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 Precise characterization of waveguide parameters is necessary for the 

successful design of nonlinear photonic devices. This dissertation contains a 

description of methods for the experimental characterization of distributed Bragg 

reflectors for use in nonlinear optics and other applications. The general coupled-mode 
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theory of Bragg reflection arising from a periodic dielectric perturbation is developed 

from Maxwell’s equations. This theory is then applied to develop a method of 

characterizing the fundamental parameters that describe Bragg reflection by 

comparing the spectral response of Bragg reflector resonators. This method is also 

extended to characterize linear loss in waveguides. A model of nonlinear effects in 

Bragg reflector resonators manifesting in bistability is also developed, as this 

phenomenon can be detrimental to the characterization method. Specific 

recommendations are made regarding waveguide fabrication and experimental design 

to reduce sources of experimental error.



 

 
1 

1. Introduction and Motivation 

This dissertation contains a description of methods for the experimental 

characterization of distributed Bragg reflectors and associated waveguide elements. 

The impetus for the development of these methods arose from the desire to perform 

nonlinear wave mixing within a resonant cavity comprised of Bragg reflectors. In 

principle the field accumulation within the resonator should increase the efficiency of 

the process, provided certain phase matching conditions are met. All attempts at 

fabricating such a device ended in failure, despite a sound theoretical understanding of 

the underlying physics. The cause of the failures was imprecision in the estimate of 

parameters that governed the resonator behavior, because the nonlinear operation of 

the resonator is extremely sensitive to these parameters. This situation essentially 

rendered design of the correct device impossible without resorting to attrition or 

serendipity. 

In this situation the only recourse was to develop a method of characterizing 

the device parameters, taking care to eliminate as many sources of uncertainty as 

possible. The effort was successful, producing a method that is independent of 

coupling efficiency, does not require bending of the waveguide, and occupies a 

minimal footprint. In the pursuit of this object it was necessary to develop the coupled-

mode theory of Bragg reflection in the most general case of mode interaction.
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The remainder of the dissertation is organized as follows. Chapter 2 contains a 

theoretical description of Bragg reflection developed from Maxwell’s equations. 

Chapter 3 describes a method of experimentally characterizing the parameters that 

govern Bragg reflection between arbitrary modes, namely the linear loss coefficients 

of the perturbed waveguide modes, and the coupling coefficients. Chapter 4 describes 

a method of experimentally characterizing the linear loss coefficients of unperturbed 

waveguide modes. Chapter 5 contains a description of the phenomena of bistability 

that can arise in nonlinear resonators, and which has the potential to introduce error 

into the characterization measurements. Chapters 6 and 7 respectively contain a 

description of the waveguide fabrication procedure, and experimental design process, 

and contain recommendations to reduce sources of experimental error. 
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2. Theory of Distributed Bragg Reflectors 

2.1. Maxwell’s Equations 

The mathematical theory of distributed Bragg reflectors begins with Maxwell’s 

equations that describe the relationship between the electromagnetic fields [1]: 

ρ D , 

(2.1) 

J
D

H 




t

, 

(2.2) 

0




t

B
E , 

(2.3) 

0 B , 

(2.4) 

where E and H are respectively the electric and the magnetic field vectors, D and B 

are respectively the electric displacement and magnetic induction field vectors, ρ is the 

electric charge density, and J is the electric current density. Within a material, the 

fields E and H are related to the fields D and B through the constitutive equations: 

PEED  0εε , 

(2.5)
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MHHB  0μμ , 

(2.6) 

where the material permittivity ε and permeability μ are tensors (the subscript 0 

indicates their values in vacuum), and vector fields P and M are respectively the 

material electric and magnetic polarization. It should be noted that Eqs. (2.5) and (2.6) 

are not strictly the most general form that these relations may assume. In the most 

general sense the D and B fields may be related to the E and H fields in a way that 

involves additional complexities such as nonlinearity and hysteresis. 

2.2. The Electromagnetic Wave Equation 

Now consider the limit of homogenous materials in which the nonlinearities 

and anisotropy are negligible such that ε and μ may be taken as scalars (or in the case 

of anisotropy such that the fields are aligned with a principle axis), and in which the 

charge density ρ and the current density J are also negligible. Under these 

circumstances, the electromagnetic wave equation may be derived by first applying 

the curl operator to Eqs. (2.2) and (2.3) and then invoking Eqs. (2.5) and (2.6) [2]: 

    0μ 



 HE
t

, 

(2.7) 

    0ε 



 EH
t

. 

(2.8) 
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The mixed fields in Eqs. (2.7) and (2.8) may be separated through substitution of the 

time derivatives of Eqs. (2.2) and (2.3), and again invoking Eqs. (2.5) and (2.6): 

  0με
2

2






t

E
E , 

(2.9) 

  0με
2

2






t

H
H . 

(2.10) 

From Eqs. (2.9) and (2.10) the wave equation is a consequence of the vector identity: 

    AAA 2 , 

(2.11) 

and the observation that the fields are divergence free from Eqs. (2.1) and (2.4): 

2

2

2

2

2

2
2 με

tc

n

t 







EE

E , 

(2.12) 

2

2

2

2

2

2
2 με

tc

n

t 







HH

H , 

(2.13) 

00με1c , 

(2.14) 
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00μεεμn . 

(2.15) 

where c is the speed of light propagating in vacuum, and n is the material refractive 

index. The refractive index thus represents the factor by which the velocity of light in 

a material differs from the velocity of light in vacuum. 

In the absence of additional constraints, the solutions of Eqs. (2.12) and (2.13) 

for the Cartesian vector components of E and H are plane waves. In the presence of 

additional boundary conditions (such as the interface of multiple materials) the 

solution becomes more complicated [3]. For a general combination of materials that is 

homogeneous in the z-direction the permittivity and permeability will assume the 

form: 

   yxtzyx ,ε,,,ε  , 

(2.16) 

   yxtzyx ,μ,,,μ  , 

(2.17) 

where x, y and z are the Cartesian coordinates, and t is the time coordinate. When Eqs. 

(2.12) and (2.13) are subjected to the conditions imposed by Eqs. (2.16) and (2.17), 

the solution of the wave equations will be composed of normal modes of the form: 

       ztiyxtzyx mm   exp,Re,,, EE , 

(2.18) 
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       ztiyxtzyx mm   exp,Re,,, HH , 

(2.19) 

where ω is the angular frequency of the field, β is the propagation constant, and m is a 

subscript used to distinguish multiple modes. In the most general case the mode 

subscript may be discrete (as in the case of guided modes) or continuous (as in the 

case of radiative modes). Within scientific literature the complex field formalism is 

commonly employed, such that taking the real part of the fields is implied rather than 

written explicitly. Although analytical solutions to the wave equation are known for a 

number of material geometries, in the most cases the solution must be computed 

numerically [4]. Finally, it is pertinent to observe the method of solution assuming z 

invariance in the permittivity and permeability may be extended to the cases of 

geometries with z variance using the technique of conformal mapping [5], [6]. This is 

particularly useful for the analysis of curved waveguides. 

2.3. Electromagnetic Energy 

2.3.1. Energy and Power Density 

The power density of the electric fields can be obtained by projecting the 

electric field vector E onto Eq. (2.2) [2]: 

  JE
D

EHE 




t
. 

(2.20) 

From application of the following vector identity: 
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     BAABBA   

(2.21) 

Eq. (2.20) may be rewritten as: 

    JE
D

EEHEH 




t
. 

(2.22) 

By substitution of Eq. (2.3) the expression becomes: 

JES 




t

U
, 

(2.23) 

HES  , 

(2.24) 

 HBDE 
2

1
U , 

(2.25) 

where Poynting’s vector S is the power density of the fields, and U is the energy 

density of the fields. 

2.3.2. Energy Velocity 

For monochromatic fields that assume the form of Eqs. (2.18) and (2.19) the 

surfaces of constant phase of the modes are defined by the condition [2]: 
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constant zt m . 

(2.26) 

From the time derivative of Eq. (2.26) it is obvious that the fields (and from Eq. (2.25) 

the energy associated with the fields) propagate along the z-direction at the phase 

velocity vp: 

0





effm
p n

v  , 

(2.27) 

p

m
eff v

c
n 

0


, 

(2.28) 

where the ratio of the mode propagation constant βm to the vacuum propagation 

constant β0 is referred to as the effective refractive index of the mode neff, and c is the 

vacuum velocity of light.  

For polychromatic fields, the question of energy propagation is more 

complicated [7]. To demonstrate this, represent the mode of a polychromatic wave as 

the Fourier transform: 

         dztiyxtzyx 




 exp,,,,, AA , 

(2.29) 



10 
 

 
 

where A is the amplitude of either the electric or magnetic field. Note that the form of 

Eq. (2.29) is in accordance with the exponentials of Eqs. (2.18) and (2.19) provided 

that the mode index can be expressed as a continuous function of frequency. As an 

additional restriction, consider only spectrally narrow fields such that A(x,y,ω) is 

negligible outside of a narrow peak around ω = ω0. To elucidate the time evolution of 

the such a field, expand β(ω) in a Taylor series about its central value β0: 

      ...0
0

0 





 



d

d
, 

(2.30) 

where the higher order terms are rendered negligible by the frequency restriction. 

Substitution of Eq. (2.30) into Eq. (2.29) produces an expression of the form: 

       

    










dz
d

d
tiyxz

d

d
zi

dz
d

d
ztiyxtzyx





















































































0
0

0
0

0
0

0

exp,,exp

exp,,,,,

A

AA

, 

(2.31) 

which has a magnitude of: 

    

 dz

d

d
tiyxtzyx 



 























0

exp,,,,, AA . 

(2.32) 

The field thus behaves as a wave packet with the surfaces of constant phase of the 

envelope defined by the condition: 



11 
 

 
 

constant
0







 z

d

d
t 


 . 

(2.33) 

From the time derivative of Eq. (2.33) it is clear that the wave packet (and by Eq. 

(2.25) the energy associated with the wave packet) propagate along the z-direction at 

the so called group velocity vg: 




d

d
vg  . 

(2.34) 

such that the derivative is taken about the central frequency. It is convention to define 

a group index ng that is analogous to the refractive index, except that it relates to the 

group velocity instead of the phase velocity: 

g
g v

c
n  . 

(2.35) 

2.3.3. Time Averaged Energy and Power 

From an experimental standpoint, it is often not feasible to measure the 

instantaneous power of a high frequency electromagnetic field. In this situation it 

becomes necessary instead to measure the time averaged power and energy [4]. From 

Eq. (2.24), the expression of power density S for a monochromatic time harmonic 

field is: 
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(2.36) 

where the and the * operator indicates complex conjugation and the explicit 

dependence on spatial coordinates is suppressed in the latter equations. Since the fields 

are periodic, the time averaging may be performed over a single period T. Thus the 

time averaged power density Savg of Eq. (2.36) is: 

             zyxzyxdtti
T

T

avg ,,,,Re
2

1
2expReRe

2

11

0

HEHEHES  . 

(2.37) 

The energy density may be treated similarly. Substitution of a monochromatic 

time harmonic field into Eq. (2.25) produces: 
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(2.38) 

where the explicit spatial dependence of the fields has again been suppressed. 

Following the same reasoning as before, the time averaged energy density Uavg of Eq. 

(2.38) is: 

          

        zyxzyxzyxzyx
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

 

HBDE

HBDEHBDE 
. 

(2.39) 

It is clear by inspection that Eqs. (2.37) and (2.39) are applicable to electromagnetic 

modes assuming the form of Eqs. (2.18) and (2.19). 

2.4. Orthonormalization of Electromagnetic Modes 

It is easy to demonstrate that modes of the form of Eqs. (2.18) and (2.19) 

display an orthogonality relationship by considering the spatial characteristics of the 
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associated electromagnetic power flow. This is similar to the conventional method [3], 

although it does not invoke the Lorentz reciprocity theorem. Specifically, since the 

permittivity and permeability are invariant along the direction of field propagation, the 

time averaged power of the fields must be constant along the propagation direction 

(provided that field loss is negligible). Following Eqs. (2.18) and (2.19), when 

multiple modes are excited the total electric and magnetic fields are: 

      








 
l

ll ztiyxtzyx exp,Re,,, EE , 

(2.40) 
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mm ztiyxtzyx exp,Re,,, HH . 

(2.41) 

From substitution of Eqs. (2.40) and (2.41) into Eq. (2.37), the total time averaged 

power PTot is therefore: 
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(2.42) 

where nz is a unit vector along the z-direction. The condition of constant power flow 

applied to Eq. (2.42) thus becomes: 
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(2.43) 

By inspection of Eq. (2.43), it is evident that the following orthogonality condition 

must be obeyed by the fields: 

    0,,Re
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1
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
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



 









 dxdyyxyx zml nHE , 

(2.44) 

for l ≠ m. The form of Eq. (2.44) suggests the following orthonormalization condition 

for the fields: 

    lmzml dxdyyxyx 







 






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 nHE ,,Re
2

1
, 

(2.45) 

where δlm is the Kronecker delta (taken as having units of power), and the modes are 

normalized to unity (the absolute value included because the sign of the power flow 

will depend on the propagation direction). 

From the relationship between electromagnetic power and energy flow, it is 

possible to infer additional constraints between the fields of an electromagnetic wave. 

Specifically, it is possible to demonstrate the equality of the energy separately 

associated with the electric and magnetic fields. The equality follows from relating the 
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energy velocity from Eqs. (2.27) or (2.34), with the power density of Eq. (2.24), and 

the energy density of Eq. (2.25): 

 HBDEvHE 
2

1
, 

(2.46) 

where v is the relevant energy velocity. Substitution of the constitutive relations from 

Eqs. (2.5) and (2.6) into Eq. (2.46) simplifies to: 

 EEEEvHE  με
2

1
. 

(2.47) 

Dividing Eq. (2.47) by both field magnitudes results in the relationship: 
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(2.48) 

where nE and nH are unit vectors oriented respectively in the direction of the electric 

and magnetic fields. Noting that the velocity is constant, applying separately the 

divergence and curl operators to Eq. (2.48) results in the following conditions: 
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(2.49) 
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(2.50) 

The simultaneous conditions of Eqs. (2.49) and (2.50) imply that the gradient term 

must vanish, since it possesses no components either parallel or perpendicular to the 

velocity. This term may be expanded as: 
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(2.51) 

The gradient of the field ratio in the last term of Eq. (2.51) does not vanish in general. 

This means the equality is only satisfied when its leading term vanishes: 
















2

2

με
2

1
0

E

H
. 

(2.52) 

The equality of Eq. (2.52) is only satisfied when the electric and magnetic energy 

density terms are equal: 

22
μ

2

1
ε

2

1
HE  . 

(2.53) 

Therefore the electric and magnetic energy density of an electromagnetic wave 

propagating at constant velocity must be equal. Combining Eqs. (2.45), (2.37), and 
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(2.53), the orthonormalization condition may be conveniently rewritten in terms of a 

single field: 

lmmlml dxdy
v

dxdy
v    




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



 HHEE μ
4

ε
4

, 

(2.54) 

where v is the magnitude of the energy velocity. 

 Strictly, the equality of electric and magnetic energy arising from Eq. (2.51) is 

only valid when the gradient of the permittivity and permeability is negligible. This 

will be applicable to waveguides comprised of homogenous materials, but not to those 

in which the refractive index is graded. A more general proof exists based on the 

Lorentz reciprocity theorem that is applicable to graded index materials [8]. 

Interestingly, the orthonormalization condition of Eq. (2.54) can be arrived at for a 

given field purely from the existence of modal solutions to Maxwell’s equations. This 

is because the field amplitudes of a mode may only be scaled together (which 

represents the freedom to scale the total energy in the mode). Otherwise the 

relationship between the fields is fixed. Thus for a given modal solution the relative 

amplitudes of the electric and magnetic fields may be written as: 

lll c HE  , 

(2.55) 

where cl is some constant, and the subscript l indicates modal association. Substitution 

of Eq. (2.55) into Eq. (2.47) results in the relationships: 
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(2.56) 
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(2.57) 

Since the energy may be normalized arbitrarily, it is possible to choose a 

normalization such that either the electric field energy or the magnetic field energy is 

normalized to unity (although in general not both at the same time). For such a 

situation the orthonormalization condition of Eq. (2.54) for the selected field follows 

directly from Eq. (2.57), and it holds for the remaining field up to a multiplicative 

constant. This is a more general derivation in the sense that it holds even for cases in 

which the electric and magnetic energy are not equal. 

2.5. Coupled-Mode Theory of Bragg Reflection 

2.5.1. The Lorentz Reciprocity Theorem 

The most general approach to electromagnetic coupled-mode theory relies on a 

result known as the Lorentz reciprocity theorem [8], [9]. To arrive at this theorem, 

consider arbitrary solutions to Maxwell’s Equations for a pair of distinct waveguides 

denoted by E, H and E’, H’ respectively in a nonmagnetic dielectric. For time-

harmonic solutions at a fixed frequency Eqs. (2.1)-(2.4), Maxwell’s equations, reduce 

to: 
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and 
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. 

(2.59) 

By application of the vector identity from Eq. (2.21) the solutions from Eqs. (2.58) 

and (2.59) may be written as: 

 
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''''''
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(2.60) 

Addition of the pair of terms in Eq. (2.60) results in the relationship known as the 

Lorentz reciprocity theorem: 

      '''' EEHEHE   i . 

(2.61) 

It is pertinent to note that, although only the case of differing permittivity between the 

two solutions was considered here, the exact same method may be applied in the case 

of differing permeability, or in the case where they both differ simultaneously. 
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To apply the Lorentz reciprocity theorem in the context of waveguides, 

integrate each side of Eq. (2.61) over an arbitrary volume, and to the left side apply 

Gauss’ theorem: 

SAA ddV
V S

 


, 

(2.62) 

such that: 
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dVid '''' EESHEHE  . 

(2.63) 

Consider Eq. (2.63) for a guided mode in the limit that the transverse integral is taken 

infinitely far from the waveguide, and that the integral in the direction of propagation 

is infinitesimally small. Taking z as the propagation direction, since the guided modes 

vanish at infinity the integral reduces to: 
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(2.64) 

such that: 

    
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(2.65) 
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It is from consideration of Eq. (2.63) in the appropriate limits that the coupled-mode 

equations will arise. 

2.5.2. Mode Coupling 

The modes of Eq. (2.18) are believed to form a complete set, such that an 

arbitrary field may be expressed as [3]: 
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(2.66) 

where Al is a constant term reflecting the contribution of each mode, and the mode 

coefficient l is summed over all modes. Consider a perturbation of the permittivity Δε 

such that: 

     zyxyxtzyx ,,ε,ε,,,ε  . 

(2.67) 

Formally, an arbitrary field within the perturbed region may be expressed in terms of 

the normal modes of the unperturbed region. However, since the normal modes of the 

unperturbed region are not eigenmodes of the perturbed region, the Al coefficients 

must generally become z dependent: 
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(2.68) 

By definition, the fields of both Eq. (2.66) and Eq. (2.68) obey Maxwell’s equations. 

The coupled mode equations may be derived by respectively associating the 

perturbed and unperturbed modal decompositions of Eqs. (2.68) and (2.66) with the 

primed and unprimed fields of the Lorentz reciprocity theorem as expressed in Eq. 

(2.65) [8], [9]. This substitution produces the relationship: 
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(2.69) 

In deriving Eq. (2.69) one minor optional simplification was made. Technically the z-

component of the perturbed electric field differs from the transverse components by a 

constant factor. This may be seen by substituting the perturbed fields into Eqs. (2.1)-

(2.4), Maxwell’s equations, and expressing them in terms of the unperturbed modes: 
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(2.70) 
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where the subscript on the curl operator indicates that it is taken over the transverse 

field components only. The assumption made in Eq. (2.69) is that the perturbation is 

small such that the coefficient approaches unity and the projection of the electric field 

need not be separated into transverse and longitudinal components (it is also valid for 

an arbitrary perturbation in the case that the z-components of the fields are negligible). 

Notably, the coupled-mode equations themselves are not limited to the case of small 

perturbations if this approximation is not made. 

Employing the normalization conditions of Eqs. (2.45) and (2.54), it is possible 

to simplify Eq. (2.69) even further: 
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(2.71) 

The system of differential equations of Eq. (2.71) is a description of the coupling of 

waveguide modes that occurs due to an arbitrary perturbation of the permittivity. The 

same reasoning can be easily modified to include perturbations of the permeability 

(alone or in conjunction with the permittivity), or be couched in terms of the magnetic 

field. 
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2.5.3. Bragg Reflection 

The phenomenon of Bragg reflection arises when a periodic perturbation 

causes coupling between a forward propagating mode and a backward propagating 

mode [3]. For a perturbation periodic in the z direction, the permittivity may be 

decomposed into a Fourier series: 

      
izikyxzyxyx

k
k 









  2

exp,ε,,ε,ε , 

(2.72) 

   yxyx ,ε,ε 0 , 

(2.73) 
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(2.74) 

where Λ is the perturbation period, k is an integer, and δ is a component of the 

permittivity that is included to account for waveguide loss (or equivalently gain when 

the sign is reversed). Most physical sources of loss are adequately described by the 

inclusion of such a zero-order term [10]. Substituting Eq. (2.74) into the general mode 

coupling equations of Eq. (2.71) produces: 
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(2.77) 

where the coefficient κklm represents the amount of coupling that occurs between the lth 

and mth modes as a consequence of the kth Fourier coefficient of the perturbation, and 

αl is the linear power loss coefficient. Note that the loss coefficients may be used to 

phenomenologically express any source of linear loss (such as radiative scattering) and 

not simply absorption arising from an imaginary component of the permittivty. The 

equations are intentionally expressed independently of the sign of the propagation 

constant (through the ratio of it and its absolute value) to emphasize that the coupled 

mode equations take a different form depending on whether the interacting modes are 

co-propagating or counter-propagating. In principle, the differential equations of Eq. 

(2.75) couple the amplitude of each mode to every other mode. In practice, net transfer 

of amplitude usually only occurs between a pair of modes. The intuitive explanation 

for this is that the complex exponential terms are generally rapidly varying (and when 

the sign of the integral rapidly changes no net coupling occurs on average). Significant 
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coupling will only occur when the phase of the complex exponential vanishes, such 

that: 

0
2





 kml , 

(2.78) 

which is known as the phase matching condition. 

In accordance with Eqs. (2.75) through (2.78), Bragg reflection between a 

forward propagating wave (with propagation constant βf) phase matched to a 

backward propagating wave (with propagation constant −βb) arising from the ±kth 

Fourier coefficient of the perturbation is described by the following coupled mode 

equations: 
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(2.81) 

The following relationship exists between the coupling coefficients: 
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
  kfbkbf  , 

(2.82) 

which follows from combining the definition of the coupling coefficient of Eq. (2.76), 

the normalization condition of Eq. (2.54), and the simple relationship between Fourier 

coefficients of a real function described in the Appendix. To continue the solution it is 

convenient to perform the following variable substitution: 
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z
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(2.84) 

When Eqs. (2.83) and (2.84) are applied to Eqs. (2.79) and (2.80), the relationship 

between the new variables becomes: 

     zizAizA
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d
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(2.85) 
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(2.86) 
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(2.87) 

The fields may be decoupled by differentiating Eqs. (2.85) and (2.86) and substituting 

the initial equations back in: 
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The general solution of Eqs. (2.88) and (2.89) assumes the form: 

      szCszC
zi

zAf 









 
 expexp

2
exp 11


, 

(2.90) 

      szDszD
zi

zAb 









 
 expexp

2
exp 11


, 

(2.91) 

22

422 






 













 
 

bf
kbfkfbkbfkfb is

 . 

(2.92) 



30 
 

 
 

where C1, C2, D1, and D2 are constants to be determined by the initial condition of the 

fields. 

The reflected and transmitted fields for a wave approaching in the forward 

direction arising from a perturbation of length LDBR may be determined by considering 

the following boundary conditions: 

    00 ff AA , 

(2.93) 

  0DBRb LA . 

(2.94) 

Applying the boundary conditions of Eqs. (2.93) and (2.94), the general solutions of 

Eqs. (2.90) and (2.91) may be rewritten: 
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Next, differentiate Eqs. (2.95) and (2.96) and substitute in Eqs. (2.85) and (2.86): 
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The remaining constants may be determined by applying the boundary conditions of 

Eqs. (2.93) and (2.94) to Eqs. (2.97) and (2.98): 
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(2.100) 

The coefficients of reflection rDBR and transmission tDBR for fields approaching the 

perturbation in the forward direction may be determined by combining the coefficients 

of Eqs. (2.99) and (2.100) with the solutions of Eq. (2.95) and (2.96): 
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In terms of the original variables Eqs. (2.101) and (2.102) become: 
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(2.105) 

2.5.4. Spectral Characteristics of a Bragg Reflector 

All Bragg reflectors display a number of important spectral characteristics. In 

the absence of loss, the points Δβ = ±2|κkfbκ-kbf|
½ give s = 0 in Eq. (2.105) and are 

conventionally defined as the edges of the stopband, although it is clear from Eq. 

(2.103) that the reflectance is nonzero at these points: 
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(2.106) 

This definition arises from the fact that the fields in a Bragg reflector may be viewed 

as a Bloch wave, and the Bloch wavenumber becomes imaginary at these points. 

However, true reflectance null points do exist. They occur at the points sLDBR = niπ for 

integers n ≠ 0, since tanh(sLDBR) = 0 but sLDBR ≠ 0 and therefore the limit of |sLDBR / 

tanh(sLDBR)| = ∞. The corresponding values of Δβ follow directly from Eq. (2.105): 
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3. Characterization of Distributed Bragg Reflectors 

3.1. Motivation 

Accurate estimation of the behavior of distributed Bragg reflectors is crucial to 

the development of a number of applications, including optical digital signal 

processing [12], optical switching [13], and nonlinear processes such as wave mixing 

[10]. Previous characterization attempts rely on curve fitting to the spectral response 

of photonic devices comprised of distributed Bragg reflectors over a broad spectral 

band [14]. To be accurate, a fitting process must account for the parameters of the 

Bragg reflector and resonant cavity separately, as well as account for the possibility of 

coupling loss due to mode mismatch of the periodic perturbation and that of the 

unperturbed waveguide in addition to the input and output coupling losses. 

Additionally, it must allow for the wavelength dependence of each of these 

parameters. The quantity of independent parameters has a significant detrimental 

effect on the robustness of the fit. To combat this proliferation of uncertainty a method 

of characerization was developed based on the linewidth comparison of Bragg 

reflectors in a resonant configuration. The method is independent of coupling 

efficiency, and the measurements are limited to a narrow spectral region. 

3.2. Spectral Response of a Fabry-Pérot Resonator 

A Fabry-Pérot resonator is comprised of a pair of partially reflective mirrors 

separated by some distance. When light is incident on the mirrors, certain wavelengths 

will constructively interfere upon reflection such that the optical field accumulates 
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between the mirrors. The spectral response of such a resonator may be calculated by 

summing the successive iterations of reflected and transmitted fields (known as Airy’s 

formulas) [2]. The most generalization of this approach to a resonator composed of 

distributed Bragg reflectors described by Eqs. (2.103) and (2.104) is complicated 

because each mode must be accounted for. The coefficient of transmission tFP of such 

a resonator is (in the complex field formalism): 

 
 

































...
23

2

212312

23212312

2312

f
O

fff
M

ff
M

fbb
M

bb
M

bff
M

ff
M

fff
I

f
O

fff
M

ff
M

fbb
M

bb
M

bff
M

ff
M

fff
I

f
O

fff
M

ff
M

fff
I

f
FP

ctccrccrcctc

ctccrccrcctc

ctcctc

t






, 

(3.1) 











2
exp

,
,, c

bf
c

c
bfbf L
Li

 , 

(3.2) 

where cI and cO are the input and output amplitude coupling efficiencies, cM is the 

amplitude coupling efficiency between the reflectors and the cavity. The σ term 

accounts for the phase shift and attenuation that a mode with propagation constant β 

and power loss (or gain) coefficient αc incurs upon traversing a cavity of length Lc. 

The coefficients of transmission and reflection of the Bragg reflectors are represented 

by tab and rab, respectively, with the subscripts indicating order of occurrence and 

direction of incidence. Finally, superscripts indicate modal association. A conceptual 

illustration of such a resonator is produced in Fig. 3.1. In the general case the forward 
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Tot rrL   2123 argarg , 

(3.5) 

where CI and CO are the input and output power coupling efficiencies, and CM is the 

power coupling efficiency between the reflectors and the cavity. The ϕTot term 

accounts for the total phase shift the field incurs upon traversing the cavity, with terms 

that include the phase shift upon reflection from the Bragg elements in addition to the 

linear phase. The transmittance and reflectance of the Bragg reflectors are represented 

by Tab and Rab, respectively, with the subscripts indicating order of occurrence and 

direction of incidence. As before, superscripts indicate modal association. The 

resonator transmittance of Eq. (3.4) may be written more conveniently in terms of 

trigonometric functions by expanding the denominator: 
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(3.6) 

It is possible to derive an explicit expression for the total phase shift ϕTot from 

the resonator spectral response and the Bragg element parameters. To begin, eliminate 

the dependence on input and output coupling efficiency by normalizing Eq. (3.6) to 

the transmittance at resonance TFP|Res (which occurs when ϕTot is an integer multiple of 

2π): 
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(3.7) 

Next algebraically extract the desired phase term from Eq. (3.7): 
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(3.8) 

From Eq. (3.8) the full width phase shift ΔϕTot between points of equal transmittance 

(about a resonance peak, for example) is therefore: 
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(3.9) 

The expression in Eq. (3.9) is significant in that it indicates the linewidth 

characteristics of a Fabry-Pérot resonator are determined entirely by the reflectance 
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characteristics of the mirror elements. In the appropriate limits, this can be exploited to 

characterize the parameters of a distributed Bragg reflector [15]. 

3.3. Phase Response of a Bragg Reflector 

In the context of the expression for Fabry-Pérot linewidth of Eq. (3.9) it is 

useful to consider the behavior of phase upon reflection of a distributed Bragg 

reflector separately from the reflectance. It is possible to derive a convenient 

expression for the wavelength dependence of this phase near the center of the 

stopband [15]. To begin note that the phase is argument of the coefficient of reflection 

r, such that: 
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(3.10) 

Next, substitute into Eq. (3.10) the coefficient of reflection of a Bragg reflector from 

Eq. (2.103): 
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The first term in Eq. (3.11) may be eliminated by noting that the coupling coefficient 

for the most common perturbations is a purely imaginary number (refer to the 
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Appendix for a discussion of this), and the remaining terms may be arranged as 

follows: 
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(3.12) 

Note that at the center of the stopband Δβ vanishes, and consequently s, tanh(s) and 

their derivatives are real numbers. Consequently Eq. (3.12) reduces to: 
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(3.13) 

When written explicitly in terms of the fundamental parameters Eq. (3.13) becomes: 
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3.4. Characterization of Loss Coefficients 

Following coupled mode theory, the spectral response of a distributed Bragg 

reflector that couples arbitrary modes is in the most general sense determined by a pair 

of coupling coefficients, and a pair of loss coefficients. The coupling coefficients 

represent the strength with which the device transfers energy between the modes, and 

the loss coefficients represent how rapidly the energy of each mode is attenuated by 

the waveguide. In the special case that the Bragg reflector couples the forward 

propagating field of a mode to the backward propagating field of the same mode, the 

equations simplify such that the spectral response is determined by a single coupling 

coefficient and a single loss coefficient [15]. 

Consider a symmetrical Fabry-Pérot resonator composed of distributed Bragg 

reflectors that couples the forward propagating field of a mode to the backward 

propagating field of the same mode. In this case the relationship between linewidth 

and resonator phase shift of Eq. (3.9) reduces to: 
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where the dependence on coupling and loss coefficients is made explicit. It is possible 

to further simplify the linewidth and phase relationship by placing constraints on the 

resonator design. Specifically, consider a resonator in which the cavity is 

approximately a single perturbation period in length. In this situation, the loss from 

propagation through the cavity will be much less than the loss from propagation 

through the Bragg elements, which are many periods in length. Additionally, for such 

a short cavity the phase shift upon reflection from the Bragg elements will in general 

completely dominate the cavity phase shift. Finally, it is possible in general to design 

the resonator such that the loss due to mode mismatch is negligible. If the periodic 

perturbation is not so small that condition is not satisfied intrinsically, it is possible to 

adiabatically taper the transition from the Bragg elements to the cavity to eliminate the 

loss. Provided the taper is small compared to the total Bragg element length it will not 

otherwise impact the analysis (similar to the resonator cavity length). In these limits 

the expression of Eq. (3.15) reduces to: 
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(3.17) 

Combining Eq. (3.17) with Eq. (3.14) and Eq. (2.103) allows the explicit expression of 

the linewidth in terms of the Bragg coefficients: 
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(3.20) 

where dΔβFW is the full width change of the quantity Δβ (which is simply related to the 

resonance linewidth) at the points where the transmittance has the value of TFP/TFP|Res 

(for example TFP/TFP|Res = 1/2 in the case of the full width at half maximum). It is 

possible to infer the values of κDBR and αDBR from the comparison of linewidths of two 

symmetric resonators with different length Bragg elements from the expression in Eq. 
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(3.18), because they are formally equivalent to a system of two equations in two 

variables. 

3.5. Characterization of Coupling Coefficients 

The response of the most general type of distributed Bragg reflector is 

determined by four parameters: the coupling coefficients κkfb and κ-kbf, and the loss 

coefficients αf and αb (here the subscripts f and b respectively indicate the forward and 

backward propagating modes). These parameters represent only three degrees of 

freedom, since the coupling coefficients are related to one another by Eq. (2.82). The 

loss coefficients may be determined according to the procedure described in the 

previous section. The remaining degree of freedom may be determined by measuring 

the linewidth of an appropriate Fabry-Pérot resonator (in a manner similar to the way 

that the loss is determined in the previous section). 

Consider a symmetrical Fabry-Pérot resonator composed of distributed Bragg 

reflectors that couple two arbitrary forward and backward propagating modes. In this 

case the relationship between linewidth and resonator phase shift of Eq. (3.9) reduces 

to: 
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It is possible to further simplify the linewidth and phase relationship by placing 

constraints on the resonator design (identical to the constraints employed in the loss 

measurement of the previous section). Specifically, consider a resonator in which the 

cavity is approximately a single perturbation period in length. In this situation, the loss 

from propagation through the cavity will be much less than the loss from propagation 

through the Bragg elements, which are many periods in length. Additionally, for such 

a short cavity the phase shift upon reflection from the Bragg elements will in general 

completely dominate the cavity phase shift. Finally, it is possible in general to design 

the resonator such that the loss due to mode mismatch is negligible. If the periodic 

perturbation is not so small that condition is not satisfied intrinsically, it is possible to 

adiabatically taper the transition from the Bragg elements to the cavity to eliminate the 

loss. Provided the taper is small compared to the total Bragg element length it will not 

otherwise impact the analysis (similar to the resonator cavity length). In these limits 

the expression of Eq. (3.21) reduces to: 
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Combining Eq. (3.22) with Eq. (3.14), Eq. (2.103) and Eq. (2.82) allows the explicit 

expression of the linewidth in terms of the Bragg coefficients: 
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(3.26) 

where ΔβFW is again the full width of the resonance line at the points where the 

transmittance has the value of TFP/TFP|Res (for example TFP/TFP|Res = 1/2 in the case of 

the full width at half maximum). It is possible to infer the values of κkfb (or 

equivalently κ-kbf) from the linewidth of a symmetric Bragg reflector Fabry-Pérot 

resonator using the expression in Eq. (3.23) because it is formally equivalent to a 

single equation in a single variable. 

3.6. Experimental Considerations 

The proposed and demonstrated method of characterization has a number of 

distinct advantages [15]. The only required measurements involve relative 

transmittance, which renders it independent of absolute coupling efficiency, and it 

employs resonant structures, which make it possible to accumulate a measurable 

quantity of loss within the smallest physical device footprint. In the context of 

nanoscale devices this eliminates a significant source of measurement uncertainty 

because the coupling efficiency is especially sensitive to fabrication uncertainty and 
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can be very difficult to characterize. Nanoscale devices are also prone to 

nonuniformity when they are not located within close proximity of one another. 

Finally, the method only involves measurement of a narrow spectral band. This 

minimizes any uncertainty that might arise from the wavelength dependence of the 

device parameters. 

The limitations of the characterization method should be also be considered, 

however. It is necessary that the coupling efficiency and Bragg reflector parameters 

must not vary significantly with wavelength across the resonance, and that the 

coupling efficiency remain constant over time, otherwise error will be introduced into 

the measurement. The measurements are limited to a narrow bandwidth, so the 

measurement time and spectral sensitivity will be minimal. These requirements are 

trivially satisfied by most coupling mechanisms [16], [17], [18]. 

 Attention must be given to the total operating power. While increasing Bragg 

reflector length will increase sensitivity to the coupling and loss coefficients, 

extremely high reflectance values can cause excessive power accumulation in the 

resonator and subsequent nonlinear behavior [19]. Additionally, if the transmitted 

power is small the measurement risks being contaminated by the noise floor of the 

experimental system. These problems can be avoided by appropriate consideration 

during the experimental design stage. 

 A more subtle potential source of error is the impedance mismatch between 

different sections of waveguide and at the couplers. Technically these constitute 

additional points of reflection, and a physical device is essentially a series of coupled 
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resonators. Should the impedance mismatch at these points be nontrivial the spectral 

response of the device would become very complex and the necessary linewidth 

measurements would be impossible. If present, this effect would be clearly visible 

since the desired spectral response is very simple. In general, these reflections can be 

minimized by adiabatically tapering the waveguide between transition sections. 

 Finally, the uncertainty and variation that is naturally associated with the 

fabrication process of a physical device can lead to unintended differences between 

the various structures required for the measurement. Nanoscale fabrication variation 

arises from numerous causes, including lithography distortion and wafer variation. 

Typically these are minimal for devices that are located in close proximity to one 

another. As such, proper consideration during the experimental design can minimize 

their influence. 
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4. Characterization of Waveguide Loss 

4.1. Motivation 

The accurate estimation of waveguide loss is critical to the design of integrated 

photonic devices, particularly nonlinear devices which can become unstable when 

operated at unanticipated power levels [10]. The most common methods of loss 

characterization become problematic when applied to low loss integrated waveguides. 

The cutback method [20] requires the fabrication of prohibitively long devices, and 

separation of coupling loss from waveguide loss. Resonant methods [21] ameliorate 

the device length requirement and are independent of coupling, but require bending of 

the waveguide. Waveguide bending introduces excess loss which in itself must be 

accounted for, and also distorts the mode profile which alters its susceptibility to other 

sources of loss. To avoid these sources of uncertainty a method of loss 

characterization was developed based on the comparison of the spectra response of 

devices comprised of Bragg reflectors. The method is independent of coupling 

efficiency, requires a small device footprint, does not require the introduction of 

bending into the device, and does not confuse loss in the Bragg reflectors with 

waveguide loss. 

4.2. Reflectance Minima of a Bragg Reflector 

A method of waveguide loss characterization based on the comparison of 

distributed Bragg reflector Fabry-Pérot resonators has been demonstrated [11]. This 

characterization method relies on the existence of reflectance null points in the 
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response of the Bragg reflector to normalize the transmittance spectra of the resonators 

involved. When loss is included in the Bragg reflector equations, the reflectance does 

not truly vanish at the minima, but remains negligibly small. To demonstrate this, 

consider the parameter s described by Eq. (2.105) at one of the null points described 

by Eq. (2.107). Neglecting the terms that are second order in the loss coefficients, the 

product sLDBR at becomes: 
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Next take the Taylor series of Eq. (4.1), again neglecting terms that are second order 

in the loss coefficients: 
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Next apply the approximation of Eq. (4.2) to simplify the denominator of the 

coefficient of reflection expressed in Eq. (2.103) that contains a hyperbolic tangent: 
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(4.3) 

The neglect of the term in the numerator containing waveguide loss coefficients is 

justified on the grounds that since |niπ / tanh(niπ)| = ∞, for a small perturbing term Δ 
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then |(niπ + Δ) / tanh(niπ + Δ)| ≈ ∞ ≈ |niπ / tanh(niπ + Δ)|. Taking the hyperbolic 

tangent of Eq. (4.3) to first order in the loss coefficients and substituting in the 

expression for Δβnull of Eq. (2.107) results in: 
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(4.4) 

Substituting the approximation of Eq. (4.4) and Eq. (2.107) into the expression for the 

coefficient of reflection Eq. (2.103) and neglecting terms that are second order in the 

loss coefficients results in the approximation: 
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(4.5) 

The periodic perturbation of the Bragg reflector is an engineered structure, and from 

inspection of Eq. (4.5) it is clear that it is generally possible to design the Bragg 

reflector such that the maximum reflectance is large and the reflectance at the null 

points is vanishingly small. Any of the null points n = 1, 2, 3 ... may be used for the 

purpose of normalization. Higher order null points reduce the minimum reflectance 

but move the reference wavelength farther from the Bragg reflector stopband, which 

may cause the wavelength dependence of the parameters to introduce error during the 

characterization process. 
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4.3. Characterization of the Loss Coefficient 

The loss of an unperturbed waveguide is not in general the same as the loss in 

a perturbed structure, such as a distributed Bragg reflector. This may be intuitively 

understood from the fact that the transverse mode profile varies in each structure, and 

therefore the overlap of the mode with the sources of loss will also vary. Each 

waveguide mode is associated with a distinct loss coefficient, and the most precise 

method of loss characterization will involve the measurement of one mode at a time. 

For this reason it is most expedient to utilize Bragg reflectors that couple the forward 

and backward propagating fields of a single mode. In accordance with Eqs. (3.4) and 

(3.5) the transmittance of such a Bragg reflector Fabry-Pérot resonator is: 
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(4.6) 

   2123 argarg2 rrLcTot   . 

(4.7) 

First apply Eq. (4.6) to the case of a resonator with a short cavity approximately one 

perturbation period in length. In this arrangement the loss of the cavity will be 

negligible compared to the loss of the Bragg reflectors since the reflectors are many 

periods long. Consequently the resonator transmittance of Eq. (4.6) reduces to: 
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Two important observations follow from the transmittance of Eq. (4.8). First, the 

transmittance at the reflectance null points is: 
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Second, the transmittance at the cavity resonance is: 
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The reflectances and mode coupling loss coefficient can be separated from the 

transmittances by dividing Eq. (4.10) by Eq. (4.9) and extracting the desired term: 
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(4.11) 

The relationship of Eq. (4.11) gives the product of mode coupling loss and 

reflectances at the resonance of the short cavity in terms of various power 

transmittance ratios. These power transmittance ratios can be obtained separately from 
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the measured transmittance spectrum of the individual Bragg reflector elements and 

the short resonance cavity. These ratio measurements are independent of any coupling 

loss (whether from mode coupling or input and output coupling). 

With the knowledge of the mode coupling loss and reflectances from Eq. 

(4.11), it is possible to infer waveguide loss from a resonator with a long resonant 

cavity. In such an arrangement, the cavity loss can no longer be neglected. From Eq. 

(4.6) the resonator transmittance at the null points is thus: 

  OccMI
long

FP CTLCTCT
nullnullnull


 23

2
12 exp  . 

(4.12) 

Likewise, the transmittance at the cavity resonance is: 
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The exponential containing the loss coefficient can be obtained by dividing Eq. (4.13) 

by Eq. (4.12) and extracting the desired term: 
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It is generally possible to choose the long cavity length so that one of its resonances 

coincides with one of the resonances of the short cavity. For example, if both cavities 

lengths are integer multiples of the perturbation period each cavity will have a 

resonance at the exact center of the Bragg reflector stopband. For such coincident 

resonances, the product of mode coupling loss and reflectances from the denominator 

of Eq. (4.14) is known from Eq. (4.11). The loss factor is the readily solved from Eq. 

(4.14): 
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(4.15) 

The waveguide loss may therefore be determined by measuring the transmittances of 

the appropriate assemblies of Bragg reflectors. Placing the resonance near the center 

of the stopband is especially advantageous because the properties of the Bragg 

reflector at band center are less sensitive to frequency errors. 

4.4. Experimental Considerations 

The proposed and demonstrated method of waveguide loss characterization has 

a number of advantages [11]. Similar to the method of the previous section, the only 

required measurements involve relative transmittance, which renders it independent of 

absolute coupling efficiency, and it employs resonant structures, which make it 
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possible to accumulate a measurable quantity of loss within the smallest physical 

device footprint. As before, in the context of nanoscale devices this eliminates a 

significant source of measurement uncertainty because the coupling efficiency is 

especially sensitive to fabrication uncertainty and can be very difficult to characterize. 

Likewise, nanoscale devices are also prone to nonuniformity when they are not located 

within close proximity of one another. Additionally, this method is not degraded by 

waveguide dispersion, which only serves to shift the relative position of the relevant 

spectral features (and does not affect their magnitude, which is the critical 

measurement parameter). 

The limitations of the characterization method are also similar to that of the 

previous section. It is necessary that the absolute coupling efficiency does not drift 

over the measurement time and that the coupling efficiency by identical at the null and 

resonance measurement points, otherwise error will be introduced into the power ratio 

measurements. It is also necessary that the waveguide loss be identical at the null and 

resonance measurement points (although it is not necessary that the Bragg reflector 

loss be identical at these points). In practice this condition will be met in most 

waveguides, except near points of material absorption lines. 

The error in the proposed loss characterization scheme may be broadly 

categorized into three main sources. The first source is the noise floor of the 

measurement system, which can become significant if the Bragg elements have high 

reflectance and the absolute transmittance at the center of the stopband is low. In such 

a situation it will be impossible to accurately calculate the transmission ratios used to 
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determine Bragg reflectance and power loss. This problem can typically be avoided 

during the experimental design phase, although the noise floor can be avoided in 

principle by operating at higher power (although this can cause the onset of nonlinear 

effects which are equally problematic [19]). 

The second source of error is the impedance mismatch between different 

sections of waveguide and at the couplers. These constitute additional points of 

reflection, and if the effect is significant the physical device becomes a series of 

coupled resonators with a complicated spectral response. Generally, these reflections 

can be minimized by adiabatically tapering the waveguide between transition sections. 

For devices that employ tapered couplers [16] the reflections can be further reduced by 

creating the access facets at an angle to the waveguides (this could complicate 

fabrication and reduce coupling efficiency). Increasing the distance between the points 

of reflection will also mitigate this effect by damping the unintentional resonators 

(although this will increase the total device footprint). 

The third source of error is a result of uncertainty in the fabrication processes, 

which leads to unintended differences between the resonator structures. Typically this 

uncertainty is relatively small, but if the propagation loss incurred over the cavity 

length is also relatively small, the fabrication could compromise the measurement. 

Nanoscale fabrication variation arises from numerous causes, including lithography 

distortion and wafer variation, and consequently it will increase with larger device 

separation and longer exposure times. These errors may also alter the optical path 

lengths of the resonator cavities and shift the position of the measurement points. 
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However, the change in Bragg reflector parameters at the center of the stopband is 

very small, so a device engineered with a broad stopband will be resilient. In the 

worst-case scenario, multiple devices may be fabricated and the best matching ones 

used for the measurement. 
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5. Optical Bistability in Bragg Reflector Resonators 

5.1. Motivation 

Bistability is a phenomena that can occur in photonic devices with a nonlinear 

optical response [19]. In the bistable regime of a resonant cavity the output power of 

the device is not uniquely determined by the input power because multiple powers 

within the cavity can satisfy the resonant condition. Due to this peculiarity the steady 

state response of a bistable Fabry-Pérot resonator must be modeled by expressing the 

input power of the device as a function of the output power. Bistable devices can serve 

as a foundation for optical signal processing because they display both nonlinearity 

and hysteresis, which allows for the realization of photonic circuitry with functions 

including switching, memory, logic, and modulation [22]. It is important to understand 

this behavior, because its unwanted manifestation can interfere with the intended 

function of a photonic device. 

5.2. Nonlinear Phase Modulation 

To begin the analysis, it is necessary to determine the effect that nonlinearity 

has upon the phase of a field propagating within a waveguide. The effect of optical 

nonlinearities may be incorporated by expressing the electric polarization of Eq. (2.5) 

as a Taylor series in terms of the electric field: 
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(5.1)
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where the χ tensors represent the nonlinear susceptibility of the material. In a 

waveguide the maximum nonlinear effect is achieved when all the power is confined 

to a single mode. In this situation a field with both co-propagating and counter-

propagating components assumes the form: 
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where c.c. indicates the complex conjugate of the preceding terms. Consider a material 

in which only the third order nonlinearity is significant. The electric polarization of 

such a material may be obtained by substituting Eq. (5.2) into Eq. (5.1) and neglecting 

the rapidly varying terms: 
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(5.6) 

If we treat the nonlinearity as a perturbation we may apply the coupled-mode theory 

developed previously by substitution of Eqs. (5.2) and (5.3) in place of Eqs. (2.66) and 

(2.67). The only minor difference is that additional forward and backward propagating 

fields occur in the subsequent equations. Otherwise, the separate treatment of each 

field proceeds exactly as before, and most of the additional terms are discarded as 

rapidly varying since no special phase matching condition is assumed. Applying the 

coupled-mode machinery produces the following equations governing amplitude 

evolution: 
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A loss coefficient has also been included in the perturbation for completeness, in the 

same manner as Eqs. (2.74) and (2.77). 

A great deal of information about the behavior of the fields can be obtained by 

rewriting Eqs. (5.7) and (5.8) in terms of absolute power and phase such that: 

      zizPzA exp . 

(5.10) 

By inspection of Eqs. (5.10) the derivatives of the absolute power and phase must 

obey the following relationships: 
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(5.11) 
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(5.12) 

Application of Eqs. (5.11) and (5.12) to Eqs. (5.7) and (5.8) produces the following 

relationships: 
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(5.13) 
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(5.16) 

The solution of Eqs. (5.13) through (5.16) is trivial: 
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It is clear from Eqs. (5.17) through (5.20) that the nonlinearity only to modulates the 

phase of the fields and does not transfer power between them. 

5.3. Steady State Bistability 

Following Eqs. (3.1) and (3.2), the response of a nonlinear resonator that obeys 

Eqs. (5.15) and (5.16) is: 
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(5.21) 

NonlinearLinearTot   , 

(5.22) 

   2123 argarg2 rrLcLinear   , 

(5.23) 

   cFcBNonlinear LL   . 

(5.24) 

Since the output power of a bistable Fabry-Pérot resonator is not unique, the steady 

state response of the device must be modeled by expressing the input power of the 

device as a function of the output power. For the proper description it is necessary to 

couch the power within the resonator in terms of the output power. This may be done 

by considering the power within the cavity as being divided between two counter 

propagating waves such that [2]: 
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(5.27) 

where PI is the input power measured prior to the input coupling junction CI, and PO is 

the output power measured following the output coupling junction CO. Combining 

Eqs. (5.25) through (5.27) with Eqs. (5.21) through (5.24) leads to the desired implicit 

description of bistability: 
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(5.29) 

The bistable transfer function of a lossless symmetric resonator at a point of linear 

resonance following Eqs. (5.28) and (5.29) is shown in Fig. 5.1. The resonator can 
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6. Waveguide Fabrication 

6.1. Fabrication Overview 

The waveguides produced to demonstrate the proposed characterization 

methods were fabricated using a CMOS-compatible silicon-on-insulator material 

system [19], [11], [15]. A cross-sectional illustration of the fabrication process is 

provided in Fig. 6.1. Fabrication begins with a heterogeneous wafer composed of a 

250 nm silicon layer on top of a 3 μm buried silicon dioxide layer on top of a thick 

silicon substrate (step 1 in Fig. 6.1). The top silicon layer is then coated with a layer of 

hydrogen silsesquioxane (HSQ) resist (step 2 in Fig. 6.1) that is patterned via electron 

beam lithography (step 3 in Fig. 6.1), and developed so that it forms a mask with the 

lateral dimensions of the desired waveguide (step 4 in Fig. 6.1). The wafer then 

undergoes an inductively coupled plasma reactive-ion etching process that removes 

the silicon not protected by the HSQ mask (step 5 in Fig. 6.1). The patterned silicon is 

then cladded with a layer silicon dioxide deposited via plasma-enhanced chemical 

vapor deposition, which completes the waveguide (step 6 in Fig. 6.1). The waveguides 

are then exposed by dicing or cleaving if necessary. 
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performing the desired deposition. This involves depositing a film of the desired 

material in the empty chamber to help create more uniform deposition conditions. The 

second strategy is to measure the actual deposition rate by halting the process 

approximately half way through. This may be accomplished with high confidence with 

a method such as reflectometry by including a small blank wafer in addition to the 

sample that requires deposition, and measuring the resulting two layer stack. The 

observed deposition rate is highly uniform over the course of a single deposition (even 

for a relatively thick film), so this method produces extremely accurate film 

thicknesses. 

6.3. Lithography 

The preparation of scientific nanophotonic devices is essentially a process of 

rapid prototyping. In this context, electron-beam lithography is generally more 

efficient than photolithography. This is because electron-beam lithography systems 

operate by scanning the beam, and each pattern is defined using a computer-aided 

design file. Photolithography systems require the generation of a separate physical 

photomask for each sample, which is a time consuming process. To produce the most 

consistent results, a dose test should be performed for each distinct combination of 

layerstack and resist, as the scattering characteristics will generally be different for 

each. Finally, in the context of photonics extra care should be taken in the selection of 

resist. This is because if the optical properties of the exposed and developed resist are 

appropriate, it can be used as waveguide cladding. This also reduces sample handling, 

as it is not necessary to remove the resist following exposure. For example, the 
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electron sensitive resist hydrogen silsesquioxane converts to silicon dioxide upon 

exposure and development, which is a common cladding employed in silicon 

waveguides [11], [19]. 

6.4. Etching 

The physical definition of the waveguide is accomplished by selectively 

etching the portion of the thin film that is not protected by the lithography resist. 

Etching can be accomplished chemically, although this process can be complicated by 

the tendency of the etch rate to depend anisotropically on crystal structure. For this 

reason the preferred alternative is the commercial technology of inductively coupled 

plasma reactive-ion etching, using the recipes recommended by the manufacturer. This 

process is notable in that it produces extremely vertical waveguide sidewalls. The 

primary caveat with this technology is that the rate can be dependent on chamber 

condition. The best strategy to compensate for this is to design the sample such that 

the underlying layer is an extremely resistance etch stop. In this situation the etch 

process can simply be run slightly long to ensure that the overlying layer is entirely 

removed. The other alternative is to clean the chamber each time prior to before 

performing the desired etching process. It should be noted that the sidewall roughness 

introduced during the etching step is generally the primary source of scattering loss in 

waveguides. This is plainly visible in Fig. 6.2, which contains an electron micrograph 

of an etched silicon-on-insulator wafer. 
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with a very fine saw, and is therefore particularly suitable for samples which cannot be 

cleaved. The primary drawback of dicing is that the surface produced by the saw is 

rougher than the surface produced by cleaving, which will result in excess scattering 

loss at the interface. In the case of an amorphous cladding the best case roughness of 

the surface will be limited by the fracture pattern of the cladding material, for dicing 

or cleaving. If surface roughness is problematic, the quality of a surface can be 

improved by polishing. During polishing care must be taken to ensure the wafer is 

perpendicular to the grit and that parameters such as the wafer pressure are consistent, 

or the rate of material removal can vary wildly. 
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7. Experimental Design 

7.1. Experimental Overview 

Proper experimental demonstration of the methods described here requires care 

to eliminate potential sources of error. An illustrated schematic of the experimental 

setup employed in the demonstration of the characterization method is provided in Fig. 

7.1 [19], [11], [15]. Device characterization is performed using a tunable laser to 

excite the desired mode of a given waveguide. The laser output is scrambled and 

repolarized to ensure the purity of the input polarization. Input coupling is 

accomplished by aligning a lensed fiber to the waveguide cross section. The 

transmitted light is collected by a microscope objective (lens 1 in Fig. 7.1). The 

collected light is imaged onto the detector by a pair of sequential 4F systems 

(comprised of lenses 1 and 2  and  lenses 3 and 4 in Fig. 7.1). A spatial filter 

comprised of an iris in the initial focal plane is employed to isolate the output from a 

single waveguide and eliminate any stray light from the input fiber. A polarizer within 

a subsequent Fourier plane is used to reject any undesired polarization component that 

may result from imperfect alignment of the fiber, or which may arise from the device 

itself. A spectrometer may be used in place of the detector if it provides more suitable 

for the desired measurement. Likewise, a camera may be used temporarily in place of 

the detector for the purpose of inspecting the mode profile (in the far-field) or making 

coupling alignment more convenient. The measurements are automated by a computer 

which coordinates the tunable laser and power meter.
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waveguide scattering from a top-down camera. This becomes problematic for both 

extremely lossy waveguides (since the scattering intensity may not be visible at the 

output), and extremely low loss waveguides (since the scattering intensity will be 

negligible). Finally, a free-space system allows more freedom for accomplishing 

various optical operations, such as polarization control and wavelength filtering. 

7.3. Waveguide Design 

The methods of characterization described here involve specific interacting 

waveguide modes. In principle the interacting modes are specified by the phase 

matching condition. In the strictest sense, however, some small fraction of energy will 

be coupled into each guided mode by a perturbation. It is possible to minimize the 

experimental effect of this coupling by designing the waveguide geometry such that it 

only supports a single symmetric and antisymmetric mode of each polarization. The 

overlap integral of a symmetric and antisymmetric mode with a symmetric 

perturbation will be negligible. If it is necessary to use a waveguide with many modes, 

a device exists that allows the selective excitation of one mode from another [23]. The 

isolation of this device is very good, but the energy coupled from the light source into 

the modes that do not interact is lost. 
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Appendix 

This appendix contains the derivation of the Fourier coefficients of the most 

common waveguide perturbations used in distributed Bragg reflectors. It is 

informative to begin by considering some general properties of Fourier series [24]. A 

periodic function f(z) may be decomposed as the series: 
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where k is an integer, and Λ is the period length. In accordance with Euler’s law the 

coefficients may be rewritten as: 
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Such that if f(z) is a real function the first term of Eq. (A.3) represents the real part of 

ck and the second term represents the imaginary part of ck. From the form of Eq. (A.3) 

it is also apparent that if the function is symmetric or antisymmetric about the point z 

= Λ/2, the coefficients undergo the following simplification:
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where the superscripts indicate the relevant function type. It follows from Eqs. (A.4) 

and (A.5) that the Fourier coefficients of symmetric real functions are real, while the 

Fourier coefficients of antisymmetric real functions are imaginary. Another notable 

property of real functions f(z) that follows from simple inspection of Eq. (A.2) or Eq. 

(A.3) is that the coefficients obey the relationship ck = c-k*. 

The first common perturbation is a square wave composed of alternating 

materials such that the permittivity may be described as: 
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where Δε is the perturbed permittivity, n1 and n2 are the indices of refraction of the 

alternating materials, and Λ is the perturbation period. For the purpose of calculating 

the unperturbed modes, the unperturbed permittivity ε of the perturbation region 

should be taken as: 
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(A.8) 

Since the perturbation is antisymmetric, the Fourier coefficients may be calculated 

using Eq. (A.5): 
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(A.9) 

Therefore from Eq. (A.9) the kth Fourier coefficient of the perturbation may be 

expressed as: 
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The final common perturbation is a sine wave composed of alternating 

materials such that the permittivity may be described as a sine wave: 
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(A.12) 

where Δε is the perturbed permittivity, n1 and n2 are the indices of refraction of the 

alternating materials, and Λ is the perturbation period. For the purpose of calculating 

the unperturbed modes, the unperturbed permittivity ε of the perturbation region 

should be taken as: 
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(A.13) 

Since the perturbation is antisymmetric and takes such a simple form, the Fourier 

coefficients may be determined essentially by inspection in conjunction with Eq. 

(A.5): 
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Therefore from Eq. (A.14) the kth Fourier coefficient of the perturbation may be 

expressed as: 
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