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Introduction

Celestial mechanics has been a continuous source of inspiration of the main problems arising in
dynamical systems. Particularly, the phenomenon of chaos and the existence of homoclinic orbits
appears for the first time in the memory of Poincaré about the stability of the three body problem
[Hen90], where the first exponentially small splitting of separatrices was computed.

In this memory we deal with the elliptic restricted three body problem (ERTBP) which appears
in a natural way to study global instability, since it has two and a half degrees of freedom. The
global instability, commonly known as diffusion, or better said, Arnold diffusion, from the pioneer
work of Arnold in 1964 [Arn64], has been studied in the ERTBP in several settings, or more
precisely, in several zones of the phase space. Capinsky & Zgliczynski have studied the instability
in this problem, close to librations points in [CZ11] following previous work of Llibre & Simé
[LS80b] and Llibre, Martinez & Simé [LMS85] for the existence of transversal homoclinic orbits in
the classical circular restricted three body problem (CRTBP), as well as Bolotin close to collision
[Bol06], Xia has studied micro-diffusion in the ERTBP [Xia93]. Recently, diffusion along mean
motion resonances in the ERTBP model for Sun-Jupiter-asteroid systems has been proven by
Fejoz, Guardia, Kaloshin & Roldén in [FGKR14]

In the last years, there have bee several mechanisms used to prove diffusion, like variational
and geometrical methods. This memory is based on the application of geometrical methods,
which are based on the existence of a scattering map associated to a normally hyperbolic invariant
manifold (NHIM) in the phase space [DAILS08, DGAILSO08]. In such cases, both the inner dynamics
inside the NHIM as well as the outer dynamics provided by the scattering map, are combined to
design diffusing pseudo-trajectories, consisting on invariant tori plus their transversal heteroclinic
connections, that is, transition chains in Arnold’s language.

In this memory we deal with the existence of diffusion orbits of the ERTBP whose angular
momentum increases. Those orbits correspond to motions where the comet moves far from the
primaries and comes back many times, increasing at each turn its angular momentum by a small
amount.

The ERTBP is a Hamiltonian system of two and a half degrees of freedom. The so-called
manifold of infinity can be seen, after a suitable change of variables provided by McGehee in
[McGT73], as a three dimensional invariant manifold in the extended phase space which behaves
topologically as a NHIM, although it is of parabolic type. This means that the rate of approach and
departure from it along its invariant manifolds is polynomial in time, instead of exponential-like
as happens in a standard NHIM. On the other hand, the inner dynamics is very simple, since it
is formed by a two-parameter family of 27-periodic orbits in the 5D extended phase space which
correspond to constant solutions in the 4D phase space. As a consequence, the stable and unstable
manifold of the infinity manifold are union of the stable and unstable manifolds of its periodic
orbits, and as long as these manifolds intersect along transversal heteroclinic orbits, the scattering
map can be defined. Unfortunately, since the inner dynamics of the infinity manifold is so simple,
the classical mechanisms of diffusion, consisting of combining the inner and outer dynamics, do
not work here. Instead, as a novelty, we will be able to find two different scattering maps which
will be combined in a suitable way to provide orbits whose angular momentum increases.

The main difficulty of this work is the asymptotic computation, for the mass parameter and
eccentricity small enough and big enough angular momentum, of two different scattering maps.
This computation relies on the computation of a Melnikov function which is very complicated in
this problem. The first computation of this Melnikov function was done for the CRTBP in [LS80a]



which was later corrected and carried out formally for the ERTBP in [MP94]. In both works, one
can realize the massive amount of computations required.

In Chapter 2 of this memory, we provide a rigorous computation of the so-called Melnikov
potential, with asymptotics and rigorous bounds for the errors for some range of the parameters
1 (mass parameter), eg (eccentricity of the primaries) and Gy (angular momentum of the comet).
More precisely, the results presented here, are valid for GGy big enough, egGy bounded and p small
enough.

In Chapter 1, the problem is introduced, as well as the main geometrical objects which play
a role in the diffusion mechanism. Particularly, the infinity manifold, its stable and unstable
manifolds and the two independent scattering maps as well as the asymptotic formulas for them.
The combination of both of them lead to theorem 1.15 for egGy = A small, and theorem 1.16 for
eoGo = A finite, at the end of the chapter.

As a final comment, there are at least three remaining tasks that would complete or extend the
research on this problem. First, to compute the Melnikov potential for fixed 0 < eg < 1 and Gy
big enough. Secondly, analogously as it is done in [GMMS12], to prove that a similar formula for
the scattering map holds for 0 < g < 1/2. Finally, one needs a suitable shadowing lemma for the
infinity manifold, which as already has been said, it is not a genuine NHIM.



Chapter 1

Main results

1.1 Preliminars

As in the classical setting of the restricted three body problem, consider a particle with zero mass
that moves in the plane generated by the dynamics of two point masses called primaries. It is a
well known fact that the primaries move over an ellipse with a focus in the center of mass and with
certain eccentricity that we will call eyg. If we fix a coordinate reference system with the origin
at the center of mass and call ¢; and ¢ the position of the primaries, then under the classical
assumptions regarding time units, distance and masses normalization, the motion of the third
particle whose position we will call g is given by

a2 lq1(t,e0) — q|? lg2(t, e0) — qf?

q  (1—p)(q(te) —q) | plga(t en) —q) (L.1)

where 1 — p is the mass of the particle at ¢; and p the mass of the particle at ¢go. If we introduce
the conjugate momenta p = dg/dt and the self-potential function (see [MHOO09, p. 28])

1—p L
Uu(g: t;e0) = + (1.2)
! lg —a1(t,e0)|  lg — q2(t, eo)]
This equation can be rewritten as a Hamiltonian system with Hamiltonian
P2
Hu(Qap7t§€O) = 5 _Uu(q7t;€0)' (13)

2

This is a time-periodic Hamiltonian of two and a half degrees of freedom.
By the first Kepler law the distance between the primaries (see [Windl, p. 194-195]) is given
by

O (14)
o E T eocos f '
where f is the so called true anomaly (see [Windl, p. 203], [MP94, p. 303]), which satisfies

d 1 2

a _ ( +€0€205f) (15)

dt (1—e3)3/?
or also by

ro(t) =1—egcos E (1.6)
in terms of the eccentric anomaly E, given by the Kepler equation (see [Windl, p. 195])

t=FE—e¢psinE. (1.7)



1.2 Changes of coordinates and setting of the problem

Because of the nature of the problem we are dealing with, it will be better to perform a polar-
simplectic change of variables, to the Hamiltonian (1.3) say

X =rcosa (1.8a)
Y =rsina (1.8b)

where ¢ = (X,Y). Now, we look for conjugate momenta P, and P, so that the change
(X,Y,Px,Py) > (r,a,P;,P,) (1.9)
is canonical. Following [Gol65], we get:
Py .
Px = P.cosa— — sina (1.10a)
r
. Py
Py = P,sina — — cos a. (1.10b)
T

In this way, the change of variables (1.10) is simplectic and the equations of motion in the new
coordinates are the associated to the Hamiltonian

Hy = H,(¢(Q), ;o)

that we will write as

P> p?

Hﬁ(r,a,PT,Pa,t;eo):7’”+2—:‘2—U;(7’,o¢,t;60) (1.11)

and U); defined by
Ui(r,a,t;e0) = Uy(rcosa, rsina, t; eg). (1.12)
In this notation, the primaries are

g2 = q2(t,e0) = —ry(t,e0)(cos f(t,eq),sin f(t,eq)) (1.13a)

@1 =qi(t,eq) = rs(t,e)(cos f(t,eq),sin f(t,ep)). (1.13b)
where

ry(t,e0) = (1 —pro(t),  rs(t eo) = pro(t)

and

0= @ =7*+2(1— p)ro(t) reos(a — ) + (1 = u)*[ro(t)]*,
la—a* =" = 2 [ro(t)] rcos(a — f) + 1 [ro(t)]*.

From now on we will write

and then Hamiltonian (1.11) reads
2 2
" y G .
Hp(ra o, Yy, Ga t? 60) = ? + 27,2 - Uu(ra «, t7 60)

with U}, defined in (1.12).



1.2.1 McGehee coordinates

To study the behavior of orbits near infinity, we make to the Hamiltonian equations of Hamiltonian
H(r,a,y,G,t;e0) the non-canonical change of variables:

2

r== (1.14)
to we get the so called McGehee coordinates (see [MP94] y [McG73]). Defining
U, (x,a,t;en) = U;(Q/xQ,a,t;eo) (1.15)
the equations associated to (1.11) become:
14 1 x3 oU
P=—= j=-G%2® — ——L 1.16
ety VTR T 4 o (1.16a)
1, . ou
v= -G G=—-+ 1.16b
& 12 Do, ( )
where )
x® (l—p  p
t; = — — 1.17
uﬂ(‘raaa 760) 2 ( o1 + 0_2) ( )
and
0? =1 — z12% cos(a — f) + Zz%f, z1 = uro(t),
1
03 =1+ z92” cos(a — f) + Zz§x4, zo = (1 — p)ro(t),

It is important to notice that f is present in these equations, and then, becomes necessary to
add the equation for f given in (1.5) in order to have the complete description of the dynamics.
Equations (1.16) were obtained in [MP94].

Hamiltonian structure

Proposition 1.1 (quasi-Hamiltonian structure). If H,, is defined by

2 4 2
y G
H#(x,a,y,G,t;eo):?Jr ]

—U,(z, o, t;e0), (1.18)

and U is given in (1.17), the equations (1.16) can be written as

P (aH“) y:-x—3 (—GH“) (1.19a)

4 dy 4 Ox
. O0H, . O0H,
0= = G=— (1.19b)

Therefore, equations (1.19) are in fact Hamiltonian with symplectic (non-canonical) form as-
sociated:
w(z)(u,v) =u’ 7 Ty (1.20)

where J = JD with D = diag(—2°%/4,1, —23/4,1) and J the symplectic matrix

(0 I
=5, 8
As in the classical theory we can write equations (1.19) in terms of the Poisson bracket

{{7.9%(2) = Vf(2)" T Vy(2)

_ @ [(0f0g 0fdg\ 0f0g 0f0G (1.21)
4\ 0x0y Oyox 0o 0G G da '



1.3 Invariant manifolds
In order to analyze the structure of system (1.19), we will write H,, given in (1.18) as
HM(ZE, a, Yy, G7 t; 60) = HO('Ta Y, G) + /J'Z/{;(-Ta «, t; 60) (122)

or equivalently we write U, in (1.18) as

2
Uz, a,t;e0) = Uo(x) + pilhy, (7, o, t5 e0) = % + ulh; (v, o, t; eq) (1.23)

and then study the dynamics as a perturbation of the limit case p = 0. From (1.23),

. .1 x2
Uy (z,a,t;e0) = lim — | Uy (z, o, t5e0) — —=

n—0 [ 2
2 2. 2 2
- v 1m+<£)maﬂa7ﬂff— (1.24)
[4 + 2413 + 4a?rg cos(a — f)] 2 2
1.3.1 The limit case p =0
In this case, the Hamiltonian given in (1.18) becomes
2 402
Ho(xaa7yaG) = y? + ) _Z/{O(‘T)
2 402 2
Y G x
_ v _ 1.25
2 + 8 2 (1.25)

As the system is autonomous Hy is a first integral. Moreover, H, is independent of ey and a.. The
equations associated to Hamiltonian (1.25) are

1

. 1o 14

&=-77y Y= 8G o - (1.26a)
1 .

= Zz‘*G G=0 (1.26b)

where it is clear that G is a conserved quantity.
The level curves of H are represented in Figure 1.1 for G fixed and Hg = h.

First, the phase space is given by
(z,0,9,G) € R x T x R,
From equations (1.26) it is clear that
E={z=(2,0,y,G) e RxT xR xRy; =0} (1.27)

is the set of equilibrium points of the system. Moreover, for any
fixed ag € T, Gy € R,

AOtO,GO = {(0’ «o, Oa GO)}

is a parabolic critical point with stable and unstable 1-
dimensional invariant manifolds:

Yao,Go = Wu(Aao,Go) = WS(AamGO)

Figure 1.1: Level curves of Hy

= {Z(zaQanvGO)a ’Ho(x,y,Go):O,a:ao—Go/
H

T
—dx
0=0Y

b



In a natural way, we define the 2-dimensional manifold

Aoo: U Aao,Gov

@o,Go

which is a “normally parabolic” invariant manifold with stable and unstable 3-dimensional invariant
manifolds
7=W"Ax) = W?*(Ax)
= {Z = (:L'a a, Yy, G)a HO(:Ea Y, G) = O}

As we will deal with a periodic in time Hamiltonian, let us work in the extended phase space
Z=(z,9) = (z,0,9,G,8) ERxTxR*x T

just by adding the equation $ = 1 to the systems (1.19) and (1.26). Now we are going to write the
extended version of the invariant sets we have defined so far. For any ag € T, G € R, the set

A001G0 = {2 = (05 g, 05 G07 SO); So € T} (128)

is a 2m-periodic orbit with motion determined by § = 1.
The manifold

5/6%07G0 = Wu(AamGo) = WS(AamGo)

= {Z = (SC,Oéo,y,Go,So),SO S T; Ho(xvyaGO) = 0,0[ = ap — GO/ Ed'r}
Ho=0 Yy

is a 2-dimensional homoclinic manifold to the periodic orbit /N\amgo. On the other hand we can
construct the 3-dimensional invariant manifold

]\oo = U ]\ao,Go = {(0,0&0,0, GOv‘SO)a (QO; GOv‘SO) S T xR x T} (129)

ao,Go
As the motion for points in A is given by the dynamics on each Aame taking
jo = Zi'o(Oéo, Go, 80) = (0, «Q, 0, Go, So) € ]Xoo ~ R x T2

the inner dynamics on A, (see [DAILS06]) is trivial:

Qgt,O(jO) = (O,ao,O,Go, So + t) = jo(ao,Go, So + t) (S AOO (130)

The 4-dimensional stable and unstable manifolds of A coincide along the 4-dimensional ho-
moclinic invariant manifold

:Y = WU(AOO):WS(AOO)
= {(z,0,y,G,8),(a,G,s) e TxRxT, Ho(z,,y,G) =0} (1.31)

It is possible to parameterize ,,,c, by the solutions of the Hamiltonian flow contained in
Mo = 0 in some time 7 satisfying (see [MP94] )

dt  2G
dr a2’
So that, the homoclinic solution to the periodic orbit Aa, g, of the system (1.26) can be written
as

zp(t; Go) = Tn(73Go) (1.32a)
ap(t; ap, Go) = ap + m + an(7; Go) (1.32b)



Yn(t; Go) = Gn(7; Go) (1.32c)
Gh(t; Go) = Go (1.32(21)
where ag and Gy are free parameters and the relation
3

t = &(7-4_ %) (1.33)

holds. The equations (1.32) are explicitly, in 7-time, given by

2 5 2T
Zp(1;Go) = W, an () = 2arctan(r), gn(1;Go) = m (1.34)
With this in mind, we have that taking
Zo = Zo(v, ap, Go, 50)
( O(V CYO,GO) )
= (zn(v; Go), an(v; an, Go), yn(v; Go), Go, s0) €7 (1.35)

we can write
Yao,Go = 120 = (@n(v; Go), an(v; a0, Go), yn(v; Go), Go, s0), v € R, 59 € T}.

Finally 4 can be seen as a union of homoclinic orbits to A, (homoclinic manifold).

v = U ﬁ/ozo,Go

@0,Go

and then we can parameterize the 4-dimensional homoclinic manifold as

5 =W(Ax) = {(zn(v; Go), an(v; g, Go), yn(v; Go), Go, 50), v € R, G € R, (avg, s0) € T?}. (1.36)
and the motion in 7 is given by

b1.0(Z0) = (xn(v +t;Go), an(v + t; a0, Go), yn (v + t; Go), Go, 50 + ) €

1.3.2 The case pu #0

In the general case, we should note some things regarding the manifolds defined in section 1.3.1.
First of all the set £ remains invariant and, therefore, so does A, being again a “normally parabolic
invariant manifold”, and the periodic orbits AaU G, persist. The inner dynamics on Ao, that is
the flow restricted to it is also trivial

(QO;G07SO> — (O[(),Go,80+t>. (137)

1.4 Melnikov potential for the parabolic orbits

From [McG73] we know that Wj(/ioo) and W (As) exist for 1 small enough and are 4-dimensional
in the extended space. The classical geometric Melnikov method to find the first order approxima-
tion to the distance between the perturbed manifolds will work in this case because both manifolds
have co-dimension one, and then, a normal vector to 7 will intersect W (As) and Wy (Aso) for p
small enough.

Let us take Zo = (2o, 50) = (2o (¥, 20, Go), S0) € ¥ as in (1.35). Now, we have to construct points
in W¢ (A ) and W“(A ) to measure the distance between them. It is clear from the definition of
o that

v = (VHO(ZO)a 0)

10



is orthogonal to 4 = W*(Aw) = W*(As) and then if the normal bundle is defined by
N(zo) ={zo +ov,0 € R}
we have that there exist unique points Z};'* = (z;;"*, so) such that
{Z°} = W (As) N N (o). (1.38)
The distance we want to compute is the signed magnitude given by
d(Zo, 1) = Ho(z;) — Ho(Z)))- (1.39)

Define (see [DAILS06])
L(cg, Go,to; e0) = / U (zn(s; Go), an(s; o, Go), s + to; eo) ds (1.40)

which is a convergent integral because of formulas (1.32)-(1.34), and
Ui (2, 85e0) = O(x?) as x — 00
Proposition 1.2. Given (ag,Go,s9) € T x RT x T assume that the function
veR — L{ag,Go, 80 — V;eg) €R (1.41)

has a non-degenerate critical point v* = v*(«ag, Go, So; €0). Then for 0 < p small enough, there
exists a locally unique point

z* = 7" (v, a0, Go, s0; 1) € Wii(Aoo) h Wi (As)

of the form

z" =125+ O(p)
where zg = (25,(v*; Go), an(v*; ao, Go), yn(v*; Go), Go, s0) € 7. Also, there exist unique points
Zy = (0,a4,0,G4, s0) = (0, 0,0, Go, s0) + O(u) € Ao such that

b1 (7°) — dyp(@e) — 0 for t — 00 (1.42)

Then, we have

oL
G+ —G_ = u%(ao,Go, So — V*(Oéo, Go,SO)) + O(MQ).

Proof. From equation (1.35) we know that any point Zy € 4 have the form
Zo = Zo(v, a0, Go, 80).

As we have seen in (1.38)

7" = (Z,°,50) € W, (Aso) N N(2Zo).

We are looking for zg such that z;, = z,,. From this, there must exist points z4 = (21, 80) € Ao
such that

¢t,u(2f{u) — ¢t,u(Z4) m 0, (1.43)
moreover ¢y, (Z;") — ¢1,0(Zo) = O(1) (see [McGT3]). Since Ho does not depend on time, by the
chain rule we have that

d

77 T0(Peu(Z) = {{Ho, Hu (00, (2")) = pd{Ho, U 1 (1, (2))-

11



Since Ho = 0 in Ao, using (1.43) and the trivial dynamics on Ao we obtain

Ho(z") = —p /Oioo{{“rio,ui}}(aﬁs,u(ii’“))dS-
Finally, using Taylor’s series in p,
Ho(B) — Hol;) = | {Ho, 5 W (ona(za)) di + O
=pu /Z{{Ho,ug}}(zh(u +1;,Go), an(v +t; 00, Go), yn (v + t; Go), Go, 50 + t) dt + O(u?)

On the other hand, from (1.40),

oo

L(ag, Go, to; e9) = / U (zn(s — to; Go), an(s — to; an, Go), 85 €0) ds

— 00
and then

oL

ato(aovGo,to,eo / {Us, Ho}t(xn(s — to; Go), an(s — to; o, Go), yn(s — to; Go), Go, s) ds

= / {Ho, Ug }} (xn(s — to; Go), an(s — to; o, Go), yn(s — to; Go), Go, s) ds

so that

oL

6_130(%’ Go,s0 —V;e) = / {Ho, U 3 (xn(s — so + v;Go), an(s — so + v; a0, Go), yn(s — so + v; Go), Go, 5) ds

= / {Ho, Ug }} (xn(t + v; Go), an(t + v; a0, Go), yn(t + v;Go), Go, so + t) dt

and therefore

(z0,1) = Ho(5) ~ Ho(E;) = w3 (a0, G so — vieo) + O(2)
Now, it is clear by the implicit function theorem, for ;4 small enough, that a non degenerate critical
value v* of the function (1.41) gives rise to homoclinic points to A, where the manifolds WS(A )
and W (As) intersect transversally that have the desired form z* = z% + O(u).

Consider now the solution of the system (1.19) represented by ¢ ,(z*). Moreover, by the
fundamental theorem of calculus and the definition (1.18) we have

G+—G_=—/_006H (D)) d =/_Ooa“ (61,0(57)) dt

i [ B ountai)dr+ 0)

Oa
a *
= M/ 60? (zn (V" +;Go), an (V" + t; a0, Go ), yn (V" + £ Go), Go, so + t) dt + O(p?)
oL
= Ma—a(ao, GQ, So — l/*;eo) + O(MQ).

O

Once we have found a critical point v* of (1.41) we define the reduced Poincaré function (see
[DAILS06])
E*(ao,Go;eo) = ﬁ(ao,Go,So —V*;eo) (144)

12



The scattering map

The scattering map S is defined from the manifold A, (defined in (1.29)) to itself. Take z_, 7, €

Ao, then
Su(z-) =24

if there exist z* € W;j([\oo) M Wﬁ(]\oo) such that
e (") — Ppp(2+) - 0 for t — +oo. (1.45)

In the case ;= 0 we have that ¥ = W*(A,) = W*¥(Ao) implies that the scattering map Sp is the
identity. Indeed, for a generic point

Fo = (0,0,0,Go, 50) € Ao
we have Sy(Zo) = Zo. To see this, take
zo = (zn(v; Go), an(v; a0), yn(v; Go), Go, s0) €7
then by equations (1.32), (1.33) and (1.34)

bt,0(Z0) — bt,0(T0) =
(xn(t 4+ v; Go), an(t + v5a0), yn(t +v;Go), Go, t + s0) — (0, 0,0, Go, t + s0) . 0

t—1oo

wich proves that Sy = Id.
The next proposition gives an approximation of the scattering map in the general case pu # 0

Proposition 1.3. The scattering map .S, associated to the non degenerate critical point v* of the
function defined in (1.41) is given by

oL* oL*
0,a-,0,G_,8_) —> (O,a_—l—,u%(a_,G_;eo)—i—O(,u2),0,G_—,u 50

(a_,G_;eo)+O(u2),s_)

where £* is the Poincaré reduced function introduced in (1.44).

Proof. By hypothesis we have a non degenerate critical point v* of (1.41), by using definition
(1.44) the proposition 1.2 gives the correspondence we look for between G_ and G . Finally, the

equation
%

—taa
is a direct consequence of the fact that £* is symplectic, as shown in [DAILS08].
Since we know that for all time,

P1.u(Z7) = ¢1.0(Z9) + O(n),
denoting G(¢¢,,(2*)) and a(¢y,,(z*)) the G and « coordinate of ¢y ,(z*) we have
G = lim_G(60,(3)) = Go+ O

t_lfgloo (¢r,u(27)) = a0 + O(p).

Ay —a_ = aOaGO’t8)+O(N2)

at

Using that G_ = Go + O(u) and a— = ap + O(n) we get the required formula which completes
the proof. 0

Next proposition concerns the circular case eg = 0

Proposition 1.4. If eg = 0 and v* = v*(ag, Go, s0) € R is such that 9L/0ty (g, Go, sSo—v*;0) =0
then

%(QOaGO)SO - V*?O) = 03
that is o
aT.[O(Cko,G'o;O) =0.

13



Proof. From the equation (1.40) we have that

oL
0= G_to(ao’GO’ so — V"5 €0)
> ouy .
= 5 (zn(5;Go), an(s; a0, Go), yn(s; Go), Go, s + so — V™5 e0) ds. (1.46)

on the other hand, in the circular case eg = 0, formulas (1.4) and (1.6) give 1o = 1 and f =t in
the self potential (1.17), so that U, only depends on a and t through the combination o — ¢t and
therefore

K . — K .
D0 (x,a,t;0) E” (x,a,t;0).
Then equation (1.46) reads
oL
0= a—to(aO,GO,so —v";0)
~ o :
= — D0 (zn(s;Go), an(s; a0, Go), yn(s; Go), Go, s + so — v™;0) ds
oL N . .
= ———(ap, Go, 50 — V*; €0 y equation (1. and the chain rule) .
S (0. G ) (b tion (1.32b) and the chain rule)
e’

O

By this proposition, if there exists a heteroclinc connection in the circular case, between two
periodic orbits A,_ ¢_ and /N\CH,G+ in A introduced in (1.28), G = G_ + O(u?) by proposition
1.3. But indeed G+ = G_ in the circular case, since there exists the first integral provided by the
Jacobi constant C'; = H, + G and as H, = 0 on ]\aﬂgi and Aa+1g+, G4+ = G_. Therefore in

the circular case there is no possibility to find diffusive orbits studying the intersection of W (Aso)

and W;f(/\oo) since by proposition 1.3 the angular momentum remains constant.
From the definition of £ given in (1.40) and equation (1.24) we get

/ ap, G( ,t('a 60) 4 t 2 / :C2$h0 1 OS(v .}
( /—OO 4 lh 0( ) h U ( ) c ( h ) /
+ (:L'Z ) [ ')(t) COS(CY)L .} ) - :C2h d! (1 )

where x5, and oy, are coordinates of the homoclinic orbit defined in (1.32) whereas r¢ and f defined
in (1.4) and (1.5) and are evaluated at ¢ + to.

The computation of Melnikov potential (1.47) will be done in chapter 2. Such computation will
be done in two different ways, corresponding to whether the parameter A = eyGq is small or not.
The next two theorems correspond to these two cases.

Theorem 1.5. If Go > 32, egGo < 1/8, then there exists a positive constant K such that the
Melnikov potential L given by (1.47) satisfies
T ~—1/2 _g - /o 3/2 _S8 -
L= Lo(Oéo) — COS(tO — Oéo) gGO e 3 (1 + El), COS(tO — 2@0)3 27T€0G0 e 3 (1 + EQ)
+ 2%{E3 (Oéo)eito} + E4 (to, Oéo)
with
By < K(Gy' +€2)

|Eo| < K(Gg' + eo)

14



3
Q

|Bs(a0)] < Ke™ [(1+ e0) Gy "% + €2GY/2 + oGy /%]
|Ex(to, ag)| < KGo/?e™C65
for some positive constant K and
Lo(ag) — Lo = %ﬂ'eoGas cos(ap) + F+ B

where

|Fy| < SeoGy?
|| < SeGy®

for some positive constant S. And
Lo = gGag + F+ Fy
with
|Fy| < SGyT
|Fy| < SGggeg
Theorem 1.6. Let A be a real positive constant and ¢ > 1. If
Go > max{(3c)%?,32,8\71, 3A1/3 A1},

then there exists a positive constant K, depending on A, such that if egGy = X, the Melnikov
potential L given by (2.7) satisfy

L= Lo(ao) + COS(tO - ao)\/gGol/ze_Gg/3(l + El)

3

76_%14\/%/\_1(;(1)/2% {e_’\emo A [ 24
1-Alto; /JA(A 1)

Ji(£2i/A(A = 1))

— Jo(£2i/A(A - 1))} JFA} e (1 + Rl(ao))}JrRB(Oéo, Go, to)

with
A
A= Zerion
A N2 el
A—1 AN —4Xcosag +4
A N
A A— 1 = —— *’Lag(l_ A 71&0)-
(A1) = o1
and
|E1| < K(Gg' 4+ X2Gy?)
[Ri(ao)| < KG'!
|R3 (Oé(), GO’ f0)| < KGg/Qe,Gg%’
15 s } i
Lo(ao) — Lo = —-gmeoGo” cos(ao) + F1 + Fy
with

|F1| S KeoGag

15



|1:"2| < Ke%GO_E’,
and -
Lo = §G53 + F + By
with
|Fy| < KGyT
|Fy| < KGyPeg

The functions Jo(z) and J1(z) are the Bessel’s functions of the first kind [AS65] and whose expan-
ston around z = 0 is given by

Tz =2 %@Wﬂ

m=0
Corollary 1.7. If A = egGq is small, theorem 1.6 recovers the asymptotic expression found for
the Melnikov potential £ in theorem 1.5.

Proof. The first two terms in the expression for £ in both theorems 1.5 and 1.6, coincides.

From the definition of A we have that A = O()) and also A(A — 1) = O(A), therefore looking
for asymptotics for A small is equivalent to look for asymptotics for A small. Using the asymptotics
for the Bessel’s functions Jy and Jp, given in theorem 1.6 we have

AT — 24 = 1 244 0(A?)
J1(£2i/A(A —1)) = +i/JA(A—1) + O([A(A — 1)]?/?)
Jo(£2i/A(A—1)) =1+ A% - A+ O([A(A - 1))

A 2
T =A+T04Y)

therefore, we can write the third term as follows and get the asymptotic for A small

A { 2A
1—Al42i\/A(A— 1)

e FavamAlGY 23%{ {e—kem“ J1(£2i/A(A - 1))

— Jo(£2i\/A(A 1))} +A} eito (1 + Rl(ao))}

_oa A [ 24
1—-A|4+2i\/A(A-1)

- ecso4\/27r)\1G(1)/2§R{e Ji(£2i/A(A - 1))

— Jo(£2i/A(A - 1))+ (1 — A)e“]e“O(l + Ry (ao))}

- _e—ci“4\/2m—1cg/2§re{e—2f‘% [A +O(A%) —1— A2 + A+ 0(4?)

+(1— A)eQA} elo(1 + Rl(aO))}: (*)

since
(1— A =1—A+(1—A)24+ (1 - A)O(A2) =1— A+24 - 242+ O(A%) = 1+ A+ O(A?)

we have

3

(*) = e_%qélx/ﬂ)\_lGé/Q?R{e_Mﬁ [3/1 + O(AQ)] o1+ Rl(QO))}

16



also, it is clear from the given asymptotics that

A
—2A _ 2
S A+ O(A%)

and then
3 .
(x) = —ecsf)4\/27r)\1G(1)/2§R{ {3/12 + O(A?’)]e”ou + Rl(ao))}
and, from its definition A% = (\2/4)e~2% we have

(¥) = —e~ 2 4v2mA1GY 23%{ Eveﬁ'(fo?aw + O(A3)} (1+ Rl(ao))}
N e 2%{ %A%WHW + O\ + Rl(ao))}

= e~ 3 3v2me0 G cos(ty — 2a0) [1 + 3%{0@)(03% + Rl(ao))H

G —
= —e 3 3V 27reoGg/2 cos(top — 2ap) [1 + 0(60G3/2(60G0 + G, 3/2))}

which is exactly the second term in the expression for the Melnikov potential £ given in theorem
1.5. O

1.5 Global diffusion

1.5.1 GQGO =\ <1

To prove diffusion in the case Ay = egGy < 1 we will use propositions 1.2 and 1.3 to construct
a suitable scattering map using the computation of the Melnikov potential given in theorem 1.5.
From this theorem, we will introduce the next notation. The Melnikov potential is given by

L(ap, Go,to;e0) = Lo,o + Lo(aw, Go; €0) + L1 (ao, Go, to; eo) + E(ao, Go, to; €o) (1.48)

where Lo is given in theorem 1.5 as

Loo = gGSB + F1 (1.49)
with

F1 = Fi(Goseo) = O(e§Gy® + Gy 7) (1.50)
and,

15 .
Lo(ag, Go; eq) = —gﬂ'eoGO cos(ag) + F(ao, Go; eo) (1.51)
G ~
El(ao,Go,to;eo) :COS(tQ —ao) gG61/2e_T(1—|—E1)
— cos(ty — 2ap)3V 27T€0G(3)/2€_% (1 + Eg) +2R{ F3(ag)e’}
(1.52)

El, Eg and Eg are bounded in theorem 1.5 and

E(QOa G07 tO, 60) = O(G?)/QeiGg%) (153)
F(ao, Go;e0) = O(e%GO_E’, eoGag) (1.54)

17



Lemma 1.8. Let £; be defined in (1.52) and p = 12e0G3 = 12)\Gy. If P? = 1—2pcosag+p? # 0,
then

a3
El(ao, Go, to; 60) = \/§G01/2e_303 COS(tO — oy — 9)
where 6 = 0(ag, Go; e0) € (—m, w] and B = B(ag, Go; eg) satisfy
B*=P*+B

i (B R(B
tang = L0 3B () RB)_))
1 —pcosag 1 —pcosag

with
B < K[Gy" + eaGo(1 +p +p°)]
|B1| S K[Gal =+ €0G0(1 +p)]

Proof. From the definition of £; given in (1.52) we can write, defining p = 12e0G3

G3 ~ - ~ )
Ly = \/gGol/Qe_T [cos(to —ap)(1+ Ey) — peos(to — 2a0)(1 + E2) + R{E3(ag)e™}

where ,
E’g(ao) = \/gGépecig 2E’3(a0)
and then, by the bounds in theorem 1.5 we have
|Es(ao)| < K[(1+e0)*Go® + e§Go + e0Gy ',
S0

L= /2G5 25 [R(eito=00) (1 4 By) — pR(e0=200))(1 + ) + R{E3 (e}
) 0

G . ~ - . ~ )
= \/gGalmeSO%(ez(toao) (1+Ey —p(l+ Ey)e " + Eg(ao)ew‘“))

if we write now

1+ By — p(1 + Ey)e ™" + Eg(ag)e™® = Be™ (1.55)
we have that
3
L= [5G e BR (et o0

a3
= \/gGO_lpeﬁoBcos(to —ap —0).

Let us find B and 0. From equation (1.55), we have
Be ™ =1 _—pe~i® 4 B (1.56)

where ~ ~ ~ ' R .
Bl = E1 — pEge_w“’ + Eg(ao)ew‘”

|B1| < K[Gy" + eoGo(1 + p)]. Therefore

B2 =1 —pei®o> 1 B
where B =(1 7pefiao)B_1+ B1(1—pei®) +|B;|?, then using the bounds for B and the definition
of p, |B| < K[Gy"' + eoGo(1 + p + p?)].

18



32:1_p(e—ia0 +eia0)+p2+é
:1—2pcosa0+p2+3
=P+ B (1.57)

assuming that 1 —pcosag # 0 we can see that By /(1 — pcosay) is always small and therefore from
(1.56)

psinag + S(B1)

tanf = =
1 —pcosag + R(B1)
sinag 4+ (B R(B
_Pp 0 (1)<1+O( (B1) ))
1 —pcosap 1 —pcosag
O
Remark 1.9. Under the assumptions of lemma 1.8, if p = 1 and cosay = —1 the angle 6 is not

well defined, but this case corresponds to B = 0.

By proposition 1.2 we need to find critical points of the function ¢y — L(ao, Go, to;€o0), to
this end we will check that to — L(o, Go, to;€0) is a cosine-like function, that is, with a non-
degenerate maximum (minimum) and no other critical points. By equation (1.48) and the bound
(1.53), for G big enough, the critical points in the variable ¢, are well approximated by the critical
points of the function £ and therefore will be close to tg — g — 8 = 0, m(mod27) thanks to lemma
1.8. For this purpose, we introduce

* * T _ai
L7 = Lilao, Goieo) =[£Gy Pe™ ' B (1.58)
where B = B(ap, Go; ep) is given in lemma 1.8. With this notation the function £; of lemma 1.8

can be written as
£1(OCO, Go,to; 60) = ACT (040, Go; 60) COS(tO — Qo — (9) (159)

First a technical lemma.

Lemma 1.10. Let & be the error function defined by (1.48) and £3 be defined in (1.58). If Gy > 1,
epGo < 1 and

7T2

2
16K (Ggt + eoGo) < K2 < (1 . E)
for [p—1| > 1 or ag € [k, 27 — k]. Then

[(%)2+(§T§)2}/(£T)2 < i—fcge*GS%

Proof. Since the Melnikov potential £ defined in (1.47) and rewritten in (1.48) is 27-periodic in
to we have that except for a constant € /9ty and §%E /O3 have similar bounds to the bound of &,
given indirectly in (1.53), therefore for some positive constant K

(52)"+ (G e < gy = oot

it remains to show that 1/B? can be bounded by 2/k?. From the expression for B? given in (1.57)
and the triangle inequality we have

B2> P~ |B|> (p-1)2— |B| (1.60)
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Let k € (0,1) and w =1 — Kk, 0 = kK + 1. We have three different cases; if p >0 > 1, p<w < 1

and w < p < 0. We know from lemma 1.8 that
|B] < K[Gg ' + eoGo(1 +p +p?)]

then, when p > 0 =1+ k > 1 we have that

and then, from (1.61) that

- —1)2 /1 2
|B| < 4K eoGop® < Keoao%z( =)

if we now choose
k? > 16K eoGo

we have

|B| < (p — 1)2
- 2
and then from (1.60)
B2 > (p B 1)2
- 2
or equivalently
1 2 2
< <=

FEGi
When p<w=1-k <1, from (1.61) that

|B| < 3K[Gy* + eoGo

if we now choose

we have )
Bl <=
2
and then from (1.60)
) , K2 K2
B*>(p-17—-—>—
=175 =25
or equivalently
1 2
B2

When 1 -k =w < p<o=1+k, from (1.61) we have
|B| < TK[Gy* + eoGol.
The function P? in (1.57) can be written as
P%(p) = (p — cosap)? + (1 — cos®ap) > 0
or more conveniently as
P?=(p—1)2+2p(1 — cosag) > 2p(1 — cosag) > 2(1 — k)(1 — cos ag).
Restricting oy to the interval [k, 27 — k] so that

1 —cosag > 1 —cosk = 2sin(k?/2) > 8(k*/7?),

20
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if we choose

1 T2\ 2
16K (G5! + e0Go) < K2 < (1 - E)
we have from (1.60) and (1.64) that
B S KK

— 1672 2 2

or equivalently
1 2
ST

(1.65)

Summarizing, for any s verifying condition (1.65) one has that 1/B? < 2/k% if [p— 1| > 1 or

ap € [k, 21 — K.

O

Proposition 1.11. Let £ be the Melnikov potential given in (1.48) and Gy, eg, @ and k as in
lemma 1.10. Then ¢y — L(ao, Go, to;€0) is a cosine-like function, and its the critical point are

given by
to.+ = to + (0, Gose0) = 93 + g + 0

and 5
L = 0(Gge™ )

Proof. We look for critical points of tg — L(ag, Go, to; €o)

oL _ oL, | 0t _
Aty Oty Oty

or equivalently, using the formula given in equation (1.102),

sin() = flg) = =2

= =tg— g —0).
L7 oty (80 0— Qo )

(1.66)

(1.67)

By lemma (1.10), for Gy large enough, we have that |f| < 1 and then ¢ = +7/2 are not solutions

of sinp = f(¢). So, on (—m/2,37/2) we have

p = arcsin f(p) p € (—m/2,7/2)
@ =m—arcsin f(p) ¢ € (7/2,37/2)
Since |f] < 1, g(¢) = arcsin f(p) maps [—7/2,7/2] into itself and

J(0) = f'(®)
V1= flp)?

therefore ¢’ < 1 is equivalent to f2 4+ f’2 < 1 which is a direct consequence of lemma, 1.10. So, g
is a contraction and then there exists a unique ¢* € (—7/2,7/2) solution of ¢ = g(¢). To prove

that it is non degenerate we need to see that

2 2 2
To see this we will see that 922 9oL 2

(8—15(2)) < (8—t(2,1) = (L})? cos® ¢
but from (1.67)

1 [08N2
2,_1_
oS (q)2(at0)

21
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equation (1.68) is equivalent to
DEN2  (D%EN2 \2
(7,) +(G) <&

which is true. By the same lemma 1.10,
G% 39
lo* | = |arcsin f(p*)| = O(?e_ o/ ) (1.69)

and consequently ¢ _ = p* + ag + ¢ is a non degenerate solution of (1.66). Analogously we can
solve

p=7— arcsinf(‘P) = g(‘P)

showing that g sends (7/2,37/2) to itself and is a contraction proving the existence of a non
degenerate fix point ¢* € (w/2,37/2). Moreover

. s a G3 s
| — 7| = |arcsin g(¢})| = O(?Oe GO/Q). (1.70)

Consequently ¢ . = % + ap + 0 is another non degenerate solution of (1.66). This concludes the
proof. O

From proposition 1.11 we know that there exist ¢ _ and {j , , non degenerate critical points of
to — L(ao, Go, to; eo). Therefore, we can define two different reduced Poincaré functions (1.44)

L7 (a0, Go; e0) = L(aw, Go, tg 45 €0)
= Lo,0(Gos €0) + Lo(aw, Go; o) + L3 (a0, Gos €o) cos(ty + — o — 0)
+ 5(040, Go, ta,i; 60).

By Taylor’s theorem

cos(tj . — g —0) = cos(0) + O(l" [*) = 1+ O(Ge~ %)
cos(t5,4. — o — 0) = cos(m) + O(|g’, — 7|) = =1+ O(Ge%o%)

so that
L7 (o, Gos eo) = Lo,o(Goi eo) + Lo(ao, Gos €o) = L (w0, Go; eo) cos(ty . —ao —0) + B (1.71)

where v,
Ei = +Li0(Gge %00) + &, (1.72)

and by the bound of £ given in (1.53), the definition of £} and the definition of B given in lemma
1.8 we have that

|Ey| < KG(3)/2674G3/9 (1 Jreng/QGg(l +p)2)§ KGS/2675G3/9(1 +p)2

the last inequality holds for Gy large enough, but in any case is exponentially smaller.
Lo, Lo and & are given in (1.49), (1.51) and (1.53). Writing down Lg o and £y we have

15
Lh = gGO_3 + F1(Go, e0) — §7T€0G0_5 cosag + F(ag,Gosep) £ LT+ Ey (1.73)

From the expression for the scattering map given in proposition 1.3 we can define two different
scattering maps, given by

oL oLy

S+ (ag, Go, 50) = (Oéo + MW(O‘% Goieo) + O(p?), Go — H%(ao, Goieo) +O(p?), So)- (1.74)
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These two scattering maps are different since they depend on the two reduced Poincaré-Melnikov
potentials £% . As it was proved in [DdILS08] the scattering maps Sy follow closely the level curves
of the Hamiltonians £%. More precisely, up to O(u?) terms, it is given by the time —p map of
the Hamiltonian flow of Hamiltonians £%. Because of this, we want to show that the foliations
of L3 = constant are different, since this will imply that the scattering maps Syt are different.
Even more, we will design a mechanism in which we will determine the places in the plane agGy
where we will change from one scattering map to the other, obtaining trajectories with increasing
angular momentum G.

In lemma 1.13 we will give the elements to construct a strategy to find a heteroclinc chain of
periodic orbits in Ao with increasing angular momentum, but first a technical lemma.

Lemma 1.12. Let £} be defined by (1.71), B by lemma 1.8 and p = 12606'3. If Gy, eg, ag and
k are as in lemma 1.10. Then we have

—L7 3mpsinag
(L4, L) = 3 ——7—
+ B G

25 egGo 5 P? [ 1 —cosag +p 24606'0}

_ 20050 g 2 1y E
1 Gy s ibTe: P2 Gz |

48 Gy

where
E;= O(GO_5 + oGy + edGE + ped Gy (1 + p(eoGo + Gy )))Gal/ze—c’%m
+ O((Go(l +p)e=Go/? 4 Ggl))Gé/Qe‘Ggé

Proof. Using expression (1.71) and using the properties of the Poisson brackets we have that

(L4, L2} = 2{L7, Loo + Lo} +2{E, Loo + Lo} (1.75)

Where L7 is given in (1.58), Lo in (1.49) and Ly in (1.51). From the definition of the Poisson
bracket oct oc:

{£1, LooJrEo}*a GG( 0,0 + Lo) — 9Go Do —— (Lo, + Lo) (1.76)

to compute the partial derivatives in the above formula we will need to compute the partial
derivatives with respect to ag and Gy of B given in lemma 1.8 as

B>=P? 4 B=1-2pcosag+p°>+ B

where p = 12¢9GZ and B = O(Gg"' + egGo(1 + p + p?)), then

OB 1 1 P2 9B
- - 1.
9Go 2 /pri B (66‘0 6G0) (1.77a)
OB 1 1 P2 9B
_1 Rl 1.77b
900 2 /pr: B (8a0 + aao) (1.77b)
Also,
oP? op p
9Go 772(3080&0_86‘ +2p GGO
— (—2cosag + 2p) 22 (1.78a)
Go
P2 ,
o~ 2p sin ay, (1.78b)

substituting equations (1.78) in equations (1.77) we can write

85? o ™ —-1/2 7Gg/3 aB
(’)ao N \/;GO ¢ 8040




— \/EGU%—GS/?» 250 + Fog
Ch 2/ P? + B

Lx 10B
= P2 " = (pSlDCYO + 587.[0) (179)
85* 7 —-1/2 —GS/S 2 1 2p aB
6G0\/;G0 e [ <2GO+G)B+ B(( 2005a0+2p)G0+6G0)]
— ¥ L 2 1 2p 1%
= i~ (5g + @)+ gy g (Ceosco+ ) + 356, )
L 2p 1 ) 1 - 10B
N {( cos a0+ p) - (200 +G0)P <2G0 +G0)B 29 0} (1.80)
and
15 oOF
Dorg (LO,O + EO) = §7T€0G0 sin o + 870(0 (181)
0 3w 7o 0]
8GO(L00+£0) §G_é+ S GGQOCOSQO‘F%(fl +f) (182)

substituting equations (1.79), (1.80), (1.81) and (1.82), in the expression for the Poisson bracket
given in (1.76) we obtain

*

L 3r 75w
2{L3, Loo+ Lo} = L (psi _2
{£3, Lo, o} 72 B(psmao)( Gl + — 1 G6€OCOSCY0)+Q1

*

15
—( 7T€0G0 smao)

1 2 1 2\ p2
1 P2+B{( cosao—i—p)GO (2GO+G)P}+Q2 (1.83)
where
Ly 37 5w OB ) , 1 0B
Q1= P2+B[7(§G_éi 5 GGeOCOSO&O)@TaOJFQ—@GO(}-l +]:)(ps1nao+§aa0)} (1.84)
L3 15 N\~ 10B OF
Q= oy 5 | (GG’ sinao) (55 + 68)8 ~ 3565 ) ~25mg
2 (L ey (L 2\p, 198
'{(*COSO‘MZ’)GO*QGO*GO)P (2G0+G)B+28 0} (1.85)
factorizing we have from (1.83)
—L] 3mpsina 25 1
2{L], Loo+ Lo} = = +1B G‘Ol 0 [1 T G260c05a0
51 20 (L e\ pe
+48G§’;[( cosao +p) 5 (20 +G)P} Q1+ G
_ —L] 3mpsinag 17§60G0 cosa 7EP_2
T P2+ B Gh 1 G3 748Gy
1 —cosag + 24e0G
Nt g - T [+ @ (1.86)
0 0
(1.87)

To find the size of @1 and @2 we have to bound

PfEB = |G g0 e
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so, we have to bound 1/B by a positive constant, or equivalently 1/B2%, which has been done in
the proof of lemma 1.10. Therefore

£ _ zo(lgal/Qe—GSB)’
P2+ B K

then using the bounds for F; and F given in (1.50) and (1.54) and the bound for B given in lemma
1.8 we have from equations (1.84) and (1.85) that
1 _ P
Q1= O((G55 + e0Gy® + eaG3 + peaGa(l + peoGo))) EGO 1/26-G3/3
_ —4 2 ~—2 2 L —1/2 —-G3/3
Qs = O((eOGO Fe2GT2(1+p+p )))EGO o= Gh

and then

1 3
Q1+ Q2= O(GO_5 + €0G0_3 + e%Gg + pe%Gé(l + p(eoGo + GO_G))) EGO 1/2-Gi/3, (1.88)

Now we want to know the size of {E, L o+ Lo}. From the computations for the partial derivatives
of Lo o+ Lo given in equations (1.81) and (1.82) and the size of the errors F; and F given in (1.50)
and (1.54) we have

0 _
aTCO(LO*O + Lo) = O(eoGy®)

0 _
a—(;’O(LO,O + £0) = O(GO 4).

The size of E is computed in the proof of part (b) of lemma 1.13, and is given in equation (1.95),
and therefore

870:0(05/% 3G+ p)e 0 4 Gy))
oF 34 3
e :0(05/% G35 (G3(1+ p)e Go/9+Gg))

with this sizes we can conclude that
{E,Lop+ Lo} = O(gé/Ze_Gﬁé (Go(l +p)e—G§/9 + Gal))

substituting (1.86) in (1.75) and setting Ey = 2{E, Lo,0+ Lo} + Q1 + Q2 we get the desired result.
o

Lemma 1.13. Let £} be defined in (1.73), and p = 12e0G3. Then

(a) Any curve L} (ap,Go;eg) = I is a closed curve of the form G = gy (ag,l), ag € [0,27],
9+(0,1) = g+(2m,1) which is cosine-like: it has a unique non-degenerate maximum for «yg
close to 7 and a non-degenerate minimum for g close to 0.

(b) The total variation of L% (-,Go;eo) (i. e. the difference between its maximum value and
its minimum value) is given by

ALY = ALy AL £ AE
where

+AF

ALY = \/gaol/%—c’% [\/(p +1)2+ By — \/(p —1)2+ BF}

25



AE = O(Gy/%e %8 (G314 p)e™ /7 + Gy) )
and

AF = 0(edGy°, e0Gy?)
Br, By = O(Gy' + eoGo(1 +p +p?))

(c) £ and L* are functionally independent except for three curves, two of them close to the

straight lines oy = 0 and oy = 7 and a third one cosine-like whenever Gy = O(e, 2/ 3)

close to the curve

and

3
p= \/D(lcosozo)JrZDQl (1.89)

where D = 2,/48G /5.

Proof. (a) From the expression for £% given in (1.73) we have that | = L% («v, Go; eg) is equivalent
to

15€eq cos ag

. - /1 -
| = L(l +.7:1 - 4G2 -‘1-.7:(040, Go;eo) + %GS/QG_GSBB + Ei(ao,Goato;eo)) (190)
0

2G3
where

2
Fi= Gofl O(e2 + Gy*)
. 2
f(ao,Go;eo) 76_:0.7 O( 2G +€0G )
3 . Go * 4 —G32 2Go * 4 —G32 3/2 oG
Ex (a0, Go, tos o) = =0 (L{0(Ge ) + £) = =0 (L{0(Gle™093) + 0(GY %31

and Fy, F and € are given in (1.50), (1.54) and (1.53), respectively. The actual size of Ey will
depend on the bound of B which in its turn depends on p. From lemma 1.8 it is not difficult to

see that
K ifp<l1
1B < LD
Kp ifp>1
and by (1.58), and using that p = 12e¢G3,

(1.91)

i < KGy'Pe=G3/3 ifp<1
YT KeoGYPemGi8 it p> 1

with this we conclude that

O(GF¥2e=Ci8) + O(GY?e=CGi%)  ifp<1
O(eoGy?e=G3%) + O(GY?e=CG05) ifp>1

We can rewrite (1.90) as

1/3 15 - 1 . - 1/3
Go = (5) (c 220090890 4 F g, Gosen) % 1 == G2 2~ B 1 By (ao, G, to; eo))
2 1G3 or

= g(ao, 1) (1.92)
where ¢ = 14 F; = O(1). This expression, implies

2453 (1 + O(GQ))
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or equivalently

o= (5)" (0 0p) = (5)”" (1 o) (§)" (1)

using this expression we can actually know a good estimation of the curve Gy = g(«p, () substituting
it in (1.92) Now, when E =0, g is clearly a cosine-like with a non-degenerate maximum close to
ap = 0 and a non-degenerate minimum close to ag = 7 since its second term is larger than the
third and fourth terms. When we also take into a account the fifth term, in the expression of g
involving E, since this term is much smaller than the other ones, an argument very similar to the
one used in the proof of proposition 1.11 implies that g is cosine-like with non-degenerate critical
points close to 0 and 7.
(b) From expression (1.73), we are going to analyze every term in cg. The term

i
Loo = §G53 + F

gets canceled since its constant with respect to ag. From its definition given in (1.51) we have

15
Lo = 7§W€0G65 cos ag + F(ao, Go; €o),

the dominant term is a cosine in «q, and then its maximum and minimum are oy = 0, 7, so

15meg
8GT

ALy =2 +AF (1.93)

where

AF = F(0,Go; e0) — F(m, Gos eg) = O(e5 Gy, e0Gy ).

Now, from the definition of £} given in (1.58), the maximum and minimum are determined by B.
Since the square root is a monotone function, it is enough to analyze when B? have its critical
points. From lemma 1.8 we know that B? = P? + B, and from the bound of B, since eyGy is small
it is enough to look for the critical points of

P?=1—2pcosag + p?

which again are attained whenever ay = 0, 7. Therefore

AL} = \/gao‘me@g/3 [\/(p R N Bo] (1.94)

where

Br, By = O(Gy™" + eoGo(1 +p +p%)).
Finally, from the definition of E given in (1.72) and the size of L} given in (1.91) we have that

~fO(GyPe %) 1 0(GyPeG05)  ifp<1
B O(eoGél/Qe_GSg) + O(Gg/Qe_GS%) ifp>1

this can be written as - ,
E= O(G(l)/Qe_GW (G3(1 + p)e=Go/9 + Go)) (1.95)

in any case, E' is much more smaller that any term in £7 implying that the maximum and minimum
of L% are reached whenever oy = 0, 7, concluding then the desired result.
(c) To see that L7 (ag, Go;eo) and L* (ao, Go; €g) are functionally independent we will analyze
det J(L7%,L*). Since
det J(L7, L) ={L%, L7}

we can use lemma 1.12, to conclude that, if the factor outside the brackets in the formula for
{L£%, L% } is zero then det J(L% , L) is close to zero or asymptotically is zero. This occurs when
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ag = 0, 7. We have excluded this values of o to bound the error in the formula of {£%,L£* } given
in lemma 1.12, and before in lemma 1.10.
Using the dominant term inside the brackets of the formula for det J(L%, L") we have

LT —3mpsinag

where )
5 P

d=1- ——

48 Gy

this implies that, beside the curves ay = 0 and ay = 7 the Jacobian can be asymptotically zero if
d = 0. In what follows we will see that this gives a curve cosine-like in the plane ayGg. From the
definition of d we have that d = 0 only if

P?=1-2pcosag +p> ~ Gy

this is not possible if p < 1, and if p > 1, we have that P? ~ p? and then, d will be equal to zero
only if
p* ~ Go

or equivalently if

—-2/3
GO ~ €y .

From the definition of P2 is easy to see that,
(p—1<P*<(p+1)

this implies that
5

1-— 12 <d<1-— —1)2
BG, PV sdslo gl
from this, is easy to see that if
0<1—3(+1)2 or 1—3(—1)2<0
I I
then d # 0, or equivalently if
48Gy
— >1
’p 5 17
then d # 0. Therefore d = 0 in the region
48Gy
— <1
‘p 5 1=
It is convenient then, to introduce
o 148G
which satisfies |w| < 1. Writing d in w we have
i=->1 [(1 +w)? + D(c+ w)}
480Gy
where ¢ = cosag and D = 2,/48Go/5. Then d =0 if
1
0:75(1+w)2—w (1.96)

where |w| <1 and ¢ = cos ag. Now
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- When ¢ = 1 so that oy = 0 we have that equation (1.96) is equivalent to the quadratic

equation
w? + w2+ D)+14+D=0
whose solutions are w = —1 or w = —1 — D, since |w| < 1 only the first solution has sense.
- When ¢ = —1 so that ag = 7 we have that equation (1.96) is equivalent to the quadratic
equation

w?+(2+Dw+1-D=0

1
wa :—1—§(D$\/D2+8D).

Clearly D + vD? +8D > 1, therefore w_ < —1 and then do not satisfy our condition
|w] < 1. A straight forward computation shows that

—4<D—-+\D?24+8D <0

whose solutions are

therefore |w4| < 1.

- When —1 < ¢ < 1 we have to analyze the behavior of ¢ as a function of w. Taking derivative
of (1.96) we have

2
d(w) = —5(1 +w)—1
if we look for critical points of ¢(w) and consider ¢/ (w) = 0 we find that
D
w'=—-———-1
2

is the only critical point and is smaller than —1. Actually this critical point is a maximum
of ¢(w) since

2
/!
=—-—<0.
" (w) <
Since c¢(w) is a parabola we have that for w € [—1, 1], ¢(w) is a decreasing function, and since
c(wy) = —1if we consider w > w4 we will have that ¢(w) < —1 and because there are no g

such that cosag < —1 we conclude that in that case d # 0. Therefore, the only way to have
d = 0 is to consider w € [—1,w4]. So, whenever ¢ € (—1,1) there exist an w € (—1, w4 ) such
that

1
cosag = —5(1 +w)? —w
which means that there are two different values of g that make d = 0.

Coming back to p, we have seen that there is a curve contained in the region

183G,
—y/ <1
’p 5 ’—

with equation given by (1.96). Rewriting this equation using that ¢ = cosag and D = 2,/48G/5
we have

cos g =

or equivalently

3
p= \/D(l—cosao)—l—ZDQ—l

which is clearly a cosine-like function in terms of (ap,p). In the variables (Go, ap) it is also a
cosine-like function since p = 12¢¢G% is an increasing function of Go. O

Remark 1.14. The difference between total variation of £ and L£* is strictly positive but expo-
nentially small. In fact

ALY — ALY = 2ALF +2AF = O(Gy /P C0/%)
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1.5.2 Strategy for diffusion

We will describe the strategy to construct a chain of heteroclinic connections to the manifold A,
defined in (1.29) using the results in lemma 1.13.

Let us take a point in Ay in which the reduced Poincaré functions L% are functionally inde-
pendent. From part (c) of lemma 1.13 ¢ should be different from 0 or 7 and not in the curve
given in (1.89). In figure 1.3 is shown schematically the curves in the plane oGy that we will
avoid in the following procedure.

Go

Gy < I,El TV - - === —\ = |- == = = = = = = = = === — -

p=1/D(1 —cosag) + ‘:}D-’ -1

. —2/3
Keg

Go> 14

Figure 1.2: Zone of diffusion

Take (ag = e, Go = G1) and apply successively the scattering map S_ defined in (1.74), its
trajectory will follow the level curve I = L£* (a, G1) up to certain ag = a; close to m where Gy
takes the value G*. At this moment, we shift to the scattering map Sy defined as well in (1.74).
From applying S, successively, we will get points along the level curve I, = L (ar,G*) up to
ap = aor close to 2 = 0(mod2m) where Gg takes the value G2 with G2 > G, by remark 1.14,
we know that G — G; = O(e_Gg/?’). Continuing in this way, we can travel along all the allowed
diffusion zone G; < Gy < 1/eg avoiding always to shift from one scattering map to another, in a
point of the curve given in (1.89) whenever Gy = 0(60_2/3). Using part (a) and (c) of lemma 1.13
we get figure 1.3. The red arrows represent the trajectory that changes from one scattering map
to the other.

Inside the domain 1 < Gy < 1/eg we can obtain diffusion orbits along arbitrary paths, except
those which intersect the small regions described in lemma 1.10 and the curves given in lemma 1.13.
This mechanism given by the application of scattering maps produce indeed pseudo-orbits, that is,
heteroclinc connections between different periodic orbits Aa07G0 in Ao, which are commonly known
as transition chains after Arnold’s pioneering work [Arn64]. The existence of true orbits of the
system which follow closely these transition chains relies on shadowing methods, which are standard
for partially hyperbolic periodic orbits (the so-called whiskered tori in the literature) lying on a
normally hyperbolic invariant manifold (NHIM). Such shadowing methods are equally applicable
in our case, where we have an invariant manifold Ao, which is only topologically equivalent to a
NHIM (see [Rob88], [Rob84], [Moe02], [Moe07], [GAILO6]).
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Go
Gy < rﬁl TV - - === —\ = |- == = = = = = = = = === — -
D(1 — cos ag) + ‘:}D-’ -1
- =2/3
Keg b
oy =0
o = 2m
G A
Gy
L S S
Gy> 14
8 |
t t
0| ae Qg 77—/{7!1_7?-&-& Qr 21 Q)

Figure 1.3: Mechanism for diffusion

With all these elements, we can now state our main results

Theorem 1.15. Let G} < G5 large enough and ey small enough. More precisely 1 < G7 < G5 <
1/eq and p > 0 small enough. Then, for any G1,G2 € (G},G5) there exists a trajectory of the
ERTBP such that G(0) < G1, G(T') > Gg for some T > 0.

1.5.3 ¢yGp = A\, A real positive

To prove diffusion in the case egGy = A, for A a fixed positive number, we use propositions 1.2 and
1.3 as in section 1.5.1 to compute the scattering map. Nevertheless, we will use the computation
of the Melnikov potential given in theorem 1.6, which gives a more involved expression of the
scattering map in terms of the Bessel functions Jy and J;. Since the complete computations of the
scattering maps are very cumbersome, it will not be possible to provide simple conditions, as in
the case A < 1, to guarantee the existence of diffusion on the complete zone A/eq < Gy < B/eg.
Thus, in this section, we will see the same mechanism used in section 1.5.1 can be straight forwardly
applied, up to some technical conditions that can be checked analytically or numerically.
The Melnikov potential is now given by the same formula (1.48), that is

L(aw, Go, to; €0) = Lo,0(Go) + Lo, Go) + L1(aw, Go, to) + E(an, Go, to) (1.97)
where Lg ¢ is the same function as in equation (1.48) and is given by
T =3
LO,O(GO) = EGO + F1 (198)

with
F1=F1(Go) = O(N’Gy° + Gy7) = 0(Gy ) (1.99)

Lo(ag, Gp) is also the same function as in equation (1.48) and is given by

1
Lo(cg, Go) = —§57T)\G0_6 cos(ag) + F (1.100)
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with
F = F(ap,Go) = O(N’Gy ", MG 1%) = O(Gy 7). (1.101)

Finally in this case, £ = R3(ag, Go,to) and therefore, as given in theorem 1.6 we have
&= R3(a0, Go,to) = O(Gg/ze_Gg%).

Notice that we have omitted the dependence on ey by using that eg = A/Gy so that the functions
depend on ) instead of eg, although this dependence with respect to A will not be written explicitly,
since A will be fixed along this section.

The expression for the function £ differs from the one in equation (1.52). From theorem 1.6
we get now

[,1 (040, Go, to) = COS(tO - Qo)\/gGo_l/QeGg/g(l + El) — 67%84\/%>\71Gé/2'
: %{e”" [e_“% [2f1(A(A — 1)) = fo(A(A - 1))} +A]
(1+ Rl(ao))}+723(ao, Go, to) (1.102)

where fo(z) = Jo(2i4/z), f1(zx) = J1(2iv/z)/(2i4/2) (and both functions can be written in terms
of the function W(x) = 3, 5, 2" /(n!)? introduced in section B.4), A = (A/2)e™** and the errors

FE1, Ri and R3 satisfy

B\ < K(Gy' 4+ XGp?%) = 0(Gy ), (1.103)
Rl < KGgl,  [Rs| < KGy/2emC0/0, (1.104)

Analogously as lemma 1.8, we can write £ in the form

L1(ag, Go,to) = \/%Gé/Qe_GgBB cos(tg — ag — ) (1.105)
where
) 1 E —2A
Be = =2 1L oA S (A(A — 1)) — fo(A(A = 1)]+1| (1 + Ra(0)) + Rs(ao, Go, to)
8G, |[1-4

(1.106)

and B = B(ap,Ao) > 0 and 6 = 6(ap, A) is defined mod(27). As in lemma 1.8, 0 is only well
defined for those (ag, Go) such that B > 0. Notice that for Gy big enough B will be positive as
long as

6_2A

1-A

where we recall that A = (\/2)e~ @,
To check that the function tg — L(ag, Go,to) is a cosine-like function we just need a similar
result to lemma 1.10 where now

2A(A(A—1)) = fo(A(A—1))|+1 £0

Lr=\BrGY/?e=G/3B (1.107)

and £} = L5 (ap,A). Lemma 1.10 holds equally in this case since the size of the error term & in
(1.97) is the same as the & in (1.48), in particular exponentially smaller than L.

Analogously to proposition 1.11, we obtain two critical points ¢y = t§, («g, A) of the cosine-like
function ty — L(ap, Go, to) which leads to two reduced Poincaré functions £% which are given by

L7 (g, Go) = Lo,o(Go) + Lo(w, Go) £ L] (g, A) + E+(ag, Go) (1.108)

with B+ = O(e=29/9) which leads to an analogous formula to the one in (1.73).
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We have now two scattering maps St as the one given in (1.74). As before, it is essential to play
with both of them, so we need them to be different, that is, we need some transversality condition
like in lemma 1.13 which relies on the computation of the Poisson bracket {£% ,£* } performed in
lemma 1.12. The computation of this Poisson bracket relies on a better knowledge of the function
B given in (1.106).

We have now all the elements to use the same strategy of diffusion explained in section 1.5.2
which leads to the following diffusion theorem.

Theorem 1.16. Fiz 0 < A1 < Aa. Consider G, G5 large enough and eg > 0 small enough such
that A\1/eq < GF < G5 < A2/eo, and p > 0 small enough. Then for any G1,G2 € (G5, G3) in the
zone where { L%, L* } # 0 one can find orbits of the ERTBP such that Go(0) < G, G(T') > G2 for
some T > 0.

To finish this memory, some words about the existence of diffusion for the case eqGy big, not
studied here, are necessary. Most of the computations performed along this memory remain valid,
for what concerns the computations of the Fourier coefficients L of the Melnikov potential. The
main difficulty relies on justify the validity of theorem 1.6 without the assumption egGy = A.

We believe that the error terms El, R1 and Rg3 in theorem 1.6 are still small in the general
case A = egGy big, but the strategy to prove it has to be improved. In particular, the estimates for
the error terms &; of theorem 2.19 are not good enough in the case A = egGy big, and lemmas A.3,
A4, A5 and A.6 need to be improved and as well as, and mainly, lemma A.7. On the other hand,
the dominant part of the Melnikov potential which gives rise to the Poincaré reduced function £*
is easier in this case, since there are well known asymptotics for the Bessel functions Jy(z) and
Ji(z) for |z| large.
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Chapter 2

Estimation of the Melnikov
Potential

To prove theorems 1.5 and 1.6 we need to compute the Melnikov potential, whose formula is given
by (1.47) in section 1.4 and reads

2
L

[4 + z}rg + datrg cos(ap — f)] 1/2

o0

L(ao, Go, to; o) =/

— 00

+ (x—h)Qro cos(ay, — f) — % dt (2.1)

where z;, and ay are coordinates of the homoclinic orbit which passes through the point zy; € ¥
defined in (1.32) we have chosen and are evaluated at t. f is the true anomaly defined in (1.5) and
7o is defined in (1.4) and both are evaluated in ¢ + .

To estimate this Melnikov potential, we will follow different strategies, depending on the size of
e0Go. The main idea is to separate the periodic part from the one depending on the homoclinic.
This will be done in the following way, if we rewrite equation (2.1) as

o0

L, Go, to; eq) = / m(xp(t), ap(t),t + to)dt

— 00

where m(z, «, s) is periodic in s. The classical way to compute these type of integrals is to use the
Fourier expansion
m(x,a,s) = Z mg(w, a)e'
qE€ZL
to get
E(Ozo, GQ, ﬁo; 60) = Z Lqeiqto
qEZL

where -
L,= / mq(zn (1), an (t))eiqtdt.

The main problem here is that we do not have an explicit expression for the Fourier coefficients
my. Besides this, other problem is that we neither have explicit expressions for z;(¢) and ap(t),
we only know these through a re-parametrization of time, given in equations (1.34).

To begin the computation of the Melnikov potential (2.1), first we present some results that
will be useful. The Fourier expansion of the Melnikov potential is needed. Let us introduce some
notation

Leo=Y ¢, " "N(q,1,1) (2.2a)
>1
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Ly =Y &=V 7'N(q,1-1,1) (2.2b)

1>2
Ly1=Y &b 'N(ql,1-1) (2.2¢)
1>2
Lok =Y & " FN(q,l = k1) fork>2 (2.2d)
1>k

Lok =Y &% *N(q1,l—k) fork>2 (2.2¢)
1>k

where & is defined for ¢, m,n € Z by the next Fourier expansion, given in [MP94, Win41]

[ro(f())]" ™I = " apmett ) (2.3)
q€Z
and )
. G3 .3
amn (12 (—1/2\ [ o7 (%)
N(q’m’”)‘W( DO e 4

Because of equation (1.4), we know that ro(s) is a periodic function in s and because of equation
(1.32b), cos(ap — f) is periodic in s and o and therefore £ is periodic in tg and ag. With this in
mind, the next proposition, whose proof is in appendix B makes sense

Proposition 2.1. The Melnikov potential given in (1.47) can be written as

L= L with Ly=» Lgge™®. (2.5)
qEL keZ
Then _
L= Z Z Ly pei(atorkao) — QZ ZL%’“ cos(qto + kay). (2.6)
q€Z kEZ ¢>0 kez

where L, ) are given in (2.2).
Even more, since £ is a real function even with respect to (o, Go), and Lqx = L—g -k = Lgk
and then L, = L_,
L=1o+ 23%{ 3 Lqeiq%} (2.7)
g>1

where we can write
Z ik —ik
Lq = Lq,o —|— [Lq,kez 0 + Lq,_ke v ag]
k>1

for ¢ > 0.
In view of proposition (2.1) and formulas (2.2), to compute the dominant part of the Melnikov
potential and obtain effective bounds of the errors we will need to estimate the constants ¢g-™

defined in (2.3) and the integrals N(q,m,n) defined in (2.4). This is done in the next three
propositions.

Proposition 2.2. Let n,m,q € Z, n,q > 0, n —m+1 > 0. Then the Fourier coefficients ¢;"™
defined in (2.3) satisfy

I A X
e < =
a (1+ €)™ t! m<0

~n,—m

Also, the Fourier coefficients ¢ satisfy ¢;"™ = ¢,
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Proof. The integral formula for the Fourier coefficients reads

2m
~n,m 1

Cy ro (t)"eimf(t)e*iqtdt

=5 i

Changing the variable of integration ¢, using the identities (see [Windl, p. 194])
t(E)=FE —eysinE

F(E)=r(t(E))=1—egcosE

P . . 2 .
F(E)e E) = p(t(E))e HE) = ¢26'F — ¢ + 0 o—iB

4a?
a2:1+\/1*€(2): el
2 °(1—/1_e2)

we have )
1 4 s .
UL [f(E>ezf(E)]m7g(E)n—m-i-le—zqt(E)dE
q 2 0

(2.10)

To bound this integral we will consider two different cases form > 0: 0 < g <mand 0 <m < q.
Let us first consider the case 0 < ¢ < m. By the analyticity and periodicity of the integral we

change the path of integration from S(E) = 0 to SE = In(2a?/e), i. e.,

. 2a?
E=u+iln(=—) u € [0, 27
€o
we have )
eiE _ eiufln(zeio) _ 6_0 iu
2a2
and then
2 o 2
F . es 2a
lu ezf(u) = M E(u ezf(E(u)) _ a? 0 e _ f0 A% —idu
(w) (B(w) e o+
€0 iy 0 —iu
= —e e e
2 0t 3
=ep(cosu — 1)
) = r(B(u) = 1 - 9 (20 gy 20
2 \ 2a? e
2
€0 iu 2 —iu
=1— —e"" —a%e
4a?
efit(E) _ efi(Efeg sinE) _ 2_(]’2€7iu6870(28a02 eiuf%efi“)
€o
_ Lﬁeiiue%eiu_u?efiu
€o
therefore ) )
U ~ e . .
e = — [F(w)e™ (D] () =mE 207 iugghett e g
27T 0 €0

to bound this we just have to notice that thanks to (2.11), (2.12) and (2.9d)

#(w)e W] < e

2
|7:(’U,)| = \/(1 - COS’LL(46—G(/)2 —+ a2))2+sin2u(a2 _ 6_0)2
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(2.12)

(2.13)

(2.14)

(2.15)



- \/(1 — cosu)2—|— sin2u(1 —e3)

= \/2(1 — cosu)—esin u
<2 (2.16)

and using the definition of a? in (2.9)

64552 et _g2eiu _ ’e(%*az)coquﬂSinu(%Jraz)’
—_ e(;f’z 7a2)cosu
— e*\/lfeg cosu
<eViTd (2.17)

substituting this bounds in the integral (2.14) and noticing that a? < 1 we find directly the desired
result for 0 < ¢ < m.

Now consider the case 0 < m < ¢. From equation (2.10) we perform the change of the
integration variable through

2a?
E=v—iln(=—), T €[0,27]
€o
we have 2
. ) .2 '
ezE _ eerln(Ze—U) _ QLGW
€0
and using (2.9)
~ = . 2@2 - 62 . -
Z(0)etf (v) — if(E(v)) _ 2 v 2 ey .
r(v)e =r(E(v))e — 22 v oy G0 CO
(v) (E(v)) . 0+ ol
2a* ., .
=—e"Y —ey+ —e "
€0 0 8(14
1 et
= — 2a4ew 62 + _Oe—w
eo( 0T g4 )
2
7 €0 2a v €0 _in
Flo)=1— 2 Zeiv o 2
) 2 ( €o 2a?
2
e
=1 a2 w _ “0 —iv
4a?
2a2
— €0 —iv a26iv747026,“}
242
therefore
1 27 -
n,m

c

2 74
; e e

- % 0 2(12

to bound this we just have to notice that, using the definition of a? given in (2.9), a® > 1/2

N 1 71
[F(v)etf )] < 6—0(2+63+§€g)< e
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2
|;(U)| = \/(1 — COS’U(% + a2))2+sin20(a2 — 6—0)2

= \/(1 — cosv)2+ sinQU(l - eg)
= \/2(1 — cosv)—ed sin®v
<2

and

2 2
=5 ) ’ s ( > 2)
— |e(a 5.2 ) Cosvtisinv| o5 +a |

2
_ e(aQ—;T“z)cosv
_ e\/l—eﬁ cos v
<e 1—65

using that a® > 1/2 we conclude
) < (5) "2/ g
< (g) m2n+leq\ / 1—e§eg—m

and since 7/4 < 2 and 0 < m < g we have that

T\m
— < 2‘1
(3)
from where we get the desired result for this case too.
For m < 0 we bound directly over the equation (2.10). Since |e*f| = [e™®| = 1 we have

1

27
Fem| <« ME n+1dE
e ]

by noticing that |r(E)| < (14 eg) we conclude the proof of the bounds for the ¢-™. Now, define

Ppm(t) = [ro(f()]" eI ()

then

Prm(t) = [ro(f())" e™™ O =P,
but by equation (2.3)

ﬁn,m(t) = Z ég’me_iqt

qEL
_ ~n,—m _iqt
P, _m(t)= E e e
qEZL
~N,— ~ =n,m
from where cﬁ’q m= crm=2¢, O

As we can see from equations (2.2) the Fourier coefficients of the Melnikov potential £ depend
on the function N defined in (2.4), so that the next result, proved in appendix B will be useful

Proposition 2.3. Let ¢,m,n € Zm,n>0m+n>0,¢>0, c>1and Gy > ¢*/3 . Then,

et _op_ 1
IN(g,m,n)| < Kpe @5 et antmy ="~

with Ky = 6me—1/2
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As we want to compute an asymptotic formula for the Melnikov potential (1.47), propositions
2.2 and 2.3 allow us to easily bound a lot of Fourier coefficients L, ;. Nevertheless, we need to
compute the integral involved in N(g,m,n) given in (2.4) for some values of m,n and ¢q. Next
proposition comes in that direction. But before, we need to introduce the constants d?’m. Let us

define
3

h(r) = z(% + 7')

and
2 73

u(r) = h(i) = h(r) = =3 = 1(3 + T): (r—i)% - %(T —i)3 (2.18)

It is easy to see that u is an increasing real valued function in the direction of increasing imaginary
part over the set S(h(7)) = 0 (see figure 2.1), moreover

u({TTS(R(rT) =0, R(7T) > 0}) = u({r” : S(h(r7)) = 0,R(77) < 0}) C R{.

Therefore v has two inverses inverses; 77 and

7 Plane 7~ with domain in Ra“ . Now let
1
F* = _
sy e T e T e
7

whose expansion in \/u is given in lemma (A.4):

FE o (u) = (EVu) 2"y dl M (V). (2.19)

=0

for some coefficients d?’m.
Let us call

Ay = i2m+"(_711/ 2) (_;/2). (2.20)

Next proposition provides an asymptotic expres-
sion for N(gq,m,n) for big values of Gy. Its proof is given in section B.3.

Figure 2.1: S(h(7))

Proposition 2.4. Let n +m > 0 and the constants d;"" be defined by equation (2.19) and d,
by equation (2.20). If ¢,n,m € Z,m,n > 0, ¢ > 0 then

a3

dm ne_qTU . s Q%qé_% n,m 35—%
N(g,m,n) = W Lz_(:)(_l) ﬁm%m—%Go +1y, ., + R},
where
IT% ol < Kunf'Gy® |RE, | < Ki2g™ Gy 2
and
2 2
B = 1+— 3+— : K11=22(\/§+7), Kip = 2me/?.
B2 B(1—B)

When s = 0 the factor 1/(2s — 1)!! in the formula should be replaced by 1.
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2.1 eGpk1

In view of proposition 2.4, the dominant part of the Melnikov potential £ comes from the Fourier
coefficient L, the main terms of this coefficients are computed using proposition 2.4, and the rest
of the terms will be bounded using propositions 2.2 and 2.3.

In this section we will prove a much more quantitative version of theorem 1.5 wich will imme-

diately imply it.

Theorem 2.5. Let ¢ > 1. If Gg > 32, egGo < 1/8, then the Melnikov potential L given by (2.7)
satisfy

el (el
L= Lo(a0)+cos(t0—a0) (\/§G01/26_T0 +E3+E5+E7) — COS(to—an) (3\/ QWeOGg/Qe_TU +E4—|—E6—|—E8)

+ 2%{E2 (Oéo)eito} + El (to, Oéo)

| B (to, )| < K520V 1= G/ 20605
3

G
|Ea(ag)| < Kge™ 5 {(1 +e0) Gy ? + 28eV1=8 (2607 + 60G53/2)}
2 <
|Es| < KreV 1_EOe_TOGO 3/2
GS
|By| < KgeV!'=%e™ 5 eoGy/?

a3

|E5| S 256V 176%K13G5267TO

3
Go

|E6| S 246V 176%60[(1367T

GS
|| < \/g%e%Go Ve

3
So

Es| < V2150e2G2 %0~
|Es| 0Go

with
K5 = 11527e~ /2
Ko = 2412me¢" —1/2
Ky, =2M". e —1/2
Kg = 2'2 . 3me” —1/2
V11 VIT\ 2
8= <1+—\/3+—)
4 2
2
Ky =22 (\/54— 7)
B(1—pB)
K12 = 27T€4/3
2
Y4 = @
T 3 5
K3 =40 3 + 574(K11 + Ki2)
and

15
Lo(ao) - LO,O = —§7T€0G0_5 COS(O(Q) + F2 + Fg + F5
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where
|F2| S K2223€0G0_9
|F3| S K2363G0_7
|F5| S K25G0_5€g
with
KQQ = 2106717'(
K23 = 276_171'
K25 = 577’(’/4

The proof of the theorem will be done constructively through the following series of lemmas

and propositions

. ~ . ~3,1
Let us first compute some coefficients ¢™™, more precisely ¢
p q 9 1 »

Lemma 2.6. Let ;"™ be defined by (2.3). Then

&l =1+
&%= —3e0+ Qo
&¥=1+Q3
&t = *geo + Q4
with
|Q1] < 98¢5
|Q2| < 5068
Q3| < 4ef
|Qa4] < 19¢5

22 2.0
e, ¢

and

3,1
Co

Proof. From its definition given in (2.3) and using the change of variable t = E — ep sin E we have

1 27 . .
Ft=— [ [r(E)!Er(E)Pe " EdE
21 Jo
1 27 ) )
E§’2 = — [r(E)er(E)]QT(E)e_”(E)dE
2m Jo
1 2
&l = —/ r(E)*dE
2 0

1 2m .
ég’l = — [r(E)e' PNr(E)3dE
27T 0

From equations (2.9) we have

2m 2

31 1 ; €5 _. T

&3l = —/ [a261E760+4—Oe ZE](lfeocosE)ge iE gieo sin E g
0

! 27 a?

22 _ 1 [T 5 ik € -imp

=22 - B 0 — 1— FE

& 2 ), [a%e eo + 1a7¢ ]“(1 — egcos E)e
1 27

&0 = — (1 —egcos E)*dE
2 0
1 27 ) 62 .

58,1 _ [a%e’f — ey + —LeF)(1 — eg cos E)3dE

o J, 4a?
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To bound é?’l we use equation (2.21). It is easy to see that

2

a’e’” —eg + %e*m =e'f —ey+ By (2.25a)
(1 —egcos E)®> =1—3egcos E + Es (2.25b)
e0sinE — 1 4 jeosin E + Es (2.25¢)
where
n 2 B, € —iB
Ey =(a" —1)e"" + @eﬂ
Ey = 3¢l cos® E — e} cos® E
1, o, (iegsin E)?
Es = 5(260 sin E) ngQW
Since
0<e <1 (2.26a)
1
5 < a® <1 (2.26b)
/1 — 2 _ 1 .2 2
la? = 1] = | = 0 <X (2.26¢)
2 2(y/1—e2+1) " 2
we have
2 2
n € , %o
|E1| < > + DY = 68
| Eo| < 4ep

n 63 €o 2€ 2
|E3| S 36 S 605 S 260

Using equations (2.25), we have from equation (2.21) that é?’l is the Fourier coefficient of order 1
of the function

(€' —eg + E1)(1 — e cos E + Es) (1 + iegsin E + E3) =

e'B — ey — 3eg cos Ee'f + iegsin Ee'f + Q1 (E)

where

Q1(FE)=E; — 363 cos E — 3egE; cos E + E_’g(eiE —eo+ Ey)
—iedsin E — 3ie cos E'sin Ee'” — 3ied cos Esin E — 3ied sin E cos EEs + iegsin EEy (e’ — eg + Ey)
+ E3(ef — eq + Ey — 3eg cos Be't — 36% cos E — 3egE cos E + Es(e'f — e + EY))

this implies that, up to order one in eq the Fourier coefficient &?’1 is exactly one. From the bounds

for Ey, By and E3 we find |Q;(E)| < 98¢2 wich implies the result for &'
From equation (2.22), it is easy to see that, using equation (2.25a)
2 iE € _ip2 iE o 12 2iF iE |
[a e —eyg+ —=e* ] = [eZ —eo—i—El} = e " — 2epe"” + Ey
4a?

where

E4 = 63 —+ 2E1(eiE — 60) —+ E12
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in regard of equations (2.26) and the bound for E; we have

|Ey| < €2+ 2e3(1 +eg) + e < 6ed.
Using equation (2.25c), we see from equation (2.22) that éf’Q is the Fourier coefficient of order 1
of the function

(2P — 2e0e’® + Ey)(1 — eg cos E)(1 + iegsin E + E3) =
e?E _ eq cos Be®F — 2¢0e'? + ieg sin Ee®F + Qq(E)

where

Q2(F) = 263 cos Ee'f + E, — egEycos E
= ieg sin E(—eq cos Be*'F — 2¢pe™” + 268 cos Ee'f 4+ E4 — egFEy cos E)

= E3(e*F — g cos Be*F — 2¢pe'? 4 2¢2 cos Ee' + E4 — egEycos E)

with this expressions, we conclude that, up to order one in eq, the Fourier coefficient c§’2 is exactly
—3ep, and from the bounds for E4 and E5 we find that |Q2(E)| < 50e2 wich implies the result for
2,2
ey

Using equation (2.23) to compute &' we have using equation (2.25b)

27
20 1
&0 —

5 = — (1 —3egcos E+ Ey)dE =1+ Q3
27T 0

then, by setting
1 27 _
Qs = — / EydE
0

:271'

we have immediately, using the bound for Fs, that |Q3| < 4e3, the desired result for &g’o.
Using equation (2.24) to compute ¢ using we have, (2.25a) and (2.25b)

2m

1 , _ -
531 (e'f — ey + E1)(1 — 3egcos E + Ey)dE

G il

0 2m Jo

Now, we want to find, up to order ey the Fourier coefficient of order zero of the function
(e —eg+ F1)(1 —3egcos E + Ey) = e'F — 3epe’” cos E — eg + Fs

where - o - - ~ o
Es = Eyetf + 36% cos E —egFEy + E1 — 3egF1 cos E + EyFq

from where we find

R 5
&' = —560 + Q4
we can bound
1 27 B
Qi=— | EsdE
27T 0
using the bounds for Ey and E to find Q4] < 19@%. O

Lemma 2.7. Let ¢ > 1, Gy > 32. If ¢,k € N, k > 2, then

G (1_ 5 2
|Lq, of < K3297%eV 176%@86'53/2@ aat Eh )
GS

— —q=0(1—-23 ¢
|Ly 1] < K323(1 4 e0)*Gy /2479 ( a3 )

oG (1_ s 2
|Lq,71| < K32q+7eq‘/176%6(‘)1_(1'6:51/26 93 (1 ch)
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_q%8 (1- 3 2
L, &k < K328+ )t 1G22 (1-35)
ek :
|Lq 7k| < K32q+2k+1eq\/lfegelok'_qulg—l/Qequo(176%852)

where K3 = 121e~1/2,

Proof. From equations (2.2) by propositions 2.2 and 2.3 we have

— ﬁ 1—22c2 / 2

|Lq1 0| S 2K26 R ( Gg )(2606 1—60)QG81/2Z(24G51)l
I>1
— G—g 1—--3:¢2
L 1l <27 e ) G S (1 4 o265
1>2
o3
|Lq,—1| §2_1ng_qTO( GJC) qy\/1— 602(] |1 ‘I‘G3/2 2(24G0_1)l
1>2

_qiﬁ(l_ig) —k—1/2
Ly k| <27FKpe "7V G (14 e0) 7RG, > (1 +e0)*2°Gy )
1>k

| 1—-3:¢2
|Lq,fk| < 272k+1K26 973 ( 3¢ )eq\/lfe§2qe(‘)k—Q\G§k—1/2 2(24G51>l
1>k

since by hypothesis 2¢/Go < 1/2 all these series converge and by setting
K3 =2K,
we have proven the lemma. O
Lemma 2.8. If ¢ € N, ¢ > 2. Assume G > 32, ¢gGy < 1/8 then
Lol <37 Lol € Kye 9608 [23"1eqx/@Gg‘1/2 (2.28)
kEZ
where K, = 288me~1/2

Proof. From lemma (2.7) we have for any ¢ > 1

Z |Lq,k| < |Lq,0| + |Lq,1| + |Lq7—1| + Z(|Lq,k| + |Lq,—k|)
kEZ k>2

- g?i 1—22c2 2 2
< Kze 1 ° ( a3 )[252%86‘1‘/1_50(?53/2+23(1+eo)4G57/2+27+qeg16‘1‘/1_606‘51/2

£ 30 (25(1 o) G TR gt el 1/2)]

k>2

- G—S 1—-32c2 2 =
< Kse "7 (=) [272qeg—1eqx/1—%001/2 +25(1+e0)Gy P + (1+e0)Go /2 Y (2(1 + €0) G2k
k=2

q—1 i
VIR G 29016l 3 (4Goey ) + eV Im B Gy 2 ey 190t Z(%oGOV]

k=2 k=q

choosing ¢ = 1, we have that Gy > (3¢)?/3, and therefore using that egGo < 1/8

Z |Lq,k| < K3e—ng% |:272qeg—leq\/1—egG01/2 + 23(1 + 60)4Ga7/2 + 23(1 + 60)3089/2
kEZ
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AR el AR VAT el 223'1”]
< Kse—9653 [272qeg‘1eqmcgl/2 + 241 +e0) Gy P
N VAR el RN VARE Te 223q+2]
< Kyom 1683 079008 160V ImR G2 4 93(1 4 00)iGL T

4 23q+36q\/ 176% Gg—1/2:|

< K3e~9605 |3 23Q+3€q\/1eggg_1/2]

setting K, = 3 - 23K, we conclude the proof. o
Lemma 2.9. If £ is given by (2.7), Go > 32, egGo < 1/8. Then

£ = LO —|— 2%{6“‘)1}1} + El(t()) Oé())

where _ s
|E1 (to, a0)| S K52662 v 1_6008/26_G05

and K5 = 1152ne~1/2,
Proof. From equation (2.7) we have that
By(to, a0) = 2R{Y_ e L, }
922
and then by lemma 2.8

q
| (to, 00)| < 2K4Gg 2y [e‘G3323e\/1—63G0]

q>2

< AK,20e2V 1m0 G/ 2o 05

where the last bound holds if

oGtV G, < L (2.29)
wich is true for every Gy > 32.
Letting K5 = 4K, = 1152me~'/2 we have proven the lemma. O

The next step is to compute an asymptotic formula for L.

Lemma 2.10. If L, is given by (2.7), Go > 32, e9Go < 1/8 then
R{e™ L1} = R{[(EP'N(1,2,1) + E3)e™™ + (67°N(1,2,0) + Ey)e ™ + Es(ap)le’™ }

where

| Q
°’|:~o:

|Ea ()| < Kge™ 3 | (1+e0)* Gy /* + 20eV1=<0(e2G5/% + €0 Gy */?)

GB

|Es| < KreV1~%e™ 5 Gy /2
G’S

|By| < KgeV1™%e 5 oGy/?

and Kg = 24121 ~1/2, K; = 214 . 3¢ /2 Kg = 212 . 3¢ —1/2
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Proof. From equation (2.5), we have that
L1 = L1,0 + Z(Ll,keikao + Ll,_keiikao)
k>1

— LL,leiwm +L11,2672w‘0 + E Ll,kelkao + E Llﬁikefzkag
k>0 k>3

ap) = ZLl,keikao + ZLl,—ke_ikao

k>0 k>3

Now, setting

we can write

%{Lle““ }: §R{ (Llﬁ,lefmo —+ L11,2672ia0 + EQ (Qo))eito}
By definitions (2.2) we have

L1 =&"N1,2,1)+ Y & “NQ,L1-1)
>3

Ly =&72N(1,2,0)+ Y &' *N(1,1,1-2)
>3

If we set

By=>Y & MIN(L,IL1-1)

>3

Ey=Y &"PN(,1,1-2)

>3

we have from equations (2.32) and (2.31) that

R{* L1} = R{EN(L,2,1) + By)e ™ + (N (1,2,0) + By)e™ + By(ag)le™}

This is exactly the equation we want, it only remains to bound properly the E’s.
Now from equation (2.30), by the triangle inequality and lemma 2.7 we have

|Ea(ao)| < [Laol + | Lial + D> [Lakl + Y 1L, —«]
k>2 k>3

G 2 _ 9k
< Kze~ 3¢ [26e0ev1—%G0 21231+ e0)'Gy T+ 3 2K (1 4 eg) LG T2

E>2

22%4-2 1— e0 k 1Gk 1/2}

k>3

(2.30)

(2.31)

(2.32a)

(2.32b)

(2.33a)

(2.33D)

(2.34)

et 5 - - o
< Kze e [2ﬁeoex/1—%co 21231+ e0)'Gy " + (14 €0)Gy 2 D (2(1 + e0) Gy )"

k=2

+ 226\/17636616,61/2 Z(QQGOGo)k]
k>3
3

G 2 — — —_
< Kze~ e |20e0eV 1= G%2 £ 93(1 + e0)AGT ™% + 23(1 + €9)3G /2
0 0 0
+2%eVI—9e2GY 2]
[ _ _
< Kze 3 ¢f [24(1 + 60)4G0 2 2loeﬂ(egGg/2 +eoG, 3/2)]

G3
< Ko~ ¥ [0+ Gy 4 eV TR + Gy
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with ) )
K¢ = 2*K3e¢ = 2*12me® ~1/2 (2.36)

Now E3 and E4. By propositions 2.2 and 2.3, we have from equations (2.33)

|Bs] < [N LT 1)

>3

3
< KreV1Imhe 3 g3/ (2.37)
By < [N L 2))

>3

3 2 _ G} _
< Ky2 2egeViTe e _SQGSN E 2*Gyh)
1>3

GB
< KgeV1=%e™ 5 eoGy/? (2.38)
where
K7 =28 Kpe® =2 . 37e" 712 Ky =2 Kye® =2'2. 3pet 1/2

In regard of equation (2.34) and the estimations (2.35), (2.37) and (2.38) we have proven this
lemma. (|

With the lemma 2.10, we have, from lemma 2.9 that

L= Lo+ 2R{[(Z]'N(1,2,1) + Ez)e™** + (&7 N(1,2,0) + Ey)e” > + Ez(ag))e’™ }+E\ (to, ao)

(2.39)
where
|E1 (o, ag)| < K5202V1-90 G2~ Gis (2.40a)
G3 2 —
|Ea(a0)| < Kge™ 3 [(1+e0)*Gy ™ 4 20eV1=8(e2G0/* + eoGy ') (2.40Db)
GS
|Es| < KreV1~%e™ 5 Gy /2 (2.40¢)
GS
|Ey| < KgeV 1*e%e*TerGé/2 (2.40d)
and

K5 =1152re Y2, Kg=2%2me” Y2 K;=2".37e" 12 Kg=212.37e" /2

Lemma 2.11. Let N be defined by equations (2.4) then

I G172, S8
N(1,2,1)= - E
4\/5 5 + LT
G
N(1,2,0) = \/7 Gy%e™ +2Brr

3 3

G G
I'Err| < K13,G(?267TU PErr| < Kize™ s

where

with

3
K3 = 40\/7+ 2’74(K11 + K12)

with K11, K12 and ~4 are defined in proposition 2.4.
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Proof. From proposition 2.4 we have

N(1,2,1) = dG51 ——[d}ff( )3 ) d”f\/i —d”\/_ \/7) + T}, + Ry,

(2.41)

where

Ty, < KiuniGy®  |Ry,| < KioGh
and
da0
N(1,2,0) = G [d02\/_( /G ) 22d02\/_ / d02\/_ / +T210+R20
0

(2.42)

where

Tsol < K1viGy®  |Rsol < K12Gh

Computing explicitly the exponents of Gy and taking the largest of the errors in equations (2.41)
and (2.42) we can write them as

242 _ G
N(1,2,1) = dg,ldé’QTﬁGO V25 1 1E 4 'Erg (2.43)
where
1 1,2 713 1 1 1 -5 ,ig
FE = 22d2 1\/_(d4 — d2 GO )e 3 Ergp = (T2,1 +R2,1)d271G0 e 3
with bounds
. 7 [eX [eX
'E| < 23|daa|VA(|dy®| + |dy )Gy 2e™ ™ ['Erg| < |daa|7i (K11 + Ki2)Gg e ™3
and \/_
2 3
N(1,2,0) = dg odS? \/_03/2 ~% 4+ 2E+2Erg (2.44)
where

3

_9 _3 G G
2B =23dy o7 (d)°Gy 2 — d?Gy?)e s 2Epp = (Tj, + Rig)daoGyle

with the bounds

ad ad
2E| < 28 |do o[ VA (d§?| + |d32)Gy P PEral < ldaohd (K + Ki)e™ ™
Using lemma A.4, dy’™ = 1/(2i)*" ™! and by definition (2.20) for d,,, , we have that
L (—1/2\ [—1/2 3
12 _ .03
da1dy” = —i2 ( 2 )( 1 )(23) T
~1/2\/ iy 3
02 _ o2 _
d270d0 =12 ( 9 ) (—5)— ?
We can then write equation (2.43) as
1 |7 12 G5
N@,2,1) = /263 2= F + 1By (2.45)

4V 2

where
'Erp ='E+'Erpg,
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using lemma A.7 to bound d;™ we find

3

3 _9 _Gi
Brr| < |3VER(Y?] 41520 + a2 + K| Gie

- 3 o3
< [3var(ab?) + 1) + a0 + Ku)} Gye

- e

3
< | K120V27 + 5’73(K11 + Klg):| G62e_TO

- 3 o
< 40\/?4- 5%%([(11 +K12)] GJQG_TU
s0, defining

T 3
K3 = 40\/;4- §7§(K11 + K19)

we have .

G
|1ETT| < K13G52€7TU.

Analogously, equation (2.44) can be written as

G3
N(1,2,0) = \/gag/%—% +2Erp (2.46)
where
*Err =*E+°Erg
with
1 [ 02 02 3 2 _a
" Err| < |3v2aldy” —dy”| + 57i (K + Kiz) |e7
- 5 s
< [3VER (121 + 1521 + o3 + K|
I 3, _sg
< | K120V27 + 574(1(11 + Ki2)|e™ 3
[ T 3 G3
< 40\/;4‘ 5'72(1(11 + KH)} e v
then, we have
GS
|?Err| < Kize™ 3
this proves the lemma. O

Using the approximations given in lemma 2.11 we have from lemmas 2.9 and 2.10

Lemma 2.12. If £ is given by (2.7), Go > 32, oGy < 1/8. Then

a3 ad
L= L0+COS(t07040) (5?’1 \/?G&UQGSO +E3+E5) + COS(t()*QOZ()) (&%2\/ QWG?)/Qe*TO +E4+E6)
+ 2%{E2 (Oéo)eito} + E4 (to, ao)

where Ej with k =1, ...,4 are given in equations (2.40) and

GS
|Bs| < 2%V "9 K 3Gg 2% (2.47)
GS
|Eg| < 2%V~ eoKise™ 5 (2.48)

where K3 is defined in lemma 2.11.
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Proof. By lemma 2.11 we have that N(1,2,1) and N(1,2,0) are real and then coincide with their
real part. Equation (2.39) gives the correct estimation of £. To complete the proof is enough to

take

Es=&"(YEpr)  and  Eg=

&? CErr)

where ! Epp and 2Epr are given in lemma 2.11. Therefore by proposition 2.2 we find directly the

bounds of F5 and Ej.

O

Lemma 2.13. If £ is given by (2.7), Gy > 32, oGy < 1/8. Then

3 +FE3+E5 +E7) — cos(to—

L = Lo+cos(to— ao)(\/gGal/Q 71

where Ej, with k = 1,...,6 are given in lemma 2.12 and

Q

Gd
|E7| < \/ggsegcome 3

a3
|Es| < V2150e2GY %e~ 5
Proof. From lemma 2.6 we have
ek ad
éif,l gGo—l/z -% _ %Gal/Qe,To

3
0

&2 2\/_6'3/2 _Cf
with

0

Q1\/7 ~1/2, _ o8

3

0

Q2\/_Gg/2 B Cf

G3
20&0)(3\/ eoG / B 30 +E4+E6+E8)

+ 2R{Es(ap)e’™} + By (to, ao)

+ By

GS
-3V 27T€008/2€_TO + Eg

Therefore by lemma (2.12) and the bounds of @7 and Q2 given in lemma 2.6 we conclude the

proof. O
Now, we are going to study the term Ly, first a lemma
Lemma 2.14. Let N be defined by equations (2.4) then for m,n € N, m+n >0
|N(0, m, n)l S K202m+nGa2m72n+1
where Ko = e 7.
Proof. Since in the integral (2.4) 7 € R then is easy to see that
1 1
T, 1 S 1
|7+ |7 — i
and then
1 1 1 1
Fa e rar R P L P
then using that n,m > 0, by equation (2.4) and lemma A.1 we have that
m+n ~—2m—2n+1_—1 > dT
|N(0,m,n)| <2M™TGy e
oo LA T2
_ 2m+nG72m72n+1e—1ﬂ_
= 0
naming Kog = e~ 'm we have proven this lemma. O
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Lemma 2.15. Let k£ € N and Lg 1, defined by equations (2.2). Then

Lo, k=Y & "N(0,1- k1)
I>k+1

Lox= Y & " "N(0,1,1-k)
I>k+1

Proof. From equations (2.2), we have just to prove that for k > 2
N(0,0,k) = N(0,k,0) = 0.

By equations (2.4) this reduces to show that

e dr
_ Y
[ weo

where the positive sign in the denominator correspond to I(0,0, k) and the negative to 1(0, k, 0).
Since the variable 7 € R this integral is trivial

/OO dr _ 1 1 o _0
oo (T )2k 2k — 1 (7 £4)2k1|_
this proves the lemma. O
Lemma 2.16. Let Lo 1 be defined by equations (2.2) If k € N and Gy > 4 then

|Lo+k| < Kojek2?kG k=3
with K9 = 2%e~17.

Proof. From lemma 2.15, we have

Lo, el < Y 1eg RN, L~ K, 1))

1>k41
21—k, k
Lokl < Y 1&g " FIIN(0,1,1— k)|
I>k+1
by proposition 2.2 we have that &glikﬁk = 6§l7k’k and by lemma 2.14 we can easily see that

N(0,1—k,1) and N(0,1,1 — k) have the same bound. Therefore

—2k+1 _k2k+1 4 ~—4\1
|Losk| < K2 2 lelGelt § (2'Gy )
I>k4+1
ko2k —2k—3
< Kapeg2* oGy

setting Ko1 = 26 K59 = 2%¢ ™17 the proof is completed. O
Lemma 2.17. Let Ly be defined by equation (2.7). Then if Gy > 4 we have

313 _
Lo = LO,O + 037117G0 5 COS(O&()) + Fy + F3
20T _
LO,O = Cg’OEGO 3 +
where

|Fy| < K22Gy”

|F2| S K2223€0G59

|F3| S K236(2)Ga7

where Kqs = 2% 17 and Ky = 27e ™1
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Proof. From proposition 2.1 is easy to deduce that

Lo = LO,O + 2?}%{2 Loykeikao}

E>1
From lemma 2.15 we have that
Lo, o=¢p "N(0,1,1)+ > & 2 °N(0,1,1) (2.49a)
1>2
Lo, 1=¢y 'N(0,1,2)+ > & "TIN(0,1-1,0) (2.49b)
>3
Lo, k=Y & MN@O1-k1) fork>2 (2.49¢)

then, define

=3¢ * ON(0,1,0)

1>2
Py = 28‘%{ei 03 @LTIN (0,1 - 1,1)}
1>3
F3 = 2%{2 eikaULng}
E>2

by lemmas 2.14, 2.16 and proposition 2.2 , using the hypothesis on GGy we have

|Fi| < K202Go Y _(2'Gg*)!

1>2
< K20210G0_7

|F2| S KQQ@QGS 2(24G0_4)l
>3

S K2021360G59
|F3| < 22 |Lo,k|

k>2
S K2126€(2)Ga7

Now, from definition (2.4) we have that
2212\ (-1/2\ [ dr 51 1\ .3 T _ 3
N@O.1,1) = @( 1 )( 1 )/_OO(T2+1)22(§)(§)G0 = 3%
1/2\ (—1/2\ [* dr o3 N3N T\ A5 _ 3 5
N(©.1,2) = 05( 1 )( 2 )/_OO(TZ')(TH')?_Q( 2)(23)( 4)G0 _87TG0

From these equations, substituting equations (2.49) in the definition of Ly and the bounds given
in equations (2.50) simply by setting

K22 = 21OK20 = 2106_177'
K23 = 26K21 = 276717'(

we have proven this lemma. O

A refinement of this lemma is
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Lemma 2.18. Let Lo be defined by equation (2.7). Then if Gy > 23/2 we have

15
LO = LO,O - §7T€0G0_5 COS(O&()) + FQ + F3 + F5

T
LO,O = EGO_?) +F1 +F4
where Fi, Fy and F3 are given in lemma 2.17 and

|F4| S K24G536(2)
|F5| S K25G55€(2)

with Koy = 27 and Ko = 577/4

Proof. In lemma 2.6 we have computed the constants &(2)’0 and 68’1, then by setting

™ _
F4 = §Q3Go 3
3 -5
Fy = Zﬂ'Q4GO cos ag
and using the bounds for @3 and Q4 we find the desired bound for F; and F5. O

With this lemma we can rewrite lemma 2.13 exactly as theorem 2.5, and so we have proved it.

2.2 ¢yGy = A\, X real positive

In this section we will follow the same structure as in the case egGy < 1 except that some
computations will be done in a different way. The main difference comes in the way we bound the
module of the Fourier coefficient L, given in (2.5). In section 2.1, the terms |L, x| were bounded
in lemma 2.7, later on used to bound |L,| in lemma 2.8. To do this, since we sum over the index
k, we have used the assumption egGy < 1. To overcome this assumption in this section, we will
actually estimate the whole sum ), Lq — by noticing that this sum can be computed as the
Fourier coefficient of a suitable function, this will be done in proposition 2.22.

As we have done before, we will prove a much more quantitative version of theorem 1.6 wich
will immediately imply it. We will prove the next theorem.

Theorem 2.19. Let \ be a real positive constant, v4 = 16/(3 ++/11), ¢ > 1. If
Go > max{(3c)3,32, (24X)Y/3,8X71, (24N)1/3,23/2 2(yy \)1/3, (254,)V/4).

then there exists a positive constant K, depending on A\, such that if egGy = A, the Melnikov
potential L given by (2.7) satisfies

L= Lo(Oéo) + 2§R{Lleit0 + 6}

where

1 T ~—1/2 718 —ia
L1:<+Z 5Gq % 3+E3+E5+E7)e 0

—iag A 2A

e—/\e [
A—1142i\/A(A-1)

a3
re-Favamicy?

J1(£2iy/A(A = 1))

— Jo(2i/A(A — ))} A

+&+E+E+E
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and

with

and

Also,

where

with

Lo(ao

)

a3
|Bs| < KpeV1m48G, " e

G3
|B5| < 2°eVIm K 3Gy e s

G3
|E7| < ,/%986300‘1/%—%*
3

18] < Ke®/3M V1= G126

Go

|(§2| SKA362kG83/2 -3
|Es] < Ke%)G(lJ/Ze_TU
Br| < Kjem G036 2600V + G ?)

€] < KGy/ et

K, = 214 37re*%eCZ
K, =21. 3me® —1/2

(o )

Ky = 22(\f+

K12 = 27'('64/3

3
K3 = 40\/7+ 2’74(K11 + Ki2)

m)

A
A:_ef’bag
2
A B A2 — 2)\e a0
A—1" XN —4)cosag+4

AA—1) = f%e—i% (1 - %e‘m).

15 _
— Loo = *gﬁeoGo % cos(ap) + Fy + F3 + F5

|| < K222%e0Gy”
|F3] < KazelGy "
|5 < KosGp o€

K22 = 2106717'('
Ky =27 Ir
K25 = 577T/4
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The functions Jo(z) and Ji(z) are the Bessel functions of the first kind [AS65] and whose
expansion around z = 0 is given by

Tn(z) = E%@Qmm-

The next series of lemmas and propositions go in the direction of proving this theorem. First
let us bound the terms Ly in L.

Proposition 2.20. Let ¢ > 1, ¢ > 1 and L, be defined in (2.5) and Gy > max{(3c)2/3, 32}. Then

Ly=L,+ E,
where R _
Ly=Y L, e koo (2.51)
k>1
and
KiefG3/3G53/2(2eOew /1—e + Ga2> g=1

E,| < P 2
IEal < Kfle_nggGog/Q{(Qeoevl_eO)q—i—GO*Q} q>2

with K} = 2 . 3re~2e” .

Proof. By equation (2.5) we have that

Lq = Z qufkeiikao + Z Lqﬁkeikao

k>1 k>0

therefore, if we call

— E ikao
Eq = Lq7ke
k>0

it remains to bound it. By lemma 2.7, given ¢ > 1, we have

|E,| < 23G51/2K3e_q%a(1_ci362) {zq”eqﬁegcgl +(1+e0) Gy + (1+e0)27%> (21 + 60)052)k}
k>2
< 23G51/2K367Q%8(17Gi362) {2q+26qmegGal (14 e0)'Gyt (1t 60)3(;54]
< 23G51/2K3e7q%8(1*c%302) {2q+26qmegGal Y201+ 60)4G63:|
< 28K3Gg3/2e_q%i(1_ciﬁc2) {(2eoem)q+(¥a2} (2.52)

by setting K = 28K3ec2 we get the desired bound for ¢ = 1. To bound it for ¢ > 2 we use our
hypothesis that Go > (3¢)?/3 we have

3 2
—=zcC 32
e G% ) S e—qGog

O

As we did in proposition 2.4, we need to compute the function N defined in equation (2.4), but
now, we need an explicit computation of the residue R{, ,, of the function involved in the integral
of N. The proof of the next proposition is found in appendix B.
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Proposition 2.21. Let the constants d;-“m be defined by equation (2.19) and d,, ., by equation
(2.20). If g,n,m € Zm,n >0, m+n >0, ¢ > 1 then

S rm 3 g1 S
d’m,ne_qT s 25(]‘5 B mn,m 35 q 1
N(q7 m, 7’L) = GQm+2n—1 [Z(_l) \/E(2S — 1) d2m 2s O 3 +2 Z d2(m s)—1 (_§Gg) ;—i_TgL,n
0 :

where
T3 ) < Kuyg' G

2 2
p= 1+—v =5 K“*(“@*m)

When s = 0 the factor 1/(2s — 1)!! in the formula should be replaced by 1.

and

Using proposition 2.21 to rewrite equations (2.2¢c) and (2.2e) we have that

Loy_1=e —¢S0 {ZZ G-11g0 g ZZ 2-Lipe 263171,1%[71 l+3qul 1} (2.53)

1>2 s=0 1>2 s=0 1>2
a3
Loy_r=¢e —q50 {Z Z gi-kkgl 45 Z 2ikkpe Z53l_k’kdl,l—kGo_4l+2k+17flfk}
>k s=0 1>k s=0 1>k
(2.54)
where
. digendsg
s 3 g1 M-k _g) —alyok+3s—1
gglk = (_1) ﬁ22q 2 WGO (2.55)
dya—rds”
s (= 8)1 —41+2k+3s+1
hiy = (=1)"2¢° —— - = G e (2.56)
where d, ,, is defined in equation (2.20), d;"™ in equation (2.19), ¢"™ in equation (2.3) and by

proposition 2.21, for k£ > 1
Tl < KuviGo?,

also note that in formula (2.53) when s = 0, the factor 1/(2s — 1)!! in the formula should be
replaced by 1. R
From the definition of L, given in (2.51) we have that

iq:Lq,_le—i%_’_e_q‘?ﬁ ZZZQZ kkggke—zka0+zzz~2l Kbyt o=ikao

k>2 1>k s=0 k>2 1>k s=0
2 :2 :~2l—k,k —4l42k+1 —ikoo g
+ Cq dl,l—kGo e Tl,lfk
k>2 1>k

To bound l~/ we could use the bounds for the cil kk given in proposition 2.2. Nevertheless, it is
better to notlce that, from the equation defining the constants ¢;"™ given in (2.3), it can be seen

(< )
that e?5" (Lg — Lq,—1e7") is the g-th Fourier coefficient of the function

Z Z Z T2l k zkf(s)ggl —ikag + Z Z Z T2l k zkf(s) hglke—ikao

E>2 1>k s=0 k>2 1>k s=0

+ Z § T2l k Zkf(S)dl,l—kG0_4l+2k+1eiikaoﬂ?lf
E>2 1>k
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In fact, this function Mq(s) depends on s through the true anomaly f(s). For convenience, we will
write

+ZZZ 2(1— k) k q zka0+zzz 2(1— k)T e hq —ikag

k>2 1>k s=0 k>2 1>k s=0
n Z Z rg(sz) [roeif]kdl,l_kGaéllJerJrle—ikozo Tl(,zlfk (2.57)
k>2 1>k
therefore
a3 . . 1 [27 _ )
el (Lq — Lq7_1eﬂ°‘“) =5 M,(s)e™"*ds.

Using (1.7) as a change of variables, that is s = E —eg sin F, and using the identity ro = 1 —egcos E
already given in (1.6) we have

1 27

2

3
G -

95 (Ly — Ly _1e7i%) = M,(#(E),#(E)e (B))e~ it E)i( B)dE

where 7(E), f*(E)eif(E) and t(E) are given in equations (2.9). If we now, using the periodicity of
the eccentric anomaly FE, change the path of integration to

2 2
E:u—f—iln(i) u € [0, 27
€o
we find that
a3 ) 1 2m e 2 2 ) 2w _in]d
13 (Ly — Lg1e7")= g/o M, (f(U)af(U)e”c(“))) L—ie“eﬁe —e T G w)du (2.58)
where from equations (2.11), (2.12) and (2.13)
F(u)eif(“) = ¢egp(cosu — 1)
Flu)=1-— e—%e —ae ™
B 4a? '

Let M, (u) denote M,(s) after performing the changes of variables

s=F—¢ysinE (2.59)
2 2
E=u+iln(=) (2.60)
€o
that is ~ "
My (u) = M, (f(u),f(u)e’f(“)), (2.61)
and then (2.58) can be written as
3 ) 1 27 2q2 2 il
eq% (Lq — Lqﬁ,lefmo): %/0 Mg (u) {%e”eﬁe —a’e 7(u)du (2.62)

We will compute Ly or equivalently M; and show that the remaining terms are smaller, bound
for M, when ¢ > 1 and use the bounds for L, _; given in lemma 2.7. We have clearly computed
the term Ly _; defined in equation (2.32a) in lemmas 2.10, 2.11 and 2.13, getting that

1 jm <h
Li_y= /=Gy e

3 + Es + Bs + Er (2.63)
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where
et
|Es| < KreV 17e%efTUGO_3/2

a3
|E5| S 256V 176%K13G0_2€7TO

G3
|E7| < \/2986(2)(;0_1/26__3&

To bound L, for ¢ > 2 we will find good bounds for iq introduced in (2.51). Next proposition
gives an asymptotic formula for M; and bounds for M, when ¢ > 2.

Proposition 2.22. Let M, be defined in equation (2.61) and (2.57), A real positive constant and
74 be given in proposition 2.21, and

Go > max{8A™, (2'0)'/3,2%/2 2(1\)1/3, (2°94) 14}
Then there exists a positive constant K such that if egGg = A,
My (u) = V2rGy P [e M Ameoswe ™™™ 1 4 \(1 — cosu)e” 0] +&

and
& < KN2BBAGT2,

Also, for g > 1
|M‘Z(u)| S K}\2\/ae(8/3)qAGO*1/2-

Proof. From the definition of Mq(s) given in equation (2.57), we can see that is composed of three
different sums and then so is My (u) in (2.61). The strategy is to change the order of the indexes
to get bounds of each sum. Let us first begin by changing the order in the first sum of (2.57) To
do so, we denote i

G = P00 [Ty e (2:64)

then

B
|
—

I
NE

l co o0
Z Z Z Glint Z Z Gg,l,k)
k>2 1>k 5=0

k>2 s=0I=k s=k l=s
k—1 oo co o0
— q q
=D 0 D GLet>. ) D Gl
k>2 s=0 I=k k>2 s=k l=s
1 oo o o] 00 00
— q
S5 S WIHED BB S SIS 35 ) -
s=0 k=2 1=k s=2 k=s+1 =k k>2 s=k l=s
1 oo I [e'S) [e'S) l co 5§ o0
— q
=220 k2 D D Gt > ) O
s=0 =2 k=2 s=2|l=s+1k=s+1 s=2 k=21
1 oo 1
Yy @YY Y GsuﬁZ o
s=0 =2 k=2 5=2]=s+1k=s+1 =2 |l=s k=2

l co s

Gg,l,kJrZ( Z Z G+ Z sl,k)

=l

I
NE

s=0 [=2 k=2 s=2 |=s5+1k=s+1 l=s k=2
1 oo 1 oo oo 1
— q q
- 2 : Gs,l,k + 2 : 2 : § :Gs,l,k
s=01=2 k=2 s=2 l=s k=2
1 oo 1 oo s 0o 0o l
— q q
- 2 : Gs,l,k + 2 : 2 :Gs,s,k + 2 : 2 :
s=0 =2 k=2 5s=2 k=2 s=2[]=s+1k=2

o8
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M 11-
I

l %) 1 %) %) l
ZGsuﬁZGsss*Z GlontD D D Gl
s=21=s+1 k=2

k=2 = 5=3 k=2

Q2

S5 T EG (2.65)

w
||
N

where
S—

Eg:ZZZle+Z Gssk+zzstlk (2.66)

5=0 =2 k=2 5=3 k=2 s=2l=s+1k=2

We will bound Eg, then we will compute the sum involving G? ; .. From its definition given in

(2.64) and the definition of g?,, given in equation (2.55) we have

I

G, =m0h [feif]k(—l)sx/%ﬁqs?% 84l+2k+3sifefika° (2.67a)

a1, = PO e (1) o “7@(; 1 Gy (267h)
_ [aaif1s s s o1 deody® e isag

G, = [re]*(-1)"V/m22q 2m00 e (2.67c)

From lemma A.4 and the bounds given in lemmas A.1 and A.7 we have

2\ S
Ikl e
ldy 2l <2 (3)

|dl l7k| < 671/222l7k
1

s—k,s| __
|d | 922(s—k)+1"

the bound for |d4 ! 5| in not optimized. We have that

2(1—
s—1 s—2
@2s— D =J[@s—1-2k) > [J2(s—1—k)=2"""(s = 1)!
k=0 k=0
and then
1 2

< .
(2s =1 = 25(s —1)!
Recall, from proposition 2.21, that when s = 0 the corresponding factor to 1/(2s — 1)!! and its

bound is exactly one. Therefore, using the bounds for # and 7e'/ given in (2.16) and (2.15) we
have from (2.67a) and (2.67b) that

_ 3 o1 2\5 —al4+2k+3s—1

G2, ] < 2207 j2eg)F 2t g 725(3_1 2'(3) ¢ (2.68)
s 11 2.2%7k 1 Ceqok_1
s—k k 3 s—3 s+2k—3

G2, | < 226 W) 2¢o]F/m2dg Te o (s DB m o : (2.69)

From inequality (2.68) and using that egGp = A and the hypothesis on Gy we have

1 oo I 1

}ZZZG“’CF ? qGOZ 3 0) (s — 12(04) Z(GQOZA)

s=0 [=2 k=2 s=0

\/g z;} 3 0) 5—112(23A)
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[27 1 q 3) 2 26)2
\/qGO *1)' Gg

27r 29 )\2

142G
\/qGO G6 ( + q )
27 211 _
< _Zf____A2\/—(; /2 (2.70)
in the same way we bound the third term of E} in (2.66)
oo oo l
P g " 2 25\ I £ Go A\
‘ 5lk‘ I 2G0) o1
;l;l; qGO;(S ) (5_1)!1 s+1(GO) 1;2( 22 )
21 22 Sx/q e\ 2 = /220!
<4/ = =G}y
—V e 4Gy ;(3 0) (s—l)'l S+1(G8)
2 2% o= y2% \¢ 2 23\
kI Z ) :
e ,/—qcosz_;(sq ) -1 G3
o 2t & (23 )571 1 2% 23\
e VaGo =\31 -1 39 G3
o [2m2l0 =28 o1
B 3 AVaGy ;( 31 ) s!
2 210
- —W—)\Q\/_G (e TaX _ 1) (2.71)
From inequality (2.69) we bound the second term of EZ, in (2.66)
\/> s 1 s—1
. (GoN)*
!ZZ ‘ ,FGOZ &) o
o 22 & 1 1
2 A L
\/—qGOZ q) (s— 1! Gox
2r  2? °° )s—l 1 29\
vV qGO (S - 1) Go)\
. 2 3 —3/2 > s 1
Ve 2VaGo ;(QQA) s!
2 _
=/ T2 VaGy (2 =1 - 200). (2.72)
From inequalities (2.70), (2.71) and (2.72), E}, defined in (2.66) can be bounded as
|EL] < KX2/q(Gy ™% + Gy T/Pe®/3ar 4 326200, (2.73)

Now, we will bound the second term of in M, in (2.57). Analogously as we did with the first
one, let us denote

HY, , = PP 7l |opd, e=tkao, (2.74)

Then, we can write the second term in the definition of M, given in equation (2.57) as

-1
Ey = ZZZH;ZM (2.75)

k>2 1>k s=0
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Now, changing the order of the indexes in EY, we have

k—2 oo
E%:Z( ZHslk+ Z Z Hslk)
k>2 s=0 1=k s=k—11l=s+1
k—2 oo
D RHINES IS DIt
k>2 s=0 =k k>2 s=k—11=s+1

s=1k=21Il=s+1

oo
s=0 k=s+2 |=k E>2 s=k—1l=s+1
oo

oo s+1 oo

- zl:Hslk+ZZZ slk

s=01=s4+2 k=s+2 s=1k=21=s+1
oo s+1
= E:HslkJrE:E:E:
s=0[]=s+2 k=s+2 s=1l=s+1k=2
oo s+1
— q q
_E:E:Holk—i_i:i: E:Hslk+§:§:§: s,k
1=2 k=2 s=11l=s+2 k=s+2 s=1l=s+1 k=2
co 1 oo s+1
:E: Hk+§:(§, E: k+§:§:slk)
1=2 k=2 s=1 [=s42 k=s+2 l=s+1 k=2

l

™

Hg,lkJrZ(Z Z uk)

s=1 Il=s+1k=2

Hg,z,k +Z Z ZHg,l,k (2.76)

s=11l=s+1k=2

N
[

¥
N

l

M

~
[|

N
?r
w

From its definition given in (2.74) and the definition of kY, given in equation (2.56) we have

dyi— i

Hg, = — 2(1-k) [feif]k(il)s%] 25221! s) 1 G074l+2k+35+lefikag (2.77)
Hg,l,k — 2(-k) [feif]k2dl7l_kdl2l—lcilGo—4l+2k+1efikag (2.78)

From the bounds given in lemmas A.1 and A.7 we have
2_,/2\%
1k, !
30"l = \/;2 3)
2
!
) < 22

|dl,l7k| < 671/222l7k

Using the bounds for #(u) and #(u)e’ (*) given in (2.16) and (2.15) we have from (2.77) and (2.78)
that

1 X
\H 5,7 |<22(l k)[2€] 5221 k \/721 2651 —4z+2k+35+1 (2.79)

|Hg7l,k| S 22(l—k) [260]k222l_k%\/;2lG04l+2k+1 (280)
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From inequality (2.79) and using that egGy = A and the hypotheses on Gy made on the statement
of this proposition, we can bound the second term of E; in (2.75)

>3 s nfia () 3 (3)

l

S (%)

s=11l=s+1k=2 Tl=s+1 k=2
22\F GBS 1 o= 230!
S NESSC ORI
~ VeV 3 OZ 3 s!:Z G3

_ 2 QAG—Q(e%M -1) (2.81)

<23 2 23)\
<7 _0@
29
)\QG_ (2.82)

\/_

therefore the second term of M, in (2.57) denoted by EY and given in (2.75) and (2.76) can be

bounded as
|EL| < KX2(Go° + Gy 2e®/3), (2.83)

Finally, if we call E. the last term of M, in (2.57):

ng — ZZ~2I k) Te dll kG 414+2k+1 7’Lkagqu L (284)
k>2 1>k

we have, using the bound for d;;_s given in lemma A.1 and the bounds for #(u) and Feif(w) given
in (2.16) and (2.15) and the bound for T}, _, given in proposition 2.21 we have that

ZTIED 9) r oo e LT RerS
k>2 1>k

< Ku K11 22222(1 B) gl G it 2k |
k>2 1>k

KH 722()\6‘0) Z(%)z
<2ﬁG Z( 74)‘)

k>2
S (Z)

| /\

<22=
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K
= 2 NGy
< KMNGy® (2.85)

From the definition of EY,, EY, and Ef. given in (2.66), (2.75) and (2.84) we have, using equation
(2.65), from the definition of M, (u) given in (2.61) that

Mg(w) => "G +EL+ El + B (2.86)
s=2

For ¢ > 2 we will bound the sum of the G4 , . and for ¢ = 1 we will compute it. From the definition

5,8,8

of G2,  given in (2.67c) we need to compute d, o and dg’s. It is not difficult to see that

<1/2) _ (*1)5%(257 1!

s s!

and therefore by its definition given in (2.20)

7; S
doo = 5 (~1)"(2s = 1)

From lemma A.4, we have that d® = 1/2i, and then

, —1)* (2s = )N
ds dO,s _ (
070 2 s!
From this, we can rewrite (2.67¢) as
G1, , = [Fwed W Var =Gy Femise, (2.87)
' s!

Then, from the bound for F(u)eif(“) given in (2.15)

G, .| < ReoVorl-"Gy
7 S

< [2r i (2g))°
~—V qGo = s!
= q%”o(e?qA —1-2g)\)

< K(qGo) ™/ 2e? (2.88)

therefore, since egGg = A,

[e'S)
E q

‘ Gs,s,s
s=2

From the expression for M, given in (2.86), we have that
M| < K(qGo)™ /2 + | EE| + |Ef| + | EF|
and using the bounds for EY,, EY, and Ef. given in (2.73), (2.83) and (2.85)
|Mq| < K)\Q(qGO)—l/QquA +K>\2\/§(Ga7/2 +G0—7/26(8/3)q)\ +Ga3/262qk)+KA2(Ga5 +G626(8/3)qk) +K>\2Ga8
< K\2 [ew ((Go) ™% + /qGy *?) 4@ (JaGy ™? + G52)+(Gy° + G ® + \/aGgm)}
< KX [ (GGG % + /aGy )+ (/aGy T2 + G5 ?)+vaGy |

< KN [0 aGo 4 e (a6, T 4 G+l |
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IN

A [equ\/aGal/z+e(8/3)qx\/§G62+ﬁGa7/2}

K 2
K2 [ /q(e*0Gy 2 + e/ G? 4 6]
K 2

IN

IN

X[Vt Gy P 4 Gyt 4 6T
< K/\Q\/ae(8/3)q)\Gal/2

this is the desired result for ¢ > 1. For ¢ = 1 we have, using the expression (2.11) for f(u)eif(“)
and (2.87)

%) o0 = 1 . )
S°Gh = Sl VER L Gyt
s=2 ’

s=2

—-1/2 = s 1 s —isa
= V271G, / Z[eo(cosu —1)] EGOe 0
s=2

12— 1
= V271G, 1/2 Z[feoGo(l — cos u)e*w“)]sa
s=2
- S —iap s 1
= V271G, 1/2 Z[—)\(l — cosu)e™ "] a1
s5=2

_ /—%Gal/z [e—,\(1—cosu)eﬂ'ao 1 )\(1 _ cosu)e_m"]
Therefore using equation (2.86) we have
My = \/%Go_l/Q [ef/\(l—cosu)e’m0 — 14 A1 — cos u)eﬂ'aopﬂc/‘l

where
& = EL + Ey + Ef.

Analogously as we did to bound M, we find that
&) < KX\2e®/3M G52,

This concludes the proof of proposition 2.22

The proposition 2.22 allow us to bound L, for ¢ > 2

Proposition 2.23. Let ¢ € N, ¢ > 2, ¢ > 1, 74 be given in proposition 2.21 and A real positive
constant. If

Go > {32, (240)1/3,(3¢)?/3,8A71, (2°N)1/3,23/2 2(7u\) /3, (2544) /%)
then, exist a positive constant K, such that if egGy = A
Lyl < KNGy %6tV 1= (4Go A1) %9605

Proof. Let ¢ € N, ¢ > 2. From expression (2.62) and using proposition 2.22 and the bounds (2.16)
and (2.17), we have

G - ) 1 2m 2042 . w2 —iu|d
93|, — L. e '@ < ‘_—zu7e —a“e ~ d
e ‘ q g—1€ ‘_ 27 ), q(w) - e Mex |7(u)|du

L 8/3)qr 4—1/2 (202N o 1=z
<o [ KX ERGE (=) eV
m™Jo €0
< 2K>\2\/§eq( 1—e2+(8/3)A) (z)anl/z
€0
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then

a3

~ . 7 —q—-2(1—=2: ) q
|Lq 7quile—7,ozo|§ 2KA26q\/1—eOe 43 ( Gg )\/a(_) GO 1/2
using that G > (24\)Y/3 and V4 < 27 for q > 2, we have
~ . 2 2 2\9 _
Ly — Lg 17| < 2K)\2eq\/1_50e_ng§\/§(%) G2

< K A2tV 1—€3 o —aGi 2 (i)anl/z
eo

from this, using the triangle inequality we have

|Lg|< | Lo | 2K N2etV 1B e 0G0 (i)qGo’”2
€0

and by lemma 2.7

G3 2 E
’ZQ‘S K32q+7eqv176%6871G0_1/267QT0(17GL86 ) + 2K>\2eq\/17e§equ3§ (i)qGo_l/2

and using that G > (30)2/3

|Ly| < 0V1=Be9635 G5 /2 [Ky2047ed ™t 4 QK)\Q(i)q}

€0

< KA2G61/2€Q 1—ed (i)qe—ngg
€o

From proposition 2.20 we have
Lyl < [Lgl + [ Eq|

< K/\2G81/2€q 1= (i)qe_qGS% + K4e_ng%G83/2 (2€oem)q
€o
< KAQGJI/Qeqﬂ(i)qe*QG%_
€o
o

Proposition 2.24. Let A be a real positive constant and 4 be given in proposition 2.21, Gg >
max{8A~1, (24\)1/3,23/2 2(qu\)1/3 (2544)/4}. Then there exists a positive constant K = K ()
such that If egGg = A,

L= (% gGgl/Qe*GTg + B3+ Es + E7)e’“‘°
e avBntay e AL Z‘ 2 T)
— Jo(£2i\/A(A — ))}—A
+&+E&+E+E
where
|Es| < K7GMG53/267%8

3
So

|E5| < 256V 176%K13G62€7 3

a3
|B7| < \/§9863G01/2e_70
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3
Go
3

|(§1| < Ke(g/g)A)\eﬂGgl/2e,

3
Go

1&o < K)\g’eQAGane*T

~ a3
€5 < Ke2Gh/%e

|Ey| < Kje= 903G %2 (2e0eV1~% + G5?)

and

A .
A= 5 e o

A N2 e
A—1 M —4lcosag+4

A(A-1)= %/\e*m“ (1 - %e*m").

The functions Jy(z) and J1(z) are the Bessel’s functions of the first kind [AS65] and whose expan-
sion around z = 0 is given by

& (_1)7” 2\ 2m+n
=3 — Uy
(2) mz::o m!T(m+n+1)\2
Proof. From expression (2.62) and proposition 2.22 we have that

L1 — L17,1671a0

,GT% \/27TG71/2

2m 2 2 .
—ia . 2 el iu —iu ~
=e 0 / [ef)‘(lfcosu)e 14+ M1 - cos u)e "] [ie“eﬁe —a’e m(u)du + &
2m 0 €o
(2.89)
where ) )
3 4 3 iu —iu
& = ei% L 1 {—2(1 e iteraz e mae ]f(u)du
2m Jo €o

using the bounds for 7 and 7e'/ given in (2.16) and (2.15) and the bound for &; given in proposition
2.22 we have that

3
61 < KA2e®AN G322 o /imdige =
€o
o

< Ke®3 \ev 176%00_1/2677. (2.90)

To compute the integral in (2.89) we first notice, using the definition of a? given in (2.9d) and the
definition of 7 given in (2.12), that

2a2 1 2
- = 1 1 52 = 1 2
o 60( +/ et) 60( +O(ep))

3 iu e iu
err®” = e (1TOE))™ — (1 4 O(e2))

2 2
Flu)=1— %ei“ a2 =1 — %0(1 +0(e2))e™ — (14 0(e2))e™™ =1 — e™™ + O(e)
a

e—azefw — e—(1+o(eg))eiw = e_eiw(l + O(@%))

therefore
2a” “ein_g2e—iu ]| 2 2 2\y . —e i 2 —iu 2
oo (u) = %(1 + O(e5))(1 + O(eg))e (14 O(eg))[1 —e ™ + O(ep)]

= 2o - e 4 O())(1 + O(e2))
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2 —iu )
="e® (1—e™)(1+0(e) +e®

—iu

0(60)

From this, we can rewrite (2.89) as

L1 — L17_1€_la0

G /2 — 2 2 —ia ;
—e 3 Q—WGO 1/2(1 + O(ed)) = / [e_’\(l_“’s“)e * — 14+ M1 — cos u)e "*le®
™ €o Jo

—iu

(2.91)

with

: 27 . ) ) i
& = e_TO(eo)?GO / [e)‘(l_“’s“)eﬂ " —1—-A(1—cosu)e e e T du
0

. e —iu
and since [e”™e™® | < e, e* — 1 — z < |z]%el*l and eyGy = \ we have

3 3
<] %o

1€ < K)\2e2’\Gal/Qe_ 5 ey < K)\seQ’\Gag/Qe_T. (2.92)

It remains to compute the integral in (2.91). It can be expressed as the sum of three integrals as
follows

1 4 —la . —diu . .
— [e_”\(l_c"s“)e 14 A1 - cos u)e_w‘”}e_e e (1 —e ")du
2m Jo
1 Liag g g ,
_ e—)\(l—cosu)e Ue—e e—zu(l _ e—w>du
2 0
1 [ — :
~ 27, (I=Xe™® e "™(1—e"")du
1 [ , e .
- — A(cosu)e™* e eT"(1 —e7™)du (2.93)
2m Jo

To compute the first of these three integrals we notice that

_ _ —iag _,—tu _ —ia( —iag __,—iu
e A(1—cosu)e e ® —e Ae e)\cosue e ©

7Aefia0 e()\/?)eiiao (eiu+efiu) 7efiu

=e €

— e AT At (A-T)e i (2.94)
with

A= %e_m”

Therefore, using expression (2.94) we see that, to compute the first integral in (2.93) is equivalent
to

ei/\eim0 (Nl — NQ)

where A and N> are the first two Fourier coefficients of the function

N(u) = ee™e(A=De™™ = Zquiqu.

qEZ

Expanding in Taylor series we have

e_i“(l — e_i“)du + 52 + gl



then the Fourier coefficient V] is given by

oo

: (Ae™)? [(A— D)e Pt < JA(A-1)PL _
Nle“":z " N :Azielu:AW/(A(A_l))ezu
= (7 =1t = G-
and the Fourier coefficient N3 is given by
N (Ae™) [(A— 1)emmp—2 < [AA—1)P2 |
NeQzu _ ( : : _ A2 %e%u _ AQW// A(A —1 ezzu
where _
wn
W(w) = ngo (al)?

and its properties are detailed in appendix B. With these two Fourier coefficients we have that

I g i .
- / e/\(1—cosu)e Ue—e e—zu(l _ e—zu)du —
2 0

e—/\e

—iag

[AW'(A(A — 1)) — AW (A(A - 1))].
Using the expressions for W’ and W given in (B.24) and (B.26) we have

24
i —
A2W"(A(A_1)):i(Jo(i2¢ AA—D)) — — 2 (42 A(A—l)))
A-1 +2iy/A(A - 1)
then,
i ef/\(lfcosu)efm0 efefi”efiu(l . efiu)du
27 Jo
—ic 2A 1 A
— e 0 . _ _ N .
[—i% T VA 1))(1+A_1) = Jo(+2i\/A(A D)
g A 24
= e Jy(£2iy/A(A — 1)) — Jo(+2i/A(A -1 2.95
17| A VAR D) - k(2 /A=) (2.95)
where
A A A-1 JAP-A L N -2kt (2.96)
A—1 A—-1 A—1 |A—12 X2 —4)\cosag+4 '
>\ 71-040 >\ 71-040
A(A=1) = ~Ze <1f§e ) (2.97)

Now, the second integral in (2.93) is clearly equal to zero, since the function e~

~™ has no positive
harmonics. The third integral, can be written as

A —iag 1 /27r( iu+ 7iu) —eTiu 7iu(1 7zu)d A 1 /27‘—(1_’_ 72iu) 7671'“(1 7zu)d
——=€ -_— € e € € — € u = - € e — € U
1 [ : , , i
— A— (1 —_ e iU 4 e—2zu _ e—?ﬂu)e—e du
27T 0

= A.
Substituting this and (2.95) in expression (2.93) we have by (2.91) that

L1 — L17,1671a0
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= I 0l | A n e AT T) - i A )4
+&+ &
_ e*GTgm/%)ﬁlGé/Q o~ AeTi0 Ail - [ﬂi Z?A — 1)J1(i21' A(A —1)) — Jo(£2i/A(A — 1))} +A
+&+6+6 (2.98)
where o3

1&] < KedGy/%e =,

with K = K()). From the expression for L; _; given in (2.63) and using equation (2.98) along
with proposition 2.20 we get the proof of proposition 2.24 O

Analogously as we did in lemma 2.9 we have the next lemma

Lemma 2.25. Let £ be given by (2.7) and ¢ € N, ¢ > 2, ¢ > 1, 4 be given in proposition 2.21
and A real positive constant. If

Go > {32, (240173, (3¢)2/3, 8271, (290)1/3,23/2 2(7, \) /3, (25~,) /1)
Then, there exist a positive constant K depending on A, such that if egGy = A,
L= Lo(ao) + 2%{&%1(@0) + E(to, ao)} (2.99)
where
1 (to, a0)| < KGy/Pe=C03.

Proof. From the formula for the Melnikov potential (2.7), we can write directly equation (2.99) by
defining

g(to, 040) = Z Lqeiqto.

q=>2

Then, by proposition 2.23 we have

Elto.a0)| < Y KNGy M2V 1= (aoa e 16

q>2

< K)\QGO_I/2 Z(e\/ 176%4G0)\7167Gg%)q

q>2
Do 2

< 2KGy? (e\/qélGo)\’le’GS%)

< 2K Gy 2V 1=B16G2A 2= C%

< KG?)/Qe*Gg%

. . . . Vi 132 .

the third bound is possible since for Gy > 32 we have e 04GpA~te™%09 < 1/2. This concludes
the proof of lemma 2.25. O

Finally, theorem 2.19 and therefore theorem 1.6 is a direct consequence of proposition 2.24 and
lemma 2.25. The condition imposed on Gy in theorem 1.6 is obtained simply by noticing that
Y4 < 3, from its definition given in proposition 2.21.
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Appendix A

Change to complex integral

The aim of this appendix is to show how a change of path in the integral (2.4) can be made to
pursue a good estimation. So, let us call that integral

o ()
tamn) = [ (A1)

. We will write 5

h(r) = z(% + T) (A.2)

Since the integral I involves an exponential, it will be useful a Laplace type method (see [Erd56])
of integration. In particular when (h(7)) = 0. So, let us define the path

I'=TuUlbUI'3UT, UL (A.3)

where € > 0 and c is taken such that c > 1 and ce < 1:

Fl—{T€C|
F5—{TEC|\ShT

(h(7))
(h(7))
= {7 € C[S(A(n))
(h(7))
(h(7)) <

0} {7 € CIR(7) < R(=7")}
0} {7 € CR() = R( )}
0} {7 € CIR(=7") < R(7) < 0} {7 € Cll7 —i| = ce}
=0}N{reClo<R(r) <R( 7)}n{reCllr —i| > ce}

0} N{r e Cl|r —i| = ce} (A.4)

<
>

F4:{7'€(C| h(t
h(r

Fg—{T€C|

By means of the Cauchy-Goursat theorem and
a limit argument, it can be shown that the integral
I(g, m,n), defined in (A.1), which is taken over the
real axis, is equal to the one taken over the path I'
thinking of 7 as a complex number (see [LS80al).
In fact, by the same argument, its value does not
depend on €.

The positive branch of the hyperbola defined
by S(h(7)) = 0 intersects the circumference of ra-
dius € in two points that can be expressed as C' and
—C and rigorously are defined in the following way

7 Plane
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{ C} =I'snNIy (A5)
{—C} =I'3NTy (AG)

Since the integral over I' does not depend on ¢, we will choose a particular value of € to bound
I(g,m,n) and consequently N (g, m,n) defined in (2.4). Later on, in proposition 2.4 we will just
compute the e-independent terms.

It is not difficult to see that if we define the function

3

)= (1) - %(T — i), (A7)

w(r) = hi) — h(r) = —= — z(
then
U(Fl U Fg), U(F4 UF5) C R(J)r

Moreover, if 7= € Ty UT'y then 77 = -7~ € T4 UT'5 and

On the other hand one can see that u is an increasing function while moving along I'y U T2 or
'y UT5 in the direction of increasing imaginary part. Therefore in Rz{ u has two inverses; 71 and
7_. Before writing them down let us notice that the point C' defined in (A.5) can be written as

C=i+ece® with 6. € (0,7/2) (A.8)

and in coordinates u, defined in (A.7), has the expression

_ 2221‘9575303-31'057 2 2
u(C) =e“c’e 3 i€ =0(e" ) (A.9)

Moreover
2 2

u(C) = [u(C)| = 2 |1 -

2 (A.10)

with 1 < k.. To see this, just consider

‘1— ze‘g

=[1- %i(cosélE +isinf.)|
= ‘1 — %(icosélE —sin98)|

ec . Ec
= ‘1—}— ?smeg —z?c0598|

2 2
= \/(lJr %sin@s) +(% cosﬁg) >1

since by construction, 6, € (0,7/2) and then 0 < sin#..
Now, we can write the inverses of the function u

7 [u(C), +o0) = T4 UT5 77 :u(C),400) = T1 UTy (A.11)
u — §(u) +in(u) u — —¢&(u) +in(u)
The change (A.7) is useful over I'y UT'y and T'y UT'5, thus performing this change in (2.4), we have
that for any € > 0
3

dyp e T35 | [
Ng.mon) = B | [ B ) = Fplle S rau s (e ® [ g ar| (a2
Go w(©) ry

where

Ay = 12777 (_;/ 2) (_;/2) (A.13)
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1

Fﬂfn(“) = (7% (w) - §)2mHL (7 E () f 4)2n (A.14)
15 n(r)
(7)) = (A.15)

(T _ i)?m(T + Z)271
Now a series of lemmas that will be useful.

Lemma A.1. Let m,n € Z, m,n > 0 and d,, ,, be defined by equation (A.13). Then

| < e7H/22MF ifm4n >0

|dpn| < e t2mtm if m,n >0

Proof. Let s € N, then

)@ G ) G-

1\s
< lim (1 - —)
s—00 2s

—ol/2

Using this inequality and equation (A.13) we have that, in the case n +m > 0, n and m cannot
be simultaneously zero and therefore the product of combinatorial is at most e~'/2 if neither of m
and n is zero, then clearly, that product is bounded by e™!. o

The next lemma, found in [Erd56], gives information of 7% (u) when u € C

Lemma A.2. A local expression for the inverses 7% given in (A.11) is

) —i =Y An(EVa)", (A.16)

where ) (3n/ )
i"10(3n/2 — 1
A, =— = Al
AT (n/2)37 1 (A.17)

the series (A.16) is convergent whenever |y/u| < 2/v/3.

Lemma A.3. Let 7% be defined by equations (A.11) and u* = (3 ++/13)/6. Then, for u € R and
0 < u < u* we have that

|Ti(u) —il<1

and |7% (u*) —i| = 1. Moreover, for u € C with |/u| < 1/2/3 we have that
7 (u) — i <1

and the curve |7%(u) —i| = 1 is contained in the ring

2 2
\/;§|\/ﬂ|§%-

Therefore the region |7%(u) — 4| < 1 is contained in the disk |\/u| < 2//3.
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Proof. First we will consider the case where u € R, that is when S(h(7(u))) = 0. Let us write
T=E+1n, (A.18)

from this we have

h(r) :i(— +r)= (14 €2 - %2)+i(§+§—772§)

and then
53
(h(1)) =&+ ER %€

52
n—:t\/lﬁLg (A'lg)

The positive sign in the last equation correspond clearly to the positive branch of a hyperbola.
Having this in mind, equation (A.7) can be expressed as

&

from this equation, S(h(7)) =0 if

2 n? 2 n
__z 1 2 _ =24 18n? —6). A.20
u=—g+nl+& - 5)=-3+3@r -6) (A.20)
Let 75 = £&, + in. be such that S(h(rF)) = 0 and

ITf —i|=1

or, using equation (A.19) (we are only interested in the positive branch of the hyperbola)

§2+<\/1+§1>210
* 3 -

£=2(V5-1)

and then by equation (A.19), since we are only interested in the positive branch of the hyperbola

from where

(14 V13)

=

1
Nx = 1+§(\/1371):
with this, we define, by means of equation (A.20)

—3+ (1+\/_) ——(1+\/_) (3+\/_)~11009

By construction |7 (u*) —i| = 1. Also, we have, as expected that vu* ~ 1.0492 < 2/+/3.
It is clear from equation (A.20) that « is a monotone increasing function of 7 with n € [1, +00)
therefore its inverse 7% (u) is a monotone increasing function of u and then

7 (u) — i = VE(u) u) = 1)2 = Vdn(u)? — 2(1 + 1(u))

is a monotone increasing function of u. This completes the case u € R.
Now, let u € C. If we fix

t — i = se'? felo,2r) 0<s<1 (A.21)

From equation (A.7) we have

u(r) = (= i) = 7 — ),
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and using (A.21)

- R
lu(r)| = 32‘1 — %e“g = 52\/1 + % + gsine.

From where, since —1 < sinf < 1, we have

2 9 1/4
\/umdx— max |y/u( |—s( %—l—;)

—i|=s
2 2s 1/4
VUmin = Imln [/ u( |s<1+§§>

and since the functions between brackets are increasing in [0, 1] we have that

2
Vimax < i = max [Vu(r)| = —=
vV Umm > VUi 111 |\/ | = \[

From these equations we conclude two things. First, that the interior of the curve defined by
7 (u) —i = e 0 € [0,2m)

contains all the points such that |[7%(u) —i| < 1. Second, that the circle [\/u| = /uZ; lies entirely
in the interior of that curve. From these two points it is clear now that if |\/u| < \/u®; then
|7%(u) — | < 1 and that the curve

|75 (u) — i =1

is contained in the ring \/ul ;. < [vu| < /uk ., wich conclude the proof.

The next lemma is a straightforward observation from lemma A.2 and 7+ (0) = i

Lemma A.4. Let Ffﬁn(u) defined by (A.14), then
FE, (u) = (@) 2L S o (/) (4.22)
=0

This series is convergent for [\/u| < 1/2/3. Equation (A.22) defines the constants ;"™ in particular
dg™ =1/(2i)*"

Proof. From equation (A.16) we have that

o0

(7% (u) — i)™ = [zAk (/)

:|2m+1

i|2n+1

(Ti( )+Z)2n+1 [Q'L"f’zAk i\/_
from these equations we have

(Ti(u)—i)2m+1(7'i( )+’L 2n+1 —(i\/_ 2m+1ZB i\/_
7=0

for some coefficients B;. It is easy to see that

BO — (2Z->2n+1(A1>2m+1 — (2,L->2n+1

(0]



And therefore is possible to solve the equation

S () = [ Byvay] = v B, () (A.23)

j=0 j=0

for dj™. In particular
R 1
By (26)2 1

The series in equation (A.22) can be written as

dn,m

Ty(z) == 2® T EL  (2?) Zd"m 7, (A.24)

We have already seen that Ty (0) = 1/(2i)*"*1. To find a radius where T4 is analytic we look at
the definition of Fif (%) given in equation (A.14) and notice that if 7% (2%) —i| < 1, then by the
triangle inequality we have that 1 < |75 (%) + i| and therefore Tix would be analytic. By lemma
A.3, we know that |7 (2?) — i| < 1 whenever 2 < \/2/3 or in other words, the series is convergent

when /u < /2/3. This conclude the proof. O
From equation (A.22) we have
2m ]
Ff L (u) = ()20 d ™ (V) + gn (V) (A.25)
§=0
where the regular part of the function F%n (u) is given by
GE (V) = (V) 2L S () (A.26)
j=2m+1
and d;"" are defined by equation (A.22).

Lemma A.5. Let Fif  (u) defined by (A.14). Then for u € R such that 0 < u < u*, with u*
defined in lemma A.3. Then

(Va) ™ FE ()] < Kpqyinimnd < yppintmond

with K1 = /2/3 and v, = 2/3.

Proof. From lemma A.3 and the triangle inequality is easy to deduce that

1< 7% (u) +i] < 3. (A.27)
However the upper bound can be refined. Since 7% (u) is a point over the hyperbola S(h(7)) = 0
its largest norm is reached when the hyperbola intersects the circle centered in ¢ with radius 1.
These intersection points are

1 /3 j
=y [S(VIB- 1) + 11+ VI3)
and then
1 16
1< r¥(u) ] < 25 i =4 /5 (14 VI3) < g5 <2 (A.28)
From these we have
1/2
JVIE 19 + 49 -
A i - N S S < (14+1)Y2 =212 (A.29)
T 4+ (7% +1)? T+ (1 +10)2
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Now, from equation (A.7) we have

1
+ N2t o
= — 2 —
w= (7" =9)*(7" + 29) %
and then from equation (A.14),

D2 EE () — 1 (/7 (u) + 2i)*m 1
(\/_) Fm,n( ) (\/5)27”-"_1 (Ti(u)+i)2n+1

From this equation we write down two different expressions depending on n and m. These expres-

2m+1
1 VTE + 20
2m+1 pt + N\2(m—n)
(Vu) Fy . (u) W < p ) (7% +1) if m<n

2n+1
i | (JETE smen)
(V) 1y o (u) = (V3em i ( S ) (V7TE + 24) it m>n
naturally, from (A.28) and (A.29) we have

(Va2 FE ()] < —

omts

— if m<n
3mts
1 1
(V> g ()] < gnragmon

S if m>n
in this way, we have that

(A.30)

warmes o (2)7(2)" i men

9 1/2 2\ "
warirg < (3)(3) i me
So, by letting v; = 2/3 and K; = /2/3 we have proved the lemma.

O
From the proof of this lemma, we can actually prove another one, very similar, that will be
useful in the proof of the proposition 2.4

Lemma A.6. Let Fif, (u) defined by (A.14). Then, for u € C such that |v/u| < \/2/3. Then

(V) Fp ()] < Kiyg' < 3"
with K7 given in lemma A.5 and 5 = 4/3.

Proof. Since |v/u| < 1/2/3, by lemma A.3 we have that |77 (u) — 4| < 1 then by the triangle
inequality, (A.27) is still valid, and therefore equation (A.30) becomes

(Vu)* ™y, (u)] <

1/2 m n
1 1 2 4 1
ntsgm—n _ :
L () (3) (1) o

Then, in regard of inequality (A.31), we conclude the desired result.

O
The next lemma give us information about the coefficients d;"" defined in equation (A.22).
Lemma A.7. Let d;"" be defined by equation (A.22) and u** = 2/3. Then

< L e <
(Vu)7

where K7 in lemma A.5 and -9 in lemma A.6.

1 m
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Proof. The function Ty defined in equation (A.24), by lemma A.4, is analytic for \/u < 1/2/3.
Therefore, if |z| < z¥, = vu** we can use the lemma A.6 to get that |7 (x)| < K1v5", then
using Cauchy estimates we have

|d;"| < FRASHC

1
(V)
With this lemma is possible to prove the next one.

Lemma A.8. Let gt | (£/u) as in equation (A.26), 0 < # < 1 and 0 < u < SVu** < Vu**.
Then

K
90 (EVO] < 508" (V) 7

is given in lemma A.7, K7 in lemma A.5 and 72 in lemma A.6.

where u**

Proof. Tt is clear from equation (A.26) that

gin(i\/ﬂ) = Z d?fimﬂ(i\/ﬂ)s
s=0

by hypothesis 0 < v/u < Svu** < vu**, then by lemma A.7

o0

|g7:7‘:1,n(:t\/a)| S Kl’ygn (\/UT,})QWH-I Z (\/,L%)s (\/E)S

" 1 =1
§K172 (\/W)QerlZ(\/’lF)

m 1 - S
:KI’YQ (\/W)Qerl ZO/B

1 1
(\/W)Qmﬂ 1— ﬁ

which proves the lemma. O

s=0

(B

s=0

= Ki17v3"
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Appendix B

Proofs of Propositions 2.1, 2.3,
2.4, 2.21
W function

B.1 Proof of Proposition 2.1

Lemma B.1. Let ¢,n,m € Z, ¢,n,m > 0 and

o'} eiq%g(‘r+§)
I(g,m,n) = / . ——dr (B.1a)
oo (T —1)2M (7 +1)20
omtn (_1/2\ [(—1/2
Let k,1 € Nand L, S be defined by
L(g, k D=&"5*N(gl-k 1) (B.2a)
S(g, =k, =) =" *N(q, 1,1—k) (B.2b)

where the constants appearing in (B.2) are defined by (2.3).
Then the Fourier coefficients defined in (2.5) satisfy

Lo = Z L(g,0,1) (B.3a)
1>1

Lgi =) L(g,1,1) (B.3b)
1>2

L(L—l = ZS(Q7_17_Z) (BSC)
1>2

Lox =Y Llg.kl)  for k>2 (B.3d)
1>k

Lk =Y S(qg—k,~l) for k>2 (B.3¢)
1>k

Proof. We have from equation (1.47) that
2

oo 2
L=17L +/_OO [(m_;)?ro cos(ap, — f) — % dt (B.4)
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where

~ e z}
= :/ 4,2 2 1/2 dt
—00 [4 + aprg + dasiro cos(o, — f)]
this can be written as

~ 0 .2 72 , -1/2 22 , -1/2
a:/“—ﬁQ+JWUWHme#wm0 Q+§mv@+mw“%*“m0 dt

D) 2
(B.5)
using that
L o= —1/2
1+2)72=> ( k/ )zk
k=0
we get that
Lo=> D Li+> > S
k>0 1>k k<0 1<k
where
- 1 —1/2\ [—1/2 > , ,
L= g (l/k) ( z/ ) / @y T o (f(¢ 4 to)PE etenem MU gty 0 < k<1
: 1 —1/2\ (—1/2\ [* _ Colkikan i
Si = m(l+k>< -1 )/_Oo ay, R g (f(t 4 to))] T Rehanem M gt 1 < k< 0.

With these expressions is easy to see that LY cancels out the last term in the integral (B.4) and
that L% + 8:11 cancels the cosine term, so

SIS SIS SEIED 3 3/ Sp oL o
1>1 1>2 1<-2 k>11>k k<—11<k
Equation (2.3) allow us to expand in Fourier series the function

ro(F(t+ )] @4,

Considering this and performing the change of variable

-G
= —|( T R
2 3

introduced in (1.33) one gets from the equation for z; given in (1.32a) and the function for ay
given in (1.32b) which implies

eiozh — T ieiao
T+1
that
el .3
S ke 2R 1)2\ [(—1)2 . o gaS ()
l _ ko iqto x2l—k,—k .
Lk—e UiGloll—Qk—l (l_k;>< ) )qezzeq OCq [m (T+’L')2l(7'—’i)2l_2kd7_, ngSZ

e 3
iq to ~—2l+k,—k > equ(H ° )
Zezq °c, ; /_OO )T ) dr; 1<k<0

qEL
(B.7b)

Gl — gikao 272N -1/2\ (~1/2
k G0—4l+2k—1 I+ k -1
substituting now equations (B.7) in (B.6) we get in terms of the definitions (B.1) and (B.2) that

L= > "L(q0,0)

q€Z 1>1
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n Z Zei(Qto-‘rozo)E(q, 1,0) + Z Z ei(qto—ao)g(q’ —1,1)

qEZ 1>2 q€Z1<—2
159 D ILEETLTVES 3 35 DELILITVINNCE
qE€L k>1 1>k q€Z k<—11<k
If we use the equations for L j given in (B.3), the lemma becomes clear. o

B.2 Proof of proposition 2.3

We will bound N (g, m,n) by means of the expression (A.12) separating the terms in it. First take
u* as in lemma A.3 and choose
~3/2
e =G,

with Gy > ¢2/3. We write down then

3

o .6t R o uveooL 9
/ Fm,n(u)e T du = / Fm,n(u)e 27" du +/ Fm,n(u)e 2% du
u(C) u u(C)

*

and bound independently the two terms in the right. We have

s

u a3
< / |EE (w)e™®2"" du  (by means of (A.10))
G532k, '

u* N a3
/ Foop(w)e™ 2" du
u(C)

o’e?
3m+3 3
min 2 2 Gy, =+
<ot B [ e ] ez
c A
min{m,n} ~3m—%
<2y Gy (B.9)

Now, using the definitions of i}, (u) given in (A.14) and v* in lemma A.3,

3

[e ] —qﬂu
e 2
< / - - du
we |(7E(u) = 8)2m T (7E (u) + )20t
[er: 2
e~ 12 v 1 1
=T GG TR — i [ E (ur) + 2t

o0 Gg
/ Fﬁn(u)e*'JT“ du
u

*

3
< 2G5‘O’e*q%“* (by lemma A.3)
<2Gy? (B.10)

It remains only the last integral of (A.12) where the integrand is given in (A.15) and the domain
I's in (A.4). The path I's can be parametrized by

T=i+cGye® with 0 € (01,05 = [r — 0., 0.). (B.11)

If we define (0y?
~ . T
h(0) = h(r(9)) = i( T3 +7(9)),
a straightforward computation using (A.7) shows that
2

7 - i 1 -3 3
h0) = =3 — G (e + =Gy et
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and then
el

- _3
I h(0)] — e—gcge—gc2(cos29+§co 2 sin 30)

_3
—4G3 47 (145G, ?)

IN

e

o~ #G5e1 (for G > (c2/9)'/?). (B.12)

IN

Note that over I's we have, for Gy > ¢2/3, that

T—1 T—1 c 372 _ 1
11+ ; |>1—| |f1—§GO >3
and therefore ) .
12n - 12n T—12n 2n
=2 1+ ——| 22"— =1 B.13
[+ = (201 [T 2 22 (B-13)

Now, we can bound the last integral of (A.12)

G

“‘ou

h(6)

1S h(r) 02 o
/rg (7 —4)>™(r +14)*" an = /91 (7(0) —i)*™(7(0) +1)

3
(1T E o0
s-ic Gy 2e'” df

02 |quTS;L(9)|

< ¢Gg?df (by (B.11) and (B.13))

_/91 |cG83/2€i9|2m

< P Gt by (B12)
— o C .

= Jo, Gyt Y

2 _
< T @3m3/2,-3G gac®
= 2m—1-0

< 2mGEmTE2em 3G eue” (B.14)

From lemma A.1 and the bounds (B.9), (B.10) and (B.14), we can bound N (¢, m, n) by equation
(A.12) as follows

a3 .
IN(g,m,n)| < e~ V/22mtne a7 G 2m=2ntl (gymintmnd g8m=3/2 | 4G3 | ogGam—3/%eac”)
(el .
< 27_‘_671/2€q¢:2 2m+nequU GQ—Qm—Qn-i—l (,yinln{man}Ggmfg/Q + G0—3 + Ggm*3/2)

2 a3 _92 _ 1 .
< 2me™1/2euc gmingmas Gy e ('yinm{m’"} +141)
3
< K22m+”eqcze*q% Gglf?n*é

with
Ky = 6me /2,

This proves proposition 2.3.

B.3 Proof of propositions 2.4 and 2.21

The only difference in proving these two propositions consists in the treatment of the residue R{, ,,
of the function f, ,, given in (A.15). At the end of this section we point out the difference and
conclude the proof of either case.

To prove the statement we will proceed as in the proof of proposition 2.3 changing the path of
integration to the path I" defined in (A.3) leading to equation (A.12). The important fact to notice
is that the integral (A.12) does not depend on €. So, we will compute only the e-independent terms
of that integral. We will follow a series of lemmas leading to the proof of the statement.
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Lemma B.2. Let 0 < & < 1/¢ <1 and u(C) be as in equation (A.9), F:, defined by (A.14) and

0 < 8 < 1, then if u** = 2/3 as given in lemma A.7 and 0 < v/u < /. = BvVu** < v/u** for any
€ > 0 small enough we have

0o a3 2m Us a3 . R R
/ FE  (u)e 72" "du = Z/ e 1= (£ /u) TP du + By + By
u(C) j=07w(C)

where

|| <2-p72m71GH3, Byl < 3Gy ?

_2
-5
with p = |7%(us) —i| <1 and 73 = 2.
Proof. By definition, for & > 0 small enough we have that 0 < u(C) < u, < \/ux < 2/+/3, then
o0 i Jeid U 4 G ~
/ Frpn(w)e™ 2 du = / F (e 72 du + By
u(C) u(C)

with

3

~ o0 G
E; :/ F,fyn(u)e*qél“du

now, since 0 < u, < u* by lemma A.3 and the triangle inequality

3

G
& g e - e i
E| = F 12 du| < d
|1 /u mon(w)e U= /u |(7% (u) — )2+ (7% () + i)2n ]| u
<
27972 Ux 1 1
T g6 I (ue) = AP e (us) P
3 2m+1
< aGgtee T (1)
p
< 2GyPp 2L (B.15)
By lemma A.4 and equation (A.25) we have
U 4 Jei 2m . e . ~
/ Fon(u)e™ 2 du = Z / d?’mequU(i\/ﬂ)ﬂm*lﬂdu + Es
u(C) =0/ w(©)
where
~ N G
b= / gm,n(i\/a)e 2 "du
u(C)
then by lemma A.8 we have that for any € > 0 small enough
~ U a3
Bl < [ gk vl
u(C)
K > G
< 1 /_ygb(m>72mfl equOudu
1-p4 0
2K, _
S ,Ym /’U,** 72m71G 3
a-pE V) 0
2K, —2m—1,—3
< 2 (Vurr) P la
(1 . 6) 2 ( ) 0
2 m—3
== G
(1-p) "2
now the lemma is proven. O
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The next lemma is a straight forward application of the last one.

Lemma B.3. Let 0 < ¢ < 1/c < 1 and u(C) be as in equation (A.12), Ff  defined by (A.14)

and 0 < 8 < 1, then if u** is given by lemma A.7 and 0 < u < \/u, = BVu** < Vu** for any
€ > 0 small enough we have

[ a0 = Fe Foe =232 [ v ()2 s 24 2,
u(C) ©)

where El and Eg are the same as in lemma B.2.

Proof. By lemma B.2 we have

[ B Fr e qz“du—z / om0 Fugnm [ (—1)=2m=1 (/)2 gy 9 42,

uw(C) )
then the non trivial terms in the sum are given when —2m — 1+ 7 = —2s — 1 with s = 0,..,m
This observation proves the lemma. O

Lemma B.4. Let 0 < £ < 1/¢ < 1 and u(C) be as in equation (A.12), 0 < 8 < 1, then if u** = 2/3
as given in lemma A.7 and /u, = Svu** < y/u**, then the e-independent term of

Use a3 )
[ e, (v
u(C)

is

(S+1)' m,m

C1)%25F5 (25 4 1) 0
( ) ( S+ )(28+2)' 2m—2s

Gy (5) +Eam )
with
|Bs(m,s)| < 29587271 Gy*.
and v3 =2 .
Proof. First we write down
[ = [ e (e B (wo)

where

By(m,s) = — / et Fugnm  (Ja)

observe that F3(m, s) is independent of e. Let us bound Es(m, s)
o) o3

B, )] < a7,V > [ ern

251 ot Gy

< Jdgn o (Vue) 7 272 —

q
< 2|d2m 25|(6 v U**)_25_1G53

1 _
< QWKw%”(ﬂ\/u**)*QS*lGO 3 (by lemma A.7)

1

§2 ,YBQSlmflG—i%
(\/’LLT) 12 ( ) 0

f2,yﬂ2s 1G

where 3 = 2.
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By equation (A.9) we know that u(C) = O(ce?) and then the following definitions make sense

I, s(e) = e~ Wty (F25=1)+p gy,
u(C)
Fra(e) = (u(C)) 327D Tpemaou(@)
G
2
using this notation and integrating by parts we have
Iy 1.4(e) = q‘i /Oo 090Uy, 3 (—=25—1)+p g 11 (u(c))%(*QSfl)erequ(C)
—s—5+tDp Juc) —S—5+tp
1
= ——7—a615(e) = fps(e)] (B.17)
—s—L+p P P
also
e — ig m,m —2s5—1 7,1
/ e Mdy o (V)T T du = dyyy o I s (€) (B.18)
u(C)
Now, in the case where s > 0, using equation (B.17) s-times we get
(49)* - (@0)~ fp.s(e)
1075(5) = 1515(5) — ’
) L ) e ) P

The e-independent term of Iy s(g) is given by

(g6)° . _ (¢9)° 11
[ e = I
(\/q_6)25—1 1

= r(=).
(ms—3+D(=s—3+2)(-3) @
then the e-independent term of the integral in equation (B.18) is

oy 05 (V40)** 1
(—s—2+1)(-s—1 +2)...(_%)F(§)

when s > 0.
In the same way, we have, that the e-independent term of

3

_ o —q%u mn,m —1
Ino(e) = e 2 tdy (Vu) " du

@)

is dy;" (v/q)'T'(3) and by equation (B.16) and the bound on Ej the lemma is proved if we notice
that

(—s—%—i—l)(—s—%—i—Q)---(—%) :%(—23—1—1)(—25—1—3)---(—1)
= (_21)5(23— 1)(25—3)---(1)
(—1)* (25 + 1)
25 2541
and using that ( )
2s +2)!
(2s+ 1)!! = m

we get
(7Sf§+1)(—8*5+2)"'(*5):225+1(25+1) (s—i—l)!

This expression allow us to write the cases s > 0 and s = 0 in one equation which completes the
proof. O

85



Lemma B.5. Let u(C) given in equation (A.9) and F;f , defined by (A.14), then the e-independent
terms of
oo G3
[ - B w)e ¥
u(C)
are given by

s o5 +1) 1 35—
—1)525+3(2 1(3761"’” =3P (2) 4T
;)( ) (S+ )(2 +2) 2m— qu (2)+ m,n
where
mn| < K1174 G 3
with

B = 1+—\/ 22, K1122<\/§+ﬁ>.

Proof. A straight forward apphcatlon of lemmas B.3 and B.4 gives the correct prediction on the
value of integral, it only remains to show that the errors behave as stated. Let

T4, =2E, +2E, + 2E}

with El and EQ are given by lemma B.3 and

where Eg(m, s) is given in lemma B.4. In this way

T2, | < 2|Ey| +2|Ea| +2) " |Es(m, s)|
s=0

22 -
S 22p_2m_1G63 + V?Gag + 227?G63 26—25—1

(1-5)
=22G3 (p_Qm_l—i— 0 + % 6‘25)
“ APy
since v3 = 2 and
m —2m—2 1 —2m —2m
> B =
2 21 S1-p-1-5
choosing p = 1/v/2 we have
1 v\ 1
oo (5 1545 (5) 1=5)
Tl ﬂ ﬂ pg*) 1-8
< 22G3<£) <\/§+ 7)
0\ p? B -p)
As we have proceeded in the proof of lemma A.3, from fixing p? = |7F(us) — i|*> = 1/2, using

equations (A.18), (A.19) and (A.20) we can find u., and therefore, by its definition given in lemma
B.2 we have that

g2 = =—1+— —~o79

u**

and then by setting

_ 92 2 _ 2
= (\@Jrﬂ(lﬂ)) T

we have
T2 | < Kuyg' Gy
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Lemma B.6. Let f, ,, be defined in equation (A.15), then

equS/B —om (7Z.>T+S(7QG3)T+]-
q N — 0
Res(f}, ,(7),1) = o E ( . ) o] (B.19)
274+3r+s=2m—1
J,r,s20

Proof. From the definition of fJ, , given in (A.15), and substituting the expression

h(r) =—2/3— (1 —9) +i(r —i)%/3

we have 52 SriV? a5 s
gﬂ/ n(T) _ efq Eefq. (7—71) eq .E(sz) ’ 5 _ G_g

' (t — )2 (1 4 14)%" 2

if we use
(7 +1)72" = (20) 72 (1 + (7 — i),/2i) 2

and expand in Taylor series around ¢ we get

- % = [—2n Tfisoo q5 (1 —1) qoi\ r N3

(1) = g i Z ED I TCONCRE
(1 —1) rlt 3
s=0 j= r=0

by taking the coefficient of the —1 degree term we obtain the desired result. O

Remark B.7. If j,r and s represent the indexes in (B.22) and m > 2 then the choice j = m — 1,
r =0, s = 1 satisfy
0<ry,s 27+3r+s=2m—1.

and also j +r=m — 1.
Lemma B.8. Let fZ , be defined in equation (A.15) and § = G§j/2, then

Res(f}, ,(7),1) = O(6™ ™) = O(Gg™ ™)

Proof. By induction on m. Is easy to see that for m = 1,2 the result is true. Assume, then that
for m we have
max{r+j}=m-—1

under the constraints
0<ry,s 27+3r+s=2m—1

We will show that
max{r+j}=m

under the constraints
0<rjs 2j+3r+s=2(m+1)—1=2m+1.
let (j,7,s) such that 2j + 3r + s = 2m + 1, then
2(j — 1) +3r+5=2m — 1, (B.20)
here we have two different cases
-j=1

_j:o
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When j > 1 we have that, by equation (B.20), (j —1,, s) satisfy the induction hypothesis, that
isj—14+r<m—1 and then
j+r<m

When j = 0 the equation (B.20) reads
3r+s—2=2m-—1 (B.21)

here we have three different cases

-52>2
-s=0
_s=1

When s > 2 we have that, by equation (B.21), (0,r,s — 2) satisfy the induction hypothesis,
that is j +r =r < m — 1 and then
j+r<m

When s = 0 we have that, by equation (B.21), 3r —2 = 2m — 1 or 3r = 2/m + 1 from where
m = 3s’" + 1 and then r = 28’ + 1 with s’ = 0,1,.... This imply

r+j=r=2s+1=m-s <m

When s =1 we have that, by equation (B.21), 3r = 2m, from where m = 3s’ and then r = 25’
with s/ =1,2,.... This imply

r+j=r=28=m—s <m

In this way we have seen that in every case we get r + 7 < m and by remark B.7 there exist
a configuration such that r» + 7 = m. Therefore the maximum value of r + j is exactly m. This

completes the induction.
O

Lemma B.9. Let I'3 be the path defined in (A.4), and f7, ,, be defined in equation (A.15), then

the e-independent terms of
a3

e / £, (r)dr
3

3

moLGEm T3 where Kqp = 2me?/3.

are bounded by Ki2q
Proof. If T's is the path defined in (A.4) we can parameterize it by
T =14+ cee? 0 € (01,0) =1 —06,0;]

where 6. is given in (A.8). Then by using a Taylor series argument is not difficult to see that the

e-independent term of
[ natrir
rs

is exactly miRes(f4, ,,,1). By lemmas B.6 and B.8 we have, naming § = G3/2, that

m,n’
(¢9)™ ! (—2n)
2j+3r+s=2m—1 §

22n

ag
q-— q )| <
le? Res( (1),9)] < 25 "3yl !

m,n

<

— 22n ‘ s 95 374l j'
7,r,s€NU{0}
(@) P S 2n+s—1\1 =111
< M7 —_ — —
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5} —l-1
(¢ 2)2n 92n,1/3,

_ (q5)m7164/3
("

p—

< 264/3qm71G8m—3

So, by setting
K12 = 27re4/3

this lemma is proved. O

Now we can prove proposition 2.4. N(gq,m,n) is given in (A.12), and since it does not depend
on € we can apply lemmas B.5 and B.6 to obtain

S rm
d e 13 5 (S+1)! 1 _3s—3 1
_ Um,n _1\S9s+ m,m s - q q
N mm) = o sz:;( D728 @25 4 Dy et 2 Gy L ()4 T + Rl
where
¢
Rfrzn,n = (_i)eqT gl,n(T)dT

I's
and by lemma B.5
TS, | < K" Gy
By lemma B.9
R, | < Kiag™ 'GP
Using that 2°71(s + 1)!(2s + 1)!! = (2s + 2)! to show that
(2s+1)(s+1)! 1
(25 + 2)! 251(25 — I’

completes the proof of the proposition 2.4. Due to the fact that the right hand side of this last
expression is not defined when s = 0 but the left hand side is and is equal to one, we need to point
out that when s = 0, the term 1/(2s — 1)!! in the final formula should be replaced by 1.

To prove proposition 2.21, instead of using lemmas B.6, B.8 and B.9, we use the next lemma,
which also implies lemmas B.8 and B.9.

Lemma B.10. Let f2, , be defined in equation (A.15), then

3 m—1 s
, G nym q 1
Res(f, . (7),1) = 2ie” 1= Z dyim— -1 (—56'8) o (B.22)
s=0
where the constants d721(’275)71 were introduced in lemma (A.4).

Proof. From the definition of f£, , given in (A.15), and substituting the expression
hr)=-2/3— (1 —i)* +i(t —i)*/3
we have for any p < 1

R q . 1 eq%i(*éf(‘f*i)%r%(rfiﬁ)d
65( m,n(T)y Z) B 2_7” ‘T—ilzp (7‘ _ Z)2m(7- + 1)2,”/ T
3

G G 2,4 3
1 e~ 13 et (Fwitgw?)

2mi w2m (w + 27)2n

270 Jjwi=p
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We now make the change of variables in the integral z = w(1 — iw/3)/? which satisfies

This change is exactly the change (A.7) just noticing that 22 = u, then as we discussed, it has
inverse, and then it is well defined.

1 I
(§ 3 e 2
R 7 1) = — - - 2zd
A1) = 5 | T T
12 .9 %82
S /z—ee R M CLE

whenever the circle with radius e is contained within the curve {z = w(1—i%)/2 : |w| = p}. Then,
as we have seen from the change of variables (A.7) and the formula (A.22), we can write

G3 G3
Res(f, ,(7),1) = 2iequORes(equOZQzFé,n(z:Q))

a 8 2 & )
= 2ie” %3 Res(e™ 92 ~? E d?’mzj_%")
Jj=0

since

by taking the coefficient of degree —1, we need that 2s+j—2m = —1 or equivalently j = 2(m—s)—1,
which leads to

m—1 S
. . ﬁ?i m,m qd 3 1
Res( g%n(T),z) = 24e 973 d2(mis)71 <§GO> ml
s=0
O
this concludes the proof of proposition 2.21.

B.4 Function W
Define

oo wn

W(w) =
2Ty
=) ()"
n=0 (TL)
= Jo(£2ivw) (B.23)
also
0 ,wn—l &0 ,wn—l e ,wn—2 0 ,wn—2
WI = = _— W” = — 1 ==
(w) n;" (nl)? n; nlln — 1)1 (w) n;(" ) =1 n; nl(n — 2)]
using that
Jn—1(2) = Jn+1(2) = 2J;,(2)

we have



(J2(2) = Jo(2))

N =

Jo(2) =

and by the chain rule

W' (w) = Jé(iQi\/E) (ﬂ

(izzf ) 2

2iv/w

J1(£2iv/w)

i2\/_

" L [ " (121)
%% (w)—:tz_\/—_JO(:I:Q ivw)——= NG

=+ _Ejéf(i%\/a) — 2—3/2J0(:|:2i\/1_u)]

1 .
SLE Jé(imﬁ)}

:ii-%(b(i%\/—) Jo(£2ivw)) + 3/2 (i22\/_]

1 . . .

= i {Jo(j:%\/a) — Ja(F2ivw) — (121\/_)}

i2\/_

from equation (B.25), if we set
2 = +2ivw
we have
W (w) = £ [Jo(2) — a(z) — 2 1i(2)]
2 z
and using that Jo(z) = (2/2)J1(2) — Jo(2)
1 2
wW"(w) = Jo(z) — ;Jl(z)

also, from equation (B.23), we have
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