
1

Departament D’Enginyeria Telemàtica

PhD Dissertation

New Architectures for Ubiquitous Networks:

Use and Adaptation of Internet Protocols over

Wireless Sensor Networks

Doctorando

Alessandro Ludovici

Director

Dr. Anna Calveras Auge

2

3

Index

1. Introduction ... 1

1.1. Motivations ... 3

1.2. State-of-the-art .. 6

1.2.1. Forwarding Techniques in 6LoWPAN .. 6

1.2.2. Web services for Wireless Sensor Networks ... 9

1.2.3. Application Protocols for Wireless Sensor Networks .. 9

1.2.4. Constrained Application Protocol (CoAP) ... 10

1.2.5. Analytical model of large CoAP data transactions .. 14

1.3. Thesis Methodology ... 15

1.4. Thesis Outline ... 16

2. Protocols .. 17

2.1. IEEE 802.15.4 .. 17

2.1.1. Frame Structure .. 18

2.1.2. Data Transmission and Channel Access Mechanism ... 19

2.2. 6LoWPAN .. 20

2.2.1. Forwarding Techniques ... 22

2.2.1.1. Mesh Under ... 22

2.2.1.2. Route Over .. 23

2.3. CoAP .. 23

2.3.1. Observe Option .. 26

2.3.2. CoAP blockwise transfer ... 28

3. Efficient 6LoWPAN Forwarding .. 30

3.1. Test-bed Implementation .. 30

3.2. Analysis of mesh under and route over with un-fragmented 6LoWPAN packets 32

3.2.1. Results and Discussion .. 32

3.3. Analysis of 6LoWPAN forwarding techniques with fragmented packets 34

4

3.3.1. Controlled Mesh Under (CMU) ... 34

3.3.2. Enhanced Route Over (ERO) ... 35

3.3.3. Results and Discussion .. 35

3.3.3.1. Round-Trip-Time Evaluation and Packet Loss ... 36

3.3.3.2. End-to-End delay Evaluation ... 40

3.3.3.3. Current Consumption .. 40

3.4. Conclusions and Contributions ... 41

4. Analytical model of CoAP large data transactions .. 43

4.1. Traffic generation model .. 43

4.2. Analytical model of the CSMA/CA mechanism .. 44

4.3. Analytical model of CoAP large data transactions ... 46

4.4. Performance evaluation .. 50

4.5. Conclusions and contribution ... 61

5. TinyCoAP ... 63

5.1. Implementation ... 63

5.1.1. Structure of the Library .. 64

5.1.2. RAM Memory Allocation .. 65

5.1.3. Data Structure .. 66

5.2. Test-bed .. 67

5.3. Results and Discussion ... 68

5.3.1. Memory Footprint .. 69

5.3.2. Latency .. 70

5.3.3. Energy Consumption ... 71

5.3.4. Workload ... 73

5.3.5. Reliability .. 75

5.4. Conclusions and Contributions ... 80

6. CoAP Proxy .. 82

6.2. Design Considerations .. 83

6.2.1. Communication pattern between the CoAP proxy and the CoAP device 84

5

6.2.2. Communication pattern between the Web application and the CoAP proxy 84

6.2.3. Protocol Translation ... 86

6.3. Proxy Design and Implementation ... 88

6.3.1. 6LoWPAN Interface .. 88

6.3.2. Lighttpd Module .. 89

6.3.3. Main Proxy Module ... 89

6.3.3.1. Web Server Module ... 89

6.3.3.2. Resource Directory .. 91

6.3.3.3. Cache ... 92

6.3.3.4. CoAP Module .. 93

6.4. Performance Evaluation ... 96

6.4.1. Memory Footprint .. 97

6.4.2. Latency .. 100

6.5. Conclusions and Contribution .. 102

7. QoS Support for Timeliness .. 104

7.2. QoS Support in the Observe Option ... 104

7.3. Proposal of QoS Support for Timeliness .. 105

7.4. Experimental Set-up ... 107

7.5. Results and Discussion ... 108

7.5.1. Latency .. 108

7.5.2. Delivery Ratio .. 110

7.5.3. Energy Consumption ... 111

7.6. Conclusions and Contributions ... 112

8. Conclusions and Future Works ... 114

References ... 117

Contributions .. 117

Bibliography .. 118

6

List of tables

Table 1 Packet loss percentage. RO proves to be more robust to packet loss than the other techniques.

However, starting from a payload size of 900 bytes, buffer congestion causes a rapid worsening of RO packet

loss. Link retransmissions due to collisions are the main cause of packet loss for MU, CMU and ERO. 39

Table 2 CoAP PDU structures. CoapBlip stores the PDU in the UDP buffer and uses a pointer to provide

access. TinyCoAP saves it in the memory allocated with PoolC. .. 67

Table 3 Composition of the HTTP and CoAP Confirmable (CON) requests. In both cases the requests are

sent using the GET method. ... 68

Table 4 RAM and ROM memory occupation. TinyCoAP reserves all the memory required at compile

time. .. 69

Table 5 Application layer packet error rate. These values refer to a single or fragmented packet that

occupies the entire space of a 802.15.4 frame. The value for f = 1 refers to a single non-fragmented packet. A

packet can consist of a maximum of 12 fragments. .. 77

Table 6 Composition and length, in Bytes, of the messages interchanged between the CoAP proxy and the

CoAP device. .. 96

Table 7 ROM occupation of the CoAP proxy. Three modules compose the proxy. 98

Table 8 Characteristic of cardiac rate updates .. 107

7

List of Figures

Figure 1 Topologies of 6LoWPAN .. 18

Figure 2 MAC command frame and PHY packet .. 19

Figure 3 6LoWPAN Fragment headers. (a) First fragment; (b) Subsequent fragment 21

Figure 4 format of the IPv6 compressed header .. 21

Figure 5 6LoWPAN mesh header format .. 21

Figure 6 6LoWPAN protocol stack. The network layer is responsible for forwarding decision in RO while

for MU it is the adaptation layer. A) MU B) RO .. 22

Figure 7 Layering of CoAP .. 24

Figure 8 Message format ... 25

Figure 9 Architecture of a CoAP-based Wireless Sensor Network (WSN). The proxy enables integration

between the WSN and external networks that use HTTP. .. 26

Figure 10 CoAP based WSN implementing the observer extension. An intermediary can be used for

scalability purposes. ... 27

Figure 11 The observer delete its interest sending a GET request without the observe option 27

Figure 12 Encoding of the block option ... 28

Figure 13 CoAP blockwise transfer with early negotiation of the block size .. 28

Figure 14 CoAP blockwise transfer with late negotiation and lost ACK ... 29

Figure 15 Topology for a two-hop network ... 32

Figure 16 end-to-end delay variation according to application data payload ... 32

Figure 17 end-to-end variation according to the number of hops .. 33

Figure 18 RTT evolution according to ICMP payload size. Buffer congestion affects RO when reaching a

payload size of 900 bytes, causing the big jump in the average round-trip delay time. 36

Figure 19 End-to-end delay time evolution. The number of retransmissions is lower in CMU than in MU,

resulting in a better end-to-end delay time trend. (a) End-to-end delay time for a two hops network. (b) End-

to-end delay time for a three hops network. (c) End-to-end delay time for a four hops network. 37

Figure 20 Current consumption evolution according to ICMP payload size. Hop-by-hop fragment

reassembling performed by RO proves to be energy demanding. The control on packet forwarding introduced

in CMU, slightly increases current consumption compared with MU. .. 40

Figure 21 Markov chain for the client. The chain at left models the client when receiving updates using

the CoAP blockwise transfer. The use of 6LoWPAN fragmentation is represented by the model at right. 47

Figure 22 Markov chains for the server. a) 6LoWPAN Fragmentation case b) CoAP blockwise transfer

case ... 48

Figure 23 CoAP blockwise transfer reliability versus traffic rate for a star topology network composed by

10 nodes. ... 51

8

Figure 24 6LoWPAN fragmentation reliability versus traffic rate for a star topology network composed

by 10 nodes. .. 52

Figure 25 CoAP blockwise transfer reliability versus traffic rate for a star topology network composed by

15 nodes. ... 52

Figure 26 6LoWPAN fragmentation reliability versus traffic rate for a star topology network composed

by 15 nodes. .. 53

Figure 27 CoAP blockwise transfer reliability versus traffic rate for a star topology network composed by

20 nodes. ... 53

Figure 28 6LoWPAN fragmentation reliability versus traffic rate for a star topology network composed

by 20 nodes. .. 54

Figure 29 CoAP blockwise transfer and 6LoWPAN reliability versus the number of blocks or fragments

that compose an update. The network is composed by 15 nodes and the traffic rate is fixed to 1 pkt/s 55

Figure 30 CoAP blockwise transfer Latency versus traffic rate for a star topology network composed by

10 nodes. ... 56

Figure 31 6LoWPAN Fragmentation Latency versus traffic rate for a star topology network composed by

10 nodes. ... 57

Figure 32 CoAP blockwise transfer Latency versus traffic rate for a star topology network composed by

15 nodes. ... 57

Figure 33 6LoWPAN Fragmentation Latency versus traffic rate for a star topology network composed by

15 nodes .. 58

Figure 34 CoAP blockwise transfer Latency versus traffic rate for a star topology network composed by

20 nodes .. 58

Figure 35 6LoWPAN Fragmentation Latency versus traffic rate for a star topology network composed by

20 nodes .. 59

Figure 36 CoAP blockwise transfer and 6LoWPAN latency versus the number of blocks or fragments for

a star topology network composed by 20 nodes and a traffic rate of 1 pkt/s .. 60

Figure 37 PDF of the latency for a star topology network with 15 nodes and a traffic rate of 1 pkt/s.

6LoWPAN. Each update is composed by 5 fragments or blocks. For the sake of clarity, the x-axis is shown in

logarithmic scale. .. 60

Figure 38 Wiring of the TinyCoAP interface for the CoAP message layer. PoolC is used to provide the

memory needed by the components. .. 65

Figure 39 Test-bed network. The HTTP or CoAP clients are located in a PC while the servers are

embedded in a sensor. .. 68

Figure 40 Latency evolution according to the payload size. The performance of HTTP increases

significantly if a TCP persistent connection is used. .. 70

Figure 41 Details of the latency results. The better memory management of TinyCoAP allows the

performance of CoapBlip to be improved. ... 71

9

Figure 42 Energy consumption. TinyCoAP has a lightweight packet processing that allows the energy

consumption approaching the trend of HTTP/UDP to be lowered. .. 72

Figure 43 Number of requests handled by the server as a function of the client rate. The enhanced buffers

of TinyCoAP allows to that to overcome the CoapBlip performance. ... 73

Figure 44 Goodput evolution in a channel under the Rayleigh fading model. (a) Goodput with SNR of 1

db; (b) Goodput with SNR of 1.5 db; (c) Goodput with SNR of 1.5 db; (d) Goodput with SNR of 2.5 db. The

reliability mechanism implemented in CoAP yields a good performance. In TCP, the initial retransmission

timeout is resettled after closing each connection, providing a better performance in channels with low SNR.

 .. 78

Figure 45 Protocol Stack. The CoAP proxy allows adapting the protocol stacks of Web applications and

CoAP devices ... 82

Figure 46 Network architecture. The CoAP proxy also has the functions of 6LoWPAN edge router and

gateway to interconnect disjointed CoAP networks. .. 83

Figure 47 WebSocket protocol. The WebSocket communication consists of an opening handshake, a data

transfer and a closing handshake. ... 86

Figure 48 Translation of the HTTP URI into a CoAP one. The URI used by WebSocket has the same

format of the HTTP URI except for the scheme. WebSocket used the “ws://” scheme. 87

Figure 49. CoAP proxy design. The CoAP proxy is composed by three modules. 88

Figure 50 RD structure. The RD is designed as a tree-structure and it is indexed by the node

description.92

Figure 51. CoAP module overview .. 93

Figure 52 Test-bed network ... 97

Figure 53 Layout of RAM memory. .. 98

Figure 54 RAM footprint of the CoAP proxy. It has a low memory footprint when using WebSocket. The

FastCGI protocol used in HTTP long-polling requires more complexity that results in a growth of the memory

consumption. a) RAM footprint of CoAP proxy in short-lived communications b) RAM footprint of the CoAP

proxy in long-lived communications. ... 99

Figure 55 Latency for short and long lived communications. The CoAP proxy benefits from the use of

WebSocket in long-lived communications. c) Latency for short-lived communications d) Latency for long-

lived communications ... 101

Figure 56 Topology of the test-bed network .. 108

Figure 57 Delay as a function of the delivery order. A) Persistence B) Best Effort 110

Figure 58 Delivery ratio as a function of the delivery order. A delivery order based on priority allows

guarantying high delivery ration to observers requiring high priority. ... 111

Figure 59 Energy consumption of the subject. The subject saves energy by avoiding sending all the

critical updates to all observers. ... 112

10

11

Acronyms

Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA)

Clear Channel Assessment (CCA)

Constrained Application Protocol (CoAP)

CoAP acknowledgment (CoAP ACK)

CoAP confirmable message (CON)

CoAP non-confirmable message (NON)

CoAP reset message (RST)

Congestion Window Size (CWND)

Controlled Mesh Under (CMU)

Enhanced Route Over (ERO)

Fully Function Devices (FFDs)

Internet Engineering Task Force (IETF)

Internet of Things (IoT)

Internet Protocol (IP)

IPv6 over Low Power Networks (6LoWPAN)

Link layer acknowledgment (MAC ACK)

Low Power Wireless Personal Area Network (LOWPAN)

Maximum Segment Size (MSS)

Mesh Under (MU)

Quality of Service (QoS)

Reduced Function Devices (RFDs)

Representational State Transfer State (REST)

Resource Directory (RD)

Retransmission Timeout (RTO)

Round Trip Time (RTT)

Route Over (RO)

Service Oriented Application Protocol (SOAP)

Signal to Noise Ratio (SNR)

Uniform Resource Identifier (URI)

Web of Things (WoT)

Wireless Sensor Network (WSN)

12

1
1ABI Research. https://www.abiresearch.com/press/more-than-30-billion-devices-will-wirelessly-conne

1. Introduction

In the past years, the idea to adopt the Internet protocol (IP) to connect everyday objects led to the

definition of a new and fascinating vision, which is the so-called Internet of Things (IoT) [1]. The IoT is

considered as the most promising development of the Internet of the future. In this vision, physical objects

would be able to communicate between each other or with humans’ through Internet. Recent estimations1

predicted that more than 30 billions of devices will be connected wirelessly to Internet by the 2020.

The adoption of IP in Wireless Sensor Networks (WSNs) is playing a major role in the realization of the

IoT vision. The possibilities opened by the IoT have virtually no limitation in the fields where they can be

applied. Smart energy grid, building and home automation, e-health and intelligent transport systems are only

few examples of applications domains that would benefit. In fact, the nature of wireless communications and

the small size of sensor devices facilitate the development of WSNs in all kind of environments. The use of

the IP allows WSNs to no longer be stand-alone networks but part of ubiquitous networks.

Thanks to its multiple applications, the IoT is attracting more and more interest from both the researcher

and industrial communities. The lack of standardization, however, led to the definition and development of

proprietary architectures and protocols. This fragmentation would require developing gateways and proxies to

adapt the different architectures [2]. The interoperability and accessibility of IoT devices, therefore, would be

limited using non-standard solutions. We believe that the IoT vision could only be realized using standard

protocols and architectures [2]-[4]. In this sense, we consider that the standardization effort of the IETF [5, 6]

will have a huge impact on the realization and growth of the IoT industry [6]. The IETF has standardized the

use of the IPv6 protocols in WSNs. The resulting protocol stack is known as IPv6 over Low power Wireless

Personal Area Networks (6LoWPAN) [7]. 6LoWPAN enables the transmission of IPv6 datagrams over low-

power networks based on the IEEE 802.15.4 standard [8]. Furthermore, organizations such as the IP for Smart

Objects alliance (IPSO) [9] are promoting the use of IP in embedded devices.

The IoT vision should not be limited to provide network layer interoperability between WSNs and

Internet. Enabling IP networking alone in WSNs does not allow the potential of the IoT to be fully realized.

The use of standard Web services [10, 11], instead, would made possible the interaction between IoT devices

and Web applications. IoT devices would be equivalent to any other Web resource and standard Web

mechanisms could be used to access to them. We refer to this new approach as Web of Things (WoT).

The implementation of Web services in WSNs should be based on existing protocols and architectures.

This would avoid the interoperability problems that could arise from building from scratch new ones.

Traditional Web services are developed following two architectural styles: Representational State Transfer

(REST) [12] and Simple Object Access Protocol (SOAP) [13]. In this thesis, we adopt REST as the reference

architecture. It defines the design principles of the protocols and communication techniques that are the basis

of our research.

The choice of the reference Web service architecture is consequent to the analysis of both REST and

SOAP. This analysis requires a review and discussion of both architectures focused to understand which one

2

best fit with the characteristics and requirements of WSNs. From the results of this discussion derives the

paper Integration of Wireless Sensor Networks in IP-based networks through Web Services that has been

presented in the 4th Symposium of Ubiquitous Computing and Ambient Intelligence (UCAMI) [P6].

REST is an architectural style for distributed hypermedia systems originally defined to represent the

model of the current Web architecture. It defines a set of architectural constraints that attempt to minimize

latency and enforce security while maximizing the independence and scalability of components.

The first constraint adopted by REST is the Client-Server interaction. This allows improving the

portability of the user interface and the scalability of the whole system by separating the concept of user

interface and data storage. The client-server interaction must be stateless. The server does not store any

context while the client manages the state of the session. This implies that any request sent from client to

server contains all the information required to process it.

A further constraint defined by REST is the use of cache. This allows a client to store a response and reuse

it over a period of time. The presence of cache, therefore, would reduce the number of interactions between

client and server, which result in a reduction of energy consumption as well as the possibility for a node to

enter in sleepy mode.

REST constrains the interface between components to uniform, which allows separating the component’s

implementation from the service it provides. WSNs and Web applications, therefore, would be able to

communicate through REST interfaces using different protocols. REST defines four principles to obtain

uniform interfaces, these are:

 Resource identification through representation. A resource is identified by a Uniform Resource Identifier

(URI) [12]. A resource identifies the target of the client-server interaction.

 Manipulation of resources through representations. Resources are manipulated using a fixed set of

operations. These allow creating or deleting resources, retrieving the current state of a resource and

transfer a new state in a resource.

 Self-descriptive messages. Since resources are decoupled from their representations, their content can be

accessed through various formats (e.g., HTML, XML, etc.).

 Hypermedia as the engine of application state. The application state is defined by the pending and active

requests, the transfer and processing of representations and the topology of active components. As

reported in [12], “The model application is an engine moving from one state to the next by examining

and choosing from among the alternative state transitions in the current set of representations”. This

model corresponds to the user interface of a Web browser.

In order to clarify some aspects of REST it is important to explain the key concepts of this architecture,

which are the representation and the resource. As defined in [12], a representation consists of data, metadata

describing the data and optionally metadata describing metadata for verification of the message integrity. By

definition, a resource is any information that can be named (e.g., document, image, service, etc) [12].

Considering a WSN, a resource is the information provided by a sensor (e.g., temperature, humidity, etc).

3

SOAP is a protocol specification intended for exchanging structured information in a decentralized,

distributed environment [13]. SOAP has to be considered as a communication protocol that enables basic

message exchanging but not as a protocol that provides service description and discovery. The information is

structured in a message format defined using the Extensible Markup Language (XML) [14]. This XML

element is called envelope and contains the SOAP header and the body of the message where the payload is

contained. XML is a verbose data format, which is expensive in terms of overhead. REST, instead, is flexible

in regards the data formatting language, which allows reducing the space required by data.

SOAP uses HTTP [15] as a transport protocol. It has therefore, a propensity to exploit the Web as a

transport system. As a consequence, applications interact between each other hiding the resources they

handle. REST uses HTTP as an application protocol and allow accessing and interacting to a resource only

through a constrained set of HTTP methods, which are GET, POST, PUT, and DELETE. This allows the

interface of a resource to be generic and with a well-known and shared semantic. SOAP, instead, focuses the

Web service design around the definition of its interface by using the WSDL language [16].

In conclusion, Web services based on REST have a lightweight and simple implementation, which allow

lowering the resource consumption respect to SOAP. Furthermore, the use of uniform interfaces and

constrained methods to access the resources allows a less complex integration with Web applications and a

lighter communication than that required by SOAP. REST, therefore, is a good choice to develop Web

services tailored for WSNs. According to this vision, the IETF created a work group called CoRE [17], which

seeks to standardize the use of REST Web services in constrained networks and devices [18]. To this end, its

first attempt of standardization is the Constrained Application Protocol (CoAP) [19]-[21].

CoAP supports the same application transfer paradigm and basic features of HTTP. Furthermore, it adds

new functionalities tailored to the constraints and characteristics of IoT devices. Typical devices are, in fact,

battery-powered and equipped with few kilobytes of memory and CPUs with reduced processing power. The

implementation of Web services, therefore, has to be focused to minimize their impact on these resources.

The overhead introduced by Internet and Web protocols could be too demanding for the limited space of

IEEE 802.15.4 frames. Therefore, the use of communication techniques able to transfer large application data

could be required. To this end, this thesis focuses on the study of low-resource demanding protocols,

communication techniques and software solutions to evaluate, optimise and implement the IoT and WoT

paradigms. In the next section we detail and discuss the motivations that are behind this thesis.

1.1. Motivations

WSNs are data-centric networks where the information flow is mainly constituted by data collected by

sensors, which have to be transferred elsewhere in the WSN or to external networks. The limited

communication range of a sensor node could not allow transferring the data directly from the source to

destination. Intermediate nodes might participate in the data transfer by forwarding the data received up to the

final destination. We use the term multi-hop to refer to this particular WSN. We refer to WSNs where nodes

are in direct communication as single-hop.

4

Both the transmission and the reception of a packet are predominant over the total energy used by a node

to perform its tasks. Therefore, it is of paramount importance to design solutions that optimize the data

transmission in multi-hop networks. Besides lowering the energy consumption, these solutions have to

guarantee high performance in terms of end-to-end delay and reliability.

The performance and the energy consumption of multi-hop WSNs are highly influenced by the packet

forwarding technique in use. Thereby, the optimization of packet forwarding is key to develop reliable and

low-resource demanding WSNs. In this thesis we focus on WSNs adopting the 6LoWPAN protocol. This

defines two forwarding techniques, which are called mesh under (MU) and route over (RO). In part of this

thesis, we study the effects that MU and RO have on WSNs. Our aim is to design an original forwarding

mechanism that is able to enhance the performance of MU and RO in communications that require packet

fragmentation. In fact, as we explain in details in chapter 3 both MU and RO have drawbacks when dealing

with packet fragmentation.

Fragmentation is not typically associated with WSNs applications. The data collected by sensor nodes in

the most common applications is normally constituted by few bytes and fits with the space available in the

IEEE 802.15.4. There are, however, important applications that require more space than that available. WSNs,

in fact, can be used to monitor physical variables and phenomena that require a node to sample their value at

high rates and continuously over a period of time. Each sensor node could store the samples in a data log that

is later sent to a sink node. The size of the data log may not fit with the packet constraints of WSNs protocols.

Example of these applications can be found in [22]-[24]. In [22] a WSN has been deployed to monitor railway

vibrations and produces packets of 7 KB per node. In [23] the authors present a WSNs application for

structure health monitoring where each node produces data logs of 512 KB. A WSN used to monitor a

Volcano activity [24] produces data logs of 256 bytes per node. Furthermore, the rapid technological

evolution of sensors would allow deploying WSNs for multimedia applications. The data produced by these

applications could be significant and could require the application of fragmentation.

6LoWPAN uses fragmentation to send data that do not fit in a single IEEE 802.15.4 frame. The MTU

defined by the IEEE 802.15.4 standard is, in fact, fixed to 127 bytes. The overhead of the 802.15.4 header and

the presence of security mechanisms reduce the space to 87 bytes. The presence of 6LoWPAN, UDP and

CoAP headers further reduce this space.

6LoWPAN fragmentation is resource demanding. The memory necessary to assemble a fragmented packet

could exceed that available and buffer overflow can occur. Furthermore, the use of fragmentation causes an

increase of energy consumption [25]. Fragmentation causes also a growth of packet error probability and

forces a node to retransmit the packet. Repeated retransmissions led to a wasteful use of the bandwidth.

Furthermore, 6LoWPAN fragmentation has drawbacks on its end-to-end reliability support. The lost of a

fragment, in fact, causes the retransmission of the entire 6LoWPAN fragmented packet. 6LoWPAN does not

define any end-to-end reliability mechanism to recover from losses of single fragments. The transmission of

6LoWPAN packets, in fact, only relies on the link layer acknowledgments (MAC ACK) as defined in [8].

These are used to acknowledge the reception of a single 802.15.4 data frame over a single hop. In multi-hop

WSNs this mechanism does not guarantee the correct reception of the fragmented packet.

5

CoAP defines an alternative to 6LoWPAN fragmentation, which is called CoAP blockwise transfer [26].

The aim of CoAP blockwise transfer is to enhance reliability avoiding 6LoWPAN fragmentation. In this

technique a packet is divided into blocks and the data transfer into multiple request/response transactions. The

transmission of a single block corresponds to a single CoAP request/response transaction. The failure of a

single block or of the corresponding request causes only the retransmission of the request.

Although the design of CoAP blockwise transfer improves reliability and reduces the number of

retransmitted messages, its effect on end-to-end delay could be not as good. Furthermore, depending from the

WSN configuration the packet error probability could be low enough to discourage the use of CoAP

blockwise transfer. An analysis of 6LoWPAN fragmentation and CoAP blockwise transfer is therefore needed

to understand which technique best applies to each particular configuration. In this sense, we design an

analytical model to study the behaviour of these techniques in one-hop WSNs adopting a star topology. This

model must consider the presence of the carrier-sense multiple access with collision avoidance (CSMA/CA)

mechanism defined by the IEEE 802.15.4 standard. The inclusion of this mechanism is of paramount

importance to evaluate the packet losses caused by collisions and channel access failures.

As mentioned, WSNs are data-centric networks characterized by having constrained resources. The data

transfer model to adopt should, therefore, be compliant with these characteristics. Its design has to be as

simple and as lighter as possible to minimize the resource consumption. In particular, the number of messages

exchanged between nodes should be reduced to save bandwidth. In this context, the traditional

request/response model is inefficient. Clients have to periodically poll the server to receive updates of the

state of a monitored resource or event. As a consequence, the traffic will increase dramatically congesting and

overloading the WSN. Furthermore, the resource consumption would grow. Instead, an asynchronous model

would be more suitable for these characteristics. CoAP includes asynchronous data transfer through the

observe option [27]. This allows a client node to register to a resource exposed by a server node and receives

update of its states. In real applications, however, the nodes interested in receiving updates could be numerous

and with different Quality of Service (QoS) requirements. CoAP offers QoS support for reliability but

timeliness is not fully supported. In particular, on-time delivery of the updates is not implemented. However,

critical applications such as e-health or industrial monitoring have strict requirements about timeliness. In this

thesis we also focus on designing a solution to provide QoS support for timeliness in the observe option of

CoAP.

The use of CoAP in WSNs has been studied in several works. However, none of them contain an

extensive evaluation of CoAP. In particular, the reliability mechanism provided by the protocol has not been

evaluated. Although a comparison between CoAP and HTTP is present in all these works, they do not

consider the possibility of using HTTP with transport protocols different from TCP. Furthermore, we

recognized that the CoAP implementations that have been used to evaluate CoAP are not optimized to be

embedded in WSNs. Therefore, they do not show the real performance of CoAP. To overcome these

limitations we design an optimized CoAP implementation for the TinyOS [28] operating system. We evaluate

and compare the performance of our implementation with that of the officially distributed by TinyOS.

6

Furthermore, we include the evaluation of the reliability mechanism of CoAP and we consider the use of

HTTP with different transport layer solutions.

While CoAP is a promising protocol to realize the WoT vision, we think that applications based on HTTP

will still be used to access to CoAP networks. In this perspective, the presence of a proxy that is able to map

both protocols is key for the diffusion of WoT applications based on CoAP. In this thesis we design a CoAP

proxy that is able to connect Web applications to CoAP networks. As explained before, the use of the

asynchronous data transfer provided by the observe option could allow to reduce resource consumption in

WSNs. However, HTTP does not define communication models equivalent to that of the observe option. One

of the challenges of our proxy design is to allow to Web applications to benefit from the asynchronous model

of CoAP. This would reduce the traffic caused by Web applications that need to retrieve data continuously

from WSNs.

Motivated by the exposed above, a study of new protocols for implementing the IoT and WoT visions is

needed. In particular, in the current literature there is a lack of research works on the effects that large data

transactions have on WNSs. In this sense, we decide to study the forwarding techniques of 6LoWPAN

focusing on packet fragmentation and CoAP blockwise transfer. We also study CoAP focusing on the design

of embedded software solutions as well as on its QoS provision. CoAP is still under standardization and its

diffusion in real applications is limited. Our research work, therefore, could help positively its development

and application in real scenarios.

1.2. State-of-the-art

The analysis of the state-of-the-art starts with the discussion of 6LoWPAN forwarding techniques. We

present related works on MU and RO as well as the motivations behind their definition. Then, it follows the

presentation of the existing proposals for Web services in WSNs and the state-of-the-art of the research works

on application protocols for WSNs and CoAP. Finally, we present related works on analytical models of large

data transaction in WSNs

1.2.1. Forwarding Techniques in 6LoWPAN

As mentioned, forwarding techniques have a significant impact over the performance and resource

consumption of multi-hop WSNs. Several works have studied the problematic related to forwarding in multi-

hop 6LoWPAN networks. In particular, a great deal of attention has been given to the definition of alternative

RO techniques. In the rest of this section we present related works on forwarding techniques in 6LoWPAN.

We start reviewing the key concepts behind the definition of MU and RO. Then, it follows the review of the

state-of-the-art of this research topic.

In [29] the author details some of the fundamental assumptions made during the development of the

6LoWPAN protocol. Among these, he reviews the basic concepts behind the definition of MU and RO. The

author claims that the original design of 6LoWPAN follows a MU philosophy. However, the use of IP

7

diagnostic tools or source routing would be no longer possible under this assumption. To overcome these

problems, the author proposes the use of IP based routing and to separate the concepts of routing and

forwarding. In this way, the routing protocol manages the IP routing tables while the network layer forwards

the IP packets. The author claims that a major drawback of RO is that the IPv6 routing would require that

each node in the network should be its own subnet. To overcome this problem, the author suggests using RO

and MU together. In this perspective, a WSN could be split into many small networks based in MU but using

RO to communicate with each other.

In [30] the authors discuss the 6LoWPAN key concepts including the definition of MU and RO. As in

[29], the lack of tools used to form, maintain and diagnose IP networks are considered as a weakness of MU.

The authors recall that issues of link versus network layer routing are present also in other networks

technologies (e.g., ATM, Frame Relay). Taking as example the IP over ATM, the authors suggest that a

possible solution for routing in 6LoWPAN should be inspired to the Multiprotocol Label Switching (MPLS)

in which the routing engine is located at network layer but the forwarding is done at layer two.

In [31] the authors discuss the problems arising from the use of IP above link technologies designed for

constrained networks. The authors claim that widely used link technologies (e.g., Ethernet or IEEE 802.11)

emulate a single broadcast domain to perform link-layer forwarding or routing. In this way, the services

provided by the network-layer to form and maintain a network are simplified. In a single broadcast domain, a

node is able to send an IP packet without the need to understand the physical topology of the network. The

authors discuss MU and RO focusing on the possibility to emulate or not a single broadcast domain also in

networks that adopt the 802.15.4 standard. In these networks, the implementation of MU would require the

emulation of the broadcast domain. However, with this solution the IP routing protocol would not have the

necessary visibility of the underlying radio topology to perform basic tasks (e.g. determine if a node is

reachable). Furthermore, the use of IPv6 multicast would be costly and the use of data aggregation from

multiple sources would be no longer applicable. The authors recommend to avoid the emulation of a single

broadcast domain in MU and to adopt a RO architecture where the broadcast domain is equal to the radio

transmission range.

Guidelines for the design of 6LoWPAN routing protocols are presented in [32]. The authors illustrate the

differences between MU and RO by describing the reference network models related to each approach. In this

work the authors also report specific requirements for MU.

Part of our work on forwarding techniques focuses on the performance evaluation of MU and RO in a real

WSN. The result of this evaluation would help us to design an improved forwarding technique for

6LoWPAN. In the literature, however, there are few works that focus on performance evaluation. In

particular, only the work presented in [33] was published at the time we started our research on forwarding

techniques. This work, however, presented an analytical evaluation of MU and RO. Our research, therefore,

covered the lack of performance evaluation of MU and RO in a real WSNs implementation. In [33], in fact,

both techniques are compared using a probabilistic model that seeks to evaluate the packet arrival probability,

the total number of transmissions and the total delay between source and destination. This analysis is

performed considering a multi-hop network with communications that require 6LoWPNAN packet

8

fragmentation. Results in [33] demonstrate that RO has a higher fragment arrival probability than MU.

Furthermore, the results show that RO can experience buffer overflow when the network traffic is high and a

node receives packets from different paths. The evaluation of the delay shows that it is higher in

communications that use RO. Furthermore, the authors prove that RO allows reducing the number of

retransmissions.

The work presented in [34] also focuses on the evaluation of MU and RO. However, it is successive to the

conclusion of our research. In [34], the authors present an analytical analysis of MU and RO focused to

evaluate their performance in terms of end-to-end delay and reliability. The application scenario is an

Advanced Metering Infrastructure (AMI) with a variable number of hops. The analysis considers the presence

of 6LoWPAN fragmentation as well as its absence. RO proves to be more reliable than MU when the

communication requires packet fragmentation. MU instead has better latency and it is preferable when the

communication does not use fragmentation.

In [35], the authors present a survey on routing and mobility solutions for IPv6 communications. In this

survey, MU and RO are presented and the possible routing protocols applicable to each technique are

discussed. Both techniques are discussed considering a multi-hop network and the presence of fragmented

packets. In this perspective, the authors claim that the hop-by-hop fragmentation and reassembling of

6LoWPAN packets is the major drawback of RO. Furthermore, they consider that MU benefits from the fact

that it can use multiple paths to forward fragments of the same packet. RO, instead, is constrained to use a

single path. Considering the results presented in [33] Oliveira et al. recommends choosing MU or RO

depending on the requirements of the application (e.g., reliability, use of fragmented packets).

In the literature, a great deal of attention has been focused to the design of techniques able to improve the

performance of RO. In this thesis, instead, we focus on the design of a forwarding technique able to enhance

the performance of MU. To the best our knowledge, only the work in [36] considered the design of a new

forwarding scheme based on MU. However, this is successive to the conclusion of our work.

In [36] the authors present a novel forwarding techniques, which they refer to as chained MU. The

purpose is to enhance the packet arrival rate of MU in multi-hop networks. The proposed solution defines the

presence of temporary assembling nodes, which are intermediate nodes between the source and the

destination. These nodes reconstruct the original IP packet from the received fragments before fragmenting it

again and delivering it to the next node or to destination.

Alternative techniques to RO are presented in [37]-[39]. In [37], the authors presented a technique called

modified RO. This proposal seeks to enhance the performance of RO when this is used to forward 6LoWPAN

fragmented packets. The retransmission of the entire fragmented packet is avoided by allowing to an

intermediate node to request the retransmission of the missing fragments. The authors compare MU, RO and

modified RO in an e-health scenario. Modified RO shows better performance and proves to lower the latency

and packet loss ratio.

RO can be implemented with methods able to create virtual reassembly buffers that remember only the

IPv6 header contained in the first fragment [38]. The work presented in [39] proposes to create a state

associated to the IPv6 source address and to the datagram tag of the fragmentation header. This solution

9

allows establishing a virtual circuit for the subsequent fragments. We refer to this proposal as enhanced route

over (ERO). In chapter 3 we present in detail this proposal.

1.2.2. Web services for Wireless Sensor Networks

The interest towards the application of Web services in WSNs has grown rapidly over the past year. Both

SOAP and REST architectures have been developed and tested in these networks.

The authors of [40] developed a Web service architecture based on SOAP and WSDL for 6LoWPAN. In

this work, the 6LoWPAN and the Web Service architecture are considered as two independent entities that

communicate through a Web server and a 6loWPAN border router. The main drawback of this

implementation is that the server has to continuously poll the sensors to obtain the data. In [41] the authors

advise against the use of polling to obtain data from sensors. They recommend the use of event driven

communication in order to minimize the resource consumption.

The authors of [41] presented in [42] a research work that aims to eliminate the presence of gateways by

embedding Web services directly in constrained devices. These embedded Web services are based on SOAP

and use the Device Profile for Web Services (DPWS) [43]. The authors develop a prototype and test its

performance in terms of memory footprint and round-trip-time. Results from [42] prove that solutions based

on SOAP have high latency, which is mainly due to the use of TCP. However, the authors state that the

memory used by DPWS is significantly lower than that used by the operative system to allocate the buffer for

IPv6 (1280 Bytes) and SOAP (2000 Bytes). Finally, the authors consider crucial the reduction the size of the

SOAP/XML message through compression of XML. A similar conclusion is found in [44]. Here, the authors

argue that the main drawback of SOAP solutions is the overhead generated by the verbose format of XML.

The authors suggest considering the possibility to develop only REST Web services and not using SOAP in

WSNs.

An early work that considers the application of REST in WSNs is presented in [10]. However, this work

does not focus on providing Web services to access and interact with sensors but only to discover devices.

The problem of the integration of WSNs and Internet is considered in [11]. In this work, the authors develop

an HTTP like protocol called TinyREST. This protocol is thought to establish a communication between a

WSN and a gateway. The gateway is considered as the interface between the Internet application and the

WSN. The work presented in [45], considers Web servers embedded in sensor nodes to communicate directly

with a Web client through HTTP.

1.2.3. Application Protocols for Wireless Sensor Networks

As mentioned, the development of Web service tailored for constrained networks is key to integrate WSNs

in classic Web applications and to leverage the interoperability of different network technologies and low-

layer protocols. As previously discussed, the REST architecture is the reference style for Web service

development. The HTTP/TCP stack is the standard solution used to develop classical REST Web services.

However, its implementation in constrained networks would not be feasible. The HTTP protocol header is, in

10

fact, too chatty for the limited space available in 6LoWPAN frames. As reported in [18], HTTP has evolved

into a complex protocol that involves optional headers and a number of features that complicate its

implementation in constrained devices. Moreover, the TCP protocol would have a poor effect on the available

bandwidth of WSNs. Instead, the interoperability of different networks would be possible adopting this

solution. Therefore, the development of a lightweight binary protocol that could be easily mapped to HTTP

and bound to UDP would meet both requirements.

As previously anticipated, an early proposal [11], which is called TinyREST, defines a protocol that

enables sensors to interact with Web clients. The TinyREST commands are created combining the request

method with the URI of the sensor’s resource. These request methods are limited to POST, GET and

SUBSCRIBE requests of HTTP. Instead of using IP, TinyREST uses the networking tools provided by the

active message stack of TinyOS. The authors claim that using “full IP packets in WSNs would be devastating

for the usually limited power resources of sensors/actuators”. The messages are transmitted as plain ASCII

and generate an overhead of 29 bytes. The use of TinyREST is intended only for communications inside the

WSN. The interaction with external Web services is performed through a gateway responsible for translating

HTTP messages into TinyREST ones.

A proposal for a binary version of HTTP, which is called Embedded Binary HTTP (EBHTTP), has been

defined in [46]. An application of EBHTTP for building REST Web Services is considered in [47]. EBHTTP

is a binary-formatted and stateless encoding of the standard HTTP protocol. Its use is intended for resource

constrained WSNs. The design of this protocol focuses in reducing the overhead of HTTP while maintaining

the same semantic and communication paradigm. EBHTTP uses the UDP protocol instead of TCP.

An early proposal from the CoRE work group, which is called Chopan [48], follows the EBHTTP idea of

compressing HTTP messages into a binary format. As EBHTTP, Chopan uses UDP as transport protocol. The

proposal also includes the presence of transparent caching and gateways for translating Chopan into HTTP.

The weaknesses of Chopan and EBHTTP can be found in the lack of reliability and in the processing power

required to encode the HTTP protocol. This would be less than that required by adopting HTTP but it would

be still expensive for the limited resource of a sensor. Furthermore, since they are bound to UDP they do not

provide any reliability mechanism.

As a result of these limitations, attention has shifted to the definition of a new application protocol

designed to fit to the constraints of WSNs and to comply with the REST principles, which is CoAP. As

mentioned, CoAP is one of the main themes of this thesis and a detailed definition of its functionalities will be

given in chapter 2. In the rest of this section we present the latest research on CoAP.

1.2.4. Constrained Application Protocol (CoAP)

As mentioned, one of the main contributions of this thesis is the design and optimization of software

solutions to implement the IoT paradigm in WSNs. In this sense, we design a CoAP implementation to be

embedded in WSN nodes and a CoAP proxy to interconnect Web applications to WSNs. Both solutions are

evaluated in a real WSN scenario. In particular, the performance achieved by our implementation has been

11

compared to that of existing implementations based on CoAP and HTTP. The evaluation of our

implementation not only allows to validate its design but also to analyse the performance of CoAP. Next we

review the state-of-the-art of CoAP implementations for WSNs, CoAP proxies and CoAP performance

evaluations.

The authors of [49] present a survey of CoAP implementations and show the results of an interoperability

meeting organized by the European Telecommunications Standards Institute (ETSI). This survey presents

implementations that target both WSNs as well as other environments. For the purpose of this thesis, we are

interested in CoAP implementation for WSNs. In this sense, CoAP has been already implemented in the most

popular operating systems (OSs) for WSNs such as Contiki [50] and TinyOS [51, 52]

A CoAP implementation, which we refer to as CoapBlip, is presented in [51]. The authors review its

design and evaluate their implementation by comparing it to a HTTP implementation. This performance

evaluation considers the ROM footprint and the average response time of CoAP and HTTP. Preliminary

results of an evaluation show that CoAP yields better performance than HTTP. CoapBlip is released with the

latest distribution of TinyOS, which is the target OS of our implementation. We compare, therefore, the

performance of CoapBlip to that achieved by our implementation. Details of CoapBlip are presented in

chapter 5 along with the design of our CoAP implementation.

In [53], CoapBlip is used to evaluate the CoAP protocol in combination with other low layer protocols. In

this sense, it is evaluated along with the Routing Protocol for Low-power and Lossy Networks (RPL) and the

Low Power Listening (LPL) protocol.

A further CoAP implementation for TinyOS is presented in [52]. The authors carried out a performance

evaluation considering the CoAP request success probability as a function of the request rate of the client

node. Furthermore, the authors report results from an evaluation of the memory occupation of TinyOS

components used in their implementation. Differently from CoapBlip, we choose not to include this

implementation in our performance evaluation. It is, in fact, developed on top of an unsupported and limited

6LoWPAN implementation named 6lowpancli [54]. In particular, as pointed out in [55, 56], 6lowpancli

provides only basic functionalities of 6LoWPAN. 6Lowpancli does not support any type of neighbor

discovery mechanism, it is completely static and requires manual configuration. As reported in [55, 56] the

support for mesh network is not provided and when a packet with different destination address is received, it

is just dropped. The results of a performance evaluation done in [55] show that 6lowpancli does not perform

well in terms of energy consumption and latency. Thereby, its limitation would affect any implementation

build on top of it.

The authors of [50] present a CoAP implementation for Contiki. The aim of this implementation is to

achieve high-energy efficiency by leveraging a radio duty cycling mechanism. The implementation is

evaluated in a multi-hop network. The results show that energy consumption is lower when using a radio duty

cycle but leads to in a worsening of the latency performance.

As mentioned, along with the evaluation of our original implementation we provide a comprehensive

analysis of the functioning of CoAP including an evaluation of the reliability mechanism. The performance of

CoAP has been evaluated in several works [50–52, 57–59]. However, none of these contain an extensive

12

evaluation of the protocol. In particular, the CoAP reliability mechanism has not been evaluated. Although

these works present a comparison between CoAP and HTTP, they do not consider the possibility of using

HTTP with transport protocols different from TCP. In this thesis, we evaluate the performance of an HTTP

server using UDP and persistent TCP connections. In fact, a fair comparison between CoAP and HTTP

should at least include the above-mentioned possibilities in order to minimize the effects that TCP has on the

HTTP performance, otherwise a comparison between CoAP and HTTP would result in an evaluation of UDP

and TCP.

In [57], the authors report a simple comparison of CoAP and HTTP in terms of energy consumption. This

work also describes the design of a gateway used to connect a CoAP based WSN to an external IP network

that uses HTTP. In [58], the authors of [57] compare the performance of CoAP to that of HTTP. The

evaluation is carried out on the basis of energy consumption and response time. In particular, energy

consumption is evaluated by means of simulation. The response time, however, is measured in a real WSN.

Both experiments consider a client querying an embedded server to obtain temperature and humidity values.

The energy consumed is measured according to the variation of the interarrival packet time. The response

time is calculated for the case where the server is at a distance of 1-hop and 2-hop from the client. The results

obtained show that CoAP yields a better performance in both the evaluation parameters.

A study on network sensor deployment [59] used CoAP and HTTP as data transport protocol for sensor

network reprogramming. Both protocols are evaluated over a duty cycled radio layer. Results are obtained

through simulation and show that CoAP and HTTP provide similar results. In [60], the authors present a

framework for machine-to-machine (M2M) communications using CoAP. They also present an improved

publish/subscribe mechanism also based on CoAP. Both solutions are evaluated showing the advantage of

using CoAP instead of HTTP.

As mentioned, the design and development of a CoAP proxy is one of the main contributions of this

thesis. The presence of a CoAP proxy is of paramount importance to interconnect HTTP based networks with

CoAP WSNs. It is expected, in fact, that most of the accesses to CoAP WSNs will come from traditional

HTTP networks.

Our CoAP proxy is designed to provide support to applications that need to continuously retrieve data

from the WSN. Traditionally, the HTTP long-polling technique has been used in these applications. However,

it could result inefficient in this scenario. The use of HTTP long-polling, in fact, forces Web applications to

query constantly the CoAP proxy to receive data from the WSN. This could cause an excessive

communication overhead and a consequent increase of latency and network traffic.

Although HTTP long-polling shows limitations, none of the existing works on CoAP proxies consider

alternative to it use. Furthermore, they do not present any performance evaluation. In this thesis, we consider

alternative to HTTP long-polling and present a performance evaluation of the CoAP proxy. Our contribution

is, therefore, significant to state-of-the-art of CoAP proxies. The existing works that focus on CoAP proxy

design are reviewed next.

The authors of [61] describe the main building blocks of a simple CoAP gateway used to monitor

remotely a WSN. The gateway performs as a cross-proxy to translate HTTP requests into CoAP ones. The use

13

of a 6LoWPAN gateway to monitor a CoAP WSN is also presented in [62]. The authors of this paper design

an update system to achieve the interaction between the Web application and the gateway. In [63], the authors

develop a CoAP gateway for home automation. A HTTP-CoAP proxy is used in [64] to expose the services

provided by a framework for smart energy grid to Web applications. A study of lightweight protocols to

minimize resource consumption in constrained gateways is presented in [65]. The authors compare the

performance obtained by CoAP to that of MQTT [66]. CoAP proves to be the most efficient in terms of

energy and bandwidth usage. CoAP is tested considering the classic request/response data transfer as well as

the asynchronous one provided by the observe option.

The CoAP observe option is also one of the main topics of this thesis and its definition is given in details

in chapter 2. As mentioned, our research on the observe option seeks to improve its Quality of Service (QoS)

provision in terms of timeliness. Furthermore, our study aims to define a mechanism to let a client negotiates

a particular QoS level. The negotiation of the QoS level is not common in publish/subscribe protocols.

Although important, few of them have this characteristic.

The authors of [67] provide a mechanism for negotiating QoS in terms of timeliness. In this model, a

subscriber can specify the delay constraint as an attribute of its subscription request. The broker will then

select the best path to route the notification and, therefore, meet the delay requirement.

Reliability can be provided with best effort or persistence mode. In best effort the retransmission of lost

updates is not provided. In persistence mode the publisher is able to retransmit updates. The solutions

presented in [68]-[70] provide reliability only with best effort. Persistence is provided in [71, 72] and [66].

These systems, however, only provide reliability from the fault-tolerance point of view. They use mechanisms

to permit to brokers to recover after a failure or, to route information towards active brokers. They do not

negotiate the reliability with subscribers. In [73], the authors propose a framework to provide reliability and

timeliness for publish/subscribe protocols in Wide Area Networks (WANs). Both parameters are provided

using gossip protocols and network coding.

Regarding the protocols designed for WSNs, MQTT-s [74] allows to subscribers to define three QoS

levels for reliability. The first level offers a best effort delivery service. The second allows the retransmission

of an update until the receiver acknowledges it. Retransmitted messages may arrive duplicated at the

destination. To overcome this problem, the third level ensures that the same message is received only once. A

comparative performance evaluation of MQTT-s and observe is presented in [75]. The authors focus on the

reliability support of both protocols. They propose to use a retransmission timer that adapts to network

conditions instead of using the fixed timer defined by both. A performance evaluation done in different

network topologies shows that the proposed approach increases the packet delivery ratio of observe and

MQTT-s.

The authors of [76] define QoS support for real-time publish/subscribe in WSNs. A Subscriber can specify

the maximum tolerated delay for receiving updates. A dispatcher is used to meet the delay requirement.

Depending on the required delay, the notification can be buffered in a QoS or in a non-QoS queue. The

dispatcher gives priority to updates with real-time constraints. In [77], the same authors propose a

publish/subscribe middleware for WSNs that provides a mechanism for supporting fault-tolerance and real-

14

time requirements. This is achieved through a cluster-based organization of the WSN. The middleware

receives QoS requirements from the cluster-head nodes. These requirements are about the services of the

WSN and their default operation conditions in terms of delay, data rate and energy. Once the middleware has

this information it is able to provide the required QoS.

In [78], the authors present a middleware to provide a publish/subscribe scheme for WSNs. The publisher

provides QoS for reliability, priority and deadline. Reliability is achieved through retransmission while

priority allows finding the short-path to destination based on the importance of the packet. Deadline allows a

node to discard a packet if its deadline has expired. However, the QoS levels are chosen by the publisher

according to the importance of the packet to send.

The QoS negotiation that we propose also permits a client to select the updates it wishes to receive. A

similar proposal can be found in [79]. The authors present an extension to the observe protocol, which is

called conditional observe [80]. This allows a client to filter the notification sent by a publisher by indicating

a threshold value. Furthermore, the client can indicate if the value that should be contained in the desired

updates is equal, above or under the threshold. In [60] the authors propose an extension of the observe

protocol that allows a client to specify the period of time during which it wants to receive the updates. This

extension is called duration.

1.2.5. Analytical model of large CoAP data transactions

In part of this thesis, we propose a novel analytical model to study CoAP blockwise transfer and

6LoWPAN fragmentation in one-hop WSNs adopting a star topology. To the best of our knowledge this is the

first research that evaluates and compares analytically the performance of these communication techniques. In

the literature there are no works that propose an analytical model for the same problematic or that compare

6LoWPAN fragmentation to CoAP blockwise transfer.

A great deal of attention has been given to study the IEEE 802.15.4 channel access mechanism, which is

out of the scope of this thesis. To the best of our knowledge there are only two works that focus on CoAP

blockwise transfer and 6LoWPAN fragmentation. The study in [25] evaluates the effects of 6LoWPAN

fragmentation on the energy consumption. CoAP blockwise transfer is considered in [81]. The authors present

a service management system that seeks to reduce the energy consumed by CoAP blockwise transfer. The

authors reduced the overhead introduced by transport and application layer data by keeping the

communication at network level between the most constrained nodes. The packet size is further reduced by

the definition of a parameterized resource description and representation.

A thorough study of both communication techniques is therefore needed to understand their behaviour and

optimize their use in WSNs

15

1.3. Thesis Methodology

In this section we describe the tasks that compose the realization of this thesis. For each one we describe

its goals and the tasks that compose it.

1. 6LoWPAN forwarding techniques

The purpose of this task is the optimization of the 6loWPAN forwarding techniques. This phase is

composed by the followings sub-tasks:

a. Study of the state-of-the-art.

b. Implementation of MU and RO in TinyOS.

c. Performance evaluation of MU and RO with non-fragmented packets.

d. Design of a new alternative for 6LoWPAN.

e. Performance evaluation of MU, RO and our new forwarding technique with fragmented packets.

f. Dissemination of results

2. Analysis of large packet transmission

The purpose of this task is to study the performance of a 6LoWPAN network when the communication

involves data that do not fit in a single IEEE 802.15.4 frame. We develop an analytical model to study CoAP

blockwise transfer of and 6LoWPAN fragmentation in one-hop WSNs with star topology. This task is

composed by the followings sub-tasks:

a. Study of the state-of-the-art

b. Research the reference model for the IEEE 802.15.4 unslotted CSMA/CA mechanism

c. Design of the analytical model.

d. Evaluation of the model in topologies.

e. Dissemination of results

3. Web services architectures for constrained networks

This task includes the study of the current architectural styles for Web services. The aim is to find the

architecture that best fits with the constraints of WSNs. This task is composed by the followings sub-tasks:

a. Study of the state-of-the-art.

b. Analysis of SOAP and REST architectures.

c. Evaluation of the architectures and application protocol.

d. Choice of the architecture and application protocol.

e. Dissemination of results

16

4. Application protocols for 6LoWPAN

The Web service architecture chosen in the previous task determines the application protocol to be used in

our work. This task requires the study of the state-of-the-art of the application protocols for WSNs. The

suitable protocol is implemented and evaluated in a real 6LoWPAN network. The results collected will be

useful to optimize the design of CoAP and reduce the impact it would have on WSNs resources. CoAP is the

protocol that we chose to implement and study. This task is composed by the followings sub-tasks:

a. Study of the state-of-the-art.

b. Analysis of the CoAP protocol.

c. Implementation and performance evaluation of CoAP.

d. Implementation and performance evaluation of a CoAP proxy

e. Optimization of CoAP based on the obtained results.

f. Proposal for QoS support for timeliness in the CoAP observe option

g. Dissemination of results

1.4. Thesis Outline

In Chapter 2 we present the protocols adopted in this thesis. We focus on the features of these protocols that

are relevant for our work.

In Chapter 3 we discuss the work and results from our research on the 6LoWPAN forwarding techniques.

In Chapter 4 we present the analytical model and the performance evaluation of the CoAP blockwise transfer

and 6LoWPAN fragmentation.

In Chapter 5 we present our implementation of CoAP and discuss its performance evaluation.

In Chapter 6 we describe the design and implementation of a CoAP proxy.

In Chapter 7 we present our contribution to the study of the CoAP observe option.

In Chapter 8 we conclude this thesis and give possible future developments.

17

2. Protocols

In this chapter, we review the protocols that constitute the basis of the research presented in thesis. The

purpose is to familiarize the reader with the key concepts behind these protocols by presenting their main

properties and characteristics.

We start reviewing the IEEE 802.15.4 protocol, which is the de facto standard for MAC and physical

layers of WSNs. Networks adopting this standard are defined as Low Power Wireless Personal Area Network

(LoWPAN). These networks are intended to be low-cost wireless networks with limited power and low

throughput. Then, we present the 6LoWPAN protocol. As mentioned, 6LoWPAN enables the transmission of

IPv6 packets in networks adopting the IEEE 802.15.4 standard. It constitutes, therefore, the main ground on

top of which realize the IoT vision in WSNs. We describe the main properties of 6LoWPAN focusing on the

RO and MU forwarding techniques and the fragmentation mechanism, which are relevant for this thesis. We

conclude this chapter reviewing the CoAP protocol. As mentioned, CoAP seeks to implement the key features

of HTTP while adding its own mechanisms to best adapt to WSN characteristics. Among them, CoAP defines

CoAP blockwise transfer and the observe option, which are presented along with the main characteristics of

CoAP.

2.1. IEEE 802.15.4

The IEEE 802.15.4 standard defines the protocol and interconnection of devices via radio communication

in a personal area network (PAN) [8]. It uses the OSI reference model and defines the physical layer (PHY)

and the medium access control (MAC) sub-layer of the data link layer.

LoWPANs are usually battery powered and have low data-rate. The definition of the 802.15.4, therefore,

reflects these constraints. The main characteristics of a LoWPAN are summarized as follows:

• Data rates of 250 kb/s, 100 kb/s, 40 kb/s and 20 kb/s

• Allocation of IEEE 16-bit short or IEEE 64-bit extended addresses

• Use of CSMA/CA

• Fully acknowledged protocol for transfer reliability

• Low power consumption

• Energy detection

• Link quality indication

• 16 channels in the 2450 MHz band, 30 channel in the 915 MHz band and 3 in the 868 MHz band.

The devices used in LoWPANs are distinguished into reduced function devices (RFDs) and fully function

devices (FFDs). An FFD can be used as PAN coordinator, coordinator or as device. The use of RFDs is

recommended for simple applications where sending large amount of data is not necessary. An RFD can only

communicate with a FFD and can be associated only to a single FFD at a time. FFDs do not have these

restrictions.

18

Addresses are assigned in the association phase. It can be allocated up to 264 addresses if they are IEEE

64-bit extended addresses, while 216 if they are IEEE 16-bit short addresses. The communication between

single nodes is limited to a personal operating space (POS) that, at the maximum power, is fixed to 10 meters.

Each PAN has associated a unique identifier (PAN-ID) that allows to devices to communicate within its PAN

using the short address format.

IEEE 802.15.4 networks are self-healing and self-organizing. The former mean that devices are able to

detect and recover from errors appearing in either devices or in communication links. The latter facilitate a

node to detect the presence of other nodes and to organize them into a structured PAN.

A LoWPAN can be formed following two different topologies, which are star or peer-to-peer. The choice

depends from the network application field. A peer-to-peer topology is used to implement complex networks

where devices can communicate between each other using multi-hop routing. Conversely, a star topology

allows only one-hop communications between the PAN coordinator and the device. Figure 1 shows the star

and peer-to-peer topologies.

Figure 1 Topologies of 6LoWPAN

2.1.1. Frame Structure

The IEEE 802.15.4 standard defines four possible frames:

• A beacon frame, which is used by a coordinator to transmit beacons

• A data frame, which is used for all transfers of data

• An acknowledgment frame, which is used for confirming successful frame reception

• A MAC command frame, which is used for handling all MAC peer entity control transfers

The data frame contains the payload and headers generated by upper layers, which are referred to as MAC

payload. This is prefixed with a MAC header (MHR) and appended by a MFR composed by a 16-bit frame

check sequence (FCS) field. The result of this process is the MAC Protocol Data Unit (MPDU). Afterwards,

19

The MPDU is passed to the physical layer as physical service data unit (PSDU). Then, a synchronization

header (SHR) and a physical header (PHR) are attached to the PSDU in order to form the physical protocol

data unit (PPDU). This represents the data frame ready to be transmitted over the 802.15.4 link.

As mentioned, the standard fixes the maximum packet size to 127 bytes. The MAC and PHY header

generate an overhead of 25 bytes leaving 102 bytes as maximum length of MAC payload. The presence of

security mechanisms further reduces the available space to 87 bytes. Figure 2 shows the MAC command

frame encapsulated in the PHY packet.

Figure 2 MAC command frame and PHY packet

2.1.2. Data Transmission and Channel Access Mechanism

Data transfer is defined in three modalities: coordinator to device, device to coordinator or between peer

devices. Communications between peer devices is available only in peer-to-peer networks. Data transfer to

and from the coordinator differs depending if the PAN is beacon-enabled or non-beacon-enabled. Beacons are

used in networks requiring synchronization and support for low-latency devices.

Regarding the channel access mechanisms, the IEEE 802.15.4 standard defines the use of unslotted

CSMA/CA in non beacon-enabled networks and slotted CSMA/CA in beacon-enabled networks. In this

thesis, we focus on non beacon-enabled networks using unslotted CSMA/CA. This MAC modality is of major

interest in the standardization of IETF protocols [7]. Next we review the unslotted CSMA/CA mechanism.

The unslotted CSMA/CA mechanism is located at MAC layer. Its process is regulated by three variables,

which are the number of backoffs NB, the backoff exponent BE, and the retransmissions counter RT. When a

node wishes to transmit a packet, BE is settled to macMinBE while NB and RT are initialized to zero. The

channel access is divided in two steps, a backoff period and the Clear Channel Assessment (CCA). In the

backoff period, the MAC layer delays for a random number of aUnitBackoffPeriod units in the

range	ሾ0, ௞ܹሿ ൌ ሾ0	, 2஻ா െ 1ሿ where ௞ܹ	is the boundary of the backoff window and k the index

representing the backoff stage. At the end of this period, the node performs the CCA. This is used to sense if

the channel is busy or idle. During CCA, the node is in listening mode. It takes aTurnaroundTime units to

20

switch to transmitting mode. Should the CCA fails, the values of NB and BE are incremented by one and up

to a maximum value of macMaxCSMABackoffs and macMaxBE. Should BE reach macMaxBE, it remains at

this value until it is resettled. Instead, if NB exceeds macMaxCSMABackoffs the transmission is aborted and

packet is discarded due to channel access failure. Otherwise, the CSMA/CA algorithm generates a random

number of backoff periods and repeats the process. Should CCA be idle, the node starts the transmission of

the packet. After it is completed, the node waits for the MAC ACK. The reception of the MAC ACK is

interpreted as a successful transmission. Should the node fail to receive the MAC ACK due to collision or

MAC ACK timeout, the variable RT is increased by one up to macMaxFrameRetries. If RT is less than this

values, the MAC layer initializes BE to its default value of macMinBE and repeats the CSMA/CA

mechanism. The packet is discarded due to the retry limit when RT reaches its maximum value.

In the rest of the thesis, we denote by m0 = macMinBE, mB = macMaxBE, m = macMaxCSMABackoffs and

n = macMaxFrameRetries

2.2. 6LoWPAN

6LoWPAN introduces the adaptation layer between network and data link layers. This allows to IPv6

datagrams to meet the requirements of the IEEE 802.15.4. The IPv6 standard, in fact, defines an MTU fixed

to 1280 bytes [82]. As mentioned, the MTU defined by IEEE 802.15.4 is equal to 127 bytes. The length of the

IPv6 header (40-bytes) implies a huge overhead that, considering the presence of transport layer header (8

bytes for UDP), MAC header (25 bytes) and link-layer security (21 bytes) would leave only 33 bytes

available for application layer payload.

The adaptation layer solves these problems enabling the compression of the IPv6 header and the

fragmentation of packets that exceed the MTU of the MAC layer. In case of fragmentation, a fragmentation

header is appended to each fragment. Two distinct headers are used to indicate whether it corresponds to the

first fragment or is one of the followings. Figure 3 shows the fragmentation header for the first fragment and

the subsequent fragments.

(a) First fragment.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1 1 0 0 0| datagram_size | datagram_tag |
 +-+

(b) Subsequent fragment.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1 1 1 0 0| datagram_size | datagram_tag |
 +-+
 |datagram_offset|
 +-+-+-+-+-+-+-+-+

21

Figure 3 6LoWPAN Fragment headers. (a) First fragment; (b) Subsequent fragment

With reference to Figure3 (a) and (b), the first 4 bit of both headers indicate the dispatch values that the

adaptation header checks to identify what kind of fragment it is dealing with. The datagram_size field uses 11

bits to encode the size of the entire IP packet before fragmentation. The value of this field must be the same

for all the fragments composing the IP packet. The 16-bit length datagram_tag field identifies that a sequence

of fragments is part of the same IP packet. The 8-bit field datagram_offset is defined only for subsequent

fragments. It specifies the offset, in module of 8 bits, of the fragment from the beginning of the payload

datagram.

As anticipated, to reduce overhead the adaptation layer encodes the IPv6 and UDP headers following the

header compression technique specified in [83]. The unique local, global, and multicast IPv6 addresses are

encoded through a state-full compression based on shared state within contexts. This compression technique

also allows encoding the hop limit value of the IPv6 header. The resulting 6LoWPAN header can be 2 or 3

octets long and is followed by no encoded or partially encoded fields of the IPv6 header. Figure 4 shows the

encoding format of this header.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 | 1 | 1 | TF |NH | HLIM |CID|SAC| SAM | M |DAC| DAM |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Figure 4 format of the IPv6 compressed header

Besides the fragmentation and the compression headers, the 6LoWPAN standard defines other two

headers: the mesh and the broadcast headers. The presence of the mesh header indicates that the packet has to

be routed using MU routing. The broadcast header is present to support multicast/broadcast routing.

Regarding the mesh header, the first 2 bits, set to 1 and 0, respectively, specify the mesh header dispatch

value; V and F bits indicate the length of the originator and final addresses. If they have the value of 0, the

addresses are IEEE extended 64-bit addresses; if the value is 1, they are short 16-bit addresses. Originator and

final addresses are the address of the node starting the communication and its destination, respectively. The

remaining 4 bits of the first octet indicates the number of hops. It can be defined up to 14 hops. An extra octet

can be added to define a number of hops greater than 14 by setting all the 4-bit of hop left to 1. Figure 5

shows the mesh header as defined in [7].

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

 |1 0|V|F|HopsLft| originator address, final address
+-+

Figure 5 6LoWPAN mesh header format

When multiple headers are used simultaneously, the order in which they appear is the following: mesh

header, broadcast header, fragmentation header and compression header. With the presence of the mesh

header the adaptation layer can be involved in forwarding decisions instead of the network layer. As

22

mentioned, the forwarding techniques of 6LoWPAN are a main part of this thesis. They are presented in detail

in the next section.

2.2.1. Forwarding Techniques

As anticipated, 6LoWPAN divides forwarding techniques into MU and RO. As shown in Figure 6, the

distinction is based on which layer of the 6LoWPAN protocol stack is in charge of forwarding decisions; in

RO they are taken at the network layer, and in MU at the adaptation layer. The main difference between these

two schemes depends on how packets or fragments are processed before being forwarded.

In this section, we focus our attention on these different approaches. Our purpose is to study these

forwarding strategies when dealing with fragmented and non-fragmented packets.

Figure 6 6LoWPAN protocol stack. The network layer is responsible for forwarding decision in RO while for MU it
is the adaptation layer. A) MU B) RO

+-----------------------------+
| Transport Layer (UDP) |
+-----------------------------+
| Network Layer (IPv6) |
+-----------------------------+
| 6LoWPAN +------------+ |
| Adaptation | Forwarding | |
| Layer +------------+ |
+-----------------------------+
| IEEE 802.15.4 (MAC) |
+-----------------------------+
| IEEE 802.15.4 (PHY) |
+-----------------------------+

(a)
+-----------------------------+
| Transport Layer (UDP) |
+-----------------------------+
| Network +------------+ |
| Layer | Forwarding | |
| (IPv6) +------------+ |
+-----------------------------+
| 6LoWPAN Adaptation Layer |
+-----------------------------+
| IEEE 802.15.4 (MAC) |
+-----------------------------+
| IEEE 802.15.4 (PHY) |
+-----------------------------+

(b)

2.2.1.1. Mesh Under

In MU, packet forwarding is transparent to fragmentation. The adaptation layer treats each incoming

packet or fragment in the same way. There is no control of the 6LoWPAN fragmentation headers. To forward

23

a packet or a fragment, the adaptation layer combines the information contained in the mesh header (Figure 5)

with the source and destination addressees carried in the IEEE 802.15.4 header. In this way, the IPv6 header

does not need to be unpacked. As anticipated, when sending packets or fragments the adaptation layer adds a

mesh header to the 6LoWPAN frame indicating that it should be handled with MU.

Should the received frame be recognized as mesh frame, the MU routine gets the information contained in

the mesh header that is, the source and destination address and the hop limit. Should the received frame need

to be forwarded, the mesh header information and the destination address contained in the IEEE 802.15.4

header are passed to the MU forwarding routine that, return to the MU routine the IEEE 802.15.4 address of

the next hop. Once the MU updates the hop limit field, the frame is ready to be forwarded to the next hop. All

the forwarding process is done without ever leaving the adaptation layer.

2.2.1.2. Route Over

Since the 6LoWPAN frames are forwarded at network layer, it is necessary that the adaptation layer

processes the received frames in order to recreate the original packet. This operation occurs at each hop [39].

Should the received frames not be part of a fragmented IPv6 packet, they only need to be passed to

network layer and then processed by the routine responsible for unpacking the compressed IPv6 header.

Should the packet need to be forwarded, the routine responsible for RO forwarding looks at the routing table

in order to choose the next-hop. The packet then goes back to the adaptation layer, which compresses the IP

header again and sends it.

As previously anticipated, should the received frames be part of the same fragmented packet, the

adaptation layer reassembles them in order to reconstruct the original packet. Hence, all the incoming

fragments are stored in a proper buffer and the reconstruction process starts only when the last fragment

arrives. Once reconstructed, the original IP packet is passed to network layer. If the packet has to be

forwarded, the forwarding routine processes and sends it back to the adaptation layer. Finally, the IP packet is

fragmented again and its fragments are sent to the next-hop. These operations are performed in each node the

packet goes through before reaching its destination.

2.3. CoAP

As mentioned, CoAP is a new application protocol for constrained networks and nodes. CoAP is designed

to have low complexity and obtained performances adjusted to the limited capabilities of WSNs nodes. The

definition of CoAP follows the requirements of the REST architecture.

CoAP uses a request/response model to exchange data between a client and a server node. However, the

request/response interaction is conceptually separated from the asynchronous exchange of messages based on

the UDP protocol. From a theoretical perspective, CoAP can be seen as a two-layer protocol whit a message

layer used to deal with UDP and the other layer used for request/response interactions [19]. This allows that

24

the request/response interactions are transparent to the message exchanged between client and server. Figure 7

shows the conceptual layering of CoAP.

+----------------------+
| Application |
+----------------------+
+----------------------+
| Requests/Responses |

 |----------------------| CoAP
| Messages |
+----------------------+
+----------------------+
| UDP |
+----------------------+

Figure 7 Layering of CoAP

CoAP requests and responses are carried in CoAP messages. Four types of messages are defined:

confirmable (CON), non-confirmable (NON), acknowledgment (ACK) and reset (RST).

Reliability is provided using CON messages with stop-and-wait retransmissions of requests [19]. A server

receiving a CON request has to acknowledge it to the client that initiated the communication. The server

might send an empty ACK to indicate that the response would be deferred. In this case, the client will

acknowledge the arrival of the response message. Should the response be immediate, the ACK sent by the

server contains the response and the transaction ends with its reception. After sending a CON request

message, the client starts a timeout with exponential backoff in order to retransmit periodically the request in

case it has not been acknowledged. Finally, a server might send a RST response to indicate that it is not able

to process the CON request. NON messages are used when reliability is not required.

A CoAP server can detect if a message is duplicated. This is possible since messages are labelled with a

random identification number (message ID). A token value is used to match requests and responses. This is

generated by the client and inserted in the CoAP header. The server includes in its response the same token.

The methods that can be used in a request are limited to GET, POST, PUT and DELETE methods of

HTTP. Regarding the response codes, CoAP defines its own codes and uses also a small subset on those of

HTTP. CoAP Responses could be cacheable. The use of a cache memory allows to reduce latency and

bandwidth usage and to improve the interaction with sleepy nodes. Cache can be located in a CoAP proxy

server. This is also in charge of mapping the CoAP header to the HTTP one and vice versa.

A header, options and payload compose the CoAP message. The header has a length fixed to four bytes

while the options could have a variable length. The payload is prefixed by a payload marker, which indicates

the end of the options and the start of the payload. Figure 8 shows the CoAP message format.

The fields in the header are defined as follows:

 Version (Ver): Indicates the CoAP version number.

 Type (T): Indicates if the message type is Confirmable (0), Non-Confirmable (1), Acknowledgement

(2) or Reset (3).

25

 Token Length: Indicates the length of the token.

 Option Count (OC): Indicates the number of options after the header. If set to 0, there are no options

and the payload immediately follows the header.

 Code: Indicates if the message carries a request or a response or is empty. In case of a request, the

Code field indicates the Request Method; in case of a response a Response Code.

 Message ID: Used for the detection of message duplication.

 Token: This field follows the CoAP header and allows matching requests with responses.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | TKL | Code | Message ID |
 +-+

 | Token (if any, TKL bytes) ...
 +-+

 | Options (if any) ...
 +-+

 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

Figure 8 Message format

CoAP is particularly suitable for applications based on machine-to-machine communications. As an

example, CoAP could be applied in smart energy applications to provide end-to-end connectivity to energy

providers and the equipment of consumers. Figure 9 shows the architecture of a CoAP-based WSN.

According to [19], a CoAP node can have the function of both client and server simultaneously. The term

endpoint is used to refer to a CoAP node. However, in this thesis we will refer to it as a server or client. This

allows us to give greater emphasis to the function that the CoAP node has in our experiments and thus avoid

confusion. A CoAP proxy can be used to enable communication between a CoAP based WSN and a HTTP

external network. This proxy can work also as a gateway for connecting to other WSNs. As mentioned, the

implementations of the proxy as well as that of CoAP are two main topics of this thesis. We present in section

5 and 6 their design and the results of their performance evaluation.

26

Figure 9 Architecture of a CoAP-based Wireless Sensor Network (WSN). The proxy enables integration between the
WSN and external networks that use HTTP.

2.3.1. Observe Option

The observe option enables asynchronous data transfer of CoAP messages. Although its communication

paradigm is similar to that of the publish/subscribe model, the observer implies a simpler architecture and a

less complex data transaction. The observe transfer model is formed by two components: the observer and the

subject. The observer is a client interested in being notified by changes of the state of a resource while the

subject is the server that provides it. The conventional architecture of publish/subscribe systems for WSNs is

based on the presence of a broker. This is in charge of coordinating and distributing updates and subscriptions

requests that it receives from publishers and subscribers. Differently from publish/subscribe systems, the

observe model avoids the use of a broker allowing the subject and the observer to communicate directly.

Therefore, the resulting architecture is less complex and it is able to reduce latency. The presence of

intermediaries, however, is expected to enhance scalability. An observer can register its interest to an

intermediary node. This registers itself to the subject and then it forwards to the observer the updates that it

will receive. All the process is transparent and it is particularly suitable for multi-hop or large-scale networks

where the subject is located many hops away from the observer. Figure 10 shows the architecture of a CoAP

based WSN adopting the observe protocol extension.

27

Figure 10 CoAP based WSN implementing the observer extension. An intermediary can be used for scalability purposes.

Registration process and updates

The registration procedure followed by the observer is kept as simple as possible. The observer shows its

interest by sending an extended GET request message to the subject. As a consequence, the subject registers it

as an observer and then notifies it when the state of the resource changes. To confirm the successful

registration, the subject sends an extended response with the current state of the resource. The term extended

means that the CoAP request or response contains the observer option as defined in [19]. The value of this

option is always zero if it is contained in a request. In a response, instead, it is different from zero and it is

used as a sequence number. The token contained in the CoAP header is used to match the updates received by

the observer with its original registration. The same token value is used for all the subsequent updates. The

subject, however, may decline the observer request by answering with a response not containing the observe

option. This indicates to the observer that its request has been rejected.

An observer has the option to be removed from the list of observers of a resource. Should an observer

respond to an update with a RST message, the subject removes it from this list. An observer is also cancelled

if it sends a simple GET request message to the observed resource. Figure 11 shows an observer registering to

a resource, then receiving an update and deleting its interest.

Figure 11 The observer delete its interest sending a GET request without the observe option

28

2.3.2. CoAP blockwise transfer

As mentioned, CoAP blockwise transfer enables the transmission of large CoAP packets in separated

blocks. It is activated including the block option [26] to the CoAP header. CoAP defines two block options,

the block_1 and block_2. Their use depends whether the payload is present in a response to a GET request

(block_2) or in the POST or PUT request (block_1). In this thesis we focus on data transactions that use the

block_1 option.

As illustrated in Figure 12, the block option contains three kind of information: the size of the block

(SZX), a flag to indicate if more blocks are following (M) and the sequence number of the block (NUM). The

SZX and M fields have fixed size. The NUM field can have three different sizes: 4, 12 or 24 bits.

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| NUM |M| SZX |
+-+-+-+-+-+-+-+-+

Figure 12 Encoding of the block option

The whole CoAP packet is transferred in multiples request/response transactions. The transmission of a

block is consequent to the reception of the relative request. Each request must contain the block option. In this

case, the NUM field indicates the number of the block that the client is expecting to receive. The M field is

equal to zero while the SZX field is used to indicate the desired size of the block. The size of the blocks, in

fact, can be negotiated between the client and server. This negotiation can take place at any point of the block

transfer. Figure 13 shows a CoAP blockwise transfer of two blocks with negotiation of their size.

CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status, 2:0/0/64 ------> |
 | |
 | <------ ACK [MID=1234], 2.05 Content, 2:0/1/64 |
 | |
 | CON [MID=1235], GET, /status, 2:1/0/64 ------> |
 | |
 | <------ ACK [MID=1235], 2.05 Content, 2:1/1/64 |
 : :
 | CON [MID=1238], GET, /status, 2:4/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.05 Content, 2:4/1/64 |
 | |
 | CON [MID=1239], GET, /status, 2:5/0/64 ------> |
 | |
 | <------ ACK [MID=1239], 2.05 Content, 2:5/0/64 |

Figure 13 CoAP blockwise transfer with early negotiation of the block size

CoAP blockwise transfer is a reliable communication model. Each block transmission, in fact, relies on

the CoAP end-to-end reliability mechanism. The failure of the block or request transmission forces the client

to retransmit the request. A request for a subsequent block is transmitted only after that the previous has been

29

satisfied. Figure 14 shows CoAP blockwise transfer with the client retransmitting a request after the block

transmission fails.

CLIENT SERVER
 | |
 | CON [MID=1234], GET, /status ------> |
 | |
 | <------ ACK [MID=1234], 2.05 Content, 2:0/1/128 |
 | |
 | CON [MID=1235], GET, /status, 2:2/0/64 ------> |
 | |
 | //////////////////////////////////tent, 2:2/1/64 |
 | |
 | (timeout) |
 | |
 | CON [MID=1235], GET, /status, 2:2/0/64 ------> |
 | |
 | <------ ACK [MID=1235], 2.05 Content, 2:2/1/64 |
 : :
 : ... :
 : :
 | CON [MID=1238], GET, /status, 2:5/0/64 ------> |
 | |
 | <------ ACK [MID=1238], 2.05 Content, 2:5/0/64 |

Figure 14 CoAP blockwise transfer GET with late negotiation and lost ACK

CoAP blockwise transfer can be used in combination with the observe option. In this case, the first block

of an observe update is sent without the initial request of the client. Then, the server sends the subsequent

blocks immediately after the client acknowledges the previous one. Both the initial observe registration

request and the relative response can contain the block option. The client, in fact, can request the use of the

CoAP blockwise transfer including the block option in the observe request. The server, however, could

acknowledge an observe request not containing the block option with an ACK containing it.

The combination of CoAP blockwise transfer and the observe option is of particular interest for the

purpose of this thesis. The analytical model that is presented in chapter 4, in fact, seeks to evaluate and

compare the performance of CoAP blockwise transfer and 6LoWPAN fragmentation in data transactions that

use the observe option.

30

3. Efficient 6LoWPAN Forwarding

In this chapter, we review and discuss the results of our research on 6LoWPAN forwarding. As

mentioned, the optimization of 6LoWPAN forwarding techniques is of paramount importance to lower the

energy consumption as well as to improve the reliability and the overall performance of multi-hop WSNs. In

particular, communications that require 6LoWPAN fragmentation can have a significant enhancement of their

performance with optimized packet forwarding.

We start the chapter analysing first the performance of MU and RO in 6LoWPAN communications not

requiring packet fragmentation. MU and RO have, in fact, different operating principles and effects that vary

with the presence or absence of fragmentation. Split their analysis allows gaining a better insight into their

functioning in both kind of communication.

The reference network scenario for both analyses is a multi-hop WSN. The evaluation of communications

with un-fragmented 6LoWPAN packets is done in terms of end-to-end delay according to different payload

sizes and number of hops. In the analysis of 6LoWPAN fragmentation we also include round-trip-time (RTT),

packet loss and energy consumption as performance metric. These metrics would not allow appreciating the

different performance of MU and RO in un-fragmented packet forwarding. The evaluation of packet loss and

energy consumption is significant only in presence of fragmentation.

Beside the analysis of MU and RO we propose a novel forwarding technique able to improve the

performance of MU with fragmented packets. We observed, in fact, that MU is particularly affected by a high

number of retransmissions and a consequent growth of the packet loss percentage. We found the main cause

in the absence of control on the fragment forwarding process. Actually, MU is not able to distinguish if the

frames to be forwarded are part of a 6LoWPAN fragmented packet or not. Consequently, if a fragment is

dropped, then the subsequent fragments are forwarded, although it is not possible to reconstruct the packet.

This results in a waste of bandwidth. To overcome this problem, we propose a new approach to MU that

enables the forwarding process to be controlled by monitoring the fragmentation header (Figure 3). We refer

to this approach as controlled mesh under (CMU).

In our analysis we also consider the ERO technique, which we introduced in section 1.3.1. As mentioned,

this proposal seeks to avoid the hop-by-hop fragments reassembling by establishing a virtual circuit between

the source and the destination nodes of the fragmented packet.

3.1. Test-bed Implementation

The analysis of fragmented and un-fragmented packets forwarding shares the same test-bed. In this section

we present its implementation and give details over the end-to-end delay evaluation, which has the same

definitions in both analyses. The review of the test-bed implementation includes the software and hardware

platforms used in the performance evaluations. These also correspond to those used in the rest of this thesis.

31

The Crossbow's TelosB mote is the hardware platform we used four our experiments [84]. It is an open

source, low-power wireless sensor module. TelosB motes have a 16-bit RISC MCU at 8 MHz and 16

registers. The platform offers 10 kB of RAM, 48kB of flash memory and 16 kB of EEPROM. Requiring at

least 1.8 V, it draws 1.8 mA in the active mode and 5.1 μA in the sleep mode. The MCU has an internal

voltage reference and a temperature sensor. Further sensors available on the platform are a visible light sensor

(Hamamatsu S1087), a visible to IR light sensor (Hamamatsu S1087-01) and a combined humidity and

temperature sensor (Sensirion SHT11). TelosB motes can be plugged via a USB port to a computer through

which the motes can be programmed.

As a software solution, we use an open-source TinyOS based 6LoWPAN implementation developed by

the University of California at Berkeley called Blip [85]. Blip implements a multi-path routing algorithm.

Consequently, each node maintains multiple next-hop entries for any given path. Different fragments of the

same packet may take different paths through the network. In this way, the routing algorithm may influence

results. Since our aim is to evaluate the forwarding strategies only, we should prevent the collected results

from being altered from the routing algorithm performances. We solve this problem by using static routes in

which each node has two default next-hop entries selected, depending on the destination address of the mesh

header or the IPv6 header. Moreover, it should be pointed out that only MU and RO would work with multi-

path routing algorithms. Both CMU and ERO must use the same path to forward all the fragments. In fact, if a

fragment could be forwarded to multiples next hops, then we could not create either any state associated with

forwarding or ensure the in-order delivery of fragments. However, creating a state in the source node would

allow the use of these alternative solutions, although it would not be possible to use any multi-path

forwarding.

Blip implements the ERO routing scheme. Although Blip supports MU, only the functions to interact with

the mesh header are implemented. We develop the appropriate code and modify some of the existing to use

MU, CMU and RO in Blip.

Figure 15 shows the network topology for a two-hop scenario. The base station acts as a border router and

bridge between the serial and radio link. It is plugged via a USB port to a computer running a Linux OS.

Forwarding of packets is executed in the relay node. The output power of the nodes is fixed to −25 dBm,

while distances between sensors are equal to 20 cm. The chosen values of power and distance prove to be

sufficient to create a multi-hop network.

In the end-to-end delay tests, the base station is the destination of the fragments, while the source is

located in the sensor node. We consider various scenarios in which these nodes are at a distance ranging from

two to four hops. The topology of the network used as test-bed reflects possible applications of a WSN

requiring a small number of nodes. Possible applications can be found in the healthcare domain, where

sensors monitor the medical parameter of a patient and report the results to a base station. Another example

can be found in the sports domain, where the WSN could be used to monitor the performance or the training

of an athlete. Nevertheless, this limited topology is sufficient to test the forwarding strategies of the routing

techniques discussed in this thesis.

32

The end-to-end delay time tests seek to emulate a possible application scenario where a sensor is in charge

of monitoring a certain environment variable and periodically reports the collected values. End-to-delay

results do not take into account the time the base station requires to process the incoming packets.

Figure 15 Topology for a two-hop network

3.2. Analysis of mesh under and route over with un-fragmented 6LoWPAN

packets

In this section, we present the results of the performance evaluation of MU and RO for un-fragmented

packet forwarding. We consider two different evaluations. First, we evaluate the end-to-end delay according

to the payload size with a constant number of hops. Then, we evaluate the delay evolution according to the

number of hops while keeping the payload to a constant value.

3.2.1. Results and Discussion

Figure 16 end-to-end delay variation according to application data payload

Figure 16 shows the end-to-end delay time for a 6LoWPAN communication in a WSN with 4 hops and a

payload ranging from 5 to the maximum allowed to avoid fragmentation, which is 75 bytes. The end-to-end

33

delay is calculated as the sum of the nodes processing and propagation times. The resulting end-to-end delay

is the mean value of the delay of 10 measures.

MU has a lower end-to-end delay. Respect to RO, MU has an average improvement of 3,1 ms with a peak

of 6,6 ms for 70 bytes and a minimum of 0,6 ms for 50 bytes of application data payload. It has, in fact, a less

expensive processing respect to that of RO. In this sense, MU avoids the hop-by-hop decompression and

compression of the IPv6 header. As mentioned, RO is located at network layer and, therefore, it uses the

information contained in the IPv6 header to forward the packet. The transmission time, however, has the same

value in both forwarding techniques.

Figure 17 end-to-end variation according to the number of hops

Figure 17 shows the average end-to-end delay evolution according to the number of hops between source

and destination. In this evaluation, the payload size is fixed to 75 bytes. The average values from 2 to 5 hops

are obtained as in the case of variable payload size. Instead, the average end-to-end delay from 6 to 14 hops is

obtained through a simulation of a 6LoWPAN communication. We observed, in fact, that the delay trends for

both MU and RO follow a linear evolution. The transmission time, in fact, is constant at each hop while the

node processing time is independent from the number of hops. Thereby, we can calculate the mean value of

the processing time for each node and express the end-to-end delay as:

ܶ ൌ ݊ ൈ ሺt୲ ൅ t୮ሻ

Where T is the end-to-end delay, n the number of hops, tt the transmission time and tp the node processing

time.

MU outperforms RO also in this case. Furthermore, the difference becomes bigger as the number of hops

increases. For a 2 hops networks, the delay of MU is lower of 1,9 ms respect to RO. Considering 14 hops the

difference is 24,05 ms. We can estimate, therefore, that the introduction of a new hop augment of 1,84 ms the

difference between end-to-end delay of MU and RO.

0

25

50

75

100

125

150

175

200

225

250

2 3 4 5 6 7 8 9 10 11 12 13 14

en
d-

to
-e

nd
 d

el
ay

 [
m

 s
]

number of hops

mesh under

route over

34

An interesting analysis focuses in the time spent by a node to process and forward a packet. As previously

mentioned MU forwards packets from the adaptation layer and avoids the decompression and compression of

the IPv6 packets. The resulting node processing mean time of MU is 11 ms with a standard deviation of 2,1

ms. Instead, in RO it is equal to 12,85 ms with a standard deviation of 2,3 ms. The difference between these

times gives an estimation of the time spent by RO in the compression and decompression routines, which is

equal to 1,85 ms.

3.3. Analysis of 6LoWPAN forwarding techniques with fragmented packets

In this section, we analyse 6LoWPAN forwarding focusing on communications requiring 6LoWPAN

packet fragmentation. The analysis is conducted through a performance evaluation of MU and RO in terms of

end-to-end delay, RTT, packet loss and current consumption. Moreover, we present a new forwarding

technique based on MU, which seeks to improve the MU fragment processing by adding control on the

fragment forwarding process. As mentioned, the analysis of 6LoWPAN fragment forwarding also considers

ERO.

3.3.1. Controlled Mesh Under (CMU)

Since in the MU forwarding process there is no control on the frames to be forwarded, unnecessary

fragments may be propagated. In fact, if any fragment gets lost before it reaches the destination then the rest

of fragments will be forwarded unnecessarily. In this case, the whole packet cannot be reassembled. Even

though no fragment is lost, they may still arrive at destination out-of-order. This would complicate the

reconstruction process at the destination node. Adding control on the MU forwarding process would reduce

the probability of out-of-order delivery of fragments, and the transmission of useless fragments would thereby

be avoided. This would result in a better use of the bandwidth and in a simplification of the fragment

reassembling, thus allowing low complex and less resource demanding code to be developed.

Our CMU proposal seeks to solve these problems. We propose adding a control to MU forwarding process

that allows the fragmentation header of the incoming fragments to be monitored.

The control starts each time a node receives a frame containing both the mesh and the first fragment

headers. It begins by storing the information contained in these headers. In more detail, this information is

relative to the tag and the size fields of the first fragment header (Figure 3) and the originator address of the

mesh header (Figure 5). This information allows us to determine if the subsequent packets are part of the

same 6LoWPAN fragmented packet. Should the subsequent fragments belong to the same packet, the CMU

verifies if the reception is in-order. This is established by checking the offset field of the fragmentation

header. Should the fragment be the one expected, the forwarding routine starts the MU forwarding process. If

the received fragment does not match the one expected, then the previous node is asked to retransmit the

expected fragment. When the correct fragment has been received, the forwarding process can be resumed.

35

Should the fragment not be received, the forwarding process is cleared and subsequent fragments will not be

forwarded, thereby avoiding bandwidth waste.

3.3.2. Enhanced Route Over (ERO)

As mentioned, the major drawback of RO is the hop-by-hop fragment reassembly. This characteristic can

significantly increase latency and the energy required by a node to forward a packet. However, different

solutions can be applied to RO in order to solve this problem. As mentioned in section 1.3.1, RO could be

implemented with methods able to create virtual reassembly buffers that remember just the IPv6 header

contained in the first fragment [38]. Furthermore, in [39] the creation of a state associated to the IPv6 source

address and to the datagram tag (Figure 3) is proposed. This information is contained respectively in the IPv6

and fragmentation headers carried by the first fragment. This solution allows a virtual circuit to be established

for the subsequent fragments.

In nodes implementing ERO, the adaptation layer checks the fragmentation header of each incoming

frame. Should the fragment be recognized as the first, it is sent to the IP layer to unpack the IPv6 header.

Should the fragment need to be forwarded, the node gather the information required to create the state

associated to forwarding and establishes the virtual circuit. When each subsequent fragment reaches the node,

this is forwarded through the virtual circuit without the need to check any routing table. The virtual circuit is

deactivated and the state erased from memory after the last fragment has been forwarded.

3.3.3. Results and Discussion

In this section, we compare the different forwarding strategies of MU, RO, CMU and ERO focusing on

the obtained performance in terms of end-to-end delay, RTT, packet loss and current consumption.

For RTT tests we consider a two-hop network formed by a base station sending ping requests to a node

located at a distance of two-hop. We consider this distance sufficient to give a correct RTT performance

evaluation and to appreciate the different effects each forwarding strategy has on it. The same network is used

for the packet loss evaluation. In this case we evaluate the packet loss as a function of the payload size. We

then evaluate the average end-to-end delay time obtained by transmitting UDP packets according to different

payload sizes and network topologies.

As for the current consumption, it corresponds to the current drawn by a node forwarding ping requests

and replies in a two-hop network. We are interested in measuring the current drawn by the relay node in

receiving, processing and sending fragments. For each different payload size, we run tests sampling the

current consumption each 0.02 ms. The values obtained refer to the average current consumed by the relay

node from the time a fragment is received up to its transmission to the next-hop. The reported average values

have a confidence level of 95%. Current drawn in inactivity states is not taken into account. The device used

for these measures is the Agilent Technologies DC power Analyzer N67705A.

36

3.3.3.1. Round-Trip-Time Evaluation and Packet Loss

Figure 18 shows the RTT performance for RO, MU, CMU and ERO. Each point in the graph represents

the average value of 100 ping responses that successfully reached the destination. Payload size ranges from

100 to 1,100 bytes with increments of 50 bytes. The number of fragments goes from 2 for a 100 bytes

payload, up to 12 for 1,100 bytes. The reported average values have a confidence level of 95%. Each ping

request is sent as soon as the preceding ping reply is received. Results of RTT are strongly influenced by the

time the base station spends elaborating and passing the ping response to the OS. We estimate this time to be

in the order of 178 ms. Further delay is introduced by the OS to generate the ping request and pass it to the

base station.

Figure 18 RTT evolution according to ICMP payload size. Buffer congestion affects RO when reaching a payload
size of 900 bytes, causing the big jump in the average round-trip delay time.

As expected, RO has the worst performance. Reassembling and fragmenting packets at each hop slows

down the communication, especially when the payload size is high and more fragments are involved in the

communication. However, this feature of RO reduces the standard deviation, which results in the routing

scheme having the lowest deviation. Because of the high number of retransmissions affecting MU, and to a

lesser extent CMU and ERO, the standard deviation for both mesh techniques is quite high, while it remains

low for ERO.

In Figure 18 one may observe that the trend of RTT has almost a linear evolution for each considered

solution. However, when approaching the maximum packet size this trend changes quickly. In particular, the

RTT performance of RO rapidly gets worse, between 800 and 900 bytes. This is explained by the fact that the

buffer capacity is reaching its maximum, which causes memory congestion. Moreover, by increasing the

RAM usage as the packet size augments [55], Blip leaves a very limited space to perform the packet

processing required by RO. We find this behaviour to be a major cause of memory congestion. Furthermore,

37

we find that memory congestion occurs when the relay node was subjected to an uninterrupted packet flows,

such as the one generated by ping requests and response. In fact, spacing the packet transmission, as is done

for end-to-end delay evaluation (Figure 19), solved this problem. Regarding MU and CMU, the worsening of

RTT is explained by observing that the number of retransmitted fragments is high in comparison with the

other techniques. ERO has the best RTT performance. However, for payload size lower than 900 bytes, the

performance is very similar with that obtained in CMU, while improving it for higher payload size.

Figure 19 End-to-end delay time evolution. The number of retransmissions is lower in CMU than in MU, resulting in
a better end-to-end delay time trend. (a) End-to-end delay time for a two hops network. (b) End-to-end delay time for a
three hops network. (c) End-to-end delay time for a four hops network.

(a)

38

(b)

(c)

The buffer problems affecting RO also influence the packet loss percentage results. As shown in Table 1,

from a payload size of 900 bytes to 1,100 bytes, the packet loss percentage obtained in RO becomes of the

order of magnitude of the other routing techniques. For lower payload sizes RO proves to be more robust to

packet loss, as expected. The performance in packet loss of ERO compared with that obtained by RO shows a

worsening of the packet loss. Respect to ERO, CMU has a better packet loss up to 500 bytes, while for higher

payload size this loss becomes similar.

39

Table 1 Packet loss percentage. RO proves to be more robust to packet loss than the other techniques. However,
starting from a payload size of 900 bytes, buffer congestion causes a rapid worsening of RO packet loss. Link
retransmissions due to collisions are the main cause of packet loss for MU, CMU and ERO.

Payload size [bytes] RO MU CMU ERO

100 0% 0% 0% 0%
200 0% 0% 0% 1%
300 0% 4% 2% 5%
400 3% 15% 4% 6%
500 3% 21% 10% 13%
600 2% 27% 20% 16%
700 3% 32% 24% 23%
800 3% 37% 28% 29%
900 33% 35% 33% 34%

1,000 49% 42% 35% 31%
1,100 58% 48% 41% 41%

The control on fragment forwarding provided by CMU improves the packet loss performance with respect

to MU, which has the worst packet loss percentage. In fact, CMU avoids the propagation of unnecessary

fragments and, therefore lower its channel occupancy. In this way, it is subjected to less retransmissions

caused by collisions and consequently to a lower packet loss. The major cause of packet loss in MU, CMU

and ERO is found in retransmissions caused by collisions. Collisions occur because the relay node is

continuously receiving fragments and it has to forward them instantly. In this scenario, the relay node may not

detect the reception of a fragment if it is forwarding another one. As a consequence, the node that transmitted

the dropped fragment will retransmit it to the relay node. It should be pointed out that the retransmission

policy used in Blip drops fragments after a maximum of five retransmissions. On the other hand, collisions do

not affect RO, since a node using this technique has to wait until the reception of the last fragment to start

reconstructing the packet and begin the forwarding process.

Returning to RTT performance, a main cause of the worst performances of RO is found in the time

elapsed between the reception and forwarding of a fragment. Actually, a node implementing RO is forced to

wait until the reception of the last fragment before forwarding the first. We estimate that for a payload size of

1,000 bytes, the time elapsed between the reception and the forwarding of the first fragments is in the order of

125 ms. This value corresponds to the time spent by the previous node to set up and send all the fragments

composing the original packet. In mesh techniques and in ERO, the forwarding is immediate to the reception

of the fragment. It only takes the time to process the fragment. In the analysis of un-fragmented packet

forwarding, we estimated this time to be 11 ms with a standard deviation of 2.1 ms. A further delay is due to

the compression/decompression of the IPv6 header. However, the order of magnitude of this delay is not

comparable with that introduced by packet reconstruction or fragmentation.

MU and CMU performance look very similar. The control process that CMU executes for fragment

forwarding does not lessen its performance, or produce any significant enhancement with respect to MU. On

40

the other hand, ERO shows considerable improvement with respect to RO. As expected, latency decreases

significantly, avoiding hop-by-hop fragments reassembling.

3.3.3.2. End-to-End delay Evaluation

Results of end-to-end delay time evaluation are shown in Figures 19(a–c). As explained above, our aim is

to emulate an application scenario where a node is sensing a certain environmental variable and periodically

reports its value to the base station. This period has been fixed to 5 seconds.

As can be seen in Figure 19, RO confirms its negative trend. CMU, MU and ERO have the lowest end-to-

end delay time, with the former having the best performance. Once again, the high number of retransmissions

that occurs in MU makes the difference when compared with CMU. Respect to RO, ERO significantly

improves the end-to-end delay performance by avoiding hop-by-hop fragment reassembling.

By augmenting the number of hops, we observe that the end-to-delay performance for MU and CMU

become similar. This can be appreciated for higher payload sizes. Contrary to our expectations, increasing the

number of hops does not augment the difference between RO and MU. In fact, the more hops we have the

more retransmissions are required to propagate fragments with a MU technique. This makes the RO trend

approach MU, CMU and ERO trends. However, differences become more significant for higher payload

sizes. As experienced previously, RO gets worse when the number of fragments composing the packet

becomes high and the buffer is approaching its limit.

3.3.3.3. Current Consumption

Figure 20 Current consumption evolution according to ICMP payload size. Hop-by-hop fragment reassembling
performed by RO proves to be energy demanding. The control on packet forwarding introduced in CMU, slightly
increases current consumption compared with MU.

41

Figure 20 shows the results obtained for current consumption. As expected, a node adopting a RO

technique consumes more energy than others. Once again, hop-by-hop fragment reassembling proves to be

costly in constrained network environment. This can be appreciated by comparing the RO performance with

that of ERO. In fact, ERO simplifies the fragment forwarding and reduces significantly the current drawn by

the node. ERO gives the best performance in terms of current consumption. It should be pointed out that since

ERO is the default routing technique of Blip; it is optimized in order to work with it. Consequently, ERO is

inclined to work better on Blip.

MU has a performance very similar to that of ERO. Although affected by a large number of

retransmissions, by avoiding complex fragment processing MU maintains low current consumption.

However, in comparison with the less complex MU, the augmented process complexity of CMU does not

significantly increase current consumption. Here, the augmented complexity is aimed at the control associated

to fragment forwarding. Nevertheless, considering the overall current consumption and taking as an example

a network composed of many nodes, better management of the controlled mesh bandwidth would result in

energy-saving. In fact, in CMU, forwarding of unnecessary fragments would be avoided and the nodes would

be subjected to a lower workload.

Finally, we observed that standard deviation is very low for all the forwarding schemes, and consequently

deemed not relevant for the energy consumption results.

3.4. Conclusions and Contributions

The application domain where 6LoWPAN is deployed plays a substantial role in choosing which

forwarding solution adopt. The high packet loss experienced in MU does not make it recommendable for use

in applications requiring a high degree of reliability. RO is suggested for these critical applications. First,

CMU or, secondly, ERO can both ensure reliability, but for a smaller payload range than that of RO. CMU

lowers the packet loss with respect to MU by providing a better bandwidth management. Actually, packet loss

percentage is quite high for all the considered forwarding solutions when the payload size is large. For these

large payloads, we observe a rapid worsening of the 6LoWPAN performance, regardless of the forwarding

technique used. In particular, RO experiences memory congestion problems for payload greater than 800

bytes.

Applications with strict latency requirements should implement a CMU or ERO solution. MU has an

acceptable latency performance, but lower as compared with CMU in the case of end-to-end delay time.

However, applications generating low traffic and small packet size could also implement MU.

MU is preferable to RO in 6LoWPAN communications not requiring fragmentation. It is able to reduce

node processing time by forwarding from the adaptation layer. RO, instead, forwards packets at network layer

and needs, therefore, the information contained in the compressed IPv6 header. Thereby, it has to decompress

the header at each hop and compress it again before forwarding the packet.

Energy consumption is crucial in sensor networks. Sensors, in fact, are usually constrained in power

supply, since they are battery powered. Our study demonstrates that forwarding solutions subjected to a

42

higher workload have a poor behavior in terms of consumed energy. In this sense, although subjected to a

lower packet loss and to less fragment retransmission, RO consumes more current than the other routing

solutions. Its alternative solution, that is, ERO, lowers current consumption by avoiding hop-by-hop fragment

reassembling.

Fragment retransmission is another crucial aspect in energy consumption. It is well known that the peak in

energy consumption is located in the transmission and reception states. As a consequence, forwarding

solutions characterized by a high retransmission rate spend more time in both states and are inclined to waste

more energy than other techniques. MU turned out to be the technique subjected to the highest number of

retransmissions. MU compensates energetically for the cost of retransmissions with its energetically efficient

fragment processing. As a result, MU shows good performance in terms of energy consumption. As regards

CMU, the control added to monitor fragment forwarding requires a slight increase of energy compared with

MU. Furthermore, the better usage of the communication channel allowed by CMU lowers the overall

network current consumption by avoiding the propagation of useless fragments.

In conclusion, RO proves to be more robust to packet loss, but less energy saving than the other routing

schemes. Weaknesses of RO are also found in the high latency experienced in packet transmission. ERO

proves to be capable of solving these limitations in latency and energy performance, but it is unable to

maintain the packet loss to the same degree as RO. Both mesh techniques show a good performance in terms

of latency and energy consumption, with CMU yielding a better result in the end-to-end delay performance.

While increasing the complexity of fragment forwarding, CMU does not result in a significant growth of the

consumed current. The high packet loss of MU decreases in CMU thanks to better management of the channel

bandwidth.

From the results of the research presented in this chapter derives the paper Forwarding Techniques for IP

Fragmented Packets in a Real 6LoWPAN Network that is published in the journal “Sensors” [P1] and the

paper Implementation and evaluation of Multi-hop routing in 6LoWPAN which has been presented in the 9th

conference of telematics engineering (JITEL) [P5].

43

4. Analytical model of CoAP large data transactions

In this chapter we present a novel analytical model to study fragmentation methods in WSNs adopting

CoAP and the IEEE 802.15.4 standard. The model includes the effects of fragmentation on the contention

level at MAC layer and the results are validated through Monte Carlo simulations. CoAP blockwise transfer

and 6LoWPAN fragmentation are included in the analysis. Both techniques are compared in terms of

reliability and delay. A major contribution is the possibility to understand the behavior of both techniques

with different network conditions.

As mentioned, our model considers the use of the unslotted CSMA/CA mechanism defined by the IEEE

802.15.4 standard. This allows evaluating the packet losses caused by collisions and channel access failures.

The model presented in [105] is used as reference for the CSMA/CA mechanism. Its application to our study

presents several challenges. Although the application layer might generate packets following a Poisson

distribution, the subsequent fragmentation or block division implies a bursty transmission at MAC layer. We

refer to this traffic condition as ‘mixed’ traffic. At MAC layer, in fact, only the arrival of the first fragment or

block follows a Poisson distribution. The arrival of the remaining fragments or blocks is characterized by

saturated traffic condition. Therefore, contrary to the assumption made in [105], the busy channel and

collision probabilities vary over the time depending on the backoff and transmission stages. The analysis of

this behaviour requires adapting the original CSMA/CA model to the new traffic conditions.

Existing works on the IEEE 802.15.4 MAC protocol have considered both saturated traffic (i.e., when

node queues are always non-empty) and unsaturated traffic conditions. Bursty ON-OFF traffic conditions

have only been considered in [106]. None of the existing works focus on the presence of mixed traffic

conditions. Besides the analytical study of 6LoWPAN fragmentation and CoAP blockwise transfer, a further

original contribution is the analysis of the IEEE 802.15.4 MAC protocol under mixed traffic conditions.

Next we discuss the model for traffic generation used in our analysis.

4.1. Traffic generation model

A major contribution of our model, with respect to [105] is the analysis of the bursty traffic conditions

along with 6LoWPAN packet fragmentation and CoAP blockwise transfer, as we detail as follows.

We assume that the CoAP layer generates observe updates following a Poisson distribution with rate λ.

Each update is divided into F fragments or B blocks. Each fragment or block is included into a MAC frame of

length L. The frame containing the CoAP ACK has length LACK. Both frames are transmitted using the

unslotted CSMA/CA mechanism of the IEEE 802.15.4 standard. We consider low traffic generation, i.e.,

traffic generation rate at node l, λ୪ ≪ 1 ሺL ∗ Fሻ⁄ , which is consistent with the minimum RTO of 1 second

recommended by CoAP [19]. With higher rates the retransmission mechanism of CoAP could not be used.

The RTO, therefore, represents an upper bound to the generation rate.

44

At MAC layer, the traffic arrival is characterized by a Poisson distribution of parameter	λ୪ for the first

fragment and by bursty traffic for the following F-1 fragments or B-1 blocks. The probability of generating

the first fragment or block of an update at node l in a unit time Sୠ	is derived as

௟ݍ ൌ 1 െ ݁ሺఒ೗ ௌ್⁄ ሻ (1)

In the rest of the chapter we consider Sୠ	= aUnitBackoffPeriod as the basic unit time as in [105]. We recall

that it corresponds to the transmission time of 20 symbols [8].

The probability of generating a new fragment or block after the previous one has been acknowledged or

discarded is 1.

4.2. Analytical model of the CSMA/CA mechanism

In this section, we develop a generalized model of the IEEE 802.15.4 MAC considering the presence of

6LoWPAN fragmentation and CoAP blockwise transfer. The analysis aims at deriving the reliability as the

probability of successful frame reception and the delay for successfully received frames. Both are relative to

the MAC layer and will be included in performance indicator expressions for the CoAP layer, which are

presented in the next section.

The analysis is based on the Markov chain model presented in [105] that accounts for the presence of

heterogeneous traffic with different node packet generation rates and hidden terminals.

We first determine the CCA probability τl, namely the probability that node l performs the carrier sensing

procedure in a randomly chosen time unit. For each generated fragment, the CCA probability accounts for the

number of times the CCA procedure is repeated due to busy channel and retransmissions, i.e.,

߬௟ ൌ෍ෑ൫ߙ௟,௝൯෍൮ቌ1 െෑߙ௟,௝

௠

௝ୀ଴

ቍ ௖ܲ௢௟௟,௟൲

௞
௡

௞ୀ଴

ܾ଴,଴,଴
ሺ௟ሻ

௜

௝ୀ଴

௠

௜ୀ଴

 (2)

where ߙ௟,௝ is the busy channel probability of node l during the j-th backoff stage, b଴,଴,଴
ሺ୪ሻ is the idle

probability, and Pୡ୭୪୪,୪ is the collision probability that we derive next.

For unsaturated traffic conditions, the idle probability is the reciprocal of the frame generation probability

at MAC layer, i.e.,

ܾ଴,଴,଴
ሺ௟ሻ ൌ 1 ሺݍ௟ ∗ ⁄ሻܨ (3)

When traffic gets saturated, the idle probability is calculated by applying the normalization condition of

the corresponding Markov chain, as detailed in Proposition 4.1 in [105].

The busy channel probability due to packet transmission for the first fragment or block is the probability

that no other node accessed the channel and found it idle in the previous L time units. After the previous

fragment or block has been acknowledged at MAC layer, the node generates a random backoff in the window

45

ሾ0 െ ଴ܹሿ before sensing the carrier. The busy channel probability for the following fragment, block, or CoAP

ACK is given by the probability that no other node accesses the channel during ሺ ଴ܹ ൅ 1ሻ 2⁄ time units. In

average terms, the channel will be busy if no other nodes accessed and found it idle in the previous ܮ௘௤	time

units:

௘௤ܮ ൌ ሺܮ ൅ ܨ ∗ ሺ ଴ܹ ൅ 1ሻ/2ሻ ሺܨ ൅ 1ሻ⁄ ݎ݋݂ ܰܣܹܲ݋ܮ6 (4) ݊݋݅ݐܽݐ݊݁݉݃ܽݎܨ

௘௤ܮ ൌ ሺܮ ൅ ሺ2 ܤ െ 1ሻ ∗ ሺ ଴ܹ ൅ 1ሻ/2ሻ ሺ2 ⁄ሻܤ ݎ݋݂ ݁ݏ݅ݓ݇ܿ݋݈ܤ (5) ݎ݂݁ݏ݊ܽݎݐ

We recall that the MAC ACK is transmitted right after the reception of a MAC frame. Its transmission

does not undergo the backoff procedure. Instead, this procedure applies for the CoAP ACK. For 6LoWPAN

Fragmentation there are F packets and 1 potential CoAP ACK, while for CoAP blockwise transfer there are B

blocks and B potential CoAP ACKs.

Should the channel be busy during the first backoff, there is a higher probability that the channel will be

still busy after the backoff in the windowሾ0 െ ଵܹሿ. This behavior is due to the bursty traffic generation.

Under this condition, the channel will be idle after the second backoff with a probability

ଵݎ ൌ ሺሺ ଵܹ ൅ 1ሻ 2⁄ ሻ ሺܮത ൅ ሺ ଵܹ ൅ 1ሻ 2⁄ ሻ⁄ (6)

where

തܮ ൌ ሺܨ ∗ ܮ ൅ ܨ஺஼௄ሻ/ሺܮ ൅ 1ሻ ݎ݋݂ ܰܣܹܲ݋ܮ6 ݊݋݅ݐܽݐ݊݁݉݃ܽݎ݂

തܮ ൌ ሺܮ ൅ ஺஼௄ሻ/2ܮ ݎ݋݂ ݁ݏ݅ݓ݇ܿ݋݈ܾ ݎ݂݁ݏ݊ܽݎݐ
(7)

The busy channel probability is then approximated by	൫1 െ ௝൯ for ௝ܹݎ ൏ ܮ ∗ or ௝ܹ ܨ ൏ ܮ ∗ .ܤ

For	 ௝ܹ ൐ ܮ ∗ 	or ܨ ௝ܹ ൐ ܮ ∗ ,can be calculated in asynchronous fashion	௟,௝ߙ the busy channel probability ܤ

as in the original model in [105].

In conclusion, the busy channel probability is written as

௟,௝ߙ ൌ 	

ە
ۖ
۔

ۖ
ۓ
௘௤ܮ ෍෍ෑ ߬௞೜ ቆ1 െෑ ത௞೜ߙ

௜

௞ୀଵ
ቇෑ ቀ1 െ ߬௛೜ቁ ݎ݋݂ ௝ܹ ൐ ,ߣܨ 		ߣܤ

ேିଵ

௛ୀଵାଵ

௜

௞ୀଵ

஼೗,೔

௤ୀଵ

ேିଵ

௜ୀଵ

1 െ
ሺ ௝ܹ ൅ 1ሻ

2
൭ܮത ൅

ሺ ௝ܹ ൅ 1ሻ
2

൱

ିଵ

݁ݏ݅ݓݎ݄݁ݐ݋

 (8)

where ܥ௟,௜ ൌ ൫௟௜൯ and ߙത௟ ൌ
∑ ఈ೗,ೕ
೘
ೕసబ

௠ାଵ
 is the average busy channel probability for all backoff stages.

The collision probability is the probability that a contending node performs the CCA in the same time unit,

i.e.,

௖ܲ௢௟௟,௟ ൌ ത௟ߙ ⁄௘௤ܮ (9)

The expressions of the CCA probability, the busy channel probability and the collision probability form a

system of non-linear equations that can be solved through numerical methods as specified in [105].

46

The IEEE 802.15.4 protocol does not distinguish between higher layer packets. Therefore, the probability

that the transmission of a block, fragment or CoAP ACK for node l fails has the same expression for each of

them. We refer to it as	P୤୰ୟ୫ୣ,୪:

௙ܲ௥௔௠௘,௟ ൌ ௖ܲ௙,௟ ൅ ௖ܲ௥,௟ (10)

where	Pୡ୤,୪ corresponds to the probability for node l that the frame is discarded due to channel access

failure and Pୡ୰,୪ to the probability for node l of a packet to be discarded due to retry limit. Therefore, we have

௖ܲ௙,௟ ൌ 	ෑ ௟,௝ߙ ෍ ௖ܲ௢௟௟,௟ ቆ1 െෑ ௟,௝ߙ
௠

௝ୀ଴
ቇ

௡

௞ୀ଴

௠

௝ୀ଴
 (11)

௖ܲ௥,௟ ൌ 	൭ ௖ܲ௢௟௟,௟ ቆ1 െෑ ௟,௝ߙ
௠

௝ୀ଴
ቇ൱

௡ାଵ

 (12)

Once the CCA probability, the busy channel probability, and the collision probability are derived, the

delay for successfully received frames 	D௙௥௔௠௘,௟ and CoAP ACKs 	D஺஼௄,௟ are obtained by using the procedure

presented in [105].

4.3. Analytical model of CoAP large data transactions

In this section we present the analytical model of CoAP data transactions using 6LoWPAN fragmentation

or CoAP blockwise transfer. We also derive the expression of the transition probabilities that characterize the

model. The reference WSN topology is a star network. In this scenario, a client is in direct communication

(single-hop) with the servers that are in the network. The analytical model is present only in the client and

server nodes. As explained next, we model these nodes with two different Markov chains.

Analytical model

The analytical model of the client is shown in Figure 21. It is composed by two states, which are the same

for CoAP blockwise transfer and 6LoWPAN fragmentation. The only differences are the transition

probabilities between the states.

The first state is the IDLE, which means that the client is waiting for the reception of a block or the

reassembled update sent with 6LoWPAN fragmentation. The client visits the acknowledgment transmission

state (CoAP ACK_TX) after it receives successfully a block or a reassembled fragmented update. In both

cases it sends the relative CoAP ACK.

47

Figure 21 Markov chain for the client. The chain at left models the client when receiving updates using the CoAP
blockwise transfer. The model at right represents 6LoWPAN fragmentation.

The transition probabilities of each chain are equivalent to the probability of receiving correctly a block or

all the fragments of an update. The probability	Pୠ୪୭ୡ୩,୪ that a single block fails at node l is therefore equal to:

௕ܲ௟௢௖௞,௟ ൌ ௙ܲ௥௔௠௘,௟ (13)

where ௙ܲ௥௔௠௘,௟ is derived in Equation (10).

The probability P୤୰ୟ୥,୪	that the transmission of a fragmented update fails is equal to:

௙ܲ௥௔௚,௟ ൌ 1 െ ሺ1 െ ௙ܲ௥௔௠௘,௟ሻ
ி (14)

Figure 22 (a-b) shows the server’s Markov chains for CoAP blockwise transfer and 6LoWPAN

fragmentation. Figure 22 (b) considers the transmission of an observe update composed by two blocks. Both

chains have four retransmission states, which correspond to the maximum number of retransmissions defined

by CoAP. The model for CoAP blockwise transfer has a transmission and a retransmission stage for each

block that composes the update. The CoAP layer, in fact, manages the transmission of each block and sends

the subsequent only after the previous one has been acknowledged by the client. The CoAP layer instead, has

a single transmission and retransmission stage when the update is transmitted with 6LoWPAN fragmentation.

a) The server retransmits all the fragments if the transmission of any of them fails or it does not receive the CoAP
ACK

48

b) The server retransmits a single block if its transmission fails or it does not receive the relative CoAP ACK. The
Markov chain represents the transmission of an observe update composed by two blocks.

Figure 22 Markov chains for the server. a) 6LoWPAN Fragmentation case b) CoAP blockwise transfer case

The server is in the IDLE state when it is waiting for the generation of the next update. The transition

probability from the IDLE to the transmission state of the fragmented update (TX) or the first block

(BLOCK_1 TX) is the probability ݍ௟	that we derived in equation (1). The server goes back to IDLE state after

it receives the CoAP ACK relative to the last block or to the fragmented update. The failure of the update

transmission also causes the server to go back to the IDLE state.

The retransmission states are visited after the failure of the transmission of a block, fragment or CoAP

ACK. The transition probability between the transmission state and the first retransmission state of the CoAP

blockwise transfer and 6LoWPAN fragmentation models are expressed as	Pୣ ୰୰ౘౢ౥ౙౡ,୪	and	Pୣ ୰୰౜౨౗ౝ,୪	respectively.

These probabilities are also valid for the transition between the retransmission states.

The probabilities at node l	Pୣ ୰୰ౘౢ౥ౙౡ,୪	and	Pୣ ୰୰౜౨౗ౝ,୪ that a block or a fragmented update is retransmitted are

defined as follows:

௘ܲ௥௥್೗೚೎ೖ,௟ ൌ ௕ܲ௟௢௖௞,௟ ൅ ௔ܲ௖௞್೗೚೎ೖ,௟ (15)

௘ܲ௥௥೑ೝೌ೒,௟ ൌ ௙ܲ௥௔௚,௟ ൅ ௔ܲ௖௞೑ೝೌ೒,௟ (16)

Where Pୟୡ୩ౘౢ౥ౙౡ,୪	and Pୟୡ୩౜౨౗ౝ,୪	are the probabilities at node l that the transmission of the CoAP ACK

relative to the block or to the fragmented update fails, respectively. These are equal to:

௔ܲ௖௞್೗೚೎ೖ,௟ ൌ ௙ܲ௥௔௠௘,௟ ∗ ሺ1 െ ௕ܲ௟௢௖௞,௟൯ (17)

௔ܲ௖௞೑ೝೌ೒,௟ ൌ ௙ܲ௥௔௠௘,௟ ∗ ሺ1 െ ௙ܲ௥௔௚,௟൯ (18)

The unsuccessful retransmission for c consecutive times of a block or of the fragmented update causes the

update transmission to fail and the server to visit the FAIL state.

49

The probabilities ௙ܲ௔௜௟್೗೚ೖ,௟	and ௙ܲ௔௜௟೑ೝೌ೒,௟		that an update transmission fails is equal to the probability that

the transmission as well as the retransmissions of the update fail. These are equal to:

௙ܲ௔௜௟್೗೚ೖ,௟ ൌ ෍ ௘ܲ௥௥್೗೚೎ೖ,௟
௖ାଵ

஻

௜ୀଵ

∗ ሺ1 െ ௘ܲ௥௥್೗೚೎ೖ,௟
௖ାଵ൯

௜ିଵ
 (19)

௙ܲ௔௜௟೑ೝೌ೒,௟ ൌ ௘ܲ௥௥೑ೝೌ೒,௟
௖ାଵ (20)

In the rest of this section we present the expressions for the performance metrics that we use to evaluate

CoAP blockwise transfer and 6LoWPAN fragmentation.

Reliability

WSN applications that monitor a critical environment or a critical physical variable require that the data

collected by sensor nodes must be delivered reliably to destination. However, wireless links are error prone

and ensuring end-to-end reliable data transfer is one of the major challenges in WSNs. In the proposed model

we define reliability as the probability that the update sent by a CoAP server arrives correctly at destination.

In the previous section we derived the probability that the transmission of an update fails. Next, we derive

the expression of the end-to-end reliability for the CoAP blockwise transfer	Rୠ୪୭ୡ୩,୪ and the 6LoWPAN

fragmentation	R୤୰ୟ୥,୪.

ܴ௕௟௢௖௞,௟ ൌ 1 െ ௙ܲ௔௜௟್೗೚೎ೖ,௟ (21)

௙ܴ௥௔௚,௟ ൌ 1 െ ௙ܲ௔௜௟೑ೝೌ೒,௟ (22)

Latency

The latency that can be tolerated by an application is of paramount importance to choose the appropriate

data transfer technique. WSN applications could have strict deadline requirements on the validity of the data

collected by a device. Scenarios such as e-Health or industrial monitoring are an example of those

applications. In this paper, we define latency as the time required to complete a data transaction between

server and client. The reception of the CoAP ACK relative to the fragmented update or to the last block

determines the end of the transaction.

The latency of a CoAP transaction has to consider the delay caused by an unsuccessful frame

transmission. The value of the RTO includes this delay. The expression of the delay of a frame transmission

is derived in [105].

Next we present the expressions for latency.

Latency for 6LoWPAN fragmentation

50

The latency of an update transmission that uses 6LoWPAN fragmentation is equal to the sum of the

transmission delays of the CoAP ACK and of each fragment. We define the latency for 6LoWPAN

fragmentation D୤୰ୟ୥,୪ as:

௙௥௔௚,௟ܦ ൌ෍Pr൫ ௝࣠ห࣠൯

௖

௝ୀ଴

 ௝ (23)ܦ

where Pr	൫ ௝࣠ห࣠൯ is the probability of successful update transmission at the (j+1)th attempt given a

successful update transmission within (c+1) attempts.

Pr൫ ௝࣠ห࣠൯ ൌ
ሺ1 െ ௘ܲ௥௥೑ೝೌ೒ሻ ௘ܲ௥௥೑ೝೌ೒

௝

௙ܴ௥௔௚
 (24)

Dj is the delay of an update that is successfully transmitted at the (j+1)th attempt, i.e.,

௝ܦ ൌ ஺஼௄,௟ܦ ൅ ݂ ∗ ௙௥௔௠௘,௟ܦ ൅ ݆ ∗ ሺܴܱܶ ൅ ஺஼௄,௟ܦ ൅ ௙௥௔௠௘,௟൯ (25)ܦ݂

Where Dେ୭୅୔	୅େ୏,୪ is the delay of the CoAP ACK transmission,	D୤୰ୟ୫ୣ,୪	is the delay of a fragment at node l

and RTO is the value of the CoAP retransmission timeout.

Latency for CoAP blockwise transfer

The latency of an update transmission using CoAP blockwise transfer is defined as follows:

௕௟௢௖௞,௟ܦ ൌ ෍Prሺܤ ௝ࣦ|ࣦሻ

௖

௝ୀ଴

 ௝ (26)ܦ

where Pr	ሺࣦ୨|ࣦሻ is the probability of successful block transmission at the (j+1)th attempt given a

successful block transmission within (c+1) attempts.

Pr൫ ௝ࣦหࣦ൯ ൌ
ሺ1 െ ௘ܲ௥௥್೗೚೎ೖሻ ௘ܲ௥௥್೗೚೎ೖ

௝

ܴ௕௟௢௖௞
 (27)

Dj is the delay of a block that is successfully transmitted at the (j+1)th attempt, i.e.,

௝ܦ ൌ ஺஼௄,௟ܦ ൅ ௙௥௔௠௘,௟ܦ ൅ ݆ ∗ ሺܴܱܶ ൅ ஺஼௄,௟ܦ ൅ ௙௥௔௠௘,௟൯ (28)ܦ

4.4. Performance evaluation

In this section we validate the model by Monte Carlo simulations and present the results of the

performance evaluation. We base the simulation parameters on the specification of the IEEE 802.15.4 [8] and

CoAP [7] protocols. We evaluate our models with different values of the traffic pattern and for CoAP updates

composed by a variable number of fragments and blocks. The MAC parameters are selected as m0=3, mB=5,

m=4, n=0 in accordance with the 802.15.4 standard [2]. The MAC frames have size L= LACK=127 bytes and

51

the MAC ACK frame LMAC ACK=11 bytes. We study various traffic and fragmentation scenarios by considering

N= [10, 15, 20] nodes with update generation rates λ= [0.1… 1] pkt/s ad updates divided into B= [1, 3, 5, 7]

blocks (in CoAP blockwise transfer) or F= [1, 3, 5, 7] fragments (in 6LoWPAN fragmentation). As

previously mentioned, the generation rate λ is constrained by the value of the minimum RTO recommended

by CoAP [19], which is equal to 1s with and with a random backoff of 0.5s. We set the number of CoAP

retransmissions to c=1.

A. Reliability

Figures 23, 25 and 27 show the average reliability of CoAP blockwise transfer computed over all the links

for a star topology network with mixed traffic conditions. Figures 24, 26 and 28 show the average reliability

of 6LoWPAN fragmentation for the same scenario. A good agreement between simulations and analytical

results of the model is observed.

Figure 23 CoAP blockwise transfer reliability versus traffic rate for a star topology network composed by 10
nodes.

52

Figure 24 6LoWPAN fragmentation reliability versus traffic rate for a star topology network composed by 10
nodes.

Figure 25 CoAP blockwise transfer reliability versus traffic rate for a star topology network composed by 15
nodes.

53

Figure 26 6LoWPAN fragmentation reliability versus traffic rate for a star topology network composed by 15
nodes.

Figure 27 CoAP blockwise transfer reliability versus traffic rate for a star topology network composed by 20
nodes.

54

Figure 28 6LoWPAN fragmentation reliability versus traffic rate for a star topology network composed by 20
nodes.

The reliability performance of 6LoWPAN fragmentation and CoAP blockwise transfer is very similar in

the considered scenarios. The difference between the reliability values is lower than 2 %. In particular, CoAP

blockwise transfer has a slightly better reliability when the traffic conditions congest the WSN, which is the

case for N=20, B=5 and λ greater than 0.8 pkt/s. In these conditions CoAP blockwise transfer improves

reliability by the 0.96% respect to 6LoWPAN fragmentation. However, 6LoWPAN fragmentation is slightly

more reliable than CoAP blockwise transfer when the traffic conditions do not congest the WSN. However,

for N=10 the trends of both solutions are very close and differ by the 0.2% for λ=1 pkt/s and F=3. This

difference grows up to the 0.7% for F=5 with the same traffic rate. For N=15, 6LoWPAN fragmentation has a

maximum improvement of the 1% over CoAP blockwise transfer, which is obtained for λ=1 pkt/s and F=5. A

similar difference is observed for N=20, F=3 and the same traffic rate.

The same behavior can be observed in Figure 29, which shows the average reliability of CoAP blockwise

transfer and 6LoWPAN fragmentation according to the variation of the number of blocks or fragments that

compose an update. The average reliability is computed over all the links for a star topology network of N=15

nodes and λ=1 pkt/s. 6LoWPAN fragmentation improves slightly reliability for a number of fragments lower

than five. The reliability trend of 6LoWPAN fragmentation undergoes a pronounced drop when the number of

fragments grows and the WSN becomes more congested. In this situation, CoAP blockwise transfer has a less

pronounced drop, which allows to outperform 6LoWPAN fragmentation. In particular, for B=7 CoAP

blockwise transfer improves reliability by the 10.7% respect to fragmentation. In congested WSNs, in fact, the

probability that a fragment or block is retransmitted is high. Therefore, consecutive failures of blocks

belonging to the same update do not cause the failure of the update transmission as it would happen in

55

6LoWPAN. CoAP blockwise transfer, therefore, is able to reduce the number of lost updates establishing a

reliable transfer for each single block.

In CoAP blockwise transfer, the transmission of a CoAP ACK for each block causes an increase of the

channel occupancy. This has a counter-effect on the reliability that is evident when the network is not

congested. In this situation, CoAP blockwise transfer increases the average network traffic augmenting the

collision probability. 6LoWPAN fragmentation requires the transmission of fewer messages for a single

update. It is able, therefore, to reduce the network traffic and the retransmission probability of an update. A

node using 6LoWPAN fragmentation is able to reduce significantly the occupancy of the channel. Thereby,

the probability that a concurrent node finds the channel busy when attempting the transmission is lower

respect to CoAP blockwise transfer. Besides the higher probability of finding the channel idle, a fragment has

less chance to collide with the transmission of another one or with a CoAP ACK. 6LoWPAN fragmentation is

able, therefore, to improve reliability under these traffic conditions.

Figure 29 CoAP blockwise transfer and 6LoWPAN reliability versus the number of blocks or fragments that compose
an update. 15 nodes compose the network and the traffic rate is fixed to 1 pkt/s

B. Latency

Figures 30, 32 and 34 show the average latency of CoAP blockwise transfer computed over all the links

for a star topology network with mixed traffic conditions. Figures 31, 33 and 35 show the average latency for

6LoWPAN fragmentation. A good agreement between simulations and analytical results of the model is

observed.

According to our performance evaluation, 6LoWPAN fragmentation outperforms CoAP blockwise

transfer in terms of latency independently from the update generation rate and the number of nodes. The

56

difference between both techniques becomes higher with the growth of the update generation rate and the

number of fragments or blocks involved in the communication. As mentioned, 6loWPAN fragmentation

requires the interchange of fewer messages than CoAP blockwise transfer. Consequently, the latency is

significantly lower than that experienced in CoAP blockwise transfer. The performance of CoAP blockwise

transfer, however, could be improved by considering block sizes that allow sending a single block in more

than one frame. This would reduce the number of CoAP ACKs and consequently the latency performance

would improve. However, its performance would be always lower than that of 6LoWPAN fragmentation,

which represents an upper bound to the performance of CoAP blockwise transfer. 6LoWPAN fragmentation

could be considered as a particular case of CoAP blockwise transfer with a block size that allows sending a

single CoAP ACK.

Figure 30 CoAP blockwise transfer Latency versus traffic rate for a star topology network composed by 10 nodes.

57

Figure 31 6LoWPAN Fragmentation Latency versus traffic rate for a star topology network composed by 10 nodes.

Figure 32 CoAP blockwise transfer Latency versus traffic rate for a star topology network composed by 15 nodes.

58

Figure 33 6LoWPAN Fragmentation Latency versus traffic rate for a star topology network composed by 15 nodes

Figure 34 CoAP blockwise transfer Latency versus traffic rate for a star topology network composed by 20 nodes

59

Figure 35 6LoWPAN Fragmentation Latency versus traffic rate for a star topology network composed by 20 nodes

The latency curve of CoAP blockwise transfer has a sharp rise for increasing values of the traffic rate,

which further augments the difference with that of 6LoWPAN fragmentation. The same behavior can be

observed in Figure 36, which shows the latency trends according to the number of blocks or fragments of an

update in a WSN composed by 15 nodes and traffic rate of 1 pkt/s. The growth of the traffic rate as well as

that of the number of fragments or blocks congest the WSN and augment the retransmission probability of an

update. Although in case of congestion CoAP blockwise transfer shows a slightly better reliability, the cost in

terms of latency of block-to-block retransmission does not allow improving its performance. The

retransmission of the entire update in 6LoWPAN fragmentation has less effect on the average latency.

This behavior can be explained analyzing the Probability Density Function (PDF) of the latency, which is

shown in Figure 37. It is evaluated in a star topology WSN composed by 15 nodes with a traffic rate of 1 pkt/s

and updates composed by 5 fragments or blocks. The distribution of both solutions presents a long tail, which

is due to the effect of retransmissions. The presence of block-to-block retransmissions causes the tail of CoAP

blockwise transfer to be the longest one. This further worsens its average latency and causes the rapid growth

of its curve. Since in CoAP blockwise transfer each block of an update could be retransmitted, the overall

latency would be higher than that of retransmitting the entire update as done in 6LoWPAN fragmentation.

60

Figure 36 CoAP blockwise transfer and 6LoWPAN latency versus the number of blocks or fragments for a star
topology network composed by 20 nodes and a traffic rate of 1 pkt/s

Figure 37 PDF of the latency for a star topology network with 15 nodes and a traffic rate of 1 pkt/s. 6LoWPAN. 5
fragments or blocks compose each update. For the sake of clarity, the x-axis is shown in logarithmic scale

61

Model limitations

Here, we discuss the fundamental limitations of the analytical model developed and analyzed in the

previous sections.

First, we remark that the Markov chain model require the solution of systems of non-linear equations to

derive MAC indicators such as the CCA probability, the busy channel probability and the collision probability

in Section 3.3. For the use of such a model for online computation in real sensors, the complexity is a critical

factor since the typical micro-controller does not support well a complex computing. In heterogeneous

network conditions, a Markov chain has to be solved for each link, and the complexity increases with the

number of links. The use of approximated model equations is advocated in [105], when the number of nodes

exceeds 15, to guarantee bounded computation times in the order of seconds for typical sensor platforms.

The model includes the effects of bursty traffic on the busy channel probability in different backoff stages.

However, we assume an average CCA probability τl in each time unit. As we see from the simulation results,

this is a fair approximation when the number of blocks (or fragments) is limited. When the traffic in the

network becomes saturated, the performance of the MAC layer is influenced also by higher order statistics of

τl.

A practical limitation with high traffic conditions is also given by the retransmission mechanism of CoAP

that defines a minimum RTO in the order of 1 second. This is specified by the standard to guarantee support

for multi-hop communications. However, that limits the derivation of the offered traffic in the network, since

the packet service time increase quickly to the update generation time, especially for block-wise transfer,

where the retransmission is performed on a block-level, as we saw in Figure 36.

4.5. Conclusions and contribution

In this chapter, we have analyzed CoAP data transactions with large payloads in WSN with star topology.

We have proposed a novel analytical model to study the performance of 6LoWPAN fragmentation and CoAP

blockwise transfer. We have adopted reliability and latency as performance indicators. We have used Monte

Carlo simulation to validate our model. The results demonstrate accuracy to estimate the performance of

CoAP blockwise transfer and 6LoWPAN fragmentation.

As for reliability, we have observed a good performance of both techniques with small difference between

them. However, depending on the traffic conditions a technique could be preferred to the other. In particular,

CoAP blockwise transfer is a more reliable solution when traffic conditions lead to a congestion of the WSN,

which is the case of applications with high traffic rates or that produces updates composed by many blocks.

6LoWPAN fragmentation is preferable when the WSN links are less congested.

A clear disadvantage of CoAP blockwise transfer is the latency required to transmit an update. The latency

introduced by acknowledging each single block does not allow to CoAP blockwise transfer to have a trend

closer to that of 6LoWPAN fragmentation. According to our result 6LoWPAN fragmentation outperforms

CoAP blockwise transfer in terms of latency also in congested WSN.

62

In conclusion, applications that have strict requirements in terms of latency, i.e. real-time applications,

should adopt 6LoWPAN fragmentation. With more relaxed constraints on latency, i.e. applications that uses

data logging, CoAP blockwise transfer should be adopted when the traffic conditions are close to saturation.

A good trade-off could be reached using an algorithm able to choose dynamically which technique use

depending from the traffic conditions.

From the results of the research presented in this chapter derives the paper Analytical model of large data

transactions in CoAP networks [P4].

63

5. TinyCoAP

In this chapter we present the design, implementation and evaluation of CoAP for TinyOS. We refer to its

implementation as TinyCoAP. Typical WSNs nodes are battery-powered and often deployed in unattended

environment. Embedded software applications for WSNs, therefore, should be designed and optimized

concerning lowest energy consumption and reliable execution. The reduction of energy consumption is

mainly achieved using radio duty cycling protocols. However, further reduction can be reached through

effective memory management. This allows saving CPU cycles and reducing the code complexity. Both

aspects are critical for lowering the energy consumed by the CPU processing and for reducing the risks of

failures during execution. The optimization process of TinyCoAP is focused in developing an efficient and

safe use of memory. In particular, we focus on severely constrained WSNs nodes featuring few kilobytes of

memory and CPUs with reduced computational capabilities. Although some technology offers more powerful

nodes, working with constrained hardware help us to fix a lower bound to the resources that could be used by

TinyCoAP. In that way, we ensure that our design choices can deliver a highly optimized implementation

suitable for any application domain.

As mentioned in section 1.2.4, TinyOS already includes an implementation of CoAP called CoapBlip.

However, this is based on a library not originally designed to meet the requirements of TinyOS. Thereby, it

does not allow to CoAP to realize its full potential and minimize resource consumption. We argue that better

performance and minimal resource consumption can be achieved developing a native library. We demonstrate

the effectiveness of our approach by a comprehensive performance evaluation. In particular, we test and

evaluate TinyCoAP and CoapBlip in a real scenario, as well as solutions based on HTTP. The evaluation is

performed in terms of latency, memory occupation, and energy consumption. Furthermore, we evaluate the

reliability of each solution by measuring the goodput obtained in a channel affected by Rayleigh fading. We

also include a study on the effects that high workloads has on a server.

5.1. Implementation

One critical WSN design challenge involves providing reliable and performing solutions while coping

with constrained resources. Memory, energy and bandwidth represent the resource constraints to meet.

Thereby, the design process at any level has to be focused on optimizing their use. The goal of our

implementation is, therefore, to minimize the resource consumption by developing a lightweight and efficient

code optimized for the OS in use. Because of its popularity and diffusion, TinyOS has been chosen as the

reference OS.

TinyOS is an OS for WSNs designed to meet the requirements of constrained networks and devices. It is

composed by a set of reusable components that can be used to build specific applications. TinyOS is

implemented in the NesC language [86]. NesC is a C dialect designed to improve code efficiency and

robustness in embedded software applications [28]. Through its simplicity, NesC is able to reduce RAM

64

occupation, code size, and prevents low-level bugs. The programming model of TinyOS is also based on this

language.

Besides NesC, TinyOS allows using more complex languages such as Java, Python or C. In particular, C

code can be embedded in nesC programs or can be used to build libraries for TinyOS. As we will explain later

in this section, a TinyOS based WSN can achieve better performance and be more reliable when using

exclusively NesC.

The design philosophy of TinyCoAP follows the principles of the TinyOS programming model. The code

is structured in TinyOS components and the use of external libraries is avoided. TinyCoAP is completely

written in NesC. The rest of this section focuses on the memory allocation system, library and the data

structures of TinyCoAP.

5.1.1. Structure of the Library

TinyCoAP provides a CoAP library native for TinyOS. It is designed behind the idea that better

performance and reliable run-time execution are both achieved integrating it with the OS core libraries.

Following these design principles, the core functionalities of CoAP are provided as TinyOS components.

These components are developed as part of the TinyOS network library. Differently from TinyCoAP,

CoapBlip is thought as an adaptation of a C library for generic embedded systems. A TinyOS component is

used as an adapter between this library and the TinyOS application.

TinyCoAP avoids using external C libraries and relies completely on code developed in the NesC

language. This allows reaching a high code optimization and having less impact on the WSN node memory.

These benefits derive mainly from the different organization and functioning of C and NesC programs.

Typical C programs are composed by functions that are specified in separated files. These are compiled

separately and then linked together by matching global name of functions. The interaction between them is

achieved dynamically during run-time by using function pointers. Pointers are stored in the RAM memory

and therefore cause a growth of its occupancy. In contrast with C, TinyOS programs are conceived as a set of

components connected together to perform a specific task. These interact between each other using the

interfaces that they provide. Applications declare at compile-time which components they use and then, they

explicitly wire the interfaces they will use at run-time. Thanks to this static wiring, TinyOS programs avoid

using function pointers and therefore they are able to reduce the RAM memory footprint.

The TinyCoAP library is composed by five components. Its design follows the CoAP conceptual layering.

The message layer is implemented by three components. CoapPDU, where PDU stands for Protocol Data

Unit, is the main component of this sub-layer. It provides the interface used to create, read and write CoAP

packets. The interface needed to create or delete options is provided by the CoapOption component. The

creation, use and managing of the linked lists is performed by the interface provided by the CoapList

component. Linked lists are useful for iterating the packets that are in the memory pool waiting for being

processed. CoapList is also used to store and iterate the options that compose a packet and to manage

retransmissions. CoapPDU is wired to CoapList and CoapOption. This allows CoapPDU to work with the

65

options contained in a CoAP packet. Moreover, each component of the message layer is wired to the TinyOS

PoolC component. This is used to allocate the memory needed to perform their operation. PoolC allocates

memory according to the data structure that is specified by each component. The wiring of the message layer

components is shown in Figure 38.

The request/response matching layer of CoAP is implemented by the CoapServer and CoapClient

components. CoapClient provides the interface used to send CoAP requests. The interface provided by

CoapServer allows initializing and binding the server to a specific UDP port. The retransmission mechanism

and the CoAP packet processing are also implemented by these components. CoapServer implements the

discovery of CoAP resources [87] and the observe option of CoAP. The management of the resources

provided by the server is implemented in a distinct interface. The resources are created through a

parameterized interface. This is called CoapResource and provides commands and events to handle resources

and the separate response mechanism of CoAP.

Figure 38 Wiring of the TinyCoAP interface for the CoAP message layer. PoolC is used to provide the memory
needed by the components.

5.1.2. RAM Memory Allocation

Managing the allocation of RAM memory is one of the most critical aspects to consider when embedding

software applications in WSN nodes. The management of memory allocation has to cope with the limited size

of RAM memory and the lack of hardware memory protection that characterize constrained nodes. In this

perspective, managing the RAM memory dynamically could increase the probability of having failure nodes

or could exhaust the available memory. In fact, the lack of hardware memory protection does not prevent the

risks of having a collision between the heap and stack or a memory leak [88]. Furthermore, the size of the

allocated RAM memory would be difficult to control with this allocation system.

TinyCoAP avoids these risks by allocating RAM memory statically. The size of the allocated memory is

known at compile time and the possibility of memory exhaustion is therefore avoided. Furthermore, static

allocation would eliminate the risks of failures due to collision of the heap and the stack. Therefore it would

enhance the network reliability. A further optimization is obtained allowing TinyCoAP to create CoAP

responses without allocating new memory. TinyCoAP creates responses using the memory already allocated

66

to store the relative CoAP requests. Besides the reduction of the RAM memory footprint this enables a lighter

packet processing with less impact on the CPU. As a consequence, the reduction of the CPU use would lower

the energy consumption. As reported in [88], the CPU consumes 4.6 mA when active and 2.4 mA when idle

while the radio uses 3.9 mA when receiving. Therefore, the TinyCoAP management of buffers would save

CPU cycles and enhance the battery life of nodes.

The static allocation of memory done by TinyCoAP is compliant with the RAM memory management

defined in NesC. In fact, NesC does not support dynamic memory allocation. This characteristic allows

preventing memory fragmentation and run-time allocation failures [28]. However, a situation may arise in

which applications might need dynamic allocation. To overcome this problem, TinyOS provides a component

called PoolC that simulates the dynamic memory allocation. Should PoolC be used, the maximum pool

memory size would be allocated statically at compile time. During the execution time, the applications will

take the amount of RAM memory they need from that available in the pool. An eventual memory leak would

cause the pool to empty, but the heap and stack would not collide. As mentioned above, TinyCoAP uses

PoolC to allocate the buffers needed to store the CoAP packets and the linked lists. Differently from

TinyCoAP, CoapBlip adopts a dynamic memory allocation management. It uses the malloc memory

management library to allocate memory for buffers and linked lists.

5.1.3. Data Structure

As mentioned above, TinyCoAP components are organized following the conceptual layering of CoAP.

The message layer is build on top of Blip. CoapBlip also uses this 6LoWPAN stack. Should Blip receive a

UDP packet, it checks the presence of the CoAP header. If it is present, the interface provided by CoapPDU

saves it in a CoAP PDU. This PDU is stored in the memory previously allocated through PoolC. The use of

PoolC allows TinyCoAP to establish at compile time the maximum size a packet can have and the maximum

number of packets it can handle. The maximum length of options and the maximum number of packets that

can be queued by a node can also be specified. These features make TinyCoAP robust against possible

memory leaks and always provide it with room in the memory for the incoming packets. Furthermore,

TinyCoAP is easily adaptable to different applications. The TinyCoAP PDU data structure is designed to be

used with PoolC. It avoids the use of pointers for accessing to the different parts of the PDU. Table 2 shows

the CoAP PDU defined in CoapBlip and TinyCoAP.

In TinyCoAP, the received CoAP message is initially stored in the UDP buffer as a void element. This

element is then converted into a coap_pdu_t structure and stored in the memory pool. Once the PDU structure

has been created, the UDP buffer is ready to receive a new incoming packet. In TinyCoAP the maximum

payload allowed for requests and responses can be defined at compile time. Thus, the memory usage can be

adjusted to the application requirements and to the characteristic of the sensor.

CoapBlip uses pointers to access to different parts of the PDU. Should a CoAP packet be received,

CoapBlip stores it in a buffer allocated through malloc and initializes the pointers defined in coap_pdu_t. This

67

buffer is placed at UDP level and its size is always equal to the maximum packet size allowed by CoapBlip.

Thus, although CoapBlip uses malloc, the memory is always allocated with the same size.

Table 2 CoAP PDU structures. CoapBlip stores the PDU in the UDP buffer and uses a pointer to provide access.
TinyCoAP saves it in the memory allocated with PoolC.

CoapBlip TinyCoAP	

typedef struct {

coap_hdr_t *hdr;

unsigned short length;

coap_list_t *options;

unsigned char *data;

} coap_pdu_t;

typedef struct {

uint8_t timestamp;

coap_hdr_t hdr;

struct sockaddr_in6 addr;

uint8_t payload [MAX];

uint16_t payload_len;

coap_list_t opt_list;

} coap_pdu_t;

5.2. Test-bed

As previously mentioned, we compare and discuss the performance obtained in a real 6LoWPAN network

by TinyCoAP, CoapBlip and HTTP. Our experiments involve different solutions for the transport layer used

by HTTP. We consider HTTP/TCP, HTTP/UDP and HTTP persistent. The third solution refers to the use of a

persistent TCP connection.

Both HTTP and TCP protocols are included in Blip. The HTTP version it implements is the 1.0. The TCP

version used by the client is one the most widely adopted, which is TCP Reno. The congestion window size

(CWND) of client and server is fixed to 1. A larger CWND could overload the wireless link with too many

transmissions, and thereby increases the probability of collision. The need to have more than one TCP packet

in the network could be justified in a multi-hop scenario. In a one-hop network there is not such a need, and

client and server would avoid competing for the radio channel. The Maximum Segment Size (MSS) of both

sides always corresponds to the length of the TCP payload sent in each experiment. Thus, each HTTP packet

is sent in one TCP segment. This allows maximizing the throughput by reducing the interchange of control

messages and avoiding fragmentation.

The tests involve client/server transactions where a client sends requests to a server in order to retrieve

information. All the requests are sent using the GET method. When receiving a request with test as URI, the

CoAP or HTTP server replies with a payload composed by sequence of bits of fixed size. In this way, the

node does not perform sensing operation that might influence the results. Therefore, the experiments account

only for the performance of each technique in processing and replying to the received messages. All the tests

are performed in a real WSN implementation.

Since our experiments are focused to evaluate single client/server transactions, we can keep our test-bed

network simple and avoid deploying complex architectures. The test-bed network used in all the experiments

is shown in Figure 39. The CoAP and HTTP clients as well as the proxy server are located in a PC. Each

68

request is sent through a 6LoWPAN base station attached to the USB port of the PC. The server is embedded

in a TelosB mote located one-hop away from the 6LoWPAN base station.

Figure 39 Test-bed network. The HTTP or CoAP clients are located in a PC while the servers are embedded in a

sensor.

The CoAP CON request messages sent by the client have a total length of 14 bytes. The HTTP GET

requests carry the same information of that sent using CoAP. However, the verbose format of HTTP implies a

growth in size up to 37 bytes. Table 3 shows the composition of the GET requests for CoAP and HTTP.

Table 3 Composition of the HTTP and CoAP Confirmable (CON) requests. In both cases the requests are sent using
the GET method.

CoAP HTTP

CoAP HEADER: 5 bytes

COAP URI_PATH: 6 bytes

COAP TOKEN: 3 bytes

PAYLOAD: 0 bytes

GET /test HTTP/1.0\r\n

Host: fec0::2\r\n\r\n

5.3. Results and Discussion

In this section, we report the results of a performance evaluation for all the considered solutions. Our

study evaluates various parameters. First, we measure the amount of RAM and ROM memory used by each

solution; we then evaluate the latency of request/response transactions; after that, we measure the energy

consumed by each different solution to processing and reply to a request. Moreover, we evaluate the client

goodput obtained in 802.15.4 links affected by Rayleigh fading. This test allows us to evaluate the

69

performance of the CoAP reliability mechanism. Finally, we evaluate the effect that high workloads have on

the server performance. In this case, we analyze the rate of the requests per second that it can serve as a

function of the client request rate.

The results concerning latency, energy and reliability are reported according to the payload size with

which a server replies to a client request. The maximum payload size varies depending to the implementation

used. We found the different methods used to allocate RAM memory as the cause of this variation. The

implementations using dynamic memory allocation achieve the lowest payload size. In this sense, CoapBlip is

able to reach 650 bytes as maximum payload size while HTTP/TCP and HTTP persistent reach 800 bytes.

TinyCoAP benefits from the use of static allocation and it is able to reach 1,200 bytes. The same size is

achieved by HTTP/UDP. In this case the low complexity of the implementation and the absence of TCP

buffers allow to HTTP to work with high payload sizes.

5.3.1. Memory Footprint

Table 4 shows the amount of RAM and ROM memory allocated at compile time for each considered

implementation. The values correspond to a maximum payload size of 500 bytes. The values for HTTP/TCP

and HTTP persistent are the same and are reported as HTTP. In fact, both solutions use the same TCP buffers

and the use of a persistent connection does not vary their allocation.

Table 4 RAM and ROM memory occupation. TinyCoAP reserves all the memory required at compile time.

 TinyCoAP CoapBlip HTTP HTTP/UDP

RAM 8,458 kB 7,102 kB 7,85 kB 3,922 kB

ROM 31,812 kB 42,576 kB 39,484 kB 27,802 kB

TinyCoAP allocates all the memory needed for buffering the CoAP packets at compile time. Therefore, it

occupies more RAM memory than the other solutions. However, the occupation of RAM would remain at the

same level at run-time while that of the other implementations would increase.

The ROM memory footprint gives an idea of the complexity and weight of the code of each

implementation. In fact, the compiled code is stored in the ROM memory. A code with a small impact on

ROM memory would allow adding further resources or enrich CoAP with more capabilities.

CoapBlip has the highest ROM memory footprint. We found the main cause in the lack of optimization of

the code. As mentioned, CoapBlip is an adaptation of a C library. This library is therefore installed in the

node along with the TinyOS component used to adapt it to the OS. The use of C libraries is usually too

complex for the memory constraints of a mote and implies a growth of the memory footprint. Also HTTP

solutions using TCP rely on a C library, thereby the ROM footprint increases also for these implementations.

TinyCoAP lowers the ROM footprint by avoiding the use of C libraries. As mentioned it is written in nesC

and therefore it is optimized for TinyOS.

The HTTP/UDP implementation has the lowest memory footprint. This solution has a very low

complexity and provides no reliability mechanism or request/response matching. The code size can therefore

70

be minimized and ROM memory occupation can be reduced. Moreover, it is able to reach the minimal RAM

memory occupation since it does not implement any HTTP buffer. This implementation uses exclusively the

UDP buffer provided by Blip.

5.3.2. Latency

The latency experienced by a client while retrieving information from a server is one of the most

important parameter used to evaluate the goodness of the server implementation. Low latency values can

significantly enhance user experience and benefit those applications that work in real-time. We define latency

as the time elapsed from the moment the client sends a request until the moment it receives the response.

Figure 40 shows the latency for each tested solution. Each point on the graph represents the average

latency of 100 successful request/response transactions. Payload size ranges from 10 to 1,200 bytes with

increments of 50 bytes. The client sends a new request after receiving a response to the request previously

sent. Figure 41 shows only a portion of the latency trend, excluding that obtained by HTTP/TCP. In this way,

the differences between the other implementations can be better appreciated.

Figure 40 Latency evolution according to the payload size. The performance of HTTP increases significantly if a TCP
persistent connection is used.

As expected, HTTP/TCP has the worst performance, the main reason is found in the latency introduced by

the three-way handshake used by TCP to establish and close the connection. However, the negative impact of

the handshake can be reduced using the same TCP connection for various HTTP transactions. The

performance obtained by HTTP persistent confirms this aspect. As may be seen in Figure 40, a server that

uses HTTP persistent is able to lower the latency and to make its trend closer to those of the fastest solutions.

71

Figure 41 Details of the latency results. The better memory management of TinyCoAP allows the performance of
CoapBlip to be improved.

The lowest latency trend is obtained by the HTTP/UDP solution. This solution implements a bare HTTP

server able only to reply to GET requests. HTTP/UDP does not implement any reliability mechanism or

HTTP logic. Therefore, it should be considered as a lower bound for latency.

TinyCoAP has a latency trend very close to that of HTTP/UDP, so the substantial growth of complexity of

TinyCoAP is not reflected in a particular worsening of latency. TinyCoAP outperforms CoapBlip in terms of

latency. The main reason is found in the enhanced RAM memory management implemented by TinyCoAP.

The memory allocation used by CoapBlip causes a growth of the packet processing time and limits to 650

bytes the maximum payload size that it is able to send. Applications that use data aggregation or work with

high payload sizes cannot be used in CoapBlip or with HTTP solutions using TCP. Concerning HTTP, the

maximum allowed payload size is limited by the use of the TCP buffers that exhaust the RAM memory.

5.3.3. Energy Consumption

Figure 42 shows the results obtained in the energy consumption tests. The results are obtained measuring

the energy consumed by a node when replying to ten consecutive requests. In fact, a fair comparison that

accounts also for persistent TCP connections used in HTTP persistent requires to measure the energy

consumed in more than one transaction.

72

Figure 42 Energy consumption. TinyCoAP has a lightweight packet processing that allows the energy consumption
approaching the trend of HTTP/UDP to be lowered.

The results of this test do not take into account the energy wasted by the radio chip for listening the

channel. Consequently, our evaluation does not need to consider power-saving protocols for radio duty-

cycling. We only measured the energy consumed for receiving, processing and sending a packet. As

mentioned in section 5.1.2 the energy consumed by the CPU for packet processing is considerable. However,

the energy consumed by the radio chip for receiving and sending a packet is still predominant over that used

in packet processing. In this test, the consumption due to the radio chip has the same impact on the results of

each implementation. The difference between the performances of each implementation is only due to the

effects that the packet processing has on consumption. For each different payload size, we ran tests sampling

the energy consumption each 0.02 ms. The device used for these measures is the Agilent Technologies DC

power Analyzer N67705A.

As expected, HTTP solutions based on TCP consume more energy than others. Once again, the message

overhead caused by TCP proves to be costly for constrained networks. As seen in the latency tests, HTTP

persistent improves the performance of HTTP/TCP. This is due to the use of a persistent TCP connection.

However, its performance is still much worse than that obtained by TinyCoAP or HTTP/UDP. The

management of TCP connections requires a high degree of complexity and the maintenance in memory of the

connection state. Consequently, there is a growth in the energy drawn by the RAM memory for keeping these

states.

CoapBlip has a performance comparable to that of HTTP persistent. The onset of the CoapBlip trend is

lower than that of HTTP persistent and comparable with that of TinyCoAP or HTTP/UDP. However, the

increase in packet size causes a sharp rise in the CoapBlip energy trend, which exceeds that of HTTP

73

persistent at 500 bytes. Once more, the mechanism implemented by CoapBlip to allocate and manage RAM

memory proves to be unsuitable for constrained devices. Instead, TinyCoAP benefits from its different

memory allocation mechanism. Furthermore, its different design has less impact on energy consumption.

Similarly to that seen in the latency tests, TinyCoAP has a performance that is highly comparable to that of

HTTP/UDP. This proves once again that TinyCoAP is able to minimize the consumption of resources.

5.3.4. Workload

Figure 43 Number of requests handled by the server as a function of the client rate. The enhanced buffers of

TinyCoAP allows to that to overcome the CoapBlip performance.

Comprehensive benchmarking requires a study of the effects that high workloads have on a server. In this

study, we evaluate the percentage of requests that a server can handle as a function of the request rate of the

client. We refer to the percentage of the handled requests with the term server rate. The test considers a client

sending GET requests at a fixed rate. For each rate we run 100 tests. The resulting server rate is the average

percentage of requests at which the server replies correctly in each test. The payload of the server response

fills an IEEE 802.15.4 frame.

In this test, we evaluate only unreliable solutions. The presence of retransmissions does not allow

maintaining constant the client rate. A client using CoAP reliability is forced to stop sending requests and

start retransmitting. The server therefore would not be subjected to a constant workload. We avoid this

problem using CoAP NON messages. The only reliability mechanism in use is that of the MAC layer.

74

We do not consider the use of HTTP/TCP. At present, the implementation of TCP does not allow

accepting more than one connection at time. As a consequence, the rate with which a client sends requests is

extremely limited. The average latency for HTTP/TCP considering a response sent in a full 802.15.4 frame is

equal to 302 ms. Therefore, the maximum rate a client can have is estimated to 3 requests per second. We

consider this rate too low for being compared with other solutions. Also the HTTP persistent has not been

taken into account. In this solution, the rate at which a client sends requests cannot be controlled. It is the TCP

congestion control algorithm that manages this rate. Figure 43 shows the average success rate of each

considered solution.

The server rate performance is affected by the buffer size of the nodes and the mechanism used to access

to the channel. A request or response could find the sending buffer full and, therefore, it would be discarded.

This is more likely to happen when a client generates requests at a rate greater than that at which it can send

them. Besides the processing time, the propagation time and the CSMA-CA mechanism are the main

limitations of this rate. The propagation time accounts for the time needed to send the requests and receive the

MAC acknowledgment. A client has to wait for the server to acknowledge the receipt of the frame before

sending another. Therefore, if the packet generation time were lower than that taken for the CSMA-CA plus

the propagation time, then the client would fill its buffer faster than it can empty it. According to [89] this

time is estimated to 6.09 ms, which is comparable to the packet generation time relative to a client rate of 150

requests per second. This time, however, is only estimation. We expect that collisions are frequent in a

congested wireless link. These imply MAC retransmissions and, consequently, a growth of the time needed to

complete a request/response transaction. Packet collisions are also the main cause of the server rate

degradation. These could happen when a node senses the channel idle during the turnaround time of its pair.

Therefore, a request and a response could collide. This phenomenon is more likely to occur when the client

rate is high. Furthermore, the channel would become quickly congested and therefore the probability that a

node senses it busy would be high. The node gives up the transmission of a packet if it senses the channel

busy more than the maximum allowed.

The explanations given above are valid for all the tested solutions. The cause of the different performance

has to be found in the packet processing and memory allocation of each one. Regarding HTTP/UDP, its light

and fast processing allows to this solution to achieve the best performance. The server is able to process fast

the received requests and therefore augments the server rate. The HTTP/UDP processing also helps improving

the client performance. The packets stay for less time in the buffer and, therefore, a new generated packet has

more possibility to find space respect to other solutions. This is also the cause for the less pronounced drop

that HTTP/UDP has respect to the CoAP based solutions.

In Figure 43 one may observe that when the request rate is higher than 80, the success rate of TinyCoAP

and HTTP/UDP undergoes a pronounced drop. In fact, starting form this point the latency of a

request/response transaction is comparable to the time taken by the client to generate and send a request. The

probability of having a collision between a request and a response is therefore high. Starting from 150

requests per second, the drop is less sharp. The nodes are subjected to a workload close to its limits. The client

rate can be augmented and the success rate will not lower as much as one may expect. As we explained

75

above, these client rates saturate quickly the buffer. The sending process of many requests fails and therefore

they never leave the node. The number of requests that are sent correctly became stable. As a consequence the

server rate shows small variations.

CoapBlip has the worst performance. The inefficient use of the RAM memory and the complex packet

processing are the main limitations of its server rate. Moreover, the higher latency experienced by CoapBlip

implies lower the point at which this become comparable to the client rate. As a consequence, packet

collisions affect the server rate earlier than in the other solutions.

5.3.5. Reliability

The reliability of IP based Web communications is traditionally provided by the TCP protocol. However,

application protocols that are bound to UDP should provide reliability by themselves. Providing reliable

communications is of paramount importance, especially when using wireless links that are known to be prone

to packet loss. As we already know, the IEEE 802.15.4 standard offers only hop-by-hop reliability by

implementing packet retransmission at data-link layer. The lack of end-to-end reliability must therefore be

compensated by implementing it at higher layers.

As anticipated, CoAP provides end-to-end reliability using CON messages through a simple stop-and-wait

retransmission mechanism with exponential backoff. The value for the initial timeout is fixed to 2 seconds,

while the maximum number of retransmissions is fixed to 4. Moreover, the CoAP definition allows this value

to be changed according to the average RTT. Although not suggested in the standard, we recommend fixing a

lower bound for the initial timeout. This timeout should not expire before the MAC layer reaches its

maximum number of retransmissions. In [8], this number is fixed to 3, while the value of the timeout is not

specified. TinyOS fixes this timeout to 512 symbols, which is equivalent to 8.192 ms.

In order to ensure a fair comparison, we should use the same values of initial timeout for all the solutions

and avoid any randomness in the calculation of the subsequent values. We adopt the initial timeout value

specified in the RFC 6298 [90]. This value is fixed to 1 second and is big enough to ensure that the CoAP first

retransmission is sent after the last one at MAC layer. The maximum number of retransmissions is fixed to 4,

while the maximum value for the TCP retransmission timer is fixed to 16 seconds. This value corresponds to

the maximum retransmission timeout reached in CoAP communications.

The evaluation of the mechanisms that each solution offers to provide reliability is performed by

considering data transfers in an IEEE 802.15.4 link under a Rayleigh fading model. The basis for the

calculations required by this model to determine the packet loss is reported in [91]. In this work, the authors

studied the impact of the signal to noise ratio (SNR) on the PHY-level packet loss rate of an 802.15.4 link. As

reported in [91], the packet loss rate P is given by:

  mSP 211  (1)

76

where S is the symbol error rate and m the length in bytes of the packet. The corresponding packet length

in symbol is 2 m. The symbol error rate is strictly related to the bit error rate B. The latter contains the

relationship with the SNR:













SNR

SNR
B

1
1

2

1
 (2)

In this way, given an SNR, we can easily calculate the related packet error rate. However, this error rate

does not correspond to that of the application layer, but to that of the PHY layer. The calculation of the error

rate seen by the application layer requires one more step. The probability C of having an erroneous packet at

application layer should take into account the retransmissions done at the MAC layer, and is given by:

 1 rPC (3)

where r is the maximum number of retransmissions allowed by the MAC layer.

However, the formula in Equation (4) gives the application layer packet error rate only for non-fragmented

packets. Should a packet be fragmented, this error rate changes according to the number of fragments. Thus, if

f fragments compose a packet, the CoAP packet error rate is given by:

  


f

j

j
f PCC

1

11 (4)

The maximum number of fragments that Blip allows is fixed to 12. It should be pointed out that all the

formulas are valid only for single or fragmented packet that occupeis the entire space available in 802.15.4

frames. As regards the presence of the PHY header, the frame can reach a maximum size of 133 bytes.

According to Equation (5), the error rate for a non-fragmented packet is obtained for f equal to one.

The tests done for reliability cover four different SNR: 1 db, 1.5 db, 2 db and 2.5 db. In Table 5 we report

the corresponding application layer packet error rates.

According to the number of fragments and the relative error rate, we calculate the average goodput of a

data transfer. This value is calculated according to the goodput obtained in 100 consecutive transactions.

Unlike the previous tests, the reliability evaluation does not take into account the HTTP/UDP solution. In fact,

none of these protocols provide any reliability mechanism, the definition of which is beyond the scope of this

thesis.

Errors are introduced by comparing the application layer error rates with a sequence of random numbers.

Should the random number be less than or equal to the error rate, the CoAP or HTTP message received by the

server is discarded at UDP layer. In this way, the application layer will consider that an error has occurred in

the communication and will retransmit the packet. The same sequence of random numbers is used for each

solution tested in order to ensure that in each experiment there are the same numbers of errors. Moreover, the

errors will occur in the same order.

77

Table 5 Application layer packet error rate. These values refer to a single or fragmented packet that occupies the entire
space of a 802.15.4 frame. The value for f = 1 refers to a single non-fragmented packet. A packet can consist of a
maximum of 12 fragments.

f 2.5 db 2 db 1.5 db 1 db

1 1.23% 5.20% 16.78% 39.64%

2 2.05% 7.91% 22.82% 47.82%

3 2.59% 9.33% 24.99% 49.51%

4 2.96% 10.08 25.77% 49.86%

5 3.20% 10.46% 26.06% 49.94%

6 3.37% 10.67% 26.16% 49.95%

7 3.47% 10.77% 26.19% 49.95%

8 3.55% 10.83% 26.21% 49.95%

9 3.59% 10.86% 26.21% 49.95%

10 3.63% 10.87% 26.21% 49.95%

11 3.65% 10.88% 26.21% 49.95%

12 3.66% 10.88% 26.21% 49.95%

Figure 44 shows the goodput in bytes per second obtained for each SNR level. TinyCoAP surpasses the

other solutions in all cases. CoapBlip has a goodput trend that is lower but close to that of TinyCoAP. In this

case, the differences between the implementations of the retransmission mechanisms of TinyCoAP and

CoapBlip are minimal and negligible. The different performances are therefore due exclusively to the

differences in packet processing, as previously explained.

78

Figure 44 Goodput evolution in a channel under the Rayleigh fading model. (a) Goodput with SNR of 1 db; (b) Goodput
with SNR of 1.5 db; (c) Goodput with SNR of 1.5 db; (d) Goodput with SNR of 2.5 db. The reliability mechanism
implemented in CoAP yields a good performance. In TCP, the initial retransmission timeout is resettled after closing each
connection, providing a better performance in channels with low SNR.

(a)

(b).

79

(c)

(d)

Once again, the solutions for which HTTP is adopted yield the worst performance. HTTP persistent has a

goodput trend higher than that of HTTP/TCP in channels having a high SNR. However, when the SNR is

80

lower and the consequent error rate increases, the HTTP/TCP trend exceeds that of HTTP persistent. This can

be explained by considering the behavior of the algorithm for the retransmission timeout (RTO) calculation

specified in [90]. In fact, HTTP persistent and HTTP/TCP cannot measure the RTT of communications

affected by retransmissions. The RTT is used by the algorithm to calculate the RTO and should be relative

only to communications unaffected by retransmissions. However, the RTT of a retransmitted communication

that has been acknowledged can only be measured by using the timestamp option of TCP. In our experiments,

we employ a TCP version that does not use this option. Consequently, the behavior of HTTP/TCP and HTTP

persistent could differ significantly when the channel presents a low SNR and retransmissions are more

frequent. Should two successive communications in HTTP persistent be affected by retransmissions, the RTO

would not be recalculated but rather augmented exponentially until a valid RTT measure can be taken.

Alternatively, HTTP/TCP would be able to measure the RTT and calculate the RTO each time it establishes a

new connection. Thus, when there are successive communications affected by retransmissions, the HTTP

persistent would undergo a latency greater than that of HTTP/TCP.

In conclusion, although CoAP is bound to the unreliable UDP protocol, the reliability

mechanism it provides shows very good behavior and performance, at least in channels affected by Rayleigh

fading.

5.4. Conclusions and Contributions

In this chapter we have presented our original library for TinyOS, which we have called TinyCoAP. We

have illustrated its design principles, described its implementation and presented its evaluation. Furthermore,

we have compared it to the CoAP implementation distributed with TinyOS, called CoapBlip. The differences

between the design of TinyCoAP and CoapBlip have been explained.

All the solutions have been discussed and evaluated in a real TinyOS based 6LoWPAN network. We have

measured the amount of memory occupied at compile time, the latency experienced by a client when

retrieving information from a server, and the energy consumed when replying to the client. We have also

evaluated the performance of a server under high workloads. Finally, we have evaluated the average goodput

obtained in an 802.15.4 link under a Rayleigh fading model. In particular, the purpose of this test was to

evaluate the reliability mechanism provided by CoAP. In our tests, we have uses HTTP with three different

solutions for the transport layer. We have considered the use of UDP, TCP and persistent TCP connections.

We have referred to each of these solutions as HTTP/TCP, HTTP persistent and HTTP/UDP.

HTTP/UDP is only able to reply to a simple HTTP message without implementing any logic behind it.

The purpose of this implementation was to show a lower bound of the performance and to demonstrate how

that of TinyCoAP and other solutions are close to it. HTTP/UDP had the best performance in terms of latency

and energy. Although TinyCoAP is a more complex implementation, its performance is very similar to that of

HTTP/UDP. This proves that its design is able to minimize the impact on the constrained resource of WSNs

nodes while achieving good performance.

81

TinyCoAP has provided the best performance in the rest of the considered parameters. In particular,

TinyCoAP has shown a significant improvement in performance compared with CoapBlip. The performance

of CoapBlip was limited by the adoption of dynamic RAM memory allocation and the use of an external C

library. Thanks to a design compliant to the TinyOS programming model and to the static allocation of

memory, TinyCoAP have solved the problems encountered in CoapBlip, thereby allowing CoAP to realize its

full potential. TinyCoAP allows applications to work with a higher payload size than that achieved by

CoapBlip or HTTP. This permits TinyCoAP to work with data aggregation, software update of nodes or video

and audio applications that generate a high amount of data. Regarding HTTP, the performance obtained by

HTTP persistent is an improvement on that provided by the traditional use of HTTP/TCP, which in any case

is worse than that obtained by TinyCoAP.

In conclusion, TinyCoAP offers a lightweight, complete and flexible CoAP-based solution for

implementing the Web communication paradigm in TinyOS based WSNs. TinyCoAP solves the problems

experienced in CoapBlip, and is able to enhance performance significantly and to minimize the resource

consumption.

From the results of the research presented in this chapter derives the paper TinyCoAP: A novel

Constrained Application Protocol (CoAP) Implementation for Embedding RESTful Web Services in Wireless

Sensor Networks Based on TinyOS that is published in the Journal of Sensors and Actuator Networks [P2].

 The implementation of TinyCoAP is distributed as open-source library at

http://sourceforge.net/projects/tinycoap/.

82

6. CoAP Proxy

6LoWPAN and CoAP allow the IoT and Web worlds to be closer than ever. However, they are still too

different to be easily integrated and interconnected. IoT and the Web, in fact, have different physical

characteristics and are based over similar but different standards. In this sense, a Web application would still

use HTTP and IPv6 to access an IoT device instead of using CoAP and 6LoWPAN. 6LoWPAN, in fact, is a

standard thought to add IP capabilities to WSN and exploit IPv6 characteristics such as neighbor discovery

and the large address space. However, the difference between the network links used in IPv6 and 6LoWPAN

architectures requires the presence of a gateway to establish end-to-end communication between two

endpoints using these protocols. Furthermore, CoAP is still under standardization and its diffusion, therefore,

is very limited. For the same reason, Web applications with a dual HTTP-CoAP stack are not diffused.

Therefore, it is of paramount importance the presence of systems able to interconnect Web applications with

IoT devices.

Motivated by the exposed above, in this thesis we design a CoAP proxy. It permits Web applications to

transparently access the resources hosted in IoT devices based on CoAP, which we refer to as CoAP devices.

Its main function is to adapt the different protocol stacks used by Web applications and CoAP devices (Figure

45). The CoAP proxy is designed to be located at the border of the 6LoWPAN WSN containing the CoAP

devices, which enable the proxy to work also as 6LoWPAN edge router of the WSN. Moreover the proxy

performs the function of CoAP gateway to interconnect disjointed CoAP networks. A graphical representation

of the network architecture in which the CoAP proxy can be used is shown in Figure 46.

Figure 45 Protocol Stack. The CoAP proxy allows adapting the protocol stacks of Web applications and CoAP devices

The CoAP proxy is designed to provide support to applications that need to continuously retrieve data

from the WSN. Traditionally, the HTTP long-polling technique has been used in these applications. However,

it could result inefficient in this scenario. The use of HTTP long-polling, in fact, forces Web applications to

query constantly the CoAP proxy to receive data from the WSN. This could cause an excessive

communication overhead and a consequent increase of latency and network traffic [92]. To overcome these

problems, we include the WebSocket protocol [93] in the CoAP proxy design. WebSocket aims at providing a

bidirectional communication channel using a single TCP connection, which allows the CoAP proxy to

efficiently support long-lived communications. To ensure compatibility with the largest number of Web

83

applications, the CoAP proxy also support HTTP long-polling. Furthermore, the availability of a dual HTTP

long-polling/WebSocket stack allows the CoAP proxy to adapt to different application requirements.

We demonstrate the effectiveness of our design by a performance evaluation in a real WSN. This

evaluation is performed in terms of latency and memory consumption. The CoAP proxy is evaluated

considering long and short lived communications established between the Web application and a CoAP

device. In short-lived communications the Web application requests to the CoAP proxy a resource hosted in

the CoAP device. The proxy replies immediately with the representation of the resource. In this case, the

communication ends after the Web application receives the response. Long-lived communications are used

when the Web application needs to be notified about the changes of a resource over the time. In this case, the

transmission is continuous and ends only when one side of the communication explicitly close it. In both

situations, the performance of the CoAP proxy is evaluated according to the protocol used by the Web

application to access the WSN.

Figure 46 Network architecture. The CoAP proxy also has the functions of 6LoWPAN edge router and gateway to
interconnect disjointed CoAP networks.

6.2. Design Considerations

. Should the proxy communicate with a Web application, the communication pattern has to consider the

possibility that the data exchange could be long-lived. In this case, traditional communication patterns such as

the HTTP long-polling could be inefficient. Instead, the interaction between the CoAP proxy and a CoAP

84

device has to consider the limited bandwidth that characterizes the wireless link. In this case, a

request/response model could lead to a wasteful use of bandwidth. The rest of this section focuses on the

design considerations for the communication patterns used by the CoAP proxy to communicate with the

CoAP device and the Web application. Furthermore, we discuss the translation process followed by the CoAP

proxy to map between the URIs [94] used by Web applications and CoAP.

6.2.1. Communication pattern between the CoAP proxy and the CoAP device

The CoAP proxy uses the observe option to receive updates from the CoAP device. In our design, the

CoAP proxy is the only observer registered to the CoAP device. Web applications establish the observe

relationship only with the proxy. Consequently, the WSN network traffic is significantly reduced allowing

minimizing the bandwidth usage of the wireless link. Moreover, the CoAP device is subject to less work and

it is able to minimize the resource consumption. The observe relationship between the CoAP proxy and the

CoAP device is established when the first Web application requests it.

6.2.2. Communication pattern between the Web application and the CoAP proxy

The CoAP proxy is designed to support long-lived transmission of data. This permits to use the proxy in

WSN applications such as industrial monitoring or e-health. HTTP has not been originally designed to work

with long-lived applications. However, techniques that simulate this behavior can be applied. In this sense, the

HTTP polling has been largely used to support long-lived communications over the Web. In this technique the

Web application sends periodical requests to a server to obtain the data. If this is not available the server

would send an empty response. Polling is only suitable when the message delivery interval is constant and

known. Furthermore it should be long enough to ensure that the overhead would not increase latency or

network traffic. A more efficient solution is provided by HTTP long-polling. In HTTP long-polling the server

holds the client request until new data is available or the TCP timeout expires. This solution reduces

significantly the number of useless messages that are interchanged in HTTP polling. Although HTTP long-

polling solves some of the problems that affect HTTP polling, the overhead inherent to sending periodical

HTTP requests still remain unsolved.

An effective solution for long-lived communications is provided by the WebSocket protocol, which

establishes full-duplex and bidirectional communications over a single TCP socket. With WebSocket a Web

application can receive data from the CoAP proxy avoiding establishing multiples HTTP connections. When

new messages are available the CoAP proxy sends them over the existing connection.

A WebSocket communication has three phases: the opening and closing handshakes and the data transfer.

A WebSocket connection can be initiated only after a TCP connection has been established. A client sends a

WebSocket handshake request to initiate the opening handshake. This is equivalent to an HTTP upgrade

request as specified in the Upgrade and Connection header fields of the handshake request. The request

message contains the version of the protocol and the hostname of the server. The handshake request contains

also the HTTP method and the URI of the resource as shown in the following example:

85

GET /temperature HTTP/1.1

Host: proxy.com

Upgrade: Websocket

Connection: Upgrade

Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==

Sec-WebSocket-Version: 13

To establish a WebSocket connection, the server has to prove to the client that it received the handshake

request. The server concatenates the content of the Sec-WebSocket-Key header field with a Globally Unique

Identifier (GUID) [95] to prove that. The server returns the hash of this concatenation in string format in its

handshake response. This is contained in the Sec-WebSocket-Accept header field as shown in the following

example:

HTTP/1.1 101 Switching Protocols

Upgrade: Websocket

Connection: Upgrade

Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=

The server response includes also an HTTP status line. The WebSocket connection is only established

when the status code is 101. The Upgrade and Connection fields are used to complete the HTTP upgrade.

Should the handshake phase be successful, the bidirectional channel is established and the data transfer

phase can start. Data is sent in data frames defined by the WebSocket standard. The base data frame is formed

by an option code, a payload length and data. The option code is used to interpret the data. A data frame can

be sent either by the client or the server. The WebSocket connection is closed after a closing handshake. This

can be initiated by any of the endpoints by sending a WebSocket close frame. The other endpoint also replies

with a close frame. After the closing handshake, the endpoints close the TCP connection. Figure 47 shows the

messages interchanged between a client and a server to establish a communication using the WebSocket

protocol.

In short-lived communications, HTTP long-polling may have better performance than WebSocket. In

HTTP long-polling, in fact, the interaction requires only the interchange of a HTTP request and a response

message. Instead, in the WebSocket case the overhead introduced by the handshake phases could increase

latency.

86

Figure 47 WebSocket protocol. The WebSocket communication consists of an opening handshake, a data transfer and
a closing handshake.

6.2.3. Protocol Translation

Interconnecting Web applications and CoAP devices require providing a solution to translate the protocols

involved in the communication. The methods, response codes and content-type supported by HTTP,

WebSocket and CoAP are equivalent and allow a straightforward and transparent mapping. They all indentify

resources using the syntax defined by the URI standard. The path and authority parts are equivalent while the

scheme varies depending on the protocol used. Our proxy supports the “http” and “ws” schemes defined by

the HTTP and WebSocket protocols respectively. They are translated directly to the “coap” scheme. The

authority part of the URI contained in the Web application request corresponds to the combination of the IP

address and TCP port of the proxy. The authority part of the CoAP device that hosts the requested resource is

derived after the translation process of the URI path, which identifies the resource target of the request.

At present, the CoRE working group is defining best practices for HTTP-CoAP mapping [96]. The

document includes several proposals that seek to establish a common URI format to be used in HTTP request.

However, these proposals do not define a shared format able to identify the targeted resource or the request to

establish an observe relationship.

In this paper, we propose and adopt a novel format for the URI path. Its structure is derived from the Core

Resource Directory (RD) [97] specifications. The RD is a Web links repository that allows hosting the

information related to CoAP devices and the resources they expose. We include the RD repository on our

87

proxy and use the information hosted in it to map the HTTP and the CoAP URI paths. We propose and adopt

the following format:

“observe” +”/” + “domain” +”/“+ “target_node” +”/ “+ “target_resource” (1)

The first part of the format is optional and indicates the willingness to establish an observe relationship. A

short-lived request must be sent without the observe part. The domain is included to support WSNs with

complex topologies. A domain is considered as a logical grouping of nodes [97]. For example, a WSN could

be deployed over different floors of a building; in this case we can group the nodes of the same floor in the

same domain. The domain part is optional. The name of the CoAP device and that of the requested resource

are expressed as target_node and target_resource respectively. A target_node is unique within a domain

while a target_resource is unique in a target_node. As an example we consider a node, which we refer as

node_1, placed on the first floor of a building that measures temperature and exposes it as a resource. The

resulting URI path to observe this resource is shown as follows:

observe/floor_1/node_1/temperature

The complexity of the URI path composition is hidden from the Web application. It learns the URI

performing a resource discovery on the CoAP proxy. CoAP defines a URI for this purpose which is called

“.well-known/core” [19]. Any request directed to that URI results in a response containing the resources

offered by the proxy. The CoAP proxy hosts a repository that contains the information related to the resources

and the CoAP devices hosting them. The repository is designed following the Core Resource Directory (RD)

specifications [97]. The CoAP proxy uses the information hosted in the RD to assemble the URI queried by a

Web application. The URI format, as shown in (1), differs from that used by the CoAP proxy or by another

node to interact directly with the CoAP device and query the same resource. The only part that is equivalent is

the target_ resource. In a direct interaction, the observe relationship is established including the observe

option in the CoAP header and not in the URI path. Furthermore, the domain and target_node are replaced by

the combination of the IPv6 address and UDP port of the server. The domain part could be introduced by the

proxy and could not correspond to any composition of the real CoAP URI. The CoAP proxy translates the

URI in (1) into the equivalent used for direct interaction as shown in Figure 48.

Figure 48 Translation of the HTTP URI into a CoAP one. The URI used by WebSocket has the same format of the
HTTP URI except for the scheme. WebSocket used the “ws://” scheme.

88

6.3. Proxy Design and Implementation

A CoAP proxy can be classified in three categories depending on its role in the network architecture [19].

In particular, a proxy is classified as a forward-proxy when it performs requests on behalf of the client.

Instead, a proxy that behaves as if it were the real server is classified as a reverse-proxy. Finally, a proxy that

translates between different protocols is defined as a cross-proxy.

In our design process we choose to group all of these roles inside the same proxy. They are, in fact,

complementary and not opposite. As an example, a reverse-proxy could be at the same time a cross-proxy

since it may have to translate the received request. Furthermore, the concept of reverse and forward proxy can

co-exist in the same device. We consider these roles as services offered by the CoAP proxy more than strict

categories. We implement the reverse-proxy service to establish end-to-end data transactions between a Web

application and a CoAP device. The forward-proxy is implemented to allow proxing operations inside the

WSN. End-to-end connectivity between disjointed CoAP networks can be provided by both services.

The CoAP proxy is composed by three modules which, at run-time, are executed in separate processes.

UNIX sockets are used to establish communication between them. The first module is the Lighttpd server

[98]. It is in charge of receiving the incoming HTTP long-polling requests. The 6LoWPAN interface, instead,

allows the proxy to communicate with the WSN. Finally, the main proxy module implements the core

functionalities provided by the CoAP proxy. This module is composed by the following components:

 CoAP module.

 Web server module

 Cache.

 Resource Directory.

Figure 49 shows the composition of the proxy.

Proxy Main Module

FastCGI
Interface

Websocket
Interface

Lighttpd

FastCGI
Interface

Websocket
request

CoAP
Module

6LoWPAN
Interface

Resource
Directory
+ Cache

Web server
module

HTTP Long-
Polling request

Figure 49. CoAP proxy design. The CoAP proxy is composed by three modules.

6.3.1. 6LoWPAN Interface

As previously mentioned, the CoAP proxy has also the function of 6LoWPAN edge router. This is in

charge of forming the 6LoWPAN network and route between the 6LoWPAN network and other IP networks.

89

The edge router provides the IPv6 network prefix to nodes. These learn the prefix using the 6LoWPAN

neighbor discovery [99]. In this mechanism a node sends a broadcast message at start-up, which is called

router solicitation message. The edge router replies with a message containing the IPv6 network prefix, which

the node uses to auto-configure its address. The node learns the address of the edge router from the same

message.

In our implementation, the address of the edge router corresponds to that of the CoAP proxy. Therefore a

CoAP device does not need to use any proxy discovery mechanism. This allows reducing the number of

messages interchanged by the CoAP device and the CoAP proxy and therefore saving the device’s battery

power.

The CoAP proxy is connected to the WSN via an 802.15.4 interface with a 6LoWPAN layer. 6LoWPAN

functionalities are provided by Blip. Blip is also embedded in CoAP devices to enable IPv6 networking.

6.3.2. Lighttpd Module

As previously mentioned, we include WebSocket and HTTP long-polling in the CoAP proxy. The module

responsible for handling WebSocket requests is integrated in the main proxy module while that of HTTP

long-polling is split in two parts. In this sense, an HTTP server is in charge of establishing the HTTP

connection while the main proxy module performs the relative URI translation process. There are several

implementations of HTTP servers that already exist and are commonly used. Between these, we opt for

Lighttpd. It has, in fact, a lower memory footprint and requires less CPU usage respect to other solutions.

Both aspects are of paramount importance to reduce the resource consumption. The CoAP proxy, in fact,

could be embedded in constrained hardware where the minimization of the resource consumption is essential.

6.3.3. Main Proxy Module

The main proxy module provides the core functionalities of the CoAP proxy. As mentioned before, this

module includes the RD repository, cache memory and the CoAP and Web server modules. The translation

process of the HTTP and WebSocket URIs to CoAP ones is implemented in this module. In particular, both

the Web server and CoAP modules perform this process. The CoAP module is also responsible for handling

the observe protocol and maintains the RD and cache memory. The Web server module includes the

interfaces needed to receive WebSocket requests and to communicate with the Lighttpd server.

The composition and the functions of the main proxy module are detailed in the rest of this section.

6.3.3.1. Web Server Module

The Web server module is one of the essential building blocks of the main proxy module. It allows Web

applications to communicate with the CoAP proxy. Its main role is to establish the connection between them

and handling the incoming requests. HTTP long-polling and WebSocket are implemented as separate

modules. As mentioned before, the Lighttpd module is responsible for receiving the incoming HTTP long-

90

polling requests. The Web server module and Lighttpd interact using the FastCGI protocol [100]. The use of

FastCGI has been preferred to that of the simple CGI protocol. FastCGI has better performance respect to

CGI and it is able to reduce the process overhead. It uses long-lived processes to handle multiple requests

instead of creating new processes for each request as done by CGI.

The requests received by the Web server module are stored in a data structure, which we refer to as

connection_t. This contains the information related to the connection established by the Web application with

the CoAP proxy. Furthermore, connection_t stores the CoAP PDU resulting from the translation process of

the URI. The connection_t structure is composed as follows:

typedef struct {
 int type;
 char *path;
 void *data;
 coap_pdu_t *pdu;
} connection_t;

Type indicates the protocol used by the Web application. This could be Websocket or FastCGI if the

connection has been established through HTTP long-polling. Path contains the URI targeted by the request.

Finally, the socket number of the connection is stored in data while pdu contains the CoAP message created

after the translation process.

The correct translation of the URI contained in HTTP and WebSocket messages requires checking its

validity and correctness through the analysis of the scheme and path parts. This can be considered as the first

step of the translation process. At this level, it focuses on verifying the presence of the observe part in the URI

and the existence of the domain and target_node in the RD. Instead, the validity of the observe request as well

as the target_resource are verified by the CoAP module. This is subsequent to the validation of the

target_node. The structure of the RD is presented and discussed in the next section. Algorithm 1 illustrates the

procedure used by the Web server module to accept and validate a Websocket request. The algorithm used for

handling HTTP long-polling request is similar except for the fact that the TCP and HTTP connection are

established by the Lighttpd server. In this case, the Web server module receives the information about the

Web application and the URI through the FastCGI protocol.

Algorithm 1: The Web server module receives a Websocket request, checks its validity and passes it to the CoAP

module.

Input: Websocket request from Web client.

Output: node entry from RD.

for each incoming Websocket request do

accept TCP connection;

URI  Websocket_do_handshake(socket);

if URI contains “observe/” then

observe  1;

91

remove ”observe/” from URI;

end if

node_id  get_node_id(URI);

node_entry  get_node_entry_from RD(node_id)

connection  create a connection_t structure;

pass the requests to CoAP module (connection, node_entry, observe);

end

6.3.3.2. Resource Directory

Direct resource discovery using the .well-known/core URI is a useful mechanism only when the discovery

is relative to the WSN. It becomes inefficient when a device or application external to the WSN wants to learn

the resources hosted in its nodes. In this context, the use of an RD entity simplifies this task. The RD hosts the

description of the resources provided by the WSN nodes. The resource description in CoAP is achieved using

the Core link format [101] that is equivalent to the Web linking [102] used by HTTP. The WSN nodes are

responsible for registering and keeping updated their entries in the RD. The RD provides the interfaces for

registering, updating and deleting entries as well as for performing resource discovery. The entry point of the

RD is the .well-known/core URI.

We organize the RD hierarchically so that to each node correspond a single entry. The resources are linked

to the corresponding node entry. In fact, a single node could offer several resources. Therefore, indexing the

RD using resources instead of nodes could lead to an intricate structure that complicates the resource

discovery and the translation of the URI. Using the node description as index allows simplify the RD structure

and the operation that are performed on it. The node description includes the node name and type, the IPv6

address and UDP port and optionally the domain. The node name and domain correspond to the target_node

and domain part of the URI as shown in (1).

The RD is designed as a tree-structure where the node description is placed at the top and the resource

descriptions are the branches of each entry. The resource description includes the path and the semantic type

of the resource, the estimation of the payload size and a flag to indicate if it is observable or not. The resource

path corresponds to the target_resource part of (1). The RD structure is shown in Figure 50. To simplify the

management of the resources we add an extra layer at the bottom of the resource description. The purpose is

to store the lists of observers of each resource. The cached response is also linked to the corresponding

resource entry. This allows simplifying the use of caching. It is, in fact, strictly related to the resource and

separating its representation from the resource entry may complicate its use. Cache is explained in the next

section.

92

Figure 50 RD structure. The RD is designed as a tree-structure and it is indexed by the node description.

6.3.3.3. Cache

CoAP is a protocol specifically designed for constrained devices where the minimization of resource

consumption is crucial. As a consequence, it is expected that some devices might be in sleeping mode the

majority of the time in order to save as much energy as possible. Furthermore, the bandwidth available in

WSN links is limited. The reduction of the number of interactions between the CoAP proxy and the WSN is

therefore necessary.

Under these conditions, a caching system is essential in the CoAP proxy. The presence of cache allows

reducing the number of queries that the proxy sends to a CoAP device to obtain the state of a resource. CoAP

defines a freshness and a validation model for caching [19]. A CoAP device indicates explicitly whether a

response or an observe update is cacheable or not. Furthermore, it can indicate the expiration time of the

cached response using the Max-age option. When the cached data is no more valid the proxy can ask the

server to renew its validity. This is accomplished by using the ETag option. Caching is particularly useful for

the observe updates. A CoAP device may use caching to avoid sending periodical updates containing

unchanged data. Cached data could also be used to send the first update to a new observer if the CoAP device

has not sent a new update after its registration.

The CoAP proxy stores the payload of the response and the timestamp. The timestamp refers to the time at

which the cached message has been received and it is used to check the validity of the cached payload. As

93

previously mentioned, the cache is contained in the RD structure. The CoAP module is responsible for the

management of the cache. Next we illustrate the design and functions of this module.

6.3.3.4. CoAP Module

Figure 51. CoAP module overview

As can be seen from Figure 51, the CoAP module is split in two layers. The message layer interacts with

the 6LoWPAN interface allowing sending and receiving messages to and from the WSN. The functionalities

needed to create and manipulate CoAP messages are also implemented in this layer. The service layer handles

CoAP requests and responses. It is split further in two sub-modules: a client and a server. Both client and

server operate on the RD and the cache with different purposes. The functionalities of both sub-modules are

described as follows.

a) Client sub-module

The client sub-module provides the cross-proxy service. As previously mentioned, the operation

performed by this service focuses on the translation between protocols. The result of this process is a CoAP

message that matches the request of the Web application as specified in the connection_t structure, which is

passed by the Web server module. The client’s functions also include the management and establishment of

observe relationships. The management of observe requests as that of simple requests is compliant with the

characteristics of the reverse-proxy service. The client sub-module is also in charge of validating the cached

responses and using its content to reply to a request.

The creation of a CoAP request message is subsequent to the validation of the resource targeted by the

original request. As mentioned above, the domain and target_node parts of the URI are validated by the Web

server module. Therefore, the client sub-module only checks if any resource linked to the target_node

matches the resource specified by the target_resource. Should a match be found, the client sub-module

verifies if the request is intended to establish an observe relationship. In that case, it checks that the CoAP

device has labeled the resource as observable and, if positive, it adds the observe option to the CoAP message.

The client sub-module sends the observe request to the CoAP device only if an observe relationship with

the same resource does not exist yet. This relationship is, therefore, established only when the first Web client

request it. The CoAP proxy is, in fact, the only observer registered directly at the CoAP device. Instead, the

94

Web clients are registered only at the CoAP proxy. As a consequence, the CoAP device sends the updates

only to the CoAP proxy that will distribute them to Web clients. This allows reducing the resource

consumption of the CoAP device and the bandwidth usage of the wireless link. A further implication of this

choice is that the number of Web clients that can observe a resource increases. The wireless link of the WSN

is, in fact, unable to sustain the high-traffic that is generated by multiple observers. Moving this traffic to the

more capable link between the Web clients and the CoAP proxy ensures the sustainability of a higher number

of observers and the scalability of the solution.

The CoAP request message and the information related to it are stored in the coap_context_connection_t

structure. This allows the client sub-module to match the response received by the CoAP device with the

requests it has sent. A linked list is used to implement the queue containing these structures, which we refer to

as pending_queue. The coap_context_connection_t elements stored in this queue are indexed by the token

value contained in the CoAP request.

As shown in algorithm 3, the client sub-module extracts the token contained in the response to find a

match between the responses stored in the pending_queue. The list of observers of a resource is also

implemented using a linked list. In this case, it contains the connection_t structure received by the Web

module. The coap_context_connection_t is implemented as follows:

typedef struct {

 unsigned int n_retransmit;

 time_t timestamp;

 unsigned int is_observe;

 unsigned int is_separate_response;

 connection_t *connection;

} coap_context_connection_t;

The n_retransmit and timestamp fields are used by the CoAP retransmission mechanism. In particular,

timestamp stores the time at which the message has been sent and it is used to calculate the value of the

retransmission back-off. The number of retransmissions is maintained by the n_retransmit counter. The

connection pointer is used to access the CoAP message and the information on the request received by the

Web client, which are contained in the connection_t structure. The is_observe and is_separate_response flags

are used to specify the kind of the data transaction established with the CoAP device. The

is_separate_response flag indicates that the CoAP device will not reply immediately to the request. CoAP

defines a separate response mechanism to enable devices to delay the reply if they cannot process the request

directly.

Algorithm 2 Translation process followed by the client sub-module. The CoAP request message is sent after verifying

the existence of the resource and the validity of the observe request.

Input: connection_t, node entry in RD, observe flag

Output: CoAP request, observe request, cached response

95

resource  get_resource_from_node_entry(connection_t)

If resource does not exist then return error

if observe == 1 AND resource is observable then

if resource.observer_list[] is empty then

connection_t.pdu  create CoAP request;

insert observe and URI options connection_t.pdu;

send observe request to CoAP device;

coap_connection  create a coap_connection_t structure;

coap_connection  pending_queue[];

connection_t  observer_list[];

else

connection_t  observer_list[];

end if

else

if cached response is valid then send cached response to Web client

else

connection_t.pdu  create CoAP request;

insert URI options  connection_t.pdu;

send request to CoAP device;

coap_connection  create a coap_connection_t structure;

coap_connection  pending_queue[];

end if

Algorithm 3: response_handler

Input: response from CoAP device

Output: response message or observe update to Web client

token  get token from response;

coap_connection  get_connection_from_pending_queue(token);

if response is cacheable then

update cache;

end if

if coap_connection.is_observe == 1then

get observer_ list[] from the RD;

for each observer in the observer_ list[] do

send observe update;

if send observe update fail then remove observer from observer_list[];

end for

else

send response to Web client;

remove coap_connection from pending_queue[];

end if

96

b) Server sub-module

The server sub-module provides the forward-proxy service. This enables CoAP devices belonging to the

same WSN to interact with each other through the CoAP proxy. This service is particularly useful when they

are several hops away from each other and direct interaction could squander precious resources. The forward-

proxy service is requested including the Proxy-URI option in the CoAP request message. The server sub-

module can forward the request to the destination or reply with a valid cached response. The forward-proxy

service can also be used to observe a resource through the CoAP proxy.

The server sub-module provides the interface required to handle queries directed to the .well-known/core

URI and, consequently, to manage the RD. It also initializes the cache memory for a given resource. The

initialization is subsequent to the creation of a new resource inside the RD. The client sub-module is, instead,

responsible for validating and updating the cache, as well as for replying to a request with a cached response.

6.4. Performance Evaluation

As mentioned, we evaluate the performance obtained by the CoAP proxy in a real implementation. The

tests consider short and long lived communications. In both situations, we evaluate the CoAP proxy according

to the use of WebSocket and HTTP long-polling. This allows gaining insight into the performance that the

CoAP proxy can achieve with both protocols and evaluating which is the best option to use according to the

kind of data transaction.

In long-lived communications, the CoAP proxy uses the observe protocol to receive updates from the

CoAP device. A long-lived communication ends when the Web client receives 10 observe update. In the

short-lived case the request sent by the Web client implies a single response message from the CoAP proxy.

Therefore, a short-lived communication ends after the Web client receives the response.

The HTTP and WebSocket requests sent by the Web client and the CoAP requests sent by the CoAP

proxy use the GET method. Furthermore, CoAP requests and observe updates are sent as CON messages. The

response or observe update sent by the CoAP device contains a data payload composed by a sequence of bits

of fixed size. The composition and length of the CoAP request and response are specified in Table 6.

Table 6 Composition and length, in Bytes, of the messages interchanged between the CoAP proxy and the CoAP device.

CoAP Request Observe Request CoAP Response Observe update

CoAP Header: 5 B

Token : 1 B

URI: 5 B

CoAP Header: 5 B

Token : 1 B

Observe option: 2 B

URI: 5 B

CoAP Header: 5 B

Token : 1 B

Payload: 5 B

CoAP Header: 5 B

Token : 1 B

Observe option: 2 B

Payload: 5 B

Our experiments are focused to evaluate simple short and long lived communications between the Web

client, the CoAP proxy and the CoAP device. Thereby, we can keep the test-bed network simple and avoid

deploying complex architectures. In this sense, we choose to implement a single-hop WSNs, which is shown

97

in Figure 52. The Web client and the CoAP proxy are located in two different PCs. These feature 2 GB of

RAM and use Linux as OS.

The proxy sends CoAP requests through a 6LoWPAN base station attached to its USB port. The CoAP

device and the 6LoWPAN base station are embedded in TelosB motes. The CoAP device is located one-hop

away from the base station. We use TinyCoAP as the CoAP implementation embedded in the CoAP server.

Figure 52 Test-bed network

Our study evaluates two parameters. First we evaluate the RAM and ROM footprints of the CoAP proxy.

This analysis helps to evaluate the code complexity and the efficiency in terms of memory that the proxy has

at run-time. Then, we measure the latency in order to evaluate the proxy response time. For all the tests, the

results are reported according to the number of Web clients that simultaneously request data from the CoAP

device. As mentioned before, the CoAP proxy uses the observe protocol to deal with long-lived

communications. In this case the CoAP device sends observe updates each 500 ms. This value is consistent

with the update frequency of typical temperature monitoring in industrial processes [103]. The proxy

establishes an observe relationship with the CoAP device when the first Web client requests it. The first

notification sent to the subsequent observers is the value of the observed resource that is currently in the

cache.

6.4.1. Memory Footprint

The CoAP proxy is designed to be embedded in any kind of hardware. However, its resource consumption

has to be minimized to allow its use also in constrained hardware. In particular, the RAM memory used by the

proxy at run-time has to be tailored to the characteristics of constrained devices where the available RAM

could be in the order of few tens of mega bytes. The analysis of the ROM footprint allows evaluating the

complexity of the code that implements the COAP proxy. An evaluation of the ROM footprint can be carried

out by analyzing the size of the executable files generated by the main proxy, Lighttpd and 6LoWPAN

processes. The ROM footprint of the CoAP proxy is therefore the sum of the size of each executable. The

evaluation of the 6LoWPAN takes into account the memory that the CoAP proxy allocates to communicate

with the 6LoWPAN interface. It does not consider the memory allocated by the 6LoWPAN interface. It is, in

fact, embedded in a TelosB mote, which make impossible the use of valgrind. Table 7 shows the results of the

ROM memory consumption evaluation. The size of the ROM footprint is equal to 1466,9 KB, which is

compliant with the characteristics of embedded applications.

98

Table 7 ROM occupation of the CoAP proxy. Three modules compose the proxy.

Main proxy Lighttpd 6LoWPAN

302 KB 805,2 KB 359,7 KB

The modules that compose the CoAP proxy are implemented using the C language. Therefore, we analyze

the RAM footprint according to the typical layout of a C program, which is shown in Figure 53. At run-time,

memory is allocated dynamically in the heap and stack fields of the RAM using the malloc() and free()

functions. We use the valgrind profiling tool to evaluate the size of the memory allocated dynamically at run-

time. The text, bss and data_segment fields compose the part of the RAM that is allocated statically.

Therefore, they have fixed sizes that do not vary at run-time. The text field contains the instructions that rule

the execution of the program. The bss is used to store the variables that are not initialized. Finally, the

data_segment contains the variables that have an initialization value. The static components of the RAM

memory are evaluated using the size() command.

Figure 53 Layout of RAM memory.

The RAM footprint is evaluated according to the number of Web clients that simultaneously request the

representation of a resource or receive updates as observers. We evaluate short-lived as well as long-lived

data transactions. We kept the concurrency level low considering the presence of 2, 10 and 50 simultaneous

clients. In fact, it is rather unlikely that in WSNs there is a very high workload of hundreds of simultaneous

client requests. The variation of the concurrency level only affects the size of the memory allocated

dynamically.

We evaluate the RAM footprint measuring the memory allocated by the static and dynamic components of

each of the processes composing the proxy. The sum of the memory consumed by each process is the

resulting size of the RAM footprint. The results are differentiated according to the use of Websocket and

HTTP long-polling. We include the memory consumption of the Lighttpd process also in the WebSocket case.

99

This process, in fact, is always present at run-time unless it is used only in HTTP long-polling. In this test, the

RD is composed by a single node entry and the relative resource description. The cached response and the

observer list are present only in the long-lived case.

As can be seen from Figure 54, the CoAP proxy has a lower RAM footprint with long-lived

communications. The use of the observe option allows reducing the size of the dynamic memory that the main

proxy process allocates to create and sends CoAP requests. The CoAP proxy, in fact, establishes only a single

observe relationship with the CoAP device. This implies that the main proxy process has to allocate only the

memory required to translate, create and send a single CoAP observe request and to acknowledge the

subsequent updates. Further memory is allocated to send the updates to Web clients, to update the cache

memory and to create and maintain the RD. In the short-lived case, instead, the CoAP proxy sends a CoAP

request for each WebSocket or HTTP long-polling request that it receives. The main proxy process allocates,

therefore, dynamic memory for each of these CoAP requests. Further memory is allocated to store the

responses sent by the CoAP device and to send the relative acknowledgments.

In both cases, The CoAP proxy yields a better performance using WebSocket instead of HTTP long-

polling. The handling of WebSocket requests, in fact, implies less complexity and overhead than that required

by HTTP long-polling requests. In this sense, we found the use of the FastCGI protocol as the main cause of

the high consumption reached by HTTP long-polling. The FastCGI requests intercepted by the Lighttpd

server are multiplexed into a single connection and are processed by the main proxy process in a multi-

threaded style. In that way we can achieve better performance respect to creating a single thread to process

each request. However, the presence of several concurrent processes increase the memory consumed by

FastCGI. The dynamic memory allocated by the Lighttpd process does not vary with the concurrency level.

As mentioned before, the Lighttpd server has a very low memory footprint that made it suitable for being

embedded in constrained devices. The memory footprint of the Lighttpd server will increase only with a

higher concurrency level.

In the Websocket case, the RAM footprint of the CoAP proxy is dominated by the memory allocated

statically. The slight increase of the RAM footprint is due to the growth of the concurrency level. This has

effect only on the memory allocated dynamically by the main proxy process to store the information related to

each WebSocket requests. The size of the dynamic memory allocated by the 6LoWPAN process is constant.

The 6LoWPAN interface, in fact, receives by the main proxy process only a request at a time. The subsequent

CoAP request is sent to the interface only when the previous has been sent. The dynamic memory allocated to

create and send the 6LoWPAN packet is therefore constant.

Figure 54 RAM footprint of the CoAP proxy. It has a low memory footprint when using WebSocket. The FastCGI

protocol used in HTTP long-polling requires more complexity that results in a growth of the memory consumption. a)

RAM footprint of CoAP proxy in short-lived communications b) RAM footprint of the CoAP proxy in long-lived

communications.

100

(a)

(b).

6.4.2. Latency

The latency experienced by a Web client to retrieve data from the CoAP device is perhaps the most

important parameters used to evaluate the goodness of the CoAP proxy implementation. In short-lived

communications, we define latency as the time elapsed from the moment the Web client sends a request until

the moment it receives the response. The latency considers the delay introduced to establish and close the

related TCP connection. In the long-lived case, the latency is the time elapsed from the moment the Web

client requests to observe a resource until the moment it receives 10 updates. The latency, therefore, measures

the length of the entire data transaction and not that of sending single updates. In fact, measuring the latency

101

of each single update would not allow highlighting the difference between WebSocket and HTTP long-

polling in long-lived data transaction. Instead, it would measure the latency as if the data transaction were

short-lived. Also in this case we include the delay experienced to establish and close the TCP connection.

Figure 55 shows the latency of each tested solution.

In long-lived communications, the CoAP proxy yields a better performance with WebSocket. In this

context, the use of a persistent connection and the low overhead caused by the WebSocket protocol allows

reducing significantly the latency. The use of HTTP long-polling allows an acceptable performance when the

level of concurrency is low. Instead, the latency undergoes a sharp rise when this level grows. In this case, the

CoAP proxy is subject to a high workload that causes a rapid worsening of the performance. The high rate at

which the Web clients requests the observe updates is the cause of this high workload. The use of the

WebSocket protocol, instead, reduces significantly this workload. Consequently, the growth of the

concurrency level causes only a small increase of the latency.

In short-lived communications, the CoAP proxy has almost the same performance with WebSocket and

HTTP long-polling. The use of HTTP long-polling allows a slight improvement for low concurrency values.

The difference between the performance of WebSocket and HTTP long-polling is mainly due to the delay

introduced by the opening and closing handshake phases of the WebSocket protocol. However, this is

partially compensated by the delay caused by the Lighttpd module to handle HTTP long-polling requests.

This delay becomes predominant when the concurrency level is high causing a slight deterioration of the

performance. WebSocket requests, instead, are received directly by the main proxy module, which allows

reducing the delay caused by their handling.

Figure 55 Latency for short and long lived communications. The CoAP proxy benefits from the use of WebSocket in
long-lived communications. c) Latency for short-lived communications d) Latency for long-lived communications

(a)

102

(b).

6.5. Conclusions and Contribution

We have presented the design of a CoAP proxy able to interconnect Web applications to CoAP devices

located in WSNs. Its design is consequent to the analysis of the communication patterns that are used by the

CoAP proxy to communicate with the CoAP device and the Web application. In this sense, we have

considered the use of protocols able to deal with short and long lived communications.

The data flow of long-lived communications requires adopting protocols able to reduce the overhead and

the workload that it could cause. The WebSocket protocol was included in the CoAP proxy to establish

persistent connections with the Web applications. The observe protocol was used for the same purpose but to

communicate with the CoAP device. The CoAP proxy also supports Web applications that use the traditional

HTTP long-polling technique.

We have included a cache memory and a RD repository in the CoAP proxy. The RD is used to host the

description of the resources offered by the CoAP device. Its presence simplifies the resource discovery

process. Cache, instead, allows reducing the number of messages interchanged between the CoAP proxy and

the CoAP device. We also have defined a convention format for the URI that should be used by a Web

application to access a CoAP resource. The proposed format is compliant with the design principles of the RD

and simplifies the translation process.

We have evaluated the performance of the CoAP proxy considering long and short lived communications

according to the use of HTTP long-polling and WebSocket. The evaluation has been done in terms of latency

and memory consumption. Results show that, in long-lived communications, the CoAP proxy yields a better

performance using the WebSocket protocol. Its use minimizes the communication overhead between the Web

103

application and the CoAP proxy, which reduce the latency and lower the RAM footprint consumption. HTTP

long-polling, instead, causes a high workload that result in a worsening of both metrics especially for high

concurrency levels. In the short-lived case, however, HTTP long-polling shows a good performance in terms

of latency and, respect to WebSocket, reduces it slightly when the concurrency level is low. For higher levels,

instead, the latency is very similar with WebSocket having a slight better result. The CoAP proxy has a lower

RAM footprint when using the WebSocket protocol. In this case, the FastCGI protocol used in HTTP long-

polling entails further complexity to manage the HTTP connections that result in a high demand of RAM. The

observe protocol proves to be able to reduce the RAM footprint of long-lived communications by reducing

the messages interchanged between the CoAP proxy and the CoAP device.

In conclusion, the design proposed for the CoAP proxy offers an effective solution for interconnecting

Web applications and CoAP devices. The use of different communication patterns provides flexibility and

enables the CoAP proxy to work in different application scenarios. In particular, the adoption of the

WebSocket and the observe option allows improving the performance of long-lived applications. HTTP long-

polling, instead, permits the use of the proxy in applications where short-lived communications are most used

and the concurrency level is low.

From the results of the research presented in this chapter derives the paper A Proxy Design to Leverage the

Interconnection of CoAP Wireless Sensor Networks with Web Applications [P3].

104

7. QoS Support for Timeliness

The research on CoAP follows with our proposal to enable QoS support for timeliness in the observe

option. It is based on delivery priority, update selection and QoS negotiation. Nodes are able to express the

priority order with which they wish to be updated. Furthermore, they are also able to select which updates

they want to receive. We classify updates in two categories: Critical and Non-Critical. The provided QoS is

the result of a negotiation between the client and server. The client demands a certain degree of QoS

according to its role. The server could accept or negotiate it. This choice depends on the availability of server

and network resources. The proposal is evaluated in a real WSN. In particular, we choose the requirements of

an e-health application as target of our tests. The performance evaluation is done in terms of average delay,

energy consumption and delivery ratio.

Common solutions used in publish/subscribe protocols provide reliability and timeliness as QoS

parameters. The first is used to ensure to subscribers the reception of updates. The timeliness is used to

guarantee the on-time delivery of packets. Timeliness is of paramount importance for WSN applications such

as e-Health. The data generated by sensor nodes should be received within a deadline in order to be processed

quickly and to react immediately to critical situations. Moreover, data delivery should be guaranteed to those

nodes that have key roles in the application.

As mentioned, the observe option provides reliability by using CoAP CON messages. Regarding

timeliness, it only provides the possibility to indicate the validity of an update over a period of time. This is

achieved using the freshness model of CoAP caching. However, it does not specify how to guarantee on-time

delivery. Meeting the deadline requirements of an update depend in large part to the delivery process. In this

sense, the order in which the nodes are updated is of paramount importance. The observe option model gives

to the server the faculty to choose in which order clients are updated.

The current delivery model could be inefficient for many application domains. We argue that the server

should be able to prioritize the delivery of updates to nodes requiring it. Our approach is motivated by the fact

that WSN nodes could have distinct roles and requirements. As a consequence, timeliness requirements could

vary depending on the characteristics of a node. For instance, in e-emergency applications the notification of a

critical event must be prioritized to those nodes in charge of reacting to it. Furthermore, these nodes could

only be interested to be updated when a critical event occurs. Therefore, the server should avoid sending them

each update. Other nodes, however, could be interested in receiving all of them. Therefore, a server should be

able to distinguish which information sends to a particular client.

7.2. QoS Support in the Observe Option

As mentioned, the observe option supports QoS for reliability by using the end-to-end reliable data

transfer defined in CoAP. QoS, therefore, can be divided in two categories: best-effort using NON messages

105

or persistent when using CON ones. The use of NON or CON messages depends exclusively on the subject.

For each individual update it can decides which message use.

Regarding timeliness, the observe option allows to specify the validity of an update but not to guarantee its

on-time delivery. The indication of the validity is achieved using the caching model of CoAP. As mentioned

in chapter 6, this defines a freshness model to indicate the period of time in which the cached response is

valid. The subject is responsible for deciding the length of this period. Its value is contained in a CoAP

option, which is called max-age. An observer can cache and re-use an update until it is not expired. Moreover,

observers can use the max-age value to control if they are still registered to the subject. If an observer does

not receive an update after the max-age has expired, it may assume that it has been cancelled.

The lack of support for on-time delivery could not allow meeting the different delay requirements of

observers. As previously mentioned, the delay experienced by an observer when receiving an update is

strongly affected by the delivery order followed by the subject. The current observe definition leaves to the

subject the decision of the delivery order. We argue that this approach is inefficient for many applications that

wish to use the observe option. The delivery order should, in fact, be differentiated depending on the

requirements of each observer. In this sense, we proposed to modify the observe option for supporting

timeliness. Our contribution seeks to define a simple mechanism to establish the delivery order based on the

priority expressed by observers. Furthermore, the observers can express their interest in which kind of update

they want to receive.

7.3. Proposal of QoS Support for Timeliness

As mentioned, the subject is the only node able to manage the delivery order of updates. Therefore, its

choices can only be based on the information available at server side. Commonly, it concerns the

characteristics of the resource that the subject is monitoring. The requirements of observers are not considered

in the current model. Although the deadline of an update depends on the type of data that it contains, the

delivery should be differentiated depending on the particular observer. The total delay of an update, in fact,

undergoes a pronounced variation depending on the delivery order.

Depending from the particular WSN application domain, each observer could have different roles with

distinct delay requirements. In a WSN used for fire detection, for instance, a node in charge of the fire-

extinguishing process should be the first to be notified when a fire is detected. Furthermore, an observer could

only be interested in receiving only critical updates. For instance, in the e-health domain an alarm is only

interested in knowing critical states of the patient rather than each single state. Furthermore, it could require to

be notified only when the critical situation is detected and when it finishes. The adoption of a mechanism that

allows an observer to explicit the notifications it wishes to receive, allows minimizing the resource

consumption of the subject and the observers.

In our proposal, observers can request a priority level in the update delivery. Moreover, they can indicate

which kind of updates they wish to receive. As previously mentioned, an update can be classified as critical or

non-critical. The subject is the only component that has the authority to make this decision. This choice

106

depends exclusively from the WSN application domain. Usually, these are not multi-purpose networks. They

are deployed to perform a specific task. Each node is aware of its role and of the resource it is monitoring.

Therefore, it is expected that the subject will have the necessary information to establish the criticality of an

update.

Our proposal supports four levels of QoS: low, medium, high and highest. The subject prioritizes the

delivery to observers requiring the highest level. This level is intended for observers that are interested in

being notified when a critical event is detected and when it finishes. The high level is required by those nodes

that are interested in receiving each critical update. They are notified immediately after the observers with

highest priority. Observers interested in receiving both critical and non-critical updates can demand a low or

medium level. The medium level has priority on the low one. Should more than one observer require the same

level, the subject notifies them following the order at which their requests arrived.

The value of the QoS level is specified using the two most significant bits of the observe option value. We

refer to those bits as QoS field. This modification affects only the requests sent by observers for registering

and the consequent response of the subject. The bits used by the QoS field do not affect the subsequent

updates and, therefore, the maximum value of the observe option does not change. The definition of the four

QoS level and the relative QoS field values is the following:

• Level 1: The subject sends non-critical and critical updates with low priority. The value of the QoS

field is 00.

• Level 2: Both non-critical and critical updates are sent with medium priority. The value of the QoS

field is 01.

• Level 3: The subject sends only critical notification with high priority. The value of the QoS field is

10.

• Level 4: The subject notifies with the highest priority only the start and the end of a critical state.

The value of the QoS field is 11.

The model we propose expects that the observer and the subject negotiate the QoS. A subject, in fact,

should have the faculty to reject or negotiate the demanded QoS. It could not have enough resources to satisfy

all the requests. An observer could demand the highest priority but the subject could have already other

observers with the same level. Therefore, the subject would not meet the delay requirement of the observer

and should offer a lower priority level. Furthermore, the subject could recognize that the energy level of its

batteries is under a certain threshold. Therefore it could not satisfy a new request from an observer that

requires each update. Should the subject accept the request, it replies with the observe option containing the

QoS value requested. The subject expresses its willingness to negotiate the QoS by replying with the offered

QoS. Should the observer accepts, it sends a response containing the offered QoS. The observer can reject the

offer by ignoring it.

The definition of a routing strategy that a subject can use to reduce the delay is out of the scope of our

proposal. We focus on reducing the delay by defining a simple mechanism for establishing the delivery order

107

of updates. A further optimization is achieved allowing observers to register their interest according to the

updates they want to receive.

7.4. Experimental Set-up

The effectiveness of our proposal is evaluated in a real WSN. We run tests to calculate the average delay

of updates, their delivery ratio and the energy consumption of the observer. The proposal has been

implemented as part of TinyCoAP.

Our test-bed network meets the requirements of an e-health application used to monitor the cardiac rate of

a patient. We choose this scenario because of its criticality. E-health applications, in fact, have strong deadline

requirements. The results, however, are general and valid for different application domains. We assume that

several observers are interested in receiving updates about the state of a patient. Each observer has different

requirements in terms of priority and interest. In our experiments, we consider the presence of six observers:

an alarm, a doctor, a nurse, an Intra Venous (I.V.), a general and a patient-specific monitor. The QoS

requirements for each observer are the followings:

• Alarm: It needs to be notified when a critical event occur and when it ends. The level of the QoS is 4.

• Doctor: He needs to be notified only when the patient enters or leaves the critical state. The level of

the QoS field is 4.

• Nurse: He has a tablet to monitor each state of the patient. The level of the QoS field is 2.

• General monitor: It receives the updates of many patients. The level of the QoS is 1.

• Personal monitor: It is exclusive for the patient. The level of the QoS is 2.

• I.V.: It is active in case of emergency. It has to receive each critical notification. The level of the

QoS is 3.

The characteristics of the updates sent to monitor the cardiac rate are specified in Table 8. The values

reported in this table are based on the characteristics of this parameter [104]. The deadline of an update

corresponds to its periodicity. Should the update be critical, the deadline corresponds to the sampling rate of

the cardiac rate. In non-critical updates, the data collected is aggregated and sent as data log in a full 802.15.4

frame. Considering the presence of protocol overhead, the maximum payload size available is of 74 bytes.

Therefore each notification will contains 37 samples of the cardiac rate and will have a periodicity of 3700

ms. The use of data logs allows to a subject reducing the number of updates to sent to observer and, therefore,

minimize the resource consumption.

Table 8 Characteristic of cardiac rate updates

Parameter Patient state Payload Periodicity

Cardiac
Rate

Normal
74

bytes
3700 ms

Critical
2

bytes
100 ms

108

The test-bed used TelosB motes to implement the subject and the observers. The WSN adopts a star

topology. For simplicity we assume that the observers are equally spaced between each other and at the same

distance from the subject. Figure 56 shows the topology of the WSN. In the next section we present and

discuss the results of our performance evaluation.

Figure 56 Topology of the test-bed network

7.5. Results and Discussion

The performance evaluation focuses on evaluating the delay and the delivery ratio of updates. Moreover,

we also evaluate the energy consumption of the subject. Our tests consider a subject sending both critical and

non-critical updates. For each case we differentiate the tests according to the reliability mode used.

7.5.1. Latency

Figure 57 shows the delay of updates as a function of the delivery order. Each value represents the average

delay of 100 delivered updates. We define delay as the time elapsed from the moment the update is created

until the moment the observer acknowledges its reception. We consider both the use of best effort and

persistence mode. In persistence mode the update is acknowledged at CoAP layer while in best effort only at

MAC layer. For each reliability mechanism we run different tests according to the number of observers that

receive the updates.

As one may observe from Figure 57, the delivery order has a strong influence on the delay experienced by

an observer. In non-critical updates, however, this delay is considerable lower than the deadline of the update.

A further reduction of the delay is achieved by allowing the subject to avoid sending non-critical updates to

109

all the six observers. According to the QoS required by the observers of our test-bed, only three nodes receive

non-critical updates. More observers, however, could require these updates.

The delivery order is of paramount importance in critical updates. According to the size and topology of

our test-bed network, the delay experienced by observers with lower priority is greater or equivalent to the

deadline of an update. We expect that this could be even greater in case more observers have to be notified.

As a consequence, the current delivery mechanism of the observe option could not guarantee the on-time

delivery. When delivering critical updates, especially in e-emergency applications, the subject has to follow a

delivery order based on the characteristics and requirements of observers. As our results show, the use of a

priority-based delivery is necessary to meet the timeliness requirements of observers with critical roles.

Furthermore, we further reduce the delay by allowing to observers to receive only the first and the last update

of a critical situation. As shown in Figure 56, during the time the cardiac rate is in a critical condition the

subject sends updates only to four observers. Therefore, the notification delay of each observer is lower

enough to meet the deadline requirements.

A further analysis has to consider the reliability support of the observe option and the effects this has on

delay. As one may expect, the use of the persistence mode implies a growth of the delay. In fact, the

processing time taken by an observer to reply to an update with a CoAP ACK is higher than that required for

sending a MAC ACK. Besides the packet processing time, a further delay is introduced by the CSMA-CA

mechanism of the 802.15.4. An observer that sends a CoAP ACK, in fact, does the same channel access

procedure of the subject sending the update. In best effort, instead, the observer sends the MAC ACK without

using CSMA-CA. Therefore, in persistence mode the observers and the subject compete for accessing the

channel. The probability that one of them finds the channel busy could be high. In this case, they could

perform several attempts for transmitting the packet. As a consequence, the delay will increase. Due to the

high number of nodes competing for the channel, the probability that an ACK collides with the transmission

of an update could be high. In case of collision the subject could retransmit the update. However, as specified

in [27] a subject should avoid retransmitting an update if a new one is available. Therefore a collision could

imply either an extra delay caused by retransmissions or the lost of the update.

110

(a)

(b).

Figure 57 Delay as a function of the delivery order. A) Persistence B) Best Effort

7.5.2. Delivery Ratio

Figure 58 shows the delivery ratio as a function of the delivery order. The values obtained refer to the

transmission of critical updates using persistence or best effort as reliability support. We define delivery ratio

as the probability that an observer receives an update correctly. We fix the retransmission timeout to 38 ms.

This value is equivalent to the sum of the average delay experienced in presence of a single observer and its

standard deviation. The retransmission timer is activated when the notification has been sent. Therefore it

does not consider the time required to generate it. The results reported in this test are only valid for WSN s

0

20

40

60

80

100

120

140

1
st

1st 2th 1st 2th3th 1st 2th3th4th 1st 2th3th4th5th 1st 2th3th4th5th6th

D
el

ay
 [m

s]

Delivery order

Critical

Non-Critical

0

20

40

60

80

100

120

140

1
st

1st2th 1st2th3th 1st2th3th4th 1st2th3th4th5th 1st2th3th4th5th6th

D
el

ay
 [m

s]

Delivery order

Critical

Non-Critical

111

adopting a star topology. We expect that the persistence mode will achieve better results in multi-hop

networks. The study of this topology is, however, out-of-the-scope of this evaluation.

The results demonstrate that observers notified with high or highest priority have also a high delivery

ratio. In persistence mode, an update sent with these priorities find a less congested channel and therefore has

less chance to collide with an ACK. Even if the update or ACK does not arrive correctly, the subject has more

time to retransmit it before a new one is ready. As mentioned above, an update is not retransmitted if a new

one is available and therefore it is considered as a lost packet. Updates sent in best effort yield a better

performance in terms of delivery ratio. Here, the subject is the only node transmitting packets and therefore it

does not compete for the channel. As a consequence, the channel is less congested and the probability of

collision is negligible. The performance reached in best effort is more suitable for an application domain as e-

health where having a reliable communication is of paramount importance.

Figure 58 Delivery ratio as a function of the delivery order. A delivery order based on priority allows guarantying high
delivery ration to observers requiring high priority.

7.5.3. Energy Consumption

Figure 59 shows the results obtained in the energy consumption test. This is focused to evaluate the energy

consumed by a subject when delivering critical or non-critical updates. The results of this test do not take into

account the energy consumed to listen the channel. The measures are only inherent to the energy consumed to

process, send and receive updates or acknowledgments. As a consequence, our evaluation does not need to

consider power-saving protocols for radio duty cycling. The energy is sampled each 0.02 ms. The device used

for these measures is the Agilent Technologies DC power Analyzer N67705A.

Updates sent in persistence mode involve a higher number of messages respect to those sent in best effort.

As a consequence, the subject consumes more energy. The increased consumption is due mainly to the energy

used by the radio chip to receive the ACK and, to a lesser extent by that consumed to process them. As one

0

10

20

30

40

50

60

70

80

90

100

1st 2th 3th 4th 5th 6th

D
el

iv
er

y
ra

ri
o

[%
]

Delivery order

Persistence

Best Effort

112

may expect, the subject consumes less energy when sends non-critical updates. In this sense, our proposal of

enabling an observer to choose which updates receive allows to reduce the energy consumption of the subject.

Regarding critical updates, the consumption is significantly reduced by avoiding sending all of them to those

observers that choose the QoS level 4.

Figure 59 Energy consumption of the subject. The subject saves energy by avoiding sending all the critical updates to all
observers.

7.6. Conclusions and Contributions

We have presented our novel proposal for adding QoS support for timeliness to the observe option of

CoAP. In this perspective, we have suggested the adoption of a simple update delivery mechanism based on

priority. The level of priority is requested by the observers. This level establishes the order in which the

subject sends an update. We have defined four level of priority. Each level is associated to a class of updates

that the observer wishes to receive. We have classified the updates as critical or non-critical. The subject is

the only authority able to distinguish the class of an update. At present, the definition of the observe option

leaves to the subject the decision of which updates send and in which order. This approach could have

limitations since it does not consider that observers could have different requirements. A subject could have

no information about the observers and, therefore, it would be unable to meet their requirements.

We run tests focused on evaluating the effects that our proposal has on a WSN adopting the observe

option. The tests are done in a real WSN. The requirements of the WSN application are those of an e-health

network used for monitoring the cardiac rate of a patient. The performance evaluation is done in terms of

delay, delivery ratio and energy consumption. The results confirm that the delivery order of an update

influences both the delay and delivery ratio. The first updates sent by a subject experience less delay and have

0

1

2

3

4

5

6

Critical notifications
including level 4

Critical notifications
excluding level 4

Non-Critical

E
n

er
gy

 C
on

su
m

p
ti

on
 [m

J]

Persistence

Best Effort

113

a high delivery ratio. A delivery order based on priority is therefore essential for providing on-time delivery to

observers requiring it. The energy consumption of the subject is considerably reduced if observers are able to

express the notification class of interest.

In conclusion, our proposal offers an effective solution for adding timeliness support to the observe

option. The priority-based delivery proposed allows to the observe option to work better with applications

with deadline requirements. Furthermore, our proposal is able to maintain the simplicity of the observe option

by requiring only two bits of its option value. These are used only when an observer registers its interest to a

subject. The option value of the subsequent updates is not affected by these bits.

From the results of the research presented in this chapter derives the paper Adding QoS support for

timeliness to the observe extension of CoAP that has been presented at the 8th IEEE International Conference

on Wireless and Mobile Computing, Networking and Communications (WiMob) [P7].

114

8. Conclusions and Future Works

During the course of this thesis we have studied various solutions that allow optimizing the application of

Web services in WSNs. Based on the constraints that characterize these networks, we identified some

important key areas that allow reducing the resource consumption as well as improving the performance.

These included the design of optimized embedded software solutions and that of communication techniques

for large data transactions. We analyzed Web service architectures and chosen the most appropriate for the

constraints of WSNs, which is REST. Based on this analysis, we reviewed the state-of-the-art of protocols

that allows implementing REST Web services. To this end, we adopted the IEEE 802.15.4 standard for the

physical and data-link layers, 6LoWPAN for the network layer and CoAP for the application layer.

We analyzed 6LoWPAN forwarding techniques and individuated their drawbacks when applied in

communications requiring packet fragmentation. We designed a novel 6LoWPAN forwarding technique able

to solve these limitations. In particular, we proposed to add control to MU forwarding by monitoring the

fragmentation header of the incoming fragments. This allowed ensuring the correct delivery order of the

fragments as well as the correctness of each one. In addition, this solution avoids forwarding fragments of

packets that cannot be reassembled. We referred to our proposal as CMU. We demonstrated through a

performance evaluation that CMU is able to enhance the performance of MU by reducing its packet loss and

end-to-end delay. In this evaluation, we also considered a forwarding technique based on RO, which

improved significantly the end-to-delay of RO at cost of augmenting its packet loss.

Our study on 6LoWPAN forwarding allowed identifying the criticality of 6LoWPAN fragmentation,

which we individuated into the lack of support for end-to-end reliability. The loss of a fragment would force

the retransmission of the entire fragmented packet, which has high costs in terms of bandwidth and energy

consumption. CoAP defines CoAP blockwise transfer to overcome the limitations of 6LoWPAN

fragmentation. We designed a novel analytical model for CoAP large data transactions in order to study and

analyze both techniques. This model included the effects of fragmentation on the contention level at MAC

layer and has been validated through Monte Carlo simulations. Both techniques have been compared in terms

of reliability and delay. The results obtained shown that 6LoWPAN fragmentation yields a better performance

in terms of delay. Both techniques had a good performance in terms of reliability with small difference

between them. However, CoAP blockwise transfer proved to be more reliable when the traffic conditions

cause a congestion of the WSN. 6LoWPAN fragmentation, instead, is preferable when the WSN is less

congested.

To the best of our knowledge, the model presented in this thesis is the first to evaluate and compare

analytically the performance of CoAP blockwise transfer and 6LoWPAN. Furthermore, it considers the

presence of both saturated and un-saturated traffic condition at MAC layer, which was not included in the

existing models of the 802.15.4 protocol.

In part of this thesis, we have designed and developed optimized software solutions for CoAP. To this end,

we presented our original library for TinyOS, which we referred to as TinyCoAP, and the design and

115

implementation of a CoAP proxy. In both cases we illustrated their design principles, described their

implementations and presented their evaluations.

We compared TinyCoAP to CoapBlip, which is the CoAP implementation distributed with TinyOS.

TinyCoAP proved to be able to reach a high code optimization and to reduce the impact over the memory of

WSN nodes. The evaluation included also the analysis of the reliability mechanism defined by CoAP, which

was still uncovered in the literature. As a novelty, we also compared CoAP with HTTP considering different

solutions for the transport layer protocol such as UDP and persistent TCP connections.

CoAP is still under standardization and its diffusion is limited. For the same reason, Web applications

with a dual HTTP-CoAP stack are not diffused. Therefore, it is of paramount importance the presence of

systems able to interconnect Web applications with IoT devices. With these considerations in minds, we

designed a CoAP proxy. It enables Web applications to transparently access the resources hosted in IoT

devices based on CoAP. The CoAP proxy supports long-lived communications by including the WebSocket

protocol. It also supports Web applications that use the traditional HTTP long-polling technique. Finally, one

of the main contributions of the proxy design is the proposal of a standard URI path format to be used by Web

applications to access to CoAP resources.

Our research on CoAP continued with the analysis of the observe option and its QoS support. Existing

QoS in the CoAP observe option supports reliability and, partially, timeliness. Regarding timeliness, the

observe option only allows to specify the validity of an update but not to guarantee its on-time delivery. This

approach is inefficient and does not consider applications that require the delivery of an update within a

deadline. With this limitation in mind, we have designed a novel mechanism to add QoS support for

timeliness in the observe option. This is based on a simple update delivery method based on priority. We

evaluated our proposal in a real WSN applied in an e-health application. The evaluation proved that the

delivery order influences both the delay and delivery ratio. In particular, we found that the first updates

experienced less delay and had a high delivery ratio, which proved the effectiveness of our proposal.

Furthermore, we were able to reduce the energy consumption allowing observers to express the class of

notifications that they wish to receive.

In conclusion, with this thesis we contributed to the analysis of IoT and WoT protocols and their effects

on the performance and resource consumption of WSNs. Due to the novelty of these protocols there is little

research over important problematic as large data transactions or uncovered evaluation of aspects such as QoS

support. To this end, WSN applications used in monitoring of critical domain field, i.e. e-health, can benefit

from our proposal for QoS support for timeliness. Furthermore, applications that require packet

fragmentation, i.e. those that works with data logging or data aggregation, can benefit from the proposed

forwarding mechanism as well as from the analytical analysis of CoAP blockwise transfer and 6LoWPAN

fragmentation. TinyCoAP, instead, contributes to overcome the limitations encountered in the CoAP

implementations of TinyOS. Finally, the design proposed for the CoAP proxy offers an effective solution for

interconnecting Web applications to CoAP devices. The use of different communication patterns provides

flexibility and allows the CoAP proxy to work in different application scenarios.

116

A deep analysis of the problematic related to the application of IoT and WoT paradigms in WSNs could

not be addressed in a single thesis. Therefore, the research conducted here constitutes the ground on which

design and develop the future of the IoT. Future developments of this thesis are individuated as:

 Cloud Computing: Considering the increasing presence of sensor devices and the huge amount of the

data they produces, the design and development of a platform based on cloud computing is of paramount

importance to manage the sensor nodes and process data. This platform could be an extension of our

work on CoAP proxy.

 Multi-radio devices: Progress in microelectronics is leading to a new generation of sensor devices which

can rely on less constrained hardware. This would affect also the wireless communications technology

that can be used in WSN. In this sense, a single sensor device could support multi-radio wireless

communication, i.e. Bluetooth, IEEE 802.11 and IEEE 802.15.4. The device, therefore, would be able to

switch between different wireless technology standard. Next generation protocols, therefore, should be

able to adapt dynamically to these changes. This thesis only considers the use of 6LoWPAN and CoAP

over single-radio devices. A future extension could be the optimization of these protocols in multi-radio

devices.

 Large data transaction in Multi-hop WSNs: The model presented in Chapter 4 can be extended to

analyse both 6LoWPAN fragmentation and CoAP blockwise transfer in multi-hop networks.

117

References	

Contributions	

Journal papers:

[P1] Ludovici, A.; Calveras, A.; Casademont, J. Forwarding Techniques for IP Fragmented Packets in a Real

6LoWPAN Network. Sensors 2011, 11, 992-1008.

[P2] Ludovici, A.; Moreno, P.; Calveras, A. TinyCoAP: A Novel Constrained Application Protocol (CoAP)

Implementation for Embedding RESTful Web Services in Wireless Sensor Networks Based on TinyOS. J.

Sens. Actuator Netw. 2013, 2, 288-315.

[P3] Ludovici, A.; Moreno, P.; Calveras, A.; Gimeno, X. A Proxy Design to Leverage the Interconnection of

CoAP Wireless Sensor Networks with Web Applications.

[P4] Ludovici, A.; Di Marco, P.; Calveras, A.; Johansson, K. H. Analytical model for large CoAP data

transactions.

Conference papers:

[P5] Ludovici, A.; Calveras, A. Implementation and evaluation of Multi-hop routing in 6LoWPAN. In

proceedings of the 9th conference of telematics engineering, pp. 123 -128, Valladolid, Spain, 29 September –

1 October 2010.

[P6] Ludovici, A.; Calveras, A. Integration of Wireless Sensor Networks in IP-based networks through Web

Services. In proceedings of 4th Symposium of Ubiquitous Computing and Ambient Intelligence, Valencia,

Spain, September 7-10, 2010.

[P7] Ludovici, A.; Garcia, E.; Gimeno, X.; Calveras Auge, A., Adding QoS support for timeliness to the

observe extension of CoAP," IEEE 8th International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob), pp.195-202, Barcelona, Spain, 8-10 Oct. 2012

118

Bibliography	

[1] Gershenfeld, N.; Krikorian, R.; Cohen, D. “The Internet of Things”. Scientific American, vol. 291, no. 4, pp. 76–81,

October 2004.

[2] Hoebeke, J.; Carels, D.; Ishaq, I.; Ketema, G.; Rossey, J.; Depoorter, E.; Demeester, P. “Leveraging upon standards

to build the Internet of Things”. In 2012 IEEE 19th Symposium on Communications and Vehicular Technology in the

Benelux (SCVT), (pp. 1-6).

[3] Bojkovic, Z.; Bakmaz, B.; Bakmaz, M. “Some Challenging Issues for Internet of Things Realization”. In Proc.12th

International Conference on Data Networks, Communications, Computers (DNCOCO'13), Limassol, Cyprus, March

2013, pp. 63-70.

[4] Zorzi, M.; Gluhak, A.; Lange, S.; Bassi, A. “From today's INTRAnet of things to a future INTERnet of things: a

wireless- and mobility-related view”. Wireless Communications, IEEE, vol.17, no.6, pp.44,51, December 2010

[5] Ishaq, I.; Carels, D.; Teklemariam, G.K.; Hoebeke, J.; Abeele, F.V.; Poorter, E.D.; Moerman, I.; Demeester, P.

“IETF Standardization in the Field of the Internet of Things (IoT): A Survey”. J. Sens. Actuator Netw.2013, 2, 235-

287.

[6] Palattella, M.; Accettura, N.; Vilajosana, X.; Watteyne, T.; Grieco, L.; Boggia, G.; Dohler, M., “Standardized

Protocol Stack for the Internet of (Important) Things”. Communications Surveys & Tutorials, IEEE, vol.PP, no.99,

pp.1,18, 2013

[7] Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. RFC 4944. Transmission of IPv6 Packets over IEEE 802.15.4

Networks.

[8] IEEE, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless

Personal Area Networks (LR-WPANs). In IEEE Standard 802.15.4-2006. Part 15.4; IEEE Computer Society: Los

Alamitos, CA, USA, 2006.

[9] IP for Smart Objects Alliance (IPSO). http://www.ipso-alliance.org/. (accessed on 07 April 2014)

[10] Stirbu, V. "Towards a restful plug and play experience in the web of things." Semantic computing, 2008 IEEE

international conference on. IEEE, 2008.

[11] Luckenbach, T.; Gober, P.; Arbanowski, S. “TinyREST - a Protocol for Integrating Sensor Networks into the

Internet”, In Proc. of REALWSN, 2005

[12] Fielding, R.T.; “Architectural Styles and the Design of Network-based Software Architectures”. University of

California, Irvine, 2000.

119

[13] Gudging, M.; Hadley, M.; Mendelsohn, N.; Moreau J.; Nielsen, H.F.; Karmarkar, A.; Lafon, Y. SOAP Version 1.2

Part 1: Messaging Framework (Second Edition). World Wide Web Consortium (W3C) Recommendation, April

2007.

[14] Bray, I. T.; Paoli, J.; Sperberg-McQueen, C.M. XML Extensible Markup Language 1.0. W3C Recommendation,

http://www.w3.org/TR/1998/REC-xml-19980210. (accessed on 07 April 2014).

[15] Fielding, R.T.; Gettys, J.; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P.; Berners-Lee, T. RFC 2616. Hypertext

Transfer Protocol -- HTTP/1.1.

[16] Christensen, E.; Curbera, F.; Meredith, G.; Weerawarana, S. Web Services Description Language (WSDL) 1.1. W3C

Recommendation, http://www.w3.org/TR/wsdl. (accessed on 07 April 2014).

[17] CoRE IETF Working Group; Available online: http://datatracker.ietf.org/wg/core/charter/ (accessed on 07 April

2014).

[18] Shelby, Z. “Embedded web services”. Wireless Communications, IEEE, vol.17, no.6, pp.52-57, December 2010 

[19] Shelby, Z.; Hartke, K.; Bormann, C.; Frank, B. Constrained Application Protocol (CoAP). draft-ietf-core-coap-18.

IETF Internet-Draft.

[20] Villaverde, B. C.; Pesch, D.; De Paz Alberola, R.; Fedor, S.; Boubekeur, M.; “Constrained Application Protocol for

Low Power Embedded Networks: A Survey”. Sixth IEEE International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing (IMIS), 2012, (pp. 702-707)..

[21] Bormann, C.; Castellani, A.P.; Shelby, Z. "CoAP: An Application Protocol for Billions of Tiny Internet

Nodes," Internet Computing, IEEE , vol.16, no.2, pp.62,67, March-April 201

[22] Chebrolu K.; Raman, B.; Mishra, N.; Valiveti, P. K.; Kumar. R.; “Brimon: a sensor network system for railway

bridge monitoring”. In Proceeding of the 6th international conference on Mobile systems, applications, and services,

Proceedings of The International Conference on Mobile Systems, Applications, and Services (MobiSys),

Breckenridge, CO, USA, 2008.

[23] Kim, S.; Pakzad, S.; Culler, D.; Demmel, J.; Fenves, G.; Glaser, S.; Turon, M.; “Health monitoring of civil

infrastructures using wireless sensor networks”. In Proceedings of the International Conference on Information

Processing in Sensor Networks (ACM/IEEE IPSN), pages 254–263, 2007

[24] Werner-Allen, G.; Lorincz, K.; Ruiz, M.; Marcillo, O.; Johnson, J.; Lees, J.; Welsh, M.; “Deploying a wireless sensor

network on an active volcano”. Internet Computing, IEEE, 10(2), 18-25, 2006.

[25] Mesrinejad, F.; Hashim, F.; Noordin, N.K.; Rasid, M. F A; Raja Abdullah, R.S.A., "The effect of fragmentation and

header compression on IP-based sensor networks (6LoWPAN),"17th Asia-Pacific Conference on Communications

(APCC), pp. 845-849, 2-5 Oct. 2011

120

[26] Bormann, C.; Shelby, Z. CoAP blockwise transfers in CoAP. draft-ietf-core-block-14. IETF Internet-Draft.

[27] Hartke, K.; Observing Resources in CoAP. draft-ietf-core-observe-11. IETF Internet-Draft.

[28] Levis, P.; Madden, S.; Polastre, J.; Szewczyk, R.; Woo, A.; Gay, D.; Hill, J.; Welsh, M.; Brewer, E.; Culler, D.

TinyOS: An Operating System for Sensor Networks. In Ambient Intelligence; Springer; Berlin, Germany, 2005; pp.

115–148.

[29] Mulligan, G. “The 6LoWPAN architecture”. In Proceedings of the 4th workshop on Embedded networked sensors

(EmNets '07). ACM, New York, NY, USA, 78- 82, 2007.

[30] Hui, J.; Culler, D.; "Extending IP to Low-Power, Wireless Personal Area Networks," IEEE Internet Computing, pp.

37-45, July/August, 2008

[31] Hui, J.; Culler, D. "IPv6 in Low-Power Wireless Networks", Proceedings of the IEEE , vol.98, no.11, pp.1865-1878,

Nov. 2010

[32] Kim, E.; Kaspar, D.; Gomez, C.; Bormann, C. , RFC6606, Problem Statement and Requirements for 6LoWPAN

Routing.

[33] Chowdhury, A.H; Ikram, M.; Cha, H.; Redwan, H.; Saif Shams, S.M.; Kim, K.; Yoo. S. “Route-over vs mesh-under

routing in 6LoWPAN”. In Proceedings of the 2009 International Conference on Wireless Communications and

Mobile Computing: Connecting the World Wirelessly (IWCMC '09). ACM, New York, NY, USA, 1208-1212.

[34] Hincapie, D.F.R.; Cespedes, S. "Evaluation of mesh-under and route-over routing strategies in AMI systems," 2012

IEEE Colombian Communications Conference (COLCOM), pp.1-6, 16-18 May 2012.

[35] Oliveira, L. M. L.; de Sousa, A. F.; Rodrigues, J. J. P. C. “Routing and mobility approaches in IPv6 over LoWPAN

mesh networks”. International Journal of Communication Systems, 2011.

[36] Zhu, Y. H.; Chen, G.; Chi, K.; Li, Y.; The Chained Mesh-Under Routing (C-MUR) for Improving IPv6 Packet

Arrival Rate over Wireless Sensor Networks. In Advances in Wireless Sensor Networks (pp. 734-743). Springer

Berlin Heidelberg, 2013.

[37] Bhunia, S.S.; Sikder, D.K.; Roy, S.; Mukherjee, N. "A comparative study on routing schemes of IP based wireless

sensor network". 9th International Conference Wireless and Optical Communications Networks (WOCN), on , vol.,

no., pp.1,5, 20-22 Sept. 2012

[38] Shelby, Z.; Bormann, C. “6LoWPAN: The Wireless Embedded Internet”. 1th ed.; John Wiley & Sons Ltd:

Chichester, UK, 2009; pp. 40-41.

[39] Hui, J. “An Extended Internet Architecture for Low-Power Wireless Networks— Design and Implementation”. PhD

Thesis, University of California, Berkeley, CA, USA, 2008; pp 85-87.

121

[40] Gopinath, R.S.; Khan, I.; Suryady, Z., "Optimized web service architecture for 6LoWPAN". International

Conference on Information Networking, ICOIN 2009, pp.1-3, 21-24 Jan. 2009

[41] Moritz, G.; Zeeb, E.; Golatowski, F.; Timmermann, D.; Stoll, R. "Web Services to improve interoperability of home

healthcare devices". 3rd International Conference on Pervasive Computing Technologies for Healthcare.

PervasiveHealth 2009, pp.1-4, 1-3 April 2009

[42] Lerche, C.; Laum, N.; Moritz, G.; Zeeb, E.; Golatowski, F.; Timmermann, D. "Implementing powerful Web Services

for highly resource-constrained devices". 9th IEEE International Conference on Pervasive Computing and

Communications Workshops (PERCOM Workshops), pp. 332-335, 21-25 March 2011

[43] Chan, S. et al. "Devices Profile for Web Services (DPWS) Specification". 2006.

[44] Groba H.; Clarke, S. "Web services on embedded systems - a performance study". 8th IEEE International Conference

on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp.726-731, March-April 2

2010 

[45] Guinard D.; Trifa V. “Towards the Web of Things: Web Mashups for Embedded Devices‖”. In Proc. Workshop

Mashups, Enterprise Mashups and Lightweight Composition on the Web (MEM '09), April 2009.

[46] Tolle, G. Embedded Binary HTTP (EBHTTP), draft-tolle-core-ebhttp-00, IETF Internet Draft.

[47] Dawson-Haggerty, S.; Jiang, X.; Tolle, G.; Ortiz, J.; Culler, D. “sMAP – a Simple Measurement and Actuation

Profile for Physical Information”. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor

Systems (SenSys’10), Zurich, Switzerland, 3-5 November 2010.

[48] Frank, B. Chopan - Compressed HTTP Over PANs, draft-frank-6lowapp-chopan-00, IETF Internet Draft.

[49] Lerche, C.; Hartke, K.; Kovatsch, M. “Industry Adoption of the Internet of Things: A Constrained Application

Protocol Survey”. In Proceedings of the 7th International Workshop on Service Oriented Architectures in

Converging Networked Environments (SOCNE 2012), Kraków, Poland, 17-21 September 2012.

[50] Kovatsch, M.; Duquennoy, S.; Dunkels, A. “A Low-Power CoAP for Contiki”. In Proceedings of Eighth IEEE

International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain, 17–22 October 2011; pp. 855–

860.

[51] Kuladinithi, K.; Bergmann, O.; Pötsch, T.; Beckera M.; Görg, C. “Implementation of CoAP and its Application in

Transport Logistics”. In Proceedings of Extending the Internet to Low power and Lossy Networks (IP+SN 2011),

Chicago, IL, USA, 11 April 2011.

[52] Castellani, A.P.; Gheda, M.; Bui, N.; Rossi, M.; Zorzi, M. “Web Services for the Internet of Things through CoAP

and EXI”. In Proceedings of IEEE International Conference on Communications Workshops (ICC), Kyoto, Japan, 5–

9 June 2011; pp 1–6.

122

[53] Potsch, T.; Kuladinithi, K.; Becker, M.; Trenkamp, P.; Goerg, C. “Performance Evaluation of CoAP Using RPL and

LPL in TinyOS”. In Proceedings of 5th International Conference on New Technologies, Mobility and Security

(NTMS), Istanbul, Turkey, 7–10 May 2012

[54] Harvan, M.; Schoenwaelder, J. TinyOS Motes on the Internet: IPv6 over 802.15.4 (6lowpan). Praxis der

Informationsverarbeitung und Kommunikation (PIK), 2008, 31, 244–251.

[55] Silva, R.; Sá Silva, J.; Boavida, F. “Evaluating 6LoWPAN Implementations in WSNs.” In Proceedings of the 9th

Conference on Computer Networks, Oeiras, Portugal, 15–16 October 2009.

[56] Yibo, C.; Hou, K.; Zhou, H.; Shi, H.; Liu, X.; Diao, X.; Ding, H.; Li, J.; De Vaulx, C. “6LoWPAN Stacks: A

Survey”. In Proceedings of 7th International Conference on Wireless Communications, Networking and Mobile

Computing (WiCOM), 2011, Wuhan, China, 23–25 September 2011; pp.1–4.

[57] Colitti, W.; Steenhaut, K.; De Caro, N.” Integrating Wireless Sensor Networks with the Web”. In Proceedings of

Extending the Internet to Low power and Lossy Networks (IP+SN 2011), Chicago, IL, USA, 11 April 2011.

[58] Colitti, W.; Steenhaut, K.; De Caro, N.; Buta, B.; Dobrota, V. “Evaluation of Constrained Application Protocol for

Wireless Sensor Networks”. In Proceedings of 18th IEEE International Workshop of Local and Metropolitan Area

Networks (LanMan), Chapel Hill, NC , USA, 13-14 October 2011.

[59] Duquennoy, S.; Wirstom, N.; Tsiftes, N.; Dunkels, A. “Leveraging IP for Sensor Network Deployment”. In

Proceedings of Extending the Internet to Low power and Lossy Networks (IP+SN 2011), Chicago, IL, USA, 11 April

2011.

[60] Chander, R.P.V.; Elias, S.; Shivashankar, S.; Manoj, P. “A REST based Design for Web of Things in Smart

Environments”. In Proceedings of 2nd IEEE International Conference on Parallel Distributed and Grid Computing

(PDGC), Waknaghat, Solan, Himachal Pradesh, India, 6–8 December 2012; pp. 337–342.

[61] Colitti, W.; Steenhaut, K.; De Caro, N.; Buta, B.; Dobrota, V. “REST Enabled Wireless Sensor Networks for

Seamless Integration with Web Applications”. IEEE 8th International Conference on Mobile Ad hoc and Sensor

Systems (MASS), pp.867-872, 17-22 Oct. 2011

[62] Young Ki, P.; Ngoc-Thanh, D.; Younghan, K. “A network monitoring system in 6LoWPAN networks”. Fourth

International Conference on Communications and Electronics (ICCE), pp.69-73, 1-3 Aug. 2012

[63] Bergmann, O.; Hillmann, K.T.; Gerdes, S. "A CoAP-gateway for smart homes." IEEE International Conference on

Computing, Networking and Communications (ICNC), 2012.

[64] Evangelatos, O.; Samarasinghe, K.; Rolim, J. “Syndesi: A Framework for Creating Personalized Smart Environments

using Wireless Sensor Networks”. Available online. http://www.hobnet-project.eu/files/papers/iotip2013.pdf

(accessed on 07 April 2014).

123

[65] Bandyopadhyay, S.; Bhattacharyya, S. “Lightweight Internet Protocols for Web Enablement of Sensors using

Constrained Gateway Devices”. 2013 International Conference on Computing, Networking and Communications,

Workshops Cyber Physical System.

[66] MQ Telemetry Transport, Available online: http://mqtt.org/ (accessed on 07 April 2014).

[67] Carvalho, N.; Araújo, F.; Rodrigues, L. “Scalable QoS-Based Event Routing in Publish-Subscribe Systems”, In Proc.

of the Fourth IEEE International Symposium on Network Computing and Applications (NCA 2005).

[68] Fengyun. C.; Jaswinder, P.S. Medym: match-early with dynamic multicast for content based publish-subscribe

networks”. In Proceedings of the ACM/IFIP/USENIX ’05 International Conference on Middleware, pages 292–313,

New York, NY, USA, 2005.

[69] Cugola, G.; Di Nitto, E.; Fuggetta, A. “The jedi event-based infrastructure and its application to the development of

the OPSS WFMS”, IEEE Transactions on Software Engineering, pages 827-850, 2001.

[70] Jacobsen, H.A.; Cheung, A.; Li, G.; Maniymaran, B.; Muthusamy, V.; Kazemzadeh, R.S. “The PADRES

Publish/Subscribe System” In Principles and Applications of Distributed Event-Based Systems, pages 164-205, IGI

Global, 2010.

[71] Gruber, B.; Krishnamurthy, E.; Panagos, E. “The architecture of the READY event notification service” Electronic

Commerce and Web-based Applications/Middleware, 1999. Proceedings. 19th IEEE International Conference on

Distributed Computing Systems Workshops on , pp.108-113, 1999.

[72] Pietzuch, P.R.; Bacon, J. “Hermes: A Distributed Event-Based Middleware Architecture”, Proceedings of the 22nd

International Conference on Distributed Computing Systems, p.611-618, July 02-05, 2002.

[73] Esposito, C.; Platania, M.; Beraldi, R. "Reliable and Timely Event Notification for Publish/Subscribe Services Over

the Internet," IEEE/ACM Transactions on Networking, vol. no.99, pp.1,1, 2013.

[74] Hunkeler, U.; Truong, H.L.; Stanford-Clark, A. “MQTT-S — A publish/subscribe protocol for Wireless Sensor

Networks”, COMSWARE 2008. 3rd International Conference on Communication Systems Software and Middleware

and Workshops, Jan 2008, pp 791-798.

[75] Davis, E.; Calveras, A.; Demirkol, I. “Improving Packet Delivery Performance of Publish/Subscribe Protocols in

Wireless Sensor Networks”. Sensors 2013, 13(1), 648-680.

[76] Sharifi, M.; Taleghan, M.A; Taherkordi, A. “A Publish-Subscribe Middleware for Real-Time Wireless Sensor

Networks”, International Conference on Computational Science; ICCS 2006, LNCS, 2006, Volume 3991/2006,

Page(s): 981-984.

124

[77] Sharifi, M.; Taleghan, M.A; Taherkordi, A. “A Middleware Layer Mechanism for QoS Support in Wireless Sensor

Networks”, International Conference on Systems and International Conference on Mobile Communications and

Learning Technologies, 2006. ICN/ICONS/MCL 2006, pp. 118, 23-29 April 2006.

[78] Chen, J.; Díaz, M.; Rubio, B.; Troya, J. M. “PS-QUASAR: A publish/subscribe QoS Aware Middleware for Wireless

Sensor and Actor Networks”. Journal of Systems and Software. (2013).

[79] Ketema, G.; Hoebeke, J.; Moerman, I.; Demeester, P.; Li Shi Tao; Jara, A.J. "Efficiently Observing Internet of

Things Resources”, IEEE International Conference on Green Computing and Communications (GreenCom), 2012,

pp.446,449, 20-23 Nov. 2012.

[80] Li, S. T, Conditional observe in CoAP, draft-li-core-conditional-observe-04, IETF Internet Draft.

[81] Sammarco, C.; Iera, A. “Improving Service Management in the Internet of Things”. Sensors 2012, 12, 11888-11909.

[82] Deering, S.; Hinden, R., RFC2460, Internet Protocol, Version 6 (IPv6) Specification;

[83] Hui, j.; Thubert, P, RFC 6282, Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks.

[84] Crossbow Technology Inc.; TelosB Datasheet; Available online: http://www.willow.co.uk/TelosB_Datasheet.pdf

(accessed on 07 April 2014).

[85] Blip; Available online: http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip (accessed accessed on 24 July 2013).

[86] Gay, D.; Levis, P.; Von Behren, R.; Welsh, M.; Brewer, E.; Culler, D. The nesC language: A holistic approach to

networked embedded systems. ACM SIGPLAN Not. 2003, 38, 1–11.

[87] Shelby, Z, RFC6990, CoRE Link Format. Levis, P. TinyOS Programming. Available online:

http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf (accessed on 07 April 2014).

[88] Lauwens, B.; Scheers, B.; Van de Capelle, A. Performance analysis of Unslotted CSMA/CA in wireless networks.

Telecommun. Syst. 2010, 44, 109–123.

[89] Paxson, V; Allman, M.; Chu, J.; Sargent, M., RFC6298, Computing TCP’s Retransmission Timer.

[90] Goyal, M.; Prakash, S.; Xie W.; Bashir, Y.; Hosseini, H.; Durresi, A. Evaluating the Impact of Signal to Noise Ratio

on IEEE 802.15.4 PHY-Level Packet Loss Rate. In Proceedings of 13th International Conference on Network-Based

Information Systems, Takayama, Japan, 14–16 September 2010.

[91] S. Duquennoy, G. Grimaud, J.H Vandewalle, "Consistency and scalability in event notification for embedded Web

applications," 11th IEEE International Symposium on Web Systems Evolution (WSE), pp.89,98, 25-26 Sept. 2009

[92] I. Fette; A. Melnikov, RFC 6455, The WebSocket Protocol.

[93] T. Berners-Lee, R. Fielding, L. Masinter, RFC 3986, Uniform Resource Identifier (URI): Generic Syntax.

[94] P. Leach, M. Mealling, R. Salz, RFC4122, A Universally Unique IDentifier (UUID) URN Namespace.

125

[95] A. Castellani, S. Loreto, A. Rahman, T. Fossati, E. Dijk, Best Practices for HTTP-CoAP Mapping Implementation.

draft-castellani-core-http-mapping-07, IETF Internet Draft.

[96] Z. Shelby, S. Krco, C. Bormann, CoRE Resource Directory, draft-shelby-core-resource-directory-05, IETF Internet

Draft.

[97] Lighttpd. Available online: http://www.lighttpd.net/ (accessed on 07 April 2014).

[98] Z. Shelby, S. Chakrabarti, E. Nordmark, C. Bormann, RFC 6775, Neighbor Discovery Optimization for IPv6 over

Low-Power Wireless Personal Area Networks (6LoWPANs).

[99] FastCGI. Available online: http://www.fastcgi.com/ (accessed on 07 April 2014)

[100] A. Shelby, RFC 6690, CoRE Link Format.

[101] M. Nottingham, RFC 5988, Web Linking.

[102] J. Åkerberg, M.M. Gidlund, M. Björkman, Future Research Challenges in Wireless Sensor and Actuator Networks

Targeting Industrial Automation, Proc. 9thIEEE Int’l Conf. Industrial Informatics (INDIN 11), IEEE Press, 2011,

pp. 410–415.

[103] O. Gama, P. Carvalho, J. Afonso, P. M. Mendes, “Quality of service in wireless e-emergency: main issues and a

case-study,” In proc. of 3rd UCAmI, Salamanca, Spain, Oct. 2008.

[104] Di Marco, P; Pangun, P.; Fischione, C.; Johansson, K.H.; “Analytical Modeling of Multi-hop IEEE 802.15.4

Networks”. IEEE Transaction on Vehicular Technology, vol 61, no.7, pp.3191-3208, September 2012

[105] Jianliang Gao; Jia Hu; Geyong Min, "Performance Modelling of IEEE 802.15.4 MAC in LR-WPAN with Bursty

ON-OFF Traffic," Computer and Information Technology, 2009. CIT '09. Ninth IEEE International Conference on,

vol.2, no., pp.58-62, 11-14 Oct. 2009

