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In this thesis, we study different scheduling policies in service networks. In Chapter 2, we

consider two service level (SL) measures in a two-server tandem queue system: the average

sojourn time and the probability of long waits. We demonstrate that a family of Threshold

Based Policies (TBP) can reduce the probability of long waits while maintaining sojourn times

that are only slightly higher than those of a non-idling policy. In Chapter 3, we present a case

study for improving the operations of a healthcare provider that has an open-shop queueing

network. We propose an effective implementation of Dynamic Scheduling Policies (DSPs) and

a generalized TBP to improve the SL in an open-shop queueing networks. Using a simulation

model we demonstrate that an open-shop queueing network can be managed in a systematic

fashion to deliver improved SL. In Chapter 4, we study the waiting time distribution of two

different priority classes in an M/M/c queue with different service times. For the c = 2 case, we

provide closed form expression of the Generating Function (GF) of the number of low-priority

jobs in the system, which can lead to the waiting time distribution. For c > 2 case, we present

an efficient numerical algorithm for deriving this GF. We discuss several insights gained from

numerical results. Both Chapter 2 and 3 were supervised by Professors Opher Baron, Oded

Berman, and Dmitry Krass. Chapter 4 was supervised by Professors Opher Baron and Alan

Scheller-Wolf.
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Chapter 1

Introduction

In this thesis, we study different scheduling policies in service networks.

In Chapter 2, Using Strategic Idleness to Improve Customer Service Experience in Service

Networks, we focus on the probability of long waits as a service level measure. The mostly

common measure of service quality is the overall expected waiting time for service. However, in

service networks the perception of waiting may also depend on how it is distributed among dif-

ferent stations. Therefore, to better capture customers’ perception of service quality managers

should also consider the probability of long waiting times in each station. We simultaneously

consider two objectives in a service network, the expected sojourn time and the probability of

long waits at any one station.

In a single-station queue it is known that the policy that minimizes the expected sojourn

time and the probability of long waits is non-idling. However, in a queueing network with several

stations, a policy that allows some idling may reduce the probability of long waits before any

specific station. We present a family of Threshold Based Policies (TBP) that Strategically Idle

(SI) some stations. We demonstrate the advantage of SI by applying TBP in a network with two

single-server queues in tandem. We develop efficient algorithms to calculate the distribution of

waiting time for each station and the system sojourn time under the TBP. These algorithms

use an elegant analysis of the waiting time faced by specific customers. Using these results we

present trade-off curves between the probability of long waits and the expected sojourn time.

For the asymptotic case when µ1 = ∞, we derive closed form expressions for the performance

measures.

1



Chapter 1. Introduction 2

We compare the performance of TBP policies to this of Kanban polices that are well studied

idling policies in the manufacturing settings. We show that TBP policies often achieve better

perform on both service level measures in the queuing networks considered.

In Chapter 3, Dynamic Scheduling and Strategic Idling in an Open-shop Queueing Network:

Case Study and Analysis, we present a case study for improving the operations of XYZ Inc.

(the real name of the company is removed for confidentially reasons). Their flagship service

is the Comprehensive Health Assessment (CHA), which is composed of 10-20 different medical

tests that provide customers with a complete evaluation of their current state of health and

allows them to actively manage their health care. Because XYZ’s customers may visit most of

the stations in different orders, XYZ actually operates an open-shop queueing network.

Currently XYZ measures Customers’ waiting time using three complementary Service Level

(SL) measures: (i) system time—the average total time since customers register with XYZ at

the beginning of the day until they finish their last exam and are free to leave, (ii) probability

of system time longer than four hours, and (iii) number of red faces —the number of times

(tests in a particular station) that customers have to wait more than 20 minutes. XYZ’s stated

SL objective targets are: mean system time of less than four hours, probability of system time

longer than four hours of less than 50%, and at most five red faces per day.

The focus on the number of red faces implies that what affects service quality is indeed

not just the overall waiting time, but also how this time is distributed between stations. This

gives justification of considering the probability of long waits (which is a similar measure to the

number of red faces) as a service level measure in Chapter 2.

In this paper, we propose an effective implementation of Dynamic Scheduling Policies

(DSPs) and a generalized TBP to improve the SL in an open-shop queueing network. Us-

ing two months of data from XYZ we programmed and calibrated a detailed simulation model

of XYZ’s operation. Using this simulation model we demonstrate that an open-shop queueing

network can be managed in a systematic fashion to deliver improved service level by jointly

using DSPs and SI.

In Chapter 4, M/M/c Queue with Two Priority Classes, we study the waiting time distri-

bution of two different priority classes in a M/M/c queue. We assume that Class-1 customers

have preemptive priority over Class-2 customers. In many industries there is a growing usage
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of prioritization: Companies often prioritize certain groups of customers in order to improve

market segmentation, service levels, and profitability. For example, banks prioritize business

customers over individual customers; websites prioritize paid users over free users; car rental

companies prioritize customers with reservations over ”walk-in” customers.

While the distribution of waiting times is well known for quite general single-server queues

with priority such as the M/G/1 (see, e.g., Takagi 1991), finding this distribution is much more

complicated in the multi-server setting. To the best of our knowledge, no exact solutions for

the waiting time distribution in a multi-server queueing system serving multiple priority classes

with different service rates has appeared in the literature.

The main difficulty in analyzing the M/M/c queue with two priority classes is the need

to track the number of jobs from each class. Thus, the state of the system is expressed in

a 2D-infinite continuous-time MC, which is very difficult to analyze. We apply an innovative

method to simplify the 2D-infinite continuous-time MC to a 1D-infinite discrete-time MC that

is much easier to analyze. We then analyze the 1D-infinite discrete-time MC by observing the

system state embedded at Class-2 departures, expressing these using a similar process to the

one used in analyzing the M/G/1 queue. The complexity of deriving the GF increases with the

number of servers, c; thus, we also provide a numerical algorithm to derive this GF for c > 2.



Chapter 2

Using Strategic Idleness to Improve

Customer Service Experience in

Service Networks

2.1 Introduction

Multi-stage service networks, where customers must visit several stations during a single service

encounter, abound in modern economy. Examples range from call centers, where a typical

service path may include an automated response system, followed by a generalist call-taker,

and eventually (and if required) a specialist, to hospital emergency rooms, where the initial

triage stage may be followed by any number of medical tests and procedures.

While there are many determinants of service quality, the link between customer waiting

times and the perceived service quality is well-recognized (Friedman and Friedman, 1997; Tay-

lor, 1994). Waiting times have long been the focus of much of the queueing literature. The

most common measure of waiting time is the overall expected waiting time for service (see e.g.,

the survey by Gans, Koole, and Mandelbaum, 2003). A related measure is the probability that

the total waiting time exceeds a certain pre-defined threshold. These measures take a macro

view of the network, treating it as a one-stage system.

However, considering only such macro-level measures might not be sufficient to measure

4



Chapter 2. Strategic Idleness in Service Networks 5

service quality and may even be misleading. There is a strong body of evidence showing that it

is also important to consider what happens within the network. A poor level of service received

at a particular station may not be compensated by an exceptional service at another station,

even if the overall measure appears to be acceptable. The adverse impact of long waiting time

at a particular station is further supported by marketing literature, e.g., Soman and Shi (2003),

and by the psychology of queueing literature, e.g., Larson (1987). Baron, Berman, and Krass

(2008), Baron and Milner (2009), de-Vericourt and Jennings (2011) and references therein also

focused on the probability of long waiting time as a service level measure.

Several other papers looked beyond the traditional mean waiting time measures. de-

Véricourt and Zhou (2005) analyzed a call-routing problem while considering both the call

resolution probability and the average service time in the overall service level measure. Mehro-

tra et al. (2012) considered a similar problem with heterogeneous servers. Saghafian, Hopp,

and Van Oyen (2012) analyzed the service policy in Emergency Departments while considering

the weighted average of the expected length of stay and the expected time to first treatment.

We recently encountered an explicit example of focusing on the probability of overly long

waits at any single station at a company we call XYZ (name changed to protect confidentiality),

one of the leaders in preventive healthcare services in North America. The company’s primary

clientele are executives and busy professionals, so it’s primary focus is on providing excellent

customer service experience. XYZ operates a service network with 15-20 stations. In addition to

closely tracking macro-level measures, the company also records all instances where a customer

waits longer than 20 minutes at a station. Any such incident results in an “red face” flashing

on the manager’s screen, who takes immediate steps to expedite the customer. All “red face”

incidents are regarded as service failures, irrespective of whether customer’s overall waiting

time in the system was acceptable or not. We note that this example is not unique, e.g., the

proportion of customers waiting longer than a specified time at a station is a common key

performance indicator in call centers. The focus on long waits implies that service quality is

affected not only by the overall waiting time, but also by the distribution of waiting among

stations.

The focus of this paper is to simultaneously consider two objectives in a service network, one

based on some macro-level measure and one based on the probability of excessive wait at any
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one station. The difference in managing these two objectives can be rather dramatic. Indeed,

the macro-level service measures are typically minimized by using work-conserving policies,

where system resources are not idled as long as there is work in the system. Such policies are

optimal with respect to minimizing overall service times and are the focus of most studies of

queueing networks (see, e.g., Chen and Yao 2001 and reference therein). However, using a work-

conserving policy is not necessarily a good idea when it comes to the second objective. Consider

a situation where one station in the network accumulates a long queue, while the waiting times

are low at the upstream stations. In such a case, continuing to operate upstream stations at the

normal rate may increase the probability of excessive waits at downstream stations. A better

idea may be to temporarily reduce the service rate or idle the upstream stations, allowing the

downstream queue to dissipate. By intentionally idling some resources we are effectively re-

distributing the waiting times more evenly within the network. As long as such redistribution

does not significantly increase the overall system times (i.e. the first objective), it may well

improve the overall customer service experience.

Our objective is to propose and analyze a class of scheduling policies that intentionally idle

some resources in order to reduce the probability of excessive waits at any one station. We refer

to such intentional idling of resources as strategic idleness (SI). Note that the classical way of

reducing waiting time and probabilities of long waits is to add resource capacity to the system

(e.g., adding a doctor in the healthcare setting), which is often quite expensive. On the other

hand, changing the scheduling rules to intentionally idle some resources can often be done at a

negligible cost. Thus, a switch to an SI policy may be very cost-effective of improving customer

service experience. Indeed, we establish that in contrast to the single station queue, where a

non-idling scheduling policy minimizes both the sojourn time and the probability of long waits,

for a multi-stage queueing network policies with SI may significantly reduce the probability of

long waits while only slightly increasing the overall time in the system. To the best of our

knowledge, ours is the first paper to systematically study SI as a mechanism for reducing the

probability of excessive waits and improving the customer service experience.

In service networks, long waits can be measured in a variety of ways. For example, consider

a two-station tandem queue with Station 1 as the upstream machine and Station 2 as the

downstream one. The specific measure we consider is PW (t) = 1
2

∑2
i=1 P {Wi > t}, where Wi
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is the steady state customers’ waiting time for station i, and t is the time threshold designating

an “excessive wait”. We interpret PW (t) as the frequency with which customers experience

excessive waits. We note that in place of PW (t) one can use other related measures, e.g.,

1− P {W1 < t,W2 < t}, i.e., the probability that a customer experiences at least one excessive

wait.

There are many possible policy classes that involve SI. Our primary focus is on a specific

family of Threshold Based Policies (TBP). The idea behind the TBP is simple, it compares

the difference between queue lengths at different stations and idles some upstream stations if

this difference is larger than a predetermined threshold. For example, consider the two-station

tandem queue described above: let q1, q2 be the lengths of queues in front of the respective

stations. A TBP, defined by the value of the threshold TH, idles Station 1 whenever the

difference q2−q1 ≥ TH (we only consider TH ≥ 0 as using TH < 0 is clearly counterproductive,

e.g., with TH = −1 when q1 = 1, q2 = 0, Station 1 would be idled).

We note that, assuming Poisson arrivals to Station 1 and exponentially distributed and

independent service times at both stations, the performance of the non-idling (NI) policy is easy

to analyze (see e.g. Ross 2000, Chapter 8). However, such an analysis for the system operating

under the TBP is quite challenging for several reasons. First, the process is not reversible,

so arrivals to Station 2 do not follow a Poisson process. Second, as explained in Section 2.3,

customer’s waiting time for Station 1 depends on future arrivals, so Little’s Distributional Law

(see e.g., Bertsimas and Nakazato (1995) and Bertsimas and Mourtzinou (1996)) does not hold.

We develop efficient algorithms to calculate the distribution of waiting time for each station

and the system sojourn time under the TBP. These algorithms use a novel analysis of the wait-

ing time faced by specific customers. Using these results we present trade-off curves between

the probability of long waits and the expected sojourn time. (Note that the distribution of the

system sojourn time can provide other measures than the mean, but the trade-offs between

PW (t) and these measures are similar to the trade-off between PW (t) and the mean sojourn

time.) For the asymptotic case when µ1 = ∞, we derive closed form expressions for the perfor-

mance measures. We derive interesting insights that also hold in the case of finite processing

capacity for both stations.

Our results show that TBP can significantly reduce the probability of long waits (as ex-
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pressed by PW (t) or similar measures) versus the NI policy as long as the waits of length t are

sufficiently rare in the system. If, on the other hand, the frequency of such “excessive” waits

is high under the NI policy (indicating that they are not, in fact, excessive), then the TBP is

unlikely to provide an improvement - the only way to decrease such waits is by adding capacity.

We also consider the class of TBPs in a tandem queue network with three stations. By

developing a simulation model, we show that a TBP can reduce the probability of long waits

while only slightly increasing sojourn times. A comparison with Kanban policies indicates that

the TBP perform significantly better in this case.

We note that service systems, such as XYZ, do not always reach steady state before the end

of a business day. Moreover, such systems often operate a non-serial queueing network. How-

ever, the results for the serial system under the steady state assumption still provide valuable

insights for such systems. Specifically, polices with SI such as the TBP can improve customers’

perception of the service level with little cost. In Baron et al. (2013), we tested a generalized

TBP with a simulation model of the open-shop operation of XYZ; we indeed established that

TBP can be effective in improving customers’ perception of the service level.

The outline of the paper is as follows. In the next section, we provide a brief discussion of

other policies with idling. After introducing the TBP for the 2-station network in Section 2.3,

we consider the asymptotic µ1 = ∞ case in Section 2.4. In Section 2.5, we analyze the case of

finite processing rate for both stations. In Section 2.7, we discuss generalization of the TBPs,

to n-station serial queues and list several open questions. All proofs are in Appendix 2.9.1.

2.2 Literature Review - Other Policies with Idling

Note that the main idea behind TBP - idling an upstream station when a downstream station

is facing a large workload - can be achieved by other policy classes. We next briefly review

classes of policies that are discussed in the literature of manufacturing systems.

Masin, Herer, and Dar-el (2010) developed a unified model that encompasses and compares

a wide range of production control policies. We follow their exposition focusing on a serial

manufacturing system with M stations, and each station i has an input pile, IPi, and an output

pile, OPi, for i = 1, ...,M . OP0 represents an ample pile of raw materials, i.e., OP0 = ∞. Each
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part waits in IPi before being processed at station i and then transferred to OPi; and stays in

OPi until it can be transferred to IPi+1.

There are four well known static control policies (i.e., controls that are independent of

the system state) are: Fixed Buffer policy (see, e.g., Conway et al. 1988) places a finite

buffer FBi+1 between stations i and i + 1, i.e., IP1 < FB1 and OPi + IPi+1 ≤ FBi+1 for

i = 1, ...,M −1; Kanban policy, implemented by Toyota (Sugimori et al. 1977), places an upper

bound KBi on the total number of parts associated with station i, i.e., IPi + OPi ≤ KBi

for i = 1, ...,M ; Constant work in process (CONWIP) policy, first presented by Spearman

et al. (1990), places an upper bound CW on the total number of parts in the system, i.e.,

∑M
j=1 (IPj +OPj) ≤ CW (For a recursive calculation of several performance measure in a

resulting closed queueing network see Sloberg (1977)); Base-stock policy (see, e..g., van Ryzin

et al. 1993), places an upper bound BSi on the total number of parts at the downstream of

station i, i.e.,
∑M

j=i (IPj +OPj) ≤ BSi for i = 1, ...,M .

More sophisticated dynamic control policies where controls depend on the state of the system

were also studied. Weber and Stidham (1987) considered a general model for control of service

rates (µi ∈ [0, µ̄i]) in a serial or closed queueing network, where control policies depend on the

entire state vector q = (q1, q2, ..., qM ) where qi = OPi−1+IPi. They considered the sum of total

inventory holding cost and stations operating cost as the objective function. They provided

necessary conditions, called the “monotonicity result”, for any control policy to be optimal: 1)

the optimal service rate at station i does not decrease as a customer finishes service at another

station; 2) the optimal service rate at station i does not increase as a customer finishes service

at station i. They apply their monotonicity result to models where stations can only be turned

on or off (µi = 0 or µ̄i) and show that it is optimal to turn an off-station on as the numbers

of customers at its downstream stations decrease, or as the numbers of customers at upstream

stations increases. Note that the four control policies discussed above and TBP all satisfy this

monotonicity result. Veatch and Wein (1994) considered the optimal control of a two-station

tandem production/inventory system with a similar objective function. They compared these

four policies, gave conditions under which certain simple controls are optimal, and computed

the dynamic optimal controls using dynamic programming.

There are several conceptual differences between the control policies discussed above, tai-
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lored to manufacturing systems, and the TBP, tailored to service systems. First, the main

motivation behind developing policies in manufacturing setting is the control of expected in-

ventory costs. This motivation is different for service systems focusing on the effect of the

distribution of waiting time on customers’ experience. As we demonstrate below, this different

motivations also leads to a different analysis. In fact, to the best of our knowledge, no analysis

of the distribution of waiting times under the policies mentioned above is available; such an

analysis appears to be subject to many of the challenges as in the analysis of the TBP. Second,

another important modeling difference is that the control for manufacturing systems is often

modeled as a make-to-stock system, whereas the control for service systems must be modeled

as a make-to-order system. Third, from a modeling perspective, the supply and demand models

are also different in a service system: the service at a first station is initiated by an exogenous

arrival process and customers leave the system as they complete service at the last station,

whereas in manufacturing the exogenous demand arrives to the last station. A final difference

is with respect to admission control. In contrast to our model, where all customers are accepted,

models for manufacturing system often operate with admission control where not all arriving

orders are fulfilled. (Note that IP1 is bounded in the four policies above, so not all arriving

customers are admitted. Still, if all customers need to be admitted, IP1 can be removed from

all constraints. For example, a CONWIP policy could place an upper bound CW on the total

number of parts without considering IP1, i.e., OP1 +
∑M

j=2 (IPj +OPj) ≤ CW .)

Despite these differences, the control policies developed for manufacturing systems can be

applied in service systems (sometimes with a few modifications). When applied in a two-station

tandem queue service system without admission control, the Fixed Buffer, Kanban, CONWIP

and Base-stock policies can all be shown to be equivalent. To illustrate the equivalence of

Kanban policy and Fixed Buffer policy note that a Kanban policy with KB1 and KB2 is

equivalent to a Fixed Buffer policy with buffer size FB2 = KB1 + KB2 between the two

stations; and a Fixed Buffer policy with buffer size FB2 is equivalent to a Kanban policy with

KB1 = 1 and KB2 = FB2−1. Thus, in the 2-station tandem queue service system we consider

in the paper, we focus on a Kanban policy that idles Station 1 whenever q2 ≥ BS, where BS

is the size of the buffer between the two stations.

In this paper, we compare our TBP with the Kanban policy. Note that in the 2-station
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case, our TBP is a more sophisticated dynamic control policy, where the upper bound of q2 is

a linear function of q1, i.e., Station 1 is idled whenever q2 ≥ q1 + TH; and a Kanban policy

idles Station 1 based only on q2 ≥ BS irrespective of the value of q1, and thus - intuitively

- it provides less flexible control than a TBP. This intuition appears to be supported by our

results. For the asymptotic case when Station 1 has infinite processing capacity we derive closed

form expressions for the PW (t) measure under a Kanban policy, allowing us to make analytical

comparisons to a TBP. For the finite capacity case we use Monte Carlo simulation to compare

TBP and Kanban policies. Our results indicate that, similar to TBP, Kanban policy allows

for the trade-off between the PW (t) measure and expected service times. However, this policy

appears to be less efficient than the TBP.

In closing this section we note that (i) the idea of intentionally idling a capacitated resource

has also been considered by Afèche (2013). In the revenue management context, he showed

how such delays can allow a seller to differentiate between customer types and thus improve the

overall profit. His motivation and analysis are much different than ours. (ii) Recent polices for

control of manufacturing systems often considered prioritization among several customer classes,

but are focused on a single stage system. Ha (1997a, b) was the first to discuss inventory

rationing problems in a centralized make-to-stock system. He focused on base stock level

production control. (iii) In the revenue management context, Caldentey and Wein (2006)

developed a diffusion approximation for profit maximization with two classes of customers.

They show that a dynamic control policy based upon the inventory or backlog level is effective.

Finally, we are aware that there are other policies that consider the entire system state. This

paper serves as a stepping stone motivating the analysis of such policies in service systems.

2.3 Two Queues in Tandem - Preliminary Analysis

Consider the two-station tandem queueing network with two sequential single server stations

and infinite buffer space discussed before. We define a simple TBP for this network as follows:

upon completing service, Station 1 is idled and will not admit the next customer to service if

δ(q1, q2) = q2 − q1 ≥ TH.
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Station 1 will resume work once δ(q1, q2) < TH. When no ambiguity arises, we will use δ

instead of δ(q1, q2). We denote TBP (TH) as the TBP with threshold TH. We say that a

customer is stopped (at Station 1) if this customer is waiting at Station 1 while this station is

idled.

Three events can occur in this tandem queueing network:

1. Arrival - arrival to the network decreases δ by 1. Arrivals occur with rate λ at any state.

2. Completion 1 - service completion at Station 1 increases δ by 2. This happens with rate

µ1, if q1 ≥ 1 and δ < TH (when Station 1 is not idled).

3. Completion 2 - service completion at Station 2 decreases δ by 1. This event has rate µ2,

if q2 ≥ 1.

Note that since δ decreases when Station 2 completes service or when a new customer arrives

to Station 1, either of these two events may cause Station 1 to resume work.

From these three events, we conclude that there are two situations when Station 1 is idled:

δ = TH or δ = TH + 1. When δ = TH + 1, Station 1 is idled, so only Arrival or Completion

2 can happen in the network. After a time period, which is distributed ∼ exp (λ+ µ2), one

of these events happen, reducing δ to TH. Note that Station 1 remains idled. This sequence

repeats and after another time period ∼ exp (λ+ µ2), δ is reduced to TH − 1, at which point

Station 1 resumes work, and its idle period ends. We define stoppage as the time period from

the moment when the value of δ changes and Station 1 becomes idled until the moment when

either Arrival or Completion 2 happens. With this definition, when δ = TH + 1, customers in

Station 1 experience two stoppages before Station 1 resumes work; when δ = TH, they only

experience one stoppage.

Let Qi(t), i = 1, 2 be the random variable denoting the total number of customers at Station

i (in queue and in service) at time t. Given TH, the process (Q1(t), Q2(t)) is a continuous time

Markov Chain (MC). Let πq1,q2 denote the steady state probability of MC(Q1, Q2). Let S be

the sojourn time for any customer, i.e., S = total waiting time+ total service time.

To investigate the trade-off between PW (t) and E[S] under the TBP, we first characterize

the distribution of three steady state service measures: the waiting time at Station 1, W1; the
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Figure 2.1: MC when µ1 = ∞ and TH > 0.

waiting time at Station 2, W2, and the sojourn time, S. We can calculate the distributions of

these three measures by conditioning on the state (q1, q2) seen by a random arrival. Let Xq1,q2

be any one of these three measures experienced by a tagged customer (TC) who arrives in state

(q1, q2). Then, the steady state distribution of X can be calculated as

P {X > t} =
∑

q1,q2

P {Xq1,q2 > t | TC sees (q1, q2) at arrival}P {TC sees (q1, q2) at arrival}

=
∑

q1,q2

P {Xq1,q2 > t | TC sees (q1, q2) at arrival}πq1,q2 , (2.1)

where the second equality follows by PASTA.

Similar to (2.1), the Laplace Transform (LT) of X can be written as

LX (h) =
∑

q1,q2

LXq1,q2 (h | TC sees (q1, q2) at arrival)πq1,q2 . (2.2)

2.4 Asymptotic Case: Station 1 Has an Infinite Service Capac-

ity

We next calculate the steady state performance measures under the TBP and compare them

with the measures for the non-idling network and the Kanban policy when Station 1 has infinite

capacity. For convenience, we denote quantities related to this asymptotic case with a ,̂ e.g., Ŵi

is the waiting time at station i. A full list of notation can be found on Table 2.9.5 in Appendix

2.9.5.

The MC for the µ1 = ∞ case is depicted on Figure 2.1. As described in Section 2.3, three
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events occur in this MC: Arrival, Completion 1, and Completion 2. However, since Completion

1 happens instantaneously, only two events are shown on the figure: Arrival (at rate λ) and

Completion 2 (at rate µ2). Consider the state (0, TH), where Station 1 is idled under the TBP.

An Arrival momentarily bring the MC to state (1, TH), where δ = TH − 1 and thus Station

1 resumes work, instantaneously bringing the MC to state (0, TH + 1), and idling Station 1

again. At the next Arrival the MC transitions to state (1, TH + 1) where δ = TH and thus

the newly arrived customer is stopped. This stoppage lasts until either a new Arrival, which

allows the system to process the first customer from Station 1 and sends the system to state

(1, TH + 2), or Completion 2, which also releases the customer from Station 1 and sends the

system to (0, TH). In general, whenever q1 > 0, Station 1 is idled and the system is either in

state (q1, q1 + TH) or (q1, q1 + TH + 1).

The steady-state distribution of this simple Birth and Death MC (similar to the solution of

M/M/1 queue), for q1 = 0, q2 = 0, ..., TH + 1 and for q1 > 0, q2 = q1 + TH, q1 + TH + 1, is:

πq1,q2 = ρq1+q2
2 (1− ρ2). (2.3)

Remark 1 If we consider q1 + q2 as the total queue length, this network has the same steady

state probability distribution as a M/M/1 queue with ρ2 =
λ
µ2
. Because Station 2 works as long

as there are customers in the network, the sojourn time is the same as the sojourn time in the

system with µ1 = ∞ operating under a non-idling policy. Thus, in the asymptotic case the TBP

does not increase the sojourn times and we can focus solely on the PW (t) measure.

Remark 2 Suppose the system is in state (q1, q1 + TH + 1) for q1 > 0 (Station 1 is idled).

The next Arrival (Completion 2) event sends the system to state (q1 + 1, q1 + TH + 1) (state

(q1, q1 + TH)), with δ = TH, and Station 1 is stopped again. Thus, the next event must be

another Arrival or Completion 2. Similarly, suppose the system is in state (q1, q1 + TH) for

q1 > 0 (Station 1 is idled). The next event must be Arrival or Completion 2, which will trigger

a Completion 1 event and send the system to (q1, q1+TH+1) or (q1−1, q1+TH), respectively,

with δ = TH + 1 in both cases. Thus, as long as q1 > 0, between any two Completion 1 events

there are always two other events. This leads to the following Proposition.
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Proposition 1 Let M̂ q1,q2 be the number of stoppages TC sees before entering Station 2, given

she arrives in state (q1, q2). Then either q2 < TH and M̂ q1,q2 = 0, or q2 ∈ {q1+TH, q1+TH+1}

and M̂ q1,q2 = q1 + q2 − TH.

2.4.1 Distribution of Ŵ1, Waiting Time at Station 1

In general, the TC’s waiting time for Station 1 is composed of two parts: the service time of

customers in front of her in Station 1 and the stoppages of Station 1. However, when µ1 = ∞,

the service time of Station 1 is zero, and thus Ŵ1 is only caused by stoppage.

Let Ŵ q1,q2
1 denote the TC’s waiting time at Station 1, given that she arrives at state (q1, q2).

From Proposition 1, if q1+q2 ≤ TH, TC sees no stoppage and Ŵ q1,q2
1 = 0; similarly, if q1+q2 >

TH, then M̂ q1,q2 = q1+ q2−TH, so that Ŵ q1,q2
1 is distributed as Erlang(λ+µ2, q1+ q2−TH).

Thus, using (2.2) and (2.3) the LT of Ŵ1 is

L
Ŵ1

(h) =

TH
∑

i=0

ρi2(1− ρ2) +

∞
∑

i=TH+1

ρi2(1− ρ2)

(

λ+ µ2

λ+ µ2 + h

)i−TH

=
(

1− ρTH+1
2

)

+ ρTH+1
2

(µ2 − λρ2)

(µ2 − λρ2) + h
. (2.4)

From the transform of Ŵ1 we conclude that there is no waiting in Station 1 with probability
(

1− ρTH+1
2

)

, and the waiting is distributed as an exp(µ2 − λρ2) R.V. with probability ρTH+1
2 .

Hence,

P
{

Ŵ1 > t
}

= ρTH+1
2 e−(µ2−λρ2)t. (2.5)

Note that given waiting (i.e., with probability ρTH+1
2 ) Ŵ1 is distributed as the waiting time

given waiting in an M/M/1 queue with arrival rate λρ2 and service rate µ2.

As intuition suggests P
{

Ŵ1 > t
}

is a decreasing function of TH. When TH decreases,

customers see more stoppages, and thus wait more in Station 1. When TH increases, the

TBP’s effect on the network is reduced and customers’ wait in Station 1 is also reduced. The

extreme case when TH = ∞ results in a non-idling network, so customers do not wait for

Station 1.
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2.4.2 Distribution of the Waiting Time Ŵ2 and Service Measure ˆPW (t).

We next derive Ŵ q1,q2
2 , the TC’s waiting time at Station 2 given that she arrives at state

(q1, q2), and then use (2.2) to calculate the LT of Ŵ2. Let K be the R.V. denoting (we omit the

dependency in q1, q2) the number of customers in Station 2 when the TC enters this station;

thus Ŵ q1,q2
2 is distributed as Erlang(µ2,K).

From Proposition 1, if q1+q2 ≤ TH, then q1 = 0 and the TC gets into Station 2 immediately

implying that K = q1 + q2 = q2. Thus, for q1 + q2 ≤ TH the distribution of Ŵ q1,q2
2 is

Erlang(µ2, q1 + q2) with the LT given by

L
Ŵ

q1,q2
2

(h) =

(

µ2

µ2 + h

)q1+q2

. (2.6)

Now suppose the TC arrives at state (q1, q2) with q1 + q2 > TH, implying that the number

of stoppages M̂ q1,q2 = q1 + q2 − TH. In this case, M̂ q1,q2 Arrival or Completion 2 events

are required to end these stoppages, and q1 + q2 − K of these are Completion 2 events, so

K ∈ [TH, q1 + q2]. Since the probability that the next event is an Arrival (Completions 2) is

λ
λ+µ2

( µ2

λ+µ2
), it follows that q1 + q2 −K has the binomial distribution:

P {q1 + q2 −K = n} =

(

q1 + q2 − TH

n

)(

λ

λ+ µ2

)q1+q2−TH−n( µ2

λ+ µ2

)n

, n = 0, ..., q1+q2−TH.

Thus

P {K = k} =

(

q1 + q2 − TH

q1 + q2 − k

)(

λ

λ+ µ2

)k−TH ( µ2

λ+ µ2

)q1+q2−k

, k = TH, ..., q1 + q2.

Therefore, for q1 + q2 > TH the LT of Ŵ q1,q2
2 is

L
Ŵ

q1,q2
2

(h) =

q1+q2
∑

k=TH

(

q1 + q2 − TH

q1 + q2 − k

)(

λ

λ+ µ2

)k−TH ( µ2

λ+ µ2

)q1+q2−k ( µ2

µ2 + h

)k

=

(

µ2

µ2 + h

)TH ( µ2

λ+ µ2
+

λ

λ+ µ2

µ2

µ2 + h

)q1+q2−TH

=

(

µ2

µ2 + h

)q1+q2
(

λ+ µ2 + h

λ+ µ2

)q1+q2−TH

. (2.7)
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The second equality follows Binomial Formula. The third equality follows because for q1+ q2 >

TH,

(

µ2

µ2 + h

)TH ( λµ2

(λ+ µ2)(µ2 + h)
+

µ2

λ+ µ2

)q1+q2−TH ( λ+ µ2

λ+ µ2 + h

)q1+q2−TH

=

(

µ2

µ2 + h

)q1+q2

.

(2.8)

We can now write the LT of Ŵ2 using (2.2), (2.3), (2.6) and (2.7):

L
Ŵ2

(h) =
TH−1
∑

i=0

ρi2(1− ρ2)

(

µ2

µ2 + h

)i

+
∞
∑

i=TH

ρ2i−TH
2 (1− ρ22)

(

µ2

µ2 + h

)i

. (2.9)

From the LT of Ŵ2 we know that Ŵ2 is distributed as a Erlang(µ2, q1 + q2) R.V. with

probability ρq1+q2
2 (1− ρ2), for 0 ≤ q1+ q2 < TH, (i.e., when the TC experiences no stoppages);

and as the sum of an Erlang(µ2, TH − 1) R.V. and an exp(µ2 − λρ2) R.V. with probability

ρTH
2 . Using (2.9), we can derive the Tail Distribution of Ŵ2 under the TBP with threshold

TH:

P
{

Ŵ2 > t
}

(2.10)

=











ρ2−TH
2 e−(µ2−λρ2)t if TH = 0, 1

ρ2−TH
2 e−(µ2−λρ2)t + ρ2e

−µ2t
∑TH−2

k=0
(µ2t)

k

k! ρk2 − ρ22e
−µ2tρ−TH

2

∑TH−2
k=0

(µ2t)
k

k! ρ2k2 if TH ≥ 2
(2.11)

Using (2.5) and (2.11), the distribution of our main service level measure under the TBP

with threshold TH is

PW TBP (TH) (t) =
1

2

(

P
{

Ŵ1 > t
}

+ P
{

Ŵ2 > t
})

=























1
2ρ

2
2e

−(µ2−λρ2)t + 1
2ρ2e

−(µ2−λρ2)t if TH = 0, 1

1
2ρ

TH+1
2 e−(µ2−λρ2)t + 1

2ρ2e
−µ2t

∑TH−2
k=0

(ρ2µ2t)
k

k!

+1
2ρ

2−TH
2 e−(µ2−λρ2)t − 1

2ρ
2−TH
2 e−µ2t

∑TH−2
k=0

(µ2t)
k

k! ρ2k2 if TH ≥ 2

(2.12)

We observe that under the non-idling policy all waiting happens at Station 2 and thus

PWNI(t) =
1

2
ρ2e

−(µ2−λ)t, t > 0. (2.13)
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Here, ρ2 represents the probability of waiting and exp(−(µ2−λ)t) is the conditional proba-

bility of a waiting more than t given anM/M/1 queue with parameters (λ, µ2). In the expression

for PW TBP (t) when TH = 0, 1 we see the same structure as in (2.13). The first term, essen-

tially has the probability of waiting reduced to ρ22 from ρ2 and the arrival rate reduced to ρ2λ

from λ. The Second term, is just the probability of wait longer than t in an M/M/1 queue

with arrival rate ρ2λ. Thus, the TBP effectively operates two M/M/1 stations with parameters

(ρ2λ, µ2), where the probability of wait at one of these stations is further reduced by ρ2. The

slower arrival rate (and the additional reduction in probability of waiting) brings the probabil-

ity of wait longer than t at Station 2 to below the level experienced at this Station under the

non-idling policy. However, customer now has two chances to experience a long wait - once at

each station.

2.4.3 Insight 1: Comparing TBP and Non-Idling Policy for the Asymptotic

Case

Based on Remark 1 above, it suffices to compare PW TBP (t) with PWNI(t) since expected

service times is the same. From our earlier discussion, it is obvious that the number of stoppages

is increased when TH is reduced. Thus, setting TH = 0 corresponds to the most aggressive

redistribution of the waiting time from Station 2 to Station 1 achievable by a TBP (from

(2.12)). On the other hand, PW TBP (∞) (t) = PWNI (t) since when TH = ∞, Station 1 is

never intentionally idled.

For any “excessive wait” value t > 0 let TH∗(t) = argminTH PW TBP (TH)(t) be the thresh-

old value that minimizes PW (t). This value is characterized in the following result.

Proposition 2 For any t, the threshold TH∗(t) ∈ {0,∞}. Specifically, let t∗ = ln(1+ρ2)
λ(1−ρ2)

(note

that PW TBP (0) (t∗) = ρ2
2 (ρ2 + 1)

− 1
ρ2 ). If t ≤ t∗, then TH∗ (t) = ∞, and if t > t∗, then

TH∗ (t) = 0.

This Proposition indicates that the optimal TBP is to idle Station 1 as much as possible

when t is sufficiently large (i.e., use TH∗ = 0 when t > t∗), or to not idle it at all when t is

small (i.e., t ≤ t∗). The intuitive explanation behind this is that reducing the queue sizes at

Station 2 via the TBP reduces P (Ŵ2 > t) but introduces P (Ŵ1 > t) > 0 (which is 0 under the



Chapter 2. Strategic Idleness in Service Networks 19

NI policy). When t is large, the reduction in P (Ŵ2 > t) is substantial, while the increase in

P (Ŵ1 > t) is small, and thus TBP outperforms the NI policy. However, if t is small, the waits

longer than t are quite common at Station 2 even if some customers are re-allocated to Station

1, while the increase in P (Ŵ1 > t) may be substantial. Thus TH∗ = ∞ and TBP is equivalent

to the NI policy. In this case the re-allocation of waiting time will not solve the problem of

excessive waits - the only solution is adding more capacity to the system.

From (2.12) and (2.13), the reduction in PW (t) due to TBP for t > t∗ is:

PWNI (t)− PW TBP (0) (t)

PWNI (t)
= 1− (1 + ρ2) e

−λ(1−ρ2)t.

Thus, the relative improvement in PW (t) increases with t, and approaches 100% as t increases.

This shows that the TBP can dramatically reduce the incidence of excessive waits, but only

if the designation of an “excessive” wait is used correctly, i.e., a wait is “excessive” if it is

uncommon in the system.

The implications for the decision-maker are clear: if waits of at least t adversely affect

customer service experience, and t > t∗, TBP can be used to improve PW (t). If t ≤ t∗, then

the only way to improve PW (t) is by adding capacity to the system (i.e., increasing µ2). Most

of the behaviors observed for the µ1 = ∞ case will also hold for the µ1 < ∞ case discussed in

Section 2.5.

2.4.4 Insight 2: Comparing TBP and Kanban Policy for the Asymptotic

Case

For the 2-station tandem queue a Kanban policy is defined by the buffer size (BS ≥ 1) in

front of Station 2: Station 1 is idled and will not admit the next customer to service whenever

q2 ≥ BS.

Observe that in the µ1 = ∞ case, under Kanban(BS) policy Station 2 operates as long as

there are customers in the system for any BS ≥ 1. Thus the expected sojourn time for any

Kanban policy is the same as for NI policy. Therefore, as in the TBP case, we focus only on

PW (t).

Using similar analysis as for the TBP, we have:
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Proposition 3 For BS ≥ 1,

PWKanban(BS) (t) =











1
2ρ2e

−(µ2−λ)t if BS = 1

1
2ρ

BS
2 e−(µ2−λ)t + 1

2e
−µ2t

∑BS−2
k=0

(µ2t)
k

k! ρk+1
2 if BS ≥ 2

. (2.14)

Note that PWKanban(1) (t) = PWNI(t) = PWKanban(∞) (t). This is because when BS = 1,

the Kanban policy shifts all waiting time to Station 1 without changing the distribution of

waiting times. This shows that by optimizing the buffer size, a Kanban policy can outperform

NI with respect to the PW (t) measure. The second equation holds because when BS = ∞,

Station 1 is never idled.
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Figure 2.2: PW (t) as a function of t under TBP versus Kanban policy.

In Figure 2.2 we compare PW TBP (0) (t) with PWKanban (t) under different BS values, when

λ = 0.85 and µ2 = 1. Note that t∗ = 4.82 in this case and thus TBP(0) outperforms the NI

policy for t > 4.82. Recalling that Kanban(1) policy is equivalent to NI, we see that this is

indeed the case on Figure 1, with the relative gap growing with t. Comparing TBP(0) with

Kanban(5) we see that TBP has lower PW (t) for t > 9.28, while Kanban performs better for

lower values of t.

Furthermore, using a similar analysis to the one in the proof of Proposition 2, we can obtain

the buffer size BS∗ (t) that minimizes PWKanban(BS) (t) for any t. (Specifically, the function

g4 = (µ2t)
BS−1

(BS−1)! − (1− ρ2) e
λt has one or two zero points; if g4 has two zero points, BS∗ (t) is

the smaller zero point of g4, otherwise BS∗ (t) = 1.) The resulting Kanban(BS∗(t)) policy
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is plotted on Figure 2.2 along with the associated BS∗(t) values. This policy achieves lower

PW (t) values than the TBP(0) for t < 9.96 and slightly higher values for t > 9.96.

For the asymptotic case the Kanban policies perform competitively with TBP(0), particu-

larly when the buffer size is optimized for a given t value. We note that the TBP is more robust

- as the same optimal threshold TH∗ = 0 value applies over a wide range of t values, while

the optimal buffer size BS∗(t) is sensitive to t. More importantly, the performance of Kanban

policies in the asymptotic case are somewhat misleading, we will see in the following sections

that the performance in other cases may be significantly worse than that of the TBP.

2.5 Analysis of The Tandem Queue: General Case

In this section, we begin by analyzing the TBP for the tandem queueing network when µ1 < ∞.

Figure 2.3 illustrates the MC of the tandem queueing network under the TBP with TH = 1.

Recall than under the TBP it is not possible to reach a state (q1, q2) such that q2−q1 > TH+1.

As illustrated in the figure, the states can be classified into three groups, depending on whether

customers waiting for service at Station 1 experience stoppage before they enter Station 2. For

example, if the system is currently in state (2, 0), neither customer at Station 1 can possibly

experience any stoppages before entering Station 2. The same is true for all the other states

above the dashed line in the top left corner of Figure 2.3. On the other hand, in all states to

the right of the dashed boundary line, Station 1 is idled, thus all customers at this station will

experience one or more stoppage before entering Station 2; state (2, 3) is an example of this

type.

Finally, customers at Station 1 in all the states below and to the left of the dashed line

may or may not experience a stoppage before entering Station 2. Consider, for example, state

(3, 0). While the first two customers at Station 1 will not experience a stoppage, the situation

is less clear for the last customer. We refer to this customer as “TC”. If the next two events

are both “Completion 1”, the system will move to state (1, 2) and TC will be stopped. If, on

the other hand, at least one of the next two events is Arrival or Completion 2, the TC will not

be stopped.

This discussion illustrates why the analysis of the TBPs is challenging. The number of
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Figure 2.3: The MC (Q1, Q2) for TH = 1.

stoppages experienced by the TC (and thus the distribution of her waiting time) depends on

queue lengths at both stations and on customers arriving after TC, i.e., this number depends

on future events. The latter dependency prevents us from using Distributional Little’s Law.

Furthermore, the distribution of waiting time experienced by a customer depends not just on the

state of the system, but also on the customer’s position in the line at Station 1. As discussed in

the example above, the customer immediately in front of TC will not experience any stoppages,

and thus his distribution of the waiting time is clearly different from that for the TC. This

implies that the observed state (q1, q2) of the system is not sufficient to uniquely express the

distribution of W q1,q2
1 .

To overcome this difficulty, we augment the state space with a position indicator for each

customer. Specifically, for each TC, in addition to the queue length indicators we also include

the position of the TC in Station 1; we denote this position s for s ≥ 1. Note that each TC

now generates a new MC upon arrival, which we name TCMC.

This TCMC has three dimensions. When the TC arrives in state (q1, q2), she joins Station 1

and becomes the sth = (q1+1)th customer, so that the first state of TCMC is (q1 + 1, q2, q1 + 1).

If we consider all states with the same s as one layer, each layer looks similar to the MC in

Figure 2.3 except that there are no states with q1 > s. The same three events discussed in
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Section 2.3 may occur in the TCMC as well. Their effect on state (q1, q2, s) is as follows:

1. Arrival : TCMC transitions to state (q1+1, q2, s). Arrivals occur with rate λ in any state.

2. Completion 1 : TCMC transitions to state (q1 − 1, q2 + 1, s − 1). This happens with rate

µ1, if q1 > 0 and δ < TH (when Station 1 is not idled).

3. Completion 2 : TCMC transitions to state (q1, q2 − 1, s). This event occurs with rate µ2,

if q2 ≥ 1.

When s > 1, the TC is waiting in Station 1. When s = 1, the TC is either in service or is

the first in line to enter service when the stoppage of Station 1 ends. Since λ < µ1, the TCMC

(q1, q2, s) will be absorbed in some state with s = 0, when the TC moves to Station 2. Let

Xq1,q2,s represent the TC’s performance measure, given the network is in state (q1, q2, s).

To obtain the performance measure using (2.2) we can keep track of the TCMC starting

from the state (q1 + 1, q2, q1 + 1) and calculate the conditional performance measure according

to all possible paths the TC may take until an absorbing state is reached. However, because the

TCMC is three-dimensional, the required computational effort grows rapidly using this intuitive

approach. We thus simplify the problem as shown below.

We first show that, similarly to the µ1 = ∞ case, the number of stoppages can be bounded.

Lemma 1 If the TCMC is in state (q1, q2, s), then the maximum number of stoppages the TC

may see, M q1,q2,s, is

M q1,q2,s = max {2s− TH + δ(q1, q2)− 1, 0} .

Specially, if δ(q1, q2) ≤ TH−2s+1, there will be no stoppage for the TC. Thus, the performance

measure experienced by a customer that reaches such states are independent of future arrivals.

It is easy to see that M̂ q1,q2 = M q1+1,q2,q1+1, i.e., Lemma 1 shows that, the number of

stoppages the TC sees in the µ1 = ∞ case is the maximum number of stoppages the TC may

see in µ1 < ∞ case. The reason is that when µ1 = ∞, the service time of Station 1 is zero, so

the set of sequential events: Completion 1⇒Arrival(or Completion 2)⇒Arrival(or Completion

2) repeats for sure; when µ1 < ∞, this set of sequential events repeats only in the worst case.
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We define a no-stoppage state to be a state in TCMC s.t. δ(q1, q2) ≤ TH − 2s + 1, i.e.,

M q1,q2,s = 0. For example, consider again state (3, 0) in the MC on Figure 2.3. As previously

discussed, states (3, 0, 1) and (3, 0, 2) in the corresponding TCMC are no-stoppage. On the

other hand, by Lemma 1, M3,0,3 = 1, so stoppage may occur in state (3, 0, 3).

Observe that once the TCMC reaches a no-stoppage state, the network acts like a non-idling

tandem queueing network for the TC and the distributions of the three steady state service

measures can be calculated directly (see below). In the following sections, we treat no-stoppage

states as absorbing states and use a recursion method to develop all three performance measures

as follows:

• If state (q1, q2, s) is a no-stoppage state, i.e., δ ≤ TH − 2s + 1, then the distribution of

Xq1,q2,s can be calculated from Propositions 4 and 5 below.

• If Station 1 is stopped, i.e., δ = TH or TH+1, both Arrival (w.p. λ
λ+µ2

) and Completion

2 (w.p. µ2

λ+µ2
) can happen in the TCMC. Using conditional probability, the distribution of

Xq1,q2,s can be recursively calculated from the distributions of Xq1+1,q2,s and Xq1,q2−1,s.

• For states (q1, q2, s) such that TH − 2s + 1 < δ ≤ TH − 1, Arrival (w.p. λ
λ+µ1+µ2

),

Completion 1 (w.p. µ1

λ+µ1+µ2
), and Completion 2 (w.p. µ2

λ+µ1+µ2
) can all happen in the

TCMC. Using conditional probability, the distribution of Xq1,q2,s can be calculated from

the distributions of Xq1+1,q2,s, Xq1−1,q2+1,s−1, and Xq1,q2−1,s.

Calculating the LT of Xq1,q2,s, similarly to (2.2), requires the steady state probability vector

of the MC (Q1, Q2). It is easily seen that this MC is irreducible and aperiodic and has

equilibrium probabilities, πq1,q2 . The balance equation for the (Q1, Q2) MC are (these are

easier to follow when looking at Figure 2.3):

1) When δ < TH and q1 = q2 = 0, we have λπ0,0 = µ2π0,1;

2) When δ < TH and q1 > 0, q2 = 0, we have (λ+ µ1)πq1,0 = λπq1−1,0 + µ2πq1,1;

3) When δ < TH and q1 > 0, q2 > 0, we have (λ+µ1+µ2)πq1,q2 = λπq1−1,q2+µ1πq1+1,q2−1+

µ2πq1,q2+1;

4) When δ ≤ TH and q1 = 0, 0 < q2 ≤ TH, we have (λ+ µ2)π0,q2 = µ1π1,q2−1 + µ2π0,q2+1;
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5) When δ = TH and q1 > 0 (then q2 = q1 + TH), we have (λ + µ2)πq1,q2 = λπq1−1,q2 +

µ1πq1+1,q2−1 + µ2πq1,q2+1;

6) When δ = TH + 1 and q1 ≥ 1 (implying q2 = q1 + TH + 1), we have (λ + µ2)πq1,q2 =

µ1πq1+1,q2−1;

7) We also require
∑

q1,q2
πq1,q2 = 1.

To solve these balance equations, we approximate πq1,q2 by assuming that Station 1 has a fi-

nite waiting room of size Limit. For any finite value of Limit, we can calculate an approximation

of πq1,q2 by solving the balance equations numerically. When Limit goes to infinity, the approx-

imation approaches πq1,q2 . In our numerical experiments we found that P{q1 = 100} < 10−5,

so Limit = 100 appears to be an adequate value for our parameter choices.

2.5.1 Distribution of Waiting Time for Station 1: W1

In this section, we consider the TC’s waiting time for Station 1, W1. Note that there are

two components of W1: the time spent waiting for s − 1 Completion 1 events, and the time

spent when Station 1 is idled. The first component depends only on s, and the second one is

determined by s and δ = q2 − q1. Thus, given s and δ, W1 does not depend on the values of

q1 and q2. Indeed, from Lemma 1 we see that the maximum number of stoppage M q1,q2,s only

depends on s and δ; thus, we will next use M s,δ to denote the maximum number of stoppages

for a customer that is at a position s in queue 1 when q2 − q1 = δ. A revised TCMC, with the

state description (s, δ), is illustrated on Figure 2.4 for the case TH = 1; this simplified TCMC

will be used to compute W1.

Arrival or Completion 2 events do not affect s; these events only decrease the value of δ by

1. Completion 1 decreases the value of s by 1, and increase the value of δ by 2. If δ = TH or

TH + 1, Station 1 is idled, so that the next event can only be Arrival or Completion 2.

In Figure 2.4, the column on the right-hand side, starting from (1, 0), represents the no-

stoppage states established in Lemma 1. The states above the doted line are states where

Station 1 is idled, i.e., with δ ≥ TH = 1.

Let W s,δ
1 be the TC’s waiting time for Station 1 while the network is in state (s, δ), and

denote its LT by L
W

s,δ
1

(h). W s,δ
1 is composed of two parts. The first part is the service

time of the s − 1 customers in front of the TC in Station 1. This service time distribution is
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Figure 2.4: The revised TCMC (s, δ), when TH = 1.

Erlang(s− 1, µ1). The second part consists of stoppages in Station 1. As in the µ1 = ∞ case,

the length of each stoppage is exp(λ+ µ2).

Let Bs,δ
1 denote the actual number of stoppages the TC will experience if she is in state

(s, δ). Thus, the LT of W s,δ
1 is

L
W

s,δ
1

(h) =

(

µ1

µ1 + h

)s−1 Ms,δ
∑

i=1

P
{

Bs,δ
1 = i

}

(

λ+ µ2

λ+ µ2 + h

)i

, (2.15)

where M s,δ can be found from Lemma 1 and
∑Ms,δ

i=1 P
{

Bs,δ
1 = i

}

= 1.

Thus, finding L
W

s,δ
1

(h) is equivalent to finding the distribution of Bs,δ
1 , for any s ≥ 1,

δ ≤ TH + 1. This can be done as follows:

• If (s, δ) is a no-stoppage state, i.e., δ ≤ TH − 2s + 1, then Bs,δ
1 = 0 from Lemma 1.

• If Station 1 is stopped, i.e., for states with δ = TH or TH + 1, Bs,δ
1 has the same

distribution as 1 +Bs,δ−1
1 .

• Otherwise, for states (s, δ) such that TH − 2s + 1 < δ ≤ TH − 1, the TCMC will go

to state (s, δ − 1) (w.p. λ+µ2

λ+µ1+µ2
), or to state (s − 1, δ + 2) (w.p. µ1

λ+µ1+µ2
). Therefore,

Bs,δ
1 is distributed the same as Bs,δ−1

1 or Bs−1,δ+2
1 , depending on which state the TCMC

transitions to.
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Since s ∈ {1, . . . , Limit} and δ ∈ {−Limit, . . . , TH + 1}, the distribution of Bs,δ
1 can now

be computed iteratively; see Algorithm 1 in Appendix 2.9.2 for details.

2.5.2 Distribution of Waiting Time for Station 2: W2

In this section we calculate W q1,q2,s
2 – the TC’s waiting time for Station 2, given that the

network is at state (q1, q2, s). Let Kq1,q2,s be the number of customers the TC sees when she

enters Station 2. Given Kq1,q2,s = k, we know that W q1,q2,s
2 ∼ Erlang(µ2, k). So once we know

the distribution of Kq1,q2,s, the LT of W q1,q2,s
2 can be expressed as

LW
q1,q2,s
2

(h) =

q2+s−1
∑

k=0

(
µ2

µ2 + h
)kP {Kq1,q2,s = k} . (2.16)

We next derive the distribution of Kq1,q2,s, first for no-stoppage states and then for states

with stoppages.

Distribution of W2 at No-stoppage States

First, assume that the network is currently in a no-stoppage state, i.e., (q1, q2, s), and δ ≤

TH − 2s + 1. Given Lemma 1 Station 1 will not be idled before the TC enters Station 2.

Thus, the arrival process does not affect the network, and we need to only consider the service

processes of Stations 1 and 2. Still, it is possible for Station 2 to be starved, i.e., q2 = 0,

before the TC enters this station. We next discuss how to consider the starvation periods when

calculating the distribution of Kq1,q2,s.

We represent the service operation of the TC by a Random Walk (RW) process in a two

dimensional lattice graph, where the x and y axes represent the number of customers served by

the first and second servers, respectively. Let the TC be the N th arrival to the original tandem

queue. Denote the total number of customers served by stations 1 and 2 before TC’s arrival by

XN and YN , respectively. Note that XN ∈ [0, ..., N − 1], YN ∈ [0, ...,XN ] and q2 = XN − YN .

The RW process is depicted on Figure 2.5. Obviously, the RW cannot go above the line x = y

(service 1 must finish before service 2). When Station 1 completes service the RW moves to the

right, and when Station 2 completes service the RWmoves up. Because both service completions

are exponentially distributed, when both stations are busy, P {RW moves right} = µ1

µ1+µ2
and
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Figure 2.5: Lattice Graph of number of customers served by each station.

P {RW moves up} = µ2

µ1+µ2
. Any point on the line x = y means that Station 2 is starved and

the next possible move for the RW is only to the right. We call points on the line x = y points

with Station 2 starved and other points in Figure 2.5 points with Station 2 working.

For any TC, we can ignore YN , because these customers have already left the network.

Therefore, upon arrival of the TC we reset the starting point of the RW to (XN , YN ) = (q2, 0).

When the TC arrives to state (q1, q2, s) , there are q2 customers in Station 2, which cor-

responds to the point (q2, 0) on Figure 2.5. When the TC finishes service in Station 1, this

station has finished s customers, which represents the RW moving right s steps and reaching

the line x = q2 + s. By this time, Station 2 has served n customers, where 0 ≤ n ≤ q2 + s− 1.

Thus, the sojourn time of TC at Station 1 corresponds to the time the RW moves from point

(q2, 0) to a point on the line (q2 + s, n), with 0 ≤ n ≤ q2 + s− 1.

Let Bq1,q2,s
2 , the number of times Station 2 is starved from when the TC arrives to the

network and until she finishes service at Station 1. The joint distribution of n and Bq1,q2,s
2 can

be calculated using the result from Milch and Waggoner (1970). This gives us the marginal
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distribution of n. Since the number of customers TC sees upon entering Station 2 is Kq1,q2,s =

q2 + s− 1− n, this also provides the distribution of Kq1,q2,s:

Proposition 4 For any state (q1, q2, s) with δ ≤ TH − 2s + 1, the distribution of Kq1,q2,s is:

P{Kq1,q2,s = k} (2.17)

=
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.(2.18)

Distribution of W2 for States with Stoppages

To calculate Kq1,q2,s for state with stoppage, observe:

• If Station 1 is stopped, i.e., δ = TH or TH+1, both Arrival (w.p. λ
λ+µ2

) and Completion

2 (w.p. µ2

λ+µ2
) can happen in the TCMC. So Kq1,q2,s will be distributed as Kq1+1,q2,s or

Kq1,q2−1,s, depending on which event happens.

• For states (q1, q2, s) such that TH − 2s + 1 < δ ≤ TH − 1, Arrival (w.p. λ
λ+µ1+µ2

),

Completion 1 (w.p. µ1

λ+µ1+µ2
), and Completion 2 (w.p. µ2

λ+µ1+µ2
) can all happen in the

TCMC. So Kq1,q2,s will be distributed as Kq1+1,q2,s, Kq1−1,q2+1,s−1 and Kq1,q2−1,s, with

these probabilities respectively.

Notice that the distribution of Kq1,q2,s only depends on which no-stoppage state the process

finally reaches, and is independent of the other details of the service process before that. Algo-

rithm 2, given in the Appendix 2.9.2, uses these three conditions and Proposition 4 to express

Kq1,q2,s for any state (q1, q2, s). The distribution of W q1,q2,s
2 can now be computed from (2.16).

Remark 3 It may be of interest to compute the distribution of the total wait in the system for

the TC, W q1,q2,s = W q1,q2,s
1 +W q1,q2,s

2 . First note that W q1,q2,s
1 and W q1,q2,s

2 are not independent:

since Station 2 is never intentionally idled, the longer the TC stays in Station 1, the less
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customers she will see, on average, when she enters Station 2. Still, in a similar way to

Algorithms 1 and 2, one can calculate the distribution of W q1,q2,s.

2.5.3 Distribution of Sojourn Time: S

In this section, we calculate the LT of sojourn time, which is the sum of waits and services in

both stations, for the TC. This derivation allows us to express both E [S] and P {S > t}.

We focus on Station 2. The TC’s sojourn time, Sq1,q2,s, is between her arrival to the network

and her departure, i.e., the time when Station 2 finishes serving q2+s customers. We note that

if there are customers in the network, Station 2 always serves customers when Station 1 is idled;

and Station 1 always serves customers (if there are any customers in Station 1) when Station 2

is starved. Thus, the TC’s sojourn time is composed of two parts. The first part is the service

time of the q2 + s customers at Station 2, which is Erlang(µ2, q2 + s). The second part is the

total time that Station 2 starves until it serves the TC. This time may depend on the behavior

of the network after the TC’s arrival and is therefore more challenging to characterize.

We know that the number of times Station 2 is starved Bq1,q2,s
2 ≤ s, because in the worst

case Completion 2 happens q2 times and then {Completion 1, Completion 2} sequence repeats

until the TC is served at Station 2, so that
∑s

i=0 P {Bq1,q2,s
2 = i} = 1.

Similar to (2.16), the common form of the LT of Sq1,q2,s is

LSq1,q2,s(h) =

(

µ2

µ2 + h

)q2+s s
∑

i=0

P {Bq1,q2,s
2 = i}

(

λ+ µ2

λ+ µ2 + h

)i

. (2.19)

This transforms the problem to finding the distribution of Bq1,q2,s
2 , for any state (q1, q2, s).

We first consider no-stoppage states. As in the proof of Proposition 4, for the no-stoppage states

we use the joint distribution of q2+s−1−Kq1,q2,s andBq1,q2,s
2 , P {q2 + s− 1−Kq1,q2,s = n,Bq1,q2,s

2 = i}.

Using this distribution and the Law of Total Probability, we get:
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Proposition 5 For any state (q1, q2, s) with δ ≤ TH − 2s + 1, the distribution of Bq1,q2,s
2 is

P {Bq1,q2,s
2 = i} =


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, 2 ≤ i < n− q2 + 1

.

(2.20)

We can now calculate Bq1,q2,s
2 for any state (q1, q2, s) as follows:

• If the state (q1, q2, s) is in a no-stoppage state, i.e., δ ≤ TH − 2s + 1, the distribution is

given by Proposition 5.

• If Station 1 is idled, i.e., δ = TH or TH + 1, both Arrival (w.p. λ
λ+µ2

) and Completion

2 (w.p. µ2

λ+µ2
) can happen in the TCMC. So Bq1,q2,s

2 will be distributed as Bq1+1,q2,s
2 or

Bq1,q2−1,s
2 .

• For states (q1, q2, s) such that TH−2s+1 < δ ≤ TH−1 and q2 = 0, there is no customer

in Station 2. Arrival (w.p. λ
λ+µ1

) and Completion 1 (w.p. µ1

λ+µ1
) can happen in the

TCMC. So Bq1,0,s
2 is distributed as Bq1+1,0,s

2 or Bq1−1,1,s−1
2 + 1.

• For states (q1, q2, s) such that TH − 2s + 1 < δ ≤ TH − 1 and q2 6= 0, Arrival (w.p.

λ
λ+µ1+µ2

), Completion 1 (w.p. µ1

λ+µ1+µ2
) and Completion 2 (w.p. µ2

λ+µ1+µ2
) can all happen

in the TCMC. So Bq1,q2,s
2 will be distributed as Bq1+1,q2,s

2 , Bq1−1,q2+1,s−1
2 or Bq1,q2−1,s

2 .

Algorithm 3 in Appendix 2.9.2 use these four conditions to compute the distribution of

Bq1,q2,s
2 for any state (q1, q2, s). The LT of the sojourn times Sq1,q2,s can then be computed

from (2.19).

2.6 Insights for µ1 < ∞ Case

In this section, we compare the performance of TBP, non-idling policy, and Kanban policies

with respect to the expected sojourn time, E [S], and the probability of excessive waits, PW (t).
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2.6.1 Insight 3: Comparing the TBP and Non-Idling Policy

First, we compare the performance of TBP and the non-idling policy. The key questions are:

(1) what degree of improvement can be achieved by the TBP for the PW (t) measure, and (2)

by how much do sojourn times have to increase to achieve this improvement. We note that

service measure P {S > t′} could be used in place of E[S]. Numerical results show that the

trade-off curves of PW (t) and P {S > t′} behave the same as the trade-off curves of PW (t)

and E[S], so only E[S] is considered in our numerical results.

The expressions for the service measures for the non-idling policy are determined by λ, µ1,

µ2, and t, and can be obtained from e.g., using Burke’s theorem (Burke, 1956):

E[SNI ] =
2
∑

i=1

1

µi − λ
; PWNI(t) =

1

2

2
∑

i=1

λ

µi
e−(µi−λ)t.

To illustrate the trade-off between PW TBP (t) and the expected sojourn time under the

TBP, E
(

STBP
)

we proceed as follows. We initially set λ = .85, µ1 = 1 and µ2 = .9. Thus,

Station 2 is the bottleneck, and the system utilization ratio ρ = ρ2 = .85/.9 ≈ 94%. Next we

select t such that PWNI(t) = 10% - from the expressions above this value is t = 31.78 and

E[SNI ] = 26.67.

We calculate the performance measures E[STBP ] and PW TBP (t) using TH = 100, 99,

. . . , 0. For TH = 100 the performance measures (E[STBP ], PW TBP (31.78)) = (26.67, 0.1) are

identical to these measures for the non-idle system. The results in Figure 2.6(a) present the

trade-off curve of the TBP for different thresholds. The points corresponding to selected TH

values are labeled on the curve (they decrease from left to right).

From the figure, we observe that the average sojourn times along the x−axis increase as

TH values are decreased from 100: the lower the threshold the more the TBP departs from

the non-idling policy, with the incidents of idling of Station 1 increasing. At TH = 0 the

E[STBP ] = 30.5 - a 14.4% increase over E
(

SNI
)

, the expected sojourn time under the non-idle

policy. Initially, as TH is decreased from 100, the PW (t) values are reduced, indicating that the

TBP is achieving the desired trade-off between the two performance measures. The PW TBP (t)

is minimized at just over 7%, corresponding to TH∗ = 13 (labeled with a star). For this TH
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value, E[STBP ] = 27.31. Thus, a TBP with TH = 13 achieves a nearly 30% improvement in

the PW (t) measure (7% vs 10%) at the cost of increasing the expected sojourn times by about

2% (from 26.67 to 27.31) - a trade-off that may be quite attractive. Reducing TH below 13

turns out to be counter-productive, thus, from the point of view of bi-objective optimization,

the TH values below 13 are Pareto-inferior. However, all TH values greater than or equal to

13 are Pareto-optimal.

To gain additional insight, in Figure 2.6(b), we plot P (Wi > 31.78) for i = 1, 2 under the

TBP. Since Station 2 is the bottleneck in this case, the probability of wait longer than t is much

greater there under the non-idling policy. This is shown on the extreme left of the plot where

TH = 100 and the TBP is essentially identical to NI policy. For very high TH values most of

the contribution to PW (t) comes from Station 2. As TH is reduced, P (W1 > t) is increasing

and P (W2 > t) is declining. Eventually, when TH decreases below 10, there is a much higher

probability of long waits at Station 1 than at Station 2. It is interesting to note that PW (t)

is minimized at TH∗ = 13 when the values of P (W1 > t) and P (W2 > t) are approximately

equal. We have observed similar behavior with other parameter settings as well.
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Figure 2.6: Trade-off curves corresponding to excessive wait probabilities of 10% (under non-
idling policy). Non-idling policy corresponds to the left-most point on each curve.

We have observed from numerical results with different parameter settings that P (W1 > t) is

a concave increasing function and P (W2 > t) is a convex decreasing function of E [S], as on Fig-

ure 2.6(b). However, for different values of t, the behavior of PW (t) = 1
2 (P (W1 > t) + P (W2 > t))

as a function of E [S] varies, typically being convex in some regions and concave in others.
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Figure 2.7: Trade-off curves of TBP corresponding to excessive wait probabilities of 20%,
15%, 10%, and 5% (under no-idling policy) for different system parameters. Non-idling policy
corresponds to the left-most point on each curve.

To illustrate the improvements that can be achieved with TBP compared with the NI policy

for different values of t, we plot the relative change in PW (t) versus the relative change in E[S]

for four different values of t on Figure 2.7. Here 100% on both axes relates to corresponding

values for the NI policy (or, equivalently, TBP(100) policy). Thus, on the x−axis the values

increase from 100% since introducing SI can only hurt the expected service times, while on the

y − axis we have values above and below 100% since the TBP can improve or hurt the PW (t)

objective. The three values of t = 45.11, 31.78, 24.44, and 19.58 were selected to correspond to

“excessive wait” probabilities of 5%, 10%, 15%, and 20% under the NI policy, respectively.

For the case where excessive waits are rare (t = 45.11), TBP provides very attractive trade-

offs: decreasing PW (t) by close to 60% at the cost of increasing E[S] by just 2%. Moreover,

most of the decrease in PW (t) occurs for even smaller values of E[S], corresponding to thresh-

olds higher than the PW (t)-minimizing value of TH∗ = 13. Thus, the value of TH that

minimizes PW (t) may not be the best choice. The reduction in PW (t) provided by TBP for

t = 31.78 case is a bit smaller, but is also quite substantial at nearly 30%, while the increase in

E[S] is just over 2%.

The TBP is much less successful for the t = 24.44 case where “excessive waits” occur 15%
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of the time under the NI policy. Here, as the threshold is decreased from 100, both objectives

are initially hurt, with PW (t) rising sharply. This is because the decrease in P (W2 > t) is

very small, while P (W1 > t) increases rapidly. For lower TH values, the PW (t) begins to fall,

eventually falling about 5% below the value for the NI policy around TH∗ = 12. The cost of

this improvement is the 3% increase in E[S]. Thus, the trade-offs offered by the TBP are much

less attractive in this case. We also observe that here PW (t) is not a convex function of E[S].

As the probability of excessive waits is increased to 20%, the Pareto-optimal trade-offs

disappear: while the behavior of PW (t) as TH values are increased is similar to the previous

case (first an increase, then a slight decrease, followed by another increase), the level never gets

below the value achieved for TH = 100, i.e., the value for the NI policy.

Thus, we observe similar patterns to the ones derived analytically for the asymptotic µ1 = ∞

case: the TBP reduces PW (t) when the “excessive waits” are sufficiently rare in the system.

Since the TBP redistributes some waiting times from Station 2 to Station 1, intuitively it

should be most effective when Station 2 is the system’s bottleneck. This intuition is supported

by Figure 2.8. The four curves presented on four panels correspond to t∗ (dashed line) and

values of t such that the probabilities of long waits are 1% (lower solid), 5% (middle solid),

and 10% (top solid) under the NI policy. Figure 2.8(a-b) present results for cases where the

processing rates of Stations 1 and 2 are identical. Figure 2.8(c-d) present cases where the

processing rate of Station 2 is reduced to .95, making it more of a bottleneck. We see similar

patterns to those described for the previous figure: the TBP reduces the PW (t) in all cases

at the cost of a small increase in E[S]; the relative improvement in PW (t) is increasing in t.

Moreover, we see that the improvements provided by TBP is greater when Station 2 is more of

a bottleneck (Figure 2.8(a) v.s. (c) and (b) v.s. (d)); even under similar utilization levels but

different arrival rates (Figure 2.8(b) v.s. (c)).

Figures 2.7 and 2.8 provide some intuitions on identifying t∗s and TH∗s for different pa-

rameter settings. We notice that TH∗ is relatively stable for similar arrival rates, and that

PWNI(t∗) is relatively stable for similar utilization level at Station 2. Specifically, comparing

Figure 2.7 with Figure 2.8(a,c), TH∗ ∈ [11, 15] is stable for the same arrival rate, λ = .85. This

is also supported by comparing Figure 2.8(b,d), where TH∗ ∈ [16, 23]. Similarly, PWNI(t∗) is

stable under similar utilization levels. For example, when ρ = .95 (Figure 2.8(d) and Figure
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2.7), PWNI(t∗) is about 15%; and when ρ = .9 (Figure 2.8(b) and (c)), PWNI(t∗) is about

12%.
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Figure 2.8: Trade-off curves of TBP corresponding to t∗ and excessive wait probabilities of
10%, 5% and 1% (under non-idling policy) for different system parameters. Non-idling policy
corresponds to the left-most point on each curve.

2.6.2 Insight 4: Comparing the TBP and Kanban policies

As the analytical derivation of the waiting time at each station is not available and is beyond

the scope of this paper, to compare the performance of Kanban and TBP, we constructed

a simulation model using MATLAB. We simulated one million customers under the Kanban

policies with BS = 100, 99, ..., 1 and the TBPs with TH = 100, 99, ..., 1. (Despite having

analytic results for the TBP we use simulation so that we compare both policies under the

same sample path.) The results are presented on Figure 2.9 for a system with µ2 = .9 on the

left panel and µ2 = .95 on the right. In both cases the value of t was chosen to correspond to

10% probability of long wait under the NI policy. With BS = 100, the Kanban policy performs

identically to the NI one, which gives us the starting point on each panel. We then decrease
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the value of the buffer size BS in steps of 1 and plot the values of PW (t) and E[S] for each

BS. We plot the TBP curve in a similar fashion.

First consider the panel on the left. While the TBP generally outperforms the Kanban

policy (recall that the Pareto-optimal points are the ones on the south-western frontier), when

Relative E [S] ≥ 101.54, the Kanban policy outperforms the TBP, achieving lower PW (t) values

for the same sojourn times. We note that selecting the right BS value is very important - values

that are too high or too low may lead to performance worse than the NI policy. In fact, our

numerical experiments show that the BS∗ that minimizes PW (t) appears to be very sensitive

to t, while the TBP is much more robust in this respect (see Table 2.1). This lack of robustness

presents a challenge for implementing Kanban policies, as the exact value of t may differ among

customers.

Now consider the right panel, where µ2 = .95. Here the TBP clearly dominates Kanban

(which produces very few Pareto-optimal values). The intuition behind poor performance of

the Kanban policy in this case is that Kanban policy ignores the queue size in front of Station

1. While this is not a major issue when Station 2 is the main bottleneck in the system (as

on the left panel), when the processing rates of Stations 1 and 2 are similar (as on the right

panel) and Station 1 is idled even when facing a long queue, long wait times occur. Thus, while

Kanban policy performed very well for the asymptotic µ1 = ∞ case, the performance under

more realistic conditions appears to be significantly worse. The additional flexibility afforded

by the TBP, which takes both q1 and q2 into account, is apparently important in case of a more

balanced system.

t TH∗ PWTBP (TH∗)(t) ETBP (TH∗)[S] BS∗ PWKanban(BS∗)(t) EKanban(BS∗)[S] PWNI(t) ENI [S]
15 100 0.2663 26.20 100 0.2664 26.20 0.2662 26.20
20 100 0.1930 26.20 100 0.1931 26.20 0.1930 26.20
25 12 0.1329 26.86 22 0.1243 27.76 0.1437 26.20
30 12 0.0810 26.86 25 0.0764 26.99 0.1082 26.20
35 12 0.0485 26.86 27 0.0470 26.71 0.0828 26.20
40 13 0.0284 26.74 31 0.0293 26.41 0.0630 26.20
45 12 0.0158 26.86 34 0.0180 26.30 0.0482 26.20
50 11 0.0079 27.00 37 0.0109 26.24 0.0371 26.20

Table 2.1: Performance of TBP and Kanban policies for different values of t.
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Figure 2.9: Trade-off curves corresponding to t = 31.78 under the TBP and the Kanban policy.

2.7 Summary and Open Questions

In this paper we studied strategic idling - i.e., purposefully idling some upstream stations when

the downstream stations become too busy, in a two-station tandem queue network. The purpose

of SI is to reduce the incidence of excessive waits and thus improve customer service experience

in queueing networks. Numerical results indicate that TBP can be quite effective in reducing

the incidence of excessive waits, without significantly increasing system sojourn times. Thus,

TBP makes it possible to improve the service experience of customers without adding any

capacity to the system (by, instead, idling some of the existing capacity). A comparison with

Kanban policies indicates that the TBP is more efficient.

We demonstrated that these insights hold in more general settings. Specifically, in Appendix

2.9.3, we present a simple example that illustrates possible TBPs and Kanban policies for a

3-station serial queueing network with exponential service time at each station and Poisson

arrivals; and in our working paper, Baron et al. (2013), we consider an open-shop queueing

network that does not reach steady state. Both studies used simulation. The results indicate

that the managerial insights listed earlier for the 2-station system likely hold in other more

general settings as well. A generalization of TBP to n-station tandem queue system is presented

at Appendix 2.9.4.

Clearly, this paper undertakes only an initial study of the TBPs and SI and much work
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remains to be done. It would be interesting to inspect the effect of the TBP in an Emergency

Department setting and compare the result with Saghafian et al. (2012). It would be very

beneficial to extend our analytical results to more general settings (n-station networks, non-

stationary arrival rate, general service time etc.), though this appears to be quite difficult. In

particular, the structure of the optimal TBPs (i.e., the specification of δ functions and the TH

values) needs to be investigated.

There are several other possible directions for future research. An analysis of waiting time

distributions under either of the control policies developed for manufacturing settings is an

obvious one. It would also be interesting to further investigate the application of TBP and

other policies with SI in additional settings such as open-shop queueing networks. Also, the

trade-offs between other service level measures can be explored. Finally, in practice there is

value to adequately define excessive wait and acceptable average sojourn times. Both measures

should be related to customers patience and may be evaluated using customers’ surveys.
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2.9 Appendix

2.9.1 Proofs

Proof of Proposition 1

From Figure 2.1 we have two observations. If the TC arrives at a state (q1, q2) s.t. q1+q2 ≤ TH,

then q1 = 0. The TC enters Station 2 without being stopped in Station 1, i.e., M̂ q1,q2 = 0. If

the TC arrives at a state (q1, q2) with q1 > 0 then q2 = q1 + TH or q2 = q1 + TH + 1, and the

TC is stopped in Station 1. By Remark 2, every Completion 2 event will be followed by two
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Arrival /Completion 2 events. Moreover, every time Arrival or Completion 2 event occurs, the

value of δ changes, thus increasing the number of stoppages experienced by TC by 1. Therefore,

the number of stoppage until the TC enters Station 2 will be:

M̂ q1,q2 =











2q1 if δ = TH

2q1 + 1 if δ = TH + 1

= q1 + q2 − TH.

Proof of Proposition 2

We first denote the set of zero points of any discrete function f (z) as {z | f (z) f (z + 1) ≤ 0},

i.e., zero points of f (z) are those points where f (z) switches sign. Let z∗ denote a zero

point of the forward difference of f (z) denote as f (z + 1) − f (z). Using analogy between

the forward difference of a discrete function and the first order derivative of a continuous

function, we know z∗ is the point where extremum of f (z) may be reached. Specifically, if

f (z∗ + 1) − f (z∗) ≥ 0 and f (z∗ + 2) − f (z∗ + 1) ≤ 0, then z∗ is a local maximum point of

f (z); if f (z∗ + 1)−f (z∗) ≤ 0 and f (z∗ + 2)−f (z∗ + 1) ≥ 0, then z∗ is a local minimum point

of f (z).

To find the minimum points of PW TBP (TH) (t), we investigate the zero points of the forward

difference of PW TBP (TH) (t): g′1 (t, TH) = PW TBP (TH+1) (t)− PW TBP (TH) (t) .

We know from (2.12) that g′1 (t, 0) = 0, so TH = 0 is a zero point of g′1 (t, 0). Furthermore,

we know that limTH→∞ PW TBP (TH) (t) = PWNI (t). Therefore, if we can show that g′1 (t, TH)

has either no zero points in [1,∞) or one zero point in [1,∞) which is a local maximum point

of PW TBP (TH) (t), we can conclude that the minimum point of PW TBP (TH) (t) can only be at

TH = 0 or ∞.

Using (2.12) we write g′1 (t, TH) for TH ≥ 1:

g′1 (t, TH) =











1
2 (1− ρ2) e

−(µ2−λρ2)t
(

1− e−λρ2t − ρ22
)

if TH = 1

(1− ρ2) ρ
1−TH
2 e−(µ2−λρ2)t

(

1− e−λρ2t
∑TH−1

k=0
(λρ2t)

k

k! − ρ2TH
2

)

if TH ≥ 2
.

Denote g2 (t, TH) = 1 − e−λρ2t
∑TH−1

k=0
(λρ2t)

k

k! − ρ2TH
2 for TH ≥ 1, so that g′1 (t, TH) has the
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same zero points as g2 (t, TH).

It is obvious that 1− e−λρ2t
∑TH−1

k=0
(λρ2t)

k

k! > 0 and ρ2TH
2 > 0. We state without proof that

limTH→∞
1−e−λρ2t

∑TH−1
k=0

(λρ2t)
k

k!

ρ2TH
2

= 0, i.e., 1− e−λρ2t
∑TH−1

k=0
(λρ2t)

k

k! converges to zero faster than

ρ2TH
2 . Thus, limTH→∞ g2 (t, TH) = 0−, i.e., g2 (t, TH) converges to zero from below (so does

g′1 (t, TH)), when TH → ∞. Thus PW TBP (TH) (t) decreases with TH when TH → ∞ for any

t.

Next, to find the zero points of g2 (t, TH), we investigate the zero points of the forward

difference of g2 (t, TH):

g′2 (t, TH) = −
(

(µ2t)
TH

TH!
−
(

1− ρ22
)

eλρ2t

)

e−λρ2tρ2TH
2 . (2.21)

Denote g3 (t, TH) = −
(

(µ2t)
TH

TH! −
(

1− ρ22
)

eλρ2t
)

, so that g′2 (t, TH) has the same zero

points as g3 (t, TH). Because xTH

TH! is a bell shape function, g3 (t, TH) has at most two zero

points.

When g2 (t, 1) 6= 0, we prove by contradiction that g2 (t, TH) has either no zero points in

[1,∞) or one zero point in [1,∞) which is a local maximum point of PW TBP (TH) (t):

• For the case when g2 (t, 1) > 0, assume that g2 (t, TH) has two or more zero points in

[1,∞). Because limTH→∞ g2 (t, TH) = 0−, we know that g2 (t, TH) switches sign for

at least three times in [1,∞), i.e., g2 (t, TH) has at least three zero points in [1,∞).

Therefore, g2 (t, TH) have at least three local extremum points in [1,∞), i.e., g′2 (t, TH)

have at least three zero points in [1,∞). This conflicts with that g3 (t, TH) has at most

two zero points. Therefore, g2 (t, TH) has one zero point in [1,∞) and g2 (t, TH) switches

sign from positive to negative at this point. This point is thus a local maximum point of

PW TBP (TH) (t).

• For the case when g2 (t, 1) < 0 (i.e.,
(

1− ρ22
)

eλρ2t < 1), we consider two sub-cases:

1. For g′2 (t, 1) < 0, assume that g2 (t, TH) has two or more zero points in [1,∞). Then,

using a similar discussion as the previous bullet point, we know that g′2 (t, TH) have

at least three zero points. This conflicts with the fact that g3 (t, TH) has at most two

zero points. Therefore, g2 (t, TH) has less than two zero points. Because g2 (t, 1) < 0
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and limTH→∞ g2 (t, TH) = 0− are both below zero, we can conclude that g2 (t, TH)

has no zero points.

2. For g′2 (t, 1) ≥ 0 (i.e., µ2t ≤
(

1− ρ22
)

eλρ2t), we have µ2t ≤
(

1− ρ22
)

eλρ2t < 1. Let

g′3 (t, TH) be the forward difference of g3 (t, TH), i.e., g′3 (t, TH) = (µ2t)
TH

TH!
(TH+1)−µ2t

TH+1 .

Because TH ≥ 1, we have TH + 1 > µ2t, so g′3 (t, TH) > 0 for any TH ≥ 1. Using

g3 (t, 1) > 0 (because g′2 (t, 1) > 0), we get g3 (t, TH) > 0 (i.e., g′2 (t, TH) > 0) for

any TH ≥ 1, i.e., g2 (t, TH) is a monotone increasing function in [1,∞). Then, from

limTH→∞ g2 (t, TH) = 0−, we know that g2 (t, TH) has no zero points in [1,∞).

To conclude, g2 (t, TH) has either no zero points in [1,∞) or one zero point in [1,∞) which

is a local maximum point of PW TBP (TH) (t).

For the case when g2 (t, 1) = 0, we have PW TBP (0) (t) = PW TBP (1) (t) = PW TBP (2) (t),

then the same discussion as g2 (t, 1) 6= 0 case on g2 (t, TH)’s zero points in [2,∞) leads to the

same conclusion.

Then, solving PW TBP (0) (t) = PWNI (t) gives t∗.

Proof of Proposition 3

The stead-state distribution of the MC of the system under Kanban(BS) is the same as the

distribution under TBP (TH), i.e., πq1,q2 is given in (2.3).

Let W̃ q1,q2
i denote the TC’s waiting time at Station i (i = 1, 2), given she arrives at state

(q1, q2):

• If q1+q2 ≤ BS−1, then no one is waiting for Station 1 and TC directly enters the waiting

room for Station 2. Therefore, W̃ q1,q2
1 = 0. Her waiting time for Station 2 is distributed

as Erlang (µ2, q1 + q2). Of course, when q1 + q2 = 0, TC does not wait for Station 2.

• if q1 + q2 ≥ BS, then there are q1 + q2 − BS customers waiting for Station 1 and BS

customers waiting for Station 2. The TC should wait for Station 1 first. When the

number of customers in Station 2 reduces to BS − 1, she can enter Station 2’s waiting

room where BS−1 customers are waiting there. Therefore, TC’s waiting time for Station



Chapter 2. Strategic Idleness in Service Networks 45

1 is distributed as Erlang (µ2, q1 + q2 −BS + 1) and her waiting time for Station 2 is

distributed as Erlang (µ2, BS − 1).

Thus, using (2.2), (2.3) and the above discussion, we can now write the LT of W̃1:

LW̃1
(h) =

BS−1
∑

i=0

(1− ρ2) ρ
i
2 +

∞
∑

i=BS

(1− ρ2) ρ
i
2

(

µ2

µ2 + h

)i−BS+1

= 1− ρBS
2 + ρBS

2

µ2 − λ

µ2 − λ+ h
.

From the transform of W̃1 we conclude that there is no waiting in Station 1 w.p. 1− ρBS
2 , and

the waiting is distributed as an exp (µ2 − λ) R.V. w.p. ρBS
2 . Hence,

P
{

W̃1 > t
}

= ρBS
2 e−(µ2−λ)t. (2.22)

In a similar fashion, we get the LT of W̃2, the TC’s waiting time at Station 2,

LW̃2
(h) = 1− ρ2 +

BS−1
∑

i=1

(1− ρ2) ρ
i
2

(

µ2

µ2 + h

)i

+

∞
∑

i=BS

(1− ρ2) ρ
i
2

(

µ2

µ2 + h

)BS−1

= 1− ρ2 + (1− ρ2)

BS−1
∑

i=1

ρi2

(

µ2

µ2 + h

)i

+ ρBS
2

(

µ2

µ2 + h

)BS−1

.

From the LT of W̃2 we know that there is no waiting in Station 2 w.p. 1 − ρ2; the wait-

ing is distributed as a Erlang (µ2, i) R.V. w.p. (1− ρ2) ρ
i
2 for 1 ≤ i ≤ BS − 1; and as a

Erlang (µ2, BS − 1) R.V. w.p. ρBS
2 . Thus we can derive the tail distribution of W̃2:

P
{

W̃2 > t
}

=











0 if BS = 1

e−µ2t
∑BS−2

k=0
(µ2t)

k

k! ρk+1
2 if BS ≥ 2

. (2.23)

Using (2.22) and (2.23), we obtain (2.14).

Proof of Lemma 1

There are three possible events: Arrival, Completion 1, and Completion 2. Note that only

Completion 1 increases δ(q1, q2), while the other two events decrease δ(q1, q2). Specifically, after

any Completion 1 the system’s state changes to (q1− 1, q2 +1, s− 1), so that δ(q1 − 1, q2+1) =
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δ(q1, q2) + 2. In the worst case, all the events until stoppage are Completion 1 events. Then,

from state (q1, q2, s), R
q1,q2,s times consecutive Completion 1 events would lead to a stoppage

at Station 1, where Rq1,q2,s is given by

Rq1,q2,s =











TH−δ(q1,q2)
2 if TH − δ(q1, q2) is even,

TH+1−δ(q1,q2)
2 if TH − δ(q1, q2) is odd.

Specially if δ ≤ TH − 2s + 1, then s ≤ Rq1,q2,s and the TC gets into Station 2 before any

stoppage could happen. There will be no stoppage for the TC.

Otherwise, if δ > TH − 2s + 1 the TC may be stopped once (or more). In the worst case,

after Station 1 starts working again the system experiences a repeating set of sequential events:

Completion 1⇒Arrival(or Completion 2)⇒Arrival(or Completion 2). Each set of sequential

events has two stoppages. So we get

M q1,q2,s =











2(s − TH−δ(q1,q2)
2 − 1) + 1 if TH − δ(q1, q2) is even,

2(s − TH+1−δ(q1,q2)
2 − 1) + 2 if TH − δ(q1, q2) is odd,

= 2s− TH + δ(q1, q2)− 1.

Proof of Proposition 4

(1) If 0 ≤ n < q2, the random walk cannot visit any points on the line x = y where starvation

occurs; thus P{Bq1,q2,s
2 = 0} = 1. The sample path with solid line in Figure 2.5 is an example.

The number of paths from (q2, 0) to (q2 + s− 1, n) is
(

n+s−1
n

)

. In any one of these paths, s− 1

moves should be to the right and n moves should be up, so each path occurs with probability
(

µ1

µ1+µ2

)s−1 (
µ2

µ1+µ2

)n

. Thus, the probability that the random walk starting from (q2, 0) ends

in (q2 + s − 1, n) is Binomial
(

n;n+ s− 1, µ2

µ1+µ2

)

=
(

n+s−1
n

)

(

µ1

µ1+µ2

)s−1 (
µ2

µ1+µ2

)n

. The last

move must always be to the right, so that for 0 ≤ n < q2,

P{q2 + s− 1−Kq1,q2,s = n,Bq1,q2,s
2 = 0} = P{q2 + s− 1−Kq1,q2,s = n}

=

(

n+ s− 1

n

)(

µ1

µ1 + µ2

)s( µ2

µ1 + µ2

)n

. (2.24)
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Eq. (2.24) corresponds to a Negative-Binomial distribution with parameters n, n + s − 1 and

µ2

µ1+µ2
.

When the TC enters Station 2, she will then see k = q2 + s − 1 − n customers there, so from

(2.24), P{Kq1,q2,s = k} for s − 1 < k ≤ q2 + s − 1, can be written as in the corresponding

expression in (2.18).

(2) If q2 ≤ n < q2+ s−1, the RW can visit some points with starvation. The sample path with

dashed line in Figure 2.5 is an example. Assume the number of points with starvation on this

random walk is Bq1,q2,s
2 = i. Then, the number of points with no starvation on this random

walk is s+ n− 1− i. Each path occurs with probability
(

µ1

µ1+µ2

)s−i (
µ2

µ1+µ2

)n

.

Next, we calculate the number of lattice paths connecting (q2, 0) and (q2 + s− 1, n) that do

not cross the line x = y but have exactly i points in common with it. This number equals the

number of lattice paths connecting the origin and (s− 1, n) that do not cross the line y = x+q2

and have exactly i points in common with it and can be calculated by applying Corollary 1 in

Milch (1970):










(

s+n−1
s−1

)

−
(

s+n−1
s+q2−1

)

if i = 0,
(

s+n−i−1
s+q2−2

)

−
(

s+n−i−1
s+q2−1

)

if i > 0.
(2.25)

Thus, the probability that a path starts from (q2, 0) and ends at (q2 + s− 1, n) is:

P{q2 + s− 1−Kq1,q2,s = n,Bq1,q2,s
2 = i}

=











[

(

s+n−1
s−1

)

−
(

s+n−1
s+q2−1

)

] (

µ1

µ1+µ2

)s (
µ2

µ1+µ2

)n

i = 0,
[

(

s+n−i−1
s+q2−2

)

−
(

s+n−i−1
s+q2−1

)

] (

µ1

µ1+µ2

)s−i (
µ2

µ1+µ2

)n

1 ≤ i ≤ n− q2 + 1.
(2.26)

Because P{Kq1,q2,s = k} =
∑s−k

i=0 P {q2 + s− 1−Kq1,q2,s = q2 + s− 1− k,Bq1,q2,s
2 = i}, using

(2.26), the corresponding expression in P{Kq1,q2,s = k}, for 0 < k ≤ s− 1, in (2.18) follows.

(3) If n = q2+ s−1, the only path to the point (q2+ s, q2+ s−1) from the line x = q2+ s−1 is

via (q2+ s− 1, q2 + s− 2), to (q2 + s− 1, q2 + s− 1) and then to (q2+ s, q2 + s− 1). This can be

seen as the sample path with pointed line in Figure 2.5. So the number of possible paths from

(q2, 0) to (q2 + s− 1, q2 + s− 1) is the same as the number of paths to (q2 + s− 1, q2 + s− 2),
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which can be calculated from (2.25) for n = q2 + s− 2:











(2s+q2−3
s−1

)

−
(2s+q2−3
s+q2−1

)

i∗ = 0,
(

2s+q2−i∗−3
s+q2−2

)

−
(

2s+q2−i∗−3
s+q2−1

)

0 < i∗ ≤ n− q2,

where, i∗ is the number of times the random walk touches the line x = y until it gets to

(q2+ s−1, q2+ s−2). Then, the number of times the random walk touches the line x = y until

it gets to (q2 + s, q2 + s− 1) is i = i∗ − 1; so

P{q2 + s− 1−Kq1,q2,s = n,Bq1,q2,s
2 = i}

=











[

(

s+n−2
s−1

)

−
(

s+n−2
s+q2−1

)

] (

µ1

µ1+µ2

)s−1 (
µ2

µ1+µ2

)n

i = 1,
[

(

s+n−i−1
s+q2−2

)

−
(

s+n−i−1
s+q2−1

)

] (

µ1

µ1+µ2

)s−i (
µ2

µ1+µ2

)n

2 ≤ i ≤ n− q2 + 1.
(2.27)

Because in this case when n = q2+s−1 the TC sees no customer when she enters Station 2, we

have P{Kq1,q2,s = 0} =
∑s

i=1 P {q2 + s− 1−Kq1,q2,s = q2 + s− 1, Bq1,q2,s
2 = i}, from which,

we get the corresponding expression in P{Kq1,q2,s = k}, for k = 0, in (2.18).

It can be verified that
∑q2+s−1

i=0 P {K = i} = 1.

Proof of Proposition 5

Using the Law of Total Probability:

P {Bq1,q2,s
2 = i} =

q2+s−1
∑

n=0

P {q2 + s− 1−Kq1,q2,s = n,Bq1,q2,s
2 = i} i = 0, 1, ..., s,

we can get P {Bq1,q2,s
2 = i} by conditioning on the value of i: When i = 0, using (2.24) and

(2.26) , we get the corresponding expression in (2.20). When i = 1 and i ≥ 2, using (2.26) and

(2.27) , we get the corresponding expression in (2.20).

2.9.2 Algorithms

Algorithm 1 : Calculate the distribution of Bs,δ
1 , the number of stoppages experienced by a

TC from a state (s, δ) for each s = 1, 2, . . . , Limit and δ = −Limit,−Limit+ 1 . . . , TH + 1.

Step 1: Let s = 1, δ = −Limit.
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Step 2: If δ ≤ TH − 2s+ 1, set P
{

Bs,δ
1 = 0

}

= 1.

Step 3: If δ = TH or TH + 1, set P
{

Bs,δ
1 = i

}

= P
{

Bs,δ−1
1 = i− 1

}

, i = 1, ...,M s,δ.

Step 4: If TH − 2s + 1 < δ ≤ TH − 1, set P
{

Bs,δ
1 = i

}

= λ+µ2

λ+µ1+µ2
P
{

Bs,δ−1
1 = i

}

+

µ1

λ+µ1+µ2
P
{

Bs−1,δ+2
1 = i

}

, i = 0, ...,M s,δ.

Step 5: Let δ = δ+1. If δ ≤ TH +1, then go to Step 2; else let s = s+1. If s ≤ Limit, then

let δ = −Limit and go to Step 2. Otherwise, Stop.

Algorithm 2 : Calculate the distribution of Kq1,q2,s, the number of customers the TC sees

when she enters Station 2 for s = 1, 2, . . . , Limit, q1 = s, s+1, . . . , Limit and q2 = 0, 1, . . . , Limit.

Step 1: Let s = 1, q1 = Limit, q2 = 0.

Step 2: If δ ≤ TH − 2s+ 1, calculate the distribution of Kq1,q2,s according to (2.18).

Step 3: If δ = TH or TH+1, set P{Kq1,q2,s = i} = λ
λ+µ2

P{Kq1+1,q2,s = i}+ µ2

λ+µ2
P{Kq1,q2−1,s =

i}, i ∈ [0, q2 + s− 1].

Step 4: If TH−2s+1 < δ ≤ TH−1 and q2 = 0, set P
{

Kq1,0,s = i
}

= λ
λ+µ1

P
{

Kq1+1,0,s = i
}

+

µ1

λ+µ1
P
{

Kq1−1,1,s−1 = i
}

, i ∈ [0, s− 1].

Step 5: If TH−2s+1 < δ ≤ TH−1 and q2 6= 0, set P{Kq1,q2,s = i} = λ
λ+µ1+µ2

P{Kq1+1,q2,s =

i}+ µ1

λ+µ1+µ2
P{Kq1−1,q2+1,s−1 = i}+ µ2

λ+µ1+µ2
P{Kq1,q2−1,s = i} i ∈ [0, q2 + s− 1].

Step 6: Let q2 = q2 + 1. If q2 ≤ Limit, then go to Step 2; else let q1 = q1 − 1. If q1 ≥ s, then

let q2 = 0 and go to Step 2; else let s = s + 1. If s ≤ Limit, then let q1 = Limit, q2 = 0 and

go to Step 2; else Stop.

Algorithm 3 : Calculate the distribution of Bq1,q2,s
2 , the number of times Station 2 waits since

the TC arrives to the network and until she finishes service at Station 1 for s = 1, 2, . . . , Limit,

q1 = s, s+ 1, . . . , Limit and q2 = 0, 1, . . . , Limit.

Step 1: Let s = 1, q1 = Limit, q2 = 0.

Step 2: If δ ≤ TH − 2s+ 1, calculate the distribution of Bq1,q2,s
2 using (2.20).

Step 3: If δ = TH or TH+1, set P {Bq1,q2,s
2 = i} = λ

λ+µ2
P
{

Bq1+1,q2,s
2 = i

}

+ µ2

λ+µ2
P
{

Bq1,q2−1,s
2 = i

}

,

i ∈ [0, 1, . . . , s].

Step 4: If TH−2s+1 < δ ≤ TH−1 and q2 = 0 set P
{

Bq1,0,s
2 = i

}

= λ
λ+µ1

P
{

Bq1+1,0,s
2 = i

}

+

µ1

λ+µ1
P
{

Bq1−1,1,s−1
2 = i− 1

}

, i ∈ [1, 2, . . . , s].

Step 5: If TH−2s+1 < δ ≤ TH−1 and q2 6= 0, set P {Bq1,q2,s
2 = i} = λ

λ+µ1+µ2
P
{

Bq1+1,q2,s
2 = i

}

+
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µ1

λ+µ1+µ2
P
{

Bq1−1,q2+1,s−1
2 = i

}

+ µ2

λ+µ1+µ2
P
{

Bq1,q2−1,s
2 = i

}

, i ∈ [0, 1, . . . , s].

Step 6: Let q2 = q2 + 1. If q2 ≤ Limit, then go to Step 2; else let q1 = q1 − 1. If q1 ≥ s, then

let q2 = 0 and go to Step 2; else let s = s + 1. If s ≤ Limit, then let q1 = Limit, q2 = 0 and

go to Step 2; else Stop.

2.9.3 Example: Tandem Queue Network with Three Stations

We define the following TBP: δ1 = q2 − q1, δ2 = q3 − q2. Thus for given values of thresholds

THi, station i is idled if qi+1 − qi ≥ THi, i = 1, 2. To test the performance of this TBP we

constructed a simulation model for a system with λ = .85, µ1 = 1, µ2 = .95, µ3 = .9. Station

3 is the bottleneck and the system utilization is ρ = ρ3 = .85/.9 = .94. Note that this simply

inserts an intermediate station into the network with ρ = .94 analyzed on Figure 2.7 in Section

2.6.1.

We simulated 500, 000 customers under the non-idling policy and the TBP with all possible

combinations of TH1 and TH2, ranging from 5 to 100. For t = 32, we plot the lower envelope

of the performance measures (E
[

STBP
]

, PW TBP (32)) in Figure 2.10 as the solid curve. We

observe that it has the similar behavior as the trade-off curves in Figure 2.7. The TBP with

TH1 = 10 and TH2 = 14 achieves the maximum improvement of 42% in PW (t) (6.43% vs

3.73%) at the cost of increasing the E[S] by about 5.73% (from 34.46 to 36.44). Note that for the

non-idling policy, the theoretical values for both E[S] and PWNI(t) can be calculated. These

values closely matched the values observed in our simulation, which validated the simulation

model. Most of the observations made for the 2-station system earlier appear to apply to the

3-station system as well: the improvement in PW (t) achieved by the TBP strongly depends

on the value of t. Below certain t (the critical value is around 10 in this example), the TBP

cannot improve over the NI policy at all. Above this critical value, the level of improvement

grows with t.

Next, we compare the performance of Kanban and TBP for this system. The Kanban policy

is defined by the values of buffer sizes BS1 and BS2; station i−1 is idled if qi ≥ BSi−1, i = 2, 3.

We simulated the system for all combinations of values of BS1, BS2 ∈ {1, . . . , 100}. The lower

envelope of the performance measures (E
[

SKanban
]

, PWKanban(32)) for the Kanban policy is
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Figure 2.10: The lower envelope of the TBP’s and Kanban policy’s performances.

plotted in Figure 2.10 as the dashed line. The largest reduction in PW (t) under the Kanban

policy is 37.69% and occurs for buffer sizes (BS1, BS2) = (24, 27).

We note that in this example, the TBP dominates the Kanban policy: for every feasible value

of E[S] the TBP achieves greater reduction in PW (t) than the (optimized) Kanban policy. This

performance was also observed in a number of runs with different parameter settings. We also

observed that the TBP appears to be more robust: while the TBP with (TH1, TH2) = (10, 14)

performs well for a wide range of values of t, the optimal buffer sizes under the Kanban policies

are quite sensitive to t. More detailed results are available upon request.

2.9.4 Generalization of TBP to n-station Tandem Queue Systems

Next, we give a generalization of TBP in a n-station tandem queue system. Consider a se-

rial queueing network consisting of n stations, and let PW (t) = 1
n

∑

n P (Wi > t). To de-

fine a general TBP we specify for each station j = 1, . . . , n − 1 a function δj(qj, . . . , qn) and

δj(0, . . . , 0) = 0. (It is sensible to choose a function that is decreasing in qj and increasing

in qk for all n ≥ k ≥ j. Then, when qk is large or qj is small, Station j is idled, and when

qk is small or qj is large, Station j resumes working.) We also specify a threshold THj ≥ 0

for all j = 1, . . . , n − 1. The TBP is now defined as follows: station j is idled whenever

THj ≤ δj(qj, . . . , qn), j = 1, . . . , n− 1. In the previous two sections we used δ1(q1, q2) = q2− q1

that clearly satisfies the definition above. The general idea of the TBP remains the same: idle
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an upstream station when the queues downstream are too long. However the definition above

allows for a great deal of flexibility: the function δi could be more heavily weighted towards the

bottleneck stations, taking into consideration all downstream queues, or only the immediate

successor to the current station, normalize the queue at each station by the expected service

time and or the number of servers at this station, etc.
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2.9.5 Notation

πq1,q2 The steady state probability of the MC(Q1, Q2).

M̂q1,q2 The number of stoppages the TC will see, given she arrives at state (q1, q2).

Ŵ
q1,q2
i The TC’s waiting time for Station i (i = 1, 2), given she arrives at state (q1, q2).

LX(h) Laplace Transform of a R.V. X.
Xq1,q2,s The TC’s performance measure in the future, given the TCMC is now in (q1, q2, s).
Mq1,q2,s The maximum number of stoppages the tagged customer will see, given the TCMC is in (q1, q2, s).
Rq1,q2,s Number of sequential times Completion 1 needs to occur, until Station 1 would be idled

given the TCMC is in (q1, q2, s).

W
s,δ
1 The TC’s waiting time for Station 1, given the revised TCMC is in (s, δ).

B
s,δ
1 Number of stoppages in Station 1 the TC may experience, given the revised TCMC is in (s, δ).

W
q1,q2,s
2 The TC’s waiting time for Station 2, given the TCMC is in (q1, q2, s).

Kq1,q2,s Number of customers the TC may see when she enters queue 2, given the TCMC is in (q1, q2, s).
B

q1,q2,s
2 Number of times that Station 2 is starved, given the TCMC is in (q1, q2, s).

Sq1,q2,s The TC’s sojourn time, given the TCMC is in (q1, q2, s).

Table 2.2: Notation



Chapter 3

Dynamic Scheduling and Strategic

Idling in an Open-shop Service

Network: Case Study and Analysis

3.1 Introduction

The primary goal of this paper is to develop effective dynamic scheduling policies for stochastic

open-shop processes operating under multiple objectives. The system objectives may include

a combination of the more traditional “macro-level” measures (such as minimizing total sys-

tem time and minimizing total tardiness) with the “micro-level” objective seeking to limit the

number of incidents where a customer experiences an “excessively long” wait at a workstation

within the process. This combination of objectives is motivated by the understanding that

customer’s perception of service quality is affected by both “macro” and “micro” level factors.

Open-shop service networks, where customers need to visit a set of stations without a specific

service order (other than some possible precedence constraints), are quite common in modern

service industry in both, the “brick and mortar” and “virtual service” operations. Exam-

ples of the former include retail stores, where customers may visit several departments before

proceeding to the cashier, and hospitals, where patients often go through several diagnostic

and treatment stations. Examples of virtual systems include contact centers, where calls may

54
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be served by a mixture of automated response units and human agents with different levels

of expertise, and on-line websites, where customers typically visit a number of pages before

proceeding to the checkout page.

This paper was motivated by the example of an open shop in the healthcare service indus-

try operated by XYZ (the real name of the company is removed and relevant data has been

disguised for confidentially reasons) – one of the leaders in preventive healthcare services in

North America. Their flagship service is composed of 10-20 different medical tests, each test

performed in a different station. This service provides customers with a comprehensive evalua-

tion of their current state of health and allows them to actively manage their health care. The

order in which customers take most of these tests is immaterial (there are only a few precedence

constraints), so XYZ actually operates an open-shop service system. XYZ’s service is primarily

targeted towards busy professionals who are willing, for a fee, to have a complete assessment of

their health performed in just a few hours. It should be noted that under the Canadian medical

system, most of the tests can be done for free, but would likely take days or even months to

schedule and complete. Thus, convenience is the main selling feature, and delivering excellent

customer service is of paramount importance for XYZ. Tight management of customer waiting

time in the system is deemed to be essential. While, due to the inherent variability of the

times it takes to perform the different tests and procedures, some waiting time is unavoidable,

the goal is to minimize waiting times and maximize customer perception of service quality. To

study the waiting times in XYZ we interviewed their key personal and collected two months

of data, comprising 41 business days with just over 2000 customers and about 24,000 station

visits.

While there are many determinants of service quality in service networks, the link between

customer waiting times and the perceived service quality is well-recognized (Friedman and

Friedman, 1997; Taylor, 1994). Waiting times, that are easily quantifiable, have long been the

focus of much of the queueing literature. The most common measure of waiting time is the

expected overall waiting time for service. A related measure is the probability that the total

system time or the total waiting time exceeds a certain pre-determined threshold. XYZ uses

both of these service level measures (SLMs) with the following stated targets: mean system

time of less than four hours, and the probability of system time longer than four hours of less
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than 50%.

The two SLMs described above take a “macro” view of the service network, essentially

treating it as a one-stage system and looking at the overall system or waiting time. Such SLMs

may be sufficient in the manufacturing context, where customers, after placing an order, remain

“outside the system” and essentially view the system as a “black box”. However, in service

contexts the customer is not just an outside observer: they experience the internal performance

of the system as well, i.e., waiting times in front of individual workstations. A poor experience

at a given workstation may lead to a poor perceived service quality, even when the macro-level

SLM (e.g., the overall waiting time) does not indicate a problem.

In fact, XYZ’s senior management noticed that there have been two types of complaints

about the service experience: the first one is with respect to the total time customers spend in

the system and the second, more prevalent one, is with respect to a long wait for a particular

station. Specifically, from customer satisfaction surveys XYZ found that customers whose wait

for service at any station exceeded 20 minutes were substantially less satisfied with their service

than others. This led XYZ to define a “micro-level” SLM: the waiting time in front of any

station should not exceed 20 minutes. This measure is taken very seriously: when a customer

wait time at a station reaches 15 minutes an anxious “yellow face” appears on process schedulers’

screens, alerting them to a potential issue. Once the waiting time reaches 20 minutes, an angry

“red face” appears, and a service breakdown is considered to have occurred. The total number

of red faces is carefully tracked: the goal is to keep this number below 100 per month.

The importance of such micro-level measures has been observed in other settings. For ex-

ample, Bouch, Kuchinsky and Bhatti (2000) show that for an on-line service, when a single web

page takes longer than 8 seconds to load, customer service quality ratings fall off dramatically.

The adverse impact of long waiting time at a particular station is further supported by the

marketing literature, e.g., Soman and Shi (2003) show that, given the total system time and

price, people prefer a situation in which they are constantly making progress towards their

goal; and by the psychology of queueing literature, e.g., Larson (1987) shows that customers’

perception of the queueing experience may vary nonlinearly with the delay.

Nevertheless, the systematic treatment of such micro-level SLMs in queuing literature is

relatively new. The only prior paper we are aware of is Baron, et al. (2013), where it was
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demonstrated analytically for a two station tandem queue network, that a scheduling policy

with Strategic Idling (SI) might be helpful in reducing the probability of long waits. The idea

behind SI policies is that when a downstream station accumulates a long queue, continuing

to operate upstream stations at the normal rate may lengthen the queues downstream and

increase the probability of long waits (i.e., the expected number of red faces). A better idea

may be to idle the upstream stations (or to temporarily reduce their service rate), allowing the

downstream queues to dissipate. A wise use of such idling effectively re-distributes the waiting

times more evenly among the stations and reduces the number of red faces. We note that

the scheduling policies employing SI violate one of the more common assumptions in queuing

analysis: the “work conserving” property, which states that a workstation should continue to

operate as long as there are customers waiting to be served. However, the potential payoff of SI

may be very attractive. Indeed the “classical” way of reducing probabilities of long waits is by

adding capacity to the system (e.g., adding a doctor in the healthcare setting), which is often

quite expensive. However, using a dynamic scheduling policy with SI can potentially achieve

the same objective at a negligible (or even a negative) cost: by simply idling some resources in

the system.

Given the results from Baron et al. (2013) discussed above, and the fact that the number

of red faces is used as part of performance evaluation for process schedulers at XYZ, one

may expect that the schedulers will use the SI strategy. While our interviews with XYZ’s

management team indicate that such use of SI is not company’s policy, our analysis of the

empirical data points to convincing statistical evidence that XYZ’s schedulers in fact do employ

SI quite effectively to manage the number of red faces - simulation results indicate that the

current scheduling rules without the use of SI would likely result in more than twice the current

number of red face incidents.

Our primary interest is to study the benefit of dynamic scheduling policies (DSPs) and SI

for open-shop service networks, such as the one operated by XYZ. We start by developing a

framework that allows us to represent and implement general dynamic scheduling policies as

simple scoring rules. A variety of different DSPs based on intuition and known theoretical

results for stylized systems are proposed to address the macro-level SLMs. We then show how a

threshold-based policy approach can be used to intelligently inject SI into a given DSP, resulting
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in a policy that can potentially address both macro and micro-level objectives simultaneously.

To test our policies we develop a simulation model for the XYZ process. The need for the

simulation-based approach is driven by both, the complexity of stochastic open-shop networks,

making analytical results very hard to obtain, and by the transient nature of real-life systems,

such as the one operated by XYZ: since the system starts each workday with an empty queue

and ends it in the same state after seeing relatively few customers, the steady-state regime may

never set in. We use the empirical data on arrivals and service times to first understand the

service process at XYZ and then to calibrate a detailed simulation model. Using this model

we investigate the performance of several DSPs with and without SI and compare them to the

performance of the empirical scheduling policies used in XYZ. We show that the automated

policies achieve very promising results: the best DSPs are able to significantly outperform the

actual schedules with respect to the macro-level measures. While without the use of SI the

DSPs tend to perform poorly on the micro-level measures (the same effect is demonstrated

for the actual scheduling policies), after the SI modification, DSPs are able to perform very

competitively on the micro-level SLM, while maintaining their advantage with respect to macro-

level SLMs.

To summarize, the paper makes several key contributions: (1) we narrow the gap between

theory and practice on scheduling in open-shop service networks; (2) we shed light on the

need for effective and systematic implementation of DSPs and SI to improve the SLM in such

networks; (3) we provide a framework for developing algorithms for the joint usage of DSPs and

SI in open-shop service systems; (4) using such algorithms and the simulation model of XYZ

we demonstrate that an open-shop service network can be managed in a systematic fashion to

deliver improved service level by jointly using DSPs and SI; and (5) we establish the usage of

SI in practice (using statistical tests).

The plan for the remainder of the paper is as follows. In Section 3.2, we provide a brief liter-

ature review, focusing on known results for open-shop systems. In Section 3.3, we introduce the

frameworks for using DSPs and SI in a stochastic open-shop service network. Then, using these

frameworks, we propose several stylized DSPs and SI policies that are likely to be successful in

practice. In Section 3.4, we analyze the empirical data provided by XYZ and present evidence

for the usage of SI in XYZ. In Section 3.5, we use a simulation model to demonstrate the effect
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of SI and evaluate some of the DSPs and SI policies suggested in Section 3.3. In Section 3.6,

we present conclusions and suggestions for future research.

3.2 Literature Review

Open shops were studied extensively in manufacturing settings (see, e.g., Roemer 2006), such

as airplane maintenance, fire engine assembly, just-in-time systems, supply chain assembly

systems, paper processing, and part kitting. A few papers consider service systems, such as

accounting services, but they still consider common manufacturing measures as the service

objective.

Open-shop problems are typically NP-hard and only consider macro-level measures (i.e.,

see Pinedo 2012 and reference therein). For the deterministic open shop with preemptions,

polynomial time algorithms are available for the makespan objective, and maximum lateness

objective. Without preemptions, for the makespan objective, only open shop with m = 2

stations has the polynomial-time optimal policy (the Longest Alternate Processing Time first

policy), and open shop with m ≥ 3 stations is known to be NP-hard. For the maximum lateness

objective, open shop with m = 2 stations is already strongly NP-hard. Furthermore, very little

can be said about the total completion time objective
∑n

i=1 Fi; open shops with this objective

is NP-hard for all m ≥ 2 cases, with or without preemptions.

For the stochastic open shops, theoretical results are limited to the m = 2 case. Pinedo

and Ross (1982) proved that the Longest Expected Remaining Processing time first (LERP)

policy minimizes the expected makespan of a stochastic two-station open shop. Pinedo (1984)

showed that the preemptive Shortest Expected Remaining Processing time first (SERP) policy

minimizes the total expected completion time in a two-station open shop within the class of

preemptive dynamic policies.

Alcaide et al (2006) developed a predictive-reactive approach to minimize expected makespan

in an open shop withm ≥ 3 stations; the approach is based on dynamically modifying a heuristic

schedule, based on Alcaide et al. 1997, whenever an unexpected event occurs.

A vast literature is focused on the analysis, design, and control of queueing networks; see

Stidham (2002) for a thorough survey of this research. Another important stream of queueing
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literature is focused on scheduling policies, which assign priorities to customers (or jobs) based

on the current state of the system and the attributes of all customers. Scheduling policies can

be categorized into two classes: static and dynamic. Static scheduling policies assign priority to

each customer by a static rule which does not change while the customer is in the system. For

example, to minimize customers’ average waiting cost in a system with linear waiting cost rates,

the cµ rule (see, e.g., Smith 1956) assigns static priority levels to customer k in an increasing

order of ckµk where c is the cost of waiting and µ−1 is the expected service time. Dynamic

scheduling policies, in contrast, assign priorities that may be changed while customers are in

the system. For example, to minimize customers’ waiting cost in a system with convex waiting

cost, the generalized cµ rule (see, e.g., Van Mieghem 1995) assigns dynamic priority levels to

each customer k according to c′k (Wk (t))µk (t), where Wk (t) is customer k’s waiting time at

time t, and c′k (·) is the first derivative of ck (·).

Harrison (1996) used fluid models to provide asymptotically optimal scheduling heuristics

under different objectives. This approach was extended by Maglaras (2000) who proposed

discrete-review policies to translate the solution of the fluid optimal control into an imple-

mentable control policy in the stochastic network. For the job-shop scheduling problem with

holding cost objective, Bertsimas et al. (2003) provided an efficient algorithm to round an

optimal fluid solution such that the resulting schedule is asymptotically optimal. Dai and Lin

(2005) proved that maximum pressure policies are throughput optimal in a class of stochastic

processing networks. We do not use asymptotic approaches and directly consider scheduling in

the stochastic network.

By far, the most popular objective in the literature employs is the total system time (see

e.g., the survey by Gans, Koole, and Mandelbaum, 2003). A related measure is the probability

that the total system time or the total waiting time exceeds a certain pre-determined threshold.

Baron, Berman, and Krass (2008), Baron and Milner (2009), de-Véricourt and Jennings (2011)

and references therein also focused on the probability of long waiting time SLM.

Several other papers looked beyond the traditional measures. For example, de-Véricourt

and Zhou (2005) analyzed a call-routing problem while considering both the call resolution

probability and the average service time in the macro-level service level measure. Mehrotra

et al. (2012) considered a similar problem with heterogeneous servers. Saghafian, Hopp, and
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Van Oyen (2012) analyzed the service policy in Emergency Departments while considering the

weighted average of the expected length of stay and the expected time to first treatment.

The systematic study of the micro-level SLM focusing on the instances of excessive waits

originates with Baron, et al. (2013), who demonstrate the advantage of policies with SI by

applying a Threshold Based Policy (TBP). The idea behind the TBP is to compare the difference

between queue lengths at different stations and to idle some upstream stations if this difference

is larger than a predetermined threshold. They demonstrate the exact potential advantage of

applying TBP in a tandem queue system with two servers.

There are two other settings where intentionally idling a capacitated resource has been

previously considered. Strategic delays were first discussed in the literature in Afèche (2013),

who showed how such delays can allow a service provider to differentiate between customer types

and thus improve the overall profit. The manufacturing process control literature also considers

intentional idleness. The most prominent example is the Kanban manufacturing system where

the total inventory between two stations is restricted to be lower than a threshold - for further

details see Masin, Herrar, and Dar-el (2010) and references therein. In this case the motivation

for idling is the need to control inventory and its cost without sacrificing too much capacity.

In both cases, the motivation for intentional idling is significantly different from the current

paper, which is motivated by improving the customer service experience. This difference leads

to completely different analysis and implementation challenges.

3.3 Dynamic Scheduling Policies and Strategic Idleness Modi-

fication

We start by introducing stochastic open shop with precedence constraints in Section 3.3.1.

We next develop a framework of completely reactive Dynamic Scheduling Policies (DSPs) that

allow us to represent different DSPs in terms of simple scoring rules in Section 3.3.2. Using

this framework, in Section 3.3.3, we propose several simple DSPs that have the potential to

perform well in practice with regards to the macro-level Service Level Measures (SLMs). In

Section 3.3.4, we show how any completely reactive DSP can be modified to “inject” Strategic

Idleness (SI), allowing the policy to take into account our micro-level “red faces” SLM.
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3.3.1 Stochastic Open Shop with Precedence Constraints

We consider a general stochastic open-shop problem with precedence constraints described

as follows: a set of n customers C = {1, . . . , n}, who arrive at (possibly random) release

dates rc1, . . . , r
c
n, wish to finish service within T o time units after arrival (i.e., their due dates

are rc1 + T o, . . . , rcn + T o). The customers need to obtain service from a set of m stations

S = {1, . . . ,m} that open at pre-scheduled release dates rs1, . . . , r
s
n and close when all customers

have finished service. For simplicity, we assume that rci < rci+1, for i = 1, . . . , n − 1, and

rsj < rsj+1, for j = 1, . . . ,m − 1, i.e., this implies no batch arrivals or stations openings at the

same time. Customer i requires service from some subset Si ⊆ S of stations, and she must visit

every station in Si exactly once. The order in which customer i receives services from stations

in Si is immaterial, as long as it satisfies precedence constraints Ui = {(h, k) , . . . |h, k, . . . ∈ Si},

where constraint (h, k) means that customer i must visit station h before becoming eligible

for station k, i.e., station h is a precedent station of station k in Ui. For example, Ui =

{(1, 2) , (1, 3) , ..., (1,m) |1, 2, ...,m ∈ Si} means that customer i needs to visit station 1 before

visiting any other stations. Note that, if Ui = ∅ for all i, the problem becomes a classic open-

shop problem (see, e.g., Pinedo 2012). Customer i’s service time at station j (for j ∈ Si), Xij ,

is a continuous random variable with distribution Gj . We assume that Xij are independent

and identically distributed for all j. The realization xij only becomes known upon service

completion. We consider the problem without preemptions (i.e., customers are not allowed to

leave the service at the current station before completion, nor is a station allowed to accept new

customers before finishing the service of the current customer). The time customer i finishes

service and exits the system is denoted by Fi, which is also a random variable.

We treat the scheduling problem as a multi-objective problem. Specifically, we consider two

macro-level SLMs as our objectives: minimize the expected total lateness,

E

[

n
∑

i=1

(Fi − (rci + T o))

]

, (3.1)
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and minimize the expected number of tardy customers,

E

[

n
∑

i=1

1 (Fi > (rci + T o))

]

. (3.2)

Note that since rci and T o are independent of the scheduling policy, the expected total lateness

objective is equivalent to the more typical expected total system time objective, E [
∑n

i=1 (Fi − rci )],

or the expected total completion time objective, E [
∑n

i=1 Fi].

In addition to the macro-level SLMs above, we consider a micro-level SLM as our third

objective: minimize the expected number of “red faces” (i.e., the number of instances of

unacceptably long waits),

E





∑

i,j∈Si

1 (Wij > T s)



 , (3.3)

where T s is the threshold used to identify “red faces” and Wij is the random variable denoting

the time customer i spent in the waiting room before entering station j.

In the manufacturing literature, DSPs that consider unexpected real-time events (e.g., sta-

tion breakdown, defective material, job cancelation, etc.) have been classified into three cat-

egories (see, e.g., Ouelhadj and Petrovic, 2009): (1) a completely reactive scheduling policy

generates no firm schedule in advance and makes decisions locally in real-time; (2) a predictive-

reactive scheduling policy develops a schedule first and revises it in response to real-time events

following some scheduling/rescheduling methods; and (3) a robust pro-active scheduling policy

follows a pre-set schedule that satisfies performance requirements predictively in a dynamic en-

vironment. Note that this taxonomy can also be applied in stochastic scheduling models with

uncertainties caused by stochastic service times, as well as other of unexpected events.

Since, as we detailed in the literature review above, polynomial time algorithms for deriving

the optimal scheduling policy in open shops are not available, it is hard to generate any firm

schedule in advance. Therefore the advantage of predictive-reactive or robust pro-active DSPs

is difficult to see for the open-shop service network we are interested in. Thus, we focus our

investigation on completely reactive DSPs. We will initially consider only work-conserving DSP,

i.e., a customer cannot be waiting for a station which is currently idle.
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3.3.2 Work-conserving Dynamic Scheduling Policies in Open Shops

The completely reactive work-conserving DSPs in an open-shop environment take actions at

three types of events: service completions, customer arrivals, and station openings. At these

points, either a customer, or a station, or both, free up and must be “matched up” with the

available customers/stations for the next stage of processing. In fact, by introducing dummy

stations and customers, it suffices to only consider service completion events. We can imagine

that the system starts with n dummy stations serving n customers with service completion

times equal to customer arrival times rc1, . . . , r
c
n, and m stations serving m dummy customers

with service completion times equal to station opening times rs1, . . . , r
s
n. Henceforward, we only

consider decisions at service completions events.

Following a common simplifying assumption in queueing and stochastic scheduling litera-

ture, we assume that no two service completions happen at the same time, i.e., there exists

an ǫ > 0, such that the time interval between any two service completions is at least ǫ. This

assumption fits XYZ and simplifies the discussion and rules below.

Consider a service completion involving customer i and station j occurring at some time

t. We assume that at this time customer i enters the “waiting room” (either physical or

virtual) and station j becomes idle. Let Ωj ⊆ C be the set of eligible customers (i.e., satisfy all

precedence constraints) that still require service from station j and who are in the waiting room

at time t, and Ψi ⊆ Si be the set of idle stations at time t whose services are still required by

customer i. Since any customer i only visits stations in Si once, we have j /∈ Ψi and i /∈ Ωj at

time t. Also, for any waiting customer h other than customer i, Ψh is either ∅ or equal to {j},

so we have Ψi ∩Ψh = ∅ (note that if k ∈ Ψh for some k 6= j then customer h was waiting while

station k was idle, violating the work-conserving assumption). Similarly, for any idle station

k 6= j, Ωk is either ∅ or {i}, so we have Ωj ∩ Ωk = ∅. This indicates that, at each service

completion, the DSP needs to perform at most two assignments: assign a customer h ∈ Ωj to

station j (assuming Ωj 6= ∅) and assign a station k ∈ Ψi to customer i (assuming Ψi 6= ∅); no

other assignments are possible.

These observations allow us to represent a DSP with two scoring rules, where higher is

better. We assign a score, PT c
h ≥ 0, to customers h ∈ Ωj , and a score, PT s

k ≥ 0, to stations
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k ∈ Ψi. To make PT c
i and PT s

j general enough, we define them as arbitrary non-negative

functions of the history of the system up to time t.

Definition 1 Completely reactive and work-conserving DSP in stochastic open-shop networks

is defined by scoring rules PT c
i and PT s

j as follows:

Suppose customer i completes service on station j at time t:

1) For the station assignment, if Ωj 6= ∅ we assign customer h∗ = argmaxh∈Ωj
PT c

h to be the

next customer of station j; let station j stay idle if Ωj = ∅.

2) For the customer assignment, if Ψi 6= ∅ we assign station k∗ = argmaxk∈Ψi
PT s

k to be the

next station of customer i; let customer i join the waiting room if Ψi = ∅.

Once these two assignments are made, the service process continuous until the next service

completion event; then similar assignments are taken.

Note that the assumption that no two service completions occur simultaneously ensures

that the definition above is complete. If, instead, several service completions occur at once,

we can no longer assume that customer i is the only eligible waiting customer for any station

in Ψi, nor that station j is the only idle station needed by any customer in Ωj; there may be

several customers “competing” for the same station and several stations “competing” for the

same customer. Therefore, in addition to scoring rules, one must provide tie-breaking rules in

order to specify the DSP in this case.

From Definition 1, we see that any DSP is completely determined by the selections of PT c
i

and PT s
j . We next discuss different choices of these scoring rules that result in different DSPs.

3.3.3 Dynamic Scheduling Policies

To describe a DSP (or, more precisely, the scoring rules defining the policy) formally, we

introduce the following notation (we omit t for convenience):

SF
i : the set of stations customer i has visited by time t;

SU
i : the set of stations customer i still requires service from at time t;

(Note that SF
i (t) ∪ SU

i (t) = Si, ∀t.)

uj : the number of customers who still need service from station j at time t, i.e., uj =

∑n
i=1 1

(

j ∈ SU
i

)

;
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wTS
i : customer i’s total system time until time t, i.e., wTS

i = t− rci ;

wTW
i : customer i’s total waiting time since she entered the system until time t;

wi: customer i’s current waiting time (i.e., the time since the last service completion of customer

i and until time t);

s̄j: the average service time of station j;

nj: the number of servers at station j.

Using the definitions above, for any k ∈ Ψi, the quantity uk s̄k
nk

represents the remaining

average workload of station k. Since stations with the higher remaining average workload at

time t can be thought of as “bottlenecks” over the remainder of the process, it seems reasonable

to perform customer assignment so as not to keep more valuable resources idle. Thus, all DSPs

we consider employ the same station scoring rule: PT S
k = uk s̄k

nk
, assigning customer i to the

station with the highest remaining workload.

Our DSPs do differ with respect to station assignment rules (i.e., deciding which customer

should be assigned next to the freed-up station j).

1. Longest System time first (LS) policy assigns to station j the customer in Ωj who has

the longest system time among all waiting customers who still require service from this

station, i.e., PT c
i = wTS

i .

This rule is motivated by the idea that the customer who has already accumulated a long

system time (because of waits or long processing times) is more likely to be tardy, and

thus should be prioritized.

2. Longest Mean Overage Processing time first (LMOP) policy assigns to station j the

waiting customer in Ωj who has the longest mean overage service time, i.e., PT c
i =

1

|SF
i |
∑

k∈SF
i
(xik − s̄k).

Similar to the LS policy, LMOP policy prioritizes the customer who experienced longer

than usual service times (represented by a longer mean overage service time). This cus-

tomer thus has a higher risk of being tardy.

3. Longest Accumulated Waiting time first (LAW) policy assigns the waiting customer in Ωj

who has accumulated the longest waiting time, i.e., PT c
i = wTW

i .
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This policy is also motivated by prioritizing customers who have a higher risk of being

tardy. By counting only waiting time we are giving preference to customers who have

already been “victimized” by long waits.

4. Longest Current Waiting time first (LCW) policy assigns the waiting customer in Ωj who

has the longest current waiting time, i.e., PT c
i = wi.

This policy follows the spirit of first-come-first-serve policy and prioritizes customers who

enter the centralized waiting room earlier.

5. Shortest Expected Remaining Processing time first (SERP) policy assigns the waiting

customer in Ωj who has the shortest total expected remaining processing time, i.e., PT c
i =

(

∑

k∈SU
i
s̄k

)−1
.

This policy is motivated by the optimality of preemptive SERP policy in a two-station

open shop with the total expected completion time objective (see, e.g., Pinedo 1984).

6. Longest Expected Remaining Processing time first (LERP) policy assigns the waiting cus-

tomer in Ωj who has the longest total expected remaining processing time, i.e., PT c
i =

∑

k∈SU
i
s̄k.

This policy is motivated by the optimality of LERP policy in a two-station open shop

with the expected makespan objective (see, e.g., Pinedo and Ross 1982).

3.3.4 Strategic Idleness Modification - Generalized TBP

Recall that in addition to the two macro-level objectives (SLMs), the total lateness and the

total number of tardy customers, we are also interested in the micro-level objective: the total

number of “red faces” (incidents of long waits). Since such incidents often occur at bottleneck

stations, one strategy to reduce their number is to intentionally delay service at stations that

are upstream from the bottlenecks when there is already a long queue in front of the bottleneck

station. We call such intentional delays “Strategic Idleness” (SI). The overall idea is to modify

a given work-conserving DSP so that when the DSP assigns a free customer to a free station,

instead of starting the service immediately, they both stay idle for a certain time period (which

is determined by the SI policy and could be zero) prior to the service start. Note that with
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this modification the station remains assigned to a customer during SI period; thus customer

and station assignments can be implemented using the same rules that are used to specify the

original work-conserving DSPs. Note that non-idle policy can be thought of as a special SI

modification where the idling time is always zero.

There are many possible policy classes that may involve SI. Baron et al. (2013) introduced

a specific family of Threshold Based Policies (TBP). As mentioned earlier, the idea behind the

TBP is to compare the difference between queue lengths at different stations and to idle some

upstream stations if this difference is larger than a predetermined threshold.

While defining a TBP in the two station tandem queue setting is straightforward, as there

is only one upstream and one downstream station, it is already more difficult for a n-station

tandem queue. The difficulty grows further in an open-shop service network, where not every

customer may need to go through every station, and each customer may take a unique path

through the network. Thus the “upstream” and “downstream” stations may not be clearly

defined. To extend the definition of the TBP to this setting, we proceed as follows. Recall that

at each time period, uk gives the number of customers still requiring service from station k.

For station j and customer i we define δij to be a function of u1, . . . , um which is decreasing

in uj , non-increasing in uk for all k ∈ {1, . . . ,m}, k 6= j, and δij(0, . . . , 0) = 0. To make δij

customer-specific, we allow it to depend on the set SU
i . For every station j, we also define a

non-negative threshold THj.

Definition 2 Modified policy DSP+TBP

When customer i is ready to enter station j under DSP, delay the service starting time as long

as δij(u1, . . . , um) ≥ THj.

We say that customer i is stopped (at station j) if this customer is assigned to station j

while this station is idled. Intuitively, the TBP modification will idle station j if the number of

customers who still require this station is low compared to other stations in the system. Several

examples are presented below.

When customer i is stopped at station j under the TBP, there are, in principle, two options:

(1) we can serve the next customer waiting for station j, allowing this customer to overtake
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customer i (provided this customer is not stopped under the TBP) - we call this “TBP with

overtaking”1; (2) we can simply idle station j until the block is released under the TBP - leading

to “Overtake-free TBP” (note that the latter option is more in line with the goal of minimizing

excessive waits for the current customer).

The definition of TBP above is very flexible. The following specification of TBP will be

used in the numerical experiment in Section 3.5.3:

Maximum workload TBP: the difference between the number of customers who need

service from station j and the number of customers who need service from the busiest station

still required by customer i, i.e., δ (u1, ..., um, i, j) = maxl∈SU
i
ul − uj .

Of course, there are many other possible specifications of TBP. For example:

Maximum workload Kanban: the number of customers who need service from the busiest

station still required by customer i, i.e., δ (u1, ..., um, i, j) = maxl∈SU
i
ul.

For stations with more than one server, we can also consider the number of servers in the

specification:

Normalized Maximum workload TBP: the difference between the number of customers who

need service from station j and the number of customers who need service from the busiest

station still required by customer i normalized by the number of servers at the respective

stations, i.e., δ (u1, ..., um, i, j) = maxl∈SU
i

ul

nl
− uj

nj
.

It is also possible to normalize either of the above rules by the expected service time required

at each station. Moreover, we may also take precedence constraints into account by considering

the location of each customer in the process and how likely they are to affect the workload

of station j during the relevant period. For example, uj can be calculated as the number

of customers who still need service from station j and have finished all station j’s precedent

stations. However, exact rules that quantify how likely these customers to affect the workload

at station j and what is the relevant period are not simple. Thus, we do not consider such rules

when inserting SI.



Chapter 3. Dynamic Scheduling and Strategic Idling in Service Network 70

3.4 Case Study - Data Collection and Analysis

In the previous section, we defined a number of different dynamic scheduling policies (DSPs) for

a stochastic open shop and showed how they can be modified to incorporate the threshold-based

strategic idleness delays. We next apply these ideas to the case of the medical clinic operated

by XYZ Inc. The background of this case study and the data used in our analysis is described

in the current section.

3.4.1 Company Background and Description of Data

The clinic operated by XYZ consists of up to 21 different medical tests. These include a

series of routine diagnostic tests, including blood and urine lab tests, chest X-ray, Abdominal

Ultrasound, Fitness Test, Treadmill Test, Physician Exam, Audio Visual Test, Nutrition and

Review with doctors. While the stations above are required by almost every customer, there

are add-on assessments that can be requested, such as Optometry, Echocardiogram, Genetic

Risk Assessment, etc. Each test is conducted at a specific station with possibly multiple (up to

8) servers.

On average, each customer visits 10 stations, including all nine routine diagnostic tests and

one add-on. The incoming customers are directed through the process by specially trained

schedulers. Every time a customer finishes a test she is led to the waiting room from which she

will be picked up for the next test.

As discussed above, XYZ considers three SLMs as their objectives: the expected average

total system time, the expected number of tardy customers, and the number of red faces, given

by (3.1-3.3), respectively. The company’s goal is to complete the service in four hours (i.e., in

(3.2) T o = 4 hours) and a “red face” is defined as a wait exceeding 20 minutes at any given

station (i.e., in (3.3) T s = 20 minutes).

We first focus on obtaining a detailed picture of XYZ’s actual service and waiting time

performance. We obtained two months of data from XYZ. For each customer visit, the data

contains the basic information of the appointment, such as the customer’s appointment time,

arrival time, and departure time. For each specific test, the data also contains the customer

number, station number, starting time, ending time, and service time. During these two months,
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there were 41 business days, in which just over 2000 customers visited the clinic, and about

24,000 tests were performed. The number of customers who visited the clinic each business day

ranged from 25 to 61 (with a mean of 49 and a standard deviation of 7.2).

3.4.2 The IT System at XYZ

XYZ’s main selling point is convenience: instead of having to wait for weeks or months for all

tests to be scheduled and performed, the customer can have the full assessment completed in

a matter of a few hours, and have the results reviewed by the doctor who has a comprehensive

view of the customer’s current state of health. XYZ’s clients are mostly busy executives and

professionals who are willing to pay several thousand dollars for this convenience.

Not surprisingly, XYZ is extremely customer-focused, promising to complete the assessment

in four hours. “Red face” incidents are regarded as significant service failures and are carefully

tracked by the IT system. When a customer’s wait reaches 15 minutes at any station, an

anxious “yellow face” appears on the schedulers’ screen, alerting them to bring this customer

into service. When a customer’s wait reaches 20 minutes, an angry “red face” flashes on the

scheduler’s screen, which typically triggers an immediate response - the customer is offered

an apology, and the customer’s service is expedited as much as possible. The number of red

faces that occur during each day is tracked and used as part of performance reviews for process

schedulers and their supervisors.

3.4.3 Operational Procedures at XYZ

XYZ schedules the arrivals of its customers at different times throughout the morning of each

day. The clinic opens at 7:00am, and closes when all customers leave, typically around 16:00pm.

Figure 3.1 illustrates the histograms of average daily scheduled arrivals alongside the histogram

of average daily realized arrivals. Note that, the resulting arrival pattern is not stationary

(contrary to the assumptions of traditional queueing models). On average, XYZ schedules

5 customers every half hour starting from 7:00am and typically until 10:30am. Then, from

10:30am to 12:00pm, the number of scheduled arrivals is gradually reduced.

We next investigate the order of service. While the order in which services are performed

differs by customer, some dominant flows can be ascertained. To this end, we define pi,j as the
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Figure 3.1: The Histogram of Average Daily Arrivals.

probability that a customer visits station i before station j, given that station i and j are both

visited by this customer:

pi,j =
Number of times station i is visited before station j

Total number of visits containing both station i and j
.

For example, suppose that three customers, A, B and C, visit the clinic. Customers A and

B visit station i before station j, while customer C visits station j before station i. In this

example, we have pi,j = 67%, pj,i = 33%.

Table 3.1 presents pij for the nine routine stations. These values allow us to identify some

dominant work flows For example, the 98% in the first row (Lab Work) and second column (Ab-

dominal Ultrasound) means that 98% of the time Lab Work is completed before the Abdominal

Ultrasound.

Note that pi,j + pj,i = 100% may not always hold, because of the occasional need to re-do

a test (this affects less than 1% of all customers). The same reason causes the non-zero items

on the diagonal. In addition, some customers may choose not to perform all tests, resulting in

pi,j + pj,i < 100% for some stations i and j.

There are three main observations from Table 3.1:

1. The two tests Lab Work and Abdominal Ultrasound are visited before any other stations

in almost all cases. Since these two tests need to be performed on an empty stomach,

the schedulers attempt to put them at the beginning of each customer’s visit, so that
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Labwork Ab Ultra PhyExam Treadmill Nutrition FitnessTest Xray AuViTest ReviewDr.
Lab Work 1% 98% 99% 99% 100% 100% 95% 100% 100%
Ab Ultra 3% 1% 73% 84% 100% 98% 82% 96% 100%
PhyExam 2% 27% 1% 69% 64% 68% 59% 69% 100%
Treadmill 1% 16% 29% 1% 59% 67% 55% 73% 99%
Nutrition 1% 0% 34% 37% 0% 56% 49% 58% 82%
FitnessTest 1% 3% 31% 32% 40% 1% 44% 52% 85%

Xray 5% 14% 31% 35% 38% 44% 9% 46% 63%
AuViTest 1% 5% 30% 26% 37% 46% 41% 1% 93%
ReviewDr. 0% 0% 0% 0% 13% 14% 19% 7% 1%

Table 3.1: The Service Order Matrix

customers can have a snack as soon as possible. Note that Lab Work, which is faster, is

done before Abdominal Ultrasound 98% of the times.

2. The procedure “Review with a Doctor” is typically done after the customer finishes most

tests. In this station, the doctor receives reports from all other stations and thus have

a comprehensive view of customer’s health situation. Although customers are given the

option to skip this step and receive the test results via email, most of XYZ’s customer

choose to attend this station.

3. The order of customers’ visits to all other stations is quite random - substantiating the

view of this system as a open shop with only a few precedence constraints.

In view of these three observations, the network operated by XYZ can be loosely separated

into three parts: starting with Lab Work, Abdominal Ultrasound and breakfast; continuing

with the other required or optional tests in some random order; and concluding with reviewing

results with the doctor. The network is illustrated on Figure 3.2; all three triangles marked

with “W” represent the same centralized waiting room.

3.4.4 Waiting Time Distribution

Figure 3.3 illustrates the histogram of waiting times with bin interval of a minute. The label

above each column represents the relative frequency of waiting times in the bin [t − 1, t), for

t = 1, 2, ..., 30. The mean and standard deviation of the waiting times are 5 and 7 minutes

respectively.

Observe that the frequency of W decreases with t smoothly, except at two points: t = 16

and 21. At t = 16, the histogram of W breaks the decreasing pattern and showing an unusual
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peak. At t = 21, the histogram decreases steeply to 0.1% (from 0.5% at t = 20), and it stays

at a fixed level 0.1%. These two sudden changes in Figure 3.3 appear to be related to the

appearance of yellow faces (at 15 minutes) and red faces (at 20 minutes) on the schedulers’

screen.

The schedulers try their best to keep the number of red faces low. Our hypothesis is that

these sudden changes in the histogram of W are reflections of these two alarm signals. No

special action is taken before the first alarm. Once a yellow face appears, schedulers attempt to

expedite, causing density concentration at 15 minutes. From this point, the customer is watched

very carefully, and, for the most part, not allowed to get beyond 20 minutes. This causes the

dip at 20 minutes. Discussions with the personal at XYZ further supports this hypothesis.

These observations demonstrate that the schedulers manage the waiting time to control not

only the macro-level SLMs, like the total system time, but also the micro-level SLM, i.e., the

number of red faces.

3.4.5 Performance Analysis

In this section, we analyze the performance of XYZ’s open-shop network focusing primarily on

the nine routine stations. To calculate the utilization of each station, we first focus on each

of its servers, and calculate the average starting time (when the first customer arrives) and

the average closing time (when the last customer leaves). Then, for each station, based on the

statistics of its servers, we derive the average time span (the time between starting and closing)

and the average busy time in it. At last, each station’s utilization is obtained as the ratio of

its average busy time and its average time span. We attribute the waiting time to the station

that immediately followed the wait.

Table 3.2, sorted by utilization, summarizes the performance of these nine routine stations

over the two months. The table also provides the three main SLMs and average total waiting

time.

Based on the empirical data, the service levels were already quite good. The current average

total system time is just over four hours. The average total waiting time is about an hour, i.e.,

less than a quarter of the total time a customer spends in the system. The incidence of red

faces (waits more than 20 minutes) is 456: with 10 stations per visit on average (9 routine
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Stations\Ave. # Servers/day Waiting Time Service Time Utilization # Red Faces

FitnessTest 7.4 5:46 20:28 78% 45

PhyExam 7.7 4:50 32:45 73% 59

Doc Review 7.7 7:06 14:36 73% 173

Treadmill 4 4:48 21:50 72% 20

Ab Ultra 4 5:23 16:16 71% 10

Nutrition 3.9 4:42 19:49 69% 18

AuViTest 3.9 6:57 16:51 63% 55

Xray 1 5:23 6:14 50% 6

Labwork 1 4:19 3:23 48% 2

Ave.SystemTime 4:04:26
SystemTime≥4hrs 52.5%
Ave.TotalWaitTime 1:01:08

# Red Faces 456

Table 3.2: Summary of CHA Stations in the Empirical Data.

stations and 1 “add-on” station), this corresponds to less than 2.5% of all tests and about 25%

of customers experiencing a “red face”.

From Table 3.2, we see that the overall utilization, between 48% and 78%, and the waiting

time, averaging between 4-7 minutes per station, are not high. In a service network with

moderate variability (observed coefficient of variations were between 0.24 and 0.6 and close to

0.5 on average), we expect relatively low utilizations to be required to maintain short waiting

times. This confirms the customer-centric emphasis of XYZ.

We also observe that Review with Doctor, Fitness Test, and Audio Visual Test account for

most of red faces incidents; these stations also have the longest average waiting times. The

Review with Doctor is the one contributing the largest number of red faces (38% of the red

faces). Although it seems like a good idea for XYZ to hire more doctors to improve the SLMs,

the cost of this action may be prohibitive.

The Fitness Test and Audio Visual Test together generate 100 red faces (21%) in total. The

main problem at these two stations appear to be late starting times. On average, the Fitness

Test and the Audio Visual Test start 2.5 hours and 1.5 hours, respectively, after the clinic

opens. Moreover, they are often not at full capacity as some operators arrive even later.

We note that while the Fitness Test and Review with Doctor may be considered bottleneck

stations of the network, since they both have high capacity, utilization and large associated

waiting times. The Audio Visual Test, with a relatively low utilization, does not meet the

standard definition of a bottleneck station. Therefore, for lack of a better name, we call Fitness
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Test, Review with Doctor, and Audio Visual Test problematic stations, and other stations

“non-problematic”.

3.4.6 Evidence of Strategic Idleness in Practice

As discussed earlier, Baron, et al. (2013) demonstrated analytically, in a two-station tandem

queue network, that a scheduling policy incorporating Strategic Idleness (SI) might be helpful

in reducing the number of red faces. The basic idea is that when a long queue accumulates at

the downstream station, it may be better to idle the upstream stations to allow the downstream

queues to dissipate. However, in service operations, we are not aware of any empirical evidence

of the use of SI in practice. As discussed below, the data obtained from XYZ strongly suggests

that this technique is, in fact, practiced by XYZ’s process schedulers (largely without the

knowledge of management).

From the empirical data provided by XYZ, we discovered a number of instances where a

customer was waiting for a station that was free and waiting for this customer. In other words,

certain part of customers’ waiting time is spent waiting for an idle station that appears to be

waiting for this customer; we call such period an Overlapped Waiting (OW) time.

Initially, we thought that the existence of OW is a data error, but OWs are quite abundant

and accompany 78.7% of services. Figure 3.4 depicts the histogram of the OW with bin intervals

of one minute. The average OW is 2.5 minutes with a Standard Deviation of 4.5 minutes. About

50% of the OWs are less than one minute. However, 16.3% of OWs are more than five minutes,

i.e., more than the average waiting per station.

One explanation is that OW might be a result of routine procedures, like room cleaning,

writing reports, etc. However, as verified by our partner at XYZ, room cleaning or report

writing typically do not take that long, so while these may explain the shorter OWs observed,

they do not explain OWs of over 1-2 minutes.

As discussed earlier, SI can be an effective strategy for reducing the occurrence of long waits

within the process. Thus given the importance placed by XYZ on minimizing the number of

“red faces”, an alternative explanation is that longer OWs provide the evidence of the usage

of SI by the schedulers at XYZ. Of course, the mere presence of OW does not necessarily

indicate that SI is being used. However, the prevalence of longer OWs in situations where SI
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Figure 3.4: The Histogram of Overlapped Waiting.

policy would be most useful does provide support for this hypothesis. Below, we use statistical

hypothesis testings to demonstrate that the timing of longer OWs provides evidence for the

usage of SI at XYZ.

Statistical Evidence of the Use of Strategic Idleness

Based on our intuition and the earlier discussion, if SI is indeed used, we would expect this to

be reflected in OWs as follows. When station A is ready to serve customer i, and customer

i’s next station is station B, which is congested, station A would use longer OWs to balance

customer i’s waiting time at both stations. The congestion at station B can be indicated by

the fact that station B is a problematic station (Fitness Test, Review with Doctor, and Audio

Visual Test), or that station B’s previous customer (served just before customer i) experienced

a long waiting time (e.g., ≥ 15 minutes) just before entering station B. In the later case, we say

that station A precedes a “potential long wait”. Similar logic suggests that to avoid wasting

capacity in problematic stations, these stations should use shorter OWs than other stations.

Specifically, we anticipate:

1. OWs at problematic stations are shorter than OWs at non-problematic stations;

2. OWs at stations preceding problematic stations are longer than OWs at stations preceding

non-problematic stations;

3. OWs at stations preceding “potential long waits” are longer than OWs at other stations.
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The statements above can be investigated using the standard t-tests. First, we test if

problematic stations have different mean OW than non-problematic stations:

Null Hypothesis (H0): The difference between the mean OW at problematic stations and

the mean OW at non-problematic stations is zero;

Alternative Hypothesis (HA): The difference between these two mean OWs is not zero.

The two-tailed t-test (with p-value 2.9× 10−15) indicates that H0 is rejected, and the non-

problematic stations have significantly longer mean OW (with mean 2:42) than the problematic

stations do (with mean 2:13).

Second, we test if the last station preceding problematic stations have different mean OW

than stations preceding non-problematic stations:

H0: The difference between the mean OW at stations preceding problematic stations and the

mean OW at stations preceding non-problematic stations is zero;

HA: The difference between these two mean OWs is not zero.

The two-tailed t-test (with p-value 1.3×10−18) indicates that H0 is rejected, and the stations

preceding problematic stations have significantly longer OWs (with mean 2:55) than the stations

preceding non-problematic stations (with mean 2:23).

Third, we test if stations preceding “potential long waits” have different mean OW than

other stations:

H0: The difference between the mean OW at stations preceding “potential long waits” and the

mean OW at other stations is zero;

HA: The difference between these two mean OWs is not zero.

The two-tailed t-test (with p-value 3.2 × 10−19) indicates that H0 is rejected, and the

stations preceding ‘potential long waits’ have significantly longer OWs (with mean 3:38) than

other stations do (with mean 2:09).

Thus, the statistical results strongly suggest that the schedulers are indeed attempting to

reduce the number of red faces by using SI.
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3.5 Evaluation of Dynamic Scheduling Policies and Strategic

Idleness

The service system operated by XYZ, just as many real-life service systems, is inherently

transient (each day starts with an empty system and ends after processing 49 customers on

average) and it is not clear that the steady-state regime is ever achieved. Since analytical

methods run into significant difficulties when analyzing transient behavior, we developed a

simulation model of XYZ to gain better understanding of the system and to test the performance

of different policies described in Section 3.3.3 and 3.3.4 above. The simulation model was

implemented in MATLAB and validated using the empirical data. Specifically, we used real

service and arrival times in the model. With the simulation model, we are able to: 1) Analyze

the transient behavior of XYZ’s service network. By simulating the system operations over

one day for 100 times (from arrival of the first customer and until the departure of the last

customer at the end of the day), we can ensure that the distribution of system’s performance is

captured by the simulation model. 2) Simulate scheduling decisions that depend on the state

of the system. Both the customer and station assignments rules can be replaced with one of

the policies described in Section 3.3.3. 3) Measure the macro-level and micro-level SLMs: the

expected average total system time, the expected probability of total system time longer than

four hours, and the number of red faces. 4) Simulate the performance of scheduling policies

that incorporate strategic idleness (as described in Section 3.3.4).

The simulation recorded the resulting three SLMs for each scheduling policy. For each work-

ing day, we keep the available resources (station availabilities and opening times), customers’

service needs and customers’ service times at different stations the same as in the real data,

and only change the scheduling policy.

In Section 3.5.1, we investigate the performances of DSPs without SI modifications (work-

conserving) to evaluate the benefit of automated DSPs with respect to the global performance

measures. In Section 3.5.2, we compare the performance of the actual scheduling policies used

by XYZ with and without OWs. Next in Section 3.5.3, we compare DSP+TBP policies with

the actual ones.
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3.5.1 Performance of Work-conserving Dynamic Scheduling Policies

The simulated performance of various dynamic scheduling policies described in Section 3.3.3

is presented in Table 3.3. The third row of the table contains the Empirical Data (ED), i.e.,

the results for the actual scheduling policy used by XYZ. We start by comparing the various

Dynamic Scheduling Policies (DSPs) without the Strategic Idleness (SI) modification introduced

in Section 3.3.4 - we call these the “non-idle” versions of the respective policies. The results for

all policies can be found in the second block of the table.

We first observe that the Shortest Expected Remaining Processing Time first (SERP) policy

dominates the LAW, LCW, and LERP policies: SERP has a lower average total system time,

a lower probability of spending more than four hours in the system, and a lower number of red

faces. Comparing SERP policy with the Longest System time first (LS) policy shows that LS

outperforms SERP with respect to the number of red faces, while SERP policy performs better

on the other two SLMs.

We also observe that all of the DSPs outperform the actual (ED) scheduling policy with

respect to both macro-level SLMs used by XYZ: they reduce the average total system time by

about 40 minutes (16%), and the proportion of customers experiencing total system times of

over four hours from 52.5% to around 21%.

However, for all DSPs the incidence of red faces is substantially higher than for the ED

policy. Even the best-performing Longest Mean Overage Processing time first (LMOP) policy

experiences an increase in this measure by 34.2% to 612 vs. the ED policy - a clearly undesirable

outcome. We suspect that the reason that the DSPs we proposed perform poorly with respect

to the number of red faces measures is that they are work-conserving (non-idle) policies, while,

as discussed in Section 3.4.6, it appears that the XYZ’s schedulers are actively using Strategic

Idleness to manage the number of red faces. We further investigate this issue in the following

section.
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3.5.2 Effect of Overlapped Waiting Times: Another Indication of Strategic

Idleness

To investigate the usage of Overlapped Waiting (OW), we define the “non-idle” version of the

actual scheduling policy by eliminating the OWs. For example, suppose customer A finishes

service at station i. To find the next customer for station i, we examine the data and find

that customer B is the next customer of station i. If customer B is in the waiting room and

station i is her next station (based on data), she is immediately taken to station i; otherwise,

station i stays idle until the arrival of customer B. We follow a similar rule when choosing

the next station for customer A. We call this non-idle version of the actual scheduling policy

“ED+Non-idle”. The corresponding results are presented on row 4 of Table 3.3.

Our simulation results indicate that if the clinic was operated under ED+Non-idle policy

during the two month in our data, the average total system time would drop by 18 minutes to

3:46:37, and the proportion of customers with system time of over four hours would decrease by

14.3% to 38.3%. Thus, both of the macro-level SLMs would improve substantially (though the

improvements still fall far short of those observed under the DSPs described earlier). However,

the total number of red faces would increase to 1094 (140% increase). Out of the 456 red faces

observed in the data, 217 disappear in the simulation under the ED+Non-idle policy, while 855

new ones emerge. Shorter waiting time at previous stations, i.e., elimination of SI in the form

of OW, causes 705 of these new red faces.

The mean and standard deviation of the waiting time from the simulation result for ED+Non-

idle policy are 3.5 minutes and 7.5 minutes respectively. Figure 3.5 shows the histogram of W

(waiting time) for the ED+Non-idle policy alongside the histogram for the ED policy. We see

that the histogram of W from ED+Non-idle policy is much smoother than the histogram from

the actual scheduling policy. Those odd jumps at the t = 16 or 21 minutes observed in the

empirical data disappear, while the number of waits of more than 15 minutes is at the same

level (about 2000) for both ED and ED+Non-idle policies.

Comparing the ED+Non-idle policy with the ED policy indicates that by intentionally

holding back customers at non-problematic stations when a customer is likely to experience

a long wait at the problematic station downstream, the ED policy effectively re-distribute
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Figure 3.5: Histogram of Waiting Times under Different Scheduling Policies.

the waiting times more evenly within the network. These observations further support the

conclusions from our statistical hypothesis tests that XYZ’s schedulers are using SI.

To summarize, the results above indicate that the reason that ED policy outperforms those

proposed policies in the number of red faces is that these policies are non-idle policies, while

the XYZ’s schedulers are using SI in their scheduling policy. However, the schedulers of XYZ

are using their own intuitions to insert OW. There were no official policies to this effect - as

discussed earlier, the upper management seemed to be unaware of this practice.

In the following section, we introduce SI into our proposed DSPs by using the Maximum

Workload Threshold Based Policy (TBP) as discussed in Section 3.3.4 earlier.

3.5.3 Performance of DSPs with Strategic Idleness Modification

In this section, we add the SI to the different DSPs. Specifically, we use the generalized

TBP modification to the LAW, LS, LMOP, LCW, SERP and LERP policies. We demonstrate

that this modification can reduce the number of red faces substantially without a significant

deterioration in the values of the macro-level SLMs. We employed the “Maximum Workload

TBP”, described in Section 3.3.4, to the six proposed DSPs, and implemented the Overtake-free

SI. This ensures that, after the SI period, customers would not be delayed once station resumes

working. The results can be found in the third block of Table 3.3.

Comparing the second block to the third block reveals that in all six DSPs, the SI policy

results in a small 5-7% increase in total system times (by about 11 minutes in the LAW, LS,
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System Time Red Faces
Policies \ Measures Mean Stdev ≥4hrs #(≥ 15mins) #(≥ 18mins) #(≥ 20mins) #(≥ 22mins) #(≥ 25mins)
Empirical Data 4:04:26 1:00:51 52.5% 1645 749 456 397 327
ED+Non-idle 3:46:37 56:53 38.3% 1846 1340 1094 880 645

LAW+Non-idle 3:23:53 49:55 21.3% 958 822 730 661 541
LS+Non-idle 3:24:21 47:44 21.3% 873 743 665 607 520

LMOP+Non-idle 3:24:28 52:01 20.4% 807 683 612 543 457
LCW+Non-idle 3:24:19 50:07 21.2% 972 816 729 653 554
SERP+Non-idle 3:23:17 50:57 20.6% 929 784 687 606 507
LERP+Non-idle 3:25:22 50:58 20.9% 926 791 705 633 528

LAW+MaxWrkldTBP 3:34:32, 51:46 28.0% 828 647 551 477 393
LS+MaxWrkldTBP 3:35:03 51:29 28.2% 841 622 518 444 360

LMOP+MaxWrkldTBP 3:35:55 53:40 28.9% 707 539 476 427 355
LCW+MaxWrkldTBP 3:37:17 52:54 30.7% 845 640 551 478 380
SERP+MaxWrkldTBP 3:34:25 52:35 28.2% 792 618 525 464 380
LERP+MaxWrkldTBP 3:38:58 53:16 31.7% 878 692 609 541 445

LAW+MaxWrkldKB 3:43:19 52:26 35.6% 875 683 567 481 385
LS+MaxWrkldKB 3:43:14 50:43 34.5% 829 622 538 459 370

LMOP+MaxWrkldKB 3:37:37 52:02 29.2% 745 593 520 465 377
LCW+MaxWrkldKB 3:43:14 50:43 34.5% 885 687 588 506 428
SERP+MaxWrkldKB 3:43:15 53:00 34.5% 904 671 557 461 358
LERP+MaxWrkldKB 3:40:09 53:07 30.8% 887 747 648 574 476

Table 3.3: Performance of Different Scheduling Policies with and without SI.

LMOP and SERP policies, and about 13 minutes in LCW and LERP policies) and 8-10%

increases in the probability of experiencing total system times of over four hours versus the

non-idle version of these policies. However, the red face measure (i.e., the number of waits over

20 minutes) is reduced by around 24%. This is in line with the theoretical analysis presented

in Baron et. al. (2013): the SI policy is able to significantly reduce the probability of long

waits (an equivalent measure to red faces), while only slightly increasing the total system times.

Note that the SERP+TBP policy again dominates LAW+TBP, LCW+TBP and LERP+TBP

policies.

While the numbers of red faces under our DSPs with TBP modification are greater than

under the ED policy (476 vs. 456), a significant reduction in total system times, as well as an

automated DSP without any supervision presents an attractive trade-off to the decision-maker.

Incidentally, the difference in the number of red faces versus the ED policy may be due to the

fact that in real system expediting action appears to be taken by process managers somewhat

before the waiting time reaches 20 minutes (which is natural, given that red faces incidents are

used in performance reviews). If we redefine “excessive waits” to be 15 or 18 minutes, rather

than the current 20 minutes, the incidence of such waits under all six DSP+SI policies falls

below that in the empirical data.
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Our main finding from this comparison is that the use of strategic idleness in conjunction

with the dynamic scheduling policies, such as our LS, LAW and SERP policies, can be used

to improve the SLM in practice. Moreover, due to the simple and transparent structure, the

cost of implementing such policies should be low. In addition to supporting the main theme of

the paper on the joint usage of DSPs and SI, this finding is also encouraging for the usage of

decision support systems for managing service network in practice.

3.5.4 Comparison of Generalized Threshold Based Policy to Kanban Policy

In this section, we compare the TBP with the Kanban policy - a widely applied policy in

manufacturing setting. Specifically, we use the Maximum Workload Kanban policy, described

in Section 3.3.4, to add SI to different DSPs and compare the result (the fourth block in Table

3.3) with the performance of these DSPs with TBP modification (the third block in Table 3.3).

The result suggests that, when combined with any DSP, the TBP clearly dominates the

Kanban policy. This is in line with Baron et al. 2014 that shows that the Kanban policy is

less effective when different stations have similar service rates and there is no clear bottleneck.

The Kanban policy focuses only on the waiting at the bottleneck but ignores waits at other

stations. Thus, it performs well in systems with a simple structure when the bottleneck is clear.

In the case of XYZ, the TBP for introducing SI has more flexibility and therefore dominates

the Kanban policy in all of these examples on all the measures depicted in Table 3.3.

3.6 Summary and Open Questions

In this paper we investigated the performance of Dynamic Scheduling Policies in a stochastic

open-shop service network. The unique feature of the system we examined is the need to

balance between the more traditional “macro-level” service level measures, such as the total

system time, and the customer-focused “micro-level” measure related to excessive waits within

the system. The incidence of excessive waits can be managed by introducing “strategic idleness”

where intentional (small) waits are introduced in upstream stations to prevent (longer) waits

at busy downstream stations. Our work was motivated by the data from a real-life medical

clinic. Through process analysis and statistical hypothesis tests we demonstrate that (largely
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unbeknownst to management), system schedulers appear to use strategic idleness to minimize

instances of excessive waits.

We developed a flexible framework allowing us to represent “completely reactive” dynamic

scheduling policies by defining simple scoring rules. We also showed how a given policy can

be modified with a “strategic idleness” component allowing it to account for both micro- and

macro-level measures. By developing a simulation model based on the real data for the XYZ

system we showed that these automated scheduling policies appear to be quite promising:

achieving substantial improvements on the macro-level measures while essentially matching the

performance of actual policies on the micro-level measure.

Due to the complexity of the underlying system, our results are mostly computational.

Analytical substantiation of some of our conclusions would be quite interesting. A step in this

direction was taken by Baron et al. (2013) who investigated policies with strategic idleness

analytically for a tandem queue. An extension of their results to more complex stochastic

networks remains open.
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Chapter 4

M/M/c Queue with Two Priority

Classes

4.1 Introduction

In many industries there is a growing usage of prioritization: companies often prioritize groups

of customers in order to improve market segmentation, service, and profitability. For example,

emergency departments prioritize more seriously injured patients; websites prioritize paid users

over free ones; and car rental companies prioritize customers with reservations over “walk-in””

customers. A key consequence of this prioritization is that different customer classes experience

different response (sojourn) times, the time from the arrival of a customer until her departure.

(A related measure is the waiting time, the time from a customer’s arrival until her service

begins, whose distribution can be derived from the distribution of response and service times.)

Not surprisingly there is a vast literature that investigates prioritization in queueing systems.

Much of this literature uses queueing theory to derive and analyze different prioritization poli-

cies in services (i.e., Maglaras and Zeevi 2005 and references therein), inventory settings (i.e.,

Abouee-Mehrizi et al. 2012 and references therein), and dynamic scheduling (i.e., Van Mieghem

1995 and references therein). This literature typically focuses on characterizing the distribution

of the response time of different priority classes.

While this literature has been able to establish the distribution of response times for single-

89
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server priority queues such as the M/G/1 (see i.e., Takagi 1991), finding this distribution is

much more difficult in the multi-server setting. Much of the multi-server literature has focused

on the M/M/c queue. The M/M/c queue with multiple priority classes was first investigated

by Davis (1966), who considered a non-preemptive system with the same service rate for all

priority classes, finding a closed-form expression for the Laplace Transform (LT) of any priority

class’s waiting time. For the same setting, Kella and Yechiali (1985) elegantly derived the LT.

Buzen and Bondi (1983) gave a simple approximation for each priority class’s mean response

time in a preemptive system with different service rates for each priority class. Maglaras and

Zeevi (2004) used a diffusion approximation to solve a similar problem with impatient high

priority customers in a heavy-traffic regime. Finally, Harchol-Balter et al. (2005) used PH

distributions to approximate the response time of a preemptive M/PH/c queue with different

service rates. They also provide a taxonomy of relevant literature; we refer the reader there for

a more detailed literature review.

To the best of our knowledge, no exact solution for the response time distribution in a

multi-server queueing system serving multiple priority classes with different service rates has

appeared in the literature. In this paper, we consider the M/M/c queue with two preemptive

priority classes. Class-i jobs arrive according to a Poisson process with rate λi, i = 1, 2. Service

times for Class-i jobs are exponentially distributed with parameter µi, i = 1, 2. For stability,

we require
∑2

i=1
λi

µi
< c. (We assume preemptive resume for Class-2 jobs.)

This paper’s main contribution is to characterize the Generating Function (GF) of the

distribution of the number of Class-2 jobs in steady state: we derive a closed-form expression

for this GF for c = 2, and provide an exact numerical method to calculate this GF for c > 2.

Since that Class-1 jobs have preemptive priority, their analysis is straightforward.

We derive these GFs using a new approach for the analysis of continuous-time Markov

Chains (MCs): the main difficulty in analyzing the M/M/c queue with two priority classes is

the need to track the number of jobs from each class. Thus, the state of the system is expressed

as a 2D-infinite continuous-time MC. We apply a new method to simplify this MC to a 1D-

infinite discrete-time MC that is more tractable. We then analyze this discrete-time MC by

observing the system state embedded at Class-2 departures, expressing these using a similar

process to the one used in analyzing the standard M/G/1 queue. Since the complexity of
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deriving the GF increases with the number of servers, c, we also provide a numerical algorithm

to derive this GF for c > 2. Using this algorithm, we derive insights on how system performance

changes as the characteristics of the jobs or servers change. Our methodology can also be applied

to similar problems: in Section 4.7, we explain how to apply it to an M/M/c queue with two

priority classes, where the first class is completely impatient, as considered by Maglaras and

Zeevi (2004). We believe that our methodology can be used in additional applications as well.

The paper proceeds as follows: After introducing the model and background results in

Section 4.2, we present the key ideas of our methodology in Section 4.3. We demonstrate

the methodology using the single-server case in Section 4.4. We provide exact expressions for

the two-server case, and discuss generalization for c > 2 in Section 4.5. We provide an exact

numerical method with good computational efficiency to solve systems with c ≥ 2 in Section

4.6. Numerical results, insights, and extensions are given in Section 4.7. We summarize the

paper in Section 8. All proofs are in the Appendix.

4.2 Model and Preliminary Results

We consider an M/M/c queue with two priority classes. Let qi, i = 1, 2 be the number of Class-i

jobs in the system, and Ri and Wi, i = 1, 2 be the Random Variables (R.V.s) representing the

steady state response and waiting time of Class-i jobs in the system respectively.

For the µ1 = µ2 case, the response time distribution of each priority class is given in e.g.,

Buzen and Bondi (1983). We, however, consider this problem when Class-1 and Class-2 have

different service time requirements (i.e., µ1 6= µ2). Figure 4.1 illustrates the MC for the number

of jobs in the system and their classes. The state (q1, q2) represents that there are q1 Class-1 jobs

and q2 Class-2 jobs in the system. Note that the MC is infinite in two dimensions, complicating

the analysis.

From Figure 4.1, we see that Class-1 jobs’ service rate is µ1min(q1, c); this service rate is

independent of q2, because Class-1 jobs have preemptive priority over Class-2 jobs. Thus, the

distribution of Class-1 jobs’ response time is (e.g., Section 3.4, Buzacott and Shanthikumar
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Figure 4.1: MC of the M/M/c queue with two priority classes.

1993)

P (R1 < t) = 1− e−µ1t − (e−(cµ1−λ1)t − e−µ1t)

1− (c− λ1
µ1
)

λc
1

µc
1c!

((1− λ1

cµ1
)

c−1
∑

i=0

λi
1

µi
1i!

+
λc
1

µc
1c!

)−1.

Therefore, this paper focuses on deriving the response time for Class-2 jobs.

Let rq1,q2 be Class-2 jobs’ service rate when the MC is at state (q1, q2). From Figure 4.1,

we observe

rq1,q2 = µ2 min(c−min(q1, c), q2), (4.1)

where c−min(q1, c) is the number of servers that are free to serve Class-2 jobs when the system

is in state (q1, q2). Let SP (q2) = (r0,q2 , . . . , rc−1,q2) be the vector of Class-2 jobs’ Service Pattern

(SP) when there are q2 Class-2 jobs in the system, for q1 = 0, . . . , c−1; when q1 ≥ c, Class-2 jobs

are not served. Notice that, for any q2 ≥ c, we have SP (q2) = (cµ2, (c − 1)µ2, . . . , µ2). Before

discussing Class-2 jobs, further we recall several results and define several special matrices that

are used extensively in the paper.

Let t be a random time interval with LT, LT t(s); let X be the number of Poisson arrivals
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with rate λ during t, and GX(z) be the GF of X. We then have:

P {X = x} =
(−λ)x

x!
LT t(x)(λ); (4.2)

GX(z) = LT t(λ− λz), (4.3)

where, LT t(x)(λ) denotes the xth derivative of LT t(s) evaluated at λ. Both (4.2) and (4.3)

are well known results, see e.g., (3.58) and (3.67) respectively in Buzacott and Shanthikumar

(1993).

Throughout this paper, we write any column vector as the transpose of a corresponding row

vector to save space. Let 0i×j and 1i×j denote i × j matrices with all elements zero or one,

respectively, and I denote the identity matrix. The following Lemma is important in Sections

4.4 and 4.5.

Lemma 2 Assume a MC’s state space is composed of two sets: a transient set, T and an

absorbing set, A. Let ΓT→T and ΓT→A be the one step transition matrices from T to T and

T to A respectively. Then, PAj | Ti, the absorbing distribution matrix, which represents the

probability that the system starts from a state Ti ∈ T and eventually reaches a state Aj ∈ A,

i.e., the probability of the system to be absorbed in state Aj once starting at state Ti, can be

expressed as

[P {Aj | Ti}]Ti∈T,Aj∈A
= (I − ΓT→T )

−1ΓT→A. (4.4)

4.3 Simplification - The 1D-Infinite MC

Finding the distribution of R2 is challenging because the MC in Figure 4.1 is 2D-infinite. We

apply an innovative method to simplify the 2D-infinite continuous-time MC in Figure 4.1 to

a 1D-infinite discrete-time MC. This method first simplifies the system by aggregating the

behavior during a Class-1 busy period (BP ), which starts when there are c or more Class-1 jobs

in the system (i.e., once q1 increases to c) and ends when the number of Class-1 jobs drops to

c− 1 (i.e., once q1 decreases to c− 1).

During each BP the service rate of Class-1 jobs is cµ1 (because q1 ≥ c during the entire

BP ) and the arrival rate of Class-1 jobs is λ1. Thus, during this BP , the MC of Class-1 jobs
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is identical to the BP of an M/M/1 queue with arrival rate λ1 and service rate cµ1 (see e.g.,

Harchol-Balter et al. 2005). Thus, the LT of this BP is (see Takagi 1991, Chapter 1)

LTBP (s) =
1

2λ1
(λ1 + cµ1 + s−

√

(λ1 + cµ1 + s)2 − 4cλ1µ1). (4.5)

Next, using (4.2), we express the probability of l Class-2 jobs arriving during the BP

αBP
l =

(−λ2)
l

l!
LTBP (l)

(λ2), l = 0, 1, 2, .... (4.6)

Let GαBP (z) be the GF of αBP ; then from (4.3),

GαBP (z) = LTBP (λ2 − λ2z). (4.7)

During the BP , no Class-2 jobs are served; all Class-2 arrivals join the queue: When the BP

is over, q1 becomes c− 1 and the distribution of the number of Class-2 jobs in the MC can be

calculated from (4.5) and (4.6). Specifically, if the MC enters a BP from state (c− 1, q2), then

when the BP ends, the MC is in state (c− 1, q2 + j) with probability (w.p.) αBP
j , for j ≥ 0.

It is important to point out that we are not approximating Class-2 arrivals during the BP

with a batch arrival at the end of the BP . Instead, we calculate the distribution of the number

of Class-2 arrivals during the BP at the end of the BP . Indeed, we lose the information on

when those Class-2 arrivals occurred, but we will establish next that this information is not

necessary.

Using the BP , we simplify the MC: Let v(q1, q2) denote the total rate at which the MC

moves out of state (q1, q2). Then

v(q1, q2) = λ1 + λ2 + µ1 min(q1, c) + µ2min(c−min(q1, c), q2). (4.8)

Let BPi denote a BP that started from state (c−1, i), i = 0, 1, . . .. After aggregating the BP ’s

in the MC into the BPi’s, we get a 1D-infinite discrete-time MC with c rows: The first (c− 1)

rows are identical to the first (c − 1) rows in the original MC, and the cth row is composed of

the BPi’s. When the MC leaves BPi, it may enter any state (c− 1, q2) with q2 ≥ i. Figure 4.2
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Figure 4.2: The Simplified MC.

illustrates this 1D-infinite discrete-time MC.

Still, to the best of our knowledge, there are no known closed-form solutions for this ladder-

like 1D-infinite discrete-time MC. We overcome this problem by observing the system state

at departure epochs of Class-2 jobs. Using the memoryless property, the distribution of the

system state seen by the (k + 1)st Class-2 departure is determined by the system state seen

by the kth Class-2 departure, so it is indeed a MC. This MC is called the embedded MC

(EMC). To determine the steady state distribution of this EMC, we will follow the three steps

used to analyze the EMC of the standard M/G/1 model (see e.g., Section 3.3.2, Buzacott and

Shanthikumar 1993): 1) derive the one-step transition matrix of the EMC, 2) characterize the

GF of the number of jobs seen by a departure in steady state, and 3) derive the unknown

constant in the expression of this GF.

From the proof of poisson arrivals see time average and departures see what arrivals do in

Section 5.1.3 of Gross et al. (2008), we know that the GF of the number of Class-2 jobs observed

by a Class-2 departure in steady state is identical to the GF of the number of Class-2 jobs in

the system in steady state, q2. From this latter GF, the moments of q2, such as E [q2], can be

derived. Then, using Little’s Law, we can calculate the expected response time of Class-2 jobs,

E [R2]. If we further assume that the service order of Class-2 follows the FIFO rule (e.g., when

items are made to orders), we can use Distributional Little’s Law from Bertsimas and Nakazato
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(1995) to get the response time distribution of Class-2 jobs. This assumption is reasonable in

a manufacturing setting; if c parallel machines work on orders simultaneously, when a product

is finished it may be distributed to the first order in the queue.

4.4 The Single-server Case

To develop some intuition for our analytical procedure, we first demonstrate it in the single-

server setting. The solution for the response time of Class-2 jobs in this case is (see e.g., Takagi

(1991)):

LT R̂2(s) =
2(λ1µ2 + λ2µ1 − µ1µ2)

(µ2 − 2µ1)s+ λ1µ2 + 2λ2µ1 − µ1µ2 − µ2

√

(s+ λ1 + µ1)2 − 4λ1µ1

. (4.9)

Our methodology provides an alternative proof and, more importantly it can be used in the

multi-server case. For convenience, we denote quantities related to the c = 1 case with a “hat”

(ˆ).

Let L̂2
k be the state of the MC seen by the kth Class-2 departure, i.e., the state of the EMC.

We define the EMC’s infinite dimensional transition matrix, M̂ : let the element m̂
L̂2
k→L̂2

k+1
in

M̂ denote the probability that the (k + 1)st Class-2 departure leaves L̂2
k+1 Class-2 jobs in the

system, given the kth Class-2 departure left L̂2
k Class-2 jobs in the system, i.e., the one-step

transition probability of the EMC.

We next derive an equation relating L̂2
k to L̂2

k+1. Let D̂k be the kth inter-departure time

of Class-2 jobs (i.e., the time between the kth and the (k + 1)st Class-2 departure). Let the

R.V. αD̂k be the number of Class-2 arrivals, i.e., the number of arrivals from an independent

Poisson process with rate λ2, during D̂k. As in the M/G/1 model, the number of Class-2 jobs

seen by the (k + 1)st Class-2 departure is equal to the number of Class-2 jobs seen by the kth

Class-2 departure minus one (the (k + 1)st Class-2 departure) plus the number of Class-2 jobs

that arrived during D̂k:

L̂2
k+1 = L̂2

k − 1 + αD̂k . (4.10)

From (4.10), we know that L̂2
k+1 ≥ L̂2

k − 1, so m̂i→j is zero, if j < i− 1.

Thus, the transition matrix has the form illustrated in (4.11). Each row and column is
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labeled by the corresponding state L̂2
k. All elements of the lower triangle below the second row

in M̂ are zero.

M̂ =

0 1 2 3 4 · · ·

0 m̂0→0 m̂0→1 m̂0→2 m̂0→3 m̂0→4 · · ·

1 m̂1→0 m̂1→1 m̂1→2 m̂1→3 m̂1→4 · · ·

2 0 m̂2→1 m̂2→2 m̂2→3 m̂2→4 · · ·

3 0 0 m̂3→2 m̂3→3 m̂3→4 · · ·

4 0 0 0 m̂4→3 m̂4→4 · · ·
...

...
...

...
...

...
. . .

. (4.11)

For n ≥ 0, let d̂n = P
{

L̂2 = n
}

= limk→∞ P
{

L̂2
k = n

}

, i.e., L̂2 is the time-stationary

limiting random variable of L̂2
k and d̂n is the steady state probability that the number of Class-

2 jobs observed by a Class-2 departure is n. Let G
L̂2(z) =

∑∞
n=0 d̂nz

n be the GF of L̂2.

4.4.1 Transition Matrix of the EMC

The distribution of L̂2
k+1 given L̂2

k (i.e., m̂
L̂2
k
→L̂2

k+1
) is closely related to the SP (Service Pattern,

which by (4.1) is only defined when no Class-1 jobs are in the system) in D̂k. The derivation

in this section is based on the observation that the SP depends on Class-2 arrivals during D̂k

as follows:

• If L̂2
k ≥ 1: The SP remains µ2 until the (k+1)st Class-2 departure. The SP is independent

of Class-2 arrivals during D̂k.

• If L̂2
k = 0: The SP is zero until the next Class-2 arrival, and then it becomes µ1.

The Transition Probabilities for L̂2
k ≥ 1

We know from (4.10) that the transition probabilities of the EMC are determined by αD̂k ,

which depends on D̂k. Thus, we first derive the LT of D̂k, LT
D̂k(s). Then, using LT D̂k(s)

and (4.2), we express the distribution of αD̂k , and then write the transition probabilities of the

EMC using (4.10).

Figure 4.3 illustrates the service process of the (k + 1)st Class-2 departure at the MC (not

the EMC). At the kth Class-2 departure, the MC enters state (0, L̂2
k). Because L̂2

k ≥ 1, the
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Figure 4.3: MC for the single server case where L̂2
k ≥ c = 1.

rate of exiting from state (0, L̂2
k) is v(0, L̂2

k) = λ1 + λ2 + µ2, thus after an exp(λ1 + λ2 + µ2)

distributed time interval, the MC would go to one of the following three states:

• State BP
L̂2
k
, w.p. λ1

v(0,L̂2
k)
. The MC stays in the BP for a time period with a LT of

LTBP (s). After this BP , the MC goes to state (0, L̂2
k + l) (with l ≥ 0 the number

of Class-2 arrivals during the BP
L̂2
k
, which can be calculated from (4.6)). Due to the

memoryless property and the fact that the SP stays the same, the LT of the time period

from when the MC enters (0, L̂2
k + l) until the next Class-2 departure is identical to

LT D̂k(s). Therefore, w.p. λ1

v(0,L̂2
k
)
, LT D̂k(s) is identical to the LT of the sum of the time

until the next event, the length of a BP , and D̂k:
λ1+λ2+µ2

λ1+λ2+µ2+s
LTBP (s)LT D̂k(s).

• State (0, L̂2
k + 1), w.p. λ2

v(0,L̂2
k
)
. Here, using similar reasoning to above: w.p. λ2

v(0,L̂2
k
)
,

LT D̂k(s) is λ1+λ2+µ2

λ1+λ2+µ2+s
LT D̂k(s).

• State (0, L̂2
k − 1), w.p. µ2

v(0,L̂2
k)
. The (k + 1)st Class-2 departure occurs and here, w.p.

µ2

v(0,L̂2
k
)
, LT D̂k(s) is λ1+λ2+µ2

λ1+λ2+µ2+s
.

Using the Total Probability Theorem and multiplying by (λ1 + λ2 + µ2 + s), we get

(λ1 + λ2 + µ2 + s)LT D̂k(s) = λ1LT
BP (s)LT D̂k(s) + λ2LT

D̂k(s) + µ2. (4.12)

Solving (4.12) gives

LT D̂k(s) =
µ2

λ1 + µ2 + s− λ1LTBP (s)
.

We now return to the EMC. To simplify the notation, we let αD̂k

l = (−λ2)l

l! LT D̂k
(l)
(λ2).

Then, using (4.2) and (4.10), we get the transition probabilities of the EMC from L̂2
k ≥ 1 to
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Figure 4.4: MC for the single server case where L̂2
k = 0.

any L̂2
k+1 ≥ 0:

m̂
L̂2
k
→L̂2

k+1
=











0 for L̂2
k+1 < L̂2

k − 1

αD̂k

L̂2
k+1−L̂2

k+1
for L̂2

k+1 ≥ L̂2
k − 1

. (4.13)

Note that (4.13) characterizes the rows of M̂ in (4.11) corresponding to any i ≥ 1.

The Transition Probabilities for L̂2
k = 0

If L̂2
k = 0 when the kth Class-2 departure occurs there are no Class-2 jobs in the system, thus

the Class-2 event that happens next must be a Class-2 arrival. The next Class-2 arrival may

occur during BP0, and there may be other Class-2 arrivals during BP0. Taking this possibility

into account, assume that when the service of the next Class-2 arrival is initiated, there are

l ≥ 1 Class-2 jobs in the system, i.e., the MC enters state (0, l) for l ≥ 1. Note that there are

no transitions in the EMC until then.

Due to the memoryless property, the distribution of L̂2
k+1 given the MC is in state (0, l)

is the same as the distribution of L̂2
k+1 given L̂2

k = l, as given in (4.13) for l ≥ 1. Thus, to

find the one-step transition probabilities of the EMC, we first find the first-passage probability

distribution from state (0, 0) to the set of states {(0, l) | l ≥ 1}. To do so, we think of the MC

after the kth Class-2 departure as a MC with a transient set: {(0, 0), BP0}, and an absorbing

set: {(0, l) | l ≥ 1}. Let Γ̂0→0 and Γ̂0→1+ be the one-step transition matrices from {(0, 0), BP0}

to {(0, 0), BP0} and {(0, l) | l ≥ 1}, respectively.

In Figure 4.4, we use v(0, 0) = λ1 + λ2, depict the arrival process of jobs in (0, 0), and omit

details that are not relevant to the development of this case. From Figure 4.4, we can get Γ̂0→0
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and Γ̂0→1+ :

Γ̂0→0 =

(0, 0) BP0

(0, 0) 0 λ1
λ1+λ2

BP0 αBP
0 0

, Γ̂0→1+ =

(0, 1) (0, 2) (0, 3) · · ·

(0, 0) λ2
λ1+λ2

0 0 · · ·

BP0 αBP
1 αBP

2 αBP
3 · · ·

.

Let Ψ̂01 be the 1×∞ absorbing distribution matrix from {(0, 0)} to {(0, l) | l ≥ 1}. Using

Lemma 2, we can calculate Ψ̂01 as:

Ψ̂01 = [1 0] (I2×2 − Γ̂0→0)
−1Γ̂0→1+. (4.14)

Then, we use conditional probability to calculate the transition probabilities for L̂2
k = 0:

m̂0→L̂2
k+1

=

L̂2
k+1+1
∑

l=1

m̂
l→L̂2

k+1
P {(0, l) | (0, 0)} for ∀L̂2

k+1 ≥ 0, (4.15)

in which m̂
l→L̂2

k+1
is given by (4.13), and P {(0, l) | (0, 0)} is the corresponding probability of

absorption in {(0, l) | l ≥ 1} given in (4.14). Note that given the (k + 1)st Class-2 departure

sees L̂2
k+1 Class-2 jobs, l can be at most L̂2

k+1 + 1; thus l ∈
[

1, L̂2
k+1 + 1

]

.

Using (4.15), we can write m̂0→L̂2
k+1

for L̂2
k+1 ≥ 0 as the product of two matrices:

m̂0→L̂2
k+1

= Ψ̂01

[

αD̂k

L̂2
k+1

· · · αD̂k
1 αD̂k

0 01×∞

]T

. (4.16)

Note that (4.16) characterizes the i = 0 row of M̂ in (4.11). Thus, using (4.13) and (4.16),
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we obtain the transition matrix of the EMC in (4.11) as:

M̂ =

0 1 2 · · · n · · ·

0 Ψ̂01







αD̂k
0

0∞×1






Ψ̂01













αD̂k
1

αD̂k
0

0∞×1













Ψ̂01



















αD̂k
2

αD̂k
1

αD̂k
0

0∞×1



















· · · Ψ̂01

























αD̂k
n

...

αD̂k
1

αD̂k
0

0∞×1

























· · ·

1 αD̂k
0 αD̂k

1 αD̂k
2 · · · αD̂k

n · · ·

2 0 αD̂k
0 αD̂k

1 · · · αD̂k
n−1 · · ·

3 0 0 αD̂k

0

. . . αD̂k

n−2 · · ·

4 0 0 0
...

. . . · · ·
...

...
...

...
...

...
. . .

.

(4.17)

4.4.2 Generating Function Approach

In this section, we derive the steady state distribution of the EMC: d̂n, for n ≥ 0. The

equilibrium equations are given by
[

d̂0, d̂1, . . .
]

M̂ =
[

d̂0, d̂1, . . .
]

. Hence, from (4.17) we get

d̂n = (
[

d̂1, d̂2, . . .
]

+ d̂0Ψ̂01)
[

αD̂k
n · · · αD̂k

1 αD̂k
0 01×∞

]T

for ∀n ≥ 0. (4.18)

Note that (4.18) has an infinite number of unknowns appearing in an infinite (identical)

number of equations. To find these unknowns, we calculate the GF, as in the standard M/G/1

model (see e.g., Buzacott and Shanthikumar (1993), Section 3.3.2). Multiplying the nth equa-

tion in (4.18) by zn and summing over all n gives

G
L̂2(z) = (

[

d̂1, d̂2, . . .
]

+ d̂0Ψ̂01)

∞
∑

n=0

[

αD̂k
n · · · αD̂k

1 αD̂k
0 01×∞

]T

zn.

Let G
αD̂k

(z) be the GF of αD̂k that can be calculated from (4.3) as: G
αD̂k

(z) = LT D̂k(λ2−
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λ2z). Then, after some matrix algebra (see Appendix 4.10.1 for details), we get:

G
L̂2(z) = − d̂0

(λ1 + λ2 − αBP
0 λ1)

(λ1 + λ2 − zλ2 − λ1GαBP (z))G
αD̂k

(z)

z −G
αD̂k

(z)
. (4.19)

Note that, other than d̂0, all expressions in (4.19) are given in closed form. Therefore, all

that is required to express G
L̂2(z) in closed form is a closed-form expression for d̂0, which is

derived next.

4.4.3 Finding the Idle Rate: d̂0

To obtain d̂0, we let z → 1 in (4.19) and get (note that z −G
αD̂k

(z) is zero when z → 1, so we

need to apply L’Hopital’s rule to calculate the limit on the right-hand side of (4.19)):

1 = − 2d̂0

λ1 + λ2 − µ1 +
√

(λ1 + µ1 + λ2)2 − 4λ1µ1

λ2µ1µ2

λ1µ2 + λ2µ1 − µ1µ2
. (4.20)

Solving (4.20) gives us d̂0:

d̂0 = −λ1µ2 + λ2µ1 − µ1µ2

2λ2µ1µ2
(λ1 + λ2 − µ1 +

√

(λ1 + λ2 + µ1)2 − 4λ1µ1).

Substituting d̂0 in (4.19) gives us G
L̂2(z) in closed form:

G
L̂2(z) =

2(λ1µ2 + λ2µ1 − µ1µ2)

µ2(λ1 + λ2 − µ1) + λ2(2µ1 − µ2)z − µ2

√

(λ1 + λ2 + µ1 − λ2z)2 − 4λ1µ1

.

In a single-server queue, the service order in each priority class follows the FIFO rule, so

we can use Distributional Little’s Law (Bertsimas and Nakazato 1995) to get the LT of Class-2

jobs’ response time: LT R̂2(s) = G
L̂2(1− s

λ2
), which, of course, leads to (4.9).

4.5 General case: c ≥ 2

In this section we return to the multi-server case and follow the same three steps used in

Section 4.4 to get the GF of the number of Class-2 jobs in steady state: we give preliminary

results in this subsection, establish the transition matrix of the EMC in Section 4.5.1, apply
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the Generating Function approach in Section 4.5.2, and derive the constant ~d0 in Section 4.5.3.

We provide a summary in Section 4.5.4.

We know from (4.1) that the number of Class-1 jobs in the system affects the service rate

of Class-2 jobs. Therefore, we need to track the number of Class-1 jobs seen by a Class-2

departure. Let (L1
k, L

2
k) denote the state of the EMC; L1

k and L2
k are the number of Class-1 and

Class-2 jobs seen by the kth Class-2 departure, respectively.

To display the infinite dimensional transition matrix of the EMC for c ≥ 2, we define the

ordering of the states as {(0, 0), . . . , (c− 1, 0), (0, 1), . . . , (c− 1, 1), . . . , (0, n), . . . , (c− 1, n), . . .},

i.e., we first list all states with L2
k = 0, then all states with L2

k = 1, etc. Let Sn be the set of

states with L2
k = n in the EMC, i.e., Sn = {(0, n), . . . , (c− 1, n)}. These states also appear in

the MC, when no confusion arises we also use Sn to denote the set of states with q2 = n in the

MC.

Using the ordering of the states defined above, we specify the infinite dimensional transition

matrix of the EMC, M . Let the element m(L1
k,L

2
k)→(L1

k+1,L
2
k+1)

in M denote the probability that

the (k + 1)st Class-2 departure sees (L1
k+1, L

2
k+1) given the kth Class-2 departure left behind

(L1
k, L

2
k), i.e., the one-step transition probability of the EMC. Let Mi→j be the c× c transition

matrix in the EMC from Si to Sj . We illustrate Mi→j here (each row and column is labeled by

the corresponding state for easy reference):

Mi→j =

(0, j) (1, j) · · · (c− 1, j)

(0, i) m(0,i)→(0,j) m(0,i)→(1,j) · · · m(0,i)→(c−1,j)

(1, i) m(1,i)→(0,j) m(1,i)→(1,j) · · · m(1,i)→(c−1,j)

...
...

...
. . .

...

(c− 1, i) m(c−1,i)→(0,j) m(c−1,i)→(1,j) · · · m(c−1,i)→(c−1,j)

. (4.21)

Because Class-2 jobs are only served when there are fewer than c Class-1 jobs (i.e., q1 < c)

in the system, transitions in the EMC only occur when the MC is in a state (q1, q2) with q1 < c.

Therefore, the number of Class-1 jobs observed by the kth Class-2 departure must be smaller

than c, i.e., L1
k ∈ [0, c− 1]. Similar to D̂k and αD̂k in Section 4.4, we denote Dk as the kth

inter-departure time of Class-2 jobs and αDk as the number of Class-2 arrivals duringDk. Using
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the same logic as that used for deriving (4.10), we have

L2
k+1 = L2

k − 1 + αDk . (4.22)

The transition matrix, M has the form illustrated in (4.23). Each row and column is labeled by

the corresponding set Si. Every block Mi→j is as illustrated in (4.21). Given (4.22), we have

that Mi→j = 0c×c for j < i− 1, i.e., all blocks of the lower triangle below the row S1 in M are

zero.

M =

S0 S1 S2 S3 S4 · · ·

S0 M0→0 M0→1 M0→2 M0→3 M0→4 · · ·

S1 M1→0 M1→1 M1→2 M1→3 M1→4 · · ·

S2 0c×c M2→1 M2→2 M2→3 M2→4 · · ·

S3 0c×c 0c×c M3→2 M3→3 M3→4 · · ·

S4 0c×c 0c×c 0c×c M4→3 M4→4 · · ·
...

...
...

...
...

...
. . .

. (4.23)

For i = 0, . . . , c−1 and n ≥ 0, let din = P
{

(L1, L2) = (i, n)
}

= limk→∞ P
{

(L1
k, L

2
k) = (i, n)

}

,

so that (L1, L2) is the time-stationary limiting random variable of (L1
k, L

2
k), and din is the steady

state probability that the number of Class-1 and Class-2 jobs observed by a Class-2 departure

is i and n, respectively.

Let ~dn = (d0n, . . . , d(c−1)n), i.e., ~dn is the 1× c row vector of steady state probabilities that

the EMC is in Sn. Let ~d =
[

~d0 ~d1 ~d2 · · ·
]

, i.e., ~d is the 1 × ∞ row vector composed of an

infinite number of row vectors, ~dn for n ≥ 0. Let G(i,L2)(z) =
∑∞

n=0 dinz
n be the GF of L2

when L1 = i, i.e., of the joint event L2 = n and L1 = i (not of the event L2 = n given L1 = i),

for i ∈ [0, c − 1]. So
∑∞

n=0
~dnz

n =
[

G(0,L2)(z), . . . , G(c−1,L2)(z)
]

is the 1× c row vector of GF of

L2 for L1 ∈ [0, c − 1].

Because a Class-2 departure can only see 0, . . . , c − 1 Class-1 jobs, once we get G(i,L2)(z),

using the total probability theorem, we have the GF of the number of Class-2 jobs at Class-2

departures:

GL2(z) =

c−1
∑

i=0

G(i,L2)(z). (4.24)
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As in Section 4.4.1, we derive the transition matrix of the EMC based on the observation

that the SP depends on Class-2 arrivals in Dk as follows:

• If L2
k ≥ c: The SP remains SP (c) at least until the (k+1)st Class-2 departure, independent

of Class-2 arrivals during Dk.

• If L2
k ∈ [1, c− 1]: If no Class-2 arrivals happen before the (k+1)st Class-2 departure, the

SP remains SP (L2
k) until the (k + 1)st Class-2 departure. Otherwise, the SP is SP (L2

k)

until the next Class-2 arrival, and then the SP becomes SP (L2
k+1). (As the next Class-2

arrival may happen during BPL2
k
together with other l Class-2 arrivals, when the MC

leaves BPL2
k
, the SP would be SP (L2

k + l + 1), l ≥ 0.)

• If L2
k = 0: The SP remains SP (0) until the next Class-2 arrival, and then the SP becomes

SP (1) (or SP (l + 1), l ≥ 0, see the discussion in previous bullet point.)

For simplicity, we next demonstrate the use of the ideas above to derive M , for the special

case of c = 2. The general case with c > 2 can be analyzed in similarly. However, c = 2 is the

only case for which we derive a closed-form expression for the number of Class-2 jobs in steady

state.

4.5.1 Transition Matrix of the EMC

In Section 4.4.1 we derived the LT of D̂k, LT
D̂k , expressed the distribution of αD̂k using (4.2),

and then wrote the transition probabilities of the EMC, at the moment of the (k+1)st Class-2

departure using (4.22). We follow the same process here, for c = 2. We first derive LTDk while

considering the SP when L2
k ≥ 2, and then L2

k = 1, and finally L2
k = 0.

The Transition Probabilities for L2
k ≥ 2

Notice that, because rq1,q2 depends on the number of Class-1 jobs in the network, Dk depends

on the values of L1
k and L1

k+1. For every L2
k ≥ 2, there are four feasible combinations of L1

k

and L1
k+1: 0 → 0, 0 → 1, 1 → 0 and 1 → 1. In contrast to the single-server case where we had

one possible inter-departure time distribution, here we have 22 different inter-departure time
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Figure 4.5: MC for the c = 2 servers case where L2
k ≥ 1.

distributions in the EMC. (For general c > 2 we have c2 different inter-departure times when

L2
k ≥ c.)

Let LTL1
k,L

1
k+1(s) be the LT of Dk conditioning on L1

k and L1
k+1, given L2

k ≥ 2 (we omit the

latter dependency for notational convenience). For example, LT 00(s) is the LT of Dk when the

kth and (k + 1)st Class-2 departures see no Class-1 jobs in the network at their departures.

Figure 4.5 illustrates the service and arrival process of the Class-2 jobs in the MC after the

kth Class-2 departure where L2
k ≥ 1, omitting details that are not relevant.

We next discuss the possible steps of the MC after the kth Class-2 departure to express

LT 00(s), LT 01(s), LT 10(s), and LT 11(s). Consider LT 10(s) for example. The rate of exiting

from any state (1, L2
k) is v(1, L2

k) = λ1 + λ2 + µ1 + µ2, thus after an exp(λ1 + λ2 + µ1 + µ2)

distributed time interval, the MC would move to one of the following four states:

• State BPL2
k
, w.p. λ1

v(1,L2
k
)
. Similar reasoning as in Section 4.4.1 gives that w.p. λ1

v(1,L2
k
)
,

LT 10(s) is λ1+λ2+µ1+µ2

λ1+λ2+µ1+µ2+s
LTBP (s)LT 10(s).

• State (1, L2
k + 1), w.p. λ2

v(1,L2
k)
. Similar reasoning gives that w.p. λ2

v(1,L2
k)
, LT 10(s) is

λ1+λ2+µ1+µ2

λ1+λ2+µ1+µ2+s
LT 10(s).

• State (0, L2
k), w.p.

µ1

v(1,L2
k
)
. From the memoryless property, the LT of the time from when

the MC enters state (0, L2
k) until the next Class-2 departure occurs (with L1

k+1 = 0) is
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LT 00(s). Thus, w.p. µ1

v(1,L2
k
)
, LT 10(s) is λ1+λ2+µ1+µ2

λ1+λ2+µ1+µ2+s
LT 00(s).

• State (1, L2
k−1), w.p. µ2

v(1,L2
k
)
. Here, the next Class-2 departure occurs, but L1

k+1 is not 0,

so in this case, a transition in the EMC from L1
k = 1 to L1

k+1 = 0 is infeasible. Therefore,

w.p. µ2

v(1,L2
k)
, LT 10(s) is 0.

Using the Total Probability Theorem and multiplying by λ1 + λ2 + µ1 + µ2 + s, we get

(λ1 + λ2 + µ1 + µ2 + s)LT 10(s) = λ1LT
BP (s)LT 10(s) + λ2LT

10(s) + µ1LT
00(s). (4.25)

Using similar logic, we derive the following three additional equations:

(λ1 + λ2 + 2µ2 + s)LT 00(s) = λ1LT
10(s) + λ2LT

00(s) + 2µ2; (4.26)

(λ1 + λ2 + 2µ2 + s)LT 01(s) = λ1LT
11(s) + λ2LT

01(s); (4.27)

(λ1 + λ2 + µ1 + µ2 + s)LT 11(s) = λ1LT
BP (s)LT 11(s) + λ2LT

11(s) + µ1LT
01(s) + µ2.(4.28)

Thus, (4.25−4.28) give four equations with four unknowns, which can be solved in closed form.

Using Θ = ((λ1 + 2µ2 + s)(λ1 + µ1 + µ2 + s− λ1LT
BP (s))− λ1µ1)

−1, we get:

LT 00(s) = 2µ2(λ1 + µ1 + µ2 + s− λ1LT
BP (s))Θ; LT 01(s) = λ1µ2Θ;

LT 11(s) = µ2(λ1 + 2µ2 + s)Θ; LT 10(s) = 2µ1µ2Θ.

We let α
L1
k ,L

1
k+1

l = (−λ2)l

l! LTL1
k,L

1
k+1

(l)
(λ2), then using (4.2) and (4.22), we get, for L2

k ≥ 2,

the transition probabilities of the EMC:

m(L1
k
,L2

k
)→(L1

k+1,L
2
k+1)

=











0 for L2
k+1 < L2

k − 1

α
L1
k
,L1

k+1

L2
k+1−L2

k
+1

for L2
k+1 ≥ L2

k − 1
. (4.29)

Letting Al =







α00
l α01

l

α10
l α11

l






be the 2×2 matrix of the probability that αDk = l, as a function
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of the four different Dk, we get the matrices ML2
k
→L2

k+1
for L2

k ≥ 2 and L2
k+1 ≥ 0:

ML2
k
→L2

k+1
=











02×2 if L2
k+1 < L2

k − 1

AL2
k+1−L2

k
+1 if L2

k+1 ≥ L2
k − 1

. (4.30)

Note that (4.30) characterizes the rows of M in (4.23) that correspond to any Si with i ≥ 2.

The Transition Probabilities for L2
k = 1

Here, since we assume L2
k = 1, when the kth Class-2 departure occurs, the MC moved into S1.

Before the next Class-2 arrival or departure, there may be many Class-1 arrivals and departures,

so the MC may move among states in S1 ∪BP1. When the MC leaves S1 ∪BP1, it may move

to S0 (Class-2 departure occurs first) or to ∪∞
i=2Si (Class-2 arrival occurs first). In both of

these cases we can establish the conditional distribution of (L1
k+1, L

2
k+1). Thus, finding the

one-step transition probabilities of the EMC is reduced to finding the first-passage probability

distribution from S1 to S0 and ∪∞
i=2Si.

We again think of the MC after the kth Class-2 departure as a MC with a transient set:

S1 ∪ BP1, and absorbing sets: ∪∞
i=2Si ∪ S0. In the MC, let Γ1→1, Γ1→0 and Γ1→2+ be the

one-step transition matrices from S1 ∪BP1 to S1 ∪BP1, S0, and ∪∞
i=2Si, respectively.

From Figure 4.5, we can see that Γ1→1, Γ1→0 and Γ1→2+ are:

Γ1→1 =

(0, 1) (1, 1) BP1

(0, 1) 0 λ1
v(0,1) 0

(1, 1) µ1

v(1,1) 0 λ1
v(1,1)

BP1 0 αBP
0 0

, Γ1→0 =

(0, 0) (1, 0)

(0, 1) µ2

v(0,1) 0

(1, 1) 0 µ2

v(1,1)

BP1 0 0

,

and Γ1→2+ =

(0, 2) (1, 2) (0, 3) (1, 3) · · ·

(0, 1) λ2
v(0,1) 0 0 0 · · ·

(1, 1) 0 λ2
v(1,1) 0 0 · · ·

BP1 0 αBP
1 0 αBP

2 · · ·

.

To derive the one-step transition probabilities of the EMC, we next discuss the possible

steps of the MC, when it leaves the set S1 ∪BP1.
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• If the MC moves to S0, then the (k + 1)st Class-2 departure happens before the next

Class-2 arrival. Using Lemma 2 and an algebra software such as MAPLE, the probability

of absorption in S0 (starting at S1) is

Ψ10 =







1 0 0

0 1 0






· (I3×3 − Γ1→1)

−1Γ1→0 (4.31)

=

µ2







λ1 + λ2 + µ1 + µ2 − αBP
0 λ1 λ1

µ1 λ1 + λ2 + µ2







(λ1 + λ2 + µ2 − αBP
0 λ1)(λ1 + λ2 + µ2) + λ2µ1 + µ1µ2

. (4.32)

At this absorption time the EMC moves into a state (L1
k+1, L

2
k+1) ∈ S0. Thus, the

transition matrix from S1 to S0 in the EMC, M1→0 is Ψ10.

• If the MC moves to ∪∞
i=2Si, then a Class-2 arrival happens before the (k + 1)st Class-2

departure. (Note that this Class-2 arrival may have occurred during the BP1 and it may

not be the only Class-2 arrival during the BP1; the number of Class-2 arrivals during

the BP1 can be calculated from (4.6).) From Lemma 2, we can calculate the absorbing

distribution matrix from S1 to ∪∞
i=2Si:

Ψ12 =







1 0 0

0 1 0






· (I3×3 − Γ1→1)

−1Γ1→2+ . (4.33)

After the MC enters states within ∪∞
i=2Si, there are more than one Class-2 jobs in the

system and the SP is identical to the one for L2
k ≥ 2. Using the memoryless property,

the distribution of (L1
k+1, L

2
k+1) given the MC is in ∪∞

i=2Si is identical to the distribution

of (L1
k+1, L

2
k+1) given (L1

k, L
2
k) ∈ ∪∞

i=2Si, (4.29). Then, we use conditional probability to

calculate transition probabilities of the EMC:

m(L1
k
,1)→(L1

k+1,L
2
k+1)

=
∑

(q1,q2)∈∪
L2
k+1

+1

i=2 Si

m(q1,q2)→(L1
k+1,L

2
k+1)

P
{

(q1, q2) | (L1
k, 1)

}

, (4.34)

in which m(q1,q2)→(L1
k+1,L

2
k+1)

is given in (4.29) and P
{

(q1, q2) | (L1
k, 1)

}

is the correspond-
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ing probability of absorption in ∪∞
i=2Si given in (4.33). The upper bound of q2 is L

2
k+1+1,

because for the (k + 1)st Class-2 departure to see L2
k+1 Class-2 jobs, q2 can be at most

L2
k+1 + 1. The lower bound of q2 is 2, because (q1, q2) is in ∪∞

i=2Si.

From (4.32) and (4.34), we get matrices M1→L2
k+1

for L2
k+1 ≥ 0, expressing the S1 row of

M in (4.23)

M1→L2
k+1

=











Ψ10 for L2
k+1 = 0

Ψ12

[

A T
L2
k+1−1

· · · A T
1 A T

0 02×∞

]T

for L2
k+1 ≥ 1

. (4.35)

The Transition Probabilities for L2
k = 0

Using a similar analysis as in Section 4.5.1, we obtain the matrices M0→L2
k+1

for L2
k+1 ≥ 0,

characterizing the S0 row of M in (4.23) (the detailed procedure is given in Appendix 4.10.2):

M0→L2
k+1

=











Ψ01Ψ10 for L2
k+1 = 0

(Ψ01Ψ12 +Ψ02)
[

A T
n−1 · · · A T

1 A T
0 02×∞

]T
for L2

k+1 ≥ 1
. (4.36)
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Thus, using (4.30), (4.35) and (4.36), we obtain the transition matrix of the EMC in (4.23) as:

M =

S0 S1 · · · Sn · · ·

S0 Ψ01Ψ10 (Ψ01Ψ12 +Ψ02)







A0

0∞×2






· · · (Ψ01Ψ12 +Ψ02)

























An−1

...

A1

A0

0∞×2

























· · ·

S1 Ψ10 Ψ12







A0

0∞×2






· · · Ψ12

























An−1

...

A1

A0

0∞×2

























· · ·

S2 0 A0 · · · An−1 · · ·

S3 0 0
. . . An−2 · · ·

S4 0 0
...

. . . · · ·
...

...
...

...
...

. . .

.

(4.37)

4.5.2 Generating Function Approach

We now derive the steady state distribution of the EMC for the case of c = 2. Recalling that

~d is the row vector of the steady state distribution of the EMC, the equilibrium equations are

given by ~d ·M = ~d, so from (4.37)

~dn =











( ~d1 + ~d0Ψ01)Ψ10 if n = 0

(
[

~d2, ~d3, ...
]

+ ~d1Ψ12 + ~d0(Ψ01Ψ12 +Ψ02))
[

A T
n−1 · · · A T

1 A T
0 02×∞

]T
if n ≥ 1

.

(4.38)

Note that (4.38), just as (4.18), has an infinite number of unknowns appearing in an infinite

(identical) number of equations. To find these unknowns, we calculate the GF as in the standard
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M/G/1 queue. Multiplying the nth equation in (4.38) by zn and summing over all n:

[G(0,L2)(z), G(1,L2)(z)]

= ~d0 + (
[

~d2, ~d3, . . .
]

+ ~d1Ψ12 + ~d0(Ψ01Ψ12 +Ψ02))

∞
∑

n=1

[

A
T
n−1 · · · A

T
1 A

T
0 02×∞

]T
zn.

With some matrix calculations (see Appendix 4.10.1 for details), we get:

[

G(0,L2)(z), G(1,L2)(z)
]

= ~d0D(z), (4.39)

where D(z) is given in closed form in Appendix 4.10.1.

Therefore, if we can express ~d0 in closed form as well, we could use (4.39) to express
[

G(0,L2)(z), G(1,L2)(z)
]

in closed form. Then, we get the GF of L2:

GL2(z) = G(0,L2)(z) +G(1,L2)(z). (4.40)

If we further assume that the service order in each priority class follows the FIFO rule, we

can use the Distributional Little’s Law (Bertsimas and Nakazato 1995) to get the LT of Class-2

jobs’ response time:

LTR2(s) = G(0,L2)(1−
s

λ2
) +G(1,L2)(1−

s

λ2
).

The next section is devoted to deriving ~d0.

4.5.3 Expressing ~d0 in Closed Form

To obtain ~d0, we let z → 1 in (4.39) and get

[

G(0,L2)(1), G(1,L2)(1)
]

= ~d0 · lim
z→1

D(z). (4.41)

Notice that the denominator of D(z) is zero when z → 1, so we need to apply L’Hopital’s rule

to calculate limz→1 D(z). The value of limz→1 D(z) is determined byGαBP (z), Gα00(z), Gα11 (z), Gα01(z), Gα10

and their first order derivatives, which can all be calculated from (4.7) and (4.62).

Note that (4.41) is composed of two equations with four unknowns: G(0,L2)(1), G(1,L2)(1),
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d00 and d10. Another equation is the normalization requirement

G(0,L2)(1) +G(1,L2)(1) = 1. (4.42)

Thus, to find a closed-form expression of
[

G(0,L2)(z), G(1,L2)(z)
]

, we need another linearly

independent equation of these four variables. To find this equation, we focus on the value of

ϕ1 =
d10

d10+d00
.

Let a Level-j Class-2 busy period (j = 0, 1, . . .) start once a Class-2 job arrives at the system

when j Class-2 jobs are present (but not necessarily in service), and terminate at the first time

the number of Class-2 jobs in the system drops to j. Let “a Level-j Class-2 busy period starts

with i Class-1 jobs” denote that the first Class-2 arrival in this Level-j Class-2 busy period sees

i Class-1 jobs, similarly “a Level-j Class-2 busy period ends with i Class-1 jobs” denote that

the Class-2 departure that ends this Level-j Class-2 busy period sees i Class-1 jobs. Recall

that, in our M/M/2 queue, a Class-2 departure sees either zero or one Class-1 job. With these

definitions, ϕ1 is the probability that a Level-0 Class-2 busy period ends with one Class-1 job.

Let Πi be the probability that a Level-0 Class-2 busy period starts with i ≥ 0 Class-1 jobs.

Let Fi be the probability that a Level-0 Class-2 busy period that started with i ≥ 0 Class-1

jobs ends with one Class-1 job. Note that, in the c = 2 case, the probability that a Level-j

Class-2 busy period (j = 1, 2, . . .) that started with a fixed i ≥ 0 Class-1 jobs ends with one

Class-1 jobs is the same for any Level-j Class-2 busy period for any j = 1, 2, . . .. Let Bi be this

probability.

Using the Total Probability Theorem, we have

ϕ1 =

∞
∑

i=0

ΠiFi . (4.43)

Thus, if we can find Fi and Πi in closed form, we can also express ϕ1 in closed form.

We then discuss the next possible events, and use the memoryless property to write recursive

expressions for Fi and Bi. For example, if a Level-0 Class-2 busy period starts with no Class-1

jobs (i.e., a Class-2 job arrives at an empty system), then three events may happen in the

system:
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1. Class-1 arrival, w.p. λ1
λ1+λ2+µ2

. Thus, one Class-1 job is in the system. Then, due to the

memoryless property, F0 is identical to F1, the probability that a Level-0 Class-2 busy

period that started with one Class-1 job ends with one Class-1 job.

2. Class-2 arrival, w.p. λ2
λ1+λ2+µ2

. A Level-1 Class-2 busy period is started. It ends with one

Class-2 job and either zero or one Class-1 job:

(a) One Class-1 job, w.p. B0. Then, due to the memoryless property, a Level-0 Class-2

busy period starts with one Class-1 job, and it will end with one Class-1 job w.p.

F1.

(b) No Class-1 jobs, w.p. 1 − B0. Then, due to the memoryless property, a Level-0

Class-2 busy period starts with no Class-1 jobs, and it will end with one Class-1 job

w.p. F0.

3. Class-2 departure, w.p. µ2

λ1+λ2+µ2
. A Level-0 Class-2 busy period ends with no Class-1

jobs. That is, it ends with one Class-1 job w.p. 0.

Using the Total Probability Theorem and multiplying by λ1 + λ2 + µ2, we get

(λ1 + λ2 + µ2)F0 = λ1F1 + λ2(B0F1 + (1−B0)F0) + µ2 · 0. (4.44)

Similar logic yields

(λ1 + λ2 + µ1 + µ2)F1 = λ1F2 + λ2(B1F1 + (1−B1)F0) + µ1F0 + µ2, (4.45)

(λ1 + λ2 + 2µ1)Fi = λ1Fi+1 + λ2(BiF1 + (1−Bi)F0) + 2µ1Fi−1 for i ≥ 2, (4.46)

for a Level-0 Class-2 busy period; and

(λ1 + λ2 + 2µ2)B0 = λ1B1 + λ2(B0B1 + (1−B0)B0) + 2µ2 · 0, (4.47)

(λ1 + λ2 + µ1 + µ2)B1 = λ1B2 + λ2(B1B1 + (1−B1)B0) + µ1B0 + µ2, (4.48)

(λ1 + λ2 + 2µ1)Bi = λ1Bi+1 + λ2(BiB1 + (1−Bi)B0) + 2µ1Bi−1 for i ≥ 2, (4.49)

for Level-j Class-2 busy periods, j = 1, 2, . . ..
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Note that Bi is independent of Fi, but Fi depends on Bi. Therefore, we first express Bi.

Lemma 3 Bi is given by

Bi =











λ1∆B
0

2µ2−λ2∆B
0

for i = 0

λ1∆B
0

2µ2−λ2∆B
0
+∆B

0 + κg−gi

1−g
for i ≥ 1

,

where ∆B
0 = −2µ1+gλ1+gλ2+2gµ1−g2λ1

gλ2
, κ = 1

λ1g
((λ1+λ2+µ1+µ2−λ2∆

B
0 )∆

B
0 − λ1µ2∆B

0

2µ2−λ2∆B
0
−µ2),

and g is the only root in (0, 1) of the following quartic function:

λ2
1g

4+λ1(2µ2−λ1−λ2−4µ1)g
3+2(µ1(2µ1+4λ1+λ2−2µ2)−λ1µ2)g

2+4µ1(µ2−λ1−λ2−3µ1)g+8µ2
1.

Then, using the same technique, we can express Fi.

Lemma 4 Fi is given by

Fi =











2λ1µ2∆F
0

µ2(2µ2−λ2∆B
0 )

for i = 0

2λ1+2µ2−λ2∆B
0

2µ2−λ2∆B
0

∆F
0 + ξ1

h−hi

1−h
+ ξ2

g−gi

1−g
for i ≥ 1

, (4.50)

where h = 1
2λ1

((λ1 + λ2 + 2µ1)−
√

(λ1 + λ2 + 2µ1)2 − 8λ1µ1), and













ξ1

ξ2

∆F
0













= H−1













−µ2

λ1

1
λ1
(µ2 − 1

λ1
µ2(λ1 + λ2 + 2µ1))

( 2
λ2
1
µ1µ2 +

1
λ2
1
(µ2 − 1

λ1
µ2(λ1 + λ2 + 2µ1))(λ1 + λ2 + 2µ1))













,

in which

H =



















h g −
λ1+λ2+µ1+µ2−λ2∆

B
0

λ1

h2 g2 µ1+µ2+gκλ2

λ1
− λ1+λ2+2µ1

λ2
1

(λ1 + λ2 + µ1 + µ2 − λ2∆
B
0 ) + 2µ2

2µ2−λ2∆
B
0

h3 g3
2µ1

λ2
1

(λ1 + λ2 + µ1 + µ2 − λ2∆
B
0 ) + λ2κg

2

λ1

+λ1+λ2+2µ1

λ2
1

(µ1 + µ2 + gκλ2 −
λ1+λ2+2µ1

λ1
(λ1 + λ2 + µ1 + µ2 − λ2∆

B
0 ) + 2λ1µ2

2µ2−λ2∆
B
0

)



















.

The MC in Figure 4.6 tracks the number of Class-1 jobs present when a Level-0 Class-2

busy period starts; Πi,∀i ≥ 0 is the solution to this MC. To find the Πi, we write down the
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Figure 4.6: The MC when there are no Class-2 jobs.

Balance Equations:

λ2(1−Π0) = λ1Π0 − µ1Π1 + λ2ϕ1 (4.51)

λ2(1−Π0 −Π1) = λ1Π1 − 2µ1Π2 (4.52)

...

λ2(1−
i
∑

j=0

Πj) = λ1Πi − 2µ1Πi+1 (4.53)

Again, using the same technique, we can express Πi.

Lemma 5 Πi can be expressed as a function of ϕ1:

Πi =











µ1(1−f)+λ2(1−ϕ1)
λ1+λ2+µ1−fµ1

for i = 0

(1−f)(λ1+λ2ϕ1)
λ1+λ2+µ1−fµ1

f i−1 for i ≥ 1
, (4.54)

where f = 1
4µ1

(λ1 + λ2 + 2µ1 −
√

(λ1 + λ2 + 2µ1)2 − 8λ1µ1).

Substituting (4.50) and (4.54) in (4.43) gives us an equation of ϕ1, from which we can get

ϕ1:

ϕ1 =
λ1(f − 1)E +∆F

0
2λ1

2µ2−λ2∆B
0
(λ2 + µ1 − fµ1)

−λ2(f − 1)E +∆F
0

2λ1λ2

2µ2−λ2∆B
0
+ (λ1 + λ2 + µ1 − fµ1)

, (4.55)

where E = − 1
f−1(

gξ2
g−1 +

hξ1
h−1 −

∆F
0 (2λ1+2µ2−λ2∆B

0 )

2µ2−λ2∆B
0

) + gξ2
(fg−1)(g−1) +

hξ1
(fh−1)(h−1) .

Hence, (4.41), (4.42) and (4.55) give four equations with four unknowns whose solution gives

~d0.
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4.5.4 Summary and Guidelines for c ≥ 2 case

The process to get GL2(z) can be easily extended to c > 2 case. We summarize the main steps

here:

• Transform the 2D-infinite continuous-time MC (in Figure 4.1) into a 1D-infinite ladder-

like discrete-time EMC (with the transition matrix in (4.23)) by:

1. using the Class-1 busy period to simplify the original MC to the MC in Figure 4.2.

2. deriving the transition matrix of the EMC by observing the system state at Class-2

departures; deriving Mi→j (1 ≤ i ≤ c + 1) for three cases: L2
k ≥ c, L2

k ∈ [1, c− 1]

and L2
k = 0 as done in Section 4.5.1; and inserting Mi→j into M according to (4.22).

• Derive the closed-form expression of the GF of the number of Class-2 jobs in the system.

The matrix in (4.23) has a nice structure and we can apply the GF approach to express

(G(0,L2)(z), . . . , G(c−1,L2)(z)) as the product of a row vector ~d0 = (d00, ..., dc−1,0) and a

(c×c) matrix D(z). Then, we use linear recurrence sequence (matrix difference equations

if c > 2) to get equations like (4.43). The solution of these equations gives ϕi for i =

1, ..., c − 1. Once we obtain G(i,L2)(z) in closed form for i ∈ [0, c − 1], we use (4.24) to

derive the GF of L2.

4.6 Numerical Method

While it is theoretically possible to get the GL2(z) in closed form for any c > 2, the expressions

of GL2(z) are not simple even for c = 2, and become more complicated when c increases,

because:

1. Expressing the transition matrix for L2
k ≥ c requires deriving the LTs for c2 different Dk,

depending on c2 different combinations of L1
k and L1

k+1.

2. Expressing D(z) as in (4.61) requires an elaborate derivation.

3. Deriving a closed-form expression for ϕi for i = 1, ..., c−1 requires solving matrix difference

equations.
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We next propose an easily implementable numerical algorithm to calculate E
[

L2
]

which

overcomes these difficulties. For generality, we focus on E
[

L2
]

and E [R2] instead of the

distribution of R2, which requires the FIFO assumption.

To overcome difficulty 1, we give a numerical algorithm to calculate Ai, the probability of

i = 0, 1, ... Class-2 arrivals during different inter-departure times, in Section 4.5.1. Then, the

techniques in Subsections 4.5.1 and 4.5.1 can be used to derive the transition matrix of the

EMC for L2
k ≥ c.

We demonstrate the algorithm for expressing Ai in Appendix 4.10.2 by deriving the tran-

sition probabilities of the EMC for L2
k ≥ c = 2. The general case with c > 2 can be analyzed

similarly.

Once we get Ai, using (4.30), we obtain the rows of M in (4.23) that correspond to any Si

with i ≥ 2 numerically. Then, using (4.35) and (4.36), we can compute the transition matrix

in (4.23).

Since we cannot practically store an infinite number of matrices, we store up to Limit×(c+1)

matrices of dimension c×c, given that the maximum element of ALimit is less than the accuracy

tolerance, i.e., max(ALimit) < Tolerance. Therefore, these matrices accurately capture the

behavior of the whole system when the Tolerance is small enough.

Likewise, for any c > 2, we can derive the transition matrix of the EMC in (4.23) numerically,

by discussing the three cases: L2
k ≥ c, L2

k ∈ [1, c − 1], and L2
k = 0. In this way, we efficiently

derive the transition matrix for L2
k ≥ c, which requires expressing the LTs for c2 different Dk.

To overcome difficulties 2 and 3, we use numerical methods to solve the 1D-infinite EMC in

(4.23). Riska and Smirni (2002) gives an exact aggregate method to derive different moments

of the number of Class-2 jobs in the system. This method is easy to implement using their

Theorem 3.1, (18) and (21). As an example, we derive the first moment. See Algorithm 4 in

Appendix 4.10.4. This numerical procedure is the basis for our results in Section 4.7.

4.7 Numerical Results and Extensions

This section reports on a set of numerical results using Algorithm 4 (denoted by N ). We will

validate our results in two cases where exact results are available (i.e., when c = 2 and when
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µ1 = µ2) and show that the relative errors are small. (We denote the exact results generated

in these two cases by EX .) Next, we will apply our numerical results to answer questions of

interest for multi-server queue with prioritization. Finally, we apply our methodology to the

problem in Maglaras and Zeevi (2004) by replacing Class-1 BP in our model with Class-1 jobs’

exponential service time.

Throughout this section, we use λi = cρiµi for i = 1, 2, so that ρ1 + ρ2 < 1 is each server’s

occupation rate in the M/M/c queue. Thus once c, ρ1, ρ2, µ1 and µ2 are given, the system is

determined.

4.7.1 Accuracy and Complexity of the Proposed Numerical Method

Potential inaccuracies in Algorithm 4 arise from two main sources. The first is that αBP
l

requires numerical inversion of the probability GF. Abate and Whitt (1992) gave an efficient

inversion algorithm with a controllable error bound. We use the suggested error bound: 10−8

in Algorithm 4. The second inaccuracy is controlled by the tolerance we choose when assuming

a finite waiting room for Class-2 jobs: Limit = min {i | max(Ai) ≤ Tolerance} where Ais are

given in (4.66). We use Tolerance = 10−6.

We demonstrate the accuracy of Algorithm 4 by comparing the expected L2, generated

using Algorithm 4, EN [L2], with the exact results for c = 2 and for µ1 = µ2 = 1. We denote

the relative error of EN [L2] in comparison with EEX
[

L2
]

as %Error =
|EEX[L2]−EN [L2]|

EEX [L2]
.

In the c = 2 case, we calculate EEX [L2] using the closed form GL2(z) from Section 4.5, for

µ1 = 1 and µ2 = 2. In the µ1 = µ2 = 1 case, we calculate EEX [L2] using Buzen and Bondi

(1983):

EEX
[

L2
]

=
(λ1 + λ2)

c+1

c!( c−λ1−λ2
c

∑c−1
n=0

(λ1+λ2)n

n! + (λ1+λ2)c

c! )(c− λ1 − λ2)
− λc+1

1

c!( c−λ1
c

∑c−1
n=0

λn
1
n! +

λc
1
c! )(c− λ1)

+λ2,

for c = 2, 10, 50. In both cases, we vary ρ = ρ1 + ρ2 (from 0.90 to 0.99 in steps of 0.01) and

ρ1
ρ2

(as 1
9 ,

1
4 ,

2
3 , 1,

3
2 ,

4
1 ,

9
1). In total, we exam 280 different parameters settings, and all %Errors

in these experiments are less than 0.001%, outperforming the approximation in Harchol-Balter

et al. (2005), which is to our knowledge the best approximation, with a %Error within 2%

compared to simulation.
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Next, we discuss the complexity of Algorithm 4 regarding the combination of parameters,

i.e., c, ρ1, ρ2, µ1, and µ2 (note that, λ1 and λ2 are determined by these parameters: λi = cρiµi

for i = 1, 2). Specially, we discuss how the time for Algorithm 4 to generate EN [L2] changes

when we solely increase one of the parameters.

The complexity of the algorithm increases with c. Recall that the size of each block matrix

in (4.37) is c × c. When c increases, the algorithm needs more storage space and computing

power to handle a larger matrix. For c ≤ 50, it only takes several seconds. The processing time

of Algorithm 4 increase with c. For c = 100, it may take several minutes. Detailed numerical

results are available upon request.

Increasing ρ1 raises the complexity of the algorithm. As we know, the expected Class-1 busy

period is 1
cµ1(1−ρ1)

(see, e.g., Adan and Resing 2002). Thus, a larger ρ1 causes a stochastically

longer Class-1 busy period, within which more Class-2 customers may arrive. If we imagine

different arrows in Figure 4.2 as liquid flows, we could expect a higher probability of seeing the

Markov Chain at a state with larger q2. Then, our algorithm needs more iterations to reach

a given tolerance. The above discussion also demonstrates that E[L2] increases with ρ1 too.

Similar discussion will lead to that increasing µ1 reduces the complexity of the algorithm and

E[L2] at the same time.

It is straightforward that the complexity of the algorithm and E[L2] both increase with

ρ2. Again a busier system implies that more iterations are required to reach a given tolerance.

However, it is not obvious that the complexity of the algorithm increases with µ2. Since ρ2 =
λ2
cµ2

is fixed, we need to raise λ2 when increasing µ2 to keep ρ2 the same. A higher λ2 leads to more

Class-2 arrivals in the Class-1 busy period. The rest of the discussion is exactly the same as

the case of increasing ρ1.

Given the accuracy of Algorithm 4, we next use it to derive insights on the operation of

multi-server queueing systems with two priority classes. None of these insights were available

before due to the lack of exact numerical algorithms for this preemptive system with different

service rates for each priority class.
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Figure 4.7: The effect of improving µi, i = 1, 2 on E[R2] under different combinations of λi for
i = 1, 2.

4.7.2 Insight 1 - How Changing µ1 or µ2 Affects E [R2]

Consider a company that operates an M/M/2 system to serve two priority classes where Class-1

has preemptive priority over Class-2. The company receives complaints of long response times

from Class-2 customers. When the manager is able to improve the service rate of either one

priority class, her first reaction may be to improve the service rate of Class-2 customers, µ2.

However, this decision may not be optimal: Consider the example with λ1 = 1.1, λ2 = 0.8

and µ1 = µ2 = 1. Figure 4.7(a) illustrates the effect of improving µ1 or µ2 on E [R2]. The

solid line shows how E [R2] changes when improving µ2 while keeping µ1 = 1 and the dashed

line shows the effect on E [R2] of improving µ1 while fixing µ2 = 1: for the same service rate

improvement, upgrading µ1 is more effective in reducing E [R2]. In other words, when Class-2

customers complain about the long response time they experience, it is better to improve the

service rate of Class-1 customers. The intuition is as follows.

Any Class-2 customer’s response time is dictated by its interaction with customers of both

types. Class-1 customers affect this time by the service time of Class-1 customers seen upon a

Class-2 customer’s arrival, those Class-1 customers who arrive during her waiting time if she

does not enter service immediately, and those Class-1 jobs who interrupt her service. Class-2

customers affect this time via both the service times of customers at her arrival and her own

service time. Increasing µ1 reduces the first part, while increasing µ2 reduces the second part.

Which of these effects dominates (and which service rate is preferable to improve) depends on

the relation between λ1 and λ2. In Figure 4.7(a), the first part of response time dominates,
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Figure 4.8: The effect of improving µi, i = 1, 2 on E [R2] under different numbers of servers.

so it is better to improve µ1. In contrast, when λ1 = 0.8 and λ2 = 1.1, as in Figure 4.7)(b),

improving µ2 is better. Finally, when λ1 = 1 and λ2 = 0.9, from Figure 4.7(c), we see that

it is better to improve µ1, if the maximum service rate the company can achieve is below 3.5;

otherwise it is better to improve µ2. Therefore, we need an accurate calculation of E[R2] to

decide which service rate to improve.

Next, we examine how the number of servers may affect the manager’s decision. In Figures

4.8 (a) and (b), we keep the initial service and congestion rates for both classes the same (i.e.

µ1 = µ2 = 1, ρ1 = 0.55, and ρ2 = 0.4), and change c (i.e., c = 1 in 4.8(a), c = 2 in 4.7(a),

and c = 3 in 4.8(b). We see that when c increases, the two E[R2] curves get closer, and when

c = 3, they cross. This example illustrates that managers cannot decide on which service rate

to improve by approximating an M/M/c system as an M/M/1, because the number of servers

affects this decision.

Other objective functions besides E [R2] can also be considered by our algorithm. For

example, we can consider a weighted average of E [R1] and E [R2]. Because we can calculate

E[R2] quickly and accurately, comparing different service rates of different priority classes is

straightforward. Likewise, it is very simple to incorporate different marginal costs of improving

different service rates. Of course, we could also consider the case where the company can

improve µ1 and µ2 simultaneously.
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Figure 4.9: The Marginal Effect of pooling servers on expected waiting times of both priority
classes, under different µi for i = 1, 2 when ρ1 = ρ2 = 0.475.

4.7.3 Insight 2 - The Marginal Effect of Pooling Servers

In this section, we consider the effect of increasing c, while keeping the occupation rates ρi and

service rates of both priority classes µi (i = 1, 2) the same, i.e., the marginal effect of pooling

servers. In Figures 4.9 (a-c), we illustrate the effect of pooling c servers together on the expected

response times of Class-2 jobs, under different µ2’s. We use ρ1 = ρ2 = 0.475 in this section.

The first observation is that pooling servers always reduces expected response times of both

priority classes; this is no surprise. As more servers are added, the response times approach

1
µi
, respectively, for Class-1 and Class-2 jobs; in the infinite servers case, the response times are

simply 1
µi
. Note though that adding servers always benefits Class-2 jobs more than it benefits

Class-1 jobs. The intuition is that due to their preemptive priority, Class-1 jobs already have

the highest access to servers, while Class-2 jobs’ access is restricted. Also, comparing Figures

4.9 (a-c) reveals that when µ2 increases, the relative improvement in E [R2] is reduced. The

reason is that shorter Class-2 jobs have a greater chance to finish before being interrupted by a

Class-1 arrival. Therefore, pooling servers aids long Class-2 jobs more than short Class-2 jobs.

The same insight holds for different ρ’s and ρ1
ρ2
’s.

4.7.4 Insight 3 - Few Fast Servers v.s. Many Slow Servers

In this section we compare systems with different numbers of servers, while keeping the arrival

rates λi and the occupation rates ρi (i = 1, 2) the same (i.e., increase c and reduce µi while

holding cµi = λi

ρi
constant). That is we investigate the effect of having many slow servers
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Figure 4.10: The effect of c on expected waiting times of both priority classes, under different
λi, i = 1, 2.

compared with having fewer fast servers. We again use ρ1 = ρ2 = 0.475.

In Figure 4.10, we fix λ1 = 1 and illustrate the effect of having more slow servers on the

expected response times of Class-2 jobs, under different λ2’s. Note that within each figure as c

increases, both µ1 and µ2 decrease. Between figures, because we keep λ2
cµ2

= ρ2 = 0.475, for the

same c, a smaller λ2 results in smaller µ2 and vice versa.

We see that in (almost) all cases jobs prefer fewer fast servers, which might be expected, as

the service times are exponential (cv = 1). But we also see that the number of servers affects

E[R2] in different manners for different values of λ2. When λ2 = 1
3 , Class-2 response times

increase faster than Class-1 jobs’ as c increases. In contrast, when λ2 = 3, Class-2 response times

increase slower than Class-1 jobs’ as c increases. The intuition is that even though reducing

µ2 increases Class-2 response times due to Class-2 service time, higher c provides Class-2 jobs

more access to servers, so they have a higher chance to finish before being interrupted by a

Class-1 arrival. When λ2 = 1, these two factors balance and the response times of both priority

classes increase with c at similar rates. When Class-2 jobs are short, the increased access is

more beneficial as they are more likely to finish before being interrupted.

Another observation from Figures 4.10 (a-c) is that when λ1 = 1 and λ2 = 3, the Class-2

jobs’ average response time may decrease with c, when c is small. This trend is more obvious in

Figure 4.10 (d) when λ1 = 1 and λ2 = 10: the E [R2] decreases by about a third (12 vs 8) when

c increases from 2 to 14. In this case, the effect of improved access to servers benefits Class-2

jobs so much that it overcompensates for the negative effect of decreasing µ2. This result has
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Figure 4.11: The MC of an M/M/c queue with two priority classes where the first class is
completely impatient.

also been shown in Wierman et al. (2006). Our numerical algorithm strengthens their result

and gives an accurate estimation of the optimal number of servers for low-priority customers.

The same insights hold for different ρ’s and ρ1
ρ2
’s.

4.7.5 Extension to Impatient Class-1 Jobs

Maglaras and Zeevi (2004) considered an M/M/c queue with two priority classes where the

first class is completely impatient, i.e., if not served at arrival, they leave the system. They

applied diffusion approximations to the problem in the asymptotic Halfin and Whitt (1981)

regime. The MC of their problem is given in Figure 4.11, and is similar to the MC in Figure

4.1, except that it is truncated at q1 = c and is a 1D-infinite MC.

Our methodology can be applied to this system by directly replacing the Class-1 BP in our

model with the exp(cµ1) distributed busy periods caused by Class-1 jobs. Therefore, we can

obtain a closed-form expression of the GF of L2 when c = 2; and we have an efficient numerical

algorithm to calculate the distribution of L2 when c ≥ 2.

Table 4.1 illustrates the accuracy of the two approximations (2D diffusion and perturbation)

in Maglaras and Zeevi (2004) and of Algorithm 4 in our paper, compared with simulation under

different settings in their paper. For simulation, 2D diffusion and perturbation approximations,

we generate the E[L1 + L2] from the distribution of L1 + L2 (i.e., the total number of jobs

in the system) in their results. (Unfortunately, the confidence intervals of the simulation was

not provided.) We generate E[L1 + L2] from the sum of E[L1], obtained using a single-class

M/M/c/c model (page 81, Gross et al. 2008), and E[L2], obtained using Algorithm 4. The

results of our algorithm are well within the margin of errors of their simulation and are typically
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closer to the simulation than their two approximations. The noticeable errors of our algorithm

may be within the inaccuracy of the simulation. Note that Maglaras and Zeevi’s approximations

are only accurate in the Halfin and Whitt regime, i.e., for high ρ and c, whereas our method is

accurate for all such combinations. However, the time consumption of our algorithm increases

with c. When c = 150, the processing time of our algorithm raises up to 30 minutes.

Simulation 2D Diffusion Perturbation Our Algorithm

(c, ρ, µ1, µ2) E
[

L1 + L2
]

E[L1 + L2] %Error E[L1 + L2] %Error E[L1 + L2] %Error

(100,0.95,1,2) 108.22 109.28 1.0% 112.34 3.8% 108.42 0.2%

(50,0.95,1,2) 65.71 64.88 1.3% 66.82 1.7% 64.57 1.7%

(150,0.95,1,2) 154.49 154.30 0.1% 158.63 2.7% 153.58 0.6%

(100,0.925,1,2) 99.64 98.02 1.6% 102.50 2.9% 98.13 1.5%

(100,0.975,1,2) 140.36 136.57 2.7% 139.77 0.4% 138.42 1.4%

(100,0.95,1,5) 120.46 120.02 0.4% 119.43 0.9% 118.97 1.2%

(100,0.95,2,1) 102.74 103.24 0.5% 111.39 8.4% 102.60 0.1%

(100,0.95,5,1) 101.49 101.16 0.3% 115.83 14.1% 101.31 0.2%

(100,0.95,20,10) 103.44 103.39 0.1% 112.27 8.5% 102.60 0.8%

Table 4.1: 2D Diffusion and Perturbation in Maglaras & Zeevi 2004 v.s. Algorithm 4 in terms
of E[L1 + L2] for different settings with ρ1 = ρ2 =

ρ
2 .

4.8 Summary

This paper analyzed an M/M/c queue with two preemptive-resume priority classes. This

problem is usually described by a 2-dimension infinite MC, representing the two class state

space. We introduced a new technique to reduce this 2D-infinite MC into a 1D-infinite MC,

from which the Generating Function (GF) of the number of low-priority jobs can be derived

in closed form. We demonstrate this methodology for the c = 1, 2 cases. When c > 2, the

closed-form expression of the GF becomes cumbersome. We thus derive an exact numerical

algorithm to calculate different moments of the number of Class-2 jobs in the system for any

c ≥ 2.

Interesting insights are derived using our algorithm: We first showed that for a company

serving two priority classes and receiving complaints of long response times from Class-2 cus-

tomers, the manager may wish to improve the service rate of Class-1 customers under certain

conditions. Secondly, we showed that pooling servers always benefits Class-2 jobs more than

Class-1 jobs, and aids long Class-2 jobs more than short Class-2 jobs. Thirdly, we demonstrated
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that even though in the single-class system a few fast servers are always preferred to many slow

servers, in a system with priority Class-2 jobs may prefer many slow servers to a few fast servers.

Finally, we applied our methodology to the problem considered by Maglaras and Zeevi (2004),

and demonstrated that our algorithm is more accurate than their approximations.

For future research, it would be very beneficial to extend our methodology to more than two

priority classes, though this appears to be quite challenging. As priority queues have a direct

application in information and communication services, it would be interesting to incorporate

pricing and system design into the model and try to maximize profit.
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4.10 Appendix

4.10.1 Calculations

Calculation for G
L̂2(z)

The following result will be used in the calculation for G
L̂2(z). The derivation of them is straightforward,

so we skip all the details.

∞
∑

n=0

[

αD̂k
n · · · αD̂k

1 αD̂k

0 01×∞

]T

zn =
[

1 z z2 z3 · · ·
]T

G
αD̂k

(z).

With the help of these results, we derive G
L̂2(z):

G
L̂2(z) = (

[

d̂1, d̂2, ...
]

+ d̂0Ψ̂01)

∞
∑

n=0

[

αD̂k
n · · · αD̂k

1 αD̂k

0 01×∞

]T

zn,

G
L̂2(z) =

[

d̂1, d̂2, ...
] [

1 z z2 z3 · · ·
]T

G
αD̂k

(z) + d̂0Ψ̂01

[

1 z z2 z3 · · ·
]T

G
αD̂k

(z),

G
L̂2(z) =

G
L̂2(z)− d̂0

z
G

αD̂k
(z) +

d̂0
z

zλ2 + λ1GαBP (z)− αBP
0 λ1

λ1 + λ2 − αBP
0 λ1

G
αD̂k

(z).

We move G
L̂2(z) to the left-hand side and get (4.19).
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Calculation for GL2(z)

The following results will be used in the calculation for D(z). The derivation of them is straightforward,

so we skip all the details.

∞
∑

i=1

[

A T
n−1 · · · A T

1 A T
0 01×∞

]T

zi = zΥGA , (4.56)

in which Υ =
[

I2×2 zI2×2 z2I2×2 z3I2×2 · · ·
]T

and GA =





Gα00(z) Gα01(z)

Gα10(z) Gα11(z)



 .

[

~d2, ~d3, ...
]

zΥ =
1

z
(GL2(z)− ~d0 − ~d1z) (4.57)

d1 = d0(Ψ
−1
10 −Ψ01) (4.58)

z2Ψ−1
10 Ψ12Υ =

z2Ψ−1
10





λ2(λ1 + λ2 + µ1 + µ2 − αB
0 λ1)

1
z
λ1(zλ2 + λ1GαB (z)− αB

0 λ1)

λ2µ1
1
z
(λ1 + λ2 + µ2)(zλ2 + λ1GαB (z)− αB

0 λ1)





(λ1 + λ2 + µ2)(λ1 + λ2 + µ2 − λ1αB
0 ) + µ1(λ2 + µ2)

=





z2 λ2

µ2
0

0 z
µ2
(zλ2 + λ1GαB (z)− αB

0 λ1)



 (4.59)

Ψ02Υ =





0 1
z2

λ2
1(GαB (z)−αB

0 −zαB
1 )

λ2
1
+λ2

2
−αB

0
λ2
1
+2λ1λ2+λ2µ1−αB

0
λ1λ2

0 1
z2

λ1(λ1+λ2)(GαB (z)−αB
0 −zαB

1 )

λ2
1
+λ2

2
−αB

0
λ2
1
+2λ1λ2+λ2µ1−αB

0
λ1λ2



 (4.60)

With the help of these results, we derive D(z):

[

G(0,L2)(z), G(1,L2)(z)
]

= ~d0+(
[

~d2, ~d3, ...
]

+ ~d1Ψ12+ ~d0(Ψ01Ψ12+Ψ02))

∞
∑

n=1

[

A
T
n−1 · · · A

T
1 A

T
0 01×∞

]T
zn.

From (4.56), we have

[

G(0,L2)(z), G(1,L2)(z)
]

= ~d0 + z
{[

~d2, ~d3, ...
]

+ ~d1Ψ12 + ~d0(Ψ01Ψ12 +Ψ02)
}

ΥGA .

From (4.57), we have

[G(0,L2)(z), G(1,L2)(z)] = ~d0+
1

z
([G(0,L2)(z), G(1,L2)(z)]− ~d0− ~d1z)GA +z( ~d1Ψ12+ ~d0(Ψ01Ψ12+Ψ02))ΥGA .

Moving
[

G(0,L2)(z), G(1,L2)(z)
]

to the left side of the equation gives

[

G(0,L2)(z), G(1,L2)(z)
]

(zI2×2−GA ) = ~d0(z
2(Ψ01Ψ12+Ψ02+)ΥGA −GA +zI2×2)+ ~d1(z

2Ψ12ΥGA −zGA ).
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From (4.58), we have

[

G(0,L2)(z), G(1,L2)(z)
]

(zI2×2−GA ) = ~d0
{

(z2Ψ−1
10 Ψ12Υ+ z2Ψ02Υ− I2×2 − z(Ψ−1

10 −Ψ01))GA + zI2×2

}

.

From (4.59) and (4.60), we have

[

G(0,L2)(z), G(1,L2)(z)
]

(zI2×2 −GA )

= ~d0(











z2 λ2

µ2
− 1 λ2

1
(G

αB (z)−αB
0 −zαB

1 )

λ2
1
+λ2

2
−αB

0
λ2
1
+2λ1λ2+λ2µ1−αB

0
λ1λ2

0
z
µ2
(zλ2 + λ1GαB (z)− αB

0 λ1)

+
λ1(λ1+λ2)(GαB (z)−αB

0 −zαB
1 )

λ2
1
+λ2

2
−αB

0
λ2
1
+2λ1λ2+λ2µ1−αB

0
λ1λ2

− 1











GA − z(Ψ−1
10 −Ψ01)GA + zI2×2).

We know, (zI2×2 −GA )−1 =











Gα11(z)− z −Gα01(z)

−Gα10(z) Gα00(z)− z











zG
α00(z)+zG

α11 (z)−G
α00(z)Gα11(z)+G

α01 (z)Gα10(z)−z2 , so we have:

D(z) =

























































z2 λ2

µ2
− 1

λ2
1(GαBP (z)−αBP

0 −zαBP
1 )

λ2
1
+λ2

2
−αBP

0
λ2
1
+2λ1λ2+λ2µ1−αBP

0
λ1λ2

0
z
µ2
(zλ2 + λ1GαBP (z)− αBP

0 λ1)

+
λ1(λ1+λ2)(GαBP (z)−αBP

0 −zαBP
1 )

λ2
1
+λ2

2
−αBP

0
λ2
1
+2λ1λ2+λ2µ1−αBP

0
λ1λ2

− 1











C (z)− z(Ψ−1
10 −Ψ01)C (z)

+z





−(z −Gα11(z)) −Gα01(z)

−Gα10(z) −(z −Gα00(z))



















































zGα00(z) + zGα11(z)−Gα00(z)Gα11(z) +Gα01 (z)Gα10(z)− z2
,

(4.61)

in which

C (z) =





Gα00 (z) Gα01 (z)

Gα10 (z) Gα11 (z)









Gα11(z)− z −Gα01(z)

−Gα10(z) Gα00(z)− z



 .

Ψ−1
10 can be calculated from (4.32) as Ψ−1

10 = 1
µ2





λ1 + λ2 + µ2 −λ1

−µ1 λ1 + λ2 + µ1 + µ2 − αBP
0 λ1



 , and

G
α

L1
k
,L1

k+1
(z) is the GF of αL1

k,L
1
k+1 . It can be calculated from (4.3) as:

G
α

L1
k
,L1

k+1
(z) = LTL1

k,L
1
k+1(λ2 − λ2z). (4.62)
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Figure 4.12: MC for the c = 2 servers case where L2
k = 0.

4.10.2 Transition Probabilities

The Transition Probabilities for L2
k = 0 when c = 2

As in Section 4.4.1, to find the one-step transition probabilities of the EMC, we first express the first-

passage probability distribution from S0 to ∪∞
i=1Si.

We think of the MC after the kth Class-2 departure as a MC with transient set: S0 ∪ BP0, and

absorbing sets: S1 and ∪∞
i=2Si. (Defining S1 and ∪∞

i=2Si instead of ∪∞
i=1Si is for the computational

convenience.) Let Γ0→0, Γ0→1 and Γ0→2+ be the one-step transition matrices from S0∪BP0 to S0∪BP0,

S1 and ∪∞
i=2Si, respectively.

In Figure 4.12, we illustrate the arrival process of Class-2 jobs omitting details that are not relevant

to the development of this case. From Figure 4.12, we get Γ0→0, Γ0→1 and Γ0→2+ :

Γ0→0 =

(0, 0) (1, 0) BP0

(0, 0) 0 λ1

v(0,0) 0

(1, 0) µ1

v(1,0) 0 λ1

v(1,0)

BP0 0 αBP
0 0

, Γ0→1 =

(0, 1) (1, 1)

(0, 0) λ2

v(0,0) 0

(1, 0) 0 λ2

v(1,0)

BP0 0 αBP
1

,

and Γ0→2+ =

(0, 2) (1, 2) (0, 3) (1, 3) · · ·

(0, 0) 0 0 0 0 · · ·

(1, 0) 0 0 0 0 · · ·

BP0 0 αBP
2 0 αBP

3 · · ·

.

Let Ψ01 be the absorbing distribution matrix from S0 to S1. Let Ψ02 be the absorbing distribution
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matrix from S0 to ∪∞
i=2Si. Using Lemma 2, we calculate Ψ01 and Ψ02 as:

Ψ01 =





1 0 0

0 1 0



·(I3×3−Γ0→0)
−1Γ0→1 =





λ2(λ1 + λ2 + µ1 − αBP
0 λ1) λ1(λ2 + αBP

1 λ1)

λ2µ1 (λ1 + λ2)(λ2 + αBP
1 λ1)





λ2
1 + λ2

2 − αBP
0 λ2

1 + 2λ1λ2 + λ2µ1 − αBP
0 λ1λ2

,

(4.63)

and

Ψ02 =





1 0 0

0 1 0



 · (I3×3 − Γ0→0)
−1Γ0→2+ . (4.64)

When the MC goes to ∪∞
i=1Si, there are one or more Class-2 jobs in the system and there are

no transitions in the EMC. As in Section 4.4.1, we use conditional probability to calculate transition

probabilities of the EMC:

m(L1
k
,0)→(L1

k+1
,L2

k+1
) =

∑

(q1,q2)∈∪
L2
k+1

+1

i=1
Si

m(q1,q2)→(L1
k+1

,L2
k+1

)P
{

(q1, q2) | (L1
k, 0)

}

, (4.65)

in which m(q1,q2)→(L1
k+1

,L2
k+1

) is given in (4.34) and P
{

(q1, q2) | (L1
k, 0)

}

is the corresponding probability

of absorption in S1 or ∪∞
i=2Si given in (4.63) and (4.64) respectively. Similar to (4.34), we must have

q2 ∈
[

1, L2
k+1 + 1

]

.

From (4.65), we get the matrices M0→L2
k+1

in (4.36) for L2
k+1 ≥ 0.

The Transition Probabilities for L2
k ≥ c when c = 2

As in Section 4.5.1, we first think of the MC after the kth Class-2 departure as a MC with transient set:

SL2
k
∪ BPL2

k
, and absorbing sets: SL2

k
−1 and ∪∞

i=L2
k
+1

Si. Let Γ2→2, Γ2→1 and Γ2→3+ be the one-step

transition matrices from SL2
k
∪ BPL2

k
to SL2

k
∪BPL2

k
, SL2

k
−1 and ∪∞

i=L2
k
+1

Si, respectively. From Figure
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4.5, we get Γ2→2, Γ2→1 and Γ2→3+ :

Γ2→2 =

(0, L2
k) (1, L2

k) BPL2
k

(0, L2
k) 0 λ1

v(0,L2
k
)

0

(1, L2
k)

µ1

v(1,L2
k
)

0 λ1

v(1,L2
k
)

BPL2
k

0 αBP
0 0

, Γ2→1 =

(0, L2
k − 1) (1, L2

k − 1)

(0, L2
k)

2µ2

v(0,L2
k
)

0

(1, L2
k) 0 µ2

v(1,L2
k
)

BPL2
k

0 0

,

and Γ2→3+ =

(0, L2
k + 1) (1, L2

k + 1) (0, L2
k + 2) (1, L2

k + 2) · · ·

(0, L2
k)

λ2

v(0,L2
k
)

0 0 0 · · ·

(1, L2
k) 0 λ2

v(1,L2
k
)

0 0 · · ·

BPL2
k

0 αBP
1 0 αBP

2 · · ·

.

Then, with similar reasoning as in Section 4.5.1, we calculate Ai from:

Ai =











Ψ21 for i = 0

Ψ23+

[

A T
i−1 · · · A T

1 A T
0 02×∞

]T

for i ≥ 1
, (4.66)

where

Ψ21 =





1 0 0

0 1 0



 · (I − Γ2→2)
−1Γ2→1 =





2µ2(λ1 + λ2 + µ1 + µ2 − αBP
0 λ1) λ1µ2

2µ1µ2 µ2(λ1 + λ2 + 2µ2)





(λ1 + λ2 + µ1 + µ2 − αBP
0 λ1)(λ1 + λ2 + 2µ2)− λ1µ1

.

(4.67)

and

Ψ23+ =





1 0 0

0 1 0



 · (I − Γ2→2)
−1Γ2→3+ . (4.68)

Notice that Ai only depends on A0,A1, . . . ,Ai−1. Thus, Ai can be calculated recursively from A0

(which is Ψ21 in (4.67)).

4.10.3 Proofs

Proof of Lemma 2

The one step transition probability of the MC can be written in matrix form as

T A

P =
T

A





ΓT→T ΓT→A

0 I





,
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where I is the identity matrix. Then, Pn represents the n step transition probabilities for the MC. Using

induction, we obtain

Pn =





Γn
T→T

∑n
i=0 Γ

i
T→TΓT→A

0 I



 .

By letting n go to infinity and noting that
∑n

i=0 Γ
i
T→T = (I−ΓT→T )

−1, the probability that the system

eventually reaches a state Ai ∈ A is as given in the Lemma.

Proof of Lemma 3

After some algebra, we can write (4.47− 4.49) as:

B1 =
(λ1 + 2µ2 + λ2B0)B0

λ1 + λ2B0
, (4.69)

B2 =
1

λ1
((λ1 + λ2 + µ1 + µ2 − λ2(B1 −B0))B1 − (λ2 + µ1)B0 − µ2), (4.70)

Bi+1 =
1

λ1
((λ1 + λ2 + 2µ1 − λ2(B1 −B0))Bi − 2µ1Bi−1 − λ2B0) for i ≥ 2. (4.71)

Let ∆B
i = Bi+1 −Bi for i ≥ 0, be the step difference of the sequence Bi. So, we have

Bi = B1 +

i−1
∑

j=1

∆B
j for i ≥ 2. (4.72)

From the definition of ∆B
i and (4.69), we get ∆B

0 = 2µ2B0

λ1+λ2B0
. Similarly, we get from (4.69− 4.71)

∆B
1 =

1

λ1
((λ1 + λ2 + µ1 + µ2 − λ2∆

B
0 )∆

B
0 − λ1µ2∆

B
0

2µ2 − λ2∆B
0

− µ2), (4.73)

∆B
2 =

1

λ1
((λ1 + λ2 + 2µ1 − λ2∆

B
0 )∆

B
1 − (µ1 + µ2)∆

B
0 − λ1µ2∆

B
0

2µ2 − λ2∆B
0

+ µ2), (4.74)

∆B
i =

(λ1 + λ2 + 2µ1 − λ2∆
B
0 )

λ1
∆B

i−1 −
2µ1

λ1
∆B

i−2 for i ≥ 3. (4.75)

We notice that ∆B
i is a linear homogeneous function of ∆B

i−1 and ∆B
i−2 , so ∆

B
i is a linear homogeneous

recurrence sequence (see e.g., Green and Knuth (1990) Chapter 2). The solution to the recurrence

sequence takes the form ∆B
i = κ1g

i
1 + κ2g

i
2, i ≥ 1, where g1 and g2 are roots of the Characteristic

Polynomial : CP (g) = λ1g
2 − (λ1 + λ2 + 2µ1 − λ2∆

B
0 )g + 2µ1. Note that because Bi ∈ [0, 1], we have

lim
i→∞

∆B
i = 0. (4.76)

For ∆B
i to satisfy (4.76), i.e., converge to zero, either gj < 1 or κj = 0 for both j = 1, 2.
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Because B0,B1 ∈ [0, 1], we have ∆B
0 < 1, so we have CP (1) = λ2(∆

B
0 − 1) < 0. Thus, CP (g) has only

one root that is smaller than one:

g =
1

2λ1
(λ1 + λ2 + 2µ1 − λ2∆

B
0 −

√

(λ1 + λ2 + 2µ1 − λ2∆B
0 )

2 − 8λ1µ1). (4.77)

(It is also easy to verify that g is greater than zero.) For the other root that is greater than one, the

corresponding κj must be zero. Thus, ∆B
i takes the form

∆B
i = κgi, i ≥ 1. (4.78)

Notice that g is a function of ∆B
0 , so in the expression of ∆B

i we have two unknowns: κ and ∆B
0 .

Substituting (4.78) into (4.73) and (4.74) gives

κg =
1

λ1
((λ1 + λ2 + µ1 + µ2 − λ2∆

B
0 )∆

B
0 − λ1µ2∆

B
0

2µ2 − λ2∆B
0

− µ2), (4.79)

κg2 =
1

λ1
((λ1 + λ2 + 2µ1 − λ2∆

B
0 )∆

B
1 − (µ1 + µ2)∆

B
0 − λ1µ2∆

B
0

2µ2 − λ2∆B
0

+ µ2). (4.80)

Dividing (4.80) with (4.79) gives:

g = − 1

λ1

λ3
2∆

B
0
4 − λ2

2(2λ1 + 2λ2 + 3µ1 + 3µ2)∆
B
0
3

+λ2(λ
2
1 + 2λ1λ2 + λ2

2 + 2λ1µ1 + 3λ1µ2 + 3λ2µ1 + 6λ2µ2 + 2µ2
1 + 8µ1µ2 + 2µ2

2)∆
B
0
2

−µ2(3λ
2
2 + 8λ2µ1 + 4λ2µ2 + 3λ1λ2 + 4µ2

1 + 4µ1µ2 + 2λ1µ1)∆
B
0 + 2µ2

2(λ2 + 2µ1)

λ2
2∆

B
0
3 − λ2(λ2 + λ1 + µ1 + 3µ2)∆B

0
2
+ µ2(2µ2 + λ1 + 3λ2 + 2µ1)∆B

0 − 2µ2
2

.

(4.81)

Substituting ∆B
0 = −λ1g

2−(λ1+λ2+2µ1)g+2µ1

λ2g
into (4.81) gives a polynomial equation of degree six: 0 =

λ3
1(µ1 −µ2)g

6 −λ2
1(6µ

2
1 +2µ2

2 +2λ1µ1 −λ1µ2 +2λ2µ1 −λ2µ2 − 8µ1µ2)g
5 +(λ3

1µ1 +2λ2
1λ2µ1 +16λ2

1µ
2
1 −

14λ2
1µ1µ2 + 2λ2

1µ
2
2 + λ1λ

2
2µ1 + 8λ1λ2µ

2
1 − 6λ1λ2µ1µ2 + 12λ1µ

3
1 − 20λ1µ

2
1µ2 + 8λ1µ1µ

2
2)g

4 − (14λ2
1µ

2
1 −

6λ2
1µ1µ2 + 16λ1λ2µ

2
1 − 6λ1λ2µ1µ2 + 40λ1µ

3
1 − 44λ1µ

2
1µ2 − 8λ1µ1µ

2
2 + 2λ2

2µ
2
1 + 8λ2µ

3
1 − 8λ2µ

2
1µ2 + 8µ4

1 −

16µ3
1µ2 +8µ2

1µ
2
2)g

3 +4µ2
1(λ

2
1 +2λ1λ2 +11λ1µ1 − 6λ1µ2 +λ2

2 +6λ2µ1 − 3λ2µ2 +8µ2
1− 10µ1µ2 +2µ2

2)g
2−

(40µ4
1 + 16λ1µ

3
1 + 16λ2µ

3
1 − 24µ3

1µ2)g + 16µ4
1

If µ1 6= µ2, then we have several possible solutions:

ġ =
µ1

2λ1(µ1 − µ2)
(λ1 + λ2 + 2µ1 − 2µ2 −

√

(λ1 + λ2 + 2µ1 − 2µ2)2 − 8λ1(µ1 − µ2)),

g̈ =
µ1

2λ1(µ1 − µ2)
(λ1 + λ2 + 2µ1 − 2µ2 +

√

(λ1 + λ2 + 2µ1 − 2µ2)2 − 8λ1(µ1 − µ2)),

and roots of O(g) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0, where a4 = λ2

1, a3 = λ1(2µ2 − λ2 − 4µ1 − λ1), a2 =
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2(2µ2
1 +4λ1µ1 −λ1µ2 + λ2µ1 − 2µ1µ2), a1 = 4µ1(µ2 − λ1 −λ2 − 3µ1), a0 = 8µ2

1. It is easy to check that

ġ > 1; if µ1 > µ2, then g̈ > ġ so g̈ > 1; if µ1 < µ2, then g̈ < 0. So, g cannot be ġ or g̈, and g must be

one of the four roots of O(g).

The four roots of a quartic function are well known. Let ∆1 = a22−3a3a1+12a4a0, ∆2 = 2a32−9a3a2a1+

27a4a
2
1 + 27a23a0 − 72a4a2a0, and ∆ =

3
√
2∆1

3a4
3
√

∆2+
√

−4∆3
1
+∆2

2

+
3
√

∆2+
√

−4∆3
1
+∆2

2

3 3
√
2a4

, then the four roots of

O(g) are

x1 = − a3
4a4

− 1

2

√

a23
4a24

− 2a2
3a4

+∆− 1

2

√

√

√

√

√

a23
2a24

− 4a2
3a4

−∆−
−a3

3

a3
4

+ 4a3a2

a2
4

− 8a1

a4

4
√

a2
3

4a2
4

− 2a2

3a4
+∆

, (4.82)

x2 = − a3
4a4

− 1

2

√

a23
4a24

− 2a2
3a4

+∆+
1

2

√

√

√

√

√

a23
2a24

− 4a2
3a4

−∆−
−a3

3

a3
4

+ 4a3a2

a2
4

− 8a1

a4

4
√

a2
3

4a2
4

− 2a2

3a4
+∆

, (4.83)

x3 = − a3
4a4

+
1

2

√

a23
4a24

− 2a2
3a4

+∆− 1

2

√

√

√

√

√

a23
2a24

− 4a2
3a4

−∆+
−a3

3

a3
4

+ 4a3a2

a2
4

− 8a1

a4

4
√

a2
3

4a2
4

− 2a2

3a4
+∆

, (4.84)

x4 = − a3
4a4

+
1

2

√

a23
4a24

− 2a2
3a4

+∆+
1

2

√

√

√

√

√

a23
2a24

− 4a2
3a4

−∆+
−a3

3

a3
4

+ 4a3a2

a2
4

− 8a1

a4

4
√

a2
3

4a2
4

− 2a2

3a4
+∆

. (4.85)

Because O(1) < 0 and limg→∞ O(g) = ∞, O(g) has at least one root in (1,∞). Because O(0) = 8µ2
1 > 0

and O(1) = −λ2(λ1 + 2µ1) < 0, O(g) has at least one root in (0, 1). Because O(0) = 8µ2
1 > 0 and

limg→−∞ O(g) = ∞, O(g) has either two or no roots in (−∞, 0). Next, we prove O(g) has only one root

in (0, 1).

From
∑2

i=1
λi

µi
< 2, we get that µ2 > λ2µ1

2µ1−λ1
. Then we discuss the following three cases:

1. If λ2µ1

2µ1−λ1
≥ λ2+λ1+4µ1

2 , then µ2 > λ2+λ1+4µ1

2 , i.e., a3 = λ1(2µ2 − λ2 − 4µ1 − λ1) > 0. Note from

(4.82) that, in this case, x1 is either a complex root or a negative real root:

(a) If x1 is a complex root, because of the Complex Conjugate Root Theorem (i.e., Jeffrey 2005),

x2 must be the other complex root. Obviously x4 ≥ x3, so we know x4 ∈ (1,∞) and

x3 ∈ (0, 1).

(b) If x1 is a negative real root, because O(g) has either two or no roots in (−∞, 0), O(g) must

have two negative real roots. Therefore, O(g) has only one root in (0, 1).

2. If λ2µ1

2µ1−λ1
< λ2+λ1+4µ1

2 and µ2 > λ2+λ1+4µ1

2 , then as in the first case, we know x4 ∈ (1,∞) and

x3 ∈ (0, 1).

3. If λ2µ1

2µ1−λ1
< λ2+λ1+4µ1

2 and λ2µ1

2µ1−λ1
< µ2 ≤ λ2+λ1+4µ1

2 , we let ǫ = λ2+λ1+4µ1

2 − µ2 (i.e., 0 ≤ ǫ <
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λ2
1+2λ1µ1+λ2λ1−8µ2

1

2(λ1−2µ1)
), O1(g) = −2λ1g

3 +2(λ1 +2µ1)g
2 − 4µ1g and O2(g) = λ2

1g
4 +(−λ2

1 +2λ1µ1 −

λ2λ1 − 4µ2
1)g

2 − 2µ1(2µ1 + λ1 + λ2)g + 8µ2
1, so that O(g) = ǫR1(g) +O2(g).

O1(g) and O2(g) have some properties that are easy to derive that can be used to identify the

root we want.

• O1(g) is a convex function on [0, 1] and O1(0) = O1(1) = 0.

• O2(g) is a decreasing function on [0, 1], O2(0) = 8µ2
1 > 0 and O2(1) = −λ2(λ1 + 2µ1) < 0.

To prove O2(g) is a decreasing function on [0, 1], we just need to prove the first derivative of

O2(g) is negative, i.e., O
′
2(g) = 4λ2

1g
3+(4λ1µ1−2λ2

1−2λ2λ1−8µ2
1)g−(4µ2

1+2λ1µ1+2λ2µ1) <

0, for ∀g ∈ [0, 1].

Obviously, O′
2(0) = −(4µ2

1 + 2λ1µ1 + 2λ2µ1) < 0 and O′
2(1) = −2(4µ2

1 − λ2
1) − 2µ1(2µ1 −

λ1) − 2λ2λ1 − 2λ2µ1 < 0. We know the second derivative of O2(g) is O′′
2 (g) = 12λ2

1g
2 +

(4λ1µ1 − 2λ2
1− 2λ2λ1 − 8µ2

1) and O′′
2 (0) = −4µ1(2µ1−λ1)− 2λ2

1− 2λ2λ1 < 0. If there exists

a point ḡ in [0, 1] such that O′
2(ḡ) > 0, then O′

2(g) must have two critical points in [0, 1],

i.e., O′′
2 (g) must have two roots in [0, 1]. However, we know O′′

2 (g) has one negative root and

one positive root. Therefore, O′
2(g) < 0 for ∀g ∈ [0, 1]. Then, we know O2(g) is a decreasing

function for ∀g ∈ [0, 1].

It seems obvious that for ∀ǫ ≥ 0, O(g) = ǫR1(g) +O2(g) has only one root in (0, 1).

Hence, we proved O(g) has only one root in (0, 1). Then, we just need to pick up the root in (0, 1)

from the four roots of O(g), which is not difficult. Once we get g, solving (4.77) and (4.79) gives the

corresponding ∆B
0 and κ as given in Lemma 3.

Proof of Lemma 4

As in the Proof of Lemma 3, we write (4.44− 4.46) in another form:

F1 =
(λ1 + µ2 + λ2B0)F0

λ1 + λ2B0
=

2λ1 + 2µ2 − λ2∆
B
0

2λ1
F0, (4.86)

F2 =
1

λ1
((λ1 + λ2 + µ1 + µ2)F1 − (λ2 + µ1)F0 − λ2B1(F1 − F0)− µ2), (4.87)

Fi+1 =
1

λ1
((λ1 + λ2 + 2µ1)Fi − 2µ1Fi−1 − λ2Bi(F1 − F0)− λ2F0) for i ≥ 2. (4.88)

Let ∆F
i = Fi+1 − Fi be the step difference of the sequence Fi. So, we have

Fi = F1 +

i−1
∑

j=1

∆F
j for i ≥ 2.
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Because Fi ∈ [0, 1], we have limi→∞ ∆F
i = 0. Using (4.86), we get ∆F

0 = µ2F0

λ1+λ2B0
. Similarly, from

(4.86− 4.88), we get

∆F
1 =

1

λ1
((λ1 + λ2 + µ1 + µ2 − λ2∆

B
0 )∆

F
0 − µ2),

∆F
2 =

1

λ1
((λ1 + λ2 + 2µ1)∆

F
1 − (λ2κg + µ1 + µ2)∆

F
0 − (λ1 + λ2B0)∆

F
0 + µ2),

∆F
i =

(λ1 + λ2 + 2µ1)

λ1
∆F

i−1 −
2µ1

λ1
∆F

i−2 −
λ2κ∆

F
0

λ1g
gi for i ≥ 3.

Note that ∆F
i is a linear non-homogeneous function of ∆F

i−1 and ∆F
i−2, so ∆F

i is a non-homogeneous

recurrence sequence (see e.g., Green and Knuth (1990) Chapter 2), with solution of the form

∆F
i = ξ1h

i
1 + ξ2h

i
2 + ξ3g

i,

where g is given in Lemma 3; h1 and h2 are roots of λ1h
2 − (λ1 +λ2+2µ1)h+2µ1 = 0. We know one of

the two roots is greater than one. Because ∆F
i converges to zero, with the same discussion in the proof

of Lemma 3, we get that ∆F
i has the form:

∆F
i = ξ1h

i + ξ2g
i, i ≥ 1

where h = 1
2λ1

((λ1 + λ2 + 2µ1) −
√

(λ1 + λ2 + 2µ1)2 − 8λ1µ1). To find ξ1, ξ2 and ∆F
0 , we solve three

equations

∆F
1 = ξ1h+ ξ2g, ∆F

2 = ξ1h
2 + ξ2g

2, ∆F
3 = ξ1h

3 + ξ2g
3.

Notice that ∆F
i , i = 1, 2, 3 are all linear functions of ∆F

0 , so it is not hard to get the expression for ξ1,

ξ2 and ∆F
0 in Lemma 4.

Proof of Lemma 5

Subtracting the (i − 1)st equation from the ith equation given in (4.52-4.53) yields

2µ1Πi = (λ1 + λ2 + 2µ1)Πi−1 − λ1Πi−2 for i ≥ 3.

This means that Πi is a linear homogeneous recurrence sequence. The solution to the recurrence sequence

takes the form

Πi = ω1f
i
1 + ω2f

i
2, i ≥ 1,
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where ω1 and ω2 are roots of

2µ1f
2 − (λ1 + λ2 + 2µ1)f + λ1 = 0. (4.89)

Because Πi ∈ [0, 1], we know either fj < 1 or ωj = 0 for both j = 1, 2. Equation (4.89) has one root

greater than one and the other root smaller than one. For the root greater than one, the corresponding

ωj must be zero. Thus, Πi takes the form

Πi = ωf i for i ≥ 1, (4.90)

where f = 1
4µ1

(λ1 + λ2 + 2µ1 −
√

(λ1 + λ2 + 2µ1)2 − 8λ1µ1), which is the root smaller than one.

Substituting Π1 in (4.90) gives ω = Π1

f
. From (4.51), we get

Π1 =
1

µ1
((λ1 + λ2)Π0 − λ2(1− ϕ1)).

Therefore, from

1 =

∞
∑

i=0

Πi =
Π1

1− f
+Π0 =

(λ1 + λ2)Π0 − λ2(1 − ϕ1)

µ1(1− f)
+ Π0

we get Π0 = µ1(1−f)+λ2(1−ϕ1)
µ1(1−f)+(λ1+λ2)

. Therefore, Πi can be expressed as a function of ϕ1 as in (4.54).

4.10.4 Algorithms

Algorithm 4 Calculate the transition matrix of the EMC for ∀c ≥ 2.

Step 1: Let Γc→c, Γc→(c−1) and Γc→(c+1)+ be the one-step transition matrices from Sc∪BPc to Sc∪

BPc, Sc−1 and ∪∞
j=c+1Sj. Set Ψc1 =

[

Ic×c 0c×1

]

· (I−Γc→c)
−1Γc→(c−1) and Ψc2 =

[

Ic×c 0c×1

]

·

(I − Γc→c)
−1Γc→(c+1)+. Set A0 = Ψc1 and let i = 1.

Step 2: Set Ai = Ψc2

[

A T
i−1 · · · A T

1 A T
0 0c×∞

]T

.

Step 3: Let i = i+1. If max(Ai) > Tolerance, then go to Step 2; else set Limit = i and i = c− 1,

and go to Step 4

Step 4: Let Γi→i, Γi→(i−1) and Γi→(i+1)+ be the one-step transition matrices from Si ∪BPi to Si ∪

BPi, Si−1 and ∪∞
j=i+1Sj. Set Ψi1 =

[

Ic×c 0c×1

]

· (I −Γi→i)
−1Γi→(i−1), and Ψi2 =

[

Ic×c 0c×1

]

·

(I − Γi→i)
−1Γi→(i+1)+ . Let j = 0.

Step 5: If j < i − 1, then set Mi→j = 0c×c; else if j = i − 1, then set Mi→j = Ψi1; else if

i ≤ j < c − 1, then set Mi→j = Ψi2

[

MT
i+1→j · · · MT

c−2→j MT
c−1→j 0c×∞

]T

; else set Mi→j =

Ψi2

[

MT
i+1→j · · · MT

c−1→j A T
j−c+1 · · · A T

0 0c×∞

]T

.

Step 6: Let j = j + 1. If j < Limit, then go to Step 5; else let i = i − 1. If i ≥ 1, then let j = 0

and go to Step 5; else let i = 0 and go to Step 7.
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Step 7: Let Γ0→0 and Γ0→1+ be the one-step transition matrices from S0∪BP0 to S0∪BP0, ∪∞
j=1Sj.

Set Ψ0 =
[

Ic×c 0c×1

]

· (I − Γ0→0)
−1Γ0→1+ . Let j = 0.

Step 8: If 0 ≤ j < c − 1, then set M0→j = Ψ0

[

MT
1→j · · · MT

c−2→j MT
c−1→j 0c×∞

]T

; else

if M0→j = Ψ0

[

MT
i+1→j · · · MT

c−1→j A T
j−c+1 · · · A T

0 0c×∞

]T

.

Step 9: Let j = j + 1. If j < Limit, go to Step 8; else set G = A0 and go to Step 10.

Step 10: Set G =
∑Limit

i=0 AiG
i.

Step 11: Ifmax(G−∑Limit
i=0 AiG

i) > Tolerance, then go to Step 10; else set L̂ =













M0→0 · · · M0→c−1

...
. . .

...

Mc−1→0 · · · Mc−1→c−1













B̂ =
[

0c×c(c−1) A0

]

, F̂(i) =













M0→i

...

Mc−1→i













for i = c, . . . , Limit, B =A0, F
(0) = L = A1, F

(i) = Ai+1

for i ≥ 1, Ŝ(i) =
∑Limit

j=i F̂(j)Gj−i for i ≥ 1 and S(i) =
∑Limit

j=i F(j)Gj−i for i ≥ 0, and go to Step 12.

Step 12: Solve
[

π
(0)
1×c2

π
(1)
1×c π

(∗)
1×c

]

·











1c2×1 L̂ F̂(1) −∑Limit
j=3 Ŝ(j)G

∑Limit
j=2 F̂(j) +

∑Limit
j=3 Ŝ(j)G

1c×1 B̂ L−∑Limit
j=2 S(j)G

∑Limit
j=1 F(j) +

∑Limit
j=2 S(j)G

1c×1 0c×c B−∑Limit
j=1 S(j)G

∑Limit
j=1 F(j) + L+

∑Limit
j=1 S(j)G











=
[

1,01×(c2+2c)

]

.

Step 13: Set F̂[k,i] =
∑Limit

j=i jkF̂(j) for i ≥ 1 and k =0 or 1, F[k,i] =
∑Limit

j=i jkF(j) for i ≥ 1,

b[1] = −π(0)
∑Limit

j=1 (j + 1)F̂(j) − π(1)(2L+
∑Limit

j=1 (j + 2)F(j))− π(∗)(L+
∑Limit

j=1 (j + 1)F(j)), and c[1] =

−π(0)
∑Limit

j=2 jF̂[0,j]1
T − π(1)

∑Limit
j=1 (j + 1)F[0,j]1

T − π(∗)∑Limit
j=1 jF[0,j]1

T .

Step 14: Solve r[1] ·
[

B+ L+
∑Limit

j=1 F(j), (F[1,1] −B)1T
]

=
[

b[1], c[1]
]

.

Step 15: Let E
[

L2
]

= π
(0)
1×c2

·
[

01×c 11×c · · · (c− 1)1×c

]T

+ π
(1)
1×c ·

[

c1×c

]T

+ (r[1] + (c−

1)π
(∗)
1×c) · 1T and Stop.
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