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Deheuvels, mon directeur de thèse. Tout au long de ces années de notre
collaboration, j’ai eu la chance de profiter de ses immenses connaissances
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de nombreuses heures à discuter avec moi et lire mes textes, jusqu’à corriger
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Résumé

Dans la première partie de la thèse, nous nous intéressons à la conver-
gence faible du processus empirique pondéré des copules. Nous fournissons
la condition suffisante pour que cette convergence ait lieu vers un processus
Gaussien limite. Nos résultats sont obtenus dans un espace de Banach Lp

(1 ≤ p <∞). Nous donnons des applications statistiques de ces résultats aux
tests d’adéquation (tests of goodness of fit) pour les copules. Une attention
spéciale est portée aux tests basés sur des statistiques de type Cramér-von
Mises.

Dans un second temps, nous étudions le problème de provisionnement
stochastique pour une compagnie d’assurance non-vie. Les méthodes stochas-
tiques sont utilisées afin d’évaluer la variabilité des réserves. Le point de
départ pour cette thèse est une incohérence entre les méthodes utilisées en
pratique et celles publiées dans la littérature. Pour remédier à cela, nous
présentons un outil général de provisionnement stochastique à horizon ul-
time (Chapitre 3) et à un an (Chapitre 4), basé sur la méthode Chain Ladder.

Abstract
The aim of this thesis is twofold. First, we concentrate on the study of

weak convergence of weighted empirical copula processes.
We provide sufficient conditions for this convergence to hold to a limiting

Gaussian process. Our results are obtained in the framework of convergence
in the Banach space Lp (1 ≤ p < ∞). Statistical applications to goodness
of fit (GOF) tests for copulas are given to illustrate these results. We pay
special attention to GOF tests based on Cramér-von Mises type statistics.

Second, we discuss the problem of stochastic claims reserving in general
non-life insurance. Stochastic models are needed in order to assess the vari-
ability of the claims reserve. The starting point of this thesis is an observed
inconsistency between the approaches used in practice and that suggested
in the literature. To fill this gap, we present a general tool for measuring
the uncertainty of reserves in the framework of ultimate (Chapter 3) and
one-year time horizon (Chapter 4), based on the Chain-Ladder method.
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Chapter 1

General Introduction

The present thesis dissertation is divided in two main parts. The first part
(Paper I), of theoretical character, concerns the study on the weak con-
vergence of (weighted) empirical copula processes in Lp spaces. The second
part (Paper II and Paper III), with more practical applications, is related
to the problem of claims reserving in general non-life insurance. In Paper
II we consider the topic of reserve risk under the current regulatory regime
- Solvency I. In Paper III we study the same problem (reserve risk) in
the framework of the future European insurance regulations - Solvency II.
These two parts are treated separately. They are somehow linked in the sense
that copula functions provide a useful tool to model multivariate reserve risk
in non-life insurance. Presently, these joint aspect will not be considered. It
turns out that we have considered here two separate problems, leaving for
future research the goal of treating these questions in a unified framework.

1.1 General Introduction to Paper I

1.1.1 Notes on copula functions

Copula functions have recently become one of the most significant new tools
to handle in a flexible way the dependence relations between random vari-
ables. They play an important role in the construction of multivariate distri-
bution functions. As a consequence, copulas can be very useful for building
the stochastic models having different properties that cannot be overlooked
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in practice (e.g., heavy tails, asymmetries, etc.). We refer to Trivedi and
Zimmer (2005) for general discussions of these questions.
Interest in copulas arises from several fields. First, econometricians often
have more information about marginal distributions of related variables than
on their joint distribution. The copula approach provides then a useful
method for deriving joint distributions for these marginal distributions, es-
pecially when the variables are considered nonnormal. Second, in a bivariate
context, copulas are instrumental to define nonparametric measures of depen-
dence for pairs of random variables. Finally, copulas give useful extensions
and generalizations of approaches for modeling joint distributions and de-
pendence that have appeared in the literature.

The term copula was introduced by Sklar (1959). However, the idea of
copula had previously appeared in a number of papers, most notably in Ho-
effding (1940, 1941) who established best possible bounds for these functions
and studied measures of dependence that are invariant under strictly increas-
ing transformations. Copulas have proved themselves useful in a variety of
modeling situations. Two of the most commonly used applications are briefly
mentioned:

• Financial applications: copula functions are commonly used in financial
risk assessment. They present an attractive alternative for pricing the
assets in models parameterized by nonnormal marginals. Copulas are
also used in: asset allocation, credit scoring, default risk modeling,
derivative pricing, and risk management.

• Actuarial applications: actuaries have often used copulas, among oth-
ers, in modeling dependent mortality, claims losses and pricing of (re)-
insurance contracts.
Concerning the first application, it is often of interest to examine the
joint mortality pattern of groups of more than one single individual.
This group could be, for example, a husband and wife, a family with
children, or twins. In such cases, there is strong empirical evidence
to support the dependence of mortality on pairs of individuals. For
example, statistical analyses of mortality patterns of married couples
are frequently made to test the ”broken heart” syndrome. Intuitively,
pairs of individuals exhibit dependence in mortality because they share
common risk factors. These factors may be purely genetic, as in the
case of twins, or environmental, as in the case of a married couple.
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Concerning the second and third applications, it is common in actuarial
practice to model the joint distribution of indemnity claims and an al-
located loss adjustment expense (ALAE). ALAE are types of insurance
company expenses that are specifically attributable to the settlement
of individual claims such as lawyers fees and claims investigation ex-
penses. One of the possible ways to describe the joint distribution of
losses and expenses is to fit a bivariate copula function to the data.
After having identified the joint distribution of vectors (loss, expense)
by fitting the copula to the bivariate data, it is possible to analyze the
distribution of arbitrary functions of the (loss, expense) vector. This
leads us to applications of copulas in the pricing of the (re)insurance
contracts. We refer to Frees and Valdez (1998) and Genest et al (1998)
for more details about the actuarial applications of copula functions.

Moreover, the article of de Jong (2012) is one of the first papers dealing
with the actuarial applications of copulas to a multivariate framework
of claims reserving. The approach described in this work can be consid-
ered as a starting point for bridging the two separate parts of present
thesis (Paper I on the one hand and Paper II together with Paper III
on the other hand).

1.1.2 Copula functions

The problem of investigating stochastic dependence is then reduced to the
problem of investigating bivariate distribution functions on the unit cube
[0, 1]d with uniform marginals, which leads, namely, to the copula distribu-
tion. For the sake of brevity we only state the results for d = 2.

Definition 1.1.1 (Copula) A 2-dimensional copula C : [0, 1]2 → [0, 1] is
a bivariate cumulative distribution function on the unit cube with uniform
marginals.

The motivation of this definition is summarized in the following well-known
theorem of Sklar which underlies most applications of copulas. It turns out
that relaxing the assumption of continuity of the marginals results in the
non-uniqueness of the associated copula.
For a distribution function K on the real line K−1 denotes the generalized
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inverse of K and is formally defined by

K−1(u) :=

{
inf{x ∈ R |K(x) ≥ u } 0 < u ≤ 1,

sup{x ∈ R |K(x) = u } u = 0,
(1.1.1)

where inf ∅ :=∞ and sup ∅ := −∞. The range of K is denoted by ranK.
Let R̄ denotes the extended real line [−∞,∞].

Theorem 1.1.1 (Sklar’s Theorem) Let F be a 2-dimensional distribution
function with margins Fp for p = 1, 2. Then there exists a copula C such
that for all x = (x1, x2) ∈ R̄2

F (x) = C(F1(x1), F2(x2)). (1.1.2)

If all marginals are continuous then C is uniquely determined by

C(u) = F (F−1
1 (u1), F−1

2 (u2)), u = (u1, u2), (1.1.3)

otherwise it is uniquely determined on the product of the ranges of the marginal
distributions, namely ranF1 × ranF2. Conversely, if C is a copula and F1

and F2 are distribution functions, then the function F defined by (1.1.2) is a
joint distribution function with marginals F1, F2.

Proposition 1.1.1 Let C be a 2-dimensional copula and suppose that X =
(X1, X2)T ∼ F = C(F1, F2) is a random vector with marginals F1, F2 and
copula C. Then the following results hold:

(i) Independence. If F1 and F2 are continuous then X1 and X2 are
independent if and only if C(u) = u1u2 = Π(u). The latter distribution
function is called the independence copula.

(ii) Lipschitz-continuity. C is Lipschitz-continuous with respect to the
L1-norm on [0, 1]2 in the sense that

|C(u)− C(v)| ≤ ‖u− v‖ = |u1 − v1|+ |u2 − v2| for all u,v ∈ [0, 1]2.

(iii) Differentiability. For all u1 ∈ [0, 1] it holds that the partial derivative
of C with respect to u2 C2 := ∂C(u)/∂u2 exists for λ1-almost every u2.
Furthermore, 0 ≤ ∂C(u)/∂u2 ≤ 1. The same is true with (u1, u2)
changed into (u2, u1).
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(iv) Invariance under increasing transformations. If F1 and F2 are
continuous and α, β are strictly increasing mappings, then the copula
of (α ◦X1, β ◦X2) is C.

(v) Kendall’s-τ . If F1 and F2 are continuous then the Kendall’s τ is given
by

τ = τX1,X2 = 4

∫
[0,1]2

C(u)dC(u)− 1.

For proofs of these results and more details regarding the general theory of
copulas we refer the reader to the monographs Nelsen (2006); Joe (1997).

1.1.3 Empirical copula function

The empirical copula function is the most famous and easiest nonparametric
estimator for the copula C of a random vector. Let Xi = (Xi(1), Xi(2)),
i = 1, 2, ..., n, be a sequence of independent identically distributed bivariate
random vectors with cumulative distribution function (cdf) F, continuous
marginal distribution functions F1 and F2 and copula C.

Let 1A denotes the indicator function of event A. The empirical copula as
the simplest nonparametric estimator for C (going back to Deheuvels (1979))
simply replaces the unknown terms in equation (1.1.3) by their empirical
counterparts, that is

C̃n(u) := Fn(F−1
n1 (u1), F−1

n2 (u2)), (1.1.4)

where

Fn(x) = Fn(x1, x2) =
1

n

n∑
i=1

1{Xi(1)≤x1,Xi(2)≤x2},

Fnj(xj) =
1

n

n∑
i=1

1{Xi(j)≤xj}, j = 1, 2,

denote the corresponding empirical distribution functions. The functions
F−1
nj , for j = 1, 2, are defined via (1.1.1).

It is noteworthy that the literature provides several similar nonparametric
estimators for the copula. For example, (see Genest et al (1995)) studied the
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rank-based estimator

Cn(u) = Cn(u1, u2) =
1

n

n∑
i=1

1{Fn1(Xi(1))≤u1,Fn2(Xi(2))≤u2}. (1.1.5)

In the latter expression the marginal empirical distribution functions Fnj are

often replaced by their rescaled counterparts F̂nj = n
n+1

Fnj. Both modifica-
tions do not affect the asymptotic behavior of these empirical functions, see
Proposition 2.2.2 (e).

1.1.4 Weak Convergence in metric spaces

Let (D, d) be a metric space and let (Pn)n∈N and P be Borel probability mea-
sures on (D,D), where D denotes the Borel σ-field on D. Weak convergence
of Pn to P , which we write as Pn  P , is classically defined through the
requirement that ∫

D

f dPn →
∫
D

f dP for all f ∈ Cb(D),

where Cb(D) denotes the set of all bounded, continuous and real-valued func-
tions on D (see e.g. Billingsley (1968)). For D-valued random variables
(Xn)n∈N and X, weak convergence is conveniently described in terms of their
induced laws, so that Xn  X if and only if

Ef(Xn)→ Ef(X) for all f ∈ Cb(D). (1.1.6)

The classical theory of weak convergence requires that all random variables
involved are Borel measurable. While this condition usually holds for separa-
ble metric spaces such as Rd or Cb[0, 1], it becomes problematic when the met-
ric spaces are nonseparable. A classical example is the càdlàg-space D[0, 1],
containing all functions on the unit interval which are right-continuous and
possess left-hand limits, equipped with the metric induced by the supremum
norm. For i.i.d. random variables X1, ..., Xn on [0, 1] the empirical distribu-
tion function

Fn(t) =
1

n

n∑
i=1

1{Xi≤t}, t ∈ [0, 1],
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as well as the empirical process

αn(t) =
√
n(Fn(t)− F (t)), t ∈ [0, 1],

seen as random variables in D[0, 1], are not Borel measurable if D[0, 1] is
equipped with the supremum norm, see, e.g., Billingsley (1968).

During the last decades several approaches to overcome this difficulty
have been suggested. In this section we will briefly summarize the most
modern approach, essentially due to J. Hoffmann-Jørgensen, and extensively
investigated in van der Vaart and Wellner (1996) and Kosorok (2008). The
key idea is to drop the requirement of Borel measurability of each Xn, mean-
while upholding the requirement (1.1.6), where the expectations are replaced
by outer expectations.

Definition 1.1.2 (Outer integral and outer probability) Let T be an
arbitrary map from a probability space (Ω,A,P) to the extended real line R.
The outer integral of T with respect to P is defined as

E
∗T = inf{EU,U ≥ T, U : Ω→ R mesurable and EU exists }. (1.1.7)

The outer probability of an arbitrary subset B ⊆ Ω is defined as

P
∗(B) = inf{P(A), A ⊃ B,A ∈ A}. (1.1.8)

Inner integrals and inner probabilities are defined by E∗T = −E∗(−T ) and
P∗(B) = 1 − P

∗(Ω \ B). The infima in the latter definitions are always
achieved, see the following Lemma, which is proved in van der Vaart and
Wellner (1996).

Lemma 1.1.2 (Measurable cover functions)
For any map T : Ω → R there exists a measurable function T ∗ : Ω → R

with T ∗ ≥ T and with T ∗ ≤ U a.s. for every measurable U : Ω → R with
U ≥ T a.s. For every such T ∗ it holds E∗T = ET ∗, provided that ET ∗ exists.
The latter is certainly true if E∗T <∞.

With Definition 1.1.2 and Lemma 1.1.2 at hand, we can define weak conver-
gence, outer almost sure convergence and convergence in outer probability
for arbitrary nonmeasurable maps.
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Definition 1.1.3 (Convergence: Weak, outer almost surely and in
outer probability) Let Xn : Ωn → D, X : Ω→ D be arbitrary maps defined
on some probability spaces (Ωn,An,Pn), (Ω,A,P).

(i) If X is Borel measurable we say that Xn weakly converges to X,
written Xn  X ,if and only if

E
∗f(Xn)→ Ef(X) for all f ∈ Cb(D).

(ii) If Xn, X are defined on a common probability space we say that Xn

converges outer almost surely to X if d(Xn, X)∗ → 0 almost surely

for some version of d(Xn, X)∗ . This is denoted by Xn
as∗−−→ X.

(iii) If Xn, X are defined on a common probability space we say that Xn

converges in outer probability to X if d(Xn, X)∗ → 0 in probability.
This is equivalent to P

∗(d(Xn, X) > ε → 0 for every ε > 0 and is

denoted by Xn
P
∗
−→ X.

With this definition much of the theory for non-measurable maps parallels
the classical theory, up to a remarkable degree. For example, the similarities
include a Portmanteau Theorem, continuous mapping results, a Prohorov
Theorem and the metrization of weak convergence to separable limits by
the bounded Lipschitz-metric. The latter is developed in Section 1.12 in
van der Vaart and Wellner (1996) and states that Xn  X, where X is
Borel measurable and separable if and only if

sup
f∈BL1(D)

|E∗f(Xn)− Ef(X)| → 0,

where BL1(D) denotes the set of all real functions on D which are bounded by
1 and satisfy the Lipschitz condition |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ D.
Two further important properties for the investigation of stochastic conver-
gence of nonmeasurable maps are summarized in the following definition.

Definition 1.1.4 Let (Ωn,An,Pn) be a sequence of probability spaces and let
Xn : Ωn → D be arbitrary maps.

(i) (Xn)n∈N is asymptotically measurable if E∗f(Xn)−Ef(X)→ 0 for
every f ∈ Cb(D).
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(ii) (Xn)n∈N is asymptotically tight if for every ε > 0 there exists a
compact set K ⊂ D with lim infn→∞ P∗(Xn ∈ G) ≥ 1− ε for every open
G ⊇ K.

By Lemma 1.3.8 in van der Vaart and Wellner (1996) weak convergence
of (Xn)n to a tight limit implies both asymptotic tightness and asymptotic
measurability.

1.1.5 Empirical copula process

Let define the space `∞([0, 1]2) of all uniformly bounded functions ϕ on [0, 1]2

into R equipped with the topology induced by sup-norm, namely, |ϕ|∞ :=
supu∈[0,1]2 |ϕ(u)|.
The asymptotic behavior of empirical copula process, Cn :=

√
n(C̃n−C) was

studied in several papers, starting with Rüschendorf (1976) in the Skorohod
space D([0, 1]d) endowed with a particular metric (see, e.g., his Theorem 3.3).
Deheuvels (1981) established this result in the framework of independent
margins. In Gaenssler and Stute (1987),van der Vaart and Wellner (1996)
and Fermanian et al (2004), the weak convergence in `∞([0, 1]2) space of
the empirical copula process is shown to hold under the assumption that
the first-order partial derivatives of the copula exist and are continuous on
certain closed subsets or on the whole unit hypercube.

The rates of convergence of certain remainder terms have been established
in Tsukahara (2005) (see also Tsukahara (2011)) for copulas that are twice
continuously differentiable on the closed hypercube.

Unfortunately, it turns out that for many (even most) popular copula fam-
ilies, even the first order partial derivatives of the copula fail to be continuous
at some boundary points of the hypercube. We present below the examples
of commonly-used families of copulas (e.g., Gaussian and Archimedean), for
which the latter condition is not satisfied.

Example 1.1.1 (Gaussian copula) The bivariate Gaussian (or Normal)
copula with parameter ρ ∈ (−1, 1) is defined via an application of Sklar’s
theorem (see Theorem 1.1.1 on page 14 and Nelsen (2006)) by

CGa(u1, u2) := Φ2(Φ−1(u1),Φ−1(u2); ρ), (1.1.9)



1.1 General Introduction to Paper I 20

where Φ is the cumulative distribution function (cdf) of the standard nor-
mal distribution and Φ2 denotes the cdf of the bivariate standard normal
distribution with correlation parameter ρ ∈ (1, 1). Denote by CGa

1 (u1, u2) the
first-order partial derivative of CGa with respect to u1, namely, CGa

1 (u1, u2) :=
∂CGa(u1, u2)/∂u1. On the one hand, for ρ ∈ (0, 1), we have that
limu1↓0C

Ga
1 (u1, u2) = 1 for all u2 ∈ (0, 1], whereas on the other hand we have

CGa(u1, u2) = 0 when u2 = 0. As a consequence, the definition of CGa
1 (u1, u2)

cannot be extended by continuity to the point (0, 0). By similar arguments we
can show that the definition of CGa

1 (u1, u2) cannot be extended to (1, 1) (and
to the points (0, 1) and (1, 0) if ρ ∈ (−1, 0)). This means that the first-order
partial derivatives of Gaussian copula cannot be extended by continuity on
the unit cube.

Example 1.1.2 (Archimedean copulas) Let CArch be a bivariate Archi-
medean copula, that is (see, e.g., Nelsen (2006) and Frees and Valdez (1998)):

CArch(u1, u2) = φ−1(φ(u1), φ(u2)), (u1, u2) ∈ [0, 1]2, (1.1.10)

where the function φ : [0, 1] 7→ [0,∞] (called also generator) is convex,
strictly decreasing, finite on (0, 1], and vanishes at 1, whereas φ−1 : [0,∞) 7→
[0, 1] is its generalized inverse, defined via (1.1.1) on page 14. Suppose that
φ is continuously differentiable on (0, 1] and φ

′
(0+) = −∞. Then the first-

order partial derivatives of CArch are given by

CArch
j (u1, u2) =

φ
′
(uj)

φ′(CArch(u1, u2))
, (u1, u2) ∈ [0, 1]2, 0 < uj < 1, j = 1, 2.

The partial derivative CArch
j is likely to fail to be continuous at some boundary

points. For instance, if φ(1) = 0, then CArch
j cannot be extended by continuity

to (1, 1). When φ−1 is long-tailed, that is, if limx→∞ φ
−1(x + y)/φ−1(x) = 1

for all y ∈ R, then limu1↓0C
Arch(u1, u2)/u1 = 1 for all u2 ∈ (0, 1], whereas

CArch
1 (u1, u2) = 0 as soon as u2 = 0. It follows that in this case CArch

1 cannot
be extended by continuity to the point (0, 0).

Segers (2012) provides a remedy to this situation by showing that the
above cited results on the empirical copula process actually do hold under
a much less restrictive assumption. The assumption is non-restrictive in the
sense that it is needed anyway to ensure that the candidate limiting process
exists and has continuous trajectories:
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Condition 1. For each j = 1, 2, the j − th first order derivative Cj exists
and is continuous on the set

Vj := {(u1, u2) ∈ [0, 1]2 : 0 < uj < 1}. (1.1.11)

We show below that for the copula families from the above mentioned exam-
ples, the Condition 1 holds.

Example 1.1.3 (Archimedean copulas) Recall from (1.1.10) on page 20
the definition of a bivariate Archimedean copula CArch with generator φ. We
suppose that φ is continuously differentiable on (0, 1] and φ

′
(0+) = −∞. The

first-order partial derivatives of CArch are given by

CArch
j (u1, u2) =

φ
′
(uj)

φ′(CArch(u1, u2))
, (u1, u2) ∈ [0, 1]2, 0 < uj < 1, j = 1, 2.

Without loss of generality we show that this condition holds for j = 1. The
Condition 1 is verified, for j = 1, if CArch

1 exist and is continuous on the set
(0, 1)× [0, 1]. It is enough to prove this property on the set (0, 1)×{0, 1}. If
(u1, u2) ∈ (0, 1)×{0}, then CArch(u1, u2) = 0 and φ

′
(C(u1, u2)) = −∞. This

implies that CArch
1 (u1, u2) = 0. By similar arguments we conclude that the

same property holds on the set (0, 1)× {1}. As a consequence, the bivariate
Archimedean copulas fulfill Condition 1.

Example 1.1.4 (Gaussian copula) Recall the definition of the bivariate
Gaussian (or Normal) copula given in Example 1.1.1 on page 19. Since,

Φ2(h, k; ρ) :=

∫ h

−∞

∫ k

−∞
ϕ2(x, y; ρ) dx dy,

ϕ2(x, y; ρ) :=
1

2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
,

by direct computations and standard methods, we see that

∂Φ2

∂h
(h, k) = ϕ(h) · Φ

(
k − ρh√
(1− ρ2)

)
,
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where the function ϕ denotes the density of the standard normal N(0, 1) law.
In view of (1.1.9), the first-order partial derivative of CGa with respect to u1

is given by

CGa
1 (u1, u2) :=

∂CGa

∂u1

(u1, u2) =
∂Φ2

∂h
(Φ−1(u1),Φ−1(u2); ρ) · 1

Φ′(u1)
.

By combining the previous facts we get

CGa
1 (u1, u2) = Φ

(
Φ−1(u2)− ρΦ−1(u1)√

1− ρ2

)
.

If (u1, u2) ∈ (0, 1)× {0}, then Φ−1(0) = −∞ and CGa
1 (u1, u2)→ 0 as u2 ↓ 0,

for all u1 ∈ (0, 1). By similar arguments, if (u1, u2) ∈ (0, 1) × {1}, then
Φ−1(0) = ∞ and CGa

1 (u1, u2) → 0 as u2 ↑ 1, for all u1 ∈ (0, 1). This
shows that CGa

1 exists and is continuous on the set (u1, u2) ∈ (0, 1)× {0, 1}.
We conclude from these arguments that the bivariate normal copula with
correlation parameter ρ ∈ (1, 1) verifies Condition 1.

It is noteworthy that a stronger condition then Condition 1 about the
smoothness of first derivatives was provided by Omelka et al (2009). These
authors claimed that weak convergence of the empirical copula process still
holds whenever the first-order partial derivatives are continuous at [0, 1]2 \
{(0, 0), (0, 1), (1, 0), (1, 1)}.

However, there exist examples of copulas which are not continuously dif-
ferentiable on [0, 1]2 and for which Condition 1 does not hold:

Example 1.1.5 (Fréchet-Hoeffding bounds) Every bivariate copula func-
tion C is bounded by the so-called Fréchet-Hoeffding bounds,

W2(u1, u2) ≤ C(u1, u2) ≤M2(u1, u2),

for (u1, u2) ∈ [0, 1]2, where W2(u1, u2) := max(u1+u2−1, 0) and M2(u1, u2) :=
min(u1, u2) and both of them are copulas themselves. Note that the Fréchet-
Hoeffding lower bound is no longer d-increasing, for d ≥ 3 (see, e.g., (Nelsen,
2006, p.47)). It is easy to see that the first-order partial derivatives of
M2 and W2 do not exist on the sets {(u1, u2) ∈ [0, 1]2 : u1 = u2} and
{(u1, u2) ∈ [0, 1]2 : u1 + u2 = 1} respectively. With these observations, one
find that the Fréchet-Hoeffding bounds do not satisfy Condition 1.
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Example 1.1.6 (Extreme-value copulas-Cuadras-Augé family) The
Cuadras-Augé copula with parameters α, β ∈ [0, 1] is defined by

Cα,β(u1, u2) := min(u1−α
1 u2, u1u

1−β
2 ), (u1, u2) ∈ [0, 1]2.

This copula is symmetric and has a singular component on the main diagonal.
More specifically, P (U = V ) = β/(2β). The functions Cα,β are the survival
copulas associated with the Marshall and Olkin (1967) bivariate exponential
distribution. It is then readily shown that the first-order partial derivatives
of Cα,β do not exist on the set {(u1, u2) ∈ [0, 1]2 : u1 = u2}. As a result,
Condition 1 does not hold for Cuadras-Augé family of copulas.

Example 1.1.7 (Checkerboard copula) The checkerboard copula func-
tion is defined via its Lebesgue density c(u1, u2) := 2 · 1[0,1/2]2∪[1/2,1]2(u1, u2)
(see e.g., Urrleman et al (2000)). Then, from the relation C(u1, u2) =∫ u1

0

∫ u2
0
c(s, t)dsdt, we obtain that

C(u1, u2) =


2u1u2, (u1, u2) ∈ [0, 1/2)× [0, 1/2)

u1, (u1, u2) ∈ [0, 1/2]× [1/2, 1]

u2, (u1, u2) ∈ [1/2, 1]× [0, 1/2]
1
2

+ 2(u1 − 1
2
)(u2 − 1

2
), (u1, u2) ∈ [1/2, 1]× (1/2, 1]

As a simple consequence of the arguments above, we conclude that the first-
order derivatives of C, namely C1 (with respect to u1) and C2 (with respect
to u2), do not exist on the sets {1/2}× (0, 1) and (0, 1)×{1/2} respectively.
It means that the checkerboard copula C does not verify Condition 1.

1.1.6 Contribution to the weak convergence of empir-
ical copula process.

Let µ be the finite Borel measure and B be the Borel σ-algebra on [0, 1]2.
The space Lp([0, 1]2, µ) := Lp([0, 1]2,B, µ) is equipped with the usual norm

|f |p, where |f |pp =

∫
S

|f |p dµ and 1 ≤ p <∞.

For p = ∞, we refer to (2.2.1) on page 52 for definition of the space
L∞([0, 1]d, µ).
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In the previous section, we provided examples of copulas that do not
verify the smoothness Condition 1. In the latter examples, that we can-
not conclude to the weak convergence of associated empirical copula process
with respect supremum norm, by a direct application of the results of Segers
(2012). In our thesis, we present a solution to this problem by consider-
ing the weak convergence of empirical copula process in the Lp([0, 1]2, µ)
(1 ≤ p < ∞) Banach space topology. This approach allows us to solve the
problem of convergence in `∞([0, 1]2) space under very general smoothness
assumptions. Namely, the convergence with respect to the weaker topology
Lp still allows us to construct goodness-of-fit tests based on empirical copula
process. Our result requires a rather weak smoothness condition. We can
establish the weak convergence provided that the copula function fulfills:

Condition 2. The copula function C belongs to the class of copulas C,
defined via

C = {C − copula function : µ(DC) = 1}, (1.1.12)

where DC is defined by

DC =
2⋂
j=1

{
u ∈ [0, 1]2 : Cj is defined and continuous at u

}
,

and, for j = 1, 2, Cj := ∂
∂uj
C(u1, u2) (refer to (2.2.3) on page 53 for more

precise definition of Cj).
Condition 2 is weaker than Condition 1. It easy to show that the copula
functions considered in the Examples 1.1.5-1.1.7 verify Condition 2.

Finally we extend our convergence result to weighted empirical copula
process for weight functions that are pth power integrable with respect to the
finite Borel measure µ .

1.1.7 Goodness-of-fit testing

The goodness of fit (GOF) tests measure the compatibility of a random
sample with a theoretical probability distribution function. In other words,
these tests show how well the selected distribution fits the data. Assessing
the fit of a model (i.e., the discrepancy between a model and the data) is
critical in applications, as inferences drawn on poorly fitting models may be
misleading.
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The general GOF procedure consists of defining a test statistic which is
some function of the data measuring the distance between the hypothesis and
the data, and then calculating the probability of obtaining data which have
a still larger value of this test statistic than the value observed, assuming the
hypothesis is true. This probability is called the confidence level.

Pearson proposed the first important test of goodness of fit in 1900,
namely the χ2 test. The subsequent research devoted to enhancements of
this elementary goodness-of-fit procedure became a major source of motiva-
tion for the development of key areas in Probability and Statistics such as
the theory of weak convergence in general spaces and the asymptotic theory
of empirical processes.

In our thesis, we pay special attention to the application of the theory of
empirical copula processes to the asymptotic theory of goodness-of-fit tests
for copulas. Firstly, we present the brief overview about the techniques of
goodness-of-fit theory for general distribution (univariate and multivariate
case). The reason is that this introduction allows the better understanding
of methods used in the case of the statistical tests for copulas.

1.1.7.1 Univariate case

Goodness-of-fit testing to a single distribution
One of the simplest goodness-of-fit problem consists of testing fit to a single
fixed distribution, namely, given a random sample of real r.v.s X1, X2, ..., Xn

with common d.f. F , testing the null hypothesis H0 : F = F0 for a fixed
d.f. F0. While this procedure is usually of limited interest in applications,
the solutions proposed to this problem provided the main idea in subsequent
generalizations designed for testing fit to composite null hypotheses.

The Pearson chi-square test can be considered as the first conclusive ap-
proach to the problem of testing fit to a fixed distribution. The GOF test
proposed by Pearson consists in dividing the real line into k disjoint categories
or cells K1, ..., Kk into which observations fall, under the null hypothesis, with
probabilities p1, ..., pk. That is, if H0 were true, then P (X1 ∈ Ki) = pi, i =
1, ..., k.

However, as pointed out by many authors, this test has a major weakness
in the case when F is continuous. Namely, consideration of only the cell
frequencies produces a loss of information that results in lack of power (the
χ2 statistic will not distinguish two different distributions sharing the same
cell probabilities).
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One of possible way to improve Pearson’s statistic, by using the complete
information provided by the data, consists of employing a functional distance
to measure the discrepancy between the hypothesized d.f. F0 and the empir-
ical d.f. Fn. The first representatives of this method were proposed in the
late 20’s and in the 30’s. Cramér (1928) and, in a more general form, von
Mises (1931), proposed the use of the statistic

ω2
n = n

∫ ∞
−∞

[Fn(x)− F0(x)]2w(x) dx,

for some suitable weight function w as an adequate measure of discrepancy.
However, the statistic ω2

n is in general not distribution free (depends on the
law of the random variable Xj). In order to overcome this difficulty, we
consider the following modified version of ω2

n

W 2
n(Ψ) = n

∫ ∞
−∞

Ψ(F0(x))[Fn(x)− F0(x)]2 dF0(x),

which was proposed by Smirnov (1936, 1937). All the statistics of this type,
which can be obtained for various choices of the weight function Ψ, are
usually referred to as statistics of Cramer-von Mises type. Consideration of
appropriate weight functions Ψ allows the statistician to put special emphasis
on the detection of particular sets of alternatives.

The convenience of employing W 2
n(Ψ) instead of the weighted versions of

Kolmogorov’s statistics for example, can be understood taking into account
that the latter accounts only for the largest deviation between Fn(t) and
F0(t), while W 2

n(Ψ) is a weighted average of all the deviations between Fn(t)
and F0(t). Two particular statistics have received special attention in the
literature. When Ψ(F0) = 1,

W 2
n = n

∫ ∞
−∞

[Fn(x)− F0(x)]2 dF0(x),

is called the usual Cramer-von Mises statistic, and when Ψ(t) = (t · (1− t))−1

then

A2
n = n

∫ ∞
−∞

[Fn(x)− F0(x)]2

F0(x)(1− F0(x))
dF0(x),

is referred to as the Anderson-Darling statistic. The A2
n statistics has the

additional appeal of weighting the deviations according to their expected
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value, and this results in a more powerful statistic for testing fit to a fixed
distribution (see, e.g., d’Agostino and Stephens (1986) and Deheuvels and
Martynov (2003)).

For the use in practice of any of these appealing statistics we should be
able to obtain the corresponding significance levels. Since one may find some
difficulties to find the exact distributions of statistics of Cramer-von Mises
type, the obtaining the asymptotic distribution of the test statistics became
of special interest.

Smirnov (1944) derived the asymptotic distribution of statistics of Cramér-
von Mises type. However his proof was not based on the asymptotic be-
haviour of uniform empirical process. It was Doob (1949) who first con-
jectured the convergence of the uniform empirical process to the Brownian
bridge. A useful consequence of this fact would be that, under some (not ex-
plicited) hypotheses, the derivation of the asymptotic distribution of a func-
tional of the uniform empirical process could be reduced to the derivation of
the distribution of the same functional for the Brownian bridge. Therefore,
the justification of Doob’s conjecture is the key to provide a new simpler
proof of Smirnov’s result.

This justification was given by Donsker by introducing the notion of in-
variance principle (see Donsker (1951, 1952)). His results showed that, under
weak general condition, the distribution of a continuous functional of the par-
tial sum process (obtained from a sequence of i.i.d. r.v.s with finite second
moment) converges to the distribution of the corresponding functional of a
Brownian motion, and that, likewise, the distribution of a continuous func-
tional of the uniform empirical process converges to the distribution of the
corresponding functional of a Brownian bridge.

The space C[0, 1] (space of all continuous functions on [0, 1]) was one of
the first metric spaces for which this theory was developed, through the work
of Prohorov (1956). The scheme consisting of proving the convergence of the
finite dimensional distributions plus a tightness condition allowed to obtain
distributional limit theorems for slight modifications of the partial sum and
the uniform empirical processes, because both processes could be approxi-
mated by equivalent processes obtained from them by linear interpolation
so that all the random objects considered in the limit theorems remained in
C[0, 1]. This last approximation is somehow artificial. In order to avoid it, a
wider space had to be considered. A proper study of the weak convergence
of the uniform empirical process could be attempted in the space D[0, 1]
of all càdlàg functions on [0, 1]. The fact that the empirical process is not
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measurable when the uniform norm is considered, led to the introduction of
a more involved topology, namely the Skorohod topology that turns D[0, 1]
into a separable and complete metric space in which the empirical process
is measurable. In this setup the weak convergence of the empirical process
could be analyzed in a better way (see, e.g., Billingsley (1968) p. 141):

Theorem 1.1.3 Let αn be the uniform empirical process: αn(t) =
√
n(Gn(t)−

t)), 0 ≤ t ≤ 1, where Gn(t) = 1
n

∑n
i=1 1{Ui(1)≤t} and Ui are i.i.d. uniform

r.v.’s. If B(t) is a Brownian bridge, then

αn  B in D[0, 1].

Theorem 1.1.3 can be used in derivation the asymptotic distribution of
the Cramer-von Mises statistics. Since the functional x 7→

∫ 1

0
x(t)2 dt is

continuous for the Skorohod topology outside a set of B-measure zero, and
by the continuous mapping theorem, we can obtain for W 2

n that

W 2
n  

∫ 1

0

B(t)2 dt in R.

In Anderson and Darling (1952), the author showed how to derive the
asymptotic distribution of other statistics of Cramér-von Mises type. As a
consequence of the Law of the Iterated Logarithm for the Brownian motion,
and provided that∫ δ

0

Ψ(t)t log log
1

t
dt and

∫ 1

δ

Ψ(t)(1− t) log log
1

1− t
dt

are finite for some δ ∈ (0, 1), they showed that the functional x 7→
∫ 1

0
Ψ(t)x(t)2 dt

is continuous,with respect to the Skorohod distance, outside a set of B-
measure zero. Consequently,

W 2
n(Ψ) 

∫ 1

0

Ψ(t)B(t)2 dt in R.

This result covers the Anderson-Darling statistic A2
n. It is important to be

noted that there exists an alternative technique to derive the asymptotic
distribution of statistics of Cramér-von Mises type. The method described
above is based on on the weak convergence of the empirical process considered
as a random element with values in the space of càdlàg functions, endowed
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with the Skorohod topology, plus the continuity of a suitable functional.
There more natural way is to consider the uniform empirical process as a
random element taking values in the separable Hilbert space L2((0, 1),Ψ) of

all real, Borel measurable functions f on (0, 1) such that
∫ 1

0
Ψ(t)f(t)2 dt is

finite, where we consider the norm given by

‖f‖2
2,Ψ =

∫ 1

0

Ψ(t)f(t)2 dt.

In this setup, from the fact that W 2
n(Ψ) = ‖αn‖2

2,Ψ and from the Central
Limit Theorem (CLT) in the Hilbert Space L2(0, 1) (see, e.g., Araujo and
Giné (1980) p. 205, ex. 1) turned the problem of studying the asymptotic
distribution of W 2

n(Ψ) into an easier task.

Goodness-of-fit testing to a family of distributions

We consider in this section the problem of testing whether the underlying
d.f. of the sample, F , belongs to a given family of distribution functions,
F0. We will assume that F0 is a parametric family, i.e., F0 := {Fθ : θ ∈ ∆},
and that ∆ is an open subset of Rp. In the previous section, we considered
the GOF procedures based on the measurement of distances between an
empirical distribution obtained from the sample and a fixed distribution. A
way to adapt this idea for the new setup consists of choosing some adequate
estimator θ̂n of θ (assuming the null hypothesis is true) and, then, replacing
the fixed distribution by Fθ̂n .

The use of quadratic statistics based on the empirical d.f. with parameters
estimated from the data could provide more powerful tests, just as in the fixed
distribution setup. The adaptation of W 2

n(Ψ) to this situation can be easily

carried out. Let θn be some estimator of θ. Using θ̂n, the estimator of θ, we
can define the statistics

Ŵ 2
n(Ψ) = n

∫ ∞
−∞

Ψ(Fθ̂n(x))[Fn(x)− Fθ̂n(x)]2 dFθ̂n(x),

and use them as statistical tests, rejecting the null hypothesis when large
values of Ŵ 2

n(Ψ) are observed. Though, it took a long time until these
statistics were considered as serious competitors to the χ2-test, little was
known about these versions of Cramér-von-Mises or Kolmogorov-Smirnov
tests until the 50’s (see, e.g., Cochran (1952)).
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The property exhibited by W 2
n(Ψ) of being distribution free does not carry

over to Ŵ 2
n(Ψ). If we set Zi = Fθ̂n(Xi), and with Ĝn denoting the empirical

d.f. associated to Z1, ..., Zn, then, obviously,

Ŵ 2
n(Ψ) = n

∫ ∞
−∞

Ψ(t)[Ĝn(t)− t]2 dt,

but, unlike in the fixed distribution case, Z1, ..., Zn are not i.i.d. uniform
r.v.’s.

The first attempt to derive the asymptotic distribution of any statistic
of Ŵ 2

n(Ψ) type is due to Darling (1955). His study concerns the case where
Ψ ≡ 1, i.e.,

Ŵ 2
n = n

∫ ∞
−∞

[Fn(x)− Fθ̂n(x)]2 dFθ̂n(x) = n

∫ ∞
−∞

Ψ(t)[Ĝn(t)− t]2 dt,

assuming that θ was one-dimensional. Let us define

W̃ 2
n = n

∫ ∞
−∞

(
Fn(x)− Fθ(x)− (θ̂n − θ)

∂

∂θ
Fθ(x)

)2

dFθ(x)

=

∫ 1

0

(√
n(Gn(t)− t)− Tng(t)

)2
dt,

where Tn =
√
n(θ̂n − θ) and

g(t) = g(t, θ) =
∂

∂θ
Fθ(x)|x=F−1

θ (t).

Darling’s approach was based on showing that, when the underlying distri-
bution of the sample is Fθ, and F0 and θ̂n satisfying some adequate regularity
conditions, then

Ŵ 2
n − W̃ 2

n = oP(1).

Thus, the asymptotic distribution of Ŵ 2
n can be studied through that of W̃ 2

n .
Darling showed that the finite-dimensional distributions of

√
n(Gn(t)− t)−

Tng(t) converge weakly to those of a Gaussian process Y (t) with covariance
function K(s, t) = s ∧ t − st − φ(t)φ(s), where φ(t) = σg(t) and σ2 is the
asymptotic variance of Tn. He showed, further, that, under some additional
assumptions on θ̂n, Donsker’s invariance principle could be applied to con-
clude that
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Ŵ 2
n  

∫ 1

0

(Y (t))2 dt,

and, as in the fixed distribution case, a Karhunen-Loève expansion for
∫ 1

0
(Y (t))2 dt

can provide a good way to tabulate the limiting distribution of Ŵ 2
n . Sukhatme

(1972) extended Darling’s result to a multidimensional framework and gave
very valuable informations for the Karhunen-Loève expansion of the limit-
ing Gaussian process. Instead of considering the process {

√
n(Gn(t)− t)−

Tng(t)}t, a direct study of the estimated empirical process, {
√
n(Ĝn(t)−t)}t,

could yield the asymptotic distribution of general Ŵ 2
n(Ψ).

The empirical process with estimated parameters is

α̂θ̂nn (x) =
√
n(Fn(x)− Fθ̂n(x)), x ∈ R,

where θ̂n is a sequence of estimators. We will assume this sequence to be
efficient in the sense that, as n→∞,

√
n(θ̂n − θ) =

1√
n

n∑
i=1

l(Xi, θ) + oP(1),

where l(X1, θ) is centered and has finite second moments. To obtain the null

asymptotic distribution of α̂θ̂nn we assume that F = Fθ and write

α̂θ̂nn (x) =
√
n(Fn(x)− Fθ(x))−

√
n(Fθ̂n(x)− Fθ(x))

= α̂Fθn (x) + Ḟθ(x)T
√
n(θ̂n − θ) + oP(1)

= α̂Fθn (x) + Ḟθ(x)T
1√
n

n∑
i=1

l(Xi, θ) + oP(1)

= α̂Fθn (x) + Ḟθ(x)T
∫
R

l(x, θ) dαFθn (x) + oP(1)

= αn(Fθ(x))−H(Fθ(x), θ)T
∫ 1

0

L(t, θ) dαn(t) + oP(1)

= α̂n(Fθ(x)) + oP(1),

where αn is the uniform empirical process, H(t, θ) = Ḟθ(F
−1
θ (t), θ), L(t, θ) =

l(F−1
θ (t), θ), Ḟ (x, θ) =

(
∂
∂θ1
Fθ(x), ..., ∂

∂θp
Fθ(x)

)T
and
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α̂n(t) = αn(t)−H(t, θ)T
∫ 1

0

L(s, θ) dαn(s), 0 < t < 1,

Theorem 1.1.4 Provided that H(t, θ) is continuous on [0, 1] and that L(t, θ)
is continuous and of bounded variation on [0, 1], we can define αn, together
with a sequence of Brownian bridges Bn, such that

‖α̂n − B̂n‖∞ = O

(
log n√
n

)
a.s.,

where B̂n(t) = Bn(t) −H(t, θ)
∫ 1

0
L(t, θ) dBn(t). B̂n is a centered Gaussian

process with covariance

K̂(s, t) = s ∧ t− st−H(t, θ)

∫ s

0

L(x, θ) dx−H(s, θ)

∫ t

0

L(x, θ) dx

+ H(s, θ)T
∫ t

0

L(x, θ)L(x, θ)T dxdH(t, θ)

Theorem 1.1.4 provides among others, as an easy corollary, the asymptotic
distribution of a Cramér-von-Mises Ŵ 2

n and Anderson-Darling Â2
n statistics

under the null hypothesis. Also, as in the fixed distribution case, quadratic
statistics exhibit in general, better power properties than Kolmogorov-Smirnov
-type statistics, with Â2

n outperforming Ŵ 2
n . We recall that A-D statistics

are given by

Â2
n = n

∫ ∞
−∞

(
Fn(x)− Fθ̂n(x)

)2

Fθ̂n(x)(1− Fθ̂n(x))
dFθ̂n(x)

We refer to del Barrio et al (2007) for more details about the univariate
goodness-of-fit testing problem. Notice that an alternative GOF procedure
is due to Kolmogorov and Smirnov and based on the supremum distance
between the real and empirical distribution functions. However, this topic is
not in the range of the present thesis.

1.1.7.2 Multivariate case

As in the univariate case, denoting by F the cumulative distribution function
(cdf), we want to test
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H0 : F = F0, against H1 : F 6= F0,

for a given cdf F0, or, alternatively,

H0 : F ∈ F0, against H1 : F 6∈ F0,

where F0 := {Fθ : θ ∈ ∆} is a given family of distribution and ∆ is an
open subset of Rp. One can define the same GOF procedures based on the
transformations of the underlying empirical process. We recall that we are
concerned here with discussion of Cramér-von-Mises-type statistics. These
testing procedures are universal (or omnibus), in the sense they can be ap-
plied independently of the underlying distribution. In other terms, they do
not depend on some particular properties of F0 or of the assumed family F0.
In general, such tests are of primary interest for statistical modelling.

As in the univariate case, we obtain readily multivariate analogues of
Theorem 1.1.3 and Theorem 1.1.4.

1.1.7.3 The Copula case

As mentioned earlier copula-based modeling of multivariate distributions is
finding extensive applications in fields such as finance and actuarial science.
The corresponding important issue of statistical applications of copulas, that
is currently drawing a lot of attention, is whether the unknown copula C ac-
tually belongs to the chosen parametric copula family or not. More formally,
we consider here semiparametric copula models, where the unknown copula
C associated to F belongs to a parametric class C0 = {Cθ : θ ∈ ∆}, where ∆
is an open subset of Rp.
Namely, we want to test,

H0 : C ∈ C0, against H1 : C 6∈ C0.

We treat this problem within a semiparametric framework for copula models
because the marginal distributions F1 and F2 are are treated as (infinite-
dimensional) nuisance parameters (see Genest et al (2009)). One of the most
used in practice GOF statistics are based on the weak convergence of the
empirical copula process.
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The empirical copula Cn defined in (1.1.5) (see also (2.2.10) on page 56 )
is a consistent estimator of the unknown copula C, whether H0 is true or not.
Hence, as suggested in Fermanian (2005), Quessy (2005), and Genest and
Remillard (2008), a natural goodness-of-fit test consists of comparing C̄n with
an estimation Cθn of C obtained assuming that C ∈ C0 holds. More precisely,
these authors propose to base a test of goodness-of-fit on the empirical process

Cn,θ := n1/2(Cn − Cθn),

According to the large scale simulations carried out in Genest et al. (2009),
the most powerful version of this procedure is based on the Cramér-von-Mises
statistic

Tn :=

∫
[0,1]2

C
2
n,θ(u1, u2)dCn(u1, u2).

The method of proving the weak convergence of test statistics Tn is based
on the similar technique as described in the previous sections. Namely, first,
under some regularity conditions, we prove the weak convergence in space
l∞([0, 1]2) of underlying copula process Cn,θ. In the second place, from the

continuity of the functional x 7→
∫ 1

0
x(t)2 dt and using the continuous map-

ping theorem we derive the asymptotic result for Tn.

1.1.8 Contribution to goodness of fit testing of copulas
models.

The described GOF procedure based on Tn is valid only for the copula func-
tions which verify Condition 1 defined via (1.1.11) on page 21. For the
copulas which fulfill the weaker Condition 2 (refer to (1.1.12) on page 24)
we propose to base goodness of fit tests on the following statistics

S1,n :=

∫
[0,1]2

C
2
n,θ(u1, u2)du1du2.

The weak convergence of S1,n is provided by the weak convergence in space
L2([0, 1]2) of the copula process Cn,θ (see Proposition 2.4.1 on page 62) and

by the continuity of functional L2([0, 1]2) 3 x 7→
∫ 1

0
x(t)2 dt.

We study also the weighted version of previous test. We introduce the fol-
lowing weighted copula process

C
wn
n;θ(u) =

√
n{Cn(u)− Cθn(u)} · wθn(u), u = (u1, u2) ∈ [0, 1]2,



1.1 General Introduction to Paper I 35

where wθn = cθn and cθn represents the density function of copula Cθn . The
corresponding GOF statistics are given by

S2,n :=

∫
[0,1]2

{
C
wn
n;θ(u1, u2)

}2
du1du2.

Under general regularity conditions, the weak convergence of S2,n is entailed
by the weak convergence in space L2([0, 1]2) of the copula process Cwnn;θ (see
Proposition 2.4.2 on page 64) and by the continuity of functional L2([0, 1]2) 3
x 7→

∫ 1

0
x(t)2 dt.

An approximate p-value for the test based on the above statistic S2,n may
be obtained by means of a parametric bootstrap, as follows from Genest and
Rémillard (2008). As the sample size increases, the application of paramet-
ric bootstrap-based goodness-of- fit tests becomes somewhat prohibitive. In
order to circumvent this high computational cost, we propose a fast large-
sample testing procedure based on multiplier central limit theorems. The
validity of this technique has been proved in Kojadinovic et al (2010). The
accuracy of applying the multiplier central limit theorem in the case of statis-
tics S1,n nd S2,n is given by Theorem 2.6.1 and Theorem 2.6.2 on page 80
and 83 respectively.
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1.2 General Introduction to Paper II

1.2.1 Introduction to the reserve risk under Solvency
I (ultimate view)

In the present section, we introduce the necessary background for the reserve
risk under the current regulatory regime - Solvency I.

Solvency I.
The regulatory solvency framework for insurance companies, known under
the name of Solvency I, was introduced in the early 1970’s. The correspond-
ing solvency requirements (which dealt only with a minimum harmonisation
directive) were primarily focussed on prudential standards for insurers and
did not include requirements for risk management and governance within
firms. Solvency I was only completed in the early 1990’s with the third
generation Insurance Directives. The current European Union (EU) Sol-
vency I regime is considered to have simplistic capital requirements which
are not fully representative of the underlying risks faced by the insurers.
The corresponding requirements are based on relatively simple factor-based
expressions, dealing mainly with premiums and reserves which are used to
determine the sufficient level of capital needed to cover risks. This approach
potentially ignores large components of overall risk. For instance risks related
to investment assets as well as potentially excessive exposures to catastrophe
risk or to other heavy tailed risks are not fully taken into account.

The following general introduction is essentially inspired by the work of
Merz and Wüthrich (2008b).

General insurance
In the present study we consider the insurance branch known under the name
of non-life insurance (Continental Europe), general insurance (Great Britain),
and property and casualty insurance (North America). In non-life insurance,
claims reserves are often the largest liability and the most volatile item on
company’s balance sheet (see Figure 1.1). Therefore, given the available
information about the past, the prediction of an adequate amount to face
the responsibilities assumed by a non-life insurance company as well as the
quantification of the uncertainties for reserves are major issues in actuarial
practice and science.
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Figure 1.1: Balance Sheet of Non Life insurance company under Solvency I

Claims Settlement Process
A non-life insurance policy is a contract between two parties, namely the
insurer and the insured. It provides to the insurer a specific payment (called
premium), to the insured a financial coverage against the hazards of well-
specified events (or at least a promise that he will get a well-defined financial
coverage in case such an event happens). The right of the insured to these
amounts (in case the event happens) constitutes a claim by the insured on
the insurer. The amount which the insurer is obliged to pay in respect of
a claim is known as claim amount or loss amount. Depending on the type
of policy, the determination of the proper claim amount can often be very
difficult and time consuming. Factors such as reporting delay, recovery pro-
cess time required for the insurer to obtain all necessary details surrounding
the claim, and new developments that can reopen closed claims contribute
to this difficulty.
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Claims Reserves
Claims Reserve is defined as a type technical reserve or accounting provision
of an insurance company, and is established to provide for the future liability
for claims which have occurred but which have not yet been settled.

The delay between event and settlement dates means that the insurer
must set up ”reserves” in respect of those claims still to be settled. The
reserves required at any time are the resources needed to meet the costs, as
they arise, of all claims not finally settled at that time. The insurer must be
able to quantify this liability if it is to assess its financial position correctly,
both for statutory and for internal purposes.

There are two different types of claims reserves for past exposures:

• IBNyR reserves (incurred but not yet reported): We need to build
claims reserves for claims which have occurred before the valuation
date, but which have not been reported by the end of the year (i.e. the
reporting delay laps into the next accounting years).

• IBNeR reserves (incurred but not enough reported): We need to build
claims reserves for claims which have been reported before the valuation
date, but which have not been settled yet, i.e. we still expect payments
in the future, which need to be financed by the already earned premium.

Claims reserves is often referred to the provision for outstanding claims
which is one of the main components of technical provisions of insurance
company’s liabilities (see Figure 1.2).

Uncertainty of reserves
In fact, the actual future loss payments may deviate - sometimes substantially
- from the amount that was estimated. Senior managers, shareholders, rating
agencies, and regulators all have an interest in knowing the magnitude of
these potential deviations since companies with large potential deviations
need more capital or reinsurance than other firms with smaller potential
deviations. These deviations are often called in literature the loss reserve
uncertainty which is a measure of the magnitude of this potential difference
between forecast and actual loss payments. Actuarial journals provide several
proposed procedures for measuring loss reserve uncertainty. One of the most
known is the approach developed by Thomas Mack (1993) based on the
deterministic reserving method called Chain Ladder.
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Figure 1.2: Technical Provisions in the Solvency I balance sheet

1.2.2 Claims Reserving Notation

1.2.2.1 Data

Large insurance companies often have quite extensive data bases with histor-
ical information on incurred claims. Such information can include the num-
bers of claims reported and settled, the origin year of the events, the paid
amounts, the year of the payments and case estimates. The actuary can reg-
ularly analyze the data in order to predict the outstanding claims and, hence,
the claims reserve. The analysis is typically done in the following way. To be-
gin with, the actuary separates the data into risk homogenous groups such as
lines of business, e.g. Motor vehicle liability, Fire and other damage, General
liability. A finer segmentation can be applied if the groups or the subgroups
contain a sufficient number of observations. The actuary might also choose
to divide some group according to the severity of the claims. The large claims
can then be reserved according to case estimates while the subgroup consist-
ing of smaller, but frequently occurring, claims can be reserved by some sta-
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tistical method. When the risk classification is established the actuary usu-
ally aggregates the data within the groups into development trapezoids. We
now consider such a cumulative trapezoid of paid claims {Ci,j : (i, j) ∈ 4sup},
where 4sup = {(i, j) : i ∈ {1, ..., I}, j ∈ {1, ..., J}, i + j ≤ I + 1}. As an ex-
ample and for the sake of brevity we consider here the claims development
triangle, i.e., I = J = 5, see Table 1.1. The suffixes i and j of the paid
claims refer to the origin year and the payment year, respectively. In addi-
tion, the suffix k = i + j is used for the calendar years, i.e., the diagonals
of development triangle. If we assume that the claims are settled within the
I = 5 observed years the purpose of a claims reserving exercise is to predict
the last column of unobserved future triangle {Ci,j : (i, j) ∈ 4inf}. , where
4inf = {(i, j) : i ∈ {1, ..., I}, j ∈ {1, ..., J}, i+ j > I + 1}.

Accident Development Year j
Year i 1 2 3 4 5

1 C1,1 C1,2 C1,3 C1,4 C1,5

2 C2,1 C2,2 C2,3 C2,4

3 C3,1 C3,2 C3,3

4 C4,1 C4,2

5 C5,1

Table 1.1: Run-off triangle (I = J = 5)

Outstanding Loss Liabilities
Let Ri and R denote the outstanding loss liabilities for accident year i at
time I,

Ri = Ci,J − Ci,I−i+1, i ∈ {1, ..., I},

and the total outstanding loss liabilities for all accident years,

R =
I∑
i=1

Ri,

respectively.
The prediction of the outstanding loss liabilities Ri and R, as well as

quantifying the uncertainty in this prediction, is the classical actuarial claims
reserving problem studied at every non-life insurance company. We use the
term claims reserves to mean the prediction of the outstanding loss liabilities.



1.2 General Introduction to Paper II 41

Hence, let R̂i and R̂ denote the claims reserves for accident year i at time I,

R̂i = Ĉi,J − Ci,I−i+1, i ∈ {1, ..., I},

and the total claims reserves for aggregated accident years,

R̂ =
I∑
i=1

R̂i,

respectively, where Ĉi,j is a predictor for Ci,j.

Why insurance companies use the aggregate data
Due to the inherent random nature of a non-life insurance company’s liabili-
ties, the task of setting aside proper provisions to limit the chance of ruin is
difficult. The task can be approached on a per claim level. For each reported
claim a reserve amount is estimated by claims handlers that is deemed ap-
propriate to cover the remaining payments of the policy. This amount is
called the case reserves. For an aggregate portfolio, the case reserves of all
reported claims are added to provide an estimate of future liabilities on re-
ported claims. The result is called the claims incurred. However, this omits
consideration for claims that have already occurred but have yet to be re-
ported, or so-called incurred but not yet reported (IBNyR) claim amounts.
One could independently set aside an amount for the IBNyR, but in prac-
tice the inclusion of the IBNyR is done through modelling the aggregate
claim amounts. By modelling the aggregate claim amounts, one is able to
capture the emerging IBNyR pattern.

Prediction Uncertainty
As mentioned above, finding suitable claims reserves, i.e., R̂i and R̂, is rather
the beginning of the process of reserving and the insurers companies need to
assess the variability of these amounts. The important challenge for actu-
aries is to quantify not only the claims reserves but also the uncertainty of
the resulting predictors. In the present work, as in the work of Taylor and
Ashe (1983), we quantify the prediction uncertainty with the aid of the most
popular such measure, the so-called mean-square error of prediction (MSEP).

For predictor Ĉi,I of the ultimate claim amount Ci,I of accident year i, the
conditional MSEP is defined as

msepĈi,I |DI (Ci,I) := E

[(
Ĉi,I − Ci,I

)2

|DI

]
.
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Note that with regards to the conditional MSEP, it does not matter whether
one considers the predictor Ĉi,I of the ultimate claim amount or the predictor

R̂i of the claims reserves of accident year i. Both yield the same result. We
adopt the convention of using the predictor of the ultimate claim amount.
If the predictor Ĉi,I is DI-measurable, the conditional MSEP decouples as
follows:

msepĈiI |DI (CiI) = V ar(CiI |DI) + (E(CiI |DI)− ĈiI)2,

The first term on the right-hand side of the above equation is called the
conditional process variance It represents the inherent uncertainty of
the underlying model chosen for the observed data. The second term on the
right-hand side is called the conditional estimation error, it represents
the uncertainty in the estimation of the unknown model parameters.

1.2.2.2 The Chain Ladder Method

The chain-ladder method is probably the most popular reserving technique in
practice. According to Taylor (2000) its lineage can be traced to the mid-60’s.
In the meantime, some authors claim that this technique was mentioned in
France in the 30’s (see Charpentier and Denuit (2005)). At the center of the
method are the so-called age to age factors that develop the cumulative claim
amounts one period. The name of this method should refer to the chaining
of a sequence of age-to-age development factors into a ladder of factors by
which one can climb from the observations to date to the predicted ultimate
claim cost. The chain-ladder was originally deterministic, but in order to
assess the variability of the estimate it has been developed into a stochastic
method. This claims reserving method is arguably the most widely used in
practice and also goes by the name the loss development triangle method.

Chain Ladder method(CL) - model assumptions
The classical actuarial literature often explains the CL claims reserving method
as a pure computational algorithm to estimate claims reserves. A distribution-
free stochastic model underlying the CL algorithm was proposed by Mack
(1993). It was based on the following model assumptions:

(1) The accident years (Ci,1, .., Ci,J)1≤i≤I are independent

(2) There exist deterministic development factors f1, f2, .., fI−1 such that

E(Ci,k+1|Ci,1, .., Ci,k) = fkCi,k.
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(3) There exist constants σ2
k > 0 such that for all 1 ≤ i ≤ I and 1 ≤ k ≤ J−1

we have
V ar(Ci,k+1|Ci,1, .., Ci,k) = σ2

kCi,k.

From assumption (2), a routine calculus on conditional expectation shows
that

E[Ci,I |DI ] = fI−1E[Ci,I−1|DI ] = ... = Ci,I−i+1

I−1∏
j=I−i+1

fj,

for all i ∈ {1, ..., I}, where the factors fj are called the CL factors and
DI = {Ci,j : (i, j) ∈ 4sup}. Given the observations DI and CL factors fj,
the above equation gives a recursive algorithm for predicting the ultimate
claim amount Ci,I by E[Ci,I |DI]. However, in most practical applications
the CL factors fj are not known and have to be estimated from the data DI .

Chain Ladder method(CL) - model estimators

• Given the information DI , the factors fk are estimated by

f̂k =

∑I−k
i=1 Ci,k+1∑I−k
i=1 Ci,k

=

∑I−k
i=1 Ci,kFi,k∑I−k
i=1 Ci,k

, for 1 ≤ k ≤ I − 1,

where Fi,k := Ci,k+1/Ci,k are often called in actuarial literature the
age-to-age factors, individual chain ladders factors or link ratios.

• The variance parameters σ2
k are estimated by

σ̂2
k =

1

I − k − 1

I−k∑
i=

Ci,k(Fi,k − f̂k)2, for 1 ≤ k ≤ I − 2,

and because of lack of data, the last parameter σ2
I−1 is estimated by

σ̂2
I−1 = min(σ̂4

I−2/σ̂
2
I−3,min(σ̂2

I−3, σ̂
2
I−2)).
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1.2.3 Contribution to the reserve risk in Solvency I
framework (ultimate view)

The claims reserving estimation is an important process in every general
(non-life) insurance company. In the present thesis we provide a general
framework for the stochastic chain ladder model. Our general approach can
be used to solve many of the practical actuarial problems. Namely, many of
actuaries often proceed in the following way: they compute the best estimate
of provision (estimation of parameters fk) by excluding (if needed) some of
the age-to-age factors (link ratios Fi,k), then they use the complete data (all
observed link ratios) in the estimation of dispersion of this estimate from its
theoretical value (estimation of parameters σ2

k). They justify the suppression
of some of the data from the estimation of claims reserves by the need of
monitoring the quality of the observations. The loss of information caused
by the selection of data is compensated by the fact that all information
(all age-to-age factors Fi,k) are taking into account in the estimation of its
volatility. We provided the technical background for this type of actuarial
practice. The results we derived allow to estimate the mean-square error of
prediction for claims reserves in the case of using two different sets of age to
age factors for estimation of the chain ladder coefficients fk and the volatility
parameters σ2

k. To the best of our knowledge these results are new and bridge
the gap between the theoretical research and actuarial practice. Recall that
Thomas Mack derived the similar results (see, e.g., Mack (1999)) in the case
where these two sets of coefficients, used in estimation of parameters fk and
σ2
k respectively, are the same. Our thesis provided though the important

contribution for his result from the practical point of view.
In particular, we derived the estimators for the mean-square error of pre-

diction (MSEP) of the claims reserves in the case when the actuary wants to
exclude some of individuals age-to-age factors (link ratios Fi,k) in the estima-
tion of the chain ladder factors fk, and to keep all of them in the estimation
of the variance parameters σ2

k.



1.3 General Introduction to Paper III 45

1.3 General Introduction to Paper III

1.3.1 Introduction to the reserve risk under Solvency
II (one-year view)

The fact that several European countries has gone down the route to develop
their own solvency regimes can be seen as a strong indicator of a consensus
that current regulatory rules (Solvency I) not being sufficient to reflect the
capital need of insurance companies.

This is one of the key drivers, together with the lack of risk-based princi-
ples within Solvency I , to create a more harmonized and risk-based solvency
regulation within the EU. As a response to the above, the new solvency
framework has been developed, named Solvency II.

Solvency II.
Solvency II is a fundamental review of the capital adequacy regime for Eu-
ropean insurers and reinsurers, planned to take effect progressively from the
beginning of January 2016. The main intension of the new directive is to
have a harmonized regulation across EU.

Solvency II is based on economic principles for the measurement of assets
and liabilities, risk-based capital requirements based on market consistent
scenarios, i.e., scenarios under which the valuation of assets and liabilities
can be directly verified from the observable market prices. It will be a risk-
based system as risk will be measured on consistent principles and capital
requirements will depend directly on this. It will bring also the harmonization
of asset and liabilities valuation techniques across EU.

The proposed Solvency II framework has three main areas (pillars):

• Pillar 1: considers key quantitative requirements including own funds,
the calculation of technical provisions and the rules relating to the cal-
culation of Solvency II capital requirements (Solvency capital Requirement-
SCR, and Minimum Capital requirement MCR, see Figure 1.3). SCR
can be calculated either through an approved (by the local supervisor)
full or partial internal model or through European standard formula
approach with an option of Undertaking Specific Parameters (USPs).
One of the main idea of Pillar I is the fact that the technical provisions
should now include a Risk Margin.
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• Pillar 2: sets out requirements for the governance and risk manage-
ment of insurers, as well as for the effective supervision of insurers.
It does include ORSA (Own Risk Solvency Assessment) which may
involve quantitative analysis on a different basis then the Pillar I as-
sessment.

• Pillar 3: focuses on disclosure and transparency requirements.

The main purposes of Solvency II.
The insurance industry strongly supports a Solvency II framework which
aims to achieve the following:

• Give an incentive to the supervised institutions to measure and properly
manage their risks

• Contribute to a better managed and more competitive insurance indus-
try that can better perform its key function of accepting and spreading
risk

• Encourage a single European market for financial services

• Enable an institution to absorb significant unforeseen losses and gives
reasonable assurance to policyholders

Reserve risk in Solvency II.

As previously mentioned, one of the major risks of non-life insurance
company is the reserve risk. Reserve risk concerns the liabilities for insurance
policies covering historical years, often simply referred to as the risk in the
claims reserve, i.e., the provision for outstanding claims. More precisely,
the reserve risk corresponds to the risk that technical provisions set up for
claims already occurred at the valuation date will be insufficient to cover
these claims. Reserve risk stems from two sources: on the one hand, the
absolute level of the claims provisions may be mis-estimated. On the other
hand, because of the stochastic nature of future claims payments, the actual
claims will fluctuate around their statistical mean value.

As in the Solvency II framework, the time horizon is one year, the reserve
risk is only the risk of the technical provisions (in the Solvency II balance
sheet) for existing claims needing to be increased within a twelve-month



1.3 General Introduction to Paper III 47

period. Following Ohlsson and Lauzeningks (2009), we define the reserve
risk over one-year time horizon as the risk in the one-year run-off result.

If C1 denotes amount paid during next year, R0 the opening reserve at
the beginning, and R1 the closing reserve estimate at the end of the year,
then the technical run-off result is

T = R0 − C1 −R1.

The one-year reserve risk is captured by the probability distribution of T ,
conditioned on the observations by time 0. Notice that T is also the dif-
ference between the estimate of the ultimate cost at time 0 (beginning of
the accounting year) and at time 1 (end of the accounting year). This is in
contrast to the ultimo or full run-off risk, which is described as the risk in
R0 − C∞, where C∞ states for the payments over the entire run-off period.
In the setup of run-off triangles the random variable T is often called claims
development result (CDR). In the following, this term will be used to measure
the variability of one year reserve risk.

1.3.2 Contribution to the reserve risk in Solvency II
framework (one-year view)

In our thesis, we consider the problem of claims reserving in the setup of
run-off triangles. This problem is motivated by the need of monitoring the
randomness of claims development up to the time when the ultimate claim is
finally settled. This aspect of claims reserving relies, typically, on a long-term
point of view. This is in contrast with the short term horizon inherent to
models describing total risk for an insurance company, such as the one-year
risk perspective used in the Solvency II project. The challenge of bridging
the gap between these two viewpoints gave rise to some innovative research
in the study of reserving process. One of the first papers dealing with the
one-year reserve risk was that of Merz and Wüthrich (2008a) (MW). In the
special case of a pure Chain-ladder estimate, they provided analytic formulae
for the mean-squared error of predictions of the run-off result, referred to as
the claims development result (CDR). Their methods rely on an extension of
the well-known Mack (1993) model.

In the present thesis, we intend to provide a general methodology for
measuring the uncertainty of CDR. Our approach largely extends that of
MW and differs from it mainly in the assumption on conditional variance
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of individual development factors Fi,k (defined as ratio Ci,k+1/Ci,k). Our
extension for measuring the uncertainty of CDR is three-fold. Firstly, we
derive several possible estimators of loss development factors fk. Notice that
in the original paper of Merz and Wüthrich (2008a) only the classical chain-
ladder estimates of fk were considered.

Secondly, we allow selecting the link ratios Fi,k manually by employing
experience, judgment, benchmarks, etc.

Thirdly, we provide the possibility to select different loss ratios for es-
timation of loss development factors fk and for estimation of the variance
parameters σ2

k.
Moreover, our general framework can be applied in the case of incomplete

run-off triangles. Finally, the presented approach for measuring one-year
volatility of reserve risk can be applied within the Solvency II framework to
computation of SCR (Solvency Capital Requirement) and Risk Margin (see
Figure 1.3) by standard formula, USPs (Undertaking-Specific Parameters)
methods or (full/partial) internal models.



1.3 General Introduction to Paper III 49

Figure 1.3: Technical Provisions in the Solvency II balance sheet
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Paper I - Weak convergence of
weighted empirical copula
process in Lp spaces
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2.1 Motivation

The weak convergence of the empirical copula processes has been extensively
investigated in the literature starting with Rüschendorf (1976)(for conver-
gence in the Skorohod space D([0, 1]d) endowed with a particular metric),
and Deheuvels (1981) (in the setup of independent marginals). We refer to
Gaenssler and Stute (1987), van der Vaart and Wellner (1996) and Ferma-
nian et al (2004) for extensions of these results in D([0, 1]d), `∞([a, b]d) (0 <
a, b < 1) and `∞([0, 1]d), respectively. Their results impose some regularity
conditions such as the continuity on [0, 1]d of the first-order partial deriva-
tives of the copula function C. Unfortunately, for a number of commonly
used copulas, the condition of continuity of the first-partial derivatives on
the unit cube is not satisfied. In the latter, the copula process does not
converge weakly with respect to the topology induced by the sup-norm.

Recently, Segers (2012) has shown how to cope with the situation where
the first-order partial derivatives fail to be continuous at some boundary
points of the hypercube. However, as pointed out in his paper, his arguments
do not apply to some useful examples of copulas, such as the Archimedean
and extreme-value copulas.

One possible way to address this difficulty is to consider the weak conver-
gence of the empirical copula processes with respect to some weaker metric
than considered by Segers (2012). In this paper, we establish a convergence
result in the topology induced by the Lp-norm. We work under nonrestrictive
regularity conditions which reduce to assuming existence and continuity of
the first-partial derivatives almost everywhere on the unit cube. We general-
ize this property to weighted empirical copula processes with weight functions
in Lp. By the continuous mapping theorem we obtain, as a consequence of
our results, the weak convergence of weighted Cramér-von-Mises-type statis-
tics.

Organization of the paper. In Section 2.2 we present our notation and
introduce the weighted empirical copula process. Our main result is given in
Section 2.3. In Section 2.4 we provide some statistical applications based on
our main result. Proofs are postponed to Section 2.5. The auxiliary results
are presented in Section 2.6. Finally, some indications of future research
directions are given in Appendix A.
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2.2 Introduction

2.2.1 Copula Function

Let X = (X(1), ..., X(d)) be a random vector in R
d with d-variate (right-

continuous) cumulative distribution function [cdf] F . Denote by F1, ..., Fd
the margins (right-continuous cdf’s) of X. For each j = 1, ..., d denote by Qj

the (left-continuous) quantile function [qf] pertaining to Fj , and extended
by continuity to [0, 1]. For an arbitrary (right-continuous) cdf K, the corre-
sponding (left-continuous) qf is defined by

K−1(u) :=

{
inf{x ∈ R |K(x) ≥ u }, 0 < u ≤ 1,

sup{x ∈ R |K(x) = u }, u = 0,

where inf ∅ :=∞ and sup ∅ := −∞.

Consider a sequence Xi = (Xi(1), ..., Xi(d)), i = 1, 2, ..., n, of independent
random copies of X with common cdf F .
Let µ be the finite Borel measure and B be the Borel σ-algebra on [0, 1]d. The
space Lp([0, 1]d, µ) := Lp([0, 1]d,B, µ) is equipped with the usual norm |f |p,

where |f |pp =

∫
S

|f |p dµ and 1 ≤ p <∞. For p =∞, the space L∞([0, 1]d, µ)

is defined as follows. We start with the set of all measurable functions from
[0, 1]d to R which are essentially bounded, i.e. bounded up to a set of
measure zero. Again two such functions are identified if they are equal µ-
almost everywhere. Denote this set by L∞([0, 1]d, µ). For f in L∞([0, 1]d, µ),
its essential supremum serves as an appropriate norm:

‖f‖∞ := inf{M ≥ 0 : |f(x)| ≤M for µ-almost every x}. (2.2.1)

The function C is called a copula function if C is a cdf on [0, 1]d with
uniformly distributed margins. The copula function C is associated to F if
C satisfies, for all x = (x1, ..., xd) ∈ R

d, the so-called fundamental identity
(see, e.g., (Deheuvels, 2009, p.124) and the references therein)

F (x) = F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (2.2.2)

In general, the copula function C of F is not unique. A necessary and suffi-
cient condition for uniqueness of C fulfilling (2.2.2) is the continuity of the
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margins F1, ..., Fd. This condition is assumed throughout in the sequel.

Copulas have many useful properties, such as uniform continuity (see,
e.g., Nelsen (2006)). Moreover, it can be shown that every copula function
C is bounded by the so-called Fréchet-Hoeffding bounds,

Wd(u1, ..., ud) ≤ C(u1, ..., ud) ≤Md(u1, ..., ud), for u = (u1, ..., ud) ∈ [0, 1]d,

where Wd := max(u1+...+ud−d+1, 0) and Md := min(u1, ..., ud). For d = 2,
the upper and lower Fréchet-Hoeffding bounds W2 and M2 are copulas. On
the other hand, for d ≥ 3, Md is a copula, but not Wd (see, e.g., (Nelsen,
2006, p.47)).

For j ∈ 1, ..., d, let ej be the j-th coordinate vector in R
d. For u =

(u1, ..., ud) ∈ [0, 1]d such that 0 < uj < 1, let

Cj(u) := lim
h→0

C(u + hej)− C(u)

h
, (2.2.3)

be the j-th first-order partial derivative of C, whenever this limit exists.
We extend this definition to [0, 1]d by setting

Cj(u) =


lim suph↓0

C(u + hej)

h
if u ∈ [0, 1]d, uj = 0,

lim suph↓0
C(u)− C(u− hej)

h
if u ∈ [0, 1]d, uj = 1.

Note that, the above definition entails that, Cj is defined everywhere on
[0, 1]d, with Cj(u) = 0 whenever ui = 0 for some i 6= j.
For any copula function C, letting u = (u1, ..., ud) ∈ [0, 1]d, define DC ⊂
[0, 1]d as follows:

DC =
d⋂
j=1

{
u ∈ [0, 1]d : Cj(u) is defined and continuous at u

}
. (2.2.4)

Consider the set of copulas defined by

C := {C is copula function such that µ(DC) = 1}. (2.2.5)

The assumption that µ(DC) = 1 turns out not to be restrictive in practice.
However there exist copulas that do not satisfy this condition. In particular,
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we can construct an example of copula function such that, for every ε > 0,
its first-partial derivatives are not continuous on a set of Lebesgue measure
1− ε (see Section 2.6.6).

Example 2.2.1 (d=2) It is readily checked that: DM2 = [0, 1]2 \ {(u, u) :
u ∈ [0, 1]} and DW2 = [0, 1]2 \ {(u, 1− u) : u ∈ [0, 1]}.

2.2.2 Empirical Copula Functions

Consider a sequence Xi = (Xi(1), ..., Xi(d)), i = 1, 2, ..., n, of independent
random copies of X with common cdf F . Let Ui = (Ui(1), ..., Ui(d)) =
(F1(Xi(1)), ..., Fd(Xi(d))), i = 1, 2, ..., n, be a sequence of independent ran-
dom copies of U = (U(1), ..., U(d)) = (F1(X(1)), ..., Fd(X(d))). It is well
known that the cdf of U is the copula function C associated to F . Here
and elsewhere, order relations on vectors are to be interpreted component-
wise, namely, we set x ≤ y , when x = (x1, ..., xd) and y = (y1, ..., yd) fulfill
xj ≤ yj, for all j = 1, .., d. Setting 1A for th indicator function of A, we
define the following empirical distribution functions, for x = (x1, ..., xd) ∈ Rd
and u = (u1, ..., ud) ∈ (0, 1)d,

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}, Fnj(xj) =
1

n

n∑
i=1

1{Xi(j)≤xj}. (2.2.6)

Gn(u) =
1

n

n∑
i=1

1{Ui≤u}, Gnj(uj) =
1

n

n∑
i=1

1{Ui(j)≤uj}. (2.2.7)

By continuity of F1, ..., Fp for each j = 1, .., d, the order statistics

X1,n(j) < ... < Xn,n(j) and U1,n(j) < ... < Un,n(j),

pertaining to X1(j), ..., Xn(j) and U1(j), ..., Un(j), respectively, are distinct
with probability 1. The marginal empirical quantile functions associated to
Fnj and Gnj are given by

F−1
nj (uj) =

{
Xk,n(j) if(k − 1)/n < uj ≤ k/n,

−∞ if u = 0,

and

G−1
nj (uj) =

{
Uk,n(j) if (k − 1)/n < uj ≤ k/n,

0 if u = 0.
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In view of the characterization (2.2.2), we define an empirical copula function
associated to Fn, as any copula function Cn (namely a cdf on [0, 1]d with
uniformly distributed margins) fulfilling the fundamental identity

Fn(x) = Fn(x1, ..., xd) = Cn(Fn1(x1), ..., Fnd(xd)) for x = (x1, ..., xd) ∈ Rd.
(2.2.8)

Let rn(j) = (r1,n(j), ..., rn,n(j)), j = 1, ..., d, be the marginal rank vector
which is the uniquely defined permutation of {1, ..., n}, such that

Xi(j) = Xri,n(j),n(j) for i = 1, ..., n, j = 1, ..., d.

The following proposition, stated in (Deheuvels, 2009, p.129) as Proposition
1.5, (see also Proposition (2.1) in (Deheuvels, 1979, p.276)) gives a construc-
tive characterization of all copula function Cn fulfilling (2.2.8).

Proposition 2.2.1 A copula function Cn defines, via (2.2.8), an empirical
copula function associated to Fn if and only if, for each integer vector k =
(k1, ..., kd) ∈ {0, ..., n}d,

Cn

(k1

n
, ...,

kd
n

)
=

1

n

n∑
i=1

1{ri,n(1)≤k1,...,ri,n(d)≤k1d}.

As follows from Proposition 2.2.1 that the empirical copula function Cn as-
sociated to Fn is not unique.This is a straightforward consequence of discon-
tinuity of the marginal cdf’s Fn1, ..., Fnd.

Denote by
L
= equality in distribution. For an arbitrary d ≥ 1, let `∞([0, 1]d)

denotes the space of all uniformly bounded functions ϕ on [0, 1]d into R

equipped with the topology induced by sup-norm, namely, |ϕ|∞ := supu∈[0,1]d |ϕ(u)|.

The following remark states a useful properties of empirical copula func-
tions.

Remark 2.2.1

(a) The law of any empirical copula function Cn depends upon F only through
the associated copula function C. In particular, a copula function Cn is
an empirical copula function associated to Fn in (2.2.6) if and only if Cn
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is an empirical copula function associated to Gn in (2.2.7). Therefore, in
the study of asymptotic behavior of Cn, in the sense of weak convergence
for example, we may assume that F = C. It means that, without loss of
generality, we can work directly on a U1, ...,Un with cdf C.

(b) Let C
(1)
n and C

(2)
n be any two empirical copula function associated to Fn.

Then

|C(1)
n − C(2)

n |∞ ≤
d− 1

dn
.

Proof.
(a). See, e.g., the proof of Corollary 1.1 in (Deheuvels, 2009, p.131) and
Lemma 2.1 in (Deheuvels, 1979, p.277)
(b). See, e.g., the proof of Proposition 1.7 in (Deheuvels, 2009, p.132-133).
�

Consider the following empirical distribution functions, for all u = (u1, ..., ud) ∈
R
d

C̃n(u) = Fn(F−1
n1 (u1), ..., F−1

nd (ud)), (2.2.9)

Cn(u) =
1

n

n∑
i=1

1{Fn1(Xi(1))≤u1,...,Fnd(Xi(d))≤ud}. (2.2.10)

The forthcoming proposition gives some useful properties of C̃n and Cn.

Proposition 2.2.2

(a) Neither C̃n nor Cn is a copula function.

(b) Both C̃n and Cn fulfill the fundamental identity (2.2.8).

(c) Cn is a cdf on [0, 1]d.

(d) For any empirical copula function Cn associated to Fn, |C̃n−Cn|∞ = 1
n
.

(e) We have |C̃n − Cn|∞ ≤ d
n
.
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(f) Set an =
√

n
log logn

. If bn = o(an), then, for any empirical copula function

Cn associated to Fn

lim
n→∞

bn|Cn − C|∞ = 0 a.s.

Proof.
For (a) we observe that the marginals C̃n and Cn are not uniform. The proof
of (b) and (c) are archived by straightforward computations. For (d) we
invoke of Proposition 1.8 in (Deheuvels, 2009, p.134). We have, for (e)

|C̃n − Cn|∞ ≤ max
1≤i1,...,id≤n

∣∣∣C̃n(i1
n
, ...,

id
n

)
− C̃n

(i1 − 1

n
, ...,

id − 1

n

)∣∣∣ ≤ d

n
.

Finally, for (f), we use the proof of Theorem (3.1) in (Deheuvels, 1979, p.277).
�

Remark 2.2.2 The law of C̃n and Cn depends upon F only through the as-

sociated copula function C (see,e.g., (Tsukahara, 2005, p.358)). Hence C̃n
L
=

Gn(G−1
n1 (u1), ..., G−1

nd (ud)) and Cn
L
= 1

n

∑n
i=1 1{Gn1(Ui(1))≤u1,...,Gnd(Ui(d))≤ud}.

2.2.3 Empirical Copula Processes

We define the empirical copula process by setting

Cn(u) := n1/2(C̃n(u)− C(u)), for u ∈ [0, 1]d, (2.2.11)

where the empirical function C̃n is defined by (2.2.9). The above definition
of empirical copula process is used by many authors (see, e.g., Tsukahara
(2005), Deheuvels (2009) and Segers (2012)). Note that, for each of the pos-
sible copula functions Cn associated to Fn, the process {n1/2(Cn(u)−C(u)) :
u ∈ [0, 1]d} could also be used to define the empirical copula process. Unfor-
tunately, this process(see, e.g., Proposition 2.2.1) is not uniquely defined. On

the other hand, the empirical function C̃ is a ”good” approximation (refer to
Proposition 2.4.1 (d), (f)) of any empirical copula function Cn in the sense
that |Cn − n1/2(Cn − C)|∞ ≤ n−1/2 (see Proposition 2.2.2 (d)).
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In view of Remark 2.2.2 we have that Cn
L
= n1/2(Gn(G−1

n1 , ..., G
−1
nd )−C) and

we may define the following empirical processes, associated to the empirical
distribution functions Gn and Gnj , by

αn(u) := n1/2(Gn(u)− C(u)), αnj(uj) := n1/2(Gnj(uj)− uj), (2.2.12)

for j ∈ {1, ..., d}, u ∈ [0, 1]d and uj ∈ [0, 1]. Recall that denotes weak con-
vergence, with the meaning of Definition 1.3.3 from page 17 in van der Vaart
and Wellner (1996)(see also Definition 1.1.3 on page 18). Now we invoke the
following well known result on the weak convergence of the empirical pro-
cess αn in `∞([0, 1]d) . In view of multivariate version of Donsker’s theorem
(readily checked from Theorem 1.1.3 on page 28), we have that

αn  B as n→∞,

where the limit process B is a C-Brownian bridge, i.e. a (tight) centered
Gaussian process, with covariance function,

Cov[B(u),B(u′)] = C(u ∧ u′)− C(u)C(u′), for u,u′ ∈ [0, 1]d, (2.2.13)

where z ∧ v = (min(z1, v1), ...,min(zd, vd)) ∈ [0, 1]d.
If we assume that the first-order partial derivatives Cj exist and are contin-
uous on [0, 1]d, then Cn  B

∗ in `∞([0, 1]d), as n→∞ (see, e.g., Fermanian
et al (2004) and Tsukahara (2005)), where the limit process is a centered
Gaussian process defined by

B
∗(u) := B(u)−

d∑
j=1

Cj(u)B(1, uj,1), for u ∈ [0, 1]d, (2.2.14)

where B(1, uj,1) := B(1, ..., 1, uj, 1, ..., 1), the variable uj appearing at the
j-th entry.

2.2.4 Weighted Empirical Copula Process

Let w : [0, 1]d → R be any measurable function. For any function f ∈
Lp
(
[0, 1]d, µ

)
, define by wf the product of functions w and f . Making use

of this notation, we may define the weighted processes wCn and wB∗.
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Remark 2.2.3 For C ∈ C, the Gaussian process B∗ in (2.2.14) is properly
defined on the set DC.

Proposition 2.2.3 If the weight function w is such that∫
[0,1]d

(E [w(u)B∗(u)]2)p/2 dµ(u) <∞, (2.2.15)

then wB∗ is almost surely in Lp
(
[0, 1]d, µ

)
.

Proof. See, e.g., Deheuvels (2005), and the references therein. �

2.3 Main Result

We seek conditions on the weight function w, which ensure weak convergence
of the process wCn to a limiting Gaussian process wB∗ (this property is
denoted by wCn  wB∗). The proof of the following result is based on a
decomposition of the empirical copula process (see, e.g., Gaenssler and Stute
(1987) and Tsukahara (2005)). This result can also be proven by functional
delta-methods by the arguments in section 3.9.4.4 in (van der Vaart and
Wellner, 1996, p.389).

Theorem 2.3.1 We assume that C ∈ C and F have continuous marginal
distribution functions. If, for 1 ≤ p <∞,

w ∈ Lp
(
[0, 1]d, µ

)
, (2.3.1)

then the weighted empirical copula process wCn, converges weakly in Lp
(
[0, 1]d, µ

)
to the Gaussian process wB∗.

Remark 2.3.1 We note that the assumption (2.3.1) of Theorem 2.3.1 im-
plies (2.2.15).

Remark 2.3.2 For both of the Fréchet-Hoeffding bounds W2 and M2, the
limiting process B∗ in Theorem 2.3.1 is such that

P{B∗(u, v) = 0} = 1 a.e. on [0, 1]2.

This follows from Cauchy-Schwarz inequality when applied to the covari-
ance function of B∗, and the readily established fact that V ar(B∗(u, v)) =
E
{

[B∗(u, v)]2
}

= 0 a.e. on [0, 1]2.
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In view of Remark 2.3.2 we may ask the question whether the limiting process
B
∗ is always trivial whenever the support of copula function is of Lebesgue

measure zero. The following example gives the negative answer to that ques-
tion.

Example 2.3.1 (d=2) Set θ ∈ (0, 1) and let consider a copula function
C(·, ·, θ), defined as a convex combination of the Fréchet-Hoeffding bounds,
W2 and M2, namely

C(u, v, θ) = θM2(u, v) + (1− θ)W2(u, v).

From (2.6.8) it is readily to show that, for u ≤ v and v ≤ 1−u, V ar(B∗(u, v)) =
θ(1− θ)u.

Remark 2.3.3 It is natural to ask whether the condition (2.3.1) in Theorem
2.3.1 can be weakened or not. We conjecture that the techniques of Mason
(1984) (see Theorem 1, Corollary 2 and Corollary 3) should be helpful in this
setup. Observe that, Proposition 2.2.3, condition (2.2.15) is the minimal
possible assumption which can be imposed upon w.

2.4 Statistical Applications

In the sequel of statistical applications, we consider the estimator Cn instead
of C̃n in definition of the GOF statistics (refer to (2.2.9) and (2.2.10) respec-

tively). The reason is that Cn is easier to compute than C̃n and the difference
between these two empirical functions is of order 1/n (see Proposition 2.2.2
on page 56). The empirical function Cn is often called the càdlàg version
of the empirical copula function (see e.g., (Genest et al, 2009, p.201) and
(Fermanian et al, 2004, p.854)).

Recall that C̃n is used in definition of empirical copula process Cn (see
2.2.11). In the present section, the weak convergence is considered in the L2

space with respect to the Lebesgue measure on [0, 1]d. This means that we
apply our main result (Theorem 2.3.1 on page 59) with p = 2.

2.4.1 Goodness-of-fit test to a specific copula

One of the simplest goodness-of-fit problem consists of testing fit to a single
copula function, namely, testing the null hypothesis H0 : C = C0 against
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H1 : C 6= C0. We define the Cramér-von-Mises statistic

S0,n :=

∫
[0,1]d

C
2

n(u) dC0(u),

Cn(u) := n1/2(Cn(u)− C(u)), for u ∈ [0, 1]d. (2.4.1)

Under assumption that copula function C0 admits a density c0, this GOF
statistic is expressed by

S0,n :=

∫
[0,1]d

C
2

n(u) dC0(u) =

∫
[0,1]d

C
2

n(u) · c0(u) du,

and converges weakly to a Gaussian quadratic functional. This follows from
the fact that |Cn − Cn|∞ = O(1/

√
n) (see Proposition 2.2.2 on page 56) and

from Theorem 2.3.1 when applied with the weight function w = c
1/2
0 , and

making use of continuous mapping theorem applied to the map L2
(
[0, 1]d

)
3

f 7→ |f |22, which obviously is continuous.

2.4.2 Goodness-of-fit tests for a family of copulas

We consider here semiparametric copula models, where the unknown copula
C associated to F belongs to a parametric class C0 = {Cθ : θ ∈ ∆}, where ∆
is an open subset of Rp. In the literature (see, e.g., Genest et al (2009) and
Kojadinovic et al (2010)), the following procedure of testing H0 : C ∈ C0,
against H1 : C 6∈ C0, is commonly used. The process

Cn,θ := n1/2(Cn − Cθn), (2.4.2)

is used as a goodness-of-fit process, where θn is a consistent estimator of θ
and Cn is defined via (2.2.9).

Two of the most popular rank-based estimation methods involve the in-
version of a consistent estimator of a moment of the copula. The two best-
known moments are Spearman’s rho and Kendall’s tau. As an example, for
a bivariate copula Cθ, these are respectively given by

ρθ = 12

∫
[0,1]2

Cθ(u, v)dudv − 3 and τθ = 4

∫
[0,1]2

Cθ(u, v)dudv − 1
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We assume that the bivariate copula family C0 is such that the functions ρ et τ
are one-to-one. Consistent estimators θn of θ are then given by θn,ρ = ρ−1(ρn)
and θn,τ = τ−1(τn), where ρn and τn are the sample versions of Spearman’s
rho and Kendall’s tau, respectively.
We define a Cramér-von-Mises type statistic by setting

S1,n :=

∫
[0,1]d

{Cn,θ(u)}2du.

The convergence of S1,n is established by the following Proposition 2.4.1.
Throughout, we assume that w ∈ L2

(
[0, 1]d

)
and

H.1 For all θ ∈ ∆, w · {n1/2(Cn−Cθ)} and Θn := n1/2(θn− θ) jointly weakly
converge to (wB∗,Θ) in L2

(
[0, 1]d

)
⊗ Rp.

H.2 For all θ ∈ ∆ and as ε ↓ 0,

sup
‖θ∗−θ‖<ε

{
sup

u∈[0,1]d

∣∣∣Ċθ∗(u)− Ċθ(u)
∣∣∣}→ 0,

where

Ċθ = ∇θCθ :=

(
∂

∂θ1

Cθ, ...,
∂

∂θp
Cθ

)T
. (2.4.3)

Proposition 2.4.1 Under H.1, H.2 and under the assumptions of Theorem
2.3.1 , the goodness-of-fit process wCn,θ converges weakly in L2

(
[0, 1]d

)
to the

centered Gaussian process wB∗∗ defined via

wB∗∗ := w(B∗ − ĊT
θ Θ).

Proof. See Section 2.5.2.�
Assumptions H.1 and H.2 are very similar to the hypotheses A.2 and A.3
used by (Kojadinovic et al, 2010, p.4) (see also Quessy (2005) and Berg and
Quessy (2009)).

We infer from Proposition 2.4.1 taken with the weight function w ≡
1 and from the continuous mapping theorem as in Section 2.4.1 that the
statistic S1,n converges weakly to the corresponding quadratic functional of
the Gaussian process.
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Remark 2.4.1 From the point of view of statistical applications the statistic

Tn :=

∫
[0,1]d

{Cn;θ(u)}2 dCn(u) =
n∑
i=1

{Cn;θ(Fn1(Xi(1)), ..., Fnd(Xi(d)))}2,

(2.4.4)
appears as an interesting alternative to S1,n.
It is well known fact that, under nonrestrictive smoothness condition (see
Condition 1 defined via (1.1.11) on page 21 and Segers (2012)), the statistic
Tn converge weakly to the corresponding quadratic functional of the Gaussian
process.
However, the topology induced by the L2 norm seems to be to weak to infer
the convergence of the statistic Tn from the continuous mapping theorem and
our Proposition 2.4.1.

2.4.3 Goodness-of-fit tests based on random weighted
copula processes

We consider here semiparametric copula models, where the unknown copula
C associated to F belongs to a parametric class C0 = {Cθ : θ ∈ ∆}, where ∆
is an open subset of Rp.
The process

C
wn
n;θ(u) :=

√
n{Cn(u)− Cθn(u)} · wθn(u), u ∈ [0, 1]d, (2.4.5)

may be used as a goodness-of-fit process, where θn is a consistent estimator of
θ, wθn is a random weight function and Cn is defined via (2.2.10). The weak
convergence of Cwnn;θ to a centered Gaussian process in L2

(
[0, 1]d

)
is provided

by Proposition 2.4.3 below. Throughout, we assume that

H.1 For all θ ∈ ∆, wθ ·{
√
n(Cn−Cθ)} and

√
n(θn−θ) jointly weakly converge

to (wθB
∗,Θ) in L2

(
[0, 1]d

)
⊗ Rp.

H.2 For each θ ∈ ∆, as ε ↓ 0,

sup
‖θ∗−θ‖<ε

sup
u∈[0,1]d

∣∣∣Ċθ∗(u)− Ċθ(u)
∣∣∣→ 0,

where Ċθ is defined in (2.4.3).
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H.3 As n→∞,wθn → wθ in probability in L2
(
[0, 1]d

)
,

H.4 For all θ ∈ ∆, |wθ|2 <∞.

Proposition 2.4.2 Under H.1-H.4 and under the assumptions of Theorem
2.3.1 for all copula Cθ, the goodness-of-fit process Cwnn;θ from (2.4.5) converges
weakly in L2 ([0, 1]2) to the centered Gaussian process wθB

∗∗ defined as

wθB
∗∗(u) := wθ(u)

[
B
∗(u)− ĊT

θ (u)Θ
]
, u ∈ [0, 1]d.

Proof. See Section 2.5.3.�
Assumptions H.1-H.2 are similar to the hypotheses A.2-A.3 in Kojadinovic
et al (2010) p.4. Assumption H.3 is necessary to apply the Slutsky’s theorem
and H.4 is requested by Theorem 2.3.1.

We will show in Section 2.6.2 that the hypothesis H.2 holds for the Clay-
ton, Frank, Gumbel-Hougaard, Gaussian and Student copulas.

2.4.3.1 Copula goodness-of-fit statistic

The asymptotic result obtained in Proposition 2.4.2 motivates the use of
goodness-of-fit statistics based on continuous functionals based upon C

wn
n;θ

in virtue of the continuous mapping theorem. An omnibus statistic which
turns out to have good power properties in general is the Cramér-von-Mises
statistic

S2,n :=

∫
[0,1]d

{Cwnn;θ(u)}2 du. (2.4.6)

2.4.3.2 P-value’s approximation

In practice, the limiting distribution, under the composite null hypothesis,
of the goodness-of-fit process Cwnn;θ from (2.4.5) depends upon the family of
copulas {Cθ : θ ∈ ∆} and on the unknown parameter value θ (see Proposition
2.4.1). As a result, the asymptotic distribution of the test statistic Sw2,n cannot
be tabulated easily and in practice approximate p-values can only be obtained
via specially adapted simulation methods. We expose below such simulation
algorithm based on the multiplier central limit theorem (see Kojadinovic et al
(2010)).
The validity of this algorithm is provided by Theorem 2.6.1 and Theorem
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2.6.2 in Section 2.6.1.
Goodness of fit procedure: In the present procedure we limit ourselves
to the bivariate case (d = 2).

1. Given a random sample (X1, Y1), ..., (Xn, Yn) from the c.d.f F , compute
Cn using (2.2.10). Compute an estimate θ using an estimator θn from
class R1 or R2 defined in Section 2.6.1.

2. Compute the Cramér-von Mises statistic

S2,n :=

∫
[0,1]2

n
[(
Cn(u, v)− Cθn(u, v)

)
· wθn(u, v)

]2
du dv.

By using the numerical approximation based on m > 0 (large integer)
uniformly spaced points on (0, 1)2 denoted
(u∗1, v

∗
1), ..., (u∗m, v

∗
m) evaluate,

S2,n ≈
1

m

m∑
i=1

n
[(
Cn(u∗i , v

∗
i )− Cθn(u∗i , v

∗
i )
)
· wθn(u∗i , v

∗
i )
]2
.

3. Then, for some large integer N , repeat the following steps for every k ∈
{1, .., N}:

(a) Generate n i.i.d. random variates Z
(k)
1 , ..., Z

(k)
n with expectation 0 and

variance 1.

(b) Form an approximate realization of the test statistic under H0 by

S
(k)
2,n :=

∫
[0,1]2

n
[(
C

(k)
n (u, v)−Θ(k)

n Ċθn(u, v)
)
· wθn(u, v)

]2

du dv

≈
1

m

m∑
i=1

n
[(
C

(k)
n (u∗i , v

∗
i )−Θ(k)

n Ċθn(u∗i , v
∗
i )
)
· wθn(u∗i , v

∗
i )
]2

.

where
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C
(k)
n (u, v) :=α(k)

n (u, v)− ∂C
(n)
θ

∂u
(u, v)α(k)

n (u, 1)− ∂C
(n)
θ

∂v
(u, v)α(k)

n (1, v),

α(k)
n (u, v) :=

1√
n

n∑
i=1

Z
(k)
i

[
1{Ui,n≤u,Vi,n≤v} − Cn(u, v)

]
,

Θ(k)
n :=

1√
n

n∑
i=1

Z
(k)
i Jθn,i,n,

Jθn,i,n is defined in Section 2.6.1 and different for class R1 and R2

(refer to Theorem 2.6.1 and Theorem 2.6.2 ).

The functions ∂C
(n)
θ /∂u and ∂C

(n)
θ /∂v are consistent estimators of the

partial derivatives ∂Cθ/∂u and ∂Cθ/∂v respectively (see definition on
page 176).

From the proof of Theorem 2.1 in Rémillard and Scaillet (2009), it

follows that the empirical process C
(k)
n can be regarded as approximate

independent copies of the weak limit B∗ defined in (2.2.14).
The random vectors (Ui,n, Vi,n) are pseudo-observations from C com-
puted from the data

Ui,n =
1

n+ 1

n∑
j=1

1{Xj≤Xi}, Vi,n =
1

n+ 1

n∑
j=1

1{Yj≤Yi}, i = 1, ..., n.

(2.4.7)

4. An approximate p-value for the test is then given byN−1
∑N

k=1 1{S2,n≥S(k)
2,n}

.

Note that some authors (see e.g., Kojadinovic et al (2010)) base their compu-
tations on the scaled version of càdlàg empirical copula function, i.e., n

n+1
Cn.

2.4.3.3 Choice of weight functions

We consider here an example of the random weight function. For u ∈ [0, 1]d,
we set

wθn(u) = [cθn(u)]1/2,
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where cθn represents the density function of Cθn .

The hypothesis H.3 of Proposition 2.4.2 (see page 64) for the weight function

c
1/2
θn

is fulfilled via Proposition 2.4.3 below. Throughout, we assume that

H.5 For all θ ∈ ∆, the copula Cθ admits a density cθ which is continuous on
∆× (0, 1)d, and such that

cθ(u) = O

 1√∏d
j=1 uj(1− uj)

 ,

for u = (u1, ..., ud) ∈ Rd.

Proposition 2.4.3 Under H.1, H.2 and H.5 , the function c
1/2
θn

fulfills the
condition H.3 in Proposition 2.4.1.

Proof. See Section 2.5.4.�

We will show in Section 2.6.3 that the hypothesis H.5 holds for the Clay-
ton, Frank, Gumbel-Hougaard, Gaussian and Student copulas.

2.4.3.4 Power study-discussion

The finite sample performance of the goodness-of-fit test based on statistic
S2,n can be carried out in a large scale simulation study. The validity of pro-
posed simulation algorithm relies on the multiplier central theorem. We have
in hand the necessary methods (see algorithm in Section 2.4.3.2 and Theo-
rem 2.6.1 and Theorem 2.6.2 in Appendix 2.6.1) to implement simulations
for statistic S2,n to measure the power of this GOF statistic.

However, writing source codes demands high-level programming skills and
is extremely time-consuming. Therefore, this part of our study is omitted
and will be left for future research to complete the present results in this
thesis.

2.5 Proofs.

In this section we give details on the proofs of our results.
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2.5.1 Proof of Theorem 2.3.1

For i = 1, ..., d, denote by Πi the projection on coordinate i, i.e., Πi(u) =
(1, .., ui, ..., 1) . Recall that αnj = αn ◦ Πj. Set

Cn,0 = αn −
d∑
j=1

Cjαnj.

Set Rn = Cn−Cn,0. Our first lemma describes the limiting behavior of wCn,0.

Lemma 2.5.1 If w is in Lp([0, 1]d, µ), then wCn,0 converges weakly, as n→
∞, to wB∗ in Lp([0, 1]d, µ).

Proof. Define Yi to be w times

1[Ui,1] − C −
d∑
j=1

Cj · (1[Ui,1](Πj)− C ◦ Πj),

so that wCn,0 = n−1/2
∑

1≤i≤n Yi. The random variables Yi are in Lp([0, 1]d, µ),

and obey to the central limit theorem in Lp([0, 1]d, µ) (see Section 2.6).
�

Lemma 2.5.2 If w is in Lp([0, 1]d, µ), then |wRn|p = oP (1) as n→∞ .

Proof. Let I denote the identity function on [0, 1]. Consider, for j ∈
{1, ..., d}, the quantile processes associated to the marginals Gnj ,

βnj = n1/2(G−1
nj − I).

We have the following decomposition of the empirical copula process

Cn = αn + n1/2[C(F−1
n1 , ..., F

−1
nd )− C] + αn(F−1

n1 , ..., F
−1
nd )− αn.

From the above decomposition of Cn we can decompose Rn into the sum of

R1,n = αn(G−1
n1 , ..., G

−1
nd )− αn,

R2,n =
d∑
j=1

Cj(αnj + βnj),

R3,n =
√
n[C(G−1

n1 , ..., G
−1
nd )− C]−

d∑
j=1

Cjβnj,
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By using the triangle inequality, it suffices to show for i = 1, 2, 3, |wRi,n|p =
oP (1) as n → ∞. The proof of Proposition 1 in Tsukahara (2005) implies
that R1,n, R2,n → 0 uniformly on [0, 1]d, almost surely, as n → ∞. Since
|wRi,n|p ≤ |Ri,n|∞|w|p, we conclude that |wRi,n|p = oP (1) for i = 1, 2.
To show that |wR3,n|p → 0 we use the following extended continuous mapping
theorem

Theorem 2.5.3 (Extended continuous mapping) Let Dn ⊂ D and gn :
Dn → E satisfy the following statements:if xn → x with xn ∈ Dn for every n
and x ∈ D0, then gn(xn) → g(x), where D0 ⊂ D and g : D0 7→ E. Let Xn be
maps with values in Dn, let X be Borel measurable and separable, and takes
values in D0. Then

(i) Xn  X implies that gn(Xn) g(X)

(ii) Xn
P∗−→ X implies that gn(Xn)

P∗−→ g(X)

(iii) Xn
as∗−−→ X implies that gn(Xn)

as∗−−→ g(X)

Proof. See Theorem 1.11.1 in van der Vaart and Wellner (1996). �

Introduce the spaces: D := `∞([0, 1])
⊗
d, Dn := {h ∈ D : u +

√
nh(u) ∈

[0, 1]d}, D0 := C([0, 1])
⊗
d and E := Lp([0, 1]d, µ). Set, for xn = (xn1, ..., xnd) ∈

Dn and x = (x1, ..., xd) ∈ D0, gn(xn) :=
√
n[C(I+n−1/2xn)−C]−

∑d
j=1 Cjxnj

and g(x) := 0. Let define ξn(s) := I + sn−1/2xn and fn(s) := C(ξn(s)). Ob-
viously,

√
n[C(I + n−1/2xn) − C] = fn(1) − fn(0). Since ∂ξn/∂s = n−1/2xn,

we obtain readily that (see Theorem A.7.1 on page 181)

√
n[C(I + n−1/2xn)− C] =

√
n[gn(1)− gn(0)] =

∫ 1

0

g
′

n(s) ds,
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where f
′
n(s) =

∑d
j=1 Cj(ξn(s))n−1/2xnj. Hence

√
n

∫ 1

0

f
′

n(s) ds =
√
n

∫ 1

0

d∑
j=1

Cj(ξn(s)) ds · n−1/2xnj

=
d∑
j=1

∫ 1

0

Cj(ξn(s)) ds · xnj,

gn(xn)− g(x) =
d∑
j=1

(∫ 1

0

Cj(ξn(s)) ds− Cj
)
xnj

=
d∑
j=1

∫ 1

0

(Cj(ξn(s))− Cj) ds xnj.

By the triangle inequality, to show that |gn(xn) − g(x)|p tends to 0 as n →
∞, it is sufficient to show that, for all j ∈ {1, ..., d}, |Ij|p tends to 0 as

n → ∞, where Ij := [

∫ 1

0

(Cj(ξn(s))− Cj) ds]xnj. Furthermore, |Ij|pp :=∫
[0,1]d

Ij(u)pdµ(u) ≤ |x2
nj|∞·

∫
[0,1]d

[∫ 1

0

(Cj(ξn(s))− Cj) ds

]p
dµ(u). Since xn →

x in D, this implies that |x2
nj|∞ tends to |x2

j |∞, as n → ∞. It remains to

show that

∫
[0,1]d

δn(u)pdµ(u) tends to 0 as n→∞, where δn(u) :=

∫ 1

0

ηn(s) ds

and ηn(s) :=

∫ 1

0

(Cj(ξn(s))− Cj) ds. We start by showing that δn(u) → 0,

µ-almost everywhere, as n→∞.
Note that from the continuity of Cj on the set DC and from the fact that,
for all s, ξn(s) → 0, η(s) → 0, λ1-almost everywhere, as n → ∞. Further-
more, from the bounds 0 ≤ Cj ≤ 1, the sequence ηn is uniformly bounded
λ1-almost everywhere, i.e., |ηn(s)| ≤ M , for some positive constant M . By
the dominated convergence theorem, as n→∞

δn(u) =

∫ 1

0

ηn(s) ds→ 0.

This implies that δn(u)2 → 0 µ-almost everywhere, n → ∞. Again, from
the fact 0 ≤ Cj ≤ 1, we conclude that δ2

n is uniformly bounded on [0, 1]d,
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µ-almost everywhere. By the dominated convergence theorem, as n → ∞
|gn(xn)−g(x)|p tends to 0, which establishes the assertion that gn(xn)→ g(x)
in the space E. To finish our proof , we apply the extended continuous map-
ping theorem to the sequence Xn := 1√

n
βn. Since βn = OP (1) in `∞([0, 1]d),

Xn converges weakly to 0, as n → ∞, in `∞ and in Lp as well. Since the
weak convergence to a constant entails convergence in probability, the proof
of Lemma 2.5.2 is completed. �

Theorem 2.3.1 follows readily from Lemmas 2.5.1 and 2.5.2. �

2.5.2 Proof of Proposition 2.4.1

Set
B1,n = n1/2(Cn − Cθ) and B2,n = n1/2(Cθn − Cθ),

so that Cn,θ = wB1n−wB2n. Since |Cn−Cn|∞ ≤ d/n (see Proposition 2.2.2,
(e)), Theorem 2.3.1 implies that wB1,n converges weakly to wB∗ as n → ∞
By the inequality

|wB2n − wΘnĊθ|p ≤ |w|p|B2n −ΘnĊθ|∞,

our proof follows from the observation that |B2n−ΘnĊθ|∞ → 0 in probability.
This is a consequence of the mean value theorem and of the assumptions
H.1 and H.2 (see e.g. (Quessy, 2005, p.71-73) and (Berg and Quessy, 2009,
p.2)).�

2.5.3 Proof of Proposition 2.4.2

We have, Cwnn;θ :=
√
n{Cn−Cθn} ·wθn =

√
n{Cn−Cθn} ·wθ +

√
n{Cn−Cθn} ·

(wθn − wθ).
From Hypothesis H.3 the term wθn − wθ converges in Lp to 0 in probability.
Slutsky’s theorem implies that

√
n{Cn −Cθn} · (wθn −wθ) converges weakly

in Lp to 0. Since the weak convergence to a constant is equivalent to the
convergence in probability, the last term converges in Lp to 0 in probability.
From Proposition 2.4.1 the process

√
n{Cn−Cθn}·wθ converges weakly in Lp

to the limit wθB
∗∗. The second application of Slutsky’s theorem completes

our proof.�
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2.5.4 Proof of Proposition 2.4.3

We assume, without loss of generality, that the density function cθ is un-
bounded in the neighborhood of 0 = (0, ..., 0) ∈ [0, 1]d. A similar argument
can be used when the density function cθ is unbounded in the neighborhood
of other corner points of [0, 1]d.

To show H.3, i.e., that c
1/2
θn

P→ c
1/2
θ in L2([0, 1]d), as n → ∞, it is enough

to prove that cθn
P→ cθ in L1([0, 1]d) , as n → ∞. This follows from the

continuous mapping theorem, when applied to convergence in probability
and to the mapping g : L1 3 f 7→ f 1/2 ∈ L2. In order to establish the

convergence cθn
P→ cθ in L1([0, 1]d) it is enough to show that |cθn − cθ|1

P→ 0
in R. We have, for t0 = (t01, ..., t

0
d) and A = [0, t01]× . . .× [0, t0d],

|cθn − cθ|1 =

∫
[0,1]d

|cθn(u)− cθ(u)| du

=

∫
[0,1]d\A

|cθn(u)− cθ(u)| du +

∫
A

|cθn(u)− cθ(u)| du.

Furthermore,∫
A

|cθn(u)− cθ(u)| du ≤
∫
A

|cθn(u)| du +

∫
A

|cθ(u)| du

=

∫
A

cθn(u) du +

∫
A

cθ(u) du

≤ Cθn(t0) + Cθ(t
0)

≤ |Cθn(t0)− Cθ(t0)|+ 2Cθ(t
0)

Thus, we get

|cθn − cθ|1 ≤
∫

[0,1]d\A
|cθn(u)− cθ(u)| du + |Cθn(t0)− Cθ(t0)|+ 2Cθ(t

0).

Note that Cθ(t
0) → 0 as t0 → 0. We show next that |Cθn(t0) − Cθ(t

0)|
converges to 0 in probability. By the mean value theorem there exists a θ∗n
such that ‖θ∗n − θ‖ ≤ ‖θn − θ‖ and

|Cθn(t0)− Cθ(t0)| ≤ |Ċθ∗n(t0)− Ċθ(t0)|‖θn − θ‖+ |Ċθ(t0)|‖θn − θ‖.



2.5 Proofs. 73

Since H.1 entails that Θn :=
√
n(θn − θ) converges in distribution to Θ, the

second term converges to 0 in probability via Slutsky’s theorem. Concerning
the first term, note that for all δ > 0 there exist an M = Mδ such that
P (‖Θn‖ ≥ M) < δ (this is due to the tightness of Θn). Furthermore, we
have

P (|Ċθ∗n(t0)− Ċθ(t0)|‖θn − θ‖ ≥ ε)

= P (|Ċθ∗n(t0)− Ċθ(t0)|‖θn − θ‖ ≥ ε, ‖Θn‖ ≤M)

+ P (|Ċθ∗n(t0)− Ċθ(t0)|‖θn − θ‖ ≥ ε, ‖Θn‖ ≥M)

≤ P ( sup
t∈[0,1]d

|Ċθ∗n(t)− Ċθ(t)|‖θn − θ‖ ≥ ε, ‖Θn‖ ≤M) + P (‖Θn‖ ≥M)

≤ P

(
sup

‖θ∗−θ‖≤M/
√
n

sup
t∈[0,1]d

|Ċθ∗n(t)− Ċθ(t)| ≥ ε

M

)
+ δ,

where the last inequality is due to inclusion of corresponding events and from
the appropriate choice of the constant M depending on δ.
As δ > 0 can be chosen arbitrarily small, and in view of the hypothesis H.2
the result follows.
Finally, we show that

∫
[0,1]d\A |cθn(u)−cθ(u)| du converges to 0 in probability,

as n→∞.
Set, for t ∈ [0, 1]d

gn(t) := sup
‖θ∗−θ‖≤M/

√
n

|cθ∗(t)− cθ(t)|.

By similar arguments as above we obtain for the first term, the upper bound

P

(∫
[0,1]d\A

|cθn(u)− cθ(u)| du ≥ ε

)
≤ P

(∫
[0,1]d\A

gn(t) dt ≥ ε

)
. (2.5.1)

We infer from the continuity of the function θ 7→ cθ, for all t ∈ [0, 1]d, that
gn(t) → 0, as n → ∞. The assumption H.5 implies that |gn(t)| = O(h(t)),
as t→ 0, where h(t) = 1√∏d

j=1 uj×
∏d
j=1(1−uj)

. This is implied by the continuity

of θ 7→ cθ on compact sets. We have, therefore

gn(t) = |cθ∗n(t)− cθ(t)|,
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for some θ∗n such that ‖θ∗n − θ‖ ≤M/
√
n . Since the function h is integrable

this implies that the sequence gn is uniformly integrable. By dominating con-
vergence theorem and from (2.5.1) we obtain that

∫
[0,1]d\A |cθn(u)− cθ(u)| du

converges to 0 in probability, as n→∞.�

2.5.5 An Alternative Proof to Theorem 2.3.1

The main goal of the second proof of Theorem 2.3.1 is to introduce the
techniques of functional delta method. We show that this approach can
be useful in proving the weak-convergence-type results of empirical copula
processes.
We give proof for d = 2. It will become obvious later on that our arguments
may be adapted to d ≥ 3 by routine modifications.

2.5.5.1 Preliminaries

Let X be a set and (Y , ‖ · ‖Y) be a normed space. Denote by `∞(X ,Y) the
space of bounded functions from X to Y defined by

`∞(X ,Y) := {f : X 7→ Y : ∃M > 0, ∀x ∈ X : ‖f(x)‖Y ≤M},

where |f |∞ := supx∈X ‖f(x)‖Y . Set

S1 := `∞([0, 1]2, [0, 1]2), S2 := `∞([0, 1]2, [0, 1]),

S3 := C([0, 1]2, [0, 1]) := {β : [0, 1]2 7→ [0, 1] : β continuous on [0, 1]2}.

We endow S1, S2 and S3 respectively, with the norms

‖α‖S1 := max
{
|α(1)|∞; |α(2)|∞

}
= max

{
sup

(u,v)∈[0,1]2
|α(1)(u, v)|; sup

(u,v)∈[0,1]2
|α(2)(u, v)|

}
,

‖β‖S2 := |β|∞, and ‖β‖S3 := ‖β‖S2 ,

where α := (α(1), α(2)) and α(1), α(2) ∈ S2.
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2.5.5.2 A Proof of Theorem 2.3.1 based on the Delta-method

Consider the functional Φ : S2 7→ Lp ([0, 1]2, µ) defined by

Φ(H) = w · F ◦ (F−1
1 , F−1

2 ) = w · C, (2.5.2)

where C is a copula function corresponding to F via (2.2.2). We know that
αn  B, where αn ∈ S1 and B are defined in (2.2.12) and (2.2.13) respectively.
The next Lemma 2.5.4 shows that the map Φ is Hadamard-differentiable at
C.

Lemma 2.5.4 The map Φ defined via (2.5.2) is Hadamard-differentiable at
C tangentially to the set S3. The corresponding derivative is given by

Φ
′

C(β) = w(u, v) · {β(u, v)− Cu(u, v) · β(u, 1)− Cv(u, v) · β(1, v)} , (2.5.3)

where β ∈ S3, (u, v) ∈ DC.

By an application of the Delta-method (see Theorem 3.9.4 in van der Vaart
and Wellner (1996)) to the process αn we see that the process wCn = Φ(αn)
converges weakly in Lp([0, 1]2, µ) to Φ

′
C(B). We infer from (2.5.3) in Lemma

2.5.4 that Φ
′
C(B) = wB∗. This completes the proof of Theorem 2.3.1.�

Denote by I the identity function on [0, 1]. Set I := (I, I) ∈ S1 and θ0 =
(I, C) ∈ S1 × S2.

2.5.5.3 Proof of Lemma 2.5.4

The functional Φ can be decomposed into

Φ = φ ◦ ξ ◦ ζ,

where ζ : S2 7→ S1×S2, ξ : S1×S2 7→ S1×S2 and φ : S1×S2 7→ Lp([0, 1]2, µ)
are defined by

ζ(F ) := ((F1, F2), F ), ξ((F1, F2), F ) := ((F−1
1 , F−1

2 ), F ),

and
φ((F−1

1 , F−1
2 ), F ) := w · F ◦ (F−1

1 , F−1
2 ),
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where (F1, F2), (F−1
1 , F−1

2 ) ∈ S1, F ∈ S2 and w ∈ Lp([0, 1]2, µ).
The map ζ is linear and continuous, hence Hadamard-differentiable tangen-
tially to the space S3, and such that

ζ
′

C(β) = ((β(·, 1), β(1, ·)), β) ∈ S1 × S2.

The map ξ is Hadamard-differentiable at θ0 by Lemma 3.9.23, p.386, of
van der Vaart and Wellner (1996) (see also the proof of Theorem 2., p.4, in
Fermanian et al (2004)). The coresponding derivative ξ

′
C is given by

ξ
′

C(α, β) = (−α, β).

The map φ is Hadamard-differentiable at θ0, tangentially to the set S1 × S3.
This is due to the following lemma

Lemma 2.5.5 The functional φ is Hadamard-differentiable at θ0 tangen-
tially to the set S1 × S3. The corresponding derivative is given by

φ
′

θ0
(α, β) = w · β ◦ I + w · C ′I ◦ α, (α, β) ∈ S1 × S3, (2.5.4)

where C
′

(s,t), for (s, t) denotes the Fréchet derivative of the copula function C

(refer to Example 3.9.2 in van der Vaart and Wellner (1996) for details).

Remark 2.5.1 The Fréchet derivative C
′

(s,t) : [0, 1]2 → [0, 1] of C, for every

(s, t) ∈ [0, 1]2 is given by (refer to Example 3.9.2 in van der Vaart and
Wellner (1996))

C
′

(s,t)(u, v) = C1(s, t) · u+ C2(s, t) · v.

By applying the chain rule (see e.g., Lemma 3.9.3 in van der Vaart and
Wellner (1996)), we get

Φ
′

C(β) = φ
′

ξ◦ζ(C) ◦ ξ
′

ζ(C) ◦ ζ
′

C(β) = φ
′

θ0

(
ξ
′

θ0

(
ζ
′

C(β)
))

= φ
′

θ0

(
ξ
′

θ0
(α, β)

)
,

= φ
′

θ0
((−α, β)) = w ·

{
β ◦ I + C

′

I ◦ (−α)
}

= w ·
{
β ◦ I− C ′I ◦ α

}
,

where α = (β(·, 1), β(1, ·)). In view of Remark 2.5.1 we have

Φ
′

C(β)(u, v) = w(u, v)·{β(u, v)− C1(u, v)β(u, 1)− C2(u, v)β(1, v)} , (u, v) ∈ DC .

�
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2.5.5.4 Proof of Lemma 2.5.5

First we show that the relation

φ(θ0 + tnhn)− φ(θ0)

tn
→ φ

′

θ0
(h) in Lp([0, 1]d, µ) as n→∞, (2.5.5)

holds (2.5.5) for all sequences tn → 0, and hn → h, with h ∈ S3, and
hn, θ0 + tnhn ∈ S1 × S2 for all n. Let hn = (αn, βn) and h = (α, β). The
convergence hn → h in S1 × S3 entails that αn → α in S1 and βn → β in S3.
We can therefore rewrite (2.5.5) into∣∣∣∣φ(θ0 + tn(αn, βn))− φ(θ0)

tn
− φ′θ0((α, β))

∣∣∣∣
p

→ 0 in R as n→∞. (2.5.6)

From the definitions of φ, θ0, and recalling the expression of φ
′

θ0
given in

(2.5.4), we get

φ(θ0 + tn(αn, βn))− φ(θ0)

tn
− φ′θ0

(
(α, β)

)
=

=
φ
((

I + tnαn, C + tnβn
))
− φ
((

I, C
))

tn
− φ′θ0((α, β)),

=
(w · C + w · tnβn) ◦

(
I + tnαn

)
− w · C ◦ I

tn
− w · β ◦ I− w · C ′I ◦ α,

=
w · C ◦

(
I + tnαn

)
− w · C ◦ I

tn
+ w · βn ◦

(
I + tnαn

)
− w · β ◦ I− w · C ′I ◦ α.

Furthermore, by straightforward computations we write

φ(θ0 + tn(αn, βn))− φ(θ0)

tn
− φ′θ0

(
(α, β)

)
= A1n + A2n + A3n + A4n,

where

A1n = w · (βn − β) ◦
(
I + tnαn

)
,

A2n = w · (β ◦
(
I + tnαn

)
− β ◦ I),

A3n =
w · C ◦

(
I + tnαn

)
− w · C ◦ I

tn
− w · C ′I ◦ αn,

A4n = w · C ′I ◦ (αn − α).
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In view of the triangle inequality, to establish (2.5.6) it is enough to prove that
|Ain|p = oP (1), as n→∞, for i = 1, .., 4. We now show that |A1n|p = oP (1),
as n→∞. For this, we observe that

|A1n|pp :=

∫
[0,1]2

{
w(u, v)(βn − β)

(
(u, v) + tnαn(u, v)

)}p
dµ(u, v)

≤ |w|pp · sup
(s,t)∈[0,1]2

{βn(s, t)− β(s, t)}p .

Hence, we see that

|A1n|p ≤ |w|p · ‖βn − β‖S2
→ 0,

where the convergence is implied by the fact that βn → β in S2. We next
show that |A2n|p = oP (1), as n→∞. We have the inequality

|A2n|pp :=

∫
[0,1]2

{
w(u, v)β

(
(u, v) + tnαn(u, v)

)
− β(u, v)

}p
dµ(u, v)

≤ |w|pp sup
(u,v)∈[0,1]2

{
β
(
(u, v) + tnαn(u, v)

)
− β(u, v)

}p → 0.

This last convergence follows from the fact that β ∈ S3, with β uni-
formly continuous on [0, 1]2, and from the fact that (u, v) + tnαn(u, v) → 0
as n→∞.
The convergence to 0 of the term |A3n|p is established by the arguments
used to show the convergence of R3n (see the first proof of Theorem 2.3.1).
We conclude by showing that |A4n|p = oP (1), as n → ∞. In view of the in-
equality |f+g|p ≤ |f |p+ |g|p, and making use of Remark 2.5.1 we obtain that
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|A4n|pp =

∫
[0,1]2

{
w(u, v) · C ′(u,v)(αn(u, v)− α(u, v))

}p
dµ(u, v),

≤
∣∣(α(1)

n − α(1))p
∣∣
∞

∫
[0,1]2

wp(u, v) · Cp
1 (u, v) dµ(u, v)

+
∣∣(α(2)

n − α(2))p
∣∣
∞

∫
[0,1]2

wp(u, v) · Cp
2 (u, v) dµ(u, v),

≤ |w|pp
{∣∣(α(1)

n − α(1))p
∣∣
∞ +

∣∣(α(2)
n − α(2))p

∣∣
∞

}
,

where this last inequality is due to Proposition 2.6.3. The convergence
αn → α in S1 readily implies that |wR4,n|p = oP(1), as n→∞.
To complete the proof of Lemma 2.5.5, we show the continuity of the deriva-
tive φ

′

θ0
. We get, namely∣∣∣φ′θ0(α, β)− φ′θ0(α0, β0)

∣∣∣p
p
≤ |w|pp

{
‖β − β0‖2

S3
+
∥∥∥C ′I ◦ (α− α0)

∥∥∥2

S2

}
,

≤ |w|pp
{
‖β − β0‖2

S3
+
∥∥∥C ′I∥∥∥2

S2

· ‖α− α0‖2
S1

}
,

≤ |w|pp
{
‖β − β0‖2

S3
+ ‖α− α0‖2

S1

}
.

Therefore∣∣∣φ′θ0(α, β)− φ′θ0(α0, β0)
∣∣∣p
p
≤ |w|2p

{
‖β − β0‖S3

+ ‖α− α0‖S1

}
,

≤ 2 |w|pp ·max
{
‖β − β0‖S3

; ‖α− α0‖S1

}
,

≤ const · ‖(α, β)− (α0, β0)‖S1×S3
.

�

2.6 Auxiliary Results

2.6.1 Multiplier Central Limit Theorem

Before stating the key result, we define a first class of rank-based estimators
of the copula parameter θ. Without loss of generality we assume that θ ∈
∆ ⊂ R. Set, hereafter, Θn =

√
n(θn − θ).
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Definition 2.6.1 A rank-based estimator θn of θ is said to belong to the
class R1 if

Θn =
1√
n

n∑
i=1

Jθ(Ui,n, Vi,n) + oP (1),

where Jθ : [0, 1]2 → R is a score function that satisfies the following regularity
conditions:

(a) for all θ ∈ ∆, Jθ is bounded on [0, 1]2 and centered, i.e.,
∫

[0,1]2
Jθ(u, v)dCθ(u, v) =

0,

(b) for all θ ∈ ∆, the partial derivatives J
[1]
θ = ∂Jθ/∂u, J

[2]
θ = ∂Jθ/∂v,

J
[1,1]
θ = ∂2Jθ/∂u

2, J
[2,2]
θ = ∂2Jθ/∂v

2, J
[1,2]
θ = ∂2Jθ/∂u∂v, J

[2,1]
θ = ∂2Jθ/∂v∂u

exist and are bounded on [0, 1]2,

(c) for all θ ∈ ∆, the partial derivatives J̇θ = ∂J̇θ/∂θ, J̇
[1]
θ = ∂J̇

[1]
θ /∂θ and

J̇
[2]
θ = ∂J̇

[2]
θ /∂θ

2 exist and are bounded on [0, 1]2,

(d) for all θ ∈ ∆, there exist cθ > 0 and Mθ > 0 such that, if |θ′ − θ| < cθ,

then |J̇θ′ | ≤Mθ, |J̇ [1]

θ′
| ≤Mθ and |J̇ [2]

θ′
| ≤Mθ.

It is well known (refer to Kojadinovic et al (2010) or Berg and Quessy (2009))
that the estimator θρ,n based on the one of the most popular measure of
association - Spearman’s rho, belongs to class R1. Its score function is given
by

Jθ,ρ(u, v) =
1

ρ′(θ)
(12uv − 3− ρ(θ)), (u, v) ∈ [0, 1]2.

The following result is instrumental for verifying the asymptotic valid-
ity of the fast goodness-of-fit procedure proposed in Section 2.4.3.2 for the
estimators of θ belonging to the class R1.

Theorem 2.6.1 Let θn be an estimator of θ belonging to class R1 and, for
any k ∈ {1, ..., N}, let

Θ(k)
n =

1√
n

n∑
i=1

Z
(k)
i Jθn,i,n,

where
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Jθn,i,n := Jθn(Ui,n, Vi,n) +
1

n

n∑
j=1

J
[1]
θn

(Ui,n, Vi,n)[1{Ui,n≤Uj,n} − Uj,n]

+
1

n

n∑
j=1

J
[2]
θn

(Ui,n, Vi,n)[1{Vi,n≤Vj,n} − Vj,n].

(2.6.1)

Then, under Assumptions H.1-H.4,

wn�n :=
(

[
√
n(Cn − Cθn)]wθn , [C

(1)
n −Θ(1)

n Ċθn ]wθn , ..., [C
(N)
n −Θ(N)

n Ċθn ]wθn

)
converges weakly to

w� :=
(

[B∗ −ΘĊθ]wθ, [B
∗(1) −Θ(1)Ċθ]wθ, ..., [B

∗(N) −Θ(N)Ċθ]wθ

)
in L2

(
[0, 1]d

)⊗(N+1)
, where Θ is the weak limit of Θn =

√
n(θn − θ) and

(B∗(1),Θ(1)), ..., (B∗(N),Θ(N)) are independent copies of (B∗,Θ).

Proof. Recall that the map Πi denotes projection on the coordinate i,
i = 1, 2.
From the proof of Theorem 2 in Kojadinovic et al (2010), the process 	n :=

(Ψn,Ψ
(1)
n , ...,Ψ

(N)
n ) defined, for j ∈ {1, .., N}, by

Ψn = αn −
∂Cθ
∂u

αn ◦ Π1 −
∂Cθ
∂v

αn ◦ Π2 −ΘnĊθ,

Ψ(j)
n = α(j)

n −
∂Cθ
∂u

α(j)
n ◦ Π1 −

∂Cθ
∂v

α(j)
n ◦ Π2 −Θ(j)

n Ċθ,

converges weakly to � in `∞([0, 1]2)⊗(N+1). Then, from the continuous map-

ping theorem, w	n := (Ψnwθ,Ψ
(1)
n wθ, ...,Ψ

(N)
n wθ) converges weakly to w� in

L2([0, 1]2)⊗(N+1). We have, for j ∈ {1, .., N}

(
√
n(Cn − Cθn))wθn − wθΨn = Rn +Qn + Tn,

(C(j)
n −Θ(j)

n Ċθn)wθn − wθΨ(j)
n = Q(j)

n + T (j)
n ,

Qn := (wθn − wθ)
√
n(Cn − Cθn)),

Tn := wθ[
√
n(Cθn − C)−ΘnĊθ],

Q(j)
n := (wθn − wθ)(C(j)

n −Θ(j)
n Ċθn),

T (j)
n := wθ[α

(j)
n ◦ Π1(∂Cθ/∂u− ∂C(n)

θ /∂u)]

+ wθ[α
(j)
n ◦ Π2(∂Cθ/∂v − ∂C(n)

θ /∂v)]

+ wθ[Θ
(j)
n (Ċθ − Ċθn)],
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where Rn is defined in the proof of Theorem 2.3.1. The hypothesis H.3 im-
plies that Qn and Q

(j)
n tend to 0 in L2 in probability. In view of Proposition

2.4.1 Tn tends to 0 in L2 in probability. By using the fact that ∂C
(n)
θ /∂u and

∂C
(n)
θ /∂v converge uniformly in probability to ∂Cθ/∂u and ∂Cθ/∂v respec-

tively (Rémillard and Scaillet (2009), Prop. A.2.), and making use of the fact
following, from Assumption H.2, that Ċθn converges uniformly in probability
to Ċθ, we obtain that w	n−wn�n tends to 0 in L2 in probability. Since w	n
converges weakly in L2 to w�, this competes the proof of the theorem. �

We define next the second important class, denoted by R2, of rank-based
estimators of θ. We state and prove as well the analogue of Theorem 2.6.1
for the class R2.

Definition 2.6.2 A rank-based estimator θn of θ is said to belong to the
class R2 if

Θn =
1√
n

n∑
i=1

Jθ(Ui, Vi) + oP (1),

where (Ui, Vi) := (F1(Xi), F2(Yi)) for all i ∈ {1, ..., n} and Jθ : [0, 1]2 → R is
a score function that satisfies the following regularity conditions:

(a) for all θ ∈ ∆, Jθ is bounded on [0, 1]2 and centered, i.e.,
∫

[0,1]2
Jθ(u, v)dCθ(u, v) =

0,

(b) for all θ ∈ ∆, the partial derivatives J
[1]
θ = ∂Jθ/∂u, J

[2]
θ = ∂Jθ/∂v, exist

and are bounded on [0, 1]2,

(c) for all θ ∈ ∆, the partial derivative J̇θ = ∂J̇θ/∂θ, exists and is bounded
on [0, 1]2,

(d) for all θ ∈ ∆, there exist cθ > 0 and Mθ > 0 such that, if |θ′ − θ| < cθ,
then |J̇θ′ | ≤Mθ.

It is well known fact that (see e.g. Berg and Quessy (2009) and the references
therein) that the estimator θτ,n based on the one of the most popular measure
of association - Kendall’s tau, belongs to the class R2. Its score function is
given by

Jθ,τ (u, v) =
4

τ ′(θ)

(
2Cθ(u, v)− u− v +

1− τ(θ)

2

)
, (u, v) ∈ [0, 1]2.
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The following result, which is the analogue of Theorem 2.6.1 for class R2, is
instrumental for verifying the asymptotic validity of the fast goodness-of-fit
procedure proposed in Section 2.4.3.2 for the estimators of θ belonging to
the class R2. Its proof is omitted as it is very similar to and simpler than
that of Theorem 2.6.1.

Theorem 2.6.2 Let θn be an estimator of θ belonging to class R2 and, for
any k ∈ {1, ..., N}, let

Θ(k)
n =

1√
n

n∑
i=1

Z
(k)
i Jθn,i,n,

where Jθn,i,n := Jθn(Ui,n, Vi,n). Then, under Assumptions H.1-H.4,

wn�n :=
(

[
√
n(Cn − Cθn)]wθn , [C

(1)
n −Θ(1)

n Ċθn ]wθn , ..., [C
(N)
n −Θ(N)

n Ċθn ]wθn

)
converges weakly to

w� :=
(

[B∗ −ΘĊθ]wθ, [B
∗(1) −Θ(1)Ċθ]wθ, ..., [B

∗(N) −Θ(N)Ċθ]wθ

)
in L2

(
[0, 1]d

)⊗(N+1)
, where Θ is the weak limit of Θn =

√
n(θn − θ) and

(B∗(1),Θ(1)), ..., (B∗(N),Θ(N)) are independent copies of (B∗,Θ).

2.6.2 Verification of hypothesis H.2 for various copula
models

2.6.2.1 Preliminaries

We consider the parametric family of copulas {Cθ : θ ∈ ∆}, where ∆ is an
open subset of Rp.

Recall from (2.4.3) on page 62 definition of Ċθ. The following two condi-
tions can be used to verify hypothesis H.2 :

The function Ċ(θ,u) := Ċθ(u) is continuous on ∆× [0, 1]d, (2.6.2)

sup
‖θ∗−θ‖<ε

{
sup

u∈[0,1]d

∣∣∣C̈θ(u)− C̈θ(u)
∣∣∣} <∞, for some ε > 0, (2.6.3)

where C̈θ(u) := ∇θĊθ(u) =
(

∂
∂θ1
Ċθ(u), .., ∂

∂θp
Ċθ(u)

)T
.
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Proposition 2.6.1 If the family of copulas {Cθ : θ ∈ ∆} fulfil condition
(2.6.2) or condition (2.6.3) then it satisfies hypothesis H.2.

Proof. Let first assume condition (2.6.2). From the continuity of function
Ċθ on [0, 1]d there exist u∗ (depending on θ∗) such that∣∣∣Ċθ∗(u∗)− Ċθ(u∗)∣∣∣ = sup

u∈[0,1]d

∣∣∣Ċθ∗(u)− Ċθ(u)
∣∣∣

The continuity of function Ċθ on ∆ implies that, for δ > 0 and every
sequence εn (εn → 0) there exist N such that for n ≥ N , ‖θ∗ − θ‖ < εn and

sup
‖θ∗−θ‖<εn

∣∣∣Ċθ∗(u∗)− Ċθ(u∗)∣∣∣ < δ.

Condition (2.6.3) implies the hypothesis H.5 by mean value theorem. �

Note that similar derivations included in this section can be partially
found in : (Quessy, 2005, p. 74-75), Appendix B in (Genest et al, 2006, p.
23-28), Appendix B in (Berg and Quessy, 2009, p. 27-29).

2.6.2.2 Multivariate Archimedean copulas

The Archimedean representation allows us to reduce the study of a multi-
variate copula to a single univariate function. The next theorem generalizes
the concepts of bivariate Archimedean copula (see (1.1.10) on page 20) for
the d-dimensional case (d ≥ 3).

Definition 2.6.3 A function f is completely monotonic in an interval [a, b]
if for t ∈ [a, b] and k ∈ N it satisfies

(−1)k
dk

dtk
f(t) ≥ 0.

Assume that φ is a convex, strictly decreasing function with domain (0, 1]
and range [0,∞] such that φ(0) = 1. Use φ−1 for the generalized inverse
function of φ defined via (1.1.1). We call φ a generator of an Archimedean
copula.
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Theorem 2.6.3 The function

Cd−Arch(u) = φ−1

(
d∑
j=1

φ(uj)

)
, for u = (u1, ..., ud), (2.6.4)

is a copula for all d ≥ 2 if and only if φ−1 is completely monotonic in [0, 1).

Proof. See Proof of Theorem 2.2. in McNeil and Nešlehová (2009). �

For more information and properties of Archimedean copulas, see for
example Joe (1997).

Proposition 2.6.2 For Archimedean copulas, we have

Ċd−Arch
θ (u) =

∑d
j=1 φ̇θ(uj)− φ̇θ(C

d−Arch
θ (u))

φ
′
θ(C

d−Arch
θ (u))

.

Proof. From (2.6.4) we may write

φθ(C
d−Arch
θ (u)) =

d∑
j=1

φθ(uj).

Applying the chain rule for a function of several variables finishes the proof
of Proposition 2.6.2. �

In the sequel, to simplify our exposition, we use the common notation Cθ
for different families of Archimedean copulas (Clayton, Frank and Gumbel-
Hougaard).

• Clayton family of copulas. For this family θ > 0, therefore ∆ = (0,∞).
It is well known that (see for example Quessy (2005), p. 75)

φθ(t) =
1

θ
t−θ − 1

φ−1
θ (t) = (1 + θs)−1/θ

Cθ(u) =

(
d∑
j=1

uj − d+ 1

)−1/θ

φ
′

θ(t) = −t−θ−1

φ̇θ(t) =
1− t−θ − θt−θ ln t

θ2
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From Proposition 2.6.1, the function

Ċθ(u) =
Cθ(u)

θ

{ ∑d
j=1 u

−θ
j log uj∑d

j=1 u
−θ
j − d+ 1

− logCθ(u)

}

is continuous on (0,∞)× [0, 1]d = ∆× [0, 1]d. Hence from Proposition
2.6.2, for Clayton family, hypothesis H.2 holds for ∆ = (0,∞).

• Frank family of copulas. For θ ∈ R \ {0} we have

φθ(t) = ln
eθt − 1

eθ − 1
,

φ−1
θ (s) = θ−1 ln

[
1 + es(eθ − 1)

]
Cθ(u) = θ−1 ln

[
1 +

∏d
j=1(eθuj − 1)

(eθ − 1)d−1

]

φ
′

θ(t) = θ
(eθt − 1)

(eθt − 1)

φ̇θ(t) =
teθt

(eθt − 1)
− eθt − 1

eθ − 1

We use Proposition 2.6.1 to compute Ċθ. The function

Ċθ(u) =
1

θ

[
ψ1(θ,u)− (d− 1) eθ

eθ−1

ψ2(θ,u)
− Cθ(u)

]
,

where ψ1(θ,u) =
∑d

j=1 uj
eθuj

eθuj−1
and

ψ2(θ,u) =
1 +

∏d
j=1(eθuj−1)

(eθ−1)d−1∏d
j=1(eθuj−1)

(eθ−1)d−1

= 1 +
(eθ − 1)d−1∏d
j=1(eθuj − 1)

,

is continuous on R \ {0}× [0, 1]d = ∆× [0, 1]d. Hence from Proposition
2.6.2, for Frank family, hypothesis H.2 holds for ∆ = R \ {0}.
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• Gumbel-Hougaard family of copulas. For θ ≥ 1, we have

φθ(t) = (− ln t)θ,

φ−1
θ (s) = e−s

1/θ

,

ψGθ (u) :=
d∑
j=1

(− lnuj)
θ

Cθ(u) = exp
[
−ψGθ (u)1/θ

]
φ
′

θ(t) = −θ
t
(− ln t)θ−1

φ̇θ(t) = (− ln t)θ ln(− ln t).

We use Proposition 2.6.1 to compute

Ċθ(u) =
Cθ(u)

[
ϕGθ (u)− ψGθ (u)× ln[ψGθ (u)1/θ]

]
−θ[ψGθ (u)](θ−1)/θ

, (2.6.5)

where ϕGθ (u) =
∑d

j=1(− lnuj)
θ × ln(− lnuj). The function Ċθ is con-

tinuous on [1,∞)× [0, 1]2. Hence from Proposition 2.6.2, for Gumbel-
Hougaard family, hypothesis H.2 holds for ∆ = [1,∞).

For simplicity of the presentation, we restrict ourselves here to the case d = 2
for two last examples of copulas. Following Appendix B.2 of Kojadinovic et al
(2010) (p.26) we have:

2.6.2.3 Gaussian (Normal) copula

Recall the definition of the bivariate Gaussian (or Normal) copula given in
Example 1.1.1 on page 19. The expression of ĊGa

ρ (u, v) := ∂
∂ρ
CGa(u, v) follows

from the so-called Plackett formula (see Plackett (1954)):

∂

∂ρ
Φ2(h, k, ρ) =

exp
(
h2−2ρhk+k2

2(1−ρ2)

)
2π
√

1− ρ2
,

where Φ2(·, ·, θ) is the bivariate standard normal cumulative distribution
function (cdf) with correlation ρ ∈ (−1, 1).
Since ∂

∂ρ
CGa(u, v) = ∂

∂ρ
Φ2(Φ−1(u),Φ−1(v); ρ) and from the continuity of ∂

∂ρ
Φ2

we obtain that the function ĊGa
ρ is continuous on (−1, 1) × [0, 1]2. In view

of Proposition 2.6.1 on page 84 this function verifies the hypothesis H.5 with
∆ = (−1, 1).
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2.6.2.4 Student copula

The bivariate Student copula with m degrees of freedom is defined via an
application of Sklar’s theorem (see Theorem 1.1.1 on page 14 and Nelsen
(2006)) by

Ct(u, v) :=

∫ t−1
m (u)

−∞

∫ t−1
m (v)

−∞

1

2π
√

1− ρ2

(
1 +

s2 − 2ρst+ t2

m(1− ρ2)

)−(m+2)/2

ds dt,

(2.6.6)
where t−1

m (·) is the quantile function of the Student distribution with m
degrees of freedom.

The expression of Ċt
ρ(u, v) := ∂

∂ρ
Ct(u, v) follows from generalization of

the Plackett formula given in Genz (2004):

∂

∂ρ
t2(h, k, ρ,m) =

(
1 + h2−2ρhk+k2

m(1−ρ2)

)
2π
√

1− ρ2
,

where t2(·, ·, ρ,m) is the bivariate standard student cdf with m degrees of
freedom and correlation ρ ∈ (−1, 1).

Since ∂
∂ρ
Ct(u, v) = ∂

∂ρ
t2(t−1

m (u), t−1
m (v); ρ) and from the continuity of ∂

∂ρ
t2

we obtain that the function Ċt
ρ is continuous on (−1, 1)× [0, 1]2. In view of

Proposition 2.6.1 on page 84, this function verifies the hypothesis H.5 with
∆ = (−1, 1).

2.6.3 Verification of hypothesis H.5 for various copula
models

For simplicity of the presentation, we restrict ourselves here to the case d = 2.
Note that some of derivations and ideas presented in this section can be found
in Appendix D of Omelka et al (2009).

2.6.3.1 Archimedean copulas

Recall from (1.1.10) on page 20 the definition of the bivariate Archimedean
copula CArch with generator φ. We have by direct computations

∂

∂u
CArch
θ (u, v) =

φ
′

θ(u)

φ
′
θ(C

Arch
θ (u, v))
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The partial derivative of ∂
∂u
CArch
θ with respect to v is given by

cArchθ (u, v) =
∂2

∂v∂u
CArch
θ (u, v) =

−φ′θ(u)× φ′′θ (CArch
θ (u, v))

φ
′
θ(v)

φ
′
θ(CArchθ (u,v))

[φ
′
θ(C

Arch
θ (u, v))]2

=
−φ′θ(u)φ

′

θ(v)× φ′′θ (CArch
θ (u, v))

[φ
′
θ(C

Arch
θ (u, v))]3

In the sequel, to simplify our exposition, we use the common notation Cθ
for different families of Archimedean copulas (Clayton, Frank and Gumbel-
Hougaard).

• Gumbel-Hougaard family of copulas. We recall that for a Gumbel
copula

φ
′
(t) = θ(− ln t)θ−1

(
−1

t

)
φ
′′
(t) = θ(θ − 1)(− ln t)θ−2

(
1

t2

)
+ θ(− ln t)θ−1

(
1

t2

)
,

which implies that

cθ(u, v) = ψθ(u, v) + ϕθ(u, v),

where

ψθ(u, v) =
−Cθ(u, v)

uv
× [− lnu]θ−1[− ln v]θ−1

[− ln(Cθ(u, v))]2θ−2
,

ϕθ(u, v) =
−Cθ(u, v)

uv
× [− lnu]θ−1[− ln v]θ−1

[− ln(Cθ(u, v))]2θ−1
.

The Fréchet-Hoeffding upper bound for a copula Cθ (Cθ(u, v) ≤ min{u, v})
implies that: − ln[Cθ(u, v)] ≥ − lnu and − ln[Cθ(u, v)] ≥ − ln v. Direct
computations yield

|ψθ(u, v)| = Cθ(u, v)1/2 · Cθ(u, v)1/2

uv
×
∣∣∣∣ [− lnu]θ−1[− ln v]θ−1

[− ln(Cθ(u, v))]θ−1[− ln(Cθ(u, v))]θ−1

∣∣∣∣
≤ u1/2 · v1/2

uv
×
∣∣∣∣ [− lnu]θ−1[− ln v]θ−1

[− lnu]θ−1[− ln v]θ−1

∣∣∣∣ =
1

u1/2v1/2
= O

(
1√
uv

)
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Hence |ψθ(u, v)| = O
(

1√
uv

)
,when (u, v)→ (0+, 0+).

Using the fact that Cθ(u,v)
uv

is bounded when (u, v)→ (1−, 1−) we obtain,
for the second term of density cθ

|ϕθ(u, v)| ≤ [− lnu]θ−1 × [− ln v]θ−1

[− ln(Cθ(u, v))]θ−1 × [− ln(Cθ(u, v))]θ−1 × [− ln(Cθ(u, v))]

≤ [− lnu]θ−1 × [− ln v]θ−1

[− lnu]θ−1 × [− ln v]θ−1 × [− lnu]1/2 × [− ln v]1/2

=
1

[− lnu]1/2 × [− ln v]1/2
.

Since [− lnu]−1/2×[− ln v]−1/2 = O
(
(1− u)(1− v)−1/2

)
, when (u, v)→

(1−, 1−), it implies that |ϕθ(u, v)| = O
(
(1− u)(1− v)]−1/2

)
.

In view of the above facts on the functions ψ and ϕ, the density cθ of
a Gumbel-Hougaard copula is O

(
[uv(1− u)(1− v)]−1/2

)
which means

that it holds the hypothesis H.5.

• Clayton family of copulas. We recall that for a Clayton copula

φ
′
(t) = −t−θ−1

φ
′′
(t) = (θ + 1)t−θ−2,

which implies that

|cθ(u, v)| =
∣∣∣∣(θ + 1)[Cθ(u, v)]3θ+3

(uv)θ+1[Cθ(u, v)]θ+2

∣∣∣∣ =

∣∣∣∣(θ + 1)[Cθ(u, v)]2θ+1

uθ+1vθ+1

∣∣∣∣
=

∣∣∣∣(θ + 1)[Cθ(u, v)]θ+1/2[Cθ(u, v)]θ+1/2

uθ+1vθ+1

∣∣∣∣
≤
∣∣∣∣(θ + 1)uθ+1/2vθ+1/2

uθ+1vθ+1

∣∣∣∣ =

∣∣∣∣ (θ + 1)

u1/2v1/2

∣∣∣∣ .
Hence |cθ(u, v)| = O

(
[uv(1− u)(1− v)]−1/2

)
which means that density

of Clayton copula satisfies the hypothesis H.5.
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• Frank family of copulas. We recall that for a Frank copula

φ
′

θ(t) = θ
eθt

(eθt − 1)

φ
′′

θ (t) = −θ2 eθt

(eθt − 1)2
,

which implies that

cθ(u, v) =
eθueθu(eθ − 1)

(eθ − 1) + (eθu − 1)(eθv − 1)
.

Since the function cθ is bounded on [0, 1]2, for all θ ∈ R \ {0}, it
is O

(
[uv(1− u)(1− v)]−1/2

)
. This implies that a density of a Frank

copula satisfies the hypothesis H.5.

2.6.3.2 Gaussian (Normal) copula

Recall the definition of the bivariate Gaussian (or Normal) copula given in
Example 1.1.1 on page 19. The density function cGa of the bivariate Gaussian
copula CGa is given by

cGa(u, v) =
∂2

∂u∂v
CGa(u, v) =

ϕ2(Φ−1(u),Φ−1(v); ρ)

ϕ(Φ−1(u))ϕ(Φ−1(v))
, (2.6.7)

where ϕ2 is defined in Example 1.1.4 on page 21 and the function ϕ denotes
the density of the standard normal N(0, 1) law. From tail behavior of density-
quantile function ϕ ◦ Φ (see Grimshaw (1989) p.9),

ϕ(Φ(1− u)) ∼ u(−2 lnu)1/2, as u→ 0+,

and
ϕ(Φ(u)) ∼ (1− u)[−2 ln(1− u)]1/2, as u→ 1−.

Since the function ϕ2 is bounded and

[ϕ(Φ−1(u))ϕ(Φ−1(v)]−1 = o([uv(1−u)(1−v)]−1) = O([uv(1−u)(1−v)]−1/2),

the density function cGa of Gaussian copula fulfils hypothesis H.5.
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2.6.3.3 Student copula

Recall from (2.6.6) on page 88 the definition of the bivariate Student copula
Ct (with m degrees of freedom).

The density function ct of the bivariate Student copula Ct (with m degrees
of freedom) is give by

ct(u, v) =
f2,m(t−1

m (u), t−1
m (v); ρ)

fm(t−1
m (u))× fm(t−1

m (v))
,

where f2,m is a density function of the bivariate Student distribution and fm
is a density of Student univariate distribution (with m degrees of freedom).
Thus, applying l’Hôpital’s rule gives

t−1
m (u)

u
∼ 1

fm(t−1
m (u))

for u→ 0+

t−1
m (u)

1− u
∼− 1

fm(t−1
m (u))

for u→ 1−

Since the function f2,m is bounded on R
2 and

t−1
m (u)

u
=o(u−1) for u→ 0+,

t−1
m (u)

1− u
=o((1− u)−1) for u→ 1−,

we obtain that
|ct(u, v)| = O([uv(1− u)(1− v)]−1/2),

which means that hypothesis H.5 holds for density of Student copula.

2.6.4 Central Limit Theorem (CLT) in Lp-space

The following fact constitutes a version of the CLT version of random vari-
ables taking their values in Lp-space (see e.g., Example 1.8.5, p.50, the dis-
cussion on p.92-93 in van der Vaart and Wellner (1996) and Ex.14, p. 205 in
Araujo and Giné (1980)).
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Fact 2.6.1 Let (S,Σ, µ) be a σ-finite measure space and Y1, ..., Yn are i.i.d.,
zero-mean Borel measurable maps into Lp(S,Σ, µ), then the sequence n−1/2

∑n
i=1 Yi

converges weakly to Y -a centered Gaussian Lp(S,Σ, µ)-valued random vari-
able with the covariance function of Y1, if and only if P(‖Y1‖p > t) = o(t−2)
as t→∞ and ∫

S

(EY 2
1 (t))p/2 dµ(t) <∞.

(In case p = 2, this can be simplified to the single requirement E‖Y1‖2
2 <∞).

Proposition 2.6.3 For every copula function C and for j = 1, ..., d, the par-
tial derivative Cj exist for almost all u ∈ [0, 1]d with respect to the Lebesgue-
measure. For such u, we have

0 ≤ Cj(u) ≤ 1, u ∈ [0, 1]d.

Proof. See Theorem 2.2.7 of Nelsen (2006). �

2.6.5 Variance function of the limiting Gaussian pro-
cess B∗

For u ∈ [0, 1]d, we have

[B∗(u)]2 =

[
B(u)−

d∑
j=1

Cj(u)B(1, uj,1)

]2

= B
2(u) + V1(u) + V2(u),

where

V1(u) = −2
d∑
j=1

Cj(u)B(u)B(1, uj,1)

V2(u) =
d∑
i=1

d∑
j=1

Ci(u)Cj(u)B(1, ui,1)B(1, uj,1)

=
d∑
i=1

C2
i (u)B2(1, ui,1) + 2

∑
i<j

Ci(u)Cj(u)B(1, ui,1)B(1, uj,1)
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From (2.2.13) we obtain that, for i < j

E[B2(u)] = C(u)[1− C(u)]

E[B(u)B(1, uj,1)] = C(u)[1− uj]
E[B2(1, ui,1)] = ui(1− ui)

E[B(1, ui,1)B(1, uj,1)] = C(1, ui, uj,1)− uiuj

Hence we get

V ar(B∗(u)) = E
{

[B∗(u)]2
}

= C(u)[1− C(u)]− 2
d∑
j=1

Cj(u)C(u)[1− uj]

+
d∑
i=1

C2
i (u)ui(1− ui)

+2
∑
i<j

Ci(u)Cj(u)[C(1, ui, uj,1)− uiuj]

For d = 2 we obtain that

V ar(B∗(u, v)) = C(u, v)[1− C(u, v)]− 2C1(u, v)C(u, v)[1− u]

− 2C2(u, v)C(u, v)[1− v] + C2
1(u, v)u(1− u)

+ C2
2(u, v)v(1− v) + 2C1(u, v)C2(u, v)[C(u, v)− uv].

(2.6.8)

For d = 2 and for C(u, v) = uv (independence copula):

V ar(B∗(u, v)) = uv[1− uv]− 2vuv[1− u]

− 2uuv[1− v] + v2u(1− u)

= uv[1− uv]uv(v(1− u))− uv(u(1− v))

= uv − uv2 − u2v + u2v2

= u(v − v2)− u2(v − v2)

= u(1− u)v(1− v).
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2.6.6 An example of a very non-smooth copula

For 0 < ε < 1, a bivariate copula is constructed such that its first-order
partial derivatives are not continuous on a set of Lebesgue measure 1−ε. Let
{r1, r2, ...} be an enumeration of the rationals of the open interval (0, 1). For
every integer n ≥ 1, let 0 < an < rn < bn < 1 be such that bn − an < ε2−n.
Let A =

⋃
n≥1(an, bn). Let λ1 denote the Lebesgue measure on R. Then

A ⊂ (0, 1) and λ1(A) ≤
∑

n≥1 λ1(an, bn) <
∑

n≥1 ε2
−n = ε. Clearly, A is

open and A is dense in [0, 1].
Set B = [0, 1] \ A . Then B is closed and λ1(B) > 1 − ε. [Moreover, B is
nowhere dense in [0, 1], that is, for every non-empty open interval I ⊂ (0, 1)
there exists a non-empty open interval J ⊂ I such that J ∩ B = ∅. Indeed,
since A is dense, A ∩ I is non-empty. But since A and I are open, their
intersection A ∩ I must be open too. Hence there exists a non-empty open
interval J contained in A ∩ I = I \B. The construction of the sets A and B
is inspired by Example 3.1 on p. 44 in Billingsley (1995)].
Let (U, V ) be a pair of random variables with the following joint distribution:

• U is uniformly distributed on (0, 1);

• conditionally on U ∈ A, the variable V is uniformly distributed on A;

• conditionally on U ∈ B, the variable V is uniformly distributed on B.

The distribution function of the pair (U, V ) is given by

C(u, v) = P (U ≤ u, V ≤ v)

= P (U ∈ A ∩ [0, u], V ∈ A ∩ [0, v]) + P (U ∈ B ∩ [0;u], V ∈ B ∩ [0, v])

=
λ1(A ∩ [0, u])λ1(A ∩ [0, v])

λ1(A)
+
λ1(B ∩ [0, u])λ1(B ∩ [0, v])

λ1(B)
,

for (u, v) ∈ [0, 1]2. It is readily checked that the copula C is absolutely
continuous with respect to the two-dimensional Lebesgue measure λ2. Its
Radon-Nikodym derivative is given by

c(u, v) =
1

λ1(A)
1A×A(u, v) +

1

λ1(B)
1B×B(u, v).

The first-order partial derivative of C with respect to u is given by

C1(u, v) =

∫ v

0

c(u, v′)dv′ =

{
λ1(A ∩ [0, v])/λ1(A), if u ∈ A,
λ1(B ∩ [0, v])/λ1(B), if u ∈ B,
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for (u, v) ∈ [0, 1]2. Let N = {v ∈ [0, 1] : λ1(A ∩ [0, v])/λ1(A) = λ1(B ∩
[0, v])/λ1(B))}. Since A and B are disjoint, the set N is a null-set, λ1(N) = 0.
Since A is dense in [0, 1], we see that C1 is not continuous in B× ([0, 1] \N).
Hence, C1 is not continuous on a set of λ2-measure 1− ε.



Chapter 3

Paper II - Generalized
Framework of Mack Stochastic
Chain Ladder Method
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3.1 Motivation

In the study of Mack (1994), author extended his stochastic chain ladder
method from Mack (1993) in two ways. Firstly, he provided different esti-
mators of chain ladder factors. Secondly, he introduced the possibility to
exclude the individual age-to-age factors (link ratios) from the estimation of
the main parameters. The last extension is especially important from prac-
tical point of view. In fact, reserving actuaries often have concerns about
particular events and unusual effects which make affect the estimation pro-
cess. Such external knowledge is considered in setting the weights on link
ratios. However, the elimination of link ratios, in general, reduces artificially
the MSEP of claims reserves. To overcome this difficulty, we provide in the
present paper a general reserving tool allowing the use of the expert judgment
and analyze of the data. In our approach, the weights can be set differently
for the estimation of the amount of reserves and for the estimation of the
variance parameters. This is the common practice of actuaries even though
the estimation of the parameters in that case is not optimal in the sense of
Proposition 3.3.1 (ii) - (iv). The Chain Ladder model of Mack (1994) turns
out to be a particular case of our general framework. In the final section
we apply our results to cover the methods of claims reserving often used by
practitioners. We will make an instrumental use of the notation and methods
of Mack (1993), Mack (1994) and Mack (1999) .We will follow the arguments
of proofs of the main results of these articles. Finally, our general framework
can be applied in the case of incomplete run-off triangles (see Remark 3.6.2).

Organization of the paper. In Section 3.2 we present our notation
and Section 3.3 introduces the model and derives the structure of the mean
and the variance of the claims process and defines estimators of the unknown
parameters. The definition of the MSEP is given in Section 3.4. In Section
3.5 we derive estimators of the conditional MSEP of the ultimate amount
of claims reserves for single and for aggregated accident years. A numerical
example is presented in Section 3.6. Some concluding remarks are given in
Section 3.7 and Section 3.8. Finally, all proofs are provided in the Section
3.9 .
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3.2 Notation

Let Ci,j denote the cumulative payments for accident year i ∈ {1, ..., I} until
development year j ∈ {1, ..., J}, where the accident year is referred to as
the year in which an event triggering insurance claims occurs. This means
that the ultimate claim for accident year i is given by Ci,J . We assume that
the cumulative payments Ci,j are random variables observable for calendar
years i + j ≤ I + 1 and non-observable (to be predicted) for calendar years
i+j > I+1. The observable cumulative payments are represented by the so-
called run-off trapezoids(I > J) or run-off triangles (I = J). Table 3.1 gives
an example of a typical run-off triangle. In order to simplify our notation,
we assume that I = J (run-off triangle). However, all the results we present
can be easily extended to the case when the last accident year for which data
is available is greater than the last development year, i.e., I > J (run-off
trapezoid).

Accident Development Year j
Year i 1 2 3 4 j ... J

1
2
3 Ci,j

(observations)
I − j

Ci,j
I − 2 (to be predicted)
I − 1
I

Table 3.1: Run-off triangle (I = J)

Then the outstanding loss liabilities for accident year i ∈ {1, .., J} at time
t = I are given by

RI
i = Ci,J − Ci,I−i+1. (3.2.1)

Let
DI = {Ci,j : i+ j ≤ I + 1; i ≤ I}, (3.2.2)
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denote the claims data available at time t = I.
Let define, for 1 ≤ i ≤ I and 1 ≤ k ≤ I,

Ai,I−i+1 = {Ci,j : 1 ≤ j ≤ I − i+ 1},

and
Bk = {Ci,j : k ≤ j, i+ j ≤ I + 1; i ≤ I}.

3.3 Model Assumptions

Let define the individual development factors (or link ratios), for 1 ≤ i ≤ I−1
and 1 ≤ k ≤ J − 1,

Fi,k := Ci,k+1/Ci,k. (3.3.1)

Suppose that function g : [0,∞) → [0,∞) is Borel measurable. Let δi,j be
the non-negative random variables defined by

δi,j := g(Ci,j). (3.3.2)

Our model is formalized by the following assumptions:

(M.1) The accident years (Ci,1, .., Ci,J)1≤i≤I are independent

(M.2) There exist constants fk > 0 such that

E(Fi,k|Ci,1, .., Ci,k) = fk.

(M.3) There exist constants σ2
k > 0 such that for all 1 ≤ i ≤ I and 1 ≤ k ≤

J − 1 we have

V ar(Fi,k|Ci,1, .., Ci,k) =

{
σ2
k

δi,k
if δi,k 6= 0 a.s.,

∞ if δi,k = 0 a.s.,
(3.3.3)

where a.s. means almost surely.
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3.3.1 Model Estimators

Suppose that function f : [0,∞) → [0,∞) is Borel measurable. Let γi,j be
the non-negative random variables defined by

γi,j := f(Ci,j). (3.3.4)

• Given the information DI , the factors fk are estimated by

f̂k =

∑I−k
i=1 γi,kFi,k∑I−k
i=1 γi,k

, for 1 ≤ k ≤ J − 1. (3.3.5)

It becomes obvious from (M.3) that in order to compute correctly the

variance of f̂k (see Lemma 3.9.2 in Appendix) we have to assume that

if δi,j = 0 then γi,j = 0. (3.3.6)

• The variance parameters σ2
k are estimated by

σ̂2
k =

1

I − k − 1

I−k∑
i=

δi,k(Fi,k − f̂k)2, for 1 ≤ k ≤ J − 2, (3.3.7)

σ̂2
J−1 = min(σ̂4

J−2/σ̂
2
J−3,min(σ̂2

J−3, σ̂
2
J−2)). (3.3.8)

• The estimator of ultimate claim amount Ci,I is given by

Ĉi,I = Ci,I+1−i ·
I−1∏

k=I+1−i

f̂k. (3.3.9)

• The estimator of chain ladder reserve RI
i defined in 3.2.1 is given by

R̂I
i = Ĉi,I − Ci,I−i+1. (3.3.10)

Proposition 3.3.1 (i) The estimators f̂k given in (3.3.5) are the unbiased
and uncorrelated.
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(ii) If δi,j = γi,j for all i, j, then the estimators f̂k of fk have the minimal
variance among all unbiased estimators of fk which are the weighted
average of the observed development factors Fi,k .

(iii) The bias of the estimator σ̂2
k is given by the following formula

E[σ̂2
k − σ2

k] =
σ2
k

I − k − 1
E

∑I−k
i=1 δi,k

∑I−k
j=1

γ2j,k
δj,k(∑I−k

j=1 γj,k

)2 − 1

 .
(iv) If δi,j = γi,j for all i, j, then the estimator σ̂2

k, given in (3.3.7) is the
unbiased estimators of the parameter σ2

k.

(v) Under the model assumptions (M.1) and (M.2) we have

E(Ci,I |DI) = Ci,I+1−ifi,I+1−i · . . . · fI−1.

This fact and the fact that f̂k are uncorrelated implies that Ĉi,I defined
in (3.3.9)is unbiased estimator of E(Ci,I |DI).

(vi) The expected values of the estimator Ĉi,I for the ultimate claim amount
defined in (3.3.9) and of the true ultimate claim Ci,I are equal, i.e.,

E(Ĉi,k) = E(Ci,I), 2 ≤ i ≤ I.

The proof of this proposition is postponed to the appendix.

Remark 3.3.1 If we set γi,j = δi,j = Ci,j in (3.3.3) and (3.3.5) we get the
assumptions of stochastic Chain Ladder model of Mack (1993)(see also Mack
(1994) and Mack (1999)). More examples of the models which are included
in our general framework are presented in Section 3.6.

3.4 (Conditional)Mean-Square Error of Pre-

diction (MSEP)

There are many claims reserving methods available to predict the outstand-
ing loss liabilities, the challenge is to quantify not only the claims reserves
but also the uncertainty of the resulting predictors. Here, we quantify the
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prediction uncertainty with the aid of the most popular such measure, the
so-called mean-square error of prediction (MSEP). The conditional mean-

square error of prediction of the estimators Ĉi,I and
∑I

i=1 Ĉi,I are defined
by

msepĈi,I |DI (Ci,I) := E

[(
Ĉi,I − Ci,I

)2

|DI

]
, (3.4.1)

msep∑I
i=1 Ĉi,I |DI

(
I∑
i=1

Ci,I

)
:= E

( I∑
i=1

Ĉi,I −
I∑
i=1

Ci,I

)2

|DI

 . (3.4.2)

Note that with regards to the conditional MSEP, it does not matter
whether one considers the predictor Ĉi,I of the ultimate claim amount or
the predictor RI

i of the claims reserves of accident year i. Both yield the
same result. We adopt the convention of using the predictor of the ultimate
claim amount. If the predictor Ĉi,I is DI-measurable, the conditional MSEP
decouples as follows:

msepĈiI |DI (CiI) = V ar(CiI |DI) + (E(CiI |DI)− ĈiI)2,

The first term on the right-hand side of the above equation is called the
conditional process variance It represents the inherent uncertainty of
the underlying model chosen for the observed data. The second term on the
right-hand side is called the conditional estimation error, it represents
the uncertainty in the estimation of the unknown model parameters.

3.5 Main Results

The statements in the present section are meant in the following sense.
First, we derive the theoretical expressions of msep (msepĈi,I |DI (Ci,I) and

msep∑I
i=1 Ĉi,I |DI

(∑I
i=1 Ci,I

)
respectively), which depend upon the unknown

parameters. This step is legitimate as a mathematical statement. Second, we
apply the so called plug-in principle, which is often used in statistical infer-
ence, and which consists in the replacement of the unknown parameters by
their estimates. As a result we obtain plug-in estimators of the above quan-
tities, denoted by m̂sep. The presentation of our results follows the common
practice and vocabulary of the actuarial literature (see, e.g., Mack (1993)),
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which may be considered as mathematically ambiguous when the quantities
which are so ”estimated” are random. In such a setup, one should speak, of
”evaluation” rather than ”estimation”, but both terms are used indifferently
in the literature.

Obviously, it is a serious problem to derive, by theory, the limiting prop-
erties of plug-in estimators such as m̂sep. Aside of the Slutsky lemma, the
only applicable methodology in practice makes use of simulation. We leave
such investigations to future research on the problem.

The next results show how we quantify the prediction uncertainty by means
of the mean-square error of prediction (MSEP) defined in (3.4.1) and (3.4.2).

3.5.1 Single Accident Year

Result 3.5.1 (Conditional MSEP estimator for a single accident
year) Under Model Assumptions (M.1)-(M.3), the conditional mean-square
error of ultimate claim Ci,I , for accident year i, can be estimated by

m̂sepĈi,I |DI (Ci,I) =
(
ĈI
i,J

)2

·
(

Γ̂Ii,J + ∆̂I
i,J

)
, (3.5.1)

where

Γ̂Ii,J =
J−1∑

k=I−i+1

σ̂2
k/
(
f̂ Ik

)2

δ̂i,k
, (3.5.2)

∆̂I
i,J =

J−1∑
k=I−i+1

σ̂2
k/
(
f̂ Ik

)2

(∑I−k
j=1 γj,k

)2 ·
I−k∑
j=1

(γj,k)
2

δj,k
· 1{δj,k 6=0}, (3.5.3)

and f̂j and σ̂2
j are given in (3.3.5) and (3.3.7)-(3.3.8) respectively.

3.5.2 Aggregation over Prior Accident Year

Result 3.5.2 (Conditional MSEP estimator for aggregated years)
Under Model Assumptions (M.1)-(M.3), the conditional mean-square error
of total ultimate claim

∑I
i=1Ci,I , for all accident years, can be estimated by
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m̂sep∑I
i=1 Ĉi,I |DI

(
I∑
i=1

Ci,I

)
=

I∑
i=2

m̂sepĈiI |DI (CiI)

+
I∑
i=2

Ĉi,I

(
I∑

j=i+1

Ĉj,I

)
J−1∑

k=I−i+1

2
σ̂2
k/
(
f̂ Ik

)2

(∑I−k
l=1 γl,k

)2 ·
I−k∑
l=1

(γl,k)
2

δl,k
· 1{δj,k 6=0},

(3.5.4)

where f̂j and σ̂2
j are given in (3.3.5) and (3.3.7)-(3.3.8), respectively.

Remark 3.5.1 If we set γi,j = Ci,j and δi,j = Ci,j, we obtain from our
general framework the main results of Mack (1993) (see also Mack (1994)
and Mack (1999)).

3.6 Numerical example

For our example we use the run-off triangle given in Table B.1 in Appendix
B (see also Table 2 in Merz and Wüthrich (2008a)). The dataset contains
cumulative payments Ci,j for accident years i ∈ {1, 2, ..., 9} and development
years j ∈ {1, 2, ..., 9}.

As in Mack (1999) we consider here the following family of models, for
1 ≤ i ≤ I and 1 ≤ j ≤ J ,

γi,j := wγi,j · Cα
i,j and δi,j := wδi,j · C

β
i,j, (3.6.1)

where α, β ≥ 0 and wγi,j, w
δ
i,j ∈ [0, 1] are arbitrary weights which can be used

by the actuary to downweight any outlying Fi,j defined via (3.3.1). Hence,

according to (3.3.5), the age-to-age factor f̂k is defined by

f̂k =

∑I−k
i=1 w

γ
i,kC

α
i,kFi,k∑I−k

i=1 w
γ
i,kC

α
i,k

, for 1 ≤ k ≤ J − 1.

For the γi,j and δi,j defined via (3.6.1) we define 3 methods: A,B and C, by
choosing the parameters α, β and the weights wγi,j and wδi,j in the following
way:
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A. α = β = 1 and wγi,j = wδi,j = 1 for all i, j (Chain Ladder of Mack (1993)).

B. α = β = 1 and wγi,j = wδi,j = 0 for (i, j) ∈ W 0, where W 0 is the nonempty
set of indices (i, j).
For the run-off triangle from the Table B.1 the set W 0 of indices (i, j) is

W 0 = {(1, 2); (2, 6); (3, 2)}.

C. α = β = 1 and wγi,j = 0 for (i, j) ∈ W 0, where W 0 = {(1, 2); (2, 6); (3, 2)}
and wδi,j = 1 for all (i, j).

Remark 3.6.1 The parameter α determine the different estimates of fk

1. If α = 1 and wi,j = 1 for all i, j we get the classical Chain Ladder estimate
of fk

f̂k =

∑I−k
i=1 Ci,kFi,k∑I−k
i=1 Ci,k

=

∑I−k
i=1 Ci,k+1∑I−k
i=1 Ci,k

, for 1 ≤ k ≤ J − 1.

2. If α = 0 and wi,j = 1 for all i, j we get the model for which the estimators
of the age-to-age factors fk are the straightforward average of the observed
individual development factors Fi,j defined via (3.3.1), i.e.,

f̂k =
1

I − k

I−k∑
i=1

Fi,k, for 1 ≤ k ≤ J − 1.

3. If α = 2 and wi,j = 1 for all i, j we get the model for which the estimators
of the age-to-age factors fk are the results of an ordinary regression of
{Ci,k+1}i∈{1,...,I−k−1} against {Ci,k}i∈{1,...,I−k} with intercept 0, i.e.,

f̂k =

∑I−k
i=1 C

2
i,kFi,k∑I−k

i=1 C
2
i,k

=

∑I−k
i=1 Ci,kCi,k+1∑I−k−1
i=0 C2

i,k

, for 0 ≤ k ≤ J − 1.

Remark 3.6.2 (Incomplete run-off triangles) By setting the null value
of the weights wγi,j and wδi,j we are able to deal with the incomplete run-off
triangles. In our general framework the phenomenon of incomplete run-off
triangles can be treated by setting γi,j = 0 and δi,j = 0 .
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Table 3.4 summarizes the estimates f̂ Ij of the age-to age factors fj from
the models A,B and C. These estimates are used to compute the claims
reserves R̂I

i defined in (3.3.10) for the outstanding claims liabilities RI
i (see

Table 3.2). In Table 3.3 we present the estimates (for each model from A to
C) of the predictions defined in (3.4.1) and (3.4.2) and given by the formulas
(3.5.1) and (3.5.4) respectively .

R̂I

i/method A B, C
1 - -
2 4 378 4 378
3 9 348 9 348
4 28 392 28 392
5 51 444 51 444
6 111 811 111 811
7 187 084 193 414
8 411 864 422 832
9 1 433 505 1 431 306

Total 2 237 826 2 252 925

A/A B,C/A

Total (%) 100% 101%

Table 3.2: Estimation of reserves

3.7 Conclusions (Case Study)

For the reserves and the uncertainty of reserves (see Table 3.2 and Table
3.3), we obtain the results which are very close. This is mainly due to the
fact that the estimated link ratios (see Table 3.4) and their coefficients of
variation are very close as well.
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method

i A B C
1 - - -
2 567 567 567
3 1 566 1 566 1 566
4 4 157 4 157 4 157
5 10 536 10 536 10 536
6 30 319 30 319 30 319
7 35 967 32 128 36 977
8 45 090 40 118 46 446
9 69 552 54 136 72 463

Total 108 401 94 600 111 965

A/A B/A C/A

Total (%) 100% 87% 103%

Table 3.3: Estimation of m̂sep
1/2

f̂ Ii
i

1 2 3 4 5 6 7 8
A 1.4759 1.0719 1.0232 1.0161 1.0063 1.0056 1.0013 1.0011

B, C 1.4705 1.0733 1.0249 1.0161 1.0062 1.0055 1.0012 1.0011

Table 3.4: Estimates of the age-to-age factors

3.8 Overall Conclusions

We presented the generalized framework for stochastic Chain Ladder method.
We derived the estimators of MSEP of the ultimate amount of claims reserves
in the case when we use different weights to estimate the age-to-age factors
and the variance parameters. Moreover, the present paper intends to provide
a general framework for Chain Ladder (CL) which can be applied in the
context of measuring uncertainly of Claims Development Result(CDR) or
even in the case of multivariate CL method. These are the objects of our
forthcoming paper.
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3.9 Mathematical Proofs

We present here the proofs of our main results.

3.9.1 Proof of Result 3.5.1

Due to the general rule E(X − c)2 = V ar(X) + (EX − c)2 for any scalar c
we have

msepĈiI |DI (CiI) = E

[(
ĈiI − CiI

)2

|DI

]
= V ar(CiI |DI)+(E(CiI |DI)−ĈiI)2.

(3.9.1)
To estimate V ar(Ci,I |DI) we use the following

Lemma 3.9.1 For i = 2, ..., I, we have,

V ar(Ci,I |DI) =
I−1∑

l=I+1−i

E

[
C2
i,l

δi,l
|DI

]
σ2
l

I−1∏
k=l+1

f 2
k .

Proof. (Lemma 3.9.1)

For l = I + 1− i, ..., I − 1,

V ar(Ci,l+1|DI) = V ar(Ci,l+1|Ai,I+1−i)

= E [V ar(Ci,l+1|Ai,I−1)|Ai,I+1−i] + V ar [E(Ci,l+1|Ai,I−1)|Ai,I+1−i]

= E

[
σ2
l

C2
i,l

δi,l
|Ai,I+1−i

]
+ V ar [flCi,l|Ai,I+1−i]

= σ2
l E

[
C2
i,l

δi,l
|Ai,I+1−i

]
+ f 2

l V ar [Ci,l|Ai,I+1−i]

= σ2
l E

[
C2
i,l

δi,l
|DI

]
+ f 2

l V ar [Ci,l|DI ] .

(3.9.2)

We multiply the both sides by
∏I−1

k=l+1 f
2
k and we take the sum over l =

I + 1− i, ..., I − 1,
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I−1∑
l=I+1−i

V ar(Ci,l+1|DI)
I−1∏
k=l+1

f 2
k =

I−1∑
l=I+1−i

σ2
l E

[
C2
i,l

δi,l
|DI

] I−1∏
k=l+1

f 2
k

+
I−1∑

l=I+1−i

V ar [Ci,l|DI ] f
2
l

I−1∏
k=l+1

f 2
k ,

V ar(Ci,I |DI) +
I−2∑

l=I+1−i

V ar(Ci,l+1|DI)
I−1∏
k=l+1

f 2
k =

I−1∑
l=I+1−i

σ2
l E

[
C2
i,l

δi,l
|DI

] I−1∏
k=l+1

f 2
k

+ V ar [Ci,I+1−i|DI ]
I−1∏

k=I+2−i

f 2
k

+
I−1∑

l=I+1−i

V ar [Ci,l|DI ]
I−1∏
k=l

f 2
k .

(3.9.3)

Since V ar [Ci,I+1−i|DI ] = 0 and from the fact that

I−2∑
l=I+1−i

V ar(Ci,l+1|DI)
I−1∏
k=l+1

f 2
k =

I−1∑
l=I+1−i

V ar [Ci,l|DI ]
I−1∏
k=l

f 2
k ,

we finally get the proof of Lemma 3.9.1
We estimate V ar(Ci,l+1|DI) via Lemma 3.9.1 and by replacing the un-

known parameters fk et σ2
k with their estimators f̂ 2

k and σ̂2
k. The quantity

E
[
C2
i,l

δi,l
|DI

]
is estimated by

Ĉ2
i,l

δ̂i,l
(since E

[
E
[
C2
i,l

δi,l
|DI

]]
= E

[
C2
i,l

δi,l

]
and an unbi-

ased estimate of E
[
C2
i,l

δi,l

]
is

C2
i,l

δi,l
). Furthermore, since Ĉ2

i,l = C2
I+1−i

∏k−1
k=I+1−i f̂

2
k ,

we obtain:
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V ar(Ci,I |DI) =
I−1∑

l=I+1−i

E

[
C2
i,l

δi,l
|DI

]
σ2
l

I−1∏
k=l+1

f 2
k =

I−1∑
l=I+1−i

Ĉ2
i,l

δ̂i,l
σ̂2
l

I−1∏
k=l+1

f̂ 2
k

=
I−1∑

l=I+1−i

1

δ̂i,l
C2
i,I+1−i

l−1∏
k=I+1−i

f̂ 2
k σ̂

2
l

I−1∏
k=l+1

f̂ 2
k

= C2
i,I+1−i

I−1∑
l=I+1−i

σ̂2
l /f̂

2
k

δ̂i,l

I−1∏
k=I+1−i

f̂ 2
k

= C2
i,I+1−i ·

I−1∏
k=I+1−i

f̂ 2
k

I−1∑
l=I+1−i

σ̂2
l /f̂

2
k

δ̂i,l
= Ĉ2

i,I

I−1∑
l=I+1−i

σ̂2
l /f̂

2
k

δ̂i,l
.

(3.9.4)

We now turn to the second summand of the expression (3.9.1). Because
of Proposition 3.3.1(v) and (vi) we have,

(E(Ci,I |DI)− Ĉi,I)2 = C2
i,I+1−i

(
fI+1−i · . . . · fI−1 − f̂I+1−i · . . . · f̂I+1−i

)2

.

(3.9.5)

This expression cannot be estimated by replacing fk with f̂k. In order to
estimate the right hand side of (3.9.5) we use the same approach as in Mack
(1999). We define,

F = fI+1−i · . . . · fI−1 − f̂I+1−i · . . . · f̂I+1−i

= SI+1−i + . . .+ SI−1,
(3.9.6)

with

Sk = f̂I+1−i · . . . · f̂k−1fkfk+1 · . . . · fI−1

− f̂I+1−i · . . . · f̂k−1f̂kfk+1 · . . . · fI−1

= f̂I+1−i · . . . · f̂k−1(fk − f̂k)fk+1 · . . . · fI−1.

(3.9.7)

This yields
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F 2 = (SI+1−i + . . .+ SI−1)2

=
I−1∑

k=I+1−i

S2
k + 2

I−1∑
k=I+1−i

I−1∑
j<k

SjSk.
(3.9.8)

Following Mack (1993, 1994) we can estimate F 2 using following Propo-
sition

Proposition 3.9.1 We have

F̂ 2 =
I−1∏

l=I+1−i

f̂ 2
l

I−1∑
k=I+1−i

V ar(f̂k|Bk)

f̂ 2
k

.

The prove this proposition we imitate the proof of the same result stated
in Mack (1993, 1994).
Proof. (Proposition 3.9.1)

We replace S2
k with E(S2

k |Bk) and SjSk, with E(SjSk|Bk). This means
that we approximate S2

k and SjSk by varying and averaging as little data as
possible so that as many values Ci,k from data observed are kept fixed. Due

to Proposition 3.3.1 (i) we have E(f̂k−fk) = 0 and therefore E(SjSk|Bk) = 0
for j < k because all fr , r < k, are scalars under Bk.

Since E((fk − f̂k)2|Bk) = V ar(f̂k|Bk) we obtain from (3.9.7)

E(S2
k |Bk) = f̂ 2

I+1−i · . . . · f̂ 2
k−1V ar(f̂k|Bk)f

2
k+1 · . . . · f 2

I−1.

Taken together, we have replaced F 2 =
∑I−1

k=I+1−i S
2
k with

∑I−1
k=I+1−iE(S2

k |Bk)
and the unknown parameters are replaced by their estimators. Altogether,
we estimate F 2 by

I−1∑
k=I+1−i

f̂ 2
I+1−i · . . . · f̂ 2

k−1f̂
2
k f̂

2
k+1 · . . . · f̂ 2

I−1

V ar(f̂k|Bk)

f̂ 2
k

.

�
It remains to determine the estimate of V ar(f̂k|Bk). We use the following

Lemma 3.9.2 We assume (3.3.6). We have

V ar(f̂k|Bk) = σ2
k

∑I−k
j=1

γ2j,k
δj,k
· 1{δj,k 6=0}(∑I−k

j=1 γj,k

)2 .
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Proof. (Lemma 3.9.2)

V ar(f̂k|Bk) = V ar

(∑I−k
j=1 γj,kFj,k∑I−k
j=1 γj,k

|Bk

)
=

∑I−k
j=1 γ

2
j,kV ar (Fi,k|Bk) · 1{δj,k 6=0}(∑I−k

j=1 γj,k

)2 ,

(3.9.9)

where the second equality is due to assumption (3.3.6) and due to the con-
vention that the product of 0 and ∞ equals to 0. �

Using (3.9.5) and Lemma 3.9.2 we estimate E(Ci,I |DI)− Ĉi,I)2 by

C2
i,I+1−if̂

2
I+1−i · . . . · f̂ 2

I−1

I−1∑
k=I+1−i

σ̂2
k

f̂ 2
k

∑I−k
j=1

γ2j,k
δj,k
· 1{δj,k 6=0}(∑I−k

j=1 γj,k

)2

= Ĉ2
i,I

I−1∑
k=I+1−i

σ̂2
k

f̂ 2
k

∑I−k
j=1

γ2j,k
δj,k
· 1{δj,k 6=0}(∑I−k

j=1 γj,k

)2 .

(3.9.10)

3.9.2 Proof of Result 3.5.2 (Overall standard error)

m̂sep∑I
i=1 ĈiI |DI

(
I∑
i=1

Ci,I

)
=

I∑
i=2

m̂sepĈiI |DI (CiI)+
I∑

2≤i<j≤I

2·Ci,I+1−iCj,I+1−jFiFj,

with
Fi = fI+1−i · . . . · fI−1 − f̂I+1−i · . . . · f̂I+1−i,

Fi =
I−1∑

k=I+1−i

Sik,

where

Sik = f̂I+1−i · . . . · f̂k−1(fk − f̂k)fk+1 · . . . · fI−1.

We can determine the estimator of FiFj in the analogous way as for F 2.
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Proposition 3.9.2 We have

F̂iFj =
I−1∑

k=I+1−i

V ar(f̂k|Bk)

f̂ 2
k

(
f̂I+1−j · . . . · f̂I−1

)
·
(
f̂I+1−i · . . . · f̂I−1

)
.

Proof. (Proposition 3.9.2)

E[(Sik)
2|Bk] = f̂ 2

I+1−i · . . . · f̂ 2
k−1V ar(f̂k|Bk)f

2
k+1 · . . . · f 2

I−1.

For i < j, we have

F̂iFj =
I−1∑

k=I+1−i

f̂I+1−j · . . . · f̂I−i · f̂ 2
I+1−i · . . . · f̂ 2

k−1V ar(f̂k|Bk)f̂
2
k+1 · . . . · f̂ 2

I−1

=
I−1∑

k=I+1−i

V ar(f̂k|Bk)

f̂ 2
k

f̂I+1−j · . . . · f̂I−i · f̂ 2
I+1−i · . . . · f̂ 2

k−1 · f̂ 2
k · f̂ 2

k+1 · . . . · f̂ 2
I−1

=
I−1∑

k=I+1−i

V ar(f̂k|Bk)

f̂ 2
k

(
f̂I+1−j · . . . · f̂I−1

)
·
(
f̂I+1−i · . . . · f̂I−1

)
.

(3.9.11)

�
Finally, from Lemma 3.9.2

I∑
2≤i<j≤I

2 · Ci,I+1−iCj,I+1−jF̂iFj

=
I∑
i=2

Ĉi,I

I∑
j=i+1

Ĉj,I

I−1∑
k=I−i+1

2
σ̂2
k/f̂

2
k(∑I−k

l=1 γl,k

)2 ·
I−k∑
l=1

γ2
l,k · 1{δj,k 6=0}

δl,k

(3.9.12)

�

3.9.3 Proof of Proposition 3.3.1

(i) See Theorem 2 p. 215 in Mack (1993).
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(ii) See discussion on p.112, Corollary on p.141 and Appendix B on p.140
in Mack (1994).

(iii) We have, for 1 ≤ k ≤ J − 2,

(I−k−1)·σ̂2
k =

I−k∑
i=1

δi,k(Fi,k−f̂k)2 =
I−k∑
i=1

δi,kF
2
i,k−2

I−k∑
i=1

δi,kFi,k·f̂k+
I−k∑
i=1

δi,kf̂k
2
.

Since γi,j and δi,j are σ(Ci,j) measurable (σ(Ci,j) denotes the σ- field
generated by Ci,j), we have

E((I−k−1)·σ̂2
k|Bk) =

I−k∑
i=1

δi,kE(F 2
i,k|Bk)−2

I−k∑
i=1

δi,kE(Fi,k·f̂k|Bk)+
I−k∑
i=1

δi,kE(f̂k
2
|Bk).

Since Fi,k and Fj,k are independent for i 6= j, and E(F 2
i,k|Bk) =

σ2
k

δi,k
+f 2

k ,

we have

E(Fi,k · f̂k|Bk) =
1∑I−k

i=1 γi,k

(
I−k∑
j=1

γj,k · E(Fi,k · Fj,k|Bk)

)

=
1∑I−k

i=1 γi,k

(
γi,k · E(F 2

i,k|Bk) +
I−k∑
j 6=i

γj,k · E(Fi,k|Bk) · E(Fj,k|Bk)

)

=
1∑I−k

i=1 γi,k

(
γi,k · E(F 2

i,k|Bk) +
I−k∑
j 6=i

γj,k · E(Fi,k|Bk) · E(Fj,k|Bk)

)

=
1∑I−k

i=1 γi,k

(
γi,k · (

σ2
k

δi,k
+ f 2

k ) +
I−k∑
j 6=i

γj,kf
2
k

)

=
1∑I−k

i=1 γi,k

(
γi,k ·

σ2
k

δi,k
+ f 2

k

I−k∑
j=1

γj,k

)

= σ2
k

γi,k
δi,k∑I−k

i=1 γi,k
+ f 2

k .

(3.9.13)
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From Lemma 3.9.2

E(f̂k
2
|Bk) = V ar(f̂k|Bk) + (E(f̂k|Bk))

2 = σ2
k

∑I−k
j=1

γ2j,k
δj,k(∑I−k

j=1 γj,k

)2 + f 2
k .

Taking together we obtain

E((I − k − 1) · σ̂2
k|Bk) =

I−k∑
i=1

δi,kE(F 2
i,k|Bk)− 2

I−k∑
i=1

δi,kE(Fi,k · f̂k|Bk)

+
I−k∑
i=1

δi,kE(f̂k
2
|Bk)

=
I−k∑
i=1

δi,k(
σ2
k

δi,k
+ f 2

k )− 2
I−k∑
i=1

δi,k(σ
2
k

γi,k
δi,k∑I−k

i=1 γi,k
+ f 2

k )

+
I−k∑
i=1

δi,k(σ
2
k

∑I−k
j=1

γ2j,k
δj,k(∑I−k

j=1 γj,k

)2 + f 2
k )

= (I − k)σ2
k + f 2

k

I−k∑
i=1

δi,k − 2σ2
k − 2f 2

k

I−k∑
i=1

δi,k

+ σ2
k

∑I−k
i=1 δi,k

∑I−k
j=1

γ2j,k
δj,k(∑I−k

j=1 γj,k

)2 + f 2
k

I−k∑
i=1

δi,k

= (I − k − 1)σ2
k + σ2

k

∑I−k
i=1 δi,k

∑I−k
j=1

γ2j,k
δj,k(∑I−k

j=1 γj,k

)2 − 1

 .
(3.9.14)

Finally

E(σ̂2
k−σ2

k) = E[E[(σ̂2
k−σ2

k)|Bk]] =
σ2
k

I − k − 1
E

∑I−k
i=1 δi,k

∑I−k
j=1

γ2j,k
δj,k(∑I−k

j=1 γj,k

)2 − 1

 .
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(iv) It is straightforward from (iii).

(v) See Theorem 1 p. 215 in Mack (1993).

(vi) see Appendix C p.142 in Mack (1994):
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4.1 Introduction

In Merz and Wüthrich (2008a) (MW), the authors defined the claims de-
velopment result (CDR) at time I + 1 for accounting year (I, I + 1] as the
difference between two successive predictions of the total ultimate claim. The
first prediction is evaluated at time I (with the available information up to
time I), and the second one is made one period later at time I + 1 (with
the updated information available at time I + 1). In their paper, MW based
their study of the prediction of CDR, and of the possible fluctuations around
this prediction (prediction uncertainty) on a distribution-free Chain Ladder
method.

In our work, we extend the model of MW to a more general class of
models based on age-to-age factors (link ratios). The Chain Ladder Model
of MW turns out to be a particular case of our general model.

In the final section, we present a case study containing different applica-
tions of our general tool for reserving. We apply our theoretical results to
solve many of the practical problems of actuaries. One of them is to compute
the MSEP of the claims reserves in the case when the actuary wants to use
different weights for individuals age-to-age factors (link ratios) for estimation
of the chain ladder factors and the variance parameters. We will make an
instrumental use of the notation and methods of MW and we will follow the
arguments of proofs of their main results.

Organization of the paper. In Section 4.2 we present our notation and
we introduce the Chain Ladder Time Series Model. In the same section we
derive the structure of the mean and the variance of the claims process and
defines estimators of the unknown parameters. The definition of the one-year
CDR is given in Section 4.3. In Section 4.4 and 4.5 we derive estimators of
the conditional MSEP of the one-year CDR for single and for aggregated
accident years. Finally, a numerical example is presented in Section 4.6. The
run-off triangles used in this case study are presented in Appendix B. All
proofs are provided in Section 4.7.

4.2 Notation

Change in notation.

There is a slight change in notation compared to Chapter 3, namely the
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indices corresponding to accident year i and development year j start from 0
instead 1. The reason is that we wanted to keep the notation consistent with
the study of Merz and Wüthrich (2008a) on which we based our present work.

Let Ci,j denote the cumulative payments for accident year i ∈ {0, ..., I}
until development year j ∈ {0, ..., J}, where the accident year is referred to
as the year in which an event triggering insurance claims occurs. This means
that the ultimate claim for accident year i is given by Ci,J . We assume that
the cumulative payments Ci,j are random variables observable for calendar
years i + j ≤ I and non-observable (to be predicted) for calendar years
i + j > I. The observable cumulative payments are represented by the so-
called run-off trapezoids(I > J) or run-off triangles (I = J). Table 4.1 gives
an example of a typical run-off triangle. In order to simplify our notation,
we assume that I = J (run-off triangle). However, all the results we present
can be easily extended to the case when the last accident year for which data
is available is greater than the last development year, i.e., I > J (run-off
trapezoid).

Accident Development Year j
Year i 0 1 2 3 j ... J

0
1
2 Ci,j

(observations)
I − j

Ci,j
I − 2 (to be predicted)
I − 1
I

Table 4.1: Run-off triangle (I = J)

Then the outstanding loss liabilities for accident year i ∈ {0, .., J} at time
t = I are given by

RI
i = Ci,J − Ci,I−i (4.2.1)

and at time t = I + 1 they are given by

RI+1
i = Ci,J − Ci,I−i+1 (4.2.2)
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Let
DI = {Ci,j : i+ j ≤ I; i ≤ I}, (4.2.3)

denote the claims data available at time t = I and

DI+1 = {Ci,j : i+ j ≤ I + 1; i ≤ I}, (4.2.4)

denote the claims data available at time t = I + 1.

4.2.1 Model Assumptions of Chain Ladder Time Series
Model

The time series model defines an auto-regressive process. This model enables
the evaluation of the volatility of one-year reserve risk. It is particularly use-
ful for the derivation of the estimation error (see (4.4.3)). We introduce this
approach because the model from Chapter 2 defined by assumptions (M.1)-
(M.3) seems to be to general to evaluate the estimation error in the context
of one-year insurance reserve risk.

Suppose that function g : [0,∞) → [0,∞) is Borel measurable. Let δi,j be
the non-negative random variables defined by

δi,j := g(Ci,j).

Our model is formalized by the following assumptions:

(TM.1) There exist constants fk > 0, σk > 0, (k = 0, ..., J − 1) such that for
all 1 ≤ j ≤ J and 0 ≤ i ≤ I we have

Ci,j =

{
fj−1 · Ci,j−1 +

σj−1√
δi,j−1

· Ci,j−1 · εi,j if δi,j−1 6= 0 a.s.,

fj−1 · Ci,j−1 + εi,j if δi,j−1 = 0 a.s.

(4.2.5)

where a.s. states for almost surely and

• E(εi,j|Ci,0) = 0, E(ε2
i,j|Ci,0) = 1,

• E(εi,j|Ci,0) = 0, E(ε2
i,j|Ci,0) =∞,

(TM.2) εi,j and εi,j, given Ci,0, are independent random variables,
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(TM.3) P (Ci,j > 0|Ci,0) = 1 for all j ∈ {1, .., J} and i ∈ {0, .., I} ,

Let define the individual development factors (individual age-to-age factors
or link ratios), for 0 ≤ i ≤ I − 1 and 0 ≤ k ≤ J − 1,

Fi,k := Ci,k+1/Ci,k. (4.2.6)

Remark 4.2.1 Chain Ladder Time Series Model defined via assumptions
(TM.1)-(TM.3) fulfils the following hypothesis:

(M.1) There exist constants fk > 0 and σ2
k > 0 such that for all 0 ≤ i ≤ I

and 0 ≤ k ≤ J − 1 we have

E(Fi,k|Ci,0, .., Ci,k) = E(Fi,k|Ci,k) = fk,

V ar(Fi,k|Ci,0, .., Ci,k) = V ar(Fi,k|Ci,k) =

{
σ2
k

δi,k
if δi,k 6= 0 a.s.,

∞ if δi,k = 0 a.s.

(4.2.7)

(M.2) The accident years (Ci,0, .., Ci,J)0≤i≤I are independent

Remark 4.2.2 If we set δi,j = Ci,j in (4.2.5) we obtain the Markov chain
formulation of stochastic Chain Ladder model defined in (4.2.7) (see also
Buchwalder et al (2006)). Mack assumptions are slightly weaker than the
Markov chain assumptions (see Mack (1993), Mack (1994) and Mack (1999)).
More examples of the models which are included in our general framework
are presented in Section 4.6.

Remark 4.2.3 [Limits and critics of Chain Ladder Time Series
Model]
In Mack et al (2006), the authors presented the strongly critical opinion about
the model defined via the assumptions (TM.1)-(TM.3). They mostly pointed
two weak points of this model. First negative comment concerns the contra-
diction between the positivity of the variables Ci,j and the independence of
the variables εi,j They stated that it seems to be almost impossible to define
the error term εi,j in such a way that the assumptions (TM.2) and (TM.3)
are fulfilled (see the comment in Mack et al (2006), p. 544).
The second complaint concerns the approach applied to determine the esti-
mation error. This approach is based on the resampling technique of the
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development factors f̂k. As a result, we generate the new factors
̂̂
fk which

are independent by construction (see proof of Lemma 4.7.3). It implies that

the square of the new factors
̂̂
fk are also independent which disregard the fact

that the original development factors are conditionally negatively correlated
(see Mack et al (2006) p.546-547).

Remark 4.2.4 [Solution for limits of Chain Ladder Time Series
Model]
The partial remedy of the criticism of Mack et al (2006) would be to consider
the Chain Ladder method in the framework of Bayesian model. In fact it is
possible to generalize the assumption B2 of the Bayesian Chain Ladder in
Bühlmann et al (2009) (see p.276) and to obtain (by linearization) the same
estimators of (4.4.1)- (4.4.2) as obtained in the present paper (see Result 4.9,
Result 4.10 and Remark 4.11 in Bühlmann et al (2009), p. 297-298). This
is mentioned by the authors after the statement of Result 4.9: ”One obtains
equality when one linearizes the Result 4.9”.

4.2.2 Model Estimators

Suppose that function f : [0,∞) → [0,∞) is Borel measurable. Let γi,j be
the non-negative random variables defined by

γi,j := f(Ci,j).

Our model is formalized by the following assumptions:

• At time t = I, given the information DI , the factors fk are estimated
by

f̂ Ik =

∑I−k−1
i=0 γi,kFi,k∑I−k−1
i=0 γi,k

, for 0 ≤ k ≤ J − 1, (4.2.8)

• At time t = I + 1, given the information DI+1, the factors fk are
estimated by,

f̂ I+1
k =

∑I−k
i=0 γi,kFi,k∑I−k
i=0 γi,k

, for 0 ≤ k ≤ J − 1, (4.2.9)
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• The variance parameters σ2
k are estimated by

σ̂2
k =

1

I − k − 1

I−k−1∑
i=0

δi,k(Fi,k − f̂k)2, for 0 ≤ k ≤ J − 2, (4.2.10)

σ̂2
J−1 = min(σ̂4

J−2/σ̂
2
J−3,min(σ̂2

J−3, σ̂
2
J−2)). (4.2.11)

It becomes obvious from (4.2.7) that in order to compute correctly the

variance of f̂k (see proof of Lemma 4.7.3 (d) in Section 4.7) we have to assume
that

if δi,j = 0 then γi,j = 0. (4.2.12)

In the following Proposition we recall the basic properties of the estima-
tors f̂k and σ̂2

k.

Proposition 4.2.1 (i) The estimators f̂k given in (4.2.8) are the unbiased
and uncorrelated.

(ii) If δi,j = γi,j for all i, j, then the estimators f̂k of fk have the minimal
variance among all unbiased estimators of fk which are the weighted
average of the observed development factors Fi,k .

(iii) The bias of the estimator σ̂2
k is given by the following formula

E[σ̂2
k − σ2

k] =
σ2
k

I − k − 1
E

∑I−k−1
i=0 δi,k

∑I−k−1
j=0

γ2j,k
δj,k(∑I−k−1

j=0 γj,k

)2 − 1

 .
(iv) If δi,j = γi,j for all i, j, then the estimator σ̂2

k, given in (4.2.10) is the
unbiased estimators of the parameter σ2

k.

(v) Under the model assumptions (TM.1) and (TM.2) we have

E(Ci,I |DI) = Ci,I+1−ifi,I+1−i · . . . · fI−1.

This fact and the fact that f̂k are uncorrelated implies that Ĉi,I is
unbiased estimator of E(Ci,I |DI).



4.3 Claims Development Result (CDR) 125

(vi) The expected values of the estimator

Ĉi,I = Ci,I+1−i ·
I−1∏

k=I+1−i

f̂k,

for the ultimate claims amount and of the true ultimate claims amount
Ci,I are equal, i.e., E(Ĉi,k) = E(Ci,I), 1 ≤ i ≤ I.

The proof of this proposition is postponed to Section 4.7.

4.3 Claims Development Result (CDR)

Definition 4.3.1 (True claims development result)

CDRi(I + 1) = E[RI
i |DI ]− (Xi,I−i+1 + E[RI+1

i |DI+1])

= E[Ci,J |DI ]− E[Ci,J |DI+1],
(4.3.1)

where Xi,I−i+1 = Ci,I−i+1 − Ci,I−i denotes the incremental payments. Fur-
thermore, the true aggregate CDR is given by

CDR(I + 1) =
I∑
i=1

CDRi(I + 1). (4.3.2)

Remark 4.3.1 Using the martingale property we have

E[CDRi(I + 1)|DI ] = 0. (4.3.3)

Definition 4.3.2 (Observable claims development result)

ĈDRi(I + 1) = R̂I
i − (Xi,I−i+1 + R̂I+1

i ) = ĈI
i,J − ĈI+1

i,J , (4.3.4)

where, for 1 ≤ i ≤ I,

ĈI
i,J = Ci,I−i

J−1∏
j=I−i

f̂ Ij , (4.3.5)

ĈI+1
i,J = Ci,I−i+1

J−1∏
j=I−i+1

f̂ I+1
j , (4.3.6)
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R̂I
i = ĈI

i,J − Ci,I−i, (4.3.7)

R̂I+1
i = ĈI+1

i,J − Ci,I−i+1. (4.3.8)

Furthermore, the observable aggregate CDR is given by

ĈDR(I + 1) =
I∑
i=1

ĈDRi(I + 1). (4.3.9)

4.4 (Conditional)Mean-Square Error of Pre-

diction (MSEP) of the claims develop-

ment result

The conditional MSEP considered here gives the prospective solvency point
of view. It quantifies the prediction uncertainty in the budget value 0 for the
observable claims development result at the end of the accounting period.
In the solvency margin we need to hold risk capital for possible negative
deviations of CDRi(I + 1) from 0. We are interested here in quantifying the
following two quantities

msep
ĈDRi(I+1)|DI

(0) = E

[(
ĈDRi(I + 1)− 0

)2

|DI

]
, (4.4.1)

msep∑I
i=1 ĈDRi(I+1)|DI

(0) = E

( I∑
i=1

ĈDRi(I + 1)− 0

)2

|DI

 . (4.4.2)

Similarly to the mean-square error of prediction of ultimate claim, the con-
ditional MSEP of one-year claims development result decouples as follows:

msep
ĈDRi(I+1)|DI

(0) = V ar
(
ĈDRi(I + 1)|DI

)
+
[
E
(
ĈDRi(I + 1)|DI

)]2

.

(4.4.3)
The first term on the right-hand side of the above equation is called the
conditional process variance It represents the inherent uncertainty of
the underlying model chosen for the observed data. The second term on the
right-hand side is called the conditional estimation error, it represents
the uncertainty in the estimation of the unknown model parameters.
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4.5 Main Results

The statements in the present section are meant in the following sense.
First, we derive the theoretical expressions of msep (msep

ĈDRi(I+1)|DI
(0)

and msep∑I
i=1 ĈDRi(I+1)|DI

(0) respectively), which depend upon the unknown

parameters. This step is legitimate as a mathematical statement. Second,
we apply the so called plug-in principle, which is often used in statistical
inference, and which consists in the replacement of the unknown parame-
ters by their estimates. As a result we obtain plug-in estimators of the above
quantities, denoted by m̂sep. The presentation of our results follows the com-
mon practice and vocabulary of the actuarial literature (see, e.g., Merz and
Wüthrich (2008a)), which may be considered as mathematically ambiguous
when the quantities which are so ”estimated” are random. In such a setup,
one should speak, of ”evaluation” rather than ”estimation”, but both terms
are used indifferently in the literature.

Obviously, it is a serious problem to derive, by theory, the limiting prop-
erties of plug-in estimators such as m̂sep. Aside of the Slutsky lemma, the
only applicable methodology in practice makes use of simulation. We leave
such investigations to future research on the problem.

The next results show how one can quantify the prediction uncertainty by
means of the mean-square error of prediction (MSEP) defined in (4.4.1) and
(4.4.2).

4.5.1 Single Accident Year - Exact Formula

Result 4.5.1 (Conditional MSEP estimator for a single accident
year) Under Model Assumptions (TM.1)-(TM.3), the conditional mean-square
error of one year claims development result for a single accident year can be
estimated by

m̂sep
ĈDRi(I+1)|DI

(0) =
(
ĈI
i,J

)2

·
(

Γ̂Ii,J + ∆̂I
i,J

)
, (4.5.1)

where
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Γ̂Ii,J =
J−1∏
l=I−i

(
σ̂2
l /f̂

2
l

(βIl )2
· ωl + 1

)
+

J−1∏
l=I−i+1

(
α2
l ·
σ̂2
l /f̂

2
l

(βIl )2
· ωl + 1

)

− 2
J−1∏

l=I−i+1

(
αl ·

σ̂2
l /f̂

2
l

(βIl )2
· ωl + 1

)
,

(4.5.2)

∆̂I
i,J =

(
Ĉi,J

)2

·


1 +

σ̂2
I−i/

(
f̂ II−i

)2

δi,I−i

 · J−1∏
l=I−i+1

1 +
σ̂2
l /
(
f̂ Il

)2 γ2I−l,l
δI−l,l(

βI+1
l

)2

− 1

 ,

(4.5.3)

ωl =
I−l−1∑
i=0

γ2
i,l

δi,l
, (4.5.4)

αl =
βIl
βI+1
l

, (4.5.5)

βIl =
I−l−1∑
i=0

γi,l, (4.5.6)

βI+1
l =

I−l∑
i=0

γi,l, (4.5.7)

and f̂l and σ̂2
l are given in (4.2.8) and (4.2.10)-(4.2.11) respectively.

4.5.2 Single Accident Year-Approximating Formula

Result 4.5.2 (Conditional MSEP estimator for a single accident
year) Under assumptions of Result 4.5.1, the estimate of the mean-square
error of claims development result for a single accident year can be approxi-
mated by

m̂sep
ĈDRi(I+1)|DI

(0) =
(
ĈI
i,J

)2

·
(

Γ̂Ii,J + ∆̂I
i,J

)
, (4.5.8)

where
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Γ̂Ii,J
∼=
σ̂2
I−i/f

2
I−i

(βII−i)
2
· ωI−i +

J−1∑
l=I−i+1

(
γI−l,l

βI+1
l

)2
σ̂l

2/f 2
l

(βIl )2
· ωl, (4.5.9)

∆̂I
i,J
∼=
σ̂2
I−i/

(
f̂ II−i

)2

δi,I−i
+

J−1∑
l=I−i+1

σ̂2
l /
(
f̂ Il

)2 γ2I−l,l
δI−l,l(

βI+1
l

)2 . (4.5.10)

and βIl , βI+1
l , ωl, f̂l and σ̂2

l are given in (4.5.6), (4.5.7), (4.5.4), (4.2.8)
and (4.2.10)-(4.2.11) respectively.

4.5.3 Aggregation over Prior Accident Year - Exact
Formula

Result 4.5.3 (Conditional MSEP estimator for aggregated years
)

Under Model Assumptions (TM.1)-(TM.3), the conditional mean-square
error of one-year claims development result for aggregated accident years,
can be estimated by

m̂sep∑I
i=1 ĈDRi(I+1)|DI

(0) =
I∑
i=1

m̂sep
ĈDRi(I+1)|DI

(0)

+ 2
∑
k>i>0

ĈI
i,J · ĈI

k,J

(
Υ̂I
i,J + Φ̂I

i,J

)
,

(4.5.11)

where

Υ̂I
i,J =

1 +
σ̂2
I−i/

(
f̂ II−i

)2

βI+1
I−i

· γi,I−i
δi,I−i

 · J−1∏
l=I−i+1

1 +
σ̂2
l /
(
f̂ Il

)2

(
βI+1
l

)2 ·
γ2
I−l,l

δI−l,l

− 1,

(4.5.12)
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Φ̂I
i,J =

J−1∏
l=I−i

 σ̂2
l /
(
f̂ Il

)2

(βIl )2
· ωl + 1

− J−1∏
l=I−i

αl · σ̂2
l /
(
f̂ Il

)2

(βIl )2
· ωl + 1


−

J−1∏
l=I−i+1

αl · σ̂2
l /
(
f̂ Il

)2

(βIl )2
· ωl + 1

+
J−1∏

l=I−i+1

α2
l ·
σ̂2
l /
(
f̂ Il

)2

(βIl )2
· ωl + 1

 ,

(4.5.13)

and βIl , βI+1
l , ωl, αl, f̂l and σ̂2

l are given in (4.5.6), (4.5.7), (4.5.4),(4.5.5),
(4.2.8) and (4.2.10)-(4.2.11) respectively.

4.5.4 Aggregation over Prior Accident Year - Approx-
imating Formula

Result 4.5.4 (Conditional MSEP estimator for aggregated years)
Under assumptions of Result 4.5.3, the estimate of the mean-square error of
claims development result for aggregated accident years, can be approximated
by

m̂sep∑I
i=1 ĈDRi(I+1)|DI

(0) =
I∑
i=1

m̂sep
ĈDRi(I+1)|DI

(0)

+ 2
∑
k>i>0

ĈI
i,J · ĈI

k,J

(
Υ̂I
i,J + Φ̂I

i,J

)
,

(4.5.14)

where

Υ̂I
i,J
∼=
σ̂2
I−i/

(
f̂ II−i

)2

βI+1
I−i

· γi,I−i
δi,I−i

+
J−1∑

l=I−i+1

σ̂2
l /
(
f̂ Il

)2

(
βI+1
l

)2 ·
γ2
I−l,l

δI−l,l
, (4.5.15)

Φ̂I
i,J
∼=
γi,I−i

βI+1
l

·
σ̂2
I−i/

(
f̂I−i

)2

(βII−i)
2
·ωI−i+

J−1∑
l=I−i+1

σ̂l
2/
(
f̂ Il

)2

(βIl )2
·ωl
(
γI−l,l

βI+1
l

)2

, (4.5.16)

and βIl , βI+1
l , ωl, f̂l and σ̂2

l are given in (4.5.6), (4.5.7), (4.5.4), (4.2.8) and
(4.2.10)-(4.2.11) respectively.
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Remark 4.5.1 If we set γi,j = Ci,j and δi,j = Ci,j, we obtain from our
general framework the main results of Merz and Wüthrich (2008a).

4.6 Numerical example

In this section, we present a case study illustrating the use of our theoretical
results. For our example we use two run-off triangles: Triange 1 (T1) given
in Table B.1 in Appendix B (see also Table 2 in Merz and Wüthrich (2008a))
and Triange 2 (T2) given in Table B.2 in Appendix B (see also Table 1, p.22
in England and Verrall (2002)).
These datasets contain cumulative payments Ci,j, where (i, j) ∈ {0, 1, ..., 8}×
{0, 1, ..., 8} for T1 and (i, j) ∈ {0, 1, ..., 9} × {0, 1, ..., 9} for T2.

As in Mack (1999) we consider here the following family of models, for
0 ≤ i ≤ I and 0 ≤ j ≤ J ,

γi,j = wγi,j · Cα
i,j and δi,j = wδi,j · C

β
i,j, (4.6.1)

where α, β ≥ 0 and wγi,j, w
δ
i,j ∈ [0, 1] are arbitrary weights which can be used

by the actuary to downweight any outlying link ratios Fi,j defined via (4.2.6).

Hence, according to (4.2.8) and (4.2.10) , the estimators f̂k and σ̂2
k are defined

by

f̂k =

∑I−k−1
i=0 wγi,kC

α
i,kFi,k∑I−k−1

i=0 wγi,kC
α
i,k

, for 0 ≤ k ≤ J − 1,

σ̂2
k =

1

I − k − 1

I−k−1∑
i=0

wδi,j · C
β
i,j(Fi,k − f̂k)2, for 0 ≤ k ≤ J − 2.

4.6.1 Cas study 1 - no adjustments of link ratios

In this study we use all data information in estimation of the model pa-
rameters fk and σ2

k, so we put all the weights wγi,j and wδi,j equal to 1. We
define below 3 different setups A1− A3 of our model by specifying only the
parameters α and β.

A-1 α = β = 0 and wγi,j = wδi,j = 1 for all i, j.
In this case, we get the model for which the estimators of the age-to-age
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factors fk are the ”unweighted average” of the observed link ratios Fi,j
defined via (4.2.6), i.e.,

f̂k =
1

I − k − 1

I−k−1∑
i=0

Fi,k, for 0 ≤ k ≤ J − 1.

A-2 α = β = 1 and wγi,j = wδi,j = 1 for all i, j.
In this case, we get the classical Chain Ladder estimate of fk

f̂k =

∑I−k−1
i=0 Ci,kFi,k∑I−k−1
i=0 Ci,k

=

∑I−k−1
i=0 Ci,k+1∑I−k
i=1 Ci,k

, for 0 ≤ k ≤ J − 1.

A-3 α = β = 2 and wγi,j = wδi,j = 1 for all i, j.
In this case, we get the model for which the estimators of the develop-
ment factors fk are the results of an ordinary regression of {Ci,k+1}i∈{1,...,I−k−1}
against {Ci,k}i∈{1,...,I−k} with intercept 0, i.e.,

f̂k =

∑I−k−1
i=0 C2

i,kFi,k∑I−k−1
i=0 C2

i,k

=

∑I−k−1
i=0 Ci,kCi,k+1∑I−k−1

i=0 C2
i,k

, for 0 ≤ k ≤ J − 1.

Concerning the run-off triangle T1, Table 4.4 and Table 4.5 summarize the
estimates f̂ Ij of the factors fj together with their coefficients of variation

CV (f̂j). These estimates are used to compute the claims reserves R̂I
i for the

outstanding claims liabilities RI
i (see Table 4.3). In Table 4.2 we present the

estimates of the predictions defined in (4.4.1) and (4.4.2) and given by the
approximating formulas (4.5.8)-(4.5.10) and (4.5.14)-(4.5.16) respectively .

Conclusions (Methods A1-A3 applied to the run-off triangle T1).
For the reserves and the uncertainty of the CDR (see Table 4.2 and Table
4.3), the obtained results are very close. We explain that by the close results
of the estimated link ratios and their coefficients of variation (see Tables 4.4
and 4.5).

Conclusions (Methods A1-A3 applied to the run-off triangle T2).
Regarding to the uncertainty of the CDR (see Table 4.6), we observe the large
deviations of different setups A1-A3. This is mainly due to two effects: the
divergence of the estimated reserves (see Table 4.7) and high differences in
the first estimated link ratios fk (see Table 4.8 ) and their volatility illustrated
by the coefficients of variation CV (fk) (see Table4.9).
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m̂sep
ĈDRi(I+1)|DI

(0)1/2

i/method A1(T1) A2(T1) A3(T1)
0 - - -
1 563 567 572
2 1 501 1 488 1 475
3 3 863 3 923 3 982
4 9 634 9 723 9 812
5 28 320 28 443 28 563
6 20 460 20 954 21 475
7 27 485 28 119 28 783
8 52 017 53 320 54 690

Total 79 749 81 080 82 468

A1/A2 A2/A2 A3/A2

Total (%) 98% 100% 102%

Table 4.2: Estimates of prediction uncertainty of claims development result
(CDR)

RI
i

i/method A1(T1) A2(T1) A3(T1)

0 - - -
1 4 378 4 378 4 378
2 9 373 9 348 9 322
3 28 495 28 392 28 292
4 51 797 51 444 51 097
5 112 875 111 811 110 736
6 188 445 187 084 185 699
7 413 491 411 864 410 206
8 1 434 720 1 433 505 1 432 291

Total 2 243 574 2 237 826 2 232 020

A1/A2 A2/A2 A3/A2

Total (%) 100,3% 100,0% 99,7%

Table 4.3: Estimates of the claims reserves
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f̂ Ij
j/method A1(T1) A2(T1) A3(T1)

0 1,48 1,48 1,48
1 1,07 1,07 1,07
2 1,02 1,02 1,02
3 1,02 1,02 1,02
4 1,01 1,01 1,01
5 1,01 1,01 1,01
6 1,00 1,00 1,00
7 1,00 1,00 1,00

Table 4.4: Estimates of the age-to-age factors

CV (f̂ Ij )

j/method A1(T1) A2(T1) A3(T1)
0 0,48% 0,49% 0,49%
1 0,27% 0,27% 0,27%
2 0,21% 0,21% 0,21%
3 0,31% 0,31% 0,31%
4 0,12% 0,12% 0,12%
5 0,05% 0,05% 0,05%
6 0,02% 0,02% 0,02%
7 0,01% 0,01% 0,01%

Table 4.5: Estimates of the coefficient of variation of link ratios
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m̂sep
ĈDRi(I+1)|DI

(0)1/2

i/method A1 (T2) A2 (T2) A3 (T2)
1 203 206 209
2 636 579 530
3 408 396 389
4 1 591 1 303 1 076
5 1 467 1 668 1 887
6 1 161 1 185 1 223
7 6 593 4 693 3 571
8 5 316 4 708 4 455
9 89 999 24 142 11 636

Total 90 838 25 681 13 853

A1/A2 A2/A2 A3/A2

Total (%) 354% 100% 54%

Table 4.6: Estimates of prediction uncertainty of claims development result
(CDR)

RI
i

i/method A1 (T2) A2 (T2) A3 (T2)

0 - - -
1 154 154 154
2 642 617 592
3 1 695 1 635 1 575
4 2 844 2 745 2 647
5 3 952 3 647 3 343
6 5 890 5 438 5 015
7 12 368 10 911 10 154
8 12 385 10 653 9 625
9 53 729 16 343 10 671

Total 93 659 52 143 43 776

A1/A2 A2/A2 A3/A2

Total (%) 180% 100% 84%

Table 4.7: Estimates of the claims reserves
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f̂ Ij

j/method A1 (T2) A2 (T2) A3 (T2)
0 8,21 3,00 2,22
1 1,70 1,62 1,57
2 1,31 1,27 1,26
3 1,18 1,17 1,16
4 1,13 1,11 1,10
5 1,04 1,04 1,04
6 1,03 1,03 1,03
7 1,02 1,02 1,02
8 1,01 1,01 1,01

Table 4.8: Estimates of the age-to-age factors

CV (f̂ Ij )

j/method A1 (T2) A2 (T2) A3 (T2)
0 50,1% 37,7% 18,5%
1 9,9% 8,4% 6,9%
2 9,1% 7,1% 5,6%
3 2,3% 2,2% 2,0%
4 3,0% 3,2% 3,3%
5 2,4% 2,2% 1,9%
6 0,5% 0,5% 0,5%
7 1,5% 1,5% 1,5%
8 0,9% 0,8% 0,8%

Table 4.9: Estimates of the coefficient of variation of link ratios

4.6.2 Cas study 2 - with adjustments of link ratios Fi,k

We define below 3 other setups B1−B3 in which we exclude some individual
age to age factors Fi,k from the estimation of parameters fk et σ2

k. The factors
to be omitted in estimation are defined by two sets of indices (i, j), W γ

0 (for
fk) and W δ

0 (for σ2
k) . In the first place we consider that W γ

0 = W δ
0 := W0.

Note that this assumption implies that γi,j = δi,j, for all i, j, which means
that we obtain the optimal properties of the estimators for fk et σ2

k (see
Proposition 4.2.1). For the run-off triangle T2 from the Table B.2 the set
W0 is defined by

W0 = {(1, 0), (4, 0), (6, 1), (7, 1), (1, 5))}.
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Note that we use the same weights in estimation of fk et σ2
k parameters. The

definition of W0 means that the following link ratios are excluded from the
estimation of f̂k et σ̂2

k: {F1,0, F4,0, F6,1, F7,1, F1,5}.

B-1 α = β = 0, wγi,j = wδi,j = 0 for (i, j) ∈ W0 and wγi,j = wδi,j = 1 for
(i, j) /∈ W0.

B-2 α = β = 1, wγi,j = wδi,j = 0 for (i, j) ∈ W0 and wγi,j = wδi,j = 1 for
(i, j) /∈ W0.

B-3 α = β = 2, wγi,j = wδi,j = 0 for (i, j) ∈ W0 and wγi,j = wδi,j = 1 for
(i, j) /∈ W0.

m̂sep
ĈDRi(I+1)|DI

(0)1/2

i/method B1 (T2) B2 (T2) B3 (T2)
1 203 206 209
2 636 579 530
3 408 396 389
4 1 247 1 080 929
5 1 488 1 686 1 900
6 1 177 1 197 1 230
7 6 698 4 745 3 598
8 2 193 2 238 2 475
9 12 202 8 792 6 966

Total 15 371 11 442 9 443

B1/B2 B2/B2 B3/B2

Total (%) 134% 100% 83%

Table 4.10: Estimates of prediction uncertainty of claims development result
(CDR)

Conclusions (Methods B1-B3 applied to run-off triangle T2).
For the uncertainty of the CDR (see Table 4.10), we see that the fact of
excluding the link ratios considered atypical, reduced significantly the differ-
ences between results of the setups B1-B3 applied to T2. It can be explained
by the fact that the differences of reserves and coefficients of variation of es-
timated link ratios also decreased in the same manner (see Tables 4.11 ,4.12
and 4.13).
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RI
i

i/method B1 (T2) B2 (T2) B3 (T2)
0 - - -
1 154 154 154
2 642 617 592
3 1 695 1 635 1 575
4 3 306 3 071 2 868
5 4 267 3 867 3 490
6 6 180 5 638 5 148
7 12 774 11 182 10 333
8 10 505 9 561 8 984
9 19 366 12 247 9 583

Total 58 890 47 971 42 727

B1/B2 B2/B2 B3/B2

Total (%) 123% 100% 89%

Table 4.11: Estimates of the claims reserves

Finally we define 3 last setups C1 − C3 for which the sets W γ
0 and W δ

0

are different. Often in actuarial practice, we consider W δ
0 as an empty set

which means that we want to take into account all information in order to
estimate the parameters σ2

k. However, in the present case of run-off triangle
T2 we observe (without any inside knowledge) that the factor F1,0 (= 40.4) is
clearly an outlier so we decided to excluded it from estimation of the variance
parameters σ2

k. Therefore, we set

W δ
0 = {(1, 0)}.

Note that the parameters fk are estimated with the same weights as in the
setups B1-B3, i.e.,

W γ
0 = W0 = {(1, 0); (4, 0); (6, 1); (7, 1), (1, 5))}.

C-1 α = β = 0, wγi,j = 0 for (i, j) ∈ W0 and wγi,j = 1 for (i, j) /∈ W0, wδi,j = 0

for (i, j) ∈ W δ
0 and wδi,j = 1 for (i, j) /∈ W δ

0 .

C-2 α = β = 1, wγi,j = 0 for (i, j) ∈ W0 and wγi,j = 1 for (i, j) /∈ W0, wδi,j = 0

for (i, j) ∈ W δ
0 and wδi,j = 1 for (i, j) /∈ W δ

0 .

C-3 α = β = 2, wγi,j = 0 for (i, j) ∈ W0 and wγi,j = 1 for (i, j) /∈ W0, wδi,j = 0

for (i, j) ∈ W δ
0 and wδi,j = 1 for (i, j) /∈ W δ

0 .
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f̂ Ij

j/method B1 (T2) B2 (T2) B3 (T2)
0 3,52 2,50 2,12
1 1,49 1,50 1,49
2 1,31 1,27 1,26
3 1,18 1,17 1,16
4 1,13 1,11 1,10
5 1,06 1,05 1,05
6 1,03 1,03 1,03
7 1,02 1,02 1,02
8 1,01 1,01 1,01

Table 4.12: Estimates of the age-to-age factors

CV (f̂ Ij )

j/method B1 (T2) B2 (T2) B3 (T2)
0 19,5% 17,9% 12,4%
1 5,0% 4,6% 4,3%
2 9,1% 7,1% 5,6%
3 2,3% 2,2% 2,0%
4 3,0% 3,2% 3,3%
5 2,0% 1,9% 1,7%
6 0,5% 0,5% 0,5%
7 1,5% 1,5% 1,5%
8 0,9% 0,8% 0,8%

Table 4.13: Estimates of the coefficient of variation of link ratios
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m̂sep
ĈDRi(I+1)|DI

(0)1/2

i/method C1 (T2) C2 (T2) C3 (T2)
1 203 206 209
2 636 579 530
3 408 396 389
4 1 754 1 395 1 127
5 1 503 1 694 1 905
6 1 193 1 207 1 237
7 6 703 4 750 3 602
8 6 032 5 090 4 669
9 18 734 13 799 10 628

Total 22 074 16 482 13 130

C1/C2 C2/C2 C3/C2

Total (%) 134% 100% 80%

Table 4.14: Estimates of prediction uncertainty of claims development result
(CDR)

f̂ Ij
j/method C1 (T2) C2 (T2) C3 (T2)

0 3,52 2,50 2,12
1 1,49 1,50 1,49
2 1,31 1,27 1,26
3 1,18 1,17 1,16
4 1,13 1,11 1,10
5 1,06 1,05 1,05
6 1,03 1,03 1,03
7 1,02 1,02 1,02
8 1,01 1,01 1,01

Table 4.15: Estimates of the age-to-age factors
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CV (f̂ Ij )

j/method C1 (T2) C2 (T2) C3 (T2)
0 27,8% 27,1% 18,2%
1 14,3% 10,7% 8,1%
2 9,1% 7,1% 5,6%
3 2,3% 2,2% 2,0%
4 3,0% 3,2% 3,3%
5 2,9% 2,5% 2,1%
6 0,5% 0,5% 0,5%
7 1,5% 1,5% 1,5%
8 0,9% 0,8% 0,8%

Table 4.16: Estimates of the coefficient of variation of link ratios

Conclusions (Methods C1-C3 applied to the run-off triangle T2).
For the reserves (see Table 4.11) , we observe that comparing to the setups
B1-B3 we obtain the same results because we used the same set of the zero
weights W γ

0 .
Concerning the uncertainty of CDR given in Table 4.14, we obtain the higher
estimates of these quantities. This is mainly due to the fact that we took
almost all (except one) link ratios in estimation of parameters σk. It means
that we reduced the set of the zero weights W δ

0 and in consequence, we
increased the ”volatility” of the reserves.

Overall Conclusions
In our case study we considered several setups of our universal tool of re-
serving and measuring the one year volatility of the reserves. In the daily
practice of actuaries we are often confronted to choose the proper model.
This is not an easy issue in the case of run-off triangle T2 unlike to the
run-off triangle T1 where all the methods give almost the same results. In
our case study concerning the triangle T2, we proceeded without any in-
side knowledge about the reserving procedure and historical data. Therefore
we obtained rather large range of possible values of estimators. This shows
that the choice of model for reserving processes is still an open challenging
problem and underlines the importance of statistical inference methods to
properly assess the model structure in each case.

Finally, in the present chapter, we presented the approach which can be
used within the Solvency II framework (standard formula calibration (USPs
methods) or (full or partial) internal models for reserve risk).
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4.7 Mathematical Proofs

For the notation convenience and to simplify our exposition, we will consider
only the case where δi,k 6= 0 (a.s.) in the assumptions of Chain Ladder Time
Series Model presented in (4.2.5). It will become obvious from our arguments
that our results hold for general assumptions. Therefore, from the assump-
tion (4.2.12), to cover the general case one should add the term 1{δj,k 6=0} (if
necessary), where 1A denotes the indicator function for event A.
As already mentioned, the proofs of our main results are obtained by mim-
icking the arguments from Merz and Wüthrich (2008a). They are derived
from the following lemmas:

4.7.1 Useful Lemmas

Lemma 4.7.1 Under the assumptions of the Chain Lader Time Series Model
(see Section 4.2.1), we have

(a) Ci,I−i+1, f̂
I+1
I−i+1, ..., f̂

I+1
J−1 are conditionally independent with respect to DI

(b) E
(
f̂ I+1
l |DI

)
=

βIl
βI+1
l

· f̂ Il + fl · γI−l,lβI+1
l

, where βIl and βI+1
l are defined in

(4.5.6) and (4.5.7) respectively

(c) E
[
ĈI+1
i,j |DI

]
= Ci,I−i · fI−i ·

j−1∏
l=I−i+1

E
[
f̂ I+1
l |DI

]
(d) E

[
C2
i,I−i+1|DI

]
= f 2

I−i · C2
i,I−i +

σ2
I−i

δi,I−i
· C2

i,I−i

(e) E
[
(f̂ I+1
l )2|DI

]
=

(∑I−l−1
i=0

γi,l
Ci,l
· Ci,l+1

βI+1
l

+
γl,I−l · fl
βI+1
l

)2

+
σ2
l ·

γ2I−l,l
δI−l,l(

βI+1
l

)2 .

(f) We have,

E
[
Ci,I−i+1 · f̂ I+1

I−i |DI

]
=

1

βI+1
I−i

[(
i−1∑
k=0

γk,I−i
Ck,I−i

· Ck,I−i+1

)
· fI−i · Ci,I−i

]

+
1

βI+1
I−i

[
σ2
I−i · Ci,I−i ·

γi,I−i
δi,I−i

+ γi,I−i · f 2
I−i · Ci,I−i

]
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The following Lemma correspond to Lemma 3.3, p.123, of Merz and
Wüthrich (2007)

Lemma 4.7.2

E[ĈDRi(I+1)|DI ] = Ci,I−i

(
J−1∏
l=I−i

f̂ Il − f II−i ·
J−1∏

l=I−i+1

(
βIl
βI+1
l

f̂ Il + fl ·
γI−l,l

βI+1
l

))
.

Lemma 4.7.3 Set αl =
βIl
βI+1
l

. We have

(a) E

[(
f̂ Il

)2

|DI

]
= V ar

(
f̂ Il |DI

)
+ f 2

l

(b) E

[(
αl · f̂ Il + fl · γI−l,lβI+1

l

)2

|DI

]
= α2

l · V ar
(
f̂ Il |DI

)
+ f 2

l

(c) For i = 1, ..., I,

E

[
J−1∏
l=I−i

f̂ Il · fI−i ·
J−1∏

l=I−i+1

(
αl · f̂ Il + fl ·

γI−l,l

βI+1
l

)
|DI

]

= f 2
I−i ·

J−1∏
l=I−i+1

[
αl · V ar

(
f̂ Il |DI

)
+ f 2

l

]

(d) V ar
(
f̂ Il |DI

)
=

σ2
l

(βIl )2

∑I−l−1
i=0

γ2i,l
δi,l

Lemma 4.7.4 We have

(a) Ê
(
f̂ I+1
j |DI

)
= f̂ Ij

(b) Ê

[(
f̂ I+1
j

)2

|DI

]
=
(
f̂ Ij

)2

·
(

1 +
(σ̂Ij )

2
/(f̂Ij )

2

(βI+1
j )

2 · γ
2
I−j,j
δI−j,j

)

(c) Ê
[
Ci,I−i+1 · f̂ I+1

I−i |DI

]
= Ci,I−i · f̂ 2

I−i

(
1 +

σ̂2
I−i/f̂

2
I−i

βI+1
I−i

γi,I−i
δi,I−i

)
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Lemma 4.7.5 For

δl :=
βIl
βI+1
l

f̂ Il + fl ·
γI−l,l

βI+1
l

, (4.7.1)

we have (see p. 128-129 in Merz and Wüthrich (2007))

(a) E

[(
f̂ Il

)2

|DI

]
=

σ2
j

(βIj )2

∑I−j−1
i=0

γ2i,j
δi,j

+ f 2
l

(b) E [δ2
l |DI ] =

(
βIj

βI+1
j

)2

· σ2
j

(βIj )2

∑I−j−1
i=0

γ2i,j
δi,j

+ f 2
l

(c) E
[
f̂ Il · δl|DI

]
=

βIj

βI+1
j

· σ2
j

(βIj )2

∑I−j−1
i=0

γ2i,j
δi,j

+ f 2
l

The proofs of Lemmas 4.7.1-4.7.5 are postponed to section 4.7.6.

4.7.2 Proof of Result 4.5.1

From (4.4.1) we have

msep
ĈDRi(I+1)|DI

(0) := E

[(
ĈDRi(I + 1)− 0

)2

|DI

]
= E

[(
ĈDRi(I + 1)

)2

|DI

]
.

Since

V ar
(
ĈDRi(I + 1)|DI

)
:= E

[(
ĈDRi(I + 1)

)2

|DI

]
−
[
E
(
ĈDRi(I + 1)|DI

)]2

,

we obtain

msep
ĈDRi(I+1)|DI

(0) = V ar
(
ĈDRi(I + 1)|DI

)
+
[
E
(
ĈDRi(I + 1)|DI

)]2

.

(4.7.2)
In view of (4.7.2) to prove Result 4.5.1 it is enough to show

V̂ ar
(
ĈDRi(I + 1)|DI

)
=
(
ĈI
i,J

)2

· Γ̂Ii,J , (4.7.3)[
Ê
(
ĈDRi(I + 1)|DI

)]2

=
(
ĈI
i,J

)2

· ∆̂I
i,J , (4.7.4)
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where Γ̂Ii,J and ∆̂I
i,J are given via (4.5.9) and (4.5.10) respectively.

Proof of (4.7.3). From (4.3.4) we have

V ar
(
ĈDRi(I + 1)|DI

)
= V ar

(
ĈI
i,J − ĈI+1

i,J |DI

)
= V ar

(
ĈI
i,J |DI

)
+ V ar

(
ĈI+1
i,J |DI

)
− 2 · Cov

(
ĈI
i,J , Ĉ

I+1
i,J |DI

)
= V ar

(
ĈI+1
i,J |DI

)
,

where the last equality is the consequence of: E(f(Z)|Z) = f(Z) and
V ar(f(Z)|Z) = 0, for any real function f .
From (4.3.6),
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V ar
(
ĈI+1
i,J |DI

)
= E

(Ci,I−i+1

J−1∏
l=I−i+1

f̂ I+1
l

)2

|DI

− [E(Ci,I−i+1

J−1∏
l=I−i+1

f̂ I+1
l |DI

)]2

= E
[
C2
i,I−i+1|DI

]
·

J−1∏
l=I−i+1

E
[
(f̂ I+1
l )2|DI

]
− (E [Ci,I−i+1|DI ])

2 ·
J−1∏

l=I−i+1

(
E
[
(f̂ I+1
l )|DI

])2

=

[
f 2
I−i · C2

i,I−i +
σ2
I−i

δi,I−i
· C2

i,I−i

]
·

J−1∏
l=I−i+1

E
[
(f̂ I+1
l )2|DI

]
− f 2

I−i · C2
i,I−i ·

J−1∏
l=I−i+1

(
E
[
(f̂ I+1
l )|DI

])2

=

[
f 2
I−i · C2

i,I−i +
σ2
I−i

δi,I−i
· C2

i,I−i

]
·

J−1∏
l=I−i+1

[(
f̂ Il

)2

+
σ̂2
l(

βI+1
l

)2 ·
γ2
I−l,l

δI−l,l

]

− f 2
I−i · C2

i,I−i ·
J−1∏

l=I−i+1

(
f̂ Il

)2

=
(
f̂ II−i

)2

· C2
i,I−i ·

1 +
σ̂2
I−i/

(
f̂ II−i

)2

δi,I−i

 · J−1∏
l=I−i+1

(
f̂ Il

)2

1 +
σ̂2
l /
(
f̂ Il

)2

(
βI+1
l

)2 ·
γ2
I−l,l

δI−l,l


−
(
f̂ II−i

)2

· C2
i,I−i ·

J−1∏
l=I−i+1

(
f̂ Il

)2

= C2
i,I−i ·

(
f̂ II−i

)2

·
J−1∏

l=I−i+1

(
f̂ Il

)2

·

1 +
σ̂2
I−i/

(
f̂ II−i

)2

δi,I−i

 · J−1∏
l=I−i+1

1 +
σ̂2
l /
(
f̂ Il

)2 γ2I−l,l
δI−l,l(

βI+1
l

)2


− C2

i,I−i ·
(
f̂ II−i

)2

·
J−1∏

l=I−i+1

(
f̂ Il

)2

= C2
i,I−i ·

J−1∏
l=I−i

(
f̂ Il

)2

·

1 +
σ̂2
I−i/

(
f̂ II−i

)2

δi,I−i

 · J−1∏
l=I−i+1

1 +
σ̂2
l /
(
f̂ Il

)2 γ2I−l,l
δI−l,l(

βI+1
l

)2


− C2

i,I−i ·
J−1∏
l=I−i

(
f̂ Il

)2

(4.7.5)
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Finally we obtain,

V ar
(
ĈI+1
i,J |DI

)
= C2

i,I−i ·
J−1∏
l=I−i

(
f̂ Il

)2

·


1 +

σ̂2
I−i/

(
f̂ II−i

)2

δi,I−i

 · J−1∏
l=I−i+1

1 +
σ̂2
l /
(
f̂ Il

)2 γ2I−l,l
δI−l,l(

βI+1
l

)2

− 1


=
(
Ĉi,J

)2

·


1 +

σ̂2
I−i/

(
f̂ II−i

)2

δi,I−i

 · J−1∏
l=I−i+1

1 +
σ̂2
l /
(
f̂ Il

)2 γ2I−l,l
δI−l,l(

βI+1
l

)2

− 1


The second equality in (4.7.5) is a consequence of conditional indepen-

dence assumption (see Lemma 4.7.1 (a)).
The third and fourth equality is due to Lemma 4.7.1 (d) and Lemma 4.7.4
(a),(b). The remaining equalities are provided by replacing the unknown pa-

rameters (σ2
k, fk) by their estimates (σ̂2

k, f̂k) and by the simple computations.
Proof of (4.7.4).

The left hand side of (4.7.4) can be estimated by the following term (see
p.128 of Merz and Wüthrich (2007) and (5.15), p.23, of Merz et al (2008))

Ê

[(
E[ĈDRi(I + 1)|DI ]

)2

|DI

]
.

Set ξi = E[ĈDRi(I + 1)|DI ]. We have[
Ê
(
ĈDRi(I + 1)|DI

)]2

= Ê

[(
E[ĈDRi(I + 1)|DI ]

)2

|DI

]
= Ê

[
ξ2
i |DI

]
.

(4.7.6)

From Lemma 4.7.2 we may write
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ξ2
i =

(
E[ĈDRi(I + 1)|DI ]

)2

= C2
i,I−i

(
J−1∏
l=I−i

f̂ Il − f II−i ·
J−1∏

l=I−i+1

(
βIl
βI+1
l

f̂ Il + fl ·
γI−l,l

βI+1
l

))2

= C2
i,I−i

(
J−1∏
l=I−i

(
f̂ Il

)2

+ f 2
I−i ·

J−1∏
l=I−i+1

(
βIl
βI+1
l

f̂ Il + fl ·
γI−l,l

βI+1
l

)2
)

− C2
i,I−i

(
2 ·

J−1∏
l=I−i

f̂ Il · fI−i ·
J−1∏

l=I−i+1

(
βIl
βI+1
l

f̂ Il + fl ·
γI−l,l

βI+1
l

))
(4.7.7)

Set ωj :=
∑I−j−1

i=0

γ2i,j
δi,j

. Furthermore, from (4.7.7) and Lemma 4.7.3 (a)-(d)

we obtain
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Ê
[
ξ2
i |DI

]
= C2

i,I−i

(
J−1∏
l=I−i

(
V ar

(
f̂ Il |DI

)
+ f 2

l

)
+ f 2

I−i ·
J−1∏

l=I−i+1

(
α2
l · V ar

(
f̂ Il |DI

)
+ f 2

l

))

− 2 · C2
i,I−i

(
J−1∏

l=I−i+1

(
αl · V ar

(
f̂ Il |DI

)
+ f 2

l

))

= C2
i,I−i

(
J−1∏
l=I−i

(
σ2
l

(βIl )2
· ωl + f 2

l

)
+ f 2

I−i ·
J−1∏

l=I−i+1

(
α2
l ·

σ2
l

(βIl )2
· ωl + f 2

l

))

− 2 · C2
i,I−i

(
f 2
I−i ·

J−1∏
l=I−i+1

(
αl ·

σ2
l

(βIl )2
· ωl + f 2

l

))

= C2
i,I−i

(
J−1∏
l=I−i

f 2
l ·

J−1∏
l=I−i

(
σ2
l /f

2
l

(βIl )2
· ωl + 1

))

+ C2
i,I−i

(
f 2
I−i ·

J−1∏
l=I−i+1

f 2
l ·

J−1∏
l=I−i+1

(
α2
l ·
σ2
l /f

2
l

(βIl )2
· ωl + 1

))

− 2 · C2
i,I−i

(
f 2
I−i ·

J−1∏
l=I−i+1

f 2
l ·

J−1∏
l=I−i+1

(
αl ·

σ2
l /f

2
l

(βIl )2
· ωl + 1

))

= C2
i,I−i ·

J−1∏
l=I−i

f 2
l

(
J−1∏
l=I−i

(
σ2
l /f

2
l

(βIl )2
· ωl + 1

)
+

J−1∏
l=I−i+1

(
α2
l ·
σ2
l /f

2
l

(βIl )2
· ωl + 1

))

− 2C2
i,I−i ·

J−1∏
l=I−i

f 2
l

(
J−1∏

l=I−i+1

(
αl ·

σ2
l /f

2
l

(βIl )2
· ωl + 1

))
(4.7.8)

Finally, we plug in the estimators of (σ2
k, fk) in the above equation and

we obtain the claim (4.7.4).
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4.7.3 Proof of Result 4.5.2

The approximating formulas for Γ̂Ii,J and ∆̂I
i,J are obtained by using the

following approximation (see Merz and Wüthrich (2008a), p.19)

m∏
k=1

(1 + xk) ∼= 1 +
m∑
k=1

xk, for xk small. (4.7.9)

Concerning the term for Γ̂Ii,J (see (4.5.9)) it is a straightforward application
of approximation (4.7.9) to (4.7.5).

Concerning the term for ∆̂I
i,J , from the proof of Result 4.5.1 we have

Ê
[
ξ2
i |DI

]
= C2

i,I−i ·
J−1∏
l=I−i

f 2
l

(
1 +

J−1∑
l=I−i

σ2
l /f

2
l

(βIl )2
· ωl + 1 +

J−1∑
l=I−i+1

α2
l ·
σ2
l /f

2
l

(βIl )2
· ωl − 2

)

+ C2
i,I−i ·

J−1∏
l=I−i

f 2
l

(
2

J−1∑
l=I−i+1

αl ·
σ2
l /f

2
l

(βIl )2
· ωl

)

= C2
i,I−i ·

J−1∏
l=I−i

f 2
l

(
σ2
I−i/f

2
I−i

(βII−i)
2
· ωI−i +

J−1∑
l=I−i+1

σ2
l /f

2
l

(βIl )2
· ωl +

J−1∑
l=I−i+1

α2
l ·
σ2
l /f

2
l

(βIl )2
· ωl

)

− C2
i,I−i ·

J−1∏
l=I−i

f 2
l

(
2

J−1∑
l=I−i+1

αl ·
σ2
l /f

2
l

(βIl )2
· ωl

)

= C2
i,I−i ·

J−1∏
l=I−i

f 2
l

(
σ2
I−i/f

2
I−i

(βII−i)
2
· ωI−i +

J−1∑
l=I−i+1

(1− αl)2σ
2
l /f

2
l

(βIl )2
· ωl

)

= C2
i,I−i ·

J−1∏
l=I−i

f 2
l

(
σ2
I−i/f

2
I−i

(βII−i)
2
· ωI−i +

J−1∑
l=I−i+1

(
γI−l,l

βI+1
l

)2
σ2
l /f

2
l

(βIl )2
· ωl

)
(4.7.10)

where the last equality is due to the fact,

(1− αl)2 =

(
γI−l,l

βI+1
l

)2

. (4.7.11)

By replacing the unknown parameters (σ2
k, fk) in (4.7.10) by their estimators

we get (4.5.9).
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4.7.4 Proof of Result 4.5.3

Let denote X̂l := ĈDRl(I + 1). Then we have

msep(X̂i+X̂k|DI)(0) := E

[(
X̂i + X̂k − 0

)2

|DI

]
= E

[(
X̂i − 0

)2

|DI

]
+ E

[(
X̂k − 0

)2

|DI

]
+ 2 · E

[
X̂i · X̂k|DI

]
= msepX̂i|DI (0) +msepX̂k|DI (0) + 2 · Cov

[
X̂i, X̂k|DI

]
+ 2 · E

[
X̂i|DI

]
· E
[
X̂k|DI

]
(4.7.12)

Let set Vi,k := Cov
[
X̂i, X̂k|DI

]
and Wi,k := E

[
X̂i|DI

]
· E
[
X̂k|DI

]
.

From (4.7.12) to prove (4.5.11) it is enough to show

V̂i,k = ĈI
i,J · ĈI

k,J · Υ̂I
i,J (4.7.13)

and
Ŵi,k = ĈI

i,J · ĈI
k,J · Λ̂I

i,J (4.7.14)

Proof of (4.7.13).

Recall from (4.3.4) that X̂i = ĈI
i,J − ĈI+1

i,J . Hence

Vi,k := Cov
[
X̂i, X̂k|DI

]
= Cov

[
ĈI
i,J − ĈI+1

i,J , ĈI
k,J − ĈI+1

k,J |DI

]
= Cov

[
ĈI+1
i,J , ĈI+1

k,J |DI

]
.

Furthermore

Cov
[
ĈI+1
i,J , ĈI+1

k,J |DI

]
:= E

[
ĈI+1
i,J · Ĉ

I+1
k,J |DI

]
− E

[
ĈI+1
i,J |DI

]
· E
[
ĈI+1
k,J |DI

]
.

• Term E
[
ĈI+1
i,J · Ĉ

I+1
k,J |DI

]
:

Recall from (4.3.6) that we can write for k > i

ĈI+1
i,J ·Ĉ

I+1
k,J =

(
Ck,I−k+1 ·

I−i−1∏
j=I−k+1

f̂ I+1
j · f̂ I+1

I−i ·
J−1∏

j=I−i+1

f̂ I+1
j

)
·Ci,I−i+1·

J−1∏
j=I−i+1

f̂ I+1
j .

(4.7.15)
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Hence from (4.7.15) and Lemma 4.7.1 (a) we obtain

E
[
ĈI+1
i,J · Ĉ

I+1
k,J |DI

]
= E [Ck,I−k+1|DI ] ·

I−i−1∏
j=I−k+1

E
[
f̂ I+1
j |DI

]
·

E
[
Ci,I−i+1 · f̂ I+1

I−i |DI

]
·

J−1∏
j=I−i+1

E

[(
f̂ I+1
j

)2

|DI

]
.

(4.7.16)

• Term E
[
ĈI+1
i,J |DI

]
· E
[
ĈI+1
k,J |DI

]
.

By using (4.3.6) we obtain

E
[
ĈI+1
i,J |DI

]
· E
[
ĈI+1
k,J |DI

]
= E [Ck,I−k+1|DI ] ·

J−1∏
j=I−k+1

E
[
f̂ I+1
j |DI

]
× E [Ci,I−i+1|DI ] ·

J−1∏
j=I−i+1

E
[
f̂ I+1
j |DI

]
= E [Ck,I−k+1|DI ] ·

I−i−1∏
j=I−k+1

E
[
f̂ I+1
j |DI

]
· E
[
f̂ I+1
I−i |DI

]
·

J−1∏
j=I−i+1

E
[
f̂ I+1
j |DI

]
× E [Ci,I−i+1|DI ] ·

J−1∏
j=I−i+1

E
[
f̂ I+1
j |DI

]
= E [Ck,I−k+1|DI ] ·

I−i−1∏
j=I−k+1

E
[
f̂ I+1
j |DI

]
· E
[
f̂ I+1
I−i |DI

]
× E [Ci,I−i+1|DI ] ·

J−1∏
j=I−i+1

(
E
[
f̂ I+1
j |DI

])2

(4.7.17)
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Hence from (4.7.15) and (4.7.17)

Vi,k := Cov
[
ĈI+1
i,J , ĈI+1

k,J |DI

]
= E [Ck,I−k+1|DI ] ·

I−i−1∏
j=I−k+1

E
[
f̂ I+1
j |DI

]
·

[
E
[
Ci,I−i+1 · f̂ I+1

I−i |DI

]
×

J−1∏
j=I−i+1

E

[(
f̂ I+1
j

)2

|DI

]

− E
[
f̂ I+1
I−i |DI

]
· E [Ci,I−i+1|DI ] ·

J−1∏
j=I−i+1

(
E
[
f̂ I+1
j |DI

])2
]

(4.7.18)
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We apply Lemma 4.7.4 in (4.7.18),

V̂i,k := Ĉov
[
ĈI+1
i,J , ĈI+1

k,J |DI

]
= E [Ck,I−k+1|DI ] ·

I−i−1∏
j=I−k+1

E
[
f̂ I+1
j |DI

]
×

[
E
[
Ci,I−i+1 · f̂ I+1

I−i |DI

]
·

J−1∏
j=I−i+1

E

[(
f̂ I+1
j

)2

|DI

]

− E
[
f̂ I+1
I−i |DI

]
· E [Ci,I−i+1|DI ] ·

J−1∏
j=I−i+1

(
E
[
f̂ I+1
j |DI

])2
]

= Ck,I−k · f̂ II−k ·
I−i−1∏

j=I−k+1

f̂ Ij

[(
f̂ II−i

)2

· Ci,I−i ·

1 +

(
σ̂II−i

)2
/
(
f̂ II−i

)2

βI+1
I−i

· γi,I−i
δi,I−i


×

J−1∏
j=I−i+1

(
f̂ Ij

)2

·

1 +

(
σ̂Ij
)2
/
(
f̂ Ij

)2

(
βI+1
j

)2 ·
γ2
I−j,j

δI−j,j


− f̂ II−i · Ci,I−i · f̂ II−i ·

J−1∏
j=I−i+1

(
f̂ Ij

)2
]

= Ĉk,I−i

[
Ci,I−i ·

(
f̂ II−i

)2

·

1 +

(
σ̂II−i

)2
/
(
f̂ II−i

)2

βI+1
I−i

· γi,I−i
δi,I−i

 · J−1∏
j=I−i+1

(
f̂ Ij

)2

×

1 +

(
σ̂Ij
)2
/
(
f̂ Ij

)2

(
βI+1
j

)2 ·
γ2
I−j,j

δI−j,j

− Ci,I−i · (f̂ II−i)2

·
J−1∏

j=I−i+1

(
f̂ Ij

)2
]

= Ĉk,I−i · Ci,I−i ·
(
f̂ II−i

)2

·
J−1∏

j=I−i+1

(
f̂ Ij

)2
[1 +

(
σ̂II−i

)2
/
(
f̂ II−i

)2

βI+1
I−i

· γi,I−i
δi,I−i


×

J−1∏
j=I−i+1

1 +

(
σ̂Ij
)2
/
(
f̂ Ij

)2

(
βI+1
j

)2 ·
γ2
I−j,j

δI−j,j

− 1

]

= Ĉk,J · Ĉi,J

1 +

(
σ̂II−i

)2
/
(
f̂ II−i

)2

βI+1
I−i

· γi,I−i
δi,I−i


×

J−1∏
j=I−i+1

1 +

(
σ̂Ij
)2
/
(
f̂ Ij

)2

(
βI+1
j

)2 ·
γ2
I−j,j

δI−j,j

− Ĉk,J · Ĉi,J .
(4.7.19)
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Proof of (4.7.14). Recall that

δl =
βIl
βI+1
l

f̂ Il + fl ·
γI−l,l

βI+1
l

.

Let define

Ai :=
J−1∏
l=I−i

f̂ Il − f II−i ·
J−1∏

l=I−i+1

δl. (4.7.20)

Hence

Ai · Ak =

(
J−1∏
l=I−i

f̂ Il − f II−i ·
J−1∏

l=I−i+1

δl

)
·

(
J−1∏
l=I−k

f̂ Il − f II−k ·
J−1∏

l=I−k+1

δl

)
(4.7.21)

Ai · Ak =
J−1∏
l=I−i

f̂ Il ·
J−1∏
l=I−k

f̂ Il −
J−1∏
l=I−i

f̂ Il · fI−k ·
J−1∏

l=I−k+1

δl − fI−i ·
J−1∏

l=I−i+1

δl

×
J−1∏
l=I−k

f̂ Il + fI−i · fI−k ·
J−1∏

l=I−i+1

δl ·
J−1∏

l=I−k+1

δl

=
J−1∏
l=I−i

f̂ Il ·
I−i−1∏
l=I−k

f̂ Il ·
J−1∏
l=I−i

f̂ Il −
J−1∏
l=I−i

f̂ Il · fI−k ·
I−i−1∏
l=I−k+1

δl ·
J−1∏
l=I−i

δl

− fI−i ·
J−1∏

l=I−i+1

δl ·
I−i−1∏
l=I−k

f̂ Il ·
J−1∏
l=I−i

f̂ Il

+ fI−i · fI−k ·
J−1∏

l=I−i+1

δl ·
I−i∏

l=I−k+1

δl ·
J−1∏

l=I−i+1

δl

=
J−1∏
l=I−i

(
f̂ Il

)2

·
I−i−1∏
l=I−k

f̂ Il − f II−k ·
I−i−1∏
l=I−k+1

δl ·
J−1∏
l=I−i

f̂ Il · δl

− f II−i ·
J−1∏

l=I−i+1

f̂ Il · δl · f̂ II−i ·
I−i−1∏
l=I−k

f̂ Il + f II−i · f II−k ·
J−1∏

l=I−i+1

δ2
l ·

I−i∏
l=I−k+1

δl

(4.7.22)
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Furthermore, from (4.7.22) and since E [δl|DI ] = fl and E
[
f̂ Il |DI

]
= fl,

E [Ai · Ak|DI ] =
J−1∏
l=I−i

E

[(
f̂ Il

)2

|DI

]
·
I−i−1∏
l=I−k

E
[
f̂ Il |DI

]
− f II−k ·

I−i−1∏
l=I−k+1

E [δl|DI ] ·
J−1∏
l=I−i

E
[
f̂ Il · δl|DI

]
− f II−i ·

J−1∏
l=I−i+1

E
[
f̂ Il · δl|DI

]
· E
[
f̂ II−i|DI

]
·
I−i−1∏
l=I−k

E
[
f̂ Il |DI

]
+ f II−i · f II−k ·

J−1∏
l=I−i+1

E
[
δ2
l |DI

]
·

I−i∏
l=I−k+1

E [δl|DI ]

=
J−1∏
l=I−i

E

[(
f̂ Il

)2

|DI

]
·
I−i−1∏
l=I−k

fl − f II−k ·
I−i−1∏
l=I−k+1

fl ·
J−1∏
l=I−i

E
[
f̂ Il · δl|DI

]
− f II−i ·

J−1∏
l=I−i+1

E
[
f̂ Il · δl|DI

]
· fI−i ·

I−i−1∏
l=I−k

fl + f II−i · f II−k

×
J−1∏

l=I−i+1

E
[
δ2
l |DI

]
·

I−i∏
l=I−k+1

fl

=
I−i−1∏
l=I−k

fl ·

(
J−1∏
l=I−i

E

[(
f̂ Il

)2

|DI

]
−

J−1∏
l=I−i

E
[
f̂ Il · δl|DI

])

−
I−i−1∏
l=I−k

fl ·

((
f II−i

)2 ·
J−1∏

l=I−i+1

E
[
f̂ Il · δl|DI

]
+
(
f II−i

)2 ·
J−1∏

l=I−i+1

E
[
δ2
l |DI

])
(4.7.23)

Recall ωj =
∑I−j−1

i=0

γ2i,j
δi,j

. From Lemma 4.7.5 (a)-(c) we obtain



4.7 Mathematical Proofs 157

E [Ai · Ak|DI ]

=
I−i−1∏
l=I−k

fl ·

[
J−1∏
l=I−i

(
σ2
l

(βIl )2
· ωl + f 2

l

)
−

J−1∏
l=I−i

(
βIl
βI+1
l

· σ2
l

(βIl )2
· ωl + f 2

l

)

− f 2
I−i ·

J−1∏
l=I−i+1

(
βIl
βI+1
l

· σ2
l

(βIl )2
· ωl + f 2

l

)
+ f 2

I−i ·
J−1∏

l=I−i+1

((
βIl
βI+1
l

)2

· σ2
l

(βIl )2
· ωl + f 2

l

)]

=
I−i−1∏
l=I−k

fl ·

[
J−1∏
l=I−i

f 2
l ·

J−1∏
l=I−i

(
σ2
l /f

2
l

(βIl )2
· ωl + 1

)
−

J−1∏
l=I−i

f 2
l ·

J−1∏
l=I−i

(
βIl
βI+1
l

· σ
2
l /f

2
l

(βIl )2
· ωl + 1

)

− f 2
I−i ·

J−1∏
l=I−i+1

f 2
l ·

J−1∏
l=I−i+1

(
βIl
βI+1
l

· σ
2
l /f

2
l

(βIl )2
· ωl + 1

)

+ f 2
I−i ·

J−1∏
l=I−i+1

f 2
l

J−1∏
l=I−i+1

((
βIl
βI+1
l

)2

· σ
2
l /f

2
l

(βIl )2
· ωl + 1

)]

=
I−i−1∏
l=I−k

fl ·
J−1∏
l=I−i

f 2
l ·

[
J−1∏
l=I−i

(
σ2
l /f

2
l

(βIl )2
· ωl + 1

)
−

J−1∏
l=I−i

(
βIl
βI+1
l

· σ
2
l /f

2
l

(βIl )2
· ωl + 1

)

−
J−1∏

l=I−i+1

(
βIl
βI+1
l

· σ
2
l /f

2
l

(βIl )2
· ωl + 1

)
+

J−1∏
l=I−i+1

((
βIl
βI+1
l

)2

· σ
2
l /f

2
l

(βIl )2
· ωl + 1

)]
(4.7.24)

Replacing the unknown parameters (σ2
k, fk) by their estimators (σ̂2

k, f̂k)
completes the proof of this claim.

4.7.5 Proof of Result 4.5.4

Regarding to the term Υ̂I
i,J , we apply the approximation from (4.7.9) to equa-

tion (4.7.19). This finishes the proof of (4.5.15).

For the term Φ̂I
i,J , we use the approximation (4.7.9) applied to the last
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term of (4.7.24),

E [Ai · Ak|DI ]

=
I−i−1∏
l=I−k

fl ·
J−1∏
l=I−i

f 2
l ·

[
J−1∑
l=I−i

σ2
l /f

2
l

(βIl )2
· ωl + 1−

J−1∑
l=I−i

βIl
βI+1
l

· σ
2
l /f

2
l

(βIl )2
· ωl − 1

−
J−1∑

l=I−i+1

βIl
βI+1
l

· σ
2
l /f

2
l

(βIl )2
· ωl − 1 +

J−1∑
l=I−i+1

(
βIl
βI+1
l

)2

· σ
2
l /f

2
l

(βIl )2
· ωl + 1

]

=
I−i−1∏
l=I−k

fl ·
J−1∏
l=I−i

f 2
l ·

[
σ2
I−i/f

2
I−i

(βII−i)
2
· ωI−i −

βII−i
βI+1
I−i
·
σ2
I−i/f

2
I−i

(βII−i)
2
· ωI−i +

J−1∑
l=I−i+1

σ2
l /f

2
l

(βIl )2
· ωl

− 2 ·
J−1∑

l=I−i+1

βIl
βI+1
l

· σ
2
l /f

2
l

(βIl )2
· ωl +

J−1∑
l=I−i+1

(
βIl
βI+1
l

)2

· σ
2
l /f

2
l

(βIl )2
· ωl

]

=
I−i−1∏
l=I−k

fl ·
J−1∏
l=I−i

f 2
l ·

[
σ2
I−i/f

2
I−i

(βII−i)
2
· ωI−i

(
1−

βII−i
βI+1
I−i

)
+

J−1∑
l=I−i+1

σ2
l /f

2
l

(βIl )2
· ωl
(

1− βIl
βI+1
l

)2
]

(4.7.25)

Since
(

1− βIl
βI+1
l

)
=

γI−l,l

βI+1
l

from (4.7.25) we conclude

E [Ai · Ak|DI ] =
I−i−1∏
l=I−k

fl ·
J−1∏
l=I−i

f 2
l ·

[
γi,I−i

βI+1
l

·
σ2
I−i/f

2
I−i

(βII−i)
2
· ωI−i +

J−1∑
l=I−i+1

σ2
l /f

2
l

(βIl )2
· ωl
(
γI−l,l

βI+1
l

)2
]

(4.7.26)

We plug in the estimators (f̂k, σ̂
2
k) in (4.7.26),

Ê [Ai · Ak|DI ] =
I−i−1∏
l=I−k

f̂ Il ·
J−1∏
l=I−i

(
f̂ Il

)2

·

[
γi,I−i

βI+1
l

·
σ̂2
I−i/

(
f̂I−i

)2

(βII−i)
2

· ωI−i

+
J−1∑

l=I−i+1

σ̂l
2/
(
f̂ Il

)2

(βIl )2
· ωl
(
γI−l,l

βI+1
l

)2
]
.

(4.7.27)
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Furthermore,

Ŵi,k = Ci,I−i · Ck,I−k · Ê [Ai · Ak|DI ]

= Ci,I−i · Ck,I−k ·
I−i−1∏
l=I−k

f̂ Il ·
J−1∏
l=I−i

(
f̂ Il

)2

·

[
γi,I−i

βI+1
l

·
σ̂2
I−i/

(
f̂I−i

)2

(βII−i)
2

· ωI−i

+
J−1∑

l=I−i+1

σ̂l
2/
(
f̂ Il

)2

(βIl )2
· ωl
(
γI−l,l

βI+1
l

)2
]

= ĈI
i,J · ĈI

k,J ·

[
γi,I−i

βI+1
l

·
σ̂2
I−i/

(
f̂I−i

)2

(βII−i)
2

· ωI−i +
J−1∑

l=I−i+1

σ̂l
2/
(
f̂ Il

)2

(βIl )2
· ωl
(
γI−l,l

βI+1
l

)2
]
.

(4.7.28)

�

4.7.6 Proofs of useful Lemmas

Proof. (Lemma 4.7.1)
(a) For l = 0, ..., J − 1, we have

f̂ I+1
l =

βIl
βI+1
l

f̂ Il +

γI−l,l
CI−l,l

CI−l,l+1

βI+1
l

, (4.7.29)

and from (4.2.5)

Ci,I−i+1 = fI−i · Ci,I−i +
σI−i√
δi,I−i

· Ci,I−i · εi,I−i+1.

Hence Ci,I−i+1, f̂
I+1
I−i+1, ..., f̂

I+1
J−1, givenDI , are the functions of εi,I−i+1, ..., εI−J+1,J

which are independent by assumption (TM.2).

(b) Since f̂l is DI measurable, from (4.7.29) we have,

E
[
f̂ I+1
l |DI

]
=

βIl
βI+1
l

f̂ Il +
γI−l,l

CI−l,lβ
I+1
l

· E[CI−l,l+1|DI ].

Since CI−l,l+1 = fl · CI−l,l + σl√
δI−l,l

· CI−l,l · εI−l,l+1, we obtain

E
[
f̂ I+1
l |DI

]
=

βIl
βI+1
l

f̂ Il +
γI−l,l

CI−l,lβ
I+1
l

(fl ·CI−l,l+
σl√
γI−l,l

·CI−l,l ·E [εI−l,l+1|DI ]).
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There remains to use the assumption E [εI−l,l+1|DI ]) = 0.
(c) From (4.3.6) we have

ĈI+1
i,j = Ci,I−i+1

j−1∏
l=I−i+1

f̂ I+1
l .

Since E [Ci,I−i+1|DI ] = Ci,I−i · fI−i there remains to apply Lemma 4.7.1(a).
(d) From (4.2.5) we have

Ci,I−i+1 = fI−i · Ci,I−i +
σI−i√
γi,I−i

· Ci,I−i · εi,I−i+1.

We compute C2
i,I−i+1 and to prove the claim (d) there remains to apply the

model assumptions, E [εi,I−i+1|DI ] = 0 and E
[
ε2
i,I−i+1|DI

]
= 1.

(e)

For l = 0, ..., J − 1, we have from definition of f̂ I+1
l (see (4.2.9)),

f̂ I+1
l =

∑I−l
i=0

γi,l
Ci,l
Ci,l+1

βI+1
l

+

γI−l,l
CI−l,l

CI−l,l+1

βI+1
l

.

Since βI+1
l is DI measurable we obtain

E[(f̂ I+1
l )2|DI ] =

(∑I−l
i=0

γi,l
Ci,l
Ci,l+1

βI+1
l

)2

+ 2

∑I−l
i=0

γi,l
Ci,l
Ci,l+1

βI+1
l

·
γI−l,l
CI−l,l

βI+1
l

· E[CI−l,l+1|DI ]

+

( γI−l,l
CI−l,l

βI+1
l

)2

· E[C2
I−l,l+1|DI ].

Using E [Ci,I−i+1|DI ] = fI−iCi,I−i and Lemma 4.7.1 (d) (with i = I − l) we
obtain,

E[(f̂ I+1
l )2|DI ] =

(∑I−l
i=0

γi,l
Ci,l
Ci,l+1

βI+1
l

)2

+ 2

∑I−l
i=0

γi,l
Ci,l
Ci,l+1

βI+1
l

·
γI−l,l
CI−l,l

βI+1
l

· flCI−l,l

+

( γI−l,l
CI−l,l

βI+1
l

)2

· (f 2
l · C2

I−l,l +
σ2
l

δI−l,l
· C2

I−l,l)

=

(∑I−l−1
i=0

γi,l
Ci,l
· Ci,l+1

βI+1
l

+
γl,I−l · fl
βI+1
l

)2

+
σ2
l ·

γ2I−l,l
δI−l,l(

βI+1
l

)2 .
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Therefore, we conclude claim (e).
(f) For l = 0, ..., J − 1, we have (see (4.2.9))

f̂ I+1
l =

∑I−l
i=0

γi,l
Ci,l
Ci,l+1

βI+1
l

.

Hence, for l = I − i,

f̂ I+1
I−i =

∑i−1
k=0

γk,I−i
Ck,I−i

Ck,I−i+1

βI+1
I−i

+

γi,I−i
Ci,I−i

Ci,I−i+1

βI+1
I−i

.

We derive from Lemma 4.7.1 (d),

E
[
Ci,I−i+1f̂

I+1
I−i |DI

]
= (βI+1

I−i )
−1

[
i−1∑
k=0

γk,I−i
Ck,I−i

Ck,I−i+1 · E [Ci,I−i+1|DI ] +
γi,I−i
Ci,I−i

E
[
C2
i,I−i+1|DI

]]
.

= (βI+1
I−i )

−1

[
i−1∑
k=0

γk,I−i
Ck,I−i

Ck,I−i+1 · fI−iCi,I−i +
γi,I−i
Ci,I−i

(
f 2
I−i · C2

i,I−i +
σ2
I−i

δi,I−i
· C2

i,I−i

)]

= (βI+1
I−i )

−1

[(
i−1∑
k=0

γk,I−i
Ck,I−i

Ck,I−i+1

)
· fI−iCi,I−i +

γi,I−i
Ci,I−i

(
f 2
I−i · C2

i,I−i +
σ2
I−i

δi,I−i
· C2

i,I−i

)]

= (βI+1
I−i )

−1

[(
i−1∑
k=0

γk,I−i
Ck,I−i

Ck,I−i+1

)
· fI−iCi,I−i + γi,I−if

2
I−i · Ci,I−i +

σ2
I−i

δi,I−i
· Ci,I−iγi,I−i

]
.

�

Proof. (Lemma 4.7.2)

From Definition 4.3.2 of ĈDRi(I + 1) we have

E[ĈDRi(I + 1)|DI ] = E[ĈI
i,J − ĈI+1

i,J |DI ] = ĈI
i,J − E[ĈI+1

i,J |DI ],

where the last equality is due to the fact that ĈI
i,J is DI measurable. From

E [Ci,I−i+1|DI ] = fI−iCi,I−i and Lemma 4.7.1 (a) we obtain
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E[ĈDRi(I + 1)|DI ] = Ci,I−i

J−1∏
j=I−i

f̂ Ij − E[Ci,I−i+1

J−1∏
j=I−i+1

f̂ I+1
j |DI ]

= Ci,I−i

J−1∏
j=I−i

f̂ Ij − E[Ci,I−i+1|DI ] ·
J−1∏

j=I−i+1

E[f̂ I+1
j |DI ]

= Ci,I−i

(
J−1∏
j=I−i

f̂ Ij − fI−i
J−1∏

j=I−i+1

E[f̂ I+1
j |DI ]

)
.

The application of Lemma 4.7.1 (b) completes the proof of Lemma 4.7.2.
�

Proof. (Lemma 4.7.3)
Following the ”resampling technique” from Merz and Wüthrich (2007) p.127,
we may write,

f̂ Ij = fj +
σj
βIj

I−j−1∑
i=0

γi,j√
δi,j
· ε̃i,j+1, (4.7.30)

where εi,j, ε̃i,j are independent and identically distributed.

(a) From (4.7.30) we obtain E(f̂ Il |DI) = fl. Thus

E

[(
f̂ Il

)2

|DI

]
= V ar

(
f̂ Il |DI

)
+
[
E(f̂ Il |DI)

]2

= V ar
(
f̂ Il |DI

)
+ f 2

l .

(b) Recall αl =
βIl
βI+1
l

. We have, fl · γI−l,lβI+1
l

= fl − αlfl, It implies that αlf̂
I
l +

fl · γI−l,lβI+1
l

= αl(f̂
I
l − fl) + fl. Furthermore

E

[(
αlf̂

I
l + fl ·

γI−l,l

βI+1
l

)2

|DI

]
= E

[(
αl(f̂

I
l − fl) + fl

)2

|DI

]
= α2

lE

[(
f̂ Il − fl

)2

|DI

]
+ 2αlE

[(
f̂ Il − fl

)
|DI

]
+ f 2

l = α2
l V ar(f̂

I
l |DI) + f 2

l .

(c) Let set

ηi =
J−1∏
l=I−i

f̂ Il ·fI−i·
J−1∏

l=I−i+1

(
αl · f̂ Il + fl ·

γI−l,l

βI+1
l

)
= f̂ II−i·fI−i

J−1∏
l=I−i+1

f̂ Il

[
αl(f̂

I
l − fl) + fl

]
.
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We have

E[ηi|DI ] = fI−iE[f̂ II−i|DI ]
J−1∏

l=I−i+1

E[f̂ Il [αl(f̂
I
l − fl) + fl|DI ]

= fI−i · fI−i
J−1∏

l=I−i+1

{
αlE[(f̂ Il )2|DI ]− αlflE[f̂ Il |DI ] + flE[f̂ Il |DI ]

}
= f 2

I−i

J−1∏
l=I−i+1

{
αlE[(f̂ Il )2|DI ]− αl(E[f̂ Il |DI ])

2 + f 2
l

}
= f 2

I−i

J−1∏
l=I−i+1

{
αl(V ar[f̂

I
l |DI ])

2 + f 2
l

}
.

(d)
From (4.7.30),

V ar
(
f̂ Il |DI

)
=
σ2
l

βIl

I−l−1∑
i=0

γ2
i,l

δi,l
V ar (ε̃i,l+1|DI) .

The fact V ar (ε̃i,l+1|DI) = 1 completes the proof of this claim. �

Proof. (Lemma 4.7.4)

To prove this lemma it is enough to plug in the estimators f̂ Il and σ̂Il instead
of fl and σIl in Lemma 4.7.1 (b), (d) and (f) respectively. Therefore we obtain:

(a) We replace fl by f̂ Il in Lemma 4.7.1 (b). We have

E
(
f̂ I+1
l |DI

)
=

βIl
βI+1
l

· f̂ Il + f̂ Il ·
γI−l,l

βI+1
l

= f̂ Il

(
γI−l,l + βIl
βI+1
l

)
= f̂ Il .

(b) From Lemma 4.7.1 (d) we obtain
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Ê

[(
f̂ I+1
l

)2

|DI

]
=

(∑I−l−1
i=0

γi,l
Ci,l
· Ci,l+1

βI+1
l

+
γl,I−l · fl
βI+1
l

)2

+
σ2
l ·

γ2I−l,l
δI−l,l(

βI+1
l

)2

=

(
βIl
βI+1
l

f̂ Il +
γl,I−l

βI+1
l

f̂ Il

)2

+
σ̂2
l ·

γ2I−l,l
δI−l,l(

βI+1
l

)2 =
(
f̂ Il

)2
(

βIl
βI+1
l

+
γl,I−l

βI+1
l

)2

+
σ̂2
l ·

γ2I−l,l
δI−l,l(

βI+1
l

)2

=
(
f̂ Il

)2

+
σ̂2
l ·

γ2I−l,l
δI−l,l(

βI+1
l

)2 .

(c) From Lemma 4.7.1 (f) we have

Ê
[
Ci,I−i+1 · f̂ I+1

I−i |DI

]
=

1

βI+1
I−i

[(
i−1∑
k=0

γk,I−i
Ck,I−i

· Ck,I−i+1

)
· fI−i · Ci,I−i

]

+
1

βI+1
I−i

[
σ2
I−i · Ci,I−i ·

γi,I−i
δi,I−i

+ γi,I−i · f 2
I−i · Ci,I−i

]
=

1

βI+1
I−i

[
βII−i · f̂I−i · f̂I−i · Ci,I−i + σ̂2

I−i · Ci,I−i ·
γi,I−i
δi,I−i

+ γi,I−i · f̂ 2
I−i · Ci,I−i

]
=

1

βI+1
I−i

[
Ci,I−i · f̂ 2

I−i(β
I
I−i + γi,I−i) + σ̂2

I−i · Ci,I−i ·
γi,I−i
δi,I−i

]
= Ci,I−i · f̂ 2

I−i

(
1 +

σ̂2
I−i/f̂

2
I−i

βI+1
I−i

γi,I−i
δi,I−i

)
.

�

Proof. (Lemma 4.7.5)
(a) From Lemma 4.7.3 (a) and (d) we have

E

[(
f̂ Il

)2

|DI

]
= V ar

(
f̂ Il |DI

)
+ f 2

l =
σ2
l

(βIl )2

I−l−1∑
i=0

γ2
i,l

δi,l
+ f 2

l .

(b) Recall that δl =
βIl
βI+1
l

(f̂ Il −fl)+fl. From Lemma 4.7.3 (b) and (d) we have
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E
[
δ2
l |DI

]
= E

[(
βIl
βI+1
l

· f̂ Il + fl ·
γI−l,l

βI+1
l

)2

|DI

]
=

(
βIl
βI+1
l

)2

· V ar
(
f̂ Il |DI

)
+ f 2

l

=

(
βIl
βI+1
l

)2

· σ2
l

(βIl )2

I−l−1∑
i=0

γ2
i,l

δi,l
+ f 2

l .

(4.7.31)

(c) We have from Lemma 4.7.3 (d)

E
[
f̂ Il · δl|DI

]
= E

[
f̂ Il ·

βIl
βI+1
l

(f̂ Il − fl) + f̂ Il · fl|DI

]
=

βIl
βI+1
l

E
[
(f̂ Il )2|DI

]
− βIl
βI+1
l

fl · E
[
f̂ Il |DI

]
+ flE

[
f̂ Il |DI

]
=

βIl
βI+1
l

[
E
[
(f̂ Il )2|DI

]
−
{
E
[
f̂ Il |DI

]}2
]

+ f 2
l

=
βIl
βI+1
l

V ar
(
f̂ Il |DI

)
+ f 2

l =
βIl
βI+1
l

σ2
l

(βIl )2

I−l−1∑
i=0

γ2
i,l

δi,l
+ f 2

l .

�

4.7.7 Proof of Proposition 4.2.1

(i) See Theorem 2 p. 215 in Mack (1993).

(ii) See discussion on p.112, Corollary on p.141 and Appendix B on p.140
in Mack (1994).

(iii) We have, for 0 ≤ k ≤ J − 2,

(I − k − 1) · σ̂2
k =

I−k−1∑
i=0

δi,k(Fi,k − f̂k)2 =
I−k−1∑
i=0

δi,kF
2
i,k

− 2
I−k−1∑
i=0

δi,kFi,k · f̂k +
I−k−1∑
i=0

δi,kf̂k
2
.

(4.7.32)



4.7 Mathematical Proofs 166

Since δi,j are σ(Ci,j) measurable, we have

E((I − k − 1) · σ̂2
k|Bk) =

I−k−1∑
i=0

δi,kE(F 2
i,k|Bk)− 2

I−k−1∑
i=0

δi,kE(Fi,k · f̂k|Bk)

+
I−k−1∑
i=0

δi,kE(f̂k
2
|Bk).

(4.7.33)

Since Fi,k and Fj,k are independent for i 6= j, E(F 2
i,k|Bk) =

σ2
k

δi,k
+f 2

k and

γi,j are σ(Ci,j) measurable, we have

E(Fi,k · f̂k|Bk)

=
1∑I−k−1

i=0 γi,k

(
I−k−1∑
j=0

γj,k · E(Fi,k · Fj,k|Bk)

)

=
1∑I−k−1

i=0 γi,k

(
γi,k · E(F 2

i,k|Bk) +
I−k−1∑
j 6=i

γj,k · E(Fi,k|Bk) · E(Fj,k|Bk)

)

=
1∑I−k−1

i=0 γi,k

(
γi,k · E(F 2

i,k|Bk) +
I−k−1∑
j 6=i

γj,k · E(Fi,k|Bk) · E(Fj,k|Bk)

)

=
1∑I−k−1

i=0 γi,k

(
γi,k · (

σ2
k

δi,k
+ f 2

k ) +
I−k−1∑
j 6=i

γj,kf
2
k

)

=
1∑I−k−1

i=0 γi,k

(
γi,k ·

σ2
k

δi,k
+ f 2

k

I−k−1∑
j=0

γj,k

)

= σ2
k

γi,k
δi,k∑I−k−1

i=0 γi,k
+ f 2

k .

(4.7.34)

From Lemma 4.7.3 (d)

E(f̂k
2
|Bk) = V ar(f̂k|Bk) + (E(f̂k|Bk))

2 = σ2
k

∑I−k−1
j=0

γ2j,k
δj,k(∑I−k−1

j=0 γj,k

)2 + f 2
k .
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Taking together we obtain

E((I − k − 1) · σ̂2
k|Bk)

=
I−k−1∑
i=0

δi,kE(F 2
i,k|Bk)− 2

I−k−1∑
i=0

δi,kE(Fi,k · f̂k|Bk) +
I−k−1∑
i=0

δi,kE(f̂k
2
|Bk)

=
I−k−1∑
i=0

δi,k(
σ2
k

δi,k
+ f 2

k )− 2
I−k−1∑
i=0

δi,k(σ
2
k

γi,k
δi,k∑I−k−1

i=0 γi,k
+ f 2

k )

+
I−k−1∑
i=0

δi,k(σ
2
k

∑I−k−1
j=0

γ2j,k
δj,k(∑I−k−1

j=0 γj,k

)2 + f 2
k )

= (I − k)σ2
k + f 2

k

I−k−1∑
i=0

δi,k − 2σ2
k − 2f 2

k

I−k−1∑
i=0

δi,k

+ σ2
k

∑I−k−1
i=0 δi,k

∑I−k−1
j=0

γ2j,k
δj,k(∑I−k−1

j=0 γj,k

)2 + f 2
k

I−k−1∑
i=0

δi,k

= (I − k − 1)σ2
k + σ2

k

∑I−k−1
i=0 δi,k

∑I−k−1
j=0

γ2j,k
δj,k(∑I−k−1

j=0 γj,k

)2 − 1

 .
(4.7.35)

Finally

E(σ̂2
k−σ2

k) = E[E[(σ̂2
k−σ2

k)|Bk]] =
σ2
k

I − k − 1
E

∑I−k−1
i=0 δi,k

∑I−k−1
j=0

γ2j,k
δj,k(∑I−k−1

j=0 γj,k

)2 − 1

 .
(iv) It is straightforward from (iii).

(v) See Theorem 1 p. 215 in Mack (1993).

(vi) see Appendix C p.142 in Mack (1994).
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Appendix A

Limitations and Future
Research for Paper I

The main aim of this section is to provide tentative guidelines to establish
a stronger version of Theorem 2.3.1, under sharp conditions on the weight
function w.

Let us summarize the well-known results on the weak convergence of empiri-
cal copula process. Under suitable regularity conditions (see e.g., Condition
1 and Condition 2 defined by (1.1.11) and (1.1.12) , on page 21 and 24
respectively) on the first partial derivatives Cj of copula C, we have, as
n→∞,

• Cn  B
∗ in the space `∞([0, 1]d) (see Segers (2012)),

• For any function w ∈ `∞([0, 1]d): wCn  wB∗ in the space `∞([0, 1]d)
(easily checked from results of Segers (2012)),

• For any function w ∈ L2([0, 1]d): wCn  wB∗ in the space L2([0, 1]d)
(see Theorem 2.3.1),

where Cn and B
∗ are defined via (2.2.11) and (2.2.14) respectively.

We wish to solve the following
General Problem:
For an non-square integrable function w : [0, 1]d 7→ R (w /∈ L2), find a general
condition implying the convergence, as n→∞,

wCn  wB∗ in the space L2([0, 1]d). (A.0.1)
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It can be noted that in our informal exposition which follows, we do not
provide a complete solution of (A.0.1), but rather, we present some ideas
which are likely to provide a solution to this problem. The details are left
for future and on-going research.

A.1 Weak convergence of wCn - case of inde-

pendence copula

In the particular case of the independence copula, the solution of the Gen-
eral Problem stated in A.0.1 could be useful in constructing tests of inde-
pendence based on the empirical copula process. A typical example being
given by Anderson-Darling type test statistics. We present in this section
two methods about how one could deal with the General Problem.

Method 1 - convergence in weighted sup-norm.
Let D∗ be the set of all those functions q ≥ 0 which are continuous on [0, 1],
strictly positive on (0, 1] and non-decreasing. Assume that q and q̃ are from
the class D∗. Denote |u| =

∏n
i=1 ui. The main purpose of this approach

is to provide the sufficient condition on the functions q and q̃ for following
convergence

sup
u∈[0,1]d

|Cn(u)− B∗(u)|/q(|u|)q̃(1− |u|)→ 0,

in probability, as n → ∞. By the elementary arguments, if w is chosen in
such a way that ∫

[0,1]d
w(u)2q(|u|)q̃(1− |u|) du <∞,

then wCn  wB∗ in the space L2([0, 1]d) as n→∞. For more details about
the techniques based on weighted sup-norms refer to Shao and Yu (1996)
and Einmahl et al (1988) (see Theorem 2.1 p.196, Theorem 2.2 p.198 and
Corollary 2.1 p.199).

Method 2 - direct computations.

The second possible way to address our General Problem is based on
direct computations.
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To simplify exposition, we limit ourselves in the following to d = 2. Let C be
the bivariate independence copula function, i.e., C(u, v) = uv. We recall the
definition of the empirical copula process Cn for this same copula. Namely,

Cn(u, v) = n1/2(C̃n(u, v)− uv), for (u, v) ∈ [0, 1]2. (A.1.1)

Here C̃n is the empirical copula function defined in (2.2.9). Recall the defi-
nition of the following empirical processes. We write

αn(u, v) :=n1/2(Hn(u, v)− uv),

αn;U(u) :=n1/2(Fn(u)− u),

αn;V (v) :=n1/2(Gn(v)− v),

βn;U(u) :=n1/2(F−n (u)− u),

βn;V (v) :=n1/2(G−n (v)− v).

The function Hn is a bivariate empirical function based on the sample
(U1, V1), ..., (Un, Vn), with c.d.f F , i.e.,

Hn(u, v) =
1

n

n∑
i=1

1{Ui≤u,Vi≤v}.

We have the following decomposition of Cn (see, e.g., the proof of Theorem
2.3.1)

Cn(u, v) = αn(F−n (u), G−n ) + uβn;V (v) + vβn;U(u) + n−1/2βn;U(u)βn;V (v)

= Cn;0(u, v) +R1n(u, v) +R2n(u, v) +R3n(u, v),

where

Cn;0(u, v) = αn(u, v)− vαn;U(u)− uαn;V (v),

R1n(u, v) = αn(F−n (u), G−n (v))− αn(u, v),

R2n(u, v) = v(αn;U(u) + βn;U(u)) + u(αn;V (v) + βn;V (v)),

R3n(u, v) = n−1/2βn;U(u)βn;V (v).
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Basic arguments show that, in order to prove the convergence wCn  wB∗,
it is sufficient to show that, as n→∞,

wCn;0  wB∗, (A.1.2)

and

wRin → 0 in probability, for i = 1, 2, 3. (A.1.3)

Convergence of wCn;0.
To find the condition on w which implies this convergence we suggest the use
of the techniques developed in Einmahl et al (1988).
Convergence of wR3n.
We show this convergence for w = w0, where

w2
0(u, v) = 1/V ar(B∗(u, v)) =

1

u(1− u) · v(1− v)
.

Since w0R3n = n−1/2[ 1
u(1−u)

· βn;U(u)][ 1
v(1−v)

· βn;V (v)], from Corollary 3 in

Mason (1984) (p.248, applied with: ν1 = ν2 = 0,M = 1, g(u) = u(1− u) and
g(v) = v(1− v) respectively) we get: 1

I(1−I) ·βn;U  B and 1
I(1−I) ·βn;V  B,

where I denotes the identity function on [0, 1] and B denotes a Brownian
bridge on [0, 1]. Hence, as n→∞, w0R3n  0, which implies that w0R3n → 0
in probability in L2([0, 1]2).
Convergence of wRin for i = 1, 2. The convergence to 0 in probability of
wRin, for i = 1, 2 , is implied (through the Markov and Jensen inequalities,
and the Fubini theorem) by the following convergence∫

[0,1]2
E[wRin(u, v)]2dudv → 0 as n→∞ for, i = 1, 2. (A.1.4)

The condition (A.1.4) is fulfilled, for i = 1, 2, if the function (u, v) 7→
E[wRin(u, v)]2 is uniformly integrable and E[Rin(u, v)]2 → 0 almost every-
where on [0, 1]2 as n→∞.
Uniform integrability of E[wR1n]2.
We have

αn(F−n (u), G−n (v))− αn(u, v) = n1/2
{
Hn(F−n (u), G−n )−Hn(u, v)

}
+ n1/2

{
C(u, v)− C(F−n (u), G−n )

}
≤ n1/2

{
|Fn(F−n (u))− Fn(u)|+ |Gn(G−n (v))−Gn(v)|

}
+ n1/2

{
|F−n (u)− u|+ |G−n (v)− v|

}
.
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where the second inequality is due to Fact A.4.1 (below), when applied to
Hn and C .
The claim about uniform integrability of E[wR1n]2 is correct, given that the
functions

w2 · E
[
n1/2

{
|Fn ◦ F−n − Fn|+ |Gn ◦G−n −Gn|

}]2
,

and
w2 · E

[
n1/2

{
|F−n − I|+ |G−n − I|

}]2
,

are uniformly integrable, where I denotes the identity function on [0,1].
Convergence of ER2

1n.
We have

R2
1n =

{
αn(F−n (u), G−n (v))− αn(u, v)

}2 ≤

{
sup

|u−s|×|v−t|≤an
|αn(u, v)− αn(s, t)|

}2

,

where an = n−1/2(log log n)1/2. Hence

ER2
1n ≤ E

[
sup

|u−s|×|v−t|≤an
|αn(u, v)− αn(s, t)|

]2

,

and from Corollary A.4.1(see Auxiliary facts below), we get ER2
1n → 0.

Uniform integrability of E[wR2n]2.
We have

R2
2n ≤ [n1/2{[F−n (u)− u+ Fn(u)− u] + [G−n (v)− v +Gn(v)− v]}]2.

Hence, the claim about uniform integrability of E[wR2n]2 is implied by uni-
formly integrability of the function

w2 · E[n1/2{[F−n − I + Fn − I] + [G−n − I +Gn − I]}]2.

Convergence of ER2
2n.

We have

n−1/2[αn;U(u) + βn;U(u)] = [F−n (u)− u] + [Fn(u)− u] + Fn(F−n (u))− Fn(F−n (u))

= [Fn(F−n (u))− u]− [Fn(F−n (u))− F−n (u)− (Fn(u)− u)].
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From (1.6) (p. 370) in Shorack (1982):
√
n‖Fn(F−n )− I‖∞ ≤ 1√

n
. Hence

[αn;U(u) + βn;U(u)]2 ≤ 2{
√
n[Fn(F−n (u))− u]}2

+ 2{[αn;U(F−n (u))− αn;U(u)]}2

≤ 2{
√
n‖Fn(F−n )− I‖∞}2

+ 2{ sup
0<u<1

|αn;U(F−n (u))− αn;U(u)|}2

≤ 2
1

n
+ 2

{
sup

t≤s;|s−t|≤an
|αn;U(s)− αn;U(t)|

}2

.

From Corollary A.4.1 we get that E[αn;U +βn;U ]2 → 0 a.e on [0, 1] as n→∞.
Let define

ϕ1(u, v) :=n1/2
{
|Fn(F−n (u))− Fn(u)|+ |Gn(G−n (v))−Gn(v)|

}
,

ϕ2(u, v) :=n1/2
{
|F−n (u)− u|+ |G−n (v)− v|

}
,

ϕ3(u, v) :=n1/2{[F−n (u)− u+ Fn(u)− u] + [G−n (v)− v +Gn(v)− v]}.

We present below the list of potential sufficient conditions providing the
solution for general problem in the case of independence copula:

C.1 The function w is such that wCn;0  wB∗ in space L2,

C.2 The function w is such

w = O(w0) = O

(
1√

uv(1− u)(1− v)

)

(required for convergence of wR3n),

C.3 The function E[w × ϕ1]2 is uniformly integrable
(required for uniform integrability of E[wR1n]2),

C.4 The function E[w × ϕ2]2 is uniformly integrable
(required for uniform integrability of E[wR1n]2),

C.5 The function E[w × ϕ3]2 is uniformly integrable
(required for uniform integrability of E[wR2n]2),
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Remark A.1.1 From the statistical point of view, it would be interesting to
verify whether the conditions C.1 and C.3-C.5 are fulfilled by the function
w0. The function w0 is not square integrable and it is equal to 1/V ar(B∗).
Therefore, the positive answer to that query would give the possibility to con-
struct the statistical test of independence based on empirical copula process
and on Anderson-Darling type goodness-of-fit statistic.

A.2 Weak convergence of wCn - case of gen-

eral copula

One of possible way to approach the general problem for general copula
function, would be to use the general decomposition of copula process (see,
e.g., the proof of Theorem 2.3.1) i.e.,

Cn = Cn;0 +R1n +R2n +R3n,

where

Cn;0 = αn +
d∑
j=1

Cjαnj,

R1,n = αn(G−1
n1 , ..., G

−1
nd )− αn,

R2,n =
d∑
j=1

Cj(αnj + βnj),

R3,n =
√
n[C(G−1

n1 , ..., G
−1
nd )− C]−

d∑
j=1

Cjβnj,

and the function Cj is the j-th partial derivative of copula function C.
Thereafter, we can mimick the techniques presented above in Method 2.

A.3 Goodness-of-fit test based on the ran-

dom weighted function

In Section 2.4.3 we introduced the statical test based on the empirical copula
process and on the random weighted function (see 2.4.5). In the present sec-
tion we consider some other possible choices of the random weight functions.
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• w(u, v, θn) =
1

[var(B∗(u, v, θn))]α
, where 0 < α < 1 and var(B∗(u, v, θn))

is the estimator of the variance function of the process B∗ defined in
(2.2.14). The function var(B∗(u, v, θn)) is computed as follows: in
expression of var(B∗(u, v)) = E [B∗(u, v)]2 the copula function Cθ is
replaced by its parametric estimator Cθn and the partial derivatives
∂Cθ/∂u and ∂Cθ/∂v are replaced by their consistent estimators (see

Rémillard and Scaillet (2009), Prop. A.2) ∂C
(n)
θ /∂u and ∂C

(n)
θ /∂v re-

spectively, given by

∂C
(n)
θ

∂u
(u, v) :=

1

2n−1/2

{
C̃n(u+ n−1/2, v)− C̃n(u− n−1/2, v)

}
,

and

∂C
(n)
θ

∂v
(u, v) :=

1

2n−1/2

{
C̃n(u, v + n−1/2)− C̃n(u, v − n−1/2)

}
.

• w(u, v, θn) =
1

[var(B∗∗(u, v))n]γ
, where 0 < γ < 1 and var(B∗∗(u, v))n is

the estimator of the variance function var(B∗∗(u, v)) of the limit process
B
∗∗ form Proposition 2.4.1. In order to compute var(B∗∗(u, v))n we may

use the multiplier technique (see, e.g, Kojadinovic et al (2010),Rémillard
and Scaillet (2009)).

A.4 Auxiliary facts

A.4.1 Moments of the modulus of continuity of the
empirical process

Definition A.4.1 Let consider the half-open rectangles R = R(s, t) on R
d

given by (s1, t1]× ...× (sd, td] and by

R = {R(s, t) : R(s, t) ⊂ [0, 1]d},

we denote the class of all such rectangles contained in the unit cube. The
modulus of continuity of empirical process that will be considered here is
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based on the partition Pm ⊂ R of the unit cube into the squares of equal size

R = Rk1...kd =

(
k1 − 1

m
,
k1

m

]
×...×

(
kd − 1

m
,
kd
m

]
, m ∈ N, k1, .., kd ∈ {1, ...,m}.

Then this modulus of continuity of empirical process αn is defined as

M(αn;m) = max
R∈Pm

sup
s,t∈R
|αn(s)− αn(t)|.

We present now the main result of Einmahl and Ruymgaart (1987) and the
corollary which can be derived from this result.

Theorem A.4.1 Let δ ∈ (0, 1
2
) be arbitrary. For integers m ≥ 2 and k ∈ N

there exist numbers 0 < C1 = C1(d, k, δ) ≤ C2 = C2(d, k, δ) < ∞ such that
for any copula function C we have

C1

(
logm

m

)k/2
≤ E[M(αn;m)]k ≤ C2

(
logm

m

)k/2
.

Corollary A.4.1 For any sequence an of real numbers such that an → 0 and
any integer k ∈ N we have

E

[
sup

t≤s;|s−t|≤an
|αn(s)− αn(t)|

]k
→ 0 as n→∞, and |s− t| =

d∏
i=1

|si − ti|.

Fact A.4.1 For every bivariate cumulative distribution function H and its
margins F and G

|H(x, y)−H(x′, y′)| ≤ |F (x)− F (x′)|+ |F (y)− F (y′)|.

A.5 Asymptotic normality of multivariate rank

order statistics

We consider multivariate rank statistics of the form

Rn =
1

n

n∑
i=1

J(Fn1(Xi(1)), ..., Fnd(Xi(d))),
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where J is a measurable real function on [0, 1]d. The asymptotic normality of
Rn has been investigated, subject to suitable regularity conditions imposed
on J by many authors (see, e.g., Fermanian et al (2004) and the references
therein). We establish a result of the kind without the assumption of conti-
nuity on [0, 1]d of the first partial derivatives of C. We will impose conditions
on J similar to that of Theorem 6 of (Fermanian et al, 2004, p.854).

Proposition A.5.1 Let H have continuous marginals. Assume that J is of
bounded variation, continuous from above, with discontinuities of the first
kind and such that the measure dJ is absolutely continuous with respect to
the Lebegue measure λd, i.e., fulfilling

dJ � λd. (A.5.1)

Then, as n→∞,

n1/2(Rn − ERn)
d→
∫

[0,1]d

B
∗(u)

∂dJ

∂u1...∂ud
(u) du.

Proof. We have

n1/2(Rn − ERn) =

∫
[0,1]d

√
n{Cn(u)− C(u)} dJ(u) +O(n−1/2),

=

∫
[0,1]d

√
n{Cn(u)− C(u)} ∂dJ

∂u1...∂ud
(u) du +O(n−1/2).

(A.5.2)

The first equality in (A.5.2) is an easy adaptation of the proof of Theorem
6 of Fermanian et al (2004), and the second equality is a consequence of
the assumption (A.5.1). Since n1/2|Cn − Cn|∞ → 0 a.s, as n→∞ one can
replace in Theorem 2.3.1 Cn by Cn and obtain a version of this theorem for
wCn = wn1/2(Cn−C). Finally, the asymptotic normality of Rn follows from
(A.5.2), in combination with Theorem 2.3.1 when applied to Cn with the

weight function w = ∂dJ
∂u1...∂ud

∈ L2
(
[0, 1]d

)
(refer to (A.5.1) ). We make use

of the continuous mapping theorem, and applied to the transformation:

L2
(
[0, 1]d

)
3 f 7→

∫
[0,1]d

f(u) du.



A.6 GOF tests for copulas-weak convergence of Tn statistic 179

The continuity of this last unctional follows from the Cauchy-Schwarz in-
equality.

A.6 GOF tests for copulas-weak convergence

of Tn statistic

In the sequel,
P→ refers to convergence in (outer) probability and  denotes

the weak convergence.

The goal is to show that, for any function w ∈ L2([0, 1]d), the weak conver-
gence

wCn  wB∗,

in the space L2([0, 1]d), implies that the statistic∫
[0,1]d

C
2
n(u) dCn(u),

converges weakly to the corresponding quadratic functional of the Gaussian
process.
To prove this result it is sufficient to show the following

Proposition A.6.1 (Conjecture) If a sequence Gn of processes is tight
with respect to the L2 norm on the space L2[0, 1]d of square integrable
functions with respect to the Lebesgue measure, then, as n→∞,

4n :=

∫
[0,1]d

Gn(u) dCn(u)−
∫

[0,1]d
Gn(u) dC(u)

P→ 0.

The similar fact to the above proposition concerning the space l∞ has
been proved in Genest et al (2013) (see Proposition 4, see also,Tsukahara
(2000), p.10).

Proposition A.6.2 If a sequence Gn of processes is tight with respect to the
uniform norm on the space C[0, 1]d of continuous functions on [0, 1]d,
then, as n→∞,

4n :=

∫
[0,1]d

Gn(u) dCn(u)−
∫

[0,1]d
Gn(u) dC(u)

P→ 0.
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In particular, we are interested in the previous result in the case where the
empirical process Gn = R2

3,n where

R3,n :=
√
n[C(G−1

n1 , ..., G
−1
nd )− C]−

d∑
j=1

Cjβnj,

and Cj denotes the first order partial derivatives of C.

A.7 Useful Theorems, Facts, Inequalities, etc.

Proposition A.7.1 For every copula function C and for j = 1, ..., d, the
partial derivative Cj exist for almost all u ∈ [0, 1]d with respect to the Lebesgue-
measure. For such u, we have

0 ≤ Cj(u) ≤ 1, u ∈ [0, 1]d.

Proof. See Theorem 2.2.7 of Nelsen (2006). �

Fact A.7.1 (Slutsky’s theorem) Let Xn and Yn be sequences of random

elements. If Xn  X, as n→∞, and Yn
P→ c, where c is constant, then

(a) Xn + Yn  X + c,

(b) Xn · Yn  cX,

Note that, in the statement of the theorem, the condition ”Yn converges in
probability to a constant c” may be replaced with ”Yn converges in distribution
to a constant c” these two requirements are equivalent according to this
property. The requirement that Yn converges to a constant is important if it
were to converge to a non-degenerate random variable, the theorem would be
no longer valid. The theorem remains valid if we replace all convergences in
distribution with convergences in probability.

Fact A.7.2 (Hölder’s Inequality) Let 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1.
Let f ∈ Lp

(
[0, 1]d, λd

)
and g ∈ Lq

(
[0, 1]d, λd

)
. Then

|fg|1 ≤ |f |p · |g|q,

where, for 1 ≤ r <∞, |h|r =

(∫
[0,1]d

hr dλd

)1/r

.
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Fact A.7.3 Let f ∈ L2
(
[0, 1]d, λd

)
and g ∈ l∞

(
[0, 1]d

)
. Then

|fg|2 ≤ |f |2 · |g|∞.

Proof of Fact A.7.3.
We apply the Hölder’s Inequality (see Fact A.7.2) with p = 1 and q = ∞.
We obtain,

|fg|22 = |f 2g2|1 ≤ |f 2|1 · |g2|∞ = |f |22 · |g2|∞.

Furthermore, |g2|∞ ≤ |g|2∞ (|g(x)| ≤ |g|∞ implies that |g(x)|2 ≤ |g|2∞ and
taking supremum of both sides proves this claim).
Finally, we conclude

|fg|22 ≤ |f |22 · |g|2∞.

Theorem A.7.1 (Second Fundamental Theorem of Calculus) If f :
[a, b] → R is integrable and there exists a function g : [a, b] → R such that
g′ = f then: ∫ b

a

f = g(b)− g(a).

Note: f need not be continuous. An example of this would be g(x) :=
x2 sin(1/x) which is differentiable on [−1, 1] but g′ is not continuous at 0.



Appendix B

Data for Chapter 2 and
Chapter 3

B.1 Run-off Triangles
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B.2 Individual link ratios {Fi,j}

Accident Development Year j
Year i 0 1 2 3 4 5 6 7

0 1,458 1,080 1,022 1,022 1,006 1,007 1,001 1,001
1 1,512 1,065 1,015 1,007 1,004 1,005 1,001
2 1,475 1,081 1,026 1,015 1,006 1,005
3 1,458 1,073 1,021 1,014 1,009
4 1,475 1,077 1,030 1,024
5 1,457 1,064 1,026
6 1,499 1,065
7 1,473

Table B.3: Individual link ratios Fi,j (age-to-age factors) of run-off triangle
T1 defined in Table B.1

Accident Development Year j
Year i 0 1 2 3 4 5 6 7 8

0 1,650 1,319 1,082 1,149 1,195 1,113 1,033 1,003 1,009
1 40,425 1,259 1,977 1,292 1,132 0,993 1,043 1,033
2 2,637 1,543 1,163 1,161 1,186 1,029 1,026
3 2,043 1,364 1,349 1,102 1,113 1,038
4 8,759 1,656 1,400 1,171 1,009
5 4,260 1,816 1,105 1,226
6 7,217 2,723 1,125
7 5,142 1,887
8 1,722

Table B.4: Individual link ratios Fi,j (age-to-age factors) of run-off triangle
T2 defined in Table B.2
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Rüschendorf L (1976) Asymptotic distributions of multivariate rank order
statistics. Ann Statist 4(5):912–923

Segers J (2012) Asymptotics of empirical copula processes under non-
restrictive smoothness assumptions. Bernoulli 18(3):764–782

Shao QM, Yu H (1996) Weak convergence for weighted empirical processes
of dependent sequences. Ann Probab 24(4):2098–2127

Shorack GR (1982) Kiefer’s theorem via the Hungarian construction. Z
Wahrsch Verw Gebiete 61(3):369–373
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