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Résumé 
 
Cette thèse présente de nouveaux développements pour de petites antennes en cavité. L'objectif principal de la 
thèse est l'analyse de la performance de la bande passante de ces antennes pour des tailles d'ouverture qui sont 
petites par rapport à la longueur d'onde  en espace libre. Des cavités de formes rectangulaires et circulaires 
intégrées dans un plan de masse infini et dans des plans de masse de dimensions latérales finies sont examinées 
en détail. Jusqu'à présent, dans la littérature, le choix pour ces antennes en cavités porte sur des antennes 
imprimées microruban. L’objet de la thèse est de déterminer si les performances d’antennes en cavité de petite 
taille peuvent être améliorées et comment. A cet effet, la limite supérieure de la bande passante pour cette 
configuration particulière en cavité est étudiée théoriquement. Il est conclu que les antennes microruban 
intégrées dans une cavité, en fait, n’atteignent pas la limite de la bande passante, ce qui est l'un des principaux 
résultats de la thèse. Les antennes intégrées dans une cavité avec un plan de masse infini ou fini sont ensuite 
analysées à l'aide de plusieurs modèles de ligne de transmission simples. Le deuxième résultat clé de la thèse est 
une démonstration qu'un modèle de ligne de transmission spécifique et original correspond à des antennes qui 
peuvent atteindre la limite de la bande passante. Ce modèle de ligne de transmission constitue la base d'une 
nouvelle conception de l'antenne en cavité. Enfin, le résultat le plus important de la thèse est une conception 
physique pratique de nouvelles antennes en cavité capables d'atteindre la bande passante maximale possible. En 
outre, plusieurs autres sujets sont abordés; une comparaison avec des structures à base d’éléments empilés en 
termes de bande passante, de facilité de fabrication et de coût; l'extension de la limite grâce à l'inclusion de 
matériaux magnétiques idéaux et conducteurs magnétiques; l’utilisation de la nouvelle structure d’antenne pour 
la constitution d'un réseau d'antennes compact; les avantages de la nouvelle structure pour la réalisation 
d’antennes en cavité de tailles vraiment petites pour lesquelles la conception classique précédente ne permet pas 
la constitution d’antennes. 

Dans cette thèse, nous étudions spécifiquement des cavités avec des ouvertures plus petites que 0.5 𝜆𝜆0  et les 
conditions pour obtenir la bande passante maximale possible. Des cavités rectangulaire (carré) et circulaire 
présentant des tailles d'ouverture de 0.15  𝜆𝜆0 , 0.245  𝜆𝜆0 , 0.3  𝜆𝜆0 , et 0.37  𝜆𝜆0  sont choisis pour notre étude et sont 
considérés comme des " exemples de tailles d'ouverture» dans la suite du document. A des fins de  conception, 
de simulation et de comparaison de toutes les antennes, une fréquence de fonctionnement de 2,3 GHz est choisie 
comme la résonance souhaitée pour ces antennes. 
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Introduction 
La motivation de ce travail de doctorat est décrit creux à la Fig. 1, où plusieurs exemples de projectiles 
fabriqués/instrumentés à l'Institut franco-allemand de Recherches de Saint-Louis (ISL) sont présentés. Ici, une 
antenne est intégrée sur le culot du projectile pour une transmission de données (télémesure). La bande de 
fréquence pour cette transmission est fixée à 2,3 GHz (longueur d'onde en espace libre (𝜆𝜆0 = 130.4 mm). 
Jusqu’à préent, les lignes directrices de conception reposaient sur des antennes classiques en technologie micro-
ruban, c’est à dire une surface métallique conductrice ou "patch" placée sur un substrat diélectrique et excité par 
une sonde, constituée parun câble coaxial qui est soudé au patch à la bonne position pour rendre l'antenne 
opérationnelle à 2,3 GHz. 

 
Fig. 1  Exemple  de structures de l’ISL utilisant des antennes patchs placées dans une cavité. (a) un projectile avec une antenne patch à 
polarisation circulaire [1]. (b) et (c) projectiles avec des antennes intégrées au culot. 
 

Des exemples de conception d’antennes micro-ruban en cavités sont également représentés à la Fig. 2. La 
géométrie cylindrique est plus intéressante pour les applications de l’ISL alors qu’une géométrie rectangulaire 
présente plus d'intérêt pour les études théoriques, où l'analyse est généralement plus simple. 

 
Fig. 2 Exemples typiques d’antennes patch en cavité (a) rectangulaire et (b) circulaire, considérées dans cette étude.  
 

La principale conséquence de l'intégration de l'antenne à l'intérieur d'une cavité est la réduction de la bande 
passante disponible. En outre, la réduction de la taille (volume) de la cavité par rapport à la longueur d'onde 
d'espace libre réduit également considérablement la largeur de bande. Ce problème est illustré à la Fig. 3. 

Quand une antenne est beaucoup plus petite que la longueur d'onde à la résonance, la largeur de bande est 
délimitée par des lois physiques et devient très étroite. Ainsi l'étude de la limite de la bande passante pour les 
antennes en cavité est d'une importance primordiale dans cette thèse. 

 

 
Fig. 3 Démonstration de la problématique principale de cette thèse : réduction de la bande passante avec la présence de la cavité et en 
particulier avec une petite taille de cette cavité. (a) Exemple d'une géométrie circulaire, et (b) d’une géométrie rectangulaire. 

(a) (b) 

Patch 

 “sonde” d’un  
câble coaxial   

 Placement of the antenna  
 

(a) (c) (b) 
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Les métamatériaux sont un sujet de recherche prometteur dans divers domaines, et en particulier dans 

l'électromagnétisme pour les applications de circuits (filtres, déphaseurs, etc) ou pour des applications de 
rayonnement (antennes, diffraction, dissimulation). Il s’agit de matériaux avancés, incluant de petits éléments 
(devant la longueur d'onde) et offrant dans des bandes de fréquence spécifiques, des propriétés particulières, qui 
sont différentes de celles des mêmes matériaux à leut état naturel. Parmi les différents avantages potentiels de 
métamatériaux rapportées dans la littérature se trouvent la miniaturisation des antennes, l’élargissement de la 
bande passante et la réduction du couplage mutuel dans un réseau d'antennes. Les métamatériaux semblent être 
une solution potentielle à l'amélioration de la bande passante de petites antennes. Néanmoins, les structures 
conçues jusqu'à maintenant ont été relativement larges et considérées dans un environnement ouvert, c'est-à-dire 
sans parois métalliques placés sur les côtés de l'antenne, comme dans le cas d'une cavité. Ici, les avantages de de 
concepts de métamatériaux sur la bande passante des antennes sont étudiés dans un environnement cavité. 

Dans la présentation des résultats de cette thèse, nous avons décidé de plusieurs paramètres pour faciliter la 
comparaison. Le paramètre le plus important, à des fins de conception, de simulation et de comparaison de la 
bande passante de toutes les antennes, est la fréquence de fonctionnement de 2,3 GHz comme résonance 
souhaitée, ce qui correspond à  une longueur d'onde en espace libre 𝜆𝜆0 = 130.4 mm et au nombre d'onde  
𝑘𝑘 = 2𝜋𝜋/𝜆𝜆0 = 48.2. Pour des cavités rectangulaires, nous avons choisi de nous concentrer sur le cas de 
l'ouverture carrée où l'ouverture de la cavité est prise à 20 mm, 32 mm, 40 mm et 48 mm. Dans le cas  de la 
cavité circulaire, le diamètre d de l'ouverture est choisi pour être de 20 mm, 32 mm, 40 mm et 50 mm. Il est 
également courant d'exprimer la taille électrique de l'antenne en fonction de (𝑘𝑘𝑘𝑘) where r est le rayon de la 
sphère la plus petite intégrant l’antenne. Ces dimensions sont résumées dans le Tableau 1  et seront appelés 
“exemple de tailles d'ouverture” dans la suite du texte.  
 

Exemples de taille d'ouverture: cavité carré 
Size a  a [λ0] Radius r  

 

20 mm 0.153 14.142 mm 0.679 
32 mm 0.245 22.627 mm 1.086 
40 mm 0.307 28.284 mm 1.358 
48 mm 0.368 33.941 mm 1.629 

 
Exemples de taille d'ouverture:  cavité circulaire 

Diameter d  d [λ0] Radius r = a  
 

20 mm 0.153 10 mm 0.480 
32 mm 0.245 16 mm 0.768 
40 mm 0.307 20 mm 0.960 
50 mm 0.383 25 mm 1.200 

 
Tableau 1 Comparaison des ouvertures rectangulaires et circulaires. 
 

A l’ISL, les matériaux diélectriques antennes disponibles et utilisés pour la fabrication des antennes sont des 
matériaux Rogers de permittivité relative 3,66, 6,15 et 10,2, soit Rogers 4350, Rogers 3006, et Rogers 3010 
respectivement. Il a donc été décidé d'utiliser ces valeurs de permittivité dans nos analyses et simulations. Un 
résumé est donné dans le Tableau 2.  

 
 

Material Permittvity tan δ 
Air 1 0 
Polypropylene 2.26 0.002 
Rogers 4530 3.66 0.004 
Rogers 3006 6.15 0.002 
Rogers 3010 10.2 0.0023 

 
Tableau 2 Récapitulatif des proprieties électriques des matériaux considérés dans cette thèse 

 
Des simulations numériques ont été réalisées avec le logiciel commercial, CST Microwave Studio. L'une des 

premières conclusions des simulations de conception d'antenne classique concerne l'utilisation des résonances 
multiples pour l'amélioration de la bande passante ; par exemple, des patchs empilés (stacked patches), plusieurs 
patchs parasites et d'autres geometries (complexes) sont utilisés pour introduire deux ou plus de résonances 
proches afin d’élargir la bande passante. Cependant, nous avons constaté que lorsque de telles structures sont 
placées dans un petit volume de cavité, le couplage entre les résonateurs est trop serré et l'effet désiré devient 
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impossible. La conclusion est que, dans une très petite cavité le mieux que nous pouvons faire est d'étudier une 
antenne à résonance unique et les conditions pour atteindre une bande passante maximale possible (de manière 
équivalente: le facteur 𝑄𝑄 minimum possible). 

Les objectifs généraux de la thèse 
Basé sur la problématique de petites antennes en cavité, l'objectif principal de cette thèse est de répondre aux 
questions suivantes: 

• Quelle est la bande passante théorique maximale possible d'une antenne dans une cavité? 
• Des concepts inspirés de métamatériaux peuvent ils apporter des avantages pour la bande passante et la 

réduction de la taille par rapport à la conception classique de l'antenne patch? 
• Est-il possible de concevoir et de fabriquer des antennes dans de très petites cavités avec une bande 

passante suffisante pour des applications spécifiques? 
• Existe-t-il des avantages pour un un réseau compact d’antennes en termes de réduction de la taille, 

d'amélioration de la bande passante et de réduction de couplage mutuel inter-élément ? 

Les objectifs pratiques spécifiques 
Du point de vue pratique, les objectifs sont de concevoir, simuler et analyser des antennes patch compactes dans 
des petites cavités avec les restrictions suivantes: 

• diamètre circulaire de la cavité: 20mm (0.15 𝜆𝜆0). 32mm (0.245 𝜆𝜆0), 40mm (0.3 𝜆𝜆0), and 50mm 
(0.38 𝜆𝜆0).  

• Epaisseur maximale de l'antenne: jusqu’à 20mm (0.15 𝜆𝜆0). 
• Fréquence de fonctionnement 2.3 GHz  
• Les matériaux diélectriques à être utilisés: Polypropylène (εr = 2.26) Rogers 3.66, Rogers 6.15 and 

Rogers 10.2 
• Diagramme de rayonnement identique à celui d’un patch, c'est-à-dire vers le demi-espace au-dessus de 

l’élément rayonnant 
• Fabrication et mesure d'antennes  

Antennes cavités simples ouvertes 
Nous commençons par montrer comment analyser la forme la plus simple d'une antenne cavité , à savoir des 
cavités ouvertes à une extrémité et sans métallisation sur cette surface. Dans sa thèse de doctorat, Cohen [53] a 
donné une analyse approfondie de petites antennes en cavité rectangulaire. Pour plus de simplicité, l'étude a été 
réalisée pour une géométrie rectangulaire dans un plan de masse infini. Nous reproduisons ici les principaux 
résultats, car ils seront d'une grande importance dans le reste de la thèse. 

Considérons une cavité rectangulaire enterré dans un plan de masse infini et rempli avec un matériau 
homogène de permittivité  𝜀𝜀𝑘𝑘  et de perméabilité  𝜇𝜇𝑘𝑘 = 1 comme le montre la Fig. 4. La cavité peut être 
considérée comme un guide d'onde en court-circuit et ouvert vers un demi-espace. Celui-ci peut être modélisé 
par une ligne de transmission ayant un court-circuit sur un côté et une charge à l'autre côté (correspondant à 
l'ouverture). 

 
Fig. 4  (a) A square cavity in an infinite ground plane and (b) the corresponding transmission line model. 

 
On suppose que le mode TE10 est dominant dans le guide d'ondes rectangulaire. La constante de propagation 

dans un guide d'onde rectangulaire est 𝑘𝑘𝑇𝑇𝑇𝑇
2 = 𝜀𝜀𝑘𝑘𝑘𝑘

2 − 𝑘𝑘𝑐𝑐
2 où 𝑘𝑘2 = 𝜔𝜔2𝜇𝜇0𝜖𝜖0 est le nombre d'onde, et  𝑘𝑘𝑐𝑐 =  𝜋𝜋/𝑎𝑎 est 

(a) (b) 
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le nombre d’onde de coupure pour le mode TE10. L'admittance caractéristique pour les modes TE est 𝑌𝑌𝑇𝑇𝑇𝑇 =
𝑘𝑘𝑇𝑇𝑇𝑇 /𝜔𝜔𝜇𝜇 = 𝑘𝑘𝑇𝑇𝑇𝑇 /𝑘𝑘𝜂𝜂0  et donc l'admittance d'entrée 𝑌𝑌 𝐶𝐶  dans un guide d'onde court-circuitée (cavité) est 

 𝑌𝑌 𝐶𝐶 (𝑘𝑘) = 𝑌𝑌𝑇𝑇𝑇𝑇
𝑌𝑌𝑇𝑇𝑇𝑇 + 𝑗𝑗𝑌𝑌𝑇𝑇 tan(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ)
𝑌𝑌𝑇𝑇 + 𝑗𝑗𝑌𝑌𝑇𝑇𝑇𝑇 tan(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ)

= −𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) , (1) 

où 𝑌𝑌𝑇𝑇 = ∞ l'admission de court-circuit. Pour plusieurs valeurs de permittivité relative, l'admittance d'entrée est 
tracée en fonction de la hauteur h à la Fig. 5. Pour des cavités courtes, l'admittance d'entrée est inductive 
(négative).  

 
Fig. 5 (a) le modèle de ligne de transmission d'un guide d'onde en court-circuit qui représente la cavité. (b) Exemples d’admitance d'entrée 
dans un guide d'onde carré court-circuit de taille 0.245 𝜆𝜆0 à la fréquence f = 2.3 GHz (𝑘𝑘 = 48.2) lorsque le volume est homogène rempli de 
permittivité relative de 3.66, 6.15 et 10.2.  
 
D'autre part, l'extrémité ouverte de la structure est modélisée par l’admittance d’ouverture 𝑌𝑌 𝐴𝐴𝐴𝐴 . Cette admittance 
peut être calculée analytiquement, en utilisant l'approche dans le domaine spectral. Le calcul complet figure en 
Annexe C pour le mode TEmn général. Nous n’écrivons ici que l'expression finale pour le modeTE10 

 

𝑌𝑌 𝐴𝐴𝐴𝐴 (𝑘𝑘) = 𝐺𝐺𝐴𝐴𝐴𝐴 + 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎
8𝑘𝑘𝜂𝜂0

� 𝑘𝑘2 − 𝑘𝑘𝑥𝑥
2

�𝑘𝑘2 − 𝑘𝑘𝑥𝑥
2 − 𝑘𝑘𝑥𝑥

2

⎝
⎜⎜
⎜⎛

cos �𝑘𝑘𝑥𝑥a
2 � sinc�

𝑘𝑘𝑦𝑦𝑎𝑎
2 �

�𝜋𝜋2�2 − �𝑘𝑘𝑥𝑥a
2 �

2

⎠
⎟⎟
⎟⎞

2

𝑑𝑑𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘𝑥𝑥
ℝ2

. (2) 

L'intégrale dans (1.56) doit être calculée numériquement pour chaque valeur de k. Toutefois, le résultat de  
pour l'ouverture carrée (𝑎𝑎 = 𝑎𝑎) a été donné par Cohen dans [53] sous la forme d'une série de Taylor,  

 𝐺𝐺𝐴𝐴𝐴𝐴 (𝑥𝑥) = 𝑔𝑔0𝑥𝑥2 + 𝑔𝑔1𝑥𝑥4 + 𝑔𝑔2𝑥𝑥6 … ,
𝐵𝐵𝐴𝐴𝐴𝐴 (𝑥𝑥) = 𝑎𝑎0𝑥𝑥−1 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎1𝑥𝑥3 + ⋯ ,

 (3) 

Avec 𝑥𝑥 = a/𝜆𝜆0 = 𝑘𝑘a/(2𝜋𝜋). L'admittance d'ouverture est représentée sur la Fig. 6 où l'admission pour les 
exemples de tailles étudiées dans cette thèse est également notée. En fait, dans tous les cas, l'admission est 
négatif (inductive). 

 
Fig. 6 Admittance d’ouverture 𝑌𝑌 𝐴𝐴𝐴𝐴  pour le mode TE10 donné par (1.56) ou (1.57). Voir l’annexe C pour la dérivation. (a) approximation 
polynomiale donnée en termes de 𝑥𝑥 = a/𝜆𝜆0 = 𝑘𝑘a/(2𝜋𝜋) (b) un tracé de la partie réelle et imaginaire de 𝑌𝑌 𝐴𝐴𝐴𝐴  en fonction de la taille de la 
cavité. Notez que pour les exemples de tailles d’ouverture la susceptance est inductive. 
 
Sans sources, le système de la Fig. 4(b) oscille lorsque les réactances dans le circuit s'annulent, soit : 

(a) (b) 

(a) (b) 
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 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) − 𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) = 0, (4) 

Où 𝐵𝐵𝐴𝐴𝐴𝐴  est la susceptance d'ouverture, 𝑘𝑘𝑇𝑇𝑇𝑇
2 = 𝜀𝜀𝑘𝑘𝑘𝑘2 − 𝑘𝑘𝑐𝑐

2  avec 𝑘𝑘2 = 𝜔𝜔2𝜇𝜇0𝜖𝜖0 ,  𝑘𝑘𝑐𝑐 = 𝜋𝜋 a⁄ , a est le côté d'une 
ouverture carrée et ℎ la hauteur de la cavité. Notez que nous avons transformé la géométrie vers un modèle 1D qui 
est facile à analyser. Il ya deux variables dans (4) à savoir la hauteur ℎ et la permittivité 𝜀𝜀𝑘𝑘. Pour obtenir la 
résonance, l'un ou l'autre peut être ajusté. Ici, il est plus utile de traiter 𝜀𝜀𝑘𝑘 en fonction de la hauteur ℎ, donc 
l’équation (4) est utilisée pour obtenir la permittivité 𝜀𝜀𝑘𝑘 nécessaire pour une hauteur ℎ donnée de la cavité. 

Une fois que la hauteur de résonance est connue, on peut calculer le facteur de qualité d'une telle antenne à 
l'aide des formules définies dans (A 22) de l’annexe A 

 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 . =  𝜔𝜔0
2𝐺𝐺𝐴𝐴𝐴𝐴 (𝜔𝜔0)

�𝜕𝜕𝑌𝑌 (𝜔𝜔)
𝜕𝜕𝜔𝜔

�
𝜔𝜔=𝜔𝜔0

= 𝑘𝑘0𝑘𝑘
2𝐺𝐺𝐴𝐴𝐴𝐴 (𝑘𝑘0𝑘𝑘)

�𝜕𝜕𝑌𝑌 (𝑘𝑘)
𝜕𝜕𝑘𝑘

�
𝑘𝑘=𝑘𝑘0 𝑘𝑘

 , (5) 

Où 𝜔𝜔0  est la fréquence de résonance, et de façon équivalente, 𝑘𝑘0𝑘𝑘  nombre d'onde de résonance, 𝑌𝑌 = 𝑌𝑌 𝐶𝐶 + 𝑌𝑌 𝐴𝐴𝐴𝐴  
est l'admittance totale du circuit, soit la somme des admittances de l'ouverture et du guide d'onde, donnée par 

 𝑌𝑌 (𝑘𝑘) = 𝐺𝐺𝐴𝐴𝐴𝐴 (𝑘𝑘) + 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) − 𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘 𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ). (6) 

En outre, nous sommes intéressés par la bande passante relative d’adaptation, définie en Annexe A et qui est 
calculée directement à partir du facteur 𝑄𝑄 comme  

 
𝐹𝐹𝐵𝐵𝐹𝐹 = 2

√
𝛽𝛽

𝑄𝑄
 , 𝛽𝛽 = 𝛼𝛼

1 − 𝛼𝛼
  , 𝛼𝛼 = |𝛤𝛤0(𝜔𝜔)|2  (7) 

où 𝛤𝛤0(𝜔𝜔) est le coefficient de réflexion. Comme pour les applications antennes, la largeur de bande pour un 
coefficient de réflexion inférieur à -10 dB est souvent l'objectif souhaité, on obtient l'expression de la bande 
passante suivante en considérant la valeur de  𝛼𝛼 = 0.1: 

 𝐹𝐹𝐵𝐵𝐹𝐹−10𝑑𝑑𝐵𝐵 = 2
3𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴

.   (8) 

En utilisant les reliations (4), (5) et (8), on peut prédire analytiquement la bande passante des antennes en 
cavité. Les prévisions pour les exemples de tailles d'ouverture dans le cas rectangulaire sont présentées à la Fig. 
7.  

 
Fig. 7 Le comportement de la bande passante des antennes en cavité rectangulairepour l'exemple des tailles d'ouverture. (a) Synthèse de la 
façon dont l'antenne est analysé. (b) bande passante par rapport à la hauteur de la cavité, avec une permittivité correspondant pour chacune 
des valeurs de hauteur. Les cercles sur les courbes indiquent la largeur de bande maximale pouvant être atteinte pour une taille donnée. 
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Il existe des combinaisons optimales de valeurs de hauteur-permittivité pour une taille d'ouverture spécifique 
qui va donner une bande passante maximale (𝑄𝑄 minimum). Dans [53] Cohen a utilisé la technique d'optimisation 
mathématique des multiplicateurs de Lagrange et donné une formule approximative pour le 𝑄𝑄 minimum 
d'antennes en cavité lorsque(a/𝜆𝜆0)  <  0.35, soit 

 
𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 (𝐶𝐶𝐶𝐶 ℎ𝑒𝑒𝐴𝐴 )

𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≅ 0.424 � a
𝜆𝜆0

�
−3

, (9) 

où  est la dimension de l'ouverture carrée,  la longueur d'onde en espace libre. La dépendance cubique 
révèle une ressemblance avec la formule de limite Chu bien connu. A des fins de comparaison de la relation 
(9) avec la limite de Chu, on peut introduire  comme étant le rayon de la plus petite sphère qui entoure 
l'ouverture de la cavité. La valeur de pour une ouverture carrée est la moitié de la diagonale du carré donnée 
par  𝑘𝑘 = a/

√
2. Nous pouvons ré-écrire la validité de l'expression (a/𝜆𝜆0)  <  0.35 sous la forme 𝑘𝑘a < 2.2 ⇔

 𝑘𝑘𝑘𝑘 < 1.55 et re-exprimer (9) comme 

 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 (𝐶𝐶𝐶𝐶 ℎ𝑒𝑒𝐴𝐴 )
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≅ 105.17

(𝑘𝑘𝑎𝑎)3 =  37.18
(𝑘𝑘𝑘𝑘)3  (10) 

Sous la forme (10) , il est évident que la prédiction pour les très petites cavités est beaucoup plus grande d'un 
facteur d'environ 37 par rapport à la limite de Chu. A noter que ni la permittivité ni la hauteur n'entrent dans la 
formule explicite, car il est supposé que pour chaque taille d'ouverture les valeurs optimales de ℎ et 𝜀𝜀𝑘𝑘  sont 
utilisés. 

En utilisant une analyse similaire, l'auteur a étendu les résultats de Cohen à des cavités circulaires et à des 
cavités circulaires dans un plan de masse de dimensions latérales finies. Un résumé de tous les résultats est 
présenté dans le Tableau 3. 

 

Type de cavité Carré Circulaire 

Plan de masse infini 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≅ 37.18

(𝑘𝑘𝑘𝑘)3  𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑘𝑘 =  

19.75
(𝑘𝑘𝑎𝑎)3 

Plan de masse fini 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≈  29.3

(𝑘𝑘𝑘𝑘)3  𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑘𝑘 ≈

17.5
(𝑘𝑘𝑎𝑎)3 

 
Tableau 3 Résumé des résultats théoriques pour des antennes cavités simples ouvertes indéterminée. 𝑘𝑘 = a/

√
2 où a est le rayon d'une 

ouverture circulaire, et a est le côté d’une ouverture carré. 

Antennes patch en cavité 
Contrairement à une antenne patch classique alimentée  parsonde sans cavité, lorsque la sonde est dans une 

petite cavité, les murs agissent comme un bouclier et aident à établir un mode TEM. La cavité et la sonde se 
comprtent comme un câble coaxial dont l’âme est excentrée, avec une impédance caractéristique qui est 
différente de 50 Ohms. La mise en place du mode TEM à l’intérieur de la cavité est une raison majeure 
expliquant la possibilité d'augmenter la hauteur au-delà de ce qui est possible pour des antennes patch classiques.  

En outre, une antenne patch classique alimentée par sonde excite seulement son mode fondamentale 
(TM010). Toutefois, pour les substrats épais, la cavité représente une petite partie d'un guide d'onde de sorte que 
le patch excite aussi le mode TE10 fondamental du guide d'onde de forme rectangulaire (carré). Ce fait est crucial 
dans l'explication des résultats présentés. Le "mode de guide d'ondes" nous permet d'augmenter la hauteur plus 
que possible pour des antennes patch classiques. Il est également responsable de l’évolution progressive des 
dimensions de l'antenne patch dans une cavité comme vu dans l'exemple détaillé des Fig. 8(c) et Fig. 9(b). 

Des simulations détaillées d'antennes patch dans des cavités carrés et circulaires pour les exemples de tailles 
ont été réalisées. Toutefois, sur les Fig. 8 et Fig. 9 nous ne présentons que les exemples les plus illustratifs qui 
montrent tous les aspects intéressants de ces antennes. Il ya plusieurs détails importants que nous souhaitons 
souligner: 

Tout d'abord, sur la Fig. 8(a) le résultat pour une antenne cavité simple ouverte de géométrie carrée est 
présenté. Nous nous concentrons sur la bande passante pour des permittivités spécifiques  (𝜀𝜀𝑘𝑘  =  3.66, 6.15 et 
10.2). Une antenne cavité nécessite une combinaison spécifique de valeurs de hauteur et de permittivité, donc un 
seul point représente une antenne cavité simple ouverte. A noter que pour 𝜀𝜀𝑘𝑘 =  3.66 le guide d'ondes est sous sa 
fréquence de coupure et antenne cavité simple ouverte n'est pas possible. Pour une cavité circulaire, sur la Fig. 9, 
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les points indiquant les antennes de la cavité sont immédiatement combinés avec les résultats des simulations de 
l'antenne patch.  

Deuxièmement, sur les figures Fig. 8(b) et Fig. 9(a), nous voyons les résultats de simulation pour une 
antenne patch à l'intérieur d’une cavité. Les principales différences par rapport à l'antenne cavité simple ouverte 
sont que, au lieu d'un seul point pour une permittivité spécifique, nous avons maintenant une courbe pour chaque 
valeur de permittivité. Fait important, les points indiquant les antennescavité simples ouvertes apparaissent à la 
fin de la courbe de bande passante pour les antennes patch. Comme il n'y a pas de point pour une antenne cavité 
remplie de 𝜀𝜀𝑘𝑘 =  3.66 la courbe de l'antenne patch correspondant peut effectivement se prolonger indéfiniment, 
mais il  été décidé de ne présenter que les résultats jusqu'à une hauteur de 40 mm.   

Troisièmement, sur les figures Fig. 8(c) et Fig. 9(b) des représentations  des antennes simulées (et 
optimisées) pour différentes hauteurs sont présentés. Cela montre que la taille du patch est réduite lorsque la 
hauteur ℎ de la cavité est augmentée. En fait, pour les cas 𝜀𝜀𝑘𝑘 = 6.15 et 10.2 la taille se réduit à zéro (et est 
inadaptable), et donc l'antenne se transforme en une antenne cavité simple ouverte. Pour le cas 𝜀𝜀𝑘𝑘 =  3.66 la 
taille se réduit mais au-dessus d’une certaine hauteur de cavité elle reste à une valeur relativement constante. 

 

 
Fig. 8 Exemple détaillé d'une ouverture de cavité de 0.245 ×  0.245 𝜆𝜆0  dans un plan de masse fini. (a) prédiction d'analyse de la bande 
passante d'une antenne cavité simple ouverte. La courbe indique un comportement de la bande passante générale qui dépend de , et les 

points indiquent des cas particuliers lorsque le volume est rempli avecwith 𝜀𝜀𝑘𝑘 =  3.66, 6.15 et 10.2. (b) Les résultats de simulation pour la 
bande passante à 10dB d'antennes patch en cavité, ainsi que les points pour le cas de l'antenne cavité simple ouverte. (c) géométries 
d'antennes réelles issues de CST. En raison du manque d'espace, les images CST sont présentées pour des incréments de hauteur  
mm. 
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Fig. 9 Exemple détaillé d'une ouverture de cavité  de diamètre 0.3 𝜆𝜆0  dans un plan de masse fini. (a) Les résultats de simulation pour la 
bande passante à -10dB d'antennes patch dans une cavité, ainsi que les points pour le cas de l'antenne cavité simple ouverte. (b) géométries 
d'antennes réelles issues de CST. En raison du manque d'espace, les images CST sont présentées pour des incréments de hauteur 𝛥𝛥ℎ =  2 
mm. 
 
Il ya plusieurs observations sur le comportement de la bande passante qui peuvent être faites sur la base des 
résultats de simulation : 

• Pour les très petites cavités les meilleurs résultats sont obtenus avec la plus haute permittivité 
• Pour des cavités fines, le comportement de l'antenne patch classique peut être observé (une permittivité 

plus élevée conduit à une bande passante réduite) 
• Pour des cavités épaisses des phénomènes inhabituels peuvent se produire : 

o dépendance inverse de la largeur de bande avec la permittivité pour des cavités épaisses 
o "bosses" inhabituels sur les courbes de bande passante pour certains cas de grande hauteur de 

la cavité. 
• Pour toutes les tailles de cavité, la bande passante est plus élevée dans le cas du plan de masse fini.  

Modèle expliquant la relation bande passante-permittivité 
Lorsque le substrat est épais, un patch peut exciter le mode TE fondamental de la cavité. Par rapport à 
l’ouverture d’une antenne cavité simple ouverte, un patch localisé à l'ouverture va changer l'admittance 
d'ouverture. Le modèle complet est une simple modification du modèle d'antenne cavité simple ouverte et est 
représentée sur la Fig. 10. 

 
Fig. 10 Modèle de ligne de transmission d'une cavité avec un patch à l'ouverture. Le patch est modélisée par un circuit résonnant série en 
parallèle à l'admittance de l'ouverture. Notons que le modèle est raisonnable pour les cavités épaisses avec une ouverture de taille inférieure à 
la moitié de la longueur d'onde en espace libre. 

 
La condition de résonance pour le modèle de la  Fig. 10 peut s'écrire 

‘bump’ 
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 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 − 𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) + 1
1

𝑗𝑗𝜔𝜔𝐶𝐶 + 𝑗𝑗𝜔𝜔𝑗𝑗
= 0, (11) 

 

Où 𝑘𝑘𝑇𝑇𝑇𝑇  et 𝐵𝐵𝐴𝐴𝐴𝐴  dépendent du type de cavité particulier à l'étude. C'est une équation avec trop de variables, à 
savoir la hauteur h, la permittivité relative εr, la capacité C, et l’inductance L. Ici, nous voulons simplement 
utiliser le modèle proposé pour expliquer les phénomènes observés dans nos résultats de simulation et nous 
allons essayer de deviner la valeur de L.  

Example: prenons L comme un simple paramètre. Nous montrons un exemple de prédiction de la bande 
passante en fonction de la hauteur à la Fig. 11 pour une cavité rectangulaire de taille 32 mm et pour plusieurs 
valeurs de L. Pour des cavités fines le modèle ne prédit évidemment pas le comportement correct car le mode 
TM010 n’est pas modélisé; pour les cavités épaisses le comportement peut être considéré comme présentant des 
similitudes avec les résultats de la simulation. 

Le modèle est capable de prédire l'inversion de dépendance de la bande passante avec permittivité. 
L'ampleur de ce phénomène, ainsi que la bande passante maximale, dépendent de la valeur de l'inductance L. 
Pour les faibles valeurs d'inductance, le phénomène disparaît et la largeur de bande maximale est beaucoup plus 
élevée. C'est la conclusion la plus importante tirée de ce modèle. 

 

 
Fig. 11 Le comportement de la bande passante prédite avec l’augmentation de l'inductance du circuit oscillant série (a) L = 1.7 nH (b) L = 3.5 
nH (c) L = 7 nH (d) L = 14 nH 

Modèle expliquant le phénomène de bosse de la bande passante  
Le modèle proposé à la Fig. 10 ne peut pas tenir compte des "bosses" dans les courbes de bande passante dans 
les cas de cavités fonctionnant en dessous de la fréquence de coupure. Pour remédier à cet inconvénient, nous 
avons besoin de modéliser aussi la partie alimentation de l'antenne. La sonde et la cavité circulaire forment un 
câble coaxial dont l’âme est excentré et supportant un mode TEM coaxial. Tel que présenté à la Fig. 12, une 
ligne de transmission supplémentaire de la même longueur que la hauteur de la cavité est ajoutée en parallèle à 
l'un des condensateurs dans le modèle. Les valeurs des deux condensateurs dans le modèle est maintenant 
différent, désigné par C1 et C2 (la valeur du condensateur C2 avec la ligne ajoutée étant beaucoup plus grande). 

L 
(a) (b) 

(d) (c) 

Lower maximum 
bandwidth in all cases 
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Fig. 12 Modèle incluant la partie alimentation de l’antenne ; le câble coaxial 50 Ohm venant au fond de la cavité et l’âme centrale se trouvant 
dans la cavité forment une seconde partie de a ligne coaxial. Le guide d’onde et la sonde ont la même longueur h. 
 

La Fig. 13 présente la bande passante calculée en utilisant le modèle de la Fig. 12. En comparant à la Fig. 
11(c) la différence constatée est la «bosse» dans le cas de la cavité remplie avec une permittivité de 3.66 (en 
dessous de la fréquence de coupure). 

 
Fig. 13 Prédictions analytiques qualitatives en utilisant le modèle en Fig. 12. La valeur de l'inductance L a été estimée à 7nH dans les trois 
cas de valeurs de permittivité. 

Limite de Qmin pour l'antennepatch en cavité cavité 
La limite de Gustafsson [26] sur le facteur 𝑄𝑄 minimum possible d'une antenne à polarisation linéaire est donnée 
comme suit : 

 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 = 2 𝜋𝜋 𝐷𝐷
𝜂𝜂𝑘𝑘0

3𝛾𝛾
 , (12) 

où 𝑘𝑘 est le nombre d'onde en espace libre et 𝐷𝐷 de la directivité de l'antenne. 𝜂𝜂 représente le rapport de la 
puissance absorbée à la somme des puissances absorbées et dispersées, appelé efficacité d'absorption. Pour des 
antennes bien adaptées à diffusion minimales, on peut prendre 𝜂𝜂 = 0.5, et nous allons assumer cette valeur tout 
au long de la thèse. Enfin, 𝛾𝛾 est la polarisabilité totale de l'antenne de réception considérée comme un objet de 
diffusion.  

Le principal avantage de la nouvelle limite est qu’elle est valable pour des géométries quelconques. Nous 
avons été en mesure de l'appliquer au problème de cavités dans un plan de masse infini. Dans cette thèse, la 
polarisabilité géométries de cavité carrés et circulaires sont dérivées analytiquement. Sur la base de la dérivation, 
de nouvelles limites de telles antennes ont été trouvés. Les résultats ont été résumés dans le  

Tableau 4 ci-dessous (avec l'hypothèse d'une très grande hauteur de la cavité pour simplifier la formule). 
 
 
 
 
 
 
 
 

Length=h 
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 Comparaison des 
facteurs Q Carré Circulaire 

Limite de Chu (general) 𝑄𝑄 = 1
(𝑘𝑘𝑘𝑘)3 + 1

(𝑘𝑘𝑘𝑘)
 𝑄𝑄 = 1

(𝑘𝑘𝑎𝑎)3 + 1
(𝑘𝑘𝑎𝑎)

 

Limite de Gustafsson  
(Plan de masse fini) 𝑄𝑄 = 20.78

(𝑘𝑘𝑘𝑘)3 + 1.78
(𝑘𝑘𝑘𝑘)

, ℎ ≫ 𝑄𝑄 = 10.88
(𝑘𝑘𝑎𝑎)3 + 1.53

(𝑘𝑘𝑎𝑎)
, ℎ ≫ 

 
Tableau 4 Résumé des résultats théoriques de la borne sur le 𝑄𝑄 minimum pour les antennes de la cavité. . 𝑘𝑘 = a/

√
2 où a est le rayon d'une 

ouverture circulaire, et  est le côté du carré. 
 
Sur la base de la limite de 𝑄𝑄, on peut obtenir une prédiction de la largeur de bande maximale possible en 
utilisant (8) Les résultats pour les cavités carrés et circulaires sont donnés à la Fig. 14.  

Une conclusion importante de ces prévisions est que les antennes patch ne parviennent pas à la bande 
passante prédite. Un nouveau type d'antenne est nécessaire pour atteindre la limite. 

 
Fig. 14 Comparaison des résultats de bande passante maximale prédit ene fonction de la hauteur, basé sur la limite de Gustafsson pour des 
cavités (a) carré et (b) circulaire.  

Modèle pour des antennes en cavité atteignant bande passante 

maximale 
Ici, nous présentons un modèle d'une antenne qui peut atteindre la bande passante maximale prévue. Par rapport 
à de simples cavités ouvertes, un condensateur supplémentaire est introduit au niveau de l'ouverture, comme 
illustré à la Fig. 15.  

 
Fig. 15 (a) Nouvelle antenne en cavité avec la capacité parasite à l'ouverture, et (b) son modèle de ligne de transmission.  
 
Nous supposons que le condensateur ne perturbe pas trop le champ ce qui exclut un élément localisé qui  
concentrerait le champ dans un très petit volume. Le condensateur doit être une surface idéale à impédance 
réactive. 

A partir de ce modèle, la condition de résonance est à présent donnée par 

 
   𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) − 𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇

𝑘𝑘 𝜂𝜂0
cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) + 𝑗𝑗𝑐𝑐0𝑘𝑘𝐶𝐶 = 0,    (13) 

où tout est écrit en termes de nombre d'onde 𝑘𝑘, avec 𝑐𝑐0  la vitesse de la lumière. La condition de résonance est 
maintenant une équation à trois variables, h, C, et 𝜀𝜀𝑘𝑘. Cependant, 𝜀𝜀𝑘𝑘 peut être une constante et fixé à la meilleure 
valeur. Ceci nous permet de considérer la capacité C comme une fonction de la hauteur h.  

(a) (b) 
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Example: les prévisions de bande passante basées sur le modèle de la Fig. 15 sont montrées à la Fig. 16 pour 

un plan de masse infini et une cavité rectangulaire 32mm. La Fig. 16 peut être directement comparés à la Fig. 11. 
On peut voir que  des résultats optimaux (maximaux) sont obtenus pour 𝜀𝜀𝑘𝑘 = 1. 

 
Fig. 16 Les résultats calculés pour une cavité carrée (a = 32 mm) à l'aide du modèle de ligne de transmission. Les points répresentent 
l'antenne cavité simple ouverte. La courbe grise pleine correspond à pour une cavité remplie d'air et se révèle le meilleur des cas.  
 
Fait important, le modèle de ligne de transmission peut être étendue à des cavités dans un plan de masse fini. La 
seule différence par rapport au cas du plan de masse infini se trouve dans l'admittance d'ouverture, qui peut être 
obtenue grâce à la simulation. Une comparaison des résultats pour le 𝑄𝑄 minimal obtenue en utilisant le modèle 
de ligne de transmission est donnée dans le Tableau 5. 
 

Comparaison des facteurs 
𝑄𝑄 Carré Circulaire 

Limite de Gustafsson  
(Plan de masse infini) 𝑄𝑄 = 20.78

(𝑘𝑘𝑘𝑘)3 + 1.78
(𝑘𝑘𝑘𝑘)

, ℎ ≫ 𝑄𝑄 = 10.88
(𝑘𝑘𝑎𝑎)3 + 1.53

(𝑘𝑘𝑎𝑎)
, ℎ ≫ 

Limite approximative 
Pour un plan de masse 

fini 
𝑄𝑄 ≈ 14.3

(𝑘𝑘𝑘𝑘)3 + 2.4
(𝑘𝑘𝑘𝑘)

, ℎ ≫ 𝑄𝑄 ≈ 8.25
(𝑘𝑘𝑎𝑎)3 + 2.5

(𝑘𝑘𝑎𝑎)
, ℎ ≫ 

Tableau 5 Résumé des résultats théoriques pour le facteur de qualité minimum sur la base du modèle de ligne de transmission de la Fig. 15. 
𝑘𝑘 = a/

√
2 où a est le rayon d'une ouverture circulaire, et  est le côté du carré. 

Nouvelles antennes atteignant la limite prévue 

Conception physique du condensateur à l'ouverture 
En disposant plusieurs petits patchs au lieu d'un seul grand conduit à une diminution de l'inductance et à la 
capacitance souhaitée "pure" à l'ouverture (sans partie réelle). L'évolution de ce processus est illustrée à la Fig. 
17 pour les ouvertures circulaires et rectangulaires. 

La conclusion de notre étude à partir de simulations est une estimation approximative que des éléments plus 
petits qu'environ 1 13⁄ 𝜆𝜆0  sont nécessaires pour approcher correctement le condensateur à l'ouverture, représentée 
à la Fig. 17. Par conséquent, les éléments satisfont aux critères des métamatériaux (taille de l'élément < 
1 10⁄ 𝜆𝜆0 ). La structure peut donc être appelée une metasurface. 

Q factor, 
FBW-10dB 
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Fig. 17 Conceptions possibles d'éléments micro-ruban à l'ouverture d'une cavité carrée. (a) un seul patch - utilisé jusqu'à présent dans la 
littérature, (b) deux éléments, (c) trois éléments, premier conceptà donner une assez bonne approximation d'une capacité pure à l'ouverture, 
(d) quatre éléments, (e)  cas idéal d'une capacité pure à l'ouverture.  

Conception d'une nouvelle antenne en cavité  
Sur la  Fig. 18 est représentée une conception d'antennes schématique répondant aux besoins pratiques. L'écart g 
entre les éléments est ajusté pour atteindre la valeur idéale de la capacité. L'écart entre la paroi de la cavité et le 
premier élément de la metasurface est g/2. La Présence de colle avec une épaisseur gt dans cet écart peut 
sensiblement affecter les performances. La colle modifie l'effet capacitif global de la metasurface en raison de sa 
valeur de permittivité différente et introduit des pertes supplémentaires (élevées). Il est donc souhaitable de 
rendre les intervalles entre les éléments de la metasurface et la paroi le plus large possible, afin de réduire 
relativement l'effet de la colle. Cela peut être fait en utilisant un substrat de permittivité élevée sur lequel est 
gravée la metasurface et en utilisant plusieurs couches de métallisation pour augmenter la capacité. 

 
Fig. 18 Exemple schématique d'une conception pratique à des fins de fabrication. La seule couche de substrat à l'ouverture présente une 
permittivité 𝜀𝜀𝑘𝑘 ≫ 1, dans notre travail, 𝜀𝜀𝑘𝑘 = 10.2 a été choisi. (a) Vue de côté d'une conception simple couche. (b) Vue de côté d'une 
conception multicouche nécessaire pour de très petites tailles de la cavité. (c) Vue du dessus. 
 

Une Metasurface avec plusieurs couches de métallisation, illustré à la Fig. 18(b), constituera effectivement 
un condensateur "épais" et augmentera la capacité. Cependant, la conception de plusieurs couches doit être 
évitée si possible. Seul dans le case de très petites cavités, où un grand effet capacitif est nécessaire, nous 
sommes obligés de considérer cette option. 

L'excitation est réalisée avec un câble coaxial s'étendant presque jusqu'à l'ouverture et avec l’âme central 
s'étendant jusqu’au bord de l'élément supérieur de la metasurface. Une courte ligne de transmission est ajoutée 
au niveau de la gaine extérieure du câble coaxial, qui est capacitivement couplée au bord du second élément de 
la metasurface. En outre, il a été constaté que le rétrécissement en triangle (tapering) de cette ligne de 
transmission peut donner des résultats légèrement meilleurs. La largeur w des éléments métalliques affecte 
également les performances de la bande passante. Des éléments plus larges forcent le champ électrique à 
l'ouverture à être plus uniforme plutôt qu'une distribution sinusoïdale, ce qui conduit à des performances 
légèrement supérieures. Cependant, avec des éléments de metasurface plus larges, l'écart entre les éléments doit 
être réduit. Finalement, une largeur de la moitié de la taille de la cavité a été jugée adaptée.  

(a) 

(c) 

(b) 

(a) (b) (c) (d) (e) 
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Des exemples de résultats de simulation avec la nouvelle conception proposée de l'antenne sont présentés à la 
Fig. 19 pour une cavité de 32 x 32 mm. Pour le cas du plan de masse infini à la  Fig. 19(a), la limite a été atteinte 
avec une conception à trois éléments. Dans le cas du plan de masse fini à la Fig. 19(b), la prédiction est 
approximative car elle ne prend pas en compte le changement de plan de masse lorsque la hauteur augmente. En 
raison de ce problème, il y a un léger décalage entre théorie et simulations.  

 
Fig. 19 Comparaison des résultats de la simulation d'une conception de metasurface avec les prédictions d'analyse du modèle de ligne de 
transmission et avec la limite de Gustafsson. (a)  plan de masse infini et (B) plan de masse fini 
 

Avantages de la nouvelle conception 
Tout d'abord, la nouvelle conception de metasurface permet de créer des antennes en cavité atteignant la bande 
passante maximale prédite. Cette bande passante est plus élevée que précédemment avec des antennes patch. En 
outre, par rapport aux antennes patch, la directivité et le gain de ces antennes ne sont pas affectées. 
Deuxièmement, la nouvelle conception permet de créer de très petites antennes en  cavité. Par exemple, dans le 
passé à l’ISL, les antennes patch ne pouvaient pas être fabriquées dans des cavités circulaires de diamètre 
inférieur à 22 mm (avec une permittivité maximale de 10). Cependant, de petites antennes basé sur les 
metasurfaces en cavité ont été fabriquées avec succès et qualifiées pour être opérationnelles (voir les résultats 
des mesures ci-dessous). Ces deux aspects sont une grande amélioration par rapport aux modèles précédents. En 
ce qui concerne les projectiles, cela ouvre des possibilités pour l’instrumentation de petits projectiles et 
l’instrumentation de projectiles avec des antennes dont la bande passante offerte est plus large ce qui permet de 
transmettre plus d’informations et ce qui permet également une plus grande tolérance dans le processus de 
fabrication. En outre, il est intéressant de noter que les matériaux utilisés présentent de faible permittivité. Ces 
matériaux sont généralement beaucoup moins chers. Le matériau idéal en termes de permittivité est l'air; il ne 
présente que très peu de pertes et est gratuit. Toutefois, à des fins mécaniques le volume doit être rempli avec un 
matériau dur qui peut résister à des forces élevées (accélérations très importantes lors d’un coup de canon). Un 
matériau qui convient à ces exigences mécaniques est le polypropylène avec une permittivité 𝜀𝜀𝑘𝑘 = 2.26 et une 
tangente de pertes 𝛿𝛿 = 0.002. Dans l'antenne proprement dite, la métallisation est gravée sur une couche de 
matériau Rogers coûteux, mais l'épaisseur de cette couche est faible et le reste du volume est rempli avec du 
polypropylène moins coûteux. Le coût total des antennes devrait donc être inférieur à celui d’antennes patchs en 
cavités. En conclusion, sur la base de tous ces exemples, on peut dire que de nouvelles possibilités ont été 
apportées par l'introduction du concept à base de metasurface. 
 

Antennes fabriquées et résultats de mesure 
Des prototypes d’antennes en cavité avec un patch ou une metasurface ayant des ouvertures de 32 mm 
(0.245 𝜆𝜆0), 20 mm (0.15 𝜆𝜆0) et 16 mm (0.12 𝜆𝜆0) ont été fabriqués à l’Institut franco-allemand de Recherches 
de Saint-Louis (ISL) pour confirmer la faisabilité de ces antennes; la conception, ainsi que les résultats de 
mesure sont présentés à la Fig. 20 et sont résumés dans le Tableau 6. 

 
Infinite 

ground plane 
Finite 

ground plane 

(a) (b) 
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Résultats expérimentaux pour les cavités circulaires dans un plan de masse fini 

Dimensions 
d’ouverture Patch  Metasurface  Commentaires 

32 mm 60 MHz 90 MHz Elargissement  50% 

20 mm non réalisable 21 MHz 
Nouvelle faisabilité 

16 mm non réalisable 22 MHz 

 
Tableau 6 Résumé des largeurs de bande mesurées pour des cavités circulaires. 
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Sim. BW = 64 MHz 
Sim. Direcivity = 4.71dBi  
Sim. Relised gain = 4.5dBi  
 

Mes. BW = 52 MHz 
Mes. gain ≈ 3.9 dBi  
 

εr = 6.15  
 

Sim. BW = 64 MHz 
Sim. Direcivity = 4.71dBi  
Sim. Relised gain = 4.5dBi  
  

 

(a) 

(b) 

Mes. BW = 60 MHz 
Mes. gain ≈ 4.2 dBi  
 

εr = 10.2  
 

Sim. BW = 77 MHz 
Sim. Direcivity = 4.71dBi  
Sim. Relised gain = 4.5dBi  
 

Mes. BW = 90 MHz 
Mes. gain ≈ 3.9dBi  
 (c) 

Ouverture de 32 mm  
 

Sim. BW ≈ 20 MHz  
Sim. Directivity = 3.69 dBi 
Sim. Realized gain = 0.8 dBi  
 

Mes. BW ≈ 21 MHz  
Mes. gain = -1 dBi  
 (d) 

Ouverture de 20 mm 
 

(e) 

Mes. BW ≈ 22MHz  
Mes. gain = -5.5 dBi  
 

Ouverture de 16 mm 
 

Ouverture de 32 mm  
 

Ouverture de 32 mm  
 

Sim. BW ≈ 19.8 MHz  
Sim. Directivity = 3.28 dBi 
Sim. Realized gain = -3 dBi  
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Fig. 20 Prototypes mesurés: (a) Cavité de diameter 32 mm rempli avec εr = 6.15 et un patch l’ouverture. (b) Cavité de diameter 32 mm 
rempli avec εr = 10.2 et un patch l’ouverture. (c) Cavité de diameter 32 mm rempli avec εr = 1 (excepté le substrat supérieur sur lequel est 
gravé la métasurface) et une métasurface à 3 éléments à l'ouverture. (c) Cavité de diameter 20 mm rempli avec εr = 1 (excepté pour les 
substrats avec métallisation et une métasurface à 2 éléments à l'ouverture.  (c) Cavité de diameter 16 mm rempli avec εr = 1 (excepté pour les 
substrats avec métallisation et une métasurface à 2 éléments à l'ouverture. 

Sujets additionnels 

Potentiel des matériaux magnétiques pour des antennes en 

cavité 
Les matériaux magnétiques et conducteurs peuvent améliorer de manière significative la limite de la bande 

passante. De l'avis de l'auteur, cette analyse n'est qu'une lecture intéressante pour l'instant, mais pourrait devenir 
important à l'avenir avec les progrès de la nano-technologie. 

Nous supposons un matériau ou un conducteur magnétique idéal, ce qui signifie pas de dépendance à la 
fréquence et des valeurs arbitraires, pour obtenir le "cas du meilleur résultat."  

Les conducteurs magnétiques parfaits (PMC) ne se trouvent pas dans la nature. Cependant, lorsqu’on les 
suppose placés sur les parois de la cavité comme à la Fig. 21, la propagation à l'intérieur du guide d'ondes n'est 
pas évanescente et la distribution du champ à l'ouverture change. La limite résultante est beaucoup plus faible 
que le cas de la cavité carré régulière. 

 
Fig. 21 (a) Cavité métallique carré régulière avec une distribution de champ TE10 à (b) Cavité carré avec des conducteurs magnétiques 
parfaits sur deux parois, rendant la distribution du champ à l’ouverture et à l’intérieur du guide d’onde uniforme. 

 
Si le volume de la cavité est remplie d'un matériau magnétique à haute perméabilité idéale ( voir Fig. 22) la 

limite sur le Q minimum est également plus faible. Comme l'énergie électromagnétique à l'intérieur du guide 
d'ondes (cavité) est évanescente dans le cas standard (sans PMC), l'effet de la cavité diminue pour de grandes 
épaisseurs  L'introduction d'un matériau magnétique rend la constante de décroissance plus grande et l’énergie 
décroît rapidement avec l'augmentation de h. En outre, l'admittance inductive dans le guide d'onde devient petite 
et finalement se rapproche de l'admittance d'un circuit ouvert (zéro). Dans ce cas, l'antenne est essentiellement 
modélisée par un circuit résonnant parallèle pour lequel (voir Annexe A) on a 𝑄𝑄 = 1 (𝜔𝜔0𝐺𝐺𝑗𝑗)⁄ , ainsi une plus 
grande inductance diminue 𝑄𝑄. Ceci est visuellement représenté à la Fig. 23. 
 

 
Fig. 22 Cavité métallique carrée avec une distribution de champ de TE10 à l'ouverture remplie d'un matériau magnéto-diélectrique. 
 

(a) (b) 
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Fig. 23 Croquis du modèle d'une cavité antenne montrant l'énergie en décroissance à l'intérieur de la cavité pour (a) un matériau diélectrique 
à faible permittivité; (b) pour un matériau magnétique à haute perméabilité; (c) pour un matériau avec une perméabilité infinie lorsque le 
modèle peut être réduite à un simple circuit résonnant parallèle. 
 
Les limites théoriques pour des cavités remplies de matériaux magnétiques ou conducteurs magnétiques sont 
résumées dans le Tableau 7. 
 
Comparaison des facteurs 

Q Carré Circulaire Comment 

- un matériau magnétique  
(plan de masse infini) 𝑄𝑄 = 7.87

(𝑘𝑘𝑘𝑘)3 + 0.67
(𝑘𝑘𝑘𝑘)

, 𝜇𝜇𝑘𝑘 ≫ 𝑄𝑄 = 4.28
(𝑘𝑘𝑎𝑎)3 + 0.6

(𝑘𝑘𝑎𝑎)
, 𝜇𝜇𝑘𝑘 ≫ 

Peut-être réalisables dans 
les basses fréquences ou 

dans l'avenir avec les 
progrès de la nano-

technologie 

- avec conducteur 
magnétique (plan de 

masse infini) 
𝑄𝑄 = 2.97

(𝑘𝑘𝑘𝑘)3 + 0.29
(𝑘𝑘𝑘𝑘)

 , ℎ ≫ Pas clair 

Probablement pas 
possible car il n’existe 

pas de conducteurs 
magnétiques naturels 

Tableau 7 Résumé des résultats théoriques sur la borne du facteur 𝑄𝑄 minimum pour des cavitésremplies avec des matériaux magnétiques ou 
des conducteurs magnétiques. 𝑘𝑘 = a/

√
2 où a est le rayon d'une ouverture circulaire, et  est le côté du carré 

Applications pour des tailles de cavités proches de la demie-

longueur d’onde 
Nous donnons ici deux brefs exemples des possibilités avec un metasurface dans une cavité dont la taille est très 
proches de  0.5 𝜆𝜆0  à 2.3 GHz. Nous démontrons qu’ils peuvent être utilisés pour créer des antennes à large 
bande et même dépasser la bande passante de patchs empilés, ce qui en fait une conception supérieure, même 
pour de grandes cavités. La raison de cela? Il existe une deuxième résonance à une fréquence plus élevée due 
uniquement à la taille de la cavité étant comparable à  0.5 𝜆𝜆0 . La seconde résonance est une conséquence du 
comportement de l’admittance d'ouverture pour une taille d'ouverture au-dessus de  𝑎𝑎 𝜆𝜆0⁄ >  0.5, où la partie 
réelle est grande et la partie imaginaire est proche de zéro. Un exemple de comparaison entre les patchs empilés 
et la structure à base de métasurface est représenté à la Fig. 24. La métasurface présente une bande passante plus 
large et est plus simple à réaliser. Elle n’utilise qu’une seule couche de substrat tandis que les patchs empilés en 
requierent deux. En outre, des matériaux de permittivité faible sont nécessaires, ce qui rend la conception de 
metasurface moins cher dans la pratique. 

εr ≤ 1 εr ≤ 1 
μr >>1 

Yaperture εr ≤ 1 
μr = ∞ 

(a) (b) (c) 
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Fig. 24 La comparaison entre les patchs empilés et une métasurface dans une cavité rectangulaire de dimensions 62 x 62 x 20 mm soit 
0.475 × 0.475 × 0.15 𝜆𝜆0  à 2.3 GHz incorporés dans un plan de masse infini. (a) Vue en perspective des patchs empilés. (b) paramètre 
simulé S11 pour les patchs empilés. (c) Vue en perspective d'un élément metasurface de 4 éléments de largeur 24 mm. (d) paramètre simulé 
S11 pour la metasurface.  
 

Applications pour la construction d’un réseau d’antennes 

compact 
La détection de l'arrivée (DOA) est une méthode de détermination de la direction de propagation d'une onde 
incidente de haute fréquence sur un réseau d’antennes. Dans la perspective de créer un système compact de DOA 
(taille  𝑑𝑑 = 0.15 𝜆𝜆0  )de système d'arrivée, nous avons étudié un réseau de quatre éléments (le reste de ce projet 
est actuellement en cours à l’ISL). Nous donnons ici un bref exemple d'une conception possible de réseau 
compact. La configuration d'antenne est donnée à la Fig. 25. Le diamètre du plan de masse n'est que de  0.46 𝜆𝜆0  
et les quatre antennes ont une cavité de diamètre  0.15 𝜆𝜆0 . Chaque élément est mis en rotation de 90 degrés par 
rapport à son voisin. Parce que les éléments eux-mêmes sont polarisés linéairement cette rotation met les 
éléments dans des positions orthogonales et minimise le couplage mutuel entre antennes. Cependant, les 
éléments 1 et 3 (ainsi que de 2 et 4) de la Fig. 25(a) sont malheureusement orientées dans le même sens, ce qui 
entraîne un couplage relativement élevé (10 dB), comme on le voit à la Fig. 25(b). La bande passante de chaque 
élément reste pratiquement la même que pour l'antenne unitaire en cavité (dans le cas présent environ 14,4 
MHz). De plus, cette conception est capable de donner une polarisation circulaire moyennant un circuit de 
distribution adapté. 
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Fig. 25 (a) Géométrie du réseau d'antenne compacte pour l'application DOA. (b) les paramètres de diffusion simulées montrant la bande 
passante approximative de chaque antenne est environ 14 MHz et le couplage entre les antennes en diagonale de -10 dB. 

Conclusion 
Le but de ce travail était d'étudier des antennes en cavité compactes et électriquement petitesLa question 
principale était : est-il possible d'utiliser des concepts de métamatériaux pour développer des antennes plus 
petites en cavité et en même temps augmenter leurs performances en bande passante par rapport aux types 
d'antenne en cavité utilisés aujourd’hui. Heureusement, la réponse à ces questions est affirmative. Cette thèse a 
étudié les antennes en cavité de trois façons: en théorie, par une analyse rigoureuse des limites de ces antennes; 
numériquement, par la réalisation de nombreuses simulations pour confirmer la théorie ou découvrir de 
nouveaux effets; et expérimentalement, par la fabrication de prototypes basés sur la théorie et les simulations 
numériques. De cette façon, le sujet des antennes en cavité a été complètement exploré et a été développée avec 
l'introduction d'un nouveau type d'antenne en cavité. Le nouveau type d'antenne peut être qualifié «inspiré des 
métamatériaux » en raison de l’utilisation d'une metasurface à l'ouverture de la cavité. Il est important à deux 
égards: il est capable d'atteindre la limite théorique de 𝑄𝑄 pour les petites antennes, et il peut être rendu très faible 
dans la pratique; ces deux aspects sont une grande amélioration par rapport aux types d'antennes utilisés dans la 
littérature à ce jour.  
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Abstract 
 

This thesis presents new developments in cavity type antennas. Cavities of rectangular and circular shapes in 
an infinite and finite ground plane are investigated in detail. The main objective of the thesis is the bandwidth 
performance analysis of antennas in cavities with aperture sizes which are small compared to the free space 
wavelength. So far in the literature, microstrip patch antennas were the antenna of choice for cavity type 
antennas; their aperture sizes being about half the free space wavelength. Here we give a thorough investigation 
of the performance of patch antennas in very small cavities, showing dependence on aperture size, cavity depth 
and substrate permittivity. However, the intention of the thesis is to determine if cavity type antennas can be 
improved and how, or do patch antennas still present the best choice in terms of bandwidth performance and ease 
of fabrication. To this end, the bound on bandwidth for cavity antennas is investigated theoretically. The bound 
on 𝑄𝑄 factor and corresponding maximum bandwidth for rectangular and circular cavities is derived analytically 
in the case of an infinite ground plane using the scattering approach. It is demonstrated that patch antennas, in 
fact, do not reach the bound for cavity antennas, which is one of the key results of the thesis. Unfortunately, the 
scattering approach is not extendable to finite sized cavities. Infinite and finite sized ground plane cavity 
antennas are further analyzed using several simple transmission line models. The second key result of the thesis 
is a demonstration that a special transmission line model corresponds to antennas that reach the bound 𝑄𝑄 and 
predicted maximum bandwidth. This special transmission line model is then the basis to a new design of cavity 
antennas. Importantly, the transmission line model is indeed extendable to finite sized ground planes. A new 
micro-strip antenna design is suggested, that falls into a category of metasurface antennas. Finally, the practical 
physical design, including the excitation, of a new type of small cavity antennas capable of reaching the 
predicted maximum bandwidth is presented. Additionally, we show measurement results from several prototypes 
of such antennas which can be considered as a meta-surface inspired antenna. 

Furthermore, we explore several additional topics; A comparison with stacked patches design in terms of 
bandwidth, ease of fabrication, and cost; The extension of the bound on bandwidth with the inclusion of ideal 
magnetic materials and magnetic conductors; The new antenna design use in constructing a compact antenna 
array with superior bandwidth compared to classical design; The benefits of the new design for constructing 
small cavity antennas not feasible with the classical design.  

In this thesis we specifically study cavities with apertures smaller than 0.5 𝜆𝜆0  and the conditions to achieve 
the maximum possible bandwidth. Rectangular (square) and circular aperture sizes with sides of 
0.15 𝜆𝜆0, 0.245 𝜆𝜆0, 0.3 𝜆𝜆0 , and 0.37 𝜆𝜆0  are chosen for our investigation and are referred to as “example aperture 
sizes” in the text. For purposes of design, simulations and bandwidth comparison of all antennas, an operation 
frequency of 2.3 GHz is chosen as the desired resonance for antennas in cavities of example aperture sizes. 
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General introduction 

HISTORY 
This three year PhD thesis on small size cavity antennas was conducted at IETR (Institute d’Electronique et de 
telecommunications de Rennes) for a period of two years. These two years were concentrated on mainly 
theoretical and numerical investigations of cavity antennas under the supervision of Professors Ronan 
SAULEAU, Kourosh MAHDJOUBI and Sylvain COLLARDEY from IETR. The last, third year was conducted 
at ISL (Institut franco-allemand de recherches de Saint-Louis) under the supervision of Loïc BERNARD where 
the emphasis was on building working prototypes of antennas and publishing the results. The project was co-
financed by the Région Bretagne ARED program, and ISL. 

CONTEXT AND OBJECTIVES OF THE STUDY 
Interest in this Ph.D. work can be described trough Figure 1 where several example projectiles manufactured at 
ISL are shown. On the bottom of the projectile is an integrated antenna for transmission of telemetry data. 
Frequency band for this transmission is fixed at 2.3 GHz (free space wavelength 𝜆𝜆0 = 130.4 mm). So far, 
manufactured antennas used microstrip technology and followed classical design guidelines for microstrip patch 
antennas i.e. a metallic surface or “patch” placed on a dielectric substrate and excited by a wire (probe) form a 
coaxial cable which is soldered to the patch at the right position as to make the antenna operational at 2.3 GHz.  

 
Figure 1 Example structures from ISL that use antennas placed in a cavity. (a) A projectile with a visible circularly polarized patch antenna; 
studied in [1]. (b) and (c) are projectiles with hidden antennas at the bottom; used in past experiments at ISL. 
 

Examples of patch antenna design in cavities are also shown in Figure 2. Cylindrical geometry is of more 
interest for applications and a rectangular geometry is of more interest for theoretical investigations, because the 
analysis is usually simpler.  

 
Figure 2 Typical examples of patch antennas in a cavity of (a) circular and  (b) rectangular geometry investigated in this work.  
 

In general, applications may concern integrating an antenna onto a specific platform of small size, like a 
projectile; this in turn may require antenna miniaturization and placement in a small metallic cavity for 
mechanical, thermal or other reasons, while the antenna should retain good bandwidth characteristics. Larger 
bandwidth is desirable for any cavity dimension because of two reasons: First, today the communication systems 
need more and more bandwidth. Second, the manufacturing process. Manufacturing is never as perfect as 
numerical simulations. In practice, the dimensions of the antenna can never be as exact as in a simulation and as 
a result the resonance frequency can shift. Having larger bandwidth gives a higher tolerance to the 
manufacturing process.  

If the frequency of operation is always fixed, but the application requires small cavity antennas of various 
sizes, then we are brought to the main problematic and concern of this Ph.D. The main consequence of antenna 
integration inside a typical cavity is the reduction of available bandwidth. Furthermore, reducing the size 

(a) (b) 

Patch 

Wire or “probe” 
from a coaxial  

cable 

 Placement of the antenna  
 

(a) (c) (b) 
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(volume) of the cavity compared to the free space wavelength dramatically reduces the bandwidth. This 
problematic is depicted in Figure 3. 

In essence, when an antenna is made much smaller than its operating wavelength, its bandwidth is bounded 
by physical laws and it becomes very narrow. Thus the investigation of the bound on bandwidth for cavity 
antennas is of primary importance and a major contribution of this thesis. 

 

 
Figure 3 Demonstration of the main problematic in this thesis. Reduction of bandwidth with cavity enclosure, especially with small cavity 
size. (a) Example for a circular geometry, and (b) rectangular geometry.   
 

Metamaterials are a promising research topic in various domains, and in particular in electromagnetism for 
circuit applications (filters, phase-shifters, etc.) or for radiating applications (antennas, diffraction, cloaking). 
They are engineered materials, constituted of small elements (in regards to the wavelength) and offering in 
specific frequency bands, particular properties, which are different from the ones of natural materials. Among 
the various potential benefits of metamaterials reported in literature are: the antenna miniaturization, bandwidth 
enhancement and reduction of the mutual coupling in an antenna array. Metamaterials seem to be a potential 
solution to the bandwidth enhancement of small antennas. Nevertheless, the designed structures up to now have 
been relatively large and considered in an open environment; no metallic walls are placed on the antenna lateral 
sides, as in the case of a cavity. Here, the benefits for bandwidth of metamaterial concepts are investigated in a 
cavity environment. 

In the presentation of the results of this thesis, we have decided upon several parameters for easier 
comparing of all the different bandwidth behaviors for the antennas investigated. The most important parameter, 
for purposes of design, simulations and bandwidth comparison of all antennas, is the operation frequency of 2.3 
GHz as the desired resonance, making the free space wavelength 𝜆𝜆0 = 130.4 mm and the corresponding wave-
number 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆0 = 48.2. For rectangular cavities we chose to concentrate on the square aperture case where 
the cavity aperture size a for our investigation is taken to be 20 mm, 32 mm, 40 mm and 48 mm. In the case of 
circular cavity case, the diameter of the aperture d is chosen to be 20 mm, 32 mm, 40 mm and 50 mm.  It is also 
common to express the electrical size of the antenna in terms of (𝑘𝑘𝑘𝑘) where r is the radius of the smallest 
circumscribing sphere. These sizes are summarized in Table 1 and will be referred to as “example aperture 
sizes” in the further text.  
 

Example aperture sizes:  Square cavity 
Size a  a [λ0] Radius r  (𝑘𝑘𝑘𝑘) 
20 mm 0.153 14.142 mm 0.679 
32 mm 0.245 22.627 mm 1.086 
40 mm 0.307 28.284 mm 1.358 
48 mm 0.368 33.941 mm 1.629 

 
Example aperture sizes:  Circular cavity 

Diameter d  d [λ0] Radius r = a  (𝑘𝑘𝑎𝑎) 
20 mm 0.153 10 mm 0.480 
32 mm 0.245 16 mm 0.768 
40 mm 0.307 20 mm 0.960 
50 mm 0.383 25 mm 1.200 

 
Table 1 Comparison of square and circular apertures. 
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At ISL, the available dielectric materials antenna manufacturing antennas are Rogers materials of relative 
permittivity 3.66, 6.15, and 10.2, i.e. Rogers 4350, Rogers 3006, and Rogers 3010 respectively. The durability 
and mechanical properties of these materials, when placed inside the cavity, were already well tested in the past. 
It was thus decided to use these permittivity values in our analysis and simulations. A summary of material 
properties is given in Table 2. 

 
Material Permittvity tan δ 
Air 1 0 
Polypropylene 2.26   0.002   [2] 
Rogers 4350 3.66   0.0037 [3] 
Rogers 3006 6.15   0.002   [3] 
Rogers 3010 10.2   0.0023 [3] 

 
Table 2 Summary of electrical properties for materials used in this thesis. Values are obtained from references [2]-[3]. 

 
It will be useful in the following chapters to consider the cavity volume as a portion of a waveguide. An 

important parameter of any waveguide is its cut-off frequency 𝑓𝑓𝑐𝑐  for the lowest, fundamental mode. 𝑓𝑓𝑐𝑐  depends 
on the relative permittivity filling the volume and the geometry of the cross section (square and circular in our 
case). In regard to the Rogers substrates mentioned above, and the example cavity aperture sizes, we give the 
cut-off frequencies 𝑓𝑓𝑐𝑐  in Table 3. As operating frequency for studies in this thesis was chosen to be 2.3 GHz, the 
light red color in Table 3 indicates if the cavity-waveguide is below cut-off, 𝑓𝑓𝑐𝑐 < 2.3, and light green if it is 
above cut-off, 𝑓𝑓𝑐𝑐 > 2.3. This feature of antenna’s cavity part will prove to be of significant importance 
throughout the thesis.   
 

 

 
Table 3 Comparison of cut-off frequencies for square and circular waveguides filled with permittivity 1, 3.66, 6.15, and 10.2. Green color 
indicates the waveguide is above cut-off at 2.3 GHz, and red color that it is below cut-off. 
 

Numerical simulations in this thesis consisted in investigating the state of the art in compact low profile 
antennas and in characterizing metamaterial types adapted to reduced-size structures and bandwidth 
enhancement in a cavity environment. In all cases, simulations were performed using commercial software for 
numerical electromagnetism, CST Microwave studio. For resonant antenna simulations the Frequency Domain 
solver was used, and for scattering simulations the Time Domain solver was used.  

One of the first conclusion using simulations of classical antenna design concerned the use of multiple 
resonances for bandwidth enhancement. Traditionally, the use of multiple resonances; for example, stacked 
patches, multiple parasitic patches and various other (complicated) geometries are used to introduce two or more 
close by resonances which can effectively broaden the bandwidth. However, we found that when such structures 
are placed in a small cavity volume, the coupling between resonators becomes too tight and the desired effect 
becomes impossible. The conclusion is that in a very small cavity the best we can do is to study a single 
resonance antenna and conditions to achieve maximum possible bandwidth (equivalently: minimum possible Q 
factor). 

 
 
 

Cut-off frequencies fc for a square waveguide TE01 mode [GHz] 
Size a Permittivity εr:      1 3.66 6.15 10.2 
20 mm 7.49 3.92 3.02 2.35 
32 mm 4.68 2.45 1.89 1.47 
40 mm 3.75 1.96 1.51 1.17 
48 mm 3.12 1.63 1.26 0.98 

Cut-off frequencies  fc  for a circular waveguide TE11 mode [GHz] 
Diameter d Permittivity εr:      1 3.66 6.15 10.2 

20 mm 8.79 4.59 3.54 2.75 
32 mm 5.49 2.87 2.21 1.72 
40 mm 4.39 2.3 1.77 1.38 
50 mm 3.51 1.84 1.42 1.10 
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GENERAL OBJECTIVES: 
Based on the problematic of small cavity antennas, the main objective of this Ph.D. is to answer the 

following questions: 
• What is the maximum possible theoretical bandwidth of any antenna in a cavity? 
• Can metamaterial inspired designs bring benefits for bandwidth and size reduction compared to 

classical patch antenna design? 
• Is it possible to design and manufacture antennas in very small cavities with sufficient bandwidth for 

applications? 
• Are there benefits for a compact array design? 

SPECIFIC, PRACTICAL OBJECTIVES:  
From a practical perspective the objectives are to design, simulate and analyze compact patch antennas in 

small cavities with following restrictions: 
• Circular cavity diameter: 20 mm (0.15 𝜆𝜆0) 32 mm (0.245 𝜆𝜆0), 40 mm (0.3 𝜆𝜆0), and 50 mm (0.38 𝜆𝜆0).  
• Thickness of antenna: up to 20 mm (0.15 𝜆𝜆0). 
• Operating frequency at 2.3 GHz  
• Dielectric materials to be used: Polypropylene (𝜀𝜀𝑘𝑘 = 2.26), Rogers 4350 (𝜀𝜀𝑘𝑘 = 3.66), Rogers 3006 

(𝜀𝜀𝑘𝑘 = 6.15), and Rogers 3010 (𝜀𝜀𝑘𝑘 = 10.2). 
• Patch like (broadside) radiation pattern 
• Fabrication and measurement of antennas  

OUTLINE OF THE THESIS 
Chapter 1 introduces the reader to the theoretical background necessary for following the thesis, and state of 

the art examples in miscrostrip antenna technology that is of particular interest for this thesis. Topics presented 
in Chapter 1 are merged together in later chapters. Section 1.1 of this chapter consists of a brief introduction to 
the classical approach to analyzing small antennas using spherical mode expansion (Chu bound) and a 
contemporary approach using scattering theory (Gustafsson bound). Section 1.2 is an introduction to the basics 
of microstrip patch antennas without the cavity environment and state of the art in miniaturization, bandwidth 
enhancement techniques from the literature. Section 1.3 is an introduction to the basics of cavity antennas and 
research made on microstrip patch antennas in the cavity environment in the literature. Section 1.4 consists of the 
introduction to metamaterials which includes general definitions, and a survey of different types of 
metamaterials that might be useful in engineering problems with microstrip antennas for miniaturization and 
bandwidth enhancement. 

Chapter 2 merges the subject of microstrip antennas and the subject of cavity antennas in a systematic 
investigation patch antennas in small cavities, i.e. cavities with apertures smaller than half the free space 
wavelength at the operating frequency. Section 2.1 summarizes the possibility of applying the miniaturization 
and bandwidth enhancement techniques in a cavity environment and motivates the investigation of only the 
classical single patch design. Studies have been made on rectangular and circular shaped cavities in an infinite 
and a finite ground plane for several example aperture sizes and substrate materials. Section 2.2 shows and 
discusses simulation results for single patch antennas in rectangular cavities. Section 2.3 shows simulation 
results for single patch antennas in circular cavities. In Section 2.4, several transmission line models are also 
presented to describe and explain the phenomena seen in simulation results. Section 2.5 presents measurements 
of several prototypes manufactured at ISL. 

Chapter 3 unveils a new derivation of the bound on minimum 𝑄𝑄 for the case of cavity antennas of 
rectangular and circular shapes. Section 3.1 discuses the inadequacy of the Chu bound for cavity antenna and 
motivates the need for considering the Gustafsson bound. Section 3.2 describes how the more general, scattering 
approach can be applied to cavities in infinite ground planes and gives an exact formulation of the problem. 
Section 3.3 uses the presented formulation to derive precise bounds for rectangular and circular cavity shapes 
respectively. Section 3.4 discusses the validity of the newfound bound in the presence of antennas or objects 
inside the cavity. Finally, Section 3.5 gives an alternative way of arriving at the same bound giving, perhaps, 
more insight into the whole matter. 

Chapter 4 is the central chapter of the thesis, discussing the realization of a new cavity antenna type capable 
of reaching predicted maximum bandwidth. The chapter effectively merges the subjects of cavities, microstrip 
technology and metamaterial concepts. Section 4.1 introduces a new transmission line model for cavity antennas 
and demonstrates the equivalence between the model and Gustafsson’s bound. Section 4.2 uses the conclusion 
from the transmission line model to arrive at a new physical design of a cavity antenna that can reach the 
bandwidth predicted by the transmission line model. Section 4.3 discusses simulation results of the new antenna 
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design for square and circular shapes and shows measurement results. Section 4.4 expands the new design 
concept to include the possibility of circular polarization. 

Chapter 5 expands the topics presented in previous chapters by discussing new applications and further 
potential of the presented theory in the future. Section 5.1 presents the novel possibility of manufacturing 
electrically small cavity antennas still coming close to the bound on bandwidth. The emphasis is on antennas 
smaller that previously possible with classical patch antenna design. Section 5.2 briefly explores the other end of 
the problem; cavity antennas that are not electrically small and the question: how does the new, metasurface 
design compare to classical designs with increased bandwidth. Section 5.3 is purely theoretical, exploring the 
potential of magnetic conductors and magnetic materials for improving the bound on 𝑄𝑄. Section 5.4 briefly 
shows the application of small cavity antennas in creating a compact antenna array. 
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Chapter 1.   

Theoretical background and state of the art 
 
The intention of this chapter is to introduce the reader to the theoretical background necessary for following 

the thesis, and show state of the art examples in small miscrostrip antennas. 
Section 1.1 of this chapter consists of a brief introduction to the classical approach to analyzing  small 

antennas using spherical mode expansion (Chu bound) and a contemporary approach  using scattering theory 
(Gustafsson bound).  

Section 1.2 is an introduction to the basics of microstrip patch antennas without the cavity environment and 
state of the art in miniaturization, bandwidth enhancement and from the literature. In some examples the author 
included his own simulation results for purposes of better comparison with other results in the later chapters.  

Section 1.3 is an introduction to the basics of cavity antennas; most importantly to the theory of small cavity 
antennas developed by 1950s. Since this theory is of great importance as the basis for thesis, the theory is 
immediately expanded with some new results obtained by the author. Furthermore, a literature review of 
research made on microstrip patch antennas in a cavity is presented. 

Section 1.4 consists of the introduction to metamaterials which includes general definitions, and a survey of 
different types of metamaterials that might be useful in engineering problems with microstrip antennas for 
miniaturization and bandwidth enhancement. 

1.1. Introduction to bounds on small antennas.  
In this Section we first present the theoretical background and developments to obtain gain, 𝑄𝑄 factor and 

bandwidth limitations with respect to the size of the antenna. For the definition of the 𝑄𝑄 factor and the discussion 
on the link between the 𝑄𝑄 factor and the bandwidth, which is no trivial matter, the reader is referred to Appendix 
A. The classical approaches to obtain the physical limits of antennas, based on spherical wave expansions, will 
be summarized, their results compared, and contrasted to a newer method, based on the scattering approach. For 
definitions of scattering parameters and important theorems used in the scattering approach, the reader is referred 
to Appendix B.    

1.1.1. What are small antennas 
Miniaturization in the semiconductor technologies has been progressing at an exponential level for decades. 

This trend towards smaller, lightweight, electronics with increasingly more functionalities has of course also put 
the pressure on antenna designers to provide smaller antennas. However, in opposition to electronic chips, the 
size of the antenna for a given application is not mainly related to the technology used, but is determined by the 
laws of physics. The antenna size with respect to the free space wavelength 𝜆𝜆0  is the parameter which will have 
the preponderant influence on the radiation characteristics. This is easily understood considering that an antenna 
is a device transforming a guided wave into a radiated wave and vice versa. To perform this transformation 
efficiently, the size should be of the order of half a wavelength (𝜆𝜆0/2) or larger. Antennas can of course be made 
smaller, but at the expense of their bandwidth and radiation performances.  

Finding an explicit relation between the electrical size of an antenna and its potential radiation performances 
has been a goal of antenna engineers since the early radio days. The pioneering work started by Wheeler [1], and 
Chu [5], and continued by many others [6]-[30] Their theoretical developments and results are still used by 
antenna engineers to estimate the potentials of an antenna.   

Definition of small antennas: Usually, the electrical size or volume of the small antenna is defined by the 
value of 𝑘𝑘𝑎𝑎, where 𝑘𝑘 is the free-space wave-number 2𝜋𝜋/𝜆𝜆0 , and a is the radius of an imaginary sphere circum-
scribing the maximum dimension of the antenna, seen in Figure 4. Wheeler [1] suggests defining an electrically 
small antenna as an antenna which can be enclosed in a sphere which is smaller than a radian-length, thus 1/2𝜋𝜋 
wavelengths. Wheeler’s statement that the small antenna is one occupying a small fraction of the radian-sphere 
has led to the commonly accepted electrical size limit for an electrically small antenna being 𝑘𝑘𝑎𝑎 < 1. 
Examination of Wheeler’s work reveals that he describe the small antenna as having a maximum dimension less 
than the radian length, 1/2𝜋𝜋. From the definition of a in Figure 4 being one-half the antenna’s maximum 
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dimension, this defines a value of 𝑘𝑘𝑎𝑎 =  0.5 as the electrical size limit for the electrically small antenna. You 
could argue that this lower value of 𝑘𝑘𝑎𝑎 simply makes the definition of an electrically small antenna more 
stringent. However, examining the impedance properties of a number of electrically small wire antennas, it 
becomes evident that many small antennas exhibit similar behavior near the 𝑘𝑘𝑎𝑎 =  0.5 limit.  For this reason, the 
definition of an antenna being electrically small is taken to be one where 𝑘𝑘𝑎𝑎 ≤  0.5 [31]. 

Additionally, the radian-sphere can, for an antenna smaller then this size, be interpreted as the limit between 
the near and the far field of the antenna [32].  

 
Figure 4 Smallest circumscribing sphere enclosing the antenna of maximm dimension 2𝑎𝑎. It is also known as the Chu sphere, of radius “a” 
centered about the origin.  

1.1.2. Spherical mode expansion approach and the Chu bound 
Most works dedicated to the study of the physical limitation of electrically small antennas base their analysis 

at some step on the expansion of the electromagnetic fields in spherical wave functions. The purpose of this 
section is to summarize this approach, introduced by Chu in [5] in order to contrast it with a newer, scattering 
approach. 

In spherical coordinates the scalar Helmholtz equation ∇2𝜓𝜓 + 𝑘𝑘2𝜓𝜓 = 0 , has a solution for free space 
boundary conditions in terms of modes given by [33] 

 𝜓𝜓𝑚𝑚𝐴𝐴 = ℎ𝐴𝐴
(2)(𝑘𝑘𝑘𝑘)𝑃𝑃𝐴𝐴

𝑚𝑚 (cosθ)cos(𝑚𝑚𝑚𝑚), (1.1) 

where ℎ𝐴𝐴
(2)(𝑘𝑘𝑘𝑘) = 𝑗𝑗𝐴𝐴

(2)(𝑘𝑘𝑘𝑘) − 𝑗𝑗𝐴𝐴𝐴𝐴
(2)(𝑘𝑘𝑘𝑘) is the spherical Hankel function of the second kind, 𝑗𝑗𝐴𝐴

(2)(𝑘𝑘𝑘𝑘) is the 
spherical Bessel function of the first kind, 𝐴𝐴𝐴𝐴

(2) is the spherical Bessel function of the second kind, 𝑃𝑃𝐴𝐴
𝑚𝑚 (𝑐𝑐𝐶𝐶𝑠𝑠𝜃𝜃) are 

the associated Legendre functions of the first kind. The spherical Bessel and Henkel functions are related to the 
ordinary Bessel and Henkel functions as 𝑎𝑎𝐴𝐴 (𝑘𝑘𝑘𝑘) = �𝜋𝜋/2𝑘𝑘𝑘𝑘𝐵𝐵𝐴𝐴+1/2(𝑘𝑘𝑘𝑘). From the scalar wave function we can 
obtain the magnetic and vector potentials 𝐀𝐀 and 𝐅𝐅 as [33] 

 𝐀𝐀 = 𝐫𝐫𝜓𝜓𝑎𝑎 ,𝐅𝐅 = 𝐫𝐫𝜓𝜓𝑓𝑓  (1.2) 

where r is the radius vector 𝐫𝐫 = 𝒓𝒓�̂�𝑘 from the origin, and 𝜓𝜓′𝑠𝑠 are the solutions to the Helmholtz equation. 
Therefore, introducing the modified spherical Bessel functions 𝐵𝐵�𝐴𝐴(𝑘𝑘𝑘𝑘) = 𝑘𝑘𝑘𝑘𝑎𝑎𝐴𝐴 (𝑘𝑘𝑘𝑘) = �𝜋𝜋𝜋𝜋𝜋𝜋/2𝐵𝐵𝐴𝐴+1/2(𝑘𝑘𝑘𝑘) we 
obtain: 

 (𝐴𝐴𝑘𝑘)𝑚𝑚𝐴𝐴 = 𝐴𝐴𝑚𝑚𝐴𝐴 �̆�𝐻𝐴𝐴
(2)(𝑘𝑘𝑘𝑘)𝑃𝑃𝐴𝐴

𝑚𝑚 (cosθ)cos(𝑚𝑚𝜙𝜙) ,
(𝐹𝐹𝑘𝑘)𝑚𝑚𝐴𝐴 = 𝐹𝐹𝑚𝑚𝐴𝐴 �̆�𝐻𝐴𝐴

(2)(𝑘𝑘𝑘𝑘)𝑃𝑃𝐴𝐴
𝑚𝑚 (cosθ)cos(𝑚𝑚𝜙𝜙).

 (1.3) 

From these expressions, the electromagnetic field components are readily obtained from:  

 
𝑇𝑇𝑘𝑘 = 1

𝑗𝑗𝜔𝜔𝜔𝜔
� 𝜕𝜕2

𝜕𝜕𝑘𝑘2 + 𝑘𝑘2�𝐴𝐴𝑘𝑘

𝑇𝑇𝜃𝜃 = − 1
𝑘𝑘sin𝜃𝜃

𝜕𝜕𝐹𝐹𝑘𝑘
𝜕𝜕𝜙𝜙

+ 1
𝑗𝑗𝜔𝜔𝜔𝜔

𝜕𝜕2𝐴𝐴𝑘𝑘
𝜕𝜕𝑘𝑘𝜕𝜕𝜃𝜃

𝑇𝑇𝜙𝜙 = 1
𝑘𝑘
𝜕𝜕𝐹𝐹𝑘𝑘
𝜕𝜕𝜙𝜙

+ 1
𝑗𝑗𝜔𝜔𝜔𝜔 𝑘𝑘sin𝜃𝜃

𝜕𝜕2𝐴𝐴𝑘𝑘
𝜕𝜕𝑘𝑘𝜕𝜕𝜙𝜙

 ,

𝐻𝐻𝑘𝑘 = 1
𝑗𝑗𝜔𝜔𝜔𝜔

� 𝜕𝜕2

𝜕𝜕𝑘𝑘2 + 𝑘𝑘2�𝐹𝐹𝑘𝑘

𝐻𝐻𝜃𝜃 = − 1
𝑘𝑘sin𝜃𝜃

𝜕𝜕𝐴𝐴𝑘𝑘
𝜕𝜕𝜙𝜙

+ 1
𝑗𝑗𝜔𝜔𝜔𝜔

𝜕𝜕2𝐹𝐹𝑘𝑘
𝜕𝜕𝑘𝑘𝜕𝜕𝜃𝜃

𝐻𝐻𝜙𝜙 = 1
𝑘𝑘
𝜕𝜕𝐴𝐴𝑘𝑘
𝜕𝜕𝜙𝜙

+ 1
𝑗𝑗𝜔𝜔𝜔𝜔 𝑘𝑘sin𝜃𝜃

𝜕𝜕2𝐹𝐹𝑘𝑘
𝜕𝜕𝑘𝑘𝜕𝜕𝜙𝜙

 (1.4) 

These fields can be thought of as “modes of free space” [33]. There exists a set of modes which are Transverse 
Magnetic (TM) to the radial direction and Transverse Electric to r (TE). If we consider the outward traveling 
waves, the TM modes are generated by functions (𝐴𝐴𝑘𝑘)𝑚𝑚𝐴𝐴  in (1.3) while (𝐹𝐹𝑘𝑘 )𝑚𝑚𝐴𝐴  are taken to be zero. Similarly, 
the TE modes are generated by functions (𝐹𝐹𝑘𝑘)𝑚𝑚𝐴𝐴  while (𝐴𝐴𝑘𝑘)𝑚𝑚𝐴𝐴  are taken to be zero. The wave impedance of 
these modes will be given by 
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(𝑍𝑍+

𝑇𝑇𝑇𝑇 )𝑚𝑚𝐴𝐴 = (𝑇𝑇𝜃𝜃
𝑇𝑇𝑇𝑇 )𝑚𝑚𝐴𝐴

+

�𝐻𝐻𝜙𝜙
𝑇𝑇𝑇𝑇 �

𝑚𝑚𝐴𝐴

+  , (𝑍𝑍+
𝑇𝑇𝑇𝑇 )𝑚𝑚𝐴𝐴 = (𝑇𝑇𝜃𝜃

𝑇𝑇𝑇𝑇 )𝑚𝑚𝐴𝐴
+

�𝐻𝐻𝜙𝜙
𝑇𝑇𝑇𝑇 �

𝑚𝑚𝐴𝐴

+   (1.5) 

Where the subscript + denotes an outward travelling wave. Inserting the functions (1.3) into (1.4) to obtain the 
fields and using (1.5) we get  

 
(𝑍𝑍+

𝑇𝑇𝑇𝑇 )𝑚𝑚𝐴𝐴 = 𝑗𝑗𝜂𝜂0
�̆�𝐻𝐴𝐴

′(2)(𝑘𝑘𝑘𝑘)
�̆�𝐻𝐴𝐴

(2)(𝑘𝑘𝑘𝑘)
 , (𝑍𝑍+

𝑇𝑇𝑇𝑇 )𝑚𝑚𝐴𝐴 = −𝑗𝑗𝜂𝜂0
�̆�𝐻𝐴𝐴

(2)(𝑘𝑘𝑘𝑘)
�̆�𝐻𝐴𝐴

′(2)(𝑘𝑘𝑘𝑘)
 , (1.6) 

where 𝜂𝜂0 = �𝜇𝜇/𝜀𝜀 denotes the free space impedance. The wave impedance is independent of m. Starting from 
the expression (1.6) for the impedances of spherical waves and using the recurrence formula for the modified 
Henkel’s functions, 𝑎𝑎𝐴𝐴 (𝑘𝑘𝑘𝑘) = (2𝐴𝐴 − 1)/(𝑘𝑘𝑘𝑘) 𝑎𝑎𝐴𝐴−1(𝑘𝑘𝑘𝑘) − 𝑎𝑎𝐴𝐴−2(𝑘𝑘𝑘𝑘) and 𝑎𝑎𝐴𝐴

′ (𝑘𝑘𝑘𝑘) =  𝑎𝑎𝐴𝐴−1(𝑘𝑘𝑘𝑘) − (𝐴𝐴 +
1)/(𝑘𝑘𝑘𝑘)𝑎𝑎𝐴𝐴 (𝑘𝑘𝑘𝑘), Chu [5] obtained the following expressions for the mode impedances:  

 𝑍𝑍+𝑘𝑘
𝑇𝑇𝑇𝑇 = 𝐴𝐴𝜂𝜂0

𝑗𝑗𝑘𝑘𝑘𝑘
+ 𝜂𝜂0

2𝐴𝐴 − 1
𝑗𝑗𝑘𝑘𝑘𝑘 + 1

2𝐴𝐴 − 3
𝑗𝑗𝑘𝑘𝑘𝑘 +

. . . 1
3

𝑗𝑗𝑘𝑘𝑘𝑘 + 1
1

𝑗𝑗𝑘𝑘𝑘𝑘 +1

, 𝑌𝑌+𝑘𝑘
𝑇𝑇𝑇𝑇 = − 𝐴𝐴

𝑗𝑗𝑘𝑘𝑘𝑘𝜂𝜂0
+ 1/𝜂𝜂0

2𝐴𝐴 − 1
𝑗𝑗𝑘𝑘𝑘𝑘 + 1

2𝐴𝐴 − 3
𝑗𝑗𝑘𝑘𝑘𝑘 +

. . . 1
3

𝑗𝑗𝑘𝑘𝑘𝑘 + 1
1

𝑗𝑗𝑘𝑘𝑘𝑘 +1

  

(1.7) 

Chu recognized the similarity of these expressions with the transfer function of a Cauer network from filter 
theory. If we consider the TM case, then the first term represents a capacitor value 𝐶𝐶1 = 𝜀𝜀𝑘𝑘/𝐴𝐴 in series with the 
reminder, formed by an inductor in parallel in series with the reminder, and so on. The last term, 𝜂𝜂0 is a 
termination resistor. Thus, the expression of equation (1.7) for 𝑍𝑍+𝑘𝑘

𝑇𝑇𝑇𝑇  can be represented as a high pass filter for 
each mode excited by the antenna, see Figure 5(a), from which it follows directly that the largest possible 
bandwidth is obtained for an antenna exciting only the TM01 spherical mode. Indeed, all higher modes will only 
add to the reactive energy stored in the filter, and thus enhance the 𝑄𝑄 factor. Analogously, in the case of TE 
waves, we obtain the ladder network in Figure 5(b). 

 
Figure 5 (a) TM circuit (b) TE circuit network 
 

Let us now consider a simple linearly polarized antenna, for example, an electric dipole. A small electrical 
dipole will excite only the TM01 mode, and we consider the radius r to be the size of a circumscribing sphere 𝑎𝑎, 
𝑘𝑘 =  𝑎𝑎. The equivalent ladder network becomes very simple. 

 

𝑍𝑍+𝑘𝑘
𝑇𝑇𝑇𝑇 = 1

𝑗𝑗𝜔𝜔𝑎𝑎𝜀𝜀
+ 1

1
𝑗𝑗𝜔𝜔𝑎𝑎𝜇𝜇 + 1

𝜂𝜂0

= 𝜂𝜂0

⎩�
⎨
�⎧ 1

𝑗𝑗𝑘𝑘𝑎𝑎
+ 1

1
𝑗𝑗𝑘𝑘𝑎𝑎 + 1⎭�

⎬
�⎫

= 𝜂𝜂0

⎩
�
⎨
�
⎧

1
𝑗𝑗𝑘𝑘𝑎𝑎�
𝐶𝐶

+ 𝑗𝑗𝑘𝑘𝑎𝑎
1 + (𝑘𝑘𝑎𝑎)2�

𝑗𝑗

+ (𝑘𝑘𝑎𝑎)2

1 + (𝑘𝑘𝑎𝑎)2�
𝑅𝑅 ⎭

�
⎬
�
⎫

, (1.8) 
 

 

 
 

Figure 6 Transformation of the TM01 network into a series resonant circuit 
 
To calculate the 𝑄𝑄 factor of such a circuit we use the definition (A.1) from Appendix A that involves the stored 
and the dissipated energy in the circuit. It is important to realize, since we are interested in electrically small 
antennas in free space, the energy stored around the antenna is dominantly electric. To make the system resonant 

(a) (b) 
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we can imagine a lossless inductor is added. Therefore the resonance arises quite differently from one dependent 
upon antenna arm length. Since at resonance the time-average values of electric and magnetic energy are equal, 
we must take the peak value of the stored energy to be twice the time-average stored electric energy. Using (A.6) 
we have for the total electric energy stored in the circuit 

 
𝐹𝐹𝑒𝑒

𝑆𝑆 = 1
4

|𝑉𝑉 |2𝐶𝐶 = 1
4

|𝐼𝐼|2

𝜔𝜔2𝐶𝐶
= |𝐼𝐼|2

4𝜔𝜔
𝜂𝜂0
𝑘𝑘𝑎𝑎

. (1.9) 

The power dissipated in the resistor is  

 
𝑃𝑃𝑅𝑅

𝑆𝑆 = 1
2

|𝐼𝐼|2𝑅𝑅 = 1
2

|𝐼𝐼|2𝜂𝜂0
(𝜋𝜋𝑎𝑎)2

1 + (𝜋𝜋𝑎𝑎)2 . (1.10) 

Inserting (1.9) and (1.10) into the (A.1) we have the Chu limit 

 
 𝑄𝑄𝐶𝐶ℎ𝑠𝑠 = 2𝜔𝜔𝐹𝐹𝑒𝑒

𝑆𝑆

𝑃𝑃𝑅𝑅
𝑆𝑆 = 1

(𝜋𝜋𝑎𝑎)3 + 1
𝑘𝑘𝑎𝑎

.  (1.11) 

The same considerations can be made for a small magnetic loop, which will excite the TE10 mode. We have thus 
obtained Chu's classical result, stating that the minimum quality factor of a linearly polarized antenna is given by 
(1.11).  
 
Historical note: Rather than evaluate 𝑄𝑄 separately for each modal equivalent circuit, Chu stated that the work 
involved would be “tedious” and sought approximate values that were easier to calculate. Chu approximated the 
equivalent circuit as a series RLC circuit, and wrote the relationships between the input reactance and reactive 
elements L and C 

 𝑋𝑋𝐴𝐴 = �𝜔𝜔𝑗𝑗𝐴𝐴 − 1
𝜔𝜔𝐶𝐶𝐴𝐴

�  and 𝑑𝑑𝑋𝑋𝐴𝐴
𝑑𝑑𝜔𝜔

= 1
𝜔𝜔

�𝜔𝜔𝑗𝑗𝐴𝐴 + 1
𝜔𝜔𝐶𝐶𝐴𝐴

� , (1.12) 

Solving for the values of the elements as a function of the reactance, and with 𝑅𝑅𝐴𝐴  being the real part of the input 
impedance gives: 

 
𝐶𝐶𝐴𝐴 = 2

𝜔𝜔2 �𝑑𝑑𝑋𝑋𝐴𝐴
𝑑𝑑𝜔𝜔

− 𝑋𝑋𝐴𝐴
𝜔𝜔

�
−1

 ; 𝑗𝑗𝐴𝐴 = 1
2

�𝑑𝑑𝑋𝑋𝐴𝐴
𝑑𝑑𝜔𝜔

+ 𝑋𝑋𝐴𝐴
𝜔𝜔

� ; 𝑅𝑅𝐴𝐴 = �(𝑘𝑘𝑎𝑎)ℎ𝐴𝐴
(2)(𝑘𝑘𝑎𝑎)�

−2
 (1.13) 

As an example, we will show the result for the TM01 mode. Combining the above for n=1 shows that 

 
𝑅𝑅1 = (𝑘𝑘𝑎𝑎)2

1 + (𝑘𝑘𝑎𝑎)2  , 𝐶𝐶1 = (𝑘𝑘𝑎𝑎)
𝜂𝜂0𝜔𝜔

(1 + (𝑘𝑘𝑎𝑎)2)
1 + 2(𝑘𝑘𝑎𝑎)2  (1.14) 

 

Using (1.9) and (1.10), we get the approximate 𝑄𝑄: 

 
𝑄𝑄𝐶𝐶ℎ𝑠𝑠,𝑎𝑎𝐴𝐴𝐴𝐴𝑘𝑘𝐶𝐶𝑥𝑥 . = 1

(𝑘𝑘𝑎𝑎)3
1 + 2(𝑘𝑘𝑎𝑎)2

(1 + (𝑘𝑘𝑎𝑎)2)
 , (1.15) 

 

Note that formula (1.15), nor the exact formula (1.11), which both appear qften in literature, did not appear 
explicitly in the original Chu paper [5].  
 

Following Chu’s pioneering work, several authors, like Collin et al [6], Fante [7], Fano [8] or Mclean [10] 
proposed rigorous methods to obtain the smallest possible quality factor of antenna without having to use circuit 
analogy, but based on field considerations only. We will briefly summarize the method proposed by McLean 
here, as it is rigorous, very intuitive and easily understood.  

Again, we need to compute the radiated power and the energy stored in the reactive field. McLean did this 
for n = 1 in [10], without Hankel functions while Collin [6], extended it for 𝐴𝐴 = 1,2,3,… The problem is solved 
in the following steps: 

• The field due to an antenna is expanded in spherical waves 
• Total energy due to traveling waves and reactive fields are calculated. 
• The radiated energy is obtained from the far field components, showing a 1/r dependency. 
• The non propagating reactive energy is obtained by subtracting the radiated energy from the total 

energy. 
If we apply this method to the case of a short electric dipole of length l and supporting a current I, oriented along 
the z-axis, we can write for the vector potential in (1.3) for the first mode  
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 (𝐴𝐴𝑘𝑘)01 = −cos𝜃𝜃 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘 �1 − 𝑗𝑗
𝑘𝑘𝑘𝑘

� , (1.16) 

From (1.4) We obtain for the field components 

 𝐻𝐻𝜙𝜙 = sin 𝜃𝜃 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘 � 𝑗𝑗
𝑘𝑘𝑘𝑘2 − 1

𝑘𝑘
� ,

𝑇𝑇𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜔𝜔

sin 𝜃𝜃 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘 �− 1
𝑘𝑘2 − 𝑗𝑗𝑘𝑘

𝑘𝑘
+ 𝑗𝑗

𝑘𝑘𝑘𝑘3� ,

𝑇𝑇𝑘𝑘 = 2
𝜔𝜔𝜔𝜔

cos𝜃𝜃 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘 � 𝑗𝑗
𝑘𝑘2 + 1

𝑘𝑘𝑘𝑘3� .

 (1.17) 
 

The field components are taken as root mean square (RMS) values. In this case the total electric energy density 
𝑤𝑤𝑒𝑒  is larger than the magnetic energy density 𝑤𝑤𝑚𝑚 , and is given by 

 𝑤𝑤𝑒𝑒 = 1
2
𝜔𝜔𝐄𝐄����� ∙𝐄𝐄�����∗ = 1

2
𝜔𝜔(|𝑇𝑇𝜃𝜃|2 + |𝑇𝑇𝜋𝜋|2)

     =
𝜂𝜂0
2𝜔𝜔

�sin2 𝜃𝜃� 1
𝑘𝑘3𝑘𝑘6 − 1

𝑘𝑘𝑘𝑘4 + 𝑘𝑘
𝑘𝑘2� + 4 cos2 𝜃𝜃� 1

𝑘𝑘3𝑘𝑘6 + 1
𝑘𝑘𝑘𝑘4�� 

𝑤𝑤𝑚𝑚 = 1
2
𝜔𝜔𝐇𝐇������� ∙𝐇𝐇�������∗ = 1

2
𝜔𝜔�𝐻𝐻𝜙𝜙�2 = 1

2
𝜔𝜔 sin2 𝜃𝜃� 1

𝑘𝑘2𝑘𝑘4 + 1
𝑘𝑘2� .

 (1.18) 

Now consider the electric- energy density associated with the traveling wave; that is, the energy calculated from 
the field components which produce radiated power. This can be called the propagating energy, 𝑤𝑤𝑒𝑒

𝑘𝑘𝑎𝑎𝑑𝑑 . This 
energy density is computed using only the radiation fields 

 
𝐻𝐻𝜙𝜙

𝑘𝑘𝑎𝑎𝑑𝑑 = − sin 𝜃𝜃 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘

𝑘𝑘
 ,

𝑇𝑇𝜃𝜃
𝑘𝑘𝑎𝑎𝑑𝑑 = −𝜂𝜂0 sin 𝜃𝜃 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘

𝑘𝑘
,

𝑤𝑤𝑒𝑒
𝑘𝑘𝑎𝑎𝑑𝑑 = 1

2
𝜀𝜀�𝑇𝑇𝜃𝜃

𝑘𝑘𝑎𝑎𝑑𝑑 �2 = 𝜂𝜂0
𝑘𝑘2 sin2 𝜃𝜃

 (1.19) 

The stored (non-propagating) energy density is given by the difference of the total energy density with the 
radiated (propagating) energy density:  

 𝑤𝑤𝑒𝑒
𝐴𝐴𝐴𝐴 = 𝑤𝑤𝑒𝑒 − 𝑤𝑤𝑒𝑒

𝑘𝑘𝑎𝑎𝑑𝑑 =
𝜂𝜂0
2𝜔𝜔

�sin2 𝜃𝜃� 1
𝑘𝑘3𝑘𝑘6 − 1

𝑘𝑘𝑘𝑘4� + 4 cos2 𝜃𝜃� 1
𝑘𝑘3𝑘𝑘6 + 1

𝑘𝑘𝑘𝑘4��. (1.20) 

The total stored energy is now obtained by integrating (1.20) over the entire space, except for the sphere of 
radius 𝑎𝑎 enclosing the antenna:  

 
𝐹𝐹𝑒𝑒

𝐴𝐴𝐴𝐴 = � � � 𝑤𝑤𝑒𝑒
𝐴𝐴𝐴𝐴  𝑘𝑘2 sin 𝜃𝜃

∞

𝑎𝑎

𝜋𝜋

0

2𝜋𝜋

0
𝑑𝑑𝑘𝑘𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙 =

4𝜋𝜋𝜂𝜂0
3𝜔𝜔

� 1
(𝜋𝜋𝑎𝑎)3 + 1

𝑘𝑘𝑎𝑎
�. (1.21) 

 

The total radiated power may be determined by integrating the real part of the pointing vector over a spherical 
surface of any radius 

 
𝑃𝑃𝑘𝑘𝑎𝑎𝑑𝑑 = � � Re(𝐄𝐄 × 𝐇𝐇∗) ∙

𝜋𝜋

0

2𝜋𝜋

0
𝐫𝐫�̂�𝑘2 sin 𝜃𝜃 𝑑𝑑𝑘𝑘𝑑𝑑𝜃𝜃𝑑𝑑𝑚𝑚 = 8𝜋𝜋

3
𝜂𝜂0 , (1.22) 

 

Giving the quality factor  

 
  𝑄𝑄 = 2𝜔𝜔𝐹𝐹𝑒𝑒

𝐴𝐴𝐴𝐴

𝑃𝑃𝑘𝑘𝑎𝑎𝑑𝑑
= 1

(𝜋𝜋𝑎𝑎)3 + 1
𝑘𝑘𝑎𝑎

.   (1.23) 
 

This is, as expected, exactly the same result as the one obtained by Chu for the smallest possible 𝑄𝑄 for a linear 
antenna (without approximation). Following the same principle for a circularly polarized antenna constructed 
using the TE01 and TM01 modes excited with a phase shift of 𝜋𝜋/2, McLean obtains [10] 

 𝑄𝑄 = 1
2

� 1
(𝜋𝜋𝑎𝑎)3 + 2

𝑘𝑘𝑎𝑎
�. (1.24) 

 

We note that an inherent assumption in the analysis so far is that the fields inside the sphere of radius a are 
zero. However, any antenna that is contained within a sphere of radius 𝑎𝑎 will have additional energy storage 
within the enclosing sphere and will consequently have a higher 𝑄𝑄. In fact, many electrically small antennas 
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have a 𝑄𝑄 that is considerably larger than Chu’s lower bound. In order to complete the derivation of the new 
lower bound on antenna 𝑄𝑄, the effects of energy stored within the sphere of radius a were also considered. In 
two recent papers, Thal [11]-[12] reevaluated the 𝑄𝑄 of TEn1 and TMn1 modes by assuming that the antenna 
consisted of a suitable current sheet on the surface of the sphere of radius a. This allowed the modes excited in 
the interior of the sphere to be included in the energy storage and hence led to larger values for the minimum 
achievable 𝑄𝑄. The work was based on the use of continued fraction expansions for the mode impedances in both 
the internal and external regions. Thal extended the circuit analysis of Chu by developing a ladder network that 
included the energy inside the enclosing sphere. Hansen and Collin [13] extended the exact formulation in terms 
of spherical modes. The result is a quotient of spherical Bessel and Hankel functions. Numerical values are 
shown in Table 1.1, and as expected these agree with those published by Thal. 

 
 
Table 4 New Q values based on the energy inside and outside the smallest circumscribing sphere of radius a. 
 

Unlike the Chu-𝑄𝑄 case, the new formulas do not have 𝑄𝑄 expressed as a two or three-term formula. This was 
remedied by Hansen and Collin [13] who performed a fitting to the exact values for both the TM10 and TE10 
modes for two terms. The TM coefficients were close to 0.707 and 1.5, so these were used; TE coefficients were 
close to 3. We thus write 

 

 
𝑇𝑇𝑇𝑇10 :  𝑄𝑄𝑇𝑇ℎ𝑎𝑎𝑐𝑐 = 1.5

(𝜋𝜋𝑎𝑎)3 + 1√
2𝑘𝑘𝑎𝑎

 ,

𝑇𝑇𝑇𝑇10 :  𝑄𝑄𝑇𝑇ℎ𝑎𝑎𝑐𝑐 = 3
(𝜋𝜋𝑎𝑎)3 + 3

𝑘𝑘𝑎𝑎
.

  (1.25) 
 

Thal also considered the relationship between gain, 𝑄𝑄, and the energy inside the Chu sphere, and concluded that 
these quantities are not independent of one another [14].  

Example 1: As mentioned, many electrically small antennas do not reach the desired lower limit on 𝑄𝑄. 
However, there are a few examples of approaching the limit closely. In 2005 the 𝑄𝑄 of Best’s [15] spherical helix 
antenna was found to be nearly identical to the minimum 𝑄𝑄𝑁𝑁𝑒𝑒𝑤𝑤  limit found by Thal, given in (1.25). The 
spherical helix resonator, shown in Figure 7(a), excites the TM10 spherical mode; Stuart et al. [16] reported an 
alternative version, i.e. a caped dipole resonator shown in Figure 7(b), also having exciting the TM10 mode and 
having a 1.5𝑄𝑄𝑇𝑇ℎ𝑎𝑎𝑐𝑐 . In [17] Best also gave an antenna design shown in Figure 7(c) exciting the TE10 mode and 
approaching the 𝑄𝑄𝑇𝑇ℎ𝑎𝑎𝑐𝑐 .  

 
Figure 7 (a) 4-arm Folded spherical helix resonator. (b) Spherical capped dipole resonator. Each of these two resonators acts as an electic 
dipole (excites the TM10  mode) and can be designed to be electrically small with a 𝑄𝑄-factor near 1.5 times the Chu limit. (c) Depiction of the 
2-arm folded slot spherical helix magnetic dipole (excites the TE10  mode). 
 

Example 2: Later, in 2010 Stuart and Yaghjian [18] also studied how to approach the lower bounds on 𝑄𝑄 for 
electrically small dipole or monopole antennas based upon the high permeability shells as indicated by Figure 8. 
It was reported that the magnetic polarization currents induced in the thin shell of magnetic material are able to 
reduce the internal stored energy leading to a lower 𝑄𝑄 compared with conventional designs. In the case of the 
spherical electric dipole antenna, a sufficiently large value of permeability enables the 𝑄𝑄 to be reduced to a value 
that is only 1.11𝑄𝑄𝐶𝐶ℎ𝑠𝑠 . However, up to now there are still no antennas implemented in reality using these 

(a) (b) (c) 
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conceptions to the knowledge of the authors. The practical challenge of implementing these designs is in the 
development of low-loss uniform materials with high magnetic permeability. Nevertheless, research along this 
line still provides a valuable direction to achieve high-performance electrically small antennas. 

 
Figure 8  (a) Antenna element based upon a half-sphere of ENGmaterial placed at the termination of a coaxial transmission line, and (b) 
cross section of the spherical capped monopole antenna on a large ground plane. A thin, high-mu shell is used to complete the sphere [18].   

LIMITATIONS ON GAIN. 
The limitations on the gain of an electrically small antenna are based on considerations somewhat different 

than the limitations on 𝑄𝑄, in the sense that gain is not limited per se. Indeed, it would be more correct to speak 
about a limit on gain bandwidth product (as we will see later) or on a practical limit on the gain. This latter 
approach was proposed by Harrington in his classic paper [19], here we will show only the important results.  

Harrington expanded on the work of Chu, but followed Chu’s approximate method to obtain the 𝑄𝑄’s of TEn1 
and TMn1 modes. Harrington has shown that the maximum gain of an antenna, obtained by using only a finite 
number of TEn1 and TMn1 modes, was given by 

 
𝐺𝐺𝑚𝑚𝑎𝑎𝑥𝑥 = �(2𝐴𝐴 + 1)

𝑁𝑁

𝐴𝐴=1
= 𝑁𝑁2 + 2𝑁𝑁 (1.26) 

Where 𝐴𝐴 is the mode number and 𝑁𝑁  is the highest considered mode. If there was no constraint on the mode 
amplitudes, an arbitrarily large gain would theoretically be possible. However, high-order modes are very 
difficult to excite because their wave impedances (wave admittances for the TEn0 modes) are very large. The 
modes of order 𝐴𝐴 >  𝑘𝑘𝑘𝑘 are rapidly cut off and are not naturally present in the field of an antenna of radius 𝑎𝑎. 
Modes of order 𝐴𝐴 >  𝑘𝑘𝑘𝑘 will increase heavily the stored reactive energy, but have no impact on radiated power. 
Thus for a practical antenna, a natural limit for the gain, when 𝐴𝐴 >  𝑘𝑘𝑘𝑘 is given by 

 𝐺𝐺𝑚𝑚𝑎𝑎𝑥𝑥 = (𝑘𝑘𝑎𝑎)2 + 2(𝑘𝑘𝑎𝑎). (1.27) 

An antenna could in theory have larger gain, but at the cost of a very narrow bandwidth. This is the case in the so 
called super-directive antennas. For lossless eclectically small antennas in free space, the maximal achievable 
gain for a meaningful bandwidth is thus 𝐺𝐺𝑚𝑚𝑎𝑎𝑥𝑥 = 2 = 3dB. 

Going back to the impedance of the first mode, we see that as the electrical dimension of the antenna 
becomes smaller, the mode impedance becomes more reactive. This means that for very small lossless antennas, 
the above mentioned gain will be reached on a very limited bandwidth. If dielectric or conductive losses are 
present, this will severely reduce the antenna’s efficiency. 

All above results have been obtained for TM modes, as they were derived for a small electric dipole. Similar 
results are obtained for a small magnetic dipole. If an electric and magnetic dipole are present at the same time, 
different limits on quality factor and gain are obtained depending on the relative orientation and phase of the 
dipoles. Recently Pozar [20] proposed a very useful summary of these results. The basic configurations for the 
two dipoles are given in Figure 9, while the summary from [20]  is reproduced in Table 5. 

 
Figure 9 Equivalent elementary dipole sources for two types of circular polarization. Type 1 uses two orthogonal electric (or magnetic) 
dipoles with 90º phasing. Type 2 uses collinear electric and magnetic dipoles Examples of Type 1 circularly polarized antennas include 
crossed dipoles, crossed slots, turnstile antennas, and square (or circular) microstrip patches with feeds that excite two orthogonal modes. 
Type 2 circularly polarized small antennas generally involve structures that can be modeled as a superposition of collinear electric and 
magnetic dipole moments, such as dipole/loop antennas, monopole/slot antennas, loop/monopole antennas, short helix antennas, and the 
spherical helix antenna [20]. 
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Table 5 Maximum gain and minimum q for various combinations of elementary sources. 𝑄𝑄0 = 1/(𝑘𝑘𝑎𝑎)3  
 

With the increased demand for electrically small antennas induced by the boom in wireless communications, 
the work to their limitations has received new interest starting in the early nineties, with several aims: refine the 
limitations by taking into account dispersive materials [21], lossy materials, [22] and [23] and materials having 
negative permittivity or permeability [24]. The next section will specifically investigate the limitations taking 
into account the antenna’s shape factor. 

1.1.3. Scattering approach and the Gustafsson bound 
So far, spherical wave functions were used to represent the radiation outside the Chu sphere. In contrast, 

recent publications [25]-[30] considered a different approach to analyzing small antennas. As already noted by, 
Thal, and others, Chu’s approach may not be suitable for practical antennas. Gustafsson et.al. proceeded to 
instead use the scattering properties of small particles (i.e. their polarizability dyads) to extract the minimum 𝑄𝑄, 
gain, and bandwidth of small antennas. The new bound on Q is derived in the following steps: 
• Scattering is represented in the low frequency limit to define the polarizabilities of an object 
• Optical theorem is used to connect the polarizabilities with the extinction cross section over all frequencies 
• Integral of the extinction gross section is approximated and shown to involve a product of gain and 

bandwidth 
 

Consider a plane wave 𝐄𝐄inc = 𝑇𝑇0
+𝑒𝑒−𝑗𝑗𝒌𝒌𝒓𝒓  incident on an object (antenna) and is scattered by it. For any 

antenna, the scattered electric field 𝐄𝐄S in the forward direction �̂�𝐤 from an object, expressed by  

 
𝐄𝐄S(𝑘𝑘, 𝒓𝒓) = 𝑇𝑇0

+ 𝑒𝑒−𝑗𝑗𝒌𝒌𝒓𝒓

𝑘𝑘
𝐒𝐒�𝑘𝑘, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞 + 𝒪𝒪(𝑘𝑘−2)  𝑎𝑎𝑠𝑠 𝑘𝑘 → ∞ (1.28) 

where S(𝑘𝑘, �̂�𝐤) is the forward scattering dyadic, �̂�𝐩𝐞𝐞  is the electric polarization and 𝑇𝑇0
+ is the amplitude of the 

incident electric field. What is of particular interest is to look at the low frequency (long wavelength) asymptotic 
of the scattering [34] 

 
𝐒𝐒�𝑘𝑘, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞 = 𝑘𝑘2

4 𝜋𝜋
��̂�𝐩𝐞𝐞

∗ ⋅ 𝛄𝛄𝑒𝑒 ⋅ �̂�𝐩𝐞𝐞 + �̂�𝐩𝐦𝐦
∗ ⋅ 𝛄𝛄𝑚𝑚 ⋅ �̂�𝐩𝐦𝐦� + 𝒪𝒪(𝑘𝑘3), (1.29) 

where �̂�𝐩𝐦𝐦 = �̂�𝑘 × �̂�𝐩𝐞𝐞  represents the magnetic polarization of the incident wave. 𝛾𝛾𝑒𝑒  and 𝛾𝛾𝑚𝑚  are the electric and 
magnetic polarizability dyadics of the target. They allow determining the induced electric and magnetic dipole 
moments 𝒑𝒑 = 𝜀𝜀0𝛾𝛾𝑒𝑒 �̂�𝐩𝒆𝒆𝑇𝑇0  and  𝒎𝒎 = µ𝛾𝛾𝑚𝑚 �̂�𝐩𝒎𝒎 𝐻𝐻0  when the target is immersed in a uniform electrostatic or 
magnetostatic field of amplitude 𝑇𝑇0  and 𝐻𝐻0   respectively. Relation (1.29) together with (1.28) is in fact similar 
to the far field of infinitesimal electric and magnetic dipoles. This is reasonable because in the long wavelength 
limit all antennas are electrically small. From (1.29) it is useful to define a quantity 𝜚𝜚 called the extinction 
volume as  

 
𝜚𝜚(𝑘𝑘) =

�̂�𝐩𝐞𝐞
∗ ⋅ 𝐒𝐒�𝑘𝑘, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞

𝑘𝑘2  . (1.30) 

This is a well defined quantity for 𝑘𝑘 → 0, purely by the polarizabilities of the scattering object, as can be seen 
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immediately by dividing (1.29) with 𝑘𝑘2  and making the limit. We thus define 𝜚𝜚(0) to be  

 𝜚𝜚(0) = 1
4 𝜋𝜋

��̂�𝐩𝐞𝐞
∗ ⋅ 𝛄𝛄𝑒𝑒 ⋅ �̂�𝐩𝐞𝐞 + �̂�𝐩𝐦𝐦

∗ ⋅ 𝛄𝛄𝑚𝑚 ⋅ �̂�𝐩𝐦𝐦� , (1.31) 

Next, we invoke the forward scattering theorem or optical theorem. For a derivation of the theorem and 
necessary definitions, see Appendix B. The forward scattering theorem is a remarkable relation [35] which states  

 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝑘𝑘) = 4𝜋𝜋
𝑘𝑘

Im��̂�𝐩𝐞𝐞
∗ ⋅ 𝐒𝐒�𝜋𝜋, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞� = 4𝜋𝜋𝑘𝑘 Im{𝜚𝜚(𝑘𝑘)} (1.32) 

Where 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴  is the total cross section of a scatterer representing the total power loss from the incident wave due to 
the scattering 𝜎𝜎𝑠𝑠  and absorption 𝜎𝜎𝑎𝑎  of a wave by the scatteres, i.e. 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 = 𝜎𝜎𝑠𝑠 + 𝜎𝜎𝑎𝑎 . The loss is related to the 
imaginary part of the scattering amplitude in the forward direction. 

The following step is a stunning connection between the total (extinction) cross section 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝑘𝑘) and the 
static extinction volume 𝜚𝜚(0) defined by the polarizabilities. The idea is to use the Cauchy integral theorem that 
relates an integral over a closed loop in the complex planes to the residue at the poles in the plane. Thus to get 
𝜚𝜚(0) one could use a function 𝜚𝜚(𝑘𝑘)/𝑘𝑘 that has a pole at 𝑘𝑘 = 0. Gustafsson et. al. in [26] concluded that since the 
elements of 𝐒𝐒�𝑘𝑘, �̂�𝐤� are holomorfic in 𝑘𝑘 for Im{𝑘𝑘} > 0, it follows that also 𝜚𝜚(𝑘𝑘) is a holomorfic function in the 
upper half plane. They thus write the Cauchy integral theorem with respect to the curve in  Figure 10. as 

 2𝜋𝜋𝑗𝑗𝜚𝜚(0) = �𝜚𝜚(𝑘𝑘)
𝑘𝑘

𝑑𝑑𝑘𝑘 (1.33) 

 
Figure 10 Integration contour in the complex k plane used in  

 
The integral (1.33) has to be carefully evaluated for each part of the contour. Noting that on the large 

semicircle we let 𝑘𝑘 = 𝑅𝑅𝑒𝑒𝑗𝑗𝑗𝑗 and on the small semicircle around the pole we let 𝑘𝑘 = 𝜖𝜖𝑒𝑒𝑗𝑗𝑗𝑗  and letting 𝑅𝑅 → ∞, 𝜖𝜖 →
0, we can write 

 
𝜚𝜚(0) = 1

2𝜋𝜋𝑗𝑗
� 𝜚𝜚(𝜖𝜖𝑒𝑒𝑗𝑗𝑗𝑗 )

𝜖𝜖𝑒𝑒𝑗𝑗𝑗𝑗 𝑗𝑗𝜖𝜖𝑒𝑒𝑗𝑗𝑗𝑗 𝑑𝑑𝑗𝑗
𝜋𝜋

0���������
𝜋𝜋𝜚𝜚(0)

+ 1
2𝜋𝜋𝑗𝑗

� 𝜚𝜚(𝑅𝑅𝑒𝑒𝑗𝑗𝑗𝑗 )
𝑅𝑅𝑒𝑒𝑗𝑗𝑗𝑗 𝑗𝑗𝑅𝑅𝑒𝑒𝑗𝑗𝑗𝑗 𝑑𝑑𝑗𝑗

0

𝜋𝜋���������
0

+ 1
2𝜋𝜋𝑗𝑗

� 𝜚𝜚(𝑘𝑘)
𝑘𝑘

𝑑𝑑𝑘𝑘.
𝜖𝜖<|𝑘𝑘|<𝑅𝑅

 
(1.34) 

The last term in (1.34) can be rewritten using the optical theorem (1.32) as 

 1
2𝜋𝜋𝑗𝑗

� 𝜚𝜚(𝑘𝑘)
𝑘𝑘

𝑑𝑑𝑘𝑘
∞

−∞
= −1

2𝜋𝜋
� 𝐼𝐼𝑚𝑚{𝜚𝜚(𝑘𝑘)}

𝑘𝑘
𝑑𝑑𝑘𝑘

∞

−∞
= −1

8𝜋𝜋2 � 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝑘𝑘)
𝑘𝑘2 𝑑𝑑𝑘𝑘

∞

−∞
= 1

8𝜋𝜋3 � 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝜆𝜆)𝑑𝑑𝜆𝜆
∞

0
. (1.35) 

Inserting (1.36) back into (1.35) gives finally   

 𝜚𝜚(0) = 1
2

𝜚𝜚(0) + 1
8𝜋𝜋3 � 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝜆𝜆)𝑑𝑑𝜆𝜆

∞

0
 . (1.36) 

Since 𝜚𝜚(0) is defined with the polarizabilities by (1.30) and (1.29) we obtain useful relation 

 � 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝜆𝜆)𝑑𝑑𝜆𝜆
∞

0
= 𝜋𝜋2��̂�𝐩𝐞𝐞

∗ ⋅ 𝛄𝛄𝑒𝑒 ⋅ �̂�𝐩𝐞𝐞 + �̂�𝐩𝐦𝐦
∗ ⋅ 𝛄𝛄𝑚𝑚 ⋅ �̂�𝐩𝐦𝐦�. (1.37) 

Remarkably, we see from (1.37) that there is a fundamental connection between the polarizability, the static 
response, of an object (its dipole moments) and broadband scattering from it, a dynamic quantity which includes 
absorption and scattering properties of the object. The relation can be also used in the cases when the 
polarizability cannot be obtained analytically but numerical simulations of broadband radar cross sections are 
possible. However, we will use (1.37) to bound the scattering ability of an object, i.e. its bandwidth. 
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Recall that directivity 𝐷𝐷 depends on the electric polarization �̂�𝐩𝐞𝐞  as well as the incident direction �̂�𝐤. In the present 
case of no ohmic losses, the partial gain G coincides with the partial directivity 𝐷𝐷.  

Since the extinction cross section is composed from two parts, namely scattering and absorption cross 
section, in fact, 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 > 𝜎𝜎𝑎𝑎  and we can write 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 = 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 /𝜂𝜂, where we have introduced the notion of absorption 
efficiency 0 < 𝜂𝜂 < 1. For most antennas at resonance 𝜂𝜂 ≤ 1/2, but exeptions from this rule of thumb exist. In 
particular, minimum scattering antennas can be defined by 𝜂𝜂 = 1/2 . We can now also write the left hand side of  
(1.37) as 

 � 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝜆𝜆)𝑑𝑑𝜆𝜆
∞

0
= 1

𝜂𝜂̃
� 𝜎𝜎𝑎𝑎(𝜆𝜆)𝑑𝑑𝜆𝜆 ,

∞

0
 (1.38) 

where constant 𝜂𝜂 ̃ is bounded from above by the absorption efficiency via 𝜂𝜂̃ < sup𝜆𝜆 𝜂𝜂, and it provides a 
broadband generalization of the absorption efficiency. 
Effective area or absorption cross section is connected to gain, directivity via  

 
𝜎𝜎𝑎𝑎 = 𝜆𝜆2

4𝜋𝜋
𝐷𝐷 = 𝜋𝜋

𝑘𝑘2 𝐷𝐷. (1.39) 

Under the assumption of N non-interfering resonances characterized by the real valued wave numbers 𝑘𝑘𝐴𝐴 , 
Gustafsson et al. [26] give a model for the absorption cross section as 

 
𝜎𝜎𝑎𝑎(𝑘𝑘) = 2𝜋𝜋 � 𝜚𝜚𝐴𝐴

𝑁𝑁

𝐴𝐴=1

𝑄𝑄𝐴𝐴𝑘𝑘𝐴𝐴

1 + 𝑄𝑄𝐴𝐴
2

4 � 𝑘𝑘
𝑘𝑘𝐴𝐴

− 𝑘𝑘𝐴𝐴
𝑘𝑘 �

2, (1.40) 

Where k is assumed real valued and 𝜚𝜚𝐴𝐴  are positive weight functions satisfying ∑𝜚𝜚𝐴𝐴 = 𝜚𝜚(0). Here, the 𝑄𝑄 factor 
of the resonance at 𝑘𝑘𝐴𝐴  is denoted by 𝑄𝑄𝐴𝐴 , and for 𝑄𝑄 ≫ 1, the associated relative half-power bandwidth if 
𝐵𝐵 ≈ 2/𝑄𝑄𝐴𝐴 . For the resonance model (1.40) one can argue that 𝑄𝑄𝐴𝐴  coincides with the corresponding antenna 𝑄𝑄 -
factor when the relative bandwidth  2/𝑄𝑄𝐴𝐴  is based on the half power threshold. In the case of strongly interfering 
resonances, the model either has to be modified or another estimate has to be used. The absorption cross section 
is the imaginary part, 𝜎𝜎𝑎𝑎(𝑘𝑘) = 4𝜋𝜋𝑘𝑘Im(𝜚𝜚𝐴𝐴 ), of the function 

 
𝜚𝜚𝑎𝑎(𝑘𝑘) = � 𝜚𝜚𝐴𝐴

𝑁𝑁

𝐴𝐴=1

𝑗𝑗𝑄𝑄𝐴𝐴𝑘𝑘𝐴𝐴/(2𝑘𝑘)

1 + 𝑗𝑗 𝑄𝑄𝐴𝐴
2 � 𝑘𝑘

𝑘𝑘𝐴𝐴
− 𝑘𝑘𝐴𝐴

𝑘𝑘 �
, (1.41) 

for real valued k. The function 𝜚𝜚𝑎𝑎(𝑘𝑘) is holomorfic for 𝐼𝐼𝑚𝑚(𝑘𝑘) > 0 and has a symmetrically distributed pair of 
poles for 𝐼𝐼𝑚𝑚(𝑘𝑘) > 0. The integrated absorption cross section is  

 1
4𝜋𝜋2 � 𝜎𝜎𝑎𝑎(𝑘𝑘)

𝑘𝑘2 𝑑𝑑𝑘𝑘
∞

−∞
= 𝜚𝜚𝑎𝑎(0) = 𝜂𝜂�̃�𝜚(0) ≤ 𝜚𝜚(0), (1.42) 

where 𝜚𝜚(0) is the static limit defined in (1.31). For antennas with a dominant first resonance at 𝑘𝑘 = 𝑘𝑘1 , it follows 
from (ono za bandwidth 3.1 u gusta) and (gore) that the partial realized gain satisfies 

 
(1 − |Γ|2)𝐺𝐺 = 𝑘𝑘2𝜎𝜎𝑎𝑎

𝜋𝜋
≤ 𝜚𝜚(0) 𝑄𝑄𝑘𝑘1

1 + 𝑄𝑄2

4 � 𝑘𝑘
𝑘𝑘1

− 𝑘𝑘1
𝑘𝑘 �

2 , (1.43) 

Where 𝜚𝜚𝐴𝐴 ≤ 𝜚𝜚(0) has been used. The right hand side of () reaches a maximum value 𝜚𝜚(0)2𝑘𝑘1
3𝑄𝑄/(1 − 𝑄𝑄−2) at 

𝑘𝑘0 = 𝑘𝑘1(1 − 2𝑄𝑄−2)−1/2 or 𝑘𝑘0 = 𝑘𝑘1 + 𝑂𝑂(𝑄𝑄−2) as 𝑄𝑄 → ∞. Hence, 𝑘𝑘0  is a good approximation to 𝑘𝑘1  if 𝑄𝑄 ≫ 1. 
For a loss-less antenna which is perfectly matched at 𝑘𝑘 = 𝑘𝑘0 , the partial realized gain (1 − |Γ|2)𝐺𝐺 coincides with 
the partial directivity D. Under this assumption, (1.44) yields 

 𝐷𝐷
𝑄𝑄

≤ 𝜚𝜚(0)2𝑘𝑘1
3

(1 − 𝑄𝑄−2)
 , (1.44) 

Which can further be estimated from above as 

 𝐷𝐷
𝑄𝑄

≤ 𝑘𝑘3

2𝜋𝜋
��̂�𝐩𝐞𝐞

∗ ⋅ 𝛄𝛄𝑒𝑒 ⋅ �̂�𝐩𝐞𝐞 + �̂�𝐩𝐦𝐦
∗ ⋅ 𝛄𝛄𝑚𝑚 ⋅ �̂�𝐩𝐦𝐦� , (1.45) 

which can be transformed into a bound for 𝑄𝑄, given by 

1-10 
 



CHAPTER 1: THEORETICAL BACKGROUND AND STATE OF THE ART 

 𝑄𝑄 = 2𝜋𝜋𝐷𝐷
𝜂𝜂�̃�𝑘3��̂�𝐩𝐞𝐞

∗ ⋅ 𝛄𝛄𝑒𝑒 ⋅ �̂�𝐩𝐞𝐞 + �̂�𝐩𝐦𝐦
∗ ⋅ 𝛄𝛄𝑚𝑚 ⋅ �̂�𝐩𝐦𝐦�

. (1.46) 

By defining the total polarizability 𝛾𝛾 = ��̂�𝐩𝐞𝐞
∗ ⋅ 𝛄𝛄𝑒𝑒 ⋅ �̂�𝐩𝐞𝐞 + �̂�𝐩𝐦𝐦

∗ ⋅ 𝛄𝛄𝑚𝑚 ⋅ �̂�𝐩𝐦𝐦� we can write (1.46) compactly as 

  𝑄𝑄 = 2𝜋𝜋𝐷𝐷
𝜂𝜂�̃�𝑘3𝛾𝛾

.  (1.47) 

We have thus derived the expression for the 𝑄𝑄 factor of a scattering object i.e. and antenna based on its 
static, polarizability parameters. To consider (1.46) as a bound on 𝑄𝑄 we just have to consider the polarzabilities 
of object made from perfect electric (PEC) or magnetic (PMC) conductors that do not allow fields inside the 
objects. If the fields within the volume are zero, just like the case of the Chu sphere, we obtain the bound, i.e. 
limit on the 𝑄𝑄 factor for such a volume.  

Example: Considering now an antenna being perfectly electric conducting (PEC) in free space, it follows 
that 𝛄𝛄𝑚𝑚 = 0 and only 𝛄𝛄𝑒𝑒  is of concern. In the case of linear polarization the total polarizability 𝛾𝛾 reduces to just 
one electic polarizability 𝛄𝛄𝑒𝑒 . Additionally, we can normalize the polarizability and write 𝛄𝛄𝑒𝑒 = 4𝜋𝜋𝑎𝑎3𝛄𝛄𝑒𝑒

𝐴𝐴𝐶𝐶𝑘𝑘𝑚𝑚 , 
where a is the radius of the Chu sphere, and 𝛄𝛄𝑒𝑒

𝐴𝐴𝐶𝐶𝑘𝑘𝑚𝑚  is given in Figure 11 for several antenna geometries 
(scatterers). Further, since the directivity D of the single mode radiating small antennas 𝑘𝑘𝑎𝑎 ≪ 0.5 (like the 
Hertzian dipole) is 𝐷𝐷 =  1.5, it follows from (1.46) that  

 𝑄𝑄 = 1.5
(𝑘𝑘𝑎𝑎)3𝛄𝛄𝑒𝑒

𝐴𝐴𝐶𝐶𝑘𝑘𝑚𝑚  , (1.48) 

With 𝛄𝛄𝑒𝑒
𝐴𝐴𝐶𝐶𝑘𝑘𝑚𝑚  given in Figure 11. For a spherical volume (Chu sphere), for 𝑘𝑘𝑎𝑎 ≪ 0.5, when D = 1.5 and 𝜂𝜂̃ = 0.5, 

since 𝛄𝛄𝑒𝑒
𝐴𝐴𝐶𝐶𝑘𝑘𝑚𝑚 = 1, from (1.50) we have  

 𝑄𝑄𝑆𝑆𝐴𝐴 ℎ𝑒𝑒𝑘𝑘𝑒𝑒 ,𝐺𝐺𝑠𝑠𝑠𝑠𝐴𝐴𝑎𝑎𝑓𝑓𝑠𝑠𝑠𝑠𝐶𝐶𝐴𝐴 = 1.5
(𝑘𝑘𝑎𝑎)3 , (1.49) 

This is, in fact, identical to Thal’s antenna supporting a single TM10 mode given in (1.25) when 𝑘𝑘𝑎𝑎 ≪ 0.5. 
We also note that Gustafsson’s (1.49) is thus identical to the 𝑄𝑄 values obtained by Best [22] for a N-turn arm 
spherical helix. An example is given in Figure 12 for four arm elongated helix antenna with height/width = 2/3. 
The number of turns is adjusted to adjust the resonance and generate the data.  

 
Figure 11 Normalized 𝛄𝛄𝑒𝑒

𝐴𝐴𝐶𝐶𝑘𝑘𝑚𝑚  eigenvalues for several small antenna geometries with 𝑎𝑎/𝑎𝑎 = 10−3  for the circular ring, prolate spheroid, and 
circular cylinder. Taken from [36]. 

 
Figure 12 (a) Three turn four arm elongated helix antenna with height/width = 2/3 (b) Gustafsson 𝑄𝑄 limit for a prolate spheroid with width to 
height ratio 2/3 along with  measured N-turn four arm elongated helix 𝑄𝑄. Taken from [36]. 
 

(b) (a) 
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In conclusion, Gustafsson’s bound combines directivity and 𝑄𝑄 into a single bound and shows the tradeoff 
between them directly, unlike the spherical mode expansion technique. Additionally, there are no assumptions of 
an a priori volume, like a sphere. Applying the scattering approach to a sphere leads to realistic predictions for 
the minimum 𝑄𝑄 factor, confirmed by the spiral helical type of antennas introduced by Best [22]. Compared to 
the spherical mode expansion approach the mathematical difficulty in the scattering approach is the ability to 
analytically derive the object’s polarizability. However, a major improvement in this regard is that the 
polarizability 𝛾𝛾 can also be estimated numerically using broadband scattering simulations and using (1.37). 
Knowledge of the antenna’s absorption characteristics are, however, necessary to use the Gustafsson bound.  

In the recent years Gustafsson et. al. also introduced new methods of obtaining minimum 𝑄𝑄 factor based on 
the optimum currents approach, which is currently outside the scope of this thesis. 

1.2. Introduction to microstrip antennas 
In this section we restrict ourselves to pin fed compact microstrip design or rectangular and circular shape, 

shown in Figure 13, because it is believed to be of greater importance for the end application.  
There are two basic analytical approaches to pin fed patch antennas. The transmission-line model and 

the cavity model that will be shown in order to explain the basic operation of patch antennas. The chapter will 
concentrate on miniaturization and bandwidth enhancement techniques. 

 
Figure 13 (a) Rectangular microstrip patch antenna and (b) circular microstrip patch antenna. 
 

Microstrip antennas are used in high-performance aircraft, spacecraft, satellite, and missile applications, and 
commercial applications, such as mobile radio and wireless communications where size, weight, cost, 
performance, ease of installation, and aerodynamic properties and low profile are constraints.  

 Microstrip antennas have following advantages: they are low profile, light weight, conformable to planar 
and non-planar surfaces, simple and inexpensive to manufacture using modern printed-circuit technology, 
mechanically robust when mounted on rigid surfaces, and when the particular patch shape and mode are 
selected, they are very versatile in terms of resonant frequency, polarization, pattern, and impedance. They are 
amendable to mass production, easily integrated with microwave integrated circuits and are conveniently 
integrated into array. These advantages contributed to the success of the microstrip antenna. 

Microstip antennas also have some limitations compared to conventional microwave antennas: narrow 
bandwidth which is typically only a fraction of a percent or at most a few percent and associated tolerance 
problems with resonance frequency, low efficiency, poor polarization purity, poor scan performance, spurious 
feed radiation, somewhat lower gain ( < 6dBi), large ohmic loss in the feed line of arrays, excitation of surface 
waves [37]. 

1.2.1. Basic operation of microstrip antennas 
At first glance it might seem surprising that a microstrip antenna can operate very well at all, since it consists 

of a horizontal electric surface current (corresponding to the patch current) suspended (via the substrate) a short 
distance above a ground plane. Basic image theory predicts that such a current will not radiate very well. 
However, the microstrip patch and the ground plane together form a resonant cavity (filled with the substrate 
material). The cavity is lossy, due not only to the material (conductor and dielectric) loss, but also to the 
(desirable) radiation into space from its edges.  

The fields within the dielectric substrate (between the patch and the ground plane) can be found by treating 
that region as a cavity bounded by electric conductors (above and below it) and by magnetic walls (to simulate 
an open circuit) along the perimeter of the patch. This is an approximate model, which in principle leads to a 
reactive input impedance (of zero or infinite value of resonance), and it does not radiate any power. However, 
assuming that the actual fields are approximate to those generated by such a model, the resonance frequency can 
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be calculated and a microstrip antenna can be understood as an array of two radiating narrow apertures (slots). In 
the case of rectangular geometry, each of width W and height h, separated by a distance L.  

In this so-called cavity model, the patch acts as resonant cavity with an electric field perpendicular to the 
patch, that is, along the z-direction in Figure 14(a). The magnetic field has a vanishing tangential component at 
the four edges of the patch. Due to these boundary conditions, the lowest possible cavity mode is a transverse 
magnetic TM010 mode. The fields of the lowest resonant mode (assuming L > W) are given by 

 𝐄𝐄 = −𝐳𝐳�̂�𝑇0 sin �𝜋𝜋 
𝑗𝑗

𝑥𝑥�

𝐇𝐇 = −�̂�𝐲𝐻𝐻0 cos �𝜋𝜋 
𝑗𝑗

𝑥𝑥�
 𝑓𝑓𝐶𝐶𝑘𝑘 

– 𝑗𝑗
2

≤ 𝑥𝑥 ≤ 𝑗𝑗
2

– 𝐹𝐹
2

≤ 𝑦𝑦 ≤ 𝐹𝐹
2

, (1.50) 

where 𝐻𝐻0 = −𝑗𝑗𝑇𝑇0/𝜂𝜂0 . We have placed the origin at the middle of the patch. It can be verified that (1.50) satisfy 
Maxwell’s equations and the boundary conditions, that is, 𝐇𝐇 = 𝟎𝟎  at 𝑥𝑥 = ±𝑗𝑗/2  provided the resonant 
frequency is: 

 𝜔𝜔 = 𝜋𝜋𝑐𝑐 
𝑗𝑗

 ⇒  (𝑓𝑓𝑘𝑘)010 = 0.5 𝑐𝑐
𝑗𝑗

= 0.5 𝑐𝑐0

𝑗𝑗�𝜀𝜀𝑘𝑘
  , (1.51) 

where  𝑐𝑐 = 𝑐𝑐0/�𝜀𝜀𝑘𝑘 , 𝜂𝜂 = 𝜂𝜂0/�𝜀𝜀𝑘𝑘 , and 𝜀𝜀𝑘𝑘  is the relative permittivity of the dielectric substrate. It follows that the 
resonant microstrip length will be half-wavelength. The length L is usually increased by an amount Δ𝑗𝑗 ≈ ℎ 
because, in reality, the (fringing) fields extend slightly beyond the imagined edge of the cavity and effectively 
prolong the patch size. The fringing fields, shown in Figure 14(b), are the actual cause of radiation. 
 

 
Figure 14 (a) Cavity model of a rectangular patch antenna and (b) the fringing fields that extend beyond the cavity in realty. Taken from [37] 
 

For a circular the electric field of the lowest resonant mode is given by [31]  

 
𝐄𝐄 = 𝐳𝐳�̂�𝑇0

𝐽𝐽1 �𝐴𝐴11
′ 𝜌𝜌 
𝑎𝑎 �

𝐽𝐽1(𝐴𝐴11
′ )

 , 𝑓𝑓𝐶𝐶𝑘𝑘  0 < 𝜌𝜌 < 𝑎𝑎 (1.52) 

where 𝐴𝐴11
′  is the first zero of the Bessel function 𝐽𝐽1

′ (𝑥𝑥), and 𝑎𝑎 is the physical radius of the circular patch. The 
usual mode of operation is the TM110 mode with 𝐴𝐴11

′  = 1.8418. This mode has a broadside pattern the lowest 
resonance frequency given by. 

 
 (𝑓𝑓𝑘𝑘 )110 = 𝐴𝐴11

′ 𝑐𝑐
2𝜋𝜋𝑎𝑎𝑒𝑒�𝜀𝜀𝑘𝑘

  , (1.53) 

where instead of the patch radius a, we used the effective patch radius  𝑎𝑎𝑒𝑒 , due to the (fringing) fields extending 
slightly beyond the imagined cavity. 𝑎𝑎𝑒𝑒  is given by an empirical formula 

 
𝑎𝑎𝑒𝑒 = 𝑎𝑎�1 + 2ℎ

𝜋𝜋𝑎𝑎𝜀𝜀𝑘𝑘
�ln �𝜋𝜋𝑎𝑎

2ℎ
� + 1.17726��

1/2
, (1.54) 

These formulas can also be used to calculate the needed patch size for a desired resonant frequency but are only 
approximate. 

An alternative, approach to describe patch antennas is the transmission line model. For a rectangular or 
square patch, its radiation is basically generated from fringing fields at its two edges, as shown in Figure 15(a). 
Patch radiation is similar to radiation from two narrow slots separated by the patch length L, as mentioned in the 
cavity model.  When operating at its fundamental mode, the patch is essentially a ½ 𝜆𝜆𝑔𝑔 -long microstrip 
transmission line and can be represented by an equivalent transmission line model. The transmission line seems 
open ended at each end, however there is a capacitive effect and radiation loss, both created by the fringing 
fields. Thus the microstrip radiator can be characterized by two slots separated by a transmission line, where 
each slot is represented by a parallel circuit of conductance (𝐺𝐺) and susceptance (𝐵𝐵). The complete patch 

(a) (b) 
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antenna can be represented by the equivalent network shown in Figure 15(b). The feeding pin is connected at a 
position where the imaginary parts of the transformed admittances from the transmission line edges cancel out.  

This transmission-line model is simple, intuitively appealing, and computationally fast, but it suffers from 
limited accuracy. For example, this model lacks the radiation from the non-radiating edges of the patch, and it 
has no mutual coupling between the two radiating slots, it lacks the flexibility and generalization of analyzing 
other patch shapes. Nevertheless, it does shed some physical insight into the operation of the antenna. 

 
Figure 15 (a) Microstrip patch radiation source represented by two equivalent slots. (b) Equivalent circuit of a microstrip patch element. 
 

The characteristic impedance of the patch transmission line Z0p and its effective permittivity 𝜀𝜀𝑘𝑘  can be 
calculated using very accurate, but cumbersome empirical formulas one can find in [38]. The feed pin can also 
contribute to radiation, thus it introduces additional loss, but more importantly, it introduces unwanted inductive 
reactance. A precise analysis of the feeding pin impedance was done in [39]. Effective capacitance and radiation 
loss are also described by empirical formulas only, and can be found in [40]. Writing out all these formulas is 
avoided as they will not be used in this thesis. 

1.2.2. Miniaturization techniques 
Here we discuss the miniaturization techniques for pin fed classical patch antennas and show specific examples. 
The material loading example shows simulation results created by the author while other examples are taken 
from the literature.  

A. MATERIAL LOADING 
For a rectangular patch we can transform (1.51) to state 𝑗𝑗 = 0.5𝑐𝑐0/((𝑓𝑓𝑘𝑘)010 �𝜀𝜀𝑘𝑘), where we immediately see 
that for a fixed resonance frequency (𝑓𝑓𝑘𝑘 )010  length L, i.e. patch size, is inversely proportional to the square root 
of the substrate permittivity. The simplest miniaturization technique is thus an increase of permittivity.  

Example: A demonstration of this miniaturization technique is visible Figure 16 for a rectangular patch over 
an infinite ground plane and substrates of different permittivity’s. The exact size and miniaturization factor are 
given in Table 6 for several substrate height values. 
 

 
 
Figure 16 Comparison of size of a pin-fed rectangular patch over infinite substrate of relative permittivity 1. 3.66, 6.15 and 10.2.  In each 
case, size is adjusted for a resonance at 2.3GHz.  
 

Substrate height h 1 mm 3 mm 6 mm 

Permittvity εr 
Patch size and  
miniaturization factor 

Patch size and  
miniaturization factor 

Patch size and  
miniaturization factor 

1 62.14 mm 1.00 59.21 mm 1.00 57.99 mm 1.00 
3.66 33.35 mm 1.86 32.03 mm 1.85 30.94 mm 1.87 
6.15 25.85 mm 2.40 24.70 mm 2.40 22.94 mm 2.53 
10.2 20.13 mm 3.09 19.00 mm 3.12 17.06 mm 3.40 

 

(a) (b) 
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Table 6 Exact patch size in [mm] for three different heights of the substrate and the corresponding miniaturization factor for each permittivty. 

B. SHORTING PIN  
Based on the cavity-model approximation, the fundamental or first resonant frequency of the rectangular patch in 
Figure 17(a) without a shorting pin is determined from formula (𝑓𝑓𝑘𝑘 )010 = 0.5𝑐𝑐0/𝑗𝑗�𝜀𝜀𝑘𝑘  for the TM010 mode. The 
rectangular microstrip antenna is usually operated as a half-wavelength antenna. When a shorting wall is used at 
the edge of the patch, the null-voltage point that was at the center of the rectangular patch (operated at the TM010 
mode) is shifted to the patch edge, and the first resonant frequency occurs close to, or at about 0.5(𝑓𝑓𝑘𝑘)010 . In this 
case, the shorted microstrip antenna is operated as a quarter-wavelength antenna, a 50% decrease in size. 
Compared to shoring wall, a shorting-pin-loaded rectangular microstrip antenna is operated with a resonant 
length less than one quarter-wavelength and a greater reduced antenna size than for the case with a shorting wall 
can be obtained. 

Example: Figure 17(a) shows the configurations of shorted rectangular and circular microstrip antennas with 
a shorting pin. When there is a shorting pin placed at 𝑥𝑥 = − 𝑗𝑗 2⁄ , 𝑦𝑦 = 0, (center of the patch edge) and the feed 
position is chosen on the centerline (x axis), the first resonant frequency occurs at about 0.38(𝑓𝑓𝑘𝑘)010  [42].  

 
Figure 17 Geometries of compact (a) rectangular, and circular microstrip antennas with shorting-pin loading. (b) Typical measured  radiation 
patterns in E- and H-plane at resonance of (a) shorted and (b) conventional microstrip antennas. Pictures taken from [42], and the original 
paper [43]. 
 

Similar behavior is true also for a circular patch, with the shorting-pin-loading technique, the antenna size 
reduction is mainly due to the shifting of the null-voltage point at the center of the circular patch (operated at the 
TM110 mode) to the patch edge, which makes the shorted patches resonate at a much lower frequency. The 
reduction in the patch size is limited by the distance between the null-voltage point in the patch and the patch 
edge. The radiation patterns for the compact and conventional microstrip antennas are plotted in Figure 17(b) 
and (c). It is observed that the component of cross-polarization radiation is increased due to the shorting-pin 
loading, especially for H-plane (y–z plane) radiation. However, for E-plane (x–z plane) radiation, the cross-
polarization radiation is still below −20 dB. Note that, due to the antenna size reduction, a decrease in the 
antenna gain and bandwidth is expected. 

C. MEANDERED PATCH 
This kind of miniaturization technique is achieved mainly by loading several meandering slits at the non-
radiating edges of a rectangular patch or at the boundary of a rectangular or circular patch. The narrow slots 
meander the patch, which increases the effective electrical length of the patch. 

Example: Figure 18 shows the geometry of a short-circuited, meandered circular microstrip antenna. The 
circular patch is short-circuited at the edge with a shorting pin, and three narrow slots of the same length l and 
width w are cut in the patch. The shorting pin also makes the circular patch resonate at a much lower frequency 
compared with a conventional circular patch of the same size. Based on the above design concept, short-circuited 
circular microstrip antennas with different slot lengths were constructed. The circular patch has a radius 𝑅𝑅 of 7.5 
mm, and a shorting pin of radius 𝑘𝑘𝑠𝑠 = 0.4 mm is placed near the patch edge at 𝑑𝑑𝑠𝑠 = 6.5 mm. The patch 
substrate has a relative permittivity 𝜀𝜀𝑘𝑘 = 4.4 and thickness ℎ = 1.6 mm. Figure 18(b) shows the measured 
resonant frequency against the slot length in the short-circuited circular patch. Results clearly indicate that, with 
increasing slot length, the resonant frequency of the meandered patch decreases. It is also found that the slot 
width has relatively little effect on the resonant frequency. 

From the results for the case of 𝑐𝑐 =  𝑅𝑅, a circular patch of radius 7.5 mm has a resonant frequency of 1652 
MHz. For a conventional circular patch antenna (without a shorting pin and slots in the patch) to be operated at 
1652 MHz, the radius of the circular patch needs to be about 25.2 mm (with the same substrate material). That is, 
the patch size is reduced to about 9% compared with the conventional circular patch of the same operating 
frequency. The impedance bandwidth determined from a 10-dB return loss is found to be about 1.6%, which is 

(a) (b) (c) 
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less than that (1.9%) of a conventional circular microstrip antenna at the same operating frequency. This 
reduction in the antenna bandwidth is expected due to the reduced antenna size. 

 
Figure 18 (a) Geometry of a meandered circular microstrip antenna with a shorting pin. (b) Measured resonant frequency against slot length l 
in the circular patch; 𝑅𝑅 =  7.5 mm (c) Measured E- and H-plane radiation patterns at resonance for an antenna with 𝑐𝑐 =  𝑅𝑅. Taken from 
[44]. 
 

It is seen in Figure 18(c) that the radiation patterns remain broadside. However, probably owing to the 
increasing of the patch surface current component perpendicular to the main excitation direction, the cross-
polarization radiation in the H plane is increased. The cross-polarization level in the E plane is seen to be about 
the same.  

D. MEANDERED GROUND PLANE 
The meandering technique for lengthening the excited patch surface current path, thus lowering the antenna’s 
fundamental resonant frequency can also be applied to the antenna’s ground plane.  

Example: Figure 19 shows and example geometry of a compact microstrip antenna with a meandered 
ground plane. In the study performed in [45], inexpensive FR4 substrates (𝜀𝜀𝑘𝑘 = 4.4, ℎ = 1.6 mm) is used. The 
dimensions of the rectangular radiating patch were chosen to be 30 mm×20 mm (L × W). The slot length lo for 
the prototypes was fixed to be 10 mm and the slot length li was varied from 8 to 14 mm. 

For the reference antenna, the fundamental resonant mode is excited at 2387 MHz with a 10-dB return-loss 
bandwidth of 2.0 %. For increasing slot length li, it is seen that the fundamental resonant frequency is quickly 
lowered. For antenna with li = 14 mm, the resonant frequency f is 1587 MHz, which is about 0.66 times that of 
the reference antenna. This suggests that an antenna size reduction as large as about 56% can be achieved for the 
proposed antenna operated at a fixed frequency. Moreover, it is clearly seen that the impedance bandwidths of 
the prototypes (antennas 1–4) are all greater than that of the reference antenna. This behavior is largely owing to 
the meandering slots embedded in the antenna’s ground plane, which also radiate to the back side of the antenna 
and effectively lower the quality factor of the proposed antenna. Figure 19(c) plots the measured E- and H-plane 
radiation patterns for antenna with li = 10 mm. Good broadside radiation patterns are observed. The front-to-back 
ratio (F/B) was also measured. From the measured results, the backward radiation of antenna 3 is increased by 
about 7 dBi compared to the reference antenna. This increase in the backward radiation is contributed to by the 
embedded slots in the ground plane and the decreased ground-plane size in wavelength. 
 

(a) 

(b) 
(c) 
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Figure 19  (a) Geometry of a compact microstrip antenna with a meandered ground plane. (b) Measured return loss against frequency; 
antenna parameters are given in table (d), (c) Measured E-plane (x–z plane) and H-plane (y–z plane) radiation patterns for the compact 
microstrip antenna, (d) Table: Performance of the compact microstip antenna with a meandered ground. Results taken from [45]. 

E. CHIP RESISTORS AND CAPACITORS  
Similar to the shorting technique, instead of a shorting wire, a chip capacitor or a chip-resistor can be used to 

load the microstrip antenna. With a chip capacitor, a decrease in the antenna’s fundamental resonant frequency 
can be obtained, which corresponds to an even larger antenna size reduction at a given operating frequency. Chip 
resistor will also reduce fundamental resonant frequency if its resistance is very small, but it will also introduce 
additional losses. Loses enlarge the bandwidth, but are usually not a desirable technique for bandwidth 
enhancement. 

 
Figure 20  (a) Geometry of a probe-fed circular microstrip antenna with a chip resistor and a chip capacitor. (b) Measured return loss against 
frequency for the antenna shown in (a) with chip-capacitor loading only; εr = 4.4, h = 1.6 mm, d = 21.97 mm,(xc, yc) = (0, 21 mm), and (xp, 
yp) = (0, 8.5 mm). (c) Table: measured resonant frequency and  impedance bandwidth as a function of angle between the loading chip resistor 
and chip capacitor. (d) Typical measured radiation patterns at resonance. Results taken from [46].  
 

Example: The geometry is shown in Figure 20(a). The chip resistor has a cross section of 2.07 × 1.27 mm2 
and is soldered to the ground plane at (xR, yR), where there is a circular hole drilled through the substrate large 
enough for the insertion of the chip resistor. The chip capacitor has a cross section of 2.0 × 1.28 mm2 and is 
loaded at (xc, yc). The probe feed is at (xp, yp) and has a circular cross section of radius 0.63 mm. The spacing 
angle between the chip resistor and the chip capacitor is denoted φs. Since the excited electric field under the 

(a) (b) 

(c) (d) 

(a) 

(d) 

(b) 

(c) 
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circular patch at the fundamental TM110 mode has a maximum value around the patch edge, both the chip resistor 
and chip capacitor are placed at the patch edge for maximum effects on the resonant-frequency lowering of the 
circular microstrip antenna.  

The case with chip-capacitor loading only is discussed first. Figure 20(b) shows the measured return loss of 
the antenna loaded with various chip capacitors. Note that the feed position in Figure 20 was fixed for various 
loading capacitances and selected such that good impedance matching was achieved for the case with a 1-pF 
chip-capacitor loading, in which an impedance bandwidth of about 1.7% is observed. The bandwidth is lower 
than that (about 1.9%) of a corresponding regular circular microstrip antenna with a center frequency at about 
1.9 GHz. This suggests that, although chip-capacitor loading can result in a reduction in the antenna’s 
fundamental resonant frequency, the impedance bandwidth is reduced, which is similar to the case of using the 
shorting-pin loading technique and also agrees with observations for the case with a parallel plate-capacitor load. 
By varying the spacing angle of φs, good impedance matching is slightly affected and the impedance bandwidth 
is about the same. 

In [46] additional loading of a 1-ohm chip resistor is also studied and it was shown the antenna had an 
impedance bandwidth of 11.5% with the loading of a 1 Ohm chip resistor and is much larger than that (about 
1.5%) of a short-circuited microstrip antenna. Also, by combining chip-resistor and chip-capacitor loadings, a 
significant effect in lowering the resonant frequency of the microstrip antenna with broadband characteristic can 
be obtained with only a very slight effect on the optimal feed position, which makes the present compact 
broadband microstrip antenna design very easy to implement. 

1.2.3. Bandwidth enhancement techniques 
Here we discuss the bandwidth enlargement techniques for pin fed classical patch antennas and show specific 
examples. The material loading, height increase and stacked patches examples contain simulation results created 
by the author while other examples are taken from the literature. 

A. ADDING LOSSES  
This is generally not the preferred way of increasing bandwidth (lowering the 𝑄𝑄 factor) and is avoided as it 
decreases the radiation efficiency. Nevertheless, as all materials have losses, realistic bandwidth is always 
increased compared to an ideal, lossless case. In the case of the Rogers materials used in our investigations the 
losses are given in terms of tan δ in Table 7. These losses are considered unavoidable and are taken into account 
in simulations throughout the thesis. 
 

Material Permittvity tanδ 
Air 1 0 
Rogers 4350 3.66 0.0037 
Rogers 3006 6.15 0.002 
Rogers 3010 10.2 0.0023 

Table 7 List of supstrate materials investigated and the corresponding losses. 

B. MATERIAL LOADING  
As mentioned in the list of miniaturization techniques, high substrate permittivity reduces the antenna size, 
however, it also reduces bandwidth. An opposite approach, lowering the substrate permittivity is thus a simple 
and direct method to enlarge bandwidth.  

Example: Demonstration of the effect of the substrate permittivity is shown in Figure 21 for a rectangular 
patch on an infinite ground plane and substrate. Sizes of the two antennas optimized to resonate at 2.3 GHz are 
given in Table 6. 

 
Figure 21 Comparing bandwidth performance for a rectangular patch antenna over substrate of relative permittivity 3.66 and 6.15, 
demonstrating larger bandwidth for lower permittivity. Figure shows simulation results. 
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C. HEIGHT INCREASE 
Second simple and direct method to enhance the bandwidth is to increase the thickness of the substrate. 
However, there are thus two major limitations to this technique. First, a thicker substrate supports more surface 
waves, which will reduce the radiation efficiency. Usually, surface waves travel within the substrate and they are 
scattered at bends and surface discontinuities, such as truncation of the dielectric and ground plane, and degrade 
the antenna pattern and polarization characteristics. Surface waves are effectively a loss mechanism and limit the 
maximum height of the substrate. Second, if the antenna is fed by a probe feed (pin-feed), large thickness will 
also cause extraneous radiation due to inductive reactance of the probe feed. This will degrade the radiation 
pattern, and also creates matching problems. 
 

Example: The increase in bandwidth vs. height is demonstrated in Figure 22 for a rectangular and circular 
patch shape, depicted in Figure 13. Investigation of height dependence was done for several substrate 
permittivity values. In all cases it is observed that the height can be increased up to about 9 mm (0.07𝜆𝜆0) when 
the effect of the excitation form (pin feed) becomes significant. At the maximum height, where the curves end, 
the broadside radiation pattern is degraded by radiation from the pin feed. Additionally, due to the inductance of 
the feed, it is impossible to find a position on the patch surface to match the antenna. 
 

 
Figure 22 Bandwidth dependence on height for (a) rectangular and (b) circular shaped patch over an infinite ground plane and substrate. Four 
different values substrate relative permittivity were investigated, namely 1 (air), 3.66, 6.15 and 10.2 to show a more complex behavior as 
height increases. For heights below about 8 mm the antennas were perfectly matched, however above 8 mm they could not be perfectly 
matched. Curves end at points where matching the antenna with the pin feed position becomes impossible.   
 

Note that the inductance from the feed can be neutralized by a series capacitor. This is a form of impedance 
matching the antenna. This capacitor can be fabricated in several different ways as shown in Figure 23. In this 
way it may be possible to increase the height a little further.  

 

 
Figure 23 Impedance matching techniques to neutralize the inductance of the probe feed. (a) the capacitor is below the patch ;(b) capacitor 
takes the form of an annular ring around the feed; (c) the substrate consists of two layers and the high permittivity upper layer is used to 
create the capacitor; (d) small disk above the patch. 
 
We also note that surface waves can be eliminated, while maintaining large bandwidths, by using cavities, which 
are introduced in the next Section of this chapter and studied in detail Chapter 2. 
 

D. ADDING ADDITIONAL MICROSTRIP RESONATORS 
By using additional microstrip patches, i.e. additional resonators that are coupled to the radiating patch, the 
antenna can have multiple closely spaced resonances and a bandwidth broadening effect can be achieved. A 

(a) (b) 

Poorly matched 
Poorly matched 
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condition to have close resonances, i.e. resonances that do not differ in resonance frequency too much, the 
coupling between the resonators has to be loose. In the case of patch antennas the resonators can be added 
vertically (stacked patches), or in the same plane as the radiating patch. 
 

Example 1: A typical configuration of stacked patches is shown in Figure 24(a). Simulation result for S11 
(negative of return loss) for stacked circular patches having two resonances around a central frequency of 2.3 
GHz is shown in Figure 24(b). The resonances are close in frequency, and the antenna remains matched in the 
frequencies between them, this corresponds to the bandwidth broadening effect. Figure 24(c) shows simulated 
radiation patterns at the two resonant frequencies, showing broadside radiation, typical for a stacked patch 
configuration. While there is ample information on the optimization and measured results for this antenna, there 
is very little or no analytical functions to design this antenna and is practically designed by a trial and error 
method. However, the following is useful in optimizing a design: The top patch should be ‘loosely’ coupled to 
the bottom patch. To do so a higher dielectric substrate for the lower patch is needed. If the relative permittivity 
of the top layer is equal or greater than that of the lower substrate, the modes on the two patches will couple too 
strongly causing tight resonant loops and separation of the resonant frequencies and finally resulting in lower 
impedance bandwidths. 

 
Figure 24 (a) Geometry of a typical stacked patch configuration. (b) Simulated S11 parameter for stacked circular patches; L1 = 54.16 mm, L2 
= 57.41 mm, h1 = 8.87 mm, h2 = 5.37 mm, Substrate 1 has relative permittivity 2.1 and substrate 2 permittivity of 1.1. (c) Simulated radiation 
patterns for the two resonant frequencies.  
 

Example 2: Typical geometry of additional resonators in the plane with the radiating patch is shown in 
Figure 25(a), in this case, a rectangular microstrip antenna with two additional patches directly coupled to its 
radiating edges. The impedance bandwidth can be five times that of a single rectangular microstrip antenna, as 
seen from the return loss in Figure 25(b). However, the resulting broadband microstrip antenna also has a much 
increased antenna size (area) compared to a single rectangular microstrip antenna. Radiation pattern remains 
broadband and is shown, for several frequencies in Figure 25(c). 
 

(a) 

(b) (c) 

E-Plane H-Plane 

E-Plane H-Plane 
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Figure 25  (a) Geometry of a proposed broadband microstrip antenna with directly coupled and parasitic patches; εr = 4.4, h = 1.6 mm, L1 = 
26.6 mm, L2 = 24.4 mm, L3 = 26.47 mm, L4 = 27 mm, W1 =16 mm, W2 = 40 mm, W3 = W4 = 10 mm, S = 2 mm, l = 2 mm, w = 0.2 mm, and dp 
=1.2 mm.  (b) Measured return loss against frequency; (c) radiation patterns for several frequencies. Pictures taken from [47]. 
 

E. MODIFYING THE PROBE FEED 
The antenna geometry is shown in Figure 26 is using a three-dimensional microstrip transition feed. In this case, 
although the antenna has a thick air substrate, a short probe pin can be used, which is connected to a rectangular 
patch as a feed transition to the antenna’s radiating patch. 
 

 
 

Figure 26  Geometry of a broadband microstrip antenna with a three-dimensional microstrip transition feed. This behavior makes good 
impedance matching over a wide bandwidth easy to achieve, and it has been shown that the typical operating bandwidth of this antenna is 
about 40%. Picture taken from [48]. 

F. INSERTING A U-SLOT 
Embedding a suitable U-shaped slot in the antenna’s radiating patch introduces a second resonance that is used 
for a bandwidth broadening effect. In this case the patch area is “re-used” without the need of additional 
resonators that would increase the antenna overall size like in the previous Section. It is a very effective method 
for achieving a wide bandwidth for a probe-fed microstrip antenna with a thick air substrate. 
 

Example: Geometry of a rectangular patch antenna with a U-slot is presented in Figure 27(a). Good 
broadside radiation patterns are observed; see Figure 27(b). However, relatively large cross-polarization 
radiation in the H-plane pattern is also seen; which is a common characteristic for this kind of probe-fed 
microstrip antenna with a thick air substrate. Two resonances in are visible in the measured S11 parameter seen 
on Figure 27(c). An impedance bandwidth (10-dB return loss) of 500 MHz, or about 27.5% referenced to the 
center frequency at 1815 MHz is observed. To reduce the cross-polarization radiation, two out-of-phase feeds 

(a) 

(b) (c) 
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can be used. The antenna gain was also measured, and the results are presented in Figure 27(e). The peak 
antenna gain is about 9.0 dBi, and the gain variations within the bandwidth are less than about 1.0 dBi. 

 
Figure 27 (a) Geometry of a broadband probe-fed rectangular microstrip antenna with a U-shaped slot. (b) Measured return loss for the 
antenna shown in (a). (c)  Measured radiation patterns for the antenna for f =1615 MHz; (d) f = 1955 MHz. (e) Antenna gain. Results taken 
from [49]. 

G. CREATING AN E-SHAPED PATCH  
By using an E-shaped patch instead of a U-slotted patch, similar broadband operation can be obtained. The E-
shaped patch is formed by inserting a pair of wide slits at the boundary of a microstrip patch.  

 
Figure 28 (a) Geometry of a broadband E-shaped microstrip antenna; L = 65 mm, W = 105 mm and ground-plane size = 150×150mm2; (b) 
Measured return loss;. Antenna A:  h = 14.3 mm, l =47mm, w1 = 6.3 mm, w2 = 15.3 mm, and dp = 10 mm; Antenna B: h = 15.7 mm, l = 53 
mm, w1 = 10 mm,w2 = 8 mm, and dp = 13 mm (c) Measured E-plane (y–z plane) and H-plane (x–z plane) radiation patterns for f = 1485 
MHz, (d) f = 1644 MHz, (d) Measured antenna gain in the broadside direction for antennas A and B. Pictures taken from [50]. 
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Example: Geometry for a rectangular patch is shown in Figure 28(a). Figure 28(b) shows the measured 
return loss for two constructed prototypes (antennas A and B). For antenna A, the impedance bandwidth is 408 
MHz, or about 24.8% with respect to the center frequency at 1644 MHz. For antenna B, the obtained bandwidth 
is 376 MHz, or about 23.6% referenced to the center frequency at 1592 MHz. The cross-polarization radiation in 
the E-plane patterns is less than−20 dB, see Figure 28(c) and (d). The H-plane patterns, however, show relatively 
larger cross-polarization radiation. This behavior is similar to that reported for the U-slotted patch, and is largely 
due to the thick substrate thickness (about 0.08 times the wavelength of the center frequency in this study) and 
long probe pin in the substrate layer. For both antennas A and B, the antenna gain, see Figure 28(e), variation is 
less than 0.8 dBi, with the peak antenna gain at about 7.2 dBi. 

H. SLOT-LOADING  
The proposed antenna is shown in Figure 29(a). The slots are placed symmetrically with respect to the y axis, on 
which an optimal probe feed for good impedance matching is located. The distance between the probe feed and 
disk center is denoted dp. The inner open-ring slot has a small opening and is fixed. The outer open-ring slot has 
a relatively large opening and has an angle of φ. In the present design, by choosing a suitable angle φ, two 
resonant modes can be closely excited at frequencies in the vicinity of the fundamental resonant frequency 
 (𝑓𝑓𝑘𝑘 )110  of the corresponding simple circular microstrip antenna without slots, leading to the enhancement of the 
impedance bandwidth of the proposed antenna.  

Example: Figure 29(b) presents the measured return loss for a constructed prototype. The angle φ is selected 
to be 32◦ and the feed position is at dp = 13 mm. Note that, when there are no open-ring slots, the fundamental 
resonant frequency (𝑓𝑓𝑘𝑘 )110  of the circular microstrip antenna with a radius of 23.36 mm is about 2 GHz. It is 
also clearly seen that the prototype antenna has two adjacent resonant modes excited at frequencies near 2 GHz: 
one at 2148 MHz and the other at 2200 MHz. The impedance bandwidth is 90 MHz, or about 4.1% with respect 
to the center frequency at 2175 MHz. This impedance bandwidth is about 2.1 times that (about 2%) of the 
corresponding simple circular microstrip antenna without slots. Figure 29(c) and (d) show the measured radiation 
patterns at the two resonant frequencies of 2148 and 2200 MHz. Similar broadside radiation patterns have been 
observed for the two resonant modes, and good cross-polarized radiation (less than−20 dB) is seen. Figure 29(f) 
shows the measured antenna gain in the broadside direction. The results show that the gain variation within the 
impedance bandwidth of the antenna is within a variation of less than 2.6 dB. It should also be noted that, mainly 
owing to the FR4 substrate used in this study, which has a large loss tangent (about 0.04), the antenna gain level 
is lower than about 3.5 dBi. 

 
Figure 29  (a) Geometry of a broadband circular microstrip antenna with two open-ring slots. The dimensions shown in the figure are not to 
scale. (b) Measured return loss for the antenna; εr = 4.4, h = 1.6 mm, dp = 13 mm, φ = 32◦, and ground-plane size = 75 × 75 mm2. Measured 
y–z plane (E-plane) and x–z plane (H-plane) radiation patterns for the antenna  (c) f = 2148 MHz, (d) f = 2200 MHz.(e) Measured antenna 
gain in the broadside direction. Pictures taken from  [51]. 

(a) 

(b) (f) 

(d) 

(c) 

1-23 
 



CHAPTER 1: THEORETICAL BACKGROUND AND STATE OF THE ART 

I. INTEGRATING REACTIVE LOADING 
The integrated reactive loading technique is applicable to rectangular and circular circular microstrip antennas. 
However, experimental studies have shown that broadband operation is very sensitive to small variations in the 
dimensions of the inserted microstrip structure providing the reactive loading, especially when applying the 
inserted-loading technique to a circular microstrip antenna. To provide the reactive loading, a microstrip 
structure consisting of a straight microstrip-line section and a tab microstrip-line section is embedded inside a 
near-rectangular slot cut in the circular patch, shown on Figure 30(a). The occurrence of the two resonant modes 
is mainly due to the embedded reactive loading, which provides a capacitive load at the lower resonant 
frequency and an inductive load at the higher resonant frequency. 

 
Example: Both the microstrip structure and the near rectangular slot are symmetric to the y axis; their 

dimensions are given in Figure 30(a). The straight microstrip-line section of the embedded microstrip structure is 
connected to the circular patch at the bottom edge of the slot, which is at a position about 0.2 times the disk 
radius away from the disk center. For the present design with ℎ =  1.6 mm, 𝜀𝜀𝑘𝑘 = 4.4, and a ground-plane size 
of 75 × 75 mm2, a single probe feed located at a position about 0.55 times the disk radius away from the disk 
center can excite two resonant modes close to each other, in the vicinity of the fundamental resonant mode 
(TM110) of the unloaded patch, to achieve a wide operating bandwidth. Figure 30(b) shows the measured return 
loss for the proposed design. It is observed that two resonant modes are excited at frequencies close to 1.9 GHz, 
which is the fundamental resonant frequency of the unloaded circular patch antenna. The measured return loss at 
the two resonant frequencies is greater than 25 dB. The obtained bandwidth is 116 MHz, or about 6.05%, which 
is about 3.2 times that (about 1.9%) of the corresponding unloaded circular microstrip antenna. Typical patterns 
in two orthogonal planes at the two resonant frequencies are presented in Figure 30(c) and (d). It is seen that 
good broadside radiation characteristics with the same polarization planes are obtained, and the cross-
polarization radiation is well below −20 dB. The measured antenna gain in the broadside direction is shown in 
Figure 30(e). In general, the operating frequencies in the lower resonant mode have a relatively larger antenna 
gain than those within the higher resonant mode, and the variations of the antenna gain in the entire impedance 
bandwidth are within a range of less than 2.5 dBi. 

 
Figure 30 (a) Geometry of a broadband circular microstrip antenna with an embedded reactive loading. The dimensions shown in the figure 
are not to scale. (b) Measured return loss for the antenna shown in Figure 7.49; εr = 4.4, h =1.6 mm, and ground-plane size = 75 × 75 mm2. 
Patch dimensions are given in Figure 7.49. (c)  Measured y–z plane (E-plane) and x–z plane (H-plane) radiation patterns for f = 1885 MHz; 
(d) f = 1947 MHz. (e) Measured antenna gain in the broadside direction for the antenna studied in (a). Taken from [52]  
  

(a) 

(b) 

(d) 

(e) 

 
(c) 
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1.3. Introduction to cavity antennas 
Cavities as an antenna design element have been analyzed and used in practice since the middle of the 20th 
century. One of the first investigations of small cavities acting as antennas themselves was done by Counter and 
Cohen [53],[54],[55] and this thesis relies heavily the work presented in [53]. The use of cavity backing for 
antennas of various types in the period from 1950 to 1988 was summarized by Kummar in [56] where it was 
noted that a cavity reduces back radiation and side lobes, enhances forward gain and the resonant fields in the 
cavity help in reducing the size of the antenna. Kummar classifies cavity antennas into two basic groups: 

• Dual reflector antennas 
• Other cavity backed antennas 

Dual reflector antennas consist of two reflectors, most frequently plane, with one dimensional field resonance 
between them, One of the reflectors is much smaller than the other (example: backfire antennas on Figure 31(a)), 
or else it is a semitransparent sheet (beam waveguide antennas) and acts like an end mirror in a laser cavity, see 
Figure 31(b). Backfire antennas are named long and short depending on the distance between the two reflectors. 
The long backfire antenna comprises of a surface wave structure which is several wavelengths (𝐴𝐴𝜆𝜆0, 𝐴𝐴 > 1) 
long. The surface wave structure is connects the reflectors and is usually excited by a crossed dipole or a 
waveguide aperture. The dominant mode is simply a standing wave surrounding the surface wave structure. The 
short backfire antenna has the spacing between the reflectors only half a wavelength (𝜆𝜆0/2), and the surface 
wave structure becomes unnecessary.  The beam waveguide antennas represent quasi-optical open resonators, 
i.e. their dimensions are many times larger than the wavelength(≫ 𝜆𝜆0). The end reflector is semitransparent; for 
example, it can be perforated metal. The beam waveguide antenna can be in a plane, plane spherical, or confocal 
spherical configuration, depending on the profile of the reflector. 

 

 
Figure 31 (a) Basic varieties of long and short backfire antennas with a cavity , (b) beam waveguide quasi-optical antenna configurations 
where dimensions are ≫ 𝜆𝜆0 . Taken from [56]. 
 
Cavity antennas, on the other hand are more like three dimensional cavity resonators (as dual-reflector antennas 
are based on open resonators). Figure 32 shows some cavity antenna designs with perforated semitransparent 
apertures. On the aperture, a multitude of small openings (slots or round holes) are made. Thus the cavity 
antenna can also be considered either as an antenna array or, generally speaking as a semitransparent aperture 
backed by a closed resonator cavity. For circular polarization, the basic concept of cavity backed radiator 
antenna involves the use of a crossed dipole feed, which is located in the aperture of the backing cavity. There 
are few examples of open cavity-backed antennas to produce circular polarization, shown in Figure 32(f) and (g).  

The usual size of the above presented cavities was larger than half the free space wavelength(> 𝜆𝜆0/2), in all 
dimensions or at least in the aperture dimension. In recent decades, research interest has also turned to the 
investigation of microstrip antennas enclosed in a cavity with aperture dimensions comparable to half the free 
space wavelength (~𝜆𝜆0/2) or smaller. Patch antennas have two limitations i.e. low bandwidth and low gain, thus 

b) a ) 
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cavity-enclosed patch antennas have been investigated in the past to alleviate in some degree the drawbacks of 
classical patch antennas 

 

 
Figure 32 Cavity antenna designs with semitransparent radiating apertures. (a) rectangular single cavity antenna, (b) circular single cavity 
antenna, (c) two cavity antenna, (d) double-bounded cavity antenna, (e) ring shaped cavity antenna. (f) Cavity backed open resonator 
antennas in a rectangular and (g) circular cavity. Taken from [56]. 

 
In this thesis we are specifically interested and rigorously analyze cavity antennas smaller than half the free 

space wavelength (< 𝜆𝜆0/2) which will inevitably have narrow bandwidth. To this end, in this Section we first 
give a thorough analytical analysis of open ended cavity antennas, and second give an overview of the 
investigations done with cavity enclosed patch antennas in the literature. 

1.3.1. Transmission line model of small open ended cavity antennas 
This section is of special importance for the thesis as it lays important groundwork for the analysis in later 
chapters. It relies on work done by M. Cohen [53] in 1950’s on square cavities in infinite ground planes, but due 
to the importance for later chapters, the author has expanded his results. This section thus includes the analysis 
of circular cavities in an infinite ground plane and the analysis in case of finite ground planes, not shown in 
literature so far.   

A. RECTANGULAR CAVITY 
In his PhD thesis, Cohen [53] gave a thorough analysis of small rectangular cavity antennas. We will reproduce 
the main results here as they will be of great importance in the rest of the thesis. For simplicity, the investigation 
was done for a rectangular geometry in an infinite ground plane; however, his results will be extended in this 
thesis.  

Consider a rectangular cavity buried into an infinite ground plane and filled with some homogeneous 
material of permittivity 𝜔𝜔𝜋𝜋  and permeability 𝜔𝜔𝜋𝜋 = 1, as shown in Figure 33. The cavity can be regarded as a 
short-circuited waveguide, open ended toward a half space. It can be modeled by a transmission line having a 
short circuit on one side and a load at the opposite side (corresponding to the aperture). 

 
Figure 33(a) A square cavity in an infinite ground plane and (b) the corresponding transmission line model. 

 
Again, for simplicity we assume only the dominant TE10 mode in the rectangular waveguide. The 

propagation constant in a rectangular waveguide is 𝑘𝑘𝑇𝑇𝑇𝑇
2 = 𝜀𝜀𝑘𝑘𝑘𝑘2 − 𝑘𝑘𝑐𝑐

2  where 𝑘𝑘2 = 𝜔𝜔2𝜇𝜇0𝜖𝜖0  is the wave-number, 
and  𝑘𝑘𝑐𝑐 =  𝜋𝜋/𝑎𝑎 is the cutoff wave-number for the TE10 mode. The characteristic admittance for the TE modes is 
𝑌𝑌𝑇𝑇𝑇𝑇 = 𝑘𝑘𝑇𝑇𝑇𝑇 /𝜔𝜔𝜇𝜇 = 𝑘𝑘𝑇𝑇𝑇𝑇 /𝑘𝑘𝜂𝜂0  and thus the input admittance 𝑌𝑌 𝐶𝐶  into a short circuited waveguide (cavity) is 

 𝑌𝑌 𝐶𝐶 (𝑘𝑘) = 𝑌𝑌𝑇𝑇𝑇𝑇
𝑌𝑌𝑇𝑇𝑇𝑇 + 𝑗𝑗𝑌𝑌𝑇𝑇 tan(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ)
𝑌𝑌𝑇𝑇 + 𝑗𝑗𝑌𝑌𝑇𝑇𝑇𝑇 tan(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ)

= −𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) , (1.55) 

Where 𝑌𝑌𝑇𝑇 = ∞ is the short circuit admittance. For several values of relative permittivity, the input admittance is 
plotted against height h in Figure 34. For short cavities, the input admittance is inductive (negative). If the 

(a) (b) 

f ) 

g ) 
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waveguide is above cutoff, then the admittance crosses zero at a quarter of the guided wavelength inside the 
waveguide �𝜆𝜆𝑔𝑔/4�. Note that if the waveguide is below cutoff, then the input admittance remains inductive for 
every height (see the curve for permittivity 3.66 in Figure 34). 

 
Figure 34 (a) transmission line model of a shorted waveguide representing the cavity. (b) Examples of input admittance into a shorted square 
waveguide of size 0.245 𝜆𝜆0  at frequency f = 2.3 GHz (𝑘𝑘 =  48) when the volume is homogenously filled with relative permittivity of 3.66, 
6.15 and 10.2.  
 
On the other hand, the open end of the structure is modeled by the aperture admittance 𝑌𝑌 Ap . This admittance can 
be calculated analytically, using the spectral domain approach. The complete calculation is shown in Appendix C 
for the general TEmn mode. We write here only the final expression for the TE10 mode. 

 

𝑌𝑌 𝐴𝐴𝐴𝐴 (𝑘𝑘) = 𝐺𝐺𝐴𝐴𝐴𝐴 + 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎
8𝑘𝑘𝜂𝜂0

� 𝑘𝑘2 − 𝑘𝑘𝑥𝑥
2

�𝑘𝑘2 − 𝑘𝑘𝑥𝑥
2 − 𝑘𝑘𝑥𝑥

2

⎝
⎜⎜
⎜⎛

cos �𝑘𝑘𝑥𝑥a
2 � sinc�

𝑘𝑘𝑦𝑦𝑎𝑎
2 �

�𝜋𝜋2�2 − �𝑘𝑘𝑥𝑥a
2 �

2

⎠
⎟⎟
⎟⎞

2

𝑑𝑑𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘𝑥𝑥
ℝ2

, (1.56) 

The integral in (1.56) has to be computed numerically for each value of k. However, the result for 𝑌𝑌 𝐴𝐴𝐴𝐴   in the 
square aperture (𝑎𝑎 = 𝑎𝑎) case was reported by Cohen in [53] where it was given in the form of a Taylor series,  

 𝐺𝐺𝐴𝐴𝐴𝐴 (𝑥𝑥) = 𝑔𝑔0𝑥𝑥2 + 𝑔𝑔1𝑥𝑥4 + 𝑔𝑔2𝑥𝑥6 … ,
𝐵𝐵𝐴𝐴𝐴𝐴 (𝑥𝑥) = 𝑎𝑎0𝑥𝑥−1 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎1𝑥𝑥3 + ⋯ ,

 (1.57) 

with 𝑥𝑥 = a/𝜆𝜆0 = 𝑘𝑘a/(2𝜋𝜋). The aperture admittance is shown in Figure 35, where the admittance for the example 
sizes investigated in this thesis is also noted. In fact, in all cases the admittance is negative (inductive).  

 
Figure 35 Aperture admittance 𝑌𝑌 𝐴𝐴𝐴𝐴 for the TE10 mode given by (1.56) or (1.57). See Appendix C for the derivation. (a) Polynomial 
approximation given in terms of  𝑥𝑥 = a/𝜆𝜆0 = 𝑘𝑘a/(2𝜋𝜋). (b) Plotted real and imaginary part of 𝑌𝑌 𝐴𝐴𝐴𝐴  as a function of the cavity diameter. Note 
that for the example aperture sizes the susceptance is inductive. 
 
Without sources, the system Figure 33(b) oscillates when the reactances in the circuit cancel, i.e., 

 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) − 𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) = 0, (1.58) 

where 𝐵𝐵𝐴𝐴𝐴𝐴  is the aperture susceptance, 𝑘𝑘𝑇𝑇𝑇𝑇
2 = 𝜀𝜀𝑘𝑘𝑘𝑘2 − 𝑘𝑘𝑐𝑐

2  where 𝑘𝑘2 = 𝜔𝜔2𝜇𝜇0𝜖𝜖0,  𝑘𝑘𝑐𝑐 =  𝜋𝜋/a re, a is side of a 
square aperture and ℎ the cavity height. Notice that we have transformed the geometry into a 1D model that is 
easy to analyze. Looking at (1.58) physically, a resonant condition means the transmission line must present 
capacitive admittance to counter the inductive admittance at the aperture. This can happen only when the 
waveguide, i.e. the transmission line is longer than  𝜆𝜆𝑔𝑔/4 and shorter than 𝜆𝜆𝑔𝑔/2 of guided wavelength, as was 

(a) (b) 

(a) (b) 
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also demonstrated above, in Figure 34. This also means that if the waveguide is below cutoff, (1.58) can never be 
satisfied. 

There are two variables in (1.58) i.e. the height ℎ and the permittivity 𝜀𝜀𝑘𝑘 . Thus to achieve resonance, one or 
the other can be adjusted. We can treat height as a function of permittivity or vice versa. This will be explicitly 
shown in examples on Figure 36(a) and (b). However, in this thesis, it will be more useful to treat 𝜀𝜀𝑘𝑘  as a 
function of height ℎ, thus (1.58) is used to obtain the necessary 𝜀𝜀𝑘𝑘  for a given cavity height. 

Once the resonant height is known one can calculate the 𝑄𝑄 factor of such an antenna using the formulas 
defined in (A 22) of Appendix A 

 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 . =  𝜔𝜔0
2𝐺𝐺𝐴𝐴𝐴𝐴 (𝜔𝜔0)

�𝜕𝜕𝑌𝑌 (𝜔𝜔)
𝜕𝜕𝜔𝜔

�
𝜔𝜔=𝜔𝜔0

= 𝑘𝑘0𝑘𝑘
2𝐺𝐺𝐴𝐴𝐴𝐴 (𝑘𝑘0𝑘𝑘)

�𝜕𝜕𝑌𝑌 (𝑘𝑘)
𝜕𝜕𝑘𝑘

�
𝑘𝑘=𝑘𝑘0 𝑘𝑘

 , (1.59) 

where 𝜔𝜔0  is the resonant frequency, and equivalently, 𝑘𝑘0𝑘𝑘  the resonant wave-number, 𝑌𝑌 = 𝑌𝑌 𝐶𝐶 + 𝑌𝑌 𝐴𝐴𝐴𝐴  is the 
total admittance of the circuit, sum of the aperture and waveguide admittances, given by  

 𝑌𝑌 (𝑘𝑘) = 𝐺𝐺𝐴𝐴𝐴𝐴 (𝑘𝑘) + 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) − 𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘 𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ). (1.60) 

Additionally, we are interested in the matched VSWR fractional bandwidth defined in Appendix A which is 
calculated directly from the 𝑄𝑄 factor as  

 
𝐹𝐹𝐵𝐵𝐹𝐹 = 2

√
𝛽𝛽

𝑄𝑄
 , 𝛽𝛽 = 𝛼𝛼

1 − 𝛼𝛼
  , 𝛼𝛼 = |𝛤𝛤0(𝜔𝜔)|2 (1.61) 

where 𝛤𝛤0(𝜔𝜔) is the reflection coefficient. As in antennas application, the 10dB return loss bandwidth is often 
the desired goal, by inserting the value 𝛼𝛼 = 0.1, one obtains the expression for the bandwidth:  . 

  𝐹𝐹𝐵𝐵𝐹𝐹−10𝑑𝑑𝐵𝐵 = 2
3𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴

.   (1.62) 

Using (1.58), (1.59), and (1.61) we can analytically predict the bandwidth of cavity antennas. Predictions for 
the example aperture sizes of rectangular apertures are shown in Figure 36.  

 
As mentioned, resonance and bandwidth of cavity antennas can be described depending on height (Figure 

36(a)) or permittivity (Figure 36(b)), but from now on we will concentrate on the description using height. The 
calculated fractional bandwidth FBW-10dB, shown on the right vertical axes is used to predict the bandwidth at 
2.3GHz that will be useful in the next chapter of the thesis, where a comparison with patch antennas is given.  

Most important observation on the bandwidth behavior is the occurrence of bandwidth maximums. This 
means there are optimum combinations of height-permittivity values for a specific aperture size that will give 
maximum bandwidth. It is of interest to investigate these “ideal cavity antennas,” i.e to describe how the 
maximum possible bandwidth depends on the aperture size. To this end, in [53] Cohen has used the 
mathematical optimization technique of Lagrange multipliers and reported an approximate formula for the 
minimum 𝑄𝑄 of cavity antennas when (a/𝜆𝜆0)  <  0.35, to be 

 
𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 (𝐶𝐶𝐶𝐶 ℎ𝑒𝑒𝐴𝐴 )

𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≅ 0.424 � a
𝜆𝜆0

�
−3

, (1.63) 

where a is the size of the square aperture, 𝜆𝜆0  the free space wavelength. The cubic dependence bares 
resemblance to the well known Chu limit formula. For the purpose of comparing (1.63) to the Chu limit we 
can introduce 𝑘𝑘 as the radius of the smallest sphere that encloses the cavity aperture. The value of 𝑘𝑘 for a 
square aperture is half the diagonal of the square given by 𝑘𝑘 = a/

√
2. We can write the validity of 𝑄𝑄 

expression (a/𝜆𝜆0)  <  0.35 in the form 𝑘𝑘a < 2.2 ⇔  𝑘𝑘𝑘𝑘 < 1.55 and re-express (1.63) as 

 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 (𝐶𝐶𝐶𝐶 ℎ𝑒𝑒𝐴𝐴 )
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≅ 105.17

(𝑘𝑘𝑎𝑎)3 =  37.18
(𝑘𝑘𝑘𝑘)3  (1.64) 

In this form, from (1.64) it is obvious that the prediction for very small cavities is much larger by a factor of 
about 37 compared to the Chu limit. Note that permittivity nor height do not enter the formula explicitly as it is 
assumed that for each aperture size the optimum values of ℎ and 𝜀𝜀𝑘𝑘  are used. 
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Figure 36 Bandwidth behavior of cavity antennas for the example rectangular aperture sizes. (a) Summary of how the antenna is analyzed. 
There are two equivalent descriptions: (a) Bandwidth vs. height of the cavity, with a corresponding permittivity for each height values. (b) 
Bandwidth vs. permittivity inside the cavity volume, with the necessary height for each permittivity value. Circles on the curves indicate the 
maximum achievable bandwidth for a given size and are related to equation (1.64). This presentation is new compared to the work of 
Cohen [53] where only 𝑄𝑄 vs. permittivity was considered. 

 
It must be noted that in 1950., when Cohen derived (1.63) he used an approximate formula to compute the 𝑄𝑄 

factor, compared to the modern formulation (1.59) that we use in this thesis, and expect to be more exact. 
Because of this we will briefly reproduce the procedure to obtain the result for the minimum Q here. We wish to 
minimize the Q factor  given in (1.59) with respect to the resonance condition for the antenna (1.58) introduced 
as a constraint. In the Lagrange multiplier technique, for this we introduce the Lagrange multilier 𝜒𝜒 and 
construct a new, Lagrange function Λ as  

 
Λ = 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜒𝜒�𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) − 𝑘𝑘𝑇𝑇𝑇𝑇

𝑘𝑘 𝜂𝜂0
𝑐𝑐𝐶𝐶𝐴𝐴(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ)�. (1.65) 

We search for stationary points, where partial derivatives of the Lagrange function with respect to permittivity 
𝜔𝜔𝜋𝜋 , cavity height ℎ, and the Lagrange multiplier 𝜒𝜒 are all zero, i.e. 𝛻𝛻������𝜀𝜀,ℎ,𝜒𝜒Λ = 0 or written more explicitly 

 𝜕𝜕Λ
𝜕𝜕ℎ

= 𝑘𝑘0𝑘𝑘
2𝐺𝐺𝐴𝐴𝐴𝐴 (𝑘𝑘0𝑘𝑘 )

𝜕𝜕
𝜕𝜕ℎ

�𝜕𝜕𝑌𝑌 (𝑘𝑘0𝑘𝑘)
𝜕𝜕𝜔𝜔
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𝑘𝑘 𝜂𝜂0
csc2(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) = 0

𝜕𝜕Λ
𝜕𝜕𝜀𝜀𝑘𝑘

= 𝑘𝑘0𝑘𝑘
2𝐺𝐺𝐴𝐴𝐴𝐴 (𝑘𝑘0𝑘𝑘 )

𝜕𝜕
𝜕𝜕𝜀𝜀𝑘𝑘

�𝜕𝜕𝑌𝑌 (𝑘𝑘0𝑘𝑘 )
𝜕𝜕𝜔𝜔

� + 𝜒𝜒 𝑘𝑘
2𝜂𝜂0

�cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ)
𝑘𝑘𝑇𝑇𝑇𝑇

− ℎ csc2(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ)
2

� = 0

𝜕𝜕Λ
𝜕𝜕𝜒𝜒

= 𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘0𝑘𝑘 ) − 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘 𝜂𝜂0

𝑐𝑐𝐶𝐶𝐴𝐴(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) = 0.

 (1.66) 

The resulting system of three equations with three variables are, in fact, very cumbersome, but can be solved 
numerically. One has to solve the system numerically solved to obtain the minimum 𝑄𝑄 factor (or maximum 
fractional bandwidth) for each aperture size one is interested in, and then curve fitting to a cubic function can be 
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done to obtain of coefficient seen in (1.76). The numerical result obtained by the author differs slightly from of 
the result of Cohen and reads 

 
 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 = 0.422� 𝑎𝑎
𝜆𝜆0

�
−3

= 104.7
(𝑘𝑘𝑎𝑎)3 =  37

(𝑘𝑘𝑘𝑘)3 , (1.67) 

where the small difference (< 0.5%) compared to (1.76) can be attributed to the use of different formulas for 𝑄𝑄, 
as mentioned. The numerical result along with the fitted curve is plotted in Figure 37. The values on this curve 
correspond to the maximums presented in Figure 36 with small circles. 
 

 
Figure 37 Numerically computed maximum -10dB fractional bandwidth for each cavity aperture size in the range 0 < (a/λ0) < 0.35 shown by 
red dots. The blue line shows the fitted curve which is a simple cubic function.  

B. CIRCULAR CAVITY  
Here we will extend the presented analysis for rectangular cavities to a circular cavity with circular aperture or 
radius 𝑎𝑎, shown in Figure 39(a). Again, for simplicity we assume only the dominant mode. For a circular 
waveguide this is the TE11 mode. The propagation constant in a circular waveguide is 𝑘𝑘𝑇𝑇𝑇𝑇

2 = 𝜀𝜀𝑘𝑘𝑘𝑘2 − 𝑘𝑘𝑐𝑐
2  where 

𝑘𝑘2 = 𝜔𝜔2𝜇𝜇0𝜖𝜖0  is the wave-number, and  𝑘𝑘𝑐𝑐 = 𝐴𝐴11
′ /𝑎𝑎 is the cutoff wave-number for the TE11 mode, with 𝐴𝐴11

′ =
1.8418… The characteristic admittance for TE modes is 𝑌𝑌𝑇𝑇𝑇𝑇 = 𝑘𝑘𝑇𝑇𝑇𝑇 /𝜔𝜔𝜇𝜇 = 𝑘𝑘𝑇𝑇𝑇𝑇 /𝑘𝑘𝜂𝜂0 . Therefore, analogously to 
(1.55) for the rectangular case, the input admittance into a short circuited waveguide is  

 𝑌𝑌 𝐶𝐶 (𝑘𝑘) = −𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ), (1.68) 

or written explicitly for the TE11 circular   

 
𝑌𝑌 𝐶𝐶 (𝑘𝑘) = −𝑗𝑗

�𝜀𝜀𝑘𝑘𝑘𝑘2 − (𝐴𝐴11
′ /𝑎𝑎)2

𝑘𝑘𝜂𝜂0
cot ��𝜀𝜀𝑘𝑘𝑘𝑘2 − (𝐴𝐴11

′ /𝑎𝑎)2ℎ�, (1.69) 

The open end of the structure is modeled by the aperture admittance𝑌𝑌 𝐴𝐴𝐴𝐴 = 𝐺𝐺𝐴𝐴𝐴𝐴 + 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴  for the TE11 mode. The 
complete calculation is shown in Appendix D. We write here only the final expression for the TE11 mode 

 
𝑌𝑌 𝐴𝐴𝐴𝐴 (𝑘𝑘) = 2

((𝐴𝐴𝐴𝐴𝑚𝑚
′ )2 − 1)𝜂𝜂0

�
⎣
⎢
⎡ 𝑘𝑘

𝑘𝑘𝜌𝜌
2�𝑘𝑘2 − 𝑘𝑘𝜌𝜌

2
𝐽𝐽1

2�𝑘𝑘𝜌𝜌𝑎𝑎� +
𝑎𝑎2𝑘𝑘𝑐𝑐

4�𝑘𝑘2 − 𝑘𝑘𝜌𝜌
2 ,

𝑘𝑘�𝑘𝑘𝑐𝑐
2 − 𝑘𝑘𝜌𝜌

2�2 𝐽𝐽1
′ 2�𝑘𝑘𝜌𝜌𝑎𝑎�

⎦
⎥
⎤∞

0
𝑘𝑘𝜌𝜌𝑑𝑑𝑘𝑘𝜌𝜌  (1.70) 

The integral in (1.70) has to be computed numerically for each value of k. Upon the calculation, aperture 
admittance is approximated by a polynomial to ease further calculations. For presentation purposes it is more 
continent to give the result in terms of the diameter to free-space wavelength ratio, or 𝑑𝑑/𝜆𝜆0 , where 𝑑𝑑 = 2𝑎𝑎.  The 
polynomial and the plotted admittance are shown in Figure 38.  

The resonance condition is analogous to the rectangular case, given by 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) − 𝑗𝑗𝑘𝑘𝑇𝑇𝑇𝑇 /𝑘𝑘𝜂𝜂0cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) =
0. Using (1.69) for the input admittance into the waveguide, (1.70) for the aperture, and (1.59) - (1.61) from 
the previous section to compute the 𝑄𝑄 factor and fractional bandwidth, we can analytically predict the 
bandwidth of circular cavity antennas. Predictions for the example aperture sizes are shown in Figure 39. 
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Figure 38 Aperture admittance 𝑌𝑌 𝐴𝐴𝐴𝐴  for the TE11 circular waveguide mode given by (1.76). See Appendix D for the derivation. (a) 
Polynomial approximation of given in terms of  𝑥𝑥 = 𝑑𝑑/𝜆𝜆0 = 𝑘𝑘𝑑𝑑/(2𝜋𝜋), where 𝑑𝑑 = 2𝑎𝑎. (b) Plotted real and imaginary part of 𝑌𝑌 𝐴𝐴𝐴𝐴  as a 
function of the cavity diameter. Note that for the example aperture sizes the susceptance is inductive. 
 

Repeating the Lagrange multiplier technique, we solve the system (1.66) for the circular cavity numerically 
to obtain the minimum 𝑄𝑄 factor (maximum fractional bandwidth). The result was found to be  

  
 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑘𝑘 = 0.637 � 𝑑𝑑
𝜆𝜆0

�
−3

= 158
(𝑘𝑘𝑑𝑑)3 = 19.75

(𝑘𝑘𝑎𝑎)3  (1.71) 

Where we also used the radius 𝑎𝑎 along with the diameter 𝑑𝑑 to make the expression directly comparable to the 
Chu limit. Maximum fractional bandwidth is plotted in Figure 40. 
 
 

Figure 39 (a) Summary of how the antenna is analyzed (b) Bandwidth behavior of circular cavity antennas for the example rectangular 
aperture sizes. Circles on the curves indicate the maximum achievable bandwidth for a given size and are related to equation (1.71). This 
result is an expansion compared to the work of Cohen [53] where only square cavities were considered. 
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Figure 40 Numerically computed maximum -10dB fractional bandwidth for each cavity aperture size in the range 0 < (𝑎𝑎/𝜆𝜆0)  <  0.35 
shown by red dots. The blue line shows the fitted curve which is a simple cubic function given in (1.71). 

C. EXTENSION TO CAVITIES IN A FINITE GROUND PLANE 
In the case of a cavity in a very small ground plane, or better said, capsule, aperture admittance changes due to 
different geometry of the space surrounding the aperture, while the cavity part remains the same. Analytical 
techniques for obtaining the aperture admittance are too difficult. It is easier to use commercially available 
electromagnetic software to obtain the admittance trough simulation. Here we show an example using CST 
Microwave studio [130]. 

Following simulation procedure was used: 
• Create a metallic object in free space that will play the role of the ground plane. Rectangular box of 

height ℎ = 15 mm for the case of a rectangular aperture and a cylinder of height ℎ = 15 mm for the 
case of a circular aperture. 

• Create the aperture by inserting smaller object made of vacuum into the metallic object. Rectangular 
box of height ℎ = 1 mm, a = 20 mm for the case of a rectangular aperture and a cylinder of height 
ℎ = 1 mm, 𝑑𝑑 = 20 mm for the case of a circular aperture. The result is seen in Figure 41(a) and (c).  

• Place a waveguide port at the bottom of the object made of vacuum, See Figure 41(a) and (c). 
• Set frequency range, run simulation to obtain S11 parameter and post processing to get admittance Y. 

The waveguide port is slightly recessed inside the metallic object playing the role of ground plane because CST 
needs several mash cells in front of the port to establish the mode. The S11 parameter can be de-embedded for 
this 1 mm distance in post processing but the result is almost identical. To ensure strictly the wanted TE mode, 
the number of waveguide modes has to be set to 1 and the polarization angle option checked in port properties. 
Additionally, symmetry planes can be used to reduce the simulation domain. Both time domain and frequency 
domain solvers can be used to get the S11 parameter, but the frequency solver is much faster for this kind of 
problem and offers good accuracy. 

Simulation results are shown in Figure 41(b) and (d) for the two cavity cases. The biggest difference 
compared to apertures in an infinite ground plane is in the real part of the admittance (conductance 𝐺𝐺𝐴𝐴𝐴𝐴 ). Finite 
ground plane cavity antennas radiate into the entire free space, opposed to just the half space for the infinite 
ground plane case. This translates to larger conductance values (radiation loss) and ultimately to larger 
bandwidth for the finite ground plane antennas. Interestingly, there is also a small lump in the 𝐺𝐺𝐴𝐴𝐴𝐴  curves, only 
slightly visible Figure 41(b) and (d). This lump depends on the overall size of the ground plane compared to the 
free space wavelength. It is a consequence of the ground plane acting as an antenna itself, excited by aperture. 

Based on the simulation data, polynomial approximations of the curves were done in a similar fashion to the 
previous, infinite ground plane cases. It is important know that these results are very approximate because for 
each aperture size the relative size of the ground plane walls, and the whole ground plane are different compared 
to the wavelength. In fact, a separate simulation should be done for each aperture size to get more accurate 
results. However we show only one simulation result which is taken to “accurate enough”. The polynomials 
were found to be; for the square aperture 

  𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒
𝐴𝐴𝐴𝐴 (𝑥𝑥) = 0.0091746𝑥𝑥 − 0.346865𝑥𝑥2 + 5.40888𝑥𝑥3 − 43.1677𝑥𝑥4 + 207.013𝑥𝑥5 − 635.399𝑥𝑥6

                  +1277.45𝑥𝑥7 − 1669.5𝑥𝑥8 + 1344.53𝑥𝑥9 − 552.55𝑥𝑥10 + 92.186𝑥𝑥12 − 25.6282𝑥𝑥13

𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒
𝐴𝐴𝐴𝐴 (𝑥𝑥) = − �0.00074516

𝑥𝑥
� + 0.00512814𝑥𝑥 − 0.0691961𝑥𝑥2 + 2.11758𝑥𝑥3 − 24.2464𝑥𝑥4

                  +147.447𝑥𝑥5 − 546.146𝑥𝑥6 + 1301.39𝑥𝑥7 − 2025.2𝑥𝑥8 + 2021.33𝑥𝑥9 
                  −1208.08𝑥𝑥10 + 348.878𝑥𝑥11 −  17.4309𝑥𝑥13 ,

 (1.72) 

where 𝑥𝑥 = a/𝜆𝜆0 = 𝑘𝑘a/(2𝜋𝜋), a being the aperture size.  
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Figure 41 Finite ground plane aperture admittance simulations. (a) Rectangular cavity (a =  0.15 𝜆𝜆0 , ℎ = 15 mm) with 5mm metallic walls 
in all directions, and the electric field excited by the waveguide port at the aperture. (b) Aperture admittance result obtained by simulation 
(calculated from the S11 parameter in CST). (c) Circular cavity (𝑑𝑑 =  0.15 𝜆𝜆0 , ℎ = 15 mm) with 5mm metallic walls in all directions, and the 
electric field excited by the waveguide port at the aperture. (d) Aperture admittance result obtained by simulation (calculated from the S11 
parameter in CST). 

 
Figure 42 Bandwidth behavior of cavity antennas in a finite ground plane for the example rectangular aperture sizes. Circles on the curves 
indicate the maximum achievable bandwidth for a given size and are related to equation (1.74). (a) Rectangular cavity case. (b) Circular 
cavity case. This result is an expansion compared to the work of Cohen [53] where only infinite ground plane was considered. 
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  𝐺𝐺𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑘𝑘
𝐴𝐴𝐴𝐴 (𝑥𝑥) = 0.00655844𝑥𝑥 − 0.419178𝑥𝑥2 + 12.3159𝑥𝑥3 − 194.759𝑥𝑥4 + 1829𝑥𝑥5 − 10745.4𝑥𝑥6 

                 + 40611.4𝑥𝑥7 − 98607.5𝑥𝑥8 + 146502𝑥𝑥9 − 110625𝑥𝑥10 + 61969.6𝑥𝑥12 − 31530.7𝑥𝑥13  
𝐵𝐵𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑘𝑘

𝐴𝐴𝐴𝐴 (𝑥𝑥) = − �0.00102734
𝑥𝑥

� + 0.00554205𝑥𝑥 − 0.117314𝑥𝑥2 + 4.84682𝑥𝑥3 − 100.97𝑥𝑥4 

                   +1210.99𝑥𝑥5 − 8880.88𝑥𝑥6 + 41334.4𝑥𝑥7 − 123924𝑥𝑥8 + 235838𝑥𝑥9

                   −266867𝑥𝑥10 + 145247𝑥𝑥11 − 25583.8𝑥𝑥13 ,

 (1.73) 

where 𝑥𝑥 = 𝑑𝑑/𝜆𝜆0 = 𝑘𝑘𝑑𝑑/(2𝜋𝜋), 𝑑𝑑 = 2𝑎𝑎 being the aperture diameter. Using these polynomials and following the 
same equations as for the infinite ground plane cases, bandwidth behavior was computed and is shown in Figure 
42. Compared to the results shown in Figure 36 and Figure 39 for the rectangular and circular antennas 
respectively, we observe higher overall bandwidth performance with the finite ground plane 
 

Repeating the Lagrange multiplier technique, we solve the system (1.66) for the two cases numerically, 
taking into account the new aperture admittances (1.72) and (1.73). We obtain the minimum 𝑄𝑄 factor (maximum 
fractional bandwidth) for the rectangular and circular case as 

 
 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≈ 0.334� a
𝜆𝜆0

�
−3

= 82.85
(𝑘𝑘a)3 = 29.3

(𝑘𝑘𝑘𝑘)3 ,    𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑘𝑘 ≈ 0.564� 𝑑𝑑

𝜆𝜆0
�

−3
= 139.9

(𝑘𝑘𝑑𝑑)3 = 17.5
(𝑘𝑘𝑎𝑎)3 .  (1.74) 

Comparing (1.74) with (1.67) and (1.71) we see the minimum 𝑄𝑄 factor is indeed slightly smaller. Maximum 
fractional bandwidth is shown in Figure 43 where the approximate nature of our calculation is clearly visible. 
The fit between the numerically computed points and the simple cubic dependence is far from perfect. As 
mentioned, this is a consequence of the shape of the ground plane and its size relating to the free space 
wavelength.  

 
Figure 43 Numerically computed maximum -10dB fractional bandwidth for each cavity aperture size in the range 0 < (𝑎𝑎/𝜆𝜆0)  <  0.35, 
shown by red dots. The blue line shows the fitted curve which is a simple cubic function related to (1.74). Black arrow points to an area of 
biggest disagreement between the computed points and the fitted curve. (a) Rectangular aperture in a finite ground plane. (b) Circular 
aperture in a finite ground plane.  

D. EXCITATION OF CAVITY ANTENNAS 
In his Ph.D. thesis, Cohen made experiments with a short dipole at the aperture of a cavity to confirm his results 
from the transmission line model. He has found relatively good agreement between theory and experiment. A 
thin, short dipole (much shorter than half wavelength in a small cavity) at the aperture is capable of exciting the 
fundamental mode. The antenna 𝑄𝑄 is due to the cavity and not to the dipole exciting it. However, the presence of 
the dipole also slightly changes the fields at the aperture as there is a capacitive effect between the dipole and the 
cavity wall. This introduces small discrepancies between the model, which is ideal, and the realistic antenna 
which has some form of excitation posing as an additional object inside the cavity.  

Several other forms of exciting cavity antennas have already been presented on Figure 32. An excitation of 
special interest however, is the patch antenna inside a cavity. A review of research on patch antennas in cavities 
is given below, but a detailed, systematic study of this form of excitation is explored in Chapter 2. 

1.3.2. Microstrip antennas in cavities with examples 
Cavity-enclosed patch antennas have been investigated in the past to alleviate in some degree the drawbacks of 
classical patch antennas. For example, bandwidth of a patch antenna can be substantially increased through the 
use of a thick substrate, seen in Chapter 1.2.3.C. However, the grounded dielectric substrate supports surface 
wave modes, which lower the antenna efficiency. Thus the maximum substrate thickness (and hence bandwidth) 

(a) (b) 

Low accuracy Low accuracy 
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is limited by the radiation efficiency required. One way to circumvent this limitation is to surround the patch 
elements with metal walls. This effectively prevents surface wave modes from being excited in the substrate, 
thus allowing the substrate thickness to be increased without deleterious effects. Cavity enclosure, in addition, 
gives the antenna a compact, miniature configuration and rigid shape, isolates the antenna from surroundings, 
and reduces backward radiation. It is also worth noting that in microstrip-patch arrays guided-wave effects result 
in a scan-bandwidth performance tradeoff. Cavity backing eliminates the scan-bandwidth tradeoff. Furthermore, 
as the substrate thickness is increased, the scan performance actually improves. These characteristics of the 
cavity backed patch antennas, as reported in literature, were summarized by Karmakar in [58] and read as 
follows: 

• Shielding is used to suppress back lobes in finite ground plane patch antenna and aperture coupled 
microstrip patch antenna [59]-[60]. 

• Cavities can suppress surface waves and mutual coupling in thick substrates and act as heat sinks in a 
highpowered large transmit array [61]. 

• Including stacked patch antenna configuration in a cavity further increases the bandwidth of patch 
antennas [62], [69]. 

• Inclusion of high-permittivity superstrates on the cavity backed patch antenna improves the antenna 
gain significantly. Zavosh and Aberle [64]-[65] have reported single element gain of 22dB with 
superstrates of dielectric constant in the range of 100. 

• In a phased array antenna, cavities can prevent scan blindness, yield less coupling and improve good 
matching over wider scan angles [63],[66]-[68]. 

• Standard microstrip patch antennas exhibit zero field strength near the horizon. A patch antenna in a 
cavity enclosure can improve the radiation near and beyond the horizon; thus, a truly unidirectional 
radiation pattern can be achieved [70]. This pattern is very useful for satellite communications. 

• Gain and radiation patterns can be changed significantly by placing the patch antenna into a cavity 
enclosure and changing the shape of the enclosure. Noghanian and Shafai [71] have reported 3-dB gain 
improvement and significantly reduced back lobe by introducing a chock on the circular cavity. 

• Volakis et al. [72] showed that patch with metallic cavity beneath it, filled with dielectric material 
reduces the antenna dimensions. Up to 30% reduction in antenna diameter is achieved.  

• Waterhouse [73] has reported an electrically small resistive loaded cavity backed circular patch antenna 
for integration with hand phones. More compact design is achieved due to the cavity housing. 

• Spectral noise of an active patch antenna can be suppressed by as much as 25 dB using a rectangular 
cavity [74]. 

• Nurnberger et al. [75] have reported an extremely broad-band planar slot spiral antenna in a cavity. 
 

Despite the mentioned benefits, fabrication of cavity backed patch antennas is not common due to increased 
fabrication cost for the metallic cavity and complicated structural assemblage. To address this problem, recently, 
substrate integrated (SIW) technology was utilized as an alternative low cost approach in fabricating cavity 
backed antennas and arrays [76]-[77]. The investigated cavities sizes presented in SIW technology are close to 
0.5 𝜆𝜆0 . 

Cavity enclosed antennas present complex boundary conditions, which make the analytical approach a 
difficult task. Different numerical techniques are available in the literature to analyze the cavity enclosed patch 
antenna structures. Although these techniques can predict considerably well the characteristics of the structures 
in both single layer and multilayer substrates, they are conceptually involved and computationally intensive. 
Analytical and experimental investigations of a circular patch in a cylindrical cavity have been presented in [58] 
and [78]-[79] giving only some empirical formulas. 
 

Example 1: Patch antennas backed by a cavities of various sizes were investigated in [57] and [58] by 
Karmarkar, where experimental results on bandwidth behavior with height were reported. Figure 44 shows the 
design investigated, and the corresponding bandwidth dependence on height for example cavity. 

Karmarkar reports that due to the proximity of the cavity enclosure, the patch diameter affects not only the 
resonant frequency, but also the operational bandwidth of the antenna. This is due to the edge diffraction of the 
cavity wall. Investigation reveals that the gap between the patch and cavity determines the coupling between the 
radiated field and the enclosure. If the spacing is too small, an over coupling occurs. The fringe fields around the 
patch edge for radiation are distorted by the proximity of the cavity wall and the bandwidth decreases. Also, the 
resonant frequency and the bandwidth of the antenna decrease with the cup wall height. This may be due to the 
prominence of the mode excited by the cavity enclosure over that of the patch resonance and fringe field 
distortion, respectively. 
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Figure 44 A circular cavity enclosed circular microstrip patch antenna (a) Top view. (b) Side view. (c) Banwidth and resonance frequency vs. 
height for aperture diameter D = 115 mm and patch diameter of 90mm. The cavity volume is filled mostly with air.  
 

Example 2: Volakis et al. [72] placed perturbances below the rectangular patch and observed as much as 
30% decrease from the resonant frequency compared with the unperturbed patch. The specific configurations 
considered include a cavity-backed and an aperture-backed patch as shown in Figure 45. The shift in the 
resonant frequency can be understood by resorting to a transmission line model of the patch antenna. In this case, 
the inserted aperture below the patch can be represented by an equivalent reactance placed between the 
admittances representing the patch terminations. The bandwidth of these cavity-backed and aperture-backed 
configurations was not altered although some minor differences were observed in the actual values of the input 
impedance.  

 
Figure 45  Modified cavity configurations: (a) cavity-backed, (b) aperture backed. (c) Resonant frequency of the aperture- and cavity-backed 
patch configurations as a function of the bottom cavity depth d. Original cavity depth is retained at 0.05 cm and the entire cavity region is 
filled with a dielectric having (ε, = 2.17. Aperture of the second cavity is 3.56 cm x 3.56 cm. (d) Resonant frequency of the aperture-backed 
patch as a function of the square aperture dimension W. Depth of the bottom cavity was kept at d = 0.3 cm and all other parameters are the 
same with those used for (c) 
 

Example 3: Recessing of the patch into the antenna cavity and the placing of a dielectric layer above the 
patch (superstrate), reduces the resonant frequency [69]. This shift is primarily a function of the superstrate 
material and height. Illustration of the effect of superstrate height on the resonant frequency is shown in Figure 
46. Although substantial reduction in the operating frequency is achieved, there is a corresponding decrease in 
impedance bandwidth. Therefore, a compromise between resonance shift and impedance bandwidth must be 
made for the recessed structure. 

 
Figure 46 (a) Recessed (single configuration) cavity-backed patch antenna and (b) the return loss versus frequency for varying superstrate 
height. Picture taken from [69]. 

(a) (b) 

(a) 

(b) (a) (d) 

(c) 
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Example 4: A common approach for improving the bandwidth performance of a patch antenna, as 

mentioned before, is to add parasitic elements to the antenna structure. This reduces the impedance variation of 
the antenna with frequency which enhances bandwidth performance. In [62] and [69] a stacked configuration of 
circular patches is investigated, see Figure 47. The cavity-backed patch antenna in a stacked configuration has 
two important features for enhancing bandwidth performance. First, the addition of a parasitic patch reduces the 
frequency variation of the input impedance resulting in an improved bandwidth. Second, the cavity backing 
allows the substrate thickness to be increased without loss of radiation efficiency resulting in further bandwidth 
improvement.  

 
Figure 47 (a) Stacked cavity-backed patch antenna. (b) parametefrors the probe-fed cavity-backed circular patch antenna in a stacked 
configurations. (c) Return loss of a probe-fed cavity-backed circular patch in single and stacked configurations versus frequency 
 
In conclusion, cavities were shown to have numerous benefits for microstrip patch antennas in the literature. 
However in all cases the investigated cavity aperture sizes were about 0.5 𝜆𝜆0  or larger. Many of the studies were 
done experimentally in the time when the computing power of computers was low and commercial software for 
electromagnetic simulations was not yet available. Therefore, systematic studies of antenna parameters were 
limited. A thorough study of the antenna parameter dependencies is given in Chapter 3.  
  

(a) 

(b) 

(c) 
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1.4. Introduction to metamaterials and applications to 

antennas 
The word “meta” implies “beyond” and artificial, man-made, materials engineered to have properties that may 
not be found in nature. Because we do not encounter them in nature, their properties are often described as 
counterintuitive. For an attempt at an easier explanation of the source and cause of metamaterial properties, the 
author included his own short explanation in Appendix E. Here we proceed to specifically describe 
electromagnetic metamaerials and classify their types and applications to antennas. 

1.4.1. General Concepts of metamaterials (MTMs) 
The terminology “electromagnetic meta-materials” today implies artificial, man-made, effectively homogeneous 
electromagnetic structures in which the electromagnetic properties, as represented by the permittivity and 
permeability, can be controlled and they exhibit superior properties not found in nature. An effectively 
homogeneous structure is a structure whose structural average cell size 𝐴𝐴 is much smaller than the guided 
wavelength 𝜆𝜆𝑔𝑔 . Therefore, this average cell size should be at least smaller than a quarter of wavelength, �𝐴𝐴 <
𝜆𝜆𝑔𝑔/4) to ensure that refractive phenomena will dominate over scattering/diffraction phenomena when a wave 
propagates inside the MTM medium. A common “rule of thumb” or metamaterial criteria, is that the cell size 
should be smaller than one tenth of the wavelength, �𝐴𝐴 < 𝜆𝜆𝑔𝑔/10�. If this condition of effective-homogeneity is 
satisfied, the structure behaves as a real material in the sense that electromagnetic waves are essentially myopic 
to the lattice and only probe the average, or effective, macroscopic and well-defined constitutive parameters, 
which depend on the nature of the unit cell; the structure is thus electromagnetically uniform along the direction 
of propagation. [80] 

Although many of the ideas of metamaterials have their origin in the theories of homogenization of 
composites, metamaterials also differ from those in that they are crucially dependent on resonances for their 
properties. Typically, the resonances in metamaterials can induce large amounts of dispersion (large changes 
with frequency) in the effective medium parameters at frequencies close to resonance. By properly driving and 
enhancing these resonances, one can cause the materials parameters 𝜀𝜀 or 𝜇𝜇 to become negative in a frequency 
band slightly above the resonance frequency [81]. 

It is important  to stress that all known passive matematerials (transmission-line based [80], wire based [82], 
split ring resonator based [83][84], complementary-split ring resonator based [85], “fishnet”-based etc. [86]) 
behave very similarly. Thus, all known passive metamaterials (within some frequency range) show resonant 
behavior, inevitably, also exhibit dispersion.  

It should be noted that, although the term MTM has been used most often in reference to LH structures in 
the literature, MTMs may encompass a much broader range of structures. Examples are MTMs with only one of 
the two constitutive parameters negative, anisotropic MTMs, or any type of functional effective engineered 
structure. In addition, many existing materials obtained by novel nanotechnology and chemistry processes may 
be regarded as MTMs.  
 
Negative permittivity: Plasmas are described by a permittivity function that becomes negative below a plasma 
frequency ωp. Essentially, metals are plasmas, since they consist of an ionized “gas” of free electrons. Below 
their plasma frequency, the real component of the permittivity of bulk metals can be said to be negative. A 
structure consisting of a mesh of very thin conducting wires arranged in a periodic lattice, as in Figure 48 is also 
a “gas” of free electrons. Due to the spatial confinement of the electrons to thin wires, the effective electron 
concentration in the volume of the structure is decreased, which also decreases the plasma frequency. More 
significant, however, is that the self-inductance of the wire array manifests itself as a greatly enhanced effective 
mass of the electrons confined to the wires. This enhancement reduces the effective plasma frequency of the 
structure by many orders of magnitude, placing it well into the gigahertz range. Thus, an array of thin metallic 
wires, by virtue of its macroscopic plasma-like behavior, produces an effectively negative permittivity at 
microwave frequencies. 
 
Negative permeability: In 1999, Pendry et al. [87] claimed to have developed micro-structured artificial 
materials exhibiting strange magnetic properties. The resulting split-ring resonator (SRR), depicted in Figure 49, 
exhibits strong electric fields, supported by a very large capacitance, between the rings. Furthermore, although 
currents cannot traverse the gaps, the application of magnetic fields oriented normal to the plane of the rings 
induces simultaneous currents in both rings. This synthesized capacitance, along with the natural inductance of 
the cylindrical structure, results in a resonant response characterized by an effective relative permeability that 
can be negative in a finite bandwidth above resonance. 
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Figure 48  An array of infinitely long, thin metal wires of radius r on a lattice of period of a behaves as a low frequency plasma for an 
electric field oriented along the wires. Taken from [81]. 
 

 
Figure 49 Pictorial view of the cylindrical unit for the SRR proposed in Pendry et al. (1999). The inner conducting ring acts as a capacitive 
load on the outer ring. The charge buildup across the ends of the split rings, the direction of the currents, and the mutual capacitance are 
schematically depicted. Taken from [87]. 
 
The first left handed metamaterial (LHM) The long-anticipated demonstration of a doble negative medium 
(DNG), predicted by Vesselago in [88] was finally reported in Science in 2001 by R. A. Shelby, D. R. Smith, and 
S. Schultz [89] who had experimentally verified negative refraction using a composite wire/SRR negative-
refractive-index medium. 

 
Figure 50 Depiction of the wire-SRR metamaterial of Shelby et al. used to verify negative refraction. The sample was irradiated by a 
microwave beam at 10.5 GHz incident at 18.43", and a microwave detector was scanned azimuthally around the exit point in the plane of 
incidence. A control sample made of Teflon reported a positive angle of refraction of 27", corresponding to the well-known refractive index 
of Teflon of + 1.4, and calibrating the apparatus. Using the wire/SRR metamaterial, the same beam was observed to exit at an angle of -61°, 
which, applied to Snell's Law, yields an effectively negative index of refraction of -2.7. 

1.4.2. Use of metamaterials in antenna size reduction and bandwidth  
What kind of benefits can the metamaterial concepts bring to small antennas? Metamaterials are proposed to 

provide antennas with a means to manipulate the dispersion relation or the near-field boundary conditions, which 
could result in antenna size miniaturization while maintaining a good radiation performance. Metamaterial 
antennas open a way to overcome the restrictive efficiency-bandwidth limitation for small antennas. Yet this 
approach is still far from being mature.  

Surveying the literature, one observes that various engineered materials have been investigated and 
numerous antenna applications have been proposed. For example, Figure 51 illustrates some representative 
engineered electromagnetic materials with unique electromagnetic properties [91]. Frequency selective surfaces 
(FSS) are widely used in random and reflector antenna designs as wave filters. Double negative (DNG) material 
refers to those materials with effective negative permittivity and permeability, which results in properties such as 
left-handed (LH) wave propagation and negative index of refraction (NIR). Periodic structures that prohibit the 
propagation of electromagnetic waves in a certain frequency band for certain arrival angles and polarization 
senses are classified as electromagnetic band gap (EBG) structures. Another important category consists of 
ground planes that exhibit unique reflection characteristics other than conventional PEC, known as complex 
artificial ground planes. This chapter summarizes several typical engineered electromagnetic materials and 
illustrates their applications in patch antenna engineering. It is demonstrated that they not only improve the 
performance of conventional antennas such as gain, bandwidth, and efficiency, but also lead to novel radiator 
concepts and structures like surface wave antennas and reconfigurable antennas. [31] 
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Figure 51  Different classes of engineered electromagnetic materials. Taken from [31]. 
 
Metamaterial based and inspired design: According to Ziolkowski [90] metamaterial based antennas are those 
made of ideal homogenized metamaterials. On the other hand, metamaterial inspired antennas are all those 
radiators obtained by applying the metamterial concepts but that in reality consist of regular antennas loaded 
with few (or even just one ) metallic inclusions. Therefore, almost all the miniature antenna experimental designs 
proposed so far in the literature can be considered, indeed, as metamaterial-inspired antennas. 

In the case of metamaterial inspired antennas it is understood that there is no need for theoretically correct 
definition of the effective parameters of a sample made of few inclusions, which anyway loses most of its “bulk” 
physical meaning in such small samples.  The procedure to design and optimize the inclusions may therefore 
become straight forward. The retrieved parameters of the sample cannot be considered as constitutive parameters 
of the medium, but they represent an operational definition of the effective parameters for the specific problem at 
hand. 
 
Clasification: Basically, metamaterial concepts for antenna applications can be classified in the following four 
categories [91]:  

1) CRLH-based or dispersion engineered resonant antennas. This includes the antennas with negative-
order modes and zeroth-order resonators There are a variety of antennas in this type that have been 
developed based on the engineered dispersion curves ( 𝑘𝑘 − 𝜔𝜔 diagram) [80],[92]-[96].  

2) Metamaterial loading, such as the epsilon/mu-negative materials ([16], [18], [101]-[103]), high 
permeability shells [104], and the magnetic photonic crystals (MPC) [106]-[107]. The metamaterial-
inspired near-field resonant antennas proposed by Ziolkowski [105] are also included here.  

3) Antennas loaded with metasurfaces [108]-[113], such as the electromagnetic band gap (EBG) 
mushroom structures or patch-type reactive impedance surface (RIS). They are able to miniaturize 
the antenna size, reduce the surface wave as well as to improve the radiation characteristics. 

4) Metaresonator antennas [114]-[118], particularly for the antennas based on the split-ring resonators 
(SRRs) and complementary split-ring resonators (CSRRs). 
 

These different types of metamaterial-based small antennas are explored in terms of antenna miniaturization and 
bandwidth enhancement. 
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1.4.3. Use of metamaterials in antenna miniaturization  

A. CRLH metamaterial resonant antennas 
In parallel to the development of resonant metamaterials, Eleftheriades and Grbic [92] and Caloz and Itoh [93] 
independently developed a transmission line theory of negative index media (also called Composite Right/Left 
Hanted Transmission Lines) with lumped circuit elements for planar metamaterials which could support 
backward waves, or, in other words, an effectively planar negative refractive index medium. Example of the 
CRLH TL is given in Figure 52. The captivating elegance of the distributed L–C circuit network representation 
lies in the fact that the capacitive and inductive elements directly determine the constitutive parameters—the 
desired permittivity and permeability, respectively—of the effective medium. 

The thin wire – split ring resonator structures are inherently narrow band or severely lossy due to their 
resonant nature. In contrast, non-resonant transmission line (TL) MTMs, can exhibit simultaneously broad 
bandwidth and low losses. 

 
Figure 52 Planar CRLH TL structures in microstrip technology, constituted of series interdigital capacitors and shunt stub inductors 
(including via connections to ground). The gray areas represent the ground planes and the black areas represent the metal traces. The unit cell 
size p is much smaller than the guided wavelength (at least, 𝐴𝐴 < 𝜆𝜆𝑔𝑔/4) to ensure effective homogeneity of the structure and subsequent 
effective-uniformity behavior of the TL. (a) One-dimensional structure. (b) Two-dimensional structure. Taken from [80]. 

 
Figure 53 Incremental circuit model of CRLH TL. The subscripts R and L stand for RH and LH, respectively. (a) Unit-cell prototype. (b) 
Corresponding microwave network dispersion diagram, corresponding to idealized uniform TL relations (bandwidth extending from ω = 0 to 
ω = ∞), except for existence of LH and RH gaps ( ωse < ωsh or ωse > ωsh, depending on the LC parameters). The curves for a purely LH 
(PLH) structure (LR = CR = 0) and for a purely RH (PRH) structure (LL = CL = ∞) are also shown for comparison.  
 

The equivalent circuit model of a typical symmetrical CRLH TL unit cell is depicted in Figure 53 where the 
loss is neglected for simplicity. By including the right-handed (RH) effect into a purely lefthanded (LH) circuit, 
it represents the most general form of a practical metamaterial TL structure. The series capacitor (CL) and the 
shunt inductor (LL) contribute to the left-handedness while the series inductor (LR) and the shunt capacitor (CR) 
form its RH dual counterpart.  

By applying the periodic boundary conditions, dispersion relation is determined to be [80] 

 
𝛽𝛽(𝜔𝜔) = 1

𝐴𝐴
cos−1 �1 − 1

2
�𝜔𝜔𝑗𝑗

2

𝜔𝜔2 + 𝜔𝜔2

𝜔𝜔𝑅𝑅
2 − 𝜔𝜔𝑗𝑗

2

𝜔𝜔𝑠𝑠𝑒𝑒
2 − 𝜔𝜔𝑗𝑗

2

𝜔𝜔𝑠𝑠ℎ
2 �� , (1.75) 

where 𝛽𝛽(𝜔𝜔) = 2𝜋𝜋/𝜆𝜆 is the wave number, 𝐴𝐴 is the length of the unit cell and 
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 . (1.76) 

Apparently, there are two frequency points referred to as the infinite wavelength points 𝛽𝛽(𝜔𝜔) = 0, with a 
band-gap in between. In the balanced case (𝜔𝜔𝑠𝑠𝑒𝑒 = 𝜔𝜔𝑠𝑠ℎ) the band-gap vanishes. Usually only one particular 
zeroth-order resonance will be excited which depends on the circuit values and the boundary conditions. For 
the open-ended resonator, it is determined by series resonance𝐴𝐴 𝜔𝜔𝑠𝑠ℎ , while for the short-ended case, it is 
represented by shunt resonance 𝜔𝜔𝑠𝑠𝑒𝑒  [80]. Multiple resonances including the negative-order, zeroth-order, and 
positive-order resonances can be generated by cascading more than one unit cell. 

 
Example 1: Due to the size consideration, most of the CRLH resonator-type antennas are designed on the 

negative-order or the zeroth-order modes. Zeroth-order resonance, of which the frequency is independent of the 
physical length, actually gains more popularity for antenna applications. Figure 54 shows the most original 
zeroth-order resonance antenna with four unit cells [94].   

A virtual ground capacitor is employed achieving a via-free design. This antenna was implemented on a 31-
mil substrate with a dielectric constant of 2.68. The measured reflection coefficient is -11 dB at the resonance 
frequency of 4.88 GHz. Compared to a patch antenna on the same substrate, this antenna leads to a 75% size 
reduction. The radiation of this antenna broadside due to the configuration.  

 
Figure 54 (a) Four-cell zeroth-order resonance (ZOR) antenna based on microstrip technology operated at 4.88 GHz. (b) Resonant modes of 
the open-ended CRLH TL resonator. The zeroth-order resonance corresponds to β = 0. The CRLH TL resonator also resonates with n = ±k 
modes ( k = 1,2, ,.. (N-1). (c) Typical dispersion relation of the CRLH TL. (d) Measured S11 of the prototype ZOR antenna. (e) Measured 
radiation patterns. Taken from [94]. 
 

Example 2: CRLH loops provide particularly interesting monopole antennas, both of electric and magnetic 
nature [95]. The CRLH magnetic and electric monopoles are based on the series and shunt CRLH zeroth order 
resonances, respectively, as shown in Figure 55(a). The CRLH loop structures are infinitely periodic and do not 
have any termination. What determines the resonances that are excited (𝜔𝜔𝑠𝑠𝑒𝑒  or 𝜔𝜔𝑠𝑠ℎ) is then the excitations, as 
illustrated in Figure 55, where two different excitation slots excite separately the series and shunt resonances. 
Consequently, the series and shunt may exist simultaneously in a given design, yielding a dual-monopole 
antenna, and even at the same frequency when the CRLH structure is balanced. Moreover, when the series/shunt 
frequencies are tuned so as to radiate quadrature fields, the dual-monopole antenna may provide circular 
polarization in the far-field. 
 

(a) 

(b) (c) (d) 

(e) 
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Figure 55 (a) Simulation model of an 8-cell CRLH ring resonator. The diameter of the outer ring dimension is 27.5 mm. The modes are 
excited by two slots in the ground that couple with the resonator. (b) Simulated s-parameters for the ring. The zeroth order voltage mode (S11) 
and current mode (S22) operated at the same frequency and are reasonably decoupled. (c) Magnetic and (d) electric monopole ring antennas 
using the series and shunt CRLH zeroth order resonances, respectively. Principle and current distributions. Taken from [96]. 

B. METAMATERIAL LOADING BASED SMALL ANTENNAS 
Double positive (DPS) materials are characterized by standard values of the permittivity and permeability 

(regular dielectrics). Epsilon negative (ENG) and mu-negative (MNG) metamaterials do not support wave 
propagation, instead the fields are evanescent in such media. However, electrically small antennas have been 
achieved by ENG and MNG metamaterial loadings. They have provided an alternative approach to address those 
conflicting issues between the antenna size and radiation performance. Specifically, the metamaterial loadings 
discussed here include the MNG [101], ENG [102]-[104], the so-called near-field resonant parasitic (NFRP) 
elements [105], and the magnetic photonic crystals [106][107].  

Most of these antennas eventually fall into the same RLC resonator type as shown in Figure 56, although 
they may have different forms or design approaches. For instance, the loadings can be either uniform shells or 
resonant elements, and the coupling can be either electric or magnetic type. The ENG shells for antenna 
applications were actually first proposed by Ziolkowski and Erentok [103] and a depiction of the idea is shown 
on Figure 56. 

 
Figure 56 Example of metamaterial-based, efficient ESAs consisting of (a) a center-fed dipole antenna and (b) a coax-fed monopole antenna 
surrounded by an ENG shell. (c) The coupling and radiation behavior of the near-field metamaterial-loaded small antenna. (d) Final RLC 
resonator approximation for the whole antenna. Taken from [103] 
 
The driven element can be either a small dipole or a monopole. It is demonstrated that the outside shell is 
essentially an electrically small resonator with a capacitive core inside and an inductive surrounding outside, 
yielding a lossy RLC resonator as shown in Figure 56(c). The small driven dipole or monopole is also a 
capacitive element. The total antenna resonance frequency is determined as  

(c) (a) (b) (d) 

Smallest circumscribing 
sphere (Chu sphere) 

Port1 

Port2 

Port 2 feed 

Port 1feed 

(a) 

(c) (d) 

(b) 
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 , (1.77) 

where 𝑗𝑗𝑘𝑘  and 𝐶𝐶𝑘𝑘  are the effective inductance and capacitance as shown in Figure 56(d). The properties of the 
negative permittivity sphere differ dramatically from that of a positive permittivity sphere in many aspects, many 
of which are desirable for an ESA [103][16]. Stuart et. al. [16] report the negative permittivity shell or sphere 
provides bandwidth performance close to the Chu-limit (same as spherical helix examples in Chapter 1.1.2) and 
good impedance matching which can be easily obtained. The practical challenge of implementing these designs 
is in the development of low-loss uniform materials with negative permittivity. Actually, these materials are 
attainable in nature. For instance, the plasmas may achieve similar functions as the ENG materials. 
 

Exapmle 1: One way to physically approximate the concept of a ENG shell is using the NFRP element 
proposed by the group led by Ziolkowski [103]. One of those examples is the antenna shown in Fig. 13 with a 
meander line element driven by a monopole. The monopole is printed on the Rogers 5880 substrate and 
coaxially fed through a ground plane. The coupling between the two elements is electrical. The small meander 
line, which is connected to the ground, has been demonstrated to be a unit cell of ENG metamaterial [103]. 
Therefore, it can be roughly approximated as a near-field shell with a negative permittivity. It is reported that an 
ESA operated at 1.37 GHz with a ka close to 0.49 has been achieved with an overall efficiency of 88% and a 
fractional bandwidth (half power instead of the 10dB bandwidth) around 4.1%. 
 

 
Figure 57 The fabricated 1373-MHz 2-D electric-based small antenna consisting of a meander line and a monopole element. (a) HFSS 
model. (b) Fabricated prototype [103] 
 

Example 2: Alu et al. [101] explored pairs of metamaterial slabs with oppositely signed constitutive 
parameters and used them to obtain sub-wavelength patch antennas. If two materials have opposite signs in their 
parameters across the interface, the slopes of variation of the tangential electric and magnetic fields result in a 
peak at this interface. If the parameters of the two materials are chosen judiciously it is possible to excite a 
resonant mode confined to the interface which does not depend on the thickness of the two material slabs, 
meaning that the bi-layer composed of such materials can be made arbitrarily small compared with the 
wavelength. The resonance condition for a sub-wavelength operation of the antenna is determined by a change in 
the sign of only one constitutive parameter (permittivity or permeability, depending on the application). This 
means that there is no need for complicated DNG slabs. ENG or MNG materials, which may be arguably simpler 
to realize are enough to obtain the desired behavior. However, it has been shown that such patches do not radiate 
energy efficiently in free space. The electric field underneath the patch is almost constant and the ratio between 
the radiated and the stored energy is very low implying that the radiators of [101] are more resonators than 
efficient radiators. 

With a circular patch it is possible to achieve the aforementioned miniaturization using a MNG metamaterial 
depicted in Figure 58(a)-(b). The metamaterial is composed of split ring resonators that provide negative 
permeability slightly above their resonance frequency. First resonance seen in Figure 58(c) is due to the MNG 
metamaterial, while the second resonance is the standard patch antenna resonance, which is due to its 
geometrical dimensions (i.e. when the patch diameter’s of the order of half wavelength) because at that 
frequency the permeability becomes positive again. 
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Figure 58  (a) A circular patch antenna loaded with a radially inhomogeneous substrate.  (b) Conceptual implementation of a single ring of 
magnetic resonant inclusions underneath the patch to obtain the required MNG behavior at the desired frequency. (c) Matching features of 
the antenna.  Picture taken from  [101] 
 
Real life issues with implementation of miniaturized metamaterial components: The first issue with realistic 
inclusions is the inherent anisotropy of the inclusions. This may be solved by properly aligning the inclusions as 
a function of the expected field polarization in proximity of the metamaterial sample (parameters are not 
important in the direction where the field is zero).  The second issue is the size of the inclusions that have to fit 
the electrically small volume of the radiators. The theoretical results show that in principle there is no limit to the 
size of the metamaterial samples loading the two radiators. Of course, in reality there is a final limit, dictated by 
losses and the material granularity. Miniature inclusions are essential for achieving miniaturization of the 
radiators. A big problem with artificial magnetic inclusions is that the more electrically smaller they are, the 
narrower the bandwidth is! The third difficulty is to design the inclusions in order to get the same needed values 
of permeability or permittivity derived from theoretical analysis of the components.  

C. METASURFACE GROUND PLANE BASED MINIATURIZATION 
As a subfield of metamaterials, meta-surfaces have also drawn increasing attention in recent years, finding 
widespread applications in microwave circuits and antennas [109]-[113]. They are usually designed by making 
only a 2D array of metallic inclusions which then a partially reflecting and partially transmitting surface (PRS). 
However, in connection with patch antennas, here we are interested in metasurface ground planes, which are 
basically a PRS placed close to a ground plane and allow only reflection of incoming waves. They are often 
called high impedance structures (HIS) for their ability to reflect waves with zero reflection phase, just like 
magnetic conductors, which also earned them the name of artificial magnetic conductors (AMC). 

We can divide metasurface gound planes into two main categories: electromagnetic band gap structures 
(EBG) and reactive impedance surfaces (RIS). EBG structures were introduced by Sivenpiper in [109] and are 
composed of a mushroom-like array of periodic metallic patches with viases while a RIS was introduced by 
Mosallaei and Sarabandi  in [108] and is composed only of periodic metallic patches and no via.; both are shown 
on Figure 59. The main difference in operation between EBG and RIS structures is that the presence of via in a 
mushroom-type structure can impose an electromagnetic band-gap at the same frequency range as the AMC 
property and suppress the surface waves. In other words, the mushroom structure exhibits high surface 
impedance for both normally incident and surface waves at the same frequency band. In the absence of via, the 
band-gap does not normally coincide with the AMC frequency band. This can deteriorate the benefits of AMC 
surfaces in certain applications, where surface wave suppression is advantageous.  

Similar to metamaterilas, we can observe in Figure 59(a) and (b) that metasurfaces depend on resonant 
phenomena for their operation and their properties are thus frequency dependant. Because of this, perfect AMC 
operation is possible only at a single frequency. However, bandwidth of metasurfaces is often considered by 
looking at the frequency range where the reflection phase is between −45° < 𝑗𝑗 < 45°. Unfortunately, this 
bandwidth is also dependent on the angle of the incoming waves. Figure 60 shows typical dependence of 
metasurface bandwidth performance depending on the incidence angle for a TE and a TM wave polarization. We 
can observe that with increasing angle bandwidth reduces for TE polarized waves and increases for TM 
polarized waves.  

(a)  
 

(c)  
 

(b)  
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Figure 59 (a) EBG mushroom type ground plane and its equivalent circuit. (b) RIS type ground plane and its equivalent circuit. (c) Schematic 
of waves reflecting from a metasurface ground plane, the equivalent surface impedance and the corresponding phase of the reflected wave. 
Pictures taken from [86]. 
 
Generally speaking, the novel characteristics of the metasurfaces, including the RIS, AMC, EBG can be 
harnessed in several ways for antenna applications. First, their band-gap features can be utilized as a high 
impedance ground plane to enhance radiation performance (gain, patterns, side lobes, etc.) by suppressing 
undesired surface waves and mutual coupling. Second, they can provide a zero-phase reflection at the PMC 
frequency which could lead to a low-profile antenna realization. Third, the reactive impedance provided by 
metasurface underneath the radiating element, either inductive or capacitive, offers a way to store the magnetic 
or electric energy which could reduce 𝑄𝑄 of the antenna and therefore achieve a better bandwidth and size 
miniaturization. Last, they can work as a reflecting surface or a frequency-selective surface which could change 
the field distribution or wave direction thus increasing the antenna gain or change the radiation patterns.  
 

 
Figure 60 Typical reflection phase of printed patch metasurface structure for (a) TE-polarized oblique plane wave excitation and (b) for the 
TM-polarized oblique plane wave excitation. Taken from [86]. 
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Example 1: Mosallaei and Sarabandi originally introduced reactive impedance surfaces in [108] and 

immediately considered performance of a patch antenna over the RIS and compared its performance with a 
traditional patch over a PEC surface. To make the comparison, they used the same size patch and ground plane, 
as shown in Figure 61; however, they allowed the permittivity of the substrate of the conventional patch to be a 
variable to achieve the same resonant frequency.  

 
Figure 61 Patch antenna on the (a) conventional substrate and (b) RIS substrate (a 4 x 4 array of square patches printed on the PEC-backed 
dielectric material). Taken from [108]. 
 

In their experiment, the patch antenna was printed on a relatively low dielectric material 𝜀𝜀𝑘𝑘 = 6 of thickness 
2 mm and located above an RIS. The RIS substrate was made of trans-tech MCT-25 magnesium calcium 
Titanate composition with a dielectric constant of 25, a thickness of 4 mm, and tan σ = 0.001. Thir measured 
results show that the antenna resonance frequency is at 1.92 GHz and it exhibits a 10-dB fractional bandwidth of 
BW=6.7%. The measured gain is 4.5 dBi and the radiation efficiency is about 90%. The antenna exhibits a patch 
size of 0.102 λ0 x 0.128 λ0 x 0.038 λ0 at the resonance frequency.  

To achieve the same resonant frequency (1.86 GHz), a conventional patch over a substrate thickness of 2 
mm, a high dielectric substrate 𝜀𝜀𝑘𝑘 = 21 was needed, as shown in Figure 61(a). The conventional patch antenna, 
over the ground plane, shows a very narrow bandwidth of and an efficiency of about BW=0.6% and efficiency of 
about 70%. This effectively demonstrates that over a reactive impedance ground plane the patch size would be 
miniaturized if it were placed over the same substrate as a regular patch working above a PEC ground plane. 

D. METARESONATOR BASED SMALL ANTENNAS 
Metaresonator antennas are true examples of metamaterial inspired design, as they usually consist of a few 

or only one metamaterial inclusion. The antennas directly using the metaresonators, specifically the SRR and the 
CSRR, are shown in this section. SRR can be considered as a resonant magnetic dipole which has been widely 
used to synthesize metamaterials. The applications of SRR and CSRR to miniaturize microwave devices and 
various antennas were widely investigated and presented [85],[117]-[118]  

Example 1: One original example using the SRR for ESA application was proposed in [117]. In that design, 
the SRR is electrically excited with a coaxial cable or a monopole antenna. The SRR is printed on the standard 
FR-4 material with a relatively permittivity of 3.5. That antenna achieves a size of 0.095 𝜆𝜆0 × 0.100 𝜆𝜆0 ×
0.019 𝜆𝜆0  and a radiation efficiency of 43.6%. Here we demonstrate a planar ESA using the vertical SRR to show 
its capability and performance. The proposed antenna structure is shown in Fig. 18(a) and the photograph of the 
fabricated antenna is shown in Fig. 18(b). 
 

 
Figure 62 Configuration of the proposed inductively-fed vertical SRR antenna. (a) Perspective view and (b) fabricated prototype of the 
antenna. (c) The measured and simulated reflection coefficients for the inductively fed VSRR antenna. The magnetic field distribution at the 
resonance frequency is also plotted in the inset. Taken from [117]. 
 

A coaxial feeding probe is directly connected to the top surface of the SRR which can be represented by a 
series inductor. The interdigital capacitor, which is the split of the VSRR, is able to store the electric energy for 
the resonator and miniaturize the antenna size. The VSRR is modeled as a high- 𝑄𝑄 LC resonator with a parallel 
radiation resistance associated with the capacitor. This circuit is excited by simply applying a voltage difference 
across the capacitor, which generates current along the loop and induces axial magnetic field inside the loop. In 
this manner, it can be equivalent to a magnetic dipole placed along the y-direction above a PEC surface. Figure 

(c)  
 

(b) (a) 
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62(c) shows the simulated and measured reflection coefficients for this VSRR antenna. It exhibits an overall size 
of 0: 112 𝜆𝜆0 × 0.051 𝜆𝜆0 × 0.028 𝜆𝜆0  at the operating frequency, which corresponds to a 𝑘𝑘𝑎𝑎 of 0.427. The 
measured -10 dB fractional bandwidth is found to be 2.1%. The measured gain and efficiency are 2.05 dBi and 
68.1%. It is noted that the reduced efficiency is mainly due to the lossy substrate with a loss tangent of 0.009. 
The simulated magnetic field at the resonance frequency is also provided in. It is clearly seen that this antenna 
behaves similarly to a magnetic dipole antenna over a PEC surface. 

Example 2: Miniaturized planar antennas based on another metaresonator, CSRRs, are investigated in [118]. 
The CSRR has been proved to behave as an electric dipole which needs an axial electric field excitation. It is a 
high-Q resonator but not a good radiator [118]. However, it can couple the energy to the antenna patch and make 
the patch radiate. An illustrative example is shown Figure 63 where two CSRRs are embedded on the top 
surface. 

 
Figure 63 (a) Perspective view and (b) a photograph of the proposed dual-band dual-polarized antenna with face-to-back CSRRs. An RIS is 
used to improve the antenna radiation performance. (c) The measured reflection coefficient compared with the results from circuit simulation 
and full-wave simulation using HFSS and CST. Taken from [118]  
 

They are face-to-back oriented in terms of the direction of the ring split. An RIS, which is composed of a 
periodic array of metallic square patches printed on a metal-backed dielectric substrate, is introduced below the 
top surface to improve the radiation efficiency. A coaxial probe feeding is utilized and placed a little off the 
center along the x-direction of the patch. It is a three-layer structure where the top and bottom dielectric substrate 
with a relative permittivity of 4.02 and a measured loss tangent of 0.009 at 2.4 GHz. This antenna is operated as 
a dual-band antenna where the first resonance is excited by the CSRRs while the second resonance is provided 
by the patch [110]. The two resonances have orthogonal polarizations. The two bands are measured at 2.41 and 
3.82 GHz, respectively. The patch size is around 0.099 𝜆𝜆0  ×  0.153 𝜆𝜆0  ×  0.024 𝜆𝜆0 , where λ0 is the free-space 
wavelength at the first resonance. The corresponding measured radiation efficiencies are 22.8% and 74.5%. The 
low efficiency at the first band is mainly due to high dielectric loss and the conductor loss caused by the strong 
current. 

1.4.4. Use of metamaterials in antenna bandwidth enhancement 

A. METAMATERIAL LOADING BASED BANDWIDTH ENHANCEMENT 
Hansen and Burke [119] have shown bandwidth for a patch antenna over a magneto-dielectric substrate with 

thickness t can be approximated by: 
 

𝐵𝐵𝐹𝐹 ≈
96�𝜇𝜇𝑘𝑘𝜀𝜀𝑘𝑘

𝐴𝐴
𝜆𝜆𝐶𝐶√

2�4 + 17�𝜇𝜇𝑘𝑘𝜀𝜀𝑘𝑘�
 (1.78) 

Thus for a given miniaturization factor (constant 𝜔𝜔𝜋𝜋𝜔𝜔𝜋𝜋  ), the antenna bandwidth can be enhanced by increasing 
the ratio 𝜇𝜇𝑘𝑘/𝜀𝜀𝑘𝑘 . One could therefore use natural magneto-dielectric material with moderate values of 𝜇𝜇𝑘𝑘  and 𝜀𝜀𝑘𝑘  
that provide the same miniaturization factor, while a wider bandwidth can be achieved. The alternative is to try 
and create a metamaterial that artificially increases the permeability. However, as is demonstrated in the 
examples below, because of the inherent dispersion (frequency dependence) of metamaterials, there is no real 
benefit from using them. 

Example 1: Performance of a patch antenna printed on an ideal magneto-dielectric substrate was 
investigated experimentally in [120] using a structure composed of layers with 𝜀𝜀𝑘𝑘 = 16 − 𝑗𝑗0.032, 𝜇𝜇𝑘𝑘 = 1 and 
𝜀𝜀𝑘𝑘 = 2.2 − 𝑗𝑗0.022, 𝜇𝜇𝑘𝑘 = 16 − 𝑗𝑗0.32, as is shown in Figure 64. A patch antenna with size 10 cm 8 cm is printed 
on the four layer dielectric and magneto-dielectric materials with thickness 2 cm. The size of the ground plane is 
20 cm 20 cm. The antenna resonance is at 𝑓𝑓0 = 277 MHz and it provides a wide bandwidth of about FBW = 
3.2%. The size of the antenna is around 0.09 𝜆𝜆0  with a miniaturization factor of 5.4. The antenna efficiency is 

(c)  
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about 67%. If a magneto-dielectric material with lower magnetic loss tangent around 0.01 is used the efficiency 
is increased to 82% where the bandwidth is decreased to BW=2.8%. 

To achieve the same miniaturization factor utilizing only a dielectric material (𝜇𝜇𝑘𝑘 = 1) one must use 
𝜀𝜀𝑘𝑘 = 23.7. This reduces the bandwidth to about BW = 0.5%, with the efficiency in this case for a dielectric loss 
tangent of 0.001 is about 64%. Therefore, utilizing the magneto-dielectric meta-substrate one can offer a 
miniaturized wideband planar antenna with high efficiency. 
 

 
Figure 64 (a) Composite periodic dielectric and magneto-dielectric structure (periodicity in z directions). (b) A patch antenna over the 
engineered magneto-dielectric meta-substrate. (four-layer dielectric and hexaferrite substrate). (c) comparison of return loss for a reglar patch 
antenna over a dielectric material and a patch antenna over the engineered substrate.[120]  
 
Example 2: A metasubstrate from the embedded-circuit inclusions (split ring resonators) was investigated in 
[121], as shown in Figure 65(a). The FDTD method is applied to characterize the antenna printed on the 
embedded-circuit metasubstrate, and the result for return loss is shown in Figure 65(b). A resonant frequency of 
f0 =1.74 GHz (miniaturization factor of about 4) and bandwidth of about BW =1% are determined. The patch 
antenna printed on a dielectric substrate with εr =13.92 (keeping the same resonant frequency) has bandwidth of 
about BW =0.6%. It must be highlighted that the dispersion behavior of the permeability function plays an 
important role in degrading the impedance bandwidth performance. Both the dielectric and embedded-circuit 
substrates provide similar radiation patterns. In [121] it was reported that a metasubstrate offers a relatively 
wider bandwidth, but this claim was also criticized by [122]. We can conclude that no practical benefit in 
bandwidth is gained from using split ring resonators. 

 
Figure 65 Patch antenna printed on an embedded-circuit metasubstrate: (a) the geometry and (b) return loss [121] 

A. METASURFACE BASED BANDWIDTH ENHANCEMENT  
A patch antenna is capacitive below its natural resonance, while a RIS is inductive below its respective 

resonance. Basically, RIS has the ability to store magnetic energy that can compensate for the near-field electric 
energy of the radiating patch; this fact allows for antenna miniaturization. In addition, RIS spatially distributes 
the image representation of the patch on the ground plane; this minimizes mutual coupling between the antenna 
and its image, allowing for ease of impedance matching over a wider bandwidth.  

Example 1: Connected to the already given example in part C of the previous Section on the miniaturization 
benefit of a RIS, here we show the bandwidth broadening effect.  In the experiment with patch antennas, shown 
in Figure 66(a) and (b), Mosallaei and Sarabandi [108] measured the RIS-patch antenna resonance frequency is 
at 1.92 GHz and it a 10-dB fractional bandwidth of 6.7%, shown in Figure 66(d). The measured gain is 4.5 dBi 
and the radiation efficiency is about 90%. The corresponding conventional patch at the same resonant frequency 
(1.86 GHz) was designed on a high dielectric substrate to have the same patch size as the patch over a RIS. The 
return loss of this antenna is also shown in Figure 66(d) for comparison. The conventional patch antenna, over 
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the ground plane, shows a very narrow bandwidth BW = 0.6% and efficiency of about 70%. With the RIS 
ground plane the bandwidth was thus increased 8 times. 

 
  

 
Figure 66 Patch antenna on the (a) conventional substrate and (b) RIS substrate (a 4 x 4 array of square patches printed on the PEC-backed 
dielectric material). (c) RIS substrate composed of periodic squared patches printed on the PEC-backed dielectric material and its building 
block unit cell. (d) Return loss of patch antenna over the conventional and RIS substrates. Notice to the wideband performance of the 
miniaturized patch on the RIS substrate. Taken from [108]. 
 

Example 2: A demonstration of circular polarization bandwidth enhancement using a RIS ground plane was 
demonstrated in [111] . The paper gives a step by step demonstration of bandwidth enhancement by comparing 
numerically and experimentally the performance of various antenna configurations: conventional slot-loaded 
patch antenna over a single substrate; over a dual-layer substrate; over a RIS made of square patches; and over a 
RIS optimized for giving broader CP polarization. The final optimized structure exhibits an axial-ratio 
bandwidth of about 15% and an impedance bandwidth better than 11%, which is much wider than the 
conventional printed antenna on the same materials. The comparison is given in Figure 67. 

 
 

SUMMARY OF METASURFACE BENEFITS:  
• Metasurfaces can be tuned anywhere between the PEC surface and the PMC surface offering a property to 

achieve the optimal bandwidth and miniaturization factor. 
• Metasurfaces provide a total reflection of power that can also enhance the antenna front-to-back ratio. 
• The image of a point source located above the metasurface is a spatially distributed current element that has 

the minimum interaction with the point source. This has the significant advantage of reducing the mutual 
coupling between the antenna and its substrate, resulting in the impedance bandwidth enhancement. 

• RIS has the ability to store magnetic (or electric) energy that can be properly used to compensate for the 
near-field electric (or magnetic) energy of the radiating structure resulting in the antenna size reduction 

 
The fact that a metasurface can offer miniaturization, and is the only metamaterial type proven to bring 
substantial benefits for bandwidth makes it the most important this metamaterial concept in this thesis. In 
Chapter 4 it is demonstrated that indeed, metasurfaces can bring benefits for cavity antennas.  

 

(a)  
 

(b)  
 

(c)  
 

(d)  
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Figure 67 Geometry of the proposed structures (basic dimensions are Lsubstrate=100 mm, h1 = 6 mm, h2 = 1.5 mm). (a) Top view. (b) Side 
view. (c) Fabricated prototypes. In all cases, the radiating element is a probe-fed slot-loaded patch. (1) Single-substrate configuration (“1 
sub.,” i.e., no RIS (h1 = 0, h2 = 1.5 mm).  (2) Dual-substrate configuration, no RIS.  (3) RIS with square elements and angle 𝛼𝛼 = 0°. (4) RIS 
with CP-optimized rectangular elements. Taken from [111]. 

1.4.5. Challenges and future trends of metamaterials 
So far we have introduced various different metamaterial based antennas. Readers may have this question: What 
are the challenges and limitation of these antennas?  

• The first challenge is how to obtain better homogeneous metamaterials. Many discussions and solutions 
are actually based on the assumption of low-loss homogeneous metamaterials, such as the ENG, MNG, 
DNG, and high-Mu materials. How to physically realize these materials would still be a long standing 
problem. The best approach should still rest on the discovery of new materials that are novel and low 
loss, which could be used by antennas.  

• The second challenge, just like the conventional antennas, still lies in the contradiction between the 
bandwidth, efficiency, and the antenna size. The size miniaturization apparently is not a problem with 
metamaterial concepts. The challenges therefore become the bandwidth broadening and efficiency 
improvement. How to approach the lower bounds of 𝑄𝑄 (determined by Chu-limit), or even go beyond, 
for metamaterial-inspired antennas would still be a kernel of the problem that is a challenge for the 
future. 
 

 
One “outside the box” solution to the bandwidth problem are active non-Foster elements used in a matching 
network to broaden the bandwidth. They are usually built via a combination of active devices (transistors) as 
well as lumped capacitors and inductors. Ideally they are able to realize negative inductance and capacitance 
values which are designed to excite the antenna resonance as well as to optimize the power delivered to its 
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terminals. Realistically, they suffer from many stability issues and limitations on the highest frequency of 
operation that have yet to be resolved by researchers around the world. In this thesis we do not explore non-
Foster elements and restrict ourselves to passive antennas only.   

1.5. Conclusion of Chapter 1 
In this chapter we introduced important topics which are essential to the rest of the thesis. These are: antenna 

bounds, microstrip antennas, cavity antennas, and metamaterials. In fact, these topics will be merged together to 
form new results.  

The Chu bound has been investigated since the middle of the 20th century and is regarded as an important 
benchmark by many antenna researchers although it is applicable to spherical antennas only. The newer, 
Gustafsson bound, is applicable to arbitrary geometries and is therefore a perfect candidate in analyzing cavity 
antennas.  

Pin fed microstrpip patch antennas have been shown to offer many possibilities for miniaturization and 
bandwidth enhancement. The usefulness of these techniques when a patch is inserted into a small cavity will is 
discussed in the next chapter. Patch antennas in cavities have been investigated in the literature before, but their 
bandwidth behavior has never been directly compared to the bandwidth behavior of simple cavity antennas, nor 
has any relationship between the two been established. The analysis of simple square cavities was first presented 
in 1950s but has been expanded in this chapter by the author to include circular apertures and finite ground 
planes, because these results will be of importance in the next chapters.   

Finally, metamaterials have been shown to be very useful for miniaturization, but there are very few 
examples where they enhance bandwidth. The best candidates for bandwidth enhancement of patch antennas 
seem to be metasurfaces. They were shown to offer both miniaturization and better bandwidth.  

 

1-52 
 



 

Chapter 2.   

Bandwidth of patch antennas in small cavities  
 
In this chapter, simulation results for single patch antennas in cavities will be presented and discussed. 

Studies have been made on rectangular and circular shaped cavities in an infinite and a finite ground plane. 
Section 2.1 explains the reasons for investigating strictly single patch configurations. Section 2.2 and Section 2.3 
combine the knowledge of cavity antennas data from simulations of patch antennas to draw new conclusions and 
explain the operation of such antennas. Section 2.4 presents several transmission line models to describe the 
phenomena seen in simulation results.  

2.1. On the restriction to single patch configuration   
In Chapter 1.2. several miniaturization and bandwidth enhancement techniques were discussed. The motivation 
for considering these techniques is the requirement to place the antenna in a small cavity, requiring 
miniaturization, and enhancing bandwidth performance for data transmission. All techniques were considered 
and investigated using the FD solver in simulation software CST [130].  

An elimination process was applied based on the simulations and is briefly summarized here. Emphasis in 
the elimination process is on the behavior of the antenna performance with increasing height, since in the end 
application, height is less restricted than aperture size. Summary of miniaturization techniques for microstrip 
antennas applied in a small cavity environment: 

• Figure 68(a) shows material loading technique where the volume of the cavity is filled with a high 
permittivity material up to the aperture. At low height, patch size is miniaturized just as the case without 
a cavity. Increasing height miniaturizes the patch size further. Due to the cavity environment, height can 
be increased further compared to the case without a cavity. There is no radiation from the feeding pin 
and no surface waves in the substrate. Furthermore, cavity enclosure can be considered as a 
miniaturization technique itself. Namely, when the cavity size is smaller than the calculated patch on 
the given substrate permittivity, the antenna will still resonant with a patch smaller than the cavity size, 
due to the strong capacitive effect between the patch and the wall. All these positive characteristics, 
along with the antenna simplicity, make this design the best choice for a detailed investigation 

• Figure 68(b) shows the concept of loading the patch with a shorting pin and making it a 𝜆𝜆𝑔𝑔/4 resonator. 
Shorting pin was found to work well if the height of the cavity was small. Increasing height diminished 
the effect of the shorting pin. As will be explained in this chapter, for thick cavities, waveguide TE 
modes are of most importance, and the shorting pin is affecting only the patch TM010 mode.   

• Figure 68(c) shows the meandering technique. In the case of cavity environment, only the patch 
structure can be meandered. For thin cavities, the effect is analogous to the no cavity case. With 
increased height the patch remains miniaturized compared to a classical patch and it is possible to 
match the antenna with a pin feed. However, for the same aperture size and substrate, the antenna with a 
meandered patch has narrower bandwidth compared a classical patch. The reason for this effect on 
bandwidth will be explained in Section 2.4 (with transmission line models). Due to the objective of 
achieving good bandwidth performance, the meandering technique is eliminated form a detailed study 
in favor of classical patch and the material loading technique. 

• Finally, lumped elements were eliminated due to the end application of the antenna which required 
reliability under high acceleration. 

 
Figure 68 Investigated miniaturization techniques. (a) material loading, (b) shorting pin, (c) mantering. 

(a) (b) (c) 
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One final note is that cavity enclosure can be considered as a miniaturization technique itself. Namely, when the 
cavity size is smaller than the calculated patch on the given substrate permittivities, the antenna will still resonate 
with a patch smaller than the cavity size. The strong capacitive effect between the patch and the wall allows.  
 
Summary of bandwidth enhancement techniques for microstrip antennas applied in a small cavity environment 

• Figure 69(a)-(d) shows several examples of achieving multiple resonances all suffering from the same 
drawbacks. With these design concepts, simulations at different heights showed that matching was 
possible only for very thin cavities. In this case the bandwidth broadening effect was not significant 
compared to what can be achieved with a simple patch in a thicker cavity. 

• Figure 69(e) shows a stacked patches configuration with two patches. As in the previous examples, 
bandwidth broadening is achieved with two closely spaced resonances. The configuration is very simple 
and works even if cavity height is large. However, there are many restrictions. The two resonators must 
be loosely coupled. In general, this means the substrate between the patches has to be low, and larger 
distance between the patches is actually preferable (leading to higher cavities). Unfortunately, 
simulations have shown that in small cavities, having the aperture dimension smaller than 0.3 
wavelengths (< 0.3𝜆𝜆0) the resonators are always tightly coupled. As a consequence, two resonances 
separate and there is no bandwidth broadening effect. 

• Figure 69(f) shows material loading, and is the simplest technique broadening a single resonance of the 
antenna. However, in small cavities, when the aperture size is smaller than the corresponding patch size 
calculated in the case without a cavity, severe bandwidth reduction occurs. Detailed investigation of this 
design is shown in the remainder of the chapter. 
 

 
Figure 69 Schematics of bandwidth enhancement concepts. (a) U-slot, (b) E-shape patch, (c) stacked patches, (d) slot loading, (e) reactive 
loading, (f) material loading. 
 

To conclude, upon considering the miniaturization and bandwidth techniques presented, we are left with a 
single option, i.e. the single patch in cavity filled with some substrate material. Based on the knowledge about 
classical patch antennas presented in introductory Chapter 1.2, it seems we are faced with opposite requirements 
on substrate permittivity (miniaturization vs. bandwidth increase). However, it is unclear how the cavity 
environment affects the antenna when height is increased. Can we draw the same conclusions we drew for the 
classical patch antennas without a cavity? What is the maximum bandwidth of patch antennas inside a cavity, 
how does it depend on the substrate inside, and how does it depend on the aperture size? These questions led to a 
detailed numerical study of the single patch configuration inside the cavity. 

Particular interest was given to rectangular cavities and patches of square shape, for simplicity, and to 
circular shaped cavities for comparison. 

2.1.1. Simulation procedure for single patch antennas in  cavities 
Before showing the simulation results the optimization procedure and goal is discussed. A schematic of the 

studied geometries (both for square and circular shaped cavities) is given in Figure 70. As the main interest is -
10dB antenna bandwidth (or 10dB return loss) at 2.3 GHz, it was decided: 

• To study the bandwidth behavior depending on the cavity height in discrete increments of 𝛥𝛥ℎ =  1 mm.  

(a) (b) (c) 

(d) (e) (f) 
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• To study the bandwidth dependence on permittivity, we chose 𝜀𝜀𝑘𝑘 = 3.66, 6.15 and 10.2 which coincide 
with materials available for purchasing from Rogers inc. [3].  

• To study the dependence on aperture size, example cavity sizes 20 mm (0.15 𝜆𝜆0), 32mm (0.245 𝜆𝜆0), 
40mm (0.3 𝜆𝜆0), and 48 mm (0.37 𝜆𝜆0). In case of a circular aperture 50 mm (0.38 𝜆𝜆0) was chosen for the 
last case.  

• To study the ground plane effect, we chose to investigate an antenna embedded in an infinite ground 
plane, see Figure 70(a), and a finite ground plane, i.e. a cavity with walls of 5 mm thickness, as depicted 
in a schematic on Figure 70(b). 

Thus for each cavity height ℎ, for each example cavity size, and for each permittivity value, a separate 
optimization had to be made to match the antenna to 2.3 GHz. The variables for optimizing the resonance at 2.3 
GHz were patch size p and feed position fp. 

Excitation in the simulations was done trough a waveguide port attached to the bottom of the coaxial cable. 
The coaxial cable had a central wire 0.5 mm in diameter and was filled with Teflon (𝜀𝜀𝑘𝑘  =  2.1) having a 1.7 
mm diameter, giving a 50 Ohm characteristic impedance. 

 
Figure 70 Schematic depiction of the single patch configuration chosen for a detailed study. (a) Configuration in an infinite ground plane. (b) 
Configuration in a finite ground plane with wall thickens of 5 mm on all sides. The schematics are valid for both square and circular shaped 
geometries 

 
It is well known that a patch antenna can be perfectly matched for a specific patch size and feed position 

giving extremely low S11 values. Nevertheless, a reasonably good match at the same frequency is also possible 
for slightly different combinations of these two variables. Here, we specifically discuss this detail, i.e. tolerance 
in feed position and patch size. It is the belief of the author that the subtle effect of this tolerance needs to be 
understood. It is important in considering the optimization goals and errors in bandwidth determination.  

Imagine that a patch antenna is resonant at 2.3 GHz and perfectly matched (S11 = - ∞) for a specific patch 
size p and feed position fp. What is observed in simulations is that when a patch antenna is not perfectly matched 
at the resonant frequency, but only well matched, there are in fact two different ways in which this could happen. 
First option is with a smaller patch size (p1 < p) and feed position closer to the center (fp1 < fp). The second 
option is with a slightly larger patch size (p2 > p) and a feed position slightly closer to the patch edge (fp2 > fp). 
These two options, however, do not have the same bandwidth, and may lead to errors in bandwidth 
determination.  

 
Example: This curiosity in patch antenna matching is depicted in Figure 71 for one antenna example (probe-

fed single patch antenna in a cavity of 32mm size, 8mm height, printed on a substrate of 10.2 permittivity and 
designed to resonate at 2.3 GHz). Figure 71 reveals that perfect match occurs near patch size p = 16.5 mm and 
feed position fp = 3.8 mm from the center. Two circles on Figure 71(b) indicate the two options when the S11 
parameter is only -25 dB, and Figure 71(c) shows the actual S11 parameter form simulation where it is obvious 
the two options do not have the same bandwidth. The second option is preferable in terms of bandwidth.  

Additionally, it is observed in the bandwidth curve on Figure 71(b) that there exists an optimum bandwidth. 
In the example antenna, optimum bandwidth is observed for p = 16.7 and fp = 4.3mm respectively. It can then be 
concluded that this can lead to an ambiguity in bandwidth determination. Specifically, for a non-perfect match 
there can be two optimization solutions, we may call them the local and the global optimum, giving a lower and 
a higher value of bandwidth. The difference in bandwidth at perfect matching and at maximum bandwidth exists 
for all patch antennas but is negligible when the substrate is thin. However, it becomes important for very thick 
antennas. For this reason the optimization goals have to be set carefully, and regardless of the interest in 
bandwidth, the perfect matching condition is more robust. 

(a) (b) 
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Figure 71: Example study of the matching tolerance. (a)  The effect of patch size/feed position tolerance is depicted for one example antenna 
geometry i.e. a 32mm square cavity with 8mm substrate height and substrate permittivity 10.2 inside. (b) Plot showing the bandwidth and 
minimum S11 at the resonance, depending on patch size/feed position. There are two optimums – “perfect matching” noted by a blue circle, 
and maximum bandwidth (c) Example simulation result of S11 parameter when the antenna has 25dB return loss at resonance. Note that the 
bandwidth is not the same for the two curves. 
 

Here we will briefly explain the behavior presented in Figure 71. We can start by looking at the patch as two 
transmission lines connected in parallel at the feed point (see Figure 15; transmission line model for patch 
antenna in Section 1.2.1 of Chapter 1). Termination of the lines is a high impedance (resistive and capacitive 
open end) in which case the input admittance of the lines is mostly imaginary and varies almost as a tangent 
function. The 𝑄𝑄 factor of antennas is proportional to the derivative of impedance (A 22), or equivalently, 
admittance as given by  

 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 =  𝜔𝜔0
2 𝐺𝐺(𝜔𝜔0)

�𝜕𝜕𝑌𝑌 (𝜔𝜔)
𝜕𝜕𝜔𝜔

�
𝜔𝜔=𝜔𝜔0

, (2.1) 

where 𝐺𝐺(𝜔𝜔0) is the conductance and 𝑌𝑌 (𝜔𝜔0) is the total admittance at a specific frequency. The imaginary part of 
the total admittance is varying almost as a tangent function; it will have a lower derivative the closer the 
argument of the tangent function is to zero (short line) or to π (𝜆𝜆𝑔𝑔/2 line). Therefore, the admittance derivative 
decreases as the feed point moves closer to the edge and hence bandwidth in that case is higher. In the 
meanwhile, the real part of the admittance also varies as we move the feeding point; best matching condition can 
occur only at one point where the real part matches the characteristic impedance of the feed, not at the edge 
position. 

2.1.2. Optimization goal  
To standardize the simulations, all antennas were optimized to have a return loss larger than 35dB at 

2.3GHz. According to Figure 71, this is close to the perfect matching condition, and thus robust enough to 
reduce the error in bandwidth determination. For simulations we used the frequency domain solver in CST 
Microwave Studio [130]. 

2.2. Bandwidth behavior of patch antennas in square cavities  
Here we describe and compare simulation results for a rectangular (square) geometry. An example of the 

actual geometry simulated is shown in Figure 72 for two different ground plane cases. Additionally we compare 
the simulation results with results form Chapter 1.3.1 on cavity antennas. This is crucial, as we will see that the 
cavity antenna operation is a limiting case of patch antennas inside a cavity.  

To better understand the results for various cases, and all the details on the graphs, one example was chosen 
and presented in full detail on Figure 73. The geometry with aperture size a = 0.245 𝜆𝜆0  in a finite ground plane 
was chosen for it possesses all the important traits that appear in other results.  

First, on Figure 73(a) the theoretical result for a cavity antenna of this size is presented. This curve is the 
same curve as on Figure 42 in Chapter 1.3.1 given for cavities in a finite ground plane. However, here we 
concentrate on a single size of the cavity and the potential bandwidth when the volume is filled with specific 
permittivity ( 𝜀𝜀𝑘𝑘 = 3.66, 6.15 and 10.2). Note that only a single point on the curve denotes a cavity antenna. A 

(a) (b) (c) 
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cavity antenna requires specific combination of height and permittivity values. Additionally, there is no 
possibility of making a cavity antenna is the volume is filled with 𝜀𝜀𝑘𝑘 =  3.66 as the waveguide is under cut-off. 

 
Figure 72: Simulation geometry for square cavity and patch in (a) an infinite ground plane and (b) in a finite ground plane, i.e. a cavity with 
wall thickness of 5 mm. Pictures taken from simulations in CST (a = 32 mm, ℎ = 8 mm, 𝜀𝜀𝑘𝑘 = 10.2).  Dimensions are given in the schematic 
on Figure 71. . 
 

Second, on Figure 73(b) we see the simulation results for a patch antenna inside the cavity. Main differences 
compared to the cavity antenna are that instead of a single point for a specific permittivity, we now have a curve 
for each permittivity value. However, points from the graph on Figure 73(a) are translated to Figure 73(b). 
Importantly, these points appear at the end of the bandwidth curves for patch antennas, i.e. above the maximum 
height where matching the patch antenna was still possible. As there is no point for a cavity antenna filled with 
𝜀𝜀𝑘𝑘 =  3.66, the curve for the corresponding patch antenna can actually extend indefinitely, but it was decided to 
present results up to a height of 40 mm.  

Third, on Figure 73(c) actual pictures from simulations of the antennas for various heights are presented. 
This shows that the size of the patch is reduced as cavity height h is increased. In fact, for the cases of 𝜀𝜀𝑘𝑘 =  6.15 
and 10.2 the size reduces to zero (and is unmatchable), and thus the antenna turns into a cavity antenna. For the 
case 𝜀𝜀𝑘𝑘 =  3.66 the size reduces but above some height remains at a fairly constant value.  

 
Figure 73 Detailed Example for a 0.245 ×  0.245 𝜆𝜆0  cavity aperture in a finite ground plane. (a) Analytical prediction for bandwidth of a 
cavity antenna. Line indicated a general bandwidth behavior that depends on 𝜀𝜀𝑘𝑘, see Chapter 1.3.1. Points indicate specific cases when the 
volume is filled with 𝜀𝜀𝑘𝑘 =  3.66, 6.15 and 10.2. (b) Simulation results for -10 dB bandwidth of patch antennas in a cavity, along with the 

Specific antenna 
examples from 

simulations 

(c) 

Cavity antenna 

Patch antenna in 
a cavity 

3.66 

6.15 

10.2 

εr = 

(a) 

(b) 

(a) (b) 

2-57 
 



CHAPTER 2: BANDWIDTH OF PATCH ANTENNAS IN SMALL CAVITIES 

points for the cavity antenna case. (c) Actual antenna geometries taken from CST. Due to lack of space, the CST pictures are presented for 
increments in height 𝛥𝛥ℎ =  2 mm. 
 

In the further text, results will be presented in the form seen on Figure 73(b) above. 

2.2.1. Simulation results 
In Figure 74 all the simulation results for example cavity sizes are presented in two columns. In this way a 

direct visual comparison can be made between the infinite ground plane case (left) and a finite ground plane 
(right).   

Note that (Rogers) materials used in the simulations included losses, with specifications given in Table 2.  
It is also recommended to compare these results with the “no cavity” case presented in Chapter 1.2.3 on 

Figure 22(a) for bandwidth increase by increasing height. As mentioned, increasing substrate height enhances 
bandwidth, but the height is limited by surface wave generation, unwanted inductance and radiation from of the 
probe feed. For example, Figure 22(a) shows that a rectangular patch antenna is difficult to match (impossible 
with just a probe feed) for substrate thickness greater than about 0.11𝜆𝜆0 . There is no such restriction when the 
patch is enclosed in a cavity.  

Contrary to a classical probe fed patch antenna without the cavity, when the probe is inside a small cavity, 
the walls act as a shield of a coaxial cable and help to establish a TEM mode. The cavity and the probe act as an 
off center coaxial cable, with a characteristic impedance different than 50 Ohms. The exact characteristic 
impedance is be obtained numerically trough a simulation. The establishment of the TEM mode inside the cavity 
is a major reason for the possibility to increase height beyond what is possible for classical patch antennas. 

Furthermore, a classical probe fed patch antenna excites only its fundamental patch mode (TM010), as 
discussed in Chapter 1.2.1. However, for thick substrates, the cavity represents a short part of a waveguide so the 
patch is also exciting the fundamental waveguide TE10 mode of the rectangular (square) waveguide. As will be 
seen in the following theoretical sections, this fact is crucial in the explanation of presented results. The 
“waveguide mode” allow us to increase the height further than is possible for classical patch antennas. It is also 
responsible for the gradual transformation of the patch antenna into a cavity antenna as was seen in the detailed 
example on Figure 73(c). 

Our simulation results show that a cavity environment can quite dramatically change the aforementioned 
simple behavior rules of classical patch antennas (increasing substrate permittivity leads to patch size 
miniaturization and a decrease in bandwidth and increasing substrate height enhances bandwidth). 

 There are several observations on bandwidth behavior we make on Figure 74 that will be discussed in the 
further text, these are  

• For very small cavities a ≲ 0,15 𝜆𝜆0  best results are obtained with the highest permittivity 
• For larger cavities, with a ≳ 0,15 𝜆𝜆0  we can recognize two regions in bandwidth behavior 

o Thin cavity (ℎ ≲ 8 mm) region where classical patch antenna behavior is observed 
o Thick cavity region (ℎ ≳ 8 mm) where unusual phenomena occurs  

• Inversed dependence of bandwidth on permittivity can be seen in part of the thick cavity region 
• Unusual “bumps” in bandwidth curves are observed for some cases, for example the 32 mm cavity. 
• For cavity sizes, bandwidth is higher in the finite ground plane case.  
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Figure 74 Simulation results for patch antennas in example cavity aperture sizes, a = 20mm (0.15 λ0), 32mm (0.245λ0), 40mm (0.3λ0), 48mm 
(0.37λ0), and permittvity εr =  3.66, 6.15 and 10.2. (a) Infinite ground plane case. (b) finite ground plane case, i.e. cavity wall thickness is 5 
mm.  
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2.2.2. Effect of the cavity aperture size: 
We notice that in a small cavity the maximum patch size is restricted by the size of the aperture, but the 

antenna can still be made resonant. For example, consider the 32 mm or 20 mm sized cavities in Figure 74. As 
mentioned, patch size depends on the substrate permittivity; low values leading to larger patch sizes. A classical 
rectangular patch without a cavity on a thin substrate of 3.66 would have a patch size p larger than 32 mm, 
however, inside the cavity, due to a large capacitive effect with the wall, patch size can be smaller than 32 mm, 
and the antenna resonant. Nevertheless, in such cases the patch covers the aperture almost completely, making 
the radiating gap between the patch and the wall very small, and bandwidth very narrow. Hence larger 
bandwidth is achieved with higher permittivity values, where the patch size is significantly smaller than the 
aperture.  

Bigger aperture size allows for larger maximum bandwidth; however the exact relationship is not clear for 
patch antennas as it was for cavity antennas. What is observed in, for example Figure 74(a), for the example 
cavity sizes is that for sizes of 32 mm and 20mm patch antennas can achieve larger bandwidth than a cavity 
antenna, but for 40 mm and 48 mm patch antennas can be worse than cavity antennas. 

In addition to larger maximum bandwidth, bigger aperture sizes reduce the maximum height where matching 
the antenna is possible, see the curve endings on Figure 74(a)-(b). Essentially, the geometry is approaching the 
no cavity case, for which the results can be found in Chapter 1.3.1. 

We note that in the case of a large cavity (a = 48 mm (0.37 𝜆𝜆0 )) it was necessary to add a second wire in the 
center of the cavity and connect it to the patch to short out the TM11 waveguide mode that can be excited in thick 
substrates. 

To summarize, we list the general conclusions as: 
• Miniaturization effect: Cavity enclosure can be used to reduce the patch size, as the antenna is 

resonant even with very small apertures.  
• Bandwidth effect: Size of the aperture dramatically affects bandwidth, but the relationship with 

bandwidth is not clear 
• Height effect: Maximum cavity height reduces as the aperture size increases. 
• Modes: In large cavities, unwanted, higher modes might be excited   

2.2.3. Effect of cavity height:  
The most important effect of increasing height is the transformation of the cavity into a short portion of a 

waveguide. Analogously the probe feed transforms into a portion of a coaxial line supporting a TEM mode, as it 
is shielded by the cavity. Energy inside the cavity is thus “guided” to the patch. Unlike classical patch antennas, 
there is no generation of surface waves by the patch, as the substrate is finite, and surrounded by walls forming 
the waveguide. For small and thick cavities, we can thus assume the energy from the TEM mode is coupled by 
the patch to excite the fundamental TE10 waveguide mode. Because of this efficient coupling to the TE mode, the 
cavity allows us to increase the antenna height further compared to classical patch antennas. 

Electrical length of the waveguide supporting the fundamental TE10 mode is of crucial importance. In Figure 
74, if the waveguide is above cut-off (indicated by the existence of a cavity antenna) we observe bandwidth 
curves have a maximum.  These maximums appear as the waveguide length is approaching a quarter of the 
guided wavelength �ℎ ≈ 𝜆𝜆𝑔𝑔/4�. As 𝜆𝜆𝑔𝑔  is shorter for a larger permittivity value, the maximum occur at a lower 
height. If the a waveguide is below cut-off at 2.3GHz.  

On the other hand, if the TE10 mode is under cutoff at 2.3 GHz another very interesting phenomenon is 
observed. In that case, height can be extended indefinitely. The TE mode energy inside the waveguide is 
evanescent, and not affecting the antenna if the height is large. Another interesting phenomenon is seen in the 32 
mm sized cavity. We observe sharp bandwidth peaks or “bumps” in the curves, both in Figure 74(a) and (b). 
This phenomena is considered and explained the section on the modeling patch antennas in cavities. 

For all cavity sizes we mention that the patch size decreases with height and the feed position moves closer 
to the edge. In fact, for a larger cavity size, the feed position moves to the edge at a certain height and then needs 
to be outside the patch, in which case a small microstrip extension was created to connect the feed and the patch. 
This crossing of patch boundary is seen in Figure 73(c). Increasing the height even further leads to diminishing 
patch sizes and we can say that the antenna is effectively becoming a cavity antenna described in Chapter 1.3.1. 

To summarize, we list the general conclusions as: 
• Waveguide effect: Increasing height transforms the cavity part of the antenna into a waveguide. 
• Bandwidth effect: Maximum bandwidth occurs when ℎ ≈ 𝜆𝜆𝑔𝑔/4, unless the waveguide is below cut-

off 
• Cavity antenna effect: Increasing height reduces patch size up to the maximum height, at which the 

antenna is operating like a cavity antenna, unless the waveguide is below cut-off. 
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• Bandwidth “bumps”: This unusual phenomena is explained by analytical models in the following 
Sections. 

2.2.4. Effect of substrate permittivity: 
The most important effect of substrate permittivity is on the operation of the waveguide part of the antenna, 
making the waveguide either above or below cut-off for the TE10 mode at 2.3 GHz. Information on the cut-off 
frequencies are given in Table 1. If the waveguide is above cut-off, the antenna is limited to a maximum height 
corresponding to cavity antenna operation. If the waveguide is below cut-off, height is not limited. 

For cavities with a ≳ 0,15 𝜆𝜆0  in Figure 74, we can recognize classical patch behavior for thin 
substrates (ℎ ≲ 8 mm), i.e. larger 𝜀𝜀𝑘𝑘  leads to a decrease in bandwidth and increasing substrate height enhances 
bandwidth. For thick substrates we can, most interestingly, observe a region where better bandwidth 
performance is achieved with a higher permittivity. This is contrary to regular operation of patch antennas, and 
will be referred to as “inversed bandwidth-permittivity relationship” region. Height of about 8 mm is usually the 
intersection point between the classical and inverse relationship region. of substrate height and this behavior is 
present until the curve for the highest permittivity reaches its maximum. 

For very small cavities, a ≲ 0,15 𝜆𝜆0  the miniaturization effect is most important. As the cavity aperture is 
smaller than the regular patch size in the no cavity case, the patch covers the aperture area almost completely and 
bandwidth is severally reduced. Using high permittivity to make the necessary patch size smaller than the 
aperture size helps bandwidth performance in this case. In Figure 74(a) all three permittivity results are shown 
for cavity aperture size a = 0,15 𝜆𝜆0 . However, in Figure 74(b) for a = 0.15 𝜆𝜆0  only the highest permittivity, 
𝜀𝜀𝑘𝑘 = 10.2, is shown as it gives the best bandwidth performance for all height values. 

To summarize, we list the general conclusions as: 
• Waveguide effect: Permittivity determines if the waveguide is below cut-off, and thus if there exists 

a maximum height of the antenna. 
• Bandwidth effect: A region of inversed bandwidth-permittivity relationship is observed in all 

examples. For a ≲ 0,15 𝜆𝜆0  in the whole region, and for a ≳ 0,15 𝜆𝜆0  in a region with ℎ ≳ 8 mm 

2.2.5. Effect of the ground plane 
A direct comparison between Figure 74(a) and (b) clearly shows that a finite ground plane offers superior 
bandwidth in all examples compared to an infinite ground plane. This can be explained by considering just the 
radiation patterns of these two cases. The antenna in an infinite ground plane can only radiate into a half-space 
while the finite ground plane antenna radiates into the whole space. This additional radiation effectively 
increases the radiation loss and thus increases bandwidth. The exact amount of increase depends on the ground 
plane shape. 

2.3. Bandwidth behavior patch antennas in circular cavities 
Here we describe and compare simulation results for a circular geometry. An example of the actual geometry 
simulated is shown in Figure 75 for two different ground plane cases. Additionally we compare the simulation 
results with results form Chapter 1.3.1 on cavity antennas. As seen in the rectangular case, cavity antenna 
operation is a limiting case of patch antennas inside a cavity. 

 
Figure 75 Simulation geometry for circular cavity and patch in (a) an infinite ground plane and (b) in a finite ground plane, i.e. a cavity with 
wall thickness of 5 mm. Pictures taken from simulations in CST (𝑑𝑑 = 32 mm, ℎ = 8 mm, 𝜀𝜀𝑘𝑘 = 10.2). Dimensions are given in the schematic 
on Figure 71. 
 

To better understand the results for various cases, and all the details on the graphs, one example was chosen 
and presented in full detail on Figure 76. The geometry with aperture diameter 𝑑𝑑 = 0.245 𝜆𝜆0  in a finite ground 
plane was chosen for it possesses all the important traits that appear in other results.  

  

(a) (b) 
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Figure 76 Detailed Example for a 0.3 𝜆𝜆0  diameter cavity aperture in a finite ground plane. (a) Simulation results for -10 dB bandwidth of 
patch antennas in a cavity, along with the points for the cavity antenna case. (b) Actual antenna geometries taken from CST. Due to lack of 
space ,the CST pictures are presented for increments in height 𝛥𝛥ℎ =  2 mm. 
 

First, on Figure 76(a) the theoretical result for a cavity antenna are placed in the same manner as for the 
rectangular geometry. Note that only the cavity filled with 𝜀𝜀𝑘𝑘 = 10.2 is above cutoff and hence only one point is 
shown in this particular example. 

Second, we see the simulation results for a patch antenna inside the cavity. Several, effects noticed in the 
rectangular case are noted in this example. The intersection point denotes the antenna height where the 
bandwidth-permittivity relation becomes reversed compared to classical patch antennas. In this particular 
example only the 𝜀𝜀𝑘𝑘 = 6.15 and 10.2 curves intersect while the 𝜀𝜀𝑘𝑘 = 3.66 curve is below them for all height 
values. 

Third, on Figure 76(b) actual pictures from simulations of the antennas for various heights are presented. 
This shows that the size of the patch is reduced as cavity height ℎ is increased. For the case 𝜀𝜀𝑘𝑘 = 3.66 and 6.15 
the size reduces but above some height remains at a fairly constant value. For the case of 𝜀𝜀𝑘𝑘 = 10.2 the size 
reduces to zero (and is unmatchable), and thus the antenna turns into a cavity antenna. 

2.3.1. Simulation results 
In Figure 77 all the simulation results for example cavity sizes are presented in two columns. In this way a direct 
visual comparison can be made between the infinite ground plane case (left) and a finite ground plane (right).   

Note that (Rogers) materials used in the simulations included losses, with specifications given in Table 2.  
It is also recommended to compare these results with the “no cavity” case presented in Chapter 1.2.3 on Figure 
22(b) for bandwidth increase by increasing height. Analogously to the square case, our simulation results show 
that a cavity environment can quite dramatically change the simple behavior rules of classical patch antennas. 

Conclusions about the behavior patches in circular cavities and the effects of various parameters are 
analogous to the rectangular case. For thick substrates, we can consider that the cavity represents a short part of a 
waveguide so the patch is no longer exciting only its fundamental mode but also the fundamental TE11 mode of 
the circular waveguide. If the TE11 mode is propagating (above cutoff) in the cavity, we can connect the 
appearance of maximums in the bandwidth curves when the electrical length of the waveguide is approaching a 
quarter of the guided wavelength. On the other hand, if the TE11 mode is under cutoff at 2.3 GHz another very 
interesting phenomenon is observed. In that case, height can be very large and we can see sharp bandwidth peaks 
or “bumps” on the curves (see in Figure 77 for 𝑑𝑑 = 0.15 𝜆𝜆0  and 0.245 𝜆𝜆0 ). All these phenomena are considered 
and modeled in the following section.  
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Figure 77 Simulation results for patch antennas in example cavity aperture sizes, d = 20mm (0.15 λ0), 32mm (0.245λ0), 40mm (0.3λ0), 48mm 
(0.37λ0), and permittvity εr =  3.66, 6.15 and 10.2. (a) Infinite ground plane case. (b) finite ground plane case, i.e. cavity wall thickness is 5 
mm. 
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Analogous to the rectangular case, there are several observations on bandwidth behavior we make on Figure 74:  
• For very small cavities 𝑑𝑑 ≲ 0,245 𝜆𝜆0  better results are usually obtained with the higher values  

permittivity  
• For larger cavities, with 𝑑𝑑 ≳ 0,245 𝜆𝜆0  we can recognize two regions in bandwidth behavior 

o Thin cavity (ℎ ≲ 8 mm) region where classical patch antenna behavior is observed 
o Thick cavity region (ℎ ≳ 8 mm) where unusual phenomena occurs  

• Inversed dependence of bandwidth on permittivity can be seen in part of the thick cavity region 
• Unusual “bumps” in bandwidth curves are observed for some cases, for example the 20 and 32 mm 

cavity. 
• Interestingly, the 20 mm cavity in an infinite ground plane displayed higher bandwidth than a finite 

ground plane. The reason was later determined to be due to losses. In a lossless case the finite ground 
plane case has larger bandwidth. Losses are affecting performance more significantly if the gap between 
the patch and the cavity wall is small, and this gap is smaller in the infinite ground plane case. For other 
cavity sizes, bandwidth is higher in the finite ground plane case.  

2.4. Proposed model for patch antennas in cavities 
Is it possible to describe the bandwidth behavior presented in this chapter in a similar manner as simple cavity 
antennas from Chapter 1.3.1? In this section we will make several assumptions and approximations that lead to a 
simplified model which can offer a qualitative understanding of two effects i.e. inversion of bandwidth 
dependence on permittivity and the “bumps” that occur at large heights in cavities operating under cutoff.  

A. MODEL EXPLAINING INVERSED BANDWIDTH-PERMITTIVITY RELATION 
For a thin substrate, a patch antenna excites the TM010 mode and the correct transmission line model for a patch 
antenna was given in Chapter 1.2.1 on Figure 15. However, when the substrate is high, a patch can excite the 
fundamental TE mode of the cavity, the same mode assumed to exist in cavity antennas. Compared to an open-
ended aperture from a cavity antenna, a patch at the aperture will change the aperture admittance. Nevertheless, 
we will make the assumption that the patch can be modeled as a circuit connected in parallel to the aperture 
admittance, and keep the aperture admittance unchanged. The idea for a circuit comes from considering the 
fields around the patch, i.e. strong electric fields exist between the patch and the cavity wall, which can be 
modeled with capacitors, and a current flowing on the patch surface creates a magnetic field which is modeled 
by an inductor. The complete model is a simple modification of the cavity antenna model and is shown in Figure 
78. 

 
Figure 78: Transmission line model of a cavity with a patch at the aperture. The patch is modeled by a series resonant circuit in parallel to the 
aperture admittance. We should note that the model is reasonable for thick cavities with aperture sizes smaller than half the free space 
wavelength. 

 
Considering Figure 78 model from a circuit perspective, we are lead to the following conclusions; assuming 

the waveguide (cavity part) is shorter than 𝜆𝜆𝑔𝑔/4, it presents inductive admittance; aperture admittance (external 
part) is also inductive; thus the series LC resonant circuit representing the patch needs to be capacitive to 
counteract the inductance from the cavity and the external part, and bring the whole structure into resonance. To 
be capacitive, the series resonant LC circuit must operate below its series resonance frequency. In practice, this 
means the inductance value L is low, making the series resonance frequency high. 

In small aperture sized cavities, the gap between the cavity wall and the patch antenna is very small, making 
the capacitive effect strong. Therefore, small changes in patch size are strongly affecting the capacitor values in 
Figure 78, while we can assume the inductance value L is only slightly affected. Resonance is thus achieved by 
adjusting the patch size. Furthermore, resonance can be adjusted for different heights as the patch size can 
always be made large enough (i.e. gap to the cavity wall small enough) for the capacitive effect to counteract the 
inductance added by the waveguide (cavity) and the external part. However, if the waveguide is above cutoff, its 
input admittance varies as a cotangent function; it is changing from inductive to capacitive reactance with 
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increasing height. If the input admittance into the waveguide is capacitive, then the necessary capacitance added 
by the patch decreases. This leads to a reduction of patch size with height, discussed in our simulations results. 
The antenna is, effectively, approaching the behaviour of an open ended cavity antenna, i.e with no patch at the 
aperture. If the waveguide is below cutoff, its input admittance is always inductive and tends to a constant value 
as height increases (for example see the input admittance plotted on Figure 34(b) for a cavity with 𝑎𝑎 =  32 mm 
and 𝜀𝜀𝑘𝑘 = 3.66). This leads to a fairly constant patch size with large height and the possibility to increase height 
indefinitely. 

The resonance condition for the model in Figure 78 can be written as 

 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 − 𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) + 1
1

𝑗𝑗𝜔𝜔𝐶𝐶 + 𝑗𝑗𝜔𝜔𝑗𝑗
= 0, (2.2) 

 

Where 𝑘𝑘𝑇𝑇𝑇𝑇  and 𝐵𝐵𝐴𝐴𝐴𝐴  depend on the particular cavity type under investigation. The problem with (2.2) from the 
analysis point of view is that it presents one equation with too many variables, namely height h, relative 
permittivity εr, capacitance C, and inductance L. Compared to cavity antennas, we can regard height h as a 
function ℎ(𝜀𝜀𝑘𝑘 , 𝐶𝐶, 𝑗𝑗). Capacitance C can now be treated as the main variable responsible for resonance, while 
relative permittivity can be regarded as a given parameter, but that still leaves L as an unknown. The value of L 
could in principle be obtained from the patch geometry trough some analytical technique or simulation. 
However, this would be a difficult task and would not lead to any further insight. Here we wish just to use the 
proposed model to explain the phenomena seen in our simulation results.  

Example: let us take L as just a parameter, just like εr  and treat the height as a function of capacitance h(C) 
only. To demonstrate the predictions of bandwidth behavior from the model in Figure 78 we use (2.2) along with 
(1.59) and (1.62). We show an example bandwidth vs. height result in Figure 79 for a rectangular cavity of size 
32 mm and the example permittivity values. We will assume the value for L = 7 nH in the three permittivity 
cases. The value of capacitance C varies as height is increased, and is mostly in the range of a few pF. The model 
predicts bandwidth curves extending to the maximum height, depicted with points, corresponding to cavity 
antenna operation, where the necessary C is zero. Two regions are noted in Figure 79(b); thin cavity region 
where the model is obviously not predicting the correct behavior due to ignoring the TM010 patch mode, and the 
thick cavity region where the behavior can be said to have similarities with simulation results in Figure 74.  
 

 
Figure 79 Qualitative analytical predictions. (a) The model used to calculate bandwidth behavior. (b) Analytical results shown for the 
example permittivity values. The value of inductance L was assumed to be 7 nH in all three cases of permittivity values. 

 
To demonstrate the dependence of bandwidth on inductance L specifically, we can investigate the bandwidth 

behavior for several values of L. This is shown in Figure 80.  
What is observed is that the model is able to predict the inversion of bandwidth dependence on permittivity.  

The extent of this phenomenon as well as the maximum bandwidth depends on the value of the inductance L. 
For lower inductance values, the phenomenon disappears and the maximum bandwidth is much higher. This is 
the most important conclusion gained from the model. 

The reason for this behaviour is understood by considering again formula (2.1) for bandwidth calculation. 
Since the bandwidth of the whole structure is proportional to the derivative of the total admittance, we must 
consider the frequency dependence of the series resonant circuit. If there was no inductance L in the series circuit 

Thick cavity region  Thin cavity region  

Inversed bandwidth-
permittivity realtionship 

(a) (b) 

Example: 32 mm cavity in 
an infintie groundplane 
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then the admittance would be just a linear function 𝑗𝑗𝜔𝜔𝐶𝐶, and the derivative a constant. However, with the 
introduction inductance the admittance of the series circuit varies faster than a constant. This automatically 
increases the 𝑄𝑄 factor and reduces bandwidth. Additionally, the waveguide part also plays a role as its 
admittance variation depends on the permittivity inside it. In fact, the inductance value added by the waveguide 
is largest for low permittivity, when it is evanescent. Thus evanescent and low permittivity filled waveguides call 
for a larger capacitance added by the series resonant circuit. As mentioned, the variation of the series circuit 
admittance is faster than a constant, but also increases with larger values of capacitance. Again, this leads to 
increased 𝑄𝑄 factor for such cases, and in turn to the bandwidth inversion phenomenon. Another note to be made 
is that for waveguide abouve cut-off, the admittance derivative will be smallest when the shorted transmission 
line has electrical length of π/2 (𝜆𝜆𝑔𝑔/4 guided wavelength). This corresponds to the maximum seen in the 
bandwidth cure predictions. 

The assumption of a fixed inductance value for all permittivity cases is of course very crude, but the purpose 
here was to show that the simple model allowed explaining the physical reason for inversion the bandwidth. 

 

 
Figure 80 Predicted bandwidth behavior as the series resonant circuit inductance is increased. (a) L = 1.7 nH (b) L = 3.5 nH (c) L = 7 nH (d) 
L = 14 nH 
 
Upon discussing the role of inductance L, and seeing its effect on bandwidth in Figure 80, we can better explain 
why the meandered patch antenna was eliminated from a detailed study. Understanding that the meandering 
technique effectively prolongs the current path in the patch, and thus increases energy stored in the magnetic 
field we can immediately conclude that this design would lead to an increased value of L compared to a classical 
patch. The comparison between the two designs and models is shown in Figure 81. The meandered patch is 
expected to produce stronger bandwidth inversion phenomena, but also reduced overall bandwidth performance. 
Due to this second reason it was not considered for further study. 

 
Figure 81 Problematic of meandered patch antennas. (a) regular patch antenna at the aperture of the cavity. (b) meandered patch antenna at 
the aperture and the model havin increased inductance compared to the regular case.  

(a) (b) 

L 
(a) (b) 

(d) (c) 

Lower maximum 
bandwidth in all cases 

2-66 
 



CHAPTER 2: BANDWIDTH OF PATCH ANTENNAS IN SMALL CAVITIES 

B. MODEL EXPLAINING BANDWIDTH BUMP PHENOMENON   
The proposed model in Figure 78 cannot account for the “bumps” in bandwidth curves in the cases of cavities 
operating below cutoff. To remedy this drawback, we need to also model the feeding part of the antenna. The 
wire probe and the circular cavity form an off-centered coaxial cable supporting a coaxial TEM mode. The 
characteristic impedance and propagation constant of such an off-center “coax” can be obtained through 
simulation or approximate analytical methods. As presented in Figure 82, an additional transmission line with 
the same length as the cavity height is attached to one of the capacitors in the model. This position for the 
connection is justified by the fact that the feeding probe is in fact very near the edge of the patch when the cavity 
is thick. The values of the two capacitors in the model are now different, denoted by C1 and C2 (the value of 
capacitor with the attached line C2 being much larger). 

 
Figure 82 Model including the feeding part of the antenna; the 50 Ohm coaxial cable coming to the ground plane of the cavity and the central 
wire enclosed by the cavity forming a second part of the coaxial line. Both the waveguide and probe transmission lines have length h. 
 

The added “probe” transmission line brings in fact an additional load (resistive and reactive) because the 
feeding line can be replaced with its input impedance seen from the capacitor towards the generator. At 
𝜆𝜆𝑔𝑔(𝐴𝐴𝑘𝑘𝐶𝐶𝑎𝑎𝑒𝑒 )/4 length the “probe” line transforms the 50 Ohm termination into a much higher real value that does 
not affect the structure significantly. At 𝜆𝜆𝑔𝑔(𝐴𝐴𝑘𝑘𝐶𝐶𝑎𝑎𝑒𝑒 )/2 the termination is transformed again to a real value of 50 
Ohms which constitutes an additional loss mechanism, giving rise to higher bandwidth. As mentioned earlier, 
if the waveguide part of the antenna structure is below cutoff then the height can be increased indefinitely. In 
such a case, the height where the “probe” line is 𝜆𝜆𝑔𝑔(𝐴𝐴𝑘𝑘𝐶𝐶𝑎𝑎𝑒𝑒 )/2 is achievable and its effect noticeable. 

Figure 83 presents the calculated bandwidth using the model in Figure 82. By comparing to Figure 79, the 
difference is seen as the “bump” in the case of the cavity filled with a permittivity of 3.66 (and is thus below 
cutoff). 

 
Figure 83 Qualitative analytical predictions using the model in Figure 82. The value of inductance L was estimated to be 7nH in all three 
cases of permittivity values. The “bump” is visible at height about 35 mm which is similar to the simulation data. 

2.5. Measurement results   
Unusual results about patch antennas in cavities include the case of obtaining the same bandwidth with different 
permittivity values in the cavity volume or even more surprising, obtaining higher bandwidth with a higher 
permittivity. In order to confirm the unusual result that cavities filled with different substrates can have the same 
bandwidth, two prototypes where manufactured at the French-German Research Institute of Saint-Louis.  

It was decided that the simulations of the 32 mm cavity diameter in a finite ground plane, seen on Figure 77, 
are of particular interest. Especially the point on the plot where simulations showed the same bandwidth for a 

Length=h 
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cavity filled with εr = 6.15 and εr = 10.2, occuring at about h=12 mm. Therefore, prototypes were constructed 
using Rogers 3006 and Rogers 3010 materials.  

 

 
Figure 84 Prototype 32 mm (0.25λ0) diameter, classical patch antenna in a cavity filled with εr = 6.15. (a) Simulation results and geometry 
upon which the prototype was built. (b) The manufactured prototype. (c) Comparison of simulated and measured S11 parameter. (d) 
Measured radiation pattern in the E plane and (e) in the H plane. (f) Measured gain vs. frequency.  
 

 
Figure 85 Prototype 32 mm (0.25 𝜆𝜆0) diameter, classical patch antenna in a cavity filled with εr = 10.2. (a) Simulation results and geometry 
upon which the prototype was built. (b) The manufactured prototype. (c) Comparison of simulated and measured S11 parameter. (d) 
Measured radiation pattern in the E plane and (e) in the H plane. (f) Measured gain vs. frequency. 
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Construction of the prototypes proceeded in the following way: in both cases, 9 layers with 1.28 mm 

thickens each were glued together to form a substrate of 11.52 mm height. Metallization of the patch was etched 
on the top layer. A hole for the probe was drilled in the substrate and it was then glued with the cavity and the 
probe soldered to the patch. The cavity was an aluminum cylinder with a 32 mm diameter hole of 11.5 mm 
height. 

Simulation results predicted 65 MHz bandwidth in both cases. Measured results are not in perfect agreement 
with simulations. Issues with the manufactured antennas are a slight difference in height and uncertainty in the 
exact value of the permittivity. Both issues can slightly shift the resonance frequency. In the end, what is 
observed from the measurements is that higher bandwidth was achieved in the 𝜀𝜀𝑘𝑘 = 10.2 case.  

2.6. Conclusion of chapter 2 
Bandwidth of classical patch antennas is reduced by increasing substrate permittivity, however, by 

surrounding the patch with metallic walls, thus creating a short waveguide, this dependence can be reversed at a 
larger height and best performance can be achieved with highest permittivity. We have named this phenomenon 
the inversed bandwidth-permittivity relation and explained it with a simple transmission line model. Still, height 
of a patch antenna in a cavity cannot be increased indefinitely, bandwidth reaches a maximum for a certain 
height, then drops off and matching the antenna soon becomes impossible with our design. The maximum 
depends on the cavity size and the permittivity inside. 

To explain the reasons for observed phenomenon, simple transmission line models were introduced to 
describe and analyze the bandwidth behavior. These transmission line models provide insight for understanding 
why the bandwidth curve has a maximum at a certain height. Furthermore, the model can account for the 
inversion of bandwidth dependence on permittivity and show that, in cavities representing waveguides below 
cutoff, the observed “bumps” in bandwidth curves are a consequence of the feeding part of the antenna. The 
proposed models give, at present, just qualitative insight, and are not sufficiently precise for giving quantitative 
results and accurate predictions. 
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Chapter 3.  

Bound on Q and bandwidth for cavity antennas 
 

In this chapter we aim to present the bound on minimum 𝑄𝑄 in the case of cavity antennas of rectangular and 
circular shapes. Section 3.1 discuses the inadequacy of the Chu bound and motivates the need for the Gustafsson 
bound. Section 3.2 describes how the more general, scattering approach can be applied to cavities in infinite 
ground planes and gives an exact formulation of the problem. Sections 3.3 and 3.4 use the presented formulation 
to derive the precise bounds for rectangular and  circular cavities respectively. Section 3.5 discusses the validity 
of the newfound bound in the presence of antennas of objects inside the cavity. Finally, Section 3.6 gives an 
alternative way of arriving at the same bound giving, perhaps, more insight into the whole matter. 

3.1. Motivation for a precise bound 
The concept of physical bounds on 𝑄𝑄 for electrically small antennas was discussed in Chapter 1, and two 
approaches for deriving the bounds have been presented. For the first, spherical mode expansion approach, it was 
demonstrated that an inherent assumption in the bound is an imaginary sphere circumscribing the antenna. If all 
fields are zero inside the sphere the Chu bound id derived; if the fields are non zero, a higher, Thal bound is 
derived.  These bounds are very general, and in fact, due to the assumptions, only spherical antennas can come 
close to these bounds. 

In the case of a cavity it is not clear how this approach should be applied. Some puzzling questions are: 
• Should the sphere size depend on the aperture of the antenna or on the whole cavity? 
• What spherical mode has to be considered, TE of TM? 
• Should the whole structure be circumscribed if the cavity is in a finite ground plane? 

Regarding the first question; Figure 86(a) shows a demonstration of how the Chu sphere could be imagined to 
take into account only the aperture size of a cavity antenna, disregarding what might be present inside the 
volume of the cavity and its length. A circular cavity was chosen for it best fits the shape of a sphere.  

 
Figure 86 (a) Placement of the smallest circumscribing sphere in the case of a circular cavity aperture and the corresponding Chu and Thal 
limit. (b) calculated fractional bandwidth from the Chu and Thal limits, presented vs. aperture diameter d.  

 
Regarding the second question; for a cavity radiating broadside, like cavity antennas and patch antennas in a 

cavity, we saw that the cavity is excited with the fundamental TE mode. From this fact, it follows that in the case 
of the Chu or Thal limit, we should also consider the limit for the TE spherical mode. Figure 86(b) shows also 
the predictions for bandwidth of the Chu and Thal bound. It is observed is that the Chu limit predicts ridiculously 

(a) (b) 
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large values compared to what was observed in simulations with patch antennas. The Thal bound is also giving 
large values, 2 to 3 times bigger compared to simulations with patch antennas. The comparison is given in Table 
8. 

For the third question, it is hard do give an exact answer, because enlarging the sphere would drastically 
reduce the 𝑄𝑄 factor while, as we saw in Chapter 2.2-3, bandwidth results for finite ground planes are not 
dramatically different compared to infinite ground plane.  

We can conclude that the spherical mode expansion technique is too crude to be applied to the problematic of 
cavity antennas, and gives unrealistically large predications. It cannot account properly for the shape of the 
cavity aperture and the volume inside. For this reason we turn to the second, scattering approach leading to a 
new set of isoperimetric bounds introduced by Gustafsson et al. The main advantage of the new bound is that it 
holds for arbitrary geometries, and is thus applicable to the problem of a cavity, which is a finite scatterer, linear, 
time invariant, causal and reciprocal. The goal is to find a precise, realistic bound for cavity antennas and 
determine the utility of patch antennas. 

 

Circular cavity size  𝐹𝐹𝐵𝐵𝐹𝐹𝑃𝑃𝑎𝑎𝐴𝐴𝑐𝑐ℎ  
(from simulations) 

𝐹𝐹𝐵𝐵𝐹𝐹𝑇𝑇ℎ𝑎𝑎𝑐𝑐 
(predicted) 

𝐹𝐹𝐵𝐵𝐹𝐹𝐶𝐶ℎ𝑠𝑠 
(predicted) 

𝐹𝐹𝐵𝐵𝐹𝐹𝑃𝑃𝑎𝑎𝐴𝐴𝑐𝑐ℎ
𝐹𝐹𝐵𝐵𝐹𝐹𝑇𝑇ℎ𝑎𝑎𝑐𝑐

 𝐹𝐹𝐵𝐵𝐹𝐹𝑃𝑃𝑎𝑎𝐴𝐴𝑐𝑐ℎ
𝐹𝐹𝐵𝐵𝐹𝐹𝐶𝐶ℎ𝑠𝑠

 

20 mm 0.6 % 1.25 % 3.7 % 2.08 6.17 
32 mm 2.1 % 4.9 % 15 % 2.33 7.14 
40 mm 3.5 % 9.8 % 29.5 % 2.8 8.43 
50 mm 6 % 19.2 % 57.5 % 3.2 9.58 

 
Table 8 Comparison of simulation data for circular cavities in an infinite ground plane to theoretical predictions given by th Chu and Thal 
bound. 

3.2. Scattering approach applied to cavity antennas  
In chapter 1.1.3, we introduced the Gustafsson limit trough the forward scattering anaylsis of antennas. The 

method was originally applied to wire and metallic structures in open space [26]-[27], we extend it here to 
aperture and cavity antennas. The new bound on the minimum achievable 𝑄𝑄 factor of a linearly polarized 
antenna is given as follows  

 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 = 2 𝜋𝜋 𝐷𝐷
𝜂𝜂𝑘𝑘3𝛾𝛾

 , (3.1) 

where 𝑘𝑘 is the free space wave number and 𝐷𝐷 the antenna directivity. 𝜂𝜂 represents the ratio of absorbed power to 
the sum of absorbed and scattered powers, called absorption efficiency. For well matched minimal-scattering 
antennas one can take 𝜂𝜂 = 0.5, and we will assume this value throughout the thesis. Finally, 𝛾𝛾 is the total 
polarizability of the receiving antenna considered as a scattering object.  

According to (3.1), 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴  is proportional to the antenna directivity 𝐷𝐷 which is a familiar antenna parameter 
and its calculation in the case of rectangular and circular cavities is given in Appendix C and D, respectively. 
𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 is also inversely proportional to the antenna polarizability 𝛾𝛾. Here we are interested to derive this, less 
familiar parameter than 𝐷𝐷, in the case of a rectangular and circular cavity. To this end, we aim to find the 
scattered electric field 𝐄𝐄S  from a cavity in an infinite ground plane. In general, the scattered field the direction �̂�𝐤 
from any object, can be expressed by expressed by  

 
𝐄𝐄S(𝑘𝑘, 𝒓𝒓) = 𝑇𝑇0

+ 𝑒𝑒−𝑗𝑗𝒌𝒌𝒓𝒓

𝑘𝑘
𝐒𝐒�𝑘𝑘, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞 + 𝒪𝒪(𝑘𝑘−2)  as 𝑘𝑘 → ∞, (3.2) 

where 𝐒𝐒(𝑘𝑘, �̂�𝐤) is the scattering dyadic, �̂�𝐩𝐞𝐞  the electric polarization and 𝑇𝑇0
+ the amplitude of the incident electric 

field. From (3.2) the extinction volume 𝜚𝜚 is introduced as 

 
𝜚𝜚(𝑘𝑘) =

�̂�𝐩𝐞𝐞
∗ ⋅  𝐒𝐒�𝑘𝑘, �̂�𝐤�  ⋅  �̂�𝐩𝐞𝐞

𝑘𝑘2 , (3.3) 

As described in chapter 1.1.3, 𝜚𝜚(𝑘𝑘) is well-defined quantity in the long wavelength limit 𝑘𝑘 → 0, by the 
polarizabilities of the scattering object, thus from (3.3) we define 

 𝛾𝛾 = 4 𝜋𝜋 𝜚𝜚(0) = ��̂�𝐩𝐞𝐞
∗ ⋅ 𝛄𝛄e ⋅ �̂�𝐩𝐞𝐞 + �̂�𝐩𝐦𝐦

∗ ⋅ 𝛄𝛄m ⋅ �̂�𝐩𝐦𝐦�.    (3.4) 

where �̂�𝐩𝐦𝐦 = �̂�𝑘 × �̂�𝐩𝐞𝐞  represents the magnetic polarization of the incident wave. 𝛄𝛄e  and 𝛄𝛄m  are the electric and 
magnetic polarizability dyadics of the target. They allow determining the induced electric and magnetic dipole 
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moments 𝐩𝐩 = 𝜀𝜀0𝛄𝛄e ⋅ �̂�𝐩𝐞𝐞𝑇𝑇0  and 𝐦𝐦 = 𝜇𝜇𝛄𝛄m ⋅ �̂�𝐩𝒎𝒎 𝐻𝐻0  when the target is immersed in a uniform electrostatic or 
magnetostatic field of amplitude 𝑇𝑇0  and 𝐻𝐻0  respectively.  

3.2.1. Restriction to broadside radiation pattern 
In the case of electrically small apertures in a conducting screen the field on the aperture can be decomposed into 
TE and TM modes. In the case of a TE mode there are tangential eclectic fields 𝐄𝐄t  at the aperture that can be 
replaced by an equivalent magnetic current 𝐌𝐌 and the aperture shorted. Far from the aperture the resultant fields 
of magnetic currents are equivalent to the field of a magnetic dipole 𝐦𝐦 tangential to the screen. Therefore, TE 
modes are connected to components of the 𝛄𝛄m  dyadic. Analogously, in the case of TM modes, the magnetic field 
is replaced by electric current 𝐉𝐉 that lead to the fields of an electric dipole 𝐩𝐩 perpendicular to the screen, and are 
thus connected to components of the 𝛄𝛄e  dyadic. 

Importantly, in the case of axial symmetry (symmetry about two perpendicular planes), as for example in the 
square or circular apertures, the problem of polarizability in all three axes is greatly simplified. First, if the axes 
of symmetry is the 𝐳𝐳 ̂ axes, then 𝛄𝛄e  and 𝛄𝛄m  are diagonal �(𝛄𝛄e)𝑚𝑚𝑗𝑗 = (𝛄𝛄m)𝑚𝑚𝑗𝑗 = 0, i ≠ j� and from the the 
invariance to a 𝜋𝜋 2⁄  rotation about the z axis we have (𝛄𝛄m)𝑥𝑥𝑥𝑥 = (𝛄𝛄m)𝑦𝑦𝑦𝑦 . As mentioned, in the case of small 
apertures, the electric polarizability differs than zero only in the z axes; (𝛄𝛄e)𝑧𝑧𝑧𝑧 ≠ 0 while (𝛄𝛄m)𝑧𝑧𝑧𝑧 = 0. However, 
there is an identity linking the electric and magnetic polarizabilities in the case of such symmetry. This identity 
was shown by Kleinman and Senior in [34] and applied to a cavity case it reads (𝛄𝛄e)𝑧𝑧𝑧𝑧 = 1/2(𝛄𝛄m)𝑥𝑥𝑥𝑥 . In 
practical terms this means that for square and circular apertures and cavities, determining 𝛄𝛄m  in one direction is 
sufficient to completely describe the polarizability of the antenna.  

Because the magnetic dipole 𝐦𝐦 is oriented tangential to the screen, its radiation pattern is broadside from the 
ground plane. On the other hand, from the orientation of the electric dipole 𝐩𝐩 it follows it will have a monopole 
radiation pattern. Here, we are interested only in broadside radiation from cavity antennas. This restriction means 
we have to consider TE modes that lead to the magnetic dipole 𝐦𝐦. We thus assume the electric dipole 𝐩𝐩 is not 
excited and does not enter the 𝑄𝑄 formula (3.1). In the further text only 𝛄𝛄m  will be of interest. 

3.2.2. Formulation of the scattering problem 
This formulation assumes an infinite ground plane around the aperture. The ground plane presents a slight 
problem in defining the “forward” scattering direction, as there is nothing behind the cavity. However this 
problem is circumvented by image theory, which effectively removes the ground plane. To obtain 𝐒𝐒�𝑘𝑘, �̂�𝐤�, and 
thus 𝜚𝜚(0) in the case of an aperture backed by a cavity, we assume a plane wave normally impinging on the 
aperture. Again, because of the infinite ground plane, one may think there is infinite scattering from it. However, 
this would only be the reflected wave, not the wave scattered by the object of interest – the cavity. As we will 
see, the reflected wave is taken into account in the boundary condition derived in this section.  

A. AMPLITUDE CALCULATION 
The tangential field at the aperture can be written as a sum of modes 

 
𝐄𝐄𝐭𝐭 = � 𝐴𝐴𝐴𝐴𝐄𝐄𝐧𝐧

∞

𝐴𝐴=1,3,..
 ,  (3.5) 

At the surface area S of the aperture and zero outside. Where 𝐴𝐴𝐴𝐴  represent unknown amplitudes of modes 
excited in the cavity. Next, we will follow the generalized network formulation, originally introduced by 
Harrington [125]. From the equivalence theorem, the total field is separated into three distinct contributions. 
First, the field scattered by the aperture in the half-space (𝐄𝐄S,𝐇𝐇S), i.e. the radiation problem. Second, the 
waveguide field (𝐄𝐄C,𝐇𝐇C), excited by the aperture field distribution, i.e. the cavity problem. Third, in the half 
space, there is the sum of incident and reflected field (𝐄𝐄sc ,𝐇𝐇sc ) obtained by substituting the aperture with a 
short circuit. Therefore 𝐇𝐇sc = 2𝐇𝐇inc , that must be added to obtain the total field. Subsequently, the original 
problem is separated into three different problems, as in Figure 87. 
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Figure 87 Separation of the problem. 
 

In the radiation and cavity problems an equivalent magnetic surface current 

 𝐌𝐌 = −𝐳𝐳̂ × 𝐄𝐄𝐭𝐭 (3.6) 

and its negative are placed over the exterior and interior side of the closed aperture region, respectively. The 
magnetic current can be expanded using (3.5) as 

 
𝐌𝐌 = � 𝐴𝐴𝐴𝐴𝐌𝐌𝐧𝐧

∞

𝐴𝐴=1,3,…
.  (3.7) 

To express the boundary condition at the aperture, we denote the tangential magnetic field on the exterior side 
as 𝐇𝐇𝒕𝒕

+ = 𝐇𝐇t
S(𝐌𝐌) + 𝐇𝐇𝒕𝒕

sc  where 𝐇𝐇t
S(𝐌𝐌) is the field due to 𝐌𝐌 considered as the scattered field and 𝐇𝐇𝒕𝒕

sc  is the 
sum of the incident and reflected wave when the aperture is short circuited. The field on the interior side is 
denoted by 𝐇𝐇t

− = 𝐇𝐇t
C(−𝐌𝐌) = −𝐇𝐇t

C(𝐌𝐌) by linearity. Equaling 𝐇𝐇t
+ to 𝐇𝐇t

− leads to the boundary condition  

 𝐇𝐇t
S(𝐌𝐌) + 𝐇𝐇t

C(𝐌𝐌) = −𝐇𝐇t
sc . (3.8) 

We substitute (3.7) into (3.8), and use linearity of the field operators to obtain 

 �𝐴𝐴𝐴𝐴𝐇𝐇t
S(𝐌𝐌𝐧𝐧)

𝐴𝐴
+ � 𝐴𝐴𝐴𝐴𝐇𝐇t

C(𝐌𝐌𝐧𝐧)
𝐴𝐴

= −𝐇𝐇t
sc . (3.9) 

In order to compute the unknown coefficients 𝐴𝐴𝐴𝐴  we take the symmetric product of the conjugate of (3.9) with 
functions 𝐌𝐌𝒎𝒎 , where 𝑚𝑚 = 1, 3, 5,… and integrate over the whole aperture, by indicating the Hermitian product 
as 

 
〈𝐹𝐹 ,𝐺𝐺〉 = −1

2
� 𝐅𝐅 ⋅ 𝐆𝐆∗𝑑𝑑S
𝑆𝑆

 (3.10) 

we have 

 � 𝐴𝐴𝐴𝐴
𝐴𝐴

〈𝐌𝐌𝐦𝐦,𝐇𝐇t
S(𝐌𝐌𝐧𝐧)〉 + � 𝐴𝐴𝐴𝐴

𝐴𝐴
〈𝐌𝐌𝐦𝐦,𝐇𝐇t

C(𝐌𝐌𝐧𝐧)〉 = −〈𝐌𝐌m,𝐇𝐇t
sc 〉. (3.11) 

The Hermitian products can be interpreted as cross-power integrals in the following way; since 𝐌𝐌m = −𝒛𝒛̂×
𝐄𝐄m  and the general vector identity 𝐀𝐀 ⋅ (𝐁𝐁 × 𝐂𝐂) = 𝐁𝐁 ⋅ (𝐂𝐂 × 𝐀𝐀) holds, we can write 

 𝐌𝐌m ⋅ 𝐇𝐇𝐭𝐭
∗ = −(𝒛𝒛 ̂× 𝐄𝐄m) ⋅ 𝐇𝐇𝐭𝐭

∗ = −𝒛𝒛̂ ⋅ (𝐄𝐄m × 𝐇𝐇𝒕𝒕
∗) (3.12) 

where 𝐇𝐇𝐭𝐭
∗ = 𝐇𝐇t

S(𝐌𝐌𝐧𝐧),  𝐇𝐇t
C(𝐌𝐌n),  𝐇𝐇t

sc  depending on the integral considered. This is a more familiar form of 
power, written in terms of the Poynting vector.  

 
〈𝐌𝐌𝐦𝐦,𝐇𝐇t

S(𝐌𝐌𝐧𝐧)〉 = 𝑃𝑃𝐴𝐴𝑚𝑚
S = 1

2
� 𝒛𝒛̂ ⋅ (𝐄𝐄m × 𝐇𝐇𝒕𝒕

S∗)𝑑𝑑S
𝑆𝑆

〈𝐌𝐌𝐦𝐦,𝐇𝐇t
C(𝐌𝐌𝐧𝐧)〉 = 𝑃𝑃𝐴𝐴𝑚𝑚

C = 1
2

� 𝒛𝒛̂ ⋅ (𝐄𝐄m × 𝐇𝐇𝒕𝒕
C∗)𝑑𝑑S

𝑆𝑆

〈𝐌𝐌m,𝐇𝐇t
sc 〉 = 1

2
� 𝒛𝒛̂ ⋅ (𝐄𝐄m × 𝐇𝐇𝒕𝒕

sc∗)𝑑𝑑S
𝑆𝑆

 , (3.13) 

Where 𝑃𝑃𝐴𝐴𝑚𝑚
S  is the power transmitted into the half space and 𝑃𝑃𝐴𝐴𝑚𝑚

C  is the power transmitted into the cavity. The 
right hand term of (3.13)is interpreted as a source term. Writing (3.13) in a more concise matrix form we have 

 (𝐏𝐏S + 𝐏𝐏C) ⋅ 𝐀𝐀 =  𝐕𝐕 , (3.14) 
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where 𝐏𝐏S  and 𝐏𝐏C  are admittance matrices whose general entry is 𝑃𝑃𝐴𝐴𝑚𝑚
S  and 𝑃𝑃𝐴𝐴𝑚𝑚

C , respectively. The vector 𝐀𝐀 
collects unknown amplitudes 𝐴𝐴𝐴𝐴 , and the right-hand vector 𝐕𝐕 contains the source terms.  

B. FAR FIELD CALCULATION 
In the previous section we used the assumption of the electric field at the aperture and the equivalence principle 
to define the magnetic current 𝐌𝐌 and derive its amplitude. Next, we need to determine the radiation produced by 
magnetic currents which constitutes the scattered field. We consider the solution of Maxwell equations driven by 
magnetic charge and current densities 𝜌𝜌𝑚𝑚 ,𝐌𝐌 to obtain the radiation fields.  

The generalized form of Maxwell’s equations  

 ∇ × 𝐇𝐇 = 𝐉𝐉 + 𝑗𝑗𝜔𝜔𝜀𝜀𝐄𝐄 ,
  ∇ ⋅ 𝐄𝐄 = 𝜌𝜌

𝜀𝜀
∇ × 𝐄𝐄 = −𝐌𝐌 − 𝑗𝑗𝜔𝜔𝜀𝜀𝐇𝐇
 ∇ ⋅ 𝐇𝐇 = 𝜌𝜌𝑚𝑚

𝜀𝜀

   
reduces  to
����������  

∇ × 𝐇𝐇 = 𝑗𝑗𝜔𝜔𝜀𝜀𝐄𝐄 ,
  ∇ ⋅ 𝐄𝐄 = 0
∇ × 𝐄𝐄 = −𝐌𝐌 − 𝑗𝑗𝜔𝜔𝜀𝜀𝐇𝐇
 ∇ ⋅ 𝐇𝐇 = 𝜌𝜌𝑚𝑚

𝜀𝜀

 (3.15) 

The solution of (3.15) is obtained in terms of the two magnetic type potentials 𝑗𝑗𝑚𝑚 ,𝐀𝐀𝐦𝐦  

 𝐄𝐄 = − 1
𝜀𝜀
∇ × 𝐀𝐀𝐦𝐦,

𝐇𝐇 = −∇𝑗𝑗𝑚𝑚 − 𝑗𝑗𝜔𝜔𝜀𝜀𝐀𝐀𝐦𝐦

 (3.16) 

The scalar and vector potentials satisfy the Lorentz conditions and Helmholtz wave equations:  

 
 
∇ ⋅ 𝐀𝐀𝐦𝐦 + 𝑗𝑗𝜔𝜔𝜀𝜀𝑗𝑗𝑚𝑚 = 0
∇2𝑗𝑗𝑚𝑚 + 𝑘𝑘2𝑗𝑗𝑚𝑚 = −𝜌𝜌𝑚𝑚 /𝜀𝜀
∇2𝐀𝐀𝐦𝐦 + 𝑘𝑘2𝐀𝐀𝐦𝐦 = −𝜇𝜇𝐉𝐉

 (3.17) 

Using the Lorentz conditions in (3.17), the scalar potentials 𝑗𝑗,𝑗𝑗𝑚𝑚  may be eliminated in favor of the vector 
potentials, resulting in the alternative expression for  (3.16) as 

 𝐄𝐄 = −1
𝜀𝜀
∇ × 𝐀𝐀𝐦𝐦,

𝐇𝐇 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

[∇ × ∇ × 𝐀𝐀𝐦𝐦 − 𝜇𝜇𝐌𝐌] − 1
𝜇𝜇

∇ × 𝐀𝐀
 (3.18) 

The solutions of Helmholtz equations in (3.17) are given in terms of 𝐺𝐺(𝐫𝐫 − 𝐫𝐫′) = 𝑒𝑒−𝑗𝑗𝑘𝑘 |𝐫𝐫−𝐫𝐫 ′ |

4𝜋𝜋 |𝐫𝐫−𝐫𝐫′| 

 
𝐀𝐀𝐦𝐦 = � 𝜇𝜇𝐌𝐌(𝐫𝐫′) 𝑒𝑒−𝑗𝑗𝑘𝑘 |𝐫𝐫−𝐫𝐫′|

4𝜋𝜋|𝐫𝐫 − 𝐫𝐫′|
𝑑𝑑𝑉𝑉 ′ ,

𝑉𝑉
 (3.19) 

where V is the volume over which the current densities are non-zero. The observation point 𝐫𝐫 is taken outside 
this volume.  

The radiation fields in the far field can be obtained by making the far field approximation, which consists of 
the approximations 

 𝑒𝑒−𝑗𝑗𝑘𝑘 |𝐫𝐫−𝐫𝐫′|

4𝜋𝜋|𝐫𝐫 − 𝐫𝐫′|
≃ 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘

4𝜋𝜋𝑘𝑘
 𝑒𝑒𝑗𝑗𝐤𝐤⋅𝐫𝐫′  and ∇≃ −𝑗𝑗𝐤𝐤  (3.20) 

where 𝐤𝐤 = 𝑘𝑘𝐫𝐫.̂ Then, the vector potentials in (3.25) take the simplified form  

 
𝐀𝐀𝐦𝐦 = 𝜀𝜀𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘

4𝜋𝜋𝑘𝑘
𝐅𝐅𝐦𝐦 , (3.21) 

where the radiation vectors are the Fourier transforms of the current density 

 
𝐅𝐅𝐦𝐦 = � 𝐌𝐌(𝐫𝐫′)𝑒𝑒𝑗𝑗𝐤𝐤⋅𝐫𝐫′𝑑𝑑𝑉𝑉′

𝑉𝑉
 (3.22) 

When we are evaluating the fields far from the current sources, the currents in (3.24) are set to zero (𝐉𝐉,𝐌𝐌 =
0). Using the far field approximation ∇= −𝑗𝑗𝐤𝐤 = −𝑗𝑗𝑘𝑘𝐫𝐫.̂ And the relationship 𝑘𝑘/𝜀𝜀 = 𝜔𝜔𝜂𝜂0 , we find the radiated E 
and H fields 
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𝐄𝐄 = 𝑗𝑗𝜔𝜔𝜂𝜂0𝐫𝐫̂ × 𝐀𝐀𝐦𝐦 = 𝑗𝑗𝑘𝑘 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘

4𝜋𝜋𝑘𝑘
𝐫𝐫̂ × 𝐅𝐅𝐦𝐦,

𝐇𝐇 = 𝑗𝑗𝜔𝜔
𝜂𝜂0

[𝜂𝜂0𝐫𝐫̂ × 𝐀𝐀𝐦𝐦 × 𝐫𝐫]̂ = −𝑗𝑗𝑘𝑘
𝜂𝜂0

𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘

4𝜋𝜋𝑘𝑘
𝐫𝐫̂ × 𝐅𝐅𝐦𝐦 × 𝐫𝐫̂

 (3.23) 

Now we turn to the far field (scattering𝐄𝐄S ) for the specific case of apertures in an infinite ground plane. Note 
that previously we have separated the problem into different parts, see Figure 87, to find the amplitude of the 
magnetic current. Now, using image theory the perfect electric conducting plane is eliminated and replaced by an 
image magnetic surface current, doubling its value over the aperture. As the scattering approach relies on the 
forward scattering theorem we are interested in only the 𝐳𝐳 ̂direction, the electric field in (3.23) is reduced to 

 
𝐄𝐄S = 2𝑗𝑗𝑘𝑘 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘

4𝜋𝜋𝑘𝑘
𝐳𝐳̂ × 𝐅𝐅m  (3.24) 

Where the factor 2 results from image theory, i.e. the fact that the magnetic current is radiating only into a half-
space. 

In the low frequency limit we can simplify the computation by using the fact that 𝑒𝑒𝑗𝑗𝑘𝑘𝑘𝑘 → 1 when 𝑘𝑘 → 0. We 
insert and obtain the value of the integral 

 
𝐅𝐅𝑚𝑚 = � 𝐌𝐌(𝐫𝐫′)𝑒𝑒𝑗𝑗𝐤𝐤⋅𝐫𝐫′ 𝑑𝑑𝑉𝑉′

𝑉𝑉
 
𝑘𝑘→0
����  � 𝐌𝐌(𝐫𝐫′)𝑑𝑑𝑉𝑉′

𝑉𝑉
= 𝐴𝐴𝐴𝐴 � � 𝐌𝐌n𝑑𝑑S′

𝑉𝑉

∞

𝐴𝐴=1,3,…
 (3.25) 

which, together with (3.24) and (3.11) for determines the scattered field from the cavity in the static limit.  
Since the equivalent aperture currents producing 𝐄𝐄S  are bounded, time-invariant, and causal, the field 𝐄𝐄S  

respect the hypotheses stated in [26]. 

3.3. Applying the scattering approach to specific geometries  
Here we apply the described scattering formulation to two specific geometries, i.e. rectangular and circular 
cavities in an infinite ground plane. Precise bounds are derived in both cases and shown to have a similar form to 
the familiar Chu bound, but having different coefficients. Finally, predictions for maximum bandwidth are made 
and compared with simulation results of patch antennas from the last chapter. 

3.3.1. Bound on bandwidth for rectangular cavities 
In the case of a rectangular cavity, the field at the aperture is assumed as 

 
𝐄𝐄t = � 𝐴𝐴𝐴𝐴𝐄𝐄n

∞

𝐴𝐴=1,3,..
 , 𝐄𝐄n(𝑥𝑥, 𝑦𝑦) = �̂�𝐲𝑇𝑇0

+ cos �𝐴𝐴𝜋𝜋 
a

𝑥𝑥� , (3.26) 

for |𝑥𝑥| < a/2 , |𝑦𝑦| < 𝑎𝑎/2. Where a and b are the lateral and vertical dimensions, 𝑇𝑇0
+ is the amplitude of the 

incident wave and 𝐴𝐴𝑛𝑛  represent unknown amplitudes of TEn0 modes excited at the aperture. The magnetic 
current, in accordance with (3.7) is then 

 𝐌𝐌n = �̂�𝐱𝑇𝑇0
+ cos �𝐴𝐴𝜋𝜋 

a
𝑥𝑥� (3.27) 

We now proceed to calculate here the three cross-power terms in (3.13). 

A. CAVITY PROBLEM CALCULATION 
The cavity geometry can be considered as a rectangular waveguide whose cross sections is parallel to the 
aperture plane and whose longitudinal direction is the z axis, orthogonal to the aperture plane. The magnetic 
field 𝐇𝐇t

C(𝐌𝐌𝐧𝐧), excited by a magnetic current 𝐌𝐌n  on the aperture, is then the magnetic field of the TEn0 mode 
of this rectangular waveguide. Due to mode orthogonality, the cross-power integral for the cavity part 𝑃𝑃𝐴𝐴𝑚𝑚

C in 
(3.13) is different from zero only if 𝐴𝐴 =  𝑚𝑚. In that case, it is the power crossing the aperture associated with 
the TEn0 mode. For this reason we write it as 
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𝑃𝑃𝐴𝐴

C = 𝛿𝛿𝐴𝐴𝑚𝑚
2

� 𝐳𝐳̂ ⋅ �𝐄𝐄m × 𝐇𝐇t
C∗(𝐌𝐌n)�

𝑆𝑆
𝑑𝑑S =

     = 𝛿𝛿𝐴𝐴𝑚𝑚
2

� � 𝐳𝐳̂ ⋅ �𝐄𝐄n × 𝐇𝐇t
C∗(𝐌𝐌n)� dxdy

𝑎𝑎/2

−𝑎𝑎/2

a/2

−a/2
= 𝛿𝛿𝐴𝐴𝑚𝑚

2
� � 𝑌𝑌𝐴𝐴

C∗|𝐄𝐄n|2dxdy
𝑎𝑎/2

−𝑎𝑎/2

a/2

−a/2

     = 𝛿𝛿𝐴𝐴𝑚𝑚
2

𝑌𝑌𝐴𝐴
C∗|𝑇𝑇0

+|2 � � cos2 �𝐴𝐴𝜋𝜋 
a

𝑥𝑥�dxdy
𝑎𝑎/2

−𝑎𝑎/2

a/2

−a/2
=

     = 𝛿𝛿𝐴𝐴𝑚𝑚
𝑎𝑎𝑎𝑎
4

𝑌𝑌𝐴𝐴
C∗|𝑇𝑇0

+|2

 (3.28) 

where 𝛿𝛿𝐴𝐴𝑚𝑚  is the Kronecker delta, and 𝑌𝑌𝐴𝐴
C  is the input admittance seen at the aperture toward the interior of the 

cavity. Where we have assumed 𝐇𝐇t
C∗(𝐌𝐌n) = 𝑌𝑌𝐴𝐴

C(𝐳𝐳̂ × 𝐄𝐄n). Since the latter is equivalent to a short circuited 
transmisssion line, the imput admittance is  

 𝑌𝑌𝐴𝐴
C = −𝑗𝑗 𝑘𝑘𝑧𝑧𝐴𝐴

𝑘𝑘𝜂𝜂0
cot(𝑘𝑘𝑧𝑧𝐴𝐴 ℎ) (3.29) 

with 𝑘𝑘𝑧𝑧𝐴𝐴
2 = 𝜖𝜖𝑘𝑘𝑘𝑘2 − (𝐴𝐴𝜋𝜋/𝑎𝑎)2 , where 𝑘𝑘 is the vacuum wave-number, 𝜂𝜂0  is the vacuum impedance, 𝜖𝜖𝑘𝑘  is the relative 

permittivity inside the cavity, 𝑎𝑎 is the larger aperture size and h the cavity depth. 
 
Low frequency limit: A Taylor expansion of (3.29) around 𝑘𝑘 = 0 gives  

 
 𝑌𝑌𝐴𝐴

𝐶𝐶 = −𝑗𝑗 1
𝑘𝑘

𝐴𝐴𝜋𝜋 coth �𝐴𝐴ℎ𝜋𝜋
𝑎𝑎 �

a𝜂𝜂0
+ 𝒪𝒪(𝑘𝑘) as 𝑘𝑘 → 0   (3.30) 

And we see all the higher terms ecept the first 1/𝑘𝑘 term go to 0 as 𝜋𝜋 → 0. Therefore, the first term is the only 
significant one. 

B. HALF-SPACE PROBLEM CALCULATION  
Here the cross-power integrals are more difficult to evaluate, since no orthogonality rule or transmission-line 
formalism can be invoked to simplify the expressions. The magnetic field 𝐇𝐇t

S(𝐌𝐌n), excited by a magnetic 
current 𝐌𝐌n  on the aperture, does not have a simple dependence on the electric field at the aperture.  Still, the 
integral can be computed numerical in the spectral domain as shown in detain in Appendix C. We assume 
admittance is defined also in this case, in coherence with (3.28). The final expression is 

 
𝑃𝑃𝐴𝐴𝑚𝑚

S = 1
2

� 𝐳𝐳̂ ⋅ (𝐄𝐄m
𝑆𝑆

× 𝐇𝐇t
S∗(𝐌𝐌n))𝑑𝑑S = a𝑎𝑎

4
𝑌𝑌𝐴𝐴𝑚𝑚

𝐴𝐴𝐴𝐴 |𝑇𝑇0
+|2 , (3.31) 

where 

 

𝑌𝑌𝐴𝐴𝑚𝑚
𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎𝐴𝐴𝑚𝑚

8𝑘𝑘𝜂𝜂
�

(𝑘𝑘2 − 𝑘𝑘𝑥𝑥
2 )�cos �𝑘𝑘𝑥𝑥a

2 � sinc �
𝑘𝑘𝑦𝑦𝑎𝑎
2 ��

2

d𝑘𝑘𝑥𝑥d𝑘𝑘𝑦𝑦

�𝑘𝑘2 − 𝑘𝑘𝑥𝑥
2 − 𝑘𝑘𝑦𝑦

2 ��𝐴𝐴𝜋𝜋
2 �2 − �𝑘𝑘𝑥𝑥a

2 �
2
� ��𝑚𝑚𝜋𝜋

2 �2 − �𝑘𝑘𝑥𝑥a
2 �

2
�ℝ2

. (3.32) 

Low frequency limit:  
We can use the series (Taylor) approximation for the aperture admittance introduced for simple, open ended, 
cavity antennas (described in Chapter 1.3.1). The aperture admittance 𝑌𝑌𝐴𝐴𝑚𝑚

𝐴𝐴𝐴𝐴 = 𝐺𝐺𝐴𝐴𝑚𝑚
𝐴𝐴𝐴𝐴 + 𝑗𝑗𝐵𝐵𝐴𝐴𝑚𝑚

𝐴𝐴𝐴𝐴  in as expanded as  

 𝐺𝐺𝐴𝐴𝑚𝑚
𝐴𝐴𝐴𝐴 = 𝑔𝑔𝐴𝐴𝑚𝑚

0 𝑥𝑥2 + 𝑔𝑔𝐴𝐴𝑚𝑚
1 𝑥𝑥4 + 𝑔𝑔𝐴𝐴𝑚𝑚

2 𝑥𝑥6 … ,
𝐵𝐵𝐴𝐴𝑚𝑚

𝐴𝐴𝐴𝐴 = 𝑎𝑎𝐴𝐴𝑚𝑚
0 𝑥𝑥−1 + 𝑎𝑎𝐴𝐴𝑚𝑚

1 𝑥𝑥 + 𝑎𝑎𝐴𝐴𝑚𝑚
2 𝑥𝑥3 + ⋯ ,

 (3.33) 

where 𝑥𝑥 = 𝑘𝑘𝑎𝑎/(2𝜋𝜋). We can see only 𝑎𝑎𝑚𝑚𝐴𝐴
0  is significant when 𝑘𝑘 → 0. Thus the low frequency limit of the 

admittance is 

 
𝑌𝑌𝐴𝐴𝑚𝑚

𝐴𝐴𝐴𝐴 = 𝑗𝑗 2𝜋𝜋
𝑘𝑘a

𝑎𝑎𝐴𝐴𝑚𝑚
0 + 𝒪𝒪(𝑘𝑘) as 𝑘𝑘 → 0,   (3.34) 

To obtain the necessary coefficients 𝑎𝑎𝐴𝐴𝑚𝑚
0  we thus take the first term in a Taylor expansion around 𝑘𝑘 = 0 of (3.32), 

and substitute the variables 𝑘𝑘𝑥𝑥𝑎𝑎/2 and 𝑘𝑘𝑦𝑦𝑎𝑎/2 by 𝛼𝛼 and 𝛽𝛽 respectively. We finally obtain the expression 
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𝑎𝑎𝑚𝑚𝐴𝐴
0 = − 𝑚𝑚𝐴𝐴

2𝜋𝜋𝜂𝜂0
� 𝛼𝛼2 cos(𝛼𝛼)2sinc(𝛽𝛽)2 d𝛼𝛼d𝛽𝛽

�𝛼𝛼2 + �a
𝑎𝑎�

2
𝛽𝛽2 ��𝐴𝐴𝜋𝜋

2 �2 − 𝛼𝛼2� ��𝑚𝑚𝜋𝜋
2 �2 − 𝛼𝛼2�ℝ2

. (3.35) 

which is integrated numerically. Example results for the first 7 odd modes are given in  
Table 9. 
 

𝒃𝒃𝒎𝒎𝒎𝒎
𝟎𝟎  m 
n 1 3 5 7 
1 -0.000809 0.000219 0.000179 0.000152 
3 0.000219 -0.003442 0.000259 0.000242 
5 0.000179 0.000259 -0.006094 0.000268 
7 0.000152 0.000242 0.000268 -0.008745 

 
Table 9 Numerically computed values of 𝑎𝑎𝑚𝑚𝐴𝐴

0   for modes 1 to 7 

C. SHORT-CIRCUIT PROBLEM CALCULATION 
Finally, the cross-power integral in the right-hand side of (3.11) can be computed in closed form 

 
〈𝐌𝐌m,𝐇𝐇t

sc 〉 = 1
2

� 𝐳𝐳̂ ⋅ (𝐄𝐄m × 𝐇𝐇t
sc∗)

𝑆𝑆
𝑑𝑑𝐒𝐒 =

               = 1
2

� � 𝐳𝐳̂ ⋅ �𝐄𝐄m × (2𝐇𝐇t
inc ∗)�dxdy

𝑎𝑎/2

−𝑎𝑎/2

a/2

−a/2
=

               = − � � 𝑇𝑇0
+cos �𝑚𝑚𝜋𝜋 

a
𝑥𝑥��

𝑇𝑇0
+

𝜂𝜂0
�

∗

dxdy
𝑎𝑎/2

−𝑎𝑎/2

a/2

−a/2
=

               = −sin �𝑚𝑚𝜋𝜋
2

� 2a𝑎𝑎
𝑚𝑚𝜋𝜋

|𝑇𝑇0
+|2

𝜂𝜂0
.

 (3.36) 

The low frequency limit leaves the expression unchanged. 

D. AMPLITUDE CALCULATION  
We shall first demonstrate the analytical solution involving only the fundamental TE10 mode. This is the simplest 
and in fact the most significant case. Expression (3.11) for only the TE10 mode in the cavity yields  

 𝐴𝐴1 �𝑃𝑃11
S + 𝑃𝑃1

C � = −〈𝐌𝐌1,𝐇𝐇t
sc 〉, (3.37) 

which is expanded as 

 𝐴𝐴1 �𝑎𝑎𝑎𝑎
4

𝑌𝑌11
𝐴𝐴𝐴𝐴 ∗|𝑇𝑇0

+|2 + a𝑎𝑎
4

𝑌𝑌1
C∗|𝑇𝑇0

+|2� = 2𝑎𝑎𝑎𝑎
𝜋𝜋

1
𝜂𝜂0

|𝑇𝑇0
+|2 , (3.38) 

and leads to  

 𝐴𝐴1 = 8
𝜋𝜋𝜂𝜂0

1
𝑌𝑌11

𝐴𝐴𝐴𝐴 ∗ + 𝑌𝑌1
C∗

. (3.39) 

In the low frequency limit, inserting expansions (3.30) and (3.34) we have  

 𝐴𝐴1 = 8
𝜋𝜋𝜂𝜂0

1

𝑗𝑗
𝜋𝜋 coth �ℎ𝜋𝜋

a �
𝑘𝑘a𝜂𝜂0

− 𝑗𝑗 2𝜋𝜋
𝑘𝑘a 𝑎𝑎11

0 + 𝒪𝒪(𝑘𝑘)

, 
(3.40) 

which is reduced to 

 
 𝐴𝐴1 = 8

𝜋𝜋
−𝑗𝑗𝑘𝑘a

−2𝜋𝜋𝑎𝑎11
0 𝜂𝜂0 + 𝜋𝜋 coth �ℎ𝜋𝜋

𝑎𝑎 �
 + 𝒪𝒪(𝑘𝑘3) as 𝑘𝑘 → 0.  , (3.41) 

The complete solution, involving higher modes gets increasingly more complicated as a larger number of 
modes is taken into account. An example of a more accurate solution including up to 7 would lead to the matrix 
system 
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⎣
⎢
⎢
⎢
⎡

𝑌𝑌11
𝐴𝐴𝐴𝐴 ∗ + 𝑌𝑌1

C∗ 𝑌𝑌13
𝐴𝐴𝐴𝐴 ∗ 𝑌𝑌15

𝐴𝐴𝐴𝐴 ∗ 𝑌𝑌17
𝐴𝐴𝐴𝐴 ∗

𝑌𝑌31
𝐴𝐴𝐴𝐴 ∗ 𝑌𝑌33

𝐴𝐴𝐴𝐴 ∗ + 𝑌𝑌3
C∗ 𝑌𝑌35

𝐴𝐴𝐴𝐴 ∗ 𝑌𝑌37
𝐴𝐴𝐴𝐴 ∗

𝑌𝑌51
𝐴𝐴𝐴𝐴 ∗ 𝑌𝑌53

𝐴𝐴𝐴𝐴 ∗ 𝑌𝑌55
𝐴𝐴𝐴𝐴 ∗ + 𝑌𝑌5

C∗ 𝑌𝑌57
𝐴𝐴𝐴𝐴 ∗

𝑌𝑌71
𝐴𝐴𝐴𝐴 ∗ 𝑌𝑌73

𝐴𝐴𝐴𝐴 ∗ 𝑌𝑌75
𝐴𝐴𝐴𝐴 ∗ 𝑌𝑌77

𝐴𝐴𝐴𝐴 ∗ + 𝑌𝑌7
C∗

 

⎦
⎥
⎥
⎥
⎤

⎣
⎢⎢
⎡

𝐴𝐴1
𝐴𝐴3
𝐴𝐴5
𝐴𝐴7⎦

⎥⎥
⎤

=

⎣
⎢⎢
⎡

8 𝜋𝜋𝜂𝜂0⁄
8 3𝜋𝜋𝜂𝜂0⁄
8 5𝜋𝜋𝜂𝜂0⁄
8 7𝜋𝜋𝜂𝜂0⁄ ⎦

⎥⎥
⎤

, (3.42) 

that can be solved for the unknown amplitudes using a computer, but is to cumbersome to express here. It was 
found however that the difference in 𝛾𝛾 with included higher modes in the calculation is very small. In Figure 89 
there is a visual demonstration between bandwidth results that involved 1 mode approximation and 7 mode 
approximation. Numerically, final bandwidth calculation between the two approximations differs by less than 
3%.  

E. FAR FIELD CALCULATION FOR THE TE10 MODE 
For brevity we concentrate only on the solution involving the TE10 mode while the full solution for higher modes 
would involve an infinite series. By inserting the magnetic current (3.27) into (3.25) to immediately obtain the 
low frequency limit of the radiation vector, we have  

 
𝐅𝐅𝑚𝑚 = � 𝐌𝐌𝑑𝑑S

𝑆𝑆
= � � 𝐴𝐴1𝐌𝐌𝟏𝟏d𝑥𝑥d𝑦𝑦

𝑎𝑎/2

−𝑎𝑎/2

𝑎𝑎/2

−𝑎𝑎/2
= �̂�𝐱𝑇𝑇0

+𝐴𝐴1
2a𝑎𝑎
𝜋𝜋

, (3.43) 

which together with (3.24) determines the scattered field from the cavity in the static limit given by 

 
𝐄𝐄S = 𝒚𝒚 ̂𝑗𝑗2𝑘𝑘𝑇𝑇0

+ 𝑒𝑒−𝑗𝑗𝒌𝒌𝒓𝒓

4𝜋𝜋𝑘𝑘
𝐴𝐴1

2a𝑎𝑎
𝜋𝜋

. (3.44) 

Putting (3.41) for the amplitude, gives the far field expression 

 
𝐄𝐄S = 𝑇𝑇0

+ 𝑒𝑒−𝑗𝑗𝒌𝒌𝒓𝒓

 𝑘𝑘
��̂�𝐲 1

4𝜋𝜋 
32
𝜋𝜋3

a2𝑎𝑎𝑘𝑘2

−2𝑎𝑎11
0 𝜂𝜂0 + coth(𝜋𝜋𝑎𝑎 ℎ)

+  𝒪𝒪(𝑘𝑘3)�, (3.45) 

where the expression in the brackets indicates 𝐒𝐒�𝑘𝑘, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞  introduced in (3.2) for the specific case of a 
rectangular cavity. Inserting the bracket into (3.3) we get  

 
𝜚𝜚(𝑘𝑘) = 1

4𝜋𝜋 
32
𝜋𝜋3

a2𝑎𝑎
−2𝑎𝑎11

0 𝜂𝜂0 + coth(𝜋𝜋𝑎𝑎 ℎ)
+  𝒪𝒪(𝑘𝑘3). (3.46) 

We can now easily obtain 𝜚𝜚(0) by putting 𝑘𝑘 = 0 in (3.46). Using the definition for 𝛾𝛾 in (3.4) we finally get 

 
 𝛾𝛾 ≅ 32

𝜋𝜋3
a2𝑎𝑎

−2𝑎𝑎11
0 𝜂𝜂0 + coth(𝜋𝜋𝑎𝑎 ℎ)

.  (3.47) 

Where the sign ≅ is used to indicate that this is only a close approximation of the real 𝛾𝛾 that would need to take 
into account all higher modes. With our assumptions, this total polarizability 𝛾𝛾 is in fact equal to an �̂�𝐲�̂�𝐲 element 
of  𝛄𝛄𝑚𝑚  dyadic. 

F. CONFIRMING POLARIZABILITY VALUE TROUGH SIMULATIONS 
It is of interest to verify the correct value of polarizability by some other method. Fortunately, using (1.37), there 
is as an alternative definition for polarizability, (derived in Chapter 1.1.3), given by 

 � 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝜆𝜆)𝑑𝑑𝜆𝜆
∞

0
= 𝜋𝜋2��̂�𝐩𝐞𝐞

∗ ⋅ 𝛄𝛄𝑒𝑒 ⋅ �̂�𝐩𝐞𝐞 + �̂�𝐩𝐦𝐦
∗ ⋅ 𝛄𝛄𝑚𝑚 ⋅ �̂�𝐩𝐦𝐦� = 𝜋𝜋2𝛾𝛾, (3.48) 

which can be used to confirm (3.47). To do this, broadband simulations (0 – 80 GHz) were performed using the 
time domain solver available in commercial software CST [130] to obtain and integrate 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝜆𝜆).  

CST, in fact, produces Radar Cross Section (RCS) data that is equal to 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴  if the investigated object is 
passive and lossless. If the object is lossy, then absorption and radar cross sections have to be added together. Fot 
our simulations, we modeled a cavity recessed in a large ground plane and included a plane wave incident 
normally on a large ground plane. Open boundary conditions were set directly at the side edges of the ground 
plane. With such boundary conditions CST is effectively simulating an infinite ground plane. The RCStot  was 
obtained using the far-field/RCS monitor in more than 2000 frequency points.  
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Cavities considered in our simulations had a square aperture (𝑎𝑎 = 𝑎𝑎). We used example aperture sizes of 20, 
32, 40 mm. For each aperture size, simulations for several heights (∆ℎ = 5 mm) and permittivity were 
performed. One remarkable result is that while RCStot  depends on the relative permittivity 𝜖𝜖𝑘𝑘 , the final integral 
(3.48) does not. As is also visible from (3.47), magnetic polarizability does not depend on relative permittivity 𝜖𝜖𝑘𝑘  
inside the cavity. Polarizability obtained through these broadband simulations was used to determine the 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴  
from (3.1) and the corresponding maximum bandwidth using (3.55) (shown below). The resulting predictions are 
combined with analytical results in Figure 89. 

Example: To make the numerical method of obtaining the polarizability more clear, an example is given in 
Figure 88. A 32 × 32 mm aperture size was chosen with cavity height of 13 mm and filled with air, as shown in 
Figure 88(a). For better accuracy, the frequency range was split into 4 simulations, each spanning 20 GHz, and 
finally combined into a result spanning the range of 0 to 80 GHz, as shown in Figure 88(c). It is important to 
realize that scattering at higher frequencies are contributing less to the total polarizability. This is immediately 
visible in Figure 88(d), where the RCS data is plotted versus wavelength instead of frequency. All the high 
frequency data is squeezed together in Figure 88(d) and thus the area underneath is very small. The first peak, 
corresponding to the fundamental resonance of the object, turns out to be most important. Numerically obtained 
value of polarizability is 𝛾𝛾 = 0.00001992, while with one mode approximation given by (3.47) one obtains 
𝛾𝛾 = 0.00001901. 

 
Figure 88 Example of the alternative method for obtaining the polarizability. (a) Image from CST showing the chosen geometry and (b) the 
position of the plane wave excitation. (c) Obtained broadband RCS result using the time domain solver. CST gives the result depending on 
frequency. (d) Using post-processing options in CST, the result is transformed to depend on the wavelength and then integrated and divided 
by 𝜋𝜋2  to get the total polarizability.  

G. BOUND ON 𝑸𝑸𝒎𝒎𝒎𝒎𝒎𝒎  AND MAXIMUM BANDWIDTH 
Putting (3.47) into (3.1) gives the complete formula for the minimum 𝑄𝑄 factor a general rectangular cavity 
(𝑎𝑎 ≠ 𝑎𝑎) antenna can achieve. 

 
𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑘𝑘𝑒𝑒𝑐𝑐𝐴𝐴 . ≅  𝜋𝜋4𝐷𝐷
16𝜂𝜂𝑘𝑘3a2𝑎𝑎

�coth�𝜋𝜋
a

ℎ� − 2𝑎𝑎11
0 𝜂𝜂0�  (3.49) 

 

Where the sign ≅ is again used due to the fact we are neglecting higher order modes. The form of (3.49) is a bit 
cryptic when compared to the well known Chu limit. We are still left with the directivity D which depends on the 
size of the aperture and to see a more direct resemblance with the Chu limit we shall have to expand it in terms 
of ka. For this purpose, and easier understanding, we shall restrict ourselves to square cavities (𝑎𝑎 = 𝑎𝑎). The 
complete derivation of directivity for a square aperture is given in Appendix C, here we write the final result In 
the form of a Taylor series 

Example simulaion: 
32 x 32 x 13 mm 
cavity 

Geometry Plane wave excitation 

Simulation 
result 

(a) 

(c) 
(d) 

(b) 
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𝐷𝐷 = 32

𝜂𝜂0𝑔𝑔11
0 𝜋𝜋

− 8𝑔𝑔11
1 (𝑘𝑘a)2

𝜂𝜂0𝑔𝑔11
0 2𝜋𝜋3

+ 𝒪𝒪(𝑘𝑘a)4 , (3.50) 
 

Inserting the numerical values of the coefficients the directivity is 𝐷𝐷 ≈ 3 + 0.1283(𝑘𝑘𝑎𝑎)2 + 𝑂𝑂(𝑘𝑘𝑎𝑎)4 . Combinig 
(3.50) with (3.49) gives a form closer o the form of the Chu limit 

 

𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑘𝑘𝑒𝑒𝑐𝑐𝐴𝐴 . ≅ 2𝜋𝜋3

𝜂𝜂𝑔𝑔11
0 𝜂𝜂0

�coth�𝜋𝜋
a

ℎ� − 2𝑎𝑎11
0 𝜂𝜂0�

�������������
geometric  factors  due  to  the  cavity ⎣

⎢⎢
⎡ 1

(𝑘𝑘a)3 − 𝑔𝑔11
1

4𝜋𝜋2𝑔𝑔11
0

1
(𝑘𝑘a)���������

similar  to Chu  limit

+ 𝒪𝒪(𝑘𝑘a)

⎦
⎥⎥
⎤

 , (3.51) 
 

Putting in the numerical coefficients (𝜂𝜂 = 0.5, 𝜂𝜂0 = 376.7, 𝑎𝑎11
0 = −0.00809, 𝑔𝑔11

0 =  0.00901, 𝑔𝑔11
1 = −0.01522) 

and making the limit ℎ ≫ makes the term coth(𝜋𝜋
𝑎𝑎 ℎ) → 1 giving  

 
𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑘𝑘𝑒𝑒𝑐𝑐𝐴𝐴 . ≅ 58.785
(𝑘𝑘a)3 + 2.52

(𝑘𝑘a)
 ,  (3.52) 

 

or in terms of radius 𝑘𝑘 = a
√

2 from the center of the cavity. The form directly comparable with the Chu bound 
is 

 
𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑘𝑘𝑒𝑒𝑐𝑐𝐴𝐴 . ≅  20.78
(𝑘𝑘𝑘𝑘)3 + 1.78

(𝑘𝑘𝑘𝑘)
 .  (3.53) 

 

In all cases, the maximum fractional bandwidth (FBW) of the antennas calculated directly from 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴  by 

 
FBW = 2

√
𝛽𝛽

𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
 , 𝛽𝛽 = 𝛼𝛼

1 − 𝛼𝛼
  , 𝛼𝛼 = |𝛤𝛤0(𝜔𝜔)|2  (3.54) 

where 𝛤𝛤0(𝜔𝜔) is the reflection coefficient. Inserting the value 𝛼𝛼 = 0.1 for assuring a return loss of 10dB, one 
obtains the expression for the bandwidth 

 FBW−10dB = 2
3𝑄𝑄min

, (3.55) 

which is used from making bandwidth predictions. Note that (3.54) is only approximate, as explained in 
Appendix A.  

Figure 89 shows bandwidth predictions of various degrees of approximation; the single mode approximation 
calculated using the polarizability (3.47), shown with full lines; a seven mode approximation where 
polarizability is calculated using (3.42) and shown with dashed lines. Additionally, predictions made using the 
polarizability obtained trough simulations (see part F of this section) are shown with points. The 7 mode 
approximation is of-course, closer to the values obtained by simulations in CST. 

The conclusion that can be made from Figure 89 is that the single mode approximation is truly a good 
enough approximation for small cavities. Therefore, in the further text (concerning circular cavities) we shall 
concentrate only on the analysis with the fundamental mode.  

 
Figure 89 Maximum theoretical bandwidth derived from scattering (simulation and analytical) for several square cavity sizes. Directivity 
values are noted in the legend. Results are independent of the medium filling the cavity. 
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3.3.2. Bound on bandwidth for circular cavities 
Here we apply the scattering formulation specifically to circular cavity geometry and derive a precise bound on 
𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 . Analogously to the rectangular case, the field at the circular aperture is also a sum of modes. Due to 
excitation by a plane wave we could assume TEn1 modes expressed as 

 
𝐄𝐄t = � 𝐴𝐴𝐴𝐴𝐄𝐄n

∞

𝐴𝐴=1,3,..
 , 𝐄𝐄n(𝜌𝜌, 𝑚𝑚) = 𝝆𝝆�̂�𝑇0

+ 𝐽𝐽𝐴𝐴 (𝑘𝑘𝑐𝑐𝜌𝜌)
𝜌𝜌

sin(𝑚𝑚) + 𝝓𝝓�̂�𝑇0
+𝑘𝑘𝑐𝑐𝐽𝐽𝐴𝐴

′ (𝑘𝑘𝑐𝑐𝜌𝜌) cos(𝑚𝑚) (3.56) 

for 0 ≤ 𝜌𝜌 ≤ 𝑎𝑎 , 0 ≤ 𝑚𝑚 ≤ 2π. Where a is the circular aperture radius, 𝑇𝑇0
+ is the amplitude of the incident wave, 

𝐴𝐴𝐴𝐴  represent unknown amplitudes of TEn0 modes excited at the aperture, and 𝑘𝑘𝑐𝑐 = 𝐴𝐴𝐴𝐴1
′ /𝑎𝑎 is the cut-off wave-

number, where 𝐴𝐴𝐴𝐴1
′  are first zeroes of the Bessel function derivative 𝐽𝐽𝐴𝐴

′ (𝑥𝑥). However, as seen in the rectangular 
case, the fundamental mode is the most significant one. Therefore we will immediately make the restriction of 
our analysis to just the TE11 mode. The field at the aperture is assumed as  

 𝐄𝐄t ≅ 𝐄𝐄1(𝜌𝜌, 𝑚𝑚) = 𝐴𝐴1 �𝝆𝝆�̂�𝑇0
+ 𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)

𝜌𝜌
sin(𝑚𝑚) + 𝝓𝝓�̂�𝑇0

+𝑘𝑘𝑐𝑐𝐽𝐽1
′ (𝑘𝑘𝑐𝑐𝜌𝜌) cos(𝑚𝑚)�, (3.57) 

The magnetic current, in accordance with (3.57) is then 𝐌𝐌1 = 𝝓𝝓�̂�𝑇0
+ 𝐽𝐽1 (𝑘𝑘𝑐𝑐 𝜌𝜌)

𝜌𝜌 sin(𝑚𝑚) − 𝝆𝝆�̂�𝑇0
+𝑘𝑘𝑐𝑐𝐽𝐽1

′ (𝑘𝑘𝑐𝑐𝜌𝜌) cos(𝑚𝑚). 
We now proceed to calculate here the three cross-power terms in (3.13). 

A. CAVITY PROBLEM CALCULATION 
The cavity geometry can be considered as a circular waveguide whose longitudinal direction is the z axis, 
orthogonal to the aperture plane. The magnetic field 𝐇𝐇t

C(𝐌𝐌1), excited by a magnetic current 𝐌𝐌1  on the 
aperture, is then the magnetic field of the TE11 mode of this rectangular waveguide. For this reason 

 
𝑃𝑃1

C = 1
2

� 𝐳𝐳̂ ⋅ (𝐄𝐄1
𝑆𝑆

× 𝐇𝐇t
C∗(𝐌𝐌1))𝑑𝑑𝑆𝑆 = 1

2
� � 𝑇𝑇𝜌𝜌𝐻𝐻𝑚𝑚

∗ − 𝑇𝑇𝑚𝑚𝐻𝐻𝜌𝜌
∗ 𝜌𝜌𝑑𝑑𝜌𝜌𝑑𝑑𝑚𝑚

2𝜋𝜋

0

𝑎𝑎

0

     = 1
2

𝑌𝑌1
𝐶𝐶∗ � � �𝑇𝑇𝜌𝜌�2 + �𝑇𝑇𝑚𝑚 �2 𝜌𝜌𝑑𝑑𝜌𝜌𝑑𝑑𝑚𝑚

2𝜋𝜋

0

𝑎𝑎

0
=

     = 𝜋𝜋
4

𝑌𝑌1
𝐶𝐶∗|𝑇𝑇0

+|2((𝐴𝐴11
′ )2 − 1)𝐽𝐽𝐴𝐴

2(𝐴𝐴11
′ )

 (3.58) 

where 𝑌𝑌1
𝐶𝐶  is the input admittance seen at the aperture toward the interior of the cavity. Since the latter is 

equivalent to a short circuited transmisssion line, the imput admittance is  

 𝑌𝑌1
𝐶𝐶 = −𝑗𝑗 𝑘𝑘𝑧𝑧𝐴𝐴

𝑘𝑘𝜂𝜂0
cot(𝑘𝑘𝑧𝑧𝐴𝐴 ℎ) (3.59) 

with 𝑘𝑘𝑧𝑧𝐴𝐴
2 = 𝜖𝜖𝑘𝑘𝑘𝑘2 − (𝐴𝐴11

′ /𝑎𝑎)2 , where 𝑘𝑘 is the vacuum wave-number, 𝜂𝜂0  is the vacuum impedance, 𝜖𝜖𝑘𝑘  is the 
relative permittivity inside the cavity, 𝑎𝑎 is the aperture radius and h the cavity depth. 
 
Low frequency limit: The input admittance, fully expressed, is 

 

𝑌𝑌1
𝐶𝐶 = −𝑗𝑗

�𝜀𝜀𝑘𝑘𝑘𝑘2 − �𝐴𝐴11
′

𝑎𝑎 �
2

𝑘𝑘𝜂𝜂0
cot

⎝
⎜⎛�𝜀𝜀𝑘𝑘𝑘𝑘2 − �𝐴𝐴11

′

𝑎𝑎
�

2
ℎ
⎠
⎟⎞. (3.60) 

Taylor expansion around 𝑘𝑘 = 0 gives  

 

 𝑌𝑌1
𝐶𝐶 = −𝑗𝑗 1

𝑘𝑘

𝐴𝐴11
′ coth �ℎ𝐴𝐴11

′

𝑎𝑎 �

𝑎𝑎𝜂𝜂0
+ 𝒪𝒪(𝑘𝑘3) as 𝑘𝑘 → 0,   (3.61) 

where analogously to a rectangular waveguide, all terms ecept the first one go to 0 as 𝑘𝑘 → 0. 

B. HALF-SPACE PROBLEM CALCULATION 
The magnetic field 𝐇𝐇t

S(𝐌𝐌1), excited by a magnetic current 𝐌𝐌1  on the aperture, does not have a simple 
dependence on the electric field at the aperture. Still, the integral can be computed numerical in the spectral 
domain as shown in detain in Appendix D. We assume admittance is defined also in this case, in coherence with 
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(3.58). The final expression is 

 
𝑃𝑃11

S = 1
2

� 𝐳𝐳̂ ⋅
𝑆𝑆

�𝐄𝐄1 × 𝐇𝐇t
S∗(𝐌𝐌1)� 𝑑𝑑S = 𝜋𝜋

4
𝑌𝑌11

𝐴𝐴𝐴𝐴 ∗|𝑇𝑇0
+|2((𝐴𝐴11

′ )2 − 1)𝐽𝐽𝐴𝐴
2(𝐴𝐴11

′ ), (3.62) 

where 

 
𝑌𝑌11

𝐴𝐴𝐴𝐴 = 2
((𝐴𝐴11

′ )2 − 1)𝜂𝜂0
�

⎣
⎢
⎡ 𝑘𝑘

𝑘𝑘𝜌𝜌
2�𝑘𝑘2 − 𝑘𝑘𝜌𝜌

2
𝐽𝐽1

2�𝑘𝑘𝜌𝜌𝑎𝑎� +
𝑎𝑎2𝑘𝑘𝑐𝑐

4�𝑘𝑘2 − 𝑘𝑘𝜌𝜌
2 ,

𝑘𝑘�𝑘𝑘𝑐𝑐
2 − 𝑘𝑘𝜌𝜌

2�2 𝐽𝐽1
′ 2�𝑘𝑘𝜌𝜌𝑎𝑎�

⎦
⎥
⎤∞

0
𝑘𝑘𝜌𝜌𝑑𝑑𝑘𝑘𝜌𝜌. (3.63) 

The low frequency limit of the admittance is 

 
𝑌𝑌11

𝐴𝐴𝐴𝐴 = 𝑗𝑗 2𝜋𝜋
𝑘𝑘𝑎𝑎

𝑎𝑎11
0 + 𝒪𝒪(𝑘𝑘2) as 𝑘𝑘 → 0,   (3.64) 

where, again, the first coefficient of the suseptance is the most important. this particular coefficient 𝑎𝑎11
0  for the 

TE11 mode can be expressed directly. In making the low frequency limit 𝑘𝑘 → 0, we see that the first term in  
disappears, and only the second term is important. Making the change in variables 𝑘𝑘𝜌𝜌𝑎𝑎 = 𝑋𝑋, 𝑑𝑑𝑘𝑘𝜌𝜌𝑎𝑎 = 𝑑𝑑𝑋𝑋 we 
transform the integral into a slightly more suitable form for numerical computation 

 
𝑎𝑎11
0 = 1

𝜋𝜋((𝐴𝐴𝐴𝐴𝑚𝑚
′ )2 − 1)𝜂𝜂0

� (𝐴𝐴𝐴𝐴𝑚𝑚
′ )4𝑋𝑋2𝐽𝐽1

′ 2(𝑋𝑋)
((𝐴𝐴𝐴𝐴𝑚𝑚

′ )2 − 𝑋𝑋2)2

∞

0
𝑑𝑑𝑋𝑋 (3.65) 

The result of numerical integration gives value 𝑎𝑎11
0 =0.000504. 

C. SHORT-CIRCUIT PROBLEM CALCULATION 
Finally, the cross-power integral in the right-hand side of (3.12) can be computed in closed form. We start by 

expressing cross power integral as 

 
〈𝐌𝐌1,𝐇𝐇t

sc 〉 = 1
2

� 𝐳𝐳̂ ⋅ (𝐄𝐄1 × 𝐇𝐇t
sc∗)

𝑆𝑆
𝑑𝑑S = 1

2
� � 𝐳𝐳̂ ⋅ (𝐄𝐄1 × 2𝐇𝐇t

inc ∗) 𝜌𝜌𝑑𝑑𝜌𝜌𝑑𝑑𝑚𝑚
2𝜋𝜋

0

𝑎𝑎

0
 (3.66) 

Where the incident field at the aperture is 𝐇𝐇t
inc = �̂�𝒙𝑇𝑇0

+/𝜂𝜂0 . To resolve the mixed product in the integrant we 
write the unit vector in polar coordinates as �̂�𝒙 = 𝝆𝝆 ̂ cos(𝑚𝑚) − 𝝓𝝓ŝin(𝑚𝑚) and multiply the vectors as  

 
𝐳𝐳̂ ⋅ ��𝝆𝝆�̂�𝑇0

+ 𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)
𝜌𝜌

sin(𝑚𝑚) + 𝝓𝝓�̂�𝑇0
+𝑘𝑘𝑐𝑐𝐽𝐽1

′ (𝑘𝑘𝑐𝑐𝜌𝜌) cos(𝑚𝑚)� × �𝝆𝝆 ̂ cos(𝑚𝑚) − 𝝓𝝓ŝin(𝑚𝑚)��
𝑇𝑇0

+

𝜂𝜂0
�

∗

�

= 𝐳𝐳̂ ⋅ �−𝐳𝐳̂ 𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)
𝜌𝜌

sin2(𝑚𝑚) − 𝐳𝐳�̂�𝑘𝑐𝑐𝐽𝐽1
′ (𝑘𝑘𝑐𝑐𝜌𝜌) cos2(𝑚𝑚)�

|𝑇𝑇0
+|2

𝜂𝜂0
=

= −
|𝑇𝑇0

+|2

𝜂𝜂0
�𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)

𝜌𝜌
sin2(𝑚𝑚) + 𝑘𝑘𝑐𝑐𝐽𝐽1

′ (𝑘𝑘𝑐𝑐𝜌𝜌) cos2(𝑚𝑚)�

    (3.67) 

Inserting the integrand (3.67) back into (3.66) we can easily integrate the angular variable from 0 to 2𝜋𝜋 to obtain 

 
〈𝐌𝐌1,𝐇𝐇t

sc 〉 = −
|𝑇𝑇0

+|2

𝜂𝜂0
𝜋𝜋 � 𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)

𝜌𝜌
+ 𝑘𝑘𝑐𝑐𝐽𝐽1

′ (𝑘𝑘𝑐𝑐𝜌𝜌) 𝜌𝜌𝑑𝑑𝜌𝜌
𝑎𝑎

0
. (3.68) 

Finally, integration in the radial variable finally yields  

 
〈𝐌𝐌1,𝐇𝐇t

sc 〉 = −
|𝑇𝑇0

+|2

𝜂𝜂0
𝜋𝜋𝑘𝑘𝑐𝑐 � 𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)

𝑘𝑘𝑐𝑐𝜌𝜌
+ 𝐽𝐽1

′ (𝑘𝑘𝑐𝑐𝜌𝜌) 𝜌𝜌𝑑𝑑𝜌𝜌
𝑎𝑎

0
=

              = −
|𝑇𝑇0

+|2

𝜂𝜂0
𝜋𝜋𝑘𝑘𝑐𝑐 � 1

2
[𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌) + 𝐽𝐽2(𝑘𝑘𝑐𝑐𝜌𝜌)] + 1

2
[𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌) − 𝐽𝐽2(𝑘𝑘𝑐𝑐𝜌𝜌)] 𝜌𝜌𝑑𝑑𝜌𝜌

𝑎𝑎

0
=

              
= −

|𝑇𝑇0
+|2

𝜂𝜂0
𝜋𝜋𝑘𝑘𝑐𝑐 � 𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌) 𝜌𝜌𝑑𝑑𝜌𝜌

𝑎𝑎

0
=

= −
|𝑇𝑇0

+|2

𝜂𝜂0
𝜋𝜋𝑎𝑎𝐽𝐽1(𝐴𝐴11

′ )

, (3.69) 

The low frequency limit leaves the expression unchanged. 
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D. AMPLITUDE CALCULATION  
Combining the solutions of (3.58), (3.62), and (3.69) with expression (3.14) for only the TE11 mode in the cavity 
yields  

 
𝐴𝐴1

𝜋𝜋
4

|𝑇𝑇0
+|2((𝐴𝐴11

′ )2 − 1)𝐽𝐽𝐴𝐴
2(𝐴𝐴11

′ )�𝑌𝑌11
𝐴𝐴𝐴𝐴 ∗ + 𝑌𝑌1

C∗� =
|𝑇𝑇0

+|2

𝜂𝜂0
𝜋𝜋𝑎𝑎𝐽𝐽1(𝐴𝐴11

′ ), (3.70) 

and leads to  

 𝐴𝐴1 = 4𝑎𝑎
𝜂𝜂0((𝐴𝐴11

′ )2 − 1)𝐽𝐽1(𝐴𝐴11
′ )�𝑌𝑌11

𝐴𝐴𝐴𝐴 ∗ + 𝑌𝑌1
C∗�

. (3.71) 

In the low frequency limit when we use expansions (3.61) and (3.64) we get 

 
𝐴𝐴1 = −𝑗𝑗4𝑘𝑘𝑎𝑎2

�−2𝜋𝜋𝑎𝑎11
0 𝜂𝜂0 + 𝐴𝐴11

′ coth�𝐴𝐴11
′

𝑎𝑎 ℎ�� ((𝐴𝐴11
′ )2 − 1)𝐽𝐽1(𝐴𝐴11

′ )
 + 𝒪𝒪(𝑘𝑘3), as 𝑘𝑘 → 0, (3.72) 

where we have used the Taylor expansion formulas in (3.61) and (3.64)(3.36) to express the result. 
 

E. FAR FIELD CALCULATION FOR TE11 MODE  
We insert the magnetic current 𝐌𝐌1  into the low frequency limit of the radiation vector and have  

 
𝐅𝐅𝑚𝑚 = � � 𝐴𝐴1𝐌𝐌1 𝜌𝜌𝑑𝑑𝜌𝜌𝑑𝑑𝑚𝑚

2𝜋𝜋

0

𝑎𝑎

0
= 𝐴𝐴1𝑇𝑇0

+ � � 𝝓𝝓 ̂ 𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)
𝜌𝜌

sin(𝑚𝑚) − 𝝆𝝆�̂�𝑘𝑐𝑐𝐽𝐽1
′ (𝑘𝑘𝑐𝑐𝜌𝜌) cos(𝑚𝑚) 𝜌𝜌𝑑𝑑𝜌𝜌𝑑𝑑𝑚𝑚

2𝜋𝜋

0

𝑎𝑎

0
 (3.73) 

Expanding the unit vectors in Cartesian coordinates as 𝝆𝝆 ̂ = cos(𝑚𝑚) �̂�𝒙 + sin(𝑚𝑚)𝒚𝒚 ̂ and 𝝓𝝓 ̂ = −sin(𝑚𝑚) �̂�𝒙 + cos(𝑚𝑚)𝒚𝒚,̂ 
and upon doing the integration in the 𝑚𝑚 variable the result is  

 
𝐅𝐅𝑚𝑚 = �̂�𝒙𝐴𝐴1𝑇𝑇0

+𝜋𝜋𝑘𝑘𝑐𝑐 � �𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)
𝑘𝑘𝑐𝑐𝜌𝜌

+ 𝐽𝐽1
′ (𝑘𝑘𝑐𝑐𝜌𝜌)�𝜌𝜌𝑑𝑑𝜌𝜌

𝑎𝑎

0
= �̂�𝒙𝐴𝐴1𝑇𝑇0

+𝜋𝜋𝑘𝑘𝑐𝑐 � 𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌) 𝜌𝜌𝑑𝑑𝜌𝜌,
𝑎𝑎

0
 (3.74) 

where we have used (D 15) to transform the integrand. Finally, integration of (3.74) gives 

 𝐅𝐅𝑚𝑚 = �̂�𝒙𝐴𝐴1𝑇𝑇0
+𝜋𝜋𝑎𝑎𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎), (3.75) 

where 𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎) can also be written as 𝐽𝐽1(𝐴𝐴11
′ ). Putting (3.75) together with (3.24) determines the scattered field 

from the cavity in the static limit 

 
𝐄𝐄S = 𝒚𝒚 ̂2𝑗𝑗𝑘𝑘𝑇𝑇0

+ 𝑒𝑒−𝑗𝑗𝒌𝒌𝒓𝒓

4𝜋𝜋𝑘𝑘
𝐴𝐴1𝜋𝜋𝑎𝑎𝐽𝐽1(𝐴𝐴11

′ ). (3.76) 

Putting (3.72) into (3.76) gives the far field expression 

 
𝐄𝐄S = 𝑇𝑇0

+ 𝑒𝑒−𝑗𝑗𝒌𝒌𝒓𝒓

 𝑘𝑘
⎩�
⎨
�⎧

𝒚𝒚 ̂ 1
4𝜋𝜋 

8𝜋𝜋𝑘𝑘2𝑎𝑎3

�−2𝜋𝜋𝑎𝑎11
0 𝜂𝜂0 + 𝐴𝐴11

′ coth �𝐴𝐴11
′

𝑎𝑎 ℎ�� ((𝐴𝐴11
′ )2 − 1)

+  𝒪𝒪(𝑘𝑘3)
⎭�
⎬
�⎫

, (3.77) 

where the expression in the brackets indicates 𝐒𝐒�𝑘𝑘, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞  introduced in (3.2) for the specific case of a 
rectangular cavity. Inserting the bracket into (3.3) we get  

 
𝜚𝜚(𝑘𝑘) = 8𝜋𝜋𝑎𝑎3

−2𝜋𝜋𝑎𝑎11
0 𝜂𝜂0 + 𝐴𝐴11

′ coth�𝐴𝐴11
′

𝑎𝑎 ℎ� ((𝐴𝐴11
′ )2 − 1)

+  𝒪𝒪(𝑘𝑘3). (3.78) 

We can now easily obtain 𝜚𝜚(0) by putting 𝑘𝑘 = 0 in (3.46). Using the definition for 𝛾𝛾 in (3.4) we finally get 

 
  𝛾𝛾 ≅ 8𝜋𝜋

((𝐴𝐴11
′ )2 − 1)

𝑎𝑎3

−2𝜋𝜋𝑎𝑎11
0 𝜂𝜂0 + 𝐴𝐴11

′ coth�𝐴𝐴11
′

𝑎𝑎 ℎ�
.   (3.79) 
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F. BOUND ON 𝑸𝑸𝒎𝒎𝒎𝒎𝒎𝒎  AND MAXIMUM BANDWIDTH  
Putting (3.79) into (3.1) gives the complete formula for the minimum 𝑄𝑄 factor a general circular cavity antenna 
can achieve 

 
𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑘𝑘𝑒𝑒𝑐𝑐𝐴𝐴 . ≅  𝐷𝐷
4𝜂𝜂(𝑘𝑘𝑎𝑎)3 �𝐴𝐴11

′ coth�𝐴𝐴11
′

𝑎𝑎
ℎ� − 2𝜋𝜋𝑎𝑎11

0 𝜂𝜂0� ((𝐴𝐴11
′ )2 − 1)  (3.80) 

Where the sign ≅ is again used due to the fact we are neglecting higher order modes. The form of (3.49) is a bit 
cryptic when compared to the well known Chu limit. We are still left with the directivity 𝐷𝐷 which depends on 
the size of the aperture and to see a more direct resemblance with the Chu limit we shall have to expand it in 
terms of 𝑘𝑘𝑎𝑎. For this purpose, and easier understanding, we shall restrict ourselves to square cavities (𝑎𝑎 = 𝑎𝑎). 
The complete derivation of directivity for a circular aperture is given in Appendix D, here we write the final 
result In the form of a Taylor series 

 
𝐷𝐷 = 8𝜋𝜋2

𝜂𝜂0𝑔𝑔11
0 ((𝐴𝐴11

′ )2 − 1)
− 2𝑔𝑔11

1 (𝑘𝑘𝑎𝑎)2

𝜂𝜂0𝑔𝑔11
0 2((𝐴𝐴11

′ )2 − 1)
+ 𝒪𝒪(𝑘𝑘𝑎𝑎)4 , (3.81) 

Inserting the numerical values of the coefficients the directivity is 𝐷𝐷 ≈ 3 + 0.42265(𝑘𝑘𝑎𝑎)2 + 𝑂𝑂(𝑘𝑘𝑎𝑎)4 . Combinig 
(3.50) with (3.49) gives a form closer o the form of the Chu limit 

 

𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑘𝑘𝑒𝑒𝑐𝑐𝐴𝐴 . ≅ 2𝜋𝜋2

𝜂𝜂𝑔𝑔11
0 𝜂𝜂0

�𝐴𝐴11
′ coth�𝐴𝐴11

′

𝑎𝑎
ℎ� − 2𝜋𝜋𝑎𝑎11

0 𝜂𝜂0�
�����������������

geometric  factors  due  to the  cavity ⎣
⎢⎢
⎡ 1

(𝑘𝑘𝑎𝑎)3 − 𝑔𝑔11
1

4𝜋𝜋2𝑔𝑔11
0

1
(𝑘𝑘𝑎𝑎)���������

similar  to  Chu  limit

+ 𝒪𝒪(𝑘𝑘𝑎𝑎)4

⎦
⎥⎥
⎤

 , (3.82) 

Putting in the numerical coefficients (𝜂𝜂 = 0.5, 𝜂𝜂0 = 376.7, 𝑎𝑎11
0 = −0.0005049, 𝑔𝑔11

0 =  0.02923, 𝑔𝑔11
1 = −0.1627,

𝐴𝐴11
′ = 1.8418) and making the limit ℎ ≫ makes the term coth(𝜋𝜋

𝑎𝑎 ℎ) → 1 giving  

 
 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐 . ≅ 10.88
(𝑘𝑘𝑎𝑎)3 + 1.53

(𝑘𝑘𝑎𝑎)
  for ℎ ≫   (3.83) 

Which is directly comparable with the Chu bound. Alternatively, in terms of the diameter 𝑑𝑑 = 2𝑎𝑎 we have 

 
 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐 . ≅ 87.04
(𝑘𝑘𝑑𝑑)3 + 3.06

(𝑘𝑘𝑑𝑑)
  for ℎ ≫  , (3.84) 

Analogous to the square case, the maximum fractional bandwidth (FBW) of the antennas calculated directly 
from 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴  by 

 FBW−10dB = 2
3𝑄𝑄min

, (3.85) 

Which directly gives a prediction for 10dB return loss bandwidth. However, note that this expression linking 
bandwidth and 𝑄𝑄 is only approximate, as explained in Appendix A. Nevertheless, (3.86) is used in further text 
to create predictions on the bound on bandwidth and determine the level to which patch antennas reach it.  

3.3.3. Comparison with patch antennas  
Simulation results from Chapter 2 have been presented in Figure 90 along with the maximum bandwidth 
calculated using Gustafsson’s bound for square and circular cavities. Note that patch antenna simulations were 
made using (Rogers) materials with losses while Gustafsson’s bound assumes a lossless antenna. This fact 
presented a problem for the circular cavity of the smallest size where losses play a very significant role. The 
simulations had to be redone without losses in this case in order to confirm that the bandwidth is not larger than 
the predicted maximum. 

Figure 90 visually demonstrates that patch antennas do not reach the predicted bound on bandwidth. For 
small cavities, the difference between the bound and the patch bandwidth is small, but for larger cavities, the 
difference is significant. This indicates that patches are not the best choice when it comes to cavity antennas. The 
problem of finding the antenna type that does reach the bound is left for Chapter 4.  
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Figure 90 Comparison of simulation results of patch antennas in a cavity to Gustafsson’s bound. 
 

(a) 

vs. Gustafsson's 
      bound  

vs. Gustafsson's 
      bound  

(b) 
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3.4. On objects inside the cavity 
The antenna (object) inside the cavity will change only the cavity part of our formulation, meaning that the input 
admittance is modified, and only the input admittance. Here, we discuss the validity of the bound in the presence 
of objects and we restrict ourselves to a rectangular cavity for brevity, but the same conclusions are valid for a 
circular case. 

Note that the antenna (or objects) inside the cavity might couple energy from the TE modes to any other 
modes. Existence of these modes might contribute to the radiation by the electric dipole moment 𝐩𝐩 which is 
oriented perpendicular form the cavity, in addition to radiation by the magnetic moment which is tangential to 
the aperture. If both dipole moments are excited, then both electric and magnetic polarizabilities enter the 𝑄𝑄 
formula and the resulting 𝑄𝑄 could be lower. Of course, such an antenna would not have a strictly broadside 
radiation pattern because a perpendicular electric moment has a monopole radiation pattern. By working under 
the assumption of searching for strictly broadside radiation pattern, we eliminate antenna types that would also 
excite the electric moment of the cavity and in this case the field at the aperture can be represented by TE modes. 

By assuming the presence of only TE modes inside the waveguide, objects inside can be represented by 
lumped elements connected in parallel in the transmission line model of the waveguide. The possible equivalent 
circuits can be found in Pozar [41] and are also depicted in Figure 91. 
 

 
Figure 91 Example discontinuities inside a rectangular excited with a TE mode and their equivalent circuit models. 
  
The input admittance is changed with the addition of objects, but the bound depends on the static limit only. As 
we have seen throughout the chapter, in the static limit of admittance, only the inductive term with the 1/𝑘𝑘 
dependence is significant. Te limits for various cases are: 
 

1) Capacitor at the aperture: 

 
𝑌𝑌𝐴𝐴

𝐶𝐶 = −𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) + 𝑗𝑗𝑐𝑐0𝑘𝑘𝐶𝐶 
𝑎𝑎𝑠𝑠  𝑘𝑘→0 
��������  −𝑗𝑗 1

𝑘𝑘
𝐴𝐴𝜋𝜋 coth �𝐴𝐴ℎ𝜋𝜋

a �
a𝜂𝜂0

+ 𝒪𝒪(𝑘𝑘) 
(3.86) 

 

As 𝑗𝑗𝑐𝑐0𝑘𝑘𝐶𝐶 term simply goes to zero with 𝑘𝑘 → 0, there is no change in the inductive term compared to no 
capacitor case. The bound for such an antenna would remain the same. Note that 𝑗𝑗𝜔𝜔𝐶𝐶 = 𝑗𝑗𝑐𝑐0𝑘𝑘𝐶𝐶 , where 𝑐𝑐0  is the 
speed of light. 
 

2) Series resonant circuit at the aperture: 

 
𝑌𝑌𝐴𝐴

𝐶𝐶 = −𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘 𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) + 1
1

𝑗𝑗𝑐𝑐0𝑘𝑘𝐶𝐶 + 𝑗𝑗𝑐𝑐0𝑘𝑘𝑗𝑗
 
𝑎𝑎𝑠𝑠  𝑘𝑘→0 
�������� −𝑗𝑗 1

𝑘𝑘
𝐴𝐴𝜋𝜋 coth �𝐴𝐴ℎ𝜋𝜋

a �
a𝜂𝜂0

+ 𝒪𝒪(𝑘𝑘) (3.87) 
 

Because 1 (1 𝑗𝑗𝑐𝑐0𝑘𝑘𝐶𝐶⁄ + 𝑗𝑗𝑐𝑐0𝑘𝑘𝑗𝑗)⁄ = 𝑗𝑗𝑐𝑐0𝑘𝑘𝐶𝐶 (1 − 𝑐𝑐0
2𝑘𝑘2𝑗𝑗𝐶𝐶)⁄  this term also tends to zero as 𝑘𝑘 in the nominator tends 

to zero. The bound for such an antenna would remain the same. Interestingly, this model was investigated in 
Chapter 2 to explain bandwidth behaviour of patch antennas. Although the bound is the same, Figure 90 clearly 
shows patch antennas do not reach the bound. 
 

3) Inductor at the aperture: 

Inductive 
diaphragm 

Capacitive 
diaphragm 

Iris 

Equivalent circuit 

Z1 Z2 

Z1 Z2 

Patch 

Change in height 

Change in width 
Equivalent circuit 

(a) (d) 

(e) 

(f) (c) 

(b) 
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𝑌𝑌𝐴𝐴𝐴𝐴

𝐶𝐶 = −𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) + 1
𝑗𝑗𝑐𝑐0𝑘𝑘𝑗𝑗

 
𝑎𝑎𝑠𝑠  𝑘𝑘→0 
�������� −𝑗𝑗 1

𝑘𝑘
�

𝐴𝐴𝜋𝜋 coth �𝐴𝐴ℎ𝜋𝜋
a �

a𝜂𝜂0
+ 1

𝑐𝑐0𝑗𝑗
� + 𝒪𝒪(𝑘𝑘) (3.88) 

 

In this case there is directly a 1 𝑘𝑘⁄  term added and this leads to a new polarizabilty given by 

 
𝛾𝛾 ≅ 32

𝜋𝜋3
 𝑎𝑎2𝑎𝑎

−2𝑎𝑎11
0 𝜂𝜂0 + coth(𝜋𝜋a ℎ) + a𝜂𝜂0

𝜋𝜋𝑐𝑐0𝑗𝑗
. (3.89) 

 

However, as we can see from (3.89) the polarizability can only be smaller because of the added positive term in 
the denominator, thus the 𝑄𝑄 can only be larger than the minimum bound. We can conclude that an inductor at the 
aperture is undesirable. 
. 

4) Other cases: The cases of capacitors or inductors not at the aperture, but along the transmisstion line 
essentially reduce to the conclusions shown above; only an additional inductance in parallel changes the 
end result, and only for the worse. 

Having this analysis in mind, the following conclusion seems sound: in the static limit there are only currents on 
the infinite ground plane and the magnetic field produced by those currents. The tangential electric field in the 
static limit should be zero (short circuit by the ground plane). This is also why only the magnetic 
polarizability/dipole moment is important. Currents cannot flow through a capacitor in DC (static) limit, nor a 
series circuit, so it does not contribute to the polarizability. The bound is hence not affected by objects inside the 
cavity that do not touch the walls. Objects that are connected with the cavity walls can be represented by 
inductors and lead to worse results. 

3.5. A “quick and dirty” derivation of the bound  
The following derivation is not very rigorous and is presented only to show how different approaches can lead to 
the same result. The author has found this derivation only after deriving the result (3.51), i.e. once he knew what 
to look for and which assumptions are important. For brevity, here we will concentrate on the rectangular case 
only. We will derive the bound by considering the behavior for small 𝑘𝑘 of the general 𝑄𝑄 formula for antennas  

 
𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑘𝑘

2𝐺𝐺(𝑘𝑘)
�𝜕𝜕𝑌𝑌 (𝑘𝑘)

𝜕𝜕𝑘𝑘
�, (3.90) 

 

where 𝑌𝑌 = 𝐺𝐺𝐴𝐴𝐴𝐴 (𝑘𝑘) + 𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) − 𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇 (𝑘𝑘𝜂𝜂0)⁄ cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) with 𝑘𝑘𝑇𝑇𝑇𝑇 = �𝜀𝜀𝑘𝑘𝑘𝑘2 − (𝜋𝜋 a⁄ )2 . For the conductance 
𝐺𝐺, we can use the entire expansion formula 𝐺𝐺𝐴𝐴𝐴𝐴 (𝑘𝑘) = 𝑔𝑔11

0 (𝑘𝑘a 2𝜋𝜋⁄ )2 + 𝑔𝑔11
1 (𝑘𝑘a 2𝜋𝜋⁄ )4 + ⋯. However, for the 

susceptance 𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) we will have to be more careful and think about the meaning of the expansion formula. Let 
us first remember the susceptance of a simple parallel resonant circuit (see Appendix A). The inductive 
susceptance 1 (𝑗𝑗𝜔𝜔𝑗𝑗)⁄ = 1 (𝑗𝑗𝑐𝑐0𝑘𝑘𝑗𝑗)⁄  has a 1 𝑘𝑘⁄  dependence, while the capacitive suceptance 𝑗𝑗𝜔𝜔𝐶𝐶 = 𝑐𝑐0𝑘𝑘𝐶𝐶 is 
proportional to 𝑘𝑘. Using the parallel circuit as aguideline, the expansion of 𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) can be divided into the 
following parts 

 
𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) = 𝑎𝑎11

0 2𝜋𝜋
𝑘𝑘a�

inductive  part

+ 𝑎𝑎11
1 𝑘𝑘a

2𝜋𝜋�
capacitive  part

+ 𝑎𝑎11
2 �𝑘𝑘a

2𝜋𝜋
�

3
+ ⋯ 

�������
no interpetation

 (3.91) 
 

The importance of this interpretation comes when 𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) needs to be inserted into (3.90). To calculate the 𝑄𝑄 
factor we can take only the inductive part. At resonance, the energy stored in each reactive part is the same, thus 
𝑄𝑄 factor can be calculated using only the inductive part with a doubled value (see example for a simple circuit in 
Appendix B). The presence of a capacitance that brings the whole circuit into resonance is silently assumed! 
Hence, we can restrict the susceptance to only 𝐵𝐵(𝑘𝑘) = 𝑎𝑎0 2𝜋𝜋 𝑘𝑘a⁄ , and because the cavity admittance is also 
inductive for small 𝑘𝑘 we can write 

 
𝑌𝑌 = 𝐺𝐺(𝑘𝑘) + 2�𝑗𝑗𝑎𝑎11

0 2𝜋𝜋
𝑘𝑘a

− 𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ)� (3.92) 
 

We can now insert (3.92) into (3.90) and make a Taylor series expansion around 𝑘𝑘 = 0 of the whole formula, 
which should be a good approximation because we are interested in the behavior for electrically small antennas 
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(small 𝑘𝑘). After a considerable effort, or by using software for symbolic manipulation (for example: 
Mathematica), we arrive at the following expansion 

 

𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 = 
4𝜋𝜋3 �−2𝑎𝑎11

0 𝜂𝜂0 + coth �ℎ𝜋𝜋
𝑎𝑎 ��

𝜂𝜂0𝑔𝑔11
0 (𝑘𝑘a)3 +

        +
𝜋𝜋𝑔𝑔11

1 �−2𝑎𝑎11
0 𝜂𝜂0 + coth �ℎ𝜋𝜋

𝑎𝑎 ��

(𝑔𝑔11
0 )2(𝑘𝑘a)

+ 𝜀𝜀𝑘𝑘
2𝜋𝜋

𝑔𝑔11
0 (𝑘𝑘a)

�coth �ℎ𝜋𝜋
a

� + ℎ𝜋𝜋
a

 csch �ℎ𝜋𝜋
a

�
2
� + 𝒪𝒪(𝑘𝑘a)

 (3.93) 
 

Where we can immediately see that the third term can be eliminated if 𝜀𝜀𝑘𝑘 = 0. Rearranging the first two terms 
then leads to  

 
   𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 =  4𝜋𝜋3

𝑔𝑔11
0 𝜂𝜂0

�coth�ℎ𝜋𝜋
a

� − 2𝑎𝑎11
0 𝜂𝜂0�� 1

(𝑘𝑘a)3 − 𝑔𝑔11
1

4𝜋𝜋2𝑔𝑔11
0

1
(𝑘𝑘a)

� + 𝒪𝒪(𝑘𝑘a),    (3.94) 
 

which is the same as what was derived in (3.51). Note that in (3.51) we had the absorption efficiency 𝜂𝜂 = 1/2. 
The drawback of this derivation is that it is less revealing than Gustafsson’s limit, where we could clearly 
distinguish which antenna parameters are contributing to the 𝑄𝑄, namely the directivity, polarizability and 
absorption efficiency. Gustafsson’s limit brings more understanding to 𝑄𝑄 factors’ dependancies and possible 
tradeoffs antenna engineers can make. On the other hand, this derivation did reveal that low permittvity inside 
the cavity (ideally  𝜀𝜀𝑘𝑘 = 0) is beneficial, while this could not be immediately concluded from Gustafsson’s 
bound. 

3.6. Conclusion of Chapter 3 
In this chapter we have presented an analytical approach to determine the polarizability of cavities and thus a 
way to determine the bound on 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 . The physical bound was investigated by applying the scattering method, 
and assuming non-magnetic materials inside the cavity. Additionally, a strictly broadside radiation pattern is 
assumed, thus restricting the aperture field distribution to a TE modal expansion.  

When only the fundamental TE mode is assumed inside the cavity, it is possible to derive a simple 
approximate formula for the polarizability of the cavity and thus for the maximum theoretical bandwidth of an 
antenna inside it. The approximate formula gives results within 3% of the accurate values confirmed by 
simulations. 

Maximum bandwidth is derived directly from 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴  but one has to have in mind the link between 𝑄𝑄 and 
𝐹𝐹𝐵𝐵𝐹𝐹  is only approximate (see Appendix A). One also has to keep in mind that the assumption of the scattering 
method is a single resonance with a high 𝑄𝑄. If objects are electrically large, more modes are supported by their 
geometry which can lead to multiple resonances and then the calculated bandwidth bound loses its meaning. 

Importantly, the newly derived formulas for 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴  of square and circular cavities are written in the same 
form as the Chu bound, making them directly comparable. It can be seen that 𝑄𝑄 of cavity antennas is much 
higher than the one predicted by the Chu, or even Thal bound.  

The final, most important conclusion of this chapter is that patch antennas in cavities do not reach the 
predicted bound on bandwidth and are thus not the optimal antenna type. 
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The unsettling conclusion of the last chapter, namely that patch antennas do not reach the bandwidth limit of 
cavity type antennas, is addressed in this chapter. We aim here to remove the drawback of patch antenna design 
and discover ways do design a new type of cavity antenna capable of reaching the bandwidth bound. 
Gustafsson’s theory is very abstract and the resulting formulas do not provide insight into what antennas would 
actually reach the bandwidth bound. To get the idea of what antenna design is needed, we combine the 
knowledge of Gustafsson’s bound with transmission line models of simple, open ended, cavity antennas 
described in Chapter 1.3.1. 

In section 4.1, based on a few logical arguments we introduce a new transmission line model of a cavity 
antenna and show it predicts the same bandwidth behavior as the Gustafsson bound. This remarkable agreement 
is the key to the novel design methodology of cavity antennas, as the transmission line model is not as abstract as 
Gustafsson’s theory.  

In Section 4.2, starting from the assumptions used in our transmission line model a new physical design is 
discussed. Instead of a patch, a metasurface at the aperture introduced and the excitation part of the antenna is 
modified compared to simple patch antennas. The novelty of this antenna type is considered.  

In Section 4.3, the new physical design of square and circular cavities of various sizes is discussed in detail, 
simulations results demonstrating that a metasurface at the cavity aperture is needed to reach the bound instead 
of a patch are presented and measured prototypes shown.  

In section 4.4, achieving circular polarization with metasurface cavity antennas is briefly discussed. Two 
forms of excitations are described and two examples are given. 

4.1. Transmission Line model for cavity antennas achieving 

the bound 
A thorough analysis of simple, open ended, cavity antennas in an infinite ground plane using the transmission 
line models was given in Chapter 1.3.1. However in Chapter 3 we have analyzed the same geometric structure, 
but arrived at different results! For example, a direct comparison of plotted bandwidth behavior in Figure 36 (in 
Chapter 1.3.1) for transmission line theory and Figure 89 (in Chapter 3.3.1) for Gustafsson’s bound visually 
shows the discrepancy between the two theories. In short, Gustafsons’s bound predicts larger overall bandwidth 
values in all examples and bandwidth asymptotically approaches a maximum value as height is increased.  

The discrepancy between the two theories asks for an explanation. First insight about the discrepancy comes 
from the meaning of the magnetic polarizability used in deriving Gustafsson’s bound. If minimum 𝑄𝑄 depends on 
the low frequency limit (in this case – the magneto-static limit), then it effectively depends on the static (DC) 
current in the ground plane and the cavity. An addition of a capacitor at the aperture does not influence the result 
since static current does not flow through a capacitor. This indicates that “hidden” capacitor(s) could be a reason 
for predicting different bandwidth with the scattering theory. 

Second insight comes from considering just the transmission line model of a cavity antenna. We ask the 
question: how can cavity antennas achieve larger bandwidth? The argument goes as follows. The waveguide part 
of a cavity antenna has an input admittance  𝑌𝑌𝑚𝑚𝐴𝐴 = −𝑗𝑗(𝑘𝑘𝑇𝑇𝑇𝑇 /𝑘𝑘𝜂𝜂0)cot(𝑘𝑘𝑇𝑇𝑇𝑇  ℎ) which is capacitive when height is 
𝜆𝜆𝑇𝑇𝑇𝑇 /4 < ℎ < 𝜆𝜆𝑇𝑇𝑇𝑇 /2 and can bring the cavity structure into resonance. The problem with this capacitance is its 
frequency dependence, proportional to a cotangent function. In essence, larger the capacitive value needed, 
steeper the admittance gets. Consider again that 𝑄𝑄𝐴𝐴𝐴𝐴 𝐴𝐴 =  0.5 𝑘𝑘0 𝐺𝐺𝐴𝐴𝐴𝐴 (𝑘𝑘0)⁄ |𝜕𝜕𝑌𝑌′(𝑘𝑘0)|, i.e. quality factor is 
proportional to the steepness of the admittance function. Hence, we see the cotangent frequency dependence is 
undesirable. It would be more beneficial if the frequency dependence of capacitive admittance was just linear, 
like a typical capacitor 𝑌𝑌𝐶𝐶 = 𝑗𝑗𝜔𝜔𝐶𝐶.  
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Therefore, a transmission line model with added capacitor(s) should in fact be checked against the 
Gustafsson’s bound.  

4.1.1. Introduction of parasitic capacitance at the aperture 
To avoid the need for any capacitive admittance added by the cavity part of the antenna, we introduce an 

additional capacitor at the aperture, as in Figure 92.  

 
Figure 92 (a)  Cavity antenna with parasitic capacitance at the aperture, and (b) its transmission line model.  
 
If we wish to keep the aperture admittance used in the analysis of cavity antennas so far, we need to assume that 
the field distribution at the aperture remains the same. This means that the capacitor does not disturb the field too 
much and rules out a lumped element that would concentrate the field in a very small volume. The capacitor 
should be an ideal reactive impedance sheet. 

From this model, the resonance condition is now given by 

 
   𝑗𝑗𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) − 𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇

𝑘𝑘 𝜂𝜂0
cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) + 𝑗𝑗𝑐𝑐0𝑘𝑘𝐶𝐶 = 0,     (4.1) 

where everything is written in terms of the wave-number 𝑘𝑘, with 𝑐𝑐0  being the speed of light. The resonance 
condition is now one equation with three variables, h and C, and 𝜔𝜔𝜋𝜋 . However we will treat permittivity 𝜔𝜔𝜋𝜋  only 
as an additional parameter which we will fix to the best value. This allows us to consider capacitance C to be a 
function of height h. Therefore, for each height we calculate the necessary value of C to achieve resonance, then 
calculate 𝑄𝑄 and corresponding fractional bandwidth. 
Importantly, the structure can now be resonant at low heights (compared to ordinary cavity antennas) because the 
input inductance of a shorted waveguide for 0 < ℎ < 𝜆𝜆𝑇𝑇𝑇𝑇 /4 can be countered by an appropriately large value of 
the capacitance C at the aperture. 

Additionally, with the introduction of C to achieve resonance, we are now free to choose any value of 
permittivity 𝜔𝜔𝜋𝜋 . We can argue that low permittivity is most beneficial for bandwidth. The waveguide becomes 
evanescent in this case and its effect is reduced. This argument can be rigorously demonstrated using the 
optimization method of Lagrange multipliers. Similar to the case of ordinary cavity antennas, we can minimize 
the 𝑄𝑄 factor with respect to the resonance condition for the antenna (4.1) introduced as a constraint. We 
introduce the lagrange multilier 𝜒𝜒 and construct a new, Lagrange function as  

 Λ = 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 (𝜀𝜀𝑘𝑘  , ℎ, 𝐶𝐶) − 𝜒𝜒�𝐵𝐵𝐴𝐴𝐴𝐴 (𝑘𝑘) − 𝑘𝑘𝑇𝑇𝑇𝑇
𝑘𝑘 𝜂𝜂0

cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) + 𝑐𝑐0𝑘𝑘𝐶𝐶�. (4.2) 

Analogously to ordinary cavities, we search for stationary points, where partial derivatives of the Lagrange 
function with respect to permittivity 𝜔𝜔𝜋𝜋 , cavity height h, aperture capacitance C and the Lagrange multiplier 𝜒𝜒 are 
all zero, i.e. 

 ∇������𝜀𝜀,ℎ,𝐶𝐶 ,𝜒𝜒Λ = 0.  (4.3) 

The resulting system of four equations is very cumbersome, and needs to be solved numerically on a computer. 
We skip the analytical expressions for brevity. Result of maximum bandwidth depending on permittivity 𝜔𝜔𝜋𝜋  is 
shown in Figure 93 for the example aperture sizes. The curves demonstrate that 𝜀𝜀𝑘𝑘  ≤ 1 gives the largest 
maximum bandwidth. The difference between 𝜀𝜀𝑘𝑘 = 0 and 𝜀𝜀𝑘𝑘 = 1 is in fact negligible, thus no real improvement 
is gained by theoretically using ideal metamaterials with 𝜀𝜀𝑘𝑘 < 1 nor materials with 𝜀𝜀𝑘𝑘 ≫ 1. 
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Figure 93 Dependence of maximum bandwidth on the permittivity inside the cavity. Values near 𝜺𝜺𝒓𝒓 = 𝟏𝟏 correspond to the asymptotic 
maximums visible in  
 

We note that the concept of loading an aperture with a capacitor is not new; it has been investigated by 
Harrington [125] in a resonant scattering and transmission problem. However, Harrington did not discuss an 
antenna problem and suggested a lumped load. There was also a mention that wire dipoles shorter than half 
wavelength can be used to produce the capacitive susceptance. This is similar to a microstrip patch that can, in 
the case of thick cavities, be regarded as a very wide dipole at the aperture. Although a patch does present 
capacitive susceptance, we have shown trough Chapters 2 and 3 that patch antennas do not reach the bound. The 
reason is that the patch acts as a series LC circuit at the aperture (suggested by the model in Chapter 2). The 
novelty of this work, compared to Harrington’s suggestions, is also in demonstrating that the ideal capacitor 
must be considered as a reactive impedance sheet. 

 
Example: Bandwidth predictions from the model in Figure 92 are demonstrated in Figure 94 for a 32mm 

rectangular cavity infinite ground plane. Figure 94 can be directly compared with Figure 80 from Chapter 2, 
given for patch antennas at the aperture. 

 
Figure 94 Calculated results for a square cavity (a = 32mm) using the transmission line model. Points indicate ordinary cavity antenna 
operation. Grey full line for a cavity filled with air indicates the best case scenario.  

4.1.2. Comparison with Gustafsson’s bound 
Figure 95 visually demonstrates the similarity between predictions given by and ones made with the transmission 
line model. Excellent agreement is observed exepts for small discrepancies for larger cavity sizes where the 
transmission line model gives higher bandwidth predictions. Note that we use the approximate Gustafsson’s 
bound that involves polarizability obtained by assuming only the fundamental mode; with a more accurate bound 
the prediction from the transmission line model would be below the bound. 

Q factor, 
FBW-10dB 

Optimal: εr ≈ 1 Optimal: εr ≈ 1 
(a) (b) 
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Figure 95 Comparing transmission line model results to Gustafsson’s bound.  
 
Using the Lagrange multiplier method again, we can calculate the maximum bandwidth depending on the 
aperture size or diameter. Result of the calculation is plotted with dots on Figure 96. Based on the calculated 
data, curve fitting was performed to obtain an analytical expression of the 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴  as  

 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≈ 59.24

(𝑘𝑘a)3 + 2.09
(𝑘𝑘a)

, 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑘𝑘 ≈ 87.04

(𝑘𝑘𝑑𝑑)3 + 3.06
(𝑘𝑘𝑑𝑑)

 (4.4) 

Or, to be more comparable with the Chu bound, in terms of the cavity radius 

 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≈ 20.95

(𝑘𝑘𝑘𝑘)3 + 1.48
(𝑘𝑘𝑘𝑘)

, 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑘𝑘 ≈ 10.88

(𝑘𝑘𝑎𝑎)3 + 1.35
(𝑘𝑘𝑎𝑎)

 (4.5) 

Where 𝑘𝑘 = 𝑎𝑎 = a/
√

2. Keep in mind that 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴  is achieved when cavity height ℎ is large. Finally, we can 
conclude that the calculated 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 ’s using the transmission line model are indeed similar to the ones computed in 
Chapter 3. 

 
Figure 96 Maximum bandwidth (𝐹𝐹𝐵𝐵𝐹𝐹−10𝑑𝑑𝐵𝐵 = 2 (3𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 )⁄ ) for cavities in an infinite ground plane depending on (a) square aperture size a; 
(b) circular aperture diameter d.  Permittivity 𝜀𝜀𝑘𝑘  is taken to be 1.  

4.1.3. Extension to finite ground plane antennas 
The drawback of Gustafsson’s scattering method is that it is applicable only to cavities in an infinite ground 

planes. In the finite ground plane case the scattering method would consider the whole object as a potential 
antenna, which is not realistic.  

Transmission line model can easily be extended to the finite ground plane case and give realistic predictions 
on the 𝑄𝑄 factor and bandwidth. The only part that changes in the model is the aperture admittance. Obtaining the 

(a) (b) 

(a) 

vs. Gustafsson's           
     bound 

vs. Gustafsson's           
     bound 

(b) 
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aperture admittance for finite ground planes was already described in Chapter 1-261.3.1 for simple, open ended, 
cavity antennas. Using the the results (1.72) and (1.73) we can also repeat the procedure with the Lagrange 
multipliers to obtain maximum bandwidth and 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 for the finite ground plane cavities. However, since the 
shape as ground affects the aperture admittance irregularly (the cavity exterior might have its own resonances) 
the obtained results are very approximate. Computed maximum bandwidth is shown in Figure 97. Curve fitting 
the data gives the approximate minimum quality factors as  

 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≈ 40.42

(𝑘𝑘a)3 + 3.39
(𝑘𝑘a)

, 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴
𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑘𝑘 ≈ 65.98

(𝑘𝑘𝑑𝑑)3 + 5
(𝑘𝑘𝑑𝑑)

, (4.6) 

or, in terms of the cavity radius 

 
   𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘𝑒𝑒 ≈ 14.29
(𝑘𝑘𝑘𝑘)3 + 2.4

(𝑘𝑘𝑘𝑘)
, 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴

𝑐𝑐𝑚𝑚𝑘𝑘𝑐𝑐𝑠𝑠𝑐𝑐𝑎𝑎𝑘𝑘 ≈ 8.25
(𝑘𝑘𝑎𝑎)3 + 2.5

(𝑘𝑘𝑎𝑎)
,    (4.7) 

where 𝑘𝑘 = 𝑎𝑎 = a/
√

2.  

 
Figure 97 (a) Maximum bandwidth (𝐹𝐹𝐵𝐵𝐹𝐹−10𝑑𝑑𝐵𝐵 = 2 (3𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴 )⁄ ) for cavities in a finite ground plane depending on (a) square aperture size a; 
(b) circular aperture diameter d.  Permittivity 𝜀𝜀𝑘𝑘  is taken to be 1.  

4.2. From model to reality 
Development of a real world working antenna is a completely different matter than analyzing a simple model 
that describes it. How should this capacitor at the aperture be made, since it is not a lumped element? There is no 
excitation indicated in the model, how should it be excited? These are real world questions that need to be 
answered; that will ultimately lead to an advancement in the field of cavity antennas.  

4.2.1. Physical design of the capacitor at the aperture 
As mentioned, instead of a lumped element, the capacitor introduced in the model on Figure 92 should 
correspond to a thin reactive sheet positioned at the aperture of the cavity. A single patch design does provide 
capacitance but was shown not to give desired performance due also to the inductance related with its geometry. 
Arranging multiple smaller patches instead of a single large patch leads to a decrease in the inductance and the 
desired result of “pure” capacitance at the aperture. The evolution of this process is depicted in Figure 98 for 
both circular and rectangular apertures. The geometry effectively creates a series connection of capacitors. Their 
values have to be larger if the total capacitance is to remain the same, thus the gaps between the elements get 
smaller when increasing the number of elements. By reducing the size of the metallic patches we are essentially 
“cutting” the current that usually exists in the center of a single patch into smaller pieces that contribute less to 
the inductance. Note that designs shown in Figure 98 are suitable only for a linearly polarized antenna. 

Practical manufacturing considerations like precision tolerances create restrictions on the design. As 
discussed above, more elements approximate the parasitic capacitance better, but the exact gap size between the 
elements might be difficult to manufacture in a precise manner, especially the gap between the cavity and the 
elements if they are manufactured separately. It was found by simulation that the minimum number of elements 
to reach the bandwidth bound depends on the cavity size. For example, in the case of a 0.25 𝜆𝜆0  cavity the design 
with two elements at the aperture (Figure 98(b)) does not give satisfactory bandwidth results, but a design with 
three elements (Figure 98(c)) is already a good enough approximation for a pure capacitance. Additionally, four 
elements are satisfactory for a 0.3 𝜆𝜆0  cavity and 6 elements in the case of a 0.37 𝜆𝜆0  cavity.  

(a) (b) 

Low accuracy Low accuracy 
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Conclusion of our experimentation with simulations is a rough estimate that elements smaller than about 
1 13⁄ 𝜆𝜆0  are needed to correctly approximate the capacitor at the aperture, depicted in Figure 99. Hence, elements 
satisfy the metamaterial criteria (element size <1 10⁄ 𝜆𝜆0 ). The structure can be called a metasurface. 

 
Figure 98 Possible designs of microstrip elements at the aperture of a square cavity. (a) a single patch design – used so far in the literature, 
(b) two element design, (c) three element design which is the first to give good enough approximation of a pure capacitance at the aperture, 
(d) four element design, (e) ideal case of a pure capacitance at the aperture.  
 

 
Figure 99 “Rule of thumb” for the minimum number of small patches to be used at the aperture, depending on its size, in order to correctly 
approximate a capacitor. Gaps between the elements then adjust the value of the needed capacitance C. 

4.2.2. Antenna excitation  
Proper excitation should not disturb the fundamental TE mode inside the cavity nor at the aperture. In this work 
we investigated several different types of excitation using a probe or an extended coaxial cable with a short 
probe, as shown in Figure 100. Just like classical patch antenna, the metasurface at the aperture can be probe fed 
as in Figure 100(a). The probe has to be close to the cavity wall so the TEM mode energy is confined mostly 
between the wire and the wall. With low permittivity in the cavity the distance between the wire and the wall 
becomes too small for practical purposes. The excitation with a loop, shown in Figure 100(b) also has a 
drawback of working only in cavities filled with a higher permittivity whereas our theory showed that best 
results are to be expected in a cavity filled with air. Figure 100(c) shows an excitation type that will work even if 
the cavity if filled with air. The coaxial cable is brought near the aperture where the central wire is then extended 
to the metasurface while its shield is electrically connected to the wall by a small transmission line. However, the 
connection with the wall is a practical difficulty in the manufacturing process. Figure 100(d) finally shows a 
design that is practical for manufacturing and suitable for any permittivity value inside the cavity. The coaxial 
cable is near the aperture with the central wire extended to the edge of the first element in the metasurface. A 
short transmission line is extended from the cables’ shield and is capacitive coupled to the edge of the second 
element in the metasurface. 

 
Figure 100 Several possible excitation types: (a) Probe feed attached directly to the metallization on the aperture, (b) loop created inside the 
cavity, (c) shielded cable raised to the aperture and connected to the cavity wall, (d) shielded cable raised to the aperture with a small 
transmission line attached to the shield. 

(a) (b) 

(c) (d) 

(a) (b) (c) (d) (e) 
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 Examples in Figure 100(a) and (b) will not be able to reach the bound on bandwidth at large cavity heights 

since they require materials with  𝜀𝜀𝑘𝑘 > 1 in practice. Examples in Figure 100(c) and (d) are both capable of 
reaching the bound for any cavity height; however, example in Figure 100(d) is more practical.  

4.2.3. What is new? 
Dealing with electrically small cavities, we had to add a semitransparent capacitive structure and propose the 
correct way to design it. The proposed cavity antenna is a metasurface inspired antenna, based on the definition 
given in Chapter 1.4.1. In a comparison to previous uses of metasurfaces, we conlude the following 

• Metasurfaces were previously used to form artificial ground planes for other types of antennas. 
However in the proposed cavity antenna the novelty is that the metasurface is the main radiating 
element and not a ground plane for something else.  

• Metasurfaces, as semitransparent surfaces, were previously used in cavity type antennas which were 
large. Additionally, the cavity ground plane and the metasurface could be distanced an appreciable 
amount of the wavelength and form a Fabry-Perot resonator. However, in the proposed cavity 
antenna the fields are evanescent inside the cavity; in fact, operation below the cut-off frequency of 
the cavity is necessary to obtain best bandwidth performance.  

From the theoretical perspective, new physical bounds on bandwidth were derived for cavity antennas with 
strictly broadside radiation pattern and can be directly compared to the old Chu bound. Remarkably, it is found 
that by a simple modification of the model describing the simple cavity antenna, namely the addition of parasitic 
capacitive reactance at the aperture, the new model is able to predict the same bound. This allows for a complete 
understanding of the antenna and a roadmap for its design. Thus, the most important novelty of all is the actual, 
feasible antenna that reaches the theoretical bound on bandwidth. Additionally, compared to patch antennas, the 
directivity and gain of such antennas is not compromised. 

4.3. Cavity antennas reaching the bound on bandwidth 
Here we present examples of feasible metasurface antenna designs for the square and circular cases. In practice, 
the metasurface has to be manufactured on a substrate of some permittivity and the cavity part is often 
manufactured separately. In the end the two have to be glued together. We discuss the effects of these real world 
necessities on the antenna operation. 

We show full wave simulation results carried out with the newly designed antenna to confirm the analytical 
predictions from the transmission line model are presented. Good agreement is found for small cavity antennas 
with (𝑎𝑎/𝜆𝜆0)  <  0.35. Finally, manufactured prototypes are presented to confirm the simulations and prove the 
feasibility of such antennas. 

4.3.1. Design of a square cavity antenna 
Shown on Figure 101(a) is a schematic antenna design fulfilling the practical needs. The gap g between the 

elements is adjusted for the right value of capacitance. The gap between the cavity wall and the first element of 
the metasurface is g/2. Presence of the glue with thickness gt in this gap can substantially affect the performance. 
Glue changes the overall capacitive effect of the metasurface because of its different permittivity value and 
introduces additional (high) losses. For realization purposes it is therefore desirable to make the gaps between 
the elements of the metasurface and the wall as wide as possible, to relatively reduce the effect of the glue. This 
can be done by using a high permittivity substrate on which the metasurface is etched and to use multiple layers 
to increase the capacitance.  

A Metasurface with multiple layers of metallization, shown in Figure 101(b), will effectively make the 
metasufrace a “thick” capacitor. This concept is discussed in detail in Chapter 5 and only mentioned in this 
section. We note here that too many layers will decrease the bandwidth performance because a “thick” capacitor 
cannot be regarded as being strictly at the aperture. Designing with multiple layers should therefore be avoided if 
possible. Only in very small cavities, where a large capacitive effect needed, are we forced to consider this 
option.  

Additionally, it was found that tapering the transmission line (see Figure 101(b)) attached to the coaxial cable 
shield can give slightly better results. The width w of the metallic elements also effects bandwidth performance. 
Wider elements will force the electric field at the aperture to be more uniform instead of a sinusoidal 
distribution, which will lead to slightly better performance. However, with wider metasurface elements the gap 
between the elements had to be reduced. Finally, a width of one half the cavity size was found to be convenient.  
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Figure 101 Schematic example of a practical design for manufacturing purposes in the case of a 0.245 𝜆𝜆0 square cavity. The single layer of 
substrate material at the aperture has 𝜀𝜀𝑘𝑘 ≫ 1, in our work, 𝜀𝜀𝑘𝑘 = 10.2 was chosen. (a) Side view of a single layer design. (b) Side view of a 
multiple layer design necessary for very small cavity sizes. (c) Top view. 

SIMULATION RESULTS  
For the example cavity sizes, we investigated bandwidth performance depending on height up to 40 mm 

(0.3 𝜆𝜆0 ) in discrete increments of height (𝛥𝛥ℎ =  5 mm). Full wave simulations using the design shown in 
Figure 101(a) were carried out using commercial software CST [130]. The multilayer design from Figure 101(b) 
was used only in the case of the smallest cavity size (20 mm). The matching condition was optimized for each 
height by adjusting the gap size between the elements, the coaxial feed position and the length of the tapered 
transmission line extended from the shield of the coaxial cable. In the simulations we used lossless substrates. 
With realistic materials, having losses, an increase in bandwidth compared to shown result is expected, with a 
corresponding decrease in radiation efficiency. The results are shown in Figure 102. 

It is seen that for a 𝜆𝜆0⁄ < 0.35 the correct bandwidth behavior is observed. For the case of an infinite ground 
plane, bandwidth curves are close to within a few percent to the predictions the Gustafsson’s bound obtained in 
Chapter 3. Predictions by the transmission line model, introduced in this chapter are added for comparison with 
Gustafsson’s bound. For each cavity size, a a schematic is added to the figure to note the number of metasurface 
elements used in the simulations.  

In the case of a finite ground plane predictions are possible only with the transmission line model. These 
predictions are only approximate due to effect of the finite ground plane size which was taken to be constant in 
the model, but is in fact changing with height in the simulations (the ground plane is becoming larger with 
increasing height). Because of this, there is some disagreement between the predictions and simulation data. 
However, the general bandwidth behavior and bandwidth values are not far apart. The biggest differences are 
seen in the smallest and largest example size; these differences are addressed below. 

Comments on the 20 mm (𝟎𝟎.𝟏𝟏𝟏𝟏 𝝀𝝀𝟎𝟎) cavity size: 
For this example size, the antenna design shown in Figure 101(b) had to be used to achieve a large enough 

capacitive effect to bring the antenna resonance to 2.3 GHz. Simulation data shows that the bandwidth of such 
antenna design is slightly below the bound, which is unfortunate. The difference between the physical bound or 
the transmission line model prediction and the simulation results is attributed to the finite thickness of the 
multilayer metasurface at the aperture. If the capacitor that the metasurface represents is not at the aperture, but 
has a small portion of a waveguide to the aperture, the transmission line model can correctly predict a decrease 
in bandwidth. Therefore, when possible, multiple layers should be avoided by using an even higher substrate 
permittivity which will lead to antennas performing even closer to the bound.  

Comments on the 48 mm (𝟎𝟎.𝟑𝟑𝟑𝟑 𝝀𝝀𝟎𝟎) cavity size: 
The case of a 𝜆𝜆0⁄ = 0.37 shows significant deviation from theory, both in the infinite and finite ground plane 

case. In fact, a second higher cavity resonance starts affecting performance of the antenna. In such antennas the 
S11 parameter becomes highly asymmetric around the center frequency of 2.3 GHz. This second cavity resonance 
is a consequence of the behavior of the aperture admittance at higher frequencies. Additionally, the assumptions 
in deriving the Gustafsson bound where a single resonance antenna with a high 𝑄𝑄 factor, while in this case the 
predicted minimum 𝑄𝑄 factor is close to 6, which is low value. Furthermore, the link between the 𝑄𝑄 factor and 
fractional bandwidth is not clear in the case of multiple resonances. Due to these reasons, we can claim the 
validity of the theory presented in this thesis up to cavity sizes with a 𝜆𝜆0⁄ < 0.35.  

On the other hand, this bandwidth broadening effect of the second resonance can be effective used to design 
broadband cavity antennas; topic further explored in Chapter 5.  

(a) (c) (b) 
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Figure 102 Comparison of simulation results of a metasurface design to analytical predictions from the transmission line model and to the 
Gustafsson bound on bandwidth (where the polarizability approximation (3.47) is used). (a) infinite ground plane and (b) finite ground plane 
results. 
 

(a) 
 

Infinite 
ground plane 

(b) 
 

Finite 
ground plane 
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4.3.2. Design of a Circular cavity antenna 
Shown on Figure 103(a) is a schematic antenna design for circular cavity geometry fulfilling the practical needs. 
Similar to the rectangular case, the gap g between the elements is adjusted for the right value of capacitance. The 
gap between the cavity wall and the first element of the metasurface is g/2 and the presence of glue with 
thickness gt in this gap can substantially affect the performance. For realization purposes it is therefore desirable 
to make the gaps between the elements of the metasurface and the wall as wide as possible, to reduce the relative 
effect of the glue. This can be done by using a high permittivity substrate on which the metasurface is etched and 
to use multiple layers to increase the capacitance, shown in Figure 103(b). However, too many layers will 
decrease the bandwidth performance. A small transmission line extending from the coaxial cable, seen in Figure 
103(c) is used to match the antenna. Tapering this transmission line reduces its necessary length and was found 
to lead to slightly better bandwidth performance.  

 
Figure 103 Schematic example of a practical design for manufacturing purposes in the case of a 0.245𝜆𝜆0 circular cavity. The single layer of 
substrate material at the aperture has 𝜀𝜀𝑘𝑘 ≫ 1, in our work, 𝜀𝜀𝑘𝑘 = 10.2 was chosen. (a) Side view of a single layer design. (b) Side view of a 
multiple layer design necessary for very small cavity sizes. (c) Top view. 
 

Designing a metasurface that will approximate a capacitor at the aperture for circular geometry is 
considerably more challenging than for rectangular geometry. The reason is that the shape of the metallization 
should follow the electric and magnetic field lines of the TE11 mode which are curved. An example of how these 
shapes have to look like was already shown on Figure 98 and also on Figure 103(c). The main practical problem 
is how to define these curved shapes in the electromagnetic simulation software and perform optimizations? 

In commercial simulators like CST and HFSS, in which the author had experience during his thesis, there is 
an option to construct analytical curves by writing parametric equations in the form (𝑥𝑥(𝐴𝐴), 𝑦𝑦(𝐴𝐴)). With this 
option, one can define all the necessary curved lines that make up the edges of the 2D shape and fill in the area 
with a PEC, thus constructing the wanted shape. One only needs to know the parametric functions with which to 
construct the curved lies of the TE11 mode. Unfortunately, this is a huge problem!  

The field of the TE11 mode is usually written in cylindrical coordinates using Bessel functions; to get 
parametric functions of the field lines (called “streamlines of vector fields” in mathematics) one would need to 
convert the field to Cartesian coordinates and solve a series of differential equations 

 𝑑𝑑𝑥𝑥(𝐴𝐴)
𝑑𝑑𝐴𝐴

= 𝑇𝑇𝑥𝑥(𝑥𝑥, 𝑦𝑦),
𝑑𝑑𝑦𝑦(𝐴𝐴)
𝑑𝑑𝐴𝐴

= 𝑇𝑇𝑦𝑦(𝑥𝑥, 𝑦𝑦).
 (4.8) 

Needles to say, these differential equations are not analytically solvable. One can always obtain a particular 
solution numerically, but this is useless for the simulation software where the ability to change any shape on the 
fly is crucial in optimizing the whole design. 
 

To avoid the problematic of solving (4.8), the author suggests approximating the TE11 lines with ellipses for 
which parametric functions could be found “easily”. The following idea is used in this thesis: There is good 
similarity between E and H lines in a circular waveguide and equipotential and streamline lines defined by two 
lines of opposite charges. This is depicted in Figure 104. The difference is that the equipotential and streamline 
lines are circles and are not curved exactly like E and H lines, thus some “tuning” has to be done.  
 

(a) (c) (b) 
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Figure 104 Similarity between the field lines of a TE11 circular mode and the equipotential lines of two line charges. This similarity is 
exploited to approximate the field lines analytically. 
 
Here we give the procedure to obtain the parametric functions for constructing the metasurface shape. In order to 
obtain equipotential and streamline lines we are using the method of conformal mapping to find the complex 
potential due to a source at 𝑧𝑧 = −𝑎𝑎 and a sink at 𝑧𝑧 = 𝑎𝑎 of equal strengths. Complex potential due to a source 
𝑧𝑧 = −𝑎𝑎 of strength 𝑠𝑠 is usually denoted 𝑠𝑠 ln(𝑧𝑧 + 𝑎𝑎). However, we can use the strength 𝑠𝑠 = 1 for simplicity. The 
complex potential due to a sink at 𝑧𝑧 = −𝑎𝑎 is thus −ln(𝑧𝑧 − 𝑎𝑎). The total complex potential is written as 

 𝑗𝑗(𝑧𝑧) = ln(𝑧𝑧 + 𝑎𝑎) − ln(𝑧𝑧 − 𝑎𝑎) = ln �𝑧𝑧 + 𝑎𝑎
𝑧𝑧 − 𝑎𝑎

� . (4.9) 

Let 𝑧𝑧 + 𝑎𝑎 = 𝑘𝑘1𝑒𝑒−𝑗𝑗𝜃𝜃1 , 𝑧𝑧 − 𝑎𝑎 = 𝑘𝑘2𝑒𝑒−𝑗𝑗𝜃𝜃2 . Then we have 

 
𝑗𝑗(𝑧𝑧) = Φ + 𝑗𝑗Ψ = ln �𝑘𝑘1𝑒𝑒−𝑗𝑗𝜃𝜃1

𝑘𝑘2𝑒𝑒−𝑗𝑗𝜃𝜃2
� = ln �𝑘𝑘1

𝑘𝑘2
� + 𝑗𝑗(𝜃𝜃1 − 𝜃𝜃2) (4.10) 

So that Φ = ln(𝑘𝑘1 𝑘𝑘2⁄ ) , Ψ = (𝜃𝜃1 − 𝜃𝜃2). The equipoential lines and streamlines are given by 

 Φ = ln(𝑘𝑘1 𝑘𝑘2⁄ ) = 𝛼𝛼,
Ψ = (𝜃𝜃1 − 𝜃𝜃2) = 𝛽𝛽. (4.11) 

Using 𝑘𝑘1 = �(𝑥𝑥 + 𝑎𝑎)2 + 𝑦𝑦2,   𝑘𝑘2 = �(𝑥𝑥 − 𝑎𝑎)2 + 𝑦𝑦2, 𝜃𝜃1 = tan−1{𝑦𝑦/(𝑥𝑥 + 𝑎𝑎)} , 𝜃𝜃2 = tan−1{𝑦𝑦/(𝑥𝑥 − 𝑎𝑎)}, the 
equipotential and streamlines are given by 

 
Φ = (𝑥𝑥 + 𝑎𝑎)2 + 𝑦𝑦2

(𝑥𝑥 − 𝑎𝑎)2 + 𝑦𝑦2 = 𝑒𝑒−𝛼𝛼 ,

Ψ = tan−1{𝑦𝑦/(𝑥𝑥 + 𝑎𝑎)} − tan−1{𝑦𝑦/(𝑥𝑥 − 𝑎𝑎)} = 𝛽𝛽
 (4.12) 

 

This can be rewritten in the form 

 Equipotentials:  [𝑥𝑥 − 𝑎𝑎 coth(𝛼𝛼)]2 + 𝑦𝑦2 = 𝑎𝑎2 csch2(𝛼𝛼)
Streamlines:        𝑥𝑥2 + [𝑦𝑦 + 𝑎𝑎 cot(𝛽𝛽)]2 = 𝑎𝑎2 csc2(𝛽𝛽)

 (4.13) 

Equipotentials for different values of 𝛼𝛼 are circles having centers at 𝑎𝑎 coth(𝛼𝛼) and radii equal to  𝑎𝑎 csch(𝛼𝛼). 
Streamlines for different values of 𝛽𝛽 are circles having centers at −𝑎𝑎 cot(𝛽𝛽) and radii 𝑎𝑎|csc(𝛽𝛽)|. These circles, 
which pass trough (−𝑎𝑎, 0) and (𝑎𝑎, 0) are shown in Figure 104. 
Remembering the in parametric form a simple circle 𝑥𝑥2 + 𝑦𝑦2 = 𝑘𝑘2  is defined by 𝑥𝑥 = 𝑘𝑘 sin(𝐴𝐴) , 𝑦𝑦 = 𝑘𝑘 cos(𝐴𝐴), we 
rewrite (4.13) as 

 Equipotentials: �𝑥𝑥(𝐴𝐴) − 𝑎𝑎 coth(𝛼𝛼) = 𝑎𝑎 csch(𝛼𝛼) sin(𝐴𝐴)
𝑦𝑦(𝐴𝐴) = 𝑎𝑎 csch(𝛼𝛼) cos(𝐴𝐴)

Streamlines:     � 𝑥𝑥(𝐴𝐴) = 𝑎𝑎 csc(𝛽𝛽) sin(𝐴𝐴)
𝑦𝑦(𝐴𝐴) + 𝑎𝑎 cot(𝛽𝛽) = 𝑎𝑎 csc(𝛽𝛽) cos(𝐴𝐴)

 (4.14) 

Finally, we want to insert the factors 𝛼𝛼 and 𝛽𝛽 using (4.11) in a way enabling us to specify a point on the 𝑥𝑥, 𝑦𝑦 axes 
through which the circles will pass. For equipotentials we choose points �𝑥𝑥𝐴𝐴 , 𝑦𝑦 = 0� and for streamlines 
�𝑥𝑥 = 0, 𝑦𝑦𝐴𝐴� and write (4.14) in full form as  

TE11 field lines 

E field 
H field 

equipotentials 
streamlines 

Two lines with opposite charges 
 

Very complicated Circles 

≈ 
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Equipotentials:

⎩
��
�
⎨
��
�
⎧𝑥𝑥(𝐴𝐴) = 𝑎𝑎 sin(𝐴𝐴)

sinh �ln �
𝑥𝑥𝐴𝐴 + 𝑎𝑎
𝑥𝑥𝐴𝐴 − 𝑎𝑎��

+ 𝑎𝑎 coth �ln �
𝑥𝑥𝐴𝐴 + 𝑎𝑎
𝑥𝑥𝐴𝐴 − 𝑎𝑎

��

𝑦𝑦(𝐴𝐴) = 𝑎𝑎 cos(𝐴𝐴)

sinh �ln �
𝑥𝑥𝐴𝐴 + 𝑎𝑎
𝑥𝑥𝐴𝐴 − 𝑎𝑎��

Streamlines:    

⎩
��
⎨
��
⎧𝑥𝑥(𝐴𝐴) = 𝑎𝑎 sin(𝐴𝐴)

sin �2tan−1�𝑦𝑦𝐴𝐴��

𝑦𝑦(𝐴𝐴) = 𝑎𝑎 cos(𝐴𝐴)
sin �2tan−1�𝑦𝑦𝐴𝐴��

− 𝑎𝑎 cot �2tan−1�𝑦𝑦𝐴𝐴��

 (4.15) 

We now introduce a modification to (4.15) in the form of several additional factors to transform the circles into 
ellipses that better approximate the actual E and H field lines of the TE11 mode. These factors are guessed, as 
they were determined by a visual comparison of the types of lines and not some rigorous method. In the end, the 
following analytical functions were found to approximate the TE11 lines quite well 

 

Approx.E lines:

⎩
��
�
⎨
��
�
⎧𝑥𝑥(𝐴𝐴) = 𝟎𝟎.𝟗𝟗𝟗𝟗 𝑎𝑎 sin(𝐴𝐴)

sinh �ln �
𝑥𝑥𝐴𝐴 + 𝑎𝑎
𝑥𝑥𝐴𝐴 − 𝑎𝑎��

+ 𝑎𝑎 coth�ln �
𝑥𝑥𝐴𝐴 + 𝑎𝑎
𝑥𝑥𝐴𝐴 − 𝑎𝑎

��

𝑦𝑦(𝐴𝐴) = 𝟏𝟏.𝟑𝟑𝟏𝟏 𝑎𝑎 cos(𝐴𝐴)

sinh �ln �
𝑥𝑥𝐴𝐴 + 𝑎𝑎
𝑥𝑥𝐴𝐴 − 𝑎𝑎��

Approx.H lines:

⎩
��
⎨
��
⎧𝑥𝑥(𝐴𝐴) = 𝟏𝟏.𝟒𝟒 𝑎𝑎 sin(𝐴𝐴)

sin �2tan−1�𝑦𝑦𝐴𝐴��

𝑦𝑦(𝐴𝐴) = 𝑎𝑎 cos(𝐴𝐴)
sin �2tan−1�𝑦𝑦𝐴𝐴��

− 𝑎𝑎 cot �2tan−1�𝑦𝑦𝐴𝐴��

 (4.16) 

In the design of the metasurface for linear polarization, it is enough to choose one point 𝑥𝑥𝐴𝐴  and the choice of half 
the radius (𝑎𝑎 2⁄ ) was found to be convenient and work well. Points 𝑦𝑦𝐴𝐴  are chosen to break the shape into smaller 
pieces and points are chosen depending on how many pieces are needed. An example is given in for a 3 piece 
metasurface is given in Figure 105. 

 
Figure 105 Three element metasurface design for circular geometry. 𝑎𝑎 represents the cavity radius, g is the gap size between the elemts.  
 
It was found that the top and bottom H line curve can remain circles if wanted, but other lines should indeed be 
approximations of the real E and H lines of there is degradation in bandwidth performance.  
 

Approx. E line 

Approx. H lines 
x 

y 
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Figure 106 Comparison of simulation results of a metasurface design to analytical predictions from the transmission line model and to the 
Gustafsson bound on bandwidth (where the polarizability approximation (3.79) is used). (a) infinite ground plane and (b) finite ground plane 
results. 

(a) 
 

Infinite 
ground plane 

(b) 
 

Finite 
ground plane 
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SIMULATION RESULTS  
For the example cavity diameters, bandwidth performance depending on height up to 40 mm (0.3 𝜆𝜆0) was 

investigated in discrete increments of height (𝛥𝛥ℎ =  5 mm). Full wave simulations using the design shown in 
Figure 103(a) were carried out using commercial software CST [130]. The multilayer design from Figure 103(b) 
was used only in the case of the smallest cavity diameter (20mm). The matching condition was optimized for 
each height by adjusting the gap size between the elements, the coaxial feed position and the length of the 
tapered transmission line extended from the shield of the coaxial cable. In the simulations we used lossless 
substrates. With realistic materials, having losses, an increase in bandwidth compared to shown result is 
expected, with a corresponding decrease in radiation efficiency. The results are shown in Figure 106. 

The correct bandwidth behavior is observed for 𝑑𝑑 𝜆𝜆0⁄ < 0.35. In the case of an infinite ground plane, 
bandwidth curves are close to within a few percent to the predictions the Gustafsson’s bound obtained in Chapter 
3. Predictions by the transmission line model, introduced in this chapter are added for comparison with 
Gustafsson’s bound. For each cavity size, a schematic is added to the figure to note the number of metasurface 
elements used in the simulations. 

In the case of a finite ground plane predictions are possible only with the transmission line model. These 
predictions are only approximate due to effect of the finite ground plane size which was taken to be constant in 
the model, but is in fact changing with height in the simulations (the ground plane is becoming larger with 
increasing height). Because of this, there is some disagreement between the predictions and simulation data. 
However, the general bandwidth behavior and bandwidth values are not far apart. The biggest differences are 
seen in the smallest and largest example size; these differences are addressed below. 

Comments on the 20 mm (𝟎𝟎.𝟏𝟏𝟏𝟏 𝝀𝝀𝟎𝟎) cavity diameter: 
For this example size, the antenna design shown in Figure 103(b) had to be used to achieve a large enough 

capacitive effect to bring the antenna resonance to 2.3 GHz. Simulation data shows that the bandwidth of such 
antenna design is unfortunately below the bound. This difference between theory and simulation results is 
attributed to the finite thickness of the multilayer metasurface at the aperture. If the capacitor that the 
metasurface represents is not at the aperture, but has a small portion of a waveguide to the aperture, the 
transmission line model can correctly predict a reduction in bandwidth. Therefore, when possible, multiple layers 
should be avoided by using an even higher substrate permittivity which will lead to antennas performing even 
closer to the bound.  

Comments on the 40 (𝟎𝟎.𝟑𝟑 𝝀𝝀𝟎𝟎) and 50 mm (𝟎𝟎.𝟑𝟑𝟑𝟑 𝝀𝝀𝟎𝟎) cavity diameter: 
The case of 𝑑𝑑 𝜆𝜆0⁄ = 0.38 shows deviation from theory, both in the infinite and finite ground plane case. In 

the case of 𝑑𝑑 𝜆𝜆0⁄ = 0.3 deviation is seen only in the finite ground lane case. One may be puzzled by the apparent 
result that the antennas are operating better than the bound, which should be impossible. To explain this, we have 
to revert back to the starting assumptions. The assumptions in deriving Gustafsson’s bound were a high 𝑄𝑄 factor, 
while in this case of larger aperture sizes the predicted minimum 𝑄𝑄 factor is low value, but more importantly, a 
single resonance antenna is assumed. However, in the simulations a second higher cavity resonance is observed 
and is affecting the performance of the antenna. In such antennas the S11 parameter becomes highly asymmetric 
around the center frequency of 2.3 GHz. This second cavity resonance is a consequence of the behavior of the 
aperture admittance at higher frequencies. The link between the 𝑄𝑄 factor and fractional bandwidth is not clear in 
the case of multiple resonances. Due to these reasons, we can claim the validity of the theory presented in this 
thesis up to cavity sizes with 𝑑𝑑 𝜆𝜆0⁄ < 0.35 for the infinite ground plane case. For the finite ground plane case we 
can claim validity for 𝑑𝑑 𝜆𝜆0⁄ < 0.3. Keep in mind that the predictions for the finite ground plane are only 
approximate. 

This bandwidth broadening effect of the second resonance can be effective used to design broadband cavity 
antennas; topic further explored in Chapter 5. 

4.3.3. Measurement results  
Rectangular prototype: 
A prototype of a 32 ×  32 ×  15 mm (0.245 𝜆𝜆0  ×  0.245 𝜆𝜆0  ×  0.115 𝜆𝜆0) cavity has been manufactured 

at the French-German Research Institute of Saint-Louis. The ground plane was a square block of aluminum 
300 ×  300 ×  15 mm in size with the cavity antenna at the center, shown on Figure 107(a)-(b).  

The substrate holding the metallization is Rogers 3010 having permittivity 11.2 (suggested for design in the 
datasheet) and loss tangent 0.0022, given by the manufacturer. Thickness of the substrate layer was 0.64mm. 
However, we used 2 layers, one for the upper, metasurface, metallization and one for the bottom, tapered 
transmission line, metallization. Total substrate thickness was 1.28 mm. Next, the substrate was glued to the 
cavity wall with a thin layer of glue (≈0.2mm) having approximate permittivity value of 3.5 and loss tangent 
estimated to be 0.03. Metallization forming the metasurface has the dimensions of width w = 22 mm, element 
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length l = 9.347 mm and gap g = 1.32 mm. The feeding position is soldered 6.7 mm from the cavity center.  
Tapered transmission line has the line length Lt = 2.45 mm and line width t = 7 mm.  

Note that the simulation result for this cavity size 0.245 𝜆𝜆0 , shown above on Figure 106(a) assumes no losses 
anywhere in the antenna and had a bandwidth of about 80 MHz, close to the bound which is also derived for a 
lossless case. Manufactured antenna has losses of course, thus a simulation including losses was performed, and 
the result is shown in Figure 107(e). The simulated bandwidth result is 92 MHz. The measurement result, also 
given on Figure 107(a), is in close agreement with the simulation, resonating at 2.28 GHz, and having 96 MHz 
of bandwidth. 

 
Figure 107 (a) Manufactured prototype of a square cavity antenna in a large ground plane. (b) Close up of the cavity antenna showing the 
metasurface at the aperture. (c) Simulated radiation pattern in CST. (d) Measured radiation pattern (e) Simulated S11 parameter having 
92MHz at 2.3 GHz and measured S11 parameter showing 96 MHz of  bandwidth at 2.28 GHz.  
 
Figure 107(c)-(d) shows a comparison of simulated and measured far field patterns, demonstrating a broadside 
radiation pattern. Simulated gain was 5.1 dBi at 2.3 GHz with an efficiency of 89%. Measured gain was 4.6 dBi 
at 2.28 GHz with an efficiency of 85%. The measured half power beam width in the E-plane is 149.5° and in the 
H-plane 70.5°, in very good agreement with the simulation. 
 
Circular prototype 

A finite ground plane circular cavity prototype with aperture diameter of a 32 mm (0.245 𝜆𝜆0), cavity height 
15 mm (0.115 𝜆𝜆0) and wall thickness of 5 mm in all directions has been manufactured at the French-German 
Research Institute of Saint-Louis. The manufactured cavity antenna is shown on Figure 108(a).  

The substrate holding the metallization is Rogers 3010 having permittivity 11.2 and loss tangent 0.0022, given 
by the manufacturer. Thickness of the substrate layer was 0.64 mm. However, we used 3 layers, two for a 
multilayered metasurface metallization and one for the bottom, tapered transmission line, metallization. Total 
substrate thickness was 1.92 mm. Next, the substrate was glued to the cavity wall with a thin layer of glue 
(≈ 0.2 mm) having approximate permittivity value of 3.5 and loss tangent estimated to be 0.03. Metallization 
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Radiation  patterns: Simulation 

(b) 

Radiations patterns: Measurement 

E-plane H-plane 
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forming the metasurface has gap g = 2.05 mm. The feeding position is soldered 6.6 mm from the cavity center.  
Tapered transmission line has the line length Lt = 2.25 mm and line width t = 5.6 mm.  

Simulation result for this cavity size 0.245 𝜆𝜆0 , shown above on Figure 106(b) assumes no losses anywhere in 
the antenna and had a bandwidth of about 75 MHz, close to the bound which is also derived for a lossless case. 
Manufactured antenna has losses of course, thus a simulation including losses was performed, and the result is 
shown in Figure 108(c). The simulated bandwidth result is 80 MHz. The measurement result, also given on 
Figure 108(a), is in close agreement with the simulation, having a bit larger bandwidth of 90 MHz. Probable 
cause for larger bandwidth arle larger losses in reality, compared to the simulation. Importantly, compared to a 
classical patch antenna in a similar cavity size (achieving about 65 MHz), bandwidth of 90 MHz is an increase 
by about 40 %.  

 

 
Figure 108 Prototype 32 mm  (0.25λ0) diameter, metasurface antenna. Cavity volume is filled with εr = 1 (exept for a thin substrate layer 
holding the metalization with εr = 11.2). (a) Simulation results and geometry upon which the prototype was built. (b) The manufactured 
prototype. (c) Comparison of simulated and measured S11 parameter. (d) Measured radiation pattern in the E plane and (e) in the H plane. (f) 
measured gain vs. frequency.  (≈50% more than with a patch antenna)  

4.4. Achieving circular polarization with cavity antennas 
The purpose of this section is not to give a detailed study of circularly polarized cavities, but only to give the 
basic ideas and a few demonstrative examples.  

So far we have always assumed excitation of only the fundamental mode, leading to linear polarization. Here 
we explore the excitation of the fundamental mode in two orthogonal directions. When the modes are 90 degrees 
out of phase circular polarization is achieved. There are two possible ways of exciting both modes: 

• Using two excitations, one for each mode. The modes are not coupled in any way. 
• Using a single excitation while the metasurface at the aperture is anisotropic and couples the two modes 

together. 
In both cases, the metasurface design has to be adjusted to present capacitance for both modes, i.e. in two 
orthogonal directions. The process of designing an adequate metasurface is depicted in Figure 109 for a square 
and circular cavity shape.  

In the case of rectangular cavity, this process is relatively easy. The surface needs to be broken into parts in 
both directions, forming an array of small patches, shown in Figure 109(b). A second excitation can be added (by 
creating a copy of the first excitation and 90° rotation with respect to the antenna center) to excite the orthogonal 
mode. These two excitations should be 90° out of phase with respect to each other. Dimensions of the small 

Sim. BW = 77 MHz 
Sim. Direcivity = 4.71dBi  
Sim. Relised gain = 4.5dBi  
 

Mes. BW = 90 MHz 
Mes. gain ≈ 3.9dBi  
 (a) (b) 

(d) (e) (f) 

(c) 

Measured radiation patterns 
E-plane H-plane 

32 mm aperture 
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patches can be adjusted to ensure the same resonance frequency for both modes; this usually makes the patches 
rectangles instead of squares. Each resonance can have bandwidth close to the bound and circular polarization 
can be achieved in the whole frequency band.  

Alternative option with a square cavity is to use only a single feed while inserting additional slots in the 
small patches of the metasurface, shown in Figure 109(c). The purpose of these slots is to make the surface 
anisotropic, i.e. they introduce coupling between the two modes. Operation of this antenna type is drastically 
different compared to the double feed antenna. As two modes are excited with a single feed, one can observe two 
closeby resonances in the S11 parameter which can lead to a bandwidth broadening effect. Circular polarization is 
achieved only in the region between the two resonances. As bandwidth is the main concern of this thesis, we 
shall concentrate more on this type of excitation in example 1 below.  

In the case of a circular cavity the situation is more complicated due to the irregular shape of the 
metasurface. To achieve circular polarization, two separate metasurfaces have to be made; one for each mode i.e. 
polarization. In order for the two metasurfaces to be decoupled, each metasurface is broken into multiple pieces 
with vertical lines (E lines) slots shown in Figure 109(e). Next, the metasurfaces can be combined with a 90°  
rotation between them and each surface can be excited separately. The excitation part is complicated in this case 
and the best option may be the excitation type that was presented on Figure 100 (c). Again, the two feed should 
have signals that are 90° out of phase with respect to each other and the expected bandwidth is the same as for a 
single mode antenna, just with circular polarization.  

Alternative option is to introduce slots in the metasurfaces, as depicted on Figure 109(g) and use a single 
excitation. These additional slots make the surfaces anisotropic and couple energy between the two TE modes. 
The expected bandwidth can be larger than for a single mode antenna as two resonances can now be used for a 
bandwidth broadening effect. However, the expected circular polarization bandwidth is narrow, as it occurs only 
between the two resonances.  
   

 
Figure 109  Two forms of achieving circular polarization for a square and a circular cavity shape. (a) Square aperture with a metasurface for 
linear polarization. (b) Braking the metasurface into an array of patches. The small patches are usually rectangles, not squares, in order to 
adjust the resonance frequencies for each mode separately. Positions of the excitations are noted with a back dot. (c) Anisotropic metasurface 
that can be excited with a single source and the energy is coupled into both modes. (d) Circular aperture with a metasurface for linear 
polarization. (e) Modification of the metasurface to decrease its affect on the orthogonal mode. (f) Introduction of a second, bottom, layer 
metasurface rotated by 90 degrees to the top layer. Positions of the excitations are noted with a back dot. (g) Anisotropic metasurface that can 
be excited with a single source and the energy is coupled into both modes.   
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Below we give two examples of circular polarization with a single feed design. This antenna type is of greater 
interest in this theis since it shows the potential to double the antenna bandwidth. 
 
Example 1: Square cavity in an infinite ground plane. 
Figure 110 shows an example 32 x 32 x 20 mm cavity with a two layer anisotropic metasurface at the aperture. 
Cavity volume is filled with air, except for the top part where three 0.64 mm layers of substrate with 𝜀𝜀𝑘𝑘 = 10.2 
are used. The bottom layer has the short transmission line metallization and the top two layers have the 
metasurface metallization. The antenna can exhibit two resonances and was optimized to have a central 
frequency at 2.3 GHz with one resonance below (corresponding to one polarization direction) and one resonance 
above (corresponding to an orthogonal polarization direction). Over all bandwidth was found to be 160 MHz, 
which is a great improvement compared to the linear case, double in value. Circular polarization bandwidth is 
unfortunately very narrow; only 35 MHz around, determined by the 3 dB axial ratio points in the simulation. 

In Chapter 3 the bound for linear polarization was explicitly determined trough a derivation of the 
polarizability. Due to the 90° rotational symmetry of a square cavity, the polarizability in two orthogonal 
directions is the same. Excitation of both TE10 and TE01 modes effectively produces two orthogonal magnetic 
dipole moments at the aperture which are radiating into open space. The total polarizability thus composed of the 
two polarizabilities in orthogonal directions, making the resulting 𝑄𝑄 factor half the value compared to linear 
polarization. Expected bandwidth is should therefore be double compared to linear polarization. 

These arguments appear reasonable, but the situation with a single feed exciting two modes is not so clear 
cut in the opinion of the author. The antenna presented below, in Figure 110, has two closely spaced resonances; 
however, the link between the 𝑄𝑄 factor and fractional bandwidth is not clear for such cases. It may be just a 
coincidence that the author managed to obtain exactly double the bandwidth compared to the linear case. Slightly 
better result may be possible if the matching between the two resonances is poorer. In any case, the intention is 
to show that excitation of orthogonal modes can be considered as a bandwidth broadening technique if one is not 
interested in the polarization. However, a systematic study on the topic of circular polarization bandwidth is 
outside the scope of this thesis. 

 
Figure 110 (a) Rectangular 32 x 32 x 20 mm (0.245 𝜆𝜆0 x 0.245 𝜆𝜆0 x 0.15 𝜆𝜆0) cavity in an infinite ground plane having an anisotropic two layer 
metasurface at the aperture. (b) Schematic showing dimensions: gap g1 = 3.57 mm, g2 = 1.64 mm, line width t = 2 mm, slot angle φ = 21°, slot 
width = 0.2 mm. Feed position is 6.9 mm from the center. The line length Li,is 5.25 mm (b) Simulated S11 parameter showing a bandwidth 
broadening effect of two resonances. (c) Simulated axial ratio showing good circular polarization in a narrow frequency band.  
 
Example 2: Circular cavity in a finite ground plane.  
Figure 111 shows an example of a 32 mm diameter cavity with 20 mm height having a two layer anisotropic 
metasurface at the aperture. Cavity volume is filled with air, except for the top part where three 0.64 mm layers 
of substrate with 𝜀𝜀𝑘𝑘 = 10.2 are used. The bottom layer has the short transmission line metallization and the top 
two layers have the metasurface metallization. The antenna can exibit two resonances and was optimized to have 
a central frequency at 2.3 GHz with one resonance below (corresponding to one polarization direction) and one 
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resonance above (corresponding to an orthogonal polarization direction). Over all bandwidth was found to be 
145 MHz, which is a great improvement compared to the linear case, almost double in value. Circular 
polarization bandwidth is unfortunately very narrow; only 34 MHz around, determined by the 3 dB axial ratio 
points in the simulation. 
  

 
Figure 111 (a) Finite ground plane circular cavity with aperture diameter 32 (0.245 𝜆𝜆0 ) and cavity height 20 mm (0.15 𝜆𝜆0) having an 
anisotropic two layer metasurface at the aperture. Other dimensions are: gap g1 = 2.55 mm, g2 = 3.31 mm, line width t = 4 mm, slot angle φ = 
27°, slot width is 0.8 mm. Feed position from the center is 7 mm, and line length Li is 4.05 mm (b) Simulated S11 parameter showing a 
bandwidth broadening effect of two resonances. (c) Simulated axial ratio showing good circular polarization in a narrow frequency band. 
 

The purpose of these two examples was to demonstrate that circular polarization is achievable in both finite 
and infinite ground plane with both circular and square shapes. The choice between left handed and right handed 
circular polarization is done trough changing the angle of the slots (positive or negative angles). However, the 
main point is that with a single feed and anisotropic metasurfaces, one can achieve wider overall impedance 
bandwidth.  In some situations where circular polarization is not critical and the receiving antenna is sensitive to 
both types of polarization, this solution might be desirable.  

The added complexity compared to linear antennas is minimal and consists in adding slots and an additional 
layer in the case of a circular cavity. The square case cavity is simpler and can even be made with a single layer, 
if desired. 

4.5. Conclusion of Chapter 4 
In this, central, chapter of the thesis we have presented several important contributions. The abstract, Gustafsson 
bound was made comprehensible by connecting it to a transmission line mode which is easily understandable. 
The key novelty is the introduction of a capacitor at the aperture in the model that describes simple, open ended, 
cavity antennas.  

The transmission line model was shown useful in understanding the basic principles behind the operation of 
antennas that can reach the bound on bandwidth i.e. the resonance condition, bandwidth behavior, the optimum 
permittivity inside the cavity, and the fact that the capacitor should be a reactive surface, not a lumped element. 
The transmission line model laid the path to creating the actual antenna with a metasurface at the aperture to 
approximate the necessary capacitance.  

Design of the actual metasurface for the square and circular cavities, along with the proper excitation type is 
another important achievement presented in this chapter. Numerical simulations were used to show the range of 
validity of the theory. Manufactured prototypes were described and shown to be in good agreement with the 
simulations and theory, demonstrating also the feasibly of such antennas in the real world.  
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Finally, the problematic of circular polarization was presented at the end of the chapter. It was shown that 
circular polarization can be achieved in the whole band with two excitations. With only one excitation, 
anisotropic metasurfaces have to be used and circular polarization is achieved in a narrow region between two 
resonances. However, if one is not interested in polarization, the overall bandwidth can effectively be doubled. 
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Chapter 5.  

Applications and potentials of the new design 
 
In this chapter we explore the benefits of the proposed metasurface design from the last chapter in various 
applications. Section 5.1 demonstrates the novel possibility of manufacturing electrically small cavity antennas 
still coming close to the bound on bandwidth. The emphasis is on antennas smaller that previously possible with 
classical patch antenna design. Section 5.2 briefly explores the other end of the problem; cavity antennas that are 
not electrically small and the question: how does the new, metasurface design compare to classical designs with 
increased bandwidth. Section 5.3 is purely theoretical, exploring the potential of magnetic conductors and 
magnetic materials for improving the bound on 𝑄𝑄. Section 5.4 briefly shows the application of small cavity 
antennas in creating a compact antenna array.  

5.1. Applications to projectile design and miniaturization  
The challenge in engineering problems is that real world solutions often have to be inexpensive, simple for 
manufacturing, and have good mechanical properties and on top of all, give the best possible performance. Here 
we discuss the benefits of the meta-surface design solution in these characteristics compared to the classical 
patch antennas, used in practice so far.  

Benefit of special interest is the ability to manufacture antennas for smaller caliber projectiles for which the 
patch antenna design is not feasible. Figure 112 gives two such projectiles which are intended to be used with 
new metasurface antennas. 

 
Figure 112 (a) 40 mm caliber projectile with a drilled cavity of 20 mm in diameter. (b) 30 mm caliber projectile into which a 16 mm  
diameter cavity can be drilled.  

5.1.1. Ability to use lower cost materials  
Throughout this thesis, bandwidth results were presented depending on the height of the cavity. I was seen that 
for optimum bandwidth height of about 15 mm (0.115 𝜆𝜆0) or higher is usually sufficient. In simulations with 
patch antennas, the entire volume was filled with a material of permittivity higher than air. In reality, these high 
permittivity materials are hard ceramic substrates manufactured by Rogers inc. and are quite expensive. 
Theoretically, the volume could be filled with a low permittivity material, but high permittivity is needed to 
miniaturize the patch size it was demonstrated that it can also be beneficial for bandwidth (see “inversed 
bandwidth-permittivity relation” in Chapter 2). 

The most interesting result with the new design, besides enhanced bandwidth performance, is that low 
permittivity materials are needed. These materials are usually much cheaper. Ideal material in terms of 
permittivity value is air; it also has almost no losses and is free. However, for mechanical purposes the volume 
has to be filled with a hard material that can withstand high forces. One material that fits the mechanical 
requirements and was used in our experiments is polypropylene with 𝜀𝜀𝑘𝑘 = 2.26 and loss tangent 𝛿𝛿 = 0.002.  

In the actual antenna, the metallization is etched on a layer of expensive Rogers material, but the thickness 
of this layer is small and the rest of the volume is filled with less expensive polypropylene. The total cost of the 
antennas should thus be less than investigated patch antennas in cavities. 
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5.1.2. Ability to manufacture smaller cavity antennas 
Back in Chapter 2, simulation results of single patch antennas in a circular cavity diameter of 20 mm (0.15 𝜆𝜆0) 
were presented. Now we ask: How feasible are such antennas?  

Our simulations used a cavity completely filled with some substrate material, but in reality the cavity and the 
substrate are manufactured separately. For the two parts to fit, the substrate has to be just slightly smaller than 
the cavity which leaves a very thin gap between them. This gap has to be filled with glue to ensure mechanical 
stability and, unfortunately, cannot be ignored electromagnetically. In small cavities, as the patch size is 
approximately the size of the cavity aperture, this glue filled gap plays an extremely important role in antenna’s 
performance for the following reasons:  

1. Electric fields are very strong between the patch and the wall; therefore also in the gap.  
2. The glue’s permittivity is different than the substrate’s permittivity.  
3. The glue material usually has much higher losses than the substrate.  

Here we wish to demonstrate a road map for designing very small and feasible cavity antennas trough some 
specific examples. Please note that in our real world experiments we use a lossy glue with 𝜀𝜀𝑘𝑘 = 3.5. However, 
for the sake of proper comparison of bandwidth, we ignored these additional losses and kept only the 
permittivity value of 3.5 in the presented examples. However, losses of Rogers 3010 material with 𝜀𝜀𝑘𝑘 = 10.2 are 
still included. 

Example 1: To demonstrate the sensitivity of the patch antenna to the gap, two cases are compared; First 
case, shown in Figure 113, shows the cavity volume perfectly filled with the substrate material (𝜀𝜀𝑘𝑘 = 10.2). The 
simulated bandwidth is 15.5 MHz. Notice that the spacing between the patch and the cavity wall is very narrow.  

 

 
Figure 113 (a) Single patch antenna in a circular cavity of diameter d = 20 mm (0.15 𝜆𝜆0), height h = 14 mm, and substrate relative 
permittivity 𝜀𝜀𝑘𝑘 = 10.2. (b) Cut plane to show the interior of the antenna. The substrate is transparent. (c) Simulated S11 parameter showing 
15.5 MHz of bandwidth.  

 
Figure 114 (a) A thin gap with glue, which is a manufacturing necessity, is introduced into the design. (b) Cut plane to show the interior of 
the antenna. The substrate is transparent and the glue is seen on the cavity walls. (c) Simulated S11 parameter showing the resonant frequency 
is not shifted back to 2.3 GHz even though the patch size has increased to cover almost the entire aperture. 
 

On the other hand, Figure 114 shows a more realistic case by including a thin gap filled with glue. 
Simulations of this, more realistic design, have shown that the resonance frequency shifts to a higher frequency 
and cannot be shifted back by increasing the patch size. The patch size can be increased only to cover the entire 
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area of the substrate material; it cannot cover the glue, as this gap is a consequence of the assembly process. 
However, the glue’s permittivity inside the thin gap is not enough to shift the resonance frequency down to 2.3 
GHz. Theoretically, the antenna could resonate at 2.3 GHz if one could use glue of the same permittivity as the 
substrate, which was not available to us. 

To conclude, we can say that a 20 mm diameter patch antenna inside a cavity is in fact not feasible with the 
manufacturing process we used. 

Example 2: Next we will explore a design tweak that can resolve the problem of the antenna’s sensitivity to 
the glue. We have learned in Chapter 2 that the role of the patch at the aperture is to act as capacitive admittance. 
For a single patch, the gap between the patch and the wall has to be small to ensure a large enough capacitive 
effect, but one can imagine that capacitance can be increased by making the patch metallization “thick,” making 
it a metallic disk. Instead of putting a metallic, the alternative is to stack multiple layers of patches. This 
effectively increases capacitance to the wall and as a consequence the diameter of the patches is reduced.   

Figure 115 presents an example of such an antenna with and without glue. The sensitivity has been reduced 
and the antenna can be made resonant at 2.3 GHz in both cases, as noted by data from the simulations. It is 
concluded that this type of antenna is feasible. However, by using such a design we have lost bandwidth 
performance from 15.5 MHz in the case of a single patch to about 8 MHz in the case of “thick” patch with glue. 
This is not the desired result.  

 
Figure 115 Reduction of patch size in a small cavity by “thickening” the metallization, i.e. stacking multiple thin layers of patches together. 
In this example, 5 layers with 0.64 mm separation are used. (a) Cavity ideally filled with 𝜀𝜀𝑘𝑘 = 10.2 and a “thick” patch reduced about 23% in 
diameter compared to a single patch design. (b)  Cavity with glue between the substrate and the metal wall. Patch size is now reduced only 
16% compared to the single patch design, but the antenna is resonant at 2.3 GHz. (c) Cross section of the antenna in (b). 
 

Example 3: Now we take a look at what is possible with the metasurface design. Figure 116 presents an 
example of such an antenna with and without glue, with the “thick” design tweak used to ensure higher 
capacitance. In both cases the antenna can be made resonant at 2.3 GHz, as noted by data from the simulations. 
We may conclude this antenna type is feasible, but most importantly that bandwidth performance is not severely 
degraded. In fact, bandwidth remains close to its theoretical maximum value. Probable cause is the distributed 
capacitance on the metasurface which further minimizes the antennas’ sensitivity to the glue. This is the desired 
result for small cavity antennas. 
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Figure 116 Cavities with a “thick” three element metasurface design. In this example, 6 substrate layers with 0.64 mm thickness and 
𝜀𝜀𝑘𝑘 = 10.2 are used. On 5 layers there is the metasurface metallization, while the bottom 6th layer has the small transmission line metallization 
to which a coaxial shield is connected. The remaining volume is filled with low permittivity polypropylene 𝜀𝜀𝑘𝑘 = 2.26. (a) Cavity ideally 
filled with substrate materials. (b) Cavity with glue between the substrate and the metal wall. (c) Cross section of the antenna in (b). 
 

Example 4: Finally, now that we demonstrated the benefit of a metasurface design in the last example, we 
compare examples cavity antennas with a 2 element metasurface giving bandwidth close to the bandwidth 
bound. Figure 117 shows examples of cavities with aperture radiuses of 𝑎𝑎 = 10, 9, 8 mm respectively, which 
makes 𝑘𝑘𝑎𝑎 < 0.5 in all cases. Therefore these are truly examples of electrically small (cavity) antennas. The 
feasibility of these small antenans is shown by the measurement results in the next section.  

 
Figure 117 Cavities with a “thick” two element metasurface design. In this example, 5 substrate layers with 0.64 mm thickness and 𝜀𝜀𝑘𝑘 =
10.2 are used. On 4 layers there is the metasurface metallization, while the bottom 5th layer has the small transmission line metallization to 
which a coaxial shield is connected. The remaining volume is filled with low permittivity polypropylene 𝜀𝜀𝑘𝑘 = 2.26. All cavities are ideally 
filled with substrate materials. (a) Cavity with aperture radius of 10mm giving 𝑘𝑘𝑎𝑎 = 0.482. (b) Cavity with aperture radius of 9 mm giving 
𝑘𝑘𝑎𝑎 = 0.433. (c) Cavity with aperture radius of 8 mm giving 𝑘𝑘𝑎𝑎 = 0.385. 
 

In conclusion, based on all the examples, we can say that new possibilities have been opened with the 
introduction of the metasurface design. Not only to create cavity antennas with maximum bandwidth but to 
create really small cavity antennas. Both aspects are a great improvement in comparison to the past designs. In 
regards to projectiles, this opens up possibilities for smaller caliber projectiles with mounted antennas whose 
larger bandwidth offers more tolerance in the manufacturing process.   

5.1.3. Other characteristics 
The metallic cavity and the hard materials used inside the cavity give the antenna excellent mechanical and 
thermal characteristics. The design is conceived to allow for the antenna to withstand high accelerations and 
other shocks. In addition, the ability to replace expensive ceramic substrates with cheaper (hard) materials of low 
permeability can also affect of the mass of the antenna. High permittivity materials usually also have high 
density so it can be expected that the mass of antennas made with the new metasurface design can be lower (if 
desired).  

5.1.4. Measurement results  
Prototype cavity antennas having 20 mm (0.15 𝜆𝜆0) and 16 mm (0.12 𝜆𝜆0) apertures have been manufactured at 
the French-German Research Institute of Saint-Louis to confirm the feasibility of these small antennas; the 
design, along with the measured results are shown in Figure 118 and Figure 119 respectively.  

The biggest challenge concerning small antennas in general, besides adjusting the resonance frequency and 
matching, is low antennas efficiency. Unfortunately, this is also visible in the case of these small cavity antennas. 
With our prototypes, the main issues are the manufacturing precision and the exact properties of the glue. The 
glue plays the most important role in the operation of the antenna, due to the high losses, and is the prime reason 
for reduced efficiency. Detailed descriptions of the antennas are given below. 

 
 

No glue (ideal) 
Diameter d = 20 mm 
Height h = 14 mm 
Directivity D = 3.67 dBi 
Realized gain G = 2.5dbi  
BW = 14.2 MHz  
 
 

No glue (ideal) 
Diameter d = 18 mm 
Height h = 14 mm 
Directivity D = 3.46 dBi 
Realized gain G = 1.66 dBi  
BW =11.1MHz  
 

No glue (ideal) 
Diameter d = 16 mm 
Height h = 14 mm 
Directivity D = 3.25 dBi 
Realized gain G ≈ 0.8 dBi  
BW = 7.7MHz  
 (b) (b) (c) 
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Figure 118 Prototype metasurface antenna with a 20 mm  (0.15λ0) diameter aperture in a finite ground plane (28 mm in diameter). Cavity 
volume is filled with polypropilene εr =2.26  (exept for the 6 substrate layers holding the metalization with εr = 11.2 ) (a) Simulation results 
and geometry upon which the prototype was built. (b) The manufactured prototype. (c) Comparison of simulated and measured S11 
parameter. (d) Measured radiation pattern in the E plane and (e) in the H plane. (f) Measured gain vs. frequency.  
 

 
Figure 119 Prototype metasurface antenna with a 16 mm (0.12 𝜆𝜆0) diameter aperture in a finite ground plane (dimeter 20 mm). Cavity 
volume is filled with polypropilene εr =2.26  (exept for the 6 substrate layers holding the metalization with εr = 11.2 ) (a) Simulation results 
and geometry upon which the prototype was built. (b) The manufactured prototype. (c) Comparison of simulated and measured S11 
parameter. (d) Measured radiation pattern in the E plane and (e) in the H plane. (f) Measured gain vs. frequency.  
 

Measured radiation patterns 
E-plane H-plane 

(a) (b) (c) 

(d) (e) (f) 

Sim. BW ≈ 19.8 MHz  
Sim. Directivity = 3.28 dBi 
Sim. Realized gain = -3 dBi  
 

Mes. BW ≈ 22MHz  
Mes. gain = -5.5 dBi  
 

16 mm aperture 
 

(a) 

Sim. BW ≈ 20 MHz  
Sim. Directivity = 3.69 dBi 
Sim. Realized gain = 0.8 dBi  
 

Mes. BW ≈ 21 MHz  
Mes. gain = -1 dBi  
 (b) 

Measured radiation patterns 
E-plane H-plane 

(d) (f) 

(c) 

(e) 

20 mm aperture 
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The 20 mm aperture prototype (𝒌𝒌𝒌𝒌 = 𝟎𝟎.𝟒𝟒𝟑𝟑𝟒𝟒):  
A 20 mm diameter, 14 mm high cavity was drilled into a cylinder of 28 mm diameter of 19 mm height, seen on 
Figure 118(b). On the bottom of the cavity, a small hole of 2.2 mm diameter was drilled, just enough to insert a 
coaxial cable of the same diameter trough it, thus also ensuring electrical contact between them. Position of this 
hole i.e., the feed position is 4.1 mm form the center of the cavity. The multilayer metasurface was designed 
from 6 layers of Rogers 3010 material; five layers with the metasurface and one layer with only the short 
transmission line to which the cable is soldered. Layers were cut to have a diameter of 19.85 mm which leaves 
the glue thickness of 0.15 mm. The metasurface was designed with a gap g = 1.425 mm; line length of 1.45 mm 
and line thickness of 4.8 mm. 

Measured results have shown the manufactured antenna was well matched close to 2.3 GHz as predicted by 
the simulation, but hat a slightly higher bandwidth and reduced gain, indicating higher losses in the real world 
compared to the simulation.  It is believed that the main cause of losses is the glue. The measured antenna 
efficiency was 37%. Measured S11 parameter also shows a small dip below 2.3 GHz, which was unexpected. 
With a closer examination and simulation tests, it was determined that the cause of this dip was a small 
asymmetry in the antenna. The asymmetry arises if the glue is not distributed evenly in the gap between the 
substrate and the cavity and as a consequence an orthogonal mode is slightly excited (giving also different 
polarization). To avoid this, care should be taken to manufacture the antenna as symmetrical as possible.  
The 16 mm cavity prototype (𝒌𝒌𝒌𝒌 = 𝟎𝟎.𝟑𝟑𝟑𝟑𝟏𝟏):  
A 16 mm diameter, 14 mm high cavity was drilled into a cylinder of 20 mm diameter of 19 mm height, seen on 
Figure 119(b). A small hole of 2.2 mm diameter was drilled on the bottom of the cavity, just enough to insert a 
coaxial cable of the same diameter trough it, ensuring electrical contact between them. Position of this hole i.e., 
the feed position is 0.6 mm form the center of the cavity. The multilayer metasurface was designed from 6 layers 
of Rogers 3010 material; five layers with the metasurface and one layer with only the short transmission line to 
which the cable is soldered. Layers were cut to have a diameter of 15.85 mm which leaves the glue thickness of 
0.15 mm. The metasurface was designed with a gap g = 1.365 mm; line length of 1.43 mm and line thickness of 
4.0 mm. 

Measured results have shown the manufactured antenna had resonance up-shifted to 2.37 GHz but was 
relatively well matched at that frequency. Bandwidth is slightly higher and gain reduced compared to the 
simulation result, indicating higher losses in the real world compared to the simulation. Again, the main cause of 
losses is believed to be the glue. The measured antenna efficiency was only 13.4%. However, the fact that such a 
small antenna can finally be realized is still a great improvement. 

5.2. Applications to cavity sizes close to half the wavelength  
With a cavity size (diameter) between 0.35 𝜆𝜆0  and 0.5 𝜆𝜆0  or larger, antenna performance is no longer restricted 
to a single resonance. In fact, stacked patches configuration can be effectively used in such cavities to increase 
bandwidth. At first, it seems as if stacked patches should offer broader bandwidth than the metasurface design 
because using two closely spaced resonances should approximately double the bandwidth seen for a single patch. 
This in turn should be larger than the metasurface cavity bandwidth, conceived as a single resonance antenna. In 
spite of that logic, we saw in the last chapter that metasurface cavities start giving unexpectedly large bandwidth 
for cavity side exceeding 0.35 𝜆𝜆0 . The reason for this? There is a second cavity resonance at a higher frequency 
due solely to the cavity size being comparable to 0.5 𝜆𝜆0 . The second resonance is a consequence of the aperture 
admittance behavior for aperture size above a 𝜆𝜆0⁄ >  0.5, where the real part is large and the imaginary part is 
close to zero. Can the second cavity resonance be effectively used with the metasurface design? 

Here we give two brief examples of the possibilities with a metasurface in cavity sizes very close 0.5 𝜆𝜆0  at 
2.3GHz. We demonstrate they can be used to create broadband antennas and indeed surpass stacked patches 
antenna bandwidth, making it a superior design even for larger cavities. 

5.2.1. Broadband cavity antennas  
We give only a brief example of a rectangular cavity with dimensions 0.49 × 0.49 × 0.15 𝜆𝜆0  at 2.3 GHz 
demonstrating the possibility of broadband, two resonance, operation with a single metasurface layer. The bound 
on 𝑄𝑄𝑚𝑚𝑚𝑚𝐴𝐴  assumes a single resonance; calculating bandwidth from it is only approximate, especially for low 
values of 𝑄𝑄. For two resonances the link between 𝑄𝑄 and 𝐹𝐹𝐵𝐵𝐹𝐹  is not so clear. Thus, it is hard to know the exact 
maximum bandwidth that can be achieved in this case, and does the shown configuration reach it. 

The example antenna geometry is shown in Figure 120(a) with specific dimensions noted in Figure 121. The 
design is very simple in general. The antenna consists of a single, thin substrate layer with metallization on top, 
forming the metasurface, and metallization on the bottom, forming a short transmission line to which the coaxial 
cable is soldered to. On the top layer there is also a small transmission line (see Figure 121(b)) connecting the 

5-114 
 



CHAPTER 5: APPLICATIONS AND POTENTIALS OF THE NEW DESIGN 

feed wire from the coaxial cable and one of the metsurface elements. A small box was added around the feed 
wire position for soldering purposes if the antenna is to be manufactured. The volume of the cavity is filled with 
air, or a solid material whose permittivity is close to unity, apart for the top substrate.  

By experimenting with the number of metarusface elements, their width and parameters like the position of 
the coaxial cable and the transmission line length, the author has been able to match the antenna in a region from 
2 to 3.4 GHz, giving 52% fractional bandwidth (if the central frequency is taken to be 2.7 GHz).  

The radiation pattern remains broadside in the whole frequency band, but shows tilting near 2.9 GHz. It was 
determined that the position of the coaxial cable has an effect on the radiation pattern and is probably responsible 
for this tilt in the pattern around 2.9 GHz. 

This demonstrates that even with a single metasurface, due to its capacitive effect at the peculiar frequency 
dependence of the aperture admittance which gives rise to a second resonance, one can have very simple, yet 
broadband cavity antennas. The benefit is not only in the simplicity, but also in the material saving, since only a 
single layer of substrate is needed and the rest of the volume can be filled with cheap low permittivity material, 
reducing the total cost of the antenna.  
 

 
Figure 120 Broadband rectangular cavity antenna in an infinite ground plane of dimensions 64 x 64 x 20 mm or 0.49 × 0.49 × 0.15 𝜆𝜆0  at 
2.3 GHz. (a) 5 element metasurface of 24 mm width. Other parameters are given in Figure 121 (b) Simulated S11 parameter (c) Simulated 
radiation pattern for several frequencies.  
 
 

 
Figure 121 (a) Design of the antenna used in Figure 120. (b) design of the excitation part. The small rectangle around the central wire is 
mostly intended for soldering purposes. 
 
 

(a) (b) 

1400 MHz 

FBW ≈ 52% @ 2.7GHz 
64 mm  

E-plane 

Co-pol Cross-pol 
2.1 GHz 2.5 GHz 2.9 GHz 3.3 GHz 

H-plane 

-10  -40  -20  -30  -10  -40  -20  -30  -10  -40  -20  -30  -10  -40  -20  -30  

64 mm  

(a) (b) 

(c) 

5-115 
 



CHAPTER 5: APPLICATIONS AND POTENTIALS OF THE NEW DESIGN 

5.2.2. Comparison with stacked patches  
A cavity size 0.475 × 0.475 × 0.15 𝜆𝜆0  at 2.3 GHz has been chosen for the comparison of stacked patches to the 
metasurface design. On one hand, classical stacked patches configuration is a common choice for bandwidth 
broadening; on the other hand a single metasurface layer was shown in the last example to offer broadband 
behavior for cavities close to 0.5 𝜆𝜆0  in size. The geometries of the two antennas are depicted in Figure 122(a) 
and (d) with exact dimensions given in Figure 123. It was decided to optimize the geometry to have one 
resonsnce below, and one above 2.3 GHz, making 2.3 GHz the central frequency. Results of the simulations are 
shown in Figure 122(b) and (e). It is clearly visible that the single layer metasurface design offers broader, 
almost double, bandwidth. In the case of stacked patches, both resonances have narrower compared to the 
metasurface design, and offer 20.8% fractional bandwidth around 2.3 GHz. For the metasurface design, both 
resonances offer wider bandwidth, especially the second, higher resonance, offering 37.4% fractional bandwidth 
in total. 

 
Figure 122 Comparison between stacked patches and metasurface design in a rectangular cavity of dimensions 62 x 62 x 20 mm or 0.475 ×
0.475 × 0.15 𝜆𝜆0  at 2.3 GHz embedded in an infinite ground plane. (a) Perspective view of stacked patches. (b) Simulated S11 parameter for 
stacked patches. (c) Simulated radiation patterns for several frequencies.. (d) Perspective view of a 4 element metasurface of 24 mm width. 
(e) Simulated S11 parameter for the metasurface design. (c) Simulated radiation pattern for several frequencies. 
 

(a) 

860 MHz 

E-plane 

H-plane 

Co-pol 
Cross-pol 

-10  -40  -20  -30  -10  -40  -20  -30  -10  -40  -20  -30  

2.0 GHz 2.3 GHz 2.6 GHz 

480 MHz 

FBW ≈ 20.8 % @ 2.3GHz 

FBW ≈ 37.4 % @ 2.3GHz 

62 mm  

62 mm  

62 mm  

62 mm  

Stacked patches 
(2 layers) 

Metasurface design 
(1 layer) 

E-plane 

H-plane 

Co-pol 
Cross-pol 

2.12 GHz 2.3 GHz 2.45 GHz 
-10  -40  -20  -30  -10  -40  -20  -30  -10  -40  -20  -30  

(b) 

(c) 

(d) (e) 

(f) 
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Figure 123 (a) Design with specific dimensions for the stacked patches configuration shown in Figure 122(a).  (b) Design with specific 
dimensions for the metasurface configuration shown in Figure 122(d). 
 

The radiation patterns of the two antennas for several key frequencies are shown in Figure 122(c) and (f). 
Good broadside patterns are observed in both cases in the whole frequency band.  

Finally, we can note that in the case of a finite ground plane, the same general conclusion is expected to 
hold, i.e. the metasurface design can offer broader bandwidth compared to classical stacked patches. The effect 
of a finite ground plane should only be to further enlarge the bandewidth because the real part of the aperture 
admittance increases (as discussed in Chapters 2 and 4). 
 
Circular cavity case: 
Regarding circular cavities, a study was made with finite sized cavities using stacked patches, and metasurfaces 
for various cavity diameters; with results summarized in Table 10. Results of simulations for a single patch and 
for a metasurface design in the same sized cavity are also added to the table. Values indicated represent the 
approximate best result obtained for a given size at a height of 20 mm. Some boxes are left blank because the 
antenna type in the particular cavity size is not feasible, for example, stacked patches configuration is possible 
only for cavities with 50 mm diameter or larger. Data in the table shows that the metasurface design is superior 
in all cases to other types of antennas, except for a 50 mm cavity, where stacked patches show better bandwidth 
performance.  
 

Circular cavity diameter d 70 mm 50 mm 32 mm  20 mm  16 mm  

Bottom sub. permittivity:  3.66  6.15  10.2  6.15  10.2  6.15  10.2  10.2  6.15  10.2  10.2  10.2  

Top: sub. permittivity  3.66  3.66  3.66  6.15  6.15  3.66  3.66  6.15  6.15  6.15    
Stacked patches BW [MHz] (CST sim.) 404  494  513  671  521  430  439  423          
             
Single patch BW [MHz] (CST sim.) 200  200  200  200  200  165  165  165  65  65  8   
Metasurface BW [MHz]  (CST sim.) 890 890  890  890  890  307  307  307  80  80  14  7  

 
Table 10 Comparison of various cavity antennas. Numbers are approximate values of the best antenna bandwidth performance at height h = 
20 mm 
 

In conclusion, we can say that the metasurface design is a better choice than stacked patches design in 
almost all cases. Bandwidth is superior and the design of the antenna is simpler for it uses only one, thin 
substrate layer. Material cost can be significantly reduced as low permittivity materials need to be used. 

5.3. Potentials of magnetic materials for cavity antennas 
Here we expand the presented theory of cavity antennas with the introduction of magnetic materials and 
magnetic conductors and discuss the potential benefits for bandwidth. 

Present day technology offers two types of magnetic materials that can exhibit relative permeability greater 
than unity (𝜇𝜇𝑘𝑘 > 1). First types are natural materials; they rely on quantum mechanics and electron spin, i.e. the 
inherent magnetic moment of the electron that responds to external magnetic fields. The main ingredient in such 
materials is usually iron (Fe) and they are usually termed just “ferrites.” They offer very large values of  𝜇𝜇𝑘𝑘  (up 
to thousands) but at very low frequencies, usually below 10 MHz. Importantly, at these low frequencies, relative 
permeability is fairly constant with respect to frequency.  At larger frequencies ferrites usually exhibit high 
losses and lower values of permeability. There is considerable interest in producing high permeability materials 
operating at high frequencies (above 1 GHz range) as they would have many applications for antennas. 

(a) (b) 
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However, to the author’s knowledge, current technology can produce only magnetic materials operating below 1 
GHz, which are very lossy and have  𝜇𝜇𝑘𝑘  below 100.  

Second types of materials are artificial materials or meta-materials; they rely on man-made metallic 
inclusions (particles) that respond to external magnetic fields and were introduced in Chapter 1.4. The simplest 
example of an inclusion that can be used is the split ring resonator (SRR). A volume filled with SRRs can exhibit 
large permeability values below the resonance frequency of the SRR, and even negative permeability in a narrow 
frequency band above the resonance. The drawback of meta-materials is the mentioned dependence on the 
resonance of the inclusion, this makes the effective permeability of the material highly frequency dependant 
(dispersive).  

Magnetic conductors are not found in nature at all, but structures effectively acting as magnetic conductors 
can also be man-made and are called meta-surfaces, described in Chapter 1.4.3. Meta-surfaces are also highly 
frequency dependant and act as a magnetic conductor only at the resonant frequency. 

In the following analysis, we will first assume an ideal magnetic material or conductor, meaning no 
frequency dependence and arbitrary values, to get the “best case result” and then discuss if the result is feasible 
with meta-materials. We will restrict the analysis to rectangular cavities and waveguides due to their simplicity 
and for brevity. 

5.3.1. Modifying the bound with perfect magnetic conductors inside the cavity 
In a rectangular waveguide, perfect magnetic conductors (PMC) can be imagined on the two side walls, shown in 
Figure 124. The TE10 mode is no longer the fundamental mode as the boundary conditions have changed and the 
electric field does not have to be zero on the walls. The fundamental mode in this case is the TEM (plane wave) 
mode with no cut-off frequency.  

 
Figure 124 (a) Regular square metallic cavity with a TE10 field distribution at the aperture. (b) Square cavity with perfect magnetic 
conductors on two side walls making the field distribution at the aperture and inside the waveguide uniform. 
 
Propagation inside the waveguide is similar to free space propagating plane wave with the direction parallel to 
the PMC walls. The propagation constant 𝑘𝑘𝑇𝑇𝑇𝑇  reduces to �𝜀𝜀𝑘𝑘𝑘𝑘. To derive the new bound, we start by reducing 
the waveguide’s input admittance to the PMC case as  

 
𝑌𝑌 𝐶𝐶 = −𝑗𝑗 𝑘𝑘𝑇𝑇𝑇𝑇

𝑘𝑘𝜂𝜂0
cot(𝑘𝑘𝑇𝑇𝑇𝑇 ℎ) 

𝑘𝑘𝑒𝑒𝑑𝑑𝑠𝑠𝑐𝑐𝑒𝑒𝑠𝑠  𝐴𝐴𝐶𝐶
����������� 𝑌𝑌𝑠𝑠𝐴𝐴𝑚𝑚

𝐶𝐶 = −𝑗𝑗
�𝜀𝜀𝑘𝑘
𝜂𝜂0

cot��𝜀𝜀𝑘𝑘𝑘𝑘ℎ�. (5.1) 
 

For the low frequency limit we use a series expansion around 𝑘𝑘 = 0 to get 𝑌𝑌𝑠𝑠𝐴𝐴𝑚𝑚
𝐶𝐶 = 1 (𝑘𝑘𝜂𝜂0ℎ)⁄ + 𝒪𝒪(𝑘𝑘). However, 

matters are a little more complicated at the aperture side as the PMC makes the field distribution at the aperture 
is uniform, i.e. 𝐄𝐄(𝑥𝑥, 𝑦𝑦) = �̂�𝐲𝑇𝑇0

+. We need to re-calculate all the other steps in the derivation starting from the 
aperture admittance. Thankfully, the new aperture admittance for a uniform distribution is easily derived (see 
Balanis [37]) and the result is 

 
𝑌𝑌𝑠𝑠𝐴𝐴𝑚𝑚

S = a𝑎𝑎
4𝜋𝜋2𝑘𝑘𝜂𝜂0

� 𝑘𝑘2 − 𝑘𝑘𝑥𝑥
2

�𝑘𝑘2 − 𝑘𝑘𝑥𝑥
2 − 𝑘𝑘𝑦𝑦

2
sinc2 �𝑘𝑘𝑥𝑥a

2
� sinc2 �

𝑘𝑘𝑦𝑦𝑎𝑎
2

� 𝑑𝑑𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘𝑥𝑥
ℝ2

 (5.2) 
 

Where we have used the fact that for a TEM mode in the PMC waveguide the admittance is generally given by 
𝑌𝑌𝑠𝑠𝐴𝐴𝑚𝑚 = 2𝑃𝑃𝑠𝑠𝐴𝐴𝑚𝑚 /(𝑎𝑎2|𝑇𝑇0

+|2). Numerical integration of (5.2) for 𝑎𝑎 = 𝑎𝑎 and curve fitting gives the approximations 

 𝐺𝐺𝑠𝑠𝐴𝐴𝑚𝑚  = 0.011𝑥𝑥2  −  0.0213𝑥𝑥4  +  0.0217𝑥𝑥6  −  0.0131𝑥𝑥8  +  0.00485𝑥𝑥10  
− 0.001𝑥𝑥12  +  0.0001𝑥𝑥14

𝐵𝐵𝑠𝑠𝐴𝐴𝑚𝑚  =  − 0.00745
𝑥𝑥

+  0.0586𝑥𝑥 −  0.0169𝑥𝑥3  +  0.0239𝑥𝑥5  −  0.0194𝑥𝑥7  

+ 0.01𝑥𝑥9 − 0.0035𝑥𝑥11 +  0.00082𝑥𝑥13 − 0.00013𝑥𝑥15

 (5.3) 
 

(a) (b) 
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Where 𝑥𝑥 = a 𝜆𝜆0⁄ = 𝑘𝑘a 2𝜋𝜋⁄ . In the low frequency limit we have 𝑌𝑌𝑠𝑠𝐴𝐴𝑚𝑚
S = 𝑗𝑗 2𝜋𝜋𝑎𝑎0 (𝑘𝑘a)⁄ + 𝒪𝒪(𝑘𝑘), where 𝑎𝑎0 =

−0.00745 from (5.3). Next we have to derive the amplitude of the scattered wave. Using condition (3.14) we can 
write the equation for the amplitude  

𝐴𝐴�𝑎𝑎2

2
𝑌𝑌𝑠𝑠𝐴𝐴𝑚𝑚

S∗ |𝑇𝑇0
+|2 + 𝑎𝑎2

2
𝑌𝑌𝑠𝑠𝐴𝐴𝑚𝑚

𝐶𝐶∗ |𝑇𝑇0
+|2� = a2 |𝑇𝑇0

+|2 𝜂𝜂0⁄ . 

Which gives 

 𝐴𝐴 = 2
𝜂𝜂0

1
𝑌𝑌11

S∗ + 𝑌𝑌1
C∗ = 2

𝜂𝜂0

1
𝑗𝑗 1
𝑘𝑘𝜂𝜂0ℎ

− 𝑗𝑗 2𝜋𝜋
𝑘𝑘𝑎𝑎 𝑎𝑎0 + 𝒪𝒪(𝑘𝑘)

= −𝑗𝑗2𝑘𝑘a
a
ℎ − 2𝜋𝜋𝑎𝑎0𝜂𝜂0

+ 𝒪𝒪(𝑘𝑘2). (5.4) 
 

The electric far field is, according to (3.24) given by  

 
𝐄𝐄S = 2𝑗𝑗𝑘𝑘 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘

4𝜋𝜋𝑘𝑘
𝐳𝐳̂ × � � �̂�𝐱𝐴𝐴𝑇𝑇0

+d𝑥𝑥d𝑦𝑦
𝑎𝑎/2

−𝑎𝑎/2

𝑎𝑎/2

−𝑎𝑎/2
= 𝒚𝒚 ̂𝑇𝑇0

+ 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘

4𝜋𝜋𝑘𝑘
𝑗𝑗𝐴𝐴2𝑘𝑘a2  (5.5) 

 

After inserting the amplitude (5.4) and extracting the scattering function, and following (3.3) and (3.4) we finally 
arrive at the polarizability 

 
𝛾𝛾 = 4𝑎𝑎3

a
ℎ − 2𝜋𝜋𝑎𝑎0𝜂𝜂0

, (5.6) 
 

The Gustafsson 𝑄𝑄 factor formula is thus 

 
𝑄𝑄 ≅ 𝜋𝜋𝐷𝐷

2𝜂𝜂(𝑘𝑘a)3 �a
ℎ

− 2𝜋𝜋𝑎𝑎0𝜂𝜂0�  (5.7) 
 

What remains is to expand the directivity 𝐷𝐷 in terms of (𝑘𝑘𝑎𝑎). Appendix C gives the directivity calculation for a 
regular cavity, which we adapt to the current case of a uniform electric field at the aperture and obtain  

 
𝐷𝐷 = (𝑘𝑘a)2

𝜋𝜋𝜂𝜂0𝐺𝐺(𝑘𝑘)
= 4𝜋𝜋

𝜂𝜂0𝑔𝑔0 − 𝑔𝑔1(𝑘𝑘a)2

𝜂𝜂0𝑔𝑔02𝜋𝜋
+ 𝒪𝒪((𝑘𝑘a)4) (5.8) 

 

Where 𝑔𝑔0  and 𝑔𝑔1  are the first and second coefficient of conductance in (5.3) giving 𝐷𝐷 ≅ 3 + 0.149(𝑘𝑘a)2 . 
Combining (5.8) with (5.7) and inserting all the numerical values of the coefficients we have the new bound 

 𝑄𝑄 ≅ 8.4
(𝑘𝑘a)3 + 4.76

a2ℎ𝑘𝑘3 + 0.41
(𝑘𝑘a)

+ 0.23
ℎ𝑘𝑘

 
𝑎𝑎𝑠𝑠  ℎ≫
������  𝑄𝑄 ≅ 8.4

(𝑘𝑘a)3 + 0.41
(𝑘𝑘a)

,  (5.9) 
 

which is considerably lower than the regular square cavity case. In terms of the radius 𝑘𝑘 = a
√

2 we have 

 
𝑄𝑄 ≅ 2.97

(𝑘𝑘𝑘𝑘)3 + 0.29
(𝑘𝑘𝑘𝑘)

 for ℎ ≫.  (5.10) 
 

5.3.2. On the impossibility of achieving the bound with AMC metasurfaces. 
The argument why the bound (5.9) is not achievable with metasurfaces is quite straightforward. The reader is 
referred back to Figure 60 in Chapter 1.4.2 where the reflection phase behavior of a metasurface is shown 
depending on the incident angle of the wave. It is demonstrated that for TE polarized waves phase bandwidth 
reduces as 90° incident angle is approached and is in fact zero at 90°degrees. In other words, when the wave is 
propagating parallel to the surface (and for TE waves the electric field is also parallel to the surface) the 
metasurface can no longer operate as an artificial magnetic conductor, except for a single frequency point. 
Unfortunately, this is exactly the situation that should happen in a waveguide with PMC walls. The wave 
direction and the electric field inside the waveguide should both be parallel to the PMC walls.  

Hypothetically, even if better metasurfaces were designed that are not angle dependant, the second problem 
is the bandwidth of the metasurface itself. The bound assumes no frequency dependence of the magnetic 
conductors (as if they were really made of magnetic charges). The bandwidth of the artificial magnetic conductor 
should be at least as broad as the bound of the cavity itself, which is very large. This brings us to the third 
problem: volume taken up by the designed metasurface. Bandwidth of the metasurface is directly related to its 
thickness, i.e volume and any volume taken up by the metasurface would reduce the size of the aperture, which 
is the most important factor in the bound. Thus, in this hypothetical situation, there would also be a tradeoff 
between the metasurface and cavity bandwidth.  
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5.3.3. Modifying the bound with ideal magnetic material inside the caivity 
Here we imagine that the cavity volume can be filled with a material having arbitrary relative permeability 
constant 𝜇𝜇𝑘𝑘  (in addition to arbitrary relative permittivity 𝜀𝜀𝑘𝑘 ), as shown on Figure 125. 

 
Figure 125 Square metallic cavity with a TE10 field distribution at the aperture filled with a magneto-dielectric material. 
 
To derive the bound we start by writing the input admittance into the cavity as 

 
𝑌𝑌 𝐶𝐶 = −𝑗𝑗

�𝜇𝜇𝑘𝑘𝜀𝜀𝑘𝑘𝑘𝑘2 − (𝜋𝜋a)2

𝜇𝜇𝑘𝑘𝑘𝑘𝜂𝜂0
cot��𝜇𝜇𝑘𝑘𝜀𝜀𝑘𝑘𝑘𝑘2 − �𝜋𝜋

a
�

2
ℎ� . 

(5.11) 
 

For the low frequency limit (5.11) is expanded around 𝑘𝑘 = 0 to get 

 
𝑌𝑌 𝐶𝐶 = −𝑗𝑗 1

𝑘𝑘a
𝜋𝜋 coth �ℎ𝜋𝜋

a �
𝜂𝜂0𝜇𝜇𝑘𝑘

+ 𝒪𝒪(𝑘𝑘) 
(5.12) 

 

Which is the same as for the regular cavity exept for the 𝜇𝜇𝑘𝑘  in the denominator. The rest of the derivation is also 
the same as for the regular cavity because there is no change in the field distribution at the aperture. Therefore 
we skip to the final result for the polarizabilty 

 
𝛾𝛾 ≅ 32

𝜋𝜋3
 𝑎𝑎3

−2𝑎𝑎11
0 𝜂𝜂0 + coth(𝜋𝜋𝑎𝑎 ℎ)

𝜇𝜇𝑘𝑘

 (5.13) 
 

And the 𝑄𝑄 factor given by  

 
𝑄𝑄 ≅ 𝜋𝜋4𝐷𝐷

16𝜂𝜂(𝑘𝑘a)3 �
coth(𝜋𝜋a ℎ)

𝜇𝜇𝑘𝑘
− 2𝑎𝑎11

0 𝜂𝜂0�  (5.14) 
 

Where it is immediately visible that 𝑄𝑄 can be minimized if we let 𝜇𝜇𝑘𝑘 → ∞. In this case the effect of the cavity 
part in the potential antenna would be completely eliminated! Thus theoretically, there is no dependence on ℎ if 
𝜇𝜇𝑘𝑘 ≫ and the cavity can be made very thin. 
Using the expansion formula for the directivity (3.50) we have 

 
𝑄𝑄 ≅ −4𝜋𝜋3𝑎𝑎11

0 𝜂𝜂0
𝜂𝜂𝑔𝑔11

0 𝜂𝜂0
� 1
(𝑘𝑘a)3 − 𝑔𝑔11

1

4𝜋𝜋2𝑔𝑔11
0

1
(𝑘𝑘a)

�    for 𝜇𝜇𝑘𝑘 ≫ (5.15) 
 

and inserting all the numerical values of the coefficients we arrive at the bound 

 
  𝑄𝑄 ≅ 22.27

(𝑘𝑘a)3 + 0.95
(𝑘𝑘a)

   for 𝜇𝜇𝑘𝑘 ≫   (5.16) 
 

Or in terms of the radius 𝑘𝑘 = a
√

2 which makes it comparable to the Chu bound, we have 

 
  𝑄𝑄 ≅ 7.87

(𝑘𝑘𝑘𝑘)3 + 0.67
(𝑘𝑘𝑘𝑘)

   for 𝜇𝜇𝑘𝑘 ≫.   (5.17) 
 

This bound is much lower than the bound for the regular square cavity, although not as low as for the case of 
magnetic conductors. 

Physical interpretation of this result, depicted in Figure 126 is the following: Electromagnetic energy inside 
the waveguide (cavity) is evanescent. This decreases the effect of the cavity for larger ℎ. Introducing a magnetic 
material makes the decay constant bigger and the energy decays faster with increasing ℎ. Additionally, the 
inductive admittance looking into the waveguide becomes small and ultimately approaches the admittance of an 
open circuit (zero). In this case the antenna is basically modeled by a parallel resonant circuit for which (from 
Appendix A) we have 𝑄𝑄 = 1 (𝜔𝜔0𝐺𝐺𝑗𝑗)⁄ , thus larger inductance lowers 𝑄𝑄. 
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Figure 126 Sketches of a cavity antenna’s model showing the decaying energy inside the cavity part for (a) low permittivity dielectric 
material; (b) for a magnetic material with high permeability; (c) for a material with infinite permeability when the model can be reduced to a 
simple parallel resonant circuit. 

5.3.4. On the impossibility of achieving the bound with SRR type 

metamaterials 
A composite isotropic metamaterial, consisting of an array of split-ring resonators (SRR), can be precisely 
investigated with an equivalent LCR circuit. The final outcome is a relative scalar permeability 

 
𝜇𝜇𝑘𝑘(𝑘𝑘) = 1 + 𝐹𝐹𝑘𝑘2

𝑘𝑘0
2 − 𝑘𝑘2 , 

(5.18) 
 

Where wave-number 𝑘𝑘 is used instead of frequency 𝜔𝜔, 𝑘𝑘0  is the resonant wave-number, and 𝐹𝐹  is a constant 
connected with the bandwidth around the resonance. It is important to emphasize that (5.18) can only be used 
provided that the ring radius is much less then the wavelength and this fits into the concept of a metamaterial as a 
composite of artificial sub-wavelength “atoms.” The consequence of this assumption is that it permits the 
conduction current to dominate the displacement current (also known as “quasi-static” approximation).  
It is clear that (5.18) does not provide a description of very high-frequency behavior because as 𝑘𝑘 → ∞ the 
permeability 𝜇𝜇𝑘𝑘 → 1 − 𝐹𝐹 , while it is 𝜇𝜇𝑘𝑘 → 1 that should be expected physically. There is straightforward 
physical way to see this by recognizing that the concept of an inductor and capacitor break down at very high 
frequencies and the quasi-static approximation is incorrect. 

On the other hand, in the low frequency limit when 𝑘𝑘 → 0, the electromotive force driving the current 
through the ring and producing the magnetic response of the ring tends to zero. Besides that, at low frequencies 
the capacitive gap of the split-ring resonator prevents any current from flowing and, hence, there can be no 
magnetic response from the SRR array. This means that the limit  𝜇𝜇𝑘𝑘 → 1 as 𝑘𝑘 → 0 is the correct one in full 
accordance with (5.18). 

To correctly investigate the effect of a SRR material, we shall need to know not only the behavior of 𝜇𝜇𝑘𝑘(𝑘𝑘) 
as 𝑘𝑘 → 0 but also its derivatives. Therefore we write 

 
𝜇𝜇𝑘𝑘(𝑘𝑘) = 1 + 𝐹𝐹𝑘𝑘2

𝑘𝑘0
2 − 𝑘𝑘2                              

𝑘𝑘=0
����   𝜇𝜇𝑘𝑘(0) = 1

𝜇𝜇𝑘𝑘
′ (𝑘𝑘) = 2𝐹𝐹𝑘𝑘3

(𝑘𝑘0
2 − 𝑘𝑘2)2 + 2𝐹𝐹𝑘𝑘

𝑘𝑘0
2 − 𝑘𝑘2                           

𝑘𝑘=0
����  𝜇𝜇𝑘𝑘

′ (0) = 0

𝜇𝜇𝑘𝑘
′′ (𝑘𝑘) = 8𝐹𝐹𝑘𝑘4

(𝑘𝑘0
2 − 𝑘𝑘2)3 + 10𝐹𝐹𝑘𝑘2

(𝑘𝑘0
2 − 𝑘𝑘2)2 + 2𝐹𝐹

𝑘𝑘0
2 − 𝑘𝑘2

𝑘𝑘=0
����   𝜇𝜇𝑘𝑘

′′ (0) = 2𝐹𝐹
𝑘𝑘0

2 .

 (5.19) 
 

We now turn to the calculation of the 𝑄𝑄 factor. We are not interested in the bound, but in the question: can a 
cavity filled with SRRs reach the bound set in (5.16)? In that regard, we turn to the method introduced in 
Chapter 3.5, i.e. we look at the series expansion of 

 𝑄𝑄 = 𝑘𝑘
2𝐺𝐺(𝑘𝑘)

�𝜕𝜕𝑌𝑌 (𝑘𝑘)
𝜕𝜕𝑘𝑘

� , (5.20) 
 

where we insert the total admittance 

 

𝑌𝑌 (𝑘𝑘) =  𝐺𝐺(𝑘𝑘) + 2

⎝
⎜⎜
⎜⎛𝑗𝑗𝑎𝑎11

0 2𝜋𝜋
𝑘𝑘𝑎𝑎

− 𝑗𝑗
�𝜀𝜀𝑘𝑘𝜇𝜇𝑘𝑘(𝑘𝑘)𝑘𝑘2 − (𝜋𝜋𝑎𝑎)2

𝜇𝜇𝑘𝑘(𝑘𝑘)𝑘𝑘𝜂𝜂0
cot��𝜀𝜀𝑘𝑘𝜇𝜇𝑘𝑘(𝑘𝑘)𝑘𝑘2 − �𝜋𝜋

𝑎𝑎
�

2
ℎ�

⎠
⎟⎟
⎟⎞ (5.21) 

 

Upon an expansion around 𝑘𝑘 = 0, one arrives at a very complicated expression that is not particularly 
illuminating. To simplify things and make the result readable and clear, it is good to immediately insert the 
numerical values of the coefficients and make the limits ℎ → ∞, and 𝜀𝜀𝑘𝑘 → 0 as this was already shown to lead 

εr ≤ 1 εr ≤ 1 
μr >>1 

Yaperture εr ≤ 1 
μr = ∞ 

(a) (b) (c) 
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to the minimum 𝑄𝑄. Additionally, it is useful to insert the value of 𝜇𝜇𝑘𝑘(0) as it is just 1. Finally we can write the 
result as 

 𝑄𝑄 ≅ 58.785
(𝑘𝑘𝑎𝑎)3 + 2.52

(𝑘𝑘𝑎𝑎)�����
same  as  bound

for  regular
square  cavity

+ 36.51
𝑘𝑘𝑎𝑎3 𝜇𝜇𝑘𝑘

′ (0)2

�����
zero  because

𝜇𝜇𝑘𝑘
′ (0)=0

+ 18.26
𝑘𝑘𝑎𝑎3 𝜇𝜇𝑘𝑘

′′ (0)
�����

positive
non  zero

,   with 𝜀𝜀𝑘𝑘 = 0, ℎ ≫ 
(5.22) 

 

Therefore, the 𝑄𝑄 factor for a cavity antenna filled with a SRR metamaterial can only have a larger value than the 
minimum bound due to the last term in (5.22). This is a very interesting result because it shows that although 
SRR metamaterials can exhibit desired high values of permeability below their resonance, this is completely 
unimportant. Only the static limit and the frequency dependence are important; where SRRs fail to give 
beneficial results. This is unfortunate, and it shows that constant high value permeability, which can practically 
be obtained only with natural materials, should be used to obtain benefits for bandwidth. 

5.3.5. Modifying aperture admittance  
In the last few sections we discussed changes to the interior, cavity, part of the antenna; here we concentrate on 
the outside, aperture, part. As sketched in Figure 126, cavity antennas basically operate as parallel LC resonant 
circuits (with an attached transmission line representing the cavity part). This simplification in thinking and 
understanding cavity antennas will naturally lead us to the simplest condition for bandwidth enhancement.  
Remembering the 𝑄𝑄 factor of a parallel circuit (from Appendix A) as  

 𝑄𝑄𝑃𝑃 = 𝑅𝑅
𝜔𝜔0𝑗𝑗

= 1
𝜔𝜔0𝐺𝐺𝑗𝑗

.   for   1
𝑗𝑗𝐶𝐶

= 𝜔𝜔0
2 = constant (5.23) 

 

Where 𝜔𝜔0  is the desired resonance frequency, we have the following conclusions: There are infinitely many pairs 
of values of L and C that will give the same 𝜔𝜔0 , but pairs with large L and small C  will give lower 𝑄𝑄. The way 
to lower 𝑄𝑄, i.e. increase bandwidth is simple: increase inductance L in any way possible! 

Putting magnetic material inside the cavity will increase inductance on the cavity side of the problem, but 
increasing inductance of the aperture admittance is perhaps trickier. Aperture admittance depends on the 
immediate surroundings of the aperture; currents in the ground plane, its shape and material properties. How, 
exactly, to design the exterior of the cavity does not have a straightforward answer; if the application allows any 
modifications to the exterior in the first place. However, the author can offer two ideas, depicted in Figure 127. 
First: by placing a layer of high permeability material around the aperture (see Figure 127(b)). This reduces the 
current in the ground plane surface and forces it to the edge of the aperture.  Second, without any magnetic 
materials, by reshaping the ground plane so that the current has to follow a meandered path (sketched on Figure 
127(c)). Reducing the size of the ground plane will also increase aperture inductance.  All these techniques aim 
to reduce the value of  𝑎𝑎11

0  coefficient in the bound.  

 
Figure 127 (a) regular cavity antenna with sketched current on the ground plane. (b) Increasing inductance of the aperture admittance by 
placing a magnetic material around the aperture and (c) by meandering the current path on a normal metallic ground plane.   

5.4. Applications for building compact antenna arrays 
In connection with antenna arrays, an angle of arrival (AoA), or detection of arrival (DoA) measurement is a 
method for determining the direction of propagation of a radio-frequency wave incident on the array. AoA 
determines the direction by measuring the Time Difference of Arrival (TDOA) at individual elements of the 
array -- from these delays the AoA can be calculated. 

Generally this TDOA measurement is made by measuring the difference in received phase at each element 
in the antenna array. This can be thought of as beam forming in reverse. In beam forming, the signal from each 

(a) (b) (c) 

or 
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element is delayed by some weight to "steer" the gain of the antenna array. In AoA, the delay of arrival at each 
element is measured directly and converted to an AoA measurement. 

For example, a two element array spaced apart by one-half the wavelength of an incoming RF wave. If a 
wave is incident upon the array perpendicularly, it will arrive at each antenna simultaneously. This will yield 0° 
phase-difference measured between the two antenna elements, equivalent to a 0° AoA. If a wave is incident in 
parallel to the array orientation, then a 180° phase difference will be measured between the elements, 
corresponding to a 90° AoA. AoA is generally used to discover the location of pirate radio stations or of any 
military radio transmitter. 

In an effort to create a compact (size 𝑑𝑑 < 𝜆𝜆0 2⁄ ) angle of arrival system, an array of four elements was 
investigated. Here we give a brief example of a possible compact array design. The antenna configuration is 
given in Figure 128. The ground plane diameter is only 0.46 𝜆𝜆0  and the four 0.15 𝜆𝜆0  diameter cavity antennas of 
the same design as in Section 5.1 are used as elements of the array. In a counter-clockwise fashion, each element 
is rotated by 90 degrees. Because the elements themselves are linearly polarized this rotation puts nearby 
elements in orthogonal positions and minimizes the mutual coupling between them. However, elements 1 and 3 
on Figure 128(a) are unfortunately oriented in the same way, which leads to relatively high coupling (10 dB), as 
seen on Figure 128(b). Bandwidth of each element remains almost the same as for the cavity antenna when it is 
not part of the array (in this case about 14.4 MHz). Additionally, this design is capable of giving circular 
polarization. 

 
Figure 128 (a) Geometry of the compact antenna array for DOA application. (b) Simulated scattering parameters showing approximate 
bandwidth of each antenna remains about 14 MHz and coupling between diagonal antennas of -10 dB. 
 

A simple method to reduce the mutual coupling between the antenna elements is recessing the metasurface 
into the cavity, leaving air or a low permittivity material on the top. This method further isolates each antenna 
element. However, a significant drawback is loss of bandwidth because the capacitor (i.e. metasurface) is no 
longer at the aperture. Other methods of element isolation can be used (like modifying the ground plane with 
holes) but are outside the scope of this work. 

5.5. Conclusion of Chapter 5 
In this chapter we discussed new possibilities opened up with the introduction of a metasurface design. The 
possibility to manufacture cavity antennas smaller than ever before is an application of critical importance. It 
was also one of the central objectives of this thesis to answer the question if this is even possible and how to 

(b) 

(a) 

Ground plane 
diameter:  
60 mm 

(0.46 λ0) 

Port 1 

Port 4 

Port 2 

Port 3 

Each cavity 
diameter:  
20 mm 

(0.15 λ0) 

14.3 MHz 
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achieve it. This chapter demonstrated trough simulation data and measurements of several prototypes that 
smaller cavity antennas are indeed a possibility with the new design. In addition, bandwidth performance is 
expected to be close to the bound in the ideal, lossless case. The manufactured prototyped were lossy and had 
increased bandwidth but reduced efficiency. 

On the other side of the problem, for cavities that are not electrically small, it was shown that the 
metasurface design still offers benefits in terms of bandwidth and simplicity compared to classical designs like 
single and stacked patches. 

From a theoretical perspective, this chapter indulged in hypothetical scenarios using ideal magnetic materials 
and conductors which can significantly improve the bound. In the author’s opinion, the analysis is merely an 
interesting read at the moment, but might become important in the future with further advancements of nano-
technology.  

Finally, a demonstration was given of how the ability to design small cavity antennas may be used to 
construct compact antenna arrays. This topic may be the subject of further research. 
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Conclusion 
 
The goal of this work was to study compact, electrically small, cavity antennas. The prevailing question was – is 
it possible to use metamaterial concepts to develop smaller cavity antennas and at the same time increase their 
bandwidth performance compared to known cavity antenna types. Luckily, the answer to these questions is in the 
affirmative. This thesis investigated electrically small cavity antennas in three major ways: theoretically, trough 
rigorous analysis of the bounds for such antennas; numerically, by performing numerous full wave simulations 
to confirm the theory or to discover new effects; and experimentally, by manufacturing prototypes based on the 
theory and numerical simulations. In this way, the subject of cavity antennas has been thoroughly explored and 
was expanded with the introduction of a new type of a cavity antenna. The new antenna type can be labeled 
“metamaterial inspired” because of its use of a metasurface at the aperture of the cavity and is important in two 
ways: it is capable of reaching the theoretical bound for 𝑄𝑄 for small antennas, and it can be made very small in 
practice; both aspects being a great improvement compared to antenna types used in the literature so far.  

The theoretical contributions of this work are seen through the application of a recently introduced 
“scattering approach,” developed by Gustafsson et. al. to determine the bound on 𝑄𝑄 for specific cavity antennas 
and trough making the connection between the bound and a transmission line model of the antenna, used to 
completely understand its operation. It was shown that the derived, new, bounds can be directly compared to the 
well known Chu limit that has been in use for many decades as a crude benchmark for all kinds of small 
antennas. The new bounds for specific cavity antenna shapes correctly show the dependence of the cavity 
dimensions and are much stricter than the classic Chu (or Thal) bound. The derivation of the new bounds was 
shown to be crucial in demonstrating that patch antennas are not the optimal antenna type inside a cavity and in 
developing a new transmission line model for cavity antennas that reach the bound (by adding a capacitor at the 
aperture). Analysis of the transmission line model is “easy” compared to the scattering approach, but the 
scattering approach actually proves that the obtained 𝑄𝑄 factor is truly the bound. For practical, engineering 
purposes, it is the transmission line model that needs to be considered and well understood, as it explains why 
the antenna resonates and what the ideal material inside the cavity volume is. The conclusion of the theoretical 
analysis was that an ideal capacitor at the aperture had to be designed in order to reach the bound on 𝑄𝑄 and this 
conclusion lead to a development of a matasurface at the cavity aperture. The theoretical results on bounds of 
cavity antennas were also expanded with the hypothetical use of magnetic conductors and magnetic materials. 
Unfortunately, these bounds cannot be reached with metamaterial concepts; only with natural materials which 
are not available at present. A summary of the theoretical results are given below, in Table 11.  

Practical contributions of this work are primarily the design of the metasurface for the rectangular and 
circular cavity shapes and the proper design of the excitation trough a coaxial cable from the bottom of the 
cavity. Full wave numerical simulations and manufactured prototypes have demonstrated that the proposed 
design can reach the calculated maximum bandwidth determined trough the minimum 𝑄𝑄 factor. A very 
important contribution is a demonstration of the possibility to manufacture smaller cavity antennas than 
previously possible with patch antennas. A summary of practical results concerning this contribution is given 
below, in Table 12. Additionally, for very large cavities, it was seen that the link between 𝑄𝑄 and bandwidth is 
not exact anymore because of a second cavity resonance that effectively broadens the bandwidth. This effect can 
be effectively used to design broadband cavity antennas with fractional bandwidth larger that 30% using only 
one layer of a metasurface at the top. Compared to stacked patches configurations used so far in the literature, 
this also presents great improvements, both in simplicity, bandwidth, and the use of cheaper materials as only 
low permittivity is needed. The proposed metasufrace cavity antenna design thus has benefits for both 
electrically small cavities and for cavities close to half the operating wavelength in size. The possibility of 
manufacturing small cavity antennas also introduces the possibility of designing compact antennas arrays. This 
topic was only briefly touched in this thesis and can be the subject of future work. 

Future work on electrically small cavity antennas may include better methods of manufacturing the antennas 
by using better materials or changing the design of the excitation part. Cavity antennas can also be made in 
modern “substrate integrated waveguide” (SIW) technology. In very low frequencies (below 10 MHz), where 
natural magnetic materials are available, the presented concepts can be used in an attempt to manufacture a small 
and very low profile cavity antennas with a low 𝑄𝑄 factor. 

 
 
 
 

 



CHAPTER 5: APPLICATIONS AND POTENTIALS OF THE NEW DESIGN 

 
 

𝑄𝑄 factor comparison Rectangular cavity Circular cavity Comment 

Chu bound 𝑄𝑄 = 1
(𝑘𝑘𝑘𝑘)3 + 1

(𝑘𝑘𝑘𝑘)
 𝑄𝑄 = 1

(𝑘𝑘𝑎𝑎)3 + 1
(𝑘𝑘𝑎𝑎)

 For spherical antennas 
only 

Thal Bound 𝑄𝑄 = 3
(𝑘𝑘𝑘𝑘)3 + 3

(𝑘𝑘𝑘𝑘)
 𝑄𝑄 = 3

(𝑘𝑘𝑎𝑎)3 + 3
(𝑘𝑘𝑎𝑎)

 For spherical antennas 
only 

Gustafsson Bound 
(infinite ground plane) 𝑄𝑄 = 20.78

(𝑘𝑘𝑘𝑘)3 + 1.78
(𝑘𝑘𝑘𝑘)

, ℎ ≫ 𝑄𝑄 = 10.88
(𝑘𝑘𝑎𝑎)3 + 1.53

(𝑘𝑘𝑎𝑎)
, ℎ ≫ Achievable using 

metasurfaces 

Approximate bound for 
finite ground plane 𝑄𝑄 ≈ 14.3

(𝑘𝑘𝑘𝑘)3 + 2.4
(𝑘𝑘𝑘𝑘)

, ℎ ≫ 𝑄𝑄 ≈ 8.25
(𝑘𝑘𝑎𝑎)3 + 2.5

(𝑘𝑘𝑎𝑎)
, ℎ ≫ Achievable using 

metasurfaces 

-with magnetic material 
(infinite ground plane) 𝑄𝑄 = 7.87

(𝑘𝑘𝑘𝑘)3 + 0.67
(𝑘𝑘𝑘𝑘)

, 𝜇𝜇𝑘𝑘 ≫ 𝑄𝑄 = 4.28
(𝑘𝑘𝑎𝑎)3 + 0.6

(𝑘𝑘𝑎𝑎)
, 𝜇𝜇𝑘𝑘 ≫ 

Possibly achievable at 
low frequencies or in the 
future with advancements 

in nano-technology 

-with magnetic conductor 
(infinite ground plane) 𝑄𝑄 = 2.97

(𝑘𝑘𝑘𝑘)3 + 0.29
(𝑘𝑘𝑘𝑘)

 , ℎ ≫ Not clear 
Probably not achievable 

due to no natural 
magnetic conductors 

 
Table 11 Summary of the theoretical results 
 

 
 

Experimental results for circular cavities in a finite ground plane – achieved bandwidth 

Aperture size Patch antenna design Metasurface antenna design Comment 

32 mm 60 MHz 90 MHz Improvement of 50% 

20 mm Not feasible 21 MHz 
Completely new ability 

16 mm Not feasible 22 MHz 

 
 
Table 12 Summary and comparison of  experimental results concerning circular cavities.
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APPENDIX A. DEFINITIONS OF Q FACTOR AND BANDWIDTH 
Definition of a tuned antenna  

For an antenna with an input impedance 𝑍𝑍(𝜔𝜔) = 𝑅𝑅(𝜔𝜔) + 𝑗𝑗𝑋𝑋(𝜔𝜔) we are defining a “tuned antenna” at the 
frequency 𝜔𝜔0  as an antenna that has a total input reactance equal to zero at 𝜔𝜔0 . Additionally, the frequency , at 
which 𝑋𝑋(𝜔𝜔0) = 0, defines a resonant frequency of the antenna if 𝑋𝑋′(𝜔𝜔0) > 0 and an antiresonant frequency of 
the antenna if 𝑋𝑋′(𝜔𝜔0) < 0. These definitions of resonance and anti-resonance come from the behavior of the 
reactance of series and parallel RLC circuits, respectively, at their natural frequencies of oscillation. At the 
“resonant frequency” of a series RLC circuit with positive L and C, 𝑋𝑋′(𝜔𝜔0) > 0 and at the “anti-resonant 
frequency” of parallel RLC circuit with positive L and C, 𝑋𝑋′ (𝜔𝜔0) < 0. 
 
Definition of Q 

The quality factor 𝑄𝑄 is a dimensionless parameter that compares the frequency at which a system oscillates 
to the rate at which it dissipates its energy. In the majority of publications dealing with the determination of the 
minimum 𝑄𝑄 of an antenna, the following assumptions are made: 

• The antenna is tuned to resonance or anti-resonance using a reactive lossless circuit element.  
• There is only one resonance in the considered frequency band 
• Under these assumptions the 𝑄𝑄 factor of the antenna is defined by  

 

𝑄𝑄 = 2𝜋𝜋 Energy Stored
Energy disspated per cycle

= 𝜔𝜔(𝐹𝐹𝑒𝑒 + 𝐹𝐹𝑚𝑚 )
𝑃𝑃𝑅𝑅

=

⎩�
�⎨
��
⎧2𝜔𝜔𝐹𝐹𝑒𝑒

𝑃𝑃𝑅𝑅
, 𝑚𝑚𝑓𝑓 𝐹𝐹𝑒𝑒 > 𝐹𝐹𝑚𝑚  

2𝜔𝜔𝐹𝐹𝑚𝑚
𝑃𝑃𝑅𝑅

, 𝑚𝑚𝑓𝑓 𝐹𝐹𝑒𝑒 > 𝐹𝐹𝑚𝑚

 (A.1) 
 

where 𝐹𝐹𝑒𝑒  is the time averaged stored electric energy density, 𝐹𝐹𝑚𝑚  the corresponding magnetic energy density 
and 𝑃𝑃𝑅𝑅  the power loss i.e. radiated power. At the resonance frequency, 𝜔𝜔0 , there are equal amounts of stored 
electric energy and stored magnetic energy, i.e. 𝐹𝐹𝑒𝑒 = 𝐹𝐹𝑚𝑚 .  
However, with the introduction of metamaterials, i.e. materials with frequency dependent constitutive 
parameters, a generalization of the definition became necessary. Although it is not impossible for W to have a 
negative value, and the values of the constitutive parameters may even be negative, it was proven that the 
internal energy density in lossless antenna material is always greater than or equal to zero [24]. To incorporate 
these more general materials, a newer, very general definition of 𝑄𝑄(𝜔𝜔0) for an antenna tuned to have zero 
reactance at the frequency 𝜔𝜔0  (𝑋𝑋(𝜔𝜔0) = 0) is defined by [23][24] 

 
𝑄𝑄 = 𝜔𝜔0|𝐹𝐹𝑄𝑄(𝜔𝜔)|

𝑃𝑃𝑅𝑅
 , (A.2) 

with. 

 
𝐹𝐹𝑄𝑄(𝜔𝜔) = 1

4
lim

𝑘𝑘→∞
�� �𝐄𝐄∗ ⋅ (𝜔𝜔𝛆𝛆)′ ⋅ 𝐄𝐄 + 𝐇𝐇∗ ⋅ �𝜔𝜔𝛍𝛍�′ ⋅ 𝐇𝐇

𝑉𝑉

+ [𝐄𝐄∗ ∙ (𝜔𝜔𝛕𝛕)′ ⋅ 𝐇𝐇 + 𝐇𝐇∗ ⋅ (𝜔𝜔𝛎𝛎)′ ⋅ 𝐄𝐄]}𝑑𝑑𝑉𝑉 − 2𝜀𝜀0𝑘𝑘 � |𝐹𝐹 |2𝑑𝑑Ω
4𝜋𝜋

� , 
(A.3) 

Where stars (*) denote the complex conjugate, and primes (’) denote differentiation with respect to the angular 
frequency 𝜔𝜔. The vectors (𝐄𝐄,𝐃𝐃) and (𝐇𝐇,𝐁𝐁) are the usual time-harmonic (𝑒𝑒−𝑗𝑗𝜔𝜔𝐴𝐴 ) Maxwellian electric and 
magnetic fields related by bianisotropic constitutive parameters (𝐃𝐃 = 𝛆𝛆 ⋅ 𝐄𝐄 + 𝛕𝛕 ⋅ 𝐇𝐇,  𝐁𝐁 = 𝛍𝛍 ⋅ 𝐇𝐇 + 𝛎𝛎 ⋅ 𝐄𝐄) and F 
is the complex far electric-field pattern.  

Although the value of  𝐹𝐹𝑄𝑄  and thus 𝑄𝑄 can be determined, in principle, by integrating the electric and 
magnetic fields of the antenna throughout all space, it is however not adequate for the present analysis. This is 
because the decomposition of the total energy into stored and dissipated parts is a fundamentally difficult task. 
Therefore, an alternative expression, involving input reactance of the antenna will be given in the next section 

 
Definition of radiation efficiency: The frequency dependent resistance contains both radiation 𝑅𝑅𝑅𝑅𝑎𝑎𝑑𝑑 (𝜔𝜔) and 
loss 𝑅𝑅𝑗𝑗𝐶𝐶𝑠𝑠𝑠𝑠 (𝜔𝜔) terms from which the antenna’s frequency dependent radiation efficiency 𝜂𝜂𝑒𝑒𝑓𝑓𝑓𝑓  is determined 
using 

 𝜂𝜂𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑃𝑃𝑅𝑅𝑎𝑎𝑑𝑑
𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴

= 𝑃𝑃𝑅𝑅𝑎𝑎𝑑𝑑
𝑃𝑃𝑅𝑅𝑎𝑎𝑑𝑑 + 𝑃𝑃𝑗𝑗𝐶𝐶𝑠𝑠𝑠𝑠

 , (A.4) 
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Realistic electrically small antenna behave as either a lossy capacitor (C), a lossy inductor (L), or a combination 
of both, and its feed point impedance takes the form of a series or parallel RLC circuit. Because it behaves 
similarly to a lossy circuit element, it is often convenient to describe the properties of the small antenna in terms 
of circuit equivalent concepts, particularly the quality factor 𝑄𝑄, fractional bandwidth FBW, and efficiency (in the 
case of lossy antennas). 

 
Definition of fractional bandwidth  

If the antenna operates at center frequency 𝜔𝜔0  between a lower frequency 𝜔𝜔− = 𝜔𝜔0 − ∆𝜔𝜔 and an upper 
frequency 𝜔𝜔+ = 𝜔𝜔0 + ∆𝜔𝜔, then the fractional bandwidth FBW is given by  

 𝐹𝐹𝐵𝐵𝐹𝐹 =
𝜔𝜔+ − 𝜔𝜔−

𝜔𝜔0
= 2∆𝜔𝜔

𝜔𝜔0
 , (A.5) 

Wideband antennas usually have bandwidth of 20% or more. Antennas with FBW greater then 50% are referred 
to as ultra-wideband antennas. 
 
Link between 𝑄𝑄 factor and bandwidth for lumped resonant circuits 

The basic series (parallel) resonance circuit consists of series (parallel) connected inductor, capacitor, and 
resistor, see Figure 129. For both types of circuit, the resonance frequency at which the input impedance 
(admittance) is purely real is 𝜔𝜔0

2 = 1/(𝑗𝑗𝐶𝐶).  

 
Figure 129. Lumped circuits. a) the series RCL circuit. b) the parallel RCL circuit. Taken from [25]. 

 
First we proceed to compute the Q factor by showing two approaches; by direct energy calculation and by 
derivation of the circuit’s reflection coefficient respectively. We start with the energy calculation by writing the 
power loss and electric and magnetic energies in the circuits as  

 
𝑃𝑃𝑅𝑅

𝑆𝑆 = 1
2

|𝐼𝐼|2𝑅𝑅 ,                   𝑃𝑃𝑅𝑅
𝑃𝑃 = 1

2
|𝑉𝑉 |2

𝑅𝑅
  

𝐹𝐹𝑚𝑚
𝑆𝑆 = 1

4
|𝐼𝐼|2𝑗𝑗 ,                  𝐹𝐹𝑚𝑚

𝑃𝑃 = 1
4

|𝐼𝐼𝑗𝑗 |2𝑗𝑗 = 1
4

|𝑉𝑉 |2

𝜔𝜔2𝑗𝑗
 

𝐹𝐹𝑒𝑒
𝑆𝑆 = 1

4
|𝑉𝑉 |2𝐶𝐶 = 1

4
|𝐼𝐼|2

𝜔𝜔2𝐶𝐶
 ,     𝐹𝐹𝑒𝑒

𝑃𝑃 = 1
4

|𝑉𝑉 |2𝐶𝐶 

(A.6) 

Inserting (A.6) directly into (A.1) we can arrive at expressions for 𝑄𝑄 of a series (parallel) circuit in terms of the 
values of lumped elements 

 
𝑄𝑄𝑆𝑆 = 𝜔𝜔0𝑗𝑗

𝑅𝑅
= 1

𝜔𝜔0𝐶𝐶𝑅𝑅
, 𝑄𝑄𝑃𝑃 = 𝑅𝑅

𝜔𝜔0𝑗𝑗
= 𝜔𝜔0𝐶𝐶𝑅𝑅.   (A.7) 

 Alternately, we can show that the 𝑄𝑄 factor can also be represented using the reflection coefficient 𝛤𝛤  from the 
lumped circuit. For this, using (A.7) we write 𝑗𝑗 = 𝑅𝑅𝑄𝑄/𝜔𝜔0  and 𝐶𝐶 = 1/(𝑅𝑅𝑄𝑄𝜔𝜔0) and 𝑗𝑗 = 𝑅𝑅/(𝑄𝑄𝜔𝜔0) and 
𝐶𝐶 = 𝑄𝑄/(𝑅𝑅𝜔𝜔0) in the series and parallel cases, respectively. The reflection coefficient Γ  from the circuit is then 
given by 

 
𝛤𝛤 = 𝑍𝑍(𝜔𝜔)−𝑅𝑅

𝑍𝑍(𝜔𝜔) + 𝑅𝑅
= ± 1− (𝜔𝜔/𝜔𝜔0)2

1− (𝜔𝜔/𝜔𝜔0)2 + 2𝑗𝑗𝜔𝜔/(𝑄𝑄𝜔𝜔0)
 , (A.8) 

where 𝑍𝑍(𝜔𝜔) = 𝑅𝑅 + 𝑗𝑗𝑋𝑋(𝜔𝜔) denotes the input impedance and 𝑅𝑅 is also assumed as the characteristic impedance 
of the feeding line. The + and − minus signs correspond to series and parallel circuits, respectively. 
Differentiation of the refection coefficient with respect to 𝜔𝜔 gives  

 𝜕𝜕𝛤𝛤(𝜔𝜔)
𝜕𝜕𝜔𝜔

�
𝜔𝜔=𝜔𝜔0

= ±
2𝑗𝑗𝜔𝜔0𝑄𝑄(𝜔𝜔0

2 + 𝜔𝜔2)
(𝜔𝜔2𝑄𝑄− 𝜔𝜔0

2𝑄𝑄 + 2𝑗𝑗𝜔𝜔0𝜔𝜔)2 �
𝜔𝜔=𝜔𝜔0

= ±𝑗𝑗 𝑄𝑄
𝜔𝜔0

, (A.9) 

and hence 𝑄𝑄 = 𝜔𝜔0|𝛤𝛤 ′ (𝜔𝜔)|.  
Written using impedance explicitly we have 
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𝑄𝑄 = 𝜔𝜔0 �𝜕𝜕𝛤𝛤

𝜕𝜕𝜔𝜔
� = 𝜔𝜔0 � 2𝑅𝑅𝑍𝑍′ (𝜔𝜔)

(𝑅𝑅 + 𝑍𝑍(𝜔𝜔))2 � = 𝜔𝜔0 �
2𝑅𝑅�𝑅𝑅 + 𝑗𝑗𝑋𝑋(𝜔𝜔)�′

(𝑅𝑅 + 𝑅𝑅 + 𝑗𝑗𝑋𝑋(𝜔𝜔))2 � = 𝜔𝜔0
2𝑅𝑅

�𝜕𝜕𝑋𝑋(𝜔𝜔)
𝜕𝜕𝜔𝜔

� , (A.10) 

where the derivatives are evaluated at 𝜔𝜔 = 𝜔𝜔0. Equivalently we can arrive at a similar expression using 
admittances  𝑄𝑄 = 𝜔𝜔0|𝐵𝐵′(𝜔𝜔)|/(2𝐺𝐺) . To demonstrate the use of (A.10) we show a derivation of 𝑄𝑄 factor in the 
case of a series resonant circuit  

 𝑄𝑄𝑆𝑆 = 𝜔𝜔0
2𝑅𝑅

� 𝜕𝜕
𝜕𝜕𝜔𝜔

�𝑗𝑗𝜔𝜔𝑗𝑗 − 𝑗𝑗 1
𝜔𝜔𝐶𝐶

�� = 𝜔𝜔0
2𝑅𝑅

�𝑗𝑗 + 1
𝜔𝜔0

2𝐶𝐶
� = 2𝜔𝜔0𝑗𝑗

2𝑅𝑅
= 𝜔𝜔0𝑗𝑗

𝑅𝑅
 , (A.11) 

Where we have used the fact that the same energy is stored in the inductive part of the circuit as in the capacitive 
part and have thus used only the inductive part with doubled value. The result of (A.11) coincides with (A.7) for 
a series circuit. 
Second, we proceed to compute the simple case of half-power fractional bandwidth of the resonator. We 
represent the input impedance or admittance as 

 
𝑍𝑍𝑚𝑚𝐴𝐴

𝑆𝑆 = 𝑅𝑅 + 𝑗𝑗𝜔𝜔𝑗𝑗�1 − 𝜔𝜔0
2

𝜔𝜔2� , 𝑌𝑌𝑚𝑚𝐴𝐴
𝑃𝑃 = 𝐺𝐺 + 𝑗𝑗𝜔𝜔𝐶𝐶 �1 − 𝜔𝜔0

2

𝜔𝜔2� . (A.12) 

Half-power (or 3dB) points occur when the magnitude of the impedance is equal to 
√

2𝑅𝑅. This happens when the 
real and reactive parts are equal. 

 
𝑅𝑅 = 𝑗𝑗𝜔𝜔𝑗𝑗�𝜔𝜔2 − 𝜔𝜔0

2

𝜔𝜔2 � , 𝐺𝐺 = 𝑗𝑗𝜔𝜔𝐶𝐶 �𝜔𝜔2 − 𝜔𝜔0
2

𝜔𝜔2 �.   (A.13) 

Which leads to a condition  

 𝜔𝜔2 − 𝜔𝜔0
2 = 𝜔𝜔 𝑅𝑅

𝑗𝑗
, 𝜔𝜔2 − 𝜔𝜔0

2 = 𝜔𝜔 𝐺𝐺
𝐶𝐶

 (A.14) 

Where we can now use an approximation 𝜔𝜔2 − 𝜔𝜔0
2 = (𝜔𝜔 − 𝜔𝜔0)(𝜔𝜔 + 𝜔𝜔0) = ∆𝜔𝜔(2𝜔𝜔 − ∆𝜔𝜔) ≅ 2𝜔𝜔∆𝜔𝜔 if the 

bandwidth is reasonably small. Introducing this approximation into (A.14), removing 𝜔𝜔 from the left and right 
sides, dividing by 𝜔𝜔0  and using the definition of fractional bandwidth 𝐹𝐹𝐵𝐵𝐹𝐹 = 2∆𝜔𝜔/𝜔𝜔0  we are led to the same 
result in both series and parallel circuit case 

 𝐹𝐹𝐵𝐵𝐹𝐹3𝑑𝑑𝐵𝐵 ≅ 𝑅𝑅
𝜔𝜔0𝑗𝑗

 

𝐹𝐹𝐵𝐵𝐹𝐹3𝑑𝑑𝐵𝐵 ≅ 𝐺𝐺
𝜔𝜔0𝐶𝐶 ⎭�

�⎬
��
⎫

= 1
𝑄𝑄

 . (A.15) 

This simple result shows that bandwidth and 𝑄𝑄 are inversely proportional. Note that a crucial assumption 
here is narrow bandwidth, or high 𝑄𝑄, and the link is only an approximation, not an exact relationship.  

Although circuits are closed systems and as such amenable to a direct calculation of 𝑄𝑄, antennas by their 
very nature are open systems. From the viewpoint of the antenna, energy that permanently leaves it is the 
equivalent to energy dissipation in a resistor. 
 
Link between the 𝑄𝑄 factor and bandwidth for antennas with a general impedance  

For many applications it is sufficient to model the antenna as a simple RLC resonance circuit around the 
resonance frequency. However, the link between 𝑄𝑄 and fractional bandwidth (FBW) is no trivial matter. As 
pointed out in the comprehensive paper by Yaghjian and Best [24], the concept of bandwidth has to be refined: 
they make the distinction between the „conduction bandwidth“, defined for a tuned antenna as “the difference 
between the two frequencies at which the power accepted by the antenna, excited by a constant voltage 𝑉𝑉0 , is a 
given fraction of the power accepted at the frequency 𝜔𝜔0”, and the “matched VSWR Bandwidth”, defined as 
“the difference for an antenna tuned at frequency 𝜔𝜔0  between two frequencies on either side of 𝜔𝜔0at which the 
VSWR equals a constant s” 
 

Conduction bandwidth 𝐹𝐹𝐵𝐵𝐹𝐹𝑐𝑐𝑑𝑑  and 𝑄𝑄 factor are closely related under the assumption that the real part of 
the antenna input impedance 𝑍𝑍(𝜔𝜔) = 𝑅𝑅(𝜔𝜔) + 𝑗𝑗𝑋𝑋(𝜔𝜔) is not changing rapitdly with frequency i.e. 𝑅𝑅′(𝜔𝜔0) ≈ 0 . 
The conductance at a frequency 𝜔𝜔 of an antenna tuned at the frequency 𝜔𝜔0  can be written as 

 𝐺𝐺(𝜔𝜔) = 𝑅𝑅𝑒𝑒� 1
𝑍𝑍(𝜔𝜔)

� = 𝑅𝑅(𝜔𝜔)
𝑅𝑅(𝜔𝜔)2 + 𝑋𝑋(𝜔𝜔)2 , (A.16) 
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We can immediately point out the problem with using conductance bandwidth, namely, that the derivative of 
𝐺𝐺(𝜔𝜔) evaluated at 𝜔𝜔0 equals 𝐺𝐺′(𝜔𝜔0) = 𝑅𝑅′(𝜔𝜔0)/𝑅𝑅(𝜔𝜔0) and thus it is not zero at 𝜔𝜔0  unless 𝑅𝑅′(𝜔𝜔0) = 0. This 
means that in general the conductance will not reach a maximum at the frequency 𝜔𝜔0 . Moreover, in anti-resonant 
frequency ranges where both the resistance and reactance of the antenna are changing rapidly with frequency, the 
conductance may not possess a maximum and consequently the conductance bandwidth may not exist in these 
anti-resonant frequency ranges.  
To determine the conductance bandwidth about the shifted frequency 𝜔𝜔𝑐𝑐𝑑𝑑 = 𝜔𝜔0 + ∆𝜔𝜔0  at which 𝐺𝐺(𝜔𝜔) actually 
peaks when the antenna is tuned at 𝜔𝜔0 , we find the two frequencies 𝜔𝜔± = 𝜔𝜔𝑐𝑐𝑑𝑑 + ∆𝜔𝜔± at which the accepted 
power is (1 − 𝛼𝛼) times its value at 𝜔𝜔𝑐𝑐𝑑𝑑   Is given from (A.16) as 

 𝑅𝑅(𝜔𝜔±)
𝑅𝑅(𝜔𝜔±)2 + 𝑋𝑋(𝜔𝜔±)2 = (1 − 𝛼𝛼) 𝑅𝑅(𝜔𝜔𝑐𝑐𝑑𝑑 )

𝑅𝑅(𝜔𝜔𝑐𝑐𝑑𝑑 )2 + 𝑋𝑋(𝜔𝜔𝑐𝑐𝑑𝑑 )2 , (A.17) 

The value of the constant 𝛼𝛼 which lies in the range 0 ≤ 𝛼𝛼 ≤ 1 is assumed chosen ≤ 1/2. Next, all the functions 
in (A.17) have to be expanded in a Taylors series about 𝜔𝜔𝑐𝑐𝑑𝑑 , and then transformed to involve 𝜔𝜔0  using  𝜔𝜔𝑐𝑐𝑑𝑑 −
𝜔𝜔0 = ∆𝜔𝜔0  and 𝑅𝑅′(𝜔𝜔0) ≪ 𝑋𝑋′(𝜔𝜔0) is assumed. After a considerable amount of manipulations the result is found 
to be [24] 

 
∆𝜔𝜔± ≈ ±

√
𝛽𝛽𝑅𝑅(𝜔𝜔0)

𝑋𝑋′ (𝜔𝜔0)
 , 𝛽𝛽 = 𝛼𝛼

1 − 𝛼𝛼
≤ 1 (A.18) 

Under the additional assumption that the 𝑂𝑂[(∆𝜔𝜔±)3] terms in the Taylor expansion are negligible. An 
assumption that is generally satisfied if ∆𝜔𝜔±/𝜔𝜔0 ≪ 1 . 
The fractional conductance bandwidth 𝐹𝐹𝐵𝐵𝐹𝐹𝑐𝑐𝑑𝑑  is therefore given approximately by   

 
𝐹𝐹𝐵𝐵𝐹𝐹𝑐𝑐𝑑𝑑 (𝜔𝜔0) =

𝜔𝜔+ − 𝜔𝜔−
𝜔𝜔0

=
∆𝜔𝜔+ − ∆𝜔𝜔−

𝜔𝜔0
≈ 2

√
𝛽𝛽𝑅𝑅(𝜔𝜔0)

𝜔𝜔0|𝑋𝑋′ (𝜔𝜔0)|
 . (A.19) 

We can immediately see that this approximation can  be compared with the expression (A.10) for the 𝑄𝑄 factor of 
resonant lumped circuits. This is reasonable concerning we assumed the real part of the impedance is not varying 
with frequency. Combining (A.10) and (A.19) we arrive at 

 
𝐹𝐹𝐵𝐵𝐹𝐹𝑐𝑐𝑑𝑑 = 

√
𝛽𝛽

𝑄𝑄
,   𝛽𝛽 = 𝛼𝛼

1 − 𝛼𝛼
≤ 1   (A.20) 

For the half-power bandwidth  |Γ|2 = 0.5, (VSWR=5.828) and 
√

𝛽𝛽 = 1  is given by𝐹𝐹𝐵𝐵𝐹𝐹𝑐𝑐𝑑𝑑 = 1/𝑄𝑄  which is the 
same as derived in (A.15). 
 

Matched VSWR bandwidth 𝐹𝐹𝐵𝐵𝐹𝐹𝑉𝑉  and 𝑄𝑄 are related even for general impedance 𝑍𝑍(𝜔𝜔) = 𝑅𝑅(𝜔𝜔) +
𝑗𝑗𝑋𝑋(𝜔𝜔)where where the real part or the impedance is also frequency dependent.  In this case, the reflection 
coefficient Γ of the antenna is then given by 

 𝛤𝛤 = 𝑅𝑅(𝜔𝜔) + 𝑗𝑗𝑋𝑋(𝜔𝜔)−𝑅𝑅(𝜔𝜔0)
𝑅𝑅(𝜔𝜔) + 𝑗𝑗𝑋𝑋(𝜔𝜔) + 𝑅𝑅(𝜔𝜔0)

 , (A.21) 

where we put the characteristic impedance 𝑍𝑍𝑐𝑐ℎ  of the feed line 𝑍𝑍𝑐𝑐ℎ = 𝑅𝑅(𝜔𝜔0) . We calculate 𝑄𝑄 the same way as 
in (A11) and get.  

 
𝑄𝑄 = 𝜔𝜔0 �𝜕𝜕𝛤𝛤(𝜔𝜔)

𝜕𝜕𝜔𝜔
� = 𝜔𝜔0 �

2𝑅𝑅(𝜔𝜔0)�𝑅𝑅′(𝜔𝜔) + 𝑗𝑗𝑋𝑋 ′(𝜔𝜔)�
(𝑅𝑅(𝜔𝜔0) + 𝑅𝑅(𝜔𝜔) + 𝑗𝑗𝑋𝑋(𝜔𝜔))2 �  

𝜔𝜔=𝜔𝜔0
����� 𝜔𝜔0𝑍𝑍 ′(𝜔𝜔0)

2𝑅𝑅(𝜔𝜔0)
 (A.22) 

The 𝐹𝐹𝐵𝐵𝐹𝐹𝑉𝑉  for an antenna tuned at a frequency 𝜔𝜔0  is defined as the difference between the two frequencies on 
either side of  𝜔𝜔0  with a specific VSWR or, equivalently, at which|𝛤𝛤 (𝜔𝜔)|2  equals 𝛼𝛼 = (𝑉𝑉𝑆𝑆𝐹𝐹𝑅𝑅 − 1)2/
(𝑉𝑉𝑆𝑆𝐹𝐹𝑅𝑅 + 1)2  where the constant 𝛼𝛼 is assumed chosen ≤ 1/2. We thus take the magnitude squared of the 
reflection coefficient i.e,  

 
|𝛤𝛤 (𝜔𝜔)|2 = 𝑋𝑋2(𝜔𝜔) + [𝑅𝑅(𝜔𝜔)−𝑅𝑅(𝜔𝜔0)]2

𝑋𝑋2(𝜔𝜔) + [𝑅𝑅(𝜔𝜔) + 𝑅𝑅(𝜔𝜔0)]2
 , (A.23) 

Importantly, both |𝛤𝛤 (𝜔𝜔)|2  and its derivative with respect to 𝜔𝜔 are zero at 𝜔𝜔0 . Consequently, |𝛤𝛤 (𝜔𝜔)|2  has a 
minimum at 𝜔𝜔0  at which the antenna is tuned (𝑋𝑋(𝜔𝜔0) = 0) and matched to the feed line 𝑍𝑍𝑐𝑐ℎ = 𝑅𝑅(𝜔𝜔0). This 
means the matched VSWR bandwidth, (𝜔𝜔+ − 𝜔𝜔−) determined by 
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 𝑋𝑋2(𝜔𝜔±) + [𝑅𝑅(𝜔𝜔±) − 𝑅𝑅(𝜔𝜔0)]2

𝑋𝑋2(𝜔𝜔±) + [𝑅𝑅(𝜔𝜔±) + 𝑅𝑅(𝜔𝜔0)]2
= 𝛼𝛼 (A.24) 

unlike the conductance bandwidth, exists at all frequencies (for small enough 𝛼𝛼), that is, throughout both the 
antiresonant 𝑋𝑋′(𝜔𝜔0) < 0 and resonant 𝑋𝑋′(𝜔𝜔0) > 0 frequncy ranges. Therefore, the matched VSWR bandwidth 
is a more fundamental, universally applicable definition of bandwidth for a general antenna than conductance 
bandwidth. 
Bringing the denominator from the left-hand side of (A.24) to the right-hand side and rearranging terms to 
remove the rapidly varying function 𝑋𝑋(𝜔𝜔) from the denominator on the left-hand side of (A.24) produces 

 𝑋𝑋2(𝜔𝜔±) + [𝑅𝑅(𝜔𝜔±)−𝑅𝑅(𝜔𝜔0)]2

𝑅𝑅(𝜔𝜔±)
= 4𝛽𝛽𝑅𝑅(𝜔𝜔0) , 𝛽𝛽 = 𝛼𝛼

1 − 𝛼𝛼
≤ 1 (A.25) 

Expanding the left hand side in a Taylor series about 𝜔𝜔0  we find [YiB] 

 |𝑍𝑍 ′(𝜔𝜔0)|2(∆𝜔𝜔±)2 ≈ 4𝛽𝛽𝑅𝑅2(𝜔𝜔0) , (A.26) 

Under the assumption that the 𝑂𝑂[(∆𝜔𝜔±)3] terms are negligible. The assumption is generally satisfied if |∆𝜔𝜔±/
𝜔𝜔0| ≪ 1. The solution for  ∆𝜔𝜔± are 

 
∆𝜔𝜔± = ± 2

√
𝛽𝛽𝑅𝑅(𝜔𝜔0)

|𝑍𝑍 ′(𝜔𝜔0)|
 , (A.27) 

So the simplified fractional VSWR bandwidth takes the simple form 

 
𝐹𝐹𝐵𝐵𝐹𝐹𝑉𝑉 (𝜔𝜔0) =

𝜔𝜔+ − 𝜔𝜔−
𝜔𝜔0

=
∆𝜔𝜔+ − ∆𝜔𝜔−

𝜔𝜔0
≈ 4

√
𝛽𝛽𝑅𝑅(𝜔𝜔0)

𝜔𝜔0|𝑍𝑍 ′(𝜔𝜔0)|
 , (A.28) 

Using the approximate expression (A.28) and comparing it with the exact expression for 𝑄𝑄 in (A.22) we arrive at  

 
𝐹𝐹𝐵𝐵𝐹𝐹𝑉𝑉 (𝜔𝜔0) = 2

√
𝛽𝛽

𝑄𝑄
 , 𝛽𝛽 = 𝛼𝛼

1 − 𝛼𝛼
≤ 1  (A.29) 

The bandwidth of the resonance depends on the threshold level of the reflection coefficient. The relative 
bandwidth of half pover, |Γ|2 ≤ 0.5, (VSWR=5.828) and 

√
𝛽𝛽 = 1  is given by𝐹𝐹𝐵𝐵𝐹𝐹𝑉𝑉 = 2/𝑄𝑄. Relation (A.29) is 

circuit and is also a good approximation for single and multiple resonance models if 𝑄𝑄 is sufficiently large. 
 
Conclusions 
Due to the general nature of antenna impedances, the two definitions of bandwidth yield several differences: 

• In general, the frequency where the resistive part of the antenna impedance is maximal does not 
coincide with 𝜔𝜔0 (frequency where the tuned reactance is equal to zero). 

• In the case of anti-resonance, the conductance bandwidth may not exist as the conductance of the 
antenna may not have a maximum. 

• Outside the anti-resonant frequency ranges, the matched VSWR bandwidth is equal to twice the 
conductance bandwidth 𝐹𝐹𝐵𝐵𝐹𝐹𝑉𝑉 (𝜔𝜔0) ≅ 2𝐹𝐹𝐵𝐵𝐹𝐹𝑐𝑐𝑑𝑑 (𝜔𝜔0) 

• Consider the VSWR (or equivalently the reflection coefficient) bandwidth rather then the accepted 
power bandwidth, as it is more fundamental, use the link given by 

 

𝑄𝑄(𝜔𝜔0) ≈
2�𝑉𝑉𝑆𝑆𝐹𝐹𝑅𝑅 − 1

2
√

𝑉𝑉𝑆𝑆𝐹𝐹𝑅𝑅
�

𝐹𝐹𝐵𝐵𝐹𝐹𝑉𝑉 (𝜔𝜔0)
≈

2� 𝛼𝛼
1 − 𝛼𝛼

𝐹𝐹𝐵𝐵𝐹𝐹𝑉𝑉 (𝜔𝜔0)
 , 𝛼𝛼 = |Γ|2  (A.30) 

• The link is only an approximation, not an exact relationship. A crucial assumption is narrow bandwidth, 
or 𝑄𝑄 ≫ 1.  This condition is however always satisfied for electrically small antennas. 

•  In the cases where the Q factor is near unity, the only conclusion that can be made is that the antenna is 
potentially broadband but no explicit link between quality factor and bandwidth is made. 
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APPENDIX B. SCATTERING THEORY USEFUL DEFINITIONS  
So called scattering or far field coefficients are the coefficients of 𝑒𝑒−𝑗𝑗𝒌𝒌𝒓𝒓 𝑘𝑘⁄  in the far field. Consider the direct 
scattering problem of a time harmonic plane electromagnetic wave impinging in the forward direction �̂�𝐤 on a 
bounded scatterer. The electric field 𝐄𝐄S in the �̂�𝐤-direction from an object is expressed by 𝐄𝐄S(𝑘𝑘, 𝒓𝒓) =
𝑇𝑇0

+𝐒𝐒�𝑘𝑘, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞 𝑒𝑒−𝑗𝑗𝒌𝒌𝒓𝒓 𝑘𝑘⁄  . The bistatic RCS, 𝜎𝜎(𝑘𝑘, 𝒓𝒓)̂ in the 𝒓𝒓 ̂direction, for wavenumber 𝑘𝑘 is defined as 

 
𝜎𝜎(𝑘𝑘, 𝒓𝒓)̂ = lim

𝑘𝑘→∞
𝑘𝑘2 |𝐄𝐄S(𝑘𝑘, 𝒓𝒓)|2

|𝐄𝐄inc |2
= �𝐒𝐒�𝑘𝑘, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞 �2 ,   , (B 1) 

Where 𝐄𝐄inc  denotes the incident electic field, 𝑘𝑘 = |𝐫𝐫| denotes the magnitude of the position vector 𝐫𝐫 = 𝑘𝑘𝒓𝒓.̂ The 
scattering cross section 𝜎𝜎𝑠𝑠(𝑘𝑘) is the average of the bistatic RCS over all angles, i.e, integration over the unit 
sphere Ω, nemly,  

 
𝜎𝜎𝑠𝑠(𝑘𝑘) = � �𝐒𝐒�𝑘𝑘, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞 �2𝑑𝑑Ω

Ω
,   (B 2) 

where 𝑑𝑑Ω denotes the surface element of the unit sphere. The extinction cross section 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝑘𝑘), sometimes 
designated the total cross section, is defined as 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝑘𝑘) = 𝜎𝜎𝑠𝑠(𝑘𝑘) + 𝜎𝜎𝑎𝑎(𝑘𝑘), where 𝜎𝜎𝑎𝑎(𝑘𝑘) is the absorption cross 
section which measures the power absorbed by the scattere. The extinciton cross secion can be determined by 
measuring the bistatic RCS at all angles and the absorption cross section. However, a more straightforward 
method is to measure the RCS amlitude in the forward direction, and use the optical theorem to determine 
𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 (𝑘𝑘),trough. 

 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 = 4𝜋𝜋 𝑘𝑘⁄ Im��̂�𝐩𝐞𝐞
∗ ⋅ 𝐒𝐒�𝑘𝑘, �̂�𝐤� ⋅ �̂�𝐩𝐞𝐞�. (B 3) 

Thus the extinction cross section can also be determined by a measurement of the RCS amplitude in the forward 
direction. 
 
Optical theorem 

Here we will derive only the scalar version of the optical theorem due to the simplicity of the derivation. The 
optical theorem relates the forward scattering amplitude 𝑆𝑆(𝜃𝜃 = 0) of a process to the corresponding total or 
extinction, cross section 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 . For light waves being scattered off particles, it is usually stated as  

 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 = 4𝜋𝜋
𝑘𝑘

Im�S(𝜃𝜃 = 0)� , (B 4) 

where 𝑘𝑘 =  𝜔𝜔/𝑐𝑐 is the (angular) wave number. The fundamental principle behind the optical theorem is the 
conservation of energy, the optical theorem is a beautiful demonstration of the fact that a handful of deep 
principles in physics lead to astonishing, far-from-obvious consequences. 

Consider an incoming scalar plane wave travelling along the z axis which is scattered by some object at the 
origin. At a large distance 𝑘𝑘 ≫ 𝜆𝜆, the amplitude of the wave can be expanded as 

 
𝜓𝜓(𝐫𝐫) ≈ 𝑒𝑒−𝑗𝑗𝑘𝑘𝑧𝑧 + 𝑆𝑆(𝜃𝜃) 𝑒𝑒−𝑗𝑗𝑘𝑘𝑘𝑘

𝑘𝑘
 , (B 5) 

where 𝜃𝜃 is the angle between 𝐫𝐫 and the 𝑧𝑧 axis and 𝑆𝑆(𝜃𝜃) is the scattering amplitude. Close to the 𝑧𝑧 axis (𝜃𝜃 ≪ 1) 
we can make the approximation 

 
𝑘𝑘 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 ≈ 𝑧𝑧 + 𝑥𝑥2 + 𝑦𝑦2

2𝑧𝑧
 . (B 6) 

The energy carried by the wave is proportional to the amplitude squared, which is given by 

 
|𝜓𝜓(𝐫𝐫)|2 = 1 + 𝑆𝑆(𝜃𝜃) 𝑒𝑒−𝑗𝑗𝑘𝑘 (𝑘𝑘−𝑧𝑧)

𝑘𝑘
+ 𝑆𝑆∗(𝜃𝜃) 𝑒𝑒−𝑗𝑗𝑘𝑘 (𝑘𝑘−𝑧𝑧)

𝑘𝑘
+ |𝑆𝑆(𝜃𝜃)|2

𝑘𝑘

          ≈ 1 + 2𝑅𝑅𝑒𝑒
⎝
⎜⎛𝑆𝑆(𝜃𝜃)𝑒𝑒−𝑗𝑗𝑘𝑘 (𝑘𝑘−𝑧𝑧)

2𝑧𝑧

𝑧𝑧 + 𝑥𝑥2 + 𝑦𝑦2

2𝑧𝑧 ⎠
⎟⎞

          ≈ 1 + 2
𝑧𝑧

𝑅𝑅𝑒𝑒�𝑆𝑆(𝜃𝜃 = 0)𝑒𝑒−𝑗𝑗𝑘𝑘𝑥𝑥2 +𝑦𝑦2

2𝑧𝑧 � .

  (B 7) 

Now we consider the total energy absorbed by a screen of area 𝐴𝐴 = 𝜋𝜋𝑅𝑅2 , which is proportional to 
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� |𝜓𝜓(𝐫𝐫)|2𝑑𝑑𝐴𝐴
𝐴𝐴

= � 𝑑𝑑𝑗𝑗
2𝜋𝜋

0
� �1 + 2

𝑧𝑧
𝑅𝑅𝑒𝑒�𝑆𝑆(𝜃𝜃 = 0)𝑒𝑒−𝑗𝑗𝑘𝑘𝑠𝑠2 /2𝑧𝑧�� 𝑠𝑠𝑑𝑑𝑠𝑠

𝑅𝑅

0
, (B 8) 

where 𝑠𝑠 = �𝑥𝑥2 + 𝑦𝑦2 . The integration gives 

 
� |𝜓𝜓(𝐫𝐫)|2𝑑𝑑𝐴𝐴
𝐴𝐴

= 𝜋𝜋𝑅𝑅2 − 4𝜋𝜋
𝑘𝑘

Im�S(𝜃𝜃 = 0)�. (B 9) 

We note that this gives the fraction of energy the screen would receive if there were no scattering diminished an 
amount proportional to 4𝜋𝜋 𝑘𝑘⁄ Im�S(𝜃𝜃 = 0)�. The conservation of energy demands that this be equal to the total 
extinction cross section 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 = 𝜎𝜎𝑠𝑠 + 𝜎𝜎𝑎𝑎 = 4𝜋𝜋 𝑘𝑘⁄ Im�S(𝜃𝜃 = 0)�. 
 
Absolute gain 𝐺𝐺��̂�𝒌�. 
The absolute gain is the ratio of the radiation intensity in a given direction to the intensity that would be obtained 
if the power accepted by the antenna was radiated isotropically. 
 
Partial gain  𝐺𝐺��̂�𝒌, �̂�𝐩𝐞𝐞� 
The partial gain in a give direction is the ratio of the part of the radiation intensity corresponding to a given 
polarization to the radiation intensity that would be obtained if the power accepted by the antenna was radiated 
isotropically. The absolute gain is equal to the sum of partial gains for two orthogonal polarizations, i.e. 𝐺𝐺��̂�𝒌� =
𝐺𝐺��̂�𝒌, �̂�𝐩𝐞𝐞� + 𝐺𝐺��̂�𝒌, �̂�𝐩𝐦𝐦�. 
 
Realized gain 𝐺𝐺��̂�𝒌, 𝛤𝛤� 
The realized gain is the absolute gain of an antenna reduced by the losses due to the impedance mismatch of the 
antenna, i.e. 𝐺𝐺��̂�𝒌, 𝛤𝛤� = (1 − |𝛤𝛤 |2)𝐺𝐺��̂�𝒌�. 
 
Absolute directivity 𝐷𝐷��̂�𝒌� 
The absolute directivity is the ratio of the radiation intensity in a given direction to the radiation intensity 
averegd over all directions. The averaged radiation intensity is equal to the total power radiated divided by 4π. 
 
Partial directivity 𝐷𝐷��̂�𝒌, �̂�𝐩𝐞𝐞� 
The partial directivity in a given direction is the ratio of that part of the radiation intensity corresponding to a 
given polarization to the radiation intensity averaged over all directions. The averaged radiation intensity is equal 
to the total power radiated divided by 4π. 
 
Absorption cross section 𝜎𝜎𝑎𝑎��̂�𝒌, �̂�𝐩𝐞𝐞 , 𝛤𝛤� 
The absorption cross section for a given polarization and incident direction is the ratio of the absorbed power in 
the antenna to the incident power flow density when subject to a plane wave excitation. For a perfectly matched 
antenna, the absorption cross section coincides with the partial effective area. 
 
Absorption cross section 𝜎𝜎𝑠𝑠��̂�𝒌, �̂�𝐩𝐞𝐞 , 𝛤𝛤� 
The absorption cross section for a given polarization and incident direction is the ratio of the scattered power in 
the antenna to the incident power flow density when subject to a plane wave excitation.  
 
Extinction cross section 𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 ��̂�𝒌, �̂�𝐩𝐞𝐞 , 𝛤𝛤� 
The extinction cross section for a given polarization and incident direction is the sum of the absorbed and 
scattered power of the antenna to the incident power flow density when subject to a plane wave excitation, i.e. 
𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 ��̂�𝒌, �̂�𝐩𝐞𝐞 , 𝛤𝛤� = 𝜎𝜎𝑠𝑠��̂�𝒌, �̂�𝐩𝐞𝐞 , 𝛤𝛤� + 𝜎𝜎𝑎𝑎��̂�𝒌, �̂�𝐩𝐞𝐞 , 𝛤𝛤�  
 
Absorption efficiency 𝜂𝜂��̂�𝒌, �̂�𝐩𝐞𝐞 , 𝛤𝛤� 
The absorption efficiency of an antenna for a given polarization and incident direction is the ratio of the 
absorbed power to the total absorbed and scattered power when subject to a plane wave excitation, i.e. 
𝜂𝜂��̂�𝒌, �̂�𝐩𝐞𝐞 , 𝛤𝛤� = 𝜎𝜎𝑠𝑠��̂�𝒌, �̂�𝐩𝐞𝐞 , 𝛤𝛤�/𝜎𝜎𝑒𝑒𝑥𝑥𝐴𝐴 ��̂�𝒌, �̂�𝐩𝐞𝐞 , 𝛤𝛤� 
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APPENDIX C. CALCULATION OF THE APERTURE ADMITTANCE FOR A RECTANGULAR 
APERTURE. 

In this section, using Fourier transform (spectral) techniques, the admittance of an rectangular aperture antenna 
mounted on an infinite ground plane and radiating into free space will be formulated. The geometrical 
arrangement of the antenna under consideration a rectangular cavity drilled into a ground plane and filled with 
some dielectric material of relative permittivity 𝜔𝜔𝜋𝜋 , as shown in Figure 130. 

 
Figure 130 a) A rectangular cavity in an infinite ground plane and (b) the corresponding transmission line model for an eclectically small 
cavity 

Aperture field 
We will assume that the electric field distribution on the aperture is that given by the TEn0 rectangular 

waveguide mode  

 𝐄𝐄𝑦𝑦(𝐴𝐴) = 𝒚𝒚 ̂𝑇𝑇0
+ cos �𝐴𝐴𝜋𝜋 

a
𝑥𝑥�  , − a

2
≤ 𝑥𝑥 ≤ a

2
 ,− 𝑎𝑎

2
≤ 𝑦𝑦 ≤ 𝑎𝑎

2
 , (C 1) 

where 𝐸𝐸0
+ is a constant, a and b are the dimensions of the aperture.  

 
Power inside the shorted waveguide 

Inside the waveguide, the time averaged power transmitted in the TEn0 mode can be easily calculated from 
the Poynting vector  

 
𝑃𝑃𝐴𝐴

𝐶𝐶 = 1
2

� 𝐄𝐄𝑦𝑦 × 𝐇𝐇𝑥𝑥
∗ 𝑑𝑑𝐒𝐒 = 1

2
𝑌𝑌𝑤𝑤𝑔𝑔 (𝐴𝐴)

∗ |𝑇𝑇0
+|2 � 𝑑𝑑𝑦𝑦

𝑎𝑎/2

−𝑎𝑎/2
� cos2 �𝐴𝐴𝜋𝜋 

a
𝑥𝑥� 𝑑𝑑𝑥𝑥

a/2

−a/2𝐴𝐴
=

= 𝑎𝑎𝑎𝑎 
4

𝑌𝑌𝐴𝐴
𝐶𝐶∗|𝑇𝑇0

+|2
 (C 2) 

From (C 2) we can define the input impedance into the waveguide on FIG (having an electric field imposed at 
the aperture)  

 
𝑌𝑌𝐴𝐴

𝐶𝐶 =
4 𝑃𝑃𝑤𝑤𝑔𝑔 (𝐴𝐴)

∗

a𝑎𝑎|𝑇𝑇0
+|2

 , (C 3) 

This formulation will also be suitable to calculate the aperture admittance. 
 
Aperture admittance  

It is important to note that unlike in the waveguide, the modes are not orthogonal at the aperture due to 
different boundary conditions. We thus must also consider the mutual admittance between TE0n and TE0m modes. 
The complex power flow delivered to the aperture can then be written as 

 
𝑌𝑌𝑚𝑚𝐴𝐴

𝐴𝐴𝐴𝐴 = 4 𝑃𝑃𝑚𝑚𝐴𝐴
𝐴𝐴𝐴𝐴 ∗

a𝑎𝑎|𝑇𝑇0
+|2

= 𝐺𝐺𝑚𝑚𝐴𝐴
𝐴𝐴𝐴𝐴 + 𝑗𝑗𝐵𝐵𝑚𝑚𝐴𝐴

𝐴𝐴𝐴𝐴  . (C 4) 

The complex power transmitted by the aperture can be written as integral is by transforming it to the spectral 
domain, i.e.: 

 
𝑃𝑃𝑚𝑚𝐴𝐴

𝐴𝐴𝐴𝐴 = 1
2

� 𝐄𝐄𝑦𝑦(𝐴𝐴)(𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 0)𝐇𝐇𝑥𝑥(𝑚𝑚)
∗ (𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 0)𝑑𝑑𝐒𝐒 =

𝐴𝐴

= − 1
2

� 𝑇𝑇𝑦𝑦(𝐴𝐴)(𝑥𝑥, 𝑦𝑦, 0)𝐻𝐻𝑥𝑥(𝑚𝑚)
∗ (𝑥𝑥, 𝑦𝑦, 0)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

𝐴𝐴

 (C 5) 

An alternate and simpler method in the formulation of the aperture admittance is to use Fourier transforms. By 
Parseval’s theorem 
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� 𝑓𝑓(𝑥𝑥)𝑔𝑔∗

+∞

−∞
(𝑥𝑥)𝑑𝑑𝑥𝑥 = 1

2𝜋𝜋
� 𝐹𝐹(𝑘𝑘𝑥𝑥)𝐺𝐺∗

+∞

−∞
(𝑘𝑘𝑥𝑥)𝑑𝑑𝑘𝑘𝑥𝑥 , (C 6) 

We can rewrite (C 5) as 

 
𝑃𝑃𝑚𝑚𝐴𝐴

𝐴𝐴𝐴𝐴 = − 1
8𝜋𝜋2  � �   𝑇𝑇𝑦𝑦(𝐴𝐴)�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦 �𝐻𝐻𝑥𝑥(𝑚𝑚)

∗
+∞

−∞
�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 �𝑑𝑑𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘𝑥𝑥

+∞

−∞
, (C 7) 

Where 𝑇𝑇𝑦𝑦�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦 � is the Fourier transform of the electric field 

 
 𝑇𝑇𝑦𝑦(𝐴𝐴)�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦 � = � � 𝑇𝑇0

+cos �𝐴𝐴𝜋𝜋 
a

𝑥𝑥�
𝑎𝑎 2⁄

−𝑎𝑎 2⁄

a 2⁄

−a 2⁄
𝑒𝑒𝑗𝑗�𝑘𝑘𝑥𝑥 𝑥𝑥+𝑘𝑘𝑦𝑦 𝑦𝑦�𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 =

= 𝑇𝑇0
+  � 𝑒𝑒𝑗𝑗𝑘𝑘𝑦𝑦 𝑦𝑦

𝑎𝑎/2

−𝑎𝑎/2
⋅ � cos �𝐴𝐴𝜋𝜋 

a
𝑥𝑥� 𝑒𝑒𝑗𝑗𝑘𝑘𝑥𝑥 𝑥𝑥

a/2

−a/2
 ,

 (C 8) 

The first integral results in 

 
�𝑒𝑒𝑗𝑗𝑘𝑘𝑦𝑦 𝑦𝑦 ��−𝑎𝑎/2

𝑎𝑎/2

𝑗𝑗𝑘𝑘𝑦𝑦
= 

2𝑗𝑗sin�
𝑘𝑘𝑦𝑦𝑎𝑎
2 �

𝑗𝑗𝑘𝑘𝑦𝑦
= 𝑎𝑎 sinc �

𝑘𝑘𝑦𝑦𝑎𝑎
2

� . (C 9) 

For the second integral we use a complex expansion of the cosine function 

 
�

1
2
�𝑒𝑒𝑗𝑗𝐴𝐴𝜋𝜋 

a 𝑥𝑥 + 𝑒𝑒−𝑗𝑗𝐴𝐴𝜋𝜋 
a 𝑥𝑥�𝑒𝑒𝑗𝑗𝑘𝑘𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥

a/2

−a/2
=

1
2
� 𝑒𝑒𝑗𝑗(𝐴𝐴𝜋𝜋 

𝑎𝑎 𝑥𝑥+𝑘𝑘𝑥𝑥𝑥𝑥)𝑑𝑑𝑥𝑥
a/2

−a/2
+

1
2
� 𝑒𝑒𝑗𝑗(−𝐴𝐴𝜋𝜋 

a 𝑥𝑥+𝑘𝑘𝑥𝑥𝑥𝑥)𝑑𝑑𝑥𝑥
a/2

−a/2

                                    =
1
2

2𝑗𝑗sin�(𝐴𝐴𝜋𝜋 
a + 𝑘𝑘𝑥𝑥) 𝑎𝑎

2�
𝑗𝑗(𝐴𝐴𝜋𝜋 

a + 𝑘𝑘𝑥𝑥)
+

1
2

2𝑗𝑗sin�(− 𝐴𝐴𝜋𝜋 
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2�
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                                    =  
(𝐴𝐴𝜋𝜋 
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a + 𝑘𝑘𝑥𝑥)sin �− 𝐴𝐴𝜋𝜋 
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𝑘𝑘𝑥𝑥
2 − (𝐴𝐴𝜋𝜋 

a )2 =

                                    =  
(− 𝐴𝐴𝜋𝜋 

a + 𝑘𝑘𝑥𝑥)cos �𝑘𝑘𝑥𝑥a
2 � − (𝐴𝐴𝜋𝜋 

a + 𝑘𝑘𝑥𝑥)cos �𝑘𝑘𝑥𝑥a
2 �

𝑘𝑘𝑥𝑥
2 − (𝐴𝐴𝜋𝜋 

a )2 =

                                    =
2𝐴𝐴𝜋𝜋 

a cos �𝑘𝑘𝑥𝑥a
2 �

(𝐴𝐴𝜋𝜋 
a )2 − 𝑘𝑘𝑥𝑥

2 = 2𝐴𝐴𝜋𝜋𝑎𝑎
cos �𝑘𝑘𝑥𝑥a

2 �

(𝐴𝐴𝜋𝜋)2 − 𝑎𝑎2𝑘𝑘𝑥𝑥
2

a2

=
𝐴𝐴𝜋𝜋𝑎𝑎
2

cos �𝑘𝑘𝑥𝑥a
2 �

�𝐴𝐴𝜋𝜋 
2 �2 − �𝑘𝑘𝑥𝑥a

2 �
2 

  (C 10) 

Combining (C 9) and  (C 10) we have 

 
  𝑇𝑇𝑦𝑦(𝐴𝐴)�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦 � = �𝐴𝐴𝜋𝜋a𝑎𝑎

2
�𝑇𝑇0

+
cos �𝑘𝑘𝑥𝑥a

2 �

�𝜋𝜋2�2 − �𝑘𝑘𝑥𝑥a
2 �

2 𝑠𝑠𝑚𝑚𝐴𝐴𝑐𝑐 �
𝑘𝑘𝑦𝑦𝑎𝑎
2

� (C 11) 

The transform of the magnetic field can be obtained with the use of two Maxwell’s equations written in the 
spectral domain i.e. 𝐤𝐤 × 𝐄𝐄 = 𝜔𝜔𝜇𝜇𝐇𝐇 and  𝐤𝐤 ⋅ 𝐄𝐄 = 𝟎𝟎. We have 

 𝐇𝐇�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 � = 1
𝑘𝑘𝜂𝜂

𝐤𝐤 × 𝐄𝐄�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 �  ⇒  𝐻𝐻�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 � = 1
𝑘𝑘𝜂𝜂

(𝑇𝑇𝑧𝑧𝑘𝑘𝑦𝑦−𝑇𝑇𝑦𝑦𝑘𝑘𝑧𝑧) , (C 12) 

together with 

 
𝑇𝑇𝑥𝑥𝑘𝑘𝑥𝑥+𝑇𝑇𝑦𝑦𝑘𝑘𝑦𝑦+𝑇𝑇𝑧𝑧𝑘𝑘𝑧𝑧 = 0  ⇒  𝑇𝑇𝑧𝑧 = −

𝑇𝑇𝑥𝑥𝑘𝑘𝑥𝑥+𝑇𝑇𝑦𝑦𝑘𝑘𝑦𝑦

𝑘𝑘𝑧𝑧
= −

𝑘𝑘𝑦𝑦

𝑘𝑘𝑧𝑧
𝑇𝑇𝑦𝑦  , (C 13) 

Which are combined in the expression 

 
𝐻𝐻𝑥𝑥(𝑚𝑚) = − 1

𝑘𝑘𝜂𝜂
�𝑘𝑘𝑧𝑧 +

𝑘𝑘𝑦𝑦
2

𝑘𝑘𝑧𝑧
�𝑇𝑇𝑦𝑦(𝑚𝑚) = − 1

𝑘𝑘𝜂𝜂
𝑘𝑘2 − 𝑘𝑘𝑥𝑥

2

𝑘𝑘𝑧𝑧
𝑇𝑇𝑦𝑦(𝑚𝑚) , (C 14) 
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where 𝑘𝑘𝑧𝑧 = �𝑘𝑘2 − 𝑘𝑘𝑥𝑥
2 − 𝑘𝑘𝑦𝑦

2 . Combining expression (C 11) for the electric and (C 14) the magnetic field into 
the power integral (C 7) we arrive at 

 

𝑃𝑃𝑚𝑚𝐴𝐴
𝐴𝐴𝐴𝐴 = 

𝑚𝑚𝐴𝐴(a𝑎𝑎|𝑇𝑇0
+|)2

32 𝑘𝑘 𝜂𝜂
� 𝑘𝑘2 − 𝑘𝑘𝑥𝑥

2

𝑘𝑘𝑧𝑧
∗

�cos �𝑘𝑘𝑥𝑥a
2 � sinc�

𝑘𝑘𝑦𝑦𝑎𝑎
2 ��

2

��𝐴𝐴𝜋𝜋
2 �2 − �𝑘𝑘𝑥𝑥a

2 �
2
���𝑚𝑚𝜋𝜋

2 �2 − �𝑘𝑘𝑥𝑥a
2 �

2
�

𝑑𝑑𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘𝑥𝑥
ℝ2

 . (C 15) 

The aperture admittance differs from the power only by a constant 4/(𝑎𝑎𝑎𝑎|𝑇𝑇0
+|2) according to definition (C 4) and 

it is valid for calculating the admittance of a specific TE mode when 𝑛𝑛 = 𝑚𝑚 and mutual admittance between two 
modes when 𝑛𝑛 ≠ 𝑚𝑚. The real part, conductance, is computed by integrating on the interior of the circle 𝜋𝜋2 =
𝜋𝜋𝑥𝑥2 + 𝜋𝜋𝑦𝑦2 while the imaginary part, susceptance, by integrating the remaining space, from the circle up to infinity. 
The integral for the admittance can be made slightly simpler and more suitable for numerical computation by 
making a variable substitutions 𝑘𝑘𝑥𝑥𝑎𝑎 2⁄ = 𝑋𝑋 and 𝑘𝑘𝑦𝑦𝑎𝑎 2⁄ = 𝑌𝑌 . After the substitution we get 

 
𝑌𝑌𝑚𝑚𝐴𝐴
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 𝑚𝑚𝐴𝐴
𝜂𝜂

�
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�
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𝑑𝑑𝑋𝑋 𝑑𝑑𝑌𝑌 .

ℝ2

  (C 16) 

Furthermore, it is convenient to look at the admittance depending on the size of the aperture compared to the 
wavelength or 𝑎𝑎/𝜆𝜆. We can easily replace 𝑘𝑘𝑎𝑎 in (C 16) with 2𝜋𝜋(𝑎𝑎/𝜆𝜆). The resulting integral is 

 
𝑌𝑌𝑚𝑚𝐴𝐴

𝐴𝐴𝐴𝐴 = 𝑚𝑚𝐴𝐴
2𝜋𝜋𝜂𝜂�a

𝜆𝜆�
 �

𝜋𝜋2�a
𝜆𝜆�

2
− 𝑋𝑋2

�𝜋𝜋2�a
𝜆𝜆�

2
− �𝑋𝑋2 + �a

𝑎𝑎 𝑌𝑌 �
2
�

�cos(𝑋𝑋) sinc(𝑌𝑌 )�2

��𝐴𝐴𝜋𝜋
2 �2 − (𝑋𝑋)2� ��𝑚𝑚𝜋𝜋

2 �2 − (𝑋𝑋)2�
𝑑𝑑𝑋𝑋 𝑑𝑑𝑌𝑌 .

ℝ2

 (C 17) 

The integral in (C 17) has to be calculated numerically with computer software. As the TE10 mode is of most 
interest we will plot the numerical result using the NIntegrate function in Mathematica [126] for the case  
𝐴𝐴 = 𝑚𝑚 = 1. This resultant function of (𝑎𝑎/𝜆𝜆) from 0 to 1 is shown in FIG where the dots represent numerically 
computed values. 

 
Figure 131 (a) real part of admittance and (b) imaginary part of admittance. Dots represent the numerically computed values and the line is a 
function approximating the data.  
 
The values obtained numerically were used to create a formula in the form of a polynomial to fit the data. Fitting 
was also performed in Mathematica and the resulting polynomial   

   𝐺𝐺11
𝐴𝐴𝐴𝐴  = 0.00897837𝑥𝑥2  −  0.0163648𝑥𝑥4  +  0.0275831𝑥𝑥6  −  0.0668926𝑥𝑥8  +  0.13512𝑥𝑥10  

− 0.161626𝑥𝑥12  +  0.101053𝑥𝑥14  −  0.0255781𝑥𝑥16

𝐵𝐵11
𝐴𝐴𝐴𝐴  = −0.00080857

𝑥𝑥
+  0.00537822𝑥𝑥 −  0.0138123𝑥𝑥3  +  0.0239716𝑥𝑥5  −  0.03366𝑥𝑥7  

+ 0.0189707𝑥𝑥9  +  0.0474954𝑥𝑥11  −  0.109933𝑥𝑥13  +  0.0881392𝑥𝑥15  −  0.0256397𝑥𝑥17

 (C 18) 

Where 𝑥𝑥 = a 𝜆𝜆⁄ = 𝑘𝑘𝑎𝑎 (2𝜋𝜋)⁄ . We note here that this polynomial is inspired by Cohens work where he reported 
the admittance in the same form as (C 18). However, Cohen’s coefficients differ slightly from our result. In 
Cohen’s Ph.D. Thesis we find 
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 𝐺𝐺11
𝐴𝐴𝐴𝐴  =  0.00901𝑥𝑥2  −  0.01522𝑥𝑥4  +  0.01436𝑥𝑥6  −  0.00848𝑥𝑥8 + 0.00342𝑥𝑥10

− 0.00101𝑥𝑥12  +  0.00023𝑥𝑥14  −  0.00004𝑥𝑥16

𝐵𝐵11
𝐴𝐴𝐴𝐴  = −0.000809

𝑥𝑥
 +  0.00537𝑥𝑥 −  0.01278𝑥𝑥3  +  0.01596𝑥𝑥5  −  0.01161𝑥𝑥7 +  0.00559𝑥𝑥9 

− 0.00193𝑥𝑥11  +  0.00049𝑥𝑥13  −  0.0001𝑥𝑥15  +  0.00002𝑥𝑥17

 (C 19) 

The difference in the values of the coefficients in (C 18) and (C 19) can probably be attributed to the method of 
fitting the curve. Both polynomials will give practically the same admittance, differing only in the third 
significant number. 
  

Since the low frequency limit 𝑘𝑘 → 0 is of special importance in this thesis, the first coefficient of the 
suseptance is the most important. Instead of going trough the whole process of approximating the aperture 
admittance with a polynomial, this particular coefficient 𝑎𝑎𝑚𝑚𝐴𝐴

0  for a given mode or for a mutual coupling of 
modes can be expressed directly. The integral  (C 16) can be expanded into a Taylor series around 𝑘𝑘 = 0 which 
will leave for the first term 

 
𝑌𝑌𝑚𝑚𝐴𝐴

𝐴𝐴𝐴𝐴 ,𝑘𝑘→0 = − 1
𝑘𝑘𝑎𝑎

 𝑚𝑚𝐴𝐴
𝜂𝜂

� 𝑋𝑋2

�𝑋𝑋2 + �a
𝑎𝑎 𝑌𝑌 �

2

�cos(𝑋𝑋) sinc(𝑌𝑌 )�2

��𝐴𝐴𝜋𝜋
2 �2 − (𝑋𝑋)2� ��𝑚𝑚𝜋𝜋

2 �2 − (𝑋𝑋)2�
𝑑𝑑𝑋𝑋 𝑑𝑑𝑌𝑌 ,

ℝ2

 (C 20) 

from which we have 

 
𝑎𝑎𝑚𝑚𝐴𝐴

0 = − 𝑚𝑚𝐴𝐴
2𝜋𝜋𝜂𝜂

� 𝑋𝑋2

�𝑋𝑋2 + �a
𝑎𝑎 𝑌𝑌 �

2

�cos(𝑋𝑋) sinc(𝑌𝑌 )�2

��𝐴𝐴𝜋𝜋
2 �2 − (𝑋𝑋)2� ��𝑚𝑚𝜋𝜋

2 �2 − (𝑋𝑋)2�
𝑑𝑑𝑋𝑋 𝑑𝑑𝑌𝑌  .

ℝ2

 (C 21) 

 
Directivity calculation for square (𝐚𝐚 = 𝒃𝒃) aperture excited by the TE10 mode. 

Directivity of the aperture antenna is given by 

 𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 = 4𝜋𝜋 𝑈𝑈𝑚𝑚𝑎𝑎𝑥𝑥
𝑃𝑃𝑘𝑘𝑎𝑎𝑑𝑑

 (C 22) 

Where 𝑃𝑃𝑘𝑘𝑎𝑎𝑑𝑑  is given by the real part of equation (C 15), but since the admittance was explicitly calculated, we 
can express it using the conductance 𝐺𝐺 as  

 
𝑃𝑃𝑘𝑘𝑎𝑎𝑑𝑑 =

a2|𝑇𝑇0
+|2

4
𝐺𝐺11

𝐴𝐴𝐴𝐴 , (C 23) 

and 𝑈𝑈𝑚𝑚𝑎𝑎𝑥𝑥  is the farfield power transmitted orthogonal to the aperture. The expression to obtain 𝑈𝑈𝑚𝑚𝑎𝑎𝑥𝑥  can be 
found in [38] as: 

 
𝑈𝑈𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑘𝑘2

8𝜋𝜋2𝜂𝜂0
|𝐄𝐄|𝑚𝑚𝑎𝑎𝑥𝑥

2  (C 24) 

Where the electric far field is already given in (C 11), and 𝜂𝜂0  is the free space impedance. What remains to be 
calculated is its maximum value. Since we expect the maximum to occur in the orthogonal �̂�𝑧 direction to the 
aperture, we can assume 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 → 0 in (C 11). This limit gives 𝑇𝑇𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑇𝑇0

+ 2 a2 𝜋𝜋⁄ . Inserting (C 24) and (C 23) 
into (C 22) gives  

 
𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 = 8(𝑘𝑘a)2

𝜋𝜋3𝜂𝜂0𝐺𝐺11
𝐴𝐴𝐴𝐴 . (C 25) 

Since the conductance is expressible in a series expansion 𝐺𝐺11
𝐴𝐴𝐴𝐴 = 𝑔𝑔11

0 𝑥𝑥2 + 𝑔𝑔11
1 𝑥𝑥4 + 𝑔𝑔11

2 𝑥𝑥6 + ⋯  where 𝑥𝑥 =
𝑘𝑘𝑎𝑎 (2𝜋𝜋)⁄ , we can also series expand (C 25) and obtain an approximation for small aperture sizes  

 
𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 = 32

𝜂𝜂0𝑔𝑔11
0 𝜋𝜋

− 8𝑔𝑔11
1 (𝑘𝑘a)2

𝜂𝜂0𝑔𝑔11
0 2𝜋𝜋3

+ 𝒪𝒪(𝑘𝑘a)4 , (C 26) 

Upon inserting the numerical values of the coefficients the directivity is 𝐷𝐷 ≈ 3 + 0.1283(𝑘𝑘a)2 + 𝑂𝑂(𝑘𝑘a)4 . The 
directivity depending on cavities size is depicted in Figure 132.  
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Figure 132 Calculated directivity depending on aperture size. 
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APPENDIX D. CALCULATION OF THE APERTURE ADMITTANCE FOR A CIRCULAR 
APERTURE. 

In this section, using Fourier transform (spectral) techniques, the admittance of a circular aperture mounted 
on an infinite ground plane and radiating into free space will be formulated. The geometrical arrangement of the 
antenna under consideration a rectangular cavity drilled into a ground plane and filled with some dielectric 
material of relative permittivity 𝜀𝜀𝑘𝑘 , as shown in Figure 133. 

 
Figure 133 (a) A rectangular cavity in an infinite ground plane and (b) the corresponding transmission line model for an eclectically small 
cavity 
 
Aperture field 

We will assume that the electric field distribution on the aperture is that given by the TE11 waveguide mode 
 

𝐄𝐄(𝜌𝜌, 𝑚𝑚) = 𝝆𝝆�̂�𝑇0
+ 𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)

𝜌𝜌
sin(𝑚𝑚) + 𝝓𝝓�̂�𝑇0

+𝑘𝑘𝑐𝑐𝐽𝐽1
′ (𝑘𝑘𝑐𝑐𝜌𝜌) cos(𝑚𝑚) , 0 ≤ 𝜌𝜌 ≤ 𝑎𝑎 , 0 ≤ 𝑚𝑚 ≤ 2π , (D 10) 

Higher modes are easily expressible, but the following derivations become extremely difficult. It was shown in 
the case of the rectangular aperture that the first mode is a good enough approximations. We will thus show here 
only the derivations involving the fundamental mode in the circular case. 
 
Power inside the cavtiy 
The time averaged power transmitted in the TEn0 mode can be easily calculated from the Poynting vector 

 
𝑃𝑃𝐴𝐴

𝐶𝐶 = 1
2

� � 𝐄𝐄 × 𝐇𝐇∗ ⋅ 𝒛𝒛 ̂𝜌𝜌𝑑𝑑𝜌𝜌𝑑𝑑𝑚𝑚  
2𝜋𝜋

0

𝑎𝑎

0
= 1

2
� � 𝑇𝑇𝜌𝜌𝐻𝐻𝑚𝑚

∗ − 𝑇𝑇𝑚𝑚𝐻𝐻𝜌𝜌
∗ 𝜌𝜌𝑑𝑑𝜌𝜌𝑑𝑑𝑚𝑚  

2𝜋𝜋

0

𝑎𝑎

0
 . (D 11) 

Using the relations between the magnetic and eclectic field for TE modes in a circular waveguide, 𝐻𝐻𝑚𝑚 = 𝑌𝑌𝑇𝑇𝑇𝑇 𝑇𝑇𝜌𝜌  
and  𝐻𝐻𝜌𝜌 = −𝑌𝑌𝑇𝑇𝑇𝑇 𝑇𝑇𝑚𝑚  we have 
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 (D 12) 

At this point we need a known result about Bessel type integrals, taken from (pozar str717) which states 
 

� 𝐴𝐴2 𝐽𝐽𝐴𝐴
2(𝑥𝑥)
𝑥𝑥2 + �𝑑𝑑𝐽𝐽𝐴𝐴(𝑥𝑥)
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2
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0
= (𝐴𝐴𝐴𝐴𝑚𝑚
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2
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2(𝐴𝐴𝐴𝐴𝑚𝑚
′ ). (D 13) 

After introducing a variable change 𝑘𝑘𝑐𝑐𝜌𝜌 = 𝑥𝑥 in (D 12) and using (D 13) we arrive at 
 

𝑃𝑃𝐴𝐴
𝐶𝐶 = 𝜋𝜋

4
𝑌𝑌𝑇𝑇𝑇𝑇

∗ |𝑇𝑇0
+|2((𝐴𝐴𝐴𝐴𝑚𝑚

′ )2 − 1)𝐽𝐽𝐴𝐴
2(𝐴𝐴𝐴𝐴𝑚𝑚

′ ) ,  (D 14) 

and  

 
𝑌𝑌𝐴𝐴

𝐶𝐶 = 4𝑃𝑃𝐴𝐴
𝐶𝐶∗

𝜋𝜋|𝑇𝑇0
+|2((𝐴𝐴𝐴𝐴𝑚𝑚

′ )2 − 1)𝐽𝐽𝐴𝐴
2(𝐴𝐴𝐴𝐴𝑚𝑚

′ )
 . (D 15) 

Aperture admittance 
We now proceed to finding the Fourier transform of the aperture fields and the aperture admittance. The 

procedure is significantly more complicated compared to the rectangular case.  
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𝐄𝐄�𝑘𝑘𝜌𝜌, 𝛼𝛼� = � � 𝑇𝑇(𝜌𝜌, 𝑚𝑚)𝑒𝑒𝑗𝑗𝑘𝑘𝜌𝜌 cos (𝑚𝑚−𝛼𝛼) 𝜌𝜌𝑑𝑑𝜌𝜌𝑑𝑑𝑚𝑚
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0
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𝜌𝜌𝑑𝑑𝜌𝜌 � 𝑒𝑒𝑗𝑗𝑘𝑘𝜌𝜌 cos (𝑚𝑚−𝛼𝛼) sin(𝑚𝑚)𝑑𝑑𝑚𝑚𝝆𝝆 ̂

2𝜋𝜋

0

       + � 𝑘𝑘𝑐𝑐𝐽𝐽1
′ (𝑘𝑘𝑐𝑐𝜌𝜌)

𝑎𝑎

0
𝜌𝜌𝑑𝑑𝜌𝜌 � 𝑒𝑒𝑗𝑗𝑘𝑘𝜌𝜌 cos (𝑚𝑚−𝛼𝛼) cos(𝑚𝑚)𝑑𝑑𝑚𝑚𝝓𝝓 ̂

2𝜋𝜋

0

 (D 16) 

The unit vectors (𝝆𝝆,̂𝝓𝝓)̂ also need to be transformed into a new coordinate system where we have (�̂�𝒌𝝆𝝆 , �̂�𝜶). 

 �
𝝆𝝆 ̂
𝝓𝝓

�̂ = � cos(𝑚𝑚 − 𝛼𝛼) sin(𝑚𝑚 − 𝛼𝛼)
−sin(𝑚𝑚 − 𝛼𝛼) cos(𝑚𝑚 − 𝛼𝛼)� ��̂�𝒌𝝆𝝆

�̂�𝜶
�, (D 17) 

We can write intermediate results  
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2𝜋𝜋

0
 (D 18) 

And using a substitution 𝜙𝜙 − 𝛼𝛼 = 𝑢𝑢 we can expand (D 18) in the form 

 �sin(𝛼𝛼)∫ 𝑒𝑒𝑗𝑗𝑘𝑘𝜌𝜌 cos (𝑠𝑠) cos2(𝑠𝑠)𝑑𝑑𝑠𝑠 + cos(𝛼𝛼)∫ 𝑒𝑒𝑗𝑗𝑘𝑘𝜌𝜌 cos (𝑠𝑠) sin(𝑠𝑠) cos(𝑠𝑠)2𝜋𝜋−𝛼𝛼
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𝑑𝑑𝑠𝑠2𝜋𝜋−𝛼𝛼
−𝛼𝛼

��̂�𝒌𝝆𝝆 +

+�sin(𝛼𝛼)∫ 𝑒𝑒𝑗𝑗𝑘𝑘𝜌𝜌 cos (𝑠𝑠) sin(𝑠𝑠) cos(𝑠𝑠) 𝑑𝑑𝑠𝑠 + cos(𝛼𝛼)∫ 𝑒𝑒𝑗𝑗𝑘𝑘𝜌𝜌 cos (𝑠𝑠) sin2(𝑠𝑠)2𝜋𝜋−𝛼𝛼
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��̂�𝜶
  (D 19) 

Which can be directly evaluated using known expressions for Bessel functions. The second term of the first 
bracket and the first term of the second bracket evaluate to zero, and the final result in terms of Bessel functions 
is 

 
2𝜋𝜋𝐽𝐽1
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cos(𝛼𝛼) �̂�𝜶  . (D 20) 

Similarly we have 

 
� 𝑒𝑒𝑗𝑗𝑘𝑘𝜌𝜌 cos (𝑚𝑚−𝛼𝛼) cos(𝑚𝑚)𝑑𝑑𝑚𝑚𝝓𝝓 ̂

2𝜋𝜋

0
= 2𝜋𝜋𝐽𝐽1

′ �𝑘𝑘𝜌𝜌𝜌𝜌� cos(𝛼𝛼)�̂�𝜶 + 2π
𝐽𝐽1�𝑘𝑘𝜌𝜌𝜌𝜌�

𝑘𝑘𝜌𝜌𝜌𝜌
sin(𝛼𝛼) �̂�𝒌𝝆𝝆  . (D 21) 

Inserting (D 18) trough (D 21) back into (D 16) we arrive at 

  
𝐄𝐄�𝑘𝑘𝜌𝜌 , 𝛼𝛼� = 2𝜋𝜋 � ��𝑘𝑘𝑐𝑐

𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)
𝑘𝑘𝑐𝑐𝜌𝜌

𝐽𝐽1
′ �𝑘𝑘𝜌𝜌𝜌𝜌� sin(𝛼𝛼) + 𝑘𝑘𝑐𝑐𝐽𝐽1

′ (𝑘𝑘𝑐𝑐𝜌𝜌)
𝐽𝐽1�𝑘𝑘𝜌𝜌𝜌𝜌�

𝑘𝑘𝜌𝜌𝜌𝜌
sin(𝛼𝛼)� �̂�𝒌𝝆𝝆

𝑎𝑎

0

+ �𝑘𝑘𝑐𝑐
𝐽𝐽1(𝑘𝑘𝑐𝑐𝜌𝜌)

𝑘𝑘𝑐𝑐𝜌𝜌
𝐽𝐽1�𝑘𝑘𝜌𝜌𝜌𝜌�

𝑘𝑘𝜌𝜌𝜌𝜌
cos(𝛼𝛼) + 𝑘𝑘𝑐𝑐𝐽𝐽1

′ (𝑘𝑘𝑐𝑐𝜌𝜌)𝐽𝐽1
′ �𝑘𝑘𝜌𝜌𝜌𝜌� cos(𝛼𝛼)� �̂�𝜶� 𝜌𝜌𝑑𝑑𝜌𝜌 

(D 22) 

To resolve the integration over the radius 𝜌𝜌 we will need to transform the integrating function using several 
identities for Bessel functions, namely 

 𝐴𝐴𝐽𝐽𝐴𝐴(𝑥𝑥)
𝑥𝑥

= 1
2

[𝐽𝐽𝐴𝐴−1(𝑥𝑥) + 𝐽𝐽𝐴𝐴+1(𝑥𝑥)],
𝑑𝑑𝐽𝐽𝐴𝐴 (𝑥𝑥)

𝑑𝑑𝑥𝑥
= 1

2
[𝐽𝐽𝐴𝐴−1(𝑥𝑥) − 𝐽𝐽𝐴𝐴+1(𝑥𝑥)],

𝑑𝑑𝐽𝐽1(𝑥𝑥)
𝑑𝑑𝑥𝑥

+ 𝐽𝐽1(𝑥𝑥)
𝑥𝑥

= 𝐽𝐽0(𝑥𝑥),
𝑑𝑑𝐽𝐽1(𝑥𝑥)

𝑑𝑑𝑥𝑥
− 𝐽𝐽1(𝑥𝑥)

𝑥𝑥
= 𝐽𝐽2(𝑥𝑥)

 (D 23) 

The integral (D 22) can thus be expanded into  
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APPENDIX D: CALCULATION OF THE APERTURE ADMITTANCE FOR A CIRCULAR APERTURE. 

 𝐄𝐄�𝑘𝑘𝜌𝜌, 𝛼𝛼� = 2𝜋𝜋𝑘𝑘𝑐𝑐 � 𝜌𝜌𝑑𝑑𝜌𝜌 ��1
2

[𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌) + 𝐽𝐽2(𝑘𝑘𝑐𝑐𝜌𝜌)]𝐽𝐽1
′ �𝑘𝑘𝜌𝜌𝜌𝜌� +

𝑎𝑎

0

                                + 1
2

[𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌) − 𝐽𝐽2(𝑘𝑘𝑐𝑐𝜌𝜌)]
𝐽𝐽1�𝑘𝑘𝜌𝜌𝜌𝜌�

𝑘𝑘𝜌𝜌𝜌𝜌
� sin(𝛼𝛼) �̂�𝒌𝝆𝝆

                   + �1
2

[𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌) + 𝐽𝐽2(𝑘𝑘𝑐𝑐𝜌𝜌)]
𝐽𝐽1�𝑘𝑘𝜌𝜌𝜌𝜌�

𝑘𝑘𝜌𝜌𝜌𝜌

                                + 1
2

[𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌) − 𝐽𝐽2(𝑘𝑘𝑐𝑐𝜌𝜌)]𝐽𝐽1
′ �𝑘𝑘𝜌𝜌𝜌𝜌�� cos(𝛼𝛼) �̂�𝜶�

 (D 24) 

That, after a short manipulation, gets reduced to 

 
𝐄𝐄�𝑘𝑘𝜌𝜌, 𝛼𝛼� = 𝜋𝜋𝑘𝑘𝑐𝑐 � 𝜌𝜌𝑑𝑑𝜌𝜌

⎩�
⎨
�⎧

⎣
⎢
⎡𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌)𝐽𝐽0�𝑘𝑘𝜌𝜌𝜌𝜌��������

𝐴𝐴1

− 𝐽𝐽2(𝑘𝑘𝑐𝑐𝜌𝜌)𝐽𝐽2�𝑘𝑘𝜌𝜌𝜌𝜌��������
𝐴𝐴2 ⎦

⎥
⎤ sin(𝛼𝛼) �̂�𝒌𝝆𝝆

𝑎𝑎

0

                                +
⎣
⎢
⎡𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌)𝐽𝐽0�𝑘𝑘𝜌𝜌𝜌𝜌��������

𝐴𝐴1

+ 𝐽𝐽2(𝑘𝑘𝑐𝑐𝜌𝜌)𝐽𝐽2�𝑘𝑘𝜌𝜌𝜌𝜌��������
𝐴𝐴2 ⎦

⎥
⎤ cos(𝛼𝛼) �̂�𝜶

⎭�
⎬
�⎫

 (D 25) 

To integrate the subparts A1 and A2 we use Lommel’s integral formulas 

 �𝐽𝐽𝐴𝐴(𝑎𝑎𝑥𝑥)𝐽𝐽𝐴𝐴(𝑎𝑎𝑥𝑥)𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑥𝑥
𝑎𝑎2 − 𝑎𝑎2 [𝑎𝑎𝐽𝐽𝐴𝐴−1(𝑎𝑎𝑥𝑥)𝐽𝐽𝐴𝐴(𝑎𝑎𝑥𝑥) − 𝑎𝑎𝐽𝐽𝐴𝐴−1(𝑎𝑎𝑥𝑥)𝐽𝐽𝐴𝐴(𝑎𝑎𝑥𝑥)], (D 26) 

Calculating each part of (D 25) separately we have 

 𝐴𝐴1 = � 𝐽𝐽0(𝑘𝑘𝑐𝑐𝜌𝜌)𝐽𝐽0�𝑘𝑘𝜌𝜌𝜌𝜌�
𝑎𝑎

0
𝜌𝜌𝑑𝑑𝜌𝜌 = 𝑎𝑎

𝑘𝑘𝑐𝑐
2 − 𝑘𝑘𝜌𝜌

2 �𝑘𝑘𝜌𝜌𝐽𝐽−1�𝑘𝑘𝜌𝜌𝑎𝑎�𝐽𝐽0(𝑘𝑘𝑐𝑐𝑎𝑎) − 𝑘𝑘𝑐𝑐𝐽𝐽−1(𝑘𝑘𝑐𝑐𝑎𝑎)𝐽𝐽0�𝑘𝑘𝜌𝜌𝜌𝜌�� =

     = 𝑎𝑎
𝑘𝑘𝑐𝑐

2 − 𝑘𝑘𝜌𝜌
2 �−𝑘𝑘𝜌𝜌𝐽𝐽1�𝑘𝑘𝜌𝜌𝑎𝑎�𝐽𝐽0(𝑘𝑘𝑐𝑐𝑎𝑎) + 𝑘𝑘𝑐𝑐𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)𝐽𝐽0�𝑘𝑘𝜌𝜌𝜌𝜌��

𝐴𝐴2 = � 𝐽𝐽2(𝑘𝑘𝑐𝑐𝜌𝜌)𝐽𝐽2�𝑘𝑘𝜌𝜌𝜌𝜌�
𝑎𝑎

0
𝜌𝜌𝑑𝑑𝜌𝜌 = 𝑎𝑎

𝑘𝑘𝑐𝑐
2 − 𝑘𝑘𝜌𝜌

2 �𝑘𝑘𝜌𝜌𝐽𝐽1�𝑘𝑘𝜌𝜌𝑎𝑎�𝐽𝐽2(𝑘𝑘𝑐𝑐𝑎𝑎) − 𝑘𝑘𝑐𝑐𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)𝐽𝐽2�𝑘𝑘𝜌𝜌𝜌𝜌��

 (D 27) 

Where we have used the fact that 𝐽𝐽−𝐴𝐴(𝑥𝑥) = −𝐽𝐽𝐴𝐴(𝑥𝑥). From (D 27) we have 

 

𝐴𝐴1 − 𝐴𝐴2 = 𝑎𝑎
𝑘𝑘𝑐𝑐

2 − 𝑘𝑘𝜌𝜌
2

⎣
⎢
⎢
⎢
⎢
⎡

𝑘𝑘𝑐𝑐𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)

⎣
⎢
⎢
⎢
⎡

𝐽𝐽0�𝑘𝑘𝜌𝜌𝑎𝑎� + 𝐽𝐽2�𝑘𝑘𝜌𝜌𝑎𝑎����������
2𝐽𝐽1 �𝑘𝑘𝜌𝜌 𝑎𝑎�

𝑘𝑘𝜌𝜌 𝑎𝑎 ⎦
⎥
⎥
⎥
⎤

− 𝑘𝑘𝜌𝜌𝐽𝐽1�𝑘𝑘𝜌𝜌𝑎𝑎�

⎣
⎢⎢
⎢
⎡

𝐽𝐽0(𝑘𝑘𝑐𝑐𝑎𝑎) + 𝐽𝐽2(𝑘𝑘𝑐𝑐𝑎𝑎)�������
2𝐽𝐽1 (𝑘𝑘𝑐𝑐 𝑎𝑎)

𝑘𝑘𝑐𝑐 𝑎𝑎 ⎦
⎥⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎤

=,

            = 2
𝑘𝑘𝑐𝑐

2 − 𝑘𝑘𝜌𝜌
2 ��𝑘𝑘𝑐𝑐

𝑘𝑘𝜌𝜌
−

𝑘𝑘𝜌𝜌

𝑘𝑘𝑐𝑐
�𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)𝐽𝐽1�𝑘𝑘𝜌𝜌𝑎𝑎�� = 2

𝑘𝑘𝑐𝑐𝑘𝑘𝜌𝜌
𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)𝐽𝐽1�𝑘𝑘𝜌𝜌𝑎𝑎�

 (D 28) 

and  

 

𝐴𝐴1 + 𝐴𝐴2 = 𝑎𝑎
𝑘𝑘𝑐𝑐

2 − 𝑘𝑘𝜌𝜌
2

⎣
⎢
⎢
⎡

𝑘𝑘𝑐𝑐𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)

⎣
⎢⎢
⎡

𝐽𝐽0�𝑘𝑘𝜌𝜌𝑎𝑎� − 𝐽𝐽2�𝑘𝑘𝜌𝜌𝑎𝑎����������
2𝐽𝐽1

′ �𝑘𝑘𝜌𝜌 𝑎𝑎� ⎦
⎥⎥
⎤

− 𝑘𝑘𝜌𝜌𝐽𝐽1�𝑘𝑘𝜌𝜌𝑎𝑎�
⎣
⎢
⎡𝐽𝐽0(𝑘𝑘𝑐𝑐𝑎𝑎) − 𝐽𝐽2(𝑘𝑘𝑐𝑐𝑎𝑎)�������

2𝐽𝐽1
′ (𝑘𝑘𝑐𝑐 𝑎𝑎) ⎦

⎥
⎤

⎦
⎥
⎥
⎤

=

            = 2𝑎𝑎
𝑘𝑘𝑐𝑐

2 − 𝑘𝑘𝜌𝜌
2 �𝑘𝑘𝑐𝑐𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)𝐽𝐽1

′ �𝑘𝑘𝜌𝜌𝑎𝑎�� = 2𝑎𝑎𝑘𝑘𝑐𝑐
𝑘𝑘𝑐𝑐

2 − 𝑘𝑘𝜌𝜌
2 𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)𝐽𝐽1

′ �𝑘𝑘𝜌𝜌𝑎𝑎�

 (D 29) 

Where we have used again the relations for Bessel functions (D 23). Inserting (D 28) into (D 25) gives finally the 
Fourier transform of the electric field at the aperture as 

 
𝐄𝐄�𝑘𝑘𝜌𝜌 , 𝛼𝛼� = 2𝜋𝜋𝑇𝑇0

+ � 1
𝑘𝑘𝜌𝜌

𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)𝐽𝐽1�𝑘𝑘𝜌𝜌𝑎𝑎� sin(𝛼𝛼) �̂�𝒌𝝆𝝆 + 𝑎𝑎𝑘𝑘𝑐𝑐
2

𝑘𝑘𝑐𝑐
2 − 𝑘𝑘𝜌𝜌

2 𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)𝐽𝐽1
′ �𝑘𝑘𝜌𝜌𝑎𝑎� cos(𝛼𝛼) �̂�𝜶�, (D 30) 
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APPENDIX D: CALCULATION OF THE APERTURE ADMITTANCE FOR A CIRCULAR APERTURE. 

The transform of the magnetic field can be obtained with the use of two Maxwell’s equations written in the 
spectral domain i.e. 𝐤𝐤 × 𝐄𝐄 = 𝜔𝜔𝜇𝜇𝐇𝐇 and 𝐤𝐤 ⋅𝐄𝐄 = 0. We have 𝑘𝑘2 = 𝑘𝑘𝑥𝑥

2 + 𝑘𝑘𝑦𝑦
2 + 𝑘𝑘𝑧𝑧

2 = 𝑘𝑘𝜌𝜌
2 + 𝑘𝑘𝑧𝑧

2  and thus 𝑘𝑘𝑧𝑧 =

�𝑘𝑘2 − 𝑘𝑘𝜌𝜌
2 , so we write 

 
𝐤𝐤 ⋅𝐄𝐄 = �𝑘𝑘𝜌𝜌�̂�𝒌𝝆𝝆 + 𝑘𝑘𝑧𝑧𝒛𝒛�̂�𝑇𝑇𝑘𝑘𝜌𝜌

�̂�𝒌𝝆𝝆 + 𝑇𝑇𝛼𝛼 �̂�𝜶 + 𝑇𝑇𝑧𝑧𝒛𝒛�̂= 𝑘𝑘𝜌𝜌𝑇𝑇𝑘𝑘𝜌𝜌
+ 𝑘𝑘𝑧𝑧𝑇𝑇𝑧𝑧 = 0 ⇒ 𝑇𝑇𝑧𝑧 =

−𝑘𝑘𝜌𝜌𝑇𝑇𝑘𝑘𝜌𝜌

𝑘𝑘𝑧𝑧
 (D 31) 

The magnetic field as a rotor of the electric field can then be expressed as 

 𝐇𝐇 = 1
𝑘𝑘𝜂𝜂0

𝐤𝐤 × 𝐄𝐄 = 1
𝑘𝑘𝜂𝜂0

�𝑘𝑘𝜌𝜌�̂�𝒌𝝆𝝆 + 𝑘𝑘𝑧𝑧𝒛𝒛�̂ × �𝑇𝑇𝑘𝑘𝜌𝜌
�̂�𝒌𝝆𝝆 + 𝑇𝑇𝛼𝛼 �̂�𝜶 + 𝑇𝑇𝑧𝑧𝒛𝒛�̂ = 

= 1
𝑘𝑘𝜂𝜂0

�−�̂�𝒌𝝆𝝆𝑘𝑘𝑧𝑧𝑇𝑇𝛼𝛼 + �̂�𝜶�𝑘𝑘𝑧𝑧𝑇𝑇𝑘𝑘𝜌𝜌
− 𝑘𝑘𝜌𝜌𝑇𝑇𝑧𝑧� + 𝒛𝒛�̂�𝑘𝜌𝜌𝑇𝑇𝛼𝛼� 

(D 32) 

Thus the component of the magnetic field are  

 𝐻𝐻𝑘𝑘𝜌𝜌
= − 𝑘𝑘𝑧𝑧

𝑘𝑘𝜂𝜂0
𝑇𝑇𝛼𝛼 ,

𝐻𝐻𝛼𝛼 = 1
𝑘𝑘𝜂𝜂0

�𝑘𝑘𝑧𝑧𝑇𝑇𝑘𝑘𝜌𝜌
− 𝑘𝑘𝜌𝜌𝑇𝑇𝑧𝑧� = 1

𝑘𝑘𝜂𝜂0
�𝑘𝑘𝑧𝑧𝑇𝑇𝑘𝑘𝜌𝜌

−
𝑘𝑘𝜌𝜌

2

𝑘𝑘𝑧𝑧
𝑇𝑇𝑘𝑘𝜌𝜌

� =
𝑘𝑘𝜌𝜌

2 + 𝑘𝑘𝑧𝑧
2

𝑘𝑘𝜂𝜂0𝑘𝑘𝑧𝑧
𝑇𝑇𝑘𝑘𝜌𝜌

= 𝑘𝑘
𝑘𝑘𝑧𝑧𝜂𝜂0

𝑇𝑇𝑘𝑘𝜌𝜌

 (D 33) 

We can now write the power integral in spectral domain 

 
𝑃𝑃11
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 (D 34) 

We can use the field components from (D 30)  
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 (D 35) 

and integrate α from 0 to 2π immediately, we get 

 
𝑃𝑃11

𝐴𝐴𝐴𝐴 =
𝐽𝐽1

2(𝑘𝑘𝑐𝑐𝑎𝑎)|𝑇𝑇0
+|2𝜋𝜋

2𝜂𝜂0
� � 𝑘𝑘

𝑘𝑘𝜌𝜌
2𝑘𝑘𝑧𝑧

∗ 𝐽𝐽1
2�𝑘𝑘𝜌𝜌𝑎𝑎� + 𝑎𝑎2𝑘𝑘𝑐𝑐

4𝑘𝑘𝑧𝑧
∗

𝑘𝑘�𝑘𝑘𝑐𝑐
2 − 𝑘𝑘𝜌𝜌

2�2 𝐽𝐽1
′ 2�𝑘𝑘𝜌𝜌𝑎𝑎��

∞

0
𝑘𝑘𝜌𝜌𝑑𝑑𝑘𝑘𝜌𝜌 (D 36) 

From the power expression (D 37) and the definition of circular waveguide admittance (D 15) we can write the 
aperture admittance 
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Making the change in variables 𝑘𝑘𝜌𝜌𝑎𝑎 = 𝑋𝑋, 𝑑𝑑𝑘𝑘𝜌𝜌𝑎𝑎 = 𝑑𝑑𝑋𝑋 we transform the integral into a slightly more suitable 
form for numerical computation we have 
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 (D 38) 

Just as in the rectangular case, it is convenient to work and think with the variable (𝑎𝑎/𝜆𝜆) = 𝑥𝑥, where 𝑎𝑎 is the 
radius of the cavity. The final form of the integral, that is numerically computed is 
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 (D 39) 

Figure 134 shows the result using the NIntegrate function in Mathematica [126]. Based on the numerically 
obtained data, curve fitting was performed to obtain the following polynomial approximation for the circular 
aperture admittance  

 𝐺𝐺11
𝐴𝐴𝐴𝐴  = 0.0292335𝑥𝑥2  −  0.162724𝑥𝑥4  +  0.503821𝑥𝑥6  −  0.967159𝑥𝑥8  +  1.24487𝑥𝑥10  

− 1.11359𝑥𝑥12  +  0.662147𝑥𝑥14  −  0.202231𝑥𝑥16

𝐵𝐵11
𝐴𝐴𝐴𝐴  =  − 0.000504914

𝑥𝑥
+  0.00961453𝑥𝑥 −  0.0747716𝑥𝑥3  +  0.30591𝑥𝑥5  −  0.737733𝑥𝑥7  

+ 1.15816𝑥𝑥9  +  1.27923𝑥𝑥11  −  1.05773𝑥𝑥13  +  0.659176𝑥𝑥15  −  0.243662𝑥𝑥17

 (D 40) 

 
Figure 134 (a) real part of admittance and (b) imaginary part of admittance. Dots represent the numerically computed values and the line is a 
function approximating the data 
 
Since the low frequency limit 𝜋𝜋 → 0 is of special importance in this thesis, the first coefficient of the suseptance 
is the most important. Instead of going trough the whole process of approximating the aperture admittance with a 
polynomial, this particular coefficient 𝑎𝑎0(𝑚𝑚𝐴𝐴 ) for a given mode or for a mutual coupling of modes can be 
expressed directly. In making the low frequency limit 𝑘𝑘 → 0, we see that the first term in (D 38) disappears, and 
only the second term is important. We can thus write 
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From which we can get the first coefficient as 
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0
𝑑𝑑𝑋𝑋 (D 42) 

That gives values for the amplitudes in the polarizability formula. 

Directivity calculation for a circular aperture excited with a TE11 mode 

Directivity of the aperture antenna is given by 
 

 𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 = 4𝜋𝜋 𝑈𝑈𝑚𝑚𝑎𝑎𝑥𝑥
𝑃𝑃𝑘𝑘𝑎𝑎𝑑𝑑

 (D 43) 

Where 𝑃𝑃𝑘𝑘𝑎𝑎𝑑𝑑  is given by the real part of equation (D 28), but it can be expressed using (D 6) as 

 𝑃𝑃𝑘𝑘𝑎𝑎𝑑𝑑 = 𝜋𝜋
4

|𝑇𝑇0
+|2((𝐴𝐴11

′ )2 − 1)𝐽𝐽𝐴𝐴
2(𝐴𝐴11

′ )𝐺𝐺11
𝐴𝐴𝐴𝐴 , (D 44) 

and 𝑈𝑈𝑚𝑚𝑎𝑎𝑥𝑥  is the farfield power transmitted orthogonal to the aperture. The expression to obtain 𝑈𝑈𝑚𝑚𝑎𝑎𝑥𝑥  can be 
found in [38] as: 

 
𝑈𝑈𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑘𝑘2

8𝜋𝜋2𝜂𝜂0
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2 , (D 45) 
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where the electric far field is already given in (D 22), and 𝜂𝜂0  is the free space impedance. What remains to be 
calculated is its maximum value. Since we expect the maximum to occur in the orthogonal �̂�𝑧 direction to the 
aperture, we can assume 𝑘𝑘𝜌𝜌 → 0 in (A5).  
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Which is easily reduced to 

 
𝐄𝐄�𝑘𝑘𝜌𝜌, 𝛼𝛼�

𝑘𝑘𝜌𝜌 →0
����� 𝐄𝐄𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑇𝑇0

+𝜋𝜋𝑎𝑎𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)�sin(𝛼𝛼) �̂�𝒌𝝆𝝆 + cos(𝛼𝛼) �̂�𝜶� = 𝑇𝑇0
+𝜋𝜋𝑎𝑎𝐽𝐽1(𝑘𝑘𝑐𝑐𝑎𝑎)𝒚𝒚 ̂. (D 47) 

Remembering that 𝑘𝑘𝑐𝑐 = 𝐴𝐴11
′ /𝑎𝑎 we write in scalar form 𝑇𝑇𝑚𝑚𝑎𝑎𝑥𝑥 = 𝑇𝑇0

+𝜋𝜋𝑎𝑎𝐽𝐽1(𝐴𝐴11
′ ). Putting (D 39) and (D 36) into 

(D 35) gives  
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Since the conductance is expressible in a series expansion 𝐺𝐺11
𝐴𝐴𝐴𝐴 = 𝑔𝑔11

0 𝑥𝑥2 + 𝑔𝑔11
1 𝑥𝑥4 + 𝑔𝑔11

2 𝑥𝑥6 + ⋯  where 𝑥𝑥 =
𝑘𝑘𝑎𝑎 (2𝜋𝜋)⁄ , we can also series expand (D 39) and obtain an approximation for small aperture size 

 
𝐷𝐷𝑚𝑚𝑎𝑎𝑥𝑥 = 8𝜋𝜋2

𝜂𝜂0𝑔𝑔11
0 ((𝐴𝐴11

′ )2 − 1)
− 2𝑔𝑔11

1 (𝑘𝑘𝑎𝑎)2

𝜂𝜂0𝑔𝑔11
0 2((𝐴𝐴11

′ )2 − 1)
+ 𝒪𝒪(𝑘𝑘𝑎𝑎)4 , (D 49) 

Inserting the numerical values of the coefficients the directivity is 𝐷𝐷 ≈ 3 + 0.42265(𝑘𝑘𝑎𝑎)2 + 𝑂𝑂(𝑘𝑘𝑎𝑎)4 .The 
directivity for cavities sizes presented in this paper is presented in Figure 135. 

 
 

Figure 135 Calculated directivity vs. aperture size. 
 

 

144 
 



APPENDIX E: A MORE INTUITIVE INTRODUCTION TO COUNTERINTUITIVE META-MATERIALS 

APPENDIX E. A MORE INTUITIVE INTRODUCTION TO COUNTERINTUITIVE META-
MATERIALS  

We all heard the world around us is made out of atoms. We see this world by detecting electromagnetic waves 
on the retina of our eyes. But we don’t see the atoms, only materials or textures, which are large groups of atoms, 
because atoms themselves are much smaller than the visible wavelength of light. We would expect that atoms 
somehow respond to the electromagnetic waves and are responsible for phenomena like reflection from a mirror 
or refraction of light in water. These phenomena are in fact an averaged effect of many atoms which are all much 
smaller than the wavelength of light waves, but as a group affect the propagation of the wave. Today, we are 
very interested in designing our own types of “atoms”, to form materials with reflection or refraction properties 
that we want, but can’t find in nature. These artificially created structures are now called meta-materials and can 
have some novel and “counterintuitive” properties.  

Let us use an analogy to explain the basic principle behind a single meta-material “atom”.  Imagine you hold a 
spring with a weight at the bottom like shown in Figure 136. Your hand vibrating is analogous to an incoming 
wave that forces the weight to move, the movement of the weight on the bottom of the spring is analogous to the 
“atom’s” response to the wave. This system is called a mechanical oscillator, and it can exhibit the phenomenon 
of resonance. When you tune your hands vibration frequency to the resonant frequency, you will notice that a 
small range of motion of your hand causes the mass to vibrate in a very large range or amplitude. Here, one 
detail is very important, below resonance, when you are vibrating your hand slowly; the weight follows the 
motion of your hand, showing that the mass and the driving force stay exactly in phase. Above resonance, you 
vigorously vibrate your hand and the weight moves opposite to the motion of your hand, showing that the mass 
and the driving force stay 180° out of phase. To see this visually, follow the link [127]. That special case of 
vibration that has a larger amplitude than the driving force AND it is in opposite phase with it, is the key to a 
meta-material “atom” operation. It is counterintuitive in a sense that when you are pushing the weight down it 
can be coming back up at you with larger amplitude; you feel it “defying” your force with a vengeance. In a 
similar sense, one can imagine a material (or a spring as we will see below) that compresses when pulled and 
stretches when pushed. With electricity this corresponds to electrons (current) “defying” the electric field 
(voltage), appearing to be repelled by opposite charge instead of attracted (same for magnets). Consequently, 
effective properties of a material composed of such “atoms” can also be “counterintuitive”.   

One more important detail, there is a frequency above resonance where the amplitude of the weight will no 
longer be larger than the amplitude of your forcing hand (see Figure 136(b)) so the “meta-material effect” is lost. 
This depends on the quality factor 𝑄𝑄 of the resonator (low 𝑄𝑄 = broader frequency range). In practice, the range 
of frequencies with the desired effect is usually very narrow. 

 
Figure 136 : Mechanical oscillator analogy. (a) oscillating below resonance (b) oscilating near resonance. Only a small brighter region 

above resonance is interesting for new effects of metamaterials [127]. 
 
Next, consider a line of springs and masses made of hollow spheres, a mechanical lattice, shown in Figure 

137(a). The hollow spheres can be considered as “atoms” in this case.  If we attach a local resonator, a spring 
and a weight similar to the hand-weight example in Figure 136, this will affect the behavior of the spheres. When 
we vibrate one end of the line we would expect a wave to travel down the line. In a normal material each “atom” 
follows the atom before it with a tiny delay and thus a wave travels, but in system like in Figure 137(a) each 
“atom” has a resonator that can (slightly above its resonance frequency) forcibly oppose the motion of each of its 
neighbors. Propagation of a wave is not possible it such a case, and the wave “dies out”. We describe such a line 
as having negative effective mass. Very loosely speaking, just above resonance the “atoms” feel like almost 
“immovable” objects to the mechanical wave.  

Now let’s look at the spring itself. The stiffness of the spring can be made effectively negative, or 
“counterintuitive” with a system presented in Figure 137(b). The physical mechanism of negative effective 
stiffness is that the oscillation of the masses in the vertical direction induces an inertial force in the horizontal 
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direction, and the vertical resonance effect on the spheres can lead to an expansion of the structure, while loaded 
under a compressive force. If a line is composed of normal spheres (nothing inside) but with these additional 
resonators that make the stiffness negative for some frequencies, then again, a wave will not travel down the line 
at these frequencies. The springs will forcibly oppose the motion of each sphere in this case. Very loosely 
speaking, just above resonance the “atoms” feel strong, almost “unstoppable” forces between them and motion in 
every direction is opposed.  

 
Figure 137 (a) a one dimensional spring—mass line, hollow spheres with local resonators attached to each sphere. (b) a one dimensional 

spring—mass line with local resonators in attached to each spring [128]. 
 
So what happens if at some frequency we combine almost immovable objects with almost unstoppable forces, 

like in Figure 138? Surprisingly – propagation! One could say that the two negatives cancel each other out, 
however the propagation one observes is not the usual one. Energy travels down the line just like in a regular 
spring-mass line with no attached resonators, but if one looks at the waves themselves, they seem to be traveling 
in towards the source of the oscillation, opposite to what we are expected to see. This phenomena is then called 
“left-handed propagation” and it is possible only in such double negative systems. However, further explanations 
of the phenomena that follow from such systems would be out o the scope of this short non-technical 
introduction.   

 
Figure 138 a one dimensional spring—mass line that can ant some frequency have both negative effective mass and negative effective 

stiffness between the masses [128] 
 
Electormagnetic metamaterials  
In electromagnetism, at microwavew frequencies (300 MHz - 300 GHz) metamaterials are designed with 

metallic structures to manipulate the electric response (permittivity ε) with wire structures and the magnetic 
response (permeability μ) with ring structures (see Figure 139). Combined, they can have a negative effective 
index of refraction, negative phase velocity.  Just like with the mechanical resonator these structures can be 
explained as resonators composed of inductances (L) and capacitances (C) and behave similar to the mechanical 
oscillator while the 𝑄𝑄 factor is determined by the values of L and C.  

    

 
Figure 139 : Cut-wire medium with the frequency dependent effective permittivity and a one layer of Split Ring Resonators with the 

effective permeability [129]. 

Region (above resonance) of negative 
values 
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