on both synthetic data and real data. Here the synthetic data with labeled
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feature elements is provided to specially observe the relation between the projection

dimension and feature number, as well as the impact of redundant elements. The

real data involve three typical datasets in the area of dimensionality reduction: face

image, DNA microarray and text document. As for the binary classifier, the classical

support vector machine (SVM) based on Euclidean distance is adopted. For com-

parison, we test three popular random matrices: Gaussian random matrix (GM),

sparse random matrix (SM) as in formula (5.3) with q = 3 [8] and very sparse

random matrix (VSM) with q =
√
d [110].

The simulation parameters are introduced as follows. It is known that the re-

peated random projection tends to improve the feature selection, so here each classi-

fication decision is voted by performing 5 times random projection [115]. The correct

classification rate at each projection dimension k is derived with 100000 simulation

runs. In each simulation, four matrices are tested with the same samples. The pro-

jection dimension k decreases uniformly from the high dimension d. Moreover, it is

necessary to note that, for some datasets containing more than two classes of sam-

ples, the SVM classifier randomly selects two classes to conduct binary classification

in each simulation. For each class of data, one half of samples are randomly selected

for training, and the rest for testing.

5.5.2 Synthetic data

The synthetic data is designed for evaluating two factors below:

– the relation between the lower bound of projection dimension k and the feature

dimension df

– the negative influence of redundant elements, which are ideally assumed to be

zero in the previous theoretical proofs.

Then two classes of synthetic data with df feature elements and d − df redundant

elements are generated in two steps:

1) randomly build a vector ṽ ∈ {±1}d, then define a vector w̃ distributed as

w̃i = −ṽi, if 1 ≤ i ≤ df , and w̃i = ṽi, if df < i ≤ d;

2) generate two classes of datasets V and W by i.i.d sampling vfi ∈ N(ṽi, σ
2
f )

and wfi ∈ N(w̃i, σ
2
f ), if 1 ≤ i ≤ df ; and vri ∈ N(ṽi, σ

2
r) and wri ∈ N(w̃i, σ

2
r), if
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df < i ≤ d.

Subsequently, the distributions on pointwise distance can be approximately derived

as |vfi −wfi | ∈ N(2, 2σ2
f ) for feature elements and (vri −wri ) ∈ N(0, 2σ2

r) for redundant

elements, respectively. To be close to reality, we introduce some unreliability for

feature elements and redundant elements by adopting relatively large variances.

Precisely, in the simulation σf is fixed to 8 and σr varies in the set {8, 12, 16}. Note

that, the probability of (vri − wri ) converging to zero will decrease as σr increases.

Thus the increasing σr will be a challenge for our previous theoretical conjecture

derived on the assumption of (vri − wri ) = 0. As for the size of the dataset, the

data dimension d is set to 2000, and the feature dimension df = 1000. Each dataset

consists of 100 randomly generated samples.

Table 5.1 shows the correct classification performance of four types of matrices

over evenly varying projection dimension k. The results provide two positive clues.

First, the proposed matrix preserves obvious advantage over others, even when k

is relatively small, for instance, k/df is allowed to be small as 1/10 when σr = 8.

Second, with the interference of redundant elements, the proposed matrix still out-

performs others, which implies that the previous theoretical result is also applicable

to the real case where the redundant elements cannot be simply neglected. Obvi-

ously the synthetic simulation is far from being enough due to the simple assumption

on data distribution. Hence we will have to perform a more wide test on real data

in next subsection.

5.5.3 Real data

Datasets

1) Face image

– AR [116] : as in [117], a subset of 2600 frontal faces from 50 males and 50

females are examined. For some persons, the faces were taken at different

times, varying the lighting, facial expressions (open/closed eyes, smiling/not

smiling) and facial details (glasses/no glasses). There are 6 faces with dark

glasses and 6 faces partially disguised by scarfs among 26 faces per person.
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Table 5.1: Correct classification rates on the synthetic data which have d = 2000
and redundant elements suffering from three different varying levels σr. The best
performance is highlighted in bold. Recall that the acronyms GM, SM, VSM and
MSM represent Gaussian random matrix, sparse random matrix with q = 3, very
sparse rand matrix with q =

√
d, and the proposed most sparse random matrix,

respectively.

k 50 100 200 400 600 800 1000 1500 2000

σ
r

=
8 GM 70.44 67.93 84.23 93.31 95.93 97.17 97.71 98.35 98.74

SM 70.65 67.90 84.43 93.03 95.97 96.86 97.78 98.36 98.80

VSM 70.55 68.05 84.46 93.19 96.00 96.99 97.68 98.38 98.76

MSM 70.27 68.09 84.66 94.22 97.11 98.03 98.67 99.37 99.57

σ
r

=
1
2 GM 64.89 63.06 76.08 85.04 88.46 90.21 91.16 92.68 93.32

SM 64.67 62.66 75.85 85.03 88.30 90.09 91.21 92.70 93.30

VSM 65.17 62.95 76.12 85.14 88.80 90.46 91.37 92.88 93.64

MSM 64.85 63.00 76.82 88.41 93.51 96.12 97.59 99.13 99.68

σ
r

=
1
6 GM 60.90 59.42 70.13 78.26 81.70 83.82 84.74 86.50 87.49

SM 60.86 59.58 69.93 78.04 81.66 83.85 84.79 86.55 87.39

VSM 60.98 59.87 70.27 78.49 81.98 84.36 85.27 86.98 87.81

MSM 61.09 59.29 71.58 84.56 91.65 95.50 97.24 98.91 99.30

– Extended Yale B [118, 119]: this dataset includes about 2414 frontal faces

of 38 persons, which suffer varying illumination changes.

– FERET [120]: this dataset consists of more than 10000 faces from more

than 1000 persons taken in largely varying circumstances. The database is

further divided into several sets which are formed for different evaluations.

Here we evaluate the 1984 frontal faces of 992 persons each with 2 faces

separately extracted from sets fa and fb.

– GTF [121]: in this dataset, 750 images from 50 persons were captured at

different scales and orientations under variations in illumination and expres-

sion. So cropped faces suffer from serious pose variation.

– ORL [122]: it contains 40 persons each with 10 faces. Besides slightly varying

lighting and expressions, the faces also undergo slight changes on pose.

2) DNA microarray

– Colon [123]: this is a dataset consisting of 40 colon tumors and 22 normal

colon tissue samples. 2000 genes with highest intensity across the samples

are considered.

– ALML [124]: this dataset contains 25 samples taken from patients suffering

from acute myeloid leukemia (AML) and 47 samples from patients suffering
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Table 5.2: Correct classification rates on five face datasets with dimension d = 1200.
For each projection dimension k, the best performance is highlighted in bold. Recall
that the acronyms GM, SM, VSM and MSM represent Gaussian random matrix,
sparse random matrix with q = 3, very sparse random matrix with q =

√
d, and the

proposed most sparse random matrix, respectively.

k 30 60 120 240 360 480 600

A
R

GM 98.67 99.04 99.19 99.24 99.30 99.28 99.33

SM 98.58 99.04 99.21 99.25 99.31 99.30 99.32

VSM 98.62 99.07 99.20 99.27 99.30 99.31 99.34

MSM 98.64 99.10 99.24 99.35 99.48 99.50 99.58

E
x
t-

Y
a
le

B GM 97.10 98.06 98.39 98.49 98.48 98.45 98.47

SM 97.00 98.05 98.37 98.49 98.48 98.45 98.47

VSM 97.12 98.05 98.36 98.50 98.48 98.45 98.48

MSM 97.15 98.06 98.40 98.54 98.54 98.57 98.59

F
E

R
E

T GM 86.06 86.42 86.31 86.50 86.46 86.66 86.57

SM 86.51 86.66 87.26 88.01 88.57 89.59 90.13

VSM 87.21 87.61 89.34 91.14 92.31 93.75 93.81

MSM 87.11 88.74 92.04 95.38 96.90 97.47 97.47

G
T

F

GM 96.67 97.48 97.84 98.06 98.09 98.10 98.16

SM 96.63 97.52 97.85 98.06 98.09 98.13 98.16

VSM 96.69 97.57 97.87 98.10 98.13 98.14 98.16

MSM 96.65 97.51 97.94 98.25 98.40 98.43 98.53

O
R

L

GM 94.58 95.69 96.31 96.40 96.54 96.51 96.49

SM 94.50 95.63 96.36 96.38 96.48 96.47 96.48

VSM 94.60 95.77 96.33 96.35 96.53 96.55 96.46

MSM 94.64 95.75 96.43 96.68 96.90 97.04 97.05

from acute lymphoblastic leukemia (ALL). Each sample is expressed with

7129 genes.

– Lung [125] : this dataset contains 86 lung tumor and 10 normal lung samples.

Each sample holds 7129 genes.

3) Text document [126] 2

– TDT2: the recently modified dataset includes 96 categories of total 10212

documents/samples. Each document is represented with vector of length

36771. Here we adopt the first 19 categories each with more than 100

documents, such that each category is tested with 100 randomly selected

documents.

– 20Newsgroups(version 1): there are 20 categories of 18774 documents in this

dataset. Each document has vector dimension 61188. Since the documents

are not equally distributed in the 20 categories, we randomly select 600

2. Publicly available at http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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documents for each category, which is nearly the maximum number we can

assign to all categories.

– RCV1: the original dataset contains 9625 documents each with 29992 dis-

tinct words, corresponding to 4 categories with 2022, 2064, 2901, and 2638

documents respectively. To reduce computation, we randomly select only

1000 documents for each category.

Table 5.3: Correct classification rates on three DNA datasets with dimension
d = 2000. For each projection dimension k, the best performance is highlighted
in bold. Recall that the acronyms GM, SM, VSM and MSM represent Gaussian
random matrix, sparse random matrix with q = 3, very sparse random matrix with
q =

√
d, and the proposed most sparse random matrix, respectively.

k 50 100 200 400 600 800 1000 1500

C
o
lo

n

GM 77.16 77.15 77.29 77.28 77.46 77.40 77.35 77.55

SM 77.23 77.18 77.16 77.36 77.42 77.42 77.39 77.54

VSM 76.86 77.19 77.34 77.52 77.64 77.61 77.61 77.82

MSM 76.93 77.34 77.73 78.22 78.51 78.67 78.65 78.84

A
L

M
L

GM 65.11 66.22 66.96 67.21 67.23 67.24 67.28 67.37

SM 65.09 66.16 66.93 67.25 67.22 67.31 67.31 67.36

VSM 64.93 67.32 68.52 69.01 69.15 69.16 69.25 69.33

MSM 65.07 68.38 70.43 71.39 71.75 71.87 72.00 72.11

L
u
n
g

GM 98.74 98.80 98.91 98.96 98.95 98.96 98.95 98.97

SM 98.71 98.80 98.92 98.97 98.96 98.98 98.97 98.97

VSM 98.81 99.21 99.48 99.57 99.58 99.61 99.61 99.61

MSM 98.70 99.48 99.69 99.70 99.69 99.72 99.68 99.65

Results

Three types of representative high-dimensional datasets are tested for random

projection over evenly varying projection dimension k. The datasets are first briefly

introduced, and then the results are illustrated and analyzed. Note that, the simu-

lation is developed to compare the feature selection performance of different random

projections, rather than to obtain the best performance. So to reduce the simulation

load, the original high-dimensional data is uniformly downsampled to a relatively low

dimension. Precisely, the face image, DNA, and text are reduced to the dimensions

1200, 2000 and 3000, respectively. Note that, in terms of JL lemma, the original

high dimension is allowed to be reduced to arbitrary values (not limited to 1200,

2000 or 3000), since theoretically the distance preservation of random projection is
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Table 5.4: Correct classification rates on three Text datasets with dimension d =
3000. For each projection dimension k, the best performance is highlighted in bold.
Recall that the acronyms GM, SM, VSM and MSM represent Gaussian random
matrix, sparse random matrix with q = 3, very sparse random matrix with q =

√
d,

and the proposed most sparse random matrix, respectively.

k 150 300 600 900 1200 1500 2000

T
D

T
2

GM 83.64 83.10 82.84 82.29 81.94 81.67 81.72

SM 83.61 82.93 83.10 82.28 81.92 81.55 81.76

VSM 82.59 82.55 82.72 82.2 81.74 81.47 81.78

MSM 82.52 83.15 84.06 83.58 83.42 82.95 83.35

N
ew

sg
ro

u
p GM 75.35 74.46 72.27 71.52 71.34 70.63 69.95

SM 75.21 74.43 72.29 71.30 71.07 70.34 69.58

VSM 74.84 73.47 70.22 69.21 69.28 68.28 68.04

MSM 74.94 74.20 72.34 71.54 71.53 70.46 70.00

R
C

V
1

GM 85.85 86.20 81.65 78.98 78.22 78.21 78.21

SM 86.05 86.19 81.53 79.08 78.23 78.14 78.19

VSM 86.04 86.14 81.54 78.57 78.12 78.05 78.04

MSM 85.75 86.33 85.09 83.38 82.30 81.39 80.69

independent of the size of high-dimensional data [8].

Tables 5.2, 5.3 and 5.4 illustrate the classification performance of four classes of

matrices on three typical high-dimensional data: face image, DNA microarray and

text document. It can be observed that, all results are consistent with the theoretical

conjecture stated in section 5.4, that the proposed matrix should outperform other

matrices as k increases. This verifies that the theoretically proposed matrix is indeed

applicable to the typical high-dimensional data. Note that, although the theoretical

result concerning best feature selection is derived with a general assumption on the

distribution of feature difference, it cannot be ensured to be followed by all possible

real data. In this sense, the proposed matrix needs more test to expand to more

areas of application.

5.6 Conclusion

This chapter has shown that random projection can achieve its best feature

selection performance, when only one feature element of high-dimensional data is

considered at each sampling. However, in practice the number of feature elements

is usually unknown, and so the aforementioned best sampling process is hard to

be implemented. To achieve the best sampling process with high probability, we
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practically propose a class of sparse random matrices with exactly one nonzero

element per column. The proposed matrix shows better performance than other

more dense matrices on the classification experiments based on face images, DNA

microarray and text document. Therefore, it can be argued that the proposed

random projection is competitive on both complexity and performance.

5.7 Proof

5.7.1 Proof of Theorem 5.3.1

Proof. Due to the sparsity of r and the symmetric property of both rj and zj, the

function f(r, z) can be equivalently transformed to a simpler form, that is f(x) =

µ
√

d
s
|∑i=s

i=1 xi| with xi being ±1 equiprobably. With the simplified form, three results

of this theorem are sequentially proved below.

1) First, it can be easily derived that

E(f(x)) = µ

√

d

s

1

2s

s
∑

i=1

(Ci
s|s− 2i|)

then the solution to E(f(x)) turns to calculating
∑s
i=1(C

i
s|s− 2i|), which can

be deduced as

s
∑

i=1

(Ci
s|s− 2i|) =















2sC
s
2

−1
s−1 if s is even

2sC
s−1

2
s−1 if s is odd

by summing the piecewise function

Ci
s|s− 2i| =



















































sC0
s−1 if i = 0

sCs−i−1
s−1 − sCi−1

s−1 if 1 ≤ i ≤ s
2

sCi−1
s−1 − sCs−i−1

s−1 if s
2
< i < s

sCs−1
s−1 if i = s
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Further, with Ci−1
s−1 = i

s
Ci
s, it can be deduced that

s
∑

i=1

(Ci
s|s− 2i|) = 2⌈s

2
⌉C⌈ s

2
⌉

s

Then the fist result is obtained as

E(f) = 2µ

√

d

s

1

2s
⌈s
2

⌉C⌈ s
2

⌉
s

2) Following the proof above, it is clear that E(f(x))|s=1 = f(x)|s=1 = µ
√
d. As

for E(f(x))|s>1, it is evaluated under two cases:

– if s is odd,

E(f(x))|s
E(f(x))|s−2

=

2√
s

1
2s
s+1

2
C

s+1
2

s

2√
s−2

1
2s−2

s−1
2
C

s−1
2

s−2

=

√

s(s− 2)

s− 1
< 1

namely, E(f(x)) decreases monotonically with respect to s. Clearly, in this

case E(f(x))|s=1 > E(f(x))|s>1;

– if s is even,

E(f(x))|s
E(f(x))|s−1

=

2√
s

1
2s
s
2
C

s
2
s

2√
s−1

1
2s−1

s
2
C

s
2
s−1

=

√

s− 1

s
< 1

which means E(f(x))|s=1 > E(f(x))|s>1, since s−1 is odd number for which

E(f(x)) monotonically decreases.

Therefore the proof of the second result is completed.

3) The proof of the third result is developed by employing Stirling’s approxima-

tion [127]

s! =
√

2πs(
s

e
)seλs , 1/(12s+ 1) < λs < 1/(12s).

Precisely, with the formula of E(f(x)), it can be deduced that

– if s is even,

E(f(x)) = µ
√
ds

1

2s
s!
s
2
! s
2
!

= µ

√

2d

π
e
λs−2λ s

2
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– if s is odd,

E(f(x)) = µ
√
d
s+ 1√
s

1

2s
s!

s+1
2

! s−1
2

!
= µ

√

2d

π
(

s2

s2 − 1
)

s
2 e
λs−λ s+1

2
−λ s−1

2

Clearly lim
s→∞

1√
d
E(f(x)) → µ

√

2
π

holds, whenever s is even or odd.

5.7.2 Proof of Theorem 5.3.2

Proof. Due to the sparsity of r and the symmetric property of both rj and zj, it

is easy to derive that f(r, z) = |〈r, z〉| =
√

d
s
|∑s

j=1 zj|. This simplified formula will

be studied in the following proof. To present a readable proof, here we review the

distribution shown in formula (5.6)

zj ∼











N(µ, σ) with probability 1/2

N(−µ, σ) with probability 1/2

where for x ∈ N(µ, σ), Pr(x > 0) = 1 − ǫ, ǫ = Φ(−µ
σ
) is a tiny positive number. For

notational simplicity, the subscript of random variable zj is dropped in the following

proof. To ease the proof of the theorem, we first need to derive the expected value

of |x| with x ∼ N(µ, σ2):

E(|x|) =
∫ ∞

−∞

|x|√
2πσ

e
−(x−µ)2

2σ2 dx

=
∫ 0

−∞

−x√
2πσ

e
−(x−µ)2

2σ2 dx+
∫ ∞

0

x√
2πσ

e
−(x−µ)2

2σ2 dx

= −
∫ 0

−∞

x− µ√
2πσ

e
−(x−µ)2

2σ2 dx+
∫ ∞

0

x− µ√
2πσ

e
−(x−µ)2

2σ2 dx

+ µ
∫ ∞

0

1√
2πσ

e
−(x−µ)2

2σ2 dx− µ
∫ 0

−∞

1√
2πσ

e
−(x−µ)2

2σ2 dx

=
σ√
2π
e− (x−µ)2

2σ2 |0−∞ − σ√
2π
e− (x−µ)2

2σ2 |∞0 + µPr(x > 0) − µPr(x < 0)

=

√

2

π
σe− µ2

2σ2 + µ(1 − 2Pr(x < 0))

=

√

2

π
σe− µ2

2σ2 + µ(1 − 2Φ(−µ

σ
))
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which will be used many a time in the following proof. Then we are ready to prove

the theorem below.

1) This part presents the expected value of f(ri, z) for the cases s = 1 and s > 1.

– if s = 1, f(r, z) =
√
d|z|; with the the probability density function of z:

p(z) =
1

2

1√
2πσ

e
−(z−µ)2

2σ2 +
1

2

1√
2πσ

e
−(z+µ)2

2σ2

one can derive that

E(|z|) =
∫ ∞

−∞
|z|p(z)dz

=
1

2

∫ ∞

−∞

|z|√
2πσ

e
−(z−µ)2

2σ2 dz +
1

2

∫ ∞

−∞

|z|√
2πσ

e
−(z+µ)2

2σ2 dz

with the previous result on E(|x|), it is further deduced that

E(|z|) =

√

2

π
σe− µ2

2σ2 + µ(1 − 2Φ(−µ

σ
))

Recall that Φ(−µ
σ
) = ǫ, so

E(f) =
√
dE(|z|) =

√

2d

π
σµe

− µ2

2σ2 + µ
√
d(1 − 2Φ(−µ

σ
)) ≈ µ

√
d

if ǫ is tiny enough as illustrated in formula (5.6).

– if s > 1, f(r, z) =
√

d
s
|∑s

j=1 z|; let t =
∑s
j=1 z, then according to the

symmetric distribution of z, t holds s+ 1 different distributions:

t ∼ N((s− 2i)µ, sσ2) with probability
1

2s
Ci
s

where 0 ≤ i ≤ s denotes the number of z drawn from N(−µ, σ2). Then the

PDF of t can be described as

p(t) =
1

2s

s
∑

i=0

Ci
s

1√
2πsσ

e
−(t−(s−2i)µ)2

2sσ2
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then,

E(|t|) =
∫ ∞

−∞
|t|p(t)dt

=
1

2s

s
∑

i=0

Ci
s

∫ ∞

−∞
|t| 1√

2πsσ
e

−(t−(s−2i)µ)2

2sσ2 dt

=
1

2s

s
∑

i=0

Ci
s{
√

2s

π
σe

−(s−2i)2µ2

2sσ2 + µ|s− 2i|[1 − 2Φ(
−|s− 2i|µ√

sσ
)]}

subsequently, the expected value of f(ri, z) can be expressed as

E(f) = µ

√

d

s

1

2s

s
∑

i=0

(Ci
s|s− 2i|) + σ

√

2d

π

1

2s

s
∑

i=0

Ci
se

−(s−2i)2µ2

2sσ2

− 2µ

√

d

s

1

2s

s
∑

i=0

[Ci
s|s− 2i|Φ(

−|s− 2i|µ√
sσ

)]

2) This part derives the upper bound of the aforementioned E(f)|s>1. For sim-

pler expression, the three factors of above expression for E(f)|s>1 are sequen-

tially represented by f1, f2 and f3, and then are analyzed, respectively.

– for f1 = µ
√

d
s

1
2s

∑s
i=0(C

i
s|s− 2i|), it can be rewritten as

f1 = 2µ

√

d

s

1

2s
C

⌈ s
2

⌉
s ⌈s

2
⌉

– for f2 = σ
√

2d
π

1
2s

∑s
i=0 C

i
se

−(s−2i)2µ2

2sσ2 , first, we can bound















e
−(s−2i)2µ2

2sσ2 < exp(−µ2

σ2 ) if i < α or i > α

e
−(s−2i)2µ2

2sσ2 ≤ 1 if α ≤ i ≤ s− α

where α = ⌈ s−
√
s

2
⌉. Take it into f2,

f2 < σ

√

2d

π

1

2s

α−1
∑

i=0

Ci
se

−µ2

σ2 + σ

√

2d

π

1

2s

s
∑

i=s−α+1

Ci
se

−µ2

2σ2 + σ

√

2d

π

1

2s

s−α
∑

i=α

Ci
s

< σ

√

2d

π
e

−µ2

σ2 + σ

√

2d

π

1

2s

s−α
∑

i=α

Ci
s
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Since Ci
s ≤ C⌈s/2⌉

s ,

f2 < σ

√

2d

π
e

−µ2

σ2 + σ

√

2d

π

1

2s
(⌊√

s⌋ + 1)C⌈s/2⌉
s

≤ σ

√

2d

π
e

−µ2

σ2 + σ

√

2d

π

1

2s
√
sC⌈s/2⌉

s + σ

√

2d

π

1

2s
C⌈s/2⌉
s

≤ σ

√

2d

π
e

−µ2

σ2 + σ

√

2d

π

1

2s
2√
s
C⌈s/2⌉
s ⌈s

2
⌉ + σ

√

2d

π

1

2s
C⌈s/2⌉
s

with Stirling’s approximation,

f2 <































√

2d
π
σe

−µ2

2σ2 +
√
d 2
π
σeλs−2λs/2 +

√

d
s

2
π
σeλs−2λs/2 if s is even

√

2d
π
σe

−µ2

2σ2 +
√
d2σ
π

( s2

s2−1
)

s
2 e
λs−λ s+1

2
−λ s−1

2

+
√
d2σ
π

√
s

s+1
( s2

s2−1
)

s
2 e
λs−λ s+1

2
−λ s−1

2 if s is odd

– for f3 = −2µ
√

d
s

1
2s

∑s
i=0[C

i
s|s− 2i|Φ(−|s−2i|µ√

sσ
)], with the previous defined α,

f3 ≤ −2µ

√

d

s

1

2s

s−α
∑

i=α

[Ci
s|s− 2i|Φ(

−|s− 2i|µ√
sσ

)]

≤ −2µ

√

d

s

1

2s

s−α
∑

i=α

[Ci
s|s− 2i|Φ(

−µ
σ

)]

= −2µǫ

√

d

s

1

2s

s−α
∑

i=α

[Ci
s|s− 2i|]

= −2µǫ

√

d

s

1

2s
(2sC

⌈ s
2

−1⌉
s−1 − 2sCα−1

s−1 )

= −4µǫ
√
ds

1

2s
(C

⌈ s
2

−1⌉
s−1 − Cα−1

s−1 )

≤ 0



5.7. Proof 89

finally, we can further deduce that

E(f)|s>1 = f1 + f2 + f3

<















































2µ 1
2s

√

d
s
C

⌈ s
2

⌉
s + 2σ

π

√
de

λs−2λ s
2 +

√

2d
π
σe

−µ2

2σ2 +
√

d
s

2
π
σeλs−2λs/2

−4µǫ
√
ds 1

2s (C
⌈ s

2
−1⌉

s−1 − Cα−1
s−1 ) if s is even

2µ 1
2s

√

d
s
C

⌈ s
2

⌉
s + 2σ

π

√
d s2

s2−1

s
2 e
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dition is well satisfied when µ >> σ, since Φ(−µ
σ
) decreases monotonically

with increasing µ/σ.
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– if s is odd, with f3 ≤ 0,

E(f)|s>1 < (

√

2d

π
µ+

2σ

π

√
d)(

s2

s2 − 1
)

s
2 +

√
d

2σ

π

√
s

s+ 1
(

s2

s2 − 1
)

s
2 +

√

2d

π
σe

−µ2

2σ2

It can be proved that ( s2

s2−1
)

s
2 decreases monotonically with respect to s.

This yields that

E(f)|s>1 < (

√

2d

π
µ+ (1 +

√
3

4
)
2σ

π

√
d)(

32

32 − 1
)

3
2 +

√

2d

π
σe

−µ2

2σ2

in this case E(f)|s>1 < E(f)|s=1, if (9
8
)

3
2 (
√

2
π

+ (1 +
√

3
4

) 2σ
πµ

) ≤ 1 − 2Φ(−µ
σ
).

Summarizing above two cases for s , finally

E(f)|s>1 < E(f)|s=1, if (
9

8
)

3
2 [

√

2

π
+ (1 +

√
3

4
)
2

π
(
µ

σ
)−1] + 2Φ(−µ

σ
) ≤ 1

5.7.3 Proof of Theorem 5.3.3

First, one can rewrite f(r, z) = |Σj=d
j=1(rjzj)| = µ|x|, where x ∈ N(0, d), since i.i.d

rj ∈ N(0, 1) and zj ∈ {±µ} with equal probability. Then one can prove that
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Finally, it is derived that E(f) = µE(|x|) = µ
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π

.
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6
Single object tracking

Sparse representation has recently been widely studied in the area of visual ob-

ject tracking due to its good performance on object recognition. Up to now, little

attention has been paid to the complexity of sparse representation, while most works

focus merely on improving performance. By reducing the computation load related

to sparse representation, this paper proposes by far the most computationally effi-

cient tracking approach based on sparse representation, which empirically can obtain

at least hundreds of times computation gains over current popular approaches in-

volving sparse representation. The proposed approach simply consists of two stages

of sparse representation, one is for object detection and the other one for object vali-

dation. In practice, it presents favorable tracking performance over state-of-the-art.

6.1 Introduction

Object tracking is a challenging task in computer vision community, since an

object usually suffers from appearance changes and unpredictable motion. Recently,

sparse representation has been introduced in this area for its robustness in repre-

senting objects with a wide range of corruption [128]. In terms of complexity, this

method is also competitive since it only involves simple products of vectors and ma-

trices. This chapter will show that the computation related to sparse representation

can be significantly reduced within the simple tracking-by-detection scheme instead

of the popular particle filter framework.

Most tracking works up to date explore sparse representation within the frame-
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94 Chapter 6. Single object tracking

work of particle filter, in which it is used to measure the similarity between each

particle and template/dictionary. It is clear that sparse representation introduces

considerable computation load, since it has to be executed for each particle while

empirically the number of particles is usually large (eg. 600 particles in [129–131]).

Moreover, the complexity of sparse solution based on ℓ1-regularization is also worth

paying much attention. As it is known, the greedy solution algorithms of sparse rep-

resentation hold the complexity of O(kn), where n is the total number of atoms in the

dictionary and k is the number of atoms selected for sparse representation. Unfortu-

nately, to obtain accurate similarity measure, the two above complexity parameters,

k and n practically tend to be large. For instance, the value of n often reaches thou-

sands, because most tracking works incline to incorporate a high-dimensional trivial

template, denoted as [I −I], into the dictionary to approximate noises or occlusion,

where I is an identity matrix whose size is equal to the dimension of object feature.

Apart from computation cost challenge, sparse representation also cannot ensure

reliable performance on similarity measure due to the potential overfitting solution.

Exactly speaking, the particle with large corruption is probably represented with

small error, since the sparsity of the solution cannot be known beforehand and the

overfitting seems to be inevitable.

Since the framework of particle filter is computationally expensive for the appli-

cation of sparse representation, we are motivated to develop a simple but efficient

tracking-by-detection scheme by exploring the potential of sparse representation on

object retrieval rather than on similarity measure. The proposed scheme consists

of two-step sparse presentation for object detection and validation. In the first

step the most possible object is retrieved by the largest sparse coefficient instead

of investigating all candidate particles with similarity measure; and in the second

step the detected object is further validated with a binary classifier based on sparse

representation.

Compared to traditional framework of particle filter, the proposed scheme holds

two obvious advantages on complexity. First, the potential object could be obtained

by performing sparse representation only once, while to build a Monte-Carlo model

for motion estimation, particle filter has to weight each particle with sparse rep-



6.1. Introduction 95

(a)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Coefficients

V
a
lu

e

(b)

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Coefficients
V

a
lu

e

(c)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Coefficients

V
a
lu

e

(d)

Figure 6.1: Examples of an object (left in (a)) sparsely approximated by a dictionary
of ten objects (right in (a)) with sparse solution in (b), or by a dictionary combining
the ten objects and a trivial template [I − I] with sparse solution in (c). Recall that
the identity matrix I has size equal to the size of object feature. Here each object
is represented with a 300 × 1 vector. This means that the column size of dictionary
is 10 in (b) and 310 in (c). The sparse solution in (b) has 4 nonzero entries and
the representation error is about 10−1. In contrast, the solution in (c) holds 300
nonzero coefficients, thereby lowering the representation error to 10−3. For clarity,
the first ten coefficients in (c) corresponding to above ten objects are detailed in (d).
Comparing (b) and (d), one can observe that the sample most similar to the test
object can be determined by the largest coefficient in (b) even with much higher
representation error.

resentation; second, as the example shown in Figure 6.1, compared to similarity

measure, object retrieval based on the largest coefficient allows to be successfully

implemented with both a smaller size dictionary and a higher representation error,

such that the solution complexity of sparse representation is also significantly re-

duced. In addition, the binary classifier based on sparse representation also shows

obvious computation advantage over other traditional classifiers, e.g., SVM, since it

only involves simple operations of matrix-vector product. More significantly, with

low-complexity implementation, the proposed approach still presents favorable per-

formance.

The rest of this chapter is organized as follows. In the next section, tracking works

related to sparse representation are briefly reviewed. In section 6.3, the sparse rep-

resentation based classification is introduced. In section 6.4, the proposed tracking

scheme with two-step sparse representation is described and analyzed. In section

6.5, extensive experiments are conducted with comparison to the state-of-the-art.
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Finally, a conclusion is given in section 6.6.

6.2 Related Work

Extensive literature has been proposed on object tracking. We here review the

major work related to sparse representation. Until now, most tracking works involv-

ing sparse representation are implemented within the framework of particle filter

by measuring the weight of particles with representation error. Therefore, generally

these works are developed based on two major goals: improving the robustness of

sparse representation and reducing the complexity of the sparse solution.

Mei and Ling [132] first explore sparse representation into an on-line tracking sys-

tem, and introduce the trivial template to approximate noise and occlusion. Later,

to improve the high-dimensional feature selection, Liu et al. [133] attempt to learn

discriminative high-dimensional feature using dynamic sparsity group. To reduce

the sensitivity to background noise in selected object area, Wang et al. [129] and

Jia et al. [134] apply the sparse coding histogram based on local patches to describe

object. Zhong et al. [135] propose a collaborative model that weights particles by

combining the confidences of local descriptor and holistic representation. In a parti-

cle filter framework, computation cost is a great challenge as it grows linearly with

the number of particles. Thus, a few works have been proposed to alleviate this

problem. Li et al. [136] perform sparse representation in compression domain. Mei

et al. [130] discard insignificant samples by limiting their linear least square errors

before resampling particles with more computationally expensive ℓ1-regularization.

Based on the accelerated proximal gradient approach, Bao et al. develop a fast

solver for the ℓ1-regularization problem [137]. Liu and Sun [138] attempt to weight

each particle only with corresponding sparse coefficient such that sparse represen-

tation is allowed to be conducted only once. This method seems very attractive

in complexity. However, it should be noted that, in theory the magnitude of each

coefficient cannot be ensured ’proportional’ to the similarity/correlation between

corresponding particle and query object. Precisely, in terms of least square, it can

be derived that the ’proportion’ exists only when the sub-dictionary corresponding
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to sparse coefficients is orthogonal. Obviously the condition above is hard to satisfy

in practice. Furthermore, it should be strengthened that we cannot detect the case

where object is out of the scene with the magnitudes of sparse coefficients. Zhang

et al. [139] propose to jointly represent particles by using multi-task learning to

explore the interdependencies between particles; In addition, to detect occlusion,

the nonzero coefficients in trivial template are proposed to locate occluded pixels

in [130]. This novel technique seems impractical and imprecise, since both the error

bound for sparse solution and the threshold for coefficient value defining occlusion

are hard to be determined empirically. For the overfitting case in Figure 6.1(c), all

pixels are likely to be classified as occlusion though in fact there is no occlusion.

Apart from the tracking work involving particle filter, Liu et al. [140] once attempt

to use only mean-shift algorithm to search local patches in a fixed window, with

sparse coding histogram as feature.

Adaptive appearance model is the crucial development of recent object tracking

work. This technique is initially developed to model dynamic appearance by on-

line object sample updating [132] or learning [141]. To avoid identity drift caused

by false or unreliable samples accumulating in template, the ground-truth detected

manually or automatically from the first frame is further modeled to retain the

identity of object. Our work also adopts similar scheme to enhance the reliability of

object detection and validation.

Existing tracking methods can be roughly categorized as either generative or

discriminative. The generative method tries to find the potential object area most

similar to object appearance model. Most trackers [131,141–143] within the frame-

work of particle filter belong to this method. The discriminative method formu-

lates tracking as a binary classification problem that distinguishes object from back-

ground [144–147]. Clearly, the former method is suitable for adapting to variable

object appearances, while the latter is robust to identity drift. In this chapter, both

previous advantages are efficiently combined into the tracking-by-detection scheme

of two-step sparse representation.
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6.3 Sparse representation-based classification

This section briefly introduces sparse representation-based classification with the

typical face recognition as example. Let vector y ∈ R
m×1 denote a test face, and

matrix D = [DG1 , DG2 , . . . , DGN
] ∈ R

m×n be a dictionary consisting of N classes of

labeled face vectors, where the i-th sub-matrix DGi
= [Di1 , Di2 , . . . , Dini

] includes

ni samples and
∑N
i=1 ni = n. Then we ideally suppose that test face can be approx-

imated by a linear combination of few labeled face vectors, namely

y = Dβ + ǫ (6.1)

where β is required to hold at most k ≪ n nonzero positive entries; and ǫ is a

tolerated error. Subsequently, the feature vector y is viewed as close to the subspace

of labeled samples corresponding to the nonzero entries of β. In other words, it can

be identified as the class

î = argmax
i

{δi(β)|1 ≤ i ≤ N}, (6.2)

where δi(β) is a function that sums the elements of β corresponding to DGi
. The

solution to k-sparse vector β now can be simply derived with greedy algorithms

of complexity O(mnk), such as OMP [58] or LARS [148]. Note that, to reduce

representation error, most works [129, 130, 132–134, 136, 139] tend to add identity

matrices [I − I] ∈ Rm×2m to the dictionary D, thereby dramatically increasing the

solution complexity.

It is worth mentioning a special case where the test face is novel and out of the

database. In this case, the nonzero entries of β empirically incline to scatter among

some different classes instead of focusing on some special class. So the novel face

can be detected by a threshold

max{δi(β)|1 ≤ i ≤ N} < γ
n
∑

j=1

βj (6.3)

where 0 < γ < 1 is an empirical parameter. This character enables the capability of
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outlier detection of the classifier we will propose in section 6.2.

6.4 Proposed tracking scheme

In this section, we first detail the tracking scheme simply based on two-step

sparse representation, and then quantify its advantage of complexity.

6.4.1 Random projection-based feature selection

In real tracking scenarios, it is usually hard to obtain ideal object features. Thus,

color histogram and raw image have been two kinds of popular features. Here, the

random projection of raw image is adopted as feature [115], because the integration

of random projection and sparse representation is competitive both in complexity

and performance [128]. Let R ∈ R
d×m be a random projection matrix, d < m.

Incorporating random projection, formula (6.1) is reformulated as

Ry = RDβ + ǫ (6.4)

which simply implements feature selection with dimensionality reduction. Usually,

the random projection matrix R tends to be generated by sampling entries from

Gaussian distribution. For simplicity, here we apply a more sparse version, which

holds only one nonzero entry taking values ±1 with equal probability in each column.

This kind of matrix has shown better overall performance on feature selection than

other more dense matrices [10], and also performs well in the following tracking

experiments.

Note that, despite holding low implementation complexity, random projection

clearly is not the best feature selection tool in terms of performance. However,

considering the variation of object appearance, the feature comparison based on the

sum of few randomly selected pixels should be more reasonable than the conventional

pixel-wise comparison. This also explains why it presents satisfactory performance

in the following experiments.
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Figure 6.2: Labeled object from former frame can be sparsely approximated by a
dictionary consisting of overlapped local patches in some area of current frame. The
local patch corresponding to the largest coefficient is prone to indicate the position
of estimated object.

6.4.2 Object detection

In this subsection, object detection is simply regarded as a process of retrieving

known object in the current frame with sparse representation. As illustrated in

Figure 6.2, suppose that the known/query object extracted from former adjacent

frame, denoted as y, could be sparsely approximated by a dictionary, represented by

D, consisting of overlapping local patches extracted from current frame. Then with

formula (6.4), the position of candidate object will be indicated by the local patch

of D corresponding to the largest component of β. In this sense, the performance

of retrieval is determined by the reliability of query object y extracted from former

frame. Here, we define a special dictionary Y = [Ys Yd] to further model query object

y. As it appears in the state-of-the-art [131,135], Ys denotes static appearance model

consisting of ground-truth manually or automatically detected from the first frame

as well as its perturbations with small Gaussian noise, and Yd represents dynamic

appearance model collecting some object samples extracted from recent frames. To

represent object variations while avoiding identity drift, in our method a set of query

samples, rather than one, are randomly selected from above two models to vote final

result. In other words, the average of sparse solutions from several query objects

is used to define the candidate object area. For details, please see Algorithm 6.1.

The random selection of several samples results from the following two reasons: 1)

it is hard to ensure that the samples of the dictionary are all reliable. Further, if
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Algorithm 6.1 Object detection.

Definitions: Let Y = [Ys Yd] be a set of known object samples from for-
mer frames, where Ys represents the subset of static samples from the initial
frames and Yd denote the subset of dynamic samples from the recent frames,
and D be the dictionary consisting of overlapping local patches extracted from
some regions of current frame, with a fixed space layout. And then suppose
{yj : 1 ≤ j ≤ Nc} is a set of Nc query samples randomly selected from Ys or
Yd.

1. The average of sparse coefficient β̄ = 1
Nc

∑Nc
j=1 β

j is derived with respect to

Ryj = RDβj + ǫ, where R is random projection matrix for feature selection;
2. The candidate object is located by the local patch with index î = argmaxi{β̄i},

where β̄i indicates the i-th component of vector β̄ .

there are corrupted samples, they tend to occur over consecutive frames. In this

sense, randomness may lead to the selection of more reliable samples on the whole;

2) random projection theoretically should get better feature selection performance,

if it could be conducted several times rather than only once [115]. Thus, the random

projection of several samples will improve our feature selection performance.

In the following experiments, 10 samples from static model and 5 samples from

dynamic model, are randomly selected for object retrieval. This means that identity

preservation is more important than dynamic adaptation. Considering the balance

between computation and performance, random projection is carried out only once

for each sample. Of course, if the number of samples is limited, we should increase

the times of repeating random projection, as we will do in the following subsection.

Overall, this indicates that here the sparse representation is conducted 15 times for

object detection, which is still much less than hundreds of times that particle filter

usually requires [129–131]. Likewise, considering the continuity of object moving

between adjacent frames, the search region usually can be limited to a relatively

small area, e.g. twice or three times the object size. And the local patches are

extracted with a sliding overlapping window of same size as the former tracked

object. Empirically, the number of local patches could be limited at the level of

tens, and thus the computation cost for sparse representation is relatively small.

Note that, the confidence of the detected object cannot be ensured with the

largest coefficient. For instance, even though object has disappeared in the scenario,

the object location scheme still presents an ’object area’ with the largest coefficient
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Algorithm 6.2 Object validation and template updating.
Definitions: Let yc denote the candidate object derived in Algorithm 6.1,
and Z = [ZGp ZGn ] be the dictionary consisting of object samples and back-
ground samples, where the Gp and Gn denote the index sets correspond-
ing to above two classes of samples. Note that ZGp ⊆ Y of Algorithm
6.1.

1. The average of sparse solutions β̄ = [β̄Gp β̄Gn ] = 1
Nr

∑Nr
j=1 β

j is derived with

Rjyc = RjZβ
j + ǫ, where Rj denotes the j-th random projection with j ∈

{1, 2, ..., Nr}, and correspondingly βj is the sparse solution;
2. The candidate object is labeled, if argmaxi{β̄i} ∈ Gp and

0.5 < ||β̄Gp ||1/||β̄||1 < 0.8, where β̄i denotes the i-th element of vector

β̄;
3. The candidate object is labeled and updated for dynamic object model Yd, and

its neighboring background patches are updated for ZGn , if argmaxi{β̄i} ∈ Gp

and ||β̄Gp ||1/||β̄||1 > 0.8;
4. If both steps 2 and 3 cannot be performed, object is assumed to keep still or

move with a constant velocity;
5. If step 4 is performed for numerous consecutive frames, object detection in Al-

gorithm 1 is performed again in a larger region.

of sparse solution. In this sense, we have to develop a binary classifier to further

validate the detected object.

6.4.3 Object validation and template updating

In this subsection, a binary classifier based on sparse representation is devel-

oped for discriminating object from background or outliers. Sparse representation

is adopted here for the following four reasons:

1) it is computationally competitive since it only involves simple operations of

matrix-vector product;

2) the decision can be easily derived in terms of the distribution of sparse coef-

ficients;

3) compared to traditional binary classifiers, it has an exclusive advantage, that

is the outlier which cannot be previously trained can also be detected since

in this case the sparse coefficients tend to scatter rather than focus [128]. In

practice, this also allows to train a relative small dictionary of positive and

negative samples;

4) in practice the discrimination between object and background seems to be
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a multi-class classification problem rather than a binary classification prob-

lem, since complex and dynamic background usually involves kinds of feature

subspaces in which some ones might be close to object feature. In this case,

two opposite half-spaces trained by traditional binary classifiers, like SVM

[26], probably overlap with each other, thereby deteriorating the classification

performance. In contrast, sparse representation is immune to this problem

because it partially explores the similarity between individual samples rather

than directly dividing the samples space into two parts [1].

Next we move on to detailing the proposed classifier. Similar with formula (6.4),

a candidate object, denoted by yc, is assumed to be sparsely approximated by a

dictionary/template Z = [ZGp ZGn ]

Ryc = RZβ + ǫ, (6.5)

where ZGp and ZGn denote the subset of positive samples and the subset of negative

samples, respectively; and two subscripts Gp and Gn correspond to two subsets of

column indexes of positive samples and negative samples in dictionary Z. The posi-

tive samples ZGp come from aforementioned static and dynamic appearance models

Y, and the negative samples ZGn are collected by a sliding overlapping window from

the neighborhood of tracked object, where partial object region is included as op-

posed to relatively complete object region in positive samples. Correspondingly, the

sparse solution β is also divided into two parts: β = [βGp βGn ]. Note that, here β

also allows high sparsity, i.e. it holds at most 10 nonzero entries in our experiments,

since the subsequent binary classification based on object retrieval is insensitive to

representation error. In terms of binary classification, two rules are used to define

the positive result. One is that the largest coefficient of sparse solution β corre-

sponds to a positive sample of ZGp ; namely, argmaxi{βi} ∈ Gp. And the other is

that the sparse coefficients corresponding to positive samples, βGp , take higher en-

ergy than the sparse coefficients corresponding to negative samples, βGn ; that is,

||βGp ||1/||β||1 > 0.5. Empirically, the latter criterion is more strict than the former

since it measures the similarity between the candidate object and the positive sub-
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space instead of individual positive samples. In our method, to obtain a relatively

fluent tracking trajectory, an object is allowed to be labeled when above two criteria

are satisfied. But for template updating, in the following experiments the second

criterion is imposed on a stricter threshold ||βGp ||1/||β||1 > 0.8 for more reliable fea-

tures. In practice the threshold value is allowed to be tuned empirically. But in the

following experiments it is fixed to 0.8. Note that random projection is required to

be carried out several times to achieve better feature selection performance for the

unique candidate object [115], e.g., it is repeated 5 times in our experiments. And so

the sparse solution β is finally derived by averaging. In addition, it should be men-

tioned that the decision of the classifier is based on sparse coefficients rather than

on representation error. Therefore it can also be implemented with a relatively high

representation error. The whole flow of object validation is illustrated in Algorithm

6.2.

It is necessary to recall that the proposed classifier holds an exclusive advantage,

because it can efficiently detect the outliers which cannot be previously trained.

In other words, for the potential outliers, like significant object appearance change

and dynamic background, sparse coefficients incline to scatter among positive and

negative subspaces rather than focus on one of them, such that ||βGp ||1/||β||1 ≈
0.5. In this case if we apply a much stricter threshold for template updating, e.g.,

||βGp ||1/||β||1 > 0.8, the outliers can be successfully detected and excluded.

In addition, considering the outliers can be excluded efficiently, we need not

build a robust background model because the untrained background elements could

be detected as outliers. Clearly this will significantly reduce the load of updating

the background model, which probably accumulates a great amount of information

over time. In our experiments, only 100 samples are adopted for background model

and 50 samples for object model. The samples are updated with the simple way of

replacing the oldest with the novel. By the way, we also test the k-means algorithm

for samples updating, which seems more suitable for collecting the redundant back-

ground samples [135]. However, it does not show the desired advantage over the

simple way of replacing the oldest one with the novel. This verifies the conjecture

that the proposed classifier is not sensitive to the robustness of background model.
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6.4.4 Computation cost related to sparse representation

As stated in the former introduction, there are two major factors affecting the

computation cost related to sparse representation. One is the product of the di-

mension n of dictionary and the number k of selected atoms for sparse representa-

tion, namely O(kn); and the other is the times of repeating sparse representation.

Compared to traditional tracking works involving sparse representation, the pro-

posed tracking scheme enjoys obvious advantages in terms of above two factors. For

instance, on one hand, in the proposed scheme, object retrieval based sparse rep-

resentation significantly reduces both the dimension of dictionary and the number

of selected atoms, since it is insensitive to representation error. Precisely, 1) the

high dimensional trivial template [I − I] here is not required, which shares the

same size with object feature; 2) few atoms are allowed for sparse representation,

e.g., the maximum of k is set to 10 in our experiments; conversely, for traditional

tracking methods, k tends to increase limitlessly until the representation error stops

decreasing or achieves some given threshold. On the other hand, the frequency of

repeating sparse representation is also obviously reduced. Exactly speaking, here

sparse representation is required to be conducted only several tens of times, e.g.,

20 times in our experiments. Furthermore, if object feature is reliable enough, the

proposed scheme allows to perform sparse representation only once at each step. In

contrast, traditional methods usually have to conduct sparse representation for each

particle, and empirically this indicates hundreds of times of sparse representation in

terms of the number of particles exploited in practical applications [129–131].

6.5 Experiments

We evaluate the proposed approach on ten challenging videos, among which

eight are publicly available 1 and two are produced by ourselves. For comparison,

we perform four typical tracking algorithms with adaptive appearance models: IVT

tracker [141], L1 tracker [132], PLS tracker [131] and SCM tracker [135]. The for-

1. http://www.cvg.rdg.ac.uk/PETS2009/; http://www.gris.informatik.tu-darmstadt.

de/~aandriye/data.html; http://faculty.ucmerced.edu/mhyang/pubs.html

http://www.cvg.rdg.ac.uk/PETS2009/
http://www.gris.informatik.tu-darmstadt.de/~aandriye/data.html
http://www.gris.informatik.tu-darmstadt.de/~aandriye/data.html
http://faculty.ucmerced.edu/mhyang/pubs.html
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mer two trackers are early presented for adapting appearance variations by on-line

updating or learning template subspace, and the latter two trackers are most recent

works that further explore object ground-truth for object identity model, and also

show favorable performance over other state-of-the-art methods. For fair compar-

ison, in our experiments the four trackers are all implemented with their original

codes, and initialized with same parameters. As for parameters tuning, we use the

original parameters for L1 tracker and PLS tracker. Since IVT tracker and SCM

tracker both have provided several options of parameters for some popular videos,

we adopt the original parameters for the same videos, and select proper parameter

options for our own videos, e.g., using their parameters for ’head’ and ’pedestrian’

to separately track ’head’ and ’pedestrian’ of our videos. Note that, some methods

here perform worse than their original papers. This might be explained by the slight

changes of the initial areas of tracked objects.

The proposed algorithm is mainly implemented with Matlab code. LARS algo-

rithm of SPAMS package [149] is used for sparse solution, for which the threshold

on reconstruction error is set to 10−3 and the maximum number of nonzero entries

is no more than 10. To reduce computation and memory load, extracted subimage

of same size with tracked object, is first resized to 32 × 32 and then compressed

to a 200 × 1 vector by random projection for simple computation of sparse rep-

resentation. The whole scheme achieves the speed of about 3 fps on a PC with

2.67Hz double cores, which is faster than recent work [134] also programmed with

Matlab and SPAMS package. Note that, compared to existing tracking works in-

volving sparse representation [137], our software is not the best in speed, though

the proposed scheme has been proved significantly reducing the computation cost

related to sparse representation. This problem results from the inefficiency of Mat-

lab code on the feature selection. Precisely, during feature selection, the generation

of high dimensional random matrix and the multiplication between the dictionary

and random matrix are both time-consuming for serial Matlab code. However, these

problems will turn into advantages in parallel circuit implementation.
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Figure 6.3: Quantitative evaluation of the trackers in terms of center location error
on all test sequences.
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Table 6.1: Average center location errors (in pixel). The best and second best results
are shown in red and blue fonts, respectively.

Video clip IVT L1 PLS SCM Ours

Face_hand 57.80 43.98 62.08 23.82 4.08

Paper 38.77 70.42 34.77 40.89 4.45

PETS09 51.26 45.04 42.98 32.12 8.47

Tudcrossing 29.11 11.49 43.11 4.36 4.23

Face_man 7.41 28.96 9.091 3.06 9.74

Face_woman 39.99 24.06 22.57 4.68 10.45

Animal 10.02 81.02 91.94 25.75 6.39

Jumping 15.25 55.68 66.93 3.73 3.77

David 5.49 58.32 77.73 47.20 8.65

Girl 36.50 24.53 39.51 110.49 22.68

Table 6.2: Average overlap rates between target region and ground-truth. The best
and second best results are shown in red and blue fonts, respectively.

Video clip IVT L1 PLS SCM Ours

Face_hand 0.40 0.35 0.35 0.70 0.93

Paper 0.48 0.12 0.44 0.54 0.82

PETS09 0.20 0.39 0.38 0.38 0.64

Face_man 0.56 0.36 0.52 0.67 0.56

Face_woman 0.46 0.54 0.43 0.82 0.67

Tudcrossing 0.15 0.54 0.09 0.69 0.74

Animal 0.74 0.23 0.21 0.57 0.84

Jumping 0.52 0.11 0.07 0.80 0.82

David 0.64 0.26 0.25 0.37 0.39

Girl 0.37 0.48 0.39 0.13 0.51

6.5.1 Quantitative evaluation

We measure the tracking accuracy of aforementioned algorithms based on the

center location error and the overlap rate. The center location error is the Euclidean

distance between the central points of tracked object RT and the corresponding

manually labeled ground-truth RG. The error plots on all test sequences are shown

in Figure 6.3, and the average errors are given in Table 6.1. The overlap rate [150],

defined as area(RT ∩ RG)/area(RT ∪ RG), evaluates the success rate. Table 6.2

illustrates the average overlap rates for ten videos. As Figure 6.3 illustrates, it is

easy to state that the proposed approach achieves relatively persistent and stable

tracking, and obtains better overall performance than the other four trackers on

the ten videos. However, it does not obtain the best average performance on all

videos as shown in Tables 6.1 and 6.2, since we simply exploit a fixed-size rectangle

of raw image to represent the object. On one hand, it is sensitive to severe scale
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change; on the other hand, in terms of the definition of overlap rate, it tends to

suffer from small overlap rate as tracked rectangle area is usually not consistent

with ground-truth in size. For instance, even if we successfully capture the face in

sequence david, the overlap rate is still small as our rectangle is usually larger than

the face area. However, this problem could be addressed by applying more advanced

representation method in the future.

6.5.2 Qualitative evaluation

In addition to quantitative evaluation, the qualitative evaluation, as illustrated

in Figure 6.4, is performed based on several typical deformations that the videos

often suffer from.

Occlusion: Complete or partial occlusion is a major challenge for tracking sys-

tems with adaptive appearance model since it usually leads to identity drift of the

template. In fact, the proposed approach owns obvious advantages for long-time and

heavy occlusion for its robust tracking-by-detection scheme. To better highlight the

performance, we produce two more challenging videos against long-time complete

occlusions: sequences face_hand and paper. In the sequence face_hand, target face

is completely occluded with hands for a long period. In the sequence paper, the

target paper is also completely occluded twice by other paper. In addition, for com-

plete occlusion, two challenging examples about pedestrians are given by sequences

PETS09 and Tud_crossing; and the case on face occlusion in the sequence girl is

also evaluated. For partial occlusions, two examples of partial face occlusion are

proposed by sequences face_man and face_woman.

The proposed approach performs well on aforementioned videos without identity

drift. In contrast, other four trackers all fail when long-time complete occlusion

occurs or the occlusion shares similar feature with target. For instance, in the

sequence face_hand, IVT, L1 and PLS early drift to background when short-time

occlusion occurs, and SCM finally drifts to hands when the face is covered by hands

during fifty frames. In the sequence paper, it seems difficult for them to distinguish

between two papers. L1 begins to lose track as target paper moves, while other three

trackers absolutely drift to occlusion. Among these four trackers, SCM shows better
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Figure 6.4: Tracking examples of five methods on ten challenging videos.
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overall performance on identity preservation thanks to exploring the ground-truth

to search the object. In the sequence PETS09, it successfully recovers the target lost

during the occlusion. Nevertheless, it remains sensitive to long-time occlusion as the

sequence face_hand illustrates. This implies that in fact the occlusion cannot be

detected efficiently by SCM and the attribute of dynamic object model will gradually

change over time.

Motion & Blur: Fast or abrupt motion is a great challenge for tracking sys-

tems with particle filter due to their continuous motion estimation parameters. To

cope with this problem, they usually have to exploit more particles holding the dis-

tribution of larger variance. For the proposed approach with tracking-by-detection

system, unexpected motion can be easily caught by a larger retrieval region. As for

motion blur, it is usually regarded as a challenge for object recognition. For the

proposed approach without accurate motion estimation, abrupt motion cannot be

caught if the recognition fails in the first step. However, fluent tracking result in

sequences animal and jumping show that our approach works well in this case. This

indicates that random projection of raw image within sparse representation to some

extent to is immune to the blur. SCM also addresses this problem well with sparse

coding histogram as feature. In contrast, for the sequence jumping, L1 and PLS

early drift from the target when the blur emerges in frame 16, while IVT keeps on

tracking to frame 243 by more advanced incremental subspace learning method.

Scale & Rotation: There are drastic scales as well as in-plane and out-of-

plane rotations in both sequences david and girl. It is clear that our approach is

sensitive to scale changes since it is not addressed in object representation. But the

proposed approach can successfully detect failed detection caused by severe scaling

and rotation in object validation. In other words, this prevents identity drift of

dynamic object appearance model. So in the sequences david and girl, the proposed

approach successfully recaptures the object after severe appearance changes and

tracks it up to the end. In contrast, for severe appearance changes caused by out-

of-plane rotation, like the transformation from face to the back of head in sequence

girl, other four trackers are likely to drift for ever.

Illumination: In theory, sparse representation based on normalized image vec-
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tor is insensitive to illumination changes. So here it is not an important performance

index. In the sequence david, an object walks out from the dark room to the area

with spot lights in the early few frames without scaling and rotation, the five trackers

all present perfect results.

Overall performance: The proposed approach shows better overall perfor-

mance on the ten videos benefiting from two advantages. First, the robust recog-

nition of sparse representation based on static and dynamic features ensures the

fluency of tracking trajectory. Second, the robustness of the proposed classifier on

outlier detection efficiently retains the purity of object appearance model. Although

SCM and PLS both explore ground-truth to identify the object, they lack efficient

method to detect and prevent outliers from updating dynamic object model. In

fact, SCM obviously outperforms PLS in our experiments. This can be partially

explained by the fact that SCM explores both static and dynamic features to weight

particles while PLS only applies dynamic features to search particles. The other

reason may be the difference between the features they apply. IVT and L1 cannot

cope with severe appearance changes since their template updating mechanisms are

not developed to maintain object identity.

6.6 Conclusion

This chapter has presented an efficient and effective tracking-by-detection scheme

by exploring the sparse representation for object retrieval and object validation.

Compared to conventional tracking methods involving sparse representation, the

proposed approach achieves significant computation gains by reducing both the times

of repeating sparse representation and the computation load of sparse solution. In

particular, if the feature is robust enough, the object can be tracked by conducting

only two times of sparse representation. It is necessary to strengthen that the com-

putation gain is quantified in this paper, though our experiment simply implemented

with Matlab code does not present the desired speed.

Extensive experiments on challenging sequences show that the proposed approach

performs favorably on identity preservation. For instance, although the scaling and
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rotation of object appearance are not specifically addressed in the proposed scheme,

we can successfully recapture the object after long-time occlusion or serious defor-

mation. The robust tracking performance indicates that sparse representation is

indeed a powerful tool for both object retrieval and classification. Specifically, with

scattering sparse coefficients, the binary classifier based on sparse representation can

easily detect the outliers which are not included in current training dictionary. This

enables the classifier to work well even when the dictionary contains relatively few

background samples.
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7
Multiple objects tracking

Multi-object tracking is a technique that locates and recognizes a number of

objects in some sequential video frames. Compared to single object tracking, it

presents more challenges on objects discrimination. In this chapter, we will show

that the sparse representation can also be used to recognize multiple objects with

dynamic appearances [13].

7.1 Introduction

As reviewed in last chapter, sparse representation has been extensively studied

for single object tracking, while the application to multi-object tracking has not

received attention. In this chapter, we attempt to test the capability of sparse

representation on the classification of multiple objects with dynamic appearances.

The tracking-by-detection scheme is simply applied as follows. First, the labeled

samples from previous frames are collected and updated in the dictionary, and then

the samples detected in a new frame are sparsely represented with the dictionary.

These new samples can be identified with the labeled samples of the dictionary in

terms of the distribution of sparse coefficients, as done in the former chapter. For

simplicity, we only test some videos with static scenes which can be addressed using

simple object detection techniques. In the following parts, we detail the tracking

scheme and present the experimental results.

115
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(a) (b)

Figure 7.1: Tracking results only with color feature (a) and with feature integrating
color and 2-dimensional coordinates (b). In (a), object 6 switches into object 2 after
13 frames due to similar appearance.

7.2 Tracking scheme

7.2.1 Object detection and representation

For static camera without dense scenes, background subtraction is efficient for

body area detection. Here in terms of computation cost, we still use traditional

method [151] based on statistically modeling and pixel-wise subtraction instead of

these complex methods with tiny performance gain [152] [153]. Two cascaded RGB

histograms are used to represent the upper and lower parts of human body. Further-

more, to discriminate objects sharing similar appearance, the location information,

normalized 2-dimensional coordinates of the object center, is applied to represent

object by concatenating it with normalized RGB vector. Its benefit is simply illus-

trated in Figure 7.1. And the weight ratio between the two kinds of vectors is tuned

empirically.

7.2.2 Overlapping

With background subtraction, the overlapping objects are subject to be detected

as one object. And objects with tiny overlap usually can be detected by obvious size

variation as shown in Figure 7.2(a). To avoid falsely updating samples or defining

novel objects in the dictionary, detected overlap is not processed and nor labeled

in our tracking scheme. As for the undetected overlap as Figure 7.2(b) shows, it

will be recognized as a unique object. Empirically, the overlap tends to be linearly

approximated by the objects it includes during sparse representation. Thus, the

overlap is likely to be defined as the larger object it includes in our experiments. In
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(a)

(b)

Figure 7.2: The obvious overlap detected in (a) is not recognized or labeled. And
the undetected overlap in (b) is usually recognized as the object at the forefront.

this sense, we naturally avoid defining the overlap as novel object.

7.2.3 Online dictionary updating

Online dictionary updating attempts to store and train recently recognized sam-

ples which are expected to be most similar to incoming test objects. This is critical

for object recognition in tracking, since objects usually suffer from serious variation

over time. Here the dictionary of labeled samples is simply updated by replacing

the old samples with the new samples of the same class. To enhance recognition

rates and avoid false samples accumulation in the dictionary, we further give some

updating rules:

– to avoid identity switch, the initial detected object sample is always stored in

the dictionary.

– at the beginning of experiments, the dictionary is expanded by perturbing the

initial sample with small Gaussian noise .

– the training samples of the same class share the same location information

from the most recently updated sample.

– to avoid false recognition or novel object initialization, detected overlap is not

updated.

Note that the popular dictionary learning algorithms for reducing recovery error [154]

[155] are not employed here, since empirically the accurate sparse representation is

not required for object classification.
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7.3 Experiments

There are few benchmark videos for multi-object tracking, especially the videos

with few overlapped scenes that background subtraction can deal with. For com-

parison, we start experiment with a classic video from PETS’09, which has been

evaluated by two state-of-the-art works, ETHZ [156] and EPFL [157]. ETHZ im-

plements a robust tracking-by-detection scheme by combing body detection and

particle filter. EPFL attempts to explore object appearance from a global view with

multiple calibrated cameras. To further verify our performance, we also evaluate

proposed approach on some sequences from PETS’06. (For video results, please

refer to http://youtu.be/SLyABs_nJeg.)

Multi-object tracking usually faces three challenges: object switch during over-

lapping, new object initialization and re-recognition of re-entering objects. In the

following part, we will briefly introduce two videos and then discuss the results in

terms of aforementioned challenges.

7.3.1 Database PETS’09.

This video with 795 frames is recorded in a campus at 7 fps from a high view

point. Ten persons walk in and out of scene, and some of them are similar in color.

So it is a challenge for recognition by appearance. In the following comparison,

the persons are labeled by the sequence number corresponding to their entries into

the scene. In our results, ten persons are labeled with a number, and their initial

samples are displaced on the top of each frame, as Figure 7.4 shows. In ETHZ and

in EPFL, they are discriminated separately with color-box and number.

Results. Figure 7.3 illustrates two examples about identity switch between objects

of similar appearances. In fact, the proposed approach shows better performance for

discriminating objects on the whole video. This mainly benefits from the features

involving object center coordinates. In the proposed approach, one special case is

that objects 4 and 5 are labeled together as object 4 for a long time due to overlap as

shown in Figure 7.2(b). However, object 5 can be successfully recovered when they

http://youtu.be/SLyABs_nJeg
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Figure 7.3: Two examples on identity switch caused by overlapping. EPFL switches
the identities of objects 12 and 17 in the first two frames, and exchange objects 6
and 8 in the last two frames. Conversely, the proposed approach and ETHZ work
well.
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Figure 7.4: Examples on object initialization and re-recognition. In the frame_-
0470, object 6 re-enters and object 9 first enters (referring our labels). 0bject 6 is not
recovered in ETHZ and EPFL. And object 9 is incorrectly initialized to object 6 in
ETHZ. In contrast, the proposed approach performs well on above two cases.

separate. In Figure 7.4, we give one example about object re-recognition and novel

object initialization, in which proposed approach works well while other two methods
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Table 7.1: Correct occurrences for objects entering or re-entering in scene (PETS’09).
Value 0 indicates false object initialization.

Objects 1 2 3 4 5 6 7 8 9 10

Num. of entries 4 2 2 2 2 2 1 1 2 1
Ours 4 2 2 1 1 2 1 1 2 1

ETHZ 4 2 2 1 1 1 1 1 0 0
EPFL 2 1 1 1 1 1 1 1 2 1

Figure 7.5: Tracking results for PETS’06. The bottom displays 11 objects that we
initialize and track successfully. Our results have no identity switch or incorrect
novel object initialization.

fail. In fact, proposed approach shows best performance for persistent identity

tracking in the whole video, as confirmed in Table 7.1. Otherwise, it should be

recalled that the proposed tracking process is not very fluent due to object detection

failure as well as the lack of motion estimation.

7.3.2 Database PETS’06

We select a relatively crowded scene from S7.T6.B4 (frame _01685 to frame_-

01985), in which 11 objects suffer from serious size variation and illumination varia-

tion, and some of them also share similar color. For example, objects 4, 5 and 6 are

hard to be distinguished by naked eyes when they walk away.

Results. As Figure 7.5 shows, the proposed approach successfully detects and

initializes these 11 objects. Furthermore, there is no identity switch caused by

occlusion or incorrect object initialization. This result further proves the robustness
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of sparse representation for multi-object classification.

7.4 Conclusion

This chapter has shown preliminary but promising results on the application of

sparse representation to multiple objects tracking. By exploiting a simple tracking-

by-detection scheme, sparse representation even presents better recognition perfor-

mance than state-of-the-art. In the future, the simple tracking scheme can be further

improved. For instance, the background will avoid being falsely detected as novel

object, if the background samples are incorporated to the dictionary of sparse rep-

resentation.
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8
Conclusion

Dimension reduction is an important research direction in diverse research areas

involving the process of high-dimensional data. In this thesis, we have studied three

popular dimension reduction techniques and presented some significant results.

First, we have deterministically proposed and constructed the optimal binary

compressed sensing matrix, which is undoubtedly a groundbreaking result for the

application of compressed sensing. Importantly, it is expect to present compara-

ble or even better performance than Gaussian random matrices for most possible

distributions of sparse signals. The proposed construction method can also be bor-

rowed to simply construct the optimal random ternary matrix through assigning the

nonzero elements of optimal binary matrix to ±1 with equal probability. To obtain

more hardware-friendly structure, the binary matrix could also be constructed with

quasi-cyclic matrix structure, which generally will lead to some loss of performance.

Besides matrix construction, we also considered another interesting problem: the

performance estimation of sensing matrices of high compression rates. Due to lim-

ited theoretical level, we have studied only the popular random Bernoulli matrix,

which presents a performance floor as the compression rate increases. Luckily, the

performance floor allows to be effectively estimated when we simply modify the

traditional estimation method of sufficient condition towards the one of sufficient

and necessary condition. Empirically, the random Gaussian matrix also holds a

performance floor, which is hoped to be effectively estimated in the future.

For the second technique of random projection, the main challenge also arises

from the matrix construction, which has been deeply studied in the past decade. The

123
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thesis has restudied this problem from a novel point of view, that is from feature

selection rather than from traditional distance preservation. Then a better classifica-

tion performance has been theoretically derived with a random matrix much sparser

than existing random projection matrices. Obviously, this result is competitive on

both performance and complexity for the classification task involving random pro-

jection. In the future, the theoretically proposed random projection matrix needs

more tests to expand to more application areas.

Unlike the two techniques above, the questions of sparse representation often

occur along with specific applications. In this thesis, we considered this technique

only in the context of visual object tracking. A simple but efficient single-object

tracking scheme has been successfully proposed to decrease the computation load

of sparse representation while without introducing obvious performance loss. The

proposed tracking scheme could be further improved on the fluency of tracking tra-

jectory if the affine transform of object is considered. Moreover, we also studied the

application potential of sparse representation in the context of multi-object tracking,

where sparse representation is simply used for object classification and achieves fa-

vorable performance. Maybe this result will help to develop an efficient multi-object

tracking scheme in the future.
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Introduction

Avec le développement de la science et de la technologie, les données de dimen-

sions élevées sont de plus en plus populaires dans notre vie quotidienne. Par exemple,

dans le domaine du traitement du signal et de la biostatistique, il est maintenant

très commun de traiter des donnéesm telles que l’image, la vidéo ou l’ADN, dont

les dimensions sont de l’ordre du million. Tout cela apporte souvent de grands défis

pour le calcul et le stockage. Pour surmonter ce que l’on appelle la malédiction de la

dimension, il faut souvent recourir à des techniques de réduction de la dimension,

qui visent à projeter ces données de grande dimension sur un espace de relative-

ment faible dimension tout en conservant les informations d’intérêt. Ce thème de

réduction de la dimension a en effet reçu une attention considérable dans divers

domaines de recherche tels que les statistiques, la bio-informatique, le traitement du

signal, la vision par ordinateur, les machines à apprentissage etc. Dans la pratique,

la notion de réduction de la dimension est principalement utilisée pour désigner les

techniques de projection linéaires ou non linéaires visant des caractéristiques ou des

échantillons de données, avec par exemple, les méthodes d’analyse de composantes

principales (ACP) et également l’ACP basé sur le noyau, alors que d’un point de

vue plus large, elle devrait également couvrir le problème de la compression de don-

nées. Dans cette thèse, nous allons concentrer notre attention sur trois techniques

populaires de réduction de la dimension : l’acquisition parcimonieuse, la projection

aléatoire et la représentation parcimonieuse, qui se voient toutes concernées par le
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problème de la projection linéaire à travers une matrice. La contribution principale

de cette thèse par rapport à ces techniques sera présentée brièvement dans les trois

parties suivantes.

A.1 Acquisition parcimonieuse

A.1.1 Présentation du problème

L’ acquisition parcimonieuse, ou échantillonnage parcimonieux, est une nouvelle

technique visant à acquérir et récupérer des signaux réduits avec beaucoup moins de

mesures que nécessite le taux de Nyquist classique [3] [4], ce qui offre évidemment

une perspective remarquable dans la pratique, car tout naturellement les signaux

font apparaître en général des structures clairsemées dans le domaine du temps, de

l’espace ou des fréquences. Dans la pratique, la tâche majeure pour cette technique

consiste à construire une matrice de réduction avec de bonnes performances. On

sait que certaines matrices aléatoires, i.i.d avec des éléments extraits de certaines

distributions bien connues, telles que la distribution gaussienne ou la distribution de

Bernoulli, peuvent fournir bonnes performances de réduction et cela avec une forte

probabilité. Cependant, en termes de mise en œuvre matérielle, il est évident que la

matrice binaire zéro-un avec une structure déterministe est plus attrayante au niveau

du calcul. Bien que certains travaux ont récemment été mis au point pour construire

ce type de matrices, la matrice binaire optimale reste inconnue. Dans cette thèse,

nous allons résoudre ce problème.

A.1.2 Fondamentaux

Notons x ∈ R
n un vecteur avec k ≪ n éléments non nuls, appelé signal k-

parcimonieux ou ayant une parcimonie k. Soit A ∈ R
m×n une matrice de réduction

avec m ≪ n, l’acquisition parcimonieuse dit que le vecteur de grande dimension x

peut être parfaitement récupéré avec à la fois A et peu de mesures linéaires y = Ax.

La solution peut être obtenue en résolvant un probleme de minimisation basé sur la
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norme-ℓ1

min
x̂

||x̂||1 s.t. y = Ax̂, (A.1)

si le vecteur x est suffisamment clairsemé et tel que la propriété d’isométrie restreinte

(RIP) puisse être satisfaite par la matrice A.

Avant de détailler RIP, nous avons besoin de définir d’abord un paramètre dit

d’isométrie restreinte constante (RIC) comme ci-dessous :

Definition A.1.1 (RIC). Le RIC d’une matrice A ∈ R
m×n est défini comme le plus

petit δk ∈ (0, 1) tel que l’inégalité

(1 − δk)||x||2 ≤ ||Ax||2 ≤ (1 + δk)||x||2 (A.2)

est vérifié pour tous les signaux x ∈ R
n k-parcimonieux.

Le RIP stipule que si δk de A est assez petit, le signal k-parcimonieux peut

être bien récupéré avec un problème de minimization ℓ1. Notons que δi ≤ δj, si

i < j [32] [33]. Ainsi, dans la pratique, une matrice dont δk est relativement petit

est préférable car elle offre une relativement grande parcimonie k. Notons également

que la formule A.2 peut être réécrite comme

1 − δk ≤ ‖Aψx‖2

‖x‖2
≤ 1 + δk (A.3)

qui est valable pour tout |ψ| = k et x ∈ R
|ψ|, où Aψ ∈ R

m×|ψ| est une sous-matrice

de A avec des colonnes indiquées par ψ ⊆ {1, 2, ..., n}, et où AT
ψ dénote le transposé

de Aψ. Ceci implique que la solution pour δk peut être dérivée en limitant les valeurs

propres extrêmes de AT
ψAψ,

A.1.3 Méthodes

En cherchant le meilleur RIP, pour une matrice de taille donnée, la répartition

optimale de zéro-un est déterminée par le graphe biparti avec autant d’arêtes que

possible, mais sans longueur de cycles égale à 4. Dans la partie suivante, nous présen-

tons d’abord la notion de graphe biparti, puis proposons un algorithme efficace pour

construire le graphe biparti souhaité.
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Figure A.1 – De gauche à droite : une matrice binaire, le graphe biparti corre-
spondant et un sous-graphe étendu à partir d’un noeud de variable. Les noeuds de
variable et les nœuds de mesure sont indiquées avec le cercle et le carré, respective-
ment. Si deux noeuds de variable partagent deux mêmes positions non nulles dans
leurs colonnes respectives, ils forment un cycle le plus court de longueur 4 (lignes
pointillées), comme les lignes pointillés montrées dans le sous-graphe.

Comme illustré dans la figure A.1, un graphe biparti est composé de deux classes

de nœuds, que nous noterons les nœuds de variable et les nœuds de mesure. Au

graphe est associé une matrice binaire, en laissant deux catégories de nœuds corre-

spondant aux colonnes et lignes de la matrice binaire, respectivement. Les frontières

entre deux catégories de nœuds sont déterminés par la position des éléments non nuls

de la matrice binaire. Pour chaque nœud de variable, un sous-graphe avec plusieurs

étages, comme illustré dans la figure A.1, peut être généré en traversant tous les

nœuds connectés.

Le sous-graphe comprend souvent des chemins fermés, appelés les cycles. La

longueur du cycle est mesurée avec le nombre d’arêtes, qui ne peut prendre que des

valeurs paires supérieures ou égal à 4.

Parmi tous les sous-graphes, la longueur de cycle le plus court est définie comme

la circonférence du graphe biparti. Empiriquement, quand le nombre d’arêtes aug-

mente, les cycles plus courts sont inévitables, et la circonférence devient immédiate-

ment plus petite. On note que, dans un sous-graphe comme sur la figure A.1, si le

nœud de variable de racine est en outre relié à un nœud de mesure inclus dans le

f -ième étage du graphe, où f > 1, les nouveaux cycles générés auront la longueur

2f . Cette propriété nous permet de proposer un algorithme glouton pour construire

le graphe biparti souhaité.

L’algorithme de construction proposé peut être simplement décrit avec un pro-

cessus itératif. Dans chaque itération, chaque nœud de variable est autorisé à se
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connecter tout au plus à un nœud de mesure. Le nœud de mesure est choisi de

manière aléatoire dans le 3-ième étage du sous-graphe courant pour générer les cy-

cles de longueur 6, si cet étage peut être réalisé par le sous-graphe courant. Sinon,

si le sous-graphe ne contient pas tous les nœuds de mesure, un nœud de mesure

en dehors du sous-graphe sera choisi au hasard pour éviter de générer des cycles

de longueur 4. Cette procédure est répétée jusqu’à ce qu’aucun nœuds de variables

n’aie des nœuds de mesure à mettre à jour.

A.1.4 Expérimentations

Dans la simulation, la matrice binaire optimale construite montre en effet une

meilleure performance que les autres matrices binaires populaires. En outre, elle

dépasse même les matrices aléatoires gaussiennes dans la plupart des cas.

A.2 Projection aléatoire

A.2.1 Présentation du problème

Similaire à l’acquisition parcimonieuse, la projection aléatoire est également

une procédure simple de projection linéaire à travers une matrice sous-déterminée.

Plutôt que pour une tâche de récupération de données, cette technique est seulement

utilisée pour préserver les distances par paires de données de grande dimension

dans un espace de faible dimension, de telle sorte qu’une tâche de classification

puisse être menée. En fait, cette technique et ses applications connexes ont été

largement étudiées dans la dernière décennie. Il est connu que certaines matrices

creuses aléatoires {0,±1} peuvent préserver la distance avec une forte probabilité.

Dans la pratique, ce serait mieux si l’on pouvait minimiser la densité de la matrice

de projection aléatoire sans introduire une perte de performance sur la tâche de

classification. Malheureusement, la performance de préservation de la distance tend

à se dégrader avec une diminution de la densité de la matrice ce qui apparaît

défavorable pour la classification. Toutefois, il convient de noter que la tâche de

classification préfère maximiser la distance entre les différentes classes plutôt que
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de préserver leurs distances. A partir de ce principe, la thèse présente ici la matrice

de projection aléatoire la plus creuse, qui possède une performance en sélection de

caractéristiques meilleure que les autres matrices aléatoires plus denses.

A.2.2 Fondamentaux

Pour faciliter la lecture, nous présentons d’abord quelques notations de base. Une

matrice aléatoire est désignées par R ∈ R
k×d, k < d. rij est utilisé pour représenter

l’élément de R dans la i-ème ligne et j-ème colonne. r ∈ R
d indique le vecteur ligne

de R. Compte tenu que cette étude se concentre principalement sur la classification

binaire, nous définissons deux classes différentes d’échantillons avec v ∈ R
d et w ∈

R
d.

Afin de préserver la distance par paires, la matrice de projection aléatoire doit

satisfaire le lemme Johnson-Lindenstrauss (JL), qui est décrit comme ci-dessous.

Theorem A.2.1. [114] Prenons une matrice aléatoire R ∈ R
k×d, à chaque

entrée rij choisie indépendemment d’une distribution symétrique par rapport au point

d’origine avec E(r2
ij) = 1. Pour tous les vecteurs définis v ∈ R

d, faire v′ = 1√
k
Rv.

– Supposons B = E(r4
ij) < ∞. Alors pour tout ǫ > 0,

Pr(‖v′‖2 ≤ (1 − ǫ)‖v‖2) ≤ e− (ǫ2
−ǫ3)k

2(B+1) (A.4)

– Supposons ∃L > 0 pour tout nombre entier m > 0, E(r2m
ij ) ≤ (2m)!

2mm!
L2m. Alors

pour tout ǫ > 0,

Pr(‖v′‖2 ≥ (1 + ǫ)L2‖v‖2) ≤ ((1 + ǫ)e−ǫ)k/2

≤ e−(ǫ2−ǫ3) k
4

(A.5)

A partir du lemme ci-dessus, il peut être dérivé que les éléments d’une matrice

de projection aléatoire devraient avoir une moyenne de E(rij) = 0 et une variance de

E(r2
ij) = 1. Cette condition sera utilisée dans la construction suivante des matrices.
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A.2.3 Méthodes

Du point de vue de la sélection de caractéristiques, la projection aléatoire est

prévue pour maximiser la différence entre deux échantillons arbitraires v et w de

différentes classes. En ce sens, la recherche de la bonne projection aléatoire est équiv-

alente à la recherche du vecteur ligne r̂ tel que

r̂ = argmax
r

{|〈r, z〉|}, (A.6)

où z = v − w. Dans cette thèse, il est démontré que le vecteur r̂ désiré sera obtenu

si une seule paire d’éléments discriminatoires entre v et w est échantillonnée par r̂.

Supposons que z suive la distribution :

zi =











x avec une probabilité de 1/2

−x avec une probabilité de 1/2
(A.7)

où x ∈ N(µ, σ2), µ est un nombre positif, et Pr(x > 0) = 1 − ǫ, ǫ = Φ(−µ
σ
) est un

petit nombre positif. Nous pouvons ensuite dériver trois lemmes comme suit :

Theorem A.2.2. Soit r = [r1, ..., rd] un vecteur aléatoire ayant 1 ≤ s ≤ d éléments

non nuls prenant les valeurs ±
√

d/s de manière équiprobable, et z = [z1, ..., zd] avec

des éléments égaux à ±µ de manière équiprobable, où µ est une constante positive.

En notant f(r, z) = |〈r, z〉|, nous obtenons trois résultats concernant les valeurs

attendues de f(ri, z) :

1) E(f) = 2µ
√

d
s

1
2s ⌈ s

2
⌉C⌈ s

2
⌉

s ;

2) E(f)|s=1 = µ
√
d > E(f)|s>1 ;

3) lim
s→∞

1√
d
E(f) → µ

√

2
π
.

Theorem A.2.3. Soit r = [r1, ..., rd] aléatoire ayant 1 ≤ s ≤ d éléments non

nuls prenant les valeurs ±
√

d/s de manière équiprobable, et z = [z1, ..., zd] avec des

éléments distribués selon la formule (??). En notant f(r, z) = |〈r, z〉|, on obtient

que :

E(f)|s=1 > E(f)|s>1
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si (9
8
)

3
2 [
√

2
π

+ (1 +
√

3
4

) 2
π
(µ
σ
)−1] + 2Φ(−µ

σ
) ≤ 1.

Theorem A.2.4. Soit r = [r1, ..., rd] ayant ses éléments i.i.d suivant une N(0, 1),

et z = [z1, ..., zd] avec des éléments égaux à ±µ de manière équiprobable, où µ est

une constante positive. En notant f(r, z) = |〈r, z〉|, on obtient E(f) = µ
√

2d
π

.

Deux conclusions importantes sont alors obtenues :

– Selon Théorèmes A.2.2 and A.2.3, le vecteur ligne r̂ de la formule (A.6) devrait

échantillonner un seul élément caractéristique.

– Selon Théorème A.2.4, le vecteur désiré décrit ci-dessus sera plus efficace que

des matrices aléatoires gaussiennes.

En pratique, la matrice aléatoire satisfaisant à la condition d’échantillonnage

désirée ci-dessus est difficile à satisfaire, car le nombre et l’emplacement des éléments

caractéristiques sont généralement inconnus. Mais nous pouvons proposer un type

de matrices avec un seul élément non nul par colonne, qui satisfait à la condition

ci-dessus avec une forte probabilité. La matrice aléatoire proposée présente deux

avantages évidents :

– Elle est jusqu’ici la matrice de projection aléatoire la plus creuse.

– Elle surclasse les autres matrices plus denses, si la dimension de projection

n’est pas beaucoup plus petite que le nombre d’éléments caractéristiques.

A.2.4 Expérimentation

L’avantage de la performance de la matrice proposée est confirmé par de nom-

breuses expériences de classification sur des images, des textes et des ADN.

A.3 Représentation parcimonieuse

A.3.1 Présentation du problème

La représentation parcimonieuse assure qu’un vecteur d’intérêt peut être représenté

ou approché par une combinaison linéaire de quelques colonnes d’une matrice sous-

déterminée (souvent appelée dictionnaire) [11] [12]. Mathématiquement, c’est un
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problème d’inversion matricielle avec contrainte de parcimonie, et donc il partage les

mêmes solutions algorithmiques parcimonieuses qu’avec l’acquisition parcimonieuse.

Cependant à la différence de l’acquisition parcimonieuse, l’exacte solution parci-

monieuse n’existe généralement pas en représentation parcimonieuse. Cela car la

relation linéaire parcimonieuse entre le vecteur d’intérêt et le dictionnaire ne peut

habituellement être assurée. Dans le domaine de l’apprentissage automatique et de

la reconnaissance des formes, la représentation parcimonieuse est souvent appliquée

pour mesurer la similarité entre le vecteur d’intérêt et le dictionnaire, ou pour iden-

tifier les éléments du dictionnaire qui sont semblables au vecteur d’intérêt. Ainsi la

conception du dictionnaire n’a pas de critère uniforme, et dépend souvent de la spé-

cifiité de l’application. Une application intéressante correspond au suivi d’objet, qui

a récemment été intensivement étudié. Il faut remarquer que les travaux actuels se

concentrent principalement sur l’amélioration des performances, alors que la charge

de calcul introduite par la représentation parcimonieuse reste ignorée. Par contre,

dans cette thèse, l’application de la représentation parcimonieuse au suivi d’objet

sera explorée.

A.3.2 Fondamentaux

L’application de la représentation parcimonieuse au suivi d’objet est brièvement

présentée dans la suite. Soit y ∈ R
m×1 le vecteur qui désigne un objet d’intérêt, et

la matrice D = [DG1 , DG2 , . . . , DGN
] ∈ R

m×n qui est un dictionnaire constitué de N

classes d’échantillons, où la i-ième sous-matrice DGi
= [Di1 , Di2 , . . . , Dini

] comprend

ni échantillons avec
∑N
i=1 ni = n. Par la suite on suppose idéalement que y peut être

représenté approximativement par une combinaison linéaire de plusieurs éléments

de D, c’est-à-dire

y = Dβ + ǫ (A.8)

Où β est supposé détenir au plus k ≪ n termes positifs non nuls ; et ǫ est l’erreur

tolérée. Ensuite, le vecteur caractéristique y est considéré comme proche du sous-
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espace des éléments choisis. En d’autres termes, il peut être identifié comme la classe

î = argmax
i

{δi(β)|1 ≤ i ≤ N}, (A.9)

Où δi(β) est la fonction qui regroup les éléments de β correspondant à DGi
.

A.3.3 Méthodes

Figure A.2 – L’objet labélisé de l’image précédente peut être rapproché parci-
monieusement par un dictionnaire consistant de parcelles locales se recouvrant dans
certaines régions de l’image actuelle. La parcelle locale correspondant au plus grand
coefficient est sujette à indiquer la position estimée de l’objet.

Dans cette thèse, nous proposons un schéma simple mais efficace de suivi qui né-

cessite de procéder à la représentation parcimonieuse seulement deux fois, si la carac-

téristique d’objet est suffisamment robuste. Le schéma proposé du suivi se compose

de deux étapes de représentation parcimonieuse. Dans la première étape, le vecteur

d’intérêt y est l’échantillon de l’objet connu détecté dans l’image précédente, et le

dictionnaire D contient des candidats de l’échantillon dans l’image actuelle. Ensuite,

l’échantillon candidat avec le plus large coefficient est choisi comme étant similaire à

l’objet d’intérêt, qui est représenté dans Figure A.2. Dans la deuxième étape, l’échan-

tillon sélectionné est vérifié en plus avec la représentation parcimonieuse, dans laque-

lle y représente l’échantillon sélectionné, et D comprend deux classes des échantillons

marqués, des échantillons d’objet nommé, et des échantillons de référence. L’échan-

tillon sélectionné est considéré comme l’objet suivi, si les coefficients parcimonieux

se concentrent sur les échantillons d’objets.



A.3. Représentation parcimonieuse 135

A.3.4 Expérimentations

La méthode proposée est comparée avec d’autres méthodes plus complexes basées

sur la représentation parcimonieuse. Le résultat montre une performance comparable

ou supérieure aux autres approches.
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Résumé

Cette thèse étudie et apporte des améliorations significatives
sur trois techniques répandues en réduction de dimension :
l'acquisition parcimonieuse (ou l'échantillonnage parcimonieux),
la projection aléatoire et la représentation parcimonieuse.

En acquisition parcimonieuse, la construction d’une matrice de
réduction possédant à la fois de bonnes performances et une
structure matérielle adéquate reste un défi de taille. Ici, nous
proposons explicitement la matrice binaire optimale, avec
éléments zéro-un, en recherchant la meilleure propriété
d’isométrie restreinte (RIP). Dans la pratique, un algorithme
glouton efficace est successivement développé pour construire
la matrice binaire optimale avec une taille arbitraire. Par ailleurs,
nous étudions également un autre problème intéressant pour
l'acquisition parcimonieuse, c'est celui de la performance des
matrices d'acquisition parcimonieuse avec des taux de
compression élevés. Pour la première fois, la limite inférieure
de la performance des matrices aléatoires de Bernoulli pour des
taux de compression croissants est observée et estimée.

La projection aléatoire s'utilise principalement en classification
mais la construction de la matrice de projection aléatoire
s'avère également critique en termes de performance et de
complexité. Cette thèse présente la matrice de projection
aléatoire, de loin, la plus éparse. Celle-ci est démontrée
présenter la meilleure performance en sélection de
caractéristiques, comparativement à d’autres matrices
aléatoires plus denses. Ce résultat théorique est confirmé par
de nombreuses expériences.

Comme nouvelle technique pour la sélection de caractéristiques
ou d’échantillons, la représentation parcimonieuse a récemment
été largement appliquée dans le domaine du traitement d'image.
Dans cette thèse, nous nous concentrons principalement sur
ses applications de suivi d'objets dans une séquence d'images.
Pour réduire la charge de calcul liée à la représentation
parcimonieuse, un système simple mais efficace est proposé
pour le suivi d'un objet unique. Par la suite, nous explorons le
potentiel de cette représentation pour le suivi d'objets multiples.

Mots-clés: réduction de dimension, acquisition parcimonieuse,
projection aléatoire, représentation parcimonieuse.

N° d’ordre : 14ISAR21 / D14-21

Abstract

This thesis studies three popular dimension reduction
techniques: compressed sensing, random projection and sparse
representation, and brings significant improvements on these
techniques.

In compressed sensing, the construction of sensing matrix with
both good performance and hardware-friendly structure has
been a significant challenge. In this thesis, we explicitly propose
the optimal zero-one binary matrix by searching the best
Restricted Isometry Property. In practice, an efficient greedy
algorithm is successively developed to construct the optimal
binary matrix with arbitrary size. Moreover, we also study
another interesting problem for compressed sensing, that is the
performance of sensing matrices with high compression rates.
For the first time, the performance floor of random Bernoulli
matrices over increasing compression rates is observed and
effectively estimated.

Random projection is mainly used in the task of classification,
for which the construction of random projection matrix is also
critical in terms of both performance and complexity. This thesis
presents so far the most sparse random projection matrix,
which is proved holding better feature selection performance
than other more dense random matrices. The theoretical result
is confirmed with extensive experiments.

As a novel technique for feature or sample selection, sparse
representation has recently been widely applied in the area of
image processing. In this thesis, we mainly focus our attention
on its applications to visual object tracking. To reduce the
computation load related to sparse representation, a simple but
efficient scheme is proposed for the tracking of single object.
Subsequently, the potential of sparse representation to multi-
object tracking is investigated.

Keywords: dimension reduction, compressed sensing, random
projection, sparse representation.
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