ABSTRACT

BENIM, ROBERT WAYNE. Isomorphy Classes of Involutions of SO(n,k,3) and SP(2n,k)
where n > 2. (Under the direction of Aloysius Helminck.)

A first characterization of the isomorphism classes of k-involutions for any reductive alge-
braic groups defined over a perfect field was given in [Hel2000] using 3 invariants. In [HWD2004]
a classification of all involutions on SL(n, k) for k algebraically closed, the real numbers, the
p-adic numbers or a finite field was provided. In this paper, we build on these results to de-
velop a detailed characterization of the isomorphy classes of involutions of SO(n,k,3) and
SP(2n, k). We use these results to begin a classification of the isomorphy classes of involutions
of SO(n, k, 8) and SP(2n, k) where k is any field not of characteristic 2.
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Chapter 1
Introduction and Background

Let G be a connected reductive algebraic group defined over a field k£ of characteristic not
2, ¥ an involution of G defined over k, H a k-open subgroup of the fixed point group of ¥
and Gy, (resp. Hy) the set of k-rational points of G (resp. H). The variety Gj/Hj, is called
a symmetric k-variety. For £k = R these symmetric k-varieties are also called real reductive
symmetric spaces. These varieties occur in many problems in representation theory, geometry
and singularity theory. To study these symmetric k-varieties one needs first a classification of
the related k-involutions. A characterization of the isomorphism classes of the k-involutions was

given in [Hel2000] essentially using the following 3 invariants:
(i) classification of admissible (I", ¢)-indices.

(ii) classification of the G-isomorphism classes of k-involutions of the k-anisotropic kernel of

G.

(#ii) classification of the Gg-isomorphism classes of k-inner elements of G.

For more details, see [Hel2000]. The admissible (I', ¥)-indices determine most of the fine struc-
ture of the symmetric k-varieties and a classification of these was included in [Hel2000] as well.
For k algebraically closed or k the real numbers the full classification can be found in [Hel88].
For other fields a full classification of the remaining two invariants is still lacking. In particular
the case of symmetric k-varieties over the p-adic numbers is of interest. We note that the above
characterization was only proven for k a perfect field.

In [HWD2004] a full characterization of the isomorphism classes of k-involutions was given
in the case that G = SL(n, k) and the characterization of k is not 2 which does not depend on
any of the results in [Hel2000]. It was also shown how one may construct an outer-involution
from a given non-degenerate symmetric or skew-symmetric bilinear form S of k™. Using this

characterization the possible isomorphism classes for k algebraically closed, the real numbers,



the p-adic numbers and finite fields were classified. In [Schw2013] a full characterization of
the isomorphism classes of k-involutions was provided in the case that G = SL(n, k) and the
characterization of k is 2 which likewise does not depend on any of the results in [Hel2000].
[Schw2013] also contains a partial characterization of the involutions for O(n,k) when k is
characteristic 2 provided. Likewise, partial results for SO(n, k, 3) for n odd are provided in
[Wu2002] and [Dom2003], and partial results for the characterization of inner-automorphisms
of SP(2n, k) when the characteristic of k is not 2 are provided in [Jac2005].

In this paper we build upon the results of [Wu2002|, [Dom2003], and [Jac2005] to give a
characterization of involutions of SO(n, k, 8), the special orthogonal group with respect to a
symmetric bilinear form § on k", and SP(2n, k), the symplectic group, when the characteristic of
the field k is not 2. We first show that if an automorphism 9 = Inny where A € GL(n, k) leaves
SO(n, k, B) or SP(2n,k) invariant, then we can assume A in O(n, k[\/a], 3) or SP(2n, k[/a])
where k[y/a] is a quadratic extension of k. In the symplectic case, this result can be found in
[Jac2005]. Thus, to classify the involutions of SO(n, k, 8) and SP(2n, k) it suffices to determine
which A € SO(n, k[\/al,3) or SP(2n, k[\/a]) induce involutions of SO(n,k,3) or SP(2n, k),
respectively, and to then determine the isomorphy classes of these involutions over O(n, k, 3)
or SP(2n, k), respectively. We give a full characterization (mostly for the standard orthogonal
group) of involutions of SO(n, k, 3) when k is algebraically closed, the real numbers, or a finite
field of order odd p. Also, we give a full characterization of involutions of SP(2n,k) for k

algebraically closed, the real numbers, or a finite field.

1.1 Preliminaries

Our basic reference for reductive groups will be the papers of Borel and Tits [BT65], [BT72]
and also the books of Borel [Bor91], Humphreys [Hum?75] and Springer [Spr81]. We shall follow
their notations and terminology. All algebraic groups and algebraic varieties are taken over an
arbitrary field k (of characteristic # 2) and all algebraic groups considered are linear algebraic
groups.

Our main reference for results regarding involutions of SL(n, k) will be [HWD2004]. Let k

be a field of characteristic not 2, k the algebraic closure of k,
M(n, k) = {n x n-matrices with entries in k},

GL(n, k) = {A € M(n, k) | det(A) # 0}

and
SL(n,k) = {A € M(n,k) | det(A) = 1}.



Let k* denote the product group of all the nonzero elements, (k*)2 = {a? | a € k*} and
I, € M(n,k) denote the identity matrix. We will sometimes use I instead of I, when the
dimension of the identity matrix is clear.

We recall some important definitions.

Definition 1.1.1. Let Aut(Gy,) denote the set of all automorphisms of Gj. For A € GL(n, k)
let Inny denote the inner automorphism defined by Inna(X) = A~ XA for all X € GL(n, k).
Let Inn(Gy) = {Innyg | A € Gy} denote the set of all inner automorphisms of Gy and let
Inn(GY,, Gy) denote the set of automorphisms Inny of Gi, with A € G),. If Inny is order 2, that
18 Inn124 1s the identity but Inn 4 is not, then we call Innyg an inner involution of G. We say that
¥ and T in Aut(Gy) are isomorphic over a group G, if there is a ¢ in Inn(G), Gy) such that

T =@ Y. Equivalently, we say that 7 an are in the same isomor class.
o~ YW, Equivalently, y that d in th ' phy cl

For our purposes, G}, will always be G, itself, or a group which contains Gj. As an example
of this sort of isomorphy in the literature, we consider [HWD2004], where the isomorphy classes
of the inner-involutions of SL(n,k) in Inn(GL(n,k),SL(n,k)) over GL(n, k) were classified.
Here, two involutions ¥ and 7 of SL(n,k) are isomorphic over GL(n, k) if there exists ¢ €
Inn(GL(n, k), SL(n, k)) such that 7 = ¢~ 1. It is also a common practice to define isomorphy
over Aut(G}, Gy) instead of Inn(G}, Gi), again where G, is either G}, or a group containing
Gk.

Theorem 1.1.2. Suppose the involution ¥ € Aut(SL(n, k)) is of inner type. (That is, suppose
Y € Inn(GL(n, k), SL(n, k)).) Then up to isomorphism over GL(n, k), U is one of the following:

(i) Inny |G, where Y = I,_;j; € GL(n, k) where i € {1,2,...,|%]} where

Infi
Iniz = 0
’ 0 I;

(i) Inny |G, where Y = Ln , € GL(n, k) where z € k*/k*?, x #1 mod k*? and

8 O
[

8
—_

Note that (ii) can only occur when n is even.



For the purposes of this paper, we will use matrices of the form / > (and there
Tln
2

multiples) rather than L%@. Either of these serves as a member of the isomorphy class listed
in the previous theorem. We will eventually see that all of the isomorphy classes of SO(n, k, 3)
and SP(2n, k) are just isomorphy classes of SL(n, k) (or SL(2n, k)) that have been divided into
multiple isomorphy classes.

We now begin to define the notion of a special orthogonal group. Let M be the matrix of
a non-degenerate bilinear form (3 over k™ with respect to a basis {e1,...e,} of V. We will say
that M is the matrix of J if the basis {ei,...e,} is the standard basis of k™.

The typical notation for the orthogonal group is O(n, k), which is the group

O(n, k) = {AeM(n, k) | ATA=1,}.

This group consists of the matrices which fix the standard dot product. This can be generalized

to any non-degenerate bilinear 3, which will yield the group
O(n, k, 8) = {A € M(n, k) | B(Az, Ay) = B(x,y)}.
If M is the matrix of § with respect to the standard basis, then we can equivalently say
O(n,k,B) = {A € M(n, k) | ATMA = M}.

If 8 is symmetric, then we note that M is symmetric. In this case, we will call O(n, k, 8) an
Orthogonal Group. It is clear from this definition that all matrices in O(n, k, ) have determinant
1 or -1. We also define

SO(n, k, B) = O(n, k, ) N SL(n, k).

We call this group a Special Orthogonal Group.
We note a couple of important facts, the first of which will be used repeatedly throughout
this paper.

(i) Symmetric matrices are congruent to diagonal matrices, where the entries are are repre-
sentatives of k*/(k*)2.

(i1) If By and B2 correspond to M; and Mas, then SO(n, k, 1) and SO(n, k, B2) are isomorphic
via

®: SO(n, k, B1) = SO(n, k, B2) : X — Q1 XQ
for some Q € GL(n, k) if cQT M,Q = M- for some constant ¢ € k.

So, for orthogonal and special orthogonal groups, we will assume that 3 is such that M is



diagonal. Then, to characterize the involutions of an orthogonal group where M is not diagonal,
one can apply the characterization that will follow by simply using the isomorphism given above.

Lastly, two vectors x,y € k™ are said to be orthogonal with respect to the bilinear form
B if B(z,y) = 0. We will eventually see that orthogonal vectors play an important role in the
structure of involutions of SO(n, k, 3).

We now begin to define the notion of a symplectic group. To begin, we consider the group
O(n,k,B) = {A € M(n,k) | ATMA = M} where 8 is skew-symmetric. It follows that M is a
skew-symmetric matrix. Since we are assuming that § is non degenerate, then this forces the
dimension of M to be even.

Invertible skew-symmetric matrices of even dimension are congruent to the matrix J =

0 I
Jon = ( / (;L . Using an isomorphism like ® from before, then we know that if g is
—in

skew-symmetric, then O(2n, k, ) is isomorphic to
SP(2n,k) = {A € M(n, k) | ATJA = J}.

We call this the Symplectic Group.
It can be shown that all matrices in SP(2n, k) have determinant 1, so in fact SP(2n, k) is a
subgroup of SL(2n, k).



Chapter 2

Isomorphy Classes of Involutions of

SO(n, k, B)

2.1 Automorphisms of SO(n, k, 3)

It follows from a proposition on page 191 of [Bor91] that the outer automorphism group
Out(S0(n. k. 8)) = Aut(SO(n, k. 8))/ Inn(SO(n, &, 8))

must be a subgroup of the diagram automorphisms of the associated Dynkin diagram. If n =
2m + 1 and m > 2, then this Dynkin diagram is B, which has only the trivial diagram
automorphism. Thus, there are no outer automorphisms of SO(n, k, 3) when n is odd. If n = 2m
and m > 4, then this Dynkin diagram is D,,. The group of automorphisms of this Dynkin
diagram is Zs when m > 4, and is Sg when m = 4, because of triality. But, it can be shown that
the order 3 outer-automorphisms do not lift from D4 to the orthogonal group. For the details,
see Chapter 30 of [Bump2013]. So, when n is even, Out(SO(n, k, 8)) = Zz. We will see that the
outer automorphisms are of the form Inng where A € O(n,k, 3) and det(4) = —1. When k is
not algebraically closed, then all automorphisms of SO(n, k, §) will still be of the form Inng
for some A € O(n, k, B) since Inny must also be an automorphism of SO(n, k, 3). Thus, the
classifications and characterizations that follow in this paper consider all automorphisms and
involutions of SO(n, k, 8), assuming that n is sufficiently large.

We now examine which automorphisms will act as the identity on SO(n,k, 3). This will
prove to be useful when we classify matrix representatives for automorphisms. A similar lemma
was proven in the case where n is odd and f is the standard dot product in [Wu2002|, the
dissertation of Ling Wu.

Lemma 2.1.1. Assume n > 2. Let A € GL(n, k). If Inna is the identity on SO(n, k,3), then



A is a diagonal matrix.

Proof. Suppose A is such that Inny is the identity on SO(n, k,3). For 1 <r < s < n, let X,
be the diagonal matrix with all 1’s, except in the in the rth and sth diagonal entries, where
instead there are -1’s. This matrix always lies in SO(n, k, 3). So, we must have AX,; = X, A.
On the left side, the matrix is the same as A, but with the rth and sth columns negated. On the
right side, the matrix is the same as A, but with the rth and sth rows negated. So, all entries of
A on these rows and columns which aren’t in the (r,r), (r,s), (s,7) or (s,s) components must
be equal to 0, since this is the only number which equals its negative. To see that the (7, s) and
(s,7) components of A must also equal 0, we can repeat this process for X,;, where ¢ is distinct
from both r and s. (Note that this is where we use the fact that n > 2.) Thus, all off-diagonal

elements of A are 0, which means A is diagonal. O

We want to be able to say more about the matrix A when Inn4 acts as the identity. It turns
out that if we make the following assumption on the orthogonal group SO(n, k, 3), then we can

show that A is a multiple of the identity.

Definition 2.1.2. Let k be a field and suppose (3 is a bilinear form on k™ such that M = (B(-,-))
is diagonal, with diagonal entries m1, ..., my, which are representatives of k*/(k*)2. If for each
m;,mj € k*/(k*)%, 2%+ %yQ =1 has a solution (z,y) such thaty # 0, then we call SO(n, k, )
a friendly orthogonal group.

With this new terminology in mind, we get the following result.

Lemma 2.1.3. Assume n > 2. Suppose SO(n,k,3) is a friendly orthogonal group. Let A €
GL(n, k). Then, Inny is the identity on SO(n, k, B) if and only if A = ol for some o € I

Proof. We know from the previous lemma that A is diagonal. Let a; represent the ith diagonal

entry of A. Recall that we are assuming that M is diagonal. Label M’s ith diagonal as m;.



Then, there exists a,b € k where b # 0 such that a® + %’_bQ =1.Forl<i<j<n,let

1 0 --- e 0
0 1
1
0 0
0 1 0
}/Z]: . )
0 0
—ih 0 - 0 a
j
1
0
0 0 1

where the noteworthy entries occur in the ith and jth rows and columns. It is a simple calcula-
tion to show that YZ]TMY” = M, and that det(Y;;) = 1. So, Y;; € SO(n, k, #). Then, we know
that AY;; = Y;;A. By comparing both sides of this equality and inspecting the (4, j) entry, we
see that ba; = ba;. Since we are assuming that b # 0, then it follows that a; = a;. Since we can
repeat this for all 7 and j, then it is clear that A is a multiple of the identity.

O

This result is only useful if we can show that SO(n, k, 5) is commonly a friendly orthogonal

group. In the following theorem, we see that most SO(n, k, 3) are friendly.
Theorem 2.1.4. (i) If Char(k) # 2,3, then SO(n, k, B) is a friendly orthogonal group.

mq

ma

(ir) If M = ‘ is such that m; # —m; whenever i # j and Char(k) # 2,

mp
then SO(n, k, B) is a friendly orthogonal group.

Proof. When Char(k) # 2, then we see that 1 = 22 + ay? has solution (z,y) = (0‘—71 L)

a+1’ a+1
when a # —1. When Char(k) # 3, then we see that 1 = 2% — y? has solution (z,y) = (2, %)
Based on these two solutions, it is clear that x? + %yQ = 1 will always have a solution in k if
Char(k) # 2,3, and also when 7’;‘—; # —1 and Char(k) # 2. O



To show that this condition on orthogonal groups is not trivial, we note a case where

SO(n, k, ) is not a friendly orthogonal group.

0

I
Example 2.1.5. Suppose k = F3 and that 8 is such that M = ( 0 ) . Then, SO(n,Fs, )

is not a friendly orthogonal group, because there is no solution to x> — y*> = 1 where y # 0.

We now state a definition that will help us characterize matrices that can induce automor-
phisms on SO(n, k, ).

Definition 2.1.6. Fiz a bilinear form [ with matriz M. If A € GL(n,k) is a matriz such
M—ATMA = oI, then we call A a—orthogonal.

Note that orthogonal matrices are 1-orthogonal.

We now have the following preliminary result that characterizes automorphisms of friendly

SO(n, k, B).

Lemma 2.1.7. Assume n > 2 and that SO(n, k, 3) is a friendly orthogonal group.
If A € GL(n, k), then Inna(SO(n, k, B)) C SO(n, k, B) if and only if A is a-orthogonal and
A= pﬁ where p,a € k and

(i) Ace SO(n, k, ) if n odd, or
(i) AeO(n,k,B) if n is even.

Proof. Suppose A € GL(n,k) and Inna(SO(n, k, 3)) € SO(n, k, 3). Choose X € SO(n, k, 3).
Then, A=1X A € SO(n, k, ). So,

I=(A"1XA)"tA7 XA
=M Y AIXATMATIXA
=M TATXT (A HYTMATIXA.

This implies that
A—lX—l _ M_IATXT(A_I)TMA_l,

which means

X 1=AMtATXT (A HT AL,
We can rewrite this as

MAXTM =AM ATXT (A HTMAL



If we transpose both sides, then we see that
MXM =AY MATIXAM AT,
Solving for the X term on the left, we get that
X=M1'A Y MATXAM AT M
= (AMPATM) X (AM AT M).

By the previous theorem, it follows that (AM'ATM) = oI for some o € k. Thus, A is
a—orthogonal. Let p = \/a. Then let A= %A. It follows that M1ATMA = ]%M_lATMA =
é(a[) = I, which shows that A is orthogonal. That is, A € O(n, k,B). If n is odd and det(g) =
—1, then we can replace A with —fT, and instead have a matrix inside SO(n, k, 3).

Since the converse is clear, we have proven the statement. ]

In the following theorem which completes the characterization of automorphisms on friendly
SO(n, k, 8), we see that we do not need the algebraic closure of the field k, but either the field
itself, or a quadratic extension. A similar theorem was proven in the case where n is odd and
B is the standard dot product in [Wu2002], the dissertation of Ling Wu. The following result is

much more general.

Theorem 2.1.8. Assume n > 2 and that SO(n, k, B) is a friendly orthogonal group.

(a) If n is odd and A is in O(n,k, ), then Inng keeps SO(n, k, B) invariant if and only if
we can choose A € SO(n, k,B).

(b) If n is even and A is in O(n, k, B), then Inny keeps SO(n, k, B) invariant if and only if
there exists p € k and B € GL(n, k) such that B = pA and B is a—orthogonal for some o € k.
Further, we can show A € O(n, k[\/a], 5) where each entry of A is a k—multiple of \/c.

Proof. Let n > 2 be arbitrary, and suppose A is in O(n, k, 8) such that Inny keeps SO(n, k, 3)
invariant. Let X, ¢ be the diagonal matrix with all entries -1, except for the (r,r) and (s,s)
entries, which are 1. Since M is diagonal, it is clear that X,s € O(n,k, 3). If n is even, then
X € 80(n, k, ). If nis odd, then —X € SO(n, k, 8). So, we know that Inn 4(X,s) or —Inn4(X,s)
must lie in SO(n, k, 8). It is also clear that Inny(I) € SO(n,k,3). So, both Inns(X,s) and

Inny (7) have entries in k. Let us examine the entries of Inn4 (X, ):

Inng(X,s) = A X, A= MTATMX,, A
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M 1AT M

M1 AT

-1
1
-1
ma 0
0 mo

11

Mp—1

Mn

—ar_—1
ar

—ar41

_an

ajl

an



mfl 0 - ... 0
0 mgl
mgil 0
0 0 m,!
_ ( 1, T
= my ay m.

(o

12

—miax

mpr_1ar—1
myay

—Mryiar4a

—Ms—1as-1

msag

—Mg41as+1

—Mpan

—miaa

—Mpr_1ar-1
m,ar

—Mpr41ar41

—Ms—1as—-1

msag

—Ms41as41

—Mpan




—miaiy S —mia1y
—Myp—-1Ar—-1,1 °° —Myp_1Gr—1n
mrQr1 T MyQrn
a a
m% T mii —Mp1Gr+11 - —Mpp1Gry1n
a a
n}b? pro. —Ms—-10s—11 - —Ms—10s—1,n
msasy ce MsQsn
—Ms410s+1,1 - —Ms410s41n
—Mnpanl ce —Mplnn
_ mi My—1 my
= (—ara— = = Qpo140p -1 j——— + QpiGrj—
mMy41 Mms—1 ms
—Qr41,iGr41j—— — 0~ Os—140s—1j—— T QsiGsj——
Ms+1 Mnp
—0s41,i0s41,5 - amanji)(@j)'
Q mg

Since Inn 4 (X, ) and Inn 4 () have entries in &, then so does the matrix Inn4 (1) +Inna(X,).
Using a similar calculation to the above, we can see that this matrix has entries 2ariarj%’; +

QaSiasj%. It follows that m,a,;a,; + msasias; € k for all 4, j,r, s.

So, we have that
My QriQr; — MsAtiGtj
= (Mrariarj + msasiasj) — (Mpariarj + meagag) € k,
which means that

1 1
My QpiQrj = E(mrariarj — Mgayag) + §<mrariarj + msagagg) € k.

Since m, € k, then a,;a,; € k for all 4, j,r.
Now, we consider the bilinear form 3; which has matrix M ~!. We know that X € SO(n, k, 8)
if and only X7 M X = M. But, if that is the case for a given X, then it follows that

Xt x—HT =mt

Thus, (X1 € SO(n, k, B1). Since this is a group, then we in fact know that X* € SO(n, k, ).

13



It is then easy to see that X € SO(n, k, B) if and only if X7 € SO(n, k, ).

We further claim that Inn 47 is an automorphism of SO(n, k, 51). Suppose Y € SO(n, k, 31)
and consider Inn 47 (V) = (AT)~1Y AT. This matrix lies in SO(n, k, 81) if and only if its inverse-
transpose lies in SO(n, k, 8). It’s inverse transpose is A(Y "1)TA™! = Inny—1 ((Y™1)7T). Since
Inn 41 must be an automorphism of SO(n, k, 3) because Inn 4 is, and since (Y ~1)T" € SO(n, k, B)
because Y € SO(n, k, 51), then we have proven our claim.

Since Inn 7 is an automorphism of SO(n, k, B1), then it follows from our earlier work that
a;raj. € k for all ¢, 7, 7.

We now recall from earlier the matrices Y;; € SO(n,k, 5) where SO(n,k, ) is a friendly
special orthogonal group. So, it must be the case that Inn4(Y;;) € SO(n, k, 3). Let us examine
the entries of Inn(Yj;):

Inna (V) = A7V A = M AT MY;; A

1 0 0
0 1
1
a 0 0
0 1 0
=M tATM , . ' A
0
b 0 0 a
J
1
0
0 0 1

14



— M—lAT

—1
my

0

0

—1
My

mi—1
m;a 0 0 bm;
0 mip 0
0 mj_l 0
—m;b 0 0 m;a
mjt1
0
0 my
miay
mi—1aj—1
0 am;a; + bm;a;
Mi+1Ai+1
(af o al)
-1 m;_1aj—1
o1 0 J J
0 m,;l —bmimiai + amj;a;j
mMjy18aj41
Mpan
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miaj
mi—1ai—1
am;a; + bm;a;
Mi+1i4-1
_ -1, T -1, T
= ( ml ai e mn an )
mj—1aj-1
—bm;m;a; + am;a;
Mj+18j+1
mpan
miail e miain
M;—10i—1,1 e mMi—1Qi—1n
am;a;1 +bmia;r oo amiag, +bmsagy
a a
p— o Mt 1411 e Mit1Qit1n
Aln Ann . . .. . -
m mn m;—1a5-1,1 m;—1a5—1n
—bmjaﬂ +amja;; - —bm;a;, + am;a;n
Myj+1a5+1,1 e Mj+1a5+1n
mpGnl T MpQnpn

my mi—1 Gis
= (a15a1— + -+ @101 + ( — | (@miai + bm;ajy)
mg my

ms

Mit1 mj-1 ajs
Fai4+1,50i+1,¢ Tt aj-1,5a5-1t + | = ) (=bmiair + amjaj)
msg ms msg

1 mp
et ansanti)(s,t)'
s ms

m
+a 41,0541t

We know that a, b, ms, aisai, ajsaj € k. Since each of the matrix entries of Inn4(Y;;) must
lie in k, then it follows that

a; aj
<’5) (amiai + bmjaje) + (nf) (=bmiai + amjagi) € k.

mS S
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If we further apply the facts we just stated about what lies in k, then we see that
Qis@jt — ajsai € k,

for all 4, j, s, t.

We now want to show that a;saj; € k for all 7, j,s,t. Without loss of generality, we will
assume that both a;s and aj; are nonzero. We may assume this since each row and column must
have at least one nonzero entry. If both a;s,a;; € k, then a;sa;; € k is obvious, so we assume
ais ¢ k. Recall that a2, € k.

It follows that

aZaj; — (aisair)ajs = ais(aisaj — ajsair) € klags).

Since we also know that a2

2o Qistir € k and aji, air € klaje], then it follows that

ais(@isaje — ajsair) € klagj]
as well. Recall that a?t € k. So, there exists ¢, d, e, f € k such that
c+da;s = ais(aisajt - ajsait) =e+ faj.

Since we are assuming that a;s & k, then it follows that both d and f are nonzero, and that
a;t ¢ k. We see that
0= (c—e)+ (dajs — faji).

It follows that da;s — faj; € k. So, da;s = faj; + g for some g € k. Therefore, we can write

a;s = uaj; +v where u = g, v = % € k. We see that k contains
a2, = (uaj +v)* = u2a?t + 2uvaj; + v2.

Since aj; & k, then it follows that uv = 0. Since a;s = uaj +v € k, then u # 0. So, v = 0
and a;s = uaj;. Thus, asaj = %a?s € k, as desired. From this it is clear that kla;s] = k[aj]
for all 7,7, s,t (assuming that a;; and aj; are both nonzero). So, let o = a,?s where a;s is a fixed
nonzero entry of A. Then, we have shown that all the entries of A are in k[y/«]. This means
that A € O(n, k[y/a], 3), and all of the entries of A are k—multiples of \/«, as desired.

If n is odd, then we can replace A with —A to get a matrix in SO(n, k[y/«/|, ). So, assume
that A € SO(n, k[\/a], ). We now show that we do not need a quadratic extension of k when n
is odd. Proceed by contradiction and assume A € SO(n, k[\/a], #) inducing the automorphism.

Then, from our work above, we know that \/aA € GL(n, k). Then,
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det(y/ad) = [va]" det(A) = a* &,

which is a contradiction. So, if n is odd, we may assume that A € SO(n, k, ).

2.2 Involutions of SO(n,k, [3)

We now begin to focus on involutions and their classification. We will distinguish different types
of involutions. First, we note that for some involutions, ¢, there exists A € O(n, k, ) such that
¢ = Inny, but not in all cases. Sometimes we must settle for A € O(n, k[\/a], 5) \ O(n, k, 3).

This is not the only way in which we can distinguish between different types of involutions.
If Inny is an involution, then Inny2 = (Inna)? is the identity map. We know from earlier that
this means that A2 = I for some v € k. But, we know for certain that A is orthogonal. So, A?
is also orthogonal. That means that (A42)T M (A2%) = M, which implies (yI)T M (yI) = M, which
means 72 = 1. So, v = £1. Thus, we can also distinguish between different types of involutions
by seeing if A2 =1 or A> = —1I. This gives the four types of involutions, which are outlined in
Table 2.1.

Table 2.1: The various possible types of involutions of SO(n, k, /3)

| [ AcO0k.5) [ A€ O(nkal.H)\ O(n. .8 |
A’ =1 Type 1 Type 2
A2 =T Type 3 Type 4

It follows from our characterization of automorphisms that when n is odd, that Type 2 and
Type 4 involutions do not occur. But, we also see that if n is odd and A is orthogonal, then A2
must have determinant 1. So, we see in addition that Type 3 involutions can also only occur

when n is even.

2.2.1 Type 1 Involutions

We now find a structured form for the matrices of all types of involutions. We begin with Type 1
involutions. When n is odd, these are the only involutions. These were considered in [Wu2002]
and [Dom?2003], the dissertations of Ling Wu and Christopher Dometrius, respectively. The

following is a generalization that also takes into account the case where n is even.
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Lemma 2.2.1. Suppose ¥ is a Type 1 involution of SO(n,k,B). Then, there exists A €

—I;, 0

O(n, k, B) suchthatAzX( 0 I X1 where s+t =n and
t

XZ(xl To - :):n)EGL(n,k‘),

where the x; are orthogonal eigenvectors of A, meaning XT M X is diagonal, and s < t.

Proof. Since A%2 = I, then all eigenvalues of A are +1. Since there are no repeated roots in
the minimal polynomial of A, then we see that A is diagonalizable. We wish to construct
bases for E(A,1) and E(A, —1) such that all the vectors lie in k". Let s = dim(E(A, —1)) and
t = dim(E(A, 1)), and observe that s+t = n since A is diagonalizable. If s > ¢, then replace A
with —A, and use this matrix instead. (It will induce the same involution.) Let {z1, ..., 25} be
a basis for k™. For each i, let u; = (A — I)z;. Note that

Aui = A(A — I)Zz = —(A — I)Zz = —U;.

So, {u1, ..., u, } must span E(A,—1). Thus, we can appropriately choose s of these vectors and
form a basis for F(A, —1). Label these basis vectors as yi, ..., ys. We can similarly form a basis
for E(A,1). We shall call these vectors ysy1, ..., Yn. Let Y be the matrix with the vectors y1, ..., yn

as its columns. Then, by construction,

—I, 0
Yy tAy = .
0 I
A=y 50 )y
0 I

Recall that AT = MAM ™!, since A € O(n, k, B). So,

We can rearrange to get

This implies

which means
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—15 — I
0 YT'MY = YT MY 0 .
0 I

So, YTMY = ( ) where Y7 is s x s, Y5 is t x t, and both are symmetric. It
follows that there exists N = ( ) € GL(n, k) such that NTYTMY N is diagonal. Let
X =YN. Then,

- s _Is 0 _
X X 1=vYN (YN)~?
0 It 0 It
N I, Nt
0 N 0 I 0 Ny
—I
= U )y A,
0 I

where X7 M X is diagonal. It follows from this last observation that the column vectors of X

must be orthogonal with respect to 5. ]

We now want to examine when involutions of the same type are isomorphic. We first state

a result from [Jon67] about symmetric matrices with entries from the p-adic numbers.
Lemma 2.2.2. Symmetric matrices My and My with entries in Q, are congruent if and only
if

det(My) = v*det(Ma) and c,(My) = cp(My)
where ¢,(M) denotes the Hasse symbol of matriz M.

Now we show conditions equivalent to isomorphy.

Theorem 2.2.3. Suppose ¥ and ¢ are two Type 1 Involutions of SO(n,k, ) where ¥ = Inny

-1 0 -1 0
and ¢ = Inng. Then, A = X ma X1and B=Y mB y-1
0 Inm, 0 Ihmp
where ma,mp < 5, and

have columns that are orthogonal eigenvectors of A and B respectively. We also have the diagonal
Xy 0
xTmx ="'
0 Xo
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and
Y1 0
Yy = 7! .
0 Y
The following are equivalent:
(i) ¥ is isomorphic to ¢ over SO(n, k, ).
(ii) A is conjugate to B or —B over SO(n, k, 3).

(@ii) X1 is congruent to Y1 over GL(m, k) and Xy is congruent to Ya over GL(n — m, k), or

X1 is congruent to Ya over GL(%, k) and X is congruent to Y1 over GL(%, k).
(iv) ¥ is isomorphic to ¢ over O(n,k, ).
(v) A is conjugate to B or —B over O(n, k, 3).
(vi) if k = Qp, there exists some v € Q, such that
det(X1) =~ det(Y1), det(Xa) =77 det(Ya), ¢p(X1) = p(Y1), & ¢p(X2) = ¢p(Y2)

det(X1) = 7*det(Ya), det(Xa) =+?det(Y1), cp(X1) = ,(Ya), & cp(X2) = (V).

Proof. First we note that in the event that k = Q,, then (vi) will be equivalent to (iii) by
Lemma 2.2.2. We now show the equivalence of the other three conditions.

We now prove (i) is equivalent to (i7). First suppose A is conjugate to B over SO(n, k, 3).
Choose @ € SO(n,k, ) such that B = Q 'AQ, and let y = Inng-1. Then, for all U €
SO(n, k, B), we have

X X (U) = QTATIQUQTTAQ = (QTAQ)T'U(QTTAQ)

=B 'UB = ¢(U).

So, x '9x = . That is, ¥ is congruent to ¢ over SO(n, k, ().
Now suppose that A is conjugate to —B over SO(n, k, ). Choose Q € SO(n, k, 5) such that
—B=Q 1'AQ, and let x = Inng-1. Then, for all U € SO(n, k, 8), we have

X 1x(U) = QTATIQUQTIAQ = (QTTAQ)TTU(QTTAQ)

= (-B)"'U(-B) = B'UB = (U).
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So, x 1 = . That is, 9 is congruent to ¢ over SO(n, k, 3).

Since the center of SO(n, k, 8) is {I, —I}, then the converse follows similarly, so (i) and (i7)
are equivalent. Likewise, we can show that (iv) and (v) are equivalent.

Next we show that (i7) implies (iii). First suppose that Q= 'AQ = B for some Q €
SO(n, k, B). QL AQ = B implies

Q_lX _ImA 0 X_lQ -Y _ImB 0 Y_l.
0 InfmA 0 Inme

Since the matrices on both sides of the equality above must have the same eigenvalues with the

same multiplicities, then we see that ma4 = mp , so we will just write m, and note that

—1I 0
n—m

Rearranging the previous equation, we have
Im,n—mX_lQY = X_lQYIm,n—Tm

R 0

which tells us that X~ 1QY =
0 Ry

> , where R; € GL(m, k) and Ry € GL(n — m, k).

R O
Rearranging, we have that QY = X ( 01 ) . Since @ € O(n, k, 3), then we know that
2
QTMQ = M.
So,

YTMY =YTQTMQY

:<R1 0 >T(XTMX)<R1 0 )
0 RQ 0 R2

From here we see that Y7 = RF{XlRl and Y5 = R%—’XQRQ.
Now suppose that Q71 AQ = —B for some Q € SO(n, k, 3). This implies

—I, 0 I, 0 _
Q'X 4 X lQ=vY B Yyl
0 In—mA 0 _In—mB

Since the matrices on both sides of the equality above must have the same eigenvalues with the

same multiplicities, then we see that ma = n — mp. Since ma, mp < 7, then it follows that
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m4 = mp = 5. Rearranging the previous equation, we have

-1 _ -1
InnX7'QY = X7'QYIn n,

0 R
which tells us that X 1QY = ( R ! ) , where R, Ry € GL(%, k). Rearranging, we have
2
0 Rl . T
that QY = X R . Since @ € O(n, k, 8), then we know that Q' MQ = M.
2

So,
YIMY =YTQTMQY

T
0 R 0 R
= " (xTax) ",
RQ 0 R2 0
From here we see that Y5 = RF{XlRl and Y7 = RgXQRQ.

This shows that (i7) implies (7i7).
Now show that (4i7) implies (é¢). Assume that (ii7) is the case. Specifically, assume that

R; € GL(m,k) and Ry € GL(n — m, k) such that Y7 = RT X R; and Yo = RIXoRs. Let
Ry 0
< ! . So, we have YTMY = RT(XTMX)R. Let @ = XRY ~!. We will now show

0 Ry
that Q" 1AQ = B and that Q € SO(n, k, B3).
Q'AQ = (XRY ) 'A(XRY )
=YR'X'AXRY ' =YR ' (~Lnpm)RY !

=Y(~Innm)Y '=B.

That is, Q' AQ = B.
Next, we must show that Q € SO(n, k, 3). We first show that QT MQ = M. Recall that

YTMY = RT(XTMX)R. So,
QTMQ = (XRY HTM(XRY ™)

=Y H'(R'X"TMXRY ' =¥ HT(vTmMy)y ' = M.

In the event that det(Q) = —1, then we can replace the first column of X with its negative.
This will have no effect on R or Y, so the new Q = XRY ! have determinant 1, and it will

still be the case that Q@ 'AQ = B and Q" MQ = M. So, Q € SO(n, k, ).
If instead we assume that Ry € GL(m, k) and Ry € GL(n — m, k) such that Yo = RT X1 R,
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0 R
and Y7 = R¥ X5 Ry, then if we let R = < R 01 ) , then we can let Q = XRY ! and get that
2

Q'AQ = —B and Q € SO(n, k, 8). This shows that (iii) implies (i7).

We now show that (iv) and (v) are equivalent to the previous three conditions. First, we
note that it is clear that (7) implies (iv). So, we need only show that (iv) or (v) implies one of
the other three conditions. But, (v) implies (iii) from an argument very similar to the argument

where we showed that (i4i) implies (i7). Thus, all the conditions are equivalent.

O]

We note that the equivalence of conditions (i) and (i7) in the previous theorem show that
a Type 1 involution cannot be in the same isomorphy class as an involution of a different type.
This will be the same for all types. That is, isomorphic involutions must be of the same type.
We also note that this Theorem shows that isomorphy over SO(n, k, §) and O(n, k, 3) are the
same for Type 1 involutions. We will show in an explicit example that this does not occur in
the Type 2 case. For the remaining three types of involutions, we will only find conditions for
isomorphy over O(n, k, 3). Again, recall that these three Types of involutions occur when n is

even.

2.2.2 Type 2 Involutions

We have a similar characterization of the matrices and isomorphy classes in the Type 2 case.

We first prove a result about that characterizes the eigenvectors in the Type 2 case.

Lemma 2.2.4. Assume A € O(n, k[\/a],8) induces a Type-2 involution of SO(n,k, 3) where
Va & k. Also suppose x,y € k™ such that x + Jay € E(A,—1). Then, x — \/ay € E(A,1).
Likewise, if u,v € k™ such that uw 4+ /oav € E(A,1). Then, u — Jav € E(A,—1). Further,
dim(E(A,1)) = dim(E(A, —1)).

Proof. First, we observe that “\/a—conjugation,” similar to the familiar complex conjugation

(i—conjugation), preserves multiplication. That is,
(a + vVab)(c+ vad) = (ac + abd) + valad + be)

and

(a —vab)(c — ad) = (ac + abd) — /a(ad + be).

So, “\/a—conjugation” will preserve multiplication on the matrix level as well. Because of this

and since

Az + Vay) = —z — Vay,
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then it follows that

(—A)(& — va) = —z +/ay.

We can multiply both sides to see that
Alx —Va) =z — Vay.

That is, x — \/ay € E(A,1). This proves the first statement. An analogous argument proves
the second.

To see that dim(E(A, 1)) = dim(E(A, —1)) is the case, note that the first statement tells us
that dim(F(A4, 1)) < dim(E(A, —1)), and that the second statement tells us that dim(E(A,1)) >
dim(E(A, —1)), since “\/a—conjugation” is an invertible operator on k[y/a]™. O

We are now able to characterize the Type 2 involutions.

Lemma 2.2.5. Suppose ¥ is a Type 2 involution of SO(n, k,5). Let A be the orthogonal matriz
in O(n, k[\/a], B) such that ¥ =Inny. Then,

— 0 In
A= \/aX< 2>X_1

[0 aln 0
2

where

X=($1 Tg - Tno oY Yo oo yg>EGL(nak‘)7

where for each i, we have orthogonal vectors x; + v/ay; € E(A,—1) and orthogonal vectors
x; — oy € E(A,1). Further,

w3

xTux— [ X X
X, 1x4

where X1 and X are diagonal matrices.

Proof. We wish to construct bases for E(A,1) and E(A,—1) such that all the vectors lie in
k[y/a]™. From the previous lemma, we know that dim(E(A4,1)) = dim(E(A, -1)) = 5. (Note
that this means that n must be even for a Type 2 involution to occur.) Since Inny is a
Type 1 involution of SO(n,k[\/a], ), then we can apply Lemma 2.2.1 to find an orthogo-
nal basis {z; + \/&yl,...,x% + \/&y%} of E(A,—1), where T, T2, Y1, yn € K7 By the
previous lemma, we know that{zi — \/ayi,...,z» — \/ayz} must be a basis for E(A,1). Let
X = ( T1 @ v TnoYL Y2 Y ) € GL(n, k).

We now make a couple of observations. Suppose u = = + y/ay is a -1-eigenvector of A such

0|3

25



that z,y € k™. Then, we know v = x — y/ay is a 1-eigenvector of A. Observe that
1 1
Az = SA(u+v) = S(~uto) = —Vay.

It follows from this that

Since Az = —y/ay and Ay = —@m, then it follows that
_Yag,
X—IAX:< 0 aIz).
—ﬂ]g 0

Rearranging this, we see that

R B A P
aI% 0

Now, we need only prove the last statement to prove the Lemma. Since {z1 + /oy, ..., rn+

\/ay%} is an orthogonal set of vectors, then we know when ¢ # j that

0 = B(x; + Vayi, vj + Vayy) = (B(zi, x5) + aB(yi, y5)) + Va(B(zi, y;) + Bz, vi)-
This tells us that
B(xi,z;) = —aB(yi, y;)
and
B(wi,y;) = —B(xj, i)

Since vectors from E(A,1) and E(A, —1) are orthogonal, then we also know that

0= B(xi + Vi, v; — Vay;) = (B(zi, v5) — ab(yi, y5)) + Vol=B(xi,y5) + B(x5,vi)),

regardless of if ¢ and j are distinct or equal.
This tells us that

Bz, z5) = aB(yi, y;)

and
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So, when i # j, then we know that

5(%;%) = 07

B(xi,zj) =0,
and

B(yi,yj) = 0.

When ¢ = j, we note that
B(wi, ;) = aB(yi, i)

Then, we have

XTyux— [ X X
X, Xy

where X; and X5 have been shown to be diagonal. O

We now show an example of a Type 2 Involution, and apply the previous lemma to it.

Example 2.2.6. Assume that [ is the standard dot product. Then, Inny can be a Type 2
involution of SO(4,Q) if A is symmetric and orthogonal, since this will imply that A% = I, and
if the entries of A are all k-multiples of some \/a such that \/a & k but o € k. Observe that
the matrix

0 1 -1 1
1 1 1
A V3 0
3 -1 1 1 0
1 1 0 -1

is both symmetric and orthogonal. Since each entry is the Q—multiple of \/3, then it is clear
that Inny is a Type 2 involution of SO(4,Q). It can be shown that E(A,—1) has dimension 2.

An orthogonal basis for this subspace is formed by the vectors

+v3

V1 =

— O NI N
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and

1 1

2 2
_1 _1
Vg = 2 +V3 2

1 0

0 0

It can be shown that

1 1

2 2

1 _ 1

vz = 2 ~3 2

0 0

1 0

and

1 1

2 2

1
Vy = —\/g 2
0
0

Sl

1
0
are orthogonal 1—eigenvectors of A, where these are the \/3—conjugates of vi and v, respec-

tively.

Following the notation of the previous lemma, we have

11 _1 1
2 2 2 2
11 1 _1
x=| 2 2 2 2
o 1 o o |’
1 0 0 0
3 1
S0 -4 o0
o 2 o 1 0 In
where XTX = 1 3 1 2 andA:—gX 2 -1
1 1
0 5 0 3

We now find conditions in the Type 2 case that are equivalent to isomorphy.

Theorem 2.2.7. Suppose ¥ and ¢ are two Type 2 Involutions of SO(n,k, ) where ¥ = Inny
and ¢ = Inng. Then,

P ( o0 ) X' € O(n, K[v/al, B)

« In
2

where
Xz(ml Ty Ty Y2 o yg)EGL(n,k)
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and the z; + \/ay; are the orthogonal basis of E(A, —1), and

xTux— | X X
X, ix4

where X1 and Xy are diagonal matrices,

and
B _\fy ( W?g I(;é‘ ) Y~ € O(n, k[y/A), B)
where
Y = ( B - &z G B o Gn >eGL(n,k)

and the T; + \/7¥; is the orthogonal eigenvectors of E(B,—1), and
Y7 Y-
Yimy = b [°
Y, iy

where Y1 and Ys are diagonal matrices, and the following are equivalent:

(i) ¥ is isomorphic to ¢ over O(n,k, f3).

(ii) A is conjugate to B or —B over O(n, k, 5).

T T T Rl R2

(iti) a = and Y*" MY = R* X' MXR where R = R R € GL(n,k), or a« =~ and
alty I

YTMY = REXTMXR where R= [ 0 T2 ) carm,n).
—OéRQ —R1

Ry R
(iv) We can choose X and Y such that a = vy, and for R = ( Rl R2 ) € GL(n, k) we
alty Iy

have
Y1 = RT X\ Ry + aRY XoR) + aRT XoRy + aRY X1 Ry
and
Y = REYX\Ry + R XoR, + aRT X3Ry + RT X Ry,

R R
or for R = ! > € GL(n, k) we have
—OéRQ —Rl

Y = RTX R — aRTXoR) — aRTX5Ry + aRT X Ry
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and
Y; = REYX1R; — RTXyR, — aRT X5Ry + RT X1 Rs.

Proof. Proving the equivalence of (i) and (%) is identical to the proof in the previous theorem.
So, we begin by showing that (i) implies (ii7). First suppose there exists @ € O(n, k, ) such

that Q 'AQ = B. So, we have
Q‘lﬁX ( 0 I% > X_lQ — ﬂy ( 0 I% ) y—L
« 0

OJ% 0 Y ~In

2

Also, we know that since A € SO(n, k[\/a],8) and B € SO(n,k(y/7),3) are congruent over
O(n, k, 8), then we must be able to make a choice of v such that o = . Thus,

0 In 0 In
-1 —1 -1
X 2 X =Y 2 Y.
¢ (af; 0 ) ¢ (af’; 0 )

Rearranging, we see that

0 In 0 In
> | X'Qy = X Qv > .
<0J; 0) ¢ ¢ <0J; 0)

|3

0 I I
Let R = X~1QY, and note that R € GL(n, k). Since R=R , then
alg 0 aI% 0

w3

Ry R
R = ( Rl R2 ) Observe that X R = QY. Also, observe that since Q € SO(n, k, 8), then
aRy Ry

we know that QT M@Q = M. It follows from these observations that
RT(XTMX)R = (XR)TM(XR) = (QY)' M(QY)
=Y(QT"TMQ)Y =Y MY,
If instead we assume that there exists Q € O(n, k, 3) such that Q' AQ = —B, then we
R R
can similarly show that o = v and YTMY = RTXTMXR where R = }% ]; > €
—aliy  —In

GL(n, k) for R1, Ry € M(%, k). This proves that (ii) implies (7).

We now show that (i4i) implies (i7). First assume o = v and X7 M X is congruent to Y MY

Ry R
over GL(n, k) where YTMY = RTXTMXR for R = ( Rl R2 ), where Ry, Ry € GL(3, k).
alty I

Let Q = XRY ~'. Then, we observe that
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Q'AQ = (XRY H'AXRY ) = YR Y X 'AX)RY !

— 0 In — 0 In
= _7\/51/'3*1 < 2 ) RY ! = _7\/51/ ( 02 ) RIRpy!
«

aln 0 « aln

2 2

e B R D S
« Oz[g 0

So, to show that (i7) is indeed the case, we need only show that @ € O(n,k, ). By con-
struction, we know that @ € GL(n, k). So, it is suffice to show QT MQ = M. But,

QTMQ = (XRY HTM(XRY )
=Y HY(RIXTMXR)Y ' =¥ HTYTMY)Y ' = M.

If we instead assume that a = v and X7 M X is congruent to Y7 MY over GL(n, k) where
Ry Ry
—aRy —R;
Q = XRY !, we can similarly show that Q7'AQ = —B and Q € O(n, k, ). This shows that

(7i7) implies (ii).

YTMY = RTXTMXR for R = , where Ry, Ry € GL(%,k), then if we let

Lastly, matrix multiplication shows that (ii7) and (iv) are equivalent.
0

The reader will notice that in the Type 1 case, our conditions gave us congruency of invo-
lutions over SO(n, k, ), but the Type 2 case gave us congruency of involutions over O(n, k, /3).
In the following example, we give an example that shows that the above Theorem cannot be
strengthened by replacing O(n, k, 8) with SO(n, k, 3).

Example 2.2.8. Consider the group SO(4,Fs3). That is, consider the case where k is the group
of three elements, and the bilinear form is the standard dot product. A Type 2 involution is

induced by the matriz

€ SO(4, F5i]).

S O = =
S O N =
= = O O
N = OO
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By analyzing suitable eigenvectors for this matrix, we see that

1 020
P 00 20
01 0 2
00 0 2
where
0010
0 0 01
A=iXx1t X.
2 0 00
02 00

We also see that
X, X
XTX _ 1 2
Xy 2X,4

10 2 0

where X1 = and Xo = .
0 1 0 2

Now, we also consider the Type 2 involution of SO(4,F3) that is induced by the matriz

€ SO(4, F5[i).

= N O O
NN OO
S O N =

2
2
0
0

By analyzing suitable eigenvectors for this matriz, we see that for

1 0 0O
v — 01 0O 7
0 011
00 2 1
we have
0010
0 0 01
B =iy ! Y.

2 0 0 O
02 0O

We also see that
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10 0 0
where Y1 = and Yo = .
0 1 00

We have two ways of showing that these Type 2 involutions are congruent over O(4,Fs).

First, we consider the matriz

S 0(4, ]Fg) \ SO(4,F3)

D = = =
— = =N
N NN
— N = =

Then, B = Q Y AQ. This is condition (ii) of the previous theorem.

R R 10
! ° ) € GL(4,F3) where Ry = ( ) > and Ry =

Secondly, if we let R =
2Ry Ry 0

2
We note that during the author’s computations, R and YTY were discovered by using a

11
( ) ) , then we get that RTYTY R = XT X. This is condition (iii) of the previous theorem.

Maple loop that used condition (iv) from the previous Theorem, and simply just tried every
value of R1 and Rs. The calculation considered thousands of possibilities. This is a brute force
method that is not ideal, and certainly only possible when k is a finite field. Y, and then B were
then calculated, and Q was computed using the formula Q = XRY ™', as in the proof of the
theorem.

We now show that there does not exist W € SO(4,F3) such that B =W LAW. We proceed
by contradiction and suppose that these does exist such an W. It then follows that A and
QW1 € O(4,F3) are commuting matrices. It is a simple matter to show that matrices that

commute with A must be of the form

a b c d
b a+b d c+d
e f g h
f e+f h g+h
One such matrix is
1 1 2 2
1 2 21
€ SO(4,Fs3).
2 2 2 2 (4,F5)
21 2 1

But, all other such orthogonal matrices differ from this matriz only in that an even number

of rows and/or columns have been multiplied by 2 = —1 or an even number of rows and/or
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columns have been swapped. All of these actions create matrices that will also have determinant
1. Thus, all the matrices in O(4,F3) which commute with A are also members of SO(4,Fs),
which contradicts QW =1 € O(4,F3) commuting with A. So, no such W € SO(4,F3) can exist,
which means we cannot strengthen the above theorem by replacing O(n, k, ) with SO(n, k, 3)

in conditions (i) and (ii).

Corollary 2.2.9. Suppose Inng and Innp are both Type 2 involutions of SO(n,k, ). Then,

Inng and Inng are isomorphic over O(n, k,B) if and only if they are isomorphic over

SO(n, k[Val, B).

Proof. When viewed as Type 2 involutions of SO(n, k, 3), we can write

0 I U, U
4=V i) Ut where UTMU = | 1 72
e! alz 0 Uz ;U1

«

and

0 In
B—_Yoy P ) vt where VMY = | 1P
o \al: 0 v oin

and Uy, Us, V1 and V5 are diagonal matrices.

When Inn 4 and Innp are viewed as involutions of SO(n, k[v/a], ), then they are Type 1 invo-

, “Ix 0\
lutions. Further, we can choose X and Y € GL(n, k[y/a]) such that A = X 0 2 X,

Iz
2
—I» 0
B:Y( 02 )Y‘l,and

In
2
1
Xi = §(U1 + Valy),
1
Xy = §(U1 —Vals),
1

and

1
Yy = §(V1 —VaVa).

This follows from the way in which U and V are constructed from the eigenvalues of A
and B. We need to simply have X and Y consist of the appropriate eigenvectors, and mandate
that the last § columns of X and Y are the \/a-conjugates of the first § columns. (The only
exception to this is that we may need to negate the first column of X, so that we can preserve
isomorphy of Inny and Inng over SO(n, k[\/al, §), if we are assuming that. But, this will not
change the value of X;.)
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Now, suppose Inny and Innpg are isomorphic over SO(n, k[\/a], ) as Type 1 involutions.
Then, from Theorem 2.2.3 we know that Y; is congruent to either X; or Xo.

In the first case, we see that

%(‘/1 ++vaVy) =Y, = (R1 + VaRy)" X1(R; + VaRy)

= (R1+ \/532)T%(U1 +Valy)(Ry + VaRy),

where R; and Ry are over k.

In the second case, we see that

%(‘/1 ++v/aVe) = Y1 = (R + VaRy)" Xo(R) + VaRy)

= (R -+ VaRe)"3 (U1 = Vala) (R +Var)

where R; and Ry are over k.
It follows from this that

Vi = RTUIRy + aRJUsRy + aRTUsRy + aRIUL Ry

and
Vo = RYULRy + RTULRy 4+ aRIULRy + RTULR,,
or
Vi = RTU\Ry — aRYU3R) — aRTULRy + aREUL Ry,
and

Vo = RFULR, — RTUSR, — aRYUSRy + RTULR,.

The previous theorem tells us that this means that Inny and Inng are isomorphic over

O(n, k, 8). Since the converse is clear, then we have shown what was needed.
O

2.2.3 Type 3 Involutions

We now examine the Type 3 case. Recall that ¢ is a Type 3 involution if ¢ = Inng, where
A € O(n, k,B) and A2 = —I. Such matrices have eigenvalues +i, and are diagonalizable because
the minimal polynomial has no repeated roots. We begin by proving a couple or results about

the eigenvectors of such matrices.

Lemma 2.2.10. Suppose A € O(n,k,[) induces a Type 3 involution of SO(n,k,3). Also
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suppose x,y € k™ such that x + iy € E(A, —i). Then, x —iy € E(A,1). Likewise, if u,v € k"
such that u+iv € E(A,i), then u — iv € E(A, —i). Further, dim(E(A,q)) = dim(E(A, —i)).

Proof. Suppose z,y € k™ such that = + iy € E(A, —1). Then,
Az +iy) = —i(z +iy)

implies
Az 4+ 1Ay =y — ix.

If we take the complex conjugate, then we see that
Ax —iAy =y + ix.

This implies
Az —it) = i(z — it),

which shows that x — iy € E(A,i). A similar proof will show that if u,v € k™ such that
u+ 1w € E(A,1), then u —iv € E(A, —1).

Since x+iy € E(A, —i) implies x—iy € E(A, ) and vice versa, then we see that dim(E(A, 1))
= dim(E(A, —1i)). O

Lemma 2.2.11. Suppose ¥ = Inny is a Type 3 involution of SO(n, k, ) where A € O(n, k, 3).
Then, we can find x1, e T YL, Yn € k™ such that the x; + iy; are a basis for E(A,—i) and
the x; —iy; are a basis for E(A,1).

Proof. Since Inny4 is Type 3, then we are assuming that A € O(n, k, ) and A2 = —I. Note that
this also means that n is even. It follows that all eigenvalues of A are +i. Since there are no
repeated roots in the minimal polynomial of A, then we see that A is diagonalizable. We wish
to construct bases for F(A, i) and E(A, —i) such that all the vectors lie in k[i]™. Let {z1, ..., 2}
be a basis for k. For each j, let u; = z; + 1Az; Note that

Au]' = A(Zj + iAZj) = (A + iAQ)Zj = (A — ’iI)Zj = —i(Zj + iAZj) = —iuj.

So, {u1, ..., u, } must span E(A, —i). Thus, we can appropriately choose § of these vectors and
form a basis for E(A, —i). Note that each of these vectors lies in k[i]". Label these basis vectors
as vy, ..., vn. We can write each of these vectors as v; = x; + iy;. By the previous lemma, we
know that x; — iy; € E(A,1). Since these vectors will be linearly independent, then they form
a basis for F(A,1).

O
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We are now able to prove results that characterize the matrices that induce Type 3 in-
volutions, and then use these characterizations to find conditions on these involutions that
are equivalent to isomorphy. We will have to prove our result by looking at separate cases,

depending on whether or not ¢ = +/—1 lies in k. We begin by assuming that 7 € k.

Lemma 2.2.12. Assume i € k and suppose ¥ = Inny is a Type 3 involution of SO(n, k, 3),
—iln 0
2

where A € O(n,k,B). Then, A = X< -
iln
2

)X‘l for some X € GL(n,k), where

0 X3

XTMX =
X1

>, where X1 is a diagonal matrix.

Proof. We know from Lemma 2.2.11 that we have bases for E(A,—i) and E(A,I) that lie in
k™. We will show that we can in fact choose bases aq, ..., an for E(A,—i)Nk™ and by, ..., b% for
E(A,i) NE™ such that (aj,a;) = 0= B(b;,b;) and B(aj,b;) is nonzero if and only if j = 1. We
will build these bases recursively.

First, we know that we can choose some nonzero a; € E(A, —i) N k™. Then, since [ is non
degenerate, we can choose a vector ¢ such that 3(aq,t) # 0. We note that E(A, —i) @ E(A,i) =
k™, so we can choose t_; € E(A,—i) N k™ and t; € E(A,i) N k™ such that ¢ = t_; + ¢;. Since
B(a1,t—;) = 0, then it follows that B(ai,t;) € k is nonzero. Let by = t;.

Let E; = Spany(aj,b;) and let F; be the orthogonal complement of Ej in k™. Since the

system of linear equations
Blar,z) =0

B(b1,x) =0

has n — 2 free variables, then we see that F; has dimension n — 2.

We now wish to find as € F1 NE(A, —i). Similar to the construction in the previous lemma,
we can choose x € Fp, and let ag = = + i Az. It follows that as € F; N E(A, —i). Now we want
by € F» N E(A, 1) such that 5(az,bs) = 1. Since [|f, is non degenerate, then there exists some
y € Fy such that S(ag,y) # 0. Similar to the construction of b1, we see that this implies the
existence a vector by that fits our criteria.

Now, we let Eo = Spany(ay, ag, by, be) and let F» be the orthogonal complement of Es in k™.

We continue this same argument 5 times, until we have the bases that we wanted to find. Let
X = (al, ceey a%, bl, ceey b%)

Then, the result follows. O

Theorem 2.2.13. Assume that i € k. Then, if Inng and Inng are both Type 3 involutions of
SO(n, k, 8), then Innyg and Inng are isomorphic over O(n, k, [3).
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Proof. Suppose we have two such involutions of SO(n, k, ). Let them be represented by matrices
A, B € O(n, k, 3). By the previous Lemma, we can choose diagonal X,Y € GL(n, k) such that

—I 0

| =Y"1BY,
0

X TAX = (

xTux=|( 0 % :
X1 0

YTMY = 0 N .
Y; 0

Since X7 and Y; are both invertible diagonal matrices, then we can choose Ry and Rs €

and

R 0
GL(%, k) such that Y1 = RTX1Ry. Let R = ( ! ) and Q = XRY L. It follows from
0 Ro

this that REFXTMXR = YT MY . We will show that Q € O(n, k, ) and Q"' AQ = B. This will
then prove that Inn4 and Inng lie in the same isomorphy class.
First we show that @ € O(n, k, 3). Note that

QTMQ = (XRY HYIM(XRY 1) = (Y HI'RU(XTMX)RY !

=Y HI'yTmMy)y ! =M,

which proves this claim.
—iI 0

Lastly, we show that Q71 AQ = B. We first note that R and ( 0 il
i

) commute. Then,

we see that

Q'AQ = (XRY ) 'TAXRY H = YR Y (X 'AX)RY !

il il
—yrt [ T O Y gyt vy Y0 )y
0 il 0 il

—il 0
—v(| vyl =B.
0 il

‘We have shown what was needed.

We now begin examining the case where ¢ &€ k.
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Lemma 2.2.14. Assume i € k and suppose ¥ = Inny is a Type 3 involution of SO(n,k, ).

0 —In
Then, A=U 2 U for
I. 0

U:(a1 ay - an b1 by - b )eGL(n,k),

w3
|3

where the a; + ibj are a basis for E(A, —i), the a; — ib; are a basis for E(A,i), and UT MU =

Uy 0
! is a diagonal matrizx.
0 U

Proof. We know from Lemma 2.2.11 that we have bases for E(A,—i) and E(A,I) that lie in
k[i]". We will show that we can in fact choose bases aj +ibi, ...,an + bz for E(A, —1) N k[t]"
and ay —iby,...,an — ibn for E(A,i) N k[i]™ such that S(a; + ib;,a; — ib;) is nonzero if and
only if j = [. From this, we will be able to show that $(aj,a;) = 0 = B(b;,b;) when j # [ and
B(aj, b)) =0 for all j and {. We will build these bases recursively.

Recall that given any vector z € k™, we know that z +iAx € E(A, —i). We want to choose
x € k™ such that S(z,x) # 0. (The reasons for this will become apparent.) M is an invertible
matrix, so there are at least n instances of e;FM e; # 0. If there is an instance where j = [, let

x = e;. If not, then instead we have e?Mel =0= elTMej, and we let x = e; + ¢;. Then,

Bz, x) = Ble; + e, e+ e) =26(ej,e) # 0.

So, we have = € k™ such that S(z,x) # 0, and we have x +iAx € E(A, —i). Let a; = = and
by = Az. So, ay +iby € E(A, —i) and a; — iby € E(A, ). From this, it follows that

5(@1 + b1, a1 — ibl) = (5(@1,611) -+ 5(1)171)1)) + ’i(—ﬁ(al,bl) + 5(al,b1)

= 2B(a1,a1) = 28(x,x) # 0.

Let Ey = Spanyp (a1 + b1, a1 — ib1) = Spany;(a1,b1), and let [y be the orthogonal com-
plement of E; over k[i]. Fi has dimension n — 2, and 8|p, is nondegenerate. So, we can find
a nonzero vector x € Fy; N k™ such that S|g, (z,2) = 0. So, as in the last case, let ag = = and
by = Ax. As before, we have B(aj + iby, a1 —iby) # 0.

Let Ep = Spany; (a1, az,b1,b2), and let I, be the orthogonal complement of Ep over kli.
In this manner, we can create the bases that we noted in the opening paragraph of this proof.

Note that we always have

0= B(CLJ + Z.bj7al + Zbl) = (6(aj7al) - B(b]?bl)) + i(ﬂ(aj?bl) =+ 6(bj7al))7
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and when j # [ we have
0 = B(aj +ibj,a; — iby) = (B(aj, ) + B(bj, b)) + i(=B(aj, bi) + B(bj, ar)).

This tells us that when j # [ that
Blaj,bi) = Blaj, ar) = B(bj, bi) = 0.

When j = [, we see that 5(bj,b;) = B(aj,a;) and that B(a;,b;) = —B(b;,a;). The last of these
shows that ((a;,b;) = 0, regardless of the values of j and .
Let
U= (al, ceey a%,bl, vevy b%)

Uy 0

Then, it follows that UT MU = where Uj is a diagonal § x § matrix.
1

Lastly, since b; = Aa;, then it follows that Ab; = —a;. So, we have that
0 —In
A=U : UL
In 0

We now look at an example that highlights some of these results that we have just proven

O]

in the Type 3 case.

Example 2.2.15. Assume that § is the standard dot product. Then, Innyg can be a Type 3
involution of SO(4,R) only if we can choose A such that it is skew-symmetric and orthogonal

since this will imply that A?> = —I, and if the entries of A lie in k. Observe that the matriz

0

o
o O O =
O = O O

-1

s both skew-symmetric and orthogonal with entries in k, so it induces a Type 3 involution. It

can be shown that E(A, —i) has dimension 2. A basis for this subspace is formed by the vectors

v = +1

— o O O
S = O O
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and

0 1
1 10

Vg = +1
0 0
0 0

It can be shown that

0 0
0 10

V3 = —1
’ 0 1
1 0

and

0 1
1 10

= —1
! 0 0
0 0

are i—eigenvectors of A, where these are the conjugates of vi and va, respectively.

Following the notation of the previous lemma, we have

0 0 01
1
- 0 00 7
0 010
1 0 0 0
0 —1In
where UTU =T andAzU( I 02 >U‘1 . We note that U; = 1.
3

We now find conditions on Type 3 involutions that are equivalent to isomorphy, in the case
that i & k.

Theorem 2.2.16. Assume i@ € k. Then, if Inng and Inng are both Type 3 involutions of
SO(n, k, 8), then Innyg and Inng are isomorphic over O(n, k, [3).

Proof. By the previous Lemma, we can choose a matrix U € GL(n, k) such that

0 —In\ _,
AZU(In O2>U forU:(a1 az --- an b1 by --- b%)GGL(n,kJ),
2

where the a;j + ib; are a basis for E(A, —i), the a; — ib; are a basis for E(A,i), and UT MU =

Uy 0
! is a diagonal matrix.
0 U

41



Let
X = (a1 + ibq, ey an +ib%,a1 — by, ey @1 — ibg),

and consider Inny and Innpg as involutions of SO(n, k[i], 5). By construction, we see that X is a
matrix that satisfies the conditions of Lemma 2.2.12 for the group SO(n, k[i], 5). We note that
X1 = 2U;. We also know by the previous Theorem that Inng and Inng are isomorphic (when
viewed as involutions of SO(n, k[i], 5)) over O(n, k[i], B). So, we can choose Q; € O(n, k[i], 5)
such that QZ-_IAQi =DB.LetY = Qi_lX . We now show a couple of facts about Y.

First, we note that since Y was obtained from X via row operations, then for 1 < j < 3,
the jth and § + jth columns are i-conjugates of one another.

Also, note that

Y7'BY = (Q7'X) 'B(Q;'X) = X 'Q;BQ; ' X

_ x-lax — —iln 0 ‘
0 iz

Lastly, we see that

YTMY = (Q7'X)"M(Q;'X) = XT((Q; )" MQy)X
Cxtux— (O X Y_[ 0 20
X; 0 2; 0 )7

Y = (Cl + idy, e —f—id%,cl —idy, ey C— Zd%)

We can write

where ¢j,d; € k™. So, let
V= (Cl, ...,Cg,dl, ,d%) € GL(n, k‘)

0 —1In
It follows from what we have shown that B =V ( 02 > V1 where

n

0

vimy = [ O
0 U

) =UT"MU.

Now, let @ = UV ~!. We will show that Q~'AQ = B and Q € O(n, k, 3). This will prove

that Inng and Innp are isomorphic over O(n, k, ).
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We first show that @ € O(n, k, ).
QTMQ=wv Hr'muv—t = hHlwrmu)yw—? = v Hr'wvImvyv-" =M.
Lastly, we show that Q7 'AQ = B.

Q1AQ = wvhHtAawvh) =vutauv!

0 —I-\. _,
In 0

‘We have shown what was needed.

Combining the results from this section, we get the following corollary.

Corollary 2.2.17. IfInng and Inng are both Type 3 involutions of SO(n, k, 3), then Innyg and
Inng are isomorphic over O(n,k,3). That is, SO(n,k, ) has at most one isomorphy class of

Type 3 involutions.

2.2.4 Type 4 Involutions

We now move on to a similar classification in the Type 4 case. First, we characterize the
eigenvectors of the matrices that induce these involutions. Recall that we can choose A €
O(n, k[\/a], B) such that each entry of A is a k—multiple of \/a, and that we know A? = —1I.

We begin by proving a couple of lemmas about the eigenspaces of these matrices.

Lemma 2.2.18. Suppose A € O(n, k[\/a], B) induces a Type 4 involution of SO(n,k, 3). Also
suppose x,y € k™ such that v + /—ay € E(A,—i). Then, v — /—ay € E(A,i). Likewise, if
u,v € k™ such that u++/—av € E(A,i). Then, u—+/—av € E(A, —i). Further, dim(E(A,1)) =
dim(E(A, —1)).

Proof. Suppose x,y € k™ such that = + /—ay € E(A, —i). Then,

Az + V—ay) = —i(z + vV—ay)

which implies

Az + /—aAy = oy — ix.

Then, complex conjugation tells us that

Ar — /—aAy = Jay + iz,
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which tells us that

Az = V=ay) =i(z — V-ay).

A similar argument shows that if u,v € k™ such that u + /—av € E(A,i). Then, u — /—av €
E(A, —1).

Since = + v/—ay € E(A, —i) implies © — v/—ay € E(A,i) and vice versa, then we see that
dim(E(A,4)) = dim(F(A, —1)). O

Lemma 2.2.19. Suppose 9 = Inny is a Type 4 involution of SO(n, k,3) where A €
O(n, k[\/a], B). Then, we can find x1, s T, Y1, Yo € KT such that the x4 v/—ay are a basis
for E(A, —i) and the x — \/—ay are a basis for E(A,1).

Proof. Since Inny is Type 4, then we are assuming that A € O(n, k[\/a], 3) and A%2 = —I. Note
that this also means that n is even. It follows that all eigenvalues of A are +i. Since there are no
repeated roots in the minimal polynomial of A, then we see that A is diagonalizable. We wish
to construct bases for F(A, i) and E(A, —i) such that all the vectors lie in k[i]". Let {z1, ..., 2}
be a basis for k™. For each j, let u; = (y/aA — /—al)z;. Note that

Auj = A(VaA —V=al)z = (VaA® —V=ad)z; = —i(VaA - V=al)z = —iu;.

So, {u, ..., u, } must span E(A, —i). Thus, we can appropriately choose § of these vectors and
form a basis for E(A, —i). Note that each of these vectors lies in k[i]™. Label these basis vectors
as v, ..., Uz, We can write each of these vectors as v; = x; + /—ay;. By the previous lemma,
we know that x; — /—ay; € F(A, i), and it follows that these will be linearly independent.
Since there are § of them, then they form a basis for E(A, 7).

O

We are now able to prove results that characterize the matrices that induce Type 4 invo-
lutions, and then use these characterizations to find conditions on these involutions that are
equivalent to isomorphy. We will have separate cases, depending on whether or not /—a lies
in k. We begin by assuming that v/—a € k. Since we are also assuming that \/a & k, then it
follows from these two assumptions that @ and —1 lie in the same square class of k. Thus, we

can assume in this case that &« = —1, which means /—a = 1.

Lemma 2.2.20. Assume /—a € k and suppose 9 = Inny is a Type 4 involution of SO(n, k, 3).
—iln 0 0 X
Then, A = X "3 4 X1 for some X € GL(n, k), where XTMX = !
0 ZI% X; 0
and X, is diagonal.
Proof. We know from Lemma 2.2.19 that we have bases for E(A,—i) and E(A,I) that lie in

k™. We will show that we can in fact choose bases aq, ..., an for E(A,—i)NEk™ and by, ..., b% for
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E(A,i) N k™ such that (aj,a;) = 0= B(b;,b;) and B(aj,b;) is nonzero if and only if j = 1. We
will build these bases recursively.

First, we know that we can choose some nonzero a; € E(A, —i) N k™. Then, since [ is non
degenerate, we can choose a vector ¢ such that 3(aq,t) # 0. We note that E(A, —i) @ E(A,i) =
k™, so we can choose t_; € E(A,—i) N k™ and t; € E(A,i) N k™ such that ¢ = ¢t_; + ¢;. Since
B(a1,t—;) = 0, then it follows that B(ai,t;) € k is nonzero. Let by = t;.

Let E; = Spany(ay,b;) and let F; be the orthogonal complement of E; in k™. Since the

system of linear equations
Blar,z) =0

B(b1,x) =0

has n — 2 free variables, then we see that F; has dimension n — 2.

We now wish to find as € F1 NE(A, —i). Similar to the construction in the previous lemma,
we can choose x € F, and let ag = (y/aA — y/—al)z. It follows that ay € Fy N E(A, —i). Now
we want by € Fy N E(A,4) such that B(ag,b2) is nonzero. Since |r is non degenerate, then
there exists some y € Fy such that (ag,y) # 0. Similar to the construction of by, we see that
this implies the existence a vector by that fits our criteria.

Now, we let Eo = Spany(ay, ag, by, be) and let F» be the orthogonal complement of Es in k™.

We continue this same argument 5 times, until we have the bases that we wanted to find. Let
X = (al, ceey CL%, bl, ceey b%)

Then, the result follows. O
Here is an example of a Type 4 involution when /—« € k.

Example 2.2.21. Assume that 8 is the standard dot product and that k = 3, the field of three
elements. So, V2 = i. Observe that the matriz

001 1

0 0 1 -1
A=1

2 2 0 O

21 0 O

is both skew-symmetric and orthogonal. Since each entry is Fs—multiple of i, then it follows

from our work on automorphisms that Inn 4 is an involution of SO(4,Fs3) of Type 4. A basis for
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E(A, —i) is formed by the vectors

0 1 1
0 2 2
’Ul = + =
0 0 0
1 0 1
and
0 1 1
0 1 1
Vo = =+ = .
1 0 1
0 0 0
It can be shown that
0 1 2
0 2 1
Va = — =
° 0 0 0
1 0 1
and
0 1 2
0 1 2
Vo = — =
? 1 0 1
0 0 0

are 1— eigenvectors of A.

Following the notation of the previous lemma, we have

0011
00 21
X = ,
01 00
1 0 0O
1 0 0O 0 1 0
01 00 0O 0 01
where XTX = and A = —iX XL, We also note that
00 20 -3 0 0 0
00 0 2 0O —7 0 0
X, =1

Now we characterize the isomorphy classes of Type 4 involutions in the case where \/—a € k.

Theorem 2.2.22. Assume that /—a € k. Then, if Inng and Inng are both Type 4 involutions
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of SO(n, k, ) where the entries of A and B are k-multiples of \/a, then Inng and Innp are

isomorphic over O(n, k, ).

Proof. Suppose we have two such involutions of SO(n, k, 3). Let them be represented by matrices
A, B € O(n, k, 3). By the previous Lemma, we can choose X,Y € GL(n, k) such that

—il 0
0 I

0 X
XTMX = ),

X1 0

0 Y,
YTMY = L,

i 0

Since X7 and Y7 are both invertible diagonal matrices, then we can choose Ry and Rs €

R
GL(Z, k) such that Y1 = RTX|Ry. Let R = ( 01

X1AX = ( ) =Y 'BY,

and

where X7 and Y7 are diagonal.

2 R2

this that RFXTMXR = YT MY . We will show that Q € O(n, k, ) and Q"' AQ = B. This will
then prove that Inn4 and Inng lie in the same isomorphy class.
First we show that @ € O(n, k, 3). Note that

0
) and Q = XRY L. It follows from

QTMQ = (XRY HYI'M(XRY 1) = (Y HIRU(XTMX)RY !
=Y HIyTmMy)Yy ! =M,
which proves this claim.

—I 0

Lastly, we show that Q71 AQ = B. We first note that R and ( 0 il ) commute. Then,
i

we see that

Q'AQ = (XRY H'AXRY ) = YR Y X 'AX)RY !

—iI 0 —il 0
S RY ' =YR'rR| y-!
0 il 0 il

We have shown what was needed.

47



We now examine the case where v/—a & k.

Lemma 2.2.23. Assume /—a & k and suppose 9 = Inny is a Type 4 involution of SO(n, k, 3).

0 In
Then, A = —?U > UL for
—Q/I% 0

U:(a1 ay - an by by - b )GGL(n,k),

|3

3
where the a; + /—abj are a basis for E(A, —i), the a; —/—abj are a basis for E(A,i), and

U 0
UTMU = ! 1 is diagonal.
0 aUl

Proof. We know from Lemma 2.2.19 that we have bases for E(A,—i) and E(A,I) that lie in
k[v/—a]™. We will show that we can in fact choose bases a; + v/—abi, cyan + \/—70417% for
E(A,—i) N k[i]" and a1 — v=aby,...,an — /—abn for E(A,i) N k[y/—a]" such that S(a; +
V—abj,a; — \/—ab;) is nonzero if and only if j = I. From this, we will be able to show that
B(aj,a;) = 0= B(bj,b;) when j # [ and f(a;,b;) = 0 for all j and [. We will build these bases
recursively.

Given any vector x € k", we know that x 4+ iAx € E(A, —i). We want to choose z € k"
such that 8(x,z) # 0. (The reasons for this will become apparent.) M is an invertible matrix,
so there are at least n instances of eJTM e; # 0. If there is an instance where j = [, let = e;.

If instead we have e]TMel =0= elTMej, then let x = e; + ¢;. We note that this works because

Bz, x) = Ble; + e, e+ e) = 26(ej,e) # 0.

So, we have x € k™ such that 5(z,x) # 0, and we have z +iAx € E(A, —i). Let a; = = and
b = ﬁAw. So, a1 + /—ab; € E(A,—i) and a1 — /—ab; € E(A,i). From this, it follows that

B(al + \/—7ab1,a1 — \/TOébl) = (B(al,al) + aﬁ(bl,bl)) + \/—704(—6(@1,191) + 5(@1,1)1)

= B(z,z) + af <fo NG ) = 2B(z,x) #0.

Let E1 = Spany, /=g (a1 + V—abi,a1 — /—aby) = Spany /= (a1,b1), and let Fy be the
orthogonal complement of E; over k[v/—a]. F} has dimension n — 2, and 3|z, is nondegenerate.
So, we can find a nonzero vector x € Fy N k™ such that 3|g, (x,z) = 0. So, as in the last case,
let as = x and by = ﬁAm. As before, we have ((az + v/—aba, az — /—aby) # 0.

Let Ey = Spank[\/ja] (a1,a2,b1,b2), and let Fy be the orthogonal complement of Es over
k[v/—a]. In this manner, we can create the bases that we noted in the opening paragraph of

this proof.
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Note that we always have
0= B(aj +v—abj, a1+ V—ab) = (B8(aj, 1) — aB(bs, b)) + vV—a(Blag, bi) + B(bj, a)),
and when j # [ we have
0= Blaj + V—abj,ar — vV=aby) = (B(aj, ) + af(bj, b)) + vV=a(=B(a;, bi) + B(bs, ar))-
This tells us that when j # [ that
Blaj,br) = Blaj, ar) = B(bj, br) = 0.

When j = I, we see that 3(bj,b;) = 1 B(a;, a;) and that B(a;, b;) = —B(bj, a;). The last of these
shows that B(aj, b)) = 0, regardless of the values of j and [.
Let
U= (al, cesy a%,bl, ceey b%)

U 0
Then, it follows that UT MU = ( 01 > where Uy is a diagonal § x 5 matrix.
U1
«
Lastly, since b; = %Aaj, then it follows that Ab;, = —%aj. So, we have that A =

w3

0 I
Yoy Ut
—ozI% 0

Here is an example of a Type 4 involution in the case that v/—a & k.

Example 2.2.24. Assume that § is the standard dot product. Then, Inng can be a Type 4
involution of SO(4,Q) only if A & O(4,Q) is skew-symmetric and orthogonal (if we scale A
appropriately), since this will imply that A?> = —I. Observe that the matriz

0 0 1 1

A:Q 0O 0 1 —1
2 -1 -1 0 0

-1 1 0 0

is both skew-symmetric and orthogonal. Since each entry is k—multiple of \/2, then it follows

from our work on automorphisms that Inng is an involution of SO(4,Q) of Type 4. It can be
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shown that E(A, —1i) has dimension 2. A basis for this subspace is formed by the vectors

1
0 —3
0 /2 i
v = +v—=2
! 0 0
1 0
and
1
0 —3
o |, |
Vg = +v-=2 .
? 1 0
0 0
It can be shown that
0 _1
2
0 1
V3 = -V -2 2
0 0
1 0
and
1
0 3
0 _1
Vg = 1 —V —2 2
0 0

are i—eigenvectors of A, where these are the conjugates of vi and va, respectively.

Following the notation of the previous lemma, we have

1 1
00 -3 —3
1 1
g | 90 2 3
01 0 o0 |’
10 0 O
100 0 0 0 1 0
01 00 0 0 0 1
where UTU = 1 and A = —?U U1 . We also note
00 3 0 V2 0 00
000 3 0 —vV2 00
thatUlzl.

We now find conditions on Type 4 involutions that are equivalent to isomorphy in the case

where v/—a € k.
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Theorem 2.2.25. Assume /—a & k. Then, if Inng and Inng are both Type 4 involutions
of SO(n, k, ) where the entries of A and B are k-multiples of \/«, then Inng and Inng are

isomorphic over O(n,k, ).

Proof. By Lemma 2.2.23, we can choose a matrix U € GL(n, k) such that
0 1
A= \/aU Ut
« —Oélg 0

U:<a1 a2 o a

|3

for
by by -+ ba ) 7
where the a; + /—ab; are a basis for E(A, —i), the a; — \/—ab; are a basis for E(A,1), and
U

UTMU = ! 1 is diagonal.
0 -U

Consider Inn 4 and Innpg as involutions of SO(n, k[v/—al, B). If k[v/—a] = k[/a], then these
are Type 3 involutions of SO(n, k[v/—a],3), since A and B would have entries in the field,
and i € k[/—a]. Otherwise, if k[v/—a] # k[y/a], then these are Type 4 involutions where
V—a € k[v/—al.

Let

w3

X = (a1 + V—aby, wyan +y/—abn,a; — V—aby, ..., an — \/—ab%).

By construction, we see that X is a matrix that satisfies the conditions of Lemma 2.2.14 or
Lemma 2.2.20 for the group SO(n, k[v/a], 8). We note that X, = 2U;. We also know by Corollary

2.2.17 or Theorem 2.2.22 that Inny and Innp are isomorphic (when viewed as involutions of

SO(n, k[v/—al,B)) over O(n,k[v/—al, ). So, we can choose Qo € O(n,k[\/—al,3) such that
Q 'AQ, = B. Let Y = Q.1 X. Since Y is constructed by doing row operations on X, then we

can write

Y = (1 +V—ady, ey Cn+ \/—ad%,cl — v —ady, ey Cn = —ac%),

where c;,d; € k. We now show a couple of facts about Y.
First, we note that since ¥ was obtained from X via row operations, then for 1 < j < 7,
the jth and 5 + jth columns are i-conjugates of one another.

Next, we observe that

YTIBY = (Q'X) ' B(Qy'X) = X' QaBQ' X
vy [ 0
0 ily
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Lastly, we see that

YIMY = (Q.'X)"M(Q;'X) = XT((Q3")"MQa)X
_ xTyx — 0 Xi _ 0 2U;
X, 0 2, 0 )

V = (Cl, ...,C%,dl, ,d

Let

It follows from what we have shown that B = —ﬂV ( > V1 where VIMV =

U 0
L | =UuTMU.
0 lo
Now, let Q = UV~1. We will show that Q='AQ = B and Q € O(n, k, 3). This will prove
that Inny and Innpg are isomorphic over O(n, k, 3).

We first show that Q € O(n, k, ).
QTMQ=wvHrmuv—t=wvHTwrmu)ywv="t = v HrwvTmvyv-t = M.
Lastly, we show that Q7 'AQ = B.

Q'AQ = (UV H) 1AWV Y =vU AUV !

:_‘/av< 0 I(;i )V—lzB.

—aln

2

‘We have shown what was needed.

Combining the results from this section, we get the following corollary.

Corollary 2.2.26. If Inng and Inng are both Type 4 involutions of SO(n,k,[3), then Inny
and Innp are isomorphic over O(n, k, ) if and only if A and B have entries lying in the same
field extension of k. That is, SO(n, k, ) has at most |k*/(k*)?| — 1 isomorphy classes of Type

4 involutions.

2.3 Types 1 and 2 Involutions as products of reflections

In this section, we take a slight detour from our main task of finding the isomorphy classes of in-
volutions to see that if Inny is a Type 1 or 2 involution of SO(n, k, ) where A € O(n, k[\/al, ),
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then A is actually the product of m = dim(E(A, —1)) commuting reflections.

Definition 2.3.1. Fix a non-degenerate symmetric bilinear form . Choose a vector x € k™ such
zzT M

that B(z,x) = T Mx # 0. We call matrices reflections if they are of the form Sy = I — P VL

We now recall some well-known facts about reflections that follow directly from the defini-

tion.
Proposition 2.3.2. Suppose S, is a reflection for some x € k™. Then we have the following:

(i

) Sz(z) = —z, and x spans the -1 Figenspace of Sy.
(i1) y is perpendicular to x if and only if S;(y) = y.
(iii) S2 = 1I. That is, S, is an involution.

)

S, € O(n, k, 8) \ SO(n, k, B).

(iv
We also recall this well-known fact from linear algebra.
Lemma 2.3.3. Let A, B € GL(n, k) be diagonalizable. Then, AB = BA if and only if A and
B are simultaneously diagonalizable.
With the previous results in mind, we can show when two reflections are commutative.
Lemma 2.3.4. Let x1,...,x, be an orthogonal basis for k™ with respect to a non-degenerate

symmetric bilinear form B such that 1‘Z-TMa:j # 0. Then, for any x;,x; € {x1,...,xn}, Sy, and
S,L«j commute.

Proof. Assume the hypotheses. Then, let () be the matrix with these vectors as the columns,
where z; is the ith column of (). We will prove the result for x; and xs, and observe that all

other cases are similar. Note that

-1 0 O

0O 1 0 0
Q7'S,Q=] 0 0 1

: 0

0 O 0 1

and

1 0 0 0

0 -1 0
Q1'8,Q=]0 0 1

: 0

0 0 0 1
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So, Sz, and Sy, are both simultaneously diagonalizable, therefore they must commute.
O

We are now able to show that for A to induce a Type 1 or Type 2 involution on SO(n, k, 3),
then it must be the product of orthogonal reflections. That is, the vectors that induce these

reflections are orthogonal to one another.

Proposition 2.3.5. Suppose A € O(n, k[\/al, B) is a matriz such that Inn 4 is a Type 1 or Type
2 involution of SO(n, k, 3), for some o € k. Then A can be minimally written as the product
of m < n orthogonal reflections of the form Sy = I — Qiﬁ% for some x € k[\/a|". That is,
where xT Mz ; = 0 whenever i # j. Further, m = dim(E(A, —1)),

that is, m is the dimension of the -1 eigenspace of A. If B is the standard dot product, then A

we can write A =Sy, -+ S,

Tm

18 symmetric.

Proof. Choose x1, ...,x, € E(A, —1), where these vectors form an orthogonal basis of F(A, —1)
when viewed as a subspace of k[/a]”. We also know from previous results that all of these
vectors are such that a7 Mz; # 0. Likewise, choose 11, ..., 7, € E(A, 1), where these vectors
form an orthogonal basis of F(A, 1) when viewed as a subspace of k[\/a]" such that ] Mx; # 0.
We claim A = S;, -+ S5,

To prove this, we first show that 1, ..., x, forms an orthogonal basis for £”. It suffices to show
that 1-eigenvectors and -1-eigenvectors are orthogonal. So, suppose Az; = x; and Az; = —x;.
Then,

Il Maj = (Az) T M(—Azj) = —o] A" M Az; = —a] Ma;,

which can only be true if x;‘FM x; = 0, as desired. So, 71, ..., is indeed an orthogonal basis of
k™.
We will now show that A =S, ---S,,,. Note that since the set

{z1,...,xn}

is orthogonal, that the reflections Sy, ..., S;,, are all pairwise commutative. So, it follows that

when 1 <7< m and

when m+1 <7< n.
Choose v € k™ and write

V=921t + YnTn-
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Observe that
Av = A(viz1+ -+ WTn)

= —YZ1 = — YmTm + Ym+1Tm+1 + - + VnTn,

and that
(le o 'Srm)'U = (le o Srm)(’Ylwl +--- 4+ 7nxn)

= 71(51‘1 e Smm)wl + .-+ 7n(5$1 ‘e Sxm)xn
= —7T1 = = VmTm + Ym+1Tm41 + 0+ YnTn-

This proves that A = S;, - -+ S;,,, and the rest of the claim in the general 8 case.
If we assume that 3 is the standard dot product, then A7 = (S, -+ S;,,)T =S ... 8T =
oSy =84 - S

Im

Sz = A, which shows that A is symmetric.

m

O]

If we combine this with some of the results from the previous section, then we get the

following theorem.

Theorem 2.3.6. Suppose ¢ is a Type 1 or Type 2 involution of SO(n, k,3). Then, there exists
an orthogonal matrix A such that Inng = ¢. Further, A is the product of m < n orthogonal
reflections. That is, A = Sy, - -+ Sg,, where xiTMmj =0 if i # j. Further,

(i) if n is odd, then we can choose z; € k™ for each i, and A € SO(n, k, );
(it) if n is even and A € O(n, k, 3), then we can choose x; € k" for each i;

(73) if n is even and A & O(n, k, B), then A € O(n, k[\/a], B) for some o € k such that /o & k
where \/aA € GL(n, k), m = § and x; = uj + \/av; for some nonzero uj,v; € k™ for
each j.

We make one final observation in this section about involutions that are actually outer

automorphisms of SO(n, k, B). Recall that in this case n must be even.

Corollary 2.3.7. If k = k and Inny is an involution of SO(n,k,3), then Inny is an outer
automorphism if and only if Inny is Type 1 or 2 and dim(E(A, —1)) is odd. That is, the matrix

A must be the product of an odd number of reflections.
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2.4 Maximal Number of Isomorphy classes

From the work we have done, it follows that the maximum number of isomorphy classes of
involutions of SO(n, k, B) over O(n, k, ) is a function of the number of square classes of k, and
the number of congruency classes of invertible diagonal matrices over k. We first define the

following formulas.

Definition 2.4.1. Let 71(k) = |k*/(k*)?| — 1 and 12(m, k) be the number of congruency classes
of invertible symmetric matrices of GL(m, k) over GL(m, k).

Let Ci(n,k, ), Ca(n,k, (), Cs(n, k,B) and Cy(n,k,B) be the number of isomorphy classes
of SO(n, k, B) involutions over O(n, k,3) of types 1, 2, 3, and 4, respectively.

From our previous work, we have the following:

Corollary 2.4.2. (i) Ifn is odd, then

n—1
7
Cl(nvkaﬁ) < Z TQ(nima k)TQ(m7 k)
m=1
If n is even, then
(3. 5)
Culn, b, B) < [ D7 72(n = mok)ralm, k) | + < e ) + 7 (5.k).
m=1

(i) If n is even, then

Coln, k. B) < (k) << 72“2;”‘” ) + (’;,@) |

(#i) If n is even, then
CS(nv kjvﬁ) <L

(iv) If n is even, then

04(71, kv ﬁ) <7 (k)

(v) If n is odd, then Co(n,k,B) = Cs(n,k,B) = Cy(n, k,3) = 0.

We now list values of 71 and 7 for a few classes of fields.
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Table 2.2: Some values of 71 (k)

k | k|R|Fy2 fqg| Qap#2| Qo
(k) [0 1 1 3 7

Table 2.3: Some values of 7o(m, k)

k [k [R[F,2 fq
nk) |12 m+1

For the Qp, 72 is a bit more difficult. Here we have

3
Ta(m,Qp) = (m)
23, m >3

when p # 2 and
7
14--- . m<7
T2(m, Q2) = m .
27, m=>=7

Based on these values of 7 and 7o, it is a straightforward matter to compute the maximal

value of Cj(n, k, 3) for the fields mentioned above. We do so explicitly for the fields &, R, and
[F, where 2 /g.

Corollary 2.4.3. Suppose k =k

03

(i) If n is odd, then Ci(n,k, ) < "Tfl If n is even, then Ci(n,k, ) <

(ii) Ca(n,k,B) = 0.

(iii) If n is odd, then Cs(n,k,B) = 0. If n is even, then Cs(n,k, 3) < 1.
(iv) Cy(n,k,B) =0.
Now suppose k =R

(i) If n is odd, then

‘3
V||
-

Ci(n,R, B) < (m+1)(n—m+1).

3
I
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If n is even, then

n—1

Ci(n, R, B) < Z(m+1)(n—m+l) + ( TQL—;l ) N

m=1

(i) If n is odd, then Ca(n,R,3) = 0. If n is even, then

(L |
Co(n, R, B) < ( 2‘; )+Z+1.

(#i) If n is odd, then Cs3(n,R, ) = 0. If n is even, then C3(n,R, ) < 1.

(iv) If n is odd, then Cy(n,R,B) = 0. If n is even, then Cyq(n,R, ) < 1.

Lastly, suppose k =F, such that 2 /q.
(4) If nis odd, then Ci(n,Fy, B) < 2n — 2. If n is even, then Ci(n,Fy, §) < 2n — 1.
(i) If n is odd, then Ca(n,Fy, B) = 0. If n is even, then Ca(n,F,, 3) < 3.
(#3) If n is odd, then C3(n,Fy, B) = 0. If n is even, then Cs(n,Fy, ) < 1.

() Ifn is odd, then Cy(n,Fy, ) =0. If n is even, then Cy(n,Fy, B) < 1.

2.5 Explicit Examples

2.5.1 Algebraically Closed Fields

We now find the exact number of isomorphy classes for some friendly SO(n, k, 3). We begin by
looking at the case where k = k. Note that all symmetric non degenerate bilinear forms are

congruent to the dot product over an algebraically closed field.

Corollary 2.5.1. Assume k = k. If 9 is an involution of SO(n, k), then ¥ is isomorphic to

_Im 0 0 —Iﬂ
>and0§m<g,orA:< 2

Inng where A =
I n 0

0 n—m

Proof. Since k is algebraically closed, we know that all involutions of SO(n, k) are of Type 1 or
—In 0

0 Inm
know X7 X is diagonal. We know that X7 X must be congruent to I. Since we are looking for

3. We first deal with the Type 1 case. We can write A = X ( X1 where we
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representatives of our isomorphy class, we assume X X = I, and we can choose X = I, which

-1 0
means A = " is a representative of our isomorphy class.
0 Infm
: : e 0 In I
We see that Type 3 involutions will exist since J = / 02 will induce a Type 3
bl

involution. Thus, these is one isomorphy class of Type 3 involutions.

We note that in this case, that the maximal number of isomorphy classes do in fact exist.

That is, in Corollary 2.4.3, for the case where k = k, we have equality in every statement.

2.5.2 The Standard Real Orthogonal Group

We now examine the case where 3 is the standard dot product, and k£ = R.

Corollary 2.5.2. If 9 is an involution of SO(n,R), then ¥ is isomorphic to Inng where A =

—I, 0 0 —In
and 0 < m < 5, or A = 2 |. There are no Type 2 or Type 4
0 I—m Ig 0

involutions for this group.

Proof. We begin with involutions of Type 1 and proceed in a fashion similar to the previous

-1 0
corollary. So, we can write A = X " I X1, where we know X7 X is diagonal.
n—m

Based on the conditions of Lemma 2.2.3, we know that X7 X congruent to a diagonal matrix
with entries all 1’s and -1’s. Since we are looking for a representative of our congruence class,
let us assume we have equality. But, we see that there can be no -1’s in the diagonal since £ = R

and X7 X would have to have negative eigenvalues. So, we assume X’ X = I,,, which means

—1, 0
we can choose X = I,. So, A = Om I is a representative of our isomorphy class.
n—m

We now assume we have an involution of Type 2, and we will make use of Lemma 2.2.7. We

0 In X
can write A = —%X ( 2 >X1 where X7 X = ( 01 Ly
aX1

aln
2 «
that o € R* but \/a € R*. So, @ must be a negative number, and we can choose « = —1. That

X 0
is, XTX = 01 < | But, this is a contradiction, because when k£ = R, there does not
—X1

> is diagonal. We recall

exist any nonzero vectors x such that 27z < 0, so the whole diagonal of X” X must be positive,

which is not possible. This shows that there are no Type 2 involutions in this case. In a similar

way, we can show that there are also no Type 4 involutions in this case.

_I% ) X! where XTX = ( Xi 0 ) is
0 0 X3

diagonal. Similar to the Type 1 case, we know that X7 X must be congruent to I, so we

In the Type 3 case, we have A = X <

n
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may assume that X7 X is I, and choose X = I as our representative. Then, we get that

A= ( IO _ég ) is a representative of the only Type 3 isomorphy class. O
2

Unlike the algebraically closed case, we note that in this case, that the maximal number of

isomorphy classes do not exist. That is, in Corollary 2.4.3, for the case where kK = R, we have an

explicit example where we do not have equality. In fact, given that we have seen that the Type

1 and 3 cases must exist for this group, we actually have the minimal number of isomorphy

classes possible.

2.5.3 Orthogonal Groups of I,

We begin by examining the Type 1 involutions where k£ = [F, where ¢ = p" for all cases where
p > 5, and one of the cases where p = 3. This is a complete classification of the involutions
when n is odd. We note that for these fields we have |(k*)?| = 2. So, we will use 1 and M,
as representatives of of the distinct square classes. Based on properties of symmetric matrices

over k = IF,, we know that up to congruence, there are two possibilities for M: either M = I,
I 0

or M = nO ! Ik In the latter case, if p = 3, the group may not be friendly. So, the
q

following results may not cover this case.

Corollary 2.5.3. First, assume that M = I,,. Suppose ¥ is a Type 1 involution of SO(n,F,).

Then ¥ is isomorphic to Inng where we can write A = I,y m for 0 <m < 5 or

2
—Inq 0 0 0
_9a® 2ab
= 0 1 2Mq 0 M,
0 0 Iy—m—1 0
2ab b2
0 Miq 0 1— 2E

for 0 <m < 5, where My is a nontrivial non-square in I, where a’+ b = M, and a,b € F,.
I,1 O

0 M,
¥ is isomorphic to Inny where we can write

Now, assume that M = ( ) Suppose U is an involution of SO(n,Fy, 3). Then

A=Imm or A= I,

for()émég.
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Proof. We will use the same methods that we used in the proofs of the previous corollaries.
That is, we will use the equivalent conditions of Lemma 2.2.3 to prove that the matrices listed

above will be representatives of the isomorphy classes of the involutions of SO(n,Fy).

—I; 0
WecanwriteAzX( OS I >X_1,Wheres+t:nandwekn0vv
¢
X
xTax = Y
0 Xo

must be diagonal, and X; is an s X s matrix, and X9 is a t X t matrix. It is a result from

I 0
[HWD2004] that any diagonal matrix over F, must be congruent to either I or 0 M )
q

where M, is some fixed non-square in F,. So, we know from the equivalent conditions in Lemma

I

2.2.3 that X; and X2 must each be congruent to I or ( ) (sizing the matrices appro-
q

priately). Let us first assume that M = I. Since det(X” X) = (det(X))? is a square, we observe

I 0
that X; and X9 must be simultaneously congruent to either I or (again, sizing
q
appropriately).
Since we are searching for a representative of the congruence class, we can assume that
I 0 0 O
e 0 M, 0 .
X+ X is either I or o 0 I o . In the first case, we can let X = I, which means
0 0 0 M,

I 0 0 O
0 M, 0 0
In the latter case, we here we assume X' X = 1 , we can let
0 0 I 0
0 0 0 M,
1 0 0
¥ — 0 0 b
0 0 I O
0 =b 0 a
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where we choose a and b so that a% + b2 = M,. It follows from this that

—L1 0 0 0
_9a® 2ab
= 0 1 QNG 0 M,
0 0 In—m—1 0
2ab b2
0 Miq 0 1-— QE

I,.1 O

If we now assume that M =
0 M,

) , then we have that X7 M X is congruent to

In_; 0 O
I 0 2
( ”0 1 o ) or 0 M, 0 . In the first case, since we are looking for a represen-
q
0 0 I

|3

I, 0 I, 0
tative of our congruence class, we can assume X° < nl ) X = ( nl ) This

0 M, 0 M,
_Is 0 . . T .
means we can choose A = 0 I as our representative. If instead X* M X is congruent
t
I
Lyt 0 a 0 1
to 0O M, O , then we can choose X = . This gives represen-
I 4
0 0 In
2 1 0
—ls—1
tative A = I

O

We note that in these cases, we have that if n is odd, then Ci(n,Fy, 8) = 2n — 2, and
if n is even, then Ci(n,Fy, ) = 2n — 1. That is, for k = F,;, we always have the maximal
number of Type 1 involutions. If n is even, does this occur for the other types of involutions?
We now restrict our attention to the case where n is even and [ is the standard dot product.

We have seen that we can have at most one class of Type 3 involutions, and we note that in
0 In
fact C3(n,F,;) = 1 since the orthogonal matrix A = I 2 | will always induce a Type
%
3 involution.

Lastly, we need only consider Type 2 and Type 4 involutions. We know that Cy(n,F,) < 3
and Cy(n,F,) < 1. We will specifically look at the cases where ¢ =3, 5, and 7. For these cases,
we see that we have existence of both Type 2 and Type 4 involutions via the matrices in Table
2.4.

We note that these examples will all generalize to higher dimensions, so it is clear that for
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Table 2.4: Type 2 and Type 4 examples for SO(4,F,)

k Type 2 Type 4
1100 1 200
Ing1200 1o
001 1 001 2
001 2 0011
1100 1 400
1 400 1100
IE‘5‘/50011 ﬂ0014
001 4 0011
1 300 1 400
3600 3100
F7\/?:0013 \/30014
0036 00 3 1

these fields, whenever n is even we have Cy(n,Fy), Cs(n,Fy) > 1. So, for these three specific
fields, we know that Cy(n,F;) = 1, and that the number of isomorphy classes of Type 4
involutions are maximized as well. But, for SO(4,F,) where p = 3, 5, and 7, we have done
computations in Maple which use the conditions of Theorem 2.2.7 that show that for these
fields, C2(4,Fp,) = 1. So, the number of Type 2 isomorphy classes is not maximized in these
cases, despite the other three types being maximized. While we have been unable to prove this
up to this point, we believe that this is a pattern that would continue. That is, we have the

following conjecture:

Conjecture 2.5.4. Suppose that SO(n, k) is a finite friendly orthogonal group and that n is
even. Then, Ca(n, k) = Cy(n, k) = 11(k).

2.5.4 p-adic examples

We now turn our attention to the case where & = Q,. We will assume M = I,,. We show a
classification of the isomorphy classes of the Type 1 involutions of SO(n,Q,) where p > 2,
using Lemma 2.2.3. Note that if n is odd, then this is a complete classification of the isomorphy
classes of all the involutions of SO(n, Q).

Recall that the classification of involutions breaks down to analyzing the diagonal matrix

X; 0
XTX = 01 X ) , specifically by looking at the congruency classes of X; and Xs. The
2

final condition of Lemma 2.2.3 gave us conditions on the square class of the determinant and the
Hasse symbol to classify the isomorphy classes for SO(n,Q)). Using these conditions, we have

classified all of the possible isomorphy classes of Type 1 involutions based on what the values
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of X7 and X3 would be for a representative of the congruency class in Tables 2.5 and 2.6. To

show that each of these possible congruency classes exists, one would need to find a matrix X

Xy 0
such that XTX = < 01 < ) This would then determine A. In the case where —1 ¢ (Q;;)Q,
2
. . .. T Xl 0 .
this will always be the case. To see that this is true, note that X* X = % will
2

always be a symmetric matrix with a determinant that is in the same square class as 1. When

X 0 X 0
—-1¢ (Q;‘,)Q, all such matrices are such that c, ! =1 is the case. So, !
0 X2 0 X2

X; 0

will be congruent to I,,, which gives us the existence of X such that X7 X = w | In
2

X; 0
the case where —1 € (Q})?, then it is possible that ¢, ( 01 X ) = —1. For these cases, it is
2

. . X1 0
not clear (to the author) that there exists X such that X' X = 0 x|
2

Table 2.5: X; and Xy values when k = Q,, p > 2, and —1 € (@;;)2

X, X5 det(Xl) and det(XQ) Cp(Xl) Cp(Xz)
I, I, 1 1 1
Tn_3 0 0 0
I SEEE 1 Lo
0 0 0 pN,
( InO—l 2 ) ( zno_l 2 ) D 1 1
In_1 O In—2 v 0 _
(" 2) (" % ) P ! !
("¢ W) ("5 W, ) Ny ! !
L. o Tn_2 O 0 _
("' %) (2 ) Ny ! !
( Ino—l p](\J/p ) ( I'n(;l p]?]p ) pr 1 1
In_2 0 0
( fno p]?,p ) ( 0o r 131, ) pNp 1 -1
(’"&2 ° ) (’"52 o ) PN, 1 1
0 0 N, 0 0 N,
(I"o‘? > ) (’"0‘2 e ) N, 1 1
0 0 pN, 0 0 pN,
I,_o (0] (0] I,_o 0 0
G NIINCE Y P i
In—3 O 0 0 I,_3 0 0 0
(85&8)(85&;8 I 1|4
0 0 0 pN, 0 0 0 pN,
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Table 2.6: X; and X3 values when k = Q,, p > 2 and —1 ¢ ((@;)2

X1 X2 det(Xl) and det(Xg) Cp(Xl) Cp(XQ)
I, I, 1 1 1
1 1
( 0 p) ( 0 p) Y
Ino 0 0
(Inol O> 0O N, 0 p -1 1
P 0 0 pN,
In—l 0 In—l 0
o w) 0w Np K
v ) O ) 1|
Ino 0 0O
<I”01 ](ir ) 0 p 0 pN, -1 1
P 0 0 N,
I,o 0 0O I,o 0 0O
0O p O 0O p O PN, 1 1
0 0 N, 0 0 N,
Inos 0 0 Ino 0 O
0O N, 0 0 N, 0 p 1 1
0 0 pN, 0 0 pN,

We now assume that p = 2, and we construct a classification of the Type 1 involutions.
We again note that if n is odd, then this is a complete classification. We see that +1, £2, +3
and +6 are representatives for all of the the distinct square classes of (Q3)2. For this case, we
have not constructed tables with complete classifications of the two sets of isomorphy classes.
Instead, we have constructed a table, Table 2.7, where we have a diagonal matrix over Qs for
each possible pair of determinant square class and value of Hasse symbol. A potential isomorphy
class is determined by choosing for X; and X, any pair of matrices on this table where the
two given matrices have determinants in the same square class. So, given the different possible
Hasse symbol values, there are at most 24 isomorphy classes of Type 1 involutions. As in some

of the previous cases, it is not immediately clear that there does or does not exist a matrix X

X 0
in each of these cases such that X7 X = < 01 X > .
2
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Table 2.7: X7 and X9 values when k
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© o oo
coo 7| _— Py T — T —
— - - o o © - |2 ™ ©
oo m ol o o oo o S S
o™ o o™ o
\:/0200 — in — — i
N _ | o _nOO_OOo,~ Lo |9 | o
= S ~ Lo o 2 Lo o S
= ~ % ~ % ~
Cq,o ~—— | = ~_ ~_
e O 0o — e ~ |
~ ./m
(\
(\
PR N
200JH - )00%)006
— o e o
I = o ™ o © _
— )
— o 02004.0 _ oo 4 <
P~ ~ i L o )
~— ] ,O < < ]
o~ | ™ < ~ ™ ~ |
© Il B ~ ~__ ,nOO(./AnOO
~ ./An N———— ~
— in ™ X ™ o © ©

det(Y') square class
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Chapter 3

Isomorphy Classes of Involutions of
SP(2n, k)

3.1 Automorphisms of SP(2n, k)

It follows from a proposition on page 191 of [Bor91] that Aut(SP(2n, k))/ Inn(SP(2n, k))) must
be a subgroup of the diagram automorphisms of the Dynkin diagram C,,. Since C,, only has
the trivial diagram autormphism, then we have that Aut(SP(2n,k)) = Inn(SP(2n, k)). When
k is not algebraically closed, then all automorphisms of SP(2n, k) will still be of the form Inny4
for some A € SP(n, k) since all automorphisms of SP(2n, k) must also be an automorphism of
SP(n, k). Thus, the classifications and characterizations that follow in this paper consider all
automorphisms and involutions of SP(2n, k).

We now examine which automorphisms will act as the identity on SP(2n, k). This will prove
to be useful when we classify matrix representatives for automorphisms. The following two

results are from [Jac2005], the dissertation of Farrah Jackson.
Theorem 3.1.1. Let G = SP(2n,k). If Inn |g = id for some A € GL(2n, k), then A = pI for
some p € k.

From this, Jackson proved the following result that characterizes automorphisms of SP(2n, k).
We will see that for Inny to be an involution of SP(2n, k), that we can not only assume that A

is symplectic, but that the entries of A must lie in k, or an algebraic extension of k.

Theorem 3.1.2. (i) Suppose A € GL(2n,k). The automorphism Inny keeps SP(2n, k) in-
variant if and only if A = pM for some p € k and M € SP(2n, k).

(ii) If A € SP(2n,k), then Inny keeps SP(2n, k) invariant if and only if we can show A €
SP(2n, k[\/a]) where each entry of A is a k—multiple of \/a, for some « € k.
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3.2 Involutions of SP(2n, k)

We now begin to focus on involutions and the classification of their isomorphy classes. We will
distinguish different types of involutions. First, we note that for some involutions, ¢, there
exists A € SP(2n,k) such that ¢ = Inna, but not in all cases. Sometimes we must settle for
A € SP(2n, k[\/a]) \ SP(2n, k).

This is not the only way in which we can distinguish between different types of involutions.
If Inn, is an involution, then Inny2 = (Inna)? is the identity map. We know from above that
this means that A%2 = ~I for some v € k. But, we know that A is symplectic. So, A2 is also
symplectic. That means that (42)7J(A?) = J, which implies (yI)TJ(yI) = J, which means
4% = 1. So, ¥ = £1. Thus, we can also distinguish between different types of involutions by
seeing if A2 = I or A> = —I. This gives the four types of involutions, which are outlined in
Table 3.1.

Table 3.1: The various possible types of involutions of SP(2n, k)

| A€ SP(2n,k) | A€ SP(2n,k[/a]) \ SP(n,k) |
A% =1 Type 1 Type 2
A% =] Type 3 Type 4

3.2.1 Type 1 Involutions
We first characterize the matrices that induce Type 1 involutions in the following lemma.

Lemma 3.2.1. Suppose 9 is a Type 1 involution of SP(2n, k). Then,

I 0 0 0
0 —I: 0 0 .
A=X : X~
0 0 I 0

0 0 0 -1

t
2
where s +t = 2n and XTJX = J. That is, X € SP(2n, k).

Proof. Since Inn% = I and A € SP(2n, k), then it follows that A% = I. So, all eigenvalues of A
are £1. Since there are no repeated roots in the minimal polynomial of A, then we see that A is
diagonalizable. Let s = dim(E(A, 1)) and ¢t = dim(E(A, —1)), and observe that s+t = 2n since
A is diagonalizable. We will first show that both s and ¢ must be even. To do this, we proceed
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by contradiction and assume that s and t are both odd. So, there exists some Y € GL(n, k)
0

—I

T
I, I _
J=ATJA= (Y 0 y-')] Jy 0 y~!
0 —1I, 0 —1I,

I, 0 I, 0 _
= (Y HT YTy Yy~
0 —I 0 —I

I, 0 I, 0
Yoy = (y1Jy) :
0 —1I 0 -1
Y1 0

where YT JY is an invertible skew-symmetric matrix. So, YTJY = ( 0 Y for some
2

invertible skew symmetric matrices Y; and Ys, which are s X s and t X t, respectively. But odd

I
such that Y~1AY = ( 0 ) . Since A is symplectic, then it follows that

This implies that

dimensional skew symmetric matrices cannot be invertible, so this is a contradiction. Thus, s
and ¢ must be even.

We now wish to construct bases for E(A,1) and E(A, —1) such that all the vectors lie in
k™. Let {z1,..., zn} be a basis for k™. For each i, let u; = (A + I)z;. Note that

So, {u1,...,un} must span E(A,1). Thus, we can appropriately choose s of these vectors and
form a basis for F(A,1). Label these basis vectors as y1, ..., Y, Yn+1, o Ynts - We can similarly
form a basis for F'(A, —1). We shall call these vectors YS415 s Uns Ynt 3415 - Yom- Let YV be the

matrix with the vectors y1, ..., y2, as its columns. Then, by construction,

Is 0 0 0

0O —I: O 0
Y LAY = 2

0 0 Iy 0

0o 0 0 -—I

[SIES
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We can rearrange to get

Ig 0 0 0
0 —-I. 0 0
A=Y 2
0 0 Ig 0
0 0 0 —I.
2
Recall that AT = JAJ~!, since A € SP(2n, k). So,
T
Is 0 0 0 Is
2 2
0 —I. 0 0 X 0
Y 2 Y™ =J|Y
0 0 I; 0 0
0 0 0 —I% 0
This implies
Is 0 0 0 Is
2 2
0 -1 0 0 0
(v Hr : yT =gy
0 0 Ig 0 0
0 0 0 —]% 0
which means
I% 0 0 0
0 —1I: 0
2 YTy =vTJgy
0 0 I; 0
0 0 0 -—-I

Y1 0 Y, 0
0 Y3 0 Y
-5 0 Y;
0 -YI' 0 Y

So, YTJY =

trices, Y3 and Yj are % X % skew-symmetric matrices, Y5 is a

matrix.

s
2

We can choose a permutation matrix ) € O(2n, k) such that

—I,

A:YQ(IOS 0 )Qlyl
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, where Y7 and Y5 are

S

2

S
2

X

35
2

skew-symmetric ma-

matrix and Yy is a % X %



and
Y, Y5 0 0
- Ys 0 0
0 0 Y3 Y
0 0 Y[ ¥

YTJY =Q QL.

Yi Y Y- Y,
Let Y7 = 1T 2 and Yg = ST * ). Note that both Y7 and Yg are skew-
Y, Y Yy Yo

symmetric. We can rearrange the above statement to be

o (v oo
QYJYQ_<O Ys>'

Ny 0

It follows that there exists N = (
2

> € GL(n, k) such that

0 Is 0 0
2
—1Is 0 0
NTOQTYTJYQN = 2
@ @ 0 0 0 I
0 0 —I. 0

t
2

We see that we can again use the permutation matrix @) to get

ONTQTYTJYQNQT = ( OI IO" ) =J

Let X = YQNQT. Then,

I 0 0 I 0 0 0

x| O 0 0 e yonor] O T 00 | yowgr
0 0 Iy 0 0 0 Is 0
0 0 0 -I 0 0 0 -I

t
2

Ny 0 I, 0 N0 L
— YQ 1 L Q IY 1
0 Ny 0 —I 0 N,
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I 0 0 0
0 —1I: 0 1
= Y 2 Y_ == A,
0 0 Is 0
o 0 0 —I:
2
where X7 JX = J. From this last observation, it follows that X € SP(2n, k). O

Using this characterization, we now find conditions on these involutions that are equivalent

to isomorphy.

Theorem 3.2.2. Suppose Inny and Inng both induce Type 1 involutions for SP(2n,k) for A
and B € SP(2n,k). Then, Inng and Inng are isomorphic over SP(2n,k) if and only if the
dimension of E(A,1) equals the dimension of E(B,1) or E(B,—1).

Proof. We first prove that Inny is isomorphic to Inng over SP(2n, k) is equivalent to A being
conjugate to B or —B over SP(2n, k). Suppose A is conjugate to B over SP(2n, k). Choose
Q € SP(2n, k) such that B = Q"' AQ. Then, for all U € SP(2n, k), we have

QTATIQUQTTAQ = (QTTAQ)T'U(QTTAQ)

= B~ YUB.

So, (Inng) ' Inng Inng = Inng. That is, Inny is isomorphic to Inng over SP(2n, k). Likewise,
if A is conjugate to —B, then we can show Inng is isomorphic to Inng over SP(2n, k). This
argument is easily reversible.
From this, it is clear that if Inn4 and Innp are isomorphic over SP(2n, k), then the dimension
of E(A,1) equals the dimension of E(B,1) or E(B,—1). We need only show the converse.
First, suppose that the dimension of E(A, 1) equals the dimension of E(B,1). By the pre-

vious lemma, we can choose X,Y € SP(2n, k) such that

I 0 0 0
B 0 —I: 0 0 »
X1AX = 2 =Y 'BY.
0 0 I 0
0 0 0 I

¢
2

Let Q = XY 1. Note that Q € SP(2n, k). Then, we have Q' AQ = B, and we have already
shown that this implies Inn4 is isomorphic to Inng over SP(2n, k).

If the dimension of F(A, 1) equals the dimension of F(B,—1), then we can similarly show
that there exists Q € SP(2n, k) such that Q~'AQ = — B, which also implies Inn 4 is isomorphic
to Innp over SP(2n, k).
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From this theorem, the number of isomorphy classes of Type 1 involutions is clear. We note
that this number is independent of the field k.

Corollary 3.2.3. SP(2n,k) has § or ”T_l isomorphy classes of Type 1 involutions. (Whichever

is an integer.)

3.2.2 Type 2 Involutions

We have a similar characterization of the matrices and isomorphy classes in the Type 2 case.

We first prove a result that characterizes the eigenvectors in the Type 2 case.

Lemma 3.2.4. Suppose A € SP(2n,k[\/al,B) \ SP(2n,k, 3) induces a Type-2 involution of
SP(n,k, B) where \Ja & k. Also suppose x,y € k** such that v + \/ay € E(A,—1). Then,
r —Jay € E(A,1). Likewise, if u,v € k* such that u + \/av € E(A,1). Then, u — \/av €
E(A,—1). Further, dim(E(A,1)) = dim(E(A, —1)).

Proof. First, we observe that “y/a—conjugation,” similar to the familiar complex conjugation

(i—conjugation), preserves multiplication. That is,

(a + vab)(c + vad) = (ac + abd) + /a(ad + be)
and

(a — Vab)(c — Vad) = (ac + abd) — /alad + be).

So, “y/a—conjugation” will preserve multiplication on the matrix level as well. Because of this
Jug p p

and since
Az +Vay) = —z — Vay,
then it follows that

(—A)(@ — v/a) = —z + Vay.

We can multiply both sides to see that
Alx —Va) =z — Vay.

That is, + — \/ay € E(A,1). This proves the first statement. An analogous argument proves
the second.

To see that dim(E(A, 1)) = dim(E(A, —1)) is the case, note that the first statement tells us
that dim(E (A4, 1)) < dim(E(A, —1)), and that the second statement tells us that dim(E(A4, 1)) >
dim(E(A, —1)), since “y/a—conjugation” is an invertible operator on k[/a]". O
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We are now able to characterize the Type 2 involutions. Note that this result combined with
our results from the Type 1 case shows that if n is odd, then SP(2n, k) will not have any Type

2 involutions.

Lemma 3.2.5. Suppose 9 is a Type 2 involution of SP(2n, k). Let A be the symplectic matriz
in SP(2n, k[\/a]) such that ¥ = Inns. Then,

a=Yox( 0 Iy
« al, 0

where
X:<x1 Ty o Tp Y1 Y2 oo yn>€GL(2n,k),

where for each i, we have that x; + \/ay; € E(A,1) and z; — \/oy; € E(A, —1). Further,

xTyx =17 0
2\ 0 s )

Proof. We wish to construct bases for E(A,1) and E(A,—1) such that all the vectors lie in
k[\/a]?". From the previous lemma, we know that dim(E(A,1)) = dim(E(4, —1)) = n. Since
Inny is a Type 1 involution of SP(2n, k[a]), then we can apply Lemma 3.2.1 to find a basis
{21+ /ay1, ..., o +/ay,} of BE(A, 1), where 1, ..., Xpn, Y1, ..., Yn € k*". By the previous lemma,
we know that{z; —+/ayi, ..., T2 — \/ay%} must be a basis for E(A, 1). Further, based on Lemma

3.2.1, we can assume that these vectors are chosen so that if

Y = (fl?l + \/ayla 7‘T% + \/ay%,fﬁl - \/ayl) 733% - \/ay%al‘%—i-l + \/ay%—‘rlv

ey T+ \/a?/n,l"g-s-l - \/ay%—‘rlu vy Ip \/ayn)a

then we know that

In 0 0 0
0 —I= 0 0

A=Y y~!
0 0 In 0
0 0 0 —In

where YT JY = J.
Leth(a:l Ty ccc Tnoyr yp e y%>€GL(n,k:).

We now make a couple of observations. Suppose u = x + y/ay is a 1-eigenvector of A such
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that z,y € k™. Then, we know v = x — \/ay is a -1-eigenvector of A. Observe that
1 1
Az = §A(u+v) = i(u—v) = Vay.

It follows from this that

Ay = ve,.
«

Since Az = y/ay and Ay = @x, then it follows that

Ja
xuax=( % Talz )
val: 0

Rearranging this, we see that

0 In
A=Yy > | x L
aI% 0

Now, we need only prove the last statement to prove the Lemma. Since Y7 JY = J, then
we know that if 1 <4 < § and j # § + i, then

0 = B(z; + Vayi,zj + Voay;) = (B(zi, ;) + aByi, y;)) + Va(B(zi, y;) + B(zj,vi))

and that

0= B(zi + Vi, vj — Vay;) = (B(zi, vj) — aB(yi, y5)) + Vo =B, y5) + B, i)

So, we have that B(z;, z;)+aB(yi, y;) = 0, B(xi, y;)+B(xj, y;) = 0, B(xi, ) —aB(yi,y;) =0,
5

and —f(x;,y;) + B(x;, ;) = 0. It follows from this that when 1 <4 < 4§ and j # % +1, we have

B(xi,xj) = By, yj) = B(xi,y5) = By, x;) = 0.

n

Now suppose that 1 <i < § and j = 5 + i. Then, we have

1= Bz + Vayi, xj + Vay;) = (B(xi, x5) + aB(yi, y;)) + Va(B(wi, y5) + B(x, vi))

and that
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0= B(xi + Voayi, x5 — Voay;) = (B(xi, 25) — aB(yi,y;)) + Va(=B(xi, y;) + Bz, yi))-
Similar to the first case, we have that B(x;,y;) = 0 = B(vs,x;) = 0, and we have

1 = B(wi, ;) + aB(yi, yj)

and

Thus, when 1 < i < § and j = § + 4, we have that 3(z;,z;) = % and B(y;,y;) = i So, we

<
have that XTJX = % J 10 .
0 =J

We now consider a couple of examples of Type 2 involutions.

Example 3.2.6. Consider the matrix

1 1 0
1 -1
A V2 0
2 0 0 1
0 0 1 -1

Inny is a Type 2 involution of SP(4,Q) since A% = I and each entry of A is a Q-multiple
of V2. A basis for E(A,1) that matches the conditions of Lemma 3.2.5 is formed by the vectors

0 0

0 0
vl = 1 +V2 1

) )

1
-1 0
and

0 2

4 -2
Vg = +\[2

1 1

1 0
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It can be shown that

0 0
0 0
v3 = 1 - \/5 1
-8 -8
1
-1 0
and
0 2
4 -2
vy = V2
1
1 0

are basis vectors for E(A, —1) that also match the conditions of Lemma 3.2.5.

Following the notation of the previous lemma, we have

0 0 0 2
0 4 0 -2
X = 19 _1 ’
8 8
1
-+1 0 o0
1
0 &+ 0 0
1
-+ 0 0 o0 0 In
where XTJX = 2 and A = @X > | X
0 0 0 1 2[n 0
0 0 -3 0

Example 3.2.7. Let k be any field that does not contain i = «/—1. For example, k could be R,

or F, or Q, where p is congruent to 3 mod 4. Consider the matrix

1 1 0 0
-2 -1

A 0 O
0 0 1 -2
0O 0 1 -1

Inny is a Type 2 involution of SP(4,k) since A?> = I and each entry of A is a k-multiple of
i. A basis for E(A,1) that matches the conditions of Lemma 3.2.5 is formed by the vectors

V1 =

7



and

— = ol
|
—_

It can be shown that

[N

I
|
[

and

D=
= O

1
2
1 —1
1

are basis vectors for E(A, —1) that also match the conditions of Lemma 3.2.5.

Following the notation of the previous lemma, we have

1 1 1
-3 3 3 O
x_| ! 0 3
N [ RS R G

1 1 0 0
0 £ 0 0

, 500 0 S

where X+ JX = 1 and A = —iXJX+ .

0o 00 -1
0 0 % 0

Using our characterization of Type 2 involutions, we now find conditions on Type 2 involu-

tions that are equivalent to isomorphy.

Theorem 3.2.8. Suppose A and B both induce Type 2 involutions of SP(2n, k) where we write

a=Yox (0 Iy
« al, 0

and

B:\/BY( 0 [”>Y_1
B GBI, 0
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where
X:(wl T2 - Tn Y1 Y2 - yn>EGL(2n7k)

and
Y= (@1 @ - & G G2 o G ) €GLERK),

where for each i, we have that x;++/ay; € E(A,1), z;—v/ay; € E(A,—1), ;++/ay; € E(B,1),
Z; — oy € E(B,—1), and we know that

1(J 0
XTJIX = -
2(0 1J>

YTJY:1 J 0 )
2\ 0 %J

Then, Inng and Inng are isomorphic over SP(2n, k) if and only o and (3 lie in the same square

class of k.

and

Proof. First, we note that if there exists Q € SP(2n, k) such that Q! AQ = B, then Inna and
Innp are isomorphic over SP(2n, k). Secondly, we note that this can be the case if and only if
« and § are in the same square class. So, to prove this theorem, we can simply assume that
a = [ and we will show that there exists such a a @ € SP(2n, k).

Let Q@ = XY ! First, we note that

QTIQ = (XY™ I(Xy ) = (v T (XTIX)Y = (v T TIY)Y T = )

so we see that Q € SP(2n, k).
Lastly, we see that

Q'AQ = (XY H 14Xy ) =y(XtAx)y !

I
:‘/5Y< 0 . )Y—lzB.

ol

O

From here, it is clear that the number of Type 2 involution isomorphy classes is dependent

on n and on the number of square classes of the field k.

Corollary 3.2.9. If n is even, then SP(2n, k) has at most |k*/(k*)?| — 1 isomorphy classes of
Type 2 involutions. If n is odd, then SP(2n,k) has no Type 2 involutions.
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3.2.3 Type 3 Involutions

We now examine the Type 3 case. Recall that ¢ is a Type 3 involution if ¢ = Inng, where
A € SP(2n, k) and A? = —I. Such matrices have eigenvalues +i, and are diagonalizable because
the minimal polynomial has no repeated roots. We begin by proving a couple of results about

the eigenvectors of such matrices.

Lemma 3.2.10. Suppose A € SP(2n, k) induces a Type 3 involution of SP(2n, k). Also suppose
x,y € k" such that x +1iy € E(A,—i). Then, x — iy € E(A,i). Likewise, if u,v € k™ such that
u+ 1w € E(A,i). Then, u —iv € E(A, —i). Further, dim(E(A,17)) = dim(E(A, —1i)).

Proof. Recall that complex conjugation preserves multiplication. This applies at the matrix

level as well as at the scalar level. Because of this and since
Az +iy) = —i(z —iy) =y — iz,

then it follows that
Alx —iy) = y + iz = i(z — iy).

That is, z — iy € E(A, —i). This proves the first statement. An analogous argument proves the
second.

To see that dim(E(A,i)) = dim(E(A, —i)) is the case, note that the first statement tells us
that dim(E(A, 7)) < dim(E(A, —i)), and that the second statement tells us that dim(FE(A, 7)) >
dim(E(A, —1)). O

Lemma 3.2.11. Suppose A € SP(2n, k) induces a Type 3 involution of SP(2n,k). Then, there
ETISLS T1, oy Ty Y1, -y Y € k2™ such that the x; + iy form a basis for E(A,i) and the x; — iy,
form a basis for E(A, —i).

Proof. Since Inny is Type 3, then we are assuming that A € SP(2n,k) and A% = —I. It
follows that all eigenvalues of A are 4i. Since there are no repeated roots in the minimal
polynomial of A, then we see that A is diagonalizable. We wish to construct bases for E(A, 1)
and F(A, —i) such that all the vectors lie in k[i]*". Let {z1, ..., 22, } be a basis for k?". For each
J, let uj = (A +il)z;. Note that

AUj = A(A + ’Lj)Zj = (A2 =+ ’L'A)Zj = (*I + iA)Zj = ’L(A =+ ’L'I)Zj = in.

So, {u1, ..., uon } must span E(A,7). Thus, we can appropriately choose n of these vectors and
form a basis for F(A,i). We can reorder, and assume that the n chosen vectors are uq, ..., uy,.
Let ; = Ax; and y; = z;. Then, these eigenvectors are of the form z; + iy;. By the previous

lemma, we know that x; — iy; € E(A, —i). This proves the statement.
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We are now able to prove results that characterize the matrices that induce Type 3 invo-
lutions, and then use these characterizations to find conditions on these involutions that are
equivalent to isomorphy. We will have to prove this by looking at separate cases depending on
whether or not i = v/—1 lies in k. We begin by assuming that i € k.

Lemma 3.2.12. Assume i € k and suppose ¥ = Inny is a Type 3 involution of SP(2n, k), where

I, 0
A€ SP(2n,k). Then, A= X [ ' ,
0 —il,

0 Xy .
where X1 is diagonal.
-X; 0

Proof. We know from Lemma 3.2.11 that we have bases for F(A,q) and E(A, —i) that lie in
k%", We will show that we can in fact choose bases a1, ..., a, for E(A,i) Nk*" and by, ..., b, for
E(A,—i) N k?" such that B(aj,a;) = 0 = B(b;,b) and B(aj,b;) is nonzero if and only if j = I.

We will build these bases recursively.

X1 for some X € GL(n,k), where XTJX =

First, we know that we can choose some nonzero a; € E(A,i) N k?". Then, since 3 is non
degenerate, we can choose a vector ¢ such that 5(ai,t) # 0. We note that E(A,i) @ E(A, —i) =
k*™. so we can choose t; € E(A,i) Nk* and t_; € E(A, —i) N k> such that t = t; +t_;. Since
B(ai,t;) = 0, then it follows that S(a;,t—;) € k is nonzero. Let by = t_;.

Let Fy = Spany(ai,b1) and let F; be the orthogonal complement of E; in k™. Since the

system of linear equations

6(61,1,3?) =0
B(bl,x) =0

has 2n — 2 free variables, then we see that F; has dimension 2n — 2.

We now wish to find ay € Fy N E(A, ). Similar to the construction in the previous lemma,
we can choose x € Fi, and let ay = Az +ixz. Now we want by € FoNE(A—, 1) such that 8(az, ba)
is nonzero. Since fB|r, is non degenerate, then there exists some y € Fy such that 5(ag,y) # 0.
Similar to the construction of by, we see that this implies the existence of a vector by that fits
our criteria.

Now, we let Eo = Spany (a1, ag, b1, b2) and let F» be the orthogonal complement of Ey in k™.

We continue this same argument n times, until we have the bases that we wanted to find. Let
X = (al, veey Qpyy bl, ceny bn)

Then, the result follows. O

We can now use this characterization to show that all such involutions must be isomorphic.
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Theorem 3.2.13. Assume that i € k. Then, if Inng and Inng are both Type 3 involutions of
SP(2n, k), then Inng and Inng are isomorphic over SP(2n, k).

Proof. Suppose we have two such involutions of SP(2n, k). Let them be represented by matrices
A, B € SP(2n, k). By the previous Lemma, we can choose X,Y € GL(n, k) such that

i, O
0 —il,

xTjx = 0 X
~X;, 0

YTjy = 0 1
-Y; 0

Since X7 and Yj are both invertible diagonal matrices, then we can choose Ry and Ry €
Ry O
Ry
that Q € SP(2n, k) and Q1 AQ = B. This will then prove that Inns and Innp lie in the same
isomorphy class.
First we show that Q) € SP(2n, k). Note that

X1AX = < ) =Y 'BY,

and

where X; and Y7 are diagonal.

GL(%, k) such that Y1 = RTX\Ry. Let R = ( ) and Q = XRY~!. We will show

QTJQ = (XRY HTJ(XRY Y = (v HIRT(XTJX)RY !

=Y HI'yTiv)yyt=,

which proves this claim.
—iI 0

Lastly, we show that Q71 AQ = B. We first note that R and ( 0 il
i

) commute. Then,

we see that

Q'AQ = (XRY H'AXRY ) = YR Y X 'AX)RY !

—iI 0 —il 0
S RY ' =YR 'R y-!
0 il 0 il

We have shown what was needed.

82



We now examine the case where i ¢ k, beginning with a characterization of the matrices

that induce these involutions.

Lemma 3.2.14. Assume i € k. Suppose ¥ = Inny is a Type 3 involution of SP(2n, k). Then,

0o I,
A=U ( > U-t=UJU! for
~I, 0

Uz(al as -+ ap by by - bn>€GL(2n,k),

where the a; + ib; are a basis for E(A,i), the aj —ibj are a basis for E(A, —i), and UTJU =

0 U
! , where Uy is diagonal.
-U; O

Proof. We know from Lemma 3.2.11 that we have bases for F(A,7) and E(A, —i) that lie in
k[i]?". We will show that we can in fact choose bases aj + iby, ..., a, + ib, for E(A, i) N k[i]*"
and ay — ibi, ..., an — ib, for E(A,—i) N k[i]*" such that B(a; + ib;,a; — ib;) is nonzero if and
only if j = [. From this, we will be able to show that $(a;,a;) = 0 = B(b;,b;) when j # [ and
B(aj, b)) =0 for all j and {. We will build these bases recursively.

Recall that given any vector z € k2", we know that Az + iz € E(A,4). We want to choose
x € k¥ such that 27 AT Jx # 0. (The reasons for this will become apparent.) If e]TATJ ej # 0,
we can let x = e;. Suppose that this doesn’t occur for any j.

Since AT'J is invertible, we know that for more than 2n pairs of j and [ we have e?ATJ e; # 0.
Also, we see that since A is symplectic and AT JA = J, then we have that

ATJ=JA ' =JA3 = —JA

and that
(AT =JTA=—-JA=A"TJ.

That is, ATJ is symmetric. So, e]TATJej = elTATJel. Then, we can let x = e; + ¢;. Then, we
have
2T AT Jx = ejATJel + elATJej = 2ejATJel #0.

In either case, we have many choices for .
Let = € k%" be a vector from above. We have Az + iz € E(A,q). Let a; = Az and b = .
So, a1 +ib; € E(A,i) and a1 —ib; € F(A, —i). From this, it follows that

B(al + b1, a1 — ibl) = (ﬁ(al,al) + B(bl,bl)) + i(—ﬁ(al,bl) + ,B(bl,ag))

=0+ i(—B(Ax,x) + B(x, Ax)
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= —2iB(Azx,z) = —2i(zT AT Jz) # 0.

Let Ey = Spangg) (a1 + ib1,a1 — iby) = Spany;(a1,b1), and let Iy be the orthogonal com-
plement of E; over k[i]. F} has dimension 2n — 2, and |, is nondegenerate. So, we can find a
nonzero vector x € Fy N k*" such that B|g, (Ax,z) # 0. So, as in the last case, let az = Axr and
by = x. Similar to before, we have [3(ag + ibe, az — iba) # 0.

Let By = Spank[i}(al, az, b1, by), and let Fy be the orthogonal complement of Es over k[i].
In this manner, we can create the bases that we noted in the opening paragraph of this proof.

Note that we always have
0= B(a; + ibj, a1 + b)) = (B(a;, ar) — B(bj, br)) +i(Bas, br) + B(bj, ar)),
and when j # [ we have
0= B(a; + ibj, a; — iby) = (B(a;,ar) + B(bj, b)) + i(—Blaj, bi) + B(bj, ar)).
This tells us that when j # [ that
Blaj,bi) = Blaj, ar) = B(bj, br) = 0.

When j = [, we know that §(bj,b;) = 0 = [(aj,a;). Lastly, we see that S(aj,b;) =

—B(bj, a;).
Let
U= (al, ceey Qg bl, ceny bn)
. T 0 1 . . .
Then, it follows that U* JU = U0 where X is a diagonal n x n matrix.
—U1

Lastly, since Ab; = a;, then it follows that Aa; = —b;. So, we have that
0 I
A=U Ul
I, 0

We now show that if ¢ € k, then we also have that there is only one isomorphy class of Type

O]

3 involutions.

Theorem 3.2.15. Assume i &€ k. Then, if Inng and Inng are both Type 3 involutions of
SP(2n, k), then Inng and Inng are isomorphic over SP(2n, k).
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Proof. By the previous Lemma, we can choose a matrix U € GL(n, k) such that

—1In
A=U 0 : |t
In 0

U:<a1 as - @

for

by by - b )GGL(n,k),

w3

bl
where the a; + ib; are a basis for E(A,i), the a; — ib; are a basis for E(A, —i), and UTJU =

0 U
" for diagonal matrix Uj.
-U1 0

Let
X = (a1 + b1, ey an +ib%,a1 — by, ey @n— ib%),

and consider Inny and Innpg as involutions of SP(2n, k[i]). By construction, we see that X is a
matrix that satisfies the conditions of Lemma 3.2.12 for the group SP(2n, k[i]). We note that
X1 = —2iU;. We also know by the previous Theorem that Inn4 and Inng are isomorphic over
SP(2n, k[i]). So, we can choose @; € SP(2n, k[i]) such that Q; 'AQ; = B. Let Y = Q; ' X. We
now show a couple of facts about Y.

First, we note that since Y was obtained from X via row operations, then for 1 < j < 3,
the jth and § + jth columns are i-conjugates of one another.

Also, note that

Y'BY = (Q;'X)'B(Q;'X) = X 'QiBQ; ' X

_ XflAX _ —ZI% 0 '
0 il

Lastly, we see that

YTJY = (Q7'X)TJ(Q; ' x) = XT((Q;H)TIQi)X

_xTyx — 0 X _ 0 —2iU; ‘
-X; 0 21U 0

Y = (Cl +id1, ...,C% -i—id%,cl - idl, ...,C% — Zd%),

Write

and let
V= (01, cesy C%,dl, ,d%)
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It follows from what we have shown that

0 —In 0 U
B=V > | v where VTJV = Y =uTmu
n 0 _Ul 0

Now, let Q@ = UV ~!. We will show that Q7' AQ = B and Q € SP(2n, k). This will prove
that Inny and Innpg are isomorphic over SP(2n, k).
We first show that @ € SP(2n, k).

QTJQ — (val)TJUVfl — (Vfl)T(UTJU)Vfl — (Vfl)T(VTJV)Vfl —J
Lastly, we show that Q7'AQ = B.

Q'AQ = (UV H) 1AWV Y =vU AUV !

0 —In\. ,
—V 2 |v-l=B
In 0

‘We have shown what was needed.

Combining the results from this section, we get the following corollary.

Corollary 3.2.16. If Inng and Inng are both Type 3 involutions of SP(2n, k), then Inng and
Inng are isomorphic over SP(2n, k). That is, SP(2n, k) has exactly one isomorphy class of Type

8 involutions. Further, the matrixz J is a representative matrixz for this isomorphy class.

3.2.4 Type 4 Involutions

We now move on to a similar classification in the Type 4 case. First, we characterize the
eigenvectors of the matrices that induce these involutions. Recall that we can choose A €
SP(2n, k[\/a]) such that each entry of A is a k—multiple of \/cr, and that we know A? = —1I.

We begin by proving a couple of lemmas about the eigenspaces of these matrices.

Lemma 3.2.17. Suppose A € SP(2n, k[\/a]) induces a Type 4 involution of SP(2n, k). Also
suppose x,y € k*™ such that v + /—ay € E(A,i). Then, x — /—ay € E(A, —i). Likewise, if
u,v € k* such that u++/—av € E(A, —i). Then, u—+/—av € E(A,i). Further, dim(E(A, 1)) =
dim(E(A, —1)).

Proof. Suppose x,y € k™ such that = + /—ay € E(A, —i). Then,

Az + V=ay) = —i(z + V—ay)
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which implies

Az 4+ —aAy = oy — ix.

Then, complex conjugation tells us that
Ax — /—aAy = oy +ix,

which tells us that

Alx = vV=ay) =iz - vV=ay).

A similar argument shows that if u,v € k™ such that u + /—av € E(A, 7). Then, u — v/—av €
E(A, —i).
Since = + v/—ay € E(A, —i) implies © — v/—ay € E(A,i) and vice versa, then we see that
dim(E(A4,1)) = dim(E(A, —1)).
[

Lemma 3.2.18. Suppose ¥ = Inn g is a Type 4 involution of SP(2n, k) where A € SP(2n, k[\/a]).
Then, we can find X1, ..., Tp, Y1, .-, Yn € k™ such that the x + /—ay are a basis for E(A,i) and
the x — \/—ay are a basis for E(A, —i).

Proof. Since Inny is Type 4, then we are assuming that A € SP(2n,k[y/a]) and A% = —I.
It follows that all eigenvalues of A are +i. Since there are no repeated roots in the minimal
polynomial of A, then we see that A is diagonalizable. We wish to construct bases for E(A, 1)
and FE(A, —i) such that all the vectors lie in k[i]*". Let {z1, ..., 22, } be a basis for k>". For each
J, let uj = (VoA + /—al)z;. Note that

Auj = A(VaA+v=al)zj = (VaA® + V—=ad)z; = i(VaA + V—al)z; = iu;.

So, {u1,...,u,} must span E(A,7). Thus, we can appropriately choose n of these vectors and
form a basis for F(A, ). Note that each of these vectors lies in k[i]?". Label these basis vectors
as v1, ..., . We can write each of these vectors as v; = x; + /—ay;. By the previous lemma,
we know that z; — v/—ay; € E(A, —i), and that these vectors form a basis for E(A, —7).

O

We are now able to prove results that characterize the matrices that induce Type 4 invo-
lutions, and then use these characterizations to find conditions on these involutions that are
equivalent to isomorphy. We will have separate cases, depending on whether or not /—a lies
in k. We begin by assuming that /—a € k. Since we are also assuming that \/a & k, then it
follows from these two assumptions that o and —1 lie in the same square class of k. Thus, we

can assume in this case that & = —1, which means /—a = 1.
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Lemma 3.2.19. Assume v/—«a € k and suppose 9 is a Type 4 involution of SP(2n,k). Then,
i In 0 0 X

A=X " X1 for some X € GL(2n, k), where XTJX = ! and X1
0 —ilx -X; 0

1s diagonal.

Proof. We know from Lemma 3.2.18 that we have bases for F(A,i) and E(A, —i) that lie in
k*". We will show that we can in fact choose bases a1, ..., a, for E(A,i) N k** and by, ..., b, for
E(A, —i) N k*" such that 8(aj,a)) = 0 = B(b;,b) and B(aj,by) is nonzero if and only if j = I.
We will build these bases recursively.

First, we know that we can choose some nonzero a; € E(A,i) N k?". Then, since 3 is non
degenerate, we can choose a vector ¢ such that 5(a1,t) # 0. We note that E(A,i) ® E(A, —i) =
k2" so we can choose t; € F(A,i) Nk* and t_; € E(A,—i) N k?" such that t = t; +t_;. Since
B(a1,t;) =0, then it follows that B(a1,t—;) € k is nonzero. Let by = t_;.

Let By = Spang(a1,b;) and let Fy be the orthogonal complement of F; in k*". Since the

system of linear equations
Blai,xz) =0

ﬁ(bl,x) = 0

has 2n — 2 free variables, then we see that F} has dimension 2n — 2.

We now wish to find ag € F» N E(A, ). Similar to the construction in the previous lemma,
we can choose x € Fy, and let as = \/aAzr + v/—ax. Now we want by € Fy N EF(A—,i) such
that (a2, b2) is nonzero. Since |, is non degenerate, then there exists some y € F such that
B(az,y) # 0. Similar to the construction of by, we see that this implies the existence a vector
by that fits our criteria.

Now, we let Eo = Spany(aq, az, by, be) and let Fs be the orthogonal complement of Es in k™.

We continue this same argument n times, until we have the bases that we wanted to find. Let
X = (al, ceey Ay bl, ceey bn)

Then, the result follows. O
Here is an example of a Type 4 involution when /—a € k.

Example 3.2.20. Let k be R. So, a = —1. Notice that /—a =1 € R. Consider the matriz

01 0 O
1

A 0 O
00 0 -1
00 -1 0
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Inny is a Type 4 involution of SP(4,k) since A2 = —I and each entry of A is a k-multiple
of i. A basis for E(A,1) that matches the conditions of Lemma 3.2.19 is formed by the vectors

1 0 0
va |1 val o val 0
vy = %57 0 and vy = %5* _ . It can also be shown that vz = 5 ) and vy =
0 1 1
1
-1
g 0 are basis vectors for E(A, —1) that also match the conditions of Lemma 3.2.19.
0
Following the notation of the previous lemma, we have
1 0 1
1 -1
xov2[ 1 00 ,
2 0 -1 1 0
0 1 1 0
T iIn 0 1
where X* JX =J and A= X 02 " X
—iln
2

Now we characterize the isomorphy classes of Type 4 involutions in the case where \/—a € k.

Theorem 3.2.21. Assume that \/—«a € k. Then, if Inng and Inng are both Type 4 involu-
tions of SP(2n,k) such that A, B € SP(2n,k[\/a]), then Inng and Innpg are isomorphic over
SP(2n, k).

Proof. Suppose we have two such involutions of SP(2n, k). Let them be represented by matrices
A, B € SP(2n, k). By the previous Lemma, we can choose X,Y € GL(n, k) such that

i, 0O
0 —il,

xTyx—( ° X :
-X1 0

yigy (Y01 ,
Y, 0

Since X7 and Yj are both invertible diagonal matrices, then we can choose Ry and Ry €

X1AX = ( ) =Y 'BY,

and

where X; and Y7 are diagonal.
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Ry O
GL(%,I{:) such that Y] = RlTX1R2- Let R = ( ! > and Q = XRY L Tt follows from
0 Ry

this that RTXTJXR = YT JY. We will show that Q € SP(2n,k) and Q~'AQ = B. This will
then prove that Inn4 and Inng lie in the same isomorphy class.
First we show that @ € SP(2n, k). Note that

QTJQ = (XRY HYTJ(XRY 1Y) = (v HYI'RT(XTJX)RY !
=Y HI'yTIv)yy =,

which proves this claim.
0

i1
Lastly, we show that Q71 AQ = B. We first note that R and ( ZO 7 > commute. Then,
—1q

we see that

Q'AQ = (XRY H)'AXRY H = YR Y X 'AX)RY !

—iI 0 —il 0
—yr | ' RY'=YR 'R y—!
0 il 0 il

—il 0
v " ")y '=B
0 I

We now examine the case where /—a ¢ k. We begin with a characterization of the matrices

O]

that induce Type 4 involutions in this case.

Lemma 3.2.22. Assume /—a & k. Suppose 9 = Inny is a Type 4 involution of SP(2n, k).

0 I,
Then, A = Y2U U~! for
@ —al, 0
U=(a a - ay by by - by ) €GL2nk),
where the a; + «/—ab; are a basis for E(A,i), the aj —\/—ab; are a basis for E(A, —i), and
0 U
Ut Ju = ! , where Uy is diagonal.
-U; 0

Proof. We know from Lemma 3.2.18 that we have bases for E(A,i) and E(A, —i) that lie
in k[v/—a]*". We will show that we can in fact choose bases a; + v/—abi,...,an + /—aby,
for E(A,4) N k[v/—a]*" and a1 — v/—aby, ..., a, — /—ab, for E(A, —i) N k[y/—a]?" such that
B(aj + ibj, a; — ib;) is nonzero if and only if j = [. From this, we will be able to show that
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B(aj,a;) = 0= B(bj,b;) when j # [ and B(a;,b;) = 0 for all j and [. We will build these bases
recursively.

Recall that given any vector x € k2", we know that \/aAz + /—ax € E(A,i). We want to
choose = € k?" such that 7 AT Jx # 0. That is, such that 3(Axz, ) # 0. (The reasons for this
will become apparent.) If e]TATJ ej # 0, we can let x = e;. Suppose that this doesn’t occur for
any j.

Since AT'J is invertible, we know that for more than 2n pairs of j and [ we have e]TATJ e; # 0.

Also, we see that since A is symplectic and AT JA = J, then we have that
ATJ=JA 1 =JA% = —JA
and that
ATNHT =JTA=—-JA= AT

That is, ATJ is symmetric. So, e?ATJej = elTATJel. Then, we can let x = e; + ¢;. Then, we
have
2T AT Jx = ejATJel + elATJej = erATJel #0.

In either case, we have many choices for x.
Let x € k?" be a vector from above. We have \/aAz + /—ax € E(A,q). Let a1 = JaAx
and by = z. So, a1 ++/—ab; € E(A,i) and a; — /—ab; € E(A, —i). From this, it follows that

Blar+v=abi, a1—v=ab) = (B(Vade, JaAz)+af(z,x)) +v—a(-B(/aAz,z)+B(z, VaAz)

= 2aif(z, Az) # 0.

Let B, = Spank[\/ja](al + V/—aby,a; — /—aby) = Spank[\/ja](al,bl), and let F| be the
orthogonal complement of E; over k[\/—a]. F} has dimension 2n—2, and 3|, is nondegenerate.
So, we can find a nonzero vector x € Fy N k*" such that B|p (z, —Ax) # 0. So, as in the last
case, let ay = \/aAx and by = x. As before, we have B(as + v/—abs,as — /—abs) # 0.

Let Fy = Spank[m(al,ag,bl,bg), and let F5 be the orthogonal complement of E5 over
k[v/—a]. In this manner, we can create the bases that we noted in the opening paragraph of
this proof.

Note that we always have

0= B(aj + V—abj,a; + vV—ab) = (B(aj,ar) — af(bj, b)) + V—a(B(a;, b)) + B(bj, ar)),
and when j # [ we have

0 = B(a; + vV—abj,ay — vV—aby) = (B(aj,a) + af(bj, b)) + vV—a(—5(aj, br) + B(bj, ar)).
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This tells us that when j # [ that
Blaj, br) = Blaj, ar) = B(bj, b) = 0.

When j = [, we know that §(bj,b;) = 0 = [(aj,a;). Lastly, we see that §(aj,b;) =
—B(bj, aj).
Let
U= (al,...,an,bl,...,bn).

0

Then, it follows that UT JU = ( I
—U1

U
! ) where U; is a diagonal n x n matrix.

0 I,
Since Aaj = —y/ab; and Ab; = gaj, then we have A = @U < o ) UL

‘We have shown what was needed. O

The following is an example of a Type 4 involution where v/—a & k.

Example 3.2.23. Let k = F5 and consider a = 2. Note that /—a = /3 & k.

Consider the matriz

0
1

A=+2
0

O W o =
S =~ O N
=~ O N O

3

Inny is a Type 4 involution of SP(4,k) since A2 = —I and each entry of A is a k-multiple of
V2. A basis for E(A,1) that matches the conditions of Lemma 3.2.22 is formed by the vectors

1 1

0 0
V1 = +2

4 1

0 0

and

0 0

1 1
Vg = +v2

0 0

4 1
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It can be shown that

1 1

0 0
V3 = —\/5

4 1

0 0

and

0 0

1 1
vy = —V2

0 0

4 1

are basis vectors for E(A, —1) that also match the conditions of Lemma 3.2.22.

Following the notation of the Lemma 3.2.22, we have

S = O =
=~ O = O
S = O =
_ o =k O

0 U 0 I
where UT JU = ! for Uy =21 andAz@U Ut
-U; 0 -2 0

We now find conditions on Type 4 involutions where \/—a ¢ k that are equivalent to
isomorphy.

Theorem 3.2.24. Assume /—a € k. Then, if Inng and Inng are both Type 4 involutions
of SP(2n,k) where the entries of A and B are k-multiples of \/a, then Inng and Inng are

isomorphic over SP(2n, k).

Proof. By Lemma 3.2.22, we can choose a matrix U € GL(n, k) such that

o —aln
2
for
U: ( al a2 DR a/% b]_ b2 e b% ) 5
where the a; + /—ab; are a basis for E(A, i), the a; — /—ab; are a basis for F(A, —i), and
0 U
UrtJju = " for diagonal Uj.
-U; 0

Consider Inny and Inng as involutions of SP(2n, k[v/—a]). If k[/—a] = k[/a], then these
are Type 3 involutions of SP(2n,k[\/—a]), since A and B would have entries in the field,
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and i € k[/—a]. Otherwise, if k[v/—a] # k[y/a], then these are Type 4 involutions where

V—a € k[v/—al.
Let
X = (a1 + V—aby, wyan +y/—abn,a; — V—aby, ..., an — \/—ab%).

By construction, we see that X is a matrix that satisfies the conditions of Lemma 3.2.14
or Lemma 3.2.19 for the group SP(2n,k[y/a]). We note that X; = —2iU;. We also know
by Corollary 3.2.16 or Theorem 3.2.21 that Inng and Innpg are isomorphic (when viewed as

involutions of SO(n, k[v/—a], 8)) over O(n, k[v/—a], B). So, we can choose Q. € SP(2n, k[\/—a])
such that Q;1AQ, = B. Let Y = Q' X. Since Y is constructed by doing row operations on

X, then we can write

Y = (Cl + v —adl, ...,C% + v —ad%,cl -V —Ozdl, ...,C% - —OéC%),

where ¢j,d; € k™. We now show a couple of facts about Y.
First, we note that since Y was obtained from X via row operations, then for 1 < j < 7,
the jth and 5 + jth columns are i-conjugates of one another.

Next, we observe that

YTIBY = (Q2'X) ' B(Q7'X) = X~'QuBQ;'X

_xlax— [ MY ),
0 —ils

Lastly, we see that

YTIY = (Q7'X)"J(Q7'X) = X" (@1 7Qa)X

_xTrx — 0 X _ 0 —2iU; ‘
X1 0 20Uy 0

V = (01, ...,C%,dl, ...,dn) S GL(n, ]{7)

Let

Ja 0 In . T
It follows from what we have shown that B = XV 02 V= where V*JV =

0 U
Y =vuTJu.
U, 0

Now, let Q@ = UV ~!. We will show that Q7'AQ = B and Q € SP(2n, k). This will prove

that Inny and Innp are isomorphic over SP(2n, k).
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We first show that @ € SP(2n, k).
QTJQ=Uv Hrguvt = Hrwruyv = v Hrvravyvt =
Lastly, we show that Q7 'AQ = B.

Q'AQ = (UV H AUV =vUtauv !

L R )
« —a[g 0

‘We have shown what was needed.

Combining the results from this section, we get the following corollary.

Corollary 3.2.25. If Inng and Inng are both Type 4 involutions of SP(2n, k), then Inny and
Inng are isomorphic over SP(2n,k) if and only if A and B have entries lying in the same
field extension of k. That is, SP(2n, k) has at most |k*/(k*)?| — 1 isomorphy classes of Type 4

mvolutions.

3.3 Maximal Number of Isomorphy classes

From the work we have done, it follows that the maximum number of isomorphy classes of
SP(2n, k) is a function of the number of square classes of k and n. We first define the following

formulas.

Definition 3.3.1. Let C1(2n, k), C2(2n, k), C3(2n, k) and C4(2n, k) be the number of isomorphy
classes of involutions of SP(2n, k) of types 1, 2, 3, and 4, respectively.

From our previous work, we have the following:
Corollary 3.3.2. (i) If n is odd, then C1(2n,k) = "F1. If n is even, then C1(2n,k) = 2.
(i) If n is odd, then C2(2n,k) = 0. If n is even, then C2(2n, k) < |k*/(k*)? — 1.
(ii) C3(2n,k) = 1.

(iv) Cy(2n, k) < |k*/(k*)?| - 1.
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3.4 Explicit Examples

We have shown that the number of isomorphy classes of Type 1 and Type 3 involutions depends
only on n, and not the field k. Since Type 2 and Type 4 involutions do not occur when k is
algebraically closed, then the previous corollary tells us the number of isomorphy classes in this

case. In addition to this example, we will also consider the cases where £ = R and k = [F),.

3.4.1 Type 2 Examples

We first consider the Type 2 case. So, we may assume that n is even. First, let us suppose that

k is R or F, where —1 is not a square in [F,. Without loss of generality, assume a = —1. Let A

0 1
be an n X n block diagonal matrix where each block is the 2 X 2 matrix ¢ ( L o ) Then, let

A 0

A= ( 01 (AT ) . This matrix induces a Type 2 involution on SP(2n, k).
1

Now, let us suppose that k = I, where -1 is a square. Let o € k* be a non-square. Then,

we can choose a,b € k such that a? + b> = é Let A; be an n x n block diagonal matrix
b A 0
where each block is the 2 X 2 matrix /o ¢ . Then, let A = ! iy |- This
b —a 0 (A7)

matrix induces a Type 2 involution on SP(2n, k). So if k is finite or real, then SP(2n, k) has

the maximal number of Type 2 isomorphy classes.

3.4.2 Type 4 Examples

Now we consider the Type 4 case. So, n may be even or odd. Let us again begin by supposing
il 0

that k£ is R or F, where —1 is not a square in ;. Then, the matrix " - induces a

Type 4 involution, and SP(2n, k) has the maximal number of isomorphy classes in this case,

regardless of if n is odd or even.

Now, let us suppose that k = F, where -1 is a square. Let o € k* be a non-square and

I, dI,
choose a,b € k such that a®> + b?> = a. If we let U = ¢ and then let
—dI, cl,
A=Yy 0 I g
o —al, 0

Vo [ (I=a)dl, (Z+ad)l,
a? \ —(+ad)I, —(1-a)dl, |

A induces a Type 4 involution on SP(2n, k). We have shown that if k is finite or real, then

SP(2n, k) has the maximal number of Type 4 isomorphy classes. Thus, if k is real or finite it
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has the maximal number of all types of isomorphy classes.
While we have been unable to prove that this is the case for any field k, we believe that this

is the case That is, we have the following conjecture:

Conjecture 3.4.1. (i) Ifn is odd, then C1(2n,k) = “5%. If n is even, then C1(2n, k) = 2.
(i) If n is odd, then Cy(2n,k) = 0. If n is even, then Co(2n, k) = |k*/(k*)?| — 1.

(#1) C3(2n,k) = 1.

(i) Cay(2n,k) = |k*/(K*)*| 1.
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Chapter 4

Future Work

We have characterized and counted the isomorphy classes of involutions of friendly SO(n, k)
over O(n, k) when k is an algebraically closed field or the real numbers, and we have partial
results for the finite prime fields and the p-adic numbers. We have also characterized and
counted the isomorphy classes of the involutions for SP(2n, k) over algebraically closed fields,
the real numbers, and for a finite field of characteristic not 2. We also have constructed the
tools to classify similar isomorphy classes of the involutions of other friendly SO(n, k, 8) over
O(n, k, ). In the future, we would like to completely classify the isomorphy classes of these

involutions over these fields, and to also repeat this process for other symmetric bilinear forms

—I,-1 O
B. Of particular interest would be the bilinear form 3 that corresponds to M = g ! ) ) .

Then, O(n, k, B) is a generalization of the Lorentz group. We would also like to find isomorphy
classes for friendly SO(n, k, 3) over SO(n, k, 5), which we have only done in the odd case. In
addition we would like to characterize the isomorphy classes of the involutions in the cases
where the characteristic of k is 3, but the group is not friendly. Moving beyond involutions of
orthogonal and symplectic groups, we want to consider automorphisms or finite order m > 2.
These give rise to generalized symmetric spaces in the same manner that involutions give rise
to symmetric spaces. This is something that we want to consider for SL(n, k), SO(n, k, 3) and
SP(2n, k).
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