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0.1 Introduction en français

0.1.1 Résumé

Les variétés symplectiques irréductibles sont dé�nies comme des variétés käh-
lériennes holomorphiquement symplectiques compactes avec un groupe fonda-
mental trivial et telles que la structure symplectique soit unique à scalaire mul-
tiplicatif près.

D'après le théorème de décomposition de Bogomolov [9], les variétés sym-
plectiques irréductibles jouent (avec les variétés de Calabi-Yau et les tores com-
plexes) un rôle central dans la classi�cation des variétés kählériennes avec une
première classe de Chern de torsion (voir la Section 1.1.2).

Très peu de classes de déformations de variétés symplectiques irréductibles
sont connues (voir la Section 1.1.5). Etendre notre très courte liste de classes
de déformations de variétés symplectiques irréductibles est un problème très
di�cile. On peut obtenir bien plus de classes de déformations en étendant notre
champ d'étude aux variétés symplectiques irréductibles pouvant présenter des
singularités (voir la Section 1.2). Ces variétés devraient apparaître comme des
facteurs dans la conjecture de décomposition généralisée de Bogomolov (voir
[28] et [45]).

Les variétés symplectiques irréductibles singulières sont des objets d'étude
naturels. Toutes les classes de déformations de variétés irréductibles symplec-
tiques lisses connues proviennent d'espaces de modules de faisceaux sur des
surfaces K3 ou abéliennes. Comme c'est prouvé dans [24], [56], [70], si un tel
espace de modules M est lisse, alors c'est une déformation d'un des exemples
de Beauville (voir [7]) : l'espace de Hilbert de points sur une surfaces K3 ou la
variété de Kummer généralisée d'une surface abélienne. Dans le cas où M est
singulier, il y a trois alternatives. Le premier cas est le cas où les singularités
de M peuvent être éliminées en changeant la polarisation; alors M est bira-
tionnelle à un des exemples de Beauville. La seconde alternative correspond au
cas où il est impossible d'éliminer les singularités en changeant la polarisation,
mais M admet une résolution symplectique. Cela arrive si et seulement si M
est l'un des deux exemples d'O'Grady (voir [53], [54], [30], [29], [32]). Et la
troisième alternative fournit de nombreux espaces de modules singuliers pour
lesquels les singularités ne peuvent pas être éliminées, en préservant la structure
symplectique, ni par déformation, ni par résolution de singularités.

Les premiers exemples de variétés symplectiques irréductibles singulières ap-
parurent, en même temps que les exemples lisses, dans [17] comme des quotients
de produits de deux surfaces K3 ou de tores complexes compacts de dimension
4. Dans [36], Markushevich et Tikhomirov construisirent un exemple d'une var-
iété symplectique irréductible avec une �bration lagrangienne de Prym comme
une composante connexe du lieu �xe d'une involution symplectique sur un es-
pace de modules de faisceaux semi-stables sur une surface K3 (voir la Section
1.2.3). Avec la même méthode deux autres exemples furent construits. Un par
Arbarello, Saccà et Ferretti [1] et l'autre par Matteini [39].

Un outil important pour étudier les variétés symplectiques irréductibles est
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la forme de Beauville�Bogomolov (voir la Section 1.1.3). Ainsi, en suivant
l'objectif de développer la théorie des variétés symplectiques irréductibles sin-
gulières, la question du calcul de la forme de Beauville�Bogomolov de la variété
de Markushevich�Tikhomirov apparut assez naturellement. Dans le cas lisse,
la forme de Beauville�Bogomolov fut calculée dans [7] pour les exemples de
Beauville et dans [62] et [63] pour les variétés d'O'Grady (voir la Section 1.1.5).

Dans notre démarche pour calculer la forme de Beauville�Bogomolov de la
variété de Markushevich�Tikhomirov, la principale di�culté rencontrée fut de
déterminer la cohomologie entière de variétés quotients. Pour cette raison, une
part importante de la thèse (Chapitre 3) est consacrée à l'élaboration d'outils
pour le calcul de la cohomologie entière de variétés quotients.

Notre étude de la cohomologie entière des variétés quotients nous a permis,
en particulier, de répondre à la question de départ. Mais aussi de calculer le
réseau de Beauville�Bogomolov et du cup produit pour d'autres exemples de
variétés quotients de dimension 4 et de surfaces quotients.

Un autre problème résolu dans cette thèse concerne la �bration lagrangienne
de la variété de Markushevich�Tikhomirov obtenue comme la variété de Prym
relative compacti�ée de certaines familles de courbes munies d'une involution.
L'espace total de cette variété de Prym relative compacti�ée est holomorphique-
ment symplectique et l'application de structure est une �bration lagrangienne
avec une surface de Prym de polarisation (1,2) comme �bre générique. Les var-
iétés symplectiques irréductibles munies d'une �bration lagrangienne sont d'un
intérêt particulier parce qu'elles généralisent d'une part les surfaces K3 munies
d'un pinceau elliptique et d'autre part les espaces de phases de systèmes com-
plètement algébriquement intégrables. Le problème de décrire le dual d'une
�bration lagrangienne est étudié dans [64], où un lien intéressant avec la trans-
formée de Fourier�Mukai tordue est découvert. Une autre raison d'examiner
le dual d'une �bration lagrangienne est que, d'après Strominger�Yau�Zaslow,
la symétrie miroir n'est rien d'autre que la dualité de �brations lagrangiennes
particulières sur des espaces de Calabi�Yau. La dualité étant bien dé�nie seule-
ment sur les �bres non-singulières, il est important d'obtenir des exemples de
�brations lagrangiennes duales compacti�ables. Dans notre cas, nous présentons
une description du dual de la �bration lagrangienne tel que sa compacti�cation
soit une variété symplectique irréductible singulière du même type que celle de
départ.

0.1.2 Vue d'ensemble des résultats de la thèse

Notre but est de déterminer la cohomologie entière de X/G où X est une variété
complexe compacte et G est un groupe d'automorphismes d'ordre premier. Un
outil fondamental pour étudier ce problème est donné par la proposition suivante
(voir [65]).

Proposition 0.1.1. Soit G un groupe �ni d'ordre d agissant sur une variété
X tel que l'application quotient π : X → X/G soit un revêtement de degré d
rami�é. Alors il existe un morphisme naturel π∗ : H∗(X,Z)→ H∗(X/G,Z) tel
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que

π∗ ◦ π∗ = d idH∗(X/G,Z), π∗ ◦ π∗ =
∑
g∈G

g∗.

SiX est une variété complexe compacte etG est un groupe d'automorphismes
d'ordre premier p, nous verrons que cette proposition induit la suite exacte

0 // π∗(Hk(X,Z)) // Hk(X/G,Z)/ tors // (Z /pZ)αk // 0,

où π : X → X/G est l'application quotient et αk est un entier non-négatif.
Il n'y a pas de méthode générale pour calculer αk. Au chapitre 3, nous allons

développer des critères d'annulation de αk. Par la suite, la dé�nition suivante
va jouer le rôle central.

Dé�nition 0.1.2. Soient X une variété complexe compacte de dimension n,
G = 〈ϕ〉 un groupe d'automorphismes d'ordre premier p et 0 ≤ k ≤ 2n. On
suppose que Hk(X,Z) est sans torsion.

Si l'application π∗ : Hk(X,Z) → Hk(X/G,Z)/ tors est surjective, on dira
que (X,G) est Hk-normal.

Nous donnerons tout d'abord des résultats généraux sur cette notion qui ex-
pliqueront comment obtenir la Hk-normalité à partir de la Hkt-normalité (avec
k et t entiers), comment obtenir le réseau du cup-produit de Hn(X/G,Z) quand
(X,G) est Hn-normal et quand cette propriété est invariante par un biméro-
morphisme. Nous prouverons aussi des propriétés simples qui s'appliquent dans
de nombreux cas. Par exemple la Proposition 3.3.13 :

Proposition 0.1.3. Soient X une variété complexe compacte de dimension n
et G un groupe d'automorphismes d'ordre premier p agissant sur X. On suppose
que H∗(X,Z) est sans torsion et 2 ≤ p ≤ 19. Soit 0 ≤ k ≤ 2n.

Si akG(X) = rkHk(X,Z)G, alors (X,G) est Hk-normal.

L'entier akG(X) est dé�ni par l'isomorphisme de la Dé�nition 5.5 de [11] :

Hk(X,Z)

Hk(X,Z)G ⊕ SkG(X)
= (Z /pZ)

akG(X)
,

où SkG(X) est un sous-Z-module supplémentaire naturel de Hk(X,Z)G; voir la
Section 2.2 pour la dé�nition précise.

Après ces énoncés généraux, on donnera des résultats plus précis dans le cas
où l'action de G a un bon comportement local. D'après le Lemme 1 de Cartan
dans [14], en chaque point �xe de G, on peut localement linéariser l'action de G.
Ainsi en chaque point �xe x ∈ X, l'action de G sur X est localement équivalente
à l'action de G = 〈g〉 sur Cn via

g = diag(ξk1
p , . . . , ξ

kn
p ),

avec ξp une racine p-ième de l'unité. Sans perdre en généralité, on peut supposer
que k1 ≤ · · · ≤ kn ≤ p − 1. Quand l'action locale de G en un point x est de la
forme

g = diag(1, . . . , 1, ξαp , . . . , ξ
α
p ),



CONTENTS ix

α ∈ {1, . . . , p− 1}, on dit que x est un point de type 1. Nous verrons que lorsque
tous les points de FixG sont de type 1 et que le lieu �xe deG n'est pas trop grand
(codim FixG ≥ dimX

2 ), la Hn-normalité est véri�ée si une certaine équation en
lien avec l'action de G est véri�ée. Quand FixG n'est pas trop grand, on dira
que FixG est négligeable ou presque négligeable (voir la Dé�nition 3.5.1 pour
l'énoncé exact).

L'idée principale est de travailler sur l'éclatement X̃ deX en le lieu �xe de G.
Soit G̃ l'extension naturelle de G à X̃. Quand tous les points �xes sont de type
1, le quotient M̃ = X̃/G̃ est lisse. On pose aussi U = X \ FixG. On utilisera

l'unimodularité du réseau Hn(M̃,Z) pour établir le lien entre la cohomologie de

U , M̃ , FixG et la Hn-normalité de (X,G). Le théorème principal est le suivant:

Théorème 0.1.4. Soit G = 〈ϕ〉 un groupe d'ordre premier p agissant par au-
tomorphismes sur une variété kählérienne X de dimension n. On suppose :

i) H∗(X,Z) est sans torsion,

ii) FixG est négligeable ou presque négligeable,

iii) tous les points de FixG sont de type 1.

Alors :

1) logp(discrπ∗(H
n(X,Z)))− h2∗+ε(FixG,Z) est divisible par 2,

2) Les inégalités suivantes sont véri�ées:

logp(discrπ∗(H
n(X,Z))) + 2 rktorHn(U,Z)

≥ h2∗+ε(FixG,Z) + 2 rktorHn(M̃,Z)

≥ 2 rktorHn(U,Z).

3) Si de plus

logp(discrπ∗(H
n(X,Z))) + 2 rktorHn(U,Z)

= h2∗+ε(FixG,Z) + 2 rktorHn(M̃,Z),

alors (X,G) est Hn-normal.

Ici rktorHn(U,Z) et rktorHn(M̃,Z) sont les rangs de la partie de torsion
des groupes de cohomologie, le rang étant ici dé�ni comme le plus petit nombre
de générateurs. On dé�nit

h2∗+ε(FixG,Z) =

dim FixG∑
k=0

dimH2k(FixG,Z),

quand n est pair et

h2∗+ε(FixG,Z) =

dim FixG−1∑
k=0

dimH2k+1(FixG,Z),
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quand n est impair.
Dans le cas où 2 ≤ p ≤ 19, on calculera logp(discrπ∗(H

n(X,Z))) et rktorHn

(U,Z) à l'aide d'invariants introduits par Boissière, Nieper-Wisskirchen et Sarti
dans [11]. Comme H∗(X,Z) est sans torsion, on a Hk(X,Fp) = Hk(X,Z)⊗ Fp

pour 0 ≤ k ≤ 2 dimX. Boissière, Nieper-Wisskirchen and Sarti dé�nissent
l'entier lkq (X) comme le nombre de blocs de Jordan Nq de taille q dans la dé-

composition de Jordan du G-module Hk(X,Fp), de sorte que Hk(X,Fp) '
⊕pq=1N

⊕lkq (X)
q .

Nous déduirons de nombreux corollaires du théorème précédent, par exemple
le corollaire suivant (Corollaire 3.5.17) :

Corollaire 0.1.5. Soit G = 〈ϕ〉 un groupe d'ordre premier 3 ≤ p ≤ 19 agis-
sant par automorphismes sur une variété kählérienne X de dimension 2n. On
suppose :

i) H∗(X,Z) est sans torsion,

ii) FixG est négligeable ou presque négligeable,

iii) tous les points de FixG sont de type 1,

iv) l2kp−1(X) = 0 pour tout 1 ≤ k ≤ n, et

v) l2k+1
1 (X) = 0 pour tout 0 ≤ k ≤ n− 1, quand n > 1.

Alors :

1) l2n1 (X)− h2∗(FixG,Z) est divisible par 2, et

2) on a :

l2n1 (X) + 2

[
n−1∑
i=0

l2i+1
p−1 (X) +

n−1∑
i=0

l2i1 (X)

]
≥ h2∗(FixG,Z) + 2 rktorH2n(M̃,Z)

≥ 2

[
n−1∑
i=0

l2i+1
p−1 (X) +

n−1∑
i=0

l2i1 (X)

]
.

3) Si de plus

l2n1 (X) + 2

[
n−1∑
i=0

l2i+1
p−1 (X) +

n−1∑
i=0

l2i1 (X)

]
= h2∗(FixG,Z) + 2 rktorH2n(M̃,Z),

alors (X,G) est H2n-normal.
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Après l'étude des actions dont les points �xes sont de type 1, on sera en
mesure de traiter des actions locales plus générales dans le cas p = 3. Nous
verrons que l'on peut ramener ce problème au cas où les points �xes sont de
type 1 en éclatant X en les points �xes d'un autre type, qui seront appelés
points de type 2.

Comme on peut voir, la notion de Hk-normalité peut être généralisée dans
de nombreuses directions. Si Hk(X,Z) a de la torsion, on pourrait travailler
avec Hk(X,Z)/ tors. On pourrait aussi généraliser la notion quand X n'est pas
lisse ou quand p n'est pas premier. Le théorème 0.3.4 peut aussi être généralisé
à des actions locales de G plus générales en utilisant des éclatements toriques
dans la preuve au lieu d'éclatements classiques. Par conséquent, il y a de nom-
breuses pistes pour généraliser notre travail.

Nous commençons par illustrer nos résultats sur la H∗-normalité en calcu-
lant le réseau du cup-produit d'une surface K3 quotientée par une involution
symplectique et par deux automorphismes d'ordre 3, l'un symplectique et l'autre
non-symplectique. Dans le tableau qui suit, on note ces quotients respectivement
par Y2, Y3 et Z3. On calcule aussi le réseau du cup-produit d'un tore complexe
de dimension 2 quotienté par − id; on note ce quotient A. Puis, on continue avec
l'application principale à nos outils, calculer le réseau de Beauville�Bogomolov
de variétés symplectiques irréductibles de type K3[2] quotientées par certains
automorphismes symplectiques. Le premier exemple est le quotient par un au-
tomorphisme symplectique d'ordre 3 numériquement standard (voir la Section
1.3.2 pour la dé�nition de 'numériquement standard'). On fournit aussi la forme
de Beauville�Bogomolov de résolutions partielles de variétés symplectiques irré-
ductibles de type K3[2] quotientées par des involutions symplectiques. On note
ces deux variétés symplectiques irréductibles singulières de dimension 4 respec-
tivement par M3 et M ′. On résume les résultats de nos calculs dans le tableau
suivant :

X/G H2(X/G,Z)

Y 2 E8(−1)⊕ U(2)3

Y 3 U(3)⊕ U2 ⊕A2
2

Z3 U ⊕ E6

A U(2)
M3 U(3)⊕ U2 ⊕A2

2 ⊕ (−6)
M ′ U(2)3 ⊕ E8(−1)⊕ (−2)2.

Ici H2(X/G,Z) est muni du cup-produit pour les surfaces et de la forme de
Beauville�Bogomolov pour les variétés de dimension 4. Voir la Section 4.7 pour
plus de détails.

Le dernier chapitre est consacré aux variétés de Markushevich�Tikhomirov.
La construction de la variété de Prym relative compacti�ée P commence avec
une paire de quartiques planes totalement tangentes B0 et ∆0. La première est
utilisée pour construire une surface X de del Pezzo de degré 2 et la seconde
dé�nit une surface K3, revêtement double de X. Par la suite, la famille de
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courbes désirées est un système linéaire non-complet de courbes sur S, invari-
antes sous l'action de l'involution de Galois du revêtement double S → X et P
est la variété de Prym relative compacti�ée associée. En échangeant les rôles
de B0, ∆0, on obtient une autre surface K3 S̃ et une autre variété de Prym
correspondante P̃.

On va prouver que les �brations lagrangiennes sur P et P̃ sont duales l'une
de l'autre. De plus, on va prouver, pour S générique, que non seulement S 6'
S̃ mais aussi que les catégories dérivées de S̃, S ne sont pas équivalentes et
que S̃[2] 6' S[2]. Cela nous permettra de conclure que les variétés de Prym
compacti�ées P̃, P ne sont pas isomorphes.

De plus, P est reliée à M ′ par un �op de Mukai, donc on obtient aussi le
réseau de Beauville�Bogomolov de ces variétés de Prym compacti�ées à partir
de celui de M ′.

0.1.3 Structure de la thèse

Le Chapitre 1 donne une vue d'ensemble de résultats connus sur les variétés
symplectiques irréductibles. Dans la Section 1.1, on rappelle les résultats princi-
paux sur l'application des périodes pour les variétés symplectiques irréductibles.
On rappelle le théorème de Torelli local de Beauville. Puis, on rappelle les ré-
sultats de Huybrechts et Verbitsky sur les points non-séparés de l'espace de
modules et sur la surjectivité de l'application des périodes (Théorème de Torelli
global). On fait aussi la liste des réseaux de Beauville�Bogomolov pour les
variétés symplectiques irréductibles connues.

Ensuite, on introduit les variétés symplectiques irréductibles singulières dans
la Section 1.2. En particulier, on rappelle la construction de Markushevich et
Tikhomirov.

Dans la Section 1.3.2, on cite des résultats de Mongardi sur les automor-
phismes des variétés de type K3[2]. Dans la Section 1.3.3, on fait des rappels
sur la cohomologie du schéma de Hilbert de deux points sur une surface K3
en suivant des résultats de Markman, Verbitsky, Boissière�Nieper-Wisskirchen�
Sarti et Qin�Wang.
Le Chapitre 2 contient di�érents résultats sur les réseaux, la théorie de Smith
et la cohomologie équivariante, nécessaires pour calculer la cohomologie entière
de variétés quotients. Nous rappelons aussi des développements de Boissière,
Nieper-Wisskirchen et Sarti [11] qui apportent des outils très utiles pour notre
étude.
Dans le Chapitre 3, on considère une variété complexe X et un groupe d'auto-
morphismes G d'ordre premier p agissant sur X. Ce chapitre contient des résul-
tats techniques sur le calcul de la cohomologie entière de X/G. Dans la Section
3.2.2, on calcule la cohomologie entière d'un quotient quand l'action du groupe
est libre. Puis, dans la Section 3.3, on introduit la H∗-normalité et on énonce
plusieurs résultats généraux sur cette notion. Dans la Section 3.5, on donne des
résultats plus précis dans le cas où les points �xes sont de type 1. Et �nalement,
la Section 3.6 est dédiée au cas p = 3.
Le Chapitre 4 donne plusieurs applications aux résultats du Chapitre 3. On
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calcule la forme du cup-produit et de Beauville�Bogomolov de Y2, Y3, Z3, A,
M3 et M ′.

Pour les cinq premières variétés, le calcul découle directement des résultats
du Chapitre 3. Le cas de M ′ est plus compliqué. Soient S une surface K3 et i
une involution symplectique sur S. On peut montrer facilement que (S[2], i[2])
est H4 et H2-normal. Mais cela n'est pas su�sant pour calculer la forme de
Beauville�Bogomolov de la variété M ′, résolution partielle de S[2]/i[2]. En fait,
la plus grande partie de ce chapitre est consacrée au cas de M ′, pour lequel on
est contraint de décrire explicitement l'action de i[2] dans une base particulière
de H∗(S[2],Z), obtenue à l'aide de la représentation de Nakajima de l'algèbre
d'Heisenberg sur la cohomologie des variétés S[n].
Le Chapitre 5 est consacré aux variétés de Markushevich�Tikhomirov. On
donne le dual de la �bration lagrangienne dans la Section 5.1. Dans la Section
5.2 et la Section 5.3, on prouve que S 6' S̃ pour S générique, mais aussi que
les catégories dérivées de S̃, S ne sont pas équivalentes et que S̃[2] 6' S[2]. Pour
conclure, on donne la forme de Beauville�Bogomolov de ces variétés.
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Je remercie mes parents pour m'avoir porté en mathématiques quand j'étais
petit et m'avoir donné l'ambition de réussir. Je remercie Claudia d'avoir été
là pour moi, ce qui compte énormément. Et en�n, je remercie tous mes amis
auxquels je tiens beaucoup, ici à Lille.

0.3 Introduction in English

0.3.1 Abstract

Irreducible symplectic varieties are de�ned as compact holomorphically symplec-
tic Kähler varieties with trivial fundamental group, whose symplectic structure
is unique up to proportionality.

By the Bogomolov decomposition theorem [9], irreducible symplectic vari-
eties play (together with Calabi�Yau manifolds and complex tori) a central role
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in the classi�cation of compact Kähler manifolds with torsion c1 (see Section
1.1.2).

Very few deformation classes of irreducible symplectic varieties are known
(see Section 1.1.5). The problem of extending the very short list of known
deformation classes of irreducible symplectic varieties is very hard. One can
get many more deformation classes by extending the scope to possibly singular
irreducible symplectic varieties (see Section 1.2). Such varieties should appear
as factors in the generalized Bogomolov decomposition conjecture (see [28] and
[45]).

The singular irreducible symplectic varieties are natural objects of study. All
the known deformation classes of irreducible symplectic manifolds come from
moduli space of sheaves on K3 or abelian surfaces. As it is shown in [24], [56],
[70], if such a moduli spaceM is smooth, then it is a deformation of one of the
Beauville's examples (see [7]): the Hilbert scheme of points on a K3 surface or
the generalized Kummer variety of an abelian surface. In the case when M is
singular, there are three alternatives. The �rst is the case when the singularities
of M can be removed by changing the polarization; then M is birational to a
Beauville example. The second alternative is when it is impossible to remove the
singularities by changing the polarization, butM admits a symplectic desingu-
larization. This happens if and only ifM is one of the two O'Grady examples
(see [53], [54], [30], [29], [32]). And the third alternative provides many singular
modular spaces that cannot been smoothed out to nonsingular holomorphically
symplectic varieties, neither by deformations, nor by a resolution of singulari-
ties. These serve the main motivation for the study of singular holomorphically
symplectic varieties.

The �rst examples of singular irreducible symplectic varieties appeared, si-
multaneously with nonsingular ones, in [17] as �nite quotients of products of two
K3 surfaces or of 4-dimensional compact complex tori. In [36], Markushevich
and Tikhomirov provided an example of a singular irreducible symplectic vari-
ety with a Prym Lagrangian �bration, constructed as a connected component
of the �xed locus of a symplectic involution on a moduli space of semi-stable
sheaves on a K3 surface (see Section 1.2.3). By the same method, two other
examples were constructed. One by Arbarello, Saccà and Ferretti [1] and the
other by Matteini [39].

An important tool for the study of irreducible symplectic varieties is the
Beauville�Bogomolov form (see Section 1.1.3). Therefore, following the idea
to develop the theory of singular irreducible symplectic varieties, the question
of calculating the Beauville�Bogomolov form of the Markushevich�Tikhomirov
varieties appears quite natural. The Beauville�Bogomolov form and the Fujiki
constant in smooth cases were calculated in [7] for Beauville's examples and in
[62] and [63] for O'Grady varieties (see Section 1.1.5).

In our approach to calculating the Beauville�Bogomolov form of Markushevich�
Tikhomirov varieties, the main di�culty is to determine integral cohomology of
quotient varieties. For this reason, an important part of this thesis (Chapter 3)
is devoted to the elaboration of tools for the calculation of the integral coho-
mology of quotient varieties.
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Our study of integral cohomology of quotient varieties allowed us, in partic-
ular, to answer the original question. Moreover it naturally resulted in other
examples of calculation of Beauville�Bogomolov and cup-product lattices on
quotient fourfolds and quotient surfaces. We produce several examples of such
lattices in this thesis.

Another problem about Markushevich�Tikhomirov variety solved in this the-
sis has to deal with its Lagrangian �bration, obtained as the relative compact-
i�ed Prym variety of some family of curves with involution. The total space
of this relative compacti�ed Prymian is holomorphically symplectic, and the
structure map is a Lagrangian �bration with a (1,2)-polarized Prym surface as
generic �ber. The irreducible symplectic varieties with a Lagrangian �bration
are of particular interest, as they generalize K3 surfaces with an elliptic pencil
on the one hand, and the phase spaces of algebraically completely integrable
systems on the other hand. The problem of describing the dual of a Lagrangian
�bration is discussed in [64], where an interesting link to the twisted Fourier�
Mukai transform is uncovered. Another reason to look at the dual Lagrangian
�bration is the fact that, according to Strominger�Yau�Zaslow, the mirror sym-
metry is nothing but the duality of special Lagrangian �brations on Calabi�Yau
spaces. The duality being well-de�ned only on nonsingular �bers, it is important
to obtain examples of compacti�able dual Lagrangian �brations. We present a
description of the dual Lagrangian �bration in our example, whose compacti�-
cation turns out to be a singular irreducible symplectic variety of the same type
as the original one.

0.3.2 Overview of the results

Our �rst goal is to determine the integral cohomology of X/G for a compact
complex manifold X and an automorphism group G of prime order. A fun-
damental tool for studying this question is given by the following proposition
[65].

Proposition 0.3.1. Let G be a �nite group of order d acting on a variety X
with the orbit map π : X → X/G, which is a d-fold rami�ed covering. Then
there is a natural homomorphism π∗ : H∗(X,Z)→ H∗(X/G,Z) such that

π∗ ◦ π∗ = d idH∗(X/G,Z), π∗ ◦ π∗ =
∑
g∈G

g∗.

When X is a compact complex manifold and G is an automorphism group
of prime order p, we will see that it induces an exact sequence

0 // π∗(Hk(X,Z)) // Hk(X/G,Z)/ tors // (Z /pZ)αk // 0,

where π : X → X/G is the quotient map and αk is a non-negative integer.
There is no general recipe for computing αk. In Chapter 3, we will provide

some criteria for the vanishing of αk. In the sequel, the following de�nition will
play a central role.
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De�nition 0.3.2. Let X be a compact complex manifold of dimension n, G =
〈ϕ〉 an automorphism group of prime order p and 0 ≤ k ≤ 2n. We assume that
Hk(X,Z) is torsion-free.

If the map π∗ : Hk(X,Z)→ Hk(X/G,Z)/ tors is surjective, we will say that
(X,G) is Hk-normal.

We �rst give some general results on this notion, explaining how to get
the Hk-normality from the Hkt-normality for integers k and t, how to get the
cup-product lattice of Hn(X/G,Z) when (X,G) is Hn-normal, and how the
notion can be transferred via a bimeromorphic map. We also prove some easy
properties that apply in a large range of cases. For instance Proposition 3.3.13:

Proposition 0.3.3. Let X be a compact complex manifold of dimension n and
G an automorphism group of prime order p acting on X. Assume that H∗(X,Z)
is torsion-free and 2 ≤ p ≤ 19. Let 0 ≤ k ≤ 2n.

If akG(X) = rkHk(X,Z)G, then (X,G) is Hk-normal.

The integer akG(X) is de�ned by the isomorphism of De�nition 5.5 of [11]:

Hk(X,Z)

Hk(X,Z)G ⊕ SkG(X)
= (Z /pZ)

akG(X)
,

where SkG(X) is a natural complementary Z-submodule of Hk(X,Z)G; see Sec-
tion 2.2 for the precise de�nition.

After these general statements we give more precise results in particular cases
of G-actions with good local behaviour. At each �xed point of G, by Cartan
Lemma 1 of [14] we can locally linearize the action of G. Thus at a �xed point
x ∈ X, the action of G on X is locally equivalent to the action of G = 〈g〉 on
Cn via

g = diag(ξk1
p , . . . , ξ

kn
p ),

where ξp is a p-th root of unity. Without loss of generality we can assume that
k1 ≤ · · · ≤ kn ≤ p − 1. When the local action of G at a �xed point x is of the
form

g = diag(1, . . . , 1, ξαp , . . . , ξ
α
p ),

α ∈ {1, . . . , p− 1}, we say that x is a point of type 1. We will see that when
all the points of FixG are of type 1 and when the �xed locus of G is not too
big (codim FixG ≥ dimX

2 ), Hn-normality holds if some equation related to the
action of G is veri�ed. When FixG is not too big, we will say that FixG is
negligible or almost negligible (see De�nition 3.5.1 for the exact setting).

The idea is to work on the blowup X̃ of X in the �xed locus of G. Let
G̃ be the natural lift of G to X̃. When all the �xed points are of type 1, the
quotient M̃ = X̃/G̃ is smooth. We also denote U = X \ FixG. We will use the

unimodularity of the cohomology lattice Hn(M̃,Z) to establish a link between

the cohomology of U , M̃ , FixG and the Hn-normality of (X,G). The main
theorem is the following:
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Theorem 0.3.4. Let G = 〈ϕ〉 be a group of prime order p acting by automor-
phisms on a Kähler manifold X of dimension n. We assume:

i) H∗(X,Z) is torsion-free,

ii) FixG is negligible or almost negligible,

iii) all the points of FixG are of type 1.

Then:

1) logp(discrπ∗(H
n(X,Z)))− h2∗+ε(FixG,Z) is divisible by 2,

2) The following inequalities are veri�ed:

logp(discrπ∗(H
n(X,Z))) + 2 rktorHn(U,Z)

≥ h2∗+ε(FixG,Z) + 2 rktorHn(M̃,Z)

≥ 2 rktorHn(U,Z).

3) If moreover

logp(discrπ∗(H
n(X,Z))) + 2 rktorHn(U,Z)

= h2∗+ε(FixG,Z) + 2 rktorHn(M̃,Z),

then (X,G) is Hn-normal.

Here rktorHn(U,Z) and rktorHn(M̃,Z) are the ranks of the torsion parts
of the cohomology, de�ned as the smallest number of generators. We de�ne

h2∗+ε(FixG,Z) =

dim FixG∑
k=0

dimH2k(FixG,Z),

when n is even and

h2∗+ε(FixG,Z) =

dim FixG−1∑
k=0

dimH2k+1(FixG,Z),

when n is odd.
In the case where 2 ≤ p ≤ 19, we will calculate logp(discrπ∗(H

n(X,Z)))
and rktorHn(U,Z) with the help of invariants introduced by Boissière, Nieper-
Wisskirchen and Sarti in [11]. Since we assume H∗(X,Z) is torsion-free, we
have Hk(X,Fp) = Hk(X,Z) ⊗ Fp for 0 ≤ k ≤ 2 dimX. Boissière, Nieper-
Wisskirchen and Sarti de�ne the integer lkq (X) as the number of Jordan blocks

Nq of size q in the Jordan decomposition of the G-module Hk(X,Fp), so that

Hk(X,Fp) '
⊕p

q=1N
⊕lkq (X)
q .

We will deduce several corollaries from this theorem, for instance this one
(Corollary 3.5.17):
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Corollary 0.3.5. Let G = 〈ϕ〉 be a group of prime order 3 ≤ p ≤ 19 acting by
automorphisms on a Kähler manifold X of dimension 2n. We assume:

i) H∗(X,Z) is torsion-free,

ii) FixG is negligible or almost negligible,

iii) all the points of FixG are of type 1,

iv) l2kp−1(X) = 0 for all 1 ≤ k ≤ n, and

v) l2k+1
1 (X) = 0 for all 0 ≤ k ≤ n− 1, when n > 1.

Then:

1) l2n1 (X)− h2∗(FixG,Z) is divisible by 2, and

2) we have:

l2n1 (X) + 2

[
n−1∑
i=0

l2i+1
p−1 (X) +

n−1∑
i=0

l2i1 (X)

]
≥ h2∗(FixG,Z) + 2 rktorH2n(M̃,Z)

≥ 2

[
n−1∑
i=0

l2i+1
p−1 (X) +

n−1∑
i=0

l2i1 (X)

]
.

3) If moreover

l2n1 (X) + 2

[
n−1∑
i=0

l2i+1
p−1 (X) +

n−1∑
i=0

l2i1 (X)

]
= h2∗(FixG,Z) + 2 rktorH2n(M̃,Z),

then (X,G) is H2n-normal.

After the study of actions with �xed points of type 1, we will be able to treat
more general local actions in the case p = 3. We will see that we can reduce
the problem to the case of �xed points of type 1 by a blowup of X in the �xed
points of di�erent type, which will be called points of type 2.

As we can see, the notion of Hk-normality could be generalized in many
directions. If Hk(X,Z) is not torsion-free, one might work with Hk(X,Z)/ tors.
It could be also generalized when X is not smooth or when p is not a prime
number. Theorem 0.3.4 can also be generalized to more general local actions of
G using toric blowups in the proof instead of classical blowups. Thus there are
many ways to generalize our work.

We �rst illustrate our results onH∗-normality by calculating the cup-product
lattice of a K3 surface quotiented by a symplectic involution, by a symplectic and
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non-symplectic automorphism of order 3. In the next table, we denote these quo-
tients respectively by Y2, Y3 and Z3. We also calculate the cup-product lattice
of a complex torus of dimension 2 quotiented by − id; we denote this quotient by
A. Then we go on to the main application of our tools, providing the Beauville�
Bogomolov lattice of irreducible symplectic varieties of K3[2]-type quotiented by
certain symplectic automorphisms. The �rst example is the quotient by numer-
ically standard symplectic automorphisms of order 3 (see Section 1.3.2 for the
de�nition of 'numerically standard'). We also provide the Beauville�Bogomolov
form of partial resolutions of irreducible symplectic varieties of K3[2]-type quo-
tiented by symplectic involutions. We denote these two 4-dimensional singular
irreducible symplectic varieties by M3 and M ′ respectively. We summarize the
results of our calculations in the following table:

X/G H2(X/G,Z)

Y 2 E8(−1)⊕ U(2)3

Y 3 U(3)⊕ U2 ⊕A2
2

Z3 U ⊕ E6

A U(2)
M3 U(3)⊕ U2 ⊕A2

2 ⊕ (−6)
M ′ U(2)3 ⊕ E8(−1)⊕ (−2)2.

Here H2(X/G,Z) is endowed with the cup-product for the surfaces and with
the Beauville�Bogomolov form for the fourfolds. See Section 4.7 for more details.

The last chapter is devoted to Markushevich�Tikhomirov varieties. The
construction of the relative compacti�ed Prymian P starts from a pair of totally
tangent plane quartics B0 and ∆0. The �rst is used to construct a degree 2 del
Pezzo surface X, and the second determines a K3 double cover S of X. Then
the wanted family of curves is a non-complete linear system of curves on S,
invariant under the Galois involution of the double cover S → X, and P is
its relative compacti�ed Prymian. Permuting the roles of B0, ∆0, we obtain
another K3 surface S̃ and the corresponding Prymian P̃.

We will prove that the Lagrangian �brations on P and P̃ are dual to each
other. Moreover, we will prove that not only S 6' S̃ for generic S, but also
that the derived categories of S̃, S are non-equivalent and S̃[2] 6' S[2]. This
will allow us to conclude that the associated compacti�ed Prymians P̃, P are
non-isomorphic.

Moreover, P is related toM ′ by a Mukai �op, hence we also get the Beauville�
Bogomolov lattice of these compacti�ed Prymians from that of M ′.

0.3.3 Structure of the thesis

Chapter 1 provides a survey of known results on irreducible symplectic va-
rieties. In Section 1.1, we recall the main results about the period map for
smooth irreducible symplectic varieties. We recall the local Torelli Theorem of
Beauville. Then, we recall the results on non-separated points of the moduli
space and on the surjectivity of the period map (Global Torelli Theorem) after
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Huybrechts and Verbitsky. We also list the Beauville�Bogomolov lattices for
known irreducible symplectic manifolds.

Then we introduce singular irreducible symplectic varieties in Section 1.2.
In particular, we recall the construction of Markushevich and Tikhomirov.

In Section 1.3.2, we cite results on the automorphisms of K3[2]-type man-
ifolds by Mongardi. In Section 1.3.3, we recall the description of the integral
cohomology of the Hilbert scheme of two points on a K3 surface following Mark-
man, Verbitsky, Boissière�Nieper-Wisskirchen�Sarti, and Qin�Wang.
Chapter 2 contains various results on lattices, Smith theory and equivariant
cohomology needed for the calculation of the integral cohomology of quotient
varieties. We also recall the setting of Boissière, Nieper-Wisskirchen and Sarti
[11] which provides very useful tools for our study.
In Chapter 3, we consider a compact complex manifold X and an automor-
phism group G of prime order p acting on X. This chapter contains technical
results on the calculation of the integral cohomology of X/G. In Section 3.2.2,
we calculate the integral cohomology of a quotient when the action of the group
is free. Then, in Section 3.3, we introduce the H∗-normality and we state all the
general results on this notion. In Section 3.5, we provide more precise results in
particular cases of �xed points of type 1. And �nally, Section 3.6 is devoted to
the case p = 3.
Chapter 4 provides several applications of the results of Chapter 3. We calcu-
late the cup-product and Beauville�Bogomolov forms of Y2, Y3, Z3, A, M3 and
M ′.

For the �rst �ve of these six varieties, the calculation follows directly from the
results of Chapter 3. The case ofM ′ is more complicated. Let S be a K3 surface
and i a symplectic involution on S. We can show easily that (S[2], i[2]) is H4

and H2-normal. But it is not enough for calculating the Beauville�Bogomolov
form of M ′, which is a partial resolution of S[2]/i[2]. In fact, the largest part of
this chapter is devoted to the case of M ′, in which we have to write down the
action of i[2] explicitly in a special basis of H∗(S[2],Z), obtained with the help
of Nakajima's representation of the Heisenberg algebra on the cohomology of
the varieties S[n].
Chapter 5 is devoted to Markushevich�Tikhomirov varieties. We provide the
dual of the Lagrangian �bration in Section 5.1. In Section 5.2 and Section 5.3,
we prove that S 6' S̃ for generic S, and also that the derived categories of S̃,
S are non-equivalent and S̃[2] 6' S[2]. In conclusion, we provide the Beauville�
Bogomolov form for these varieties.



Chapter 1

Irreducible symplectic

varieties

1.1 Smooth irreducible symplectic varieties

We start by recalling some background on irreducible symplectic manifolds.

1.1.1 De�nition

De�nition 1.1.1. An irreducible symplectic manifold is a compact, simply con-
nected, holomorphically symplectic Kähler manifold, whose symplectic structure
is unique up to proportionality.

We know all the irreducible symplectic manifolds in dimension 2.

Theorem 1.1.2. The irreducible symplectic manifolds of dimension 2 are the
K3 surfaces.

1.1.2 Importance of irreducible symplectic manifolds

There are two theorems which explain the importance of irreducible symplec-
tic manifolds in algebraic geometry. Firstly, the Bogomolov's decomposition
theorem:

Theorem 1.1.3. Let M be a compact, Kähler manifold with trivial canonical
bundle. Then there exists a �nite covering M̃ ofM which is a product of Kaehler
manifolds of the following form:

M̃ = T ×M1 × · · · ×Mi ×K1 × · · · ×Kj ,

where T is a torus, the Mk are irreducible symplectic manifolds, and the Kk are
Calabi�Yau manifolds.

And secondly the Calabi�Yau Theorem:

1



2 Irreducible symplectic varieties

Theorem 1.1.4. The classes of compact simple hyperkähler manifolds and ir-
reducible symplectic manifolds coincide.

1.1.3 Beauville�Bogomolov form

There exists a very beautiful theory of moduli spaces of irreducible symplectic
manifolds. A fundamental tool of this theory is the Beauville�Bogomolov form.

De�nition 1.1.5. Let X be a 2n-dimensional irreducible symplectic manifold.
We de�ne the quadratic form qX on H2(X,C) by

qX(α) :=
n

2

∫
X

(ωω)n−1α2 + (1− n)

∫
X

ωn−1ωnα ·
∫
X

ωnωn−1α,

where α ∈ H2(X,C) and ω is a �xed generator of H0(X,Ω2
X) with

∫
X
ωnωn = 1.

Remark: We have qX(ω + ω) = 1.

This form allows us to construct a moduli space of irreducible symplectic
manifolds with the following theorem from Beauville [7] (Theorem 5 of part 2).

Theorem 1.1.6. Let X be an irreducible symplectic manifold.

1) The quadratic form qX is non-degenerate of signature (3, bX−3) and there
is a positive real number λ such that λqX is integral on H2(X,Z).

2) Let Ω be the analytic subvariety of P(H2(X,C)) de�ned by

Ω = P(
{
α ∈ H2(X,C)| qX(α) = 0, qX(α+ α) > 0

}
).

There exists a deformation family (the Kuranishi family) of X

f : X→M

such that M is smooth and for each s ∈M , Xs is an irreducible symplectic
manifold. Moreover, we have a di�eomorphism u : X ×M → X. Let P
be the map:

P : M → Ω

s 7→ u∗s(ωs),

where ωs is the holomorphic form of Xs. The map P, which is called the
period map, is a local isomorphism.

De�nition 1.1.7. Let X be an irreducible symplectic manifold. The primitive
integral form proportional to qX is called the Beauville�Bogomolov form.

Moreover the Beauville�Bogomolov form is related to the cup product by
the Fujiki relation (see [18]).
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Theorem 1.1.8. Let X be an irreducible symplectic manifold of dimension 2n
and BX the Beauville�Bogomolov bilinear form. There exists a unique positive
constant cX ∈ Q, such that for any α ∈ H2(X,C):

α2n = cXBX(α, α)n.

The constant cX is called the Fujiki constant.

Remark: We have BX(ω + ω, ω + ω) > 0.
The Beauville�Bogomolov form allows us to de�ne the moduli space of irre-
ducible symplectic manifolds.

De�nition 1.1.9. Let X be an irreducible symplectic manifold. The group
H2(X,Z) endowed with the bilinear Beauville�Bogomolov form BX is a lattice
of signature (3, b− 3) with b ≥ 3.

Let Γ be a lattice isometric to H2(X,Z). An isometry ϕ : H2(X,Z) → Γ
is called a marking of X, and (X,ϕ) is called a marked irreducible symplectic
manifold.

We de�ne the moduli space MΓ = {(X,ϕ)} / ∼, where (X,ϕ) ∼ (X ′, ϕ′) if
and only if there exists an isomorphism g : X ' X ′ such that g∗ = ±(ϕ−1 ◦ϕ′).

The Beauville theorem allows us to endow MΓ with a structure of a non-
separated complex manifold (the period maps from the Beauville theorem are the
coordinate charts). Moreover, the period map can be considered as a holomorphic
map on all of MΓ:

P : MΓ → Ω = P(
{
α ∈ Γ⊗ C| α2 = 0, (α+ α)2 > 0

}
) ⊂ P(Γ⊗ C)

(X,ϕ) 7→ ϕ(ωX),

where ωX is the holomorphic form of X.

1.1.4 Properties of the moduli space of irreducible sym-

plectic manifolds

The �rst two important results are from Huybrechts [25] (Theorem 4.3, Theorem
4.6' and Theorem 8.1). One on the non-separated points of MΓ and the other
on the surjectivity of the period map.

Theorem 1.1.10. Let Γ be a lattice of signature (3, b − 3) with b ≥ 3. If
(X,ϕ), (X ′, ϕ′) ∈ MΓ are non-separated points in the moduli space of marked
irreducible symplectic manifolds, then X and X ′ are birational.

Theorem 1.1.11. Let X and X ′ be birational projective irreducible symplec-
tic manifolds. Then there exist two markings ϕ : H2(X,Z) ' Γ and ϕ′ :
H2(X ′,Z) ' Γ such that (X,ϕ), (X ′, ϕ′) ∈MΓ are non-separated points.

The proof of this theorem uses the following lemma.

Lemma 1.1.12. If X and X ′ are birational irreducible symplectic manifolds,
then there exists a natural Hodge isometry between H2(X,Z) and H2(X ′,Z),
(that is an isomorphism compatible with the Beauville�Bogomolov forms and
the Hodge structures).
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Theorem 1.1.13. Let Γ be a lattice of signature (3, b − 3) with b ≥ 3. Let
M
◦

Γ be a non-empty connected component of the moduli space MΓ of marked
irreducible symplectic manifolds. Then the period map:

P : M
◦

Γ → Ω

is surjective.

Another important result from Huybrechts [26] (Theorem 2.1) is about the
�niteness of connected components of MΓ.

Theorem 1.1.14. The moduli space MΓ has only a �nite number of connected
components.

Quite an important problem was to obtain an analog of the global Torelli
theorem for irreducible symplectic manifold. This was done by Verbitsky in [66]
(see also [23] for our approach).

Theorem 1.1.15. The period map P : MΓ → Ω factors through the 'Hausdor�
reduction' MΓ of MΓ. More precisely, there exists a complex Hausdor� manifold
MΓ and a locally biholomorphic map factoring the period map:

P : MΓ � MΓ → Ω,

such that x = (X,ϕ), y = (X ′, ϕ′) ∈ MΓ map to the same point in MΓ if and
only if they are inseparable points of MΓ.

Theorem 1.1.16. If MΓ

◦

is a connected component of MΓ, then P : MΓ

◦

→ Ω
is an isomorphism.

1.1.5 Beauville�Bogomolov lattice

From the last theorems it follows that the Beauville�Bogomolov lattice (H2(X,Z),
BX) encodes an important topological information on the irreducible symplec-
tic manifold X. There are very few known deformation classes of irreducible
symplectic manifolds, and for all of them the Beauville�Bogomolov lattices have
been calculated:

X dimX cX b2(X) (H2(X,Z), BX)

S[n] 2n (2n)!
n!2n 23 U3 ⊕ E8(−1)2 ⊕ (−2(n− 1))

Kn(T ) 2n (2n)!(n+1)
n!2n 7 U3 ⊕ (−2(n+ 1))

M̃ 6 60 8 U3 ⊕ (−2)2

M 10 945 24 U3 ⊕ E8(−1)⊕ Λ

Here Λ =

(
−6 3
3 −2

)
, the number cX is the Fujiki constant, the manifold

S[n] is the Hilbert scheme of n points on a K3 surface S, Kn(T ) is the generalized
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Kummer manifold of dimension n for a torus T , and M̃ , M are two families of
sporadic irreducible symplectic manifolds of O'Grady.

A very di�cult problem is to �nd other deformation classes of irreducible
symplectic manifolds. There are more examples if we allow our varieties to
be singular. Moreover, the singular irreducible symplectic varieties are a nat-
ural object of study, since they arise as moduli spaces of semistable sheaves
(or twisted sheaves, or objects of the derived category endowed with a Bridge-
land stability condition) on a K3 or abelian surface. Moreover, as follows from
Namikawa, their deformation theory and period mapping behave similarly to
the case of smooth ones.

1.2 Singular irreducible symplectic varieties

1.2.1 De�nition

We adapt the de�nition of singular irreducible symplectic varieties given by
Namikawa in [48].

De�nition 1.2.1. A normal compact Kähler variety Z is said to be symplectic
if there is a nondegenerate holomorphic 2-form ω on the smooth locus U of Z
which extends to a regular 2-form ω̃ on a desingularization Z̃ of Z. If, moreover,
dimH1(Z,OZ) = 0 and dimH0(U,Ω2

U ) = 1, we say that Z is an irreducible
symplectic variety.

1.2.2 Beauville�Bogomolov form and local Torelli theo-

rem

Namikawa [48] de�nes a Beauville�Bogomolov form on these varieties and pro-
vides a local Torelli theorem.

De�nition 1.2.2. Let Z be a 2n-dimensional irreducible symplectic variety and
ν : Z̃ → Z a resolution of singularities of Z. Assume that

• the codimension of the singular locus of Z is ≥ 4;

• Z has only Q-factorial singularities.

We de�ne the quadratic form qZ on H2(Z,C) by

qZ(α) :=
n

2

∫
Z̃

(ω̃ω̃)n−1α̃2 + (1− n)

∫
Z̃

ω̃n−1ω̃
n
α̃ ·
∫
Z̃

ω̃nω̃
n−1

α̃,

where α̃ := ν∗α, α ∈ H2(Z,C) and
∫
Z̃
ω̃n · ω̃n = 1.

We say that a normal variety has only Q-factorial singularities if every Weil
divisor is Q-Cartier.
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Let Z be a symplectic variety, F := Sing(Z) and U := Z \ F . Let f :
Z → S be the Kuranishi family of Z, which is, by de�nition, a semi-universal

�at deformation of Z with f
−1

(0) = Z for the reference point 0 ∈ S. When
codimF ≥ 4, S is smooth by [47]. Z is not projective over S, but one can show
that every member of the Kuranishi family is a symplectic variety. De�ne U to
be the locus in Z where f is a smooth map and let f : U → S be the restriction
of f to U . Then we have:

Theorem 1.2.3. Let Z be a projective irreducible symplectic variety. Assume
that

• the codimension of the singular locus of Z is ≥ 4;

• Z has only Q-factorial singularities.

Then the following holds.

(1) R2f∗(f
−1OS) is a free OS-module of �nite rank. Let H be the image of the

composite R2f∗C → R2f∗C → R2f∗(f
−1OS). Then H is a local system

on S with Hs = H2(Us,C) for s ∈ S.

(2) The form qZ is independent of the choice of ν : Z̃ → Z.

(3) Put H := H2(U,C). Then there exists a trivialization of the local system
H : H ' H × S. Let Ω := {x ∈ P(H)| qZ(x) = 0, qZ(x+ x) > 0}. Then
one has a period map p : S → Ω and p is a local isomorphism.

Moreover Matsushita [38] (Theorem 1.2) showed the following theorem.

Theorem 1.2.4. Let Z be a projective irreducible symplectic variety of dimen-
sion 2n with only Q-factorial singularities, and codim SingZ ≥ 4. There exists
a unique indivisible integral symmetric bilinear form BZ ∈ S2(H2(Z,Z))∗ and
a unique positive constant cZ ∈ Q, such that for any α ∈ H2(Z,C),

α2n = cZBZ(α, α)n. (1.1)

For 0 6= ω ∈ H0(Ω2
U )

BZ(ω + ω, ω + ω) > 0. (1.2)

Moreover the signature of BZ is (3, h2(Z,C)− 3).
The form BZ is proportional to qZ and is called the Beauville�Bogomolov

form of Z.

Proof. The statement of the theorem in [38] does not say that the form is
integral, but it follows from Lemma 2.2 of [38] using the proof of Theorem 5 a),
c) of [7].

Remark: As proved in [31] (Theorems 3.3.18 and 3.5.11), Theorems 1.2.3
and 1.2.4 hold without the assumption of projectivity of Z. In our work, we
will always deal with projective irreducible symplectic varieties.

We also give a very useful proposition which follows from this theorem.
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Proposition 1.2.5. Let Z be a projective irreducible symplectic variety of di-
mension 2n with only Q-factorial singularities and such that codim SingZ ≥ 4.
The equality (1) of Theorem 1.2.4 implies that

α1 · ... · α2n =
cZ

(2n)!

∑
σ∈S2n

BZ(ασ(1), ασ(2)) · · ·BZ(ασ(2n−1), ασ(2n)), (1.3)

for all αi ∈ H2(Z,Z).

The equality (1) of Theorem 1.2.4 is called the Fujiki relation, and (1.3) is
its polarized form.

Remark: For the moment, not much is known about the period mapping
for singular irreducible symplectic varieties. There is the foundational result of
Namikawa (Theorem 1.2.3), but no global Torelli, nor an analog of Huybrechts'
description of the non-separated points of the moduli space.

1.2.3 Examples of singular irreducible symplectic varieties:

the Markushevich�Tikhomirov varieties

Markushevich and Tikhomirov provide in [36] the �rst construction of an ir-
reducible symplectic V-manifold in a way, other than quotienting a smooth
irreducible symplectic variety by a symplectic action.

The idea of Markushevich and Tikhomirov is quite promising for construct-
ing irreducible symplectic varieties, because there are many ways to generalize
their construction.

In this construction, which we will recall here, (S, τ) is a 2-elementary K3
surface (a K3 surface with an anti-symplectic involution) with Mukai invariant
(8, 8, 1). The surface S is the double cover of a del Pezzo surface of degree 2.
It is possible to apply the same construction to other kinds of 2-elementary K3
surfaces. This will provide new kinds of irreducible symplectic varieties.

For instance, Arbarello, Saccà and Ferretti in [1] have considered the case
of K3 surfaces which are double covers of Enriques surfaces (2-elementary K3
surfaces with Mukai invariant (10, 10, 0)). Matteini in [39] provides a similar
construction for a 2-elementary K3 surface with Mukai invariant (7, 7, 1).

Nikulin has classi�ed all 2-elementary K3 surfaces in [52]. There are 75
deformation classes of them.

Now we recall this construction, and it will be studied in greater detail in
Chapter 5.

Let B0 be a smooth quartic curve in P2. Let µ : X → P2 be the double
cover branched in B0. Then X is a Del Pezzo surface of degree 2. Let ∆0 be a
smooth quartic curve in P2 totally tangent to B0 at eight distinct points that lie
on a conic. This is the case when the linear pencil

〈
B0,∆0

〉
contains a double

conic. Let B0 = µ−1(B0). We have µ−1(∆0) = ∆0 + i(∆0), where ∆0 is a
smooth curve. By Lemma 5.14 of [34], ∆0 ∈ |−2KX |. Finally, let ρ : S → X be
the double cover branched in ∆0, ∆ = ρ−1(∆0). Note that if we take a similar
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double cover branched in i(∆0), ρ′ : S′ → X, we get a surface S′ isomorphic to
S (indeed, i ◦ ρ′ and ρ are two double covers branched in the same curve in X).
Denote by τ the involution of S induced by ρ. We have the following diagram:

B0� _

��

B0� _

��
Sτ 99 ρ

2:1 // X µ

2:1 // P2 (1).

∆
?�

OO

∆0

?�

OO

We also allow the case where B0 is a quartic and ∆0 is equal to a double
conic 2Q such that ∆0 = µ−1(Q) is a smooth curve. In this case i(∆0) = ∆0

and ∆0 is in | − 2KX |. We will have some additional conditions for matching
with [36]. De�ne also H = ρ∗(−KX).

The involution τ of the double cover ρ : S → X is H-linear and induces an
involution on |H| ' P3, whose �xed locus consists of two components: a point
and a plane. The plane parametrizes the curves of the form ρ−1µ−1(t), where t
is a line in P2. Thus this plane is parametrized by the dual of P2, denoted P2∨.
Let ε : C → P2∨ be the linear subsystem of τ -invariant curves parametrized by
P2∨. The properties of this linear subsystem must be as in [36].

Consequently we require the following conditions for the couple (B0,∆0).

De�nition 1.2.6. A pair (B0,∆0) will be called su�ciently generic if the fol-
lowing conditions are satis�ed:

• The quartic B0 must not have a tangent line with multiplicity 4 in a point.
In this case B0 has exactly 28 bitangent lines m1, . . . ,m28.

The curve µ−1(mi) is the union of two rational curves li ∪ l′i meeting in 2
points. The 56 curves li, l

′
i are all the lines on X, that is, curves of degree

1 with respect to −KX . Further, the curves Ci = ρ−1(li), C
′
i = ρ−1(l′i)

are plane conics on S with respect to the injection S ↪→ P3 de�ned by |H|.

• A bitangent line of B0 tangent at B0 in a point p must not be tangent at
∆0 in this same point p. In this case, the conics Ci, C

′
i are not tangent,

so meet in exactly 4 distinct points.

• The quartics B0 and ∆0 must not have a common bitangent line. In this
case the conics Ci and C

′
i are irreducible. Moreover S contains no lines.

We will denote the set of su�ciently generic pairs (B0,∆0) by L.

Assume for the rest of the section that (B0,∆0) ∈ L.

Let M = MH,ss
S (0, H,−2) be the moduli space of semistable sheaves F on

S with respect to the ample class H with Mukai vector v(F) = (0, H,−2). This
moduli space has the following properties.
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Proposition 1.2.7. (i) M is an irreducible projective variety of dimension

6. The open part M∗ = MH,s
S (0, H,−2) corresponding to the stable

sheaves is contained in the smooth locus of M and is a holomorphically
symplectic manifold with symplectic form α ∈ H0(M∗,Ω2) induced by the
Yoneda pairing

α[L] : Ext1(L,L)× Ext1(L,L)→ Ext2(L,L)
Tr−→ H2(S,OS) ' C,

where [L] ∈ M∗ is the class of a stable sheaf L and the tangent space
T[L]M∗ is identi�ed with Ext1(L,L).

(ii) M parametrizes the S-equivalence classes of pure 1-dimensional sheaves L
whose supports are curves from the linear system |H| and such that L|C is
a torsion-free OC-module of rank 1 with χ(L) = −2, where C = SuppL.
In the case when L is invertible as a sheaf on its support, the condition
χ(L) = −2 is equivalent to saying that degL = 0.

(iii) The moduli space M contains exactly 28 S-equivalence classes of strictly
semistable sheaves. Each of them is the class of the sheaf OCi(−2pt) ⊕
OC′i(−2pt), (i=1,. . . ,28), where pt stands for the class of a point on either
one of the conics Ci, C

′
i.

Proof. See Proposition 1.2 of [36].

We de�ne an involution onM by

σ :M→M, [L] 7→ [Ext1OS (L,OS(−H))],

and we set κ = τ∗ ◦ σ. One can prove that κ is a regular involution on M
and that its �xed locus has one 4-dimensional irreducible component plus 64
isolated points.

De�nition 1.2.8. We de�ne the compacti�ed Prymian P(S,τ) as the 4 - dimen-
sional component of Fix(κ).

Theorem 1.2.9. The variety P(S,τ) is an irreducible symplectic V-manifold of
dimension 4 with only 28 singular points analytically equivalent to (C4/ {±1} ,
0).

Proof. See Theorem 3.4, Proposition 5.4 and Corollary 5.7 of [36].

Now, we will introduce the Lagrangian �bration. We consider the linear
subsystem ε : C → P2∨. If t ∈ P2∨ is not tangent to B0 neither to ∆0, which is
the generic case, then Ct = ε−1(t) = ρ−1µ−1(t) is a smooth genus-3 curve, and
Et = Ct/τ is elliptic. The double cover ρt = ρ|Ct : Ct → Et is branched at 4
points of the intersection ∆0∩Et, and the double cover µt = µ|Et : Et → t ' P1

is branched at 4 points of the intersection B0 ∩ t. We denote also τt = τ|Ct .
Thus, we have the tower of double covers:

Ct
2:1→ Et

2:1→ P1.

The following Lemma introduces the (1,2)-polarized Prym surfaces:
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Lemma 1.2.10. For a generic line t ∈ P2, Prym(Ct, τt) = ker(id + τt) is
connected, and is thus an abelian surface. The restriction of the principal po-
larization from J(Ct) to Prym(Ct, τt) is a polarization of type (1, 2).

Proof. See Lemma 3.2. in [36].

Theorem 1.2.11. Identifying, as above, the 2-dimensional linear subsystem of
τ -invariant curves in |H| with P2∨, let fP(S,τ)

: P(S,τ) → P2∨ be the map sending
each sheaf to its support. Then fP(S,τ)

is a Lagrangian �bration on P(S,τ) and

the generic �ber f−1
P(S,τ)

(t) is the (1,2)-polarized Prym surface Prym(Ct, τt).

Proof. See Theorem 3.4 of [36].

In fact, P(S,τ) is bimeromorphic to a partial resolution of a quotient of S[2].
Consider Beauville's involution (see Section 6 of [6]):

ι0,S : S[2] → S[2], ξ 7→ ξ′ = (〈ξ〉 ∩ S)− ξ.

Here S is taken in its embedding as a quartic surface in P3, given by the linear
system |H|, 〈ξ〉 stands for the line in P3 spanned by ξ, and ξ′ is the residual
intersection of 〈ξ〉 with S. By [6], this involution is regular whenever S contains
no lines, which is true in our case. Further, τ induces on S[2] an involution
which we will denote by the same symbol. As τ on S is the restriction of a
linear involution on P3, ι0,S commutes with τ , and the composition ιS = ι0,S ◦ τ
is also an involution.

Proposition 1.2.12. The �xed locus of ιS is the union of a K3 surface Σ ⊂ S[2]

and 28 isolated points.

Proof. See Lemma 5.3 of [36]. In fact, as follows from the recent work of
Mongardi, Theorem 4.1 of [43] (we will review the result of Mongardi in Section
1.3.8), the �xed locus of any symplectic involution on an irreducible symplectic
variety deformation equivalent to the Hilbert square of a K3 surface is as in the
statement of the proposition.

Let M(S,τ) = S[2]/ιS and Σ be the image of Σ in M(S,τ). We also denote by
M ′(S,τ) the partial resolution of singularities of M(S,τ) obtained by blowing up

Σ, and by Σ
′
the exceptional divisor of the blowup.

Theorem 1.2.13. The variety M ′(S,τ) is an irreducible symplectic V-manifold

whose singularities are 28 points of analytic type (C4/ {±1} , 0). Moreover there
is a Mukai �op between M ′(S,τ) and P(S,τ), which is an isomorphism between

M ′(S,τ)\Π
′and P(S,τ)\Π, where Π′and Π are Lagrangian subvarieties isomorphic

to P2.

Proof. See Corollary 5.7 of [36].
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1.3 On symplectic manifolds of K3[n]-type

1.3.1 Beauville�Bogomolov form

We will also need to recall some properties of the Beauville�Bogomolov form on
H2(S[2],Z) for a K3 surface S. We can �nd in [7] the following representation:

H2(S[2],Z) = j(H2(S,Z))⊕ Z δ, (1.4)

where δ is half the diagonal of S[2]. We are going to give the de�nition of j.
Denote by ω : S2 → S(2) and ε : S[2] → S(2) the quotient map and the blowup in
the diagonal respectively. Also denote by Pr1 and Pr2 the �rst and the second
projections S2 → S. For α ∈ H2(S,Z), we de�ne j(α) = ε∗(β), where β is
the element of H2(S(2),Z) such that ω∗(β) = Pr∗1(α) + Pr∗2(α). The following
theorem is proved in Section 9 of [7]:

Theorem 1.3.1. We have:

BS[2](j(α1), j(α2)) = α1 · α2, BS[2](δ, δ) = −2.

Moreover, the Fujiki constant of S[2] is 3, and δ is orthogonal to j(H2(S,Z)).

Remark: The holomorphically symplectic form on S[2] is given by j(ωS),
where ωS is the holomorphically symplectic form on S. Hence j is a Hodge
isometry.

1.3.2 On symplectic automorphism groups of a manifold

of K3[n]-type

In this section, we will recall the principal result of [41] which will be useful for
our applications.

De�nition 1.3.2. Let S be a K3 surface and let G be a group of symplectic
automorphisms on S. The group G acts by symplectic automorphisms on S[n].
We say that the pair (S[n], G) is a natural pair or that all the automorphisms
from G are natural. Any pair (X,H) deformation equivalent to a natural pair
is called a standard pair.

De�nition 1.3.3. Let X be a manifold of K3[n]-type (that is deformation equiv-
alent to the Hilbert scheme of n points on a K3 surface), and let G be a group
of symplectic automorphisms of X (which act trivially on H2,0(X)). We denote
by BX the Beauville�Bogomolov form on X. The group G is said to be numeri-
cally standard if there exist a K3 surface S and a �nite group G acting on S by
symplectic automorphisms with the following properties:

• S2
G(X) ' S2

G(S), where S2
G(X) is de�ned in De�nition-Proposition 2.2.2.

• H2(X,Z)G ' H2(S,Z)G ⊕ 〈t〉 ,

• BX(t, t) = −2(n− 1), BX(t,H2(X,Z)) = 2(n− 1)Z .
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• G ' G.

We cite Theorem 2.5 of [41]:

Theorem 1.3.4. Let X be a manifold of K3[n]-type and let n− 1 be a power of
a prime. Let G be a �nite group of numerically standard symplectic automor-
phisms of X. Then (X,G) is a standard pair.

In the case of involutions in dimension four we have (see [43]):

Theorem 1.3.5. Let X be an irreducible symplectic manifold of K3[2]-type and
σ a symplectic involution on X. Then there exists a K3 surface S endowed
with a symplectic involution i such that (X,σ) and (S[2], i[2]) are deformation
equivalent.

This theorem implies the following description of the �xed locus.

Theorem 1.3.6. Let X be an irreducible symplectic manifold of K3[2]-type and
σ a symplectic involution on X. Then the �xed locus of σ consists of 28 isolated
points and one K3 surface.

Let X be an irreducible symplectic manifold of K3[2]-type and σ a symplec-
tic involution on X. We need to understand the action of σ on H2(X,Z). By
Theorem 1.3.5, there exists a K3 surface S endowed with a symplectic invo-
lution i such that (X,σ) and (S[2], i[2]) are deformation equivalent. Hence to
understand the action of σ on H2(X,Z), it is enough to understand the action
of i[2] on H2(S[2],Z). We recall that the action of i on the second cohomology
group of S is the following:

Proposition 1.3.7. There is an isometry H2(X,Z) ∼= U3 ⊕ E8(−1)⊕ E8(−1)
such that i∗ acts as follows:

i∗ : H2(X,Z) ∼= U3 ⊕E8(−1)⊕E8(−1)→ H2(X,Z), (u, x, y) 7→ (u, y, x). (1)

This implies that the invariant sublattice is

H2(X,Z)i ∼=
{

(u, x, x) ∈ U3 ⊕ E8(−1)⊕ E8(−1)
} ∼= U3 ⊕ E8(−2). (∗)

The anti-invariant sublattice is the orthogonal complement to the invariant sub-
lattice.

(H2(X,Z)i)⊥ ∼=
{

(0, x,−x) ∈ U3 ⊕ E8(−1)⊕ E8(−1)
} ∼= E8(−2).

Proof. We can �nd this Proposition in [21] (it is a consequence of the proof of
Theorem 5.7 of [45]).

And we deduce the action of i[2] on H2(S[2],Z).
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Proposition 1.3.8. There is an isometry H2(S[2],Z) ∼= U3⊕ (−2)⊕E8(−1)⊕
E8(−1) such that ι∗ acts as follows:

ι∗ : H2(S[2],Z) ∼= U3 ⊕ (−2)⊕ E8(−1)⊕ E8(−1)→ H2(S[2],Z)

(u, δ, x, y) 7→ (u, δ, y, x).
(1.5)

The invariant sublattice is

H2(S[2],Z)ι ∼=
{

(u, δ, x, x) ∈ U3 ⊕ (−2)⊕ E8(−1)⊕ E8(−1)
}

∼= U3 ⊕ (−2)⊕ E8(−2).
(1.6)

The anti-invariant sublattice, that is the orthogonal complement to the invariant
sublattice, is

(H2(S[2],Z)ι)⊥ ∼=
{

(0, 0, x,−x) ∈ U3 ⊕ (−2)⊕ E8(−1)⊕ E8(−1)
} ∼= E8(−2).

Proof. We denote ι := i[2]. By Section 1.3.1, we have:

j ◦ i = ι ◦ j. (1.7)

Moreover, by Beauville [7]

BS[2](δ, δ) = −2, BS[2](j(α1), j(α2)) = α1 · α2 (1.8)

for all (α1, α2) ∈ H2(S,Z)2. Now, we consider the isometry H2(S,Z) ∼= U3 ⊕
E8(−1)⊕ E8(−1) of Proposition 1.3.7 with

i∗ : H2(S,Z) ∼= U3 ⊕ E8(−1)⊕ E8(−1)→ H2(S,Z), (u, x, y) 7−→ (u, y, x).

Then, by (1.4) and (1.8), we get an isometry H2(S[2],Z) ∼= U3⊕(−2)⊕E8(−1)⊕
E8(−1), and (1.7) implies the wanted formula for ι∗.

1.3.3 Theorem of Qin�Wang on integral basis of cohomol-

ogy groups

We start with the following theorem.

Theorem 1.3.9. Let X be an irreducible symplectic manifold of K3[2]-type.

1) We have Hodd(X,Z) = 0 and H∗(X,Z) is torsion-free.

2) The cup product map Sym2H2(X,Q)→ H4(X,Q) is an isomorphism.

3) Moreover we have:

H4(X,Z)/ Sym2H2(X,Z) = (Z /2Z)23 ⊕ (Z /5Z).

Proof. 1) See Markman [35].

2) See Verbitsky [66].
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3) See Proposition 6.6 of [11].

Let S be a K3 surface. We will provide a more precise result and construct
an integral basis of H4(S[2],Z) using Theorem 5.4 of [61] (Qin�Wang).

Let (αk)k∈{1,...,22} be an integral basis of H2(S,Z). We denote γk = j(αk).

For α ∈ H∗(S,Z) and l ∈ Z, we denote by ql(α) ∈ End(H∗(S[2],Z)) the Naka-
jima operators [46] and by |0〉 ∈ H∗(S[0],Z) the unit. We also denote by 1
the unit in H0(S,Z) and by x ∈ H4(S,Z) the class of a point. We recall the
de�nition of Nakajima operators. Let

Q[m+n,n] =
{

(ξ, x, η) ∈ S[m+n] × S × S[m]
∣∣∣ ξ ⊃ η, Supp(Iη/Iξ) = {x}

}
.

We have
qn(α)(A) = p̃1∗

([
Q[m+n,m]

]
· ρ̃∗α · p̃∗2A

)
,

for A ∈ H∗(S[m]) and α ∈ H∗(S) , where p̃1, ρ̃, p̃2 are the projections from
S[m+n] × S × S[m] to S[m+n], S, S[m] respectively.

We have the following theorem by Qin�Wang ([61] Theorem 5.4 and Remark
5.6):

Theorem 1.3.10. The following elements form an integral basis of H4(S[2],Z):

q1(1)q1(x) |0〉 , q2(αk) |0〉 , q1(αk)q1(αm) |0〉 ,

m1,1(αk) |0〉 =
1

2
(q1(αk)2 − q2(αk)) |0〉 ,

with 1 ≤ k < m ≤ 22.

To get a better understanding of this theorem, we will give the following
proposition, which is Remark 6.7 of [11].

Proposition 1.3.11. • For all k ∈ {1, . . . , 22},

q2(αk) |0〉 = δ · γk.

• For all 1 ≤ k ≤ m ≤ 22,

γk · γm = (αk · αm)q1(1)q1(x) |0〉+ q1(αk)q1(αm) |0〉 .

• For all k ∈ {1, . . . , 22},

m1,1(αk) |0〉 =
γ2
k − δ · γk

2
− α2

k

2
q1(1)q1(x) |0〉 .

• Denote by d : S → S × S the diagonal embedding, and by d∗ : H∗(S,Z)→
H∗(S,Z) ⊗ H∗(S,Z) the push-forward map followed by the Künneth iso-
morphism. Let d∗(1) =

∑
k,m µk,mαk ⊗ αm + 1 ⊗ x + x ⊗ 1, µk,m ∈ Z.

Since µk,m = µm,k, one has:

δ2 =
∑
i<j

µi,jq1(αi)q1(αj) |0〉+
1

2

∑
i

µi,iq1(αi)
2 |0〉+ q1(1)q1(x) |0〉 .
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Proof. We have

1

2
q2(1) |0〉 = δ, q1(1)q1(αk) |0〉 = j(αk) = γk,

for all k ∈ {1, . . . , 22}. The cup product map Sym2H2(S[2],Q) → H4(S[2],Q)
can be computed explicitly by using the algebraic model constructed by Lehn-
Sorger [33]:

1) for α ∈ H2(S,Z), 1
2q2(1) |0〉 · q1(1)q1(α) |0〉 = q2(α) |0〉 ,

2) for α, β ∈ H2(S,Z),

q1(1)q1(α) |0〉 · q1(1)q1(β) |0〉 = (α · β)q1(1)q1(x) |0〉+ q1(α)q1(β) |0〉 ,

This implies the Proposition.

We can also give the following proposition on the cup product with q1(1)q1(x)
|0〉.

Proposition 1.3.12. We have:

q1(1)q1(x) |0〉 · q2(αk) |0〉 = q1(1)q1(x) |0〉 · q1(αk)q1(αl) |0〉 = 0

for all (k, l) ∈ {1, . . . , 22}2, and

q1(1)q1(x) |0〉 · q1(1)q1(x) |0〉 = 1.

Proof. By de�nition of Nakajima's operators, we �nd that q1(1)q1(x) |0〉 corre-
sponds to the cycle

{
ξ ∈ S[2]

∣∣ Supp ξ 3 x
}
. The element q1(αk)q1(αm) |0〉 corre-

sponds to the cycle
{
ξ ∈ S[2]

∣∣Supp ξ = x+ y, x ∈ αk, y ∈ αm
}
and q2 (αk) |0〉

corresponds to the cycle
{
ξ ∈ S[2]

∣∣Supp ξ = {x} , x ∈ αk
}
. This implies the

formula.
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Chapter 2

Reminders

2.1 Lattices

2.1.1 Some general facts

We will call by a lattice a free Z-module of �nite rank endowed with a nonde-
generate symmetric bilinear form with values in Z. A lattice L is called even
if x2 is even for each x ∈ L. For a lattice L, we will denote by L∨ the dual
of L and by AL = L∨/L the discriminant group. We will also denote its rank
by r(L) and its signature by signL = (b+(L), b−(L)). We denote by discrL
the discriminant of L de�ned as the absolute value of the determinant of the
bilinear form of L.

If discrL = 1, we will say that L is unimodular. Let S be a sublattice of
L. We will say that S is primitive if L/S is free. Let S be a sublattice of L
and S′ a primitive sublattice of L such that S ⊂ S′. We will call S′ a minimal
primitive overlattice of S if S′/S is a �nite group. If L is an even lattice, the
quadratic form on L induces a non-degenerate quadratic form qL on AL with
values in Q/2Z. The form qL is called the discriminant form of L. We recall
the following properties.

Proposition 2.1.1. Let S be a lattice and S′ an overlattice of S such that S′/S
is a �nite group. Then

discrS′ = (discrS) · [#(S′/S)]
−2
,

We will also need the following property.

Proposition 2.1.2. Let X be a compact, oriented 2n-manifold. Then Hn(X,Z)
endowed with the cup product is a unimodular lattice.

For a primitive sublatticeM of a lattice L, we denote byM⊥ the orthogonal
of M in L. Let

HM = L/(M ⊕M⊥).

17
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Since M is primitive, the projections pM : HM → AM and pM⊥ : HM → AM⊥
are injective. Hence we get an isomorphism γLM = pM⊥ ◦ p−1

M : pM (HM ) '
pM⊥(HM ). If L is an even lattice, we have qM⊥ ◦ γLM = −qM .

If L is unimodular, pM is an isomorphism. Hence γLM : AM → AM⊥ is an
isomorphism. We get the following proposition.

Proposition 2.1.3. Let L be a unimodular lattice and M ⊂ L a primitive
sublattice. Then AM ' AM⊥ and discrM = discrM⊥.

In Chapter 5, we will also need the following Corollary (Corollary 1.5.2 of
[50]).

Corollary 2.1.4. Let L be an even lattice. Let M1 and M2 be two primitive
sublattices of L and let ϕ : M1 → M2 be an isometry. The isometry ϕ extends
to an automorphism of L if and only if there exists an isometry ψ : M⊥1 →M⊥2
such that ψ ◦ γLM1

= γLM2
◦ ϕ.

2.1.2 On 2-elementary lattices

A lattice L is Lorentzian if signL = (1, r(L) − 1). An even lattice L is 2-
elementary if there is an integer a with AL ' (Z/2Z)a; then we set a(L) =
dimZ/2ZAL. We also de�ne δ(L) = 0 if x2 ∈ Z for all x ∈ L∨, otherwise
δ(L) = 1.

There are two important theorems of Nikulin [50] on 2-elementary lattices.

Theorem 2.1.5. The isometry class of an inde�nite even 2-elementary lattice
L is determined by the invariants (sign(L), a(L), δ(L)).

Proof. See Theorem 3.6.2 of [50].

Theorem 2.1.6. Let L be an inde�nite even 2-elementary lattice. Then the ho-
momorphism O(L)→ O(AL) is surjective, where O(L), O(AL) are the isometry
groups of L, AL.

Proof. See Theorem 3.6.3 of [50].

2.2 The setting of Boissière�Nieper-Wisskirchen�
Sarti

In this section we recall the notation and some results of [11] that will be nec-
essary to study H∗-normality. We also extend de�nitions to the case p = 2
missing in [11].

Let p be a prime integer and G = 〈ϕ〉 a �nite group of order p. We de-
note τ := ϕ − 1 ∈ Z[G] and σ := 1 + ϕ + · · · + ϕp−1 ∈ Z[G]. Let H be a
�nite-dimensional Fp-vector space equipped with a linear action of G (a Fp[G]-
module). The minimal polynomial of ϕ, as an endomorphism of H, divides
Xp − 1 = (X − 1)p ∈ Fp[X], hence ϕ admits a Jordan normal form over Fp.
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Hence we can decompose H as a direct sum of some G-modules Nq of dimen-
sion q for 1 ≤ q ≤ p, where ϕ acts on Nq in a suitable basis by a matrix of the
following form: 

1 1

. . .
. . . 0
. . .

. . .

0 . . . 1
1


In all the thesis, the symbol Nq will always denote the Fp[G]-module de�ned by
the above Jordan matrix of size q. We de�ne the integer lq(H) as the number of
blocks of size q in the Jordan decomposition of the G-module H, so that H '⊕p

q=1N
⊕lq(H)
q . We will also write Nq = N

⊕lq(H)
q . Let X be a complex manifold

endowed with an action of G. We de�ne the integer lkq (X) for 1 ≤ q ≤ p and
0 ≤ k ≤ 2 dimX as the number of blocks of size q in the Jordan decomposition
of the G-module Hk(X,Fp), so that

Hk(X,Fp) =

p∑
q=1

N
⊕lkq (X)
q =

p∑
q=1

Nq.

We also de�ne

l∗q(X) :=

2 dimX∑
k=0

lkq (X).

Let ξp be a primitive p-th root of the unity, K := Q(ξp), and OK := Z[ξp] the
ring of algebraic integers of K. By a classical theorem of Masley-Montgomery
[37], OK is a PID if and only if p ≤ 19. The G-module structure of OK is de�ned
by ϕ · x = ξpx for x ∈ OK . For any a ∈ OK , we denote by (OK , a) the module
OK + Z whose G-module structure is de�ned by ϕ · (x, k) = (ξpx+ ka, k).

In [11], we can �nd the following proposition (Proposition 5.1). We will give
also the proof which will allow us to deduce De�nition-Proposition 2.2.2 and
Proposition 2.2.3.

Proposition 2.2.1. Assume that H∗(X,Z) is torsion-free and 3 ≤ p ≤ 19.
Then for 0 ≤ k ≤ 2 dimX we have:

• lki (X) = 0 for 2 ≤ i ≤ p− 2.

• rkZH
k(X,Z) = plkp(X) + (p− 1)lkp−1(X) + lk1(X).

• dimFp H
k(X,Fp)G = lkp(X) + lkp−1(X) + lk1(X).

• rkZH
k(X,Z)G = lkp(X) + lk1(X).
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Proof. By a theorem of Diederichsen and Reiner [15] (Theorem 74.3), Hk(X,Z)
is isomorphic as a Z[G]-module to a direct sum:

(A1, a1)⊕ · · · ⊕ (Ar, ar)⊕Ar+1 ⊕ · · · ⊕Ar+s ⊕ Y

where the Ai are fractional ideals in K, ai ∈ Ai are such the ai /∈ (ξp − 1)Ai
and Y is a free Z-module of �nite rank on which G acts trivially. The G-module
structure on Ai is de�ned by ϕ · x = ξpx for all x ∈ Ai, and (Ai, ai) denotes the
module Ai⊕Z whose G-module structure is de�ned by ϕ ·(x, k) = (ξpx+kai, k).
Since OK is a PID, there is only one ideal class in K so we have an isomorphism
of Z[G]-modules:

Hk(X,Z) ' ⊕ri=1(OK , ai)⊕O⊕sK ⊕ Z⊕t,

for some ai /∈ (ξp − 1)OK . The matrix of the action of ϕ on OK is:

0 −1

1
. . . 0 ...
. . .

. . .
...

. . . 0
...

0 1 −1


,

so its minimal polynomial over Q is the cyclotomic polynomial Φp, henceOK has
no G-invariant element over Z. Over Fp, the minimal polynomial of OK ⊗Z Fp

is Φp = (X − 1)p−1, so OK ⊗Z Fp is isomorphic to Np−1 as a Fp[G]-module.
The matrix of the action of ϕ on (OK , a) is:

0 −1 ∗

1
. . . 0 ...

...
. . .

. . .
...

...
. . . 0

...
...

0 1 −1 ∗
0 . . . . . . . . . 0 1


,

so its minimal polynomial over Q is (X−1)Φp(X) = Xp−1, hence the subspace
of invariants (OK , a)G is a one-dimensional. Over Fp, the minimal polynomial
of (OK , a) ⊗Z Fp is (X − 1)p, so (OK , a) ⊗Z Fp is isomorphic to Np ' Fp[G]
as a Fp[G]-module. By reduction modulo p, the universal coe�cient theorem
implies:

Hk(X,Fp) ' N⊕rp ⊕N⊕sp−1 ⊕N
⊕t
1 ,

as Fp[G]-modules, so lkp(X) = r, lkp−1(X) = s, lk1(X) = t and lki (X) = 0 for 2 ≤
i ≤ p−2, this proves (1) and (2). Since each block contains a one-dimensional G-
invariant subspace, this implies also that: dimFp

Hk(X,Z)G = lkp(X)+lkp−1(X)+
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lk1(X), this proves (3). Over Z, only the trivial G-module in Hk(X,Z) and the
G-modules (OK , a) contain a G-invariant subspace of dimension 1, so:

rkZH
k(X,Z)G = r + t = lkp(X) + lk1(X),

this proves (4).

Assume p = 2. We will need some additional notation. If we consider
x ∈ Hk(X,Z) such that x ∈ N1 (with x = x ⊗ 1 ∈ Hk(X,F2)), then x could
be invariant or anti-invariant. We want to distinguish these two cases. We add
to the setting of Boissière�Nieper-Wisskirchen�Sarti the following de�nition-
proposition in the case p = 2.

De�nition-Proposition 2.2.2.

1) Assume that H∗(X,Z) is torsion-free and p ≤ 19. Then for 0 ≤ k ≤ 2 dimX
we have the isomorphism of Z[G]-modules:

Hk(X,Z) ' ⊕ri=1(OK , ai)⊕O⊕sK ⊕ Z⊕t

for some ai /∈ (ξp − 1)OK . Hence, when 3 ≤ p ≤ 19, r = lkp(X); s = lkp−1(X)

and t = lk1(X).

2) In the case p = 2, OK is anti-invariant. For all 0 ≤ k ≤ dimRX, we denote
t := lk1,+(X) and s := lk1,−(X). We have lk1(X) = lk1,+(X) + lk1,−(X).

Proof. It follows from the proof of Proposition 2.2.1 (Proposition 5.1 of [11]).

Remark: The invariants lki (X), 1 ≤ i ≤ p when p > 2 and lk1,+, l
k
1,−, l

k
2(X)

when p = 2 are uniquely determined by X, G and k.

Proposition 2.2.3. Assume that H∗(X,Z) is torsion-free and p = 2. Then for
0 ≤ k ≤ 2 dimX we have:

• rkZH
k(X,Z) = 2lk2(X) + lk1(X).

• rkZH
k(X,Z)G = lk2(X) + lk1,+(X).

Proof. It follows from proof of Proposition 2.2.1.

De�nition-Proposition 2.2.4. Assume that H∗(X,Z) is torsion-free and 2 ≤
p ≤ 19. Let 0 ≤ k ≤ 2 dimX.

1) Let SkG(X) := ker(σ) ∩Hk(X,Z). Then Hk(X,Z)G ∩ SkG(X) = 0.

2) Hk(X,Z)

Hk(X,Z)G⊕SkG(X)
is a p-torsion module. There is akG(X) ∈ N such that

Hk(X,Z)

Hk(X,Z)G ⊕ SkG(X)
= (Z /pZ)

akG(X)
.
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3) We have
akG(X) = lkp(X).

4) rkSkG(X) is divisible by p− 1. We de�ne mk
G(X) :=

rkSkG(X)
p−1 .

Proof. See Lemma 5.3, Corollary 5.8 and De�nition 5.9 of [11].

Proposition 2.2.5. Assume that H∗(X,Z) is torsion-free and 3 ≤ p ≤ 19.
Then:

mk
G(X) = lkp(X) + lkp−1(X).

Proof. See Corollary 5.10 of [11].

And in the case p = 2, we have:

Proposition 2.2.6. Assume that H∗(X,Z) is torsion-free and p = 2. Then:

mk
G(X) = lk2(X) + lk1,−(X).

Proof. Heremk
G(X) = rkSkG(X), so this just follows from the fact that sign i∗k =

(lk2(X) + lk1,+, l
k
2(X) + lk1,−), where G = 〈i〉 and i∗k is the action induced by i on

Hk(X,Z).

We also recall the following useful lemma on irreducible symplectic manifolds
of K3[2]-type. It is Lemma 6.5 of [11]. It is an analog of Lemma 3.3.9 with
cohomology groups endowed with the Beauville�Bogomolov form instead of the
cup-product.

Lemma 2.2.7. Assume that X is an irreducible symplectic manifold of K3[2]-
type and G is an order p group of automorphisms of X with 3 ≤ p ≤ 19.
The second cohomology group is endowed with the Beauville�Bogomolov form.
Then the lattice S2

G(X) has discriminant group AS2
G(X) ' (Z /pZ)a

2
G(X). The

invariant lattice H2(X,Z)G has discriminant group AH2(X,Z)G ' (Z /2Z) ⊕
(Z /pZ)a

2
G(X), and discrH2(X,Z)G = 2pa

G
2 (X).

Proof. We recall the proof. By Proposition 2.1.1, we have:

[#H2(X,Z)/(H2(X,Z)G ⊕ S2
G(X))]2

= discr(H2(X,Z)G) · discr(S2
G(X)) · discr(H2(X,Z))−1.

By De�nition-Proposition 2.2.4

H := H2(X,Z)/(H2(X,Z)G ⊕ S2
G(X)) = (Z /pZ)a

2
G(X).

Hence , we have discr(H2(X,Z)G) ·discr(S2
G(X)) = 2p2a2

G (because discrH2(X,
Z) = 2). Therefore discr(H2(X, Z)G) = 2εpα and discr(S2

G(X)) = 21−εpβ with
ε ∈ {0, 1} since p is odd, with α+ β = 2a2

G(X). Let

H = H2(X,Z)/(H2(X,Z)G ⊕ S2
G(X)).
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Since H2(X,Z)G is primitive, the projections pH2(X,Z)G : H → AH2(X,Z)G and
pS2

G(X) : H → AS2
G(X) are injective (see Section 2.1.1). We deduce that a2

G(X) ≤
α and a2

G(X) ≤ β. This shows that α = β = a2
G(X).

We will prove now that G acts trivially on AS2
G(X). There are two possibili-

ties:

(1) H ' AH2(X,Z)G and AS2
G(X)/H ' Z /2Z,

(2) H ' AS2
G(X) and AH2(X,Z)G/H ' Z /2Z .

By Remark 5.4 of [11], H is a trivial G-module so in case (2) the result is
clear. In case (1) one has a G-equivariant inclusion:

H = (Z /pZ)a
2
G(X) → (Z /2Z)⊕ (Z /pZ)a

2
G(X) = AS2

G(X).

Since p is odd, this map is trivial on the �rst factor. Since H is a trivial G-
module. This shows that G acts trivially on AS2

G(X).

Since S2
G(X) = Kerσ and G acts trivially on AS2

G(X), it follows that AS2
G(X)

is a p-torsion module so ε = 0. This shows that the case (1) cannot occur, so we

have H ' AS2
G(X) ' (Z /pZ)a

2
G(X) and AH2(X,Z)G ' (Z /2Z) ⊕ (Z /pZ)a

2
G(X).

2.3 Reminder on equivariant cohomology

Let Y be a variety and G a group acting on Y . Let EG → BG be a universal
G-bundle in the category of CW-complexes. Denote by YG = EG×GY the orbit
space for the diagonal action of G on the product EG × Y and f : YG → BG
the map induced by the projection onto the �rst factor. The map f is a locally
trivial �bre bundle with typical �bre Y and structure group G. We de�ne the
G-equivariant cohomology of Y by H∗G(Y ) := H∗(EG ×G Y ). We recall that
when G acts freely,

H∗(Y/G) ' H∗G(Y ),

where the isomorphism is induced by the natural map f : EG ×G Y → Y/G,
see for instance [4]. Moreover, the Leray�Serre spectral sequence associated to
the map f gives a spectral sequence converging to the equivariant cohomology:

Ep,q2 := Hp(G;Hq(Y ))⇒ Hp+q
G (Y ).

2.4 Reminder on the basic tools of Smith theory

A use of Smith theory will be necessary in Section 4.6.4, hence we recall here
its main result. Let T be a topological space and let G be a group of prime
order p acting on T . We �x a generator g of G. Let τ := g − 1 ∈ Fp[G] and
σ := 1 + g + · · · + gp−1 ∈ Fp[G]. We consider the chain complex C∗(T ) of T
with coe�cients in Fp and its subcomplexes τ iC∗(T ) for 1 ≤ i ≤ p− 1 (we have
σ = τp−1). We denote also XG the �xed locus of the action of G on T . We can
�nd in [11], Section 7 the following proposition.
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Proposition 2.4.1. • [12], Theorem 3.1. For 1 ≤ i ≤ p − 1 there is an
exact sequence of complexes:

0 // τ iC∗(T )⊕ C∗(TG)
f // C∗(T )

τp−i// τp−iC∗(T ) // 0 ,

where f denotes the sum of the inclusions.

• [12], p.125. For 1 ≤ i ≤ p− 1 there is an exact sequence of complexes:

0 // σC∗(T )
f // τ iC∗(T )

τ // τ i+1C∗(T ) // 0 ,

where f denotes the inclusion.

• [12], (3.4) p.124. There is an isomorphism of complexes:

σC∗(T ) ' C∗(T/G, TG),

where TG is identi�ed with its image in T/G.

2.5 Cohomology of the blowup

We recall Theorem 7.31 of Voisin [67] which will be used in Section 3.5.2.
Let X be a Kähler manifold, and let Z ⊂ X be a submanifold. By proposi-

tion 3.24 of [67], the blowup X̃Z
τ→ X of X along Z is still a Kähler manifold.

Let E = r−1(Z) be the exceptional divisor. E is a projective bundle of rank

r − 1, r = codimZ. Moreover, j : E ↪→ X̃Z is a smooth hypersurface. The
Hodge structure on Hk(X̃Z ,Z) is described as follows.

Theorem 2.5.1. Let h = c1(OE(1) ∈ H2(E,Z). Then we have an isomorphism
of Hodge structures:

Hk(X,Z)⊕
(⊕r−2

i=0 H
k−2i−2(Z,Z)

) τ∗+
∑
i j∗◦h

i◦τ∗|E // Hk(X̃Z ,Z).

Here, hi is the morphism of Hodge structures given by the cup-product by hi ∈
H2i(E,Z). On the components Hk−2i−2(Z,Z) of the left-hand side, we consider
the Hodge structure of Z with bidegree shifted by (i+1, i+1), so that the left-hand
side is a pure Hodge structure of weight k.



Chapter 3

On the integral cohomology of

quotients of complex

manifolds

3.1 Conventions and notation

Notation 3.1.1. Let X be a complex variety of dimension n.

• We will always consider the singular cohomology H∗(X,Z) endowed with
the cup product as a graded ring.

• The cup product will be denoted by a dot.

• When X will be compact, the group Hn(X,Z) endowed with the cup prod-
uct will be considered as a lattice.

• We will denote by torsH∗(X,Z) the torsion part of H∗(X,Z) and by
H∗(X,Z)/ tors the torsion-free part of H∗(X,Z).

• We will denote by rktorH∗(X,Z) := rk (torsH∗(X,Z)), the rank of the
torsion part of the cohomology, de�ned as the smallest number of genera-
tors.
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• We set:

h∗(X,Z) =

2 dimX∑
k=0

dimHk(X,Z),

h2∗(X,Z) =

dimX∑
k=0

dimH2k(X,Z),

h2∗+1(X,Z) =

dimX−1∑
k=0

dimH2k+1(X,Z),

We also set h2∗+ε(X,Z) = h2∗(X,Z) if n is even and h2∗+ε(X,Z) =
h2∗+1(X,Z) if n is odd.

• Assume H∗(X,Z) is torsion-free, then for all 0 ≤ k ≤ 2n, Hk(X,Z)⊗Fp =
Hk(X,Fp). Let x ∈ Hk(X,Z), we set x = x ⊗ 1 ∈ Hk(X,Z) ⊗ Fp =
Hk(X,Fp).

• In all the chapter, we will also use the notation of Section 2.2.

Remark: In almost all the statements of this chapter, we will assume that
X is a compact complex manifold and G is an automorphism group of prime
order p. Some results could be stated in a more general setting, but we stick
to this convention in order to avoid overloading the exposition with too many
technical details.

Our goal will be to calculate the cohomology of the quotient X/G. In the
case whenG acts freely onX, the answer can be given in terms of the equivariant
cohomology.

3.2 Use of equivariant cohomology

3.2.1 General facts

Let us consider a group G = 〈ϕ〉 of prime order p. We have the following
projective resolution of Z considered as a G-module:

. . . τ // Z[G]
σ // Z[G]

τ // Z[G]
ε // Z ,

where ε is the summation map: ε(
∑p−1
j=0 αjg

j) =
∑p−1
j=0 αj .

Let now H be a Fp[G]-module of �nite dimension over Fp as before. The
cohomology of G with coe�cients in H can be computed similarly as the coho-
mology of the complex:

0 // H
τ // H

σ // H
τ // . . . ,
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where τ , σ ∈ Fp[G] denote respectively the reduction of τ and σ modulo p. To
compute H∗(G,H) as an F -vector space, it is enough to compute the groups
H∗(G,Nq). We will denote by v1, . . . , vq a basis of Nq such that ϕ(v1) = v1 and
ϕ(vi) = vi + vi−1 for all i ≥ 2.

Proposition 3.2.1. 1) We have ker(τ) = 〈v1〉 and Im(τ) = 〈v1, . . . , vq−1〉,
for all q ≤ p.

2) We have: ker(σ) = Nq and Im(σ) = 0, for all q < p. We have: ker(σ) =
〈v1, . . . , vq−1〉 and Im(σ) = 〈v1〉, if q = p.

3) If q < p then Hi(G,Nq) = Fp for all i ≥ 0.

4) H0(G,Np) = Fp and Hi(G,Np) = 0 for all i ≥ 1.

We deduce the following lemma.

Lemma 3.2.2. Let X be a compact complex manifold and G an automorphism
group of prime order p acting on X. Assume that H∗(X,Z) is torsion-free.
For x ∈ Hk(X,Z)G, 0 ≤ k ≤ 2 dimX, there exists y ∈ Hk(X,Z) such that
x = y + ϕ(y) + · · ·+ ϕp−1(y) if and only if x ∈ Np.

Proof. ⇒ If x = 0, then x ∈ Np. Now we assume that x 6= 0. Then
y /∈ kerσ, so by Proposition 3.2.1, 2), y ∈ Np. Hence x ∈ Np.

⇐ Since x ∈ Np, we can write x =
∑
i αiv1,i, where v1,i are invariant elements

of direct summands of Np, isomorphic to Np (see Proposition 3.2.1, 1)).
But, we have v1,i = vp,i + ϕ(vp,i) + · · ·+ ϕp−1(vp,i) by Proposition 3.2.1,
2). The result follows.

From Proposition 3.2.1, we can also deduce the following proposition for
concrete calculation.

Proposition 3.2.3. Let X be a compact complex manifold and G an automor-
phism group of prime order p acting on X. For 0 ≤ k ≤ 2 dimX we have:

• H0(G,Hk(X,Fp)) = (Z /pZ)
∑

0≤q≤p l
k
q (X),

• Hi(G,Hk(X,Z)) = (Z /pZ)
∑

0≤q<p l
k
q (X), for all i > 0.

We can apply similar considerations to the cohomology with coe�cients in
Z. If H is a Z[G]-module of �nite rank over Z, the cohomology of G with
coe�cients in H is computed as the cohomology of the complex:

0 // H
τ // H

σ // H
τ // . . . .

We have the following proposition.

Proposition 3.2.4. Let X be a compact complex manifold and G an automor-
phism group of prime order p acting on X. Assume that H∗(X,Z) is torsion-free
and 3 ≤ p ≤ 19. Then for 0 ≤ k ≤ 2 dimX we have:
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• H0(G,Hk(X,Z)) = Hk(X,Z)G,

• H2i−1(G,Hk(X,Z)) = (Z /pZ)l
k
p−1(X),

• H2i(G,Hk(X,Z)) = (Z /pZ)l
k
1 (X),

for all i ∈ N∗.

Proof. • By de�nition, H0(G,Hk(X,Z)) = Ker τ .

• In odd degrees, H2i−1(G,Hk(X,Z)) = Kerσ/ Im τ . In the proof of Theo-
rem 74.3 of [15], it is shown that:

Kerσ = OKb1 ⊕ · · · ⊕ OKbr+s−1 ⊕Abr+s,
Im τ = E1b1 ⊕ · · · ⊕ En−1br+s−1 ⊕ Er+sAbr+s,

with b1, . . . , bn, OK-free elements in Kerσ, A an OK-ideal of K and

E1 = · · · = Er = OK , Er+1 = · · · = Er+s = (ξp − 1)OK .

And the r and the s in the last equalities are the same as in the proof of
Proposition 2.2.1 (Proposition 5.1 of [11]). Moreover, we �nd in the proof
of Theorem 74.3 of [15] that OK/(ξp − 1)OK = A/(ξp − 1)A = Z /pZ.
Hence, we get Kerσ/ Im τ = (Z /pZ)l

k
p−1(X).

• For i ≥ 1, H2i(G,Hk(X,Z)) = Ker τ/ Imσ. We have seen in the proof of
Proposition 2.2.1 that:

Hk(X,Z)G ' ⊕ri=1(OK , ai)G ⊕ Z⊕t .

By Lemma 3.2.2 all the elements in ⊕ri=1(OK , ai)G can be written y +
ϕ(y) + · · ·+ ϕp−1(y) with y ∈ Hk(X,Z). The result follows.

Now we state a similar result in the case p = 2.

Proposition 3.2.5. Let X be a compact complex manifold and G an automor-
phism group of order 2 acting on X. Assume that H∗(X,Z) is torsion-free.
Then for 0 ≤ k ≤ 2 dimX we have:

• H0(G,Hk(X,Z)) = Hk(X,Z)G,

• H2i−1(G,Hk(X,Z)) = (Z /2Z)l
k
1,−(X),

• H2i(G,Hk(X,Z)) = (Z /2Z)l
k
1,+(X),

for all i ∈ N∗.

Proof. The same proof as in the last proposition.
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We can give more precise results on the cohomology of the quotient by
imposing additional hypothesis on the degeneration of the spectral sequence.

De�nition 3.2.6. Let G be a group of prime order p acting by automorphisms
on a complex manifold X. We will say that (X,G) is E2-degenerate if the
spectral sequence of equivariant cohomology with coe�cients in Fp degenerates
at the E2-term. We will say that (X,G) is E2-degenerate over Z if the spectral
sequence of equivariant cohomology with coe�cients in Z degenerates at the E2-
term.

3.2.2 Case where G acts freely

We can use the equivariant cohomology to calculate the integral cohomology of
a quotient when the action of the group is free.

Proposition 3.2.7. Let X be a compact complex manifold and G a group of
prime order, acting freely on X in such a way that (X,G) is E2-degenerate
over Z. Assume that H∗(X,Z) is torsion-free and 3 ≤ p ≤ 19. Then for
0 ≤ 2k ≤ 2 dimX, we have

H2k(X/G,Z) ' H2k(X,Z)G
k−1⊕
i=0

(Z /pZ)l
2i+1
p−1 (X)

k−1⊕
i=0

(Z /pZ)l
2i
1 (X),

and for 0 ≤ 2k + 1 ≤ 2 dimX,

H2k+1(X/G,Z) ' H2k+1(X,Z)G
k⊕
i=0

(Z /pZ)l
2i
p−1(X)

k−1⊕
i=0

(Z /pZ)l
2i+1
1 (X).

Proof. We have H2k(X/G,Z) ' H2k
G (X) by Section 2.3. Moreover Ep,q2 :=

Hp(G;Hq(X)) ⇒ Hp+q
G (X). Since the spectral sequence of equivariant coho-

mology degenerates at the E2-page,

H2k(X/G,Z) '
2k⊕
i=0

Hi(G;H2k−i(X,Z)),

and by Proposition 3.2.4,

H2k(X/G,Z) ' H2k(V,Z)G
k−1⊕
i=0

(Z /pZ)l
2i+1
p−1 (X)

k−1⊕
i=0

(Z /pZ)l
2i
1 (X).

The same formula holds for p = 2.

Proposition 3.2.8. Let X be a compact complex manifold and G a group order
of order 2 acting freely on X in such a way that (X,G) is E2-degenerate over
Z. Assume that H∗(X,Z) is torsion-free. Then

H2k(X/G,Z) ' H2k(X,Z)G
k−1⊕
i=0

(Z /pZ)l
2i+1
1,− (X)

k−1⊕
i=0

(Z /pZ)l
2i
1,+(X)



30 On the integral cohomology of quotients of complex manifolds

for 0 ≤ 2k ≤ 2 dimX, and

H2k+1(X/G,Z) ' H2k+1(X,Z)G
k⊕
i=0

(Z /pZ)l
2i
1,−(X)

k−1⊕
i=0

(Z /pZ)l
2i+1
1,+ (X)

for 0 ≤ 2k + 1 ≤ 2 dimX.

We can replace the condition of E2-degeneration over Z by conditions on the
lji (X).

Proposition 3.2.9. Let X be a manifold and G a group of prime order acting
freely on X. Assume that H∗(X,Z) is torsion-free and 3 ≤ p ≤ 19. For
0 ≤ 2k ≤ 2 dimX, assume:

i) l2ip−1(X) = 0 for all 1 ≤ i ≤ k,

ii) l2i+1
1 (X) = 0 for all 0 ≤ i ≤ k − 1 when k > 1.

Then we have:

H2k(X/G,Z) ' H2k(X,Z)G
k−1⊕
i=0

(Z /pZ)l
2i+1
p−1 (X)

k−1⊕
i=0

(Z /pZ)l
2i
1 (X)

Proof. It is enough to check that all the groups Hi(G,H2k+1−i(X,Z)), 1 ≤ i ≤
2k − 1 and Hi(G,H2k−i−1(X,Z)), 1 ≤ i ≤ 2k − 2 are trivial. By Proposition
3.2.4, this is exactly the condition on the lji (X).

We have a similar result for p = 2.

Proposition 3.2.10. Let X be a manifold and G a group of order 2 acting
freely on X. Assume that H∗(X,Z) is torsion-free. For 0 ≤ 2k ≤ 2 dimX,
assume:

i) l2i1,−(X) = 0 for all 1 ≤ i ≤ k,

ii) l2i+1
1,+ (X) = 0 for all 0 ≤ i ≤ k − 1, k > 1.

then we have:

H2k(X/G,Z) ' H2k(X,Z)G
k−1⊕
i=0

(Z /2Z)l
2i+1
1,− (X)

k−1⊕
i=0

(Z /2Z)l
2i
1,+(X)

Remark: It is also possible to calculate Hk(X/G,Fp) by the spectral se-
quence of equivariant cohomology with coe�cients in Fp when (X,G) is E2-
degenerate and the action of G is free. We get similar formulas using Proposition
3.2.3. Then one can deduce Hk(X/G,Z) by the universal coe�cient theorem.
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3.3 H∗-normality

3.3.1 De�nition

Now we want to calculate the cohomology of X/G when the action of G is not
free. A fundamental tool for studying this question is given by the following
proposition, which follows from [65].

Proposition 3.3.1. Let G be a �nite group of order d acting on a variety X
with orbit map π : X → X/G, which is a d-fold covering (possibly rami�ed).
Then there is a natural homomorphism π∗ : H∗(X,Z)→ H∗(X/G,Z) such that

π∗ ◦ π∗ = d idH∗(X/G,Z), π∗ ◦ π∗ =
∑
g∈G

g∗.

It easily implies the corollary:

Corollary 3.3.2. Let G be a �nite group of order d acting on a variety X with
the orbit map π : X → X/G, which is a d-fold rami�ed covering. Then:

1) π∗|H∗(X/G,Z)/ tors is injective,

2) π∗|H∗(X,Z)G ◦ π∗ = d idH∗(X/G,Z) and π
∗ ◦ π∗|H∗(X,Z)G = d idH∗(X,Z)G ,

3) H∗(X/G,Q) ' H∗(X,Q)G.

Leaving aside the question of determining the torsion of H∗(X/G,Z), we go
on to the study of the image of π∗ in H

∗(X/G,Z)/ tors.

Proposition 3.3.3. Let X be a compact complex manifold of dimension n and
G an automorphism group of prime order p. Let 0 ≤ k ≤ 2n, and assume that
Hk(X,Z) is torsion-free. Then there is an exact sequence:

0 // π∗(Hk(X,Z)) // Hk(X/G,Z)/ tors // (Z /pZ)αk // 0,

where π : X → X/G is the quotient map and αk is a positive integer.

Proof. Let x ∈ Hk(X/G,Z)/ tors. Then px = π∗(π
∗(x)) with π∗(x) ∈ Hk(X,Z),

which implies the result.

It remains to calculate αk. In this section our goal will be to understand, in
which cases αk = 0.

De�nition-Proposition 3.3.4. Let X be a compact complex manifold of di-
mension n and G = 〈ϕ〉 an automorphism group of prime order p. Let 0 ≤ k ≤
2n, and assume that Hk(X,Z) is torsion-free.

The integer αk from Proposition 3.3.3 will be called the coe�cient of nor-
mality. The following statements are equivalent:

• αk = 0,
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• the map π∗ : Hk(X,Z)→ Hk(X/G,Z)/ tors is surjective.

• For x ∈ Hk(X,Z)G, π∗(x) is divisible by p if and only if there exists
y ∈ Hk(X,Z) such that x = y + ϕ∗(y) + · · ·+ (ϕ∗)p−1(y).

If one of these statements is veri�ed, we will say that (X,G) is Hk-normal.

Proof. The two �rst statements are equivalent by Proposition 3.3.3. We show
that the second one is equivalent to the third one.

⇐ Let x ∈ Hk(X/G,Z)/ tors. We have π∗(π
∗(x)) = px. Hence, π∗(x) can

be written in the form y+ϕ∗(y) + · · ·+ (ϕ∗)p−1(y) for y ∈ π∗(Hk(X,Z)).
Then π∗(π

∗(x)) = pπ∗(y) = px, so π∗(y) = x.

⇒ Let x ∈ Hk(X,Z)G such that p divides π∗(x). Since π∗ : Hk(X,Z) →
Hk(X/G,Z)/ tors is surjective, there is z ∈ Hk(X,Z) such that pπ∗(z) =
π∗(x). We apply π∗ to this equality. By Proposition 3.3.1, we get p(z +
ϕ∗(z) + · · ·+ (ϕ∗)p−1(z)) = px.

Corollary 3.3.5. Let X be a compact complex manifold of dimension n and
G = 〈ϕ〉 an automorphism group of prime order p. Let 0 ≤ k ≤ 2n. Let

Hk
σ(X,Z) =

{
x+ ϕ∗(x) + · · ·+ (ϕ∗)p−1(x)| x ∈ Hk(X,Z)

}
.

Assume that Hk(X,Z) is torsion-free. If the pair (X,G) is Hk-normal, then
the map

1

p
π∗ : Hk

σ(X,Z)→ Hk(X/G,Z)/ tors

is an isomorphism, and its inverse is

π∗ : Hk(X/G,Z)/ tors→ Hk
σ(X,Z).

Proof. This map is clearly well de�ned. Since (X,G) is Hk-normal, it is surjec-
tive. It remains to show that it is injective. If π∗(x+ϕ∗(x) + · · ·+ (ϕ∗)p−1(x))
is a torsion element in Hk(X/G,Z), then by Corollary 3.3.2, x + ϕ∗(x) +
· · · + (ϕ∗)p−1(x) is also a torsion element. Since Hk(X,Z) is torsion-free,
x+ ϕ∗(x) + · · ·+ (ϕ∗)p−1(x) = 0.

We will also need the following two lemmas.

Lemma 3.3.6. Let X be a compact complex manifold of dimension n and G =
〈ϕ〉 an automorphism group of prime order p. Let 0 ≤ k ≤ 2n. Assume that
Hk(X,Z) is torsion-free. Let K′k be the overlattice of π∗(H

k(X,Z)G) obtained
by dividing by p all the elements of the form π∗(y + ϕ(y) + · · · + ϕp−1(y)),
y ∈ Hk(X,Z). Then:

K′k = π∗(H
k(X,Z)).

Proof. Let y ∈ Hk(X,Z), we have π∗(y + ϕ∗(y) + · · ·+ (ϕ∗)p−1(y)) = pπ∗(y).
The result follows.



33

Lemma 3.3.7. Let X be a compact complex manifold of dimension n and G =
〈ϕ〉 an automorphism group of prime order p.

1) Let 0 ≤ k ≤ 2 dimX, q an integer such that kq ≤ 2 dimX and x ∈
Hk(X,Z)G. Then

π∗(x)q = pq−1π∗(x
q) + tors .

If moreover Hkq(X,Z) is torsion-free, then the property that π∗(x) is di-
visible by p implies that π∗(x

q) is divisible by p.

2) Let 0 ≤ k ≤ 2 dimX, q an integer such that kq ≤ 2 dimX, and let
(xi)1≤i≤q be elements of Hk(X,Z)G. Then

π∗(x1) · ... · π∗(xq) = pq−1π∗(x1 · ... · xq) + tors .

3) Let 0 ≤ k ≤ 2 dimX, q an integer such that kq = 2n and let (xi)1≤i≤q be
elements of Hk(X,Z)G. Then

π∗(x1) · ... · π∗(xq) = pq−1x1 · ... · xq.

Proof. 1) By Corollary 3.3.2

π∗(π∗(x)q) = pqxq = π∗(pq−1π∗(x
q)).

The map π∗ is injective on the torsion-free part, which implies the wanted
equality. If moreover π∗(x) is divisible by p, we can write π∗(x) = py with
y ∈ Hkq(X/G,Z). This gives:

pqyq = pq−1π∗(x
q) + tors .

We cannot divide by pq−1 because of the possible torsion of Hkq(X/G,Z).
We will use the fact that Hkq(X,Z) is torsion-free to get round the prob-
lem. Applying π∗ to this equality, we obtain:

pqπ∗(yq) = pqxq + π∗(tors).

Since Hkq(X,Z) is torsion-free, π∗(tors) = 0, and we have

π∗(yq) = xq.

Pushing down by π∗, we obtain:

pyq = π∗(x
q).

2) The proof is similar.

3) By 2), we have:

π∗(x1) · ... · π∗(xq) = pq−1π∗(x1 · ... · xq) + tors .

ButH2n(X,Z) = Z is torsion-free by Poincaré duality. IdentifyingH2n(X,Z)
with Z, we can write π∗(x1 · ... · xq) = x1 · ... · xq.
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3.3.2 Hn-normality and cup-product lattice

Under the assumption of the Hn-normality, we can determine the cup-product
lattice.

Proposition 3.3.8. Let X be a compact complex manifold of dimension n and
G an automorphism group of prime order p. Assume that Hn(X,Z) is torsion-
free and (X,G) is Hn-normal. Let us denote the sublattice Hn(X,Z)G by L.
Then:

1) discrL = pa
n
G(X), with anG(X) ∈ N,

2) Hn(X/G,Z)/ tors ' L∨(p),

3) discrL∨(p) = prkL−anG(X).

Proof. We need the following lemma.

Lemma 3.3.9. Let X be a compact complex manifold of dimension n and G
an automorphism group of prime order. Assume that Hn(X,Z) is torsion-free.
Then:

1) The projection

Hn(X,Z)

Hn(X,Z)G ⊕ (Hn(X,Z)G)⊥
→ AHn(X,Z)G

is an isomorphism.

2) AHn(X,Z)G ' (Z /pZ)a
n
G , with anG ∈ N.

3) Moreover, let x ∈ Hn(X,Z)G. Then x
p ∈ (Hn(X,Z)G)∨ if and only if

there is z ∈ Hn(X,Z) such that x = z + ϕ(z) + · · ·+ ϕp−1(z).

Proof. 1) The �rst assertion follows from the unimodularity of Hn(X,Z).

2),3) We start by proving that

(Hn(X,Z)G)⊥ = SG(X).

First (Hn(X,Z)G)⊥ ⊃ SG(X). Indeed, let y ∈ SG(X) and z ∈ Hn(X,Z)G.
Then (ϕ∗)k(y) · z = (ϕ∗)k(y) · (ϕ∗)k(z) = y · z for all 0 ≤ k ≤ p.
Now we prove (Hn(X,Z)G)⊥ ⊂ SG(X). Let y ∈ (Hn(X,Z)G)⊥. Then
y + ϕ∗(y) + · · · + (ϕ∗)p−1(y) ∈ (Hn(X,Z)G)⊥ ∩ Hn(X,Z)G. Since the
cup-product form is non-degenerate, y + ϕ∗(y) + · · ·+ (ϕ∗)p−1(y) = 0.

Now, let x be a primitive element of Hn(X,Z)G and q ∈ N∗ such that
x
q ∈ (Hn(X,Z)G)∨. Then x

q ∈ AHn(X,Z)G . By the �rst assertion, there

is z ∈ H2(X,Z) and y ∈ SG(X) such that z = x+y
q . Then z + ϕ∗(z) +

· · · + (ϕ∗)p−1(z) = p
qx + y+ϕ∗(y)+···+(ϕ∗)p−1(y)

q . But y + ϕ∗(y) + · · · +
(ϕ∗)p−1(y) = 0. Hence z + ϕ∗(z) + · · · + (ϕ∗)p−1(z) = p

qx. Since x is
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primitive in Hn(X,Z)G, q divides p. Hence q = 1 or q = p. If q = p, we
get z + ϕ∗(z) + · · ·+ (ϕ∗)p−1(z) = x.

Since (X,G) is Hn-normal, from the last lemma and Lemma 3.3.6, we see
that Hn(X/G,Z)/ tors = π∗(L

∨). Hence by Lemma 3.3.7 3),

Hn(X/G,Z)/ tors = L∨(p).

By assertions 1) and 2) of the last lemma and by Proposition 2.1.3, discrL⊕
L⊥ = p2anG(X). But, since Hn(X,Z) is unimodular, discrL = discrL⊥. Hence
discrL = pa

n
G(X).

Moreover by assertion 2) of the last lemma, L∨/L = AL ' (Z /pZ)a
n
G(X).

Hence, by Proposition 2.1.1, we have discrL = (discrL∨) · p2anG(X). It follows
that discrL∨ = p−a

n
G(X) and discrL∨(p) = prkL−anG(X).

Remark: This Proposition de�nes anG(X) for all prime numbers p although
Proposition-De�nition 2.2.4 de�ned it just for 2 ≤ p ≤ 19.

Corollary 3.3.10. Let X be a compact complex manifold of dimension n and
G an automorphism group of prime order p such that Hn(X,Z) is torsion-free
and (X,G) is Hn-normal. Let us denote the lattice Hn(X/G,Z)/ tors by N .
Then

Hn(X,Z)G ' N∨(p).

Proof. We denote the sublattice Hn(X,Z)G by L. By Proposition 3.3.8,

Hn(X/G,Z)/ tors ' L∨(p).

The result follows from the equality (L∨(p))∨(p) = L.

We can also prove an upper bound for the coe�cient of normality. We start
with the following lemma.

Lemma 3.3.11. Let X be a compact complex manifold of dimension n and G an
automorphism group of prime order p acting on X. We assume that H∗(X,Z)
is torsion-free. Then:

1) discrπ∗(H
n(X,Z)) = pb, with b ∈ N.

2) If moreover 2 ≤ p ≤ 19, then

discrπ∗(H
n(X,Z)) = pl

n
1 (X)

for p 6= 2, and

discrπ∗(H
n(X,Z)) = 2l

n
1,+(X)

for p = 2.
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Proof. 1) By Lemma 3.3.6, π∗(H
n(X,Z)) = K′n. Hence

K′n ⊃ π∗(Hn(X,Z)G).

Then, by Proposition 2.1.1, discrK′n divides discrπ∗(H
n(X,Z)G). More-

over, by Proposition 3.3.8 1), discrHn(X,Z)G = pa
n
G , and by Lemma 3.3.7

3),

discrπ∗(H
n(X,Z)G) = pa

n
G+rkHn(X,Z)G .

Hence discrπ∗(H
n(X,Z)) = discrK′n divides pa

n
G+rkHn(X,Z)G .

2) We prove the proposition for 3 ≤ p ≤ 19; the proof for p = 2 is exactly
the same.

By De�nition-Proposition 2.2.4 3) discrHn(X,Z)G = pl
n
p (X). Then by

Lemma 3.3.7, discrπ∗(H
n(X,Z)G) = pl

n
p (X)+rkHn(X,Z)G . Hence by Propo-

sition 2.2.1,
discrπ∗(H

n(X,Z)G) = p2lnp (X)+ln1 (X).

Moreover K′n/π∗(Hn(X,Z)G) = (Z /pZ)l
n
p (X). Indeed, we have seen in

proof of Proposition 2.2.1 that

Hk(X,Z)G ' ⊕ri=1(OK , ai)G ⊕ Z⊕t .

By Lemma 3.2.2, (OK , ai)G is generated by an element y + ϕ∗(y) + · · ·+
(ϕ∗)p(y) with y ∈ (OK , ai).
Therefore, by Proposition 2.1.1,

discrK′n = pl
n
1 (X).

Corollary 3.3.12. Let X be a compact complex manifold of dimension n and
G an automorphism group of prime order p acting on X. We assume that
H∗(X,Z) is torsion-free. Let αn be the n-th coe�cient of normality of (X,G).
Then:

1) αn ≤
logp discrπ∗(H

n(X,Z))

2 .

2) If moreover 2 ≤ p ≤ 19, then:

αn ≤ ln1 (X)
2 for p 6= 2, and

αn ≤
ln1,+(X)

2 for p = 2.

Proof. By Proposition 2.1.1 and Proposition 3.3.3,

discr(Hn(X/G,Z)/ tors) = discr(π∗(H
n(X,Z))) · p−2αn .

Hence, the result follows from Lemma 3.3.11.
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3.3.3 General results

We now can state some criteria for the Hk-normality.

Proposition 3.3.13. Let X be a compact complex manifold of dimension n
and G an automorphism group of prime order p acting on X. Assume that
H∗(X,Z) is torsion-free and 2 ≤ p ≤ 19. Let 0 ≤ k ≤ 2n.

If p = 2 and lk1,+(X) = 0 then (X,G) is Hk-normal. If p > 3 and lkp(X) = 0

then (X,G) is Hk-normal. In other words, if akG(X) = rkHk(X,Z)G then
(X,G) is Hk-normal.

Proof. By the hypothesis, we can write:

Hk(X,Z) ' ⊕ri=1(OK , ai)⊕O⊕sK .

Hence
Hk(X,Z)G ' ⊕ri=1(OK , ai)G.

Let x ∈ Hk(X,Z)G, then necessary x ∈ Np. Hence by Lemma 3.2.2, x =
y+ϕ∗(y) + · · ·+ (ϕ∗)p−1(y). Therefore, by Proposition-De�nition 3.3.4, (X,G)
is Hk-normal.

Now consider the case when X/G is smooth.

Proposition 3.3.14. Let X be a compact complex manifold of dimension n
and G an automorphism group of prime order 2 ≤ p ≤ 19 acting on X. Assume
that H∗(X,Z) is torsion-free and X/G is smooth. Then (X,G) is Hn-normal
if and only if

rkHn(X,Z)G = anG(X).

Proof. Assume that (X,G) is Hn-normal, then by Proposition 3.3.8,

Hn(X/G,Z)/ tors ' L∨(p)

with discrL∨(p) = prkHn(X,Z)G−anG(X). SinceX/G is smooth, Hn(X/G,Z)/ tors
is unimodular. The result follows.

It is also possible to calculate the n-th coe�cient of normality αn in this
case.

Proposition 3.3.15. Let X be a compact complex manifold of dimension n
and G an automorphism group of prime order p acting on X. Assume that
H∗(X,Z) is torsion-free, 2 ≤ p ≤ 19 and X/G is smooth. Then:

1) ln1 (X) is even when p > 2, and ln1,+(X) is even when p = 2.

2) αn =
ln1 (X)

2 when p > 2, and αn =
ln1,+(X)

2 when p = 2.

Proof. By proposition 3.3.3, (Hn(X/G,Z)/ tors)/π∗(H
n(X,Z)) = (Z /pZ)αn .

Since Hn(X/G, Z)/ tors is unimodular, the result follows by Proposition 2.1.1
and Lemma 3.3.11.
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We can also deduce the Hk-normality from Hkt-normality.

Proposition 3.3.16. Let X be a compact complex manifold of dimension n
and G an automorphism group of prime order 2 ≤ p ≤ 19 acting on X. Let
0 ≤ k ≤ 2 dimX, t an integer such that kt ≤ 2 dimX and H∗(X,Z) torsion-free
(we have H∗(X,Z)⊗ Fp = H∗(X,Fp)). Assume that (X,G) is Hkt-normal. If

S : SymtHk(X,Fp)→ Hkt(X,Fp)

x1 ⊗ · · · ⊗ xt 7→ x1 · ... · xt

is injective and S (SymtHk(X,Fp)) admits a complementary vector space, sta-
ble by the action of G, then (X,G) is Hk-normal.

Proof. We use the same notation for both Jordan decompositions of Hk(X,Z)
and of Hkt(X,Z):

Hk(X,Fp) =

p∑
q=1

N
⊕lkq (X)
q =

p∑
q=1

Nq.

Let x ∈ Hk(X,Z)G. We assume that there is no y ∈ Hk(X,Z) such that
x = y + ϕ∗(y) + · · ·+ (ϕ∗)p−1(y) and we show that π∗(x) is not divisible by p.

Then, by Lemma 3.2.2, x /∈ Np. Since S is injective and N⊗t1 = N1, we

have xt /∈ Np. By Lemma 3.2.2 there is no z ∈ Hk(X,Z) such that xt =
z +ϕ∗(z) + · · ·+ (ϕ∗)p−1(z). Since (X,G) is Hkt-normal π∗(x

t) is not divisible
by p. Now, since Hkt(X,Z) is torsion-free, by Lemma 3.3.7 1), π∗(x) is not
divisible by p.

In particular, when S is an isomorphism, S (SymtHk(X,Fp)) admits a
complementary vector space, stable by the action of G. Moreover, we can
calculate the lktq (X) in terms of lkq (X).

Proposition 3.3.17. Let X be a topological space and G a group of prime order
acting on X. Let t and k be integers. Assume that H∗(X,Z) is torsion-free. If

S : SymtHk(X,Fp)→ Hkt(X,Fp)

is an isomorphism, then:

lq(SymtHk(X,Fp)) = lktq (X),

where 1 ≤ q ≤ p.

Under the hypotheses of the previous Proposition, we can use the following
lemma (Lemma 6.14 from [11]):
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Lemma 3.3.18. Assume that 3 ≤ p ≤ 19, G = Z /pZ and let M be a �nite
Fp[G]-module. Then:

l1(Sym2M) =
l1(M) · (l1(M) + 1)

2
+
lp−1(M) · (lp−1(M)− 1)

2
,

lp−1(Sym2M) = lp−1(M) · l1(M),

lp(Sym2M) =
p+ 1

2
· lp(M) + p · lp(M) · (lp(M)− 1)

2
+
p− 1

2
· lp−1(M)

+ (p− 1) · lp(M) · lp−1(M) + lp(M) · l1(M)

+ (p− 2) · lp−1(M) · (lp−1(M)− 1)

2
,

and li(Sym2M) = 0 for 2 ≤ i ≤ p− 2.

In some cases, one can guarantee the bijectivity of S .

Proposition 3.3.19. Let X be a topological space. Let t and k be integers and
p a prime number. Assume that H∗(X,Z) is torsion-free.

If the cup product map SymtHk(X,Q)→ Hkt(X,Q) is an isomorphism and
Hkt(X,Z)/ SymtHk(X,Z) is p-torsion-free, then:

S : SymtHk(X,Fp)→ Hkt(X,Fp)

is an isomorphism.

Proof. We prove the injectivity.

Let x1 ⊗ · · · ⊗ xt ∈ SymtHk(X,Fp) such that x1 · ... · xt = 0. Then
there exists y ∈ Hkt(X,Z) such that x1 · ... · xt = py. Hence ẏ ∈
Hkt(X,Z)/ SymtHk(X,Z) is a p-torsion element (here ẏ is the class of
y modulo SymtHk(X,Z)). Hence by the hypothesis ẏ = 0. It follows
that y ∈ SymtHk(X,Z), so y = y1 · ... · yt with yi ∈ Hk(X,Z). Since
SymtHk(X,Q) → Hkt(X,Q) is injective, x1 ⊗ · · · ⊗ xt = py1 ⊗ · · · ⊗ yt.
So x1 ⊗ · · · ⊗ xt = 0.

We prove the surjectivity.

Let y ∈ Hkt(X,Fp), with y ∈ Hkt(X,Z). Since SymtHk(X,Q) →
Hkt(X,Q) is an isomorphism, there is q ∈ N and x1⊗· · ·⊗xt ∈ SymtHk(X,
Z) such that 1

qx1 · ... · xt = y. Hence ẏ ∈ Hkt(X,Z)/ SymtHk(X,Z) is a

q-torsion element. But since Hkt(X,Z)/ SymtHk(X,Z) is p-torsion-free,
p does not divide q. And S ( 1

qx1 ⊗ · · · ⊗ xt) = y.

3.3.4 H∗-normality and commutative diagrams

Let X be a compact complex manifold of dimension n and G = 〈ϕ〉 an au-

tomorphism group of prime order p. Let s : X̃ → X be a morphism from a



40 On the integral cohomology of quotients of complex manifolds

compact complex manifold X̃ of dimension n such that ϕ can be extended to an
automorphism of X̃. It means that there exists an automorphism ϕ̃ of order p
of X̃ such that s◦ ϕ̃ = ϕ◦s. We denote G̃ = 〈ϕ̃〉. We can consider the quotients

M := X/G and M̃ := X̃/G̃. We get a Cartesian diagram

M̃
r // M

X̃
s //

π̃

OO

X.

π

OO

It induces a commutative diagram on cohomology:

Hk(M,Z)
π∗

11

r∗

��

Hk(X,Z)π∗
qq

s∗

��

(∗)

Hk(M̃,Z)

π̃∗ --
Hk(X̃,Z).π̃∗mm

The idea is to �nd (X̃, G̃) whose H∗-normality descends to that of (X,G).

De�nition 3.3.20. Let X be a compact complex manifold of dimension n and
G = 〈ϕ〉 an automorphism group of prime order p. Let s : X̃ → X be a

morphism such that X̃ is a compact complex manifold of dimension n and there
is an automorphism ϕ̃ of order p of X̃ which veri�es s ◦ ϕ̃ = ϕ ◦ s. We denote
〈ϕ̃〉 by G̃, and the induced map X̃/G̃→ X/G by r.

• The quadruple (X̃, G̃, r, s) will be called a pullback of (X,G).

• If moreover s is a bimeromorphic map, s∗ : Hk(X,Fp) → Hk(X̃,Fp) is
injective and s∗(Hk(X,Fp)) admits a complementary vector space, stable

under the action of G̃, the quadruple (X̃, G̃, r, s) will be called a k-split
pullback of (X,G).

• If (X̃, G̃, r, s) is a k-split pullback of (X,G) and M̃ = X̃/G̃ is smooth,

then (X̃, G̃, r, s) will be called a regular k-split pullback of (X,G).

• If (X̃, G̃, r, s) is a k-split pullback (resp. a regular k-split pullback) for all

0 ≤ k ≤ 2n of (X,G), we say that (X̃, G̃, r, s) is a split pullback (resp. a
regular split pullback) of (X,G).

• We will also write (X̃, G̃) for short, reserving the symbols r, s to denote

the maps in the pullback (X̃, G̃, r, s).

We have the following lemma.

Lemma 3.3.21. Let X be a compact complex manifold of dimension n and
G = 〈ϕ〉 an automorphism group of prime order p. Let (X̃, G̃) be a pullback of
(X,G). Let 0 ≤ k ≤ 2 dimX and x ∈ Hk(X,Z)G. Then:

π̃∗(s
∗(x)) = r∗(π∗(x)) + tors .
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If moreover Hk(X̃,Z) is torsion-free, then the property that r∗(π∗(x)) is divisible
by p implies that π̃∗(s

∗(x)) is divisible by p.

Proof. By Diagram (*), we have:

π̃∗(r∗(π∗(x))) = s∗(π∗(π∗(x))) = p · s∗(x) = π̃∗(π̃∗(s
∗(x))).

The map π̃∗ is injective on the torsion-free part, so we get the equality. If
moreover r∗(π∗(x)) is divisible by p, we can write r∗(π∗(x)) = py with y ∈
Hk(M̃,Z). This gives:

π̃∗(s
∗(x)) + tors = py.

Applying π̃∗ to this equality, we get:

ps∗(x) = pπ̃∗(y).

Since Hk(X̃,Z) is torsion-free, this is also the case for the group s∗(Hk(X,Z)),
hence:

π̃∗(y) = s∗(x).

Hence by applying π̃∗, we get:

π̃∗(s
∗(x)) = py.

Lemma 3.3.22. Let X be a compact complex manifold of dimension n and
G = 〈ϕ〉 an automorphism group of prime order p. Let (X̃, G̃) be a n-split
pullback of (X,G). Let K be the overlattice of π̃∗(s

∗(Hn(X,Z)G)) obtained
by dividing by p all the elements of the form π̃∗(s

∗(y + ϕ(y) + · · ·+ ϕp−1(y))),

y ∈ Hn(X,Z). We assume that H∗(X,Z) and H∗(X̃,Z) are torsion-free. Then:

1) discrK = discrπ∗(H
n(X,Z)).

2) If moreover 2 ≤ p ≤ 19, then

discrπ∗(H
n(X,Z)) = discrK = pl

2
1(X)

for p 6= 2, and

discrπ∗(H
n(X,Z)) = discrK = 2l

2
1,+(X)

for p = 2.

3) If K is primitive, then (X,G) is Hn-normal.

Proof. 1) By the last lemma, we have r∗(K′n) + tors = K. Hence

discr r∗(K′n) = discrK.

Since r is a bimeromorphic map, we get discrK′n = discrK. The result
then follows from Lemma 3.3.6.
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2) This follows by 1) and Lemma 3.3.11.

3) We use the same notation for the Jordan decomposition of Hn(X,Fp) and

Hn(X̃,Fp).

Let x ∈ Hn(X,Z)G. We assume that there is no y ∈ Hn(X,Z) such that
x = y + ϕ∗(y) + · · ·+ (ϕ∗)p−1(y) and we show that π∗(x) is not divisible
by p. By Lemma 3.2.2 x /∈ Np.
Since s∗ : Hn(X,Fp)→ Hn(X̃,Fp) is injective and s ◦ ϕ̃ = ϕ ◦ s, s∗(x) /∈
Np. Hence by Lemma 3.2.2, there is no z ∈ Hn(X̃,Z) such that s∗(x) =
z + ϕ(z) + · · · + ϕp−1(z). Since K is primitive, π̃∗(s

∗(x)) is not divisible
by p. Hence by Lemma 3.3.21, r∗(π∗(x)) is not divisible by p. It follows
that π∗(x) is not divisible by p.

Proposition 3.3.23. Let X be a compact complex manifold of dimension n
and G = 〈ϕ〉 an automorphism group of prime order p. Let (X̃, G̃) be a k-split

pullback of (X,G). Assume H∗(X,Z) and H∗(X̃,Z) are torsion-free. If (X̃, G̃)
is Hk-normal then (X,G) is Hk-normal.

Proof. The proof is almost the same as the proof of 3) of Lemma 3.3.22. We use

the same notation for the Jordan decomposition of Hk(X,Fp) and Hk(X̃,Fp).
Let x ∈ Hk(X,Z)G. We assume that there is no y ∈ Hk(X,Z) such that

x = y + ϕ∗(y) + · · ·+ (ϕ∗)p−1(y) and we show that π∗(x) is not divisible by p.
By Lemma 3.2.2 x /∈ Np.

Since s∗ : Hk(X,Fp)→ Hk(X̃,Fp) is injective and s◦ ϕ̃ = ϕ◦ s, s∗(x) /∈ Np.
Hence by Lemma 3.2.2, there is no z ∈ Hk(X̃,Z) such that s∗(x) = z + ϕ(z) +

· · ·+ϕp−1(z). Since (X̃, G̃) is Hk-normal, π̃∗(s
∗(x)) is not divisible by p. Hence

by Lemma 3.3.21, r∗(π∗(x)) is not divisible by p. It follows that π∗(x) is not
divisible by p.

The relation of being a pullback is transitive.

Proposition 3.3.24. Let X be a compact complex manifold of dimension n
and G = 〈ϕ〉 an automorphism group of prime order p. Let 0 ≤ k ≤ 2n. Let
(X1, G1, r1, s1) be a pullback (resp. a k-split pullback, a regular k-split pullback)
of (X,G) and (X2, G2, r2, s2) be a pullback (resp. a k-split pullback, a regular
k-split pullback) of (X1, G1). Then (X2, G2, r1 ◦ r2, s1 ◦ s2) is a pullback (resp.
a k-split pullback, a regular k-split pullback) of (X,G).

We give an example of a split pullback.

Proposition 3.3.25. Let X be a Kähler manifold of dimension n and G =
〈ϕ〉 an automorphism group of prime order p. Let F ⊂ FixG be a connected
component. Assume that H∗(X,Z) is torsion-free.

Let s : X̃ → X be the blowup of X in F . Then G extends naturally to X̃.
Denote by G̃ this extension. Then (X̃, G̃) is a split pullback of (X,G).

Proof. This follows from Theorem 7.31 of [67] (Theorem 2.5.1).
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3.4 Resolution of the quotient

Let X be a Kähler manifold of dimension n and G = 〈ϕ〉 an automorphism
group of prime order p. In the last section, we have seen that blowups of X in a
connected component of FixG provide regular split pullbacks. In this section we
will �nd all the regular split pullbacks obtained from the blowup in connected
components of FixG. Then in Section 3.5 and Section 3.6 we will use these
regular split pullbacks and Lemma 3.3.22 3) to get some general theorems.

At each �xed point of G, by Cartan's Lemma 1 of [14] we can locally linearize
the action of G. Thus at a �xed point x ∈ X, the action of G on X is locally
equivalent to the action of G = 〈g〉 on Cn via

g = diag(ξk1
p , . . . , ξ

kn
p ),

where ξp is a p-th root of unity. Without loss of generality, we can assume that
k1 ≤ · · · ≤ kn ≤ p− 1.

De�nition 3.4.1. • We will say that a �xed point is of type 0 if k1 = · · · =
kn−1 = 0.

• We will say that a �xed point is of type 1 if there is i ∈ {1, . . . , n} such
that k1 = · · · = ki = 0 and ki+1 = · · · = kn.

• We will say that a �xed point is of type 2 if p = 3 and if it is not a point
of type 0 or 1.

When it is de�ned, we will denote o(x) the type of a �xed point x.

Proposition 3.4.2. Let X be a complex manifold of dimension n and G an
automorphism group of prime order p. Let x ∈ FixG.

1) The variety M = X/G is smooth in π(x) if and only if x is a point of type 0.

2) Let X̃ be the blowup of X in the connected components of FixG of codimension

≥ 2 and M̃ the quotient of X̃ by the natural action of G on X̃. The variety M̃
is smooth if and only if the points of FixG are of type 0 or 1.

Proof. By Lemma 1 of [14], we can assume that X = Cn and

G =
〈
diag(ξk1

p , . . . , ξ
kn
p )
〉
.

1) By the proof of Proposition 6 of [60], Cn/G is smooth if and only if
rk(g − id) = 1. Hence we get the result.

2) If 0 is a point of type 0, then s∗(0) is also of type 0 and M̃ is smooth at
π̃(s∗(0)).

Now assume that 0 is not of type 0. Let G =
〈
diag(ξk1

p , . . . , ξ
kn
p )
〉
acting

on Cn. If k1 = · · · = ki = 0, then

Cn/G ' Ci ×
(
Cn−i/

〈
diag(ξki+ip , . . . , ξknp )

〉)
,
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so without loss of generality, we can assume that all ki are di�erent from

0. Let C̃n be the blowup of Cn in 0 and G̃ the automorphism group of C̃n
induced by G. We will describe the action of G̃ on

C̃n = {((x1, . . . , xn), (a1 : · · · : an)) ∈Cn × Pn−1 |
rk ((x1, . . . , xn), (a1, . . . , an)) = 1} .

We denote by

Oi =
{

((x1, . . . , xn), (a1 : · · · : an)) ∈ Cn × Pn−1 | ai 6= 0
}

the chart ai 6= 0. We have

C̃n ∩ Oi = {((x1, . . . , xn), (a1 : · · · : an)) ∈Cn × Pn−1 |
xj = xiaj , j ∈ {1, . . . , n}} .

Hence we have an isomorphism:

f : C̃n ∩ Oi → Cn

((x1, . . . , xn), (a1 : · · · : an))→ (a1, . . . , ai−1, xi, ai+1, . . . , an)

Thus the action of G̃ on C̃n ∩Oi is an action on Cn given by the diagonal
matrix

diag(ξk1−ki
p , . . . , ξki−1−ki

p , ξkip , ξ
ki+1−ki
p , . . . , ξkn−kip ).

By assertion 1), M̃ is smooth if and only if k1 = · · · = kn.

Let X be a complex manifold and G an automorphism group of prime order
acting on X. Another idea to get regular split pullbacks of (X,G) is to consider
a sequence of blowups:

Mk
rk // · · · r2 // M1

r1 // M

Xk

Gk

XX
sk //

πk

OO

· · · s2 // X1

G1

XX
s1 //

π1

OO

X,

G

XX

π

OO

where each si+1 is the blowup of Xi in FixGi (M = M0, X = X0 and G = G0).
We can state the following proposition.

Proposition 3.4.3. There exists k ∈ N such that Mk is smooth if and only if
all the �xed points of G have type 0,1 or 2. Moreover in the case where FixG
has points of type 2, M2 is smooth.
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Proof. By Lemma 1 of [14], we can assume that X = Cn and

G =
〈
diag(ξk1

p , . . . , ξ
kn
p )
〉
.

1) If 0 is a point of type 0 or 1, by Proposition 3.4.2, M1 is smooth. If
0 is a point of type 2, we will show that M2 is smooth. Let G =〈

diag(ξk1
3 , . . . , ξkn3 )

〉
acting on Cn. Without loss of generality, we can

assume that all ki are di�erent from 0. Let C̃n be the blowup of Cn in 0.
By the proof of Proposition 3.4.2, on the chart ai 6= 0 the action of G1 is
given by the diagonal matrix

diag(ξk1−ki
3 , . . . , ξ

ki−1−ki
3 , ξki3 , ξ

ki+1−ki
3 , . . . , ξkn−ki3 ).

As p = 3, there is a j such that k1 = · · · = kj = 1 and kj+1 = · · · = kn = 2.
So if i ≤ j, by permuting the i-th and the j-th coordinates of the chart
Oi, we reduce the action to the form

diag(1, . . . , 1, ξ3, . . . , ξ3).

If i > j, by a permutation of coordinates we obtain

diag(ξ2
3 , . . . , ξ

2
3 , 1, . . . , 1).

In both cases, these are points of type 1. Hence all the points of FixG1

are points of type 0 or 1. Moreover, as there are no �xed points with both
eigenvalues ξ3, ξ

2
3 present in the diagonal matrix of the action, we can

conclude that the components of FixG1 with spectra (1, . . . , 1, ξ3, . . . , ξ3)
and (ξ2

3 , . . . , ξ
2
3 , 1, . . . , 1) are disjoint and can be blown up independently.

Hence by Proposition 3.4.2 2), M2 is smooth.

2) Now we will show that in the case of a point of type di�erent from 0, 1
or 2, Mk will never be smooth. We start with dimX = 2. By Lemma 1
of [14], we can assume that X = C2 and G =

〈
diag(ξp, ξ

α
p )
〉
. Since 0 is of

type di�erent from 0, 1 or 2, p > 3 and α is not equal to 0 or 1.

For x ∈ FixGi, we can write:

(Xi, Gi, x) ∼ (C2,
〈
diag(ξp, ξ

β
p )
〉
, 0),

where ξp is a non-trivial p-th root of the unity. Hence, we can de�ne a
sequence as follows:

ui =
{
β ∈ Z /pZ | ∃x ∈ Xi : (Xi, Gi, x) ∼ (C2,

〈
diag(ξp, ξ

β
p )
〉
, 0)
}
.

For instance, u0 =
{
α, 1

α

}
, u1 =

{
α− 1, 1

α−1 ,
α

1−α ,
1−α
α

}
,... Now assume

that there is i ∈ N such that Mi is smooth. Let i be the smallest integer
such that Mi is smooth. Hence by Proposition 3.4.2 1), ui = {0} and we
can write ui−1 = {α1, . . . , αk}. Let x ∈ FixGi−1 such that (Xi, Gi−1, x) ∼
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(C2,
〈
diag(ξp, ξ

αj
p )
〉
, 0), with αj ∈ ui−1 \ {0}. Let C̃2 be the blowup of C2

in 0. The action of
〈
diag(ξp, ξ

αj
p )
〉
on C̃2 has 2 �xed points a1 and a2 with

(see proof of Proposition 3.4.2):

(C̃2,
〈
diag(ξp, ξ

αj
p )
〉
, a′1) ∼ (C2,diag(ξp, ξ

αj−1
p ), 0)

and
(C̃2,

〈
diag(ξp, ξ

αj
p )
〉
, a′2) ∼ (C2,diag(ξαjp , ξ1−αj

p ), 0).

Hence αj − 1 ∈ ui, but ui = {0}. Hence necessarily, αj = 1. Then
ui−1 = {1}.
We do the same calculation with ui−2. We can write ui−2 = {α′1, . . . , α′k}.
Let x ∈ FixGi−2 such that:

(Xi−2, Gi−2, x) ∼ (C2,
〈

diag(ξp, ξ
α′j
p )
〉
, 0).

with α′j ∈ ui−2 \{0, 1}. We remark that ui−2 \{0, 1} is not empty because

Mi−1 is not smooth by de�nition of i. Let C̃2 be the blowup of C2 in 0.

The action of
〈

diag(ξp, ξ
αj′
p )

〉
on C̃2 has 2 �xed points a′1 and a′2 with

(see proof of Proposition 3.4.2):

(C̃2,
〈

diag(ξp, ξ
α′j
p )
〉
, a1) ∼ (C2,diag(ξp, ξ

α′j−1
p ), 0)

and

(C̃2,
〈

diag(ξp, ξ
α′j
p )
〉
, a1) ∼ (C2,diag(ξ

α′j
p , ξ

1−α′j
p ), 0).

But

(C2,diag(ξ
α′j
p , ξ

1−α′j
p ), 0) ∼ (C2,diag(ξp, ξ

1−α′j
α′
j

p ), 0).

Hence necessarily, α′j = 2 and α′j = 1
2 = p−1

2 . Hence p = 3 and we are
done.

Now, we assume n > 2. By Lemma 1 of [14], we can assume that X = Cn
and G =

〈
diag(ξk1

p , ξ
k2
p , . . . , ξ

kn
p )
〉
. Without loss of generality, we can

assume that all the ki are di�erent from 0. Since 0 is of type di�erent from
0,1 or 2, p > 3 and the ki are not all equal. Without loss of generality,
we can assume that k1 = 1. Since not all the ki are equal, there is
j ∈ {1, . . . , n} such that kj 6= 1. We also denote α = kj . We denote
X ′ = C2 and G′ =

〈
diag(ξp, ξ

α
p )
〉
. And we de�ne as before the sequence:

u′i =
{
β ∈ Z /pZ | ∃x ∈ X ′i : (X ′i, G

′
i, x) ∼ (C2,

〈
diag(ξp, ξ

α
p )
〉
, 0)
}
.

We de�ne also the following sequence:

Ui = {β ∈ Z /pZ | ∃x ∈ Xi :

(Xi, Gi, x) ∼ (Cn,
〈
diag(ξp, ξ

β
p , ξ

t3
p , . . . , ξ

tn
p )
〉
, 0)
}
.
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We have to show that Ui 6= {0} for all i ∈ N. But Ui ⊃ u′i. We have seen
that u′i 6= {0} for all i ∈ N. The result follows.

Corollary 3.4.4. Let X be a Kähler manifold and G an automorphism group of
prime order acting on X. There exists a regular split pullback of (X,G) obtained
as a sequence of blowups in connected components of �xed loci if and only if the
points of FixG are of types 0, 1 or 2.

3.5 The case of �xed points of type 1

During all this section, we will use the following notation. Let X be a compact
complex manifold of dimension n and G = 〈ϕ〉 an automorphism group of

prime order p. Let s : X̃ → X be the blowup of X in FixG. We denote G̃
the automorphism group induced by G on X̃. We can consider the quotient
M := X/G and M̃ := X̃/G̃. In this section the �xed points will be of type

1, hence M̃ will be always smooth. Hence (X̃, G̃, r, s) will be a regular split
pullback of (X,G), and the following diagram is Cartesian:

M̃
r // M

X̃
s //

π̃

OO

X,

π

OO

We also denote V = X \ FixG, U = π(V ), F = s−1(FixG), and we use the
same symbol F for its image by π̃.

3.5.1 The codimension of FixG

The technique of the proof of the main theorem of this section will be to use
Lemma 3.3.22 3). To do this, we will have to understand K inside Hn(M̃,Z).
For this, we will need the following exact sequence:

0 // Hn(M̃, U,Z)
g // Hn(M̃,Z) // Hn(U,Z) // 0.

So we need some conditions on FixG which will guarantee that this sequence is
exact.

De�nition 3.5.1. Let X be a compact complex manifold of dimension n and
G an automorphism group of prime order p.

1) We will say that FixG is negligible if the following conditions are veri�ed:

• H∗(FixG,Z) is torsion-free.

• codim FixG ≥ n
2 + 1.
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2) We will say that FixG is almost negligible if the following conditions are
veri�ed:

• H∗(FixG,Z) is torsion-free.

• n is even and n ≥ 4.

• codim FixG = n
2 , and the purely n

2 -dimensional part of FixG is con-
nected and simply connected. We denote the n

2 -dimensional compo-
nent by Σ.

• The cocycle [Σ] associated to Σ is primitive in Hn(X,Z).

Remark: We might just assume that [Σ] is not divisible by p, but this would
imply technical complications.

3.5.2 The main theorem

Theorem 3.5.2. Let G = 〈ϕ〉 be a group of prime order p acting by automor-
phisms on a Kähler manifold X of dimension n. We assume:

i) H∗(X,Z) is torsion-free,

ii) FixG is negligible or almost negligible,

iii) all the points of FixG are of type 1.

Then:

1) logp(discrπ∗(H
n(X,Z)))− h2∗+ε(FixG,Z) is divisible by 2,

2) The following inequalities are veri�ed:

logp(discrπ∗(H
n(X,Z))) + 2 rktorHn(U,Z)

≥ h2∗+ε(FixG,Z) + 2 rktorHn(M̃,Z)

≥ 2 rktorHn(U,Z).

3) If moreover

logp(discrπ∗(H
n(X,Z))) + 2 rktorHn(U,Z)

= h2∗+ε(FixG,Z) + 2 rktorHn(M̃,Z),

then (X,G) is Hn-normal.

Proof. The idea of the proof is to compare K from Lemma 3.3.22 to its orthog-
onal complement in the unimodular lattice Hn(M̃,Z).

The proof is a little di�erent if FixG is negligible or almost negligible. Hence,
we give a proof in both cases.



49

The case when FixG is negligible

We consider the following commutative diagram:

Hn(N
M̃/F

,N
M̃/F

− 0,Z) = Hn(M̃, U,Z)

dπ̃∗

��

g // Hn(M̃,Z)

π̃∗

��
Hn(NX̃/F ,NX̃/F − 0,Z) = Hn(X̃, V,Z)

h // Hn(X̃,Z),

(3.1)

where NX̃/F −0 and N
M̃/F

−0 are vector bundles minus the zero section.

We denote T := h(Hn(X̃, V,Z)). We will need the following lemmas about
properties of T .

Lemma 3.5.3. We have

Hn(X̃,Z) = s∗(Hn(X,Z))⊕ T.

Proof. The proof follows from Theorem 7.31 of [67] and its proof (Theo-
rem 2.5.1).

By Thom isomorphism Hn(X̃, V,Z) = Hn−2(F,Z), and the map h can be

identi�ed with the morphism j∗ : Hn−2(F,Z)→ Hn(X̃,Z), where j is the

inclusion in X̃. As in the proof of Theorem 7.31 of [67], the map

(s∗, j∗) : Hn(X,Z)⊕Hn−2(F,Z)→ Hn(X̃,Z)

is surjective, and its kernel coincides with the image of the map⊕
Sm⊂FixG

Hn−2rm(Sm,Z)→ Hn(X,Z)⊕Hn−2(F,Z),

where rm is the codimension of the component Sm of FixG. But in our
case

⊕
Sm⊂FixGH

n−2rm(Sm,Z) = 0. The result follows.

Lemma 3.5.4. The sublattice T of Hn(X̃,Z) is unimodular.

Proof. By Lemma 3.5.3, we have:

Hn(X̃,Z) = s∗(Hn(X,Z))⊕ T.

Moreover, the sum is orthogonal with respect to the cup product. Indeed,
let x ∈ Hn(X,Z) and y ∈ T , then s∗(s

∗(x)·y) = x·s∗(y) by the projection
formula. Since s∗(y) = 0, we have s∗(s

∗(x) · y) = 0, then s∗(x) · y = 0.

Hence, since Hn(X̃,Z) and Hn(X,Z) endowed with the cup product are
unimodular, T is also unimodular.
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By the property of the Thom isomorphism,

dπ̃∗(Hn(N
M̃/F

,N
M̃/F

− 0,Z)) = pHn(NX̃/F ,NX̃/F − 0,Z).

Then by commutativity of the diagram and Proposition 3.3.1, we have
g(Hn(M̃, U,Z)) = π̃∗(T ).

We deduce the following lemma.

Lemma 3.5.5. 1) We have the exact sequence:

0 // π̃∗(T ) // Hn(M̃,Z) // Hn(U,Z) // 0.

2) The torsion subgroups of Hn(U,Z) and Hn(M̃,Z) are powers of Fp.

Proof. 1) We have the following exact sequence:

0 // π̃∗(T ) // Hn(M̃,Z) // Hn(U,Z) // Hn+1(M̃, U,Z).

Since H∗(FixG,Z) is torsion-free, by Thom's isomorphism Hn+1(M̃,
U,Z) is torsion-free. Hence it is enough to show:

0 // π̃∗(T ⊗ C) // Hn(M̃,C) // Hn(U,C) // 0.

Hence, it is enough to show that dimHn(M̃,C) = dimHn(U,C) +
dim π̃∗(T ⊗ C). By Lemma 3.5.3

Hn(X̃,C) = s∗(Hn(X,C))⊕ T ⊗ C.

Hence:
Hn(X̃,C)G = s∗(Hn(X,C)G)⊕ T ⊗ C.

Since codim FixG ≥ n
2 + 1, Hn(V,Z) = Hn(X,Z). Hence:

Hn(X̃,C)G = s∗(Hn(V,C)G)⊕ T ⊗ C.

It follows:

dimHn(M̃,C) = dimHn(U,C)⊕ dim π̃∗(T ⊗ C).

2) Since codim FixG ≥ n
2 +1, Hn(V,Z) = Hn(X,Z). Since Hn(X,Z) is

torsion-free, Hn(V,Z) is torsion-free. Hence by Corollary 3.3.2, the
torsion subgroup of Hn(U,Z) is power of Fp.

The proof is the same forHn(M̃,Z). Indeed,Hn(X,Z) andH∗(FixG,
Z) are torsion-free. Hence by Theorem 7.31 of [67] (Theorem 2.5.1),

Hn(X̃,Z) is torsion-free. Hence the result follows from Corollary
3.3.2.
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Let T̃ be the minimal primitive overlattice of π̃∗(T ) inHn(M̃,Z). We have

T̃ = K⊥ by Lemma 3.5.3 (we recall that K is de�ned in Lemma 3.3.22).

We will compare the discriminant of K and T̃ . Then by Proposition 2.1.3,
we will be able to know whether K is primitive in Hn(M̃,Z). We can state
the following result.

Lemma 3.5.6. We have:

1) T̃ /T = (Fp)rktorHn(U,Z)−rktorHn(M̃,Z),

2) discr T̃ = ph
2∗+ε(X)+2(rktorHn(M̃,Z)−rktorHn(U,Z)).

Proof. By 3) of Lemma 3.3.7, we have discrπ∗(T ) = prkT . But by The-
orem 7.31 of [67],

rkT = rk
⊕

Sm⊂FixG

rm−2⊕
k=0

Hn−2k−2(Sm,Z).

And since codim FixG ≤ n
2 + 1, we get rkT = h2∗+ε(FixG,Z). So

discrπ∗(T ) = ph
2∗+ε(FixG,Z).

Moreover, by the exact sequence of Lemma 3.5.5, we have:

T̃ /T = (Fp)rktorHn(U,Z)−rktorHn(M̃,Z).

Hence, by Proposition 2.1.1,

discr T̃ =
ph

2∗+ε(FixG,Z)

p2(rktorHn(U,Z)−rktorHn(M̃,Z))
.

Conclusion

The unimodularity of Hn(M̃,Z) will allow us to conclude. Let K be the

primitive overlattice of K in Hn(M̃,Z). We have K⊥ = T̃ . Hence by
Proposition 2.1.3,

discrK = discr T̃ = ph
2∗+ε(FixG,Z)+2(rktorHn(M̃,Z)−rktorHn(U,Z)).

By Lemma 3.3.22, we know that discrK = discrπ∗(H
n(X,Z)). Then

discrK = discrπ∗(H
n(X,Z)) ≥ discrK and discr T̃ ≥ 1

and we get part 2) of the Theorem. By Proposition 2.1.1,

K/K = (Z /pZ)
logp(discrπ∗(Hn(X,Z)))−h2∗+ε(FixG,Z)−2(rktorHn(M̃,Z)−rktorHn(U,Z))

2 .
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We have proved statement 1) of the Theorem.

Now if

logp(discrπ∗(H
n(X,Z)))− h2∗+ε(FixG,Z)

− 2
(

rktorHn(M̃,Z)− rktorHn(U,Z)
)

= 0,

K = K. Hence, K is primitive in Hn(M̃,Z). And we �nish the proof by
an application of Lemma 3.3.22 3).

The case when FixG is almost negligible

In this case, n is even, so we can write n = 2m.

We consider the following commutative diagram:

H2m(N
M̃/F

,N
M̃/F

− 0,Z) = H2m(M̃, U,Z)

dπ̃∗

��

g // H2m(M̃,Z)

π̃∗

��
H2m(NX̃/F ,NX̃/F − 0,Z) = H2m(X̃, V,Z)

h // H2m(X̃,Z),

(3.2)

where NX̃/F −0 and N
M̃/F

−0 are vector bundles minus the zero section.

We denote R := h(H2m(X̃, V,Z)). The following lemma follows Theorem
7.31 of [67] (Theorem 2.5.1) and its proof.

Lemma 3.5.7. We can write:

H2m(X̃,Z) = s∗(H2m(X,Z))⊕ T,

with R = T ⊕ ZΣ.

Proof. The proof is very similar to that of Lemma 3.5.3.

By Thom isomorphism H2m(X̃, V,Z) = H2m−2(F,Z), and the map h can

be identi�ed with the morphism j∗ : H2m−2(F,Z)→ H2m(X̃,Z), where j

is the inclusion in X̃. As in the proof of Theorem 7.31 of [67], the map

(s∗, j∗) : H2m(X,Z)⊕H2m−2(F,Z)→ H2m(X̃,Z)

is surjective and its kernel is the image of the map⊕
Sk⊂FixG

H2m−2rk(Sk,Z)→ H2m(X,Z)⊕H2m−2(F,Z),

where rk is the codimension of the component Sk of FixG. But in our
case

⊕
Sk⊂FixGH

2m−2rk(Sk,Z) = H0(Σ,Z). The result follows.
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Lemma 3.5.8. The sublattice T of H2m(X̃,Z) is unimodular.

Proof. The same proof as in Lemma 3.5.4.

By the property of the Thom isomorphism, dπ̃∗(H2m(N
M̃/F

,N
M̃/F

−
0,Z)) = pH2m(NX̃/F ,NX̃/F − 0,Z). Then by the commutativity of the

diagram and Proposition 3.3.1, we have g(H2m(M̃, U,Z)) = π̃∗(R).

Lemma 3.5.9. 1) H2m−1(X,Z) = H2m−1(V,Z).

2) H2m(V,Z) = H2m(X,Z)/ZΣ.

3) H2m(V,Z) is torsion-free, and the torsion subgroups of H2m(U,Z),

H2m(M̃,Z) are powers of Fp.

4) We have the exact sequence

0 // π̃∗(R) // H2m(M̃,Z) // H2m(U,Z) // 0.

Proof. 1) We have the following exact sequence:

H2m−1(X,V,Z) // H2m−1(X,Z)
f // H2m−1(V,Z) //

H2m(X,V,Z)
ρ // H2m(X,Z) // H2m(V,Z) // H2m+1(X,V,Z).

By Thom's isomorphism, H2m−1(X,V,Z) = 0, H2m+1(X,V,Z) =
H1(Σ,Z) = 0 and H2m(X,V,Z) = H0(Σ,Z). The image of ρ is not
trivial in H2m(X,Z) (see Section 11.1.2 of [67]). Hence the cokernel
of f is a torsion group, but H0(Σ,Z) is torsion-free. Hence, ρ is an
isomorphism and

H2m−1(X,Z) = H2m−1(V,Z).

2) In view of 1), the exact sequence becomes:

0 // H0(Σ,Z) // H2m(X,Z) // H2m(V,Z) // 0,

which implies the result.

3) The group H2m(V,Z) is torsion-free, because

H2m(V,Z) = H2m(X,Z)/ZΣ

and ZΣ is primitive inside H2m(X,Z). Hence by Corollary 3.3.2, the
torsion subgroup of H2m(U,Z) is a power of Fp.

The proof is the same for H2m(M̃,Z). Indeed, H2m(X,Z) and
H∗(FixG, Z) are torsion-free. Hence by Theorem 7.31 of [67] (Theo-

rem 2.5.1), H2m(X̃,Z) is torsion-free. Hence the result follows from
Corollary 3.3.2.
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4) We have the following exact sequence:

0 // π̃∗(R) // H2m(M̃,Z) // H2m(U,Z) // H2m+1(M̃, U,Z).

SinceH∗(FixG,Z) is torsion-free, by Thom's isomorphismH2m+1(M̃,
U,Z), is torsion-free. Hence it is enough to show:

0 // π̃∗(R⊗ C) // H2m(M̃,C) // H2m(U,C) // 0.

Hence, it is enough to show that dimHn(M̃,C) = dimHn(U,C) +
dim π̃∗(R⊗ C). By Lemma 3.5.4,

H2m(X̃,C) = s∗(H2m(X,C))⊕ T ⊗ C.

Hence
H2m(X̃,C)G = s∗(H2m(X,C)G)⊕ T ⊗ C.

By 2),

H2m(X̃,C)G = s∗(H2m(V,C)G)⊕ CΣ⊕ T ⊗ C.

Then, by Lemma 3.5.4,

H2m(X̃,C)G = s∗(H2m(V,C)G)⊕R⊗ C.

It follows:

dimH2m(M̃,C) = dimH2m(U,C) + dim π̃∗(R⊗ C).

Let R̃ be the minimal primitive overlattice of π̃∗(R) in H2m(M̃,Z) and T̃

the minimal primitive overlattice of π̃∗(T ) in H2m(M̃,Z). As before, we
need to calculate its discriminant. We start with the following lemma.

Lemma 3.5.10. There exists x ∈ π̃∗(T ) such that x+(−1)n−1π̃∗(s
∗(Σ))

p ∈
H2m(M̃,Z).

Proof. Let s1 : Y → X be the blowup of X in Σ and Σ1 the exceptional
divisor, and s2 : X̃ → Y the blowup in the other components of F such
that s = s2 ◦s1. We denote Σ2 = s∗2(Σ1). Consider the following diagram:

Σ2

g2

��

� � l2 // X̃

s2

��
Σ1

g1

��

� � l1 // Y

s1

��
Σ

� � l0 // X,
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where l0, l1 and l2 are the inclusions and gi := si|Σi , i ∈ {1, 2}.

We have π̃∗(OX̃) = O
M̃
⊕ L, with Lp = O

M̃

(
−
(∑

Sk⊂F\Σ S̃k

)
− Σ̃

)
,

where each S̃k is the exceptional divisor associated to the irreducible com-
ponent Sk 6= Σ of F . Thus∑

Sk⊂F\Σ S̃k + Σ̃

p
∈ H2(M̃,Z).

It follows that (∑
Sk⊂F\Σ S̃k + Σ̃

p

)m
∈ H2m(M̃,Z).

By Lemma 3.3.7 1), we get

x+ π̃∗(Σ
m
2 )

p
∈ H2m(M̃,Z), (3.3)

with x ∈ π̃∗(T ).

Now, it remains to calculate Σm2 . By Proposition 6.7 of [19], we have

s∗1l0∗(Σ) = l1∗(cm−1(E)),

where E := g∗1(NΣ/X)/NΣ1/Y . Calculating, we �nd:

s∗1l0∗(Σ) = l1∗

(
m−1∑
i=0

(−1)m−1−ici(g
∗
1(NΣ/X)) · c1(NΣ1/Y )m−1−i

)

= l1∗

(
m−1∑
i=1

(−1)m−1−ici(g
∗
1(NΣ/X)) · c1(NΣ1/Y )m−1−i

)
+ (−1)m−1l1∗

(
c1(NΣ1/Y )m−1

)
= l1∗

(
m−1∑
i=1

(−1)m−1−ici(g
∗
1(NΣ/X)) · c1(NΣ1/Y )m−1−i

)
+ (−1)m−1Σm1 .

By applying s∗2, we get:

Σm2 = (−1)m−1 (s∗(Σ)− s∗2l1∗(a)) ,

where a =
∑m−1
i=1 (−1)m−1−ici(g

∗
1(NΣ/X)) · c1(NΣ1/Y )m−1−i ∈ T . And

pushing forward via π̃∗, we get:

π̃∗(Σ
m
2 ) = (−1)m−1 (π̃∗(s

∗(Σ))− π̃∗ (s∗2l1∗(a))) .

The result follows from (3.3).
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Lemma 3.5.11. We have:

1) T̃ /π̃∗(T ) = (Z /pZ)rktorH2m(U,Z)−rktorH2m(M̃,Z)−1,

2) discr T̃ = ph
2∗+ε(FixG,Z)−2[rktorH2m(U,Z)−rktorH2m(M̃,Z)].

Proof. By 3) of Lemma 3.3.7, discr π̃∗(T ) = prkT , By Theorem 7.31 of
[67],

rkT = rk
⊕

Sk⊂FixG

rk−2⊕
i=0

H2m−2i−2(Sk,Z)

= h2∗+ε(FixG,Z)− rkH0(Σ,Z)− rkH2m(Σ,Z)

= h2∗+ε(FixG,Z)− 2,

where rk is the codimension of the component Sk. So

discr π̃∗(T ) = ph
2∗+ε(FixG,Z)−2.

Moreover, by the exact sequence of Lemma 3.5.9, we have:

R̃/π̃∗(R) = (Fp)rktorH2m(U,Z)−rktorH2m(M̃,Z).

But by Lemma 3.5.10, we already know that there exists x ∈ π̃∗(T ) such

that x+(−1)m−1π̃∗(s
∗(Σ))

p ∈ H2m(M̃,Z). We are going to deduce T̃ /π̃∗(T ).

If π̃∗(s
∗(Σ)) is divisible by p in H2m(M̃,Z), then π̃∗(s∗(Σ))

p ∈ (R̃/π̃∗(R)) \

(T̃ /π̃∗(T )), if not x+(−1)m−1π̃∗(s∗(Σ))
p ∈ (R̃/π̃∗(R)) \ (T̃ /π̃∗(T )). Then in

both cases

T̃ /π̃∗(T ) = (Z /pZ)rktorH2m(U,Z)−rktorH2m(M̃,Z)−1.

Hence by Proposition 2.1.1,

discr T̃ = ph
2∗+ε(FixG,Z)−2−2[rktorH2n(U,Z)−rktorH2n(M̃,Z)−1].

Conclusion

We use the unimodularity of H2m(M̃,Z). Let K be the primitive overlat-

tice of K in H2m(M̃,Z) (We recall that discrK = discrπ∗(H
2m(X,Z)) by

Lemma 3.3.22). We have K⊥ = T̃ . Hence by Proposition 2.1.3,

discrK = discr T̃ = ph
2∗+ε(FixG,Z)−2[rktorH2m(U,Z)−rktorH2n(M̃,Z)].

Since

discrK = discrπ∗(H
2m(X,Z)) ≥ discrK and discr T̃ ≥ 1,
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we get the statement 2) of the Theorem. By Proposition 2.1.1

K/K = (Z /pZ)
logp(discrπ∗(H2m(X,Z)))−h2∗+ε(FixG,Z)+2[rktorH2m(U,Z)−rktorH2m(M̃,Z)]

2 .

Hence, we get the statement 1) of the Theorem.

Now if

logp(discrπ∗(H
2m(X,Z))) + 2 rktorH2m(U,Z)

= h2∗+ε(FixG,Z) + 2 rktorH2m(M̃,Z),

K = K. Hence, K is primitive in H2m(M̃,Z). And we �nish the proof by
Lemma 3.3.22 3).

3.5.3 Calculation of rktorHn(M̃,Z)

In the applications of the above theorem, we will almost never calculate rktor
Hn(M̃,Z). We will have:

logp(discrπ∗(H
n(X,Z))) + 2 rktorHn(U,Z) = h2∗+ε(FixG,Z).

We give a corollary in the case when the above equality is satis�ed.

Corollary 3.5.12. Let G = 〈ϕ〉 be a group of prime order 2 ≤ p ≤ 19 acting
by automorphisms on a Kähler manifold X of dimension n. We assume:

i) H∗(X,Z) is torsion-free,

ii) FixG is negligible or almost negligible,

iii) all the points of FixG are of type 1, and

iv) logp(discrπ∗(H
n(X,Z))) + 2 rktorHn(U,Z) = h2∗+ε(FixG,Z).

Then:

1) Hn(M̃,Z) is torsion-free, and

2) (X,G) is Hn-normal.

Proof. Statement 1) follows from 2) of Theorem 3.5.2. Then we conclude by
3) of Theorem 3.5.2.
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3.5.4 Calculation of rktorHn(U,Z)
It is possible to calculate rktorHn(U,Z) with the spectral sequence of equivari-
ant cohomology (see Section 3.2.2).

Proposition 3.5.13. Let X be a compact complex manifold of dimension 2m
and G an automorphism group of prime order acting on X. Let U := (X r
FixG)/G. Assume that H∗(X,Z) is torsion-free, 3 ≤ p ≤ 19 and FixG is
negligible or almost negligible. Assume that (X,G) is E2-degenerate over Z, or
that

i) l2ip−1(X) = 0 for all 1 ≤ i ≤ m, and

ii) l2i+1
1 (X) = 0 for all 0 ≤ i ≤ m− 1 when m > 1.

Then we have:

rktorH2m(U,Z) =

m−1∑
i=0

l2i+1
p−1 (X) +

m−1∑
i=0

l2i1 (X).

Proof. We use the equivariant cohomology. When FixG is negligible, we have
Hk(V,Z) = Hk(X,Z) for all k ≤ 2m. Hence we can exchange V by X in
the calculation of H2m(U,Z), so we get the result by Proposition 3.2.7 and
Proposition 3.2.9.

When FixG is almost negligible, we have Hk(V,Z) = Hk(X,Z) for all
k ≤ 2m − 2. Moreover, by Lemma 3.5.9 H2m−1(V,Z) = H2m−1(X,Z) and
H2m(V,Z) = H2m(X,Z)/ZΣ, where Σ is the component of codimension m in
FixG. Since Σ is primitive in H2m(X,Z), H2m(V,Z) is torsion-free. Hence, we
can replace V by X in the calculation. Then we get the result by Proposition
3.2.7 and Proposition 3.2.9.

We have a similar proposition for p = 2.

Proposition 3.5.14. Let X be a compact complex manifold of dimension 2m
and G an automorphism group of order 2 acting on X. Let U := (XrFixG)/G.
Assume that H∗(X,Z) is torsion-free and FixG is negligible or almost negligible.
Assume that (X,G) is E2-degenerate over Z, or that

i) l2i1,−(X) = 0 for all 1 ≤ i ≤ m, and

ii) l2i+1
1,+ (X) = 0 for all 0 ≤ i ≤ m− 1.

Then we have:

rktorH2m(U,Z) =

m−1∑
i=0

l2i+1
1,− (X) +

m−1∑
i=0

l2i1,+(X).

We can also give a similar result when n is odd.
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Proposition 3.5.15. Let X be a compact complex manifold of dimension 2m+1
and G an automorphism group of prime order acting on X. Let U := (X r
FixG)/G. Assume that H∗(X,Z) is torsion-free, 3 ≤ p ≤ 19 and FixG is
negligible. Assume (X,G) is E2-degenerate over Z. Then we have:

rktorH2m+1(U,Z) =

m∑
i=0

l2ip−1(X) +

m−1∑
i=0

l2i+1
1 (X).

Proof. The same proof using Proposition 3.2.7.

Proposition 3.5.16. Let X be a compact complex manifold of dimension 2m+1
and G a group of order 2 acting on X. Let U := (X r FixG)/G. Assume that
H∗(X,Z) is torsion-free and FixG is negligible. Assume (X,G) is E2-degenerate
over Z. Then we have:

rktorH2m+1(U,Z) =

m∑
i=0

l2i1,−(X) +

m−1∑
i=0

l2i+1
1,+ (X).

Remark: Similar results hold over Fp when (X,G) is E2-degenerate.

3.5.5 Corollaries

The calculation of rktorHn(U,Z) with the spectral sequence of equivariant co-
homology and Section 3.3 implies a lot of corollaries. We will just give one
example using Lemma 3.3.11 2).

Corollary 3.5.17. Let G = 〈ϕ〉 be a group of prime order 3 ≤ p ≤ 19 acting
by automorphisms on a Kähler manifold X of dimension 2n. We assume:

i) H∗(X,Z) is torsion-free,

ii) FixG is negligible or almost negligible,

iii) all the points of FixG are of type 1,

iv) l2kp−1(X) = 0 for all 1 ≤ k ≤ n, and

v) l2k+1
1 (X) = 0 for all 0 ≤ k ≤ n− 1, when n > 1.

Then:

1) l2n1 (X)− h2∗(FixG,Z) is divisible by 2, and

2) we have:

l2n1 (X) + 2

[
n−1∑
i=0

l2i+1
p−1 (X) +

n−1∑
i=0

l2i1 (X)

]
≥ h2∗(FixG,Z) + 2 rktorH2n(M̃,Z)

≥ 2

[
n−1∑
i=0

l2i+1
p−1 (X) +

n−1∑
i=0

l2i1 (X)

]
.
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3) If moreover

l2n1 (X) + 2

[
n−1∑
i=0

l2i+1
p−1 (X) +

n−1∑
i=0

l2i1 (X)

]
= h2∗(FixG,Z) + 2 rktorH2n(M̃,Z),

then (X,G) is H2n-normal.

Proof. In Theorem 3.5.2, we replace rktorH2m(U,Z) by
∑m−1
i=0 l2i+1

p−1 (X) +∑m−1
i=0 l2i1 (X) with Proposition 3.5.13 and logp(discrπ∗(H

n(X,Z))) by l2n1 with
Lemma 3.3.11 2).

There is the same corollary when p = 2. Moreover, when p = 2 all the �xed
points are of type 1.

Corollary 3.5.18. Let G = 〈ϕ〉 be a group of prime order p = 2 acting by
automorphisms on a Kähler manifold X of dimension 2n. We assume:

i) H∗(X,Z) is torsion-free,

ii) FixG is negligible or almost negligible,

iii) l2k1,−(X) = 0 for all 1 ≤ k ≤ n, and

iv) l2k+1
1,+ (X) = 0 for all 0 ≤ k ≤ n− 1, when n > 1.

Then:

1) l2n1,+(X)− h2∗(FixG,Z) is divisible by 2.

2) We have:

l2n1,+(X) + 2

[
n−1∑
i=0

l2i+1
1,− (X) +

n−1∑
i=0

l2i1,+(X)

]
≥ h2∗(FixG,Z) + 2 rktorH2n(M̃,Z)

≥ 2

[
n−1∑
i=0

l2i+1
1,− (X) +

n−1∑
i=0

l2i1,+(X)

]
.

3) If moreover

l2n1,+(X) + 2

[
n−1∑
i=0

l2i+1
1,− (X) +

n−1∑
i=0

l2i1,+(X)

]
= h2∗(FixG,Z) + 2 rktorH2n(M̃,Z),

then (X,G) is H2n-normal.
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We can also provide a variant of the criterion for H2n-normality which does
not involve rktorH2n(M̃,Z). We give a corollary in the case when the above
equality is satis�ed.

Corollary 3.5.19. Let G = 〈ϕ〉 be a group of prime order p = 2 acting by
automorphisms on a Kähler manifold X of dimension 2n. We assume:

i) H∗(X,Z) is torsion-free,

ii) FixG is negligible or almost negligible.

iii) l2k1,−(X) = 0 for all 1 ≤ k ≤ n,

iv) l2k+1
1,+ (X) = 0 for all 0 ≤ k ≤ n− 1, when n > 1,

v) and

l2n1,+(X) + 2

[
n−1∑
i=0

l2i+1
1,− (X) +

n−1∑
i=0

l2i1,+(X)

]
= h2∗(FixG,Z).

Then:

1) H2n(M̃,Z) is torsion-free,

2) (X,G) is H2n-normal.

Proposition 3.5.20. Let G = 〈ϕ〉 be a group of order 2 acting by automor-
phisms on a Kähler manifold X of dimension n. We assume:

i) H∗(X,Z) is torsion-free,

ii) FixG is negligible or almost negligible,

iii) and

l2n1,+(X) + 2

[
n−1∑
i=0

l2i+1
1,− (X) +

n−1∑
i=0

l2i1,+(X)

]
= h2∗(FixG,Z).

Then π̃∗(s
∗(Hn(X,Z))) is primitive in Hn(M̃,Z).

Proof. In our case the equality:

l2n1,+(X) + 2

[
n−1∑
i=0

l2i+1
1,− (X) +

n−1∑
i=0

l2i1,+(X)

]
= h2∗(FixG,Z)
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is equivalent to the equality:

logp(discrπ∗(H
n(X,Z))) + 2 rktorHn(U,Z)

= h2∗+ε(FixG,Z) + 2 rktorHn(M̃,Z).

Hence, by the conclusions of proof of Theorem 3.5.2, K is primitive inHn(M̃,Z).
Since π̃∗(s

∗(Hn(X,Z))) = K, the result follows.

Remark: Corollary 3.5.19 and Proposition 3.5.20 are also true for 3 ≤ p ≤
19 if we replace li1,−(X) by lip−1(X) and li1,+(X) by li1(X).

3.5.6 The case of simply connected surfaces

We can also give a practical application in the case of surfaces.

Corollary 3.5.21. Let G = 〈ϕ〉 be a group of prime order 2 ≤ p ≤ 19 acting
by automorphisms on a simply connected Kähler surface X. We assume:

i) FixG is �nite, non empty and contains just points of type 1.

ii) l2p−1(X) = 0 when p > 2 and l21,−(X) = 0 when p = 2.

Then (X,G) is H2-normal.

Proof. The cohomology graded group H∗(X,Z) is torsion-free. Since X is sim-
ply connected, H1(X,Z) = 0. Hence by Poincaré duality H3(X,Z) = 0. More-
over, by universal coe�cient theoremH1(X,Z) = 0 andH2(X,Z) is torsion-free.

By Corollary 3.5.17 and Corollary 3.5.19, it is enough to prove that l21(X) +
2 = # FixG when p > 2 and l21,+(X)+2 = # FixG when p = 2. By Proposition
4.5 and Corollary 4.4 of [11], we have:

# FixG = 2 + l21(X) + l2p−1(X), (3.4)

if p > 2 and

# FixG = 2 + l21(X), (3.5)

if p = 2. Since we have assumed that l2p−1(X) = 0 when p > 2 and l21,−(X) = 0
when p = 2, the equalities (3.4) and (3.5) become

# Fix = 2 + l21(X), (3.6)

if p > 2 and

# Fix = 2 + l21,+(X), (3.7)

what we wanted to prove.
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3.6 The case of �xed points of type 2

3.6.1 Notation

Let X be a Kähler manifold of dimension n and G an automorphism group of
order 3. We assume that codim FixG ≥ 2 (so that we have no points of type 0
in FixG). We consider the diagram:

M2
r2 // M1

r1 // M

X2

G2

XX
s2 //

π2

OO

X1

G1

XX
s1 //

π1

OO

X

G

YY

π

OO

,

where s1 is the blowup of X in the �xed points of type 2 and s2 is the blowup
of X1 in FixG1. By Proposition 3.4.3 and its proof, FixG1 has only points of
type 1 and M2 is smooth. We also denote V1 := X1 \ FixG1 and U1 := π1(V1).
We have also U1 = M2 \ π2(s−1

2 (FixG1)).

3.6.2 2-dimensional case

We will state a result in the case when X is a surface. When FixG is �nite, we
denote by ni(G) the number of �xed points of type i = 1, 2.

Theorem 3.6.1. Let X be a Kähler surface and G an automorphism group of
order 3. We assume:

i) H2(X,Z) is torsion-free,

ii) FixG is �nite,

iii) l22(X) = 0.

Then:

1) the number # FixG− l21(X) is divisible by 2,

2) l21(X) + 2 + 2l12(X) ≥ # FixG+ 2 rktorH2(M2,Z) ≥ 2 + 2l12(X)− n2(G),

3) if moreover l21(X)+2+2l12(X) = # FixG+2 rktorH2(M2,Z), then (X,G)
is H2-normal.

Proof.

Lemma 3.6.2. 1) # FixG1 = # FixG+ n2(G).

2) H2(X1,Z) = H2(X,Z)
⊕

(⊕n2(G)
i=1 Ei), where Ei are the exceptional (−1)-

curves.

3) H1(X2,Z) = H1(X1,Z) = H1(X,Z),
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4) l1i (X1) = l1i (X) for all i ∈ {1, 2, 3},

5) l22(X1) = l22(X) and l23(X1) = l23(X),

6) l21(X1) = l21(X) + n2(G).

Proof. 1) Now consider x ∈ FixG of type 2. We have

(X,G, x) ∼ (C2,
〈
diag(ξ3, ξ

2
3)
〉
, 0).

Let C̃2 be the blowup of C2 in 0,

C̃2 =
{

((x1, x2), (a1 : a2)) ∈ C2 × P1 | x1a2 = x2a1

}
.

On C̃2,
〈
diag(ξ3, ξ

2
3)
〉
acts as follows:

diag(ξ3, ξ
2
3) · ((x1, x2), (a1 : a2)) =

(
(ξ3x1, ξ

2
3x2), (a1 : ξ3a2)

)
.

Hence there are two �xed points: ((0, 0), (0, 1)) and ((0, 0), (1, 0)). The
result follows.

2) Consequence of Theorem 7.31 of [67] (Theorem 2.5.1).

3) Consequence of Theorem 7.31 of [67] (Theorem 2.5.1).

4) Consequence of 3).

5),6) Since all the Ei are invariant by G, we get the result from De�nition-
Proposition 2.2.2.

Now we apply Corollary 3.5.17 to (X1, G1). The group H∗(X1,Z) is torsion-
free because H∗(X,Z) and H∗(FixG,Z) are torsion-free. The set FixG1 is
negligible and l22(X1) = 0. Hence # FixG1 − l21(X1) is divisible by 2. But

# FixG1 − l21(X1) = # FixG+ n2(G)− l21(X)− n2(G) = # FixG− l21(X).

Hence # FixG− l21(X) is divisible by 2.
We also have:

l21(X1) + 2 + 2l12(X1) ≥ # FixG1 + 2 rktorH2(M2,Z) ≥ 2 + 2l12(X1).

Hence,

l21(X)+n2(G)+2+2l12(X) ≥ # FixG+n2(G)+2 rktorH2(M2,Z) ≥ 2+2l12(X).

By subtracting n2(G) on both sides of the inequality, we get 2). If moreover

l21(X) + 2 + 2l12(X) = # FixG+ 2 rktorH2(M2,Z),
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then

l21(X) + n2(G) + 2 + 2l12(X) = # FixG+ n2(G) + 2 rktorH2(M2,Z),

hence
l21(X1) + 2 + 2l12(X1) = # FixG1 + 2 rktorH2(M2,Z).

Therefore (X1, G1) is H2-normal by Corollary 3.5.17; so by Proposition 3.3.25
and Proposition 3.3.23, (X,G) is H2-normal.

We can give a corollary similar to Corollary 3.5.21.

Corollary 3.6.3. Let G = 〈ϕ〉 be a group of order 3 acting by automorphisms
on a simply connected Kähler surface X. We assume:

i) FixG is �nite,

ii) l22(X) = 0,

Then (X,G) is H2-normal.

Proof. The same proof as in Corollary 3.5.21. We use Proposition 4.5, Corol-
lary 4.4 of [11] and Theorem 3.6.1.

3.6.3 Result in dimension 4

Let X be a Kähler manifold of dimension 4 and G an automorphism group of
order 3. We denote

F1 := {x ∈ FixG| o(x) = 1} .

We have di�erent kinds of points of type 2. There are four kinds of local actions
of G: 1

3 (0, 0, 1, 2), 1
3 (0, 1, 1, 2), 1

3 (1, 1, 1, 2) and 1
3 (1, 1, 2, 2), where we denote by

1
r (a1, . . . , an) the action of the cyclic group of order r by diag(ξa1

p , . . . , ξ
an
p ).

Points with action 1
3 (0, 0, 1, 2) �ll in surfaces of type-2 �xed points of G.

The points with action 1
3 (0, 1, 1, 2) �ll in �xed curves. The points with action

1
3 (1, 1, 1, 2) or 1

3 (1, 1, 2, 2) are isolated. We will state our result in the case when
points of type 2 are all of the form 1

3 (1, 1, 2, 2).
The cases of the points 1

3 (0, 0, 1, 2), 1
3 (0, 1, 1, 2) and 1

3 (1, 1, 1, 2) are more
complicated and will not be treated here, for they are not needed in the case of
a symplectic action on a symplectic 4-fold.

Theorem 3.6.4. Let X be a Kähler manifold of dimension 4 and G an auto-
morphism group of order 3. We assume:

i) H∗(X,Z) is torsion-free,

ii) FixG is negligible or almost negligible and the points of type 2 are all of
the form 1

3 (1, 1, 2, 2).

iii) l31(X) = l42(X) = l11(X) = l22(X) = 0.
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Then:

1) # FixG− l21(X) is divisible by 2,

2) we have:

l41(X) + 2
[
1 + l12(X) + l32(X) + l21(X)

]
≥ h2∗(FixG,Z) + 2 rktorH4(M2,Z)

≥ 2
[
1 + l12(X) + l32(X) + l21(X)

]
− n1,1,2,2,

where n1,1,2,2 is the number of points of type 2 (of the form 1
3 (1, 1, 2, 2)).

3) If moreover

l41(X)+2
[
1 + l12(X) + l32(X) + l21(X)

]
= h2∗(FixG,Z)+2 rktorH4(M2,Z),

then (X,G) is H4-normal.

Proof. As in the proof of Lemma 3.6.2 1), for each �xed point of type 1
3 (1, 1, 2, 2),

there are two lines �xed by G1. We denote these lines by (li)1,...,2n1,1,2,2 .
The following lemma holds:

Lemma 3.6.5. 1) FixG1 = F1 t (
⊔2n1,1,2,2

i=1 li). Hence FixG1 and FixG
have the same property of negligibility.

2) h2∗(FixG1,Z) = h2∗(FixG,Z) + 3n1,1,2,2,

3) l1i (X1) = l1i (X) for all i ∈ {1, 2, 3},

4) l22(X1) = l22(X) and l23(X1) = l23(X),

5) l21(X1) = l21(X) + n1,1,2,2.

6) l3i (X1) = l3i (X) for all i ∈ {1, 2, 3},

7) l42(X1) = l42(X),

8) l41(X1) = l41(X) + n1,1,2,2.

Proof. 1) Obvious.

2)

h2∗(FixG1,Z) = h2∗(F1) + 2n1,1,2,2h
2∗(P1)

= (h2∗(FixG,Z)− n1,1,2,2) + 4n1,1,2,2

= h2∗(FixG,Z) + 3n1,1,2,2.

3) By Theorem 7.31 of [67] (Theorem 2.5.1),

H1(X1,Z) = H1(X,Z),

which implies the result.
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4),5) By Theorem 7.31 of [67],

H2(X1,Z) = H2(X,Z)
⊕

(⊕n1,1,2,2

i=1 Di),

where Di are the exceptional divisors. Since the Di are �xed by the action
of G1, the result follows from De�nition-Proposition 2.2.2.

6) By Theorem 7.31 of [67],

H3(X1,Z) = H3(X,Z),

which implies the result.

7),8) By Theorem 7.31 of [67],

H4(X1,Z) = H4(X,Z)
⊕

(⊕n1,1,2,2

i=1 hi),

where hi = c1(ODi(1))2. Since hi are �xed by the action of G1, the result
follows.

Now we apply Corollary 3.5.17 to (X1, G1). The group H∗(X1,Z) is torsion-
free because H∗(X,Z) and H∗(FixG,Z) are torsion-free. The set FixG1 is
negligible and

l31(X1) = l42(X1) = l11(X1) = 0.

Hence h2∗(FixG1,Z)− l21(X1) = h2∗(FixG,Z)− l21(X) + 2n1,1,2,2 is divisible by
2. Hence h2∗(FixG,Z)− l21(X) is divisible by 2. We have:

l41(X1) + 2
[
1 + l12(X1) + l32(X1) + l21(X1)

]
≥ h2∗(FixG1,Z) + 2 rktorH4(M2,Z)

≥ 2
[
1 + l12(X1) + l32(X1) + l21(X1)

]
.

Hence:

l41(X1) + n1,1,2,2 + 2
[
1 + l12(X) + l32(X) + l21(X) + n1,1,2,2

]
≥ h2∗(FixG,Z) + 3n1,1,2,2 + 2 rktorH4(M2,Z)

≥ 2
[
1 + l12(X) + l32(X) + l21(X) + n1,1,2,2

]
.

By subtracting 3n1,1,2,2 on each side of the inequality, we get 2). If moreover

l41(X) + 2
[
1 + l12(X) + l32(X) + l21(X)

]
= h2∗(FixG,Z) + 2 rktorH4(M2,Z),

then

l41(X) + n1,1,2,2 + 2
[
1 + l12(X) + l32(X) + l21(X) + n1,1,2,2

]
= h2∗(FixG,Z) + 3n1,1,2,2 + 2 rktorH4(M2,Z),
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so that

l41(X1)+2
[
1 + l12(X1) + l32(X1) + l21(X1)

]
= h2∗(FixG1,Z)+2 rktorH4(M2,Z).

Hence (X1, G1) is H4-normal by Corollary 3.5.17. By Propositions 3.3.23 and
3.3.25, (X,G) is H4-normal.

When the equality

l41(X) + 2
[
1 + l12(X) + l32(X) + l21(X)

]
= h2∗(FixG,Z)

is satis�ed (this will be the case in the applications), by statements 1) and 2)
of the last theorem, we deduce the following corollary.

Corollary 3.6.6. Let X be a Kähler manifold of dimension 4 and G an auto-
morphism group of order 3. We assume:

i) H∗(X,Z) is torsion-free,

ii) FixG is negligible or almost negligible and the points of type 2 are all of
the form 1

3 (1, 1, 2, 2),

iii) l31(X) = l42(X) = l11(X) = l22(X) = 0,

iv) l41(X) + 2
[
1 + l12(X) + l32(X) + l21(X)

]
= h2∗(FixG,Z).

Then:

1) H4(M2,Z) is torsion-free,

2) (X,G) is H4-normal.



Chapter 4

Application to cup-product

and Beauville�Bogomolov

lattices

In this chapter, we give some examples of applications of the results of the last
chapter.

4.1 Quotient of a K3 surface by a symplectic in-
volution

Corollary 4.1.1. Let S be a K3 surface and i a Nikulin involution (i.e. a
symplectic involution) on S. The couple (S, 〈i〉) is H2-normal. Let Y 2 := X/i
be the quotient. The lattice

(
H2(Y 2,Z), ·

)
is isometric to E8(−1)⊕ U(2)3.

Proof. We know that H2(S,Z)i ' U3 ⊕ E8(−2) (see for instance [21]). Hence
by Proposition 3.3.8 1) and De�nition-Proposition 2.2.4 3), l22(S) = 8. Since
rkH2(S,Z) = 22 and rkH2(S,Z)i = 14, by Proposition 2.2.3:

rkH2(S,Z)− rkH2(S,Z)i
∗

= l22(S) + l21,−(S) = 22− 14 = 8.

Hence l21,−(S) = 0. Moreover Fix i contains exactly 8 points (see for instance
[21]), S is simply connected and H∗(S,Z) is torsion-free. Hence by Corollary
3.5.21, (S, 〈i〉) is H2-normal.

We �nish the proof by Proposition 3.3.8 2).

4.2 Quotient of a K3 surface by a symplectic au-
tomorphism of order 3

Corollary 4.2.1. Let S be a K3 surface and G a symplectic automorphism
group of order 3 acting on S. Then (S,G) is H2-normal. Let Y 3 := S/G be the

69
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quotient. The lattice
(
H2(Y 3,Z), ·

)
is isometric to U(3)⊕ U2 ⊕A2

2.

Proof. By Theorem 4.1 of [20], H2(S,Z)G ' U ⊕ U(3)2 ⊕ A2
2. Hence by

Proposition 3.3.8 1) and De�nition-Proposition 2.2.4 3), l23(S) = 6. Since
rkH2(S,Z) = 22 and rkH2(S,Z)G = 10, by Proposition 2.2.1,

rkH2(S,Z)− rkH2(S,Z)G = 2l23(S) + l22(S) = 22− 10 = 12.

Hence l22(S) = 0. Moreover the action is symplectic, hence the �xed points are
all isolated. Furthermore S is simply connected and H∗(S,Z) is torsion-free.
Hence by Corollary 3.6.3, (S,G) is H2-normal.

We �nish the proof by Proposition 3.3.8 2) (here A∨2 (3) = A2).

4.3 Quotient of a K3 surface by a non-symplectic
automorphism of order 3

There exist K3 surfaces with non-symplectic automorphisms of order 3 such
that the �xed locus contains only isolated points (see Theorem 3.3 and Table 2
of [2]).

Corollary 4.3.1. Let S be a K3 surface and G a non-symplectic group of prime
order 3 acting on S. We assume that FixG is �nite. Then (S,G) is H2-normal.
Let Z3 := S/G be the quotient. The lattice

(
H2(Z3,Z), ·

)
is isometric to U⊕E6.

Proof. By Table 2 of [2], H2(S,Z)G ' U(3) ⊕ E∨6 (3). We have discrE6 =
3, hence discrE∨6 (3) = 35. Hence by Proposition 3.3.8 1) and De�nition-
Proposition 2.2.4 3), l23(S) = 7. Since rkH2(S,Z) = 22 and rkH2(S,Z)G = 8,
by Proposition 2.2.1,

rkH2(S,Z)− rkH2(S,Z)G = 2l23(S) + l22(S) = 22− 8 = 14.

Hence l22(S) = 0. Since S is simply connected and H2(S,Z) is torsion-free, by
Corollary 3.6.3, (S,G) is H2-normal (in fact, here all the �xed points are of type
1, so we can also use Corollary 3.5.21).

We �nish the proof by Proposition 3.3.8 2).

4.4 Quotient of a complex torus of dimension 2
by − id

Corollary 4.4.1. Let A be a complex torus of dimension 2. We denote A =
A/− id. Then H2(A,Z) endowed with the cup product is isometric to U(2)3.

Proof. The ring H∗(A,Z) is torsion-free and FixG contains 16 isolated points.

In this case M̃ (blowup of A in the 16 points) is a K3 surface. Hence rktorH2(M̃,
Z) = 0. The map (− id)∗ acts on H1(A,Z) as − id and acts on H2(A,Z) as
id. Hence l11,−(A) = 4, l21,+(A) = 6 and l21,−(A) = 0. Therefore the equality of

Corollary 3.5.18 3) is veri�ed: 6 + 2 + 2×4 = 16. Hence (A,− id) is H2-normal.
We �nish the proof by Proposition 3.3.8 2).
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4.5 Quotient of a K3[2]-type manifold by an au-
tomorphism of order 3

4.5.1 Symplectic groups and Beauville�Bogomolov forms

Here, we study the quotient of a manifold of K3[2]-type X by a symplectic group
G of prime order. Hence M = X/G will be a singular irreducible symplectic
variety. Moreover, in the case where the non-free locus of G is �nite, the codi-
mension of the singular locus of M = X/G will be 4. Hence, in this situation,
we can use Theorem 1.2.4 and also the Torelli Theorem of Namikawa (Theorem
1.2.3). Therefore, we can calculate the Beauville�Bogomolov form in this case.

We will need the following proposition.

Proposition 4.5.1. Let X be a manifold of K3[2]-type, G a symplectic group
of prime order p with FixG �nite. Then

BX/G(π∗(α), π∗(β)) =

√
3p3

CX/G
BX(α, β),

where CX/G is the Fujiki constant of X/G and α, β are in H2(X,Z)G.

Proof. By (1) of Theorem 1.2.4, we have

(π∗(α))4 = CX/GBX/G(π∗(α), π∗(α))2.

By Theorem 1.3.1, the Fujiki constant of X is 3. Hence we also have:

α4 = 3BX(α, α)2.

Moreover, by Lemma 3.3.7, 3),

(π∗(α))4 = p3π∗(α
4).

By (2) of Theorem 1.2.4, we get the result.

4.5.2 Beauville�Bogomolov lattice

We study the case p = 3. We have the following corollary.

Corollary 4.5.2. Let X be a manifold of K3[2]-type. Let G be an order 3
group of numerically standard symplectic automorphisms of X. Then (X,G) is
H2-normal and H4-normal.

Proof. By Proposition 3.3.16, Proposition 3.3.19 and Theorem 1.3.9, if (X,G)
is H4-normal then (X,G) is H2-normal. Hence we have just to show the H4-
normality. We will apply Corollary 3.6.6.

By Theorem 2.5 of [41] and Example 4.2.1 of [40], we know that FixG
consists of 27 isolated points. Moreover the action of G is symplectic on X,



72 Application to cup-product and Beauville�Bogomolov lattices

hence all the �xed points are of type (1, 1, 2, 2). By Theorem 1.3.9, H∗(X,Z) is
torsion-free. It remains to show that l22(X) = l42(X) = 0.

By de�nition of numerically standard and Theorem 4.1 of [20], we know that

H2(X,Z)G ' U ⊕ U(3)2 ⊕A2
2 ⊕ (−2),

where H2(X,Z) is endowed with the Beauville�Bogomolov form. Hence by
Lemma 2.2.7 and De�nition-Proposition 2.2.4, l23(X) = 6. Since rkH2(X,Z) =
23 and rkH2(X,Z)G = 11, by Proposition 2.2.1,

rkH2(X,Z)− rkH2(X,Z)G = 2l23(X) + l22(X) = 23− 11 = 12.

Hence l22(X) = 0. Then, by Proposition 3.3.17, Proposition 3.3.19, Theorem
1.3.9 and Lemma 3.3.18, l42(X) = 0.

Now, we show that

l41(X) + 2
[
1 + l12(X) + l32(X) + l21(X)

]
= h2∗(FixG,Z).

Since Hodd(X,Z) = 0 (Theorem 1.3.9) and FixG consists of 27 isolated points,
we have jsute to show:

l41(X) + 2(1 + l21(X)) = 27. (4.1)

It remains to calculate l41(X) and l21(X). By Proposition 2.2.1, rkH2(X,Z)G =
l21(X) + l23(X). Since rkH2(X,Z)G = 11 and l23(X) = 6, we get l21(X) = 5. Now
by Proposition 3.3.17, Proposition 3.3.19, Theorem 1.3.9 and Lemma 3.3.18,
l41(X) = 5×6

2 = 15. Hence we get (4.1). We conclude by Corollary 3.6.6.

We deduce the following theorem.

Theorem 4.5.3. Let X be a manifold of S[2]-type. Let G be an order 3 group of
numerically standard symplectic automorphisms of X. We denote M3 = X/G.
Then the Beauville�Bogomolov lattice H2(M3,Z) is isomorphic to U(3)⊕U2 ⊕
A2

2 ⊕ (−6), and the Fujiki constant of M3 is 9.

Proof. By de�nition of numerically standard and Theorem 4.1 of [20], there is
an isometry of lattices H2(S[2],Z)G ' U ⊕U(3)⊕U(3)⊕A2⊕A2⊕ (−2). Now,
we need a lemma.

Lemma 4.5.4. Let X be an irreducible symplectic manifold of K3[2]-type and
G a symplectic automorphism group of order 3 ≤ p ≤ 19. We have AH2(X,Z)G =

(Z /2Z) ⊕ (Z /pZ)aG(X). We denote AH2(X,Z)G,p := (Z /pZ)aG(X). Then the
projection

H2(X,Z)

H2(X,Z)G ⊕ S2
G(X)

→ AH2(X,Z)G,p

is an isomorphism. Moreover, let x ∈ H2(X,Z)G and assume x
p ∈ (H2(X,Z)G)∨.

If x
p ∈ AH2(X,Z)G,p then there is z ∈ H2(X,Z) such that x = z + ϕ(z) + · · · +

ϕp−1(z).
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Proof. The �rst assertion follows from Lemma 2.2.7 and its proof.
Now let x ∈ H2(X,Z)G such that x

p ∈ AH2(X,Z)G,p. By the �rst assertion,

there is z ∈ H2(X,Z) and y ∈ SG(X) such that z = x+y
p . Then z + ϕ(z) +

· · · + ϕp−1(z) = x + y+ϕ(y)+···+ϕp−1(y)
p . But y + ϕ(y) + · · · + ϕp−1(y) = 0, so

z + ϕ(z) + · · ·+ ϕp−1(z) = x.

Here we have AH2(X,Z)G,3 = AU(3) ⊕AU(3) ⊕AA2 ⊕AA2 . Hence by Lemma

4.5.4 and Corollary 4.5.2, we have 1
3π∗(U(3)) ⊂ H2(M3,Z). And if we denote

by Ã2 the minimal primitive overgroup of π∗(A2) in H2(M3,Z), we will have

Ã2/π∗(A2) = Z /3Z. We denote (a, b) an integral basis of A2, with BX(a, a) =

BX(b, b) = −2 and BX(a, b) = 1. Hence a−b
3 ∈ AA2

. Then by Lemma 4.5.4 and

Corollary 4.5.2, π∗(a) − π∗(b) is divisible by 3 in H2(M3,Z), and Ã2/π∗(A2)

is generated by π∗(a)−π∗(b)
3 . Hence we can choose π∗(a)−π∗(b)

3 and π∗(a)−π∗(b)
3 +

π∗(b) = π∗(a)+2π∗(b)
3 as a basis of Ã2. The matrix of the sublattice generated by

a− b and a+ 2b in A2 is

A2(3) =

(
−6 3
3 −6

)
.

By Corollary 4.5.2 and Lemma 4.5.4, we have

H2(M3,Z) = π∗(U)⊕ 1

3
π∗(U(3))2 ⊕ 1

3
π∗(A2(3))2 ⊕ π∗(−2).

Then by Proposition 4.5.1, the Beauville�Bogomolov form of H2(M3,Z) gives
the lattice

U

(√
81

CM3

)
⊕ 1

3
U2

(
3

√
81

CM3

)
⊕ 1

3
A2

2

(
3

√
81

CM3

)
⊕

(
−2

√
81

CM3

)

= U

(
3

√
9

CM3

)
⊕ U2

(√
9

CM3

)
⊕A2

2

(√
9

CM3

)
⊕

(
−6

√
9

CM3

)
.

It follows that CM3
= 9 and we get the lattice

U(3)⊕ U2 ⊕A2
2 ⊕ (−6).

4.6 Quotient of a K3[2]-type manifold by a sym-
plectic involution

4.6.1 The H4-normality

In all this section, we will consider an irreducible symplectic manifold X of
K3[2]-type and a symplectic involution ι on X. By Theorem 1.3.5 (Mongardi),
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we can assume in all the proofs that X = S[2] for a K3 surface S and ι = i[2],
where i is a symplectic involution on S. Moreover, by Theorem 4.1 of [43]
(Theorem 1.3.6), the �xed locus of σ is always the union of 28 points and a K3
surface Σ. We start with the following corollary of Corollary 3.5.19.

Corollary 4.6.1. Let X be an irreducible symplectic manifold of K3[2]-type and
ι a symplectic involution on X. Then (X, 〈ι〉) is H4-normal.

Proof. We use Corollary 3.5.19. By Theorem 1.3.9, H∗(S[2],Z) is torsion-free.
Since FixG consists of a K3 surface and 28 isolated point, H∗(FixG,Z) is
torsion-free. Let Σ be the K3 surface �xed by ι. The following lemma says that
the class of Σ is primitive in H4(S[2],Z).

Lemma 4.6.2. We have:

Σ · q1(1)q1(x) |0〉 = 1, Σ · q2(αk) |0〉 = 0,

and
Σ · q1(αk)q1(αl) |0〉 = αk · i∗αl,

for all (k, l) ∈ {1, . . . , 22}2.

Proof. By the de�nition of the Nakajima operators, q1(1)q1(x) |0〉 corresponds
to the cycle

{
ξ ∈ S[2]

∣∣Supp ξ 3 x
}
. The element q1(αk)q1(αm) |0〉 corresponds

to the cycle
{
ξ ∈ S[2]

∣∣ Supp ξ = x+ y, x ∈ αk, y ∈ αm
}
. And q2 (αk) |0〉 corre-

sponds to the cycle
{
ξ ∈ S[2]

∣∣Supp ξ = {x} , x ∈ αk
}
. The result follows from

the fact that
Σ =

{
ξ ∈ S[2]

∣∣∣ Supp ξ = x+ i(x)
}
.

Hence FixG is almost negligible. Then it remains to check that l21,−(X) =
l41,−(X) = 0 and that

l41,+(X) + 2
[
l11,−(X) + l31,−(X) + l01,+(X) + l21,+(X)

]
= h∗(FixG,Z),

so that
l41,+(X) + 2

(
1 + l21,+(X)

)
= 28 + 1 + 22 + 1 = 52. (4.2)

By Proposition 1.3.8 and De�nition-Proposition 2.2.2, we know that l21,+(X) = 7
and l21,−(X) = 0. The most di�cult part is to calculate l41,+(X) and l41,−(X).
To do this, we will use the integral basis of Qin�Wang of Section 1.3.3 (here it
is not possible to apply Proposition 3.3.19 because of Theorem 1.3.9 3)).

We will start by introducing some notation.
Consider a �xed isometry H2(S[2],Z) ∼= U3⊕ (−2)⊕E8(−1)⊕E8(−1) given

by Proposition 1.3.8. In all the section we will write U3 ⊕ (−2) ⊕ E8(−1) ⊕
E8(−1) for the lattice H2(S[2],Z). Let (uk,l)k∈{1,2,3},l∈{1,2} be a basis of U3

and (ek,l)k∈{1,...,8}, l∈{1,2} a basis of E8(−1)⊕E8(−1). To simplify, we will also
use the notation

(γk)k∈{1,...,22} = (ua,b)a∈{1,2,3},b∈{1,2} ∪ (el,p)l∈{1,...,8},p∈{1,2}.
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By the proof of Proposition 1.3.8, we can write γk = j(αk) for all k ∈ {1, . . . , 22}
where (αk)k∈{1,...,22} is the corresponding basis of H2(S,Z) and j is de�ned in
Section 1.3.1. Also denote j(vk,l) = uk,l, for all k ∈ {1, 2, 3}, l ∈ {1, 2}.

Lemma 4.6.3. We have

l41,−(X) = 0.

Proof. With the above notation,

ι∗(q2(αk) |0〉) = q2(i∗αk) |0〉 , ι∗(q1(αk)q1(αj) |0〉) = q1(i∗αk)q1(i∗αj) |0〉 ,

ι∗(m1,1(αk) |0〉) = m1,1(i∗αk) |0〉 , ι∗(q1(1)q1(x) |0〉) = q1(1)q1(x) |0〉 .

Let x ∈ H4(S[2],Z) such that ι∗(x) = −x. By Theorem 1.3.10,

x =
∑

0≤k<j≤22

λk,jq1(αk)q1(αj) |0〉

+
∑

0≤k≤22

ηkq2(αk) |0〉

+
∑

0≤k≤22

νkm1,1(αk) |0〉

+ yq1(1)q1(x) |0〉 ,

where the λk,j , ηk, νk are in Z. By Proposition 1.3.8,

ι∗

 ∑
0≤k<j≤22

λk,jq1(αk)q1(αj) |0〉


=

∑
0≤k<j≤6

λk,jq1(αk)q1(αj) |0〉+
∑

0≤k≤6<j≤14

λk,jq1(αk)q1(α8+j) |0〉

+
∑

0≤k≤6,15≤j≤22

λk,jq1(αk)q1(αj−8) |0〉+
∑

7≤k<j≤14

λk,jq1(αk+8)q1(αj+8) |0〉

+
∑

7≤k≤14<j≤22

λk,jq1(αk+8)q1(αj−8) |0〉+
∑

15≤k<j≤22

λk,jq1(αk−8)q1(αj−8) |0〉

Since x is anti-invariant and by Theorem 1.3.10,

ι∗

 ∑
0≤k<j≤22

λk,jq1(αk)q1(αj) |0〉

 = −
∑

0≤k<j≤22

λk,jq1(αk)q1(αj) |0〉.
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Hence∑
0≤k<j≤6

λk,jq1(αk)q1(αj) |0〉+
∑

0≤k≤6<j≤14

λk,jq1(αk)q1(α8+j) |0〉

+
∑

0≤k≤6,15≤j≤22

λk,jq1(αk)q1(αj−8) |0〉+
∑

7≤k<j≤14

λk,jq1(αk+8)q1(αj+8) |0〉

+
∑

7≤k≤14<j≤22

λk,jq1(αk+8)q1(αj−8) |0〉+
∑

15≤k<j≤22

λk,jq1(αk−8)q1(αj−8) |0〉

= −
∑

0≤k<j≤22

λk,jq1(αk)q1(αj) |0〉.

Hence

• λk,j = 0 for 0 ≤ k ≤ j ≤ 6.

• λk,j = −λk,j+8 for 0 ≤ k ≤ 6 < j ≤ 14.

• λk,j = −λk+8,j+8 for 7 ≤ k ≤ j ≤ 14.

• λk,j = −λj−8,k+8 for 7 ≤ k ≤ 14 < j ≤ 22.

Therefore after a similar calculation for ηk and νk, we get:

x =
∑

1≤k≤6<j≤14

λk,j(q1(αk)q1(αj) |0〉 − q1(αk)q1(i∗αj) |0〉)

+
∑

7≤k≤14

ηk(q2(αk) |0〉 − q2(i∗αk) |0〉)

+
∑

7≤k≤j≤14

λk,j(q1(αk)q1(αj) |0〉 − q1(i∗αk)q1(i∗αj) |0〉)

+
∑

7≤k≤14

νk(m1,1(αk) |0〉 −m1,1(i∗αk) |0〉)

+

14∑
k=8

7+k∑
j=15

λk,j(q1(αk)q1(αj) |0〉 − q1(i∗αk)q1(i∗αj) |0〉),

By De�nition-Proposition 2.2.2, this implies l41,−(X) = 0.

Lemma 4.6.4. 1) The following elements form an integral basis of H4(S[2],Z)ι:

a)
q2(αk) |0〉 , q1(αk)q1(αl) |0〉 , m1,1(αk) |0〉 ,

for 1 ≤ k < l ≤ 6;

b)

q1(αk)q1(αl) |0〉+ q1(αk)q1(i∗αl) |0〉), q2(αl) |0〉+ q2(i∗αl) |0〉 ,

for k ∈ {1, . . . , 6} and l ∈ {7, . . . , 14};
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c)

q1(αk)q1(αl) |0〉+q1(i∗αk)q1(i∗αl) |0〉 , m1,1(αk) |0〉+m1,1(i∗αk) |0〉 ,

for 7 ≤ k < l ≤ 14;

d)

q1(αj)q1(i∗αl) |0〉 ,

for l ∈ {7, . . . , 14};

e)

q1(αk)q1(αl) |0〉+ q1(i∗αk)q1(i∗αl) |0〉),

for k ∈ {8, . . . , 14} and l ∈ {15, . . . , 7 + k};

f)

q1(1)q1(x) |0〉 .

2) l41,+(X) = 36.

Remark: Considering the isometry H2(S[2],Z) ' U3⊕E8(−1)⊕E8(−1)⊕
(−2) from Proposition 1.3.8,

(a) the elements of type (a) are products of elements of U3 ⊕ (−2)

(b) the elements of type (b) are products of one element of U3⊕ (−2) and one
element of E8(−2),

(c) the elements of type (c) are sums x · y + ι∗(x) · ι∗(y) with x and y in
E8(−1),

(d) the elements of type (d) are products of one element of E8(−1) with its
image by ι∗,

(e) the elements of type (e) are sums x · y+ ι∗(x) · ι∗(y) with x in E8(−1) and
y in ι∗(E8(−1)), y 6= ι∗(x).

Proof. 1) Let x ∈ H4(S[2],Z)ι. As follows from Theorem 1.3.10, by the
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same method as in the proof of Lemma 4.6.3, we can write:

x =
∑

1≤k<j≤6

λk,j(q1(αk)q1(αj) |0〉)

+
∑

1≤k≤6

ηk(q2(αk) |0〉) + νk(m1,1(αk) |0〉)

+
∑

1≤k≤6<j≤14

λk,j(q1(αk)q1(αj) |0〉+ q1(αk)q1(i∗αj) |0〉)

+
∑

7≤k≤14

ηk(q2(αk) |0〉+ q2(i∗αk) |0〉)

+
∑

7≤k≤j≤14

λk,j(q1(αk)q1(αj) |0〉+ q1(i∗αk)q1(i∗αj) |0〉)

+
∑

7≤k≤14

νk(m1,1(αk) |0〉+ m1,1(i∗αk) |0〉)

+

14∑
j=7

λj,j+8(q1(αj)q1(i∗αj) |0〉)

+

14∑
k=8

7+k∑
j=15

λk,j(q1(αk)q1(αj) |0〉+ q1(i∗αk)q1(i∗αj) |0〉) + yq1(1)q1(x) |0〉 ,

with the λk,j , µk, νk in Z.

2) Hence the element which are in the part Zt of the decomposition of
De�nition-Proposition 2.2.2 are the elements of type a), d) and f). Their
numbers are respectively 6×5

2 + 6 + 6 = 27, 8 and 1. Hence l41(X) =
27 + 8 + 1 = 36.

Hence (4.2) is veri�ed and we get the result by Corollary 3.5.19.

We also deduce the following Lemma from Lemma 4.6.4 and Corollary 4.6.1.

Lemma 4.6.5. Let M = S[2]/ι. The following elements form an integral basis
of H4(M,Z):

a)

π∗(q2(αk) |0〉), π∗(q1(αk)q1(αl) |0〉), π∗(m1,1(αk) |0〉),

for 1 ≤ k < l ≤ 6;

b)

π∗(q1(αk)q1(αl) |0〉), π∗(q2(αl) |0〉),

for k ∈ {1, . . . , 6} and l ∈ {7, . . . , 14};
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c)
π∗(q1(αk)q1(αl) |0〉), π∗(m1,1(αk) |0〉),

for 7 ≤ k < l ≤ 14;

d)
π∗(q1(αj)q1(i∗αl) |0〉),

for l ∈ {7, . . . , 14};

e)
π∗(q1(αk)q1(αl) |0〉),

for k ∈ {8, . . . , 14} and l ∈ {15, . . . , 7 + k};

f)
π∗(q1(1)q1(x) |0〉).

We also deduce the following numerical values.

Proposition 4.6.6. Let X be an irreducible symplectic manifold of K3[2]-type
and ι a symplectic involution on X.

1) FixG is almost negligible,

2) l21,+(X) = 7,

2) l21,−(X) = l41,−(X) = 0,

3) l41,+(X) = 36,

4) l41,+(X) + 2
[
l11,−(X) + l31,−(X) + l01,+(X) + l21,+(X)

]
= h∗(FixG,Z).

4.6.2 The H2-normality

From Corollary 4.6.1, we deduce the following statement:

Corollary 4.6.7. Let X be an irreducible symplectic manifold of K3[2]-type and
ι a symplectic involution on X. Then (X, 〈ι〉) is H2-normal.

Proof. We cannot use Proposition 3.3.16 because of Theorem 1.3.9 3). By
Proposition 1.3.8, our isometry H2(S[2],Z)2 ' U3 ⊕ E8(−1)2 ⊕ (−2) implies
H2(S[2],Z)ι ' U3 ⊕ E8(−2) ⊕ (−2). Throughout this section we will write
U3⊕E8(−2)⊕ (−2) for referring to the sublattice H2(S[2],Z)ι. By Proposition
1.3.8, all the elements π∗(z) with z ∈ E8(−2) are divisible by 2. Hence we have
to prove that the elements π∗(z) with z ∈ U3 ⊕ (−2) are divisible by 2 if and
only if z is divisible by 2.

Let x = π∗(z), z ∈ U3 ⊕ (−2). Assuming x divisible by 2, we will show that
z is divisible by 2.

We can write

x =
∑

(k,j)∈{1,2,3}×{1,2}

ak,jπ∗(uk,j) + y(π∗(δ)),
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where ak,j and y are integers, (ui,j)1≤i≤3,1≤j≤2 is a basis of U3 and δ is half the
diagonal. Then by Lemma 3.3.7 1),

ε = π∗


 ∑

(k,j)∈{1,2,3}×{1,2}

ak,juk,j + yδ

2


is divisible by 2. Hence:

ε′ = π∗

 ∑
(k,j)∈{1,2,3}×{1,2}

a2
k,ju

2
k,j + y2δ2


is divisible by 2 .

We also have by Proposition 1.3.11:

u2
k,j = q1(vk,j)

2 |0〉 = 2m1,1(vk,j) |0〉+ q2(vk,j) |0〉 ,

where j(vk,j) = uk,j , and

δ2 =
∑
i<j

µi,jq1(αi)q1(αj) |0〉+
1

2

∑
i

µi,iq1(αi)
2 |0〉+ q1(1)q1(x) |0〉 .

Then

ε′ = π∗

 ∑
(k,j)∈{1,2,3}×{1,2}

a2
k,jq2(vk,j) |0〉

+y2

∑
i<j

µi,jq1(αi)q1(αj) |0〉+
1

2

∑
i

µi,iq2(αi) |0〉

+ y2q1(1)q1(x) |0〉


+A′

with A′ divisible by 2.

Since ε′ is divisible by 2, by Lemma 4.6.5, the coe�cient of q1(1)q1(x) |0〉
must be even. So y is even.

Now, since

ε′′ = π∗

 ∑
(k,j)∈{1,2,3}×{1,2}

a2
k,jq2(vk,j) |0〉


is divisible by 2, by Lemma 4.6.5, all the coe�cients ak,j must be even. Hence
z is divisible by 2.
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4.6.3 Beauville�Bogomolov lattice of a partial resolution

of the quotient of a K3[2]-type manifold by a sym-

plectic involution

By Theorem 4.1 of [43] (Theorem 1.3.6), the �xed locus of σ is the union of 28
isolated points and a K3 surface Σ. Then the singular locus ofM := S[2]/σ is the
union of a K3 and 28 isolated points. The singular locus is not of codimension
four. We lift to a partial resolutionM ′ of singularities ofM , obtained by blowing
up the image of Σ. By Section 2.3 and Lemma 1.2 of [17], M ′ is an irreducible
symplectic V-manifold which has singular locus of codimension four. Hence by
Section 1.2.2, we can endow M ′ with its Beauville�Bogomolov form. We will
prove the following Theorem.

Theorem 4.6.8. Let X be an irreducible symplectic manifold of K3[2]-type and
ι a symplectic involution on X. Let Σ be the K3 surface in the �xed locus of
ι. We denote M = X/ι and M ′ the partial resolution of singularities of M
obtained by blowing up the image of Σ. Then the Beauville�Bogomolov lattice
H2(M ′,Z) is isomorphic to E8(−1)⊕U(2)3⊕ (−2)2, and the Fujiki constant is
equal to 6.

4.6.4 Proof of Theorem 4.6.8

Notation

Let r1 : M ′ → M be the partial resolution of singularities obtained by blowing

up Σ := π(Σ), where π : S[2] → M is the quotient map. Denote by Σ
′
the

exceptional divisor. Let s1 : X ′ → S[2] be the blowup of S[2] in Σ, and denote
by Σ1 the exceptional divisor in X ′. Denote by ι1 the involution on X ′ induced
by ι. We have M ′ ' X ′/ι1, and we denote by π1 : X ′ →M ′ the quotient map.

Let also s2 : X̃ → X ′ be the blowup in the 28 points �xed by ι1. We denote
by (Ek)1≤k≤28 the exceptional divisors and Σ2 = s−1

2 (Σ1). Let r2 : M̃ → M ′

be the blowup in the 28 singular points of M ′. We denote by (Dk)1≤k≤28 the

exceptional divisors and Σ̃ = r−1
2 (Σ

′
). We denote by ι2 the involution on X̃

induced by ι1. We have M̃ = X̃/ι2 and we denote π2 : X̃ → M̃ the quotient
map.

We also denote s = s1◦s2, r = r1◦r2, V = X \Fix ι = X ′\Fix ι1 = X̃ \Fix ι2
and U = π(V ) = π1(V ) = π2(V ) as in Section 3.5. We sum up the notation in
the diagram:

M̃
r2 // M ′

r1 // M

X̃

ι2

WW
s2 //

π2

OO

X ′

ι1

XX
s1 //

π1

OO

S[2].

ι

XX

π

OO

We have
H2(X ′,Z) ∼= H2(S[2],Z)⊕ ZΣ′,
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We also write δ′ = s∗1(δ), where δ is half the diagonal of S[2]. We need also the
following lemma.

Lemma 4.6.9. The cohomology group H4(M̃,Z) is torsion-free.

Proof. This follows from Proposition 4.6.6 and Corollary 3.5.19.

Lemmas on the Beauville�Bogomolov form on M ′

Proposition 4.6.10. We have the formula

BM ′(π1∗(s
∗
1(α), π1∗(s

∗
1(β))) =

√
24

CM ′
BS[2](α, β),

where CM ′ is the Fujiki constant of M ′ and α, β are in H2(S[2],Z)ι.

Proof. By (1) of Theorem 1.2.4, we have

(π1∗(s
∗
1(α)))4 = CM ′BM ′(π1∗(s

∗
1(α), π1∗(s

∗
1(α)))2.

And
α4 = 3BS[2](α, α)2.

Moreover, by Lemma 3.3.7 3),

(π1∗(s
∗(α)))4 = 8s∗(α)4 = 8α4.

By (2) of Theorem 1.2.4, we get the result.

Proposition 4.6.11. We have

BM ′(Σ
′
,Σ
′
) = BM ′(π1∗(s

∗
1(δ)), π1∗(s

∗
1(δ))) = −2

√
24

CM ′
.

Proof. First, by Theorem 1.3.1, we have BS[2](δ, δ) = −2, hence

BM ′(π1∗(s
∗
1(δ)), π1∗(s

∗
1(δ))) = −2

√
24

CM ′

by the last proposition.
We need the following lemma similar to Lemma 3.5.10.

Lemma 4.6.12. We have
Σ2

1 = −s∗1(Σ).

Proof. Consider the following diagram:

Σ1

g

��

� � l1 // X ′

s1

��
Σ

� � l0 // S[2],
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where l0 and l1 are the inclusions and g := s1|Σ1
. By Proposition 6.7 of [19], we

have:

s∗1l0∗(Σ) = l1∗(c1(E)),

where E := g∗(NΣ/S[2])/NΣ1/N1
. Hence

s∗1l0∗(Σ) = c1(g∗(NΣ/S[2]))− Σ2
1.

It remains to calculate c1(g∗(NΣ/S[2])). We consider the diagram

Σ0
� � l′0 // S × S

Σ̃0

r0

OO

p0

��

� � l̃0 // S

r

OO

p

��
Σ

� � l0 // S[2],

where Σ0 = { (x, i(x))|x ∈ S}, r : S → S × S is the blowup in the diagonal of

S × S: ∆0, r0 : Σ̃0 → Σ0 is the blowup in ∆0 ∩ Σ0 = 8pt, and p, p0 are the
quotient maps. Since ∆0 and Σ0 intersect properly in S × S, Σ̃0 is equal to the
total transform of Σ0 by r in S . Hence

c1(N
Σ̃0/S

) = c1(r∗0(NΣ0/S×S)).

But since Σ0 ' S, we have NΣ0/S×S ' TS . Hence c1(N
Σ̃0/S

) = 0. Since Σ̃0 is

also the total transform of Σ by p in S , we have

c1(N
Σ̃0/S

) = c1(p∗(NΣ/S[2])).

Hence c1(NΣ/S[2]) = 0. So

Σ2
1 = −s∗1l0∗(Σ).

Now, we can calculate BM ′(Σ
′
,Σ
′
) from the cup product (Proposition 1.2.5).

Σ
′2 · π1∗(s

∗
1(δ))2 =

CM ′

3
BM ′(Σ

′
,Σ
′
)×BM ′(π1∗(s

∗
1(δ)), π1∗(s

∗
1(δ)))

=
CM ′

3
BM ′(Σ

′
,Σ
′
)×

(
−2

√
24

CM ′

)
= −4

√
2CM ′

3
BM ′(Σ

′
,Σ
′
)
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By Lemma 3.3.7 3), we have Σ
′2 ·π1∗(s

∗
1(δ))2 = 8Σ2

1 · (s∗1(δ))2. By the projection
formula, Σ2

1 ·(s∗1(δ))2 = s1∗(Σ
2
1)·δ2. Moreover by the last lemma, s1∗(Σ

2
1) = −Σ.

Hence,

−8Σ · δ2 = −4

√
2CM ′

3
BM ′(Σ

′
,Σ
′
).

It is possible to understand geometrically the intersection Σ ·∆2, where ∆ = 2δ
is the diagonal in S[2]. Since ι = i[2] with i a symplectic involution on S, we
have Σ =

{
ξ ∈ S[2]

∣∣Supp ξ = x+ i(x), x ∈ S
}
and ∆→ ∆0 is a P1-bundle over

the diagonal ∆0 in S(2). We recall that i has 8 �xed points on S: x1, . . . , x8.
Then we see that ∆ · Σ = ∪8

j=1

{
ξ ∈ S[2]

∣∣Supp ξ = {xj}
}
, the union of 8 lines.

Therefore ∆2 · Σ is the self-intersection of 8 lines in the K3 surface Σ. So
∆2 · Σ = −2× 8. We get:

−8× −2× 8

4
= −4

√
2CM ′

3
BM ′(Σ

′
,Σ
′
),

and so

BM ′(Σ
′
,Σ
′
) = −2

√
24

CM ′
.

Proposition 4.6.13.

BM ′(π1∗(s
∗
1(α)),Σ

′
) = 0,

for all α ∈ H2(S[2],Z)ι.

Proof. We have π1∗(s
∗
1(α))3·Σ′ = 8s∗1(α)3·Σ1 by Lemma 3.3.7 3), and s1∗(s

∗
1(α3)·

Σ1) = α3 · s1∗(Σ1) = 0 by the projection formula. We conclude by Proposition
1.2.5.

The element Σ
′

We will now show that the class of Σ
′
is not divisible by 2 in H2(M ′,Z).

Lemma 4.6.14. The element Σ
′
is not divisible by 2 in H2(M ′,Z).

Proof. Since Σ̃ = r̃∗(Σ
′
), it is enough to show that Σ̃ is not divisible by 2 in

H2(M̃,Z). We have the following exact sequence:

H1(U,Z) // H2(M̃, U,Z) // H2(M̃,Z) // H2(U,Z) // H3(M̃, U,Z) .

By the universal coe�cient theorem, H1(U,Z) is torsion-free. Since H1(V,Z)
= 0, we have H1(U,Z) = 0. Moreover, by Thom's isomorphism, we have

H3(M̃, U,Z) ' H1(Σ̃,Z) ⊕ (⊕28
i=1H

1(Di,Z)) = 0. We have also H2(M̃, U,Z)

' H0(Σ̃,Z)⊕ (⊕28
i=1H

0(Di,Z)). Then the exact sequence gives:

H2(U,Z) ' H2(M̃,Z)/
〈

Σ̃, D1, . . . , D28

〉
.
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With equivariant cohomology, we calculate that the torsion of H2(U,Z) is

equal to Z /2Z. This means that if D̃ is the minimal primitive overgroup of〈
Σ̃, D1, . . . , D28

〉
in H2(M̃,Z), then D̃/

〈
Σ̃, D1, . . . , D28

〉
= Z /2Z. But, we

have π̃∗(OX̃) = O
M̃
⊕ L, with L2 = O

M̃

(
−D1 − · · · −D28 − Σ̃

)
. Hence, we

know that Σ̃ +D1 + · · ·+D28 is divisible by 2. So

D̃ =

〈
Σ̃, D1, . . . , D28,

Σ̃ +D1 + · · ·+D28

2

〉
.

Hence Σ̃ is not divisible by 2, and neither is Σ
′
.

What it remains to prove

Lemma 4.6.15. The sublattice

1

2
π1∗(s

∗
1(E8(−2)))⊕ π1∗(s

∗
1(U3))⊕ Zπ1∗(s

∗
1(δ))

is primitive in H2(M ′,Z).

Proof. This follows from our results on the H2-normality of (S[2], ι).
By Proposition 3.5.20 and Proposition 4.6.6, π2∗(s

∗(H4(S[2],Z))) is primi-

tive in H4(M̃,Z). Then by the proof of Corollary 4.6.7, 1
2π2∗(s

∗(E8(−2))) ⊕
π2∗(s

∗(U3))⊕ Zπ2∗(s
∗(δ)) is primitive in H2(M̃,Z).

The quadruple (X̃, ι2, r2, s2) is a pullback of (X ′, ι1), and the cohomology

groups H2(M̃,Z) and H2(M ′,Z) are torsion-free. Hence by Lemma 3.3.21, we
have

1

2
π2∗(s

∗(E8(−2)))⊕ π2∗(s
∗(U3))⊕ Zπ2∗(s

∗(δ))

=
1

2
r∗2(π1∗(s

∗
1(E8(−2))))⊕ r∗2(π1∗(s

∗
1(U3)))⊕ Z r∗2(π1∗(s

∗
1(δ))).

Hence the primitivity of 1
2π2∗(s

∗(E8(−2)))⊕π2∗(s
∗(U3))⊕Zπ2∗(s

∗(δ)) implies
that of 1

2π1∗(s
∗
1(E8(−2)))⊕ π1∗(s

∗
1(U3))⊕ Zπ1∗(s

∗
1(δ)).

It remains to �nd an answer to one more divisibility question.

The lattices 1
2π1∗(s

∗
1(E8(−2))) ⊕ π1∗(s

∗
1(U3)) ⊕ Zπ1∗(s

∗
1(δ)) and ZΣ

′
are

primitive in H2(M ′,Z), but it might turn out that an element of the form

x =
y ± Σ

′

2
,

with y ∈ 1
2π1∗(s

∗
1(E8(−2)))⊕π1∗(s

∗
1(U3))⊕Zπ1∗(s

∗
1(δ)) is integral. To simplify

the formulas, we will use the following notation:

δ̃ := π2∗(s
∗(δ)), δ̃2 := π2∗(s

∗(δ2)), δ
′

:= π1∗(s
∗
1(δ)),
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ũk,l := π2∗(s
∗(uk,l)), uk,l

′ := π1∗(s
∗
1(uk,l)),

for all k ∈ {1, 2, 3} and l ∈ {1, 2}. We will show that δ
′
+Σ
′

2 ∈ H2(M ′,Z).
We will need the following propositions. Let (ak)1≤k≤22 be an integral basis

of H2(Σ,Z). Denote θk = s∗|Σ2
(ak) for all 1 ≤ k ≤ 22.

Proposition 4.6.16. We have:

1) El · Ek = 0 if l 6= k, E2
l = −fl∗(hl), E4

l = −1 and El · z = 0 for all

(l, k) ∈ {1, . . . , 28}2 and for all z ∈ s∗(H4(S[2],Z));

2) Σ2 · Ek = 0 for all k ∈ {1, . . . , 28} and Σ2
2 = −s∗(Σ);

3) θk · z = 0 for all k ∈ {1, . . . , 22} and z ∈ s∗(H4(S[2],Z)).

4) Denote σx := Σ2 · s∗(x) for all x ∈ H2(S[2],Z). We have

Σ2
2 · s∗(x) · s∗(y) = −2BS[2](x, y)

for all (x, y) ∈ H2(S[2],Z)ι. Hence

rk
〈{

σx|x ∈ H2(S[2],Z)ι
}〉

= rkH2(S[2],Z)ι = 15.

Proof. 1) Let k ∈ {1, . . . , 28}. We have

ωEk = ωN2 ⊗NEk/N2
.

Since Ek ' P3,

OEk(−4) = ON2
(3

28∑
j=1

Ej + Σ2)⊗ON2
(Ek)⊗OEk

= ON2
(4Ek)⊗OEk .

We get E2
k = −fk∗(hk), where hk is the class of a hyperplane in Ek ' P3.

Hence E4
k = c1(NEk/N2

)3 = (−hk)3 = −1.

2) We have Σ2
2 = s∗2(Σ2

1), so the result follows from Lemma 4.6.12.

3) If we take z = s∗(y), then s∗(z · θi) = y · s∗(θi) by the projection formula.
Since s∗(θi) = 0, we have s∗(z · θi) = 0, and then z · θi = 0.

4) We have

Σ2
2 · s∗(x) · s∗(y) = Σ2

1 · s∗1(x) · s∗1(y).

By Lemma 3.3.7 3),

Σ2
1 · s∗1(x) · s∗1(y) =

1

8
Σ
′2 · π1∗(s

∗
1(x)) · π1∗(s

∗
1(y)).
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By Proposition 1.2.5 and Proposition 4.6.13,

Σ2
1 · s∗1(x) · s∗1(y) =

CM ′

24
BM ′(Σ

′
,Σ
′
)×BM ′(π1∗(s

∗
1(x)), π1∗(s

∗
1(y))).

Hence, by Proposition 4.6.10 and Proposition 4.6.11,

Σ2
1 · s∗1(x) · s∗1(y) =

CM ′

24
×
[
−2

√
24

CM ′

]
×
√

24

CM ′
BS[2](x, y)

= −2BS[2](x, y).

From this proposition and Lemma 3.3.7, we deduce a similar proposition on
the cohomology of M̃ . We will denote

hk = −E2
k, Σ̃ := π2∗(Σ2), Dk := π2∗(Ek),

h̃k := π2∗(hk), σ̃x := π2∗(σx), θ̃l := π2∗(θl),

for k ∈ {1, . . . , 28}, l ∈ {1, . . . , 22} and x ∈ H2(S[2],Z).

Proposition 4.6.17. We have:

1) Dl ·Dk = 0 if l 6= k, D2
l = −2h̃l, and Dl ·z = 0 for all (l, k) ∈ {1, . . . , 28}2

and for all z ∈ π2∗(s
∗(H4(S[2],Z)ι));

2) Σ̃ ·Dk = 0 for all k ∈ {1, . . . , 28} and Σ̃2 = −2π2∗(s
∗(Σ));

3) θ̃k · z = 0 for all k ∈ {1, . . . , 22} and z ∈ π2∗(s
∗(H4(S[2],Z)ι)),

4) Σ̃ · π2∗(s
∗(x)) = 2σ̃x for all x ∈ H2(S[2],Z)ι. Moreover

Σ̃2 · π2∗(s
∗(x)) · π2∗(s

∗(y)) = −16BS[2](x, y),

for all (x, y) ∈ H2(S[2],Z)ι. Hence

rk
〈{

σ̃x|x ∈ H2(S[2],Z)ι
}〉

= rkH2(S[2],Z)ι = 15.

5) Let T be the sublattice of (H4(X̃,Z), ·) generated by the set

{θi| i ∈ {1, . . . , 22}} ∪
{
E2
k

∣∣ k ∈ {1, . . . , 28}
}
.

Let T̃ be the minimal primitive overlattice of π2∗(T ) in H4(M̃,Z), then

T̃ /π2∗(T ) = (Z /2Z)7.
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Proof. We have just to show 5). By Theorem 7.31 of [67] (Theorem 2.5.1), we
have

H4(X̃,Z) = s∗(H4(S[2],Z)⊕ T.

Hence by Lemma 3.5.11,

T̃ /π2∗(T ) = (Z /2Z)rktorHn(U,Z)−rktorHn(M̃,Z)−1.

By Lemma 4.6.9, H4(M̃,Z) is torsion-free. And by Proposition 3.5.14 and
Proposition 4.6.6, rktorH4(U,Z) = 8.

Now, the plan of the proof will be the following. We will show that

δ̃2 − π2∗(s
∗(Σ))

2
=

(
δ̃ + Σ̃

2

)2

− σ̃δ ∈ H4(M̃,Z);

next we will deduce that

δ̃ + Σ̃

2
∈ H2(M̃,Z),

and �nally we will be able to prove that

δ
′
+ Σ

′

2
∈ H2(M ′,Z).

The element δ̃2 − π2∗(s
∗(Σ))

Lemma 4.6.18. The element δ̃2 − π2∗(s
∗(Σ)) is divisible by 2 in H4(M̃,Z).

Proof. We need to show that π2∗(s
∗(δ2 − Σ)) is divisible by 2. So, look at
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δ2 − Σ ∈ H4(S[2],Z). By (1) of Lemma 4.6.4, we can write:

δ2 − Σ =
∑

1≤k<j≤6

λk,j(q1(αk)q1(αj) |0〉)

+
∑

1≤k≤6

ηk(q2(αk) |0〉) + νk(m1,1(αk) |0〉)

+
∑

1≤k≤6<j≤14

λk,j(q1(αk)q1(αj) |0〉+ q1(αk)q1(i∗αj) |0〉)

+
∑

7≤k≤14

ηk(q2(αk) |0〉+ q2(i∗αk) |0〉)

+
∑

7≤k≤j≤14

λk,j(q1(αk)q1(αj) |0〉+ q1(i∗αk)q1(i∗αj) |0〉)

+
∑

7≤k≤14

νk(m1,1(αk) |0〉+ m1,1(i∗αk) |0〉)

+

14∑
j=7

λj,j+8(q1(αj)q1(i∗αj) |0〉)

+

14∑
k=8

7+k∑
j=15

λk,j(q1(αk)q1(αj) |0〉+ q1(i∗αk)q1(i∗αj) |0〉) + yq1(1)q1(x) |0〉 ,

with λk,j , µk, νk in Z. To see that π2∗(s
∗(δ2)) + π2∗(Σ

2
2) is divisible by 2, we

need to show that the coe�cients of the basis elements of type a), d) and f) are
even. Then we rewrite:

δ2 − Σ =
∑

1≤k<j≤6

λk,j(q1(αk)q1(αj) |0〉) +
∑

1≤k≤6

ηk(q2(αk) |0〉) + νk(m1,1(αk) |0〉)

+

14∑
j=7

λj,j+8(q1(αj)q1(i∗αj) |0〉)

+ yq1(1)q1(x) |0〉+ Z,

where Z is a sum of elements of type b), c), e). Now we re-arrange the sums as
follows:

δ2 − Σ =
∑

(i,j)6=(l,k)∈{1,2,3}×{1,2}

λi,j,k,l(q1(vi,j)q1(vk,l) |0〉)

+
∑

(l,k)∈{1,2,3}×{1,2}

ηl,k(q2(vk,l) |0〉) + νl,k(m1,1(vk,l) |0〉)

+

14∑
j=7

λj,j+8(q1(αj)q1(i∗αj) |0〉)

+ yq1(1)q1(x) |0〉+ Z,
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Making the cup product of the two sides of the equality by q1(1)q1(x) |0〉 and us-
ing Propositions 1.3.11 and 1.3.12, we obtain y = 0. Now, again by Proposition
1.3.11, we can rewrite:

δ2 − Σ =
∑

(i,j)6=(l,k)∈{1,2,3}×{1,2}

λi,j,k,l(ui,j · uk,l −∆i=kq1(1)q1(x) |0〉)

+
∑

(l,k)∈{1,2,3}×{1,2}

ηk,l(uk,l · δ) + νk,l(
u2
k,l − uk,l · δ

2
)

+

14∑
j=7

λj,j+8(γj · ι∗γj)

+ Z,

where ∆i=k is the Kronecker symbol. Now making the cup product with u2
k,l and

using Propositions 1.2.5, 1.3.11, we get νk,l = 0 for all (k, l) ∈ {1, 2, 3} × {1, 2}.
Next, we get ηk,l = 0 by taking the cup product with uk,l · δ. Now we take the
cup product with ui,j · uk,l, i 6= k, and we obtain that all the λi,j,k,l with i 6= k
vanish. Then it remains:

δ2 − Σ =

3∑
i=1

λi,i,1,2(ui,1 · ui,2 − q1(1)q1(x) |0〉) +

14∑
j=7

λj,j+8(γj · ι∗γj) + Z

Now by taking the cup product with the ui,1 · ui,2 we get the three equations

− 4 = −λ2,2,1,2 − λ3,3,1,2

− 4 = −λ1,1,1,2 − λ3,3,1,2

− 4 = −λ2,2,1,2 − λ1,1,1,2.

Hence λ1,1,1,2 = λ2,2,1,2 = λ3,3,1,2 = 2. So

δ2 − Σ =

14∑
j=7

λj,j+8(γj · ι∗γj) + Z ′,

with Z ′ = Z + 2(u1,1 · u1,2 + u2,1 · u2,2 + u3,1 · u3,2 − 3q1(1)q1(x) |0〉).
Now, it remains to handle the cup-products γj ·ι∗γj . We recall that the lattice

E8 can be embedded in R8 with its canonical scalar product as the lattice freely
generated by the columns of the matrix

2 −1 0 0 0 0 0 1
2

0 1 −1 0 0 0 0 1
2

0 0 1 −1 0 0 0 1
2

0 0 0 1 −1 0 0 1
2

0 0 0 0 1 −1 0 1
2

0 0 0 0 0 1 −1 1
2

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 0 1
2


.
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With this identi�cation, we use the columns of this matrix as the basis of
E8(−1) ⊂ H2(S,Z).

Then making the cup product of δ2 − Σ with γ14 · ι∗γ14, we get: 2 =
−2λ14,14+8−λ7,7+8 + γ14 · ι∗γ14 ·Z ′. Since γ14 · ι∗γ14 ·Z ′ is necessarily even, we
see that λ7,7+8 is even. Next, we take the cup product with γ7 · ι∗γ7, and we
get that λ14,14+8 is even; we go on with the cup products with γ13 · ι∗γ13,. . . ,
γ8 · ι∗γ8, and we get that all the λj,j+8 are even.

We will deduce that δ̃ + Σ̃ is divisible by 2 in H2(M̃,Z). To this end, we
will use Smith theory (see Section 2.4).

The element δ̃ + Σ̃

To apply Smith theory, we need the following lemma.

Lemma 4.6.19. We have:

1) H3(M̃,Z) = 0

2) H∗(M̃,Z) is torsion-free.

Proof. 1) We have the following exact sequence:

H3(S[2], V,Z) // H3(S[2],Z)
f // H3(V,Z) // H4(S[2], V,Z)

ρ // H4(S[2],Z).

By Thom isomorphism, H3(S[2], V,Z) = 0 and H4(S[2], V,Z) = H0(Σ,Z).
Moreover ρ is injective, so H3(V,Z) = H3(S[2],Z) = 0.

Hence, using the spectral sequence of equivariant cohomology, we �nd that
H3(U,Z) = 0. Since H3(X̃,Z) = 0, H3(M̃,Z) is a torsion group. Hence
the result follows from the exact sequence

H3(M̃, U,Z) // H3(M̃,Z) // H3(U,Z)

and from the fact that H3(M̃, U,Z) = 0 by Thom isomorphism.

2) By 1), H3(M̃,Z) is torsion-free. Since M̃ is simply connected, H1(M̃,Z) =

0. Hence, the group H2(M̃,Z) is torsion-free. The group H4(M̃,Z) is
torsion-free by Lemma 4.6.9. By 1) and the universal coe�cient theorem,

H2(M̃,Z) is torsion-free. Hence by Poincaré duality, H6(M̃,Z) is torsion-

free. Finally, by Poincaré duality, H7(M̃,Z) ' H1(M̃,Z) = 0 is torsion-
free.

Look at the following exact sequence:

0 // H2(M̃, Σ̃ ∪ (∪8
k=1Dk),F2)) // H2(M̃,F2) // H2(Σ̃ ∪ (∪8

k=1Dk,F2))

// H3(M̃, Σ̃ ∪ (∪28
k=1Dk),F2) // 0.
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First, we will calculate the vector spaces H2(M̃, Σ̃∪ (∪28
k=1Dk),F2) and H3(M̃,

Σ̃ ∪ (∪28
k=1Dk),F2). By 3) of Proposition 2.4.1, we have

H∗(M̃, Σ̃ ∪ (∪28
k=1Dk),F2) ' H∗σ(X̃).

We denote hiσ(X̃) := dimHi
σ(X̃).

Lemma 4.6.20. We have:

h2
σ(X̃) = 36, h3

σ(X̃) = 43.

Proof. The previous exact sequence gives us the following equation:

h2
σ(X̃)− h2(M̃,F2) + h2(Σ̃ ∪ (∪28

k=1Dk),F2)− h3
σ(X̃) = 0.

As h2(M̃,F2) = 16 + 28 = 44 and h2(Σ̃ ∪ (∪28
k=1Dk),F2) = 23 + 28 = 51, we

obtain:
h2
σ(X̃)− h3

σ(X̃) = 7.

Moreover by 2) of Proposition 2.4.1, we have the exact sequence

0 // H1
σ(X̃) // H2

σ(X̃) // H2(X̃,F2) // H2
σ(X̃)⊕H2(Σ2 ∪ (∪28

k=1Ek),F2)

// H3
σ(X̃) // 0.

By Lemma 7.4 of [11], h1
σ(X̃) = h0(Σ2 ∪ (∪28

k=1Ek),F2) − 1. Then we get the
equation

h0(Σ2 ∪ (∪28
k=1Ek),F2)− 1− h2

σ(X̃) + h2(X̃,F2)

− h2
σ(X̃)− h2(Σ2 ∪ (∪28

k=1Ek),F2) + h3
σ(X̃) = 0,

or
29− 2h2

σ(X̃) + h3
σ(X̃) = 0.

From the two equations, we deduce that

h2
σ(X̃) = 36, h3

σ(X̃) = 43.

Lemma 4.6.21. The following seven elements belong to H2(M̃,Z):
ũk,l+dk,l

2

(k, l) ∈ {1, 2, 3} × {1, 2} and δ̃+dδ
2 . Moreover, VectF2

((di,j)(i,j)∈{1,2,3}×{1,2}, dδ)
is a subspace of VectF2(D1, . . . , D28) of dimension 7.

Proof. Come back to the exact sequence

0 // H2(M̃, Σ̃ ∪ (∪28
k=1Dk),F2) // H2(M̃,F2)

ς∗ // H2(Σ̃ ∪ (∪28
k=1Dk),F2) ,
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where ς : Σ̃∪(∪28
k=1Dk) ↪→ M̃ is the inclusion. Since h2(M̃, Σ̃∪(∪28

k=1Dk),F2) =

h2
σ(X̃) = 36, we have dimF2

ς∗(H2(M̃,F2)) = (16 + 28) − 36 = 8. We can
interpret this as follows. Consider the homomorphism

ς∗Z : H2(M̃,Z)→ H2(Σ̃,Z)⊕ (⊕28
k=1H

2(Dk,Z))

u→ (u · Σ̃, u ·D1, . . . , u ·D28).

Since this is a map of torsion-free Z-modules (by Lemma 4.6.19), we can tensor
by F2,

ς∗ = ς∗Z ⊗ idF2 : H2(M̃,Z)⊗ F2 → H2(Σ̃,Z)⊕ (⊕28
k=1H

2(Dk,Z))⊗ F2,

and we have 8 independent elements such that the intersection with the Dk k ∈
{1, . . . , 8} and Σ̃ are not all even. But ς∗(π2∗(s

∗(U3⊕(−2)))⊕ 1
2π2∗(s

∗(E8(−2)))⊕〈
D1, . . . , D28, Σ̃

〉
) = 0, (it follows from Lemma 3.3.7, 2)). Hence, there are 8

more independent elements in H2(M̃, Z). Moreover, these elements must be of

the form u+d
2 with u ∈ π2∗(s

∗(U3 ⊕ (−2))) and d ∈
〈
D1, . . . , D28, Σ̃

〉
. Indeed,

applying π2∗ to an element of the form ek+uk+nk
2 with ek ∈ 1

2π2∗(s
∗(E8(−1))),

we see that ek is divisible by 2.

By Proposition 4.6.17, we know that ς∗( Σ̃+D1+···+D28

2 ) 6= 0. Let

x1 := ς∗Z(
Σ̃ +D1 + · · ·+D28

2
) ∈ H2(Σ̃,Z)⊕ (⊕28

k=1H
2(Dk,Z))

and

x1 := x1 ⊗ 1 ∈ H2(Σ̃,F2)⊕ (⊕28
k=1H

2(Dk,F2)).

We complete the family (x1) to a basis (xk := xk ⊗ 1)1≤k≤8 of ς∗(H2(M̃,F2)).
For all 1 ≤ k ≤ 8, we have

xk = ς∗Z(
uk + dk

2
),

where uk ∈ π2∗(s
∗(U3 ⊕ (−2))) and dk is an integral combination of the Dl,

1 ≤ l ≤ 28, and Σ̃. In particular, u1 = 0 and d1 = Σ̃ +D1 + · · ·+D28.

Now, let D be the vector subspace of VectF2
(Σ̃, D1, . . . , D28) generated by

the dk, 1 ≤ k ≤ 8. We have

dimF2
D = 8.

The fact that the family (xk := xk ⊗ 1)1≤k≤8 of ς∗(H2(M̃,F2)) is a basis, will
imply that the dk are F2-linearly independent.

To show this, we just need to see that (dk)1≤k≤8 is free. Assume
∑8
k=1 εkdk =

0, then
∑8
k=1 εkdk = 2d, where d is an integral combination of the Dk and Σ̃

by the de�nition of D. Now we have
∑8
k=1 εk(uk+dk)

2 =
∑8
k=1 εkuk

2 + d. The



94 Application to cup-product and Beauville�Bogomolov lattices

primitivity of π2∗(s
∗(U3 ⊕ (−2))) (Proposition 3.5.20 and Proposition 4.6.6)

implies that
∑8
k=1 εkuk

2 ∈ π2∗(s
∗(U3 ⊕ (−2))), so ς∗

(∑8
k=1 εkuk

2

)
= 0. Then

8∑
k=1

εkxk =

8∑
k=1

εkς
∗
Z

(
uk + dk

2

)

= ς∗Z

(∑8
k=1 εk(uk + dk)

2

)

= ς∗Z

(∑8
k=1 εkuk

2

)
+ ς∗Z(d)

and
∑8
k=1 εkxk = ς∗(d) = 0.

Now let U be the subspace of VectF2((ũl,m)1≤l≤3,1≤m≤2, δ̃) generated by the
uk, 2 ≤ k ≤ 8. We will show that

U = VectF2((ũl,m)1≤l≤3,1≤m≤2, δ̃).

To do this, we just need to show that the family (uk)2≤k≤8 is free. We consider∑8
k=2 εkuk = 0, hence

∑8
k=2 εkuk = 2u, where u is an integral combination of

the ũl,m and δ̃ by the de�nition of U . Then d =
∑8
k=2 εkdk

2 is integral. By the

proof of Lemma 4.6.14, there are just two possibilities: d ∈
〈

(Dk)k∈{1,...,28}, Σ̃
〉

or d = Σ̃+D1+···+D28

2 . In the �rst case we get
∑8
k=2 εkxk = ς∗(d) = 0, so that

the εk are even for all k. In the second case, we get
∑8
k=2 εkdk = d1, which is

impossible.

This proves the existence of elements
ũk,l+dk,l

2 , (k, l) ∈ {1, 2, 3} × {1, 2}
and δ̃+dδ

2 in H2(M̃,Z), for which dk,l and dδ integral combination of the Dl,

1 ≤ l ≤ 28 and Σ̃. We can suppose that they are only combinations of the

Dl. If this is not the case, we just have to add Σ̃+D1+···+D28

2 . And �nally,
by the primitivity of π2∗(s

∗(U3 ⊕ (−2))), VectF2
((di,j)(i,j)∈{1,2,3}×{1,2}, dδ) is a

subspace of VectF2
(D1, . . . , D28) of dimension 7.

Lemma 4.6.22. The element δ̃ + Σ̃ is divisible by 2 in H2(M̃,Z).

Proof. Multiplying by Σ̃+D1+···+D28

2 the 7 elements of the Lemma 4.6.21, we get

seven independent elements of the form
σ̃uk,l+hk,l

2 , (k, l) ∈ {1, 2, 3} × {1, 2} and
σ̃δ+h

2 ; the elements hk,l, and h are integral combinations of the (h̃k)k∈{1,...,28}.

By Proposition 4.6.17 5),we know that T̃ /π2∗(T ) = (Z /2Z)7, hence

T̃ =

〈
π2∗(T ), (

σ̃uk,l + hk,l

2
)(k,l)∈{1,2,3}×{1,2},

σ̃δ + h

2

〉
. (∗)



95

We have shown that δ̃+dδ
2 ∈ H2(M̃,Z); now we will show that dδ = D1 +

· · · + D28. It will follow that δ̃ + Σ̃ is divisible by 2. We can write dδ =
ε1D1 + · · ·+ ε28D28 with εk ∈ {0, 1}. We have:(

δ̃ + dδ
2

)2

=
δ̃2 +

∑28
k=1 εkh̃k
2

.

We have also:(
Σ̃ +D1 + · · ·+D28

2

)2

=
−π2∗(s

∗(Σ)) + h̃1 + · · ·+ h̃28

2
.

We sum up these two elements and we get the element

δ̃2 − π2∗(s
∗(Σ)) +

∑28
k=1 (εk + 1)h̃k

2
.

Since δ̃2 − π2∗(s
∗(Σ)) is divisible by 2, we see that

∑28
k=1 (εk+1)h̃k

2 is integral.
Then by (*) and Proposition 4.6.17 (4), the unique possibility is εk = 1 for all
k ∈ {1, . . . , 28}.

The end of the proof

Lemma 4.6.23. The element δ
′
+ Σ

′
is divisible by 2 in H2(M ′,Z).

Proof. We can �nd a Cartier divisor on M̃ which corresponds to π2∗(s
∗(δ))+Σ̃
2

and which does not meet ∪28
k=1r̃

−1(pk). Then this Cartier divisor induces a
Cartier divisor onM ′ which necessarily corresponds to half the cocycle π1∗(s

∗
1(δ))

+Σ
′
.

Finally, we get the following theorem.

Theorem 4.6.24. We have

H2(M ′,Z) =
1

2
π1∗(s

∗
1(E8(−2)))⊕ π1∗(s

∗
1(U3))⊕ Z(

δ
′
+ Σ

′

2
)⊕ Z(

δ
′ − Σ

′

2
).

Now we are able to �nish the calculation of the Beauville�Bogomolov form
on H2(M ′,Z). By Propositions 1.3.8, 4.6.10, 4.6.11, 4.6.13 and Theorem 4.6.24,
the Beauville�Bogomolov form on H2(M ′,Z) gives the lattice:

1

2
E8

(
−2

√
24

CM ′

)
⊕ U3

(√
24

CM ′

)
⊕
(
−
√

24

CM ′

)2

= E8

(
−
√

6

CM ′

)
⊕ U3

(
2

√
6

CM ′

)
⊕
(
−2

√
6

CM ′

)2
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It follows that CM ′ = 6, and we get Theorem 4.6.8.

Remark: Theorem 4.6.24 shows that (X ′, ι1) is notH2-normal. Indeed π1∗(Σ1+
δ′) is divisible by 2 in H2(M ′,Z), though Σ1 + δ′ cannot be written in the form
y + ι∗1(y) with y ∈ H2(X ′,Z). Moreover, we �nd the coe�cient of normality:
α2(X ′) = 1.

4.7 Summary

4.7.1 Singular symplectic surfaces

The surfaces Y 2 and Y 3 of Section 4.1 and Section 4.2 are simply connected by
Lemma 1.2 of [17]. Hence they are singular irreducible symplectic surfaces.

Proposition 4.7.1. We have H1(A,C) = H3(A,C) = 0.

Proof. Indeed (− id)∗ acts as − id on H1(X,C) and on H3(X,C).

The following table summarizes our results:

X/G b2 χ (H2(X/G,Z), ·)
Y 2 14 16 E8(−1)⊕ U(2)3

Y 3 10 12 U(3)⊕ U2 ⊕A2
2

A 6 8 U(2)3

4.7.2 Singular irreducible symplectic fourfolds

Proposition 4.7.2. We have:

1) b4(M ′) = 178 and χ(M ′) = 212,

2) b4(M3) = 102 and χ(M3) = 126.

Proof. 1) We have dimHk(M ′,C) = dimHk(X ′,C)ι1 for all 0 ≤ k ≤ 8.
Hence we have to calculate dimHk(X ′,C)ι1 . By Theorem 7.31 of [67]
(Theorem 2.5.1), we have:

H4(X ′,Z) = s∗1(H4(S[2],Z))⊕ l1∗(s∗1|Σ1
(H2(Σ,Z))),

where l1 : Σ1 ↪→ X ′. Then

H4(X ′,Z)ι1 = s∗1(H4(S[2],Z)ι)⊕ l1∗(s∗1|Σ1
(H2(Σ,Z))).

Hence

dimH4(X ′,C)ι1 = dimH4(S[2],C)ι + dimH2(Σ,C).

Since dimH2(Σ,C) = 22, it remains to calculate dimH4(S[2],C)ι.
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By Theorem 1.3.9, we know that the cup-product map Sym2H2(S[2],C)→
H4(S[2],C) is an isomorphism. Hence

dimH4(S[2],C)ι = dim(Sym2H2(S[2],C))ι.

By Proposition 1.3.8, the signature of ι∗ on H2(S[2],C) is (15, 8). Hence
dim(Sym2H2(S[2],C))ι = 16×15

2 + 9×8
2 = 156. Then

b4(M ′) = dimH4(M ′,C) = dimH4(X ′,C)ι1 = 156 + 22 = 178.

We have also b3(M ′) = 0 and b2(M ′) = 16 by Theorem 7.31 of [67]
(Theorem 2.5.1) and Proposition 1.3.8.

By Poincaré duality, we have rkH5(X ′,Z)ι1 = rkH7(X ′,Z)ι1 = 0, rkH6(
X ′,Z)ι1 = 16 and rkH8(X ′,Z)ι1 = 1. Finally χ(M ′) = 1 − 0 + 16 − 0 +
178− 0 + 16− 0 + 1 = 212.

Remark: We can also calculate b4(M ′) by counting the number of ele-
ments of the basis of H4(M,Z) given in Lemma 4.6.5.

2) Let (X,G) be as in the statement of Corollary 4.5.2. In the proof of
Corollary 4.5.2, we have found: l23(X) = 6, l21(X) = 5 and l22(X) = 0.
Hence by Propositions 3.3.17, 3.3.19, Theorem 1.3.9 and Lemma 3.3.18,
l41(X) = 5×6

2 = 15, l42(X) = 0 and l43(X) = 2× 6 + 3× 6×5
2 + 6× 5 = 87.

Hence by Proposition 2.2.1, rkH4(X,Z)G = 87+15 = 102. It follows that
b4(M3) = 102.

And χ(M3) = 126 follows from Poincaré duality as in the proof of point
1).

The following table summarizes our results:

X/G b2 b4 χ CX/G BX/G
M ′ 16 178 212 6 E8(−1)⊕ U(2)3 ⊕ (−2)2

M3 11 102 126 9 U(3)⊕ U2 ⊕A2
2 ⊕ (−6)
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Chapter 5

The

Markushevich�Tikhomirov

variety

In this Chapter, we use the notation of Section 1.2.3.

5.1 Dual of the (1,2)-polarized Lagrangian �bra-
tion

We start by calculating the dual of the Lagrangian �bration from Theorem
1.2.11.

In this section, B0 and ∆0 are smooth quartics tangent to each other at eight
points lying on a conic; we will denote by U the set of such pairs. Moreover,
we assume that the pairs (B0,∆0) and (∆0, B0) are in L. We can permute the
roles of ∆0 and B0 in the construction of Section 1.2.3. Namely, consider the
double cover µ̃ : X̃ → P2 branched in ∆0. Let ∆̃0 = µ̃−1(∆0), and let B̃0 and

B̃′0 be the two curves mapped to B0 by µ̃. We denote by ĩ the involution of X̃

induced by µ̃ which exchanges B̃0 and B̃′0. Consider the double cover ρ̃ : S̃ → X̃

branched in B̃0 and set B̃ = ρ−1(B̃0). Finally, denote by τ̃ the involution of S
induced by ρ̃. We have the diagram

99
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∆̃0� _

��

∆0� _

��
S̃τ̃ 99 ρ̃

2:1 // X̃ µ̃

2:1 // P2

B̃
?�

OO

B̃0

?�

OO

similar to the one of Section 1.2.3.
Like in Section 1.2.3, for a generic line in P2, we denote Ẽt = µ̃−1(t), C̃t =

ρ̃−1(Ẽt), µ̃t = µ̃|Et , ρ̃t = ρ̃|Ct and τ̃t = τ̃|Ct . The generic curves Ẽt are elliptic

and the curves C̃t are of genus 3. Thus, we have the tower of double covers:

C̃t
2:1→ Ẽt

2:1→ P1.

By Lemma 1.2.10, Prym(C̃t, τ̃t) is also a (1,2)-polarized Prym surface. We
denote by Prym(Ct, τt)

∨ the dual of the polarized abelian variety Prym(Ct, τt).
The answer to our questions is given by the following proposition.

Proposition 5.1.1. For a generic line t ∈ P2, we have an isomorphism

Prym(Ct, τt)
∨ ' Prym(C̃t, τ̃t).

Proof.

• Step 1: The curve bigonally related to Ct

Starting with the tower Ct → Et → P1, we will construct a curve C∨t
whose points correspond to the di�erent ways to lift the pairs µ−1

t (p), for
p ∈ P1, to a pair in Ct, i.e.,

C∨t =
{
p+ q ∈ Div(2)(Ct)

∣∣∣ [ρt(p) + ρt(q)] = [µ∗tOP1(1)]
}
.

We denote by τ∨t the involution C∨t → C∨t sending a lift to its complement.
We have τ∨t = τ∗

t|Div(2)(Ct)
. Let E∨t = C∨t /τ

∨
t . We also de�ne the map

µ∨t : E∨t → P1 which sends a lift of µ−1
t (p) (p ∈ P1) to p.

For a better understanding we draw a diagram. Let α be a generic point
in P1 (a point which is not a branch point of µt nor the image of a branch

point of ρt), βi, (i = 1, 2) its preimages under µt, and γi,j , (i, j) ∈ {1, 2}2,
the preimages of the βi under ρt, as shown in the diagram:

Ct
ρt // Et

µt // P1

γ1,1 // β1
// α.

γ1,2

66mmm

γ2,1 // β2

??~~~~~

γ2,2

66mmm



101

This gives the following diagram for points in C∨t and E∨t :

C∨t
ρ∨t // E∨t

µ∨t // P1

γ1,1 + γ2,1 // γ1,1 + γ2,1 = γ1,2 + γ2,2
// α.

γ1,2 + γ2,2

11ddddd

γ1,1 + γ2,2 // γ1,1 + γ2,2 = γ1,2 + γ2,1

55kkkkkkkkkkkk

γ1,2 + γ2,1

11ddddd

Like ρt, µt, the maps ρ∨t , µ
∨
t are double covers:

C∨t
2:1→ E∨t

2:1→ P1. (∗)

Barth [5] calls this way to obtain C∨t Pantazis's bigonal construction (see
[58], p. 304).

Proposition 5.1.2. The abelian varieties Prym(Ct, τt) and Prym(C∨t , τ
∨
t )

are dual to each other in such a way that C∨t (resp. Ct) embeds in
Prym(Ct, τt) (resp. Prym(C∨t , τ

∨
t )) as a theta-divisor of a polarization

of type (1,2).

Proof. See [58] Proposition 1 Section 3 page 307.

Now, we will show that Prym(C∨t , τ
∨
t ) and Prym(C̃t, τ̃t) are isomorphic.

To this end, we will look what happens when α is a branch point.

• Step 2: The rami�cation of the double covers of the diagram (*)

We will denote by (ai)1≤i≤4 the branch points of µt, (bi)1≤i≤4 their preim-
ages in Et, (ei)1≤i≤4 the branch points of ρt, (pi)1≤i≤4 their images in P1,
(e′i)1≤i≤4 the other preimages of the pi in Et, (ci)1≤i≤4 the preimages of
the (ei)1≤i≤4 in Ct, (bi,j)1≤i≤4,1≤j≤2 the preimages of the (bi)1≤i≤4 in
Ct and (c′ij)1≤i≤4,1≤j≤2 the preimages of the (e′i)1≤i≤4 in Ct, as in the
following diagram:

Ct
ρt // Et

µt // P1

bi,j // bi // ai
ci // ei // pi.

c′i,j // e′i

77oooo

We have τt(bi,1) = bi,2, τt(c
′
i,1) = c′i,2 for µ−1

t (ai) = {bi} and ρ−1
t (µ−1

t (ai))
= {bi,1, bi,2}, for all i ∈ {1, 2, 3, 4}. So we see that the rami�cation points
of ρ∨t are the pairs bi,1 + bi,2 1 ≤ i ≤ 4. We have also µ−1

t (pi) = {ei, e′i}
and ρ−1

t (µ−1
t (pi)) =

{
ci, c

′
i,1, c

′
i,2

}
. The involution τ∨t exchanges ci + c′i,1

for ci + c′i,2. And the classes c∨i of the pairs ci + c′i,1 and ci + c′i,2 in E∨t ,
1 ≤ i ≤ 4, are the rami�cation points of µ∨t . We show this in the diagram:
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C∨t
ρ∨t // E∨t

µ∨t // P1

ci + c′i,j // ci + c′i,1 = ci + c′i,2
// pi

bi,1 + bi,2 // bi,1 + bi,2 // ai.

2bi,j // 2bi,1 = 2bi,2

33ffffffff

• Step 3: Conclusion

We see that the maps µ∨t and µ̃t have the same branch points in P1 by

Step 2. This gives an isomorphism ϕt between E
∨
t and Ẽt. Now, we want

that ϕt sends the branch points of ρ∨t to the branch points of ρ̃t to build

an isomorphism between C̃t and C
∨
t .

To show this, we map E∨t into X̃ by ϕt. By step 2, µ̃ sends the branch

points of ρ∨t on t∩B0 = {a1, . . . , a4} for all t ∈ U := P2∨ \B0
∨
. The group

π1(U) acts by monodromy on the four points {a1, . . . , a4}. This action is
transitive because of the irreducibility of B0. If we assume for a moment

that k of the 4 branch points of ρ∨t are on B̃0, and 4−k on B̃′0, 1 ≤ k ≤ 3,
then we see that the image of π1(U) is contained in Sk × S4−k ⊂ S4,
which contradicts the transitivity. Hence the branch points of ρ∨t are all

on B̃0 or all on B̃′0. If they are on B̃′0, we just need to compose ϕt with ĩ

(the involution on X̃ we have de�ned in the very beginning) to obtain an

isomorphism between E∨t and Ẽt which sends the branch points of ρ∨t to
the branch points of ρ̃t. Denote this isomorphism by ϕt. Then we obtain
the commutative diagram

C̃t
ρ̃t // Ẽt

ϕt

µ̃t // P1

C∨t
ρ∨t // E∨t

µ∨t

88qqqqqqqqqqqqq

,

which implies Prym(C∨t , τ
∨
t ) ' Prym(C̃t, τ̃t).

5.2 Relation between S and S̃

It is a natural question to know whether the two K3 surfaces S, S̃ are isomorphic
or not. We are going to prove that the answer is no for generic S.

To explain the meaning of "generic", we need to recall the de�nition of the
moduli space of 2-elementary K3 surfaces Mr,a,δ.
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5.2.1 De�nition of Mr,a,δ

Let S be a K3 surface equipped with an antisymplectic involution τ : S → S.
Let P = Pic(S)τ . Then P is a primitive 2-elementary Lorentzian sublattice of
H2(S,Z) endowed with the cup product (see for instance Lemma 1.3 of [68]).
Let (r, a, δ) be a triple of integers. A couple (S, τ) is called a 2-elementary K3
surface of type (r, a, δ) if (r(P ), a(P ), δ(P )) = (r, a, δ). We denote by Mr,a,δ

the moduli space of isomorphism classes of 2-elementary K3 surfaces of type
(r, a, δ).

For a K3 surface S, H2(S,Z) endowed with the cup-product pairing is iso-
metric to the K3 lattice L = E8(−1)2 ⊕ U3. An isometry of lattices α :
H2(S,Z) ∼= L is called a marking of S. The pair (S, α) is called a marked
K3 surface. Let M ⊂ L be a primitive 2-elementary Lorentzian sublattice. Let
IM be the involution on M ⊕M⊥ de�ned by

IM (x, y) = (x,−y), (x, y) ∈M ⊕M⊥.

Then IM extends uniquely to an involution on L by Corollary 2.1.4. A K3
surface equipped with an anti-symplectic holomorphic involution τ : S → S is
called a 2-elementary K3 surface of type M if there exists a marking α of S
satisfying

τ∗ = α−1 ◦ IM ◦ α.
Such a marking will be called a M-marking of (S, τ). We note that α((Pic(S))τ )
= M . Now we will show that a 2-elementary K3 surface of type (r, a, δ) and
a 2-elementary K3 surface of type M where (r(M), a(M), δ(M)) = (r, a, δ), are
equivalent notions.

Lemma 5.2.1. Let ϕ : M1 ' M2 be an isometry between two 2-elementary
sublattices of L. We assume that signM1 = signM2 = (2, x) where x is an
integer. Then we can extend ϕ to an isometry of L.

Proof. We will use Corollary 2.1.4. We start by constructing an isometry
between M⊥1 and M⊥2 . We have sign(M⊥1 ) = sign(M⊥2 ) = (1, 19 − x) (because
sign(L) = (3, 19)). Since L is unimodular, we have an isomorphism γM1 :
AM1 → AM⊥1 with qM⊥1 ◦ γM1

= −qM1
and an isomorphism γM2

: AM2
→ AM⊥2

with qM⊥2 ◦ γM2
= −qM2

(see Section 2.1.1). This implies (a(M⊥1 ), δ(M⊥1 )) =

(a(M⊥2 ), δ(M⊥2 )). Then, by Theorem 2.1.5 there is an isometry ψ : M⊥1 →M⊥2 .
On the other hand, ϕ (resp. ψ) induces an isometry ϕ : AM1

→ AM2
(resp.

ψ : AM⊥1 → AM⊥2 ). Now we consider the composition

γM2
◦ ϕ ◦ γ−1

M1
◦ ψ−1,

which is an isometry of AM⊥2 . SinceM
⊥
2 is a 2-elementary Lorentzian sublattice,

Theorem 2.1.6 gives us an isometry χ ∈ O(M⊥2 ) with χ = γM2
◦ ϕ ◦ γ−1

M1
◦ ψ−1.

Hence
γM2
◦ ϕ = χ ◦ ψ ◦ γM1

.

By Corollary 2.1.4, ϕ extends to an isometry of L.
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Remark: The same result holds if signMi = (1, x), as we are going to see
in the proof of the next proposition.

Proposition 5.2.2. A K3 surface is a 2-elementary K3 surface of type (r, a, δ)
if and only if it is a 2-elementary K3 surface of type M for some primitive
2-elementary Lorentzian sublattice M with (r(M), a(M), δ(M)) = (r, a, δ).

Proof. It is obvious that a 2-elementary K3 surface (S, τ) of type M with
(r(M), a(M), δ(M)) = (r, a, δ) belongs to Mr,a,δ. So, we will show the other
implication. Let M ⊂ L with (r(M), a(M), δ(M)) = (r, a, δ) and let (S, τ) ∈
Mr,a,δ. We will �nd a M -marking of S. Let P = Pic(S)τ . We can assume
that P is a sublattice of L; it su�ces to take its image by some marking of
S. We have (r(P ), a(P ), δ(P )) = (r, a, δ). Then by Theorem 2.1.5, we have
an isometry ψ : P → M . Moreover, sign(P⊥) = sign(M⊥), and since L is
unimodular, we have (a(P⊥), δ(P⊥)) = (a(M⊥), δ(M⊥)). Once more, it follows
by Theorem 2.1.5 that there is an isometry ϕ : P⊥ → M⊥. By Lemma 5.2.1,
this isometry extends to an isometry of L. Denoting this isometry by ϕ̃, we
have τ∗ = ϕ̃−1 ◦ IM ◦ ϕ̃. Indeed, let x ∈ H2(S,Z), x = p+t

2 , where p ∈ P and
t ∈ P⊥. Then

ϕ̃−1 ◦ IM ◦ ϕ̃(
p+ t

2
) = ϕ̃−1 ◦ IM (

ϕ̃(p) + ϕ̃(t)

2
) = ϕ̃−1(

ϕ̃(p)− ϕ̃(t)

2
) =

p− t
2

.

The moduli space of 2-elementary K3 surface was introduced by Nikulin in
[51], see also [52] and [68] Section 1 for more details. We can also regard [16]
Section 11 for a similar construction in a more general case.

5.2.2 A Torelli Theorem for 2-elementary K3 surfaces

For a better understanding of this moduli space we will give a kind of Torelli
theorem for it (see [68] and [69] for more details). We need some more notation.

Let (S, α) be a marked K3 surface. Recall the de�nition of the period map
for marked K3 surfaces: the period of (S, α) is de�ned to be

π(S, α) := [α(η)] ∈ P(L⊗ C), η ∈ H0(S, ωS) \ {0} .

Let Λ be a lattice of signature (2, n). We de�ne

ΩΛ := {[x] ∈ P(Λ⊗ C); 〈x, x〉 = 0, 〈x, x〉 > 0} .

Let ∆Λ := {x ∈ Λ; 〈x, x〉 = −2}.
For λ ∈ Λ ⊗ R, set Hλ := {[x] ∈ ΩΛ; 〈x, λ〉 = 0}. We de�ne the discriminant
locus of ΩΛ by

DΛ :=
∑

d∈∆Λ/±1

Hd.
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Assume that Λ is a primitive 2-elementary sublattice of L with Λ⊥ Lorentzian.
Then we set

Γ(Λ) := {g ∈ O(L), IΛ⊥g = gIΛ⊥} ,

ΓΛ :=
{
g|Λ ∈ O(Λ); g ∈ Γ(Λ)

}
,

Ω
◦

Λ := ΩΛ \ DΛ, M
◦

Λ := Ω
◦

Λ/ΓΛ.

The following theorem, due to Yoshikawa ([68] Theorem 1.8) can be thought of
as a Torelli Theorem for 2-elementary K3 surface:

Theorem 5.2.3. Via the period map, the analytic space M◦

M⊥ is a coarse
moduli space of 2-elementary K3 surfaces of type M .

Proof. The proof uses the classical Torelli Theorem for K3 surfaces (see [59]
and [10]) and results of Nikulin [51].

Next, Yoshikawa improves this result in [69], proving the following proposi-
tion (Proposition 11.2 in [69]).

Proposition 5.2.4. The following equality holds:

ΓM⊥ = O(M⊥).

Proof. The proof uses Theorem 2.1.6 and Corollary 2.1.4. The idea is the same
as in the proof of Lemma 5.2.1 and Proposition 5.2.2.

We thus obtain the following result. LetM ⊂ L be a primitive 2-elementary
Lorentzian sublattice with (r(M), a(M), δ(M)) = (r, a, δ). De�ne the map:

Mr,a,δ → Ω
◦

M⊥/O(M⊥)
$r,a,δ :

(S, τ) 7→ O(M⊥) · π(S, α),

where α is a M-marking of S.

Corollary 5.2.5. The map $r,a,δ is an isomorphism.

Proof. See [69] page 8.

We de�ne

Or,a,δ = $−1
r,a,δ

({
O(M⊥) · η ∈ Ω

◦

M⊥/O(M⊥)
∣∣∣ 〈η, x〉 6= 0, ∀x ∈M⊥ \ {0}

})
.

It is a dense subset of Mr,a,δ, and "generic 2-elementary K3 surface" will mean
for us a 2-elementary K3 surface with modulus in Or,a,δ. The following impor-
tant property is veri�ed.

Proposition 5.2.6. Let M ⊂ L be a 2-elementary Lorentzian sublattice with
(r(M), a(M), δ(M)) = (r, a, δ). If (S, τ) ∈ Or,a,δ, then a M -marking of (S, τ)
induces an isometry between PicS and M . In particular, all elements of PicS
are invariant under τ∗.
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Proof. Indeed, let x ∈ PicS then 〈x, η〉 = 0, where η ∈ H0(S, ωS) \ {0}. Let
α be a M -marking of S. Then we can write α(x) = a+b

2 , where a ∈ M and
b ∈M⊥. Since 〈a, α(η)〉 = 0, we have 〈b, α(η)〉 = 0, so by hypothesis b = 0.

Corollary 5.2.7. Let (S, τ) and (S′, τ ′) be in Or,a,δ. If S and S′ are isomor-
phic, then (S, τ) and (S′, τ ′) are isomorphic.

Proof. Let M ⊂ L be a sublattice with (r(M), a(M), δ(M)) = (r, a, δ) and ατ ,
ατ ′ M -markings of (S, τ), (S′, τ ′) respectively. Let η ∈ H0(S, ωS) \ {0} and
η′ ∈ H0(S′, ωS′) \ {0}. We have the following diagram:

H2(S,Z)

ϕ

��

ατ

$$HHHHHHHHH

L,

H2(S′,Z)

ατ′

::vvvvvvvvv

where ϕ is a Hodge isometry. Then we have

ατ (η) = (ατ ◦ ϕ−1 ◦ α−1
τ ′ )|M⊥(ατ ′(η

′)).

Since (ατ ◦ ϕ−1 ◦ α−1
τ ′ )|M⊥ ∈ O(M⊥), we have

$M (S, τ) = $M (S′, τ ′).

5.2.3 Applications

Now, we will work with the moduli space M8,8,1.

Remark: We have M = I1,7(2) for the associated Lorentzian sublattice
of L, where Ip,q stands for the lattice Zp+q with quadratic form given by the
diagonal matrix

diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

)

and Λ(d) denotes Λ with quadratic form multiplied by d for any lattice Λ and
any integer d.

We recall that U is the locus of pairs (B0,∆0) in |OP2(4)| × |OP2(4)| such
that B0 and ∆0 are smooth quartics, tangent to each other at eight points lying
on a conic. We will denote by µB0

: XB0
→ P2 the double cover of P2 branched

over B0. We de�ne Q ⊂ |OP2(4)| × |OP2(4)| to be the set of pairs (B0, 2Q),
where B0 is a smooth quartic and Q is a conic such that µ∗

B0
(Q) is smooth.
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Proposition 5.2.8. There is an isomorphism between U/PGL3∪Q/PGL3 and
M8,8,1.

Proof.

• Step 1: The map P : U/PGL3 ∪Q/PGL3 →M8,8,1

We will construct the map U/PGL3 →M8,8,1; the construction ofQ/PGL3

→M8,8,1 is similar.

First, we have the map U → M8,8,1. Remember that diagram (1) of
Section 1 gave a K3 surface S with an involution τ . By page 663 of [52]
(S, τ) ∈ M8,8,1. So the diagram (1) gives us the map U → M8,8,1. Now,

let (B0,∆0) and (B0
′
,∆0

′
) be in |OP2(4)|×|OP2(4)| such that f(B0,∆0) =

(B0
′
,∆0

′
), where f ∈ PGL3. We can draw the commutative diagram

B0� _

��

B0� _

��
Xi 77

µ //

φ

P2

f

X ′i′ 55 µ′
// P2

B′0
?�

OO

B0
′
,

?�

OO

where φ is induced by f (the other symbols are the same as in the diagram

(1) of Section 1). The map φ sends µ−1(∆0) = ∆0 + i(∆0) on µ′−1(∆0
′
) =

∆′0 + i′(∆′0). The curves ∆0 and ∆0
′
are smooth, so they are irreducible.

Then all the curves ∆0, i(∆0), ∆′0 and i′(∆′0) are irreducible. Therefore
φ sends ∆0 on ∆′0 or on i′(∆′0). If φ sends ∆0 on i′(∆′0), we replace φ by
i′ ◦φ. Now, let ρ : S → X and ρ′ : S′ → X ′ be the double covers branched
in ∆0 and ∆′0 respectively. We get the commutative diagram

∆� _

��

∆0� _

��
Sτ 99

ρ //

ϕ

X
φ

S′τ ′ 77 ρ′
// X ′

∆′
?�

OO

∆′0,
?�

OO

where ϕ is induced by φ. This implies (S, τ) ' (S′, τ ′), and we get the
map

U/PGL3 →M8,8,1.

• Step 2: The inverse map G : M8,8,1 → U/PGL3 ∪Q/PGL3

Let (S, τ) be in M8,8,1. By [52], ρ : S → X = S/τ is a double cover
rami�ed in a smooth curve ∆ of genus 3, and X is a del Pezzo surface.
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Moreover the linear system | − KX | de�nes a double cover µ : X → P2

branched in a smooth quartic of B0 ⊂ P2. We have ρ(∆) ∈ | − 2KX |,
and by Lemma 5.14 of [34], (B0, µ(ρ(∆))) ∈ U or (B0, µ(ρ(∆))) ∈ Q.
Now let (S, τ) and (S′, τ ′) be two isomorphic objects from M8,8,1. We

denote by (B0,∆0) and (B
′
0,∆

′
0) the two pairs corresponding to (S, τ)

and (S′, τ ′) respectively (here ∆0 and ∆
′
0 may be double conics). To have

a well de�ned map from M8,8,1 to U/PGL3 ∪ Q/PGL3, we must verify

that (B0,∆0) and (B
′
0,∆

′
0) are exchanged by an automorphism of P2.

We have an isomorphism f : S ' S′ with f ◦ τ = τ ′ ◦ f . It induces a
commutative diagram

S

f

ρ // X

g

// | −KX | ' P2

(g−1)∗

S′
ρ′

// X ′ // | −KX′ | ' P2,

which implies the result.

To �nish, we see easily that the composition of G and P is the identity.

Corollary 5.2.9. The involution on U/PGL3 given by (B0,∆0) → (∆0, B0)
induces a rational involution of M8,8,1 with indeterminacy on P(Q/PGL3),
which exchanges the two 2-elementary K3 surfaces P(B0,∆0) = (S, τ) and

P(∆0, B0) = (S̃, τ̃). Moreover (S, τ) and (S̃, τ̃) are isomorphic if and only if
there exists an automorphism f of P2 such that f(B0,∆0) = (∆0, B0).

We de�ne an open subset of U/PGL3 by

O =
{
PGL3 · (B0,∆0) ∈ U/PGL3

∣∣PGL3 · (B0,∆0) 6= PGL3 · (∆0, B0)
}
.

Now we are able to answer to the question we asked in the beginning of the
section:

Corollary 5.2.10. Let (S, τ) ∈ O8,8,1 ∩P(O). Then S and S̃ are not isomor-
phic.

Proof. Since (S, τ) ∈ P(O), (S, τ) and (S̃, τ̃) are not isomorphic. Moreover,

(S, τ) ∈ O8,8,1, therefore, by Corollary 5.2.7, S and S̃ are not isomorphic either.

Remarks:

1) The dimension of M8,8,1 is 12.

2) Let B := {PGL3 · (Γ,Γ) ∈ U/PGL3}; we have B ⊂ (U/PGL3)\O. More-
over dimB = 6, and P(B) parametrized the quadruple covers of P2

branched in smooth quartics. We also have B ⊂ (U/PGL3) \ (L/PGL3),
where L is the set of su�ciently generic pairs (B0,∆0), see De�nition 1.2.6.
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3) The quotient variety Q/PGL3 has dimension 11.

5.2.4 Derived categories

In fact, we can say even more: S and S̃ are not even derived equivalent. We
will denote by Db(S) the derived category of coherent sheaves on S. Let TS
be the transcendental lattice of S, that is the orthogonal complement to PicS
in H2(S,Z). By Theorem 4.2.4. of [57], the categories Db(S) and Db(S′) are
equivalent as triangulated categories if and only if there exists a Hodge isometry
between TS and TS′ . We have the following theorem.

Theorem 5.2.11. Let S and S′ be K3 surfaces such that Db(S) and Db(S′)
are equivalent. If TS is a 2-elementary sublattice of H2(S,Z), then S and S′

are isomorphic.

Proof. Let S and S′ be two K3 surfaces such that Db(S) and Db(S′) are equiv-
alent. By Theorem 4.2.4. of [57] we have a Hodge isometry ρ : TS → TS′ . Let
α : H2(S,Z) ' L and β : H2(S′,Z) ' L be markings of S and S′ respectively.
The lattices α(TS) and β(TS′) are 2-elementary sublattices of L of signature
(2, x). So by Lemma 5.2.1, β ◦ ρ ◦ α−1

|α(TS) extends to an isometry of L, that we

will denote by ν. Then β−1 ◦ ν ◦ α : H2(S,Z) → H2(S′,Z) is a Hodge isom-
etry, therefore by the Global Torelli Theorem for K3 surfaces (see for instance
Chapter 10, Theorem 5.3. of [27]), S and S′ are isomorphic.

Remark: For all 2-elementary K3 surfaces (S, τ) ∈ Or,a,δ, TS is a 2-
elementary sublattice of H2(S,Z).

Corollary 5.2.12. Let (S, τ) ∈ O8,8,1 ∩P(O), then Db(S) and Db(S̃) are not
equivalent.

Proof. Indeed, if (S, τ) ∈ O8,8,1 then TS is a 2-elementary lattice. Then if

Db(S) and Db(S̃) were equivalent, then S and S̃ would be isomorphic, which is
false by Corollary 5.2.10

5.3 Non-equivalence of dual Relative Compacti-
�ed Prymians

We will need the following proposition:

Proposition 5.3.1. Let S and S′ be two complex K3 surfaces. If S[2] and S′[2]

are bimeromorphic, then Db(S) ∼ Db(S′).
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Proof. By Lemma 1.1.12, if S[2] and S′[2] are birational, there is a Hodge isom-
etry Φ between H2(S[2],Z) and H2(S′[2],Z), where H2(S[2],Z) and H2(S′[2], Z)
are endowed with the Beauville�Bogomolov form. Moreover, by Section 1.3.1,
we have

H2(S[2],Z) = j(H2(S,Z))⊕⊥ ZδS ,

where j : H2(S,Z) → H2(S[2],Z) and δS are de�ned in Section 1.3.1. This
implies:{

a ∈ H2
(
S[2],Z

)∣∣∣ BS(a, i(ηS)) 6= 0
}

=
{
i(b) ∈ H2(S,Z)

∣∣ b ∈ TS} ,
where ηS ∈ H0(S, ωS)\{0}, BS is the Beauville�Bogomolov form of H2(S[2],Z)
and TS is the transcendental lattice of S. We have the same results for S′, so Φ
induces a Hodge isometry between TS and TS′ . Then by Theorem 4.2.4 of [57],
S and S′ are derived equivalent.

We will denote by P(S,τ) the relative compacti�ed Prymian built from the
pair (S, τ) ∈ P(L/PGL3), (see De�nition 1.2.8). If (S, τ) and (S′, τ ′) are
two isomorphic 2-elementary K3 surfaces, then P(S,τ) and P(S′,τ ′) are naturally
isomorphic. Now, we can prove the following theorem:

Theorem 5.3.2. Let (S, τ) ∈ O8,8,1∩P(L/PGL3) and (S′, τ ′) ∈P(L/PGL3)
be such that P(S,τ) and P(S′,τ ′) are isomorphic. Then (S, τ) and (S′, τ) are
isomorphic.

Proof. We will denote by M(S,τ) and M ′(S,τ) the varieties de�ned in Section

1.2.3, which are the quotients of S[2] by the involution ιS and the partial resolu-
tion of singularities of M(S,τ) respectively. We denote by M(S′,τ ′) and M

′
(S′,τ ′)

the same varieties with (S′, τ ′) instead of (S, τ). By Theorem 1.2.13, M ′(S,τ)

is bimeromorphic to P(S,τ) and M
′
(S′τ ′) is bimeromorphic to P(S′τ ′). Therefore

M ′(S,τ) and M ′(S′τ ′) are bimeromorphic, then M(S,τ) and M(S′,τ ′) are bimero-

morphic, hence also M(S,τ) \SingM(S,τ) and M(S′,τ ′) \SingM(S′,τ ′), so S
[2] and

S′[2] are bimeromorphic. By Proposition 5.3.1 we have Db(S) ∼ Db(S′), so by
Theorem 5.2.11, S and S′ are isomorphic, and by Corollary 5.2.7 we have (S, τ)
and (S′, τ ′) isomorphic.

Corollary 5.3.3. The dense set O8,8,1 ∩P(L/PGL3) of M8,8,1 provides a 1-
to-1 parametrization of the relative compacti�ed Prymians de�ned in De�nition
1.2.8, and the non trivial rational involution on M8,8,1 de�ned in Section 5.2.3
induces a non trivial involution on the set of the relative compacti�ed Prymians.

5.4 Beauville�Bogomolov form

As a consequence of Theorem 1.2.13 and Theorem 4.6.8, we have the following
corollary.



111

Corollary 5.4.1. The Beauville�Bogomolov lattice H2(P,Z) is isomorphic to
E8(−1)⊕ U(2)3 ⊕ (−2)2. Moreover, the Fujiki constant CP is 6.

As a consequence of Theorem 1.2.13 and Proposition 4.7.2 1), we can state
the following proposition.

Proposition 5.4.2. The variety P has the following numerical invariants:
b2(P) = 16, b3(P) = 0, b4(P) = 178 and χ(P) = 212.
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