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ABSTRACT

By clustering one seeks to partition a given set of points into a number of clusters

such that points in the same cluster are similar and are dissimilar to points in other

clusters. In the virtue of this goal, data of relational nature become typical for

clustering. The similarity and dissimilarity relations between the data points are

supposed to be the nuts and bolts for cluster formation. Thus, the task is driven by

the notion of similarity between the data points. In practice, the similarity is usually

measured by the pairwise distances between the data points. Indeed, the objective

function of the two widely used clustering algorithms, namely, k-means and fuzzy

c-means, appears in terms of the pairwise distances between the data points.

The clustering task is complicated by the choice of the distance measure and

estimating the number of clusters. Fuzzy c-means is convenient when there are

uncertainties in allocating points, in overlapping areas, to clusters. The k-means

algorithm allocates the points unequivocally to clusters; overlooking the similarities

between those points in overlapping areas. The fuzzy approach allows a point to be

a member in as many clusters as necessary; thus it provides better insight into the

relations between the points in overlapping areas.

In this thesis we develop a relational framework that is inspired by the silhou-

ette measure of clustering quality. The framework asserts the relations between the

data points by means of logical reasoning with the cluster membership values. The

original description of computing the silhouettes is limited to crisp partitions. A

natural generalization of silhouettes, to fuzzy partitions is given within our frame-

work. Moreover, two notions of silhouettes emerge within the framework at different

levels of granularity, namely, point-wise silhouette and center-wise silhouette. Now

by the generalization, each silhouette is capable of measuring the extent to which a

crisp, or fuzzy, partition has fulfilled the clustering goal at the level of the individual

points, or cluster centers. The partitions are evaluated by the silhouette measure in

conjunction with point-to-point or center-to-point distances.

By the generalization, the average silhouette value becomes a reasonable device
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for selecting between crisp and fuzzy partitions of the same data set. Accordingly,

one can find about which partition is better in representing the relations between

the data points, in accordance with their pairwise distances. Such powerful feature

of the generalized silhouettes has exposed a problem with the partitions generated

by fuzzy c-means. We have observed that defuzzifying the fuzzy c-means partitions

always improves the overall representation of the relations between the data points.

This is due to the inconsistency between some of the membership values and the

distances between the data points. This inconsistency was reported, by others, in a

couple of occasions in real life applications.

Finally, we present an experiment that demonstrates a successful application

of the generalized silhouette measure in feature selection for highly imbalanced clas-

sification. A significant improvement in the classification for a real data set has

resulted from a significant reduction in the number of features.
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CHAPTER 1

INTRODUCTION

Change is rampant in our world today, in market, healthcare, education, societies,

etc. The discovery of new trends and anomalies followed by proper actions is be-

coming a competitive differentiator for organizations. In big data there is a bigger

potential for such discoveries, and hence for seizing future opportunities. Thus, now

and then, data is being collected on customers, workforce, creditors and suppliers.

For example, the customer information collected by Amazon.com, the large online

retailer, includes1:

• Computer IP address, operating system and platform.

• Browser type and version.

• Browser plug-in types and versions.

• The full unifrom resource locator (URL) clickstream to, through and from the

web site including date and time, cookie number and products viewed and

searched for.

• Purchase history.

• Phone numbers used to call the customer service.

Such practice of data collection is on the rise as more and more are breaking through

the big data frontier. The hallmark of this trend is the use of scale-out computing

platforms which run on top of commodity hardware, available at affordable costs.

Scaling out, as opposed to scaling up, delivers more computing power at lower costs.

This process has been pioneered by many of the major web players like Google,

Yahoo, eBay and Amazon, to cope with the increasing computational demand [55].

It is also observed as a driving force in the evolution of high-performance computing

(HPC) systems.2 Organizations that wish to take advantage of data scale but are

1Amazon.com Help: Amazon.com Privacy Notice. (2012). Retrieved November 30, 2013, from
http://www.amazon.com/gp/help/customer/display.html?nodeId=468496

2Consider the semi-annual TOP500 lists, ¡ http://www.top500.org/

1
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worried about the operational cost, associated with running their own systems,

resort to cloud platforms available. Whether on cloud or on-premises, anybody can

take advantage of big data capable platforms.

Descriptive analytics transforms data into hindsight. The hindsight is ob-

tained from querying, reporting, and online analytical processing (OLAP) tools.

However, big data big expectations call for new kind of analytics. New avenues

are now open for predictive and prescriptive analytics which deliver insight and

foresight from data, necessary for informed decisions and for prescribing the best

course of action. Machine learning can be applied to predictive analytics, to learn

common characteristics, structure and predictive models on data. Machine learning

algorithms can be divided into three categories: supervised, semi-supervised, and

unsupervised, according to whether they operate on labeled, partially labeled, and

unlabeled data, respectively. Some of the core machine learning algorithms are, to

name few, cluster analysis, classification, regression, feature selection and similarity

learning. Cluster analysis, the focus of this research, is an exploratory data analysis

technique with the goal of recovering the group structure of data that best fits some

grouping criterion. Clustering is ubiquitous in many applications over a wide range

of domains, such as the analysis of gene expressions in bioinformatics [7], image seg-

mentation [73], speech recognition [20], information retrieval [74], web mining [44]

and recommendation systems [50].

There are several data analysis packages that support machine learning algorithms

such as Matlab, SAS and R. However, they are designed for data that fits a sin-

gle machine memory and usually they do not scale to larger datasets. Fortunately,

several projects, such as Apache Mahout, Apaches Spark, HaLoop, Twister and

Daytona, bridge the gap between sophisticated analytics and big data [53]. A quick

search for jobs in machine learning and big data on LinkedIn, which purports it-

self as the world’s largest professional network, shows that machine learning and

big data analytics is in high demand. At the time of writing, a search using the

keywords ‘machine learning’ and ‘big data’ returned approximately 450 hits within

the United States only. The high demand is evident by comparing the number of

hits with another search using the keyword ‘teacher’, a fairly broad job title, which
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returned approximately 500 openings in the United States. Thus, it is not surprising

that McKinsey & Company, Inc., an American global management consulting firm,

projects that by 2018 there will be 140,000 to 190,000 unfilled positions of data

analytics experts in the United States and a shortage of 1.5 million managers and

analysts with an understanding of how big data can be applied [18]. Driven by such

a demand, some universities have started implementing programs in analytics [79].

The Attributes of Big Data

Big data is not just about size, although size matters; there are other defining

attributes. Data velocity and variety, rather than data volume alone, contribute to

its complexity. The expansion of all these three dimensions causes data complexity

to grow beyond the ability of existing tools. That is, data becomes too big, too fast

or too hard to process [53]. The collective use of these three attributes, the 3Vs,

in defining data complexity has been in use for more than a decade, introduced by

Doug Laney [48]. A fourth V can be associated with big data in regard to analysis

results rather than to data complexity that is, value or the usefulness of the results.

Struggling with large volumes of data caused few respondents in a survey

of big data analytics to describe it as the pain-in-the-neck and we-need-to-buy-

more-hardware analytics [70]. Nevertheless, the abundance of data has the merit of

providing enough, probably reliable, samples for robust results. For example, a study

on the early discovery of cancer using predictive lists of genes [29] demonstrates the

importance of sample size in generating lists of robust predictive power; robust is

in the sense of predicting in an accurate manner if used with patient data from

other studies. Published gene lists obtained by different groups showed degraded

predictive performance when used on each other’s data, on the same clinical types

of patients. The lists have very few genes in common due to the small size of the

samples used in generating the lists. The main result is that larger samples with

expression profiles of several thousand patients are necessary to achieve an overlap

of 50% and accurate predictions.

Big data velocity is about matching the speed of decisions to the speed of

actions, for example, real-time fraud detection or high quality recommendations at
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a point of sale. Consider the incident involving the director of one of the agencies

behind developing the Electronic Surveillance System for the Early Notification of

Community-based Epidemics (ESSENCE). Jay Mansfield, the director, reported to

his boss that they detected a gastrointestinal outbreak in Korea. His boss asked

him about the time of the outbreak. Since Korea is 13 hours ahead of Washington,

Mansfield simply answered: “Tomorrow.” [80]

The range of data sources, the many varying formats and the various degrees

of structure contribute to big data variety. Variety also accounts for semantic het-

erogeneity. In a study aimed at detecting associations between diagnoses, based on

the association of gene expression data [38], the group manually reviewed a list of

20,705 unique diagnoses to map terms that refer to the same diagnosis. The terms

were extracted from 1.5 million free text problem summary list diagnoses, entered

by roughly 2,000 clinicians into the electronic health records (EHR) system.

Uncertainty and Big Data

Big data brings with it some elements of uncertainty. More data means more confu-

sion, false positives in classification tasks [16], noise and errors. Probability theory

and fuzzy logic are two different ways of expressing uncertainty. In particular, fuzzy

clustering is a clustering approach based on the use of fuzzy sets. It is capable of

recovering group structures with overlapping. The overlapping is due to uncertainty

in assigning the data point to the groups, or equivalently to the imprecise nature of

those groups. Crisp clustering on the other hand, is based on exclusive group as-

signment of the data points, therefore, overlooking any possible overlapping. Since

cluster analysis, or data analysis in a broad sense, is supposed to serve a useful pur-

pose, the quality of its product must be assessed. In case of predictive models, the

outcomes are predicted on the basis of numbers, mere probabilities. Probabilities

are devices to convey uncertainty. An agreement in the performance of the predic-

tive models on training data and unseen data (test data), is preferred to establish

some kind of confidence in them. Bias-variance analysis is the tool to assess such an

agreement. In contrast, making an assessment of clustering quality is the subject of

cluster validity.
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The main contribution of this research is two-fold. First, we develop a re-

lational framework with a unified distance-based perspective on the problems of

clustering and cluster validity. Second and within the relational framework, we

generalize the silhouette measure, a measure of clustering quality, to the clustering

results obtained by any fuzzy algorithm. The framework, and so does the silhouette

measure, links together:

• The similarities and dissimilarities between the data points.

• The distances between the data points.

• The cluster assignment of the data points.

In chapter two we discuss the key elements in the clustering task, and give a de-

tailed review of k-means and, its fuzzy variant, fuzzy c-means, the two widely used

clustering algorithms. In chapter three we review few of the popular measures used

in the validation of crisp and fuzzy clustering results, with a focus on the silhouette

measure. In chapter four, the relational framework is presented. In chapter five, and

based on concepts defined within the relational framework, the silhouette measure is

naturally generalized to fuzzy partitions. The silhouette measure exposes a problem

inherent in any fuzzy c-means partition, as explained in chapter six. In chapter

seven, we conclude with an experiment that demonstrates a successful application

of the generalized silhouette measure in feature selection for classification with real

data.



CHAPTER 2

OVERVIEW OF CLUSTERING

Since clustering is a primitive activity necessary to cope with complexity, it is perva-

sive in analysis. Therefore, various clustering algorithms were developed in different

fields. But they are centered on one intuitive goal: to partition a given set of points

into a number of clusters such that points in the same cluster are similar and are

dissimilar to points in other clusters. This is a common definition of the clustering

task given in the clustering literature [9, 42, 45, 67, 69, 84]. In machine learning, the

perspective is that clustering is an unsupervised approach to learning, due to the

lack of target class labels. But in many clustering applications there is a clue, a

level of supervision, of what we are looking for. This is exactly the paradoxical

unsupervised-supervised dimension of clustering stated by Guyon et al. [36]. For ex-

ample, given a collection of images we might want to cluster them by who is in them

or by facial expression. In another application we might seek to cluster a collection

of documents by topic, authorship or writing style [83]. In such cases, it is possible

to cluster the data points manually, albeit a substantially labor and time intensive

task. Such desired partitions of the data become the end goal of clustering. Few key

remarks can be made about clustering in the light of the definition:

• The purpose of clustering is to reduce the similarities and dissimilarities be-

tween the data points in the form of clusters. Accordingly, it becomes easier

to determine whether a group of points are similar or dissimilar to each other

by their cluster membership.

• The definition clearly establishes the notion of cluster on some constituent no-

tion of similarity. Cluster formation is essentially driven by the selected notion

of similarity. Different clusters are formed by different notions of similarity.

• Usually in practice, the similarities between the data points are measured by

a distance.

• The distance measure is considered poor for the clustering task if the formed

6
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clusters overlap each other to a great extent. Setting the clustering parameters

improperly is also responsible for cluster overlapping, for example, the number

of clusters.

• The clustering quality of a partition is a function of

Cluster compactness and separation, if using a distance measure.

Cluster homogeneity and heterogeneity, if using an actual similarity mea-

sure.

• Compactness is associated with the within-cluster pairwise distances. Smaller

distances indicate that similar points were successfully assigned to the same

cluster.

• Separation is associated with the between-cluster distances. Larger distances

indicate that dissimilar points were successfully separated by assigning them

to different clusters.

• Independent from any distance or similarity, the number of all possible parti-

tions of a set of n points is given by the nth Bell number3. This is inclusive of

the two trivial partitions of assigning all points to the same cluster or assigning

each point to its own cluster (n singletons). For instance, there are 115975

possible ways to partition a set of 10 points.

The desired partition is the third element in Blums triple, which defines the cluster-

ing problem [15]. The triple is (X, d, P ∗) where X is the set of data points, d is the

distance measure and P ∗ is the unknown desired partition. The triple is part of a

framework that addresses the properties of the relation between d and P ∗ sufficient

for an algorithm to produce P ∗ with a low error, therefore generating a meaningful

partition. For example, consider the single cutoff property that is for some cutoff

value c we have d(x, y) < c for all pairs x and y that should be in the same cluster and

d(x, y) > c for all pairs that should be in different clusters. Clearly this makes the

3The Bell numbers satisfy the recurrence relation Bn+1 =
∑n

k=0

(
n

k

)
Bk, where B0 = B1 =

1.
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job of the clustering algorithm trivial; recovering P ∗ by a single greedy scan of the

pairwise distances. However, when it comes to other properties which correspond

to a more or less poor distance measure, the task is not straightforward. Therefore,

clustering algorithms define some criterion in terms of the distance measure to be

optimized on the entire set of points, in the presence of any cluster overlapping.

A review of distance measures and criteria used in clustering is given in [67]. It

is worthwhile noting that the single cutoff property is similar in essence to Dunns

definition of compact separated clusters4 [28].

Input consisting of feature representation of the data and a distance measure,

or alternatively the set of pairwise distances, is typical for hierarchical, partitioning

and density-based clustering algorithms. Consider [9, 67, 84] for reviews on these

methods of clustering. Such input defines a graph structure on the data. Changing

the features or the distance measure opens the doors for new clustering possibilities;

as it redefines the similarity relations between the data points, the graph structure.

Regardless, fixing the input, the goal of clustering can be restated as the search

for optimally compact and separated clusters. In the best case scenario, the cluster-

ing algorithm converges to an optimal partition that approximates well the desired,

possibly unknown, partition. For instance, an optimal partition of a collection of

documents really reflects a set of meaningful topics. A scenario that becomes pos-

sible only if the graph structure of the data set is relevant to the desired partition.

A partition is optimal with respect to the graph structure (distances); whereas it is

meaningful if it approximates the desired partition. So it is reasonable to ask for

the features and the distance measure to be selected in the context of the desired

partition. The answer is provided by methods for learning a distance measure on

data as in [5,83] or a set of features [86], in a supervised setting. Similar in spirit is

the problem of learning a kernel [47,93]; considering the fact that kernels are gener-

alized distance measures [71]. All of these learning problems, and by embedding the

data in a different space, manipulate the relations between the data points in order

for the relations to be relevant for other learning tasks, for instance classification.

4Informally speaking, the clusters (subsets) of a set of points are said to be compact separated
clusters if the distance between each pair of points within the same cluster is smaller than every
distance between points in different clusters.
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Recognizing the critical role played by the distance measure in clustering, Blum,

Bezdek and Dunn, respectively, make the following claims:

• The distance measure is of the same level of importance as (if not more than)

the clustering algorithm [15].

• The definition of a mathematical measure of similarity is the fundamental

problem of cluster analysis [14].

• The existence of a partition into k compact separated clusters is an intrinsic

property of the pair (X, d) that is the set of points and the distance measure

[28].

The key steps involved in the clustering process are shown in Figure 2.1 and

they are summarized below. They are based on outlines given in [37, 39, 42, 84].

• Feature representation: the set of data points are described by a set of fea-

tures which is refined, if necessary, by feature selection, feature extraction, or

normalization (for example by computing the z-scores).

• Distance measure: the measure must be meaningful to the task i.e. relevant

to the desired partition; since it quantifies the relations between the data

points. Clustering algorithms critically rely on the chosen measure in achieving

the desired partition. Clustering, and so cluster formation, is driven by the

measure. Rather than a component of the clustering algorithm, it is reasonable

to treat the distance measure as an input. Many clustering algorithms accept

different measures where the clustering results vary with the distance measure.

The input is either the set of pairwise distances or a combination of data

feature representation and a distance measure.

• Clustering algorithm: at the core of the clustering algorithm is a criterion

defined in terms of the distance measure. A reasonable criterion must be a

measure of clustering quality that is cluster compactness, cluster separation or

both. The task then translates into an optimization problem: to optimize the

criterion over the space of all possible partitions. However, as noted earlier,
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this space on a given set might be huge. Searching it entirely enumerating

all possible partitions seems computationally infeasible. Thus the search is

parameterized to prune the search space, for example, parameterized by the

number of clusters, or by a distance threshold which locally defines a neigh-

borhood for each point.

• Validation: under certain conditions, only local optimality is guaranteed by

some algorithms. Besides, other optimal solutions are obtained if we change

the algorithm parameter values, most frequently the number of clusters. There-

fore clustering is repeated for multiple times and then the best partition is

chosen among a pool of candidate partitions. The clustering quality of each

partition is assessed by evaluating measures of compactness and separation.

This evaluation, as explained later, takes place at the level of the individual

points, or clusters. Validation criteria are no different than clustering criteria,

in the sense of involving measures of compactness and separation, but a val-

idation criterion tend to be more thorough since it is meant to be evaluated

rather than optimized.

• Interpretation: the partition filtered by validation is then interpreted in the

context of the end goal. In the process, the cluster allocation of the points is

examined to see if it really conveys similarity and dissimilarity. For example,

in a topic-driven clustering application, the partition is examined to verify

that documents in the same cluster are similar in the sense of representing the

same topic. In case of unsatisfactory results, the analysis is repeated possibly

on different input.

Next we review the widely used algorithm of k-means which appears among the

top 10 algorithms in data mining [81]. The algorithm conveniently serves the purpose

of introducing basic concepts associated with clustering. Its fuzzy variant, fuzzy c-

means, also serves as a good example of fuzzy clustering algorithms. The popularity

of k-means is due to its intuitive clustering criterion, ease of implementation and a

linear complexity which makes it computationally attractive.
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Figure 2.1: The outline of the clustering process.

2.1 The k-Means Algorithm

The term k-means was first used to refer to a problem rather than an algorithm,

coined by MacQueen [52]. The following is a description of the k-means problem [54]:

given a set of n points (p-dimensional vectors)

X = {xj | xj = [xj1, . . . , xjp]
T ∈ �p}nj=1

find a set of k points, called centers

V = {vi | vi = [vi1, . . . vip]
T ∈ �p}ki=1

which minimizes

J(V ) =
n∑

j=1

d2(V, xj) (2.1)

where d(V, xj) denotes the distance between xj and the nearest center in V . The

2-means problem is NP-hard in the Euclidean space [2, 21]. For a general number

of clusters but in the Euclidean plane (p = 2), k-means is also NP-hard [54]. The

given proofs of the problem hardness assume d the Euclidean distance.

Reformulated in the context of a partition, the problem reads as follows: partition



12

X into k subsets U = {ui | ui ⊂ X}ki=1 by finding a solution for the following [72]

minimize J(U, V ) =
k∑

i=1

n∑
j=1

uijd
2(vi, xj) (2.2a)

subject to
k∑

i=1

uij = 1, 1 ≤ j ≤ n (2.2b)

0 <
n∑

j=1

uij < n, 1 ≤ i ≤ k (2.2c)

uij ∈ {0, 1}, 1 ≤ i ≤ k, 1 ≤ j ≤ n (2.2d)

The partition is characterized by the matrix U = [uij] ∈ �kn; each uij is interpreted

as the value of an indicator function, ui : X → {0, 1}, associated with the ith

cluster ui. V denotes the set of cluster centers. The criterion, J , a sum of squared

errors formula, is a measure of compactness; the smaller the sum is the tighter the

points are to their cluster center. For the same number of clusters, minimizing J is

equivalent to maximizing a measure of separation [94], given by

J̀(V ) =
k∑

i=1

nid
2(vi, v) (2.3)

where

ni =
n∑

j=1

uij (2.4)

v =
1

n

n∑
j=1

xj (2.5)

Equation (2.2a) can be also rewritten explicitly in terms of the pairwise distances

as [21]:

J̈(U) =
k∑

i=1

1

2ni

n∑
r=1

n∑
s=1

uiruisd
2(xr, xs) (2.6)

So minimizing the distances between points and their cluster centers is equivalent to
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minimizing average cluster diameters. The average cluster diameter is the average

distance between points within the same cluster.

Lloyd’s algorithm [51] is an iterative heuristic method that became the stan-

dard for solving the k-means problem, hence known by the k-means algorithm. It

iterates the application of the two rules below to minimize (2.2a):

vi =

∑n
j=1 uijxj∑n
j=1 uij

(2.7)

uij =

⎧⎪⎨
⎪⎩
1, i = argmin1≤h≤k d(vh, xj)

0, otherwise
(2.8)

The pseudo-code is given in Algorithm 2.1. The algorithm halts if there is neither

significant improvement in J , nor change to the cluster centers. It also stops when

the maximum number of iterations is exceeded, in case the algorithm does not

converge in a reasonable time. A proof of the finite convergence of k-means type

algorithms for any given metric is given in [72]. It is shown that the algorithm

converges to partial optimal solutions5 which are Kuhn-Tucker points under certain

conditions.

Algorithm 2.1: k-means

Parameters: k (number of clusters)
Input : X (set of n p-dimensional vectors)
Output : U (the indicator matrix a partition of k clusters)

V (the associated set of cluster centers)
1 V ← V0 // random V0

2

3 while the stopping conditon is not satisfied do

4 Update U: ∀i, ∀j compute uij using (2.8).
5 Update V : ∀i compute vi using (2.7).

6 return U, V

We conclude this section with a couple of examples to illustrate the clustering

5A point (U∗, V ∗) is a partial optimal solution if ∀V, J(U∗, V ∗) ≤ J(U∗, V ) and
∀U, J(U∗, V ∗) ≤ J(U, V ∗).
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by k-means of a simple data set and the iris data set. A data set of 10 points and its

k-means partition are given in Figure 2.2. The indicator matrix, U, of the partition

is given in Table 2.1. The output of k-means on UCI iris data is shown in Figure

2.3. Note the following in the two examples:

• Although x8 is assigned to u2, the cluster depicted in circles in Figure 2.2, it

seems closer to x2 and x4 than to the points x6 and x7. Nevertheless, such

cluster assignment of x8 achieves better overall separation and compactness;

it is better to separate x8 from x3 and x5 than to group them together in the

same cluster. Quantified by a distance measure, separation and compactness

need to be maximized and minimized, respectively.

• By unequivocally grouping a point in an overlapping area in one cluster, its

apparent similarity to other points not in the cluster is lost. Thus, such clus-

tering overlooks some of the relations between the data instead of representing

them, a sacrifice offered for the goodness of the overall clustering. In particu-

lar, the similarities between x8, x2 and x4 are not totally represented by the

partition.

• The overlapping between iris versicolor and iris virginica flowers in Figure 2.3.

Table 2.1: The characteristic matrix of the k-means partition in Figure 2.2b.

U x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

u1 1 1 1 1 1 0 0 0 0 0
u2 0 0 0 0 0 1 1 1 1 1



15

Figure 2.2: The k-means partition of a data set of 10 points: (a) the data set and
(b) its partition into two clusters.

Figure 2.3: Iris data and its k-means partition into 3 clusters: the upper triangular
plots show iris species, setosa in green, versicolor in blue and virginica in red. The
lower triangular plots show the k-means clusters. Species and cluster centers are
shown in black asterisks.
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2.2 The Fuzzy c-Means Algorithm

The exclusive cluster assignment carried by k-means is restrictive for some applica-

tions. For example, a page returned by a search engine might fit many categories,

or an investigator who might belong to multiple communities in a co-authorship

network. Even in applications that assume disjoint clusters, there is the uncertainty

about a point membership in a particular cluster, probably an outlier. For example,

in the segmentation of MRI images into different tissues, the images always present

overlapping gray-scale intensities for different tissues due to noise and blur in image

acquisition [85]. In regards to a subset of pixels, a distance computed on image

intensity profiles fails in reasoning about their cluster (tissue) assignment. Incor-

porating the spatial characteristics of the images in the distance measure does not

resolve the situation. To cope with these elements of structural uncertainty i.e. the

uncertainties in the relations between the data, a new framework is needed.

In a seminal paper which introduced fuzzy sets, Lotfi Zadeh generalized the

notion of set by extending the concept of set membership [88]. The membership of a

point in a set is allowed to assume any value in many, possibly a continuum of, grades

of membership. More specifically, a fuzzy set is characterized by a membership

function which takes values in the interval [0, 1]. To characterize an ordinary set,

the membership function reduces to the two-valued indicator function, assuming the

two values 0 and 1. Ruspini was among the first to suggest using the concept of fuzzy

sets in clustering [69]. Dunn subsequently [28] proposed a variant of the ISODATA

algorithm [4], called fuzzy ISODATA, to solve the following relaxed version of the

k-means problem

minimize J2(U, V ) =
k∑

i=1

n∑
j=1

u2
ijd

2(vi, xj) (2.9a)

subject to
k∑

i=1

uij = 1, 1 ≤ j ≤ n (2.9b)

uij ∈ [0, 1], 1 ≤ i ≤ k, 1 ≤ j ≤ n (2.9c)

Fuzzy ISODATA, employs the necessary conditions, for any local minimum of J2, as
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update rules in an alternating optimization process. The resulting fuzzy partitions

are characterized by the membership matrix U = [uij]. Bezdek generalized J2 to an

infinite family of objective functions {Jm(U, V ) | 1 ≤ m < ∞} [13]. He obtained

update rules similar to Dunn’s but in the parameter m, used in fuzzy ISODATA

to iteratively optimize Jm for any m > 1. The new parameter m introduced into

the problem and its role warrant further discussion, which follows soon. Later in

his book [10], Bezdek called the algorithm fuzzy c-means (FCM). The parameter

c replaces k in denoting the number of clusters. Below is the relaxed generalized

problem of k-means [11]:

minimize Jm(U, V ) =
c∑

i=1

n∑
j=1

um
ijd

2(vi, xj) (2.10a)

subject to
c∑

i=1

uij = 1, 1 ≤ j ≤ n (2.10b)

0 <
n∑

j=1

uij < n, 1 ≤ i ≤ c (2.10c)

uij ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ j ≤ n (2.10d)

The necessary conditions for any optimal solution are:

vi =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

(2.11)

uij =

(
c∑

h=1

(
d(vi, xj)

d(vh, xj)

) 2
m−1

)−1

(2.12)

Algorithm 2.2 gives the pseudo-code of fuzzy c-means. A proper matrix norm on U

can be used in the assessment of insignificant change in cluster assignments, as an

additional stopping condition. Fuzzy c-means converges to local minima or saddle

points of (2.10a) [12]. As in k-means, the dual of the fuzzy c-means problem in terms

of the pairwise distances is formulated in [40]. But more interestingly, a dual of the

algorithm itself is delivered that solves the dual problem. The criterion function,
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equivalent to (2.10a), becomes

J̈m(U) =
c∑

i=1

1

2ni

n∑
r=1

n∑
s=1

um
iru

m
isd

2(xr, xs) (2.13)

The fuzzy c-means algorithm and its dual, both, converge to the exact same parti-

tions. The dual algorithm only requires the pairwise distances for its operation i.e.

fuzzy c-means clustering is applicable in the absence of data feature representation,

provided the availability of the pairwise distances.

Algorithm 2.2: fuzzy c-means

Parameters: c (number of clusters)
Input : X (set of n p-dimensional vectors)
Output : U (the membership matrix a partition of c clusters)

V (the associated set of cluster centers)
1 U ← U0 // random U0 which satisfies the constraints in (2.10)

2

3 while the stopping conditon is not satisfied do

4 Update V : ∀i compute vi using (2.11).
5 Update U: ∀i, ∀j compute uij using (2.12).

6 return U, V

As mentioned earlier, there are two trivial partitions of no interest to us. On

one hand, there is the assignment of all points to one cluster. On the other hand,

there is the partition of a data set of n points into n singleton clusters. Now, consider

a fuzzy partition into c clusters with each point assuming the membership value of

1
c
in each cluster. Such partition into c clusters is in the fuzziest state possible. By

fuzzy set containment6, one can see that the partition into singleton clusters and

the fuzziest partition reduce to a partition of one cluster i.e. no clustering.

6As defined by Zadeh [88], a fuzzy set A is said to be a subset of the fuzzy set B, denoted by
A ⊂ B, if and only if, ∀x, uA(x) ≤ uB(x).
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The Fuzzifier m

Denoting dij = d(vi, xj), and expanding (2.12) obtains for uij

uij =
1(

dij
d1j

) 2
m−1

+
(

dij
d2j

) 2
m−1

+ . . .+
(

dij
dcj

) 2
m−1

(2.14)

Ratios of center-to-point distances raised to 2
m−1

, constitute the c terms that appear

in the denominator. Define the following family of functions

F = {fm(x) = x
2

m−1 | 1 < m < ∞} (2.15)

Function plots for selected values of m are shown in Figure 2.4. The next example

demonstrates how the fuzzy membership values are shaped by m.

Suppose that we are about to compute the membership values of xt in 4

clusters. Also, assume that the distance between xt and v1, v2, v3 and v4 are

respectively: 5, 2, 7 and 10. Since v2 is the nearest center, xt its highest grade of

membership should be to cluster u2. Using (2.14), u2t and u3t, were computed for

different values of m. Their computations are given in Table 2.2 and Table 2.3, in

the detail of the denominator terms that appear in (2.14). In the tables, the values

obtained using m = 3 are distinguished to facilitate a discussion that follows soon.

When m = 1.01, u2t and u3t evaluate respectively to the crisp values of 1 and 0. As

m increases, the computed values of u2t and u3t approach 0.25. This is observed in

the last columns of Table 2.2 and Table 2.3.

Indeed, such change in the membership values driven by m, is formally stated by the

limiting properties of (2.11) and (2.12) given in [58]. More specifically, as m → 1,

equations (2.11) and (2.12) become respectively (2.7) and (2.8) in page 13. Thus, by

settingm ≈ 1, the fuzzy c-means algorithm carries a k-means clustering. Conversely,

as m → ∞, the cluster centers converge to the grand mean of the entire data set,

which becomes the only optimal solution for vi, therefore (2.11) becomes (2.5) in

page 12. Since the formed clusters share the same center; (2.12) computes the

membership values to 1
c
. Such a partition is in its fuzziest state, U = [1

c
]. Since,

larger values of m have a blurring effect, by which the membership values become
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Figure 2.4: The blur effect of the fuzzifier: plots of fm(x) defined in (2.15), for
selected values of m.

Table 2.2: The membership of xt in u2 and the terms involved in the computation
for different values of m.

m T2i = (d2t/dit)
2/(m−1) u2t = 1/

∑
i T2i

1.01 0.000 1.000 0.000 0.000 1.000

1.5 0.026 1.000 0.007 0.002 0.967

1.75 0.087 1.000 0.035 0.014 0.880

2 0.160 1.000 0.082 0.040 0.780

3 0.400 1.000 0.286 0.200 0.530

5 0.632 1.000 0.535 0.447 0.383

30 0.939 1.000 0.917 0.895 0.267

50 0.963 1.000 0.950 0.936 0.260

70 0.974 1.000 0.964 0.954 0.257
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Table 2.3: The membership of xt in u3 and the terms involved in the computation
for different values of m.

m T3i = (d3t/dit)
2/(m−1) u3t = 1/

∑
i T3i

1.01 1.6812e+029 6.5104e+108 1.000 0.000 0.000

1.5 3.842 150.063 1.000 0.240 0.006

1.75 2.453 28.239 1.000 0.386 0.031

2 1.960 12.250 1.000 0.490 0.064

3 1.400 3.500 1.000 0.700 0.152

5 1.183 1.871 1.000 0.837 0.204

30 1.023 1.090 1.000 0.976 0.245

50 1.014 1.052 1.000 0.986 0.247

70 1.010 1.037 1.000 0.990 0.248

fuzzier; m is known sometimes as the fuzzifier. Other than the limit analysis given

in [58], there is no theoretically justified rule about settingm. There is one exception,

the two rules given in [87] based on stability analysis of fuzzy c-means. The rules,

when they apply, only impose upper bounds on m. In practice, the values of 1.5, 2

and 3 are frequently used.

Informally speaking, it is recommended to use m = 3. With respect to xt, the

membership values {uit}ci=1 are computed in terms of ratios of the distances from

the same set {dit}ci=1. The linearity of f3(x) = x, results in no distortion to the

distance ratios as uit is being computed. For this reason, the values that correspond

to m = 3 are distinguished in Table 2.2 and Table 2.3 as base values. The role of m

is then simply described by the deviation of the distance ratios, and the resultant

membership values, from the base values. As m decreases from 3, fm(x) tends to

amplify those ratios greater than 1 and to suppress ratios less than 1, to the extent

of nullifying them at m ≈ 1. Accordingly, the membership of xt in ui evaluates

to 1, if vi is the nearest center to xt, and 0 otherwise. In contrast, as m increases

unboundedly, fm(x) brings the ratios closer and closer to 1, to the point of evaluating

uit to
1
c
. Thus, xt assumes a membership of 1

c
in every cluster regardless the distance

between xt and the cluster centers.

In summary, the resulting partitions have the highest fidelity in representing

the relations between the data points, under the uncertainty inherent in the associ-
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ated distances, if the fuzzifier is set to 3. The algorithm becomes more or less aware

of the fuzziness implied by the distances between xt and the cluster centers, as m

is set to values in the interval (1, 3). Accordingly, the generated membership values

become fuzzier or crispier. Unnecessary fuzziness, not related to the distances, is

introduced to the computation of the membership values when m > 3. The larger

the value of m is, the fuzzier the algorithm becomes.

2.3 Defuzzification and the Visualization of Fuzzy Parti-

tions

In the context of fuzzy partitions of 2- or 3-dimensional data sets, each point is

a member of each cluster, to some degree of membership. Visualizing such fuzzy

partitions is not as straightforward as in the visualization of crisp partitions. One

might suggest marking each point as a member of the cluster in which it attains

its highest membership value; in the consequence, the point membership in the

remaining clusters is ignored. This describes a procedure to the defuzzification of

fuzzy partitions. More specifically, the fuzzy partition U = [uij] is reduced to the

crisp partition Ú = [úij] by computing

úij =

⎧⎪⎨
⎪⎩
1, i = argmax1≤h≤c uhj

0, otherwise
(2.16)

The fuzzy partition is visualized on the basis of the membership values in Ú. Alter-

natively, it can be visualized over several intensity plots, where each plot is dedicated

to one of the fuzzy clusters. To illustrate these ideas to the visualization of fuzzy

partitions, consider the data set in Figure 2.5a. A fuzzy c-means partition of the

data set into three clusters was obtained using m = 3. A plot of the partition gener-

ated using the first approach, of defuzzification, is shown in Figure 2.5b. Although,

in the figure, {u1, u2, u3} is used in denoting the fuzzy clusters, it is more accurate

to use {ú1, ú2, ú3}. The alternative intensity plots of the same partition, occupy the

entire left column of Figure 2.6. To demonstrate how the fuzzifier affects the mem-

bership values, therefore the intensities, another partition into the same number of
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Figure 2.5: A data set shown in (a) and the plot of its (b) fuzzy c-means partitions
into 3 clusters generated by means of defuzzification.

clusters was obtained using m = 2, shown by the intensity plots on the right side of

the same figure.
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Figure 2.6: The intensity plots, per cluster, for two partitions of the data set in
Figure 2.5. The clusters in (a), (b) and (c) were obtained using m = 3. The clusters
in (d), (e) and (f) were obtained using m = 2. The cluster centers are shown in red
asterisks. Note the intensity level of points farther from the cluster centers.
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2.4 The Evaluation of Clustering Results

Any clustering algorithm is capable of partitioning an input data set into clusters.

An arbitrary cluster assignment of the data points is also a partition of the data set.

The available possibilities in clustering require reliable measures able to distinguish

the partition best in clustering quality, among many others. Different partitioning

results are obtained by using:

• Crisp or fuzzy clustering approaches.

• The same approach, but algorithms with different clustering criteria.

• The same algorithm but varying its parameter values.

It is even possible for one algorithm to produce different outputs in the same exact

settings. For instance, k-means may converge to different, locally optimal, partitions

of the same data into the same number of clusters due to variation in the initializa-

tion step. Cluster validity addresses the evaluation of clustering results. The next

chapter reviews some of the popular cluster validity measures.



CHAPTER 3

CLUSTER VALIDITY

It seems reasonable, before turning into any validity measure, to investigate which

clustering results are tractable for validation by the validity measures.

3.1 Validity for Distance-Based Clustering

The literature on cluster validity has validation measures as many as clustering

criteria there used in clustering. The goal of validation is to evaluate the clustering

quality of given partitions by incorporating measures of compactness and separation.

However by validation, some refer only to the problem of determining the number

of clusters, viewed as the fundamental problem of cluster validity [84]. Developing

a validity measure around this goal is subjective since the common practice is to

use two dimensional data sets to guide the measure development. Consider, for

example, the data set shown in Figure 3.1 [60], deciding on the number of clusters

just by visual inspection is controversial. Shall we trust a measure that picks the

partition in Figure 3.1d over another which picks the partition in Figure 3.1b?

Assume that there is an agreement on the number of clusters in the data sets used

in the measure development. And, the measure successfully detects these numbers.

Is it useful in comparing partitions of the same data sets but into any number of

clusters, relative to clustering quality? Moreover in regards to data sets that can

Figure 3.1: The number of clusters: (a) A set of points and three possible partitions
into (b) two clusters, (c) four clusters and (d) six clusters.

26
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Figure 3.2: Cluster shapes versus pairwise distances: two k-means partitions of a
set into (a) 2 and (b) 3 clusters. The red lines in (a) help in visualizing the relations
between the points.

be visualized, there is the tendency of conceptualizing the clusters on the basis of

their shape rather than the distance between the data points. Consider the two

k-means partitions of a data set into two and three clusters, shown respectively

in Figure 3.2a and Figure 3.2b. The data set consists of 250 points sampled from

two bivariate Gaussians, 125 points from each distribution. It is tempting to assume

that the data has two clusters by mere visual inspection. However, suppose the data

is based on customer purchase history, is the partition in Figure 3.2a more useful

in recommending products to customers than the partition in Figure 3.2b? Notice

the similarities and dissimilarities suggested by the red lines in Figure 3.2a. If the

partition in Figure 3.2a is the preferred one, then a model-based clustering approach

[31] rather than distance-based might be appropriate for the target application, for

instance, the expectation-maximization (EM) algorithm [23]. The EM algorithm

carries a maximum likelihood estimation of the parameters of a mixture of densities.

Accordingly, two points are assigned to the same cluster, therefore perceived similar,

if their highest probabilities are by the associated mixture component.

In another example where the clusters are not distance-based rather shape-

based: the Euclidean distance is obviously inconsistent with the ‘two ring’ formation

of the data points in Figure 3.3a; note the similarities and dissimilarities between

the points emphasized by the red lines in the same figure. Thus, k-means using

the Euclidean distance, on data 2-dimesnional representation, does not produce a

partition into clusters that align with the two rings, as shown in Figure 3.3b. But

the Euclidean distance works well for k-means if applied on the right feature repre-
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sentation. Figure 3.3c shows the k-means partition of the data using the Euclidean

distance, but applied on a 1-dimensional feature representation extracted by means

of an RBF function. A distance defined on a vector of the RBF distances perfectly

establishes the similarities and dissimilarities between the points, relevant to the

two ring formation. It is possible to achieve a clustering of the points into the two

rings directly on their 2-dimensional representation, but using the single linkage al-

gorithm [34]. Single linkage is a member of a family of agglomerative algorithms in

which clusters separated by the shortest link are merged. The definition of ‘link’ is

what characterizes each member algorithm. Single linkage defines a link between two

clusters as the shortest distance between point pairs, one in each cluster. Clearly,

any apparent dissimilarity between pairs of points, one in each cluster, is not taken

into account during the merges. The relations between the data points are not con-

sidered in a full scale by the algorithm. It is possible for two points that are farther

apart to belong to the same cluster by a series of intermediate cluster merges, a phe-

nomenon referred to as chaining [24]. Although it is perceived as a disadvantage,

chaining served the algorithm in obtaining the two ring partition; see Figure 3.3d.

The rationale of identifying clusters of ‘arbitrary shape’ renders any distance-

based similarity measure obsolete, in a global sense, for the task. Two points of a

large distance from each other are still perceived similar for being members of the

same shape-based cluster. Some algorithms allow untraditional measures of simi-

larity, for instance, the Rock clustering algorithm [35]7. Rock utilizes a distance

measure to establish neighborhood relations between the data points. The similar-

ity, called a link, is defined then by the number of common neighbors. Thus, the

algorithm employs two similarity functions, at two different levels:

• Locally: neighbor(xr, xs) that determines if the points xr and xs are considered

neighbors, denoting a similarity between the points.

• Globally: link(w, z) that gives the number of common neighbors, defined for

7The unsuitability of the Euclidean distance used in k-means to cluster a set of four points
(transactions as binary vectors over a set of items), in Example 1 in [35], can be argued. It might
seems a mistake to merge [100100] and [000001] since they do not have items in common but what
they have in common is the absence of items 2, 3 and 5. Nevertheless, the target applications
benefit from defining the similarity measure on the basis of common items.
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Figure 3.3: A data set of points taking the form of two concentric rings: (a) the data
set and its (b) k-means partition using the same 2-dimesnional representation, (c)
k-means partition using 1-dimesnional feature representation extracted by means of
an RBF function and (d) single linkage partition using the 2-dimensional represen-
tation. The red lines in (a) help in visualizing the similarities and dissimilarities
between the points.

points and clusters as well. This function is used in merging clusters.

Generally speaking however, it is natural to assume a unified binding criterion when

we think about a group of objects. To quote Thomas Jefferson, one of the founding

fathers of the United States [43]:

It is strangely absurd to suppose that a million of human beings, collected

together, are not under the same moral laws which bind each of them

separately.

Nevertheless, arbitrary shape driven clustering, with no unified notion of similarity,

has a merit if used with data of a visual nature, as in images and video. Visual

inspection is the only reliable means of confirming the quality of clustering results.
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Figure 3.4: Arbitrary shape clusters: DBSCAN clusters, shown in different colors,
obtained using ε = 5.9 and MinPts = 4 [92].

Consider the partition into the colorfully characterized clusters shown in Figure

3.4. This example is from [92]. The partition was obtained by DBSCAN [30]

with ε = 5.9 and MinPts = 4. Neighborhood and density are key concepts in

DBSCAN defined by the two previous parameters. Despite the success of DBSCAN

in detecting the clusters and noisy points in Figure 3.4, it is very sensitive to the

selection of parameter values (also true for ROCKS and other algorithms used in

the experiments), see [92]. Other than by visual inspection, we do not see how the

parameter values could be selected to achieve the clustering in Figure 3.4.

In the development of DBSCAN, data relevant to Earth Science tasks was used as

real data benchmark in testing the algorithm, see [30]. It contains raster data, point

data, polygon data and directed graph data. The benchmark results are just mere

running times with no mention of the actual clustering results; no assessment of

clustering quality is possible. No data abstraction, the aspects of the cluster learned

from its members, is possible from clustering which assumes arbitrary shape clusters.

Abstraction and generalization are the basic two operations in most schemes relevant
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to the classifications of patterns into a finite number of categories, according to

Bellman, Kalaba, and Zadeh [6].To seek a partition as in Figure 3.4, in data of

four dimensions and more is similar to ask for the bizarre classification of Celestial

Emporium of Benevolent Knowledge [17]. In this classification, claimed to be from

an ancient Chinese encyclopedia, animals are divided into:

(a) those that belong to the Emperor,

(b) embalmed ones,

(c) those that are trained,

(d) suckling pigs,

(e) mermaids,

(f) fabulous ones,

(g) stray dogs,

(h) those included in the present classification,

(i) those that tremble as if they were mad,

(j) innumerable ones,

(k) those drawn with a very fine camelhair brush,

(l) others,

(m) those that have just broken a flower vase,

(n) and those that from a long way off look like flies.

Here, ‘others’ could represent noise. There is no one unified criterion that helps

in differentiating all of those categories, thus arbitrary. Cluster analysis that seeks

arbitrary shape clusters lacks the criterion for validation, thus out of this research’s

scope. Detecting arbitrary shape clusters, and the efficient tools proposed for the

task, are undoubtedly useful in their domain of applications. It is natural to think



32

about the pairwise relations between the data points in the context of a partition.

The two widely used clustering algorithms, of k-means and fuzzy c-means, indeed,

optimize measures of compactness in terms of the pairwise distances. So, we are

concerning ourselves only with data consisting of relations, measured by distances.

3.2 Validity for Crisp and Fuzzy Clustering

Clustering aims at fitting the relations between the data points by a set of clusters

that is a partition. The quality of the fit is determined by “the extent that similar

objects are placed in the same partition class and dissimilar objects are placed in

distinct partition classes” [41]. If the input relations lack the precision to dictate a

partition into mutually exclusive clusters then it is convenient to use fuzzy cluster-

ing. This imprecision pertains to complexity as stated by Zadeh in his principle of

incompatibility [89]:

Stated informally, the essence of this principle is that as the complexity

of a system increases our ability to make precise and yet significant state-

ments about its behavior diminishes until a threshold is reached beyond

which precision and significance (or relevance) become almost mutually

exclusive characteristics.

Incompatibility is also an issue with highly complex data, which applies to rela-

tionship data, in clustering problems. The fuzzy approach, as opposed to crisp, is

tolerant of imprecision and partial membership. Consequently, it is possible for the

transition from one cluster to another, over overlapping areas, to be gradual rather

than abrupt. This feature is well illustrated in Figure 3.5 [3] which shows the fuzzy

membership functions that map any temperature measurement to one or more of the

following clusters: too cold, cold, warm, hot and too hot. Such trapezoidal-shaped

membership functions are common in the practice of fuzzy logic. However in regards

to clustering quality, one might ask if there is any gain from using such trapezoidal

functions as opposed to the rectangular-shaped functions that characterize crisp

clusters. This research addresses the two questions of:

• How to reason about the clustering quality of fuzzy partitions?
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Figure 3.5: A partition of temperature measurements into fuzzy categories.

• Is there an overall gain in clustering quality by using the fuzzy approach as

opposed to crisp?

By means of defuzzification, using (2.16), it is possible to apply measures of clus-

tering quality devised for crisp partitions. However, the loss in similarity and dis-

similarity information represented by U, defeats the purpose of performing fuzzy

clustering. In our review of some measures of clustering quality, mostly applicable

to fuzzy partitions, we point out how each measure accounts for compactness and

separation in the partitions, if possible.

3.3 Measures of Clustering Quality

The measures that appear next in the review were selected for the reasons below:

• To emphasize a distance-based evaluation of distance-based clustering results.

• To give examples of some of the possible measures of compactness and sepa-

ration.

• To emphasize the accuracy aspect in selecting proper measures of compactness

and separation.
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• To highlight a fact that the measures operate at different level of granularity,

accordingly becoming rough or sophisticated.

• To demonstrate potential artifacts in the evaluation of clustering results due

to those aspects of the measure irrelevant to the task. Any change in the

measure values should purely reflect a change in clustering quality.

• The silhouette measure, in specific, appealed to us because it complies with

the relational perspective of the clustering task.

3.3.1 The Partition Coefficient

Dunn defined a measure, known as the partition coefficient, of the amount of over-

lapping i.e. the fuzziness, in partitions [27]. The coefficient is defined by:

PCc(U) = trace

(
UUT

n

)
=

1

n

c∑
i=1

n∑
j=1

u2
ij (3.1)

In a theorem stating the extreme values of the measure, which appears to be a strictly

convex function on a convex domain of partitions satisfying the constraints in (2.10)

in page 17, Bezdek showed that the partition coefficient attains a unique global

minimum, and local maxima at the extreme points, that is every crisp partition into

c clusters. Note that any arbitrary crisp partition belongs to this set of extreme

points. The coefficient has its minimum at the fuzziest possible partition into c

clusters that is U = [1
c
]. The extreme values are given by the inequality [14]:

1
c
≤ PCc(U) ≤ 1, 2 ≤ c ≤ n (3.2)

Bezdek proposed the use of the coefficient in the selection of the number of clus-

ters c, hence assuming a role as a measure of clustering quality [14]. The proposition

is justified by an indirect relationship between a presumed partition into compact

separated clusters and the partition coefficient. The property of compact separated

cluster was introduced by Dunn [28], readily quantified by his separation index. The
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separation index is defined for a crisp partition of X into W = {wi | wi ⊂ X}ki=1 as:

α(k,W ) =
min1≤h≤k min1≤i �=h≤k d̈(wh, wi)

max1≤i≤k diam(wi)
(3.3)

where

d̈(wh, wi) = min
xr∈wh, xs∈wi

d(xr, xs) (3.4)

diam(wi) = max
xr,xs ∈ wi

d(xr, xs) (3.5)

Then, Ŵ is a set of compact separated clusters relative to d if and only if α(k, Ŵ ) >

1. Despite its name, the separation index incorporates a measure of compactness

which appears in the denominator in (3.3). The claim is that an optimal fuzzy par-

tition which minimizes Jm, represented by the pair (U, V ), is a good approximation8

of such Ŵ only if PCc(U) is close to 1. Let Ŵ be the characteristic matrix of Ŵ .

The proposition is based on the two following implications

‖Ŵ − U‖ ≤ ε =⇒ PCc(U) ≥ 1− ε

n
(2
√
n− ε), 0 ≤ ε ≤ ∞ (3.6)

PCc(U) = z =⇒ ‖Ŵ − U‖ ≥
√
n(1−√

z)2,
1

c
≤ z ≤ 1 (3.7)

In (3.6) if ε is very small then the coefficient is very close to 1, especially for large

n. According to (3.7) a value of the coefficient very close to 1
c
implies a poor

approximation of Ŵ ; the matrix norm is relatively large. However, the existence of

Ŵ is not guaranteed, in the first place. And in order for the coefficient to be a valid

measure of clustering quality, one needs to prove that large values of the coefficient

implies good partitions, as argued by Trauwaert [75]. Also, one can easily obtain a

fuzzy c-means partition U that almost resembles a crisp partition by setting m near

1; in the consequence, PCc(U) evaluates very close to 1, regardless the clustering

quality of U. Trauwaert showed that larger coefficient values are not necessary an

indication of better clustering quality. This is evident in the following example.

8The proposition is actually stated on the more strict property of compact well separated clusters
(CWS) that involves the convex hulls of the clusters. Nevertheless, this does not change the
argument.
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Consider the fuzzy c-means partitions of a data set shown in Figure 3.6. The

partitions were obtained usingm = 3. The data set was sampled from three bivariate

Gaussians. The sample sizes of the bottom left corner, the top one, and the bottom

right corner are 200, 150 and 100, respectively. According to the partition coefficient,

the partition into c = 2 in Figure 3.6a, PC2 = 0.701, is better than the partition

into c = 3 in Figure 3.6b, PC3 = 0.678. But, it is obvious that the latter partition

makes a better approximation of a partition into compact separated clusters, than

the former one.

In summary, the absence of a distance measure as part of the coefficient means

that it does not carry any measurement of compactness and separation. For this

reason, the coefficient is dependent on the use of the fuzzy c-means algorithm, to

assure that the partition in hands is meaningful, in regards to data relations. The

partition coefficient remains an efficient measure of fuzziness, serving well its original

purpose.

3.3.2 Xie-Beni Index

Xie and Beni addressed the problem of cluster validity for fuzzy partitions in [82],

where they proposed their measure. First, they pointed out the lack of any direct

connection of the partition coefficient to the geometric relations between the data.

Then, they defined a number of measures of compactness and separation. A measure

of compactness, called the total variation, is given by

σ =
x∑

i=1

σi (3.8)

where σi is the variation of cluster ui, defined as

σi =
n∑

j=1

u2
ijd

2(vi, xj) (3.9)

The total variation σ is exactly the objective function of the fuzzy c-means algorithm

J2, given by (2.10a) in page 17 for m = 2. Another measure of compactness, called



37

Figure 3.6: The fuzzy c-means partitions of a data set into (a) 2, (b) 3, (c) 4 and
(d) 5 clusters. The partitions were obtained using m = 3. The plots were generated
by means of defuzification.

Figure 3.7: The partitions in Figure 3.6, represented by their number of clusters c,
versus the partition coefficient.
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the compactness of the fuzzy c-partition, is defined as the ratio

π =
σ

n
(3.10)

Similarly, the compactness of cluster ui is defined as

πi =
σi

ni

(3.11)

Where ni is computed by (2.4) in page 12. For measuring the overall separation in

a fuzzy partition they use the minimum distance between the cluster centers. The

separation of the fuzzy c-partition is therefore defined as

dmin = min
1≤i �=h≤c

d(vi, vh) (3.12)

The compactness of the c-partition and the separation of the c-partition combine to

produce a measure, called the compactness and separation validity function, given

by

XB(X,U, V ) =
π

d2min

=

∑c
i=1

∑n
j=1 u

2
ijd

2(vi, xj)

n min1≤i �=h≤c d2(vi, vh)
(3.13)

However, the measure in (3.13) is better known as Xie-Beni index [19, 58]. The

authors suggest replacing u2
ij by um

ij , in (3.13), in evaluating the output of the fuzzy

c-means algorithm, where m is the value used for the fuzzifier in the algorithm.

Denote the resulting variant of the index by XBm. Their only justification is for

the total variation to be ‘compatible’ with the final value of Jm obtained by the

algorithm. Unless the final value of Jm is substituted for the numerator in (3.13),

hence reducing the computation time for evaluating the index, it is unclear if this

benefits the assessment of clustering quality. Also, this recommendation only affects

the index measure of compactness, with no effect on its measure of separation.

There is a question, then, about the consistency of these measures under such a

modification. In a coming example, see Figure 3.12 in page 43, XB and XBm

disagree in their evaluation of the same set of partitions. In particular, according
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Figure 3.8: The fuzzy c-means partitions of a data set into (a) 3, (b) 4, (c) 5 and
(d) 6 clusters. The plots were generated by means of defuzification. The partitions
were obtained using m = 2.

to XB the partition into c = 2 is assumed to have the best clustering quality; it has

the minimum XB value. Meanwhile, the partition into c = 4 has the minimum XBm

value.

Moreover, the evaluation of the fuzzy c-means partitions shown in Figure 3.8 by XB

leaves a question about its ability to detect nuances in clustering quality. It ranks

the partition into c = 3 as the best in clustering quality. Although, the partitions

into c = 4 and c = 5 seem better in compactness and slightly better in separation.

Note that the increase in c from 3, to 4 and to 5 only affected cluster u1 in Figure

3.8a, causing it to split into 2 and 3 clusters.
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Figure 3.9: The fuzzy c-means partitions of the data set in Figure 3.8 into different
number of clusters, represented by their number of clusters c, versus Xie-Beni index.
The partitions into 3, 4, 5 and 6 are shown in Figure 3.8.

3.3.3 Pakhira-Bandyopadhyay-Maulik Index

The index was proposed for purpose of measuring the clustering quality of crisp

partitions [57], the index is defined as

PBM(X,U, V ) =

(
E1Dk

kEk

)2

(3.14)

where

Ek =
k∑

i=1

ei (3.15)

ei =
n∑

j=1

uijd(vi, vh) (3.16)

Dk = max
1≤i �=h≤k

d(vi, vh) (3.17)

E1 =
n∑

j=1

d(v, xj) (3.18)

Here, U, V and v denote, respectively, the crisp membership matrix, the set of

the k cluster centers and the grand mean of the entire data set, defined in (2.5) in

page 12. Ek is a measure of the overall compactness while ei measures the cluster
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compactness of ui. Dk is the separation measure used as part of the index. E1

k
is

constant over all partitions of the same data set into the same number of clusters.

The authors propose a variant of the index for the evaluation of fuzzy partitions,

denoted by the fuzzy PBM index, or just PBMF, obtained by replacing Ek by Jm

as follows

PBMF(X,U, V ) =

(
E1Dk

kJm

)2

(3.19)

To illustrate a serious shortcoming of the index, consider the data set in Figure

3.10. It was sampled from four bivariate Gaussians. The sample sizes of the top

left corner, bottom left corner, the bottom right corner and the middle one are

respectively 100, 60, 80 and 20. A number of fuzzy c-means partitions of the data

set into c = 2, . . . , 10 clusters were obtained using m = 2. Only two partitions,

into c = 3 and c = 4, are shown in Figure 3.10. Denote them respectively by

P3 and P4. One might argue about 3, 4 or 5 clusters, as plausible partitions of

the set, but not more. The fuzzy index, PBMF, disagrees with such claim since

it ranks partitions into more than 5 clusters, as better in clustering quality; see

Figure 3.11b. The effect of allowing more and more clusters in a partition is for

smaller and smaller clusters to form, hence an improvement in compactness. It is

up to the separation measure to detect the degradation in clustering quality due

to the associated bad cluster separation. The penalty factor in PBMF that is 1
k
,

fails to cover for the shortcoming of using the maximum center-to-center distance

as a measure of separation. Xie-Beni index does a better job by employing the

minimum center-to-center distance, which covers situations where clusters become

more compact but not well separated, for example, clusters u1 and u2 in Figure

3.8d. it is more realistic than just penalizing an increase in the number of clusters

k with no change to the maximum center-to-center distance. Moreover, Xie-Beni

index has more consistency since only squared distances appear in its measures of

compactness and separation, as opposed to PBMF which uses squared distances in

Jm and a non-squared distance in Dk. Even PBM, with only non-squared distances,

ranks P3 higher than P4, as shown in Figure 3.11a. P4 seems slightly better than

P3. Refer to Figure 3.10 to compare between the two partitions. If one proposes
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Figure 3.10: The fuzzy c-means partitions of a data set into (a) 3 and (b) 4 clusters.
The partitions were obtained using m = 2.

two measures of clustering quality that differ in their ranking of the same set of

partitions, an explanation is owed to justify the use of each measure. This was

encountered with XB and PBM, in the next example.

The data set in Figure 3.10 was partitioned again by fuzzy c-means into c = 2, . . . , 10,

but using m = 5. The evaluation results by XB, XBm, PBM and PBMF of the

partitions are shown in Figure 3.12. The evaluation by PBMF is the complete

opposite of PBM’s. Such inconsistency is much less apparent among XB and XBm.

The detailed evaluation results, the index values, are given in Table 3.1. In the

table, the values which supposedly determine the partition best in clustering quality

are highlighted in bold. Notice the conflicting evaluation among the measures.

Also observe each index range of values, for example, 0.148 ≤ XB ≤ 54.872. It is

understood that values near zero indicate good clustering but how bad is it when

XB = 54.872? Similarly, how good is it when PBMF = 18810000?

Table 3.1: The detailed results that correspond to the plots in Figure 3.12. Values
that are supposed to determine the partition best in clustering quality are high-
lighted in bold.

c 2 3 4 5 6 7 8 9 10
XB 0.148 0.181 0.221 4.718 5.083 54.872 25.83 20.172 25.59

XBm 0.014 0.004 0.002 0.024 0.016 0.101 0.031 0.018 0.016
PBM 5.325 3.553 2.074 1.414 0.969 0.779 0.589 0.458 0.394

PBMF(×107) 0.000 0.001 0.006 0.023 0.065 0.200 0.459 0.854 1.881
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Figure 3.11: The fuzzy c-means partitions of the data set shown in Figure 3.10 into
different number of clusters, represented by their number of clusters c, versus (a)
PBM index and (b) PBMF index. The partitions into 3 and 4 clusters are shown in
Figure 3.10. The partitions were obtained using m = 2.

Figure 3.12: The fuzzy c-means partitions of the data set shown in Figure 3.10 into
different number of clusters, represented by their number of clusters c, versus (a)
XB index, (b) XBm index, (c) PBM index and (d) PBMF index. The partitions
were obtained using m = 5.
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3.3.4 Average Silhouette Index

Rousseeuw introduced the interesting notion of silhouettes in [68]. The framework

that we propose in this thesis, has been inspired by the rationale behind silhou-

ettes, hence the extensive review. Silhouette is an attractive point-wise measure of

clustering quality, defined in the context of crisp partitions. In order to illustrate

the computation of silhouettes, consider the set of points X = {xj}nj=1 and a crisp

partition U = {ui}ci=1, and U = [uij] is the characterizing matrix. The average

distance between xt and all the points in cluster ui is computed using

d̄(ui, xt) =

∑n
j=1,j �=t uijd(xt, xj)∑n

j=1,j �=t uij

(3.20)

The average distance of xt with respect to each cluster is computed first. Then, two

measures of compactness and separation relative to xt, are defined respectively as

at = a(xt) = d̄(uh, xt), where uht = 1 (3.21)

bt = b(xt) = min
i
{d̄(ui, xt) | uit = 0} (3.22)

In words, the measure of compactness at is the average distance between xt and all

the points in cluster uh, to which xt has been assigned i.e. uht = 1. The measure

of separation bt is the minimum average distance over the remaining clusters ui ∈
U \{uh}; one can see that the remaining clusters have uit = 0. The cluster at which

this minimum is attained is called the neighbor cluster of xt. Since, both of at and

bt are average distances, we refer to them respectively as the compactness distance

and the separation distance, for the point xt. Figure 3.13 helps visualize how these

distances relate to the cluster assignment of xt; imagine moving cluster u1 closer

and closer to xt and how this affects the preferences to assign xt to u2. How at and

bt relate to the clustering of xt, is reasonably explained as follows:

• xt is well-clustered, realized by bt � at: the neighbor cluster of xt is not nearly

as close as the cluster to which it has been assigned. This indicates a good

clustering since the algorithm successfully, and to a great extent, grouped xt

with similar points in one cluster. In Figure 3.13a, u2 is closer, hence more
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Figure 3.13: The compactness distance and the separation distance with respect to
xt: at is the compactness distance computed as an average distance over the solid
lines while bt is the separation distance computed as an average distance over the red
dashed lines. The assignment of xt to cluster u2 rather than u1 is more reasonable
in (a) with bt > at than in (b) with bt ≈ at.

similar, to xt than the neighbor cluster u1 is.

• The intermediate case of bt ≈ at: xt is almost of equal distance from its cluster

and its neighbor cluster. Thus, it is not clear which cluster xt should be

assigned to. In Figure 3.13b, xt seems equidistant from the members of u1

and the members of u2.

• xt is misclustered, realized by bt � at: this defies the goal of clustering, recall-

ing its definition. Instead of grouping xt with the similar points in the same

cluster, it has been separated from them, even worse; it has been mischievously

grouped with dissimilar points. The neighbor cluster seems the actual best-

choice to accommodate xt; since it is the nearest cluster to xt, as implied by

the inequality.

To facilitate straightforward reasoning using one quantity, the silhouette of xt, de-

noted by st, combines both of the compactness distance and the separation distance

as follows

st = s(xt) =
bt − at

max{at, bt} (3.23)
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The silhouette measure is scaled by the maximum distance, and one can easily see

that

−1 ≤ st ≤ 1 (3.24)

It is much easier to interpret the measure values, knowing that a value near 1

implies near perfect clustering of the point. The three cases, listed above, of being

well-clustered, misclustered and in an intermediate position between clusters, map

respectively to near 1, -1 and 0, on the silhouette scale. Our perception of the

similarities and dissimilarities in a given data set is special to the set, rather than

to a general reference. A distance of 5, for instance, might imply similarity in one

data set and dissimilarity in another. Since it is scaled by the maximum distance;

the silhouette measure acts as a general reference of clustering quality, and one can

reasonably compare between:

• Two distance measures, in the sense of which results in a better clustering

quality i.e. larger silhouette values.

• The clustering of two points in the same data set. For example, based on

the silhouette value of a document, in a document clustering application, it

might be claimed as a better representative of the subject than another with

a smaller silhouette.

• The clustering of two points in two different data sets.

It is worth noting that the silhouette measure can be simply modified to accom-

modate actual similarities, as opposed to the distances given by the function d in

(3.20), see [68]. On the coarser cluster level, the clustering quality of ui is measured

by the average silhouette over its member points, that is

Si = S(ui) =

∑n
j=1 uijsj∑n
j=1 uij

(3.25)
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Similarly, the overall clustering quality S̄ is defined as the average silhouette over

the entire set

S̄ =
1

n

n∑
j=1

sj (3.26)

Alternatively, one can take the average over {Si}ci=1 i.e.

¯̄S =
1

c

c∑
i=1

Si (3.27)

Equation (3.26) is more useful if we prefer to attribute the clustering quality to the

clusters rather than to the individual points; it defines a cluster-wise measure. This

is significant in imbalanced classification problems; if the accuracy measure does not

value the minority class, the learned classifier will be biased toward the majority

class. Such preferences, to seek good clusters regardless the size, is plausible in

clustering. To illustrate how the two alternatives of the overall measure compare

with each other, consider the example in Figure 3.14. The figure shows two k-means

partitions of the same data set into 3 and 4 clusters. Note the distinguishable small

group of 10 points located at the top right corner in both partitions. The different

average silhouette values using (3.25), (3.26) and (3.27), are given in Table 3.2. The

partition in Figure 3.14a has S̄ > ¯̄S. The 10 points have a relatively small average

silhouette value of 0.1. Such small values do more harm to the average value over

the clusters as opposed to the entire set whose larger size mediates such harm. In

contrast, in Figure 3.14b, the 10 points occupy their own cluster, namely, cluster

u3. The cluster has the largest average silhouette value; S3 = 0.781. Incorporating

this relatively large value into ¯̄S, results in ¯̄S > S̄.

According to Rousseeuw, the main promoting feature of the silhouette mea-

sure is its graphical display. The constructed silhouette plot targets the audience of

hierarchical clustering who rely on dendrograms to read and reason about clustering

results. The plot resembles a horizontal bar graph grouped by clusters. Its construc-

tion proceeds after finding the silhouette of each individual point. Each silhouette

is represented by a horizontal bar whose width is determined by the silhouette value
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Figure 3.14: Two k-means partitions of the same data set into (a) 3 clusters and
(b) 4 clusters. See Table 3.2 for the corresponding silhouette results.

Table 3.2: The different average silhouette measures for the two k-means partitions
shown in Figure 3.14a (c = 3) and Figure 3.14b (c = 4). ni denotes the size of
cluster ui.

c S̄ ¯̄S S1 n1 S2 n2 S3 n3 S4 n4

4 0.650 0.671 0.618 247 0.567 48 0.781 10 0.719 155
3 0.648 0.615 0.702 162 0.5 50 0.642 248

of the associated point. The silhouette of each cluster is formed by aggregating the

silhouettes, the associated bars, of its individual members in a decreasing order of

width. Accordingly, the silhouette width, either point-wise or cluster-wise, becomes

an indicator of clustering quality. Figure 3.15, gives a k-means partition of a data

set and its silhouette plot. The same partition was shown before in Figure 2.2 in

page 15; recall to the related discussion in page 14 about the standing of x8 in the

partition. The silhouette plot clearly states the weak clustering of x8. The partition

has an average silhouette value of S̄ = 0.423. The smallest point-wise silhouette

value belongs to x8; s8 = 0.115. This small value corresponds to the narrow bar

at the bottom of the silhouette plot in Figure 3.15b. The silhouette plot of the

partition in Figure 3.14a, of a larger data set, is given in Figure 3.16.

To summarize the properties that recommend silhouette as a measure of clus-

tering quality:

1. Its two measures of compactness and separation, at and bt, are the proxies to
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Figure 3.15: The succinct silhouette plot: (a) the k-means partition of data set of
10 points and its (b) silhouette plot.

Figure 3.16: The silhouette plot of the partition into 4 clusters shown in Figure
3.14b.

verify the execution of the two folds of clustering, at the level of the individual

points. Recall that the aim of clustering is two-fold, to

• Group similar points in the same cluster.

• Separate dissimilar points by assigning them to different clusters.

2. The consistency between at and bt: both are weighted means of point-to-point

distances, that measure compactness and separation with respect to an individual
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point.

3. The flexibility in the assessment of clustering quality at different levels of granu-

larity: point-level, cluster-level, and overall. Two overall measures are computed

by (3.26) and (3.27), with the latter being cluster-wise. This flexibility also holds,

if one seeks cluster, or overall, measures of compactness and separation. Such

measures are obtained by replacing sj by aj, or bj, in (3.25) and (3.26).

4. It is independent of, and no assumptions about, the clustering algorithm. It

accepts any crisp partition of a given data set, to be verified against the relations

between the data points, supplied as distances or similarities.

5. Ease of interpretation due to the bounded scale stated in (3.24).

6. The graphical display.

Given the above advantages, it seems unfortunate that silhouettes are restricted

to crisp partitions. By means of defuzzification, one might prepare a given fuzzy

partition for silhouette evaluation. But, several fuzzy partitions might reduce to the

same crisp partition using the same defuzzification technique, so, how should they

be differentiated on the basis of clustering quality? Such fuzzy partitions are easily

obtained by repeating the application of fuzzy c-means on the same data with, say,

using m = 1.5 and m = 2. Not to mention, defuzzification is responsible for a loss in

similarity and dissimilarity information represented by the fuzzy partition, as noted

before.

3.3.5 Extended Average Silhouette Index

In an attempt to explicitly incorporate the fuzzy membership values in the eval-

uation of fuzzy partitions, Campello and Hruschka proposed an extension to the

average silhouette index in [19]. Defuzzification is a necessary step in the compu-

tation of the extended index. Suppose that the fuzzy partition, in consideration, is

characterized by the membership matrix U = [uij]. Using (2.16), U is defuzzified

into the characteristic matrix Ú = [úij]. Then, it becomes possible to compute the

individual silhouette values sj by (3.23) on Ú. Recall that, the average silhouette
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value is an overall measure of clustering quality, S̄ given by (3.26). The extension

transforms S̄ from an arithmetic mean into a weighted arithmetic mean. Each sil-

houette is weighted by the difference between the two largest cluster membership

values of the associated point. Let p(j) and q(j) denote, respectively, the cluster

indices in which xj has its first and second largest membership values. Then, the

associated weight wj is simply computed by

wj = up(j)j − uq(j)j (3.28)

The extended average silhouette index is computed by

ES =

∑n
j=1 wjsj∑n
j=1 wj

(3.29)

Clearly, the fuzzy partition U is involved in the computation of wj, and its defuzzi-

fication into the crisp partition into Ú is involved in the computation of sj.

One can anticipate that the good properties attributed to silhouettes are also

passed to the extended measure. Other than the explicit use of the fuzzy member-

ship values, what else do the weights add to the assessment of clustering quality?

By definition of the weighted mean, the silhouettes contribute unequally to the final

average value, in a manner determined by the associated weights. The authors be-

lieve that the weights stress the role of the points in dense areas in the computation

of the measure. From their perspective, this is an improvement to the average sil-

houette index; it becomes better in detecting areas of high densities. Fuzzy c-means

produces partitions in which the points near the vicinity of cluster centers assuming

larger weights, therefore importance, than other points. Points in overlapping areas

fall under this category of ‘other points’. However, treating the points differentially,

in the evaluation of clustering quality, works against the extended index rather than

in its favor, as illustrated by the following example.

Consider the data set shown in Figure 3.17. A number of fuzzy c-means partitions

of the data set into c = 2, . . . , 7 clusters were obtained using m = 2. Only the

partitions into c = 3 and c = 4 are shown respectively in Figure 3.17a and Figure

3.17b. Denote the partitions respectively by P3 and P4. The weights computed
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by (3.28) on P3 and P4, are visualized by means of intensity plots. The weight

intensity plots obtained on P3 and P4 are given respectively in Figure 3.17c and

Figure 3.17d. All partitions were evaluated by both of the average silhouette index,

and the extended average silhouette index; see the evaluation results in Figure 3.18.

Both measures almost agree in their relative evaluation of the partitions, except for

the ranking of P3 and P4 relative to each other. The points that occupy cluster

u1 in P3 could be allocated to 2 or 3 cluster to obtain a partition that is better in

compactness and separation. This is met by clusters u1 and u3 in P4. Thus, P4, is

claimed as a better clustering than P3. The average silhouette index is in support of

this cliam but is not, the extended index. This disagreement is definitely due to the

extra weighting terms, since both meassures incorporate the exact same silhouette

values. Figure 3.17c shows that the points in the middle of the figure, since lightly

shaded, have relatively small wieghts. Their low silhouette values were not fully

taken into account in the computation of the weighted mean, hence the relatively

large weighted mean. As if the evaluation of the extended index was blinded by the

weights. In contrast, the same points have larger weights in the contetxt of P4, the

darkley shaded points in the middle of Figure 3.17d, but unfortunately they did not

help in achieving a weighted mean whose value is larger.

The example above highlights the risk of being loose in the assessment of

clustering quality rather than thorough. Similar to the partition coefficient, the

weights are not necessary connected to the clustering quality of the partition. The

extended measure does not have the same senstivity to the clustering of each point;

therefore it seems somehow a näıve measure. Moreover, the extension is limited to

the average measures. The point-wise silhouettes are still disconnected from the

fuzzy membership values. The clustering of each individual point can be evaluated

by the silhouette measure only in the context of a crisp partition. Fortunately, it is

possible to reason about the clustering of each point using fuzzy membership values

within the framework developed in the next chapter.
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Figure 3.17: The fuzzy c-means partitions of a data set into (a) 3 and (b) 4 clusters.
The weight intensities, obtained by (3.28), of the partitions in (a) and (b) are shown
respectively in (c) and (d). The black and red asterisks mark the cluster centers.
The partitions were obtained using m = 2.
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Figure 3.18: The fuzzy c-means partitions of the data set shown in Figure 3.17
into different number of clusters, represented by their number of clusters c, versus
the average silhouette index S and the extended average silhouette index ES. The
partitions were obtained using m = 2. The partitions into 3 and 4 clusters are
shown in Figure 3.17.



CHAPTER 4

THE RELATIONAL FRAMEWORK

The common definition of clustering assumes data of a relational nature. More

specifically, the similarities and dissimilarities between the data points are suppos-

edly the nuts and bolts for cluster formation. The clustering results also conform

to an intuitive relational perspective as will be explained soon. The preliminary

distanc-based perspective on clustering which appears in [66] is formalized by the

relations defined in this framework.

4.1 Distance-Based Relations

The two binary relations of similarity and dissimilarity, denoted by SIMILAR and

DISSIMILAR, over a data set X are defined by means of a distance measure; there-

fore, they are distance-based relations. The relations SIMILAR and DISSIMILAR

are subsets of the Cartesian product X×X. They are characterized by the following

membership functions

uSIMILAR(xr, xs) =

⎧⎪⎨
⎪⎩
1, d(xr, xs) is relatively small

0, otherwise
(4.1)

uDISSIMILAR(xr, xs) =

⎧⎪⎨
⎪⎩
1, d(xr, xs) is relatively large

0, otherwise
(4.2)

Accordingly, xr is similar to xs, denoted by xrSIMILARxs, or equivalently

uSIMILAR(xr, xs) = 1, if and only if d(xr, xs) is relatively small. These distance-

based relations, however, are quite imprecise, since established, by (4.1) and (4.2),

upon linguistic rather than numerical values. It is worth noting that the fuzzy

linguistic model [90], the fuzzy approach for computing with words, recognizes the

imprecision in linguistic values by representing them as fuzzy sets. In this model the

numerical variable distance constitutes the base variable for the linguistic variable

Distance. Distance assumes linguistic values, such as relatively small and relatively

55
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large; each becomes a fuzzy set defined on the numerical values of distance. The fuzzy

membership functions determine the compatibility between the numerical values

and the characterized linguistic values, hence called compatibility functions. Fuzzy

sets have no sharp transition from one to other, so is the distinction between the

linguistic values. Thus, the distinction of SIMILAR pairs from DISSIMILAR pairs,

in X ×X, is imprecise. That is, if d(xr, xs) is neither relatively small nor relatively

large it is unclear if xrSIMILARxs or xrDISSIMILARxs. Despite the imprecision

in these relations, the graph structure, defined by the distances, is the only ground

truth assumed in the problem, provided the wise selection of a relevant distance

measure.

4.2 Cluster-Based Relations

In the context of a partition of a data set X into a number of clusters, two cluster-

based binary relations are defined over X, namely, intracluster and intercluster, de-

noted by INTRACLUSTER and INTERCLUSTER. The point xr is in intracluster

relation with xs, denoted by xrINTRACLUSTERxs, if xr and xs belong to the same

cluster; otherwise, they are in intercluster relation, denoted by xrINTERCLUSTERxs.

To account for all events that can result in a pair being in INTRACLUSTER or

INTERCLUSTER relation, a number of cluster-specific relations are defined. Note

that, the cluster membership values of the data points count as logical truth val-

ues; therefore, they become the operands for the logical operators used in reason-

ing about the defined cluster-based relations. Let U = {ui}ci=1 be a partition of

X = {xj}nj=1 into c clusters. With respect to each cluster ui, define the relation

INTRACLUSTERi by the following membership function

uINTRACLUSTERi
(xr, xs) = min(uir, uis) (4.3)

That is, xr and xs are in intracluster relation with respect to cluster ui if and only if

the conjunction of their memberships in ui evaluates to true i.e. both belong to ui.

The conjunction is asserted by the minimum t-norm operator. Note that, there are

as many intracluster relations as the number of clusters in the partition. The event
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of (xr, xs) being in an intracluster relation, regardless which cluster it is, is contained

in the disjunction of the events of (xr, xs) being in intracluster relation over all the

clusters in the partition. Thus, the membership in the general intracluster relation

INTRACLUSTER is a disjunction of c conjunctions, i.e.

uINTRACLUSTER(xr, xs) = max
i

(uINTRACLUSTERi
(xr, xs)) (4.4)

In (4.4), the disjunction is asserted by the maximum t-conorm operator. In con-

trast to intracluster relations, it requires two clusters for a pair of points to be in

intercluster relation. Thus, there are as many intercluster relations as the number

of 2-combinations of the c clusters. With respect to each unordered pair of clusters

uh and ui, define INTERCLUSTERh,i by

uINTERCLUSTERh,i
(xr, xs) = max (min(uhr, uis),min(uir, uhs)) (4.5)

That is, xr and xs are in intercluster relation with respect to uh and ui if and

only if xr belongs to uh and xs belongs to ui, or vice-versa. The disjunction, in

(4.5), accounts for the two permutations of the two points over the two clusters. In

a similar fashion to INTRACLUSTER, the membership of (xr, xs) in the general

intercluster relation INTERCLUSTER becomes a disjunction of disjunctions, one

disjunction per cluster-specific intercluster relation, i.e.

uINTERCLUSTER(xr, xs) = max
h,i

(
uINTERCLUSTERh,i

(xr, xs)
)

(4.6)

In (4.3), (4.4), (4.5) and (4.6), the product t-norm and the probabilistic sum t-conorm,

see [25], can replace the minimum t-norm and the maximum t-conorm.

4.3 Distance-Based Relations versus Cluster-Based Rela-

tions for Clustering

As opposed to the distance-based relations, the membership of a pair (xr, xs) in IN-

TRACLUSTER or INTERCLUSTER is precise. The distinction of INTRACLUS-

TER pairs from INTERCLUSTER pairs is, therefore, a partition of the pairs, and a
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Figure 4.1: A partition of the data set is a partition of the pairwise distances: the
intracluster (solid lines) and intercluster (dashed lines) distances between xt and
the data points in the context of a crisp partition into 3 clusters. Only distances
associated with xt are shown in the figure.

partition of the associated distances, into the two subsets. The fact that a partition

of a data set is essentially a partition of the pairwise distances into intracluster and

intercluster distances is illustrated in Figure 4.1. Since, intracluster distances are

associated with points within the same cluster; they contribute to cluster compact-

ness. By contrast, the intercluster distances contribute to cluster separation; since

they are between points in different clusters. Consider the intersections below. By

common sense, the larger their cardinalities are, the more compact and separated

the clusters are. A better clustering is achieved by having more pairs in

• TP = SIMILAR ∩ INTRACLUSTER

• TN = DISSIMILAR ∩ INTERCLUSTER

In analogy with a classification task, suppose that the clustering algorithm

makes predictions about the similarities and dissimilarities between the data points

in terms of the INTRACLUSTER and INTERCLUSTER relations. In particular,

allocating two points to the same cluster is the algorithm way to say that they are

similar, and dissimilar if allocated to different clusters. Referring to SIMILAR as the

positive class and DISSIMILAR as the negative class, the distance-based relations

become the actual classes while the cluster-based relations become the predicted

classes. It is reasonable, then, to denote the two intersections above by TP and

TN , which refer to the true positives and the true negatives that constitute the true
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predictions. Furthermore, a confusion matrix can be used in reporting, and in the

assessment of, clustering results, see Table 4.1. In practice, however, regardless how

Table 4.1: A hypothetical use of a confusion matrix in reporting the performance of
a clustering algorithm.

Cluster-Based (Predicted Similarity)
INTRACLUSTER INTERCLUSTER

Distance-Based SIMILAR TP FN
(Actual Similarity) DISSIMILAR FP TN

the distance-based and cluster-based relations seem intuitive for clustering, clus-

tering algorithms operate directly on the distances between the data points rather

than attempting the distance-based relations. The process of inferring the distance-

based relations directly from the distances, i.e. to identify pairs of similarity and

dissimilarity, is an ambiguous and complicated task, complicated by the choice of

the distance measure. The task of inferring the distance-based relations over the

whole set of points is the job of the clustering algorithm. The distance-based rela-

tions are inferred in terms of the cluster-based relations, by processing the distances

and grouping the data points in a specified number of clusters. The changes in

the cluster-based relations have the same rhythm as the cluster assignment of the

points, in the chamber of the clustering process. The presence of the cluster-based

relations in clustering is either implicit or explicit. In regards to k-means and fuzzy

c-means, the objective functions in the pairwise distances incorporate explicitly in-

tracluster relations; as they tie distances with intracluster membership values. More

specifically, (uir, uis) and (uir, uis)
m that appear respectively in (2.6) and (2.13) in

pages 12 and 18, compute the membership of (xr, xs) in INTRACLUSTERi, under

the product t-norm instead of the minimum t-norm, used in (4.3).

4.4 Cluster-Based Relations versus the Pairwise Distances

for Cluster Validity

The output of the clustering algorithm, a partition, states the similarity, or dis-

similarity, between a pair of points as propositions. The membership values of the
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pair in the cluster-based relations become the truth values of these propositions.

The cluster-based relations are inferred from the pairwise distances. The distances

become the operating premises in clustering, assumed to be true, to come with

conclusions about point similarities and dissimilarities. To guard against incorrect

inferences, the conclusions, the cluster based relations, must be verified against the

premises, the distances. Incorrect inferences arise simply from, for example, an

inappropriate specified number of clusters, perceived as a fallacy in the inference

procedure, or false premises due to incorrect, probably noisy, data.

The silhouette measure ties, implicitly, by at and bt, the pairwise distances

(the premises for pair similarities or dissimilarities) to the cluster-based membership

values (the conclusions about pair similarities or dissimilarities). The compactness

distance at is the average of the intracluster distances between xt and the data points.

By contrast, the separation distance bt is an average over a subset of the intercluster

distances between xt and the data points. The correctness of the inferences, and

thus the quality of the clustering results, are interpreted by how at and bt relatively

compare with each other. Since both quantities are computed with respect to a

point xt, it is a fine-grain assessment of clustering quality, as opposed to prototype-

based measures of clustering quality, for instance using the cluster centers. Turning

back to the computation of silhouettes, equation (3.20) in page 44, which computes

the average distance between xt and the points in one cluster, is inapplicable if

the partition, in consideration, is fuzzy. Only by defuzzification, (3.20) becomes

applicable; as it is necessary in the computation of the extended average silhouette

index. Note that, fuzzy c-means is a fuzzy approach to clustering since its underlying

axioms are axioms for fuzzy sets. The output of fuzzy c-means, a fuzzy partition,

represents the relations between the data points and the uncertainties about these

relations. Zadeh, the person who had invented fuzzy logic, claims [91]:

Fuzzy logic is not fuzzy. Basically, fuzzy logic is a precise logic of impre-

cision and approximate reasoning. More specifically, fuzzy logic may be

viewed as an attempt at formalization/mechanization of two remarkable

human capabilities. First, the capability to converse, reason and make

rational decisions in an environment of imprecision, uncertainty, incom-
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pleteness of information, conflicting information, partiality of truth and

partiality of possibility in short, in an environment of imperfect infor-

mation.

Therefore, defuzzification, applied to a fuzzy partition, offends fuzzy logic since it

seems as a declaration of its incapability to reason about clustering quality, in an

environment of uncertainty about the cluster assignment of the points. By environ-

ment, we mean the fuzzy partition. Projecting the construction of silhouettes to the

cluster-based relations, the intracluster and intercluster distances discussed above,

and observing that fuzzy sets and fuzzy relations are generalizations of their crisp

counterparts, a natural generalization of the silhouette measure to fuzzy partitions

seems plausible. Our framework, with the defined logical binary relations, supports

a distance-based perspective of clustering and cluster validity. Within this frame-

work, the next chapter explains how silhouettes could be computed directly from

the fuzzy membership values.



CHAPTER 5

GENERALIZED SILHOUETTES

Two notions of silhouettes emerge within our framework by considering either the

point-to-point distances or the center-to-point distances. The generlization of sil-

houette computation to fuzzy partitions first appeared in [66] on the basis of the

general INTRACLUSTER or INTERCLUSTER relations defined respectively by

(4.4) and (4.6). The generalization was then refined by [64] in the used relations

to incoporate the cluster-specific relations defined by (4.3) and (4.5). Later, a new

notion of silhouettes appeared in [63].

5.1 Generalized Point-Wise Silhouettes

The number of INTRACLUSTERi relations for a partition into c clusters is c

relations. Whereas, the number of INTERCLUSTERh,i is the number of the 2-

combinations of the c clusters i.e.
(
c
2

)
relations. Evaluating the membership func-

tions of INTRACLUSTERi and INTERCLUSTERh,i, given respectively in (4.3) and

(4.5) in page 56, on crisp membership values results in crisp relations. By contrast,

fuzzy relations result from fuzzy membership values. The computation of at and bt

is reformulated in terms of these relations, either crisp or fuzzy, as the following

at = min
i
{
∑n

j=1,j �=t uINTRACLUSTERi
(xt, xj)d(xt, xj)∑n

j=1,j �=t uINTRACLUSTERi
(xt, xj)

|
n∑

j=1,j �=t

uINTRACLUSTERi
(xt, xj) > 0}

(5.1)

bt = min
h,i

{
∑n

j=1,j �=t uINTERCLUSTERh,i
(xt, xj)d(xt, xj)∑n

j=1,j �=t uINTERCLUSTERh,i
(xt, xj)

|
n∑

j=1,j �=t

uINTERCLUSTERh,i
(xt, xj) > 0}

(5.2)

In (5.1) and (5.2), min denotes the standard numerical rather than the logical op-

erator. The inequalities in (5.1) and (5.2) discard any relation that does not relate

62
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xt to any point xj. In the virtue of the original equations (3.20), (3.21) and (3.22)

in page 44, at and bt are still selected among means of the distances associated

with xt. Since the compactness distance at is associated with intracluster distances,

its computation involves INTRACLUSTERi membership values. And by contrast,

the presence of INTERCLUSTERh,i membership values in the computation of bt is

justified. The silhouette st is still computed by (3.23) in terms of the resultant at

and bt, and so the different average silhouette measures defined by (3.25), (3.26)

and (3.27). Moreover, the new equations of (5.1) and (5.2) compute the same ex-

act at and bt from any crisp partition, as obtained by the original formulas (3.20),

(3.21) and (3.22), therefore reaching the same silhouettes. We refer to at and bt

obtained using (5.1) and (5.2), and the silhouette st computed on them, as the

generalized compactness distance, the generalized separation distance, and the gen-

eralized silhouette, respectively. They are generalized measures because they are

also computable from fuzzy membership values. The next example demonstrates a

fact on how the generalized silhouettes resemble the silhouettes computed by the

original formulas in the evaluation of crisp partitions.

A number of k-means partitions of a data set, also in Figure 3.2 in page 27, into

c = 2, . . . , 7 clusters were obtained. The partitions into c = 2 and c = 3 are shown in

Figure 5.1. Denote them respectively by P2 and P3. The silhouettes were computed

from the crisp partitions using the original formulas and the generalized formulas.

Denote the average silhouette values obtained using the original formulas by S.

Let GS and ES denote respectively the average generalized silhouette values and

the extended average silhouette values. The silhouette results are shown in Figure

5.2. Before verifying the silhouettes against the generalized silhouettes, recall the

argument about how the similarities and dissimilarities between the data points,

implied by their pairwise distances, are in favor of P3 rather than P2. The partition

P2 is shape-based or more accurately model-based, but not distance-based. A model-

based clustering suits such data sets since it attempts finding the models that govern

the underlying processes which generate the data observations. All the measures

rank P3 as a better clustering than P2. And, all the measures reached the same exact

silhouette results as shown in Figure 5.2. Trivially, the extended average values,
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Figure 5.1: The k-means partitions of a data set into (a) 2 and (b) 3 clusters.

given by ES, are the same as the average silhouette values; since both incorporate

the same silhouettes sj and the extensive weighting terms reduce to wj = 1. The

average generalized silhouette values GS, on the other hand, resemble the average

silhouette values by a logical reasoning about the relations between the data points,

considering the events of allocating the points to the clusters. A reasoning implicitly

carried by the original silhouette formulas, implemented in terms of the average

distance between xt and the data points in each cluster.

The next example, with the help of the generalized silhouettes GS, demon-

strates the fact that Xie-Beni index XB employs a rough measure of separation,

in contrast to its measure of compactness. In particular, the minimum center-to-

center distance is used for separation while center-to-point distances are used for

compactness. Any distance in our framework reflects some kind of a relationship.

The separation implied by the intercluster distances between the points in the two

clusters, is reduced by XB to one distance, being the minimum center-to-center

distance. What is about the separation between the other points allocated to the

remaining clusters? A number of fuzzy c-means partitions of the data set shown

in Figure 5.3 into c = 2, . . . , 7 were obtained using m = 3. Denote the partitions

by P2, , and P7, respectively. The partitions were evaluated by GS and XB. The

evaluation results are shown in Figure 5.4. Both measures almost agree in their

evaluation of the partitions. They disagree about two particular partitions, namely,

P5 and P6. Cluster u1 in P5 is split into two clusters in P6, namely, clusters u5

and u6. The measure of separation in XB overlooks the bad separation caused by
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Figure 5.2: The k-means partitions of the data set shown in Figure 5.1 into different
number of clusters, represented by their number of clusters k, versus the average
silhouette values S, the extended average silhouette values ES and the average gener-
alized silhouette values GS. The partitions into 2 and 3 clusters are shown in Figure
5.1.

such split. In P6, this is a bad separation because of the relatively small intercluster

distances between points in u5 and u6. The separation of P5 is measured by d(v4, v5)

which is the minimum center-to-center distance. The separation of P6 is measured

by the same distance value, but noting that u4 and u5 in P5 map respectively to u1

and u3 in P6. With respect to P6, the bad separation implied by d(v5, v6) is ignored

since d(v5, v6) > d(v1, v3). By incorporating the associated intercluster distances in

bt, each generalized silhouette st becomes aware of the separation relative to the

point xt. Thus, GS provides a robust measurement of clustering quality, evident in

its ranking of P5 relative to P6. The interested can find an experiment comparing

the silhouette measure to other measures in [65].

A powerful feature of the generalized silhouettes is their ability to convey the

clustering quality of the individual points in the context of either crisp or fuzzy

partitions. In the consequence, it becomes possible to compare between the two

approaches of clustering in regards to clustering quality, as illustrated by an example.

A number of fuzzy c-means partitions of the data set shown in Figure 5.5 into
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Figure 5.3: The fuzzy c-means partitions of a data set into (a) 3, (b) 4, (c) 5 and
(d) 6 clusters. The partitions were obtained using m = 3.

Figure 5.4: The fuzzy c-means partitions of the data set shown in Figure 5.3 into
different number of clusters, represented by their number of clusters c, versus the
average generalized silhouette values GS and Xie-Beni index XB. The partitions
were obtained using m = 3. The partitions into 3, 4, 5 and 6 clusters are shown in
Figure 5.3.



67

c = 2, . . . , 7 clusters were obtained using m = 3. The partitions were reduced

to crisp partitions by means of defuzzification. The same data set was used in

previous examples. It was sampled from five bivariate Gaussians, 200 points from

each distribution, 1000 points in total. The average generalized silhouette values of

the crisp defuzzified partitions and the fuzzy partitions are denoted respectively by

S and GS. The extended average silhouette values are denoted by ES. Note that, the

extended average values are computed from both the fuzzy partitions and defuzzified

partitions in order to compute the silhouettes and the weights. The silhouette results

are shown in Figure 5.5d. The extended average silhouette values ES are larger

than the average generalized silhouette values of the crisp partitions S, because

the silhouettes of small values assume a less important role in the computation

of ES due to the weighting terms. Now, consider the generalized silhouettes of

the crisp and fuzzy partitions given respectively by S and GS in Figure 5.5d. It

immediately follows that the defuzzified crisp membership values, and so the inferred

crisp relations, as opposed to their fuzzy counterparts, are more accountable for the

pairwise distances in representing the relations between the data points. This is a

serious observation, discussed later in the sequel.



68

Figure 5.5: The fuzzy c-means partitions of a data set into c = 2, . . . , 7 clusters,
represented by their number of clusters c, versus the extended average silhouette
values ES and the average generalized silhouette values GS, shown in (d) where
S denotes the average generalized silhouettes of the defuzzified partitions. The
partitions were obtained using m = 3. The partitions into 3, 4 and 5 clusters are
shown respectively in (a), (b) and (c).

5.2 Center-Wise Silhouettes

The generalized silhouettes require computing the membership of each pair of points

in each cluster-based relation. The computing devices are the minimum t-norm

and its dual the maximum t-conorm operators that appear in (4.3) and (4.5) in

page 56; as they find the membership of (xr, xs) in each INTRACLUSTERi and

INTERCLUSTERh,i relation. Thus, the computational complexity of the gener-

alized silhouettes can be expressed in the number of conjunction and disjunction

operations, asserted by the logical operators.

Suppose that a data set X = {xj}nj=1 is partitioned into c clusters U = {ui}ci=1. Re-

call that, there are c intracluster relations and
(
c
2

)
intercluster relations, defined with

respect to U . In (4.3) in page 56, the membership of (xr, xs) in INTRACLUSTERi
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is asserted by one conjunction. By contrast, (4.5) asserts the membership of (xr, xs)

in INTERCLUSTERh,i by a disjunction of two conjunctions. Table 5.1 summarizes

the number of the logical operations necessary for computing the membership values

for different number of pairs and different number of cluster-based relations. The

total number of conjunctions and disjunctions, required for computing the gener-

alized silhouettes over the whole set of data points, appear in the last two rows of

Table 5.1. More specifically,

T (n, c) = total number of conjunctions + total number of disjunctions

= c

(
n

2

)
+ 3

(
c

2

)(
n

2

) (5.3)

Table 5.1: The number of the logical operations to compute the membership of: (a)
one pair in one intracluster relation, (b) one pair in one intercluster relation, (c)
one pair in all intracluster relations, (d) one pair in all intercluster relations, (e) all
pairs in all intracluster relations and (f) all pairs in all intercluster relations. c and
n denote respectively the number of clusters and the number of data points. Cs
and Ds stand respectively for conjunctions and disjunctions. Ts denotes the total
number of conjunctions and disjunctions.

{u} Cs Ds Ts

a. {uINTRACLUSTERi
(xr, xs)} 1 0 1

b. {uINTERCLUSTERh,i
(xr, xs)} 2 1 3

c. {uINTRACLUSTERi
(xr, xs)}1≤i≤c c 0 c

d. {uINTERCLUSTERh,i
(xr, xs)}1≤h<i≤c 2

(
c
2

) (
c
2

)
3
(
c
2

)
e. {uINTRACLUSTERi

(xr, xs)}1≤r<s≤n, 1≤i≤c c
(
n
2

)
0 c

(
n
2

)
f. {uINTERCLUSTERh,i

(xr, xs)}1≤r<s≤n, 1≤h<i≤c 2
(
c
2

)(
n
2

) (
c
2

)(
n
2

)
3
(
c
2

)(
n
2

)

It can be seen from (5.3) that T (n, c) ∈ O(c2n2). As illustrated by Table 5.2,

the generalized silhouettes grow very large in the number of logical operations as

increasing the number of data points or the number of clusters.

Fortunately, it is possible, within our framework, to reason about clustering

quality at the same level at which k-means and fuzzy c-means operate i.e. the level

of the center-to-point distances. Switching to the coarse-grain of the center-to-point

distances, as opposed to point-to-point distances, results in a significant gain in
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Table 5.2: The number of logical operations, as computed by (5.3), for computing
the general silhouettes for selected values of n and c.

c n T (n, c)
3 100 59400
5 100 173250
10 100 717750
3 1000 5994000
5 1000 17482500
10 1000 72427500

computational complexity, as will be shown soon. The cluster centers V = {vi}ci=1

are supposed to be the cluster representatives; therefore, they become core points

of the associated fuzzy sets, or clusters, i.e.

ui(vt) =

⎧⎪⎨
⎪⎩
1, i = t

0, otherwise
(5.4)

Now, by treating each cluster center vt as if it was an individual data point, (4.3)

and (4.5) can compute the membership of (vt, xj) in the intracluster and interclus-

ter relations. In the virtue of (5.4), (4.3) evaluates the membership of (vt, xj) in

INTRACLUSTERt to

uINTRACLUSTERt
(vt, xj) = min (ut(vt), ut(xj))

= min (1, utj)

= utj

(5.5)

and in the remaining intracluster relations INTRACLUSTERi, where i �= t, to

uINTRACLUSTERi
(vt, xj) = min (ui(vt), ui(xj))

= min (0, uij)

= 0

(5.6)

In words, vt is in intracluster relation with the data points only with respect to its
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associated cluster ut. Moreover, the membership of (vt, xj) in INTRACLUSTERt is

the membership of xj in ut i.e. utj. By the inequality in (5.1) and substituting utj

for uINTRACLUSTERt
(vt, xj) in (5.1), at = a(vt) is computed to

at =

∑n
j=1,j �=t utjd(vt, xj)∑n

j=1,j �=t utj

(5.7)

The inequality in (5.1) discards the intracluster relations in which vt has no partici-

pation. Now, we turn into the intercluster relations. The fact that vt is a core point

of ut causes (4.5) to evaluate the membership of (vt, xj) in INTERCLUSTERt,i to

uINETRCLUSTERt,i
(vt, xj) = max (min (ut(vt), ui(xj)) ,min (ui(vt), ut(xj)))

= max (min (1, uij) ,min (0, utj))

= max (uij, 0)

= uij

(5.8)

and in the remaining intercluster relations INTERCLUSTERh,i, where h, i �= t, to

uINETRCLUSTERh,i
(vt, xj) = max (min (uh(vt), ui(xj)) ,min (ui(vt), uh(xj)))

= max (min (0, uij) ,min (0, uhj))

= max (0, 0)

= 0

(5.9)

Among the
(
c
2

)
possible intercluster relations, (vt, xj) has a membership only in

(c − 1) relations in the set {INTERCLUSTERh,i | ∀i, i �= t}. Moreover, the mem-

bership of (vt, xj) in INTERCLUSTERt,i is the membership of xj in ui i.e. uij. By

the inequality in (5.2) and substituting uij for uINTERCLUSTERt,i
(vt, xj) in the same

equation, bt = b(vt) is computed to

bt = min
i �=t

{∑n
j=1,j �=t uijd(vt, xj)∑n

j=1,j �=t uij

}
(5.10)

We refer to at and bt, computed by (5.7) and (5.10) , as the center-wise compactness

distance and the center-wise separation distance; since they are computed in terms
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of the center-to-point distances relative to the cluster center vt. The center-wise

silhouette st = s(vt) is computed by the same silhouette equation (3.23). The

overall clustering quality can be measured by the average center-wise silhouette

value, taken over the centers.

No doubt, the center-wise compactness and separation distances are rough

measures of compactness and separation, as opposed to their point-wise counter-

parts. The assessment of compactness and separation with respect to each individual

point is reduced to the set of cluster centers. Despite the fact that the center-wise

silhouettes carry a cost in accuracy, they pay off in computation time, in two ways.

First, the number of pairs, so the number of distances of interest, is reduced from(
n
2

)
, which gives the number of point-to-point distances, to (n c), which gives the

number of center-to-point distances. Second, and according to (5.5), (5.6), (5.8) and

(5.9), the number of the logical operations necessary to compute the memberships

in the cluster-based relations are brought down to zero; as the equations assume

their values directly from the membership matrix.

To illustrate the straightforward computation of the center-wise silhouettes, as

opposed to the point-wise silhouettes, consider the fuzzy c-means partition of a data

set of 7 points into c=3 clusters, shown in Figure 5.6. The partition was obtained

using m = 3. The membership matrix and the membership of the cluster centers

in the three clusters, being core points, are given in Table 5.3. Suppose that we

are interested in computing the center-wise silhouette s2 = s(v2). The distances

Table 5.3: The membership matrix of the fuzzy c-means partition in Figure 5.6. The
membership values are rounded to two decimal places in a manner that preserves
the constraint (2.10b) in page 17. The membership of the cluster centers also appear
in the table, being core points of their associated clusters.

U x1 x2 x3 x4 x5 x6 x7 v1 v2 v3
u1 0.05 0.07 0.09 0.11 0.2 0.87 0.87 1 0 0
u2 0.06 0.09 0.11 0.84 0.73 0.1 0.1 0 1 0
u3 0.8 0.84 0.8 0.05 0.07 0.03 0.03 0 0 1

between v2 and the data points are given in Table 5.4. The membership of each

pair of (v2, xj) in INTRACLUSTER2 is the membership of xj in u2. Moreover, the
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Figure 5.6: The fuzzy c-means partition of a data set into c=3 cluster, obtained
using m = 3. Cluster centers are shown in black asterisks.

membership of each pair of (v2, xj) in INTERCLUSTER2,1 is the membership of

xj in u1. And, the membership of each pair of (v2, xj) in INTERCLUSTER2,3 is

the membership of xj in u3. Table 5.5 gives the memberships of the pairs (v2, xj),

over each data point xj, in the cluster-based relations, being directly obtained from

U. The same pairs have no membership in the remaining cluster-based relations;

thus, the relations are discarded from the computation of a2 = a(v2) and b2 = b(v2).

Equation (5.7) computes a2 = a(v2) as a weighted mean of the distances in Table 5.4

using the membership values of cluster u2 as weights in place of INTRACLUSTER2

membership values. Similarly, (5.10) computes b2 = b(v2) as the minimum of the two

weighted means obtained using u1 and u3 memberships values as weights in place

of INTERCLUSTER2,1 and INTERCLUSTER2,3 membership values, respectively.

Based on the values given in the tables, a2 = 3.3015, b2 = 6.3179 and s2 = 0.4774.

Another example puts the average center-wise silhouette index to test against the

average generalized point-wise silhouette index, and other measures.

Consider the data set shown in Figure 5.7. A number of fuzzy c-means par-

titions of the data set into c = 2, . . . , 9 clusters were obtained using m = 3. The

partitions were reduced to crisp partitions by means of defuzzification. Denote the

fuzzy partitions by P2, P3, . . ., and P9, respectively. P2, P3, . . ., P7 are shown
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Table 5.4: The center-to-point distances between v2 and the data points.

x1 x2 x3 x4 x5 x6 x7

d(v2, xj) 14.54 15.94 12.78 0.9 1.34 6.32 6.23

Table 5.5: The cluster-based membership values relevant to the center-wise silhou-
ette s2 = s(v2). The values were directly fetched from the membership matrix U
given in Table 5.3.

x1 x2 x3 x4 x5 x6 x7

uINTRACLUSTER2(v2, xj) 0.06 0.09 0.11 0.84 0.73 0.1 0.1
uINTERCLUSTER2,1(v2, xj) 0.05 0.07 0.09 0.11 0.2 0.87 0.87
uINTERCLUSTER2,3(v2, xj) 0.8 0.84 0.8 0.05 0.07 0.03 0.03

in Figure 5.7. In Figure 5.8, the average generalized point-wise silhouette values of

the fuzzy partitions are denoted by GS. The average generalized point-wise silhou-

ette values of the defuzzified partitions are denoted by S. The average center-wise

silhouette values are denoted by VS. The values of Xie-Beni index are denoted by

XB. The partitions are ranked according to each evaluation in Table 5.6. As seen in

the table, the average center-wise silhouette index, with a less accurate evaluation,

almost agrees in its ranking with the average generalized point-wise silhouette index.

But, its ranking resembles the one obtained by the Xie-Beni index. The accuracy of

each measure is claimed on the basis of the incorporated distances, becoming rough

measures as we move from point-to-point distances, to center-to-point distances and

finally to center-to-center distances. If one can bear with their rough, still reliable,

evaluation, center-wise silhouettes are computed on larger data sets in no time, as

opposed to the point-wise silhouettes. Besides being a simple benchmark for the

center-wise silhouettes, this example also provides a good context for comparing the

clustering results of the fuzzy partitions and their defuzzified partitions. Toward this

end, consider the average silhouette values of the crisp and fuzzy partitions given

respectively by S and GS in Figure 5.8a. Again, it seems that the defuzzified crisp

partitions are accountable for the pairwise distances in representing the pairwise

similarities and dissimilarities, to a greater extent than the fuzzy partitions. More-



75

over, the generalized silhouettes suggest that the defuzzification of P6 is the best

partition among all others, crisp or fuzzy. But, P6 is not the best partition among

the fuzzy partitions; it is P2. The clustering given by P2, and its defuzzification,

shown in Figure 5.7a, seems satisfactory, considering the good separation between

the two constituting clusters. On the other hand, P6, shown in Figure 5.7e, is un-

doubtedly better in compactness but not in separation, especially considering the

separation between u4 and u5. P2 has a better separation than the defuzzification

of P6. It is interesting to observe that the crisp membership values are in favor of

the clustering with less separation, therefore, more overlapping, more than the fuzzy

membership values. This raises doubts if the fuzzy membership values are better

in representing the data relations in the context of overlapping clusters i.e. under

uncertainty, than the crisp membership values. Keep in mind that the clustering

results in this example were generated by the fuzzy c-means algorithm.

Table 5.6: The fuzzy c-means partitions of the data set in Figure 5.7 into c =
2, . . . , 9 clusters sorted according to their ranking by a number of measures, namely,
the average generalized point-wise silhouette values GS, the average center-wise
silhouette values VS and Xie-Beni index XB. S is the ranking of the defuzzified
partitions by the average generalized point-wise silhouette values. Pc denotes the
partition into c clusters.

S P6 P5 P2 P7 P9 P8 P3 P4
GS P2 P6 P5 P3 P7 P4 P8 P9
VS P2 P6 P3 P5 P4 P7 P8 P9
XB P2 P6 P3 P5 P4 P7 P8 P9
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Figure 5.7: The fuzzy c-means partitions of a data set into (a) 2, (b) 3, (c) 4, (d)
5, (e) 6 and (f) 7 clusters. The partitions were obtained using m = 3. Note that,
these plots were generated on the fuzzy partitions by means of defuzzification.
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Figure 5.8: The fuzzy c-means partitions of the data set in Figure 5.7 into c =
2, . . . , 9 clusters, represented by their number of clusters c, versus (a) the average
generalized silhouette values GS, the average center-wise silhouette values VS and
(b) Xie-Beni index XB. S denotes the average generalized silhouette values of the
defuzzified partitions. The partitions into 2, 4, 6 and 7 clusters are shown in Figure
5.7. The partitions were obtained using m = 3.



CHAPTER 6

THE NON-CONVEX FUZZY SETS BY FUZZY c-MEANS

It seems, by comparing the average silhouette values of each fuzzy partition and its

defuzzification in Figure 5.5d and Figure 5.8a, that defuzzification incurs a relative

improvement in clustering quality. One might ask if this is the case for any fuzzy

partition, generated by fuzzy c-means. We have attempted, by fixing the number

of clusters and varying the value of the fuzzifier i.e. the parameter m, to generate

a fuzzy partition that might have larger silhouettes than its defuzzification. A

number of fuzzy c-means partitions of the data set in Figure 6.1 into c = 3 clusters

were obtained using m = 1.1, 1.5, 1.75, 2, 3, 5, 10 and 13. The average generalized

silhouette values of the fuzzy and defuzzified partitions, denoted respectively by GS

and S, are shown in Figure 6.2. The fuzzy partitions, all of them, reduce to the

same defuzzified partition, therefore the average silhouette value S does not change

over all of the defuzzified partitions. Recall that as m increases, becoming too

large, the cluster centers converge to the grand mean of the whole data set, causing

the membership values to approach 1
c
. This limiting property of fuzzy c-means is

apparent in Figure 6.1; the cluster centers of the fuzzier partition in Figure 6.1b

are within smaller proximity, in contrast to the partition in Figure 6.1a. Before

discussing the evaluation results any further, in chapter two we pointed out that

m = 3 should be the best choice for the fuzzifier, noting the following:

i. When m < 3, the algorithm becomes more concerned with the cluster whose

center is closest to the point, to the extent of unequivocally assigning the point

to this cluster. Therefore, there is a partial loss in the information conveyed by

the distances.

ii. The worse could happen when m > 3; since the algorithm becomes less and

less concerned, hence fuzzier, about all the distances between the point and the

cluster centers, to the extent of equivocally assigning the point to all clusters.

It is a complete loss in the information conveyed by the distances.

78
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iii. We have anticipated that the relations between the data points should be best

represented by the membership values, in accordance with their distances, if

obtained using m = 3. Other values of the fuzzifier should result in degradation

in clustering quality.

Projecting the silhouette results in Figure 6.2 onto the observations above:

I. As expected, the degradation in clustering quality for being fuzzier, m > 3,

is evident in the decreasing average silhouette values, given by GS, as m in-

creases. Moreover, it seems that the overhead in fuzziness introduced into the

membership values by selecting m > 3 is worse than the loss in the represen-

tation of the relations between the data points due to defuzzification. This is

evident from comparing S and GS for m > 3 .

II. For m < 3, the average silhouette value increases as m decreases. This seems

counterintuitive since it suggests that as crispier the membership values become

as better the clustering is. However, there is a partial loss in the information

about the data relations conveyed by the distances, especially for those points

in overlapping areas.

III. For m = 3, the silhouette results of the fuzzy partition and its defuzzification

also seem counterintuitive. In accordance with the associated distances, the

crisp partition is doing a better job in representing the relations between the

data points. Despite the fact that it does not account for all of the relations

between the data points.

The unreasonable silhouette results for m3 encouraged us to investigate the

fuzzy sets generated by fuzzy c-means, in order to find if they are proper for the

overall clustering task. According to Dubois [26], there are three basic information-

driven tasks addressed by means of fuzzy sets, namely, classification and data anal-

ysis, decision-making problems, and approximate reasoning. In such application-

oriented tasks, the characterizing membership functions are no longer abstract set-

theoretic notions rather they are related to some measurements of distance, fre-

quency and cost. Accordingly, these tasks exploit three semantics of the mem-

bership values. The semantic relevant to clustering is the ‘degree of similarity’
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Figure 6.1: The fuzzy c-means partitions of a data set into 3 clusters using (a)m = 3
and (b) m = 13. The cluster centers are shown in black asterisks.

Figure 6.2: The fuzzy c-means partitions of the data set in Figure 6.1 into c = 3
clusters, obtained using m = 1.1, 1.5, 1.75, 2, 3, 5, 10 and 13, each represented by the
used m value, versus the average generalized silhouette index GS. S denotes the
average generalized silhouette values computed on the defuzzified partitions.

where each membership value ui(xt) is interpreted as the degree of proximity of xt

to the prototype element of the fuzzy set ui i.e. the associated cluster center vi.

This, prototype-based and distance-based, interpretation suits k-means and fuzzy

c-means; since they are prototype-based clustering algorithms, with the objective

of minimizing the distances between the cluster prototypes and the member points.
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Any convex fuzzy set9, with a membership function whose peak is at the center of

the fuzzy set, should convey such semantic. In practice, triangular, trapezoidal and

Gaussian membership functions typically characterize convex fuzzy sets. By means

of a simple example, it can be shown that fuzzy c-means generates non-convex fuzzy

sets that oppose the distance-based interpretation of the membership values as de-

grees of similarity. In order to visualize the membership functions that characterize

the fuzzy clusters generated by fuzzy c-means, the one-dimensional data set in Figure

6.3 was partitioned into c = 4 clusters using m = 3. The membership values of the

fuzzy partition and its defuzzification are plotted against the data points in Figure

6.4. Furthermore, the membership values that correspond to each fuzzy cluster are

plotted separately in Figure 6.5. From the figures, it seems that fuzzy c-means has

almost constructed triangular membership functions. With respect to each cluster,

points farther away from the cluster center are assigned higher membership values

than some of the closer points. In particular, such abnormal membership values are

assigned to those farther points that lie beyond the centers of the neighbor clus-

ters. Thus, farther points are claimed by the membership values to be more similar

to the cluster members than the closer points. Clearly, such interpretation of the

membership values as degrees of similarity is not distance-based. The large distances

between these farther points and other points in the cluster, become intracluster dis-

tances with relatively high grades of membership. This definitely affects the overall

compactness of the fuzzy partition. As part of the silhouette measure, the relatively

bad compactness is measured by the large compactness distances computed from the

large intracluster distances. Defuzzification reconstructs the membership functions

in a manner that eliminates those large distances from the set of the intracluster

distances. Accordingly, there is an improvement in the overall compactness, mea-

sured by the smaller compactness distances. The increasing behavior of the average

silhouette value as m decreases from 3 in Figure 6.2, is justified by the fact that the

fuzzy c-means partitions are becoming crispier.

The problem of interpreting the fuzzy membership values as degrees of simi-

larity is better explained in the context of some linguistic variable, for example the

9A fuzzy set A is said to be convex, see [88], if its membership function uA satisfies the inequality
uA(τx1 + (1− τ)x2) ≥ min (uA(x1), uA(x2)) for every pair of points (x1, x2) where τ ∈ [0, 1].
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Figure 6.3: A data set of 180 points that was sampled from 4 univariate Gaussians.

Figure 6.4: The membership values of (a) the fuzzy partition of the data set in
Figure 6.3 into 3 clusters and (b) its defuzzification. The centers of the fuzzy and
crisp clusters are shown in red asterisks.

variable Age. Recall how relatively small and relatively large become linguistic val-

ues of the linguistic variable Distance, each represented by a fuzzy set in the fuzzy

linguistic model. Assume that the data points in Figure 6.5a, probably multiplied

by 10, correspond to measurements of the numerical variable age, given in years.

Suppose u1 represents the linguistic value old, then according to the membership

values, a person who is 60 years old, is claimed to be older than another person who

is 80 years old. The problematic interpretation of the non-convex fuzzy clusters was

also reported by Liao et al. in [49] and Goktepe et al. [33]. In the former study, fuzzy
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Figure 6.5: The same membership values in Figure 6.4a separated into 4 plots, one
per fuzzy cluster.

c-means was used for generating fuzzy term sets on three-feature data that was ex-

tracted from radiographic data. A fuzzy term, here, is no different from a linguistic

value. Fuzzy c-means was applied to each feature separately, therefore generating

a term set for each feature. After pointing out the problem with interpreting the

membership values, they proposed a variant of fuzzy c-means. However, it is appli-

cable only to one-dimensional data sets for two reasons. First, it keeps adjusting the

centers of the two extreme terms to the minimum and maximum values. Second,

and upon convergence, the algorithm simply redistributes the non-convex member-

ship values, among the surrounding terms; thus it requires finding the left and right

term centers relative to the data point. In the latter study, by Goktepe et al., they

observed the abnormal, or using their exact words (unusual, non-convex and sub-

normal), behavior of the membership functions generated by fuzzy c-means in the
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application of clustering soil samples. Rather than attributing the problem to fuzzy

c-means, they explained the strange results by the uncertainty in soil parameters

and the presence of extreme data points.

Toward the end of generating a fuzzy partition that might have larger sil-

houettes than its defuzzification, we devised a näıve clustering algorithm to cluster

the data set in Figure 6.3, rather than using the variant of fuzzy c-means men-

tioned above. The näıve algorithm is given in Algorithm 6.1. The algorithm, first,

generates the cluster centers using k-means. Each fuzzy membership value uij is

computed by a univariate Gaussian function of the distance between the cluster

center vi and the data point xj. The Gaussian function uses a zero mean, and for

its variance parameter it uses a distance of some specified percentile rank, being

computed on the center-to-point distances relevant to the cluster center. Two

Algorithm 6.1: näıve fuzzy clustering

Parameters: c (number of clusters)
α (a percentage which specifies a percentile distance value)

Input : X (set of n p-dimensional vectors)
Output : U (the membership matrix a partition of c clusters)

V (the associated set of cluster centers)
1 V ← Vc // Vc: c cluster centers as returned by k-means

2

3 for i ← 1 to c do
4 for j ← 1 to n do

5 compute dij = d(vi, xj))

6 σ2
i ← the distance at the αth percentile among {dij}nj=1;

7 for j ← 1 to n do

8 for i ← 1 to c do

9 uij ← e

−(d2ij)

σ2
i

10 return U, V

fuzzy partitions of the data set in Figure 6.3 into three clusters were obtained by

fuzzy c-means and the nave algorithm, using respectively m = 3 and = 25. Let

PN1 and PN2 denote respectively the fuzzy partition, by the näıve algorithm, and

its defuzzification, shown in Figure 6.6. Let PF1 and PF2 denote respectively the

fuzzy c-means partition and its defuzzification, shown in Figure 6.7. The average
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Figure 6.6: The membership values of (a) the fuzzy partition of the data set in
Figure 6.3 into 3 clusters obtained by the näıve algorithm, Algorithm 6.1, using
α = 25, and (b) its defuzzification. The centers of the fuzzy and crisp clusters are
shown in red asterisks.

Figure 6.7: The membership values of (a) the fuzzy partition of the data set in Figure
6.3 into 3 clusters obtained by fuzzy c-means usingm = 3, and (b) its defuzzification.
The centers of the fuzzy and crisp clusters are shown in red asterisks.

silhouette values of PN1, PN2, PF1 and PF2 are respectively 0.677, 0.633, 0.456 and

0.633. Hereby, the fuzzy membership values generated by the näıve algorithm are

better in representing the similarities and dissimilarities between the data points,

in accordance with the associated pairwise distances, than their defuzzified counter-

parts. In contrast, defuzzifying the partition obtained by fuzzy c-means results in a

better overall clustering quality.
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Figure 6.8: The fuzzy c-means partitions of a data set into (a) 4 and (b) 5 clusters,
obtained using m = 3. Another two fuzzy partitions into (c) 4, and (d) 5 clusters
by the näıve clustering algorithm, Algorithm 6.1, obtained using α = 25.

To confirm further that the fuzzy partitions, generated by the näıve clustering

algorithm, could be better than their defuzzified partitions, a number of partitions

of the two-dimensional data set in Figure 6.8 were obtained by the näıve algorithm

and fuzzy c-means, using respectively α = 25 and m = 3. Let PN and Pn denote

respectively the partitions by the näıve algorithm and the associated defuzzified

partitions. Similarly, let PF and Pf denote respectively the fuzzy c-means partitions

and the associated defuzzified partitions. From the silhouette results in Figure 6.9a,

defuzzifying the partitions generated by fuzzy c-means still improves the clustering

results. Conversely, and for this particular data set, defuzzification results in no

improvement in the clustering results by the näıve algorithm, rather degradation is

observed; see Figure 6.9b.

Fuzzy c-means is mathematically a sound algorithm and this chapter is by no

means demoting its use in clustering. However, it is worthwhile noting that the

non-convex fuzzy clusters generated by the algorithm are less convenient for the
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Figure 6.9: The fuzzy c-means partitions obtained using m = 3, denoted by PF,
of the data set in Figure 6.8 obtained using m = 3, and the associated defuzzified
partitions, denoted by Pf, versus (a) the average generalized silhouette value GS.
The fuzzy partitions obtained by the näıve algorithm, Algorithm 6.1, using α = 25,
denoted by PN, of the same data set, and the associated defuzzified partitions,
denoted by Pn, versus (b) the average generalized silhouette values GS.

overall clustering task than their defuzzified counterparts. This was illustrated in

a number of examples throughout this thesis, by comparing the average silhouette

values of the fuzzy and defuzzified partitions. This suggests the use of k-means; as

it generates the same crisp partitions as the defuzzified fuzzy c-means partitions.

The generation of the non-convex fuzzy clusters is due to the strive for completeness

in the membership values. Completeness is in the sense of each data point having a

total membership of unity in the fuzzy partition, as imposed by 2.10b. Fortunately,

it is possible to generate fuzzy partitions where defuzzification becomes unnecessary

for improving the clustering results; therefore, the partitions might be better than

the k-means partitions into the same number of clusters. This was demonstrated by

the näıve clustering algorithm. The success of the algorithm is due to the fact that

it does not require the total membership of each individual point to be unity, and

it employs a membership function that characterizes convex fuzzy sets. However, it

is still an ad hoc algorithm and sometimes defuzzification improves its results.



CHAPTER 7

THE SILHOUETTE MEASURE IN FEATURE

SELECTION FOR CLASSIFICATION

Classification, although treated in a supervised setting rather than unsupervised,

share something in common with clustering; as they deal with data points that be-

long to groups. A group of data points is known as a class in classification, whereas

the group is called a cluster in clustering. In classification, the points which consti-

tute a training data set are associated with class labels. The task becomes learning

a classifier on the training data, or more specifically, on the feature representation

and the labels of the data points. The success of the classification task is deter-

mined by the extent to which the classifier generalizes to stray data points whose

class is unknown; as it predicts the class. If it generalizes well then the classifier

becomes trustworthy in predicting the class of any given data point, whether the

point was seen or unseen during the training of the classifier. Since the classifier,

in some way or another with more or less success, models the distinctive aspects

of the classes, classification is an abstraction operation in the same sense that was

pointed out earlier by Bellman, Kalaba, and Zadeh. In particular, support vector

machines (SVM) classification is a large-margin method concerned with hyperplanes

that separate the classes, consider [8] for a tutorial on SVMs. Such class separation

is inherent in the structure of the training data set. A structure is in the sense of

the relations between the data points, embodied in a feature space, therefore, no

different in principle from the graph structure mentioned earlier in the context of

clustering. If the classes are not well separated by the feature representation of the

data points, the case of the structure being irrelevant to the classes, then a kernel

can reestablishes the relations in a manner that complies with the class labels.

Related to the above discussion are the concepts of the target classifier and

the generalization error of the learned classifiers [56]. The target classifier perfectly

predicts the class of any data point. The generalization error is defined in terms

of the approximation and estimation errors. The approximation error is attributed

88
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to the model complexity of the classifier i.e. the model’s learning capacity. This

capacity is limited by the finite number of model parameters. The model, by the

different combinations of parameter values, defines a family of concrete classifiers.

The approximation error is the prediction error made by the concrete classifier that

best approximates the target classifier. In contrast, the difference in predictions

between this best approximating classifier and any learned classifier becomes the

estimation error. This error is attributed to sample complexity i.e. to the size of

the training data set necessary to ensure small estimation error. Thus, what can be

learned is limited by the model, by its finite number of parameters. And, estimating

the parameter values that correspond to the best learnable classifier is limited by the

data, by its finite size. As more complex the model is, as better the chance of learning

the perfect target classifier. But, as more complex it gets as more data is needed

to estimate the best combination of parameter values. The increase in data size

incurs considerable training time. The trade-off between the model complexity and

sample complexity is similar in sense to the dilemmatic bias-variance trade-off [32].

A model of low complexity may misrepresent the distinctive aspects of the classes

where the classification results biased toward the model aspects. On the other hand,

if there are no enough data to estimate the model parameters, over-fitting occurs

where the prediction error has a high variance.

How does this relate to SVM? Simply by noting that the equation of the sep-

arating hyperplane grows in parameters as the data set grows in features. For a

finite training data set, the kernel trick [96] has the potential of reducing the ap-

proximation error. The kernel implicitly, and nonlinearly, maps the data into a

higher dimensional feature space i.e. an increase in the number of parameters, per-

ceived as an increase in model complexity. Alternatively, feature selection has the

potential of reducing the estimation error by selecting relevant features from among

all possible features; which results in a lower dimensional feature space (subspace).

Consider [46] for a discussion of two methods of feature selection, namely filters and

wrappers, and a number of selection criteria. The relevance among the features and

classes is established upon correlation, information, consistency, or distance mea-

sures [22]. But since SVM classification exploits the separation between the classes,
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it seems reasonable to use the silhouette measure, as a measure of compactness

and separation, in selecting the features. To test such potential of the silhouette

measure, we used the data from the KDD Cup 2008 challenge.

7.1 Data Set

KDD Cup 2008 is a challenge that focused on the early detection of breast cancer

from X-ray images of the breast. A detailed description of the challenge data set is

found in [62]. The data consists of various region of interest (ROI) identified in each

of the left and right breast medical images, each candidate ROI being described

by 117 features. No information was publicly disclosed about the nature of the

features and what they identify. A separate file provides the class labels which

identify each candidate ROI image as malignant or benign. ROIs associated with

normal individuals were presumed to be benign. In addition to the class labels, the

file also has Patient ID, ROI coordinates, and other features. However, the winning

team found that Patient ID is a predictive feature which leaks information about the

target classes [61]. Patient ID is clearly unrealistic feature for diagnostic prediction.

Except for the labels, none of the additional features given in the file were used in

our experiment. In total, there are 12787 candidate ROIs used in the experiment,

78 of which are malignant. The data set was sampled from 102,294 candidate ROIs

from the whole KDD Cup 2008 data set in a manner that preserved the class ratio.

7.2 Error Measures

The performance of the trained classifier, whether SVM-based or not, is assessed by

the error rate of its prediction. With respect to error measurement, it is important

to choose error measures that are class-wise, in the sense of measuring the overall

performance with respect to the target classes rather than the whole dataset in an

indistinctive manner. This is a particularly important issue in the case of imbalanced

data set [76–78]. By way of example, in a binary classification problem based on

a set in which 95% of the points in one class, a classification rule assigning each

data point to the major class commits a small 5% error rate, in spite of completely

missing the minor class. Two measures for assessing a classifier performance can
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be extracted from the confusion matrix associated to it, and shown in Table 7.1.

The true positive rate (TP), and false positive rate (FP), or (1 − specificity), can

be computed for each class, reducing an m-class problem, if necessary, to m binary

classification problems, denoting one particular class as the positive class and the

remaining (m− 1) classes collectively as the negative class. TP and FP are defined

in terms of the entries in the confusion matrix as shown in equations (7.1) and (7.2).

The classifier performance is assessed by computing the average TP and FP over all

classes.

Table 7.1: The confusion matrix. The positive and negative classes are confused for
each other in predicting the class of (b+ c) points.

Predicted Class
positive negative

True Class
positive a b
negative c d

TP =
a

a+ b
(7.1)

FP =
c

c+ d
(7.2)

7.3 Cross Validation

Rather than being concerned with a particular concrete classifier as we compute

TP and FP, cross validation goes beyond the classifier to validate the underlying

model, to find if it produces classifiers that generalize to an independent data set.

In other words, it finds if the parameters can be estimated reliably from available

data which results in over-fitting free classification. It is a bias-variance estimator

that repeats training and testing classifiers on data. In each repetition, the training

sample is different from the test sample. The average performance of the classifiers

over the repetitions estimates the bias and variance of the model (approximation and

estimation errors). In stratified k-fold cross validation, the data set is partitioned

into k folds with each fold having the same class ratio as the whole data set. In our

experiment, we use 7-fold cross validation.
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7.4 Center-Wise Silhouette-Based Feature Selection

The center-wise silhouette-based filter is the best-first search algorithm whose pseudo-

code is given in Algorithm 7.1. The search process starts with the full set of features

and maintains a list of alternative subsets (search branches) for later consideration,

denoted by OPEN. Feature subsets with maximum average center-wise silhouette

values are picked up for expansion from OPEN. By means of backward elimination,

new alternative feature subsets are generated from the picked subset, and added to

OPEN. The algorithm updates its records of the best feature subset, denoted by

BEST, in the process. The parameter ε controls the update of BEST; as it skips

those subsets that result in an insignificant increase in the average silhouette value.

The list OPEN may be implemented as a priority queue where feature subsets are

ordered according to the average center-wise silhouette value. The search is termi-

nated once the list of alternative subsets OPEN is empty or no update has occurred

in the last M iterations. Point-wise silhouettes are more accurate in evaluating

the feature subsets but the center-wise silhouettes definitely facilitate much faster

search.
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Algorithm 7.1: silhouette-based filter for feature selection

Parameters: M (maximum number of iterations with no change on
BEST)
ε (minimum improvement required to update BEST)

Input : X (set of n p-dimensional vectors)
U (the indicator matrix of the partition of X into malignant

and benign)
f(X,U, w) (returns the average center-wise silhouette value

over the features in w)
Output : BEST (the features found to result in the largest value of f)

1 BEST ← the whole set of features
2 OPEN ← {BEST}
3 CLOSED ← {}
4 m ← 0
5 while m < M and OPEN �= {} do

6 q ← argmaxw∈OPEN f(X,U, w)
7 OPEN ← OPEN \ {q}
8 if f(X,U, q)− ε > f(X,U,BEST ) then
9 BEST ← q

10 m ← 0

11 else

12 m ← m+ 1

13 generate each possible subset q̈ from q by eliminating a single feature
14 for each child subset q̈ do

15 if q̈ �∈ OPEN and q̈ �∈ CLOSED then

16 OPEN ← OPEN ∪ {q̈}
17 CLOSED ← CLOSED ∪ {q}
18 return BEST

7.5 Results

The data set of 12787 candidate ROIs was partitioned into k = 7 folds. Thus, there

were 7 iterations as part of 7-fold cross validation. At each iteration:

• One fold was used for:

i. Feature selection.

ii. Training two SVM classifiers: one considering the whole set of features

and another using the features selected by the filter in Algorithm 7.1.
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• The remaining 6 folds were used for testing both classifiers.

During the whole cross validation process, each fold was used exactly once as a

training fold. The SVM library under Matlab Statistics toolbox was used for training

the linear SVM classifiers and using them in predictions. The cross validation results

are given in Table 7.2. Each row in the table gives the detailed results specific to

one of the cross validation iterations; as follows:

• The feature subset that was selected by Algorithm 7.1; for example, the subset

{1, 12} in the first row selected in the first iteration. Note that {1, . . . , 117} is

the whole set of features.

• The TP and FP rates of the classifier trained on the whole set of features over

the training and test samples.

• The TP and FP rates of the classifier trained on the selected features over the

training and test samples.

• The number of malignant and benign points in the training and test samples.

The last row summarizes the results by taking the average of the entries in the table

over the different iteration stages, accumulated from the previous rows. But rather

than showing a feature subset, it shows the average number of selected features.

According to the results in the last row of Table 7.2, the classifiers that were

trained on the whole set of features suffer from the problem of over-fitting the

training samples i.e. high variance. Obviously the number of malignant points is

too small, 11.14 points on average, in the training samples compared to the number

of features, the 117 features. With respect to the training samples, the average TP

and FP over the two classes (averages of averages) are respectively

T̄Pall,train =
1 + 1

2
= 1

F̄Pall,train =
0 + 0

2
= 0
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Whereas, with respect to the test samples, they are

T̄Pall,test =
0.26 + 0.99

2
= 0.63

F̄Pall,test =
0.01 + 0.74

2
= 0.38

Take the difference between both rates, as an overall measure, over the training and

test samples as follows

Dall,train = T̄Pall,train − F̄Pall,train

= 1− 0

= 1

Dall,test = T̄Pall,test − F̄Pall,test

= 0.63− 0.38

= 0.25

Over-fitting the training samples is clear from comparing Dall,train and Dall,test. The

change in the overall measure is 0.75, hence classifiers that were trained on the whole

set of features did not generalize well to the test samples. Now consider the results

of those classifiers that were trained on the selected feature subsets. Using again

the last row in Table 7.2, compute

T̄P feat,train =
0.86 + 0.82

2
= 0.84

F̄P feat,train =
0.18 + 0.14

2
= 0.16

T̄P feat,test =
0.65 + 0.82

2
= 0.74

F̄P feat,test =
0.18 + 0.35

2
= 0.27
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Taking the difference between TP and FP with respect to the training and test

samples gives

Dfeat,train = T̄P feat,train − F̄P feat,train

= 0.84− 0.16

= 0.68

Dfeat,test = T̄P feat,test − F̄P feat,test

= 0.74− 0.27

= 0.47

The change in the overall measure is only 0.21. Thus it shows that the classifiers

trained on the selected features were more stable in their predictions than the ones

obtained on the whole set of features. Moreover, the use of the selected features

has boosted the prediction rate of malignant cases from 0.26 to 0.65, a critical

improvement to the detection of cancer in early stages. Reducing the number of

features has reduced SVMmodel complexity, which resulted in a better estimation of

the distinctive aspects of the classes, especially in regards to the minority malignant

class. The experiment is an evident of the potential of the silhouette measure in

improving the classification results for highly imbalanced data, by reducing the effect

of over-fitting the training data.
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CHAPTER 8

CONCLUDING REMARKS AND FUTURE WORK

Clustering is ubiquitous in applications because it is efficient in dealing with data

complexity. To be more specific, clustering is supposed to reduce the similarity re-

lations between the data points in the form of clusters, as intuitively stated by the

common definition of clustering. In other words, clustering translates the distance-

based similarity relations into the readily comprehended cluster-based similarity

relations. For example, two documents in the same cluster, similar in this sense,

are also similar in the sense of being specific to the same topic. Dissimilarity may

be interpreted by an example in a similar fashion. In regards to similarity, the ani-

mal classification of Celestial Emporium of Benevolent Knowledge seems a ‘bizarre’

classification because each constituting class (cluster) entails its own, probably ab-

normal, notion of similarity. Similarly, a ‘non-bizarre’ partition into arbitrary-shape

clusters also entails different notions of similarity. Certainly, it seems more natural

to cluster the animals according to, for example, appearance, activity, or both, as

one unified criterion; such clustering appears in [59]. Clearly, the notion of similar-

ity, so the distance measure, is at the core of clustering. A meaningful partition into

clusters that represent, for example, the subjects of a collection of news articles,

as in business or sports, requires choosing a relevant distance measure; so becomes

the graph structure. It is more probable for a clustering which operates on the

fine-grain pairwise distances to ensure the goal fulfillment of the task with respect

to each individual point. However, due to uncertainty in inferring the pairwise re-

lations from the input pairwise distances, k-means and fuzzy c-means operate on

the coarse-grain center-to-point distances. It is worthwhile noting that the poten-

tial use of more complex relations in clustering is investigated in [1, 95]. Rather

than the simple dyadic (pairwise) relations, triadic, tetradic or higher relations are

considered; as they define hypergraph structures on the data set.

In this thesis, a unifying relational perspective to the problems of clustering

and cluster validity is delivered by the developed framework. The perspective is from
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a number of explicitly defined distance-based and cluster-based pairwise relations

that entail similarity. Two notions of similarity arise from the common definition

of clustering: with one being an input to the task, measured by a distance mea-

sure. Whereas, the other is in the context of clusters; two points are similar if they

belong to the same cluster, otherwise dissimilar. These two notions of similarity

are formalized by the distance-based and cluster-based relations, defined as part of

the relational framework. One can reason with the relations about the two prob-

lems of clustering and cluster validity, in conjunction with the pairwise distances.

By such reasoning, the silhouette measure was successfully generalized from crisp

to fuzzy partitions. The generalization is as natural as the generalization of crisp

sets and ordinary logic by their fuzzy counterparts. The results by any clustering

algorithm whether crisp, fuzzy, or even probabilistic can now be evaluated by the

measure, using, if necessary, proper logical devices. Accordingly, the measure be-

comes a reference to select between any partitions. It identifies the partition which

best represents the pairwise relations between the data points in accordance with

their pairwise distances. Such powerful feature of the silhouette measure exposed

a problem with fuzzy c-means; as it generates some counterintuitive membership

values, counterintuitive in regards to the distances measure. Such results are due

to the non-convex fuzzy clusters always generated by the algorithm. The associ-

ated troublesome membership values are avoided by selecting m ≈ 1 or remedied

by defuzzification. In situations where the computational resources are of a major

concern, the center-wise silhouettes are at our disposal. The notion of center-wise

silhouettes, as opposed to point-wise, is new; as it has emerged within our frame-

work. The results obtained by the experiment in chapter seven demonstrated a fact

about the tasks of clustering and classification; as they have a couple of things in

common. On one hand, they deal with groups of the data points i.e. clusters or

classes. On the other hand, they exploit the relations between the data points to

accomplish the goal of the task. As was shown in the same experiment, the task

of highly imbalanced classification can significantly benefit from a silhouette-based

feature selection.

We highlight the following problems for future research:
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1. To mathematically reformulate the fuzzy c-means problem but without enforcing

a total membership of unity; this permits the identification of outliers. The

success of such attempt is determined by whether the reformulated problem is

tractable by convex programming.

2. Or alternatively, to devise a sophisticated clustering algorithm that generates

convex fuzzy clusters, possibly by improving Algorithm 6.1.

3. To investigate further the clustering results within the framework by constructing

plots of the pairwise distances versus the membership values of the cluster-based

relations, as means of illustrating those properties, with respect to the distance

measure and the partition, addressed in Blum’s framework.

4. To attempt a silhouette-based heuristic clustering.

5. To investigate whether highly dimensional classification tasks can benefit from

a silhouette-based feature selection. Noting that, a highly imbalanced classifica-

tion task is probably a highly dimensional classification task with respect to the

minority classes.

6. To publicly deliver an efficient library for the computation of the silhouette mea-

sure, either point-wise or center-wise, that scales well to large data sets.

7. To see if it is convenient to approach the problem of graph clustering within the

framework, adapting the framework if necessary.
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[8] Asa Ben-Hur, Cheng Soon Ong, Sören Sonnenburg, Bernhard Schölkopf, and
Gunnar Rätsch. Support vector machines and kernels for computational
biology. PLoS computational biology, 4(10):e1000173, 2008.

[9] Pavel Berkhin. A survey of clustering data mining techniques. In Grouping
multidimensional data, pages 25–71. Springer, 2006.

[10] James C Bezdek. Pattern recognition with fuzzy objective function algorithms.
Kluwer Academic Publishers, 1981.

[11] James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy¡ i¿
c¡/i¿-means clustering algorithm. Computers & Geosciences, 10(2):191–203,
1984.

101



102

[12] James C Bezdek, Richard J Hathaway, Michael J Sabin, and William T
Tucker. Convergence theory for fuzzy c-means: counterexamples and repairs.
Systems, Man and Cybernetics, IEEE Transactions on, 17(5):873–877, 1987.

[13] James Christian Bezdek. Fuzzy mathematics in pattern classification. 1973.

[14] James C Bezdek. Cluster validity with fuzzy sets. 1973.

[15] Avrim Blum. Thoughts on clustering. In NIPS Workshop on Clustering
Theory, 2009.

[16] David Bollier and Charles M Firestone. The promise and peril of big data.
Aspen Institute, Communications and Society Program Washington, DC,
USA, 2010.

[17] Jorge Luis Borges. Other Inquisitions, 1937-1952. University of Texas Press,
1964.

[18] Brad Brown, Michael Chui, and James Manyika. Are you ready for the era of
big data? McKinsey Quarterly, 4:24–35, 2011.

[19] Ricardo JGB Campello and Eduardo R Hruschka. A fuzzy extension of the
silhouette width criterion for cluster analysis. Fuzzy Sets and Systems,
157(21):2858–2875, 2006.

[20] Ronald A Cole, Joseph Mariani, Hans Uszkoreit, Annie Zaenen, Giovanni
Varile, Antonio Zampolli, Ron Cole, and Victor Zue. Survey of the state of
the art in human language technology. 1995.

[21] Sanjoy Dasgupta and Yoav Freund. Random projection trees for vector
quantization. Information Theory, IEEE Transactions on, 55(7):3229–3242,
2009.

[22] Manoranjan Dash and Huan Liu. Feature selection for classification.
Intelligent data analysis, 1(3):131–156, 1997.

[23] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), pages 1–38, 1977.

[24] Luca Donetti and Miguel A Munoz. Detecting network communities: a new
systematic and efficient algorithm. Journal of Statistical Mechanics: Theory
and Experiment, 2004(10):P10012, 2004.

[25] Didier Dubois and Henri Prade. A class of fuzzy measures based on triangular
norms a general framework for the combination of uncertain information.
International Journal Of General System, 8(1):43–61, 1982.



103

[26] Didier Dubois and Henri Prade. The three semantics of fuzzy sets. Fuzzy sets
and systems, 90(2):141–150, 1997.

[27] JC Dunn. Indices of partition fuzziness and the detection of clusters in large
data sets. Fuzzy Automata and Decision Processes, Elsevier, New York, 1977.

[28] Joseph C Dunn. A fuzzy relative of the isodata process and its use in
detecting compact well-separated clusters. 1973.

[29] Liat Ein-Dor, Or Zuk, and Eytan Domany. Thousands of samples are needed
to generate a robust gene list for predicting outcome in cancer. Proceedings of
the National Academy of Sciences, 103(15):5923–5928, 2006.

[30] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In KDD, volume 96, pages 226–231, 1996.

[31] Chris Fraley and Adrian E Raftery. Model-based clustering, discriminant
analysis, and density estimation. Journal of the American Statistical
Association, 97(458):611–631, 2002.

[32] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the
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