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Abstract 

As the demand for direct petroleum substitutes increases, biorefineries are poised to become 

centers for conversion of biomass into fuels, energy, and biomaterials.  A distributed model 

offers reduced transportation, tailored process technology to available feedstock, and increased 

local resilience.  Oilseeds are capable of producing a wide variety of useful products additive to 

food, feed, and fuel needs.  Biodiesel manufacturing technology lends itself to smaller-scale 

distributed facilities able to process diverse feedstocks and meet demand of critical diesel fuel for 

basic municipal services, safety, sanitation, infrastructure repair, and food production.  

Integrating biodiesel refining facilities as tenants of eco-industrial parks presents a novel 

approach for synergistic energy and material exchanges whereby environmental and economic 

metrics can be significantly improved upon compared to stand alone models.   

This research is based on the Catawba County NC EcoComplex and the oilseed crushing and 

biodiesel processing facilities (capacity-433 tons biodiesel per year) located within.  Technical 

and environmental analyses of the biorefinery components as well as agronomic and economic 

models are presented.  The life cycle assessment for the two optimal biodiesel feedstocks, 

soybeans and used cooking oil, resulted in fossil energy ratios of 7.19 and 12.1 with carbon 

intensity values of 12.51 gCO2-eq/MJ and 7.93 gCO2-eq/MJ, respectively within the industrial 

ecology system.  Economic modeling resulted in a biodiesel conversion cost of $1.43 per liter of 

fuel produced with used cooking oil, requiring a subsidy of $0.58 per liter to reach the break-

even point.  As subsidies continue significant fluctuation, metrics other than operating costs are 

required to justify small-scale biofuel projects.    
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CHAPTER 1 

Introduction 

 Fossil fuels have given rise to modern industry, industrialized nations, and are the driver 

of today’s society characterized by mobility, high material consumption, and high quality of life.  

They account for 82% of total energy use in the United States and 86% of global energy use 

(EIA, 2013; IEA, 2011).  This resource powering the modern age is inherently non-renewable 

and subject to increasing scarcity and depleting reserves exacerbated by insatiable demand.  The 

extraction and use of fossil fuels have resulted in the unprecedented and unevenly distributed 

accumulation of wealth and technological advancement.  This achievement has compromised 

political, societal, economic systems, and the biosphere through pollution and emissions to air, 

water, and soil that threaten the planet’s ability to provide essential ecosystem services for our 

very own species.  This makes Amory Lovins (2011), a leader in sustainable energy, ponder, 

“What if we could make energy do our work without working our undoing?” (p. 232).  

Rethinking energy and navigating the impending transition to a new energy matrix that includes 

smart utilization, efficiency, and renewables to dramatically reduce fossil fuel usage is one of the 

concurrent unparalleled challenges of the 21st century.  Adapting to a changing global climate 

and providing resources for a growing human population are inextricably linked with energy use, 

availability, and demand.   

 Of the energy sectors, transportation is particularly reliant on fossil fuels whereby 95% of 

the US demand is met by petroleum based liquid fuels (EIA, 2013).  Petroleum derived liquids 

exemplify desirable fuel attributes such as high energy density and ease of transport and storage.  

Virtually all infrastructure related to the end use of liquid fuels is based on three petroleum 

derived fuels: gasoline, kerosene, and diesel.  Therefore any competitive alternative must have 
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the ability to “drop-in” to current infrastructure.  According to the Energy Information 

Administration, in 2013 the United States consumed 18.7 million barrels per day of petroleum 

fuels and 0.95 MMbd of renewable biofuels (0.87 ethanol and 0.083 biodiesel).  Additionally, 

petroleum is the platform upon which the polymer chemical industry was founded and 

responsible for the plastics industry, the third largest industry in the United States with over 

16,200 manufacturing facilities employing over 800,000 workers (Plastics-Industry-Trade-

Association, 2014).  Global plastics consumption is on the order of 170 million tons annually 

with economic value of $560 billion (Biron, 2007).  The myriad of commodity products used in 

everyday life, from bottles to packaging to product moldings, makes one realize the ubiquitous 

yet precious value of this resource.  

 Biomass is the only piece of the renewables matrix that can directly replace petroleum by 

producing energy and biobased products, such as bioplastics, and polymers.  Biomass is 

currently responsible for over half of U.S. renewable energy consumption, and represents 2.1% 

of the total energy supply (EIA, 2013).  The emerging biobased economy, whose three pillars 

include bioenergy, biofuels, and biomaterials, is poised for substantial growth.  Worldwide 

consumption of biofuels in the transportation sector is forecasted to increase from a current level 

of 6% of the liquid fuels market to roughly 8% by 2022 with a corresponding production 

increase from 122 to 193 billion liters per year of drop-in fuels (Shepard & Gartner, 2014).  

 Interest in biofuels, first piqued by the oil embargos of the 1970s, then propelled by 

policy and mandates in the name of energy security, environmental benefit, and economic 

development, has evolved into a significant player in the energy sector.  The past decade has 

been a time of unprecedented funding and investment in research and development in the larger 

biomass energy arena.  Principal areas have been second generation feedstocks and technologies 
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that avoid the contentious issues of land-use change and competition with food.  Advancements 

in the associated biomaterials sector have also been developed during this period, built primarily 

upon polylactic acid polymers from conversion of corn starch.       

 Trends in the transportation sector suggest that light duty personal transportation will 

move towards increased fuel economy and electrification, while heavy-duty engines, the 

workhorses of the industrial economy, will continue to rely on liquid fuels (IEA, 2013).  Though 

questions regarding long-term viability of the internal combustion engine persist, renewable 

diesel fuel represents a promising bridge technology.  Petroleum diesel is the energetic backbone 

of industrial agriculture, transport, and heavy-duty applications.  Diesel powered equipment is 

fundamental to food production, construction of the built environment, infrastructure 

maintenance, and transportation of goods in both short and long haul via truck, rail, and ship.  

Securing this energy source is paramount for any nation’s security.   

 The amount of “critical” diesel fuel (i.e. fuel needs for basic municipal services, 

sanitation, safety vehicles, infrastructure repair, and food production) can be achieved through 

biorenewable feedstocks (Knothe, Krahl, & Gerpen, 2005).  The development of second 

generation technologies will ultimately increase the pathways to renewable diesel from cellulosic 

materials, algae and genetically modified bacteria and yeast that convert sucrose to a diesel 

compatible hydrocarbon (Lipp, 2008).  Significant market penetration for these emerging 

technologies remains in a nebulous time frame; however, the National Biodiesel Board has stated 

its ambitious goal of supplying 10% of the US diesel fuel mix with biodiesel by 2022 (NBB, 

2013a).  Feedstocks to provide this fuel are expected to become increasingly diverse.   
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1.1 Proposed Solution: Distributed Biorefineries 

 As the demand for direct petroleum substitutes increases, biorefineries are poised to 

become distributed centers for conversion of biomass into fuels, energy, and bioproducts.  A 

distributed model offers many advantages such as reducing transportation cost of raw materials, 

tailoring process technology to available feedstock, and supplying local demand.  This 

decentralized approach is contrary to concentrated production, such as conventional petroleum 

refineries, which offer incredible economies of scale but are costly to build, maintain, and offer 

little resilience in a rapidly transforming energy economy.  Biodiesel manufacturing in particular 

lends itself to smaller-scale distributed facilities.  Its technical process is simpler, reactions take 

place at atmospheric pressures with low quality thermal energy input, and it has the ability to 

handle diverse feedstocks including common wastes such as used cooking oils and trap grease.  

Integrating biodiesel refining facilities as tenants of eco-industrial parks (EIPs) presents a novel 

approach to realizing the potential for synergistic energy and material flows whereby 

environmental and economic metrics can be optimized and significantly improved upon 

compared to stand alone models.   

 Oilseed biorefining, integrated farm to fuel systems, and the biodiesel production chain 

exemplify symbiotic relationships within an EIP.  Oilseed crops are grown on non-traditional 

agronomic buffer lands irrigated with re-use water and fertilizer produced on-site, then extracted 

to produce vegetable oil and protein meal, a valuable feed commodity.  Vegetable oil, raw, semi-

refined, or recycled as used cooking oil, is transesterified to produce biodiesel and glycerin while 

utilizing non-fossil based electricity and waste process heat from a co-generation plant.  

Biodiesel is consumed in heavy duty engines while the crude glycerin is refined into fertilizers, 

technical grade glycerol, or burned in micro-turbines for power generation.  Waste is minimized 
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and the process is additive to food, feed, and energy systems while mitigating carbon emissions.  

Producing biofuels is manufacturing that creates jobs throughout the supply chain from plant 

operators to farmers.  Municipal landfill sites offer many advantages for co-locating biorefineries 

including: good infrastructure (roads, power, and water), fuel demand for heavy mobile 

equipment, and biogas production that can be developed as an economical energy source for 

process heat. 

 Though biodiesel manufacturing has become established and economically viable as an 

independent entity, it has not been sufficiently developed in regard to producing high-value low-

volume products in addition to low-value high-volume fuels.  Additionally, biodiesel 

manufacturing has not been proven at a smaller-scale (less than 500,000 liters per year) or 

incorporated into eco-industrial parks to lower operating costs and gain environmental 

advantage.  This is in part due to the nature of the endeavor.  There are still a relatively small 

number of biodiesel facilities, and an even smaller number of eco-industrial parks.  Finally, 

economics as the preeminent metric of evaluation may likely preclude the concept of regional 

biorefineries from taking root.  

1.2 Study Site: The NC EcoComplex 

 The EcoComplex and Resource Recovery Facility of Catawba County, North Carolina is 

developing an eco-industrial park that synergistically co-locates private and public partners to 

employ industrial symbiosis by combining industry, waste management, energy production, and 

university research.  The EcoComplex is a 326 hectare site centered on the Blackburn Landfill 

with 2.4 million metric tons of waste in place that serves the 156,000 county residents, receiving 

484 tons/day of MSW and 80 tons of construction wastes per day.  Anchoring the EIP are three 

GE-Jenbacher co-generation units each with 1MWe capacity that convert landfill gas into 
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electricity and heat.  Existing components include a municipal solid waste (MSW) landfill, a 

construction and demolition (C&D) landfill, a recycling center, a landfill gas fueled electrical 

generation facility, the Catawba County-Appalachian State University Biodiesel Research, 

Development, and Production Facility with capacity of 490,000 liters per year, a 4-ton per day 

Crop Processing and Oilseed Crush Facility, a high tech dimensional lumber facility, and a pallet 

recycling facility.   

 The biodiesel facility and crush facility are collectively considered the oilseed biorefinery 

system.  The biorefinery was conceptualized as an integral component of the EIP for three 

principal reasons: 1) utilize buffer lands to grow biodiesel feedstock, 2) use waste thermal input 

from the co-gen facility for process heat, and 3) provide fuel for the landfill operations.      

1.3 Dissertation Objectives  

 The overarching goal of this dissertation research is quantify, analyze, and interpret the 

components of oilseed biorefining using tools and methods offered by the multidisciplinary 

approach of industrial ecology.  The context for conducting this research is the backdrop of 

industrial ecology exchanges, primarily heat and material flows through the integrated system.  

Economic systems (capital, investment, and business studies) as well as policy, engineering, and 

legal elements will be presented to develop a holistic systems approach as they pertain to the 

core disciplines of Industrial Ecology.  The following questions address the technical, 

environmental, and economic feasibility of the proposed system.  

1. What are the technical bottlenecks and their pathways to optimization within biodiesel 

production from a mixed feedstock? 
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2. What improvements are made in Life Cycle Assessment (LCA) through this integrated 

model compared to conventional means (quantified in GHG emissions, Net Energy Ratio, 

and Fossil Energy Ratio)?  

3. After developing an economic model for biomass utilization at the EcoComplex 

Biodiesel facility, what are the key variables, and their pathways to optimization based on 

economic sensitivity analysis?   

1.4 Organization of the Dissertation  

 This dissertation consists of eight chapters.  Chapter two is the review of literature 

presenting background of key components of the interdisciplinary research area.  Chapter three 

introduces the Catawba County NC EcoComplex, the study site, source of data, and inspiration 

for this dissertation.  Background and a historical perspective are presented as well as future 

endeavors for this developing EIP.  Chapter four outlines the material and energy balance of the 

oilseed biorefinery within the given system boundary.  A life cycle inventory (LCI) is created for 

the biorefinery system.  These flows are analyzed for technical bottlenecks and incongruities of 

the system.  Key recommendations are listed for improvements of the system.  Chapter five 

presents the life cycle assessment (LCA) of the system defined both in terms of energy balance 

and greenhouse gases.  The most common feedstocks currently used for biodiesel production 

(soybean, canola, sunflower, and used cooking oil) are compared.  Chapter six delivers an 

economic analysis for each piece of the integrated biorefinery.  Recommendations are included 

for pathways to improve current economic projections.  Chapter seven compiles an overall 

synthesis of results and discussion and finally, chapter eights provides conclusions and 

recommendations for future work.    
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CHAPTER 2 

Literature Review 

2.1 Industrial Ecology  

 The term industrial ecology produces a spontaneous reaction in some, insisting that it is a 

contradiction in terms, an oxymoron like deafening silence or freezer burn.  How can industrial 

be attributed to any natural system that examines the relationships of organisms to one another 

and their physical surroundings?  It is this perspective that separates the biosphere from the 

technosphere as mutually independent.  On a planet with finite resources one realizes that the 

industrial system is located within the bounds of the natural earth system.  Industrial ecology 

explores this perspective to ask how industrial systems can resemble an ecosystem in terms of 

materials, energy, and information flows where there is no concept of waste and organisms exist 

in homeostasis.  This thinking has been manifest intuitively for some time.  Forces that have 

shaped human evolution: colonialism, the industrial revolution, fossil fuel use, and the internet, 

further the evolving concept of how humans use technology to interact with their environment.  

Population growth and the progression of people living in urban areas concentrate energy and 

material flows, accelerating the industrial aspect of human civilization and the imperative for 

these systems to reduce impacts to the environment.       

 2.1.1 IE Principles. The premise for Industrial Ecology (IE) is based upon the synergetic 

relationships found in natural ecosystems where the flow of energy and materials are efficiently 

optimized.  IE uses the idea of a roundput, where the recycling of matter and cascading of energy 

are in accordance with natural ecosystem behavior (Korhonen, 2004).  In nature, these 

interactions are the results of millions of years of evolution and the formation of biological 

niches.  In relation to modern industries this has also been coined, waste equals food, where all 
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materials are either technical or biological nutrients that flow back into the making of new 

products (McDonough & Braungart, 2002).    

 In industrial ecology, symbiotic and collaborative possibilities of interacting firms 

(industries) are offered by their geographic proximity (M. R. Chertow, 2000).  Eco-industrial 

parks (EIPs) are the product of synergetic interaction that looks to optimize local economies 

while decreasing negative environmental externalities.  The concept of industrial metabolism 

captures the essence of an eco-industrial park, and is studied through analysis of material and 

energy flows (Deschenes & Chertow, 2004).   

 Industrial symbiosis (IS) is a defining aspect of applied industrial ecology and the 

assessment of eco-parks.  Relationships that describe IS can be categorized in five principal ways 

(Graedel & Allenby, 2010).  Category 1 is through waste exchanges such as an automobile scrap 

yard that recovers and sells useful parts and prepares the bulk material for recycling.  Second is 

within a facility, firm, or organization where materials or products are exchanged within given 

boundaries of a single organization.  A modern petrochemical complex practices this type of 

exchange.  The third category is among co-located firms in a defined industrial area where firms 

organize themselves in close proximity to exchange energy, water, materials, or services.  An 

example is a brewery whose byproducts of spent grain and yeast are used as inputs for 

mushroom, pig, fish, and vegetable farming.  The fourth category is described as among firms 

not co-located.  Kalundborg Denmark’s EIP contains firms that exchange steam, fly ash, and 

water over a 3 km radius.  The industrial park was not planned for IS, however the economic 

advantage offered through material exchange was highly motivating.  Lastly, the fifth category is 

among firms organized across a broader region which covers a broader spatial range.  This 

category is the most difficult to realize and would likely require active management.                 
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 Drivers for incentivizing industrial ecosystems vary widely though likely include 

financial opportunities that make good business sense.  Lower input costs, lower operating costs, 

and increased revenues are strong motivators to engage in material and energy exchanges with 

other firms.  Other drivers include resource scarcity, most commonly water, reduced liability 

from potentially harmful or toxic byproducts, staff mobility where highly trained employees may 

offer expertise to partnering firms or businesses, and a focus on sustainability as a means for 

distinction or to achieve internal goals or mandates.  Barriers to implementing IE systems are 

also many.  Exchanges and joint approaches may cause excessive and unplanned costs.  The 

dependence on other firms that have separate administrations and management systems to 

provide material inputs adds risk and liability in the case where one firm fails or increases its 

costs.  Information is another barrier whereby the firms involved share a lack of understanding of 

the process inputs and outputs of potential symbiosis.  Firms that are interested in IS may not 

have an appropriate technical pairing where inputs and outputs simply to not match.  Regulation 

may prevent exchanges in some cases, in particular when dealing with hazardous materials.  

Finally, motivation is a significant barrier.  Committing to collaborative and symbiotic 

relationships is largely outside the norm for traditional business and is requisite to achieve high 

levels of industrial symbiosis (Gibbs & Deutz, 2007).        

 2.1.2 Applying Ecology to Industrial Systems. Industrial activities have long been 

congregated in centers based on practical factors including infrastructure, roads, utilities, access 

to urban areas, and local natural resources.  Early industrial parks developed organically without 

extensive planning, because of simple efficiencies gained by co-location of industrial activity to 

access available resources.  An early well-documented site is Prestongrange, Scotland.  The site 

located at East Lothian near Edinburgh, UK on the Firth of Forth Bay, was blessed with surface 
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coal seams that were first extracted by Monks to evaporate sea water to produce salt for trade to 

peoples of the interior.  This activity began in the 14th century and gradually transitioned to glass 

works by the 17th century, to brick works and pottery by the 18th and 19th centuries with 

extensive coal mining (Cressey, Johnson, Haggarty, Turnbull, & Willmott, 2012).  Prestongrange 

was later home to one of the Cornish Beam engines used for water pumping as mines were built 

for continued coal extraction.  Though this site was common to many different industrial 

activities that did overlap, they were not necessarily practicing mutualism.  Prestongrange 

represents the early age of the industrial revolution and similar sites can be found around the 

globe.  The evolution necessary to advance industrial activities to become more technically, 

economically, and environmentally efficient by incorporating ecological based relationships 

developed in the 20th century.    

 Eco-Industrial Parks have three guiding principles: (a) reducing and minimizing energy 

requirements, (b) using industrial wastes as inputs, and (c) the development of a diverse and 

resilient system (Frosch & Gallopoulos, 1989).  EIPs operate at micro, meso, and macro-levels 

where the clustering of firms offers unique opportunities for value adding.  In the seminal work 

“Industrial Symbiosis: Literature and Taxonomy,” M. R. Chertow (2000) gives the following 

succinct definition of an eco-industrial park: 

An EIP is defined as “a community of manufacturing and service businesses located 

together on a common property.  Member businesses seek enhanced environmental, 

economic, and social performance through collaboration in managing environmental and 

resource issues.  By working together, the community of businesses seeks a collective 

benefit that is greater than the sum of individual benefits each company would realize by 

only optimizing its individual performance.  The goal of an EIP is to improve the 



14 

 

economic performance of the participating companies while minimizing their 

environmental impacts.  Components of this approach include green design of park 

infrastructure and plants (new or retrofitted); cleaner production, pollution prevention; 

energy efficiency; and intercompany partnering.  An EIP also seeks benefits for 

neighboring communities to assure that the net impact of its development is positive.” (p. 

320). 

 Eco-Industrial Parks can be a new industrial model that reconcile the three dimensions of 

sustainable development: social, economic, and environmental (Elabras Veiga & Magrini, 2009).  

The World Environment & Development Conference of 1992 (ECO 92 in Rio de Janeiro) helped 

to define the three “E’s” of sustainability: environmental integrity, social equity, and economic 

efficiency.  This has also been translated into the “triple bottom line” approach now common in 

the entrepreneurial sector of the green economy.   

 Though the potential for industrial ecology and eco-industrial parks represents a potential 

breakthrough for sustainable development, there is little evidence and empirical data on what has 

been done.  This is commonly referred to as the Implementation Gap (Gibbs & Deutz, 2007).  

This gap also refers to the relatively well developed theory and essentially underdeveloped 

practice of industrial ecology. 

 Appendix A lists Eco-Industrial Parks commonly referred to in the literature.  EIPs are 

listed by location, date, characteristics and firms present, and exchanges that take place.  Many 

of these parks were originally listed on President’s Council on Sustainable Development under 

President Clinton’s initiative for eco-industrial park development.  The Kalundborg Denmark 

eco-industrial park was the first to create a model of industrial symbiosis,  receiving international 

recognition in 1990 (Chertow, 1998).   The firms involved are an oil refinery, power station, 
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gypsum board facility, pharmaceutical plant, and the City of Kalundborg.  By sharing and 

recycling water, overall water usage declined by 25% and waste process heat was piped to 5,000 

district homes, fish farms in greenhouses, and neighboring businesses.  Additionally, a cement 

manufacturer uses byproducts from the power plant’s coal burners and the plant’s scrubbers 

produce gypsum wall board.  This landmark case led to clear economic efficiencies as well as 

environmental, personal, and equipment benefits such as reduced maintenance. 

 The well documented success of Kalundborg gave rise to the promotion of EIPs to 

implement closed-loop systems that produce compatible outputs and inputs for interacting firms.  

Kalundborg has inspired planners and designers to rethink and redesign industrial and 

manufacturing activities worldwide. 

 2.1.3 Eco-Industrial Parks. Since the 1970s EIPs have been designed and developed 

across a spectrum of firms from high-tech manufacturing to waste management, to farming and 

agricultural systems.  The Intervale Center in Burlington VT consists of a 1.6 hectare (4 acre) 

site centered on a 60MW biomass gasification co-generation unit.  Heat is supplied to bioshelter 

greenhouses for food production and water purification from ecological machines (Chertow & 

Lombardi, 2005).  A commercial composting operation diverts organic wastes from landfilling to 

produce soil amendment for the farming operations.  Exchanges include wastes, heat, and 

technology transfer.  The Civano Industrial Eco-Park in Tucson AZ co-locates firms in the 

electronics industry including makers of photovoltaics, electric vehicles, and circuit boards.  The 

goals of symbiosis are to exchange water and material inputs while reducing transportation and 

increase each firms competitiveness (Spitzer, 1997).  

 The Rutgers EcoComplex Environmental Research and Extension Center is an EIP 

located at a former landfill site for the greater New York City metro area in northeast New 
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Jersey.  This site is centered on a landfill gas to energy project, a 250kW micro-turbine.  Waste 

heat from the micro-turbine is supplied to greenhouses that support aquaculture and vermi-

compost components.  The site also contains on-going research efforts supported by Rutgers 

University including small-scale landfill gas cleaning system, a fuel cell, and algae to biofuel 

work.  The Rutgers EcoComplex is also a small business incubator to foment start-ups focused 

on alternative energy innovations (Rutgers-EcoComplex, 2013).         

 ReVenture Park is an EIP in planning stages near Charlotte, NC to redevelop an 

abandoned Brownfield industrial property containing retired facilities and discarded equipment.  

The site occupies a former 260 hectare superfund site along the Catawba River that was home to 

an extensive textile dye manufacturing facility with over 46,000m
2
 of existing industrial space.  

Planned components of ReVenture incorporate waste to energy, solar photovoltaic, wastewater 

treatment and reuse facility, greenhouses, in-vessel composting, a recycling center, and an 

incubator space with research and classrooms facilities (Marks, 2011). 

 The idea of incorporating biomass energy and biorefining facilities into EIPs follows a 

logical progression in the path toward distributed biorenewable energy systems and sustainable 

resource management.  It also provides an opportunity to improve economic and environmental 

efficiencies.  While biomass energy plants often employ principles of IE, such as sugar cane-

based ethanol facilities in Brazil that use spent cane stalks (bagasse) for process heat, the author 

is unaware of commercial scale biofuels production incorporated into an eco-industrial park at 

present time.     

2.2 Biorefining 

 The term biorefinery was established in the 1990s as a facility that integrates biomass 

conversion processes and equipment to co-produce fuels, power and chemicals from diverse 
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biomass sources.  The term biomass refers to any organic matter that is available on a renewable 

basis (excluding old-growth forests) that include dedicated energy crops and trees, grains and 

cereals, agricultural residues, wood and wood residues, animal wastes, aquatic plants, and other 

waste material.  These raw materials are ultimately derived from photosynthesis where 

worldwide terrestrial biosynthesis is estimated at 170 billion tons annually  (Kamm, Gruber, & 

Kamm, 2006).  The basic compounds are carbohydrates, mainly in the form of cellulose, starch, 

and saccharose, lignin, oils, and proteins.  The US Department of Energy uses the following 

1997 definition, “a biorefinery is an overall concept of a processing plant where biomass 

feedstocks are converted and extracted into a spectrum of valuable products.”  The US National 

Renewable Energy Lab (NREL, 2009) defines a biorefinery as “a facility that integrates biomass 

conversion processes and equipment to produce fuels, power, and chemicals from biomass.”  The 

biorefinery concept is analogous to today’s petroleum refineries, which produce multiple fuels 

and products from petroleum oil.   

 The history of biorefining actually predates petroleum oil refineries as 19
th

 century 

scientists, primarily German chemists, discovered starch hydrolysis, wood saccharification, 

furfural, lactic acid, lipids, and the basis of industrial chemicals and extraction technologies 

(Kamm, et al., 2006).  It was not until post WWII that cheap petroleum became the feedstock of 

choice for industrial production of fuels, and chemicals.  An example of a modern biorefinery is 

the wet-milling of corn whose products include corn oil, corn gluten, feed and meal, ethanol, and 

high fructose corn syrup.  Another example is the Austrian Green Biorefinery, primarily based 

on grass feedstocks.  This example takes a broader and more holistic approach to incorporating 

bioenergy crops in the landscape.  Biorefining systems within proper land management 
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utilization can result in the following benefits: water cycle regulation, tourism and attractive 

landscapes, job creation in rural areas (Kromus et al., 2004).   

 In essence biorefineries are tasked with taking on the role of the traditional petroleum 

refinery to provide energy and materials while being held accountable to sustainability metrics 

including life cycle assessment, minimizing environmental impact though green chemistry, 

providing jobs and acknowledging equity and maintaining economic viability.  This is a 

significant challenge in the face rising demand for energy, fuels, and chemicals coupled with 

dwindling cheap energy to construct these facilities.   Biorefineries will likely look different than 

their predecessors, utilizing a range of feedstocks, showing diversity in size and scale, and 

providing products to more localized markets.  Cherubini (2010) adds that biorefineries of the 

future should strive to produce at least one high-value chemical/material (such as soap stock and 

fertilizers) besides low-value high-volume products (transport fuels).  This dual strategy 

produces favorable economics whereby the high volume products cover operating costs and the 

high value products result in profits.  It is likely that the majority of future biorefineries will 

focus on lignocellulosic feedstocks, as they cheapest and most widely available source of raw 

material that reduce direct competition with food systems. 

 2.2.1 Biorefinery Process Technologies. Processes used in biorefining are classified by 

type of feedstock and the technology deployed.  The following categories of biorefineries have 

been determined according to their functions: fast pyrolysis, gasification, sugar, energy crops, 

oilseed, and forest/lignocellulosic (Demirbas, 2009).  The biomass conversion system has two 

primary conversion process branches, thermochemical and biochemical.  Thermochemical 

process use high heat and pressure to transform solid biomass feedstocks into liquids 

(liquefaction), gases (gasification), and solid biochar which can be used as a high value solid 
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amendment.  Once biomass is converted into a liquid or gas, further refinement, reaction, or 

separation is accomplished through catalyzed synthesis such as Fischer-Tropsch or distillation.   

Thermochemical conversion technologies typically require significant investment in 

infrastructure.  Biochemical conversion processes occur at lower temperatures, pressures, and 

reaction rates and typically require less infrastructure investment than thermochemical processes.  

The most common transportation biofuels, ethanol and biodiesel, are examples of biochemical 

processes.  Figure 1 illustrates these two primary routes for processing biomass with associated 

feedstocks and technologies.      
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Figure 1. Concept Diagram of a Biorefinery System (adapted from Demirbas, 2009). 

 2.2.2 Oilseed Biorefining. The raw materials for the oilseed biorefinery are plant oils, 

fruits, seeds, and oil crops.  Grain production and oil extraction, both mature technologies, can be 

reinvented by their incorporation into biorefining systems.  Feedcake or meal, the primary co-

product of oil extraction, is a high quality protein source used extensively in livestock feed.  The 
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oil compound of interest is the carbon chain rich triglyceride which comprises greater than 95% 

of the oil by mass.  The remainder is a mixture of phosphatides, sterols, and antioxidants 

(tocopherols).  Refinement of food oils results in gums, lecithin, and sterols that can be used in 

additives, and nutraceuticals.  Non-food uses of vegetable oils include soaps, cosmetics, 

lubricants, greases, motor oils, paints, fatty alcohols for detergents, electrical transformer fluids, 

and methyl/ethyl ester solvents and engine fuels (M. K. Gupta, 2008).  Biodiesel is an ester based 

engine fuel that has been commercialized and resulted in an industry that consumes large 

volumes of triglycerides, primarily vegetable oils and animal fats.  See Figure 2 for oilseed 

biorefinery concept with processes and outputs. 
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Figure 2. Oilseed Biorefinery Concept with Processes and Outputs. 

 Industrial oilseed processing led to the development of process steps to ensure consistent 

oil quality and stability as a packaged food.  These steps were developed in the mid-20th century 

by large companies such as Archer Daniels, Midland, and Cargill, who were already in the 

process of integrating their crushing operations with oil refining.  With research and 

development from academic institutions and consumer goods companies like Proctor and 

Gamble, oil refining was standardized along with associated analytical parameters.  Modern 
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refining produces a final vegetable oil product, known as RBD, which consists of three principal 

steps, (a) refining, (b) bleaching, and (c) deodorizing.  Each step is responsible for the removal of 

undesirable components from the crude oil so that the processed oil provides satisfactory results 

in all applications of the oil. 

 2.2.2.1. Tranesterification of Vegetable Oils.  Transesterification describes a class of 

organic reactions where one ester is transformed into another.  This process is relevant in several 

industrial processes including production of PET (polyethylene terephthalate) which involves a 

step where dimethyl terephthalate is transesterified with ethylene glycol in the presence of a zinc 

catalyst (Schuchardt, Sercheli, & Vargas, 1998).  Biodiesel is also produced by 

transesterification, reacting a triglyceride with a monohydric alcohol in the presence of a strong 

base catalyst either sodium or potassium hydroxide.  The alcohol typically used in industry is 

methanol due to cost, though ethanol, propanol, and butanol have been used (J.V. Gerpen, 2005; 

Knothe et al, 2005).  To shift this equilibrium reaction towards a high yield of fatty acid methyl 

esters (FAME), 100% excess alcohol with a 6:1 molar ratio is required (Drown, Harper, & 

Frame, 2001; Mittelbach, 2006).  A high yield of FAME, greater than 90%, allows for phase 

separation from the glycerol formed (Y. Zhang, Dube, McLean, & Kates, 2003a).  The process 

sequence consists of three reversible reactions whereby diglycerides and monoglycerides are 

formed as intermediates.  Other transesterification catalysis methods include strong acids, 

lipases, heterogeneous catalyst, and enzymes; though these techniques have yet to be fully 

commercialized.        

 Biodiesel quality specifications are defined by country where ASTM D6751 is used in 

the United States and EN 14214 is used in Europe (Appendix B and C respectively).  These 
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standards reflect a minimum quality for fuel performance and long-term use.  These standards 

are continually updated to track changes in feedstocks and process technology.   

Triglyceride                 3 x Methanol             Glycerol                       3 x FAME 
 

Figure 3. The transesterification reaction with triglycerides and methanol combine to produce 

fatty acid methyl esters and glycerol in the presence of a catalyst. 

 Fatty acid methyl esters are most commonly thought of as a fuel; however they do have 

applications as an environmentally friendly industrial solvent, and as a medium for site 

bioremediation of crude petroleum spills (Fernandez-Alvarez, Vila, Garrido-Fernandez, Grifoll, 

& Lema, 2006; Wildes, 2002).  Additionally, FAME can be further synthesized into many useful 

chemicals such as fatty alcohols, alkanolamides, polyamides, and sucrose polyesters.  Examples 

of products include non-ionic surfactants, emulsifying, thickening, and plastifying agents, 

lubricants, and cosmetics (Schuchardt et al., 1998; Yan et al., 2014).  

 In the process of forming esters from triglycerides, glycerol is liberated as the main co-

product at approximately 14% by mass of the fuel output.  This material coming off the biodiesel 

process is a mixture of monoglycerides, diglycerides, and triglycerides as well as soaps, and 

excess methanol.  It is commonly referred to as crude glycerin or glycerin bottoms as an 

unrefined product.  Producing a high quality potassium phosphate fertilizer from crude glycerin 

has been reported by acidulation with phosphoric acid (Javani, Hasheminejad, Tahvildari, & 
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Tabatabaei, 2012).  Refined glycerol however represents the widest diversity of potential uses as 

a chemical feedstock.  Glycerol can be synthesized to produce a myriad of chemical building 

blocks such as propanediol, glycols, dichloropropanol, rhamnolipids, succinicacid, 

propionicacid, glycerol ethers, and glycerol carbonates (Ragauskas et al., 2006).  The conversion 

of glycerol to propanediol, propanol, and lower chain alcohols with sulfated catalysts or 

microorganisms for use as a gasoline fuel additive, has been studied.  Mixtures of glycerol 

derived alcohols and gasoline have resulted in high octane fuel blends, greater than 100, due to 

the additive’s property as an oxygenate (Fernando, Adhikari, Kota, & Bandi, 2007).  This 

glycerol based blend stock, potentially derived from the oilseed biorefinery can be incorporated 

as additives into petroleum fuels to further reduce pollutants and GHG emissions (Chen, Wang, 

Shuai, & Chen, 2008).  

 2.2.2.1.1 Biodiesel Advantages and Disadvantages.  Biodiesel as a fuel offers important 

advantages over petroleum such as lubricity (Bhatnagar, Kaul, Chhibber, & Gupta, 2006).  With 

removal of sulfur containing compounds from diesel fuel consumed in the United States, 

increased engine wear and reduced life has become a concern for engine manufacturers.    

Lubricity of soybean-based biodiesel has produced wear scar length values of 129μm 

(micrometer) compared to 651 μm for Ultra Low Sulfur Diesel without lubricity additives 

(Knothe & Steidley, 2005).  Even low level blends of soy methyl esters in ULSD has shown 

lubricity improvements from 551 μm to 212 μm for B2 and to 171 μm for B20 (Moser, Cermak, 

& Isbell, 2008).  Exhaust emissions from biodiesel combustion have also shown to be less toxic 

than petroleum diesel of those regulated by the US Code of Federal Regulations.  Particulates, 

total hydro carbons, and carbon monoxide from biodiesel combustion have resulted in a 

reduction of 48%, 77%, and 48% respectively compared to conventional diesel (McCormick, 
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2007).  Nitrous oxide emissions have shown increases, up to 12% compared to petroleum diesel 

(Graboski & McCormick, 1998).  This is an acute concern due to the potency of nitrous oxides 

as a greenhouse gas and toxicity implications urban areas.  Studies have shown that low level 

blends of biodiesel, less than 20%, have had produced no increase in NOx with a diesel engine 

equipped with an exhaust gas circulation (Williams, McCormick, Hayes, Ireland, & Fang, 2006).  

Other technological advancements in diesel emission controls including, selective catalyst 

reduction, diesel oxidative catalysts, and diesel particulate filters may further help address the 

NOx issue (Hanks, 2013). 

2.3 Biodiesel: Historical Background, Policy, and State of Commercialization 

 The technology for manufacturing biodiesel is relevant to both developed and developing 

countries and to some extent is scale independent.  Developing production capacity is justified as 

a means to address the following: energy security, environmental concerns, foreign exchange 

savings, and socioeconomic issues related to the rural sector.  In general possible benefits of a 

developed biofuels sector are energy security, economics, and environment, as shown in Table 1. 

Table 1  

Major Benefits of Biofuels (adapted from Demirbas, 2009) 

Economic Impacts: 
Fuel Diversity, investment in manufacturing,  job creation, 

agricultural development, reduce dependency on petroleum 

Environmental 

Impacts: 

Greenhouse gas reductions, reduce air pollution, biodegradability, 

higher combustion efficiency, carbon sequestration 

Energy Security: 
Domestic production, supply and ready reliability, domestic 

distribution , reduce use of fossil fuels, renewability 

 

 2.3.1 Historical Context of Biodiesel. Vegetable oil-based engine fuels have been 

around for over a century.  It was Rudolf Diesel’s peanut oil-powered engine at the 1900 Paris 

Exposition that brought his idea of locally produced feedstock to power internal combustion to 
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the rest of the world.  Within a few short years, Diesel engines were being manufactured 

throughout the industrialized world in applications ranging from the automobile to locomotion to 

ocean liners.  The idea that colonies and lesser developed countries could provide motor fuel 

through their own agricultural products was revolutionary.  Diesel who published many articles 

and abstracts writes (1912) in a prescient tone, “the fact that fat oils from vegetable sources can 

be used may seem insignificant today, but such oils may perhaps become in course of time of the 

same importance as some natural mineral oils and the tar products are now” (p. 397).  Later in 

the 20th century, vegetable oil-based fuels were used during WWII as emergency fuels by 

various nations when normal supplies of petroleum-based fuels were disrupted.  Brazil utilized 

cottonseed oil, and the Japanese battleship Yamato is reported to have used refined, food-grade 

soybean oil as bunker fuel (Pahl, 2005).  After the war, steady supplies of cheap petroleum were 

again made available and virtually all research on vegetable-based fuels ceased. 

 Monoalkyl esters of oils and fats, later to be known as biodiesel, were first noted prior to 

World War II when the Belgian patent 422.877 was granted to G. Chavanne of the University of 

Brussels in 1937 for creating ethyl esters of palm oil.  This fuel was tested on an urban bus in 

1938 with satisfactory performance reported (Knothe, 2001).  In 1939 J. Walton wrote about the 

potential fuel value from vegetable oils and the necessary chemical reaction to split off the 

glycerides and utilize the residual fatty acid.  This chemical process, transesterification, would 

take large branched triglyercides and an alcohol and transform them into smaller straight-chained 

molecules.  This product would be similar to diesel fuel having a reduction in kinematic viscosity 

by an order of magnitude (Quick, 1989).  After the 1940s literature on fuels from agricultural 

sources were sparse until the late 1970s.  Research and development that led to the eventual 

commercialization of biodiesel began in earnest in the 1980s.       
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 2.3.2 US Policy Background. There have been several major policy milestones to 

advance biodiesel adoption over the past few decades.  In 1992, the Energy Policy Act (EPAct) 

was passed by Congress to reduce U.S. dependence on imported petroleum by requiring a certain 

percentage of government fleet vehicles to use alternative fuels (Pahl, 2005).  The legislation had 

dramatic effect on the use of biofuels, especially in government vehicles.  An executive order by 

President Clinton, issued in 1999, called for the increased use of farm products, including 

agriculturally based ethanol and biodiesel.  In December 2001, the American Society for Testing 

and Materials (ASTM) published a standard for biodiesel as a blend stock.  The standard, D-

6751, has helped to move the biodiesel industry and achieve a new level of legitimacy. There are 

notable advancements being made at the state level regarding biofuels.  In 2002, Minnesota 

became the first state to impose a B2 mandate for biodiesel, two percent biodiesel mixed with 

petroleum diesel.  This is in part due to the fact that Minnesota is a large producer of soybeans 

and the law helps its internal economy.  However, this law acted as an agent of change and set an 

important precedent for other states to follow suit despite lack of federal support.  The demand 

created by this mandate is on the magnitude of 16 million gallons of biodiesel annually, securing 

a market and giving impetus for production.  Illinois, also a producer of soy, was another state in 

the vanguard of biofuels legislation.  In 2003, the Governor of Illinois signed a bill that gives a 

partial tax exemption to biofuels.  The legislation was designed to give biofuels a competitive 

price and boost the state’s economy (Pahl, 2005).  After the failed energy bill of 2003, 

Republican Senator from Iowa and biofuels supporter Chuck Grassley introduced a tax credit for 

biodiesel at 1 penny per percentage point of biodiesel blended with petroleum.  The legislation 

passed in 2005 and the tax credit stands at nearly one dollar per gallon for biodiesel.  This 

subsidy, known as the fuel tax credit or blenders’ credit, would expire at the end of 2009 and 
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2011 only to be retroactively instated mid-year 2012.  While giving the industry a huge boost, 

the swinging pendulum of the fuel tax credit also has made for a highly uncertain investment 

climate (Kotrba, 2013b).  The tax credit would be the principal subsidy until the Renewable Fuel 

Standard mandated specific volume of biofuels and created a market place for Renewable 

Identification Numbers (RINS) whereby obligated parties would be required to purchase them 

according to a percentage of their overall petroleum business transactions.  

 The Energy Policy Act of 2005 established the Renewable Fuel Standard Program (RFS) 

to incentivize and encourage the blending of renewable fuels into the nation’s motor vehicle fuel.  

The bill established a timeline for increases in renewable fuel production, whereby 11.1 billion 

gallons of renewable fuel would be blended into energy supplies by 2009.  The US EPA was 

chosen to oversee the program and given authority to make changes in rulemaking going forward 

as the program unfolded.  In 2007 the Energy Independence and Security Act expanded the RFS, 

calling for a target of 36 billion gallons of renewable fuel by 2022 (EPA, 2014).  The RFS2 was 

created, representing a 320% increase over the bill passed only two years before.  This version 

also capped corn-based ethanol at 15 billion gallons and mandated that the remaining 21 billion 

gallons come from advanced biofuels including a sub-category for biomass-based diesel starting 

at one billion gallons (Schnepf & Yacobucci, 2013).  The RFS2 introduced the first greenhouse 

gas regulatory system for US transportation fuels.  The system used a life cycle assessment 

framework based on their upstream and downstream emissions to rank a fuel’s overall 

environmental performance.  The chosen metric was global warming potential, also referred to as 

carbon intensity value expressed as grams of carbon dioxide equivalent per unit energy of fuel.  

A biofuel could be compared directly to the LCA of petroleum diesel to show percent reduction 

or increase (Venkatesh, Jaramillo, Griffin, & Matthews, 2010).        
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 At present time, winter of 2014, the US biodiesel industry growth is jeopardized once 

again by the direction of policy.  In November 2013, the EPA proposed to reduce the current 

advanced biofuel mandate from 3.75 to 2.2 billion ethanol-equivalent gallons, and hold constant 

the biomass-based diesel volume requirement.  This creates a negative production incentive 

because of the annual roll-over ability to sell RINS from a previous year and if instated has a 

projected impact to contract the industry from 1.28 billion to 700 million gallons in 2014.  There 

are numerous factors influencing this decision including a concerted effort by both the petroleum 

lobby and environmental groups to dismantle the RFS, RIN fraud cases, and the scaling back of 

mandates in Europe (Kotrba, 2013b).  Even with consistent $100/barrel petroleum, the US 

biofuels industry remains dependent on policy decisions and subsidies for continued growth and 

development. 

 2.3.3 State of Commercialization. Biodiesel technology is well suited to distributed 

manufacturing that function at various scales.  The US biodiesel industry has depicted this 

evolution unfolding over the last decade while continuing to diversify feedstocks.  There are 

commercial producers are all 50 states except Colorado, Wyoming, Montana, and Alaska.  The 

industry is trending toward smaller-scale plants, where in 2013 72% of all US biodiesel plants 

had a production capacity of less than 68,000 tons or 20 million gallons per year (NBB, 2013b). 

 In 2013 the US Biodiesel Industry produced a record 1.28 billion gallons (4.36 million 

tons) to stay directly on tract with the RFS2 mandates (see Figure 4).  While the majority of 

biodiesel is produced from soybeans, canola, palm, sunflower, cottonseed, and peanuts, 

feedstocks continue to diversify over time.  In 2013 soybean oil at 53% was still the predominant 

feedstock, though down from 59% only two years before.  Yellow grease, which is rendered used 

cooking oil from restaurants, rose from 7% to 10% in the same time period (EIA, 2013).   
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Figure 4. United States Biodiesel production in millions of gallons since the industry inception 

(EIA, 2013; NBB, 2013b). 

 The dramatic rise, fall, and subsequent rise of US biodiesel production over the past 14 

years can be explained by specific events.  From 1999 to 2004, the industry developed to utilize 

soybean oil from excess production, providing additional markets for soybean farmers.  

Production was concentrated in the Midwest and the fuel was widely known as soydiesel.  The 

dollar per gallon fuel tax credit went in effect in 2005, combined with a dramatic rise in 

petroleum, up to $150/barrel in 2008, to further substantiate investment in capacity building.  

The first lapse of the tax credit and the great recession sent production crashing with many 

smaller plants and those dependent on single feedstocks declaring bankruptcy.   The RFS2 

mandated RIN program passed in 2007 was finally rolled out in 2010 and the industry has 

strongly rebounded. 

 Little (2014) cites Joe Jobe, the  CEO of the National Biodiesel Board who summarized 

the necessity of government support in the following statement at the 2014 National Biodiesel 
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Conference, “Biodiesel’s story is an example of how effective government policy can be to jump 

start a fledgling industry.  That is the same story of nearly every new industry that involves 

technological development.  Strong government policy support along with a unique spirit of 

innovation, entrepreneurship, and risk-taking are the primary reasons that so many major modern 

industries had their start in America” (p.22).  

 2.3.3.1 State of the Art. Technological advancement is the frontier for the biodiesel 

industry to compete directly without subsidies.  While base-catalyzed transesterification plants 

have paved the way for commercialization thus far, they cannot convert FFAs to biodiesel, rather 

to soaps which results in yield loss and must be removed.  Where feedstock cost represents 70-

85% of production cost, process advancements that afford access to lower cost and diverse 

feedstocks are most promising.  In a review of the biotechnological preparation of biodiesel, Yan 

et al. (2014) lists the following influential and promising technologies: enzyme and lipases 

catalysts, ultrasonication and microwave assisted reactions, and supercritical reactions.  The 

commonality across these process techniques is the tolerance of water and FFAs in the starting 

material. 

 Lipases used in biodiesel production are from a diverse group of enzymes mainly 

obtained from bacteria, yeast, and filamentous fungi that serve to hydrolyze lipids at the glycerol 

backbone to liberate energy rich free fatty acids (Tan, Lu, Nie, Deng, & Wang, 2010).  The 

merits of enzymatic processing are their ability to work at lower temperatures (35°C) and ability 

to convert both triglycerides and free fatty acids to biodiesel.  The glycerol co-product is also at 

80% purity after methanol and water removal, thus increasing its value.  This process is currently 

being commercialized by Viesel Fuel of Stuart Florida, in collaboration with enzyme 

manufacturer Novozymes, and equipment builder Tactical Fabrication to produce 5 million 
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gallons of enzymatic biodiesel per year.  Start-up testing has shown that enzymes can be 

recovered and reuse a minimum of eight times (Hobden, 2013).  Ultrasonication and microwave 

assisted treatments have shown compatibility with enzyme based processing to enhance reaction 

rates and reduce overall energy inputs (Nogueira et al., 2010).  

 Tranesterification in super critical fluids increases reaction rates due to higher diffusion 

and does not require a catalyst.  Supercritical methanol has long been studied, however presents 

many practical obstacles when scaled-up.  Supercritical CO2 appears to be a promising fluid as it 

is non-toxic, non-flammable, cheap, and has mild critical properties (Rathore & Madras, 2007).  

Supercritical CO2 can also be used in conjunction with enzymatic processing for increased 

efficiency.  Patriot Fuels, Biodiesel LLC in Annawan Illinois is commercializing a 5 million 

gallon per year facility based on supercritical technologies.  The plant, located next to an ethanol 

refinery plans to use distillers’ corn oil as its primary feedstock.  The capital expense is estimated 

at 15% increase over a standard base catalyzed plant, though paying back the difference in less 

than a year once operational.  Operations at Patriot Fuels are anticipated for third quarter 2014 

(Kotrba, 2013a).   

2.4 Critiques of Biofuels 

 The burgeoning biofuels industry backed by the political promise of more jobs, a cleaner 

environment, and greater autonomy from imported oil has been met by outspoken criticism in an 

ongoing debate regarding the expansion of biofuel production.  Critics cite the following key 

issues with biofuels: using of first generation biofuels (food crops) causes an increase in food 

prices, they have marginal energy balances compared to the fuels they replace, and they have 

poor overall environmental performance from overuse of agrochemicals and the effect of indirect 

land use change (Taylor, 2008).  Smolker (2012) describes biofuels and bioenergy as a disaster 
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for biodiversity, health, and human rights.  They represent a threat to ecosystems, wildlife, 

human health, and the climate.  Biofuels add to the commoditization of natural resources, forest, 

grassland, and cropland.  Where biofuels once portrayed the image as a silver bullet to the energy 

problem their reputation has become tarnished by the perception of over promise and under 

delivery.  Almost immediately after all G8+5 countries, except Russia, implemented aggressive 

biofuel targets and mandates, public concerns were voiced related to rising food prices reinforced 

by several influential studies stating that biofuels may aggravate net GHG emissions rather than 

reduce them (Lee, Clark, & Devereaux, 2008).        

 2.4.1 Food vs. Fuel. The first issue to gain widespread attention was the “food vs. fuel” 

discussion.  The notion that diverting land from food to energy production may be deleterious for 

food security in developing countries only became apparent when developed countries began 

mandating biofuel blends and creating markets for these fuels.  The issue boiled into mainstream 

media in 2007 when Jean Zeigler, United Nations special reporter on the Right to Food referred 

to the conversion of crops such as corn, sugar cane, soybean, cassava, wheat, and vegetable oils 

into automobile fuels as a “crime against humanity.” This comment was made in light of the fact 

that the United Nations estimated that more than 1 billion people were living with chronic 

malnourishment.  Zeigler who had been a UN expert on the right to food since 2000 called for a 

five year moratorium on biofuel production to develop new technologies to address these issues 

and prevent further impact on the world’s rural poor and malnourished (Lederer, 2007).  

Searchinger (2011) adds that the demand for biofuels nearly doubles the challenge of producing 

more food.  Additionally, the U.S. soy and corn industries, which form the basis of biofuels 

production, typically use genetically modified (GMO) varieties that are planted on large 

mechanized tracts of land.  While genetic improvement has led to greater yields and ease of 
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cultivation, the loss of genetic material from traditional varieties cannot be overstated.  This 

trend is happening worldwide with the expansion of multi-national corporations into the 

developing countries (FAO, 2008).  

 2.4.2 Indirect Land-Use Change (ILUC). Indirect land use change is another 

contentious issue in the debate of biofuels.  It is described as the phenomena where grasslands or 

forest are converted to cropland due to market forces, resulting in the release of carbon and 

sacrificing ongoing carbon storage (Fargione, 2008; Searchinger, 2010).  Palm and soybean, two 

primary global oil crops, have been strongly linked to tropical deforestation.  In the developing 

world land clearing is most commonly achieved through biomass burning, augmenting emissions 

of CO2 and N2O.  Indonesian palm oil based biodiesel has been the poster child of the anti-

biofuel establishment and primary example of indirect land-use change.  Increase demand for 

vegetable oils, largely due to mandates in Europe and the US for biodiesel, led to farmers to 

plant oil palm as a new cash crop.  This has led to rapid deforestation of tropical rainforest and 

land clearing in parts of Indonesia’s most diverse tropical forests, resulting in losses of species 

diversity and habitat.  It has been estimated that 98 percent of the primary forest on Borneo and 

Sumatra could be cut and replaced with palm oil monocultures by 2022 under current market 

conditions (Smolker, 2012).  As petroleum prices increase, the demand for biofuels will increase, 

furthering the pressure on agricultural supply for raw materials.  The German Association for 

Plant Oils calculates that 3.6 million km² of oil palm would be required to substitute for today’s 

global crude oil demand.  This is equivalent to 12% of the African land mass or 2.6% of the 

earth’s land surface.  However, only 14 million km² are available for agriculture, according to 

the Food and Agriculture Organization of the United Nations (FAO, 2013).  
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 Land use change is not restricted to food based crops.  It is applied to any crop grown on 

good agricultural land.  Second generation biofuels such as energy grasses or fast growing trees 

receive the same scrutiny for occupying otherwise food producing farmland.  The complexity of 

the issue is illustrated by soybeans grown for animal feed.  Soybeans are primarily grown for 

protein meal, approximately 80% by weight of the seed, to be used in animal feeding operations.  

The byproduct of crushing soybeans is soybean oil which is edible oil.  The increase in demand 

for meat from rapidly developing countries such as India and China has a potential three-fold 

increase on agricultural land required leading to further expansion and land use conversion 

(Gerbens-Leenes & Nonhebel, 2002).  Biofuels manufactured from crop residues, wastes, and 

byproducts are the only exemptions for land use effects.    

 ILUC has been extensively discussed and quantified in peer reviewed literature.  A wide 

range of reported values exist but conservative estimates can add 50 to 60 gCO2-eq/MJ to the 

baseline of direct emissions making most crop-based biofuel higher than petroleum diesel (R. 

Edwards, Mulligan, & Marelli, 2010).  For soybean-based biodiesel, this means a doubling or 

tripling of the overall environmental impact, thus negating any environmental benefit related to 

global warming potential.  California Air Resources Board estimate Soybean biodiesel has an 

ILUC value of 62 gCO2-eq/MJ (CARB, 2014).  This is largely from linkage to deforestation in 

tropical countries as edible oil demand increases.  Quantifying this value depends on the crop 

and where in the world it is being grown.  For example, palm oil grown in Indonesia is more 

pronounced than rapeseed grown in Europe.  In terms of policy making, ILUC is generally 

considered too diffuse and subjective to be included in net emissions assessments and is not 

currently used by the US EPA as part of the RFS2 biofuel mandate (Mathews & Tan, 2009).    
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 2.4.3 Energy Balance. Energy return on energy invested (EROI) or energy balance is an 

concept borrowed from ecology that applies to an organism’s requirement to engage in activities 

that produce surplus energy that promote growth and fecundity (Odum, 1971).  When applied to 

energy technologies, the balance is a ratio of the output energy (return) divided by the total 

energy invested to make the fuel.  The result is a measure of overall efficiency where the break-

even is 1:1.  Fossil fuels, in particular early petroleum extraction, have had enormous energy 

balances as much as 100:1 (Hall, Balogh, & Murphy, 2009).  As these resources become 

increasingly difficult to mine and extract, the ratio comes down quickly.  The idea of a minimum 

energy balance is a discussion likely to intensify as society looks to replace fossil fuels with 

renewables.  Hall et al (2009)  argues a minimum energy balance of 3.0 to be considered a 

renewable energy source and therefore lower the fossil fuel subsidy required.  Since EROI values 

are unit-less they can be compared against other technologies.  Wind turbines have reported a 

average energy balance value of 18 while solar photovoltaics have a reported range of 3-10 with 

an average of 6.6 (A. K. Gupta & Hall, 2011).  The used cooking oil biodiesel feedstock 

presented in chapter 5 manufactured within the industrial ecology context ranks at the high end 

of biodiesel fuels, with an EROI of 12:1.   

 One of the strongest critics of biofuels is David Pimentel of Cornell University, who 

published an energy balance study of corn-based ethanol.  This study showed a net loss in fossil 

energy of ethanol due to agricultural inputs and energy requirements for processing.  Pimentel 

(2008) concludes that ethanol is not a renewable fuel because of high costs in terms of 

production and subsidies, and said production causes serious environmental damage.  This 

landmark study lends itself to further critique and analysis of biofuels that are produced through 

agricultural means.       
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CHAPTER 3 

The Catawba County NC EcoComplex: County Government Led EIP Development using 

Municipal Biomass Resources for Clean Energy Production
1
 

3.1 Abstract 

 The Catawba County North Carolina, USA EcoComplex and Resource Recovery Facility 

is an ecological-industrial park (EIP) whose mission is synergistic waste and resource 

management, renewable energy production, and local economic development through public and 

private partnerships.  The EcoComplex is a 326 hectare site centered on the Blackburn Landfill 

with 2.4 million metric tons of waste in place and serves the 156,000 county residents, receiving 

484 tons/day of MSW and 80 tons of construction wastes per day.  The site hosts a grid-tied 

3MWe landfill gas to energy project (LFGTE) using three GE-Jenbacher spark-ignition engines, 

a biodiesel facility with 490,000 LPY capacity, and a crop processing facility that provides 

feedstock utilizing buffer lands on-site to grow oilseed crops.  

 This chapter details the existing and impending biomass energy systems, applications of 

industrial symbiosis, and the use of public and private partnerships to leverage this municipal 

landfill as a hub for clean energy development. 

3.2 Introduction 

 In transitioning towards a low-carbon energy economy, industrial societies must rise 

above their expectations with an evolutionary leap in re-thinking energy and waste.  Fueling 

economic growth with fossil fuels has proved unequivocally short sighted, and threatens our 

planet’s ability to provide ecosystem services and sustain a suitable habitat for our species.  The 

                                                 
1
 Parts of this chapter were adapted from: Ferrell, J., & Shahbazi, A. (2013). County Government Led EIP 

Development using Municipal Biomass Resources for Clean Energy Production, a case study of the Catawba 

County North Carolina EcoComplex. Progress in Industrial Ecology.  (Submitted). 
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demonstrable scientific evidence of climate change due to the combustion products of these fuels 

is clear (IPCC, 2013).  Continued linear, cradle to grave, industrial manufacturing is an equally 

untenable practice in a resource constrained world.         

 The transition to a new energy matrix that includes smart utilization, conservation, and 

renewables will be a landscape-changing endeavor, and will likely be an engine of future 

economic growth.  Biomass is the only piece of the renewables matrix that can directly replace 

petroleum by producing energy, fuels, and biobased products, such as bioplastics and polymers.  

Biomass is currently responsible for over half of current U.S. renewable energy consumption, 

and represents 2.1% of the total energy supply (EIA, 2012).  The emerging biobased economy, 

whose three pillars include bioenergy, biofuels, and bioproducts, is poised for substantial growth. 

 Waste management is also positioned for rapid transformation, as landfills become 

increasingly regulated at state and federal levels, and more difficult to construct and permit. 

Existing landfills and transfer stations will be forced to increase operating efficiency on less land 

while serving greater populations.  Resource recovery and waste to energy projects are 

imperative. 

 3.2.1 Industrial Ecology. The foundation of the North Carolina EcoComplex is 

Industrial Ecology (IE), based upon the synergetic relationships found in natural ecosystems, 

where the flow of energy and materials are efficiently optimized.  Eco-Industrial Parks (EIPs) are 

the application of IE whereby firms in close proximity mutually benefit through exchanges such 

as heat, materials, water, and byproducts.  Industrial symbiosis results in enhanced 

environmental, economic, and social gains, wherein the community of businesses attain a 

collective benefit that is greater than the sum of individual benefits each company would realize 

by only optimizing its individual performance (M. R. Chertow, 2000).     
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Though the potential for eco-industrial parks represents a logical step for sustainable 

development, there is little evidence or empirical data on what has been achieved, a situation 

referred to as the Implementation Gap (Gibbs & Deutz, 2007).  This gap represents a challenge 

to conduct research and report findings of applied industrial ecology.  Eco-Industrial Parks have 

three guiding principles: (a) reduce and minimize energy requirements, (b) use industrial wastes 

as inputs, and (c) development diverse and resilient systems.  Eco-Industrial Parks can be a new 

industrial model that reconciles the social, economic, and environmental dimensions of 

sustainable development (Elabras Veiga & Magrini, 2009).  

 3.2.2 NC EcoComplex. Catawba County’s EcoComplex is a renewable energy industrial 

park employing industrial ecology symbiosis that combines industry, waste management, energy 

production, and university research.  The EcoComplex consists of a municipal solid waste 

(MSW) landfill, a construction and demolition (C&D) landfill, a recycling center, a landfill gas 

fueled electrical generation facility, the Catawba County-Appalachian State University Biodiesel 

Research and Production Facility, Gregory Wood Products (a high tech dimensional lumber 

facility), and PalletOne (a pallet recycling facility).  The County’s EcoComplex incorporates 

shared, mutually beneficial relationships between industry byproducts and required 

manufacturing resources.   

 The inspiration for this EIP came from the Rutgers, New Jersey Agricultural Experiment 

Station.  The Rutgers EcoComplex integrates government, academia, and private sector partners 

to function as a hub for education and outreach for industrial ecology research as well as a 

business incubator for emerging technology companies (Rutgers-EcoComplex, 2013).   

 3.2.2.1 Striving toward Zero Waste. An additional driving force for EIP development 

resulted from waste reduction goals codified in N.C. General Statute 130A-309.09A (NCGA, 
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1983).  These ideas were incorporated in NC Senate Bill 111 in 1989 (NCGA) that required each 

county and municipality to develop a comprehensive solid waste management program to reduce 

waste disposal by 30% over 20 years.  Many counties, including Catawba have gone beyond 

these waste reduction goals and developed zero waste initiatives.  Baseline levels for total waste 

disposed (MSW and Construction and Demolition waste combined) for Catawba County in 1990 

were 1.14 metric tons/capita/year (NCDENR, 2013).  Since 1990 the County has actively 

reduced waste through curbside collection and installing convenience centers in rural areas 

where citizens separate recyclables from waste.  The EcoComplex recycling center also separates 

concrete, asphalt, tires, roofing shingles, and wood and yard waste, which are ground and 

composted or consumed directly by industry as manufacturing goods.  Due to these active 

measures in waste reduction, the fiscal year 2010-2011 numbers showed 0.85 metric tons of 

waste disposal per capita, in-line with the reduction goals, and ahead of the state average of 0.89 

metric tons per capita.  Additionally, Catawba County had the highest per capita recycling rate in 

North Carolina, at 331 kilograms recovered per person (0.33 metric tons per capita) for fiscal 

years 2010-2011, of which the EcoComplex recovery activities represents 27% of this total 

(Catawba-County, 2012; NCDENR, 2013).  Catawba County has ranked in the top five counties 

for per capita recycling for the past eight years.  This has been largely credited to diverting wood 

waste and pallets into composting operations and alternative day cover (used during landfilling 

operations) at the EcoComplex.  Where is Catawba County on its path toward zero waste?  After 

rising to a per capita waste tonnage high of 1.34 in 1998, the past 15 years have shown an overall 

decline of 68%.  This decline can be attributed in part to improved recycling and EcoComplex 

recovery activities coming on-line. Though encouraging, Catawba County still relies on 
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landfilling as its primary strategy for solid waste management and zero waste is an evolving 

process, governed by policy, economics, technology, and human behavior.  

 The fundamental goal of the EcoComplex is to promote economic development in 

Catawba County through the use the county’s solid waste streams by making waste streams into 

commodities, and employing the County’s MSW and C&D landfills as resource recovery 

facilities for capturing and converting solid waste into commodities or green energy.  The system 

is also designed to recover and employ all usable byproducts from EcoComplex entities’ waste 

streams, either as a source of energy or as a manufacturing feedstock.  Landfill gas and other bio-

gases are and will be used to produce electricity and heat energy.  The proposed Wood 

Gasification Energy Facility will use woody waste from EcoComplex entities to generate 

renewable energy in the form of electricity, steam, heat, and CO2.  Catawba County’s 

EcoComplex business structure promotes waste reduction and economic development through 

byproduct/resource management and employing predominantly green and renewable energy.  

Since inception, the EcoComplex has generated approximately 150 jobs, while reducing the 

County’s per capita waste disposal rate by nearly 30% (Catawba-County, 2012; B. Edwards & 

Chandler, 2009).  The EcoComplex IE Chart in Figure 5 demonstrates the closed-loop potential 

for heat and materials flow through the EcoComplex.  Co-generation facilities use biomass to 

produce energy, heat, and co-product streams. 
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Figure 5. EcoComplex IE Chart (Courtesy of Catawba County Utilities and Engineering). 

  3.2.2.2 Public & Private Partnerships.  Public-private partnerships are a cornerstone of 

development at the EcoComplex.  Eco-park development began with a landfill gas-to-energy 

project, installing 3MWe by partnering with Jenbacher to establish a testing site in 1999.  To 

date, electricity production has surpassed 125MWh, with total utility sales reaching $5.1M.  The 

success of this installation has helped to keep landfill operating costs stable, operating with no 

tax dollars, and also helped to leverage political support from county commissioners to endorse 

further IE projects (B. Edwards, 2010).  Catawba County negotiated two economic development 

agreements that provided local incentives to incentivize industry to expand in the County. 

Gregory Wood Products and a Pallet One located new operations on adjacent sites to the landfill.  

These contracts agreed on land transfer and utility connection in exchange for capital 
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investments, guaranteed employment, and first right of refusal for wood waste produced 

(Catawba-County-Government-EDA, 2003). 

 Partnering with Appalachian State University in 2007, the EcoComplex supported the 

development of a biodiesel research, development, and production facility by constructing a 700 

m
2

 dedicated building, and agreeing to use waste heat from the GE-Jenbacher engines for 

building and process heat.  This facility is charged with providing the county with a biodiesel 

fuel from feedstocks grown in part on adjacent agricultural lands (landfill buffer areas) while 

serving as a research and testing center for North Carolina’s biodiesel industry.  The facility is 

modular in nature to facilitate change in feedstock and process technologies to further the 

development of a decentralized fuel production model that relies heavily on local feedstocks and 

fuel markets (Ramsdell, 2007).  Additionally, the facility houses a drive-on dynamometer that is 

used for combustion emissions analysis and research in conjunction with an on-road test vehicle.  

Funding for equipment and operations came through state and federal grants totaling $1.4M.      

 Catawba County worked with local engineering firms to design a LEED certified 

building.  With preliminary designs drawings completed, the County’s Utilities and Engineering 

Department proposed the facility to the County Commission where the project was approved and 

financed by borrowing $1.6M from the landfill post-closure fund.  This fund, generated through 

solid waste tipping fees, is designed to maintain environmental compliance of the site upon 

closure.  This municipal landfill is expected to operate until 2080, providing adequate time to 

recover costs through leasing the facility and anticipated fuel savings.      

3.3 Biomass Energy Resources & Facilities 

 The system boundary for biomass inputs entering the EcoComplex are defined by 

feedstock.  Municipal solid waste (MSW) is currently collected from Catawba County 
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exclusively.  Oilseed crops are grown on buffer areas around the landfill as well as nearby 

agricultural lands within Catawba County, per contract agreements with local farmers.  Wood 

fuel, the byproduct from Gregory Wood Products and Pallet One, are generated on-site. 

However, raw materials to support the lumber mill are transported from a five-state, 322 

kilometer radius.  Biosolids originate from nine municipal wastewater treatment plants in 

Catawba County.  Feedstock for a second generation cellulosic ethanol production includes 

perennial grasses grown as alternative landfill cap and micro-algae that utilizes waste water, 

waste heat, and combustion carbon dioxide for waste water remediation and biomass production.  

Annual carbon dioxide reductions listed below in Table 2 are compared to the conventional 

energy source these alternatives replace such as coal-based electricity, petroleum diesel, etc.  

Table 2  

Biomass Energy Potential   

 

 

 

Feedstock 

 

 

 

Process 

 

 

 

Energy Type 

 

Net Energy 

(MWe) 

 

 

Net Heat 

(GJ) 

 

Annual 

Energy 

(MWh) 

Annual 

CO2  Reduction 

(metric tons) 

(EPA, 2013) 

MSW Anaerobic 

Digestion 

Landfill Gas 2.3 8.53 19,710 13,906 

Oils & Fats Trans-

esterification 

Biodiesel 490,000 

liters/year 

N/A 4,545 3,207 

Wood fuel Gasification Syngas 1.9 7.05 14,979 10,568 

Cellulose- 

materials 

Cellulosic 

Ethanol 

Ethanol 302,000 

liters/year 

N/A 1,758 

 

1,240 

Multi-feed 

Digester 

Anaerobic 

Digestion 

Methane 1.0 3.71 7,884 5,562 

  TOTALS 5.2 18.3 47,847 33,757 

 

 3.3.1 Landfill Gas to Energy. Anchoring the EcoComplex are three GE-Jenbacher co-

generation units with combined capacity of 3MW that convert landfill gas into electricity and 
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heat.  Landfill gas is produced at a rate of 31,680-34,560 liters per minute, naturally evolved 

from the 502 metric tons of municipal solid waste buried daily for 23 years.  Gas production is 

dynamic with regular fluctuations depending on climactic conditions.  Gas composition is 

typically 39-40% carbon dioxide, 50-53% methane, less than 1% oxygen, and the balance of the 

gas consists of gases such as hydrogen sulfide and nitrogen (Beebe, 2013).  The Jenbachers are 

20 cylinders, 1450 horse-power spark ignition engines with attached generator sets that meter 

power directly onto the electric grid (see Figure 6).  These engines burn landfill gas directly.  

There is no pre-filtration of the landfill gas other than a gas cooler that reduces moisture.  

Impurities in the gas stream, such as siloxanes, are directly combusted, which leads to coking of 

pistons and valves and down time for routine decoking procedures every 3,000-5,000 hours.  

Engine life is estimated at 60,000 hours before blocks are sent off for refurbishment.  Catawba 

County has a performance contract with Nixon Energy to manage engine service and optimize 

up-time and efficiency.  Average net electricity production, discounting down-time, is 2.3MW.  

 

Figure 6. Jenbacher Engine 2 with installed heat exchanger. 
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 3.3.2 Biodiesel & Crop Processing. Surrounding the active landfill is approximately 61 

hectares of agricultural land dedicated to bioenergy crop production.  This land contributes 

toward growing of oilseed and biomass feedstock.  All lands in this buffer are dedicated to the 

landfill process, and will ultimately be developed for soil removal or the construction of new 

cells over the next 60 years, the landfill’s anticipated useful life.  It is in this window that 

bioenergy crops are viable. 

 University research and Catawba County Cooperative Extension have developed crop 

rotation models to maximize oilseed production for biodiesel feedstock, while maintaining soil 

and plant health.  An example is a three-year period transitioning winter canola, summer 

soybeans, winter cover crop, summer sunflower, winter wheat, and summer corn.  One hectare 

over this three year period produces roughly 2,245 liters of vegetable oil, 2.4 tons of protein 

meal, commodity crops for outright sale (corn & wheat), and crop residue.   

 The Biodiesel Research, Development, and Production Facility, operated by partner 

Appalachian State University has a nameplate capacity of 490,000 liters per year.  At 85% 

conversion of oil to methyl esters and an average oil production of 748 liters per hectare, 770 

hectares of land dedicated to oilseed production are required.  Achieving this production goal 

will require engaging the local agricultural community, and potentially acquiring waste 

commodity streams such as used cooking oil and brown grease.  Mandating and/or incentivizing 

county-wide collection of used cooking oil is being considered.     

 To further integrate renewable fuel production in 2012, the Catawba County EcoComplex 

funded the construction of the on-site Crop Processing Station (see Figure 7 and Figure 8).  This 

project, valued at $800,000, was also financed through the landfill post-closure fund.  This 

facility includes grain handling, storage, drying, and oilseed pressing to provide biodiesel 
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feedstock oil.  Catawba County is currently working with private and public partners to develop 

a vegetable oil leasing program where oil will be refined to food-grade, leased to local 

restaurants, then returned as biodiesel feedstock. 

 

Figure 7. Biodiesel Facility Process Line. 

 

Figure 8. Crop Processing Facility. 

 3.3.3 Industrial Symbiosis. The Biodiesel Research, Development, and Production 

Facility represents the potential of enhanced environmental and economic performance through 

on-site integration. Off-road diesel equipment to maintain landfill operations consumes roughly 

284,000 liters of diesel fuel per year. The 61 hectares of oilseed crops grown on buffer areas add 
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value to under-utilized lands, and when processed into biodiesel and blended with petroleum 

diesel, can account for 12% of the total fuel consumed. 

 The facility is located adjacent to the landfill gas generators, where a combined heat and 

power system was retrofitted to provide process heat and building heat. A liquid-to-liquid heat 

exchanger, rated at 211,000 MJ/hr, was installed on the jacket coolant loop of one engine.  Hot 

water at 79°C is circulated at 300 LPM to a 9,500 liter thermal storage tank for process 

operations, and to forced air unit heaters for building heat, when necessary.  This heat recovery 

system had an installed cost of $21,700, thus avoiding the cost of a comparable-sized natural gas 

boiler ($10,000) and incremental costs of natural gas inflating at 1%.  The system has a 3 year 

payback period, net present value of $120,000 at year 20, and a 40% internal rate of return based 

on avoided fuel costs.   

3.4 Impending and Developing Components 

 Impending energy production components include biomass gasification of wood fuel, 

anaerobic digestion of biosolids, and pilot-scale cellulosic ethanol production with university 

partners.  Developing components include those aimed at growing cellulosic feedstocks for 

ethanol as part of an alternative landfill cap, micro algae production using wastewater from 

biosolids and combustion gas, a commercial greenhouse facility, a scrap tire recycling and 

product manufacturing center, a plastic product manufacturing facility, and additional university 

research facilities/partnerships.  Implementing an alternative landfill cap with a perennial 

bioenergy crop does present concerns related to compliance.  State and federal regulations 

require a vegetative barrier to prevent excessive soil erosion and degradation of the cap and liner.  

Permitting for alternative landfill caps could be achieved through research and development 

solicitations, in conjunction with robust erosion control measures during crop establishment.    
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 3.4.1 Wood Fuel Gasification. This future facility plans to use cleaned wood waste, or 

wood fuel from EcoComplex entities to generate electricity, heat, steam, and CO2.  The proposed 

facility will employ Nexterra gasification technology, coupled with GE-Jenbacher internal 

combustion engines.  The facility will handle 13,000-18,000 dry metric tons of biomass per year 

generated from Gregory Wood Products, Pallet One, and potentially segregated and cleaned 

wood from the construction and demolition waste stream.  Electricity output is estimated at 1.9 

MW.  Waste heat from this facility is currently being analyzed as a means for drying lumber or 

biosolids. 

 3.4.2 Bio-Solids (Sludge) and Organic Waste Processing. This facility is designed to 

replace the existing privately run regional sludge management and composting facility.  A multi-

feed digestion system is designed to process wastewater sludge, trap grease, agricultural, food, 

restaurant and cafeteria wastes, and byproducts from the existing biodiesel facility, as well as 

from the future ethanol and algae facilities.  Wastewater sludge and other organics will be 

brought to this facility which will anaerobically digest waste, produce methane and increase the 

power and heat output of the GE-Jenbacher co-generation internal combustion engines in 

conjunction with landfill gas flows.  This facility intends to handle wastewater sludge and other 

organics from Catawba County and the Unifour region (Alexander, Burke, Caldwell, and 

Catawba Counties) for approximately twenty years. 

 3.4.3 Cellulosic Ethanol. Perennial grasses such as switchgrass have the potential to 

serve as an alternative landfill cap while producing feedstock for fuels.  Cellulosic ethanol from 

switchgrass has surpassed yields of 3,700 liters per hectare (Schmer, Vogel, Mitchel, & Perrin, 

2007).  As landfill cap increases in area at the EcoComplex, alternative perennials such as 

switchgrass become increasingly attractive.  With approximately 81 hectares of alternative 
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landfill cap growing switchgrass, 300,000 liters of cellulosic ethanol per year could be produced.  

Though this scale is typically too small for commercial viability of an anhydrous product, it 

provides value for modeling, demonstration, research, and as a feedstock for advanced biodiesel 

processing.   

 3.4.4 Algae. Incorporating algae into wastewater remediation while enhancing the CO2 

content with combustion exhaust gas from co-generation units, is a viable long-term endeavor for 

biomass production at the EcoComplex.  An algae system of this nature can provide multiple 

benefits: production of animal feed, biodiesel and ethanol, algae biomass for anaerobic digestion, 

reduction of nutrient loading in wastewater, and sequestration of carbon (Lundquist, 2008).  

Anaerobic digestion is the simplest pathway for energy production and dovetails with the 

planned biosolids management facility.  A combined pond/photo-bioreactor system could 

feasibly produce sufficient algae biomass to match methane and energy production of the 

biosolids multi-feed digester component.       

3.5 Discussion 

 All aforementioned bioenergy processes have associated byproduct streams, the added 

value of which is essential for economic viability.  Byproduct examples include protein meal, 

glycerol, wood ash, biosolids wastewater, ethanol wash, and residual algae. 

 Oilseeds grown on buffer areas of the EcoComplex are crushed to extract oil.  Typical oil 

content is 20-30% by weight of the seed.  The remainder is protein meal or feed-meal, primarily 

used as animal feed.  An assay on canola meal by NCDA shows 35% protein content, which is 

comparable to soybean meal (NCDA, 2008).  Protein meal can also be used as a soil amendment, 

fertilizer, and as biomaterials feedstock.  Glycerol is the byproduct from transesterification of 

triglycerides with methanol, produced at approximately 10% by volume per liter of biodiesel.  
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Glycerol has myriad uses including: dust control, animal feed, soap stock, and chemical 

feedstock for industrial or technical grades.  Wood ash from gasification can be used in compost 

or soil amendment.  Biosolids wastewater can serve as fertilizer, make-up water in the landfill to 

control gas flows, and as nutrient-rich irrigation water.  Wash or residual water after distillation 

of ethanol can be used for digester feed, fertilizer, or a compost amendment.  Algae residue can 

be used for animal feed, digester feed, fertilizer, and potentially in food supplements.  

 Zero waste goals and overall waste reduction measures are expected to continue as 

tipping fees increase and landfill siting and operations become increasingly expensive.  Waste-

to-energy technologies are responding to this economic opportunity and developing on numerous 

platforms, including gasification, incineration, and refuse derived fuels.  Waste characterization 

studies by EPA (2009) estimate paper and paperboard, plastic, and wood at 28.2%, 12.3%, and 

6.5% respectively, of total landfilled MSW.  These discards are the primary feedstocks for future 

MSW-to-energy processes and refuse derived fuels.  Zero waste is a development in progress, 

and waste characterization studies are of paramount importance in effectively quantifying and 

explaining reductions over time, as economic conditions change.  The limitations of zero waste 

include materials that cannot be recycled or composted into soil amendments.  

 Future directions for the EcoComplex encompass resource recovery and renewable 

energy production, as well as food systems development with research and production 

greenhouses, nurseries, and value-added foods.  Contributing toward regional bioproductivity 

(defined as the footprint necessary to provide goods and services for a community or region) is a 

realistic endeavor for this EIP.   
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3.6 Conclusion 

 The Catawba County EcoComplex is an evolving eco-industrial park led by municipal 

government striving towards zero waste.  While waste reduction continues as a primary driver, 

renewable energy from municipal biomass has become a focus for EIP development moving 

forward.   

 Biomass energy systems are dictated by regionalism.  Deriving feedstock from a tighter 

radius will become increasingly cost effective.  Methods of biomass utilization fluctuate 

regularly.  For example, biosolids can be digested to produce methane for energy, or they can be 

composted to produce soil amendment.  Both methods produce commodities with varying 

economic value.  Robust technologies that facilitate operation, management, and system 

longevity are highly desirable.  Well defined systems are paramount, as these systems becoming 

increasingly integrated and complex. 

 The establishment of a financially successful landfill gas-to-energy project laid the 

foundation for on-going political support.  The ability to develop public and private partnerships 

is the key driving factor to cultivate future projects.  University partnerships continue to show 

promise, as the EcoComplex demonstrates leadership as a regional model and unique case study.  

A creative financing using landfill post-closure fund has enabled Catawba County to fund capital 

intensive buildings and equipment.  All landfills are required to maintain a post-closure fund, 

thus representing a potential source of funds for future waste/biomass-to-energy systems and 

zero waste initiatives.  Such projects will likely delay closure.  Prolonging landfill life span will 

allow for less constrained payback periods.  Local governments and municipal landfills are 

potential leaders for developing successful eco-industrial parks based on biomass and waste 

resources for clean energy development.     
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CHAPTER 4 

Material and Energy Flow Analysis of the EcoComplex Oilseed Biorefinery 

4.1 Abstract 

 Material and energy flows for processes associated with the NC EcoComplex Biorefinery 

were analyzed through a mixed methods approach which included primary data from the 

biodiesel and crush facilities as well as secondary data from literature review for agricultural 

production of oilseed crops. The results of this data are to establish a baseline for biodiesel 

manufactured at the Catawba County EcoComplex and are valuable in assessing technical 

bottlenecks and process inefficiencies through the system.  This baseline data gives the life cycle 

inventory (LCI), which are used as the primary inputs for conducting life cycle assessment 

(LCA).   

 Technical bottlenecks discussed include fertilizer use in agriculture and the ability to 

produce plant nutrients through byproducts of crush and conversion in symbiosis with existing 

waste and resource management industrial ecology systems.  The scale factor of the crush 

facility and potentially the technology selected, present an incompatibility with the scale of the 

biodiesel facility.  For biodiesel production capacity to be realized, additional feedstocks must be 

sourced.  The conversion step points to three potential bottlenecks: feedstock preparation, 

methanol recovery, and thermal loads for expanded production.   

4.2 Introduction 

 This chapter details the movement of materials and energy through the oilseed 

biorefinery by examining the three fundamental operations involved in processing raw materials, 

primarily oilseeds, into finished products and biodiesel fuel.  These operations consisting of 

agriculture, oilseed crush, and biodiesel conversion are analyzed to give material and energy 
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flows of biodiesel manufactured within an eco-industrial park which intends to enhance overall 

efficiency through geographic proximity and materials and energy reuse and recovery.  The 

results are data used in analysis of technical bottlenecks and process inefficiencies through the 

system as well as to establish a baseline for energy and material flows for biodiesel 

manufactured at the Catawba County EcoComplex.  This baseline data produces the life cycle 

inventory (LCI), which are used as the primary inputs for conducting life cycle assessment 

(LCA).  LCA is used to determine greenhouse gases emitted and global warming potential 

throughout production steps and serve as a comparison against conventional petroleum diesel as 

well as other alternative fuels.  The LCI also provides energy usage data throughout the process 

and is used to calculate Fossil Energy Ratio (FER) defined as the ratio of energy output of one 

unit of biodiesel divided by the associated fossil energy required to make that unit.  This is also 

commonly referred Energy Return on Investment (EROI) and is used to assess the renewability 

of a given technology or process.  LCA of this system is presented in chapter 5.   

4.3 Materials and Methods 

 Materials and energy inputs for each process include both primary data from plant 

operation and secondary data from literature.  The landfill gas to energy system has been in place 

for 13 years with detailed records of gas flows, average conditions, and power outputs.  This data 

was provided by the Catawba County.  Agricultural inputs were compiled from crop budgets and 

compared with field trials on-site.  Both crush and conversion data are experimental, based on 

start-up of those facilities and extrapolated for operation under production capacity.   

 4.3.1 System Boundaries. The goal of the EcoComplex system is to take advantage of 

geographic proximity for all inputs and outputs of the production system.  Farmland is the 

critical piece of this system since agricultural commodities can be transported large distances 
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relatively inexpensively.  Catawba county and the surrounding counties still maintain an 

agricultural character and is home to the last large-scale piedmont grain farming before moving 

west into the foothills of the Blue Ridge Mountains.  The system boundary for regional farms to 

supply oilseed for biodiesel feedstock is defined as an 80km (50 miles) radius.  The landfill gas 

to energy facility which provides thermal energy to the biodiesel facility and the manufacturing 

processes of crush and conversion are co-located on the EcoComplex site where transportation is 

negligible.  Chemical inputs included in the inventory are fertilizers and chemical applications in 

agriculture and process chemicals in conversion.  The inputs for production of capital goods such 

as process equipment and buildings are excluded as they do not affect operating costs, the focus 

of this research. 

 4.3.2 Landfill Gas to Energy. The landfill anchors the EcoComplex and its waste is the 

primary material flow into the system.  At present, 484 metric tons/day of municipal solid waste 

(533 tons/day) are buried at the Catawba County Blackburn landfill Monday through Friday, and 

a half day Saturday.  This waste stream which contains roughly 25% organic materials, evolves 

into landfill gas with constituent parts 50% methane, 50% carbon dioxide, and trace components 

such as hydrogen sulfide (Beebe, 2013; EPA, 2009).  A thorough waste characterization has not 

been performed at the EcoComplex.  This gas flows (at averaged annual conditions) at rate of 

1200 scfm (34.5 cubic meters/minute) at 67°F (18.3°C) at a pressure of 15 psi (103,425 Pa) into 

a manifold that supplies fuel to three GE-Jenbacher generator sets equipped with 20 cylinder 

1500 horse power spark ignition engines.  Combustion products from the landfill gas assuming 

complete combustion, stoichiometric air supply and fuel supply as 50% methane are per the 

following equation:  CH4+2 O2  + 3.76 N2CO2  + 2 H2O + 3.76 N2 
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 Converting volume into mass and mass flow rates, the ideal gas law is used with the 

observed parameters listed in Table 3.  Anaerobic digestion and gas production of the landfill 

system is dynamic, depending on moisture levels from recent rain events, barometric pressure, 

ambient temperature, and other climatic conditions such as snow cover.  Table 3 and Table 4 

present estimates of average mass flow rates, representing typical landfill gas conditions.   

Table 3  

Landfill Gas Conversion to Mass 

Flow rate of LFG 1200 scfm 

Methane content 
50% 

 

Methane gas flow 
600 scfm 

Methane gas flow 
16.99 m3/min 

Pressure 
103,425 Pa 

Temperature 
291.48 k 

R constant 
8.3145 m3*Pa/(mol-K) 

Moles of Methane 
724.93 (at 600 scfm) 

 

Table 4  

Landfill Gas Mass Flows 

Reactants Molecular wt (g/mole) Grams/min Kg/hr 

Methane 
16 11,599 696 

Oxygen 
32 23,198 1,392 

Products 

   

Carbon Dioxide 
44 31,897 1,914 

Water 
18 13,049 783 

CO2 from LFG 
44 31,897 1,914 
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 The energy density of methane is 55.6 MJ/kg (DOE, 2013) which results in instantaneous 

flow rate of 10.75MJ/second.  Average combined electrical output of the three GE-Jenbacher 

generator sets is 3MW (see Figure 9).  The electrical conversion efficiency is calculated at 

27.9%, with the remainder thermal energy dissipated primarily to exhaust flow and the jacket 

water radiator cooling system at 60% and 40% respectively (Beebe, 2013).  Resultant waste 

thermal energy equals 2.15MJ (7.3 MMBtus/hr) in the exhaust and 1.43 MJ (4.9 MMBtus/hr) in 

the jacket water for each generator set.     

GE Jenbacher

Co-Generation 

Facility

Thermal 

efficiency: 

27.9% 

LFG
Electricity 

3.0 MWe 

Biodiesel 

Facility

Waste Heat

10.6 MWth

Anaerobic 

Reactor:

Blackburn 

Landfill

Municipal 

Solid Waste:

484 tons/day

25% organic 

material

Methane: 696 kg/hr 

CO2: 1,914 kg/hr

Waste Heat: 58.5 kWth

Combustion 

Products:

CO2: 3828 kg/hr

Steam: 783 kg/hr 

Oxygen: 

1,392 kg/hr

 
Figure 9. Energy & Material Flows of Landfill Gas to Energy System. 

 Two important feedstocks for driving further IE developments are the available waste 

heat and the carbon dioxide produced from combustion and from the landfill gas itself.  The heat 

recovery application is designed to provide the Biodiesel facility process and building heat for an 

operating capacity of 490,000 liters per year.   

 4.3.3 Agriculture: Farming & Oilseed Production. Farming operations for growing 

oilseeds to support the EcoComplex Crush Facility are analyzed for material inputs and outputs, 

illustrated in Table 5.  Crop enterprise budgets for canola, sunflower, and soybeans were 

compiled including data from two crops grown at the EcoComplex, fall 2011 canola and summer 
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2012 soybeans (see Appendix E).  Primary inputs are seed, fertilizers (nitrogen, phosphorous, 

potash), lime, chemical applications including herbicides, insecticides, fungicides, and direct 

energy inputs (diesel consumed in farming operations for tilling, planting, spraying, and 

combining).  Output is the harvested seed that is combined.  This analysis does not consider the 

organic material, stover, produced by the plant as it is left in the field to recycle nutrients.  All 

farming methods used in this analysis can be characterized as “conventional“ and do use a more 

complex “integrated farming systems“ approach to reduce chemical and energy usage. 

 Canola is a trademark term which signifies “Canada Oil Low Aid,” is a cultivar of 

European rapeseed and bred for low acidity and palatability as an edible oilseed crop for cool 

climates (Callihan, Brennan, Miller, Brown, & Morre, 2000).  Canola has been introduced in the 

Southeastern US as a winter crop, typically planted in the fall six weeks before a killing frost.  

Significant work has been invested to select seed varieties and develop management practices for 

raising canola across the Southeast.  This paper cites the enterprise budget in the “North Carolina 

Production Guide” for associated farming inputs (George, Tungate, & Hobbs, 2008).   

 Sunflowers are primarily grown in the Midwestern and Great Plains states.  Sunflower as 

an oil crop has not been significantly developed for North Carolina.  Therefore, crop budgets 

from Nebraska and Kansas were selected as comparables to give a representative average for 

both inputs and seed yield.       

 Soybeans are the dominant oilseed crop in commodity US agriculture and have been the 

focus of continual genetic improvement and associated management practices such as no-till 

(Pradhan et al., 2009).  Genetically engineered soybeans became commercially available in the 

US during the 1990s and quickly advanced in the marketplace where they accounted for 75% in 

2002 and 93% in 2012 of the US soybean crop planted (USDA-ERS, 2013).   This rapid trend 
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has had profound effects on the use of chemical applications, in particular herbicide usage.  

Soybean system inputs are from the USDA-Economic Research Service 2006 data for average 

across North Carolina.   

Table 5  

Material and Energy Flows per Hectare by Oilseed Crop 

Materials (per Hectare) Canola(1) Sunflower (2) Soybeans (3) 

Seed (kg) 3.4 5.6 57.3 

Fertilizers 
   

Nitrogen (kg) 179.6 60.6 23.4 

Phosphate (kg) 67.4 16.8 49.4 

Potash (kg) 146.0 16.8 94.2 

Lime (kg) 741.0 741.0 741.0 

Chemical Application 
   

Herbicides (kg) 1.2 6.7 1.8 

Insecticides (kg) 1.0 0.3 1.7 

Fungicide (kg) 1.7 0.0 0.2 

Direct Energy Use  
   

Diesel Fuel (liters) 39.3 39.3 39.3 

Outputs 
   

Seed (kg) 2,807 1,639 2,699 

1 (George, et al., 2008), 2 (UNL, 2013), 3 (USDA-ARMS, 2013) 

 

 4.3.3.1 Oilseed Crush. The Crop Processing and Crush Facility consists or grain 

handling, cleaning, and storage equipment as well as a 4 ton oilseed crush capacity, and four 

KK40 oilseed presses working in parallel.  The oilseed press technology is cold extrusion, 

designed to produce high quality vegetable oils for use in food or fuel applications.   The 

equipment is capable of handling a diverse variety of oilseeds including the common row crops 

considered in this study; canola, sunflower, and soybeans.  The rate of processing for each seed 
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is distinct, primarily dependent on inherent oil content and seed hardness factor.  The overall 

pressing speed is a result of these two primary variables and has been observed experimentally to 

be a fraction of the nominal capacity whereby canola equals 75%, sunflower at 67%, and 

soybeans at 50%.  These significant differences explain the variation in material throughput by 

oilseed type.  

 4.3.3.1.1 Crush Process. Oilseeds are harvested mechanically, combined in the field at 

the appropriate point in the life cycle where the seeds have reached maturity and have a 

relatively low moisture content (~12%) to promote processing and storage.  Conditions during 

harvest depend on numerous agricultural practices that influence the presence of non-seed 

particles, or foreign material, that enters the harvested seed.  This material includes chaff, weed 

seeds, rocks, and soil.  Figure 10 presents material and energy flows at the Crush Facility.  The 

air screen cleaner facilitates the removal of this undesirable material by using two sets of screens, 

differential in size to the seed, and forced air to sort foreign material from the seed.  The foreign 

material removed from a well-managed field has been observed at 0.5% by weight of the 

incoming seed.  Once the seed is cleaned it moves to the dryer.  The dryer uses propane and 

forced air to reduced moisture content to levels adequate for long-term storage, typically up to 

one year.  Moisture loss has been observed at 1% by weight of incoming seed.  Dried seed moves 

to the dry bin where it is stored and augured to the seed presses.  Oil extraction efficiency is the 

weight of the oil pressed divided by the starting weigh of seed expressed as a percent.  Canola is 

28%, sunflower is 20%, and soybeans are 10.5%.  Oilseed meal, also referred to as protein meal 

or grain meal, is the principal product of oilseed pressing and the balance by weight after oil 

extraction.  Protein meal is at the proper moisture content for storage after pressing and 

transported to local feed mills by truck.  The pressed oil contains small particles from the seed 
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coating and is cleaned by a plate and frame style filter press.  A filter aid, diatomaceous earth, is 

added to increase surface area between frames.  The oil is pumped through the filter where the 

solids and sediments, known as foots, are trapped in the filter.  These sediments represent 2% of 

the starting oil by weight.  Filtered oil is equal to the starting oil weight minus the sediment loss.   

Air 

Screen 

Cleaner

Oilseed 

Presses

Filter 

Press

Foreign 

Material: 

3592/3209/ 

2395 kg

Oilseed Meal: 

491/489/412 tons 
Oilseed Sediment (Foots): 

3936/2529/ 944 kg

Moisture loss: 

7184/6417/ 4789 kg

Oilseeds: 

718/642/479 

tons

Propane: 7.4/6.6/

4.9 MWh

Filter Aid 

(diatomaceous earth): 

990/632/236 kg

INPUTS

OILSEED CRUSH PROCESS

Electrical Energy: (process equipment, 

augers, pumps, motors, compressed air), 

building loads: 89.0/92.0/95.6 MWh

Dryer

Dry 

Storage 

Bin

Filtered 

Vegetable Oil: 

194.2/123.9/46.2 

tons

OUTPUTS  

Figure 10. Annual Material and Energy Flows through Crush Facility operating at 250 days/year 

by Oilseed Type (Canola, Sunflower, Soybeans). 

 Electrical energy use in the facility was determined by load assessment for each piece of 

equipment throughout the process for each of the three oilseeds.  Hours of operation for each 

piece of equipment were determined by dividing the overall mass by the flow rate by equipment 

(Appendix F).  Operating hours were multiplied by motor specification, typically full load amps, 

to give kilowatt-hours.  Other electrical loads such as lighting exhaust fans, and seasonal 

building heaters were estimated based on operating schedule and added to the equipment 

electrical usage.   

 4.3.4 Biodiesel Conversion. The EcoComplex Biodiesel Facility houses a multi-

feedstock process that is able to convert a variety of oils and fats into fatty acid methyl esters 
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(FAME).  Common feedstocks include raw seed oils such as canola, sunflower and soybeans 

processed on-site, used cooking oils recycled from restaurants, and animal fats rendered from 

large scale processing plants.  The primary conversion step is transesterification, a base catalyzed 

reaction where potassium hydroxide is added to methanol and reacted with feedstock oil under 

moderate temperatures (60°C) for 1-2 hours.  Methanol is used at a 6:1 molar ratio with the 

feedstock oil, 20% by volume of oil, and potassium hydroxide (KOH) is used at a ratio of 14.83 

grams per liter of feedstock oil (Mittelbach, 2006).  KOH can be reduced to as little as 9 grams 

per liter for virgin vegetable oils or feedstocks that have been pretreated.   This is an emulsion 

reaction requiring shear mixing or vigorous agitation to ensure complete reaction defined by and 

measured in the European Biodiesel Standard (EN 14214) as a minimum of 96.5% methyl ester 

content and indirectly by the US Biodiesel Standard (ASTM D6751) as less than 0.24% bound 

glycerin by mass (see Appendix B and C).   Important reactions in the conversion process are 

listed below: 

1. Transesterification: capable of achieving desired conversion to FAME with alkali 

catalyst, KOH with feedstock oil containing up to 5% free fatty acids. 

  OIL + 3 MeOH (KOH CATALYST)   3 FAME + GLYCEROL 95% conversion of 

OIL 

2. Saponification:  Additional catalyst must be added to compensate for catalyst lost to soap 

formation. 

 FATTY ACID + POTASSIUM HYDROXIDEPOTASSIUM SOAP + WATER 

3.    Water treatment/Catalyst Removal:  Adding phosphoric acid to waste water to form a 

potassium salt.  This does liberate FFAs which are miscible with the FAME phase.  This 

material is added to incoming feedstock oil.   
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 3 KOH + H3PO4    K3PO4 + 3 WATER    100% conversion of KOH 

4.  Acid Esterification:  Technique applied to high FFA feedstocks to convert free fatty acids 

directly to FAME.  This requires materials handling of highly corrosive sulfuric acid and 

creates water which complicates the base catalyzed reaction. 

 FATTY ACID + METHANOL (SULFURIC ACID CATALYST)   FAME + 

WATER 

 4.3.4.1 Feedstock Preparation. Due to the multi-feedstock nature of the plant, 

infrastructure to handle different types of oils and their associated properties was developed.  

The two most critical characteristics of incoming feedstock oil are free fatty percentage (FFA %) 

and moisture, impurities and unsaponifiables, expressed as MIU.  This MIU term includes solids 

such as food particles from a fryer or seed coatings and hulls from oilseed extraction.  Table 6 

lists common feedstock oils processed at the plant gate. 

Table 6  

Feedstock Oils at Plant Gate 

Oil Type FFA % MIU % 

Refined vegetable oil  <0.05 <0.05 

Used cooking oil 3-7 2-8 

Crushed unrefined oilseeds (canola, sunflower, soy) 0.5-1.5 <0.5 

Commodity Yellow Grease 1-3 < 1.0 

Animal Fats and Tallow 5-12 <0.5 

 

 FFA and moisture are the two most significant parameters for oil quality that effect use of 

expendable chemicals principally potassium hydroxide, downstream processing including 

washing, and overall yield or conversion ratio.   
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 4.3.4.1.1 FFA%. Free fatty acids interfere directly with methyl ester conversion by 

forming a soap with the catalyst, a sodium or potassium salt.  This translates into direct yield 

loss, creates water that can hydrolyze triglycerides and form more soap, creates difficulties in 

ester and glycerol separation, and further complicates the downstream purification process.  

These soaps must be removed from the fuel per EN14538 which states the potassium/sodium 

combined cannot exceed 5 ppm.  Water washing and ion exchange resin filtration are unit 

operations designed for soap removal as well as other impurities. Van Gerpen (2005) suggests 

that FFA levels under 0.5% can be ignored, levels between 0.5-2% can be reacted by additional 

catalyst, and recommends that any feedstock oil with FFA value over 2% be subject to a 

pretreatment such as acid catalysis followed by alkali catalysis.  Practical experience from North 

Carolina biodiesel producers show that feedstock oil can be reacted with higher FFA values (2-

5%), however with the trade-off of decreased yields due to saponification and loss to soaps.  

 4.3.4.1.2 MIU%. Moisture, impurities, and unsaponifiables are primarily an issue with 

used cooking oil and yellow grease.  Specifically these are fryer and food oils that become 

contaminated with water, food particles, cleaning products and soaps and are often allowed to 

degrade in collection vessels that increase overall FFA percentage.  The range of 2-8% MIU 

describes the variable nature of handling this material and the fact that has been traditionally 

treated as a “waste” product for the restaurant.  Only in recent years has it become a sought after 

commodity and generates a revenue stream for the restaurant.   

 The two primary methods to achieve consistent feedstock quality are (a) to blend low 

quality oils with higher quality oils, and (b) to pre-treat low quality oils with an acid 

esterification process to lower FFAs prior to base catalyzed transesterification (see Figure 10).  

The first method is preferred and only requires storage capacity, while the latter step involves 
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additional unit operations and material inputs, which also involves handling of highly corrosive 

sulfuric acid.   

 A standard process has been developed for the EcoComplex Biodiesel Facility based on 

start-up production from August 2011 through November 2013 where 15 batches (average batch 

size of 1850 liters) were converted to fatty acid methyl esters in accordance with ASTM D6751.  

Appendix D lists the standard unit operations used in the EcoComplex biodiesel process.     

 A process flow diagram of the facility’s capabilities is found in Appendix G.  During this period 

feedstock consisted of both high quality raw vegetable oils and lower quality used cooking oils at 

46% and 54% by volume respectively.  The average quality of this blended feedstock oil, was 

found to have a FFA (free fatty acid) value of 2.80%, and moisture content of 2,273 ppm.  

Average yield during this start-up period was found to be 85%, where from 100 liters of starting 

oil, 85 liters becomes finished fuel.  The 15 liters of feedstock oil not converted is lost along the 

process, in conversion to soap, in the crude glycerin phase separation, to waste water, during 

feedstock settling and solids removal, etc.  These values are used as the baseline for materials 

and energy flows per batch.   

 Energy usage during conversion was determined by load assessment for equipment 

throughout the process.  Hours of use for each piece of equipment were determined based on 

observation during the plant start-up period.  Operating hours were multiplied by motor 

specification, full load amps, to give kilowatt-hours.  Other electrical loads such as general 

building use was estimated using electric billing cycles during a period after the building was 

commissioned and before start-up batch production (Appendix H and I).  Thermal energy inputs 

were calculated for the waste heat recovery system and measured experimentally to calculate 
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heat exchanger efficiency and estimate thermal energy requirements for each unit operation 

(Appendix J).     
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Figure 11. Material and Energy Flows through EcoComplex Biodiesel Facility per 2,365 liter 

Batch (625 gallons).  

4.4 Results and Discussion 

 Annualized material flows for the three processes are listed in Table 7.  Agricultural 

flows are scaled to meet the crush facility production capacity operating 250 days per year.  

Therefore seed output and ultimately land required is based on crushing rate for each oilseed.   
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Table 7  

Agriculture Material Flows Per Year 

Category Canola Sunflower Soybeans 

Hectares farmed 
256 392 177 

Seed input (kg/yr) 
862 2,199 10,162 

Fertilizers 

   

Nitrogen (kg/yr) 45,952 23,745 4,144 

Phosphate (kg/yr) 17,232 6,596 8,767 

Potash (kg/yr) 37,336 6,596 16,717 

Lime (kg/yr) 189,552 290,219 131,506 

Chemical Application 

   

Herbicides (kg/yr) 316 2,628 311 

Insecticides (kg/yr) 258 119 297 

Fungicide (kg/yr) 431 
 

27 

Energy Use  

   

Diesel Fuel (liters/yr) 10,044 15,379 6,968 

Outputs 

   

Seed (kg/yr) 718,487 641,848 478,991 

 

 Fertilizer applications account for the most significant material input in oilseed farming.  

Crop budgets are formulated to maximize yield and are typically prescribed on economic returns 

only.  For example, applying excess nitrogen to canola before the massive growth bolting stage 

does not account for embodied energy or emissions to the environment.  Crop budgets also 

represent average conditions and have inherent limitations in regards to accuracy.    

 Canola is considered a “heavy feeder” requiring the greatest fertilizer input for each 

macro nutrient, illustrated in Figure 12.  Soybeans on the other hand benefit from biological 
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nitrogen fixation where on average 50-60% of total nitrogen uptake comes through this means 

(Salvagiotti et al., 2008).  There is a clear need for the development of an integrated farming 

system approach that includes conservation tillage, selection of disease resistant cultivars, target 

use of nitrogen, and increased biodiversity through rotation (Alluvione, Moretti, Sacco, & 

Grignani, 2011).  

 

Figure 12. Macro-nutrient inputs based on Crop Budgets for Oilseed crops. 

 Incorporating elements of industrial ecology to produce soil amendments is well defined 

in the scope and long term objectives of the EcoComplex.  In addition to yard waste and wood 

scraps that are composted, byproducts from the biorefinery could be added to a digester, either 

anaerobic or aerobic.  These byproducts include both sources of nitrogen (seed meal which 

ranges from 25-35% protein content) and carbon sources in the forms of solids and sediment 

from feedstock preparation and crude glycerin bottoms (NCDA, 2013b; Sadano, Toshimitsu, 

Kohda, Nakano, & Yano, 2010).  The refining of crude glycerin using phosphoric acid produces 

a separation of the crude glycerin emulsion results in the formation free fatty acids, technical 

grade glycerol at 85% purity, and a potassium salt, potassium phosphate.  This salt is water 

soluble and provides two important macro-nutrients (Javani et al., 2012).  Important decision 
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making criteria to incorporate this utilization of byproducts include effect on labor and 

production scheduling and life cycle assessment.  

 The bottleneck for crushing is clearly scale.  At current capacity this facility can only 

provide 36%, 23%, and 8% of the feedstock oil to meet the capacity of the biodiesel facility for 

canola, sunflower, and soybeans respectively.  A minimum three-fold scale-up would be required 

to match the oil outputs for canola.  This would also maximize the physical space of the building.  

Economic analysis would be needed before capital investments and facility expansion were 

made.       

Table 8 

Crush Facility Material Flows Per Year 

Category Canola Sunflower Soybeans 

Oilseeds (kg/yr) 
718,487 641,848 478,991 

Foreign Material (kg/yr) 
3,592 3,209 2,395 

Moisture loss (kg/yr) 
7,184 6,417 4,789 

Protein Meal (kg/yr) 
491,152 489,341 412,360 

Filter media (kg/yr) 
990 632 236 

Oilseed foots (kg/yr) 
3,936 2,539 944 

Propane (kWh/yr) 
7,423 6,631 4,949 

Electricity (kWh/yr) 
89,644 92,409 95,754 

Filtered Vegetable Oil (l/yr) 
194,196 123,916 46,237 

Filtered Vegetable Oil (kg/yr) 
179,437 114,498 42,723 

 

  Biodiesel conversion flows are scaled for an annual production capacity of 502,695 liters 

per year whereby 250-2,365 liter batches of feedstock oil are reacted with an average conversion 
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yield of 85% (see Table 9).  This is performed with the labor of one shift working 250 days per 

year.  The biodiesel conversion step is not constrained by lack of vegetable seed oil feedstock 

from the crushing step; however, switching to a lower quality feedstock requires increased 

processing to achieve the same yield.  Feedstock preparation is therefore the defining bottleneck 

of conversion.  This is a formidable challenge to the biodiesel industry and has led to the wide 

spread efforts to develop alternative upstream technologies for feedstock pretreatment.  Solid 

catalyst and enzymes are both techniques that afford the ability to treat low quality oils and 

potentially produce a higher value glycerin byproduct (Burton, Fan, & Austic, 2010).  At present, 

these are not cost effective at scale and are continue in the development phase.   

 Methanol recovered from distillation is another important process step that presents 

trade-offs.  Methanol recovery is not required for fuel to meet ASTM specification as both water 

washing and ion exchange filtration remove excess methanol.  However, methanol removed from 

the FAME phase post reaction, facilitates downstream purification and reduces material input for 

process water and ion exchange resins as well as energy inputs.  The recovered methanol can be 

recycled for use in subsequent batches, though it contains water from the saponification reaction 

concurrent during transesterification.  Although recovered methanol is 94-95% pure (technical 

grade is 99.5%), the presence of this water promotes further oil degradation, soap formation, and 

yield loss (J.V. Gerpen, Pruszko, Clements, Shanks, & Knothe, 2006).  Recovered methanol in 

the EcoComplex process model is blended into new methanol at a 20% ratio.  Methanol 

rectification and drying techniques such as use of molecular sieves are good options for 

improving purity especially if crude glycerin is processed.       
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Table 9 

Biodiesel conversion material flows per year 

Batches per year 250 

Batch size (kg) 2,105 

Feedstock Oil (kg/yr) 526,250 

KOH (kg/yr) 8,750 

Methanol (kg/yr) 93,525 

Sulfuric Acid (kg/yr) 111 

Process Water (kg/yr) 177,375 

IX Resins (kg/yr) 355 

Oxidative Stabilizer (kg/yr) 228 

Waste Water & Solids (kg/yr) 8,875 

Glycerin Bottoms (kg/yr) 148,200 

Recovered methanol (kg/yr) 20,775 

Wash Water (kg/yr) 182,696 

Biodiesel (kg/yr) 442,250 

Electricity (kWh/yr) 97,120 

Thermal Energy (MJ/year) 390,000 

 

 4.4.1 Energy Analysis.  

 4.4.1.1 Crush Facility. Energy used in crushing was averaged for all three oilseeds as 

their energetic inputs are similar, presented in Figure 13.  The seed presses are responsible for 

78% of the total crush energy for they operate continuously, though with relatively low power 

requirements.  The remainder of the energy loads is intermittent, such as compressed air for oil 

pumping and augers for material handling and grain cleaning.  Drying energy in the form of 

propane is the second largest operation, consuming 7% of total crush energy.  Exhaust fans and 

unit heaters along with lighting are background usage associated with building energy and have a 
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combined consumption of 9%.  Grain handling, cleaning, air compressor usage, and meal 

handling sum the balance of 5%. 

 

Figure 13. Crush Facility Energy Use. 

 4.4.1.2 Biodiesel Facility. Energy use for biodiesel conversion was itemized for each 

operation, see Figure 14.  Building energy usage at 31% is the largest item and consists of loads 

including: exhaust fans, lighting, HVAC, lab equipment, and office equipment.  The vacuum 

venturi is powered by compressed air and is used for pulling vacuum during flash drying, 

distillation, and as a safety mechanism to exhaust vapors when filling tanks.  It accounts for 19% 

of the total energy consumed.  Heat distribution pumping energy is 15% of the total and is 

pumping energy to move heat transfer fluid from a storage tank inside the facility to the heat 

exchanger located on the landfill gas generator and from the storage tank to each heated tank in 

the process.  Ion exchange pumping energy accounts for 10% which uses compressed air to 

move washed and dried fuel through a fluidized bed of ion exchange resins.  The reactor pump 

and agitator are used in conjunction for flash drying, transesterification, and methanol recovery.  

Compressed air loads where converted to electrical energy by calculated compressed air volume 

78% 

7% 

4% 

4% 
3% 2% 1% 1% 0% 

Crush Facility Energy Consumption 

Seed pressing 

Drying 

Exhaust Fans 

Unit heaters 

Grain handling 

Lighting 

Grain cleaning 

Air Compressor 

Meal handling 



72 

 

for each device and multiplying it by a power factor for industrial compressors (Schmidt & 

Kissock, 2002). Compressed air loads comprise over a quarter of total energy, 27%, which 

include the vacuum venturi, ion exchange pump, methoxide mix pump.   

 

Figure 14. Biodiesel Facility Electricity use by category. 

 Thermal energy inputs were calculated for each unit operation of biodiesel conversion by 

measuring mass flow rate of the heat transfer fluid over time, given a heat exchanger’s efficiency 

factor (see Figure 15).  Heating energy required for conversion is spread out over several unit 

processes, though distillation for methanol recovery from FAME post reaction uses one quarter 

of the total.  With the absorption chiller added to this (concurrent process), the total is 38%.  This 

is due to the latent heat of methanol and required phase change for boiling and condensation.  

Feedstock settling is the second largest load as it requires high temperatures to assist with 

particle removal and viscosity reduction as the oil is pumped through canister filters.  

Transesterification and feedstock vacuum drying require similar heating while the remainder of 

the processes are relatively minor loads.   
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 Thermal energy is provided to the biodiesel facility from waste heat off the jacket water 

of one LFGTE engine.  The absorption chiller, which uses propane, is the only exception.  The 

heat recovery system was designed to substitute a 200,000 Btu/hr (58.5 kW) boiler to supply low 

quality heat (water at 76°C) for process heating loads.  A 2,500 gallon (9,462 l) storage tank was 

added to allow addition heating capacity for simultaneous high thermal load processes such as 

distillation and feedstock settling.  Maximum on-demand heating load, where all process tanks 

are being heated is calculated at 46kW.  Developing future capabilities such as glycerin 

distillation and methanol rectification, both requiring high thermal inputs, running 

simultaneously with other operations will likely surpass the supply heat system capacity.  

Additional heat supply or process scheduling should be analyzed as these new capabilities are 

considered.        

 

Figure 15. Thermal Loads for Biodiesel Conversion by Unit Operation. 

4.5 Conclusion 

 The life cycle inventory for each process associated with the NC EcoComplex 

Biorefinery was determined through a mixed methods approach which included primary data 
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from the biodiesel and crush facilities as well as secondary data from literature review for 

agricultural production of oilseed crops.  The material and energy flows discussed in this chapter 

points to distinct bottlenecks of the EcoComplex oilseed biorefinery.  These bottlenecks include 

fertilizer use in agriculture and the ability to produce plant nutrients through byproducts of crush 

and conversion in symbiosis with existing waste and resource management industrial ecology 

systems.  The scale factor of the crush facility and potentially the technology selected, present an 

incompatibility with the scale of the biodiesel facility.  For biodiesel production capacity to be 

realized, additional feedstocks must be sourced.  The conversion step points to three potential 

bottlenecks: feedstock preparation, methanol recovery, and thermal loads for expanded 

production.   
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CHAPTER 5 

Energy & Greenhouse Gas Life Cycle Assessment of Multi-Feedstock Biodiesel Production 

within the EcoComplex Industrial Ecology System 

5.1 Abstract 

 The role of biofuels as a renewable energy source for the 21st century is subject of 

considerable debate.  To play a significant role in the evolving energy mix, biofuels must accept 

an unprecedented degree of scrutiny that fully addresses potential economic, societal, and 

environmental benefits.  The task of confronting these concerns while achieving a high level of 

transparency is complex.  Life Cycle Assessment (LCA) methodology has become the standard 

framework for sustainability assessments of biofuels with regards to energy use and 

environmental performance. 

  A cradle to grave LCA was conducted for canola, soy, sunflower, and used cooking oil 

(UCO) biodiesel feedstocks within a conventional process system and the EcoComplex 

Industrial Ecology (IE) system which uses non-fossil based electricity and process heat in crush 

and conversion steps.   LCA results of energy balance and carbon intensity analysis show a large 

range by feedstock type where UCO clearly benefits from its classification as a secondary-use or 

waste product.  The agriculture step is costly both in terms of energy equivalents and embodied 

emissions primarily attributable to nitrogen fertilizer.  Removing the agricultural as well as 

crushing steps consolidates UCO feedstock impacts to the conversion step which is significantly 

affected by implementation of applied industrial ecology.  The IE system for UCO feedstock 

resulted in a carbon intensity value of 7.93 gCO2-eq/MJ, a 57% reduction compared to the 

conventional system, and a fossil energy ratio (FER) of 12.24:1.  Soybean based biodiesel 
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resulted in the most environmentally benign of the oilseed crops with a carbon intensity value of 

12.51 gCO2-eq/MJ and FER of 7.19 within the IE system.     

5.2 Introduction      

 The role of biofuels as a renewable energy source for the 21st century is subject of 

considerable debate.  To play a significant role in the evolving energy mix, biofuels must accept 

an unprecedented degree of scrutiny that fully addresses potential economic, societal, and 

environmental benefits.  The task of confronting these concerns while achieving a high level of 

transparency is complex.  Biofuels are located at the nexus of ever changing global petroleum 

and agricultural markets affected by myriad policies.  Energy security, foreign relations, and 

socioeconomic issues related to rural sector development are primary reasons for subsidizing 

biofuels growth and the setting of targets and goals for further market penetration.   

 The potential environmental benefits of displacing petroleum with biofuels continue as a 

principal driving force to justify biofuel development.  As of 2005, the Kyoto Protocol to the 

United Nations Framework Convention on Climate Change has legally binding targets for 

signatory and ratifying countries (European Union and Australia).  These countries face the great 

challenge of reducing greenhouse gas emissions.  Biofuels represent a commercially available 

technology and deployable tool to address emissions in the transportation sector and to a lesser 

degree in electricity generation (Sanz Requena et al., 2011).  The concept of “carbon neutral” has 

historically applied to biofuels where CO2 from combustion is sequestered by subsequent 

biomass crops over time, maintaining net biogenic carbon at steady state (Rabl et al., 2007).  

Biofuel, specifically biodiesel compared to petroleum diesel, combustion has been shown to 

decrease other emissions including hydrocarbons, carbon monoxide, particulates, and sulfur 

oxides (Dorado, Ballesteros, Arnal, Gomez, & Lopez, 2003; He et al., 2009; Sheehan, 
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Camobreco, Duffield, Graboski, & Shapouri, 1998).  While methods for determining direct 

emissions from combustion and material processing life cycle stages have been well developed, 

agricultural emissions are less understood and have significant variation due to location specific 

factors that affect plant growth and biomass accumulation in soils. 

 5.2.1 Emissions from Crop Agriculture. Dedicated biomass energy production requires 

arable land and the use of fertilizers and chemical applications that can cause contamination of 

soil and water resources (Alluvione et al., 2011).  Carbon dioxide and nitrous oxide are the 

primary emissions associated with crop agriculture.  Mechanical soil preparation or tillage 

oxidizes soil carbon causing its release to the atmosphere as carbon dioxide.  An equilibrium 

occurs in most soil systems over time where carbon sequestration equals carbon released during 

tillage and is not further discussed here other than the notion that continuous no-till agricultural 

may serve as a carbon sink (Sundermeier, Islam, Raut, Reeder, & Dick, 2011).  

 Soil emissions from fertilizer applications include nitrous oxide and ammonia 

volatilization, as well as nitrate and phosphate leaching; both contribute toward GHG production 

and lead to acidification and eutrophication through deposition (Brentrup, Kusters, Lammel, & 

Kuhlmann, 2000; Caffrey & Veal, 2013).  Smith and Searchinger (2012) propose that current 

biofuel emission models inadequately handle fertilizer impacts and therefore underestimate the 

ultimate emissions released to the environment.  Soil emissions from agriculture are an important 

aspect of total emissions accounting and are controversial as they prove difficult to quantify.  

Additionally, the ability of plants to efficiently sequester nutrients supplied through fertilizer 

inputs varies by soil type, soil moisture, growth stage of plant, climactic conditions, fertilizer 

type, crop type, and management system.  These variables range widely by geography and are 

ultimately site specific.   
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 Nitrous oxides (N2O) are soil emissions released due to volatilization of nitrogen in 

excess of plant uptake.  This results from naturally occurring soil microbial processes, largely 

anaerobic denitrification and aerobic nitrification (Henault, Grossel, Mary, Roussel, & Leonard, 

2012).  This is a powerful greenhouse gas with an emissions factor 298 times that of carbon 

dioxide, accounting for 8% of the anthropogenic global warming potential (Lesschen, Velthof, 

de Vries, & Kros, 2011).  Of this eight percent, over half is estimated as emissions from 

agricultural soils.   The IPCC has been involved in providing direction for the quantifying of 

nitrogen oxides resulting from agriculture, in particular commodity crops with heavy fertilization 

applications.  Stehfest and Bouwman (2006) developed a system to calculate a fertilizer-induced 

emission (FIE) indicator based on the observed linear relationship between N2O and N 

application rates.  The FIE was originally estimated at 0.91% with high uncertainty, whereby 

0.91% of the nitrogen applied is directly lost as nitrous oxides.  The greatest contributing factors 

affecting nitrous oxide formation were determined to be animal manures versus synthetic 

nitrogen source, soil pH, and soil texture.   The resultant FIEs ranged from 0.0% to 10.8% with 

an average of 1.1% and a standard deviation of 1.7% (Flechard et al., 2007).  The IPCC (2013) 

has set the baseline emission factor in its guidelines at 1%.  This means that nitrous oxide 

emissions are equal to 1% of the total mass of nitrogen applied.     

 Indirect land use change (ILUC) is another contentious issue in the life cycle debate of 

biofuels.  It is described as the phenomena where grasslands or forest are converted to cropland 

due to market forces, resulting in the release of carbon and sacrificing ongoing carbon storage 

(Fargione, 2008; Searchinger, 2010).  Palm and soybeans, two primary oilseed crops, have been 

strongly linked to tropical deforestation.  In the developing world land clearing is most 

commonly achieved through biomass burning, augmenting emissions of CO2 and N2O.  ILUC 
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therefore challenges the “carbon neutral” conceptual framework where sequestration credit 

minus combustion debit equals zero.  The lack of identifying specific carbon stocks of biomass 

production over time may produce a greater carbon footprint such as the case of a forest being 

converted for crop production.  Alternatively, land-use change may have a meritorious effect 

increasing carbon sequestration in the case of a fallow or degraded field converted to a soil 

building, cellulosic, or low-input high diversity grass crop (Johnson, 2009; Tilman, Jason, & 

Lehman, 2006).   

 5.2.2 Life Cycle Assessment. Life Cycle Assessment (LCA) methodology has become 

the standard framework for sustainability assessments of biofuels with regards to energy and 

environmental performance.  LCA uses quantitative assessments of material and energy flows, 

wastes, and emissions for each associated process in the biofuel production life cycle.  LCA 

interpretation provides insight into high impact areas and identifies opportunities for 

environmental improvement.  International standards for LCA procedures and methods (ISO 

14040 and 14044) were first developed in 1997 and updated in 2006 to specify the distinct 

phases of analysis: goal and scope definition, inventory, impact assessment, and interpretation 

(Finkbeiner, Inaba, Tan, Christiansen, & Klüppel, 2006; Sauer, 2012).  The life cycle for 

transportation fuels are commonly described as well to wheel for the entire life cycle and well to 

pump and pump to wheel as subsets.  However, the exacting process for biofuels in particular 

continues to evolve on account of feedstock type, conversion technologies, system boundaries, 

and reference energy systems (Cherubini et al., 2009).  Allocation methods for co-products such 

as soybean meal and glycerin have also been shown to have significant effects on outcomes 

(Huo, Wang, Bloyd, & Putsche, 2008).  Finally, the concept of substitution’s effects on GHGs 

has been brought to the attention of LCA methodology.  Diverting by-products such as used 
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cooking oil or poultry fat to biodiesel instead of its original use (animal feed or cosmetics) may 

ultimately eliminate the benefits of biodiesel production because the original intended use will be 

forced to find a substitute that incurs environmental costs elsewhere (Jørgensen, Bikker, & 

Herrmann, 2012). 

 Energy life cycle assessment or ELCA is a component of LCA commonly used for 

assessing and comparing renewable energy sources.  Energy balance, often referred to as energy 

return on energy invested (EROI), involves the accounting of total production energy used and 

the type of energy used (fossil or renewable).  When the total production energy is divided by the 

energy contained in the resulting unit of biofuel, the outcome is net energy ratio (NER), a 

measurement of process efficiency (Morris, 2005).  The second type of energy balance used in 

ELCAs is fossil energy ratio (FER).  FER is equal to the renewable energy output divided by the 

fossil energy input.  FER addresses renewability of the biofuel, how much it relies on fossil or 

petroleum derived energy sources for its production.  FER is an important tool for comparing 

different biofuels and the manufacturing systems within which they are produced.  Renewability 

along with environmental, economic, and social metrics creates a holistic view upon which to 

assess the potential benefits of biofuels.   

 5.2.3 Biodiesel LCAs. Sheehan et al. (1998) produced the first comprehensive life cycle 

inventory and LCA for soybean biodiesel in the US.  The inventory and assumptions made in 

this paper were developed by a large stake holders group, subject to several peer reviews, and 

have been touted as the baseline for soybean biodiesel.  The key findings state that FER for 

soybean-based biodiesel yields 3.2 units of fuel product energy for every unit of fossil energy 

consumed in its life cycle.  Soy-biodiesel reduces direct emissions of CO2 by 78.45% compared 

to petroleum diesel.  Finally, substituting 100% biodiesel for petroleum diesel reduces the life 
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cycle consumption of petroleum by 95%.  In 2009, Pradhan et al. updated the Sheehan life cycle 

inventory with 2002 data for soybean production.  The original study had been based on 1990 

agricultural data.  An FER of 4.56 was reported and the change was cited as a function of 

increase in soybean yields and improved extraction and conversion efficiencies.  In 2011 the 

study was revisited again to include 2006 data.  The FER analysis increased to 5.54 and again 

was attributed the improved soybean yields as well as increasingly energy-efficient technologies 

in crush and conversion plants.  

 Biodiesel GHG studies use global warming potential (GWP) as the reference unit for 

comparing different feedstocks and processes.  This is expressed in grams CO2-eq/MJ where all 

emissions have been classified according to their impact category and multiplied by a 

characterization factor to convert the emission to the reference unit.  For example the emissions 

factor for N2O is 298, therefore 6 grams of nitrous oxide converts to 1788 grams of CO2 

equivalent for global warming potential (GWP).  These factors are determined by two widely 

accepted methods, Tool for the Reduction and Assessment of Chemical and other Environmental 

Impacts (TRACI) from US EPA in the United States and CML from Leiden University’s 

Institute of Environmental Sciences in Europe (Margni & Curran, 2012).  This metric is also 

referred to as Carbon Intensity value (CI) and used to compare biofuels across feedstocks and 

technologies.  CI value of a particular biofuel is commonly expressed as a percent reduction 

compared to the petroleum fuel being substituted.  This has become the baseline metric used in 

policy formation such as EPA RFS2. 

 California Air Resources Board (CARB) has evaluated carbon intensity values of 

numerous biofuels for policy guidance of the Low Carbon Fuels Standard (LCFS), a market-

based cap and trade approach to lowering emissions from transportation fuels in California.  
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Direct emissions without ILUC from two approved biodiesel pathways, soybeans and used 

cooking oil, resulted in 21.35 and 11.86 gCO2-eq/MJ respectively (CARB, 2014).  US EPA 

specifies that biomass-based diesel fuel (biodiesel) must reduce carbon intensity by at least 50% 

compared to 2005 petroleum diesel emissions to be considered for subsidy under the Renewable 

Fuel Standard.  Current feedstock types complying with this requirement include soybeans, 

biogenic waste oils/fats/greases, non-food grade corn oil, oil from annual cover crops, algal oil, 

and canola oil (EPA, 2011).  An analysis of European oilseed-rape biodiesel direct emissions by 

the UK Department of Transport (2008) showed a range of carbon intensities from 45.4 to 59.5 

gCO2-eq/MJ depending on country of origin.  The European Commission’s Joint Research 

Centre published analyses of direct emissions for other oilseed based feedstocks, sunflower and 

palm oil, which resulted in a reduction of carbon intensity of 51% and 19% respectively 

(Rothengatter, Hayashi, & Schade, 2011). 

 Soybean-based biodiesel represents the majority of the US biodiesel market and has been 

the focus of LCA studies in the United States.  LCA studies based on waste oils such as used 

cooking oil from smaller producers have received less attention due to their relatively small 

percentage of the overall market share.  One exception is an LCA which used plant data from a 

small-scale producer that used waste vegetable oils exclusively, North Carolina based  Piedmont 

Biofuels (Daystar, 2012).  This study reported an energy balance of 7.85 and net global warming 

potential or CI value of 3.76 gCO2-eq/MJ based on primary data from plant operations.  This 

resulted in an overall greenhouse gas emissions reduction of 96% compared to petroleum diesel 

life cycle for a no-feedstock burden scenario, where emissions from feedstock production were 

not considered.   
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 The goal of this chapter is to conduct an LCA to determine the energy balance and the 

direct greenhouse gas emissions associated with the production of biodiesel from multi-feedstock 

sources including unrefined soy, sunflower, and canola oils as well as used cooking oil at the 

Catawba County NC EcoComplex.  The results of this LCA are to serve for 1) internal use by 

providing a baseline whereby changes in process will be measured and compared and to identify 

opportunities for reducing current environmental impact and 2) external use to make 

comparisons against other fuels and manufacturing facilities.  Interpretation and discussion of the 

results are focused on effects of manufacturing within an eco-industrial park.   

5.3 Methods 

 5.3.1 Scope. This assessment is on a cradle to grave basis, from the production of raw 

materials used in biodiesel manufacturing to the end of life use in a diesel engine.  This includes 

the following life cycle stages or unit processes for unrefined vegetable oils: 

agriculture/feedstock production, oilseed crushing, transportation, biodiesel conversion, and 

combustion.  Used cooking oil (UCO) feedstock includes transportation for material collection; 

however, feedstock production is not included as the material is considered a waste product to 

the food service industry.  It is assumed that collection of used cooking oil does not significantly 

impact the demand for yellow grease; therefore commodity substitution effects are not 

considered.  Indirect effects such as land use change have potentially large impacts on 

assessments but are also highly controversial.  ILUC is often considered too diffuse and 

subjective to be included in LCA rulemaking (Mathews & Tan, 2009).  The effects of indirect 

land use change are discussed however they are kept separate from baseline emissions in this 

study.  Local agricultural production is assumed to use historic lands, not recently converted 

from forests, with steady state carbon stocks.  Therefore biogenic carbon emitted from 



84 

 

combustion is assumed neutral on balance negated by sequestration from crop production and is 

not quantified in this greenhouse gas inventory.  The fertilizer induced emission factor used in 

this study is the IPCC baseline of 1% of nitrogen fertilizer applied.  All crop production is rain-

fed without need for irrigation.    

 5.3.2 Allocation. A mass-based allocation system was chosen throughout the agriculture, 

grain transport, crush, and conversion portions of the life cycle.  This is the preferred 

methodology of dividing or partitioning process input and output flows defined in ISO 14044 

section 4.3.4.2 (Sauer, 2012).  For example, canola oil extraction is 28% by mass of the starting 

seed.  Therefore the amount of fertilizer and farming inputs used in the agricultural production 

phase is reported as the mass-based oil fraction, 28% of the total.  The crush phase also uses 

mass-based methodology, where the balance of the seed, the meal co-product, is not considered.  

This applies to energy inputs as well.  For example, the electric input for crushing canola seeds is 

also reported as a fraction of the total, only accounting for the oil portion.  The conversion phase 

uses mass allocation by the yield factor.  This study uses a yield at the conversion step of 85%, 

where 85% of the incoming oil is converted to biodiesel.  The 15% not converted is lost along 

the process, as non-reacted material, in conversion to soap, in the crude glycerin phase 

separation, et cetera. 

 5.3.3 Functional Unit. The functional LCA unit chosen for energy and material flows is 

one metric ton of biodiesel.  The energy density unit is expressed in MJ/kg unless otherwise 

stated.  Net greenhouse gas emissions, or carbon intensity value, are reported in grams of CO2 

equivalent per MJ.  An energy basis is used for GHG comparisons to nullify the effect of 

different energy densities of biodiesel and petroleum diesel on emissions per unit mass.   
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 5.3.4 System Boundaries. The subsystems used in the inventory are illustrated in Figure 

16.  Inputs entering the system are listed above each associated process.  The outputs of each 

process are emissions from the production of inputs, combustion from activities related to the 

process, and from soil in the case of agriculture.  Mass out-flows occur at the crush and 

conversion steps, where oilseed meal and glycerin leave the system.  Transportation is involved 

in all steps within the boundary.  Feedstock production is defined as origin from regional farms 

within 50km.  Used cooking oil collection is defined as within 160km.  The crush and conversion 

facilities are co-located at the EcoComplex.  Transport of final fuel to end-use bulk tanks is 

65km, all consumed within Catawba County. 
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Figure 16. Cradle to Grave System Boundaries for Oilseed and Used Cooking Oil feedstock.  

Mass outputs are denoted with bold dashed lines.  

 The system boundary includes the landfill gas to energy (LFGTE) project located at the 

EcoComplex.  This facility generates on average 3MW of power from the combustion of landfill 

gas derived from organics in municipal solid waste (MSW).  This facility provides thermal 
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energy for the biodiesel conversion step.  It also provides electricity to the crush and conversion 

facilities by virtue of co-location despite the “buy all, sell all” contractual arrangement for 

electricity consumption and generation on-site. 

 Transportation for agriculture inputs and process chemicals are included in the life-cycle 

energy equivalents found in Table 11.  All direct and indirect energy inputs such as electricity 

and waste heating from landfill gas co-generation are included.  The inputs for production of 

capital goods such as process equipment and buildings are excluded.  Chemical inputs from the 

inventory include fertilizers and chemical applications in agriculture and process chemicals in 

conversion.   

 5.3.5 Life Cycle Inventory. An LCI and associated data for the EcoComplex Crush and 

Biodiesel facilities, operating at capacity, is presented in Chapter 4.  Agricultural inputs required 

to satisfy crush facility capacity are also described in Chapter 4.  Tables 10 and 11 illustrate 

material and energy inputs per ton of biodiesel (880 liters). 

 It is important to note the used cooking oil only has materials and energy inputs at the 

conversion phase.  This study deals with this material as a by-product and therefore is considered 

to have no feedstock burden.  Energy for transport is included in Table 11 which is the sum of (a) 

crop transport, moving oilseeds from local farms to the crush facility, (b) collection of used 

cooking oil from restaurants, and (c) transport of finished fuel to pump stations for distribution.      
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Table 10  

Direct Material Inputs by Life Cycle Category Per Ton of Biodiesel (Based on Chapter 4 LCI 

Data) 

Feedstock Canola Sunflower Soybeans UCO 

Material Input by Category kg input/ton FAME 

Agriculture     

Nitrogen  74.2 42.9 10.0  

Phosphate 27.8 11.9 21.2  

Potash 60.3 11.9 40.5  

Lime 0.3 0.5 0.3  

Herbicides 0.5 4.8 0.8  

Insecticides 0.4 0.2 0.7  

Fungicides 0.7 0.0 0.1  

Crush       

Filter Media 5.7 5.7 5.7  

Conversion     

KOH 19.8 19.8 19.8 20.4 

Methanol 211.5 211.5 211.5 218.0 

Sulfuric Acid 0.25 0.25 0.25 0.26 

Process Water 401.1 401.1 401.1 413.5 

IX Resins 0.80 0.80 0.80 0.83 

Oxidative Stabilizer 0.51 0.51 0.51 0.53 
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Table 11 

Direct Energy Inputs by Life Cycle Category (Based on Chapter 4 LCI Data) 

Energy Input Category Unit Canola Sunflower Soybeans UCO 

Diesel  AG l/ton FAME 16.23 27.81 16.89  

Diesel  Transport l/ton FAME 9.92 12.17 20.06 11.35 

Propane Crush l/ton FAME 5.41 7.59 15.2  

Electricity Crush kWh/ton FAME 144.8 167.1 232.0  

Electricity Conversion kWh/ton FAME 185.7 185.7 185.7 191.4 

Thermal heat Conversion MJ/ton FAME 506.5 506.5 506.5 522.2 

Total Energy All Steps MJ/ton FAME 3,179 4,027 4,284 1,799 

  

 5.3.6 Energy Life Cycle. Energy consumed over the life cycle of a fuel is defined by its 

system boundary.  A cradle to grave (well to wheel) approach is used for this study.  Net energy 

ratio is the ratio of total energy of combustion using low heating value, divided by the sum of 

energy from each life cycle stage.  The fossil energy ratio uses the same formula, however only 

accounting energy inputs from fossil sources.  In this study, FER is calculated with the five 

conditions referred to as the industrial ecology (IE) system, found in Table 12. 

Table 12  

Industrial Ecology System Conditions 

1)  B20 in diesel powered agricultural equipment  

2)  B20 in diesel powered transportation equipment 

3)  Electricity used in crush and conversion is non-fossil biogenic carbon coming from 

landfill gas 

4)  Thermal energy used in conversion is derived from LFGTE heat recovery  

5)  20% methanol recycle in conversion  
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 Net and fossil energy ratios are calculated from the life cycle inventory which uses 

primary plant data from the crush and conversion steps as well as secondary data from literature 

for the agriculture step.  Transport energy inputs were calculated using the Argonne National 

Lab’s GREET model (Argonne-National-Laboratory, 2013).  Below is the equation for NER, 

Net Energy Ratio. 

( )

( ( ) ( ) ( ) ( ))

Energy of biodiesel combustion lhv
NER

E ag E crush E conversion E transport


  
 

This equation states that NER is equal to the energy value of biodiesel (lower heating value), 

divided by the sum of energetic inputs from each step, agriculture, crush, conversion, and 

transport.  

 5.3.7 GHG Accounting Procedure. Net environmental impact data emission factors 

were collected from the following sources: GaBi, a commercial LCA software that conducts 

assessments based on ISO 14040/44, Argonne National Laboratory’s GREET model, and 

references from the LCA literature (Appendix K; IKP/PE, 2013).  This includes direct emissions 

from production of raw material inputs, processes in the agriculture, crush, transport, and 

conversion stages, as well as fertilizer induced nitrous oxides emissions from soils.  All data 

were characterized per the 100 year GWP value to produce the GHG functional unit of grams of 

CO2-eq (GWP) and allocated on a mass basis per kilogram of biodiesel.  Material input flows for 

each life cycle stage and mass allocation value per unit of FAME were developed in the LCI.  

Finally, GWP per mass was divided by the energy density per kg of biodiesel resulting in gCO2-

eq /MJ, the carbon intensity metric.  Overall emissions reduction expressed as percentages 

compare the biofuel’s CI value to that of US refined ultra-low sulfur diesel with a baseline value 

of 94.71 g CO2-eq/MJ (CARB, 2014).  The Industrial Ecology System models CI values of the 

various feedstocks by using the parameters outlined in Table 12. 
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 One additional condition is that a negative value was assigned to process heat for the 

conversion step.  The IE system uses waste heat otherwise rejected to the environment; no other 

fuel or heating source is required.  Therefore a negative value is assigned.  The Carbon Intensity 

equation by feedstock type is listed below.  MIF equals Material Input Flows, MA equals the 

Mass Allocation value, and EF equals the Emissions Factor.   

( )( * * )
( )

Ag Crush Conversion Transport MIF MA EF
CI feedstock

Energy Density

  



 

 5.3.8 Energy & GHG Conversion Factors. Material and fuel inputs were converted to 

their energy and greenhouse gas life cycle equivalents based on literature and databases found in 

the GaBi software package (see Table 13).  Fossil fuel inputs (fuels and methanol) are subject to 

an embedded energy and life cycle efficiency surcharge, where the lower heating value is 

divided by an efficiency factor to yield a net fossil energy ratio (Pradhan et al., 2011). 

 Diesel, propane, methanol, and electricity are subject to following efficiencies 

respectively: 84.3%, 89.8%, 67.7%, and 32.5%.  The electricity efficiency factor is clearly 

significant, dependent upon the fossil fuel used in its generation (Spath, Mann, & Kerr, 1999).  

The value for coal-based generation is given here as it the predominant power source in the 

region of study. 
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Table 13 

Life-Cycle Energy Equivalents and GHG emissions factors by Input 

 

 

INPUT 

Life-Cycle 

Energy 

Equivalent 

 

 

units 

 

 

Reference 

GHG 

emission 

factor 

 

 

unit 

 

 

Reference 

Material              

Seed  4.7 MJ/kg a 
   

Nitrogen  51.5 MJ/kg b 6.67 kgCO2-eq/kg g 

Phosphate  9.2 MJ/kg b 0.393 kgCO2-eq/kg h 

Potash  6.0 MJ/kg b 0.46 kgCO2-eq/kg g 

Lime  0.1 MJ/kg c 0.117 kgCO2-eq/kg h 

Herbicides  319.0 MJ/kg b 5.41 kgCO2-eq/kg i 

Pesticides  325.0 MJ/kg b 5.41 kgCO2-eq/kg i 

Fungicide  319.0 MJ/kg b 5.41 kgCO2-eq/kg i 

Methanol 33.5 MJ/kg d 1.95 kgCO2-eq/kg j 

KOH 1.5 MJ/kg a 1.19 kgCO2-eq/kg j 

Sulfuric Acid 1.7 MJ/kg a 1.95 kgCO2-eq/kg j 

Water 0.00036 MJ/kg h 0.000086 kgCO2-eq/kg h 

Fuel    
     

Diesel 42.5 MJ/L a,e 3.67 kgCO2-eq/kg a 

Propane 26.4 MJ/L a,e 0.307 kgCO2-eq/MJ h 

Electricity 7.4 MJ/kWh f 0.674 kgCO2-eq/kWh h 

 
      

a) (Sheehan, et al., 1998), b) (Hill, Nelson, Tilman, Polasky, & Tiffany, 2006), c) (Graboski, 2002), d) (Wang & 

Huang, 1999), e) (Huo, et al., 2008), f) (EIA, 2010), g) (Kumar, Singh, Nanoti, & Garg, 2012), h) GaBi: (IKP/PE, 

2013), i) (Woods et al., 2008), j) (IPCC, 2006) 

  

5.4 Results and Discussion 

 LCA results of energy balance and carbon intensity analysis show a large range by 

feedstock type where UCO clearly benefits from its classification as a secondary-use or waste 

product.  The agriculture step is costly both in terms of energy equivalents and embodied 

emissions.  Removing the agricultural as well as crushing steps transfer UCO feedstock impacts 
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to the conversion step which is significantly affected by implementation of applied industrial 

ecology.      

 5.4.1 Energy LCA. The net energy required per unit of biodiesel produced for each of 

the four feedstocks analyzed is found in Figure 17.  Agriculture is the largest factor influencing 

energy requirements by oilseed.  This step accounts for 44%, 32%, and 21% of the net energy 

inputs for canola, sunflower, and soybeans respectively.  The nitrogen fertilizer is the most 

significant source of embodied energy for the agriculture step especially in canola (a heavy 

nitrogen feeder) where it accounts for 3/4 of the total agricultural energy input.   The energy 

input for conversion is very similar across all feedstocks accounting for 5.4 MJ/kg, with UCO 

having a 5% increase due to additional process inputs and unit operations to handle higher FFA 

and moisture impurities.  The conversion step’s relative percentage of the total varies from 49% 

for canola, 58% for sunflower, 63% for soybeans, and 93% for UCO.  Crushing energy is 

relatively minor energy impact for canola (4%) and sunflower (6%), with soybeans at 9% due the 

slower rates of pressing and the use of heating collars to facilitate oil extraction.  Grain and 

finished fuel transport are also minor impacts accounting for 2-3% of total energy inputs.         
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Figure 17. Net Energy Inputs by Feedstock Type. 

 Net electricity usage is located in the crush and conversion steps.  Electricity is of 

particular concern because of its inherent high life cycle surcharge.  For the crush step, electricity 

use is 0.42, 0.47, and 0.66 MJ/kg FAME for canola, sunflower, and soybeans respectively.  

Electricity input for crushing is the primary energy input accounting for 88% of the total energy 

used in this step.  For conversion, net electricity use was 2.05 MJ/kg FAME for all feedstocks 

accounting for 38% of the total for that process step.   The balance of energy input for 

conversion is predominantly methanol.  Net electricity usage results in the following percentages 

of total energy input, canola: 22%, sunflower: 27%, soybeans: 32%, and UCO: 34%. 

 5.4.1.1 NER & FER Values. Energy ratios are the sum of inputs from all life cycle stages 

divided by the energy value per unit of resultant fuel.  This analysis finds FER ratios to be higher 

than NER ratios for all feedstocks due to the implementation of industrial ecology system (see 

Figure 18).  Of the oilseed feedstocks, soybeans show the highest potential for both process 
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efficiency and overall renewability, or the greater autonomy from petroleum throughout its 

lifecycle.  Although soybeans contain the least amount of oil, the mass-based allocation methods 

show greatest favorability by both metrics.  This is due in kind to lower relative fertilizer 

requirements, specifically nitrogen where soybeans benefit from the symbiotic association with 

nitrogen fixing bacteria.  Soybean based biodiesel is the industry standard in the United States 

with a FER bench mark of 5.54 by Pradhan et al. in 2011.  This study shows a 29% improvement 

upon this benchmark due to the use of non-fossil based electricity on-site (from landfill gas) and 

non-fossil thermal heat (waste heat recovery).  Used cooking oil results in the lowest amount of 

energy required and also is most impacted by the IE system with a near doubling of FER.   

 

Figure 18. NER and FER by Feedstock Type. 

 5.4.2 GHG LCA: Carbon Intensity Value. Results of CI values by feedstock are 

analogous to the energy balances in general trends and the reduced environmental impact 

moving from canola to UCO feedstocks.  The agricultural impact is large from the oilseeds 
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resulting from the production of nitrogen fertilizer and fertilizer induced nitrous oxide soil 

emissions.  Figure 19 compares the feedstocks in the two systems, conventional and industrial 

ecology with reductions due to aforementioned conditions.  The gains made in the IE system are 

from changes in the crush and conversion steps as agricultural impacts are little affected by 

change in primary energy.  

 

Figure 19. Carbon Intensity values in gCO2-eq/MJ by feedstock and system. 

 Canola feedstock showed the highest GHG intensity due to the nitrogen fertilizer effect.  

The crush phase showed significant reduction in the IE system as electricity, the primary input, 

was discounted from on-site generation.  Transportation remains constant across systems with 

only a small emissions reduction from the use of B20 biodiesel in the IE system.  Soybean 

biodiesel resulted in CI values of 27.6 in the conventional system and 12.5 in the IE system, a 

reduction of 55%.  The literature from CARB (2014) lists Midwestern produced soybean FAME 

at 21.13, in between the two systems of this study.  This may be in part due to higher average 

yields in for soybean harvest than compared to North Carolina production.  All feedstocks 
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achieved an emissions reduction of greater than 50% to comply with US EPA biomass diesel 

category under RFS2.     

 5.4.2.1 High Impact Parameters on CI. Primary factors contributing to the CI value are 

nitrogen fertilizer, methanol, electricity, and thermal energy in conversion.  Diesel in transport 

and KOH catalyst make minor contributions.  The balance of all other parameters have a 

combined range from 1% (UCO both systems) to 11% for soybean (IE system).  These high 

impact parameters outlined in Table 14 provide insight into the impact hierarchy by parameter.  

Table 14  

Percent of CI Contribution for Each Parameter by Feedstock and System Type 

 

Parameter 

Life Cycle 

Stage 

Conventional System Industrial Ecology System 

Canola Sunflower Soybeans UCO Canola Sunflower Soybeans UCO 

N-Fertilizer 
Ag. 45% 30% 9% 0% 66% 50% 20% 0% 

Methanol 
Conversion 26% 30% 40% 59% 30% 40% 70% 113% 

Electricity  
Crush 6% 8% 15% 0% 0% 0% 0% 0% 

Electricity 
Conversion 8% 9% 12% 19% 0% 0% 0% 0% 

Thermal 
Conversion 6% 7% 9% 14% -9% -12% -20% -33% 

Diesel 
Transport 4% 9% 8% 4% 5% 11% 14% 8% 

KOH 
Conversion 2% 2% 2% 4% 2% 3% 5% 8% 

 

 5.4.2.2 Nitrogen Fertilizer and Methanol Recycle Sensitivities. Nitrogen fertilizer 

contributes to CI of oilseed feedstocks through direct emissions from manufacturing inputs and 

transportation of finished materials as well as from soil emissions that release nitrous oxides after 

application on crops.  Figure 20 illustrates the sensitivity of carbon intensity by changes in the 

application of nitrogen fertilizers.  Canola has the greatest response where a 10% reduction of 

fertilizer use translates into the lowering of CI value by 1.89 or 2%.  Soybeans are the least 
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responsive to change with sunflower showing a moderate response.  These results are intuitive in 

relation to the fertilizer inputs for each oilseed.   

 

Figure 20. Sensitivity of CI reduction to changes in baseline value of High Impact Metrics. 

 The ability to reduce fertilizers without significantly affecting yield is dependent on soil 

type and fertility, land use history, climate, and numerous site specific variables.  Crop yields are 

directly affected by nutrient availability and recommendations have generally quantified 

applications so that fertilizers are not the limiting factor for plant growth.  Reducing fertilizer 

input may result in the lowering of CI value for the resultant biofuel; however the lower crop 

yield would also produce a higher indirect land-use effect.  Integrated farming or low-input 

systems that practice minimal tillage and balanced crop rotation is one tool for addressing 

fertilizer reductions  (Alluvione et al., 2011).  Additionally, the raw organic materials delivered 

daily to the EcoComplex as municipal solid waste could be separated to provide compost or 

digester feedstocks that products include fertilizers and soil amendments.  Emissions from these 
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processes require further analysis but would arguably produce lower emissions as their primary 

input materials are considered waste.   

 Methanol is a primary reactant in the conversion step, added in excess of stoichiometric 

requirements to ensure complete reaction and a reduced reaction time.  A doubling of the 

consumed methanol is a well-established baseline for biodiesel conversion.  This means that the 

excess methanol, distributed between biodiesel and glycerol phases, is available and can be 

recovered.  Implementing a 10% recycle and reuse of this costly environmental input result in a 

reduction of the CI value by 1.1 for the oilseed feedstocks and 1.07 for UCO feedstock.       

 5.4.2.3 ILUC Effect on CI Value. While models for quantifying the effect of indirect 

land-use change are in a nascent stage of development, the overwhelming voice of the scientific 

community has insisted that ILUC be considered in policy making decisions.  Crop, country 

where grown, type of biofuel, market for crop and biofuel, and time accounting  period are all 

significant factors that determine ILUC value.  The US EPA Renewable Fuel Standard 2 

program has published an ILUC value for soybean biodiesel of 32 gCO2-eq/MJ (EPA, 2010).  

This value does not currently enter into pathway determination, the process of deciding which 

fuels are capable of receiving subsidies, but has been offered to show the agency’s commitment 

to address this specific concern.  Figure 21 shows EPA’s ILUC value added to the direct 

emissions baseline for each oilseed crop.  UCO-based biodiesel is unaffected by land use 

considerations. 

 All oilseed crops still fall below the petroleum diesel CI value however the percent 

reduction from this baseline is significantly affected.  Soybean-based biodiesel manufactured 

within the IE system (53% reduction) is the only oilseed-based biodiesel to meet the 50% 

emission reduction target that is mandated by RFS2 for the biomass-diesel classification, further 
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illustrated in Figure 22.  It is this level of scrutiny that may have large implications in the 

direction and development of future biofuel policies.  This topic is especially salient considering 

that EPA has tended to downplay the potential impact of ILUC on biofuels emissions compared 

to other agencies such CARB and the European Commission’s Renewable Energy Directive.  

0

10

20

30

40

50

60

70

80

90

100

Canola Sunflower Soybeans UCO Canola Sunflower Soybeans UCO

Conventional System Industrial Ecology System

CI Value by Feedstock and System Type

ILUC

TRANSPORT

CONVERSION

CRUSH

AG

PETRO DIESEL CI

g
C

O
2
-e

q
/M

J 

 

Figure 21. CI Values by Feedstock and System Type with the inclusion of ILUC. 

 

Figure 22. Carbon Intensity Comparison with ILUC across feedstocks and system types. 
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5.5 Conclusion 

 The energy and GHG LCA provides a straightforward perspective on the associated 

environmental impacts of each life cycle stage for the feedstocks presented in both conventional 

and IE system frameworks.  Clearly, UCO-based biodiesel is the most environmentally benign, 

with a net energy balance of 6.20 and fossil energy balance of 12.24.  UCO achieves a reduction 

in carbon intensity of 80% compared to petroleum diesel fuel in the conventional system and 

92% reduction when ascribed to the conditions of the IE system employed at the Catawba 

County EcoComplex.  Soybean-based biodiesel poses the least environmental impact of the 

oilseed feedstocks, primarily due to the fact that soybeans require minimal nitrogen fertilizer 

compared to other oilseed crops.  Soybeans produced an NER of 4.44, an FER of 7.19 and CI 

reductions of 71% and 87% for conventional and IE systems respectively.  Comparing UCO and 

soybean GHG results, there is an interesting counter intuitive cross-over where producing 

biodiesel from soybeans within the IE system is more environmentally advantageous than 

producing UCO-biodiesel in a conventional system.       

 LCA is also a powerful tool in quantifying high impact parameters by feedstock type and 

system.  The highest impact areas are nitrogen fertilizers, methanol use, electricity, and thermal 

process heat.  Each of these areas can be mitigated through applied industry ecology.   

 5.5.1 Recommendations. 

 5.5.1.1 Agriculture & Feedstock Production. Reducing the amount of fossil-derived 

nitrogen fertilizer applied should be the top priority for the production of canola and sunflower 

crops.  It should be noted that fertilizer uptake by plants is highly variable.  This can be achieved 

through a combination of integrated farming practices and local recycling of organic waste 

materials through composting and anaerobic digestion.  The latter requires separation of organics 
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and capital investment to make value added products.  The price of these biogenic fertilizers may 

be cost prohibitive under current conditions.  Indirect land-use change is a real phenomenon 

under intensive scientific review in the field of climate change research.  Traditional non-

agronomic lands that do not impart this heavy environmental burden must be considered.  

Potential lands include, municipal buffer lands, spray and brown fields, utility and highway 

right-of-ways.  The Freeway to Fuels Program at Utah State University estimates that 10 million 

acres of non-agricultural lands (4.05 million hectares) suitable for transportation fuel feedstock 

exist in the United States (Hanks, 2013).  Though perennial cellulosic feedstocks may be better 

suited and more practical options, these lands will be become increasingly attractive when 

confronted by effects of land-use change.              

 5.5.1.2 Conversion: Methanol Recovery. Methanol is a costly component of the CI value 

and can be recycled and reused with recovery systems at the conversion step.  This is particularly 

important in addressing the crude glycerol phase where the majority of excess methanol is 

contained.  Methanol recovery is process energy intensive and the source of heating and cooling 

energy inputs should be considered with the goal of improving LCA outcomes.       

 5.5.1.3 Renewable Energy Integrated Production Facilities. Incorporating renewable 

energy in the manufacturing process itself benefits both energy and GHG aspects of the LCA.  

By reducing the subsidy of fossil energy through crush and conversion steps, the overall biofuel 

process is more robust and has a significantly better energy balance that is more competitive with 

conventional petroleum diesel.  Using off-spec fuel or feedstock oil is common in biodiesel 

facilities and is a biogenic source of process heating.  Solar thermal or waste heat is even more 

advantageous in CI accounting.  Finally electricity production from on-site generators or 
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photovoltaics where viable is has significant effects on LCA outcomes and addresses the 

inefficiency issue of electricity, in particular coal-based electricity. 

 5.5.1.4 Producer Specific LCAs. Due to the multitude of site induced variables that 

effects LCA, it is plausible to think in terms of producer specific assessments based on 

feedstock, technology, and on-site factors.  Specific energy balances and GHG emissions may 

help a biofuel producer to distinguish their product in the marketplace.  Third party certification 

companies such as Roundtable for Sustainable Biomaterials have entered into this space to rate 

biomaterials on their promise of improved sustainability (RSB, 2014).  Their services evaluate 

products, supply chains, and create certification for individual producers.  As GHG emission 

LCAs on the producer level may become common and offer economic advantages. 
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CHAPTER 6  

Economic Analysis of the EcoComplex Civic-Scale Farm to Fuel Biodiesel Plant
2
 

6.1 Abstract 

 Biofuels manufacturing integrates numerous sectors (agriculture, transport logistics, 

recycled and waste materials, and processing plants) that hold the promise of economic 

development, especially in rural agricultural and former manufacturing areas.  While the 

concentration of biodiesel production began in the North American Midwest, diverse scales have 

developed based on regional feedstocks.  This chapter addresses a gap in economic analysis of 

civic-scale biodiesel production, whereby a local municipality leads the development a 

renewable fuel project to support local farmers, hedge against high petroleum prices, value 

independence, and diversify their energy mix. 

 This chapter uses budgeting analysis to examine the economics of operating an integrated 

oilseed crush and biodiesel plant, with fuel production capacity of 490,000 liters per year.  This 

plant is part of the Catawba County North Carolina EcoComplex, a municipal government led 

eco-industrial park based on synergetic waste management and biomass to energy projects.   

The corn-canola-soybean-fallow rotation is found to be the most profitable crop rotation for 

oilseed production.  Due to the high value of protein meal, soybeans showed the greatest 

sensitivity to increased crush capacity, though not viable as a biodiesel feedstock at 12 tons/day.  

Current operating conditions result in a biodiesel conversion cost of $1.43 per liter of fuel 

produced using least valuable commodity feedstock, yellow grease.  Break-even requires a 

subsidy of $0.58 per liter to bring down the net biodiesel cost, matching the avoided cost of 

                                                 
2
 Parts of this chapter were adapted from: Ferrell, J. (2013). Economic Analysis of a Civic-Scale Farm to Fuel 

Biodiesel Plant, a case study of the Catawba NC EcoComplex. Biomass and Bioenergy. (Submitted). 
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petroleum diesel.  As subsidies continue significant fluctuation, metrics other than operating 

costs are required to justify civic-scale biofuel projects.    

6.2 Introduction 

 The US biodiesel industry has evolved in the North American Midwest as a means to 

provide additional markets for soybean oil (Demirbas, 2007).  The average plant size in Iowa, the 

biodiesel industry’s top producing state, has a capacity of 95 million liters per year (NBB, 

2013b).  The North Carolina biodiesel industry in contrast, has been built on using lower quality 

feedstocks such as animal tallow and used cooking oils collected from restaurants.  The average 

biodiesel plant in North Carolina produces 1.1 million liters per year (Smit, 2013).  Feedstock 

availability and cost, up to 88% of total estimated production costs have driven many NC 

biodiesel producers to develop oil rendering capabilities (Haas, McAloon, Yee, & Foglia, 2006).  

Blue Ridge Biofuels, an Asheville NC biodiesel company, collects used cooking oil from over 

500 restaurants helping to control feedstock costs, scale production to available feedstock supply, 

and reduce the impact of fluctuating commodity markets (Eaton, 2013).   

 There are large-scale oilseed processing plants in North Carolina’s industrial agriculture 

zone but the costs of these refined, bleached and deodorized vegetable oils, are typically out of 

reach for smaller scale biodiesel plants (Morrone, Stuart, McHenry, & Buckley, 2009).  There 

are few known and documented examples of civic-scale or small-scale integrated oilseed crush 

and biodiesel production facilities.  Civic-scale is considered small-scale, however with 

leadership from local government that develops a renewable fuel project to support local farmers, 

hedge against high petroleum prices, value independence, diversify their energy mix, and 

provide outreach and educational opportunities. 
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 Bender (1999) concluded during early development of the biodiesel industry in the 

United States and Europe that community-scale farmer cooperatives for biodiesel were only 

profitable with government subsidies and that using waste oil feedstocks resulted in lower 

production costs.  There are current examples of small-scale farm-to-fuel operations where 

farmers grow and process oilseed crops to produce biodiesel for on-farm use, though not 

analyzed for economic viability.  Small-scale and farm-scale biofuels projects  have been 

presented as a positive contributor to renewable energy production and rural development, as 

well as an exception to allow for conversion of first generation feedstocks to biofuels (Grau, 

Bernat, Antoni, Jordi-Roger, & Rita, 2010; Han, Mol, Lu, & Zhang, 2008).   

 The objective of this chapter is to examine the economic viability of operating a small-

scale integrated oilseed crush and biodiesel plant under current conditions, and address pathways 

and technologies going forward to improve viability.   

 6.2.1 Catawba County NC EcoComplex. The Catawba County EcoComplex and 

Resource Recovery Facility is an ecological-industrial park (EIP) whose mission is synergistic 

waste and resource management, renewable energy production, and local economic development 

through public and private partnerships working in close geographic proximity (Mackie, 2007).  

The EcoComplex is an 326 hectare acre site centered on the Blackburn Landfill with 2.0 million 

metric tons of waste in place and serves the 156,000 county residents (B. Edwards, 2009, 2010).  

The site hosts a grid-tied 3MW landfill gas to energy (LFGTE) facility using three GE-Jenbacher 

spark-ignition engines, an oilseed crush facility and a biodiesel research and production facility 

operated by Appalachian State University.  Biodiesel production is vertically integrated at the 

EcoComplex in three ways 1) by utilizing 61 hectares of on-site buffer lands to grow high 

yielding oilseed crops for biodiesel feedstock 2) by incorporating waste heat recovery from the 
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LFGTE facility for process and building heat of the biodiesel facility and 3) by providing 

biodiesel fuel for on-site landfill operations.  Initial funding for the biodiesel and crush facilities 

were provided through grants and landfill post-closure funds.  

 The EcoComplex civic model of distributed renewable energy production represents a 

new scale for biofuel manufacturing.  While this model offers many benefits to local 

municipalities as a potential fuel source for basic services (waste management, police and safety, 

infrastructure repair), the overall economic viability of such an integrated system is uncertain.  

The scale offered by these facilities, though sufficient to supply the biofuel blend needs at the 

Catawba EcoComplex and surrounding areas, is still only a fraction of the capacity found in most 

established industrial plants (Y. Zhang, Dube, McLean, & Kates, 2003b).   

 The rest of the chapter is organized as follows.  The materials and methods section 

outlines the three operations of the farm to fuel project: farming, crushing, and conversion.  An 

economic model is constructed for each operation based on data from start-up plant operations 

and agricultural and commodities markets.  The effect of current subsidies on conversion costs is 

also located here.  Sensitivity analyses of crop yield, crop rotation, crush metrics, and conversion 

metrics are included in the results section.  The discussion section concludes by addressing the 

influence of subsidies, and future trends and technologies. 

6.3 Materials and Methods 

 The first step in economic analysis is to separate the three distinct operations that are 

vertically integrated at the Catawba County EcoComplex.  The supply chain of raw materials 

from farming to crushing, and finally to biodiesel conversion is closely managed to optimize 

transportation logistics via geographic proximity.  However, the biodiesel feedstocks as well as 

products of farming and crushing (oilseeds, vegetable oil, and meal) are commodities that can 
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enter or leave the system via local markets at any point.  Isolating each operation allowed for 

standalone analysis of economic viability.  Models of the EcoComplex farming, crushing and 

conversion were created for the purpose of making projections and to be used in decision making 

to choose an optimal portfolio of feedstocks.  Each model evaluates the profits, which are equal 

to revenues minus costs, given the current technology and year 2013 prices.  The integration of 

the three models also allows for the assessment of the EcoComplex profitability. 

 Figure 23 depicts suitable feedstocks for biodiesel production and their flow through the 

crop processing and biodiesel facilities located at the Catawba County EcoComplex.   The 

diamonds indicate a decision where a material can flow one of two ways.  Farmed oilseed crops 

can move to the Crush Facility or can be sold to the grain market.  Vegetable oil produced in the 

Crush Facility can move to the Biodiesel Facility or be sold to the food-grade vegetable oil 

market.   
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Figure 23. Material flow for biodiesel production process. 
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 6.3.1 Farming & Agronomics for EcoComplex Oilseed Crops. The 61 hectares of 

agricultural buffer land surrounding the landfill are the starting point for biodiesel feedstock.  

Farming operations of this buffer land are managed by Catawba County to produce oilseed and 

commodity crops.  This land has historically been planted using two conventional crop rotations 

for the piedmont of North Carolina (a) corn-wheat-soy-fallow, and (b) soy-wheat.  To optimize 

for oilseed production, canola can be substituted for wheat in the conventional rotation to 

produce a third rotation: (c) corn-canola-soy-fallow.   

 A fourth rotation was developed in conjunction with local cooperative agriculture 

extension agents to include high yielding oilseed crops (canola and sunflower).  This rotation 

also introduces a winter cover crop to promote soil fertility and weed control, increases time 

between canola plantings to reduce pathogens, and allows sufficient planting and harvesting 

windows suited to the agricultural calendar for the piedmont of North Carolina.  Table 15 lists 

vegetable oil and meal yields by rotation assuming average yields under best farming practices 

and an extraction efficiency of 75% of total oil (USDA, 2013) 

Table 15  

Vegetable Oil and Meal Yields by Rotation  

 

 

Rotation 

Average Vegetable Oil 

liters/hectare/year 

(gallons/acre/year) 

Average Oilseed Meal 

kg/hectare/year 

(Lbs/acre/year) 

1)  Corn-Wheat-Soybeans-Fallow 178 (19) 1067 (950) 

2)  Soy-Wheat 355 (38) 2133 (1900) 

3)  Corn-Canola-Soy-Fallow 617 (66) 1976 (1760) 

4)  Soybeans-Winter Cover Crop-

Sunflower-Wheat-Corn-

Canola 

580 (62) 1671 (1488) 
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 Figure 24 depicts this fourth potential crop rotation that occurs over three years, 

transitioning from winter canola, to summer soybeans in year one, winter cover crop of rye and 

vetch to summer sunflower in year two, and finally winter wheat to summer corn in year three.  

One hectare over this three-year period can be expected to produce 1740 liters of vegetable oil, 

2.0 tons of protein meal, commodity crops for sale (wheat and corn), and residual stover.  This 

production estimate is based on average yields under best farming practices with mechanical 

extrusion crush technology.  These four crop rotations are analyzed in the model. 

1

1

3

2

3

2

3 Year Crop Rotation:
1)  Soybeans, Rye/Vetch cover
2) Sunflower, Winter Wheat*

3) Corn,  Canola*
*harvested in the following year

 

Figure 24. Proposed 3-Year Crop Rotation. 

 Data used for the agronomic modeling consists of enterprise budgets for each crop that 

includes all farming costs on a per hectare basis, yields based on averages for the region of study, 

and commodity value by crop.  The winter cover crop is used as a soil builder and is not 

harvested.  Cover crops are incorporated into the soil to add organic material, sequester carbon, 

and improve fertility over time. 
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Table 16 

Agronomic Data 

 

Crop 

Farming Cost/ 

Ha (Acre) 

Estimated Yield kg/ 

ha
[15]

 (bu/ac) 

Commodity Price $/ 

kg ($/bu) 

Canola $736.00 
[a]

 (298.00) 2807 (50) $0.55 
[a]

 (12.50) 

Soybeans $671.00 
[b]

 (272.00) 2695 (40) $0.50
 [c] 

 (13.75) 

Winter Cover Crop $371.00 
[b]

 (150.00) n/a n/a 

Sunflower  $622.00 
[d] 

 (252.00) 1661 (51) $0.43 
[d] 

 (5.66) 

Wheat $581.00 
[b]

 (235.10) 3705 (55) $0.18 
[e] 

 (5.01) 

Corn $865.00 
[b]

 (350.00) 6287 (100) $0.19 
[e]  

(4.92) 

a: (George, et al., 2008; PennState, 2011), b: (NCSU, 2012), c: (PFL, 2013), d: (UNL, 2013), e: (NCDA, 2013a) 

 6.3.2 Crop Processing, Crushing, and Conversion Crushing Costs.  

 6.3.2.1 Crop Processing and Crush Facility. This facility is designed to receive, clean, 

dry, store, and press oilseed crops.  Once oilseeds have reached the dry storage silo, they are 

transferred by auger to a bank of four Kern Kraft (KK40) mechanical extrusion presses working 

in parallel with combined capacity of 4 tons/day.  Each press is rated at 40 kg/hour, or 

approximately one ton per day run in continuous fashion. 

 6.3.2.2 Oil and Meal Production. Each oilseed has an inherent percentage of extractable 

oil.  Total oil content by weight has been widely reported for the following crops: canola 40-

45%, oilseed sunflower 30-35%, and soybean at 18-22% (USDA, 2013).  The limits to practical 

oil extraction using mechanical extruders varies by equipment, but has a general maximum, 

approximately 90% of total oil, while the remainder is bound in the meal fraction.  Based on 

using KK40 cold pressing equipment, the following extractable oil contents (weight of oil 

/weight of seed) have been determined experimentally: canola at 28%, sunflower at 20%, and 

soybeans at 10.5%.  The balance is considered grain meal, which has a typical base commodity 

value as an animal feed protein source.  Oilseed meal is blended with other grains to produce a 
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feed ration with desired protein, fat, carbohydrate content.  Oilseed meal is a valued protein 

source, particularly soybean meal with 44% to 48% protein concentration, which accounts for 

63% of all protein sources used in animal feeds in the U.S. (Cromwell, 1999).  Since there are no 

established commodity markets for canola and sunflower meal in North Carolina, values have 

been calculated based on their protein as a ratio of the protein content of soybean meal, the feed 

industry standard as illustrated in Table 17.  Meal samples of canola, sunflower, and soy were 

sent to the North Carolina Department of Agriculture for analysis, including protein 

concentration (NCDA, 2013a). 

Table 17  

Determination of Meal Value Based on Protein Concentration 

 

Meal Type 

 

% Protein by mass 

Commodity Value of Protein 

Meal per kg ($/lb) 

Soybean 48% $0.55 
(PFL, 2013)

  (0.25) 

Canola 30% $0.35                (0.35) 

Sunflower 22% $0.26                (0.12) 

 

 6.3.2.3 Crushing Costs. Table 18 lists the crushing costs associated with the three 

oilseeds considered on a per liter and per kilogram basis, the latter can be used for direct 

comparisons to commodity pricing.  These costs are observed costs based on utility bills and 

labor during initial crush operations.   
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Table 18  

Crush Facility Oil Costs by Oilseed 

Oilseed Canola Sunflower Soybean 

Land Area Ha (Ac) 
455  (1124) 559  (1382) 298  (736) 

Oil Production 

liters/year (gal/yr) 

395,660 (104,533) 282,615 (74,667) 111,279  (29,400) 

Costs 

Cost per liter oil 

($/gallon) 

Cost per liter oil 

($/gallon) 

Cost per liter oil 

($/gallon) 

Feedstock (oilseeds) 
$1.79 (6.79) $1.95 (7.41) $4.38 (16.59) 

Variable $0.05 (0.20) $0.09 (0.37) $0.22 (0.85) 

Fixed $0.21 (0.80) $0.29 (1.11) $0.75 (2.83) 

Total $2.05 (7.78) $2.35 (8.89) $5.36 (20.27) 

Revenue (meal) $0.75 (2.84) $0.86 (3.28) $4.04 (15.29) 

Total Cost $1.31 (4.94) $1.48 (5.61) $1.31 (4.97) 

Oil Cost per kg ($/lb) $1.43 (0.65) $1.63 (0.74) $1.45 (0.66) 

    
 

 Feedstock costs are calculated by dividing the weight of one liter of oil by the oil 

extraction efficiency, and then multiplied by the commodity value per given weight.  Variable 

costs include filter aid used in the filter pressing step at $0.0023/l, propane used for seed drying 

at $0.0026/l and electricity at $0.12/kWh for grain handling, pressing, and degumming 

operations (motors, discharge augers, air compressor, process heat, and lighting).  Electricity cost 

is estimated at $6.50 per day ($0.048 per liter oil) for each press in continuous operation for 

canola and sunflower.  Soybeans required additional electricity due to electric heating collars that 

elevate seed crush temperature and facilitate higher extraction efficiencies.  Fixed costs include 

labor, building rent, and equipment maintenance which are summed together and divided by the 
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oil production in gallons per year.  Labor is for one full-time operator/general facility manager 

($25/hr including fringe benefits) which covers supervision of crush and degumming operations 

and material handling of seed, oil, and meal and one half-time operator assistant at $15/hr.  

Building rent is estimated at $12,000 per year.  Insurance is $2,062 per year, calculated at 0.5% 

of capital costs (Haas et al., 2006).  Capital costs for all process equipment, which includes 

presses, degumming skid, filter press, pumps, seed cleaners, silos, dryer, augers, hopper bins, and 

dump truck, totals $412,500.  Equipment maintenance is $4,125 per year, calculated at 1% of 

total capital costs.  Revenue is the weight of oilseed meal produced per liter of oil, multiplied by 

the its commodity value in $/weight.  Total cost is the revenue minus the total of feedstock, 

variable and fixed costs.  Oil cost per kilogram is the total cost divided by 0.913 kg, the average 

weight of one liter of vegetable oil.  Oil production is calculated by operating the crush facility at 

full capacity, 350 days per year, with a crush capacity of 4 tons per day, where soybeans operate 

at 75% of crush capacity due to observed slower pressing speeds.      

 6.3.2.4 Biodiesel Conversion Costs. The Biodiesel Facility is capable of converting a 

variety of fats and oils into fuel.  In addition to the vegetable oil derived from on-site farming 

and pressing operations, there are several other suitable commodity options including lower 

quality feedstocks: yellow grease and rendered tallow, and higher quality feedstocks: RBD 

vegetable oils, and high grade rendered fats and oils.  In general the less expensive, lower quality 

feedstocks have greater impurities that reduce conversion yield and increase processing costs for 

base-catalyzed transesterification (Knothe et al., 2005).   

 Table 19 lists conversion costs based on three common commodity biodiesel feedstocks 

from cheapest- lowest quality to most expensive-highest quality.  Conversion yield is a 

percentage of starting feedstock that is converted into biodiesel and is directly affected by 
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impurities such as moisture, sediments, and free fatty acids that once reacted become soaps to 

further reduce yield and increase purification costs.  Conversion yields are estimates based on 

start-up production and are consistent with published literature.  Feedstock cost is calculated 

multiplying the commodity value by the feedstock oil density (0.89 kg/l yellow grease, 0.90 kg/l 

choice white grease, and .91 kg/l RBD soy), then divided by the conversion yield.  Variable costs 

include direct material inputs.  Methanol and potassium hydroxide are primary reactants and are 

purchased as commodities with current pricing of $0.53/l and $1.94/kg respectively (Chemsolv, 

2012).  Methanol is used at a ratio of 22% by volume of feedstock oil (J.V. Gerpen et al., 2006).  

Potassium hydroxide is used at approximately a ratio of 20.42 grams per liter of feedstock oil (Y. 

Zhang et al., 2003a).  Operating supplies include ion exchange resins and oxidative stabilizer, 

both at a cost of $0.0079 per liter.  Lab expendables for in-house testing contribute $0.0053/liter.  

Electricity for motors, air compressor, lighting, and general building consumption contribute 

$0.06 per liter based on a utility cost of $0.11/kWh.  Process heat is provided via a waste heat 

recovery system from the adjacent landfill gas generator and is accounted for in electricity usage 

for pumping energy.  Fixed costs include labor, building rent, insurance, equipment maintenance, 

fuel quality testing, and RIN (renewable identification number) compliance which are summed 

together and divided by the biodiesel production in gallons per year.  Labor includes two full-

time positions, general manager at $30/hr and production manager $25/hr including fringe, one 

half-time lab manager at $20/hr, and one 1/4 time intern at $12.50/hr.  Building rent is $12,000 

per year.  Insurance is $1,500 per year, at 0.5% of capital costs.  Equipment maintenance is 

$3,000 per year, at 1% of capital cost.  Fuel quality testing, to ensure ASTM specifications, is 

estimated at $4,500 per year and RIN compliance is estimated at $3,500 per year.  Revenue is the 

sale of crude glycerin or glycerin bottoms, produced at a rate of 0.24 kilograms per liter biodiesel 
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(Knothe et al., 2005).  Glycerin value is a function of its composition with current pricing 

between $0.09-$0.13 per kilogram.  Total cost is the revenue minus the sum of feedstock, 

variable, and fixed costs.  All costs were observed from plant start-up operations and have been 

extrapolated to the plant operating at capacity.          

 This facility operates using a base-catalyzed transesterification process with batch size of 

1,960 liters of finished fuel, whereby plant operators working one 40 hour per week shift, 

process 5 batches per week, 50 weeks per year.  Conversion costs are based on the output of 

490,000 liters of biodiesel per year. 

Table 19  

Conversion Costs by Commodity Feedstock 

 

Commodity Feedstock 

Yellow 

Grease 

White Grease  

RBD Soy 

Oil Cost per kg
[(PFL, 2013)]

 

($/lb) 
$0.75 (0.34) $0.86 (0.39) $0.99 (0.45) 

Conversion Yield 80% 85% 90% 

Costs Cost per liter of biodiesel ($/gal) 

Feedstock  $0.83  (3.16) $0.91 (3.44) $0.96 (3.63) 

Variable $0.28  (1.06) $0.27 (1.01) $0.26 (0.97) 

Fixed   $0.34  (1.29) $0.34 (1.29) $0.34 (1.29) 

Total   $1.46  (5.51) $1.52 (5.74) $1.56 (5.89) 

Revenue (Glycerin) $0.02  (0.08) $0.02 (0.10) $0.03 (0.12) 

Total Conversion Cost  $1.43  (5.43) $1.49 (5.64) $1.52 (5.77) 

 

 6.3.2.5 Subsidies and Conversion Cost Summary. At present there are two subsidies that 

allow for competitive biodiesel manufacturing in the United States.  The first is the Federal Fuel 

Tax Credit, a production tax credit valued at $1.00 per gallon ($3.79/liter) of biodiesel produced.  
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This tax credit was valid for 2013, approved during the passage of the American Taxpayer Relief 

Act of 2012 and housed under the Internal Revenue Service (Congress, 2012; EPA, 2013).   

 The second is the RIN Credit (Renewable Identification Number) defined by the 

Environmental Protection Agency’s RFS2 Program (Renewable Fuel Standard).  The associated 

biodiesel RIN is classified D4, biomass-based diesel RIN, and is valued at 1.5 RINs by volume 

(EPA, 2013).  At the time of this writing the D4 RIN is worth $0.32 for each liter of biodiesel 

(PFL, 2013).  

 Table 20 summarizes the conversion costs for the three commodity feedstocks above with 

the same production capacity.  Net conversion cost is the total cost plus the RIN and fuel tax 

credit subsidies.  The fuel tax credit is not available to government entities but may be accessible 

by purchasing petroleum diesel through obligated parties that can utilize the tax credit and 

transfer savings to the purchased diesel fuel.   Diesel bulk cost is the cost to Catawba County in 

purchasing petroleum diesel fuel in bulk without road taxes.  Net profit is the difference between 

diesel bulk cost and net conversion cost, or the bottom line of all factors that influence 

conversion costs.  

Table 20  

Conversion Cost Summary including Subsidies 

Commodity Feedstock Yellow Grease White Grease RBD Soy 

  Values per liter of biodiesel ($/gal) 

Total Conversion Cost  $1.43 (5.43) $1.49 (5.64) $1.52  (5.77) 

RIN $0.31 (1.20) $0.31 (1.20) $0.31  (1.20) 

Fuel Tax Credit $0.26 (1.00) $0.26 (1.00) $0.26  (1.00) 

Net Conversion Cost $0.85 (3.23) $0.91 (3.44) $0.94  (3.57) 

Diesel Bulk Cost $0.86 (3.25) $0.86 (3.25) $0.86  (3.25) 

Net Profit $0.005 (0.02) $-0.05 (-0.19) $-0.08 (-0.32) 
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6.4 Results 

 Standalone analysis of each operation indicates that crushing and conversion are not 

optimized under current conditions to create an economically viable integrated system.  With the 

goal of producing biofuels, it would be most economical to sell all crops and buy the cheapest 

biodiesel feedstock, yellow grease, whereby the sale of grain subsidizes the biodiesel conversion 

process.  The following sensitivity analyses of farming, crushing, and conversion look at key 

variables to determine optimal viability scenarios.  

 6.4.1 Net Farming Profit vs. Crop Rotation. This scenario compares the four proposed 

crop rotations on an annual basis whereby net farming profit is equal to the commodity grain 

value minus the farming costs, assuming average yields per Table 15.  This is the farmer 

perspective that addresses the best way to utilize farm land, or buffer land in the case of the 

EcoComplex.  Figure 25 shows rotation 3, corn-canola-soy-fallow to be the optimal rotation with 

averaged annual profit at $151.05 per hectare.  This rotation is also the highest vegetable oil 

producer at 617 liters per hectare per year.  Canola currently enjoys a high commodity price and 

helps to drive the overall profit of rotation 3.  The 3-year oilseed rotation, rotation 4, shows the 

lowest net profit largely due to the addition of a winter cover crop with a farming cost of $60.70 

per hectare.  There is no harvest associated with this cover crop, as its sole purpose is to provide 

soil coverage and prevent erosion, fix nitrogen, and increase organic soil carbon. 
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Figure 25. Net Farming Profit vs. Crop Rotation. 

 6.4.2 Sensitivity of Net Farming Profit to Yield. This analysis examines yield, the 

principal farming variable, across all the crops listed in the proposed rotations.  Net farming 

profit is the estimated yield multiplied by yield factor, by grain commodity minus the farming 

cost (referred to in Table 16).  Yield represents one of the largest farming risks accounting for 

soil fertility, pricing of key inputs such as fertilizer, lime, spray, and general knowledge of 

planting, management, and harvest for each crop. 
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Figure 26. Net Farming Profit vs. Crop Yield. 

 Results from this analysis show canola and soybeans to be the most responsive to yield, 

where a 10% increase in yield over the baseline enterprise crop budget represents a 16% increase 

in farming profit. At a 50% yield, both canola and soybeans are still above break-even, 

minimizing overall risk.  Corn has a similar slope to canola and soybeans with a shifted origin 

while wheat and sunflowers are the least responsive to change in yield.  This sensitivity further 

supports why crop rotation 3, corn-canola-soy-fallow, is the optimal rotation in terms of net 

profit and risk minimization by yield. 

 6.4.3 Crush Facility Sensitivity. The key variables related to the cost of producing 

vegetable oil are oil extraction efficiency and crush capacity.  Figure 27 shows the effect of oil 

extraction efficiency on production cost.  This analysis models the current installed capacity of 4 

tons/day while holding all other variables constant.  Sunflower and canola, with the highest 

inherent oil content, are the most sensitive to the increase in extraction efficiency.  Every 1% 

increase in extraction efficiency of canola or sunflower oil results in a $0.018 reduction in the 
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cost per kilogram of that oil.  Soybeans show a decrease in cost of $0.0066 per kilogram of oil 

for each percent increase in extraction efficiency.   

 

Figure 27. Sensitivity of Oil Cost to Extraction Efficiency. 

 Crush capacity’s effect on oil cost is show in Figure 28.  Soybeans are the most sensitive 

to an increase in capacity holding all other variables constant, include labor.  The crush cost of 

soybeans surpasses sunflower at 3 tons/day and canola at 4 tons/day.  At 12 tons/day, the 

maximum capacity of the EcoComplex Crush Facility due to footprint and space limitations, the 

crush cost is $0.90 per kilogram.  This is competitive with RBD soybean at ($0.99/kg) and 

approaches the cost of the next cheapest biodiesel feedstock, white grease at $0.86/kg.     
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Figure 28. Sensitivity of Oil Cost to Crush Capacity. 

 6.4.4 Sensitivity of Biodiesel Conversion Cost to Production Metrics. This scenario 

examines key production costs (yellow grease, labor, methanol, and yield) by changing their 

value plus/minus 10% of the baseline cost.  These variables were modeled by setting production 

volume to 490,000 liters per year biodiesel using the cheapest commodity feedstock yellow 

grease with pricing of $0.75 per kilogram. 

 Yield, the ratio of finished biodiesel divided by starting feedstock oil, and feedstock cost 

(yellow grease) have same magnitude of slope and are the most significant of the four metrics.  

For every 1% increase in yield, total conversion cost per gallon is reduced by $0.0022/liter, 

where as a 1% increase in feedstock cost results in total conversion cost increase of $0.0022/liter.  

For labor, each percent increase results in a $0.00077/liter increase in conversion cost.  Finally, 

methanol increases the conversion cost by $0.00039/liter for each percent increase in price.   
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Figure 29. Sensitivity of Biodiesel Conversion Costs to Production Metrics. 

 6.4.5 Net Profit vs. Subsidies. Break even for biodiesel conversion at the facility’s 

capacity of 490,000 liters per year using the cheapest feedstock of yellow grease with all 

conversion metrics at the baseline of zero, requires a subsidy of $0.58 per liter.  This requires D4 

RIN values of $0.21 or $0.38, with and without the fuel tax credit. 

6.5 Discussion and Conclusion 

 The agronomic and economic modeling provides a clear view of the economic challenges 

to operating small-scale crush and biodiesel plants.  The present study found that consistent 

federal government subsidies are paramount to encourage sustained growth of the US biodiesel 

industry, particularly at the small-scale.  This has been problematic over the past several years 

with the lapse and subsequent start-up of the fuel tax credit and with cases of RIN fraud that have 

undermined its value and led to questioning the validity of the EPA’s Renewable Fuels Standard 

program.   
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 6.5.1 Limitations of Study. This analysis is limited to the Catawba County NC 

EcoComplex Crop Processing and Biodiesel Facilities and the equipment utilized within.  These 

facilities are in start-up phase of production with only preliminary production data.  Operating 

costs are based on measurements during start-up and supplemented by literature review.  All 

commodity inputs (feedstocks, chemicals, products, RIN) were cited in 2013 and provide a 

snapshot of current market conditions during this time.  This analysis is based on government 

owned civic-scale project, therefore depreciation and taxes are not calculated.         

 6.5.2 Recommendations.  

 6.5.2.1 Oilseed Crops & Crushing. Camelina sativa is an alternative oilseed crop and 

biodiesel feedstock that may add flexibility to the crop rotation and increase overall oil 

production per hectare.  Camelina has a very rapid growth cycle, in as little as 70 days to 

maturity in late winter, giving possibility of replacing a fallow period with an oilseed crop.  

Although it produces half the yield of canola, it also requires half the fertilizer input (Ciubota-

Rosie, Ruiz, Ramos, & Perez, 2013; Zubr, 1997).  Lack of familiarity with farm management 

and unknown commodity pricing are barriers for camelina development as an oil crop.  Capacity 

is the other significant variable for the crush facility as there is room for expansion to 10-12 tons 

per day in the current building footprint.  The capital requirement for additional equipment, 

payback period, and the overall impact on cost of oil production need further analysis.   

 6.5.2.2 Conversion. Though methanol cost was the least sensitive to conversion cost, it is 

also the simplest variable to change by increasing storage capacity and purchasing in bulk.  The 

current model uses the purchased price of methanol for a short truck load instead of a full tanker 

truck load.  Extrapolating the reduction in total conversion cost by decreasing the methanol 

purchase price by 25%, from $0.53 to $0.39 per liter, would result in a $0.04/liter decrease in 
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total conversion cost and payback the investment of a larger tank and piping in less than one 

year. 

 6.5.3 Future Trends and Technology. Field to Fryer to Fuel or  F3 is a program being 

conducted by a NC economic development group to promote a concept to expand used cooking 

oil conversion to biodiesel (AdvantageWest, 2013).  The North Carolina biodiesel industry has 

largely been built on used cooking oil.  Many NC biodiesel companies have used cooking oil 

collection, servicing restaurants to access lower cost feedstock.  This model has proven to be 

resilient allowing these companies to weather the periods of inadequate subsidy, while many 

commodity oil dependent biodiesel manufactures were forced to close their doors.  At this 

juncture the concept of oil leasing was born.  Vegetable oil could be owned by the biodiesel 

company and leased to a restaurant to reduce collection cost and take advantage of the margin on 

food-grade oil.  This takes additional coordination to procure and distribute the food-grade oil 

and may indeed give rise to a new business entity.  Connecting agriculture and local food 

markets is facilitated by the distributed scale and the equipment found in small crushing plants, 

such as the EcoComplex.  Small-scale crushing produces mechanically extracted cold-pressed oil 

with inherently low phosphorous levels suitable for upgrading to food quality.  The increased 

margin for edible oil tied back into local biodiesel producers has the potential to create a new 

business niche and expand the concept of locally made and locally grown fuels.   

 Technology and process improvements continue to develop around co-products that 

support the possibility of the oilseed biorefinery.  These value-added co-products include 

glycerin soap manufacturing and nutraceutical fractionation to produce hydroxypropyl 

methycellulose (HPMC) a carbohydrate polymer used in natural products potentially made from 

grain meal and glycerol (L. Zhang et al., 2013).  Soap manufacturing provides a higher value use 
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of crude biodiesel glycerin while the nutraceutical uses oilseed meal and crude glycerin.  Process 

technology advancements include reusable catalysts such as heterogeneous zeolites and 

commercially produced enzymes that stand to produce a higher value glycerin stream while 

utilizing lower quality oils therefore improving biodiesel production economics, scale 

independent (Burton, 2009; Hasheminejad, Tabatabaei, Mansourpanah, Far, & Javani, 2011).  

 Creative programs and partnerships along with technology and efficiency improvements 

combine to give reason for optimism in the arena of small and civic-scale biofuel endeavors.  

And while current economic viability is marginal at best, the emerging bio-based economy is 

poised for near-term growth at all scales that warrant continued investment in the development of 

distributed models. 
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CHAPTER 7  

Synthesis of Results and Discussion 

 The Catawba County EcoComplex is an evolving eco-industrial park led by municipal 

government striving towards zero waste.  While waste reduction has been the original 

motivation, renewable energy from municipal biomass has become the tangible focus for EIP 

development going forward.  The establishment of a financially successful landfill gas-to-energy 

project laid the foundation for on-going political support.  The ability to develop public and 

private partnerships is a driving factor to cultivate future projects.  University partnerships 

continue to show promise, as the EcoComplex demonstrates leadership as a regional model and 

unique case study.  Creative financing using landfill post-closure funds have enabled Catawba 

County to fund capital intensive buildings and equipment.  All regulated landfills are required to 

maintain a post-closure fund, thus representing a potential source of funds for future 

waste/biomass-to-energy systems and zero waste initiatives; however, with the expectation that 

projects will generate revenue to repay the fund.  Projects that further convert the waste stream to 

resources will likely prolong landfill life span thus allowing for less constrained payback periods.  

Local governments and municipal landfills are well positioned to be leaders for developing 

successful eco-industrial parks based on biomass and waste resources for clean energy 

development.             

 The biorefinery system, which includes 61 hectares of buffer lands, a 4-ton/day oilseed 

crushing facility and biodiesel conversion (490,000 liters per year) facility, is integrated into the 

EcoComplex via for three fundamental reasons: (a) utilize buffer lands to grow oilseed 

feedstock, (b) use waste thermal input from the landfill gas to energy facility for process heat, 

and (c) provide fuel for the heavy equipment in landfill operations.  The biorefinery within the 
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EIP system was analyzed for technical bottlenecks, environmental performance through LCA, 

and economic assessment based on four biodiesel feedstocks: unrefined oils from soybean, 

canola, sunflower, and used cooking oil. 

7.1 Technical Bottlenecks 

 The bottleneck for oilseed crushing is scale.  At current capacity, operating 250 days per 

year, this facility can only provide 36%, 23%, and 8% of the feedstock oil to meet the capacity of 

the biodiesel facility for canola, sunflower, and soybeans respectively.  A minimum three-fold 

scale-up would be required to match the oil outputs for canola.  This would also maximize the 

physical space of the building.  Economic analysis would be needed before capital investments 

and facility expansion were made.       

 The conversion step points to three potential bottlenecks: feedstock preparation, methanol 

recovery, and thermal loads for expanded production.  Utilizing a cheaper feedstock equates to 

higher impurities mainly in the form of moisture and free fatty acids which in turn requires more 

unit operations (flash drying, esterification) and associated labor and material inputs.   Methanol 

recovered from distillation is another important process step that presents trade-offs.  Methanol 

recovery is not required to for fuel to meet ASTM D6751 specification as both water washing 

and ion exchange filtration remove excess methanol.  However, methanol removed from the 

FAME phase post reaction, facilitates downstream purification and reduces material input for 

process water and ion exchange resins as well as energy inputs.  The recovered methanol can be 

recycled for use in subsequent batches, though it contains water from the saponification reaction 

concurrent during transesterification.  Although recovered methanol is 93-95% purity (technical 

grade is 99.5%), the presence of this water promotes further oil degradation, soap formation, and 

yield loss.  Methanol recovery from the crude glycerin phase is not currently planned for in 
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facility operations because it occupies the reactor vessel creating a bottleneck for batch 

production and requires additional heating inputs beyond the 58.5 kW (200,000 btu/hr)  provided 

by the heat recovery unit.      

7.2 Environmental Performance & LCA Results 

 The energy and GHG LCA provides a straightforward perspective on the associated 

environmental impacts of each life cycle stage for the feedstocks presented in both conventional 

and IE system frameworks.  UCO-based biodiesel is the most environmentally benign, with a net 

energy balance of 6.20 and fossil energy balance of 12.24.  UCO achieves a reduction in carbon 

intensity of 80% compared to petroleum diesel fuel in the conventional system and 92% 

reduction when ascribed to the conditions of the IE system employed at the Catawba County 

EcoComplex.  Soybean-based biodiesel poses the least environmental impact of the oilseed 

feedstocks, primarily due to the fact that soybeans require minimal nitrogen fertilizer compared 

to other oilseed crops.  Soybeans produced a NER of 4.44, an FER of 7.19 and CI reductions of 

71% and 87% for conventional and IE systems respectively.  Comparing UCO and soybean 

GHG results, there is an interesting counter intuitive cross-over where producing biodiesel from 

soybeans within the IE system is more environmentally advantageous than producing UCO-

biodiesel in a conventional system.       

 Canola feedstock showed the highest GHG intensity due to the nitrogen fertilizer effect.  

The crush phase showed significant reduction in the IE system as electricity, the primary input, 

was discounted from on-site generation.  Transportation remains constant across systems with 

only a small emissions reduction from the use of B20 biodiesel in the IE system.  Soybean 

biodiesel resulted in CI values of 27.6 gCO2-eq/MJ in the conventional system and 12.5 in the IE 

system, a reduction of 55%.  The literature from CARB lists Midwestern produced soybean 
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FAME at 21.13, in between the two systems of this study.  This may be in part due to higher 

average yields in for soybean harvest than compared to North Carolina production.  All 

feedstocks achieved an emissions reduction of greater than 50% to comply with US EPA 

biomass diesel category under RFS2.  Primary factors contributing to the CI value are nitrogen 

fertilizer, methanol, electricity, and thermal energy in conversion.  Diesel in transport and KOH 

catalyst make minor contributions. 

7.3 Economic Analysis 

 Standalone budget analysis of each operation indicates that crushing and conversion are 

not optimized under current conditions to create an economically viable integrated system.  With 

the goal of producing biofuels, it would be most economical to sell all crops and buy the 

cheapest biodiesel feedstock, yellow grease, whereby the sale of grain subsidizes the biodiesel 

conversion process.  This conclusion could be supported by chemical simulation software such 

as ASPEN to model the conversion portion of the life cycle. 

 The corn-canola-soybean-fallow rotation is found to be the most profitable crop rotation 

for oilseed production rotation with averaged annual profit at $151.05 per hectare.  This rotation 

is also the highest vegetable oil producer at 617 liters per hectare per year.  Canola and soybeans 

are the most responsive to change in yield, where a 10% increase in yield over the baseline 

enterprise crop budget represents a 16% increase in farming profit.  At a 50% yield, both canola 

and soybeans are still above break-even, minimizing overall risk.  Due to the high value of 

protein meal, soybeans showed the greatest sensitivity to increased crush capacity, though not 

viable as a biodiesel feedstock at 12 tons/day for this scale production facility.   

 Current operating conditions result in a biodiesel conversion cost of $1.43 per liter of fuel 

produced using least valuable commodity feedstock, yellow grease.  Production metrics in the 



130 

 

order of greatest sensitivities are yield, feedstock cost, labor cost, and finally methanol cost.  

Break-even requires a subsidy of $0.58 per liter to bring down the net biodiesel cost, matching 

the avoided cost of petroleum diesel.  This requires D4 RIN values of $0.21 or $0.38, with and 

without the fuel tax credit.   The agronomic and economic modeling provides a clear view of the 

economic challenges to operating small-scale crush and biodiesel plants.  As subsidies continue 

significant fluctuation, metrics other than operating costs are required to justify civic-scale 

biofuel projects. 
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CHAPTER 8  

Conclusions and Recommendations for Future Work 

 Use waste first then biomass energy crops for biorefinery inputs.  Biofuels are at their 

best when they utilize waste resources as principal material inputs and conversely at their worst 

when they use food crops and lands that compete with food production.  Used cooking oils, trap 

and brown greases should be the baseline of biodiesel production.  Second generation feedstocks 

such as yeasts, bacteria, and algae that offer multiple functions, i.e. bioremediation, will likely be 

the future of high environmentally performing biodiesel fuels.  Over the past decade the 

scientific community has engaged in a rigorous debate on the issue of indirect land use change 

associated with the increase in global demand for grains.  While land use change, either direct or 

indirect, is not currently quantified in biofuels policy, its effect is weighing in, resulting in many 

governments in Europe and now the United States to scale back policies that incentivize growth 

in the sector.  Economic sustainability for the US biofuels sector is dependent on federal 

government subsidies for all but the largest producers.  The promise of biodiesel and the 

environmental advantage is not based on consolidation or a single feedstock, but in multiple 

agricultural products and waste streams suited to an increasingly local scale and regional 

community.   

 Improve technologies to diversify feedstocks, process low-quality low-cost materials, and 

produce higher value co-product streams.  There are many promising technologies on the near 

horizon that may prove disruptive to the industry.   Enzymatic catalysis which can combine 

esterification and transesterification in one process is currently being commercialized.  Since the 

enzymes need water to operate, high moisture feedstocks are not a barrier, nor are high 

concentrations of free fatty acids, both of which cause significant yield loss and increased unit 
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operations.  Enzymes may also use ethanol as the monohydric alcohol, instead of fossil-based 

methanol, for the prospect of a truly renewable biofuel.  Additionally, wet methanol recovered 

from both biodiesel and glycerin phases could be recycled completely without costly rectification 

systems.   

 Work on integrated farming systems for bioenergy crops.  Nitrogen is the largest factor 

for GHGs in the agricultural production step (with an emissions factor of 6.7 compared to 0.393 

for phosphorous and 0.46 for potassium).  This is due to the costly manufacturing step and in 

application, where it is estimated that 1% of the mass of nitrogen fertilizer is emitted by 

conversion directly to nitrous oxide gases  Potentially another third is lost to leaching though 

water movement in soil.  Crop budgets are not formulated to minimize nitrogen loss, but to 

maximize opportunity for plant uptake.  A multitude of factors determine plant uptake efficiency 

including soil pH, texture, and soil carbon.  Integrated farming systems represents an approach to 

increase the efficiency of plant uptake by nurturing a support system that includes high levels of 

stable carbon, such as biochar, and a diverse soil biotic community enhanced through crop 

rotation, reduced herbicide and pesticide applications, and no-till practices.  Biochar applications 

associated with bioenergy crops is an area in need of long-term studies.  Nitrogen fixing crops 

that have evolved with biological nitrogen fixation should be among those first considered as the 

primary biomass energy crop, or at least incorporated into crop rotation.  

 Producing soil amendments and fertilizers is well defined in the scope of a biorefinery 

and certainly at the EcoComplex.  In addition to yard waste and wood scraps that are composted, 

byproducts from the biorefinery could be added in a digester either anaerobic or aerobic.  These 

byproducts include both sources of nitrogen (seed meal which ranges from 25-35% protein 

content) and carbon sources in the forms of solids and sediment from feedstock preparation and 
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crude glycerin bottoms.  The refining of crude glycerin using phosphoric acid produces a 

separation of the crude glycerin emulsion which results in the formation free fatty acids, 

technical grade glycerol at 85% purity, and a potassium salt, potassium phosphate.  This salt is 

water soluble and provides two important macro-nutrients.  Important decision making criteria to 

incorporate this utilization of byproducts include effects on labor, production and scheduling, 

economic analysis, and life cycle assessment.  

 Work to incorporate various levels of applied industrial ecology.  EIPs struggle with the 

implementation gap.  The barriers for executing industrial symbiosis across multiple firms are 

numerous.  However, levels of applied industrial ecology can be incorporated within the 

boundaries of one firm, and a biorefinery provides an exceptional opportunity.  Renewable 

energy systems incorporated for heat and electricity offer tremendous potential reductions in 

GHG emissions at the conversion phase.  This accounts for a 60% reduction in the case of the 

EcoComplex compared to conventional means.  Investing in solar thermal, biofuel-powered 

boilers or photovoltaics can also make substantial environmental contributions at the producer 

level.   

 Develop producer specific LCAs.  With the confluence of climate change science, 

advanced by the IPCC, sophisticated modeling software including open source packages, and 

real time data streams, it has become possible to create LCAs for individual producers.  

Accounting systems that have imbedded allocation and emissions factors only require mass 

inputs.  These are simple to tract as they are also the primary economic metric.  As the science of 

LCA progresses it will become increasingly likely that a value of carbon will come into the 

bottom line economic calculation either through cap and trade, carbon tax, or other means.  

Therefore, specific LCAs on the producer scale will not only distinguish a product on the market 
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place but offer a quantified economic advantage.   Developing widely accepting independently 

verified methods for producer specific LCAs is an upcoming area for the biofuels sector.     

 

Figure 30. Oilseed Biorefinery within the EcoComplex (future components with dashed lines). 

 This dissertation is dedicated to improving the overall sustainability, both economic and 

environmental, of the Catawba County NC EcoComplex and others that envision a decentralized 

and distributed energy future that is fundamentally regenerative and builds resilience in local 

communities.  Figure 30 illustrates reasonable future endeavors for this biorefinery.  This work 

represents a baseline for what can be expected at this project and how improvements and 

efficiencies can be measured.  While the system in place has much work to be optimized and 

reach its full potential, this research helps to establish the foundation for future endeavors of 

which we all must strive towards.   
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Appendix A 

Eco-Industrial Parks Based on Literature 

 

EIP -location Date Established Characteristics & Firms Exchanges Citation 

Kalundborg, Denmark 1970-1990 
Coal Power Plant, wall-board plan, Cement, 

Novozymes & Novo Nordisk,  

waste water, fuel, 

information, nutrients 
(Tudor, 2007;Chertow, 2000) 

    
Fertilizer production, fish farm, Kalundborg 

waste water treatment plant 
    

PRTEC - Puerto Rico   
Information technologies, medical device 

manufacturing, electronic 

Wastes, technology 

transfer 
(Deschenes & Chertow, 2004) 

Techno-Economic 

Corridor 

Under 

development 

manufacturing, recycling of cardboard, metal 

alloys, isopropanol 
    

Burnside EIP 
Under 

development 

2500 acres, 1500 businesses, 1800 people 

employed working toward improving   
Energy, information (Spitzer, 1997; Chertow, 2000) 

Halifax, Nova Scotia, 

Canada 
  

environmental performance and profitable 

partnerships.  
    

Monfort Boys Town- 

Biosystem 
  

Utilizes spent grain from breweries as 

substrate to grow mushrooms, fed to pigs, pig 
Nutrient cascade (Chertow, 2000) 

Suva, Fiji   
waste to anaerobic digester, treated waste to 

fish ponds.  Biosystem model 
    

Fairfield, Baltimore 

MD 

1990s - 

developing 

60 operating companies in heavy industry, 

Brownfields site development 
Intermodal materials,  (Spitzer, 1997) 

    
1300 acres zoned industrial, mass commuting 

options 
waste streams   

Intervale Food Center 1990s 
4 Acre site: 60MW Biomass gasification co-

gen unit, living systems & bioshelters,  

Wastes, technology 

transfer 
(Spitzer, 1997; Chertow, 2000) 

Burlington, VT   
urban agriculture.  Goals are energy supply, 

food production, water purification 
    

 
  

waste disposal, and commercial composting.  

Formerly Riverside Eco-Park. 
    

Port of Cape Charles 
Under 

development 

Mixed residential, commercial, and industrial 

uses 

Water recovery, 

recycling,  
(Spitzer, 1997) 

Eastville, VA         

Civano Industrial Eco-

Park 

Under 

development 

Core businesses: makers of PVs, electric 

vehicles, circuit boards, steel fabricators,  
Water, resources (Spitzer, 1997) 
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Eco-Industrial Parks Based on Literature 

(Cont.) 

EIP -location Date Established Characteristics & Firms Exchanges Citation 

Tucson, AZ   
design firms, renewable construction.  Goals 

to reduce transportation, increase 
    

    competitiveness, share resources     

Londonderry, New 

Hampshire 
1990s 

100 acre site with 720MW combined-cycle 

gas power plant, waste water from nearby 
Water, heat (Chertow, 2000) 

    sewage treatment plant for cooling towers     

EcoComplex, Newton 

NC 

1990s - 

developing 

Landfill gas to energy 3 MW with power 

purchase agreement.  Sawmill and pallet  

Heat, steam, by-

products 
(Edwards, 2009) 

    
manufacturers. Biodiesel plant with ,feedstock 

processing station under construction,  
    

    biosolids, greenhouses, bricks and pottery.     

Rutgers EcoComplex, 

New Jersey 

1990s- 

Developing 

250kW micro-turbine, co-gen, 1 acre 

greenhouses, aquaculture, desalination, 

compost 

heat, nutrients, water (Goldstein, 2004) 
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Appendix B 

ASTM D6751 Specification of Biodiesel from 2012, Courtesy of National Biodiesel Board 
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Appendix C 

EN 14214 European Standard of Biodiesel from 2008, courtesy of European Committee for 

Standardization (CEN, 2008) 
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Appendix D 

Standard Unit Operations Used in the EcoComplex Biodiesel Process 

 

Unit Purpose Location 

Course Filter WVO 
Coarse filter 3/8” (9.5mm) incoming WVO feedstock oil 

to remove large solid particles to prevent lodging and 

fouling of piping.  

Feedstock Settling 

tank, course 

canister filter. 

Heated Filtering, 

Settling, and de-

watering 

Heat Oil to 140°F (60°C) and circulate through step 

canister filters (1/4”, 1/8”, 150 mesh), heat to 170°F 

(77°C) and settle.  After 24 hours, drain off remaining 

water and sediment. 

Feedstock Settling 

tank, fine canister 

filter. 

Vacuum oil drying 
To achieve moisture below 1500ppm and minimize soap 

formation during reaction.  This is especially important 

for high FFA feedstocks. 

Processor & 

Methanol Receiver 

tank 

Acid Esterification 
Pretreatment step to convert FFA in low quality oil to 

FAME and reduce overall FFA level.   
Feedstock 

Treatment tank 

Methoxide Mixing Add potassium hydroxide to methanol per FFA% 
Methoxide Mix 

tank 

Transesterification 
Oil reacts with methanol in the presence of potassium 

hydroxide catalyst to yield biodiesel and glycerol 
Processor 

Glycerin Removal 
Gravity drain off glycerin byproduct, pump to bulk 

storage tank. 
Processor & 

glycerin storage 

Methanol Recovery 
Recover excess methanol from FAME phase for reuse in 

future batch.  This step also lowers flash point and 

reduces water use.  

Processor & 

Methanol Receiver 

vessel 

Water Washing 
Remove impurities in FAME such as soaps, excess 

methanol and un-reacted materials. Process water usage 

is 30% of final fuel volume.   
Wash Tank 

Waste Water 

Treatment/Oil 

Recovery 

Reduce biological oxygen demand of waste water and 

recover some usable feedstock oil 
Water treatment 

tank 

Drying 
Remove excess soluble water after water wash.  Dry 

down to 800ppm moisture 
Wash Tank 

Dry Wash- Ion 

Exchange 

Pump FAME through fluidized bed of ion exchange resin 

bead.  Another step to remove impurities in FAME such 

as soaps, excess methanol and un-reacted materials. 

Wash Tank,  
Test tank 

Oxidative Stabilizer 

& Fuel Testing 
Add oxidative stabilizer to test tank, stir then take sample 

to lab for in-house testing 
Test tank 

 

  



161 

 

 

Appendix E 

Agricultural Inputs by Crop Budget 

 
Material inputs/ 

Acre 
SOYBEANS CANOLA SUNFLOWER 

REFERENCE: 

 

NCSU 

(1) 

USDA-

ARMS 

(2) 

2012 

Eco-

Complex 

George 

et al. 

(3) 

Penn 

State 

(4) 

2011 

Eco-

Complex 

UNL 

(5) 

 

K-State 

(6) 

Seed (lbs) 50 51 50 3 4 5 5 5 

Nitrogen (lbs) 
 

20.8 25 160 160 117 54 76 

Phosphate (lbs) 65 44 30.8 60 88 111 15 30 

Potash (lbs) 83 83.9 84 130 168 131 15 0 

Lime (lbs) 
 

660 600 660 1000 1500 660 500 

Herbicides (lbs) 5.5 1.56 2.9 1.1 
 

8.4 6.0 28.5 

Pesticides (lbs) 0.1 1.489 0.5 0.9 
 

0.2 0.27 0.05 

Fungicide (lbs) 
 

0.135 
 

1.5 
    

1) (NCSU, 2012) 

2) (USDA-ARMS, 2013) 

3) (George, et al., 2008) 

4)(PennState, 2011)  

5) (UNL, 2013) 

6) (K-State, 2007) 
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Appendix F 

Crush Facility Electrical Load Assessment 

 

ENERGY 

USAGE       

Energy Usage  

kWh 

 

 

Process 

 

Flow 

rate 

 

 

unit 

 

Hrs-

Canola 

 

Hrs- 

Sunflower 

 

 

Hrs-Soy 

Motor 

specs 

(kW) 

 

 

Canola 

 

 

Sunflower 

 

 

Soybeans 

Drag 

Conveyor C-

101 

1500 
bushels/ 

hour 
21.1 32.5 11.7 1.93 40.8 62.8 22.7 

Bucket 

Elevator E-

201 

1500 
bushels/ 

hour 
21.1 32.5 11.7 1.50 31.7 48.8 17.6 

Indented 

Cylinder 

Separator 

175 
bushels/ 

hour 
0.0 278.8 0.0 2.76 

 
769.6 - 

Vibratory 

Conveyor C-

201 

250 
bushels/ 

hour 
126.7 195.2 70.4 0.69 87.4 134.7 48.6 

Elevator E-

202 
500 

bushels/ 

hour 
63.4 97.6 35.2 1.50 95.0 146.4 52.8 

Air Screen 

Separator 
175 

bushels/ 

hour 
181.0 278.8 100.6 3.50 633.6 975.9 352.0 

Clean 

Product 

Cleaner 

300 
bushels/ 

hour 
105.6 162.6 58.7 1.15 121.4 187.0 67.5 

Cyclone Dust 

Collector   
181.0 278.8 100.6 0.68 122.2 188.2 67.9 

Elevator 3 500 
 

63.4 97.6 35.2 1.50 95.0 146.4 52.8 

Dryer Feed 

Auger 
500 

 
63.4 97.6 35.2 1.15 72.9 112.2 40.5 

Dryer 

Discharge 

Auger 

500 
 

63.4 97.6 35.2 1.15 72.9 112.2 40.5 

Dryer 

(electrical) 
200 

bushels/ 

hour 
158.4 244.0 88.0 2.00 316.8 487.9 176.0 

Dryer 

propane 
      7,423.0 6,631.2 4,948.6 

Elevator 4 500  63.4 97.6 35.2 1.50 95.0 146.4 52.8 

Pressing 

Operations 
         

Dry storage 

conditioning 

fan 

  384.0 384.0 384.0 3.45 1,324.8 1,324.8 1,324.8 
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Crush Facility Electrical Load Assessment 

(Cont.) 

ENERGY 

USAGE       
Energy Usage  

kWh 

Unload 

Auger with 

Sweep 

250 
bushels/ 

hour 
126.7 195.2 70.4 1.15 145.7 224.5 81.0 

Conveyor 

Auger 
250 

bushels/ 

hour 
126.7 195.2 70.4 1.50 190.1 292.8 105.6 

Leveling 

Auger 
250 

bushels/ 

hour 
126.7 195.2 70.4 1.00 126.7 195.2 70.4 

4 KK40 Oil 

Presses- 

Canola 

264 lbs/hr 5910.0   11.68 69,052.4   

4 KK40 Oil 

Presses- 

Sunflower 

236 lbs/hr  5910.0  11.68  69,052.4  

4 KK40 Oil 

Presses- Soy 
176 lbs/hr   5910.0 11.68   69,052.4 

4 KK40 

heaters - soy 
    5910.0 2.00  - 11,820.0 

Meal 

inclined 

discharge 

auger 

200 
bushels/ 

hour 
108.3 107.9 90.9 1.50 162.4 161.8 136.4 

Oil Press 

meal auger 
200 

bushels/ 

hour 
108.3 108.3 90.9 1.50 162.4 162.4 136.4 

Air 

Compressor 
      279.8 178.5 66.6 

Other 

Electrical 

Loads 

         

Lighting   500 500 500 3.00 1,500.0 1,500.0 1,500.0 

Exhaust fans   181.0 278.8 100.6 19.20 3,475.7 5,353.5 1,931.0 

4 Unit 

Heaters 

(seasonally) 

  60 60 60 57.60 3,456.0 3,456.0 3,456.0 

 

    

TOTAL 

kWh/year 
89,083.9 92,051.6 95,620.7  
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Appendix G 

Process Flow Diagram of Biodiesel Facility Conversion Process 
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Appendix H 

Electric Load Analysis per 2,365 Liter Batch (625 Gallons) 

 

 

Device 

Compressed 

Air (scfm) 

 

kW 

 

hrs/batch 

 

kWh/batch 

 

Feedstock Loading 551.5   3.7  

Feedstock circulating 2,205.9   14.6  

Feedstock Transfer  1.2 0.5 0.6  

Methoxide mix 900.0  1.0 6.0  

Process Pump  2.8 5.0 14.0  

Process Agitator  1.7 3.0 5.1  

Glycerin Transfer  2.8 0.1 0.3  

MeOH recovery  2.8 3.0 8.4  

P7 circ pump  1.0 3.0 3.0  

Chiller  0.8 4.0 3.2  

Chiller propane (equivalent)  10.6 3.0 31.8  

Chiller circ pump  0.1 24.0 2.2  

Chill water circ  1.2 3.0 3.5  

Vacuum Venturi 8,400.0  5.0 55.6  

Process Agitator  1.7 3.0 5.1  

Wash Pump transfer  2.8 0.3 1.0  

Dry loop  2.8 2.0 5.6  

IX pump 4,261.4  14.2 28.2  

Fill Rite Transfer  0.5 0.4 0.2  

Finish Fuel Transfer  1.1 0.5 0.6  

Heat Dist pump  1.0 24.0 23.5  

zone 1 pump  0.2 12.0 2.9  

zone 2 pump  1.2 12.0 13.8  

zone 3 pump  0.2 12.0 2.5  

Building (HVAC, lab, office, misc)     93.0  

   Total 328.5 kWh 
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Appendix I 

Process Equipment Electrical Loads per 2,365 Liter Batch (625 gallons) 

 
Compressed Air Loads (CA)  Requirements/batch 

1.  Feedstock loading pump:17gpm,15 cfm @100psi (20min) 

2.  Methoxide mix pump:17gpm,15 cfm @100psi (40 min) 

3.  Vacuum venturi: full vacuum= 28cfm @ 80psi (300min) 

4.  Drying loop:10 cfm@80psi (120min)   

5.  Waste treatment circ:10cfm@80psi (30min) 

6.  Ion Exchange pump: 5cfm@80psi (600min) 

7.  Filter Press: 25 gpm, 20cfm@80psi (30min) 

8.  Methanol circ. pump:4 gpm,15cfm@80psi (120 min) 

9.  Crude glycerin pump:17gpm,15 cfm @100psi (20min) 

 

3-Phase Loads & Full Load Amps (3Φ) 

1.  Reactor Pump: 208V, 13.5A 

2.  Reactor Agitator: 208 V, 8.2A  

3.  Wash/Dry Pump: 208V, 13.5A 

4.  Feedstock Pump: 208V, 5.98A 

5.  Glycerin Pump: 208V, 13.7A 

6.  Acid Esterification Pump: 208V, 14.4A 

7.  Heat Distribution Pump: 208V, 4.7A 

8.  Air Compressor: 460 V, 16A 

9.  Glycerin Tank Agitator: 208V, 13.6A 

 

1-Phase 240V Loads (1Φ-240V) 

1.  Hot Water Circulation pump: 240V, 6A  

2.  Future Loads (Receptacles): 240V, 20A 

3.   Feedstock Loading (Receptacle): 240V, 20A 

4.  Centrifuge (Receptacle): 240V, 20A 

5.  10kW Aux. Heater: 240V @ 42A 

6.  10kW Aux. Heater: 240V @ 42A 

7.  LFG Chiller, 240V. 3.3A 

8.  Chill water circulation pump, 0.49A 

 

1-Phase 120V Loads (1Φ-120V) 

1.  NIRS spec (receptacle): 120V, 20A  

2.  Ion Exchange pump (receptacle): 120V, 20A 

3.  Fill-Rite Transfer pump (receptacle): 120V, 20A 

4.  Zone 1 Pump1: 120V, 9.6A 

5.  Zone 2 Pump2: 120V, 2A 

6.  Zone 3 Pump3: 120V, 1.76A 

7.  Low Voltage Power Supply:120V, 2.6A 

8.  Low Voltage Power Supply: 120V, 2.6A  

9.  Waste water transfer pump (receptacle): 120V, 20A 

10.  Chill water 80 GPM circulation pump, 9.6A 
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Appendix J 

Thermal Loads per 2,365 liter Batch 

 

 

Tank(s) 

 

Process 

Volume 

(gal) 

Starting 

Temp 

(F) 

Desired 

Temp 

(F) 

Thermal 

load 

(BTUs/batch

) 

Op. 

Time 

(hrs) 

 

Btus/h

r 

 

Percen

t 

P1 Distillation 

(FAME only) 
550 95 150 215,531 3 71,844 25% 

FS 
Feedstock Settling 500 68 160 179,400 24 7,475 21% 

 

Chiller 

(absorption)    
108,565 4 27,141 13% 

P1 Transesterificatio

n 
625 100 140 97,500 1.5 65,000 11% 

P1 Feedstock vacuum 

dry 
625 125 150 84,467 2 42,233 10% 

PS 
Ion Exchange 531 90 115 51,773 2 25,886 6% 

F2 
Acid 

Esterification-

Settling 

625 100 120 48,750 6 8,125 6% 

P3 
Water Wash 550 110 120 35,211 1 35,211 4% 

P9 
Water Treatment 212.4 75 105 24,851 3 8,284 2.9% 

G1 
Glycerin Storage 132.75 68 75 3,624 24 151 0.4% 
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Appendix K 

GaBi Screenshot of Electricity Production Mix for Eastern United States 

 

 

 


