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Brain-Computer Interface (BCI) systems aim to provide a non-muscular channel for the brain to control

external devices using electrical activities of the brain. These BCI systems can be used in various appli-

cations, such as controlling a wheelchair, neuroprosthesis, or speech synthesizer for disabled individuals,

navigation in virtual environment, and assisting healthy individuals in performing highly demanding

tasks. Motor-imagery BCI systems in particular are based on decoding imagination of motor tasks, e.g.,

to control the movement of a wheelchair or a mouse curser on the computer screen and move it to the

right or left directions by imagining right/left hand movement. During the past decade, there has been

a growing interest in utilization of electroencephalogram (EEG) signals for non-invasive motor-imagery

BCI systems, due to their low cost, ease of use, and widespread availability.

During motor-imagery tasks, multichannel EEG signals exhibit task-specific features in both spatial

domain and spectral (or frequency) domain. This thesis studies the statistical characteristics of the

multichannel EEG signals in these two domains and proposes a new approach for spatio-spectral feature

extraction in motor-imagery BCI systems. This approach is based on the fact that due to the multi-

channel structure of the EEG data, its spatio-spectral features have a matrix-variate structure. This

structure, which has been overlooked in the literate, can be exploited to design more efficient feature

extraction methods for motor-imagery BCIs.

Towards this end, this research work adopts a matrix-variate Gaussian model for the spatio-spectral

features, which assumes a separable Kronecker product structure for the covariance of these features.

This separable structure, together with the general properties of the Gaussian model, enables us to design

new feature extraction schemes which can operate on the data in its inherent matrix-variate structure

to reduce the computational cost of the BCI system while improving its performance. Throughout this

thesis, the proposed matrix-variate model and its implications will be studied in various different feature

extraction scenarios.
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Chapter 1

Introduction

Since the first studies of electrical activities of the brain about a century ago, there has been a great

interest in analyzing and decoding these activities for clinical, diagnostic, and rehabilitation applications.

Several studies have shown that certain characteristics of electrical signals emitted from the brain are

unique to each brain activity and each individual person. As a result, these signals have been used in

areas such as:

• Clinical applications: Brain signals are widely studied for diagnosis and treatment of various mental

disorders such as dementia [3,4] and epileptic seizure [5–7]. Moreover, it has even been shown that

brain signals can be used for early diagnosis of many psychiatric disorders, such as: dyslexia [8],

which is a developmental reading disorder; and autistic disorder [9], which is related to impaired

social interaction and communication.

• Biometric systems: Brain signals provide a universal biometric for identification of individuals,

which cannot be easily forged or stolen [10–14]. Although it may not be suitable for many com-

mercial applications, brain signal has the potential to be used as a biometric in highly secure

environments. Moreover, brain signals can be used in conjunction with other biometric modalities

to improve the reliability of the identification system.

• Brain-computer interfaces (BCI): Brain signals can provide a non-muscular channel for interaction

with computers and the external world [15, 16]. A BCI, also known as direct neural interface or

brain-machine interface, is basically an interface between the brain and the world outside, which

translates the electrical activity of the brain into signals that control external devices. Early BCIs

were mainly designed to help paralyzed or disabled patients to control assistive devices such as

1
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wheelchairs, neuroprosthesis, and speech synthesizers [17–19]. However, new commercial appli-

cations have recently emerged for BCIs. Some of the commercial applications include: assisting

healthy individuals in performing highly demanding mental tasks [20–23] and brain-controlled

navigation in virtual environments [24,25].

In order to record the electrical activities of the brain, the following three approaches have been used

in the BCI literature:

• Invasive : An array of sensors are implanted directly into the grey matter of the brain.

• Partially-invasive : Sensors are implanted inside the skull but outside the brain.

• Non-invasive : Sensors are located outside the skull, and there is no need for surgical implanta-

tion.

Invasive and partially-invasive methods require surgery to implant the sensors, most of which last

for only a few years and hence need to be replaced by new sensors every couple of years. As a result,

the use of invasive solutions for brain-computer interaction is currently very limited and is restricted to

clinical trials. In contrast, non-invasive methods are of special interest in BCI applications due to their

ease of use for both commercial and medical applications.

Non-invasive methods that are used in the literature for brain-computer interfaces include:

• functional Magnetic Resonance Imaging (fMRI): This method measures brain activities in different

parts of the brain by detecting the associated blood flow changes. This measurement is based on

the fact that active neurones require more oxygenated blood flow during their activity.

• functional Near-Infrared Spectroscopy (fNIR): In this method, near-infrared electromagnetic waves

are used to measure the concentration of oxygenated and deoxygenated hemoglobin in different

parts of the brain cortex. These measurements will in turn determine active parts of the cortex,

similar to fMRI. An important difference between fNIR and fMRI is that the fNIR method has a

very limited penetration depth, in the order of a few centimetres, whereas the fMRI method can

measure the brain activities at any depth.

• Magnetoencephalography (MEG): This method directly measures the magnetic fields generated by

the neural activities of the brain, using an array of highly sensitive magnetometers. MEG mostly

records magnetic fields originated from tangential current sources, which are usually located on

sulcal walls in the cortex [26]. One of the main advantages of using MEG for source localization
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Figure 1.1: Commonly used approaches for brain-computer interfacing.

is that the skull and other tissues are almost transparent to the magnetic field, and hence they do

not cause any attenuation or distortion on the MEG recordings.

• Electroencephalography (EEG): In this method the electrical fields generated by the neural as-

semblies across the brain are measured, using several small electrodes on the scalp. The EEG is

mostly sensitive to electric fields that are generated by the radial current sources, which are usually

located on the gyral surfaces in the cortex.

Among these methods, fMRI and MEG methods provide relatively higher spatial resolution compared

to fNIR and EEG methods. However, fMRI and MEG require highly expensive equipments and controlled

environments for their operation. Furthermore, fMRI and MEG are not portable and cannot be used for

continuous daily usage, as required in most BCI applications. fNIR is a portable solution, however, it

suffers from low temporal resolution (in the order of few seconds) which is dictated by the slow vascular

response. As a result, EEG is the most widely used method for monitoring the brain activities in BCI

application, and hence it will be the focus of our studies in this thesis.

It should be noted that EEG has two major limitations, which have to be taken into account in

the design of any BCI system: (a) limited spatial resolution and (b) limited depth of penetration. In

order to address these limitations, recent works have suggested to develop multimodal BCI systems

that take advantage of different recording modalities to enhance the performance of the BCI system

[27]. Considering the crucial importance of portability in most BCI applications, the best candidate for

multimodal BCI systems is the combination of EEG and fNIR signals, ref. [27–29]. Although our focus

in this thesis is on EEG-based BCI systems, the results of this research can be utilized in multimodal

BCI systems as well.
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Figure 1.2: Processing pipeline and different applications of brain-computer interfaces, including human-
computer interaction, emotion recognition, rehabilitation, and clinical diagnosis of brain disorders.

1.1 Motivation

During the past two decades, various EEG-based BCI systems have been developed to help disabled

individuals. These systems have also recently been used in many commercial applications, such as

navigation in virtual environments, neuromarketing, adaptive human machine interfacing, and cortically

coupled computer vision.

A large portion of the currently existing BCI systems are based on evoked potentials, where the

BCI works based on the EEG signal generated in response to a stereotyped sensory stimulation. As a

case in point, assume that the user wants to spell out a word using a BCI system. One solution is to

provided him/her with a screen which displays letters that are flashing with different frequencies. When

the patient gazes at a desired letter, analysis of the resulting brain signals, called evoked potentials, can

reveal which letter he/she is looking at. Although these evoked BCI systems are very accurate, they are

not suitable for long term usage since the user will be constantly confronted with stimuli, which in turn

can become exhaustive or even cause physiological problems for the user.

In order to alleviate this problem, recently there has been a growing interest in utilization of spon-

taneous BCI systems, which are based on detection of mental imaginations and do not require any

external stimulation. Most of the spontaneous BCIs are based on motor imagination tasks, such as hand

movement and foot movement. As a simple example, the user can control a cursor on the computer
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screen, using the following motor imagery tasks: (a) Imagination of right hand movement, for moving

the cursor to the right; (b) Imagination of the left hand movement, for moving the cursor to the left;

(c) Imagination of the right foot movement, for moving the cursor up; and (d) Imagination of the left

foot movement, for moving the cursor down. Similar commands can be used for moving a wheelchair to

different directions (right, left, front, back).

One of the main benefits of using motor tasks in BCI systems is that they can be easily imagined

and do not require any specific training. Particularly, in the applications where the BCI system is

used for movement control, the imagined motor tasks can be naturally associated with the desired

movement tasks. Moreover, the EEG signals generated by different users during motor tasks are relatively

consistent, compared to other mental imagery tasks such as imagination of an object or an abstract

concept. In general, motor imagination activates similar neural assemblies as motor execution (see [30]

and references therein). As a result, motor-imagery BCI systems can be used by a wide range of motor-

disabled individuals if their motor cortex has not been re-assigned to other tasks (ref. Section 2.1.2).

As a result, several works have reported successful use of motor-imagery BCI systems for individuals

with different levels of myopathy, spinal cord injury, tetraplegia, amputation, spino-cerebellar ataxia or

multiple sclerosis (e.g., see [31, 32]). However, it should be noted that motor-imagery BCI may not be

suitable for certain users, such as people with congenital motor impairment, patients in the complete

locked-in state (CLIS), and motor-disabled patients who have lost their motor function many years ago

(ref. [33, 34]).

During motor imagery tasks, EEG signals exhibit task-specific characteristics in both spatial domain

and spectral (or frequency) domain [35–38]. These characteristics can be exploited in a BCI system to

detect the user’s intention. Towards this end, various feature extraction algorithms have been studied in

the literature to extract EEG’s discriminant information through spatial and spectral processing of the

data. The main purpose of the feature extraction is to map the EEG data from its original measurement

domain into another domain in which the motor imagery tasks are easily separable, according to a

desired measure of separability (e.g., a linear or quadratic separability). Depending on the properties

of the EEG data, this mapping may involve linear or nonlinear transformations in the spatial and/or

spectral domains. The result of these transformations will be a multivariate (or univariate) representation

of the data, where each variable is called a feature [39]. Accordingly, the multivariate space spanned by

these variables is called the feature space. The extracted features are expected to provide an alternative

representation in which the discriminant information of the data is preserved and at the same time

the effect of the noise or interference is minimized. Therefore, one of the most important challenges

in developing BCI systems is to consider both spatial and spectral characteristics of the signal during
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Figure 1.3: The processing pipeline for spatio-spectral feature extraction in MI-BCI systems.

the feature extraction and to take into account the inherent properties of the extracted spatio-spectral

features in designing the classification algorithms, as will be described in the next section.

1.2 Problem Definition

Several combinations of spatial and spectral feature extraction (FE) techniques have been deployed for

BCI systems in the literature to extract the most discriminant spatio-spectral features during motor-

imagery (MI) tasks. Some of these FE methods are designed based on the existing knowledge about the

neurophysiological characteristics of the EEG signals, while other methods are generic solutions that do

not depend on such information. We call the former group domain-specific feature extraction (DS-FE)

methods and the latter one domain-agnostic feature extraction (DA-FE) methods.

Consider a multichannel EEG signal that is recorded during the MI task Ωi, 1 ≤ i ≤ C, where C is

the number of possible MI tasks. The goal of a MI-BCI is to classify the imagined motor task through

analysis of the recorded EEG signal, and detect the imagined task. As illustrated in Figure 1.3, we divide

this process into three major steps: (a) domain-specific feature extraction (DS-FE), (b) domain-agnostic

feature extraction (DA-FE), and (c) classification.

DS-FE methods involve spatial processing, spectral processing, and in some cases joint spatio-spectral

processing methods. Some examples include:

• channel selection (CS), independent component analysis (ICA), surface Laplacian (SL) filtering,

and common spatial patterns (CSP) algorithms for spatial FE [40–42];

• parametric/nonparametric spectrum estimation and bandpass filtering for spectral FE [43–48];

• coherence analysis, directed transfer function modelling, filter-bank CSP (FBCSP), and common

spatio-spectral patterns methods for joint spatio-spectral FE [49–52].

In general, the output of DS-FE stage is a spatio-spectral feature matrix of the form X∈RNf×Ns , where

Nf and Ns respectively represent the dimensionality of the spectral and spatial domains.

The common practice in MI-BCI systems is to vectorize the matrix X, through concatenation of

its columns (or rows), and pass it to a classifier either directly or through a DA-FE module. The

DA-FE is usually used prior to classification to reduce the dimensionality of the feature space and
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remove possible redundancies in the extracted features. The DA-FE stage may include any generic

dimensionality reduction algorithm, such as principle component analysis (PCA), linear discriminant

analysis (LDA), and methods based on mutual information or correlation (ref. [53, 54] and references

therein).

We argue that the common approach for DA-FE, which requires vectorization of the matrix X by

breaking it along the columns (or rows), introduces unnecessary degrees of freedom in the DA-FE stage

by ignoring the inherent structure of the data along the broken dimension. In other words, vectorization

of X removes the inherent spatio-spectral structure of the data, which could otherwise be exploited by

the feature extractor.

The main problem that we address in this thesis is to design feature extraction techniques for motor-

imagery BCI systems that takes into account the aforementioned inherent matrix-variate structure of

the spatio-spectral features in order to (a) improve the overall performance of the MI-BCI system, and

(b) reduce the computational cost of the feature extraction stage. Towards this end, we propose to

utilize matrix-variate (or bilinear) algorithms for extraction of the most discriminant spatio-spectral

EEG features.

In this thesis, we study how matrix-variate schemes can be used in the design of both domain-

specific FE and domain-agnostic FE algorithms in motor-imagery BCI systems. We will then examine

the benefits, challenges, and possible limitations of such schemes in two different MI-BCI experiments.

The EEG data for these two experiments are obtained from two publicly available datasets that are

widely used in the BCI literature for performance evaluation purposes. The first experiment represents

a typical motor-imagery BCI scenario where enough training data is available to the algorithms. The

second experiment represents the extreme case where the amount of training data is very limited. The

latter case does not happen in most motor-imagery BCI systems, since these BCIs are generally designed

for longterm utilization by the user. Nevertheless, the second experiment is included in this thesis to

study the performance of different algorithms in extreme cases.

1.3 Technical Challenges

In the literature there exist numerous heuristic feature extraction solutions that aim to treat the matrix-

variate data in their inherent structure through bilinear transformation techniques. One of the well

known examples is the wide range of two-dimensional extensions of the LDA algorithm [55–63], all

of which aim to extend the linear feature extraction procedure of LDA into a bilinear procedure that

can be directly applied to matrix-variate data. As it will be discussed in Section 4.2, due to their
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heuristic approach, most of these methods lead to unnecessary information loss and cannot capture

all the discriminant information of the data, even in ideal Gaussian scenarios. Therefore, the most

important challenge in matrix-variate analysis of the spatio-spectral features is to provide a solution

which preserves the information content of the data.

The second important factor in designing matrix-variate solutions is the computational cost of the

resulting algorithm. To clarify this point, consider the heuristic methods that are proposed in the BCI

literature for extending the common spatial patterns (CSP) method to matrix-variate data [49,51,64–67]

(ref. Section 3.1.1). One of the most successful extensions of CSP is called the filterbank CSP (FBCSP)

method, which can be considered the state of the art solution in this area and outperforms most of the

other solutions. Despite its high performance, this method has a relatively high computational cost and

leads to a highly redundant feature space at its output, which in turn increases the computational cost

of the classifier. Therefore, the second challenge in matrix-variate analysis of the spatio-spectral features

is to design computationally efficient yet accurate algorithms.

The third challenge in matrix-variate analysis of the EEG features is the complex-valued nature of the

spatio-spectral features obtained from domain-specific FE methods such as Fourier transformation. The

common approach in the literature is to ignore the phase content of these features and only analyze their

magnitude (or power). However, it has been recently shown in the literature that relevant information

about the mental activities is conveyed by the phase of the EEG signal [68–71]. Therefore, it is of crucial

importance to analyze such features in their inherent complex-valued format to be able to capture all

the discriminant information of the data.

1.4 Thesis Contributions and Outline

In order to address the aforementioned technical challenges, we adopt a matrix-variate Gaussian distri-

bution for modelling the spatio-spectral EEG features. This model lays the mathematical foundation

for most of the theoretical designs and statistical studies in this thesis. This foundation enables us to

theoretically derive computationally efficient yet accurate bilinear methods for spatio-spectral feature

extraction in BCI systems.

The matrix-variate Gaussian model is a subset of the commonly used multivariate Gaussian. Beside

the general assumptions of multivariate Gaussianity, the matrix-variate Gaussian model requires a certain

Kronecker product structure for the covariance of the data, as will be described in Section 3.4. This extra

condition on the covariance of the data is the key point that distinguishes the matrix-variate Gaussian

model from the multivariate model which is conventionally used in various applications in the literature,
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including the BCI systems. This condition allows us to present the data in a matrix-variate structure

and process it using bilinear operations.

This thesis provides a general framework for spatio-spectral feature extraction from motor imagery

EEG signals, which emphasizes the distinction between domain-specific feature extraction (DS-FE) and

domain-agnostic feature extraction (DA-FE) in MI-BCI systems. This general framework not only does

encompass existing feature extraction methods, but also suggests new alternative approaches for spatio-

spectral feature extraction. We use the proposed framework to introduce a matrix-variate Gaussian

model for the spatio-spectral EEG features. Based on this model, we design two new approaches for

spatio-spectral feature extraction in motor-imagery BCI systems. Therefore, the main contributions of

this work can be categorized as follows:

Domain-Agnostic Bilinear Feature Extraction for MI-BCI [72,73]: In Chapter 4, we consider

the homoscedastic matrix-variate structure of spatio-spectral features at the input of domain-

agnostic FE stage. We propose to deploy matrix-variate feature extractors, instead of the con-

ventional vector-variate DA-FE methods. Considering the fact that the Bayes optimal feature

extraction strategy for homoscedastic vector-variate data is the linear discriminant analysis (LDA)

method, we suggest to utilize a bilinear extension of LDA for DA-FE in motor-imagery BCI sys-

tems. The Bayes optimality of the FE method guarantees that the extracted features encapsulate

all the discriminant features of the data, and there will be no performance loss caused by the

dimensionality reduction procedure in the feature extractor.

Towards this end, we study the following two possible methods for bilinear extension of the LDA

method: (a) An iterative two-sided extension of the LDA, called 2DLDA in this thesis, which

has been proved to be highly successful in other applications in the pattern recognition literature.

(b) A non-iterative method, called matrix-to-vector linear discriminant analysis (MVLDA), which

directly takes advantage of the properties of the matrix-variate Gaussian model to extract the

most discriminant features of the data. Both methods directly operate on the matrix-variate

data, without any need for vectorization. They simultaneously take into account both spatial and

spectral characteristics of the data, and have significantly less computational complexity compared

to the conventional vector-variate LDA method.

To study the effectiveness of the proposed bilinear domain-agnostic FE schemes, we deploy the

2DLDA and MVLDA methods in conjunction with a widely used domain-specific FE method,

called filterbank common spatial patterns. The experimental results show that the combination

of FBCSP and MVLDA methods provide a significant performance improvement over the state
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of the art solutions. Furthermore, we provide a comprehensive study of the effect of utilization

of the surface Laplacian filtering and the channel selection, at the DS-FE level, on the overall

performance of the proposed system.

Domain-Specific Bilinear Feature Extraction for MI-BCI [74,75]: In Chapter 5, we consider

the matrix-variate structure of the features generated during the domain-specific FE stage. We

propose a novel DS-FE method which takes this structure into account during the extraction of

the most discriminant features. The proposed method, called separable common spatio-spectral

patterns (SCSSP) method, has low computational cost compared to the state of the art FBCSP

method. The SCSSP method uses a heteroscedastic matrix-variate Gaussian model for the multi-

band EEG rhythms, which allows it to efficiently rank the extracted features according to their

discriminant power. As a result, the features generated by SCSSP method can be directly passed

to a classifier, without any need for a separate domain-agnostic FE stage.

The proposed SCSSP method has two major differences with the FBCSP method. First, FBCSP

ignores the spectral correlations between different EEG bands and independently extracts the spa-

tial features of each band; whereas the SCSSP method simultaneously considers both spectral and

spatial correlations of the data. Second, the FBCSP method assumes a unique spatial covariance

for each EEG rhythm; whereas the SCSSP method considers a common structure for the spatial

covariance matrices of different rhythms. These differences allow the SCSSP method to improve

the performance and reduce the computational cost of the DS-FE stage, provided that enough

training data is available to the algorithm.

We study the performance of the SCSSP when combined with two different simple classifiers,

namely the naive Bayes Parzen Window (NBPW) and the linear minimum distance classifier. The

experimental results show that the linear classifier is the best match for the SCSSP method. We

also perform a comprehensive experimental study on the effect of surface Laplacian filtering and

channel selection on the overall performance of the BCI system, when they are used in conjunction

with the SCSSP algorithm.

Statistical Characterization of Spatio-Spectral EEG Features in The Fourier Domain [76,77]:

The results of our experimental evaluations in Chapter 4 and Chapter 5 show a significant per-

formance improvement by the proposed matrix-variate schemes compared to the state of the art

solutions, which highly suggests that the matrix-variate Gaussian distribution provides a reason-

able model for the statistical properties of the spatio-spectral EEG features. Motivated by these

results, we provide an in-depth statistical study of the complex-valued spatio-spectral EEG fea-
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tures in Chapter 6. The results of the previous chapters highly suggest that the multiband EEG

rhythms follow a matrix-variate Gaussian distribution. As a result, the Fourier domain represen-

tation of the data is also expected to exhibit similar properties (ref. Appendix A.4). One of the

major benefits of focusing on the Fourier domain analysis of the data is to provide a model for the

spatio-spectral features which can also take into account the information in the phase of the EEG

data, as mentioned in the previous section.

In Chapter 6, we propose a complex-valued Gaussian model for the Fourier domain representation

of the spatio-spectral EEG features and will study the link between this model and the matrix-

variate Gaussian model that was explored in the previous sections. The validity of this model will

be examined through several statistical tests. In the proposed complex-valued model, the second

order characterization of the data requires the knowledge of both the covariance and the pseudo-

covariance of the data. In case that the complex-valued features do not convey information in their

phase, the pseudo-covariance of the data will be zero, and all the second order statistics of the

data will be conveyed by its covariance matrix. This property provides us with a statistical tool to

study whether any relevant information is conveyed in the complex-valued spatio-spectral features

of the EEG signals. Our statistical tests highly confirm the hypothesis that the pseudo-covariance

of these features is not zero, which in turn confirms that relevant information is conveyed in the

phase of these complex-valued features. This finding agrees with the recent neurophysiological

studies on the phase information of the EEG signals [68–71].

The rest of this thesis is organized as follows. Chapter 2 provides the required background information

and preliminary knowledge about the EEG signals and their properties during the motor imagery tasks.

In Chapter 3, we introduce our proposed framework for spatio-spectral feature extraction in motor-

imagery BCI systems, and explain how various methods in the literature fit into this framework. Based

on this framework, the matrix-variate Gaussian model for the spatio-spectral EEG patterns will be

defined in this chapter. Chapters 4, 5, and 6 include the three main contributions of the thesis as

explained above. Finally, the thesis summary and concluding remarks are presented in Chapter 7.



Chapter 1. Introduction 12

(a) Conventional Filterbank CSP Approach

(b) Proposed Bilinear Approach for Domain-Agnostic FE

(c) Proposed Bilinear Approach for Domain-Specific FE

Figure 1.4: Illustrative comparison of the proposed schemes with the state of the art filterbank CSP
solution.



Chapter 2

Preliminaries

This chapter provides a brief review of the brain structure and the relationship between brain activities

and EEG signals. We also provide a short description of the EEG signal acquisition techniques, and the

artifacts that usually contaminate the EEG signals.

2.1 Structure of The Brain

The human brain can be divided into three major parts: the cerebrum, the cerebellum, and the brain

stem. The cerebrum, which is the largest part of the brain, is divided into two hemispheres and contains

the basal ganglia, the limbic system (hippocampus, hypothalamus, thalamus, etc.), and the cerebral

cortex. The cerebral cortex is the outer layer of the cerebrum and is divided into four topographical

major lobes: frontal, parietal, temporal, and occipital (see Figure 2.1.b1). This cortex plays an important

role in high-level tasks in the brain such as processing of the sensory information, planning and controlling

voluntary movements, and understanding the language. As it is illustrated in Figure 2.2.b, each of these

tasks are performed in a different part of the cerebral cortex.

2.1.1 Motor Control in The Brain

A part of the cerebral cortex which is mostly involved in controlling voluntary movements is called the

motor cortex. As it is shown in the magnified part of Figure 2.2.b, different regions of the motor cortex

control the movement of different parts of the body. In this figure, those parts of the body that are

shown larger are the ones which occupy more space in the motor cortex and are responsible for finest

movements. Although motor cortex is the main part of the brain responsible for voluntary movements,

1The figures adopted from other sources in this chapter are not copyright-protected.
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(a) (b)

Figure 2.1: (a) Major parts of the human brain; (b) Topographical regions of the cerebral cortex.

(a) (b)

Figure 2.2: (a) The procedure of planning a movement in the brain; (b) Different parts of the cerebral
cortex and their corresponding tasks. (Adopted from [1])

several other regions of the cerebral cortex are also involved in controlling these movements. Figure

2.2.a illustrates the process of planning for a voluntary movement in the brain. The planning process is

done mainly in the forward portion of the frontal lobe, which receives information about the individual’s

current position from several other parts. Then, the required commands are issued to the first area

on the motor cortex (known as area 6). This part of the motor cortex decides which set of muscles to

contract to achieve the required movement, then issues the corresponding orders to the primary motor

cortex. This area in turn activates specific muscles or groups of muscles via the motor neurones in the

spinal cord. Therefore, in order to process EEG signals generated during motor imagery, both spatial
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and temporal characteristics of the EEG signal should be considered.

2.1.2 Brain Plasticity

The mapping of tasks shown in Figure 2.2.b is a general mapping which may differ between different

individuals and also may change for each individual over time. Indeed, the brain has the ability to

change its structure based on the daily life experiences and needs. The following are some of the major

cases where such changes may occur:

• If a particular part of the brain is exhaustively used over a long period of time, this part of the

brain may expand its boundaries and grow in size to be able to meet the demands.

• When a certain part of the brain is damaged or injured, the other parts may try to adapt their

structure to be able to compensate for some of the lost functions or take on some of the responsi-

bilities of the damaged cells.

• When a specific part of the brain is not used for a long period of time, this part may be reassigned

to perform other tasks in the brain. As an example, when someone goes blind and the input to the

visual cortex is blocked, the corresponding visual parts of the cortex gradually changes its function

and receives other sensory inputs, such as tactile or auditory inputs.

These functional changes should be taken into account in designing the BCI systems. In the case of

healthy individuals, the brain plasticity results in inter subject variations in spatio-temporal character-

istics of the brain signals. Consequently, BCI systems usually perform a subject specific training phase

for each individual to take into account possible changes in the characteristics of the motor related areas

in the brain.

Furthermore, one may argue that due to brain plasticity, the motor cortex of disabled individuals will

be reorganized and they may not be able to perform motor imagery tasks required for BCI systems. In

the case of paralyzed people with spinal cord injury, who did not have any damage in their motor cortex,

several research works have studied this issue (e.g., see [78–80]). These works have shown that since the

motor cortex is no longer used in these people, the reorganization of the motor cortex occurs over time;

however, this reorganization does not significantly affect the motor-cortical activities corresponding to

motor imagery tasks. These studies have shown that movement attempts in these individuals result

in a set of brain activities in motor-related areas (including the primary motor area) that are closely

similar to what is normally observed during the preparatory stages of movement execution in healthy

individuals.
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2.2 Electroencephalogram (EEG) Signals

In Chapter 1, it was mentioned that we study non-invasive EEG recordings of the brain activities. This

section provides a brief review of the EEG signals and their characteristics which can be utilized in BCI

systems.

2.2.1 EEG Signal Acquisition

EEG signals are usually recorded using several electrodes on the scalp, which aggregate the electric

voltage fields from millions of neurones across the brain. The EEG recordings at the scalp surface are

mostly generated by electrical current sources in the brain which are coherent over an area of at least a

few square centimetres2.

It has been shown in the literature that the skull tissue acts as a spatial lowpass filter, which highly

attenuates the electric potentials generated by localized cortical sources while having little effect on the

sources that are distributed on larger cortex areas [26]. In other words, the skull tissue acts as a lowpass

spatial filter on the EEG signals. As a result, it can be considered as a natural anti-aliasing spatial

filter which attenuates the high-frequency components of the EEG signal in the spatial domain. This

anti-aliasing filter is of particular importance since we need to spatially sample the EEG signal with a

limited number of electrodes.

Beside the low-pass filtering effect of the skull, the contact area of each electrode also plays an

important role in avoiding spatial aliasing. Indeed, the conductive surface area of each electrode acts

a lowpass spatial filter which eliminates the signal components with wavelengths approximately shorter

than the electrode diameter. The combined effect of the skull issue and the electrodes’ conductive surface

enables us to spatially sample the EEG signal without aliasing3.

The electrode locations are usually determined from the international 10 − 20 standard system. In

this system, 21 electrodes are located at the locations shown in Figures 2.3.a and 2.3.b. These locations

are determined based on the following two anatomical reference points: Nasion, which is located between

the eyes at the top of the nose; and Inion, which is located at the lower rear part of the skull. As it is

illustrated in Figure 2.3, the distance between two adjacent electrodes is %10 or %20 of the total distance

between the nasion and the inion. The naming for these electrodes follows the following convention: The

letters F, T, P, O, and C respectively stand for frontal, temporal, parietal, occipital, and central parts

of the scalp. The odd electrode numbers refer to the left hemisphere and the even numbers refer to the

2About 6 cm2 of cortical gyri tissue must be synchronously active to produce a scalp potential which is recordable by
conventional EEG sensors. This area, corresponds to approximately 600, 000 cortical microcolumns or 60, 000, 000 neurons.

3To completely avoided spatial aliasing, the electrode diameter needs to be chosen to be equal to the edge-to-edge
distance between the electrodes’ conductors or spreads of gel layer
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Figure 2.3: EEG electrode locations in (a) 10− 20 system, side view; (b) 10− 20 system, top view; (c)
10− 10 system, top view (Adopted from [2])

right hemisphere.

In order to use more electrodes on the scalp, this standard has been extended to 10− 10 and 10− 5

systems (see [81] and references therein). Figure 2.3.c illustrates the electrode locations for a 10 − 10

system. In this research we will use motor imagery EEG databases available at [82], which are collected

using the 10− 10 and 10− 5 systems.

The electrical signals collected from these electrodes are passed through a differential amplifier.

There exist different standard methods for connecting the electrodes to the amplifiers, such as common

reference, average reference, and bipolar. The databases used in this research are recorded using a

common reference method, where the difference between the output signal of each scalp electrode and

the output signal of a fixed reference electrode (usually ear electrode) is amplified by the differential

amplifier. Each amplifier output forms an EEG channel; hence, in a 10− 20 system we will get 21 EEG

channels.

Amplified signals are then highpass filtered (to prevent aliasing during sampling), uniformly sampled,

and converted to digital signals. Databases used in this research include EEG signals which are sampled

with a sampling frequency of 250 Hz or 1000 Hz. The resulting digitized multichannel EEG signal is

usually recorded in a matrix of size Nt×Nch, where Nch is the number of EEG channels, and Nt denotes

the number of time samples for each EEG channel.

2.2.2 EEG Artifacts

The electrical voltages recorded by EEG electrodes are usually in the range of 10µV to 100µV . Con-

sequently, EEG recordings are very sensitive to interfering signals, also called artifacts, that are not

generated by the brain. In general, artifacts can be categorized into two groups:

• Biological Artifacts, such as signals generated by eye movements (EOG) or eye blinks, electrical
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activity of the heart (ECG) and muscle activation signals (EMG).

• Environmental Artifacts, such as powerline artifacts (50/60 Hz) and signals generated by cardiac

pacemakers. Also, momentary movements of scalp electrodes can cause abrupt changes in the

impedance of these electrodes and result an artifact in the EEG recording.

Some of these artifacts can be easily removed by appropriate filtering of the EEG signals, e.g.,

notch filtering at 50/60 Hz for powerline artifacts. Other artifacts, such as EOG/ECG/EMG, are

usually removed using source decomposition techniques such as independent component analysis (ICA)

method [83,84].

2.2.3 EEG Rhythms

Early studies on EEG signals (by H. Berger in 1929) revealed that EEG signals can be expressed in terms

of a number of rhythmic activities, each of which oscillates within a different frequency band. These

rhythms are generated by numerous excitatory/inhibitory postsynaptic potentials (ESPS/IPSP) in the

cerebral cortex. In order to study these rhythmic activities, the frequency spectrum of EEG signals is

usually divided into the following frequency bands:

Frequency band: < 4 Hz 4− 8 Hz 8− 12 Hz 12− 30 Hz 30 Hz <
Rhythmic wave: Delta Theta Alpha Beta Gamma

Several studies have shown that different rhythmic activities within these frequency bands correspond

to different brain activities or states. As an example, delta waves are associated with deep sleep and alpha

waves correspond to relaxed awareness without concentration. However, it should be noted that due to

the complicated structure of the brain, there exist numerous different tasks which result in rhythmic

signals within the same band [85]. In this research, we are specially interested in alpha and beta bands

since they have been shown to be associated with motor activities (see Section 2.2.4).

It is worth mentioning that spatial and temporal properties of the EEG sources are coupled to a

certain extent. It is known in the literature that small patches of cortical sources tend to generate

higher temporal frequencies, whereas larger patches tend to generate lower temporal frequencies [26,85].

Therefore, the number of active sources contributing to the EEG power for lower frequencies is much

higher than the sources contributing to the EEG power in high frequencies. As a result, the EEG power

spectrum has a general trend of the form 1/f .
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2.2.4 Event-Related Dynamics of Cortical Rhythms During Motor Imagery

Tasks

It has been shown in many studies that when no cognitive or motor task is performed in the brain,

large populations of firing neurones are synchronized to each other, which in turn result in steady

rhythmic activities in the brain. During the execution of motor tasks, however, the synchronization

of these populations decreases (or increases), which results in a decrease (or increase) in the power of

corresponding oscillatory rhythms. This phenomenon is called event related desynchronization, ERD,

(or event-related synchronization, ERS) [35,86,87].

One of the earliest works that has illustrated the ERD and ERS effects during imagination of hand

movement is the experimental work in [86]. In this experiment, the participants were asked to imagine

the right hand or left hand movement. Considering the fact that right hand movements are controlled in

the left hemisphere (and vice versa), the results of [86] reveal a significant desynchronization (ERD) in the

alpha band (8−12Hz) in the contralateral hemisphere4, which corresponds to the motor imagery activities

in this hemisphere. It also reveals a significant synchronization (ERS) in the ipsilateral hemisphere, which

corresponds to the idle state of the motor cortex in this hemisphere. These ERD and ERS features are

usually used in BCI systems for classification of right vs. left hand movement imagery task.

It should be noted that ERD/ERS effects are not constant over all frequency bands. The work in [38]

has studied the power spectrum changes on the surface of the cortex during the hand movement task for

a wide frequency range of 0− 150 Hz. This study shows that the motor task results in a power decrease

(ERD) in low frequency rhythms (f < 50 Hz), while causing a significant power increase (ERS) in the

high frequency rhythms.5

In order to study the spatial characteristics of ERD/ERS, we can perform similar analysis for all

EEG channels. Figure 2.4 illustrates the spatial patterns of ERD/ERS for left and right hand movement

imagery tasks. The value of ERD/ERS in the topographical maps is expressed as the relative power

decrease (ERD) or power increase (ERS) with respect to the 0.5 sec interval before start of motor imagery

task. As a result, in the colour bar represented in the topographical maps, the value −1 dB corresponds

to the ERD effect, while +1 dB corresponds to the ERS effect. These topographical maps reveal the

fact that a large number of EEG channels convey relevant information about the motor imagery tasks;

hence, it is crucial to take into account the spatial characteristics of the EEG channels in classification of

4For right hand motor imagery tasks, the right hemisphere of the brain is the ipsilateral hemisphere and the left
hemisphere is the contralateral hemisphere, and vice versa.

5It should be noted that the signals in [38] are recorded using partially-invasive electrocorticogram (ECoG) electrodes.
In case of non-invasive EEG signals, the skull significantly dampens the high frequency rhythms. This will result in a down
shift in high frequency components. Nevertheless, we can still observe a relative power increase in high frequency rhythms
of EEG signals. A similar study of these high frequency oscillations in EEG signals is performed in [88].
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Figure 2.4: Spectral characteristics of EEG signal during left hand movement and right hand movement
imagery tasks. The topographic maps are obtained by passing the EEG signal through a bandpass filter
(8 − 28 Hz) and then averaging the signal over the time interval between 0.5 − 3.5 seconds after the
onset of motor imagination. The plotted values represent the power change relative to the time before
the task onset (in dB scale).

these tasks. In general, we can conclude that in order to design a BCI system, one should simultaneously

consider spectral, temporal, and spatial characteristics of the EEG signals.

2.3 Algorithms for pre-emphasizing localized sources in EEG

In Section 2.2.1, it was mentioned that the EEG signal recorded at the scalp surface is mostly due to

the sources with low spatial frequencies. Consequently, the effects of localized sources in the EEG are

usually dominated by widely spread sources. In other words, the raw EEG signal has a relatively low

spatial resolution. In order to alleviate this problem, the following two methods have been proposed in

the literature: (a) Dura Imaging method, also known as Spatial Deconvolution method; and (b) Surface

Laplacian method.

The dura imaging method aims to estimate the electrical potentials on the inner surface of the skull,

called dura potential, using a volume conductor model for the head. This method requires an accurate

head model to determine the geometry of the cortical surface, inner and outer skull surfaces, and the

scalp surface. This accurate model is usually obtained using magnetic resonance imaging (MRI) method.

Although the dura imaging method is very accurate, it cannot be used in many BCI applications, due

to the high cost and inconvenience of MRI scanners and in many cases lack of access to such scanners.

The surface Laplacian method aims to estimate the local radial current flux which passes through

the skull at each point. This local current is closely related to the dura potential (i.e., the potential on

the inner surface of the skull) generated by localized sources. Unlike the Dura Imaging method, surface

Laplacian only requires the electrode locations and does not require the person’s head model. Therefore,
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it can be used in most BCI applications. We will briefly explain the surface Laplacian method in this

section, as it will be used later in the thesis.

2.3.1 Surface Laplacian Method

Let Vs, Js, Vc, and Jk respectively represent the electric potential at the outer surface of the skull, the

current on the outer surface of the skull, the electric potential at the inner surface of the skull, and

the radial current density passing through the skull. Note that according to the Ohm’s law, Jk is

proportional to Vc − Vs. Due to the lowpass spatial filtering property of the skull, Vc � Vs for localized

sources, and hence Jk ∝ Vc for localized sources. Based on this result, the surface Laplacian method

tries to calculate the value of Jk in order to provide an estimate of Vc.

Since all the radial current Jk spreads on the skull surface once it reaches the outer surface of the

skull, we can conclude that

Jk = ∇s · Js, (2.1)

where ∇s denotes the spatial derivative, or divergence, operator along the two surface coordinates.

Assuming that the skull surface is spherical, ∇s can be defined as follows:

∇s =
1

r sin θ

∂

∂θ
(sin θJθ) +

1

r sin θ

∂Jφ
∂φ

(2.2)

where (r, θ, φ) represents the spherical coordiantes: radios, polar angle, and azimuthal angle. Using the

Ohm’s law, the surface current in Equation 2.1 can be linked to the surface potential, as follows:

Jk = ∇s · (σs∇Vs)

= σs∇2
sVs (2.3)

where σs represents the scalp’s conductivity and ∇2
s denotes the second spatial derivative along the two

surface coordinates. For spherical surfaces, ∇2
s operator is defined as follows:

∇2
s =

1

r2 sin θ

∂

∂θ

(
sin θ

∂Jθ
∂θ

)
+

1

r2 sin2 θ

∂2Jφ
∂φ2

(2.4)

Therefore, the electric potential at the inner surface of the skull is approximately proportional to the

surface Laplacian of the electric potential at the outer surface of the skull, i.e.,

Vc ∝ ∇2
sVs, (2.5)
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It is worth mentioning that since we are mostly interested in the value of Vc at the electrode locations,

in practice the surface Laplacian of Vs is only calculated at the electrode locations. Using this method,

the surface Laplacian output will have the same spatial resolution as the original EEG signal.

It is also noteworthy that since the surface Laplacian method is based on the second order spatial

derivative operator, it provides a reference free measurement, which is independent of the choice of

reference electrode used for EEG recording.

2.3.2 Surface Laplacian Calculation From Spatially Sampled EEG Data

In order to apply the surface Laplacian operator to Vs, we need to have a continuous measurement of

the Vs over the scalp surface. However, the EEG recording provides a spatially discrete signal which

only contains information about Vs at the electrode locations. There are two approaches to estimate the

surface Laplacian from the spatially discrete EEG signal.

The first approach is to use the finite difference approximation of the ∇2
s operator. In this approach,

the value of ∇2
sVs at each electrode location will be approximated by a linear combination of the Vs

measured at that electrode and its neighbouring electrodes. As a case in point, assume that the value of

EEG recording at a certain electrode is V0, and it has N neighbouring electrodes with EEG recordings

of Vn, 1 ≤ n ≤ N which are equally distributed on a circle of radios d0 around this electrode. Then the

first order approximation of the surface Laplacian at this electrode location, can be calculated as follows:

∇2
sVs ' 1

d2
0

(
V0 −

1

N

N∑
n=1

Vn

)
(2.6)

This first order approximation simply removes signal components with low spatial frequency which are

commonly sensed by all the neighbouring electrodes. Such transformation amplifies the effect of localized

sources while attenuating the effect of distributed or distant sources.

The second approach is to use spline interpolation in the spatial domain to estimate the value of

Vs over all the points on the scalp surface, based on which the surface Laplacian can be calculated.

Depending on the type of geometry assumed for the scalp surface, the following three methods have

been used in the literature:

• 2D Spline: This method projects the electrode locations onto a two-dimensional flat plane, and

calculates the spline interpolations in that plane [89].

• Spherical Spline: In this method, the electrode locations will be projected onto a sphere, which

approximately represents the scalp surface, and hence the spherical splines will be used for inter-
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polation [90].

• 3D Spline: This method is the most accurate method in which the electrode potentials will be

interpolated in the three-dimensional space, regardless of the scalp’s surface geometry [91].

In this thesis, we use the spherical spline method since its spherical assumption for the scalp surface

is more accurate than the 2D spline method and at the same time it is more computationally efficient

compared to the 3D spline method. To implement this method, we have used the publicly available

toolbox for MATLAB, called CSD-Toolbox [92–94]

2.4 Linear Prediction Models for EEG Signals

Various different methods have been suggested in the literature for modelling the EEG signals. These

methods include but are not limited to: (a) Proney’s method [95], which can be used for modelling evoked

potentials; (b) Neural mass modelling [96], which is mainly used for modelling steady-state behaviors of

neural systems; (c) Nonlinear chaotic modelling [97], which has been used to model EEG abnormalities

such as epilepsy or psychiatric disease as well as normal EEG rhythms; (d) Linear prediction modelling,

which has widely been used in various applications such as nonparametric spectrum estimation (Section

3.1.2) and coherence analysis (Section 3.1.1). Considering the wide range of applications in which linear

models have been used for spontaneous BCI systems, we particularly focus on linear models in this

section. Among existing linear models, autoregressive (AR) model is usually used for EEG signals;

therefore, we briefly overview the AR model and its modified versions.

2.4.1 Autoregressive (AR) and Adaptive Autoregressive (AAR) Models

Using AR linear predictive model, we can express the EEG signals as the output of a linear system

driven by a white noise at its input, as follows. Let yi(n) be the output of channel i at time instance n.

Then, yi(n) can be defined in terms of previous outputs of this channel, using the following equation:

yi(n) = −
pi∑
k=1

ai,kyi(n− k) + xi(n), (2.7)

where xi(n) is the random white noise, ai,k are the AR model parameters and pi is modelling order

for channel i. Such AR model represents an all-pole system which has infinite impulse response (IIR

system). It should be noted that in this approach each EEG channel is separately modelled, and the

parameters ai,k and pi are separately determined for each channel.
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In this modelling approach, appropriate selection of the parameter pi is of great importance.

Overestimation of p generates false peaks in the estimated EEG spectrum, while underestimation of pi

results in an over-smoothed spectrum. One of the conventional methods used for finding the model order

is the utilization of Akaike information criterion (AIC), defined as follows:

AIC(pi) = N ln(σ2
pi) + 2pi, (2.8)

where N is the number of samples and σ2
pi is the prediction error using the model order pi. This criterion

can be viewed as a trade off between the complexity of the algorithm (the second term in the above

equation) and the precision of fitting (the first term). It is worth mentioning that AIC has a strong bias

when the sample size (N) is limited [98]. This bias can lead to unwanted overfitting for the model order.

Therefore, it is highly recommended in the literature to utilize the corrected versions of AIC in limited

sample size scenarios (ref. [98–100]).

Once the model order is defined, the model coefficients (ai,k) can be determined using various dif-

ferent methods, such as Yule-Walker method, covariance method, Burg algorithm, least squares method,

and maximum likelihood method. A comparative analysis of these methods for modelling EEG signals

is presented in [101].

The AR model presented above generates a stationary signal (yi(n)). In practice, however, EEG

signals are nonstationary and their statistics change over time. In order to take this nonstationarity into

account in AR models, two solutions have been suggested in the literature. The first solution is to divide

EEG signals into small time segments over which the signal can be considered as a stationary signal,

and update the model parameters (ai,k) for each segment [102]. In this approach, as the length of these

time segments decreases, the temporal resolution of the AR model increases while the estimation error

of the AR model increases. In general, these time segments can have a fixed or variable length. Fixed-

length segmentation algorithms use a fixed length for all the segments, where this fixed length should be

short enough to guarantee stationarity over each individual time segment. Variable-length segmentation

algorithms, each segment is identified such that it can capture an entire length of stationary state in

the EEG signal; hence, segment boundaries are defined as time instances where the characteristics of

the EEG signals change. A comparative review of different fixed and variable segmentation algorithms

is presented in [103].

The second solution is to adaptively change the AR parameters at each time instance. In this

model, known as adaptive AR (AAR) model, the AR parameters are adaptively updated for each time
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instant, as follows:

yi(n) = −
pi∑
k=1

ai,k(n)yi(n− k) + xi(n), (2.9)

where ai,k(n) are the time-variant AR parameters. In this model, similar to the AR model in (2.7),

different channels are modelled separately. The Akaike method is again used for determining the ap-

propriate pi, and least squares or recursive least squares methods are usually used for determining the

AAR parameters ai,k(n). The main advantage of AAR model is that it does not require segmentation

of the EEG data, and the model parameters are updated for each time instance. Thus, AAR models are

more suitable for analysis of fast transitions of the brain state. This advantage come at the cost of high

computational complexity of updating AAR parameters at each time instance. The AAR model can be

used for spectral estimation of EEG signals.

2.4.2 Multivariate AR (MVAR) and Adaptive Multivariate AR (AMVAR)

Models

One of the main disadvantages of both aforementioned AR and AAR models is that the output of each

channel is independent from the outputs of other channels. This results in a poor signal modelling that

does not agree with the characteristics of actual EEG signal, where outputs of different EEG channels

are highly correlated to each other. In order to provide a more realistic model which considers the

spatial characteristics of EEG signals, multivariate autoregressive (MVAR) models have been used in

the literature. In MVAR model, output of the ith channel is determined as follows [104,105]:

yi(n) = −
Nch∑
j=1

p∑
k=1

ajk yj(n− k) + xi(n) (2.10)

where Nch is the total number of channels p is the model order. Without loss of generality, p is assumed

to be the same for all the channels. In this model, the output of each channel not only does depend on

the previous outputs of that channel, but also depends on the previous outputs of other channels. The

model order p can be determined by minimization of the following Akaike criterion:

AIC(p) = N ln
(

det(Σp)
)

+ 2pN2
ch, (2.11)

where Σp is the prediction error covariance matrix. The model parameters ajk can be determined by

means of solving a multivariate version of Yule-Walker equation [104].
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In order to consider the time-varying properties of EEG signals, adaptive multivariate AR (AM-

VAR) models are recently used in the literature. In AMVAR model, similar to AAR, the model coeffi-

cients are updated for each time instance, and the channel outputs are defined as follows:

yi(n) = −
Nch∑
j=1

p∑
k=1

ajk(n) yj(n− k) + xi(n) (2.12)

For estimation of time-varying coefficients ajk(n), the recursive least squares method is commonly used

in the literature. The AMVAR model is widely used for coherence analysis of EEG (see Section 3.1.1).

2.5 Summary and Concluding Remarks

In this chapter, the background information regarding the neurophysiological properties of the EEG

signals were reviewed. In particular, the event related dynamics of the EEG signals during the motor-

imagery tasks was reviewed. The event-related synchronization/desynchronization (ERD/ERS) effects

that were discussed in this chapter are the main properties of the EEG signals that are mostly used for

motor-imagery BCI systems.

It is worth mentioning that most of the spontaneous BCI systems using spectral features that have

successfully been implemented in practice are not directly decoding the brain tasks. In these systems,

individuals learn how to control certain aspects of the electrophysiological signals emitted by their

brains. As an example, consider the BCI system explained in [106] that is designed to move a cursor to

up and down directions. This system does not really detect the imagination of moving the user’s hand

to up/down direction. Instead, the user controls the cursor by voluntarily increasing or decreasing the

amplitude of the mu rhythm6 (8-12 Hz) or beta rhythm (18-26 Hz) signals generated by the sensorimotor

cortex of the brain. In other words, the users of these BCI systems develop a new skill to properly control

their brain signals such that they can successfully operate the BCI device.7 To solve this problem, some

research groups are trying to minimize the role of subject training and impose the major learning load on

the computer [108, 109], while others are proposing solutions to directly decode the brain tasks without

any need for subject adaptation or training. The work in this thesis can be categorized in the latter

group. Our BCI design is based on open-loop approach, where the subject is not provided with any

type of neuro-feedback. As a result, the user has no information on whether or not the BCI system has

been able to successfully decode the brain task; and hence he/she can perform the regular brain activity

without receiving any reward/penalty from the BCI system.

6The alpha rhythm (8− 12 Hz) which is recorded over the sensorimotor cortex is usually called mu (µ) rhythm.
7For a more detailed discussion on this issue and specific examples, see [15, Section 2.2] and [107, Page 524].
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General Framework for

Spatio-Spectral Feature Extraction

in MI-BCI

In the previous Chapter, it was mentioned that several studies on EEG signals have shown that during

motor-imagery (MI) tasks, EEG exhibits event related desynchronization (ERD) or synchronization

(ERS) over the alpha band and beta band [35,38,86,87]. For each motor-imagery task, these ERD/ERS

effects vary across different cortical areas. As a result, a specific spatio-spectral pattern corresponds

to each task, which can be used to classify it. Based on these properties, several methods have been

proposed in the literature to extract the task-related spatio-spectral features from EEG signals.

In this chapter, we provide a general framework which categorizes the spatio-spectral feature ex-

traction (FE) algorithms into domain-specific FE methods (DS-FE) and domain-agnostic FE methods

(DA-FE), as illustrated in Figure 3.1. The former group consists of FE methods that are designed

and used based on the prior knowledge about the neurophysiological characteristics of the EEG signals,

whereas the latter group mostly consists of methods that are generic solutions for feature extraction or

dimensionality reduction which are widely used in the pattern recognition literature. In Sections 3.1-3.3,

we elaborate more on this framework and how existing solutions for motor imagery BCI fit into it.

Based on the proposed framework, we argue that the spatio-spectral features that are extracted at

the domain-specific FE step construct a matrix-variate structure, which has been ignored in all the

existing motor-imagery BCI solutions. Therefore, as part of our proposed framework, we suggest to

27
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utilize feature extraction methods that can exploit this matrix-variate structure. Towards this end, we

propose to model the spatio-spectral EEG features using the matrix-variate Gaussian distribution, as

described in Section 3.4.

The first three sections of this chapter include a brief overview of the proposed framework, and the

following existing solutions in the literature fit into this framework:

1. Domain-Specific Feature Extraction (DS-FE)

1.1. Spatial FE

• Surface Laplacian (SL) Filtering*

• Independent Component Analysis (ICA)

• Phase Locking Value (PLV)

• Common Spatial Patterns (CSP)*

1.2. Spectral FE

• Bandpass Filtering*

• Nonparametric Spectrum Estimation

◦ Short-time Fourier Transform*

◦ Wavelet Transform

• Parametric Spectrum Estimation

◦ Autoregressive (AR)

◦ Adaptive Autoregressive (AAR)

1.3. Spatio-Spectral FE

• Spectral Coherence

• Directed Transfer Function (DTF)

• Spectrally-Filtered Extension of CSP*

2. Domain-Agnostic Feature Extraction (DA-FE)

• Principle Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)*

3. Classification

• Linear*

• Naive Bayesian Parzen Window*

Among these methods, the ones that will be used in the later chapters in this thesis are marked

by asterisk (*) in the above list and will be discussed with more detail in this chapter1. It should

be noted that the main purpose for overviewing these methods in this chapter is to illustrate how the

1Note that surface Laplacian (SL) filtering was covered in Section 2.3 in the previous chapter.
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Figure 3.1: The general framework for spatio-spectral feature extraction in motor imagery BCI systems.

aforementioned feature-matrix is extracted/classified in the existing solutions. A comprehensive analysis

of these solutions, however, is outside the scope of this thesis and the reader is referred to [16, 110] for

further information about these methods.

3.1 Domain-Specific Feature Extraction (DS-FE)

The goal of the domain-specific FE is to use our knowledge about the characteristics of the EEG signal in

spatial or spectral domains to transform the raw EEG data from its original representation space into a

feature space in which the MI tasks are more separable, based on a desired measure of separability. From

this perspective, many of the spatial and spectral transformation/filtering methods used in MI-BCIs can

be categorized as domain-specific FE methods. Figure 3.2 demonstrates some of the most common

domain-specific FE methods for MI-BICs. Note that in all these methods, the extracted spatial/spectral

features are directly related to inherent neurophysiological characteristics of the EEG signal. Moreover,

note that in many BCIs, the domain-specific FE step includes a number of spatial FE and spectral

FE methods that are combined together. The resulting spatio-spectral feature matrix is denoted by

X∈RNf×Ns , where Nf and Ns represent the dimensionality in the spectral and spatial domains.



Chapter 3. General Framework for Spatio-Spectral FE in MI-BCI 30

Coherence

A
R

/M
A

S
p
e
c
tra

l

F
ilte

rin
g

S
T
F
T

W
a
v
e
le

t

FBCSP,

ISSPL,

CSSP

Spectral

Coherence

ICA

S
p
a
ti

a
l 
F
e
a
tu

re
 E

x
tr

a
c
ti

o
n

Spectral Feature Extraction

CSP

SL

CS

Figure 3.2: Domain-specific methods for extraction of spatio-spectral features.

3.1.1 Spatial FE

In Chapter 2, it was mentioned that spatial characteristics of EEG signals change depending on the type

of brain activity. Spatial processing methods such as surface Laplacian (SL) filtering, beamforming,

independent component analysis (ICA), phase locking value (PLV) common spatial patterns (CSP), and

channel selection (CS) are among the most commonly used spatial FE algorithms in MI-BCIs. Various

combinations of these methods can also be used in a MI-BCI (e.g., SL together with CS). A quick review

of these methods is provided below.

As mentioned in Section 2.3, the surface laplacian method can be viewed as a highpass spatial filter

that removes the non-localized signal components as well as the interference from neighbouring areas

caused by volume conduction [26,42]. Independent component analysis is an unsupervised method which

is widely used to decompose the EEG signal into independent sources. ICA is used both for removing

the artifacts and for extracting the discriminant features from the EEG [41]. Channel selection (CS) is a

strategy to reduce the dimensionality of the original EEG signal by only selecting the most informative

EEG channels. CS can be performed either using automated machine learning algorithms or based on

our prior neurophysiological knowledge about the cortical areas that will be mainly activated during a

certain motor-imagery task [40].
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Phase Locking Value (PLV)

During the last five years, a few studies have suggested to measure the phase coupling (or phase locking)

of oscillatory activities from different parts of the brain, and use these measurements as discriminative

features for BCI applications [111–113]. These algorithms make use of the fact that different neural

assemblies in the brain are temporarily synchronized during performing perceptual, cognitive, and motor

functions [114,115].

The phase locking value is defined as follows. Assume that x1(t) and x2(t) are the signals cor-

responding to two electrodes which are recording EEG signals. φ1(t) and φ2(t) are defined as the

corresponding instantaneous phases of these two signals.2 Now, these two electrodes are called phase

locked if ∆φ(t) = φ1(t)− φ2(t) = constant. By definition, the magnitude of the average value of ej∆φ(t)

over a short time interval will be considered as the phase locking value, i.e., PLV = |E{ej∆φ(t)}|.

Due to the low signal to noise/interference ratio in EEG signals, the PLV measurements are highly

sensitive to the choice of reference electrode during data recording. In some cases, the synchrony reported

in some studies have been proved to be a result of an exaggeration of the common contribution of the

reference electrode. Nevertheless, it is still believed that the phase synchrony, if properly measured,

conveys valuable information about the cognitive tasks in the brain (see [115] and the discussion therein).

Beamforming

Beamforming is a well-known approach in the array processing literature which has recently been also

used for analysis of brain signals in the context of BCI systems. Beamforming was first deployed for

analysis of MEG signals about two decades ago (e.g., see [116–118]), and with a long delay it has

recently been used for EEG-based BCI systems (see [119,120] and references therein). The main goal of

beamforming is to linearly combine the EEG recordings from different sensors to emphasize the signal

contribution from sources located in a certain part of the brain while suppressing the effect of all other

sources. This technique can be used to find the location, magnitude, and direction of current sources

inside the brain during different brain tasks.

Similar to the surface Laplacian filtering method, beamforming is an unsupervised method which

does not require any labeled EEG data for training, but instead requires the knowledge of exact sensor

locations. While surface laplacian only focuses on the radial current sources that are located on the

surface of the cortex, beamforming is more flexible and can detect other types of sources as well. It is

also worth mentioning that beamforming is mostly efficient when EEG signal is collected using a high

2φi(t) can be determined as follows: φi(t) = arctan(x̃i(t)/xi(t)), where x̃i(t) = 1
π

∫∞
−∞

xi(τ)
t−τ dτ is the Hilbert transform

of xi(t).
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density array of sensors (i.e., when Nch is in the order of a hundred sensors or more).

There are two major approaches for utilizing beamforming in BCI systems. In the first approach,

beamformers are used to scan the regions of interest in the brain on a voxel-by-voxel basis and locate the

corresponding current sources. In the second, and most recent, approach the beamforming technique is

used to selectively filter out the effect of sources located in the brain regions that are less likely to be

active during the studied brain task. As an example, during motor-imagery tasks, the beamformer can

be used to filter out any signal component that is generated by sources outside the motor cortex, and

hence remove the effect of artifacts and interference from other parts of the brain.

Common Spatial Patterns (CSP)

CSP is a supervised method that was originally proposed for spatial FE in a binary classification sce-

nario [36,39,121]. CSP method was first used in BCI systems with two-class problem, such as left hand

movement vs. right hand movement. Given a set of training data, this algorithm tries to find spatial

filters that maximize the variance for one class while minimizing the variance of the other class. In the

case of ERD/ERS effects of left/right hand movement, this criterion completely matches the character-

istics of EEG signals, since during the hand movement imagination, the power of ipsilateral channels is

maximized (ERS) while the power of contralateral channels is minimized (ERD).

Let S ∈ Nt ×Nch denote the EEG signal with Nch channels and Nt temporal samples per channel,

and let Σ1 be the spatial covariance matrix of the EEG data recorded during the left hand movement

imagery task, i.e., Σ1 = E{STS|Ω1}. Similarly, we can define Σ2 for the right hand movement imagery

task. Provided that these two covariance matrices are correctly estimated during training period, the

CSP algorithm finds a mapping matrix W such that:

WTΣ1W = Λ1 (3.1)

WTΣ2W = Λ2 (3.2)

Λ1 + Λ2 = I (3.3)

where Λ1 and Λ2 are diagonal generalized eigenvalue matrices, and I is the identity matrix. Each column

of matrix W can be considered as a spatial projection vector or a spatial filter.

The condition of Equation 3.3 on the eigenvalue matrices is illustrated in Figure 3.3. In this figure,

each circle represents an eigenvalue, and the diameter of the circle is proportional to the magnitude of the

eigenvalue. Due to the condition on eigenvalue matrices in Equation 3.3, if we sort the eigenvalues in Λ1

in descending order, the corresponding eigenvalues in Λ2 will be sorted in ascending order. Therefore,



Chapter 3. General Framework for Spatio-Spectral FE in MI-BCI 33

Figure 3.3: Illustration of sorted eigenvalues in the diagonal generalized eigenvalue matrices Λ1 and Λ2,
when Λ1 + Λ2 = I
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Figure 3.4: Spatial pattern pairs extracted by the CSP algorithm for the left/right hand movement
imagery task. Patterns 1 and 6 represent the most discriminant pairs, whereas patterns 3 and 4 represent
the least discriminant pair.

the projection vector in W that maximizes variance of the first class, minimizes the variance of the

second class and vice versa. As a result, the first and last columns of W, which correspond to the

aforementioned projection vectors, form the most discriminant spatial filters. Similarly, the first and

last columns of the matrix W−1 can be considered as the pair of spatial patterns, which have the most

contribution to the left hand movement and right hand movement imagery tasks, respectively.

Figure 3.4 illustrates an example of the spatial patterns resulted from CSP algorithm for left/right

hand movement tasks. These spatial patterns can be grouped as the following pairs: (1,6), (2,5), and

(3,4), where the first pair represent the most discriminant pair of features and the last pair represent

the least discriminant pair. These spatial patterns show how different cortical regions are activated or

deactivated during the left/right hand movement task. Patterns 1-3 represent event-related desynchro-
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nization (ERD) in the left hemisphere, where as Patterns 4-6 represent ERD in the right hemisphere,

which agrees with our discussion in 2.2.4.

The CSP algorithm has also been generalized to find the spatial patterns for a multi-class BCI system,

where the number of imagery tasks is more than 2 (see [122]). In the literature, CSP has been used

together with time/frequency domain processing methods to improve the overall performance of the BCI

(see [123] and the references in [53]). However, it should be noted that CSP has some disadvantages as

well. One of the most important problems of CSP is its sensitivity to artifact, which becomes a critical

problem when the size of training data is small. This problem has recently been addressed in [124], where

the small sample size problem has been solved using generic learning algorithm. Another disadvantage

of CSP is its sensitivity to the location of the sensors. This problem manifests itself when EEG data are

collected in different sessions and the sensor locations may not be exactly the same for different sessions.

3.1.2 Spectral FE

There are three major approaches for extraction of spectral features in MI-BCIs: spectral filtering, non-

parametric spectrum estimation, and parametric spectrum estimation. Spectral filters, such as bandpass

filters, are mostly used to extract different EEG rhythms. Bandpass filters can be utilized for extracting

bandpower features. They can also be deployed together with multiband extensions of CSP algorithm

(ref. Section 3.1.3).

Nonparametric spectrum estimation methods include short-time Fourier-transformation (STFT),

wavelet transformation (WT), and Fourier transformation of the windowed autocorrelation function.

Parametric spectrum estimation methods include autoregressive/moving-average (AR/MA) methods

and their variants such as adaptive AR (AAR) or multivariate AR (MVAR) methods (ref. [45] for a

comparative study of different spectral FE methods). In many MI-BCIs, a combination of features

obtained from both parametric and nonparametric methods is used [43,44,47]. Parametric spectrum es-

timation methods can also be deployed in conjunction with the directed transfer function (DTF) method

which will be discussed in Section 3.1.3.

Bandpass filtering

In many MI-BCI systems, a bank of digital bandpass filters will be used to extract different EEG rhythms

from the raw data. In general, both finite impulse response (FIR) and infinite impulse response (IIR)

filters can be used for the EEG signals. The main advantages of FIR filters are the following: (a) FIR

filters preserve the phase information of the signal, and hence do not cause any distortion; (b) FIR



Chapter 3. General Framework for Spatio-Spectral FE in MI-BCI 35

filters allow for more control over the frequency response of the filter, as they have more degrees of

freedom compared to the IIR filters. However, the computational cost of implementing an FIR filter

in a realtime BCI system is prohibitive in most cases. In contrast, IIR filters are significantly more

computationally efficient and at the same time introduce relatively low delay in the system. As a result,

in most motor-imagery BCI systems, IIR filters are used for filtering the data.

Nonparametric spectrum estimation

A great number of spontaneous BCI systems are based on utilization of power spectral density of the

EEG signals. As it was mentioned in Chapter 2, frequency components between 8−30 Hz can be utilized

as discriminative features for motor imagery brain activities [125]. However, due to the time-varying

nature of EEG signals, the spectral analysis methods cannot perform well unless they are applied to

EEG signals with short length. As a result, joint time-frequency analysis methods are usually used in

BCI systems. In this section, we give a brief overview of short-time Fourier transform (STFT) and the

wavelet transform (WT), both of which are nonparametric spectrum estimation methods, and adaptive

autoregressive method which is a parametric spectrum estimation method.3

Short-Time Fourier Transform (STFT): STFT is a time dependent Fourier analysis which is ap-

plied to a windowed segment of the signal. The continuous-time STFT is defined as follows:

Yi(t, ω) =
∫∞
−∞ yi(τ)w(τ − t)e−jωτdτ , where yi(t) is the output of the ith EEG channel, and w(t)

is a window function, such as Tukey, Hamming, Hann, or Gaussian window, used to suppress

the discontinuities at the interval edges. Since EEG signals are usually recorded in discrete-

time format, the discrete-time STFT is usually used, which is defined as follows: Yi(n, ω) =∑∞
k=−∞ yi(k)w(k− n)e−jωk. Yi(n, ω) is in general a complex-valued two-dimensional signal; how-

ever, most of the studies in the literature only consider the power of these frequency components

and ignore the information conveyed in their phases (ref. Chapter 6)

The STFT method suffers from a tradeoff between the time and frequency resolution. If the

width of window is selected to be a small value, we will get a high temporal resolution but low

spectral resolution, and vice versa. Nevertheless, due to its low complexity, STFT is widely used

in the literature for analysis of EEG signals.

Wavelet Transform (WT): In order to solve the resolution tradeoff mentioned in the previous part,

3A comparative analysis of some of these spectral processing methods can be found in [45].
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wavelet transforms (WT) can be used. A continuous-time WT is defined as follows:

Yi(a, b) =
1√
a

∫ ∞
−∞

yi(t)ψ
∗
(
t− b
a

)
dt (3.4)

where ψ(t) is called the mother wavelet and should be continuous in both time and frequency

domains. In this equation, a is a positive value, called the scale parameter, and b is called the

position parameter. Both real-valued and complex-valued mother wavelets have been used in the

literature. The wavelet transform has the advantage that it uses a short window for high frequency

components and a long window for low frequency components, whereas STFT has a fixed window

length for all frequency components. As a result the WT provides a high temporal resolution for

rapidly changing high frequency components, while providing a high spectral resolution for long

term low frequency components. This property of wavelet transform matches the characteristics

of EEG signals, and makes the WT a useful tool for analysis of these signals [126,127].

In the context of EEG analysis, usually discrete-WT is used in the literature since continuous-

WT generates a highly correlated and redundant representation of the signal [127]. Recently,

however, a few works have suggested that these redundancies in the continuous-WT can be ex-

ploited to improve the performance of the BCI system [128,129].

Parametric spectrum estimation

Both STFT and WT methods explained in the previous sections are considered as nonparametric spectral

estimation algorithms. As an alternative approach, we can make use of parametric methods. The main

idea here is to fit a parametric model, such as linear predictive models of Section 2.4, to the EEG signal;

and then use this model to estimate the signal’s power spectrum.

Due to the time varying nature of EEG signals, adaptive AR models are commonly used in the

literature for spectrum estimation of these signals. Let assume that the EEG signal is modelled with an

AAR model given by Equation (2.9), and the model parameters have been determined as mentioned in

Section 2.4. By taking the Fourier transform of both sides of the equation, we get:

|Yi(ω)|2 =
σ2
x∣∣1 +

∑pi
k=1 ai,ke

−jωk
∣∣2 (3.5)

One of the main advantages of AAR approach over nonparametric methods is that AAR modelling

does not require any windowing of the observed data. This in turn results in a better spectral estimation

specially when the length of the observed data is short. This property of the AAR method, is of great
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interest since the nonstationary structure of EEG signals usually forces us to estimate the spectrum

based on a short observation period.

3.1.3 Spatio-Spectral FE

For joint extraction of spatio-spectral features, three different approaches have been studied in the BCI

literature:

(a) spectral coherence analysis,

(b) directed transfer function (DTF),

(c) spectrally-filtered extension of CSP.

The first two methods are based on the fact that several parts of the brain are involved during any mental

activity, and the associated signals are communicated between these parts (ref. Section 2.1.1). Such a

communication between different parts of the brain requires a type of temporary synchrony between these

parts during the communication period. The goal of spectral coherence analysis and directed transfer

function methods is to detect these transient synchronizations in order to study the corresponding mental

tasks. In contrast to the first two approaches, the last approach is based on extending the main concept

of common spatial patters such that it can also take into account the spectral characteristics of the EEG

signals.

Spectral Coherence

One of the commonly used algorithms for analysis of synchronization between different EEG channels, is

the measurement of coherence between individual frequency components of the signals in these channels

[52]. By definition, the spectral coherence between channel i and channel j at frequency ω is defined as:

Coh2
ij =

∣∣E{Cij(ω)}
∣∣2

E{Cii(ω)} E{Cjj(ω)}
(3.6)

where Cij(ω) = Yi(ω)Yj(ω) can be viewed as the Fourier transform of the cross-correlation between the

signals at channels i and j, i.e., yi(t) and yj(t) respectively. These spectral coherence measures can be

used to study mental tasks which involve distant cortical areas.

Although Coh2
ij is a reasonable measure of coherence between two channels, the methods based on

this measure suffer from the following problem. The spectral coherence does not provide any information

regarding the timing and direction of coupling between two channels. In other words, when Coh2
ij has a
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large value, it only represents the high amount of coupling between channel i and j; however, it cannot

be determined whether or not this coupling has occurred at the same time instance or one of the channels

has had a time lag with respect to the other.

Directed Transfer Function (DTF)

In order to solve the drawbacks of spectral coherency algorithm, the directed transfer function (DTF)

algorithm has been proposed in [130], which utilizes a multivariate autoregressive (MVAR) model. Let

Y(n) = [y1(n), . . . , yNch
(n)]T be the vector of Nch EEG channel outputs at time n. If we use an MVAR

model of order p for Y(n), we will have

Y(n) = −
p∑
k=1

AkY(n− k) + X(n), (3.7)

where Ak is an Nch × p matrix of model coefficients and X(n) is a zero mean white noise. This

MVAR model, can be represented in frequency domain as follows: Af (ω)Y(ω) = X(ω), where Af (ω) =

I+
∑p
k=1 Ake

−jωk, and X(ω) = σ2
xI. Thus, the transfer function of this MVAR system, can be expressed

as: H(ω) = A−1
f (ω). Using this transfer matrix, the DTF value between channels i and j can be defined

as follows [131]:

Θ2
ij =

∣∣Hij(ω)
∣∣2 (3.8)

This value represents the causal4 influence from channel j to channel i, which has been shown to be an

important feature in detection of motor imagery tasks in BCI systems.

DTF algorithm is suitable for analysis of complicated motor tasks which require a more detailed

analysis of the spatio-temporal characteristics of EEG signals. However, it should be noted that this

benefit comes at the cost of computational complexity of this algorithm. Indeed, both spectral coherence

and DTF methods are based on pairwise analysis of the EEG channels, and hence the dimensionality

of their resulting spatio-spectral feature matrix is significantly high, compared to other domain-specific

FE methods. This high dimensionality imposes challenging issues on the computational complexity and

overall performances of the BCI system. As a consequence, currently the usage of spectral coherence

and DTF methods is mostly restricted to analysis of the brain dynamics during MI tasks rather than

classification purposes.

4By definition, yj(t) is causal to yi(t), if yi(t) can be causally predicted from yj(t)
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(a) Multichannel Power Spectrum Approach

(b) Filterbank Common Spatial Patterns (FBCSP) Approach

Figure 3.5: Most commonly used schemes for domain-specific spatio-spectral FE in motor-imagery BCI
systems.

Spectrally-Filtered Extension of CSP

As mentioned in Section 3.1.1, the common spatial patterns (CSP) method is one of the most successful

techniques for analysis of the motor-imagery tasks. However, it only relies on the spatial features and

completely ignores the spectral characteristics of the EEG signal. To alleviate this problem, several

works have suggested to utilize CSP together with spectral filters [51, 64–67]. Among these solutions,

the work in [49], called filterbank CSP (FBCSP), is the most recent and most successful approach.

Indeed, a large number of previous CSP extensions can be considered as a simplified version or special

case of the work in [49].

FBCSP method is a multiband extension approach, in which a set of bandpass filters are used to

extract different rhythmic activities of the brain from EEG signal. Each of these EEG rhythms is then

passed to a separate CSP module to extract the spatio-spectral features corresponding to that frequency

range. This scheme is illustrated in Figure 3.5. As illustrated in this figure, the FBCSP may also be

preceded by simple spatial feature extraction methods such as surface Laplacian (SL) or channel selection

(CS).

Figure 3.6 illustrates a simple example of the set of spatio-spectral patterns that FBCSP method

generates for left/right hand motor imagery tasks. In this example we have used a set of seven bandpass

filters, each of which with a passband of 4 Hz, to cover the range of 4− 32 Hz. For each frequency band,

the two most discriminant pair of patterns are presented as Patterns (1,4) and Patterns (2,3). If we

compare these patterns with the ones shown in Figure 3.4, it can be seen that the FBCSP provides more

details regarding the spectral dependencies of the patterns, which is not available in the conventional

CSP method.
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Figure 3.6: Spatio-spectral patterns obtained from FBCSP method for right hand motor imagery vs
left hand motor imagery. For each frequency band, two most discriminant pattern-pairs are illustrated,
which are presented as patterns (1,4) and (2,3).
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Figure 3.7: Using the PCA method to reduce the dimensionality of the data from two to one. The
data will be mapped to v1 direction (red direction) which provides a better representation of the data
distribution, compared to the v2 (green direction).

3.2 Domain-Agnostic Feature Extraction (DA-FE)

The feature space resulting from DS-FE in Figure 1.3 is usually a high-dimensional space which contains

correlated or redundant components. This calls for the use of the domain-agnostic feature extraction

to reduce the dimensionality of X prior to the classification step. We name this step domain-agnostic

since, unlike the domain-specific FE step, the feature extractors used in this step do not depend on our

knowledge about the neurophysiological characteristics of the EEG signals. Indeed, the DA-FE step

usually consists of generic dimensionality reduction algorithms.

DA-FE methods can be categorized into two groups, as follows: (a) Methods such as principle com-

ponent analysis (PCA) and linear discriminant analysis (LDA) that first transform the spatio-spectral

features of X into a new feature space and then select the most discriminant components in the new

feature space [132]. (b) Methods that do not require any transformation and directly select the most

discriminant features from X based on a desired measure, such as mutual-information or correlation

with the task labels [133–135].

Principle Component Analysis

The principle component analysis (PCA) method is an unsupervised algorithm, that tries to retain those

directions in the feature space which convey most of the data variations, while discarding the directions

that have little contribution to the data variations. Assuming that Σx represents the covariance of

the spatio-spectral features at the output of domain-specific feature extraction step, the PCA retains

feature directions that correspond to the most significant eigenvalues of Σx. Figure 3.7 illustrates a

simple example for a two-dimensional feature space. The v1 and v2 vectors in this figure represent the

eigenvectors of Σx, where v1 corresponds to the larger eigenvalue.
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Figure 3.8: Comparison of PCA and LDA methods. Utilization of the PCA method results in projecting
the data on the green direction due to the distribution of data points. However, LDA method lead will
select an orthogonal direction, shown in black, which maximizes the class separability while minimizing
the data variations within each class.

Linear Discriminant Analysis (LDA)

Unlike PCA, the linear discriminant analysis (LDA) method is a supervised approach for feature extrac-

tion, which takes advantage of labeled training data to find the desired set of features. LDA aims to

linearly map the input data into a feature space for which the variations within each class is minimized

while the distances between the means of different classes are maximized. Let m1, ..., mC represent the

mean vectors for classes Ω1, · · · ,ΩC , and m represent the total mean. Then, the within class scatter

and the between class scatter matrices will be defined as follows:

SW =

C∑
i=1

E{(x−mi)(x−mi)
T |Ωi} (3.9)

SB =

C∑
i=1

(mi −m)(mi −m)T (3.10)

In Equation (3.9), the term E{(x−mi)(x−mi)
T |Ωi} represents the scatter of the samples in class

Ωi around their corresponding mean, i.e., mi. In the LDA approach, it is assumed that the scatter of

samples in all the classes are the same. Therefore, the matrix SW represents the averaged scatter within

different classes, hence it is called the within class scatter matrix. In Equation (3.10), the matrix SB

represents the scatter of different class means around the total mean m, hence it is called the between

class scatter matrix. It is worth mentioning that rank of SB is at most equal to C − 1; therefore, SB

will be a singular matrix when dimensionality of x is greater than C − 1, which is usually the case in

the motor-imagery BCI applications.
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The LDA algorithm tries to find the transformation vector(s) w that maximizes the following measure:

J(w) =
wTSBw

wTSWw
(3.11)

In this equation, the numerator represents the within class scatter value of the transformed data, i.e.,

wTx. Similarly, the denominator represents the between class scatter value of the transformed data.

Therefore, the above measure, which is known as the generalized Rayleigh quotient, determines the ratio

of the within class scatter over the within class scatter in the new feature space. The transformation w

that maximizes this measure should satisfy (3.12).

SBw = λSWw (3.12)

Solving Equation 3.12 requires calculation of the generalized eigenvalues of SB and SW (ref. [136]). Since

rank of SB is at most C − 1, the LDA method can provide up to C − 1 orthogonal transformations for

extraction of the most discriminant features.

In general, it can be shown that if the data x has the following two conditions, the C − 1 transfor-

mations derived by LDA approach provide the minimum-dimension sufficient statistics for classification

of x that conveys all the discriminant information of the data [39,137]:

(a) x|Ωi has a normal distribution, i.e., the class conditional mean and covariance of the data com-

pletely describes the statistical characteristics of the data during each motor-imagery task.

(b) x is homoscedastic, i.e., the conditional covariances are the same for all the classes, and hence the

only difference between distributions of different classes is the conditional mean of the data.

In other words, under the above two conditions the LDA method can reduce the dimensionality of the

feature space to C−1, while guaranteeing that all the discriminant information of the data is preserved.

Figure 3.8 depicts an illustrative example to compare PCA and LDA methods, both trying to reduce

the dimensionality of the feature space from two to one. The original data belonging to Class-1 and

Class-2 are marked by black crosses and circles, respectively. The PCA method selects the direction

shown by green dashed line for mapping the data, whereas LDA method selects the orthogonal direction

shown in black dashed line. It can be seen that data points mapped by the LDA are more separable

than the points mapped by the PCA method. Note that both PCA and LDA algorithms involve eigen

decomposition and mapping the data along the eigenvectors corresponding to the largest eigenvalues.

However, PCA is an unsupervised method which only has access to the total scatter of the data, whereas
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LDA is a supervised method that takes advantage of the knowledge about individual means and scatters

of different classes.

3.3 Classification

After extraction of the most discriminant features through domain-specific and domain-agnostic feature

extraction steps, the resulting features will be passed to the classifier. There exist numerous classification

methods in the machine learning literature, each of which is designed for a feature space with certain

characteristics. Some of the classification methods that are commonly used in the BCI literature include:

Naive Bayesian, linear Gaussian, quadratic, support vector machine (SVM), and k-nearest neighbours

classifiers. Since the focus of this thesis is on feature extraction algorithms, we refer the reader to

[53, 54, 138] for a comprehensive review of various classification methods used in MI-BICs. Throughout

this thesis, we will mainly utilize the simple linear classifier (Lin) which classifies each sample based on

its distances from the means of different classes, denoted by m̌i, i = 1, · · · , C. The sample would be

assumed to belong to class Ωi if m̌i is the closest class mean to the test sample.

We will also consider the Naive Bayesian Parzen Window (NBPW) classifier as a benchmark for

FBCSP-based approaches since it has been shown to provide a competitive performance compared to

other FBCSP-based solutions [49]. For any feature vector x, the NBPW method uses the following

classification rule to classify the data:

Ω̂ = arg max
Ωi

p(Ωi|x) (3.13)

where p(Ωi|x) is determined using the Bayes rule, i.e,

p(Ωi|x) =
p(x|Ωi)p(Ωi)

p(x)
=

p(x|Ωi)p(Ωi)∑
i p(x|Ωi)p(Ωi)

(3.14)

In order to estimate the conditional probability p(x|Ωi), in the NBPW method it will be naively as-

sumed that the elements of the feature vector x = [x1, · · · , xD] are conditionally independent, i.e.,

p(x|Ωi) =
∏D
d=1 p(xd|Ωi). Finally, the conditional probability of each feature element, i.e., p(xd|Ωi) will

be estimated using a Gaussian smoothing kernel function [139,140], as follows:

p̂(xd|Ωi) =
1

ni

∑
x
(t)
d,j∈Ωi

K

(
xd − x(t)

d,j

h

)
(3.15)
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where x
(t)
j = [x

(t)
1,j , · · · , x

(t)
D,j ] ∈ Ωi denotes the jth sample from the set of training feature vectors from

class Ωi, and K(·) is the univariate Gaussian kernel function. The parameter h will be determined based

on the standard deviation of xd [140].

3.4 Matrix-Variate Gaussian Model for Spatio-Spectral Fea-

tures

In the design of BCI systems, it is crucial to design both domain-specific and domain-agnostic fea-

ture extraction steps based on the characteristics of the corresponding spatio-spectral features. In the

context of motor-imagery BCI systems, due to the multichannel structure of the EEG data, all of the

domain specific FE methods that involve spectral feature extraction will generate a set of features which

inherently form a matrix-variate structure.

Figure 3.5(a) illustrates a typical example where the BCI system uses the power spectral features

of multichannel EEG signal for classification of the brain tasks. These features can be extracted using

parametric techniques (e.g, auto-regressive/moving-average method) or non-parametric techniques (e.g.,

short-time Fourier transform or wavelet transform). Both cases generate a feature matrix, in which

each row represents the set of spatial features that correspond to a certain frequency, and each column

represents the set of spectral features that correspond to a certain EEG channel.

Figure 3.5(a) illustrates a similar matrix-variate structure when a joint spatio-spectral FE extraction

method such as filterbank CSP is utilized. In this feature matrix, each row represents the spatial patterns

corresponding to a certain frequency band, whereas each column represents the set of different spectral

feature corresponding to a certain spatial pattern.

Using a similar analogy, it can be readily seen that for all of the domain-specific FE methods that

were discussed in Sections 3.1.2 and 3.1.3, the resulting feature set forms a matrix-variate spatio-spectral

structure. In this thesis, we argue that this matrix-variate structure conveys important information

about the corresponding spatio-spectral features, which has been ignored in the BCI literature for both

domain-agnostic FE and domain-specific FE.

Most of the BCI systems in the literature do not consider the joint characteristics of the spatial and

spectral features at the domain-specific feature extraction stage. This problem manifests itself when the

spatio-spectral features in different bands and/or different channels are extracted independently. One

simple example of this case is the FBCSP method, in which the spectral feature extraction is performed

using bandpass filters on each channel independent from the other channels, and subsequently the spatial
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feature extraction is performed by applying the CSP method on each frequency band independent from

the other bands.

Similarly, at the domain-agnostic feature extraction stage, most of the existing methods ignore the

inherent structure of the spatio-spectral features that are passed to them by the domain-specific feature

extraction methods. One simple example of this case is when generic vector-variate feature extraction

methods, such as the LDA or PCA algorithms, are directly applied to the spatio-spectral features by

concatenating all the spatio-spectral features into a single feature vector.

In this section we propose a new model for the spatio-spectral EEG features which provides a math-

ematical framework for both domain-specific and domain-agnostic feature extraction methods to take

into account the joint characteristics of the spatial and spatial features. This model is based on the

matrix-variate Gaussian assumption for the spatio-spectral EEG features. In order to introduce this

model in this chapter, we use the following general notation for the spatio-spectral features. Let Xij

denotes the jth spatial feature of the ith spectral band. We construct a feature matrix, denoted by

X ∈ RNf×Ns , which contains all the spatio-spectral features at the output of the domain-specific FE

step. Note that this notation can be used for any of the spatio-spectral feature extraction methods

reviewed earlier in this chapter. In particular, we will use this notation in the next two chapters for

representing the features in the FBCSP method. Nevertheless, the discussions and definitions presented

in this chapter are general and are not restricted to the FBCSP algorithm.

3.4.1 Model Definition

Let f(X|Ωi) denote the conditional probability of matrix X ∈ RNf×Ns under class Ωi, and let P (Ωi)

represent the prior probability of Ωi. A matrix-variate Gaussian model [141] for the feature matrix X is

denoted by:

X|Ωi ∼ N (Mi,Φi,Ψi), 1 ≤ i ≤ C (3.16)

Here, the matrices Mi,Φi,Ψi denote the mean, spectral covariance, also called column-wise or left

covariance, and the spatial covariance, also called row-wise or right covariance, of the class Ωi. These
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matrices are defined as follows:

Mi = EX|Ωi
(X) , (3.17)

Φi = tr−1(Ψi) ∗ EX|Ωi

(
(X−Mi)(X−Mi)

T
)
, (3.18)

Ψi = tr−1(Φi) ∗ EX|Ωi

(
(X−Mi)

T (X−Mi)
)
. (3.19)

Using this model, knowledge of the parameters Mi, Φi, and Ψi will suffice to determine the conditional

probability of X for different classes, as follows:

f(X|Ωi) =
exp

{
− 1

2 tr
[
Φ−1
i (X−Mi)

TΨ−1
i (X−Mi)

] }
(2π)

NfNs

2 det(Φi)
Nf
2 det(Ψi)

Ns
2

(3.20)

Vector-variate Gaussianity is a fairly common practical assumption for EEG signals as implied by

utilization of relevant methods such as LDA [132]. However, the matrix-variate model in (3.16) corre-

sponds to a specific structure for the covariance of the vectorized data, as follows. Assume a column

concatenation operation vec(.) that operates on the matrix-variate data X and returns x = vec(X).

Then, the mean of x in Ωi equals µi = vec(Mi), and assuming that (3.16) holds, the class-conditional

covariance of x equals

Σi = Ψi ⊗Φi, (3.21)

where Σi ∈ RNfNs×NfNs , Ψi ∈ RNs×Ns , Φi ∈ RNf×Nf , and the ⊗ symbol represents the Kronecker

product operator (ref. Appendix A.2). Therefore, the matrix-variate Gaussianity implies a separable

structure for the covariance matrix of the vectorized data as defined by (A.7). Let m
(i)
kj , φ

(i)
kj , and ψ

(i)
kj

be the (k, j)th elements in Mi, Φi and Ψi matrices, respectively. Then, Equation (A.7) implies that

EX|Ωi

(
(xk1j1 −m

(i)
k1j1

)(xk2j2 −m
(i)
k2j2

)
)

= φ
(i)
k1k2

ψ
(i)
j1j2

(3.22)

In other words, the covariance between any two spatio-spectral features can be decomposed into a spatial

covariance term and a spectral covariance term. This separability is an important property which will

be used in the algorithms proposed in the next two chapters for spatio-spectral feature extraction.

It is also worth mentioning that any bilinear transformation of the form y = aTXb on the matrix-

variate data X ∈ RNf×Ns is equivalent to a linear transformation on x = vec(X), as follows: y =

vec(b ⊗ a)Tx. In other words, bilinear spatio-spectral filtering of the matrix-variate data is equivalent

to a certain class of vectorial filtering that has a Kronecker product structure.
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3.4.2 Homoscedastic vs Heteroscedastic Models

The matrix-variate Gaussian model can be assumed to be either heteroscedastic or homoscedastic, de-

pending on the properties of the spatio-spectral EEG features. If the spatial-covariance matrices are the

same for all the classes and the spectral-covariance matrices are also the same, then the corresponding

model will be called homoscedastic. Otherwise, the model will be called heteroscedastic. In other words,

a homoscedastic model requires the following condition to be satisfied:

Φi = Φ, 1 ≤ i ≤ C (3.23)

Ψi = Ψ, 1 ≤ i ≤ C (3.24)

In the context of BCI systems, both homoscedastic and heteroscedastic assumptions have been used

in different methods. As an example the CSP method explained in Section 3.1.1, and all its variants,

are based on the heteroscedastic assumption; whereas the LDA method is based on the homoscedastic

assumption.

3.5 Summary and Concluding Remarks

In this chapter, a general framework for feature extraction in motor-imagery BCI systems was introduced.

The framework encompasses most of the existing solutions for MI-BCI in the literature. Based on this

framework, it was shown that the feature sets extracted by most of the domain-specific FE methods

form an inherent spatio-spectral feature matrix of the form X ∈RNf×Ns , where Nf and Ns represent

the dimensionalities in the spectral and spatial domains, respectively. Based on this observation, we

proposed to use a matrix-variate Gaussian distribution to model the statistical characteristics of X.

The main difference between the matrix-variate Gaussian model and the conventional multivariate

Gaussian model is the restrictive Kronecker structure assumption for the covariance of the data. This

specific covariance structure can be exploited by the DS-FE/DA-FE methods to reduce the computation

cost of the feature extraction stage. More importantly this assumption allows us to estimate the covari-

ance of the data in lower dimensional spaces of Φ and Ψ, and improve the estimation accuracy of the

second order statistics of the data, which in turn can improve the overall performance of the system. In

the next two chapters, we will study how this matrix-variate Gaussian model can be used in the design

of domain-agnostic FE and domain-specific FE methods.

In the next two chapters, we will mainly focus on spatio-spectral feature extraction methods, such as

FBCSP, that are based on combination of bandpass filtering and the CSP algorithm. The main reason
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for this focus is the fact that CSP has been proven to be one of the best DS-FE algorithms whose

theoretical assumptions very well match the neurophysiological properties of the EEG signals during

motor imagery tasks. However, the proposed matrix-variate Gaussian model can potentially be used in

other spatio-spectral FE approaches that were reviewed in this chapter. In particular, our studies in

Chpater 7 will examine the possibility of using the matrix-variate Gaussian model for the complex-valued

spatio-spectral features that are generated through Fourier domain analysis of the EEG data.

Finally, it is noteworthy that the surface Laplacian and channel selection methods for domain-specific

feature extraction, which were briefly reviewed in Sections 2.3 and 3.1.1 are two of the most important yet

simple methods which are widely used in the BCI literature in conjunction with other DS-FE algorithms.

In this thesis, therefore, we will comprehensively study the effect of each of these methods on the overall

performance of the newly proposed algorithms in Chapters 4 and 5.



Chapter 4

Domain-Agnostic FE Based on

Matrix-Variate Model for FBCSP

Features

In this chapter, we use the proposed framework of Chapter 3 to introduce a new domain-agnostic FE

approach for extraction of the most discriminant features from the spatio-spectral matrix X. We argue

that the common approach in the BCI literature for domain-agnostic FE, which requires vectorization

of the matrix X by breaking it along the columns (or rows), introduces unnecessary degrees of freedom

by ignoring the inherent structure of the data along the broken dimension. In other words, vectorization

of X removes the inherent spatio-spectral structure of the data. This inherent structure can potentially

be exploited by the feature extractor to reduce the computational cost and/or improve the accuracy of

the overall system.

In this section, we focus on the state of the art filterbank common spatial patterns (FBCSP) method,

which is proved to be highly successful as a domain-specific FE algorithm for motor-imagery BCI systems.

Following our general reasoning regarding the matrix-variate structure of the extracted spatio-spectral

features, we propose to use the FBCSP method in conjunction with matrix-variate (or bilinear) feature

extractors in the domain-agnostic FE stage. In particular, we will study the bilinear extensions of the

linear discriminant analysis (LDA) method, which is the Bayes optimal strategy for features extraction

in homoscedastic Gaussian scenarios. In order to emphasize the importance of the bilinear operations

in the domain-agnostic FE stage, we will compare the proposed approach with the case where FBCSP

50
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(a)

Figure 4.1: Filter-bank common spatial pattern (FBCSP) method for spatio-spectral feature extraction
in a typical motor-imagery BCI system.

is used in conjunction with the conventional LDA method.

4.1 Matrix-Variate Gaussian Model for FBCSP Features

As mentioned in Section 3.1.1, the filterbank common spatial pattern (FBCSP) method is a highly

successful multiband extension of the CSP method. In the FBCSP method, first different EEG rhythms

are obtained by means of bandpass filtering the EEG signal, and then a bank of CSP modules is

deployed to separately extract spatial features from each EEG rhythm; hence the name filter-bank CSP.

The resulting features are then used for classification of the EEG data, as illustrated in Figure 4.1.

In this approach, each spectral band is processed independently by a separate CSP module, and

hence possible correlations between different EEG rhythms are not considered by the bank of CSP

filters. Therefore, the resulting spatio-spectral feature space is potentially redundant and relatively high

dimensional. This redundancy in the feature space increases the computational cost of the classification

step and can lead to potential performance loss.

Following our discussions in Section 3.4 about the matrix-variate structure of the FBCSP features,

In this chapter, we introduce a new approach for domain-agnostic FE in motor-imagery BCIs. In this

approach, the matrix-variate structure of the FBCSP features will be taken into account in the domain-

agnostic FE step. Towards this end, we adopt a homoscedastic matrix-variate Gaussian model for the

FBCSP features, which provides us with an efficient mathematical framework for developing the desired

domain-agnostic FE algorithm.

Let X∈RNf×Ns represent the spatio-spectral feature matrix at the output of the domain-specific FE

step, where Xij denotes the jth spatial feature of the ith spectral band. Here, we have assumed that

a total of Nf bandpass filters have been deployed, and for each frequency band, a total of Ns spatial
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features have been extracted. A homoscedastic matrix-variate Gaussian model for X implies:

X|Ωi ∼ N (Mi,Φ,Ψ), 1 ≤ i ≤ C (4.1)

matrices Mi is the mean of the FBCSP feature matrix during task Ωi, Φ is the spectral covariance of

the data,Ψ denotes the spatial covariance of the data. As mentioned in Section 3.4, the above matrix-

variate Gaussian model is equivalent to the following vector-variate Gaussian model for the column-wise

vectorized representation of X, denoted by x = vec(X),

x|Ωi ∼ N (vec(Mi),Ψ ⊗Φ), 1 ≤ i ≤ C (4.2)

It has been shown in the literature that for vector-variate homoscedastic Gaussian data, the linear

discriminant analysis (LDA) feature extractor followed by a linear classifier provides the Bayes optimal

solution for classification of the data [39, 137]. This motivates us to focus on the LDA-based solutions

for classification of the matrix-variate Gaussian data X. A Naive approach is to vectorize the feature-

matrix X and apply the LDA algorithm to the feature vector x = vec(X). Theoretically, this approach

provides the Bayes optimal solution when the distribution parameters are known. In practice, however,

this vectorization of the data unnecessarily increases the dimensionality of the feature space and imposes

several challenges in estimation of the distribution parameters, which in turn can lead to a significant

performance loss, as will be discussed in the experimental results (ref. Section 4.3). The alternative

approach is to deploy a bilinear extension of LDA method as will be discussed in the next section.

4.2 Bilinear Domain-Agnostic FE for Matrix-Variate Gaussian

Data

As mentioned in the previous section, the LDA algorithm provides a Bayes optimal solution for feature

extraction from homoscedastic vector-variate Gaussian data. In the pattern recognition literature, there

exist several works that have attempted to extend the LDA algorithm to be applicable to matrix-variate

data [55–63].

The simplest approach is the work in [55–57], in which the LDA is applied only to the rows (or

columns) of the matrix X, and provides a one-sided solution for reducing the dimensionality of the

X across either the rows or columns of X. This one-sided approach is not suitable in the context of

BCI systems, since it only deals with the feature matrix X in either the spectral domain or the spatial



Chapter 4. DA-FE Based on Matrix-Variate Model for FBCSP Features 53

domain, while ignoring the other domain.

The second approach is the approach used in [58–62], which involves intuitive two-sided (or bilinear)

variations of the LDA method. Among these works, the solution proposed by [58] is one of the most

promising methods, which has been shown to provide a competitive performance in the context of image

processing. It is worth mentioning that despite its high performance, the work in [58] does not generally

provide the Bayes optimal solution [142–144].

The third approach for bilinear extension of LDA is approach taken by the recent works in [63, 73],

which have directly used the matrix-variate Gaussian assumption for the data in order to derive the

optimal Bayesian strategy for this type of data. Unlike the previous two approaches, this third approach

does not suffer from any unnecessary information loss.

In the rest of this chapter, we will study the possibility of deploying the following two particular

bilinear LDA methods in conjunction with the FBCSP algorithm:

• The iterative bilinear extension of LDA as suggested by [58], which will be referred to as the

2DLDA method,

• The Bayes optimal bilinear extension of LDA as suggested by [73], which will be referred to as the

matrix-to-vector LDA (MVLDA) method.

These two methods will be briefly reviewed in the next subsections.

4.2.1 Two-Dimensional Linear Discriminant Analysis (2DLDA)

The 2DLDA method proposed by [58], is a suboptimal bilinear extension of the LDA method. Let

X∈RNf×Ns represent the spatio-spectral feature matrix at the output of the domain-specific FE step,

and assume that Ni training samples Xi,n , 1 ≤ n ≤ Ni, are available for each class Ωi, and the total

number of training samples is N =
∑C
i=1Ni. The 2DLDA method uses these training samples in an

iterative approach to provide the bilinear operators U ∈ RNf×D1 and V ∈ RNs×D2 . These bilinear

operators, will then be applied to the matrix-variate data X to reduce its dimensionality from Nf ×Ns

to D1 ×D2, as follows:

Y = UTXV, (4.3)

In order to derive these operators, the 2DLDA method first estimates the class conditional means
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and the total mean of the data as follows:

M̂i =
1

Ni

Ni∑
n=1

Xi,n (4.4)

M̂ =

C∑
i=1

P̂ (Ωi)M̂i (4.5)

where P̂ (Ωi) = Ni

N . Then, at the first round of the iterative algorithm, the matrix V0 will be assumed

to be a diagonal matrix, where the first D2 diagonal entries are equal to one and the rest are zero. After

applying this spatial transformation matrix V0 to the data, the following between-class spectral scatter

and within-class spectral scatter matrices will be estimated:

Ŝ0
BL =

C∑
i=1

P̂ (Ωi)(M̂i − M̂)V0V
T
0 (M̂i − M̂)T , (4.6)

Ŝ0
WL =

1

NsN

C∑
i=1

Ni∑
n=1

(Xi,n−M̂i)V0V
T
0 (Xi,n−M̂i)

T (4.7)

Now, denote the eigenvectors of (Ŝ0
WL)−1 Ŝ0

BL by u0
d, where 1 ≤ d ≤ D1, and form the following

spectral transformation matrix: U0 = [u0
1, · · · ,u0

D1
]. After applying this spectral transformation to

the data, the following between-class spatial scatter and within-class spatial scatter matrices will be

estimated:

Ŝ0
BR =

C∑
i=1

P̂ (Ωi)(M̂i − M̂)TUT
0 U0(M̂i − M̂), (4.8)

Ŝ0
WR =

1

NfN

C∑
i=1

Ni∑
n=1

(Xi,n−M̂i)
TUT

0 U0(Xi,n−M̂i) (4.9)

Accordingly, the spatial transformation matrix V1 will be formed as V1 = [v1
1, · · · ,v1

D2
], where v0

d,

1 ≤ d ≤ D1, denote the eigenvectors of (Ŝ0
WR)−1 Ŝ0

BR .

The above procedure will be repeated by substituting V0 with V1 in Equations (4.6) and (4.8) and

calculating the corresponding U1 matrix, which in turn will be used to calculate V2. This iterative

procedure will be repeated for a few iterations to allow for spectral and spatial transformation matrices

converge to the stable values U and V, respectively. In our experimental analysis on motor-imagery EEG

signals, we have observed that 10 iterations is large enough for the convergence of the transformation

matrices in different scenarios, and hence we have fixed the number of iterations to 10 to provide a fair

comparison across different scenarios.
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4.2.2 Matrix-to-vector Linear Discriminant Analysis (MVLDA)

The MVLDA method is based on the matrix-variate Gaussian model described in Section 3.4. This model

implies that the covariance between any two spatio-spectral features can be decomposed into a spatial

covariance term and a spectral covariance term. The corresponding spatial/spectral covariance matrices

can be estimated using the following equations1 , assuming that Ni training samples Xi,n , 1 ≤ n ≤ Ni,

are available for each class Ωi:

Ψ̂ =
1

NfN

C∑
i=1

Ni∑
n=1

(Xi,n−M̂i)
T (Xi,n−M̂i), (4.10)

Φ̂ =
1

NsN

C∑
i=1

Ni∑
n=1

(Xi,n−M̂i)(Xi,n−M̂i)
T . (4.11)

where M̂i = 1
Ni

∑Ni

n=1 Xi,n.

Moreover, the MVLDA method also assumes a separable model for the between-class scatter matrix

SB = SBR ⊗ SBL, where

ŜB =

C∑
i=1

P̂ (Ωi)(µ̂i − µ̂)(µ̂i − µ̂)T (4.12)

ŜBL =

C∑
i=1

P̂ (Ωi)(M̂i − M̂)(M̂i − M̂)T , (4.13)

ŜBR = tr−1(SBL) ∗
C∑
i=1

P (Ωi)(M̂i − M̂)T (M̂i − M̂). (4.14)

Here, µ̂ = vec(M̂), M̂ =
∑C
i=1 P̂ (Ωi)M̂i, and P̂ (Ωi) = Ni

N .

Under this set of assumptions, we denote the eigenvalues and eigenvectors of Φ̂
−1

ŜBL by λl and ul

respectively, where 1 ≤ l ≤ Nf . Similarly, we denote the eigenvalues and eigenvectors of Ψ̂
−1

ŜBR by γj

and vj respectively, where 1 ≤ j ≤ Ns. Now, let λl and γj be sorted in descending order. Then, the

Bayes optimal features for a matrix-variate Gaussian data with separable Σ and SB matrices, can be

obtained through a bilinear operation of the following form:

Y = UTXV, (4.15)

1Equations (4.10) and (4.11) provide moment estimates of the spatial and spectral covariances [63]. Alternatively, one
can use the iterative approach of [145] which provides the maximum-likelihood (ML) estimates [146]. However, our studies
have shown that for EEG signals, the above non-iterative estimators provide similar performance compared to the ML
estimators.
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Table 4.1: Pseudocode for training the MVLDA feature extractor.

Inputs:

- Ni training samples Xi,n , 1 ≤ n ≤ Ni for each class Ωi, 1 ≤ i ≤ C. The total number of
samples is N .

- The number of desired extracted features, denoted by Nf .

Outputs:

- The feature extraction operators UNf×Nf
and VNs×Ns

.

- The corresponding λl and γj values which determine the priority in selecting the elements of
the resulting feature matrix.

Procedure:

1. Estimate the class means Mi, 1 ≤ i ≤ C, the spatial covariance matrix Ψ, and the spectral
covariance matrix Φ, using (4.10), and (4.11).

2. Calculate SBL and SBR according to (4.13) and (4.14).

3. Calculate the eigenvalues λl and γj and the corresponding eigenvectors ul, 1 ≤ l ≤ Nf , and
vj , 1 ≤ j ≤ Ns, for Φ−1SBL and Ψ−1SBR respectively.

4. Construct U and V according to (4.16)

where

U = [u1,u2, . . . ,uNf
] and V = [v1,v2, . . . ,vNs

] (4.16)

are spectral and spatial linear operators, respectively, whose columns are ul and vj vectors. This

procedure projects X onto columns of U and V to get the feature matrix Y. Finally, we select the y
lj

elements of Y which correspond to the Nf largest λlγj values, and stack them in the y feature vector;

hence it is called matrix-to-vector LDA. This is one of the most important advantages of MVLDA in

comparison to 2DLDA method. Recall that the 2DLDA method is a matrix-to-matrix transformations

and provides a matrix-variate set of features at its output, without any measure for sorting the features

based on their discriminant power.

Table 4.1 outlines the pseudo-code for training the MVLDA method. The proposed MVLDA solution

relies only on the Nf - and Ns-dimensional operations. Therefore, the computational complexity of the

eigen decomposition step for MVLDA is broken down into O(Nf
3 + Ns

3), compared to vector-variate

LDA’s complexity of O((NfNs)
3). Moreover, in MVLDA the two eigen decompositions of order O(Nf

3)

and O(Ns
3) can be implemented in parallel, which is a significant advantage for implementation of this

algorithm in real time. Finally, it is worth mentioning that the lower-dimensional covariances Φ and Ψ

can be estimated more reliably than the higher-dimensional covariance matrix Σ required by LDA.
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4.3 Experimental Analysis

In this section, Data set V from BCI competition III [147] and Data set 2a from BCI competition IV [148]

will be used to study the performance of MVLDA and 2DLDA methods as two candidates for matrix-

variate domain-agnostic FE in MI-BCIs. We will also compare the performance of these two methods

against the conventional vector-variate LDA, to emphasize the importance of utilizing matrix-variate

solutions in the domain-agnostic FE step.

In order to study the interplay between different domain-specific and domain-agnostic feature ex-

tractors, and its effect on the overall performance of the BCI system, we consider the following scheme.

The EEG data is first passed through an optional spatial FE module which contains surface Laplacian

(SL) filtering and/or channel selection (CS). Then, a bank of bandpass filters is used to extract different

rhythmic activities of the signal. Finally, the resulting rhythms are passed through a filter bank of CSP

modules to extract spatio-spectral features [49]. To apply this scheme in a multiclass motor-imagery

scenario, we use the one-versus-rest (OVR) multiclass extension of the FBCSP method [49], as explained

in Section 4.3.3.

In our simulations, the effect of including the SL or CS are also studied separately. As a result, a total

of 12 combinations for DS-FE scheme and DA-FE methods are considered: 2 × 2 × 3 combinations of

SL (Yes/No), CS (Yes/No), and LDA/2DLDA/MVLDA. Since our focus in this thesis is on the feature

extraction steps, we mainly consider a simple linear Gaussian classifier for all combinations of these

domain-specific FE and domain-agnostic FE methods.

For completeness of the results, we have also studied the case where no domain-agnostic FE is

utilized and the FBCSP features are directly passed to the classifier. In this case, we have considered

both the linear classifier and the naive Bayes Parzen window (NBPW) classifier that was discussed in

Section 3.3. The NBPW classifier has been included in this study as a benchmark solution as suggested

by the work in [49]. When no domain-agnostic FE method is present prior to the classifier, we take

the following strategy to provide a fair performance comparison with other methods that are benefiting

from a dimensionality reduction step prior to the classification step. Recall that in the FBCSP method,

the spectral features in each frequency band are inherently sorted by the corresponding CSP module,

though there is no sorting across different bands. In order to be able to manually adjust the number of

features that are passed from the FBCSP to the linear or NBPW classifier, we naively select the “dcsp”

most significant features from each band, which reduces the dimensionality of the feature matrix from

Nf ×Ns to Nf × dcsp.
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4.3.1 Experiment Setup

BCI competition III, Data set V (Exp. 1)

The goal of this competition is to design a BCI algorithm which can classify the following imagined mental

tasks: left-hand movement (Ω1), right-hand movement (Ω2), and generation of words beginning with a

random letter (Ω3). This data set contains EEG recordings of three normal subjects recorded in four

sessions. Each session consists of sequential 15-second trials of the three tasks. The first three sessions

will be used for training purposes, whereas the last session is only used as unseen data for competition,

i.e. testing phase. The signals are recorded using 32-electrode Biosemi system at 512Hz sampling rate,

and the BCI algorithm is required to provide the estimated label Ω̂ every 0.5 second, using only the last

one second of EEG recording. The performance measure for this competition is the correct classification

rate (CCR) of the overall system, defined as the ratio of number of successfully classified samples over the

total number of samples. The chance of random classification in this experiment is Prand = 1/C = 0.33,

and the winning algorithm for this competition in the literature achieves a performance of %62.72 at

the classifier output [149] 2.

BCI competition IV, Data set 2a (Exp. 2)

This competition aims to design a BCI algorithm which can classify the following motor imagery tasks:

left hand (Ω1), right hand (Ω2), both feet (Ω3), and tongue (Ω4) movement. This data set contains

EEG recordings of nine normal subjects recorded in two sessions. The signals are recorded using 22

Ag/AgCl electrodes at 250Hz sampling rate. Each session consists of 6 runs, each of which includes

48 trials of length 3 seconds, yielding a total of 288 trials per session. The first session will be used

for training and the second session is only used as unseen data for testing phase. This data set also

contains three electrooclugram (EOG) channel recordings that are provided for subsequent application

of artifact processing methods and shall not be used for classification. The competition requires the BCI

algorithms to provide a continuous classification output for each sample in the form of the estimated label

Ω̂. The performance measure for this competition is the kappa coefficient (κ) of the overall system [152],

which is defined as follows: κ = (CCR − Prand)/(1 − Prand). Here, Prand is the probability of random

classification, i.e., Prand = 1/C = 0.25 for this experiment. Note that the measure κ is normalized such

that κ = 0 for a random classifier, and its maximum value is κ = 1 for ideal classifier, as illustrated in

Figure 4.2. The winning algorithm for this competition in the literature is the FBCSP-NBPW method,

2It is worth mentioning that after the original competition, the works in [150, 151] have outperformed the algorithm
of [149] by deploying more complicated classifiers. However, all of these works are based on using short-time Fourier
transformation for extraction of the spatio-spectral features from EEG signal.
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Table 4.2: Parameters Used for Domain-Specific Feature Extraction Algorithms in Exp. 1 and Exp. 2

Experiment 1 Experiment 2

Raw Data Sampling Rate 512 Hz 250 Hz
Number of Channels (Nch) 32 22

Surface Laplacian (SL) Filter Order 2 2
Regularization Factor (λ) 0.01 0.01

Channel Selection (CS) Selected Centro-Parietal Channels C3, Cz, C4, CP1, CP2, P3, Pz, P4 Channels 8-12, 14-21
Number of Selected Channels (Nch) 8 13

Bandpass Filter Bank Filter Type Chebyshev Type-II Chebyshev Type-II
Filter Order 6 6
Selected Bands 8-12, 12-16, · · · , 28-32 Hz 4-8, 8-12, · · · , 36-40 Hz
Number of Bandpass Filters (Nf ) 6 9

Common Spatial Patterns Epoch Length 1 sec 2 sec
Overlapping Factor 1/2 19/20

which has been faithfully re-implemented in our experimental studies.

Table 4.2 presents the parameters used to implement the processing steps of the DS-FE schemes and

extract the spatio-spectral feature matrix XNf×Ns . It should be noted that

• The channel selection (CS) is performed by selecting the centro-parietal channels located over the

motor cortex in each experiment. Hence, Nch ∈ {8, 32} for Exp. 1 and Nch ∈ {13, 22} for Exp. 2,

depending on whether or not CS is used.

• In each experiment, the epoch length and frequency range used by the winning algorithm in the

original competition are adopted in this chapter to provide a fair comparison between alternative

solutions.

It is noteworthy that in both experiments, the EEG signals are collected under controlled conditions,

where the subjects are asked to sit relaxed on a chair and minimize their body movements in order

to minimize the amount of interfering artifacts. Furthermore, the dataset providers have asked EEG

experts to visually inspect the recorded signals to mark the trials that are contaminated with artifacts.

As recommended by the dataset providers, these artifact contaminated trials are excluded from our

experimental analysis, and hence no automated artifact removal procedure is used.

A Comparative Note on The Datasets Used in Exp. 1 and Exp. 2

As mentioned in the description of each experiment, both databases in Exp. 1 and Exp. 2 contain

multichannel EEG data which is collected during motor-imagery tasks. However, these two datasets

are significantly different in terms of the availability of the training data. In Exp. 1, each trial is of

length 15 seconds, which is significantly longer than the 3 second trial length in Exp. 2. In the context

of motor-imagery tasks, the training trial length is of great importance. When the training trials are
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Figure 4.2: Kappa value defined as a normalized version of the correct classification rate (CCR): κ =
(CCR−Prand)/(1−Prand). Note that Prand = 1/3 for Exp. 1 and Prand = 1/4 for Exp. 2. The shaded
part of the graph illustrates the performance values (CRR and Kappa) that are not acceptable (i.e.,
random performance or worse).

longer, the subjects will have enough time to concentrate on the desired motor-imagery task and produce

stable brain rhythms that can be reliably used for training.

Furthermore, the training data in Exp. 1 has been collected during three different sessions, whereas

Exp. 2 only includes one session of EEG recording for training. It is well known in the context of motor-

imagery BCIs that the EEG characteristics exhibit inter-session variations, which need to be taken into

account while training the BCI algorithm.

Since motor-imagery BCI systems are mostly designed for longterm utilization by the user, it is

usually assumed that the BCI algorithm has access to a training dataset with long enough trials which

are collected over at least two different recording sessions. From this perspective, the training dataset

in Exp. 1 can be considered as a typical dataset for motor-imagery applications, whereas the training

set in Exp. 2 is an extreme case where only one recording session with very short trials is available is

available for training the algorithms. Although this extreme case is unlikely to happen in the MI-BCI

applications, we have included Exp. 2 in our analysis to study the robustness of different algorithms in

the extreme conditions.

Finally, it should be mentioned that in order to apply the surface Laplacian filter to the EEG data,

we need the exact locations of the EEG sensors. The dataset providers in Exp. 1 have provided the

exact coordinates of the locations of the EEG sensors, using the standard 10-10 system. In contrast, the

dataset in Exp. 2 only contains the approximate relative locations of the EEG sensors. In order to be
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able to use the surface Laplacian filter in the Exp. 2, we have mapped these approximate locations, to

the following closest standard locations: Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6,

CP3, CP1, CPz, CP2, CP4, P1, Pz, P2, POz. The effect of this approximate mapping will be discussed

latter in the experimental results.

4.3.2 Bandpass Filter Design

In this section, we will briefly discuss the design criteria which are of particular interest for motor-

imagery BCI systems. The appropriate design of the bandpass filters has a great influence on the overall

performance of the FBCSP method.

Selecting The Type of Filter

As mentioned in Section 3.1.2, in case of the motor-imagery BCI systems, infinite-impulse-response (IIR)

digital filters are commonly used. In order to design the IIR filter, the following criteria are of particular

importance for us: (a) Flat passband, (b) Small delay, (c) Sharp transitions band. Among the commonly

used IIR filters, only the Chebyshev Type II and Butterworth filters have a flat passband, and both have

a sharp transition band. Moreover, the Butterworth filter and the Chebyshev Type II filter introduce

less distortion the signal, compared to other IIR filters such as Elliptic or Chebyshev Type I filters, since

they have a flatter group delay response.

In order to provide a better insight into the differences between the characteristics of these two IIR

filters, consider the following example. In order to extract the alpha rhythm from the EEG signal, we

need a bandpass filter with the following criteria:

• Passband Frequency Range: 8− 12 Hz

• Stopband Frequency Range: f < 6 Hz and f > 14 Hz

• Sopband Attenuation: 60 dB

Based on these criteria, we have designed a Chebyshev Type II filter and a Butterworth filter3, whose

frequency response and impulse response are illustrated in Figure 4.3. In order to design these filters, the

minimum filter order which satisfies the above passband/stopband requirements has been used; hence,

the Butterworth filter is of order 28, and the Chebyshev Type II filter is of order 14. Figure 4.3 reveals

that although these two filters have similar frequency responses in the passband and the transition band,

the delay introduce by the Chebyshev Type II filter is half the delay introduced by the Butterworth filter.

3It is worth mentioning that these filters are designed using MATLAB’s Filter Design and Analysis Tool (FDATool),
which is part of the signal processing toolbox.
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Figure 4.3: Comparison of the Frequency response and impulse response of the Butterworth and the
Chebyshev Type II filters.

This is due to the fact that the order of the Butterworth filter is two times the order of the Chebyshev

Type II filter.

Based on the above discussions, the Chebyshev Type-II filter will be used in Chapters 4 and 5 to

implement the bandpass filterbank.

Implementation of high order IIR filters

It should be noted that any high order IIR filter can be implemented as a series of second-order sections.

Throughout this thesis, we use the second-order implementation instead of the original high order transfer

function to avoid the round-off errors. The effect of round-off errors for high order IIR filters is such

detrimental that even with double-precision floating point arithmetics the resulting transfer function

would be completely deferent form the desired one.

The effect of round-off error has been illustrated in an example in Figure 4.4. In this example,

a Chebyshev Type II filter with the same characteristics has been implemented using (a) its original

transfer function, and (b) its equivalent second-order sections. This figure reveals that the transfer

function implementation leads to a completely incorrect frequency response.

4.3.3 Multiclass Extension of the FBCSP Method

Due to the fact that CSP modules utilized in FBCSP method are originally designed for binary classifi-

cation scenarios, the FBCSP algorithm is also inherently suitable for binary classification cases. Similar

to the CSP algorithm, however, there are several methods to extend FBCSP for multiclass scenarios.

The work in [49] provides a comparative study of different multiclass extensions of the FBCSP method,
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Figure 4.4: Comparison of the Frequency response of the Chebychev Type II bandpass filter implemented
with (a) high order transfer function, (b) second-order sections. Both transfer functions have been
calculated using MATLAB’s Filter Visualization Tool (FVTool) with double-precision floating point
arithmetics.

including divide-and-conquer strategy, pairwise classification, and the one-versus-rest strategy. It is

shown in [49] that the one-versus-rest approach provides the best performance in comparison to other

strategies; therefore, we adopt this approach in our experimental studies.

The one-versus-rest (OVR) approach for multiclass extension of FBCSP method works as follows.

Let Ω′i be the set of all motor-imagery task excluding the ith task Ωi. The CSP modules will first focus

on the features that discriminate task Ω1 versus the rest of tasks, i.e., Ω′1, by creating a pool of training

samples from all other tasks and assigning them to Ω′1. Accordingly, each CSP module will extract

dcsp (≤ Nch) features to discriminate Ω1 from Ω′1. This procedure will then be repeated for other classes

by selecting one class at a time an comparing it against the rest of classes. This procedure results in a

set of dcsp ∗ C features being generated for each CSP module, which eventually forms a feature matrix

of size Nf × (dcsp ∗C). The resulting feature matrix will then be passed to the domain-agnostic feature

extractor or directly the classifier.

It should be noted that the value of dcsp needs to be an even number due to the fact that CSP

algorithm provides output features in paired groups (ref. Section 3.1.1). Moreover, it is assumed that

the value of dcsp is fixed for all the choices of Ωi versus Ω′i, and over all the frequency bands. Finally, it

is worth mentioning that the extracted features at the output of each CSP module can be sorted, based

on their discriminant power, into groups of size 2C, where the first group includes the most discriminant
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pair of CSP features for classification of Ωi versus Ω′i, 1 ≤ i ≤ C, and so on. However, it is not possible

to sort the features across different bands, since FBCSP deals every band independently.

4.3.4 Cross-validation Results

The performance of BCI algorithms highly depends on the dimensionality of the feature space at the

classifier’s input, denoted by d. To determine the optimal value of d, denoted by dopt, for each feature

extraction scheme, we perform cross-validation on the training data. In case of Exp. 1, since we have

access to three different training sessions, a three fold cross-validation is performed to make sure that for

each validation run the BCI system has access to two distinct sessions for training and one session for

analyzing the performance. This strategy is very helpful in making sure that the inter-session variations

of the EEG data are taken into account during the validation phase.

The dataset in Exp. 2, however, only contains one training session which prevents us from adopting

the same cross-validation strategy as Exp. 1. Therefore, we chose to perform a 5 × 5-fold randomized

cross validation strategy. In this strategy, the training data will be randomized five times. After each

randomization, the data will be divided into five folds. In each validation run, four of these folds will

be used for training the BCI algorithm and the remaining fold will be used for analyzing the resulting

performance. This procedure results in five validation runs for each randomization, which leads to a

total of 25 = 5× 5 validation runs.

The complete results of this cross-validation for all the subjects in the two experiments are presented

in Table 4.3 and Table 4.4. In Table 4.3, the first five rows in Table 4.3 and the first five paired rows in

Table 4.4 provide the results for the following combinations of domain-specific FE, domain-agnostic FE,

and Classification: FBCSP-NBPW (no DA-FE), FBCSP-Lin (no DA-FE), FBCSP-LDA-Lin, FBCSP-

2DLDA-Lin, and FBCSP-MVLDA-Lin. In these first five rows, no surface Laplacian (SL) or channel

selection (CS) has been applied to the data. Similarly, the next groups of five rows provide the results

when different combinations of SL and CS feature extractors are used. For each subject, the optimal

size of the feature space, i.e., dopt, is chosen to be the one which maximizes the average performance

over all the cross-validation runs. The corresponding average performance (and its standard error) are

reported in these two tables. Note that the performance measure is the correct classification rate (CCR)

for Exp. 1, and the Kappa coefficient (κ) for Exp. 2.

It is noteworthy that different methods have different limitations for possible values of d, as follows:

• The LDA algorithm can only provide up to C − 1 features, i.e., two features for Exp. 1 and three

features for Exp. 2.
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• 2DLDA provides dimensions of the form d = m ∗ n where 1 < m < D1, 1 < n < D2, D1 =

rank(SBL) = min (Nf , Ns ∗ (C − 1)), and D2 = rank(SBR) = min (Ns, Nf ∗ (C − 1)).

• MVLDA method can provide any dimensionality in the range of 1 < d < D1 ∗D2, where D1 =

rank(SBL) and D2 = rank(SBR), as defined in the 2DLDA case.

• In case where FBCSP features are directly passed to the NBPW or the linear classifiers, we

manually choose Nf ∗ Ns = Nf ∗ dcsp ∗ C features, where dcsp ∈ {2, 4, · · · , Nch}. (refer to the

discussion at the beginning of Section 4.3)

It should also be mentioned that in Exp. 2, the LDA method fails to operate in most cases, since the

dimensionality of the feature matrix at the output of FBCSP method is higher than the number of

training samples available for calculation of the within-class scatter matrix in LDA method. To alleviate

this problem, for the case of LDA, we manually decrease the dimensionality of the FBCSP matrix,

by choosing the dcsp = 4 most significant features from each band, which results in a matrix of size

Nf × (2 ∗C). Even in this case, the LDA cannot operate when only surface Laplacian filter is applied to

the data, i.e., SL = Yes, CS = No, since the within class scatter matrix turns is singular for this case.

This effect will be discussed in more detail in the discussions related to the effect of surface Laplacian

filtering.

The results in Table 4.3 and Table 4.4 exhibit a large inter-subject variation in the performance

results, which is expected in the context of motor-imagery BCI systems. This inter-subject variation is

mostly due to the fact that motor-imagery tasks require person’s concentration and engagement during

the trials which is not necessarily the same for different subjects particularly since our experiments do

not provide any neuro-feedback to the users. The other factor is the differences between characteristics

of EEG signals from different subjects. Some subjects have better ability to control their mental states,

specially those who are routinely involved in activities that require high levels of mindfulness.

Despite the aforementioned inter-subject variations, the general performance trends are similar in

most of the subjects. Thus, to better illustrate the performance differences between different methods,

Figures 4.5(a) and 4.6(a) provide the bar-plots of the validation results averaged over all the subjects.

Similarly, Figures 4.5(b) and 4.6(b) provide the bar-plots of the testing results averaged over all the

subjects, as will be discussed in Section 4.3.5.

The results in Figures 4.5 and 4.6 reveal that both MVLDA and 2DLDA, which are matrix-variate

domain-agnostic FE methods, provide better performances in comparison to the vector-variate LDA

algorithm. Particularly, the proposed MVLDA method outperforms all other DA-FE methods (including

2DLDA) in majority of DS-FE scenarios. The MVLDA method also outperforms the cases where NBPW
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(a) Average validation results (correct classification rates) in Experiment-1.
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(b) Average test results (correct classification rates) in Experiment-1.

Figure 4.5: Performance results for different methods, averaged over all the subjects in (a) Validation
phase of Experiment-1 and (b) Testing phase of Experiment-1. For each method, the averaged result over
all the subjects are plotted. In case of validation results, standard error corresponding to performance
variations over different validation runs is also presented. For more clarity, the results are illustrated in
four groups, depending on whether or not the surface Laplacian (SL) and channel selection (CS) are ap-
plied in the domain-specific feature extraction step. Note that the performance measure in Experiment-1
is the Correct Classification Rate (CCR), and a random classifier results in %CCR = %33.3 .
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(a) Average validation results (kappa values) in Experiment-2.
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(b) Average test results (kappa values) in Experiment-2.

Figure 4.6: Performance results for different methods, averaged over all the subjects in (a) Validation
phase of Experiment-2 and (b) Testing phase of Experiment-2. For each method, the averaged result
over all the subjects are plotted. In case of validation results, standard error corresponding to per-
formance variations over different validation runs is also presented. For more clarity, the results are
illustrated in four groups, depending on whether or not the surface Laplacian (SL) and channel selection
(CS) are applied in the domain-specific feature extraction step. Note that the performance measure in
Experiment-2 is the Kappa coefficient (κ), and a random classifier results in κ = 0 .
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or the Linear classifier are directly applied to the manually selected features, where as the 2DLDA

provides an inferior performance compared to them. This can be attributed to the weakness of 2DLDA

in extraction of highly discriminant features.

It is noteworthy that the classification performance for different brain tasks are not necessarily the

same. In order to illustrate this fact, consider the confusion matrices of the FBCSP-BMLDA method

in different scenarios during the validation phase of the second experiment, as shown in Table 4.7.

In this table, the confusion matrices for different combinations of surface Laplacian (SL) and channel

selection (CS) are presented. In these confusion matrices, the (i, j)th element represents the probability

of classifying an EEG epoch belonging to task Ωi as task Ωj . Therefore, the diagonal elements of the

confusion matrix represent the correct classification rate for each task, while the off-diagonal terms

represent the miss-classification rates4.

Table 4.7 shows that in general the third task (feet movement) and fourth task (tongue movement)

have respectively the lowest and the highest correct classification rates, except for the case where both

surface Laplacian and channel selection are applied to the data. This difference in the performances can

be attributed to the location and the extent of the cortex area that are responsible for these motor tasks.

Recall from Figure 2.2 that the motor cortex responsible for foot movement is relatively small (compared

to hand and tongue movement) and is located in the area between the right and left hemispheres of

the brain. In contrast the tongue movement involves a large area on the motor cortex. Moreover, it

should be noted that when no surface Laplacian is applied to the EEG data, the probability of miss-

classifying tongue movement as left-hand movement is almost twice the probability of miss-classifying

it as right-hand movement. However, when surface Laplacian is applied to the EEG data, these two

miss-classification probabilities are almost the same5.

4.3.5 Test (Competition) Results

Table 4.5 and Table 4.6 outline the correct performance results of different methods when they applied

to the unseen competition data in Exp. 1 and Exp. 2, respectively. Recall that three training sessions

are available in Exp. 1, whereas only one training session is provided for Exp. 2. At this phase, the value

of dopt for each method and each subject is set based on the cross-validation results of Table 4.3 and

4The confusion matrix for an ideal classifier will be equal to identity matrix.
5This phenomenon requires further neurophysiological investigation based on specific information about the subjects,

specially whether they are right-handed or left-handed, which is not available in the database descriptions. In more than
%90 of right-handed people and more than %60 of left-handed people, it is expected that the left hemisphere of the brain
is more active during vocal tasks [153, 154]. However, depending on the handedness of the subjects and how they are
imagining the tongue movement, it is possible that the right hemisphere becomes more active during the tongue movement
task; in which case the tongue movement will be more likely to be miss-classified as left-hand movement in comparison to
right-hand movement.
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Table 4.7: Normalized confusion matrices averaged over all the subjects for FBCSP-BMLDA method
during the validation phase in Exp. 2. Note that the tasks are in the following order: left hand (Ω1),
right hand (Ω2), both feet (Ω3), and tongue (Ω4) movement.

CS=No CS=Yes

SL=No


0.7631 0.0876 0.0580 0.0913
0.1180 0.7615 0.0561 0.0644
0.0737 0.1075 0.7002 0.1185
0.0575 0.0389 0.0752 0.8285




0.7154 0.0845 0.0996 0.1005
0.1338 0.7420 0.0514 0.0728
0.1247 0.0848 0.6897 0.1009
0.0956 0.0415 0.0815 0.7814



SL=Yes


0.6364 0.1373 0.0831 0.1432
0.1581 0.6305 0.0865 0.1250
0.1064 0.1221 0.6154 0.1561
0.1199 0.1203 0.1126 0.6472




0.7625 0.1173 0.0590 0.0612
0.1207 0.7455 0.0637 0.0701
0.0709 0.0639 0.7461 0.1191
0.0749 0.0679 0.1178 0.7394



Table 4.4. It should be noted that the winning method in the literature for Exp. 1 uses a combination of

surface Laplacian + channel selection + short-time Fourier transformation + LDA method and achieves

an average performance of %62.72 at the classifier output6. Also, the winning method in the literature for

Exp. 2 uses the FBCSP-NBPW approach which does not use any surface laplacian or channel selection,

which is provided as the benchmark solution in Table 4.6.

The averaged results over all the subjects in Exp. 1 and Exp. 2 are shown in Figures 4.5(b) and

4.6(b), respectively. If we compare these average results, with the average validation results in Figures

4.5(a) and 4.6(a), we can see that the general trends in testing phase are very similar to the trends in the

validation phase. The minor differences in the performance trends can be attributed to the inter-session

variation of the EEG characteristics, which has a more dominant effect in Exp. 2 since the it was not

observable during the validation phase.

Figures 4.5 and 4.6 reveal that in both validation phase and test phase, the highest performance in

both experiment is achieved when MVLDA method is utilized in the domain-agnostic FE step. Moreover,

it can be seen that the vector-variate LDA method has a very poor and inconsistent performance,

specially in Exp. 2. The 2DLDA method has a reasonable performance in Exp. 1, but fails to provide a

consistent performance in Exp. 2 where the training data is very limited.

4.3.6 Bayes Optimality of the MVLDA

In Section 4.2, it was mentioned that both MVLDA and LDA are Bayes optimal for homoscedastic

matrix-variate Gaussian data when the covariance matrices are known. However, when the covari-

ance matrices need to be estimated from experimental data, MVLDA takes advantage of the reliable

6This winning algorithm also post processes the classifier outputs to correct for some misclassifications, which results
in the final performance of %67.
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matrix-variate estimation in lower-dimensional feature space and hence outperforms LDA. This reli-

able estimation improves the discriminance power of the extracted features, which in turn improves the

performance of the BCI system, as shown by the experimental results.

It should be noted that both MVLDA and 2DLDA take advantage of reliable estimation in the lower

dimensional space. Nevertheless, there is a significant performance gap between 2DLDA and MVLDA

for many DS-FE cases since 2DLDA does not necessarily provide Bayes optimal features.

4.3.7 The Effect of surface Laplacian (SL) filtering

A closer look at the average performances in Figures 4.5 and 4.6 reveals that the surface Laplacian

filtering improves the classification performance in all cases in Exp. 1, but it is not helpful in Exp. 2.

The significant difference between these two experiments is caused by the fact that in Exp. 2 we do

not have access to the exact locations of the EEG sensors, which in turn affects the accuracy of the

surface Laplacian filtering. By comparing the results of Exp. 1 and Exp. 2, we can conclude that if

the exact locations of the EEG sensors are known, then the use of surface Laplacian filtering is highly

recommended. However, the use of surface Laplacian filter with approximate location information might

corrupt the data and result in a significant performance loss.

Assuming that the surface Laplacian is accurately calculated, it will improve the performance of the

subsequent feature extraction and classification methods, since it acts as a spatial highpass filter which

emphasizes the effect of localized sources and increasing the spatial resolution of the EEG recordings.

This effect can be clearly seen in Figures 4.5. Among different algorithms, the 2DLDA method benefits

most from the surface laplacian filtering, specially when no channel selection is performed. As a result,

the poor performance of the 2DLDA method on the raw EEG data (i.e., when no SL or CS has been

performed) can be fixed by deployment of the surface Laplacian filter.

Finally, it should be mentioned that in Exp. 2, the LDA method cannot operate when surface

Laplacian has been applied to the data and all channels are used for feature extraction. In this case,

the LDA suffers from the fact that within-class scatter matrix of the FBCSP features is singular, which

is caused by inaccurate calculation of the surface Laplacian transform. However, this problem can be

resolved if surface Laplacian is combined with channel selection, which reduces the dimensionality of the

data and results in a non-singular within-class covariance matrix.
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4.3.8 The Effect of Channel Selection

In Section 3.1.1, it was mentioned that channel selection is considered as a simple strategy for dimen-

sionality reduction. The results of Table 4.3 and Table 4.4 confirm that dopt decreases for most methods

when only the centro-parietal channels are used instead of all the channels. In case of FBCSP-LDA,

dopt is not affected by channel selection, mostly due to the fact that for LDA method, d can only take

limited value up to C − 1.

The effect of channel selection on the performance is not always consistent when applied to the raw

EEG data. On one hand, channel selection helps to reduce the dimensionality of the data by only

selecting the EEG channels which are located closer to the motor cortex area, which in turn can help in

extraction of more relevant features at the next steps. On the other hand, channel selection completely

ignores the data from discarded channels which may contain relevant information regarding the motor

tasks.

However, when channel selection is applied to the EEG data which is already passed through surface

Laplacian filtering, we can reasonably assume that each EEG channel mostly contains data from its

neighbouring cortex area, and the information from EEG channels which are not close to the motor

cortex can be safely discarded to improve the performance of the BCI system. The results from Figures

4.5 and 4.6 confirm this assumption. It should be noted that even in Exp. 2 the combination of channel

selection and surface Laplacian results in high performances for all the methods. Therefore, we can

conclude that channel selection is mostly effective when combined with surface Laplacian filtering.

4.3.9 The Effect of Feature Space Dimensionality

As mentioned at the beginning of Section 4.3.4, the performance of BCI algorithms highly depends on

the dimensionality of the feature space which is passed to the classifier. Figure 4.7 illustrates the effect

of dimensionality on the performance of different methods for Subject 1 in Exp. 1 and Subject 1 in

Exp. 2, when both surface Laplacian and channel selection are applied to the data during the validation

phase. The performances reported in this figure are the average performances calculated over all the

validation runs. Figures 4.8 and 4.9 illustrate similar results for the rest of subjects in Exp. 1 and Exp. 2,

respectively. In order to clarify the inter-subject variations of the results, all these results are plotted in

the same scale.

It can be seen from these figures that despite the inter-subject variations in the maximum performance

of different methods, a similar trend exists for the relative performance of different methods in all the

subject. In both experiments, for most of the subjects, the MVLDA method achieves the highest
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(a) Correct Classification Rate (CCR) results for Subject 1 in Experiment-1.
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(b) Kappa coefficient (κ) results for Subject 1 in Experiment-2.

Figure 4.7: Performance results for different methods versus the number of features in the validation
phase for the first subject in (a) Experiment-1 and (b) Experiment-2.
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Figure 4.8: Correct Classification Rate (CCR) for different methods versus the number of features for all
the subjects in the validation phase of Experiment-1. The illustrated results are for the case where both
surface laplacian filtering and channel selection have been performed on the data. Note that FBCSP-
LDA method provides at most C − 1 features. Also, the minimum dimension for FBCSP-NB method is
Nf × (2C).

performance among all the methods with a relatively small number of features. This behaviour is owing

to the ability of MVLDA in extraction of highly discriminant features and more importantly sorting

them according to their discriminance power.

In Exp. 1, the 2DLDA method achieves the second highest performance, after MVLDA, however

its best performance at much higher number of features compared to the MVLDA method. This fact

demonstrates the relative weakness of 2DLDA in dimensionality reduction and extraction of the most

significant features. In Exp. 2 were the training data is very limited, the 2DLDA has a very poor

performance and has the second worse performance, after the LDA method, which also suffers from the

small number of training samples.

In cases where no domain-agnostic FE is deployed, i.e., FBCSP-NBPW and FBCSP-Lin, the naive

Bayes classifier and the linear classifier have very close performance for most of the subjects in both

experiments. In Exp. 1, where enough training samples are available, the performance of both classifiers

tend to constantly increase as the number of features passed to the classifier increases. This trend shows

that most of the features extracted by the FBCSP contain discriminant information. If we compare

this trend with performance of FBCSP-MVLDA method, it can be seen that the MVLDA module has

been highly successful in finding a very low dimensional subspace which contains all the discriminant

information of the data.

In Exp. 2, where the training data is extremely limited, the performance of both FBCSP-NBPW

and FBCSP-Lin methods is flat or decreasing for all the subjects. This trend suggests that most of the

features extracted by the FBCSP algorithm do not contain discriminant information or they are highly
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Figure 4.9: Kappa coefficient (κ) for different methods versus the number of features for all the subjects
in the validation phase of Experiment-2. All these methods are applied to the raw EEG data, i.e., No
surface laplacian or channel selection has been performed. Note that FBCSP-LDA method provides at
most C − 1 features. Also, the minimum dimension for FBCSP-NB method is Nf × (2C).
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contaminated with noise. As a result the performance gap between FBCSP-MVLDA and FBCSP-Lin is

not as pronounced as Exp. 1.

In order to Further study the effect of feature space dimensionality on the performance of each

method when surface laplacian and/or channel selection are not applied to the data, we have provided

the performances for Subjects 1 and 2 from Exp. 1 and Subjects 7 and 5 from Exp. 2 in Figures 4.10 -

4.14. For brevity of the results, we have selected one high performing subject and one low performing

subject from each experiments. Similar trends can be seen in other subjects as well.

Figure 4.10 provides the comparative results for MVLDA in both experiments. It can be seen that

the combination of surface Laplacian and channel selection significantly improves the performance of

MVLDA regardless of the number of output features. The only exception is Subject 7 in Exp. 2, in

which case MVLDA already achieves a very high performance of more than %90 using the raw data. It

can also be seen that the use of surface Laplacian without channel selection has little positive effect on

the performance in Exp. 1 while having a deteriorative effect in Exp. 2.

Similarly, Figure 4.11 provides the comparative results for 2DLDA method. Since 2DLDA pro-

vides the features in a matrix-variate structure, it can only support feature numbers of the form

d = m ∗ n. This limitation is the cause of the discontinuities in these plots. Moreover, it should be

noted that for most values of d, there are several values of m and n that can result in a total of d

features. As an example, for d = 12 features, the following are the possible cases for (m,n) values:

(1, 12), (2, 6), (3, 4), (4, 3), (6, 2), (12, 1). In order to have a fair comparison with other methods, for each

value of d we have considered the (m,n) combination which provides the best performance. In Exp. 1,

where enough training data is available, both surface Laplacian and channel selection highly improve

the performance of the 2DLDA. However, in Exp. 2, where training samples are very limited, the per-

formance of 2DLDA can only be improved when both surface Laplacian and channel selection are used

together. The same trend can be observed for for LDA method in Figures

4.4 Summary and Concluding Remarks

In this chapter, a new matrix-variate (or bilinear) approach was proposed for domain-agnostic FE in

the MI-BCI systems. Based on a homoscedastic matrix-variate Gaussian model for the spatio-spectral

features extracted by the FBCSP method, the 2DLDA and MVLDA methods were studied as two main

candidates for matrix-variate extension of the LDA algorithm. Both 2DLDA and MVLDA methods

directly operate on the matrix-variate data, using bilinear spectral and spatial operators.

Compared to LDA, MVLDA provides a reduced computational complexity, allows for possibility
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of parallel training of spatial/spectral operators, and most importantly, utilizes more reliable param-

eter estimates. Furthermore, compared to the 2DLDA method, the MVLDA method is non-iterative,

and more importantly can determine the most discriminant features for an arbitrary reduction in the

dimension. The performance of these schemes was evaluated in two different experiments. The first

experiment represented a typical MI-BCI scenario where training data is collected over multiple sessions

and each training trial lasts for 15 seconds. The second experiment represented an extremely restricted

case where only one training session, with trials of length 3 seconds, is available. In both experiments,

the MVLDA method outperformed the other algorithms, which shows that the assumed matrix-variate

Gaussian distribution provides a reasonable model for the FBCSP features.

Finally, the effect of surface Laplacian (SL) and channel selection (CS) methods on the performance

of the proposed methods was analyzed. The experimental results show that the channel selection is

mostly beneficial when it is combined with surface Laplacian filtering. The surface Laplacian filtering

assures that each EEG channel mostly conveys localized information regarding its neighbouring area on

the brain cortex, which allows us to ignore the EEG channels which are not close to the motor cortex

area and manually reduce the dimensionality of the input data.

It is worth mentioning that motor-imagery BCI systems generally exhibit high inter-subject variabil-

ity, which can be attributed to various factors such as the individual difference in the level of concen-

tration/engagement as well as the neuro-phisiological differences. In both cases the performance of the

BCI can be significantly improved by increasing the amount of training time. In the former case, extra

training with real-time feedback helps the user to improve his/her concentration level, which in turn

improves the performance of the BCI system. In the latter case, the extra training helps the algorithm

to have a better estimation of the signal parameters and avoid overfitting.
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Figure 4.10: The effect of surface Laplacian (SL) filtering and channel selection (CS) on the performance
of FBCSP-MVLDA method versus the number of features that are used for classification. For brevity,
only the results of two subjects from each experiment are presented to illustrate the general trends in
one high-performing subject and one low-performing subject.
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Figure 4.11: The effect of surface Laplacian (SL) filtering and channel selection (CS) on the performance
of FBCSP-2DLDA method versus the number of features that are used for classification. For brevity,
only the results of two subjects from each experiment are presented to illustrate the general trends in
one high-performing subject and one low-performing subject. To provide a more clear illustration, the
graphs are zoomed in to the range of 0− 300 features for Exp. 1 and 0− 200 features for Exp. 2.
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Figure 4.12: The effect of surface Laplacian (SL) filtering and channel selection (CS) on the performance
of FBCSP-LDA method versus the number of features that are used for classification. For brevity, only
the results of two subjects from each experiment are presented to illustrate the general trends in one
high-performing subject and one low-performing subject. Note that FBCSP-LDA method provides at
most C − 1 features, i.e, two features in Exp. 1 and three features in Exp. 2.
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Figure 4.13: The effect of surface Laplacian (SL) filtering and channel selection (CS) on the performance
of FBCSP-NBPW method versus the number of features that are used for classification. For brevity,
only the results of two subjects from each experiment are presented to illustrate the general trends in
one high-performing subject and one low-performing subject. Note that FBCSP-LDA method provides
at most C − 1 features, i.e, two features in Exp. 1 and three features in Exp. 2.
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Figure 4.14: The effect of surface Laplacian (SL) filtering and channel selection (CS) on the performance
of FBCSP-Lin method versus the number of features that are used for classification. For brevity, only
the results of two subjects from each experiment are presented to illustrate the general trends in one
high-performing subject and one low-performing subject. Note that FBCSP-LDA method provides at
most C − 1 features, i.e, two features in Exp. 1 and three features in Exp. 2.



Chapter 5

Domain-Specific FE Based on

Matrix-Variate Model for Multiband

EEG Rhythms

In Chapter 4, it was shown that the spatio-spectral features that are generated by the filterbank common

spatial pattern (FBCSP) method can be modelled as a matrix-variate Gaussian data, based on which

efficient domain-agnostic FE schemes can be developed to improve the performance of the overall BCI

system. The results of the previous chapter motivates us to have a closer look at the FBCSP method

and examine if the assumption of matrix-variate Gaussianity can be directly used at the domain-specific

FE stage to improve the efficiency of the system.

Despite its high performance, the FBCSP method suffers from a number of shortcomings as listed

below:

• FBCSP suffers from high computational cost at the training phase since it requires a separate fea-

ture extractor for each spectral band, each of which requires calculation of generalized eigenvectors

for covariance matrices of size Nch ×Nch, where Nch denotes the number of EEG channels.

• Since each spectral band is treated independently, possible correlations between different EEG

rhythms are completely ignored by the FBCSP method, which in turn causes redundancy in the

extracted feature set.

• FBCSP does not provide any measure for comparing discriminant power of the features obtained

from different spectral bands. Although the CSP features within each band are sorted based on

86
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their discriminant power, it is not possible to sort the features across different bands.

In this chapter, we propose a novel algorithm which simultaneously processes the EEG rhythmic ac-

tivities in both spatial and spectral domains, and extracts the most discriminant spatio-spectral features

across all the frequency bands. The proposed method, called separable common spatio-spectral patterns

(SCSSP), is based on a matrix-variate Gaussian model for spatio-spectral EEG patterns which allows

us to develop a bilinear feature extractor. Compared to the FBCSP method, our algorithm has the

following main advantages: First, it involves only two CSP-type modules, regardless of the number of

frequency bands (Nf ). As a result, the computational cost of training SCSSP algorithm in a practi-

cal BCI is less than FBCSP. Second, the features are extracted based on joint analysis of both spatial

and spectral characteristics of the signal. Therefore, correlations between different spectral bands can

be exploited for feature extraction. Third, a measure is provided to rank the discriminatory power of

extracted spatio-spectral features, which eliminates the need for a subsequent feature selection stage.

5.1 System Model

Figure 5.1(a) illustrates the processing pipeline of our proposed algorithm and how it compares with the

FBCSP method (Figure 5.1(b)). Consider an EEG epoch with Nt samples from Nch channels. After

passing the EEG epoch through a set of Nf bandpass filters, we get Nt matrices of size Nf×Nch, each of

which representing a spatio-spectral EEG pattern. The ultimate goal is to extract the most discriminant

features from these matrix-variate patterns.

Let X ∈ RNf×Nch denote the matrix-variate EEG pattern at the output of the bandpass filterbank.

Each motor-imagery task, denoted by class Ωi, is characterized by the likelihood density f(X|Ωi). We

adopt the heteroscedastic matrix-variate Gaussian model of Section 3.4.1 for these likelihoods, i.e.,

X|Ωi ∼ N (Mi,Φi,Ψi), 1 ≤ i ≤ C (5.1)

where, Mi denotes the class mean, Φi is the spectral covariance, also called column-wise or left covari-

ance, and Ψi is the spatial covariance, also called row-wise or right covariance. Since X is obtained from

bandpass filtering of the EEG signal, all classes have zero mean, i.e., Mi = 0 for 1 ≤ i ≤ C. Therefore,

the discriminant information are contained in the second order statistics of the data.

In the proposed method, we directly focus on the matrix-variate structure of the multiband EEG

rhythms at the output of the bandpass filterbank, and use the statistical model of (5.1) to develop a

bilinear domain-specific FE method for X.
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(a)

(b)

Figure 5.1: System model for spatio-spectral feature extraction schemes in (a) Separable common spatio-
spectral pattern (SCSSP) method, and (b) Filter-bank common spatial pattern (FBCSP) method.

5.2 Separable Common Spatio-Spectral Patterns (SCSSP) Method

Consider a binary classification problem, i.e., Ωi ∈ {Ω1,Ω2}, and let x = vec(X) denote the feature

vector which is formed by the column-wise concatenation of the elements in X. The matrix-variate

Gaussianity assumption in (5.1) implies that the feature vector x has a heteroscedastic vector-variate

distribution as follows:

x|Ωi ∼ N (0,Σi), i ∈ {1, 2} (5.2)

where Σi = Ψi ⊗Φi. Moreover, recall from the discussion in Section 3.4 that any bilinear operation of

the form WLXWR is equivalent to a linear operation of the form WTx = (WR ⊗WL)Tx.

Based on these properties, and following the general goal of the CSP approach, we look for a bilinear

operation on X, which simultaneously diagonalizes both Σ1 and Σ2. In other words, we look for

transformation matrices WL and WR which are the solutions to the following generalized eigenvalue

problem:

Σ1W = (Σ1 + Σ2) WΛ, (5.3)

where W = WR ⊗WL, and Σi = Ψi ⊗Φi

The next theorem provides the solution for (5.3).

Theorem 1: Let x = vec(X), where X ∈ RNf×Nch has a matrix-variate Gaussian distribution as given
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by (5.1). Then, the solution to (5.3) is given as follows:

Λ = (ΛR⊗ΛL)
(
ΛR⊗ΛL + (INch

−ΛR)⊗
(
INf
−ΛL

))−1

W = WR ⊗WL

where IK is the identity matrix of size K and the matrices ΛR, WR, ΛL and WL are the solutions

to generalized eigenvalue problems for spatial and spectral covariances, respectively:

Ψ1WR = (Ψ1 + Ψ2) WRΛR, (5.4)

Φ1WL = (Φ1 + Φ2) WLΛL, (5.5)

Proof: The proof is provided in Appendix.

Using this theorem, we can break the generalized eigenvalue problem of Equation (5.3) into the

two lower-dimensional problems presented in Equations (5.4) and (5.5). Note that WL provides the

spectral transformation matrix, whereas WR provides the spatial transformation matrix. These two

transformations will be simultaneously applied to the matrix-variate data X.

To provide a better insight into the result of Theorem 1, let λk, 1 ≤ k ≤ NfNch, denote the diagonal

entries of Λ sorted in descending order. Theorem 1 implies that

λk =
λL,l[k] λR,j[k]

λL,l[k] λR,j[k] + (1− λL,l[k])(1− λR,j[k])
(5.6)

where λL,l[k] and λR,j[k] are the corresponding eigenvalues in ΛL and ΛR, with 1 ≤ l[k] ≤ Nf and

1 ≤ j[k] ≤ Nch. Also, the eigenvectors corresponding to λk are expressed as

wk = wR,j[k] ⊗wL,l[k],

where wR,j[k] and wL,l[k] are the eigenvectors in WR and WL corresponding to λR,j[k] and λL,l[k].

Note that for k = 1 and k = NfNch the pair of features [y1, yNfNch
]T provide the most discriminant

power. Similarly, the features corresponding to k = 2 and k = (NfNch − 1) are the second most

discriminant features, and so on. Based on these results, the following algorithm will be used for

extraction of the “d” most discriminant spatio-spectral features:

1. Assuming that Ni training samples Xi,n , 1 ≤ n ≤ Ni, are available for each class Ωi, estimate the
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spatial covariance and spectral covariance of the data, using the following equations:

Ψ̂i =
1

NfNi

Ni∑
n=1

XT
i,nXi,n, (5.7)

Φ̂i =
1

NchNi

Ni∑
n=1

Xi,nXT
i,n. (5.8)

2. Solve the generalized eigenvalue problems in (5.4) and (5.5) for the estimated spatial and spectral

covariance matrices.

3. Using (5.6), calculate the eigenvalues λk and sort them in descending order to determine the

corresponding indices l[k] and j[k].

4. Extract the d most discriminant features by calculating

yk = wT
L,l[k]XwR,j[k] for k ∈ K (5.9)

where

K =

{
1, NfNch, 2, (NfNch − 1), · · · , d

2
, (NfNch −

d

2
+ 1)

}
.

Note that d is an even number here, similar to the CSP.

5. Calculate the normalized power of features over the length of epoch, in logarithmic scale, as follow:

zk = log

(
var (yk)

Σk∈Kvar (yk)

)
(5.10)

where var (yk) function calculates the variance or power of yk over Nt samples.

6. Construct the feature vector z = [z1, zNfNch
, · · · ]T ∈ Rd×1 as the output of SCSSP algorithm.

It is worth mentioning that λk ranges between zero and one, and its value provides a measure for

discriminant power of feature yk. Similar to the conventional CSP method, values close to zero or one

correspond to high discriminant features, whereas values close to 1
2 correspond to low discriminant fea-

tures. Thus, the pairs of extracted spatio-spectral features in z are sorted according to their discriminant

power in descending order. These features are then passed to a classifier to determine the Ω̂. In our

experimental studies, we consider two possible choices for classifier: (a) Naive Bayes classifier, (b) linear

classifier.
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5.3 A Comparative Discussion on The Theoretical Assumptions

of FBCSP and SCSSP

This section briefly compares the SCSSP and FBCSP methods to provide the reader with a better

understanding of the similarities and the differences between these two methods. Here, we use the

following notation. Consider the matrix-variate data X at the output of the bandpass filterbank, and

denote the f th row-vector of X by xf , where 1 ≤ f ≤ Nf . Also, let x′ = [x1, · · · ,xNf
] denote the row-

vector that is generated from the row-wise concatenation of the elements in X, i.e., x′ = (vec(XT ))T .

The class conditional covariance matrix of each row-vector xf will be represented by Ψf
i , and the class

conditional covariance matrix of x′ is represented by Σi
′
.

Recall that in the FBCSP approach, each row-vector xf is processed independently from the other

rows, using the projection matrix Wf
R which contains the generalized eigenvectors of Ψf

1 and Ψf
1 + Ψf

2 .

The projected feature pairs are then sorted in descending order of significance. Finally, the log-power of

the resulting features are calculated during the epoch length and form the f th row of the output feature

matrix. In comparison of this approach with the SCSSP’s approach, the following differences can be

pointed out.

The assumption of matrix-variate Gaussianity which is used in SCSSP method implies that the

covariance matrix of each row-vector xf is equal, up to a scale, to the covariance matrix of other row-

vectors. As a result, the SCSSP method only looks for one spatial filtering matrix WR which will be

commonly applied to all the row-vectors in X. In contrast, the FBCSP method assumes that each

row-vector xf has a unique covariance matrix, and hence looks for a unique spatial filtering matrix Wf
R

for each row.

The other important difference between FBCSP and SCSSP methods is in the spectral processing

of the data. The FBCSP method assumes that different EEG rhythms in different frequency bands are

independent from each other, and hence independently processes each rhythm. However, the SCSSP

method calculates the class conditional spectral covariance matrix Φi and uses this information along

with the information from the spatial covariance matrix Ψi for extraction of the most discriminant spatio-

spectral features. It is worth mentioning that owing to the matrix-variate Gaussianity assumption, the

SCSSP method assumes that all EEG channels have the same spectral covariance matrices, up to a scale,

and hence calculates a common spectral covariance matrix for all the channels.

In order to further clarify these points, consider the row vector x′ = [x1, · · · ,xNf
], which contains

all the elements of X. The FBCSP method assumes a block-diagonal structure for the class conditional
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covariance of x′ as follows:

Σi
′

=



Ψ1
i

Ψ2
i

. . .

Ψ
Nf

i


(5.11)

whereas the SCSSP assumes the following block-wise structure for Σi
′

Σi
′

=



φ11Ψi φ12Ψi · · · φ1Nf
Ψi

φ21Ψi φ22Ψi · · · φ2Nf
Ψi

...
. . .

φNf1Ψi φNf2Ψi · · · φNfNf
Ψi


(5.12)

where φmn represents the (m,n)th element of the spectral covariance matrix Φ.

It is noteworthy that both assumption in (5.11) and (5.12) are restrictive models for the spatio-

spectral covariance of the data. The FBCSP completely ignores the off-diagonal blocks of the Σi
′
, while

trying to provide an accurate estimate for the diagonal blocks. In contrast, the SCSSP method takes

into account the off-diagonal blocks of Σi
′

by making the simplifying assumption that all the blocks

in Σi
′

are up to a scale equal to each other, where the scaling factor is determined by the elements of

spectral covariance matrix.

5.4 Multiclass Extension of the SCSSP Method

The one-versus-rest strategy for multiband extension of CSP algorithm, which was explained in Sec-

tion 4.3.3, can also be applied to the SCSSP method as follows. Consider the training phase of the

SCSSP method, and let Ω′i be the set of all motor-imagery tasks excluding the ith task Ωi. Starting from

i = 1, the SCSSP method finds the bilinear transformation matrices W
(i)
L and W

(i)
R to extract dscssp

features that provide high discriminant power for classification of Ωi versus Ω′i. This procedure will be

repeated for i ∈ {1, · · · , C}, which results in a set of C spectral transformation matrices, and C spatial

transformation matrices.

Now, consider the testing phase, and let X ∈ RNf×Nch represent a test sample. The matrix X

will be passed through C pairs of joint spatio-spectral transformation matrices, i.e., Ti = {W(i)
L ,W

(i)
R },

i ∈ {1, · · · , C} to generate a set of dscssp∗C features. The most discriminant features in this set consist of
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the first pair of discriminant features obtained from each Ti, which form a set of 2∗C features. Similarly,

the second pair of features from each Ti form the next 2∗C discriminant features, and so on. Therefore,

in the resulting feature vector, the first 2 ∗C features will correspond to the most discriminant group of

feature, and similarly the nth groups of 2 ∗ C features represent the nth most discriminant features.

5.5 Experimental Analysis

In this section we will study the performance of the proposed separable common spatio-spectral patterns

(SCSSP) method and compere it with the conventional filterbank common spatial patterns (FBCSP)

method, using Data set V from BCI competition III [147] and Data set 2a from BCI competition IV [148].

Similar to the experimental studies of Chapter 4, we will also study the effect of surface Laplacian (SL)

filtering and channel selection on the performance of the SCSSP method.

Since the main focus in this chapter is on design of a domain-specific FE step, we will not consider any

domain-agnostic FE after the SCSSP or FBCSP, and will directly pass the output of the domain-agnostic

FE to the classifier. Recall that one of the main motivations behind the design of SCSSP method was to

develop a DS-FE method that can effectively sort the extracted spatio-spectral features based on their

discriminant power.

Therefore, the following processing steps will be considered for implementation of the SCSSP and

FBCSP methods. First, the multichannel EEG signal will be passed through an optional stage of surface

Laplacian (SL) filtering or channel selection. The resulting signal will then be passed through a bank of

bandpass filters to generate the multiband EEG rhythms. At the next step either the SCSSP method

or the FBCSP method will be applied to this multiband EEG data to extract a set of discriminant

spatio-spectral features. These extracted features will then be directly passed to a classifier. The

classifiers studied in this chapter are the simple linear (Lin) classifier and the naive Bayes Parzen window

(NBPW) classifier, as defined in Section 3.3. This procedure results in a total of 16 = 2 × 2 × 2 ×

2 different combinations for domain-specific FE and classification, namely SL(Yes/No), CS(Yes/No),

FBCSP/SCSSP, and NBPW/Lin.

For comparative purposes, we will consider the performance of the FBCSP-MVLDA method from

Chapter 4 as a benchmark, since it was shown to provide the best performance in different scenarios

for both databases. However, in any comparison of the results of this chapter with the results of

FBCSP-MVLDA method, it should be noted that after the optional SL/CS feature extraction, the

FBCSP-MVLDA approach benefits from a two stage feature-extraction scheme, whereas the methods

implemented in this chapter only extract the features in one step.



Chapter 5. DS-FE Based on Matrix-Variate Model for Multiband EEG Rhythms 94

5.5.1 Experiment Setup

The motor-imagery experiments that are studied in this chapter are the same as the ones used in

Chapter 4, which are explained in detail in Section 4.3.1. Thus, in this section we only provide a

succinct recap of the main specifications of these experiments.

• BCI competition III, Data set V (Exp. 1): The goal of this experiment is to classify the following

mental imagery tasks: left-hand movement (Ω1), right-hand movement (Ω2), and generation of

words beginning with a random letter (Ω3). The performance measure for this experiment is the

correct classification rate (CCR)1. The dataset provided in this experiment contains four sessions.

The last session can only be used as an unseen data for competition, and the first three sessions

can be used for training and validation purposes. The training data in this experiment contains

trials of length 15 seconds.

• BCI competition IV, Data set 2a (Exp. 2): The goal of this experiment is to classify the following

motor-imagery tasks: left hand (Ω1), right hand (Ω2), both feet (Ω3), and tongue (Ω4) movement.

The performance measure for this experiment is the kappa (κ) coefficient, defined as follows: κ =

(CCR−Prand)/(1−Prand), where Prand = 0.25 denotes the probability of random classification2.

This data set contains only two sessions. The first session is used for training and validation

purposes, and the second session will be used as unseen data for competition. The training session

in this experiment contains trials of length 3 seconds.

The fist experiment is considered as a typical BCI application, where enough training data is recorded

in multiple sessions, and includes long enough trials. In contrast, the second experiment is considered

as an extreme scenario were the training trials are very short, and the algorithm only has access to one

EEG recording session for training purposes. Although in most motor-imagery applications, the latter

scenario will not occur, we have included this experiment to study the behaviour of the proposed SCSSP

method in extreme cases. Finally, it should be mentioned that the surface Laplacian transformation in

Exp. 2 is performed based on the approximate location of the EEG sensors that is provided in the data

set, which affects the accuracy of the filtering output (ref. Section 4.3.1).

The bandpass filters used for both FBCSP and SCSSP algorithms in this chapter are the same as

the ones designed in Section 4.3.2. For both experiments, Chebyshev Type-II filters with passband of

width 4 Hz are utilized. A total of 6 filters are used in Exp. 1 to cover the frequency range of 8 − 32

1The chance of random classification in Exp. 1 is Prand = 1/C = 0.33, and the winning algorithm for this competition
in the literature achieves a performance of %62.72 at the classifier output [149].

2The winning algorithm for this competition in the literature is the FBCSP-NBPW method.
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Hz. Similarly, a total of 9 filters are used in Exp. 2 to cover the passband of 4− 40 Hz. These frequency

ranges are selected based on the suggestions of the dataset providers and also the frequency ranges that

the winning algorithm in each competition has considered, in order to provide a fair comparison with

the previous works.

5.5.2 Cross-validation Results

The cross-validation schemes used in this chapter are the same as the ones explained in Chapter 4. In

Exp. 1, we perform a three fold cross-validation to take advantage of the three distinct training sessions

that are provided in this experiment. In Exp. 2, since only one training session is available, a 5 × 5

randomized cross-validation is performed. For each method, the optimal dimensionality of the feature

space is determined based on the average performance of each subject over all the validation runs.

The validation results for Exp. 1 and Exp. 2 are presented in Table 5.1 and Table 5.2, respectively.

In these tables, the results are presented in groups of size 5, in the following order: FBCSP-NBPW,

FBCSP-Lin, FBCSP-MVLDA, SCSSP-NBPW, SCSSP-Lin. In each table, the first group of results

corresponds to the case where no surface Laplacian (SL) or channel selection (CS) is applied to the data.

Similarly, the next groups correspond to other possible combinations of surface Laplacian and channel

selection. It should be mentioned that the results of FBCSP-NBPW, FBCSP-Lin, and FBCSP-MVLDA

methods are the same as the ones reported in Chapter 4, and are presented here for comparison purposes.

The results of Table 5.1 and Table 5.2 are summarized in Figures 5.2(a) and 5.3(a), where the

average validation performance over all the subjects, together with its corresponding standard error, are

presented for every combination of domain-specific FE and classification. For more clarity, the results

are categorized into four groups, based on whether or not surface Laplacian (SL) or channel selection

(CS) are applied to the data. These figures show different trends for the performance of SCSSP method

in Exp. 1 and Exp. 2.

For all combinations of surface Laplacian and channel selection in the first experiment, the SCSSP-Lin

method always outperforms the FBCSP-Lin and FBCSP-NBPW methods, despite the fact that SCSSP

has less computational cost compared to FBCSP method. Moreover, the SCSSP-Lin method even

competes very closely with the FBCSP-MVLDA method which is a much more sophisticated algorithm

and benefits from two consecutive stages of feature extraction. In the second experiment, however,

the SCSSP method cannot compete with FBCSP-based methods. In order to describe this difference

between the results of Exp. 1 and Exp. 2, it should be noted that the most important difference between

these two experiments is the availability of the training data.
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Recall from our discussions in Section 4.3.1 that Exp. 1 represents a typical BCI scenario where the

training data is collected over multiple sessions and each training trial lasts for 15 seconds. In contrast,

Exp. 2 represents the extreme case where only one training session is available and the training trials

last for only 3 seconds. Considering these differences, the results of Figures 5.2 and 5.3 reveal that the

performance improvement and computational cost efficiency of the SCSSP method are achieved at the

cost of requiring more training samples, compared to the FBCSP algorithm.

Considering our discussions in Section 5.3 on the theoretical differences between the FBCSP and

SCSSP methods, the higher sensitivity of SCSSP to the number of training samples can be explained

as follows. The FBCSP only focuses on the diagonal block matrices of Σi
′ matrices, as defined in

(5.11), whereas the SCSSP aims to provide an estimate of both diagonal and off-diagonal block matrices

of Σi
′ matrices, as defined in (5.12). Therefore, when the number of training samples is extremely

small, the SCSSP cannot reliably estimate the Σi
′, and consequently does not succeed in extracting

discriminant features from the EEG data. The high performance of SCSSP method in Exp. 1 shows that

the matrix-variate Gaussian model deployed by SCSSP algorithm, can very well describe the statistical

characteristics of the EEG signals; however, reliable estimation of its parameters requires access to a

large training set.

These results suggest that in order to benefit from the low computational cost and high performance

of the SCSSP method, we need to provide this algorithm with enough training samples. As mentioned

before, this condition is not restrictive in most motor-imagery BCI applications, since these BCIs are

generally designed for longterm utilization, which guarantees access to large enough training sets. In

such cases, the SCSSP method can reliably estimate the signal parameters, which allows for reducing

the computational cost while improving the performance of the BCI system.

5.5.3 Test (Competition) Results

The performance results of different methods for the unseen competition data is presented in Table 5.3

and Table 5.4. These methods are categorized in groups of size five, depending on whether or not the

surface Laplacian (SL) and channel selection are performed in the domain-specific FE stage, similar to

Table 5.1 and Table 5.2. The feature space dimensionality for each method is set based on the value

of dopt in the validation phase. These results are summarized in Figures 5.2(b) and 5.3(b), where the

average test performance over all the subjects are illustrated.

As mentioned in Section 4.3.5, the winning method in the literature for Exp. 1 uses a combination of

surface Laplacian + channel selection + short-time Fourier transformation + LDA method and achieves
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(a) Average performance over all the subjects in validation phase of Experiment-1.
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(b) Average performance over all the subjects in test phase of Experiment-1.

Figure 5.2: Comparison of the performance results for SCSSP-based and FBCSP-based solutions in
(a) Validation phase of Experiment-1 and (b) Testing phase of Experiment-1. For validation results,
the average performance of each method over all the subjects and all validation runs, together with its
corresponding standard error, is plotted. For more clarity, the results are illustrated in four groups,
depending on whether or not the surface Laplacian (SL) and channel selection (CS) are applied in the
domain-specific feature extraction step. Note that the performance measure in Experiment-1 is the
Correct Classification Rate (CCR), and a random classifier results in %CCR = %33.3 .
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(a) Average performance over all the subjects in validation phase of Experiment-2.
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(b) Average performance over all the subjects in test phase of Experiment-2.

Figure 5.3: Comparison of the performance results for SCSSP-based and FBCSP-based solutions in
(a) Validation phase of Experiment-2 and (b) Testing phase of Experiment-2. For validation results,
the average performance of each method over all the subjects and all validation runs, together with its
corresponding standard error, is plotted. For more clarity, the results are illustrated in four groups,
depending on whether or not the surface Laplacian (SL) and channel selection (CS) are applied in the
domain-specific feature extraction step. Note that the performance measure in Experiment-2 is the
Kappa coefficient (κ), and a random classifier results in κ = 0 .
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an average performance of 62.72%, and the winning method in the literature for Exp. 2 is the FBCSP-

NBPW approach without surface laplacian or channel selection.

The performance results on the test data shows a trend very similar to the performance results

during the cross-validation phase. It can be seen that in the first experiment, the SCSSP-Lin method

outperforms both FBCSP-Lin and FBCSP-NBPW methods, and exhibits a performance very close to

the FBCSP-MVLDA method which has a two stage feature extraction scheme. In the second experiment,

the SCSSP method cannot compete with other methods due to the lack of access to sufficient training

information for reliable estimation of the model parameters.

5.5.4 The Effect of Surface Laplacian Filtering and Channel Selection

Comparison of Figures 5.2 and 5.3 shows that combination of surface Laplacian filtering with the SC-

SSP method slightly improves the classification performance in Exp. 1, but has adverse effect on the

performance in Exp. 2. This difference in the trends is due to the approximate calculation of the surface

Laplacian in the second experiment, which in turn is caused by the fact the accurate sensor locations

are not available in Exp. 2.

Recall from our discussions in Chapter 4 that channel selection is mostly efficient when combined with

the surface Laplacian filtering, even in the case of approximate surface Laplacian in Exp. 2. Therefore,

let us compare the combined effect of channel selection and surface Laplacian on SCSSP-Lin and FBCSP-

Lin methods in Figures 5.2 and 5.3. It can be seen that the FBCSP-Lin method achieves its highest

performance when both surface Laplacian and channel selection are deployed, whereas the SCSSP-Lin

achieves its highest performance when it is applied to the raw data, with only one exception which

is the test phase of Exp. 1. In case of the FBCSP-Lin method, the combination of surface Laplacian

and channel selection helps to manually reduce the dimensionality of the space in which the spatial

covariances Ψf
i are calculated, without loosing the information relevant to the motor cortex area. This

dimensionality reduction improves the accuracy of the spatial covariance estimation for each band, which

in turn improves the performance of the system.

In case of the SCSSP method, however, it not necessarily desired to reduce the dimensionality of

the data in the spatial domain while having the same dimensionality in the spectral domain. The main

reason for this effect is as follows. The SCSSP method only calculates one common spatial covariance

matrix for all the bands. As a result, SCSSP treats different rows of the matrix X ∈ RNf×Nch as extra

training samples for calculation of the covariance matrix. In other words, SCSSP method has access

to Nf ∗ Ni training samples3 for estimation of Ψi, whereas FBCSP has only access to Ni samples for

3Here, Ni is the number of training matrices for class Ωi
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estimation of each Ψf
i . On the other hand, SCSSP requires to estimate the common spectral covariance

matrix Φi by treating different columns of X as extra samples training samples, which leads to a total

of Nch ∗ Ni samples. As a consequence, any reduction in the number of EEG channels results in a

significant reduction in the number of training samples for Φi.

In other words, in SCSSP method, the channel selection results in higher accuracy for spatial co-

variance estimation at the cost of reducing the accuracy for spectral covariance estimation. The results

in Figures 5.2 and 5.3 suggest that these two opposite effects almost cancel out each other and there is

marginal change in the performance of the SCSSP-based methods when channel selection and surface

Laplacian are utilized together with SCSSP, as opposed to when SCSSP is directly applied to the raw

data. Note that as long as channel selection does not deteriorate the overall performance of the system,

it might still be beneficial since it reduces the computational cost of the feature extraction.

5.5.5 The Effect of Feature Space Dimensionality

In this section, we study the effect of number of extracted features on the performance of SCSSP-NBPW

and SCSSP-Lin algorithms, and compare them with the FBCSP-NBPW and FBCSP-Lin solutions. The

results for the first subjects in Exp. 1 and Exp. 2 are shown in Figure 5.4. The results for the rest of

subjects in these two experiments are presented in Figures 5.5 and 5.6, respectively. The results in these

three figures, correspond to the case where no surface Laplacian (SL) filtering or channel selection (CS)

is applied to the EEG data. The effect of SL and CS will be studied later in this section.

Note that in all these four methods, no domain-agnostic FE has been used, and a total number

of d most significant features are directly passed to the classifier. In contrast, the FBCSP-MVLDA

method deploys a domain-agnostic FE scheme, which takes all the extracted spatio-spectral features,

and further reduces the dimensionality of the feature space prior to classification. Therefore, if we want

to present the results of FBCSP-MVLDA method in the same graph as the other four methods, it would

correspond to only one value of d = Nf ∗Nch ∗C, which is the maximum dimensionality of feature space

for FBCSP-based solutions. The performance of FBCSP-MVLDA at this point will then depend on

the number of features that are extracted by the MVLDA algorithm. Therefore, it is not meaningful to

represent the performance of FBCSP-MVLDA versus d, which represents the the number of features that

are extracted at the domain-specific FE. Thus, in order to provide the reader with a measure to compare

the performance of FBCSP-MVLDA with the other four methods, we have marked the vertical access

with point “A” and a red dashed line, which represents the optimal performance of FBCSP-MVLDA.

However, before any comparison between this method and the other four methods, it should be noted
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that FBCSP-MVLDA benefits from a two stage feature extraction scheme.

The results of Exp. 1 in Figure 5.4(a) and Figure 5.5 show that the SCSSP-Lin method outperforms

all other methods (including the FBCSP-MVLDA) for most values of d. In contrast, the SCSSP-NBPW

method has much lower performance and closely competes with the FBCSP-NBPW method. Note that

the performance of SCSSP-Lin method peaks at a relatively low dimension, which shows that SCSSP

has been able to capture the discriminant information of the data in a small number of features. In

Exp. 2, where the training set is extremely limited, the SCSSP-based methods cannot compete with the

FBCSP-based methods for most of the subjects. This significant difference between the two experiments

is mostly due to the lack of training data in Exp. 2, as discussed in Section 5.5.2.

Finally, Figures 5.7 and 5.8 illustrate the effect of feature space dimensionality on the performance of

SCSSP-NBPW and SCSSP-Lin methods, when they are utilized with different combinations of surface

Laplacian (SL) and channel selection (CS). In these figures, the results for one high performing subject

and one low performing subject are presented for each experiment. The results for other subjects show

similar trends.

In case of the SCSSP-NBPW method in Figure 5.7, the surface laplacian filter is beneficial only

in Exp. 1, in which case it improves the classification rate for a wide range of d values. The effect of

channel selection on the raw EEG data is not consistent, however, when surface laplacian is applied

to the data the channel selection always improves the overall performance of the system (compare the

dashed red lines with the solid green lines). This trend confirms our previous discussions regarding the

fact that surface Laplacian filtering pre-emphasizes the localized data, and hence is highly suggested in

combination with the channel selection.

In case of the SCSSP-Lin method in Figure 5.8, the results from first experiment show that over most

values of d, the surface laplacian has marginal effect on the overall performance unless it is combined

with channel selection. In the second experiment, where small number of training samples are available,

the surface laplacian and its combination with channel selection are very beneficial for improving the

overall performance for low performing subjects, whereas they are not helpful in cases where the SCSSP

is already achieving a high performance on the raw data. This trend is very similar to the trend for

FBCSP-MVLDA discussed in Section 4.3.9.

5.6 Summary and Concluding Remarks

In this chapter, a new domain-specific FE method was proposed based on a heteroscedastic matrix-

variate Gaussian model for the multiband EEG rhythms. In the proposed approach, the EEG signal is
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(a) Correct Classification Rate (CCR) results for Subject 1 in Experiment-1.
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(b) Kappa coefficient (κ) results for Subject 1 in Experiment-2.

Figure 5.4: Validation performance for SCSSP-based and FBCSP-based methods versus the number of
features extracted by the domain-specific feature extraction method. in the validation phase for the first
subject in (a) Experiment-1 and (b) Experiment-2. For comparison purposes, the performance of the
FBCSP-MVLDA method is also marked on the vertical access by “A”.
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Figure 5.5: Correct Classification Rate (CCR) for different methods versus the number of features for
all the subjects in the validation phase of Experiment-1. The illustrated results are for the case where
both surface laplacian filtering and channel selection have been performed on the data. For comparison
purposes, the performance of the FBCSP-MVLDA method is also marked on the vertical access by “A”.

first passed through a bank of bandpass filters to extract different bands of EEG rhythms. The resulting

signal is then passed through a joint spatio-spectral FE method, called separable common spatio-spectral

patterns (SCSSP), which directly operates on the matrix-variate data.

The main advantage of the SCSSP method compared to the FBCSP algorithm is the fact that

SCSSP jointly processes the data in both spectral and spatial domains, and hence can sort the extracted

features across both domains; whereas FBCSP cannot sort the features that are extracted from different

frequency bands. As a result, the SCSSP method does not need to be followed by a domain-agnostic

FE stage, and its output can directly be passed to the classifier. The second advantage of SCSSP is its

relatively low computational cost. The SCSSP involves only two generalized eigen decompositions (i.e.,

one for spectral covariances and one for spatial covariances); whereas the FBCSP requires a total of Nf

generalized eigen decompositions (i.e., one for each frequency band).

The above advantages come at the cost that the SCSSP method requires a relatively larger training

set, compared to the FBCSP method. The performance comparison of these two methods shows that

in Exp. 1, the SCSSP-Lin method outperforms not only the FBCSP-Lin method, but also the FBCSP-

MVLDA method that benefits from a two stage FE strategy. However, in Exp. 2 that the amount of

training information is extremely limited, SCSSP cannot compete with FBCSP method. It is worth

mentioning that the conditions in the second experiment does not typically happen in most motor-

imagery BCI systems, and it is mostly considered here to study the behaviour of the SCSSP method in

extreme scenarios. Since the motor-imagery BCIs are generally designed for longterm utilization by the

user, it is a fair assumption that the BCI algorithm will have access to long enough training dataset.
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Figure 5.6: Kappa coefficient (κ) for different methods versus the number of features for all the subjects
in the validation phase of Experiment-2. All these methods are applied to the raw EEG data, i.e.,
No surface laplacian or channel selection has been performed. Note that For comparison purposes, the
performance of the FBCSP-MVLDA method is also marked on the vertical access by “A”.
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Figure 5.7: The effect of surface Laplacian (SL) filtering and channel selection (CS) on the performance of
SCSSP-NBPW method versus the number of extracted features in (a) Experiment-1 and (b) Experiment-
2. For brevity, only the results of two subjects from each experiment are presented to illustrate the general
trends in one high-performing subject and one low-performing subject.
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Figure 5.8: The effect of surface Laplacian (SL) filtering and channel selection (CS) on the performance
of SCSSP-Lin method versus the number of extracted features in (a) Experiment-1 and (b) Experiment-
2. For brevity, only the results of two subjects from each experiment are presented to illustrate the
general trends in one high-performing subject and one low-performing subject.



Chapter 6

Matrix-Variate Complex Gaussian

Model for Spatio-Spectral Features

Obtained Through Fourier

Transformation

In the previous chapters, we studied the possibility of using the real-valued matrix-variate Gaussian

model for designing various spatio-spectral feature extractors based on passing the EEG signal through

a bank of bandpass filters and one or multiple CSP modules. As discussed in Chapter 3, there are

several alternative approaches for extraction of spatio-spectral features. One of the most successful

methods is the Fourier transformation of the data (ref. Section 3.1.2). A major difference between the

features obtained through Fourier transformation with the features obtained through bandpass filtering

is the complex-valued nature of the resulting features in the former case. As a result, the real-valued

matrix-variate model presented in Section 3.4 is not directly applicable to such features.

One possible solution is to only consider the magnitude (or power) of the Fourier components and

ignore their phase. This solution might be suitable if the phase of the EEG signal does not convey

any information. However, several recent studies in neuroscience have revealed that there exist relevant

information carried in the phase of electrical activities of the brain, both in microscopic level (the phase

of neural firings) and in macroscopic level (the phase of EEG signals) [68–71]. Furthermore, recent

studies on EEG source separation algorithms using independent component analysis (ICA) method have

111
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shown that utilization of the complex-valued EEG spectrum, instead of power spectrum, significantly

improves the performance of ICA algorithm [155].

It should be noted that most of the studies on the properties of the EEG signals in the Fourier domain

are based on analysis of the power spectral density of EEG, which does not convey any information

regarding the phase of the signal. Therefore, in this chapter we will specifically focus on the analysis of the

complex valued spatio-spectral features obtained from Fourier transformation of the data. Motivated by

the results of the previous two chapters, we are interested in studying the implications of separability and

Gaussianity for these complex-valued features. To the best of our knowledge, there exists no theoretical

work on this topic in the literature.

6.1 Complex-Valued Spectral Representation of EEG Data

Consider a multichannel EEG signal recorded during a trial while the subject is performing task Ωi,

as shown in Figure 6.1. Let s(t, c|Ωi) denote the EEG signal recorded at time t from channel c. The

s(t, c|Ωi) notation is used in this chapter to emphasize the fact that the recorded EEG signal is a two

dimensional stochastic signal whose statistical characteristics depend on the mental task Ωi.

In order to obtain the frequency domain representation of this EEG signal at each time instant, an

STFT is applied on each channel of the data. There exist two commonly used definitions for the STFT

in the literature:

z(t, f, c|Ωi) =

∫ ∞
−∞

s(τ, c|Ωi)w(τ − t)e−j2πfτdτ (6.1)

z′(t, f, c|Ωi) =

∫ ∞
−∞

s(τ, c|Ωi)w(τ − t)e−j2πf(τ−t)dτ

=

∫ ∞
−∞

s(τ + t, c|Ωi)w(τ)e−j2πfτdτ, (6.2)

where w(t) is a window of length Tw. The definition given in Eq.(6.2) is a shift-invariant version of STFT

which is more convenient for implementation. Eq.(6.2) can be implemented through applying a fixed

windowed Fourier transformation to time-shifted versions of the EEG signal. However, it introduces a

linear phase component to the original spectral representation given by Eq.(6.1), i.e.,

z′(t, f, c|Ωi) = z(t, f, c|Ωi) ∗ ej2πft. (6.3)

This phase shift conveys information about the amount of time elapsed since the starting of recording.

Depending on the application, this information may or may not be useful:
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Figure 6.1: Complex-valued EEG spectral components obtained using short-time Fourier transformation
of multichannel EEG data.

• If EEG signal is recorded to study the brain’s response to an external stimulus (e.g., event related

potentials), the linear phase shift term conveys information about the amount of time being passed

from the stimulus. This information can be exploited when the STFT components z′(t, f, c|Ωi) are

analyzed.

• If the EEG is recorded while the brain is performing a repetitive task (e.g., motor imagery), the

linear phase shift term conveys no relevant information other than the time passed since the start

of recording, which can be shifted to any arbitrary time during the trial. In such a case, one should

use z(t, f, c|Ωi) spectral components in which the effect of the linear phase shift is removed from

the spectrum.

Therefore, in this chapter we utilize the definition given in Eq.(6.1), which can also be obtained by ad-

justing the phase of z′(t, f, c|Ωi) as follows: z(t, f, c|Ωi) = z′(t, f, c|Ωi) ∗ e−j2πft. The resulting complex-

valued spectral components can be decomposed as follows:

z(t, f, c|Ωi) = x(t, f, c|Ωi) + jy(t, f, c|Ωi), (6.4)

z(t, f, c|Ωi) = r(t, f, c|Ωi) ∗ exp{jα(t, f, c|Ωi)} (6.5)

where x(t, f, c|Ωi), y(t, f, c|Ωi), r(t, f, c|Ωi), α(t, f, c|Ωi) are respectively the real part, imaginary part,

magnitude, and phase of z(t, f, c|Ωi).

Using the above definitions, the complex-valued spatio-spectral feature matrix Z(t) ∈ CNf×Nch can

be formed as illustrated in Figure 6.1. Similar to the matrix-variate feature matrix defined in Section 3.4,

the (f, c)th element of Z(t) contains z(t, f, c|Ωi).

Assume that a subject is performing a specific mental imagery task during the time interval t ∈ [t1, t2].

The EEG spectral components z(t, f, c|Ωi) are called stationary, if the probability density function (pdf)

of z(t, f, c|Ωi) only depends on the variables f and c and is constant over time t ∈ [t1, t2]. Similarly,
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variables z(t, f, c|Ωi) will be called quasi-stationary if their pdf changes very slowly with time, such that

the pdf can be considered to be constant as long as z(t, f, c|Ωi) is observed over a short period of time

(i.e., t2 − t1 is small enough). In such a case, we consider the z(t, f, c|Ωi) components that are observed

during this short period of time to form a set of samples with the same pdf. We call this set of samples

an ensemble. Based on the assumption of quasi-stationarity, we will omit the temporal index of Z(t) in

the next section, and will assume that distribution of Z(t) does not change during an ensemble. Various

implications of this assumption will be discussed later in this chapter.

6.2 Matrix-Variate Complex Gaussian Model for Z

In this section, we propose a matrix-variate Gaussian model for the complex-valued EEG spectrum.

The main advantage of a Gaussian model is that complete characterization of this model only requires

estimation of the first and second order statistics of the data. Furthermore, the studies in the previous

chapters illustrated the potential benefits of utilizing matrix-variate Gaussian model in various stages of

feature extraction in BCI systems. Finally, a matrix-variate Gaussian model provides a mathematically

tractable framework for development of more efficient signal processing and feature extraction algorithms

for analysis of the EEG spectrum.

Let f(Z|Ωi) denote the conditional probability of matrix Z ∈ CNf×Nch under class Ωi. A matrix-

variate Gaussian model for the complex-valued feature matrix Z is denoted by:

Z|Ωi ∼ CN (Mi,Φi, Φ̆i,Ψi, Ψ̆i), 1 ≤ i ≤ C (6.6)

Here, the matrices Mi,Φi, Φ̆i,Ψi, Ψ̆i denote the mean, spectral covariance, spectral pseudo-covariance,

spatial covariance, and spatial pseudo-covariance of the class Ωi. These matrices are defined as follows:

Mi = EZ|Ωi
(Z) , (6.7)

Φi = tr−1(Ψi) ∗ EZ|Ωi

(
(Z−Mi)(Z−Mi)

H
)
, (6.8)

Φ̆i = tr−1(Ψi) ∗ EZ|Ωi

(
(Z−Mi)(Z−Mi)

T
)
, (6.9)

Ψi = tr−1(Φi) ∗ EZ|Ωi

(
(Z−Mi)

H(Z−Mi)
)
, (6.10)

Ψ̆i = tr−1(Φ̆i) ∗ EZ|Ωi

(
(Z−Mi)

T (Z−Mi)
)
. (6.11)

Note that second order characterization of Z requires the knowledge of not only the spectral and spatial

covariance matrices, but also the spectral and spatial pseudo-covariance matrices.
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In order to explain the importance of the pseudo-covariances in second order characterization of Z,

consider the column-wise vectorized representation of Z, denoted by z = vec(Z) = [zT1 , z
T
2 , . . . , z

T
Nch

]T ,

where zn represents the nth column vector in Z. The conditional covariance and conditional pseudo-

covariance of z are then defined as

Σ
(i)

zzH = E
{

(z− z)(z− z)H |Ωi
}

= Ψi ⊗Φi, (6.12)

Σ
(i)

zzT = E
{

(z− z)(z− z)T |Ωi
}

= Ψ̆i ⊗ Φ̆i, (6.13)

It is well known in the literature that the knowledge of Σ
(i)

zzH and Σ
(i)

zzT is required for complete second

order characterization of z (ref. [156–158]). Indeed, these two matrices convey information regarding

the covariance of the real and imaginary parts of z as well as the cross covariance between the real and

imaginary parts, as follows:

Σ
(i)

zzH = Σ
(i)

xxT + Σ
(i)

yyT + j(Σ
(i)

yxT −Σ
(i)

xyT ), (6.14)

Σ
(i)

zzT = (Σ
(i)

xxT −Σ
(i)

yyT ) + j(Σ
(i)

xyT + Σ
(i)

yxT ), (6.15)

were x and y are the real and imaginary parts of z = x + jy. Indeed, if we consider z̃ = [xT ,yT ]T , then

ΣzzT and ΣzzH can be uniquely determined by Σz̃z̃T , and vice versa [156,157].

As a result, the probability density function (pdf) of Z can be determined in terms of ΣzzH and

ΣzzT or alternatively in terms of Σ
(i)

z̃z̃T . Throughout this chapter, we use the following formulation for

the pdf of vector Z in terms of the vector z̃:

f(Z|Ωi) =
∣∣∣2πΣ

(i)

z̃z̃T

∣∣∣− 1
2

exp
{
− 1

2
(z̃− µi)

T
(
Σ

(i)

z̃z̃T

)−1

(z̃− µi)
}

(6.16)

where µi = Ez̃|Ωi
(z̃) is the conditional mean of z̃.

6.2.1 Propriety of Z

By definition, random matrix Z will be called proper [158] or circularly symmetric [159] if Σ
(i)

zzT = 0,

i.e., Φ̆i = 0 and Ψ̆i = 0; otherwise, it is called improper or non circularly-symmetric. From (6.15), it

can be seen that a proper matrix Z has the following properties:

Σ
(i)

xxT = Σ
(i)

yyT and Σ
(i)

xyT = −
(
Σ

(i)

xyT

)T
. (6.17)
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In the univariate case, therefore, a complex-valued random variable zmn will be proper or circularly-

symmetric if its real and imaginary parts are independent and have equal power. If zmn is proper, its

phase is uniformly distributed and conveys no information. Otherwise, the phase of zmn would convey

information relevant to brain activities, which should be taken into account in BCI systems. Thus, we

will use the propriety of the EEG spectral components to measure whether or not its phase conveys any

relevant information.

6.2.2 Sufficient Conditions for Separability of Σ
(i)

zzH
and Σ

(i)

zzT

As mentioned in Section 3.4, the main difference between matrix-variate Gaussian distribution and the

conventional multivariate Gaussian distribution is the Kronecker structure assumed for the covariance

of the data, which implies the separability of the spectral and spatial covariances. The same property

holds true for complex Gaussian distributions, in which case both covariance and pseudo-covariance of

the features are required to have Kronecker structure, as defined in (6.12) and (6.13).

In Appendix A.4 a sufficient condition for separability of Z is provided. Based on this result, if

the spatio-temporal covariance of the EEG data is separable, it is guaranteed that the spatio-spectral

features obtained through Fourier transformation of the data are also separable. It is noteworthy that

the same condition also guarantees that the spatio-spectral features obtained through bandpass filtering

of the data are also separable (ref. Appendix A.4). Therefore, it is reasonable to assume that in both

cases (i.e., Fourier transformation and bandpass filtering) the separability of the spatio-spectral features

is caused by the same phenomenon. With minor modifications, similar conclusion can be made for most

spectral analysis methods that are based on linear processing/filtering of the EEG data.

6.3 The Effect of Epoch Length on The Gaussianity of The

Features

In the previous section, we suggested that if the duration of the observation window or epoch length (Le)

is short enough, the spatio-spectral matrix Z can be modelled by an improper matrix-variate complex

Gaussian distribution. In this section, the validity of the suggested Gaussian model and possible ranges

of Le for which this model fits the data will be verified in three steps:

1. Validating the normality of individual components of Z, denoted by zmn, for different values of Le

and finding the maximum value of Le over which all zmn fit the complex-normal model;
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2. Validating the joint-normality of each column vector of Z, denoted by zn, over the observation

length Le determined in Step 1.

3. Validating the impropriety of each zn, over the observation length Le determined in Step 1.

Ideally, it is also desired to perform a joint normality test on all the elements of Z. However, due

to the high dimensionality of the data and the limitations on the number of samples within each epoch,

such a statistical test is not feasible. Indeed, as it will be discussed later in this section, even testing the

joint normality of the elements in zn is challenging.

6.3.1 Experiment Setup

Our analysis in this section are based on data set V of the BCI competition III [147]. As described

in previous chapters, this data set consists of EEG signals of three normal subjects (persons) recorded

during four non-feedback sessions. During each session, the subject sequentially imagines three different

tasks: repetitive self-paced left hand movements (Task Ω1), repetitive self-paced right hand movements

(Task Ω2), and generation of words beginning with the same random letter (Task Ω3). The main benefit

of data set V of BCI competition III in comparison to data set 2a of BCI competition IV is the long

period of each motor imagery trial, which is 15 seconds in the former data set compared to 3 seconds in

the latter one. This long trial length allows us to better study the changes in the EEG phase information

over time.

Assuming that the EEG data is quasi-stationary over an observation window of Le seconds, we divide

the EEG recoding during each mental imagery task into several overlapping observation periods (i.e.,

E1, E2, ...) of length Le. During each Ei, the signal is transformed from time-domain to the frequency-

domain, using short-time Fourier transformation1. In this chapter, the w(t) is chosen to be Tukey window

of length 1 second with overlapping factor of 15/16 (i.e, window shift of 1/16 second) and α = 1/8.

After STFT transformation, the spectral components in the range of 8 − 30 Hz with a frequency

resolution of 2 Hz are retained. This frequency band corresponds to the α rhythm (8 − 12 Hz) and β

rhythm (12 − 30 Hz) of the brain which are known to be associated with mental imagery tasks. The

resulting samples (i.e., S1, S2, ...) form an ensemble Ei. Each multichannel sample (Si) in this ensemble

can be represented by a complex-valued matrix Z ∈ C13×8, where each column of Z represents the vector

of 13 frequency components of an EEG channel (ref. Figure 6.1).

1For simplicity, we will consider the discrete Fourier spectral components derived from STFT.
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Figure 6.2: Observation windows of length Le and their corresponding samples.

6.3.2 Testing the Normality of zmn

This section studies the normality of each complex-valued frequency component of the multichannel

EEG spectrum Z. We test the following null hypothesis

H0 : zmn = xmn + jymn ∼ CN (µz,Σzz∗ ,Σzz),

i.e., zmn has a univariate complex-valued Gaussian distribution with unknown mean, variance, and

pseudo-variance. As described in Section 6.2, H0 is equivalent to the hypothesis

H ′0 : z̃mn =

 xmn

ymn

 ∼ N2(µz̃,Σz̃z̃T ),

i.e., z̃mn has a bivariate real-valued Gaussian distribution with unknown mean and covariance.

We examine hypothesis H ′0 using the well-known Mardia’s multivariate normality test [160] with a

significance level of 0.05. In order to find the maximum length Le over which the EEG signal can be

assumed to be quasi-stationary, we have repeated Mardia’s test for various values of ensemble length Le

from 2 to 10 seconds. The test results for Task 1 of all three subjects are shown in Figure 6.3. We have

reported the percentage of ensembles whose samples are verified to have Gaussian distribution. Parts

(a-c) of this figure illustrate the results for α-band frequency components, and Parts (d-f) illustrate

the results for β-band. It should be mentioned that since all the channels exhibited similar trends in

the tests, the results reported in Figure 6.3 have been averaged over all 8 channels. This figure reveals

that despite of the inter-subject and inter-frequency variability of the results, in all the situations, the

complex-valued Gaussian model describes the experimental data more accurately as the length of Le
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(a) α-band, Subject 1
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(b) β-band, Subject 1
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(c) α-band, Subject 2
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(d) β-band, Subject 2
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(e) α-band, Subject 3
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(f) β-band, Subject 3

Figure 6.3: Percentage of verified normal EEG components for left hand movement task performed by
different subjects is plotted for different frequencies averaged over channels. (For more clarity, only five
frequency components of β-band are illustrated.)
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(a) Left hand movement, Subject 1
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(c) Left hand movement, All subjects

Figure 6.4: Percentage of verified normal EEG components for (a) left hand movement of Subject 1
in different channels, (b) different tasks of the first subject averaged over channels, and (c) left hand
movement of different subjects averaged over channels. The values in all figures are averaged over
frequencies.

decreases. Specifically, for Le = 3 seconds, on average only %15 of the of the ensembles are rejected to

have samples with normal distribution. The test results show similar trend for the other two tasks.

It is worthy to mention that when the resulting percentages are averaged over all frequencies, there is

no significant variation between different tasks, different subjects, or different channels. As an example,

Figure 6.4.a provides the average percentage of verified normal cases for first subject’s left hand movement

task, plotted for all the 8 channels. Figure 6.4.b compares the results of all three tasks for the first subject,

which are again very close to each other. The same trend can be seen in Figure 6.4.c for one task over

all three subjects.

As a result, we can conclude that H0 is valid if the length of the observation window is small enough.

Thus, we set Le = 3 seconds in the rest of this chapter. It should be noted that even for large Le, only
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Table 6.1: Percentage of verified multi-variate complex normal EEG channels for different tasks in
different subjects.

Task Subj. 1 Subj. 2 Subj. 3

(1) 0.9978 0.9676 0.9899
(2) 0.9488 0.9939 0.9943
(3) 0.9303 0.9873 0.9938

Table 6.2: Average p-value of multi-variate normality test on EEG channels for different tasks in different
subjects.

Task
P1 P2

Subj. 1 Subj. 2 Subj. 3 Subj. 1 Subj. 2 Subj. 3

(1) 0.9842 0.9740 0.9798 0.3118 0.3019 0.3139
(2) 0.9622 0.9776 0.9811 0.3042 0.3180 0.3135
(3) 0.9500 0.9803 0.9822 0.3010 0.3148 0.3118

in half of the cases H0 is rejected.

6.3.3 Testing the Normality of zn

The results of the previous test showed each individual zmn element can be modelled as a complex-valued

Gaussian random variable when Le is small enough. This is a necessary but not sufficient condition for

joint Gaussianity of all elements of vector zn. This section examines the following hypothesis H0 : zn =

xn + jyn ∼ CNM (µz,ΣzzH ,ΣzzT ), where M = 13 is the number of frequency components in the EEG

spectrum, and CNM denotes the M-variate complex-valued Gaussian distribution. H0 is equivalent to

the following hypothesis:

H ′0 : z̃n =

 xn

yn

 ∼ N2M (µz̃,Σz̃z̃T ).

Assuming Le = 3 seconds from previous section, we have 32 samples in each ensemble to examine the

multivariate vector z̃ of the relatively large dimension 2M = 26. Consequently, Mardia’s multivariate

normality test cannot be utilized in this section. We use the multivariate normality test proposed

by [161], which is designed to overcome this small-sample-size problem. The results of this test for a

significance value of 0.05 are presented in Table 6.1. The average p-values of this test are also reported

in Table 6.2.

The fact that multivariate-normality of zn is only rejected in less than %10 of the cases, together

with the fact that individual elements of zn are shown to be normal, confirms with high confidence that

our proposed multivariate normal model for the vector zn fits the experimental data.
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Table 6.3: Average impropriety score of EEG channels for different tasks in different subjects.

Task Subj. 1 Subj. 2 Subj. 3

(1) 174.109 200.562 173.189
(2) 153.195 230.865 125.034
(3) 139.312 191.861 96.923

6.3.4 Testing the Propriety of zn

This section examines the propriety, or circular-symmetry, of the complex-valued EEG spectrum for each

channel. As mentioned in Section 6.2, if zn is proved to be improper, we can conclude that the phase of

complex-valued spectrum obtained from STFT has relevant information which will be lost in the power

spectral density representation. Therefore, we examine the hypothesis H0 : ΣxxT = ΣyyT , which is a

necessary condition for zn to be proper. In other words, rejection of H0 is a sufficient condition for zn

to be improper.

We use the test in [162], which examines the equality of two covariance matrices with small number

of samples. The results for a significance value of 0.05 show that for all the cases, hypothesis H0 is

rejected. Indeed, all the resulting test statistics have large values, with an average of 165, whereas the

critical value for hypothesis rejection is 1.645. These test statistics, which can be considered as the

impropriety scores, are reported in Table 6.3.

6.4 Time-Varying Characteristics of the EEG Spectrum

In the previous section, it was shown that during a mental imagery task, the spectral components

z(t, f, c|Ωi) can be modelled with a quasistationary noncircularly-symmetric complex-valued Gaussian

distribution, whose first and second order statistics can be defined with the following parameters:

µz(t, f, c|Ωi) = E {z(t, f, c|Ωi)} = µx(t, f, c|Ωi) + jµy(t, f, c|Ωi) (6.18)

σ2
z(t, f, c|Ωi) = E

{
|z(t, f, c|Ωi)− µz(t, f, c|Ωi)|2

}
(6.19)

= σ2
x(t, f, c|Ωi) + σ2

y(t, f, c|Ωi)

γ2
z (t, f, c|Ωi) = E

{
(z(t, f, c|Ωi)− µz(t, f, c|Ωi))2

}
(6.20)

=
(
σ2
x(t, f, c|Ωi)− σ2

y(t, f, c|Ωi)
)

+ j2σxy(t, f, c|Ωi)
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where µz(t, f, c|Ωi), σ2
z(t, f, c|Ωi), and γ2

z (t, f, c|Ωi) represent the time-varying mean, variance, and

pseudo-variance of z(t, f, c|Ωi).

The results of our statistical tests indicate that µx(t, f, c|Ωi), µy(t, f, c|Ωi), σ2
x(t, f, c|Ωi), and σ2

y(t, f, c|Ωi)

parameters change very slowly during a trial and can be considered to be constant over observation in-

tervals of length three seconds or less2. In other words, for t ∈ [t1, t1 + 3] we have

x(t, f, c|Ωi) ∼ N
(
µx(f, c, t1|Ωi), σ2

x(f, c, t1|Ωi)
)

for t ∈ [t1, t1 + 3] (6.21)

y(t, f, c|Ωi) ∼ N
(
µy(f, c, t1|Ωi), σ2

y(f, c, t1|Ωi)
)

for t ∈ [t1, t1 + 3] (6.22)

In this section, we further study the time-varying nature of the complex-valued EEG spectral com-

ponents. In particular, the time-varying properties of the mean and variance of the real and imaginary

parts of the spectrum will be examined.

Let the STFT samples obtained during a trial be divided into overlapping ensembles of length

three seconds. We perform the well known T-test and Chi-square variance test to determine if the

mean/variance of the samples within each ensemble is equal to the overall trial mean/variance, denoted

by µ(f, c|Ωi) and σ2(f, c|Ωi), which is empirically calculated from all the samples in the trial. Each of

these tests is separately performed on the real part and imaginary part of spectral components.

In order to study the ensemble means, we use the T-test which examines the null hypothesis that

the x(t, f, c|Ωi) (or y(t, f, c|Ωi)) samples within an ensemble have a Gaussian distribution with mean

µx(f, c|Ωi) (or µy(f, c|Ωi)) and unknown variance. This test is repeated over all the trials in the database,

for each specific frequency and each channel. A significance level of 0.05 is used for all the statistical

tests performed in this section.

Figure 6.5.a shows the results of this test for the real part of the spectrum (x(t, f, c|Ωi)). In this

figure, we have reported the percentage of ensembles for which the null hypothesis of T-test is not

rejected. In other words, the percentage of ensembles which are verified to have the same mean as the

overall trial mean are presented in this figure. Figure 6.5.b shows similar results for the imaginary part

of the spectrum (y(t, f, c|Ωi)). Since all the subjects exhibited similar trends, only the results of Subject

1 are reported. These results are averaged over all channels.

The results of Figure 6.5 reveal that the mean of spectral components are highly stationary over each

mental imagery trial. Therefore, we can assume that the µx(t, f, c|Ωi) and µy(t, f, c|Ωi) parameters are

constant over each trial and do not change with time index t.

2For simplicity, in this chapter we assume σxy(t, f, c|Ωi) = 0 and only focus on the effect of σ2
x(t, f, c|Ωi) and

σ2
y(t, f, c|Ωi).
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(a) T-test for µx(t, f, c|Ωi)
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(b) T-test for µy(t, f, c|Ωi)
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(c) χ2 test for σ2
x(t, f, c|Ωi)
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(d) χ2 test for σ2
y(t, f, c|Ωi)

Figure 6.5: Percentage of ensembles verified to have a mean (a-b) or a variance (c-d) equal to the overall
empirical mean or variance calculated using all the samples in a trial. The test results are very similar
for all subject, hence only the results of Subject 1 are presented here.)

In order to study the ensemble variances, we use the Chi-square variance test which examines the null

hypothesis that the x(t, f, c|Ωi) (or y(t, f, c|Ωi)) samples within an ensemble have a Gaussian distribution

with σ2
x(f, c|Ωi) (or σ2

y(f, c|Ωi)). Figures 6.5.c and 6.5.d show the results of this test for the real and

imaginary parts of the spectrum (x(t, f, c|Ωi) and y(t, f, c|Ωi)). Similar to the Figures a-b, the percentage

of ensembles which are verified to have the same variance as the overall trial variance are presented in

these figures. It can be seen that for more than %30 of the ensembles the null hypothesis is rejected,

which shows that unlike the means, the variances are time-varying and cannot be assumed to be constant

over the entire trial.

The above results together with the results of the previous section suggest that during a mental im-

agery trial, the complex-valued spectral components can be modelled with a time-varying noncircularly-
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symmetric Gaussian model with a constant mean and a time-varying variance and pseudo-variance. In

this model, the variations of the variance and the pseudo-variance are slow enough such that a Gaus-

sian distribution with fixed parameters accurately models the spectral components observed during a

short interval (of length 3 seconds or less). This motivates us to examine the possibility of using an

autoregressive conditional heteroscedastic (ARCH) model for the time-varying variance of the spectral

components in the next section.

6.5 ARCH Model for Spectral Components

The main challenge in dealing with the time-varying Gaussian model proposed in the previous section is

to model the variations of σ2
x(t, f, c|Ωi) and σ2

y(t, f, c|Ωi) parameters over time. This section examines if

an ARCH model [163] can be used for this purpose. The ARCH model assumes that: (a) The variance

of the signal is not constant and changes over time; hence the term heteroscedastic. (b) The variance at

each time instance is a linear function of the previous samples; hence the term conditional autoregressive.

Let εx(f, c, t) = x(t, f, c|Ωi)− µx(f, c), then the ARCH model of order q implies that

σ2
x(t, f, c|Ωi) = α0(f, c|Ωi) + Σqi=1αi(f, c|Ωi) ε

2
x(f, c, t− i∆t|Ωi) (6.23)

where i∆t is the time lag between the current sample and the ith previous sample (As it was ex-

plained previously, ∆t = 1/16 second). A similar model can also be used for σ2
y(t, f, c|Ωi) in terms of

εy(f, c, t|Ωi) = y(t, f, c|Ωi) − µy(f, c|Ωi). In order to test the validity of this model we have performed

the following steps for x(t, f, c|Ωi) and y(t, f, c|Ωi) over a trial.

1. Start with q = 1;

2. Assuming that an ARCH(q) model describes the variations of the variance of the spectral compo-

nents over time, estimate the parameters {α0, ..., αq} and find the log-likelihood objective function

value (LLFq) associated with the parameter estimates;

3. Assuming that an ARCH(q+1) model describes the variations of the variance of the spectral

components over time, estimate the parameters {α0, ..., αq+1} and find the value of LLFq+1;

4. Perform the likelihood ratio test to determine if there is enough statistical evidence to increase the

ARCH order from q to q + 1.

5. If the likelihood ratio test confirms the order increase, then increase the ARCH order from q to

q+ 1 and go to step 2. Otherwise, the ARCH(q) model suffices for modelling the variations of the

signals’ variance.



Chapter 6. Matrix-Variate Complex Gaussian Model for Spatio-Spectral Features 126

Table 6.4: ARCH model order for different spectral components of each channel.

Channels

Freq C3 Cz C4 CP1 CP2 P3 Pz P4

8 Hz 2∗ 1 2∗ 1 1 2∗ 2∗ 2∗

10 Hz 1 1 1 1 1 1 2∗ 1
12 Hz 2 2 2∗ 2 2 2∗ 2∗ 2
14 Hz 1 1 1 1 1 1 1 1
16 Hz 1 1 2∗ 1 1 1 1 1
18 Hz 1 1 1 1 1 1 1 1
20 Hz 2 2 2 2 2 2 2 2
22 Hz 1 1 1 1 1 1 1 1
24 Hz 1 1 1 1 1 1 1 1
26 Hz 1 1 1 1 1 1 1 1
28 Hz 2 2 2 2 2 2 2 2
30 Hz 1 1 1 1 1 1 1 1

Let qx(f, c) and qy(f, c) denote the resulting order for x(t, f, c|Ωi) and y(t, f, c|Ωi). The validity of

each of these model orders has been further confirmed using the Engle’s test for residual heteroscedasticity

[163] with a significance level of 0.05. Our analysis shows that (a) the value of qx(f, c) is equal to qy(f, c)

in most of the cases (with only a few exceptions which will be mentioned later). Therefore, we will

simply show the model order by q(f, c). (b) The value of q(f, c) does not change over different trials

and tasks (with a few exceptions). Table 6.4 presents the results of q(f, c) for subject 1 (The other two

subjects show similar trends). The values marked by an asterisk are the ones for which the value of

q(f, c) was changing between 1 and 2 for the real/imaginary parts and/or for different tasks or trials.

The results of this table show that for all the frequency components the variations of σ2
x(t, f, c|Ωi)

and σ2
y(t, f, c|Ωi), and hence the variations of σ2

z(t, f, c|Ωi) and γ2
z (t, f, c|Ωi),can be easily modelled

using an ARCH model of order one or two. Therefore, we can conclude that the complex-valued spectral

components z(t, f, c|Ωi) of the EEG signal recorded during a mental imagery trial can be modelled

by a noncircularly-symmetric Gaussian distribution with constant mean and time-varying variance and

pseudo-variance that follow an ARCH(1) or ARCH(2) model (depending on the values of f and c).

6.6 Summary and Concluding Remarks

In this chapter, we focused on the complex-valued spatio-spectral feature matrices that are extracted

through Fourier domain analysis of the EEG data, and proposed a matrix-variate complex Gaussian

model for them. Due to the complex-valued nature of these features, the resulting matrix-variate Gaus-

sian model requires the knowledge of spectral and spatial pseudo-covarainces of the data in addition

to the conventional spectral and spatial covariances. A brief discussion on the implications of using
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pseudo-covariances was also provided.

The matrix-variate complex Gaussian model in this chapter was proposed based on the assumption

that the mean and covariance of the spatio-spectral features do not change during a short epoch, denoted

by Le. The effect of epoch length on the validity of this assumption was examined through a number

of statistical tests on experimental data. It was shown that the longest acceptable epoch length, for

which the aforementioned assumption holds true in this data set, is approximately 3 seconds. Then

the temporal variations of the data over longer periods were modelled by an autoregressive conditional

heteroscedastic (ARCH) model.

In this chapter, we also examined the non-circularity or impropriety of the complex-valued EEG

features to study whether or not the phase of the EEG conveys relevant information during motor

imagery tasks. The result of the statistical tests revealed a high degree of non-circularity, which in turn

implies that there exists relevant information in the phase of the EEG data.

It should be noted that the statistical tests conducted in Sections 6.3 and 6.4 aimed to specifically

examine the Gaussianity of EEG epochs, and they cannot be considered as general tests of stationarity.

Since the Gaussian model used in this chapter is characterized based on the first and second order

statistics of the data, the main purpose of these statistical tests was to examine the changes of the mean

and covariance of the features over time. Therefore, the results of these test are only valid for analysis of

the mean and covariance of the data, and shall not be generalized to the general stationarity properties

of the EEG data. General analysis of the stationarity of the EEG features requires further statistical

tests to directly examine the time-varying characteristics of the data, which is outside the scope of this

thesis.



Chapter 7

Conclusions and Future Work

7.1 Research Summary

This research focused on the problem of spatio-spectral feature extraction for the motor-imagery brain-

computer interface (MI-BCI) systems, and provided a general framework for FE in MI-BCI systems.

In this framework, the feature extraction methods are categorized into domain-specific (DS-FE) and

domain-agnostic (DA-FE) techniques. The former group takes advantage of the neurophysiological

properties of the EEG signals to extract a set of discriminant features; whereas the latter group consists

of generic feature extraction algorithms that are borrowed from the pattern recognition literature and

are not necessarily based on any neurophysiological knowledge about the EEG data. The main purpose

of the domain-agnostic FE is to reduce the redundancy of the spatio-spectral features and provide a

smaller set of discriminant features.

Based on this framework, it was shown that the output of domain-specific FE stage has an inherent

matrix-variate structure, which is currently ignored in the BCI literature. It was then proposed that this

spatio-spectral feature set can be modelled by a matrix-variate Gaussian distribution. The matrix-variate

Gaussian distribution can be considered as a special subset of the multivariate Gaussian model that

requires a special Kronecker product structure for the covariance of the data. This extra requirement

allows for the matrix-variate data to be analyzed in its inherent matrix structure through bilinear

operations.

Using a matrix-variate Gaussian model for the spatio-spectral features, a new domain-agnostic FE

approach for MI-BCIs was proposed in Chapter 4. In this approach, we proposed to use bilinear ex-

tensions of LDA method, namely 2DLDA and MVLDA methods, in conjunction with the filterbank
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common spatial patterns (FBCSP) method. The experimental results showed that the combination of

MVLDA with FBCSP highly improves the overall performance of the BCI system.

In Chapter 5, the matrix-variate Gaussian model was deployed at the domain-specific FE step. Based

on this model, the separable common spatio-spectral patterns (SCSSP) was developed. This method

has less computational cost compared to the FBCSP method and significantly outperforms FBCSP,

provided that enough training data is available. Unlike the FBCSP method, SCSSP is able to sort the

discriminant power of the extracted features along both spectral and spatial domains. This property of

the SCSSP eliminates the need for a separate domain-agnostic FE step, and its output features can be

directly passed to the classifier.

In Chapter 6, we focused on the complex-valued spatio-spectral features that are extracted through

Fourier domain analysis of the EEG signals. Motivated by the results of the previous two chapters,

we studied the possibility of modelling these features with a complex-valued matrix-variate Gaussian

distribution. Towards this end, we studied the information conveyed in the phase of these complex-

valued features, and statistically showed that during motor-imagery tasks the phase of the EEG conveys

relevant information. This result agrees with the recent neurophysiological findings in the literature.

Based on these results, a time-varying Gaussian model was proposed for these complex-valued spatio-

spectral features, and the validity of this model was examined through statistical test.

The experimental results in Chapters 4 and 5 together with the statistical analysis in Chapter 6 and

the preliminary studies in [164–166] highly suggest that

1. the Gaussian distribution is a fairly reasonable model for the spatio-spectral EEG features during

motor imagery tasks, and

2. the covariance between any two rhythmic activities in two different EEG channels can be decom-

posed into two multiplicative components: (a) A spectral covariance term that only depends on

the frequency of these two rhythms, and (b) A spatial component that only depends on the spatial

location of these two EEG channels.

In order to investigate the validity of this conjecture, further statistical and neurophysiological studies

on different EEG databases are required.

The statistical models that were introduced in this thesis, and the corresponding feature extraction

approaches, can contribute in laying a mathematical foundation for more systematic analysis of the

feature extraction methods for motor-imagery BCI systems. One of the main challenges in the BCI

literature is that most of the proposed methods only focus on a certain aspect of the EEG features

without providing a connection with other existing approaches or possible implications of the assumptions
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made by their proposed method (ref. [167] and the discussions therein). Among other reasons, this

problem can be partly attributed to the fact that there has been little focus over the past century on the

mathematical modelling of the EEG signals and connecting them to the neurophysiological properties of

the EEG signals (ref. [26] and the discussions therein). Nevertheless, recently there has been a growing

interest in making connection between different areas of neuroscience and designing feature extraction

methods based on a more systematic approach. The presented research work is part of this collective

effort.

7.2 Future Work

The following is a short list of possible areas for future research related to this thesis:

• The matrix-variate Gaussian model that was adopted in this thesis can potentially be used in

conjunction with various spatio-spectral feature extraction schemes, such as the spectral coher-

ence or the directed transfer functions method to reduce the computational cost and improve the

performance of these methods. However, in this thesis we mostly focused on the spatio-spectral

features that are obtained through bandpass filtering of the EEG signals. One possible extension

of this work is to study the validity of matrix-variate Gaussian distribution for modelling the fea-

tures obtained from coherence analysis or the directed transfer function method. As mentioned

in Chapter 3, the main challenge in utilization of these two methods is the high dimensionality of

the feature space generated by them, which highly increases the computational cost of the BCI

system and affects the performance of the subsequent classifier. From this perspective, the matrix-

variate Gaussian distribution can be extremely helpful in reducing the computational cost of both

domain-agnostic FE and domain-specific FE in such systems.

• In Chapters 4 and 5, we examined several factors that can affect the performance of the proposed

feature extraction algorithms. However, due to the large number of parameters that are involved

in such a design, we had to choose some parameters based on the conventional values used in the

literature and our preliminary results on the experimental data. These parameters include: the

bandwidth of bandpass filters, the choice of multiclass extension method for FBCSP and SCSSP,

the epoch length, and the choice of the classifier. In the future, the aforementioned factors can be

studied in more detail, and their effect on the performance both domain-specific FE and domain-

agnostic FE stages can be examined.

• The SCSSP method presented in Chapter 5 was shown to be sensitive to the size of training



Chapter 7. Conclusions and Future Work 131

samples when extremely limited amount of training data is available. Although such situation

is not common in motor-imagery BCI systems, it is worth to study the possible modifications in

SCSSP method that can result in more robustness when training data is limited. One possible

solution is to use multi-subject regularization methods, and aggregate data from multiple subjects

to increase the amount of training data. The other possible solution is to combine the covariance

assumptions of SCSSP and FBCSP methods in a regularized scheme to reduce the sensitivity of

the SCSSP while benefiting from its low computational cost.

• One of the most important assumptions in Chapters 4 and 5 is the separability of the spatio-

spectral features. The competitive performance of the MVLDA and SCSSP methods implicitly

confirms this assumption. However, this assumption needs to be further validated in the future

through statistical tests for separability of the covariance matrices. One of the most important

challenges in such a statistical test is the time-varying nature of the EEG signals, which in turn

poses a strict limitation on the number of samples that can be used for statistical test, similar to

the case in Chapter 6. To the best of our knowledge, there are no statistical tests for such small

sample size scenarios in the literature. Therefore, a possible future work can be to develop new

statistical verification methods to verify the separability of spatio-spectral features in EEG signals.

• In order to increase the accuracy of the proposed motor-imagery BCI systems, fusion techniques

can be deployed at different levels, as follows:

– Signal acquisition level: As mentioned in Chapter 1, data from multiple brain-imaging tech-

niques such as EEG and fNIR can be used simultaneously to mitigate some limitations of

the EEG signals. Moreover, signals from other biological sources, such as heart-rate or eye-

movement, can be used to improve the performance of the BCI system.

– Feature extraction level: In Chapter 3, several alternative methods for feature extraction

from EEG signals were discussed. In this thesis, we only focused on a specific subset of

these methods. However, it is possible to utilize a number of different methods in parallel

to obtain different feature sets, each of which focuses on certain characteristics of the data.

These different feature sets can then be combined to provide a better representation of the

underlying EEG characteristics.

– Classification level: One of the commonly used methods for improving the performance of

BCI systems is to utilize multiple classifiers in parallel, and combine the resulting decision

outputs using different decision fusion techniques such as voting.
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• One of the widely used techniques for improving the performance of the motor-imagery BCI systems

is to provide the user with real-time feedback and adaptively train the feature extractors and the

classifier. The feature extraction methods proposed in this thesis are specially suitable for such

real-time implementation since they have very low computational cost for training. Therefore, in

the future the adaptive extensions of the proposed solutions and their performance in real-time

scenarios need to be studied.

• In Chapter 6, the matrix-variate complex Gaussian model for the Fourier domain representation

of the spatio-spectral features was presented. However, since there had been no prior study in the

literature on this topic, most of the analysis in this chapter was devoted to providing a concrete

definition and verifying it through statistical tests. In the future, practical applications of this

model need to be explored with more detail. In particular, the proposed model can be used to

develop a complex-valued extension of the matrix-to-vector LDA (MVLDA) method which can be

used in conjunction with the Fourier transformation.

• In the literature, there has been some heuristic solutions for extension of different domain-specific

FE and domain-agnostic FE methods, such as ICA or CSP, for complex-valued features. The

complex-valued model presented in Chapter 6 can be used as a mathematical framework for theo-

retical derivation of the complex-valued counterparts of these methods that can guarantee a certain

set of desired properties.

• Finally, characterization of the time-varying spatio-spectral features in Chapter 6 requires further

investigation through statistical tests that directly examine the stationarity of the data. Both

parametric and non-parametric methods can be used for this purpose. Non-parametric statisti-

cal tests have the advantage that they do not depend on any prior assumption about the data,

but they require relatively larger sample size, whereas parametric methods are based on certain

presumptions to provide more accurate result even in the case where the number of samples are

limited. Considering the fact that motor imagery datasets usually include short epochs of motor

imagination data, parametric tests are more suitable for future analysis of the stationarity of the

data.
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Appendices

A.1 Generalized Eigen-decomposition and its Properties

Let A,B ∈ Rn×n be real-valued symmetric matrices of size n × n. A generalized eigen-decomposition

problem, is the problem of finding vectors vi that satisfy the following equation:

Avi = λiBvi 1 ≤ i ≤ n (A.1)

The following is a short review of the properties of the generalized eigenvalues and eigenvectors.

• A nonzero vector vi satisfying (A.1) is called a right generalized eigenvector for the eigenvalue λi.

Since vi satisfies viTA = λiv
T
i B as well, it is also called a left generalized eigenvector for λi.

• All generalized eigenvalues of A and B are real-valued. As a result, they can be sorted as follows:

λ1 ≤ λ2 ≤ · · · ≤ λn.

• For distinct eigenvalues, the corresponding eigenvectors are unique, up to a scale.

• The eigenvectors vi may not in general be unique, but they can be chosen to be “B-orthogonal”

to each other, i.e.,

vTi Bvj = 0, for i 6= j (A.2)

• If both A and B are positive semidefinite matrices, then all the generalized eigenvalues are strictly

positive, i.e, λi > 0. If only B is positive definite, and A is positive semidefinite1 then λi ≥ 0.

1Here, we assume that either A or B are positive semidefinite. For a more general discussion, refer to [168].

133



Appendix A. Appendices 134

• Let Λ = diag[λ1, λ2, · · · , λn] and V = [v1,v2, · · · ,vn]. Then, the n equalities in (A.1) can be

expressed as

AV = BVΛ (A.3)

Similarly, we have

VTBV = ΛB (A.4)

where ΛB = diag[λB,1, λB,2, · · · , λB,n] is a real-valued diagonal matrix. Therefore, it can be easily

shown that

VTAV = ΛA (A.5)

where ΛA = ΛBΛ is also a real-valued diagonal matrix of the form ΛA = diag[λA,1, λA,2, · · · , λA,n].
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A.2 Kronecker Product Definition and its Properties

Consider A∈Rm×n and B∈Rp×q, where aij and bij are the (i, j)th elements of A and B, respectively.

The Kronecker product of A and B, denoted by A⊗B, is the mp× nq matrix defined by

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

 = (A.6)



a11b11 a11b12 · · · a11b1q a12b11 a12b12 · · · a12b1q · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q a12b21 a12b22 · · · a12b2q · · · a1nb21 a1nb22 · · · a1nb2q
...

...
...

...
...

...
...

...
...

a11bp1 a11bp2 · · · a11bpq a12bp1 a12bp2 · · · a12bpq · · · a1nbp1 a1nbp2 · · · a1nbpq

a21b11 a21b12 · · · a21b1q a22b11 a22b12 · · · a22b1q · · · a2nb11 a2nb12 · · · a2nb1q

a21b21 a21b22 · · · a21b2q a22b21 a22b22 · · · a22b2q · · · a2nb21 a2nb22 · · · a2nb2q
...

...
...

...
...

...
...

...
...

a21bp1 a21bp2 · · · a21bpq a22bp1 a22bp2 · · · a22bpq · · · a2nbp1 a2nbp2 · · · a2nbpq

...
...

...
...

...
...

. . .
...

...
...

am1b11 am1b12 · · · am1b1q am2b11 am2b12 · · · am2b1q · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q am2b21 am2b22 · · · am2b2q · · · amnb21 amnb22 · · · amnb2q
...

...
...

...
...

...
...

...
...

am1bp1 am1bp2 · · · am1bpq am2bp1 am2bp2 · · · am2bpq · · · amnbp1 amnbp2 · · · amnbpq


(A.7)

The Kronecker product has the following properties:

• For any two scalars α and β,

(αA)⊗ (βB) = αβ(A⊗B) (A.8)
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• Let A∈Rm×n and B∈Rm×n. For any matrix C, we have

(A + B)⊗C = (A⊗C) + (B⊗C), (A.9)

C⊗ (A + B) = (C⊗A) + (C⊗B) (A.10)

• For any three matrices A,B, and C, we have

(A⊗B)⊗C = A⊗ (B⊗C) (A.11)

• For any two matrices A and B,

(A⊗B)T = AT ⊗BT (A.12)

• For A∈Rm×n,B∈Rp×q,C∈Rnr, and D∈Rq×s, we have

(A⊗B)(C⊗D) = (AC)⊗ (BD) (A.13)

• For nonsingular matrices A and B,

(A⊗B)−1 = A−1 ⊗B−1 (A.14)

• For A∈Rm×m and B∈Rn×n,

det(A⊗B) = det(A)n det(B)m (A.15)

• For A∈Rm×m and B∈Rm×m,

tr(A⊗B) = tr(A) tr(B) (A.16)



Appendix A. Appendices 137

A.3 Proof of Theorem 1

Let Σi = Ψi⊗Φi for i ∈ {1, 2} and W = WR⊗WL, where WR and WL satisfy the following equations:

Ψ1WR = (Ψ1 + Ψ2) WRΛR, (A.17)

Φ1WL = (Φ1 + Φ2) WLΛL, (A.18)

In this section, we will prove that

Σ1W = (Σ1 + Σ2) WΛ, (A.19)

where Λ = (ΛR⊗ΛL)
(
ΛR⊗ΛL + (INch

−ΛR)⊗
(
INf
−ΛL

))−1
.

From the discussions in A.1, it can be easily shown that WR jointly diagonalizes both Ψ1 and Ψ2.

Similarly, WL jointly diagonalizes both Φ1 and Φ2. Therefore, we have

Ψ1WR = WRΛ
(1)
R , (A.20)

Ψ2WR = WRΛ
(2)
R , (A.21)

Φ1WL = WLΛ
(1)
L , (A.22)

Φ1WL = WLΛ
(2)
L , (A.23)

where Λ
(i)
R and Λ

(i)
L are the corresponding diagonal eigenvalue matrices. By substituting Equations

(A.20)-(A.23) into (A.17) and (A.18), it can be shown that

Λ
(1)
R =

(
Λ

(1)
R + Λ

(2)
R

)
ΛR, (A.24)

Λ
(1)
L =

(
Λ

(1)
L + Λ

(2)
L

)
ΛL, (A.25)

or equivalently,

Λ
(1)
R

(
Λ

(1)
R + Λ

(2)
R

)−1

= ΛR, (A.26)

Λ
(2)
R

(
Λ

(1)
R + Λ

(2)
R

)−1

= INch
−ΛR, (A.27)

Λ
(1)
L

(
Λ

(1)
L + Λ

(2)
L

)−1

= ΛL, (A.28)

Λ
(2)
L

(
Λ

(1)
L + Λ

(2)
L

)−1

= INf
−ΛL, (A.29)
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Using these definitions, the left-hand side of Equation (A.19) can be expanded as follows:

Σ1W = (Ψ1 ⊗Φ1) (WR ⊗WL) (A.30)

= (Ψ1WR)⊗ (Φ1WL) (A.31)

=
(
WRΛ

(1)
R

)
⊗
(
WLΛ

(1)
L

)
(A.32)

= (WR ⊗WL)
(
Λ

(1)
R ⊗Λ

(1)
L

)
(A.33)

Similarly, the right-hand side of Equation (A.19) can be expanded as follows:

(Σ1 + Σ2) WΛ = (WR ⊗WL)
(
Λ

(1)
R ⊗Λ

(1)
L

)
Λ + (WR ⊗WL)

(
Λ

(2)
R ⊗Λ

(2)
L

)
Λ (A.34)

= (WR ⊗WL)
(
Λ

(1)
R ⊗Λ

(1)
L + Λ

(2)
R ⊗Λ

(2)
L

)
Λ (A.35)

Therefore, (A.33) is equal to (A.35) when

Λ =
(
Λ

(1)
R ⊗Λ

(1)
L

)(
Λ

(1)
R ⊗Λ

(1)
L + Λ

(2)
R ⊗Λ

(2)
L

)−1

(A.36)

= (ΛR ⊗ΛL)
(
ΛR⊗ΛL + (INch

−ΛR)⊗
(
INf
−ΛL

))−1
(A.37)

where (A.37) is obtained by multiplying all Λ
(i)
R and Λ

(i)
L matrices in (A.36) by

(
Λ

(1)
R + Λ

(2)
R

)−1

.
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A.4 A Sufficient Condition for Separability of Spatio-Spectral

Features

Theorem 2: Let s(t, c|Ωi) denote the EEG signal recorded at time t from channel c. Without loss of

generality, we assume that s(t, c|Ωi) is zero mean, i.e., E{s(t, c|Ωi)} = 0. Also, let z(t, f, c|Ωi) and

ž(t, f, c|Ωi) respectively represent the spatio-spectral features obtained through short-time Fourier

transformation and through bandpass filtering of s(t, c|Ωi), defined as follows

z(t, f, c|Ωi) =

∫ ∞
−∞

s(τ, c|Ωi)w(τ − t)e−j2πfτdτ (A.38)

ž(t, f, c|Ωi) = s(t, c|Ωi) ∗ hf (t) (A.39)

where w(t) denotes the STFT window, and hf (t) denotes the bandpass filter’s impulse response.

The following condition is a sufficient condition for separability of both z(t, f, c|Ωi) and ž(t, f, c|Ωi):

E{s(t1, c1|Ωi) s(t2, c2|Ωi)} = ρ(t1, t2|Ωi) ψ(c1, c2|Ωi) (A.40)

where ψ(c1, c2|Ωi) can be considered as spatial covariance between channels c1 and c2 during task

Ωi. Similarly, ρ(t1, t2|Ωi) can be considered as temporal covariance, or correlation, between time

instances t1 and t2.

Moreover, If the condition in (A.40) is satisfied, then we will have

E{z(t, f1, c1|Ωi) z(t, f2, c2|Ωi)} = φ(t, f1, f2|Ωi) ψ(c1, c2|Ωi) (A.41)

E{z(t, f1, c1|Ωi) z∗(t, f2, c2|Ωi)} = φ(t, f1,−f2|Ωi) ψ(c1, c2|Ωi) (A.42)

E{ž(t, f1, c1|Ωi) ž(t, f2, c2|Ωi)} = φ̌(t, f1, f2|Ωi) ψ(c1, c2|Ωi) (A.43)

where φ(t, f1, f2|Ωi) can be considered as the spectral covariance between frequency components

(or bands) f1 and f2 at time t. Similarly, φ(t, f1, f2|Ωi) denotes the spectral pseudo-covariance

between f1 and f2 at time t.

Proof For STFT Features: For spatio-spectral features obtained through short-time Fourier trans-
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formation, we have

E
{
z(t, f1, c1|Ωi) z(t, f2, c2|Ωi)

}
= E

{(∫ ∞
−∞

s(τ1, c1|Ωi) w(τ1 − t) e−j2πf1τ1 dτ1
)
·
(∫ ∞
−∞

s(τ2, c2|Ωi) w(τ2 − t) e−j2πf2τ2 dτ2
)}

= E

{∫∫ ∞
−∞

s(τ1, c1|Ωi) s(τ2, c2|Ωi) w(τ1 − t) w(τ2 − t) e−j2π(f1τ1+f2τ2) dτ1 dτ2

}

=

∫∫ ∞
−∞

E
{
s(τ1, c1|Ωi) s(τ2, c2|Ωi)

}
w(τ1 − t) w(τ2 − t) e−j2π(f1τ1+f2τ2) dτ1 dτ2

=

∫∫ ∞
−∞

ρ(τ1, τ2|Ωi) ψ(c1, c2|Ωi) w(τ1 − t) w(τ2 − t) e−j2π(f1τ1+f2τ2) dτ1 dτ2

= ψ(c1, c2|Ωi)
∫∫ ∞
−∞

ρ(τ1, τ2|Ωi) w(τ1 − t) w(τ2 − t) e−j2π(f1τ1+f2τ2) dτ1 dτ2

= ψ(c1, c2|Ωi) φ(t, f1, f2|Ωi) (A.44)

where φ(t, f1, f2|Ωi) represents the two-dimensional (or bivariate) short-time Fourier transforma-

tion of ρ(t1, t2|Ωi) evaluated at time t1 = t2 = t, i.e.,

φ(t, f1, f2|Ωi) =

∫∫ ∞
−∞

ρ(τ1, τ2|Ωi) w(τ1 − t) w(τ2 − t) e−j2π(f1τ1+f2τ2) dτ1 dτ2 (A.45)

Similarly, it can be shown that

E
{
z(t, f1, c1|Ωi) z∗(t, f2, c2|Ωi)

}
= ψ(c1, c2|Ωi)

∫∫ ∞
−∞

ρ(τ1, τ2|Ωi) w(τ1 − t) w(τ2 − t) e−j2π(f1τ1−f2τ2) dτ1 dτ2

= ψ(c1, c2|Ωi) φ(t, f1,−f2|Ωi) (A.46)

Note that Equation (A.44) represents the pseudo-covariance between the complex-valued signals

z(t, f1, c1|Ωi) and z(t, f2, c2|Ωi), whereas Equation (A.46) represents the covariance between these

two signals.

Proof For Bandpass Filter Features: For spatio-spectral features obtained through bandpass filter-
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ing (or any other similar filtering) the EEG signal, we have

E
{
ž(t, f1, c1|Ωi) ž(t, f2, c2|Ωi)

}
= E

{(∫ ∞
−∞

s(τ1, c1|Ωi) hf1(t− τ1) dτ1

)
·
(∫ ∞
−∞

s(τ2, c2|Ωi) hf2(t− τ2) dτ2

)}

= E

{∫∫ ∞
−∞

s(τ1, c1|Ωi) s(τ2, c2|Ωi) hf1(t− τ1) hf2(t− τ2) dτ1 dτ2

}

=

∫∫ ∞
−∞

E
{
s(τ1, c1|Ωi) s(τ2, c2|Ωi)

}
hf1(t− τ1) hf2(t− τ2) dτ1 dτ2

=

∫∫ ∞
−∞

ρ(τ1, τ2|Ωi) ψ(c1, c2|Ωi) hf1(t− τ1) hf2(t− τ2) dτ1 dτ2

= ψ(c1, c2|Ωi)
∫∫ ∞
−∞

ρ(τ1, τ2|Ωi) hf1(t− τ1) hf2(t− τ2) dτ1 dτ2

= ψ(c1, c2|Ωi) φ̌(t, f1, f2|Ωi) (A.47)

where φ̌(t, f1, f2|Ωi) denotes the two-dimensional (or bivariate) convolution of ρ(t1, t2|Ωi) with the

function Hf1,f2(t1, t2) = hf1(t− τ1) hf2(t− τ2), evaluated at time t1 = t2 = t, i.e.,

φ̌(t, f1, f2|Ωi) =

∫∫ ∞
−∞

ρ(τ1, τ2|Ωi) hf1(t− τ1) hf2(t− τ2) dτ1 dτ2 (A.48)
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[149] F. Galán, F. Oliva, and J. Guàrdia, “Using mental tasks transitions detection to improve sponta-

neous mental activity classification,” Med. Bio. Eng. Comput., vol. 45, no. 6, pp. 603–609, 2007.

[150] C.-J. Lin and M.-H. Hsieh, “Classification of mental task from EEG data using neural networks

based on particle swarm optimization,” Neurocomputing, vol. 72, no. 4-6, pp. 1121–1130, 2009.

[151] J.-M. Cano-Izquierdo, J. Ibarrola, and M. Almonacid, “Improving motor imagery classification

with a new bci design using neuro-fuzzy s-dfasart,” IEEE Trans. Neural Syst. Rehabil. Eng.,

vol. 20, no. 1, pp. 2–7, 2012.

[152] A. Schlogl, J. Kronegg, J. Huggins, and S. Mason, Toward Brain-Computer Interfacing. Cam-

bridge: MIT Presss, 2007.

[153] S. Knecht, B. Drager, M. Deppe, L. Bobe, H. Lohmann, A. Floel, E. . Ringelstein, and H. Hen-

ningsen, “Handedness and hemispheric language dominance in healthy humans,” Brain, vol. 123,

no. 12, pp. 2512–2518, 2000.

[154] I. Taylor, Psycholinguistics : learning and using language. Englewood Cliffs, N.J.: Prentice Hall,

1990.

[155] A. Hyvrinen, P. Ramkumar, L. Parkkonen, and R. Hari, “Independent component analysis of

short-time fourier transforms for spontaneous EEG/MEG analysis,” NeuroImage, vol. 49, no. 1,

pp. 257–271, 2010.



Bibliography 156

[156] B. Picinbono, “Second-order complex random vectors and normal distributions,” IEEE Trans.

Signal Process., vol. 44, no. 10, pp. 2637–2640, Oct. 1996.

[157] B. Picinbono and P. Bondon, “Second-order statistics of complex signals,” IEEE Trans. Signal

Process., vol. 45, no. 2, pp. 411–420, Feb. 1997.

[158] F. D. Neeser and J. L. Massey, “Proper complex random processes with applications to information

theory,” IEEE Trans. Inf. Theory, vol. 39, no. 4, pp. 1293–1302, Jul. 1993.

[159] B. Picinbono, “On circularity,” IEEE Trans. Signal Process., vol. 42, no. 12, pp. 3473–3482, Dec.

1994.

[160] K. V. Mardia, “Measures of multivariate skewness and kurtosis with applications,” Biometrika,

vol. 57, no. 3, pp. 519–530, 1970.

[161] J. Liang, R. Li, H. Fang, and K.-T. Fang, “Testing multinormality based on low-dimensional

projection,” Journal of Statistical Planning and Inference, vol. 86, no. 1, pp. 129 – 141, 2000.

[162] J. R. Schott, “A test for the equality of covariance matrices when the dimension is large relative

to the sample sizes,” Comput. Stat. Data Anal., vol. 51, no. 12, pp. 6535–6542, 2007.

[163] R. Engle, “Autoregressive conditional heteroscedasticity with estimates of the variance of united

kingdom inflation,” Econometrica, vol. 50, pp. 987–1008, 1982.

[164] M. Mahanta, A. Aghaei, K. Plataniotis, and S. Pasupathy, “Spatio-spectral sufficient statistic for

mental imagery EEG signals,” in Int. Joint Conf. on Neural Networks, 2010, pp. 1–7.

[165] M. S. Mahanta, A. S. Aghaei, and K. N. Plataniotis, “A bayes optimal matrix-variate LDA for ex-

traction of spatio-spectral features from EEG signals,” in 2012 Annu. Int. Conf. IEEE Engineering

in Medicine and Biology Society (EMBC), 2012, pp. 3955–3958.

[166] M. Mahanta, A. S. Aghaei, and K. N. Plataniotis, “Regularized LDA based on separable scatter

matrices for classification of spatio-spectral EEG patterns,” in IEEE Int. Conf. Acoustics, Speech

and Signal Processing., 2013, pp. 1237–1241.

[167] “Five methodological challenges in cognitive electrophysiology,” NeuroImage, 2013.

[168] Z. Bai, Templates for the solution of algebraic eigenvalue problems: a practical guide. Siam, 2000,

vol. 11.


