
Synthesis of correct-by-design schedulers for hybrid

systems

Romain Soulat

To cite this version:

Romain Soulat. Synthesis of correct-by-design schedulers for hybrid systems. Other [cs.OH].

École normale supérieure de Cachan - ENS Cachan, 2014. English. .

HAL Id: tel-01062337

https://tel.archives-ouvertes.fr/tel-01062337

Submitted on 9 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01062337

THÈSE DE DOCTORAT

Présentée à l’École Normale Supérieure de Cachan

par Romain SOULAT

en vue de l’obtention du grade de

Docteur de l’École Normale Supérieure de Cachan

Spécialité informatique

Synthesis of Correct-by-Design Schedulers for
Hybrid Systems

Soutenue le 18/02/2014 à Cachan devant un jury composé de :
Étienne ANDRÉ Examinateur
Franck CASSEZ Rapporteur
Laurent FRIBOURG Directeur de thèse
Antoine GIRARD Examinateur
Éric GOUBAULT Rapporteur
Luc JAULIN Examinateur

Laboratoire Spécification et Vérification
École Normale Supérieure de Cachan/CNRS/UMR 8643
61 avenue du Président WILSON, 94235 Cachan Cedex, France

Abstract

In this thesis, we are interested in designing schedulers for hybrid systems.
We consider two specific subclasses of hybrid systems, real-time systems
where tasks are competing for the access to common resources, and sampled
switched systems where a choice has to be made on dynamics of the system to
reach goals.

Scheduling consists in defining the order in which the tasks will be run on
the processors in order to complete all the tasks before a given deadline. In
the first part of this thesis, we are interested in the scheduling of periodic tasks
on multiprocessor architectures. We are especially interested in the robust-
ness of schedulers, i.e., to prove that some values of the system parameters can
be modified, and until what value they can be extended while preserving the
scheduling order and meeting the deadlines. The Inverse Method can be used
to prove the robustness of parametric timed systems. In this thesis, we intro-
duce a state space reduction technique which allows us to treat challenging
case studies such as one provided by Astrium EADS for the launcher Ariane 6.
We also present how an extension of the Inverse Method, the Behavioral Car-
tography, can solve the problem of schedulability, i.e., finding the area in the
parametric space in which there exists a scheduler that satisfies all the dead-
lines. We compare this approach to an analytic method to illustrate the interest
of our approach

In the second part of this thesis, we are interested in the control of affine
switched systems. These systems are governed by a finite family of affine dif-
ferential equations. At each time step, a controller can choose which dynamics
will govern the system for the next time step. Controlling in this sense can be
seen as a scheduling on the order of dynamics the system will have to use. The
objective for the controller can be to make the system stay in a given area of the
state space (stability) or to reach a given region of the state space (reachability).
In this thesis, we propose a novel approach that computes a scheduler where
the strategy is uniform for dense subsets of the state space. Moreover, our ap-
proach only uses forward computation, which is better suited than backward
computation for contractive systems. We show that our designed controllers,

ii

systems evolve to a limit cyclic behavior. We apply our method to several case
studies from the literature and on a real-life prototype of a multilevel voltage
converter. Moreover, we show that our approach can be extended to systems
with perturbations and non-linear dynamics.

Résumé

Dans cette thèse, nous nous intéressons au calcul d’ordonnanceurs pour les
systèmes hybrides. En fait, nous considérons deux sous-classes des systèmes
hybrides, les systèmes temps-réels oú des tâches doivent se partager l’accès à
une ressource commune, et les systèmes à commutations où un choix doit être
fait sur les dynamiques à choisir en fonction d’objectifs à atteindre.

de permettre l’exécution de toutes ces tâches dans un délai imparti. Dans la
première partie de cette thèse, nous nous intéressons aux problèmes d’ordon-
nancement et prenons comme étude de cas l’ordonnancement de tâches pé-
riodiques sur des architectures multiprocesseurs. Nous nous intéressons plus
particulièrement à déterminer si l’on peut modifier certaines valeur des para-
mètres du système tout en respectant les contraintes temporelles sans changer
d’ordonnanceur. La méthode inverse permet de prouver de manière formelle
la robustesse des systèmes temporisés paramétriques. Nous introduisons une
méthode de réduction du nombre d’états nécessaire à la vérification. Cette ré-
duction nous permet de traîter des études de cas intéressantes telle que celle
proposée par Astrium EADS pour le lanceur Ariane 6. Nous montrons égale-
ment comment la Cartographie Comportementale, une extension de la mé-
thode inverse, permet de trouver la zone de l’espace des paramètres où l’on
a l’existence d’un ordonnancement satisfaisant les contraintes temporelles.
Nous comparons cette approche avec une méthode analytique pour montrer
l’intérêt de notre approche.

Dans la seconde partie de cette thèse, nous nous intéressons au contrôle
de systèmes affines à commutation. Ces systèmes sont gouvernés par une fa-
mille d’équations différentielles linéaires et le contrôleur peut choisir laquelle
va gouverner le système pendant le prochain pas de temps. Dans ce cadre, le
contrôle peut être vu comme l’ordonnancement des dynamiques que le sys-
tème va prendre. Le choix de la dynamique peut se faire pour des objectifs
de stabilité ou d’accessibilité. Nous proposons une nouvelle méthode qui cal-
cule un contrôleur dont la stratégie est la même pour des ensembles denses de
points. Notre méthode utilise le calcul en avant, souvent préférable au calcul
à rebours pour les systèmes contractants. Nous montrons que, sous certaines

iv

conditions, le système contrôlé évolue vers un comportement limite. Nous ap-
pliquons notre méthode sur plusieurs études de cas issues de la littérature ainsi
qu’un exemple réel, un prototype de convertisseur de tension multiniveaux.
Enfin, nous montrons que notre méthode s’étend aux systèmes comportant des
perturbations ainsi qu’aux systèmes non linéaires.

Remerciements

Tout d’abord, je remercie mon directeur de thèse, Laurent Fribourg, pour ses
conseils, son encadrement, son implication dans mon travail, son soutien et
pour tous les différents projets de recherche dans lesquels j’ai eu la chance
d’être impliqué.

Un grand merci à Éric Goubault et Franck Cassez pour m’avoir fait
l’honneur d’être les relecteurs de cette thèse. Merci également à Luc Jaulin et
Antoine Girard pour me faire le plaisir de participer au jury de ma thèse. Un
très grand merci à Étienne André qui aura été pour cette thèse bien plus qu’un
examinateur. Ces contributions envers ce travail sont bien trop nombreuses
pour être intégralement listées ici, mais je tiens à lui exprimer ma plus sincère
gratitude.

Merci à toutes les personnes avec qui j’ai eu le plaisir de travailler grâce
à l’institut Farman : Ludovic Chamoin, Gilles Feld, Éric Florentin, Guil-
laume Hérault, Pierre-Yves Joubert, Denis Labrousse, Stéphane Lefebvre, David
Lesens, Pierre Moro, Bertrand Revol, Christian Rey, Éric Vourc’h, Florian de
Vuyst et toutes les autres personnes qui ont collaboré dans ces projets.

I would like to thank Giuseppe Lipari and Youcheng Sun for all our very in-
teresting discussions on schedulability, time analysis and how to improve IMI-
TATOR. I also want to thank Ulrich Kühne for all his help in the development of
MINIMATOR and many other things.

Un grand merci également à tous les membres du LSV pour leur gentillesse
et tous les bons moments passés ensemble. Je pense en particulier à l’équipe
de mots-croisés du midi sans qui les pauses déjeuners auraient été bien moins
distrayantes. Je remercie également Dietmar Berwanger pour sa gentillesse et
son attention. I would like to give special thanks to Mahsa for being such an
awesome office mate and for having made me discover Iranian cooking. Merci
également à Sameh pour les discussions enrichissantes que l’on a eues durant
les quelques semaines passées ensemble.

vi

Bien entendu, je remercie très chaleureusement mes grands-parents, mes
parents, mon frère et plus largement toute ma famille pour m’avoir toujours
soutenu dans mes études et dans la vie en général. J’ai une pensée toute parti-
culière pour ceux qui ne sont plus parmi nous.

Je souhaite également remercier tous mes amis, particulièrement Damien,
Jérémy, Nicolas et Matthieu pour les longues soirées jeux-vidéos, les parties de
golf et tous les weekends partagés.

Et enfin, un immense merci à Adeline pour son soutien, son aide et tout
l’amour qu’elle m’a apportés durant ces années de thèse.

Contents

Table of Contents x

List of Algorithms xi

List of Figures xvii

List of Tables xix

General Introduction 3

I Schedulability Analysis Using The Inverse Method 7

1 Introduction 9

2 The Inverse Method for Parametric Timed Automata 13
2.1 Constraints on Clocks and Parameters 14

2.1.1 Clocks . 14
2.1.2 Parameters . 14
2.1.3 Constraints . 14

2.2 Labeled Transition Systems . 17
2.3 Timed Automata . 17

2.3.1 Syntax . 17
2.3.2 Semantics . 19

2.4 Parametric Timed Automata . 23
2.4.1 Syntax . 23
2.4.2 Semantics . 27

2.5 The Inverse Problem . 32
2.5.1 A Motivating Example . 32
2.5.2 The Problem . 35

2.6 The Inverse Method Algorithm . 36
2.6.1 Principle . 36

viii Contents

2.6.2 A Toy Example . 37
2.7 Behavioral Cartography of Timed Automata 38

2.7.1 The Behavioral Cartography Algorithm 38
2.7.2 Finite Cartography . 39
2.7.3 Case Study: Flip-flop . 41

3 State Merging in Parametric Timed Automata 45
3.1 General Results for Parametric Timed Automata 46
3.2 Merging States in Parametric Timed Automata 48

3.2.1 Principle . 48
3.2.2 Merging and Reachability . 49
3.2.3 Characterization of the Merging Reduction 49

3.3 The Inverse Method with Merging 55
3.3.1 Principle . 55
3.3.2 Preservation of Locations . 56
3.3.3 Preserving Actions . 57

3.4 Experimental Validation . 61
3.5 Discussion . 62
3.6 Related Work . 63

4 Application to the Robustness Analysis of Scheduling Problems 65
4.1 Preliminaries . 65

4.1.1 Scheduling Problems . 65
4.1.2 Timed Automata Augmented with Stopwatches 66
4.1.3 System Model . 67

4.2 Scheduling Analysis Using the Inverse Method 71
4.2.1 Modeling Schedulability with Timed Automata 71
4.2.2 Robustness Analysis Using the Inverse Method 72
4.2.3 Schedulability Zone Synthesis 73

4.3 Application to Scheduling Problems 74
4.3.1 Jobs with Deadlines . 74
4.3.2 Schedulability Zone Synthesis 75
4.3.3 Next Generation Spacecraft Flight Control System 75

4.4 A Comparison with Analytic Method 79
4.4.1 Analytic Method . 79
4.4.2 Extensions to the Model . 81
4.4.3 Comparison . 83

4.5 Discussion . 87
4.6 Related Work . 87

5 Conclusion 89

Contents ix

II Controllability of Sampled Switched Systems 91

6 Introduction 93

7 Control Theory: Basic Concepts 97
7.1 Model of Control Systems . 97
7.2 Digital Control Systems . 98

7.2.1 Digitization . 98
7.2.2 Quantization . 101
7.2.3 Switching . 101

7.3 Control of Switched Systems Using Invariant Sets 103
7.3.1 Controlled Invariants . 103
7.3.2 Safety Control Problem . 103
7.3.3 Stability Control Problem . 104
7.3.4 Other Controllers . 105

7.4 Sampled Switched Systems . 105
7.4.1 Model . 105
7.4.2 Illustrative Examples . 109
7.4.3 Zonotopes . 110

7.5 Safety Controllers . 112
7.5.1 Backward Fixed Point Computation (Direct Approach) . . . 113
7.5.2 Approximate Bisimulation (Indirect Approach) 116
7.5.3 Application to a 3-cells Boost DC-DC Converter 120
7.5.4 Model . 120

8 Stability Controllers 127
8.1 Motivation . 128
8.2 Preliminaries . 129
8.3 Decomposition Procedure . 132

8.3.1 Basic procedure . 132
8.3.2 Sufficient Condition of Decomposition 134
8.3.3 Enhancement for Safety . 136
8.3.4 Applications of the Enhanced Decomposition Procedure . 137

8.4 Limit Cycles . 140
8.4.1 Proof of the Convergence towards Limit Cycles 142
8.4.2 Discussing Assumptions (H1) and (H2) 144
8.4.3 Illustrative Examples . 146

8.5 Implementation . 149
8.6 Extensions: Reachability, Sensitivity, Robustness, Nonlinearity . . 150

8.6.1 Reachability Control . 150
8.6.2 Sensitivity . 152

x Contents

8.6.3 Robust Safety Control . 153
8.6.4 Nonlinearity . 156

8.7 Discussion . 159
8.8 Related Work . 159

9 Application to Multilevel Converters 161
9.1 Multilevel Converters . 162
9.2 Application of the Decomposition Procedure 163

9.2.1 5-level Converter . 163
9.2.2 7-level Converter . 166

9.3 Physical Experimentations . 168
9.4 Discussion . 171

10 Conclusion 173

General Conclusion 179

Bibliography 181

List of Algorithms

1 Inverse method algorithm IM(A ,π0) 37
2 Behavioral cartography algorithm BC(A ,V0) 39

3 Merging a set of states . 48
4 Inverse method with merging IMMrg (A ,π) 55
5 Inverse method with merging (variant) IM ′

Mrg (A ,π) 60

6 Synthesis of maximal controlled invariant subset 114

7 Decomposition(W ,R,D ,K) . 133
8 Find_Pattern(W ,R,K) . 134

xii List of Algorithms

List of Figures

2.1 Example of a concrete run for a timed automaton 20
2.2 Example of a trace associated with a concrete run for a timed au-

tomaton . 21
2.3 Example of a trace set of a timed automaton 22
2.4 An example of a parametric timed automaton 24
2.5 Forward reachability for timed automata 29
2.6 Example of a symbolic run for a parametric timed automaton . . 30
2.7 Example of a trace associated with a symbolic run of a parametric

timed automaton . 31
2.8 Example of a trace set of a parametric timed automaton 32
2.9 Flip-flop circuit and its environment 33
2.10 Parametric timed automaton modeling a “NOT” gate 34
2.11 Trace set of the flip-flop circuit under π0 35
2.12 A toy parametric timed automaton 38
2.13 Behavioral cartography of the flip-flop according to δ+3 and δ+4 . . 42
2.14 Trace set of tile 3 for the flip-flop case study 42

3.1 Non-determinism of merging . 48
3.2 Context of Lemma 9 . 52
3.3 Trace sets of A . 56
3.4 Counterexample PTAs showing the non-preservation of actions

by IMMrg . 58

4.1 PSA modelling a pipeline P 1 with two tasks τ1,τ2 69
4.2 PSA modelling a preemptive processor with two tasks τ1,τ4 70
4.3 Application of IM to [AM02] with π0 : {d2 = 2,d ′

2 = 5} 73
4.4 Trace set for the jobshop example 73
4.5 Schedulability zones (in green, the system is schedulable) 74
4.6 Constraints synthesized for the [CPR08b, LPP+10] case study . . . 75
4.7 Schedulability zones (in green the system is schedulable) 76
4.8 Architecture scheme . 76

xiv List of Figures

4.9 Chronogram of a schedule for J . 78
4.10 TC1 – all numbers in “ticks” . 84
4.11 TC1: Schedulability regions produced by RTSCAN (hatched),

MAST (red, below), and IMITATOR (green, above) 84
4.12 Test case 2: periods and deadlines are in milliseconds, computa-

tion times in micro-seconds. 85
4.13 Schedulability regions for test case 2a, produced by RTSCAN

(hatched), MAST (red), and IMITATOR (green) 85
4.14 Schedulability regions for test case 2b, produced by RTSCAN

(grey, below) and MAST (red, above) 86
4.15 Execution times of the tools . 86

7.1 Control/plant model . 98
7.2 Digital control/plant model (from [AK02]) 99
7.3 Staircase command signal u(t) issued by the actuator as it re-

ceives controller symbols ũ[1], ũ[2], . . . at time t1, t2, . . . (from
[AK02]) . 100

7.4 Controller symbols x̃[1], x̃[2], . . . produced by the generator by
sampling of the plant output signal x(t) (time-triggered plant
event model) (from [AK02]) . 100

7.5 Scheme of a switching controller feedback controller 102
7.6 Unstable trajectory of switched system consisting of stable sub-

systems (from [AK02]) . 103
7.7 (a) A segment F = [x1(0), x2(0)] and its exact segment succes-

sor [x1(τ), x2(τ)] at time τ. (b) Approximating the set of contin-
uous trajectories starting from F during τ time by convex hull
(c) Bloating the convex polyhedron to obtain a polyhedral over-
approximation (from [ABD+00]) . 107

7.8 Left: scheme of the boost DC-DC converter; right: cell switching
for pattern (2 ·1 ·1 ·1) . 109

7.9 Example of a zonotope with three generators (taken from [Gir05]) 111
7.10 Maximal controlled invariant subset of S = [3.0,3.4] × [1.5,1.8],

composed of two polyhedra P1 (mode 1) and P2 (mode 2), with
a controlled trajectory starting at x0 = (3.01,1.79) 115

7.11 Discrete-time trajectory starting from point x0 = (3.01,1.79), us-
ing the control found by the direct method. Above: evolution of
vc in time; below: evolution of il . 116

7.12 Abstract transition relation (from [Gir10]) 118
7.13 Graph of an abstract safety controller of the boost DC-DC con-

verter, with η = 1
40 and S = [3,3.4]× [1.5,1.8] obtained by a script

of ours . 120

List of Figures xv

7.14 Trajectory in plane (il , vc) starting at x0 = (3.0,1.79) controlled
by switching rule (1 · 2 · 1 · 2 · 1 · 2 · 1 · 2 · 1 · 2 · 2)∗ found by the in-
direct method (precision ε = 3); the dashed box corresponds to
S = [3,3.4]× [1.5,1.8]. 121

7.15 3-cells converter built by SATIE Electronics Laboratory 121

7.16 Electrical scheme of the DC-DC converter with 3 cells 122

7.17 Switching rule for the 3-cells boost DC-DC converter on one pe-
riod of length 6τ, σ1 = (1 ·05), σ2 = (02 ·1 ·03), σ3 = (04 ·1 ·0), and
the corresponding control pattern is (2 ·1 ·3 ·1 ·5 ·1)) 122

7.18 Discrete-time trajectory of 3-cells converter starting at x0 =
(5,5,5,16) in S = [4,7]× [4,7]× [4,7]× [15,17] using the direct con-
trol method (from top to bottom: x1, x2, x3, x4 in function of time)
. 123

8.1 Decomposition ∆ of R = [1.55,2.15]× [1.0,1.4] for the Boost DC-
DC converter example (left), and visualization of Post∆(Vi) ⊂ R,
i = 1, . . . ,4 (right) . 130

8.2 ∆-unfolding of R = [1.55,2.15]×[1.0,1.4] in the Boost DC-DC con-
verter example where dark gray (resp. light gray) indicates that
mode 1 (resp. 2) applies . 130

8.3 ∆-trajectory for the Boost example (left), and its unfolding (right) 132

8.4 Trajectories C1, and C2 and zone R = [1.7,2]×[1.1,1.2] for the DC-
DC converter example . 135

8.5 Illustration of the proof . 135

8.6 Left: decomposition ∆ for boost converter of R = [1.75,1.95] ×
[1.14,1.26]; right: ∆-unfolding where dark gray (resp. light gray)
indicates mode 1 (resp. 2), with enclosing box S = [1.7,2.0]×[1.1,1.3]137

8.7 Unfolded ∆-trajectory of the boost converter starting at
(1.75,1.26) (inner box R = [1.75,1.95] × [1.14,1.26], outer box
S = [1.7,2.0]× [1.1,1.3]) . 138

8.8 k-invariant decomposition for helicopter motion 139

8.9 ∆-unfolding for helicopter motion where dark gray (resp.
medium gray, light gray) indicates mode 10 (resp. −10, 0). (The
enclosing box is S) . 139

8.10 Unfolded∆-trajectory of helicopter motion in plane (x, ẋ) starting
at (−0.3,0.5) (inner box: R, outer box: S) 139

8.11 k-invariant decomposition for heating system 140

8.12 ∆-unfolding for heating system where dark gray (resp. light gray)
indicates mode 0 (resp. 1). (outer box: S = [20,22]× [20,22]) 140

xvi List of Figures

8.13 Unfolded∆-trajectory of heating system in plane (T1,T2), starting
at (20.25,21.75) (inner box R = [20.25,21.75]× [20.25,21.75], outer
box S = [20,22]× [20,22]]) . 140

8.14 Illustration of the graph of W j s with J = {1,2,3,4,5,6} and J ′ =
{1,2,4,5} . 143

8.15 Decomposition ∆ of R for the non contractive example 145
8.16 ∆-trajectory for the non contractive example 146
8.17 Visualization of Post k

∆ for k = 0,20,40,60,80,100 146
8.18 ∆-unfolding of the limit cycle {y0} for the Boost example 147
8.19 Decomposition for the two-tank problem 148
8.20 ∆-trajectory starting from the bottom left corner of R (left), and

its ∆-unfolding (right) . 148
8.21 Visualization of Post k

∆ for k = 0,5,10,15,20,25 148
8.22 Limit cycle for the two-tank example (left), and its ∆-unfolding

(right) . 149
8.23 Nested decompositions for boost DC-DC converter found by

starting from R = [0,10]× [0,4] . 151
8.24 Nested decompositions for helicopter motion found by starting

from R = [−10,10]× [−10,10] . 151
8.25 Controlled trajectory of boost DC-DC converter starting from

(0,0.01) . 152
8.26 Controlled trajectory of helicopter starting from (−10,0) 152
8.27 Runs starting from the four corners of R, following the control

strategy induced by the decomposition, and converging to the
same limit cycle . 153

8.28 Limit cycles for r0 = 0.965 (pattern (π3π
3
1π3π

2
1π3π

3
1π3π

3
1π3π

3
1)) on

the upper left, for r0 = 0.975 (pattern (π3π
5
1)) on the upper right,

for r0 = 1 (pattern π1) on the lower left, and for r0 = 1.005 (pattern
π1) on the lower right . 154

8.29 k-invariant decomposition for boost converter with disturbances 155
8.30 Unfolded∆-trajectory of the boost converter with disturbances in

plane (il , vc), starting at (1.75,1.26) (inner box: R = [1.75,1.95]×
[1.14,1.26], outer box: S′ = [1.65,2.05]× [1.1,1.3]) 155

8.31 k-invariant decomposition for helicopter motion with disturbance 155
8.32 Unfolded ∆-trajectory of helicopter motion with disturbance in

plane (x, ẋ), starting at (−0.3,0.5) (inner box: R, outer box: S) . . . 155

8.33 Decomposition for the Van der Pol oscillator (left) ; R j
∆ for j = 30

(right) . 157

8.34 Decomposition for the FitzHugh-Nagumo Neuron (left) ; R j
∆ for

j = 30 (right) . 158

List of Figures xvii

9.1 Staircase output voltage waveform for a 5-level converter 162
9.2 Electrical scheme of a 5-level converter 163
9.3 Transition graph corresponding to a cycle of 5-level staircase signal164
9.4 Capacitor voltages . 166
9.5 Current and output voltage . 167
9.6 Capacitor voltages . 168
9.7 Current and output voltage . 168
9.8 Prototype built by SATIE . 169
9.9 Output voltage and capacitor voltages 169
9.10 Zoom of output voltage (above) and capacitors voltages (below) . 170
9.11 Output voltage and current (after appropriate resizing) in the circuit170
9.12 Output voltage (above) and capacitor voltages (below) in pres-

ence of time-varying period T . 171

xviii List of Figures

List of Tables

3.1 Comparison between IM and IM ′
Mrg 62

4.1 Classical valuation of the parameters 77

8.1 Case studies run on MINIMATOR 150

General Introduction

General Introduction

Nowadays, computer systems are used everywhere and are growing more and
more complex. Supervision of such systems needs to be done automatically
and in a sound manner. However, the complexity of these systems is making it
hard to both compute a supervisor and to prove its correctness.

One example of those systems are the multiprocessor architectures that are
embedded in more and more devices. Such systems can be extremely efficient
if the pieces of software running on them are scheduled properly to avoid wait-
ing time and overall delays in the computation. Designing a scheduler for such
systems can be hard and proving robustness to minor changes in some tim-
ing constants is sought after. Indeed, critical systems such as avionics are not
allowed to use such architecture as certifying them cannot be done in an au-
tomated manner. In this thesis, we will consider Parametric Timed Automata
(PTA) to model those systems and we will show that the Inverse Method can be
used to prove the schedulability, exhibit schedulers and give a robustness crite-
ria on the scheduler. We will prove the interest of our approach on several case
studies, including one industrial case study provided by Astrium Space Trans-
portation.

Another example is the rise of complexity in power electronics and the need
to design schedulers to supervise such systems. In those systems, choices have
to be made on the position of switches in order to fulfill some objectives. In
general these objectives are to have the system working properly while main-
taining some internal values (such as voltage and currents) to parameter val-
uations where the system cannot be damaged. The high number of possible
choice for the switches positions forces to automatically design schedulers for
the switches positions. Such power electronic systems can be highly critical.
One example of the use of one of those is the voltage converter that allows elec-
tricity to go trough the Pyrenees mountains between France and Spain. In this
thesis, we will introduce a method to design such schedulers (called controllers
in this framework). We will illustrate the interest of our approach on several
case studies from the literature and on one real-life prototype of a power elec-
tronic devices.

4 General Introduction

Outline of the Thesis In Part I, we will study the scheduling problem on mul-
tiprocessor architectures. Chapter 1 will give an introduction of the problem
studied in this part of the thesis. Chapter 2 will be used to recall notions on the
Inverse Method and its extension that will be used in this part of the thesis. In
Chapter 3, we will introduce a state space reduction technique that is needed
to be able to scale up our analysis to be able to treat such problems. In Chap-
ter 4, we will present how we model such problems with PTA and the results
of our approach on case studies from the literature and from Astrium Space
Transportation. We will conclude this part in Chapter 5

In Part II, we will study control synthesis. Chapter 6 will give an introduc-
tion the problem studied in this part of the thesis. Chapter 7 will recall useful
concepts of control theory that will be needed for the rest of this part. Chap-
ter 8 will present our approach for the control synthesis and give theoretical re-
sults on the correctness of our method, the convergence of the system towards
cyclic behavior. We will also present extensions of our method to reachability
control, sensitivity and robustness analysis and nonlinear systems. Chapter 9
will present the results of our approach on a real-life prototype of a multi-level
converter. We will conclude this part in Chapter 10.

We will give an overall conclusion and future research points in the end.

Contributions In this thesis our contributions are: the proof of the finite-
ness of the number of tiles in the behavioral cartography of Chapter 2 [Sou10];
the definition of a novel and efficient state merging technique, the correctness
theorems and the experiments of the state merging technique of Chapter 3
[AFKS12, AFS13]; the application of the Inverse Method to scheduling prob-
lems modeled by stopwatch automata, the full analysis and modeling of the
Astrium case study [FLMS12] and the comparison between our approach and
analytic method [SSL+13a] of Chapter 4; the decomposition procedure, the the-
oretical results on the decomposition procedure, the case studies using the de-
composition procedure [FS13c] and its extension to other classes of problems
[FKS13, FS13b] of Chapter 8 [FS13a]; the modeling of a real-life prototype of
multilevel converter and the computation of a controller using the decomposi-
tion procedure [SHL+13] in Chapter 9.

Joint work All of this work is a collaboration with Laurent Fribourg (LSV, École
Normale Supérieure de Cachan). Étienne André (LIPN, Université Paris 13)
collaborated in the work of Part I. Giuseppe Lipari and Youcheng Sun (RETIS
lab, Scuola Superiore Sant’Anna) collaborated in the work of Chapter 4, David
Lesens and Pierre Moro (Data Management & Software, Astrium Space Trans-
portation) collaborated in the modeling of the Astrium case study of this chap-

General Introduction 5

ter. Ulrich Kühne (Department of Computer Sciences, University of Bremen)
collaborated in the implementation of our tool Minimator and more precisely
in the finding of limit cycles of Chapter 8. Work of Chapter 9 has been done
in collaboration with Gilles Feld (Département Électronique, Électrotechnique,
Automatique), Denis Labrousse, Stéphane Lefebvre and Bertrand Revol (Labo-
ratoire des Systèmes et Applications des Technologies de l’Information et de
l’Énergie, ENS Cachan).

6 General Introduction

Part I

Schedulability Analysis Using The
Inverse Method

Chapter 1

Introduction

Schedulability for Central Processing Units (CPUs) deals with assigning re-
sources to tasks (piece of software) so that computing can be done before a
given deadline. Relations exist between all the different pieces of software that
need to run and usually only one task can be assigned to a given resource at a
given time. A system is said to be schedulable if there exists a way to make all
the computations before a given deadline.

In this regard, many theoretical results exist for single processor architec-
ture. Unfortunately, they do not extend to multicore, multi processors (MCMP).
Worst-case-scenario analysis does not work as well due to the difficulty to ex-
hibit the real worst case scenario for such an architecture. In the industry,
schedulers for MCMP architecture are mostly done by hand and then tested.
As proposed in [AAM06], one possible solution to automatize this process is
to model-check CPU architecture using Timed Automata (TA). This exhaustive
analysis ensures that all the cases are checked and properties such as schedu-
lability or mutual exclusion, can be verified using model-checkers. Our main
objective in this first part of this thesis is to study MCMP architectures provided
by Astrium EADS.

When designing the system, it often happens that constants, such as Worst
Case Execution Times (WCETs) are later on modified. Consequently, earlier
designed schedulers have to be modified and then retested. An interesting ap-
proach would be to provide the scheduler with a zone of validity stating that
in this zone, there is no need to retest as the scheduler is still valid and all the
properties are still verified.

We will show that this problem can be solved by using the Inverse Method
[ACEF09, AS13]. This inverse method supposes that we are given a parametric
timed automaton A and a reference valuation π0 of the parameters that one
wants to generalize. It synthesizes a constraint K0 on the parameters that cor-
responds to a set such that, for all valuations π of parameters in this set, the

10 Chapter 1. Introduction

trace sets of A [π0] and A [π] are equal, i.e., the behavior of the timed automa-
ton A [π] is (time-abstract) equivalent to the behavior of A [π0]. This method
has two main advantages. First, it gives a criterion of robustness by ensuring
the correctness of the system for other values for the parameters around the
reference valuation. This is of interest when implementing a system: indeed,
the exact model with (for example) integer values for timing delays that has
been formally verified will necessarily be implemented using values which will
not be exactly the ones that have been verified. Second, it allows the system
designer to optimize some parameters without changing the overall functional
behavior of the system, such as schedulability. However, the inverse method
suffers from two limitations. First, the constraint synthesized by the method is
not necessarily maximal, i.e., there may exist parameter valuations outside the
constraint such that the behavior is the same as under the reference valuation.
Second, the method focuses on the equality of trace sets, which can be seen as a
rather strong property, because the good behavior of a timed system can corre-
spond to different trace sets. We present an approach for solving this problem,
based on the inverse method.

A good behavior for systems that we are interested in is schedulability.
Given one or more parameters, schedulability consists in finding in which re-
gion of the parameter space, the system is schedulable. This can be done using
the Behavioral Cartography (BC) [AF10, AS13].

By iterating the inverse method on the integer points of a rectangular para-
metric domain V0, we are able to decompose the parametric space into behav-
ioral tiles, i.e., parameter zones with a uniform time-abstract behavior. Then,
according to a property on traces that one wants to check, it is easy to partition
the parametric space into a subset of “good” tiles (which correspond to “good
behaviors”) and a subset of “bad” ones. This gives a behavioral cartography of
the system.

Often in practice, what is covered by the behavioral cartography algorithm
is not the bounded and integer subspace of the parameter rectangle V0, but two
major extensions: first, not only the integer points but all the real-valued points
of the rectangle are covered by the tiles; second, the tiles are often unbounded
and cover most of the parametric space beyond V0. Although the cartography
may contain holes, i.e., zones not covered by the algorithm, we give sufficient
condition for the full coverage of the real-valued bounded parameter domain.

A major interest is that this behavioral cartography does not depend on the
property one wants to verify: only the partition into good and bad tiles does.
As a consequence, when verifying other properties, it is sufficient to check the
property for only one point in each tile in order to get the new partition.

However, the Inverse Method and hence, the Behavioral Cartography, suf-
fers from the state space-explosion when trying to solve those problems. Tech-

11

niques exist for merging states when the no parameters are used in the model.
In this thesis, we propose a technique for merging in the parametric case.

Outline of this part. In Chapter 2, we recall all the definitions and algorithms
of the Inverse Method and the Behavioral Cartography. In Chapter 3, we present
our state reduction technique for PTAs. In Chapter 4, we present our results on
scheduling case study including one proposed by Astrium EADS.

12 Chapter 1. Introduction

Chapter 2

The Inverse Method for Parametric
Timed Automata

In this chapter, we present the formalisms used throughout this part of the the-
sis.

In particular, we present timed automata [AD94], a powerful modeling
formalism for real-time systems. Since we focus on synthesizing values for
timing parameters of a system guaranteeing a good behavior, we will also
use a parametric extension of timed automata, namely parametric timed au-
tomata [AHV93]. This chapter presents their syntax and semantics, and more
generally all the necessary formalisms to understand the rest of this thesis.

In this chapter, we consider the following inverse problem:

“Given a reference parameter valuation, synthesize a constraint on the
parameters such that, for any valuation satisfying this constraint, the
trace set of the system is the same as under the reference valuation”.

This notion of equality of trace sets gives a guarantee of time-abstract equiv-
alence of the behavior of the system. We recall a method solving the inverse
problem, the Inverse Method.

The material of this chapter is mostly borrowed from [AS13].

Outline of the Chapter

We describe clocks, parameters, and constraints on the clocks and parameters
in Section 2.1 and labeled transition systems in Section 2.2. We then introduce
the syntax and semantics of timed automata in Section 2.3, and parametric
timed automata in Section 2.4. We recall the formal definition of the inverse
problem in Section 2.5 by using the example of “flip-flop” asynchronous cir-

14 Chapter 2. The Inverse Method for Parametric Timed Automata

cuit.. We then introduce the inverse method in Section 2.6, give results of cor-
rectness and termination, and state properties of the method.

2.1 Constraints on Clocks and Parameters

2.1.1 Clocks

Throughout the first part of this thesis, we assume a fixed set X = {x1, . . . , xH }
of clocks. A clock is a variable xi with value in R+, which denotes the set of
non-negative real numbers. All clocks evolve linearly at the same rate. We de-
fine a clock valuation as a function w : X → R+ assigning a non-negative real
value to each clock variable. We will often identify a valuation w with the point
(w(x1), . . . , w(xH)). Given a constant d ∈ R+, we use X + d to denote the set
{x1 +d , . . . , xH +d}. Similarly, we write w +d to denote the valuation such that
(w +d)(x) = w(x)+d for all x ∈ X .

2.1.2 Parameters

We assume a fixed set P = {p1, . . . , pM } of parameters, i.e., unknown constants.
A parameter valuation π is a function π : P → R+ assigning a nonnegative real
value to each parameter. There is a one-to-one correspondence between valu-
ations and points in (R+)M . We will often identify a valuation π with the point
(π(p1), . . . ,π(pM)).

2.1.3 Constraints

We define here constraints as a set of linear inequalities.

Syntax of Constraints

Definition 1. Let V be a set of variables of the form V = {v1, . . . , vN }. A linear
inequality on the variables of V is an inequality e ≺ e ′, where ≺∈ {<,≤}, and e,e ′

are two linear terms of the form ∑
1≤i≤N

αi vi +d

where vi ∈V , αi ∈R+, for 1 ≤ i ≤ N , and d ∈R+.

Note that we define the coefficients of the linear inequalities as positive re-
als. It would be equivalent to define them as positive rationals, since we con-
sider only linear inequalities. Both definitions are found in the literature; we

2.1. Constraints on Clocks and Parameters 15

suppose here that, since we are addressing the problem of the verification of
real-time systems, we consider real valued constants.

We assume in the following that all inequalities are linear, and we will sim-
ply refer to linear inequalities as inequalities.

Definition 2. Let V be a set of variables of the form V = {v1, . . . , vN }. Given an
inequality J on the variables of V of the form e < e ′ (respectively e ≤ e ′), the nega-
tion of J , denoted by ¬J , is the linear inequality e ′ ≤ e (respectively e ′ < e).

Definition 3. Let V be a set of variables of the form V = {v1, . . . , vN }. A convex
linear constraint on the variables of V is a conjunction of inequalities on the
variables of V .

We assume in the following that all constraints are both convex and linear,
and we will simply refer to convex linear constraints as constraints.

Definition 4. An inequality on the clocks is an inequality on the set of clocks X .
A constraint on the clocks is a constraint on the set of clocks X .

Definition 5. An inequality on the parameters is an inequality on the set of pa-
rameters P. A constraint on the parameters is a constraint on the set of parame-
ters P.

Definition 6. An inequality on the clocks and the parameters is an inequality
on X ∪P. A constraint on the clocks and the parameters is a constraint on X ∪P.

We denote by L (X) the set of all constraints on the clocks, by L (P) the set
of all constraints on the parameters, and by L (X ∪P) the set of all constraints
on the clocks and the parameters.

In the sequel, the letter J will denote an inequality on the parameters, the
letter D will denote a constraint on the clocks, the letter K will denote a con-
straint on the parameters, and the letter C will denote a constraint on the clocks
and the parameters.

Semantics of Constraints

Given a constraint D on the clocks and a clock valuation w , D[w] denotes the
expression obtained by replacing each clock x in D with w(x). A clock valua-
tion w satisfies constraint D (denoted by w |= D) if D[w] evaluates to true.

Given a parameter valuation π and a constraint C on the clocks and the
parameters, C [π] denotes the constraint on the clocks obtained by replacing
each parameter p in C with π(p). Likewise, given a clock valuation w , C [π][w]
denotes the expression obtained by replacing each clock x in C [π] with w(x).

16 Chapter 2. The Inverse Method for Parametric Timed Automata

We say that a parameter valuation π satisfies a constraint C , denoted by π |=C ,
if the set of clock valuations that satisfy C [π] is nonempty. We use the notation
<w,π> |=C to indicate that C [π][w] evaluates to true.

A convex linear constraint on the clocks and the parameters can also be
interpreted as a set of points in the space RM+H , more precisely as a convex
polyhedron. We will use these notions synonymously. In this geometric con-
text, a valuation w satisfying a constraint C is equivalent to the polyhedron C
containing the corresponding point w , written as w ∈C . For a partial valuation
w (i.e., a point of a subspace of C), we write w ∈C if and only if w is contained
in the projection of C on the variables of w .

Given two constraints C1 and C2 on the clocks and the parameters, we say
that C1 is included in C2, denoted by C1 ⊆C2, if∀w,π : <w,π> |=C1 ⇒<w,π> |=
C2. We have that C1 =C2 if and only if C1 ⊆C2 and C2 ⊆C1.

Similarly to the semantics of constraints on the clocks and the parame-
ters, we say that a parameter valuation π satisfies a constraint K on the pa-
rameters, denoted by π |= K , if the expression obtained by replacing each pa-
rameter p in K with π(p) evaluates to true. Given two constraints K1 and K2

on the parameters, we say that K1 is included in K2, denoted by K1 ⊆ K2, if
∀π : π |= K1 ⇒ π |= K2. We have that K1 = K2 if and only if K1 ⊆ K2 and K2 ⊆ K1.
We will consider true as a constraint on the parameters, corresponding to the
set of all possible values for P .

Given a constraint C on the clocks and the parameters, we denote by C↓P

the constraint on the parameters obtained by projecting C onto the set of pa-
rameters, that is after elimination of the clock variables. Formally, C↓P = {π |
∃w : <w,π> |=C }.

Sometimes we will refer to a variable domain X ′, which is obtained by re-
naming the variables in X . Explicit renaming of variables is denoted by the
substitution operation. Given a constraint C on the clocks and the parameters,
we denote by C[X←X ′] the constraint obtained by replacing in C the variables
of X by the variables of X ′.

We define the time elapsing of C , denoted by C↑, as the constraint over X
and P obtained from C by delaying an arbitrary amount of time. Note that, of
course, only clocks can evolve; parameters are unknown constants and there-
fore remain constant. Formally:

C↑ =
(
(C ∧X ′ = X +d)↓X ′∪P

)
[X ′←X]

where d is a new parameter with values inR+, and X ′ is a renamed set of clocks.
The inner part of the expression adds the same delay d to all clocks; the projec-
tion onto X ′∪P eliminates the original set of clocks X , as well as the variable d ;
the outer part of the expression renames clocks X ′ with X .

2.2. Labeled Transition Systems 17

2.2 Labeled Transition Systems

We introduce below labeled transition systems, which will be used later in this
section to represent the semantics of timed automata.

Definition 7. A labeled transition system over a set of symbols Σ is a triple L =
(S,S0,⇒), with S a set of states, S0 ⊂ S a set of initial states, and ⇒∈ S ×Σ×S

a transition relation. We write s
a⇒ s′ for (s, a, s′) ∈ ⇒. A run (of length m) of L

is a finite alternating sequence of states si ∈ S and symbols ai ∈ Σ of the form

s0
a0⇒ s1

a1⇒ ··· am−1⇒ sm , where s0 ∈ S0. A state si is reachable if it belongs to some
run r .

2.3 Timed Automata

Timed automata are an extension of standard finite-state automata allowing
the use of clocks, that is real-valued variables increasing linearly at the same
rate. Such clocks can be compared with constants in constraints that allow (or
not) to stay in a location (“invariants”) or to take a transition (“guards”). At
each transition, it is possible to reset some of the clocks of the system. This
formalism allows the parallel composition of several timed automata, which
behave like a single one, and thus provides the designer with a powerful and in-
tuitive way to represent timed systems. It is important to note that the model of
timed automata is very sensitive to the size of the automata and the number of
automata in parallel, thus often leading to the state-space explosion problem.
However, powerful tools, such as UPPAAL [LPY97], or Kronos [Yov97], have been
implemented, allowing designers to model and verify efficiently timed systems
modeled by timed automata.

2.3.1 Syntax

Definition 8. A timed automaton A is a 6-tuple of the form
A = (Σ,Q, q0, X , I ,→), where

• Σ is a finite set of actions,

• Q is a finite set of locations,

• q0 ∈Q is the initial location,

• X is a set of clocks,

18 Chapter 2. The Inverse Method for Parametric Timed Automata

• I : Q →L (X) is the invariant, assigning to every q ∈Q a constraint I (q) on
the clocks, and

• → is a transition relation consisting of elements of the form (q, g , a,ρ, q ′),

also denoted by q
g ,a,ρ→ q ′, where q, q ′ ∈ Q, a ∈ Σ, ρ ⊆ X is a set of clock

variables to be reset by the transition, and g ∈ L (X) is the guard of the
transition.

Note that we use a more permissive definition of the constraints used
in guards and invariants than in the original definition of timed automata
(see [AD94]). Indeed, we allow the use of conjunctions of any linear inequalities
on the clocks, whereas the original definition usually considers conjunctions of
comparisons of a single clock with a constant. This more permissive definition
has usually an impact on the decidability (the addition of clock values within a
constraint leads to undecidability [AD94]), but this has no impact in this work,
mainly because of the use of parametric timed automata, where the parame-
ters bring themselves undecidability in the general case. Furthermore, many
tools for (parametric) timed automata allow more permissive definitions than
the original one.

Timed automata are often extended in practice with discrete variables,
which can be used in guards and transitions, updated within the transitions,
and sometimes even used as a factor for clocks. However, in most cases, they
represent only syntactic sugar for the discrete space (i.e., locations). As a conse-
quence, we will not use them in any theoretical part of this thesis. Note never-
theless that many tools for (parametric) timed automata allow the use of such
discrete variables. Some of the case studies contained hereafter also use them.

The graphical representation of a timed automaton A is an oriented graph
where vertices correspond to locations, and edges correspond to actions of A .
We follow the following conventions for the graphical representation of timed
automata: locations are represented by nodes, above of which the invariant of
the location is written; transitions are represented by arcs from one location
to another location, labeled by the associated guard, the action name and the
set of clocks to be reset (guards and invariants equal to true are omitted). The
initial location is here represented using a double circle.

Example 1. We give in Figure 1 an example of a timed automaton containing
4 locations (q0, q1, q2 and q3), 3 actions (a, b and c) and 2 clocks (x1 and x2).
The initial location is q0.

In this timed automaton, q0 has invariant x1 ≤ 5, q1 has invariant true, and
both q2 and q3 have invariant x2 ≤ 5. The transition from q0 to q1 has guard
x1 ≥ 4 through action a; no clock is reset. The transition from q0 to q2 has guard

2.3. Timed Automata 19

An example of a timed automaton

q0

q1

q2 q3

x1 ≤ 5

x2 ≤ 5 x2 ≤ 5

x1 ≥ 4
a

x1 ≥ 2∧x2 ≥ 3
b

x2 := 0

x2 ≥ 4
c

b
x1 := 0
x2 := 0

x1 ≥ 2∧ x2 ≥ 3 through action b, and resets clock x2. The transitions between q2

and q3 can be explained similarly.

2.3.2 Semantics

The semantics of timed automata is given under the form of a labeled transition
system, where states are pairs made by a location and a valuation for each clock.

Definition 9. Let A = (Σ,Q, q0, X , I ,→) be a timed automaton. The concrete
semantics of A is the labeled transition system (S,S0,⇒) over Σwhere

S = {(q, w) ∈Q × (X →R+) | w |= I (q)},
S0 = {(q0, w) | w |= I (q0)∧w = (w0, . . . , w0) for some w0 ∈R+}

and the transition predicate ⇒ is specified by the following three rules. For all
(q, w), (q ′, w ′) ∈ S,d ≥ 0 and a ∈Σ,

• (q, w)
a→ (q ′, w ′) if ∃g ,ρ : q

g ,a,ρ→ q ′ and w |= g and w ′ = ρ(w);

• (q, w)
d→ (q ′, w ′) if q ′ = q and w ′ = w +d;

• (q, w)
a⇒ (q ′, w ′) if ∃d , w ′′ : (q, w)

a→ (q ′, w ′′) d→ (q ′, w ′).

We consider with the definition of S0 that all clocks are initially set to 0, or
have evolved linearly in the bounds given by I (q0). A state (respectively run)
in the concrete semantics is a state (respectively run) of the corresponding la-
beled transition system, and will be referred to as a concrete state (respectively
concrete run).

20 Chapter 2. The Inverse Method for Parametric Timed Automata

A concrete run is represented under the form of a branch where states are
depicted within nodes containing the name of the location and the value of
each of the clocks, and transitions are depicted using edges labeled with the
name of the action.

Example 2. Consider again the timed automaton A of Example 1. Then Fig-
ure 2.1 depicts an example of a concrete run for A .

q0
x1 = 3
x2 = 3

q2
x1 = 7
x2 = 4

q3
x1 = 7.5
x2 = 4.5

q2
x1 = 4.2
x2 = 4.2

q3
x1 = 5
x2 = 5

. . .b c b c b

Figure 2.1: Example of a concrete run for a timed automaton

This run is obtained as follows: one starts from the initial location q0 where
both clocks have evolved during 3 time units. Then, we take action b, reset x2

and spend 4 time units in q2. Then, we take action c, and spend 0.5 time unit
in q3. Then, we take action b, reset both clocks and spend 4.2 time units in q2.
Then, we take action c, and spend 0.8 time units in q3, and so on.

The power of timed automata relies in the fact that one can construct a finite
partition of the infinite space of clock valuations. In particular, this construc-
tion is suitable to perform reachability analysis. The main theoretical advan-
tage of timed automata relies in its decidability results. In particular, it has been
shown that the reachability of a state is decidable. Moreover, various timed
temporal logics (e.g., [ACD93]) have been designed, and various decidability
results have been shown (e.g., [ACD93, HRSV02, WY03, Fin06, BBBB09]).

Traces

We now introduce the notion of trace, that abstracts part of a system’s behav-
ior. In the literature, one usually considers either a state-based approach or an
action-based approach (see, e.g., [BK08]). We consider here a combined state-
and action-based approach: a trace is an alternating sequence of locations and
actions. Note that, for a deterministic timed automaton, that is a timed au-
tomaton such that there is at most one transition leaving a given location with a
given action, there is an equivalence between the state-based, the action-based
and the combined approaches (because of the unicity of the initial location).
This can be the case for hardware verification when one models circuits at the
gate level. Indeed, when one models each gate of the circuit with a different
timed automaton, where each location corresponds to a different value of the
input and output signals of the gate, and each transition corresponds to a rise

2.3. Timed Automata 21

or a fall of a signal of the global system, then the composition of the timed au-
tomata modeling each gate is deterministic. In that case, if one considers a
sequence of locations, it is possible to retrieve the corresponding sequence of
actions (from a given initial location), and conversely.

We define more formally the notion of trace in the following definition.

Definition 10. Given a timed automaton A and a concrete run r of A of the

form (q0, w0)
a0⇒ ··· am−1⇒ (qm , wm), the trace associated with r is the alternating

sequence of locations and actions q0
a0⇒ ··· am−1⇒ qm . We say that location qi , for

1 ≤ i ≤ m, belongs to the trace.

A trace is built from a run by removing the valuation of the clocks, and there-
fore can be seen as a time-abstract run. We depict traces under a graphical form
using boxed nodes labeled with locations and double arrows labeled with ac-
tions.

Example 3. The trace associated with the concrete run of Example 2 is depicted
in Figure 2.2.

q0 q2 q3 q2 q3 . . .b c b c b

Figure 2.2: Example of a trace associated with a concrete run for a timed au-
tomaton

We define below the notion of acyclic trace as a trace which never passes
twice by the same location, that is a trace whose locations are all different.

Definition 11. Given a trace T = q0
a0⇒ ··· am−1⇒ qm , T is said to be an acylic trace

if:
∀qi , q j , i < j < m, qi 6= q j

Given two traces, we define the following notion of prefix of a trace.

Definition 12. Given a trace T = q0
a0⇒ ··· am−1⇒ qm , the prefix of length n of T is

the trace denoted by |T |n and defined as follows:

|T |n =
{

q0
a0⇒··· an−1⇒ qn if n < m

q0
a0⇒··· am−1⇒ qm otherwise

Similarly, we say that a trace T1 is a prefix of a trace T2 if there exists n ≥ 0 such
that |T2|n = T1.

22 Chapter 2. The Inverse Method for Parametric Timed Automata

We now define the following notion of trace set.

Definition 13. Given a timed automaton A , the trace set of A refers to the set
of traces associated with the runs of A .

Often, when depicting trace sets, we will not depict each trace separately,
but depict the trace set under the form of a tree or a graph. Note, however,
that this graph structure is only used for the sake of simplicity of representation
of the possible traces, and does not contain any information on the possible
branching behavior of the system.

Example 4. The trace set associated with the timed automaton of Example 1 is
depicted in Figure 2.3.

q0

q2 q3 q2 q3

q1

b

a

c b
c

b

Figure 2.3: Example of a trace set of a timed automaton

This trace set contains an infinite number of finite traces. Note also that it is
obviously not acyclic, because there are (actually infinitely many) traces passing
several times by locations q2 and q3.

We extend the notion of acyclicity of a trace to trace sets, and say that a trace
set is acyclic if all its traces are acyclic. We also say that a location q belongs to
the trace set of A if it belongs to a trace of the trace set of A .

In the following, we are interested in verifying properties on the trace set
of A . For example, given a predefined set of “bad locations”, a reachability
property is satisfied by a trace if this trace never contains a bad location; such
a trace is “good” with respect to this reachability property. A trace can also be
said to be “good” if a given action always occurs before another one within the
trace (see example in Section 2.5.1). Actually, the good behaviors that can be
captured with trace sets are relevant to linear-time properties [BK08], which can
express properties more general than reachability properties.

Definition 14. Given a timed automaton A , and a property on traces, we say
that a trace of A is good if it satisfies the property, and bad otherwise. Likewise,
we say that the trace set of A is good if all its traces are good, and bad otherwise.

2.4. Parametric Timed Automata 23

2.4 Parametric Timed Automata

Parametric timed automata are an extension of the class of timed automata
to the parametric case. Parametric timed automata allow within guards and
invariants the use of parameters in place of constants [AHV93]. This model
is interesting when one does not only want to check that a system is correct
for one value of the constants, but for a whole dense set of values. The model
of parametric timed automata is also interesting to synthesize parameters for
which a given property is satisfied.

Unfortunately, for most interesting problems, parametric timed automata
lose the decidability results proved for timed automata. In particular, the reach-
ability of a state is not decidable (although semi-algorithms do exist, i.e., if the
algorithm terminates, then the result is correct). Moreover, parametric timed
automata are even more sensitive to the state space explosion problem, be-
cause of the addition of the parameters. In practice, this comes also from the
fact that the data structures used to represent parametric timed automata are
far less efficient than the ones used for timed automata (typically Difference
Bound Matrices, proposed in [BM83] for the analysis of time Petri nets, and
introduced in [Dil89] for timed automata). Structures allowing to handle para-
metric timed models include Parametric Difference Bound Matrices (an exten-
sion of Difference Bound Matrices, proposed in [HRSV02]), SAT-solvers, SMT-
solvers and polyhedra. Avoiding the explosion of the state space, and finding
cases for which analyses are decidable for parametric timed automata, are ac-
tually some of the motivations for the techniques described in this thesis.

2.4.1 Syntax

Definition 15. A parametric timed automaton A is a 8-tuple of the form
A = (Σ,Q, q0, X ,P,K , I ,→), where

• Σ is a finite set of actions,

• Q is a finite set of locations,

• q0 ∈Q is the initial location,

• X is a set of clocks,

• P is a set of parameters,

• K is an initial constraint on the parameters of P,

• I : Q →L (X ∪P) is the invariant, assigning to every q ∈Q a constraint I (q)
on the clocks and the parameters, and

24 Chapter 2. The Inverse Method for Parametric Timed Automata

• → is a transition relation consisting of elements of the form (q, g , a,ρ, q ′),

also denoted by q
g ,a,ρ→ q ′, where q, q ′ ∈ Q, a ∈ Σ, ρ ⊆ X is a set of clock

variables to be reset by the transition, and g ∈ L (X ∪P) is the transition
guard.

The initial constraint K is useful to define constrained models, where some
parameters are already related. For example, in a timed model with two pa-
rameters min and max, one may want to constrain min to be always smaller
or equal to max, that is K = {min ≤ max}. Although it does not add expressive
power (this constraint could be “simulated” by simply adding it to the invariant
of the initial location), it is largely used in practice. All case studies considered
here make use of this initial constraint. Furthermore, this constraint K can be
refined in order to constrain the model further. In the following, given a para-
metric timed automaton A = (Σ,Q, q0, X ,P,K , I ,→), we will often denote this
parametric timed automaton by A (K) when clear from the context, in order
to emphasize that only K will change when performing repeated analysis on
refined models of A .

We make use for parametric timed automata of the same graphical repre-
sentation as for timed automata, that is an oriented graph where vertices cor-
respond to the locations, and edges correspond to the actions. The graphical
representation of a parametric timed automaton will be referred to as its asso-
ciated graph.

Example 5. We give in Figure 2.4 an example of a parametric timed automaton
containing 4 locations (q0, q1, q2 and q3), 3 actions (a, b and c), 2 clocks (x1

and x2) and 2 parameters (p1 and p2). The initial location is q0.

q0

q1

q2 q3

x1 ≤ 5p1

x2 ≤ 5p2 x2 ≤ 5p2

x1 ≥ 4p1

a

x1 ≥ 2p1 ∧x2 ≥ 3p2

b
x2 := 0

x2 ≥ 4p2

c

b
x1 := 0
x2 := 0

Figure 2.4: An example of a parametric timed automaton

2.4. Parametric Timed Automata 25

In this parametric timed automaton, q0 has invariant x1 ≤ 5p1, q1 has in-
variant true, and both q2 and q3 have invariant x2 ≤ 5p2. The transition
from q0 to q1 has guard x1 ≥ 4p1 through action a; no clock is reset. The tran-
sition from q0 to q2 has guard x1 ≥ 2p1 ∧ x2 ≥ 3p2 through action b, and resets
clock x2. The transitions between q2 and q3 can be explained similarly.

Instantiation of a Parametric Timed Automaton

Given a parametric timed automaton A = (Σ,Q, q0, X ,P,K , I ,→) and a param-
eter valuation π = (π(p1), . . . ,π(pM)), A [π] denotes the parametric timed au-
tomaton A (K π), where K π is K ∧∧M

i=1 pi =π(pi). This corresponds to the para-
metric timed automaton obtained from A by substituting every occurrence of
a parameter pi by constant π(pi) in the guards and invariants. We say that pi is
instantiated with π(pi). Note that, as all parameters are instantiated, A [π] is a
standard timed automaton.

Example 6. Consider again the parametric timed automaton A described in
Example 5. Also consider the following reference valuation π of the parameters:
π : {p1 = 1, p2 = 1}. Then, the (non-parametric) timed automaton A [π] is the
one described in Example 1.

We now define the notion of acyclic parametric timed automaton. This
acyclicity of a parametric timed automaton can be deduced purely syntacti-
cally from its graphical representation, that is if this representation is acyclic.

Definition 16. We say that a parametric timed automaton is graphically acyclic
(or, more simply, acyclic) if its associated graph is acyclic.

Note that the trace set associated with an acyclic parametric timed automa-
ton is necessarily acyclic. (However, note that if a trace set is acyclic, its para-
metric timed automaton is not necessarily acyclic.)

Parallel Composition of Parametric Timed Automata

We now introduce the notion of network of parametric timed automata, and
show in the following definition how N parametric timed automata can be
composed into a single parametric timed automaton, by performing a product
of the N automata.

Definition 17. Let N ∈ N. For all 1 ≤ i ≤ N , let Ai =
(Σi ,Qi , (q0)i , Xi ,Pi ,Ki , Ii ,→i) be a parametric timed automaton. The sets Qi are
mutually disjoint. A network of parametric timed automata is A =A1‖ . . .‖AN ,
where ‖ is the operator for parallel composition defined in the following way.

26 Chapter 2. The Inverse Method for Parametric Timed Automata

This network of parametric timed automata corresponds to the parametric
timed automaton A = (Σ,Q, q0, X ,P,K , I ,→) where

• Σ=⋃N
i=1Σi ,

• Q =ΠN
i=1Qi ,

• q0 = 〈(q0)1, . . . , (q0)N 〉,

• X =⋃N
i=1 Xi ,

• P =⋃N
i=1 Pi ,

• K =∧N
i=1 Ki ,

• I (〈q1, . . . , qN 〉) =∧N
i=1 Ii (qi) for all 〈q1, . . . , qN 〉 ∈Q,

and→ is defined as follows. For all a ∈Σ, let Ta be the subset of indices i ∈ 1, . . . , N
such that a ∈ Σi . For all a ∈ Σ, for all 〈q1, . . . , qN 〉 ∈ Q, for all 〈q ′

1, . . . , q ′
N 〉 ∈Q,

(〈q1, . . . , qN 〉, g , a,ρ,〈q ′
1, . . . , q ′

N 〉) ∈→ if:

• for all i ∈ Ta , there exist gi ,ρi such that (qi , gi , a,ρi , q ′
i) ∈→i , g =∧

i∈Ta gi ,
ρ =⋃

i∈Ta ρi , and,

• for all i 6∈ Ta , q ′
i = qi .

In this definition, the set of actions is the union of the “local” sets of actions
(i.e., of each automaton Ai), and similarly for the sets of clocks and parameters.
The set of locations of the resulting automaton is the product of the local sets
of locations: hence, each location of the resulting automaton is composed of
a location of each local automaton. The initial location is made of the initial
location of each local automaton. The initial constraint is the intersection of the
local initial constraints. Each invariant is the intersection of the local invariants
associated to a local location. Finally, a global transition can be taken as follows.
For an action a, we compute the set of local automata (denoted by Ta) such that
a ∈ Σi . Then, this transition can be taken if there exists a successor location
through a for each automaton in Ta . The guard is obtained by intersecting the
local guards of Ta , and the set of clocks to reset is the union of the local sets of
clocks to reset. The local location of automata not in Ta remains unchanged.

Sometime, we meet in practice the requirement that the set of clocks and
parameters of each of the timed automata in parallel must be mutually dis-
joint. Here, for the sake of generality, we do allow the shared use of clocks and
parameters between different automata.

2.4. Parametric Timed Automata 27

Note that, in practice, most tools perform an on-the-fly (and partial) com-
position of the product. Indeed, the computation of this product is usually pro-
hibitively expensive. For example, the composition of 10 automata with 10 lo-
cations each will result in a global automaton with a set of locations of size 1010.
Hence, most tools only compose the state space that is effectively reached, by
computing each state when needed only.

Example 7. We give in Figure 7 an example of a network of 2 parametric timed
automata.

Example of a network of parametric timed automata

q ′
0

q ′
1

q ′
2

x1 ≤ 5p1

x1 ≥ 4p1

a

x1 ≥ 2p1

b

b
x1 := 0

(a) A ′

q ′′
0 q ′′

1 q ′′
2

x2 ≤ 5p2 x2 ≤ 5p2

x2 ≥ 3p2

b
x2 := 0

x2 ≥ 4p2

c

b
x2 := 0

(b) A ′′

The composition of those 2 parametric timed automata in parallel (A ′‖A ′′)
corresponds to the parametric timed automaton from Example 5, where q0 =
(q ′

0, q ′′
0), q1 = (q ′

1, q ′′
0), q2 = (q ′

2, q ′′
1) and q3 = (q ′

2, q ′′
2).

2.4.2 Semantics

We now define the semantics of parametric timed automata. We first introduce
the notion of symbolic state.

Definition 18. Let A = (Σ,Q, q0, X ,P,K , I ,→) be a parametric timed automaton.
A (symbolic) state s of A (K) is a pair (q,C) where q ∈ Q is a location, and C ∈
L (X ∪P) a constraint on the clocks and the parameters.

For each valuation π of the parameters P , we may view a symbolic state s =
(q,C) as the set of pairs (q, w) where w is a clock valuation such that <w,π> |=
C .

We define the inclusion of a state in another one as the equality of locations
and inclusion of constraints.

Definition 19. We say that a state s1 = (q1,C1) is included in a state s2 = (q2,C2),
denoted by s1 ⊆ s2, if q1 = q2 and C1 ⊆C2.

28 Chapter 2. The Inverse Method for Parametric Timed Automata

We say that two states s1 = (q1,C1) and s2 = (q2,C2) are equal, denoted by
s1 = s2, if q1 = q2 and C1 =C2.

We now define the inclusion of a set S1 of states in another set S2. Observe
that this notion does not refer to the inclusion of each state of S1 into a state
of S2, but to the equality of each state S1 with a state S2. Hence, all states of S1

exactly appear in S2.

Definition 20. We say that a set of states S1 is included into a set of states S2,
denoted by S1 v S2, if

∀s : s ∈ S1 ⇒ s ∈ S2.

We say that two sets of states S1 and S2 are equal, denoted by S1 = S2, if S1 v
S2 and S2 v S1.

We are interested in checking whether the constraint associated with a sym-
bolic state is satisfied by a given valuation of the parameters. This refers to the
following notion of π-compatibility.

Definition 21. Let A be a parametric timed automaton, and s = (q,C) be a state
of A . The state s is said to be compatible with π or, more simply, π-compatible
if π |=C , and π-incompatible otherwise.

The initial state of A (K) is a symbolic state s0 of the form (q0,C0), where
C0 = K ∧ I (q0)∧∧H−1

i=1 xi = xi+1. (Recall that H is the number of clocks.) In this
expression, K is the initial constraint on the parameters, I (q0) is the invariant of
the initial state, and the rest of the expression lets clocks evolve from the same
initial value.

The semantics of parametric timed automata is given in the following under
the form of a labeled transition system.

Definition 22. Let A = (Σ,Q, q0, X ,P,K , I ,→) be a parametric timed automaton.
The symbolic semantics of A is the labeled transition system (S,S0,⇒) over Σ
where

S = {(q,C) ∈Q ×L (X ∪P) |C ⊆ I (q)},
S0 = {(q0,K ∧ I (q0)∧∧H−1

i=1 xi = xi+1)}

and a transition (q,C)
a⇒ (q ′,C ′) belongs to ⇒ if ∃C ′′ : (q,C)

a→ (q ′,C ′′) d→ (q ′,C ′),
with

• discrete transitions (q,C)
a→ (q ′,C ′) if there exists (q, g , a,ρ, q ′) ∈→ and

C ′ =
((

C (X)∧ g (X)∧X ′ = ρ(X)
)↓X ′∪P ∧ I (q ′)(X ′)

)
[X ′←X]

, and

2.4. Parametric Timed Automata 29

C

g

I (q ′)
C ′

ρ

Figure 2.5: Forward reachability for timed automata

• delay transitions (q,C)
d→ (q,C ′) with C ′ =C↑∧ I (q)(X).

Let us explain this definition. A transition in the symbolic semantics is the
combination of a discrete transition followed by a delay transition. A discrete
transition can be taken as follows: first, the original constraint C is intersected
with the guard g . We use notation g (X) to denote that the set of variables is
X ; similarly, I (q)(X ′) is used to denote that the set of variables is X ′. Then, the
reset operation is performed by X ′ = ρ(X); we use X ′ = ρ(X) to denote that all
clocks of X ′ are equal to clocks of X , except clocks belonging to the set ρ, that
are equal to 0. Then, variables in X are eliminated (using, e.g., Fourier-Motzkin
elimination [Sch86]), which is denoted by the projection onto X ′∪P . The con-
straint is then intersected with the invariant of the destination location I (q ′).
Finally, clocks in X ′ are renamed with X , to get a constraint C ′ on X and P . A
delay transition is obtained by delaying the constraint, using the time elaps-
ing operation, and intersecting it with the invariant of the destination location
I (q).

In Figure 2.5, we present in a graphical way the computation of the suc-
cessor constraint of a state (q,C). First, C is intersected with the guard g of
the transition. Then, the clocks that must be reset by the transition (as in ρ)
are projected onto zero. Then, the constraint is intersected with the invariant
of the destination location I (q ′). Time elapsing is then applied. The resulting
constraint C ′ is finally obtained by intersecting again with the invariant of the
destination location I (q ′).

Definition 23. A step of the semantics of a parametric timed automaton A (K)
will be referred to as a symbolic step of A (K). Similarly, a run of the semantics
of a parametric timed automaton A (K) will be referred to as a symbolic run
of A (K).

A symbolic run of A (K) is a finite alternating sequence of symbolic states

and actions of the form s0
a0⇒ s1

a1⇒ ··· am−1⇒ sm , such that for all i = 0, . . . ,m −1,

30 Chapter 2. The Inverse Method for Parametric Timed Automata

and ai ∈Σ, si
ai⇒ si+1 is a symbolic step of A (K).

A symbolic run is represented under the form of a branch where states are
depicted within nodes containing the name of the location and the constraint
on the clocks and the parameters, and transitions are depicted using edges la-
beled with the name of the action.

Example 8. Consider again the parametric timed automaton A of Example 5.
Then Figure 2.6 depicts an example of a symbolic run of A .

q0

x1 ≤ 5p1
∧ x1 = x2

q2
x1 ≥ x2 +2p1

∧ x1 ≥ x2 +3p2
∧ x2 ≤ 5p2
∧ x1 ≤ x2 +5p1

q3
x1 ≥ x2 +2p1

∧ x1 ≥ x2 +3p2
∧ x2 ≤ 5p2
∧ x1 ≤ x2 +5p1
∧ x2 ≥ 4p2

q2

x1 = x2
∧ x1 ≤ 5p2
∧ 3p2 ≤ 5p1

. . .b c b c

Figure 2.6: Example of a symbolic run for a parametric timed automaton

We give below some results on the constraints on the parameters associated
with the symbolic runs of a parametric timed automaton, which will be used
later on.

We first show that the constraint on the parameters associated with the sym-
bolic states become more restrictive within a run, i.e., the constraint on the
parameters of a given state of a run is included into the constraint on the pa-
rameters of a previous state of the same run. The parameter constraints associ-
ated to the reachable states can only get stronger, since the parameters do not
evolve under the time elapse operation, and can only be further constrained by
invariants or guard conditions.

Lemma 1. Let A (K) be a parametric timed automaton, and R a symbolic run

of A of the form (q0,C0)
a0⇒ ··· (qi ,Ci)

ai⇒ (qi+1,Ci+1)
ai+1⇒ ··· am−1⇒ (qm ,Cm). Then

Ci+1↓P ⊆Ci↓P , for all 0 ≤ i ≤ m −1.

Note that the above result does not mean that the constraints on the clocks
and the parameters become more restrictive within a run, due to the elimina-
tion of clock variables. The relation Ci+1 ⊆Ci does not hold in the general case.

We now state that, given a parametric timed automaton A (K), the con-
straint on the parameters associated with any symbolic state of A is included
into K .

Lemma 2. Let A (K) be a parametric timed automaton, and (q,C) a symbolic
state of a symbolic run of A. Then C↓P ⊆ K .

These two lemmas are the basis for the inverse method, described in Chap-
ter 2.6.

2.4. Parametric Timed Automata 31

Reachability and Post Computation

Recall from Definition 7 that a symbolic state s is reachable in one step from
another symbolic state s′ if s is the successor of s′ in a symbolic run. This def-
inition extends to sets of states. One defines Posti

A (K)(S) as the set of states
reachable from a set S of states in exactly i steps, and Post∗

A (K)(S) as the set of

all states reachable from S in A (K) (i.e., Post∗
A (K)(S) =⋃

i≥0 Posti
A (K)(S)).

We are in particular interested in computing the set Post∗
A (K)({s0}), where s0

is the initial state of A (K). Note that if Posti+1
A (K)({s0}) v⋃i

j=0 Post j
A (K)({s0}), then

Post∗
A (K)({s0}) =⋃i

j=0 Post j
A (K)({s0}).

Traces

The notion of trace associated with a concrete run, and the notion of trace set
associated with a timed automaton apply in a straightforward manner to para-
metric timed automata.

Definition 24. Given a parametric timed automaton A and a symbolic run r

of A of the form (q0,C0)
a0⇒ ··· am−1⇒ (qm ,Cm), the trace associated with r is the

alternating sequence of locations and actions q0
a0⇒··· am−1⇒ qm . We say that loca-

tion qi , for 1 ≤ i ≤ m, belongs to the trace.

Note that the traces associated with symbolic runs of parametric timed au-
tomata are the same mathematical object (i.e., alternating sequences of lo-
cations and actions) as the traces associated with concrete runs of timed au-
tomata. As a consequence, we extend the notions of acyclicity and prefixes,
defined for traces associated with concrete runs, to traces associated with sym-
bolic runs. Moreover, we depict them under the same graphical form as traces
associated with concrete runs, that is boxed nodes labeled with locations and
double arrows labeled with actions.

Example 9. The trace associated with the symbolic run of Example 8 is depicted
in Figure 2.7.

q0 q2 q3 q2 . . .
b c b c

Figure 2.7: Example of a trace associated with a symbolic run of a parametric
timed automaton

32 Chapter 2. The Inverse Method for Parametric Timed Automata

Definition 25. We say that two (symbolic or concrete) runs are equivalent, if
their associated trace is equal.

Definition 26. Given a parametric timed automaton A , the trace set of A refers
to the set of traces associated with the runs of A .

As for the traces associated with concrete runs, we extend the notion of
acyclicity of a trace to trace sets, and say that a trace set is acyclic if all its traces
are acyclic.

Example 10. The trace set associated with the parametric timed automaton of
Example 5 is depicted in Figure 2.8.

q0

q2 q3 q2 q3

q1

b

a

c b
c

b

Figure 2.8: Example of a trace set of a parametric timed automaton

2.5 The Inverse Problem

2.5.1 A Motivating Example

Timed Automata is a powerful model and can be used for a wide range of case
studies such as scheduling or the verification of hardware systems. As an ex-
ample of the latter, consider the asynchronous “D flip-flop” circuit described
in [CC07] and depicted in Figure 2.9(a). It is composed of 4 elements (G1, G2,
G3 and G4) interconnected in a cyclic way. Elements G1 and G3 are made of
an “OR” gate and a “NAND” gate. Element G2 is a single “NAND” gate, and el-
ement G4 is a single “NOT” gate (or inverter). The environment involves two
input signals D and CK . The global output signal is Q. This system is a con-
current real-time system. It is concurrent, because each of the elements has its
own behavior, that depends on the outputs of the other elements. It is real-time
because each change of the output of an element occurs after some time, and
events can be arbitrarily close to each other. The time between a change of the
input and the change of the output is (usually) a matter of nanoseconds, but
has a huge importance when verifying such systems.

We consider a bi-bounded inertial model for gates (see [BS95, MP95]),
where any change of the input may lead to a change of the output (after some

2.5. The Inverse Problem 33

D

CK

Q

G1

G2

G3

G4

[7;7]

[5;6]
[8;10]

[3;7]

(a) Circuit

D

CK

Q

TSetup THold

TLO

THI

TCK→Q

(b) Environment

Figure 2.9: Flip-flop circuit and its environment

delay). As a consequence, each gate Gi has a timing delay in the paramet-
ric interval [δ−i ,δ+i], with δ−i ≤ δ+i . There are 4 other timing parameters (viz.,
THI ,TLO,TSetup, and THold) used to model the environment. The output signal
of a gate Gi is denoted by gi (note that g4 =Q). The rising (resp. falling) edge of
signal D is denoted by D↗ (resp. D↘) and similarly for signals CK ,Q, g1, . . . , g4.
We consider an environment starting from D = CK =Q = 0 and g1 = g2 = g3 = 1,
with the following ordered sequence of actions for inputs D and CK : D↗, CK↗,
D↘, CK↘, as depicted in Figure 2.9(b). We consider that the behavior of this
circuit is correct if, for this environment, the rise of signal Q (i.e., action Q↗) al-
ways occurs before the fall of signal CK (i.e., action CK↘). The following ques-
tion now arises: what are the possible values for these 12 timing parameters
such that the circuit behaves in a correct way?

First, let us model this circuit using the formalism of parametric timed au-
tomata described in Chapter 2. Each gate is modeled by a parametric timed
automaton, as well as the environment. Let us consider the example of ele-
ment G4 in Figure 2.9(a), which is a “NOT” gate (sometimes also referred to
as an “inverter”). Recall that, in stable mode, the output (here, signal Q) of a
“NOT” gate is equal to the inversion of the input (here, signal G3). However,
there may be configurations were both G3 and Q are equal to each other, be-
cause of the delay between the change of the input and the change of the out-
put. As a consequence, the parametric timed automaton modeling this “NOT”
gate contains four locations n00,n01,n10,n11, where ni j stands for a configu-
ration of the gate where the input G3 is equal to i and the output Q is equal
to j . We give in Figure 2.10 the parametric timed automaton modeling this
“NOT” gate. This parametric timed automaton contains one clock x and, as ex-
plained above, contains two parameters δ−3 and δ+3 , where [δ−3 ;δ+3] represents
the interval of time between a change of the input and the change of the out-
put. Actions G↗

3 (resp. G↘
3) denotes the rise (resp. the fall) of signal G3, and

similarly for Q. Other gates of the system can be modeled in a similar manner.

34 Chapter 2. The Inverse Method for Parametric Timed Automata

The reader interested in modeling hardware components with timed automata
can refer to, e.g., [And10a, Chapter 2]. The parametric timed automaton A

modeling the system results from the composition of those 5 parametric timed
automata. Each location of A corresponds to a different value of the signals D ,
CK , g1, g2, g3 and g4 (recall that g4 =Q).

n00 n01

n10 n11

x ≤ δ+3

G↗
3

x ≥ δ−3
Q↗

G↗
3

x := 0
G↘

3
x := 0

x ≤ δ+3

G↘
3

x ≥ δ−3
Q↘

Figure 2.10: Parametric timed automaton modeling a “NOT” gate

The initial location q0 corresponds to the initial levels of the signals accord-
ing to the environment. Recall that we consider an environment starting from
D = CK = Q = 0 and g1 = g2 = g3 = 1, with the following ordered sequence of
actions for inputs D and CK : D↗, CK↗, D↘, CK↘, as depicted in Figure 2.9(b)
page 33. Therefore, we have the implicit constraint TSetup ≤ TLO ∧THold ≤ THI .
The initial constraint K is:

TSetup ≤ TLO ∧THold ≤ THI ∧
∧

i=1,..,4
δ−i ≤ δ+i

We consider that the circuit has a good behavior if it verifies the following
property Prop1: “every trace contains both Q↗ and CK↘, and Q↗ occurs before
CK↘”. That is, the raise of signal Q must occur before the fall of signal CK . We
consider the following valuation π0 of the parameters1:

THI = 24 TLO = 15 TSetup = 10 THold = 17
δ−1 = 7 δ+1 = 7 δ−2 = 5 δ+2 = 6
δ−3 = 8 δ+3 = 10 δ−4 = 3 δ+4 = 7

Let us study the behavior of the flip-flop circuit under π0. The trace set
of A [π0] is depicted in Figure 2.11(a), where the meaning of each location in
terms of signals is given in Figure 2.11(b). Recall that we do not depict each
trace separately, but depict the trace set under the form of a tree or a graph.

1We are not specifically interested in the units here, but it could be nanoseconds.

2.5. The Inverse Problem 35

However, this graph structure is only used for the sake of simplicity of repre-
sentation of the possible traces, and does not contain any information on the
possible branching behavior of the system.

q0

q1

q2

q3

q5

q7q6

q9q9

q10q10

D↗

G↘
1

CK↗

G↘
3

D↘

Q↗

Q↗D↘

CK↘CK↘

(a) Trace set

Location D CK g1 g2 g3 g4

q0 0 0 1 1 1 0
q1 1 0 1 1 1 0
q2 1 0 0 1 1 0
q3 1 1 0 1 1 0
q4 0 1 0 1 1 0
q5 1 1 0 1 0 0
q6 1 1 0 1 0 1
q7 0 1 0 1 0 0
q8 0 0 0 1 0 0
q9 0 1 0 1 0 1
q10 0 0 0 1 0 1

(b) Locations

Figure 2.11: Trace set of the flip-flop circuit under π0

Each of the two traces depicted in this trace set contains both Q↗ and CK↘,
and Q↗ occurs before CK↘. As a consequence, this trace set is a good trace set
according to the property we want to verify. We are now interested in studying
the evolution of the behavior of the system if one changes some of the values of
the parameters. More precisely, we are interested in identifying parameter val-
uations for which the system has exactly the same (good) behavior, i.e., exactly
the same trace set.

2.5.2 The Problem

The inverse problem can be stated as follows [ACEF09]:

36 Chapter 2. The Inverse Method for Parametric Timed Automata

The Inverse Problem
Given a parametric timed automaton A and a reference valuation π0, find
a constraint K0 on the parameters such that:

• π0 |= K0, and

• for all π |= K0, the trace sets of A [π] and A [π0] are the same.

This problem considers an equality of trace sets between A [π] and A [π0],
and thus guarantees a time-abstract equivalence between the behavior of A [π]
and A [π0].

2.6 The Inverse Method Algorithm

2.6.1 Principle

We recall in the following the inverse method [ACEF09], which is a solution to
the inverse problem stated above. The inverse method consists in generating
runs starting from the initial state, and removing states incompatible with the
reference values by appropriately refining the current constraint K0 on the pa-
rameters. The generation procedure is then restarted until a new incompatible
state is produced, and so on, iteratively until no incompatible state is gener-
ated.

The inverse method algorithm IM(A ,π0) is given in Algorithm 1. Start-
ing with K = true, it iteratively computes a growing set of reachable states.
It is made of two do loops. The inner do loop (lines 3–7) removes all the π0-
incompatible states for a given depth i of the runs, i.e., states of Posti

A (K)({s0}).
This removal is performed by removing aπ0-incompatible inequality randomly
selected within the projection onto the parameters of the constraint C asso-
ciated with a π0-incompatible state; recall that this projection onto the pa-
rameters, i.e., elimination of the clocks, is denoted by C↓P in the algorithm
(line 5). The outer do loop (lines 2–11) iteratively computes the set of all reach-
able states. When the fixpoint is reached, i.e., when all new states computed at
iteration i are equal to states computed at previous iterations (PostA (K)(S) v S),
the intersection K0 of all the constraints on the parameters associated with the
states of S is returned.

The two major steps of the algorithm are the following ones:

1. the iterative negation of the π-incompatible states (by negating a π-
incompatible inequality J) prevents for any π |= K0 the behavior different
from π;

2.6. The Inverse Method Algorithm 37

Algorithm 1: Inverse method algorithm IM(A ,π0)

input : Parametric timed automaton A of initial state s0

input : Valuation π0 of the parameters
output: Constraint K0 on the parameters

1 i ← 0; K ← true ; S ← {s0}
2 while true do
3 while there are π0-incompatible states in S do
4 Select a π0-incompatible state (q,C) of S (i.e., s.t. π0 6|=C) ;
5 Select a π0-incompatible inequality J in C↓P (i.e., s.t. π0 6|= J) ;
6 K ← K ∧¬J ;

7 S ←⋃i
j=0 Post j

A (K)({s0}) ;

8 if PostA (K)(S) v S then
9 return K0 ←⋂

(q,C)∈S C↓P

10 i ← i +1 ;
11 S ← S ∪PostA (K)(S)

2. the intersection of the constraints associated with all the reachable states
guarantees that all the behaviors under π are allowed for all π |= K0.

2.6.2 A Toy Example

Let us consider the parametric timed automaton given in Figure 2.12, follow-
ing the formalism defined in Chapter 2.4. Let us assume that q2 corresponds
to a “bad location”. Using this information, classical methods, such as CEGAR
methods [CGJ+00], will synthesize the constraint Z : p1 < p3, which guarantees
that the location is not reachable. Suppose now that we are given the follow-
ing “good” parameter valuation π0 : {p1 = 4, p2 = 2, p3 = 6}, under which the
parametric timed automaton is assumed to have a “good” behavior. Then the
inverse method will synthesize the constraint K0 : p1 < p3∧p2 ≤ p1. For all val-
uations π of the parameters satisfying K0, the inverse method guarantees that
the parametric timed automaton behaves in the same manner as under π0. We
are thus ensured that the behavior of the parametric timed automaton is cor-
rect. We can note that K0 is strictly smaller than Z . On the one hand, this may
be viewed as a limitation of the inverse method. On the other hand, this may in-
dicate that there are incorrect behaviors other than those corresponding to the
reaching of q2. For example, there are some parameter valuations satisfying Z ,
under which a blocking situation (deadlock) of the parametric timed automa-
ton occurs at the initial location q0. In contrast, the inverse method guarantees

38 Chapter 2. The Inverse Method for Parametric Timed Automata

that such a situation is impossible under any instance satisfying K0 (because
this situation does not occur under π0).

q0

q1

q2

x1 ≤ p1

x2 ≥ p2

a
x1 :=0

x1 ≥ p3

b

Figure 2.12: A toy parametric timed automaton

2.7 Behavioral Cartography of Timed Automata

Outline of the Chapter In Section 2.7.1, we introduce the behavioral cartog-
raphy algorithm. We present a case study in Section 2.7.3, analyzed using IMI-
TATOR.

2.7.1 The Behavioral Cartography Algorithm

By iterating the inverse method IM of Section 2.6 over all the integer points of
a rectangle2 V0 (of which there are a finite number), one is able to decompose
(most of) the parametric space included into V0 into behavioral tiles. We give
the behavioral cartography algorithm BC in Algorithm 2 [AF10].

Note that two tiles with distinct trace sets are necessarily disjoint. On the
other hand, two tiles with the same trace sets may overlap. In many cases, all
the real-valued space of V0 is covered by Tiling (see the flip flop case study in
Section 2.7.3). Moreover, the space covered by Tiling often largely exceeds the
limits of V0.

If now a decidable trace property is given then one can check which tiles are
good (i.e., the tiles whose trace set satisfies the property), and which ones are
bad. One can thus partition the rectangle V0 into a good (resp. bad) subspace,
i.e., a union of good (resp. bad) tiles.

A major advantage of the behavioral cartography is that the cartography it-
self does not depend on the property one wants to check. Only the partition

2Actually, V0 can be more generally a convex set containing a finite number of integer points.

2.7. Behavioral Cartography of Timed Automata 39

Algorithm 2: Behavioral cartography algorithm BC(A ,V0)

input : A parametric timed automaton A

input : A finite rectangle V0 ⊆RM+
output: Tiling: list of tiles (initially empty)

1 repeat
2 select an integer point π ∈V0;
3 if π does not belong to any tile of Tiling then
4 Add IM(A ,π) to Tiling;

5 until Tiling contains all the integer points of V0;

between good and bad tiles involves the considered property. Moreover, the al-
gorithm is interesting because one does not need to compute the set of all the
reachable states. On the contrary, each call to the inverse method algorithm
quickly reduces the state space by removing the incompatible states. This al-
lows us to overcome the state space explosion problem, which prevents other
methods to terminate in practice. Also note that the cartography algorithm
makes use of no approximation.

General Case

For the general case (i.e., possibly cyclic parametric timed automata), it is also
possible to identify classes of systems for which the full coverage of the rectan-
gle V0 is guaranteed using the classical version BC of the behavioral cartography
algorithm.

2.7.2 Finite Cartography

In this section, we give sufficient conditions on the finiteness of the number of
tiles in the cartography. We suppose here that the coefficients in the guards and
invariants can only be in Z, the set of all integers.

Proposition 1. Constraints generated by the Inverse Method can only be con-
junctions of linear constraints on the parameters.

Proof. The proof is straightforward by considering that for a state q = (l ,C), C is
a conjuction of guards and invariants. In our framework, guards and invariants
can only be linear constraints. Therefore, for every state q = (l ,C), ∃X :C is a
conjuction of guards and invariants and K = ⋂

(q,C)∈S ∃X :C also is a conjuction
of guards and invariants

40 Chapter 2. The Inverse Method for Parametric Timed Automata

Under our assumption, linear constraint are of the form
∑

i∈1..n(αi ∗
pi), with αi ∈ Z for all i ∈ I . Let (α1, ...αn) ∈ P n ⊂ Z, c ∈ Z and ≺∈ O = {<,≤
,>,≥}.
Let C be the constraint

∑
i∈1..n(αi ∗pi) ≺ c.

We denote by C(α1,...αn ,c,≺) = {(v1, ..., vn) ∈ Rn |∑i∈1..n(αi ∗ vi) ≺ c} the set of all
points of Rn that satisfy C .

Proposition 2. Let V0 = I1 × ... × In with Ii a bounded interval of R for all
i ∈ {1..n}.
Let E = {(α1, ...αn ,c,≺) ∈P n ×Z×O |C(α1,...αn ,c,≺) ∩V0 6= ; et C(α1,...αn ,c,≺) ∩V0 6=
V0}

If P is bounded then |E | ≤ +∞

E corresponds to the set of all non trivial constraints of V0.

Proof. To show that |E | < +∞, we need to prove that if (α1, ...αn ,c,≺) ∈ E then c
belongs to a bounded interval of Z. Indeed, P is bounded and |O | = 4, then if c
can only take a finite number of values then E is finite as well.
Let (α1, ...αn ,c,≺) ∈ E .
∃(v1, ..., vn) ∈V0|∑i∈1..n(αi ∗ vi) ≺ c because C(α1,...αn ,c,≺) ∩V0 6= ;
and
∃(v ′

1, ..., v ′
n) ∈V0|∑i∈1..n(αi ∗ v ′

i)(¬≺)c because C(α1,...αn ,c,≺) ∩V0 6=V0

Without loss of generality, we have that,
c ≤∑

i∈1..n(αi ∗ vi) and c ≥∑
i∈1..n(αi ∗ v ′

i).
V0 is bounded as a finite cartesian product of bounded parts, therefore there
exists M ∈N such that V0 ⊆ [−M ; M]n .
But we have that

c ≤ ∑
i∈1..n

(αi ∗ vi)

which can be rewritten as

c ≤ ∑
i∈1..n|αi>0

(αi ∗ vi)+ ∑
i∈1..n|αi<0

(αi ∗ vi)

c ≤ ∑
i∈1..n|αi>0

(αi ∗ vi)

Then,

c ≤ ∑
i∈1..n|αi>0

(αi ∗M)

2.7. Behavioral Cartography of Timed Automata 41

We also have that P is bounded. Therefore, there exists M ′i nN suche that P ⊆
[−M ′; M ′].
Therefore,

c ≤ ∑
i∈1..n|αi>0

(M ′∗M)

We have that |{i ∈ 1..n|αi > 0}| ≤ n, therefore

c ≤ n ∗M ′∗M

Moreover, we have that
c ≥−n ∗M ′∗M�

We know that a tile E is an area delimited by a finite number of constraints
on the parameters. But, there only exists a finite number of constraints that
do not define a non trivial tile of V0. Therefore, we have proven the following
theorem.

Theorem 1. If the coefficients on the constraints that can be generated by the
Inverse Method on the PTA A are bounded, then the Behavioral Cartography
has a finite number of tiles.

Proof. The proof is straightforward from Property 2.

2.7.3 Case Study: Flip-flop

We consider a of case study and synthesize constraints. The constraint synthe-
sized by the behavioral cartography are then compared with constraints from
the literature, when applicable. For a fully detailed description and more case
studies, refer to [And10b].

We apply here the behavioral cartography to the flip-flop example de-
scribed in Section 2.5.1. For the sake of simplicity, we consider a model with
only 2 parameters, with the following V0:

δ+3 ∈ [8,30] and δ+4 ∈ [3,30].

The other parameters are instantiated as follows:
THI = 24 TLO = 15 TSetup = 10 THold = 17 δ−1 = 7
δ+1 = 7 δ−2 = 5 δ+2 = 6 δ−3 = 8 δ−4 = 3

We compute the cartography of the flip-flop circuit according to δ+3 and δ+4 ,
depicted in Figure 2.13. The dashed rectangle corresponds to V0.

42 Chapter 2. The Inverse Method for Parametric Timed Automata

1 2 3 4 5

6 78

δ+3

δ+4

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Figure 2.13: Behavioral cartography of the flip-flop according to δ+3 and δ+4

q0 q1 q2 q3

q4

q5

q7

q7

q6

q9

q9

q9

q10

q10

q10

D↗ G↘
1 CK↗

D↘

G↘
3

G↘
3

D↘
Q↗

Q↗

Q↗

D↘

CK↘

CK↘

CK↘

Figure 2.14: Trace set of tile 3 for the flip-flop case study

First note that the whole (real-valued) V0 is covered. Note also that tiles 5
to 8 are unbounded. Actually, this cartography covers the whole3 real-valued
parametric space R+ ×R+. According to the nature of the trace sets, we can
easily partition the tiles into good and bad tiles with respect to property Prop1.
For example, the trace set of tile 3 (corresponding to the constraint δ+3 +δ+4 <
24∧δ+3 ≥ 17∧δ+4 ≥ 3) is given in Figure 2.14, where the meaning of each location
in terms of signals is given in Figure 2.11(b) page 35. This tile is a good tile
because Q↗ occurs before CK↘ for all traces.

The trace set of tile 7 (corresponding to the constraint δ+3 ≥ 24 ∧ δ+4 ≥ 7)
is given in Figure 2.15. This is a bad tile because there exist traces where Q↗

occurs after CK↘.
One sees more generally that tiles 1 to 3 are good while tiles 4 to 8 are bad.

From this partition into good and bad tiles, we infer the following constraint:

δ+3 +δ+4 ≤ 24 ∧ δ+3 ≥ 8 ∧ δ+4 ≥ 3

3Apart from the irrelevant zone originating from the model (δ+3 < 8 or δ+4 < 3).

2.7. Behavioral Cartography of Timed Automata 43

q0 q1 q2 q3 q4

q5

q11

q7

q7

q6

q8

q9

q8

q9

q9

q10

q10

q10

q10

q10

D↗ G↘
1 CK↗

D↘

G↘
3

G↘
3

CK↘

D↘
Q↗

CK↘

Q↗

CK↘

Q↗

D↘

Q↗

CK↘

Q↗

CK↘

CK↘

Figure 2.15: Trace set of tile 7 for the flip-flop case study

which gives the maximal set of good parameters, thus solving the good param-
eters problem for this example.

Comparison with other methods. By computing in a brute manner the whole
set of reachable states for all possible valuations of the parameters, and per-
forming the intersection with the set of bad locations, we get the same con-
straint ensuring the good behavior of the system. Note that this comparison
is possible because this example is rather simple; for bigger examples, such a
computation would be impossible because of the state space explosion prob-
lem (see the cartography Root Contention Protocol in [AS13]). In [CC07], a con-
straint Z guaranteeing a good behavior is given (see Section 2.7.3). The projec-
tion of this constraint Z onto δ+3 and δ+4 gives

δ+3 < 11∧δ+3 +δ+4 < 18∧δ+3 ≥ 8∧δ+4 ≥ 3,

which is strictly included in the constraint synthesized by IM4.

4Actually, the comparison is not completely fair, because the two models are slightly differ-
ent: in particular, the authors of [CC07] consider an environment where D is initially equal to
either 0 or to 1.

44 Chapter 2. The Inverse Method for Parametric Timed Automata

Chapter 3

State Merging in Parametric Timed
Automata

A fundamental problem in the exploration of the reachability space in PTAs is to
compact as much as possible the generated space of symbolic states. We intro-
duce in this chapter a state merging technique based on convex union. Roughly
speaking, two states are merged when their discrete part is the same, and the
union of their respective continuous part (values of the clocks and parameters)
is convex. On the one hand, this technique often considerably reduces the state
space. On the other hand, exploring the state space using this technique does
not reflect the standard semantics of PTAs: the set of possible paths is an over-
approximation of the set of paths in the original PTAs semantics. However, we
show that the state space computed using the merging reduction preserves the
set of reachable locations and executable actions. That is, the sets of reachable
locations and executable actions obtained using the merging reduction are the
same as those obtained using the classical semantics.

Moreover, we show that IM equipped with our merging reduction (called
IMMrg) does not preserve traces anymore; however, it preserves locations (i.e.,
discrete reachability), and outputs a weaker constraint. However, we show that
actions are not preserved in the general case. We exhibit a subclass of PTAs,
namely backward-deterministic PTA, for which action preservation is guaran-
teed. Furthermore, we show that IMMrg outputs a weaker constraint (i.e., a
larger set of parameter valuations) than IM , which is interesting.

Finally, we define a new version IM ′
Mrg of IMMrg that preserves not only lo-

cations but actions too, at the cost of a more restrictive constraint than IMMrg ,
but still weaker than IM . Our work is implemented in IMITATOR [AFKS12] and
shows large state space reductions in many cases, especially for scheduling
problems. Finally, and more surprisingly, the time overhead induced by the
convexity test is often not significant in the few case studies where the state

46 Chapter 3. State Merging in Parametric Timed Automata

space is not reduced.

Outline We define and characterize the merging reduction in Section 3.2. Sec-
tion 3.3 is dedicated to IM combined with the merging reduction. We give ex-
periments in Section 3.4 of the merging reduction that will be presented in Sec-
tion 3.3.

3.1 General Results for Parametric Timed Automata

We prove below several general results on constraints and PTAs, that will be
used in the forthcoming proofs.

We first prove below a simple result on variable elimination.

Lemma 3 (Distributivity of ↓ over ∪). Let C1,C2 ∈L (X ∪P). Then:

(C1 ∪C2)↓P =C1↓P ∪C2↓P

Proof. (C1 ∪C2)↓P = {π |π |=C1 ∪C2}
= {π |π |=C1 ∨π |=C2}
= {π |π |=C1}∪ {π |π |=C2}
=C1↓P ∪C2↓P

Lemma 4 (Preservation of inclusion). Let A be a PTA, and (l1,C1), (l2,C2) ∈
Reach∗(A) with (l1,C1)

a⇒ (l2,C2). Let C ′
1 be such that C1 ⊆C ′

1.

Then ∃C ′
2 such that C2 ⊆C ′

2 and (l1,C ′
1)

a⇒ (l2,C ′
2).

Proof. From the semantics of PTAs, we have that

C2 =
(((

C1(X)∧ g (X)∧X ′ = ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
[X ′←X]

)
↑∧ I (l ′)(X)

and

C ′
2 =

(((
C ′

1(X)∧ g (X)∧X ′ = ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
[X ′←X]

)
↑∧ I (l ′)(X)

We have C1 ⊆ C ′
1; then C ′

1 (resp. C ′
2) is obtained from C1 (resp. C2) by adding

other constraints, which are the same in each expression, hence this preserves
inclusion. Then a projection is performed onto X ′∪P , which preserves inclu-
sion. Then the expressions are intersected with another constraint (I (l ′)(X ′)),
which preserves the inclusion too. Then the expressions have their (same) set
of clocks renamed, and are intersected with the same destination constraint
I (l ′)(X), which again preserves inclusion. Hence C2 ⊆C ′

2.

3.1. General Results for Parametric Timed Automata 47

Lemma 5 (Disjunction and Post). Let A be a PTA, and (l ,C1), (l ,C2) ∈
Reach∗(A). Suppose (l ,C1)

a⇒ (l ′,C ′
1), (l ,C2)

a⇒ (l ′,C ′
2) and (l ,C)

a⇒ (l ′,C ′). Then:

C =C1 ∪C2 =⇒C ′ =C ′
1 ∪C ′

2.

Proof. The proof follows from the semantics of PTAs.
C =C1 ∪C2

=⇒ (
C ∧g (X)∧X ′ = ρ(X)

)= ((
C1∧g (X)∧X ′ = ρ(X)

)∪ (
C2∧g (X)∧X ′ = ρ(X)

))
(distributivity of ∧ over ∪)

=⇒ (
C ∧ g (X)∧ X ′ = ρ(X)

)↓X ′∪P =
((

C1 ∧ g (X)∧ X ′ = ρ(X)
)↓X ′∪P ∪ (

C2 ∧ g (X)∧
X ′ = ρ(X)

)↓X ′∪P

)
(Lemma 3)

=⇒
((

C ∧g (X)∧X ′ = ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
=

(((
C1 ∧g (X)∧X ′ = ρ(X)

)↓X ′∪P ∧

I (l ′)(X ′)
)
∪

((
C2 ∧ g (X)∧X ′ = ρ(X)

)↓X ′∪P ∧ I (l ′)(X ′)
))

(distributivity of ∧ over

∪)

=⇒
((

C ∧ g (X) ∧ X ′ = ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
[X ′←X]

=
(((

C1 ∧ g (X) ∧ X ′ =

ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
[X ′←X]

∪
((

C2 ∧g (X)∧X ′ = ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
[X ′←X]

)
(variables renaming)

=⇒
(((

C ∧ g (X) ∧ X ′ = ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
[X ′←X]

)
↑ =

((((
C1 ∧ g (X) ∧

X ′ = ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
[X ′←X]

)
↑ ∪

(((
C2 ∧ g (X) ∧ X ′ = ρ(X)

)↓X ′∪P ∧

I (l ′)(X ′)
)

[X ′←X]

)
↑
)

(Lemma 3 + distributivity of ∧ over ∪)

=⇒
(((

C ∧ g (X) ∧ X ′ = ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
[X ′←X]

)
↑ =

((((
C1 ∧ g (X) ∧

X ′ = ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
[X ′←X]

)
↑ ∪

(((
C2 ∧ g (X) ∧ X ′ = ρ(X)

)↓X ′∪P ∧

I (l ′)(X ′)
)

[X ′←X]

)
↑
)

(Lemma 3 + distributivity of ∧ over ∪)

=⇒
(((

C∧g (X)∧X ′ = ρ(X)
)↓X ′∪P ∧I (l ′)(X ′)

)
[X ′←X]

)
↑∧I (l ′)(X) =

((((
C1∧g (X)∧

X ′ = ρ(X)
)↓X ′∪P ∧ I (l ′)(X ′)

)
[X ′←X]

)
↑∧ I (l ′)(X)∪

(((
C2∧g (X)∧X ′ = ρ(X)

)↓X ′∪P ∧

I (l ′)(X ′)
)

[X ′←X]

)
↑∧ I (l ′)(X)

)
(distributivity of ∧ over ∪)

=⇒C ′ =C ′
1 ∪C ′

2.

48 Chapter 3. State Merging in Parametric Timed Automata

3.2 Merging States in Parametric Timed Automata

3.2.1 Principle

The principle of our method relies on the fact that only convex polyhedra are
tractable. We will merge two states if their discrete parts are identical (meaning
they model the same state of the system) and if the union of their corresponding
constraint is convex. In short, two states are mergeable if they share the same
discrete part, and the union of their corresponding constraints is convex.

Definition 27 (Merging). Two states s1 = (l1,C1) and (l2,C2) are mergeable if
l1 = l2 and C1 ∪C2 is convex; then, (l1,C1 ∪C2) is their merging denoted by
merge(s1, s2).

Given a set S of states, Merge(S) denotes the result of applying iteratively
the merging of a pair of states of S until no further merging applies, as given in
Algorithm 3.

Algorithm 3: Merging a set of states

input : Set S of states
output: Merged set S of states

1 Q ← S ;
2 while ∃(l ,C1), (l ,C2) ∈Q such that C1 6=C2 and C1 ∪C2 is convex do
3 Choose (l ,C1) ∈Q, (l ,C2) ∈Q such that C1 6=C2 and C1 ∪C2 is convex ;
4 Q ←Q \ {(l ,C1), (l ,C2)}∪ {merge((l ,C1), (l ,C2))} ;

5 return Q

C2

C3

C1

Figure 3.1: Non-determinism of merging

Remark. This process is not deterministic , i.e., the result depends on the or-
der of the iterative merging operations of pairs of states. Consider three states
(l ,C1), (l ,C2), (l ,C3) such that C1 ∪C2 and C2 ∪C3 are convex, but C1 ∪C3 is not.
This situation is depicted in Fig. 3.1 with 2 parameter dimensions. In that case,
two possible sets of states can result from an application of the merging to these
3 states. That is, either {(l ,C1), (l ,C2 ∪C3)} or {(l ,C1 ∪C2), (l ,C3)}.

3.2. Merging States in Parametric Timed Automata 49

3.2.2 Merging and Reachability

We define below the semantics of PTAs with merging.

Definition 28 (Semantics of PTAs with merging). Let A = (Σ,L, l0, X ,P,K , I ,→)
be a PTA. The semantics of A with merging is LMrg (A) = (Σ,S,S0,⇒Mrg) where

S = {(l ,C) ∈ L×L (X ∪P) |C ⊆ I (l)},
S0 = {(l0,K ∧ I (l0)∧∧H−1

i=1 xi = xi+1)}

and a transition (l ,C)
a⇒ (l ′,C ′) belongs to ⇒Mrg if there exists n ∈N such that

• (l ,C) ∈ ReachM n , and

• (l ′,C ′) ∈ ReachM n+1,

where ReachM n is inductively defined as follows:

• ReachM 0 = S0, and

• ReachM i+1 = Merge
(
PostA (ReachM i)

)
for all i ∈N.

Recall that Post is defined using the ⇒ relation of A without merging.
Hence the semantics of PTAs with merging iteratively computes states (using
the standard transition relation), and merges the new states at each iteration.

Then we define ⇒i
Mrg , PostM , ReachM∗, PathsM , TracesM , LocationsM

and ActionsM the same way as ⇒i , Post, Reach∗, Paths, Traces, Locations and
Actions, respectively, by replacing within their respective definition ⇒ with
⇒Mrg . Observe that, from the definition of ⇒Mrg in Definition 28, PostM can
be defined as Post followed by Merge, i.e., PostM = Merge◦Post.

3.2.3 Characterization of the Merging Reduction

The following lemma states that the initial state of any path (hence, including
of length 0) of A without merging is the same for A with merging.

Lemma 6. Let A be a PTA. Then Reach0(A) = ReachM 0(A).

Proof. From Definitions 22 and 28.

The main property preserved by merging states while generating the reach-
ability graph is the preservation of each time-abstract transition, i.e., taken one

by one. In other words, for each time-abstract transition l1
a⇒ l2 in the graph

obtained without merging, there is a corresponding time-abstract transition

50 Chapter 3. State Merging in Parametric Timed Automata

l1
a⇒ l2 in the graph obtained with merging. However, this does not extend to

traces.
The characterization of merging will be stated in Theorem 2. This result

relies on the two forthcoming lemmas 8 and 10.
First, the following lemma will be used to prove Lemma 8 by induction.

Lemma 7. Let A be a PTA. Let (l0,C0)
a0⇒ ··· an−1⇒ (ln ,Cn) ∈ Paths(A), and

(l0,C ′
0)

a0⇒Mrg · · ·
an−1⇒ Mrg (ln ,C ′

n) ∈ PathsM(A) such that Ci ⊆C ′
i , for all 0 ≤ i ≤ n.

Suppose (ln ,Cn)
an⇒ (ln+1,Cn+1) ∈⇒(A). Then there exists C ′

n+1 such that

1. (ln ,C ′
n)

an⇒Mrg (ln+1,C ′
n+1) ∈⇒Mrg (A), and

2. Cn+1 ⊆C ′
n+1.

Proof. Since Cn ⊆C ′
n and (ln ,Cn)

an⇒ (ln+1,Cn+1) ∈⇒(A), then there exists C ′′
n+1

such that (ln ,C ′
n)

an⇒ (ln+1,C ′′
n+1) and Cn+1 ⊆C ′′

n+1 (from Lemma 4). We consider
two cases, depending whether (ln+1,C ′′

n+1) is merged or not in PostM .

• Suppose (ln+1,C ′′
n+1) is not merged with another state. That is

(ln+1,C ′′
n+1) ∈ PostA (ReachM n(A)) and since it is not merged, then

(ln+1,C ′′
n+1) belongs to PostMA (ReachM n(A)) = ReachM n+1(A). Hence

the result holds, with C ′
n+1 =C ′′

n+1.

• Suppose (ln+1,C ′′
n+1) is merged with other states, thus creating new state

(ln+1,C ′
n+1), with C ′

n+1 = C ′′
n+1 ∪C ′′′

n+1 Then (ln ,C ′
n)

an⇒Mrg (ln+1,C ′
n+1) ∈

⇒Mrg (A), and Cn+1 ⊆C ′′
n+1 ⊆C ′

n+1.

Now, we can prove that a trace in a non-merged reachability graph has an
equivalent trace in a merged reachability graph.

Lemma 8 (Merging and reachability (=⇒)). Let A be a PTA. Let (l0,C0)
a0⇒··· an−1⇒

(ln ,Cn) ∈ Paths(A). Then there exist C ′
1, . . . ,C ′

n such that:

1. (l0,C0)
a0⇒Mrg (l0,C ′

1)
a1⇒Mrg · · ·

an−1⇒ Mrg (ln ,C ′
n) ∈ PathsM(A), and

2. Ci ⊆C ′
i , for all 1 ≤ i ≤ n.

Proof. By induction on n.

• Base case. For n = 0, we have a path reduced to a single state (l0,C0). By
lemma 6, (l0,C0) ∈ PathsM(A).

3.2. Merging States in Parametric Timed Automata 51

• Induction step. Suppose that n ≥ 0 and the property holds for n. Let

(l0,C0)
a0⇒ ··· an⇒ (ln+1,Cn+1) ∈ Paths(A). By induction hypothesis, there

exist C ′
1, . . . ,C ′

n such that (l0,C0)
a0⇒Mrg (l0,C ′

1)
a1⇒Mrg · · · an−1⇒ Mrg (ln ,C ′

n) ∈
PathsM(A), and Ci ⊆C ′

i , for all 0 ≤ i ≤ n.

From Lemma 7, there exists C ′
n+1 such that

1. (ln ,C ′
n)

an⇒Mrg (ln+1,C ′
n+1) ∈⇒Mrg (A), and

2. Cn+1 ⊆C ′
n+1.

Hence (l0,C0)
a0⇒Mrg (l0,C ′

1)
a1⇒Mrg · · · an⇒Mrg (ln+1,C ′

n+1) ∈ PathsM(A), and
Ci ⊆C ′

i , for all 0 ≤ i ≤ n +1.

We will show in Lemma 10 that the constraint associated to each state in the
merged graph is the union of several constraints in the non-merged graph.

The following lemma will be used to prove Lemma 10 by induction. In the
proof, we use the following notation: Given a state (li ,Ci) of L(A), we write

(li ,Ci) 6 a⇒ if there exists no (li+1,Ci+1) in L(A) such that (li ,Ci)
a⇒ (li+1,Ci+1) ∈

⇒(A).

Lemma 9. Let A be a PTA, let n ∈N. Suppose that for all (l ,C) ∈ ReachM n(A)
there exist m ∈N and (l ,C1), . . . , (l ,Cm) ∈ Reach∗(A) such that

C = ⋃
1≤i≤m

Ci .

Let (l ,C)
a⇒ (l ′,C ′) ∈⇒n

Mrg (A). Then there exist m′ ∈N and (l ,C ′
1), . . . , (l ,C ′

l) ∈
Reachn(A) such that

C ′ = ⋃
1≤i≤m′

C ′
i .

Proof. Suppose (l ,C)
a⇒Mrg (l ′,C ′) ∈ ⇒n

Mrg (A). Suppose (l ′,C ′) is the result of

merging two states (l ′,C ′
a) and (l ′,C ′

b); hence C ′ =C ′
a ∪C ′

b . (For sake of simplic-
ity, we assume that only 2 states are merged; the reasoning can be generalized
to n states in a straightforward manner.) By definition of the semantics of⇒n

Mrg ,

there exist Ca and Cb such that (la ,Ca)
a⇒ (l ′,C ′

a) and (lb ,Cb)
b⇒ (l ′,C ′

b). In our
case, we have (la ,Ca) = (l ,C). This is depicted in Fig. 3.2.

From the hypothesis, there exist ma ∈N and (l ,C 1
a), . . . , (l ,C ma

a) ∈ Reach∗(A)
such that Ca = ⋃

1≤i≤ma C i
a , and there exist mb ∈ N and (lb ,C 1

b), . . . , (lb ,C mb
b) ∈

Reach∗(A) such that Cb =⋃
1≤i≤mb

C i
b .

52 Chapter 3. State Merging in Parametric Timed Automata

(l ,C 1
a) (l ,C 2

a) · · · (l ,C ma
a)(l ,C) (lb ,C 1

b) · · · (lb ,C bm
b) (lb,Cb)

(l ′,C ′
a

1) · · · (l ′,C ′
a

m′
a) (l ′,C ′

b
1) · · · (l ′,C ′

b
m′

b)(l ′,C ′)

S′
a S′

b

a b

Figure 3.2: Context of Lemma 9

Let Sa = {(l ,C i
a) ∈ ⋃

1≤i≤ma (l ,C i
a)|(l ,C i

a)
a⇒ (l ′,C ′

a
i), such as the union of all

C ′
a

i is convex}. That is, Sa is the set of states composing the merged state (l ,C)
that have a successor state through action a, and such that the union of the
constraint of their successor state is convex. There may be different such sets
of states, with a disjoint convex constraint; for the sake of simplicity, we assume

there is only one. Since there is only one, then for each state s ∉ Sa , we have s 6 a⇒.

Let S′
a be the set of target states of Sa . That is, S′

a = {(l ′,C ′)|∃(l ,C) ∈ Sa , (l ,C)
a⇒

(l ′,C ′
i)}. Observe that, since all states in Sa belong to Reach∗(A), then all states

in S′
a belong to Reach∗(A) too. Also note that, by construction, states in S′

a can
be merged to give only one merged state.

By Lemma 5, we have:

(l ,
⋃

(l ,C)∈Sa

C)
a⇒ (l ′,

⋃
(l ,C)∈Sa

{C ′|(l ,C)
a⇒ (l ′,C ′)})

By definition of S′
a , we have:

(l ,
⋃

(l ,C)∈Sa

C)
a⇒ (l ′,

⋃
(l ′,C ′)∈S′

a

C ′)

Since for each state s ∉ Sa , we have s 6 a⇒, then

(l ,
⋃

1≤i≤ma

Ci)
a⇒ (l ′,

⋃
(l ′,C ′)∈S′

a

C ′)

Since Ca =⋃
1≤i≤ma Ci , then

(l ,Ca)
a⇒ (l ′,

⋃
(l ′,C ′)∈S′

a

C ′)

3.2. Merging States in Parametric Timed Automata 53

By following a similar reasoning for Cb , we have

(lb ,Cb)
b⇒ (l ′,

⋃
(l ′,C ′)∈S′

b

C ′)

with S′
b a set defined in a similar manner to S′

a . Then, we have

C ′
a = ⋃

(l ′,C ′)∈S′
a

C ′ and C ′
b = ⋃

(l ′,C ′)∈S′
b

C ′

Hence

C ′ =
(⋃

(l ′,C ′)∈S′
a

C ′
)
∪

 ⋃
(l ′,C ′)∈S′

b

C ′

By construction, all states of S′
a and S′

b belong to Reach∗(A). This gives the
result.

Lemma 10 (Merging and reachability (⇐=)). Let A be a PTA. For all n ∈N, for
all (l ,C) ∈ ReachM n(A), there exist m ∈ N and (l ,C1), . . . , (l ,Cm) ∈ Reach∗(A)
such that

C = ⋃
1≤i≤m

Ci .

Proof. By induction on n.

• Base case. For n = 0, we have only one state (l0,C0) in ReachM n(A). By
lemma 6, (l0,C0) ∈ Reach∗(A), hence the result holds.

• Induction step. Suppose that n ≥ 0 and the property holds for n. Then,
by Lemma 9, the results holds for n +1.

We can finally characterize the merging in the following theorem.

Theorem 2 (Merging states in PTAs). Let A be a PTA. Then:

1. For all (l0,C0)
a0⇒··· an−1⇒ (ln ,Cn) ∈ Paths(A), there exist C ′

1, . . . ,C ′
n such that:

(a) (l0,C0)
a0⇒Mrg (l0,C ′

1)
a1⇒Mrg · · ·

an−1⇒ Mrg (ln ,C ′
n) ∈ PathsM(A), and

(b) Ci ⊆C ′
i , for all 1 ≤ i ≤ n.

2. For all (l ,C) ∈ ReachM∗(A) there exist m ∈ N and (l ,C1), . . . , (l ,Cm) ∈
Reach∗(A) such that

C = ⋃
1≤i≤m

Ci .

54 Chapter 3. State Merging in Parametric Timed Automata

Proof. From Lemmas 8 and 10.

We can derive several results from Theorem 2.
First, each trace in the non-merged graph exists in the merged graph. (Note

that the converse statement does not hold.) Hence, TracesM(A) is an over-
approximation of Traces(A).

Corollary 3 (Inclusion of traces). Let A be a PTA. Then:

Traces(A) ⊆ TracesM(A).

Proof. From Theorem 2 item 1.

We state below that each timed-abstract transition in the non-merged graph
exists in the merged graph, and vice versa. (Note that this cannot be generalized
to complete traces.)

Corollary 4 (Preservation of time-abstract transitions). Let A be a PTA. Then:

1. Let l
a⇒ l ′ ∈ Traces(A). Then l

a⇒Mrg l ′ ∈ TracesM(A).

2. Let l
a⇒Mrg l ′ ∈ TracesM(A). Then l

a⇒ l ′ ∈ Traces(A).

Proof. From Theorem 2.

Finally, locations and actions are preserved by the merging reduction.

Corollary 5 (Preservation of locations and actions). Let A be a PTA. Then:

Locations(A) = LocationsM(A) and Actions(A) = ActionsM(A).

Proof. From Theorem 2.

To summarize, computing the set of reachable states using the merging re-
duction yields an over-approximation of the set of paths. In the original seman-
tics, each trace of A (K) exists in A [π] for at least one valuation π |= K ; this is
not the case anymore with the use of merging, where some traces in A (K) may
not exist for any π |= K . Nevertheless, both the set of reachable locations and
the set of actions are identical to those computed using the original seman-
tics. As a consequence, the merging reduction can be safely used to verify the
reachability or the non-reachability of a (set of) location(s), but not to verify
more complex properties such as properties on traces (linear-time formulas).

3.3. The Inverse Method with Merging 55

3.3 The Inverse Method with Merging

3.3.1 Principle

We extend IM with the merging operation, by merging states within the algo-
rithm, i.e., by replacing within Algorithm 1 all occurrences of Post with PostM .
The extension IMMrg is given in Algorithm 4.

Algorithm 4: Inverse method with merging IMMrg (A ,π)

input : PTA A of initial state s0, parameter valuation π
output: Constraint KMrg over the parameters

1 i ← 0; Kc ← true ; Snew ← {s0} ; S ← {}
2 while true do
3 while there are π-incompatible states in Snew do
4 Select a π-incompatible state (l ,C) of Snew (i.e., s.t. π 6|=C) ;
5 Select a π-incompatible J in C↓P (i.e., s.t. π 6|= J) ;

6 Kc ← Kc ∧¬J ; S ←⋃i−1
j=0 PostM j

A (Kc)({s0}) ; Snew ←
PostM A (Kc)(S) ;

7 if Snew v S then return KMrg ←⋂
(l ,C)∈S C↓P ;

8 i ← i +1; S ← S ∪Snew ; Snew ← PostM A (Kc)(S)

Remark 1. In IMMrg , states are merged before the π-compatibility test. Hence,
some π-incompatible states may possibly be merged, and hence become π-
compatible. As a consequence, less inequalities will be negated and added to Kc ,
thus giving a weaker output constraint KMrg . Also note that the addition of merg-
ing to IM adds a new reason for non-confluence since the merging process is itself
non-deterministic.

We will see that, in contrast to IM , IMMrg does not preserve traces. That is,
given π,π′ |= KMrg , a trace in A [π] may not exist in A [π′], and vice versa.

Example 11. We use here a typical jobshop example in the setting of parametric
schedulability [FLMS12], in order to show that the traces are no longer preserved
with IMMrg . This system (modeled by a PTA A) contains 2 machines on which 2
jobs should be performed. The system parameters are di (for i = 1,2) that encode
the duration of each job. The system actions are j s1 (job 1 starting), j f1 (job 1
finishing) and similarly for job 2.

Consider π = {d1 := 1,d2 := 2}. The trace set of A [π] using the standard se-
mantics (Definition 22) is given in Fig. 3.3(a) (in the form of a graph). Applying

56 Chapter 3. State Merging in Parametric Timed Automata

(l0,C0)

(l1,C1) (l2,C2)

(l3,C3) (l3,C ′
3)

(l4,C4) (l4,C ′
4) (l5,C5)

(l6,C6) (l6,C ′
6) (l6,C ′′

6)

j s1 j s2

j s2 j s1

j f1 j f1

j f2

j f2 j f2 j f1

(a) Trace set of A (π)

(l0,C0)

(l1,C1) (l2,C2)

(l3,C3)

(l4,C4) (l5,C5)

(l6,C6)

j s1 j s2

j s2 j s1

j f1 j f2

j f2 j f1

(b) For IMMrg (A ,π)

(l0,C0)

(l1,C1) (l2,C2)

(l3,C3) (l3,C ′
3)

(l4,C4) (l5,C5) (l5,C ′
5)

(l6,C6) (l6,C ′
6) (l6,C ′′

6)

j s1 j s2

j s2 j s1

j f1
j f2 j f2

j f2 j f1 j f1

(c) Trace set of A (π′)

Figure 3.3: Trace sets of A

IM to A and π gives K = d2 > d1. From the correctness of IM [AS13], the trace
set of A [π′], for all π′ |= K , is the same as for A [π]. Now, applying IMMrg to A

and π gives KMrg = true. We depict in Figure 3.3(b) an abstract representation
of all possible trace sets, for all π |= KMrg . KMrg has been obtained with IMMrg .
(l3,C3) and (l6,C6) have been obtained by the merging of concrete states. Then,
let π′ = {d1 := 2,d2 := 1} be a valuation in KMrg but outside of K . The trace set
of A [π′] (using the standard semantics) is given in Fig. 3.3(c). The trace sets of

A [π] and A [π′] are different: the trace l0
j s2⇒ l2

j s1⇒ l3
j f1⇒ l4

j f2⇒ l6 exists in A [π] but

not in A [π′]; the trace l0
j s1⇒ l1

j s2⇒ l3
j f2⇒ l5

j f1⇒ l6 exists in A [π′] but not in A [π].
However, note that the reachable locations and executable actions are the same
in these two trace sets.

3.3.2 Preservation of Locations

We will show in Theorem 6 that IMMrg preserves locations. This result relies on
the forthcoming lemma.

Lemma 11. Suppose IMMrg (A ,π) terminates with output KMrg . Then π |= KMrg .

Proof. At the end of IMMrg , all merged states in S areπ-compatible by construc-
tion. That is, for all (l ,C) ∈ S, we have π |=C↓P . Since KMrg =⋂

(l ,C)∈S C↓P , then
π |= KMrg .

Theorem 6. Suppose IMMrg (A ,π) terminates with output KMrg . Then, for all
π′ |= KMrg , Locations(A [π]) = Locations(A [π′]).

Proof. From Lemma 11, we have that π |= KMrg . We will first show that
Locations(A [π]) = Locations(A (Kc)), where Kc denotes the value of the current
constraint at the end of the algorithm.

3.3. The Inverse Method with Merging 57

=⇒ The fact that Locations(A [π]) ⊆ Locations(A (Kc)) is straightforward.
First note that KMrg ⊆ Kc . Hence π |= KMrg implies that π |= Kc . Hence
any location in A [π] is reachable in A (Kc).

⇐= We now show that Locations(A (Kc)) ⊆ Locations(A [π]). Let us pick up
a state (l ,C) ∈ S, where S is the set of states at the end of the algo-
rithm. At the end of the algorithm, S = ReachM∗(A (Kc)). Hence l ∈
LocationsM(A (Kc)). From Corollary 5, we have that Locations(A (Kc)) =
LocationsM(A (Kc)). Hence l ∈ Locations(A (Kc)).

We will show that l belongs to Locations(A [π]). Recall that KMrg =⋂
(l ,C)∈S C↓P . Since π |= KMrg then, for all (l ,C) ∈ S, it holds that π |= C↓P .

hence this is also the case for the (l ,C) we picked up. From Theorem 2,
there exist m ∈N and (l ,C1), . . . , (l ,Cm) ∈ Reach∗(A (Kc)) such that

C = ⋃
1≤i≤m

Ci .

Let us pick a constraint Ci such thatπ |=Ci↓P . Such a Ci necessarily exists
since π |=C↓P .

Now, we can apply classical results on PTAs: consider a path of A (Kc)
reaching (l ,Ci); then, since π |= Ci↓P , there exists an equivalent path
in A [π] (see, e.g., [AS13, Proposition 18]). Hence l ∈ Locations(A [π]).

Now, let π′ be a valuation such that π′ |= KMrg . Using the same reasoning, it
holds that Locations(A [π′]) = Locations(A (Kc)).

Hence Locations(A [π]) = Locations(A [π′]).

Hence, although the trace set is not preserved by IMMrg , the set of locations
is. As a consequence, the reachability and safety properties (based on loca-
tions) that are true in A [π] are also true in A [π′].

3.3.3 Preserving Actions

General Case

Although the set of locations is preserved by IMMrg , the set of actions is not
preserved in the general case (in contrast to the reachability analysis with merg-
ing).

Consider the simple PTA in Fig. 3.4(a). Observe that action a (respectively b)
can be taken only if p ≤ 2 (respectively p ≥ 2). For a reference valuation π such
that p = 1, only a can be executed. On the one hand, IM applied to this PTA
and to π will output constraint p < 2, implying that only a can be executed.

58 Chapter 3. State Merging in Parametric Timed Automata

l1 l2

x = 2∧p ≤ x
a

x = 2∧p ≥ x
b

(a) PTA 1

l1 l2

l3

l4
c

c

x = 2∧p ≤ x
a

x = 2∧p ≥ x
b

(b) PTA 2

Figure 3.4: Counterexample PTAs showing the non-preservation of actions
by IMMrg

On the other hand, IMMrg will reach two symbolic states (l2, p ≤ 2∧ x ≥ 2) and
(l2, p ≥ 2∧x ≥ 2), and will merge them into (l2, p ≥ 0∧x ≥ 2). Since this state isπ-
compatible, IMMrg will output true as a constraint. Then, choosing a valuation
π′ such as p = 3 (note that π′ |= IMMrg (A ,π)), only b can be executed in A [π′].
Hence the set of actions is not the same as in A [π].

A restriction to the model so that IMMrg preserves actions could have been
that, for each couple of locations l1 and l2, all transitions from l1 to l2 are always
firing the same given action a. But this is not enough: the PTA in Fig. 3.4(b)
conforms to this restriction, but the same situation as in Fig. 3.4(a) happens.

Proposition 3 (Non-preservation of actions). There exist A , π and π′ such
that (1) IMMrg (A ,π) terminates with output KMrg , (2) π′ |= KMrg , and (3)
Actions(A [π]) 6= Actions(A [π′]).

Not all properties are based on actions. Hence IMMrg is suitable for sys-
tems the correctness of which is expressed using the reachability or the non-
reachability of locations. Nevertheless, to be able to handle as well systems the
correctness of which is expressed using the (non-)reachability of actions, the
rest of this section will be devoted to identifying techniques to preserve actions
too.

Backward-Deterministic Parametric Timed Automata

We identify here a subclass of PTAs for which IMMrg preserves the set of actions.
We restrict the model so that, for any location, at most one action is used on its
incoming edges. This restriction can be checked syntactically.

Definition 29 (Backward-determinism). A PTA A is said to be backward-
deterministic if for all (l1, g , a,ρ, l2), (l ′1, g ′, a′,ρ′, l ′2) ∈→, then l2 = l ′2 =⇒ a = a′.

3.3. The Inverse Method with Merging 59

In a backward-deterministic PTA, if a location is reachable, then its incom-
ing action is executed too. Hence the preservation of the locations by IMMrg

implies the preservation of the actions too.

Proposition 4 (Action preservation). Let A be a backward-deterministic PTA.
Suppose IMMrg (A ,π) terminates with output KMrg . Then, for all π′ |= KMrg ,
Actions(A [π]) = Actions(A [π′]).

Proof. From Theorem 6 and Definition 29.

This restriction of backward-determinism may be seen as quite strong in
practice. Hence, in the following, in order to preserve the set of actions, we
propose to modify the algorithm itself rather than restricting the model.

Improvement of the Inverse Method

The non-preservation of the actions by IMMrg comes from the fact that the
states are first merged, and then tested against π-compatibility (see Remark 1).
In order to guarantee the action preservation, we propose to first test newly
generated states against π-compatibility, and then merge them. Although this
modification is only a subtle inversion of two operations in the algorithm, it has
consequences on the properties preserved by the new algorithm.

We introduce an improved version IM ′
Mrg of IMMrg in Algorithm 5, where

states are merged after the π-compatibility tests. Technically, the differences
with IMMrg (highlighted using a non-white background) are as follows: (1) the
operation to compute the states at the current deepest level i is Post instead
of PostM (lines 9 and 6), and (2) the states are merged after the end of the π-
incompatibility tests (addition of line 7).

We classify below the constraints output by the 3 versions of IM .

Proposition 5. Suppose IM(A ,π), IMMrg (A ,π) and IM ′
Mrg (A ,π) terminate in a

deterministic manner with an output K , KMrg and K ′
Mrg , respectively.

Then, K ⊆ K ′
Mrg ⊆ KMrg

Proof. The first part of the relationship (K ⊆ K ′
Mrg) comes from two reasons.

1. First, less inequalities are negated. Consider the case of two states s1 and
s2 (bothπ-compatible) at a level n, such that each of them has a successor
at level n + 1, one π-compatible (say s′1), the other one π-incompatible
(say s′2). In IM , the second state s′2 would be removed by negating a π-
incompatible inequality J . Now, if these two states s1 and s2 are merged
at level n in IM ′

Mrg (giving state, say s), their merging could give only one

60 Chapter 3. State Merging in Parametric Timed Automata

Algorithm 5: Inverse method with merging (variant) IM ′
Mrg (A ,π)

input : PTA A of initial state s0, parameter valuation π
output: Constraint K ′

Mrg over the parameters

1 i ← 0; Kc ← true ; Snew ← {s0} ; S ← {}
2 while true do
3 while there are π-incompatible states in Snew do
4 Select a π-incompatible state (l ,C) of Snew (i.e., s.t. π 6|=C) ;
5 Select a π-incompatible J in C↓P (i.e., s.t. π 6|= J) ;

6 Kc ← Kc ∧¬J ; S ←⋃i−1
j=0 PostM j

A (Kc)({s0}) ; Snew ← Post A (Kc)(S) ;

7 Snew ← Merge(Snew)

8 if Snew v S then return K ′
Mrg ←

⋂
(l ,C)∈S C↓P ;

9 i ← i +1; S ← S ∪Snew ; Snew ← Post A (Kc)(S)

successor s′ (equivalent to the union of s′1 and s′2); if this successor is π-
compatible, the inequality J will not be found, hence not be negated. As
a consequence, IM ′

Mrg will meet less π-incompatible states than IM .

2. The second reason is that the final intersection of the constraints over the
parameters associated with all reachable states will be weaker in the case
of IM ′

Mrg . Indeed, since states have been merged, we will consider their
union instead of their intersection. Considering the situation in Fig. 3.2,
IM will return the intersection of all local constraints, whereas IM ′

Mrg will

only output C↓P ∩Cb↓P ∩C ′↓P .

The second part of the relationship (K ′
Mrg ⊆ KMrg) comes from a similar rea-

soning. In short, less π-incompatible inequalities will be negated, since the
merging is performed before theπ-compatibility test. This situation is depicted
in Fig. 3.4(a). And similarly, since states are more often merged, their final in-
tersection will yield a weaker constraint too.

Note that IM ′
Mrg still does not preserve traces; the situation in Fig. 3.3 is ex-

actly the same for IM ′
Mrg as for IMMrg .

Theorem 7. Suppose IM ′
Mrg (A ,π) terminates with output K ′

Mrg . Then, for all

π′ |= K ′
Mrg :

1. Locations(A [π]) = Locations(A [π′]), and

2. Actions(A [π]) = Actions(A [π′]).

3.4. Experimental Validation 61

Proof. Preservation of locations follows the same reasoning as for Theorem 6.
Preservation of actions is guaranteed by construction of IM ′

Mrg together with
the preservation of locations.

3.4 Experimental Validation

We implemented IM ′
Mrg in IMITATOR [AFKS12], in addition to the classical IM .

In [Dav05], the main technique for merging two timed constraints C ,C ′ consists
in comparing their convex hull H with their union. If the hull and the union are
equal (or alternatively, if (H \ C) \ C ′ = ;, where \ is the operation of convex
difference), then C and C ′ are mergeable into H . In [Dav05, Dav06], this tech-
nique is specialized to the case where the timed constraints are represented as
DBMs. DBMs are not suitable to represent the state space of PTAs; in IMITATOR,
polyhedra are used. We implemented the mergeability test using the (costly)
operation of convex merging from the Parma Polyhedra Library (PPL) [BHZ08].

Table 3.1 describes experiments comparing the performances and results
of IM and IM ′

Mrg . Column |X | (resp. |P |) denotes the number of clocks (resp.
parameters) of the PTA. For each algorithm, columns States, Trans., M, t and Cpl
denote the number of states, of transitions, a tentative size of the heap given by
OCaml, the computation time in seconds, and whether the resulting constraint
is complete1, respectively. In the last 3 columns, we compare the results: first,
we divide the number of states in IM by the number of states in IM ′

Mrg and
multiply by 100 (hence, a number smaller than 100 denotes an improvement
of IM ′

Mrg); second, we perform the same comparison for the computation time;

the last column indicates whether K = K ′
Mrg or K (K ′

Mrg . Experiments were
performed on a KUbuntu 12.10 64 bits system running on an Intel Core i7 CPU
2.67GHz with 4 GiB of RAM.

The first 4 models are asynchronous circuits [CC07, AS13]. The SIMOP
case study is an industrial networked automation system [AS13]. The next 5
models are common protocols [DKRT97, HRSV02, AS13]. The other models
are scheduling problems (e.g., [AM02, BB04a, LPP+10]). All models are de-
scribed and available (with sources and binaries of IMITATOR) on IMITATOR’s
Web page2.

From Table 3.1, we see that IM ′
Mrg has the following advantages. First, the

state space is often reduced (actually, in all but 4 models) compared to IM .
This is particularly interesting for the scheduling problems, with a division of
the number of states by a factor of up to 16 (LA02). Also note that two case

1Whereas IM and IM ′
Mrg may be non-complete in the general case, IMITATOR exploits a suf-

ficient (but non-necessary) condition for completeness to detect completeness, when possible.
2http://www.lsv.ens-cachan.fr/Software/imitator/merging/

http://www.lsv.ens-cachan.fr/Software/imitator/merging/

62 Chapter 3. State Merging in Parametric Timed Automata

IM IM ′
Mrg Comparison

Example |X | |P | States Trans. t M Cpl States Trans. t M Cpl States t K
AndOr 4 12 11 11 0.052 1.98

p
9 9 0.056 1.97

p
82 108 =

Flip-Flop 5 12 11 10 0.060 2.75
p

9 9 0.057 2.74
p

82 108 =
Latch 8 13 18 17 0.083 2.65 ? 12 12 0.069 2.51 ? 67 83 =

SPSMALL 10 26 31 30 0.618 7.746 ? 31 30 0.613 8.254 ? 100 99 =
SIMOP 8 7 - - - OoM - 172 262 2.52 35.3 ? 0 0 -

BRP 7 6 429 474 3.50 40.0
p

426 473 4.30 41.1
p

99 123 =
CSMA/CD 3 3 301 462 0.514 12.5

p
300 461 0.574 13.2

p
100 112 =

CSMA/CD’ 3 3 13,365 14,271 18.3 695
p

13,365 14,271 25.4 739
p

100 139 =
RCP 5 6 327 518 0.748 17.5

p
115 186 0.684 22.3

p
35 91 =

WLAN 2 8 - - - OoM - 8,430 15,152 2,137 100,502
p

0 0 -
ABT 7 7 63 62 0.344 7.55 ? 63 62 0.335 7.44 ? 100 97 =

AM02 3 4 182 215 0.369 6.18
p

53 70 0.112 3.49
p

29 30 (
BB04 6 7 806 827 28.0 66.4 ? 141 145 3.15 14.8 ? 17 11 =
CTC 15 21 1,364 1,363 88.9 150

p
215 264 17.6 27.6

p
16 20 =

LA02 3 5 6,290 8,023 751 425 ? 383 533 17.7 44.6
p

6.0 2.4 (
LPPRC10 4 7 78 102 0.39 5.83 ? 31 40 0.251 3.56 ? 40 64 =

M2.4 3 8 1,497 1,844 8.89 95.7
p

119 181 0.374 9.12
p

7.9 4.2 (

Table 3.1: Comparison between IM and IM ′
Mrg

studies could not even be verified without the merging reduction, due to mem-
ory exhaustion (“OoM”). Second, the computation time is almost always re-
duced when the merging reduction indeed reduces the state space, by a factor
of up to 42 (LA02). Third, and more surprisingly (considering the cost of the
mergeability test), the overhead induced by the mergeability test often does
not yield a significant augmentation of the computation time, even when the
merging reduction does not reduce the state space at all; the worst case is
+39 % (CSMA/CD’), which remains reasonable. Finally, the constraint output
by IM ′

Mrg is weaker (i.e., corresponds to a larger set of valuations) than IM for
some case studies (namely, scheduling problems).

3.5 Discussion

We have shown in this chapter that (1) a general technique of state merging in
PTAs preserves both the reachability and the non-reachability of actions and lo-
cations, (2) the integration of this technique into IM often synthesizes a weaker
(hence, better) constraint while reducing the computation space, and preserves
locations (but neither traces nor actions), and (3) an improved version of IMMrg

preserves not only locations but actions. Experiments with IMITATOR show that
the improved procedure IM ′

Mrg does not only reduce the state space, but is also
often faster than the original procedure IM .

As future work, it would be interesting to to study the combined integration
into IM of the general technique of state merging with variants [AS11] and opti-
mizations [And13b] of IM . Regarding the implementation in IMITATOR, we aim
at studying the replacement of polyhedra with parametric DBMs [HRSV02]; fur-
thermore, the (costly) mergeability test should be optimized so as to improve

3.6. Related Work 63

performance. Finally, we also plan to generalize the merging technique to the
hybrid setting [FK13].

3.6 Related Work

In [SBM06], it is shown that, in a network of TAs, all the successor states can
be merged together when all the interleavings of actions are possible. How-
ever, this result does not extend to the parametric case In [Dav05, Dav06], it is
proposed to replace the union of two states by a unique state when the union
of their continuous part (viz., the symbolic clock values) is convex, and the dis-
crete part (viz., the location) is identical. More precisely, if the union of the con-
tinuous part of two states is included into their convex hull, then the two states
can be replaced with their hull. This technique is applied to timed constraints
represented in the form of Difference Bound Matrices (DBMs). Our merging
technique can be seen as an extension of the technique in [Dav05, Dav06] to
the parametric case. This extension is not trivial (for example, the merging
technique of [SBM06] does not extend to the parametric case), and the imple-
mentation is necessarily different, since DBMs (in their original form) do not
allow the use of parameters. Instead, we implemented our approach in IMITA-
TOR using polyhedra [BHZ08].

64 Chapter 3. State Merging in Parametric Timed Automata

Chapter 4

Application to the Robustness
Analysis of Scheduling Problems

In this chapter, we use the inverse method for timed automata recalled in Chap-
ter 2 to analyze specifically the robustness of real-time scheduling systems.
Furthermore, we use the behavioral cartography of Section 2.7 to synthesize
schedulable zones of real-time systems. More precisely, we are interested here
in representing and analyzing the schedulability region, i.e., the region of pa-
rameter space that corresponds to a feasible design.

Outline of the Chapter Basis scheduling definitions are introduced in Sec-
tion 4.1. In Section 4.2, we explain on an example the principle of the applica-
tion of the inverse method to scheduling problems. In Section 4.3, we apply the
method to various schedulability problems of the literature (jobs with variable
execution times, deadlines), as well as to an industrial case study. An industrial
case study is treated in Section 4.3.3. We compare our approach with an ana-
lytic method in Section 4.4. The results are discussed in Section 4.5. Related
work is discussed in Section 4.6.

4.1 Preliminaries

4.1.1 Scheduling Problems

A real-time system S is viewed in this chapter as a set of jobs {J1, J2, . . . , Jn}.
A job Ji generates a possibly infinite stream of tasks {Ji ,1, Ji ,2, . . .}. When a job
is activated, it executes for at most time Ci , and has to terminate within a rel-
ative deadline Di . Some real-time systems feature a preemption mechanism,
described as follows. Tasks may have a different priority; when a task of low pri-

66 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

ority is preempted by a task with higher priority, the task with lower priority is
interrupted, and will be resumed once the task of higher priority is completed.
The activation of tasks can be modeled by parametric timed automata, where
activation events are associated with transition labels. The timings (Ci ,Di) can
be considered as parameters associated with each job. A parametric job system
S is a set {J1, J2, . . . , Jn} associated with a vector P of parameters. Each design
parameter in P can have a fixed (known) constant value or be a free parameter
(i.e., an unknown constant).

Given a reference valuation π, an instantiated job system S [π] is a job sys-
tem {J1, J2, . . . , Jn} associated with a vector of design parameter P where each
design parameter in P is assigned a fixed value according to the valuation π.
For a given choice π of parameters, we say that a job Ji is schedulable if all the
generated tasks Ji ,k finish their execution before the deadline. The system S [π]
is schedulable if all its jobs are schedulable. In this context, the problem of ro-
bustness is defined as follows.

Problem 1. Given a parametric job system S and a valuation π0 of the param-
eters, find a constraint K0 containing π0 such that S is robust on K0, i.e., for all
π |= K0, S [π] is schedulable if and only if S [π0] is schedulable.

We are also interested in the following problem of computation of schedu-
lability zones. This problem can be seen as a problem equivalent to the good
parameters problem in the setting of scheduling problems.

Problem 2. Consider a parametric job system S , and a rectangle V0 inside the
parameter space. Find the schedulability zone Z , defined as the largest subset
of valuations π of V0 for which S [π] is schedulable.

We show in this chapter that Problem 1 can be solved using the inverse
method for parametric timed automata, and Problem 2 can be solved using
the behavioral cartography of parametric timed automata.

4.1.2 Timed Automata Augmented with Stopwatches

We informally extend here the definition of timed automata (Definition 8) to
the case of stopwatches (see, e.g., [AM02]). Stopwatches are special clocks that
can be stopped in some locations. This formalism of timed automata equipped
with stopwatches (sometimes referred to as stopwatch automata) is often used
in practice, but many problems decidable for timed automata turn undecid-
able for timed automata with stopwatches. Timed automata with stopwatches
are very useful for modeling scheduling problems with preemption, as shown
in [AM02]. We will use in this chapter an extension of the inverse method

4.1. Preliminaries 67

to (parameteric) timed automata with stopwatches. The inverse method has
been extended in [FK13] to hybrid systems; timed automata with stopwatches
are actually a subclass of (linear) hybrid automata, where the clock derivatives
used in activities can be either 0 or 1. Therefore, the correctness and properties
of IM for timed automata with stopwatches can be directly derived from those
of IMH .

4.1.3 System Model

We consider distributed real-time systems consisting of several computational
nodes, each one hosting one single processor, which are connected by one or
more shared networks. Without loss of generality, from now on we will use the
term task to denote both tasks and messages, and the term processor to denote
both processors and networks.

A distributed real-time system consists of a set of task pipelines {P 1, . . . ,P n}
to be executed on a set of processors. A pipeline is a chain of tasks P j =
{τ j

1, . . . ,τ j
n} to be executed in order, and each task is allocated on one (possi-

bly different) processor. In order to simplify the notation, in the following we
sometimes drop the pipeline superscript when there is no possibility of misin-
terpretation.

A pipeline is assigned two fixed parameters: T j is the pipeline period and

D j
e2e is the end-to-end deadline. This means that all tasks of the pipeline are

activated together every T j units of time; and all tasks should be completed

within a time interval of D j
e2e .

A task in the pipeline can be a piece of code to be executed on a processor
or a message to be sent over a network. More precisely, a real-time periodic task
is a tuple τi = (Ci ,Ti ,Di ,Ri , qi , pi , Ji).

This task model contains the following fixed parameters:

• Ti is the task period. All tasks in the same pipeline have period equal to
the pipeline period T ;

• Di is the task relative deadline;

• qi is the task priority; the larger qi , the higher the priority;

• pi is the index of the processor (or network) on which the task executes.

Also, a task is characterised by the following free parameters (variables):

• Ci is the worst-case computation time (or worst-case transmission time,
in case it models a message). It is the worst-case time the task needs to

68 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

complete one periodic instance when executed alone on a dedicated pro-
cessor (or network). In this paper we want to characterise the schedula-
bility of a distributed system in the space of the computation times, so Ci

is a free parameter.

• Ri is the task worst-case response time, i.e. the worst case finishing time
of any task instance relative to the activation of its pipeline.

• Ji is the task worst-case activation jitter, i.e. the greatest time since its
activation that a task must wait for all preceding tasks to complete their
execution.

Every task activation is an instance (or job) of the task. We denote the kth
instance of task τi as τi ,k . An instance τi ,k of a task in the pipeline can start
executing only after the corresponding instance of the preceding task τi−1,k has
completed. Finally, the last task in the pipeline must complete every instance
before De2e units of time from its pipeline’s activation. For a job τi ,k we define
the following notation:

• ai ,k is τi ,k ’s arrival time (coincident with the activation time of the
pipeline).

• si ,k is the start time of the instance, i.e. the first time the instance executes
on the processor.

• fi ,k is the job’s finishing time.

• ri ,k the task release time. The first task of a pipeline is released imme-
diately at the time of its arrival r0,k = a0,k ; successive tasks are released
at the finishing time of the preceding tasks: ri ,k = fi−1,k . The following
relationship holds: ∀i ,k a0,k = ai ,k ≤ ri ,k ≤ si ,k < fi ,k

• The maximum difference between arrival and release time is the worst-
case activation jitter of the task: Ji = maxk (ri ,k −ai ,k).

• The maximum difference between finishing time and arrival time is the
worst-case response time of the task: Ri = maxk (fi ,k −ai ,k).

Parameters Ri and Ji depend on the other tasks parameters and on the schedul-
ing policy according to a complex set of equations. Of course, they cannot be
considered parameters that the programmer can modify: nevertheless, for our
purposes it is useful to consider them as variables to help us write the set of
constraints that define the schedulability space (the exact role of such variables
will be detailed in Section 4.4.2)..

4.1. Preliminaries 69

A scheduling algorithm is fully preemptive if the execution of a lower prior-
ity job can be suspended at any instant by the release of a higher priority job,
which is then executed in its place. A scheduling algorithm is non-preemptive
if a lower priority job, once it has started executing, can complete its execution
regardless of the release of higher priority jobs. In this paper, we consider fully
preemptive fixed priority scheduling for processors, and non-preemptive fixed
priority scheduling for networks.

Modelling the System Using Parametric Stopwatch Automata

Timed Automata with Stopwatches have been used for modelling scheduling
problems in the past. Our model technique is similar to [AM02, AAM06], except
that we model pipelines of tasks, and that we use PSA for obtaining the space
of feasible computation times. In the current implementation, we only model
pipelines with end-to-end deadlines no larger than their periods. This allows us
to simplify the model and reduce the complexity of the analysis. The extension
to deadlines larger than the period is discussed at the end of the section.

We illustrate our model with the help of an example of two pipelines P 1,P 2

with P 1 = {τ1,τ2}, P 2 = {τ3,τ4}, p(τ1) = p(τ4) = p1, p(τ2) = p(τ3) = p2, p1 being
a preemptive processor and p2 being non-preemptive. We have that q1 > q4

and q3 > q2.
Figure 4.1 shows the PSA model of a pipeline. A pipeline is a sequence of

tasks that are to be executed in order: when a task completes its instance, it
instantly releases the next task in the pipeline. Since we assume constrained
deadlines, once every task in the pipeline has completed, the pipeline waits for
the next period to start. This PSA contains one local clock xP 1 , one parameter
T1 (the pipeline’s period), and synchronises on 5 actions: “τ1 release”, “τ1 com-
pleted”, “τ2 release”, “τ2 completed”, and “P 1 restart”. The order of these events
imposes that task τ1 must be entirely executed before task τ2. The initialisa-
tion of the pipeline’s local clock xP 1 and the invariant xP 1 ≤ T1 ensure that the
pipeline’s execution terminates within its period T1. The guard xP 1 == T1 en-
sures that the pipeline restarts after exactly T1 units of time.

τ1 waiting
urgent

τ1 released

τ2 waiting
urgent

τ2 released
P 1 complete

x
P 1 ≤ T1

τ1 release

τ1 completed

τ2 release

τ2 completed

x
P 1 == T1
P 1 restart
x
P 1 := 0

Figure 4.1: PSA modelling a pipeline P 1 with two tasks τ1,τ2

Figure 4.2 shows the model of a preemptive processor with 2 tasks τ1 and τ4,

70 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

where task τ1 has higher priority over task τ4. The processor starts by being
idle, waiting for a task release. As soon as a request has been received (e.g. ac-
tion “τ4 release”), it moves to one of the states where the corresponding task
is running (“τ4 running”). If it receives another release request (“τ1 release”),
it moves to the state corresponding to the higher priority task running (“τ1 re-
lease, τ4 released”). The fact that τ1 does not execute anymore is modelled by
the blocking of the clock xτ4 corresponding to task τ4. Moreover, while a task
executes, the scheduler automaton checks if the corresponding pipeline misses
its deadline (e.g. guard xP 1 > D1

e2e , where D1
e2e is τ1’s deadline). In the case of a

deadline miss, the processor moves to a special failure state (“deadline missed”)
and stops any further computation.

Idle
xτ1 ,xτ4 stopped

τ1 running
xτ4 stopped

τ4 running
xτ1 stopped

τ1 running
τ4 released

xτ4 stopped
Deadline missed

τ1 release

τ4 release

xτ1 ==C1
τ1 completed

xτ1 := 0

τ4 release

x
P 1 > D1

e2e
Deadline miss

xτ4 ==C4
τ4 completed

xτ4 := 0

τ1 release

x
P 2 > D2

e2e
Deadline miss

xτ1 ==C1
τ1 completed

xτ1 := 0

x
P 1 > D1

e2e
or x

P 2 > D2
e2e

Deadline miss

Figure 4.2: PSA modelling a preemptive processor with two tasks τ1,τ4

The model of a non-preemptive processor is very similar to the model of
preemptive processor: the central state in Figure 4.2 which accounts for the
fact that τ4 is stopped when τ1 is released, in the non-preemptive case must
not stop τ4, but simply remember that τ1 has been released, so that we can
move to the top state when τ4 completes its instance.

We use the IMITATOR software tool [AFKS12] implementing the behavioural
cartography, to perform the analysis of the PSA. The tool takes as input a textual
description of the PSA and an interval of values for each parameter, which can
be seen as a hypercube in |P | dimensions, with |P | the number of parameters.
Then, it explores the hypercube of values using IM , and it outputs a set of tiles.

For each tile, IMITATOR derives whether the corresponding system be-
haviour is valid (i.e. no deadline miss is present), which corresponds to a good
tile, or invalid (at least one deadline miss has been found), which corresponds
to a bad tile. Every behaviour can be regarded as a set of traces of the system.
Although deadline misses are timed behaviours, they are reduced to (untimed)
traces thanks to the “deadline miss” location of the processor PSA. All points

4.2. Scheduling Analysis Using the Inverse Method 71

inside one particular tile are values of the parameters that generate equivalent
behaviours (they correspond to the same trace set).

The result of the behavioural cartography is a set of tiles that covers “al-
most”1 the entire hypercube. The region of space we are looking for is the union
of all the good tiles.

The proposed model can be extended to deal with deadlines greater than
periods by changing the automaton in Figure 4.1. In particular, we must take

into account that each task can have up to
⌈

De2e
T

⌉
pending instances that have

not completed yet. However, the number of locations increases with
⌈

De2e
T

⌉
and

thus the complexity of the analysis.

4.2 Scheduling Analysis Using the Inverse Method

We introduce here a method based on the inverse method, that performs
scheduling analysis for real-time systems [FLMS12]. Throughout this sec-
tion, we explain the method on a preemptive jobshop example introduced
in [AM02]. This example is a preemptive scheduling problem, encoded
in [AM02] using timed automata augmented with stopwatches. The jobshop
scheduling problem is a generic resource allocation problem in which com-
mon resources (“machines”) are required at various time points (and for given
duration) by different tasks. Suppose we are given a fixed set M of machines.
A step is a pair (m,d) where m ∈ M and d ∈ N, indicating the required uti-
lization of resource m for time duration d . A job is a finite sequence J =
(m1,d1), (m2,d2), · · · , (mk ,dk) of steps stating that in order to accomplish job
J , one needs to use a machine m1 for d1 time units, then use machine m2 for d2

time units, and so on.

4.2.1 Modeling Schedulability with Timed Automata

Consider the jobshop system S = {J1, J2} for 2 jobs and 3 machines m1,m2,m3

with: J1 = (m1,d1), (m2,d2), (m3,d3) and J2 = (m2,d ′
2) with d1 = 3,d2 = 2,d3 =

4,d ′
2 = 5. The classical problem, called the “makespan” problem, consists of

finding the minimum time (makespan) needed for completing all the tasks
(with the constraint that, at any time, a machine can execute only one task). In
[AM02], it is shown how to solve the makespan problem for S using a timed au-
tomaton A . Actually, we do not adress the makespan problem here, but rather

1Technically, a part might be non-covered in some cases at the border between the good and
the bad subspace; this part has a width of at most ε, where ε is an input of the tool; of course,
the smaller ε, the more costly the analysis (see [AF10, AS13]).

72 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

the schedulability problem. More precisely, we suppose that a certain constant
bound (or deadline) µ is given, and we ask whether or not the system is schedu-
lable, i.e., if there is a way (schedule) to complete all the jobs within µ time
units.

In order to treat schedulability, we add to the system an extra “observer”
timed automaton (see, e.g., [ABL98, ABBL98, And13a]), that features a special
clock measuring the global time. When this special clock goes beyond the dead-
lineµ, the observer goes into a special location called “FAILURE”. Hence, a trace
ending in location “FAILURE” is a bad trace, because the deadline has been
fired before all jobs are completed. On the contrary, if all jobs could be com-
pleted before the deadline µ, the observer goes into a special location called
“SUCCESS”. The system is schedulable if there exists at least one trace such that
a location “SUCCESS” is reachable. Formally, we make the following assump-
tion for the remaining of this chapter.

The system S is modeled by a parametric timed automaton A such that,
for any valuation π, one can infer the schedulability of S [π] by looking at the
set of locations of A [π]. The system is schedulable if and only if at least one
location “SUCCESS” is reachable.

Under this assumption, IM can measure the robustness of the system
around π0. Indeed, since the trace set of A [π] is the same as for A [π0] for
any π |= IM(A ,π0), then the set of reachable locations is the same too. Hence
the system S [π] is schedulable for any π |= IM(A ,π0) if and only if S [π0] is
schedulable. Note that, since we are interested in the preservation of locations,
which is a weaker property than the equality of traces, we can use variants of
the inverse method that preserve (at least) locations. This is in particular the
case of the inverse method with merging 3.

4.2.2 Robustness Analysis Using the Inverse Method

Let us illustrate the application of IM to scheduling problems by analyzing the
robustness of the preemptive jobshop example of [AM02] around the valuation
π0 : {d2 = 2,d ′

2 = 5}, for the bound µ= 10. We first consider a parametric version
of A where d2 and d ′

2 become parameters. We then apply IM to A and π0; the
resulting constraint K0 is given in Figure 4.3(a), with its geometrical represen-
tation in Figure 4.3(b). From the correctness of IM , the trace set of A is always
the same, for any point (d2,d ′

2) of K0. This trace set is depicted under the form
of a graph in Figure 4.4 (recall that this graph representation is for sake of con-
ciseness only; the trace set is a set of traces). Here, although many branches of
the tree finish in a FAILURE location, there are also several branches that end
in a SUCCESS location. These branches correspond to the schedules which are
completed within µ = 10 time units. The system is thus schedulable, for any

4.2. Scheduling Analysis Using the Inverse Method 73

d ′
2 < 7

∧ d2 < 3
∧ d ′

2 +d2 ≥ 7

(a) Constraint K0 (b) Geometrical repre-
sentation

Figure 4.3: Application of IM to [AM02] with π0 : {d2 = 2,d ′
2 = 5}

point (d2,d ′
2) of K0. For example, we can increase d2 from 2 to 3, or increase d ′

2
from 5 to 7 while keeping the completion time less than or equal to 10.

Figure 4.4: Trace set for the jobshop example

4.2.3 Schedulability Zone Synthesis

We now apply the behavioral cartography of Chapter 2.7 to solve the problem
of synthesis of the schedulability zone (Problem 2) for the preemptive jobshop
example of [AM02]. Let us consider a given rectangle V0, say [0,11]×[0,11], and
let us apply the BC method. We apply IM iteratively by lettingπ0 equal to all the

74 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

Figure 4.5: Schedulability zones (in green, the system is schedulable)

possible integer values of V0. We thus synthesize different constraints K , which
characterize different “behavior tiles”. For any point of a tile, the behavior is
uniform: either the system is schedulable (i.e., the set of feasible schedules is
non empty) everywhere in the tile or nowhere in the tile. After 10 iterations,
the rectangle V0 (actually, the whole real-valued plan) is covered by the tiles
generated successively. This is depicted in Figure 4.5. The green (resp. red)
zone corresponds to the schedulable (resp. non-schedulable) zone.

4.3 Application to Scheduling Problems

In this section, we apply the approach of Section 4.2 to several scheduling prob-
lems from the literature, viz., the schedulability of jobs with deadlines (Sec-
tion 4.3.1), a problem of synthesis of schedulability zone (Section 4.3.2), and
an industrial case study designed by ASTRIUM (Section 4.3.3). All experiments
have been performed using tool IMITATOR [AFKS12], that can also be applied to
timed automata augmented with stopwatches.

4.3.1 Jobs with Deadlines

We consider here a system considered in [CPR08b, LPP+10] with a set of jobs
{J1, . . . , Jn}. Each job Ji is periodic of period Ti (a fixed duration of time between
two activation events), and an offset Oi for its first activation time. Once a job Ji

has been activated, it executes for at most time Ci and has to terminate within
the deadline Di . The system is schedulable if each job Ji is completed before
its relative deadline Di

2. We consider the case of two periodic jobs {J1, J2} with
D1 = 7,T1 = 10,O1 = 0,C1 = 3,D2 = 6,T2 = 10,O2 = 3,C2 = 5. We parameterize

2Actually, because of the periodicity of the system, we only have to be sure that it is schedu-
lable within the least common multiple of the Ti s, for i = 1. . .n.

4.3. Application to Scheduling Problems 75

C1,C2 and O2. Applying IM , we find the constraint K0 given in Figure 4.6(a). In
[CPR08b], the authors use a CEGAR-based method to synthesize a constraint
on the parameters, recalled in Figure 4.6(b), that guarantees that the system is
schedulable. This latter constraint is incomparable with the constraint K0.

6 ≥C2

∧ 3 ≥C1

∧ 6C1 > 17
∧ 2C1 +C2 > 6+O2

∧ 10−C −2 ≥O2 ≥C1
(a) Constraint by IM

C1 +C2 < 6+O2

∧ 6 <C1 +C2 < 10
∧ C2 < 10−O2

∧ C1 < 7
∧ C2 < 6

(b) Constraint by [CPR08b]

Figure 4.6: Constraints synthesized for the [CPR08b, LPP+10] case study

4.3.2 Schedulability Zone Synthesis

Let us apply the behavioral cartography method in order to determine zones of
schedulability on an example with fixed priority (“Rate Monotonic”) of [BB04a,
Section III]. There are three periodic jobs J1, J2 and J3 with periods of T1 =
3, T2 = 8 and T3 = 20 and deadlines of D1 = 3, D2 = 8 and D3 = 20. Our aim
is to find a set of computation times Ci of each job τi (1 ≤ i ≤ 3) such that the
system is schedulable, i.e., such that each job Ji is completed before Ti time
units (Ci ≤ Ti for all 1 ≤ i ≤ 3).

Let V0 be the set of triples (C1,C2,C3) ranging over [0,3]× [0,8]× [0,20]. Al-
gorithm BC outputs a set of tiles, and it suffices to check one point per tile
to determine the schedulability of the whole tile. The result for this example
is given in Figure 4.7, using a discretization step of 0.2 on V0. Since IMITA-
TOR cannot output graphics in 3 dimensions, we project onto C1 and C2 (with
C3 = 0), onto C1 and C3 (with C2 = 0), and onto C2 and C3 (with C1 = 0), in
Figures 4.7(a), 4.7(b) and 4.7(c), respectively (as it is done in [BB04a]). In each
case, the green zone corresponds exactly to the schedulability region found us-
ing analytic methods in [BB04a, Figure 1(a)].

4.3.3 Next Generation Spacecraft Flight Control System

General Description

We describe here a prospective architecture for the flight control system of the
next generation of spacecrafts designed by ASTRIUM Space Transportation.
This work is part of a global project preparing the next generation of launcher

76 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

(a) C1 and C2 (with C3 = 0) (b) C1 and C3 (with C2 = 0) (c) C2 and C3 (with C1 = 0)

Figure 4.7: Schedulability zones (in green the system is schedulable)

Figure 4.8: Architecture scheme

avionics architecture [MGS12]. In this design, the architecture is distributed
on three processors (CNav, CSeq, CCtrl) devoted to the treatment of information
coming from the sensors, the computational analysis of the data, and the man-
agement of data to be sent to the actuators. The software running on each pro-
cessor unit is organized into several partitions. Each partition contains itself
several programs devoted to specific tasks. This is described in Figure 4.8: the
outer boxes (in green) correspond to processors, the intermediate boxes (in or-
ange) to partitions, and the inner boxes (in blue) to tasks. Each task τ is peri-
odic, and characterized by a triple (O,C ,T) of timings, where O corresponds to
the offset, C to the execution time, and T to the period. Within a given parti-
tion, tasks are preemptible and scheduled according to a fixed priority sched-
uler, called “Rate Monotonic”: the priority between two activated tasks is given
to the task with the smaller period.

Tasks belonging to different partitions on a same processor are independent
and can preempt each other. The preemption of one task of some partition by a
task of another partition is called a partition switch. Partition switches are per-
formed at predefined moments of time (i.e., are time triggered). An expected

4.3. Application to Scheduling Problems 77

Task Abbreviation (O,C ,T)
Integration loop Intloop (0,8,20)

Gyroscope Management GyroMgt (8,20,200)
Navigation Navigation (16,8,40)

Navigation telemetry NTM (2,10,50)
Mission and Vehicle Management (slow) MVMSlow (2,60,200)
Mission and Vehicle Management (fast) MVMFast (0,4,20)

Guidance Guidance (117,40,20000)
Guidance telemetry GTM (1,60,200)

Control loop CtrLoop (0,5,20)
Engine management EngMgt (15,12,50)

Control Control (1,15,100)
Control telemetry CTM (50,25,200)

Table 4.1: Classical valuation of the parameters

output of the scheduling problem is the values of these moments (i.e., the start
time of activation and end time of activation of each partition). There are thus
a priori several sources of nondeterminism:

1. Inside a same processor, there are switches of partitions, and

2. the interleavings between the tasks processed by the different processors.

In addition, the system is organized into jobs (or “end-to-end flows”): each
job Ji is described as a sequence of tasks {Ji ,1, Ji ,2, . . .}. (Ji , j cannot execute until
its immediate predecessor Ji , j−1 completes.) A deadline Di is associated with
each job Ji : the last task of the job has to be completed before the deadline. The
end-to-end flow is depicted in Figure 4.8 using the sequence of arrows (in red).

Note that, by comparison, the architecture of the flight control system run-
ning presently on the ASTRIUM Space Transportation spacecrafts is generally
monoprocessor and mono-partition (see, e.g., [BDP10]).

Reference Parameter Valuation

A classical valuation π0 of the triple (O,C ,T) can for instance be the one given
in Table 4.1, where O denotes the offset, C the execution time, and T the pe-
riod. The job (end-to-end flow) J considered corresponds to the list (IntLoop,
GyroMgt, Navigation, Guidance, CTM , Control, EngMgt, CtrLoop). The associ-
ated deadline is D = 300.

78 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

Figure 4.9: Chronogram of a schedule for J

Quantitative Robustness Analysis

We analyze the system from a quantitative robustness point of view follow-
ing two steps. In a first step, we apply a standard reachability analysis to the
system instantiated with π0, and generate all the feasible schedules that sat-
isfy the deadline D . This can be performed using most tools for the verifi-
cation of (nonparametric) timed systems (IMITATOR actually also implements
this feature). Among these schedules, we focus on a schedule that minimizes
the number of partition switches. This schedule is depicted in Figure 4.9,
under the form of a chronogram. One division of the time corresponds to
1 time unit, and the job is completed after 285 time units. The upper level
of large, plain rectangles (in orange) indicates the running of the MVMFast-
MVMSlow partition while the lower level indicates the running of the GTM-
Guidance partition on processor CSeq. In the ASTRIUM project design, the par-
tition switches are time-triggered: the switches are performed at predefined
moments. For example, the admissible schedule depicted in Figure 4.9 can be
seen as a way of programming the partition switches on the second processor
CSeq (corresponding to border between contiguous orange rectangles) at times:
51,60,64,96,104,136,144,171,251,260,264.

In a second step, we apply this method to analyze the robustness of the
execution times and offset times while keeping the above time-triggered se-
quence of partition switchings. This is done by imposing the values of time
of partition switches, as specified above, and parameterizing all the execution
times C s and offsets Os corresponding to tasks MVMFast, MVMSlow, GTM and
Guidance. The method then outputs the following constraint K0:

4.4. A Comparison with Analytic Method 79

4 ≥CMVMFast > 1 ∧ 8CMVMFast +CMVMSlow > 71
∧ CGTM > 57 ∧ 100 ≥CGuidance +CGTM > 89
∧ 120 >OGuidance ≥ 55+CGTM ∧ OGuidance >CMVMFast +CMVMSlow

∧ CMVMFast >OMVMSlow >OGTM > 0 ∧ OMVMFast = 0

For any tuple of values satisfying the constraint K0, the time-triggered schedule
of Figure 4.9 is still valid.

In more classical approaches, tools only compute a solution of the schedul-
ing problem. The engineers using this automatically computed result may then
completely lose the feeling of their system; in particular, they cannot quantify
the robustness of the design with respect to, for instance, small variations of
worst case execution times or delay deadlines. In contrast, the constraint K0

indicates clearly to the designer some degrees of freedom, allowing a better
mastering of the margin policy.

4.4 A Comparison with Analytic Method

4.4.1 Analytic Method

In this section we present a novel method for parametric analysis of distributed
system. The method extends the sensitivity analysis by Bini et al. [SLS98, Bin04]
to include jitter and deadline parameters.

In Sections 4.4.1 and 4.4.2, we only consider the scheduling of indepen-
dent periodic tasks in a single processor. Then, in Section 4.4.2, we extend the
schedulability analysis to distributed systems.

Preemptive Tasks with Constrained Deadlines

There are many ways to test the schedulability of a set of real-time periodic
tasks scheduled by fixed priority on a single processor. In the following, we will
use the test proposed by Seto et al. [SLS98] because it is amenable to parametric
analysis of computation times, jitters and deadlines.

The original theorem was formulated for tasks with deadlines equal to peri-
ods. For the moment, we generalise it to tasks with constrained deadlines (i.e.
Di ≤ T), while in Section 4.4.2 we deal with unconstrained deadlines, jitter and
non-preemptive scheduling.

Definition 30. The set of scheduling points Pi−1(t) for a task τi is the set of
all vectors corresponding to multiples of the period of any task τ j with priority
higher than τi , until the maximum possible value of the deadline. It can be com-

puted as follows. Let η j (t) =
⌈

t
T j

⌉
, and let ηi−1(t) be the corresponding vector of

80 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

i −1 elements with j = 0, . . . , i −1. Then:

Pi−1(t) = {ηi−1(t)}∪ {ηi−1(kTh) | 0 < kTh < t ,h < i } (4.1)

Theorem 8 ([SLS98]). Consider a system of periodic tasks {τ1, . . . ,τn} with con-
strained deadlines and zero jitter, executed on a single processor by a fixed pri-
ority preemptive scheduler. Assume all tasks are ordered in decreasing order of
priorities, with τ1 being the highest priority task.

Task τi is schedulable if and only if:

∃n ∈Pi−1(Di)

Ci +
i−1∑
j=1

n j C j ≤ nk Tk ∀k = 1, . . . , i −1

Ci +
i−1∑
j=1

n j C j ≤ Ri

Ri ≤ Di

(4.2)

where n is a vector of i −1 integers, and Pi−1(Di) is the set of scheduling points.

Notice that, with respect to the original formulation, we have separated the
case of k = i from the rest of the inequalities and we introduced variable Ri .

The theorem allows us to only consider sets of linear inequalities, because
the non-linearity has been encoded in the variables n j . Each vector n defines
a convex region (maybe empty) with variables C1, . . . ,Ci and R1, . . . ,Ri . The “ex-
ists” quantifier means that the region for each task τi is the union of convex re-
gions, hence it may be non-convex. Since we have to check the schedulability of
all tasks, we must intersect all such regions to obtain the final region of schedu-
lable parameters. The resulting system is a disjunction of sets of conjunctions
of inequalities. Geometrically, this corresponds to a non-convex polyhedron in
the space of the variables C and R of tasks.

It is worth to note that, using this formulation, we can compute the re-
sponse time of a task by simply minimising the corresponding variable Ri un-
der the constraints of Equation (4.2). As an example, consider the following
task set (the same as in [BB04b]): τ1 = (C = 1,T = 3),τ2 = (C = 2,T = 8),τ3 =
(C = 4,T = 20), in decreasing order of priority, to be scheduled by preemptive
fixed priority scheduling on a single processor.

We consider the response time R3 as a parameter and set up the system
of inequalities according to Equation (4.2). After reduction of the non-useful
constraints, we obtain 12 ≤ R3 ≤ 20. Therefore, the response time is R3 = 12,
which is the same that can be obtained by classical response time analysis.

4.4. A Comparison with Analytic Method 81

4.4.2 Extensions to the Model

We now extend Seto’s test to unconstrained deadlines and variable jitters, and
non-preemptive scheduling. Non-preemptive scheduling can be modelled by
considering an initial blocking time, due to the fact that a task cannot preempt
lower-priority executing tasks.

The worst case response time for a non preemptive task τi can be found in
its longest i -level active period [BLV07]. An i -level active period Li is an interval
[a,b) such that the amount of processing that needs to be performed due to
jobs with priority higher than or equal to τi (including τi itself) is larger than 0
for all t ∈ (a,b), and equal to 0 at instants a and b. The longest Li can be found
by computing the lowest fixed point of a recursive function. Notice that, by
considering non-preemption and tasks with deadline greater than periods, the
worst-case response time may be found in any instance of the active period, not
necessarily in the first one (as with the classical model of constrained deadline
preemptive tasks).

Unfortunately, the longest busy period cannot be computed when tasks
have parametric worst-case computation times. However, under the assump-
tion that there is at least an idle-time in the hyperperiod (i.e. its utilisation is
strictly less than 100%) a sufficient feasibility test can be derived by computing
the worst-case response time for every instance of the task set in the hyperpe-
riod Hn . Therefore, we can extend our model as follows.

Theorem 9. A non preemptive task τi is schedulable if ∀h = 1, . . . , Hn
Ti

, ∃n ∈
Pi−1((h −1)Ti +Di) such that

• Bi + (h −1)Ci +
i−1∑
j=1

n j C j ≤ nl Tl − Jl ∀l = 1, . . . , i −1;

• Bi + (h −1)Ci +
i−1∑
j=1

n j C j ≤ (h −1)Ti +Ri −Ci − Ji ;

• Ri ≤ Di and Bi ≤C j −1 for all j > i .

Proof. See [SSL+13b].

Term Bi is an additional internal variable used to model the blocking time
that a task suffers from lower priority tasks. It is possible to avoid the intro-
duction of this additional variable by substituting it in the inequalities with a
simple Fourier-Motzkin elimination.

Notice that the introduction of unconstrained deadlines adds a great
amount of complexity to the problem. In particular, the number of non-convex
regions to intersect is now O (

∑n
i=1

Hn
Ti

), which is dominated by O (nHn). So, the

82 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

proposed problem representation is pseudo-polynomial in the size of the hy-
perperiod. However, in real applications, we expect the periods to have “nice”
relationships: for example, in many cases engineers choose periods that are
multiples of each others. Therefore, we expect the set of inequalities to have
manageable size for realistic problems.

Distributed Systems

Until now, we have considered the parametric analysis of independent tasks
on single processor systems, with computation times, response times, blocking
times and jitters as free variables.

One key observation is that a precedence constraint between two consecu-
tive tasks τi and τi+1 in the same pipeline can be expressed as Ri ≤ Ji+1. This
relationship derives directly from the definition of response time and jitter in
Section 4.1.3. Using this elementary property, we can now build the parametric
space for a distributed system as follows.

1. For each processor and network, we build the constraint system of Theo-
rem 9. Notice that the set of constraints for the individual single proces-
sor systems are independent of each other (because they are constraints
on different tasks).

2. For each pipeline P a :

• two successive tasks τa
i and τa

i+1 must fulfil the constraint Ra
i ≤ J a

i+1;

• for the initial task we impose J a
1 = 0.

Such pipeline constraints must intersect the combined system to produce
the final system of constraints. However, simply adding the above precedence
constraints can lead to pessimistic solutions. In fact, if two tasks from the same
pipeline are assigned to the same processor, the interference they may cause
on each other and on the other tasks may be limited.

Suppose τa
i and τa

j are allocated to the same processor and q a
i > q a

j . Then,

τa
i can at most interfere with the execution of a job from τa

j a number of times

equal to ξ=
⌈

max{0,Da
e2e−T a }

T a

⌉
. So, we impose that ∀n ∈P j−1, ni ≤ ξ.

The analytic method proposed in this section has been implemented in a
software tool, called RTSCAN, which is based on the PPL (Parma Polyhedra Li-
brary) [BHZ08], a library specifically designed and optimised to represent and
operate on polyhedra. The library efficiently operates on rational numbers with
arbitrary precision: therefore, in this work we make the assumption that all

4.4. A Comparison with Analytic Method 83

variables (computations times, response times and jitter) are defined in the do-
main of rationals (rather than reals).

We observed that the complexity of the methodology for generating the pa-
rameter space strongly depends on the number of free parameters considered
in the analysis. Therefore, as a preliminary step, the tool requires the user to se-
lect a subset of the computation times on which the analysis will be performed,
whereas the other parameters will be assigned fixed values. During construc-
tion of the polyhedron we have to keep Ri , Ji and Bi for each task as variables.
Therefore, the number of variables to be managed is nV = 4 · N +F , where N
is the number of tasks and F is the number of variables to analyse. At the end,
we can eliminate the Ri , Ji and Bi variables, hence the final space consists of
F dimensions. An evaluation of this tool and of the run-time complexity of the
analysis will be presented in Section 4.4.3.

The analytic method described so far is not exact. In fact, when dealing with
pipelines in a distributed system we may sometimes overestimate the interfer-
ence of higher priority-tasks on lower priority ones. For this reason, we now
present an exact parametric analysis based on PSA and model checking.

4.4.3 Comparison

In this section we evaluate the effectiveness and the running time of the two
proposed tools on two case studies. As a baseline comparison, we choose to
also run the same kind of analysis on the same case studies using MAST.

In order to simplify the visualisation of the results, for each test case we
present the 2D region generated for two parameters only. However, all three
methods are general and can be applied to any number of parameters. In Sec-
tion 4.4.3 we will present the execution times of the three tools on the test-cases.

MAST [GHGGPGDM01] is a software tool implemented and maintained by
the CTR group at the Universidad de Cantabria that allows to perform schedu-
lability analysis for distributed real-time systems. It provides the user with sev-
eral different kinds of analysis. For our purposes, we have selected the “Offset
Based analysis” [PGH98], an improvement over classical holistic analysis that
takes into account some of the relationships between tasks belonging to the
same pipeline.

Test Case 1

The first test case (TC1) has been adapted from [PGH98] (we reduced the
computation times of some tasks to position the system in a more interest-
ing schedulability region). It consists of three simple periodic tasks and one
pipeline, running on two processors (p1 and p3), connected by a CAN bus (p2).

84 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

Pipeline/Task T De2e Tasks C q p
τ1 20 20 - free 9 1

P 1 150 150

τ1
1 free 3 1
τ1

2 10 9 2
τ1

3 8 5 3
τ1

4 15 2 2
τ1

5 25 2 1
τ2 30 30 - 6 9 3
τ3 200 200 - 40 2 3

Figure 4.10: TC1 – all numbers in
“ticks”

Figure 4.11: TC1: Schedulabil-
ity regions produced by RTSCAN

(hatched), MAST (red, below), and
IMITATOR (green, above)

The parameters are listed in Figure 4.10. The pipeline models a remote pro-
cedure call from processor 1 to processor 3. All tasks have deadlines equal to
periods, and also the pipeline has end-to-end deadline equal to its period. Only
two messages are sent on the network, and according to our optimisation rule
for building parametric space, if the pipeline is schedulable, they cannot in-
terfere with each other. We performed parametric schedulability analysis with
respect to C1 and C 1

1 .
The resulting regions of schedulability from the three tools are reported in

Figure 4.11. In this particular test, RTSCAN dominates MAST. After some de-
bugging, we discovered that the analysis algorithm currently implemented in
MAST does not consider the fact that the two messages τ1

2 and τ1
4 cannot in-

terfere with each other, and instead considers a non-null blocking time on the
network.

As expected, the region computed by IMITATOR dominates the other two
tools. This means that there is much space for improvement in the analysis
even for such simple systems.3

Test Case 2

The second test case is taken from [WTVL06]. It consists of two pipelines on 3
processors (with id 1, 3 and 4) and one network (with id 2). We actually con-
sider two versions of this test case: in the first version (a) pipeline P 1 is periodic
with period 200ms and end-to-end deadline equal to the period. In the second

3By zooming in the figure, it looks like in some very small areas, the region produced by
RTSCAN goes over the region produced by IMITATOR. However, remember that both tools only
deal with integer numbers; that small region does not contain any integer point.

4.4. A Comparison with Analytic Method 85

Pipeline T De2e Tasks C q p

P 1 200
(30)

200

τ1
1 4,546 10 1
τ1

2 445 10 2
τ1

3 9,091 10 4
τ1

4 445 9 2
τ1

5 free 9 1

P 2 3,000 1,000

τ2
1 free 9 4
τ2

2 889 8 2
τ2

3 44,248 10 3
τ2

4 889 7 2
τ2

5 22,728 8 1

Figure 4.12: Test case 2: periods and
deadlines are in milliseconds, com-
putation times in micro-seconds.

Figure 4.13: Schedulability regions for
test case 2a, produced by RTSCAN

(hatched), MAST (red), and IMITATOR

(green)

version (b), the period of the first pipeline is reduced to 30ms (as in the original
specification in [WTVL06]). The full set of parameters is reported in Table 4.12,
where all values are expressed in microseconds. We perform parametric analy-
sis on C 1

5 and C 2
1 .

For version (a) we run all tools and we report the regions of schedulabil-
ity in Figure 4.13. Once again IMITATOR dominates the other two. Also, MAST

dominated RTSCAN. The reason is due to the offset-based analysis methodol-
ogy used in MAST, which reduces the interference on one task from other tasks
belonging to the same pipeline.

For version (b) we run only RTSCAN and MAST, because in the current
version we only model constrained deadline systems with IMITATOR. The re-
sults for version (b) are reported in Figure 4.14. In this case, MAST dominates
RTSCAN. Again, this is due to the fact that MAST implements the offset-based
analysis.

Execution Times

Before looking at the execution times of the three tools in the three different
test cases, it is worth to discuss some details about their implementation.

IMITATOR produces a disjunction of convex regions. However, these re-
gions are typically small and disjoints. Moreover, to produce a region, IMITA-
TOR needs to start from a candidate point on which to call IM , and then move to
close-by regions. One key factor here is how this search is performed. Currently,
IMITATOR searches for a candidate point in the neighbourhood of the current

86 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

Figure 4.14: Schedulability regions for
test case 2b, produced by RTSCAN

(grey, below) and MAST (red, above)

Test Case RTSCAN MAST IMITATOR

1 0.27s 7 s 19min42
2a 0.47s 40min13 2h08
2b 1min11 33min19 –

Figure 4.15: Execution times of the
tools

region. This is a very general strategy that works for any kind of PSA. However,
the particular structure of schedulability problems would probably require an
ad-hoc exploration algorithm.

MAST can perform sensitivity analysis on one parameter (called slack com-
putation in the tool), using binary search on a possible interval of values. There-
fore, to run the experiments, we performed a cycle on all values of one param-
eter (with a predefined step) and we asked MAST to compute the interval of
feasible values for the other parameter.

All experiments have been performed on an Intel Core I7 quad-core pro-
cessor (800 MHz per processor) with 8 GiB of RAM. The execution times of the
tools in the three test cases are reported in Figure 4.15. RTSCAN is the fastest
method in all test-cases. In test case 2b, the execution time of RTSCAN is much
larger than the one obtained from test case 2a. This is due to the fact that in
test case 2b one pipeline has end-to-end deadline greater than the period, and
therefore RTSCAN needs to compute many more inequalities (for all points in
the hyperperiod). Finally, IMITATOR is the slowest of the three and does not
scale well with the size of the problem. We observed that the tool spends a few
seconds for computing the schedulability region around each point. However,
the regions are quite small, and there are many of them: for example, in test
case 2a IMITATOR analysed 257 regions. Also, the tool spends a large amount
of time in searching for neighbourhood points. We believe that some improve-
ment in the computation time of IMITATOR can be achieved by coming up with
a different exploration strategy more specialised to our problem.

We also evaluated the scalability of RTSCAN with respect to the number of
parameters. To do this, we run the tool on test case 2b with a varying number of
parameters. The computation time went from 1min11 for F = 2 parameters, up
to 20min15 for the case of F = 6. With F = 6, the memory used by our program

4.5. Discussion 87

took a peak utilisation of 7.2 GiB, close to the memory limit of our PC. However,
we believe that 6 parameters are sufficient for many practical engineering uses.

4.5 Discussion

As shown on different case studies of the literature, this procedure provides the
designer with a uniform method for evaluating quantitatively the robustness of
scheduling solutions. Furthermore, as exemplified on an industrial case study,
this approach is able to manage a large scope of industrial problems in the do-
main of critical embedded software. Compared to classical approaches, it au-
tomates a boring error-prone manual activity and it formalizes the margins of
evolutions of the system (margins which are generally only estimated without
formally insurance of validity).

However, in spite of first promising successes, this approach meets a com-
binatory explosion problem when faced with even more sophisticated space
systems designs that integrate more partitioning and distributed comput-
ing. Adaptations of the method in order to tackle such highly distributed-
computing architectures should be performed.

4.6 Related Work

The use of models such as parametric timed automata and parametric time
Petri nets for solving scheduling problems has received attention in the past
few years. The approach most related to the method described in this chap-
ter is [CPR08b, LPP+10], where the authors infer parametric constraints guar-
anteeing the feasibility of a schedule, using parametric timed automata with
stopwatches. The main difference here relies in the choice here of the inverse
method, rather than a CEGAR-based method. First results obtained on the
same case studies are incomparable (although similar in form), which seems
to indicate that the two methods are complementary. The problem of finding
the schedulability region was attacked in analytic terms in [BB04a]; the size of
the examples considered in this chapter is rather modest compared to those
treated using such analytic methods. However, in many schedulability prob-
lems, no analytic solution exists (see, e.g., [SGL97]), and exhaustive simulation
is exponential in the number of jobs. In such cases, symbolic methods as the
inverse method and those of [CPR08b, LPP+10] are useful to treat critical real-
life examples of small or medium size, as exemplified here in Section 4.3.3.

Many research papers have already addressed the problem of parametric
schedulability analysis, especially on single processor systems. Bini and But-

88 Chapter 4. Application to the Robustness Analysis of Scheduling Problems

tazzo [Bin04] proposed an analysis of fixed priority single processor systems,
which is used as a basis for this paper.

Parameter sensitivity can be also be carried out by repeatedly applying clas-
sical schedulability tests, like the holistic analysis [PGH98]. One example of this
approach is used in the MAST tool [GHGPD01], in which it is possible to com-
pute the slack (i.e. the percentage of variation) with respect to one parameter
for single processor and for distributed systems by applying binary search in
that parameter space [PGH98].

A similar approach is followed by the SymTA/S tool [HHJ+05], which is
based on the event-stream model [RE02]. Another interesting approach is the
Modular Performance Analysis (MPA) [WTVL06], which is based on Real-Time
Calculus. In both cases, the analysis is compositional, therefore less complex
than the holistic analysis. Nevertheless, these approaches are not fully para-
metric, in the sense that it is necessary to repeat the analysis for every combi-
nation of parameter values in order to obtain the schedulability region.

Model checking of parametric timed automata (PTA) or parametric stop-
watch automata (PSA) can be used for parametric schedulability analy-
sis [CPR08a]. In particular, thanks to generality of the PTA and PSA modelling
language, it is possible to model a larger class of constraints, and perform para-
metric analysis on many different variables, for example task offsets. This ap-
proach has been recently extended to distributed real-time systems [LPPR13].

Also grounded on PTA and PSA is the Inverse Method [AS13], applied in
particular to schedulability analysis [FLMS12]. This method is very general be-
cause it permits to perform analysis on any system parameter. However, this
generality may be paid in terms of complexity of the analysis.

In this paper, we aim at performing fully parametric analysis of real-time
distributed systems. We first present extensions of the methods proposed
in [Bin04] to the case of distributed real-time systems. We also present a model
of a distributed real-time systems using PSA, and compare the two approaches
against classical analysis in MAST.

Chapter 5

Conclusion and Perspectives

Multiprocessor and multicores architectures are widely accepted for personal
use. These systems allow for faster, cheaper and less energy consuming compu-
tations. However, due to the difficulty to certify them, industrial use for critical
systems is marginal. Formal methods can be useful but often suffer from the
state space explosion.

The Inverse Method was designed to work on PTA to verify asynchronous
circuits, communication protocols and so on. We have shown how to extend it
to stopwatches instead of clocks in order to verify scheduling with preemption.
To overcome the state space explosion, we have extended a state merging tech-
nique on TA to PTA by using convexity properties. We have shown that some
interesting properties can still be verified when using merging.

Our approach has then been applied to several case studies from the litera-
ture and to an industrial case study. We have designed a scheduler for the As-
trium case study and we have provided a constraint on the parameters so that
this scheduler is correct no matter what parameter valuation is chosen inside
this constraint. This allow the design team some freedom to modify the param-
eters valuation without having to go through a costly testing phase. The first
results are very promising and we think that our method can be useful and may
scale up by tuning our approach to this type of case study by using theorems
from the schedulability community or using model reduction.

The Behavioral Cartography is of interest when solving the schedulability
problem because it is exact whereas most traditional techniques are under-
approximation. Moreover, in our approach, periods, deadlines, WCETs can be
parametrized all together whereas mos technique in the literature only focus
on the parametrization of periods or deadlines or WCETs.

To scale up even more, an interesting approach would be to use model re-
duction that can still be modeled as PTA. Verification on these reduced models
would be faster while still allowing the verification of properties of interest.

90 Chapter 5. Conclusion

Part II

Controllability of Sampled Switched
Systems

Chapter 6

Introduction

In recent years, there has been an increasing interest in optimizing the energy
use in electricity generation and transportation. In particular, much effort has
been devoted to the improvement of robust and flexible control techniques of
power converters in order to increase reliability and safety of operation. Due
to their practical feasibility to achieve a high performance as well as natural
digital implementation in signal processors, switched controllers are the most
commonly type of controller that has been applied to power converters (see
[Lib03, SG05, CPPMT09]). Systems equipped with switched controllers are con-
stituted of two parts: first, a family of continuous subsystems or modes; second,
a switching signal that orchestrates the selection of these modes. The switching
signal can be state dependent and/or time dependent.

With respect to classical systems, an interest of switching controllers stems
from the existence of systems that cannot be asymptotically stabilized by a sin-
gle continuous feedback control law [Bro83]. However, with switched systems,
the steady-state operating condition is typically a periodic solution or limit cy-
cle, not an equilibrium point. The relevant stability notion is asymptotic orbital
stability or practical stability, which studies the conditions under which the sys-
tem state evolves within certain subsets of the state space [LL61]. The problem
of stabilization of switched dynamical systems is thus much more difficult in
general than in classical control theory. In particular, instability phenomena
can occur even when all the modes, taken separately, are stable.

Although the general control theory of switched systems is very difficult,
special cases of these problems arise frequently in restricted contexts associ-
ated with control design, and may be simpler to solve specifically. It is thus
suggested in [LM99] to stay in close contact with particular applications of
switched systems. We have thus focused on switching signals that operates
with a fixed switched period denoted by τ. These signals are very common be-
cause of their ease of implementation. Also a fixed period operation avoids

94 Chapter 6. Introduction

potentially troublesome harmonic side-effects that may arise with varying fre-
quency operation (see [GPM08]). There are two types of periodic switched con-
trollers: state-independent controllers that apply cyclically the same sequence
of modes that has been computed off-line, or state-dependent controllers that
select modes dynamically according to the regions of the states at the switch-
ing instants. Furthermore, the dynamics of each subsystem obeying to Ohm’s
electrical laws, are governed by affine differential equations. These systems
can thus be viewed as special cases of hybrid systems (see [Hen96]) combining
affine continuous dynamics and discrete transitions happen at instants that are
integer multiples of τ. Such a subclass has been recently studied by many re-
searchers such as Antoine Girard, Giordano Pola, and Paulo Tabuada, (see, e.g.,
[Tab09]). These systems are called “time-triggered sampled version of switched
systems”. We call them here simply S 2-systems (for Sampled Switched Sys-
tems).

In classical control theory, one makes use of Lyapunov theory in order to an-
alyze and stabilize controlled systems. Roughly speaking, Lyapunov functions
are energy functions characterizing the state of the system which decrease un-
til they reach a 0-level, which corresponds to a level where the system is sta-
ble. These Lyapunov functions can be extended in the framework of switched
systems under the form of so-called “multiple Lyapunov functions” or “com-
mon Lyapunov functions”, and play a central role in, e.g., [Tab09]. However,
there is no general method for finding appropriate Lyapunov functions, and we
have preferred in our approach to avoid to use them. Instead, the theoretical
tool that we have mainly used is based on the notion of “(controlled) invariant”
[Bla99]. Note however that the two concepts of invariants and Lyapunov func-
tions are closely related, and one can show (at least in the classical context) that
the level sets of Lyapunov functions correspond to the boundaries of invariant
sets, and that the converse holds.

We focus on the restricted class of sampled switched systems, and on meth-
ods for controlling them using invariants. We will exploit the construction of
invariants in order to synthesize two main classes of controllers: safety con-
trollers and stability controllers. Safety controllers aim at protecting the system
from undesirable states, while stability controllers aim at driving the system
to a steady-state operating condition. In order to synthesize safety controllers
we describe indirect methods working on an abstract discrete level, and direct
methods working on the continuous state space level. These methods adopt a
classical backward computation of the reachable states. In order to synthesize
stability controllers, we describe a method of state space decomposition that
allows to construct limit cyclic trajectories by iterated forward computation of
the reachable states.

The control strategies synthesized by this method have been numerically

95

simulated, and also successfully experimented on physical prototypes built by
SATIE Laboratory (Laboratoire des Systèmes et Applications des Technologies
de l’Information et de l’Énergie), École Normale Supérieure de Cachan (ENS
Cachan), France.

Organization of this Part
This part is structured as follows. In Chapter 7, we formally define the model

of S 2-systems, and explain in Section 7.5, how to synthesize safety controllers
for S 2-systems. In Chapter 8, we explain how to synthesize stability controllers
for S 2-systems using an original procedure of state space decomposition. In
Section 8.6, it is explained how to extend the procedure in order to synthesize
robust safety controllers and reachability controllers, and suggest to use it for
sensitivity analysis. We show in Chapter 9 how to apply the procedure for con-
trolling an important application of power electronics. The main results with
some perspectives are reviewed in Chapter 10. Notes citing sources and related
works are given at the end of each chapter.

96 Chapter 6. Introduction

Chapter 7

Control Theory: Basic Concepts

This chapter presents basic concepts of control theory, which will be used in
the rest of this part.

Outline of the chapter
In Section 7.1, we present the classical control/plant model. In Section 7.2,

we explain why the introduction of digital sensors and actuators in systems
have fundamentally modified the issue of controlled stability. Finally we recall
the model of switched systems, and explain their advantages compared with
classical systems (Section 7.2.3). We then explain in Section 7.3 how the no-
tion of invariant sets can be used for proving safety and stability properties of
controlled systems. We give the formal model (Section 7.4.1) of S 2-systems
together with illustrative examples (Section 7.4.2). We also explain how to rep-
resent efficiently sets of states using the notion of “zonotope” (Section 7.4.3).

7.1 Model of Control Systems

A control system is classically decomposed into a controlled part, called plant,
and a controller. The plant is classically described as a dynamic time-invariant,
possibly uncertain, system governed by equations of the form:{

ẋ(t) = f (x(t),u(t), w(t)) (1)

y(t) = g (x(t)) (2)
where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, y(t) ∈

Rp is the output, w(t) ∈ W ⊂ Rq is a disturbance (or external input), and W is
an assigned compact set. We will refer to Rn as the state space of the system.
The classical theory of control focuses on feedback control: the controller is fed
with state signal x(t) coming from the plant, and issues a control input u(t) to
the plant. A typical layout of a feedback control system is shown in Figure 7.1.
Under classical conditions (continuity for u and w , and Lipschitz property for

98 Chapter 7. Control Theory: Basic Concepts

f), the system admits a unique solution x(t) on R≥0. The equations (1-2) are
often simplified by disregarding w(t), and assuming that y = x.

Figure 7.1: Control/plant model

An important subclass is the linear time-invariant (LTI) framework, for
which (1-2) becomes:{

ẋ(t) = Ax(t)+Bu(t)+Ew(t)

y(t) =C x(t)
for matrices A, B , C , E of appropriate size with constant coefficients. A

discrete-time LTI system is a system governed by an equation of the form:
x(t + 1) = Ax(t)+Bu(t)+Ew(t). When a system is governed by an equation
of the form ẋ(t) = Ax(t) where A is a matrix whose eigenvalues have negative
real parts, the origin is a stable equilibrium point to which the system converges
from any initial point of Rn . Given a plant governed by an equation of the form
ẋ(t) = Ax(t)+Bu(t) with (A,B) ∈Rn×n ×Rn×m , a typical problem of linear con-
trol theory is to find a stabilizing controller governed by an equation of the form
u(t) = K x(t) with K ∈Rm×n . This essentially amounts to find coefficients values
of K that make the real parts of the eigenvalues of A+BK negative.

7.2 Digital Control Systems

7.2.1 Digitization

With the emergence of digital computers, a control system has to handle data
that come from the periodic sampling of signals. In such a context, a control
system is said to be sampled-data or digital control system . There, a system de-
scribed by differential equations (which involve continuous-valued variables
that depend on continuous time) is controlled by a discrete-time controller
described by difference equations, which involve continuous-valued variables
that depend on discrete time. As explained in [AK02], a digital control system,
can be divided into three parts, the plant, interface, and controller as shown in
Figure 7.2.

7.2. Digital Control Systems 99

Figure 7.2: Digital control/plant model (from [AK02])

The system to be controlled (plant) is modeled as a time-invariant
continuous-time system governed by equations (1-2) where, for the sake of sim-
plicity, we disregard disturbance and assume that the output function is the
identity (i.e., we have ẋ = f (x,u) and y = x).

The controller is a discrete event system modeled as a deterministic au-
tomaton. The action of the controller can be described by equations of the
form:{

s̃[n] = δ(s̃[n −1], x̃[n])

ũ[n] =φ(s̃[n])
where δ is the state transition function of the controller, and φ is the output

function of the controller. Tildes are used to indicate that the particular signal
is made up of symbols. The index n is here analogous to a time index in that
it specifies the order of the symbols in the sequence. An argument in brackets,
e.g., x̃[n], represents the nth symbol from a set. The input signal x̃ and output
signal ũ associated with the controller are sequence of symbols, rather than
continuous-time signals. Notice that there are no delay in the controller: the
state transition, from s̃[n − 1] to s̃[n], and the controller symbol, ũ[n], occurs
immediately when the plant symbol x̃[n] occurs.

The controller and plant cannot communicate directly because each uti-
lizes different types of signals. Thus, an interface is required that can convert
continuous-time signals to sequences of symbols and vice versa. The inter-
face consists of a memoryless map γ called actuator, and a memoryless map α
called generator. The actuator converts a controller symbol ũ[n] to a constant
plant input of the form u(t) = γ(ũ[n]). Since the plant input, u, can only take on
certain constant values, where each value is associated with a particular con-
troller symbol, the plant input signal u(t) is piecewise constant, and may change
only when a controller symbol occurs. Such a piecewise continuous command

100 Chapter 7. Control Theory: Basic Concepts

signal issued by the actuator is illustrated in Figure 7.3. The generator is a func-

Figure 7.3: Staircase command signal u(t) issued by the actuator as it receives
controller symbols ũ[1], ũ[2], . . . at time t1, t2, . . . (from [AK02])

tion α which maps the real-valued state vector x(t) of the plant into a plant
symbol of the form x̃[n] = α(x(t)). Note that x̃ does not change continuously,
but only when a plant event occurs. There are two different models of plant
event: in the state-triggered model, a plant event occurs when the plant state
x crosses the boundary of two pre-defined state regions; in the time-triggered
model, a plant event occurs periodically when the signal x̃ issued by the gener-
ator corresponds to a periodic sampling of the plant output x, as illustrated in
Figure 7.4.

Figure 7.4: Controller symbols x̃[1], x̃[2], . . . produced by the generator by sam-
pling of the plant output signal x(t) (time-triggered plant event model) (from
[AK02])

Note that, since it is assumed that there is no delay in the controller, the
command signal u(t) issued by the actuator is synchronized with the signal
x(t) issued by the generator. In the time-triggered model, the command u(t)
is therefore itself periodic. (In Figure 7.4, the stair length is constant and equal
to τ.)

7.2. Digital Control Systems 101

7.2.2 Quantization

Digitization has also an effect sometimes known under the name of quantiza-
tion (see, e.g., [PB05]). Suppose that the signal u now takes its values on a finite
domain U , instead of a dense (possibly bounded) domain or an infinite discrete
domain. This means that, in Figure 7.3, the plant input signal u(t) is a staircase
signal that can take only a finite number of values. In such a situation, there
are many systems (even LTI systems) for which there is no control function that
ensures stabilization, i.e., convergence to a unique equilibrium point (see, e.g.,
[BL00]). The controller can only achieve practical stability, that is convergence
into a bounded set. The goal is then to synthesize controllers that are capable
of steering the system to within sufficiently small neighborhoods of the equi-
librium. The size of the final set within which the trajectories are confined is
a measure of performance of the controlled dynamics. Hence, for a quantized
system, the notion of minimal invariant set (once a proper notion of size has
been defined) is useful for describing zones of practical stability.

7.2.3 Switching

A switched system is a digital quantized control system which consists of a finite
family of continuous subsystems and a rule that orchestrates the switching be-
tween them. More precisely, we have;

Definition 31. A switched system is a quadruple S = (Rn ,U ,U ,F), where Rn

is the state space; U = {1, . . . , N } is the finite set of modes; U is the set of piecewise
constant functions from R≥0 to U , continuous from the right; F = { f1, . . . , fN } is
a collection of smooth vector fields indexed by U .

A switching signal of S is a function u ∈ U . A piecewise C 1 function
x : R≥0 → Rn is said to be a trajectory of S if it is continuous and there exists
a switching signal u ∈U such that, at each t ∈R≥0 where the function u is con-
tinuous, x is continuously differentiable and satisfies:

ẋ(t) = fu(t)(x(t)).

The times at which the switching signal changes its values are called the switch-
ing instants.

The scheme of switched systems is represented in Figure 7.5. It is easy to
see that quantized discrete-time LTI systems is a particular subclass of switched
system (for which the function fu(t)(x(t)) is of the form Ax(t)+Bu(t)). However,
the class of switched systems is much more general.

102 Chapter 7. Control Theory: Basic Concepts

Figure 7.5: Scheme of a switching controller feedback controller

In recent years, control techniques based on switching between different
controllers, as depicted in Figure 7.5, have been used in order to achieve stabil-
ity and improve transient response. The importance of such control methods
also stems from the existence of systems that cannot be stabilized by a single
continuous feedback law (see [Bro83]). In contrast, even if the different com-
ponents of a switched system working in their proper mode have no (common)
equilibrium, it is still possible to control the global system in order to make its
behavior similar to those of conventional stable systems near equilibrium (see,
e.g., [BRC05]). Switched systems have thus found numerous applications in
switching power converters and many other fields (see [LM99]).

Caveat.

Note however it is possible for a switched system to be unstable even when all
the subsystems are stable around a common equilibrium point. This is true
even when the subsystems are linear, as illustrated in the following example
(see [AK02]). Consider the switched system ẋ(t) = Au x(t) where x ∈ R2, u ∈
{1,2}, and

A1 =
(−1 100

10 −1

)
, A2 =

(−1 −10
100 −1

)
,

with a (state-triggered) switching signal which applies A1 (resp. A2) when x
is in the second and fourth (resp. first and third) quadrants. Both A1 and A2 are
stable since their eigenvaluesλ1,2 =−1± j

p
1000 have negative real parts. How-

ever their trajectories are unstable (see Figure 7.6). Such a phenomenon hap-
pens because the intervals between the switchings of the dynamics decrease to
0 as time goes to infinity. This can be avoided by imposing a minimum duration
(called dwell time) between two switching instants. This can be easily enforced
for the class of sampled switched systems that we study in this thesis for which
switchings occur with a fixed period τ.

7.3. Control of Switched Systems Using Invariant Sets 103

Figure 7.6: Unstable trajectory of switched system consisting of stable subsys-
tems (from [AK02])

7.3 Control of Switched Systems Using Invariant
Sets

We now consider the problem of synthesizing controllers for switched systems.
This amounts to finding a switching signal that controls the system in order to
satisfy some given properties. We focus on the safety and stability properties.
We explain that the controller synthesis problem is related to the construction
of controlled invariant sets.

7.3.1 Controlled Invariants

Given a dynamic system, a subset I of the state space is said to be invariant if
it has the property that, if it contains the system state at some time, then it will
contain it also in the future [Bla99].1 We have:

x(t) ∈I ⇒ x(t ′) ∈I , for all t ′ ≥ t .

The concept of invariance can be easily extended to the case in which a control
input is present. In this case we say that a set R is controlled invariant if, for
all initial conditions chosen in R, we can keep the trajectory inside I by means
of a proper switching signal. Let us now explain why controlled invariants are
useful for proving safety and stability properties of a switched system.

7.3.2 Safety Control Problem

The safety property is typically encoded as a subset S of the continuous state
space, called safe set. In a simple formulation, S is a box set given by the min-

1This property is often called “positively invariant” instead of just “invariant” in the litera-
ture.

104 Chapter 7. Control Theory: Basic Concepts

imum and maximum values tolerated for each state variable. The associated
safety properties suffice to describe typical requirements of Direct Current to
Direct Current (DC-DC) power converters such as voltage regulation, current
limitation, maximal current and voltage ripple.

Safety control problem: given a safe set S, determine if there exists a switch-
ing signal u such that if x(0) ∈ S then x(t) ∈ S for t ≥ 0.

Several approaches [ABD+00, TLS00] have been proposed to solve the safety
control problem. The idea of these approaches is to obtain a controlled invari-
ant W which is included into S for an appropriate switching signal u. If such
a set W exists and if the initial state is in W , then the system is ensured to stay
in W , hence in the safe set S. In [ABD+00], an abstract algorithm is proposed
to synthesize controlled invariants using a backward iterative computation of
reachable states. Furthermore the set W computed is the maximal controlled
invariant subset of S (it contains all other controlled invariants included into
S). In [TLS00], the controller synthesis problem is formulated as a game be-
tween controller and disturbance. One can then find Hamilton-Jacobi equa-
tions whose solutions describe the boundaries of the maximal safe set, and
derive an associated maximally permissive controller. In Chapter 7.5, we give
methods to synthesize safety controllers that are adapted to the simpler context
of sampled switched systems that we consider here.

7.3.3 Stability Control Problem

Given a certain region R, many controlled invariants subsets of R exist. If, in-
stead of looking for maximal invariant subsets, we look for finding invariants
of size as small as possible around a given operating point, we get a character-
ization of a controller with the smallest deviation from the point, and obtain a
steady-state behavior with “minimum ripple” (see [SEK03]). When periodic so-
lutions of the system exist, we should be able to synthesize a stability controller
that makes the trajectories converge to such periodic solutions of the system,
also called limit cycles.

Stability control problem: given a region R, determine a switching signal u
that makes the trajectories starting in R converge to a subregion as small as
possible, ideally a limit cycle.

In Chapter 8, we give a method based on a procedure of state space decom-
position, and iterated computation of forward reachable states for synthesizing
stability controllers.

7.4. Sampled Switched Systems 105

7.3.4 Other Controllers

We will also give some hints to solve the problem of synthesizing robust safety
controllers that maintain the plant in a safety region in presence of disturbance
or uncertainty, as well as reachability controllers, which drive the plant in finite
time from an initial operating region to a desired one (see Chapter 8.6).

7.4 Sampled Switched Systems

In the rest of this thesis, we will focus on S 2-systems .

7.4.1 Model

For an S 2-system of sampling period τ, the control synthesis problem then
amounts to finding the value of the switching signal at times τ, 2τ, In ad-
dition, we make assumptions that are commonly met in practice in embedded
control applications of power electronics and automotive industry. They are as
follows:

(A1) We focus on affine dynamics: the function fu(x) is of the form Au x +bu .

(A2) We consider that the solution of the differential equation is continuous:
there are no “jump” of the trajectory at the switching instants.

(A3) We only consider the properties of the system at switching instants τ, 2τ,
. . . , and ignore possible state constraint violations of the system in be-
tween.

These assumptions are classically done in power electronics systems. In power
electronics, a typical circuit is a network of electrical components selected from
the following three groups: ideal voltage or current sources, linear elements
(e.g., resistors, capacitors, inductors, transformers), and nonlinear elements
acting as switches (see [SEK03]). At this level of abstraction, the behavior of
a switch is idealized as having two discrete states: an open circuit and a short
circuit. In a circuit with K switches, there are 2K possible modes. In practice
however, not all these modes are admissible. Some of them are not feasible be-
cause of the physical characteristics of the switches, while others are banned by
the designer because of safety considerations. Because of the restricted choice
of circuit elements, the resulting systems have the desirable property that the
continuous dynamics of each mode are linear or affine, which justifies (A1).
The absence of “jump” assumed in (A2) is met in practice because of the con-
tinuity of the laws of physics. Finally, from this continuity, it follows that the

106 Chapter 7. Control Theory: Basic Concepts

constraint violations between switching instants are limited and become neg-
ligible for sufficiently small sampling periods.

Formally, we have (see [Tab09, Gir10]):

Definition 32. An S 2-system Σ of sampling period τ ≥ 0 is a switched system
Σ= (Rn ,U ,U ,F) where

• the switching instants of u ∈U occur periodically at times τ, 2τ, . . .

• F is a set of functions { fu}u∈U with, for any u ∈ U and x ∈ Rn , fu(x) =
Au x +bu with Au a matrix of Rn×n and bu an array of Rn .

In the following, it is convenient to assume that the matrix Au governing the
dynamics of mode u, is invertible. This assumption is met in realistic models
of physical systems.2

Given an initial condition x0 ∈Rn (such that x(0) = x0), the trajectory is fully
determined by the values u1,u2, . . . of u at switching instants τ,2τ, These
values define a switching signal u(t), which is constant on each interval [kτ, (k+
1)τ), for all k ∈ N. Between two switching instants, the system is governed by
a differential equation of the form: ẋ(t) = Aux(t)+bu with u ∈ U . We will use
x(t , x,u) to denote the point reached by Σ at time t (since last switching) under
mode u from the initial condition x. This gives a transition relation →τ

u defined,
for all x and x ′ in Rn , by:

x →τ
u x ′ iff x(τ, x,u) = x ′.

For a given S 2-system Σ, the transition relation
⋃

u∈U →τ
u will be denoted by

→τ. (In other words: x →τ x ′ means x →τ
u x ′ for some u ∈U .)

Definition 33. Given an S 2-system Σ, a set X ⊆Rn is controlled invariant if:

∀x ∈ X ∃u ∈U ∃x ′ ∈ X x →τ
u x ′.

The set of successors of X via mode u, denoted by Postu,τ(X), or more simply by
Postu(X), is:

{x ′ | x →τ
u x ′ for some x ∈ X }.

The set of predecessors of X via mode u, denoted by Pr eu,τ(X), or more simply
by Pr eu(X), is:

{x ′ | x ′ →τ
u x for some x ∈ X }.

Given a set R ⊂Rn , a subset X of R is R-invariant via mode u if: Postu(X) ⊆ R.

2For example, if the matrix associated with a model of electrical circuit is non-invertible, it
is often because some resistances have been neglected and idealized to 0.

7.4. Sampled Switched Systems 107

Proposition 6. The mappings Postu : 2R
n → 2R

n
and Pr eu : 2R

n → 2R
n

, with
u ∈U , are affine transformations.

Proof. Given a mode u ∈ U , we have that ẋ(t) = Aux(t) + bu with u ∈ U
and (Au ,bu) ∈ Rn×n × Rn×1. Therefore, we have that x(τ, x,u) = e Auτx +∫ τ

0 e Au (τ−t)bud t = Cu x +du with Cu = e Auτ and du = ∫ τ
0 e Au (τ−t)bud t = (e Auτ−

In)A−1
u bu where In denotes the identity matrix. Hence, Postu is an affine

transformation. The proof is similar for Pr eu .

As stated in assumption (A3), we will focus on the states reached by the
continuous-time trajectories at switching instants 0,τ,2τ, . . . , and disregard the
continuous portions of trajectories between two switching instants. This is
depicted in Figure 7.7: we focus only on the segment F = [x1(0), x2(0)] and
its exact segment successor [x1(τ), x2(τ)] at time τ, which corresponds to an
affine image of the form Cu(F)+du , and do not construct a polyhedral over-
approximation of the continuous trajectories starting from F (see steps (b) and
(c)) as in [ABD+00]. Such a restriction allows us to simplify many works of the
literature. The price to be paid is that, between two switching instants, the sys-
tem may violate temporarily a desired property.

Figure 7.7: (a) A segment F = [x1(0), x2(0)] and its exact segment successor
[x1(τ), x2(τ)] at time τ. (b) Approximating the set of continuous trajectories
starting from F during τ time by convex hull (c) Bloating the convex polyhe-
dron to obtain a polyhedral over-approximation (from [ABD+00])

An S 2-system can be thus seen a discrete-time system governed by an affine
equation of the form: x(t + τ) = Cu x(t)+ du with Cu ∈ Rn ×Rn and du ∈ Rn .
Given an S 2-system Σ and an initial point, the set of points {x0, x1, x2, . . .} cor-
responding to the states of the system at instants 0,τ,2τ, . . . will be referred to
as the discrete trajectory of Σ starting at x0. In the figures, for facilitating visu-
alization, consecutive points of discrete trajectories will be linked together by
straight lines (unlike the real continuous-time trajectory portion which is expo-
nential).

108 Chapter 7. Control Theory: Basic Concepts

Unless otherwise stated, the notation ‖ · ‖ will denote the Euclidean norm:
for any x ∈ Rn , ‖x‖ is defined by ‖x‖ = (x2

1 +·· ·+ x2
n)

1
2 where xi is the i th com-

ponent of the vector x. The exponential of any matrix A ∈ Rn×n is denoted by
e A and is the analytic function

∑∞
i=0

1
i ! Ai . The ball of radius ε ∈ R≥0 centered at

x ∈ Rn is denoted by B(x,ε) and is defined as the set of all the points x ′ ∈ R≥0

satisfying ‖x −x ′‖ ≤ ε. Likewise: B(X ,ε) =⋃
x∈X B(x,ε) for all X ⊆Rn .

Definition 34. We say that a mode u ∈U is contractive if there exists 0 ≤ βu < 1
such that, for all x, y ∈Rn :

‖x(τ, x,u)−x(τ, y,u)‖ ≤βu‖x − y‖.

Given a subset R ⊂Rn , We say that a mode u ∈U is locally contractive in R if there
exists 0 ≤βu < 1 such that, for all x, y ∈ R: ‖x(τ, x,u)−x(τ, y,u)‖ ≤βu‖x − y‖.

It is easy to see that a mode u is contractive iff ‖e Auτ‖ = βu for some 0 ≤
βu < 1. This is equivalent to say that all the eigenvalues of Auτ have negative
real parts. Likewise, a mode u is locally contractive in R if there exists 0 ≤ βu <
1 such that, for all x ∈ R, ‖e Auτx‖ ≤ βu‖x‖.3 In order to show that a mode u
is locally contractive in R, it suffices to show that there exists a right cone C

that contains R such that ∃0 ≤ βu < 1,∀x ∈ S (0Rn ,1)∩C , ‖e Auτx‖ ≤ βu where
S (0Rn ,1) is the unity sphere (i.e., S (0Rn ,1) = {x ∈Rn ,‖x‖ = 1}).

A pattern of the form (u1 · u2 · · ·um) is a finite sequence of modes
u1,u2, . . . ,um of U . A k-pattern is a pattern of length at most k. Patterns will be
often associated with finite paths in oriented graphs whose edges are labeled
by modes. We will use the expression πi for denoting the concatenation of i
patterns equal to π, and π∗ for the concatenation of π an arbitrary number of
times.

The definition of successors via modes (Definition 33) extends naturally for
patterns. Formally, for X ⊆ Rn and a pattern π of the form (u1 ·u2 · · ·um), we
have: Postπ(X) = Postum (· · · (Postu1 (X)) · · ·). We write sometimes x →π x ′ to
mean x →τ

u1
x1 →τ

u2
· · ·xm−1 →τ

um
x ′ for some x1, . . . , xm−1 ∈Rn .

Likewise, definitions of predecessors, R-invariance, (local) contractivity for
modes extend naturally to those for patterns. From Proposition 6, it follows:

Proposition 7. Let π be a pattern. Then the mappings Postπ : 2R
n → 2R

n
and

Pr eπ : 2R
n → 2R

n
are affine transformations.

The image of a convex set X by Postπ (resp. Pr eπ) is therefore a convex set.
Given a convex set R ⊂Rn and a patternπ, in order to show that a convex subset
X is R-invariant via π, it suffices to show that every vertex of X is mapped via
Postπ to a point of R.

3Note that this requires that at least one eigenvalue of Auτ has a negative real part.

7.4. Sampled Switched Systems 109

7.4.2 Illustrative Examples

Example 12. (Boost DC-DC Converter). This example is taken from [BPM05]
(see also, e.g., [GPT10, BRC05, SEK03]). This is a boost DC-DC converter with
one switching cell (see left part of Figure 7.8). The state of the system is x(t) =
[il (t) vc (t)]T where il (t) is the inductor current, and vc (t) the capacitor volt-
age. There are two operation modes depending on the position of the switching
cell. When the switch is close (mode 2), the inductor current il increases and en-
ergy is stored into the inductance. When the switch is open (mode 1), the energy
accumulated in the inductance is transferred into the capacitor. The dynamics

Figure 7.8: Left: scheme of the boost DC-DC converter; right: cell switching for
pattern (2 ·1 ·1 ·1)

associated with mode u is of the form ẋ(t) = Au x(t)+bu (u = 1,2) with

A1 =
(
− rl

xl
0

0 − 1
xc

1
r0+rc

)
b1 =

(vs
xl

0

)

A2 =
(
− 1

xl
(rl + r0rc

r0+rc
) − 1

xl

r0
r0+rc

1
xc

r0
r0+rc

− 1
xc

1
r0+rc

)
b2 =

(vs
xl

0

)
We will use the numerical values of [BPM05], expressed in the per unit system:
xc = 70, xl = 3, rc = 0.005, rl = 0.05, r0 = 1, vs = 1. The sampling period is τ= 0.5.

A general goal of the control is to stabilize the output voltage v0 around a
desired value ve . The range of variations of the output voltage and inductor cur-
rent should be limited in order to avoid phenomena of inductor saturation and
blocking voltage stress of the switch. This corresponds to the specification of a
safety area S. The safety control problem is to find a strategy for deciding which
sequence of patterns to apply in order to keep the state within S. An example of
pattern of length 4 is illustrated on the right part of Figure 7.8: it corresponds
to the application of mode 2 on (0,τ] and mode 1 on (τ,4τ]. The control can be
state-independent, consisting in the repeated application of the same sequence
of patterns (computed off line), or state-dependent, with the application of a pat-
tern depending on the current value of the electrical state.

110 Chapter 7. Control Theory: Basic Concepts

Example 13. (Two-Room Building Heater). This example is taken from [Gir12].
It is a simple thermal model of a two-room building. One of the room can be
heated via a heating device. The two rooms communicate such that heat from
one room can diffuse to the other. Moreover, the rooms are surrounded by an en-
vironment that has a fixed temperature. By controlling when to turn on and off
the heating device, one is interested in maintaining the two rooms at a comfort-
able temperature. Let T = [T1 T2]T be the state variable, where Ti is the temper-
ature of room i (i = 1,2). The dynamics of the system are given by the following
equation:

Ṫ =
(−α21 −αe1 −α f u α21

α12 −α12 −αe2

)
T +

(
αe1Te +α f T f u

αe2Te

)
where u is a mode of value 0 or 1, and the heat transfer coefficients and external
temperatures are given by the values: α12 = 5.10−2, α21 = 5.10−2, αe1 = 5.10−3,
αe2 = 3.3.10−3, α f = 8.3.10−3, Te = 10, T f = 50. The sampling period is τ= 5.

Example 14. (Helicopter Motion). This example is taken from [DLHT11]. The
problem is to control a quadrotor helicopter to some position on top of a sta-
tionary ground vehicle, while satisfying constraint on the relative velocity. By
controlling the pitch and roll angles, one can modify the speed and the position
of the helicopter. A typical problem is to find a switching rule, depending on the
position and velocity of the helicopter, in order to keep the system state within a
safe area, avoiding excessive speed or distance to the ground vehicle. Let g be the
gravitational constant, x (resp. y) the position according to x-axis (resp. y-axis),
ẋ (resp. ẏ) the velocity according to x-axis (resp. y-axis), φ the pitch command,
ψ the roll command. The possible commands for the pitch and the roll are the
following: φ,ψ ∈ {−10,0,10}. Since each mode corresponds to a pair (φ,ψ), there
are 9 modes. The dynamics of the system are given by the equation:

Ẋ =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 X +

0

g sin(−φ)
0

g sin(ψ)

where X is [x ẋ y ẏ]T . The sampling period is τ = 0.1. Since the variables x
and y are decoupled in the equations and follow the same equations (up to the
sign of the command), it suffices to study the control for x. (The control for y is
opposite.)

7.4.3 Zonotopes

The construction of invariant sets under the form of (union of) polyhedral sets
is natural because polyhedra correspond to sets of linear constraints of the state

7.4. Sampled Switched Systems 111

Figure 7.9: Example of a zonotope with three generators (taken from [Gir05])

space. Furthermore, they are well-suited to the approximation of reachability
sets and domains of attractions of dynamic systems. Zonotopes are a data struc-
ture which is very useful for representing and manipulating efficiently convex
polytopes (see, e.g., [Küh98, Gir05, ASB08]). They can be seen as symmetric
polyhedra where a facet must be parallel to an opposing facet (see Figure 7.9
for the illustration of a zonotope with 3 generators).

The class of zonotopes is closed under linear transformation and
Minkowski sum4. Furthermore, using zonotopes, it is easy to introduce un-
certainty or disturbance in the dynamics of the models. A zonotope is defined
by a center c to which linear segments li =β(i) · g (i), −1 ≤β(i) ≤ 1 are added via
Minkowski sum.

Definition 35. A zonotope is a set

Z = {x ∈Rn : x = c +Σp
i=1β

(i) · g (i), −1 ≤β(i) ≤ 1}

with c, g (1), . . . , g (p) ∈Rn .

The vectors g (1), . . . , g (p) are referred to as the generators and c as the center
of the zonotope. It is convenient to represent the set of generators as an n ×p
matrix G of columns g (1), . . . , g (p). The notation is < c,G >.

A box (or rectangle) is a cartesian product of n closed intervals. It can be
seen as a zonotope of the form < c,D > where c is the center of the box, and
D is an n ×n diagonal matrix whose (i , i)th element is equal to half the size of
the i th interval, for 1 ≤ i ≤ n. Boxes play an important role in invariance theory
(see, e.g., [PB08, ATS09]).

The smallest box containing a zonotope Z =< c,G > is called the bounding
box of Z , and denoted by �(Z). We have: �(Z) =< c,D > where D is an n ×n
diagonal matrix whose (i , i)th element is equal to Σp

`=1|Gi ,`|, for 1 ≤ i ≤ n.
Given a zonotope Z =< c,G >, the transformation of Z via an affine function

x 7→C x+d is a zonotope of the form <C c+d ,CG >. The successor set Postu(Z)

4The Minkowski of two sets A,B is defined by A+B = {a +b | a ∈ A,b ∈ B}.

112 Chapter 7. Control Theory: Basic Concepts

of Z via a mode u can thus be simply computed using zonotopes, using matrix
multiplication whose complexity is (at most) cubic.

Zonotopes allow to compute easily overapproximations of the successor
sets in order to take into account small perturbations (or uncertainties) of
the system dynamics. All the dynamics of the system are now of the form
ẋ(t) = Au x(t)+bu +ε(t) where ε(t) represents disturbance under the form of a
vector belonging to a given boxΛ= [−ε1,+ε1]×·· ·×[−εn ,+εn] ofRn , with εi ≥ 0
for i = 1, . . . ,n. We will use x(t , x,u,ε) to denote the point reached by the system
at time t under mode u with disturbance ε, from the initial condition x. This
entails a transition relation →u,ε

τ defined, for all x, x ′ ∈Rn , ε ∈Rn
≥0 and u ∈U by:

x →u,ε
τ x ′ iff x(τ, x,u,ε) = x ′.

Given a box Λ = [−ε1,+ε1] × ·· · × [−εn ,+εn] of Rn , we define Postu(X ,Λ) =
{x ′ | ∃ε ∈Λ, x → u,ε

τ x ′}. This definition of Postu with perturbation naturally ex-
tends to Postπ where π is a pattern. If X is given under the form of a zonotope
< c,G >, then it is easy to compute an overapproximation of Postu(X ,Λ). Sup-
pose that the successor set without perturbation Postu(X), is an affine trans-
formation of the form C X +d . We have:

Lemma 12. Consider a zonotope X =< c,G >, a box Λ = [−ε1,+ε1] ×
·· · [−εn ,+εn] of Rn . We have:

Postu(X ,Λ) ⊆ <C c +d ,
(
CG τDλ

)>,

with: DΛ =

ε1 0 . . . 0
0 ε2 . . . 0
...

...
. . .

...
0 0 . . . εn

.

The process can be iterated to compute a zonotopic overapproximation of
Postπ(X ,Λ), for any pattern π. This technique will be used in Chapter 8.6 in or-
der to handle the problem of robust safety control and the problem of nonlinear
dynamics.

7.5 Safety Controllers

In this section, we are interested in finding controllers of an S 2-system which
make the variables of the system stay within the limits of a given area S. The
problem amounts to finding a switching rule that selects a mode ensuring that
the system will still be in S at the next sampling time, and so on iteratively. If

7.5. Safety Controllers 113

we consider S as a predefined safe region for the operating states of the system,
then such a switching rule can be seen as a safety controller. The problem is
closely related to the problem of finding a controlled invariant subset of S. It
is interesting to design a controller that is as permissive as possible since this
allows to formulate secondary control objectives in order to satisfy various per-
formance criteria inside the safe set. This amounts to synthesizing a controlled
invariant subset of S which is as large as possible, ideally maximal.

We present a direct approach working on the original continuous state
space, which makes use of a general procedure of backward fixed point com-
putation and an indirect approach working on an abstract discrete state space,
which makes use of the notion of approximate bisimularity. The two methods
are applied to the 3-cell converter application of power electronics.

7.5.1 Backward Fixed Point Computation (Direct Approach)

Suppose we are given an S 2-system Σ and a set S of safe states. Let us consider
a very general approach for synthesizing a (maximal) subset S∗ of S which is
controlled invariant (i.e., such that: ∀x ∈ S∗ ∃u ∈ U = {1 . . . N } ∃x ′ ∈ S∗ x →τ

u
x ′). Given a set S, it is easy to show that the union of two controlled invariant
subsets of S is itself a controlled invariant subset of S. Accordingly, the notion
of maximal controlled invariant subset of S is well-defined and corresponds to
the union of all the controlled invariant subsets of S.

Consider the operator FS : 2R
n → 2R

n
defined by:

FS(X) = ⋃
u=1...N

Pr eu(X)∩S.

The set FS(X) contains all the states x ∈ X ∩S for which the successors via u of
x are in X . The next result states that a maximal fixed point of FS exists.

Proposition 8. The operator FS : 2R
n → 2R

n
satisfies:

1. The sequence {F i
S(Rn)}i≥0 is nested and decreasing.

2. The maximal fixed point S∗ of FS satisfies:

S∗ = lim
i→∞

F i
S(Rn) = ⋂

i≥0
F i

S(Rn);

3. The maximal fixed point S∗ of FS is the maximal controlled invariant sub-
set of S.

Proof. See [Tab09, Chapter 6] for a proof.

114 Chapter 7. Control Theory: Basic Concepts

The maximal fixed point S∗ of FS (i.e., the maximal solution of equation
X =⋃

u=1..N Pr eu(X)∩S) can be computed by iteration of FS until a fixed point
S∗ is obtained. The general algorithm is of the form:

Algorithm 6: Synthesis of maximal controlled invariant subset

Input: A set S ⊂Rn

Output: A maximal invariant subset S∗ of S
1 X 0 := S
2 repeat
3 X k+1 := X k ∩⋃

u=1..N Pr eu(X k)

4 until X k+1 = X k

5 S∗ = X k

The correctness of Algorithm 6 relies on the fact that, at step k ≥ 0, the set X k

is the set of starting points of trajectories of length k contained in S. Formally:
X k = {x ∈ S | x →τ x1 →τ · · · →τ xk for some x1, . . . , xk ∈ S}). It follows that S∗

is the set of starting points of infinite trajectories contained in S, which means
that S∗ is the maximal invariant subset of S.

Henceforth, we suppose that the input S is given under a polyhedral form.
Every set X k can be put under the form of a finite union of polyhedral compo-
nents: each polyhedral component P of X k is obtained as Pr eu(Q)∩R, where
u is in U , and Q and R are themselves two polyhedral components of X k−1.
(Recall that the operator Pr eu is an affine transformation which maps a poly-
hedron into another one; see Chapter 7.4). The test X k+1 = X k is performed
by testing if the vertices of the components of X k belong to (components of)
X k+1, and vice versa. If the test succeeds, Algorithm 6 terminates, and outputs
a set S∗ which is a union of polyhedral components.

Let us now explain how one can derive a state-dependent control strategy
that allows to maintain the system always in S∗, using a simple additional in-
formation storage in algorithm 6. We modify the algorithm as follows: for each
polyhedron component P produced at step k (of the form Pr eu(Q)∩R, with
Q,R ⊂ X k−1), we store the mode u with which it has been produced. If Algo-
rithm 6 terminates, the output S∗ is given under the form of a finite set of poly-
hedral components together with their associated modes. The control is now
as follows: when at a switching time, the system state lies in a component P of
S∗, one applies the associated mode u of P ; at the next switching time, the sys-
tem lies in a component P ′ of S∗, and one applies the associated mode u′, and
so on iteratively. Such a control which allows to stay in the maximal invariant
S∗ subset of S is said to be maximally safe (or maximally permissive). In a fur-
ther step, one can refine the maximally permissive controller in order to satisfy
various performance criteria inside the safe set.

7.5. Safety Controllers 115

Example 15. To illustrate this approach, we synthesize a control for the boost
DC-DC converter with one cell (see Example 12 for a description of the system).
We have S = [3.0,3.4]× [1.5,1.8] in the (il , vc) plane, and τ = 0.5. Algorithm 6
terminates in 2 steps:

• at step 1, it produces two polyhedral components P1 = Pr e1(S) ∩ S and
P2 = Pr e2(S)∩S, with X 1 = P1 ∪P2.

• at step 2, the set X 2 produced is the union of 8 polyhedral components
Pr ei (P j)∩Pk with i , j ,k ∈ {1,2}, and it can be seen that X 2 = X 1.

This means that S∗ = X 1 = P1 ∪P2. In Figure 7.10, the uncontrollable part S \ S∗

corresponds to the “horizontal” polyhedra colored in black in the lower left and
upper right parts of S. The controlled subset P1 corresponds to the “vertical” left
polyhedron, and P1 to the right one. If the system state is in P1 (resp. P2) at
a switching time, then mode 1 (resp. 2) should be applied. Mode 1 or 2 can
be arbitrarily applied when the system lies in P1 ∩P2. A controlled trajectory
starting at point x0 = (3.01,1.79) ∈ S∗ is depicted in Figure 7.10 and 7.11. One
can see that the trajectory stays within S∗ ⊂ S.

Figure 7.10: Maximal controlled invariant subset of S = [3.0,3.4] × [1.5,1.8],
composed of two polyhedra P1 (mode 1) and P2 (mode 2), with a controlled
trajectory starting at x0 = (3.01,1.79)

Algorithm 6 involves the computation of the predecessor operator, inter-
section and test of point containment for polyhedra. However, the number of

116 Chapter 7. Control Theory: Basic Concepts

Figure 7.11: Discrete-time trajectory starting from point x0 = (3.01,1.79), using
the control found by the direct method. Above: evolution of vc in time; below:
evolution of il .

polyhedral components increases exponentially at each step. A realistic imple-
mentation of Algorithm 6 requires to merge different polyhedral components
into an under-approximated polyhedral form. This can be done, using, e.g., the
notion of griddy polyhedra (see [ABD+00]) i.e., sets that can be written as unions
of closed unit hypercubes with integer vertices. The under-approximation pro-
cess also helps the algorithm to terminate. The output S∗ of the algorithm is
then an invariant subset of S, but is no longer maximal.

7.5.2 Approximate Bisimulation (Indirect Approach)

The direct application of Algorithm 6 at the continuous state level works well on
simple examples, as explained in Section 7.5.1. However, there is no guarantee
of termination of the procedure because the state space is infinite. An inter-
esting alternative approach is the “indirect approach”: it consists in making an
abstraction of the system into a finite discrete system. Algorithm 6 then always
terminates, and allows to synthesize a maximally safe abstract controller, from
which a controller can be derived at the real level, at the price of a certain ap-

7.5. Safety Controllers 117

proximation. Moreover the the switching rule can be computed off line while
the switching rule has to be computed on line in the direct approach. The indi-
rect approach of controller synthesis, based on finite-state approximate mod-
els, originates from [RO98]. The notion of approximate bisimulation originates
from [GP05]. See also [Tab05] and [Tab09] for an exposition of several classes
of hybrid systems admitting abstract models, along with the relationships be-
tween them.

We now explain such a method using the notion of approximate bisimula-
tion.

In [GPT10], the authors propose a method for abstracting a switched system
under the form of a discrete model, that is equivalent to the original one, under
certain Lyapunov-based stability conditions. They use an Euclidean norm ‖.‖,
and define the approximation of the set of states Rn as follows:

[Rn]η = {x ∈Rn | xi = ki
2ηp

n
, ki ∈Z, i = 1, . . . ,n},

where η ∈ R+ is a state space discretization parameter. It is then easy to see
that: ∀x ∈ Rn ∃q ∈ [Rn]η : ‖x − q‖ < η. The transition relation →u

τ of Σ is then
approximated as follows: Let q ∈ [Rn]η and qe = x(τ, q,u) such that q →u

τ qe in
the real system, let q ′ ∈ [Rn]η with ‖qe − q ′‖ < η. Then we have q →u

τ,η q ′ for
the approximated transition relation. Formally, the transition relation of the
abstract system Ση is defined as follows.

Definition 36. Given a switched system Σ : (τ,U ,F) and its trajectory x : R+ →
Rn , the system Ση is the transition system (Q,→u

τ,η) defined by:

• the set of states is Q = [Rn]η

• the transition relation is given by

q →u
τ,η q ′ iff ‖x(τ, q,u)−q ′‖ ≤ η

This relation is depicted on Figure 7.12 (see [Gir10]). The notion of “approx-
imate bisimilarity” between systems Σ and Ση is defined as follows.

Definition 37. SystemsΣ andΣη are ε-bisimilar (or bisimilar with precision ε) if:

1. For all x ∈Rn and q, q ′ ∈ [Rn]η: (‖x −q‖ ≤ ε∧q →u
τ,η q ′) ⇒ ‖x ′−q ′‖ ≤ ε

for some x ′ = x(τ, x,u) (i.e. for some x ′ : x →u
τ x ′), and

2. For all x, x ′ ∈Rn and q ∈ [Rn]η: (‖x −q‖ ≤ ε∧x →u
τ x ′) ⇒ ‖x ′−q ′‖ ≤ ε

for some q ′ ∈ [Rn]η with ‖x(τ, q,u)−q ′‖ ≤ η (i.e. for some q ′ : q →u
τ,η q ′).

118 Chapter 7. Control Theory: Basic Concepts

Figure 7.12: Abstract transition relation (from [Gir10])

Consider a switched system Σ = (τ,U ,F), a desired precision ε and a time
sampling value τ. Under certain Lyapunov-based stabilization conditions, it
is shown in [GPT10] that there exists a space sampling value η such that the
transition systems of Σ and Ση are approximately bisimilar with precision ε. In
the context of S 2-systems, the conditions of Lyapunov-based stabilization can
be simplified as follows.

Theorem 10. Consider a switched system Σ= (τ,U ,F), a desired precision ε and
a time sampling value τ. If all the modes of U are contractive, there exists a space
sampling value η such that the transition systems of Σ and Ση are approximately
bisimilar with precision ε.

Proof. Because of the contractivity of the modes of Σ, we have, for all u ∈ U :
‖x(τ, x,u)−x(τ, y,u)‖ ≤β‖x− y‖ for some 0 ≤β< 1. The proof of ε-bisimularity
is based on the fact that we can choose η so that βε+η ≤ ε is true (which is
possible because β< 1). We have indeed:

1. (‖x −q‖ ≤ ε∧q →u
τ,η q ′) ⇒

‖x ′−q ′‖ = ‖x(τ, x,u)−q ′‖ ≤ ‖x(τ, x,u)−x(τ, q,u)‖+‖x(τ, q,u)−q ′‖ ≤βε+
η≤ ε, with x ′ = x(τ, x,u) (i.e., x ′ : x →u

τ x ′ for some u ∈U)

2. (‖x −q‖ ≤ ε∧x →u
τ x ′) ⇒

‖x ′−q ′‖ = ‖x(τ, x,u)−q ′‖ ≤ ‖x(τ, x,u)−x(τ, q,u)‖+‖x(τ, q,u)−q ′‖,≤β‖x−
q‖+η≤βε+η≤ ε with q ′ such that q →u

τ,η q ′.

Note that Theorem 10 holds for any norm ‖ · ‖. For implementing the
method, it may be convenient to use the infinity norm (defined by ‖x‖ =
maxi=1···n |xi |, for all point x = (x1, . . . , xn) ∈Rn) rather than the Euclidean norm
in order to reduce the overlapping of two adjacents bowls of radius η, and the
nondeterminism of relation →u

τ,η. Accordingly, the definition of [Rn]η should
be

[Rn]η = {x ∈Rn | xi = 2kiη for some ki ∈Z and i = 1,2, . . . ,n}.

7.5. Safety Controllers 119

Let us now explain how to apply Theorem 10 in order to synthesize a safety
controller. Consider a bounded subset S of Rn . The set Sη = [Rn]η∩S is finite.
So, if Algorithm 6 runs with X 0 = Sη as an input, it terminates and outputs a
maximal controlled invariant subset, say S∗

η , of Sη. For each point q ∈ S∗
η , there

exists a point q ′ ∈ S∗
η such that q →u

τ,η q ′ sor some u ∈ U . Using the relation⋃
u∈U →u

τ,η restricted to S∗
η , one can define a finite state automaton Aη on S∗

η .
This automaton Aη can be seen as a maximally safe controller of Sη. From such
a controller, it is then possible, using the bisimilarity stated in Theorem 10, to
derive a controller for the real model Σ, which keeps the switched system Σ in
B(S∗,ε) (see [Tab08]).

An alternative approach consists in observing that, for all point q of S∗
η ,

there exists a quasi-cyclic sequence of transitions of Aη starting at q of the form
π ·σ∗, where π andσ are finite sequences of modes. (This is because an infinite
path in a finite graph should go through the same vertex twice.) For all q ∈ S∗

η ,
one can compute statically such a quasi-cyclic sequence starting at q . Let us
denote it by ϕ(q). This induces a safety controller for the real system Σ as fol-
lows: given a state x ∈ S∗, find a state q ∈ S∗

η such that ‖x − q‖ ≤ η; then apply
the sequence ϕ(q) to x. It follows from Theorem 10 that, under such a control,
the state of Σ always stays in B(S∗,ε).

Note that the correctness of the synthesis of a safety controller for S at the
continuous state level relies on Theorem 10. Actually, one can relax the as-
sumption of contractivity of the modes of Σ made in this theorem, and just
assume the local contractivity of modes in S. We illustrate the method on the
boost DC-DC converter.

Example 16. The method is applied on the boost converter of with the same safe
set as in Example 15: S = [3,3.4]× [1.5,1.8] in plane (il , vc), For the desired pre-
cision, we take ε = 3.0. It can be seen that the system is locally contractive in S
with a contraction factor β= 0.99202. For the discretization parameter, we take
η = 1/40 (which satisfies η < ε(1−β)). See Figure 7.13 for one of the connected
components of the graph of the automaton Aη. Each cycle in the subgraph corre-
sponds to a periodic switching rule of the converter which ensures that the elec-
tric variables lie inside the predefined S up to ε. For example, we consider the
cycle passing through vertices numbered: 159,243,173,257,187, 271,201, 285,
215,299,229,159. This corresponds to the application of the cyclic sequence of
modes: (1 · 2 · 1 · 2 · 1 · 2 · 1 · 2 · 1 · 2 · 2)∗. A controlled trajectory starting at point
x0 = (3.0,1.79), is given in Figure 7.14. The box S is delimited by the dashed line.
One can see that the system largely exceeds the limits of S (but stays inside the
ε-approximation B(S,ε)).

120 Chapter 7. Control Theory: Basic Concepts

Figure 7.13: Graph of an abstract safety controller of the boost DC-DC con-
verter, with η= 1

40 and S = [3,3.4]× [1.5,1.8] obtained by a script of ours

7.5.3 Application to a 3-cells Boost DC-DC Converter

We now apply the direct and indirect methods for synthesizing safety con-
trollers for a bigger example: a boost DC-DC converter with 3 cells. This is a
real-life prototype built by the SATIE Electronics Laboratory (ENS Cachan) for
the automotive industry. See Figure 7.15 for a picture of the system.

7.5.4 Model

The boost DC-DC converter with 3 cells relies on the same principle as the one
with one cell. An advantage of this system is its robustness: even if one switch-
ing cell is damaged, the system is still controllable with the restricted set of
modes that remain available. This system is naturally more complex: there are
4 continuous variables of interest (instead of two), and 23 = 8 modes (instead of

7.5. Safety Controllers 121

Figure 7.14: Trajectory in plane (il , vc) starting at x0 = (3.0,1.79) controlled by
switching rule (1·2·1·2·1·2·1·2·1·2·2)∗ found by the indirect method (precision
ε= 3); the dashed box corresponds to S = [3,3.4]× [1.5,1.8].

Figure 7.15: 3-cells converter built by SATIE Electronics Laboratory

two). Each mode is a triple (σ1σ2σ3) where σi indicates whether cell i is open
(σi = 0) or closed (σi = 1). The electrical scheme is presented in Figure 7.16.
An example of pattern is presented in Figure 7.17. The pattern is of the form
((100) · (000) · (010) · (000) · (001) · (000)) (or (2 ·1 ·3 ·1 ·5 ·1) under a decimal-like
form), and corresponds to: (1 · 0 · 0 · 0 · 0 · 0) for σ1, (0 · 0 · 1 · 0 · 0 · 0) for σ2 and
(0 ·0 ·0 ·0 ·1 ·0) for σ3.

The system satisfies the following equations:

U

σ1

σ2

σ3

0

+

−2r 0 0 −1

0 −2r 0 −1
0 0 −2r −1
1 1 1 −1/R

x1

x2

x3

x4

=

2L −M −M 0
−M 2L −M 0
−M −M 2L 0

0 0 0 C

ẋ1

ẋ2

ẋ3

ẋ4

122 Chapter 7. Control Theory: Basic Concepts

Figure 7.16: Electrical scheme of the DC-DC converter with 3 cells

Figure 7.17: Switching rule for the 3-cells boost DC-DC converter on one pe-
riod of length 6τ,σ1 = (1·05),σ2 = (02 ·1·03),σ3 = (04 ·1·0), and the correspond-
ing control pattern is (2 ·1 ·3 ·1 ·5 ·1))

That can be rewritten to fit our framework as:

ẋ = M−1
LC MS x +bσ

with

MLC =

2L −M −M 0
−M 2L −M 0
−M −M 2L 0

0 0 0 C

, MS =

−2r 0 0 −1

0 −2r 0 −1
0 0 −2r −1
1 1 1 −1/R

,

bσ =U M−1
LC

σ1

σ2

σ3

0

where U is the input voltage. We take the following values in the per unit sys-
tem: U = 100, L = 10.10−3, M = 9.9.10−3, r = 100.10−3, R = 1, C = 300.10−6,
τ= 1/60000.

7.5. Safety Controllers 123

Direct Method

For S = [4,7]×[4,7]×[4,7]×[15,17], τ= 1/60000, we can synthesize the maximal
controlled invariant subset S′ ⊂ S, using Algorithm 6. A trajectory of the system
starting at x0 = (5,5,5,16) ∈ S′ is presented in Figure 7.18. The figure shows that
all the trajectory lie inside S.

Figure 7.18: Discrete-time trajectory of 3-cells converter starting at x0 =
(5,5,5,16) in S = [4,7]× [4,7]× [4,7]× [15,17] using the direct control method
(from top to bottom: x1, x2, x3, x4 in function of time)

Indirect Method

For the safety region, we consider S = [5.3,5.9]×[5.3,5.9]×[5.3,5.9]×[15.5,16.5].
It can be seen that the system is locally contractive in S with a contraction fac-
tor β = 0.99202. For the state space discretization, we take η = 1/5. This cor-
responds to a precision ε = η/(1−β) ≈ 21.6. The abstract safety controller Aη

associated to box Sη corresponds to a graph with several hundreds of vertices.
A small part of the graph is given in Figure 7.19. This figure has been computed
by a tool of ours implementing the Indirect Method. For example, there is a
cycle passing through vertices numbered: 290,311, 332,353, 332,311, 290. This
corresponds to the application of the cyclic sequence of modes: (4·4·4·1·2·1)∗.

124 Chapter 7. Control Theory: Basic Concepts

Figure 7.19: Partial graph of an abstract safety controller of the 3-cells boost
converter, with η= 1

5

For this control, the trajectory starting at point x0 = (5.4,5.4,5.4,16), is given in
Figure 7.20. We can see that the system does not stay inside the initial box S.
However we can check that the system stays within the ε-over-approximation
B(S,ε) of S with ε= 21.6. The value of ε is much too gross to give an interesting
guarantee of safety. A finer precision ε would require a much smaller η and ac-
cordingly Aη with an overwhelming number of vertices. This tends to indicate
that the indirect method (at least applied without further refinement) leads to
prohibitively expensive computations for this example.

7.5. Safety Controllers 125

Figure 7.20: Trajectory of the 3-cells converter starting at x0 = (5.4,5.4,5.4,16)
with switching rule (4 ·4 ·4 ·1 ·21)∗ found by the indirect method (precision ε=
21.6)

126 Chapter 7. Control Theory: Basic Concepts

Chapter 8

Stability Controllers

As explained in Chapter 7.5, the computation of maximal controlled invariant
sets, found in the literature, relies essentially on a backward approach, comput-
ing iteratively the predecessors reachable sets. This is in keeping with the sem-
inal work of Ramadge and Wonham for finite discrete systems [RW89]. Unfor-
tunately, as pointed out in [Mit07], backward reachability constructs are more
likely to suffer from numerical stability problems in systems displaying signifi-
cant contraction, while contraction is generally a desirable and rewarding prop-
erty of dynamical systems. In this chapter, we propose a forward method that
allows to benefit from the contraction properties of our studied systems.

In this chapter, we are interested in the problem of practical stabilization:
given a region R, find a switching rule that makes the system converge to a
region located inside R. Such a switching rule corresponds to a stability con-
troller. It is interesting to confine the trajectories in a region as small as pos-
sible. The problem is closely related to the problem of finding a controlled in-
variant subset of R as small as possible, ideally minimal. We present a direct
forward-oriented method that decomposes a given state region R, and induces
a state-dependent control that make the trajectories of the system converge
to finite sets of points that, under certain conditions, correspond to limit cy-
cles. The method can also be used for synthesizing safety controllers in order to
prove safety properties.

Contributions Our contributions in this chapter are: the Decomposition Pro-
cedure, its enhancement and the theorems of Section 8.3, the theorem on limit
cycles of Section 8.4, the implementation of our method in a tool discussed in
Section 8.5, and the extension of the method to other frameworks of Section 8.6.

Outline of this chapter After explaining our motivation (Section 8.1), we first
give some formal preliminaries (Section 8.2). We then present the decompo-

128 Chapter 8. Stability Controllers

sition method (Section 8.3): The basic procedure is given in Section 8.3.1, its
enhancement for proving safety properties in Section 8.3.3. We then apply the
method to the synthesis of finite controlled invariants and limit cycles that at-
tract the trajectories of the controlled system (Section 8.4). Some indications
on the implementation of the decomposition procedure are given in Section
8.5. We show how an iteration of the decomposition procedure can be used to
synthesize reachability controllers (Section 8.6.1). We suggest to exploit the sen-
sitivity of the limit cycles in order to infer the values of physical parameters of
the system using an inverse approach (Section 8.6.2). We explain how to extend
the decomposition procedure in order to synthesize robust safety controllers in
presence of disturbance (Section 8.6.3). We indicate how to extend the method
for nonlinear systems in Section 8.6.4.

8.1 Motivation

Let us consider Figure 7.10 again. The set S = [3.0,3.4] × [1.5,1.8] is parti-
tioned into a maximal controlled subset S∗ = P1 ∪P2, made of two polyhedra
P1 and P2, and an “uncontrollable” part colored in black made of two parts:
a lower left part, say Q1, and an upper right part, say Q2, of S. Each polyhe-
dron P1,P2,Q1,Q2 contains one (and only one) corner of S. The corner of S
belonging to P1 (resp. P2) is controllable: if one applies mode 1 (resp. 2) to this
corner, one finds a point belonging to P1 ∪P2 ⊂ S. In contrast the corners of S
belonging to Q1 and Q2 are not controllable: the application of either mode 1
or mode 2 maps these corners in points located outside S. Now, let us ask the
question: does there exist a k-pattern, i.e., a sequence of modes of length (at
most) k, mapping the corners to points located inside S? If such patterns exist,
we say that the corners are “k-controllable”. In this example, one can see that
it is the case for k = 5. Besides, if we divide S into 4 sub-boxes of equal size,
say V1, . . . ,V4, each containing a corner, say C1, . . . ,C4, of S, one can see that the
pattern, say πi , that maps Ci inside S also maps the whole sub-box Vi inside S
(1 ≤ i ≤ 4). This suggests a procedure of decomposition which splits S by bisec-
tion into sub-boxes, and looks for patterns which map the sub-boxes inside S.
If this succeeds, we say that S is “k-controllable”, or is a “controlled k-invariant
set”. The decomposition induces a state-dependent control strategy that makes
any point of S return to S after at most k steps. In the following, we formalize
these ideas.

8.2. Preliminaries 129

8.2 Preliminaries

Definition 38. Given a set R ⊂ Rn and a set {(Vi ,πi)}i∈I where I is a finite set of
indices, Vi is a subset of Rn (for all i ∈ I), πi is a k-pattern (for all i ∈ I), we say
that ∆= {(Vi ,πi)}i∈I is a k-invariant decomposition of R if:

• R =⋃
i∈I Vi , and

• Vi is R-invariant via πi (i.e., Postπi (Vi) ⊂ R), for all i ∈ I .

In the rest of this chapter, we will suppose that R is a box (i.e., a rectangular
region of Rn). Such a set R will be referred to as a global (control) box. The
subsets Vi s (with i ∈ I) will be themselves boxes included into R. They will be
referred to as local (control) boxes.

Given a box R ⊂ Rn and a set ∆ of the form {(Vi ,πi)}i∈I with
⋃

i∈I Vi = R, we
define Post∆ as follows:

Post∆(X) = ⋃
i∈I

Postπi (X ∩Vi), for all X ⊂ R.

It is easy to show:

Proposition 9. Given a box R ⊂Rn and a set ∆ : {(Vi ,πi)}i∈I where the πi s (i ∈ I)
are k-patterns, and with

⋃
i∈I Vi = R, we have:

• ∆ is a k-invariant decomposition of R iff Post∆(R) ⊂ R.

• The image of a (compact) convex set by Post∆ is a finite set of (compact)
convex sets.

NB: For the sake of simplicity, we will use Post∆(x) instead of Post∆({x}),
when x is a point of Rn .

Example 17. (Boost DC-DC Converter). Let us consider Example 12 (see Chap-
ter 7.4). In the case of the Boost DC-DC converter, one can show that, for
R = [1.55,2.15] × [1.0,1.4], there is a decomposition ∆ = {(Vi ,πi)}i=1,...,4 with
V1 = [1.55,1.85]×[1.0,1.2], V2 = [1.85,2.15]×[1.0,1.2], V3 = [1.85,2.15]×[1.2,1.4],
V4 = [1.55,1.85]×[1.2,1.4], and π1 = (1 ·1 ·2 ·2 ·2), π2 = (2), π3 = (2 ·1 ·2), π4 = (1).
One can check indeed that, for all 1 ≤ i ≤ 4, Postπi (Vi) ⊂ R. This is visualized on
Figure 8.1. In Section 8.3, we will explain how to generate such a decomposition.

Definition 39. Given a pattern π of the form (u1 · · ·um), and a set X , the unfold-
ing of X via π, denoted by Unf π(X), is the set

⋃m
i=0 Xi with:

• X0 = X ,

130 Chapter 8. Stability Controllers

Figure 8.1: Decomposition ∆ of R = [1.55,2.15]× [1.0,1.4] for the Boost DC-DC
converter example (left), and visualization of Post∆(Vi) ⊂ R, i = 1, . . . ,4 (right)

• Xi+1 = Postui+1 (Xi), for all 0 ≤ i ≤ m −1.

Definition 40. Consider a k-invariant box R of decomposition ∆ = {(Vi ,πi)}i∈I .
The ∆-unfolding of R, denoted by Unf ∆(R), is the set:⋃

i∈I
Unf πi

(Vi).

Example 18. Figure 8.2 depicts the unfolding of R for the decomposition ∆ of
example 17, where dark gray (resp. light gray) indicates that mode 1 (resp. 2)
applies.

Figure 8.2: ∆-unfolding of R = [1.55,2.15]× [1.0,1.4] in the Boost DC-DC con-
verter example where dark gray (resp. light gray) indicates that mode 1 (resp. 2)
applies

Proposition 10. Suppose that a box R has a k-invariant decomposition∆. Then
the ∆-unfolding of R is controlled invariant.

8.2. Preliminaries 131

Proof. Let us explain how such a control can be refined in order to make R ′,
the ∆-unfolding of R, controlled invariant. We extend ∆ : {(Vi ,πi)}i∈I as follows.
Each element of∆ is of the form (V ,π) where π is of the form (u1u2 · · ·um). Such
an element is replaced by m couples (V 1,u1), (V 2,u2), . . . , (V m ,um) with V 1 =
V , V 2 = Postu1 (V 1),. . . , V m = Postum−1 (V m−1). The decomposition ∆ becomes

a decomposition ∆′ of the form {(V j
i ,u j

i)}i , j with
⋃

i , j V j
i = R ′ and Post

u
j
i
(V j

i) ⊂
R ′ for all i , j . Hence, for each x ∈ R ′, x belongs to some V j

i , and Post
u

j
i
(x) ⊂ R ′.

This shows that R ′ is controlled invariant.

Control induced by the decomposition

The decomposition ∆ induces a state-dependent control that makes any tra-
jectory starting fom R go back to R within at most k steps: given a starting state
x0 in R, we know that x0 ∈Vi for some i ∈ I (since R =⋃

i∈I Vi); one thus applies
πi to x0, which gives a new state x1 that belongs to R (since Vi is R-invariant
via πi); the process is repeated on x1, and so on iteratively. Given a point x ∈ R,
we will denote by succ∆(x) the point of R obtained by applying πi to x when
x is in Vi . Note that a nondeterministic choice has to be done when a point x
belongs to more than one local box Vi . We will suppose that we have an implicit
selection function that operates a nondeterministic choice in such a case (for
example, one can select the set Vi of least index containing x). When x belongs
to a single local box Vi , then succ∆(x) = Post∆(x).

A sequence of points {xi }i≥0, with xi+1 = succ∆(xi) for all i ≥ 0, is called a
discrete trajectory induced by ∆, or more simply, a ∆-trajectory. 1

We will also consider the unfolding of a ∆-trajectory, which corresponds to
consider not only the successors of points via patterns, but also all the inter-
mediate points generated by intermediate application of the modes forming
the patterns. In the figures, for the sake of clarity, the points of ∆-trajectories
will be linked together using straight lines, and similarly for their unfoldings.

Example 19. A ∆-trajectory starting from the left upper corner of R =
[1.55,2.15]× [1.0,1.4] for the Boost example, is presented in Figure 8.3 together
with its unfolding.

Using Proposition 10, one can prove safety properties of the controlled sys-
tem, by showing Un f∆(R) ⊂ S, where S is known to be a set of safe positions
(see Section 8.3.3).

1We will sometimes denote such a trajectory under the form: x0 →πi1
x1 →πi2

· · · with
i1, i2, · · · ∈ I .

132 Chapter 8. Stability Controllers

Figure 8.3: ∆-trajectory for the Boost example (left), and its unfolding (right)

8.3 Decomposition Procedure

8.3.1 Basic procedure

We suppose that we are given a global box R ⊂ Rn . We now give a decomposi-
tion procedure which generates a k-invariant decomposition of R, as follows.

It first calls sub-procedure Find_Pattern in order to get a k-pattern such
that R is R-invariant. If it succeeds, then it is done. Otherwise, it divides R
into 2n sub-boxes V1, . . . ,V2n of equal size. If for each Vi , Find_Pattern gets a
k-pattern making it R-invariant, it is done. If, for some V j , no such pattern
exists, the procedure is recursively applied to V j . It ends with success when a
k-invariant decomposition of R is found, or failure when the maximal degree d
of decomposition is reached.

Remark 2. Since the local boxes Vi s are cartesian product of closed intervals, two
adjacent boxes Vi and V j share a common facet.

The algorithmic form of the procedure is given in Algorithms 7 and
8. (For the sake of simplicity, we consider the case of dimension n =
2, but the extension to n > 2 is straightforward.) The main procedure
Decomposition(W ,R,D ,K) is called with R as input value for W , d for input
value for D , and k as input value for K ; it returns either 〈{(Vi ,πi)}i ,Tr ue〉 with⋃

i Vi =W and
⋃

i Postπi (Vi) ⊂ R, or 〈_,F al se〉. Procedure Find_Pattern(W ,R,K)
looks for a K -pattern for which W is R-invariant (i.e., Postπ(W) ⊂ R): it selects
all the K -patterns by non-decreasing length order until either it finds such a
pattern π (output: 〈π,Tr ue〉), or no such pattern exists (output: 〈_,F al se〉).

Remark 3. Since R is a box, the inclusion test Postπ(W) ⊂ R in pro-
cedure Find_Pattern(W ,R,K) is implemented under the equivalent form
�(Postπ(W)) ⊂ R, which can be done in quadratic time (cf. Section 7.4.3).

8.3. Decomposition Procedure 133

The correctness of the procedure is stated as follows.

Theorem 11. If Decomposition(R,R,d,k) returns 〈∆,Tr ue〉, then ∆ is a k-
invariant decomposition of R. (Hence, Unf ∆(R) is controlled invariant.)

Very grossly, the complexity of procedure Find_Pattern is O(n3N k) since
there are N k patterns of length k, and the complexity of computation of suc-
cessor states and inclusion test using zonotopes can be done in O(kn3), using
zonotopes. This procedure is called by procedure Decomposition at most 2n·d

times which corresponds to the number of sub-boxes in the cas of a maximal
decomposition of length d . The worst complexity of the procedure is thus in
O(2n·d N k). Unsurprisingly, it suffers from the curse of dimensionality regarding
not only the state dimension n, but also the depth of decomposition d and the
length of patterns k.

The examples treated with a simple implementation of the procedure scales
up to 7 continuous variables. (see Section 8.5).

Note that there are boxes R for which Decomposition(R,R,d ,k) does not
succeed for any k and d . More generally, there are boxes R which are never
k-invariant, for any k.

Algorithm 7: Decomposition(W ,R,D ,K)

Input: A box W , a box R, a degree D of decomposition, a length K of
pattern

Output: 〈{(Vi ,πi)}i ,Tr ue〉 with
⋃

i Vi =W and
⋃

i Postπi (Vi) ⊂ R, or
〈_,F al se〉

1 (π,b) := F i nd_Pat ter n(W,R,K)
2 if b = Tr ue then
3 return 〈{(W,π)},Tr ue〉
4 else
5 if D = 0 then
6 return 〈_,F al se〉
7 else
8 Divide equally W into (W1,W2,W3,W4) /* (case n = 2) */

9 (∆1,b1) := Decomposition(W1,R,D −1,K)
10 (∆2,b2) := Decomposition(W2,R,D −1,K)
11 (∆3,b3) := Decomposition(W3,R,D −1,K)
12 (∆4,b4) := Decomposition(W4,R,D −1,K)
13 return (∆1 ∩∆2 ∩∆3 ∩∆4,b1 ∧b2 ∧b3 ∧b4)

We present now a sufficient condition on the position of R for ensuring its
k-invariance for some integer k.

134 Chapter 8. Stability Controllers

Algorithm 8: Find_Pattern(W ,R,K)

Input: A box W , a box R, a length K of pattern
Output: 〈π,Tr ue〉 with Postπ(W) ⊂ R, or 〈_,F al se〉 when no pattern

maps W into R
1 for i = 1. . .K do
2 Π := set of patterns of length i
3 whileΠ is non empty do
4 Select π inΠ
5 Π :=Π\ {π}
6 if Postπ(W) ⊂ R then
7 return 〈π,Tr ue〉

8 return 〈_,F al se〉

8.3.2 Sufficient Condition of Decomposition

Given a zone R, an invariant decomposition does not always exist. We give
hereafter some geometrical conditions on the position of R that guarantee the
decomposability of R when the system is contractive. For the sake of simplicity,
we suppose that the switched system has only |U | = 2 modes, and the state
space dimension is n = 2, but the reasoning extends to larger values of |U |
and n. We assume that matrix Au associated with mode u (u = 1,2) is invert-
ible and its eigenvalues have negative real parts. This implies that both modes
are contractive. Let eu = −A−1

u bu be the unique attractive equilibrium point
associated with mode u (u = 1,2). Let us define the “pure” switching rule Su

(u = 1,2) which applies repeatedly mode u to any point x ∈ R2. Let C1 (resp.
C2) be the τ-sampled trajectory issued from e1 (resp. e2) under S2 (resp. S1)
(i.e., C1 = Post∗2 (e1) and C2 = Post∗1 (e2)). Since each mode is contractive, and
eu is the unique equilibrium point associated with mode u, any trajectory un-
der control Su ends to the equilibrium point eu (u = 1,2), whatever the starting
point of R2. In particular, C1 ends to e2 and C2 to e1, as depicted in Figure 8.4
for the boost converter (see examples 12 and 17).

Theorem 12. Let Σ be a sampled switched affine system as defined above. Sup-
pose that the reference point O is in C1 ∪C2. If R ⊂ R2 is a box whose interior
contains O, then there exists a positive integer k such that R is k-invariant.

Proof. Suppose O ∈ C2. (The case O ∈ C1 is symmetrical.) Consider a box R of
interior Ṙ with O ∈ Ṙ. There exists∆O > 0 such that B(O,∆O) ⊂ R. Since O ∈C2,
we have:
(a) e2 →π1 O, for some pattern π1 ∈ (1)∗.

8.3. Decomposition Procedure 135

Figure 8.4: Trajectories C1, and C2 and zone R = [1.7,2]× [1.1,1.2] for the DC-
DC converter example

Furthermore, for all x ∈ R, we have:
(b) x →π2 x1 for some x1 ∈ B(e2,∆O) and some pattern π2 ∈ (2)∗, because e2 is
an attractive equilibrium point;
(c) x1 →π1 x2 for some x2 ∈ B(O,∆O), because of (a) and because mode 1 is
contractive. This is depicted in Figure 8.5. It follows from (b)-(c) that, for all

R

x

e2

x1

O

C2
x2 π2

π1

Figure 8.5: Illustration of the proof

x ∈ R: x →πx x2 for some x2 ∈ B(O,∆O) and some pattern πx ∈ (2∗1∗). Hence,
we have: B(x2,∆x) ⊂ R for some ∆x > 0. Since, for any πx , Postπx is con-
tinuous, Pr eπx (B(x2,∆x)) is an open subset of R2 containing x. Since R is a
compact of R2, from the set C = {Pr eπx (B(Postπx (x),∆x))}x∈R , one can extract
by Heine-Borel’s theorem2 a subset C ′ = {Pr eπxi

(B(Postπxi
(xi),∆xi))}i∈I , for

some finite set of indices I , such that C ′ covers R and B(xi ,∆xi) is R-invariant

2This theorem states that, if S is compact subset of Rn , then for every open cover of S has a
finite subcover

136 Chapter 8. Stability Controllers

via πi . This means that C ′ ∩ R is a k-invariant decomposition of R of the
form {(Vi ,πi)}i=1,...,m , where m is the cardinal of I , k the maximum length of
π1, . . . ,πm , and Vi =B(xi ,∆xi)∩R is such that

⋃m
i=1 Vi = R and Vi is R-invariant

via πi (1 ≤ i ≤ m).

Theorem 12 gives an interesting locality condition on O (location on one
of the “pure” trajectories linking the equilibrium points), for ensuring the ex-
istence of k-invariant boxes R. This justifies a posteriori the existence of a de-
composition for the zone R of the DC-DC converter example 17 since it overlaps
trajectory C1. Note also that R can be arbitrarily small as far as it intersects C1

(or C2).

8.3.3 Enhancement for Safety

Let us now explain how to extend the decomposition procedure in order to
show additionally that we have Unf ∆(R) ⊂ S, where S is a given safety set con-
taining R. This is done by adding an extra-input argument to procedures De-
composition and Find_Pattern corresponding to S. We then replace line 1 of
Decomposition(W ,R,D ,K ,S) by Find_Pattern(W ,R,K ,S), and line 6 of proce-
dure Find_Pattern by:

If Postπ(W) ⊂ R And Unf π(W) ⊂ S then

In other words: if π is a pattern of the form (u1 · · ·um) with u1, ...,um ∈ U ,
we check additionally Wi ⊂ S for all 1 ≤ i ≤ m, where the Wi s are the in-
termediate sets defined by W1 = Postu1 (W), . . . , Wm = Postum (Wm−1). In a
straightforward manner, we have:

Theorem 13. If the procedure Decomposition(R,R,d,k,S) returns 〈∆,Tr ue〉,
then Unf ∆(R) is controlled invariant. Furthermore, we have: Unf ∆(R) ⊂ S.

Hence, the system under the control inferred by the procedure (when it suc-
ceeds), is guaranteed to be safe.

The enhanced procedure has been implemented (see Section 8.5 for de-
tails). We illustrate its application on the boost DC-DC converter of example 12.

Example 20. For R, we now consider the box [1.75,1.95]×[1.14,1.26], which cor-
responds to a medium value 1.85 for il with ±0.1 for variability, and medium
value 1.20 for vc with ±0.06 for variability. For the safety region, we take
S = [1.7,2.0] × [1.10,1.30], which corresponds to an additional variability of
±0.05 for il and ±0.04 for vc . The application of algorithm 7 to R and S, with
k = 10 and d = 4 succeeds, yielding a k-invariant decomposition ∆ of the form

8.3. Decomposition Procedure 137

Figure 8.6: Left: decomposition ∆ for boost converter of R = [1.75,1.95] ×
[1.14,1.26]; right: ∆-unfolding where dark gray (resp. light gray) indicates
mode 1 (resp. 2), with enclosing box S = [1.7,2.0]× [1.1,1.3]

{(V j ,π j)} j=1,...,16 of R 3 satisfying Unf ∆(R) ⊂ S. The k-invariant decomposition∆
of R is depicted in the left part of Figure 8.6, and the ∆-unfolding is depicted in
the right part, with two gray colors corresponding to the different control modes:
dark gray (resp. light gray) indicates that mode 1 (resp. 2) should be applied. Fig-
ure 8.6 has been generated by our tool MINIMATOR. The unfolded ∆-trajectory
of the system starting at point (1.75,1.26), is depicted in Figure 8.7 generated by
a script of ours that run simulation given a controller.

8.3.4 Applications of the Enhanced Decomposition Procedure

We now apply the decomposition procedure (enhanced for safety properties)
to several examples. For each example, we are given a global control box R and
a safety set S which contains it. We generate a k-invariant decomposition ∆ of
R satisfying Unf ∆(R) ⊂ S, thus proving that Unf ∆(R) is a controlled invariant,
and that the system is safe.

Example 21. Let us consider the Helicopter motion example 14 of Chapter 7.4.
We take R = [−0.3,0.3]×[−0.5,0.5] in plane (x1, x2). This corresponds to an equi-
librium zone centered at the state (0,0) of the ground vehicle, and a variability of
±0.3 for position and ±0.5 for velocity. We take S = [−0.4,0.4]× [−0.7,0.7] for the

3The associated patterns are: π1 = (1122122122), π2 = (12121222), π3 = (12122122), π4 =
(122), π5 = (2), π6 = (12), π7 = (12), π8 = (1), π9 = (1), π10 = (1), π11 = (12), π12 = (12), π13 = (2),
π14 = (2), π15 = (12), π16 = (221).

138 Chapter 8. Stability Controllers

Figure 8.7: Unfolded ∆-trajectory of the boost converter starting at (1.75,1.26)
(inner box R = [1.75,1.95]× [1.14,1.26], outer box S = [1.7,2.0]× [1.1,1.3])

safety region, which corresponds to an additional variability of ±0.1 for position
and velocity. (This is the same safety zone S as in [DLHT11].)

The application of algorithm 7 to R and S with k = 6 and d = 4 succeeds,
yielding a k-invariant decomposition ∆ of R of the form {(Vi ,πi)}i=1,...,10

4

satisfying Unf ∆(R) ⊂ S. The decomposition∆ is represented in Figure 8.8. The
unfolding of R is depicted in Figure 8.9. These figures have been generated by our
tool MINIMATOR. The unfolding is divided into regions of three different col-
ors corresponding to the different control modes: color dark gray (resp. medium
gray, light gray) indicates that mode 10 (resp. −10, 0) should be applied. The
surrounding box is S = [−0.4,0.4]× [−0.6,0.6].

The unfolded ∆-trajectory, in plane (x, ẋ), of the system starting at point
(−0.3,0.5), is depicted in Figure 8.10, generated by a script of ours that run sim-
ulation given a controller.

Example 22. (Two-room building heating) Let us consider the example of the
Two-Room Building Thermal problem (see Example 13 of Chapter 7.4). For the
safety zone, we take S = [20,22]× [20,22], as in [Gir12].

The application of the algorithm 7 to R and S with k = 4 and d = 2 succeeds,
yielding a k-invariant decomposition ∆ of the form {(V j ,π j)} j=1,...,10 of R5 sat-
isfying Unf ∆(R) ⊂ S. The decomposition ∆ is depicted in Figure 8.11, generated

4The associated patterns are:
π1 = (−10·−10·−10·−10·−10·0·10), π2 = (−10), π3 = (0), π4 = (−10·−10·−10·10), π5 = (−10),

π6 = (0), π7 = (−10), π8 = (10 ·10 ·0 ·0), π9 = (0), π10 = (10 ·10 ·10 ·10 ·0 ·10 ·−10).
5The associated patterns are: π1 = (1010), π2 = (1), π3 = (10), π4 = (0), π5 = (0), π6 = (1),

π7 = (0), π8 = (0), π9 = (0), π10 = (10).

8.3. Decomposition Procedure 139

Figure 8.8: k-invariant decomposi-
tion for helicopter motion

Figure 8.9: ∆-unfolding for he-
licopter motion where dark gray
(resp. medium gray, light gray) indi-
cates mode 10 (resp. −10, 0). (The
enclosing box is S)

Figure 8.10: Unfolded ∆-trajectory of helicopter motion in plane (x, ẋ) starting
at (−0.3,0.5) (inner box: R, outer box: S)

by MINIMATOR. The unfolding of R is represented on Figure 8.12, generated by
MINIMATOR. The unfolding is divided into regions of two colors corresponding
to the different control modes: the dark gray (resp. light gray) color indicates that
control 0 (resp. 1) should be applied. The outer box is the safety zone S.

The controlled system has been simulated using Octave [Oct13]. A simulation
is depicted in Figure 8.13, generated by a script of ours, for starting temperature
point (20.25,21.75).

140 Chapter 8. Stability Controllers

Figure 8.11: k-invariant decomposi-
tion for heating system

Figure 8.12: ∆-unfolding for heating
system where dark gray (resp. light
gray) indicates mode 0 (resp. 1).
(outer box: S = [20,22]× [20,22])

Figure 8.13: Unfolded ∆-trajectory of heating system in plane (T1,T2), start-
ing at (20.25,21.75) (inner box R = [20.25,21.75]× [20.25,21.75], outer box S =
[20,22]× [20,22]])

8.4 Limit Cycles

In Figures 8.3, we see that the (unfolding of the) ∆ trajectory seems to converge
to a cycle. We now formally state that under certain assumptions, this is actu-
ally the case. We suppose that we are given a global box R and a decomposition
∆ = {(Vi ,πi)}i∈I produced by the decomposition algorithm of Section 8.3. We
denote the union of the set of borders of Vi (i ∈ I) by ∂∆. (Recall that two adja-

8.4. Limit Cycles 141

cent boxes Vi and V j share a common border; see Remark 2.)
We show how to produce attractors of R, using an iteration of Post∆. Fur-

thermore, under certain assumptions which are often met in practice, these at-
tractors are made of finite subsets of points corresponding to limit cycles which
attract all the ∆-trajectories starting in R.

The idea is the following: since Post∆(R) ⊂ R, one has Post i+1
∆ (R) ⊂

Post i
∆(R) for all i ≥ 0, and the limit set R∗

∆ = ⋂
i≥0 Post i

∆(R) is well defined and
non-empty.

Lemma 13. Consider a k-invariant decomposition ∆ = {(Vi ,πi)}i∈I of R. The

sequence {R j
∆} j≥0 defined by:

• R0
∆ = R,

• R j+1
∆ = Post∆(R j

∆)

is a decreasing nested sequence and the set R∗
∆ = ⋂

j≥0 R j
∆ is well-defined. Fur-

thermore, R∗
∆ is an attractor set of R, i.e.:

1. Post∆(R∗
∆) = R∗

∆ (invariance property)

2. ∀x ∈ R, d(Post j
∆(x),R∗

∆) → 0 as j tends to ∞6 (attraction property).

We now make the following assumptions:

(H1): All the modes are locally contractive in R.

(H2): There exists N ∈N such that Post N
∆ (R)∩∂∆=;.

These assumptions will be discussed at Section 8.4.2. We show that under these
assumptions, R∗

∆ is a finite set of points composed of disjoint “cycles”. Further-
more, each ∆-trajectory starting from a point of R converges to one of these
cycles. This is formally stated as follows.

Definition 41. A cycle is a finite set of points of R of the form {y0, y1, . . . , ym−1}
with y0 →πi1

y1 →πi2
· · ·→πim

ym = y0 for some patterns πi1 , . . . ,πim of ∆.

Theorem 14. Under assumptions (H1)-(H2), we have:

1. R∗
∆ is a finite union of (disjoint) cycles.

2. The ∆-unfolding of each cycle of R∗
∆ is a controlled invariant finite set.

6d(y, Z) denotes the smallest distance between a point y ∈Rn and any point of Z ⊂Rn .

142 Chapter 8. Stability Controllers

3. Each ∆-trajectory {x0, x1, . . .} converges to a cycle of the form
{y0, y1, . . . , ym−1} in the following sense:

∃M ∈N ∀`= 0, . . . ,m −1 lim
i→∞

xM+i ·m+` = y`.

Note that, although the ∆-unfolding of each cycle is finite, it is not ensured
to be a minimal controlled invariant: it is a priori possible that a strict subset
of the ∆-unfolding be itself controlled invariant.

The next subsection present a detailed proof of Theorem 14.

8.4.1 Proof of the Convergence towards Limit Cycles

Consider a k-invariant decomposition ∆ = {(Vi ,πi)}i∈I of R, and the sequence
{R j
∆} j≥0 and its limit R∗

∆.
Let us consider the (compact) convex sets W k

σ where k ∈ N and σ ∈ I k , de-
fined as follows:

• W 0
ε = R where ε denotes the empty sequence.

• W k+1
(i ·σ) = Postπi (W k

σ ∩Vi) with i ∈ I and σ ∈ I k .

It is easy to show that, for all k ∈ N and all σ ∈ I k , W k
σ is a compact convex set

such that
(1): Post k

∆(R) =⋃
σ∈I k W k

σ .
It follows from assumption (H2) that, for all sequence σ ∈ I N , W N

σ ∩ ∂∆ = ;,
therefore W N

σ ⊂ V̊i for some i ∈ I , and Post∆(W N
σ) = Postπi (W N

σ). Since
Post N+1

∆ (R) ⊂ Post N
∆ (R), Post∆(W N

σ) = Postπi (W N
σ) is a compact convex set

included into Post N
∆ (R), and is therefore included into one of the convex com-

ponents of Post N
∆ (R). We have

(2): Post∆(W N
σ) ⊂W N

σ′ for some σ′ ∈ I N .
Now, for all ∆-trajectory {x0, x1, . . .}, we have
(3): ∀k ≥ N ∃σ ∈ I N : xk ∈W N

σ

because, for all k ≥ N , xk ∈ Post k
∆(R) ⊂ Post N

∆ (R) = ⋃
σ∈I N W N

σ . By rewriting
the elements of {W N

σ }σ∈I N under the form {W1, . . . ,WM }, and denoting the set
{1, . . . , M } by J , we recapitulate these results as follows:

Proposition 11. There exist M compact convex sets W1, . . . ,WM with
⋃M

j=1 W j ∩
∂∆=;, such that
(1′): Post N

∆ (R) =⋃M
j=1 W j

(2′): ∀ j ∈ J ∃ j ′ ∈ J : Post∆(W j) ⊂W j ′ .
(3′): for all ∆-trajectory {x0, x1, . . .}, ∀i ≥ N ∃ j ∈ J : xi ∈W j .
The element j ′ associated with j in (2′) will be denoted by s(j). (If there are more
than one such a j ′, an arbitrary one is selected.)

8.4. Limit Cycles 143

Using part (2′) of Proposition 11, one can define a directed graph where J is
the set of vertices, and there is an oriented edge from j ∈ J to j ′ ∈ J iff j ′ = s(j)
(i.e., Post∆(W j) ⊂ W j ′). The strongly connected components of this graph are
cyclic (because each vertex of the graph has a unique outgoing edge).

In the following, we will denote a cyclic subgraph by C = (j0, . . . , jm−1)
with j`+1 = s(j`) for 0 ≤ ` ≤ m − 1, using the convention: jm = j0. For ev-
ery element j of C , we have sm(j) = j , i.e.: Post m

∆ (W j) ⊂ W j . More gen-

erally, Post (i+1)·m
∆ (W j) ⊂ Post i ·m

∆ (W j). We can define a decreasing sequence
of nonempty compact convex sets Post i ·m

∆ W j for all i ≥ 0. The limit set⋂
i≥0 Post i ·m

∆ (W j) is a nonempty compact set. Furthermore, since by (H1) all
the modes are contractive, it is easy to see than this limit set is reduced to a
point, that will be denoted by z j . Every cycle of indices C = (j0, . . . , jm−1) thus
corresponds to a cycle of points ZC = (z j0 , . . . , z jm−1). Furthermore, it is easy to
show that, for all 0 ≤ `≤ m−1, we have succ∆(z j`) = z j`+1 . Let us denote the set
of vertices of all the cyclic subgraphs by J ′. An illustration of the form of such a
graph is given in Figure 8.14.

Figure 8.14: Illustration of the graph of W j s with J = {1,2,3,4,5,6} and J ′ =
{1,2,4,5}

These results are recapitulated in the following.

Proposition 12. For all cycle C = (j0, . . . , jm−1) of J ′, we have:
∀ j ∈C : Post m

∆ (W j) ⊂W j .
Furthermore, for all j ∈C , the set

⋂
i≥0 Post i ·m

∆ (W j) is well defined and equal to
a point denoted by z j . We have, for all `= 0, . . .m −1: succ∆(z j`) = z j`+1 .

Consider now the vertices of the graph that are J \ J ′. Each of them is the
destination of a finite number of acyclic paths. This means that after a fi-
nite number of iterations of Post∆, no point will belong to W j for j ∈ J \ J ′7.

7More formally, no point will belong to a W j for j ∈ J \ J ′ if it does not belong to a W j ′ for
j ′ ∈ J ′

144 Chapter 8. Stability Controllers

Formally: ∃M ≥ N ∀ j ∈ J \ J ′ Post M
∆ (R) ∩ W j = ;. Furthermore: ∀k ≥ M

Post k
∆(R) ⊂ ⋃

j∈J ′ W j . It follows that, for all ∆-trajectory {x0, x1, . . .}, xM belong
to W j for some j ∈ J ′. Let C = (j0, . . . , jm−1) be the cycle which contains j .
Modulo a circular permutation of C , one can suppose j = j0. Then, for all
0 ≤ `≤ m−1, xM+` belongs to W j` . More generally, xM+i ·m+` ∈ Post i ·m(W j`). It
follows: limi→∞ xM+i ·m+` =⋂

i≥0 Post i ·m
∆ (W j`) = z j` . We have:

Theorem 15. Every ∆-trajectory {x0, x1, . . .} converges to a limit cycle in the fol-
lowing sense: for all initial point x0 ∈ R, there exists a cycle C = (j0, . . . , jm−1) of
J ′, a cycle of points ZC = (z j0 , . . . , z jm−1) and an integer M ∈ N such that, for all
`= 0, . . . ,m −1

• ∀i ≥ 0 : xM+i ·m+` ∈ Post i ·m
∆ (W j`) ⊂W j` .

• limi→∞ xM+i ·m+` = z j` .

The expression Post m
∆ (z j`) = z j` of Theorem 14 gives a practical method to

compute z j` (`= 0, . . . ,m −1). Indeed, we have that z j` ∈ Vi for some i ∈ I . Let
us denote such a i by φ(j`), and let π = (πφ(j0) · · ·πφ(jm−1)). Since Post m

∆ (z j0) =
Postπ(z j0) =Cπ ·z j0 +dπ for some matrix Cπ and vector dπ, we can compute z j0

as a solution of the equation z j0 = Cπ · z j0 +dπ. Similar equations hold for z j`
with `= 1, . . . ,m −1. Furthermore, we have:

Proposition 13. R∗
∆ = {z j | j ∈ J ′}.

Proof. We know that there exists K > 0 such that, for all k ≥ K , Post k
∆(R) =⋃

j∈J ′ Post k
∆(W j). We also know:

⋂
k≥0 Post k

∆(W j) = {z j }. It follows R∗
∆ =⋂

k≥0 Post k
∆(R) =⋃

j∈J ′
⋂

k≥0 Post k
∆(W j) = {z j | j ∈ J ′}.

The elements of {z j | j ∈ J ′} are grouped together into cyclic sets of points.
For all cyclic set of points ZC , we have Post∆(ZC) = ZC . It follows:

Proposition 14. For all cyclic set of points ZC , the ∆-unfolding of ZC is a con-
trolled invariant set.

From Theorem 15 Propositions 13 and 14 it follows Theorem 14.

8.4.2 Discussing Assumptions (H1) and (H2)

Under assumptions (H1) and (H2), we have stated that each trajectory con-
verges to a finite cyclic set of points.

The first assumption is classical in order to ensure convergence results, and
was also used in Chapter 7.5. Actually, even if some of the modes are not con-
tractive, we may observe the convergence to finite cyclic sets of points because

8.4. Limit Cycles 145

of the contractivity of the patterns involved by the control. This is the case in
the helicopter motion example (see Figure 8.10). However, if none of the modes
are (locally) contractive, then there is no limit cycle, and R∗

∆ is infinite as illus-
trated in the following example.

Example 23. For this example, we use modes associated to repulsive homothetic
transformation. There are 4 modes such that, close to each corner of the global
box R = [−1,1]×[−1,1], there exists a fixpoint for one of the mode. We take for the

dynamics of the modes: A1 = A2 = A3 = A4 =
(
1.5 0
0 1.5

)
, b1 =

(
0.6
0.6

)
, b2 =

(−0.6
0.6

)
,

b3 =
(−0.6
−0.6

)
, and b4 =

(
0.6
−0.6

)
. The ∆-decomposition is presented in Figure 8.15

computed by MINIMATOR. We have V1 = [−1,0]× [−1,0] associated to pattern
π1 = (1), V2 = [0,1]× [−1,0] associated to pattern π2 = (2), V3 = [0,1]× [0,1] asso-
ciated to pattern π3 = (3), and V4 = [−1,0]× [0,1] associated to pattern π4 = (4).
A ∆-trajectory is depicted in Figure 8.16 simulated by a script of ours. One can
see a chaotic behavior and an absence of convergence towards a limit cycle.

Figure 8.15: Decomposition ∆ of R for the non contractive example

Assumption (H2) is justified as follows. When Post∆ is applied to R for the
first time, the local boxes are transformed into |I | convex sets. If such a set, say
W , crosses a border of ∂∆ and partly belongs to, say, two local boxes V1 and V2,
it will be split into two sets Postπ1 (W ∩V1) and Postπ2 (W ∩V2) at the next ap-
plication of Post∆. The number of convex sets generated at each application
of Post∆ thus increases repeatedly until no image crosses a border, which hap-
pens at step N by assumption (H2). The images generated by further applica-
tion of Post∆ will then never cross ∂∆: these images will either disappear or
shrink towards single points by assumption (H1). In the absence of assump-
tion (H2), the number of connected sets of Post k

∆(R) can increase indefinitely.
Assumption (H2) thus seems to be a necessary condition for the finiteness of
R∗
∆.

146 Chapter 8. Stability Controllers

Figure 8.16: ∆-trajectory for the non contractive example

8.4.3 Illustrative Examples

We now illustrate the convergence of Post k
∆ to a cyclic set of points as k tends

to infinity, on the boost and two-tank example.

Example 24. (Boost DC-DC Converter). One has already seen that the modes of
the Boost converter are locally contractive (see Example16), hence (H1) is satis-
fied. Likewise, (H2) is satisfied: for N = 100, Post N

∆ (R) is entirely contained into
the local box V1 of the decomposition ∆ (see Figure 8.17 depicting the iterated
images Post k

∆ for k = 0,20,40,60,80,100). These figures have been generated by
MINIMATOR. The limit set R∗

∆ is here composed of a unique limit cycle that is

Figure 8.17: Visualization of Post k
∆ for k = 0,20,40,60,80,100

made of a single point y0 ∈V1. We have: y0 →π1 y1 = y0, with π1 = (1 ·1 ·2 ·2 ·2).

8.4. Limit Cycles 147

The ∆-unfolding of this limit cycle is thus made of 5 points corresponding to the
composing modes of π1 (see Figure 8.18, generated by a script of ours).

Figure 8.18: ∆-unfolding of the limit cycle {y0} for the Boost example

Example 25. (Two-Tank). The two-tank system example is taken from [His01].
The system consists of two tanks and two valves. The first valve adds to the inflow
of tank 1, the second valve is a drain valve for tank 2. There is also a constant
outflow from tank 2 caused by a pump. The system is linearized at a desired
operating point. The objective is to keep the water level in both tanks within
limits using a discrete open/close switching strategy for the valves. Let the water
level of tank 1 and 2 be given by x1 and x2 respectively. The behavior of x1 is
given by: ẋ1 = −x1 − 2 when the tank 1 valve is closed, and ẋ1 = −x1 + 3 when
it is closed. Likewise, x2 is driven by: ẋ2 = x1 when the tank 2 valve is closed
and ẋ2 = x1 − x2 − 5 when it is closed. Using R = [−1.5,2.5] × [−0.5,1.5] as a
control box, we obtain the decomposition depicted in Figure 8.19, generated by
MINIMATOR. With V1 = [−1.5,0.5]×[−0.5,0.5] associated to patternπ1 = (2·3·3),
V2 = [0.5,2.5]× [−0.5,0.5] to π2 = (2), V3 = [0.5,2.5]× [0.5,1.5] to π3 = (1 ·4) and
V4 = [−1.5,0.5]×[0.5,1.5] to π4 = 3. Figure 8.20 depicts a discrete trajectory of the
two tank system, and its ∆-unfolding. These figures have been obtained by our
script generating simulation of trajectories under a controller.

One can check that all the modes of the two-tank system are contractive (the
eigenvalues of all the associated matrix have negative real part). Hence (H1)
is satisfied. Likewise, (H2) is satisfied: for N = 10, Post N

∆ (R) does not intersect
the borders of ∆ (see Figure 8.21 depicting the iterated images Post k

∆(R), for k =
0,5,10,15,20,25 computed by our tool MINIMATOR).

The limit set R∗
∆ is here composed of a unique limit cycle of the form

{y0, y1, y2, y3} with: y0 →π2 y1 →π2 y2 →π1 y3 →π3 y4 = y0 (with π2 = (1), π1 =
(2 · 2 · 3), π3 = (1 · 4)). This limit cycle is depicted on the left of Figure 8.22, and
its ∆-unfolding (corresponding to 7 points generated by the composing modes of
π2π2π1π3) on the right.

148 Chapter 8. Stability Controllers

Figure 8.19: Decomposition for the two-tank problem

Figure 8.20: ∆-trajectory starting from the bottom left corner of R (left), and its
∆-unfolding (right)

Figure 8.21: Visualization of Post k
∆ for k = 0,5,10,15,20,25

8.5. Implementation 149

Figure 8.22: Limit cycle for the two-tank example (left), and its ∆-unfolding
(right)

8.5 Implementation

The implementation of the method is made of two basic procedures: a proce-
dure Decomposition and described in Section 8.3.1, written in Octave [Oct13],
which outputs ∆, and a procedure, called Iteration which constructs R i

∆ for
i ≥ 0, written in Ocaml [Oca13]. The procedure Decomposition is implemented
using zonotopes.

One cannot implement the procedure Iteration using zonotopes because
it involves the intersection operator which does not preserve the structure of
zonotopes. It is thus implemented using the more general structure of poly-
hedra using the PPL library [PPL13]. The Iteration procedure receives ∆ from
module Decomposition and outputs the successive iterations of Post∆. The
sequence of post sets can also be visualized as an animation (see Figure 8.17).

The examples of decomposition given in this thesis have been performed
using the tool MINIMATOR [min]. The multilevel simulations have been per-
formed using a code written in PLECS [PLE13], which is better-suited for
these examples, because in PLECS one can enter the electrical circuits under
a schematic form and obtain automatically the associated systems of differen-
tial equations. The examples have run on a machine equipped with an Intel
Core2 CPU X6800 at 2.93GHz and with 2GiB of Ram memory. Some figures of
the experiments are listed in Table 8.1.

The first column indicates the name of the example together with its ref-
erence in the thesis. The second column indicates the running time to obtain
a decomposition, and the third one the numbers of patterns generated to ob-
tain this decomposition8. The subsequent columns labeled by N , k, d and n
indicate the number of modes, the input parameter of maximal pattern length,

8This figure is not available for the multilevel converters because they have been imple-
mented using PLECS, rather than our standard code in Octave (see Chapter 8).

150 Chapter 8. Stability Controllers

Example Running time # patterns N k d n contrac. cycle
Boost (ex. 20) 150 seconds 12113 2 10 4 2 loc. yes

Helicopter (ex. 21) ≈ 2 hours ≈ 1.5 million 9 6 4 2 no yes
Heating (ex. 22) 1 second 134 2 2 4 2 glob. yes

Two-tank (ex. 25) 4 seconds 1423 4 3 1 2 glob. yes
5-level (Sec. 9.2.1) 3 minutes - 16 8 1 3 yes yes
7-level (Sec. 9.2.2) 35 minutes - 64 32 1 5 yes yes
9-level (Sec. 9.2.2) ≈ 5 hours - 256 128 1 7 yes yes

Table 8.1: Case studies run on MINIMATOR

the input parameter of decomposition depth and the space dimension respec-
tively. Finally, the column ‘contrac.’ indicates if the example is locally contrac-
tive (‘loc.’), globally contractive (‘glob’) or not contractive, the column ‘cycle’ if
the procedure Iteration generates a limit cycle.

8.6 Extensions: Reachability, Sensitivity, Robust-
ness, Nonlinearity

In this chapter, we introduce several novel ways of exploiting different facets of
the procedure of invariant generation by decomposition introduced in Chapter
8.

8.6.1 Reachability Control

The reachability control problem consists in steering the system from an initial
region, say R, to a target region typically containing a reference point, say O. We
have seen in Chapter 8 how the iteration of the decomposition procedure may
drive the trajectories to a stability subregion of R. If such a region contains O,
then we are done. Actually, if we start from a vast region of attraction R, it is pos-
sible to interleave the process of generating the successor sets with a process of
updating the decompositions We first apply the decomposition procedure to
R: if the procedure succeeds, we get a decomposition ∆ with Post∆(R) ⊂ R. If
Post∆(R) still contains the reference point 0, one re-applies the decomposition
procedure to the bounding box R ′ =�(Post∆(R)), of Post∆(R). If the procedure
succeeds, yielding a new decomposition∆′, one can compute the successor set
Post∆′(R ′) ⊂ R ′. Now, if Post∆′(R ′) still contains O, one can reiterate the process
to R ′′ = �(Post∆′(R ′)), and so on iteratively. One thus produces nested boxes
R,R ′,R ′′, . . . and associated decompositions ∆,∆′,∆′′, The procedure termi-
nates either when the sequence stabilizes (R i+1 ≈ R i), or when the decomposi-

8.6. Extensions: Reachability, Sensitivity, Robustness, Nonlinearity 151

tion procedure fails, or when R i+1 does not contain O. The control induced by
the decompositions ∆,∆′, . . . can be used to construct a reachability controller
that steers the system from R to a region R i containing O. This is illustrated in
Example 26.

Example 26. We first illustrate the process of iterative decomposition on the
boost converter example (see Example 12). We start from a “large” region R =
[0,10] × [0,4]. We take O = (1.8,1.2) as a reference point. The iteration finds
8 nested decompositions (see Figure 8.23 generated by a script of ours that re-
cursively calls MINIMATOR). A trajectory controlled by such nested decomposi-
tions, is given in Figure 8.24 generated by a script of ours. The process is also
illustrated on the helicopter motion example (see Example 14), starting from
R = [−10,10]× [−10,10], with the origin (0,0) as a reference point. The itera-
tion finds 9 nested decompositions (see Figure 8.25 generated by a script of ours
that recursively calls MINIMATOR). A controlled trajectory is given in Figure 8.26
generated by a script of ours.

Figure 8.23: Nested decompositions
for boost DC-DC converter found by
starting from R = [0,10]× [0,4]

Figure 8.24: Nested decomposi-
tions for helicopter motion found
by starting from R = [−10,10] ×
[−10,10]

Actually, since the procedure constructs the successive decompositions in
a “blind” manner, without a priori consideration for the position of O, it is un-
able to drive the system to a close neighborhood of O. This shortcoming seems

152 Chapter 8. Stability Controllers

Figure 8.25: Controlled trajectory
of boost DC-DC converter starting
from (0,0.01)

Figure 8.26: Controlled trajectory of
helicopter starting from (−10,0)

unavoidable when using a forward approach. More precise reachability con-
trollers should implement a backward approach, starting from O and using dy-
namic programming techniques as done, e.g., in [Ber00, LTS99], but this may
require an expensive gridding of the state space.

8.6.2 Sensitivity

We have shown in Chapter 8 that, under the control induced by decomposi-
tion of a given region R, trajectories trajectories converge to stable limit cycles
inside R. In the following example, we point out here the sensitivity of limit
cycles to parameter variations by showing the evolution of limit cycles in pres-
ence of small perturbations of system parameters. As indicated, e.g., in [His01],
this suggests that limit cycles are are good candidates for reliable estimation of
physical parameters of the system, using an appropriate inverse approach (see
[Tar05]).

Example 27. We take the boost DC-DC example with the same region R =
[1.55,2.15]× [1.0,1.4] as considered in Example 17. The application of the al-
gorithm 7 with k = 5 and d = 1, yields a decomposition ∆ of R (see Figure 8.1 of
Chapter 8). As depicted in Figure 8.27 generated by our script that simulates runs,
the trajectories starting from the four corners of R, under the control strategy in-
duced by ∆ converge to the same limit cycle. A remarkable feature is that, even
in presence of (small) variations of parameters of the system, the same decom-
position ∆ ensures the k-invariance of R. In our example, the decomposition ∆,
originally found for r0 = 1, is still k-invariant when r0 varies from 0.965 to 1.005.
It follows that the state-dependent control found for r0 = 1 still ensures the con-
vergence to limit cycles in R, for slight variations of r0. Nevertheless, as shown

8.6. Extensions: Reachability, Sensitivity, Robustness, Nonlinearity 153

Figure 8.27: Runs starting from the four corners of R, following the control strat-
egy induced by the decomposition, and converging to the same limit cycle

in Figure 8.28 generated by a script of ours, the form, length and position of the
limit cycles are very sensitive to the actual value of r0: for r0 = 0.965, the limit cy-
cle corresponds to the pattern (π3π

3
1π3π

2
1π3π

3
1π3π

3
1π3π

3
1) (with π1 = (1 ·1 ·2 ·2 ·2),

π3 = (2·1·2)); for r0 = 0.975, the pattern is (π3π
5
1), while, for r0 = 1 and r0 = 1.005,

it is just (π1).

8.6.3 Robust Safety Control

As explained in Section 7.4.3, zonotopes allow to extend the computation of
successor sets in order to account for small perturbations of the system dy-
namics. The dynamics of the system are now of the form ẋ = Au x+bu+εwhere
ε represents a disturbance vector belonging to a given box Λ centered at the
origin, and relations Postu and Postπ are extended, as explained in Section
7.4.3. The decomposition procedure and its enhancement for safety (Section
8.3.3) are then simply adapted by replacing the inclusion test Postπ(W) ⊂ R by
Postπ(W,Λ) ⊂ R. We now give two examples of application of the decomposi-
tion procedure (enhanced for safety) in presence of disturbance.

Example 28. (Boost converter). We consider the dynamics of the boost DC-DC
converter (see examples 17 and 20) in presence of disturbances ε belonging to
Λ = [0,0]× [−0.064

xl
, 0.064

xl
]. These disturbances correspond to noise on the input

voltage, and represent up to 8% of the value of the input voltage. With such dis-

154 Chapter 8. Stability Controllers

Figure 8.28: Limit cycles for r0 = 0.965 (pattern (π3π
3
1π3π

2
1π3π

3
1π3π

3
1π3π

3
1)) on

the upper left, for r0 = 0.975 (pattern (π3π
5
1)) on the upper right, for r0 = 1 (pat-

tern π1) on the lower left, and for r0 = 1.005 (pattern π1) on the lower right

turbances, we are not able to find a control preserving the safety zone of Example
20 (viz., [1.7,2.0]× [1.10,1.30]). We thus consider a larger (i.e., more tolerant)
safety zone defined by S′ = [1.65,2.05]×[1.10,1.30]. The extended decomposition
procedure then succeeds for k = 13 and a d = 5: it generates a k-invariant de-
composition ∆′ of R satisfying Unf ∆′(R) ⊂ S′. The decomposition ∆′ is depicted
in Figure 8.29 generated by MINIMATOR.9 A trajectory starting at (1.75,1.26),
submitted to perturbation, is depicted in Figure 8.30 generated by our script that
simulates runs.

Example 29. (Helicopter Motion) As done in [DLHT11], we will now solve the
control problem with bounded disturbances to take into account a potential
real-life environment. We consider the same regions R = [−0.3,0.3]× [−0.5,0.5]
and S = [−0.4,0.4] × [−0.7,0.7] as in Example 21, and add the disturbance
ε ∈ Λ = [−0.02,0.02]× [−0.1,0.1]. The extended decomposition procedure suc-
ceeds, and generates a k-invariant decomposition ∆′ with Unf ∆′(R) ⊂ S. The de-

9The corresponding patterns are: π1 = (1122121222), π2 = (1122122121222), π3 =
(21121222), π4 = (12121222), π5 = (122), π6 = (2), π7 = (12), π8 = (12), π9 = (12), π10 = (12),
π11 = (1), π12 = (1), π13 = (1), π14 = (12), π15 = (12), π16 = (21221).

8.6. Extensions: Reachability, Sensitivity, Robustness, Nonlinearity 155

Figure 8.29: k-invariant decomposi-
tion for boost converter with distur-
bances

Figure 8.30: Unfolded ∆-trajectory
of the boost converter with dis-
turbances in plane (il , vc), start-
ing at (1.75,1.26) (inner box: R =
[1.75,1.95] × [1.14,1.26], outer box:
S′ = [1.65,2.05]× [1.1,1.3])

composition ∆′ is depicted in Figure 8.31 generated by MINIMATOR. A trajectory
starting at point (−0.3,0.5), submitted to disturbance, is depicted in Figure 8.32
generated by a script of ours.

Figure 8.31: k-invariant decomposi-
tion for helicopter motion with dis-
turbance

Figure 8.32: Unfolded ∆-trajectory
of helicopter motion with distur-
bance in plane (x, ẋ), starting at
(−0.3,0.5) (inner box: R, outer box:
S)

156 Chapter 8. Stability Controllers

8.6.4 Nonlinearity

The basic decomposition procedure, explained in Section 8.3.1, is quite gen-
eral, and does not suppose that the successor operator Postπ is linear or affine.
However, in the case where Postπ is an affine function, the computation can
be done in an exact manner. We now sketch out how to modify the decomposi-
tion procedure in case of non-affine dynamics. The process is inspired by what
has been done for handling disturbance (Section 8.6.3). Following [ASB08], we
compute (an overapproximation of) the successor sets using local lineariza-
tions of the system, and enlargement of the linear images by addition of error
intervals. We will consider here a system governed by a unique equation of the
form x(t +τ) = f (x(t)) where f is a polynomial. The set U is thus reduced to a
single element (U = {1}). A pattern π associated to a subregion V , is now just an
integer indicating the number of times f should be applied when the state is in
V . We put f (x) under the form f (x) = fl i n(x)+Q(x), where fl i n(x) is a polyno-
mial of order 1, and Q a sum of monomials of order greater than or equal to 2.
Along the lines of Section 7.4.3, we can compute a local over-approximation of
f by considering the polynomial subpart Q(x) as a perturbation. We have:

Lemma 14. Consider a function f defined by: f (x) = fl i n(x)+Q(x), where fl i n(x)
is a 1st-order polynomial of the form d +C x, and Q(x) a sum of polynomials of
order greater than equal to 2. Given a zonotope Z :< c,G >, we have:

f (Z) ⊂ fl i n(Z)+ZΛ

with:

• fl i n(Z) =< f (c),CG >

• ZΛ =< 0,

ε1(Z) 0 . . . 0

0 ε2(Z) . . . 0
...

...
. . .

...
0 0 . . . εn(Z)

>

with (1 ≤ i ≤ n): εi (Z) = maxx∈Z (|Qi (x)−Qi (c)|).

Using a repeated application of the lemma, one can compute an over-
approximation of f π(Z) of the form f πl i n(Z)+ Zπ

Λ. This lemma allows to mod-
ify the Decomposition procedure as follows: the inclusion test Postπ(W) ⊂ R,
which corresponds here to a test of the form f π(W) ⊂ R, is replaced by test
f πl i n(W)+W π

Λ ⊂ R. What remains to do is to find an upper bound of εi (W),
that is an upper bound of (|Qi (x)−Qi (c)|) over W , for each 1 ≤ i ≤ n. We now
explain on two standard examples (taken from [ABSTDG12]) how to compute
such upper bounds. The decomposition procedure is then iterated in order to
construct an attractor, which is an over-approximation of R∗

∆.

8.6. Extensions: Reachability, Sensitivity, Robustness, Nonlinearity 157

Example 30. (Van der Pol oscillator). The dynamics of the Van der Pol oscillator
are the following:

x(t +τ) =
(

1 τ

−τ 1+τ
)

x(t)+
(

0
x1(t)2x2(t)τ

)
.

When linearized to a point c ∈R2, this gives:

x(τ) =
(

1 τ

−τ 1+τ
)

x(t)+
(

0
−c2

1c2τ

)
.

Thus, we have fl i n(Z) =
(

1 τ

−τ 1+τ
)

Z +
(

0
−c2

1c2τ

)
=

(
1 τ

−τ 1+τ(1− c2
1)

)
x(t).

It is easy to see that for a box V ⊂ R2 we are making an error of at most 0 on
the x axis and |(c2

1−(c1+G1,2+G2,2)2|τ on the y axis. Thus we need to enlarge any
image of a zonotope Z =< c,G > by 0 on the x-axis and τ|(C 2

1 −(C1+G1,2+G2,2)2|
on the y-axis, i.e.:

ZΛ =< 0,

(
0 0
0 |(C 2

1 − (C1 +G1,2 +G2,2)2|τ
)
>.

The Decomposition procedure is applied to R = [−3,3]× [−3,3] and τ= 0.01
(with parameters k = 30, d = 7). At boxes located around the center of R, the
length of patterns is 1 while in the lower left and upper right edges, the length
is up to 30. The result of the Decomposition is depicted in the left part of Figure
8.33 generated by MINIMATOR and (an overapproximation of) the attractor set
R∗
∆ in the right part.

Figure 8.33: Decomposition for the Van der Pol oscillator (left) ; R j
∆ for j = 30

(right)

158 Chapter 8. Stability Controllers

Example 31. (FitzHugh-Nagumo Neuron). The dynamics of the FitzHugh-
Nagumo neuron are the following:

x(τ) =
(

1+τ −τ
0.08τ −0.0064τ+1

)
x(t)+

(−x1(t)3τ/3+0.875τ
0.056τ

)
When linearized to a point c ∈R2, this gives:

x(τ) =
(

1+τ −τ
0.08τ −0.0064τ+1

)
x(t)+

(−c3
1τ/3+0.875τ

0.056τ

)
It is easy to see that for a box V ⊂ R2 we are making an error of at most

maxx∈V (
|x3

1−c3
1 |

3)τ on the x axis and 0 on the y axis. Thus we need to enlarge

any image of a zonotope Z by maxx∈Z (
|x3

1−c3
1 |

3)τ on the x-axis and 0 on the y-
axis, i.e.:

ZΛ =< 0,

(
maxx∈Z (

|x3
1−c3

1 |
3)τ 0

0 0

)
>.

The Decomposition procedure is applied to R = [−2.5,2.5]× [−0.5,2.5] and
τ = 0.1 (with parameters k = 30, d = 7). For boxes located around the center
of R, the length of patterns is 1 while in the lower left and upper right corners,
the length is up to 22. The result of the Decomposition is depicted in the left
part of Figure 8.34 generated by MINIMATOR and (an overapproximation of)
the attractor set R∗

∆ in the right part.

Figure 8.34: Decomposition for the FitzHugh-Nagumo Neuron (left) ; R j
∆ for

j = 30 (right)

We have thus sketched out how to construct attractors of polynomial dy-
namical systems by over-approximating the sub-polynomial subpart of order
greater than 1. So far, the over-approximation is done in an ad hoc fashion for
each specific example. It would be interesting to use a general method of over-
approximation based, e.g., on the notion of Lagrange remainder (see [ASB08]).

8.7. Discussion 159

8.7 Discussion

The class of S 2-systems is a subclass of affine hybrid systems [Hen96] where the
discrete transitions only happen at instants that are integer multiple of τ. Al-
ternatively, one can consider S 2-systems as models capturing only continuous
transitions of duration τ.

Using zonotopes for enclosing the uncertainty, one can avoid the wrapping
effect, which leads to exponential fast growing enclosures when using iteratively
naive approximation (like bounding box).

The method of proving controlled invariance presented here, based on a
decomposition of the state space, is original. Moreover, as previously stated,
our method uses only forward computation which is of prime interest when
considering contractive systems. The multilevel converter case study could not
have been achieved using backward methods.

As pointed out above, the limit cycle generated is not necessarily a minimal
invariant. Actually, it is difficult to define an appropriate notion of size for a
minimal invariant set.

The reachability approach, sketched out in Section 8.6.1, does not take into
account the question of time-optimality. The time-optimal control problem,
consists in steering, in minimal time, the state of the system to a desired target
while keeping the system safe along the way.

8.8 Related Work

The semantics of sampled switched systems given here originates from the
work of Antoine Girard, Giordano Pola and Paulo Tabuada (see, e.g., [Tab09]).
We have simplified here their formalism by removing the notion of output and
observation sets. What has been called here sampled switched system, denoted
by Σ, corresponds actually in [Tab09, Chapter 11]to the notion of symbolic sys-
tem associated with a switched affine system Σ, denoted by Sτ(Σ).

The idea of approximating the state trajectories of dynamical systems using
zonotopes comes from [Küh98]. Zonotopes have recently received many appli-
cations in the domain of hybrid systems with uncertainty such as reachability
analysis [ASB07].

This method presents some similarities with the method of box invariance
of [ATS09] which exhibit rectangular invariant subregion of affine hybrid sys-
tems containing an equilibrium point. The process of state decomposition by
dichotomy (or “bisection”) has been used in [JKDW01] for the purpose of set
inversion and applied to a robust control and stability analysis.

The presence of limit cycles in switched systems has often been observed

160 Chapter 8. Stability Controllers

in the context of power electronics (see, e.g., [PG09]). In the framework of dis-
crete LTI with quantized input, Picasso and Bicchi have used hypercubes in
order to provide a lower bound for the minimal feasible size of an invariant set
[PB08]. Various methods are classically used for proving their existence and sta-
bility: Lyapunov techniques (see, e.g., [RL00][BRC05]); Poincaré map technique
(see, e.g., [Gon03, His01]); sensibility functions [FRL06], or describing functions
[San93].

The time-optimal control is classically solved using dynamic programming
and a backward procedure (see [Ber00]). A solution for S 2-systems, based on
approximate bisimulation, is given in [Gir10].

The idea of exploiting trajectory sensitivities in order to solve inverse prob-
lems, sketched out in Section 8.6.2, comes from [His01], where it is explained
how to use the measurements of disturbance effects to improve the estimates
of parameters of power systems.

Chapter 9

Application to Multilevel Converters

Power converters play an important role in the field of renewable energy: they
are used to connect renewable sources to power-grids, optimize the efficiency
of solar panels and wind generators. Switched control has gained much atten-
tion recently in the field of high order converters, due to its property of being
easily implemented. In some topologies, there is however a dramatic increase
of the number of switches, which entails an increasing number of degrees of
freedom, and complicates the controller design (see [CPPMT09]). There is
therefore a niche of application for formal methods in order to produce correct-
by-design control methods.

In this chapter, we consider the design of control policies for power con-
verters with 5 and 7 levels. The objective is to design a switching signal forc-
ing the output voltage to be a “quantized” sinusoidal signal while ensuring that
the voltages across the capacitors in the power converter remain within prede-
fined safety ranges. The staircase waveform is achieved by controlling 4 (resp.
6) switches, which are used to divide the incoming voltage into to paths and
produce different levels of incoming voltage with the help of 3 (resp. 5 capaci-
tors). We adapt the decomposition procedure explained in Chapter 8, in order
to synthesize a controller that guarantees that the electrical state parameters
will always stay within a predefined safe zone of variations. The synthesized
controllers have been validated on real hardware on prototypes built by SATIE
Electronics Laboratory.

Contributions Our contributions in this chapter are: the study of multilevel
converters using the Decomposition Procedure in Section 9.2, and the imple-
mentation of the controllers on the prototype for the physical experimentations
of Section 9.3.

162 Chapter 9. Application to Multilevel Converters

Outline of the chapter In Section 9.1, we explain the principle and archi-
tecture of multilevel converters. In Section 9.2, we apply the decomposition
method to the control of 5-level and 7-level converters, and give numerical
simulations. In Section 9.3, we present physical experimentations done with
a prototype built by SATIE Laboratory.

9.1 Multilevel Converters

The general function of a multilevel power converter is to synthesize a desired
voltage from several levels of DC voltage. For this reason, multilevel power con-
verters can easily provide the high power required by large electric drive sys-
tems. Schematically, a multilevel converter is made of capacitors and switch-
ing cells (as well as opposite switching cells which are in complementary posi-
tions). According to the positions of the cells (the high-side switch conducting
position is indicated by 1 and the lowside switch conducting position by 0), one
is able to fraction the load voltage. By controlling the global position position
of the switches during a simple fixed time-stepping procedure, it is then possi-
ble to generate a staircase voltage with levels that approximates a triangular or
a sinusoidal waveform (see Figure 9.1 for ` = 5). The problem which arises is
to select the appropriate switching control strategy among a number of com-
binations of switch positions which increases exponentially with the number
of levels (and pairs of switches). A crucial additional difficulty comes from the
fact that, in order to be admissible, the control of the switching cells must guar-
antee that the voltages across the cell-capacitors are constrained within a cer-
tain range defined by the device blocking voltage rating. The control must then
guarantee a safety property, called “capacitor voltage balancing”: the voltage of
each individual capacitor should stay inside a limited predefined interval.

Figure 9.1: Staircase output voltage waveform for a 5-level converter

9.2. Application of the Decomposition Procedure 163

Figure 9.2: Electrical scheme of a 5-level converter

9.2 Application of the Decomposition Procedure

We apply a simplified version of the decomposition procedure given in Sec-
tion 8.3.1 to the context of this case study. The procedure can be simplified here
because, as explained below, only a restricted number of patterns allows to pro-
duce a staircase output signal of ` levels. These admissible patterns correspond
to paths in a pre-defined graph. They have all the same length k = 2(`−1). Be-
sides, the procedure succeeds by simple bisection of the input control box R
into 2`−1 sub-boxes (which corresponds to value D = 2 for input depth param-
eter of Algorithm 7).

9.2.1 5-level Converter

There are different possible topologies for multilevel power converters:
neutral-point clamped, cascaded H-bridge, flying capacitor... We focus here
on the flying capacitor topology [MF92]. The electrical scheme of a 5-level con-
verter is given in Figure 9.2. There are 4 pairs of switching cells S1,S2,S3,S4 and
3 capacitors C1, . . . ,C3. The state of the system is x(t) = [v1(t) v2(t) v3(t) i (t)]T

where vi (t) is the voltage across Ci (1 ≤ i ≤ 3) and i (t) is the current flowing
in the circuit. The duration of a cycle is T = 8τ. The mode of the system is
characterized by the value (0 or 1) of the switching cells, i.e., by the value of
vector S = [S1 S2 S3 S4]T .1 There are thus 24 = 16 modes. A mode S induces
an output voltage of value −vl ow + (Σ4

i=1Si)vhi g h/2, where vl ow and vhi g h are
the input voltages of low level and high level respectively. The system thus out-
puts 5 different levels of voltage which go from −vlow up to +vhi g h with steps
at −1,−1

2 ,0, 1
2 ,1. The ideal value v∗

i of the voltage across capacitor Ci (1 ≤ i ≤ 3)
depends on the values of vlow and vhi g h . Here we use: vlow = vhi g h = 100V ,

1Besides, we have: S5 =¬S1, S6 =¬S2, S7 =¬S3 and S8 =¬S4.

164 Chapter 9. Application to Multilevel Converters

and v∗
1 = 150V , v∗

2 = 100V , v∗
3 = 50V . The 5-level converter can be seen as

a switched system. Given a mode S, the associated dynamics is of the form
ẋ(t) = AS x(t)+bS with:

AS =

− 1

R1C1
0 0 S1−S2

C1

0 − 1
R2C2

0 S2−S3
C2

0 0 − 1
R3C3

S3−S4
C3

S2−S1
LLoad

S3−S2
LLoad

S4−S3
LLoad

−RLoad
LLoad

and bS =

0
0
0

S1
vhi g h+vlow

LLoad

By controlling the modes at each sampling time, one can synthesize a 5-

level staircase function. Not all the transitions between modes are admissible:
we allow to switch only one (pair of) cell(s) at a time. The graph of admissible
transitions during a cycle is depicted in Figure 9.3. The nodes of the graph are
labeled by the modes. Each path represents a possible sequence of control for
1 cycle, leading from voltage −vlow (state 0000) to voltage +vhi g h (state 1111)
through voltages −1

2 .vl ow , 0, 1
2 .vhi g h then back to voltage −vlow (state 0000)

through voltages 1
2 .vhi g h , 0, 1

2 .vlow . There are thus 576 possible sequences of
control for generating a 5-level staircase signal on 1 cycle. These sequences of
control correspond to patterns of length 8, denoted by π1, . . . ,π576. The control
problem is now to find a strategy for deciding, at each beginning of cycle, which
πi (1 ≤ i ≤ 576) to apply in order to maintain all the capacitor voltages within a
predefined limited zone.

0000

0010

0100

1000

0001

0011

0101

1001

0110

1010

1100

0111

1011

1101

1110

1111

1101

1011

0111

1110

1100

1010

0110

1001

0101

0011

1000

0100

0010

0001

0000

Figure 9.3: Transition graph corresponding to a cycle of 5-level staircase signal

We will use the numerical values: RLoad = 50Ω, C1 = C2 = C3 = 0.0012F,
LLoad = 0.2H, R1 = R2 = R3 = 20,000Ω, T = 8τ = 0.02s (which corresponds to

9.2. Application of the Decomposition Procedure 165

a frequency of 50Hz). The 5-level inverter outputs ideally a staircase waveform
with an amplitude of 200V, centered around 0V. We consider that a variation of
±5V is admissible as it represents a variation of 10% on the least charged capac-
itor C3. It is interesting to notice that at each beginning of a cycle the value of i is
null. This suggest to look for a state-dependent control which depends only on
the capacitor voltages v1, v2, v2, and not on the value of i . We will thus focus on
the voltage dimensions of the control box R and disregard its intensity dimen-
sion. For R, we take R = [145,155]× [95,105]× [45,55], which corresponds to a
product of intervals centered around the ideal values with a variation of ±5V
(i.e., 10% of the least charged capacitor C3). For S, we take R + ε with ε = 1V ,
which means that we have an additional tolerance of ±1V for the fluctuations
occurring between two beginnings of cycle. The decomposition procedure is
thus adapted as follows. We decompose R into 8 subsets Vi of equal size:

• V1 = [145,150]× [95,100]× [45,50]

• V2 = [145,150]× [95,100]× [50,55]

• V3 = [145,150]× [100,105]× [45,50]

• V4 = [145,150]× [100,105]× [50,55]

• V5 = [150,155]× [95,100]× [45,50]

• V6 = [150,155]× [95,100]× [50,55]

• V7 = [150,155]× [100,105]× [45,50]

• V8 = [150,155]× [100,105]× [50,55]

Using a standard random generate-and-test program, we find patterns π j

(1 ≤ j ≤ 8), which, applied to points of V j , generates points that are all
contained in S. The patterns π j s correspond to the following paths of the
transition graph:
- π1: (0000 → 0001 → 0101 → 1101 → 1111 → 1101 → 0101 → 0001 → 0000)
- π2: (0000 → 0100 → 0101 → 1101 → 1111 → 1101 → 0101 → 0100 → 0000)
- π3: (0000 → 0001 → 0011 → 1011 → 1111 → 1011 → 0011 → 0001 → 0000)
- π4: (0000 → 0010 → 0011 → 1011 → 1111 → 1011 → 0011 → 0010 → 0000)
- π5: (0000 → 1000 → 1010 → 1110 → 1111 → 1110 → 1010 → 1000 → 0000)
- π6: (0000 → 1000 → 1100 → 1101 → 1111 → 1101 → 1100 → 1000 → 0000)
- π7: (0000 → 0100 → 0110 → 0111 → 1111 → 0111 → 0110 → 0100 → 0000)
- π8: (0000 → 1000 → 1010 → 1011 → 1111 → 1011 → 1010 → 1000 → 0000)

166 Chapter 9. Application to Multilevel Converters

We present in Figures 9.4 and 9.5 a numerical simulation of this con-
troller on the system starting from the point v1(0) = 150V , v2(0) = 100V , v3(0) =
50V and i (0) = −3A. This simulation has been performed using tool PLECS
[PLE13]. One can see on the simulation that the system state always stays in-
side S.

(a) Voltage v1 = f (t) (b) Voltage v2 = f (t)

(c) Voltage v3 = f (t) (d) Plane v2 = f (v1)

(e) Plane v3 = f (v1) (f) Plane v3 = f (v2)

Figure 9.4: Capacitor voltages
‘

9.2.2 7-level Converter

The flying capacitor architecture is generic. We now consider the case of a `-
level converter with `= 7. There are now 6 pairs of switching cells and 5 capaci-
tors C1, . . . ,C5. The state of the system is x(t) = [v1(t) v2(t) v3(t) v4(t) v5(t) i (t)]T

where vi (t) is the voltage across Ci (1 ≤ i ≤ 5) and i (t) is the current flowing

9.2. Application of the Decomposition Procedure 167

(a) Current i (b) Output voltage vo

Figure 9.5: Current and output voltage

in the circuit. The generated waveform now goes from −vl ow up to +vhi g h

with steps at −vl ow + i vhi g h/3 for i = 0, . . . ,6, and the duration of a cycle is
T = 12τ. There are now 518,400 possible sequences of control (patterns) for
generating an `-level staircase signal on 1 cycle. We used the following val-
ues for the system constants: output at 50Hz,2 capacitances of 0.1F , resistor
values 50Ω, inductor values 0.137H , vlow = vhi g h = 300V . Ideally, the output
is thus a staircase waveform with an amplitude of 600V, centered around 0V,
and the ideal values v∗

i of the capacitor voltages of the capacitor Ci are given
by: v∗

1 = 500V , v∗
2 = 400V , v∗

3 = 300V , v∗
4 = 200V , v∗

5 = 100V . For R, we take
R = [495,505]× [395,405]× [295,305]× [195,205]× [95,105], which corresponds
to a product of intervals centered around the ideal values with a variation of
±5V (i.e., 5% of the least charged capacitor C5). For S, we take R + ε with
ε= 1V , which means that we have an additional tolerance of ±1V for the fluc-
tuations occurring between two beginnings of cycle. The decomposition of R
into sub-zones {Vi }i∈I and the corresponding set of patterns {πi }i∈I are given in
[FFL+12]. We present in Figures 9.6 and 9.7 a numerical simulation of the con-
trolled system starting from the point v1(0) = 500V , v2(0) = 400V , v3(0) = 300V ,
v4(0) = 200V , v5(0) = 100V and i (0) =−2.5A. One can check on the simulation
that the system state always stays inside S.

We have also performed experiments with a `-level converter for `= 9. We
have been able to obtain a decomposition after 5 hours of running time, but we
are clearly at the limit of the existing implementation.

2which corresponds to T = 12τ= 0.02s

168 Chapter 9. Application to Multilevel Converters

Figure 9.6: Capacitor voltages

(a) Current i (b) Current vo

Figure 9.7: Current and output voltage

9.3 Physical Experimentations

A prototype of the 5-level flying capacitor has been realized by the SATIE Lab-
oratory in order to test our control strategy on an actual system. See Figure 9.8
for a picture of the system. Our control strategy was applied to the system via
Simulink and a dSpace® interface. The results are presented in Figure 9.9 for the
output voltage and the capacitor charges. In Figure 9.10, we present the same
results but with a larger scale on the capacitor voltage to see the fluctuations
around the reference values. As we can see, the experimental results are very
closed to those obtained by simulation with PLECS [PLE13]. In Figure 9.11, we
represent the output voltage together with the current (after appropriate resiz-

9.3. Physical Experimentations 169

Figure 9.8: Prototype built by SATIE

Figure 9.9: Output voltage and capacitor voltages

ing) flowing the load. During the experimentations, we have successfully tested
the robustness of the controller in presence of the following perturbations:

1. The ideal voltage source as input is no longer ideal but its values fluctuate
around the reference value.

2. The system does not start from the reference valuations for the capaci-
tor voltages and the input voltage, but the input voltage increases gradu-
ally until reaching the desired value while the capacitor are initially dis-
charged.

3. We apply the same pattern during two consecutive cycles (instead of up-
dating the pattern at the end of the first cycle).

170 Chapter 9. Application to Multilevel Converters

Figure 9.10: Zoom of output voltage (above) and capacitors voltages (below)

Figure 9.11: Output voltage and current (after appropriate resizing) in the cir-
cuit

4. We use a time-varying period T of cycle (instead of a constant one), and
check the preservation of the capacitor voltages balance. The result of
this experiment is depicted in Figure 9.12.

Although these preliminary tests of robustness are promising, they need to
be consolidated, in particular in presence of significant variations of resistor
loads. Besides, although the principle of the method is general, it also suffers
from an exponential increase of complexity when the level ` grows: the method
reaches the limit for `= 9, which corresponds to a dimension n = 7 of the state
space.

9.4. Discussion 171

Figure 9.12: Output voltage (above) and capacitor voltages (below) in presence
of time-varying period T

9.4 Discussion

We have synthesized a state-dependent control that involves only the subset
of the state vector related to the voltage information, but ignores the intensity
component. This is interesting because for practical applications, a current
sensor is not always desired (see [DTOC09]). More generally, control should
use, as far as possible, only a subset of the state vector because measuring all
signals in high order converters becomes prohibitively expensive.

The method can be easily refined in order to generate sinusoidal-like output
signals rather than the triangular-like output signals, as done here: it suffices to
adjust the switching instants within the period T of the cycle, instead of using
uniformly τ.

172 Chapter 9. Application to Multilevel Converters

Chapter 10

Conclusion and Perspectives

Switched systems are now commonly used in industrial domains such as power
electronics or automotive industry. These systems are easily programmable
and allow for flexible design of the controlled components. However, with the
growing number of switches, the task of control synthesis becomes challeng-
ing. Traditional methods based on extensive testing face difficulties to prove
correctness of the control designed at hand. This opens the path for formal
methods which aimed at the synthesis of correct-by-design control software. We
have focused in this part of the thesis mainly on two issues of correctness for
controllers: safety and stability. We have seen that the safety problem is closely
related to the synthesis of a maximal controlled invariant while the stability
problem is related to the synthesis of a minimal controlled invariant.

The synthesis of a maximal controlled invariant is classically done by a fixed
point iteration which is applied in a backward manner for computing succes-
sively the predecessor reachable sets. The procedure terminates when the state
space is finite. Thus, the most common approach to provide correct-by-design
synthesis techniques is indirect: it first converts the infinite state model into
a finite state abstraction, then the controller synthesized at the abstract level
is carried through the original infinite state model at the price of a certain ap-
proximation. However, in order to keep an acceptable precision, the method
imposes a gridding of the state space which entails an explosion of the number
of states at the abstract level. An other approach is to work directly at the infi-
nite state level. As already mentioned, the backward iteration procedure is thus
not guaranteed to terminate, and one has to under-approximate the symbolic
reachable states generated in order to overcome this problem. However, here
again, if one wants to keep an acceptable precision, the number of states gen-
erated often becomes intractable, especially in the case of higher dimensional
systems.

We have therefore proposed an alternative approach which is forward ori-

174 Chapter 10. Conclusion

ented, and works directly on the infinite state level. In order to make this ap-
proach tractable, we make some assumptions, looking at the discrete-time ver-
sion of the dynamics, assuming that the dynamics are affine and a fixed switch-
ing frequency. These assumptions are realistic in the context of power electron-
ics. The method interleaves the decomposition of the operating space into sub-
regions with the computation of patterns mapping these subregions inside the
operating space. The method can be used for synthesizing safety controllers,
as exemplified on the case studies of multilevel converters. Under further as-
sumptions (essentially, local stability), this method is able to stabilize the sys-
tem around identified limit cycles. We have finally sketched out some possible
extensions of the Decomposition procedure in order to address issues such as
reachability control, robust control and nonlinear dynamics.

An important topic of current research is to synthesize controllers that sat-
isfy simultaneously multiple objectives. When safety is among the objective, a
typical method is to construct the maximally permissive safety controller, then
to refine it in order to complete secondary objectives. As usual, in practice,
things are often more difficult, and techniques of synthesis and verification
may have to be combined in an ad hoc manner. For example, in the oil pump
system studied in [CJL+09], the problem is to design an operating cycle that
meets not only safety requirements (for maintaining the oil level in a given in-
terval), but also robustness (for taking into account imprecisions on measures
of volume or time), and performance (for minimizing the oil accumulated dur-
ing each cycle). Such a goal is achieved using a clever combination of analysis
tools (UPPAAL-TIGA [BCD+07] for synthesis, PHAVER [Fre08] for verification,
and SIMULINK [Tea08] for simulation). In the domain of hybrid systems, many
tools of control synthesis share indeed many common features with tools of
verification: they rely on the same techniques of compact representation of
states, and efficient construction of reachable sets. The tool d/d t [ADM02] can
thus be used to solve safety verification problems as well as safety switching
controller synthesis. Other tools such as SPACEEX [FLGD+11] and IMITATOR

[AS13] can be similarly used both for verification and synthesis problems of hy-
brid systems.

The methods and associated tools allow to tackle control problems with
state space of dimensions up to 7, and reachable state sets made of millions
of elementary structures (typically, boxes or zonotopes, polyhedra). A ma-
jor challenge is of course to design methods that scale with higher dimen-
sional systems, and to face the well-known curse of dimensionality (see, e.g.,
[RMT13]). This problem is currently addressed via the design of new structures
for representing union of convex sets such as “support functions” [LGG09] or
“Brunowsky normal forms” [RMT13].

On the other hand, as pointed out in the introduction, practical consider-

175

ations specific to each case study often allow us to make realistic assumptions
that considerably simplify the treatment of the problem. This was illustrated by
the multilevel converter case study where, due to physical considerations, the
number of admissible sequences of modes during an electrical cycle was only
a small fraction of the total number of possible combinations.

176 Chapter 10. Conclusion

General Conclusion

General Conclusion

Summary

In this thesis, we have presented how to compute schedulers in two different
frameworks. In Part I, we have shown how the Inverse Method can be improved
with a state space reduction technique introduced in Chapter 3. We have then
used the Inverse Method to address both the problem of designing a scheduler
in multiprocessor architectures and to give a robustness criterion, and how to
find the schedulability region by using the Behavioral Cartography in Chapter
4. We have also shown the interest of our approach in Chapter 4 on several
case studies from the literature and an industblablarial partner, and we have
compared our approach to an analytic method.

In Part II, we have presented a novel approach to solve the problem of de-
signing schedulers for affine sampled switched system using only forward com-
putations. In Chapter 8, we have extended our approach to affine sampled
switched systems and non-linear switched systems. In Chapter 9, we have ap-
plied our method to a real-life prototype provided by the SATIE Laboratory. We
have also shown how it can be used to treat the problem of reachability analysis.

Future Research

For the schedulability analysis, it would be interesting to use model reduction
before using the Inverse Method in order to scale up to real-life application. In-
deed, our approach is exponential in the number of tasks, processors and jobs.
A reduced model could help overcome the curse of dimensionality. The Be-
havioral Cartography could be improved to treat more efficiently this kind of
case studies. So far, every integer point (or every point whose coordinates are a
multiple of a fixed step) is tested in a sequential order. An interesting improve-
ment would be to use theoretical results from the schedulability community
that would allow to cover large zones as schedulable even if the Inverse Method
did not cover it with a tile and better choose which next parameter valuation

180 General Conclusion

should be investigated by the Inverse Method.
For the controllability of sampled switched systems, it would be interesting

to have necessary and sufficient conditions for the location of controllable ar-
eas. So far, we only have a sufficient condition that is not always met in our case
studies. The decomposition procedure could also be improved by having better
splits than the dichotomous splits of the initial area that we are performing.

Extensions of our approach could be investigated. One of those is partial
observability. In many case studies, some measures cannot be acquired. For
example in power electronics, the value of the current can be tricky or even
impossible to obtain. Controlling with partial observability and by estimating
the missing values would be of prime interest for this kind of applications.

Another possible extension of our approach could be Partial Differential
Equations (PDEs). As a long term goal, it would be interesting to be able to
treat system governed by PDEs. As for now, many problems remain, for exam-
ple, the large number of points of discretization, therefore a high dimensional
state space, seems to forbid the use of our method. However, model reduction
and state estimation could be investigated to overcome this difficulty.

It would be interesting to have controllers robust to change in the parameter
valuation. So far, we have assumed that the coefficients in our equations are
perfectly known (such as the capacitor, the resistor and the inductor values).
As in the first part of this thesis, this is not the case in real-life systems. An
interesting point would be to be able to provide robustness criterion to changes
in the system (e.g., change in the value of a resistor, in the load of our system)
or to select a control strategy that is the most resilient to those changes.

Bibliography

[AAM06] Y. Adbeddaïm, E. Asarin, and O. Maler. Scheduling with
timed automata. TCS, 354(2):272–300, 2006.

[ABBL98] Luca Aceto, Patricia Bouyer, Augusto Burgueño, and
Kim Guldstrand Larsen. The power of reachability testing for
timed automata. In Vikraman Arvind and Ramaswamy Ra-
manujam, editors, FSTTCS’98, volume 1530 of Lecture Notes
in Computer Science, pages 245–256. Springer, 1998.

[ABD+00] E Asarin, O Bournez, T Dang, O Maler, and A Pnueli. Effec-
tive Synthesis of Switching Controllers for Linear Systems.
Proceedings of the IEEE, Special Issue on Hybrid Systems,
88(7):1011–1025, 2000.

[ABL98] Luca Aceto, Augusto Burgueño, and Kim G. Larsen. Model
checking via reachability testing for timed automata. In
Bernhard Steffen, editor, TACAS 98, volume 1384 of Lecture
Notes in Computer Science, pages 263–280. Springer, 1998.

[ABSTDG12] M. Amin Ben Sassi, R. Testylier, T. Dang, and A. Girard.
Reachability analysis of polynomial systems using linear
programming relaxations. In ATVA, pages 137–151, 2012.

[ACD93] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in
dense real-time. Information and Computation, 104(1):2–34,
1993.

[ACEF09] Étienne André, Thomas Chatain, Emmanuelle Encrenaz,
and Laurent Fribourg. An inverse method for parametric
timed automata. International Journal of Foundations of
Computer Science, 20(5):819–836, 2009.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

182 Bibliography

[ADM02] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification
of hybrid systems. In CAV, pages 365–370, 2002.

[AF10] É. André and L. Fribourg. Behavioral cartography of timed
automata. In RP’10, volume 6227 of Lecture Notes in Com-
puter Science, pages 76–90. Springer, 2010.

[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Ro-
main Soulat. IMITATOR 2.5: A tool for analyzing robustness
in scheduling problems. In FM’12, volume 7436 of Lecture
Notes in Computer Science, pages 33–36, Paris, France, 2012.
Springer.

[AFS13] Étienne André, Laurent Fribourg, and Romain Soulat. Merge
and conquer: State merging in parametric timed automata.
In Dang-Van Hung and Mizuhito Ogawa, editors, Proceed-
ings of the 11th International Symposium on Automated
Technology for Verification and Analysis (ATVA’13), volume
8172 of Lecture Notes in Computer Science, pages 381–396.
Springer, October 2013.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Para-
metric real-time reasoning. In STOC’93, pages 592–601, New
York, NY, USA, 1993. ACM.

[AK02] P.J. Antsaklis and X.D. Koutsoukos. Hybrid systems control.
Encyclopedia of Physical Sciences and Technology, 7:445–458,
2002.

[AM02] Yasmina Adbeddaïm and Oded Maler. Preemptive job-shop
scheduling using stopwatch automata. In TACAS’02, volume
2280 of Lecture Notes in Computer Science, pages 113–126.
Springer-Verlag, 2002.

[And10a] Étienne André. An Inverse Method for the Synthesis of Timing
Parameters in Concurrent Systems. Thèse de doctorat, Lab-
oratoire Spécification et Vérification, ENS Cachan, France,
2010.

[And10b] Étienne André. Synthesizing parametric constraints on vari-
ous case studies using IMITATOR II. Research Report LSV-10-
21, Laboratoire Spécification et Vérification, ENS Cachan,
France, 2010.

Bibliography 183

[And13a] Étienne André. Observer patterns for real-time systems. In
Yang Liu and Andrew Martin, editors, 18th IEEE Interna-
tional Conference on Engineering of Complex Computer Sys-
tems (ICECCS’13), pages 125–134. IEEE Computer Society,
July 2013.

[And13b] Étienne André. Dynamic clock elimination in parametric
timed automata. In FSFMA, volume 31 of OpenAccess Se-
ries in Informatics, pages 18–31. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl Publishing, 2013.

[AS11] É. André and R. Soulat. Synthesis of timing parameters sat-
isfying safety properties. In RP’11, volume 6945 of Lecture
Notes in Computer Science. Springer, 2011.

[AS13] É. André and R. Soulat. The Inverse Method. Wiley-ISTE, jan
2013. 176 pages.

[ASB07] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis
of linear systems with uncertain parameters and inputs. In
In Proc. of the 46th IEEE Conference on Decision and Control,
pages 726–732, 2007.

[ASB08] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis
of nonlinear systems with uncertain parameters using con-
servative linearization. In CDC, pages 4042–4048, 2008.

[ATS09] A. Abate, A. Tiwari, and S. Sastry. Box invariance
in biologically-inspired dynamical systems. Automatica,
45(7):1601–1610, 2009.

[BB04a] Enrico Bini and Giorgio C. Buttazzo. Schedulability analy-
sis of periodic fixed priority systems. IEEE Transactions on
Computers, 53(11):1462–1473, 2004.

[BB04b] Enrico Bini and Giorgio C. Buttazzo. Schedulability analy-
sis of periodic fixed priority systems. IEEE Transactions on
Computers, 53(11):1462–1473, 2004.

[BBBB09] Christel Baier, Nathalie Bertrand, Patricia Bouyer, and
Thomas Brihaye. When are timed automata determinizable?
In ICALP’09, volume 5556 of Lecture Notes in Computer Sci-
ence, pages 43–54, Rhodes, Greece, 2009. Springer.

184 Bibliography

[BCD+07] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen,
and D. Lime. Uppaal-tiga: Time for playing games! In CAV,
pages 121–125, 2007.

[BDP10] O. Boudillet, D. Dalemagne, and T. Peron. Is integrated mod-
ular avionic a solution for ATV like spacecraft control. In 4th
IAASS Conference, Huntsville, Alabama, USA, 2010.

[Ber00] D.P. Bertsekas. Dynamic Programming and Optimal Control.
Athena Scientific, 2nd edition, 2000.

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The
Parma Polyhedra Library: Toward a complete set of numeri-
cal abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming,
72(1–2):3–21, 2008.

[Bin04] Enrico Bini. The Design Domain of Real-Time Systems. PhD
thesis, Scuola Superiore Sant’Anna, 2004.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model
checking. MIT Press, 2008.

[BL00] R.W. Brockett and D. Liberzon. Quantized feedback stabi-
lization of linear systems. Automatic Control, IEEE Transac-
tions on, 45(7):1279–1289, 2000.

[Bla99] F. Blanchini. Set invariance in control. Automatica, 35:1747–
1767, 1999.

[BLV07] Reinder J. Bril, Johan J. Lukkien, and Wim F. J. Verhaegh.
Worst-case response time analysis of real-time tasks under
fixed-priority scheduling with deferred preemption revis-
ited. In ECRTS, pages 269–279. IEEE Computer Society, 2007.

[BM83] Bernard Berthomieu and Miguel Menasche. An enumera-
tive approach for analyzing time Petri nets. In Proceedings of
the IFIP 9th World Computer Congress, pages 41–46. Elsevier
Science Publishers, 1983.

[BPM05] A.G. Beccuti, G. Papafotiou, and M. Morari. Optimal control
of the boost dc-dc converter. In Proc. 44th IEEE Conference
on Decision and Control European Control Conference (CDC-
ECC ’05), pages 4457 – 4462, dec. 2005.

Bibliography 185

[BRC05] J. Buisson, P.-Y. Richard, and H. Cormerais. On the stabil-
isation of switching electrical power converters. In HSCC,
volume 3414 of LNCS, pages 184–197. Springer, 2005.

[Bro83] R. W. Brockett. Asymptotic stability and feedback stabiliza-
tion. Differential geometric control theory, 27:181–191, 1983.

[BS95] J. A. Brzozowski and C. J. Seger. Asynchronous Circuits.
Springer-Verlag, 1995.

[CC07] R. Clarisó and J. Cortadella. The octahedron abstract do-
main. Science of Computer Programming, 64(1):115–139,
2007.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV’00,
pages 154–169. Springer-Verlag, 2000.

[CJL+09] F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin, and P.-A.
Reynier. Automatic synthesis of robust and optimal con-
trollers - an industrial case study. In HSCC, pages 90–104,
2009.

[CPPMT09] I. Cervantes, F.J. Perez-Pinal, and A. Mendoza-Torres. Hybrid
Control of DC-DC Power Converters. In Renewable Energy
(Chapter 10). T J Hammons, 2009.

[CPR08a] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic compu-
tation of schedulability regions using parametric timed au-
tomata. In RTSS, pages 80–89, 2008.

[CPR08b] Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Sym-
bolic computation of schedulability regions using paramet-
ric timed automata. In RTSS’08, pages 80–89. IEEE Computer
Society, 2008.

[Dav05] Alexandre David. Merging DBMs efficiently. In 17th Nordic
Workshop on Programming Theory, pages 54–56. DIKU, Uni-
versity of Copenhagen, 2005.

[Dav06] Alexandre David. Uppaal DBM library programmer’s
reference. http://people.cs.aau.dk/~adavid/UDBM/

manual-061023.pdf, 2006.

http://people.cs.aau.dk/~adavid/UDBM/manual-061023.pdf
http://people.cs.aau.dk/~adavid/UDBM/manual-061023.pdf

186 Bibliography

[Dil89] David L. Dill. Timing assumptions and verification of finite-
state concurrent systems. In Automatic Verification Methods
for Finite State Systems 1989, volume 407 of Lecture Notes in
Computer Science, pages 197–212. Springer, 1989.

[DKRT97] Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and
Jan Tretmans. The bounded retransmission protocol must
be on time! In TACAS, volume 1217 of LNCS, pages 416–431.
Springer, 1997.

[DLHT11] J. Ding, E. Li, H. Huang, and C. J. Tomlin. Reachability-based
synthesis of feedback policies for motion planning under
bounded disturbances. In IEEE International Conference on
Robotics and Automation (ICRA’11), pages 2160–2165, 2011.

[DTOC09] Z. Du, L.M. Tolbert, B. Ozpineci, and J.N. Chiasson. Fun-
damental frequency switching strategies of a seven-level hy-
brid cascaded h-bridge multilevel inverter. IEEE Transac-
tions on Power Electronics, 24(1):25 –33, jan. 2009.

[FFL+12] G. Feld, L. Fribourg, D. Labrousse, B. Revol, and R. Soulat.
Correct by design control of 5-level and 7-level convert-
ers. Research Report LSV-12-25, Laboratoire Spécification et
Vérification, ENS Cachan, France, Dec 2012.

[Fin06] Olivier Finkel. Undecidable problems about timed au-
tomata. In FORMATS’06, volume 4202 of Lecture Notes in
Computer Science, pages 187–199. Springer, 2006.

[FK13] Laurent Fribourg and Ulrich Kühne. Parametric verifica-
tion and test coverage for hybrid automata using the inverse
method. International Journal of Foundations of Computer
Science, 24(2):233–249, 2013.

[FKS13] Laurent Fribourg, Ulrich Kühne, and Romain Soulat. Con-
structing attractors of nonlinear dynamical systems by state
space decomposition. In Christine Choppy and Jun Sun, edi-
tors, Proceedings of the 1st French-Singaporean Workshop on
Formal Methods and Applications (FSFMA’13), volume 31 of
Open Access Series in Informatics, pages 53–60, Singapore,
July 2013. Leibniz-Zentrum für Informatik.

[FLGD+11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray,
O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler.

Bibliography 187

SpaceEx: Scalable verification of hybrid systems. In CAV,
pages 379–395, 2011.

[FLMS12] Laurent Fribourg, David Lesens, Pierre Moro, and Romain
Soulat. Robustness analysis for scheduling problems using
the inverse method. In TIME’12, pages 73–80. IEEE Com-
puter Society Press, 2012.

[Fre08] G. Frehse. PHAVer: algorithmic verification of hybrid sys-
tems past hytech. STTT, 10(3):263–279, 2008.

[FRL06] D. Flieller, P. Riedinger, and J.-P. Louis. Computation and sta-
bility of limit cycles in hybrid systems. Nonlinear Analysis,
64(2):352–367, 2006.

[FS13a] Laurent Fribourg and Romain Soulat. Control of Switching
Systems by Invariance Analysis: Application to Power Elec-
tronics. Wiley-ISTE, July 2013. 144 pages.

[FS13b] Laurent Fribourg and Romain Soulat. Limit cycles of con-
trolled switched systems: Existence, stability, sensitivity. In
Laure Blanc-Féraud and Pierre-Yves Joubert, editors, Pro-
ceedings of the 3rd International Workshop on New Compu-
tational Methods for Inverse Problems (NCMIP’13), volume
464 of Journal of Physics: Conference Series, Cachan, France,
May 2013. IOS Press.

[FS13c] Laurent Fribourg and Romain Soulat. Stability controllers for
sampled switched systems. In Parosh Aziz Abdulla and Igor
Potapov, editors, Proceedings of the 7th Workshop on Reach-
ability Problems in Computational Models (RP’13), volume
8169 of Lecture Notes in Computer Science, pages 135–145,
Uppsala, Sweden, September 2013. Springer.

[GHGGPGDM01] M. Gonzalez Harbour, J. J. Gutierrez Garcia, J. C. Palen-
cia Gutierrez, and J. M. Drake Moyano. Mast: Modeling and
analysis suite for real time applications. In ECRTS, pages
125–134, 2001.

[GHGPD01] M. González Harbour, J.J. Gutiérrez, J.C. Palencia, and J.M.
Drake. MAST: Modeling and analysis suite for real-time ap-
plications. In ECRTS, 2001.

188 Bibliography

[Gir05] A. Girard. Reachability of uncertain linear systems using
zonotopes. In HSCC, pages 291–305, 2005.

[Gir10] A. Girard. Synthesis using approximately bisimilar abstrac-
tions: state-feedback controllers for safety specifications. In
HSCC, pages 111–120, 2010.

[Gir12] A. Girard. Low-complexity switching controllers for safety
using symbolic models. In Maurice Heemels, Bart De Schut-
ter, and Mircea Lazar, editors, 4th IFAC conference on Anal-
ysis and Design of Hybrid Systems, June, 2012, Eindhoven,
Pays-Bas, 2012.

[Gon03] J. M. Gonçalves. Region of stability for limit cycles of piece-
wise linear systems. In IEEE Conference on Decision and
Control, 2003.

[GP05] A. Girard and G. J. Pappas. Approximation metrics for dis-
crete and continuous systems. IEEE Transactions on Auto-
matic Control, 52(5):782–798, 2005.

[GPM08] T. Geyer, G. Papafotiou, and M. Morari. Hybrid model pre-
dictive control of the step-down DC-DC converter. IEEE
Transactions on Control System Technology, 16(6):1112 –
1124, jan. 2008.

[GPT10] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar
symbolic models for incrementally stable switched systems.
IEEE Trans. on Automatic Control, 55:116–126, 2010.

[Hen96] T. A. Henzinger. The theory of hybrid automata. In Pro-
ceedings of the 11th Annual IEEE Symposium on Logic in
Computer Science, LICS ’96, pages 278–292, Washington, DC,
USA, 1996. IEEE Computer Society.

[HHJ+05] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis – the SymTA/S
approach. Computers and Digital Techniques, IEE Proceed-
ings -, 152(2):148 – 166, 2005.

[His01] I.A. Hiskens. Stability of limit cycles in hybrid systems. In
34th Annual Hawaii International Conference on System Sci-
ences (HICSS-34). IEEE Computer Society, January 3-6, 2001.

Bibliography 189

[HRSV02] T.S. Hune, J.M.T. Romijn, M.I.A. Stoelinga, and F.W. Vaan-
drager. Linear parametric model checking of timed au-
tomata. Journal of Logic and Algebraic Programming, 2002.

[JKDW01] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval
Analysis. Springer, 1 edition, September 2001.

[Küh98] W. Kühn. Zonotope dynamics in numerical quality control.
Mathematical Visualization, pages 125–134, 1998.

[LGG09] C. Le Guernic and A. Girard. Reachability analysis of hybrid
systems using support functions. In CAV, pages 540–554,
2009.

[Lib03] D. Liberzon. Switching in Systems and Control. Birkhausen,
2003.

[LL61] J. Lasalle and S. Lefschetz. Stability by Lyapunov’s Direct
Method. Academic Press, 1961.

[LM99] D. Liberzon and A.S. Morse. Basic problems in stability and
design of switched systems. Control Systems, IEEE, 19(5):59–
70, 1999.

[LPP+10] Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, Yusi Ra-
madian, and Alessandro Cimatti. Parametric analysis of dis-
tributed firm real-time systems: A case study. In ETFA’10,
pages 1–8, 2010.

[LPPR13] Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, and
Yusi Ramadian. Timed-automata based schedulability anal-
ysis for distributed firm real-time systems: a case study. In-
ternational Journal on Software Tools for Technology Trans-
fer, 15(3):211–228, 2013.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
nutshell. International Journal on Software Tools for Tech-
nology Transfer, 1(1-2):134–152, 1997.

[LTS99] J. Lygeros, C. J. Tomlin, and S. Sastry. Controllers for
reachability specifications for hybrid systems. Automatica,
35(3):349–370, 1999.

190 Bibliography

[MF92] T.A. Meynard and H. Foch. Multi-level conversion: high volt-
age choppers and voltage-source inverters. In 23rd Annual
IEEE Power Electronics Specialists Conference, pages 397 –403
vol.1, jun-3 jul 1992.

[MGS12] David Monchaux, Pascal Gast, and Jérémie Sangare. Avionic-
X: A demonstrator for the Next Generation Launcher Avion-
ics. In ERTS’12, February 2012.

[min] MINIMATOR Web page. https://bitbucket.org/ukuehne/minimator/overview.

[Mit07] I. M. Mitchell. Comparing forward and backward reachabil-
ity as tools for safety analysis. In HSCC, pages 428–443, 2007.

[MP95] Oded Maler and Amir Pnueli. Timing analysis of asyn-
chronous circuits using timed automata. In CHARME’95,
pages 189–205, 1995.

[Oca13] Ocaml Team. OCaml Web page.
http://caml.inria.fr/ocaml/index.fr.html, 2013.

[Oct13] Octave Team. Octave Web page.
http://www.gnu.org/software/octave/, 2013.

[PB05] B. Picasso and A. Bicchi. Control synthesis for practical sta-
bilization of quantized linear systems. Rend. Sem. Mat. Univ.
Pol. Torino, Control Theory and Stabil., I, 63(4):397–410,
2005.

[PB08] B. Picasso and A. Bicchi. Hypercubes are minimal controlled
invariants for discrete-time linear systems with quantized
scalar input. Nonlinear Analysis: Hybrid Systems, 2(3):706
– 720, 2008.

[PG09] D.A. Patino Guevara. Pilotage des cycles limites dans les sys-
temès dynamiques hybrides. Application aux alimentations
electriques statiques. Ph.D Thesis, Nancy-université, 2009.

[PGH98] J. C. Palencia and M. Gonzalez Harbour. Schedulability anal-
ysis for tasks with static and dynamic offsets. In RTSS, pages
26–37, 1998.

[PLE13] PLECS Team. PLECS Web page. http://www.plexim.com,
2013.

Bibliography 191

[PPL13] PPL Team. PPL Web page.
http://bugseng.com/products/ppl/, 2013.

[RE02] K. Richter and R. Ernst. Event model interfaces for heteroge-
neous system analysis. In DATE, pages 506–513. IEEE Com-
puter Society, 2002.

[RL00] M. Rubensson and B. Lennartson. Stability of limit cycles
in hybrid systems using discrete-time lyapunov techniques.
In Proceedings of the 39th IEEE Conference on Decision and
Control, 2000.

[RMT13] M. Rungger, M. Mazo, and P. Tabuada. Specification-guided
controller synthesis for linear systems and safe linear-time
temporal logic. In Proceedings of the 16th Intl. Conf. on Hy-
brid Systems: Computation and Control (HSCC), pages 333–
342, 2013.

[RO98] J. Raisch and S.D. O’Young. Discrete approximation and su-
pervisory control of continuous systems. Automatic Control,
IEEE Transactions on, 43(4):569–573, 1998.

[RW89] P. J. Ramadge and W. M. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77(1):81–98, January
1989.

[San93] S.R. Sanders. On limit cycles and the describing function
method in periodically switched circuits. IEEE Trans. Cir-
cuits and Systems, 40(9):564–572, 1993.

[SBM06] Ramzi Ben Salah, Marius Bozga, and Oded Maler. On in-
terleaving in timed automata. In CONCUR, volume 4137 of
LNCS, pages 465–476. Springer, 2006.

[Sch86] Alexander Schrijver. Theory of linear and integer program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1986.

[SEK03] M. Senesky, G. Eirea, and T.-J. Koo. Hybrid modelling and
control of power electronics. In HSCC, pages 450–465, 2003.

[SG05] Z. Sun and S.S. Ge. Switched Linear Systems. Control and De-
sign. Springer-Verlag, 2005.

192 Bibliography

[SGL97] Jun Sun, Mark K. Gardner, and Jane W.-S. Liu. Bounding
completion times of jobs with arbitrary release times, vari-
able execution times and resource sharing. IEEE Transac-
tions on Software Engineering, 23(10):603–615, 1997.

[SHL+13] Romain Soulat, Guillaume Hérault, Denis Labrousse,
Bertrand Revol, Gilles Feld, Stéphane Lefebvre, and Laurent
Fribourg. Use of a full wave correct-by-design command to
control a multilevel modular converter. In Philippe Lataire,
editor, Proceedings of the 15th European Conference on
Power Electronics and Applications (EPE’13), Lille, France,
September 2013. IEEE Power Electronics Society. To appear.

[SLS98] Danbing Seto, Dan P. Lehoczky, and Lui Sha. Task period
selection and schedulability in real-time systems. In RTSS,
1998.

[Sou10] Romain Soulat. Améliorations algorithmiques d’un moteur
de model-checking et études de cas. Rapport de Master,
Master 2 Recherche Informatique Paris Sud 11, 2010.

[SSL+13a] Youcheng Sun, Romain Soulat, Giuseppe Lipari, Étienne An-
dré, and Laurent Fribourg. Parametric schedulability analy-
sis of fixed priority real-time distributed systems. In Cyrille
Artho and Peter Csaba Ölveczky, editors, Preproceedings of
the 2nd International Workshop on Formal Techniques for
Safety-Critical Systems (FTSCS’13), pages 179–194, Queen-
stown, New Zealand, October 2013.

[SSL+13b] Youcheng Sun, Romain Soulat, Giuseppe Lipari, Étienne An-
dré, and Laurent Fribourg. Parametric schedulability analy-
sis of fixed priority real-time distributed systems. Research
Report LSV-13-03, Laboratoire Spécification et Vérification,
ENS Cachan, France, 2013.

[Tab05] P. Tabuada. Symbolic sub-systems and symbolic control of
linear systems. In Decision and Control, 2005 and 2005 Eu-
ropean Control Conference. CDC-ECC ’05. 44th IEEE Confer-
ence on, pages 18–23, 2005.

[Tab08] P. Tabuada. An approximate simulation approach to sym-
bolic control. IEEE Trans. Automat. Contr., 53(6):1406–1418,
2008.

Bibliography 193

[Tab09] P. Tabuada. Verification and Control of Hybrid Systems: A
Symbolic Approach. Springer Publishing Company, Incorpo-
rated, 1st edition, 2009.

[Tar05] A. Tarantola. Inverse Problem Theory and Methods for Model
Parameter Estimation. SIAM, 2005.

[Tea08] Simulink Team. Simulink Web page.
http://www.mathworks.com/products/simulink/., 2008.

[TLS00] C.J. Tomlin, J. Lygeros, and S.S Sastry. A game-theoretic ap-
proach to controller design for hybrid systems. Proceedings
of the IEEE, 88(7):949–970, 2000.

[WTVL06] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul
Lieverse. System architecture evaluation using modular per-
formance analysis: a case study. International Journal on
Software Tools for Technology Transfer, 8(6):649–667, 2006.

[WY03] F. Wang and H.C. Yen. Timing parameter characterization of
real-time systems. In CIAA ’03, volume 2759 of LNCS, pages
23–34, 2003.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time sys-
tems. (kronos user’s manual release 2.2). International Jour-
nal on Software Tools for Technology Transfer, 1:123–133,
1997.

	Table of Contents
	List of Algorithms
	List of Figures
	List of Tables
	General Introduction
	I Schedulability Analysis Using The Inverse Method
	Introduction
	The Inverse Method for Parametric Timed Automata
	Constraints on Clocks and Parameters
	Clocks
	Parameters
	Constraints

	Labeled Transition Systems
	Timed Automata
	Syntax
	Semantics

	Parametric Timed Automata
	Syntax
	Semantics

	The Inverse Problem
	A Motivating Example
	The Problem

	The Inverse Method Algorithm
	Principle
	A Toy Example

	Behavioral Cartography of Timed Automata
	The Behavioral Cartography Algorithm
	Finite Cartography
	Case Study: Flip-flop

	State Merging in Parametric Timed Automata
	General Results for Parametric Timed Automata
	Merging States in Parametric Timed Automata
	Principle
	Merging and Reachability
	Characterization of the Merging Reduction

	The Inverse Method with Merging
	Principle
	Preservation of Locations
	Preserving Actions

	Experimental Validation
	Discussion
	Related Work

	Application to the Robustness Analysis of Scheduling Problems
	Preliminaries
	Scheduling Problems
	Timed Automata Augmented with Stopwatches
	System Model

	Scheduling Analysis Using the Inverse Method
	Modeling Schedulability with Timed Automata
	Robustness Analysis Using the Inverse Method
	Schedulability Zone Synthesis

	Application to Scheduling Problems
	Jobs with Deadlines
	Schedulability Zone Synthesis
	Next Generation Spacecraft Flight Control System

	A Comparison with Analytic Method
	Analytic Method
	Extensions to the Model
	Comparison

	Discussion
	Related Work

	Conclusion

	II Controllability of Sampled Switched Systems
	Introduction
	Control Theory: Basic Concepts
	Model of Control Systems
	Digital Control Systems
	Digitization
	Quantization
	Switching

	Control of Switched Systems Using Invariant Sets
	Controlled Invariants
	Safety Control Problem
	Stability Control Problem
	Other Controllers

	Sampled Switched Systems
	Model
	Illustrative Examples
	Zonotopes

	Safety Controllers
	Backward Fixed Point Computation (Direct Approach)
	Approximate Bisimulation (Indirect Approach)
	Application to a 3-cells Boost DC-DC Converter
	Model

	Stability Controllers
	Motivation
	Preliminaries
	Decomposition Procedure
	Basic procedure
	Sufficient Condition of Decomposition
	Enhancement for Safety
	Applications of the Enhanced Decomposition Procedure

	Limit Cycles
	Proof of the Convergence towards Limit Cycles
	Discussing Assumptions (H1) and (H2)
	Illustrative Examples

	Implementation
	Extensions: Reachability, Sensitivity, Robustness, Nonlinearity
	Reachability Control
	Sensitivity
	Robust Safety Control
	Nonlinearity

	Discussion
	Related Work

	Application to Multilevel Converters
	Multilevel Converters
	Application of the Decomposition Procedure
	5-level Converter
	7-level Converter

	Physical Experimentations
	Discussion

	Conclusion

	General Conclusion
	Bibliography

