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ABSTRACT OF THE DISSERTATION

Discourse on the Characterization of Waveguide Distributed Bragg Reflectors for
Application to Nonlinear Optics

Andrew Lewis Grieco

Doctor of Philosophy in Electrical Engineering (Photonics)

University of California, San Diego, 2014

Professor Yeshaiahu Fainman, Chair

Precise characterization of waveguide parameters is necessary for the
successful design of nonlinear photonic devices. This dissertation contains a
description of methods for the experimental characterization of distributed Bragg

reflectors for use in nonlinear optics and other applications. The general coupled-mode

xii



theory of Bragg reflection arising from a periodic dielectric perturbation is developed
from Maxwell’s equations. This theory is then applied to develop a method of
characterizing the fundamental parameters that describe Bragg reflection by
comparing the spectral response of Bragg reflector resonators. This method is also
extended to characterize linear loss in waveguides. A model of nonlinear effects in
Bragg reflector resonators manifesting in bistability is also developed, as this
phenomenon can be detrimental to the characterization method. Specific
recommendations are made regarding waveguide fabrication and experimental design

to reduce sources of experimental error.
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1. Introduction and Motivation

This dissertation contains a description of methods for the experimental
characterization of distributed Bragg reflectors and associated waveguide elements.
The impetus for the development of these methods arose from the desire to perform
nonlinear wave mixing within a resonant cavity comprised of Bragg reflectors. In
principle the field accumulation within the resonator should increase the efficiency of
the process, provided certain phase matching conditions are met. All attempts at
fabricating such a device ended in failure, despite a sound theoretical understanding of
the underlying physics. The cause of the failures was imprecision in the estimate of
parameters that governed the resonator behavior, because the nonlinear operation of
the resonator is extremely sensitive to these parameters. This situation essentially
rendered design of the correct device impossible without resorting to attrition or
serendipity.

In this situation the only recourse was to develop a method of characterizing
the device parameters, taking care to eliminate as many sources of uncertainty as
possible. The effort was successful, producing a method that is independent of
coupling efficiency, does not require bending of the waveguide, and occupies a
minimal footprint. In the pursuit of this object it was necessary to develop the coupled-

mode theory of Bragg reflection in the most general case of mode interaction.



The remainder of the dissertation is organized as follows. Chapter 2 contains a
theoretical description of Bragg reflection developed from Maxwell’s equations.
Chapter 3 describes a method of experimentally characterizing the parameters that
govern Bragg reflection between arbitrary modes, namely the linear loss coefficients
of the perturbed waveguide modes, and the coupling coefficients. Chapter 4 describes
a method of experimentally characterizing the linear loss coefficients of unperturbed
waveguide modes. Chapter 5 contains a description of the phenomena of bistability
that can arise in nonlinear resonators, and which has the potential to introduce error
into the characterization measurements. Chapters 6 and 7 respectively contain a
description of the waveguide fabrication procedure, and experimental design process,

and contain recommendations to reduce sources of experimental error.



2. Theory of Distributed Bragg Reflectors

2.1. Maxwell’s Equations
The mathematical theory of distributed Bragg reflectors begins with Maxwell’s

equations that describe the relationship between the electromagnetic fields [1]:

V-D=p,
2.1)
VxH—a—D:J,
ot
(2.2)
VxE+a—B:0,
ot
(2.3)
V-B=0,
(2.4)

where E and H are respectively the electric and the magnetic field vectors, D and B
are respectively the electric displacement and magnetic induction field vectors, p is the
electric charge density, and J is the electric current density. Within a material, the
fields E and H are related to the fields D and B through the constitutive equations:

D=¢E=¢,E+P,

(2.5)



B=pH=p,H+M,

(2.6)

where the material permittivity € and permeability p are tensors (the subscript 0
indicates their values in vacuum), and vector fields P and M are respectively the
material electric and magnetic polarization. It should be noted that Egs. (2.5) and (2.6)
are not strictly the most general form that these relations may assume. In the most
general sense the D and B fields may be related to the E and H fields in a way that

involves additional complexities such as nonlinearity and hysteresis.

2.2. The Electromagnetic Wave Equation

Now consider the limit of homogenous materials in which the nonlinearities
and anisotropy are negligible such that € and p may be taken as scalars (or in the case
of anisotropy such that the fields are aligned with a principle axis), and in which the
charge density p and the current density J are also negligible. Under these
circumstances, the electromagnetic wave equation may be derived by first applying

the curl operator to Egs. (2.2) and (2.3) and then invoking Egs. (2.5) and (2.6) [2]:
0
Vx(VxE)JruE(VxH): 0,
(2.7)

Vx(VxH)—s%(VxE)

0.

(2.8)



The mixed fields in Egs. (2.7) and (2.8) may be separated through substitution of the

time derivatives of Egs. (2.2) and (2.3), and again invoking Egs. (2.5) and (2.6):

2

Vx(VxE)+uS

ot =0,

(2.9)

2

Vx(VxH)+ua%tI;I =0.

(2.10)

From Egs. (2.9) and (2.10) the wave equation is a consequence of the vector identity:

Vx(VxA)=V(V-A)-V?A,

(2.11)
and the observation that the fields are divergence free from Egs. (2.1) and (2.4):
O°E _n’ O’E
V’E = e =——,
Wor ~ & ar
(2.12)
O°H _n’ 0’H
VH=pe— =——H,
e~ ar
(2.13)

c= 1/\/ €oMyo »

(2.14)



n= \/a/\/ Eokg -
(2.15)

where c is the speed of light propagating in vacuum, and # is the material refractive
index. The refractive index thus represents the factor by which the velocity of light in
a material differs from the velocity of light in vacuum.

In the absence of additional constraints, the solutions of Egs. (2.12) and (2.13)
for the Cartesian vector components of E and H are plane waves. In the presence of
additional boundary conditions (such as the interface of multiple materials) the
solution becomes more complicated [3]. For a general combination of materials that is
homogeneous in the z-direction the permittivity and permeability will assume the

form:
S(X,y,z,t) = S(Xay),

(2.16)

u(x, v, 2,6)=ul(x,y),
2.17)

where x, y and z are the Cartesian coordinates, and ¢ is the time coordinate. When Egs.
(2.12) and (2.13) are subjected to the conditions imposed by Eqgs. (2.16) and (2.17),

the solution of the wave equations will be composed of normal modes of the form:
E(x.y,z,1)=Re{E,, (x,y)expli(er - ,z)J}.

(2.18)



H(x,y,z,t) = Re{Hm (x,y)exp[i(a)t - ﬂmz)]},
(2.19)

where o is the angular frequency of the field, f is the propagation constant, and m is a
subscript used to distinguish multiple modes. In the most general case the mode
subscript may be discrete (as in the case of guided modes) or continuous (as in the
case of radiative modes). Within scientific literature the complex field formalism is
commonly employed, such that taking the real part of the fields is implied rather than
written explicitly. Although analytical solutions to the wave equation are known for a
number of material geometries, in the most cases the solution must be computed
numerically [4]. Finally, it is pertinent to observe the method of solution assuming z
invariance in the permittivity and permeability may be extended to the cases of
geometries with z variance using the technique of conformal mapping [5], [6]. This is

particularly useful for the analysis of curved waveguides.
2.3. Electromagnetic Energy

2.3.1. Energy and Power Density
The power density of the electric fields can be obtained by projecting the
electric field vector E onto Eq. (2.2) [2]:

g P_

E-(VxH)- >

E-J.

(2.20)

From application of the following vector identity:



V-(AxB)=B-(VxA)-A-(VxB)

Eq. (2.20) may be rewritten as:

g P_

V-(HxE)+H-(VxE)- >

By substitution of Eq. (2.3) the expression becomes:

o _
ot

V-S+ -E-J,

S=ExH,

U:%(E-D+B-H),

where Poynting’s vector S is the power density of the fields, and U is the energy

density of the fields.

2.3.2. Energy Velocity

E-J.

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

For monochromatic fields that assume the form of Egs. (2.18) and (2.19) the

surfaces of constant phase of the modes are defined by the condition [2]:



wt — [,z = constant .

(2.26)

From the time derivative of Eq. (2.26) it is obvious that the fields (and from Eq. (2.25)
the energy associated with the fields) propagate along the z-direction at the phase

velocity v,:

w [
v[l = — = ,
ﬂm neﬁ"ﬁo
(2.27)
ﬂm ¢
g =5 =77
180 )4
(2.28)

where the ratio of the mode propagation constant /3, to the vacuum propagation
constant f is referred to as the effective refractive index of the mode n.4; and c is the
vacuum velocity of light.

For polychromatic fields, the question of energy propagation is more
complicated [7]. To demonstrate this, represent the mode of a polychromatic wave as

the Fourier transform:
Alx,y,2,t)= [Alx,y,0)explilor - plo)e]do,

(2.29)



10

where A is the amplitude of either the electric or magnetic field. Note that the form of
Eq. (2.29) is in accordance with the exponentials of Egs. (2.18) and (2.19) provided
that the mode index can be expressed as a continuous function of frequency. As an
additional restriction, consider only spectrally narrow fields such that A(x,y,®) is
negligible outside of a narrow peak around @ = w,. To elucidate the time evolution of

the such a field, expand f(w) in a Taylor series about its central value fo:

plo)=plen)( L) (0=,)+...

(2.30)

where the higher order terms are rendered negligible by the frequency restriction.

Substitution of Eq. (2.30) into Eq. (2.29) produces an expression of the form:

Az M obsnlf ox- ok (2] - o

—00

- epo— Blay, )z + (%JO a)oz}}zA(x, ¥, a))exp{i[a)t - (%joa)z}}da) |

(2.31)

which has a magnitude of:

|A(x,y,z,t)| r

]iA(x, . w)exp{{m _ (%jm}}da, |

(2.32)

The field thus behaves as a wave packet with the surfaces of constant phase of the

envelope defined by the condition:



11

ot —| —— | @z =constant .
dow ),

(2.33)

From the time derivative of Eq. (2.33) it is clear that the wave packet (and by Eq.
(2.25) the energy associated with the wave packet) propagate along the z-direction at
the so called group velocity v,:
_ do
¢ dp :
(2.34)

such that the derivative is taken about the central frequency. It is convention to define
a group index n, that is analogous to the refractive index, except that it relates to the

group velocity instead of the phase velocity:

(2.35)

2.3.3. Time Averaged Energy and Power

From an experimental standpoint, it is often not feasible to measure the
instantaneous power of a high frequency electromagnetic field. In this situation it
becomes necessary instead to measure the time averaged power and energy [4]. From
Eq. (2.24), the expression of power density S for a monochromatic time harmonic

field is:



12

S= Re[E(x,y, z)exp(ia)t)]x Re[H(x,y, z)exp(ia)t)]
= % [E exp(iwt)+E" exp(- ia)t)]x % [H exp(iot)+H" exp(— ia)t)]
= % [E xH +E" x H]+ % [E x H exp(2ia)t)+ E'xH" exp(— 21'(01‘)]
_ l{l
22

- %{Re E x H*]+%Re[E>< Hexp(2ia)t)]}

b

it + (o1t | et cxplzion) (6x10) explian)

(2.36)

where the and the * operator indicates complex conjugation and the explicit
dependence on spatial coordinates is suppressed in the latter equations. Since the fields
are periodic, the time averaging may be performed over a single period 7. Thus the

time averaged power density S, of Eq. (2.36) is:

T

S, = % | % {Re[E x H* [+ Re[E x Hexp(2icor )|t = %Re[E(x, yo2)xHey.2) |

0

(2.37)

The energy density may be treated similarly. Substitution of a monochromatic

time harmonic field into Eq. (2.25) produces:
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U= % {Re[E exp(i a)t)] Re[D exp(i wt )] + Re[B exp(i a)t)] . Re[H exp(i wt )]}

%[E exp(iot)+E" exp(- z'a)t)]~%[D exp(iat)+ D" exp(~ ia)t)]

1
2 + % [B exp(ia)t)+ B’ exp(— ia)t)]- % [H exp(ia)t)+ H’ exp(— ia)t)]

%[E ‘D"+E"- D]+ %[E -Dexp(2iwt)+E -D exp(- 2ia)t)]

1
4

%[B -H +B"- H]+ %[B “Hexp(2iot)+B"-H" exp(— Ziwt)]

= %{Re[E : D*]+ Re[B : H*]+ Re[E - Dexp(2iar )]+ Re[B-H exp(2ia)t)]}

(2.38)

where the explicit spatial dependence of the fields has again been suppressed.
Following the same reasoning as before, the time averaged energy density U,,, of Eq.
(2.38) is:
T
- % | % [Re[E- D" |+ Re[B- H' |+ Re[E - Dexp(2icr)]+ Re[B - Hexp(2ico ) it

0

avg

= %Re[E(x,y,Z)‘ D' (x,y,z)+B(x, y,z) - H'(x,.2)]

(2.39)

It is clear by inspection that Egs. (2.37) and (2.39) are applicable to electromagnetic

modes assuming the form of Egs. (2.18) and (2.19).

2.4. Orthonormalization of Electromagnetic Modes
It is easy to demonstrate that modes of the form of Egs. (2.18) and (2.19)

display an orthogonality relationship by considering the spatial characteristics of the
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associated electromagnetic power flow. This is similar to the conventional method [3],
although it does not invoke the Lorentz reciprocity theorem. Specifically, since the
permittivity and permeability are invariant along the direction of field propagation, the
time averaged power of the fields must be constant along the propagation direction
(provided that field loss is negligible). Following Egs. (2.18) and (2.19), when

multiple modes are excited the total electric and magnetic fields are:
Els )= Re| S, (o yJessllon - 2]
i

(2.40)

B2 = Re S, s olon - 2]

m

(2.41)

From substitution of Egs. (2.40) and (2.41) into Eq. (2.37), the total time averaged

power Py, is therefore:

m

p = [ [ re] St 182) | ot o) explsc) | s

—00—00

! 00—00

_ %Re{z;exp[i(ﬂm .y )Z]]O TE,(x,y)x H (x,y) .nzdxdy} 5

(2.42)

where n; is a unit vector along the z-direction. The condition of constant power flow

applied to Eq. (2.42) thus becomes:
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oz%:gRe{wM-/f»;;exp[i(ﬂm-ﬂl)zﬁTEl<x,y>me<x,y>*-nzdxdy}.

00—00

(2.43)

By inspection of Eq. (2.43), it is evident that the following orthogonality condition

must be obeyed by the fields:

1 7 *
ERe ij,(x,y)me(x,y) ‘n_dxdy |=0,

—00—00

(2.44)

for / # m. The form of Eq. (2.44) suggests the following orthonormalization condition

for the fields:

=9,

Im >

1 T 3k
ER{J [E,(x,y)xH,,(x,») 'ﬂzdxdy}

—00—00

(2.45)

where 0;,, 1s the Kronecker delta (taken as having units of power), and the modes are
normalized to unity (the absolute value included because the sign of the power flow
will depend on the propagation direction).

From the relationship between electromagnetic power and energy flow, it is
possible to infer additional constraints between the fields of an electromagnetic wave.
Specifically, it is possible to demonstrate the equality of the energy separately

associated with the electric and magnetic fields. The equality follows from relating the
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energy velocity from Egs. (2.27) or (2.34), with the power density of Eq. (2.24), and
the energy density of Eq. (2.25):

ExH:v%(E-DJrB-H),

(2.46)

where v is the relevant energy velocity. Substitution of the constitutive relations from

Egs. (2.5) and (2.6) into Eq. (2.46) simplifies to:

ExH=v%(sE-E+uE-E).

(2.47)
Dividing Eq. (2.47) by both field magnitudes results in the relationship:
n,xn, = VL[SH-FMH] .
2 [m] " g
(2.48)

where ng and ng are unit vectors oriented respectively in the direction of the electric
and magnetic fields. Noting that the velocity is constant, applying separately the

divergence and curl operators to Eq. (2.48) results in the following conditions:

v'(nEXnH):OZV.VE(SHWHH’

H - JE]

(2.49)
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(2.50)

The simultaneous conditions of Egs. (2.49) and (2.50) imply that the gradient term
must vanish, since it possesses no components either parallel or perpendicular to the

velocity. This term may be expanded as:

AR

2.51)

The gradient of the field ratio in the last term of Eq. (2.51) does not vanish in general.

This means the equality is only satisfied when its leading term vanishes:

BRI
0‘2(8 ”|E|2]‘

(2.52)

The equality of Eq. (2.52) is only satisfied when the electric and magnetic energy

density terms are equal:
I 2 1 2
(2.53)

Therefore the electric and magnetic energy density of an electromagnetic wave

propagating at constant velocity must be equal. Combining Eqgs. (2.45), (2.37), and
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(2.53), the orthonormalization condition may be conveniently rewritten in terms of a

single field:

(2.54)

where v is the magnitude of the energy velocity.

Strictly, the equality of electric and magnetic energy arising from Eq. (2.51) is
only valid when the gradient of the permittivity and permeability is negligible. This
will be applicable to waveguides comprised of homogenous materials, but not to those
in which the refractive index is graded. A more general proof exists based on the
Lorentz reciprocity theorem that is applicable to graded index materials [8].
Interestingly, the orthonormalization condition of Eq. (2.54) can be arrived at for a
given field purely from the existence of modal solutions to Maxwell’s equations. This
is because the field amplitudes of a mode may only be scaled together (which
represents the freedom to scale the total energy in the mode). Otherwise the
relationship between the fields is fixed. Thus for a given modal solution the relative
amplitudes of the electric and magnetic fields may be written as:

E, =cH,,

(2.55)

where ¢; is some constant, and the subscript / indicates modal association. Substitution

of Eq. (2.55) into Eq. (2.47) results in the relationships:
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E,xH, = V%(a|c,|2 +],t)l-[, ‘H,,

(2.56)
E xH, = V%(Eﬁ L]El E,.

(2.57)

Since the energy may be normalized arbitrarily, it is possible to choose a
normalization such that either the electric field energy or the magnetic field energy is
normalized to unity (although in general not both at the same time). For such a
situation the orthonormalization condition of Eq. (2.54) for the selected field follows
directly from Eq. (2.57), and it holds for the remaining field up to a multiplicative
constant. This is a more general derivation in the sense that it holds even for cases in

which the electric and magnetic energy are not equal.
2.5. Coupled-Mode Theory of Bragg Reflection

2.5.1. The Lorentz Reciprocity Theorem

The most general approach to electromagnetic coupled-mode theory relies on a
result known as the Lorentz reciprocity theorem [8], [9]. To arrive at this theorem,
consider arbitrary solutions to Maxwell’s Equations for a pair of distinct waveguides
denoted by E, H and E’, H’ respectively in a nonmagnetic dielectric. For time-
harmonic solutions at a fixed frequency Egs. (2.1)-(2.4), Maxwell’s equations, reduce

to:
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VxE =—-iouH
VxH=iwek’
(2.58)
and
VxE'=—-iouH'
VxH'=iwe'E'"
(2.59)

By application of the vector identity from Eq. (2.21) the solutions from Eqgs. (2.58)

and (2.59) may be written as:

V-(E'xH)=H'VxE' —E"-VxH'= HiiouH" +E' - ios'E'
V- (ExH')=H" -VxE-E"VxH' = H’ - —iuH+E"— o’

(2.60)

Addition of the pair of terms in Eq. (2.60) results in the relationship known as the

Lorentz reciprocity theorem:
V(B xH)+ V- (ExH' )= —io(s'—£)E E'.
(2.61)

It is pertinent to note that, although only the case of differing permittivity between the
two solutions was considered here, the exact same method may be applied in the case

of differing permeability, or in the case where they both differ simultaneously.



21

To apply the Lorentz reciprocity theorem in the context of waveguides,
integrate each side of Eq. (2.61) over an arbitrary volume, and to the left side apply

Gauss’ theorem:

j!jv.AdegA-ds,

(2.62)

such that:

[ xH+ExH")-d8 =~ioof[[(e-¢)E - E'av .

os

(2.63)

Consider Eq. (2.63) for a guided mode in the limit that the transverse integral is taken
infinitely far from the waveguide, and that the integral in the direction of propagation
is infinitesimally small. Taking z as the propagation direction, since the guided modes

vanish at infinity the integral reduces to:

lim{ js | (6 x s (B xR e js [(e-e)E" -E'dS},

Az—0 z+

(2.64)

such that:

J.J-ai(E* X H'+E'><H*)'nZdS = —ia;”(g'—g)E* -E'dS .
4 N

S

(2.65)
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It is from consideration of Eq. (2.63) in the appropriate limits that the coupled-mode

equations will arise.

2.5.2. Mode Coupling
The modes of Eq. (2.18) are believed to form a complete set, such that an

arbitrary field may be expressed as [3]:
Bls )= Re| S4B (s ol 1]
/

H(s.20)= Rel S AR, Jrolos~ )]}

(2.66)

where A4, is a constant term reflecting the contribution of each mode, and the mode
coefficient / is summed over all modes. Consider a perturbation of the permittivity Ae

such that:
s(x, v, z,t) = s(x, y)+ A a(x,y, z) .
(2.67)

Formally, an arbitrary field within the perturbed region may be expressed in terms of
the normal modes of the unperturbed region. However, since the normal modes of the
unperturbed region are not eigenmodes of the perturbed region, the A; coefficients

must generally become z dependent:
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E(x,yazaf)=Re{zAz(Z)Ez(xay)eXp[i(wt—ﬂIZ)]}

/

H(x,y,z,o:Re{zAZ(AHl(x,y)exp[f(wr—ﬂ,zn}'

/

(2.68)

By definition, the fields of both Eq. (2.66) and Eq. (2.68) obey Maxwell’s equations.
The coupled mode equations may be derived by respectively associating the

perturbed and unperturbed modal decompositions of Egs. (2.68) and (2.66) with the

primed and unprimed fields of the Lorentz reciprocity theorem as expressed in Eq.

(2.65) [8], [9]. This substitution produces the relationship:

;{i(ﬁz - B,)4,(z)+ dA;—Z()} expli( J. I < H; )-n_dxdy |
= —la)ZA z)expli( 1)Z]J-J.A8Em -E,dxdy
(2.69)

In deriving Eq. (2.69) one minor optional simplification was made. Technically the z-
component of the perturbed electric field differs from the transverse components by a
constant factor. This may be seen by substituting the perturbed fields into Egs. (2.1)-

(2.4), Maxwell’s equations, and expressing them in terms of the unperturbed modes:

Z Am eXp )VJ_ x H(X, y)m

m

VvV, x H(x v,z
—za)(8+A8) —la)(8+A8)

z Am eXp )E(x’ y)m

E(x,y.z)=

8+Aa

(2.70)
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where the subscript on the curl operator indicates that it is taken over the transverse
field components only. The assumption made in Eq. (2.69) is that the perturbation is
small such that the coefficient approaches unity and the projection of the electric field
need not be separated into transverse and longitudinal components (it is also valid for
an arbitrary perturbation in the case that the z-components of the fields are negligible).
Notably, the coupled-mode equations themselves are not limited to the case of small

perturbations if this approximation is not made.

Employing the normalization conditions of Egs. (2.45) and (2.54), it is possible

to simplify Eq. (2.69) even further:

o0

IAsEm -E, dxdy

é'—uB

00

P z‘%Am (2)expli(, - 5, )}
m J-E:;k XHZ 'nzdxdy

g =38

| T TAsEm -E,"dxdy
= Y- g A E)exelilh -, el
51 j j eE,-E, dxdy

—00—00

2.71)

The system of differential equations of Eq. (2.71) is a description of the coupling of
waveguide modes that occurs due to an arbitrary perturbation of the permittivity. The
same reasoning can be easily modified to include perturbations of the permeability
(alone or in conjunction with the permittivity), or be couched in terms of the magnetic

field.
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2.5.3. Bragg Reflection

The phenomenon of Bragg reflection arises when a periodic perturbation
causes coupling between a forward propagating mode and a backward propagating
mode [3]. For a perturbation periodic in the z direction, the permittivity may be

decomposed into a Fourier series:

e(x,y)+Ae(x,y,z)= Zsk(x,y)exp(— ik%z)—ié,

k

2.72)
g(x,y)=¢,(x.2),
(2.73)
Ag(x,y,z)=;gk(x,y)exp(_ ik%zj—i&
(2.74)

where A is the perturbation period, & is an integer, and J is a component of the
permittivity that is included to account for waveguide loss (or equivalently gain when
the sign is reversed). Most physical sources of loss are adequately described by the
inclusion of such a zero-order term [10]. Substituting Eq. (2.74) into the general mode

coupling equations of Eq. (2.71) produces:

iAl (z)— B« A4 (z)—iﬂZZKklmAm (z)exp{i(ﬂl -5, —kz%jz} ,

dz __m? |ﬂ1| k20 m

(2.75)
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00 00

[ o, (e B, (1.3)- B, (i) dsy

K, =2-m
"2 ;zzg E,-E, dxdy ’
(2.76)
T _Té'(x, y)E, -E, dxdy
o gﬁooalz,.lz,*dxdy ’
(2.77)

where the coefficient xy;, represents the amount of coupling that occurs between the [

and m™ modes as a consequence of the k™ Fourier coefficient of the perturbation, and
ay 1s the linear power loss coefficient. Note that the loss coefficients may be used to
phenomenologically express any source of linear loss (such as radiative scattering) and
not simply absorption arising from an imaginary component of the permittivty. The
equations are intentionally expressed independently of the sign of the propagation
constant (through the ratio of it and its absolute value) to emphasize that the coupled
mode equations take a different form depending on whether the interacting modes are
co-propagating or counter-propagating. In principle, the differential equations of Eq.
(2.75) couple the amplitude of each mode to every other mode. In practice, net transfer
of amplitude usually only occurs between a pair of modes. The intuitive explanation
for this is that the complex exponential terms are generally rapidly varying (and when

the sign of the integral rapidly changes no net coupling occurs on average). Significant
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coupling will only occur when the phase of the complex exponential vanishes, such

that:

2
B =B, —szO,

(2.78)

which is known as the phase matching condition.

In accordance with Eqgs. (2.75) through (2.78), Bragg reflection between a
forward propagating wave (with propagation constant ;) phase matched to a
backward propagating wave (with propagation constant —f;) arising from the +i™

Fourier coefficient of the perturbation is described by the following coupled mode

equations:

LA, (2) =iy Ay (Jexplinp)- L 4, ().
(2.79)

%Ab (2)= s 4, (Doxplin e} 2 4, ).
(2.80)

8B=p,—(-5,)- k2.
S A

(2.81)

The following relationship exists between the coupling coefficients:
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*
K oy = Ky »

(2.82)

which follows from combining the definition of the coupling coefficient of Eq. (2.76),
the normalization condition of Eq. (2.54), and the simple relationship between Fourier
coefficients of a real function described in the Appendix. To continue the solution it is

convenient to perform the following variable substitution:

e :Af<z>exp(%],

2
(2.83)
4(2) = Ab(z)exp(‘ ‘;j
(2.84)

When Egs. (2.83) and (2.84) are applied to Egs. (2.79) and (2.80), the relationship

between the new variables becomes:

d ’

A () =iy 4, (2) exp(iag?),

(2.85)

(2.86)
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a,+a,

Aﬂ':Aﬂ—lT.

(2.87)

The fields may be decoupled by differentiating Egs. (2.85) and (2.86) and substituting
the initial equations back in:

!

dz ' . r d '
?AJ-(Z) =iAS EAf(z) + Kk A, (2)

(2.88)
dz ! . ] d ! ’
71417(2) =—iAp ZAb(Z) +K—klszkfbAb(Z) .
(2.89)
The general solution of Egs. (2.88) and (2.89) assumes the form:
A, (z), = exp[%}[q exp(sz)+ o exp(— sz)],
(2.90)
6] -] [ ) 0 ),
(2.91)

! 2 2
AB AB ., ta
5= kab"kbf(T] _\/kakabf(Tl%j :

(2.92)
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where C,, C,, Dy, and D, are constants to be determined by the initial condition of the
fields.

The reflected and transmitted fields for a wave approaching in the forward
direction arising from a perturbation of length Lpzr may be determined by considering

the following boundary conditions:

(2.93)

(2.94)

Applying the boundary conditions of Egs. (2.93) and (2.94), the general solutions of

Egs. (2.90) and (2.91) may be rewritten:

! !

A, (z)' =2C, exp( iA’f z J sinh(sz )+ A, (0)’ exp{ iAf Z} exp(-sz),

(2.95)

!

4, (Z ), =2D, exp(SLDBR )exp{ - lAle Z} sinh [S (Z —Lppp )] .

(2.96)

Next, differentiate Egs. (2.95) and (2.96) and substitute in Egs. (2.85) and (2.86):
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[\

iA,b"Cl exp(mﬂ Z]smh Sz

2

+[iA2ﬂ _S]Af(o 'exp[ f

+2sC, exp[ ZA’B z } cosh(sz)

2

jexp(_ &)

(2.97)
~iAf D, exp(sLDBR)exp(‘i Af ,ZJsinh[s(sz )
e
it o ool
(2.98)

The remaining constants may be determined by applying the boundary conditions of

Egs. (2.93) and (2.94) to Egs. (2.97) and (2.98):

(s - iAzﬂ | ]Af (O)' exp(—sz)
C

) iA,B’ sinh(sL,, )+ 25 cosh(sL,,; ) ,

(2.99)
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D = I K—kbfAf (0) eXp(— SLDBR)
1 iA,B, sinh(sL,, )+ 2s cosh(sL,,, )

(2.100)

The coefficients of reflection rpgr and transmission #ppgr for fields approaching the
perturbation in the forward direction may be determined by combining the coefficients

of Egs. (2.99) and (2.100) with the solutions of Eq. (2.95) and (2.96):

b 4,00) _ Ab(O)’ . 2K, sinh(sL,,)
4,(0) 4,(0)  iAB sinh(sL,,, )+ 2scosh(sL,,, )
(2.101)
. (= AB L —a,L
, (L ) Af (LDBR) exp( a szDBRj 2s exp(l ﬂz DBR }exp[ /2 DBRJ
(/o — 2f\TBR) : _ , ‘
Pt Af(o) Af(O) iIAp sinh(sLDBR)+ 2s cosh(sLDBR)
(2.102)

In terms of the original variables Egs. (2.101) and (2.102) become:

f-=b _ —i kabfLDBR
rDBR - . 1)
N 2, ta, SLpgr
— 'DBR t—
2 4 tanh(sL,,, )

(2.103)
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4
S sinh (SLDBR )
DBR . )
% a,ta, J SLpge
DBR
2 4 tanh(sL,,, )
(2.104)
2
Ap IAp o, +a
s = \/kabrc_kbf —[—j +T(af +ab)+[ / " bJ
(2.105)

2.5.4. Spectral Characteristics of a Bragg Reflector

All Bragg reflectors display a number of important spectral characteristics. In
the absence of loss, the points AS = i2|;c;g«b1c—kbf1% give s =0 in Eq. (2.105) and are
conventionally defined as the edges of the stopband, although it is clear from Eq.

(2.103) that the reflectance is nonzero at these points:

lim(r Df};b} _ - —IK e Lppg . - —IK 4 Lpgr 40
20 ay.ay=0 limiLDBR +im SEpsr lLDBR\/KquK_kbf +1
s=0 2 50 tanh(sLDBR)
(2.106)

This definition arises from the fact that the fields in a Bragg reflector may be viewed
as a Bloch wave, and the Bloch wavenumber becomes imaginary at these points.
However, true reflectance null points do exist. They occur at the points sLpgr = niz for
integers n # 0, since tanh(sLpgr) = 0 but sLppr # 0 and therefore the limit of [sLppg /

tanh(sLpgr)| = %. The corresponding values of Ap follow directly from Eq. (2.105):
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2
nrw
AB,un = +2\/ KinK oy + (_j .

(2.107)

The maximum reflectance of a Bragg reflector occurs at the center of the stopband
where A = 0. The maximum magnitude of the coefficient of reflection of a lossless

Bragg reflector is:

f—b
DBR

:tanh(L KK J
AB.a ;=0 ‘ DBR ko™ ~kbf

(2.108)

In the presence of loss these features are more or less retained [11]. The theoretical
spectral response of a lossless Bragg reflector following Eqs. (2.103) and (2.104) for
which |f] = |fs| = |f| (and therefore |xy| = x| = |x|) is shown in Fig. 2.1.

Ideal Distributed Bragg Reflector Spectral Response

o
)

o
[o))

Reflectance
—Transmittance

o
N

o
N

Reflectance and Transmittance

-qo -é -é ._.-4 ._ . - 1 ; 4.._. 6._- 8-._ -

Fig. 2.1 Dependence of the response of an ideal Bragg reflector on spectral detuning. In this

example |x|Lpgr = 3. The dashed vertical lines indicate the conventional edge of the stopband.
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3. Characterization of Distributed Bragg Reflectors

3.1. Motivation

Accurate estimation of the behavior of distributed Bragg reflectors is crucial to
the development of a number of applications, including optical digital signal
processing [12], optical switching [13], and nonlinear processes such as wave mixing
[10]. Previous characterization attempts rely on curve fitting to the spectral response
of photonic devices comprised of distributed Bragg reflectors over a broad spectral
band [14]. To be accurate, a fitting process must account for the parameters of the
Bragg reflector and resonant cavity separately, as well as account for the possibility of
coupling loss due to mode mismatch of the periodic perturbation and that of the
unperturbed waveguide in addition to the input and output coupling losses.
Additionally, it must allow for the wavelength dependence of each of these
parameters. The quantity of independent parameters has a significant detrimental
effect on the robustness of the fit. To combat this proliferation of uncertainty a method
of characerization was developed based on the linewidth comparison of Bragg
reflectors in a resonant configuration. The method is independent of coupling

efficiency, and the measurements are limited to a narrow spectral region.

3.2. Spectral Response of a Fabry-Pérot Resonator
A Fabry-Pérot resonator is comprised of a pair of partially reflective mirrors
separated by some distance. When light is incident on the mirrors, certain wavelengths

will constructively interfere upon reflection such that the optical field accumulates

36
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between the mirrors. The spectral response of such a resonator may be calculated by
summing the successive iterations of reflected and transmitted fields (known as Airy’s
formulas) [2]. The most generalization of this approach to a resonator composed of
distributed Bragg reflectors described by Eqgs. (2.103) and (2.104) is complicated
because each mode must be accounted for. The coefficient of transmission #7p of such
a resonator is (in the complex field formalism):

2 " CuO Cyly " Cp
fof=>f f ~f (. f=b b b b bo>f f _f f W-f.f
te g, ey o CM(r23 CyO Cyly " CyO Cy iy " Cp

FP = ) )
e el el e el el it e

+...

(3.1)

| | rh
o/t = exp(iﬂ“’Lc __achc J ,

(3.2)

where ¢y and ¢ are the input and output amplitude coupling efficiencies, ¢y, is the
amplitude coupling efficiency between the reflectors and the cavity. The ¢ term
accounts for the phase shift and attenuation that a mode with propagation constant S
and power loss (or gain) coefficient o, incurs upon traversing a cavity of length L.
The coefficients of transmission and reflection of the Bragg reflectors are represented
by t,» and 7,4, respectively, with the subscripts indicating order of occurrence and
direction of incidence. Finally, superscripts indicate modal association. A conceptual

illustration of such a resonator is produced in Fig. 3.1. In the general case the forward
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and backward modes will have distinct transverse profiles, such that the field profile in
the cavity will be more complex that what is ordinarily considered. The summation in
Eq. (3.1) is an infinite geometric series and may be simplified as such:
clti> el o’ et c]

th, = -
FP _ b b bbb f T
l=r5""cy,07 ey ey 0 ¢y

(3.3)
— — — —_
Rﬂ - T12 RZS - TZS
— — — —
T21 - R21 T32 RSZ
C, Cy Cy Cy Cy Co
| | 1 J
Y I T
First . Last
Input Reflector Cavity Reflector Output

Fig. 3.1 Conceptual schematic of a Fabry-Pérot resonator comprised of a pair of distributed

Bragg reflectors Arrows indicate direction of propagation, and labels correspond to their use

in Eq. (3.1) and subsequent equations.

It is useful to consider the transmittance 7rp of the resonator explicitly in terms

of the transmittance, reflectance and phase of the Bragg elements. The expression

follows directly from Eq. (3.2) and Eq. (3.3):

LR ¢/ ()] expl—a/ L)' C)
T, FP — ‘tFP‘ -

29
b S
N S a. +a; .
1-\RL” Cl R € exp[—z Lcjexpoﬂ

(3.4)
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b = (8" + BT )L, +arglr " )+ arg(r),
(3.5)

where C;and Cp are the input and output power coupling efficiencies, and Cy, is the
power coupling efficiency between the reflectors and the cavity. The ¢7,, term
accounts for the total phase shift the field incurs upon traversing the cavity, with terms
that include the phase shift upon reflection from the Bragg elements in addition to the
linear phase. The transmittance and reflectance of the Bragg reflectors are represented
by T,» and R, respectively, with the subscripts indicating order of occurrence and
direction of incidence. As before, superscripts indicate modal association. The
resonator transmittance of Eq. (3.4) may be written more conveniently in terms of

trigonometric functions by expanding the denominator:
/1 (e f el e/ )ri'c)
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(3.6)

It is possible to derive an explicit expression for the total phase shift ¢z, from
the resonator spectral response and the Bragg element parameters. To begin, eliminate
the dependence on input and output coupling efficiency by normalizing Eq. (3.6) to

the transmittance at resonance 7zp|g.s (Which occurs when ¢7,, is an integer multiple of

27):
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Next algebraically extract the desired phase term from Eq. (3.7):
: a’+al
Res \/ R} /b b \/ R;—r/’ CA{I exp(— ¢ c LCJ
. T 2
@,,, = T2arcsin
26Xp( ¢ }\/\/Rfﬁbcb \/Rb%fcf
(3.8)

From Eq. (3.8) the full width phase shift A¢z,, between points of equal transmittance

(about a resonance peak, for example) is therefore:

7

T b
T Res |: \/Rfﬁb Cb \/Rb%f Cf exp(_ ac -;ac LL]:|

FP

b gl . —
2exp(—"‘c;0‘CLCJWR2f;bCHR§ff cl

A, =4arcsin

(3.9)

The expression in Eq. (3.9) is significant in that it indicates the linewidth

characteristics of a Fabry-Pérot resonator are determined entirely by the reflectance
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characteristics of the mirror elements. In the appropriate limits, this can be exploited to

characterize the parameters of a distributed Bragg reflector [15].

3.3. Phase Response of a Bragg Reflector

In the context of the expression for Fabry-Pérot linewidth of Eq. (3.9) it is
useful to consider the behavior of phase upon reflection of a distributed Bragg
reflector separately from the reflectance. It is possible to derive a convenient
expression for the wavelength dependence of this phase near the center of the
stopband [15]. To begin note that the phase is argument of the coefficient of reflection
r, such that:

darg(r) _d Im[In(r)] .
dAB dAp

(3.10)

Next, substitute into Eq. (3.10) the coefficient of reflection of a Bragg reflector from
Eq. (2.103):

darg(r) d

YRR, Im{ln[—i Kty Lpsr ]}

. ) + N
— _d Im ln M + af ab LDBR + SLDBR
dAp 2 4 tanh(sL,,, )

(3.11)

The first term in Eq. (3.11) may be eliminated by noting that the coupling coefficient

for the most common perturbations is a purely imaginary number (refer to the
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Appendix for a discussion of this), and the remaining terms may be arranged as

follows:

darg(r):_lm d_y|[BF, %\ SLom
dAS dAS 2 4 PP tanh(sL,,, )

IL g n da { SLppr } ds

2 ds| tanh(sL,,, ) |dAS

) a.+a
% + S b LDBR + SL%
2 4 tanh(sZ,,, )

(3.12)

Note that at the center of the stopband Af vanishes, and consequently s, tanh(s) and

their derivatives are real numbers. Consequently Eq. (3.12) reduces to:

iL g i d{ SLpsp } ds 1
darg(r)  _ ] 2 ds|tanh(sLyy,) [dAB | _ )
dA,B AB=0 [af ta, J L + SLDBR (af ta, ) + S '
4 Dok tanh(sL DBR ) 4 tanh(sL DBR )

(3.13)

When written explicitly in terms of the fundamental parameters Eq. (3.13) becomes:
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(3.14)

The theoretical phase response of a lossless Bragg reflector following Egs. (2.103) and
(2.104) for for which || = |s| = |f| (and therefore |k = |kisyl = |x]) 1s shown in Fig.
3.2. The result is in good agreement with Eq. (3.14), specifically for the limiting case
in which the hyperbolic tangent approaches unity.

Polar Representation of an Ideal DBR Coefficient of Reflection

4 P T T T T T T T T
r
—arg(r 1
ﬁ DBR
o
c
©
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(] '2
=

AB|x|

Fig. 3.2 Dependence of the phase response of an ideal Bragg reflector on spectral detuning. In
this example |x|Lpgr = 3. The dashed lines corresponds to the final limiting expression of Eq.

(3.14).
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3.4. Characterization of Loss Coefficients

Following coupled mode theory, the spectral response of a distributed Bragg
reflector that couples arbitrary modes is in the most general sense determined by a pair
of coupling coefficients, and a pair of loss coefficients. The coupling coefficients
represent the strength with which the device transfers energy between the modes, and
the loss coefficients represent how rapidly the energy of each mode is attenuated by
the waveguide. In the special case that the Bragg reflector couples the forward
propagating field of a mode to the backward propagating field of the same mode, the
equations simplify such that the spectral response is determined by a single coupling
coefficient and a single loss coefficient [15].

Consider a symmetrical Fabry-Pérot resonator composed of distributed Bragg
reflectors that couples the forward propagating field of a mode to the backward
propagating field of the same mode. In this case the relationship between linewidth

and resonator phase shift of Eq. (3.9) reduces to:

Adp,, =2pL, +2arg "DBR KDBR’aDBR

\/ Res [1 |rDBR DBR’aDBRX C exp( a.lL )]
Zexp(—chcj

=4 arcsin

(KDBR > ppr )CM

(3.15)

Kpsr = K_k(-p)r = Kir(-1)>

(3.16)
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where the dependence on coupling and loss coefficients is made explicit. It is possible
to further simplify the linewidth and phase relationship by placing constraints on the
resonator design. Specifically, consider a resonator in which the cavity is
approximately a single perturbation period in length. In this situation, the loss from
propagation through the cavity will be much less than the loss from propagation
through the Bragg elements, which are many periods in length. Additionally, for such
a short cavity the phase shift upon reflection from the Bragg elements will in general
completely dominate the cavity phase shift. Finally, it is possible in general to design
the resonator such that the loss due to mode mismatch is negligible. If the periodic
perturbation is not so small that condition is not satisfied intrinsically, it is possible to
adiabatically taper the transition from the Bragg elements to the cavity to eliminate the
loss. Provided the taper is small compared to the total Bragg element length it will not
otherwise impact the analysis (similar to the resonator cavity length). In these limits

the expression of Eq. (3.15) reduces to:

Adp,, = 2arg[r DBR KDBRvaDBR

Res
‘/ [1 |rDBR DBR’aDBRl]

2|VDBR K.DBR’aDBR

~ 4arcsin

(3.17)

Combining Eq. (3.17) with Eq. (3.14) and Eq. (2.103) allows the explicit expression of

the linewidth in terms of the Bragg coefficients:
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where dAfSrw 1s the full width change of the quantity AS (which is simply related to the
resonance linewidth) at the points where the transmittance has the value of Trp/Trp|ges
(for example Trp/Trp|res = 1/2 in the case of the full width at half maximum). It is
possible to infer the values of kpgr and appr from the comparison of linewidths of two

symmetric resonators with different length Bragg elements from the expression in Eq.
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(3.18), because they are formally equivalent to a system of two equations in two

variables.

3.5. Characterization of Coupling Coefficients

The response of the most general type of distributed Bragg reflector is
determined by four parameters: the coupling coefficients xyy and x-i, and the loss
coefficients aand a;, (here the subscripts f'and b respectively indicate the forward and
backward propagating modes). These parameters represent only three degrees of
freedom, since the coupling coefficients are related to one another by Eq. (2.82). The
loss coefficients may be determined according to the procedure described in the
previous section. The remaining degree of freedom may be determined by measuring
the linewidth of an appropriate Fabry-Pérot resonator (in a manner similar to the way
that the loss is determined in the previous section).

Consider a symmetrical Fabry-Pérot resonator composed of distributed Bragg
reflectors that couple two arbitrary forward and backward propagating modes. In this
case the relationship between linewidth and resonator phase shift of Eq. (3.9) reduces

to:
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(3.21)

It is possible to further simplify the linewidth and phase relationship by placing
constraints on the resonator design (identical to the constraints employed in the loss
measurement of the previous section). Specifically, consider a resonator in which the
cavity is approximately a single perturbation period in length. In this situation, the loss
from propagation through the cavity will be much less than the loss from propagation
through the Bragg elements, which are many periods in length. Additionally, for such
a short cavity the phase shift upon reflection from the Bragg elements will in general
completely dominate the cavity phase shift. Finally, it is possible in general to design
the resonator such that the loss due to mode mismatch is negligible. If the periodic
perturbation is not so small that condition is not satisfied intrinsically, it is possible to
adiabatically taper the transition from the Bragg elements to the cavity to eliminate the
loss. Provided the taper is small compared to the total Bragg element length it will not
otherwise impact the analysis (similar to the resonator cavity length). In these limits

the expression of Eq. (3.21) reduces to:
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(3.22)

Combining Eq. (3.22) with Eq. (3.14), Eq. (2.103) and Eq. (2.82) allows the explicit

expression of the linewidth in terms of the Bragg coefficients:
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where Afry is again the full width of the resonance line at the points where the
transmittance has the value of Trp/Trp|res (for example Trp/Trp|res = 1/2 in the case of
the full width at half maximum). It is possible to infer the values of xzp, (or
equivalently x-x) from the linewidth of a symmetric Bragg reflector Fabry-Pérot
resonator using the expression in Eq. (3.23) because it is formally equivalent to a

single equation in a single variable.

3.6. Experimental Considerations

The proposed and demonstrated method of characterization has a number of
distinct advantages [15]. The only required measurements involve relative
transmittance, which renders it independent of absolute coupling efficiency, and it
employs resonant structures, which make it possible to accumulate a measurable
quantity of loss within the smallest physical device footprint. In the context of
nanoscale devices this eliminates a significant source of measurement uncertainty

because the coupling efficiency is especially sensitive to fabrication uncertainty and
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can be very difficult to characterize. Nanoscale devices are also prone to
nonuniformity when they are not located within close proximity of one another.
Finally, the method only involves measurement of a narrow spectral band. This
minimizes any uncertainty that might arise from the wavelength dependence of the
device parameters.

The limitations of the characterization method should be also be considered,
however. It is necessary that the coupling efficiency and Bragg reflector parameters
must not vary significantly with wavelength across the resonance, and that the
coupling efficiency remain constant over time, otherwise error will be introduced into
the measurement. The measurements are limited to a narrow bandwidth, so the
measurement time and spectral sensitivity will be minimal. These requirements are

trivially satisfied by most coupling mechanisms [16], [17], [18].

Attention must be given to the total operating power. While increasing Bragg
reflector length will increase sensitivity to the coupling and loss coefficients,
extremely high reflectance values can cause excessive power accumulation in the
resonator and subsequent nonlinear behavior [19]. Additionally, if the transmitted
power is small the measurement risks being contaminated by the noise floor of the
experimental system. These problems can be avoided by appropriate consideration

during the experimental design stage.

A more subtle potential source of error is the impedance mismatch between
different sections of waveguide and at the couplers. Technically these constitute

additional points of reflection, and a physical device is essentially a series of coupled
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resonators. Should the impedance mismatch at these points be nontrivial the spectral
response of the device would become very complex and the necessary linewidth
measurements would be impossible. If present, this effect would be clearly visible
since the desired spectral response is very simple. In general, these reflections can be

minimized by adiabatically tapering the waveguide between transition sections.

Finally, the uncertainty and variation that is naturally associated with the
fabrication process of a physical device can lead to unintended differences between
the various structures required for the measurement. Nanoscale fabrication variation
arises from numerous causes, including lithography distortion and wafer variation.
Typically these are minimal for devices that are located in close proximity to one
another. As such, proper consideration during the experimental design can minimize

their influence.
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4. Characterization of Waveguide Loss

4.1. Motivation

The accurate estimation of waveguide loss is critical to the design of integrated
photonic devices, particularly nonlinear devices which can become unstable when
operated at unanticipated power levels [10]. The most common methods of loss
characterization become problematic when applied to low loss integrated waveguides.
The cutback method [20] requires the fabrication of prohibitively long devices, and
separation of coupling loss from waveguide loss. Resonant methods [21] ameliorate
the device length requirement and are independent of coupling, but require bending of
the waveguide. Waveguide bending introduces excess loss which in itself must be
accounted for, and also distorts the mode profile which alters its susceptibility to other
sources of loss. To avoid these sources of uncertainty a method of loss
characterization was developed based on the comparison of the spectra response of
devices comprised of Bragg reflectors. The method is independent of coupling
efficiency, requires a small device footprint, does not require the introduction of
bending into the device, and does not confuse loss in the Bragg reflectors with

waveguide loss.

4.2. Reflectance Minima of a Bragg Reflector
A method of waveguide loss characterization based on the comparison of
distributed Bragg reflector Fabry-Pérot resonators has been demonstrated [11]. This

characterization method relies on the existence of reflectance null points in the

53
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response of the Bragg reflector to normalize the transmittance spectra of the resonators
involved. When loss is included in the Bragg reflector equations, the reflectance does
not truly vanish at the minima, but remains negligibly small. To demonstrate this,
consider the parameter s described by Eq. (2.105) at one of the null points described
by Eq. (2.107). Neglecting the terms that are second order in the loss coefficients, the

product sLpgr at becomes:

SLppr = \/_ (”7[)2 + Af%(af +a, )LzDBR .

4.1)

Next take the Taylor series of Eq. (4.1), again neglecting terms that are second order

in the loss coefficients:

. A ) A
SLy e = NIT l—é(:%”)’é(af + ab)L%BR} = nlﬂ+%(0{f + ah)LzDBR )

(4.2)

Next apply the approximation of Eq. (4.2) to simplify the denominator of the

coefficient of reflection expressed in Eq. (2.103) that contains a hyperbolic tangent:

SLppr N nirw .
tanh(sLDBR ) tanh(ni T+ Agﬂ”"” (a sta, )LZDBRJ
nrw

(4.3)

The neglect of the term in the numerator containing waveguide loss coefficients is

justified on the grounds that since |niz / tanh(nir)| = o, for a small perturbing term A
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then |(niz + A) / tanh(nizr + A)| = o = |niz / tanh(niz + A)|. Taking the hyperbolic
tangent of Eq. (4.3) to first order in the loss coefficients and substituting in the

expression for Af,,;; of Eq. (2.107) results in:

SLp e nimw + 41'(117[)2

~ j—
~

tanh(SL ) Aﬂ null 2 2’
DBR 48]/172' (af +Q, )LDBR (af +a, )Li)BR \/kakab_/‘ + (Mj

L DBR
(4.4)

Substituting the approximation of Eq. (4.4) and Eq. (2.107) into the expression for the
coefficient of reflection Eq. (2.103) and neglecting terms that are second order in the

loss coefficients results in the approximation:

2 2
fﬁb‘ N ‘K—kbf‘LDBR (a rta, )LDBR \/ KK oy Lppr + (”77 )
DBR ~

Ay 4(n 7[)2

(4.5)

The periodic perturbation of the Bragg reflector is an engineered structure, and from
inspection of Eq. (4.5) it is clear that it is generally possible to design the Bragg
reflector such that the maximum reflectance is large and the reflectance at the null
points is vanishingly small. Any of the null points n = 1, 2, 3 ... may be used for the
purpose of normalization. Higher order null points reduce the minimum reflectance
but move the reference wavelength farther from the Bragg reflector stopband, which
may cause the wavelength dependence of the parameters to introduce error during the

characterization process.
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4.3. Characterization of the Loss Coefficient

The loss of an unperturbed waveguide is not in general the same as the loss in
a perturbed structure, such as a distributed Bragg reflector. This may be intuitively
understood from the fact that the transverse mode profile varies in each structure, and
therefore the overlap of the mode with the sources of loss will also vary. Each
waveguide mode is associated with a distinct loss coefficient, and the most precise
method of loss characterization will involve the measurement of one mode at a time.
For this reason it is most expedient to utilize Bragg reflectors that couple the forward
and backward propagating fields of a single mode. In accordance with Egs. (3.4) and

(3.5) the transmittance of such a Bragg reflector Fabry-Pérot resonator is:

Clﬂzczif exp(— a.l, )Tz3C0

T — 2
FP ‘1 _ \/R_B cl \/R_Zl exp(—a, L, )Relexp(id,, )]2

(4.6)
Pro =2PL, + arg(r23)+ arg(’”m ) .
4.7)

First apply Eq. (4.6) to the case of a resonator with a short cavity approximately one
perturbation period in length. In this arrangement the loss of the cavity will be
negligible compared to the loss of the Bragg reflectors since the reflectors are many

periods long. Consequently the resonator transmittance of Eq. (4.6) reduces to:
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Two important observations follow from the transmittance of Eq. (4.8). First, the

transmittance at the reflectance null points is:

short )

TFP B B CI le Bt CM TB Bt CO :
(4.9)

Second, the transmittance at the cavity resonance is:
2
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(4.10)

The reflectances and mode coupling loss coefficient can be separated from the

transmittances by dividing Eq. (4.10) by Eq. (4.9) and extracting the desired term:

T, I

2 ﬂshan
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sh
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4.11)

The relationship of Eq. (4.11) gives the product of mode coupling loss and
reflectances at the resonance of the short cavity in terms of various power

transmittance ratios. These power transmittance ratios can be obtained separately from
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the measured transmittance spectrum of the individual Bragg reflector elements and
the short resonance cavity. These ratio measurements are independent of any coupling
loss (whether from mode coupling or input and output coupling).

With the knowledge of the mode coupling loss and reflectances from Eq.
(4.11), it is possible to infer waveguide loss from a resonator with a long resonant
cavity. In such an arrangement, the cavity loss can no longer be neglected. From Eq.

(4.6) the resonator transmittance at the null points is thus:

lon, 2
T7%,,, =G, Cirexpl-a L )Ty, Co-
(4.12)
Likewise, the transmittance at the cavity resonance is:
2
tong €Tl e G Xl L) . G
FP | giong — ) 2
‘1 o \/R23 ﬂf:;g CM \/RZI ﬂfﬁ;’g eXp(_ achX
(4.13)

The exponential containing the loss coefficient can be obtained by dividing Eq. (4.13)

by Eq. (4.12) and extracting the desired term:

long
1— Lol yme | Taslgpee |1 ‘ﬂm,,,
T | T | Tlong
21 N "B B | TFP | glone
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(4.14)
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It is generally possible to choose the long cavity length so that one of its resonances
coincides with one of the resonances of the short cavity. For example, if both cavities
lengths are integer multiples of the perturbation period each cavity will have a
resonance at the exact center of the Bragg reflector stopband. For such coincident
resonances, the product of mode coupling loss and reflectances from the denominator

of Eq. (4.14) is known from Eq. (4.11). The loss factor is the readily solved from Eq.

(4.14):
1 T, | Bres D |ﬂ
712|)Bmzll TB B
eXp(_ ach ) =
1 7]2 Bres 7123 Bres
]-;2| Bt T23 Bt

(4.15)

The waveguide loss may therefore be determined by measuring the transmittances of
the appropriate assemblies of Bragg reflectors. Placing the resonance near the center
of the stopband is especially advantageous because the properties of the Bragg

reflector at band center are less sensitive to frequency errors.

4.4. Experimental Considerations

The proposed and demonstrated method of waveguide loss characterization has
a number of advantages [11]. Similar to the method of the previous section, the only
required measurements involve relative transmittance, which renders it independent of

absolute coupling efficiency, and it employs resonant structures, which make it
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possible to accumulate a measurable quantity of loss within the smallest physical
device footprint. As before, in the context of nanoscale devices this eliminates a
significant source of measurement uncertainty because the coupling efficiency is
especially sensitive to fabrication uncertainty and can be very difficult to characterize.
Likewise, nanoscale devices are also prone to nonuniformity when they are not located
within close proximity of one another. Additionally, this method is not degraded by
waveguide dispersion, which only serves to shift the relative position of the relevant
spectral features (and does not affect their magnitude, which is the critical

measurement parameter).

The limitations of the characterization method are also similar to that of the
previous section. It is necessary that the absolute coupling efficiency does not drift
over the measurement time and that the coupling efficiency by identical at the null and
resonance measurement points, otherwise error will be introduced into the power ratio
measurements. It is also necessary that the waveguide loss be identical at the null and
resonance measurement points (although it is not necessary that the Bragg reflector
loss be identical at these points). In practice this condition will be met in most

waveguides, except near points of material absorption lines.

The error in the proposed loss characterization scheme may be broadly
categorized into three main sources. The first source is the noise floor of the
measurement system, which can become significant if the Bragg elements have high
reflectance and the absolute transmittance at the center of the stopband is low. In such

a situation it will be impossible to accurately calculate the transmission ratios used to
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determine Bragg reflectance and power loss. This problem can typically be avoided
during the experimental design phase, although the noise floor can be avoided in
principle by operating at higher power (although this can cause the onset of nonlinear

effects which are equally problematic [19]).

The second source of error is the impedance mismatch between different
sections of waveguide and at the couplers. These constitute additional points of
reflection, and if the effect is significant the physical device becomes a series of
coupled resonators with a complicated spectral response. Generally, these reflections
can be minimized by adiabatically tapering the waveguide between transition sections.
For devices that employ tapered couplers [16] the reflections can be further reduced by
creating the access facets at an angle to the waveguides (this could complicate
fabrication and reduce coupling efficiency). Increasing the distance between the points
of reflection will also mitigate this effect by damping the unintentional resonators

(although this will increase the total device footprint).

The third source of error is a result of uncertainty in the fabrication processes,
which leads to unintended differences between the resonator structures. Typically this
uncertainty is relatively small, but if the propagation loss incurred over the cavity
length is also relatively small, the fabrication could compromise the measurement.
Nanoscale fabrication variation arises from numerous causes, including lithography
distortion and wafer variation, and consequently it will increase with larger device
separation and longer exposure times. These errors may also alter the optical path

lengths of the resonator cavities and shift the position of the measurement points.
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However, the change in Bragg reflector parameters at the center of the stopband is
very small, so a device engineered with a broad stopband will be resilient. In the
worst-case scenario, multiple devices may be fabricated and the best matching ones

used for the measurement.
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5. Optical Bistability in Bragg Reflector Resonators

5.1. Motivation

Bistability is a phenomena that can occur in photonic devices with a nonlinear
optical response [19]. In the bistable regime of a resonant cavity the output power of
the device is not uniquely determined by the input power because multiple powers
within the cavity can satisfy the resonant condition. Due to this peculiarity the steady
state response of a bistable Fabry-Pérot resonator must be modeled by expressing the
input power of the device as a function of the output power. Bistable devices can serve
as a foundation for optical signal processing because they display both nonlinearity
and hysteresis, which allows for the realization of photonic circuitry with functions
including switching, memory, logic, and modulation [22]. It is important to understand
this behavior, because its unwanted manifestation can interfere with the intended

function of a photonic device.

5.2. Nonlinear Phase Modulation

To begin the analysis, it is necessary to determine the effect that nonlinearity
has upon the phase of a field propagating within a waveguide. The effect of optical
nonlinearities may be incorporated by expressing the electric polarization of Eq. (2.5)

as a Taylor series in terms of the electric field:

P=c,(yE+ 7P EE+ z):EEE +...,

(5.1)
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where the y tensors represent the nonlinear susceptibility of the material. In a
waveguide the maximum nonlinear effect is achieved when all the power is confined
to a single mode. In this situation a field with both co-propagating and counter-
propagating components assumes the form:

E(x,y,2,1) = Re{4, (2)E(x, y Jexpli(er - fz)] + 4, (2)E(x, y Jexpli(t + fz)]}

= %{AF (Z)E(x, y)exp[i(a)t - ,HZ)]—i— Ay (Z)E(x, y)exp[i(a)t + ﬂz)] + c.c.} '

(5.2)

where c.c. indicates the complex conjugate of the preceding terms. Consider a material
in which only the third order nonlinearity is significant. The electric polarization of

such a material may be obtained by substituting Eq. (5.2) into Eq. (5.1) and neglecting

the rapidly varying terms:
P=P,,, + P]ion/inear + P]\b/’on/inear >
(5.3)
Py =60 22 E,
(5.4)

. 1|3 3
P]cvonlinear = 8O /1/1(23) EEEE{|:5|AB (212 AF (Z)+ Z|AF (ZXZ AF (Z):| exp[l(a)t - ﬂZ)]"F C'C‘} )

(5.5)
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(5.6)

If we treat the nonlinearity as a perturbation we may apply the coupled-mode theory
developed previously by substitution of Egs. (5.2) and (5.3) in place of Egs. (2.66) and
(2.67). The only minor difference is that additional forward and backward propagating
fields occur in the subsequent equations. Otherwise, the separate treatment of each
field proceeds exactly as before, and most of the additional terms are discarded as
rapidly varying since no special phase matching condition is assumed. Applying the
coupled-mode machinery produces the following equations governing amplitude

evolution:

L )= -ir| 4. + 244, X b ()- L 4. (2)

dz
(5.7)
L) =i aple) + 2, I+ £ o),
'z 2
(5.8)

(5.9)
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A loss coefficient has also been included in the perturbation for completeness, in the
same manner as Egs. (2.74) and (2.77).
A great deal of information about the behavior of the fields can be obtained by

rewriting Egs. (5.7) and (5.8) in terms of absolute power and phase such that:
Az) = P(z) explig(z)].
(5.10)

By inspection of Egs. (5.10) the derivatives of the absolute power and phase must

obey the following relationships:

(5.11)

dz dz

(5.12)

Application of Egs. (5.11) and (5.12) to Egs. (5.7) and (5.8) produces the following
relationships:

L b (2)=—ab, ,(2).

dz

(5.13)



The solution of Egs. (5.13) through (5.16) is trivial:

P.(z)= P (0)exp(-az).

Py(z)= P, (0)explaz) = P, (L )exp(- aL )exp(cz),

()= L oy ekie =z, 0 2,0)] =0t |

o

(0)= [ e = 11, 1) 21, 0)] =2

(24
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(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)
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It is clear from Eqgs. (5.17) through (5.20) that the nonlinearity only to modulates the

phase of the fields and does not transfer power between them.

5.3. Steady State Bistability
Following Egs. (3.1) and (3.2), the response of a nonlinear resonator that obeys
Egs. (5.15) and (5.16) is:

C,T.Coy exp(=a L )1,,Co
2 . 27
VR Gy Ry eXp(— a.L, )eXp(l ¢rm1

Tpp =
-

(5.21)
Broe = Brincar + Brontincar
(5.22)
Brinear = 2BL, +arg(r, ) +arg(ry,),
(5.23)
Broninear = B (L) = 5 (L,).
(5.24)

Since the output power of a bistable Fabry-Pérot resonator is not unique, the steady
state response of the device must be modeled by expressing the input power of the
device as a function of the output power. For the proper description it is necessary to
couch the power within the resonator in terms of the output power. This may be done
by considering the power within the cavity as being divided between two counter

propagating waves such that [2]:
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By =Tppb = P, :ia

(5.25)
P, = P.(0)exp(-a.L,)C3,TxC,y — P (0) = POCZXP—@LC) ’
CMT-;3CO
(5.26)
PR
By(L.)=RyCyy P (L,)= RyCyy P (0)expl(-ar L, ) = By (L. )= TO C23 ,
23>0
(5.27)

where P; is the input power measured prior to the input coupling junction C;, and Po is
the output power measured following the output coupling junction Cp. Combining
Egs. (5.25) through (5.27) with Egs. (5.21) through (5.24) leads to the desired implicit
description of bistability:

2
‘1 - R23 Cj/[\/R_ZleXp(_ ach)eXp(i¢Totj
C1leC1%4 exp(— a.L, )T23C0

P =F,

9

(5.28)

C]%l 7—'23(:’0

c

2
Pro =2PL, + arg(rB )+ arg(’”n )+ 37P0{1 — exp(— 2.l )}{ exp(ach ) + Carfy } .

(5.29)

The bistable transfer function of a lossless symmetric resonator at a point of linear

resonance following Eqgs. (5.28) and (5.29) is shown in Fig. 5.1. The resonator can
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only approach the bistable regime from a low or high power state, so the intermediate
power in the figure is not physical. This analysis neglects the time dependent behavior
of the bistable system, in which it is possible for the resonator to oscillate between the
bistable states (either with regularity or chaotically). The time dependent behavior of

the system may be evaluated using linear stability analysis [10].

Ideal Bistable Resonator Transfer Function

0.15

T
1

0.05

% 50 100 150 200 250 300 350
v-P-Lg

Fig. 5.1 Transfer function of a bistable lossless symmetric resonator in which R=10.9 , and 7=

0.1 at a point of linear resonance.
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6. Waveguide Fabrication

6.1. Fabrication Overview

The waveguides produced to demonstrate the proposed characterization
methods were fabricated using a CMOS-compatible silicon-on-insulator material
system [19], [11], [15]. A cross-sectional illustration of the fabrication process is
provided in Fig. 6.1. Fabrication begins with a heterogeneous wafer composed of a
250 nm silicon layer on top of a 3 um buried silicon dioxide layer on top of a thick
silicon substrate (step 1 in Fig. 6.1). The top silicon layer is then coated with a layer of
hydrogen silsesquioxane (HSQ) resist (step 2 in Fig. 6.1) that is patterned via electron
beam lithography (step 3 in Fig. 6.1), and developed so that it forms a mask with the
lateral dimensions of the desired waveguide (step 4 in Fig. 6.1). The wafer then
undergoes an inductively coupled plasma reactive-ion etching process that removes
the silicon not protected by the HSQ mask (step 5 in Fig. 6.1). The patterned silicon is
then cladded with a layer silicon dioxide deposited via plasma-enhanced chemical
vapor deposition, which completes the waveguide (step 6 in Fig. 6.1). The waveguides

are then exposed by dicing or cleaving if necessary.
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(1) Prepare Layer Stack (2) Spin Resist (3) Expose Resist

(4) Develop Resist (5) Etch (6) Deposit Cladding

Fig. 6.1 Cross-sectional illustration of the fabrication process.

6.2. Thin Film Preparation

Waveguide fabrication begins with a layer stack of thin films. These films are
films are prepared using commercial technology. In the case that a single crystalline
film is required within the layer stack, the production of the film is outsourced. In the
case of amorphous films the production is accomplished using plasma-enhanced
chemical vapor deposition, using the recipes recommended by the manufacturer of the
machine. The primary caveat with this technology is that the deposition rate can be
dependent on chamber condition (the other film parameters such as refractive index
remain consistent). This appears to be related to the history of films deposited since
the last chamber clean, which can accumulate varying conditions such as intrinsic
stress depending on the specific interfaces. Fortunately there are methods of

compensating this variability. The first strategy is to precondition the chamber before
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performing the desired deposition. This involves depositing a film of the desired
material in the empty chamber to help create more uniform deposition conditions. The
second strategy is to measure the actual deposition rate by halting the process
approximately half way through. This may be accomplished with high confidence with
a method such as reflectometry by including a small blank wafer in addition to the
sample that requires deposition, and measuring the resulting two layer stack. The
observed deposition rate is highly uniform over the course of a single deposition (even
for a relatively thick film), so this method produces extremely accurate film

thicknesses.

6.3. Lithography

The preparation of scientific nanophotonic devices is essentially a process of
rapid prototyping. In this context, electron-beam lithography is generally more
efficient than photolithography. This is because electron-beam lithography systems
operate by scanning the beam, and each pattern is defined using a computer-aided
design file. Photolithography systems require the generation of a separate physical
photomask for each sample, which is a time consuming process. To produce the most
consistent results, a dose test should be performed for each distinct combination of
layerstack and resist, as the scattering characteristics will generally be different for
each. Finally, in the context of photonics extra care should be taken in the selection of
resist. This is because if the optical properties of the exposed and developed resist are
appropriate, it can be used as waveguide cladding. This also reduces sample handling,

as it is not necessary to remove the resist following exposure. For example, the
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electron sensitive resist hydrogen silsesquioxane converts to silicon dioxide upon
exposure and development, which is a common cladding employed in silicon

waveguides [11], [19].

6.4. Etching

The physical definition of the waveguide is accomplished by selectively
etching the portion of the thin film that is not protected by the lithography resist.
Etching can be accomplished chemically, although this process can be complicated by
the tendency of the etch rate to depend anisotropically on crystal structure. For this
reason the preferred alternative is the commercial technology of inductively coupled
plasma reactive-ion etching, using the recipes recommended by the manufacturer. This
process is notable in that it produces extremely vertical waveguide sidewalls. The
primary caveat with this technology is that the rate can be dependent on chamber
condition. The best strategy to compensate for this is to design the sample such that
the underlying layer is an extremely resistance etch stop. In this situation the etch
process can simply be run slightly long to ensure that the overlying layer is entirely
removed. The other alternative is to clean the chamber each time prior to before
performing the desired etching process. It should be noted that the sidewall roughness
introduced during the etching step is generally the primary source of scattering loss in
waveguides. This is plainly visible in Fig. 6.2, which contains an electron micrograph

of an etched silicon-on-insulator wafer.
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Fig. 6.2 Electron micrograph of an inductively coupled plasma reactive-ion etched silicon-on-
insulator wafer taken at an angle of 80 degrees. The sidewall roughness of the HSQ mask is

noticeably less than in the silicon.

6.5. Waveguide Access

Direct coupling methods require a way of accessing the waveguide cross
section. This may be accomplished by cleaving or dicing the wafer. If the handle
wafer on which the waveguide was prepared is crystalline, it is possible to cleave the
wafer in a manner that will expose the waveguide. This method is not preferred, as
there is a tendency for the cleave to drift over long distances (which is problematic for
arrays of waveguides), and successful cleaving requires a delicate handle wafer (which

precludes a physically robust device). Dicing essentially involves cutting the sample
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with a very fine saw, and is therefore particularly suitable for samples which cannot be
cleaved. The primary drawback of dicing is that the surface produced by the saw is
rougher than the surface produced by cleaving, which will result in excess scattering
loss at the interface. In the case of an amorphous cladding the best case roughness of
the surface will be limited by the fracture pattern of the cladding material, for dicing
or cleaving. If surface roughness is problematic, the quality of a surface can be
improved by polishing. During polishing care must be taken to ensure the wafer is
perpendicular to the grit and that parameters such as the wafer pressure are consistent,

or the rate of material removal can vary wildly.
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7. Experimental Design

7.1. Experimental Overview

Proper experimental demonstration of the methods described here requires care
to eliminate potential sources of error. An illustrated schematic of the experimental
setup employed in the demonstration of the characterization method is provided in Fig.
7.1 [19], [11], [15]. Device characterization is performed using a tunable laser to
excite the desired mode of a given waveguide. The laser output is scrambled and
repolarized to ensure the purity of the input polarization. Input coupling is
accomplished by aligning a lensed fiber to the waveguide cross section. The
transmitted light is collected by a microscope objective (lens 1 in Fig. 7.1). The
collected light is imaged onto the detector by a pair of sequential 4F systems
(comprised of lenses 1 and 2 and lenses 3 and 4 in Fig. 7.1). A spatial filter
comprised of an iris in the initial focal plane is employed to isolate the output from a
single waveguide and eliminate any stray light from the input fiber. A polarizer within
a subsequent Fourier plane is used to reject any undesired polarization component that
may result from imperfect alignment of the fiber, or which may arise from the device
itself. A spectrometer may be used in place of the detector if it provides more suitable
for the desired measurement. Likewise, a camera may be used temporarily in place of
the detector for the purpose of inspecting the mode profile (in the far-field) or making
coupling alignment more convenient. The measurements are automated by a computer

which coordinates the tunable laser and power meter.
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Fig. 7.1 Schematic experimental characterization setup.

| Fiber

7.2. Free-space versus Fiber

The preferred method of input coupling is through the direct overlap of the
lensed fiber mode with the waveguide mode (either of which may be adiabatically
tapered to improve mode matching [16]). This provides the maximum amount of
wavelength independence, and allows the polarization to be controlled and verified
using the camera by placing the input fiber at some point in the free-space optical
path. The preferred method of output coupling is collection with a large aperture lens.
This provides near perfect collection efficiency (which is much greater than could be
accomplished using a lensed fiber output due to mode mismatch). Furthermore, a free-
space output path provides more freedom than a fiber output. It allows spatial filtering
to isolate the waveguide output, and visualization of the mode cross section using a

camera. Fiber-to-fiber coupling systems are limited to guiding alignment by observing
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waveguide scattering from a top-down camera. This becomes problematic for both
extremely lossy waveguides (since the scattering intensity may not be visible at the
output), and extremely low loss waveguides (since the scattering intensity will be
negligible). Finally, a free-space system allows more freedom for accomplishing

various optical operations, such as polarization control and wavelength filtering.

7.3. Waveguide Design

The methods of characterization described here involve specific interacting
waveguide modes. In principle the interacting modes are specified by the phase
matching condition. In the strictest sense, however, some small fraction of energy will
be coupled into each guided mode by a perturbation. It is possible to minimize the
experimental effect of this coupling by designing the waveguide geometry such that it
only supports a single symmetric and antisymmetric mode of each polarization. The
overlap integral of a symmetric and antisymmetric mode with a symmetric
perturbation will be negligible. If it is necessary to use a waveguide with many modes,
a device exists that allows the selective excitation of one mode from another [23]. The
isolation of this device is very good, but the energy coupled from the light source into

the modes that do not interact is lost.
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Appendix

This appendix contains the derivation of the Fourier coefficients of the most
common waveguide perturbations used in distributed Bragg reflectors. It is
informative to begin by considering some general properties of Fourier series [24]. A

periodic function f{z) may be decomposed as the series:

=—00

flz)= i ¢, exp(—iszzj,
(A.1)

1} 27
¢, =X_[f(z)exp szz dz,

(A.2)

where £ is an integer, and A is the period length. In accordance with Euler’s law the

coefficients may be rewritten as:

A

¢ =% | f(z)cos(k%”zjdﬁz%z f(z)sin(k%z}dz.

(A.3)

Such that if f{z) is a real function the first term of Eq. (A.3) represents the real part of
cr and the second term represents the imaginary part of ¢;. From the form of Eq. (A.3)
it is also apparent that if the function is symmetric or antisymmetric about the point z

= A/2, the coefficients undergo the following simplification:
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A
A 2
e = %!f(z)cos(k%z}dz = %!f(z)cos(kzxﬂzjdz,
(A4
A
antisymmetric . 1 T : 27[ . 2 ? : 27[
c; :lXjf(z)sm sz dz:lXJ.f(z)sm kTZ dz ,
0 0
(A.5)

where the superscripts indicate the relevant function type. It follows from Egs. (A.4)
and (A.5) that the Fourier coefficients of symmetric real functions are real, while the
Fourier coefficients of antisymmetric real functions are imaginary. Another notable
property of real functions f{z) that follows from simple inspection of Eq. (A.2) or Eq.
(A.3) is that the coefficients obey the relationship c¢; = c-*.

The first common perturbation is a square wave composed of alternating

materials such that the permittivity may be described as:

1, 0<z< A
Ag(x,y,z)=Ae(x,y N 2
-1, —<z<A
2
(A.6)
n—n, )
———=, perturbed cross section
Aa(x,y) = so(x,y 2 ,
0 , elsewhere

(A.7)



83

where Ag is the perturbed permittivity, n; and 7, are the indices of refraction of the
alternating materials, and A is the perturbation period. For the purpose of calculating
the unperturbed modes, the unperturbed permittivity € of the perturbation region
should be taken as:

e(x,y)=¢,(, y)’“T”z.

(A.8)

Since the perturbation is antisymmetric, the Fourier coefficients may be calculated

using Eq. (A.5):

o>

5 2 5 5 —cos(kAzj
) ) Vs _.2 U A )
c, —ZXAs(x,y)_([sm( szdz —lAAs(x,y kzi

A

_ é Ag(x, y)1—cos(kz)|

(A.9)

Therefore from Eq. (A.9) the £™ Fourier coefficient of the perturbation may be

expressed as:

;= %As(x,y):%so(x,y), k =odd .

0 , k=even

(A.10)
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The final common perturbation is a sine wave composed of alternating

materials such that the permittivity may be described as a sine wave:
. (27
Ae(x, y,z) = Ae(x,y)sm TZ ,

(A.11)

n—n,

, perturbed cross section
Ae(x,y)=g,(xy) 2 :

0 , elsewhere

(A.12)

where Ag is the perturbed permittivity, n; and n; are the indices of refraction of the
alternating materials, and A is the perturbation period. For the purpose of calculating
the unperturbed modes, the unperturbed permittivity € of the perturbation region

should be taken as:

n, +n,

o )=o)

(A.13)

Since the perturbation is antisymmetric and takes such a simple form, the Fourier
coefficients may be determined essentially by inspection in conjunction with Eq.

(A.5):

A . B
ck = ZLAS(X’ y) Sln(z_ﬂ-ZJ Sln(kz_ﬂ-zjdz — <lA8(x’y)’ k - 1 )
A A A

0

(A.14)
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Therefore from Eq. (A.14) the K™ Fourier coefficient of the perturbation may be

expressed as:

(A.15)
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