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Abstract  

There is increasing evidence that homeothermy (the maintenance of a high and stable body 

temperature-Tb) as observed in modern mammals was derived from an ancestral 

heterothermic (flexible Tb regulation) state. One of main hypotheses for why this occurred is 

that homeothermy benefits parental care. As such the study of the thermoregulatory 

physiology during reproduction in an otherwise heterothermic mammal can provide insights 

into the evolution of homeothermic endothermy in mammals.  

This thesis presents data collected over three reproductive seasons from one such 

mammal, the greater hedgehog tenrec (Setifer setosus, Tenrecidae). Flow-through 

respirometry was used to measure resting metabolism over a range of ambient temperatures 

(Ta). At low Ta S. setosus demonstrated a high propensity for torpor and highly labile Tb. This 

high degree of heterothermy was abandoned during reproduction; pregnant and lactating 

females maintained higher Tb and metabolic rates. Tb obtained from free-ranging animals 

showed similar trends. Reproductive females had less variability in Tb, whereas non-

reproductive females and males had a higher propensity for torpor as well as higher overall 

Tb lability. These data indicate a larger degree of homeothermy during reproduction. 

Concurrent with the collection of physiological data, the use of radio-transmitters, 

implanted into the peritoneal cavity along with the temperature data-loggers, allowed for 

novel observations on the life-history of this little-studied species. The most striking finding 

was that S. setosus demonstrates an exceptional capacity to assimilate energy. In the short 

active season males showed high levels of activity and occupied home ranges larger than 

predicted for their body size. Females, in addition to maintaining a higher degree of 

homeothermy, can have up to three litters per year. Over this same time period individuals of 

both sex double their body mass in preparation for hibernation. Such high energetic outputs 

are thought to be incompatible with the low basal metabolic rates which this species displays. 

An explanation of this incongruity can be found in the high Ta at the study site, which 

negated most thermoregulatory costs. In reproductive females, the fitness benefits of small 

increments in homeothermy seem to be offset by the relatively low fitness costs involved in 

minimal thermoregulatory energy demands. Homeothermy during reproduction is therefore 

likely to have been a first step in the progressive evolution from heterothermic to 

homeothermic endothermy in mammals.  
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Original contributions to knowledge 

Chapter 2 Home range and shelter site selection in the greater hedgehog 

tenrec in the dry deciduous forest of Western Madagascar 

The Tenrecidae of Madagascar are a speciose and widely distributed group of endemic 

insectivorous mammals. The subfamily of larger spiny tenrecs (Tenrecinae, Order: 

Afrosoricida) have been relatively well studied in captivity, however studies on free-ranging 

populations remain rare. This chapter describes various aspects of the activity, habitat usage 

and distribution patterns of the greater hedgehog tenrec (Setifer setosus). The first 

measurement of home range size in a tenrec was also reported. The most novel finding 

presented is that home range size is much larger than predicted for their body size: 9.8 times 

larger for males and 4.8 larger for females. The data presented in this chapter also confirm 

aspects of the life history of this species that had previously been observed in a captive 

setting: namely that they are promiscuous and polygamous, and that the entire population in 

the Western deciduous forest hibernates throughout the dry austral winter. Characteristics of 

nest site usage of this species, most importantly that repeated use of single nest site indicated 

parturition, are also presented. 

Chapter 3 High mortality and annual fecundity in a free-ranging basal 

placental mammal, Setifer setosus (Tenrecidae: Afrosoricida) 

Mammalian life history characteristics fall along a slow-fast continuum. In general, species 

on the fast side mature and reproduce at an early age and produce large numbers of young, 

whereas those on the slow side mature later and produce only a small number of young. The 

life history of tenrecs, at least with regards to their reproduction, has been well studied in 

captive populations. The larger species of tenrec, (subfamily Tenrecinae) fall on the fast side 

of the life-history continuum and the largest of these, Tenrec ecaudatus, have one of the 

highest litter sizes of any eutherian mammal. Few data, however, exist on the natural history 

of free-ranging populations that could explain this unusual aspect of their life history. For this 

chapter I collated the results of three years of data collection on the phenology, reproduction 

and rates and causes of mortality in a population of S. setosus. The findings confirm that the 

annual activity cycle of this species includes a five to seven month hibernation period, 

leaving only limited time for both reproduction and pre-hibernation fattening. During the 

short active season females were observed giving birth to up to three litters, which places 
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them on the faster side of the mammalian life-history continuum. Short intervals between 

parturition dates and simultaneous gestation and lactation provide the first evidence of post-

partum oestrus in the Tenrecinae, previously observed in only one other species of tenrec 

(Geogale aurita, subfamily: Geogalinae). High levels of mortality, primarily by snakes and 

unidentified mammalian ground predators, were also observed and likely contribute, along 

with the unpredictability of Madagascar’s climate, to the unusually fast life-history of these 

mammals. A greater understanding of the life history of this species is provided by these 

findings which offer some ideas as to why a fast pace of living is necessary for S. setosus. 

How this high level of energetic output is achieved, however, remains to be answered, 

necessitating the study of the physiology and energetics of this species presented in Chapters 

4 and 5. 

Chapter 4 Increased homeothermy during reproduction in a basal 

placental mammal 

The level of homeothermy observed in most modern endotherms is likely to have been 

derived from an ancestral heterothermic state. One of the hypotheses for why this occurred is 

that homeothermy allowed for greater energetic output during reproduction (gestation and 

lactation) which had direct benefits to fitness. This hypothesis (the Parental Care Hypothesis) 

was tested by measuring resting metabolic rates over a range of ambient temperatures (Ta) in 

both reproductive and non-reproductive S. setosus. During gestation and lactation there was 

an increase in metabolic rate and body temperature (Tb) below the thermoneutral zone (Ta < 

25°C), accompanied by a decrease in Tb variability. Whereas increases in resting metabolism 

were substantial below 20°C, daytime rest-phase temperatures at the study site rarely 

decreased below the lower critical limit of the thermoneutrality. This chapter provides the 

first measurements of thermal profiles obtained from wild-caught reproductive 

basoendotherms. Contrary to previous studies on captive tenrecs, reproduction did not change 

the rates of metabolism within the thermoneutral zone. This observation, however, might be 

due to the potentially high costs of accumulating fat stores for hibernation, a process 

occurring in the entire population. Combining the thermal profiles with the Ta at the study 

site showed that the costs of thermoregulation during the active season for this population 

were relatively low. These data provide an example for how small increases in homeothermy, 

which could occur at a relatively low energetic costs, could have led to substantial increases 

in fitness, by allowing for the faster production of young. Mechanisms necessary for 
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increases in thermogenesis during reproduction would have further benefited the 

development of homeothermy in mammals.  

Chapter 5 Effects of reproductive status and high ambient temperatures on 

the body temperature of a free-ranging basoendotherm 

Building on the thermal profiles presented in Chapter 4, this chapter presents long-term Tb 

recordings collected from free-ranging S. setosus over the course of two active seasons. In 

general, reproductive females had slightly higher and less variable Tb, whereas non-

reproductive females and males had both a higher propensity for torpor as well as lower and 

more variable rest-phase Tbs. Torpor expression, defined using traditional means (a threshold 

or cut-off Tb) was much lower than predicted based on the high degree of heterothermy 

expressed by tenrecs in captivity. However, torpor defined in this manner is likely to be 

underestimated in habitats where Ta is close to Tb, such as in the tropics and sub-tropics. 

These results caution against the inference of metabolic states from Tb alone and lend support 

to the recent call to define torpor in free-ranging animals based on mechanistic and not 

descriptive variables. In addition, the decrease in Tb variability observed during gestation and 

lactation in this study confirms that homeothermy is essential to reproduction in this species, 

and likely for basoendothermic mammals in general. The relatively low costs of maintaining 

homeothermy in this environment might help shed light on how homeothermy could evolved 

incrementally from the ancestral heterothermic condition. The findings I presented in this 

chapter underline the importance of studying thermoregulation in a wide range of habitats, 

especially those where Ta is at or above Tb. Knowledge of the effects of high Ta on Tb is 

important because they can be considered representative of the environments in which 

endothermy evolved and thus help shed light on the process. Furthermore, understanding the 

effects of high Ta on the physiology and energetics of endotherms is increasingly relevant in 

the face of changing climates. 
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Contributions not included in this thesis 

In addition to the findings presented in this thesis, data collected over the course of this study 

resulted in a contribution to a collaborative study on the effects of high ambient temperatures 

on torpor expression in the tropics and sub-tropics (Appendix A: Lovegrove et al. 2014, 

Physiol Biochem Zool 87, 30-45). This publication used data, also partially presented in 

Chapter 5, which showed that changing amplitudes in ambient temperatures during the 

daytime rest-phase caused body temperatures measured in resting (likely torpid) animals to 

rise higher than active body temperatures, resulting in a decrease in body temperatures once 

the animal became active. Core body temperature data measured from Setifer setosus helped 

to support similar patterns observed in the skin temperature of other species. The data on the 

activity and movement patterns of S. setosus presented in this thesis helped support the 

hypothesis that the animals were in torpor at this time. Most importantly, all of the data 

contained in this collaborative paper illustrate the importance of measuring activity in concert 

with body temperature and the dangers of interpreting activity patterns, as well as levels of 

torpor expression, from body temperature alone, especially in environments with high 

ambient temperatures. Similar observations, and a subset of the data obtained during the 

second season, were also used in a review on tropical heterothermy (Appendix B: Canale, 

Levesque & Lovegrove 2012. In: Living in a Seasonal World: 29-40. T. Ruf, C. Bieber, W. 

Arnold & E. Millesi (Eds.). Springer Berlin Heidelberg). These publications urge caution in 

the interpretation of body temperature patterns in environments with high ambient 

temperatures, and attempt to encourage future research to include simultaneous and accurate 

recordings of both activity patterns and ambient temperatures. 

The methods used to create the transmitter/data-logger packages as well as an 

evaluation of its effectiveness are currently being drafted into a manuscript (Levesque, D.L., 

K.D. Lobban and B.G. Lovegrove, in prep. An inexpensive, implantable combination of VHF 

radio transmitter and Thermochron iButton(s) for simultaneous measurements of location and 

core body temperature in mammals). I have also made contributions towards a manuscript 

authored by a veterinary surgeon describing the best-practice methods for the transmitter 

implant surgeries (Rose, B., D.L. Levesque, C.I. Canale, and B.G. Lovegrove, in prep. 

Surgical methodology for the measurement of core body temperatures measurements in free-

ranging animals). Both of these publications will provide valuable contributions to the 

methodology used in the study of physiology in free-ranging animals. 
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Chapter 1 General Introduction 

The Evolution of Endothermy in Mammals  

The evolution of endothermy remains one of the most enduring mysteries in mammalian 

biology (Bennett & Ruben 1979, Koteja 2004, Kemp 2006, Lovegrove 2012a). Endothermy 

is an energetically costly method of  regulating body temperature (Tb) because it relies on 

heat produced by elevated rates of metabolism to maintain a Tb elevated above ambient 

temperature (Ta, Bartholomew 1972). Endothermy is believed to have developed early in the 

mammalian lineage, somewhere between 250 to 200 mya (Crompton, Taylor & Jagger 1978, 

Hillenius & Ruben 2004, Rowe, Macrini & Luo 2011). In its earliest stages, the transition 

from ectothermy to endothermy would have been assisted by a shift to a nocturnal niche 

(Crompton et al. 1978, McNab 1978, Malan 1996), the ancestral state in mammals (Gerkema 

et al. 2013). Indeed, marked increases in mammalian brain size (encephalization quotient) are 

correlated with increases in olfactory, visual and auditory enhancement and occurred in Early 

Jurassic mammaliaformes such as Morganocodon and Hadrocodium (~200 mya) indicating 

that nocturnal lifestyles and endothermy are linked in mammals (Rowe et al. 2011). Although 

their exact order of appearance is unknown, increases in baseline (basal) metabolism 

(primarily caused by increases in proton leak in the mitochondrial membranes), insulation 

and the sustained ability for increased aerobic capacity are all necessary for the maintenance 

of a stable Tb (Hillenius & Ruben 2004, Kemp 2006, Lovegrove 2012a).  

Earlier hypotheses on the evolution of endothermy argued either that endothermy first 

evolved via a maintenance of high Tb (McNab 1978), or that increases in aerobic capacity 

came first, with the side effect of higher baseline metabolism which in turn led to higher Tb 

(Bennett & Ruben 1979). However, in recent years it has been proposed these changes 

occurred in tandem, with small increases in the one leading to proportionate increases in the 

other (Kemp 2006, Clarke & Pörtner 2010, Lovegrove 2012a). Excess metabolic heat 

produced during activity, and retained via insulation, would have attenuated nighttime 

decreases in Tb that occur in diurnal ectotherms, leading to an increasingly constant, albeit 

likely low, Tb (Crompton et al. 1978). A more constant internal environment would then have 

allowed for the optimization of biochemical processes at temperatures at or around a set-point 

Tb, permitting the more adaptive specializations observed in modern endotherms (Heinrich 

1977, Angilletta et al. 2010). Further increases in the level and precision of endothermic Tb 

would later have occurred for a number of reasons, including providing a stable environment 
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for foetal growth during reproduction (Farmer 2000), allowing for increases in energy 

assimilation and increased energy transfer from parents to young after parturition (Koteja 

2000), as well as various increases in the ability for sustained aerobic capacity (Bennett & 

Ruben 1979, Lovegrove 2012b, Naya et al. 2013, Lovegrove & Mowoe 2014). 

The hypothetical mammalian ancestor is postulated to have been small bodied, 

nocturnal and insectivorous (Crompton et al. 1978, Luo 2007, Gerkema et al. 2013, O'Leary 

et al. 2013), and likely possessed the capacity for prolonged periods of metabolic down-

regulation, either in the form of daily torpor, or hibernation (Lovegrove 2012a). The 

plesiomorphy of torpor is supported by the prevalence of torpor expression in all major 

mammalian orders, including monotremes and marsupials (Grigg, Beard & Augee 1989, 

Geiser 1994) and eutherian lineages with small-bodied representatives (Geiser & Ruf 1995, 

Lovegrove 2012c). Interestingly, recent evidence suggests that only a single species of 

eutherian mammal survived the asteroid impact at the Cretaceous-Palaeogene boundary ~ 66 

million years ago (mya) and that all modern eutherian lineages emerged within several 

hundred thousand years of the Early Cenozoic (O'Leary et al. 2013), much earlier than had 

been hypothesised by previous studies (eg Bininda-Emonds et al. 2007). The capacity for 

prolonged metabolic suppression would have increased the chances of this species surviving 

the harsh environments at the K-Pg boundary (Robertson et al. 2004, Lovegrove 2012c). 

The classic view of endothermy is that Tb is maintained at a high and fairly constant 

level (homeothermy), known as the “normothermic set-point Tb”, with only small circadian 

variations between active and resting states (Scholander et al. 1950, Bartholomew 1972, 

Schmidt-Nielsen 1997, Clarke & Pörtner 2010). Certain endotherms also undergo periods of 

extended controlled decreases in Tb and metabolism (adaptive heterothermy) during 

hibernation or daily torpor, during which the torpor set-point Tb is regulated at a lower level 

(Geiser & Ruf 1995, Geiser 2004). However, from both an evolutionary and a mechanistic 

viewpoint, these are rather simplistic perceptions of mammalian thermoregulation. The 

degree of variability in Tb, as well as the level at which it is maintained, varies considerably 

between species (Clarke & Pörtner 2010, Lovegrove 2012a).  Small mammals, in particular, 

show a wide range of variability in thermoregulatory patterns (Lovegrove 2005, Angilletta et 

al. 2010, Clarke & Pörtner 2010, Lovegrove 2012a, Boyles et al. 2013), whereas in large (> 1 

kg) mammals thermal inertia reduces the opportunity for large daily changes (Refinetti & 

Menaker 1992, Clarke & Pörtner 2010).  

Flexibility in Tb regulation, expressed either as thermolability (variations in 

normothermic Tb) or as torpor has many advantages, both energetic and otherwise (Canale & 
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Henry 2010, Geiser & Brigham 2012, Boyles et al. 2013). Many diurnal heterotherms take 

advantage of cool nighttime temperatures by entering torpor during the rest-phase and using 

the warming ambient temperatures in the morning to assist with returning to normothermic Tb 

(Lovegrove, Kortner & Geiser 1999, Geiser et al. 2004). In this way they benefit from the 

increased energy savings of torpor, while avoiding the costs associated with actively 

rewarming from low Tb. A number of species have also been shown to enter torpor during 

reproduction. Torpor use has been observed during gestation, usually to delay parturition 

until environmental conditions are more favorable, as well as during lactation, usually as a 

means to conserve energy (Geiser, McAllan & Brigham 2005, Willis, Brigham & Geiser 

2006, Morrow & Nicol 2009, Canale, Perret & Henry 2012). A large degree of variability 

normothermic Tb similarly allows for greater opportunities for energy savings (Kuchel 2003, 

Canale, Levesque & Lovegrove 2012, Boyles et al. 2013). This high degree of thermolability 

is characteristic of ‘protoendotherms’ (sensu Grigg, Beard & Augee 2004) or 

‘basoendotherms’ (Lovegrove 2012a) and was a likely mid-point in the transition from 

heterothermic ectothermy to homeothermic endothermy (Eisentraut 1960, Crompton et al. 

1978, Grigg 2004, Lovegrove 2012a). Although this appears to be the current consensus 

(Lovegrove 2012a), an alternate hypothesis has been proposed, based on ontogenetic data, 

suggesting that torpor has a polyphyletic origin (Geiser 2008). 

 Taking the view that the ancestral condition is one of heterothermic endothermy 

(Eisentraut 1960, Grigg et al. 2004, Clarke & Pörtner 2010, Lovegrove 2012a) the high range 

of mean Tb, as well as differences in levels of Tb variability retained in extant mammals, can 

be used to test the various hypotheses proposed to explain the evolution of endothermy 

(Clarke & Pörtner 2010, Lovegrove 2012a, Naya et al. 2013). This approach, rather than 

pertaining directly to the evolution of endothermy per se serves to explain the evolution of 

homeothermy from the ancestral heterothermic condition, which then has the potential to 

shed light on the evolution of endothermy itself. Thus the study of basoendotherms, 

especially during periods in their life-histories where homeothermy is maintained, can 

provide important insights into understanding the evolution of endothermy in mammals.  

The Diversity of Mammalian Life Histories: a Slow-Fast Continuum? 

“I foresee a renaissance in life-history studies as greater accuracy is attempted in 

the study of energy transfer within ecosystems.”  

(Eisenberg 1983) 



4 

 

Understanding the overall importance of the evolution of endothermy in mammals is 

dependent on linking the effects of thermoregulatory characteristics to the transfer of energy 

between the organism at its environment, as well as its life history (Lovegrove 2006). 

Endothermy is interconnected with parental care: both major groups of endotherms, 

mammals and birds, show higher levels of parental care compared to the majority of 

ectotherms (Farmer 2000, Koteja 2004). As a result, they often produce a smaller number of 

young, but those they produce are more developed and have a higher probability of survival 

(Case 1978). The high degree of variability in the level and precision of thermoregulation 

found in modern mammals mirrors the wide range of variability in life-history characteristics 

(Harvey & Read 1988, Stearns 2000). 

The term life-history refers to parameters that influence reproduction (age at first 

reproduction, annual fecundity, etc) and longevity (Stearns 1976, Boyce 1988). As with 

metabolic rate and Tb, life-history characteristics fall along a slow-fast continuum (Eisenberg 

1983, Promislow & Harvey 1990). The common saying ‘…live fast, die young…’ has its 

origin in the trade-off between fecundity and mortality. If short periods of time for 

reproduction are available, for example due to high prevailing predation pressures, then there 

is a fitness advantage to producing many young as early as possible (Read & Harvey 1989). 

On the other hand, if predation pressures are low, it is a fitness advantage to grow bigger and 

delay reproduction, and to produce better quality offspring over an extended lifespan. 

Whereas early studies focused on the effects of body mass on life history traits 

(Blueweiss et al. 1978), later studies identified life history trade-offs using mass-independent 

residual-residual correlations (Read & Harvey 1989, Stearns 1989, Harvey, Pagel & Rees 

1991, Symonds 1999). This approach was subsequently succeeded by a modelling approach 

that integrated the role of mortality regimes (Stearns, Raup & Jablonski 1986). For example, 

juvenile mortality has been shown to be the most important determinant of the ‘speed’ of life 

histories in mammals (Promislow & Harvey 1990). 

More recently, the Metabolic Theory of Ecology (MTE) was proposed as an attempt 

to link the level of metabolism to both the rate of life history as well as the capacity for 

reproductive output (Brown et al. 2004, Hamilton et al. 2011). However, despite the intuitive 

appeal of linking physiology traits directly to fitness (Speakman & McQueenie 1996, 

Lovegrove 2003), the predictions of the MTE have failed multiple tests (Harvey et al. 1991, 

Stephenson & Racey 1995, Duncan, Forsyth & Hone 2007, Lovegrove 2009, Müller et al. 

2012). One of the primary reasons for this is, unlike as is assumed by the MTE, many life 

history characteristics are not fixed within a species (Sikes & Ylönen 1998, Charnov & 
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Ernest 2006). The MTE relies heavily on this and other assumptions involving metabolic 

allometries, ignoring the impact of localised environmental factors and changing predation 

pressures, arguably the most important components in shaping the life history of a species 

(Boyce 1988, Harvey & Purvis 1999, Lahann, Schmid & Ganzhorn 2006).  

It is a better understanding of the fine-grained relationships between life-history 

characteristics and the environment, and not multi-species comparisons relaying largely on 

allometries that will allow for the creation of  accurate models predicting the impact of global 

changes in climate, an increasingly important application of physiological studies 

(Humphries, Umbanhowar & McCann 2004, Canale & Henry 2010, Boyles et al. 2011). 

Despite their potential failings, however, the great benefit of the MTE as well as other large-

scale comparative studies lies in their ability to identify outliers (Boyce 1988, Harte 2004). 

The study of these unusual cases, for example those on the extreme ends of either the 

physiological and/or life-history slow-fast continua, can help to shed light on the general 

patterns in the evolution of mammalian life-history and physiology (Eisenberg 1983, Grigg et 

al. 2004, Lovegrove 2012a). 

Madagascar an Island Time Machine and Muse for Evolutionary 

Physiologists  

Islands, and their unusual flora and fauna, have long been the source of fascination for 

evolutionary biologists, as evidenced by the works of the fathers of evolutionary theory, 

Charles Darwin and Alfred Russell Wallace (Darwin 1858, Wallace 1890). Often providing a 

blank canvas, they are the stages for phenomenal adaptive radiations. With low 

concentrations of predators or competitors, they are often home to evolutionary relics, life-

forms retaining ancestral characteristics unaffected by the hyper-competitiveness of mainland 

habitats (Quammen 1996).  

Madagascar is one of the largest islands on Earth, and also has one of the highest 

levels of endemism (Goodman & Benstead 2003, Harper et al. 2007). Since its separation 

from mainland Africa ca.135 mya (Rabinowitz, Coffin & Falvey 1983) the climate on the 

island, at least in the lowland areas, has remained tropical (Jury 2003). However, unlike 

tropical rainforests at the equator, where resource levels remain relatively stable year round, 

Madagascar’s climate, from the highlands to the seasonal dry forests, is characterised by a 

high degree of unpredictability (Dewar & Richard 2007). As a consequence, unusual life 

histories that fall on both the extreme ‘slow’ and extreme ‘fast’ sides of the life-history 

continuum have evolved in Malagasy mammals (Stearns 1983, Wright 1999, Richard et al. 
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2002, Dewar & Richard 2007). However, in this regard, most research to date has focused on 

primates (lemurs) and little on non-primates (Schmid & Stephenson 2003, Dewar & Richard 

2007). 

The most speciose endemic family of Malagasy mammals is the Tenrecidae (~30 

species, Order: Afrosoricida). Comprised of three subfamilies; the hedgehog-like Tenrecinae 

and the shrew-like Geogalinae and Oryzorictinae, Malagasy tenrecs are highly variable in 

form and in life-histories (Olson & Goodman 2003). Since arriving in Madagascar 55 - 35 

mya, tenrecs have undergone a large adaptive radiation yet have maintained a number of 

ancestral traits (Eisenberg & Gould 1969, Douady et al. 2002, Olson & Goodman 2003, Poux 

et al. 2008). All species are insectivorous, nocturnal, have limited vision, rely primarily on 

chemical communication for foraging, have plantigrade limbs, abdominal testes, a cloaca, 

and altricial young (Eisenberg & Gould 1969). Interestingly, despite similar gestation lengths, 

the smaller shrew-like species give birth to single young only (Eisenberg & Gould 1969, 

Stephenson, Racey & Rakotondraparany 1994, Symonds 1999), whereas the Tenrecinae have 

some of the largest litters of any eutherian mammal (Eisenberg & Kleiman 1972, Nicoll & 

Racey 1985, Stephenson et al. 1994). Differences in longevity as well as age at first 

reproduction place the subfamilies on opposing ends of the life-history continuum (Eisenberg 

& Gould 1969, Stephenson & Racey 1995, Racey & Stephenson 1996, Symonds 1999).  

Tenrecs also maintain some of lowest Tbs of any extant mammal (Clarke & Pörtner 2010, 

Lovegrove 2012b). The Tenrecinae in particular have some of the lowest residual basal 

metabolic rates of any eutherian mammal (Symonds 1999, Lovegrove 2000). They therefore 

provide a good opportunity to test predictions regarding both the physiology of temperature 

regulation and the pace of life-histories in mammals and have often been used as model 

basoendotherms (Eisentraut 1960, Crompton et al. 1978, Eisenberg 1983, Stephenson & 

Racey 1995, Symonds 1999, Lovegrove & Génin 2008, Oelkrug et al. 2013).  

Objectives and Study Organism 

The primary objective of this thesis was to use data collected on the physiology and life-

history of a free-ranging tenrec to gain insight into the evolution of endothermy in mammals. 

As mentioned above, tenrecs provide the ideal subjects for such a study. Despite being 

smaller in size, and with less extreme litter sizes than the closely related common tenrec 

(Tenrec ecaudatus), the greater hedgehog tenrec (Setifer setosus, Schreber, 1778) is an 

interesting and viable study organism. Furthermore, unlike T. ecaudaus it is not readily 

consumed by local human communities (Randrianjafy 2003), essential for studies on free-
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ranging populations which require high rates of recapture. Although primarily insectivorous, 

they are opportunistic omnivores, are known to eat fruit and carrion, and are often found 

foraging around refuse sites in villages (Petter & Petter-Rousseaux 1963, Eisenberg & Gould 

1969, Dammhahn, Soarimalala & Goodman 2012). Populations of S. setosus have been 

studied briefly in the coastal rainforests of eastern Madagascar (Eisenberg & Gould 1969). 

This work showed that, unlike T. ecaudatus, which is an obligate hibernator (Nicoll 1985), S. 

setosus can be active year-round, albeit in smaller numbers during the colder months of the 

austral winter (Eisenberg & Gould 1969). Studies on captive populations indicate that S. 

setosus is likely to be a facultative hibernator (Kayser 1960, Hildwein 1964). However, no 

data are available on the thermoregulatory physiology of this species outside captivity. 

Although much is known about the distribution, habitat use and phylogeny of this species 

(Eisenberg & Gould 1969, Olson & Goodman 2003, Muldoon & Goodman 2010, 

Soarimalala 2011), long-term studies on the natural history and physiology of free-ranging 

populations are lacking.  

By studying the interactions between the physiology and the life-history of these 

interesting basal mammals, I hope to shed light on aspects of both the evolution of 

homeothermy from heterothermy in endotherms, as well as the evolution of mammalian life-

history strategies and the possible links between the two. The first two chapters (2 and 3) 

focus on aspects of the activity patterns and life-history of this species, highlighting a high 

level of energetic outputs which occur in over a short time period. The next two chapters (4 

and 5) seek to quantify and characterise their thermoregulatory physiology to help explain 

how such high outputs are possible. Finally, in the concluding chapter (6) I combine the two 

to comment on thermoregulation and life history in mammals in general. 
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Chapter 2 Home range and shelter site selection in the greater 

hedgehog tenrec in the dry deciduous forest of Western 

Madagascar 

Abstract 

Information on the spatial distribution and habitat use of the Tenrecidae (Supraorder: 

Afrotheria) of Madagascar are severely lacking. Here I present the first data available on 

home range size, as well as further data on population distribution and rest site selection of a 

large tenrec, the greater hedgehog tenrec (Setifer setosus). Data were collected over two rainy 

seasons in the dry deciduous woodland of Western Madagascar, in Ankarafantsika National 

Park. Home ranges were surprisingly large for a 200 - 300 g animal: males had an average 

home range (95% MCP) of 13.7 ± 4.9 ha (n = 5), and females of 6.7 ± 2.0 ha (n = 5). A high 

overlap between multiple individuals of the opposite sex supports a promiscuous mating 

system for this species. Daytime shelter sites proved to be highly variable and differed 

between sex and reproductive status.  

Abbreviations 

MCP= Minimum convex polygon 

KDE= kernel density estimation 

KDEhref= kernel density estimation using the reference bandwidth (href) as a smoothing vector 

KDELSCV= kernel density estimation using least squares cross-validation as a smoothing 

vector 

KDEadj= kernel density estimation using hadj (calculated by multiplying href by the average 

ratio of hLSCV/href) as a smoothing vector 

Introduction 

The island of Madagascar has one of the highest level of endemism in the world (Goodman & 

Benstead 2003, Harper et al. 2007). One of the most speciose endemic mammal families is 

the Tenrecidae (Superorder: Afrotheria). Since their colonization of Madagascar ca. 37 mya 

tenrecs have diversified, spanning wide ranges in body size, morphology and life histories 

(Douady et al. 2002, Olson & Goodman 2003).  One of the largest species of tenrec, the 

greater hedgehog tenrec (Setifer setosus), is also one of most-wide spread, and yet it remains 

poorly-studied (Goodman, Ganzhorn & Rakotondravony 2003).  They are a cryptic, strictly-
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nocturnal, insectivorous species with a relatively low rate of trap success (Randrianjafy 

2003). Field and laboratory studies undertaken in the 1960s showed that they nest in shallow 

holes in the ground or in tree cavities during the day, often out of visual range (Gould & 

Eisenberg 1966, Eisenberg & Gould 1969). In the more seasonal parts of the country they are 

notably absent during the dry periods and are therefore likely to hibernate (Eisenberg & 

Gould 1969, Stephenson 1994, Randrianjafy 2003).  

The vast majority of data available on this species is restricted to that obtained 

through general surveys on small mammal populations (Stephenson 1993, Randrianjafy 

2003). There have been few in-depth studies and baseline data on the animal in its natural 

habitat are lacking (Eisenberg & Gould 1969, Randrianjafy 2003, Randrianjafy & Goodman 

2008). Information on the distribution, home range and shelter sites can provide invaluable 

insights into the basic ecology of a species and how it will respond to various environmental 

stressors (Burt 1943, Brown & Orians 1970, Komers & Brotherton 1997, Wilkinson, Grigg & 

Beard 1998). This is especially important in Madagascar where rates of deforestation and 

forest fragmentation in are high (Ganzhorn et al. 1990, Green & Sussman 1990, Smith, 

Horning & Moore 1997, Agarwal et al. 2005, Harper et al. 2007). 

Here I present data on the home ranges, distribution and rest site selection of a 

population of S. setosus in a segment of the western deciduous forest in Madagascar. This 

constitutes the first study to successfully follow multiple S. setosus for an extended period of 

time, and provides baseline data on the spatial distribution and habitat use of this species. 

Materials and Methods 

The study took place over two rainy seasons. The first, from January-April 2010, was a 

preliminary study in which eight individuals (three males, five females) were followed until 

hibernation commenced in March-April. The second study period was longer, from 

September 2010-April 2011, and resulted in the capture and radio-tracking of 14 individuals 

(eight males, six females). 

Study site 

All animals were trapped in the JBA (Jardin Botanique A) research area adjacent to the 

Ampijoroa Forestry Station in Ankarafantsika National Park (16º19’S, 46º48’E), one of the 

largest remaining intact sections of dry deciduous woodland in Madagascar (Alonso et al. 

2002). The habitat consists of dry forest situated on sandy soils. The JBA research area used 

in this study includes undisturbed forest habitat as well as once-burnt forest as described in 
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Chouteau et al. (2004). Both forest types are composed primarily of trees less than 5 cm in 

diameter with only 8.4% of the trees in the un-burnt forest reaching a diameter of greater than 

10cm (Chouteau et al. 2004). The site is characterized by large seasonal variation in rainfall 

with a distinct dry season during the Austral winter, from April-November with little or no 

rainfall, with the 1000-1500 mm of rain falling primarily during the remaining months (data 

from Durrell Wildlife Conservation Trust, Ampijoroa 1997-2010). Previous work indicated 

that S. setosus activity is limited during the dry season indicating the potential for seasonal 

heterothermy (hibernation) during this time (Randrianjafy 2003).  

Trapping and transmitter implantation 

Initial attempts were made to capture animals using Tomahawk-style and Sherman live-traps 

baited with sardines or dried fish, and open pitfall traps (consisting of a 10 litre plastic bucket 

placed in the ground with drainage holes). However neither technique had any success after a 

month of trapping. Trapping was abandoned in favor of catching individuals by hand. Hand-

catching consisted of walking the established trails in the area at night with local guides, 

locating individuals by sight or by sound, chasing and catching them and then transporting 

them back to the research camp. Animals were housed in plastic containers lined with paper 

towel and provided with live insects and sardines. They were kept for a maximum of five 

days before surgery to allow for collection of metabolic data for a concurrent study 

After several failed attempts to place external radio-transmitters both as collars (made 

impossible by the lack of clearly defined neck) or glued to the spines on the back 

(complicated by the animals’ ability to pass through the smallest cracks), the radio-

transmitters (2-stage collar transmitter, Merlin Systems Inc, Boise, ID, USA) were modified 

for implantation. This coincided with a concurrent study on long-term body temperatures in 

this species (Chapter 5) so the telemeters were encapsulated in surgical wax (Paramat Extra-

Merck KGaA, Darmstadt, Germany) alongside two miniaturized DS1922L Thermocron  

iButtons (Dallas Semiconductor) as outlined in Lovegrove (2009). The telemeter package 

weighed around 13.0 g (mean 13.0 g, range 11.7 - 13.5 g) constituting around 5 - 8% of the 

animal’s body mass, within a range of mass shown to have no adverse effects on locomotory 

behaviour in terrestrial mammals (Rojas, Koertner & Geiser 2010). Surgery was undertaken 

under sterile conditions in an enclosed laboratory site at the research camp. Oxygen and 

vaporized anesthetic (Isofluorane) were delivered to the animal through a mask at a rate of 

700 ml/min. Anesthesia was induced at 1-2% isofluorane and maintained at 0.5%. The 

telemeter package was inserted via an incision in the peritoneal cavity which was then 
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sutured using 3/0 catgut and sealed with Vetbond™ tissue adhesive (3m, London, ON, 

Canada). An intramuscular injection of antibiotics (1 μl /10 g of Duplocillin) was given to 

prevent post-operative infection. The animals were kept for one day of post-surgery 

observations and were released at the site of capture. Implanted animals were re-captured 

within a week of surgery to ensure proper recovery or corrective suturing if needed. 

Subsequent locations of the animal were made using either the R-1000 Telemetry Receiver 

(Communications Specialists, Orange, CA, USA) or the IC-R10 Communications Receiver 

(ICOM, Tokyo, Japan) connected to an RA-23K ‘H’ antenna (Telonics, Mesa, AZ, USA) or a 

standard 150 MHz Yagi antenna (manufactured by Cliff Dearden, Pietermaritzburg, KZN, 

South Africa) and a 150MHz power booster (Merlin Systems Inc, Boise, ID, USA). Females 

were captured once a week to determine reproductive status and males once every two or 

three weeks to assess body condition. The animals were recaptured and the transmitter 

package explanted after emergence from hibernation in September 2011. 

Data collection 

Rest site selection 

Setifer setosus is strictly nocturnal (Rand 1935, Randrianjafy 2003) and can therefore be 

expected to stay stationary throughout the day. This allowed the easy identification of their 

day/rest shelter sites by locating them between dawn and dusk. Females were located every 

day (as repeated use of a single nest site would indicate parturition) and males every couple 

of days. Using only the handheld radio-receivers (without an aerial) it was possible to locate 

them to within a few cm of their precise location, usually in a tree. Their geographic location 

was recorded using a handheld GPS unit (accurate to 3 m) and included in the home range 

analysis. Various characteristics (height from the ground, cover and diameter at breast height 

[DBH] of the tree) of their shelter site were also recorded. 

Collection of spatial data 

Only the daytime (rest-phase) locations, as described above, were collected during the first 

season. The second season also included the collection of night (active-phase) locations. 

Night locations were made from either 18:00 - 0:00 or 0:00 - 06:00. To avoid serial 

autocorrelation, each individual was located once per night in a randomized order (Swihart & 

Slade 1985). On occasion, visual contact was made with the animal in which case its location 

was recorded directly into the handheld GPS. If visual contact was not possible, the animal 

was triangulated by recording the angle at which the signal was strongest from three to four 
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different locations at least 10 m apart.  Estimated locations from the triangulation data were 

obtained using Locate III (Pacer Computing, Tatamagouche NS, Canada). All points were 

entered into MapSource (Garmin, Olathe, KS, USA) and the latitude and longitude data were 

transformed into Universal Transverse Mercator (UTM) coordinates for analysis. 

Data analysis 

Statistical analysis 

All statistics were performed using either the base program in R (R Development Core Team 

2011), or using MYSTAT or Sigma Stat 3.0.1 (Systat Software, Inc, Chicago, IL, USA). 

Resultant probability values were compared to an α-value of 0.05, unless otherwise stated. 

Rest site selection 

The height of the rest sites were placed into discrete categories (< 0 m, 0 m - 0.5 m, 0.5 m -1 

m, 1 m - 1.5 m, 1.5 m - 2 m and > 2 m) and then analyzed using a chi-squared test (or 

Fisher’s Exact test for non-normal data), between the sexes and among the different 

reproductive statuses. Similar analyses were performed on the level of cover provided by the 

rest site (classed as closed, open, partially open and unclear) as well as the diameter at breast 

height (DBH in m binned as follows: 0 - 0.1, 0.1 - 0.2, 0.2 - 0.3, 0.3 - 0.4, 0.4 - 0.5, > 0.5) of 

the tree in which they were resting.  

Home range analysis 

Home ranges sizes were calculated in R using the adehabitatHR package (Calenge 2006). 

With the exception of lactating females, rest-sites changed daily and therefore rest-phase 

locations were included in all home range analyses. To account for the high variance in 

calculated home ranges (see Wauters et al. 2007 for more details) multiple estimators were 

used. We used the minimum convex polygon (MCP) method as it is the most robust, in order 

to compare data from this study to that from other home range studies. The use of 95% MCP 

was supported by a preliminary analysis in R (using the mcp.area function) indicating that 

excluding the most extreme 5% of the distribution points for each animal did not affect the 

calculated values.  

However, the MCP method has been widely criticized in that it often over-estimates 

home range size (Worton 1989). Home ranges were therefore also calculated using fixed 

kernel density estimation (KDE) with three different smoothing vectors; KDE with href  

(KDEhref), the least squares cross-validation (KDELSCV), and hadj (KDEadj). This last value was 

proposed by Wauters et al. (2007) as a means of decreasing the overestimation of home range 
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size in a small mammal. The smoothing vector, hadj, was calculated by multiplying href by the 

average ratio of hLSCV/href (0.4 in this study). The kerneloverlap function in adehabitatHR 

was used to calculate the percentage of range overlap between individuals. The individuals 

followed exclusively between January-April 2010 were excluded from this analysis to ensure 

the recorded overlaps were temporal as well as spatial. 

Rest-phase locations are, in general, easier to collect and more accurate, and these 

were the only locations that were available from animals from the first season (with the 

exception of a few active-phase locations). It was also of interest, and ease of future study, to 

determine how accurate rest-phase data were as a predictor of overall home range size. Home 

range size analyses were also performed on the daytime locations only and were compared to 

home ranges calculated including the night-locations. Differences between home range 

estimates and sex were calculated using a two-way repeated-measures ANOVA. After 

visually observing home range size based on the number of locations, home ranges of 

individuals with less than 30 locations were considered incomplete. Although they are 

reported they were excluded from the calculation of the means and the statistical analyses. 

The reciprocals of the data were used to satisfy the assumptions of the ANOVA.  Differences 

among categories were determined using Holm-Sidak all pairwise multiple comparison 

procedures as a post-hoc test. 

Results 

Of the eight individuals followed (SF01-SF08) in the first year, only three animals (SF02, 

SF04 and SF07) remained active long enough to collect more than 30 locations (Table 2-1). 

The others either died (predation or unknown cause) or commenced hibernation shortly after 

implantation (early March 2010). An individual was considered to be hibernating when it 

remained in the same day site, and no nocturnal activity was observed, for more than one 

week. All individuals had entered hibernation by the end of April 2010. Problems with the 

transmitters and possible predation or dispersal meant that none of the animals from the first 

season, with the exception of one female (SF07), were recovered post-hibernation 

(September 2010). However, the transmitters of two individuals (one male and one female), 

who had not changed rest sites since March, continued to work until the beginning of 

September. Unfortunately the transmitters stopped working just as the animals started 

relocating, and they were both lost to the study. The one female to be recaptured (SF07) was 

fitted with a new transmitter and the recorded locations span the two seasons. 
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Of the 14 individuals implanted during the second season only 10 were followed long 

enough to obtain more than 10 accurate geographic locations. One male had a transmitter 

malfunction within a day of release and a female was killed by an unknown terrestrial 

predator within a week of capture. These data were excluded from all analyses.  Another 

animal died while entering a small tree cavity (SF11) and, whereas her data are included in 

Table 2-4, they were excluded from statistical analyses since only 14 locations were collected 

before her death. A total of six individuals, three males (SF09, SF15, SF17) and three females 

(SF13, SF14 and SF21) were eaten by boas (either Acrantophis madagascariensis or Boa 

manditra). However, complete home ranges were calculated for two of these individuals 

(SF13 and SF14) prior to their deaths. 

The activity patterns of S. setosus observed in this study were highly seasonal, 

restricted from late September to early March, for the males and to the end of April for the 

females. The breeding season began shortly after emergence from hibernation until just 

before re-entry. The first heavily pregnant females were observed in late October 2010 and at 

no point between that time and April 2011 were any of the females non-reproductive. 

Females in late lactation (30 - 40 days) were also found to be gestating. Due to the lack of 

external testes it was not possible to determine the reproductive condition of the males (Petter 

& Petter-Rousseaux 1963). Body mass was highly seasonal, fluctuating from the lowest 

values just after emergence from hibernation in 2010 (120 -160 g) and reaching as high as 

327 g for a male one week before hibernation commenced in 2011. Females tended to be 

smaller than the males but reached similar masses (> 350 g) during late gestation. 

Rest site selection 

All individuals, with the exception of lactating females, changed rest sites daily, rarely 

retuning to the same area. Lactating females (four observed in this study) would remain 

stationary for approximately 20 - 25 days before the young were large enough to move. The 

mother would forage at night and return to the same day location throughout this time. On 

occasion individuals were found in locations where they had previously been observed and 

even occasionally to the exact nest site where another individual had been located. On a 

single occasion, in the breeding season in December, a male and a female shared a single rest 

location for a few days. Activity was restricted to nighttime and in no case was an individual 

found in a different location at dusk than at dawn.  
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Table 2-1 Height of day site location, in meters from the ground, percent distribution by sex, 

and reproductive status of individual Setifer setosus in Ankarafantsika National Park. 

 

Height 

Category (m) 

n 

 

All Data     

% 

325 

 

Males  

 % 

141 

 

Females 

% 

178 

Females 

Pregnant 

% 

74 

Lactating 

% 

27 

Other 

% 

78 

<0 7.4 8.5 6.5 0 3.7 13.3 

0-0.5 38.8 32.6 43.5 43.2 22.2 50.6 

0.5-1 10.2 7.1 12.5 16.2 14.8 8.4 

1-1.5 6.5 7.8 5.4 9.5 0 3.6 

1.5-2 12.9 19.9 7.6 12.2 3.7 4.8 

>2 24.3 24.1 24.5 18.9 55.6 19.3 

Other refers to all females of undetermined reproductive status. Significant differences were 

found between sexes and between reproductive status in females. 

 

 

 

Table 2-2 Level of cover of day site location of Setifer setosus. 

        Females 

Level of Cover 

n 

All Data% 

319 

Males % 

140 

Females % 

179 

Pregnant % 

74 

Lactating % 

27 

Other% 

78 

closed 52.4 58.6 47.5 62.8 36.5 33.3 

open 21 10 29.6 26.9 33.8 25.9 

partially open 12.2 13.6 11.2 6.4 16.2 11.1 

unclear 14.4 17.9 11.7 3.8 13.5 29.6 

Level of cover refers to the portion of the animal visible to the observer. Closed: the animal 

could not be seen when the nest site was located. Open: the animal was fully visible. Partially 

open: the animal was partially visible and unclear when the nest site was too high to be 

evaluated by the observer. Significant differences were found between sexes and reproductive 

status.  
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Table 2-3 Frequency distribution (%) of diameter at breast height (DBH in m) of trees 

housing the rest sites of Setifer setosus 

        Females 

DBH 

(m) 

All Data       

% 

Males 

% 

Females 

% 

Reproductive 

% 

Non-Reproductive 

% 

n 208 113 95 73 22 

0 - 0.1 13.5 13.3 13.7 12.3 18.2 

0.1 - 0.2 37 41.6 31.6 27.4 45.5 

0.2 - 0.3 22.6 23 22.1 24.7 13.6 

0.3 - 0.4 13.5 12.4 14.7 17.8 4.5 

0.4 - 0.5 9.1 5.3 13.7 12.3 18.2 

> 0.5 4.3 4.4 4.2 5.5 0 

Differences presented according to sex, and female reproductive status. Pregnant and 

lactating females were combined ease in statistical analysis.  
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Common rest sites included hollows found in either live or dead trees and only very 

occasionally underground. Resting in underground or hillside holes was much more common 

in individuals found closer to the valley area surrounding the JBA forest site. The sandy soil 

of the JBA area made underground holes rare. Differences in all nest site characteristics were 

found between both males and females (chi-square tests resulting in p < 0.001, Tables 2-1, 2-

2, 2-3) and between reproductive and non-reproductive females. Pregnant and lactating 

females were generally found higher up in the trees than non-reproductive females and 

pregnant females were more often found in closed nest sites.  

Home range calculations 

Home range size varied widely according to the estimation used. KDEhref, produced the 

largest values, and KDEadj and MCP the smallest, whereas KLSCV estimates had the highest 

inter-individual variability (Fig 2-1, Table 2-4). Males had significantly larger home ranges 

than females, regardless of the estimate used (F1,38 = 14.82, p = 0.005). Home range sizes 

estimated by KDEhref, were significantly higher than those calculated by any other estimate 

(F3,38 = 13.98, p < 0.001). Individual home ranges had a high degree of overlap with 

individuals of both sexes (Table 2-5, Fig 2-2). In general, the males overlapped with a higher 

number of individuals than females. Home range sizes were normally distributed when 

calculated using 95% MCP and KDEadj but non-normally distributed when KLSCV or KDEhref 

was used. In all cases the coefficient of variation between individuals was high. 

Differences in home range estimates using day and night locations and those omitting 

night locations (Table 2-6), were larger than expected and much larger in males than in 

females (F1,38 = 10.32, p = 0.012), but did not differ between estimate type (F3,38 = 1.52, p = 

0.24). Both day and night locations appear to be necessary to accurately determine home 

range size. 

Discussion 

This study is the first to establish home range size for a terrestrial Malagasy tenrec. We also 

provide the first conclusive evidence that S. setosus hibernates, at least in the highly seasonal 

dry deciduous woodland. The success of this study was based on the use of peritoneal 

implanted radio-transmitters. Although implanting reduces the transmission range of the 

transmitter, it is the only solution for the long-term tracking of free-ranging individuals when 

external mounts do not work (Pavey, Goodship & Geiser 2003, Dausmann 2005).   
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Table 2-4 Home ranges estimates of Setifer setosus in Ankarafantsika National Park using 

both day and night locations. 

Animal Sex Mass (g) n 95% MCP (ha) KLSCV (ha) KHref (ha) KHadj (ha) 

SF02† F 198.0 33 5.29 12.85 13.92 7.09 

SF04† F 221.7 33 4.33 4.86 11.61 5.16 

SF07 F 181.8 95 6.32 5.72 10.64 6.97 

SF08*† F 199.4 14 0.90 0.37 4.99 1.83 

SF09* M 148.9§ 29 4.89 5.26 17.87 8.37 

SF11* F 165.6§ 14 2.96 0.37 12.75 5.57 

SF13 F 154.0§ 107 9.17 6.93 16.59 10.49 

SF14 F 158.5§ 78 8.29 10.22 17.07 9.33 

SF16 M 183.7§ 83 14.02 18.32 28.18 16.92 

SF17 M 183.9 36 14.66 42.97 37.61 21.22 

SF18 M 256.5 67 21.10 11.07 53.87 26.93 

SF19 M 295.7 50 9.52 20.25 24.59 12.46 

SF20 M 142.0 30 9.06 7.60 24.73 12.58 

SF21* F 235.0 12 1.07 1.15 4.46 3.38 

Mean  

 

194.6 ± 44.3 

58.3 ± 

28.8 9.70 ± 5.1 13.28 ± 11.1 23.33 ± 12.9 12.50 ± 6.7 

CV  22.8 49.4 52.5 83.7 55.3 53.6 

Mean M 

 

201.8 ± 61.4 

53.2 ± 

21.9 13.67 ± 4.9 20.04 ± 13.8 33.80 ± 12.4 18.02 ± 6.2 

Mean F 

 

189.3 ± 28.6 

69.2 ± 

34.62 6.68 ± 2.0 8.12 ± 3.3 13.97 ± 2.8 7.81 ± 2.1 

The mean (±SD) and coefficient of variation (CV) are for all individuals excluding those 

marked with a * which had insufficient data to provide accurate estimates. Significant 

differences were found between males and females using all estimates. †Indicates individuals 

followed during the first season (Jan-Apr 2010 only). Reported masses are from the date the 

animal was implanted, §indicates that the surgery occurred within the first two months post-

hibernation when the animal was at lower than average mass.  
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Table 2-5 Percent overlap of home range for individual Setifer setosus followed between 

September 2010-May 2011. 

 Sex SF07 SF09 SF11 SF13 SF14 SF16 SF17 SF18 SF19 SF20 SF21 

SF07 F - 0 0 0 60 0 54 94 0 0 0 

SF09 M 0 - 24 0 0 0 0 0 0 17 25 

SF11 F 0 33 - 0 0 2 5 10 0 55 31 

SF13 F 0 0 0 - 0 22 25 47 49 0 0 

SF14 F 38 0 0 0 - 0 9 68 0 0 0 

SF16 M 0 0 1 13 0 - 27 62 23 25 0 

SF17 M 15 0 2 11 4 20 - 78 0 24 0 

SF18 M 19 0 2 15 21 33 55 - 4 24 0 

SF19 M 0 0 0 33 0 26 0 9 - 0 0 

SF20 M 0 12 28 0 0 28 37 52 0 - 2 

SF21 F 0 48 42 0 0 0 0 0 0 6 - 

Number of  

overlaps 

 

3 3 6 4 3 6 7 8 3 6 3 
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Table 2-6 The difference in home range estimates for Setifer setosus based on calculations 

including all locations compared to estimates made using rest-phase locations only. 

Animal Sex n 95% MCP KLSCV KHref KHadj 

   (ha) (ha) (ha) (ha) 

SF02 F 24 0.96 -2.55 0.72 0.84 

SF04 F 23 0.97 -9.41 0.04 -0.25 

SF07 F 57 0.48 0.60 -0.65 -0.10 

SF09 M 25 0.59 1.09 1.80 0.70 

SF13 F 52 1.74 3.76 -0.11 2.03 

SF14 F 39 0.98 2.27 -0.53 0.35 

SF16 M 33 4.30 4.75 0.69 3.29 

SF17 M 17 2.83 4.52 0.31 2.82 

SF18 M 33 7.76 3.98 -3.71 3.42 

SF19 M 30 1.94 15.61 -0.86 0.49 

Mean ± 

SD M  

3.49 ± 

2.75* 5.99 ± 5.57* -0.36 ± 2.1* 

2.14 ± 

1.43* 

Mean ± 

SD F  

1.03 ± 

0.45* 

-1.07 ± 

5.22* 

-0.11 ± 

0.54* 

0.58 ± 

0.92* 

*Significant differences were found between the sexes.
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Figure 2-1 A comparison, by sex, of the various home range estimates for Setifer setosus. 

Boxplots show the median and median values (solid and dotted line, respectively), minimum 

and maximum values (lower and upper ends of boxes). * Indicates a significant difference in 

home range size between estimate type.  
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Figure 2-2 Minimum Convex Polygon (95%) home ranges of Setifer setosus in the JBA area 

of Ankarafantsika National Park, Madagascar. Male home ranges are outlined in black, 

females in grey. Individuals from the first season are indicated by dashed outlines and 

*indicates that the individual was excluded from statistical analysis.  
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One major disadvantage for this species, at least in the dry forest, is that there is little time 

during the active season when the females are not either gestating or lactating, they must 

therefore be caught early in their active season to ensure that their fitness is not impaired. As 

a result a number of females caught after October 2010 could not be tracked. Coupled with 

the highly unreliable trapping technique, this limitation led to part of the population being 

completely absent from the study. However, enough individuals with overlapping ranges 

were tracked to allow for some conclusions to be drawn. 

Early studies in captivity noted that S. setosus was likely to be polygamous and 

promiscuous (Eisenberg & Gould 1969). This is supported by the observed distribution 

patterns. All individuals had range overlaps with multiple individuals of the opposite sex. In 

addition, one male, SF18, was observed copulating with an unknown female, and later was 

found in the same nest site as SF14 (300 m away) for a few days. These were the only mating 

events observed in this study. As only one individual, a female, was tracked over both 

seasons, it is unknown if the high inter-annual site-fidelity observed was representative of 

either her sex or the population. 

The shelter site selection observed in this study, for the most part, supported early 

observations (Eisenberg & Gould 1969, Randrianjafy 2003). As mentioned in those studies, 

the primary rest sites for S. setosus are in tree cavities. However, the reliance of previous 

studies on visual observations, and locating the animal by chance, underrepresented the 

amount of nest sites found high in the canopy. Whereas nest site characteristics varied 

widely, lactating females were more commonly found in high (> 2 m) closed nest sites, likely 

as a means to protect the young from predators. Interestingly, Gould and Eisenberg (1966) 

observed a level of nest-site fidelity not observed in the present study, which may indicate 

differences in nest-site selection across the species geographic range. Only females with 

dependent young remained in the same site for multiple days, although individuals of both 

sexes were observed to return to previous nest sites throughout the active season. This 

behavior was less common in males than in females. In addition to having larger home 

ranges, males also travelled more, sometimes traversing the entire study grid in one evening. 

The home ranges measured in the study were surprisingly large for a 200-300 g 

animal. Recorded home ranges were 9.8 times larger for males and 4.8 larger for females than 

that predicted by McNab (1963) for a 300 g animal. There are few similar sized Malagasy 

mammals with which to compare these data. The greater dwarf lemur, Cheirogaleus major 

(360 g) has a home range of only 4.4 ha for males and 4.0 ha for females (Lahann 2008).  

However, Cheirogaleus is strictly arboreal and therefore the comparison is likely to be 
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misleading. Interestingly the terrestrial, 1-1.2 kg, giant jumping rat (Hypogeomys antimena) 

has only a 3.1 ha home range (Sommer 1997), almost exactly the size predicted by McNab 

(1963). One possible explanation for the large home range size is that the possession of body 

armor (in the form of dorsal spines) allows for a greater freedom of movement, without fear 

of predation (Lovegrove 2001). Body armor in tenrecs has proved to be an effective deterrent 

against the smaller Malagasy carnivores such as Galidia elgans (Eisenberg & Gould 1969), 

but clearly not against boas, as evidenced by the present study. They also constitute a small 

proportion of the diet for fossa (Cryptoprocta ferox) in the park (Dollar, Ganzhorn & 

Goodman 2007). In the study area, it is a local taboo to hunt S. setosus, but this does not hold 

throughout the species’ range and might prove a threat (Randrianjafy 2003, Jones, 

Andriamarovololona & Hockley 2008). 

The high variety of shelter sites and propensity for heterothermy indicate that the 

species is extremely adaptable and likely to perform fairly well with changing habitat and 

climates. Ganzhorn et al. (1990) came to a similar conclusion on the lesser-hedgehog tenrec 

(Echinops telferi), after observing the effects of selective logging on that species. In addition 

to the Western deciduous forest S. setosus have been observed in a wide variety of habitats 

including urbanized habitats, open grassland and the wetter forests of Eastern Madagascar 

(Petter & Petter-Rousseaux 1963, Gould & Eisenberg 1966). It would be of interest to obtain 

comparative data from these habitats to gain a better understanding of how various biotic and 

abiotic factors influence the distribution and habitat usage in this species. 
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Linking Statement 

In the previous chapter I demonstrated that the Setifer setosus in the study population had a 

short activity period, restricted to the rainy summer season, and that they occupied relatively 

large territories for their size. These large home ranges are indicative of high levels of 

activity. In the next chapter, I seek to establish that S. setosus also has a fast life-history and 

is capable of assimilating and expending large amounts of energy in a limited time frame. To 

do so I analysed data, collected over three active seasons, on the natural history of this 

species collected via radio tracking and opportunistic recaptures. I observed a trade-off 

between high levels of adult mortality in this species and the need for compensatory high 

annual fecundity. The results of my study also allow me to comment on the evolution of fast 

life histories in these highly pleisiomorphic mammals.  
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Chapter 3 High mortality and annual fecundity in a free-ranging 

basal placental mammal, Setifer setosus (Tenrecidae: 

Afrosoricida) 

 Abstract 

The spiny tenrecs, an endemic sub-family of Malagasy insectivores (Tenrecinae), are wide-

ranging and fairly conspicuous, yet long term studies on free-ranging populations remain 

sparse. Basal to most eutherian mammals, they share many ecological and morphological 

traits with proposed eutherian ancestors. Understanding their unusual life histories is 

therefore important to the understanding of mammalian evolution.  Here I present the results 

of a three-year study on a population of Setifer setosus, in the dry deciduous forest of 

Western Madagascar. The annual activity cycle of this species includes a five to seven month 

hibernation period, during the dry season, and a dramatic increase in body mass during the 

active season. Females, observed giving birth to up to three litters in a single season, entered 

hibernation later than males, after weaning their last litter. Short intervals between parturition 

dates and simultaneous gestation and lactation provide evidence for post-partum oestrus, 

previously observed in only one other species of tenrec (Geogale aurita, 

subfamily:Geogalinae). High levels of predation, primarily by snakes and unidentified 

mammalian ground predators, were also observed and likely contribute, along with the 

unpredictability of Madagascar’s climate, to the unusually fast life-history of these mammals. 

Introduction 

Unpredictable and highly variable climatic conditions, as well as an isolated island 

environment, have led to high levels of endemism on the island of Madagascar (Goodman & 

Benstead 2003, Dewar & Richard 2007). The life-history characteristics of the island’s 

endemic mammals are often unusual, falling on either the extreme ‘slow’ or ‘fast’ side of the 

life-history continuum (Stearns 1983, Wright 1999, Dewar & Richard 2007). One of most 

speciose groups of endemic mammals, the Tenrecidae (Superorder: Afrotheria) is a highly 

diverse grouping of insectivorous mammals. Although much is known about the distribution, 

habitat use and phylogeny of these species (Eisenberg & Gould 1969, Olson & Goodman 

2003, Muldoon & Goodman 2010, Soarimalala 2011), long-term studies on the natural 

history of free-ranging populations are rare. 
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The reproductive characteristics of tenrecs are highly varied, and can be found on 

both the fast (early reproduction, large litters in the spiny tenrecs: Tenrecinae) and slow (late-

maturing, small litters in the shrew tenrecs: Geogalinae and Oryzorictinae) side of the life-

history continuum (Eisenberg & Gould 1969, Stephenson & Racey 1995, Racey & 

Stephenson 1996, Symonds 1999). The hedgehog tenrecs (Echinops telfairi and Setifer 

setosus) fall somewhere in the middle, maturing early but producing smaller litters (mean of 

5.7 and 3.5, respectively) than the larger Tenrecinae (15.5 for Tenrec ecaudatus, Symonds 

1999).  The reproduction and life history of the Tenrecinae has been well studied in captivity 

(Eisenberg & Muckenhirn 1968, Eisenberg 1975, Stephenson, Racey & Rakotondraparany 

1994) and it is known that they can be preyed on by boid snakes and a number of native and 

introduced Carnivora (Eisenberg & Gould 1969, Hawkins & Racey 2008). However, little 

information is available on either the life-history or the rates of mortality in free-ranging 

populations (Dewar & Richard 2007). 

Baseline data on the life histories of the Tenrecinae from a wide variety of habitats are 

necessary to understand the evolution of these unique species. For example, because of the 

basal phylogenetic position of tenrecs, these data would greatly assist in reconstructing the 

characteristics of the ancestral placental mammal (Lovegrove 2012), which was also 

insectivorous and probably similar in ecology (O'Leary et al. 2013). It has been suggested 

that tenrecs may retain certain plesiomorphic characteristics of Late Cretaceous mammals 

(Lovegrove 2012), which allowed the ancestral mammal to survive the asteroid impact at the 

Cretaceous-Paleogene boundary (Robertson et al. 2004). 

As part of a study on the physiology and temperature regulation in Setifer setosus, a 

free-ranging population inhabiting the dry deciduous woodlands of Western Madagascar was 

monitored and individuals were followed for three rainy seasons.  I present findings on the 

body condition, reproduction, phenology and causes of mortality in this species. I also use 

these data to comment on the evolution of ‘fast’ life histories in the Tenrecidae. 

Materials and Methods 

Study site, capture and surgical methods 

The study was conducted over three rainy seasons, from January 2010 to February 2012, in 

the JBA (Jardin Botanique A) research area in Ankarafantsika National Park (16º19’S, 

46º48’E). The site is characterized by large seasonal variations in rainfall with a distinct dry 

season during the austral winter (April – November) with little or no rainfall, and around 

1,000 -1,500 mm of rain falling primarily during the remaining months (data from the Durrell 
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Wildlife Conservation Trust, Ampijoroa 1997-2012, Fig 3-1). A detailed description of the 

study site and methods are provided in Chapter 2. 

 All animals were caught by hand, by walking the established trails at night with local 

guides, and transported them back to the research camp. Capture effort was fairly constant, 

averaging four to six hours, five to six nights per week between January 2010 and November 

2011. The time of night varied from immediately after sunset (18:00) to midnight (0:00). 

Research activity during the 0:00-06:00 period by other members of the research team 

resulted in the occasional opportunistic capture. Animals were housed in plastic containers 

lined with paper towel and provided with live insects and sardines. At initial capture all 

animals were anesthetized using isoflurane in oxygen (induction;   1 – 2%, maintenance; 

0.5%) and various morphometric measurements were taken. Each animal was marked with a 

small distinctive clip in the ear and injected with a transponder (Small Animal Marking 

System, Trovan Ltd., UK) to allow for identification at recapture.  

 A subset of the population (individuals larger than 180 g) was implanted with radio-

transmitters for subsequent tracking and relocation. They were kept for a maximum of five 

days before surgery to allow for the collection of metabolic data for a concurrent study. The 

radio-transmitters (2-stage VHF collar-mounted transmitters, Merlin Systems Inc, Boise, ID, 

USA) were modified  and encapsulated in surgical wax (Paramat Extra-Merck KGaA, 

Darmstadt, Germany) together with Thermochron iButtons (Dallas Semiconductor, Dallas, 

TX, USA),  and implanted via a ventral midline laparotomy (Chapter 2). The telemeter 

package weighed around 13.0 g (mean 13.0 g, range 11.7 - 13.5 g) constituting around 5 - 8% 

of the animal’s body mass, within a range of mass shown to have no adverse effects on 

locomotory behaviour (Rojas, Koertner & Geiser 2010).  The animals were kept for one day 

of post-operative observations, released at the site of capture, and re-captured within a week 

of surgery to confirm that the incision had healed.  

Collection of life-history data 

Females with radio-transmitters were captured once a week to monitor reproductive status 

(evaluated by observing changes in mass, shape of the stomach and condition of the nipples) 

and males once every two or three weeks to assess body condition. The rest sites of the 

females were located every day (as repeated use of a single nest site indicates parturition- 

Chapter 2) and males every couple of days. On occasion, animals without implants were 

opportunistically re-captured and their mass and reproductive status were recorded. If visual 

contact was possible the size and number of juveniles were recorded. Due to the lack of 
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external testes it is not possible to determine the reproductive condition of the males (Petter 

& Petter-Rousseaux 1963).  

Statistical Analysis 

All statistics were performed using R version 2.15.2 (R Development Core Team 2011). 

Sexual dimorphism in morphometric measurements was assessed using t-tests, or Mann-

Whitney U-tests, and resultant probability values were compared to an α-value of 0.05. Body 

mass was analysed using mixed-effects models in the R package nlme (Pinheiro et al. 2013). 

Pregnant females and animals from the first season were excluded from the analyses as 

reproductive status and date to parturition were not always known and could not be controlled 

for in the analyses. To standardize changes in mass between animals of different body size, 

body condition index (BCI- the ratio of mass to forearm length) was used. To control for time 

of year, as mass increased dramatically from the time of emergence in October to start of 

hibernation, a factor ‘day’ was created with 1 September as ‘day’ 0.  Both BCI and ‘day’ 

were logarithmically transformed to control for unequal variances in the different groupings. 

Females were split into two groups; non-reproductive females, usually only found in the first 

few months of the season (day 0-100), and lactating or post-pregnant females.  

Model selection was used starting with a base model of ‘reproductive status’,’ season’ 

and ‘day’, as well as interaction effects between the three factors. The model residuals were 

assessed graphically and no heterogeneity was observed. Model selection identified ‘day’ and 

‘animal’ and their interaction (in the form ~’day|animal’) as the optimal structure for random 

effects. The optimal fixed structure included ‘reproductive status’, ‘day’ and a ‘day-season’ 

interaction effect. Differences within the significant categorical factors were determined 

using  a Tukey post-hoc test using the R package multcomp (Hothorn, Bretz & Westfall 

2008). 

Results 

Population levels and rate of capture 

The fates of individuals with implants from the first and second seasons are described in 

Chapter 2, but are included below as additional information on these individuals is presented. 

Despite similar capture effort, the number of new individuals captured in each season, or 

recaptured for the first time in subsequent seasons, varied dramatically (Fig. 3-2).   
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Figure 3-1 The total monthly rainfall (mm- grey bars) and the average maximum (clear 

circles) and minimum (black circles) ambient temperature recorded by the Durrell Wildlife 

Conservation Trust at the Ampijoroa Chelonian Breeding Centre, for the period of the study. 
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The first season (January - April 2010), was a preliminary study in which 8 individuals (3 

males, 5 females) were implanted and followed until hibernation commenced in March - 

April. An additional 13 individuals were captured over the same time period but did not 

receive implants for various reasons: too small, pregnant or lactating, or caught before the 

surgical equipment was available. The second study period was longer (September 2010 - 

April 2011), and resulted in the capture and radio-tracking of 14 individuals (8 males, 6 

females). An additional 30 individuals (9 females, 16 males and 5 juveniles) were captured 

and released without receiving implants, either because of low mass or reproductive status. 

 By the third study period (September 2011 - February 2012) the rate of new captures 

decreased and only 14 individuals (5 females, 6 males and 3 juveniles) were captured over 

the entire study period. All animals with the exception of two heavily pregnant females and 

one male caught near the end of the study, received implants. With the exception of the 

female from the second season which died entering a tree cavity (Chapter 2), there were no 

noticeable effects of the transmitter on the individuals. One good indication of success was 

that one single female (SF07) was implanted and followed over two seasons, and gave birth 

to two litters during the second season that she carried the transmitter. 

Morphometrics and changes in body mass 

The morphometric measurements of S. setosus in this study (Table 3-1) were similar those 

previously reported for this species in other parts of its range (Soarimalala & Goodman 

2011), as well as for Ankarafantsika (Randrianjafy 2003). Repeated measures obtained from 

individuals captured over multiple seasons showed little differences, with the exception of a 

few individuals who were likely to have been yearlings at date of first capture (data not 

shown). There were no differences between the sexes in any of the measurements (p < 0.05).  

Mass varied widely between individuals and over time (Fig 3-3). The animals were 

lightest after emergence from hibernation and heaviest immediately prior to hibernation or 

during pregnancy. This increase in mass was consistent between seasons and there were no 

overall differences found between the seasons (F1,53 = 1.25 , p = 0.27). Model selection 

indicated that only reproductive status (F2,53 = 28.34, p < 0.001), day (F1,53 = 76.30, p < 0.001) 

and the interaction effect between day and season (F1,53 = 13.43, p < 0.001) were significant. 

Non-reproductive females had significantly smaller masses than post-reproductive females (Z 

= -2.39, p = 0.04) and no differences were found between males and either class of female (p 

= 0.52 and p = 0.14).  
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Seasonal activity patterns and reproduction 

All members of this population restricted activity patterns to between sunset and sunrise 

(Chapter 2). Additional observations performed over the course of the study showed that 

individuals commenced nighttime activity after sunset (range 18:45 - 21:20, mean 19:31, n 

=13) and ceased activity before dawn (range 02:30 - 05:36, mean 04:30, n = 7). 

Seasonal patterns of activity showed little change between years, although the start 

date for hibernation had a high level of variability both between sexes and between 

individuals (Table 3.2). Males entered into hibernation earlier than females: as early as 18 

February by a first season male, and as late as 02 April by two males in the second season. 

Females were observed to enter hibernation anytime from April to May with gestating 

females observed as late as 17 April 2010.  Similar to two individuals from the first season 

(reported in Chapter 2), a male from the second season remained in a single nest throughout 

the dry season (19 March 2011-2 September 2011). Over-wintering body temperature 

recordings were obtained from a single female and body temperature closely tracked ambient 

temperature, indicating that hibernation continued from the end of April until the end of 

October (data shown in Lovegrove et al. 2014). 

Gestating females were observed shortly after emergence from hibernation (Table 3-

3). Using the published gestation length of this species of ~ 60 days (Eisenberg & 

Muckenhirn 1968, Eisenberg 1975), the earliest estimated dates for insemination fall around 

mid-October. Females with implants were observed to have up to three litters per season. 

However, litter survival rates were low. Of the six litters followed, four were lost, and only 

two litters, with one pup and three pups, were observed until weaning (~ 34 days). Reduced 

levels of activity were occasionally observed in lactating females and one female in the 

second season remained at a single nest site, without evidence of nocturnal activity, for a 

month.  

Mortality 

As presented in Chapter 2, mortality among adults in this population is high (25% in the first 

season, 58% in the second season and 100% in the third, Table 3.4). Boid snakes 

(Acranthophis madagascariensis and Boa manditra) were the most common predators, 

although a large proportion of individuals in the third season (3/7) were killed by an unknown 

ground predator. In addition, one individual whose home range covered an area transected by 

a busy road (Route National 4) was run over by a vehicle.  
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Table 3-1 Summary of morphometric measurements for adult Setifer setosus, sample size 

contained within parentheses. 

Body length (mm) 188.2 ± 12.1 (n = 39) 

Head length (mm) 46.2 ± 3.4 (n = 38) 

Head width (mm) 23.1 ± 2.8 (n = 38) 

Tibia length (mm) 36.0 ± 2.2 (n = 39) 

Forearm Length (mm) 30.1 ± 2.1 (n = 39) 

 

 

Table 3-2 Confirmed hibernation start and end dates for Setifer setosus in the Western dry 

forest (Ankarafantsika National Park) over two dry seasons (Season 1: Sep 2010 - May 2011, 

Season 2: Sep 2011 - Feb 2012). 

Animal Sex 

Date of 

Capture Season 

Hibernation 

start date 

Hibernation 

end date 

Hibernation 

length (days) 

SF01 M 17-Feb-10 1 19-Feb-10 
approx.  

14-Sep-10 
~ 207 

SF02 F 19-Feb-10 1 
after  

18-May-10 
lost to study n/a 

SF05 M 7-Mar-10 1 14-Mar-10 lost to study  

SF07 F 29-Mar-10 1 
after  

5-May-11 

before  

19-Nov-11 
> 198 

SF08 F 17-Apr-10 1 28-Apr-10 lost to study n/a 

SF18 M 23-Oct-10 2 2-Apr-11 
before  

19-Oct-11 
< 200 

SF07 F 19-Nov-10 2 26-Apr-11 22-Oct-11 179 

SF16 M 22-Nov-10 2 8-Mar-11 lost to study n/a 

SF20 M 6-Dec-10 2 2-Apr-11 
before  

29-Nov-11 
< 241 

SF19 M 29-Jan-11 2 19-Mar-11 2-Sep-11 167 
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Table 3-3 Length of gestation and lactation of Setifer setosus in Ankarafantsika National 

Park. Start of gestation was taken either from the first day that the individuals were visibly 

pregnant, or taken as the parturition date from the last pregnancy*. 

 

Preg-

nancy 

 No 

Estimated 

Start of 

Gestation* 

Parturition 

Date 

Gestation 

Length 

(Days) 

Start 

Lactation 

End 

Lactation 

Estimated 

Lactation 

(days) Result 

SF13 1 21-Oct-10 1-Dec-10 > 41 2-Dec-10 7-Dec-10 5 lost litter 

 2 13-Dec-10 23-Jan-11 41-53 23-Jan-11 8-Mar-11 44 unknown 

 3 8-Mar-11 deceased 

23-Mar-11 

n/a n/a n/a n/a n/a 

         

SF14 1 25-Oct-10 5-Dec-10 > 41 5-Dec-10 8-Jan-11 34 1 juvenile 

weaned 

 2 13-Dec-10 12-Feb-11 61-69 12-Feb-11 deceased 

19-Feb-11 

n/a n/a 

         

SF07 1 6-Dec-10 16-Jan-11 > 41 16-Jan-11 11-Feb-11 26 lost litter 

(snake) 

 2 16-Jan-11* 10-Mar-11 ~ 53 10-Mar-11 13-Apr-11 34 3 juveniles 

weaned 

         

SF22 1 19-Oct-11 unknown n/a unknown 28-Dec-11 n/a moved out 

of range 

 2 28-Dec-11 deceased 

17-Jan-12 

n/a n/a n/a n/a n/a 

         

SF23 1 14-Oct-11 24-Nov-11 > 41 25-Nov-11 deceased 

8-Dec-11 

n/a n/a 

         

SF24 1 14-Oct-11 2-Dec-11 > 49 3-Dec-11 16-Dec-11 13 possible 

lost litter 

 2 16-Dec-11 deceased 

26-Jan-11 

n/a n/a n/a n/a n/a 

         

SB01 1 26-Oct-11 6-Dec-11 > 41 6-Dec-11 lost to 

study 9-

Dec-11 

n/a n/a 
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Figure 3-2 Number of new Setifer setosus captured each month in Ankarafantsika National 

Park. Black bars are from the first season (January - May 2010), light grey the second season 

(September 2010 - April 2011), and clear from the final season (September 2011 – January 

2012. The data from the second and third season include the first date of recapture for that 

season. Similar sampling effort was made from January 2010 to January 2012.  
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Figure 3-3 A. Annual changes in body mass of male (circles), female (triangles) and juvenile 

(squares) Setifer setosus  over the three study seasons (first-black, second-light grey, third-

clear). Data from females include gestating and lactating females (Nov - Mar) and multiple 

measures per individual are also included. B. Representative change in body mass of a male 

(circles) and female (triangles) during the second season. The female gave birth on 16 

January and on 10 March (arrows). The male entered hibernation on 02 April, and the female 

on 26 April. 
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Table 3-4 Causes of mortality in Setifer setosus over the three study seasons. For some 

individuals there was clear evidence of predation by boas (transmitters found along with 

undigested spines) but the species was not determined. Ground predators (non-boid) could 

not be determined (deaths not witnessed). 

Animal Sex 

Date of 

Capture Date of death Cause of Death 

SF03 F 23-Feb-10 14-Mar-10 unknown ground predator 

SF06 M 27-Mar-10 unknown undetermined boa species 

SF09 M 7-Oct-10 2-Feb-11 Boa manditra 

SF10 F 10-Oct-10 20-Oct-10 unknown ground predator 

SF13 F 5-Nov-10 23-Mar-11 Boa manditra 

SF14 F 5-Nov-10 19-Feb-11 Boa manditra 

SF15 M 19-Nov-10 16-Dec-11 Acranthophis madagascariensis 

SF17 M 22-Dec-10 1-Feb-11 Acranthophis madagascariensis 

SF18 M 29-Dec-10 27-Oct-11 unknown ground predator 

SF20 M 24-Feb-11 12-Dec-11 undetermined boa species 

SF21 F 26-Feb-11 6-Mar-11 undetermined boa species 

SF22 F 19-Oct-11 17-Jan-12 Boa manditra 

SF23 F 19-Oct-11 8-Dec-11 unknown ground predator 

SF24 F 2-Nov-11 26-Jan-12 unknown ground predator 

SF25 M 19-Nov-11 17-Jan-12 unknown ground predator 

SF26 M 28-Nov-11 26-Dec-11 Hit by vehicle on RN 4 
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Discussion 

The abundance of S. setosus in Ankarafantsika NP has always been considered low 

(Rakotondravony, Randrianjafy & Goodman 2002, Randrianjafy 2003) and appears to have 

decreased over the course of this study. Despite similar trapping efforts, capture rates 

decreased during the third season. Low capture rates coincided with a decrease in the number 

of T. ecaudatus ( K.D. Lobban pers. comm., D.L.L. pers. obs), a species whose low 

abundance in the study area has been attributed to high levels of hunting for human 

consumption (Andriatsarafara 1981). Although S. setosus is generally not consumed locally 

(Randrianjafy 2003), reduced populations of  T. ecaudatus could lead to higher natural 

predation pressure on S. setosus. Both species constitute a large proportion of the diet of the 

fossa, Cryptoprocta ferox (Hawkins & Racey 2008) at another site in the Western dry forest. 

Remains have been also found in fossa scat in Ankarafantsika (Dollar, Ganzhorn & Goodman 

2007), albeit in smaller proportions as the latter study was conducted primarily during the 

hibernation season. Any mortalities attributed to ‘unknown ground predator’ in Table 3.4, 

could have been by fossa, however, it is equally likely to have been one of the more abundant 

introduced predators found at the study site, such as small Indian civets (Viverricula indica), 

African wild cats (Felis silvestris), and feral dogs (Canis lupus familiaris, Dollar et al. 2007). 

In the spiny forests of Southwest Madagascar, mortality by introduced dogs and wild cats is 

on the rise in diurnal lemurs (Brockman et al. 2008) and might equally pose a problem for the 

spiny tenrecs, especially since dogs are used to hunt these species (Eisenberg & Gould 1969, 

Andriatsarafara 1981). My research group observed a feral dog killing a female T. ecaudatus 

(D.L.L. and K.D. Lobban pers. obs); however, it is not known if S. setosus is common prey. 

In addition to the data presented in Chapter 2, this study provides further conclusive 

evidence, based on long periods of inactivity, that S. setosus hibernates, at least in the 

Western dry forest. Sex differences in the timing of entrance into hibernation are similar to 

those found in T. ecaudatus (Andriatsarafara 1981), where females entered hibernation later, 

attributed to the need for additional time to fatten after weaning their litter. However, the lack 

of difference in body condition between males and females in this study suggest that it is 

maternal care itself, and not its effect on body condition, that delays entry into hibernation. 

Not enough information is available to compare emergence dates between the sexes. 

Environmental conditions appeared to vary between seasons; the first season in 

particular was preceded by one of driest rainy seasons in recent history (Fig 3-1). No 

evidence of this was reflected in either hibernation start times or end times or patterns of 
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body condition, although any existing patterns might have been obscured by small sample 

sizes in the first and third seasons.  More data are necessary to draw any further conclusions.  

The animals studied showed a remarkable ability to increase body mass throughout 

the active season (Fig 3-3). Although partially omnivorous, especially in urban areas (Petter 

& Petter-Rousseaux 1963, Eisenberg & Gould 1969), S. setosus are primarily insectivorous, 

and insect abundance increases dramatically during the rainy season coinciding with their 

activity periods (Nicoll 1985, Rakotoarivelo et al. 2007, Dammhahn & Kappeler 2008). High 

levels of easily assimilated energy (Bell 1990) and relatively low thermoregulatory costs 

(Chapter 4, 5) for this time of year, assist in rapid mass increases. Seasonal fattening is also 

seen in other Malagasy hibernators such as the fat-tailed dwarf lemur (Cheirogaleus medius) 

which remain more sedentary during fattening but also make use of high levels of sugar in 

fruit instead of protein in insects (Fietz & Ganzhorn 1999). 

Gestation did not preclude mass gain in females. Despite giving birth to multiple 

litters, they had similar body conditions to males later in the season (Fig 3-3B). Similar gains 

in mass during gestation have been observed in captive E. telfairi (Poppitt, Speakman & 

Racey 1994), as well as in other non-hibernating mammals where mass stores accumulated 

during gestation are believed to be important for lactation (Humphries & Boutin 1999). No 

juveniles were caught both pre- and post-hibernation and therefore the effects of date of birth, 

usually a strong predictor of overwinter survival, could not be assessed. 

Similar to observations on captive populations of both species of hedgehog tenrecs 

(Mallinson 1974, Eisenberg 1975, Künzle, Nautrup & Schwarzenberger 2007), gestation 

lengths were highly variable. The shortest period between subsequent parturition dates for a 

single individual in this study was around 53 days. This is much shorter than the 60 day 

average reported in comparative studies (Eisenberg & Gould 1969, Symonds 1999), but is 

similar to observations from a captive population held at higher-than-usual ambient 

temperatures (Mallinson 1974). This short inter-birth interval would indicate a period of 

overlap between lactation and gestation. It is therefore likely that S. setosus  is capable of 

post-partum oestrus, previously thought to be unique to the large-eared tenrec Geogale aurita 

(Stephenson 1993, Racey & Stephenson 1996). The observation, on two separate occasions, 

one reported in Chapter 2, the other from this study, of males sharing a nest site with lactating 

females supports this. 

In this population, in the Western deciduous forest, breeding occurred throughout the 

active season, and parturition dates were not synchronised.  In contrast, females from a 

population studied in the Eastern rainforest gave birth in October, and no pregnancies were 
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observed after that date (Eisenberg & Gould 1969). Similarly flexible breeding schedules 

were observed in T. ecaudatus introduced to the Seychelles (Nicoll & Racey 1985), where 

peak reproduction coincided with peak food availability. The capacity to give birth to 

multiple litters during a single season (max of 3 observed in this study), dramatically 

increases the annual fecundity of this species, especially when compared to previously 

reported values which only considered a single litter per year (Eisenberg & Gould 1969, 

Symonds 1999). In combination with the capacity for fast sexual maturation, as early as 74 

days for a captive individual (Eisenberg 1975), high annual fecundity places S. setosus 

further towards the ‘fast’ end of the mammalian life history continuum showing more 

similarities with the extreme reproduction observed in T. ecaudatus. 

Symonds (2005) posited that it is unclear if the high rate of reproduction and overall 

reproductive flexibility observed in the Tenrecinae relative to other insectivores is by-product 

of Madagascar’s environment, or of their phylogeny, as little is known about the life histories 

of the other members of the Afrosoricida; the otter shrews (Family: Tenrecidae, Subfamily: 

Potamogalinae) and the golden moles (Family: Chrysochloridae). However, similar flexibility 

is also seen in the life history traits of other endemic Malagasy mammals, especially the 

cheirogaleid lemurs (Lahann, Schmid & Ganzhorn 2006, Dewar & Richard 2007, Lahann & 

Dausmann 2011, Canale et al. 2012).  Therefore it is likely that the environment does play a 

large role in shaping the life histories of these species (Wright 1999, Dewar & Richard 2007). 

In addition to environmental conditions, mortality is one of the primary drivers of the ‘rate’ 

of life histories, with high rates of predation leading to high birth rates (Read & Harvey 

1989). The high mortality rates observed in S. setosus support this hypothesis.  

This study presents aspects of the natural history of a free-ranging tenrec and 

illustrates the importance of long-term studies across a species’ range. Both the level of 

mortality as well as reproductive activity in this species were significantly higher than what 

has been reported in previous studies. The opportunistic nature of the data collection and the 

cryptic nocturnal character of the species precluded accurate estimations of certain population 

parameters (population size, juvenile growth rates, lifespan, etc.), but other aspects of the life 

history of S. setosus which were hitherto unknown have been made clear.  The study was 

greatly limited by the inability to follow single individuals over multiple seasons. It would be 

of interest to quantify rates of survival of the different juvenile cohorts to determine if there 

are any advantages to the synchronous reproduction observed in the eastern rainforests 

(Eisenberg & Gould 1969) over the multiple litters observed in this western population.  In 

addition, hibernation has been shown to increase the probability of overwinter survival, and is 
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believed to lead to slow life histories (Turbill, Bieber & Ruf 2011). As a slow life history is 

not the case for this species, at least not in the habitat studied here, a comparison of the rates 

of mortality and the rates of reproduction with populations which are active year round could 

help to shed light on this exception. Greater understanding of the reproduction, phenology 

and rates of mortality of these basal mammals could help shed light on the evolution of 

mammalian life-histories. 
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Linking Statement 

In the first two chapters I established that Setifer setosus, at least in the dry deciduous forest 

in the west of Madagascar, possess large home ranges, produce a large number of young and 

dramatically increase body mass within a limited time frame. All of these activities require 

the gathering and assimilation of large amounts of energy, generally considered to be 

incompatible with low basal metabolic rates. As tenrecs possess some of the lowest basal 

metabolic rates of any eutherian mammals, how they achieve such a high energetic output is 

of great interest. In the next two chapters I focus on evaluating the costs of reproduction in 

this species with the goal of making inferences about the evolution of endothermy in 

mammals. In Chapter 4, I concentrate on the changes in the resting metabolic rate, of both 

reproductive and non-reproductive individuals, over a wide range of ambient temperatures. I 

examine how these costs could have resulted in the fast life history described above and 

comment on the link between reproduction and homeothermy in the evolution of endothermy 

in mammals.  
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Chapter 4 Increased homeothermy during reproduction in a 

basal placental mammal 

Summary 

Homeothermic endothermy, the maintenance of a high and stable body temperature (Tb) 

using heat produced by elevated metabolism, is energetically expensive. There is increasing 

evidence that the earliest endotherms were heterotherms that, rather than maintaining strict 

homeothermy, allowed Tb to fluctuate with large variations between active and rest-phase Tb. 

The high level of homeothermy observed in modern mammals is therefore likely to have 

evolved from an ancestral heterothermic state. One of the hypotheses for the evolution of 

endothermy is that homeothermy allows for greater energetic output during reproduction 

(Parental Care Model). I tested this hypothesis by measuring metabolic rates over a range of 

ambient temperatures in both reproductive and non-reproductive Greater hedgehog tenrecs 

(Setifer setosus), a physiologically primitive mammal from Madagascar. Tenrecs have some 

of the lowest metabolic rates and highest levels of Tb variability of any mammal and are 

therefore good models for the ancestral eutherian state. During pregnancy and lactation there 

was an increase in metabolism and Tb below the thermoneutral zone, accompanied by a 

decrease in Tb variability. The lower critical limit of the thermoneutral zone was estimated at 

~25°C. However, whereas increases in resting metabolism were substantial below 20°C (up 

to 150% higher during reproduction), daytime rest-phase ambient temperatures at the study 

site rarely reached equivalent low levels. Thus, S. setosus provide an example for how 

relatively low-cost increases in homeothermy could have led to substantial increases in 

fitness by allowing for the faster production of young. The mechanisms necessary for 

increases in thermogenesis during reproduction would have further benefited the 

development of homeothermy in mammals. 

Abbreviations 

Cwet = wet thermal conductance (mLO2.°C-1.h-1) 

TNZ= thermoneutral zone 

Ta = ambient temperature (respirometer temperature) 

Tb = core body temperature 

Tsk = skin temperature 

Tlc= lower critical limit of the TNZ 

∆T = temperature differential (Tb-Ta) 
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TRMR= 𝑉̇O2 measured in the TNZ 

𝑉̇O2 = volumetric rate of oxygen consumed by the animal (mLO2.h
-1) 

Introduction 

All extant mammals are endotherms, capable of maintaining core body temperature (Tb) 

above ambient temperatures (Ta) through the production of heat from metabolism 

(Bartholomew 1972, Schmidt-Nielsen 1997). The precision of Tb regulation varies 

considerably among modern mammals (Clarke & Pörtner 2010, Lovegrove 2012a), ranging 

from species which maintain a high degree of homeothermy (small circadian variations in 

Tb), to those which have highly labile Tbs (Refinetti & Menaker 1992, Angilletta et al. 2010, 

Clarke & Pörtner 2010, Lovegrove 2012a, Boyles et al. 2013). In addition to circadian 

rhythms, in which Tb typically decreases during the rest-phase (but see Lovegrove et al. 

2014), many mammals also lower Tb and metabolic rate (MR) for extended periods of time 

during daily torpor and hibernation (Lyman et al. 1982, Geiser & Ruf 1995). 

 Strict homeothermy could have evolved as early as 200 mya coincident with increased 

encephalization and a shift to a nocturnal lifestyle, or as late as 66 mya before the crown 

placental groups diversified following the mass extinctions at the K-Pg boundary (Crompton, 

Taylor & Jagger 1978, Grigg, Beard & Augee 2004, Rowe, Macrini & Luo 2011, Lovegrove 

2012b, O'Leary et al. 2013). Moreover, there is increasing evidence that endothermy evolved 

in a tropical environment from an ancestral state in which Tb was highly labile and Ta-

dependent (Crompton et al. 1978, Grigg et al. 2004, Lovegrove 2012b, Lovegrove 2012a). 

Under this hypothesis the ancestral eutherian mammal was small, nocturnal, insectivorous, 

and likely to have expressed either short or long-term periods of torpor (Luo 2007, 

Lovegrove 2012a, O'Leary et al. 2013). It is this plesiomorphic heterothermic capacity which 

is thought to have been the most likely means by which the ancestral eutherian was able to 

have survived the short- and long-term devastation of the K-Pg boundary asteroid impact 

(Lovegrove 2012b). 

A number of hypotheses have been proposed in an attempt to explain how and why 

endothermy, a costly method of thermoregulation and existence in general, evolved in 

mammals (Crompton et al. 1978, Bennett & Ruben 1979, Farmer 2000, Koteja 2000). In this 

study I argue that the study of modern mammals which putatively retained plesiomorphic 

heterothermic characteristics, that is, physiological characteristics that are thought to have 

prevailed in Cretaceous eutherian ancestors, should shed light on the transition from 

ectothermic-like heterothermy to homeothermy (Eisentraut 1960, Crompton et al. 1978, 
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Grigg et al. 2004, Lovegrove 2012a). Termed ‘protoendotherms’ by Grigg, Beard and Augee 

(2004), and ‘basoendotherms’ by Lovegrove (2012a), extant basal eutherians, often found on 

low-latitude islands with little paleoclimatic history of Cenozoic cooling, are highly 

heterothermic, with variable Tbs and frequent use of torpor. The large amplitudes in the 

circadian rhythm of Tb in these animals can lead to difficulties in differentiating between 

torpor and normothermy using Tb alone (Poppitt, Speakman & Racey 1994, Brice et al. 2002, 

Kuchel 2003, Lovegrove & Génin 2008, Canale, Levesque & Lovegrove 2012). Also, the 

determination of a distinct thermoneutral zone (TNZ), a range of Ta over which MR remains 

minimal and constant, is highly problematic if Tb is not maintained at a constant level 

(Scholander et al. 1950, Brice 2008). The high thermolability of basoendotherms generates a 

relatively linear relationship between Tb and Ta, with no clear inflection points in MR at the 

lower and upper critical limits of thermoneutrality which typically define the TNZ in classic 

homeothermic endotherms (Stephenson & Racey 1993b, Nicoll pers. comms. in Stephenson 

& Racey 1994, Brice 2008). 

Malagasy tenrecs, members of the Afrotherian order Afrosoricida, are perhaps one of 

the best examples of eutherian basoendotherms (Eisentraut 1960, Crompton et al. 1978, 

Lovegrove & Génin 2008). Tenrecs display some of lowest Tbs of any extant mammal and 

the spiny tenrecs, members of the sub-family Tenrecinae, have some of the lowest basal 

metabolic rates (BMR, Symonds 1999, Lovegrove 2000). They have also retained the 

ancestral diet (insectivory), nocturnal activity patterns, and have inhabited the relatively 

warm climate of Madagascar throughout their evolutionary history (Olson & Goodman 

2003). Studies on free-ranging and captive Tenrecinae have indicated that these animals are 

highly heterothermic, with large rhythms in circadian Tb, as well as frequent (daily in the case 

of Echinops telfari) torpor bouts (Nicoll 1986, Stephenson & Racey 1994, Lovegrove & 

Génin 2008, Oelkrug et al. 2013). However, periods of homeothermy, indicated by an 

increase in the level and precision of Tb as well as a decrease in torpor use, have been 

observed in a number of tenrec species during both gestation and lactation (Thompson & 

Nicoll 1986, Stephenson & Racey 1993a, Stephenson & Racey 1993b, Poppitt et al. 1994). 

These observations provide strong support for the hypotheses that endothermy evolved in 

mammals to benefit parental care (Farmer 2000, Koteja 2000, Farmer 2003). However, to 

date, these studies, all on captive animals, have focused on changes in BMR or, to be more 

precise, the thermoneutral resting metabolic rate (TRMR) as defined by Lovegrove et al. 

(1991) to denote that resting measurements of metabolism occurred at thermoneutrality 

despite failing to meet all of the requirements for basal metabolism (Stephenson & Racey 
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1995, Symonds 1999). No study has yet to characterise changes in thermoregulatory profiles 

during reproduction in a basoendotherm.  

Brice, Levesque and Grigg (in prep, see also Brice 2008) predicted that the higher 

level of homeothermy observed during reproduction in basoendotherms would result in 

thermal profiles that conformed more closely to classic mammalian patterns. This study 

provides the first test of this prediction. I sought to fully characterize the thermoregulatory 

patterns during reproduction in a basoendotherm by measuring RMR over a range of Tas in a 

free-ranging population of Greater hedgehog tenrecs (Setifer setosus, Schreber, 1778) in the 

dry deciduous forest of western Madagascar. Although S. setosus is known to use torpor less 

than its sister species E. telfairi (Eisenberg & Muckenhirn 1968, Eisenberg & Gould 1969), 

they have been shown to enter into torpor over a wide range of Tas and to express a high 

degree of thermolability when not torpid (Chapter 2, Lovegrove et al. 2014).  In addition, S. 

setosus is both larger and more abundant than E. telfairi and, unlike the larger common tenrec 

(Tenrec ecaudatus), is not consumed by humans at the study site, making it an ideal 

candidate for a long-term study on the energetics in a free-ranging population (Randrianjafy 

2003). 

Results 

Reproductive status and sample size 

From October 2010 to April 2011 metabolic measurements were obtained from 22 

individuals (10 females, 12 males) for a total of 92 measures. Fewer animals (4 females, and 

5 males; 43 measures in total) were captured during the second season (October 2011 - 

February 2012). Individuals were also caught for the first time later in the year and therefore 

no recordings were obtained from non-reproductive females during the second season. High 

rates of natural mortality (Chapter 3) precluded the collection of data after January of 2012.  

Model selection using Akaike weights (AICcWt, Burnham & Anderson 2002) was 

performed to assess the influence of time since emergence from hibernation (‘day’: calculated 

as number of days since 1 September, see Chapter 3), ‘reproductive status’ (male and 

gestating, lactating and non-reproductive females) and ‘season’ on body mass (Table 4-1). 

Only the values from the first day of measurements per individual were used and, as these 

included multiple measures per individual, a random factor (in the form ~ 1|‘animalID’, see 

Zuur et al. 2009) was included in all models. Mass was ln-transformed to ensure a normal 

distribution of the model residuals and heteroscedasticity within the factor ‘day’ was 

controlled by using varFixed (~ ‘day’) as the variance structure. The model with the highest 
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AICcWt (0.61) included ‘day’ only with a parameter estimate of 0.95 ± 0.16 g per day (Table 

2). The inclusion of ‘reproductive status’ in the model resulted in an additional AICcWt of 

0.31. The remaining AICcWt was contributed by adding ‘season’ to the model. A Tukey 

post-hoc test on the model containing ‘day’ and ‘status’, using the glht function in package 

multcomp (Hothorn, Bretz & Westfall 2008), provided parameter estimate sizes for 

differences between ‘status’. There was little difference between gestating and lactating 

females as well as between males and non-reproductive females (parameter estimate of less 

than 5 g) whereas both of the latter groups were smaller than the former (differences > 25 g). 

Oxygen consumption, body temperature and thermal conductance 

Although torpor and normothermy are difficult to distinguish in species with a high degree of 

thermolability (Stephenson & Racey 1993b, Canale et al. 2012), it was necessary to consider 

‘torpid’ animals separately from those that thermoregulated. Individuals were therefore 

classed as torpid if the ∆T (Tb – Ta) was less than 5°C, and thermoregulating if it was greater 

(Hosken & Withers 1999). Data from thermoregulating animals only were included in the 

analyses. Data from three data measurement sessions, two on males at 22°C and one on a 

male at 32°C, were excluded from the analysis because the animals remained active 

throughout the duration of the recording. In the first season, non-reproductive individuals 

entered torpor at all Tas except for a male that maintained a Tb of 29.8°C at Ta = 22.1°C and a 

female with a Tb of 30.1°C at a Ta of 25°C. In contrast, in 2011-2012 only two of the five 

males entered torpor during data measurements; one at all temperatures and the other at the 

coldest temperature (22°C) only. There was no correlation, however, between body condition 

(BCI, Chapter 3) and torpor expression (F1,45 = 0.52, p = 0.48).  

Resting metabolic rate (RMR), measured as oxygen consumption (𝑉̇O2), and Tb were 

highly variable (Table 4-1; Fig. 4-1). Piecewise linear regression indicated an inflection point 

in the slope of 𝑉̇O2 versus Ta at approximately 24.6 - 24.8°C in the model including all 

individuals (N = 31, n = 133), at 24.8 - 24.9°C for reproductive females only (N = 8, n = 41), 

and at 24.9°C for non-reproductive individuals (N = 27, n = 85). The lower critical limit (Tlc) 

of the thermoneutral zone (TNZ) was therefore estimated to be around 25°C. Initial results 

indicated that models containing an inflection point at 25°C had lower AICc scores, and 

therefore it was justified to analyse the data above (within the TNZ: Ta ≥ 25°C) and below the 

Tlc (Ta < 25°C) separately.  
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Figure 4-1 Body temperature and resting metabolic rates of S. setosus over two reproductive 

seasons in Ankarafantsika National Park. Reproductive females (gestating = squares and 

lactating = diamonds), males (circles) and non-reproductive females (triangles) which 

thermoregulated are plotted in black, torpid (Tb-Ta [∆T] < 5°C) individuals in white. The 

straight line indicates Tb = Ta and the dashed line the approximate lower critical limit (Tlc) of 

the thermoneutral zone. Significant differences were found between torpid and normothermic 

animals for both V̇O2  and Tb. Despite defending similar Tbs there was also a significant 

difference in V̇O2 between reproductive females and normothermic males. 
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Table 4-1 Mean body mass, resting metabolic rates at thermoneutrality (TRMR, Ta = 25 - 

33.5°C) and minimum thermal conductance (Cwet, Ta < 30.5 °C) of reproductive, and non-

reproductive Setifer setosus. 

 

Male  Female 

  

 Non-

reproductive 
Gestating Lactating 

Mass (g) 172.7  ±  46.2 

(21) 
 

147.1  ±  17.7 

(9) 

272.3 ± 7.3 

(11) 

222.1  ±  74.8 

(2) 

TRMR 

(mLO2.hr-1) 

60.7 ± 17 

(41) 
 

53 ± 14.6 

(19) 

99.9 ± 34.4 

(29) 

81.4 ± 19.8 

(3) 

TRMR 

(mLO2.g-1.hr-1) 

0.36 ± 0.11 

(41) 
 

0.36 ± 0.11 

(19) 

0.40 ± 0.07 

(29) 

0.30 ± 0.08 

(3) 

Min Cwet 

(mLO2.hr-1.°C-1.g-1) 

0.10 ± 0.05 

(14) 
 

0.12 ± 0.11 

(7) 

0.10 ± 0.02 

(7) 

0.08 

(1) 

 N = 17  N = 8 N = 7 N = 2 

The number in parentheses indicates the total number of measures obtained.  
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Preliminary analysis of 𝑉̇O2 in the TNZ (TRMR, Ta > 24.5°C) indicated a single 

outlier, a reproductive female 33 days from parturition, which expended twice as much 

energy per gram while defending a similar Tb, as any other individual at 25°C. This datum 

was excluded from all subsequent analyses. Mean values for TRMR appeared to differ 

between reproductive and non-reproductive individuals (Table 4-1; Figs 4-1 and 4-2) at the 

whole-animal level.  However, the best model predicting TRMR (AICcWt = 0.96) contained 

‘mass’ (parameter estimate = 0.37 ± 0.04 mLO2.hr-1) only as a fixed factor, and ‘day’ and 

‘animal ID’, as well as their interaction (in the form ~’day|animal ID’), as random factors 

(Table 4-2). A model containing ‘reproductive status’ only, as well as one with ‘reproductive 

status’ and ‘Ta’, explained the remaining AICcWt (0.02, and 0.01 respectively).  

The highest ranking model describing the 𝑉̇O2 of non-torpid animals (5 males, 9 

gestating females) below the Tlc contained ‘Ta’, ‘reproductive status’ and ‘mass’ as fixed 

factors, and ‘animal ID’ as the sole random factor (Table 4-2). Of the fixed effects 

‘reproductive status’ had the largest impact on 𝑉̇O2 with gestation resulting in an increase of 

186.53 ± 35.4 mLO2.hr-1 higher than that of males. The RMR of reproductive females also 

increased as Ta decreased below Tlc at a rate of 14 mLO2.hr-1°C-1 (Fig. 4-1). The relationship 

between Ta and RMR in thermoregulating males was not significant (t3 = -0.39, p = 0.72), 

although sample size was very small. 

Inflection points in the regression of Tb against Ta were located at similar 

temperatures to those for 𝑉̇O2 (~ 25°C), but their inclusion in the model produced no 

improvement in AICc scores; one set of models only, containing all data from non-torpid 

individuals, was used in the Tb analysis. Fixed factors showing the most influence on Tb were 

‘reproductive status’, ‘Ta’ and ‘day’ (Table 4-2; Fig. 4-1), although the effect of the latter was 

slight (< 0.01°C.day-1).  ‘Animal ID’ was also included as a random effect. Contrary to the 

patterns seen in 𝑉̇O2, Tb was dependent on Ta : Tb increased by 0.4 ± 0.02°C per °C change in 

Ta. Males and non-reproductive females had lower Tbs than reproductive females (by 13.2 ± 

2.9 and 4.8 ± 1.5°C, respectively), although this difference decreased with increasing Ta. The 

second best fitting model replaced ‘day’ with ‘mass’ although the effect of this was once 

again small (< 0.001°C.g-1). 

An initial inflection point in measures of wet thermal conductance (Cwet; Fig. 4-3) was 

found at 32.5 - 32.8°C, after which Cwet increased dramatically. All analyses of Cwet, ln-

transformed to conform to model assumptions, included data below this inflection point only.  
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Figure 4-2 Resting metabolic rate in the thermoneutral zone (Ta > 25°C) for female Setifer 

setosus according to reproductive status. Categories describe the number of days prior to 

parturition (early = 60 – 35 days, mid = 35 – 10 days, late = 10 – 0 days), the dashed line 

indicates the mean value from the non-reproductive females. The female measured during 

late lactation was also in mid-gestation. Repeated measures were available for some, but not 

all individuals. There were no differences in V̇O2 between groups when mass was used as a 

covariate. 

 



66 

 

Temperature (°C)

10 15 20 25 30 35

C
w

e
t (

m
L

O
2
.h

r-1
.°

C
-1

)

0

20

40

60

80

100

 
Figure 4-3 Wet thermal conductance of Setifer setosus over a range of ambient temperatures. 

Reproductive females (gestating = squares and lactating = diamonds), males (circles) and 

non-reproductive females (triangles) which thermoregulated are plotted in black, torpid (Tb-

Ta [∆T] < 5°C) individuals in white.  The straight line indicates the lower critical limit of the 

thermoneutral zone.   
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Table 4-2 Best fitting linear mixed models evaluating the effect of various factors on the 

physiological parameters of reproductive and non-reproductive Setifer setosus. Ranking was 

performed using corrected Akaike Information Criterion (AICc) scores and Akaike weights 

(AICcWt). All models with an AICcWt > 0 are presented and the number of parameters 

contained in the model are included (k). ‘Status’ refers to the reproductive status of the 

individual (Male and gestating, lactating and non-reproductive female). ‘Day’ is the number 

of days since September 1, a proxy for the start of the active season. 

Fixed Factors Random Factors Variance Structure k AICc AICcWt 

Body mass 

‘day’ ~ 1|‘animalID’ varFixed (~ ‘day’) 4 431.12 0.57 

‘day’ +’status’ ~ 1|‘animalID’ varFixed (~ ‘day’) 7 432.10 0.35 

‘day’ + ‘status’ + ‘season’ ~ 1|‘animalID’ varFixed (~ ‘day’) 8 435.07 0.08 

 

V̇O2  in TNZ (Ta ≥ 25°C) 

‘mass’ ~ 'day'|‘animalID’ varFixed (~ ‘day’) 6 745.47 0.96 

‘status’+’mass’ ~ 'day'|‘animalID’ varFixed (~ ‘day’) 9 752.84 0.02 

‘Ta’+’status’+’mass’ ~ 'day'|‘animalID’ varFixed (~ ‘day’) 10 754.43 0.01 

 

V̇O2 below TNZ (Ta < 25°C)  

‘Ta’+’status’+’mass’ n/a varFixed (~ ‘day’) 5 139.75 0.96 

‘Ta’+’status’+’mass’+’day’ n/a varFixed (~ ‘day’) 6 147.17 0.02 

‘mass’ n/a varFixed (~ ‘day’) 3 148.52 0.01 

 

Body temperature 

 ‘Ta’ x ‘status’ +’day’ ~ 1|‘animalID’ varIdent (~ 1|‘status’) 11 263.97 0.51 

‘Ta’ x ‘status’ + ‘mass’+’day’ ~ 1|‘animalID’ varIdent (~ 1|‘status’) 12 265.11 0.29 

‘Ta’ x ‘status’ +’mass’ ~ 1|‘animalID’ varIdent (~ 1|‘status’) 11 266.11 0.18 

‘Ta’ x ‘status’ ~ 1|‘animalID’ varIdent (~ 1|‘status’) 10 270.99 0.02 

 

Wet thermal conductance (Ta < 32.5 °C) 

‘Ta’ x ‘status’ +’mass’ ~ 1|‘animalID’ varFixed (~ ‘Ta’) 9 66.97 0.72 

‘Ta’ x ‘status’ +‘mass’ +’day’ ~ 1|‘animalID’ varFixed (~ ‘Ta’) 10 68.89 0.28 
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An additional inflection point in the data at Ta < 32.5°C was located at Ta = 30.5°C under 

which point Cwet was at a minimum (Table 4-1). Values for Cwet were at a minimum at the 

lowest temperatures, increased slightly with increases in Ta below the TNZ, and dramatically 

above 32.5°C (Fig. 4-3). Similar to the Tb dataset, ‘reproductive status’, ‘Ta’ and their 

interaction as well as ‘mass’ were the fixed factors in the best model describing Cwet below 

32.5°C, along with ‘animal ID’ as a random factor (Table 4-2). Gestating females had the 

highest Cwet: 7.3 ± 1.5 mLO2.hr-1.°C-1 greater than males and 12.5 ± 1.5 mLO2.hr-1.°C-1 

greater than non-reproductive females. Although, similar to Tb, the difference was less at 

higher Ta. 

Discussion 

Previous studies on the thermoregulation of basoendotherms found thermal profiles that 

significantly deviated from the Scholander-Irving model (Stephenson & Racey 1993b, Nicoll 

in Stephenson & Racey 1994, Brice 2008). The results from this study, however, are mixed. 

Although TRMR was constant over a wide range of Tas in both reproductive and non-

reproductive individuals, indicative of a TNZ between ~25°C and 32.5°C, Tb was highly 

correlated with Ta at all temperatures. This observation deviates from the classical 

Scholander-Irving model which assumes that normothermic Tb is maintained within a narrow 

range. Similarly, high levels of variability in Tb seen in both reproductive females and the 

small number of thermoregulating males, led to unusual relationships between 𝑉̇O2 and Ta 

below the TNZ. The classical model predicts that the slope of 𝑉̇O2 below the TNZ should 

intersect with the y-axis (𝑉̇O2) at Ta = Tb (Scholander et al. 1950). This was not the case in 

either group of non-torpid animals. For the thermoregulating non-reproductive individuals, a 

lack of correlation between Ta and 𝑉̇O2 below the Tlc meant that the 𝑉̇O2 would never 

intersect with Ta within biologically viable Tbs. Similarly, reproductive females would have 

to have a Tb of > 36°C for the classical model to be an accurate representation of their 

thermoregulation. 

The pattern of Cwet also indicates some level of deviation from the classic mammalian 

model. In most homeothermic mammals Cwet reaches a minimum at the Tlc, and increases 

with increasing Ta within and above the TNZ (Scholander et al. 1950, Brice 2008). In this 

study Cwet never reached a minimum and started to increase only well into the TNZ, above 

around 32.5 - 32.8°C. Such a delayed deployment of heat loss mechanisms would indicate 

that Tb is flexible until a certain point, after which it is defended against potential 

hyperthermia, and efforts are made by the animal to offload stored heat. The Tb 
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measurements from S. setosus presented in Lovegrove et al. (2014) would indicate that high 

Tbs can be reached during torpor, although this is not always the case. The high levels of Cwet 

observed in a few individuals (Fig. 4-3) indicates a capacity to withstand high temperatures, 

however, the tolerance of high temperatures by tenrecs is not currently known. Furthermore, 

evaporative water loss was not measured in this study. It would be of interest for future 

studies to measure this species’ capacity for evaporative cooling, as well as its reliance upon 

these mechanisms for thermoregulation. Water loss considerations may be especially 

important in tropical species whose entire period of activity coincides with periods of high Ta 

and simultaneous high levels of ambient humidity (Chapter 3, Krockenberger, Edwards & 

Kanowski 2012, Lovegrove et al. 2014). 

Previous studies on the thermal profiles of basoendotherms found the delineation 

between torpid and non-torpid animals problematic (Stephenson & Racey 1994, Brice 2008). 

Although the distinction between the two states were clear at Ta < Tlc, three males, removed 

from the full data analysis, defended a lower body temperature (~ 26°C). These males were in 

a steady state since this Tb was maintained for the length of the measurement period. The 

maintenance of such intermediate rest-phase Tbs appears to be characteristic of tenrecs. 

Similar observations have been made on a shrew tenrec, Microgale dobsoni (Stephenson & 

Racey 1993b) and on S. setosus McNab (1980a), observed defending Tbs ranging between 23 

- 29°C. However, the large and very likely obese (530 g) animals used in the latter study 

render those results unreliable. Nevertheless, as shown in Chapter 3, there were no 

differences in body condition index (BCI) between seasons, or between torpid versus 

thermoregulating males in this current study. It is therefore unlikely that differences in body 

mass alone can account for the different thermoregulatory states of non-reproductive 

individuals.  

In accordance with previous studies on T. ecaudatus (Eisentraut 1960), lethargy and 

unresponsiveness, usually requirements for the diagnosis of torpor (IUPS Thermal 

Commission 2003), were not a characteristic of torpor in tenrecs.  Similarly, a number of 

species of tenrec have been found to be active at Tbs as low as 25°C (Eisenberg & Gould 

1969, Crompton et al. 1978, Poppitt et al. 1994). Activity at low Tb has similarly been 

observed in monotremes (Kuchel 2003), marsupials (Rojas, Körtner & Geiser 2012, Turner et 

al. 2012), placental mammals (Wooden & Walsberg 2004) and birds (Merola-Zwartjes & 

Ligon 2000). As a consequence, differentiating torpor from normothermy in these species 

using Tb alone is complicated (Brice et al. 2002, Canale et al. 2012). Without a discernible 

pattern in the thermal profiles of the reproductive females, I would be reluctant to accept the 
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inflection point found at 24.9°C in the non-reproductive individuals as a valid Tlc as 

prescribed by the Scholander-Irving model. The consistent relationship observed between Tb 

and Ta, and a lack of corresponding data on activity or responsiveness, make any distinction 

between torpid and thermoregulating individuals in this context arbitrary. In addition, the 

Scholander-Irving model was formulated to describe a mammal defending a narrow Tb 

setpoint, which is evidently not the case for non-reproductive S. setosus. As has been reported 

in previous studies on tenrecs (Poppitt et al. 1994, Lovegrove & Génin 2008), there is no 

threshold normothermic Tb under which all animals can be considered to be torpid. However, 

a coarse definition of torpor using the difference between Tb and Ta (∆T, Arlettaz et al. 2000, 

Canale et al. 2012) was supported somewhat by the 𝑉̇O2 data. As an approximation, an 

animal with a ∆T of less than 5°C could be considered torpid, but only reliably at Tas less 

than 25°C, and only if other methods for diagnosis (such as activity, metabolic rate or heart 

rate) are unavailable. 

Previous studies on captive tenrecs (Nicoll & Thompson 1987, Poppitt et al. 1994, 

Racey & Stephenson 1996) have shown increases in TRMR during reproduction. This was 

not the case in the current study. One explanation for the observed differences is that none of 

the recordings in this study can be considered to be truly basal because the population was 

both reproductively active and in the process of accumulating fat stores for hibernation 

(Chapter 3). During early pregnancy, as well as during lactation, the captive tenrecs of 

previous studies did not show significant gains in mass (Stephenson & Racey 1993a, Poppitt 

et al. 1994, Stephenson & Racey 1994), whereas individuals at all stages of reproduction in 

this study showed steady increases in body mass (Chapter 3). Potential increases in 𝑉̇O2 

during reproduction were possibly masked by simultaneous increases in mass. Although there 

is a possibility that handling stress would cause wild-caught individuals to have higher RMRs 

than captive, the high incidence of torpor observed in this study would suggest that the 

animals were comfortable with the experimental set-up. Furthermore, the average TRMR 

(0.36 ± 0.09 mLO2.hr-1.g-1 for non-reproductive individuals) falls within the reported values 

for this species (0.34-0.46 mLO2.hr-1.g-1, Kayser 1960, Eisenberg & Gould 1969, Stephenson 

& Racey 1995).  

Interestingly, one of the lowest TRMR values measured in a reproductive female was 

from an individual who was both in late lactation and mid-gestation (Fig 4-2). This low value 

is similar to those found during a study on reproduction in a species of shrew tenrec, Geogale 

aurita (Stephenson & Racey 1993a), where simultaneous gestation and lactation did not 
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result in combined increases in TRMR. However, sample sizes of the different reproductive 

stages in the current study were too small to determine the fine-grain relationship between 

reproduction and TRMR. The earlier studies on captive individuals also indicated that tenrecs 

can enter torpor during pregnancy (Nicoll & Thompson 1987, Stephenson & Racey 1993a). 

This was not observed during either the constant environment trials (this study) or in free-

ranging animals (Chapter 5), with the exception of a single female 46 - 49 days prior to 

parturition. This individual was in very poor body condition, having recently emerged from 

hibernation, and entered torpor at the lowest temperatures (14 - 21 °C). However, despite 

poor body condition early on in the season, a single young was raised successfully (SF14, 

Chapter 3) and a body condition comparable to that of the population was attained within a 

few weeks. Laboratory-based studies on the shrew Crocidura russula monacha (Mover, 

Hellwing & Ar 1988, Mover, Ar & Hellwing 1989) also found that TRMR during gestation 

and lactation, as well as during simultaneous gestation and lactation, showed little change. 

There was, however, a significant increase in food intake, and therefore in daily energy 

expenditure. This was also the case in reproductive E. telfairi, where increases in TRMR 

during gestation and lactation were less than in those in which daily energy expenditure was 

measured over 24 hrs (Poppitt et al. 1994). It is therefore possible that the costs of 

maintaining a higher degree of homeothermy during reproduction in S. setosus were 

underestimated by the methods used in this study. 

Conclusions; reproduction and the evolution of homeothermy via heterothermy 

This study provides further evidence that homeothermy is sustained in otherwise 

heterothermic mammals during reproduction. Interestingly, unlike in laboratory populations 

fed ad libitum, the only increases in TRMR observed during reproduction in S. setosus were 

due to increases in mass (therefore in total, whole-animal metabolic rate), and not due the 

reproductive condition per se. Increases in homeothermy are therefore likely to have higher 

effects on foetal development than increases in TRMR. Presumably, the reliance upon 

homeothermy can at least partly be attributed to a relationship between Tb and foetal growth 

rate (Farmer 2000). As an illustration, a captive population of S. setosus held at higher-than-

average ambient temperatures (> 25°C) had shorter gestation lengths than those housed in 

colder conditions (Mallinson 1974). This shortened gestation period matched those observed 

in the current study population (Chapter 3), where environmental temperatures were similarly 

warm. The mean minimum daily Ta during the active season (October-May) since 1997 was 

21.9 ± 2.3°C (n = 3572) and daytime (rest-phase) Ta decreased below 20°C only on 0.01% of 
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study days during the second season. The costs of maintaining homeothermy in this 

environment are therefore relatively low which is, presumably, how females in this 

population can give birth to up to three litters per year while also accumulating fat stores for 

hibernation. 

Assuming that the climate of the tropical forests of Madagascar have changed very 

little since the time when the placental mammal radiations occurred (~ 65 mya, Jury 2003, 

Lovegrove 2012a, O'Leary et al. 2013), S. setosus provide a useful model to test a crucial 

trade-off associated with the evolution of endothermy in general. The trade-off balances the 

fitness benefits of small increments in homeothermy during reproduction with the relatively 

low fitness costs involved in minimal thermoregulatory energy demands. Such a trade-off can 

occur in tropical environments only, which is the climate which prevailed broadly across the 

globe from the Jurassic ~ 200 mya at the putative establishment of endothermy in small, 

nocturnal mammaliaformes (Rowe et al. 2011), until at least the Eocene Thermal Maximum 

~50 mya (Zachos 2001). Continental global cooling occurred thereafter in the late Cenozoic, 

but the climates of the current tropics remained much the same as they were in the Late 

Eocene. Thus in both ancestral and contemporary small, tropical mammals, low-cost 

increments in homeothermy provide(d) a stable environment for foetal development which, 

by increasing the rate of development, would have increased fitness (Farmer 2003) and 

allowed for greater energy reserves to be used in provisioning the young, either via milk 

production, or fat storage (Koteja 2004). Thus apart from the support for the Parental Care 

hypothesis, my data also support the predictions of the Plesiomorphic-Apomorphic 

Endothermy hypothesis, which argues that basoendotherms such as S. setosus, display 

plesiomorphic endothermic traits that implicate stabilizing selection (Lovegrove 2012a). 

The presence of fully functional uncoupling proteins (especially UCP1), in the brown 

adipose tissue of tenrecs (Oelkrug et al. 2013), indicates that the physiological capacity to 

maintain homeothermy has existed in the eutherian mammal lineage for at least 66 million 

years. UCP1, found in mammalian mitochondrial membranes, facilitates non-shivering 

thermogenesis and constitutes an important part of heat produced by non-shivering 

thermogenesis necessary for rewarming from hibernation in eutherian mammals (Carey, 

Andrews & Martin 2003, Cannon & Nedergaard 2004, Jastroch et al. 2005). When housed at 

cold Tas, tenrecs periodically maintain high Tb similar to periods of normothermy observed in 

all mammalian hibernators (Willis 1982, Oelkrug et al. 2013). They therefore have the 

capacity to maintain high and relatively stable Tbs when necessary. However, the fact that 

homeothermy is observed solely during reproduction indicates that, at least in warm climates, 
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it is not necessary for a day-to-day existence, especially in tropical Madagascar. Increased 

homeothermy during reproduction has also been observed in a monotreme (Beard & Grigg 

2000, Nicol & Andersen 2006, Morrow & Nicol 2009) as well as in a number of eutherian 

and marsupial mammals (Morrison 1945, Audet & Fenton 1988, Geiser, Körtner & Schmidt 

1998) indicating that it is likely to have been one of the first steps in the evolution of 

homeothermy in ancestral heterothermic mammals (Farmer 2000).  

Methods and Techniques 

Study site, capture and surgical methods 

The study was conducted over two rainy seasons, from September 2010 to April 2011 and 

from September 2011 to February 2012, in Ankarafantsika National Park (16º19’S, 46º48’E), 

Madagascar. A detailed description of the study site and general methods is provided in 

Chapters 2 and 3. Briefly, all animals were caught by hand, in the Jardin Botanique A 

research area adjacent to the Ampijoroa Forestry Station, by walking the established trails in 

the area at night with local guides. Upon capture individuals were transported to the research 

camp where they were housed in plastic containers lined with paper towel and provided with 

live insects and tinned sardines. At initial capture all animals were anesthetized using 

isoflurane in oxygen (induction; 1 – 2%, maintenance; 0.5%) and morphometric 

measurements were taken. Each animal was marked with a small distinctive clip in the ear 

and injected with a transponder (Small Animal Marking System, Trovan Ltd., UK) to allow 

for identification at recapture. They were kept for a maximum of five days for the collection 

of metabolic data after which selected animals had a combination of radio-transmitter and 

body temperature data logger (DS1922L Thermochron iButtons, Dallas Semiconductor, 

Dallas, TX, USA) implanted into the peritoneal cavity as described in Chapter 2. Females 

with radio-transmitters were captured once a week to determine reproductive status, and 

males once every two or three weeks to assess body condition. In addition, the rest sites of 

the females were located every day as repeated use of a single nest site would indicate 

parturition (Chapter 2), and males every couple of days. Pregnant females (within 10 days to 

parturition) were captured in the field and brought back to the laboratory for a repeat of the 

metabolic measurements. If both the lactating female and her pups were accessible they were 

caught on the morning of the experiment and released back into the nest by sunset of the 

same day. Ambient temperatures for the study site were obtained from the Durrell Wildlife 

Conservation Trust. 
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Respirometry data 

Flow-through respirometry was used to obtain values for 𝑉̇O2 over a range of ambient 

temperatures (15 - 34°C). To avoid injury through pathological hypothermia, measurements 

at Tas < 10°C were not attempted (Lachiver pers. comms. in Kayser 1961). Measurements 

were conducted between 04:30 and 18:00, to coincide with the natural rest phase, and were 

made over a period of 4-6 hours. The animal was placed in a 700 mL respirometer consisting 

of an air-tight plastic container (Komax Industry Co, Seoul, Korea) with three small air holes 

at the base and an outlet near the top. The respirometer was placed inside a modified 

refrigerator in which the temperature was controlled using heat lamps activated via a 

programmable temperature controller (TC410, Rhomberg Instruments, Johannesburg, RSA). 

Ambient air, partially dried using silica gel, was pulled through the chamber at a rate of 

500 mL.min-1. The air was pulled through the chamber, into a mass flow meter and pump 

(MFS Mass Flow System, Sable Systems, Las Vegas, NV), dried using Drierite™, and 

pushed into a manifold. A subsample of the air from the respirometer was pulled at 

150 mL.min-1 through scrubbers containing soda lime to remove CO2 and DrieriteTM to 

remove water released by the soda lime, and a mass flow meter before entering the pump and 

being pushed through an O2 analyser (FoxBox-C Field Gas Analysis System, Sable Systems, 

Las Vegas, NV). Channels were configured in Sable System’s data acquisition software, 

Expedata (v 1.1.15), to record the fractional concentrations of O2, the flow rate, and the 

barometric pressure every two seconds. The precise temperatures experienced by the animals 

were monitored using pre-calibrated iButtons taped to the insides of the respirometer and 

programed to record Ta once every minute with a resolution of 0.0625°C.  To control for O2 

analyser drift, a baseline measurement from an empty reference respirometer, was used at 

regular intervals (5 min every 20 - 40 min) throughout the experiment. Before each 

measurement the animal was weighed and Tb was measured by inserting a calibrated Cu-Cn 

thermocouple 2 cm into the cloaca. At the end of the 𝑉̇O2 measurement period the position of 

the animal within the chamber was recorded and the Tb measurement was repeated. During 

the second season skin temperature (Tsk) was measured by securing an iButton to the stomach 

of the animal using surgical tape. Core Tb data, obtained from implanted iButtons, was only 

available for a small number of individuals (N = 4, n = 16).  A mixed model, using 

measurement type as a fixed factor and ‘animal ID’ as a random effect, indicated that Tsk was 

significantly different from both core Tb (t30 = 3.02, p = 0.005) and Tb at the end of the 

experiment (t30 = 2.30, p = 0.028), whereas the two methods of Tb did not differ from each 
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other (t30 = 0.72, p = 0.47). Tb at the end of data measurement was therefore used in all 

subsequent analyses. 

Most experiments were conducted during the initial capture period of each year 

(October-November) and for each individual usually consisted of a single measurement at a 

low temperature (18 - 25°C) and one in the TNZ estimated at around 30 - 33.5 °C based on 

values used by Nicoll and Thompson (1987) for E. telfairi. If possible, individuals with radio-

transmitters were recaptured later in the season (December - April) for additional 

measurements. Upon recapture the animals were kept in captivity for a total of two days, 

allowing for measurements to take place at 4 - 5 different Tas. Lactating females were 

measured only if it was possible to capture both the mother and the pups. Thus measurements 

were obtained from two females only, both in the first season; one with three pups 13 - 14 

days old (two weeks from weaning) the other with a single pup aged 30 - 33 days old (within 

days of weaning). The latter female was also gestating (38 days from parturition: SF14 in 

Chapter 3). Measurements on these females were conducted at two temperatures and the 

mother was returned to the pups for at least an hour between measurements. 

Data analysis 

To prepare the raw data files for analysis, O2 concentrations were corrected for analyser drift 

throughout the experimental period using the recorded baselines and the drift correction 

function in Expedata. To obtain steady-state values, a pre-recorded macro was used to locate 

multiple 10 minute sections (300 samples) of data with the most stable trace. The lowest of 

these values was used as the RMR for that temperature. Tsk values were used to confirm that 

the animal was in a steady state at this time. Only values after the first two hours of 

measurements were used to ensure that the animals were fully acclimated to the temperature. 

𝑉̇O2 was calculated using the proportion of O2 entering and leaving the respirometer, flow 

rate, chamber temperature and Tb and equations modified from Withers (2001). 𝑉̇O2 and the 

Tb measured at the end of the experiment were used to calculate Cwet using Equation 3 from 

McNab (1980b).  

Statistical analysis 

All statistics were performed using R version 3.0.1 (R Development Core Team 2011) and 

linear mixed modelling was implemented using the R package nlme (Pinheiro et al. 2013). 

Piecewise linear regression (p. 425 Crawley 2007), with mass as a covariate, was used to 
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determine inflection points in the slope of 𝑉̇O2 versus Ta, which would typically identify the 

Tlc. This analysis was repeated for the Tb and Cwet data.  

To quantify the importance of various factors on 𝑉̇O2, Tb, Cwet and body mass, model 

selection was performed using Akaike Information Criterion scores corrected for small 

sample size and Akaike weights (AICc and AICcWt, Burnham & Anderson 2002) 

implemented in the R package AICcmodavg (Mazerolle 2013) with respirometer temperature 

(‘Ta’), ‘season’, ‘day’, and ‘reproductive status’, as fixed factors, and ‘animal ID’ as a 

random factor. The assumptions of the models, i.e. normally distributed residuals with a 

mean of zero, were verified by observing qq-plots and histograms of the residuals.  
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Linking statement 

The previous chapter presented data which determined the cost of gestation and lactation in S. 

setosus held at constant ambient temperatures within a respirometer. The next chapter utilizes 

Tb as a proxy for energy expenditure to determine the energetics of reproduction in free-

ranging individuals. With this information I can provide a more thorough characterisation of 

thermoregulation in S. setosus, as well as estimate the costs of reproduction in this species. 

By observing the effects of reproduction on thermoregulation in a free-ranging 

basoendotherm, I will also be able to comment on the evolution of homeothermy in 

mammals. In addition, the data collected on the interactions between high Ta and Tb will help 

further the understanding of the effects of high Ta on the physiology and energetics of 

endotherms, which is increasingly relevant in the face of changing global climates.  
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Chapter 5 Effects of reproductive status and high ambient 

temperatures on the body temperature of a free-ranging 

basoendotherm 

Abstract 

Tenrecs (Order Afroscoricida) have some of the lowest body temperatures (Tb) of any 

eutherian mammal. They also have a high level of variability in both active and resting Tbs 

and, at least in cool temperatures in captivity, frequently employ both short- and long-term 

torpor. However, this high degree of heterothermy is generally reduced during gestation and 

lactation. Previous studies have measured the Tb of free-ranging tenrecs during the dry, 

austral winter, when many of the larger species hibernate. To date, however, no recordings 

have been obtained from individuals during the reproductive season. This study presents data 

collected over two rainy seasons in Ankarafantiska National Park, a dry deciduous forest in 

western Madagascar.  

Reproductive females had slightly higher daily minima (Tb ~ 32°C) and less overall 

variability in Tb, whereas non-reproductive females and males had both a higher propensity 

for torpor as well as a lower (Tb ~ 30.5°C) and more variable rest-phase Tb. Torpor 

expression, either defined as Tb decreasing below a certain threshold (Tb ~ 28°C) or by a set 

Tb-ambient temperature differential (Tb – Ta < 5°C), was much lower than predicted 

compared with the heterothermy shown by tenrecs in captivity. However, torpor defined via 

Tb alone is likely to underestimate the overall use of torpor, which been shown to occur at 

ambient temperatures close to normothermic Tb in species from tropical and sub-tropical 

habitats.  

The results of my study caution against inferring metabolic states from Tb measures 

alone and lend support to the recent call to define torpor in free-ranging animals based on 

mechanistic and not descriptive processes. In addition, the decrease in Tb variability observed 

during gestation and lactation in this study is in agreement with the parental care models for 

the evolution of endothermy, and confirms that homeothermy is essential to reproduction in 

this species and likely in mammals in general. The relatively low costs of maintaining 

homeothermy in the tropical climates of present day Madagascar help to shed light on how 

homeothermy could have evolved from the ancestral heterothermic condition in similar 

climates. 
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Abbreviations 

Ta = ambient temperature measured via a black body apparatus 

Tb = core body temperature 

Tsoil = ambient temperature measured at a depth of 250 mm below the surface 

Ttree= ambient temperature measured in a tree cavity 

∆T = temperature differential (Tb - Ta) 

Tbmax = average of the 5 highest Tb data for each day 

Tbmin = average of the 5 lowest Tb data for each day 

∆Tb = difference between the daily maximum and minimum Tb  

Introduction 

The hypothetical mammalian ancestor is postulated to have been small bodied, nocturnal and 

insectivorous (Crompton, Taylor & Jagger 1978, Luo 2007, Gerkema et al. 2013, O'Leary et 

al. 2013), and likely possessed the capacity for prolonged periods of metabolic down-

regulation (Lovegrove 2012a). The plesiomorphy of torpor is supported by the prevalence of 

torpor expression in all major mammalian orders, including monotremes and marsupials 

(Grigg, Beard & Augee 1989, Geiser 1994) and eutherian lineages with small-bodied 

representatives (Geiser & Ruf 1995, Lovegrove 2012b). The capacity for prolonged 

heterothermy, either in the form of daily torpor or hibernation (sensu Geiser & Ruf 1995), 

would have increased the chances of mammals surviving the harsh environments that 

followed the asteroid impact at the Cretaceous-Palaeogene boundary (Robertson et al. 2004, 

Lovegrove 2012b). Furthermore, a propensity for large circadian variations in Tb as well as 

the capacity for torpor, are a likely mid-point on the continuum between ectothermy and the 

highly regulated and rigid homeothermy seen in many modern mammal lineages (Crompton 

et al. 1978, Grigg, Beard & Augee 2004, Lovegrove 2012b, Lovegrove 2012a).  

The study of extant mammals retaining ancestral characteristics, so-called 

“basoendotherms” (sensu Lovegrove 2012a), can help in understanding how and why 

homeothermy evolved, given that it is an energetically costly means of thermoregulation. The 

spiny tenrecs of Madagascar (Order Afrosoricida, Subfamily Tenrecinae) are some of the best 

examples of extant eutherian basoendotherms (Eisentraut 1960, Crompton et al. 1978, 

Lovegrove & Génin 2008, Oelkrug et al. 2013). Members of this subfamily are insectivorous, 

primarily nocturnal, and have inhabited the sub-tropical island of Madagascar, where 

climates have remained fairly stable, since 55-35 mya (Eisenberg & Gould 1969, Douady et 

al. 2002, Olson & Goodman 2003). Well studied in captivity, the Tenrecinae have some of 
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the lowest and most highly variable body temperatures (Tb), as well as the lowest basal 

metabolic rates, of any eutherian mammal (Stephenson & Racey 1995, Lovegrove 2000, 

Clarke & Pörtner 2010). It has recently been demonstrated that the lesser hedgehog tenrec 

(Echinops telfairi) possesses functional brown adipose tissue and has the capacity to actively 

rewarm from low Tbs during torpor (Oelkrug et al. 2013). However, the maintenance of a 

stable Tb in captivity is rare outside of gestation and lactation (Stephenson & Racey 1993a, 

Stephenson & Racey 1993b, Poppitt, Speakman & Racey 1994). 

The restriction of homeothermy to periods of reproductive activity, more specifically 

to gestation and lactation, lends support to previous hypotheses which postulated that 

homeothermy evolved in mammals partially to benefit reproduction. Homeothermy could 

have evolved either via higher Tbs that promoted the maintenance of high and stable foetal 

growth rates (Farmer 2000), or by increasing the capacity for high levels of energy 

assimilation needed to provision the young (Koteja 2000). To date, the only data available on 

the Tb patterns of free-ranging tenrecs are from the austral winter (Lovegrove & Génin 2008, 

Lovegrove et al. 2014), with no data available from reproductively active individuals. Thus 

one of the primary aims of this study was to obtain Tb data from free-ranging reproductive 

basoendotherms, to test hypotheses for the link between parental care and homeothermy. 

Here I present the results of a two-year study on the thermoregulation of a free-ranging 

population of greater hedgehog tenrecs (Setifer setosus, Schreber, 1778) inhabiting the dry 

deciduous forest of western Madagascar.  

Materials and Methods 

Study site, capture and surgical methods 

The study was conducted over two rainy seasons, from September 2010 to February 2012 

(coinciding with the second and third seasons presented in Chapter 3), in the ‘Jardin 

Botanique A’ research area adjacent to the Ampijoroa Forestry Station in Ankarafantiska 

National Park (16º19’S, 46º48’E). A detailed description of the study site, population and 

general methods are provided in Chapters 2 and 3. Detailed Ta data were recorded at various 

locations throughout the study site using DS1922L Thermocron iButtons programmed to 

record once every 30 minutes at a resolution of 0.0625°C  (Dallas Semiconductor, Dallas, 

TX, USA). A variety of configurations were used: black body and Stevenson Screens were 

placed 1 m from the ground in shaded areas and soil temperature was recorded at 0 mm, 250 

mm and 500 mm. In 2011 - 2012 iButtons were also placed, on opposing ends of the study 

area, in two tree cavities which had previously been used as nest sites by S. setosus.  
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All animals were caught by hand, by walking the established trails in the area at night 

with local guides. Individuals were located, captured and transported back to the research 

camp where they were housed in plastic containers lined with paper towel and provided with 

live insects and tinned sardines. They were kept for a maximum of five days before surgery 

to allow for the collection of metabolic data (Chapter 4). A subset of the population of 

sufficient body mass (> 150 g) were subsequently implanted with a combination of radio-

transmitter and body temperature data logger (DS1922L Thermocron iButtons; Chapter 2). 

During the first season, two miniaturized iButtons (Lovegrove 2009) were encapsulated in 

surgical wax (Paramat Extra-Merck KGaA, Darmstadt, Germany) alongside a modified 2-

stage collar transmitter (Merlin Systems Inc., Boise, ID, USA). The resulting packages had a 

total mass of around 13.0 g (mean 13.0 g, range 11.7 - 13.5 g). During the second season 

(September 2011-February 2012) a single unmodified iButton was used which increased the 

mass of the implant to a maximum of 14 g while not affecting the size. The iButtons were 

programmed to record body temperature at 30 or 36 min intervals with an accuracy of 0.5°C. 

All iButtons were calibrated against a mercury thermometer prior to implantation as well as 

post-recovery to the nearest 0.1°C, no drift was observed. The package was implanted via 

ventral midline laparotomy undertaken under sterile conditions in an enclosed laboratory site 

at the research camp. Animals were observed for one day post-surgery and released at the site 

of capture. Implanted animals were re-captured within a week of surgery to ensure proper 

recovery or corrective suturing if needed.  

The transmitters used in a preliminary season as well as the first season of this study 

had a high level of malfunction, leading to the majority of the animals being lost to the study 

over the hibernation period. If, however, the animal was successfully recaptured the data 

loggers were recovered using similar surgical procedures that were used to implant the 

loggers. A high level of natural mortality during the second season (Chapter 3) meant that 

recovery surgery was unnecessary and all data loggers were collected in the field after the 

animal’s death.  

Data analysis 

All statistics were performed using R version 3.0.2 (R Development Core Team 2011) and 

linear mixed modeling was implemented using the lme function in the R package nlme 

(Pinheiro et al. 2013). The assumptions of the models, i.e. normally distributed residuals with 

a mean of zero, were verified by observing qq-plots and histograms of the residuals. 
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Ambient temperature  

The Ta, at 30 - 45 min intervals, was obtained from iButtons: in the black body configuration, 

from those buried at a depth of 250 mm in the soil (Tsoil) and, from the second season only, in 

tree-cavities (Ttree). All data covering the period of activity for each season (September-May) 

were compiled. Exact sunrise and sunset times were obtained for each day from The United 

States Naval Observatory website (http://www.usno.navy.mil/USNO/). To account for the 

nocturnal activity patterns of this species each day was shifted to comprise a period starting 

from sunrise to sunrise. Ta recorded from 1 October to the 10 February for each season were 

analysed for a) trends in the mean daytime (rest phase) and nighttime (active phase) 

temperatures, b) the maximum and minimum Ta (Tamax, Tamin, taken as an average of the 5 

highest and 5 lowest, respectively), c) the amplitude of daily temperature variability (Tamax - 

Tamin= ∆Ta), and d) the time of day of Tamin and Tamax. Frequency distribution tables were 

created with a bin size of 0.5°C. The amount time at which Ta was greater than the lower 

critical limit of the thermoneutral zone (25°C, Chapter 4) was calculated, first for the entire 

day, and then for the daytime and nighttime periods separately. Differences between seasons 

as well as the effect of the ‘day’ (with 1 September as day 0, see Chapter 3) were tested via 

linear mixed models. Ta and Tsoil, available from both seasons, constituted paired data which 

were controlled for using (~ 1|‘day/season’) as the random structure. Autocorrelation between 

the data points was accounted for using the correlation structure ‘corCAR1’ with day as the 

time covariate (Pinheiro & Bates 2000).  

Body temperature analysis 

The data from three males, one from the first season and two from the second season, have 

been previously analysed with regards to torpor at high Tas, as presented in Lovegrove et al. 

(2014), but are included in the current analyses as different aspects are covered. All data were 

placed into spreadsheets similar to those used in Lovegrove et al. (2014): each Tb datum was 

assigned the following markings, ‘light’ (nighttime or daytime based on sunrise and sunset 

times), ‘day’, ‘sex’, and, if female, ‘reproductive status’ (gestating, lactating, unknown). Data 

from the first week following the surgeries, the day of parturition (n= 2), as well as from the 

three to four day period in which the animals were housed in the laboratory for metabolic rate 

measurements (Chapter 4), were excluded from the analyses. In addition, a single high data 

point recorded in a gestating female (36.2°C) was found to coincide with the exact moment of 

recapture in the field. This outlier was deemed to  be the result of a stress-induced rise in Tb 
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(Careau et al. 2011) and not representative of overall thermoregulatory patterns, and was 

therefore also excluded from the analyses.  

Using similar protocols to that of the Ta data analysis, the mean, max, min and ∆Tb as 

well as the time of day in which the maximum and minimum Tb occurred were calculated for 

each day for all individuals. Differences between seasons (using males only) and 

reproductive status (using data collected from the second season only) as well as the effects 

of Ta and Ttree on Tb were performed via model selection using Akaike Information Criterion 

scores corrected for small sample size and Akaike weights (AICc and AICcWt, Burnham & 

Anderson 2002) implemented in the R package AICcmodavg (Mazerolle 2013). Repeated 

measures were controlled for, as per Chapter 4, using ‘animal ID’ as a random factor, and 

autocorrelation was corrected for using the correlation structure ‘corAR1’ in the form of 

~1|’animal ID’. All females of unknown reproductive status were excluded from this portion 

of the analysis. Torpor expression was quantified using the criteria determined in Chapter 4: a 

difference in Tb and Ta of less than 5°C at Tas below the TNZ (< 25°C).  A second analysis 

was performed using the method outlined in McKechnie et al. (2007), where a normal 

distribution with a standard deviation of 1 was created around the mode Tb for each animal 

and the lower 99% confidence limit of this distribution was used as the threshold Tb between 

torpor and normothermy. These analyses were performed three times, the first on full-day 

datasets, followed by a separate analysis of nighttime and daytime values.   

Results 

Ambient temperature 

Ta at the study site varies little, despite dramatic changes in precipitation between the dry 

austral winter and the wet summer (Chapter 3: Fig 3-1) Maximum daily Tas remained greater 

than 30°C throughout the year, although Tamin was much less during the dry season. Analyses 

performed on Ta collected during the active (summer) season showed that mean Ta did not 

differ between the two study seasons (F1, 129 = 0.05, p = 0.183) but significantly decreased 

over time (F1, 131 = 169.81, p < 0.001). Similar decreases were seen in Tamax (F1, 131 = 550.43, p 

< 0.001) which had had a small (0.6°C) but significantly higher mean in the first season (F1, 

131 = 6.00, p = 0.016). The opposite pattern was found in Tamin with the second season having 

slightly higher daily minima (F1, 131 = 27.5, p < 0.001) and Tamin increasing significantly as the 

season progressed (F1, 131 = 62.86, p < 0.001). Ttree was only available from the second season 

but showed similar decreases in both mean and maximum levels over time (mean: F1, 131 = 

181.83, p < 0.001, max: F1, 131 = 409.2, p < 0.001) and an increase in minimum Ttree until day 
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100 (F1, 131 = 13.57, p < 0.001), when it began to decrease. Patterns in Tsoil were a much 

dampened version of Ttree patterns with a mean daily ∆Tsoil of 0.65 ± 0.41°C. All values 

reached a peak around day 60 - 80 and decreased as the season progressed. Only 40% of all 

recorded Tas were less than the lower critical limit of the thermoneutral zone of S. setosus (Ta 

~ 25°C) and of those only 1.2 % were below Ta = 20°C. A large percentage of the recorded 

Ta was above 30°C (28.1 %). Similarly, 54.9 % of all Ttree recordings fell into the TNZ, with 

only 15.8 % above 30°C and 29.1 % below the TNZ. The variability in Tsoil was much less 

and 93.1 % of all recordings were in the TNZ with only 4.5 % falling above and 2.4 % below. 

The mean time of day at which Ta reached its maximum was 13:32 (± 1.2 h, range: 

08:43 - 17:02) and minimum Ta occurred at a mean time of 04:45 (± 1.6 h, range: 20:13 - 

09:35). Visual observations of the data indicated a large degree of overlap between seasons 

and an increase in variability as the season progressed, coinciding with an increases in foliage 

and rainfall at the study site (Sato 2012). Ttree showed similar patterns to Ta, although with a 

slight delay, peaking at a mean time of 16:33 (±1.4 h, range: 12:28 - 23:28) and reaching a 

minimum at 05:55 (±2.1 h, range: 21:43 - 07:51). However, the time at min Ttree did not 

change throughout the season. Ts reached a maximum on average around 0:02 (± 3.2 h, 

range: 15:27 - 06:35), and a minimum at around 11:05 (± 3.6 h, range: 22:06 - 18:11). As 

with Ta, there did not appear to be differences between seasons but both max and min times 

became earlier as the season progressed. 

Reproductive status and sample size 

Detailed life histories of members of the study population are presented in Chapter 3. The use 

of modified iButtons for the first season (September 2010 – September 2011) resulted in a 

high rate of data-loss. Of the three animals (two males, one female) recovered post-

hibernation, Tb data from the hibernation period were recovered from the female only (Fig. 5-

1, Chapter 3, Lovegrove et al. 2014). Only two functional data-loggers were recovered from 

the active period of this first season. One, covering a period of 38 days, was recovered from a 

male after the transmitter package was regurgitated by a boa (Acranthophis 

madagascariensis). The second was obtained from a female who died while entering a 

narrow tree cavity (Chapter 2) after 28 days. The reproductive status of this female 

throughout the study is unknown.  

Switching to a single unmodified iButton for the second season (September 2011-

February 2012) resulted in an improved recovery rate of Tb data. However, a smaller number 

of animals were captured throughout the season and high natural mortality (Chapter 3) 
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limited the capacity for data collection. Recordings were successfully obtained from two 

males and three females resulting in 92 animal-days for males and 180 for females, of which 

121 were during gestation and 28 during lactation. The post-hibernation data from the female 

from the first season (18 days) are the only data available from the period immediately 

preceding hibernation in either season. As this individual was not followed for the remainder 

of the season her reproductive status at the time of the recordings is unclear, although she was 

likely in the early stages of gestation at recapture (11 November). 

The female with the longest period of data available (72 days) moved out of range of 

the study site for an extended period of time (~ 40 days) during which she was presumed to 

have given birth. She was heavily pregnant before disappearing and, upon recapture appeared 

in the early- to mid-stages of pregnancy. It is not known if she was successful in suckling her 

first litter until weaning. She fell prey to a snake (Boa manditra) in the later stages of the 

second pregnancy. Neither of the females who remained in the study area throughout the 

recording period successfully reared a litter. One was killed by an unknown ground predator 

within 11 days of giving birth whereas the other is believed to have lost a litter to unknown 

causes after 12 days, and was later killed by a ground predator during the early stages of 

second pregnancy (Chapter 3).  

Daily variations in Tb  

Tb was highly variable and the difference between the daily maxima and minima (∆Tb) 

ranged from 0.6 to 8.1°C (mean: 2.6 ± 0.9°C). Circadian rhythms were highly variable and 

while the majority of values of maximum daily Tb were recorded during the active phase and 

minimums during the rest phase, no overall pattern is visible either between or among 

individuals (Fig. 5-2). Active phase Tb showed slightly less variability than resting phase Tb 

(Fig. 5-3), ranging between 30 - 35°C, compared with 26 - 36°C during the rest phase. Daily 

modal Tb measured during the active phase ranged from 31.6°C (the male from the first 

season) to 34°C in a gestating female from the second season (Table 5-1) and were generally 

lower in the rest phase. 
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Figure 5-1 Reproduced from Lovegrove et al. (2014). Tb (black line) recordings from a 

hibernating Setifer setosus during the dry austral winter in Ankarafantsika National Park 

along with the ambient temperature (grey line) measured at a neighboring nest site in a tree 

cavity with similar thermal properties to the hibernacula. A. Recordings from a few days 

during hibernation showing a change in Tb amplitude, likely caused by a change in nest site. 

B. Tb after immergence from hibernation. The animal (an adult female) was recaptured on 7 

November 2011 and was likely in the early stages of gestation.   
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Figure 5-2 Time of day and Tb (in °C) at which maximum (black) and minimum (hollow) Tb 

(°C) were measured in both A. male (triangles) and, B. female (circles) Setifer setosus.  
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Figure 5-3 Distribution of nighttime (active phase, A.) and daytime (rest-phase, B) body 

temperature of male (hollow bars) and gestating (black bars) and lactating (grey bars) female 

Setifer setosus. Environmental temperature distributions are indicated by the black lines (Ta) 

and the dashed grey lines (Ttree) and the lower critical limit of the thermal neutral zone in 

marked via a dashed vertical line.  
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Table 5-1 Modal Tb for each individual Setifer setosus during the active season. Values are 

provided for nighttime (active phase) and daytime (rest phase) and full day. The threshold Tb 

for torpor expression was calculated using the 99% confidence limit of a normal distribution 

around the modal Tb with a standard deviation of 1. 

 

First Season 

 

Second Season 

    

 

SF11 SF17 

 

SF07 SF22 SF23 SF24 SF25 SF26 

 n = 27 n = 36  n = 17 n = 68 n = 31 n = 73 n = 42 n = 18 

Sex female male  female female female female male male 

Modal Tb (°C) 

       Full 24h 32.6 30.6 

 

33 33 33.8 33.4 32.6 32 

Night 33.6 31.6 

 

33.5 34 33.8 33.4 33.1 32 

Day 32.6 30.6 

 

32.5 33 32.8 32.4 32.1 31.5 

Threshold Tb (°C) 

        Full 24h 30.0 28.0 

 

30.4 30.4 31.2 30.8 30.0 29.4 

Night 31.0 29.0 

 

30.9 31.4 31.2 30.8 30.5 29.4 

Day 30.0 28.0 

 

29.9 30.4 30.2 29.8 29.5 28.9 

Time Tb < Threshold Tb (%) 

       Full 24h 4.0 0.0 

 

4.9 0.0 0.7 0.8 0.5 1.1 

Night 3.3 0.0 

 

1.5 0.1 0.3 0.8 0.0 0.0 

Day 12.2 0.9 

 

11.8 0.1 1.0 0.8 1.6 2.0 
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‘Animal ID’ was contained in all of the best ranking linear models analysing the mean, max 

and min Tb of males (Table 5-2). ID was the only factor contained in the best fitting model 

for Tbmax and Tbmin whereas mean Tb was also influenced by Ta and ‘day’. Only ‘day’ was 

contained in the best fitting model for ∆Tb of the males (AICcWt = 0.56), although the 

second model containing only ‘animal ID’ had a large AICcWT (0.17). Insufficient data were 

available to make a firm comparison between seasons, however, and all three males differed 

from each other. 

Comparing the data obtained from males to that of females during the second season 

provided more conclusive results (Table 5-3). In all cases except for the standard deviation, 

Ttree provided a better fit to the data than Ta. However, while contained in the top ranking 

models, neither Ttree nor Ta influenced Tb by more than ± 0.08°C. Gestating females had 

higher mean and modal Tb than males and the non-reproductive female (Tables 5-3 and 5-4, 

Fig. 5-2) and mean Tb was influenced by Ttree (Table 5-3). ‘Reproductive status’ was not 

contained in the top ranking model describing Tbmax but was similarly influenced by Ttree. In 

contrast, neither of the environmental temperatures were included in the best model for Tbmin, 

and both gestating and lactating females had higher minimum Tbs (by 0.8 - 1.1°C). 

Interestingly, only gestating, and not lactating females, had less variable Tbs than the non-

reproductive individuals, supported by the analysis of both of the standard deviations and the 

∆Tb (Tables 5-3 and 5-4). 

Torpor during the reproductive season 

Using the criteria determined in Chapter 4, torpor, outside of hibernation, was observed only 

on 11 out of 272 animal days. Torpor bouts defined in this manner were observed in males, 6 

by the first season male lasting 0.5 - 3 h with an average torpid Tb of 29.4°C. A single bout 

was also observed in a male in the second season (visible in Fig 5-4 A.) which lasted 3 h 

before increasing Ta decreased the Tb - Ta differential to above the 25°C Ta threshold limit for 

torpor. Additionally, torpor was expressed by the first season female on a single day with Tb 

decreasing as low as 25.6°C and by the non-reproductive female from the second season (Fig 

5-1) on the first two days following emergence from hibernation. A single bout lasting for a 

single recording point (30 min or less) was observed in one of the second season females on 

the day of parturition. 
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Table 5-2 Rank of linear models evaluating the effects of various factors on the daily mean 

Tb of free-ranging male Setifer setosus. Ranking was performed using corrected Akaike 

Information Criterion (AICc) scores and Akaike weights (AICcWt). All models with an 

AICcWt > 0 are presented and the number of parameters contained in the model are included 

(k). ‘Day’ is the number of days since September 1. 

Model Parametersa k AICc AICcWt 

Mean Tb 

‘meanTa
’ + ‘day’ + ‘animal ID’ 7 40.23 0.56 

‘meanTa
’+ ‘animal ID’ 6 42.11 0.22 

‘meanTa
’ x ‘day’ + ‘animal ID’ 8 42.36 0.19 

‘animal ID’ 5 46.12 0.03 

 

Tbmin 

‘animal ID’ 5 194.89 0.58 

‘day’ + ‘animal ID’ 6 197.01 0.2 

‘minTa’ + ‘day’ + ‘animal ID’ 7 197.42 0.16 

‘minTa’ x ‘day’ + ‘animal ID’ 8 199.63 0.05 

 

Tbmax 

‘animal ID’ 5 150.63 0.34 

‘day’ + ‘animal ID’ 6 150.96 0.29 

‘maxTa’ + ‘day’ + ‘animal ID’ 7 151.43 0.23 

‘maxTa’ x ‘day’ + ‘animal ID’ 8 152.40 0.14 

 

∆Tb (Tbmax – Tbmin) 

‘day’ 4 260.60 0.56 

‘animal ID’ 5 262.91 0.17 

‘day’ + ‘animal ID’ + ‘∆Ta’ 7 263.75 0.12 

‘day’ + ‘animal ID’ 6 264.07 0.1 

‘day’ x ‘animal ID’ + ‘∆Ta’ 8 265.19 0.06 
aAll models were corrected for autocorrelation using the correlation structure corCAR1 (form = 

~1|animal ID).  
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Table 5-3 Rank of models evaluating the effects of various factors on predicting the daily 

mean Tb of male and female S. setosus during the second season of the study. Ranking was 

performed using corrected Akaike Information Criterion (AICc) scores and Akaike weights 

(AICcWt). All models with an AICcWt > 0 are presented and the number of parameters 

contained in the model are included (k). ‘Day’ is the number of days since September 1. 

Model Parametersa k AICc AICcWt 

Mean Tb 

‘meanTtree’ + ‘reproductive status’ 8 100.56 0.46 

‘meanTtree’ 5 101.73 0.26 

‘meanTtree’ + ‘reproductive status’ + ‘day’ 9 102.44 0.18 

‘meanTa’ + ‘reproductive status’ 8 105.05 0.05 

‘meanTa’ 5 106.25 0.03 

‘meanTa’ + ‘day’ + ‘reproductive status’ 9 107.17 0.02 

‘meanTa’ + ‘day’ 6 108.27 0.01 

 

Tbmin 

‘reproductive status’ 7 475.44 0.41 

‘minTtree’ + ‘reproductive status’ 8 476.88 0.20 

‘minTa’ + ‘reproductive status’ 8 477.19 0.17 

‘minTtree’ + ‘reproductive status’ + ‘day’ 9 478.35 0.10 

‘minTa’ + ‘reproductive status’ + ‘day’ 9 478.97 0.07 

‘minTtree’ 5 481.57 0.02 

‘day’ 5 481.78 0.02 

‘minTa’ 5 482.34 0.01 

 

Tbmax 

‘maxTtree’ 5 295.07 0.39 

‘maxTtree’ + ‘reproductive status’ 8 296.56 0.19 

‘maxTa’ 5 296.69 0.18 

‘maxTtree’+ ‘reproductive status’ + ‘day’ 9 297.84 0.1 

‘maxTtree’+ ‘day’ 6 298.18 0.08 

‘maxTtree’ 7 300.51 0.03 

‘maxTtree’+ ‘day’ + ‘reproductive status’ 9 300.57 0.03 

‘day’ 5 303.73 0.01 

 

∆Tb (Tbmax – Tbmin) 

‘∆Ta’ + ‘reproductive status’ 8 475.48 0.63 

‘∆Ta’ + ‘day’ + ‘reproductive status’ 9 477.46 0.23 

‘∆Ttree’+ ‘reproductive status’ 8 479.58 0.08 

‘∆Ttree’+ ‘reproductive status’ + ‘day’ 9 481.68 0.03 

‘reproductive status’ 7 483.99 0.01 

‘∆Ta’ 5 484.21 0.01 
aAll models were corrected for autocorrelation using the correlation structure corCAR1 (form = 

~1|animal ID).  



99 

 

Table 5-4 Means ± standard deviations of various parameters of the Tb of Setifer setosus 

measured over two rainy seasons.  

 Male  Female     

Status male  non-repro gestating parturition* lactating unknown* 

 

N = 3,  

n = 96 

 N = 1,  

n = 17 

N = 3, 

 n = 112 

N = 2,  

n = 2 

N = 2,  

n = 27 
N=2, n=58 

Mean Tb (°C)       

  Mean 31.9 ± 0.7a  32.5 ± 0.6a 33.1 ± 0.3 b 32.8 ± 0.8 33.1 ± 0.7 a 33.2 ± 0.8 

  Range 30.2 - 33.1  30.5 - 33.2 32.5 - 34.1 32.2 - 33.3 31.8 - 33.8 30.6 - 34.1 

 S.D. Tb (°C)  
     

  Mean 0.9 ± 0.3 a  1.0 ± 0.5 a 0.7 ± 0.2 b 1.4 ± 0.2 0.8 ± 0.2 a 0.9 ± 0.4 

  Range 0.4 - 2.3  0.5 - 2.5 0.3 - 1.3 1.3 - 1.5 0.4 - 1.0 0.3 - 3.1 

Modal Tb (°C)  

       Mean 31.6 ± 1.0 a  32.7 ± 0.6 a 32.9 ± 0.6 b 33.1 ± 1.6 33.0 ± 0.9 b 33.0 ± 0.9 

  Range 29.6 - 35.1  31.5 - 34.0 31.5 - 34.5 31.9 - 34.2 31.0 - 34.7 29.1 - 35.0 

Min Tb (°C)  

       Mean 30.6 ± 1.0 a  30.9 ± 1.3 a 32.1 ± 0.5 b 30.4 ± 0.6 31.8 ± 0.7 b 32.0 ± 1.3 

  Range 27.4 - 32.6  26.5 - 32.5 30.7 - 33.3 30.0 - 30.8 30.2 - 32.8 25.9 - 33.4 

 Max Tb (°C)  
     

  Mean 31.9 ± 0.7 a  32.5 ± 0.6 a 33.1 ± 0.3 a 32.8 ± 0.8  33.1 ± 0.7 a 33.2 ± 0.8  

  Range 30.2 - 35.1  30.5 - 33.2 32.5 - 34.1 32.2 - 33.3 31.8 - 3.8 30.6 - 34.1 

∆Tb (°C)  
     

  Mean 2.8 ± 0.9 a  3.0 ± 1.3 a 2.2 ± 0.6 b 4.4 ± 0.3 2.5 ± 0.5 a 2.5 ± 1.1 

  Range 1.1 7.1  1.5 - 6.8 1.0 - 3.9 4.2 - 4.6 1.3 - 3.4 0.6 - 8.1 

Different letters indicate significant differences according to reproductive status. *Day of parturition 

was excluded from the statistical analysis due to a small sample size. Unknown refers to two females 

from different seasons, one which left the study site for an extended period of time during mid-late 

gestation, returning midway through a second pregnancy.  
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Torpor expression, evaluated using the threshold Tb obtained from the normal 

distributions around the modal Tb, provided slightly different results (Table 5-1). Using this 

definition, all but one of the bouts by the first season male (with a threshold Tb of 28°C) 

mentioned above were considered to be rest phase decreases in Tb and not torpor. Higher 

incidences of torpor were reported in all other animals, all of which, with higher modal Tbs, 

had higher torpor threshold Tbs (30.0 - 31.2°C). Torpor was more common in the daytime 

than at night. Both the lone female from the first season, and the non-reproductive female 

from the second season, expressed torpor on over 10% of all recording days. The percent 

time spent in torpor was low (less than 1%) for most of the remaining individuals. However, 

the total percentage of daytime Tas that fell below 28°C (the lowest threshold Tb) over the 

entirety of two study seasons was only 34% and the mean Ta recorded at the time of each 

daily Tb minima was 28.1 ± 5.0 °C (range: 19.2 - 39.1 °C) and Ttree was 25.8 ± 2.1 (range: 

20.9 - 32.1 °C).  

A re-analysis of respirometry measurements on the thermoconforming individuals 

presented in Chapter 4 indicated that it took anywhere from 1.75 - 7.74 h for animals to reach 

a steady-state Tb once exposed to an experimental temperature. The time to a steady state was 

dependent on Ta (F1, 32 = 6.20, p = 0.018) and the interaction between Ta and Tb (F1, 32 = 6.23, 

p = 0.018), but not body mass, which was not included in the best-fitting model. A subset of 

these data from 21 - 24°C, matching the average minimum full-day Ta for the study site (~ 

22°C), showed that, regardless of Tb or mass, it took a mean time of approximately 3.77 ± 

1.46 h (n= 14, range: 1.75 - 6.99 h) for the animals to reach a steady state. Assuming that 

nighttime activity ceased between 04:30 and 05:30 (Chapter 3), Tb would reach equilibrium 

with Ta anywhere between 08:00 and 09:40, by which time the mean Ta at the site was 

already 27.3 ± 2.3 °C (range 22.4 - 32.5 °C) and Ttree was 26.6 ± 2.4 °C (range: 22.5 - 29.7); 

both temperatures which fall within the measured TNZ for this species. Similarly, the 

temperature 250 mm below the ground surface (at a similar depth to 7.4% of all nest sites 

occupied during the second season, Chapter 2) rarely decreased below 25°C, equal to the 

lower limit of the thermoneutral zone, at any time. Ta increased throughout the day, leading 

to a corresponding increase in Tb (Fig 5-1, and 5-4).  

In terms of potential torpor, increases in Ta prevented Tb decreasing far below 27 °C, 

making it almost impossible to detect torpor accurately unless, as was likely the case with the 

male Fig 5-4A, activity ceased early at night (before 03:00). In addition, on a number of 

occasions, mainly in the early-to-middle parts of the season (before the decrease in Ta seen 

around day 100), multiple instances of putative “hyperthermic daily torpor” were observed.  
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Figure 5-4 Representative traces of Tb of free ranging Setifer setosus. Females (black lines) 

had generally higher, less variable, Tb than males (grey lines), more so during gestation (A.) 

than during lactation (B.). Torpor expression was highly limited by high environmental 

temperatures, both air (dotted line) and from a former nest site in a tree cavity (dashed line).  
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This hypothetical form of torpor has been described in more detail elsewhere (Lovegrove et 

al. 2014) but, briefly, torpor bouts initiated at the end of the nocturnal activity period 

continue beyond the point where Ta increases above normothermic Tb leading to greater Tbs 

during the rest phase. In fact, on 13.3% of all recording days, the max rest-phase Tb was 

higher than the highest individual modal Tb for the active phase (34°C). These are clearly 

visible in Fig 5-3 and fall mostly between noon and 18:00. On many of these days, as 

described in Lovegrove et al. (2014), Tb decreased with the commencement of activity, as 

can be seen around 15 December in the trace from the male in Fig 5-5A. 

Discussion 

Tb datasets from free-ranging animals in warm climates are valuable but rare. This study is 

one of the first to present a long-term dataset of core Tb collected from a free-ranging 

basoendotherm during reproduction, as well as from a mammal inhabiting an environment 

where Ta routinely increases above Tb. I report a number of novel findings. First, torpor use 

by free-ranging S. setosus during the active (reproductive season) was much lower than was 

expected based on previous studies in the laboratory. Second, data obtained from 

reproductive females confirmed the results of laboratory studies on similar species and 

demonstrated an increase in homeothermy during both gestation and lactation (Stephenson & 

Racey 1993b, Poppitt et al. 1994). 

Circadian rhythms in Tb are a characteristic of all endotherms, with Tb decreasing 

during the rest phase, and usually increasing at the onset of activity. The level of Tb 

variability during the rest phase is often dependent on Ta (Aschoff 1981, Refinetti & Menaker 

1992), although this is amplified in some species compared to others (Refinetti 1998). One of 

the characteristics of basoendotherms (Lovegrove 2012a) is that Tb is highly variable and that 

the distinction between normothermy and rest phase decreases in Tb is often indistinct 

(Kuchel 2003, Grigg et al. 2004, Canale, Levesque & Lovegrove 2012). A study on E. telfairi 

held in captivity over a range of Tas showed rest-phase decreases in Tb that ranged from 

slight transient decreases (to ~ 28°C  from 31°C) at a Ta of 27°C, to larger more profound 

decreases (clear incidences of torpor) at lower Tas. The patterns observed in this study of S. 

setosus more closely mirrored that of E. telfairi housed at 27°C, despite a wider range of Ta 

present at the study site. Interestingly, the time of day at which Tb reached either a maximum 

or a minimum was unrelated to the peaks in the Ta data, and all the parameters of 

environmental temperature showed very little influence on the extreme Tbs. However, 

thermal inertia and the large daily changes in amplitude in both Ta and Ttree can explain these 
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patterns. As has been described in Lovegrove et al. (2014), these large increases in 

environmental temperatures occasionally led to rest-phase Tb increasing above the active 

phase Tb. Although this pattern is fairly novel, it has now been observed in a number of 

species (Lovegrove et al. 2014) and is likely to become more common as Tb data is collected 

from more species of nocturnal, tree-nesting mammals inhabiting warm climates. 

In addition to smaller daily variations in Tb, torpor expression in this species was 

much lower than was expected based upon previous studies on captive animals. Despite the 

fact that torpor expression is often underestimated in the laboratory (see Geiser et al. 2000 for 

a review), this study presents one of the few cases where the opposite pattern was observed. 

This is primarily due to the interactions with environmental temperatures, however, and not 

the physiological characteristics of this species per se. The results clearly demonstrate that 

the Ta of the study site was not conducive to low Tb during torpor. Even during hibernation at 

this study site, Tb closely tracked Ta throughout hibernation and increased to above 30°C 

every day (Fig 5-1). Interestingly, the highest Tbs measured in S. setosus (> 36°C) occurred 

on two occasions during hibernation, both immediately preceding a change in Tb amplitude, 

which, in C. medius, was indicative of a change in nest site (Dausmann et al. 2005). 

However, high Tb measured during torpor does not necessarily negate metabolic down-

regulation, and significant energy savings from torpor at high Tas (32 - 35°C) have been 

demonstrated in a species of spiny mouse (Acomys russatus, Grimpo et al. 2013).  

The use of heterothermy in warm climates comes at a relatively low cost as high 

temperatures facilitate passive rewarming compared with the more energetically costly active 

rewarming necessary in colder climates (Lovegrove, Kortner & Geiser 1999, Canale et al. 

2012). Nevertheless, despite a reliance upon exogenous passive heating, functional brown 

adipose tissue has been observed in E. telfairi (Oelkrug et al. 2013) and earlier studies 

indicate that S. setosus also possess the ability to rewarm from torpor (Kayser 1960, Hildwein 

1964). However, the need for active rewarming from torpor seemed completely negated in 

this study, and in all cases, even during hibernation, passive rewarming was employed. S. 

setosus can be active at Tbs as low as 28°C (Eisenberg & Gould 1969, Crompton et al. 1978), 

after which point activity itself may be used as a means of heat production (see Humphries & 

Careau 2011). Thus arousal from torpor in this species occurs at a comparatively lower cost 

than it does in in typical daily heterotherms. It should be noted, however, that the body mass 

of the animals used in the Crompton study were suspiciously low (~ 120 g), indicating the 

use of either juveniles or E. telfairi which can easily be mistaken for S. setosus where their 

ranges overlap (Eisenberg & Gould 1969).  
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Similar difficulties in distinguishing resting Tbs from active Tbs and torpor from 

normothermy occurred during a study of another basoendothermic mammal, the echidna 

(Tachyglossus aceulatus, Order: Monotremata) in semi-tropical Queensland (Kuchel 2003). 

Echidnas are characterised by their low and highly variable Tb (Grigg & Beard 2000, Nicol & 

Andersen 2006, Brice 2009) and during the warmer summer months the distinction between 

normal rest-phase decreases in Tb and short torpor bouts is difficult to discern. The Tas 

measured in those studies were lower than those measured in the current study, and echidnas 

shelter underground, where Tas remain below normothermic Tbs year-round allowing for 

larger decreases in Tb than was observed in S. setosus. The high level of variability in echidna 

Tb led Kuchel (2003) to caution defining torpor based on Tb patterns (i.e. Tb above or below a 

certain threshold) and suggested the use of mechanistic properties, such as metabolic rate or 

heart rate, instead of Tb. A greater push for mechanism-based definitions of torpor has 

received more attention as Tb patterns of free-ranging individuals from a wider range 

environments become available (Boyles, Smit & McKechnie 2011, Canale et al. 2012). As a 

single value for Tb can occur during many different metabolic states (Brice et al. 2002, 

Canale et al. 2012) and activity can occur at surprisingly low Tb (Kuchel 2003, Rojas, 

Körtner & Geiser 2012, Turner et al. 2012), it has been suggested that more studies should 

attempt to measure field metabolic rate or employ other more accurate proxies for 

metabolism such as heart rate (Anderson & Jetz 2005, Speakman & Krol 2010, Canale et al. 

2012, Boyles et al. 2013).  

Even in a torpid state, it does seem possible that individual S. setosus have some 

control over their Tb during the rest phase, as the choice of nest site has a large impact on 

their thermal environment (Dausmann et al. 2005, Dausmann, Glos & Heldmaier 2009). 

Behavioural means of avoiding torpor have been observed in a primate from mainland Africa, 

Galago moholi (Nowack et al. 2013), as well as from a number of temperate heterotherms 

whose choice of hibernacula can vary according to sex or reproductive conditions (Buck & 

Barnes 1999, Willis & Brigham 2005). Interestingly, only a very small percentage (7.4%) of 

nest sites observed during the first season were below ground (Chapter 2). A large number of 

nest sites were fully or partially exposed such that Tbs were equal to the Ttree measurements or 

somewhere between Ttree and Ta. Thus, on the majority of days, the animals chose a thermal 

environment that would actively prevent the opportunity for low Tb during torpor. The 

increased costs of low Tb – high costs of rewarming and potentially lower vigilance due to 

increased lethargy – presumably outweigh the minimal benefits of a slightly lower Tb during 

torpor (Bieber et al. 2014).  
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Respirometry measurements obtained from this population demonstrated that 

gestation and lactation resulted in a decrease in heterothermy, both in terms of an overall 

decrease in Tb variability (during gestation), as well as a decrease in torpor use (during both 

stages of reproduction), in female S. setosus (Chapter 4). Torpor has been observed in 

pregnant tenrecs in captivity, but it is rare compared with heterotherms from more temperate 

climates (Nicoll & Thompson 1987, Stephenson & Racey 1995, Willis, Brigham & Geiser 

2006). Temperate heterotherms have been shown to use torpor to extend gestation so that 

lactation, the most energetically costly stage in the life history of female mammals (Clutton-

Brock, Albon & Guinness 1989), coincides with peak food availability (Richard et al. 2002, 

Willis et al. 2006) or with more favourable environmental conditions (Morrow & Nicol 

2009). In the current study torpor was only observed on two occasions during reproduction, 

both in the same female in the early stages of gestation during the second season 46 - 49 days 

prior to parturition (Chapter 4) and at Tas much lower than those commonly observed at the 

study side (14 and 21 °C).  

Torpor in lactating females, however, cannot conclusively be ruled out. Two of the 

females studied during the second season showed a pronounced decrease of around 1 - 2°C 

below normal rest phase Tbs on the estimated date of parturition. Tb recordings from these 

individuals during lactation were only available for short periods of the time as both mothers 

were killed by an unknown ground predator before their litter was weaned. Interestingly, two 

females during the first season spent very little time active during lactation. One female did 

not leave the nest site at night for an entire month (Chapter 3).  Although no Tb data are 

available to confirm the use of torpor over this time period, given the environmental 

conditions and the fact that both females maintained a relatively steady body mass throughout 

lactation, it seems likely. More data are necessary to conclude whether or not torpor is 

common during lactation in tenrecs. 

The effects of reproduction on the thermoregulation of males was more difficult  to 

determine, as it is not possible to measure the reproductive status of males due to the lack of 

external testes (Petter & Petter-Rousseaux 1963, Kleisner, Ivell & Flegr 2010). Elevated 

levels of testosterone in reproductively active males have been shown to reduce torpor 

expression (Mzilikazi & Lovegrove 2002, Fietz, Klose & Kalko 2010). Likewise, warm 

temperatures are necessary for spermatogenesis (Barnes et al. 1986, Kleisner et al. 2010). 

However, only short periods at normothermic temperatures are necessary for adequate sperm 

production (Fowler & Racey 1987) and the high rest-phase Tas experienced by this 

population would negate any potential negative effects of torpor on spermatogenesis. 
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Therefore, torpor avoidance for these reasons was not likely in this population. Brown 

adipose tissue deposits have been found surrounding the reproductive organs of E. telfairi, 

which indicates the potential utility of warming this area in habitats with colder Tas (Oelkrug 

et al. 2013) but the high Tas at the current study offset the necessity of physiological means 

of maintaining high Tbs. 

Conclusion 

This study confirmed that the thermoregulatory patterns of S. setosus show a large degree of 

heterothermy, in terms of both torpor and in daily Tb variations. The thermoregulatory 

patterns of this species, a tropical dwelling basoendotherm, stand in sharp contrast with those 

of most high latitude species. Whereas the latter group (meso- and supraendotherms sensu 

Lovegrove 2012a) maintain elevated Tbs over a wide range of Ta, primarily through 

physiological mechanisms, and homeothermy is the norm, S. setosus rather rely on Ta to 

regulate Tb, and thermolability is the norm. As seen in this study and in Chapter 4 

reproduction and high Ta were cause for an increase in the level of homeothermy. Increases 

in homeothermy during reproduction has been observed in other species displaying 

basoendothermic characteristics, such as echidnas (Beard & Grigg 2000, Nicol & Andersen 

2006) and sloths (Bradypus griseus, Morrison 1945). This study, along with a small sample 

of skin temperatures from tarsiers (Tarsius syrichta) presented in Lovegrove et al. (2014) are 

the only studies, to my knowledge, observe how Tas at or near Tb affect thermoregulation in 

basoendotherms. Both of these datasets show that high Ta can reduce the opportunities for 

low Tb during torpor and potentially mask the physiological state of the animal (Canale et al. 

2012, Lovegrove et al. 2014). 

Interestingly, females in this population hibernate for at least five months and have 

been shown to give birth to up to three litters in a single season, while simultaneously 

accumulating sufficient fat reserves (> 100 g) for the subsequent hibernation period (Chapters 

2 and 3). Low thermoregulatory costs, combined with high levels of food availability, could 

have contributed to the high energetic outputs observed in this species. The findings show 

that the increase in homeothermy observed in captive tenrecs during reproduction does 

indeed occur in the wild, where, although food availability is not likely to be equal to ad 

libitum food, Ta can be much more favourable. Along with data collected from incubating 

echidnas (Beard & Grigg 2000, Nicol & Andersen 2006) as well as gestating sloths 

(Morrison 1945), these data provide further support for the parental care hypotheses for the 

evolution of endothermy in mammals. The thermal environment of the study site was 
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conducive to the maintenance of a high and stable Tb, with very little added energetic costs to 

thermoregulation. Slight increases in homeothermy during reproduction in similarly warm 

habitats were therefore a probable first step along the progressive evolution from 

heterothermic to homeothermic endothermy (Kemp 2006, Lovegrove 2012a).  
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Chapter 6 Summary and General Conclusions 

Life History and Energetics of a Free-Ranging Basoendotherm: Setifer 

setosus 

Setifer setosus hibernate for up to seven consecutive months, and their short active season is 

used to accumulate large fat stores while simultaneously achieving high reproductive outputs. 

Free-ranging S. setosus make full use of a limited period of activity by way of surprisingly 

large energetic outputs. Females produce up to three litters in a single season (Chapter 3). 

Males cover large home ranges in order to overlap with those of multiple females (Chapter 

2), potentially leading to significant reproductive outputs for both sexes. Previous studies 

have also shown that S. setosus is capable of maturing early (Mallinson 1974) and produces 

litters with larger masses than other species of similar body size (Symonds 1999). Although 

the former is a characteristic of ‘fast’ species, the latter is usually associated with ‘slow’ life-

histories (Charnov & Ernest 2006). Early maturation, when added to the high number of 

litters produced per year observed in the current study, places S. setosus further towards the 

‘fast’ side of the mammalian life-history continuum. The high level of adult and juvenile 

mortality observed in this study (Chapter 3) is certainly the primary driver for this shift into 

the fast lane for S. setosus, as well as for the other spiny tenrecs species that make up the 

Tenrecinae (Read & Harvey 1989, Promislow & Harvey 1990, Symonds 2005). In contrast, 

members of the other two tenrec subfamilies endemic to Madagascar, whose small size and 

cryptic nature reduce the risk of predation, fall into the ‘slow’ category for their size, 

maturing late, and producing only a single litter of 1-3 young per year (Eisenberg & Gould 

1969, Stephenson & Racey 1995, Symonds 1999). Such extremes in life-history 

characteristics are believed to be a result of the high level of unpredictability and variability 

of resource availability on the island of Madagascar (Wright 1999, Symonds 2005, Dewar & 

Richard 2007).  

The high energetic outputs of S. setosus can be attributed to measures used to 

counteract high mortality and unpredictable energy availability. These reasons do not 

however, explain how such high outputs are possible, especially given that high energy 

assimilation is usually considered to be incompatible with low metabolic rates (Koteja 2000, 

Brown et al. 2004, Koteja 2004). The characterisation of the thermoregulatory physiology of 

S. setosus presented in this thesis can help shed light on this apparent disconnect. Although 

both gestating and lactating females maintained a higher degree of homeothermy, the costs of 



114 

 

this added level of thermoregulation were much lower than expected. The thermal profiles of 

both reproductive and non-reproductive S. setosus described in Chapter 4 illustrate that 

energetic cost to increases in homeothermy within the thermoneutral zone are negligible. The 

thermoneutral zone itself was also rather large, spanning from 25°C to at least 33.5°C, which 

is much larger than would be predicted for a 250-300 g animal (Riek & Geiser 2013). 

Although the relative costs of maintaining Tb at temperatures below the lower limit of the 

thermoneutral zone were high, these temperatures were only rarely reached during the 

daytime rest phase (Chapter 5). Presumably, with so little energy allocated to temperature 

regulation, most available energy is allocated towards increases in body mass and 

reproductive output, in the form of multiple litters and large neonates for females, and a high 

level of activity in males, resulting in large home ranges and the potential for multiple 

partners. The ability to amass large energy stores would be necessary both in order to survive 

the dry austral winter, as well as to cope with potential lulls in resource availability (Jönsson 

1997, Dewar & Richard 2007). 

The Energetics of Basoendothermy 

The low thermoregulatory costs of living in the warm environment of Madagascar and the 

capacity for the accumulation of sufficient energy to survive colder periods, explain, at least 

partially, why S. setosus, as well as other tenrecs, have maintained pleisiomorphic 

thermoregulatory characteristics. Freed from the need to maintain a high and constant Tb, 

energy reserves can be directed to non-thermogulatory demands, in the case of S. setosus, 

towards increasing fecundity to counter high predation pressure. The data presented in 

Chapter 4 are unique in that they present the first full characterisation of the thermal profile 

from a ‘basoendothermic’ (sensu Lovegrove 2012a) mammal during reproduction. Previous 

studies on the thermal profiles of basoendotherms failed to locate a thermoneutral zone in the 

classic sense of the Scholander-Irving Model (Nicoll & Thompson 1987, Stephenson & 

Racey 1994, Brice 2008, Oelkrug et al. 2013). In those studies Tb closely tracked Ta leading 

to the difficulties both in determining basal metabolic rates as well as delineating torpor from 

normothermy. Oelkrug et al. (2013) attempted to circumvent this problem by agitating the 

animals and providing them with excess to food at all temperatures below 30°C. Although the 

procedure allowed for the measurement of ‘resting’ rates, and the animals did indeed defend 

an elevated Tb at low Ta, the results cannot be considered truly representative of the resting 

state of these animals. 
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Forced arousal from a torpid state in order to attain a thermal profile resembling the 

classical Scholander-Irving model merely masks a thermoregulatory reality, namely that there 

is a lack of a Tb set-point that differentiates thermoregulation in basoendotherms from species 

which show a higher degree of homeothermy. My data show that by allowing Tb to decrease 

along with Ta basoendotherms are capable of reducing the Tb - Ta gradient which allows for 

lower rates of thermal conductance as well as a widening of the range of Ta over which 

minimum rates of metabolism are measured. Such flexible thermoregulation usually 

corresponds with a parallel ability to be active over a larger range of Tbs (Brice et al. 2002, 

Kuchel 2003, Wooden & Walsberg 2004, this study). Interestingly, the idea that endotherms 

are capable of operating over a wide range of Tbs and may display similar 

specialist/generalist thermal adaptations to ectotherms has only recently been proposed 

(Angilletta et al. 2010, Boyles et al. 2011). Under this classification system basoendotherms, 

such as tenrecs, are the best examples of thermal generalists because optimal performance is 

not confined to a narrow range of Tbs. The various advantages of these modes of 

thermoregulation, however, have yet to be fully evaluated (Boyles et al. 2013), and the 

diversity displayed by modern mammals may provide important clues on the evolution of 

endothermy (Lovegrove 2012a). 

Grigg et al. (2004) and Brice et al. (in prep, see also Brice 2008) have predicted that 

the higher degree of homeothermy during gestation and lactation such as observed in S. 

setosus would result in a thermal profile with a closer fit to the Scholander-Irving model. 

Presumably, thermal profiles measured in other species of basoendotherms during 

reproduction should show similar patterns. Conversely, torpor during reproduction has also 

been shown in a number of species (Geiser, McAllan & Brigham 2005, Willis, Brigham & 

Geiser 2006, Canale, Perret & Henry 2012) including the basoendothermic echidna (Morrow 

& Nicol 2009) indicating a trade-off between energy use and length of time devoted to 

reproduction. The shift to homeothermy during reproduction, and the ability to actively 

rewarm from torpor, with or without functional brown adipose tissue, has now been observed 

in all major mammal groupings, and indicates that they all possess the functional ability to 

maintain a high Tb when necessary (Geiser & Baudinette 1990, Poppitt, Speakman & Racey 

1994, Beard & Grigg 2000, Nicol & Andersen 2008). Additional studies on other instances of 

homeothermy in these species, as well as intra-specific variability in the level of precision of 

Tb regulation, will help further the understanding of the evolution of endothermy and its 

diversity in extant mammals (Lovegrove 2012a, Boyles et al. 2013). 
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Linking Metabolism to the Rate and Scope of Life-History Characteristics 

S. setosus, as well as other spiny tenrecs, provide interesting challenges to the Metabolic 

Theory of Ecology which claims that basal metabolism determines the pace of life in 

mammals. Despite the intuitive appeal of this premise, a species’ position on the slow-fast 

metabolic continuum does not dictate its position on the slow fast life-history continuum 

(Harvey, Pagel & Rees 1991, Duncan, Forsyth & Hone 2007, Lovegrove 2009, Müller et al. 

2012). This does not necessarily mean that the underlying concept, that energetic outputs are 

determined by basal metabolism, is faulty. It merely illustrates that the original MTE 

equations present an oversimplification, and fail to account for the complexities of the 

interactions between metabolism, the environment and energy use (Müller et al. 2012, 

Humphries & McCann 2013, Naya et al. 2013). Interestingly, whereas, inter-specific studies 

have led to mixed, though generally negative results (Harvey et al. 1991, Duncan et al. 2007, 

Lovegrove 2009, Hamilton et al. 2011), there exists some conclusive evidence for a link 

between BMR and reproductive output at an intra-specific level (see Sadowska, Gębczyński 

& Konarzewski 2013 for a review). 

One of the biggest strengths of comparative studies has been the description of the 

high level of variability in various mammalian traits and the identification of outliers. As 

outliers on the slow side of the metabolic rate continuum (Lovegrove 2003), and the fast side 

of the life-history continuum (Eisenberg 1983), tenrecs provide an interesting test case. My 

results highlight important factors that are often omitted from macroecological studies, 

namely, the immediate effects of environmental conditions, and morphological and 

physiological mammalian diversity. Numerous studies have found that both metabolic and 

life-history traits are plastic and vary between individuals as well as between populations 

(Sikes & Ylönen 1998, Lahann, Schmid & Ganzhorn 2006, Nilsen et al. 2009, Borries, 

Gordon & Koenig 2013, Konarzewski & Książek 2013). Mammals also differ vastly in 

locomotory capacity and their attendant form and function (Lovegrove 2012a, Lovegrove & 

Mowoe 2013). This variability is often ignored in larger inter-specific studies. It is also 

questionable whether species with year-long activity periods can be realistically compared 

with those placed under extreme seasonal constraints (see McNamara & Houston 2008). 

There is therefore a greater need for both more holistic models that can account for 

phenotypic plasticity and overall variability, especially as we seek to predict species 

responses to changing global climates (Canale & Henry 2010, Boyles et al. 2011). 
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Another difficulty with large comparative studies is they assume that 

thermoregulation in all endotherms is equal, and that strict homeothermy is the norm. Some 

studies have attempted to control differences in the level of Tb between species by 

standardising metabolism to a high Tb (Savage et al. 2004, White et al. 2008) but, as 

demonstrated in this thesis, it is often the degree of variability in Tb that will determine the 

costs of thermoregulation, not the level itself. This is especially true in animals living in 

environments where Tas are close to Tb (Lovegrove et al. 2014). Many studies, primarily 

those undertaken on species from the Northern Hemisphere, assume that a high degree of 

homeothermy is the defining characteristic of mammalian thermoregulation. This mode of 

thinking has been perpetuated by a lack of data from tropical and sub-tropical environments 

(Lovegrove 2003, Lovegrove 2006, Canale, Levesque & Lovegrove 2012, Lovegrove 2012a). 

Homeothermy is much less common than expected, and is likely to be a derived form of 

thermoregulation, having evolved via an ancestral heterothermic condition (Crompton, 

Taylor & Jagger 1978, Grigg et al. 2004, Lovegrove 2012a, Lovegrove 2012b, Naya et al. 

2012, Naya et al. 2013). Future hypotheses on the interactions between metabolism and life-

history should take the evolutionary history of endothermy into account. 

Implications for Future Studies on the Evolution of Endothermy in 

Mammals 

The existence of multiple, and potentially conflicting, hypotheses has made it clear that there 

is no single cause that led to the evolution of the many forms of endothermy found in extant 

mammals. Clarke and Rothery (2008, p. 66) state that incongruities between the level of 

scaling of metabolism and of Tb at the ordinal level points towards “… a complex 

relationship between mass, Tb and resting metabolic rate and leaves open the intriguing 

question of whether evolution has adjusted resting metabolic rate through changes in Tb or 

whether Tb is simply a consequence of resting metabolic rate that has evolved for a particular 

environment and ecology.” Although, there has been more success linking BMR to 

environmental factors than Tb, indicating that is it is the more likely to be under direct 

selection (Lovegrove 2000, Clavijo-Baque & Bozinovic 2012, Naya et al. 2013), the 

interactions between the two remain unclear. 

As the first study to observe both the thermal physiology and life history 

characteristics of a free-ranging basoendotherm inhabiting a warm environment, the data 

presented in this thesis provide some interesting insights. Resting metabolic rates measured 

over a range of Tas showed that the increases in homeothermy in gestating and lactating 
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females were accompanied by only minor changes in RMR within the thermoneutral zone. 

The environmental conditions at my study site provided conditions where Ta during the rest 

phase rarely decreased below thermoneutrality. Thus the fitness benefits of small increments 

in homeothermy could be offset by the relatively low fitness costs involved in minimal 

thermoregulatory energy demands.  During the fixed temperature trials presented in Chapter 

4 homeothermy in S. setosus was only observed during reproduction. It is therefore not 

essential for the everyday functioning of these mammals, at least in warm climates. Increases 

in homeothermy, in otherwise heterothermic mammals, during reproduction has now been 

observed in a number of mammalian species (Morrison 1945, Audet & Fenton 1988, Geiser, 

Körtner & Schmidt 1998, Beard & Grigg 2000, Koteja 2000, Farmer 2003, Nicol & Andersen 

2006). It represents a likely first step in the progressive evolution from heterothermic to 

homeothermic endothermy (Kemp 2006, Lovegrove 2012a). Further study of the 

relationships between thermoregulation and life-history in free-ranging mammals, especially 

from basoendotherms inhabiting warm, non-seasonal environments, is needed to further 

elucidate the complicated relationship between Tb, metabolism and life-history. 
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