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ABSTRACT 

Rangarajan, Prasanna      BE in Electronics Engineering, Bangalore University, Bangalore, India, 2000 

      MS in Electrical Engineering, Columbia University, 2003 
 

 

Pushing the Limits of Imaging Using 

Patterned Illumination 

Advisor: Professor Panos Papamichalis 

Doctor of Philosophy       May 17, 2014 

Dissertation completed     February 5, 2014 

The image captured by an imaging system is subject to constraints imposed by the 

wave nature of light and the geometry of image formation. The former limits the resolving 

power of the imager while the latter results in a loss of size and range information. The 

body of work presented in this dissertation strives to overcome the aforementioned limits. 

The suite of techniques and apparatus ideas disclosed in the work afford imagers the unique 

ability to capture spatial detail lost to optical blur, while also recovering range information.  

A recurring theme in the work is the notion of imaging under patterned 

illumination. The Moiré fringes arising from the heterodyning of the object detail and the 

patterned illumination, are used to improve the resolving power of the imager. The 

deformations in the phase of the detected illumination pattern, aid in the recovery of range 

information. 
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The work furnishes a comprehensive mathematical model for imaging under 

patterned illumination that accommodates blur due to the imaging/illumination optics, and 

the perspective foreshortening observed at macroscopic scales. The model discloses the 

existence of a family of active stereo arrangements that jointly support super resolution 

(improvement of resolving power) and scene recovery (recovery of range information). 

The work also presents a new description of the theoretical basis for super 

resolution. The description confirms that an improvement in resolving power results from 

the computational engineering of the imager impulse response. The above notion is 

explored further, in developing a strategy for engineering the impulse response of an 

imager, using patterned illumination. It is also established that optical aberrations are not 

an impediment to super resolution.   

Furthermore, the work advances the state-of-the-art in scene recovery by 

establishing that a broader class of sinusoidal patterns may be used to recover range 

information, while circumventing the extensive calibration process employed by current 

approaches. 

The work concludes by examining an extreme example of super resolution using 

patterned illumination. In particular, a strategy that overcomes the severe anisotropy in the 

resolving power of a single-lens imager is examined. Spatial frequency analysis of the 

reconstructed image confirms the effectiveness of lattice illumination in engineering a 

computational imager with near isotropic resolving power.  
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Chapter 1 

INTRODUCTION 

Imaging systems such as the camera, the microscope and the telescope enable us to observe and reason about 

the physical world that surrounds us. Modern day imagers accomplish the task by employing sophisticated 

optical architectures that share the burden of image formation with equally sophisticated signal processing 

algorithms. The image in Figure 1.1, is representative of the image acquired by a modern day imager. 

Inspection of the image exposes two limitations: the loss of spatial detail in select areas, and the loss of 

absolute size & shape information. The loss of spatial detail is evidenced in the inability to resolve the spokes 

in the innermost portion of the spoke target. The text in 3-point “Times Roman” font shares a similar fate. 

The loss of absolute size is evident in the mismatch of the image heights of identical rooks placed on opposite 

sides of the chessboard. The loss of shape information is evident in the mismatch of the true and apparent 

shapes of the chessboard. 

The loss of spatial detail is attributed to the limited resolving power of the imager, while the loss of 

absolute size & shape is attributed to the loss of dimensionality arising during image formation. The 

traditional approach to improving resolving power has been to increase the numerical aperture (NA) of the 

imager while keeping aberrations in check. Common criticisms of the approach include the failure to 

accommodate large working distances at higher NA, the nagging presence of residual aberrations, and 

increased design complexity. Setting aside the aforementioned issues, one finds that diffraction is an 

inescapable phenomenon that ultimately limits the resolving power of an optical imager.  
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The quest to surpass the diffraction limit without incurring a significant penalty in cost, form and 

complexity, has produced a wealth of solutions [10-35]. The celebrated approaches rely on the use of 

patterned illumination to effect an improvement in resolving power. But, these approaches are not without 

                                                                                 

                                                                                                               

EllipseCircle Rectangle Parallelogram

           5        

Loss of absolute size information

Loss of shape information

Spoke targetResolution chart

Figure 1.1 Image of a chessboard and Kodak imaging test chart obtained using a Sinar P3 camera 

equipped with a 48.8 MP digital back, and a 180mm F/5.6HR Rodenstock lens. 
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limitations. Their use remains limited to microscopes observing specimens tagged with a fluorescent dye. 

Discounting the need for fluorescent labels, one finds that the approaches are focused on improving the 

resolving power of well-corrected optics characterized by space-invariant blur, an assumption that is seldom 

valid for macroscopic imagers. An added source of frustration is the perspective foreshortening evidenced at 

macroscopic scales. The present work recognizes the opportunity, and proposes to assimilate space-variance 

and perspective foreshortening into a cohesive framework aimed at overcoming the resolution limit. The task 

of improving the resolving power of an imager will henceforth be referred to as “super resolution”, in keeping 

with convention. 

The recovery of surface/scene topography remains a fertile ground for research and innovation. Devices 

that recover topographic information find use in fields as diverse as such as industrial process control, aerial 

photogrammetry and natural user interaction.  The leading candidates for recovering topographic 

information, rely on the fact that a camera observing a scene under patterned illumination, notices 

deformations in the projected pattern that encode topography [52-73]. The Microsoft Kinect and the 

increasingly popular 3D scanners are prime examples of devices that exploit the above notion.  

It is evident from our discussions thus far that the leading candidates for super resolution and scene 

recovery share a common affinity for patterned illumination. Despite the correlation, no attempt has been 

made to unify the seemingly unrelated tasks of super resolution and range recovery. The likely explanation 

is the independent evolution of these problems in diverse engineering disciplines.  

The recognition that patterned illumination may be used to simultaneously super resolve and recover 

topography information is a key contribution of this work, and distinguishes it from prior art. The insight is 

afforded by a unified treatment of super resolution and scene recovery in a single mathematical framework. 

A list of additional contributions is included below, albeit in no order of importance  

 Development of a comprehensive model for imaging under sinusoidal illumination that accommodates 

 space-variance in the blur induced by the imaging and illumination optics, and 

 perspective foreshortening encountered at macroscopic scales. 

Our model offers unique insight into the mechanics of super resolution and scene recovery. Further 

analysis divulges the existence of a family of active stereo arrangements that jointly support super 
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resolution and scene recovery. The associated findings hint at the possibility of using commercial 

structured light scanners to super resolve texture, in addition to recovering topographic information. 

 Advancement of the state-of-the-art in super resolution, by assimilating perspective foreshortening 

and space-variance into a boarder super resolution framework. The framework improves our current 

understanding of super resolution, by establishing the hitherto unknown fact that “linearity” and not 

“space-invariance” is the principal requirement for super resolution using active illumination. The 

associated experiment provides evidence in support of our claim. 

The proposed framework for super resolution revisits the mathematical principles that underlie 

super resolution using active illumination. It is observed that super resolution is effected by 

computational engineering of the optical blur. The notion is used to examine the prospect of 

engineering an optical blur with the desired qualities. 

 Existing approaches to super resolution have overlooked the loss of temporal resolution that 

accompanies the gain in spatial resolution. Our work examines a strategy for illumination pattern 

design that minimizes the number of images/patterns needed to realize a prescribed gain in the 

resolving power of expertly designed optics. 

 Examination of the limits of super resolution using patterned illumination. The associated experiment 

seeks to offset the abysmal image quality of a single lens imager using pulse train illumination.    

 Existing approaches to active scene recovery limit their attention to periodic sinusoidal patterns, and 

require extensive calibration to determine the parameters associated with the stereo setup. In contrast, 

our method for scene recovery employs a broader class of sinusoidal patterns that are obtained using 

minimal calibration.  

1.1 Organization 

The reminder of this dissertation is organized as follows: Chapter 2 discusses the origins of the resolution 

limit in optical imaging and reviews key developments in overcoming the limit. The chapter also reviews 

popular approaches for recovering topographic information. Chapter 3 develops a rigorous mathematical 

model for imaging under patterned illumination. Chapter 4 describes the proposed approach to overcoming 

the resolution limit imposed by the wave nature of light. Chapter 5 describes the proposed approach for 
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recovering topographic information. Chapter 6 provides experimental evidence supporting the findings 

reported in previous chapters.  Chapter 7 discusses advanced topics in super resolution and scene recovery. 

1.2 Terminology 

The term resolution is used frequently in this dissertation, and warrants definition. It is defined as the ability 

to discriminate objects/ features with a prescribed spacing. A spatial resolution of 1𝜇𝑚 is to be interpreted 

as the ability to discriminate objects in space, whose transverse separation exceeds 1𝜇𝑚. An axial resolution 

(range resolution) of 1𝜇𝑚 is to be interpreted as the ability to discriminate objects in space, whose axial 

separation exceeds 1𝜇𝑚. 
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Chapter 2 

BACKGROUND 

Historically, the study of optical imaging has relied on geometric principles centered on the rectilinear 

propagation of light. These principles adequately describe the loss of size and shape information that arise in 

the course of imaging. However, they fail to explain the pattern of light produced by the passage of light 

through an aperture whose size is comparable to the wavelength of the light. The inadequacies of geometric 

optics are remedied by the wave theory of light propagation. Valuable insight into the wave nature of light 

can be gleamed by recasting results from wave theory in terms of linear systems theory [2-3]. The result is 

the ability to characterize the effect of imaging elements such as lenses and stops by their combined response 

to a point stimulus, a construct that is appropriately dubbed as the point spread function (PSF). A notable 

feature of the PSF is its use in ascertaining the imager’s ability to resolve stimuli with a prescribed spacing. 

The remainder of this chapter is devoted to a discussion of the origins of the resolution limit in optical 

imaging, a review of key developments in surpassing the optical resolution limit, and a review of popular 

approaches for recovering topographic information from one or more images of a scene. 

2.1 Origins of the resolution limit in optical imaging 

Our inquiry into the origins of the resolution limit begins with a study of the response of an ideal imaging 

system to a single point stimulus, namely a monochromatic point source. The apparatus of Figure 2.1 is used 

to introduce the relevant concepts.  

The point-source produces diverging spherical wavefronts that propagate towards the optics. The “Ideal 

Optics” transforms the diverging hemispherical wavefront, into a converging hemispherical wavefront 

centered at the geometric image point. The transformation is exact only in the case of infinitely large optics, 

signifying that the construct is a mathematical idealization. The terminals labelled “Entrance/Exit Pupil 

Plane” represent the apertures though which light must proceed en-route to the detector. The light distribution 

at these terminals fully describe the passage of light through the optics. 
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Intuition suggests that the ideal imager must possess infinite resolving power. But, experiments suggest 

otherwise. Insight into this behavior can be gleamed by examining the “linear systems” embodiment of 

monochromatic imaging, depicted in the lower portion of Figure 2.1. In accordance with the principles of 

linear systems theory, one may derive the end-to-end transfer function of the imaging chain by cascading the 

transfer functions of its constituents, namely “Ideal Optics” and free-space propagation (FSP). This notion is 

explored further in subsequent paragraphs. 

The expression for the transfer function of the FSP blocks is provided in Figure 2.3. The expressions 

and the plots are consistent with those found in literature [2-4]. Inspection of the FSP magnitude response 

indicates that it resembles an ideal low-pass filter, with a radial cutoff frequency of 𝜆−1 (depicted by the 

magenta circles). Inspection of the phase response indicates that FSP imparts a quadratic phase shift upon 

the frequencies {(𝜉, 𝜂) | 𝜉2 + 𝜂2 ≤ 𝜆−2}, contained within the passband. Further, the phase shift varies 

linearly with the propagation distances 𝐷0, 𝐷𝑖. 
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Figure 2.1  Evaluating the response of an ideal imager to a point source. 
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The reader will recognize that the “Ideal Optics” need only compensate for the quadratic phase 

accumulated by free-space propagation in order to reproduce spatial detail at the detector. The corresponding 

expression for the distribution of light at the detector may be obtained by evaluating the Fourier integral in 

Figure 2.2. The result is a bright disk surrounded by concentric dark and bright rings that are spaced apart 

by 𝜆/2. A formal derivation of the result is available in [5].  
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Figure 2.3 Transfer function of the free-space propagation blocks in Figure 2.1 
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The discussion thus far suggests that the origins of the resolution limit can be traced to the band-limited 

nature of the free-space propagation (FSP). In addition, it establishes that 

1. The image of a point object is not a single point, but a bright disk surrounded by concentric dark and 

bright rings that are spaced apart by 𝜆/2. 

2. The resolving power of an optical instrument (ideal or otherwise) is fundamentally limited to one-half 

the wavelength of the light. 

2.2 Resolution limit in non-ideal imagers 

Physically realizable imaging systems are non-ideal in the sense that the diameters of the entrance and exit 

pupils are finite. This implies that the entrance pupil can only intercept a portion of the incident hemispherical 

wavefront. Figure 2.4 depicts the situation for an optical system with an acceptance angle of 2 ∗ 14.4 ∘ as 

opposed to 2 ∗ 9 ∘. 

Intuition suggests that truncation of the incident wavefront should result in a loss of spatial resolution. 

Ernst Abbe [7-8] formally established this fact and postulated that the resolving power of an optical 

instrument cannot exceed 
 

2sin (𝜃𝑜)
 on the object side, and 

 

2sin (𝜃𝑖)
 on the image side. The angles 𝜃 , 𝜃𝑖  represent 

the half-angle subtended by the spherical wavefront at the entrance and exit pupil, respectively. Abbe coined 

the term numerical aperture to designate the trigonometric function of the angles 𝜃 , 𝜃𝑖. It can be shown that 
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the resolving powers on the object side and the image side are related by the product of the geometric 

magnification ≝
𝐷0

𝐷𝑖
 and the pupil magnification ≝

Diameter of exit pupil

Diameter of entrance pupil
. 

The precise role of the “Optics” in Figure 2.4 is to compensate for the quadratic phase accumulated by 

spatial frequencies restricted to the interval √𝜉2 + 𝜂2 ≤   𝑖  𝜆
−1. This entails a transformation of the 

diverging spherical wavefront incident at the entrance pupil into a (truncated) converging spherical wavefront 

at the exit pupil. In literature, the term “diffraction limited optics” is used to designate optical systems with 

such characteristics. 

Insight into the Abbe resolution limit can be gleamed by interpreting the imaging chain of Figure 2.4 

as a cascade of the linear systems, just as depicted in Figure 2.5. The     (… ) function plays the role of an 

ideal low-pass filter and serves to truncate the incident spherical wavefront. The impulse response of the 

diffraction limited imager of Figure 2.4 is obtained by evaluating the Fourier integral in Figure 2.5. 

Inspection of the expressions for  ( ,  ) in Figures 2 & 3 suggests a similarity in the integral form of 

the PSF’s for the “ideal imager” and the “diffraction limited imager”. It is worth noting that the expressions 
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Figure 2.5  Identifying the PSF of the diffraction limited imager of Figure 2.4 
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are in perfect agreement for the limiting case of    (𝜃𝑖) → 1, which occurs when the diameter of the entrance 

and exit pupils approach infinity. 

Thus far, our study of spatial resolution has restricted its attention to a point-source positioned along 

the optical axis. But in practice, it is necessary to examine the spatial resolution at other field locations. The 

reason is that the PSF is likely to change in functional form as the point-source explores the object volume. 

Imaging systems characterized by such spatially varying impulse response are referred to as space-variant 

imagers. Figure 2.6 provides an example of transverse space-variance in the diffraction limited imager of 

Figure 2.4. Closer inspection of the PSF indicates that the diameter of the central lobe of the off-axis PSF 

exceeds the diameter of the on-axis PSF. This is indicative of a loss of spatial resolution as one moves away 

from the optical axis. The behavior is more pronounced for imagers with higher numerical aperture. 
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.But that is not all. For higher numerical apertures, it is observed that the functional form of the PSF changes 

appreciably as the point-source is displaced in the axial direction. The change is attributed to blurring due to 

defocus. Figure 2.7 provides an example of axial space-variance in the diffraction limited imager of Figure 

2.4. 

The analysis thus far has assumed that the converging wavefront emerging from the exit pupil has a 

spherical profile, and is centered on the geometric image point. Any deviation from the said behavior 

introduces additional degradation in image quality, and a subsequent loss in resolving power. A detailed 

derivation of this result is available in [2]. The term aberrations is used in literature to describe non-idealities 

in the wavefront emerging from the exit pupil.  

Our inquiry into the PSF of a non-ideal optical imager concludes with the following comments  

 The image of a point object is not a single point, but a blurry spot 

 The limiting resolution of an optical imager varies linearly with the wavelength of light, and varies 

inversely as the numerical aperture.  

 Diffraction and aberration play an important role in the distribution of light in the image volume 

(region between the exit pupil and the detector). 

  ,    ,    ,  
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Figure 2.7 Axial space-variance induced by defocus blurring in the 

diffraction limited imager of Figure 2.4 
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 The impulse response may exhibit transverse and axial variation on account of aberrations, 

diffraction and defocus.  

Sections 2.1-2.2 examined the origins of the resolution limit in optical imaging. The upcoming sections 

examine accepted methods for improving the resolving power of an imager. 

2.3 Improving optical resolution: a case study 

The traditional approach to improving resolving power has been to increase the numerical aperture of the 

imager while keeping aberrations in check. Common criticisms of the approach include the failure to 

accommodate large working distances at higher NA, the nagging presence of residual aberrations, and 

increased design complexity.  

Nevertheless, it is useful to examine the “Cost versus Resolution” tradeoff for a popular class of imagers 

such as photographic cameras. In the present study, the Leica M-series of lenses is chosen for its reputation 

to deliver the highest image quality in the 35mm form factor. It is crucial that the lenses share the same focal 

length (5 mm in this case) to ensure parity in the geometric magnification.  

Numerical 

Aperture

 1495
                  . /    
• 6 lenses in 4 groups

 .     

 .  5  
                   . /         
• 6 lenses in 4 groups

 2295

 .     
                   . /         
• 8 lenses in 5 groups

 4   

 .     
                  .   /         
• 8 lenses in 5 groups

 1 9  

Price

Figure 2.8 Resolution versus Cost tradeoff for 50mm Leica photographic lenses. 

Please note that the lens images are not drawn to scale. 
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The data in Figure 2.8 yields a quadratic relation between the achievable resolution and cost. Please 

note that the data discounts the fact that optical aberrations tend to grow disproportionately as the aperture 

diameter increases. The quadratic trend in Figure 2.8 reveals a disproportionate increase in the cost for a 

modest resolution gain of  .52  ÷  .2 = 2.  . A similar argument can be made for the tradeoff between 

resolution and the remaining criteria (size, weight and design complexity). 

The quest to improve resolving power without incurring a significant penalty in cost, form factor and 

design complexity has produced a wealth of approaches aimed at circumventing the resolution limit. The 

term “Optical Super Resolution” has been used in literature to describe these approaches. The upcoming 

section presents a selection of techniques that represent the state-of-the-art in “Optical Super Resolution”.  

2.4 Pathways to super resolution 

A recurring theme in literature on Optical Super Resolution is the idea of improving resolving power by 

exclusively manipulating the distribution of light in either the object volume or the image volume. This 

distinction may be used to classify existing super resolution techniques into one of two categories: 

1. Super resolution by PSF engineering 

2. Super resolution by object space coding 

a. Super resolution by heterodyning 

b. Super resolution microscopy 

The following paragraphs examine each category in detail. 

2.4.1 Super resolution by PSF engineering 

The first set of techniques for improving the resolving power of an optical instrument are inspired by the 

observation that the optical PSF may be manipulated by engineering the wavefront that emerges from the 

exit pupil. The wavefront is engineered by varying the transmittance of the exit pupil. The apparatus of Figure 

2.9 is used to demonstrate the principle. The aperture stop in Figure 2.9 controls the numerical aperture of 

the imager by limiting the angular extent of the bundle of light that passes through the optics.  
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Following the linear systems approach to optical imaging introduced in Section 2.1, one may aggregate 

the lens elements in Figure 2.9 into a single unit, whose behavior is solely defined by its terminal properties. 

The entrance and exit pupil planes serve as the terminals of the unit. The transmittance of the exit pupil may 

be modified by positioning amplitude and phase masks at the aperture stop. Figure 2.10 illustrates the 

influence of a binary amplitude mask, and a binary phase mask on the impulse response of the imager.  

Inspection of the PSF insets hints at the possibility of engineering a PSF with a smaller central lobe, a 

prerequisite for super resolution. In a seminal paper [9] on super resolution using pupil filtering, Toraldo di 

Francia postulated that an impulse response of arbitrary shape may be engineered by dividing the pupil into 

concentric annular zones with constant complex amplitude.  

Object Image

Object-side NA=  . 52 Image-side NA=  . 54 

Aperture Stop (        = 9𝑚𝑚)

 . 5 2∘  .259 ∘

Figure 2.9 Apparatus for demonstrating PSF engineering using pupil filtering 
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Unfortunately, pupil filtering techniques for super resolution are beset with issues: 

1. A reduction in the support of the central lobe is always accompanied by a reduction in the height of 

the central lobe, in comparison to the unobscured pupil. 

Aperture Stop

Optical Axis

Object-side NA=  . 52 Image-side NA=  . 54 

 .  5𝐷

Unobscured Pupil Pupil Amplitude Filtering Pupil Phase Filtering

1  𝜋1  𝐷 = 9𝑚𝑚

Support of 

central lobe
2 .  291 𝜆 2 .9  4 𝜆 1 .54   𝜆

 .   1

Intensity Point Spread Function 

1. 

Optical 

cutoff freq.
191. 9

   

  
191. 9

   

  
191. 9

   

  

Modulation Transfer Function

Figure 2.10 PSF engineering using pupil filtering 
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2. Pupil filtering has no bearing on the numerical aperture of the imager, and consequently does not 

influence the spatial frequency bandwidth of the imager. This behavior is evident in the MTF insets 

of Figure 2.10. 

In view of these limitations, the use of super resolving pupil filters remains confined to the problem of 

resolving a sparse collection of point emitters whose spacing is smaller than 
 

2𝑁𝐴
. 

Over the years, the subject of super resolving extended objects has attracted significant interest in the 

scientific imaging community. The following section reviews two of the most significant developments, in 

chronological order.    

2.4.2 Super resolution by heterodyning 

Lukosz & Marchand [10] were the first to recognize the potential use of heterodyning in extending the spatial 

frequency bandwidth of an imaging system. They observed that modulating the spatial detail in an object by 

a sinusoidal pattern produces replicas of the object spectrum, about the frequency of the sinusoidal pattern. 

The net result is a shifting of unresolved portions of the object spectrum into the optical pass-band. Figure 

2.11 illustrates the principle underlying their technique. 

Object

Camera image of spatial 

pattern

Optically Super-

Resolved image

Sinusoidal

Illumination pattern

Camera image of Moiré 

fringes

Modulated Spatial 

pattern

1 2 3

4 5 6

Figure 2.11 Principle underlying “super resolution by heterodyning” 
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Panel-1 represents an object containing spatial detail that is partially resolved by the camera. The 

corresponding camera image is shown in Panel-4. The camera is unable to resolve the fine spatial detail in 

the object due to the band-limited nature of its optics. Modulation of the object by a sinusoidal pattern (using 

either active or passive techniques) produces Moiré fringes that arise from the multiplicative superposition 

(amplitude modulation) of the two spatial patterns.  The superposition produces sum and difference frequency 

components, the latter of which is resolved by the camera. This is illustrated in Panel-6 of Figure 2.11.  

Demodulation of the camera image containing the Moiré fringes confirms the presence of spatial frequencies 

beyond the optical cutoff. The demodulated image when combined with the traditional camera image yields 

a super resolved image containing spatial frequencies that exceed the support of the optical pass-band. 

Although the illustration in Figure 2.11 suggests that a single sinusoidal pattern is sufficient to realize 

Optical Super resolution, in practice multiple phase-shifted sinusoidal patterns are needed to unambiguously 

recover spatial detail past the optical cutoff. 

Lukosz & Marchand’s novel insight into super resolution has paved the way for optical microscopes 

that can resolve features smaller than the wavelength of light [11-22]. Their insight has also spawned an 

extensive body of work comprising active [23] and passive [24-29] techniques for super resolving extended 

objects. However, innovations have focused exclusively on improving the resolution of well corrected optics 

characterized by space-invariant blur. The assumption of space-invariance limits the scope of these 

techniques as it contrasts the space-variance observed in practice. In addition, the objects are assumed to be 

strictly planar and plane-parallel to the pupil planes of the imager.  

2.4.3 Super resolution microscopy 

Unlike photographic cameras, the resolution of optical microscopes has already reached the theoretical limit 

of  .5𝜆. At these scales the use of optical microscopes remains confined to analyzing supra-cellular 

phenomena (> 2   𝑛𝑚). Attempts to study molecular phenomena (< 2  𝑛𝑚) must overcome the 

diffraction barrier. Until a few decades ago, it was firmly believed that the resolving power of an optical 

microscope cannot be improved past the theoretical limit.  
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The development of organic compounds called fluorophores that absorb light energy of a specific 

wavelength and re-emit light at a longer wavelength provided the much needed breakthrough. Fluorophores 

have afforded the opportunity to probe biological structures and processes using optical microscopes. The 

three most celebrated approaches for overcoming the diffraction barrier are STED, PALM/STORM and SIM. 

The principle behind each method is illustrated in Figure 2.12. 

  

Figure 2.12 Super resolution Microscopy at a glance 

Image borrowed from “A guide to super resolution fluorescence microscopy” [30] 
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In STED (Stimulated Emission Depletion) microscopy [31-33] the specimen is scanned with two 

overlapping laser beams that are pulsed with a small time offset. The first beam excites fluorophores in a 

diffraction limited region, while the second beam drives fluorophores at the edge of the excited spot back to 

the ground state using the process of stimulated emission. A spiral phase plate included in the light path of 

the depletion laser generates a donut-shaped PSF distribution with a zero intensity at the centre, leaving only 

a small volume from which light can be emitted and subsequently detected.  

PALM (Photo Activated Light Microscopy) [34] and STORM (Stochastic Optical Reconstruction 

Microscopy) [35] are instances of super resolution techniques that provide enhanced resolution by localizing 

single molecules separated by distances exceeding the diffraction limit. Localization involves the 

identification of the center of a molecule from the image of its PSF, with a precision better than the diffraction 

limited resolution. In order for molecules to be localized with high precision, it is imperative that they are 

well separated. This is achieved by the use of photoactivatable or photoswitchable fluorophores that can be 

switched between the bright and dark states, thereby providing control over the fluorescent properties of the 

sample. The super resolved image is assembled by accumulating the positions and intensities of thousands 

of localized molecules, yielding a map of the distribution of those molecules with an effective resolution 

limited by the localization precision and labeling density. 

Structured-illumination microscopy (SIM) and its variants [11-22] represent an array of super resolution 

techniques that combine linear fluorescence with the heterodyning principles discussed in the previous 

section. In this method, the specimen is imaged under a series of periodic illumination patterns. Each 

illumination pattern is comprised of one or more spatial frequencies that cause portions of the specimen 

frequency spectrum to be shifted into the optical passband of the microscope objective. By phase-shifting the 

pattern, the contributions of the different portions can be separated and computationally restored to their true 

position in frequency space. A drawback of SIM is the fact that the set of spatial frequencies that can be 

incorporated into the illumination pattern is itself limited by diffraction. This imposes a restriction on the 

achievable resolution.  

The single biggest limitation of Super resolution Microscopy is the need for fluorescent labelling. 

Labelling may not be an issue for biological specimens, but presents serious challenges when trying to extend 

the scope of these methods to natural subjects.  
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Our review of super resolution techniques concludes with the following observations  

 The use of super resolving pupil filters is confined to the problem of super resolving a sparse 

collection of point emitters. 

 The scope of active heterodyning techniques is confined to improving the resolution of well 

corrected optics, and plane-parallel objects. 

 The use of fluorescent labels limits the scope of Super resolution Microscopy to imaging 

biological specimens. 

It is obvious that existing super resolution techniques are neither designed to accommodate space-

variance in the optical blur, nor deal with scenes that exhibit significant topographic variation. The present 

work recognizes the opportunity and proposes to assimilate these requirements into the framework of super 

resolution.   

Discussions thus far have focused on overcoming the loss of resolution due to optical blur. The 

remainder of this chapter is devoted to the study of techniques for recovering topographic information. 

2.5 Pathways to recovering topographic information 

Optical imaging and computer vision are rife with examples of techniques that recover topographic 

information at a variety of scales. The prominent techniques that deal with objects at the macroscopic scale, 

may be classified into three categories 

 Depth from focus/defocus 

 Ranging by PSF engineering 

 Stereoscopic imaging 

Techniques in each category may be further subdivided into active and passive approaches, contingent on the 

use of patterned illumination.  

Our review of the techniques in each category is by no means exhaustive and detailed. A conscious 

choice has been made to limit the scope of the discussion to key developments in each category. Further, 

attention to detail is sacrificed in favor of an intuitive explanation of the underlying principle.     
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2.5.1 Depth from focus/defocus 

These methods recover topographic information by exploiting the blur diversity that is inherent in the axial 

response of a diffraction limited imager (evidenced in Figure 2.7). It is observed that objects at a distance 

mandated by the Gauss equation for imaging appear sharp and focused, whereas farther objects appear 

increasingly blurred. 

The observation suggests a simple scheme for recovering topographic information at each pixel namely: 

find the focus setting that maximizes the contrast of the higher frequencies. The search is conducted over a 

range of focus settings afforded by translating the object/detector with respect to the entrance pupil [36-37]. 

It is standard practice to use derivative filters to monitor the high frequency content in a small neighborhood 

surrounding each pixel. The process assumes that the object shape may be locally approximated by planes 

parallel to the detector, so that the defocus blur is space invariant over the neighborhood. 

The above technique is referred to as “Depth from Focus” (DfF) in computer vision literature. Theory 

[37] suggests that a minimum of 3 images are sufficient to recover topographic information. But in practice 

ten or more images are needed to achieve a reasonable range resolution. 

Researchers [38-39] recognized that the per-pixel search for the optimal focus setting may be avoided 

by directly quantifying the severity of the defocus blur at each pixel, using a two dimensional Gaussian 

function. The analogous problem dubbed “Depth from Defocus” (DfD) is concerned with the unambiguous 

recovery of topographic information from two or more differently focused images of the scene. At first 

glance, the use of multiple images may seem unnecessary. But it is required to disambiguate the defocused 

image of a strong edge from the focused image of a weak edge. Focus diversity is achieved by changing the 

aperture diameter or the distance to the detector.  

The DfF and DfD techniques described above are not without drawbacks. The important ones are listed below  

1  inability to recover topographic information for objects with weak or no texture 

2  inability to handle abrupt depth discontinuities 

  confusing illumination edges with high frequency spatial detail (reflectance edges) 
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In view of these drawbacks, the use of these techniques is restricted to scenes that are uniformly lit and visibly 

rough [37]. The term “visibly rough” is used to describe surfaces whose roughness exceeds the instantaneous 

field of view of a single camera pixel. Its relevance to DfF & DfD is evident when one considers the fact that 

the image of a visibly rough surface exhibits discernible intensity variations that aid in monitoring defocus 

blur. 

Later incarnations of DfD [40-43] have tried to tackle drawback 1 , by using a controlled illumination 

source to impart a known texture on objects that are visibly smooth. The imaging and illumination arms in 

these methods are designed to share the same optics and/or same viewpoint, to avoid phase distortion in the 

camera image of the illumination pattern. 

2.5.2 Ranging by PSF engineering 

DfF & DfD techniques indirectly exploit the variation in the pupil transmittance of an imager that results 

from defocus. The next set of techniques take the idea a step further by attempting to directly encode range 

information into the pupil transmittance, and thereby the defocus blur.    

Dowski et.al [44] proposed to manipulate the complex transmittance of a square pupil such that the 

defocused MTF’s of scene points at different distances, occupy distinct portions of the imager bandwidth. 

The net result is that the spacing between the side lobes of a defocused PSF encodes range information. Levin 

et.al [45] observed that the nulls in the above coded MTF’s result in a permanent loss of spatial detail in the 

acquired camera image. They attempt to alleviate the problem by examining aperture codes whose defocused 

MTF’s are devoid of nulls, while still occupying distinct portions of the imager bandwidth. This allows the 

authors to computationally reconstruct a high quality camera image, besides recovering topographic 

information. 

An undesired quality of the above approaches is the non-uniform range resolution that stems from the 

manner in which the PSF shape evolves with defocus. Greengrad et.al [46] attempt to remedy the problem 

by engineering PSF’s that continuously rotate with defocus while trying to maintain its shape and form. It is 

observed that the orientation of the PSF encodes range information with a sensitivity that is roughly uniform 

within the working volume [47]. 
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An attractive quality of these techniques is the ability to recover topographic information from a single 

image. But, the technique is not without drawbacks. The important ones are listed below  

1  inability to recover topographic information for objects with weak or no texture 

2  confusing illumination edges with high frequency spatial detail (reflectance edges) 

In view of these drawbacks, the use of these techniques is restricted to scenes that are either comprised of a 

sparse collection of point emitters, or are uniformly lit and visibly rough. 

2.5.3 Stereoscopic imaging 

Techniques in this category are among the oldest and most widely used approaches for recovering 

topographic information. The common theme that binds the wealth of stereoscopic techniques found in 

literature is the notion of recovering range from multiple views of a scene, specifically the apparent motion 

experienced by static objects across multiple views. It is observed that a change in viewpoint causes nearer 

objects to experience a larger apparent motion, in comparison to farther objects in the scene. This may be 

verified by comparing the apparent motion in the tip of Venus’s nose in Figure 2.13. 

The aforementioned observation suggests a simple scheme for distinguishing nearer objects from farther 

ones. It also forms the basis of the most effective techniques for recovering range information in areas as 

diverse as industrial process control and aerial photogrammetry.  

The task of inferring the depth of the scene points 𝑃, 𝑄 from its pixel projections (𝑝1, 𝑞1, 𝑝2, 𝑞2) in the 

two views reduces to one of solving algebraic and trigonometric identities; a process referred to as 

“triangulation” in computer vision literature. The process is well understood and documented in textbooks 

such as [48-49], and the references therein. The following paragraph provides an intuitive interpretation of 

the triangulation problem.  

The pixel coordinates of the point 𝑃 in view-1, helps localize its heading to the direction 𝑂1𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗/‖𝑂1𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗‖. 

The remaining ambiguity in the location of the point 𝑃 is resolved by intersecting the unit vector  𝑂1𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗/‖𝑂1𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 

with its counterpart  𝑂2𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗/‖𝑂2𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ from view-2.  

It is standard practice to extend the above scheme to multiple views spanning distinct viewpoints. 

Reasons include noise accommodation in the pixel coordinates, and coping with occlusions. Lightfield 
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cameras such as the Lytro [50] and the PiCam [51] examine a variant of the multi-view triangulation problem, 

in the hope of recovering qualitative depth information. 

 

It is common knowledge that the success of triangulation hinges on accurately identifying matching 

points (correspondences) over multiple views. Block matching algorithms using image correlation are 

extensively employed to identify corresponding points in the various views. Despite advances in 

correspondence matching, the process is easily frustrated by issues such as the lack of texture, repetitive 

structures and significant change in viewpoint. The net result is the inability to recover range information at 

each pixel. Interpolation algorithms and regularization schemes are routinely used to fill-in the missing range 

information. 

A second wave of innovation quickly followed early attempts to recover range by triangulation. It was 

inspired by the observation that the mathematics of triangulation is not restricted to cameras, and may be 

extended to light sources. The insight paved the way for active stereoscopic approaches aimed at recovering 

the topography of a variety of surfaces including visibly smooth surfaces. The term “Active Scene Recovery” 
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Figure 2.13 Principle behind stereoscopic imaging 
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is frequently used to designate these techniques. They remain the leading candidates for recovering 

topographic information at small-moderate standoff distances of up to 10 m [52]. 

The simplest of these active stereoscopic techniques employs a laser spot scanner that is laterally 

displaced from the camera [52-55]. The pixel coordinates of the detected light spot and the instantaneous 

orientation of the laser beam are sufficient to recover range, provided the displacement between the laser 

pivot and the camera center of perspective (COP) are known. It was quickly observed that the speed of range 

acquisition may be significantly improved by replacing the laser spot scanner with a laser stripe scanner [56-

58]. The idea is illustrated in Figure 2.14.  

It is evident from the camera image that the deformations in the red laser stripe closely match the 

topography of the scene. It is observed that the deformation is induced by the lateral displacement of the light 

sheet with respect to the camera. The pixel coordinates of points on the deformed laser stripe and the 

instantaneous orientation of the laser beam are sufficient to recover the range of each illuminated pixel. The 

process assumes knowledge of the displacement between the laser pivot 𝑂la er and the camera center of 

perspective 𝑂cam. 

𝑂cam

𝑂la er

Detector

Laser light sheet

Camera image

Camera field of view

𝑃

Axis of

rotation

deformed stripe

Figure 2.14 Laser stripe scanning apparatus 
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Intuition suggests that the above process may be expedited by illuminating the scene with multiple 

stripes, instead of a single stripe. This allows for the possibility of using spatial light modulators to create the 

light stripes, thereby eliminating the need for moving parts in laser scanning systems. But, it is observed that 

the use of multiple stripes introduces ambiguities in the orientation of the light sheet that is associated with a 

deformed stripe. Such ambiguities arise at depth discontinuities and are attributed to excessive parallax. 

Researchers [59-62] have attempted to alleviate the problem by leveraging ideas from coding theory to design 

illumination patterns with attractive properties. A few examples are discussed below.  

The spatial pattern that impinges on the scene may be designed to exhibit a unique signature over a 

small patch/neighborhood. In such cases, the task of correspondence matching reduces to a search for a patch 

in the camera image with a matching signature. The spatial shift in pixels between corresponding patches 

encodes the range of the underlying object. The Microsoft Kinect [63-64] exploits the above notion to recover 

range information using an infrared light source and camera. An extensive list of coded illumination patterns 

that find use in stereoscopic ranging are compiled in [65].  

The family of techniques described above, are collectively referred to as “single shot structured light 

ranging” in literature. A known drawback of these techniques is the ambiguity in identifying patches with 

matching signature. The ambiguity stems from the undesired intensity variations induced by surface texture. 

In view of this drawback, the use of single shot structured light ranging is confined to surfaces with diffuse 

reflectance. 

A second set of active stereoscopic ranging techniques have explored the use of temporally varying 

illumination, to improve the robustness of correspondence matching to the intensity variations induced by 

surface texture. These schemes seek to assign a unique illumination code to each scene point, such that the 

code word encodes its spatial position in the projected pattern. The subsequent task of correspondence 

matching reduces to a search for the camera pixel that shares the same code. 

The simplest of the aforementioned schemes involves the use of binary stripe patterns, and is depicted 

in Figure 2.15. Its development is credited to Altschuler et.al [66]. The idea is to illuminate the scene with a 

sequence of binary stripe patterns, such that the code assigned to a projector pixel encodes its spatial position 

(row/column) in the illumination pattern. In the example shown in Figure 2.15, pixels in the 26th column 
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share the 10 bit code 0000011010. The finest illumination pattern has alternating black and white stripes 

that are a single pixel wide. 

The key steps in the recovery of topographic information are enumerated in the lower half of Figure 2.15. 

The process begins with the decoding of the camera images acquired under the binary stripe patterns. This is 
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Figure 2.15 Recovering range information using binary coded structured light 
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followed by an attempt to binarize the stack of camera images, by thresholding the images on a pixel-by-

pixel basis. This is followed by a search for pairs of projector and camera pixels sharing the same code. The 

pixel-by-pixel search is restricted to the epipolar line corresponding to each projector pixel. The disparity 

between corresponding points in the projector and camera images, is sufficient to recover the depth of each 

camera pixel.   

A shortcoming of the above scheme is that dense range recovery over an image with 𝑊 × 𝐻 pixels, 

demands the use of ⌈log2(𝑊)⌉ & ⌈log2(𝐻)⌉ patterns in the principal orientations. It has been observed [67] 

that illumination patterns with M distinct gray levels (M-ary codes) may be used to achieve a significant 

reduction in the number of illumination patterns needed for dense range recovery. 

The schemes discussed above have a serious drawback that increases the uncertainty in the estimated 

depth. It is observed that the projector’s optical response to each illumination pattern is vastly different, on 

account of the variation in the spatial frequency content of each illumination pattern. The difference 

introduces decoding errors that increase the uncertainty in the estimated depth. The above problem is 

circumvented by exploiting the illumination diversity afforded by phase-shifting a single periodic pattern 

[68-73]. Figure 2.16 illustrates the concept.  

It is evident that the deformations in the detected illumination pattern match the topographic variation in the 

scene. This simple observation serves as the basis of a numerical scheme for recovering range information 

Camera 

image plane

Projector

image plane

𝑂 𝑂 

Active Stereo Setup
Illumination pattern

Camera image

Figure 2.16 Examining the use of periodic sinusoidal illumination in recovering 

topographic information 
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from the camera images acquired under phase-shifted illumination. The process is described in great detail 

in Chapter 5, and is the preferred method for recovering topographic information in this dissertation. 

The active stereoscopic method discussed above is known to yield dense topographic maps, whose 

resolution exceeds those of its counterparts. The reason is the method avoids an explicit search for 

correspondences, and in the process eliminates the uncertainty in the stereo disparity estimated by matching 

correspondences.  

But, active stereoscopic methods are not without drawbacks, chief of which are the limited standoff 

distance and the assumption that scene points are strictly illuminated by the light source. The latter presents 

problems when trying to recover the shape of objects such as marble, wax, fur and velvet to name a few. 

These topics remain an active area of research in structured light imaging.  

 

Our review of ranging techniques concludes with the following observations 

 Passive DfF & DfD techniques are best suited for recovering the topography of visibly rough 

surfaces. 

 Attempts to encode range information into the defocus PSF are best suited for recovering the range 

of a sparse collection of point emitters, albeit from a single image. 

 Single shot structured light techniques are best suited for recovering the topography of visibly 

smooth surfaces, whereas multi shot techniques work with a wide variety of surfaces. 

 A subset of multi shot structured light techniques circumvent the correspondence matching 

problem by exploiting the illumination diversity afforded by phase-shifting a single periodic 

pattern. These methods recover high resolution range maps by examining the deformations in the 

detected illumination pattern.  

 

2.6 Quest for apparatus that can super resolve spatial whilst recovering 

topographic information 

The independent evolution of super resolution and scene recovery techniques has hindered attempts to unify 

these approaches. Our review of these techniques hints at the possibility of a unified treatment, when using 

sinusoidal illumination. The Moiré fringes that arise from the heterodyning of the illumination pattern with 
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spatial detail in the scene may be used to improve the resolving power. The phase deformation of the detected 

illumination pattern may be used to recover topographic information. Subsequent chapters in this dissertation 

explore the notion in great detail, with the express intention of finding an apparatus that can super resolve 

whilst recovering topographic information.  

  



32 

 

Chapter 3 

MODEL FOR IMAGING UNDER PATTERNED ILLUMINATION 

The notion of imaging under patterned illumination is a recurring theme in this work. The present chapter is 

devoted to the development of a rigorous mathematical model for imaging in an active stereo setup such as 

Figure 3.1. The goal is to derive the relationship between the detected intensity and the scene radiance due 

to patterned illumination. 

Figure 3.1 A camera in an active stereo setup observing a scene under patterned illumination. The 

camera and projector optics are illustrated as thin-lenses purely for illustrative purposes. Please 

refer to Table 3.1 for a description of the elements in Figure 3.1 

  

   ,   ,      
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Image Plane   

Projector
Image Plane     

Camera Entrance 
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In the interest of clarity, the derivation is broken into three units. The first unit derives the geometric relation 

between a scene point and its pixel coordinates in the camera and projector image planes. The second unit 

extends the geometric model to accommodate blurring due to the imaging and illumination optics. The final 

unit assimilates the relations into a single expression for the detected intensity under patterned illumination. 

At first sight, the notion of a pixel in the illumination module may appear to restrict the scope of our 

model to devices comprised of individually addressable light modulators. Examples include LCOS (Liquid 

Crystal on Silicon), LCD (Liquid Crystal Display) and DLP (Digital Light Projector) projectors. But, this is 

Table 3.1 Description of elements in Figure 3.1 

 𝑤 𝑤 𝑤 

3D Cartesian world coordinate system aligned with the camera coordinate 

system centered at 𝑂cam. It is obtained by rotating a right handed Cartesian 

coordinate system by  1  ∘, about the  -axis.  

𝑂cam ≡ ( , , ) Camera center-of-perspective 

𝑂 ll ≡ (  ,   ,   ) Projector center-of-perspective 

   
Pixel coordinate system that is aligned with the camera image plane. The origin 

of the coordinate system is at the top-left corner of the image plane. 

     
Pixel coordinate system that is aligned with the projector image plane. The origin 

of the coordinate system is at the top-left corner of the image plane. 

(  ,   ), (   ,    ) 
Point of intersection of the camera & projector optical axes with respective image 

planes 

𝑹  
3D Rotation matrix that aligns the World Coordinate System with the projector 

Coordinate System centered at 𝑂 ll 

𝒃 ≡     ,   ,    
𝑇 

Baseline vector representing displacement between the camera and projector 

viewpoints 
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not the case. The projector could be any device that effects a change in the distribution of the light incident 

upon a scene. Examples include a laser projector that paints an image by rapidly scanning a light beam, or a 

pattern projector based on diffractive optics such as the Microsoft Kinect.  

In an effort to minimize the loss of generality while accommodating the diversity in the mechanics of 

illumination, the term pixel is used to refer to the smallest feature in the projected spatial pattern.  

The mathematical expressions presented in this chapter can at times appear convoluted, as there will be 

simultaneous consideration of spatial and spatial-frequency coordinates. To minimize confusion, a standard 

notation has been adopted. For example, accented/unaccented coordinates denote points in the 

projector/camera image planes respectively. A more exhaustive list is compiled in Table 3.2.  

 

 

 

Table 3.2 Mathematical notation 

3D Coordinates Spatial coordinates of a scene point e.g.: ( ,  ,  ) 

Unaccented 2D Coordinates Pixel coordinates of point in camera image plane e.g.: ( ,  ) 

Accented 2D Coordinates Pixel coordinates of point in projector image plane e.g.: (  ,   ) 

Uppercase Boldface Matrices    𝒋 : element in row- , column-𝑗 of matrix   

Lowercase Boldface Column vectors 

ℱ{… } Fourier transform operator 

𝒞𝒶ℓ𝒾ℊ𝓇𝒶𝓅𝒽𝒾𝒸  𝒯𝓎𝓅ℯ𝒻𝒶𝒸ℯ Fourier transform of a spatial pattern or 2D function 

Greek symbols 𝜉, 𝜂 Spatial frequency coordinates expressed in 
cycles

mm
 or 

cycles

pixel
 

‖𝒃‖ L2 norm of vector 
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3.1 Modeling image formation in the imaging and illumination paths 

Our derivation begins with the assumption that the camera and projector optics are thin lens elements, as 

illustrated in Figure 3.1. The assumption is relaxed at a later stage in the derivation. 

Suppose that the thin lens imager in the apparatus of Figure 3.1 observes the scene point 𝑃 ≝ ( 0,  0,  0) as 

illustrated in Figure 3.2. The relation between the scene point and its transverse image coordinates 𝑝 ≝

( 0,  0) is disclosed in Eq.(3.1). The term Δ represents the pixel pitch in the image sensor, while the term  𝑑 

represents the perpendicular distance from the camera center-of-perspective to the sensor plane.  

 0 =  
1

Δ

 𝑑

  

 0  +    

(3.1) 

 0 =  
1

Δ

 𝑑

 0

 0  +    

The above relation is based on the paraxial image model for thin lenses found in standard texts [2, 48]. It is 

derived by recognizing that the direction cosines of the incoming ray  𝑂cam in Figure 3.2, are identical to 

those of the outgoing ray 𝑂cam 𝑖. The negative sign in the expressions accommodate the image reversal 

experienced at the sensor.  

With minimal effort, the relation disclosed in Eq.(3.1) can be formulated as the matrix product shown below  

[
 0

 0

1
] =

1

 0

[
  𝑑/Δ    

   𝑑/Δ   

  1

]

⏟              
𝑲

[

 0

 0

 0

] 
(3.2) 

Object

(  ,   )

 =  0

𝑝 ≝ ( 0,  0)

 0

optical axis

Detector

 =  

 𝑑

𝑂    

𝑃 ≝ ( 0,  0,  0)

Entrance / Exit 

pupil plane

 =   𝑑

Figure 3.2 Geometric model for imaging in a thin lens 
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In subsequent chapters, the above matrix formulation is used to leverage known principles in projective 

geometry and computer vision. The matrix 𝑲 in Eq.(3.2) is frequently referred to as the camera intrinsic 

matrix in computer vision literature. 

The geometric model disclosed above may also be used to identify the relation between the scene point 

( 0,  0,  0) and its transverse image coordinates (  0,   0) in the projector image plane. The result is expressed 

as the matrix product shown below 

[
  0
  0
1

] = 𝛾 [
   𝑑/Δ     

    𝑑/Δ    
  1

]

⏟              
𝑲 

[

  11   12   13

  21   22   23

  31   32   33

]

⏟          
𝑹 

[

 0    

 0    

 0    

]
 

(3.3) 

 

 

 

 
where 𝛾 =

1

  31(    ) +   32(    ) +   33(    )
 

The term Δ  represents the pixel pitch of the light sensitive element in the projector, while the term   𝑑 

represents the perpendicular distance from the projector center-of-perspective to the light sensitive module. 

The matrix 𝑲  is referred to as the projector intrinsic matrix, in conformance with computer vision literature.  

The relation disclosed in Eq.(3.3) is derived by transforming the world coordinates of the scene point 

into a hypothetical Cartesian coordinate system centered at 𝑂 ll, such that its  -axis is aligned with the optical 

axis of the projector. The vector   0    ,  0    ,  0     
𝑇  accommodates the displacement in the origin 

of this hypothetical coordinate system relative to the world coordinate system. Multiplication by 𝑹  

accommodates the difference in the orientation of the world coordinate system and the hypothetical 

coordinate system centered at 𝑂 ll. 

A shortcoming of the thin-lens model discussed above is that it expects the direction of the incoming 

ray  𝑂cam to match that of the outgoing ray 𝑂cam 𝑖. This may not be valid for imagers with multiple lens 

elements and apertures. In such cases, the standard practice is to aggregate the optical elements into a single 

unit, and describe the passage of light through the optics using the paraxial model for thick-lenses [72-75]. 

The aggregate unit is comprised of two terminals: an “entrance pupil” representing a finite aperture through 

which light-rays enter the imaging elements and an “exit pupil” representing a finite aperture through which 

light-rays exit the imaging element en-route to the image sensor. 
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The thick-lens equivalents of the relations disclosed in Eqs.(3.2) & (3.3), are included below  

[
 0

 0

1
] =

1

 0

[

 𝑚  𝑑/Δ    

  𝑚  𝑑/Δ   

  1

]

⏟                  
𝑲

[

 0

 0

 0

] 
(3.4) 

[
  0
  0
1

] = 𝛾 [

 𝑚    𝑑/Δ     

  𝑚    𝑑/Δ    
  1

]

⏟                  
𝑲 

[

  11   12   13

  21   22   23

  31   32   33

]

⏟          
𝑹′

[

 0    

 0    

 0    

]
 

 

(3.5) 

where 𝛾 =
1

  31(    ) +   32(    ) +   33(    )
 

The terms 𝑚 , 𝑚   represent the pupil magnification of the camera and projector optics respectively. The 

subscript 𝑝 signifies the association with the pupil.  

In the aforementioned thick-lens model, the camera’s center-of-perspective is located at the center of 

its entrance pupil, while the projector’s center-of-perspective is located at the center of its exit pupil. Also, 

the distances  𝑑 and  𝑑
  now represent the perpendicular distance from the entrance/exit pupils of the 

camera/projector, to the respective image planes. 

3.2 Coordinate mapping between corresponding points in the camera and 

projector image planes  

The coordinate mapping between the corresponding points ( 0,  0) & (  0,   0) is of greater relevance to this 

effort, as opposed to the individual expressions for ( 0,  0) & (  0,   0). As a first step toward identifying the 

coordinate mapping, we manipulate Eqs.(3.4) & (3.5) to obtain the following identities, 

[
  0
  0
1

] = 𝛾  0𝑲 𝑹 𝑲
− [

 0

 0

1
]   𝛾 𝑲 𝑹 𝑲− 𝑲[

  

  

  

] (3.6) 

[
 0

 0

1
] =

1

𝛾 

1

 0

𝑲𝑹 𝑻𝑲 − [
  0
  0
1

] +
1

 0

𝑲[

  

  

  

] (3.7) 

The non-singular matrices 𝑲 𝑹 𝑲− , 𝑲𝑹 𝑻𝑲 −  define a bi-linear mapping between the image 

coordinates ( 0,  0) & (  0,   0), for objects strictly at infinity ( 0 →  ). Consequently, the matrices are 

dubbed the “infinite homography” in computer-vision literature. The vector 𝑲   ,   ,    
𝑇  represents the 
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camera coordinates of the projector’s center-of-perspective, and is referred to as epipole in computer-vision 

literature.  

In the interest of notational simplicity, the matrices 𝑲 𝑹 𝑲− , 𝑲𝑹 𝑻𝑲 −  and the vector 𝑲   ,   ,    
𝑇  

will henceforth be abbreviated as   ,     and   respectively. The abbreviations allow us to express Eqs.(3.6) 

& (3.7) in the following compact form  

       [
  0
  0
1

] = 𝛾  0 
  [

 0

 0

1
]  𝛾   [

𝑡 
𝑡 
𝑡 

] (3.8) 

   [
 0

 0

1
] =

1

𝛾 

1

 0

   [
  0
  0
1

] +
1

 0

[

𝑡 
𝑡 
𝑡 

] (3.9) 

Equating the third element on either side of Eq.(3.8), yields the following expression for 𝛾  

𝛾 =
1

 31
 ( 0 0  𝑡 ) +  32

 ( 0 0  𝑡 ) +  33
 ( 0  𝑡 )

  (3.10) 

Substituting the expression for 𝛾  obtained in Eq.(3.10) into Eq.(3.8), yields the following coordinate mapping 

  0 =
 11

 ( 0 0  𝑡 ) +  12
 ( 0 0  𝑡 ) +  13

 ( 0  𝑡 )

 31
 ( 0 0  𝑡 ) +  32

 ( 0 0  𝑡 ) +  33
 ( 0  𝑡 )

 

 
  

(3.11) 

  0 =
 21

 ( 0 0  𝑡 ) +  22
 ( 0 0  𝑡 ) +  23

 ( 0  𝑡 )

 31
 ( 0 0  𝑡 ) +  32

 ( 0 0  𝑡 ) +  33
 ( 0  𝑡 )

 

Alternately, one can equate the third element on either side of the vector-identity of Eq.(3.9), to obtain the 

following expression for 𝛾  

1

𝛾 
=

 0  𝑡 

  31
   0 +   32

   0 +   33
 

  (3.12) 

Substituting the expression for 𝛾 −1obtained in Eq.(3.12) into Eq.(3.9), yields the following relations 

  0 = (
 0  𝑡 

 0

) (
  11

   0 +   12
   0 +   13

 

  31
   0 +   32

   0 +   33
 

) +
1

 0

𝑡    

(3.13) 

 0 = (
 0  𝑡 

 0

) (
  21

   0 +   22
   0 +   23

 

  31
   0 +   32

   0 +   33
 

) +
1

 0

𝑡  

The relevance of the above relations to Optical Super resolution and Active Scene Recovery will be evident 

in upcoming chapters. For the moment, it suffices to know that Eqs.(3.11) & (3.13) help determine the 
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functional form of the spatial pattern in the camera image plane, given the functional form of the illumination 

pattern. 

A shortcoming of the imaging model derived thus far is that it disregards blurring due to the imaging 

and illumination optics. As a consequence of blurring, one can neither resolve nor independently illuminate 

closely spaced points in the scene. In other words, blurring imposes a firm limit on the resolving power of 

the illumination and imaging devices. It is evident that attempts to develop a mathematical model for imaging 

under patterned illumination must accommodate optical blur. The topic is explored further in the upcoming 

section.  

3.3 Modelling optical blur in the imaging and illumination paths    

It is common knowledge that the optical image of a point-source/object is a blurry spot, appropriately dubbed 

the point-spread function or PSF. It accounts for the wave nature of light propagation, and encapsulates the 

effect of diffraction, optical aberrations and defocus blur. The spatial extent of the PSF limits our ability to 

resolve and independently illuminate closely spaced points in the scene.  

Previous work in Optical Super Resolution has mostly focused on space-invariant PSF’s. The present 

work relaxes the requirement of space-invariance while examining a model for imaging under sinusoidal 

illumination. 

Suppose that the camera in the apparatus of Figure 3.1 observes a point source located at (𝑈0, 𝑉0,𝑊0) 

in the object volume. Suppose that  (𝑢0, 𝑣0) represent the transverse coordinates of the geometric image of 

the scene point (𝑈0, 𝑉0,𝑊0). A real-valued function of the form  cam(  𝑢0,   𝑣0; 𝑢0, 𝑣0) is adequate to 

describe the intensity at the ( ,  )𝑡ℎ pixel, in response to the point source at (𝑈0, 𝑉0,𝑊0). The arguments 

(𝑢0, 𝑣0) in  cam(  𝑢0,   𝑣0; 𝑢0, 𝑣0) capture the field dependence of the PSF, with respect to the location 

of the point source. Lohmann & Paris [76] extended the above notion to an arbitrary collection of point 

sources, by using the super-position integral. The result is summarized below 

 ( ,  ) =  𝑝(𝑢, 𝑣) cam(  𝑢,   𝑣; 𝑢, 𝑣)   𝑢 𝑣  (3.14) 

The term 𝑝(𝑢, 𝑣) represents the intensity of a point source at (𝑈, 𝑉,𝑊) with the transverse image 

coordinates (𝑢, 𝑣).  
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Notice that the superposition integral of Eq.(3.14) reduces to the familiar convolution integral, when 

the PSF is space-invariant, i.e.  cam(   ,   𝑣; 𝑢, 𝑣) =  cam(  𝑢,   𝑣). In such cases the PSF changes 

in location but not in functional form, as the point-source explores the object volume. Previous work in super 

resolution has focused exclusively on such PSF’s. Unfortunately, the assumption of space-invariance 

contrasts the space-variance observed in practice. The present work relaxes the requirement of space-

invariance while examining a model for imaging under sinusoidal illumination. 

Without loss of generality, the expression for the detected intensity disclosed in Eq.(3.14), may be 

repurposed to yield an expression for the incident intensity at the scene point ( ,  ,  ). The expression is 

included below 

𝑠( ,  ,  ) ∝  𝑝𝜃(𝑢 , 𝑣 )  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣   (3.15) 

 

( ,  ,  ) 3D coordinates of the geometric image of the (  ,   )𝑡ℎ projector pixel 

𝑝𝜃(𝑢 , 𝑣 ) intensity of the (𝑢 , 𝑣 )𝑡ℎ pixel in the illumination pattern 

 ill(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 ) spatially varying blur induced by the illumination optics 

The reader will recognize that the expression is applicable to any illumination pattern. But, the present work 

restricts its attention to the sinusoidal patterns shown below 

1. 𝑝𝜃(  ,   ) =   + 𝐵    (2𝜋(𝜉0  + 𝜂0  ) + 𝜃) 

2. 𝑝𝜃(  ,   ) =   + 𝐵    (2𝜋 (𝜉0
ℎ 11

∞   0 ℎ 1 
∞   0 ℎ 13

∞

ℎ 31
∞   0 ℎ 3 

∞   0 ℎ 33
∞ + 𝜂0

ℎ  1
∞   0 ℎ   

∞   0 ℎ  3
∞

ℎ 31
∞   0 ℎ 3 

∞   0 ℎ 33
∞) + 𝜃) 

𝜉0, 𝜂0 frequency of the illumination pattern expressed in cycles/pixel 

   average intensity of the illumination pattern ( DC component ) 

𝐵  peak excursion in the intensity of the sinusoidal component  

𝜃 phase-shift in the sinusoidal component 

  𝑖𝑗
  ( , 𝑗)𝑡ℎentry of the infinite homography    = 𝑲𝑹 𝑻𝑲 −  
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Pattern-1 is the pattern of choice in Super resolution Microscopy and Phase Measurement Profilometry. 

Pattern-2 is a warped sinusoidal pattern whose usage is unique to this work. The pattern is the outcome of a 

combined effort to recover scene geometry and spatial detail lost to blurring. 

The expressions for the incident and detected intensities disclosed in Eqs.(3.14)-(3.15) serve as a 

starting point for the design a comprehensive model for imaging under sinusoidal illumination. 

3.4 Expression for the detected intensity under periodic sinusoidal illumination    

The model disclosed in Eq.(3.15) may be used to identify the incident intensity at the scene point ( ,  ,  ), in 

response to the illumination pattern   + 𝐵    (2𝜋(𝜉0  + 𝜂0  ) + 𝜃). The result is provided below 

𝑠( ,  ,  ) =   (  ,   ) + |𝐵 (  ,   )|    (2𝜋(𝜉0  + 𝜂0  ) + arg (𝐵 (  ,   )) + 𝜃) (3.16) 

 

  (  ,   ) ≝     ill(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣   

blur induced amplitude deviation in 

the DC component of 𝑝𝜃(  ,   )  

𝐵 (  ,   ) ≝ 𝐵′ {
exp ( 𝑗2𝜋(𝜉0(𝑢  𝓊 ) + 𝜂0(𝑣  𝓋 )))

×  ill(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )
}  𝑢  𝑣  

blur induced amplitude deviation in 

the sinusoidal component of 𝑝𝜃(  ,   ) 

A formal derivation of Eq.(3.16) is included in Appendix-A.1. 

A fraction of the light incident at ( ,  ,  ) reaches the ( ,  )𝑡ℎ camera pixel, following albedo loss and 

optical blur. The expression for the intensity of the ( ,  )𝑡ℎ pixel is obtained by integrating the contribution 

of every scene point (𝑈, 𝑉,𝑊) to the ( ,  )𝑡ℎ pixel, just as in Eq.(3.14). The resulting expression is included 

below 

 𝜃( ,  )

=  (  (𝑢 , 𝑣 ) + |𝐵 (𝑢 , 𝑣 )|    (
2𝜋(𝜉0𝑢 + 𝜂0𝑣 ) +

arg (𝐵 (𝑢 , 𝑣 )) + 𝜃
))   (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)   𝑢 𝑣  (3.17) 

The term  (𝑢, 𝑣) in Eq.(3.17) represents the geometric image of the scene obtained under uniform 

illumination. 

The reliance of Eq.(3.17)  on both camera and projector coordinates impedes its use in super resolution 

and scene-recovery. The issue is resolved by incorporating the coordinate mapping (  ,   ) ⟼ ( ,  ) disclosed 
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in Eq.(3.11), into Eq.(3.17). For the benefit of the reader, the mapping is expressed in (𝑢, 𝑣), (𝑢 , 𝑣 ) 

coordinates, as follows 

 𝑢 =
 11

 (𝑊𝑢  𝑡 ) +  12
 (𝑊𝑣  𝑡 ) +  13

 (𝑊  𝑡 )

 31
 (𝑊𝑢  𝑡 ) +  32

 (𝑊𝑣  𝑡 ) +  33
 (𝑊  𝑡 )

   

(3.18) 

𝑣 =
 21

 (𝑊𝑢  𝑡 ) +  22
 (𝑊𝑣  𝑡 ) +  23

 (𝑊  𝑡 )

 31
 (𝑊𝑢  𝑡 ) +  32

 (𝑊𝑣  𝑡 ) +  33
 (𝑊  𝑡 )

 

With the aid of Eq.(3.18), one can recast the terms   (𝑢 , 𝑣 ), 𝐵 (𝑢 , 𝑣 ) and 2𝜋(𝜉0𝑢 + 𝜂0𝑣 ) in Eq.(3.17), in 

camera coordinates. The resulting expression for the detected intensity  𝜃( ,  )is provided below 

 𝜃( ,  )

=  ( (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|    (
𝜑(𝑢, 𝑣) + 𝜃

+arg(𝐵(𝑢, 𝑣))
))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 (3.19) 

 

𝜑(𝑢, 𝑣) ≝ 2𝜋(𝜉0𝑢 + 𝜂0𝑣 ) 

= 2𝜋𝜉0

 11
 (𝑊𝑢  𝑡 ) +  12

 (𝑊𝑣  𝑡 ) +  13
 (𝑊  𝑡 )

 31
 (𝑊𝑢  𝑡 ) +  32

 (𝑊𝑣  𝑡 ) +  33
 (𝑊  𝑡 )

        

+ 2𝜋𝜂0

 21
 (𝑊𝑢  𝑡 ) +  22

 (𝑊𝑣  𝑡 ) +  23
 (𝑊  𝑡 )

 31
 (𝑊𝑢  𝑡 ) +  32

 (𝑊𝑣  𝑡 ) +  33
 (𝑊  𝑡 )

 

phase distortion due to parallax  

arg(𝐵(𝑢, 𝑣)) ≝ arg (𝐵 (𝑢 , 𝑣 )) 

= arg (∬ {
exp ( 𝑗2𝜋(𝜉0(𝑢  𝓊 ) + 𝜂0(𝑣  𝓋 )))

×  ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )
}  𝓊  𝓋 )  

blur induced phase distortion in the 

illumination pattern 𝑝𝜃(  ,   ) 

 (𝑢, 𝑣) ≝   (𝑢 , 𝑣 ) =     ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )  𝓊  𝓋  

blur induced amplitude deviation in 

the DC component of 𝑝𝜃(  ,   ) 

 |𝐵(𝑢, 𝑣)| ≝ |𝐵 (𝑢 , 𝑣 )| 

= 𝐵 | {
exp ( 𝑗2𝜋(𝜉0(𝑢  𝓊 ) + 𝜂0(𝑣  𝓋 )))

×  ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )
}  𝓊  𝓋  | 

blur induced amplitude deviation in 

the sinusoidal component of 𝑝𝜃(  ,   ) 

The integrals in the table are evaluated under the change of variables (𝑢 , 𝑣 )
Eq.( .1 )
→     (𝑢, 𝑣). 

It is evident from Eq.(3.19) that the camera observes a scene-dependent amplitude and phase variation in the 

incident illumination pattern. The finding is consistent with practical observations.  
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3.5 Expression for the detected intensity under warped sinusoidal illumination    

The model disclosed in Eq.(3.15) may be used to identify the incident intensity at the scene point ( ,  ,  ), in 

response to the illumination pattern 

𝑝𝜃(  ,   ) =   + 𝐵    

(

 2𝜋 (𝜉0

  11
   +   12

   +   13
 

  31
   +   32

   +   33
 

+ 𝜂0

  21
   +   22

   +   23
 

  31
   +   32

   +   33
 

)
⏟                                

𝜑(  ,  )

+ 𝜃

)

  

The result is provided below 

𝑠( ,  ,  ) ∝   (  ,   ) + |𝐵 (  ,   )|    (𝜑(  ,   ) + arg (𝐵 (  ,   )) + 𝜃) (3.20) 

 

  (  ,   ) ≝     ill(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣   
blur induced amplitude deviation in 

the DC component of 𝑝𝜃(  ,   )  

𝐵 (  ,   ) ≝ 𝐵′  {
exp( 𝑗𝜑(𝑢  𝓊 , 𝑣  𝓋 ))

×  ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )
}  𝑢  𝑣  

blur induced amplitude deviation in 

the sinusoidal component of 𝑝𝜃(  ,   ) 

A formal derivation of Eq.(3.20) is included in Appendix-A.2. 

A fraction of the light incident at ( ,  ,  ) reaches the ( ,  )𝑡ℎ camera pixel, following albedo loss and 

optical blur. The expression for the intensity of the ( ,  )𝑡ℎ pixel is obtained by integrating the contribution 

of every scene point (𝑈, 𝑉,𝑊) to the ( ,  )𝑡ℎ pixel, just as in Eq.(3.14). The resulting expression is included 

below  

 𝜃( ,  )

=  (  (𝑢 , 𝑣 ) + |𝐵 (𝑢 , 𝑣 )|    (
𝜑(𝑢 , 𝑣 ) + 𝜃

+arg(𝐵 (𝑢 , 𝑣 ))
))   (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)   𝑢 𝑣  (3.21) 

The reliance of Eq.(3.21) on both camera and projector coordinates impedes its use in super resolution and 

scene-recovery. The issue is resolved by incorporating the coordinate mapping ( ,  ) ⟼ (  ,   ) disclosed in 

Eq.(3.13), into Eq.(3.21). The coordinate mapping is expressed below, for the benefit of the reader 

 𝑢 = (
𝑊  𝑡 

𝑊
)(

  11
 𝑢 0 +   12

 𝑣 0 +   13
 

  31
   0 +   32

   0 +   33
 

) +
1

 0

𝑡    

(3.22) 

𝑣 = (
𝑊  𝑡 

𝑊
)(

  21
   0 +   22

   0 +   23
 

  31
   0 +   32

   0 +   33
 

) +
1

 0

𝑡  
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With the aid of Eq.(3.22), one can recast the terms   (𝑢 , 𝑣 ), 𝐵 (𝑢 , 𝑣 ) and 𝜑(𝑢 , 𝑣 ) in Eq.(3.21), in camera 

coordinates. The resulting expression for the detected intensity  𝜃( ,  )is provided below 

 𝜃( ,  )

=  ( (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|    (
𝜑(𝑢, 𝑣) + 𝜃

+arg(𝐵(𝑢, 𝑣))
))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 (3.23) 

 

𝜑(𝑢, 𝑣) ≝ 𝜑(𝑢 , 𝑣 ) 

= 2𝜋 (
𝑊  𝑡 

𝑊
)(𝜉0𝑢 + 𝜂0𝑣)  (

2𝜋

𝑊  𝑡 
) (𝜉0𝑡 + 𝜂0𝑡 ) 

phase distortion due to parallax  

arg(𝐵(𝑢, 𝑣)) ≝ arg (𝐵 (𝑢 , 𝑣 )) 

        = arg( {
exp( 𝑗𝜑(𝑢  𝓊 , 𝑣  𝓋 ))

×  ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )
}  𝓊  𝓋 ) 

blur induced phase distortion in the 

illumination pattern 𝑝𝜃(  ,   ) 

 (𝑢, 𝑣) ≝   (𝑢 , 𝑣 ) =     ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )  𝓊  𝓋  

blur induced amplitude deviation in 

the DC component of 𝑝𝜃(  ,   ) 

 |𝐵(𝑢, 𝑣)| ≝ |𝐵 (𝑢 , 𝑣 )| 

      = 𝐵 | {
exp( 𝑗𝜑(𝑢  𝓊 , 𝑣  𝓋 ))

×  ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )
}  𝓊  𝓋  | 

blur induced amplitude deviation in 

the sinusoidal component of 𝑝𝜃(  ,   ) 

The integrals in the table are evaluated under the change of variables (𝑢 , 𝑣 )
Eq.(3.22)
→     (𝑢, 𝑣). 

It is evident from Eq.(3.23) that the camera observe a scene-dependent amplitude and phase variation in the 

incident illumination pattern. The finding is consistent with practical observations. 

3.6 Summary    

Our analysis of imaging under sinusoidal illumination concludes by noting that the expression for the detected 

intensity assumes the following functional form 

 𝜃( ,  )

=  ( (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|    (
𝜑(𝑢, 𝑣) + 𝜃

+arg(𝐵(𝑢, 𝑣))
))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 (3.24) 
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It is worth emphasizing that Eq.(3.24) furnishes a comprehensive model for imaging under sinusoidal 

illumination that accommodates  

   space-variance in the optical blur of the imaging and illumination paths, and 

   topographic variation in the scene. 

The astute reader will recognize that the proposed model can be readily extended to illumination patterns that 

are expressible as a superposition of sinusoids or warped sinusoids.  

3.6.1 Relevance of the model to scene recovery 

Scene recovery in an active stereo setup is predicated on the prospect of observing depth dependent distortion 

in the instantaneous phase of the detected sinusoidal pattern. The phase distortion due to parallax 𝜑(𝑢, 𝑣) 

serves this purpose, and permits recovery of depth information 𝑊 from 𝜑(𝑢, 𝑣). The additional phase 

distortion  arg(𝐵(𝑢, 𝑣)) induced by the illumination blur, results in an over/under estimation of the absolute 

depth 𝑊. The amplitude deviation arising from the terms  (𝑢, 𝑣) and |𝐵(𝑢, 𝑣)| diminish the modulation 

strength of the detected sinusoidal pattern and results in a loss of range resolution. These issues are examined 

in detail in a subsequent chapter. 

3.6.2 Relevance of the model to super resolution 

Super resolution using patterned illumination is predicated on the prospect of observing unresolved spatial 

frequencies in the camera image  𝜃( ,  ). But, it is not evident from Eq. (3.24) that the camera image contains 

frequencies lost to optical blur. The presence of these frequencies may be confirmed by analyzing the Fourier 

transform of the product term { (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|    (
𝜑(𝑢, 𝑣) + 𝜃

+arg(𝐵(𝑢, 𝑣))
)}  (𝑢, 𝑣). The amplitude deviation 

arising from the terms  (𝑢, 𝑣) and |𝐵(𝑢, 𝑣)| diminish the modulation strength of the incident sinusoidal 

pattern, and thereby limit our ability to modulate increasingly fine spatial detail.  

It should be noted that the phase distortion due to parallax makes it impossible to unambiguously restore 

the modulated frequencies to their true position outside the optical passband. A subsequent chapter in this 

dissertation examines camera + projector arrangements that eliminate the phase distortion due to parallax.  
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Chapter 4 

MECHANICS OF OPTICAL SUPER RESOLUTION 

The allure of surpassing the diffraction limit has drawn considerable attention to the topic of “Optical Super 

Resolution”. Existing attempts share the notion that the resolving power of an imager may be improved by 

manipulating the distribution of light in either the object volume or the image volume. A subset of the 

techniques [68-71] rely on the “sinusoidal modulation” of the light distribution in the object volume. The 

sinusoidal modulation produces sum and difference frequencies, the latter of which survives optical blurring. 

The process is illustrated in Figure 4.1. 

Inspection of the camera image under flood illumination indicates that it is incapable of resolving the 

fine spatial detail in the Log-frequency test chart. But under sinusoidal illumination, the camera observes a 
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Figure 4.1 Moiré fringing due to imaging under sinusoidal illumination 

NOTE: For illustrative purposes, the frequency of the spatial patterns in the “Active Stereo Setup” 

inset is deliberately smaller than that used to generate the camera image insets on the left. 
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low frequency beat pattern (Moiré fringes) in the previously unresolved areas of the test chart (highlighted 

in red). The beat pattern is attributed to the heterodyning of the fine spatial detail in the test chart, with the 

sinusoidal illumination pattern. 

At first sight, it may appear that the heterodyned frequencies can be restored to their true position outside 

the optical passband, using a standard AM (amplitude modulation) receiver. But in practice, unambiguous 

restoration is only supported by select camera + projector arrangements. The inconsistency stems from the 

fact that the detected sinusoidal pattern exhibits phase distortion, due to the difference in the viewpoints of 

the camera and projector. Such distortions are evident in the chess pieces of Figure 4.1, and at the interface 

of the vertical planes and the ground plane. 

The present chapter is devoted to the study of camera + projector arrangements that support 

unambiguous restoration of the heterodyned frequencies, and subsequently super resolution.  

Our study begins with a recapitulation of the expression for the detected intensity in an active stereo setup. 

Attention is restricted to the periodic and warped sinusoidal illumination patterns, in view of their relevance 

to this work. 

Illumination pattern 
  

 

 

 

 

 

 

 

 

(4.1) 

𝑝𝜃(  ,   ) =   + 𝐵    (2𝜋(𝜉0  + 𝜂0  ) + 𝜃)                                                                                                      

𝑝𝜃(  ,   ) =   + 𝐵    (2𝜋 (𝜉0

  11
   +   12

   +   13
 

  31
   +   32

   +   33
 

+ 𝜂0

  21
   +   22

   +   23
 

  31
   +   32

   +   33
 

) + 𝜃)                             

Expression for the detected intensity 

 𝜃( ,  ) =  ( (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|    (
𝜑(𝑢, 𝑣) + 𝜃

+arg(𝐵(𝑢, 𝑣))
))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

 

𝜑(𝑢, 𝑣) phase distortion due to parallax  

 (𝑢, 𝑣), |𝐵(𝑢, 𝑣)| 
blur induced amplitude deviation in the DC and sinusoidal components 

of the illumination pattern 

arg(𝐵(𝑢, 𝑣)) blur induced phase distortion 

 cam(  𝑢,   𝑣; 𝑢, 𝑣) spatially varying blur due to the imaging optics 
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 ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 ) spatially varying blur induced by the illumination optics 

𝜉0, 𝜂0 spatial frequency of the illumination pattern expressed in 
cycles

pixel
 

  𝑖𝑗
  ( , 𝑗)𝑡ℎ entry of the infinite homography     = 𝑲𝑹 𝑻𝑲 −  

It is obvious by now that super resolution using sinusoidal illumination is predicated on the prospect of 

observing unresolved spatial frequencies in the camera image  𝜃( ,  ). Fourier analysis of the product 

{ (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|     (𝜑(𝑢, 𝑣) + arg(𝐵(𝑢, 𝑣)) + 𝜃)}  (𝑢, 𝑣) in Eq.(4.1) confirms that sinusoidal 

modulation shifts the object spectrum prior to optical blurring. But it remains to be proven that the modulated 

spatial frequencies can be unambiguously restored to their true position outside the optical passband. Failure 

to do so produces aliasing like artifacts in the reconstructed image. 

The upcoming section examines a demodulation strategy that utilizes rudimentary trigonometric 

relations to process the images acquired under sinusoidal illumination. The strategy is inspired by attempts 

to demodulate the acquired imagery in Structured Illumination Microscopy (SIM). 

4.1 Restoration of heterodyned spatial frequencies 

The expression for the reconstructed image disclosed in Eq.(4.2), neatly encapsulates the demodulation 

strategy adopted in this work 

 re on( ,  ) ≝   bb( ,  ) + (
    co (2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑 )   os( ,  )

+    (2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑 )  sin( ,  )
)  (4.2) 

The term  bb( ,  ) referred to as the “baseband image”, represents the image of the scene under flood 

illumination. The terms   os( ,  ),  sin( ,  ) represent images of the scene acquired under strictly cosine and 

sine illumination. The scale factor 𝜅  accommodates differences in the transverse magnification of the 

illumination and imaging paths. The phase offset 𝜑  accommodates differences in the sampling phase of the 

detector pixel grid and the projector pixel grid.    

The images  bb( ,  ),   os( ,  ),  sin( ,  ) are derived from the camera images  0( ,  ),

  /2( ,  ),   ( ,  ) ,  3 /2( ,  ) that are acquired under the uniformly phase-shifted illumination 

patterns {𝑝𝜃(  ,   )  ∶  𝜃 ∈   , 𝜋/2, 𝜋,  𝜋/2  }. A formal definition of these quantities is included below 
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 bb( ,  ) ≝   (𝑢, 𝑣) (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣  

 =
1

4
[ 0( ,  ) +   /2( ,  ) +   ( ,  ) +  3 /2( ,  )] 

(4.3) 

  os( ,  ) ≝  |𝐵(𝑢, 𝑣)|  co (𝜑(𝑢, 𝑣) + arg(𝐵(𝑢, 𝑣)))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

 =
1

2
[  /2( ,  )   3 /2( ,  )] 

(4.4) 

 sin( ,  ) ≝  |𝐵(𝑢, 𝑣)|     (𝜑(𝑢, 𝑣) + arg(𝐵(𝑢, 𝑣)))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

 =
1

2
  0( ,  )    ( ,  )  

 

(4.5) 

Eqs.(4.3)–(4.5) may be combined to obtain the expression for the reconstructed image  re on( ,  ). The 

resulting expression may be simplified by utilizing the trigonometric identity co (𝑃  𝑄) = co 𝑃 co 𝑄 +

   𝑃    𝑄. The simplified expression for the reconstructed image  re on( ,  ) is disclosed below 

 re on( ,  )

=   (𝑢, 𝑣) { (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)| co (
2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑 

 𝜑(𝑢, 𝑣)  arg(𝐵(𝑢, 𝑣))
)}  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

(4.6) 

The above expression for  re on( ,  ) fails to provide further insight into the restoration of the heterodyned 

frequencies. Hence, we digress to investigate the mechanism by which SIM restores the heterodyned 

frequencies to their true position. The mechanism is evidenced in the expression for the reconstructed image 

shown below 

 re on−SIM( ,  )

=   (𝑢, 𝑣)   + |𝐵| co (2𝜋𝜉0(  𝑢) + 2𝜋𝜂0(  𝑣) arg(𝐵)) ⏟                                  
 ( −𝑢, −𝑣)

  cam(  𝑢,   𝑣)  𝑢 𝑣 (4.7) 

Notice that the reconstructed image  re on−SIM( ,  ) bears a strong resemblance to the image acquired under 

the computationally engineered PSF, 

 e gd( ,  ) =  + |𝐵| co (2𝜋(𝜉0 + 𝜂0 ) arg(𝐵))⏟                        
 ( , )

  cam( ,  ) 

(4.8) 

⇒  e gd(𝜉, 𝜂) =    cam(𝜉, 𝜂) +
|𝐵|

2
 ±𝑗  rg(𝐵) cam(𝜉 ± 𝜉0, 𝜂 ± 𝜂0) 

It is evident that the bandwidth of the engineered optics exceeds the bandwidth of the imaging optics. The 

increase in bandwidth confirms that the heterodyned frequencies have been restored to their true position 

outside the optical passband. 
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In subsequent discussions, the pattern 𝑜( ,  ) ≝  + |𝐵| co (2𝜋(𝜉0 + 𝜂0 )  arg(𝐵)) that 

modulates the optical PSF  cam( ,  ) will be referred to as the “oscillatory pattern”, in view of its repetitive 

nature.  

The specific trait of SIM that permits unambiguous restoration remains to be identified. But, insight 

may be gleamed by comparing Eqs.(4.6) & (4.7), which confirms the following  

 Phase distortion due to parallax is non-existent (𝜑(𝑢, 𝑣) = 2𝜋(𝜉0𝑢 + 𝜂0𝑣)) 

 The relative magnification of the imaging and illumination paths is unity 

(𝜅 = 1, 𝜑 =    =  ,   =  ) 

 The PSF’s of the imaging and illumination optics are space-invariant 

 cam(  𝑢,   𝑣; 𝑢, 𝑣) =  cam(  𝑢,   𝑣) 

  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 ) =   ll(   𝑢 ,    𝑣 ) so that  (𝑢, 𝑣) =  , 𝐵(𝑢, 𝑣) = 𝐵 

It is evident that the absence of phase distortion in SIM is an important ingredient in the restoration of 

heterodyned frequencies. However, it is not apparent if space-variance of the PSF’s impedes the restoration 

process. The impact of space-variance is examined by substituting 𝜑(𝑢, 𝑣) = 2𝜋(𝜉0𝑢 + 𝜂0𝑣) + 𝜑0 in 

Eq.(4.6). The resulting expression for the reconstructed image is provided below 

 re on( ,  )

=   (𝑢, 𝑣)  (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)| co (
2𝜋𝜅 (𝜉0(  𝑢) + 𝜂0(  𝑣))

  arg(𝐵(𝑢, 𝑣))
)

⏟                                    
 ( −𝑢, −𝑣;𝑢,𝑣)

   cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 (4.9) 

It is evident that the reconstructed image  re on( ,  ) bears a strong resemblance to the image acquired under 

the computationally engineered PSF 

 e gd( ,  ; 𝑢, 𝑣) =  (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)| co (2𝜋𝜅 (𝜉0 + 𝜂0 ) arg(𝐵(𝑢, 𝑣)))⏟                                    
 ( , ;𝑢,𝑣)

  cam( ,  ; 𝑢, 𝑣) 
(4.10) 

The principal difference between Eqs.(4.8) & (4.10) is the space-variance of the optical blur and the 

engineered PSF. In addition, the space-variance in the illumination blur appears to introduce further field 

dependence in the engineered PSF through the terms  (𝑢, 𝑣), |𝐵(𝑢, 𝑣)| and arg(𝐵(𝑢, 𝑣)).  

The discussion thus far supports the notion that space-variance in the illumination and imaging blur 

does not serve as an impediment to super resolution. But it remains to be confirmed that the resolving power 

of the imager may be improved. The topic is examined in succeeding paragraphs. 
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It is observed that the terms  (𝑢, 𝑣), 𝐵(𝑢, 𝑣) in Eq.(4.10) assume fixed values for a fixed field 

location (𝑢, 𝑣). Likewise, the functional form of the optical blur  cam( ,  ; 𝑢, 𝑣) remains fixed, for a fixed 

field location. The deterministic nature of these terms allow us to associate a field dependent transfer function 

to both the optical imager and the computationally engineered imager. The standard practice of identifying 

the transfer function by computing the Fourier transform of the PSF, may be employed to obtain the following 

result 

ℱ{ e gd( ,  ; 𝑢, 𝑣)}

= ℱ{𝑜( ,  ; 𝑢, 𝑣)} ⊛ ℱ{ cam( ,  ; 𝑢, 𝑣)}

= ℱ{ (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)| co (2𝜋𝜅 (𝜉0 + 𝜂0 )  arg(𝐵(𝑢, 𝑣)))} ⊛ ℱ{ cam( ,  ; 𝑢, 𝑣)} 

 

 

 

(4.11) 

The operator ℱ{𝑔( ,  )} ≝ ∬𝑔( ,  ) exp( 𝑗2𝜋(𝜉 + 𝜂 ))      denotes the 2D Fourier transform, while 

⊛ denotes the convolution operator.  

It is evident that the convolution operation in Eq.(4.11) produces replicas of the camera Optical Transfer 

Function (OTF), centered at the frequencies ( , ) & ± (
𝜅𝑜 0

Δ 
,
𝜅𝑜 0

Δ 
)

cycle 

mm
. The replication in the frequency 

domain serves to increase the bandwidth of the engineered OTF. The extended bandwidth of the engineered 

OTF confirms that the heterodyned frequencies have been restored to their true position outside the optical 

passband, and the resolving power of the optical imager has indeed improved. 

4.1.1 Bound on resolving power 

Intuition suggests that an increase in the bandwidth of the computationally engineered OTF is accompanied 

by a reduction in the size of the resolvable spot. An accepted criterion for identifying the size of the resolvable 

spot is the width of the central lobe. It is identified as the physical separation of intensity minima situated on 

either side of the intensity maximum. The multiplicative structure of Eq.(4.10) guarantees that the engineered 

PSF shares the minima of the camera PSF and the oscillatory pattern. The oscillatory pattern is a real non-

negative function, whose adjacent intensity minima are separated by the spatial period Δ  𝜅𝑜
 1(𝜉

 
2 + 𝜂

 
2)

 1/2
𝜇𝑚. 

Super resolution results when two or more minima of the oscillatory pattern 𝑜( ,  ; 𝑢, 𝑣) can be squeezed 

into the central lobe of the camera PSF  cam( ,  ; 𝑢, 𝑣).  
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For a fixed field location (𝑢, 𝑣), it is observed that  

periodicity of the oscillatory pattern 𝑜( ,  ; 𝑢, 𝑣) given by Δ  𝜅 
−1(𝜉0

2 + 𝜂0
2)−1/2 ≤ 

width of the central lobe of the engineered PSF  e gd( ,  ; 𝑢, 𝑣) in any direction 

≤ width of the central lobe of the PSF  cam( ,  ; 𝑢, 𝑣) in the direction (𝜉0, 𝜂0) 

(4.12) 

The reader will recognize Eq.(4.12) as a bound on the physical size of the resolvable spot, subsequent to 

super resolution. The lower bound is satisfied with strict equality, in the direction of modulation. The upper 

bound is satisfied with strict equality in directions that are nearly orthogonal to the direction of modulation, 

since the illumination pattern fails to exhibit intensity variations in these directions. Figure 4.3 provides a 

visual interpretation of these bounds. 

 

The key insights to be gleamed from this section are detailed below  

 space-variance in the imaging and illumination blur does not serve as an impediment to super 

resolution using patterned illumination 

 The heterodyned spatial frequencies in the camera image acquired under sinusoidal illumination 

may be restored unambiguously, provided 

o 𝜑(𝑢, 𝑣) is independent of scene depth 𝑊, and 

o 𝜑(𝑢, 𝑣) is expressible as the linear phase 2𝜋𝜅 (𝜉0𝑢 + 𝜂0𝑣) + 𝜑0 

 super resolution using sinusoidal illumination is effected by the computational engineering of 

the transverse PSF  cam( ,  ; 𝑢, 𝑣) 

The notion that active super resolution is effected by computational engineering of the transverse PSF is 

unique to our work. It is also central to our discussion on PSF engineering using patterned illumination, in 

Chapter 7. Hence, in the interest of clarity, we proceed to illustrate the notion by means of an example.  
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4.2 Illustrating super resolution by computational PSF Engineering 

The field dependence of the terms  (𝑢, 𝑣), 𝐵(𝑢, 𝑣) in Eqs.(4.9) & (4.10) complicates the visual interpretation 

of super resolution by PSF engineering. Hence, in the remainder of this section, we assume that the 

illumination blur is space-invariant so that  (𝑢, 𝑣) =  , 𝐵(𝑢, 𝑣) = 𝐵. Further, it is assumed that 𝜅 = 1 and 

𝜑 =  . 

Figure 4.2 illustrates the prospect of super resolving a diffraction limited imager, using sinusoidal 

illumination. The inset labeled “PSF” depicts an Airy disk with a cutoff frequency of 𝜌0 = 19 . 9 cyc/mm. 

The yellow lines in the inset depict the spacing between the first two nulls of the airy disk (12.  𝜇𝑚). The 

inset labeled “engineered PSF” demonstrates the effect of modulating the diffraction limited PSF with a 

raised-cosine pattern whose frequency 𝜉0 =  , 𝜂0 = 𝜌0 = 19 . 9 cyc/mm, and  = 𝐵 = 1.  

Inspection of the PSF slices in Figure 4.2 confirm the absence of resolution gain in directions nearly 

orthogonal to the orientation of the illumination pattern. The resolution gain in the direction of modulation 

manifests as a reduction in the width of the central lobe of the engineered PSF. Closer inspection of the left 

inset in Figure 4.3 indicates that 4 consecutive intensity minima of the oscillatory pattern fit into the central 

lobe of the airy disk. Note that, each minimum marks the beginning of a side lobe in the engineered PSF. 

 

Figure 4.2 Super resolving a diffraction limited imager by 

engineering its PSF using sinusoidal illumination 
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Intuitively, one expects to observe a larger resolution gain when several intensity minima of the 

oscillatory pattern are accommodated into the central lobe of the airy disk. But, it is disclosed in a later section 

that the side lobes accompanying the central lobe induce ghost artifacts in the reconstructed image. The 

problem is aggravated by the oscillatory nature of the sinusoidal illumination pattern. 

Figures 4.5 & 4.6 illustrate the prospect of PSF engineering in a space-variant imager comprised of a 

detector and a 19 mm biconvex lens. The PSF and MTF insets in Figures 4.5 & 4.6 highlight the severity of 

space-variance. The color-coding scheme employed in Figure 4.5 designates field locations relevant to this 

example. 

The on-axis PSF is a diffraction limited Airy disk with a cutoff frequency of 𝜌0 = 19 . 9  cyc/mm. 

The engineered PSF’s are obtained by modulating the optical PSF’s with a raised-cosine pattern whose 

frequency 𝜉0 =  , 𝜂0 = 125 cyc/mm, and  = 𝐵 = 1. 

Figure 4.3 Bounds on resolvable spot size for the example described in Figure 4.2 

Optical PSF   cam( ,  ;  , )

slice of PSF 

in the direction of modulation

 12.  𝜇𝑚

 5.2 𝜇𝑚

slice of PSF in direction perpendicular 

to the direction of modulation

 12.  𝜇𝑚

Engineered PSF   e gd( ,  ;  , )

Width of central lobe of  cam( ,  ;  , ) 12.  𝜇𝑚
Period of oscillatory pattern in    direction  
Period of oscillatory pattern in    direction 5.2 𝜇𝑚

Direction of modulation     direction
Width of central lobe of  e gd( ,  ;  , ) in    direction 12.  𝜇𝑚
Width of central lobe of  e gd( ,  ;  , ) in   ” direction 5.2 𝜇𝑚
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Off-Axis MTF

0.76 mm , 0 mm
On-Axis MTF

0 mm , 0 mm

Off-Axis MTF

0 mm , 0.76 mm
On-Axis MTF

0.76 mm , 0.76 mm

Off-Axis PSF
0 mm , 0.76 mm

Off-Axis PSF
.76 mm , .76 mm

On-Axis PSF
0 mm , 0 mm

Off-Axis PSF
0.76 mm , 0 mm

Figure 4.5 PSF’s & MTF cross-section’s of an exemplar space-variant imager 

Figure 4.4 Space-variance in the imager used to illustrate super resolution by PSF engineering. 
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Inspection of the engineered PSF slices in Figure 4.6 confirm the absence of resolution gain in directions 

nearly orthogonal to the orientation of the illumination pattern. The resolution gain in the direction of 

modulation manifests as a reduction in the width of the central lobe of each engineered PSF. Closer inspection 

of the engineered PSF’s reveals pronounced side-lobes in the off-axis engineered PSF’s. The source of this 

unusual behavior is the increase in the number of cycles of the oscillatory pattern 𝑜( ,  ; 𝑢, 𝑣) that can be fit 

into the central lobe of the off-axis PSF, as one moves away from the optical axis. Each zero crossing of the 

oscillatory pattern that is contained in the central lobe of the PSF   cam( ,  ; 𝑢, 𝑣) marks the beginning of a 

new side lobe in the engineered PSF. It is not difficult to imagine that that the side lobes induce ghost artifacts 

in the reconstructed image, a fact corroborated by experiments.  

The examples discussed thus far support the notion that active super resolution is effected by 

computational engineering of the transverse PSF. The notion generalizes the viewpoint espoused in [77] for 

space-invariant blurs, and is an original contribution of this work. 

Figure 4.6 Super resolving a space-variant imager by 

engineering its PSF using sinusoidal illumination 



57 

 

By now, it should be evident to the reader that unambiguous restoration of the heterodyned frequencies 

is central to the notion of super resolution by PSF Engineering introduced in this chapter. In Section 4.1, we 

identified the following conditions as being essential to the unambiguous restoration of heterodyned 

frequencies in an active stereo setup: 

1     Phase distortion due to parallax 𝜑(𝑢, 𝑣) is independent of scene depth 𝑊  

2     𝜑(𝑢, 𝑣) is expressible as the linear phase 2𝜋𝜅 (𝜉0𝑢 + 𝜂0𝑣) + 𝜑   

The aforementioned conditions guide our immediate efforts to identify active stereo embodiments that 

support Optical Super Resolution. 

4.3 Super resolution in an active stereo setup using periodic sinusoidal 

illumination   

In Section 3.4, we derived the expression for the camera image acquired under the periodic sinusoidal 

illumination pattern   + 𝐵    (2𝜋(𝜉0  + 𝜂0  ) + 𝜃). The expression is repeated here for the benefit of the 

reader 

 𝜃( ,  ) =  ( (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|    (
𝜑(𝑢, 𝑣) + 𝜃

+arg(𝐵(𝑢, 𝑣))
))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

wherein 

(4.13)  

𝜑(𝑢, 𝑣) = 2𝜋𝜉0

 11
 (𝑊𝑢  𝑡 ) +  12

 (𝑊𝑣  𝑡 ) +  13
 (𝑊  𝑡 )

 31
 (𝑊𝑢  𝑡 ) +  32

 (𝑊𝑣  𝑡 ) +  33
 (𝑊  𝑡 )

         

+ 2𝜋𝜂0

 21
 (𝑊𝑢  𝑡 ) +  22

 (𝑊𝑣  𝑡 ) +  23
 (𝑊  𝑡 )

 31
 (𝑊𝑢  𝑡 ) +  32

 (𝑊𝑣  𝑡 ) +  33
 (𝑊  𝑡 )

 

  (𝑢, 𝑣) ≝      ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )  𝓊  𝓋                                        replace (𝑢 , 𝑣 )
Eq.(3.18)
→      (𝑢, 𝑣) 

 𝐵(𝑢, 𝑣) ≝ 𝐵  {
exp ( 𝑗2𝜋(𝜉0(𝑢  𝓊 ) + 𝜂0(𝑣  𝓋 )))

×   ll(𝑢  𝓊 , 𝑣  𝓋 ;𝓊 , 𝓋 )
}  𝓊  𝓋        replace (𝑢 , 𝑣 )

Eq.(3.18)
→      (𝑢, 𝑣) 

The intuitive meaning of the numerous terms in Eq.(4.13) is provided in Table 4.1. 

Armed with the expression for  𝜃( ,  ), we proceed to tackle the question of camera and projector 

placement that renders 𝜑(𝑢, 𝑣) invariant to scene depth, while imparting a linear phase profile. The task 

amounts to a judicious selection of the entries of the infinite homography   , and the epipole  𝑡 , 𝑡 , 𝑡  . 
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It is evident from Eq.(4.13) that an affine transform ( 31
 =  32

 =  ) allows us to express 𝜑(𝑢, 𝑣) as a 

strictly linear function of the image coordinates (𝑢, 𝑣). The choice of the epipole that renders 𝜑(𝑢, 𝑣) 

invariant to scene depth is a lot less obvious. Luckily, direct substitution can be used to verify that the 

following choice of the infinite homography    and the camera epipole  𝑡 , 𝑡 , 𝑡   satisfies conditions 1   

& 2  enumerated at the end of Section 4.2.  

  ≝ [

 11
  12

  13
 

 21
  22

  23
 

 31
  32

  33
 

]

= [

 𝑚    𝑑/Δ     

  𝑚    𝑑/Δ    
  1

]

⏞                  
𝑲 

[
1   
 1  
  1

]

⏞      
𝑹 

[

 Δ/𝑚  𝑑    Δ/𝑚  𝑑

  Δ/𝑚  𝑑   Δ/𝑚  𝑑

  1

]

⏞                        
𝑲  

 

=

[
 
 
 
 
 (

𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
)     + (

𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
)   

 (
𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
)    + (

𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
)   

  1 ]
 
 
 
 
 

 

 

 

 

 

(4.14) 

Table 4.1 Description of terms in Eq.(4.13) 

𝜑(𝑢, 𝑣) phase distortion due to parallax  

 (𝑢, 𝑣), |𝐵(𝑢, 𝑣)| 
blur induced amplitude deviation in the DC and sinusoidal components 

of the illumination pattern 

arg(𝐵(𝑢, 𝑣)) blur induced phase distortion 

 cam(  𝑢,   𝑣; 𝑢, 𝑣) spatially varying blur induced by the imaging optics 

 ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 ) spatially varying blur induced by the illumination optics 

𝜉0, 𝜂0 spatial frequency of the illumination pattern 

𝑊 depth of scene point (𝑈, 𝑉,𝑊) that maps to the (𝑢, 𝑣)𝑡ℎ camera pixel 

 𝑖𝑗
  ( , 𝑗)𝑡ℎ entry of the infinite homography    = 𝑲 𝑹 𝑲−  

 𝑡 , 𝑡 , 𝑡   epipole in the camera image plane 
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𝜉0𝑡 + 𝜂0𝑡 =  ⇒ 𝜉0  + 𝜂0  =    

𝑡 =  ⇒   =   
(4.15) 

Incorporating the above choices into Eq.(4.13), yields the following expression for 𝜑(𝑢, 𝑣)  

𝜑(𝑢, 𝑣) = 2𝜋𝜅 (𝜉0𝑢 + 𝜂0𝑣) + 𝜑  

wherein 

𝜅 ≝ (
𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
) 

𝜑 ≝ 2𝜋(𝜉0(   + 𝜅   ) + 𝜂0(   + 𝜅   )) 

(4.16) 

 

 

 

 

Clearly 𝜑(𝑢, 𝑣) is a linear function of the image coordinates (𝑢, 𝑣) that is also independent of the scene depth. 

The reader will recognize that Eqs.(4.14) & (4.15) impose constraints on the relative displacement 

   ,   ,    
𝑇 between the centers of perspective of the camera and projector, and the relative rotation 𝑹  

between their optical axes. The complete set of constraints on camera projector placement, and their intuitive 

meaning is tabulated in Table 4.2.  In subsequent discussions, the term “collocated” is used to refer to stereo 

arrangements for which   =  . 

Table 4.2 Constraints on camera and projector placement supporting super resolution using 

periodic sinusoidal illumination 

𝑹 = [
1   
 1  
  1

] 

The optical axes of the camera and projector are parallel. The 

phrase “canonical stereo setup” is frequently used to 

designate such stereo arrangements. 

  =   

The camera’s optical axis oriented along   , ,1 𝑇 is 

perpendicular to the baseline    ,   ,   𝑇. 

  =  , 𝑹 = [
1   
 1  
  1

] 
The entrance pupil plane of the camera and the exit pupil 

plane of the projector are coplanar.  

𝜉0  + 𝜂0  =     or  |
𝜉0

𝜂0

| = |
  

  

| 
The orientation of the periodic sinusoidal pattern is identical 

to the orientation of the baseline vector.     
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Figure 4.7 illustrates two canonical stereo arrangements that support unambiguous restoration of the 

heterodyned frequencies. The image insets were generated using a publicly available ray-tracing program 

called POV-Ray [78]. Inspection of the camera image insets in Figure 4.7 confirms that the detected 

sinusoidal pattern does not exhibit phase distortion due to parallax. 

4.3.1 Limitations of the “Canonical stereo setup” 

The principal limitation of the canonical stereo setup is the inability to super resolve in orientations that are 

not aligned with the baseline vector. The inability is attributed to the presence of phase distortion in the 

detected sinusoidal pattern when 𝜉0  + 𝜂0  ≠  . This behavior is evident in the expression for 𝜑(𝑢, 𝑣) 

disclosed in Eq.(4.17). 

 

 

Canonical Stereo Setup - Horizontally Collocated   ≠  ,  =  ,   =  

Canonical Stereo Setup - Vertically Collocated   =  ,  ≠  ,   =  

Periodic Sinusoidal Illumination

𝜉0 =  , 𝜂0 >  
Camera image of scene

𝜉0  + 𝜂0  =  

𝜉0  + 𝜂0  =  

Camera image of scenePeriodic Sinusoidal Illumination

𝜉0 >  , 𝜂0 =  

Figure 4.7 POV-Ray simulation of canonical stereo arrangements that support super resolution 
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𝜑(𝑢, 𝑣) = 2𝜋𝜅 (𝜉0𝑢 + 𝜂0𝑣) + 𝜑0 +
1

𝑊
2𝜋𝜅𝑑(𝜉0  + 𝜂0  ) 

wherein 

𝜅 ≝ (
𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
)    𝜅𝑑 ≝

𝑚    𝑑

Δ 
 

𝜑 ≝ 2𝜋(𝜉0(   + 𝜅   ) + 𝜂0(   + 𝜅   )) 

(4.17) 

 

 

 

 

 

The aforementioned limitation may be overcome by employing multiple canonical stereo arrangements that 

share a central imager, as illustrated in Panel-1 of Figure 4.8. Each stereo arrangement in the apparatus 

supports super resolution in one orientation (horizontal/vertical/diagonal). Alternatively, one could rotate a 

single canonical stereo arrangement about a fixed point as illustrated in Panel-2 of Figure 4.8. 

A second limitation of the canonical stereo setup is that does not support the large baseline needed for 

improving the range resolution of active scene recovery techniques. Attempts to increase baseline in a 

canonical stereo setup are prone to failure because of the limited overlap between the illuminated volume 

and the imaged volume, as evidenced in Figure 4.10.  

  =  
  =  

  =   
  =  

  =   
  =  

𝜃 =  ∘

  =   
  =  

Panel-1

  =   
  =  

arm

Panel-2

Figure 4.8 Super resolution in multiple orientations using a canonical stereo setup 
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4.3.2 Additional Comments 

At first sight, the collocation requirement (  =  ) appears to be overly restrictive. But, examination of top 

of the line Structured Light Scanners such as the Brueckmann smartSCAN-3D and ATOS-III Triple Scan 

indicates that the imaging and illumination systems are mounted on a single arm and possibly collocated. 

The finding has valuable practical implications in that it hints at the possibility of using Structured Light 

Scanners to super resolve spatial detail in addition to recovering topographic information. The principal 

difference between the “canonical stereo setup” described in the present section and the stereo arrangement 

favored by Structured Light Scanners, is the use of large baselines and crossed optical axes. The prospect of 

super resolving spatial detail in such Structured Light Scanners serves as the motivation for our investigation 

into other active stereo arrangements that support super resolution.  

Brueckmann smartSCAN-3D ATOS-III Triple Scan

Projector

Camera-2Camera-1

Projector
Camera-2

Camera-1

Figure 4.9 Top of the line Structured Light Scanners employing sinusoidal illumination 

Figure 4.10 Impact of stereo baseline on super resolution using a “canonical stereo setup” 

small baseline

poor range resolution

large baseline

+ improved range resolution

 limited field-of-view overlap

 limited scope for OSR
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4.3.3 Special case: super resolving a planar facet using periodic sinusoidal patterns  

Under special circumstances, the constraints   =   and 𝜉0  + 𝜂0  =   needed to eliminate phase 

distortion in a canonical active stereo setup may be relaxed to accommodate "non-collocated" stereo 

arrangements and arbitrary pattern orientations. These circumstances arise when imaging scenes comprised 

of a single planar facet that is plane-parallel to the camera and projector pupil planes. In such cases 𝑹 =

 de t ty matr x, and the infinite homography    reduces to 𝑲 𝑲− . Further, the planar facet does not exhibit 

any topographic variation from the standpoint of the camera or projector, so that the absolute depth of each 

scene point (𝑊 in) is expressible as the constant 𝑊0 for all image coordinates (𝑢, 𝑣).  

Incorporating the aforementioned values of   ,𝑊 into Eq.(4.13) yields the following expression for 

phase distortion 𝜑(𝑢, 𝑣) 

𝜑(𝑢, 𝑣) = 2𝜋𝜅 (𝜉0𝑢 + 𝜂0𝑣) + 𝜑  

wherein 

𝜅 ≝ (
𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
)

𝑊0

𝑊0  𝑡 
 

𝜑 ≝ 2𝜋𝜉0 (   + (
𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
)   ) + 2𝜋𝜂0 (   + (

𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
)   )  2𝜋

𝜅 

𝑊0

 (𝜉0𝑡 + 𝜂0𝑡 ) 

(4.18) 

 

 

 

 

 

 

 

 

Notice that the linear phase profile of 𝜑(𝑢, 𝑣) is consistent with that needed to realize Optical Super 

resolution. This confirms that periodic sinusoidal patterns may be used to super resolve planar targets that 

are plane-parallel to the camera and projector pupil planes. In subsequent discussions, such targets will be 

referred to as 2D scenes, since they fail to exhibit topographic variation from the standpoint of the camera. 

4.4 Super resolution in an active stereo setup using warped sinusoidal illumination   

In Section 4.3 it was observed that periodic sinusoidal patterns exclusively support super resolution in a 

canonical stereo setup. Our interest in super resolving spatial detail in other stereo arrangements such as those 

employed in Structured Light Scanners, compels us to examine alternative sinusoidal patterns. In subsequent 

paragraphs, we establish that sinusoidal patterns pre-warped by the infinite homography    =

𝑲𝑹 𝑻𝑲 −  support super resolution in other stereo arrangements.  
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We being by recalling the expression for the camera image acquired under the warped sinusoidal pattern 

  + 𝐵    (2𝜋 (𝜉0

  11
   +   12

   +   13
 

  31
   +   32

   +   33
 

+ 𝜂0

  21
   +   22

   +   23
 

  31
   +   32

   +   33
 

) + 𝜃) 

The expression is repeated here for the benefit of the reader 

 𝜃( ,  ) =  ( (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|    (
𝜑(𝑢, 𝑣) + 𝜃

+arg(𝐵(𝑢, 𝑣))
))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

wherein 

(4.19) 

 

 

 

 

 

 

 

 

 

 𝜑(𝑢, 𝑣) ≝ 2𝜋 (
𝑊  𝑡 

𝑊
) (𝜉0𝑢 + 𝜂0𝑣)  (

2𝜋

𝑊  𝑡 
) (𝜉0𝑡 + 𝜂0𝑡 ) 

  (𝑢, 𝑣) ≝      ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )  𝓊  𝓋                                        replace (𝑢 , 𝑣 )
Eq.( .22)
→      (𝑢, 𝑣) 

 𝐵(𝑢, 𝑣) ≝ 𝐵  {
exp( 𝑗𝜑(𝑢  𝓊 , 𝑣  𝓋 ))

×   ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )
}  𝓊  𝓋                              replace (𝑢 , 𝑣 )

Eq.( .22)
→      (𝑢, 𝑣) 

The intuitive meaning of the numerous terms in Eq.(4.19) is provided in Table 4.3. 

Table 4.3 Description of terms in Eq.(4.19) 

𝜑(𝑢, 𝑣) phase distortion due to parallax  

 (𝑢, 𝑣), |𝐵(𝑢, 𝑣)| 
blur induced amplitude deviation in the DC and sinusoidal components 

of the illumination pattern 

arg(𝐵(𝑢, 𝑣)) blur induced phase distortion 

 cam(  𝑢,   𝑣; 𝑢, 𝑣) spatially varying blur induced by the imaging optics 

 ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 ) spatially varying blur induced by the illumination optics 

𝜉0, 𝜂0 spatial frequency of the illumination pattern 

𝑊 depth of scene point (𝑈, 𝑉,𝑊) that maps to the (𝑢, 𝑣)𝑡ℎ camera pixel 

  𝑖𝑗
  ( , 𝑗)𝑡ℎ entry of the infinite homography     = 𝑲𝑹 𝑻𝑲 −  

 𝑡 , 𝑡 , 𝑡   epipole in the camera image plane 
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Armed with the expression for  𝜃( ,  ), we proceed to tackle the question of camera and projector placement 

that renders 𝜑(𝑢, 𝑣) invariant to scene depth, while imparting a linear phase profile. The task amounts to a 

selection of the epipole  𝑡 , 𝑡 , 𝑡  , and pattern orientation (𝜉0, 𝜂0). Direct substitution can be used to verify 

that the following choice of the epipole and pattern orientation satisfies the conditions 1   & 2  enumerated 

at the end of Section 0 

𝜉0𝑡 + 𝜂0𝑡 =  ⇒ 𝜉0  + 𝜂0  =    

𝑡 =  ⇒   =   
(4.20) 

Incorporating the above choices into Eq.(4.19), yields the following expression for 𝜑(𝑢, 𝑣)  

𝜑(𝑢, 𝑣) = 2𝜋𝜅 (𝜉0𝑢 + 𝜂0𝑣) + 𝜑  

 wherein  𝜅 ≝ 1 , 𝜑 ≝   
(4.21) 

Clearly 𝜑(𝑢, 𝑣) is a linear function of the image coordinates (𝑢, 𝑣) that is also independent of the scene depth. 

The reader will recognize that Eq.(4.20) imposes constraints on the relative displacement    ,   ,    
𝑇 

between the centers of perspective of the camera and projector, and the relative rotation 𝑹  between their 

optical axes. The complete set of constraints on camera projector placement, and their intuitive meaning is 

tabulated in Table 4.4. 

Figure 4.11 illustrates two active stereo arrangements that support unambiguous restoration of the 

heterodyned frequencies. The image insets were generated using a publicly available ray-tracing program 

Table 4.4 Constraints on camera and projector placement supporting super resolution using 

warped sinusoidal illumination 

  =   

The projector’s center-of-perspective lies in the entrance pupil 

plane of the camera. The camera’s optical axis oriented along 

  , ,1 𝑇 is perpendicular to the baseline    ,   ,   𝑇  

𝜉0  + 𝜂0  =     or  |
𝜉0

𝜂0

| = |
  

  

| 
The orientation of the periodic sinusoidal pattern is identical 

to the orientation of baseline vector. 
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called POV-Ray [78]. Inspection of the camera image insets in Figure 4.11 confirms that the detected 

sinusoidal pattern does not exhibit phase distortion due to parallax. 

4.4.1  Practical considerations  

The analysis presented thus far assumes knowledge of the infinite homography    . Modern approaches for 

identifying the infinite homography rely on explicit identification of the intrinsic matrices 𝑲, 𝑲 , and the 

relative rotation 𝑹 . The process is tedious and entails calculation of more quantities than the number of entries 

in the homography    . In addition, assembling the infinite homography    = 𝑲𝑹 𝑻𝑲 −  from the estimates 

of 𝑲,𝑲 , 𝑹  is prone to increasing the uncertainty in the estimate of    . In an effort to mitigate the influence 

of measurement uncertainty, we examine the implications of illuminating the scene with the sinusoidal 

pattern 

  + 𝐵    (2𝜋 (𝜉0

𝜋 11  + 𝜋 12  + 𝜋 1 

𝜋  1  + 𝜋  2  + 𝜋   

+ 𝜂0

𝜋 21  + 𝜋 22  + 𝜋 2 

𝜋  1  + 𝜋  2  + 𝜋   

) + 𝜃) (4.22) 

in lieu of the sinusoidal pattern 

Active Stereo Setup - Horizontally Collocated   ≠  ,   =  ,   =  

Active Stereo Setup - Vertically Collocated   =  ,   ≠  ,   =  

Warped Sinusoidal Illumination

𝜉0 =  , 𝜂0 >  
Camera image of scene

𝜉0  + 𝜂0  =  

𝜉0  + 𝜂0  =  

Camera image of sceneWarped Sinusoidal Illumination

𝜉0 >  , 𝜂0 =  

Figure 4.11 POV-Ray simulation of active stereo arrangements that support super resolution 
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  + 𝐵    (2𝜋 (𝜉0

  11
 

  +   12
 

  +   1 
 

   1
 

  +    2
 

  +     
 + 𝜂0

  21
 

  +   22
 

  +   2 
 

   1
 

  +    2
 

  +     
 ) + 𝜃) (4.23) 

Our study begins with an attempt to derive the expression for the projector to camera homography induced 

by a planar facet. Suppose that the planar facet has unit normal  =  𝑛 , 𝑛 , 𝑛  
𝑇and perpendicular 

distance  ⊥ from the origin of the world coordinate system. Any point ( ,  ,  ) on the planar facet satisfies 

the following equation for the plane in point-normal form 

 𝑇 [
 
 
 
] =  ⊥ (4.24) 

Algebraic manipulation of Eq.(4.24) yields the following result   

                                           
1

 ⊥   𝑇𝒃
( 𝑇 [

    

    

    

]) = 1         where    𝒃 ≝ [

  

  

  

]  (4.25) 

The vector      ,     ,      
𝑇 in the above expression may be recast in projector image coordinates 

using the relation disclosed in Eq.(3.5) of Section 3.2. The resulting expression is shown below   

1

𝛾 
(

1

 ⊥   𝑇𝒃
) 𝑇𝑹 𝑻𝑲 − [

  
  
1

] = 1 (4.26) 

Post-multiplying both sides of Eq.(4.26) by the vector 𝑲𝒃 yields the following expression 

1

𝛾 
(

1

 ⊥   𝑇𝒃
) 𝑇𝑹 𝑻𝑲 − [

  
  
1

] 𝑲𝒃 = 𝑲𝒃 (4.27) 

Suppose ( ,  ) & (  ,   ) are the coordinates of the geometric image of the scene point ( ,  ,  ) in the camera 

& projector image planes. The mapping between the coordinates ( ,  ) & (  ,   ) is disclosed in Eq.(3.7) of 

Section 3.2, and repeated here for the benefit of the reader 

   [
 
 
1
] =

1

𝛾 

1

 
   

1

𝛾 
+

1

 
𝑲𝒃 (4.28) 

The term 𝑲𝒃 in the above equation may be replaced with the left-hand-side of Eq.(4.27). The resulting 

expression is provided below  

                    [
 
 
1
] =

1

𝛾 

1

 
   [

  
  
1

] +
1

𝛾 

1

 
(

1

 ⊥   𝑇𝒃
)𝑲𝒃 𝑇𝑹 𝑻𝑲 −  (4.29) 

   [
 
 
1
] =

1

𝛾 

1

 
(   +

1

 ⊥   𝑇𝒃
𝑲𝒃 𝑇𝑹 𝑻𝑲 − ) (4.30) 
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The sum of the matrices enclosed in round brackets represents the homography induced by the planar facet.  

In the special case that the planar facet is plane-parallel to the projector exit pupil, the normal vector of 

the planar facet assumes the form  = 𝑹      1 𝑇. Substituting  = 𝑹      1 𝑇into Eq.(4.30) yields the 

following expression for the homography  

𝜫 ≝    +
1

 Π

[

    

    

    

]             where  Π ≝  ⊥    31     32   (4.31) 

The following identities follows directly from the definition of 𝜫  

  11
 

= 𝜋 11
           12

 = 𝜋 12           13
 = 𝜋 13  

  

 Π

  21
 

= 𝜋 21
          22

 = 𝜋 22           23
 = 𝜋 23  

  

 Π

   1
 

= 𝜋  1
          32

 = 𝜋 32           33
 = 𝜋 33  

  

 Π

  (4.32) 

These identifies may be incorporated into the expression for the warped sinusoidal pattern disclosed in 

Eq.(4.23). Care must be taken to accommodate the conditions   =   and  𝜉0  + 𝜂0  =  , required for 

unambiguous restoration of the heterodyned frequencies. The end result is disclosed below 

  + 𝐵    (2𝜋 (𝜉0

  11
 

  +   12
 

  +   1 
 

   1
 

  +    2
 

  +     
 + 𝜂0

  21
 

  +   22
 

  +   2 
 

   1
 

  +    2
 

  +     
 ) + 𝜃)

=   + 𝐵    (2𝜋 (𝜉0

𝜋 11  + 𝜋 12  + 𝜋 1 

𝜋  1  + 𝜋  2  + 𝜋   

+ 𝜂0

𝜋 21  + 𝜋 22  + 𝜋 2 

𝜋  1  + 𝜋  2  + 𝜋   

) + 𝜃) 

(4.33) 

It is evident from Eq.(4.33) that sinusoidal patterns warped by the homography 𝜫  induced by a planar facet 

that is plane-parallel to the projector exit pupil, may be used to super resolve spatial detail in a collocated 

active stereo setup. The experiments in Chapter 6 exploit the above result. 

4.4.2 Limitations of the “Collocated Stereo Setup” 

The principal limitation of the collocated stereo setup is the inability to super resolve in orientations that are 

not aligned with the baseline vector. The inability is attributed to the presence of phase distortion in the 

detected sinusoidal pattern when 𝜉0  + 𝜂0  ≠  . The limitation may be overcome by adopting a strategy 

similar to that discussed in Figure 4.8. The idea is to use multiple collocated stereo arrangements that share 

the same imager or a single collocated stereo arrangement that rotates about the camera optical axis. 
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A second limitation of the collocated stereo setup is that does not support arbitrarily large baselines. 

Increasing the stereo baseline while attractive from a range-resolution standpoint, must be accompanied by 

a rotation of the projector’s optical axis so as to improve the overlap between the illuminated volume and the 

imaged volume. As the angle of rotation increases, it is likely that the warped sinusoidal pattern that is used 

to illuminate the scene, will appear aliased on account of the finite pixel size of the light sensitive elements 

in the projector.  

4.4.3 Additional comments 

To the casual reader, it may appear that the “collocated stereo arrangement” discussed in this section is 

sufficiently different from the “canonical stereo arrangement” discussed in Section 4.3. But, inspection of 

Tables 4 & 4 confirms that the “canonical stereo arrangement” is a special instance of the “collocated stereo 

arrangement”, which arises when 𝑹 =  de t ty matr x. The difference between the arrangements lies in the 

warped nature of the illumination pattern employed in a collocated stereo arrangement.  

For the purpose of this discussion, one could explicitly pre-warp the periodic sinusoidal illumination 

pattern employed in a “canonical stereo arrangement”. It soon becomes apparent that pre-warping amounts 

to compensating for the difference in the relative magnification of the camera and projector, and also the 

difference in the sampling phase of the camera and projector sampling grids.  

4.5 Super Resolution in multiple orientations using a coincident stereo setup  

The principal limitation of the collocated stereo arrangements of Sections 4.3 & 4.4 is the inability to improve 

the spatial resolution in multiple orientations. The limitation stems from the inability to cope with the phase 

distortion of the detected sinusoidal pattern, under select pattern orientations. In resource constrained 

environments, it is highly desirable to use a single stereo arrangement to super resolve in multiple 

orientations. The following paragraphs outline a special instance of the “canonical stereo setup” that 

eliminates the phase distortion due to parallax, for all pattern orientations.  
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Suppose that the imaging and illumination paths share the same optical axis so that 𝑹 =

 de t ty matr x,   =   =  . Now suppose that the imaging and illumination systems are also collocated 

so that   =  . The net result is that the imaging and illumination paths share a single viewpoint, such that 

 the center-of-perspective of the imaging and illumination systems coincide 

 the entrance pupil of the imaging system and the exit pupil of the illumination system are coplanar 

The stereo arrangement described above is illustrated in Figure 4.12, and is referred to as a “coincident stereo 

setup”. It is comprised of a camera and a projector that share a common viewpoint, with the aid of a 45∘ beam 

splitter.  

Incorporating the aforementioned choice of 𝑹  into the expression for the infinite homography   , indicates 

that it reduces to the upper-triangular matrix shown below 

Incident light path

Reflected light path

light 

absorber

towards 

scene

Camera

Projector

Figure 4.12 Coincident active stereo setup that supports super resolution in multiple orientations 



71 
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(4.34) 

 

 

 

It addition one finds that the camera epipole  𝑡 , 𝑡 , 𝑡  
𝑇 = 𝑲    ,   ,    

𝑇 reduces to the zero 

vector   , ,  𝑇since   =   =   =  .  

Incorporating the above values of the infinite homography and the camera epipole into Eq.(4.13), yields the 

following expression for 𝜑(𝑢, 𝑣)  

𝜑(𝑢, 𝑣) = 2𝜋𝜅 (𝜉0𝑢 + 𝜂0𝑣) + 𝜑  

wherein 

𝜅 ≝ (
𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
) 

𝜑 ≝ 2𝜋(𝜉0(   + 𝜅   ) + 𝜂0(   + 𝜅   )) 

(4.35) 

Notice that 𝜑(𝑢, 𝑣) is independent of the scene depth and is always a linear function of (𝑢, 𝑣), no matter the 

value of 𝜉0, 𝜂0. This suggests that a coincident stereo setup is the perfect candidate for super resolving spatial 

detail in multiple orientations. The expression for the detected image intensity in this stereo arrangement is 

disclosed below 

 𝜃( ,  )

=  ( (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|    (
2𝜋𝜅 (𝜉0𝑢 + 𝜂0𝑣) +

𝜑 + 𝜃 + arg(𝐵(𝑢, 𝑣))
))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

wherein 

 

(4.36) 

  𝜅 ≝ (
𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
) , 𝜑 ≝ 2𝜋(𝜉0(   + 𝜅   ) + 𝜂0(   + 𝜅   )) 

  (𝑢, 𝑣) ≝      ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )  𝓊  𝓋                                      replace 
𝑢 = 𝜅 (𝑢    ) +    
𝑣 = 𝜅 (𝑣    ) +    

 

 𝐵(𝑢, 𝑣) ≝ 𝐵  {
exp ( 𝑗2𝜋(𝜉0(𝑢  𝓊 ) + 𝜂0(𝑣  𝓋 )))

×   ll(𝑢  𝓊 , 𝑣  𝓋 ;𝓊 , 𝓋 )
}  𝓊  𝓋      replace 

𝑢 = 𝜅 (𝑢    ) +    
𝑣 = 𝜅 (𝑣    ) +    

 

The intuitive meaning of the various terms in Eq.(4.36) is provided in Table 4.5. 
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4.5.1 Practical considerations 

At first sight, the task of calibrating a coincident stereo arrangement may seem daunting. Luckily, it is 

observed that the camera images in these stereo arrangements, are free of cast shadows due to the projector 

illumination. This unique characteristic of the coincident stereo arrangement is exploited in the experiments 

of Chapter 6, to ensure that the camera and projector share the same viewpoint. 

4.5.2 Limitations of the “Coincident Stereo Setup” 

The lack of phase distortion due to parallax in a coincident stereo setup means that scene recovery techniques 

that rely on parallax can no longer be utilized to recover topographic information. This forces us to examine 

alternative methods for recovering scene geometry in a coincident active stereo setup. The topic is examined 

in an upcoming chapter. 

The material presented thus far has restricted its attention to the study of camera and projector 

placements that support super resolution. The strategy used to recover unresolved spatial detail from images 

acquired under sinusoidal illumination, remains to be examined. It is the subject of the upcoming section.  

Table 4.5 Description of terms in Eq.(4.36) 

 (𝑢, 𝑣), |𝐵(𝑢, 𝑣)| 
blur induced amplitude deviation in the DC and sinusoidal components of 

the illumination pattern 

arg(𝐵(𝑢, 𝑣)) blur induced phase distortion 

 cam(  𝑢,   𝑣; 𝑢, 𝑣) spatially varying blur induced by the imaging optics 

 ill(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 ) spatially varying blur induced by the illumination optics 

𝜅  relative magnification between the imaging and illumination paths 

𝜑  difference in the sampling phase of the detector and projector sampling grids  
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4.6 Optical Super Resolution: reduction to practice 

The expression for the reconstructed image disclosed in Eq.(4.2) provides the blueprint for a super resolution 

scheme that recovers unresolved spatial detail from images acquired under sinusoidal illumination. The 

complete workflow is disclosed in Figure 4.13. 

+  

1

2

1

4

1

2

   ( ,  )

+

 Identify carrier frequency

𝜅 𝜉 
, 𝜅 𝜂 

 Identify phase offset 𝜑 

 co ( ,  )

co 2𝜋𝜅 𝜉  + 𝜂  + 𝜑 

×Aliasing
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Aliasing

management

 Identify carrier frequency

𝜅 𝜉 
, 𝜅 𝜂 

 Identify phase offset 𝜑 

    ( ,  )

   2𝜋𝜅 𝜉  + 𝜂  + 𝜑 

× Aliasing

management

 o r( ,  )

 3 
2

( ,  )

  
2
( ,  )

  ( ,  )

 0( ,  )

Figure 4.13 Optical Super Resolution workflow 

NOTE: The image insets in the flow diagram were obtained from experimental data. 
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The process begins with the acquisition of images under phase-shifted sinusoidal illumination. The frequency 

of each illumination pattern is set to 𝜉0, 𝜂0 cyc/mm. The camera images acquired under sinusoidal 

illumination are recombined according to Eqs.(4.3)-(4.5), to obtain the images  bb( ,  ) 

and   os( ,  ),  sin( ,  ). This step is followed by an attempt to identify the frequency of the modulating 

pattern 𝜅 𝜉0, 𝜅 𝜂0, and the phase offset 𝜑 . The next step in the process is the construction of the cosine and 

sine demodulation patterns namely: co (2𝜋(𝜉0 + 𝜂0 )) and    (2𝜋(𝜉  + 𝜂  )). This is followed by the 

demodulation of the cosine and sine images, as indicated below 

 bp( ,  ) ≝ co (2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑 )   os( ,  ) +    (2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑 )  sin( ,  ) (4.37) 

The image  bp( ,  ) dubbed the “bandpass image” corresponds to the second term in Eq.(4.2). It is comprised 

of spatial frequencies that are lost to optical blurring.  

The final step in the reconstruction process is the recombination of the baseband and bandpass images, 

according to Eq.(4.2). The end result is the image  re on( ,  ) with improved resolution.  

It should be noted that the quantities 𝜅 , 𝜑  reduce to the constants 1,  for collocated stereo arrangements 

employing warped sinusoidal patterns (disclosed in Eq.(4.21)). In the case of canonical/coincident stereo 

arrangements these quantities may be derived from the entries of the infinite homography    defined in 

Eqs.(4.14) & (4.34). The infinite homography is itself estimated using standard calibration routines in 

computer vision. 

The workflow in Figure 4.13 includes a block labelled “Aliasing Management” whose role remains to 

be described. This block accounts for the possibility that some of the demodulated frequencies may exceed 

the sensor Nyquist frequency, and in the process introduce aliasing artifacts in the reconstructed 

image  re on( ,  ). This issue was observed and reported by the author in [79]. It was found that resampling 

the image prior to demodulation resolves the issue. The idea is to resample the images  bb( ,  ),   os( ,  ) 

and   sin( ,  ) with an inter-sample spacing that is smaller than the current pixel pitch, but large enough to 

accommodate the highest demodulated frequency. Spatial domain interpolation techniques such as Lanczos 

interpolation may be employed for the purpose of resampling. 
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4.6.1 Extensions 

 The trigonometric identity    (𝑃 + 𝑄) =    (𝑃) co (𝑄) + co (𝑃)     (𝑄) may be used to expand the 

expression for the camera image acquired under sinusoidal illumination (Eq.(4.1)), as shown below 

    𝜃( ,  ) =    ( ,  ) +    (𝜃)   os( ,  ) + co (𝜃)  sin( ,  )  (4.38) 

It is evident that the camera image is a linear combination of the baseband image    ( ,  ) and the 

cosine/sine modulated images   os( ,  ) &  sin( ,  ). The acquisition of images under phase shifted 

illumination allows us to solve for each component, individually. Intuition suggests that it must be 

possible to solve for the components using precisely 3 phase shifts (such as  ∘, 12 ∘, 24 ∘), as opposed 

to the 4 phase shifts ( ∘, 9 ∘, 1  ∘, 2  ∘) employed in this work. Our motivation for choosing the latter 

set of phase shifts is the ease of interpretation.   

 The baseband and bandpass images may be weighted independently, prior to combining them according 

to Eq.(4.2). The weighting may be used to tailor the shape of the engineered PSF. A variant of the 

problem is examined in Chapter 7. 

 With suitable modification, the imaging model of Eq.(4.1) and the reconstruction algorithm disclosed in 

Eqs.(4.2)–(4.6), may be extended to support a wider class of illumination patterns that are expressed as 

a linear combination of sinusoids. The problem has been studied in the microscopy community [12-13], 

albeit in the context of space-invariant imaging. The space-variant counterpart of the problem is 

examined in Chapter 7. 

4.6.2 Highlights of proposed reconstruction algorithm  

An attractive feature of our reconstruction algorithm is that it does not require knowledge of the optical blur. 

This is unlike methods in active super resolution that employ inverse filtering to shape the transfer function 

of the engineered PSF. Knowledge of the blur limits the scope of the approach to fixed working distances 

and fixed object geometry. Also, it is not obvious that a space-variant counterpart of inverse filtering is up to 

the task of shaping the engineered transfer function. In view of these limitations, Chapter 7 examines a 

complimentary approach to shaping the engineered transfer function.  
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A highly desirable feature of our reconstruction algorithm is that it is agnostic to the form of space-

variance, and also its severity. This feature is exploited in Chapter 7 to realize near isotropic resolution gain, 

throughout the image field. 

4.6.3 Practical limitations 

Intuitively one expects to observe the largest resolution gain when illuminating the scene with the highest 

frequency sinusoids. From this standpoint, it appears that one should illuminate the scene with a sinusoid at 

the Nyquist frequency 
1

2Δ 

cyc

mm
, where Δ  is the size of the smallest feature in the illumination pattern. This 

choice of frequency restricts the set of realizable phase shifts to the two values  ∘ and 1  ∘. Unfortunately, 

two shifts are not sufficient to disambiguate the baseband image    ( ,  ) from the cosine and sine modulated 

images, namely  co ( ,  ) and     ( ,  ). The problem may be overcome by illuminating the scene with a 

sinusoid of lower frequency such as 
1

3Δ 

cyc

mm
 or 

1

4Δ 

cyc

mm
 , which affords us a maximum of three and four shifts 

respectively. The larger of the two frequencies may be incorporated in Eq.(4.12) to bound the size of the 

super resolved spot to  Δ  𝜅 
−1 𝜇𝑚. Chapter 7 of this dissertation examines an alternative demodulation 

strategy that allows us to reduce the size of the super resolved to its limiting value of 2Δ  𝜅 
−1𝜇𝑚. 

4.7 Summary 

Our inquiry into the mechanics of super resolution concludes with the following key observations 

 Space-variance in the imaging and illumination blur does not serve as an impediment to super 

resolution using active illumination.  

 The heterodyned frequencies in the camera image acquired under sinusoidal illumination may be 

restored unambiguously, if and only if the phase of the detected sinusoidal pattern is linear and 

independent of scene depth. 

 Every collocated active stereo arrangement (  =  ) supports super resolution using sinusoidal 

illumination patterns. But, the improvement in resolving power is confined to a single orientation. 

 A coincident active stereo arrangement (  =   =   =  ) supports super resolution in multiple 

orientations. 
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 Improvement in the resolving power of the camera is effected by the computational engineering of the 

camera PSF.  

4.8 Advanced topics in super resolution 

Our study of super resolution is by no means complete. The itemized list included below, describes an 

assortment of issues that deserve to be examined:  

1. How to minimize the loss of temporal resolution that accompanies the gain in resolving power? 

A common limitation of active super resolution techniques is the loss of temporal resolution that 

accompanies the gain in resolving power. Despite the tradeoff, improvement of the resolving power 

remains the main thrust of these schemes. A problem that merits investigation is the determination 

of the minimum number of sinusoidal illumination patterns that is needed to realize a prescribed 

improvement in resolving power. A variant of the problem is examined in Chapter 7. 

2. Artifacts in the  super resolved image 

The reconstructed image is far from perfect. Inspection of Eq.(4.9), indicates multiple issues. The 

repetitive nature of the sinusoidal illumination pattern introduces side lobes in the engineered PSF, 

which manifest as ghost artifacts in the reconstructed image. The appearance of side lobes is 

exaggerated by the space variance in the camera optical blur.  

The space variance in the illumination blur makes matters worse by introducing undesired field 

dependence in the engineered PSF. The result is spatially non-uniform improvement in resolution. 

There may be a complete loss of resolution gain at extreme field points where the modulation 

strength of the illumination pattern approaches zero. The phase distortion arg(𝐵(𝑢, 𝑣)) introduces 

spatial misalignment between edges in the baseband image    ( ,  ) and the bandpass image 

  p( ,  ). The misalignment varies spatially on account of the field dependence of arg(𝐵(𝑢, 𝑣)). 

In Chapter 7, we discuss a novel super resolution strategy, which among other things, produces 

imagery devoid of ghost artifacts.   

3. Are sinusoidal patterns the only patterns suited for Optical Super Resolution? 

Existing approaches to super resolution rely on sinusoidal patterns due in large part to the simplicity 

of the reconstruction algorithm and the highly accessible mathematical interpretation. But intuition 
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suggests that all spatial patterns have the innate ability to heterodyne unresolved portions of the 

object spectrum into the passband of the imaging optics. It is not obvious that there is always 

reconstruction scheme that can unambiguously restore the heterodyned frequencies to their true 

position outside the optical passband. The issue is examined in Chapter 7 of this dissertation. 
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Chapter 5 

MECHANICS OF PHASE MEASUREMENT PROFILOMETRY 

The term Active Scene Recovery (ASR) designates techniques that recover topographic information from 

images of a scene captured under patterned illumination. A particularly attractive approach to ASR involves 

the use of sinusoidal patterns [68-71], and has come to be known as Phase Measurement Profilometry within 

the optics literature. PMP is a measurement technique that recovers densely sampled topographic information 

from images of a scene illuminated by one or more periodic sinusoidal patterns. The illumination pattern as 

perceived by the camera, exhibits phase distortion on account of parallax.   Figure 5.1 illustrates the idea.  

Our study begins with a review of the expression for the detected intensity under the periodic 

illumination   + 𝐵    (2𝜋(𝜉0𝑢 + 𝜂0𝑣 ) + 𝜃), which is the pattern of choice in PMP. The expression is 

repeated below for the benefit of the reader 

 𝜃( ,  ) =  ( (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|    (
𝜑(𝑢, 𝑣) + 𝜃

+arg(𝐵(𝑢, 𝑣))
))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

wherein 

(5.1) 

Camera 

image plane

Projector

image plane

Active Stereo Setup
Illumination pattern

Camera image

𝑂    𝑂i  

Figure 5.1 Phase distortion due to parallax in an active stereo setup 
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   𝜑(𝑢, 𝑣) = 2𝜋𝜉0

 11
 (𝑊𝑢  𝑡 ) +  12

 (𝑊𝑣  𝑡 ) +  13
 (𝑊  𝑡 )

 31
 (𝑊𝑢  𝑡 ) +  32

 (𝑊𝑣  𝑡 ) +  33
 (𝑊  𝑡 )

         

+ 2𝜋𝜂0

 21
 (𝑊𝑢  𝑡 ) +  22

 (𝑊𝑣  𝑡 ) +  23
 (𝑊  𝑡 )

 31
 (𝑊𝑢  𝑡 ) +  32

 (𝑊𝑣  𝑡 ) +  33
 (𝑊  𝑡 )

 

 

𝜑(𝑢, 𝑣) phase distortion due to parallax  

 (𝑢, 𝑣), |𝐵(𝑢, 𝑣)| 
blur induced amplitude deviation in the DC and sinusoidal 

components of the illumination pattern 

arg(𝐵(𝑢, 𝑣)) blur induced phase distortion 

 cam(  𝑢,   𝑣; 𝑢, 𝑣) spatially varying blur induced by the imaging optics 

𝜉0, 𝜂0 spatial frequency of the illumination pattern 

𝑊 

absolute depth of scene point (𝑈, 𝑉,𝑊) that maps to the (𝑢, 𝑣)𝑡ℎ 

camera pixel 

 𝑖𝑗
  ( , 𝑗)𝑡ℎ entry of the infinite homography    = 𝑲 𝑹 𝑲−  

 𝑡 , 𝑡 , 𝑡   epipole in the camera image plane 

In PMP, it is common practice to ignore the effect of blurring due to the imaging optics. This practice is 

admissible when one of two conditions is satisfied 

 the primary objective is to identify qualitative( not quantitative) topographic information, or 

 the support of the camera PSF is tighter than the physical size of a camera pixel. 

However, blurring due to the illumination optics cannot be ignored. The reason is projectors tend to have a 

shallow depth of field on account of the large apertures sizes needed to produce bright images over a large 

area.  

The present work restricts its attention to qualitative topographic information, so that the reference to 

the camera PSF  cam may be dropped from Eq.(5.1). In addition, the phase arg(𝐵(𝑢, 𝑣)) may be set to zero 

under the assumption that the illumination optics is diffraction limited. The above constraints may be 

incorporated into Eq.(5.1), to yield the following simplified expression for the detected intensity 
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𝑖̂𝜃( ,  ) = { (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|     (�̂�( ,  ) + 𝜃)}  ( ,  ) 
wherein 

�̂�( ,  ) ≝ 2𝜋𝜉
 

 11
 (𝑊  𝑡 ) +  12

 (𝑊  𝑡 ) +  1 
 (𝑊  𝑡 )

  1
 (𝑊  𝑡 ) +   2

 (𝑊  𝑡 ) +    
 (𝑊  𝑡 )

+ 2𝜋𝜂
 

 21
 (𝑊  𝑡 ) +  22

 (𝑊  𝑡 ) +  2 
 (𝑊  𝑡 )

  1
 (𝑊  𝑡 ) +   2

 (𝑊  𝑡 ) +    
 (𝑊  𝑡 )

 

(5.2) 

5.1 Scene Recovery using Phase Measurement Profilometry 

The standard approach to recovering topographic information in PMP is neatly summarized in the following 

expressions 

�̂�wr pped( ,  ) =  ta −1 (
𝑖̂0( ,  )  𝑖̂ ( ,  )

𝑖 ̂/2( ,  )  𝑖̂3 /2( ,  )
) (5.3) 

�̂�( ,  ) = u wrap (�̂�wr pped( ,  )) (5.4) 

�̂� =

(

 �̂�( ,  ) 31
  2𝜋(𝜉0 11

 + 𝜂0 21
 ) 𝑡 +

 �̂�( ,  ) 32
  2𝜋(𝜉0 12

 + 𝜂0 22
 ) 𝑡 +

 �̂�( ,  ) 33
  2𝜋(𝜉0 13

 + 𝜂0 23
 ) 𝑡     

)

(

 �̂�( ,  ) 31
  2𝜋(𝜉0 11

 + 𝜂0 21
 )  +

 �̂�( ,  ) 32
  2𝜋(𝜉0 12

 + 𝜂0 22
 )  +

 �̂�( ,  ) 33
  2𝜋(𝜉0 13

 + 𝜂0 23
 )        

)

 (5.5) 

The images 𝑖̂0( ,  ), 𝑖̂ /2( ,  ), 𝑖 ̂( ,  ), 𝑖̂3 /2( ,  ) listed in Eq.(5.4) represent images of the scene 

captured under the phase shifted illumination patterns    + 𝐵    (2𝜋(𝜉0𝑢 + 𝜂0𝑣 ) + 𝜃) with 𝜃 =

 , 𝜋/2, 𝜋,  𝜋/2 respectively. The expression for the unknown depth �̂� disclosed in Eq.(5.5), is obtained by 

rewriting the expression for the phase �̂�( ,  ) (Eq.(5.2)) in terms of the depth 𝑊. 

It is paramount that the phase-map �̂�wr pped( ,  ) be subject to unwrapping as the ta −1(… ) function 

exhibits a 2𝜋 ambiguity with its output restricted to the interval ( 𝜋, 𝜋). The image inset bearing the label 

�̂�high( ,  ) in Figure 5.2 illustrates wrapping in the phase-map of Eq.(5.4). Regrettably, Eq.(5.4) does not 

provide hints on unwrapping the phase-map �̂�wr pped(… ) in an unambiguous manner.   
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5.1.1 Phase Unwrapping in Phase Measurement Profilometry 

An elegant solution to the unwrapping problem was proposed by [71], and is illustrated in Figure 5.2.  

The method involves illuminating the scene with two sets of sinusoidal patterns whose spatial frequencies 

are related in a harmonic fashion. The first set of sinusoidal patterns with spatial frequency (𝜉 ow, 𝜂 ow) are 

designed to yield a phase-map �̂� ow( ,  ) that is free of wrapping artifacts. The second set of sinusoidal 

patterns with spatial frequency (𝜉high = 𝐹𝜉 ow, 𝜂high = 𝐹𝜉 ow) yield a second phase-map �̂�high( ,  ) that is 

unwrapped using  �̂� ow( ,  ), as shown below 

�̂�unwr pped( ,  ) =  �̂�high( ,  ) + 2𝜋 rou d (
𝐹 �̂� ow( ,  )  �̂�high( ,  )

2𝜋
) (5.6) 

 

 ta −1
𝑖0̂  ,   𝑖 ̂  ,  

𝑖 ̂
2

 ,   𝑖̂3 
2

 ,  
 ta −1

𝑖0̂  ,   𝑖 ̂  ,  

𝑖 ̂
2

 ,   𝑖̂3 
2

 ,  

�̂�high  ,  �̂� ow  ,  

�̂�high  ,  + 2𝜋 rou d
𝐹 �̂� ow  ,   �̂�high  ,  

2𝜋

 𝑞.    

�̂�unwr pped  ,  Qualitative Depth Map

Phase 

Unwrapping

𝑖�̂�  ,  𝑖�̂�  ,  

Figure 5.2 Phase Measurement Profilometry Workflow 

The phase-maps and the depth map have been individually normalized for display purposes. 
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rou d(… ) round argument to the nearest integer 

𝐹 =
𝜉high

𝜉 ow

=
𝜂high

𝜂 ow

 harmonic ratio relating the spatial frequencies of the sinusoidal illumination patterns 

The unwrapping scheme disclosed in Eq.(5.6) relies on the fact that the phase distortion induced by parallax 

varies linearly with the spatial frequency of the illuminating pattern (Eq.(5.2)). The unwrapped phase-map 

obtained using Eq.(5.6) may be used to identify a topographic map of the scene, in accordance with Eq.(5.5).  

 

The scene recovery technique outlined so far, does not impose constraints on the position/orientation 

of the camera and projector. But, a previous chapter on super resolution disclosed that only select stereo 

arrangements support super resolution. The undeniable allure of super resolving spatial detail while 

recovering topographic information, encourages us to restrict our attention to stereo arrangements that 

support super resolution. A list of these stereo arrangements is enumerated below: 

1. Canonical stereo setup using periodic sinusoidal illumination     (Section 4.3) 

   + 𝐵    (2𝜋(𝜉0𝑢 + 𝜂0𝑣 ) + 𝜃) 

   =   

 

𝑹 = [
1   
 1  
  1

] 

 The optical axes of the camera and projector are parallel. 

 The camera’s optical axis oriented along   , ,1 𝑇is perpendicular to the 

baseline vector    ,   ,   𝑇. 

 The entrance pupil plane of the camera and the exit pupil plane of the 

projector are coplanar. 

2. Collocated stereo setup using warped sinusoidal illumination    (Section 4.4) 

   + 𝐵    (2𝜋 (𝜉0
  11     1      13

  31     3      33
+ 𝜂0

  11     1      13

  31     3      33
) + 𝜃) 

  =   

 The projector’s center-of-perspective lies in the entrance pupil plane of 

the camera. 

 The camera’s optical axis oriented along   , ,1 𝑇is perpendicular to the 

baseline vector    ,   ,   𝑇. 
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3. Coincident stereo setup and periodic sinusoidal illumination     (Section 4.5) 

  + 𝐵    (2𝜋(𝜉0𝑢 + 𝜂0𝑣 ) + 𝜃) 

  =   =   =   

𝑹 = [
1   
 1  
  1

] 

 The optical axes of the camera and projector are parallel. 

 The entrance pupil plane of the camera and the exit pupil plane of 

the projector are coplanar. 

 The camera and projector share the same viewpoint. 

 

At first glance, the collocation requirement (  =  ) may seem overly restrictive. But, examination of top-

of-the-line Structured Light Scanners such as the Brueckmann smartSCAN-3D and ATOS-III Triple Scan 

indicate that the imaging and illumination systems are almost always mounted on a single arm and possibly 

collocated. The above finding has valuable practical implications in that it hints at the possibility of using 

Structured Light Scanners to super resolve spatial detail in addition to recovering topographic information. 

Subsequent paragraphs examine the topic of scene recovery in each of the stereo arrangements disclosed 

above.   

5.2 Scene recovery in a canonical stereo setup using periodic sinusoidal 

illumination 

In a canonical stereo setup, the infinite homography   ≝ 𝑲 𝑹 𝑲−  reduces to the upper-triangular matrix 

disclosed in Eq.(5.7). 

Brueckmann smartSCAN-3D ATOS-III Triple Scan

Projector

Camera-2Camera-1

Projector
Camera-2

Camera-1

Figure 5.3 Top of the line Structured Light Scanners that employ 

sinusoidal illumination for recovering topographic information 
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  (5.7) 

Likewise, the camera epipole  𝑡 , 𝑡 , 𝑡  
𝑇 ≝ 𝑲    ,   ,    

𝑇 reduces to the vector [
− 𝑝 𝑑

Δ
  ,

− 𝑝 𝑑

Δ
  ,  ]

𝑇

, 

under the constraint   =  . The definition of the various terms in the expression for the infinite homography 

and the epipole, are included in the table beneath Eq.(5.1). Substituting the aforementioned values of  𝑖𝑗
  and 

the epipole  𝑡 , 𝑡 , 𝑡  
𝑇  into Eq.(5.2) yields the following expression for the camera image  

 

𝑖̂𝜃( ,  ) = { ( ,  ) + |𝐵( ,  )|     (�̂�( ,  ) + 𝜃)}  ( ,  ) 

�̂�( ,  ) ≝ 2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑0 + 2𝜋
1

 
𝜅𝑑(𝜉0  + 𝜂0  ) 

(5.8) 

 

𝜅 ≝
𝑚  

𝑚 

  𝑑

 𝑑

Δ

Δ 
 

scalar that accommodates the difference in the transverse magnification of the 

camera and projector 

𝜅𝑑 ≝
𝑚    𝑑

Δ 
 transverse magnification of projector (expressed in the units of pixels)  

𝜑0 difference in the sampling phase of the detector and projector sampling grids  

  depth of a scene point whose geometric projection in the detector is the pixel ( ,  ) 

Topographic information can be recovered from the phase-map �̂�( ,  ) by eliminating the linear phase 

term 2𝜋𝜅(𝜉0 + 𝜂0 ), and the phase offset 𝜑0. The process begins with the acquisition of images under 

phase-shifted sinusoidal patterns of frequency 𝜉0, 𝜂0. The camera images are then digitally recombined to 

obtain the cosine/sine modulated images of the scene, as follows 

𝑖̂ os( ,  ) ≝ |𝐵( ,  )| co (�̂�( ,  ))  ( ,  ) =
1

2
[𝑖 ̂/2( ,  )  𝑖3̂ /2( ,  )] 

𝑖̂sin( ,  ) ≝ |𝐵( ,  )|    (�̂�( ,  ))  ( ,  ) =
1

2
 𝑖0̂( ,  )  𝑖 ̂( ,  )  

(5.9) 

The trigonometric identity disclosed in Eq.(5.10) may be used to decouple the depth-dependent 

phase 2𝜋𝜅𝑑
1

 ̂
(𝜉0  + 𝜂0  ), from the phase �̂�( ,  ).  
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ta −1 (
   (𝑄  𝑃)

co (𝑄  𝑃)
) = ta −1 (

   𝑄 co 𝑃  co 𝑄    𝑃

co 𝑄 co 𝑃     𝑄    𝑃
) = mod(𝑄  𝑃, 2𝜋) (5.10) 

Substituting 𝑃 = 2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑0 and 𝑄 = �̂�( ,  ) = 𝑃 + 2𝜋𝜅𝑑
1

 ̂
(𝜉0  + 𝜂0  ) into Eq.(5.10), 

yields the following expression for the depth-dependent phase 2𝜋𝜅𝑑
1

 ̂
(𝜉0  + 𝜂0  ), albeit up to 

modulo 2𝜋. 

�̂�wr pped( ,  )

≝ mod (2𝜋𝜅𝑑

1

 ̂
(𝜉0  + 𝜂0  ), 2𝜋)

=  ta −1 (
   (2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑0) 𝑖̂ os( ,  )  co (2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑0) 𝑖̂sin( ,  )

co (2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑0) 𝑖̂ os( ,  ) +    (2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑0) 𝑖̂sin( ,  )
) 

(5.11) 

The phase unwrapping strategy described in Section 5.1 can be employed to unwrap the phase 

map �̂�wr pped( ,  ), in an unambiguous manner. A topographic map of the scene can be obtained from the 

unwrapped phase-map, as shown below  

 ̂ ∝
1

�̂�unwr pped( ,  )
 (5.12) 

Figure 5.4 illustrates the process of scene recovery in a canonical stereo arrangement relying on periodic 

sinusoidal patterns.  

Please note that inversion of the unwrapped phase-map in Eq.(5.12) may be avoided if only qualitative 

topographic information is sought. On select occasions (eg: 3D rendering, display purposes), it might be of 

interest to identify a normalized topographic map as opposed to absolute depth information. Such a map may 

be obtained from the unwrapped phase-map, as follows 

�̂�𝑢𝑛𝑤𝑟   𝑒𝑑( ,  )  m  (�̂�𝑢𝑛𝑤𝑟   𝑒𝑑( ,  ))

max (�̂�𝑢𝑛𝑤𝑟   𝑒𝑑( ,  ))  m  (�̂�𝑢𝑛𝑤𝑟   𝑒𝑑( ,  ))
 (5.13) 

For reasons discussed below, compensation of the phase 𝜑0 in Eq.(5.11) may be avoided during the 

computation of a normalized topographic map. In the absence of phase compensation it can be shown that 

the phase map �̂�unwr pped( ,  ) assumes the form 2𝜋𝜅𝑑
1

 ̂
(𝜉h gh  + 𝜂h gh  ) + 𝜑0. The phase 𝜑0 is 

common to the terms �̂�𝑢𝑛𝑤𝑟   𝑒𝑑( ,  ),max (�̂�𝑢𝑛𝑤𝑟   𝑒𝑑( ,  )) ,m  (�̂�𝑢𝑛𝑤𝑟   𝑒𝑑( ,  )) so that the ratio 

in Eq.(5.13) remains unaffected.   
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5.2.1 Range resolution 

The range resolution of a topographic map is an important figure-of-merit that quantifies the smallest 

difference in scene depth (Δ ) that may be discerned. The range resolution of our technique is derived by 

examining the difference in the intensity of camera pixels ( ,  ) & ( + Δ ,  + Δ ) that are observing 

 Identify images �̂�    ,  , �̂� 𝑖𝑛  ,  

 Identify carrier frequency 𝜅0𝜉0, 𝜅0𝜂0

 Identify phase offset 𝜑0

 ta  1
   2𝜋𝜅 𝜉  + 𝜂  + 𝜑  ̂co  ,  co 2𝜋𝜅 𝜉  + 𝜂  + 𝜑  ̂    , 

co 2𝜋𝜅 𝜉  + 𝜂  + 𝜑  ̂co  , +    2𝜋𝜅 𝜉  + 𝜂  + 𝜑  ̂    , 

 Identify images �̂�    ,  , �̂� 𝑖𝑛  ,  

 Identify carrier frequency 𝜅0𝜉0, 𝜅0𝜂0

 Identify phase offset 𝜑0

𝜑 h gh  , + 2𝜋 rou d
𝐹 𝜑 low  ,   𝜑 h gh  , 

2𝜋

Phase 

Unwrapping

�̂�high  ,  �̂� ow  ,  

1

�̂�unwr pped  ,   

�̂�unwr pped  ,  

D
ep

th
 M

a
p

{�̂�𝜃  ,  } {�̂�𝜃  ,  }

Figure 5.4 Active Scene Recovery in a canonical stereo setup 

NOTE: The images used in the flow diagram are from an experiment. 
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closely spaced scene points ( ,  ,  ) & ( ,  ,  + Δ ). A formal derivation is included in Appendix B. The 

final expression for range resolution is disclosed below 

Δ ≥ {
 o  e floor

|𝐵( ,  )| ( ,  )
} {

 2

𝜅𝑑(𝜉0  + 𝜂0  )
}   (5.14) 

It is evident from Eq.(5.14) that the range-resolution of a canonical stereo arrangement may be improved by 

tuning the following parameters 

 increasing the spatial frequency of the illumination pattern    ↑ (𝜉0, 𝜂0) 

 increasing the baseline       ↑ (  ,   ) 

 improving the projector’s depth-of-field     ↑ |𝐵( ,  )| 

 reducing the noise floor        ↓  o  e floor 

 increasing the transverse magnification of the projector   ↑ 𝜅𝑑   

Closer inspection of Eq.(5.14) that a complete loss of range resolution (Δ →  ) results when one or more 

of the following conditions is satisfied: 

  = 𝜂0  =   

The imaging and illumination paths share the same optical axis (since  =

 de t ty matr x). Also the center-of-perspective of the camera and projector 

coincide (since   =   in addition to    &   ). 

𝜉0  + 𝜂0  =   

The orientation of the periodic sinusoidal pattern is identical to the orientation 

of baseline vector. Such a pattern is better suited for super resolving spatial 

detail lost to optical blurring at the camera. 

 ( ,  ) →   The scene point has zero albedo. In other words, the scene point ( ,  ,  ) 

does not reflect the incident light in the direction of the ( ,  )𝑡ℎ camera pixel. 

|𝐵( ,  )| →   The modulation strength of the projected pattern approaches zero on account 

of the projector’s optical blur. 

 →   The scene point is infinitely far away. 
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5.2.2 Limitations of the “Canonical stereo setup” 

 Cast shadows impede the recovery of topographic information at each camera pixel. 

Despite the fact that the camera and projector share a common volume, not every scene point in the 

common volume receives light from the projector. The camera perceives these regions as shadows. Their 

impact on scene recovery can be made apparent by substituting  ( ,  ) = |𝐵( ,  )| =   in Eq.(5.8). It 

is evident from Eqs.(5.11) & (5.12) that one cannot recover topographic information in regions that are 

buried in a shadow.  

 Limited range resolution of the topographic maps owing to the small baseline. 

Attempts to improve the range-resolution by increasing the baseline are prone to failure, because of the 

limited overlap between the illuminated object volume and the imaged object volume. Figure 

5.5illustrates the problem. 

The key difference between the canonical stereo setup described in previous paragraphs, and the stereo 

arrangements favored by Structured Light Scanners is the use of large baselines and crossed optical axes. 

The following section examines a stereo apparatus that is inspired by Structured Light Scanners. 

5.3 Scene Recovery in a collocated stereo setup using warped sinusoidal 

illumination 

Our study of scene recovery in a collocated setup begins with a review of the expression for the camera image 

under the sinusoidal illumination pattern 

Figure 5.5 Impact of stereo baseline on scene recovery in a “canonical stereo setup” 

small baseline

poor range resolution

large baseline

+ improved range resolution

 limited field-of-view overlap

 limited scope for OSR
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  + 𝐵    (2𝜋 (𝜉0

  11
   +   12

   +   13
 

  31
   +   32

   +   33
 

+ 𝜂0

  21
   +   22

   +   23
 

  31
   +   32

   +   33
 

) + 𝜃) 

The expression for the camera image is repeated here for the benefit of the reader 

 𝜃( ,  ) =  { (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|     (
𝜑(𝑢, 𝑣) + 𝜃

+arg(𝐵(𝑢, 𝑣))
)}  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)   𝑢  𝑣 

𝜑(𝑢, 𝑣) ≝ 2𝜋 (
𝑊

𝑊  𝑡 
) (𝜉0𝑢 + 𝜂0𝑣)  2𝜋 (

1

𝑊  𝑡 
) (𝜉0𝑡 + 𝜂0𝑡 ) 

(5.15) 

 

𝜑(𝑢, 𝑣) phase distortion induced by parallax  

 (𝑢, 𝑣), |𝐵(𝑢, 𝑣)| amplitude distortion induced by blurring due to the illumination optics 

arg(𝐵(𝑢, 𝑣)) phase distortion induced by blurring due to illumination optics 

 cam(  𝑢,   𝑣; 𝑢, 𝑣) space-variant PSF of the imaging optics 

𝜉0, 𝜂0 spatial frequency of the illumination pattern 

𝑊 

depth of the scene point (𝑈, 𝑉,𝑊) whose geometric image in the 

camera image plane is the pixel (𝑢, 𝑣) 

 𝑡 , 𝑡 , 𝑡   epipole in the camera image plane 

The present work restricts its attention to qualitative topographic information, so that the reference to the PSF 

  (… ) can be dropped from Eq.(5.15). In addition, the phase arg(𝐵(𝑢, 𝑣)) is set to zero under the assumption 

that the projector optics is free of aberrations. The resulting approximation is provided below 

𝑖̂𝜃( ,  ) = { ( ,  ) + |𝐵( ,  )|     (�̂�( ,  ) + 𝜃)}  ( ,  ) 

�̂�( ,  ) ≝ 2𝜋(𝜉0 + 𝜂0 ) + 2𝜋
1

 
(𝜉0  + 𝜂0  ) 

(5.16) 

Topographic information can be recovered from the phase-map �̂�( ,  ) by eliminating the linear phase 

term 2𝜋(𝜉0 + 𝜂0 ). The workflow of Figure 5.4 can be employed for this purpose.  

At first glance, it is not apparent that the workflow of Figure 5.4 may be used to recover scene geometry 

in a collocated stereo arrangement. But a comparison of the expressions for the phase distortion �̂�( ,  ) in 

the two stereo arrangements (Eqs.(5.8) & (5.16)), indicates that they share the same mathematical structure.   
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�̂�( ,  ) = 2𝜋𝜅 (𝜉0 + 𝜂0 ) + 𝜑 + 2𝜋𝜅𝑑

1

 
(𝜉0  + 𝜂0  ) 

where       𝜅 ≝ 1    ,     𝜑
𝑜

≝      ,     𝜅 ≝ 1 
(5.17) 

Consequently, we can reuse the workflow of Figure 5.4, and the expression for range resolution disclosed in 

Eq.(5.14). In addition, insights gleamed from Eq.(5.14) may be used to improve the range resolution of the 

collocated stereo apparatus examined in this section.  

5.3.1 Practical considerations 

The analysis presented thus far assumes knowledge of the infinite homography    . Existing approaches for 

identifying the infinite homography rely on computing the intrinsic matrices 𝑲, 𝑲 , and the relative rotation 𝑹 . 

The process is tedious and entails the calculation of more quantities than the number of entries in the 

matrix    . In addition, assembling the infinite homography    = 𝑲𝑹 𝑻𝑲 −  from the estimates of 𝑲,𝑲 , 𝑹  

is prone to increasing the uncertainty in the estimate of    . In an effort to mitigate the influence of 

measurement uncertainty, we seek to examine the implications of illuminating the scene with the sinusoidal 

patterns 

  + 𝐵    (2𝜋 (𝜉0

𝜋 11  + 𝜋 12  + 𝜋 1 

𝜋  1  + 𝜋  2  + 𝜋   

+ 𝜂0

𝜋 11  + 𝜋 12  + 𝜋 1 

𝜋  1  + 𝜋  2  + 𝜋   

) + 𝜃) (5.18) 

in lieu of the sinusoidal patterns 

  + 𝐵    (2𝜋 (𝜉0

  11
   +   12

   +   13
 

  31
   +   32

   +   33
 

+ 𝜂0

  21
   +   22

   +   23
 

  31
   +   32

   +   33
 

) + 𝜃) (5.19) 

In Section 3.4 it was established that the homography 𝜫  induced by a planar facet that is plane-parallel to the 

projector exit pupil, is of the form 

𝜫 =    +
1

 Π

[

    

    

    

]         where  Π ≝  ⊥    31     32   (5.20) 

With the aid of Eq.(5.20), it can be shown that the following approximations hold true for a collocated stereo 

arrangement (  =  ) in which  Π    ,    

  11
 = 𝜋 11           12

 = 𝜋 12           13
 ≈ 𝜋 13

  21
 = 𝜋 21          22

 = 𝜋 22           23
 ≈ 𝜋 23

  31
 = 𝜋 31          32

 = 𝜋 32           33
 = 𝜋 33

  (5.21) 



92 

 

Armed with the above approximations, one can attempt to rewrite the warped sinusoidal pattern of Eq.(4.23) 

in terms of 𝜋𝑖𝑗
′ . The resulting expression is provided below 

  + 𝐵    (2𝜋 (𝜉0

  11
   +   12

   +   13
 

  31
   +   32

   +   33
 

+ 𝜂0

  21
   +   22

   +   23
 

  31
   +   32

   +   33
 

) + 𝜃)

≈   + 𝐵    (2𝜋 (𝜉0

𝜋 11  + 𝜋 12
 

  + 𝜋 1 
 

𝜋  1
 

  + 𝜋  2
 

  + 𝜋   
 + 𝜂0

𝜋 11
 

  + 𝜋 12
 

  + 𝜋 1 
 

𝜋  1
 

  + 𝜋  2
 

  + 𝜋   
 ) + 𝜃) 

(5.22) 

It follows from Eq.(4.33) that sinusoidal patterns warped by the homography 𝜫  induced by a planar facet 

that is plane-parallel to the projector exit pupil, may be used to recover topographic information in a 

collocated active stereo setup. 

5.3.2 Limitations of the “Collocated stereo setup” 

 Cast shadows continue to pose difficulties to our efforts to recover topographic information at each 

camera pixel. 

 The range resolution of a collocated stereo arrangement cannot be made arbitrarily small by merely 

increasing the baseline.  

The astute reader will recognize that that an increase in baseline is always accompanied by a 

corresponding increase in the projector’s angle of rotation, so as to ensure substantial overlap between 

the illuminated and imaged volumes. It is observed that for large rotation angles, the warped sinusoidal 

patterns of Eqs.(5.18) & (5.19), exhibit aliasing artifacts on account of the finite size of the light 

sensitive elements in the projector. At first glance, it appears that the problem may be circumvented by 

employing periodic sinusoidal patterns in conjunction with the technique outlined in Section 5.1. But it 

is observed that the camera image of the periodic sinusoidal pattern exhibits aliasing, on account of the 

perspective deformation induced by the infinite homography. 

5.3.3 Comments 

Structured Light Scanners relying on sinusoidal illumination have traditionally restricted their attention to 

periodic sinusoidal patterns. The use of warped sinusoidal patterns is unique to this work, and presents new 

avenues for research in Active Scene Recovery.  



93 

 

Figure 5.6 demonstrates the potential benefit of projecting warped sinusoidal patterns in a collocated stereo 

arrangement. Panel-1 illustrates the camera image under periodic sinusoidal illumination. Panel-2 illustrates 

the camera image under warped sinusoidal illumination. It is worth emphasizing that the spatial frequency of 

the illumination pattern is (𝜉0, 𝜂0) in both cases. 

It is evident from the camera image in Panel-1 that the fringes in the captured illumination pattern 

bundle together, and begin to alias at one point. The fringe aliasing introduces errors in the estimates of scene 

depth. In stark contrast, the camera image of the illumination pattern in Panel-2 does not exhibit fringe 

aliasing. The difference in behavior may be attributed to the presence/absence of perspective deformation 

Panel-1

Illumination pattern :  + 𝐵    2𝜋 𝜉
 
𝑢 + 𝜂

 
𝑣 + 𝜃

Illumination pattern :  + 𝐵    2𝜋 𝜉
 

𝜋 11
   +𝜋 12

   +𝜋 1 
 

𝜋  1
   +𝜋  2

   +𝜋   
 + 𝜂

 

𝜋 11
   +𝜋 12

   +𝜋 1 
 

𝜋  1
   +𝜋  2

   +𝜋   
 + 𝜃

Panel-2

Figure 5.6 Fringe aliasing in a collocated stereo arrangement that relies on periodic 

sinusoidal illumination (Panel-1) and warped sinusoidal illumination (Panel-2).  
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when using periodic/warped sinusoids respectively. A quick comparison of the expressions (Eqs.(5.2) & 

(5.17)) for �̂�( ,  ) corroborates our claim. 

The reader is cautioned against concluding that pre-warping eliminates fringe aliasing. It is to be 

understood that pre-warping mitigates the effect of fringe aliasing in the captured illumination pattern. 

5.4 Scene Recovery in a coincident stereo setup 

The scene recovery techniques discussed thus far are predicated on the observation of phase distortion in the 

camera image acquired under sinusoidal illumination. The reader will recall that the phase distortion stems 

from the difference in the viewpoint of the camera and projector.  

The fact that the camera and projector share the same viewpoint in a coincident stereo arrangement, 

suggests that it may not be possible to recover topographic information in such stereo arrangements. Our 

suspicions are confirmed by noting that the camera image of the illumination pattern does not exhibit phase 

distortions on account of topographic variations in the scene. The behavior is verified by substituting   =

  =   in Eq.(5.8) & Eq.(5.16). As a matter of fact, a complete loss of range-resolution results when using 

the techniques outlined in Sections 5.2 & 5.3. The latter may be confirmed by substituting   =   =   in 

Eq.(5.14). 

The undeniable allure of recovering topographic information while super resolving spatial detail in 

multiple orientations, compels us to examine an alternative approach to recovering topographic information 

in a coincident stereo arrangement. Our solution is inspired by the findings of Zhang and Nayar [43], and 

relies on the analysis of images acquired under a broader class of periodic illumination patterns. A detailed 

examination of this approach is deferred until Chapter 7. 

5.5 Summary 

Our inquiry into the mechanics of scene recovery concludes with the following key observations 

 Active scene recovery is predicated on the observation of parallax induced phase distortion in the 

camera image acquired under sinusoidal illumination.  

 Any active stereo apparatus may be used to recover topographic information, from the camera images 

acquired under sinusoidal or warped sinusoidal illumination. 
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 A single collocated stereo apparatus (  =  ) supports the joint recovery of topographic information 

and spatial detail lost to the camera optical blur. 
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Chapter 6 

EXPERIMENTAL VALIDATION 

The present chapter is devoted to the experimental verification of super resolution and scene-recovery 

techniques discussed in Chapters Chapter 4 & Chapter 5 respectively. The experiments are organized 

chronologically, and in increasing order of complexity.  

1. 2D Scene, parallel stereo setup and periodic sinusoidal illumination 

   + 𝐵    (2𝜋(𝜉0𝑢 + 𝜂0𝑣 ) + 𝜃) 

𝑹 = [
1   
 1  
  1

] 

 optical axes of the camera and projector are parallel. 

 scene is comprised of a single planar facet that is plane parallel to 

the entrance pupil plane of the camera and the exit pupil plane of 

the projector. 

optical super resolution 

any 𝜉0, 𝜂0 
spatial resolution may be improved in any orientation.     (Section 4.3)  

2. Arbitrary scene, canonical stereo setup and periodic sinusoidal illumination  

   + 𝐵    (2𝜋(𝜉0𝑢 + 𝜂0𝑣 ) + 𝜃) 

𝑹 = [
1   
 1  
  1

] ,   =   

 optical axes of the camera and projector are parallel. 

 camera’s optical axis oriented along   , ,1 𝑇 is perpendicular to 

the baseline    ,   ,   𝑇. 

 entrance pupil plane of the camera and the exit pupil plane of the 

projector are coplanar.  

optical super resolution 

 𝜉0  + 𝜂0  =   

orientation of sinusoidal pattern is identical to the orientation of 

baseline vector.                                                                        (Section 4.3) 

active scene recovery 

𝜉0  + 𝜂0  ≠   

orientation of sinusoidal pattern is different from orientation of 

baseline vector.                                                                       (Section 5.2) 
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3. Arbitrary scene, collocated stereo setup and warped sinusoidal illumination 

  + 𝐵    (2𝜋 (𝜉0

  11
   +   12

   +   13
 

  31
   +   32

   +   33
 

+ 𝜂0

  21
   +   22

   +   23
 

  31
   +   32

   +   33
 

) + 𝜃) 

  =   

 projector’s center-of-perspective lies in the entrance pupil plane 

of the camera. 

 camera’s optical axis oriented along   , ,1 𝑇 is perpendicular to 

the baseline    ,   ,   𝑇. 

optical super resolution 

𝜉0  + 𝜂0  =   

orientation of sinusoidal pattern is identical to the orientation of 

baseline vector.                                                               (Section 4.4) 

active scene recovery 

𝜉0  + 𝜂0  ≠   

orientation of sinusoidal pattern is different from the orientation of 

baseline vector.                                                               (Section 5.3) 

 

4. Arbitrary scene, Coincident stereo setup and periodic sinusoidal illumination     

   + 𝐵    (2𝜋(𝜉0𝑢 + 𝜂0𝑣 ) + 𝜃) 

𝑹 = [
1   
 1  
  1

] ,

  =  
  =  
  =  

 

 optical axes of the camera and projector are parallel. 

 entrance pupil plane of the camera and the exit pupil plane of the 

projector are coplanar. 

 center-of-perspective of the camera and projector are coincident 

optical super resolution 

any 𝜉0, 𝜂0 
spatial resolution may be improved in any orientation.    (Section 4.5)  

Each section in the chapter is devoted to a detailed examination of one of these stereo arrangements.  
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6.1 Super resolving a planar facet using a parallel stereo setup and periodic 

sinusoidal illumination 

The following experiment is the first in a series of experiments that demonstrate the use of sinusoidal 

illumination in improving the resolving power of an imager. The parallel stereo apparatus of Figure 6.1 is 

used to super resolve the USAF (US Air force) target mounted on the white-board. The success of the 

experiment hinges on orienting the whiteboard so that its normal vector is parallel to the optical axes of the 

camera and projector. The task is accomplished using the two-pass calibration scheme outlined below. 

6.1.1 Calibration 

In the first pass, the projector illuminates the whiteboard with a series of 1-pixel wide concentric rectangles 

centered at row= 1 5 /2, column= 14  /2 in the projector image plane (center pixel in projected image). 

The orientation of the projector is manually adjusted until the projected rectangles are devoid of keystone 

artifacts. In the second pass, the orientation of the camera is manually adjusted until the image of the projected 

Imaging System

 1/2 CCD sensor 

QImaging Corp., 

P/N: QICAM mono 10-bit

 Pixel pitch = 4. 5𝜇𝑚
 Image size = 1   ×  1   

11  𝑚𝑚 lens, Computar Corp. 

P/N: TEC-M55

Integration time = 4  𝑚𝑠

Illumination System

 LCD Projector

Panasonic Corp., 

P/N: AE3000

 Pixel pitch =  .5  m
 Native resolution 192 × 1   

Image size = 14  × 1 5 
(VGA mode)

Stereo Arrangement

 Distance from projector to target ≈ 1.  m
 Distance from camera to target ≈  .  m

Figure 6.1 Super resolution in a parallel stereo apparatus 
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rectangles is perfectly aligned with the scanlines in the camera image plane. It is imperative that both the 

camera and projector are focused on the whiteboard during calibration.  

Following calibration, the “camera image of the concentric rectangles” and the “projector image of the 

concentric rectangles” are related by a 2 × 2 similarity transform [48]. The diagonal entries of this similarity 

transform represent the relative magnification 𝜅  (defined in Eq.(4.18)) between the imaging and 

illumination paths. Alternately, the ratio of the image height of each rectangle in the projector and camera 

images may be used to identify the relative magnification 𝜅  between the devices.  

6.1.2 Super resolution 

The process of super resolution begins with the acquisition of images  𝜃( ,  ) under the phase-shifted 

illumination patterns shown below 

 .5 +  .5    ( 2𝜋𝜉0  + 𝜃 ) 

𝜉0 =
1

4

cyc

p xel
  

𝜃 =  ∘, 9 ∘, 1  ∘, 2  ∘ 

  = 1,2, …14    

  = 1,2, …1 5  

 .5 +  .5    ( 2𝜋𝜂0  + 𝜃 ) 

𝜂0 =
1

4

cyc

p xel
  

𝜃 =  ∘, 9 ∘, 1  ∘, 2  ∘ 

  = 1,2, …14    

  = 1,2, …1 5  

It is likely that the projected pattern exhibits grid artifacts on account of the sampled description of the 

projector input image, and the fill-factor of the LCD module in the projector. The artifacts may be mitigated 

by adjusting the dynamic range of the illumination patterns, and imparting a small defocus blur so as to 

smooth the boundaries of adjacent pixels in the projected image. 

The camera images acquired under the aforementioned illumination patterns may be processed using 

the super resolution workflow of Figure 4.13, to obtain a super resolved image of the USAF target. The 

frequency of the patterns used to demodulate the cosine/sine modulated images, is identified as the product 

of (𝜉0, 𝜂0) and the relative magnification 𝜅 .  

The outcome of super resolution is disclosed in Figure 6.2. A comparison of the bars in the red insets 

confirms the effectiveness of sinusoidal illumination in improving the resolving power of an imager. 
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Closer inspection of the super resolved image inset indicates the presence of a grid-like artifact. The artifact 

is attributed to deviations from the 9 ∘ phase-shift that the illumination pattern is expected to exhibit in 

successive camera images. 

A visual assessment of the number of resolvable bars in the USAF target, hints at a resolution gain of 

5    elements. The knowledge that successive elements of the USAF target differ in resolution by a factor 

of 21/6 may be used to ascertain the empirical resolution gain as being in the interval 1.  1  2. .  

The Spatial Frequency Response plots of Figure 6.3 aid in the quantitative assessment of the resolution 

gain. The notion of “optical cutoff frequency” is central to the assessment, and is defined as the spatial 

frequency for which the modulation strength falls to  . 2. In view of this definition, it is observed that the 

“optical cutoff frequency” of the camera is limited to  2.4 5
cyc

mm
 in the (𝜉, 𝜂) directions. Following super 

Baseband image Super-resolved image

Figure 6.2 Super resolving a planar facet that is plane parallel to the entrance 

and exit pupil planes of the camera and projector respectively 
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resolution, the “optical cutoff frequency” increases to 12 .  59
cyc

mm
 suggesting a gain of 1.9 22 in the (𝜉, 𝜂) 

directions. It is worth noting that the gain in resolution is consistent with that obtained by visual assessment. 

 

6.2 Super resolving a 3D scene using a canonical stereo setup and periodic 

sinusoidal illumination 

The present experiment serves the dual purpose of demonstrating super resolution and scene recovery in a 

single stereo apparatus. The canonical stereo arrangement of Figure 6.4 is used to this effect.  

The orientation of the illumination patterns best suited for super resolution and scene-recovery, are 

illustrated in the panels labelled “Optical Super resolution” and “Active Scene Recovery” respectively. The 

presence/absence of phase distortion in the camera image of the illumination pattern, is consistent with the 

claims made in Section 4.3.  

Spatial Frequency Response

Figure 6.3 Spatial Frequency Response of the imager before and after super resolution 
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6.2.1 Calibration 

The success of the experiment hinges on the coplanarity of the camera entrance pupil and projector exit pupil 

planes. It is realized using the two-pass calibration scheme outlined below.  

Imaging System

 1/2.5 CMOS sensor 

Imaging Source Corp., P/N: DMK72BUC02

 Pixel pitch = 2.2𝜇𝑚
 Image size = 2592 ×  1944

1  𝑚𝑚 lens

Computar Corp. P/N: M1614-MP

Integration time = 125 𝑚𝑠

Illumination System

 LCD Projector

Panasonic Corp., P/N: AE3000

 Pixel pitch =  .5  m
 Native resolution = 192 × 1   

Image size = 14  × 1 5 
(VGA mode)

Canonical Stereo Arrangement ( Vertically Collocated )

1.9 5 𝑚

11  𝑚𝑚 baseline

Camera

Projector

Camera image of scene under 

periodic sinusoidal illumination

Periodic Sinusoidal 

Illumination Pattern

Optical Super-

Resolution

Active Scene 

Recovery

Figure 6.4 Canonical stereo arrangement used to demonstrate super resolution  

and scene-recovery using periodic sinusoidal illumination 
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6.2.1.1 Calibration: first pass 

The singular objective of the first pass is to ensure that the optical axes of the camera and projector are 

parallel. It is accomplished by observing the following steps  

1. Line up the entrance/exit apertures of the camera and projector in the direction of the desired baseline. 

2. Position a uniform albedo planar facet (such as a poster board) at the desired working distance. It is 

recommended that the planar facet is roughly parallel to the entrance/exit apertures of the camera and 

projector.  

3. Illuminate the scene using a family of 1-pixel wide lines whose orientation is consistent with the 

desired baseline orientation (≡ lines for   ≠  ,   =   and ⫴ lines for   ≠  ,   =  ). 

4. Adjust the orientation of the camera until the lines appear parallel in the camera image. 

The above process relies on the notion that straight lines in the projector input image map to straight lines in 

the camera image, due to the homography induced by the planar facet.  

6.2.1.2 Calibration: second pass 

The singular objective of the second pass is to ensure that the camera and projector satisfy the collocation 

requirement (  =  ), which is to say that the projector’s center-of-perspective is contained in the entrance 

pupil plane of the camera. The collocation procedure described in subsequent paragraphs is inspired by the 

findings of [80], and leverages two important conditions: 

 In a collocated stereo arrangement, the epipolar lines in the camera image plane are aligned with 

the baseline orientation. 

 The shadow of a scene point that corresponds to a depth discontinuity, is constrained to lie on 

the epipolar line that passes through the camera image of the scene point. 

The relevance of the aforementioned conditions to collocation is illustrated in Figure 6.5. It is observed 

that collocation in the horizontal/vertical direction is achieved when the tip of the pencil and its shadow 

are row/column aligned. 

The sequence of operations comprising the second pass are enumerated below 

1. Position one or more sharp tipped objects in front of the planar facet used in the first pass 

2. Flood illuminate the scene using a spatially uniform pattern 
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3. Displace the camera until the line joining the tip of each object to its shadow, is aligned with the 

baseline 

Following calibration, the relative magnification 𝜅0 (defined in Eq.(38)) between the imaging and 

illumination paths can be identified as follows: repeat Steps-1 to 3 from the first pass, determine 𝜅0 as the 

ratio of the image height of corresponding lines in the projector and camera images. 

6.2.2 Super resolution 

The process of super resolution begins with the acquisition of images  𝜃( ,  ) under the phase-shifted 

illumination patterns shown below 

 .5 +  .5    ( 2𝜋𝜉0  + 𝜃 ) 

𝜉0 =
1

4

cyc

p xel
  

𝜃 =  ∘, 9 ∘, 1  ∘, 2  ∘ 

  = 1,2, …14    

  = 1,2, …1 5  

The camera images acquired under the aforementioned illumination patterns may be processed using the 

super resolution workflow of Figure 4.13, to obtain a super resolved image of the scene. The frequency of 

the patterns used to demodulate the cosine/sine modulated images, is identified as the product of (𝜉0, 𝜂0) 

and the relative magnification 𝜅 .  

Horizontally Collocated 

Stereo Arrangement

  ≠  ,   =   =  

Veryically Collocated 

Stereo Arrangement

  ≠  ,   =   =  

Figure 6.5 Calibrating a canonical stereo arrangement using the shadow of a sharp tipped object 
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The outcome of super resolution is disclosed in Figure 6.6. Inspection of the insets confirms the ability 

to super resolve spatial detail in a canonical stereo arrangement. Closer inspection of the red-inset in Figure 

6.6 confirms that the gain in resolution is confined to the vertical bars, which are oriented in the direction of 

modulation. 

 

The Spatial Frequency Response (SFR) plots of Figure 6.7 aid in the quantitative assessment of the resolution 

gain. Comparison of the red/blue plots in Figure 6.7 suggest a marked/marginal resolution improvement in 

the direction of modulation and its orthogonal complement. But, the latter is an artifact of the dynamic range 

adjustment of the super resolved image, which is used to match its visual appearance to the baseband image. 

In conclusion, the gain in resolution is confined to the direction of modulation and is consistent with the 

claims made in Section 4.1. 

Baseband image Super-resolved image
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Figure 6.6 Super resolving a 3D scene using a canonical active stereo setup 
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The notion of “optical cutoff frequency” is central to the quantitative assessment of resolution gain. It is 

defined as the spatial frequency for which the modulation strength falls to  . 2. The SFR plots of Figure 6.7 

may be used to identify the “optical cutoff frequency” before and after super resolution, and are disclosed 

below  

cutoff frequency of baseband imager 𝜉 utoff = 12 .9  9 
cyc

mm
,   𝜂 utoff = 129.   1

cyc

mm
  

cutoff frequency of super resolved imager 𝜉 utoff = 1  . 122
cyc

mm
,   𝜂 utoff = 1  .2441

cyc

mm
  

The ratio of the cutoff frequencies suggests a resolution gain of1.    , in the direction of modulation. 

 

6.2.3 Scene Recovery 

The process of scene recovery begins with the acquisition of images  𝜃( ,  ) under the phase shifted 

illumination patterns shown below 

 .5 +  .5    ( 2𝜋𝜂0  + 𝜃) 

𝜂0 =
1

175

cyc

p xel
  

𝜃 =  ∘, 9 ∘, 1  ∘, 2  ∘ 

  = 1,2, …14    

  = 1,2, …1 5  

Spatial Frequency Response

Figure 6.7 Spatial Frequency Response of the imaging system before and after super resolution 
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 .5 +  .5    ( 2𝜋𝜂0  + 𝜃) 

𝜂0 =
1

10

cyc

p xel
  

𝜃 =  ∘, 9 ∘, 1  ∘, 2  ∘ 

  = 1,2, …14    

  = 1,2, …1 5  

The camera images acquired under the aforementioned illumination patterns are processed using the scene-

recovery workflow of Figure 5.4, to obtain a topographic map of the scene. The frequency of the patterns 

used to demodulate the cosine/sine modulated images, is identified as the product of (𝜉0, 𝜂0) and the relative 

magnification 𝜅 . No attempt is made to compensate for the phase offset 𝜑0 in the workflow of Figure 5.4, 

as we restrict our attention to the computation of normalized topographic maps.  

The first set of sinusoidal patterns with spatial frequency ( , 1/1 5 ) yield a phase-map  �̂� ow( ,  ) that 

is devoid of phase wrapping artifacts. The second set of sinusoidal patterns with spatial frequency ( ,1/1 ) 

yield a second phase-map �̂�high( ,  ), which may be unwrapped using  �̂� ow( ,  ). A topographic map of 

the scene may be derived from the unwrapped phase-map �̂�unwr pped( ,  ). The reader is referred to Section 

4.2 for additional details on recovering scene geometry in a canonical stereo setup.  

The topographic map   ̂( ,  ) obtained in the previous step may be texture mapped using the intensities 

of the baseband camera image. The process entails the assignment of a gray level to each point in the 

topographic map. The gray level of the ( ,  )𝑡ℎ point is identified as the intensity of the ( ,  )𝑡ℎ pixel in the 

baseband camera image. The result is a 3D rendering of the scene from the camera vantage point, as illustrated 

in Figure 6.8. Inspection of the rendering confirms that our scene recovery algorithm succeeds in recovering 

the cylindrical shape of the poster tube and the planar profile of the cardboard carton.  

 

 

Baseband image of scene 3D rendering of scene

Figure 6.8 Texture-mapping the topographic map recovered in a canonical active stereo setup 
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6.3 Super resolving a 3D scene using a collocated stereo setup and warped 

sinusoidal illumination 

The present experiment serves the dual purpose of demonstrating super resolution and scene recovery in a 

single stereo apparatus. The canonical stereo arrangement of Figure 6.9 is used to this effect. The experiment 

has valuable practical implications in that it hints at the possibility of using commercial Structured Light 

Scanners to super resolve spatial detail, in addition to recovering topographic information.  

Projector

𝜋
4
8
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8
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n
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4
6
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Imaging System

 1/2.5 CMOS sensor 

Imaging Source Corp., 

P/N: DMK72BUC02

 Pixel pitch = 2.2𝜇𝑚
 Image size = 2592 ×  1944

1  𝑚𝑚 lens, Computar Corp. 

P/N: M1614-MP

Integration time = 125 𝑚𝑠

Illumination System

 LCD Projector

Panasonic Corp., 

P/N: AE3000

 Pixel pitch =  .5  m
 Native resolution 192 × 1   

Image size = 14  × 1 5 

Horizontally Collocated Stereo Arrangement

𝑂 = ( , , )
𝑂 = (24, , )

𝑄  = (1 , ,  )

 𝑄𝑂 𝑂 =   ∘

 𝑤   ax   𝑊  
 𝑤   ax   𝑊  

12   
𝑂 𝑄

𝑂 

12 

 𝑤

 𝑤

Figure 6.9 Apparatus used to demonstrate super resolution and scene-recovery 

using warped sinusoidal patterns 
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6.3.1 Calibration 

The success of the experiment hinges on meeting the following requirements: the camera strictly rotates 

about its center-of-perspective, which is contained in the exit pupil plane of the projector. The two-pass 

calibration scheme outlined below is used to meet the requirements.  

6.3.1.1 Calibration: first pass 

The singular objective of the first pass is to ensure that the camera rotates about its center-of-perspective. To 

this end, we borrow ideas from panoramic stitching wherein one assembles a panoramic image from images 

that are acquired by rotating the camera about a fixed point. It is understood that the fixed point must be the 

camera center-of-perspective, if one is to avoid the displacement of static objects (motion parallax) during 

camera rotation.  

Figure 6.10 provides close-up view of the camera assembly in Figure 6.9. The rotation stage allows us 

to rotate the optical axis of the camera about a pivot point that is adjusted using the  ,   translation stages.  

Axis of rotation

 -translation

 -translation

Rotation

stage

 = 11∘  =  ∘  =  11∘

   -stage

Figure 6.10 Close-up view of camera assembly in Figure 6.9 (left) and center-of-perspective 

calibration using optical posts and motion parallax (right) 
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If the pivot point coincides with the camera center-of-perspective, then static objects such as optical posts 

(contained in the yellow rectangle) do not exhibit motion parallax during camera rotation. The behavior is 

better illustrated in Figure 6.11. The vertical streaks on the optical posts represent light from a laser level 

mounted on the camera. 

Inspection of the images in Panel-1 of Figure 6.11 confirm that camera rotation about an arbitrary point 

causes static objects such as the optical posts to experience an apparent motion that depends on their 

proximity to the camera. The behavior is corroborated by the discontinuity in the laser line as it strikes the 

optical posts at different depths. 

The images in Panel-2 of Figure 6.11 confirm the absence of motion parallax when the camera rotates 

about its center-of-perspective. The behavior is corroborated by the continuity of the laser line as it strikes 

Camera rotation about pivot point ≠ COP

 =  11∘  =  ∘  = 11∘

Camera rotation about pivot pint = COP

 =  11∘  =  ∘  = 11∘

Panel-1 Panel-2

Figure 6.11 Using motion parallax to ensure camera rotation about its center-of-perspective. The 

vertical streaks on the optical posts represent light from a laser level mounted on the camera. 
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the optical posts at different depths. The accuracy of calibration may be improved by increasing the separation 

between the optical posts, so as to induce maximal displacement due to parallax. 

6.3.1.2 Calibration: second pass 

The singular objective of the second pass is to ensure that the camera and projector satisfy the collocation 

requirement (  =  ), which is to say that the projector’s center-of-perspective is contained the entrance 

pupil plane of the camera. The collocation procedure described in Section 6.2 may be used for this purpose. 

The sequence of operations that comprise the second pass are enumerated below 

1. Adjust the position & orientation of the camera and projector assemblies until their optical axes are 

parallel, and their entrance apertures are separated by the desired baseline 

2. Rotate the camera about its center-of-perspective by the desired amount (  ∘ in this experiment)  

3. Position one or more sharp-tipped objects in the scene volume common to the camera and projector 

4. Flood illuminate the scene using a spatially uniform pattern  

5. Displace the camera using the    -translation stage, until the line joining the tip of each object to 

its shadow, is aligned with the baseline.  

 Figure 6.12 illustrates the result of collocating the camera and projector in the stereo apparatus of Figure 6.9. 

6.3.1.3 Calibration: Identifying the warping matrix 

Attempts to super resolve spatial detail and/or recover topographic information in the stereo apparatus of 

Figure 6.9, calls for illuminating the scene with the warped sinusoidal patterns shown below 

Figure 6.12 Demonstrating collocation using a sharp tipped object such as a mechanical pencil 
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  + 𝐵    (2𝜋 (𝜉0

  11
   +   12

   +   13
 

  31
   +   32

   +   33
 

+ 𝜂0

  21
   +   22

   +   23
 

  31
   +   32

   +   33
 

) + 𝜃) (6.1) 

The terms   𝑖𝑗 represent entries of the infinite homography    = 𝑲𝑹 𝑻𝑲 − . Identifying     requires 

computation of the intrinsic matrices 𝑲, 𝑲 , and the relative rotation 𝑹 . The process is tedious and entails the 

calculation of more quantities than the number of entries in the matrix    . In addition, assembling     from 

the estimates of 𝑲,𝑲 , 𝑹  is prone to increasing the uncertainty in the estimate of    .  

Sections 4.4 & 5.3 examined the use of other homographies in mitigating the influence of measurement 

uncertainty on super resolution and scene-recovery. It was established that the homography 𝜫  induced by a 

planar facet that is plane-parallel to the projector exit pupil, can be used in lieu of the infinite homography. 

The facet labelled 𝜋 in Figure 6.9 represents one such planar facet.  

The computation of the homography 𝜫  begins with the projection of a grid of  ×   squares onto the 

planar facet 𝜋. This is followed by an attempt to identify feature points (center of each square) in the camera 

image by thresholding and morphological processing. It is observed that overexposing the camera image aids 

in the identification of feature points. The next step in the process involves matching of corresponding feature 

points in the projected pattern and the camera image.  

The repetitive nature of projected pattern makes it exceedingly difficult to match corresponding feature 

points in the projected pattern and the camera image. The ambiguity is resolved by using a coarse estimate 

of 𝜫  to improve correspondence matching. The outermost squares labelled 𝑇𝐿, 𝑇 , 𝐵𝐿 & 𝐵  in Figure 6.13 

are used to identify a coarse estimate of 𝜫 . Matching correspondences in Figure 6.13 share the same label. 

Following correspondence matching, one proceeds to obtain a refined estimate of the homography 𝜫  

using the Taubin estimator proposed in [81]. The estimated homography is used to illuminate the scene with 

the warped sinusoidal patterns shown below 

  + 𝐵    (2𝜋 (𝜉0

𝜋 11  + 𝜋 12  + 𝜋 13

𝜋 31  + 𝜋 32  + 𝜋 33

+ 𝜂0

𝜋 21  + 𝜋 22  + 𝜋 23

𝜋 31  + 𝜋 32  + 𝜋 33

) + 𝜃) (6.2) 

In the present experiment, 

𝜋 11 =  .5 9        𝜋 12 =   .   4         𝜋 13 = 4 2.14 4
𝜋 21 =  .        𝜋 22 =  .5555         𝜋 23 = 1  .4 91
𝜋 31 =  .   1        𝜋 32 =   .       𝜋 33 =  .5911

  (6.3) 
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The orientation of the illumination patterns best suited for super resolution and scene-recovery, are disclosed 

in the panels labelled “Active Scene Recovery” and “Optical Super resolution”, in Figure 6.14. The dashed 

lines in yellow are reference lines representing true vertical and horizontal in the camera image. The 

presence/absence of phase distortion in the camera image of the illumination pattern is evident in the 

departure of the pattern from true vertical and horizontal. The observations are consistent with the claims 

made in Section 4.3. 
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Figure 6.13 Estimating the homography induced by the planar facet 𝜋 in Figure 6.9.  
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The rectangles and lines in red represent true vertical and horizontal in the projector image space. The 

warp in the illumination pattern for scene recovery is evident upon comparison of the number of bars in the 

red rectangles. The warp in the illumination pattern for super resolution is evident in the departure of the 

pattern from true horizontal. 

6.3.2 Super resolution 

The process of super resolution begins with the acquisition of images  𝜃( ,  ) under the phase-shifted 

illumination patterns shown below 

 .5 +  .5    (2𝜋𝜂0 (
𝜋 21  + 𝜋 22  + 𝜋 23

𝜋 31  + 𝜋 32  + 𝜋 33

) + 𝜃) 

𝜂0 =
1

6

cyc

p xel
  

𝜃 =  ∘, 9 ∘, 1  ∘, 2  ∘  

  = 1,2, …14   

  = 1,2, …1 5  

An undesired consequence of warping is that adjacent rows of the illumination pattern may exhibit phase 

differences in excess of  9 ∘, when examined one column at a time. If unaccounted, these columns are 

expected to introduce artifacts in the super resolved image. In an effort to mitigate artifacts, the gray values 

of these columns is set to  .5, prior to projection.  

Warped Sinusoidal 

Illumination Pattern

Camera image of scene under 

warped sinusoidal illumination

Active Scene 

Recovery

Optical Super 

Resolution

Figure 6.14 Exemplar patterns suited for recovering topographic information and 

super resolving spatial detail in the collocated stereo apparatus of Figure 6.9. 
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The camera images acquired under the aforementioned illumination patterns are processed using the 

super resolution workflow of Figure 4.13, to obtain a super resolved image of the scene. The frequency of 

the sinusoidal pattern used to demodulate the cosine/sine modulated images is identical the frequency of the 

illumination pattern (𝜉0, 𝜂0). The similarity stems from the fact that pre-warping accounts for differences in 

the magnification of the imaging and illumination paths, whereby  𝜅 = 1.  

The outcome of super resolution is disclosed in Figure 6.15. Inspection of the insets confirms the ability 

to super resolve spatial detail in a canonical stereo arrangement. Closer inspection of the red and green insets 

confirms that the gain in resolution is confined to the horizontal bars, which are oriented in the direction of 

modulation. 

The Spatial Frequency Response (SFR) plots of Figure 6.16 aid in the quantitative assessment of the 

resolution gain. Comparison of the red/blue plots in Figure 6.16 suggest a marked/marginal resolution 

improvement in the direction of modulation and its orthogonal complement. But, the latter is an artifact of 

the dynamic range adjustment of the super resolved image, used to match its visual appearance to the 

Baseband image Super-resolved image
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Figure 6.15 Super resolving a 3D scene using the collocated stereo apparatus of Figure 6.9 
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baseband image. In summary, the gain in resolution is confined to the direction of modulation and is 

consistent with the claims made in Section 4.1. 

The notion of “optical cutoff frequency” is central to the quantitative assessment of resolution gain. It is 

defined as the spatial frequency for which the modulation strength falls to  . 2. The SFR plots of Figure 6.16 

may be used to identify the “optical cutoff frequency” before and after super resolution, and are disclosed 

below  

cutoff frequency of baseband imager 𝜉 utoff = 11 .192  
cyc

mm
,   𝜂 utoff = 125.22  

cyc

mm
  

cutoff frequency of super resolved imager 𝜉 utoff = 12 .9  9
cyc

mm
,   𝜂 utoff = 2 5. 12 

cyc

mm
  

The ratio of the cutoff frequencies suggests a resolution gain of 1.   2, in the direction of modulation. 

 

6.3.3 Scene Recovery 

The process of scene recovery begins with the acquisition of images  𝜃( ,  ) under the phase-shifted 

illumination patterns shown below 

Spatial Frequency Response of collocated stereo arrangement

Figure 6.16 Spatial Frequency Response of the imaging system before and after super resolution 
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The camera images acquired under the aforementioned set of illumination patterns are processed using the 

scene-recovery workflow of Figure 5.4, to obtain a topographic map of the scene. The frequency of the 

sinusoidal pattern used to demodulate the cosine/sine modulated images is identical the frequency of the 

illumination pattern (𝜉0, 𝜂0). The similarity stems from the fact that pre-warping accounts for differences in 

the magnification of the imaging and illumination paths, whereby  𝜅 = 1. 

The first set of sinusoidal patterns with spatial frequency ( , 1/2592 ) yield a phase-map  �̂� ow( ,  ) 

that is devoid of phase wrapping artifacts. The second set of sinusoidal patterns with spatial 

frequency ( ,1/1 ) yield a second phase-map �̂�high( ,  ), which may be unwrapped using  �̂� ow( ,  ). A 

topographic map of the scene may be derived from the unwrapped phase-map �̂�unwr pped( ,  ), as shown in 

Figure 6.17.  

The range resolution of a topographic measurement technique is a valuable figure of merit that quantifies the 

smallest discernible difference in scene depth (Δ ). The images in Figure 6.18 are intended to provide a 

visual assessment of the range resolution of the stereo apparatus of Figure 6.9. The red stripe overlaid on the 

Baseband image Qualitative depth map

farthestnearest

Figure 6.17 Recovering topographic information in the collocated stereo apparatus of Figure 6.9 
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camera image depicts one of the many isophase contours of the sinusoidal illumination pattern. Inspection of 

the blue inset confirms the presence of phase distortion in a single stripe pattern, as it strikes a 1mm thick 

LEGO fence placed at a distance of 1m. 

6.3.4 Additional Comments 

Figure 6.19 provides additional examples of super resolution using the collocated stereo apparatus of Figure 

6.9. Inspection of the fourth row suggests that object translucency does not affect the ability to super resolve 

spatial detail. Inspection of the vertical barcode in Figure 6.20, and the horizontal barcodes in Figure 6.21 

confirm that the gain in resolution is confined to the direction of modulation. 

Figure 6.22 provides additional examples of recovering topographic information using the collocated 

stereo apparatus of Figure 6.9. Inspection of the fourth row suggests that object translucency does not affect 

the ability to recover topographic information. 

 

 

 

 

 

 

 

 

 

Range resolution of collocated stereo arrangement 

1 mm

Camera image of scene under 

warped sinusoidal illumination

Back-to-back

LEGO fences
Single 

LEGO fence

Figure 6.18 Range resolution of collocated stereo appartus of Figure 6.9 < 1mm @ distance of 1m 
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Baseband image Super-resolved image

Figure 6.19 Super resolving 3D scenes using the collocated stereo apparatus of Figure 6.9 
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Baseband

Super-resolved

Baseband Super-resolved

Baseband

Super-resolved

Figure 6.20 Closer Super resolving 3D scenes using the collocated stereo apparatus of Figure 6.9 
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Baseband Super-resolved Baseband Super-resolved

Figure 6.21 Super resolving 3D scenes using the collocated stereo apparatus of Figure 6.9 
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Baseband image Qualitative depth map

farthest

nearest

farthest

nearest

farthest

nearest

farthest

nearest

Figure 6.22 Recovering topographic information in the collocated stereo apparatus of Figure 6.9 
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6.4 Super resolving a 3D scene using a coincident stereo setup 

The experiments discussed so far have focused on improving the resolving power of well-corrected optics 

characterized by a predominantly space-invariant blur. The present section examines the harder problem of 

improving the resolving power of an imager afflicted with aberrations. The experiment serves the dual 

purpose of demonstrating that space-variance does not impede super resolution, and that a coincident stereo 

apparatus supports super resolution in multiple orientations. The stereo apparatus of Figure 6.23 is used to 

this end.   

The objective is to improve the resolving power of an imager comprised of a single 19mm Bi-Convex lens 

and a 1/2.5” monochrome sensor with a pixel pitch of 2.2  m. The use of a singlet as opposed to a multi-

Imaging System

 1/2.5 CMOS sensor 

Imaging Source Corp., P/N: DMK72BUC02

 Pixel pitch = 2.2𝜇𝑚
 Image size = 2592 ×  1944

19 𝑚𝑚 Bi-convex lens

Newport Corp. P/N: KBX043

Integration time = 125 𝑚𝑠

Illumination System

 LCD Projector

Panasonic Corp., P/N: AE3000

 Pixel pitch =  .5  m
 Native resolution = 192 × 1   

Image size = 192 × 1   

Illuminated area = 1.5  m ×  .   m
at distance of 2.12 𝑚 from projector

Projector

Camera

Beam splitter

Projector

Camera

Beam splitter1 × 11 array of USAF targets

2.12 𝑚 𝑡  𝑠

3D targets

ND 

filter

Coincident Stereo Arrangement

Scene

Text 

target

Spoke 

target

Cylindrical

USAF target

Y-stage

Z-stage

X-stage

Figure 6.23 Apparatus used to demonstrate super resolution in a space-variant imaging system 
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element lens helps us study the impact of aberrations on super resolution. The imager observes a scene 

comprised of multiple resolution targets at an average standoff distance of approximately 2.12 m. 

6.4.1 Calibration 

The success of the experiment hinges on the constraint that the camera and projector share the same viewpoint 

(center-of-perspective). The two-pass calibration scheme outlined below is used to meet the coincidence 

requirements.  

6.4.1.1 First pass 

The objective of the first pass is to ensure that the orientation of the pellicle beam splitter (Thorlabs P/N: 

BP245B1) bisects the angle between the projector’s optical axis and image plane. A laser level aids in this 

effort. The laser level is mounted on the projector and its position & orientation adjusted until the laser light 

sheet is aligned with the projector’s optical axis. Now, the position & orientation of the beam splitter are 

adjusted until it occludes the laser light sheet. At this stage, the beam splitter is oriented perpendicular to the 

projector’s image plane, as illustrated in the left half of Figure 6.24. The final step in the process involves a 

rotation of the beam splitter by 45∘, so that a portion of the incident light is directed towards the scene and 

the remainder is directed towards a light absorber comprised of a Neutral Density filter and black velvet 

paper.  

The accuracy of calibration may be verified by installing a mirror in the incident light path such that the 

mirror is plane parallel to the projector image plane. If calibrated correctly, the reflected laser beam must 

align perfectly with the incident laser beam.  

6.4.1.2 Second pass  

The singular objective of the second pass is to establish that the center-of-perspective of the camera and 

projector are in alignment. It is accomplished by observing the following steps 

1. Adjust the position/orientation of the camera so that its optical axis is perpendicular to the 

projector’s optical axis. It can be realized by reorienting the beam-splitter ( 45∘) so that the 

incident laser beam is directed towards the camera instead of the light absorber. The laser beam 

heading in the direction of the camera represents the desired orientation of the camera optical axis.  
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2. Position one or more sharp-tipped objects in the scene volume common to the camera and projector 

3. Flood illuminate the scene using a spatially uniform pattern 

4. Displace the camera using the  ,   &  -translation stages (red, green & blue rectangles in Figure 

6.23) until the camera image of the objects are devoid of shadows.  

6.4.2 Space-variant PSF 

The image of Figure 6.26 illustrates the severity of space-variance in the camera PSF. The image represents 

the response of the imager to a grid-of-dots (size of each dot  270 µm × 270 µm) displayed on a 24  LCD 

monitor. The monitor is positioned at a distance of 2.12m from the camera, and oriented parallel to the 

projector image plane. It is observed that the geometric image of a single dot spans 2.44 µm in the camera 

image, which is comparable to the detector pixel pitch of 2.2 µm.  The entire image spans 1471 × 911 pixels 

(3.24 mm × 2 mm), and provides a useful description of the camera optical blur at various field locations. 

 

Incident light path

Reflected light path
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Figure 6.24 Beam-splitter calibration using a laser level (and optional mirror) 
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Measured Point Spread Function of imaging system (19 𝑚𝑚 Bi-convex lens)

Figure 6.26 PSF of the singlet measured within the area to be super resolved. 

(-0.6, 0) mm
(0,0) mm

on-axis spot
(0.48, 0) mm

(-0.6, -0.33) mm (0, -0.33) mm (0.48, -0.33) mm

(-0.6, 0.52) mm (0, 0.52) mm (0.48, 0.51) mm

48.4 µm

88 µm 72.6 µm

52.8 µm

35.2 µm

Point Spread Function of imaging system at extreme field locations

Figure 6.25 PSF measured at the extreme field locations designated by diamonds in Figure 6.26 
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The yellow diamond in Figure 6.26 represents the on-axis portion of the image field, where the spot size is 

minimum. The red diamonds represent the outer edges of the field-of-view where the spot size is maximum. 

The image insets in Figure 6.25 provide a closer look at the shape and support of the nine PSF’s designated 

by the diamonds in Figure 6.26.  

6.4.3 Super resolution 

The process of super resolution begins with the acquisition of images  𝜃( ,  ) under the phase-shifted 

illumination patterns shown below 

 

 .5 +  .5    ( 2𝜋𝜂0  + 𝜃) 

𝜉0 =
1

6

cyc

p xel
  

𝜃 =  ∘, 12 ∘, 24 ∘  

  = 1,2, …192   

  = 1,2, …1    

 .5 +  .5    ( 2𝜋𝜂0  + 𝜃 ) 

𝜂0 =
1

6
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p xel
  

𝜃 =  ∘, 12 ∘, 24 ∘ 

  = 1,2, …192   

  = 1,2, …1     

It is likely that the projected pattern exhibits grid artifacts on account of the sampled description of the 

projector input image, and the fill-factor of the LCD module in the projector. The artifacts may be mitigated 

by adjusting the dynamic range of the illumination patterns, and imparting a small defocus blur so as to 

smooth the boundaries of adjacent pixels in the projected image. 

The camera images acquired under the aforementioned illumination patterns are processed using the 

super resolution workflow of Figure 4.13, to obtain a super resolved image of the scene.  

Subsequent discussions are organized into two sections, in accordance with the two distinct scene 

topographies examined in our experiments  

1. a planar facet that directly faces the camera & projector 

2. a scene with abrupt depth discontinuities 

The primary source of space-variance in the first case is transverse aberrations. In the latter case, defocus 

blur also contributes to the space-variance. 

Please bear in mind that the experiments discussed below are designed to study the impact of severe 

aberrations on super resolution, and not to demonstrate significant resolution gains. 
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6.4.3.1 Super resolving a planar facet that directly faces the camera and projector 

In this experiment, the camera observes an array of custom designed USAF targets. The finest & coarsest 

spatial frequencies in each target are 1.    &  .4    cyc/mm. The camera perceives these spatial 

frequencies as 1 4.  & 51.  cyc/mm respectively.  

The outcome of super resolution is documented in Figure 6.27 & 6.28. Inspection of the insets confirms 

that space-variance does not serve as an impediment to super resolution. A visual assessment of the resolvable 

number of bars in each USAF target, hints at a resolution gain of 4 elements. The knowledge that successive 

elements in the USAF target differ in resolution by a factor of 21/6, may be used to ascertain the empirical 

resolution gain as being 1.5874.  

Baseband image insets

Super-resolved image insets

Baseband image Super-resolved image

Figure 6.27 Improving the resolving power of a singlet 

observing a planar target using sinusoidal illumination 
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A comparison of the modulation strength of element-6 in each USAF target confirms the field dependence 

in the resolving power of the engineered imager. The most visible improvement appears closer to the optical 

axis (blue & magenta insets), while the least visible improvement appears to be at the edge of the image field 

(red, green, yellow & cyan insets). The variation in resolving power can be traced back to the field 

dependence in the resolving power of the baseband PSF. 

In conclusion, space-variance in the optical blur introduces undesired field dependence in the resolving 

power of the computationally engineered imager. In a subsequent chapter, we discuss methods for 

overcoming the issue and realizing near isotropic resolving power throughout the image field. 

6.4.3.2 Artifacts in the super resolved image 

Closer inspection of the super resolved image reveals the presence of three artifacts: uneven brightness, ghost 

artifacts and grid artifacts. 

The grid artifacts are attributed to deviations from the   ∘ phase-shift that the illumination pattern is 

expected to exhibit in successive camera images. 

The uneven brightness artifact is the least obvious of the three artifacts. Its presence may be confirmed 

by comparing the brightness of the central portion of the super resolved image to its surroundings. Clearly, 

Baseband image insets

Super-resolved image insets

Figure 6.28 Additional examples of improving the resolving power 

of a singlet using sinusoidal illumination 
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the former appears to be brighter than the latter. This behavior may be traced back to an undesired 

characteristic of the aberrated baseband PSF, namely the field dependence of its DC (zero-frequency) 

response. It is observed that the image of a constant albedo target is not uniformly gray as one would expect, 

but exhibits variation in intensity. The behavior is likely accentuated, when one modulates the baseband PSF 

with an oscillatory pattern such as a sinusoid. 

The adverse effect of ghosting on the quality of reconstruction is most apparent in the yellow and cyan 

insets of Figure 6.28. The artifacts make it harder to discern individual bars in each element of the USAF 

target. It appears that the severity of ghosting increases with increasing distance from the optical axis. In 

addition, the direction of ghosting seems to depend on the orientation of the illumination pattern. It is worth 

noting that the aforementioned observations are in agreement with the findings reported in Section 0. The 

discussion in the section identifies the side lobes in the engineered PSF as the source of the ghost artifacts. It 

is found that the side lobes result from accommodating multiple cycles of the sinusoidal illumination pattern 

within the central lobe of the baseband PSF.  

Incidentally, the issue of ghosting is not unique to our super resolution strategy. Techniques for 

improving the axial resolution of a confocal microscope, such as 4Pi-microscopy, are also plagued by ghost 

artifacts [82]. The accepted method for suppressing these artifacts is the de-convolution of the engineered 

PSF. At first glance, space-variant de-convolution seems like an attractive solution to our predicament. But, 

its efficacy hinges on the non-trivial task of identifying the spatially varying PSF, and also coping with nulls 

in the engineered OTF.  

Chapter 7 of this dissertation examines an alternate approach to mitigating ghost artifacts. The approach 

tries to strike a balance between resolution gain and ghosting by employing periodic illumination patterns 

with large period and small duty cycle. The illumination patterns are comprised of multiple sinusoids in 

several orientations, which is in complete contrast to the current experiment.  
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6.4.3.3 Super resolving a scene with abrupt depth discontinuities 

In this experiment, the camera observes a scene comprised of objects at varied distance & orientation. The 

reader is encouraged to re-examine Figure 6.23 for a brief description of the objects contained in the scene. 

The abrupt change in depth (≈ 1 cm) between the farthest planar facet and the objects in front of it, is 

designed to help study the impact of spatially varying defocus blur on super resolution. The titled orientation 

of the text and spoke targets with respect to the farthest planar facet, is designed to help study the impact of 

perspective foreshortening on super resolution.  
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Baseband image of depth discontinuity Super-resolved image of depth discontinuity

Figure 6.29 Super resolving a scene with abrupt depth discontinuities. 
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The outcome of super resolution is documented in Figure 6.29. Inspection of the baseband and super resolved 

images indicates the absence of cast shadows, a distinct feature of the coincident stereo arrangement. The 

effect of foreshortening is evident in the image of the spoke target, which resembles an ellipse instead of a 

circle. A blue ellipse is overlaid on the baseband image of the spoke target to illustrate the behavior.  

Inspection of the super resolved image insets confirm that neither aberrations, nor perspective 

foreshortening are a deterrent to super resolution using active illumination. 

Closer inspection of the red inset in Figure 6.29 confirms that our super resolution strategy is not 

affected by the defocus blur at depth discontinuities. The region highlighted in pale blue denotes an abrupt 

transition in depth between the farthest planar facet and the target in front of it. It is difficult to miss the gain 

in resolving power observed on either side of the depth discontinuity.   
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Chapter 7 

ADVANCED TOPICS 

The exposition on super resolution in Chapter 4 and the supporting experimental evidence in Chapter 6, 

served the dual purpose of improving our understanding of super resolution and advancing the state-of-the-

art. But, these chapters do not concern themselves with issues that serve as a deterrent to the adoption of 

active super resolution by optical design engineers. The present chapter is devoted to tackling a few of these 

challenges.  

Conversations with experts in SMU’s computational imaging group provided two design challenges 

that are expected to draw the attention of optical design engineers 

1. engineer a prescribed PSF using the fewest illumination patterns 

2. produce high-quality imagery using a single biconvex lens element 

The first challenge aims to augment the capabilities of expertly designed optics that conform to time honored 

traditions in optical design. The objective is to surpass the diffraction limit while minimizing the loss of 

temporal resolution, and the occurrence of artifacts. The second challenge takes a complementary approach 

to optical design, and aims to produce high quality imagery without incurring a steep penalty in cost, form 

factor or design complexity. To this end, the challenge employs a single lens element that guides light towards 

the detector.  

It is obvious that attempts to meet these challenges must strive to improve resolution in multiple 

orientations. Previous chapters established that the following stereo arrangements support super resolution 

in multiple orientations 

 multiple canonical stereo arrangements that share a common imager  (Section 4.3) 

 single canonical stereo arrangement mounted on a rotating arm  (Section 4.3)  

 coincident stereo arrangement      (Section 4.5)  

In each case, the illumination pattern is a sinusoid of the form 𝑝𝜃(  ,   ) =   + 𝐵    (2𝜋(𝜉0  + 𝜂0  ) + 𝜃), 

wherein 
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𝜉0, 𝜂0 frequency of the illumination pattern expressed in cycle /p xel 

   average intensity of the illumination pattern ( DC component ) 

𝐵  peak excursion in the intensity of the sinusoidal component  

𝜃 phase-shift in the sinusoidal component 

In the interest of simplicity, we restrict our attention to the coincident stereo arrangement. The expression for 

the detected image intensity in this stereo arrangement (Eq.(4.36)) serves as the starting point for our 

investigation. It is repeated below for the benefit of the reader 

 𝜃( ,  )

=  ( (𝑢, 𝑣) + |𝐵(𝑢, 𝑣)|    (
2𝜋𝜅 (𝜉0𝑢 + 𝜂0𝑣) +

𝜑 + 𝜃 + arg(𝐵(𝑢, 𝑣))
))  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

wherein 

 

(7.1) 

  𝜅 ≝ (
𝑚  

𝑚 

  𝑑
 𝑑

Δ

Δ 
) , 𝜑 ≝ 2𝜋(𝜉0(   + 𝜅   ) + 𝜂0(   + 𝜅   )) 

  (𝑢, 𝑣) ≝      ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )  𝓊  𝓋                                      replace 
𝑢 = 𝜅 (𝑢 +   ) +    
𝑣 = 𝜅 (𝑣 +   ) +    

 

 𝐵(𝑢, 𝑣) ≝ 𝐵  {
exp ( 𝑗2𝜋(𝜉0(𝑢  𝓊 ) + 𝜂0(𝑣  𝓋 )))

×   ll(𝑢  𝓊 , 𝑣  𝓋 ;𝓊 , 𝓋 )
}  𝓊  𝓋      replace 

𝑢 = 𝜅 (𝑢 +   ) +    
𝑣 = 𝜅 (𝑣 +   ) +    

 

The intuitive meaning of the various terms in Eq.(7.1) is provided in Table 7.1. 

Our response to the two design challenges is centered on the observation that any spatial pattern besides 

flood illumination will smear the object-spectrum across the optical passband. The challenge in super 

resolution lies in undoing the smearing due to heterodyning.  

In Section 7.1, we attempt to undo the smearing by exploiting the modulation diversity afforded by the 

use of a single periodic/almost periodic pattern and a continuum of phase-shifts. A super resolved image is 

assembled by carefully demodulating the temporal sequence of images captured under the continuum of 

phase shifts.  
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7.1 Super resolution using periodic illumination patterns with translational 

symmetry 

Any real-valued illumination pattern that is continuous/piecewise-continuous, and periodic with 

period (
1

 0
,

1

 0
), admits the following Fourier series expansion  

𝑝(  ,   ) =   0,0 + ∑   𝑘,ℓ co (2𝜋(𝑘𝜉0  + ℓ𝜂0  )) + 𝐵 𝑘,ℓ    (2𝜋(𝑘𝜉0  + ℓ𝜂0  ))

𝒦,ℒ

𝑘,ℓ=1

 (7.2) 

 

𝑎0,0 ≝
𝜉0𝜂0

2
 𝑝(𝓊 , 𝓋 )  𝓊  𝓋 

𝒟

 𝒟 |𝓊 | ≤
 .5

𝜉0

, |𝓋 | ≤
 .5

𝜂0

 

𝑎𝑘,ℓ ≝ 𝜉0𝜂0  𝑝(𝓊 , 𝓋 ) co (2𝜋(𝑘𝜉0𝓊 + ℓ𝜂0𝓋 ))  𝓊  𝓋 

𝒟

 𝒟 |𝓊 | ≤
 .5

𝜉0

, |𝓋 | ≤
 .5

𝜂0

 

 𝑘,ℓ ≝ 𝜉0𝜂0  𝑝(𝓊 , 𝓋 )     (2𝜋(𝑘𝜉0𝓊 + ℓ𝜂0𝓋 ))  𝓊  𝓋 

𝒟

 𝒟 |𝓊 | ≤
 .5

𝜉0

, |𝓋 | ≤
 .5

𝜂0

 

Table 7.1 Description of terms in Eq.(7.1) 

 (𝑢, 𝑣), |𝐵(𝑢, 𝑣)| 
blur induced amplitude deviation in the DC and sinusoidal 

components of the illumination pattern 

arg(𝐵(𝑢, 𝑣)) blur induced phase distortion 

 cam(  𝑢,   𝑣; 𝑢, 𝑣) spatially varying blur induced by the imaging optics 

  ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 ) spatially varying blur induced by the illumination optics 

𝜅  relative magnification between the imaging and illumination paths 

𝜑  

difference in the sampling phase of the detector and projector 

sampling grids  
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The limits of the summation namely 𝒦,ℒ represent the order of the highest harmonic that survives blurring 

due to the illumination optics. It is observed that the limits satisfy 𝒦 ≤
1

 0

 

2𝑁𝐴 ll
, and ℒ ≤

1

 0

 

2𝑁𝐴 ll
, wherein 

   ll denotes the numerical aperture of the illumination optics and 𝜆 is the wavelength of the illumination 

source.   

Suppose 𝜉𝑘 ≝ 𝑘𝜉0, 𝜂ℓ ≝ ℓ𝜂0,   𝑘,ℓ ≝   𝑘,ℓ co ( 𝑘,ℓ) , 𝐵 𝑘,ℓ ≝   𝑘,ℓ    ( 𝑘,ℓ). These definitions may be 

incorporated into Eq.(7.2), to obtain the following compact expression for 𝑝(  ,   ) 

𝑝(  ,   ) =   0,0 + ∑   𝑘,ℓ co (2𝜋(𝜉𝑘  + 𝜂ℓ  )   𝑘,ℓ)

𝒦,ℒ

𝑘,ℓ=1

 (7.3) 

It is not hard to establish that the translated illumination pattern 𝑝𝜎,𝜏(  ,   ) ≝ 𝑝(   𝜎,    𝜏), admits the 

following Fourier series expansion 

𝑝𝜎,𝜏(  ,   ) =   0,0 + ∑ (
[  𝑘,ℓ co (2𝜋(𝜉𝑘𝜎 + 𝜂ℓ𝜏))] co (2𝜋(𝜉𝑘  + 𝜂ℓ  ) +  𝑘,ℓ)  

[  𝑘,ℓ    (2𝜋(𝜉𝑘𝜎 + 𝜂ℓ𝜏))]    (2𝜋(𝜉𝑘  + 𝜂ℓ  ) +  𝑘,ℓ)
)

𝒦,ℒ

𝑘,ℓ=1

= { ∑
  0,0

2𝒦ℒ
+ [  𝑘,ℓ co (2𝜋(𝜉𝑘𝜎 + 𝜂ℓ𝜏))] co (2𝜋(𝜉𝑘  + 𝜂ℓ  ) +  𝑘,ℓ)

𝒦,ℒ

𝑘,ℓ=1

+ ∑
  0,0

2𝒦ℒ
+ [  𝑘,ℓ    (2𝜋(𝜉𝑘𝜎 + 𝜂ℓ𝜏))]    (2𝜋(𝜉𝑘  + 𝜂ℓ  ) +  𝑘,ℓ)

𝒦,ℒ

𝑘,ℓ=1

} 

 

 

 

 

(7.4) 

Notice that each term in the summation is a raised cosine/sine pattern. This implies that one may use Eq.(7.1) 

as a template to predict the expression for the camera image  𝜎,𝜏( ,  ), under the illumination pattern of 

Eq.(7.2). The resulting expression for  𝜎,𝜏( ,  ) is shown below 

 𝜎,𝜏( ,  ) =  bb( ,  ) + ∑ co (2𝜋(𝜉𝑘𝜎 + 𝜂ℓ𝜏))   os
𝑘,ℓ ( ,  ) 

𝒦,ℒ

𝑘,ℓ=1

+ ∑    (2𝜋(𝜉𝑘𝜎 + 𝜂ℓ𝜏))

𝒦,ℒ

𝑘,ℓ=1

 sin
𝑘,ℓ( ,  ) 

wherein 

 (7.5) 

  bb( ,  ) ≝   0,0(𝑢, 𝑣)  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

   os
𝑘,ℓ ( ,  ) ≝  | 𝑘,ℓ(𝑢, 𝑣)| co (

2𝜋𝜅 (𝜉𝑘𝑢 + 𝜂ℓ𝑣) + 𝜑 

+arg ( 𝑘,ℓ(𝑢, 𝑣))
)   (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

  sin
𝑘,ℓ( ,  ) ≝  | 𝑘,ℓ(𝑢, 𝑣)|    (

2𝜋𝜅 (𝜉𝑘𝑢 + 𝜂ℓ𝑣) + 𝜑 

+arg ( 𝑘,ℓ(𝑢, 𝑣))
)   (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 
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  0,0(𝑢, 𝑣) ≝   0,0    ll(𝑢  𝓊 , 𝑣  𝓋 ;𝓊 , 𝓋 )  𝓊  𝓋  replace 
𝑢 = 𝜅 (𝑢 +   ) +    
𝑣 = 𝜅 (𝑣 +   ) +    

 (7.6) 

 

 𝑘,ℓ(𝑢, 𝑣)

≝   𝑘,ℓ  
−𝑗𝜙𝑘,ℓ  {

exp ( 𝑗2𝜋(𝜉𝑘(𝑢  𝓊 ) + 𝜂ℓ(𝑣  𝓋 )))

×   ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )
}  𝓊  𝓋  

replace 
𝑢 = 𝜅 (𝑢 +   ) +    
𝑣 = 𝜅 (𝑣 +   ) +    

 (7.7) 

The intuitive meaning of the various terms in Eq. (7.5) is provided in Table 7.2. 

Inspection of Eq. (7.5) confirms that the camera image can be expressed as a linear combination of the 

baseband image    ( ,  ), and the cosine/sine modulated images   os
𝑘,ℓ ( ,  ) &  sin

𝑘,ℓ( ,  ) acquired under 

harmonic illumination. Close inspection confirms that there are (2𝒦ℒ + 1) such images. In subsequent 

paragraphs, we outline a simple strategy for identifying and demodulating these component images. 

  

Table 7.2 Description of terms in Eq. (7.5) 

 bb( ,  ) camera image acquired under flood illumination 

  os
𝑘,ℓ ( ,  ) camera image acquired under the cosine illumination co (2𝜋(𝜉𝑘  + 𝜂ℓ  ) +  𝑘,ℓ) 

 sin
𝑘,ℓ( ,  ) camera image acquired under the sine illumination    (2𝜋(𝜉𝑘  + 𝜂ℓ  ) +  𝑘,ℓ) 

 0,0(𝑢, 𝑣) 

blur induced amplitude deviation in the DC components of the periodic 

illumination pattern 𝑝(  ,   )                                                                  (real number) 

 𝑘,ℓ(𝑢, 𝑣) 

blur induced amplitude deviation in the (𝑘, ℓ)𝑡ℎsinusoidal components of the 

periodic illumination pattern 𝑝(  ,   )                                            (complex number) 

arg ( 𝑘,ℓ(𝑢, 𝑣)) 

blur induced phase distortion in the (𝑘, ℓ)𝑡ℎsinusoidal components of the periodic 

illumination pattern 𝑝(  ,   ) 
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Using elementary linear algebra, one can express the detected intensity at the ( ,  )𝑡ℎpixel as the inner 

product shown below 

 𝜎,𝜏( ,  ) = [1 … co (2𝜋(𝜉𝑘𝜎 + 𝜂ℓ𝜏))    (2𝜋(𝜉𝑘𝜎 + 𝜂ℓ𝜏)) …]

[
 
 
 
 
 bb( ,  )

⋮

  os
𝑘,ℓ ( ,  )

 sin
𝑘,ℓ( ,  )

⋮ ]
 
 
 
 

 (7.8) 

The matrix formulation of Eq.(7.8) may be used to solve for    ( ,  ), {  os
𝑘,ℓ ( ,  ),  sin

𝑘,ℓ( ,  )}
𝑘,ℓ=1

𝒦,ℒ
 by 

assembling the intensities of the ( ,  )𝑡ℎ pixel under (2𝒦ℒ + 1) uniquely phase shifts of the illumination 

pattern 𝑝(  ,   ). The images    ( ,  ), {  os
𝑘,ℓ ( ,  ),  sin

𝑘,ℓ( ,  )}
𝑘,ℓ=1

𝒦,ℒ
 may be digitally recombined using the 

strategy outlined in Section 4.6, to yield the following expression for the reconstructed image 

 re on( ,  ) ≝   bb( ,  ) + ∑ (
    co (2𝜋𝜅 (𝜉𝑘

 + 𝜂
ℓ
 ) + 𝜑 )    os

𝑘,ℓ ( ,  )

+    (2𝜋𝜅 (𝜉𝑘
 + 𝜂

ℓ
 ) + 𝜑 )   sin

𝑘,ℓ( ,  )
)

𝒦,ℒ

𝑘,ℓ=1

 (7.9) 

The expression for the reconstructed image may be simplified by incorporating the definition of the images 

   ( ,  ), {  os
𝑘,ℓ ( ,  )}

𝑘,ℓ=1

𝒦,ℒ
 and { sin

𝑘,ℓ( ,  )}
𝑘,ℓ=1

𝒦,ℒ
, and utilizing the trigonometric identity co (𝑃  𝑄) =

co 𝑃 co 𝑄 +    𝑃    𝑄. The simplified expression for the reconstructed image  re on( ,  ) is disclosed 

below 

 re on( ,  )

=   (𝑢, 𝑣)  0,0(𝑢, 𝑣) + ∑ | 𝑘,ℓ(𝑢, 𝑣)| co (
2𝜋𝜅  𝜉𝑘(  𝑢) + 𝜂ℓ(  𝑣) 

  arg ( 𝑘,ℓ(𝑢, 𝑣))
)

𝒦,ℒ

𝑘,ℓ=1⏟                                          
 ( −𝑢, −𝑣;𝑢,𝑣)

 cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 (7.10) 

It is evident that the reconstructed image  re on( ,  ) bears a strong resemblance to the image acquired under 

the computationally engineered PSF, 

 e gd( ,  ; 𝑢, 𝑣)

=  0,0(𝑢, 𝑣) + ∑ | 𝑘,ℓ(𝑢, 𝑣)| co (2𝜋𝜅 (𝜉𝑘 + 𝜂ℓ )   arg ( 𝑘,ℓ(𝑢, 𝑣)))

𝒦,ℒ

𝑘,ℓ=1⏟                                            
 ( , ;𝑢,𝑣)

  cam( ,  ; 𝑢, 𝑣) (7.11) 
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It is observed that the terms  0,0(𝑢, 𝑣), { 𝑘,ℓ(𝑢, 𝑣)}
𝑘,ℓ=1

𝒦,ℒ
 in Eq.(7.11) assume fixed values for a fixed field 

location (𝑢, 𝑣). Given the deterministic nature of these terms, one can associate a field dependent transfer 

function to the computationally engineered imager, which is obtained as follows 

ℱ{ e gd( ,  ; 𝑢, 𝑣)}

= ℱ { 0,0(𝑢, 𝑣) + ∑ | 𝑘,ℓ(𝑢, 𝑣)| co (2𝜋𝜅 (𝜉𝑘 + 𝜂ℓ )  arg ( 𝑘,ℓ(𝑢, 𝑣)))

𝒦,ℒ

𝑘,ℓ=1

} ⊗ ℱ{ cam( ,  ; 𝑢, 𝑣)} 
(7.12) 

The operator ℱ{𝑔( ,  )} ≝ ∬𝑔( ,  ) exp( 𝑗2𝜋(𝜉 + 𝜂 ))      denotes the 2D Fourier transform, while 

⊛ denotes the convolution operator. 

It is evident from Eq.(7.12) that the bandwidth of the engineered optics exceeds the bandwidth of the 

imaging optics. The increase in bandwidth confirms that the heterodyned frequencies have been restored to 

their true position outside the optical passband. 

Eqs.(7.11) & (7.12) jointly establish that the heterodyning induced by a periodic illumination pattern 

may be undone with the aid of the modulation diversity afforded by translating the illumination pattern. The 

above finding generalizes the viewpoint espoused in [77] for space-invariant blurs, and is an original 

contribution of this work.  

A special case of Eq.(7.11) is of great relevance to the first design challenge. It involves the use of well 

corrected optics characterized by diffraction limited PSF’s. In such cases, the expression for the 

computationally engineered PSF reduces to the special form shown below 

 e gd( ,  ) = { 0,0 + ∑  𝑘,ℓ co (2𝜋𝜅 (𝜉𝑘 + 𝜂ℓ )   arg( 𝑘,ℓ))

𝒦,ℒ

𝑘,ℓ=1

}  cam( ,  ) 

wherein 

 

(7.13) 

  0,0 = 𝜅 
2  0,0    ll(𝜅 (𝑢  𝓊), 𝜅 (𝑣  𝓋))  𝓊 𝓋 =   0,0  ll( , ) (7.14) 

 

 𝑘,ℓ = 𝜅 
2  𝑘,ℓ  

−𝑗𝜙𝑘,ℓ  {
exp ( 𝑗2𝜋(𝜅 𝜉𝑘(𝑢  𝓊) + 𝜅 𝜂ℓ(𝑣  𝓋)))

×   ll(𝜅 (𝑢  𝓊), 𝜅 (𝑣  𝓋))
}  𝓊 𝓋

=   𝑘,ℓ  
−𝑗𝜙𝑘,ℓ  ll (

𝜉𝑘

𝜅 

,
𝜂ℓ

𝜅 

) 

(7.15) 
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Eqs.(7.14) & (7.15) are obtained by dropping the field dependence of the terms  0,0(𝑢, 𝑣) and  𝑘,ℓ(𝑢, 𝑣) in 

Eqs.(7.6) & (7.7), followed by a change of variables from (𝑢 , 𝑣 , 𝓊 , 𝓋 ) ↦ (𝑢, 𝑣, 𝓊, 𝓋). The terms 

  ll( , ) &   ll (
 𝑘

𝜅𝑜
,
 ℓ

𝜅𝑜
) capture the behavior of the projector’s OTF at DC and (

 𝑘

𝜅𝑜
,
 ℓ

𝜅𝑜
)

cycle 

p xel
. 

Additional insight into the structure of engineered PSF is gleamed invoking the definition of the 

terms   𝑘,ℓ, & 𝐵 𝑘,ℓ, and utilizing the trigonometric identity co (𝑃  𝑄) = co 𝑃 co 𝑄 +    𝑃    𝑄. The 

resulting expression is disclosed in Eq.(7.16). 

 e gd( ,  )

= 𝜅 
−2{  0,0  ll( , ) + ∑   ll (

𝜉𝑘

𝜅 

,
𝜂ℓ

𝜅 

) (
  𝑘,ℓ co (2𝜋𝜅 (𝜉𝑘 + 𝜂ℓ )) +

𝐵 𝑘,ℓ    (2𝜋𝜅 (𝜉𝑘 + 𝜂ℓ ))
)

𝒦,ℒ

𝑘,ℓ=1

}  cam( ,  ) 
(7.16) 

Eq.(7.16) may be simplified further by absorbing references to the projector’s OTF into the 

scalars   0,0, {  𝑘,ℓ}𝑘,ℓ=1

𝒦,ℒ
 and {𝐵 𝑘,ℓ}𝑘,ℓ=1

𝒦,ℒ
. The simplified expression disclosed in Eq.(7.17), defines the relation 

between the intensity PSF of the camera and its super resolved counterpart.  

 e gd( ,  ) = 𝜅 
−2{  0,0 + ∑ (

  𝑘,ℓ co (2𝜋𝜅 (𝜉𝑘 + 𝜂ℓ )) +

𝐵 𝑘,ℓ    (2𝜋𝜅 (𝜉𝑘 + 𝜂ℓ ))
)

𝒦,ℒ

𝑘,ℓ=1

}

⏟                                
o c llatory patter   ( , )

  cam( ,  )⏟      
 a e a d PSF

 
(7.17) 

It is obvious that judicious selection of the scalars   0,0, {  𝑘,ℓ}𝑘,ℓ=1

𝒦,ℒ
, {𝐵 𝑘,ℓ}𝑘,ℓ=1

𝒦,ℒ
 enables us to tailor the shape 

of the engineered PSF. The topic is explored in detail in Section 7.3.  

7.2 Super resolution using almost periodic illumination patterns 

In literature, the term “almost periodic pattern” is used to designate patterns that are a strong approximation 

of a sum of trigonometric polynomials. A specific parameterization of these patterns is relevant to our effort, 

and is disclosed below   

𝑝(  ,   ) =   0 + ∑   𝑘 co (2𝜋(𝜉𝑘  + 𝜂𝑘  )   𝑘)

𝒦

𝑘=1

 (7.18) 
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𝜉𝑘 , 𝜂𝑘  frequency of the  𝑘𝑡ℎ sinusoidal component of the illumination pattern, 

expressed in cycle /p xel 

𝒦 Number of sinusoidal components in the illumination pattern 

  0 Mean intensity of the illumination pattern 

  𝑘  peak excursion in the intensity of the 𝑘𝑡ℎ sinusoidal component  

 𝑘  phase-offset of the 𝑘𝑡ℎ sinusoidal component 

A comparison of Eqs.(7.18) & (7.3) confirms that periodic and almost-periodic patterns share the same 

mathematical description. Consequently, we can reuse Eqs. (7.5)-(7.16) and extend the claims of Section 7.1 

to include almost-periodic patterns. The counterpart of Eq.(7.18) that is applicable to almost-periodic 

patterns, is disclosed below 

 e gd( ,  ) = 𝜅 
−2{  0 + ∑ (

  𝑘 co (2𝜋𝜅 (𝜉𝑘 + 𝜂𝑘 )) +

𝐵 𝑘    (2𝜋𝜅 (𝜉𝑘 + 𝜂𝑘 ))
)

𝒦

𝑘=1

}
⏟                              

o c llatory patter   ( , )

  cam( ,  )⏟      
 a e a d PSF

 
(7.19) 

The difference between Eqs.(7.19) & (7.18) stems from the arbitrary choice of the frequencies that make up 

the almost-periodic illumination patterns. In other words 𝜉𝑘 ≠ 𝑘𝜉0 & 𝜂𝑘 ≠ 𝑘𝜂0  ∀ 𝑘 ∈ ℤ . 

The key insights to be gleamed from Sections 7.1 & 7.2 are as follows 

 the heterodyning induced by a periodic/almost-periodic illumination pattern may be undone 

using the modulation diversity afforded by translating the illumination pattern  

 the shape of the engineered PSF may be tailored by judicious selection of the amplitudes and 

frequencies of the sinusoids that make up the periodic/almost-periodic illumination pattern  

The above insights form the basis of our solution to the first design challenge examined below. 
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7.3 Design Challenge-1: Parsimony in PSF engineering using patterned 

illumination 

It is common knowledge that active super resolution schemes sacrifice temporal resolution while attempting 

to surpass the diffraction limit. The primary motivation for this design challenge is to minimize the number 

of temporal observations needed to engineer a prescribed PSF. A second motivation is the mitigation of 

artifacts in the super resolved image that stem from the side-lobes in the engineered PSF (Figures 5 & 6). 

Empirical evidence suggests that these artifacts may be greatly reduced by engineering PSF’s whose side-

lobes match those of a diffraction limited PSF or a Gaussian apodized PSF.  

With the aforementioned motivation in mind, we seek a solution to the following optimization problem:  

“Given a diffraction limited imager, identify the minimum number of illumination patterns required   

to engineer a prescribed PSF”  

The problem is illustrated in Figure 7.1 for an Airy disk with a cutoff frequency of 𝜌  
cycle 

p xel
. It is not a 

coincidence that the mathematical formulation of the design problem outlined in Figure 7.1 is identical to the 

model outlined in Eq.(7.19). The reader will recognize that Eq.(7.19) may be used to synthesize a prescribed 

PSF, by replacing the engineered PSF  e gd( ,  ) with the prescribed PSF  pre cr  ed( ,  ). But, it is not 

× =

Unknown

Oscillatory pattern

 
Find 

𝒦, 𝑎𝑘 , 𝜉𝑘 , 𝜂𝑘 𝑘=1
𝒦

 minimize 𝒦
 minimize    

∑ 𝑎𝑘 co 2𝜋(𝜉𝑘 + 𝜂𝑘 )

𝒦

𝑘=1

Prescribed 𝑃 𝐹

 pre cr  ed  ,  

2
 1

𝜋
2𝜌  

 2 +  2

𝜋
2𝜌  

 2 +  2

2

  

 cam  ,  

Baseband 𝑃 𝐹

2
 1

𝜋
𝜌  

 2 +  2

𝜋
𝜌  

 2 +  2

2

  

Figure 7.1 Identify the minimum number of illumination patterns 

required to engineer an Airy disk with twice the bandwidth. 
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apparent that the optimization problem always admits a solution. The problem is alleviated by minimizing 

the     (mean squared error) between the engineered PSF and the prescribed PSF. 

The discrete counterpart of Eq.(7.19) forms the basis of our numerical framework for PSF engineering, 

and is disclosed in Eq.(7.20). It is obtained by recasting the PSF’s as discrete measurements (∈ ℝ𝑁×𝑁) on 

an oversampled grid, and expressing the oscillatory pattern as a sum of discrete trigonometric functions. 

 𝑒 𝑝, 𝑞 ⏟    
e g  eered PSF

=    𝑝, 𝑞 ⏟    
 a e a d PSF

⊙ [∑ 𝑎 𝑘, 𝑘
𝝍 𝑘, 𝑘

 𝑝, 𝑞 

𝒦

𝑘=1

]  for {
|𝑝, 𝑞|   ∈ { ,1,2…  .5(  1)}

𝜉𝑘 , 𝜂𝑘 ∈ { ,1,2, …  1}       
 (7.20) 

Given our interest in minimizing the    , it seems natural to express the oscillatory pattern as a 

superposition of orthonormal basis images that span the set of real illumination patterns. A survey of literature 

confirmed that the basis images of the Type-1 DCT [80] are best suited for our task. The definition of the 

Type-1 DCT basis images had to be modified to accommodate a distinct feature of diffraction limited PSF’s 

namely: symmetry about the central sample (𝑝, 𝑞 =  ) that doubles up as the intensity maximum. The precise 

definition of the basis images 𝝍 𝑘, 𝑘
 is included below, 

𝝍 𝑘, 𝑘
 𝑝, 𝑞 ≝

{
 
 
 
 
 

 
 
 
 
 

1

  1
                                                𝑝, 𝑞 =  

2

  1
 co (

𝜋𝜉𝑘𝑝

  1
) co (

𝜋𝜂𝑘𝑞

  1
)

|𝑝, 𝑞| ≤  .5(  1)
𝜉𝑘 eve , 𝜂𝑘 eve 

2

  1
 co (

𝜋𝜉𝑘𝑝

  1
)    (

𝜋𝜂𝑘𝑞

  1
)

|𝑝, 𝑞| ≤  .5(  1)
𝜉𝑘 eve , 𝜂𝑘 odd

2

  1
   (

𝜋𝜉𝑘𝑝

  1
) co (

𝜋𝜂𝑘𝑞

  1
)

|𝑝, 𝑞| ≤  .5(  1)
𝜉𝑘 odd, 𝜂𝑘 eve 

2

  1
   (

𝜋𝜉𝑘𝑝

  1
)    (

𝜋𝜂𝑘𝑞

  1
)

|𝑝, 𝑞| ≤  .5(  1)
𝜉𝑘 odd, 𝜂𝑘 odd

 (7.21) 

 

The model outlined in Eq.(7.20) may be used to synthesize a prescribed PSF  𝒑 by replacing the engineered 

PSF    with the prescribed PSF, and solving the resulting system of equations, disclosed below 

𝒉 ⏟
𝑁 ×1

= 𝒉 ⏟
𝑁 ×1

 ⊗ 𝚿 ⏟
𝑁 ×𝑁 

    ⏟
𝑁 ×1

𝑜 𝒉 ⏟
𝑁 ×1

= d ag(𝒉 )⏟      
𝑁 ×𝑁 

  𝚿 ⏟
𝑁 ×𝑁 

    ⏟
𝑁 ×1

 (7.22) 

The expression represents a transcription of the matrix identity of Eq.(7.20) using lexicographically ordered 

PSFs and DCT basis images. The quantities in small boldface letters represent vectors. The operation 

d ag(𝒉 ) yields a diagonal matrix whose diagonal entries match the entries of the baseband PSF 𝒉 . Each 

⊙ element-wise product of the operands ( Hadamard product ) 

 ×   number of samples in the baseband and engineered PSF (   is an odd integer ) 

𝝍 𝑘, 𝑘
 𝑝, 𝑞   𝑝, 𝑞 𝑡ℎ sample of the 𝑘𝑡ℎ component of the oscillatory pattern 𝝍 𝑘, 𝑘

 𝑝, 𝑞 ∈ ( 1,1) 
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column of the matrix 𝚿 represents a lexicographic ordering of a single basis image of the modified Type-I 

DCT. The non-zero entries of the vector   represent the spatial frequencies of the sinusoidal patterns that 

will be used to illuminate the scene. 

The deceptively simple structure of Eq.(7.22) hides the fact that the linear system is ill-conditioned 

(co d t o   um er of d ag(𝒉 ) =  ). The ill-conditioning stems from the zero entries in the baseband PSF 

that contribute an entire row/column of zeroes to the matrix d ag(𝒉 ). The problem is exaggerated by a 

mismatch in the intensity of the central lobe of the PSF, in relation to its tails. Intuitively, it may seem that 

dropping the offending samples from Eq.(7.22) will alleviate the problem. But the strategy is bound to fail, 

since the resulting system of equations is under determined (fewer equations than unknowns). 

In any case, the linear system of Eq.(7.22) admits infinitely many solutions. The least-squares estimator 

attempts to find a unique solution by sifting through the infinitely many solutions, in search of the vector    

that minimizes the energy in the oscillatory pattern 𝚿 . The corresponding optimization problem is disclosed 

below 

(𝐿 )     m  
 

 ‖ ‖2     u ject to   d ag(𝒉 )  𝝍0,0 … 𝝍𝑁−1,𝑁−1 ⏟              
𝚿

[

𝑎0,0

⋮
𝑎𝑁−1,𝑁−1

]
⏟      

  

= 𝒉  
(7.23) 

The solution to the above optimization problem is given by  𝐿 =  diag(𝒉 )𝚿 †𝒉𝑑 , wherein the matrix 

operator † represents the Moore-Penrose pseudoinverse. It is obtained as the intersection of the spherical ℓ2 

ball (‖ ‖2 = constant) with the hyperplane diag(𝒉 )𝚿 = 𝒉 .   

Although the LS estimator excels in its simplicity, it is hopelessly flawed in its attempt to engineer 

PSF’s. The estimator fails to identify a sparse solution to the system of equations diag(𝒉 )𝚿 = 𝒉 , even 

when one exists. The failure is attributed to the fact that minimizing ‖ ‖2 has no bearing on the number of 

frequencies in the oscillatory pattern, a quantity that one would like to minimize. Figure 7.2 illustrates the 

problem for a diffraction limited square pupil in which the prescribed PSF  pre cr  ed( ,  ) =  cam (
 

2
,
 

2
). 

Theory suggests that a 2 × 2 grid of uniformly distributed frequencies are all that is needed for an exact 

realization of 2× improvement in resolution.  But, the LS estimator recommends the use of several 

frequencies. To make matters worse, there is no universal mechanism with which to distinguish the true set 
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of frequencies from clutter. A quick comparison of the “True oscillatory function” and the “LS estimate” in 

Figure 7.2 highlights the shortcomings of the LS estimator.  

The proposed strategy for PSF engineering outlined in Eq.(7.24), explores the solution space in search of a 

vector   that has the fewest non-zero entries (exactly sparse) or one whose entries decay rapidly when sorted 

by magnitude (compressible).  

(𝐿1)     m  
 

 ‖ ‖1     u ject to    ‖𝒉 
𝜏 ⊘ 𝒉 

𝜏  𝚿𝜏 ‖
2

≤ 𝜖 (7.24) 

The operator ⊘ in Eq.(7.24) represents an element-wise ratio of the operands. The vector 𝒉 
𝜏 ⊘ 𝒉 

𝜏  and the 

matrix 𝚿𝜏 represent rows of 𝒉 ⊘ 𝒉  and 𝚿 that correspond to numerically reliable entries in the baseband 

PSF (ones that exceed 𝜏). The strategy outlined in Eq.(7.24) draws inspiration from recent work [84] in 

identifying sparse/compressible solutions to linear systems. The motivation behind minimizing ‖ ‖1 is to 

Baseband 𝑃 𝐹

𝑠 𝑛 
𝑝Δ

𝜌  
𝑠 𝑛 

𝑞Δ

𝜌  
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𝑠 𝑛 
𝑝Δ

2𝜌  
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Oscillatory pattern

𝑝𝑞 𝑝𝑞

× = 

True oscillatory function 𝐿1 estimate𝐿 estimate

Figure 7.2 Doubling the resolving power of a diffraction limited square pupil 

using Least Squares and 𝐿1 estimators 
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reduce the number of illumination patterns needed to engineer the prescribed PSF. The quadratic constraint 

 ‖𝒉 
𝜏 ⊘ 𝒉 

𝜏  𝚿𝜏 ‖
2

≤ 𝜖 is a convex relaxation of the constraint 𝒉 
𝜏 = 𝒉 

𝜏 ⊗ 𝚿𝜏 , designed to 

accommodate prescribed PSFs whose zeroes lie between the zeroes of the baseband PSF. Such scenarios 

arise in attempts to improve the resolving power of the baseband PSF by non-integer amounts. 

An attractive feature of the 𝐿1 minimization problem of Eq.(7.24) is that it is guaranteed to find a sparse 

solution, provided one exists. This is evidenced in the 𝐿1 estimate of the oscillatory pattern, in the example 

of Figure 7.2. 

It is quite likely that the minimization problem of Eq.(7.24) may not always admit a sparse solution. 

The issue arises when trying to engineer PSF’s 𝒉 ∉ ra ge(d ag(𝒉 )𝚿). Figure 7.3 provides an example, 

in which we wish to improve the resolving power of a diffraction limited circular pupil by a factor of 2. 

Trouble is the Airy disk is not separable unlike the basis images 𝝍 𝑘, 𝑘
. Luckily, the sorted entries of the 

vector   that solve the optimization problem of Eq.(7.24) decay very rapidly, as evidenced in the plot of 

Figure 7.3. This behavior may be exploited to identify a sparse solution to the above PSF engineering 

problem. The plan is to prune the result of 𝐿1 minimization, so as to find a subset  ⊂ of frequencies that 

minimize the mean squared error     ≝ ‖𝒉  d ag(𝒉 )𝚿 ⊂‖
2
 to a desired accuracy. 

The pruning algorithm adopted in this work is inspired by an iterative variable selection algorithm 

termed “Backward Stepwise Regression” [85]. The algorithm iteratively discards a frequency with the least 

influence on the instantaneous    , until all frequencies have been discarded. In each iteration, care is taken 

× = 

 1
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Figure 7.3 Example illustrating the need for pruning when engineering PSF’s using Eq.(7.24) 
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to re-estimate the weights  ⊂ and a record of the instantaneous     is maintained. Finally, the subset of 

frequencies that jointly minimize     and ‖ ⊂‖0, is declared as the solution to the PSF engineering 

problem. 

Unfortunately, pruning by itself may not be sufficient to produce a sparse solution to the PSF 

engineering problem. The issue arises when trying to improve the resolving power of a square/circular pupil, 

by non-integer factors. In such cases, the zeroes of the prescribed PSF may never line up with the zeroes of 

the baseband PSF. The problem is illustrated in Figure 7.4. 

The astute reader will recognize that the multiplicative structure of our PSF engineering framework 

makes it impossible to align the zeroes of the engineered PSF with the zeroes of the prescribed PSF. The 

problem may be remedied by employing a digital filter dubbed “post-factum filter”   to reposition the zeroes 

of the engineered PSF, and adjust the height of the side-lobes until the     falls below a desired level of 

accuracy. The post-factum filter is most effective when the bandwidth of the engineered transfer function 

matches/exceeds the bandwidth of the prescribed OTF. The benefit of post-factum filtering is evident in 

Figure 7.5. 

 

Figure 7.4 Mismatch in the position of the intensity minima when improving the 

resolving power of a diffraction limited square pupil by a factor of 2.5 
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The remainder of this section is devoted to the validation of the proposed PSF engineering strategy. The 

experiments are organized into two categories based on the shape of the aperture (square/circular). The 

examples in each category are further sub-divided into two categories. The former is concerned with the 

improvement of resolving power by integer factors, whereas the latter is concerned with non-integer gains. 

The results are tabulated in Figures 7.6-7.9. 

7.3.1 Experimental Setup 

The baseband and prescribed PSF’s supplied to the optimization algorithm are intensity normalized such that 

the central value is unity. In addition, entries of the baseband PSF whose intensities are smaller than 𝜏 =

1 −4, are ignored when computing the ratio 𝒉 
𝜏 ⊘ 𝒉 

𝜏 . Lastly, the number of samples drawn from the 

baseband and prescribed PSF’s are carefully chosen to mitigate the effect of spectral leakage during 

optimization. 

7.3.1.1 Optimization Algorithm 

The SPGL solver developed by Van Den Berg and Friedlander [86] is used to solve the optimization problem 

of Eq.(7.24). The result of 𝐿1 minimization is pruned using the algorithm discussed earlier. This is followed 

Figure 7.5 Benefit of post-factum filtering when improving the resolving power 

of a diffraction limited square pupil by a factor of 2.5 
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by a post-factum filtering step that is designed to fine-tune the shape of the engineered OTF to match the 

prescribed OTF.  

7.3.1.2 Analysis 

The dotted green/blue contours in Figures 7.6-7.9 represent the zero-level set (limiting resolution) of the 

baseband/prescribed MTF’s respectively. The solid cyan contour represents the zero-level set of the 

engineered MTF. Each plot of the MTF is accompanied by a pseudo-color image of a Siemens star target that 

is blurred by the matching PSF. 
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Figure 7.6 4× improvement in the resolving power of a diffraction limited square pupil 

Number of samples in the PSF = 1 1, Inter Sample Spacing = 1𝜇𝑚, Wavelength =  .5𝜇𝑚 
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Figure 7.8 2.5× improvement in the resolving power of a diffraction limited square pupil 

Number of samples in the PSF = 1 1, Inter Sample Spacing = 1𝜇𝑚, Wavelength =  .5𝜇𝑚 
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Figure 7.7 2× improvement in the resolving power of a diffraction limited circular pupil 

Number of samples in the PSF = 151, Inter Sample Spacing = 1𝜇𝑚, Wavelength =  .5𝜇𝑚 
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The examples provided thus far highlight specific capabilities of the proposed PSF engineering strategy. But, 

they fail to provide a broader assessment of its effectiveness in minimizing the number of temporal 

observations needed to realize a prescribed resolution gain. This behavior is neatly captured in the plots of 

Figure 7.10. The plot on the left is concerned with improving the resolving power of square pupils, while the 

right panel is concerned with improving the resolving power of circular pupils. The red points in the left plot 

depict the case of integer resolution gain, for which an analytical solution exists. The solution calls for using 

𝒦 = 𝐺2 frequencies, wherein 𝐺 is the prescribed resolution gain. Intuitively, one expects a similar trend for 

non-integer resolution gains. The data in Figure 7.10 supports our intuition. The sub-optimality of the pruning 

algorithm is most evident in the significant deviations from the quadratic curve. 

 Interestingly, the plot of 𝐺 v . 𝒦 for diffraction limited circular pupils also reveals a quadratic trend. It 

should be emphasized that none of data points in the plot admit an analytical solution, unlike the case of 

square pupils.  
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Figure 7.9 2.833× improvement in the resolving power of a diffraction limited circular pupil 

Number of samples in the PSF = 121, Inter Sample Spacing = 1𝜇𝑚, Wavelength =  .5𝜇𝑚 
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In summary, both plots support the narrative that the resolving power of an expertly designed optics may be 

improved while using a minimal number of illumination patterns. This concludes our response to the first 

design challenge.  

7.4 Design Challenge-2: High quality imaging using a single lens element 

The overarching goal of this design challenge is to explore the limits of active super resolution. The aim is 

to produce high quality imagery using an imager comprised of a single lens element. It is common knowledge 

that the resolving power of a single lens element is severely limited by optical aberrations.  Figure 7.11 

provides an example of an image acquired with an off-the-shelf double convex lens (Edmund Optics Stock 

No. #63-672-INK). Despite the imager’s seemingly large numerical aperture, it appears to be difficult to 

discern spatial detail in the resolution chart. 

  

Diffraction limited square pupil Diffraction limited circular pupil

 integer resolution gain

 non-integer resolution gain

quadratic curve 𝒦 = 𝐺2𝒦

𝐺 𝐺

𝒦

 integer resolution gain

 non-integer resolution gain

quadratic curve 𝒦 = 𝐺2

Figure 7.10 Plot of resolution gain versus number of frequencies used to realize prescribed gain. 

The resolution gain increases from 1 to 2 /  in increments of 1/ . 
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Attempts to improve the resolving power of such an imager using patterned illumination, appear misguided, 

on account of the dismal image quality. The notion is bolstered by the fact that active super resolution 

techniques sacrifice temporal bandwidth for an increase in spatial bandwidth. But, if the claims in Chapter 4 

are to be believed, it must be possible to improve the resolving power of the singlet, by processing images 

acquired under patterned illumination.  

The limited success of our attempt to super resolve a singlet in Section 6.4 supports the notion that 

aberrations are not a deterrent to super resolution. But, the same experiment identified a serious issue with 

our super resolution strategy. The reconstructed image is afflicted with ghost artifacts whose impact is 

aggravated by field dependent aberrations. It was observed in Sections 0 & 6.4 that the severity of ghosting 

increases as one moves away from the optical axis. The behavior is attributed to an increase in the number 

of oscillations of the sinusoidal pattern that can be fit into the central lobe of an off-axis PSF.  

Troubling still is the fact that only two frequencies in orthogonal orientations are employed in the 

experiment of Section 6.4. This confines the gain in resolution to the two orthogonal orientations. One can 

only hazard a guess as to the consequence of illuminating the scene with several sinusoids of varying 

periodicity and orientation.  

Judging by these shortcomings, our quest to produce high quality imagery using a single lens element 

appears destined to failure. But, an obscure detail in our recently concluded effort to engineering the PSF of 

a diffraction limited square pupil, comes to our rescue.  

Figure 7.11 Image of an ISO12233 resolution chart acquired using a single 25 mm bi-convex lens. 

Lens diameter = 15 mm, working distance = 2350 mm 
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Figure 7.12 depicts the structure of the periodic oscillatory pattern that is needed to improve the 

resolving power of a diffraction limited square pupil by a factor of 4. Our interest in this example stems from 

the fact that the choice of the oscillatory pattern is exact, and does not involve numerical optimization. 

Inspection of Figure 7.12 indicates that the oscillatory pattern bears a strong resemblance to a periodic pulse 

train. The period of the pulse train (𝑇) corresponds to the limiting resolution (spot radius for square pupil) 

of the baseband imager, while the pulse width (𝛿) corresponds to the spot diameter of the engineered imager. 

As the prescribed resolution gain 
 

2𝑇
 increases, one observes that the duty cycle of the pulse train decreases 

by a proportional amount.  

Insight into the mechanics of super resolution can be gleamed by examining the consequence of 

multiplying a broad intensity PSF with a periodic pulse train. It is observed that the resulting PSF resembles 

a damped pulse train, whose central lobe width matches the pulse width of the pulse train. The spacing 

between adjacent pulses in the pulse train, affects the onset of side-lobes in the engineered PSF. Lastly, the 

severity of the optical blur influences the side lobe height, with broader PSF’s producing taller side lobes.  

The multiplication of the baseband PSF with the oscillatory pattern may be effected by processing 

images acquired under periodic illumination, as reported in Section 7.1. The ability is attributed to the 

periodic nature of the oscillatory pattern.  
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Figure 7.12 Structure of the oscillatory pattern required to realize a 4× 

improvement in the resolving power of a diffraction limited square pupil 
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The relevance of the above example to the second design challenge is obvious when one recognizes 

that a periodic pulse train may be used to engineer the PSF of any imager, not just diffraction limited square 

pupils. Further, the strategy may be extended to accommodate space-variance in the camera PSF, by choosing 

the pulse period (𝑇) in accordance with the spot radius of the PSF at the edge of the image field. Empirical 

evidence suggests that the side lobes may be eliminated by choosing a period in excess of the half width of 

the 92% encircled energy contour. 

The key insights afforded by the discussion thus far are enumerated below: 

 the product of the baseband PSF with a periodic pulse train may be used to fashion a PSF with a tighter 

central lobe 

 the pulse shape influences the shape of the engineered PSF 

 the pulse width (𝛿) limits the spot size of the computationally engineered imager 

 the spacing between adjacent pulses (𝑇) controls the onset of side lobes in the engineered PSF 

 the multiplication of the baseband PSF with the periodic pulse train may be effected by processing 

images acquired under the pulse train illumination. 

An issue that has been overlooked so far is the shape of an individual pulse. The obvious choice for pulse 

shape when using a pixelated illumination device such as an LCD projector is a rectangular pulse. It can be 

established that that the maximum improvement in resolving power results when the pulse width (𝛿) matches 

the feature size (Δ ) of the illumination module.  

It appears from our discussions that one convert a singlet with a worst case spot size of   𝜇𝑚 into a 

high-quality imager with a spot size of 𝛿 𝜇𝑚, by processing images acquired under pulse train illumination, 

with pulse width 𝑚 𝛿 𝜇𝑚 and period >  .5 𝑚   𝜇𝑚. The scalar 𝑚  represents the relative magnification 

between the imaging and illumination optics.  

It should be noted that the above claim overlooks two important issues: blurring due to the illumination 

optics, and the sampled nature of the projected pattern. The former limits the spot size 𝛿 to 
 𝑜

 1 

2𝑁𝐴 ll
𝜇𝑚, and the 

harmonic order (𝒦, ℒ) of the periodic illumination pattern to ⌊
0.5 𝑜 

0.5 𝑜 
⌋  1.  The latter limits the maximum 

number of phase shifts admitted by the sampled illumination pattern.  
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The limited number of phase shifts could make it impossible to derive the baseband image    ( ,  ) and 

the harmonic images {  os
𝑘,ℓ ( ,  ),  sin

𝑘,ℓ( ,  )}
𝑘,ℓ=1

𝒦,ℒ
, from the set of 2𝒦ℒ + 1 images acquired under uniquely 

phase shifted illumination. The loss results when 

 ⌊
 .5𝑚  

Δ 
⌋
2

< 2(⌊
 

𝛿
⌋  1)

2

+ 1    |     Δ ∶  feature size of the illumination pattern (7.25) 

The term on the left hand side of Eq.(7.25) represents the number of unique phase shifts admitted by the 

periodic illumination pattern. The term on the right hand side represents the number of harmonic images 

required to engineer the PSF with the desired resolving power. 

For the second time, it appears that our quest to produce high quality imagery using a single lens element 

has hit a roadblock. We tackle the issue by examining an alternative strategy for demodulating the camera 

images acquired in a coincident stereo apparatus, such as Figure 7.13. 

Subsequent discussions assume the following: 

 The projected pattern is expressible as a weighted combination of non-overlapping light spots of size Δ ×

Δ  𝜇𝑚. Each spot may be interpreted as a physical pixel in the projected pattern.  

Incident light path

Reflected light path
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Periodic pulse train illumination

𝑝   ,   = ∑  𝑘, ℓ  𝛿    𝑘,    ℓ

 

𝑘,ℓ=− 

⊗ rect   ,   

where  𝑘 + 𝑚𝑃, ℓ + 𝑛𝑄 =  𝑘, ℓ  for 𝑘, ℓ,𝑚, 𝑛, 𝑃, 𝑄 ∈ ℤ

 (
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                   o        

  = 𝑚 
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  = 𝑚 

Δ
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    +    
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𝑚 
relative magnification between the 

imaging and illumination optics

Figure 7.13 Coincident stereo arrangement employed in design challenge-2 
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 The projected pattern has a periodicity of 𝑃 & 𝑄 pixels, or 𝑃Δ  𝜇𝑚 & 𝑄Δ  𝜇𝑚 in the horizontal and vertical 

directions, respectively. 

 The intensity distribution in each light spot is assumed to follow a 2D rect(… ) function, whose definition 

is included below 

rect(  ,   ) ≝ {

1,     |  |, |  | <  .5

 .5, |  |, |  | =  .5
 ,            otherw  e     

 

 The camera image has been resampled so that its inter-sample-spacing matches Δ , and the sampling grids 

of the resampled image and the illumination pattern are aligned. 

Bearing these assumptions in mind, one may attempt to derive the expression for the resampled camera image 

in the stereo apparatus of Figure 7.13. The expression is disclosed below 

 (  ,   ) = 𝜅 
−2  𝑝(𝑢 , 𝑣 )  ̃(𝑢 , 𝑣 )  ̃cam(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣  (7.26) 

 

𝑝(𝑢 , 𝑣 ) = ( ∑   𝑘, ℓ  𝛿(𝑢  𝑘, 𝑣  ℓ)

 

𝑘,ℓ=− 

) ⊗ rect(𝑢 , 𝑣 ) 

where   𝑘 + 𝑚𝑃, ℓ + 𝑛𝑄  =   𝑘, ℓ  for 𝑘, ℓ,  𝑚,𝑛, 𝑃, 𝑄 ∈ ℤ 

periodic pulse train 

illumination 

 ̃(𝑎,  ) ≝  (𝜅 
−1(𝑎     ) +   , 𝜅 

−1(     ) +   ) 

geometric image of 

scene under unit 

illumination 

 ̃cam(𝑎,  ;  ,  ) ≝  cam(𝜅 
−1𝑎, 𝜅 

−1 ; 𝜅 
−1(     ) +   , 𝜅 

−1(     ) +   ) PSF of the singlet 

The term 𝜅 = 𝑚 ΔΔ −1 represents the relative magnification between the pixel coordinates of the imaging 

and illumination paths. The terms (  ,   ) and (   ,    ) represent the coordinates of the principal points of 

the camera and projector respectively. 

Super resolution using patterned illumination is predicated on the prospect of observing unresolved 

spatial frequencies in the camera image  (  ,   ). Fourier analysis of the product 𝑝(𝑢 , 𝑣 ) ̃(𝑢 , 𝑣 ) in Eq.(7.26) 

confirms that modulation smears the object spectrum across the passband of the optics. The challenge lies in 

undoing the smearing induced by amplitude modulation.  
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The proposed solution attempts to exploit the modulation diversity afforded by translating the periodic 

pulse train 𝑝(  ,   ). A super resolved image is obtained by demodulating the temporal sequence of images 

acquired under integer translates of the periodic pulse train.   

The expression for the translated illumination pattern follows from the definition of 𝑝(  ,   ), and is given by 

𝑝 ,𝑡(  ,   ) = ( ∑   𝑘  𝑠, ℓ  t  𝛿(   𝑘,    ℓ)

 

𝑘,ℓ=− 

) ⊗ rect(  ,   )

= ∑   𝑘  𝑠, ℓ  𝑡  rect(   𝑘,    ℓ)

 

𝑘,ℓ=− 

      |      where 𝑠, 𝑡 ∈ ℤ  

 (7.27) 

The expression for the camera image acquired under the translated illumination pattern 𝑝 ,𝑡(  ,   ), is disclosed 

below 

  ,𝑡(  ,   ) = 𝜅 
−2  𝑝 ,𝑡(𝑢 , 𝑣 )  ̃(𝑢 , 𝑣 )  ̃cam(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣  (7.28) 

The reconstructed image  reco (  ,   ) is assembled by demodulating (multiplying) the sequence of camera 

images {  ,𝑡(  ,   )} ,𝑡=0

 −1,𝑄−1
 with the respective illumination patterns {𝑝 ,𝑡(  ,   )} ,𝑡=0

 −1,𝑄−1
, and accumulating the 

product. The mathematical expression for the reconstructed image is shown below 

 reco (  ,   ) = 𝜅 
−2 ∑ 𝑝 ,𝑡(  ,   )

 −1,𝑄−1

 =0,𝑡=0

( 𝑝 ,𝑡(𝑢 , 𝑣 )  ̃(𝑢 , 𝑣 )  ̃cam(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )  𝑢  𝑣 )

= 𝜅 
−2  ( ∑ 𝑝 ,𝑡(  ,   )𝑝 ,𝑡(𝑢 , 𝑣 )

 −1,𝑄−1

 =0,𝑡=0

)  ̃(𝑢 , 𝑣 )  ̃cam(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )  𝑢  𝑣  

 

 

 

 

(7.29) 

The summation in Eq.(7.29) may be simplified as follows 

∑ 𝑝 ,𝑡(  ,   )𝑝 ,𝑡(𝑢 , 𝑣 )

 −1,𝑄−1

 =0,𝑡=0

= ∑ (∑  𝑚  𝑠, 𝑛  𝑡  rect(   𝑚,    𝑛)

 ,𝑛

)(∑  𝑘  𝑠, ℓ  𝑡  rect(𝑢  𝑘, 𝑣  ℓ)

𝑘,ℓ

)

 −1,𝑄−1

 =0,𝑡=0

= ∑ ( ∑   𝑘  𝑠, ℓ  𝑡   𝑚  𝑠, 𝑛  𝑡 

 −1,𝑄−1

 =0,𝑡=0

)  rect(   𝑚,    𝑛) rect(𝑢  𝑘, 𝑣  ℓ)

𝑘,ℓ, ,𝑛

= ∑ 𝜒𝜓𝜓 𝑘  𝑚, ℓ  𝑛  rect(   𝑚,    𝑛) rect(𝑢  𝑘, 𝑣  ℓ)

𝑘,ℓ, ,𝑛

 

 

 

 

 

 

 

 

 

 

 

(7.30) 
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The definition of the periodic auto-correlation of a discrete sequence [87] is invoked in deriving Eq.(7.30). 

The term 𝜒𝜓𝜓 denotes the periodic auto-correlation of the discrete image   … ,…  . Imparting structure on 

𝜒𝜓𝜓 allows us to simplify Eq.(7.30), and subsequently, the expression for the reconstructed image. 

In the special case that the periodic illumination pattern is a pulse train with a pulse width of 1 pixel, 

that is to say   𝑝, 𝑞 =  ∑ 𝛿 𝑝  𝑘𝑃, 𝑞  ℓ𝑄 𝑘,ℓ , one finds that the auto-correlation sequence 𝜒𝜓𝜓 resembles a 

bed of nails with a spacing of 𝑃 & 𝑄 pixels in the horizontal and vertical directions. In other 

words 𝜒𝜓𝜓 𝑝, 𝑞 = ∑ 𝛿 𝑝  𝑘𝑃, 𝑞  ℓ𝑄 𝑘,ℓ . 

In the interest of mathematical lucidity, the remainder of this derivation assumes that the period 𝑃, 𝑄 →

 , so that 𝜒𝜓𝜓  is a Dirac-delta function.  The choice may be incorporated into Eq.(7.30) to obtain the 

following result 

∑ 𝑝 ,𝑡(  ,   )𝑝 ,𝑡(𝑢 , 𝑣 )

 −1,𝑄−1

 =0,𝑡=0

= ∑ 𝛿 𝑘  𝑚, ℓ  𝑛  rect(   𝑚,    𝑛) rect(𝑢  𝑘, 𝑣  ℓ)

𝑘,ℓ, ,𝑛

= ∑rect(   𝑚,    𝑛) rect(𝑢  𝑚, 𝑣  𝑚)

 ,𝑛

 

  

 

(7.31) 

The above result may be substituted into Eq.(7.29), to obtain the following revised expression for the 

reconstructed image 

 reco (  ,   )

= 𝜅 
−2  (∑rect(   𝑚,    𝑛) rect(𝑢  𝑚, 𝑣  𝑚)

 ,𝑛

)  ̃(𝑢 , 𝑣 )  ̃cam(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )  𝑢  𝑣 

= 𝜅 
−2 ∑  ̃(𝑢 , 𝑣 ) rect(   𝑚,    𝑛) rect(𝑢  𝑚, 𝑣  𝑚)  ̃cam(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )  𝑢  𝑣 

 ,𝑛

 

  

 

 

(7.32) 

The above expression for the reconstructed image may be simplified by recognizing the following constraints 

1. the rectangular pulse rect(   𝑚,    𝑛) is non-zero in the interval  

(𝑚   .5) <   < (𝑚 +  .5)
(𝑛   .5) <   < (𝑛 +  .5)

    |    where 
𝑚, 𝑛 ∈ ℤ 

  ,   ∈ ℝ
   (7.33) 

2. the rectangular pulse rect(𝑢  𝑚, 𝑣  𝑚) is non-zero in the interval  

(𝑚   .5) < 𝑢 < (𝑚 +  .5)

(𝑛   .5) < 𝑣 < (𝑛 +  .5)
    |    where 

𝑚, 𝑛 ∈ ℤ 

𝑢 , 𝑣 ∈ ℝ
   (7.34) 

The first constraint may be used to reduce the infinite summation in Eq.(A.6) to the finite summation of Eq. 
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(7.35). The second constraint may be used to reduce the indefinite integral in Eq.(A.6) to the definite integral 

of Eq.(7.35).  

 reco (  ,   )

= 𝜅 
−2 ∑   ̃(𝑢 , 𝑣 )  ̃cam(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )  𝑢  𝑣 

𝑢 ∈( −0.5,  0.5),   𝑣 ∈(𝑛−0.5,𝑛 0.5)

 =⌈  ⌉,   𝑛=⌈  ⌉

 =⌊  ⌋,   𝑛=⌊  ⌋

= 𝜅 
−2   ̃(𝑢 , 𝑣 )  ̃cam(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )  𝑢  𝑣 

𝑢 ∈(⌊  ⌋−0.5,⌈  ⌉ 0.5),   𝑣 ∈(⌊  ⌋−0.5,⌈  ⌉ 0.5)

= 𝜅 
−2   ̃(𝑢 , 𝑣 )  ̃cam(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )  𝑢  𝑣 

𝑢 −  ∈(−1,1),   𝑣 −  ∈(−1,1)

 

  

 

 

  

(7.35) 

 

 (7.36) 

The transition from Eq.(7.35) to Eq.(7.36) employs the following properties of the floor and ceil operators: 

𝑓  ⌊𝑓⌋ ≤  .5 and ⌈𝑓⌉  𝑓 ≤  .5. 

The definition of the rect(… ) function may be used to rewrite the definite integral of Eq.(7.36) as the 

indefinite integral shown below 

 reco (  ,   ) = 𝜅 
−2   ̃(𝑢 , 𝑣 ) rect (

   𝑢 

2
,
   𝑣 

2
)  ̃cam(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )  𝑢  𝑣   (7.37) 

It is evident that the reconstructed image bears a strong resemblance to the image acquired under the 

computationally engineered PSF 

 ̃e gd(  ,   ; 𝑢 , 𝑣 ) = rect (
  

2
,
  

2
)  ̃cam(  ,   ; 𝑢 , 𝑣 )  (7.38) 

It should be emphasized that the above expression for the computationally engineered PSF is obtained under 

the assumption that the period of the pulse train 𝑝(  ,   ) is infinite. The assumption may be relaxed to yield 

the following expression for the computationally engineered PSF, 

 ̃e gd(  ,   ; 𝑢 , 𝑣 )

= (∑rect (
   𝑘𝑃

2
,
   ℓ𝑄

2
)

𝑘,ℓ

)  ̃cam(  ,   ; 𝑢 , 𝑣 )

= rect (
  

2
,
  

2
)  ̃   (   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )

⏟                      
ce tral lo e

+ ∑ rect (
   𝑘𝑃

2
,
   ℓ𝑄

2
)

𝑘≠0 ,ℓ≠0

 ̃cam(  ,   ; 𝑢 , 𝑣 )

⏟                            
  de lo e 

 

  

 

 (7.39) 

The first term in the above expression corresponds to the central lobe of the engineered PSF. Each term in 

the infinite summation of Eq.(7.39) introduces a side-lobe in the engineered PSF. These side-lobes if 
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untreated manifest as ghost artifacts in the reconstructed image. Empirical evidence suggests that the side 

lobes may be eliminated by choosing the period 𝑃 & 𝑄 in excess of the half-width of the 92% encircled 

energy contour of the PSF at the edge of the image field. In such cases, the expression for the computationally 

engineered PSF reduces to Eq.(7.38). 

In subsequent discussions, it is assumed that the period 𝑃 & 𝑄 have been chosen to mitigate the 

onset/appearance of side-lobes in the engineered PSF.  

7.4.1 Intuition 

Suppose that 𝛿 is the spot size of the desired computational imager. As a consequence of optical blurring, 

light from multiple resolution elements of size 𝛿 each, gets integrated into a single camera pixel. Illuminating 

the scene with integer translates of a periodic pulse train assigns a unique binary code to each resolution cell, 

such that the light from multiple resolution cells that is integrated into a single camera pixel, may be 

disambiguated. 

7.4.2 Bound on resolving power 

It can be established from the expression for the engineered PSF (Eq.(7.38)) that the 

 pot   ze ( ̃e gd(  ,   ; 𝑢 , 𝑣 )) = m  ( pot   ze (rect (
  

2
,
  

2
)) × Δ , 𝑚 

1.22 𝜆

2  cam

)

= m  ( 2Δ  ,𝑚 

1.22 𝜆

2  cam

) 

 

 

(7.40) 

The first argument of the m  (… ) function represents the width of the rectangular pulse rect (
  

2
,
  

2
), which 

by definition is 2 pixels or 2Δ  𝜇𝑚. The second argument of the m  (… ) function represents the on-axis spot 

size of the resampled camera image. The term 𝑚  represents the relative magnification between the imaging 

and illumination optics. It is evident from Eq.(7.40) that the resolving power of the computationally 

engineered imager is bounded by  .5Δ −1 corresponding to the Nyquist frequency of the projected pattern. 

In the special case that Δ <  𝑚 
1.22  

4𝑁𝐴cam
 one finds that the resolving power of the computationally 

engineered imager (2Δ  𝜇𝑚) is uniform across the image field. The behavior is unlike the singlet, which 

exhibits severe anisotropy in resolving power. 
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7.4.3 Super resolution workflow 

The expression for the reconstructed image disclosed in Eq.(7.29) provides the blueprint for a super 

resolution scheme that recovers unresolved spatial detail from images acquired under sinusoidal illumination. 

The complete workflow is disclosed in Figure 7.14. 

The process begins with the acquisition of images {  ,𝑡( ,  )}
 ,𝑡=0

 −1,𝑄−1
 under integer translates of the periodic 

pulse train illumination {𝑝(  ,   )} ,𝑡=0
 −1,𝑄−1

. The camera images acquired under patterned illumination are 

resampled using the geometric warp 𝓦−1 that relates the camera image coordinate system to the projector 

image coordinate system. The geometric warp accommodates  

 differences in the transverse magnification of the imaging and illumination paths 

 geometric distortion in the imaging and illumination paths (if any) 

 difference in the sampling phase of the illumination and imaging grids 

The resampled camera images {  ,𝑡(  ,   )} ,𝑡=0

 −1,𝑄−1
are multiplied with the respective illumination 

patterns {𝑝 ,𝑡(  ,   )} ,𝑡=0

 −1,𝑄−1
, and the product accumulated to yield the reconstructed image  reco (  ,   ). 

×
Geometric 

image
 ( ,  )   ,𝑡( ,  )

Camera 

image
     cam( ,  ; 𝑢, 𝑣)

𝑝 ,𝑡   ,   
 ,𝑡=0

 −1,𝑄−1Periodic 

pulse train

  ,𝑡(  ,   )

×

 re on(  ,   )

∑  

 −1,𝑄−1

 ,𝑡=0

Reconstructed 

image

(  ,   )  
𝓦
→( ,  ) Resampling( ,  )

𝓦 1

(  ,   )

Projector

Figure 7.14 Super resolution using coded illumination 



163 

 

7.4.4 Extensions 

The success of our approach may be attributed to a special property of the illumination pattern 𝑝(  ,   ) =

(∑   𝑘, ℓ  𝛿(𝑢  𝑘, 𝑣  ℓ)
𝑘,ℓ

) ⊗ rect(𝑢 , 𝑣 ) namely: compactly supported auto-correlation of the pulse 

amplitudes  , 

𝜒𝜓𝜓 𝑝, 𝑞 ≝ ∑   𝑝, 𝑞   𝑝 + 𝑚, 𝑞 + 𝑛 

 −1,𝑄−1

 =0,𝑞=0

= ∑ 𝛿 𝑝  𝑘𝑃, 𝑞  ℓ𝑄 

𝑘,ℓ

  (7.41) 

The illumination pattern employed in the present section restricts its attention to a periodic pulse train with a 

pulse width of 1 pixel, i.e.   𝑝, 𝑞 =  ∑ 𝛿 𝑝  𝑘𝑃, 𝑞  ℓ𝑄 𝑘,ℓ . But, in the broader scheme of things, one may 

employ any non-negative spatial pattern with a compact auto-correlation. Examples include CDMA 

spreading codes and perfect binary sequences. 

7.4.5 Potential artifacts 

Our solution to the second design challenge is not devoid of problems. It is expected that the reconstructed 

image will exhibit undesired brightness variations on account of the variation in the peak intensity of the 

engineered PSF across the image field. The variation stems from the field-dependence in the peak intensity 

of the baseband PSF. It is anticipated that the problem can be overcome by borrowing ideas from single 

image vignette correction techniques proposed in computer vision [90]. 

 

The remainder of this chapter is devoted to the validation of our recently concluded discussion on high quality 

imaging using a single lens element. 
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7.5 Experimental validation of high quality imaging using a single lens element 

The apparatus of Figure 7.15 is tasked with the objective of producing high quality imagery using a 25 mm 

double convex lens, and periodic pulse train illumination. The single lens imager is comprised of multiple 

optical components, as disclosed in Figure 7.15. The extension tube and spacers aid in controlling the position 

of the plane of sharp focus. The diameter of the iris mounted in front of the lens controls the severity of 

aberrations in the camera image.  

The reader will recognize that the LBS projector in Figure 7.15 is different from the LCD projector employed 

in the experiments of Chapter 6. The change is motivated by the criticism that high quality projection optics 

Figure 7.15 Stereo apparatus used to demonstrate high quality imaging using a singlet 
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is being used to improve the resolving power of poorly designed imaging optics. It begs the question: why 

not replace the singlet with the well corrected projection optics to produce high quality imagery? 

The use of a scanned laser beam dispenses with the need for high quality projection optics. The LBS 

projector of  Figure 7.15 operates by modulating the intensity of red, green and blue laser beams incident on 

a tiny mirror that raster scans the beam, as it assembles the projected image. The narrow divergence of the 

laser beam causes the projected image to remain focused over a wide range of distances. 

Inspection of the apparatus image in Figure 7.15 confirms that the camera and projector are widely 

separated and nowhere close to sharing the same viewpoint. The separation is designed to accommodate the 

large difference in the instantaneous field of view (IFOV) of a single projector/camera pixel. The problem 

may be alleviated by employing LBS projectors with a mirror diameter comparable to the aperture diameter 

of the singlet. 

It should be emphasized that the optical axes of the camera and projector are parallel, and significantly 

displaced in the vertical direction. The displacement is attributed to the offset projection that is intrinsic to 

the LBS, and designed for tabletop use. 

The experimental apparatus includes additional components that are either invisible in Figure 7.15, or 

are omitted in the interest of clarity. The first of these components is a thin circular polarizer film that is 

placed over the projector and the camera. The film is used to mitigate the observation of light reflected from 

the glass plate and the resolution target, at normal incidence. The second component is a moving diffuser 

(3M screen protector P/N: NVAG829233) that continually slides over the glass plate during image 

acquisition. The diffuser motion minimizes the occurrence of speckle artifacts in the camera image. Speckle 

artifacts are produced when coherent laser light is incident on a surface whose roughness exceeds the 

wavelength.  

It should be noted that the images displayed in this section are obtained with the diffuser in constant 

motion over the integration time of the camera. 
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7.5.1 Space-variant PSF 

The image of Figure 7.16 illustrates the space-variance in the PSF of the single lens imager, over the 

illumination field. The image spans 499 × 925 pixels (1.1 mm × 2.03 mm), and represents the response of 

the single lens imager to a grid-of-squares (size of each square = 3 × 3 projector pixels) projected by the 

LBS. It can be observed that the blur spots are asymmetrically distributed about the center of the image field. 

The asymmetry is attributed to the offset projection of the LBS. The yellow line represents a vertical line 

passing through the center of the image field.  

 

The central red inset in Figure 7.16 represents the blur at the center of the illuminated field. The remaining 

insets represent the blur at the edges of the illuminated field. Each red square spans 13 camera pixels 

Inspection of the first/last row and column of spots confirms the presence of geometric distortion. It is 

observed that the single lens imager exhibits barrel distortion while the LBS projector exhibits pincushion 

distortion [91]. As a consequence of distortion, straight lines in the projector input image appear as curved 

lines in the projected pattern. Likewise, straight lines in the resolution target appear as curved lines in the 

camera image. 

Figure 7.16 Severity of space-variance in the camera PSF over the illuminated area 
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7.5.2 Calibration 

The success of our experiment hinges on the knowledge of the geometric mapping between the camera and 

projector pixel coordinates (  ,   )
𝒲
↦ ( ,  ). Intuition suggests that the perspective warp induced by the planar 

facet 𝜋 should suffice to describe the mapping between the pixel coordinates of the camera and projector. 

But it is observed that the perspective warp is incapable of accommodating the geometric distortion (radial 

ad tangential) that afflicts the projected pattern and the camera image. A survey of literature [88-89] 

established that the bilinear model espoused in Eq.(7.42), is sufficient to describe the mapping between two 

perspective devices afflicted with geometric distortion.  

 =
𝑤11  

2 + 𝑤12    + 𝑤13  
2 + 𝑤14  + 𝑤15  + 𝑤16

𝑤31  
2 + 𝑤32    + 𝑤33  

2 + 𝑤34  + 𝑤35  + 𝑤36

 

 (7.42) 

 =
𝑤21  

2 + 𝑤22    + 𝑤23  
2 + 𝑤24  + 𝑤25  + 𝑤26

𝑤31  
2 + 𝑤32    + 𝑤33  

2 + 𝑤34  + 𝑤35  + 𝑤36

 

The above system of equations may be recast as a linear system of equations in the 18 parameters 𝑤11 … 𝑤36. 

Nine or more pairs of corresponding points may be used to estimate the 18 parameters using standard least 

squares estimators.   

The calibration scheme outlined below describes the mechanism with which we identify matching 

correspondences in the projector and camera images, and subsequently estimate the bilinear warp 𝓦.  

The process begins with the projection of the grid of  ×   squares depicted in the upper panel of Figure 

7.17, onto the planar facet 𝜋. Blurring due to the camera optics causes the projected pattern to be perceived 

as a set of blobs, just as illustrated in the lower panel of Figure 7.17. Image thresholding and binary 

morphological processing operators are used to identify the centroid of each blob (dubbed feature point) in 

the camera image of Figure 7.17. The camera image is deliberately overexposed to simplify the identification 

of feature points. 

The next step in the process involves the matching of corresponding points in the calibration pattern 

and the camera image. It is observed that the periodic nature of the calibration pattern makes it exceedingly 

difficult to match feature points in the two images. The ambiguity is resolved by using a coarse estimate of 

the warp 𝒲 to localize the position of matching points. The outermost grid points in the calibration pattern 

and the camera image are used to identify a coarse estimate of the bilinear warp 𝓦.  
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The outcome of correspondence matching is evidenced in Figure 7.17. Notice that corresponding points 

in the two images share the same label. The pixel coordinates of the corresponding points in the two images 

may be used to obtain a refined estimate of the warp 𝓦. A repurposed version of the Taubin estimator of 

[81] is used to this end. 

7.5.3 Super resolution 

A previous section in this chapter disclosed the strategy for producing high quality imagery using a single 

lens imager. Herein, it was established that camera images acquired under integer translates of a single pixel 

wide periodic pulse train, may be used to improve the resolving power of a single lens imager. It was observed 

that the period of the pulse train must exceed the radius of the worst case blur spot for unambiguous 
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Figure 7.17 Matching correspondences used to estimate the geometric warp 

relating the camera and projector pixel coordinates 
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reconstruction. Our lack of knowledge of the worst case spot size (  𝜇𝑚) of the single lens imager, and the 

relative magnification (𝑚 ) between the camera and projector optics, compels us to determine the pulse 

period in an empirical manner. It is observed that a periodicity of 21 projector pixels in the horizontal and 

vertical directions is adequate for our purposes. 

The process of super resolution begins with the acquisition of images {  ,𝑡( ,  )}
 ,𝑡=0

20,20
 under integer 

translates of the periodic pulse train illumination disclosed below 

 

𝑝 ,𝑡(  ,   ) = ∑   𝑘  𝑠, ℓ  𝑡  rect(   𝑘,    ℓ)

848,480

𝑘=1,ℓ=1

 

  𝑘, ℓ     ≝ 𝛿  mod(𝑘, 21),mod(ℓ, 21)   

rect(  ,   ) ≝ {

1,     |  |, |  | <  .5

 .5, |  |, |  | =  .5
 ,            otherw  e     

 

The discrete sequence   represents a grid of single pixel squares with a periodicity of 21 pixels in the 

horizontal and vertical directions. The rect function describes the top-hat profile of the light spot produced 

by the laser beam scanner. It should be emphasized that the rect function may be replaced without loss of 

generality, by any function that accurately describes the shape of the light spot produced by the laser beam 

scanner.  

The camera images acquired under the aforementioned illumination patterns, are resampled using the 

geometric warp 𝓦 that relates the pixel coordinates of the camera and projector. Figure 7.18 provides an 

example of such an image. 
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Figure 7.18 Exemplar warped camera image under periodic pulse train illumination 
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The resampled camera images {  ,𝑡(  ,   )} ,𝑡=0

20,20
 are multiplied with the respective illumination 

patterns {𝑝 ,𝑡(  ,   )} ,𝑡=0

20,20
, and the product accumulated to yield the super resolved image. 

The outcome of super resolution is documented in Figure 7.19 & 7.20. Inspection of the insets confirms 

that the super resolution strategy proposed in Section 7.4 may be used to produce high-quality imagery with 

a single lens element. Further inspection reveals that the reconstructed image is free of the annoying ghost 

artifacts that afflicted our previous attempt (Section 6.4) to super resolve a single lens imager. 

Baseband image Super-resolved image

Baseband Reconstructed Baseband Reconstructed
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Figure 7.19 Super resolving the single lens imager in the stereo apparatus of Figure 7.15 
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It is evident from the red and magenta insets of Figure 7.19 & 7.20 that the computationally engineered 

imager can resolve element-4 of the ISO12233 resolution target. It is known from the target specification 

[92] that element-4 corresponds to a frequency of 2
cyc

mm
 or a feature size of 0.5 mm.  

7.5.4 Artifacts in the super resolved image 

Closer inspection of the super resolved image reveals the presence of two artifacts: uneven brightness, and 

an overlaid high-frequency spatial pattern. The latter arises from the poor quality circular polarizer film that 

is used to mitigate specular reflection in the apparatus of Figure 7.15. It is anticipated that the use of optical 

quality circular polarizers will eliminate the spatial pattern.  

The uneven brightness artifact is the least obvious of the artifacts. Its presence may be confirmed by 

comparing the brightness of the central portion of the super resolved image to its surroundings. Clearly, the 

former appears to be brighter than the latter. This behavior may be traced back to an undesired characteristic 

Baseband Reconstructed Baseband Reconstructed

Reconstructed

Baseband

Figure 7.20 Super resolving the single lens imager in the stereo apparatus of Figure 7.15 
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of the aberrated baseband PSF, namely the field dependence of its DC (zero-frequency) response. It is 

observed that the image of a constant albedo target is not uniformly gray as one would expect, but exhibits 

variation in intensity. The behavior is accentuated when one modulates the baseband PSF with the periodic 

pulse train.  

7.5.5 Resolving power of computationally engineered imager 

It remains to be confirmed that the resolving power of the computationally engineered imager is near isotropic 

as predicted by the theory in Section 7.4. The Spatial Frequency Response (SFR) plots of Figure 7.22 & 7.21 

aid in the assessment. The filled and colored rectangles in the image insets of Figure 7.22 & 7.21 represent 

regions of interest containing high contrast slanted edges that are used to compute the SFR. The colored 

rectangles in Figure 7.22 span 71 rows and 21 columns, while the ones in Figure 7.21 span 21 rows and 71 

columns. It must be noted that attempts to identify the SFR of the baseband imager over the same regions of 

interest are prone to gross inaccuracies as the baseband PSF changes appreciably within these regions. 

The notion of “practical cutoff frequency” is central to our numerical assessment of resolving power. It 

is defined as the spatial frequency for which the modulation strength falls to 5% of its peak value. 

A comparison of the SFR plots in Figure 7.22 suggests that the limiting resolution of the 

computationally engineered imager in the vertical direction, remains largely unchanged over the image field. 

Likewise, a comparison of the SFR plots in Figure 7.22 suggests that the limiting resolution of the 

computationally engineered imager in the horizontal direction, is also remains largely unchanged over the 

image field. Differences in the shape of the SFR plots is attributed to the variation in the shape of the 

underlying baseband PSF’s. The asymmetry in the horizontal and vertical resolving powers is attributed to 

the elliptical (as opposed to circular) shape of the laser light spot. 
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The symbol Δ  in the SFR plots of Figure 7.22 & 7.21 represents the inter sample spacing of projector image. 

Following magnification, it could be interpreted as the laser spot size on the resolution target. 

Practical cutoff 
frequency

Δ −1 Δ −1 Δ −1 Δ −1 Δ −1Δ −1Δ −1Δ −1Δ −1DC Δ −1

SFR = 0.05

Figure 7.22 Spatial frequency response of the computationally 

engineered imager in the vertical direction 

Practical cutoff 
frequency

Δ −1 Δ −1 Δ −1 Δ −1 Δ −1Δ −1Δ −1Δ −1Δ −1DC Δ −1

SFR = 0.05

Figure 7.21 Spatial Frequency response of the computationally 

engineered imager in the horizontal direction 



174 

 

7.5.6 Summary 

The results of our experiment are encouraging and reaffirm the notion that images acquired under periodic 

pulse train illumination may be used to improve the resolving power of a single lens imager.  

In the remainder of this chapter, we switch gears to revisit the problem of recovering topographic 

information in a coincident stereo apparatus. The treatment of this topic was deferred until now as it required 

the analysis of images acquired under periodic illumination patterns.  

7.6 Recovering topographic information in a coincident stereo arrangement 

The absence of phase distortion in the camera image of the sinusoidal illumination pattern, impedes our 

efforts to recover topographic information in a coincident stereo apparatus. The following paragraphs 

disclose an alternate strategy for recovering topographic information in a coincident stereo apparatus. 

The method is inspired by the findings of Zhang & Nayar [43], and exploits the limited depth of field 

of COTS projectors to recover topographic information. The idea is to process images acquired under 

temporally varying patterned illumination. The temporal variation in illumination is produced by uniformly 

translating a single spatial pattern that is not only periodic but also comprised of multiple frequencies. It is 

observed that the modulation strength of the harmonic components in the projected pattern, encodes 

topographic information. The observation is consistent with the fact that higher harmonics in the projected 

pattern appear increasingly blurred, when defocused.  

Additional insight into the mechanics of scene recovery may be gleamed by examining the expression 

for the camera image acquired under the even symmetric illumination pattern disclosed below 

𝑝(  ,   , 𝓉) =   0 + ∑   𝑘 co (2𝜋𝑘𝜉0(   𝓉))

𝒦

𝑘=1

 (7.43) 

 

  0 ≝
𝜉0

2
 𝑝(𝓊 , 𝓋 )  𝓊  𝓋 

𝒟

 𝒟 |𝓊 | ≤
 .5

𝜉0

, |𝓋 | ≤
 .5

𝜂0

 

  𝑘 ≝ 𝜉0  𝑝(𝓊 , 𝓋 ) co (2𝜋𝑘𝜉0𝓊 )  𝓊  𝓋 

𝒟

 𝒟 |𝓊 | ≤
 .5

𝜉0

, |𝓋 | ≤
 .5

𝜂0

 

The term 𝓉 is used to manipulate the instantaneous phase of the illumination pattern. The term 𝒦 represent 

the order of the highest harmonic that is contained in the periodic illumination pattern. The value of 𝒦 is 
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upper bounded by 
1

 0

 

2𝑁𝐴 ll
, wherein    ll denotes the numerical aperture of the illumination optics and 𝜆 is 

the wavelength of the illumination source. 

It is observed that Eq.(7.43) bears a strong resemblance to the expression for the camera image 

disclosed in Eq.(7.3). Consequently, one may use Eq.(7.5) as a template to predict the expression for the 

camera image  𝜎( ,  ), under the illumination pattern of Eq.(7.43). The resulting expression is provided 

below 

 ( ,  , 𝓉) =  bb( ,  ) + ∑   os
𝑘 ( ,  ) co (2𝜋𝑘𝜉0𝓉)  

𝒦

𝑘=1

 

wherein 

 (7.44) 

  bb( ,  ) ≝   0(𝑢, 𝑣)  (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

   os
𝑘 ( ,  ) ≝  | 𝑘(𝑢, 𝑣)| co (

2𝜋𝑘𝜅 𝜉0𝑢 + 𝜑 

+ arg( 𝑘(𝑢, 𝑣))
)   (𝑢, 𝑣)  cam(  𝑢,   𝑣; 𝑢, 𝑣)  𝑢 𝑣 

  0(𝑢, 𝑣) ≝   0    ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )  𝓊  𝓋  replace 
𝑢 = 𝜅 (𝑢 +   ) +    
𝑣 = 𝜅 (𝑣 +   ) +    

 

  𝑘(𝑢, 𝑣) ≝   𝑘  {
exp( 𝑗2𝜋𝑘𝜉0(𝑢  𝓊 ))

×   ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )
}  𝓊  𝓋  replace 

𝑢 = 𝜅 (𝑢 +   ) +    
𝑣 = 𝜅 (𝑣 +   ) +    

 

The intuitive meaning of the various terms in Eq.(7.44) is provided in Table 7.3. 

In Eq.(7.44), the reference to the camera PSF     (… ) may be dropped, when the blur spot is small 

and only qualitative topographic information is sought. The simplification permits us to approximate the 

expression for the instantaneous camera image, as follows 

 ( ,  , 𝓉) ≈  ( ,  ) { 0( ,  ) + ∑| 𝑘( ,  )| co (
2𝜋𝑘𝜅 𝜉0 + 𝜑 

+arg( 𝑘( ,  ))
) co (2𝜋𝑘𝜉0𝓉)  

𝒦

𝑘=1

} (7.45) 

The reader will recognize Eq.(7.45) as a 1D periodic discrete signal in the variable 𝓉. It is observed that the 

signal has a fundamental frequency of 𝜉0, an average intensity of  ( ,  ) 0( ,  ), and a peak excursion of 

 ( ,  )| 𝑘( ,  )| in the 𝑘𝑡ℎ harmonic. 

For expertly designed illumination optics, it is observed that the modulation strength of the harmonic 

components of  ( ,  , 𝓉) varies strictly with defocus, thereby encoding topographic information. Zhang and 
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Nayar observed that the ratio 
|  ( , )|

| 1( , )|
 is sufficient to recover high quality depth maps. The ratio is determined 

by computing the Discrete Fourier Transform of the uniformly sampled signal  ( ,  , 𝓉).  

For the purpose of scene recovery, one assembles a lookup table that maps the ratio 
|  |

| 1|
 for different 

standoff distances. To this end, one may use a tilted planar target whose topography spans the desired range 

of working distances. It is recommended that the projector be focused on a reference plane at the farthest 

working distance, to avoid defocus ambiguity.  

Our discussion concludes by noting that the success of the above method hinges on the defocus blur 

diversity afforded by the illumination optics, and the absence of scene dependent phase distortion in the 

camera image of the illumination pattern. The latter suggests that the scope of the method is by no means 

Table 7.3 Description of terms in Eq.(7.44) 

 bb( ,  ) camera image acquired under flood illumination 

  os
𝑘 ( ,  ) camera image acquired under the cosine illumination co (2𝜋𝑘𝜉0  ) 

 cam(  𝑢,   𝑣; 𝑢, 𝑣) 

spatially varying blur induced by the imaging optics 

(accommodates blur due to diffraction/aberrations and defocus) 

  ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 ) 

spatially varying blur induced by the illumination optics 

(accommodates blur due to diffraction/aberrations and defocus) 

𝜅  relative magnification between the imaging and illumination paths 

𝜑  
Difference in the sampling phase of the detector and projector 

sampling grids  

arg( 𝑘(𝑢, 𝑣)) 

blur induced phase distortion in the 𝑘𝑡ℎsinusoidal components of the 

periodic illumination pattern 𝑝(  ,   ) 
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restricted to coincident stereo arrangements. As a matter of fact, the above strategy for scene recovery may 

be extended to canonical and collocated stereo arrangements, provided the orientation of the illumination 

pattern matches that needed for super resolution.  
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Chapter 8 

CLOSING THOUGHTS 

The images captured by a camera are subject to constraints imposed by the wave nature of light and the 

geometry of image formation. The former limits the resolving power of the camera while the latter results in 

a loss of absolute size and shape information. The suite of methods and apparatus ideas presented in this 

dissertation, afford cameras the unique ability to capture unresolved spatial detail while recovering 

topographic information. The common thread that binds these approaches is the notion of imaging under 

patterned illumination. Chapter 3 disclosed a model for imaging under patterned illumination that serves as 

the theoretical basis for our work on super resolution and scene recovery. There are three key aspects that 

distinguish our model from prior art. These include  

 unifying the seemingly unrelated tasks of super resolution and scene recovery 

 accommodating the space-variance in the blur induced by the imaging and illumination optics, and  

 accommodating the perspective foreshortening encountered at macroscopic scales   

The model also provided the following unique insights into the mechanics of super resolution and scene 

recovery  

 the Moiré fringes arising from the heterodyning of the illumination pattern and object detail, may be 

used to improve the resolving power of the imager 

 the deformations in the phase of the detected illumination pattern may be used to recover topographic 

information  

The aforementioned insights are confirmed by the mathematical exposition in Chapters 4 & 5, and 

corroborated by the experiments in Chapter 6.  

The exposition on super resolution in Chapter 4, served the dual purpose of identifying the fundamental 

principles that govern the use of patterned illumination in super resolution, and advancing the state of the art. 

Section 4.1 established the hitherto unknown fact that space-variance in the imaging blur is not an 

impediment to super resolution. The associated analysis identified two requirements for the unambiguous 

restoration of heterodyned frequencies 



179 

 

 the absence of phase deformations in the detected illumination pattern, and 

 modulation diversity afforded by phase-shifting the illumination pattern 

The analysis advanced the notion that super resolution using sinusoidal illumination is effected by 

computational engineering of the transverse optical blur. It is observed that the resolution gain manifests as 

a reduction in the spot size of the engineered PSF, albeit in the direction of modulation.  

The analysis disclosed that the engineered PSF may be obtained as the product of the baseband PSF 

and a high-frequency raised cosine pattern. It is observed that the engineered PSF exhibits pronounced side 

lobes when multiple cycles of the raised cosine pattern are accommodated into the central lobe of the 

baseband PSF. It was speculated that the side lobes will manifest as ghost artifacts in the reconstructed image. 

The experiments in Section 6.4 confirmed our suspicions.  

The analysis also bounded the spot size of the computationally engineered PSF. It observed that the 

maximal and minimal improvement in the resolving power result in the direction of modulation and its 

orthogonal equivalent.  

Sections 4.3-4.5 established that super resolution is supported by select group of active stereo 

arrangements. These include the collocated stereo arrangement wherein the imager optical axis is 

perpendicular to the stereo baseline, and the coincident stereo arrangement wherein the imager and the 

illumination system share the same viewpoint. It was established that the former supports super resolution in 

a single orientation, whereas the latter supports super resolution in any orientation.  

The exposition on scene recovery in Chapter 5, established the hitherto unknown fact that select active 

stereo arrangements support super resolution in addition to recovering topographic information. The 

associated analysis identified the expression for the range resolution of an active stereo arrangement. It also 

established that a broader class of sinusoidal patterns may be used to recover topographic information. The 

use of these patterns allowed us to sidestep the extensive calibration process in the traditional scene recovery 

workflow, and mitigate the occurrence of fringe aliasing in the detected sinusoidal pattern. 

It was also observed that the imager and the illumination system in commercial Structured Light 

scanners are possibly collocated, suggesting that these devices may be used to realize super resolution, with 

minimal modification.  
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The exposition on super resolution in Chapter 4, failed to provide any insight into the design of the 

illumination pattern. Furthermore, it overlooked the loss of temporal bandwidth that accompanies the gain in 

resolving power. The material in Sections 7.1-7.3 addressed these shortcomings. The associated analysis 

established that  

 the heterodyning induced by any periodic/almost periodic illumination pattern may be undone with the 

aid of the modulation diversity afforded translating the illumination pattern 

 the shape of the engineered PSF may be tailored by judicious election of the amplitudes and frequencies 

of the sinusoids that make up the periodic/almost periodic illumination pattern 

The above findings served as the basis for an illumination pattern design strategy that minimizes the number 

of images/patterns needed to realize a prescribed gain in the resolving power of expertly designed optics.  

Section 7.4 sought to explore the limits of super resolution using patterned illumination. The super 

resolution strategy discussed therein sought to offset the abysmal image quality of a minimalist imager, using 

patterned illumination. Section 7.5 demonstrated that the aberration limited resolving power of a singlet could 

be significantly improved, by processing images acquired under integer translates of a single pixel wide 

periodic pulse train. 

This concludes our review of the contributions of this dissertation. But our inquiry into super resolution 

is incomplete as the dissertation overlooked a few issues that could hinder the widespread adoption of super 

resolution by the imaging community. These issues are examined in the itemized list included below:  

 impact of aliasing on super resolution 

The super resolution strategies outlined in this dissertation implicitly assume that the camera images 

are oversampled. The reason is that the spectral replicas produced by subsampling are likely to interfere 

with our efforts to demodulate the heterodyned spatial frequencies. Although intuition suggests that the 

above claim must be valid for all illumination patterns, it is not the case. It is observed that illuminating 

the scene with integer translates of a periodic pulse train results in the assignment of a unique binary 

code to each illuminated spot, such that the light from multiple spots may be disambiguated even after 

integration onto a single detector pixel. In theory, unambiguous reconstruction is possible so long as 

the size of a detector pixel is limited to 2× period of pulse train   worst case spot size of the camera 

PSF.  
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 impact of noise on super resolution 

It is obvious that the use of active illumination improves the Signal-to-Noise ratio (SNR) of the 

reconstructed image, at low light levels. Beyond that, our analysis fails to provide any insight into the 

SNR or number of photons needed to improve the resolving power by a prescribed amount. Answering 

the question requires knowledge of the incident irradiance at a single spot in the projected pattern, and 

the identification of the image irradiance at a single detector pixel. Both tasks entail a significant amount 

of effort, even in the simple case of a coincident active stereo setup observing a diffuse reflecting 

surface. The first task is further complicated by the fact that standard radiometric analysis is designed 

for homogeneous illumination and not patterned illumination.  

 super resolution in color 

A highly desirable feature of the super resolution strategy outlined in this dissertation is its ability to 

cope with any optical PSF, no matter the space-variance. This is the singular reason that our experiments 

with polychromatic illumination (Section 6.3), succeeded in improving the resolving power of the 

camera. At first glance, the neutral appearance of the acquired images may seem to contradict our claim 

of imaging under polychromatic illumination. But it must be noted that each detector pixel integrates 

photons over a wide band of wavelengths, as opposed to a single wavelength. 

In view of the above argument, it appears that our super resolution strategy could be used to improve 

the resolving power of a color camera equipped with a spectrally sensitive detector. Preliminary 

experiments have confirmed the ability to improve the resolving power of a Canon EOS60D DSLR. 

Care was taken to accommodate the subsampling of the color samples in the detected image.  

 super resolving moving objects 

The success of our super resolution strategy hinges on the ability to acquire images under phase-shifts 

of a single illumination pattern. It is evident that object motion during image acquisition impedes our 

ability to super resolve. The issue may be addressed by borrowing ideas from high-speed scene 

recovery, wherein a high speed camera acquires images under rapidly strobed binary pattern ([93] and 

references there in), or a rapidly scanned light stripe [94-95].The loss of photons resulting from the 

short detector exposure times is offset by the use of patterned illumination.  
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Alternatively, one may attempt to super resolve the images of a moving object acquired under a 

fixed illumination pattern. Preliminary analysis suggests that unambiguous reconstruction is possible 

when the camera optical blur is space-invariant, and the object pose does not change appreciably during 

its motion.  

The remainder of this chapter is devoted to the examination of research avenues that are inspired by the 

findings of this work. An assortment of these problems is presented below, in no specific order of importance 

 combining PSF engineering by pupil filtering with PSF engineering using active illumination 

Sections 2.2 & 2.3 discussed the notion of engineering the transverse and axial response of an imager, 

by manipulating the light distribution in the image volume. Section 4.1 advanced the notion that the 

transverse PSF may be computationally engineered, by manipulating the light distribution in the object 

volume. Intuition suggest that there may be some merit to combining the two approaches. The following 

examples examine two possibilities 

 build a computational imager with improved resolving power and extended depth of field 

(EDOF)  

It is common knowledge that EDOF imagers sacrifice spot size for an improvement in the depth 

of field. Consequently, the transverse PSF of an EDOF imager is not compactly supported. The 

super resolution strategy outlined in Section 7.4 may be used to engineer compactly supported 

transverse PSF’s without sacrificing the depth of field of the EDOF imager. Care must be taken 

to ensure that the illumination system does not have a shallow depth of field. A laser beam 

scanning illumination system is the perfect candidate for the task as the outgoing laser beam has 

narrow divergence.   

 simultaneously recover a dense range map whilst improving resolving power 

A unique characteristic of the super resolution strategy outlined in Section 7.4 is that it is agnostic 

to the structure of the PSF and also the severity of space-variance. This means that one can 

encode range information in the baseband PSF, albeit at the expense of spot size and space-

variance.  

The space-variance in the PSF presents serious challenges when attempting to recover the 

topography of extended objects. But, the use of a single pixel wide periodic pulse train 
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illumination, allows us to accommodate the space-variance in the PSF and recover range 

information at each camera pixel, in an independent manner. An added benefit of using patterned 

illumination is that one can improve the resolving power of the baseband imager, whilst 

recovering range information.     

Care must be taken to ensure that the illumination system does not have a shallow depth of 

field. A laser beam scanning illumination system is the perfect candidate for the task as the 

outgoing laser beam has narrow divergence. 

 optical analogue of the engineered PSF when using periodic pulse train illumination 

An attractive feature of super resolution using a periodic pulse train is that it guarantees near isotropic 

resolving power in the reconstructed image, in spite of the fact that the resolving power in the baseband 

image is severely limited by aberrations. Readers familiar with wave optics will recognize that the 

above guarantee necessitates the balancing of aberrations at the exit pupil of the computationally 

engineered imager. It would be of immense value to understand the mechanism with which our super 

resolution strategy balances aberrations, while also identifying a closed form expression for the 

transmittance of the computationally engineered pupil.  

Regrettably, the expression for the computationally engineered PSF disclosed in Eq. 

 

 (7.39), fails to provide an answer to either of the above questions. But, it appears that one can 

answer these questions by examining the connection between the PSF engineered by pupil replication 

[96-96] and those engineered using periodic illumination.  

 when is the active super resolution problem well posed ? 

Existing approaches to super resolution rely on sinusoidal patterns, due in large part to the simplicity 

of the reconstruction algorithm and the highly accessible mathematical interpretation. But intuition 

suggests that all spatial patterns have the innate ability to heterodyne unresolved portions of the object 

spectrum into the passband of the imaging optics. However, it is not obvious that there is always a 

reconstruction scheme that can unambiguously restore the heterodyned frequencies to their true position 

outside the optical passband. 
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From this standpoint, it can be argued that the super resolution problem is well-posed, if there exists 

a modulation + reconstruction scheme that can unambiguously restore the heterodyned frequencies to 

their true position outside the optical passband. 

The super resolution strategies outlined in this dissertation exploit the modulation diversity afforded 

by translating a single illumination pattern, to ensure that the problem is well-posed. A single broadband 

illumination pattern lacks the modulation diversity needed to restore the heterodyned frequencies to 

their true position outside the optical passband. Consequently, the single image super resolution 

problem is ill-posed. 

 minimizing the range ambiguity due to fringe aliasing  

In Section 5.3 it was observed that the fringe aliasing stemming from the phase deformations in the 

detected illumination pattern introduce ambiguity in the estimated range information. It was also 

observed that the use of a warped sinusoidal pattern mitigates fringe aliasing in the detected illumination 

pattern, albeit at the expense of aliasing in the projected pattern. The use of a periodic sinusoidal pattern 

helps avoid aliasing in the projected pattern, but introduces fringe aliasing in the detected illumination 

pattern. It remains to be seen if the two patterns may be combined to yield a range estimate with 

minimum ambiguity.  
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Appendix A  

BLURRING DUE TO THE ILLUMINATION OPTICS 

The portion of the appendix investigates the effect of the illumination blur on the detected intensity under 

patterned illumination. Our investigation begins with a review of the expression (Eq.(3.15)) for the incident 

intensity at the scene-point ( ,  ,  ) in the object volume, in response to the illumination pattern 𝑝𝜃( ′,  ′). 

The expression is repeated below for the benefit of the reader 

𝑠( ,  ,  ) =  𝑝𝜃(𝑢 , 𝑣 )  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣   (A.1) 

 

( ,  ,  ) 3D coordinates of the geometric image of the (  ,   )𝑡ℎ projector pixel 

𝑝𝜃(𝑢 , 𝑣 ) intensity of the (𝑢 , 𝑣 )𝑡ℎ pixel in the illumination pattern 

  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 ) spatially varying blur induced by the illumination optics 

Notice that the superposition integral of Eq. (A.1) reduces to the familiar convolution integral, when the PSF 

is space-invariant, i.e.   ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 ) =   ll(   𝑢 ,    𝑣 ). In such cases the PSF changes in location 

but not in functional form, as the point-source explores the object volume.  

A.1 Effect of illumination blur on a periodic sinusoidal pattern 

The model disclosed in Eq.(A.1) may be used to identify the incident intensity at the scene point ( ,  ,  ), in 

response to the illumination pattern   + 𝐵    (2𝜋(𝜉0  + 𝜂0  ) + 𝜃). The result is included below 

𝑠( ,  ,  ) =  [  + 𝐵    (2𝜋(𝜉0  + 𝜂0  ) + 𝜃)]  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )  𝑢  𝑣  (A.2) 

Using Euler’s formula, the term    (2𝜋(𝜉0𝑢 + 𝜂0𝑣  ) + 𝜃) may be expressed as the sum of the conjugate 

sinusoids exp(±𝑗𝜃) exp(±𝑗2𝜋(𝜉0𝑢 + 𝜂0𝑣  )). The resulting expression for 𝑠( ,  ,  ) is included below  

𝑠( ,  ,  ) =

{
 
 

 
 

 

     ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣             

+𝑗  .5𝐵  −𝑗𝜃   −𝑗2 ( 0𝑢   0𝑣 )  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣 

 𝑗  .5𝐵   𝑗𝜃    𝑗2 ( 0𝑢   0𝑣 )  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣 
}
 
 

 
 

  (A.3) 
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Algebraic manipulation of Eq.(A.3) yields the following expression for 𝑠( ,  ,  ) 

𝑠( ,  ,  )

=

{
 
 

 
 

 

     ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣             

+𝑗  .5𝐵  −𝑗𝜃 −𝑗2 ( 0    0  )    𝑗2 ( 0(  −𝑢 )  0(  −𝑣 ))  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣 

 𝑗  .5𝐵   𝑗𝜃  𝑗2 ( 0    0  )   −𝑗2 ( 0(  −𝑢 )  0(  −𝑣 ))  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣 
}
 
 

 
 

   
(A.4) 

The above expression for 𝑠( ,  ,  ) may be simplified by recognizing that the illumination blur 

  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 ) is a real non-negative function for incoherent illumination. Consequently, the second 

& third terms in Eq.(A.4) are complex conjugates of one another, i.e. 

co j ( exp(𝑗2𝜋(𝜉0(   𝑢 ) + 𝜂0(   𝑣 ) ))   ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣 )

=  exp( 𝑗2𝜋(𝜉0(   𝑢 ) + 𝜂0(   𝑣 ) ))   ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣   
(A.5) 

The above equation when used in conjunction with the definitions of Eq.(A.7), yields a compact expression 

for the incident intensity at the scene-point ( ,  ,  ). The result is disclosed below 

𝑠( ,  ,  ) =   (  ,   ) +
𝑗

2
 (𝐵 (  ,   ) −𝑗𝜃 −𝑗2 ( 0    0  )  co j (𝐵 (  ,   ))  𝑗𝜃 𝑗2 ( 0    0  )) (A.6) 

 

  (  ,   ) ≝      ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣   

blur induced amplitude deviation in the 

DC component of 𝑝𝜃(  ,   ) 

𝐵 (  ,   ) ≝ 𝐵′ {  −𝑗2 ( 0(  −𝑢 )  0(  −𝑣 ))

×   ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )
}  𝑢  𝑣  

blur induced amplitude deviation in the 

sinusoidal component of 𝑝𝜃(  ,   ) 

 

(A.7) 

Using Euler’s formula, the expression for 𝑠( ,  ,  ) may be further simplified, as follows   

𝑠( ,  ,  ) =   (  ,   ) + |𝐵 (  ,   )|    (2𝜋(𝜉0  + 𝜂0  ) + arg (𝐵 (  ,   )) + 𝜃) (A.8) 

Inspection of Eq.(A.8) confirms that the light distribution in the object volume bears the same functional 

form as the input illumination pattern 𝑝𝜃(  ,   ). Closer inspection indicates that the illumination blur induces 

field dependence in the phase and modulation strength of the sinusoid. This behavior is consistent with 

practical observations. 
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A.2 Effect of illumination blur on a warped sinusoidal pattern 

 The model disclosed in Eq.(A.1) may also be used to identify the incident intensity at the scene point 

( ,  ,  ), in response to the illumination pattern 

𝑝𝜃(  ,   ) =   + 𝐵    

(

 2𝜋 (𝜉0

  11
   +   12

   +   13
 

  31
   +   32

   +   33
 

+ 𝜂0

  21
   +   22

   +   23
 

  31
   +   32

   +   33
 

)
⏟                                

𝜑(  ,  )

+ 𝜃

)

  

The result is included below 

𝑠( ,  ,  ) =  [  + 𝐵    (𝜑(  ,   ) + 𝜃)]  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )  𝑢  𝑣  (A.9) 

Using Euler’s formula, the term    (𝜑(  ,   ) + 𝜃) may be expressed as the sum of the conjugate 

sinusoids exp(±𝑗𝜃) exp(±𝑗𝜑(  ,   )). The resulting expression for 𝑠( ,  ,  ) is included below 

𝑠( ,  ,  )

=

{
 
 

 
 

 

     ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣             

+𝑗  .5𝐵  −𝑗𝜃 −𝑗𝜑(  ,  )    𝑗 𝜑(  ,  ) 𝜑(𝑢 ,𝑣 )   ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣 

 𝑗  .5𝐵   𝑗𝜃  𝑗𝜑(  ,  )   −𝑗 𝜑(  ,  ) 𝜑(𝑢 ,𝑣 )   ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣 
}
 
 

 
 

   
(A.10) 

The above expression for 𝑠( ,  ,  ) may be simplified by recognizing that the illumination blur 

  ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 ) is a real non-negative function for incoherent illumination. Consequently, the second 

& third terms in Eq.(A.10) are complex conjugates of one another, i.e. 

co j ( exp(𝑗 𝜑(  ,   )  𝜑(𝑢 , 𝑣 ) )   ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣 )

=  exp( 𝑗 𝜑(  ,   )  𝜑(𝑢 , 𝑣 ) )   ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣   
(A.11) 

The above equation when used in conjunction with the definitions of Eq.(B.2), yields a compact expression 

for the incident intensity at the scene-point ( ,  ,  ). The result is disclosed below 

𝑠( ,  ,  ) =   (  ,   ) +
𝑗

2
 (𝐵 (  ,   ) −𝑗𝜃 −𝑗𝜑(  ,  )  co j (𝐵 (  ,   ))  𝑗𝜃 𝑗𝜑(  ,  )) (A.12) 

 

  (  ,   ) ≝      ll(   𝑢 ,    𝑣 ; 𝑢 , 𝑣 )   𝑢  𝑣   

blur induced amplitude deviation in the 

DC component of 𝑝𝜃(  ,   ) 
(A.13) 
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𝐵 (  ,   ) ≝ 𝐵′ {
exp( 𝑗𝜑(𝑢  𝓊 , 𝑣  𝓋 ))

×   ll(𝑢  𝓊 , 𝑣  𝓋 ; 𝓊 , 𝓋 )
}  𝑢  𝑣  

blur induced amplitude deviation in the 

sinusoidal component of 𝑝𝜃(  ,   ) 

 

Using Euler’s formula, the expression for 𝑠( ,  ,  ) may be further simplified, as follows   

𝑠( ,  ,  )

∝   (  ,   ) + |𝐵 (  ,   )|    

(

 2𝜋 (𝜉0

  11
   +   12

   +   13
 

  31
   +   32

   +   33
 

+ 𝜂0

  21
   +   22

   +   23
 

  31
   +   32

   +   33
 

)
⏟                                  

𝜑(  ,  )

+ arg (𝐵 (  ,   )) + 𝜃

)

  
(A.14) 

Inspection of Eq.(B.3) confirms that the light distribution in the object volume bears the same functional 

form as the input illumination pattern 𝑝𝜃(  ,   ). Closer inspection indicates that the illumination blur induces 

field dependence in the phase and modulation strength of the sinusoid. This behavior is consistent with 

practical observations.  
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Appendix B 

THE RANGE RESOLUTION OF A CANONICAL STEREO SETUP 

The following derivation for range resolution examines the difference in the intensity of camera pixels 

( ,  ) & ( + Δ ,  + Δ ) that observe the scene points ( ,  ,  ) & ( ,  ,  + Δ ) respectively. The 

derivation assumes that the scene points ( ,  ,  ) & ( ,  ,  + Δ ) lie on the same surface, so that 

 the albedo (reflectance) varies smoothly in the immediate vicinity of the scene point ( ,  ,  ). This 

implies that  ( + Δ ,  + Δ ) =  ( ,  ). 

 the contrast of the projected pattern does not vary in the immediate vicinity of the scene 

point( ,  ,  ). This implies that  ( + Δ ,  + Δ ) =  ( ,  ), |𝐵( + Δ ,  + Δ )| = |𝐵( ,  )|. 

The above assumptions can be incorporated into the expression for the camera image in a canonical stereo 

setup (Eq.(5.8) in Section 5.2). The resulting expressions for the intensity of the ( ,  )th & ( + Δ ,  +

Δ )th camera pixels are included below 

𝑖̂𝜃( ,  ) = { ( ,  ) + |𝐵( ,  )|     (�̂�( ,  ))} ( ,  ) 
(B.1) 

𝑖�̂�( + Δ ,  + Δ ) = { ( ,  ) + |𝐵( ,  )|     (�̂�( + Δ ,  + Δ ))} ( ,  ) 

It is obvious from Eq.(B.1) that the difference in the intensities of the camera pixels , stems solely from the 

difference in their respective phase terms, i.e. 

𝑖̂𝜃( + Δ ,  + Δ )  𝑖̂𝜃( ,  )

= |𝐵( ,  )|{   (�̂�( + Δ ,  + Δ ))      (�̂�( ,  ))} ( ,  ) 
(B.2) 

For small perturbations in scene depth, a 1st-order Taylor series expansion of the phase �̂�( + Δ ,  + Δ ) 

is sufficient to describe its behavior in the immediate vicinity of the ( ,  )𝑡ℎ camera pixel. In other words 

�̂�( + Δ ,  + Δ ) ≈ �̂�( ,  ) + Δ 
𝜕 

𝜕 

𝜕�̂�( ,  )

𝜕 
+ Δ 

𝜕 

𝜕 

𝜕�̂�( ,  )

𝜕 
 (B.3) 

The geometric relation between a scene point ( ,  ,  ) and its projection ( ,  ) in the camera image plane 

can be used to identify the expression for the derivatives 
𝜕 

𝜕 
,
𝜕 

𝜕 
 as shown below 

 

𝜕 

𝜕 
=

1

(
𝜕 
𝜕 

)
=

  

(    )
   ,    

𝜕 

𝜕 
=

1

(
𝜕 
𝜕 

)
=

  

(    )
 

(B.4) 
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Likewise, the geometric relation between the scene point ( ,  ,  + Δ ) and its projection ( + Δ ,  +

Δ ) in the camera image plane can be used to identify the perturbation (Δ , Δ ) in the spatial coordinates 

induced by a small perturbation in the scene depth (Δ ). The result is provided below  

Δ ≈
 Δ 

 
(    )    ,     Δ ≈

 Δ 

 
(    ) (B.5) 

Incorporating Eqs.(B.4) & (B.5) into Eq.(B.3) yields the following expression for  �̂�( + Δ ,  + Δ ) 

�̂�( + Δ ,  + Δ ) ≈ �̂�( ,  ) + 2Δ 
𝜕�̂�( ,  )

𝜕 
 (B.6) 

The derivative 
𝜕𝜑 ( , )

𝜕 
 in the above expression can be readily identified from Eq.(5.8), and given by 

𝜕�̂�( ,  )

𝜕 
=

 2𝜋𝜅𝑑

 2
(𝜉0  + 𝜂0  ) (B.7) 

Substituting Eq.(B.7) into Eq.(B.6) yields the following simple expression for  �̂�( + Δ ,  + Δ ) 

�̂�( + Δ ,  + Δ ) ≈ �̂�( ,  )  4𝜋𝜅𝑑

Δ 

 2
(𝜉0  + 𝜂0  ) (B.8) 

A little trigonometric manipulation reveals that 

   (�̂�( + Δ ,  + Δ ) + 𝜃)     (�̂�( ,  ) + 𝜃)

≈  { 4𝜋𝜅𝑑

Δ 

 2
(𝜉0  + 𝜂0  )} co (�̂�( ,  ) + 𝜃) 

(B.9) 

Substituting Eq.(B.9) into Eq.(B.2), yields the following expression for the difference in the intensity of 

the ( ,  )th & ( + Δ ,  + Δ )th camera pixels, 

|𝑖̂𝜃( ,  )  𝑖̂𝜃( + Δ ,  + Δ )|

=

{
 
 

 
 4𝜋𝜅𝑑 (

Δ 

 2
(𝜉0  + 𝜂0  )) |𝐵( ,  )| ( ,  ) co (�̂�( ,  )) , 𝜃 =  , 𝜋

4𝜋𝜅𝑑 (
Δ 

 2
(𝜉0  + 𝜂0  )) |𝐵( ,  )| ( ,  )    (�̂�( ,  )) , 𝜃 =

𝜋

2
,
 𝜋

2

 
(B.10) 

It follows from Eq.(B.10) that 

|𝑖̂𝜃( ,  )  𝑖�̂�( + Δ ,  + Δ )| ≤ 4𝜋𝜅𝑑 {
Δ 

 2
(𝜉0  + 𝜂0  )} |𝐵( ,  )| ( ,  ) (B.11) 

As the gray level difference |𝑖�̂�( ,  )  𝑖�̂�( + Δ ,  + Δ )| approaches the noise floor, Δ  approaches the 

range resolution of the canonical stereo setup. The resulting expression is disclosed in Eq.(B.12). 

Δ ≥
1

4𝜋𝜅𝑑

{
 o  e floor

|𝐵( ,  )| ( ,  )
} {

 2

𝜉0  + 𝜂0  

}  (B.12) 
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