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Introduction

Celestial mechanics has been a continuous source of inspiration of the main problems arising in
dynamical systems. Particularly, the phenomenon of chaos and the existence of homoclinic orbits
appears for the first time in the memory of Poincaré about the stability of the three body problem
[Hen90], where the first exponentially small splitting of separatrices was computed.

In this memory we deal with the elliptic restricted three body problem (ERTBP) which appears
in a natural way to study global instability, since it has two and a half degrees of freedom. The
global instability, commonly known as diffusion, or better said, Arnold diffusion, from the pioneer
work of Arnold in 1964 [Arn64], has been studied in the ERTBP in several settings, or more
precisely, in several zones of the phase space. Capinsky & Zgliczynski have studied the instability
in this problem, close to librations points in [CZ11] following previous work of Llibre & Simó
[LS80b] and Llibre, Martinez & Simó [LMS85] for the existence of transversal homoclinic orbits in
the classical circular restricted three body problem (CRTBP), as well as Bolotin close to collision
[Bol06], Xia has studied micro-diffusion in the ERTBP [Xia93]. Recently, diffusion along mean
motion resonances in the ERTBP model for Sun-Jupiter-asteroid systems has been proven by
Fejoz, Guardia, Kaloshin & Roldán in [FGKR14]

In the last years, there have bee several mechanisms used to prove diffusion, like variational
and geometrical methods. This memory is based on the application of geometrical methods,
which are based on the existence of a scattering map associated to a normally hyperbolic invariant
manifold (NHIM) in the phase space [DdlLS08, DGdlLS08]. In such cases, both the inner dynamics
inside the NHIM as well as the outer dynamics provided by the scattering map, are combined to
design diffusing pseudo-trajectories, consisting on invariant tori plus their transversal heteroclinic
connections, that is, transition chains in Arnold’s language.

In this memory we deal with the existence of diffusion orbits of the ERTBP whose angular
momentum increases. Those orbits correspond to motions where the comet moves far from the
primaries and comes back many times, increasing at each turn its angular momentum by a small
amount.

The ERTBP is a Hamiltonian system of two and a half degrees of freedom. The so-called
manifold of infinity can be seen, after a suitable change of variables provided by McGehee in
[McG73], as a three dimensional invariant manifold in the extended phase space which behaves
topologically as a NHIM, although it is of parabolic type. This means that the rate of approach and
departure from it along its invariant manifolds is polynomial in time, instead of exponential-like
as happens in a standard NHIM. On the other hand, the inner dynamics is very simple, since it
is formed by a two-parameter family of 2π-periodic orbits in the 5D extended phase space which
correspond to constant solutions in the 4D phase space. As a consequence, the stable and unstable
manifold of the infinity manifold are union of the stable and unstable manifolds of its periodic
orbits, and as long as these manifolds intersect along transversal heteroclinic orbits, the scattering
map can be defined. Unfortunately, since the inner dynamics of the infinity manifold is so simple,
the classical mechanisms of diffusion, consisting of combining the inner and outer dynamics, do
not work here. Instead, as a novelty, we will be able to find two different scattering maps which
will be combined in a suitable way to provide orbits whose angular momentum increases.

The main difficulty of this work is the asymptotic computation, for the mass parameter and
eccentricity small enough and big enough angular momentum, of two different scattering maps.
This computation relies on the computation of a Melnikov function which is very complicated in
this problem. The first computation of this Melnikov function was done for the CRTBP in [LS80a]
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which was later corrected and carried out formally for the ERTBP in [MP94]. In both works, one
can realize the massive amount of computations required.

In Chapter 2 of this memory, we provide a rigorous computation of the so-called Melnikov
potential, with asymptotics and rigorous bounds for the errors for some range of the parameters
µ (mass parameter), e0 (eccentricity of the primaries) and G0 (angular momentum of the comet).
More precisely, the results presented here, are valid for G0 big enough, e0G0 bounded and µ small
enough.

In Chapter 1, the problem is introduced, as well as the main geometrical objects which play
a role in the diffusion mechanism. Particularly, the infinity manifold, its stable and unstable
manifolds and the two independent scattering maps as well as the asymptotic formulas for them.
The combination of both of them lead to theorem 1.15 for e0G0 = λ small, and theorem 1.16 for
e0G0 = λ finite, at the end of the chapter.

As a final comment, there are at least three remaining tasks that would complete or extend the
research on this problem. First, to compute the Melnikov potential for fixed 0 < e0 < 1 and G0

big enough. Secondly, analogously as it is done in [GMMS12], to prove that a similar formula for
the scattering map holds for 0 < µ ≤ 1/2. Finally, one needs a suitable shadowing lemma for the
infinity manifold, which as already has been said, it is not a genuine NHIM.
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Chapter 1

Main results

1.1 Preliminars

As in the classical setting of the restricted three body problem, consider a particle with zero mass
that moves in the plane generated by the dynamics of two point masses called primaries. It is a
well known fact that the primaries move over an ellipse with a focus in the center of mass and with
certain eccentricity that we will call e0. If we fix a coordinate reference system with the origin
at the center of mass and call q1 and q2 the position of the primaries, then under the classical
assumptions regarding time units, distance and masses normalization, the motion of the third
particle whose position we will call q is given by

d2q

dt2
=

(1− µ)(q1(t, e0)− q)

|q1(t, e0)− q|3 +
µ(q2(t, e0)− q)

|q2(t, e0)− q|3 (1.1)

where 1− µ is the mass of the particle at q1 and µ the mass of the particle at q2. If we introduce
the conjugate momenta p = dq/dt and the self-potential function (see [MHO09, p. 28])

Uµ(q, t; e0) =
1− µ

|q − q1(t, e0)|
+

µ

|q − q2(t, e0)|
(1.2)

This equation can be rewritten as a Hamiltonian system with Hamiltonian

Hµ(q, p, t; e0) =
p2

2
− Uµ(q, t; e0). (1.3)

This is a time-periodic Hamiltonian of two and a half degrees of freedom.
By the first Kepler law the distance between the primaries (see [Win41, p. 194-195]) is given

by

r0(t) =
1− e20

1 + e0 cos f
(1.4)

where f is the so called true anomaly (see [Win41, p. 203], [MP94, p. 303]), which satisfies

df

dt
=

(1 + e0 cos f)
2

(1− e20)
3/2

. (1.5)

or also by
r0(t) = 1− e0 cosE (1.6)

in terms of the eccentric anomaly E, given by the Kepler equation (see [Win41, p. 195])

t = E − e0 sinE. (1.7)
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1.2 Changes of coordinates and setting of the problem

Because of the nature of the problem we are dealing with, it will be better to perform a polar-
simplectic change of variables, to the Hamiltonian (1.3) say

X = r cosα (1.8a)

Y = r sinα (1.8b)

where q = (X,Y ). Now, we look for conjugate momenta Pr and Pα so that the change

(X,Y, PX , PY )
ϕ−→ (r, α, Pr , Pα) (1.9)

is canonical. Following [Gol65], we get:

PX = Pr cosα− Pα

r
sinα (1.10a)

PY = Pr sinα− Pα

r
cosα. (1.10b)

In this way, the change of variables (1.10) is simplectic and the equations of motion in the new
coordinates are the associated to the Hamiltonian

H∗
µ = Hµ(ϕ(Q), t; e0)

that we will write as

H∗
µ(r, α, Pr , Pα, t; e0) =

P 2
r

2
+

P 2
α

2r2
− U∗

µ(r, α, t; e0) (1.11)

and U∗
µ defined by

U∗
µ(r, α, t; e0) = Uµ(r cosα, r sinα, t; e0). (1.12)

In this notation, the primaries are

q2 = q2(t, e0) = −rJ(t, e0)(cos f(t, e0), sin f(t, e0)) (1.13a)

q1 = q1(t, e0) = rS(t, e0)(cos f(t, e0), sin f(t, e0)). (1.13b)

where
rJ (t, e0) = (1− µ)r0(t), rS(t, e0) = µr0(t)

and
|q − q2|2 = r2 + 2(1− µ) r0(t) r cos(α− f) + (1− µ)2[r0(t)]

2,

|q − q1|2 = r2 − 2µ [r0(t)] r cos(α− f) + µ2[r0(t)]
2.

From now on we will write
G = Pα, y = Pr.

and then Hamiltonian (1.11) reads

H∗
µ(r, α, y,G, t; e0) =

y2

2
+

G2

2r2
− U∗

µ(r, α, t; e0)

with U∗
µ defined in (1.12).
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1.2.1 McGehee coordinates

To study the behavior of orbits near infinity, we make to the Hamiltonian equations of Hamiltonian
H∗

µ(r, α, y,G, t; e0) the non-canonical change of variables:

r =
2

x2
(1.14)

to we get the so called McGehee coordinates (see [MP94] y [McG73]). Defining

Uµ(x, α, t; e0) = U∗
µ(2/x

2, α, t; e0) (1.15)

the equations associated to (1.11) become:

ẋ = −1

4
x3y ẏ =

1

8
G2x6 − x3

4

∂Uµ

∂x
(1.16a)

α̇ =
1

4
x4G Ġ =

∂Uµ

∂α
(1.16b)

where

Uµ(x, α, t; e0) =
x2

2

(
1− µ

σ1
+

µ

σ2

)
(1.17)

and

σ2
1 = 1− z1x

2 cos(α− f) +
1

4
z21x

4, z1 = µr0(t),

σ2
2 = 1 + z2x

2 cos(α− f) +
1

4
z22x

4, z2 = (1− µ)r0(t),

It is important to notice that f is present in these equations, and then, becomes necessary to
add the equation for f given in (1.5) in order to have the complete description of the dynamics.
Equations (1.16) were obtained in [MP94].

Hamiltonian structure

Proposition 1.1 (quasi-Hamiltonian structure). If Hµ is defined by

Hµ(x, α, y,G, t; e0) =
y2

2
+

x4G2

8
− Uµ(x, α, t; e0), (1.18)

and U is given in (1.17), the equations (1.16) can be written as

ẋ = −x3

4

(
∂Hµ

∂y

)
ẏ = −x3

4

(
−∂Hµ

∂x

)
(1.19a)

α̇ =
∂Hµ

∂G
Ġ = −∂Hµ

∂α
(1.19b)

Therefore, equations (1.19) are in fact Hamiltonian with symplectic (non-canonical) form as-
sociated:

ω(z)(u,v) = uTJ−Tv (1.20)

where J = JD with D = diag(−x3/4, 1,−x3/4, 1) and J the symplectic matrix

J =

(
0 I2

−I2 0

)
.

As in the classical theory we can write equations (1.19) in terms of the Poisson bracket

{{f, g}}(z) = ∇f(z)T J ∇g(z)

= −x3

4

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
+

∂f

∂α

∂g

∂G
− ∂f

∂G

∂G

∂α
(1.21)
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1.3 Invariant manifolds

In order to analyze the structure of system (1.19), we will write Hµ given in (1.18) as

Hµ(x, α, y,G, t; e0) = H0(x, y,G) + µU∗
µ(x, α, t; e0) (1.22)

or equivalently we write Uµ in (1.18) as

Uµ(x, α, t; e0) = U0(x) + µU∗
µ(x, α, t; e0) =

x2

2
+ µU∗

µ(x, α, t; e0) (1.23)

and then study the dynamics as a perturbation of the limit case µ = 0. From (1.23),

U∗
0 (x, α, t; e0) = lim

µ→0

1

µ

(
Uµ(x, α, t; e0)−

x2

2

)

=
x2

[
4 + x4r20 + 4x2r0 cos(α − f)

]1/2 +
(x2

2

)2
r0 cos(α− f)− x2

2
(1.24)

1.3.1 The limit case µ = 0

In this case, the Hamiltonian given in (1.18) becomes

H0(x, α, y,G) =
y2

2
+

x4G2

8
− U0(x)

=
y2

2
+

x4G2

8
− x2

2
(1.25)

As the system is autonomous H0 is a first integral. Moreover, H0 is independent of e0 and α. The
equations associated to Hamiltonian (1.25) are

ẋ = −1

4
x3y ẏ =

1

8
G2x6 − 1

4
x4 (1.26a)

α̇ =
1

4
x4G Ġ = 0 (1.26b)

where it is clear that G is a conserved quantity.
The level curves of H0 are represented in Figure 1.1 for G fixed and H0 = h.

x

y

h = 0

h > 0

h < 0

Figure 1.1: Level curves of H0

First, the phase space is given by

(x, α, y,G) ∈ R× T× R
2.

From equations (1.26) it is clear that

E = {z = (x, α, y,G) ∈ R× T× R× R+; x = 0} (1.27)

is the set of equilibrium points of the system. Moreover, for any
fixed α0 ∈ T, G0 ∈ R,

Λα0,G0
= {(0, α0, 0, G0)}

is a parabolic critical point with stable and unstable 1-
dimensional invariant manifolds:

γα0,G0
= Wu(Λα0,G0

) = W s(Λα0,G0
)

=

{
z = (x, α0, y, G0), H0(x, y,G0) = 0, α = α0 −G0

∫

H0=0

x

y
dx

}
.
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In a natural way, we define the 2-dimensional manifold

Λ∞ =
⋃

α0,G0

Λα0,G0
,

which is a “normally parabolic” invariant manifold with stable and unstable 3-dimensional invariant
manifolds

γ = Wu(Λ∞) = W s(Λ∞)

= {z = (x, α, y,G), H0(x, y,G) = 0}.

As we will deal with a periodic in time Hamiltonian, let us work in the extended phase space

z̃ = (z, s) = (x, α, y,G, s) ∈ R× T× R
2 × T

just by adding the equation ṡ = 1 to the systems (1.19) and (1.26). Now we are going to write the
extended version of the invariant sets we have defined so far. For any α0 ∈ T, G0 ∈ R, the set

Λ̃α0,G0
= {z̃ = (0, α0, 0, G0, s0), s0 ∈ T} (1.28)

is a 2π-periodic orbit with motion determined by ṡ = 1.
The manifold

γ̃α0,G0
= Wu(Λ̃α0,G0

) = W s(Λ̃α0,G0
)

=

{
z = (x, α0, y, G0, s0), s0 ∈ T, H0(x, y,G0) = 0, α = α0 −G0

∫

H0=0

x

y
dx

}
.

is a 2-dimensional homoclinic manifold to the periodic orbit Λ̃α0,G0
. On the other hand we can

construct the 3-dimensional invariant manifold

Λ̃∞ =
⋃

α0,G0

Λ̃α0,G0
= {(0, α0, 0, G0, s0), (α0, G0, s0) ∈ T× R× T}. (1.29)

As the motion for points in Λ̃∞ is given by the dynamics on each Λ̃α0,G0
, taking

x̃0 = x̃0(α0, G0, s0) = (0, α0, 0, G0, s0) ∈ Λ̃∞ ≃ R× T
2

the inner dynamics on Λ̃∞ (see [DdlLS06]) is trivial:

φ̃t,0(x̃0) = (0, α0, 0, G0, s0 + t) = x̃0(α0, G0, s0 + t) ∈ Λ̃∞. (1.30)

The 4-dimensional stable and unstable manifolds of Λ̃∞ coincide along the 4-dimensional ho-
moclinic invariant manifold

γ̃ = Wu(Λ̃∞) = W s(Λ̃∞)

= {(x, α, y,G, s), (α,G, s) ∈ T× R× T, H0(x, α, y,G) = 0} (1.31)

It is possible to parameterize γ̃α0,G0
by the solutions of the Hamiltonian flow contained in

H0 = 0 in some time τ satisfying (see [MP94] )

dt

dτ
=

2G

x2
.

So that, the homoclinic solution to the periodic orbit Λ̃α0,G0
of the system (1.26) can be written

as

xh(t;G0) = x̃h(τ ;G0) (1.32a)

αh(t;α0, G0) = α0 + π + α̃h(τ ;G0) (1.32b)
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yh(t;G0) = ỹh(τ ;G0) (1.32c)

Gh(t;G0) = G0 (1.32d)

where α0 and G0 are free parameters and the relation

t =
G3

0

2

(
τ +

τ3

3

)
(1.33)

holds. The equations (1.32) are explicitly, in τ -time, given by

x̃h(τ ;G0) =
2

G0(1 + τ2)1/2
, α̃h(τ) = 2 arctan(τ), ỹh(τ ;G0) =

2τ

G0(1 + τ2)
. (1.34)

With this in mind, we have that taking

z̃0 = z̃0(ν, α0, G0, s0)

= (z0(ν, α0, G0), s0)

= (xh(ν;G0), αh(ν;α0, G0), yh(ν;G0), G0, s0) ∈ γ̃ (1.35)

we can write

γ̃α0,G0
= {z̃0 = (xh(ν;G0), αh(ν;α0, G0), yh(ν;G0), G0, s0), ν ∈ R, s0 ∈ T}.

Finally γ̃ can be seen as a union of homoclinic orbits to Λ̃∞ (homoclinic manifold).

γ̃ =
⋃

α0,G0

γ̃α0,G0

and then we can parameterize the 4-dimensional homoclinic manifold as

γ̃ = W (Λ̃∞) = {(xh(ν;G0), αh(ν;α0, G0), yh(ν;G0), G0, s0), ν ∈ R, G0 ∈ R, (α0, s0) ∈ T
2}. (1.36)

and the motion in γ̃ is given by

φ̃t,0(z̃0) = (xh(ν + t;G0), αh(ν + t;α0, G0), yh(ν + t;G0), G0, s0 + t) ∈ γ̃.

1.3.2 The case µ 6= 0

In the general case, we should note some things regarding the manifolds defined in section 1.3.1.
First of all the set E remains invariant and, therefore, so does Λ̃∞, being again a “normally parabolic
invariant manifold”, and the periodic orbits Λ̃α0,G0

persist. The inner dynamics on Λ̃∞, that is
the flow restricted to it is also trivial

(α0, G0, s0) → (α0, G0, s0 + t). (1.37)

1.4 Melnikov potential for the parabolic orbits

From [McG73] we know that W s
µ(Λ̃∞) and Wu

µ (Λ̃∞) exist for µ small enough and are 4-dimensional
in the extended space. The classical geometric Melnikov method to find the first order approxima-
tion to the distance between the perturbed manifolds will work in this case because both manifolds
have co-dimension one, and then, a normal vector to γ̃ will intersect Wu

µ (Λ̃∞) and W s
µ(Λ̃∞) for µ

small enough.
Let us take z̃0 = (z0, s0) = (z0(ν, α0, G0), s0) ∈ γ̃ as in (1.35). Now, we have to construct points

in W s
µ(Λ̃∞) and Wu

µ (Λ̃∞) to measure the distance between them. It is clear from the definition of
γ̃ that

v = (∇H0(z0), 0)
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is orthogonal to γ̃ = Wu(Λ̃∞) = W s(Λ̃∞) and then if the normal bundle is defined by

N(z̃0) = {z̃0 + σ v, σ ∈ R}

we have that there exist unique points z̃u,sµ = (zu,sµ , s0) such that

{z̃u,sµ } = Wu,s
µ (Λ̃∞) ∩N(z̃0). (1.38)

The distance we want to compute is the signed magnitude given by

d(z̃0, µ) = H0(z̃
u
µ)−H0(z̃

s
µ). (1.39)

Define (see [DdlLS06])

L(α0, G0, t0; e0) =

∫ ∞

−∞
U∗
0 (xh(s;G0), αh(s;α0, G0), s+ t0; e0) ds (1.40)

which is a convergent integral because of formulas (1.32)-(1.34), and

U∗
0 (x, α, s; e0) = O(x2) as x → ∞

Proposition 1.2. Given (α0, G0, s0) ∈ T× R
+ × T assume that the function

ν ∈ R −→ L(α0, G0, s0 − ν; e0) ∈ R (1.41)

has a non-degenerate critical point ν∗ = ν∗(α0, G0, s0; e0). Then for 0 < µ small enough, there
exists a locally unique point

z̃∗ = z̃∗(ν∗, α0, G0, s0;µ) ∈ W s
µ(Λ̃∞) ⋔ Wu

µ (Λ̃∞)

of the form
z̃∗ = z̃∗0 +O(µ)

where z̃∗0 = (xh(ν
∗;G0), αh(ν

∗;α0, G0), yh(ν
∗;G0), G0, s0) ∈ γ̃. Also, there exist unique points

z̃± = (0, α±, 0, G±, s0) = (0, α0, 0, G0, s0) +O(µ) ∈ Λ̃∞ such that

φt,µ(z̃
∗)− φt,µ(z̃±) → 0 for t → ±∞ (1.42)

Then, we have

G+ −G− = µ
∂L
∂α0

(α0, G0, s0 − ν∗(α0, G0, s0)) +O(µ2).

Proof. From equation (1.35) we know that any point z̃0 ∈ γ̃ have the form

z̃0 = z̃0(ν, α0, G0, s0).

As we have seen in (1.38)

z̃u,sµ = (z̃u,sµ , s0) ∈ Wu,s
µ (Λ̃∞) ∩N(z̃0).

We are looking for z̃0 such that z̃sµ = z̃uµ. From this, there must exist points z̃± = (z̃±, s0) ∈ Λ̃∞
such that

φt,µ(z̃
s,u
µ )− φt,µ(z̃±) −−−−→

t→±∞
0, (1.43)

moreover φt,µ(z̃
s,u
µ ) − φt,0(z̃0) = O(µ) (see [McG73]). Since H0 does not depend on time, by the

chain rule we have that

d

dt
H0(φt,µ(z̃

s,u
µ )) = {{H0,Hµ}}(φt,µ(z̃

s,u
µ )) = µ{{H0,U∗

µ}}(φt,µ(z̃
s,u
µ )).

11



Since H0 = 0 in Λ̃∞, using (1.43) and the trivial dynamics on Λ̃∞ we obtain

H0(z̃
s,u
µ ) = −µ

∫ ±∞

0

{{H0,U∗
µ}}(φs,µ(z̃

s,u
µ )) ds.

Finally, using Taylor’s series in µ,

H0(z̃
u
µ)−H0(z̃

s
µ) = µ

∫ ∞

−∞
{{H0,U∗

0 }}(φt,0(z̃0)) dt+O(µ2)

= µ

∫ ∞

−∞
{{H0,U∗

0 }}(xh(ν + t;G0), αh(ν + t;α0, G0), yh(ν + t;G0), G0, s0 + t) dt+O(µ2)

On the other hand, from (1.40),

L(α0, G0, t0; e0) =

∫ ∞

−∞
U∗
0 (xh(s− t0;G0), αh(s− t0;α0, G0), s; e0) ds

and then

∂L
∂t0

(α0, G0, t0; e0) = −
∫ ∞

−∞
{{U∗

0 ,H0}}(xh(s− t0;G0), αh(s− t0;α0, G0), yh(s− t0;G0), G0, s) ds

=

∫ ∞

−∞
{{H0,U∗

0 }}(xh(s− t0;G0), αh(s− t0;α0, G0), yh(s− t0;G0), G0, s) ds

so that

∂L
∂t0

(α0, G0, s0 − ν; e0) =

∫ ∞

−∞
{{H0,U∗

0 }}(xh(s− s0 + ν;G0), αh(s− s0 + ν;α0, G0), yh(s− s0 + ν;G0), G0, s) ds

=

∫ ∞

−∞
{{H0,U∗

0 }}(xh(t+ ν;G0), αh(t+ ν;α0, G0), yh(t+ ν;G0), G0, s0 + t) dt

and therefore

d(z̃0, µ) = H0(z̃
u
µ)−H0(z̃

s
µ) = µ

∂L
∂t0

(α0, G0, s0 − ν; e0) +O(µ2)

Now, it is clear by the implicit function theorem, for µ small enough, that a non degenerate critical
value ν∗ of the function (1.41) gives rise to homoclinic points to Λ̃∞ where the manifolds W s

µ(Λ̃∞)

and Wu
µ (Λ̃∞) intersect transversally that have the desired form z̃∗ = z̃∗0 +O(µ).

Consider now the solution of the system (1.19) represented by φt,µ(z̃
∗). Moreover, by the

fundamental theorem of calculus and the definition (1.18) we have

G+ −G− = −
∫ ∞

−∞

∂Hµ

∂α
(φt,µ(z̃

∗)) dt =

∫ ∞

−∞

∂Uµ

∂α
(φt,µ(z̃

∗)) dt

= µ

∫ ∞

−∞

∂U∗
0

∂α
(φt,0(z̃

∗
0)) dt+O(µ2)

= µ

∫ ∞

−∞

∂U∗
0

∂α
(xh(ν

∗ + t;G0), αh(ν
∗ + t;α0, G0), yh(ν

∗ + t;G0), G0, s0 + t) dt+O(µ2)

= µ
∂L
∂α

(α0, G0, s0 − ν∗; e0) +O(µ2).

Once we have found a critical point ν∗ of (1.41) we define the reduced Poincaré function (see
[DdlLS06])

L∗(α0, G0; e0) := L(α0, G0, s0 − ν∗; e0) (1.44)
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The scattering map

The scattering map S is defined from the manifold Λ̃∞ (defined in (1.29)) to itself. Take z̃−, z̃+ ∈
Λ̃∞, then

Sµ(z̃−) = z̃+

if there exist z̃∗ ∈ Wu
µ (Λ̃∞) ⋔ W s

µ(Λ̃∞) such that

φt,µ(z̃
∗)− φt,µ(z̃±) → 0 for t → ±∞. (1.45)

In the case µ = 0 we have that γ̃ = Wu(Λ̃∞) = W s(Λ̃∞) implies that the scattering map S0 is the
identity. Indeed, for a generic point

x̃0 = (0, α0, 0, G0, s0) ∈ Λ̃∞

we have S0(x̃0) = x̃0. To see this, take

z̃0 = (xh(ν;G0), αh(ν;α0), yh(ν;G0), G0, s0) ∈ γ̃

then by equations (1.32), (1.33) and (1.34)

φt,0(z̃0)− φt,0(x̃0) =

(xh(t+ ν;G0), αh(t+ ν;α0), yh(t+ ν;G0), G0, t+ s0)− (0, α0, 0, G0, t+ s0) −−−−→
t→±∞

0

wich proves that S0 = Id.
The next proposition gives an approximation of the scattering map in the general case µ 6= 0

Proposition 1.3. The scattering map Sµ associated to the non degenerate critical point ν∗ of the
function defined in (1.41) is given by

(0, α−, 0, G−, s−) 7−→
(
0, α−+µ

∂L∗

∂G
(α−, G−; e0)+O(µ2), 0, G−−µ

∂L∗

∂α
(α−, G−; e0)+O(µ2), s−

)

where L∗ is the Poincaré reduced function introduced in (1.44).

Proof. By hypothesis we have a non degenerate critical point ν∗ of (1.41), by using definition
(1.44) the proposition 1.2 gives the correspondence we look for between G− and G+. Finally, the
equation

α+ − α− = −µ
∂L∗

∂G
(α0, G0, t

∗
0) +O(µ2)

is a direct consequence of the fact that L∗ is symplectic, as shown in [DdlLS08].
Since we know that for all time,

φt,µ(z̃
∗) = φt,0(z̃

∗
0) +O(µ),

denoting G(φt,µ(z̃
∗)) and α(φt,µ(z̃

∗)) the G and α coordinate of φt,µ(z̃
∗) we have

G± = lim
t→±∞

G(φt,µ(z̃
∗)) = G0 +O(µ)

α± = lim
t→±∞

α(φt,µ(z̃
∗)) = α0 +O(µ).

Using that G− = G0 +O(µ) and α− = α0 +O(µ) we get the required formula which completes
the proof.

Next proposition concerns the circular case e0 = 0

Proposition 1.4. If e0 = 0 and ν∗ = ν∗(α0, G0, s0) ∈ R is such that ∂L/∂t0 (α0, G0, s0−ν∗; 0) = 0
then

∂L
∂α0

(α0, G0, s0 − ν∗; 0) = 0,

that is
∂L∗

∂α0
(α0, G0; 0) = 0.

13



Proof. From the equation (1.40) we have that

0 =
∂L
∂t0

(α0, G0, s0 − ν∗; e0)

=

∫ ∞

−∞

∂U∗
0

∂t
(xh(s;G0), αh(s;α0, G0), yh(s;G0), G0, s+ s0 − ν∗; e0) ds. (1.46)

on the other hand, in the circular case e0 = 0, formulas (1.4) and (1.6) give r0 = 1 and f = t in
the self potential (1.17), so that Uµ only depends on α and t through the combination α − t and
therefore

∂U∗
µ

∂α
(x, α, t; 0) = −∂U∗

µ

∂t
(x, α, t; 0).

Then equation (1.46) reads

0 =
∂L
∂t0

(α0, G0, s0 − ν∗; 0)

= −
∫ ∞

−∞

∂U∗
0

∂α
(xh(s;G0), αh(s;α0, G0), yh(s;G0), G0, s+ s0 − ν∗; 0) ds

= − ∂L
∂α0

(α0, G0, s0 − ν∗; e0) (by equation (1.32b) and the chain rule) .

By this proposition, if there exists a heteroclinc connection in the circular case, between two
periodic orbits Λ̃α−,G−

and Λ̃α+,G+
in Λ̃∞ introduced in (1.28), G+ = G− +O(µ2) by proposition

1.3. But indeed G+ = G− in the circular case, since there exists the first integral provided by the
Jacobi constant CJ = Hµ + G and as Hµ = 0 on Λ̃α−,G−

and Λ̃α+,G+
, G+ = G−. Therefore in

the circular case there is no possibility to find diffusive orbits studying the intersection of W s
µ(Λ̃∞)

and Wu
µ (Λ̃∞) since by proposition 1.3 the angular momentum remains constant.

From the definition of L given in (1.40) and equation (1.24) we get

L(α0, G0, t0; e0) =

∫ ∞

−∞

[
x2
h[

4 + x4
h[r0(t)]

2 + 4x2
h[r0(t)] cos(αh − f)

]1/2

+
(x2

h

2

)2
[r0(t)] cos(αh − f)− x2

h

2

]
dt (1.47)

where xh and αh are coordinates of the homoclinic orbit defined in (1.32) whereas r0 and f defined
in (1.4) and (1.5) and are evaluated at t+ t0.

The computation of Melnikov potential (1.47) will be done in chapter 2. Such computation will
be done in two different ways, corresponding to whether the parameter λ = e0G0 is small or not.
The next two theorems correspond to these two cases.

Theorem 1.5. If G0 ≥ 32, e0G0 < 1/8, then there exists a positive constant K such that the
Melnikov potential L given by (1.47) satisfies

L = L0(α0)− cos(t0 − α0)

√
π

8
G

−1/2
0 e−

G3
0
3

(
1 + Ẽ1

)
− cos(t0 − 2α0)3

√
2πe0G

3/2
0 e−

G3
0
3

(
1 + Ẽ2

)

+ 2ℜ{Ẽ3(α0)e
it0}+ Ẽ4(t0, α0)

with

|Ẽ1| ≤ K(G−1
0 + e20)

|Ẽ2| ≤ K(G−1
0 + e0)
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|Ẽ3(α0)| ≤ Ke−
G3

0
3

[
(1 + e0)

4G
−7/2
0 + e20G

5/2
0 + e0G

−3/2
0

]

|Ẽ4(t0, α0)| ≤ KG
3/2
0 e−G3

0
4
9

for some positive constant K and

L0(α0)− L0,0 =
15

8
πe0G

−5
0 cos(α0) + F̃1 + F̃2

where

|F̃1| ≤ Se0G
−9
0

|F̃2| ≤ Se20G
−5
0

for some positive constant S. And

L0,0 =
π

2
G−3

0 + F1 + F4

with

|F1| ≤ SG−7
0

|F4| ≤ SG−3
0 e20

Theorem 1.6. Let λ be a real positive constant and c ≥ 1. If

G0 ≥ max{(3c)2/3, 32, 8λ−1, 3λ1/3, λ4},

then there exists a positive constant K, depending on λ, such that if e0G0 = λ, the Melnikov
potential L given by (2.7) satisfy

L = L0(α0) + cos(t0 − α0)

√
π

8
G

−1/2
0 e−G3

0/3(1 + Ẽ1)

− e−
G3

0
3 4

√
2πλ−1G

1/2
0 ℜ

{[
e−λe−iα0 A

1−A

[ 2A

±2i
√
A(A− 1)

J1(±2i
√
A(A− 1))

− J0(±2i
√
A(A− 1))

]
+A

]
eit0(1 +R1(α0))

}
+R3(α0, G0, t0)

with

A =
λ

2
e−iα0

A

A− 1
=

λ2 − 2λe−iα0

λ2 − 4λ cosα0 + 4

A(A− 1) = −λ

2
e−iα0

(
1− λ

2
e−iα0

)
.

and

|Ẽ1| ≤ K(G−1
0 + λ2G−2

0 )

|R1(α0)| ≤ KG−1
0

|R3(α0, G0, t0)| ≤ KG
3/2
0 e−G3

0
4
9 ,

L0(α0)− L0,0 = −15

8
πe0G

−5
0 cos(α0) + F̃1 + F̃2

with

|F̃1| ≤ Ke0G
−9
0
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|F̃2| ≤ Ke20G
−5
0 ,

and
L0,0 =

π

2
G−3

0 + F1 + F4

with

|F1| ≤ KG−7
0

|F4| ≤ KG−3
0 e20

The functions J0(z) and J1(z) are the Bessel’s functions of the first kind [AS65] and whose expan-
sion around z = 0 is given by

Jn(z) =

∞∑

m=0

(−1)m

m!Γ(m+ n+ 1)

(z
2

)2m+n

Corollary 1.7. If λ = e0G0 is small, theorem 1.6 recovers the asymptotic expression found for
the Melnikov potential L in theorem 1.5.

Proof. The first two terms in the expression for L in both theorems 1.5 and 1.6, coincides.
From the definition of A we have that A = O(λ) and also A(A − 1) = O(λ), therefore looking

for asymptotics for λ small is equivalent to look for asymptotics for A small. Using the asymptotics
for the Bessel’s functions J0 and J1, given in theorem 1.6 we have

eλe
−iα0

= e−2A = 1− 2A+O(A2)

J1(±2i
√
A(A− 1)) = ±i

√
A(A − 1) +O([A(A − 1)]3/2)

J0(±2i
√
A(A− 1)) = 1 +A2 −A+O([A(A − 1)]2)

A

1−A
= A+O(A2)

therefore, we can write the third term as follows and get the asymptotic for λ small

− e−
G3

0
3 4

√
2πλ−1G

1/2
0 ℜ

{[
e−λe−iα0 A

1−A

[ 2A

±2i
√
A(A − 1)

J1(±2i
√
A(A− 1))

− J0(±2i
√
A(A− 1))

]
+A

]
eit0(1 +R1(α0))

}

= −e−
G3

0
3 4

√
2πλ−1G

1/2
0 ℜ

{
e−2A A

1−A

[
2A

±2i
√
A(A − 1)

J1(±2i
√
A(A− 1))

− J0(±2i
√
A(A− 1)) + (1 −A)e2A

]
eit0(1 +R1(α0))

}

= −e−
G3

0
3 4

√
2πλ−1G

1/2
0 ℜ

{
e−2A A

1−A

[
A+ O(A2)− 1−A2 +A+O(A2)

+ (1− A)e2A
]
eit0(1 +R1(α0))

}
= (∗)

since

(1 −A)e2A = 1−A+ (1−A)2A+ (1−A)O(A2) = 1−A+ 2A− 2A2 +O(A2) = 1 +A+O(A2)

we have

(∗) = −e−
G3

0
3 4

√
2πλ−1G

1/2
0 ℜ

{
e−2A A

1−A

[
3A+O(A2)

]
eit0(1 +R1(α0))

}
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also, it is clear from the given asymptotics that

e−2A A

1−A
= A+O(A2)

and then

(∗) = −e−
G3

0
3 4

√
2πλ−1G

1/2
0 ℜ

{[
3A2 +O(A3)

]
eit0(1 +R1(α0))

}

and, from its definition A2 = (λ2/4)e−2iα0 we have

(∗) = −e−
G3

0
3 4

√
2πλ−1G

1/2
0 ℜ

{[
3

4
λ2ei(t0−2α0) +O(A3)

]
(1 +R1(α0))

}

= −e−
G3

0
3 4

√
2πλ−1G

1/2
0 ℜ

{
3

4
λ2ei(t0−2α0) +O(λ2)(λ +R1(α0))

}

= −e−
G3

0
3 3

√
2πe0G

3/2
0 cos(t0 − 2α0)

[
1 + ℜ

{
O(λ)(G

1/2
0 λ+R1(α0))

}]

= −e−
G3

0
3 3

√
2πe0G

3/2
0 cos(t0 − 2α0)

[
1 +O

(
e0G

3/2
0 (e0G0 +G

−3/2
0 )

)]

which is exactly the second term in the expression for the Melnikov potential L given in theorem
1.5.

1.5 Global diffusion

1.5.1 e0G0 = λ ≪ 1

To prove diffusion in the case λ0 = e0G0 ≪ 1 we will use propositions 1.2 and 1.3 to construct
a suitable scattering map using the computation of the Melnikov potential given in theorem 1.5.
From this theorem, we will introduce the next notation. The Melnikov potential is given by

L(α0, G0, t0; e0) = L0,0 + L0(α0, G0; e0) + L1(α0, G0, t0; e0) + E(α0, G0, t0; e0) (1.48)

where L0,0 is given in theorem 1.5 as

L0,0 =
π

2
G−3

0 + F1 (1.49)

with
F1 = F1(G0; e0) = O(e20G

−3
0 +G−7

0 ) (1.50)

and,

L0(α0, G0; e0) = −15

8
πe0G

−5
0 cos(α0) + F(α0, G0; e0) (1.51)

L1(α0, G0, t0; e0) = cos(t0 − α0)

√
π

8
G

−1/2
0 e−

G3
0
3

(
1 + Ẽ1

)

− cos(t0 − 2α0)3
√
2πe0G

3/2
0 e−

G3
0
3

(
1 + Ẽ2

)
+2ℜ{Ẽ3(α0)e

it0}
(1.52)

Ẽ1, Ẽ2 and Ẽ3 are bounded in theorem 1.5 and

E(α0, G0, t0; e0) = O(G
3/2
0 e−G3

0
4
9 ) (1.53)

F(α0, G0; e0) = O(e20G
−5
0 , e0G

−9
0 ) (1.54)
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Lemma 1.8. Let L1 be defined in (1.52) and p = 12e0G
2
0 = 12λG0. If P

2 = 1−2p cosα0+p2 6= 0,
then

L1(α0, G0, t0; e0) =

√
π

8
G

−1/2
0 e−

G3
0
3 B cos(t0 − α0 − θ)

where θ = θ(α0, G0; e0) ∈ (−π, π] and B = B(α0, G0; e0) satisfy

B2 = P 2 + B̃

tan θ =
p sinα0 + ℑ(B̃1)

1− p cosα0

(
1 +O

( ℜ(B̃1)

1− p cosα0

))

with

|B̃| ≤ K[G−1
0 + e0G0(1 + p+ p2)]

|B̃1| ≤ K[G−1
0 + e0G0(1 + p)]

Proof. From the definition of L1 given in (1.52) we can write, defining p = 12e0G
2
0

L1 =

√
π

8
G

−1/2
0 e−

G3
0
3

[
cos(t0 − α0)(1 + Ẽ1)− p cos(t0 − 2α0)(1 + Ẽ2) + ℜ{Ê3(α0)e

it0}
]

where

Ê3(α0) =

√
8

π
G

1/2
0 e

G3
0
3 2Ẽ3(α0)

and then, by the bounds in theorem 1.5 we have

|Ê3(α0)| ≤ K
[
(1 + e0)

4G−3
0 + e20G

3
0 + e0G

−1
0

]
,

so

L1 =

√
π

8
G

−1/2
0 e−

G3
0
3

[
ℜ
(
ei(t0−α0)

)
(1 + Ẽ1)− pℜ

(
ei(t0−2α0)

)
(1 + Ẽ2) + ℜ{Ê3(α0)e

it0}
]

=

√
π

8
G

−1/2
0 e−

G3
0
3 ℜ
(
ei(t0−α0)

(
1 + Ẽ1 − p(1 + Ẽ2)e

−iα0 + Ê3(α0)e
iα0
))

if we write now
1 + Ẽ1 − p(1 + Ẽ2)e

−iα0 + Ê3(α0)e
iα0 = Be−iθ (1.55)

we have that

L1 =

√
π

8
G

−1/2
0 e−

G3
0
3 Bℜ

(
ei(t0−α0−θ)

)

=

√
π

8
G

−1/2
0 e−

G3
0
3 B cos(t0 − α0 − θ).

Let us find B and θ. From equation (1.55), we have

Be−iθ = 1− pe−iα0 + B̃1 (1.56)

where
B̃1 = Ẽ1 − pẼ2e

−iα0 + Ê3(α0)e
iα0

|B̃1| ≤ K[G−1
0 + e0G0(1 + p)]. Therefore

B2 = |1 − pe−iα0 |2 + B̃

where B̃ = (1−pe−iα0)B̃1+ B̃1(1−peiα0)+ |B̃1|2, then using the bounds for B̃1 and the definition
of p, |B̃| ≤ K[G−1

0 + e0G0(1 + p+ p2)].
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B2 = 1− p(e−iα0 + eiα0) + p2 + B̃

= 1− 2p cosα0 + p2 + B̃

= P 2 + B̃ (1.57)

assuming that 1−p cosα0 6= 0 we can see that B̃1/(1−p cosα0) is always small and therefore from
(1.56)

tan θ =
p sinα0 + ℑ(B̃1)

1− p cosα0 + ℜ(B̃1)

=
p sinα0 + ℑ(B̃1)

1− p cosα0

(
1 +O

( ℜ(B̃1)

1− p cosα0

))

Remark 1.9. Under the assumptions of lemma 1.8, if p = 1 and cosα0 = −1 the angle θ is not
well defined, but this case corresponds to B = 0.

By proposition 1.2 we need to find critical points of the function t0 7−→ L(α0, G0, t0; e0), to
this end we will check that t0 7−→ L(α0, G0, t0; e0) is a cosine-like function, that is, with a non-
degenerate maximum (minimum) and no other critical points. By equation (1.48) and the bound
(1.53), for G0 big enough, the critical points in the variable t0 are well approximated by the critical
points of the function L and therefore will be close to t0 −α0 − θ = 0, π(mod2π) thanks to lemma
1.8. For this purpose, we introduce

L∗
1 = L∗

1(α0, G0; e0) =

√
π

8
G

−1/2
0 e−

G3
0
3 B (1.58)

where B = B(α0, G0; e0) is given in lemma 1.8. With this notation the function L1 of lemma 1.8
can be written as

L1(α0, G0, t0; e0) = L∗
1(α0, G0; e0) cos(t0 − α0 − θ). (1.59)

First a technical lemma.

Lemma 1.10. Let E be the error function defined by (1.48) and L∗
1 be defined in (1.58). If G0 ≫ 1,

e0G0 ≪ 1 and

16K(G−1
0 + e0G0) < κ2 <

(
1− π2

16

)2

for |p− 1| ≥ 1 or α0 ∈ [κ, 2π − κ]. Then

[( ∂E
∂t0

)2
+
(∂2E
∂t20

)2]
/(L∗

1)
2 <

2K

κ2
G4

0e
−G3

0
2
9

Proof. Since the Melnikov potential L defined in (1.47) and rewritten in (1.48) is 2π-periodic in
t0 we have that except for a constant ∂E/∂t0 and ∂2E/∂t20 have similar bounds to the bound of E ,
given indirectly in (1.53), therefore for some positive constant K

[( ∂E
∂t0

)2
+
(∂2E
∂t20

)2]
/(L∗

1)
2 < K

G3
0e

−G3
0

8
9

G−1
0 B2e−G3

0
2
3

=
K

B2
G4

0e
−G3

0
2
9

it remains to show that 1/B2 can be bounded by 2/κ2. From the expression for B2 given in (1.57)
and the triangle inequality we have

B2 ≥ P 2 − |B̃| ≥ (p− 1)2 − |B̃|. (1.60)
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Let κ ∈ (0, 1) and ω = 1 − κ, σ = κ + 1. We have three different cases; if p ≥ σ > 1, p ≤ ω < 1
and ω < p < σ. We know from lemma 1.8 that

|B̃| ≤ K[G−1
0 + e0G0(1 + p+ p2)] (1.61)

then, when p ≥ σ = 1 + κ > 1 we have that

p

p− 1
≤ 1 + κ

κ

and then, from (1.61) that

|B̃| ≤ 4Ke0G0p
2 ≤ Ke0G0

(p− 1)2

2
2
(1 + κ

κ

)2

if we now choose
κ2 ≥ 16Ke0G0 (1.62)

we have

|B̃| ≤ (p− 1)2

2

and then from (1.60)

B2 ≥ (p− 1)2

2

or equivalently
1

B2
≤ 2

(p− 1)2
≤ 2

κ2
.

When p ≤ ω = 1− κ < 1, from (1.61) that

|B̃| ≤ 3K[G−1
0 + e0G0]

if we now choose
κ2 ≥ 6K(G−1

0 + e0G0) (1.63)

we have

|B̃| ≤ κ2

2

and then from (1.60)

B2 ≥ (p− 1)2 − κ2

2
≥ κ2

2

or equivalently
1

B2
≤ 2

κ2
.

When 1− κ = ω < p < σ = 1 + κ, from (1.61) we have

|B̃| ≤ 7K[G−1
0 + e0G0]. (1.64)

The function P 2 in (1.57) can be written as

P 2(p) = (p− cosα0)
2 + (1− cos2α0) ≥ 0

or more conveniently as

P 2 = (p− 1)2 + 2p(1− cosα0) ≥ 2p(1− cosα0) ≥ 2(1− κ)(1− cosα0).

Restricting α0 to the interval [κ, 2π − κ] so that

1− cosα0 ≥ 1− cosκ = 2 sin(κ2/2) ≥ 8(κ2/π2),
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if we choose

16K(G−1
0 + e0G0) < κ2 <

(
1− π2

16

)2
(1.65)

we have from (1.60) and (1.64) that

B2 ≥ 2
π2

16

8

π2
κ2 − κ2

2
=

κ2

2

or equivalently
1

B2
≤ 2

κ2
.

Summarizing, for any κ verifying condition (1.65) one has that 1/B2 ≤ 2/κ2 if |p − 1| ≥ 1 or
α0 ∈ [κ, 2π − κ].

Proposition 1.11. Let L be the Melnikov potential given in (1.48) and G0, e0, α0 and κ as in
lemma 1.10. Then t0 7−→ L(α0, G0, t0; e0) is a cosine-like function, and its the critical point are
given by

t∗0,± = t∗0,±(α0, G0; e0) = ϕ∗
± + α0 + θ

and
ϕ∗
± = O(G2

0e
−G3

0/9)

Proof. We look for critical points of t0 7−→ L(α0, G0, t0; e0)

∂L
∂t0

=
∂L1

∂t0
+

∂E
∂t0

= 0 (1.66)

or equivalently, using the formula given in equation (1.102),

sin(ϕ) = f(ϕ) :=
1

L∗
1

∂E
∂t0

(ϕ = t0 − α0 − θ). (1.67)

By lemma (1.10), for G0 large enough, we have that |f | ≪ 1 and then ϕ = ±π/2 are not solutions
of sinϕ = f(ϕ). So, on (−π/2, 3π/2) we have

ϕ = arcsin f(ϕ) ϕ ∈ (−π/2, π/2)

ϕ = π − arcsin f(ϕ) ϕ ∈ (π/2, 3π/2)

Since |f | < 1, g(ϕ) = arcsin f(ϕ) maps [−π/2, π/2] into itself and

g′(ϕ) =
f ′(ϕ)√
1− f(ϕ)2

therefore g′2 < 1 is equivalent to f2 + f ′2 < 1 which is a direct consequence of lemma 1.10. So, g
is a contraction and then there exists a unique ϕ∗

− ∈ (−π/2, π/2) solution of ϕ = g(ϕ). To prove
that it is non degenerate we need to see that

∂L2

∂t20
=

∂2L1

∂t20
+

∂2E
∂t20

6= 0.

To see this we will see that (∂2E
∂t20

)2
<
(∂2L1

∂t20

)2
= (L∗

1)
2 cos2 ϕ (1.68)

but from (1.67)

cos2 ϕ = 1− 1

(L∗
1)

2

( ∂E
∂t0

)2
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equation (1.68) is equivalent to ( ∂E
∂t0

)2
+
(∂2E
∂t20

)2
< (L∗

1)
2,

which is true. By the same lemma 1.10,

|ϕ∗
−| = | arcsinf(ϕ∗

−)| = O
(G2

0

κ
e−G3

0/9
)
, (1.69)

and consequently t∗0,− = ϕ∗
− + α0 + θ is a non degenerate solution of (1.66). Analogously we can

solve
ϕ = π − arcsin f(ϕ) = g̃(ϕ)

showing that g̃ sends (π/2, 3π/2) to itself and is a contraction proving the existence of a non
degenerate fix point ϕ∗

+ ∈ (π/2, 3π/2). Moreover

|ϕ∗
+ − π| = | arcsin g̃(ϕ∗

+)| = O
(G2

0

κ
e−G3

0/9
)
. (1.70)

Consequently t∗0,+ = ϕ∗
+ + α0 + θ is another non degenerate solution of (1.66). This concludes the

proof.

From proposition 1.11 we know that there exist t∗0,− and t∗0,+, non degenerate critical points of
t0 7−→ L(α0, G0, t0; e0). Therefore, we can define two different reduced Poincaré functions (1.44)

L∗
±(α0, G0; e0) = L(α0, G0, t

∗
0,±; e0)

= L0,0(G0; e0) + L0(α0, G0; e0) + L∗
1(α0, G0; e0) cos(t

∗
0,± − α0 − θ)

+ E(α0, G0, t
∗
0,±; e0).

By Taylor’s theorem

cos(t∗0,− − α0 − θ) = cos(0) +O(|ϕ∗
−|2) = 1 +O(G4

0e
−G3

0
2
9 )

cos(t∗0,+ − α0 − θ) = cos(π) + O(|ϕ∗
+ − π|2) = −1 +O(G4

0e
−G3

0
2
9 )

so that

L∗
±(α0, G0; e0) = L0,0(G0; e0) + L0(α0, G0; e0)± L∗

1(α0, G0; e0) cos(t
∗
0,± − α0 − θ) + E± (1.71)

where
E± = ±L∗

1O(G4
0e

−G3
0

2
9 ) + E , (1.72)

and by the bound of E given in (1.53), the definition of L∗
1 and the definition of B given in lemma

1.8 we have that

|E±| ≤ KG
3/2
0 e−4G3

0/9
(
1 + e−G3

0/9G2
0(1 + p)2

)
≤ KG

7/2
0 e−5G3

0/9(1 + p)2

the last inequality holds for G0 large enough, but in any case is exponentially smaller.
L0,0, L0 and E are given in (1.49), (1.51) and (1.53). Writing down L0,0 and L0 we have

L∗
± =

π

2
G−3

0 + F1(G0, e0)−
15

8
πe0G

−5
0 cosα0 + F(α0, G0; e0)± L∗

1 + E± (1.73)

From the expression for the scattering map given in proposition 1.3 we can define two different
scattering maps, given by

S±(α0, G0, s0) =
(
α0 + µ

∂L∗
±

∂G
(α0, G0; e0) +O(µ2), G0 − µ

∂L∗
±

∂α
(α0, G0; e0) +O(µ2), s0

)
. (1.74)
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These two scattering maps are different since they depend on the two reduced Poincaré-Melnikov
potentials L∗

±. As it was proved in [DdlLS08] the scattering maps S± follow closely the level curves
of the Hamiltonians L∗

±. More precisely, up to O(µ2) terms, it is given by the time −µ map of
the Hamiltonian flow of Hamiltonians L∗

±. Because of this, we want to show that the foliations
of L∗

± = constant are different, since this will imply that the scattering maps S± are different.
Even more, we will design a mechanism in which we will determine the places in the plane α0G0

where we will change from one scattering map to the other, obtaining trajectories with increasing
angular momentum G.

In lemma 1.13 we will give the elements to construct a strategy to find a heteroclinc chain of
periodic orbits in Λ̃∞ with increasing angular momentum, but first a technical lemma.

Lemma 1.12. Let L∗
± be defined by (1.71), B by lemma 1.8 and p = 12e0G

2
0. If G0, e0, α0 and

κ are as in lemma 1.10. Then we have

{L∗
+,L∗

−} =
−L∗

1

B2

3πp sinα0

G4
0

[
1− 25

4

e0G0

G3
0

cosα0 −
5

48

P 2

G0

[
1 +

1

2G3
0

− − cosα0 + p

P 2
· 24e0G0

G2
0

]]
+EJ

where

EJ = O
(
G−5

0 + e0G
−3
0 + e20G

3
0 + pe20G

4
0

(
1 + p(e0G0 +G−6

0 )
))

G
−1/2
0 e−G3

0/3

+O
((

G0(1 + p)e−G3
0/9 +G−1

0

))
G

1/2
0 e−G3

0
4
9

Proof. Using expression (1.71) and using the properties of the Poisson brackets we have that

{L∗
+,L∗

−} = 2{L∗
1, L0,0 + L0}+ 2{E,L0,0 + L0}. (1.75)

Where L∗
1 is given in (1.58), L0,0 in (1.49) and L0 in (1.51). From the definition of the Poisson

bracket

{L∗
1, L0,0 + L0} =

∂L∗
1

∂α0

∂

∂G0
(L0,0 + L0)−

∂L∗
1

∂G0

∂

∂α0
(L0,0 + L0) (1.76)

to compute the partial derivatives in the above formula we will need to compute the partial
derivatives with respect to α0 and G0 of B given in lemma 1.8 as

B2 = P 2 + B̃ = 1− 2p cosα0 + p2 + B̃

where p = 12e0G
2
0 and B̃ = O(G−1

0 + e0G0(1 + p+ p2)), then

∂B

∂G0
=

1

2

1√
P 2 + B̃

(∂P 2

∂G0
+

∂B̃

∂G0

)
(1.77a)

∂B

∂α0
=

1

2

1√
P 2 + B̃

(∂P 2

∂α0
+

∂B̃

∂α0

)
(1.77b)

Also,

∂P 2

∂G0
= −2 cosα0

∂p

∂G0
+ 2p

∂p

∂G0

= (−2 cosα0 + 2p)
2p

G0
(1.78a)

∂P 2

∂α0
= 2p sinα0, (1.78b)

substituting equations (1.78) in equations (1.77) we can write

∂L∗
1

∂α0
=

√
π

8
G

−1/2
0 e−G3

0/3
∂B

∂α0
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=

√
π

8
G

−1/2
0 e−G3

0/3
2p sinα0 +

∂B̃
∂α0

2
√
P 2 + B̃

=
L∗
1

P 2 + B̃

(
p sinα0 +

1

2

∂B̃

∂α0

)
(1.79)

∂L∗
1

∂G0
=

√
π

8
G

−1/2
0 e−G3

0/3
[
−
( 1

2G0
+G2

0

)
B +

1

2B

(
(−2 cosα0 + 2p)

2p

G0
+

∂B̃

∂G0

)]

= L∗
1

[
−
( 1

2G0
+G2

0

)
+

1

P 2 + B̃

(
(− cosα0 + p)

2p

G0
+

1

2

∂B̃

∂G0

)]

=
L∗
1

P 2 + B̃

[
(− cosα0 + p)

2p

G0
−
( 1

2G0
+G2

0

)
P 2 −

( 1

2G0
+G2

0

)
B̃ +

1

2

∂B̃

∂G0

]
(1.80)

and

∂

∂α0
(L0,0 + L0) =

15

8
πe0G

−5
0 sinα0 +

∂F
∂α0

(1.81)

∂

∂G0
(L0,0 + L0) = −3

2

π

G4
0

+
75

8

π

G6
0

e0 cosα0 +
∂

∂G0
(F1 + F) (1.82)

substituting equations (1.79), (1.80), (1.81) and (1.82), in the expression for the Poisson bracket
given in (1.76) we obtain

2{L∗
1, L0,0 + L0} =

L∗
1

P 2 + B̃
(p sinα0)

(
− 3π

G4
0

+
75

4

π

G6
0

e0 cosα0

)
+Q1

−
(15
4
πe0G

−5
0 sinα0

) L∗
1

P 2 + B̃

[
(− cosα0 + p)

2p

G0
−
( 1

2G0
+G2

0

)
P 2
]
+Q2 (1.83)

where

Q1 =
L∗
1

P 2 + B̃

[
−
(3
2

π

G4
0

− 75

8

π

G6
0

e0 cosα0

) ∂B̃

∂α0
+ 2

∂

∂G0
(F1 + F)

(
p sinα0 +

1

2

∂B̃

∂α0

)]
(1.84)

Q2 =
L∗
1

P 2 + B̃

[(15
4
πe0G

−5
0 sinα0

)[( 1

2G0
+G2

0

)
B̃ − 1

2

∂B̃

∂G0

]
−2

∂F
∂α0

·
[
(− cosα0 + p)

2p

G0
−
( 1

2G0
+G2

0

)
P 2 −

( 1

2G0
+G2

0

)
B̃ +

1

2

∂B̃

∂G0

]]
(1.85)

factorizing we have from (1.83)

2{L∗
1, L0,0 + L0} =

−L∗
1

P 2 + B̃

3πp sinα0

G4
0

[
1− 25

4

1

G2
0

e0 cosα0

+
5

48

1

G3
0

[
(− cosα0 + p)

2p

G0
−
( 1

2G0
+G2

0

)
P 2
]]

+Q1 +Q2

=
−L∗

1

P 2 + B̃

3πp sinα0

G4
0

[
1− 25

4

e0G0

G3
0

cosα0 −
5

48

P 2

G0

·
[
1 +

1

2G3
0

− − cosα0 + p

P 2
· 24e0G0

G2
0

]]
+Q1 +Q2 (1.86)

(1.87)

To find the size of Q1 and Q2 we have to bound

L∗
1

P 2 + B̃
=

√
π

8

1

B
G

−1/2
0 e−G3

0/3

24



so, we have to bound 1/B by a positive constant, or equivalently 1/B2, which has been done in
the proof of lemma 1.10. Therefore

L∗
1

P 2 + B̃
= O

( 1
κ
G

−1/2
0 e−G3

0/3
)
,

then using the bounds for F1 and F given in (1.50) and (1.54) and the bound for B̃ given in lemma
1.8 we have from equations (1.84) and (1.85) that

Q1 = O
(
(G−5

0 + e0G
−3
0 + e20G

3
0 + pe20G

4
0(1 + pe0G0))

) 1
κ
G

−1/2
0 e−G3

0/3

Q2 = O
(
(e0G

−4
0 + e20G

−2
0 (1 + p+ p2))

) 1
κ
G

−1/2
0 e−G3

0/3

and then

Q1 +Q2 = O
(
G−5

0 + e0G
−3
0 + e20G

3
0 + pe20G

4
0

(
1 + p(e0G0 +G−6

0 )
))1

κ
G

−1/2
0 e−G3

0/3. (1.88)

Now we want to know the size of {E,L0,0+L0}. From the computations for the partial derivatives
of L0,0+L0 given in equations (1.81) and (1.82) and the size of the errors F1 and F given in (1.50)
and (1.54) we have

∂

∂α0
(L0,0 + L0) = O(e0G

−5
0 )

∂

∂G0
(L0,0 + L0) = O(G−4

0 ).

The size of E is computed in the proof of part (b) of lemma 1.13, and is given in equation (1.95),
and therefore

∂E

∂α0
= O

(
G

1/2
0 e−G3

0
4
9

(
G3

0(1 + p)e−G3
0/9 +G0

))

∂E

∂G0
= O

(
G

1/2
0 e−G3

0
4
9

(
G5

0(1 + p)e−G3
0/9 +G3

0

))

with this sizes we can conclude that

{E,L0,0 + L0} = O
(
G

1/2
0 e−G3

0
4
9

(
G0(1 + p)e−G3

0/9 +G−1
0

))

substituting (1.86) in (1.75) and setting EJ = 2{E,L0,0+L0}+Q1+Q2 we get the desired result.

Lemma 1.13. Let L∗
± be defined in (1.73), and p = 12e0G

2
0. Then

(a) Any curve L∗
±(α0, G0; e0) = l is a closed curve of the form G = g±(α0, l), α0 ∈ [0, 2π],

g±(0, l) = g±(2π, l) which is cosine-like: it has a unique non-degenerate maximum for α0

close to π and a non-degenerate minimum for α0 close to 0.

(b) The total variation of L∗
±(·, G0; e0) (i. e. the difference between its maximum value and

its minimum value) is given by

∆L∗
± = ∆L0 ±∆L∗

1 ±∆E

where

∆L0 = 2
15πe0
8G5

0

+∆F

∆L∗
1 =

√
π

8
G

−1/2
0 e−G3

0/3
[√

(p+ 1)2 + B̃0 −
√
(p− 1)2 + B̃π

]
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∆E = O
(
G

1/2
0 e−G3

0
4
9

(
G3

0(1 + p)e−G3
0/9 +G0

))

and

∆F = O(e20G
−5
0 , e0G

−9
0 )

B̃π, B̃0 = O(G−1
0 + e0G0(1 + p+ p2))

(c) L∗
+ and L∗

− are functionally independent except for three curves, two of them close to the

straight lines α0 = 0 and α0 = π and a third one cosine-like whenever G0 = O(e
−2/3
0 ) and

close to the curve

p =

√
D(1− cosα0) +

3

4
D2 − 1 (1.89)

where D = 2
√
48G0/5.

Proof. (a) From the expression for L∗
± given in (1.73) we have that l = L∗

±(α0, G0; e0) is equivalent
to

l =
π

2G3
0

(
1 + F̃1 −

15e0 cosα0

4G2
0

+ F̃(α0, G0; e0)±
√

1

2π
G

5/2
0 e−G3

0/3B + Ẽ±(α0, G0, t0; e0)
)

(1.90)

where

F̃1 =
2G3

0

π
F1 = O(e20 +G−4

0 )

F̃(α0, G0; e0) =
2G3

0

π
F = O(e20G

−2
0 + e0G

−6
0 )

Ẽ±(α0, G0, t0; e0) =
2G3

0

π

(
L∗
1O(G4

0e
−G3

0
2
9 ) + E

)
=

2G3
0

π

(
L∗
1O(G4

0e
−G3

0
2
9 ) +O(G

3/2
0 e−G3

0
4
9 )
)

and F1, F and E are given in (1.50), (1.54) and (1.53), respectively. The actual size of Ẽ± will
depend on the bound of B which in its turn depends on p. From lemma 1.8 it is not difficult to
see that

|B| ≤
{
K if p ≤ 1

Kp if p > 1

and by (1.58), and using that p = 12e0G
2
0,

|L∗
1| ≤

{
KG

−1/2
0 e−G3

0/3 if p ≤ 1

Ke0G
3/2
0 e−G3

0/3 if p > 1
(1.91)

with this we conclude that

Ẽ =

{
O(G

13/2
0 e−G3

0
5
9 ) +O(G

9/2
0 e−G3

0
4
9 ) if p ≤ 1

O(e0G
17/2
0 e−G3

0
5
9 ) +O(G

9/2
0 e−G3

0
4
9 ) if p > 1

We can rewrite (1.90) as

G0 =
( π
2l

)1/3(
ζ − 15e0 cosα0

4G2
0

+ F̃(α0, G0; e0)±
√

1

2π
G

5/2
0 e−G3

0/3B + Ẽ±(α0, G0, t0; e0)
)1/3

= g(α0, l) (1.92)

where ζ = 1 + F̃1 = O(1). This expression, implies

l =
ζπ

2G3
0

(
1 +O(

e0
G2

0

)
)
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or equivalently

G0 =
(ζπ
2l

)1/3(
1 +O(

e0
G2

0

)
)1/3

=
(ζπ
2l

)1/3(
1 +O(

e0
G2

0

)
)
=
(ζπ
2l

)1/3(
1 +O(e0l

2/3)
)

using this expression we can actually know a good estimation of the curveG0 = g(α0, l) substituting
it in (1.92) Now, when Ẽ = 0, g is clearly a cosine-like with a non-degenerate maximum close to
α0 = 0 and a non-degenerate minimum close to α0 = π since its second term is larger than the
third and fourth terms. When we also take into a account the fifth term, in the expression of g
involving Ẽ, since this term is much smaller than the other ones, an argument very similar to the
one used in the proof of proposition 1.11 implies that g is cosine-like with non-degenerate critical
points close to 0 and π.

(b) From expression (1.73), we are going to analyze every term in α0. The term

L0,0 =
π

2
G−3

0 + F1

gets canceled since its constant with respect to α0. From its definition given in (1.51) we have

L0 = −15

8
πe0G

−5
0 cosα0 + F(α0, G0; e0),

the dominant term is a cosine in α0, and then its maximum and minimum are α0 = 0, π, so

∆L0 = 2
15πe0
8G5

0

+∆F (1.93)

where
∆F = F(0, G0; e0)−F(π,G0; e0) = O(e20G

−5
0 , e0G

−9
0 ).

Now, from the definition of L∗
1 given in (1.58), the maximum and minimum are determined by B.

Since the square root is a monotone function, it is enough to analyze when B2 have its critical
points. From lemma 1.8 we know that B2 = P 2+ B̃, and from the bound of B̃, since e0G0 is small
it is enough to look for the critical points of

P 2 = 1− 2p cosα0 + p2

which again are attained whenever α0 = 0, π. Therefore

∆L∗
1 =

√
π

8
G

−1/2
0 e−G3

0/3
[√

(p+ 1)2 + B̃π −
√
(p− 1)2 + B̃0

]
(1.94)

where
B̃π, B̃0 = O(G−1

0 + e0G0(1 + p+ p2)).

Finally, from the definition of E given in (1.72) and the size of L∗
1 given in (1.91) we have that

E =

{
O(G

7/2
0 e−G3

0
5
9 ) +O(G

3/2
0 e−G3

0
4
9 ) if p ≤ 1

O(e0G
11/2
0 e−G3

0
5
9 ) +O(G

3/2
0 e−G3

0
4
9 ) if p > 1

this can be written as
E = O

(
G

1/2
0 e−G3

0
4
9

(
G3

0(1 + p)e−G3
0/9 +G0

))
(1.95)

in any case, E is much more smaller that any term in L∗
± implying that the maximum and minimum

of L∗
± are reached whenever α0 = 0, π, concluding then the desired result.
(c) To see that L∗

+(α0, G0; e0) and L∗
−(α0, G0; e0) are functionally independent we will analyze

detJ(L∗
+,L∗

−). Since
detJ(L∗

+,L∗
−) = {L∗

+,L∗
−}

we can use lemma 1.12, to conclude that, if the factor outside the brackets in the formula for
{L∗

+,L∗
−} is zero then detJ(L∗

+,L∗
−) is close to zero or asymptotically is zero. This occurs when
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α0 = 0, π. We have excluded this values of α0 to bound the error in the formula of {L∗
+,L∗

−} given
in lemma 1.12, and before in lemma 1.10.

Using the dominant term inside the brackets of the formula for det J(L∗
+,L∗

−) we have

detJ(L∗
+,L∗

−) ∼
L∗
1

B2

−3πp sinα0

G4
0

d

where

d = 1− 5

48

P 2

G0

this implies that, beside the curves α0 = 0 and α0 = π the Jacobian can be asymptotically zero if
d = 0. In what follows we will see that this gives a curve cosine-like in the plane α0G0. From the
definition of d we have that d = 0 only if

P 2 = 1− 2p cosα0 + p2 ∼ G0

this is not possible if p ≤ 1, and if p > 1, we have that P 2 ∼ p2 and then, d will be equal to zero
only if

p2 ∼ G0

or equivalently if

G0 ∼ e
−2/3
0 .

From the definition of P 2 is easy to see that,

(p− 1)2 ≤ P 2 ≤ (p+ 1)2

this implies that

1− 5

48G0
(p+ 1)2 ≤ d ≤ 1− 5

48G0
(p− 1)2

from this, is easy to see that if

0 < 1− 5

48
(p+ 1)2 or 1− 5

48
(p− 1)2 < 0

then d 6= 0, or equivalently if
∣∣∣p−

√
48G0

5

∣∣∣≥ 1

then d 6= 0. Therefore d = 0 in the region

∣∣∣p−
√

48G0

5

∣∣∣≤ 1.

It is convenient then, to introduce

w = p−
√

48G0

5

which satisfies |w| ≤ 1. Writing d in w we have

d = − 5

48

1

G0

[
(1 + w)2 +D(c+ w)

]

where c = cosα0 and D = 2
√
48G0/5. Then d = 0 if

c = − 1

D
(1 + w)2 − w (1.96)

where |w| ≤ 1 and c = cosα0. Now
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- When c = 1 so that α0 = 0 we have that equation (1.96) is equivalent to the quadratic
equation

w2 + w(2 +D) + 1 +D = 0

whose solutions are w = −1 or w = −1−D, since |w| ≤ 1 only the first solution has sense.

- When c = −1 so that α0 = π we have that equation (1.96) is equivalent to the quadratic
equation

w2 + (2 +D)w + 1−D = 0

whose solutions are

w± = −1− 1

2

(
D ∓

√
D2 + 8D

)
.

Clearly D +
√
D2 + 8D ≫ 1, therefore w− < −1 and then do not satisfy our condition

|w| ≤ 1. A straight forward computation shows that

−4 < D −
√
D2 + 8D < 0

therefore |w+| < 1.

- When −1 < c < 1 we have to analyze the behavior of c as a function of w. Taking derivative
of (1.96) we have

c′(w) = − 2

D
(1 + w) − 1

if we look for critical points of c(w) and consider c′(w) = 0 we find that

w∗ = −D

2
− 1

is the only critical point and is smaller than −1. Actually this critical point is a maximum
of c(w) since

c′′(w) = − 2

D
< 0.

Since c(w) is a parabola we have that for w ∈ [−1, 1], c(w) is a decreasing function, and since
c(w+) = −1 if we consider w > w+ we will have that c(w) < −1 and because there are no α0

such that cosα0 < −1 we conclude that in that case d 6= 0. Therefore, the only way to have
d = 0 is to consider w ∈ [−1, w+]. So, whenever c ∈ (−1, 1) there exist an w ∈ (−1, w+) such
that

cosα0 = − 1

D
(1 + w)2 − w

which means that there are two different values of α0 that make d = 0.

Coming back to p, we have seen that there is a curve contained in the region

∣∣∣p−
√

48G0

5

∣∣∣≤ 1

with equation given by (1.96). Rewriting this equation using that c = cosα0 and D = 2
√
48G0/5

we have

cosα0 =
1

D
(1 + p− D

2
)2 − p+

D

2
or equivalently

p =

√
D(1− cosα0) +

3

4
D2 − 1

which is clearly a cosine-like function in terms of (α0, p). In the variables (G0, α0) it is also a
cosine-like function since p = 12e0G

2
0 is an increasing function of G0.

Remark 1.14. The difference between total variation of L∗
+ and L∗

− is strictly positive but expo-
nentially small. In fact

∆L∗
+ −∆L∗

− = 2∆L∗
1 + 2∆E = O(G

−1/2
0 e−G3

0/3)
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1.5.2 Strategy for diffusion

We will describe the strategy to construct a chain of heteroclinic connections to the manifold Λ̃∞
defined in (1.29) using the results in lemma 1.13.

Let us take a point in Λ̃∞ in which the reduced Poincaré functions L∗
± are functionally inde-

pendent. From part (c) of lemma 1.13 α0 should be different from 0 or π and not in the curve
given in (1.89). In figure 1.3 is shown schematically the curves in the plane α0G0 that we will
avoid in the following procedure.

Figure 1.2: Zone of diffusion

Take (α0 = αǫ, G0 = G1) and apply successively the scattering map S− defined in (1.74), its
trajectory will follow the level curve l− = L∗

−(αǫ, G1) up to certain α0 = απ close to π where G0

takes the value G∗. At this moment, we shift to the scattering map S+ defined as well in (1.74).
From applying S+ successively, we will get points along the level curve l+ = L∗

+(απ , G
∗) up to

α0 = α2π close to 2π = 0(mod2π) where G0 takes the value G2 with G2 > G1, by remark 1.14,

we know that G2 −G1 = O(e−G3
0/3). Continuing in this way, we can travel along all the allowed

diffusion zone G1 < G0 ≪ 1/e0 avoiding always to shift from one scattering map to another, in a

point of the curve given in (1.89) whenever G0 = O(e
−2/3
0 ). Using part (a) and (c) of lemma 1.13

we get figure 1.3. The red arrows represent the trajectory that changes from one scattering map
to the other.

Inside the domain 1 ≪ G0 ≪ 1/e0 we can obtain diffusion orbits along arbitrary paths, except
those which intersect the small regions described in lemma 1.10 and the curves given in lemma 1.13.
This mechanism given by the application of scattering maps produce indeed pseudo-orbits, that is,
heteroclinc connections between different periodic orbits Λ̃α0,G0

in Λ̃∞ which are commonly known
as transition chains after Arnold’s pioneering work [Arn64]. The existence of true orbits of the
system which follow closely these transition chains relies on shadowing methods, which are standard
for partially hyperbolic periodic orbits (the so-called whiskered tori in the literature) lying on a
normally hyperbolic invariant manifold (NHIM). Such shadowing methods are equally applicable
in our case, where we have an invariant manifold Λ̃∞ which is only topologically equivalent to a
NHIM (see [Rob88], [Rob84], [Moe02], [Moe07], [GdlL06]).
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Figure 1.3: Mechanism for diffusion

With all these elements, we can now state our main results

Theorem 1.15. Let G∗
1 < G∗

2 large enough and e0 small enough. More precisely 1 ≪ G∗
1 < G∗

2 ≪
1/e0 and µ > 0 small enough. Then, for any G1, G2 ∈ (G∗

1, G
∗
2) there exists a trajectory of the

ERTBP such that G(0) < G1, G(T ) > G2 for some T > 0.

1.5.3 e0G0 = λ, λ real positive

To prove diffusion in the case e0G0 = λ, for λ a fixed positive number, we use propositions 1.2 and
1.3 as in section 1.5.1 to compute the scattering map. Nevertheless, we will use the computation
of the Melnikov potential given in theorem 1.6, which gives a more involved expression of the
scattering map in terms of the Bessel functions J0 and J1. Since the complete computations of the
scattering maps are very cumbersome, it will not be possible to provide simple conditions, as in
the case λ ≪ 1, to guarantee the existence of diffusion on the complete zone A/e0 ≤ G0 ≤ B/e0.
Thus, in this section, we will see the same mechanism used in section 1.5.1 can be straight forwardly
applied, up to some technical conditions that can be checked analytically or numerically.

The Melnikov potential is now given by the same formula (1.48), that is

L(α0, G0, t0; e0) = L0,0(G0) + L0(α0, G0) + L1(α0, G0, t0) + E(α0, G0, t0) (1.97)

where L0,0 is the same function as in equation (1.48) and is given by

L0,0(G0) =
π

2
G−3

0 + F1 (1.98)

with
F1 = F1(G0) = O(λ2G−5

0 +G−7
0 ) = O(G−5

0 ) (1.99)

L0(α0, G0) is also the same function as in equation (1.48) and is given by

L0(α0, G0) = −15

8
πλG−6

0 cos(α0) + F (1.100)
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with
F = F(α0, G0) = O(λ2G−7

0 , λG−10
0 ) = O(G−7

0 ). (1.101)

Finally in this case, E = R3(α0, G0, t0) and therefore, as given in theorem 1.6 we have

E = R3(α0, G0, t0) = O(G
3/2
0 e−G3

0
4
9 ).

Notice that we have omitted the dependence on e0 by using that e0 = λ/G0 so that the functions
depend on λ instead of e0, although this dependence with respect to λ will not be written explicitly,
since λ will be fixed along this section.

The expression for the function L1 differs from the one in equation (1.52). From theorem 1.6
we get now

L1(α0, G0, t0) = cos(t0 − α0)

√
π

8
G

−1/2
0 e−G3

0/3(1 + Ẽ1)− e−
G3

0
3 4

√
2πλ−1G

1/2
0 ·

· ℜ
{
eit0
[
e−2A A

1−A

[
2f1(A(A − 1))− f0(A(A − 1))

]
+A

]

(1 +R1(α0))

}
+R3(α0, G0, t0) (1.102)

where f0(x) = J0(2i
√
x), f1(x) = J1(2i

√
x)/(2i

√
x) (and both functions can be written in terms

of the function W (x) =
∑

n≥0 x
n/(n!)2 introduced in section B.4), A = (λ/2)e−iα0 and the errors

Ẽ1, R1 and R3 satisfy

|Ẽ1| ≤ K(G−1
0 + λ2G−2

0 ) = O(G−1
0 ), (1.103)

|R1| ≤ KG−1
0 , |R3| ≤ KG

3/2
0 e−4G3

0/9. (1.104)

Analogously as lemma 1.8, we can write L1 in the form

L1(α0, G0, t0) =
√
8πG

1/2
0 e−G3

0/3B cos(t0 − α0 − θ) (1.105)

where

Be−iθ =
1 + Ẽ1

8G0
−
[
e−2A

1−A

[
2Af1(A(A− 1))− f0(A(A− 1))

]
+1

]
(1 +R1(α0)) +R3(α0, G0, t0)

(1.106)

and B = B(α0, λ0) ≥ 0 and θ = θ(α0, λ) is defined mod(2π). As in lemma 1.8, θ is only well
defined for those (α0, G0) such that B > 0. Notice that for G0 big enough B will be positive as
long as

e−2A

1−A

[
2Af1(A(A − 1))− f0(A(A − 1))

]
+1 6= 0

where we recall that A = (λ/2)e−iα0 .
To check that the function t0 7−→ L(α0, G0, t0) is a cosine-like function we just need a similar

result to lemma 1.10 where now
L∗
1 =

√
8πG

1/2
0 e−G3

0/3B (1.107)

and L∗
1 = L∗

1(α0, λ). Lemma 1.10 holds equally in this case since the size of the error term E in
(1.97) is the same as the E in (1.48), in particular exponentially smaller than L∗

1.
Analogously to proposition 1.11, we obtain two critical points t∗0± = t∗0±(α0, λ) of the cosine-like

function t0 7−→ L(α0, G0, t0) which leads to two reduced Poincaré functions L∗
± which are given by

L∗
±(α0, G0) = L0,0(G0) + L0(α0, G0)± L∗

1(α0, λ) + E±(α0, G0) (1.108)

with E± = O(e−2G3
0/9) which leads to an analogous formula to the one in (1.73).
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We have now two scattering maps S± as the one given in (1.74). As before, it is essential to play
with both of them, so we need them to be different, that is, we need some transversality condition
like in lemma 1.13 which relies on the computation of the Poisson bracket {L∗

+,L∗
−} performed in

lemma 1.12. The computation of this Poisson bracket relies on a better knowledge of the function
B given in (1.106).

We have now all the elements to use the same strategy of diffusion explained in section 1.5.2
which leads to the following diffusion theorem.

Theorem 1.16. Fix 0 < λ1 < λ2. Consider G∗
1, G

∗
2 large enough and e0 > 0 small enough such

that λ1/e0 ≤ G∗
1 < G∗

2 ≤ λ2/e0, and µ > 0 small enough. Then for any G1, G2 ∈ (G∗
1, G

∗
2) in the

zone where {L∗
+,L∗

−} 6= 0 one can find orbits of the ERTBP such that G0(0) < G1, G(T ) > G2 for
some T > 0.

To finish this memory, some words about the existence of diffusion for the case e0G0 big, not
studied here, are necessary. Most of the computations performed along this memory remain valid,
for what concerns the computations of the Fourier coefficients Lq,k of the Melnikov potential. The
main difficulty relies on justify the validity of theorem 1.6 without the assumption e0G0 = λ.

We believe that the error terms Ẽ1, R1 and R3 in theorem 1.6 are still small in the general
case λ = e0G0 big, but the strategy to prove it has to be improved. In particular, the estimates for
the error terms Ẽi of theorem 2.19 are not good enough in the case λ = e0G0 big, and lemmas A.3,
A.4, A.5 and A.6 need to be improved and as well as, and mainly, lemma A.7. On the other hand,
the dominant part of the Melnikov potential which gives rise to the Poincaré reduced function L∗

is easier in this case, since there are well known asymptotics for the Bessel functions J0(z) and
J1(z) for |z| large.
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Chapter 2

Estimation of the Melnikov

Potential

To prove theorems 1.5 and 1.6 we need to compute the Melnikov potential, whose formula is given
by (1.47) in section 1.4 and reads

L(α0, G0, t0; e0) =

∫ ∞

−∞

[
x2
h[

4 + x4
hr

2
0 + 4x2

hr0 cos(αh − f)
]1/2

+
(x2

h

2

)2
r0 cos(αh − f)− x2

h

2

]
dt (2.1)

where xh and αh are coordinates of the homoclinic orbit which passes through the point z̃0 ∈ γ̃
defined in (1.32) we have chosen and are evaluated at t. f is the true anomaly defined in (1.5) and
r0 is defined in (1.4) and both are evaluated in t+ t0.

To estimate this Melnikov potential, we will follow different strategies, depending on the size of
e0G0. The main idea is to separate the periodic part from the one depending on the homoclinic.
This will be done in the following way, if we rewrite equation (2.1) as

L(α0, G0, t0; e0) =

∫ ∞

−∞
m(xh(t), αh(t), t+ t0)dt

where m(x, α, s) is periodic in s. The classical way to compute these type of integrals is to use the
Fourier expansion

m(x, α, s) =
∑

q∈Z

mq(x, α)e
iqs

to get

L(α0, G0, t0; e0) =
∑

q∈Z

Lqe
iqt0

where

Lq =

∫ ∞

−∞
mq(xh(t), αh(t))e

iqtdt.

The main problem here is that we do not have an explicit expression for the Fourier coefficients
mq. Besides this, other problem is that we neither have explicit expressions for xh(t) and αh(t),
we only know these through a re-parametrization of time, given in equations (1.34).

To begin the computation of the Melnikov potential (2.1), first we present some results that
will be useful. The Fourier expansion of the Melnikov potential is needed. Let us introduce some
notation

Lq,0 =
∑

l≥1

c̃ 2l, 0
q N(q, l, l) (2.2a)
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Lq,1 =
∑

l≥2

c̃2l−1,−1
q N(q, l− 1, l) (2.2b)

Lq,−1 =
∑

l≥2

c̃2l−1, 1
q N(q, l, l− 1) (2.2c)

Lq,k =
∑

l≥k

c̃2l−k,−k
q N(q, l − k, l) for k ≥ 2 (2.2d)

Lq,−k =
∑

l≥k

c̃2l−k, k
q N(q, l, l− k) for k ≥ 2 (2.2e)

where c̃n,mq is defined for q,m, n ∈ Z by the next Fourier expansion, given in [MP94, Win41]

[r0(f(s))]
n eimf(s) =

∑

q∈Z

c̃n,mq eiq (s) (2.3)

and

N(q,m, n) =
2m+n

G2m+2n−1
0

(−1/2

m

)(−1/2

n

)∫ ∞

−∞

e
iq

G3
0
2

(

τ+ τ3

3

)

(τ − i)2m(τ + i)2n
dτ (2.4)

Because of equation (1.4), we know that r0(s) is a periodic function in s and because of equation
(1.32b), cos(αh − f) is periodic in s and α0 and therefore L is periodic in t0 and α0. With this in
mind, the next proposition, whose proof is in appendix B makes sense

Proposition 2.1. The Melnikov potential given in (1.47) can be written as

L =
∑

q∈Z

Lqe
iqt0 with Lq =

∑

k∈Z

Lq,ke
ikα0 . (2.5)

Then
L =

∑

q∈Z

∑

k∈Z

Lq,ke
i(qt0+kα0) = 2

∑

q≥0

∑

k∈Z

Lq,k cos(qt0 + kα0). (2.6)

where Lq,k are given in (2.2).
Even more, since L is a real function even with respect to (α0, G0), and Lq,k = L−q,−k = Lq,k

and then Lq = L−q

L = L0 + 2ℜ
{∑

q≥1

Lqe
iqt0
}

(2.7)

where we can write
Lq = Lq,0 +

∑

k≥1

[
Lq,ke

ikα0 + Lq,−ke
−ikα0

]

for q ≥ 0.

In view of proposition (2.1) and formulas (2.2), to compute the dominant part of the Melnikov
potential and obtain effective bounds of the errors we will need to estimate the constants c̃n,mq

defined in (2.3) and the integrals N(q,m, n) defined in (2.4). This is done in the next three
propositions.

Proposition 2.2. Let n,m, q ∈ Z, n, q ≥ 0, n − m + 1 ≥ 0. Then the Fourier coefficients c̃n,mq

defined in (2.3) satisfy

|c̃n,mq | ≤
{
2q+n+1eq

√
1−e2

0e
|m−q|
0 m ≥ 0

(1 + e0)
n+1 m < 0

Also, the Fourier coefficients c̃n,mq satisfy c̃n,mq = c̃n,−m
−q .
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Proof. The integral formula for the Fourier coefficients reads

c̃n,mq =
1

2π

∫ 2π

0

r0(t)
neimf(t)e−iqtdt (2.8)

Changing the variable of integration t, using the identities (see [Win41, p. 194])

t(E) = E − e0 sinE (2.9a)

r̂(E) = r(t(E)) = 1− e0 cosE (2.9b)

r̂(E)eif̂(E) = r(t(E))eif(t(E)) = a2eiE − e0 +
e20
4a2

e−iE (2.9c)

a2 =
1 +

√
1− e20
2

=
e20

2(1−
√

1− e20)
(2.9d)

we have

c̃n,mq =
1

2π

∫ 2π

0

[r̂(E)eif̂(E)]mr̂(E)n−m+1e−iqt(E)dE (2.10)

To bound this integral we will consider two different cases form ≥ 0: 0 ≤ q ≤ m and 0 ≤ m < q.
Let us first consider the case 0 ≤ q ≤ m. By the analyticity and periodicity of the integral we
change the path of integration from ℑ(E) = 0 to ℑE = ln(2a2/e0), i. e.,

E = u+ i ln
(2a2
e0

)
u ∈ [0, 2π]

we have

eiE = e
iu−ln

(
2a2

e0

)
=

e0
2a2

eiu

and then

r̃(u)eif̃(u) = r̂(E(u))eif̂(E(u)) = a2
e0
2a2

eiu − e0 +
e20
4a2

2a2

e0
e−iu

=
e0
2
eiu − e0 +

e0
2
e−iu

= e0(cosu− 1) (2.11)

r̃(u) = r(E(u)) = 1− e0
2

(
e0
2a2

eiu +
2a2

e0
e−iu

)

= 1− e20
4a2

eiu − a2e−iu (2.12)

e−it(E) = e−i(E−e0 sinE) =
2a2

e0
e−iue

e0
2

(
e0

2a2 eiu− 2a2

e0
e−iu

)

=
2a2

e0
e−iue

e2
0

4a2 eiu−a2e−iu

(2.13)

therefore

c̃n,mq =
1

2π

∫ 2π

0

[r̃(u)eif̃(u)]mr̃(u)n−m+1

[
2a2

e0
e−iue

e2
0

4a2 eiu−a2e−iu

]q
du (2.14)

to bound this we just have to notice that thanks to (2.11), (2.12) and (2.9d)

|r̃(u)eif̃(u)| ≤ 2e0 (2.15)

|r̃(u)| =
√
(
1− cosu

( e20
4a2

+ a2
))2

+sin2 u
(
a2 − e20

4a2
)2
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=

√(
1− cosu

)2
+sin2 u

(
1− e20

)

=
√
2
(
1− cosu

)
−e20 sin

2 u

≤ 2 (2.16)

and using the definition of a2 in (2.9)

∣∣e
e2
0

4a2 eiu−a2e−iu∣∣ =
∣∣e
(

e2
0

2a2 −a2
)
cosu+i sinu

(
e2
0

2a2 +a2
)∣∣

= e

(
e2
0

2a2 −a2
)
cosu

= e−
√

1−e2
0
cosu

≤ e
√

1−e2
0 (2.17)

substituting this bounds in the integral (2.14) and noticing that a2 ≤ 1 we find directly the desired
result for 0 ≤ q ≤ m.

Now consider the case 0 ≤ m < q. From equation (2.10) we perform the change of the
integration variable through

E = v − i ln
(2a2
e0

)
, τ ∈ [0, 2π]

we have

eiE = eiv+ln
(

2a2

e0

)
=

2a2

e0
eiv

and using (2.9)

˜̃r(v)ei
˜̃f(v) = r(E(v))eif(E(v)) = a2

2a2

e0
eiv − e0 +

e20
4a2

e0
2a2

e−iv

=
2a4

e0
eiv − e0 +

e30
8a4

e−iv

=
1

e0

(
2a4eiv − e20 +

e40
8a4

e−iv
)

˜̃r(v) = 1− e0
2

(
2a2

e0
eiv +

e0
2a2

e−iv

)

= 1− a2eiv − e20
4a2

e−iv

e−i(E−e0 sinE) =
e0
2a2

e−ive
e0
2

(
2a2

e0
eiv− e0

2a2 e−iv
)

=
e0
2a2

e−ivea
2eiv− e2

0

4a2 e−iv

therefore

c̃n,mq =
1

2π

∫ 2π

0

[˜̃r(v)ei
˜̃f(v)]m ˜̃r(v)n−m+1

[
e0
2a2

e−ivea
2eiv− e2

0

4a2 e−iv

]q
dv

to bound this we just have to notice that, using the definition of a2 given in (2.9), a2 ≥ 1/2

|˜̃r(v)ei ˜̃f(v)| ≤ 1

e0

(
2 + e20 +

1

2
e40

)
<

7

2

1

e0
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|˜̃r(v)| =
√
(
1− cos v

( e20
4a2

+ a2
))2

+sin2 v
(
a2 − e20

4a2
)2

=

√(
1− cos v

)2
+sin2 v

(
1− e20

)

=
√
2
(
1− cos v

)
−e20 sin

2 v

≤ 2

and

∣∣ea
2eiv− e2

0

4a2 e−iv ∣∣ =
∣∣e
(
a2− e2

0

2a2

)
cos v+i sin v

(
e2
0

2a2 +a2
)∣∣

= e

(
a2− e2

0

2a2

)
cos v

= e
√

1−e2
0
cos v

≤ e
√

1−e2
0

using that a2 ≥ 1/2 we conclude

|c̃n,mq | ≤
(7
2

)m
2n−m+1eq

√
1−e2

0eq−m
0

≤
(7
4

)m
2n+1eq

√
1−e2

0eq−m
0

and since 7/4 < 2 and 0 ≤ m < q we have that

(7
4

)m
< 2q

from where we get the desired result for this case too.
For m < 0 we bound directly over the equation (2.10). Since |eif | = |e−it| = 1 we have

|c̃n,mq | ≤ 1

2π

∫ 2π

0

|r̂(E)|n+1dE

by noticing that |r(E)| ≤ (1 + e0) we conclude the proof of the bounds for the c̃n,mq . Now, define

Pn,m(t) = [r0(f(t))]
n eimf(t)

then
Pn,m(t) = [r0(f(t))]

n e−imf(t) = Pn,−m

but by equation (2.3)

Pn,m(t) =
∑

q∈Z

c̃n,mq e−iq t

Pn,−m(t) =
∑

q∈Z

c̃n,−m
q eiq t

from where c̃n,−m
−q = c̃n,mq = c̃

n,m
q .

As we can see from equations (2.2) the Fourier coefficients of the Melnikov potential L depend
on the function N defined in (2.4), so that the next result, proved in appendix B will be useful

Proposition 2.3. Let q,m, n ∈ Z,m,n ≥ 0 m+ n > 0, q > 0, c ≥ 1 and G0 ≥ c2/3 . Then,

|N(q,m, n)| ≤ K2e
−q

G3
0
3 eqc

2

2n+mG
m−2n− 1

2

0

with K2 = 6πe−1/2
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As we want to compute an asymptotic formula for the Melnikov potential (1.47), propositions
2.2 and 2.3 allow us to easily bound a lot of Fourier coefficients Lq,k. Nevertheless, we need to
compute the integral involved in N(q,m, n) given in (2.4) for some values of m,n and q. Next
proposition comes in that direction. But before, we need to introduce the constants dn,mj . Let us
define

h(τ) = i
(τ3
3

+ τ
)

and

u(τ) = h(i)− h(τ) = −2

3
− i
(τ3
3

+ τ
)
= (τ − i)2 − i

3
(τ − i)3. (2.18)

It is easy to see that u is an increasing real valued function in the direction of increasing imaginary
part over the set ℑ(h(τ)) = 0 (see figure 2.1), moreover

u({τ+ : ℑ(h(τ+)) = 0,ℜ(τ+) > 0}) = u({τ− : ℑ(h(τ−)) = 0,ℜ(τ−) < 0}) ⊂ R
+
0 .

i

τ Plane

ℑ [h(τ)]

Figure 2.1: ℑ(h(τ))

Therefore u has two inverses inverses; τ+ and
τ− with domain in R

+
0 . Now let

F±
m,n(u) =

1

(τ±(u)− i)2m+1(τ±(u) + i)2n+1
.

whose expansion in
√
u is given in lemma (A.4):

F±
m,n(u) = (±√

u)−2m−1
∞∑

j=0

dn,mj (±√
u)j . (2.19)

for some coefficients dn,mj .
Let us call

dm,n = i2m+n

(−1/2

n

)(−1/2

m

)
. (2.20)

Next proposition provides an asymptotic expres-
sion for N(q,m, n) for big values of G0. Its proof is given in section B.3.

Proposition 2.4. Let n+m > 0 and the constants dn,mj be defined by equation (2.19) and dn,m
by equation (2.20). If q, n,m ∈ Z,m,n ≥ 0, q ≥ 0 then

N(q,m, n) =
dm,ne

−q
G3

0
3

G2m+2n−1
0

[
m∑

s=0

(−1)s
√
π

2
3
2 qs−

1
2

(2s− 1)!!
dn,m2m−2sG

3s− 3
2

0 + T q
m,n +Rq

m,n

]

where
|T q

m,n| ≤ K11γ
m
4 G−3

0 |Rq
m,n| ≤ K12q

m−1G3m−3
0 .

and

β =

(
−1 +

√
11

4

√

3 +

√
11

2

)1/2

, γ4 =
2

β2
, K11 = 22

(√
2 +

2

β(1 − β)

)
, K12 = 2πe4/3.

When s = 0 the factor 1/(2s− 1)!! in the formula should be replaced by 1.
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2.1 e0G0 ≪ 1

In view of proposition 2.4, the dominant part of the Melnikov potential L comes from the Fourier
coefficient L1, the main terms of this coefficients are computed using proposition 2.4, and the rest
of the terms will be bounded using propositions 2.2 and 2.3.

In this section we will prove a much more quantitative version of theorem 1.5 wich will imme-
diately imply it.

Theorem 2.5. Let c ≥ 1. If G0 ≥ 32, e0G0 < 1/8, then the Melnikov potential L given by (2.7)
satisfy

L = L0(α0)+cos(t0−α0)
(√π

8
G

−1/2
0 e−

G3
0
3 +E3+E5+E7

)
− cos(t0−2α0)

(
3
√
2πe0G

3/2
0 e−

G3
0
3 +E4+E6+E8

)

+ 2ℜ{E2(α0)e
it0}+ E1(t0, α0)

|E1(t0, α0)| ≤ K52
6e2

√
1−e2

0G
3/2
0 e−G3

0
4
9

|E2(α0)| ≤ K6e
−G3

0
3

[
(1 + e0)

4G
−7/2
0 + 26e

√
1−e2

0(e20G
5/2
0 + e0G

−3/2
0 )

]

|E3| ≤ K7e
√

1−e2
0e−

G3
0
3 G

−3/2
0

|E4| ≤ K8e
√

1−e2
0e−

G3
0
3 e0G

1/2
0

|E5| ≤ 25e
√

1−e2
0K13G

−2
0 e−

G3
0
3

|E6| ≤ 24e
√

1−e2
0e0K13e

−G3
0
3

|E7| ≤
√

π

8
98e20G

−1/2
0 e−

G3
0
3

|E8| ≤
√
2π50e20G

3/2
0 e−

G3
0
3

with

K5 = 1152πe−1/2

K6 = 2412πec
2−1/2

K7 = 214 · 3πec2−1/2

K8 = 212 · 3πec2−1/2

β =

(
−1 +

√
11

4

√

3 +

√
11

2

)1/2

K11 = 22
(√

2 +
2

β(1− β)

)

K12 = 2πe4/3

γ4 =
2

β2

K13 = 40

√
π

3
+

3

2
γ2
4(K11 +K12)

and

L0(α0)− L0,0 = −15

8
πe0G

−5
0 cos(α0) + F2 + F3 + F5
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where

|F2| ≤ K222
3e0G

−9
0

|F3| ≤ K23e
2
0G

−7
0

|F5| ≤ K25G
−5
0 e20

with

K22 = 210e−1π

K23 = 27e−1π

K25 = 57π/4

The proof of the theorem will be done constructively through the following series of lemmas
and propositions

Let us first compute some coefficients c̃n,mq , more precisely c̃3,11 , c̃2,21 , c̃2,00 and c̃3,10

Lemma 2.6. Let c̃n,mq be defined by (2.3). Then

c̃3,11 = 1+Q1

c̃2,21 = −3e0 +Q2

c̃2,00 = 1+Q3

c̃3,10 = −5

2
e0 +Q4

with

|Q1| ≤ 98e20

|Q2| ≤ 50e20

|Q3| ≤ 4e20

|Q4| ≤ 19e20

Proof. From its definition given in (2.3) and using the change of variable t = E − e0 sinE we have

c̃3,11 =
1

2π

∫ 2π

0

[r(E)eif(E)]r(E)3e−it(E)dE

c̃2,21 =
1

2π

∫ 2π

0

[r(E)eif(E)]2r(E)e−it(E)dE

c̃2,00 =
1

2π

∫ 2π

0

r(E)3dE

c̃3,10 =
1

2π

∫ 2π

0

[r(E)eif(E)]r(E)3dE

From equations (2.9) we have

c̃3,11 =
1

2π

∫ 2π

0

[a2eiE − e0 +
e20
4a2

e−iE ](1− e0 cosE)3e−iEeie0 sinEdE (2.21)

c̃2,21 =
1

2π

∫ 2π

0

[a2eiE − e0 +
e20
4a2

e−iE ]2(1− e0 cosE)e−iEeie0 sinEdE (2.22)

c̃2,00 =
1

2π

∫ 2π

0

(1− e0 cosE)3dE (2.23)

c̃3,10 =
1

2π

∫ 2π

0

[a2eiE − e0 +
e20
4a2

e−iE ](1− e0 cosE)3dE (2.24)
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To bound c̃3,11 we use equation (2.21). It is easy to see that

a2eiE − e0 +
e20
4a2

e−iE = eiE − e0 + Ē1 (2.25a)

(1 − e0 cosE)3 = 1− 3e0 cosE + Ē2 (2.25b)

eie0 sinE = 1 + ie0 sinE + Ē3 (2.25c)

where

Ē1 = (a2 − 1)eiE +
e20
4a2

e−iE

Ē2 = 3e20 cos
2 E − e30 cos

3 E

Ē3 =
1

2
(ie0 sinE)2

∞∑

j=0

2
(ie0 sinE)j

(j + 2)!

Since

0 ≤ e0 ≤ 1 (2.26a)

1

2
≤ a2 ≤ 1 (2.26b)

|a2 − 1| =
∣∣
√
1− e20 − 1

2

∣∣=
∣∣ −e20

2(
√
1− e20 + 1)

∣∣≤ e20
2

(2.26c)

we have

|Ē1| ≤
e20
2

+
e20
2

= e20

|Ē2| ≤ 4e20

|Ē3| ≤
e20
2
ee0 ≤ e20

e

2
≤ 2e20

Using equations (2.25), we have from equation (2.21) that c̃3,11 is the Fourier coefficient of order 1
of the function

(eiE − e0 + Ē1)(1− 3e0 cosE + Ē2)(1 + ie0 sinE + Ē3) =

eiE − e0 − 3e0 cosEeiE + ie0 sinEeiE + Q̃1(E)

where

Q̃1(E) = Ē1 − 3e20 cosE − 3e0Ē1 cosE + Ē2(e
iE − e0 + Ē1)

− ie20 sinE − 3ie20 cosE sinEeiE − 3ie30 cosE sinE − 3ie20 sinE cosEĒ2 + ie0 sinEĒ2(e
iE − e0 + Ē1)

+ Ē3(e
iE − e0 + Ē1 − 3e0 cosEeiE − 3e20 cosE − 3e0Ē1 cosE + Ē2(e

iE − e0 + Ē1))

this implies that, up to order one in e0 the Fourier coefficient c̃3,11 is exactly one. From the bounds
for Ē1, Ē2 and Ē3 we find |Q̃1(E)| ≤ 98e20 wich implies the result for c̃3,11 .

From equation (2.22), it is easy to see that, using equation (2.25a)

[
a2eiE − e0 +

e20
4a2

e−iE
]2

=
[
eiE − e0 + Ē1

]2
= e2iE − 2e0e

iE + Ē4

where

Ē4 = e20 + 2Ē1(e
iE − e0) + Ē2

1
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in regard of equations (2.26) and the bound for Ẽ1 we have

|Ē4| ≤ e20 + 2e20(1 + e0) + e40 ≤ 6e20.

Using equation (2.25c), we see from equation (2.22) that c̃2,21 is the Fourier coefficient of order 1
of the function

(e2iE − 2e0e
iE + Ē4)(1− e0 cosE)(1 + ie0 sinE + Ē3) =

e2iE − e0 cosEe2iE − 2e0e
iE + ie0 sinEe2iE + Q̃2(E)

where

Q̃2(E) = 2e20 cosEeiE + Ē4 − e0Ē4 cosE

= ie0 sinE(−e0 cosEe2iE − 2e0e
iE + 2e20 cosEeiE + Ē4 − e0Ē4 cosE)

= Ē3(e
2iE − e0 cosEe2iE − 2e0e

iE + 2e20 cosEeiE + Ē4 − e0Ē4 cosE)

with this expressions, we conclude that, up to order one in e0, the Fourier coefficient c2,21 is exactly
−3e0, and from the bounds for Ē4 and Ē3 we find that |Q̃2(E)| ≤ 50e20 wich implies the result for
c̃2,21 .

Using equation (2.23) to compute c̃2,00 we have using equation (2.25b)

c̃2,00 =
1

2π

∫ 2π

0

(1− 3e0 cosE + Ē2)dE = 1 +Q3

then, by setting

Q3 =
1

2π

∫ 2π

0

Ē2dE

we have immediately, using the bound for Ē2, that |Q3| ≤ 4e20, the desired result for c̃2,00 .
Using equation (2.24) to compute c̃3,10 using we have, (2.25a) and (2.25b)

c̃3,10 =
1

2π

∫ 2π

0

(eiE − e0 + Ē1)(1 − 3e0 cosE + Ē2)dE

Now, we want to find, up to order e0 the Fourier coefficient of order zero of the function

(eiE − e0 + Ē1)(1− 3e0 cosE + Ē2) = eiE − 3e0e
iE cosE − e0 + Ē5

where
Ē5 = Ē2e

iE + 3e20 cosE − e0Ē2 + Ē1 − 3e0Ē1 cosE + Ē2Ē1

from where we find

c̃3,10 = −5

2
e0 +Q4

we can bound

Q4 =
1

2π

∫ 2π

0

Ē5dE

using the bounds for Ē2 and Ē1 to find |Q4| ≤ 19e20.

Lemma 2.7. Let c ≥ 1, G0 > 32. If q, k ∈ N, k ≥ 2, then

|Lq, 0| ≤ K32
q+5eq

√
1−e2

0eq0G
−3/2
0 e

−q
G3

0
3

(
1− 3

G3
0

c2
)

|Lq, 1| ≤ K32
3(1 + e0)

4G
−7/2
0 e

−q
G3

0
3

(
1− 3

G3
0

c2
)

|Lq,−1| ≤ K32
q+7eq

√
1−e2

0e
|1−q|
0 G

−1/2
0 e

−q
G3

0
3

(
1− 3

G3
0

c2
)
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|Lq, k| ≤ K32
k(1 + e0)

k+1G
−2k−1/2
0 e

−q
G3

0
3

(
1− 3

G3
0

c2
)

|Lq,−k| ≤ K32
q+2k+1eq

√
1−e2

0e
|k−q|
0 G

k−1/2
0 e

−q
G3

0
3

(
1− 3

G3
0

c2
)

where K3 = 12πe−1/2.

Proof. From equations (2.2) by propositions 2.2 and 2.3 we have

|Lq, 0| ≤ 2K2e
−q

G3
0
3

(
1− 3

G3
0

c2
)
(2e0e

√
1−e2

0)qG
−1/2
0

∑

l≥1

(24G−1
0 )l

|Lq, 1| ≤ 2−1K2e
−q

G3
0
3

(
1− 3

G3
0

c2
)
G

−3/2
0

∑

l≥2

((1 + e0)
222G−1

0 )l

|Lq,−1| ≤ 2−1K2e
−q

G3
0
3

(
1− 3

G3
0

c2
)
eq
√

1−e2
02qe

|1−q|
0 G

3/2
0

∑

l≥2

(24G−1
0 )l

|Lq, k| ≤ 2−kK2e
−q

G3
0
3

(
1− 3

G3
0

c2
)
(1 + e0)

−kG
−k−1/2
0

∑

l≥k

((1 + e0)
222G−1

0 )l

|Lq,−k| ≤ 2−2k+1K2e
−q

G3
0
3

(
1− 3

G3
0

c2
)
eq
√

1−e2
02qe

|k−q|
0 G

2k−1/2
0

∑

l≥k

(24G−1
0 )l

since by hypothesis 24/G0 ≤ 1/2 all these series converge and by setting

K3 = 2K2

we have proven the lemma.

Lemma 2.8. If q ∈ N, q ≥ 2. Assume G0 ≥ 32, e0G0 < 1/8 then

|Lq| ≤
∑

k∈Z

|Lq,k| ≤ K4e
−qG3

0
2
9

[
23qeq

√
1−e2

0G
q−1/2
0

]
(2.28)

where K4 = 288πe−1/2

Proof. From lemma (2.7) we have for any c ≥ 1

∑

k∈Z

|Lq,k| ≤ |Lq,0|+ |Lq,1|+ |Lq,−1|+
∑

k≥2

(
|Lq,k|+ |Lq,−k|

)

≤ K3e
−q

G3
0
3

(
1− 3

G3
0

c2
)[

252qeq0e
q
√

1−e2
0G

−3/2
0 + 23(1 + e0)

4G
−7/2
0 + 27+qeq−1

0 eq
√

1−e2
0G

−1/2
0

+
∑

k≥2

(
2k(1 + e0)

k+1G
−2k−1/2
0 + 22k+q+1eq

√
1−e2

0e
|k−q|
0 G

k−1/2
0

)]

≤ K3e
−q

G3
0
3

(
1− 3

G3
0

c2
)[

272qeq−1
0 eq

√
1−e2

0G
−1/2
0 + 23(1 + e0)

4G
−7/2
0 + (1 + e0)G

−1/2
0

∞∑

k=2

(2(1 + e0)G
−2
0 )k

+ eq
√

1−e2
0G

−1/2
0 2q+1eq0

q−1∑

k=2

(4G0e
−1
0 )k + eq

√
1−e2

0G
−1/2
0 e−q

0 2q+1
∞∑

k=q

(4e0G0)
k

]

choosing c = 1, we have that G0 ≥ (3c)2/3, and therefore using that e0G0 ≤ 1/8

∑

k∈Z

|Lq,k| ≤ K3e
−qG3

0
2
9

[
272qeq−1

0 eq
√

1−e2
0G

−1/2
0 + 23(1 + e0)

4G
−7/2
0 + 23(1 + e0)

3G
−9/2
0
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+ 23qeq
√

1−e2
0G

q−3/2
0 e0 + eq

√
1−e2

0G
q−1/2
0 23q+2

]

≤ K3e
−qG3

0
2
9

[
272qeq−1

0 eq
√

1−e2
0G

−1/2
0 + 24(1 + e0)

4G
−7/2
0

+ 23qeq
√

1−e2
0G

q−3/2
0 e0 + eq

√
1−e2

0G
q−1/2
0 23q+2

]

≤ K3e
−qG3

0
2
9

[
272qeq−1

0 eq
√

1−e2
0G

−1/2
0 + 24(1 + e0)

4G
−7/2
0

+ 23q+3eq
√

1−e2
0G

q−1/2
0

]

≤ K3e
−qG3

0
2
9

[
3 · 23q+3eq

√
1−e2

0G
q−1/2
0

]

setting K4 = 3 · 23K3, we conclude the proof.

Lemma 2.9. If L is given by (2.7), G0 ≥ 32, e0G0 < 1/8. Then

L = L0 + 2ℜ
{
eit0L1

}
+ E1(t0, α0)

where
|E1(t0, α0)| ≤ K52

6e2
√

1−e2
0G

3/2
0 e−G3

0
4
9

and K5 = 1152πe−1/2.

Proof. From equation (2.7) we have that

E1(t0, α0) = 2ℜ
{∑

q≥2

eiqt0Lq

}

and then by lemma 2.8

|E1(t0, α0)| ≤ 2K4G
−1/2
0

∑

q≥2

[
e−G3

0
2
9 23e

√
1−e2

0G0

]q

≤ 4K42
6e2

√
1−e2

0G
3/2
0 e−G3

0
4
9

where the last bound holds if

e−G3
0

2
9 23e

√
1−e2

0G0 ≤ 1

2
. (2.29)

wich is true for every G0 ≥ 32.
Letting K5 = 4K4 = 1152πe−1/2 we have proven the lemma.

The next step is to compute an asymptotic formula for L1.

Lemma 2.10. If L1 is given by (2.7), G0 ≥ 32, e0G0 ≤ 1/8 then

ℜ{eit0L1} = ℜ
{
[(c̃3,11 N(1, 2, 1) + E3)e

−iα0 + (c̃2,21 N(1, 2, 0) + E4)e
−2iα0 + E2(α0)]e

it0
}

where

|E2(α0)| ≤ K6e
−G3

0
3

[
(1 + e0)

4G
−7/2
0 + 26e

√
1−e2

0(e20G
5/2
0 + e0G

−3/2
0 )

]

|E3| ≤ K7e
√

1−e2
0e−

G3
0
3 G

−3/2
0

|E4| ≤ K8e
√

1−e2
0e−

G3
0
3 e0G

1/2
0

and K6 = 2412πec
2−1/2, K7 = 214 · 3πec2−1/2, K8 = 212 · 3πec2−1/2
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Proof. From equation (2.5), we have that

L1 = L1,0 +
∑

k≥1

(
L1,ke

ikα0 + L1,−ke
−ikα0

)

= L1,−1e
−iα0 + L1,−2e

−2iα0 +
∑

k≥0

L1,ke
ikα0 +

∑

k≥3

L1,−ke
−ikα0

Now, setting

E2(α0) =
∑

k≥0

L1,ke
ikα0 +

∑

k≥3

L1,−ke
−ikα0 (2.30)

we can write
ℜ
{
L1e

it0
}
= ℜ

{(
L1,−1e

−iα0 + L1,−2e
−2iα0 + Ē2(α0)

)
eit0
}

(2.31)

By definitions (2.2) we have

L1,−1 = c̃3,11 N(1, 2, 1) +
∑

l≥3

c̃2l−1,1
1 N(1, l, l− 1) (2.32a)

L1,−2 = c̃2,21 N(1, 2, 0) +
∑

l≥3

c̃2l−2,2
1 N(1, l, l− 2) (2.32b)

If we set

E3 =
∑

l≥3

c̃2l−1,1
1 N(1, l, l− 1) (2.33a)

E4 =
∑

l≥3

c̃2l−2,2
1 N(1, l, l− 2) (2.33b)

we have from equations (2.32) and (2.31) that

ℜ{eit0L1} = ℜ
{
[(c̃3,11 N(1, 2, 1) + E3)e

−iα0 + (c̃2,21 N(1, 2, 0) + E4)e
−2iα0 + E2(α0)]e

it0
}

(2.34)

This is exactly the equation we want, it only remains to bound properly the Ē’s.
Now from equation (2.30), by the triangle inequality and lemma 2.7 we have

|E2(α0)| ≤ |L1,0|+ |L1,1|+
∑

k≥2

|L1,k|+
∑

k≥3

|L1,−k|

≤ K3e
−G3

0
3 ec

2

[
26e0e

√
1−e2

0G
−3/2
0 + 23(1 + e0)

4G
−7/2
0 +

∑

k≥2

2k(1 + e0)
k+1G

−2k−1/2
0

+
∑

k≥3

22k+2e
√

1−e2
0ek−1

0 G
k−1/2
0

]

≤ K3e
−G3

0
3 ec

2

[
26e0e

√
1−e2

0G
−3/2
0 + 23(1 + e0)

4G
−7/2
0 + (1 + e0)G

−1/2
0

∞∑

k=2

(2(1 + e0)G
−2
0 )k

+ 22e
√

1−e2
0e−1

0 G
−1/2
0

∑

k≥3

(22e0G0)
k

]

≤ K3e
−G3

0
3 ec

2

[
26e0e

√
1−e2

0G
−3/2
0 + 23(1 + e0)

4G
−7/2
0 + 23(1 + e0)

3G
−9/2
0

+ 29e
√

1−e2
0e20G

5/2
0

]

≤ K3e
−G3

0
3 ec

2

[
24(1 + e0)

4G
−7/2
0 + 210e

√
1−e2

0(e20G
5/2
0 + e0G

−3/2
0 )

]

≤ K6e
−G3

0
3

[
(1 + e0)

4G
−7/2
0 + 26e

√
1−e2

0(e20G
5/2
0 + e0G

−3/2
0 )

]
(2.35)
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with
K6 = 24K3e

c2 = 2412πec
2−1/2 (2.36)

Now E3 and E4. By propositions 2.2 and 2.3, we have from equations (2.33)

|E3| ≤
∑

l≥3

|c̃2l−1,1
1 N(1, l, l− 1)|

≤ K2e
√

1−e2
0ec

2

e−
G3

0
3 G

3/2
0

∑

l≥3

(24G−1
0 )l

≤ K7e
√

1−e2
0e−

G3
0
3 G

−3/2
0 (2.37)

|E4| ≤
∑

l≥3

|c̃2l−2,2
1 N(1, l, l− 2)|

≤ K22
−2e0e

√
1−e2

0ec
2

e−
G3

0
3 G

7/2
0

∑

l≥3

(24G−1
0 )l

≤ K8e
√

1−e2
0e−

G3
0
3 e0G

1/2
0 (2.38)

where
K7 = 213K2e

c2 = 214 · 3πec2−1/2 K8 = 211K2e
c2 = 212 · 3πec2−1/2

In regard of equation (2.34) and the estimations (2.35), (2.37) and (2.38) we have proven this
lemma.

With the lemma 2.10, we have, from lemma 2.9 that

L = L0 + 2ℜ
{
[(c̃3,11 N(1, 2, 1) + E3)e

−iα0 + (c̃2,21 N(1, 2, 0) + E4)e
−2iα0 + E2(α0)]e

it0
}
+E1(t0, α0)

(2.39)
where

|E1(t0, α0)| ≤ K52
6e2

√
1−e2

0G
3/2
0 e−G3

0
4
9 (2.40a)

|E2(α0)| ≤ K6e
−G3

0
3

[
(1 + e0)

4G
−7/2
0 + 26e

√
1−e2

0(e20G
5/2
0 + e0G

−3/2
0 )

]
(2.40b)

|E3| ≤ K7e
√

1−e2
0e−

G3
0
3 G

−3/2
0 (2.40c)

|E4| ≤ K8e
√

1−e2
0e−

G3
0
3 e0G

1/2
0 (2.40d)

and

K5 = 1152πe−1/2, K6 = 2412πec
2−1/2 K7 = 214 · 3πec2−1/2 K8 = 212 · 3πec2−1/2

Lemma 2.11. Let N be defined by equations (2.4) then

N(1, 2, 1) =
1

4

√
π

2
G

−1/2
0 e−

G3
0
3 + 1ETT

N(1, 2, 0) =

√
π

2
G

3/2
0 e−

G3
0
3 + 2ETT

where

|1ETT | ≤ K13G
−2
0 e−

G3
0
3 |2ETT | ≤ K13e

−G3
0
3

with

K13 = 40

√
π

3
+

3

2
γ2
4(K11 +K12)

with K11, K12 and γ4 are defined in proposition 2.4.
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Proof. From proposition 2.4 we have

N(1, 2, 1) =
d2,1
G5

0

e−
G3

0
3

[
d1,24

√
π
( 2

G0

)3/2
−22d1,22

√
π

√
G3

0

2
+

23

3
d1,20

√
π(

√
G3

0

2
)3 + T 1

2,1 +R1
2,1

]

(2.41)

where
|T 1

2,1| ≤ K11γ
2
4G

−3
0 |R1

2,1| ≤ K12G
3
0

and

N(1, 2, 0) =
d2,0
G3

0

e−
G3

0
3

[
2d0,24

√
π(

√
G3

0

2
)−1 − 22d0,22

√
π

√
G3

0

2
+

23

3
d0,20

√
π(

√
G3

0

2
)3 + T 1

2,0 +R1
2,0

]

(2.42)
where

|T 1
2,0| ≤ K11γ

2
4G

−3
0 |R1

2,0| ≤ K12G
3
0

Computing explicitly the exponents of G0 and taking the largest of the errors in equations (2.41)
and (2.42) we can write them as

N(1, 2, 1) = d2,1d
1,2
0

2
√
2

3

√
πG

−1/2
0 e−

G3
0
3 + 1E + 1ETR (2.43)

where

1E = 2
3
2 d2,1

√
π
(
d1,24 G

− 13
2

0 − d1,22 G
− 7

2

0

)
e−

G3
0
3

1ETR = (T 1
2,1 +R1

2,1)d2,1G
−5
0 e−

G3
0
3

with bounds

|1E| ≤ 2
3
2 |d2,1|

√
π(|d1,24 |+ |d1,22 |)G− 7

2

0 e−
G3

0
3 |1ETR| ≤ |d2,1|γ2

4(K11 +K12)G
−2
0 e−

G3
0
3

and

N(1, 2, 0) = d2,0d
0,2
0

2
√
2

3

√
πG

3/2
0 e−

G3
0
3 + 2E + 2ETR (2.44)

where

2E = 2
3
2 d2,0

√
π
(
d0,24 G

− 9
2

0 − d0,22 G
− 3

2

0

)
e−

G3
0
3

2ETR = (T 1
2,0 +R1

2,0)d2,0G
−3
0 e−

G3
0
3

with the bounds

|2E| ≤ 2
3
2 |d2,0|

√
π(|d0,24 |+ |d0,22 |)G− 3

2

0 e−
G3

0
3 |2ETR| ≤ |d2,0|γ2

4(K11 +K12)e
−G3

0
3

Using lemma A.4, dn,m0 = 1/(2i)2n+1 and by definition (2.20) for dm,n we have that

d2,1d
1,2
0 = −i23

(−1/2

2

)(−1/2

1

)( i

23

)
= − 3

24

d2,0d
0,2
0 = i22

(−1/2

2

)(
− i

2

)
=

3

22
.

We can then write equation (2.43) as

N(1, 2, 1) =
1

4

√
π

2
G

−1/2
0 e−

G3
0
3 + 1ETT (2.45)

where
1ETT = 1E + 1ETR,
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using lemma A.7 to bound dn,mj we find

|1ETT | ≤
[
3
√
2π(|d1,24 |+ |d1,22 |) + 3

2
γ2
4(K11 +K12)

]
G−2

0 e−
G3

0
3

≤
[
3
√
2π
(
|d1,24 |+ |d1,22 |

)
+
3

2
γ2
4(K11 +K12)

]
G−2

0 e−
G3

0
3

≤
[
K120

√
2π +

3

2
γ2
4(K11 +K12)

]
G−2

0 e−
G3

0
3

≤
[
40

√
π

3
+

3

2
γ2
4(K11 +K12)

]
G−2

0 e−
G3

0
3

so, defining

K13 = 40

√
π

3
+

3

2
γ2
4(K11 +K12)

we have

|1ETT | ≤ K13G
−2
0 e−

G3
0
3 .

Analogously, equation (2.44) can be written as

N(1, 2, 0) =

√
π

2
G

3/2
0 e−

G3
0
3 + 2ETT (2.46)

where
2ETT = 2E + 2ETR

with

|1ETT | ≤
[
3
√
2π|d0,24 − d0,22 |+ 3

2
γ2
4(K11 +K12)

]
e−

G3
0
3

≤
[
3
√
2π
(
|d0,24 |+ |d0,22 |

)
+
3

2
γ2
4(K11 +K12)

]
e−

G3
0
3

≤
[
K120

√
2π +

3

2
γ2
4(K11 +K12)

]
e−

G3
0
3

≤
[
40

√
π

3
+

3

2
γ2
4(K11 +K12)

]
e−

G3
0
3

then, we have

|2ETT | ≤ K13e
−G3

0
3

this proves the lemma.

Using the approximations given in lemma 2.11 we have from lemmas 2.9 and 2.10

Lemma 2.12. If L is given by (2.7), G0 ≥ 32, e0G0 ≤ 1/8. Then

L = L0+cos(t0−α0)
(
c̃3,11

√
π

8
G

−1/2
0 e−

G3
0
3 +E3+E5

)
+cos(t0−2α0)

(
c̃2,21

√
2πG

3/2
0 e−

G3
0
3 +E4+E6

)

+ 2ℜ{E2(α0)e
it0}+ E1(t0, α0)

where Ek with k = 1, ..., 4 are given in equations (2.40) and

|E5| ≤ 25e
√

1−e2
0K13G

−2
0 e−

G3
0
3 (2.47)

|E6| ≤ 24e
√

1−e2
0e0K13e

−G3
0
3 (2.48)

where K13 is defined in lemma 2.11.
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Proof. By lemma 2.11 we have that N(1, 2, 1) and N(1, 2, 0) are real and then coincide with their
real part. Equation (2.39) gives the correct estimation of L. To complete the proof is enough to
take

E5 = c̃3,11 (1ETT ) and E6 = c̃2,21 (2ETT )

where 1ETT and 2ETT are given in lemma 2.11. Therefore by proposition 2.2 we find directly the
bounds of E5 and E6.

Lemma 2.13. If L is given by (2.7), G0 ≥ 32, e0G0 < 1/8. Then

L = L0+cos(t0−α0)
(√π

8
G

−1/2
0 e−

G3
0
3 +E3+E5+E7

)
− cos(t0−2α0)

(
3
√
2πe0G

3/2
0 e−

G3
0
3 +E4+E6+E8

)

+ 2ℜ{E2(α0)e
it0}+ E1(t0, α0)

where Ek with k = 1, ..., 6 are given in lemma 2.12 and

|E7| ≤
√

π

8
98e20G

−1/2
0 e−

G3
0
3

|E8| ≤
√
2π50e20G

3/2
0 e−

G3
0
3

Proof. From lemma 2.6 we have

c̃3,11

√
π

8
G

−1/2
0 e−

G3
0
3 =

√
π

8
G

−1/2
0 e−

G3
0
3 + E7

c̃2,21

√
2πG

3/2
0 e−

G3
0
3 = −3

√
2πe0G

3/2
0 e−

G3
0
3 + E8

with

E7 = Q1

√
π

8
G

−1/2
0 e−

G3
0
3

E8 = Q2

√
2πG

3/2
0 e−

G3
0
3

Therefore by lemma (2.12) and the bounds of Q1 and Q2 given in lemma 2.6 we conclude the
proof.

Now, we are going to study the term L0, first a lemma

Lemma 2.14. Let N be defined by equations (2.4) then for m,n ∈ N, m+ n > 0

|N(0,m, n)| ≤ K202
m+nG−2m−2n+1

0

where K20 = e−1π.

Proof. Since in the integral (2.4) τ ∈ R then is easy to see that

1

|τ + i| ,
1

|τ − i| ≤ 1

and then
1

|τ + i|2n ≤ 1

|τ + i|2
1

|τ − i|2m ≤ 1

|τ − i|2
then using that n,m > 0, by equation (2.4) and lemma A.1 we have that

|N(0,m, n)| ≤ 2m+nG−2m−2n+1
0 e−1

∫ ∞

−∞

dτ

1 + τ2

= 2m+nG−2m−2n+1
0 e−1π

naming K20 = e−1π we have proven this lemma.
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Lemma 2.15. Let k ∈ N and L0,±k defined by equations (2.2). Then

L0, k =
∑

l≥k+1

c̃2l−k,−k
0 N(0, l − k, l)

L0,−k =
∑

l≥k+1

c̃2l−k, k
0 N(0, l, l− k)

Proof. From equations (2.2), we have just to prove that for k ≥ 2

N(0, 0, k) = N(0, k, 0) = 0.

By equations (2.4) this reduces to show that
∫ ∞

−∞

dτ

(τ ± i)2k
= 0

where the positive sign in the denominator correspond to I(0, 0, k) and the negative to I(0, k, 0).
Since the variable τ ∈ R this integral is trivial

∫ ∞

−∞

dτ

(τ ± i)2k
= − 1

2k − 1

1

(τ ± i)2k−1

∣∣∣∣
∞

−∞
= 0

this proves the lemma.

Lemma 2.16. Let L0,±k be defined by equations (2.2) If k ∈ N and G0 ≥ 4 then

|L0,±k| ≤ K21e
k
02

2kG−2k−3
0

with K21 = 26e−1π.

Proof. From lemma 2.15, we have

|L0, k| ≤
∑

l≥k+1

|c̃2l−k,−k
0 ||N(0, l − k, l)|

|L0,−k| ≤
∑

l≥k+1

|c̃2l−k, k
0 ||N(0, l, l− k)|

by proposition 2.2 we have that c̃2l−k,−k
0 = c̃2l−k,k

0 and by lemma 2.14 we can easily see that
N(0, l− k, l) and N(0, l, l− k) have the same bound. Therefore

|L0,±k| ≤ K202
−2k+1ek0G

2k+1
0

∑

l≥k+1

(24G−4
0 )l

≤ K20e
k
02

2k+6G−2k−3
0

setting K21 = 26K20 = 26e−1π the proof is completed.

Lemma 2.17. Let L0 be defined by equation (2.7). Then if G0 ≥ 4 we have

L0 = L0,0 + c̃3,10

3

4
πG−5

0 cos(α0) + F2 + F3

L0,0 = c̃2,00

π

2
G−3

0 + F1

where

|F1| ≤ K22G
−7
0

|F2| ≤ K222
3e0G

−9
0

|F3| ≤ K23e
2
0G

−7
0

where K22 = 210e−1π and K23 = 27e−1π
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Proof. From proposition 2.1 is easy to deduce that

L0 = L0,0 + 2ℜ
{∑

k≥1

L0,ke
ikα0

}

From lemma 2.15 we have that

L0, 0 = c̃2, 0
0 N(0, 1, 1) +

∑

l≥2

c̃ 2l, 0
0 N(0, l, l) (2.49a)

L0, 1 = c̃3,−1
0 N(0, 1, 2) +

∑

l≥3

c̃2l−1,−1
0 N(0, l− 1, l) (2.49b)

L0, k =
∑

l≥k+1

c̃2l−k,−k
0 N(0, l − k, l) for k ≥ 2 (2.49c)

then, define

F1 =
∑

l≥2

c̃ 2l, 0
0 N(0, l, l)

F2 = 2ℜ
{
ei α0

∑

l≥3

c̃2l−1,−1
0 N(0, l − 1, l)

}

F3 = 2ℜ
{∑

k≥2

eikα0L0,k

}

by lemmas 2.14, 2.16 and proposition 2.2 , using the hypothesis on G0 we have

|F1| ≤ K202G0

∑

l≥2

(24G−4
0 )l

≤ K202
10G−7

0

|F2| ≤ K20e0G
3
0

∑

l≥3

(24G−4
0 )l

≤ K202
13e0G

−9
0

|F3| ≤ 2
∑

k≥2

|L0,k|

≤ K212
6e20G

−7
0

Now, from definition (2.4) we have that

N(0, 1, 1) =
22

G3
0

(−1/2

1

)(−1/2

1

)∫ ∞

−∞

dτ

(τ2 + 1)2
= 22

(
−1

2

)(
−1

2

)
G−3

0 =
π

2
G−3

0

N(0, 1, 2) =
23

G5
0

(−1/2

1

)(−1/2

2

)∫ ∞

−∞

dτ

(τ − i)(τ + i)2
= 23

(
−1

2

)( 3

23

)(
−π

4

)
G−5

0 =
3

8
πG−5

0

From these equations, substituting equations (2.49) in the definition of L0 and the bounds given
in equations (2.50) simply by setting

K22 = 210K20 = 210e−1π

K23 = 26K21 = 27e−1π

we have proven this lemma.

A refinement of this lemma is
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Lemma 2.18. Let L0 be defined by equation (2.7). Then if G0 ≥ 23/2 we have

L0 = L0,0 −
15

8
πe0G

−5
0 cos(α0) + F2 + F3 + F5

L0,0 =
π

2
G−3

0 + F1 + F4

where F1, F2 and F3 are given in lemma 2.17 and

|F4| ≤ K24G
−3
0 e20

|F5| ≤ K25G
−5
0 e20

with K24 = 2π and K25 = 57π/4

Proof. In lemma 2.6 we have computed the constants c̃2,00 and c̃3,10 , then by setting

F4 =
π

2
Q3G

−3
0

F5 =
3

4
πQ4G

−5
0 cosα0

and using the bounds for Q3 and Q4 we find the desired bound for F4 and F5.

With this lemma we can rewrite lemma 2.13 exactly as theorem 2.5, and so we have proved it.

2.2 e0G0 = λ, λ real positive

In this section we will follow the same structure as in the case e0G0 ≪ 1 except that some
computations will be done in a different way. The main difference comes in the way we bound the
module of the Fourier coefficient Lq given in (2.5). In section 2.1, the terms |Lq,−k| were bounded
in lemma 2.7, later on used to bound |Lq| in lemma 2.8. To do this, since we sum over the index
k, we have used the assumption e0G0 ≪ 1. To overcome this assumption in this section, we will
actually estimate the whole sum

∑
k≥0 Lq,−k by noticing that this sum can be computed as the

Fourier coefficient of a suitable function, this will be done in proposition 2.22.
As we have done before, we will prove a much more quantitative version of theorem 1.6 wich

will immediately imply it. We will prove the next theorem.

Theorem 2.19. Let λ be a real positive constant, γ4 = 16/(3 +
√
11), c ≥ 1. If

G0 ≥ max{(3c)2/3, 32, (24λ)1/3, 8λ−1, (24λ)1/3, 23/2, 2(γ4λ)
1/3, (25γ4)

1/4}.

then there exists a positive constant K, depending on λ, such that if e0G0 = λ, the Melnikov
potential L given by (2.7) satisfies

L = L0(α0) + 2ℜ{L1e
it0 + E}

where

L1 =
(
+
1

4

√
π

2
G

−1/2
0 e−

G3
0
3 + E3 + E5 + E7

)
e−iα0

+ e−
G3

0
3 2

√
2πλ−1G

1/2
0

[
e−λe−iα0 A

A− 1

[ 2A

±2i
√
A(A − 1)

J1(±2i
√
A(A− 1))

− J0(±2i
√
A(A− 1))

]
−A

]

+ Ẽ3 + Ẽ2 + Ẽ1 + E1
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and

|E3| ≤ K7e
√

1−e2
0G

−3/2
0 e−

G3
0
3

|E5| ≤ 25e
√

1−e2
0K13G

−2
0 e−

G3
0
3

|E7| ≤
√

π

8
98e20G

−1/2
0 e−

G3
0
3

|Ẽ1| ≤ Ke(8/3)λλe
√

1−e2
0G

−1/2
0 e−

G3
0
3

|Ẽ2| ≤ Kλ3e2λG
−3/2
0 e−

G3
0
3

|Ẽ3| ≤ Ke20G
1/2
0 e−

G3
0
3

|E1| ≤ K ′
4e

−G3
0/3G

−3/2
0 (2e0e

√
1−e2

0 +G−2
0 )

|E| ≤ KG
3/2
0 e−G3

0
4
9

with

K ′
4 = 214 · 3πe− 1

2 ec
2

K7 = 214 · 3πec2−1/2

β =

(
−1 +

√
11

4

√

3 +

√
11

2

)1/2

K11 = 22
(√

2 +
2

β(1− β)

)

K12 = 2πe4/3

K13 = 40

√
π

3
+

3

2
γ2
4(K11 +K12)

and

A =
λ

2
e−iα0

A

A− 1
=

λ2 − 2λe−iα0

λ2 − 4λ cosα0 + 4

A(A− 1) = −λ

2
e−iα0

(
1− λ

2
e−iα0

)
.

Also,

L0(α0)− L0,0 = −15

8
πe0G

−5
0 cos(α0) + F2 + F3 + F5

where

|F2| ≤ K222
3e0G

−9
0

|F3| ≤ K23e
2
0G

−7
0

|F5| ≤ K25G
−5
0 e20

with

K22 = 210e−1π

K23 = 27e−1π

K25 = 57π/4
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The functions J0(z) and J1(z) are the Bessel functions of the first kind [AS65] and whose
expansion around z = 0 is given by

Jn(z) =

∞∑

m=0

(−1)m

m!Γ(m+ n+ 1)

(z
2

)2m+n

.

The next series of lemmas and propositions go in the direction of proving this theorem. First
let us bound the terms Lq,k in Lq.

Proposition 2.20. Let c ≥ 1, q ≥ 1 and Lq be defined in (2.5) and G0 ≥ max{(3c)2/3, 32}. Then

Lq = L̃q + Eq

where
L̃q =

∑

k≥1

Lq,−ke
−ikα0 (2.51)

and

|Eq| ≤




K ′

4e
−G3

0/3G
−3/2
0 (2e0e

√
1−e2

0 +G−2
0 ) q = 1

K ′
4e

−qG3
0

2
9G

−3/2
0

[(
2e0e

√
1−e2

0

)q
+G−2

0

]
q ≥ 2

with K ′
4 = 214 · 3πe− 1

2 ec
2

.

Proof. By equation (2.5) we have that

Lq =
∑

k≥1

Lq,−ke
−ikα0 +

∑

k≥0

Lq,ke
ikα0

therefore, if we call

Eq =
∑

k≥0

Lq,ke
ikα0

it remains to bound it. By lemma 2.7, given q ≥ 1, we have

|Eq| ≤ 23G
−1/2
0 K3e

−q
G3

0
3

(
1− 3

G3
0

c2
)[
2q+2eq

√
1−e2

0eq0G
−1
0 + (1 + e0)

4G−3
0 + (1 + e0)2

−3
∑

k≥2

(2(1 + e0)G
−2
0 )k

]

≤ 23G
−1/2
0 K3e

−q
G3

0
3

(
1− 3

G3
0

c2
)[
2q+2eq

√
1−e2

0eq0G
−1
0 + (1 + e0)

4G−3
0 + (1 + e0)

3G−4
0

]

≤ 23G
−1/2
0 K3e

−q
G3

0
3

(
1− 3

G3
0

c2
)[
2q+2eq

√
1−e2

0eq0G
−1
0 + 2(1 + e0)

4G−3
0

]

≤ 28K3G
−3/2
0 e

−q
G3

0
3

(
1− 3

G3
0

c2
)[(

2e0e
√

1−e2
0

)q
+G−2

0

]
(2.52)

by setting K ′
4 = 28K3e

c2 we get the desired bound for q = 1. To bound it for q ≥ 2 we use our
hypothesis that G0 ≥ (3c)2/3 we have

e
−q

G3
0
3

(
1− 3

G3
0

c2
)
≤ e−qG3

0
2
9

As we did in proposition 2.4, we need to compute the function N defined in equation (2.4), but
now, we need an explicit computation of the residue Rq

m,n of the function involved in the integral
of N . The proof of the next proposition is found in appendix B.
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Proposition 2.21. Let the constants dn,mj be defined by equation (2.19) and dn,m by equation
(2.20). If q, n,m ∈ Z,m,n ≥ 0, m+ n > 0, q ≥ 1 then

N(q,m, n) =
dm,ne

−q
G3

0
3

G2m+2n−1
0

[
m∑

s=0

(−1)s
√
π

2
3
2 qs−

1
2

(2s− 1)!!
dn,m2m−2sG

3s− 3
2

0 +2

m−1∑

s=0

dn,m2(m−s)−1

(
− q

2
G3

0

)s
1

s!
+T q

m,n

]

where
|T q

m,n| ≤ K11γ
m
4 G−3

0

and

β =

(
−1 +

√
11

4

√

3 +

√
11

2

)1/2

, γ4 =
2

β2
, K11 = 22

(√
2 +

2

β(1− β)

)
.

When s = 0 the factor 1/(2s− 1)!! in the formula should be replaced by 1.

Using proposition 2.21 to rewrite equations (2.2c) and (2.2e) we have that

Lq,−1 = e−q
G3

0
3

[∑

l≥2

l∑

s=0

c̃2l−1,1
q gqsl1 +

∑

l≥2

l−1∑

s=0

c̃2l−1,1
q hq

sl1 +
∑

l≥2

c̃2l−1,1
q dl,l−1G

−4l+3
0 T q

l,l−1

]
(2.53)

Lq,−k = e−q
G3

0
3

[∑

l≥k

l∑

s=0

c̃2l−k,k
q gqslk +

∑

l≥k

l−1∑

s=0

c̃2l−k,k
q hq

slk +
∑

l≥k

c̃2l−k,k
q dl,l−kG

−4l+2k+1
0 T q

l,l−k

]

(2.54)

where

gqslk = (−1)s
√
π2

3
2 qs−

1
2

dl,l−kd
l−k,l
2(l−s)

(2s− 1)!!
G

−4l+2k+3s− 1
2

0 (2.55)

hq
slk = (−1)s2qs

dl,l−kd
l−k,l
2(l−s)−1

2ss!
G−4l+2k+3s+1

0 (2.56)

where dm,n is defined in equation (2.20), dn,mj in equation (2.19), c̃n,mq in equation (2.3) and by
proposition 2.21, for k ≥ 1

|T q
l,l−k| ≤ K11γ

l
4G

−3
0 ,

also note that in formula (2.53) when s = 0, the factor 1/(2s − 1)!! in the formula should be
replaced by 1.

From the definition of L̃q given in (2.51) we have that

L̃q = Lq,−1e
−iα0 + e−q

G3
0
3

[
∑

k≥2

∑

l≥k

l∑

s=0

c̃2l−k,k
q gqslke

−ikα0 +
∑

k≥2

∑

l≥k

l−1∑

s=0

c̃2l−k,k
q hq

slke
−ikα0

+
∑

k≥2

∑

l≥k

c̃2l−k,k
q dl,l−kG

−4l+2k+1
0 e−ikα0T q

l,l−k

]

To bound L̃q we could use the bounds for the c̃2l−k,k
q given in proposition 2.2. Nevertheless, it is

better to notice that, from the equation defining the constants c̃n,mq given in (2.3), it can be seen

that eq
G3

0
3

(
L̃q − Lq,−1e

−iα0

)
is the q-th Fourier coefficient of the function

M̃q(s) =
∑

k≥2

∑

l≥k

l∑

s=0

r2l−k
0 (f(s))eikf(s)gqslke

−ikα0 +
∑

k≥2

∑

l≥k

l−1∑

s=0

r2l−k
0 (f(s))eikf(s)hq

slke
−ikα0

+
∑

k≥2

∑

l≥k

r2l−k
0 (f(s))eikf(s)dl,l−kG

−4l+2k+1
0 e−ikα0T q

l,l−k
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In fact, this function M̃q(s) depends on s through the true anomaly f(s). For convenience, we will
write

M̃q(s) +
∑

k≥2

∑

l≥k

l∑

s=0

r
2(l−k)
0 [r0e

if ]kgqslke
−ikα0 +

∑

k≥2

∑

l≥k

l−1∑

s=0

r
2(l−k)
0 [r0e

if ]khq
slke

−ikα0

+
∑

k≥2

∑

l≥k

r
2(l−k)
0 [r0e

if ]kdl,l−kG
−4l+2k+1
0 e−ikα0T q

l,l−k (2.57)

therefore

eq
G3

0
3

(
L̃q − Lq,−1e

−iα0
)
=

1

2π

∫ 2π

0

M̃q(s)e
−iqsds.

Using (1.7) as a change of variables, that is s = E−e0 sinE, and using the identity r0 = 1−e0 cosE
already given in (1.6) we have

eq
G3

0
3

(
L̃q − Lq,−1e

−iα0
)
=

1

2π

∫ 2π

0

Mq(r̂(E), r̂(E)eif̂(E))e−iqt(E)r̂(E)dE

where r̂(E), r̂(E)eif̂(E) and t(E) are given in equations (2.9). If we now, using the periodicity of
the eccentric anomaly E, change the path of integration to

E = u+ i ln
(2a2
e0

)
u ∈ [0, 2π]

we find that

eq
G3

0
3

(
L̃q − Lq,−1e

−iα0
)
=

1

2π

∫ 2π

0

Mq

(
r̃(u), r̃(u)eif̃(u))

)[2a2
e0

e−iue
e2
0

4a2 eiu−a2e−iu

]q
r̃(u)du (2.58)

where from equations (2.11), (2.12) and (2.13)

r̃(u)eif̃(u) = e0(cos u− 1)

r̃(u) = 1− e20
4a2

eiu − a2e−iu.

Let Mq(u) denote M̃q(s) after performing the changes of variables

s = E − e0 sinE (2.59)

E = u+ i ln
(2a2
e0

)
(2.60)

that is
Mq(u) = M̃q

(
r̃(u), r̃(u)eif̃(u)

)
, (2.61)

and then (2.58) can be written as

eq
G3

0
3

(
L̃q − Lq,−1e

−iα0
)
=

1

2π

∫ 2π

0

Mq(u)

[
2a2

e0
e−iue

e2
0

4a2 eiu−a2e−iu

]q
r̃(u)du (2.62)

We will compute L̃1 or equivalently M1 and show that the remaining terms are smaller, bound
for Mq when q > 1 and use the bounds for Lq,−1 given in lemma 2.7. We have clearly computed
the term L1,−1 defined in equation (2.32a) in lemmas 2.10, 2.11 and 2.13, getting that

L1,−1 =
1

4

√
π

2
G

−1/2
0 e−

G3
0
3 + E3 + E5 + E7 (2.63)
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where

|E3| ≤ K7e
√

1−e2
0e−

G3
0
3 G

−3/2
0

|E5| ≤ 25e
√

1−e2
0K13G

−2
0 e−

G3
0
3

|E7| ≤
√

π

8
98e20G

−1/2
0 e−

G3
0
3

To bound Lq for q ≥ 2 we will find good bounds for L̃q introduced in (2.51). Next proposition
gives an asymptotic formula for M1 and bounds for Mq when q ≥ 2.

Proposition 2.22. Let Mq be defined in equation (2.61) and (2.57), λ real positive constant and
γ4 be given in proposition 2.21, and

G0 ≥ max{8λ−1, (24λ)1/3, 23/2, 2(γ4λ)
1/3, (25γ4)

1/4}.

Then there exists a positive constant K such that if e0G0 = λ,

M1(u) =
√
2πG

−1/2
0

[
e−λ(1−cosu)e−iα0 − 1 + λ(1− cosu)e−iα0

]
+E1

and
E1 ≤ Kλ2e(8/3)λG

−3/2
0 .

Also, for q ≥ 1

|Mq(u)| ≤ Kλ2√qe(8/3)qλG
−1/2
0 .

Proof. From the definition of M̃q(s) given in equation (2.57), we can see that is composed of three
different sums and then so is Mq(u) in (2.61). The strategy is to change the order of the indexes
to get bounds of each sum. Let us first begin by changing the order in the first sum of (2.57) To
do so, we denote

Gq
s,l,k = r̃2(l−k)[r̃eif̃ ]kgqslke

−ikα0 (2.64)

then

∑

k≥2

∑

l≥k

l∑

s=0

Gs,l,k =
∑

k≥2

(k−1∑

s=0

∞∑

l=k

Gq
s,l,k +

∞∑

s=k

∞∑

l=s

Gq
s,l,k

)

=
∑

k≥2

k−1∑

s=0

∞∑

l=k

Gq
s,l,k +

∑

k≥2

∞∑

s=k

∞∑

l=s

Gq
s,l,k

=

1∑

s=0

∞∑

k=2

∞∑

l=k

Gq
s,l,k +

∞∑

s=2

∞∑

k=s+1

∞∑

l=k

Gq
s,l,k +

∑

k≥2

∞∑

s=k

∞∑

l=s

Gq
s,l,k

=
1∑

s=0

∞∑

l=2

l∑

k=2

Gq
s,l,k +

∞∑

s=2

∞∑

l=s+1

l∑

k=s+1

Gq
s,l,k +

∞∑

s=2

s∑

k=2

∞∑

l=s

Gq
s,l,k

=

1∑

s=0

∞∑

l=2

l∑

k=2

Gq
s,l,k +

∞∑

s=2

∞∑

l=s+1

l∑

k=s+1

Gq
s,l,k +

∞∑

s=2

∞∑

l=s

s∑

k=2

Gq
s,l,k

=

1∑

s=0

∞∑

l=2

l∑

k=2

Gq
s,l,k +

∞∑

s=2

( ∞∑

l=s+1

l∑

k=s+1

Gq
s,l,k +

∞∑

l=s

s∑

k=2

Gq
s,l,k

)

=

1∑

s=0

∞∑

l=2

l∑

k=2

Gq
s,l,k +

∞∑

s=2

∞∑

l=s

l∑

k=2

Gq
s,l,k

=
1∑

s=0

∞∑

l=2

l∑

k=2

Gq
s,l,k +

∞∑

s=2

s∑

k=2

Gq
s,s,k +

∞∑

s=2

∞∑

l=s+1

l∑

k=2

Gq
s,l,k
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=

1∑

s=0

∞∑

l=2

l∑

k=2

Gq
s,l,k +

∞∑

s=2

Gq
s,s,s +

∞∑

s=3

s−1∑

k=2

Gq
s,s,k +

∞∑

s=2

∞∑

l=s+1

l∑

k=2

Gq
s,l,k

=
∞∑

s=2

Gq
s,s,s + Eq

G (2.65)

where

Eq
G =

1∑

s=0

∞∑

l=2

l∑

k=2

Gq
s,l,k +

∞∑

s=3

s−1∑

k=2

Gq
s,s,k +

∞∑

s=2

∞∑

l=s+1

l∑

k=2

Gq
s,l,k (2.66)

We will bound Eq
G, then we will compute the sum involving Gq

s,s,s. From its definition given in
(2.64) and the definition of gqslk given in equation (2.55) we have

Gq
s,l,k = r̃2(l−k)[r̃eif̃ ]k(−1)s

√
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3
2 qs−

1
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0 e−ikα0 (2.67a)

Gq
s,s,k = r̃2(s−k)[r̃eif̃ ]k(−1)s

√
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3
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0 e−ikα0 (2.67b)

Gq
s,s,s = [r̃eif̃ ]s(−1)s

√
π2

3
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1
2

ds,0d
0,s
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G

s− 1
2

0 e−isα0 (2.67c)

From lemma A.4 and the bounds given in lemmas A.1 and A.7 we have

|dl−k,l
2(l−s)| ≤ 2l

(2
3

)s

|dl,l−k| ≤ e−1/222l−k

|ds−k,s
0 | = 1

22(s−k)+1
.

the bound for |dl−k,l
2(l−s)| in not optimized. We have that

(2s− 1)!! =

s−1∏
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(2s− 1− 2k) ≥
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and then
1

(2s− 1)!!
≤ 2

2s(s− 1)!
.

Recall, from proposition 2.21, that when s = 0 the corresponding factor to 1/(2s − 1)!! and its

bound is exactly one. Therefore, using the bounds for r̃ and r̃eif̃ given in (2.16) and (2.15) we
have from (2.67a) and (2.67b) that

|Gq
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k
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2

0 (2.68)

|Gq
s,s,k| ≤ 22(s−k)[2e0]

k
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3
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1
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1√
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2 · 22s−k
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1
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0 . (2.69)

From inequality (2.68) and using that e0G0 = λ and the hypothesis on G0 we have
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≤
√
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in the same way we bound the third term of Eq
G in (2.66)
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From inequality (2.69) we bound the second term of Eq
G in (2.66)
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From inequalities (2.70), (2.71) and (2.72), Eq
G defined in (2.66) can be bounded as

|Eq
G| ≤ Kλ2√q

(
G

−7/2
0 +G

−7/2
0 e(8/3)qλ +G

−3/2
0 e2qλ

)
. (2.73)

Now, we will bound the second term of in M̃q in (2.57). Analogously as we did with the first
one, let us denote

Hq
s,l,k = r̃2(l−k)[r̃eif̃ ]khq

slke
−ikα0 . (2.74)

Then, we can write the second term in the definition of M̃q given in equation (2.57) as

Eq
H =

∑

k≥2

∑
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s=0

Hq
s,l,k (2.75)
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Now, changing the order of the indexes in Eq
H we have
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From its definition given in (2.74) and the definition of hq
slk given in equation (2.56) we have

Hq
s,l,k = r̃2(l−k)[r̃eif̃ ]k(−1)s2qs
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0,l,k = r̃2(l−k)[r̃eif̃ ]k2dl,l−kd

l−k,l
2l−1G
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0 e−ikα0 (2.78)

From the bounds given in lemmas A.1 and A.7 we have
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Using the bounds for r̃(u) and r̃(u)eif̃(u) given in (2.16) and (2.15) we have from (2.77) and (2.78)
that
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From inequality (2.79) and using that e0G0 = λ and the hypotheses on G0 made on the statement
of this proposition, we can bound the second term of Eq

H in (2.75)
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in the same way we can bound the first term of Eq
H in (2.75)
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therefore the second term of M̃q in (2.57) denoted by Eq
H and given in (2.75) and (2.76) can be

bounded as
|Eq

H | ≤ Kλ2(G−5
0 +G−2

0 e(8/3)qλ). (2.83)

Finally, if we call Eq
T the last term of M̃q in (2.57):

Eq
T =

∑

k≥2

∑

l≥k

r̃2(l−k)[r̃eif̃ ]kdl,l−kG
−4l+2k+1
0 e−ikα0T q

l,l−k (2.84)

we have, using the bound for dl,l−k given in lemma A.1 and the bounds for r̃(u) and r̃eif̃(u) given
in (2.16) and (2.15) and the bound for T q

l,l−k given in proposition 2.21 we have that
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= 26
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≤ Kλ2G−8
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From the definition of Eq
G, E

q
H and Eq

T given in (2.66), (2.75) and (2.84) we have, using equation
(2.65), from the definition of Mq(u) given in (2.61) that

Mq(u) =

∞∑

s=2

Gq
s,s,s + Eq

G + Eq
H + Eq

T (2.86)

For q ≥ 2 we will bound the sum of the Gq
s,s,s and for q = 1 we will compute it. From the definition

of Gq
s,s,s given in (2.67c) we need to compute ds,0 and d0,s0 . It is not difficult to see that
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From this, we can rewrite (2.67c) as
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Then, from the bound for r̃(u)eif̃(u) given in (2.15)
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From the expression for Mq given in (2.86), we have that
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and using the bounds for Eq
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T given in (2.73), (2.83) and (2.85)
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this is the desired result for q ≥ 1. For q = 1 we have, using the expression (2.11) for r̃(u)eif̃(u)

and (2.87)
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Analogously as we did to bound Mq we find that
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This concludes the proof of proposition 2.22

The proposition 2.22 allow us to bound Lq for q ≥ 2

Proposition 2.23. Let q ∈ N, q ≥ 2, c ≥ 1, γ4 be given in proposition 2.21 and λ real positive
constant. If
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Proof. Let q ∈ N, q ≥ 2. From expression (2.62) and using proposition 2.22 and the bounds (2.16)
and (2.17), we have
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then
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from this, using the triangle inequality we have
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1−e2

0eq−1
0 G

−1/2
0 e

−q
G3

0
3

(
1− 3

G3
0

c2
)
+ 2Kλ2eq

√
1−e2

0e−qG3
0

2
9

( 4

e0

)q
G

−1/2
0

and using that G0 ≥ (3c)2/3

∣∣L̃q

∣∣ ≤ eq
√

1−e2
0e−qG3

0
2
9G

−1/2
0

[
K32

q+7eq−1
0 + 2Kλ2

( 4

e0

)q]

≤ Kλ2G
−1/2
0 eq

√
1−e2

0

( 4

e0

)q
e−qG3

0
2
9

From proposition 2.20 we have

|Lq| ≤ |L̃q|+ |Eq|

≤ Kλ2G
−1/2
0 eq

√
1−e2

0

( 4

e0

)q
e−qG3

0
2
9 +K4e

−qG3
0

2
9G

−3/2
0

(
2e0e

√
1−e2

0

)q

≤ Kλ2G
−1/2
0 eq

√
1−e2

0

( 4

e0

)q
e−qG3

0
2
9 .

Proposition 2.24. Let λ be a real positive constant and γ4 be given in proposition 2.21, G0 ≥
max{8λ−1, (24λ)1/3, 23/2, 2(γ4λ)

1/3, (25γ4)
1/4}. Then there exists a positive constant K = K(λ)

such that If e0G0 = λ,

L1 =
(1
4

√
π

2
G

−1/2
0 e−

G3
0
3 + E3 + E5 + E7

)
e−iα0

+ e−
G3

0
3 2

√
2πλ−1G

1/2
0

[
e−λe−iα0 A

A− 1

[ 2A

±2i
√
A(A − 1)

J1(±2i
√
A(A− 1))

− J0(±2i
√
A(A− 1))

]
−A

]

+ Ẽ3 + Ẽ2 + Ẽ1 + E1

where

|E3| ≤ K7e
√

1−e2
0G

−3/2
0 e−

G3
0
3

|E5| ≤ 25e
√

1−e2
0K13G

−2
0 e−

G3
0
3

|E7| ≤
√

π

8
98e20G

−1/2
0 e−

G3
0
3
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|Ẽ1| ≤ Ke(8/3)λλe
√

1−e2
0G

−1/2
0 e−

G3
0
3

|Ẽ2| ≤ Kλ3e2λG
−3/2
0 e−

G3
0
3

|Ẽ3| ≤ Ke20G
1/2
0 e−

G3
0
3

|E1| ≤ K ′
4e

−G3
0/3G

−3/2
0 (2e0e

√
1−e2

0 +G−2
0 )

and

A =
λ

2
e−iα0

A

A− 1
=

λ2 − 2λe−iα0

λ2 − 4λ cosα0 + 4

A(A− 1) =
−λ

2
e−iα0

(
1− λ

2
e−iα0

)
.

The functions J0(z) and J1(z) are the Bessel’s functions of the first kind [AS65] and whose expan-
sion around z = 0 is given by

Jn(z) =

∞∑

m=0

(−1)m

m!Γ(m+ n+ 1)

(z
2

)2m+n

Proof. From expression (2.62) and proposition 2.22 we have that

L̃1 − L1,−1e
−iα0

= e−
G3

0
3

√
2π

2π
G

−1/2
0

∫ 2π

0

[
e−λ(1−cosu)e−iα0 − 1 + λ(1 − cosu)e−iα0

][2a2
e0

e−iue
e2
0

4a2 eiu−a2e−iu

]
r̃(u)du+ Ẽ1
(2.89)

where

Ẽ1 = e−
G3

0
3

1

2π

∫ 2π

0

E1
[
2a2

e0
e−iue

e2
0

4a2 eiu−a2e−iu

]
r̃(u)du

using the bounds for r̃ and r̃eif̃ given in (2.16) and (2.15) and the bound for E1 given in proposition
2.22 we have that

|Ẽ1| ≤ Kλ2e(8/3)λG
−3/2
0

2

e0
e
√

1−e2
02e−

G3
0
3

≤ Ke(8/3)λλe
√

1−e2
0G

−1/2
0 e−

G3
0
3 . (2.90)

To compute the integral in (2.89) we first notice, using the definition of a2 given in (2.9d) and the
definition of r̃ given in (2.12), that

2a2

e0
=

1

e0
(1 +

√
1− e20) =

2

e0
(1 +O(e20))

e
e2
0

4a2 eiu = e
e2
0
4
(1+O(e20))e

iu

= (1 +O(e20))

r̃(u) = 1− e20
4a2

eiu − a2e−iu = 1− e20
4
(1 +O(e20))e

iu − (1 +O(e20))e
−iu = 1− e−iu +O(e20)

e−a2e−iu

= e−(1+O(e20))e
−iu

= e−e−iu

(1 +O(e20))

therefore
[
2a2

e0
e

e2
0

4a2 eiu−a2e−iu

]
r̃(u) =

2

e0
(1 +O(e20))(1 +O(e20))e

−e−iu

(1 +O(e20))[1 − e−iu +O(e20)]

=
2

e0
e−e−iu

[1− e−iu +O(e20)](1 +O(e20))
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=
2

e0
e−e−iu

(1− e−iu)(1 +O(e20)) + e−e−iu

O(e0)

From this, we can rewrite (2.89) as

L̃1 − L1,−1e
−iα0

= e−
G3

0
3

√
2π

2π
G

−1/2
0 (1 + O(e20))

2

e0

∫ 2π

0

[
e−λ(1−cosu)e−iα0 − 1 + λ(1− cosu)e−iα0

]
e−e−iu

e−iu(1− e−iu)du + Ẽ2 + Ẽ1
(2.91)

with

Ẽ2 = e−
G3

0
3 O(e0)

√
2π

2π
G

−1/2
0

∫ 2π

0

[
eλ(1−cosu)e−iα0 − 1− λ(1 − cosu)e−iα0

]
e−iue−e−iu

du

and since |e−iue−e−iu | ≤ e, ez − 1− z ≤ |z|2e|z| and e0G0 = λ we have

|Ẽ2| ≤ Kλ2e2λG
−1/2
0 e−

G3
0
3 e0 ≤ Kλ3e2λG

−3/2
0 e−

G3
0
3 . (2.92)

It remains to compute the integral in (2.91). It can be expressed as the sum of three integrals as
follows

1

2π

∫ 2π

0

[
e−λ(1−cosu)e−iα0 − 1 + λ(1 − cosu)e−iα0

]
e−e−iu

e−iu(1− e−iu)du

=
1

2π

∫ 2π

0

e−λ(1−cosu)e−iα0

e−e−iu

e−iu(1− e−iu)du

− 1

2π

∫ 2π

0

(1− λ)e−e−iu

e−iu(1− e−iu)du

− 1

2π

∫ 2π

0

λ(cosu)e−iα0e−e−iu

e−iu(1− e−iu)du (2.93)

To compute the first of these three integrals we notice that

e−λ(1−cosu)e−iα0

e−e−iu

= e−λe−iα0

eλ cosue−iα0

e−e−iu

= e−λe−iα0

e(λ/2)e
−iα0 (eiu+e−iu)e−e−iu

= e−λe−iα0

eAeiue(A−1)e−iu

(2.94)

with

A =
λ

2
e−iα0

Therefore, using expression (2.94) we see that, to compute the first integral in (2.93) is equivalent
to

e−λe−iα0

(N1 −N2)

where N1 and N2 are the first two Fourier coefficients of the function

N (u) = eAeiue(A−1)e−iu

=
∑

q∈Z

Nqe
iqu.

Expanding in Taylor series we have

N (u) =

∞∑

j=0

(Aeiu)j

j!

∞∑

k=0

[(A− 1)e−iu]k

k!
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then the Fourier coefficient N1 is given by

N1e
iu =

∞∑

j=1

(Aeiu)j

j!

[(A− 1)e−iu]j−1

(j − 1)!
= A

∞∑

j=1

[A(A− 1)]j−1

j!(j − 1)!
eiu = AW ′(A(A− 1))eiu

and the Fourier coefficient N2 is given by

N2e
2iu =

∞∑

j=2

(Aeiu)j

j!

[(A− 1)e−iu]j−2

(j − 2)!
= A2

∞∑

j=2

[A(A − 1)]j−2

j!(j − 2)!
e2iu = A2W ′′(A(A − 1))e2iu

where

W (w) =
∞∑

n=0

wn

(w!)2

and its properties are detailed in appendix B. With these two Fourier coefficients we have that

1

2π

∫ 2π

0

eλ(1−cosu)e−iα0

e−e−iu

e−iu(1− e−iu)du =

e−λe−iα0

[AW ′(A(A − 1))−A2W ′′(A(A − 1))].

Using the expressions for W ′ and W ′′ given in (B.24) and (B.26) we have

AW ′(A(A − 1)) =
2A

±2i
√
A(A− 1)

J1(±2i
√
A(A− 1))

A2W ′′(A(A − 1)) =
A

A− 1

(
J0(±2i

√
A(A− 1))− 2

±2i
√
A(A− 1)

J1(±2i
√
A(A − 1))

)

then,

1

2π

∫ 2π

0

e−λ(1−cosu)e−iα0

e−e−iu

e−iu(1− e−iu)du

= e−λe−iα0

[ 2A

±2i
√
A(A− 1)

J1(±2i
√
A(A − 1))

(
1 +

1

A− 1

)
− A

A− 1
J0(±2i

√
A(A− 1))

]

= e−λe−iα0 A

A− 1

[ 2A

±2i
√
A(A− 1)

J1(±2i
√
A(A − 1))− J0(±2i

√
A(A− 1))

]
(2.95)

where

A

A− 1
=

A

A− 1
· Ā− 1

Ā− 1
=

|A|2 −A

|A− 1|2 =
λ2 − 2λe−iα0

λ2 − 4λ cosα0 + 4
(2.96)

A(A− 1) = −λ

2
e−iα0

(
1− λ

2
e−iα0

)
. (2.97)

Now, the second integral in (2.93) is clearly equal to zero, since the function e−e−iu

has no positive
harmonics. The third integral, can be written as

−λ

2
e−iα0

1

2π

∫ 2π

0

(eiu + e−iu)e−e−iu

e−iu(1 − e−iu)du = A
1

2π

∫ 2π

0

(1 + e−2iu)e−e−iu

(1− e−iu)du

= A
1

2π

∫ 2π

0

(1− e−iu + e−2iu − e−3iu)e−e−iu

du

= A.

Substituting this and (2.95) in expression (2.93) we have by (2.91) that

L̃1 − L1,−1e
−iα0
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= e−
G3

0
3 2

√
2πλ−1G

1/2
0 (1 +O(e20))

[
e−λe−iα0 A

A− 1

[ 2A

±2i
√
A(A− 1)

J1(±2i
√
A(A − 1))− J0(±2i

√
A(A− 1))

]
+A

]

+ Ẽ2 + Ẽ1

= e−
G3

0
3 2

√
2πλ−1G

1/2
0

[
e−λe−iα0 A

A− 1

[ 2A

±2i
√
A(A − 1)

J1(±2i
√
A(A− 1))− J0(±2i

√
A(A− 1))

]
+A

]

+ Ẽ3 + Ẽ2 + Ẽ1 (2.98)

where

|Ẽ3| ≤ Ke20G
1/2
0 e−

G3
0
3 ,

with K = K(λ). From the expression for L1,−1 given in (2.63) and using equation (2.98) along
with proposition 2.20 we get the proof of proposition 2.24

Analogously as we did in lemma 2.9 we have the next lemma

Lemma 2.25. Let L be given by (2.7) and q ∈ N, q ≥ 2, c ≥ 1, γ4 be given in proposition 2.21
and λ real positive constant. If

G0 ≥ {32, (24λ)1/3, (3c)2/3, 8λ−1, (24λ)1/3, 23/2, 2(γ4λ)
1/3, (25γ4)

1/4}

Then, there exist a positive constant K depending on λ, such that if e0G0 = λ,

L = L0(α0) + 2ℜ
{
eit0L1(α0) + E(t0, α0)

}
(2.99)

where
|E(t0, α0)| ≤ KG

3/2
0 e−G3

0
4
9 .

Proof. From the formula for the Melnikov potential (2.7), we can write directly equation (2.99) by
defining

E(t0, α0) =
∑

q≥2

Lqe
iqt0 .

Then, by proposition 2.23 we have

|E(t0, α0)| ≤
∑

q≥2

Kλ2G
−1/2
0 eq

√
1−e2

0(4G0λ
−1)qe−qG3

0
2
9

≤ Kλ2G
−1/2
0

∑

q≥2

(
e
√

1−e2
04G0λ

−1e−G3
0

2
9

)q

≤ 2KG
−1/2
0

(
e
√

1−e2
04G0λ

−1e−G3
0

2
9

)2

≤ 2KG
−1/2
0 e2

√
1−e2

016G2
0λ

−2e−G3
0

4
9

≤ KG
3/2
0 e−G3

0
4
9

the third bound is possible since for G0 ≥ 32 we have e
√

1−e2
04G0λ

−1e−G3
0

2
9 < 1/2. This concludes

the proof of lemma 2.25.

Finally, theorem 2.19 and therefore theorem 1.6 is a direct consequence of proposition 2.24 and
lemma 2.25. The condition imposed on G0 in theorem 1.6 is obtained simply by noticing that
γ4 < 3, from its definition given in proposition 2.21.
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Appendix A

Change to complex integral

The aim of this appendix is to show how a change of path in the integral (2.4) can be made to
pursue a good estimation. So, let us call that integral

I(q,m, n) =

∫ ∞

−∞

e
iq

G3
0
2

(

τ+ τ3

3

)

(τ − i)2m(τ + i)2n
dτ (A.1)

. We will write

h(τ) = i
(τ3
3

+ τ
)

(A.2)

Since the integral I involves an exponential, it will be useful a Laplace type method (see [Erd56])
of integration. In particular when ℑ(h(τ)) = 0. So, let us define the path

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5 (A.3)

where ε > 0 and c is taken such that c ≥ 1 and cε < 1 :

Γ1 = {τ ∈ C|ℑ(h(τ)) = 0} ∩ {τ ∈ C|ℜ(τ) ≤ ℜ(−τ̄∗)}
Γ5 = {τ ∈ C|ℑ(h(τ)) = 0} ∩ {τ ∈ C|ℜ(τ) ≥ ℜ( τ∗)}
Γ2 = {τ ∈ C|ℑ(h(τ)) = 0} ∩ {τ ∈ C|ℜ(−τ̄∗) ≤ ℜ(τ) ≤ 0} ∩ {τ ∈ C||τ − i| ≥ cε}
Γ4 = {τ ∈ C|ℑ(h(τ)) = 0} ∩ {τ ∈ C|0 ≤ ℜ(τ) ≤ ℜ( τ∗)} ∩ {τ ∈ C||τ − i| ≥ cε}
Γ3 = {τ ∈ C|ℑ(h(τ)) ≤ 0} ∩ {τ ∈ C||τ − i| = cε} (A.4)

C−C̄ i
τ∗−τ̄∗

Γ1

Γ2

Γ5

Γ4

Γ3 i− c ε

τ Plane

ℑ [h(τ)]

By means of the Cauchy-Goursat theorem and
a limit argument, it can be shown that the integral
I(q,m, n), defined in (A.1), which is taken over the
real axis, is equal to the one taken over the path Γ
thinking of τ as a complex number (see [LS80a]).
In fact, by the same argument, its value does not
depend on ε.

The positive branch of the hyperbola defined
by ℑ(h(τ)) = 0 intersects the circumference of ra-
dius ε in two points that can be expressed as C and
−C̄ and rigorously are defined in the following way

71



{ C} = Γ3 ∩ Γ4 (A.5)

{−C̄} = Γ3 ∩ Γ2 (A.6)

Since the integral over Γ does not depend on ε, we will choose a particular value of ε to bound
I(q,m, n) and consequently N(q,m, n) defined in (2.4). Later on, in proposition 2.4 we will just
compute the ε-independent terms.

It is not difficult to see that if we define the function

u(τ) = h(i)− h(τ) = −2

3
− i
(τ3
3

+ τ
)
= (τ − i)2 − i

3
(τ − i)3, (A.7)

then
u(Γ1 ∪ Γ2), u(Γ4 ∪ Γ5) ⊂ R

+
0 .

Moreover, if τ− ∈ Γ1 ∪ Γ2 then τ+ = −τ̄− ∈ Γ4 ∪ Γ5 and

u(τ−) = u(τ+).

On the other hand one can see that u is an increasing function while moving along Γ1 ∪ Γ2 or
Γ4 ∪ Γ5 in the direction of increasing imaginary part. Therefore in R

+
0 u has two inverses; τ+ and

τ−. Before writing them down let us notice that the point C defined in (A.5) can be written as

C = i+ ε ceiθε with θε ∈ (0, π/2) (A.8)

and in coordinates u, defined in (A.7), has the expression

u(C) = ε2 c2e2iθε − ε3 c3

3
ie3iθε = O(ε2 c2) (A.9)

Moreover
u(C) = |u(C)| = ε2 c2

∣∣1− ε

3
ieiθε

∣∣= ε2 c2 kε (A.10)

with 1 ≤ kε. To see this, just consider

kε =
∣∣1− ε c

3
ieiθε

∣∣ =
∣∣1− ε c

3
i(cos θε + i sin θε)

∣∣

=
∣∣1− ε c

3
(i cos θε − sin θε)

∣∣

=
∣∣1 + ε c

3
sin θε − i

ε c

3
cos θε

∣∣

=

√(
1 +

ε c

3
sin θε

)2
+
(ε c
3

cos θε

)2
≥ 1

since by construction, θε ∈ (0, π/2) and then 0 < sin θε.
Now, we can write the inverses of the function u

τ+ :[u(C),+∞) → Γ4 ∪ Γ5 τ− :[u(C),+∞) → Γ1 ∪ Γ2 (A.11)

u −→ ξ(u) + iη(u) u −→ −ξ(u) + iη(u)

The change (A.7) is useful over Γ1 ∪Γ2 and Γ4 ∪Γ5, thus performing this change in (2.4), we have
that for any ε > 0

N(q,m, n) =
dm,ne

−q
G3

0
3

G2m+2n−1
0

[∫ ∞

u(C)

[F+
m,n(u)− F−

m,n(u)]e
−q

G3
0
2

udu+ (−i)eq
G3

0
3

∫

Γ3

f q
m,n(τ)dτ

]
(A.12)

where

dm,n = i2m+n

(−1/2

n

)(−1/2

m

)
(A.13)
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F±
m,n(u) =

1

(τ±(u)− i)2m+1(τ±(u) + i)2n+1
(A.14)

f q
m,n(τ) =

eq
G3

0
2

h(τ)

(τ − i)2m(τ + i)2n
(A.15)

Now a series of lemmas that will be useful.

Lemma A.1. Let m,n ∈ Z, m,n ≥ 0 and dm,n be defined by equation (A.13). Then

|dm,n| ≤ e−1/22m+n if m+ n > 0

|dm,n| ≤ e−12m+n if m,n > 0

Proof. Let s ∈ N, then

∣∣∣∣
(−1/2

s

)∣∣∣∣ =
∣∣∣∣
(−1)s

s!

(1
2

)(1
2
+ 1
)
· · ·
(1
2
+ s− 1

)∣∣∣∣

=
1

2s

[
1 · 3

2
· · · 2(s− 1)

s
]
]

≤ 1

2s

(
2− 1

s

)s

=
(
1− 1

2s

)s

≤ lim
s→∞

(
1− 1

2s

)s

= e−1/2

Using this inequality and equation (A.13) we have that, in the case n +m > 0, n and m cannot
be simultaneously zero and therefore the product of combinatorial is at most e−1/2 if neither of m
and n is zero, then clearly, that product is bounded by e−1.

The next lemma, found in [Erd56], gives information of τ±(u) when u ∈ C

Lemma A.2. A local expression for the inverses τ± given in (A.11) is

τ±(u)− i =

∞∑

n=1

An(±
√
u)n, (A.16)

where

An =
in−1Γ(3n/2− 1)

n!Γ(n/2)3n−1
(A.17)

the series (A.16) is convergent whenever |√u| < 2/
√
3.

Lemma A.3. Let τ± be defined by equations (A.11) and u∗ = (3+
√
13)/6. Then, for u ∈ R and

0 < u < u∗ we have that
|τ±(u)− i| < 1

and |τ±(u∗)− i| = 1. Moreover, for u ∈ C with |√u| ≤
√
2/3 we have that

|τ±(u)− i| ≤ 1

and the curve |τ±(u)− i| = 1 is contained in the ring

√
2

3
≤ |√u| ≤ 2√

3
.

Therefore the region |τ±(u)− i| ≤ 1 is contained in the disk |√u| ≤ 2/
√
3.
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Proof. First we will consider the case where u ∈ R, that is when ℑ(h(τ(u))) = 0. Let us write

τ = ξ + iη, (A.18)

from this we have

h(τ) = i
(τ3
3

+ τ
)
= −η(1 + ξ2 − η2

3
) + i

(
ξ +

ξ3

3
− η2ξ

)

and then

ℑ(h(τ)) = ξ +
ξ3

3
− η2ξ.

from this equation, ℑ(h(τ)) = 0 if

η = ±
√
1 +

ξ2

3
(A.19)

The positive sign in the last equation correspond clearly to the positive branch of a hyperbola.
Having this in mind, equation (A.7) can be expressed as

u = −2

3
+ η(1 + ξ2 − η2

3
) = −2

3
+

η

3
(8η2 − 6). (A.20)

Let τ±∗ = ±ξ∗ + iη∗ be such that ℑ(h(τ±∗ )) = 0 and

|τ±∗ − i| = 1

or, using equation (A.19) (we are only interested in the positive branch of the hyperbola)

ξ2∗ +

(√
1 +

ξ2∗
3

− 1

)2

−1 = 0

from where

ξ2∗ =
3

8
(
√
13− 1)

and then by equation (A.19), since we are only interested in the positive branch of the hyperbola

η∗ =

√
1 +

1

8
(
√
13− 1) =

1

4

(
1 +

√
13
)

with this, we define, by means of equation (A.20)

u∗ = u(τ±∗ ) = −2

3
+

1

24
(1 +

√
13)3 − 1

2
(1 +

√
13) =

1

6
(3 +

√
13) ≈ 1.1009

By construction |τ±(u∗)− i| = 1. Also, we have, as expected that
√
u∗ ≈ 1.0492 < 2/

√
3.

It is clear from equation (A.20) that u is a monotone increasing function of η with η ∈ [1,+∞)
therefore its inverse τ±(u) is a monotone increasing function of u and then

|τ±(u)− i| =
√
ξ(u)2 + (η(u)− 1)2 =

√
4η(u)2 − 2(1 + η(u))

is a monotone increasing function of u. This completes the case u ∈ R.
Now, let u ∈ C. If we fix

τ± − i = seiθ θ ∈ [0, 2π) 0 < s ≤ 1 (A.21)

From equation (A.7) we have

u(τ) = (τ − i)2 − i

3
(τ − i)3,

74



and using (A.21)

|u(τ)| = s2
∣∣∣1− is

3
eiθ
∣∣∣= s2

√
1 +

s2

9
+

2s

3
sin θ.

From where, since −1 ≤ sin θ ≤ 1, we have

√
umax = max

|τ−i|=s
|
√

u(τ)| = s

(
1 +

s2

9
+

2s

3

)1/4

√
umin = min

|τ−i|=s
|
√

u(τ)| = s

(
1 +

s2

9
− 2s

3

)1/4

and since the functions between brackets are increasing in [0, 1] we have that

√
umax ≤

√
u∗
max = max

|τ−i|=1
|
√
u(τ)| = 2√

3

√
umin ≤

√
u∗
min = min

|τ−i|=1
|
√
u(τ)| =

√
2

3

From these equations we conclude two things. First, that the interior of the curve defined by

τ±(u)− i = eiθ θ ∈ [0, 2π)

contains all the points such that |τ±(u)− i| ≤ 1. Second, that the circle |√u| =
√
u∗
min lies entirely

in the interior of that curve. From these two points it is clear now that if |√u| ≤
√
u∗
min then

|τ±(u)− i| ≤ 1 and that the curve
|τ±(u)− i| = 1

is contained in the ring
√
u∗
min ≤ |√u| ≤ √

u∗
max, wich conclude the proof.

The next lemma is a straightforward observation from lemma A.2 and τ±(0) = i

Lemma A.4. Let F±
m,n(u) defined by (A.14), then

F±
m,n(u) = (±√

u)−2m−1
∞∑

j=0

dn,mj (±√
u)j . (A.22)

This series is convergent for |√u| <
√
2/3. Equation (A.22) defines the constants dn,mj , in particular

dn,m0 = 1/(2i)2n+1.

Proof. From equation (A.16) we have that

(τ±(u)− i)2m+1 =
[ ∞∑

k=1

Ak(±
√
u)k
]2m+1

(τ±(u) + i)2n+1 =
[
2i+

∞∑

k=1

Ak(±
√
u)k
]2n+1

from these equations we have

(τ±(u)− i)2m+1(τ±(u) + i)2n+1 = (±√
u)2m+1

∞∑

j=0

Bj(±
√
u)j

for some coefficients Bj . It is easy to see that

B0 = (2i)2n+1(A1)
2m+1 = (2i)2n+1
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And therefore is possible to solve the equation

∞∑

j=0

dn,mj (±√
u)j =

[ ∞∑

j=0

Bj(±
√
u)j
]−1

= (±√
u)2m+1F±

m,n(u) (A.23)

for dn,mj . In particular

dn,m0 =
1

B0
=

1

(2i)2n+1
.

The series in equation (A.22) can be written as

T±(x) := x2m+1F±
m,n(x

2) =

∞∑

j=0

dn,mj xj . (A.24)

We have already seen that T±(0) = 1/(2i)2n+1. To find a radius where T± is analytic we look at
the definition of F±

m,n(x
2) given in equation (A.14) and notice that if |τ±(x2)− i| ≤ 1, then by the

triangle inequality we have that 1 ≤ |τ±(x2) + i| and therefore T± would be analytic. By lemma
A.3, we know that |τ±(x2)− i| ≤ 1 whenever x ≤

√
2/3 or in other words, the series is convergent

when
√
u ≤

√
2/3. This conclude the proof.

From equation (A.22) we have

F±
m,n(u) = (±√

u)−2m−1
2m∑

j=0

dn,mj (±√
u)j + g±m,n(±

√
u), (A.25)

where the regular part of the function F±
m,n(u) is given by

g±m,n(±
√
u) = (±√

u)−2m−1
∞∑

j=2m+1

dn,mj (±√
u)j (A.26)

and dn,mj are defined by equation (A.22).

Lemma A.5. Let F±
m,n(u) defined by (A.14). Then for u ∈ R such that 0 < u ≤ u∗, with u∗

defined in lemma A.3. Then

(
√
u)2m+1|F±

m,n(u)| ≤ K1γ
min{m,n}
1 < γ

min{m,n}
1

with K1 =
√
2/3 and γ1 = 2/3.

Proof. From lemma A.3 and the triangle inequality is easy to deduce that

1 ≤ |τ±(u) + i| ≤ 3. (A.27)

However the upper bound can be refined. Since τ±(u) is a point over the hyperbola ℑ(h(τ)) = 0
its largest norm is reached when the hyperbola intersects the circle centered in i with radius 1.
These intersection points are

z± = ±1

2

√
3

2

(√
13− 1

)
+

i

4

(
1 +

√
13
)

and then

1 ≤ |τ±(u) + i| ≤ |z± + i| =
√

1

2

(
1 +

√
13
)
<

16

10
< 2. (A.28)

From these we have

∣∣∣∣∣

√
τ± + 2i

τ± + i

∣∣∣∣∣=
∣∣∣∣∣

√
τ± + 2i

(τ± + i)2

∣∣∣∣∣=
∣∣∣∣∣

(
1

τ± + i
+

i

(τ± + i)2

)1/2∣∣∣∣∣≤ (1 + 1)1/2 = 21/2 (A.29)

76



Now, from equation (A.7) we have

u = (τ± − i)2(τ± + 2i)
1

3i

and then from equation (A.14),

(
√
u)2m+1F±

m,n(u) =
1

(
√
3i)2m+1

(
√
τ±(u) + 2i)2m+1

(τ±(u) + i)2n+1
.

From this equation we write down two different expressions depending on n and m. These expres-
sions are

(
√
u)2m+1F±

m,n(u) =
1

(
√
3i)2m+1

(√
τ± + 2i

τ± + i

)2m+1

(τ± + i)2(m−n) if m ≤ n

(
√
u)2m+1F±

m,n(u) =
1

(
√
3i)2m+1

(√
τ± + 2i

τ± + i

)2n+1(√
τ± + 2i

)2(m−n)
if m > n

naturally, from (A.28) and (A.29) we have

(
√
u)2m+1|F±

m,n(u)| ≤
1

3m+ 1
2

2m+ 1
2 if m ≤ n

(
√
u)2m+1|F±

m,n(u)| ≤
1

3m+ 1
2

2n+
1
2 3m−n if m > n (A.30)

in this way, we have that

(
√
u)2m+1|F±

m,n(u)| ≤
(
2

3

)1/2(
2

3

)m

if m ≤ n (A.31)

(
√
u)2m+1|F±

m,n(u)| ≤
(
2

3

)1/2(
2

3

)n

if m > n

So, by letting γ1 = 2/3 and K1 =
√
2/3 we have proved the lemma.

From the proof of this lemma, we can actually prove another one, very similar, that will be
useful in the proof of the proposition 2.4

Lemma A.6. Let F±
m,n(u) defined by (A.14). Then, for u ∈ C such that |√u| ≤

√
2/3. Then

(
√
u)2m+1|F±

m,n(u)| ≤ K1γ
m
2 < γm

2

with K1 given in lemma A.5 and γ2 = 4/3.

Proof. Since |√u| ≤
√
2/3, by lemma A.3 we have that |τ±(u) − i| ≤ 1 then by the triangle

inequality, (A.27) is still valid, and therefore equation (A.30) becomes

(
√
u)2m+1|F±

m,n(u)| ≤
1

3m+ 1
2

2n+
1
2 4m−n =

(
2

3

)1/2(
4

3

)m(
1

2

)n

if m > n.

Then, in regard of inequality (A.31), we conclude the desired result.

The next lemma give us information about the coefficients dn,mj defined in equation (A.22).

Lemma A.7. Let dn,mj be defined by equation (A.22) and u∗∗ = 2/3. Then

|dn,mj | ≤ 1

(
√
u∗∗)j

K1γ
m
2 <

1

(
√
u∗∗)j

γm
2

where K1 in lemma A.5 and γ2 in lemma A.6.
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Proof. The function T± defined in equation (A.24), by lemma A.4, is analytic for
√
u ≤

√
2/3.

Therefore, if |x| ≤ x∗
min =

√
u∗∗ we can use the lemma A.6 to get that |T±(x)| ≤ K1γ

m
2 , then

using Cauchy estimates we have

|dn,mj | ≤ 1

(
√
u∗∗)j

K1γ
m
2 .

With this lemma is possible to prove the next one.

Lemma A.8. Let g±m,n(±
√
u) as in equation (A.26), 0 < β < 1 and 0 <

√
u < β

√
u∗∗ <

√
u∗∗.

Then

|g±m,n(±
√
u)| < K1

1− β
γm
2 (

√
u∗∗)−2m−1.

where u∗∗ is given in lemma A.7, K1 in lemma A.5 and γ2 in lemma A.6.

Proof. It is clear from equation (A.26) that

g±m,n(±
√
u) =

∞∑

s=0

dn,ms+2m+1(±
√
u)s

by hypothesis 0 <
√
u < β

√
u∗∗ <

√
u∗∗, then by lemma A.7

|g±m,n(±
√
u)| ≤ K1γ

m
2

1

(
√
u∗∗)2m+1

∞∑

s=0

1

(
√
u∗∗)s

(
√
u)s

≤ K1γ
m
2

1

(
√
u∗∗)2m+1

∞∑

s=0

1

(
√
u∗∗)s

(β
√
u∗∗)s

= K1γ
m
2

1

(
√
u∗∗)2m+1

∞∑

s=0

βs

= K1γ
m
2

1

(
√
u∗∗)2m+1

1

1− β

which proves the lemma.
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Appendix B

Proofs of Propositions 2.1, 2.3,

2.4, 2.21

W function

B.1 Proof of Proposition 2.1

Lemma B.1. Let q, n,m ∈ Z, q, n,m ≥ 0 and

I(q,m, n) =

∫ ∞

−∞

e
iq

G3
0
2

(

τ+ τ3

3

)

(τ − i)2m(τ + i)2n
dτ (B.1a)

N(q,m, n) =
2m+n

G2m+2n−1
0

(−1/2

m

)(−1/2

n

)
I(q,m, n) (B.1b)

Let k, l ∈ N and L̃, S̃ be defined by

L̃(q, k, l) = c̃2l−k,−k
q N(q, l − k, l) (B.2a)

S̃(q,−k,−l) = c̃2l−k, k
q N(q, l, l − k) (B.2b)

where the constants appearing in (B.2) are defined by (2.3).
Then the Fourier coefficients defined in (2.5) satisfy

Lq,0 =
∑

l≥1

L̃(q, 0, l) (B.3a)

Lq,1 =
∑

l≥2

L̃(q, 1, l) (B.3b)

Lq,−1 =
∑

l≥2

S̃(q,−1,−l) (B.3c)

Lq,k =
∑

l≥k

L̃(q, k.l) for k ≥ 2 (B.3d)

Lq,−k =
∑

l≥k

S̃(q,−k,−l) for k ≥ 2 (B.3e)

Proof. We have from equation (1.47) that

L = L̃1 +

∫ ∞

−∞

[(x2
h

2

)2
r0 cos(αh − f)− x2

h

2

]
dt (B.4)
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where

L̃1 =

∫ ∞

−∞

x2
h[

4 + x4
hr

2
0 + 4x2

hr0 cos(αh − f)
]1/2 dt

this can be written as

L̃1 =

∫ ∞

−∞

x2
h

2

(
1 +

x2
h

2
r0(f(t+ t0))e

i(αh−f(t+t0))

)−1/2(
1 +

x2
h

2
r0(f(t+ t0))e

−i(αh−f(t+t0))

)−1/2

dt

(B.5)
using that

(1 + z)−
1
2 =

∞∑

k=0

(−1/2

k

)
zk

we get that

L̃1 =
∑

k≥0

∑

l≥k

L̃l
k +

∑

k<0

∑

l≤k

S̃l
k

where

L̃l
k =

1

22l−k+1

(−1/2

l − k

) (−1/2

l

) ∫ ∞

−∞
x4l−2k+2
h [r0(f(t+ t0))]

2l−k eikαhe−ikf(t+t0) dt; 0 ≤ k ≤ l

S̃l
k =

1

2−2l+k+1

( −1/2

−l + k

)(−1/2

−l

)∫ ∞

−∞
x−4l+2k+2
h [r0(f(t+ t0))]

−2l+keikαhe−ikf(t+t0)dt; l ≤ k < 0.

With these expressions is easy to see that L̃0
0 cancels out the last term in the integral (B.4) and

that L̃1
1 + S̃−1

−1 cancels the cosine term, so

L =
∑

l≥1

L̃l
0 +

∑

l≥2

L̃l
1 +

∑

l≤−2

S̃l
−1 +

∑

k>1

∑

l≥k

L̃l
k +

∑

k<−1

∑

l≤k

S̃l
k (B.6)

Equation (2.3) allow us to expand in Fourier series the function

[r0(f(t+ t0))]
n eimf(t+t0).

Considering this and performing the change of variable

t =
G3

0

2

(
τ +

τ3

3

)

introduced in (1.33) one gets from the equation for xh given in (1.32a) and the function for αh

given in (1.32b) which implies

eiαh =
τ − i

τ + i
eiα0

that

L̃l
k = eikα0

22l−k

G4l−2k−1
0

(−1/2

l − k

)(−1/2

l

)∑

q∈Z

eiq t0 c̃2l−k,−k
q

∫ ∞

−∞

e
iq

G3
0
2

(

τ+ τ3

3

)

(τ + i)2l(τ − i)2l−2k
dτ ; 0 ≤ k ≤ l

(B.7a)

S̃l
k = eikα0

2−2l+k

G−4l+2k−1
0

( −1/2

−l+ k

)(−1/2

−l

)∑

q∈Z

eiq t0 c̃−2l+k,−k
q

∫ ∞

−∞

e
iq

G3
0
2

(

τ+ τ3

3

)

(τ − i)−2l(τ + i)−2l+2k
dτ ; l ≤ k < 0

(B.7b)

substituting now equations (B.7) in (B.6) we get in terms of the definitions (B.1) and (B.2) that

L =
∑

q∈Z

∑

l≥1

eiqt0 L̃(q, 0, l)
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+
∑

q∈Z

∑

l≥2

ei(qt0+α0)L̃(q, 1, l) +
∑

q∈Z

∑

l≤−2

ei(qt0−α0)S̃(q,−1, l)

+
∑

q∈Z

∑

k>1

∑

l≥k

ei(qt0+kα0)L̃(q, k.l) +
∑

q∈Z

∑

k<−1

∑

l≤k

ei(qt0+kα0)S̃(q, k, l) (B.8)

If we use the equations for Lq,k given in (B.3), the lemma becomes clear.

B.2 Proof of proposition 2.3

We will bound N(q,m, n) by means of the expression (A.12) separating the terms in it. First take
u∗ as in lemma A.3 and choose

ε = G
−3/2
0

with G0 > c2/3. We write down then

∫ ∞

u(C)

F±
m,n(u)e

−q
G3

0
2

u du =

∫ ∞

u∗

F±
m,n(u)e

−q
G3

0
2

u du+

∫ u∗

u(C)

F±
m,n(u)e

−q
G3

0
2

u du

and bound independently the two terms in the right. We have

∣∣∣∣∣

∫ u∗

u(C)

F±
m,n(u)e

−q
G3

0
2

u du

∣∣∣∣∣ ≤
∫ u∗

G−3

0
c2kǫ

|F±
m,n(u)|e−q

G3
0
2

u du (by means of (A.10))

≤
∫ u∗

G−3

0
c2
|F±

m,n(u)|e−q
G3

0
2

u du (kǫ ≥ 1)

≤ K1γ
min{m,n}
1

∫ u∗

G−3

0
c2
u−m− 1

2 e−q
G3

0
2

u du (by lemma A.5)

≤ γ
min{m,n}
1

G
3m+ 3

2

0

c2m+1

2

qG3
0

[
e−q c2

2 − e−q
G3

0
2

u∗

]
(c ≥ 1)

≤ 2γ
min{m,n}
1 G

3m− 3
2

0 (B.9)

Now, using the definitions of F±
m,n(u) given in (A.14) and u∗ in lemma A.3,

∣∣∣∣
∫ ∞

u∗

F±
m,n(u)e

−q
G3

0
2

u du

∣∣∣∣ ≤
∫ ∞

u∗

e−q
G3

0
2

u

|(τ±(u)− i)2m+1(τ±(u) + i)2n+1| du

≤ 2e−q
G3

0
2

u∗

qG3
0

1

|τ±(u∗)− i|2m+1

1

|τ±(u∗) + i|2n+1

≤ 2G−3
0 e−q

G3
0
2

u∗

(by lemma A.3)

≤ 2G−3
0 (B.10)

It remains only the last integral of (A.12) where the integrand is given in (A.15) and the domain
Γ3 in (A.4). The path Γ3 can be parametrized by

τ = i+ cG
− 3

2

0 eiθ with θ ∈ [θ1, θ2] = [π − θǫ, θǫ]. (B.11)

If we define

h̃(θ) = h(τ(θ)) = i
(τ(θ)3

3
+ τ(θ)

)
,

a straightforward computation using (A.7) shows that

h̃(θ) = −2

3
−G−3

0

(
c2e2iθ +

1

3i
c3G

− 3
2

0 e3iθ
)
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and then

∣∣eq
G3

0
2

h̃(θ)
∣∣ = e−

q

3
G3

0e−
q

2
c2(cos 2θ+ c

3
G

−
3
2

0
sin 3θ)

≤ e−
q

3
G3

0e
q

2
c2(1+ c

3
G

−
3
2

0
)

≤ e−
q
3
G3

0eqc
2

(for G0 ≥ (c2/9)1/3 ). (B.12)

Note that over Γ3 we have, for G0 ≥ c2/3, that

∣∣1 + τ − i

2i

∣∣≥ 1−
∣∣τ − i

2i

∣∣= 1− c

2
G

−3/2
0 ≥ 1

2

and therefore

|τ + i|2n = |2i|2n
∣∣1 + τ − i

2i

∣∣2n≥ 22n
1

22n
= 1 (B.13)

Now, we can bound the last integral of (A.12)

∣∣∣∣∣∣

∫

Γ3

eq
G3

0
2

h(τ)

(τ − i)2m(τ + i)2n
dτ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

∫ θ2

θ1

eq
G3

0
2

h̃(θ)

(τ(θ) − i)2m(τ(θ) + i)2n
icG

− 3
2

0 eiθ dθ

∣∣∣∣∣∣

≤
∫ θ2

θ1

|eq
G3

0
2

h̃(θ)|
|cG−3/2

0 eiθ|2m
cG

− 3
2

0 dθ (by (B.11) and (B.13))

≤
∫ θ2

θ1

e−
q

3
G3

0eqc
2

c2m G−3m
0

cG
− 3

2

0 dθ (by (B.12))

≤ 2π

c2m−1
G

3m−3/2
0 e−

q

3
G3

0eqc
2

≤ 2πG
3m−3/2
0 e−

q

3
G3

0eqc
2

. (B.14)

From lemma A.1 and the bounds (B.9), (B.10) and (B.14), we can boundN(q,m, n) by equation
(A.12) as follows

|N(q,m, n)| ≤ e−1/22m+ne−q
G3

0
3 G−2m−2n+1

0

(
4γ

min{m,n}
1 G

3m−3/2
0 + 4G−3

0 + 2πG
3m−3/2
0 eqc

2)

≤ 2πe−1/2eqc
2

2m+ne−q
G3

0
3 G−2m−2n+1

0

(
γ
min{m,n}
1 G

3m−3/2
0 +G−3

0 +G
3m−3/2
0

)

≤ 2πe−1/2eqc
2

2m+ne−q
G3

0
3 G

m−2n− 1
2

0

(
γ
min{m,n}
1 + 1 + 1

)

≤ K22
m+neqc

2

e−q
G3

0
3 G

m−2n− 1
2

0

with
K2 = 6πe−1/2.

This proves proposition 2.3.

B.3 Proof of propositions 2.4 and 2.21

The only difference in proving these two propositions consists in the treatment of the residue Rq
m,n

of the function f q
m,n given in (A.15). At the end of this section we point out the difference and

conclude the proof of either case.
To prove the statement we will proceed as in the proof of proposition 2.3 changing the path of

integration to the path Γ defined in (A.3) leading to equation (A.12). The important fact to notice
is that the integral (A.12) does not depend on ε. So, we will compute only the ε-independent terms
of that integral. We will follow a series of lemmas leading to the proof of the statement.
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Lemma B.2. Let 0 < ε < 1/c ≤ 1 and u(C) be as in equation (A.9), F±
m,n defined by (A.14) and

0 < β < 1, then if u∗∗ = 2/3 as given in lemma A.7 and 0 <
√
u <

√
u∗ = β

√
u∗∗ <

√
u∗∗ for any

ε > 0 small enough we have

∫ ∞

u(C)

F±
m,n(u)e

−q
G3

0
2

udu =

2m∑

j=0

∫ u∗

u(C)

e−q
G3

0
2

udn,mj (±√
u)−2m−1+jdu+ Ê1 + Ê2

where

|Ê1| ≤ 2 · ρ−2m−1G−3
0 , |Ê2| ≤

2

(1− β)
γm
3 G−3

0

with ρ = |τ±(u∗)− i| ≤ 1 and γ3 = 2.

Proof. By definition, for ε > 0 small enough we have that 0 < u(C) < u∗ <
√
u∗ < 2/

√
3, then

∫ ∞

u(C)

F±
m,n(u)e

−q
G3

0
2

udu =

∫ u∗

u(C)

F±
m,n(u)e

−q
G3

0
2

udu+ Ê1

with

Ê1 =

∫ ∞

u∗

F±
m,n(u)e

−q
G3

0
2

udu

now, since 0 < u∗ < u∗ by lemma A.3 and the triangle inequality

|Ê1| =
∣∣∣∣
∫ ∞

u∗

F±
m,n(u)e

−q
G3

0
2

u du

∣∣∣∣ ≤
∫ ∞

u∗

e−q
G3

0
2

u

|(τ±(u)− i)2m+1(τ±(u) + i)2n+1| du

≤ 2e−q
G3

0
2

u∗

qG3
0

1

|τ±(u∗)− i|2m+1

1

|τ±(u∗) + i|2n+1

≤ 2G−3
0 e−q

G3
0
2

u∗

(1
ρ

)2m+1

≤ 2G−3
0 ρ−2m−1. (B.15)

By lemma A.4 and equation (A.25) we have

∫ u∗

u(C)

F±
m,n(u)e

−q
G3

0
2

udu =

2m∑

j=0

∫ u∗

u(C)

dn,mj e−q
G3

0
2

u(±√
u)−2m−1+jdu+ Ê2

where

Ê2 =

∫ u∗

u(C)

g±m,n(±
√
u)e−q

G3
0
2

udu

then by lemma A.8 we have that for any ε > 0 small enough

|Ê2| ≤
∫ u∗

u(C)

|g±m,n(±
√
u)|e−q

G3
0
2

udu

≤ K1

1− β
γm
2 (

√
u∗∗)−2m−1

∫ ∞

0

e−q
G3

0
2

udu

≤ 2K1

q(1− β)
γm
2 (

√
u∗∗)−2m−1G−3

0

≤ 2K1

(1− β)
γm
2 (

√
u∗∗)−2m−1G−3

0

=
2

(1− β)
γm
3 G−3

0

now the lemma is proven.
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The next lemma is a straight forward application of the last one.

Lemma B.3. Let 0 < ε < 1/c ≤ 1 and u(C) be as in equation (A.12), F±
m,n defined by (A.14)

and 0 < β < 1, then if u∗∗ is given by lemma A.7 and 0 <
√
u <

√
u∗ = β

√
u∗∗ <

√
u∗∗ for any

ε > 0 small enough we have

∫ ∞

u(C)

[
F+
m,n(u)− F−

m,n(u)
]
e−q

G3
0
2

udu = 2

m∑

s=0

∫ u∗

u(C)

e−q
G3

0
2

udn,m2m−2s(
√
u)−2s−1du+ 2Ê1 + 2Ê2

where Ê1 and Ê2 are the same as in lemma B.2.

Proof. By lemma B.2 we have

∫ ∞

u(C)

[
F+
m,n(u)−F−

m,n(u)
]
e−q

G3
0
2

udu =

2m∑

j=0

∫ u∗

u(C)

e−q
G3

0
2

udn,mj [1−(−1)−2m−1+j](
√
u)−2m−1+jdu+2Ê1+2Ê2

then the non trivial terms in the sum are given when −2m − 1 + j = −2s − 1 with s = 0, ..,m.
This observation proves the lemma.

Lemma B.4. Let 0 < ε < 1/c ≤ 1 and u(C) be as in equation (A.12), 0 < β < 1, then if u∗∗ = 2/3
as given in lemma A.7 and

√
u∗ = β

√
u∗∗ <

√
u∗∗, then the ε-independent term of

∫ u∗

u(C)

e−q
G3

0
2

udn,m2m−2s(
√
u)−2s−1du

is

(−1)s2s+
3
2 (2s+ 1)

(s+ 1)!

(2s+ 2)!
dn,m2m−2sq

s− 1
2G

3s− 3
2

0 Γ
(1
2

)
+Ê3(m, s)

with
|Ê3(m, s)| ≤ 2γm

3 β−2s−1G−3
0 .

and γ3 = 2 .

Proof. First we write down

∫ u∗

u(C)

e−q
G3

0
2

udn,m2m−2s(
√
u)−2s−1du =

∫ ∞

u(C)

e−q
G3

0
2

udn,m2m−2s(
√
u)−2s−1du + Ê3 (B.16)

where

Ê3(m, s) = −
∫ ∞

u∗

e−q
G3

0
2

udn,m2m−2s(
√
u)−2s−1du

observe that E3(m, s) is independent of ε. Let us bound Ê3(m, s)

|Ê3(m, s)| ≤ |dn,m2m−2s|(
√
u∗)

−2s−1

∫ ∞

u∗

e−q
G3

0
2

udu

≤ |dn,m2m−2s|(
√
u∗)

−2s−12e−q
G3

0
2

u∗

G−3
0

q

≤ 2|dn,m2m−2s|(β
√
u∗∗)−2s−1G−3

0

≤ 2
1

(
√
u∗∗)2m−2s

K1γ
m
2 (β

√
u∗∗)−2s−1G−3

0 (by lemma A.7)

≤ 2
1

(
√
u∗∗)2m

K1γ
m
2 β−2s−1(

√
u∗∗)−1G−3

0

= 2γm
3 β−2s−1G−3

0 ,

where γ3 = 2.
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By equation (A.9) we know that u(C) = O(c ε2) and then the following definitions make sense

Ip,s(ε) =

∫ ∞

u(C)

e−qδuu
1
2
(−2s−1)+p du

fp,s(ε) = (u(C))
1
2
(−2s−1)+pe−qδu(C)

δ =
G3

0

2

using this notation and integrating by parts we have

Ip−1,s(ε) =
qδ

−s− 1
2 + p

∫ ∞

u(C)

e−qδuu
1
2
(−2s−1)+p du− 1

−s− 1
2 + p

(u(C))
1
2
(−2s−1)+pe−qδu(C)

=
1

−s− 1
2 + p

[qδIp,s(ε)− fp,s(ε)] (B.17)

also ∫ ∞

u(C)

e−q
G3

0
2

udn,m2m−2s(
√
u)−2s−1du = dn,m2m−2sI0,s(ε) (B.18)

Now, in the case where s > 0, using equation (B.17) s-times we get

I0,s(ε) =
(qδ)s

(−s− 1
2 + 1)(−s− 1

2 + 2) · · · (− 1
2 )

Is,s(ε)−
s∑

p=1

(qδ)p−1fp,s(ε)

(−s− 1
2 + 1) · · · (−s− 1

2 + p)

The ε-independent term of I0,s(ε) is given by

(qδ)s

(−s− 1
2 + 1)(−s− 1

2 + 2) · · · (− 1
2 )

lim
ε→0

Is,s(ε) =
(qδ)s

(−s− 1
2 + 1)(−s− 1

2 + 2) · · · (− 1
2 )

1√
qδ

Γ
(1
2

)

=
(
√
qδ)2s−1

(−s− 1
2 + 1)(−s− 1

2 + 2) · · · (− 1
2 )

Γ
(1
2

)
.

then the ε-independent term of the integral in equation (B.18) is

dn,m2m−2s(
√
qδ)2s−1

(−s− 1
2 + 1)(−s− 1

2 + 2) · · · (− 1
2 )

Γ
(1
2

)

when s > 0.
In the same way, we have, that the ε-independent term of

I0,0(ε) =

∫ ∞

u(C)

e−q
G3

0
2

udn,m2m (
√
u)−1du

is dn,m2m (
√
qδ)−1Γ

(
1
2

)
and by equation (B.16) and the bound on E3 the lemma is proved if we notice

that

(
− s− 1

2
+ 1
)(

− s− 1

2
+ 2
)
· · ·
(
− 1

2

)
=

1

2s
(−2s+ 1)(−2s+ 3) · · · (−1)

=
(−1)s

2s
(2s− 1)(2s− 3) · · · (1)

=
(−1)s

2s
(2s+ 1)!!

2s+ 1

and using that

(2s+ 1)!! =
(2s+ 2)!

2s(s+ 1)!

we get
(
− s− 1

2
+ 1
)(

− s− 1

2
+ 2
)
· · ·
(
− 1

2

)
=

(−1)s

22s+1(2s+ 1)

(2s+ 2)!

(s+ 1)!

This expression allow us to write the cases s > 0 and s = 0 in one equation which completes the
proof.
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Lemma B.5. Let u(C) given in equation (A.9) and F±
m,n defined by (A.14), then the ε-independent

terms of ∫ ∞

u(C)

[
F+
m,n(u)− F−

m,n(u)
]
e−q

G3
0
2

udu

are given by
m∑

s=0

(−1)s2s+
5
2 (2s+ 1)

(s+ 1)!

(2s+ 2)!
dn,m2m−2sq

s− 1
2G

3s− 3
2

0 Γ
(1
2

)
+T q

m,n

where
|T q

m,n| ≤ K11γ
m
4 G−3

0

with

β =

(
−1 +

√
11

4

√

3 +

√
11

2

)1/2

, γ4 =
2

β2
, K11 = 22

(√
2 +

2

β(1− β)

)
.

Proof. A straight forward application of lemmas B.3 and B.4 gives the correct prediction on the
value of integral, it only remains to show that the errors behave as stated. Let

T q
m,n = 2Ê1 + 2Ê2 + 2E′

3

with Ê1 and Ê2 are given by lemma B.3 and

E′
3 =

m∑

s=0

Ê3(m, s)

where Ê3(m, s) is given in lemma B.4. In this way

|T q
m,n| ≤ 2|Ê1|+ 2|Ê2|+ 2

m∑

s=0

|Ê3(m, s)|

≤ 22ρ−2m−1G−3
0 +

22

(1 − β)
γm
3 G−3

0 + 22γm
3 G−3

0

m∑

s=0

β−2s−1

= 22G−3
0

(
ρ−2m−1 +

γm
3

1− β
+

γm
3

β

m∑

s=0

β−2s

)

since γ3 = 2 and
m∑

s=0

β−2s =
β−2m−2 − 1

β−2 − 1
≤ β−2m

1− β2
≤ β−2m

1− β

choosing ρ = 1/
√
2 we have

|T q
m,n| ≤ 22G−3

0

(
γm
3

√
2 +

γm
3

1− β
+

1

β

(
γ3
β2

)m
1

1− β

)

≤ 22G−3
0

(
γ3
β2

)m(√
2 +

2

β(1 − β)

)
.

As we have proceeded in the proof of lemma A.3, from fixing ρ2 = |τ±(u∗) − i|2 = 1/2, using
equations (A.18), (A.19) and (A.20) we can find u∗, and therefore, by its definition given in lemma
B.2 we have that

β2 =
u∗
u∗∗ = −1 +

√
11

4

√

3 +

√
11

2
≈ 0.79,

and then by setting

K11 = 22
(√

2 +
2

β(1− β)

)
γ4 =

2

β2
≈ 2.53

we have
|T q

m,n| ≤ K11γ
m
4 G−3

0 .
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Lemma B.6. Let f q
m,n be defined in equation (A.15), then

Res(f q
m,n(τ), i) =

e−qG3
0/3

(2i)2n

∑

2j+3r+s=2m−1
j,r,s≥0

(−2n

s

)
(−i)r+s(−qG3

0)
r+j

3r2s+r+jj!r!
(B.19)

Proof. From the definition of f q
m,n given in (A.15), and substituting the expression

h(τ) = −2/3− (τ − i)2 + i(τ − i)3/3

we have

f q
m,n(τ) =

e−qδ 2
3 e−qδ(τ−i)2eqδ

i
3
(τ−i)3

(τ − i)2m(τ + i)2n
, δ =

G3
0

2

if we use
(τ + i)−2n = (2i)−2n(1 + (τ − i)/2i)−2n

and expand in Taylor series around i we get

f q
m,n(τ) =

1

(τ − i)2m
e−qδ 2

3

(2i)2n

∞∑

s=0

(−2n

s

)(τ − i

2i

)s ∞∑

j=0

(−qδ)j(τ − i)2j

j!

∞∑

r=0

1

r!

(qδi
3

)r
(τ − i)3r

by taking the coefficient of the −1 degree term we obtain the desired result.

Remark B.7. If j, r and s represent the indexes in (B.22) and m ≥ 2 then the choice j = m− 1,
r = 0, s = 1 satisfy

0 ≤ r, j, s 2j + 3r + s = 2m− 1.

and also j + r = m− 1.

Lemma B.8. Let f q
m,n be defined in equation (A.15) and δ = G3

0/2, then

Res(f q
m,n(τ), i) = O(δm−1) = O(G3m−3

0 )

Proof. By induction on m. Is easy to see that for m = 1, 2 the result is true. Assume, then that
for m̃ we have

max{r + j} = m̃− 1

under the constraints
0 ≤ r, j, s 2j + 3r + s = 2m̃− 1

We will show that
max{r + j} = m̃

under the constraints

0 ≤ r, j, s 2j + 3r + s = 2(m̃+ 1)− 1 = 2m̃+ 1.

let (j, r, s) such that 2j + 3r + s = 2m̃+ 1, then

2(j − 1) + 3r + s = 2m̃− 1, (B.20)

here we have two different cases

- j ≥ 1

- j = 0

87



When j ≥ 1 we have that, by equation (B.20), (j−1, r, s) satisfy the induction hypothesis, that
is j − 1 + r ≤ m̃− 1 and then

j + r ≤ m̃

When j = 0 the equation (B.20) reads

3r + s− 2 = 2m̃− 1 (B.21)

here we have three different cases

- s ≥ 2

- s = 0

- s = 1

When s ≥ 2 we have that, by equation (B.21), (0, r, s − 2) satisfy the induction hypothesis,
that is j + r = r ≤ m̃− 1 and then

j + r ≤ m̃

When s = 0 we have that, by equation (B.21), 3r − 2 = 2m̃ − 1 or 3r = 2m̃ + 1 from where
m̃ = 3s′ + 1 and then r = 2s′ + 1 with s′ = 0, 1, . . . . This imply

r + j = r = 2s′ + 1 = m̃− s′ ≤ m̃

When s = 1 we have that, by equation (B.21), 3r = 2m̃, from where m̃ = 3s′ and then r = 2s′

with s′ = 1, 2, . . . . This imply

r + j = r = 2s′ = m̃− s′ ≤ m̃

In this way we have seen that in every case we get r + j ≤ m̃ and by remark B.7 there exist
a configuration such that r + j = m̃. Therefore the maximum value of r + j is exactly m̃. This
completes the induction.

Lemma B.9. Let Γ3 be the path defined in (A.4), and f q
m,n be defined in equation (A.15), then

the ε-independent terms of

eq
G3

0
3

∫

Γ3

f q
m,n(τ)dτ

are bounded by K12q
m−1G3m−3

0 where K12 = 2πe4/3.

Proof. If Γ3 is the path defined in (A.4) we can parameterize it by

τ = i+ c εeiθ θ ∈ (θ1, θ2) = [π − θε, θε]

where θε is given in (A.8). Then by using a Taylor series argument is not difficult to see that the
ε-independent term of ∫

Γ3

f q
m,n(τ)dτ

is exactly πiRes(f q
m,n, i). By lemmas B.6 and B.8 we have, naming δ = G3

0/2, that

|eq
G3

0
3 Res(f q

m,n(τ), i)| ≤
(qδ)m−1

22n

∑

2j+3r+s=2m−1

∣∣∣∣
(−2n

s

)∣∣∣∣
1

2s
· 1

3r
1

r!
· 1
j!

≤ (qδ)m−1

22n

∑

j,r,s∈N∪{0}

(
2n+ s− 1

s

)
1

2s
· 1

3r
1

r!
· 1
j!

≤ (qδ)m−1

22n

∞∑

s=0

(
2n+ s− 1

s

)
1

2s

∞∑

r=0

1

3r
1

r!

∞∑

j=0

1

j!
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=
(qδ)−l−1

22n
22ne1/3e

= (qδ)m−1e4/3

= 2e4/3(qG3
0)

m−1

(
1

2

)m

≤ 2e4/3qm−1G3m−3
0

So, by setting
K12 = 2πe4/3

this lemma is proved.

Now we can prove proposition 2.4. N(q,m, n) is given in (A.12), and since it does not depend
on ε we can apply lemmas B.5 and B.6 to obtain

N(q,m, n) =
dm,ne

−q
G3

0
3

G2m+2n−1
0

[
m∑

s=0

(−1)s2s+
5
2 (2s+ 1)

(s+ 1)!

(2s+ 2)!
dn,m2m−2sq

s− 1
2G

3s− 3
2

0 Γ
(1
2

)
+T q

m,n +Rq
m,n

]

where

Rq
m,n = (−i)eq

G3
0
3

∫

Γ3

f q
m,n(τ)dτ

and by lemma B.5
|T q

m,n| ≤ K11γ
m
4 G−3

0 .

By lemma B.9
|Rq

m,n| ≤ K12q
m−1G3m−3

0 .

Using that 2s+1(s+ 1)!(2s+ 1)!! = (2s+ 2)! to show that

(2s+ 1)(s+ 1)!

(2s+ 2)!
=

1

2s+1(2s− 1)!!
.

completes the proof of the proposition 2.4. Due to the fact that the right hand side of this last
expression is not defined when s = 0 but the left hand side is and is equal to one, we need to point
out that when s = 0, the term 1/(2s− 1)!! in the final formula should be replaced by 1.

To prove proposition 2.21, instead of using lemmas B.6, B.8 and B.9, we use the next lemma,
which also implies lemmas B.8 and B.9.

Lemma B.10. Let f q
m,n be defined in equation (A.15), then

Res(f q
m,n(τ), i) = 2ie−q

G3
0
3

m−1∑

s=0

dn,m2(m−s)−1

(
− q

2
G3

0

)s
1

s!
(B.22)

where the constants dn,m2(m−s)−1 were introduced in lemma (A.4).

Proof. From the definition of f q
m,n given in (A.15), and substituting the expression

h(τ) = −2/3− (τ − i)2 + i(τ − i)3/3

we have for any ρ < 1

Res(f q
m,n(τ), i) =

1

2πi

∫

|τ−i|=ρ

eq
G3

0
2

(− 2
3
−(τ−i)2+ i

3
(τ−i)3)

(τ − i)2m(τ + i)2n
dτ

=
1

2πi

∫

|w|=ρ

e−q
G3

0
3 eq

G3
0
2

(−w2+ i
3
w3)

w2m(w + 2i)2n
dw.
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We now make the change of variables in the integral z = w(1 − iw/3)1/2 which satisfies

z2 = w2 − i

3
w3.

This change is exactly the change (A.7) just noticing that z2 = u, then as we discussed, it has
inverse, and then it is well defined.

Res(f q
m,n(τ), i) =

1

2πi

∫

|z|=ǫ

e−q
G3

0
3 e−q

G3
0
2

z2

−iw(z2)2m+1(w(z2) + 2i)2n+1
2zdz

=
1

2πi

2

−i
e−q

G3
0
3

∫

|z|=ǫ

e−q
G3

0
2

z2

F+
m,n(z

2)dz

whenever the circle with radius ǫ is contained within the curve {z = w(1− iw3 )
1/2 : |w| = ρ}. Then,

as we have seen from the change of variables (A.7) and the formula (A.22), we can write

Res(f q
m,n(τ), i) = 2ie−q

G3
0
3 Res(e−q

G3
0
2

z2

zF+
m,n(z

2))

= 2ie−q
G3

0
3 Res(e−q

G3
0
2

z2

∞∑

j=0

dn,mj zj−2m)

since

e−q
G3

0
2

z2

=

∞∑

s=0

(
−q

G3
0

2

)s
z2s

s!

by taking the coefficient of degree−1, we need that 2s+j−2m = −1 or equivalently j = 2(m−s)−1,
which leads to

Res(f q
m,n(τ), i) = 2ie−q

G3
0
3

m−1∑

s=0

dn,m2(m−s)−1

(
− q

2
G3

0

)s
1

s!

this concludes the proof of proposition 2.21.

B.4 Function W

Define

W (w) =

∞∑

n=0

wn

(n!)2

=
∞∑

n=0

(−1)n
(±2i

√
w

2

)2n

(n!)2

= J0(±2i
√
w) (B.23)

also

W ′(w) =
∞∑

n=1

n
wn−1

(n!)2
=

∞∑

n=1

wn−1

n!(n− 1)!
, W ′′(w) =

∞∑

n=2

(n− 1)
wn−2

n!(n− 1)!
=

∞∑

n=2

wn−2

n!(n− 2)!

using that
Jn−1(z)− Jn+1(z) = 2J ′

n(z)

we have

J ′
0(z) = −J1(z)
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J ′′
0 (z) =

1

2
(J2(z)− J0(z))

and by the chain rule

W ′(w) = J ′
0(±2i

√
w)

(±2i)

2
√
w

= J ′
0(±2i

√
w)

(∓2)

2i
√
w

=
2

±2i
√
w
J1(±2i

√
w) (B.24)

W ′′(w) = ±i

[
1√
w
J ′′
0 (±2i

√
w)

(±2i)

2
√
w

− 1

2w3/2
J ′
0(±2i

√
w)

]

= ±i

[±i

w
J ′′
0 (±2i

√
w)− 1

2w3/2
J ′
0(±2i

√
w)

]

= ±i

[±i

2w
(J2(±2i

√
w)− J0(±2i

√
w)) +

1

2w3/2
J1(±2i

√
w)

]

=
1

2w

[
J0(±2i

√
w)− J2(±2i

√
w)± i√

w
J1(±2i

√
w)

]

=
1

2w

[
J0(±2i

√
w)− J2(±2i

√
w)− 2

±2i
√
w
J1(±2i

√
w)

]
(B.25)

from equation (B.25), if we set
z = ±2i

√
w

we have

wW ′′(w) =
1

2

[
J0(z)− J2(z)−

2

z
J1(z)

]

and using that J2(z) = (2/z)J1(z)− J0(z)

wW ′′(w) = J0(z)−
2

z
J1(z) (B.26)

also, from equation (B.23), we have
W (w) = J0(z) (B.27)

91



Bibliography

[AAR00] G.E. Andrews, R. Askey, and R Roy, Special functions, Cambridge University Press,
2000.

[Arn64] Vladimir I. Arnold, Instability of dynamical systems with several degrees of freedom,
Soviet Mathematics 5 (1964), no. 5, 581–585.

[AS65] M. Abramowitz and I. Stegun, Handbook of mathematical functions, Dover, New York,
1965.
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[BF04] Inmaculada Baldomá and Ernest Fontich, Exponentially small splitting of invariant
manifolds of parabolic points, Mem. Amer. Math. Soc. 167 (2004), no. 792, x–83. MR
2025418 (2005f:37127)

[BMS10] Fontich Ernest Guardia Marcel Baldoma, Immaculada and Tere M. Seara, Exponen-
tially small splitting of separatrices for one and a half degrees of freedom hamiltonian
systems.

[Bol06] Sergey Bolotin, Symbolic dynamics of almost collision orbits and skew products of
symplectic maps, Nonlinearity 19 (2006), no. 9, 2041–2063.MR 2256650 (2007j:37148)
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