
ABSTRACT 

HWANG, JEEHYUN. Improving the Quality of Security Policies. (Under the direction of 
Dr. Laurie A. Williams). 

Systems such as web applications, database systems, and cloud services regulate users’ 

access control to sensitive resources based on security policies. Organizations often manage 

security policies in an ad-hoc and inconsistent manner due to a lack of budget, resources, and 

staff. This management could cause crucial security problems such as unauthorized access to 

sensitive resources. 

A security policy is a set of restrictions and properties that specify how a computing 

system prevents information and computing resources from being used in violation of an 

organization’s security laws, rules, and practices. In computer systems, security policies are 

enforced to ensure correct functioning of access control such as “who” (e.g., authorized users 

or processes) can perform actions under “what” conditions. 

Policy authors may follow common patterns in specifying and maintaining security 

policies. Researchers applied data mining techniques for deriving (implicit) patterns such as a 

group of users (i.e., roles in RBAC policies) who have the same access permissions. Policy 

authors reuse common patterns to reduce mistakes. Anomalies of those patterns are 

candidates for inspection to determine whether these anomalies expose faults. 

Faults (i.e., misconfigurations) in security policies could result in tragic consequences, 

such as disallowing an authorized user to access her/his resources and allowing malicious 

users to access critical resources. Therefore, to improve the quality of security policies in 



terms of policy correctness, policy authors must conduct rigorous testing and verification 

during testing and maintenance phases of software development process. However, manual 

test-input generation and verification is an error-prone, time-consuming, and tedious task.  

In this dissertation, we propose approaches that help improve the quality of security 

policies automatically. Our research goal is to help policy authors through automated 

pattern mining and testing techniques in the efficient detection and removal of faults. This 

dissertation is comprised of three research projects where each project focuses on a specific 

software engineering task. The three research projects are as follows: 

Pattern Mining. We present an approach to mine patterns from security policies used in 

open source software products. Our approach applies data mining techniques on policy 

evolution and specification data of those security policies to identify common patterns, which 

represent usage of security policies. Our approach uses mined patterns as policy specification 

rules and detect faults in security policies under analysis as deviations from the mined 

patterns..  

Automated Test Generation. We present a systematic structural testing approach for 

security policies. Our approach is based on the concept of policy coverage, which helps test a 

policy’s structural entities (i.e., rules, predicates, and clauses) to check whether each entity is 

specified correctly. Our approach analyzes security policies under test and generates test 

cases automatically to achieve high structural coverage. These test cases can achieve high 

fault-detection capability (i.e., detecting faults). 



Automated Test Selection for Regression Testing. We present a safe-test-selection 

approach for regression testing of security policies. Among given initial test cases in access 

control systems under test, our approach selects and executes only test cases that could 

expose different policy behaviors across multiple versions of security policies. Our approach 

helps detect unexpected policy behaviors (i.e., regression faults) caused by policy changes 

efficiently. 

These three research project have resulted in the following contributions: 

• Patterns characterizing correlations of attributes in security policies help detect faults. 

• Structural coverage for security policies is closely related to fault-detection 

capability. An original set of test cases with higher structural coverage often achieves 

higher fault-detection capability. Furthermore, its reduced set of test cases while 

maintaining the same structural coverage achieves similar fault-detection capability 

with the original set. 

• Substantial number of test cases for regression testing can be reduced to help improve 

performance. 
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GLOSSARY 

• access control. access control ensures that resources are only granted to those users who 

are entitled to them. 

• Access Control Policy (ACP). An ACP consists of a set of rules, each of which describes 

permission of accesses to resources by specified users or processes. 

• Clause Coverage Criterion (CCC). CCC assures that a Boolean expression in each clause 

(e.g., Source IP address field) in a firewall policy to be evaluated to true and false at least 

once with packets. Because all decisions of the clauses are binary, McCabe cyclomatic 

complexity is v(G) = c +1 where c is the number of the clauses. Therefore, the cyclomatic 

complexity of satisfying CCC is c +1. 

• firewall policy. A firewall consists of a set of rules that examine and filter packets 

passing in a network. 

• McCabe cyclomatic complexity. McCabe's cyclomatic complexity is a quality metric that 

measures the number of linearly independent paths through the program. Cyclomatic 

complexity (i.e., McCabe number) is defined as v(G) = e – n + 2 where e and n are the 

number of edges and nodes in the control flow graph of the program. v refers to 

cyclomatic number and G indicates control flow graph. For simplified complexity 

calculation, if all decisions of predicates are binary, McCabe cyclomatic complexity is 

v(G) = p + 1 where p is the number of binary predicates. 

• mutant. A mutant is a faulty policy that has been purposely altered from an original 

policy. 

• mutation operator. A set of instructions for making a simple change to an original policy. 



 

xiv 

• mutation testing. A testing methodology in which two or more mutants are evaluated 

using the same test cases to evaluate the ability of the test cases to detect differences in 

the mutants. 

• Predicate Coverage Criterion (PCC). PCC assures that a Boolean expression in each 

predicate of the rules in a firewall policy to be evaluated to true and false at least once 

with packets. Because all decisions of the predicates are binary, McCabe cyclomatic 

complexity is v(G) = p +1 where p is the number of the predicates. Therefore, the  

cyclomatic complexity of satisfying PCC is p +1. 

• Rule Coverage Criterion (RCC). RCC assures that a Boolean expression in each predicate 

of the rules in a firewall policy to be evaluated to true at least once with packets. Because 

all decisions of the predicates of the rules are binary, McCabe cyclomatic complexity is 

v(G) = p +1 where p is the number of the predicates. The cyclomatic complexity of 

satisfying RCC is p because we remove a case where all predicates are evaluated to be 

false from V(G) based on the definition of RCC.  

• Security Enhanced Linux (SELinux). SELinux provides the mechanism for supporting 

access control security policies in Linux. 

• Security Policy. A security policy is a set of restrictions and properties that specify how a 

system prevents information and computing resources from being used in violation of an 

organization’s security laws, rules, and practices. 

• Virtual Computing Lab (VCL). VCL provides cloud services such as reservations, 

management, or access (called checkout) to virtual machine images. 
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• OASIS eXtensible Access Control Markup Language (XACML). XACML is an XML-

based policy specification language. 
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1 Introduction 

Systems such as web applications, database systems, and cloud services regulate users’ 

access to sensitive resources based on security policies (such as firewall policies and access 

control policies). Organizations often manage security policies in an ad-hoc and inconsistent 

manner due to a lack of budget, resources, and staff [5, 70]. As security policies are crucial 

elements in securing resources in organizations, ad-hoc and inconsistent management can 

create security problems (e.g., misconfigurations) such as unauthorized access to sensitive 

resources.  

Wool [59] examined 37 network security policies (i.e., firewall policies) in production 

enterprise network in 2004. The security policies had between 5 and 2,671 rules. Wool 

reported that all of the security policies included at least one configuration error, which could 

allow unauthorized access. 

NIST [67] defines security policy as “a set of restrictions and properties that specify how a 

computing system prevents information and computing resources from being used in 

violation of an organizational security laws, rules, and practices.” 

In computer systems, security policies specify “who” (e.g., users or processes) can 

perform actions under “what” conditions according to which access control must be 

regulated. A misconfiguration (i.e., fault) of security policies could cause severe damages to 

an organization, including financial and reputational losses [3].  
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Correctly specifying security policies is a critical and yet challenging task for building 

reliable security policies with three factors. First, the rules in a security policy are could be 

complex because of organization regulations and structure. Second, a security policy may 

consist of a large number of rules. For example, Wool [59] examined firewall policies with 

up to 2,671 rules in production enterprise network. Third, a security policy often consists of 

rules that are written by multiple policy authors, at different times, and for different reasons, 

which make maintaining security policies even more difficult [5]. Bauer et al. [5] interviewed 

13 professional policy authors of large organizations. They reported that policy authors are 

concerned about potential mistakes due to security-policy management by multiple policy 

authors. Consider that a policy author may change security policies without notifications to a 

peer policy author. The peer policy authors may make mistakes in future due to a lack of 

information about this security policy change. 

To help facilitating manage security policies correctly, policy authors may follow 

common patterns in specifying and maintaining security policies. However, these patterns 

may not be documented. For example, researchers applied data mining techniques [56] for 

deriving patterns such as a group of users (i.e., roles in RBAC policies) who have the same 

access permissions. Policy authors reuse common patterns and reduce mistakes. Anomalies 

of those patterns are candidates for inspection to determine whether these anomalies expose 

faults. 
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In addition, to improve the quality of security policies in terms of correctness, policy 

authors must conduct rigorous testing and verification during testing and maintenance phases 

of software development process. However, manual test-input generation and verification is 

an error-prone, time-consuming, and tedious task.  

Our research goal is to help policy authors through automated pattern mining and testing 

techniques in the efficient detection and removal of faults. 

To improve the quality of security policies in terms of correctness, researchers and 

practitioners have developed various policy analysis and testing tools. The main function of 

these policy analysis tools is to detect “bad smell” (i.e., “anomalies”) in security policies 

based on some common patterns of configuration mistakes [4, 39].  The main drawback of 

these tools is that the “anomalies” may be false-positives and the number of “anomalies” 

could be too large to be practically useful. Several security policy testing techniques have 

been proposed [22, 37]. However, these security policy-testing techniques are not based on 

well-established testing techniques in software engineering. For example, these techniques do 

not consider coverage criteria [61] for security policy testing. 

We focus on mining patterns and detecting faults effectively and efficiently in security 

policies under analysis. This dissertation is comprised of three research projects. 
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• Pattern Mining. We mined patterns [28] from security policies of open source software 

products. 

o In the first study, we applied association rule mining to mine patterns, called 

patterns characterizing correlations of policy behaviors with regards to attribute 

values. For example, in the security policy, called codeD [20], for a grading 

system, based on similar policy behaviors of a lecturer and a faculty member, our 

approach mines a property: if a lecturer is permitted to conduct actions (e.g., 

assign/modify) on grades, a faculty member is likely to be permitted to conduct 

the same actions on grades. Our approach gives alerts if the faculty member is 

permitted to conduct different actions (e.g., denied to modify) on grades. 

o In the second study, we mined patterns, called evolution patterns, which 

characterize common patterns of security policy evolution. We first empirically 

observe evolution trends of security policies by measuring growth (i.e., lines of 

code related to security policies) trends. We extract evolution patterns 

characterizing changes of permissions (i.e., rights to perform certain actions). A 

evolution pattern st1 → st2 presents that st1 (e.g., “read”) evolves into st2 (e.g., 

“read” and “write”) indicating that policy authors add “write” permission in 

addition to existing “read” permission. Our approach helps specify security 

policies effectively and efficiently by recommending how to change policies 

based on evolution patterns. 

• Automated Test Generation.  We developed a systematic structural testing approach 

[26, 27]. Our approach is based on the concept of policy coverage, which helps test a 
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policy’s structural entities (i.e., rules, predicates, and clauses) to check whether each 

entity is specified correctly. As manual test-packet generation is tedious, our approach is 

an automated test generation tool (that can generate test cases such as packets) for 

achieving high structural coverage. The reason for achieving high structural coverage is 

that a set of test cases with higher structural coverage (including rule, predicate, and 

clause coverage) investigates a large portion of policy entities for fault detection. 

• Regression Test Selection.  We developed a safe-test-selection approach [29] for 

regression testing of security policies. Our approach helps improve the quality of security 

policies by detecting unexpected policy behaviors (i.e., regression faults) caused by 

policy changes efficiently. With the change of security requirements, developers may 

modify security policies to comply with the requirements. After the modification, policy 

authors validate and verify the given system to determine that this modification is correct 

and do not introduce unexpected behaviors (i.e., regression faults). Among given initial 

test cases in access control systems under test, our approach selects and executes only test 

cases that could expose different policy behaviors across multiple versions of security 

policies. 

1.1 Contributions 
 

In summary, this dissertation makes the following contributions: 

• Approach of Pattern Mining.  
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o We develop two approaches that mine patterns. The first one is to mine usage 

patterns via association mining approach. The second one is to mine evolution 

patterns by analyzing changes across multiple versions of security policies. 

o We conduct mutation testing [41]. Mutation testing creates faulty versions of 

policies by making small syntactic and semantic changes. We first identify 

patterns of the faulty versions, and determine whether the anomalies of patterns 

expose faults (i.e., fault-detection) of the faulty versions. Our evaluation results 

show that these anomalies help detect faults. 

• Approach of Automated Test Generation.  

o We develop a systematic structural testing approach based on the concept of 

policy coverage. 

o Our approach generates a set of test cases automatically based on well-established 

testing techniques in software engineering, such as an existing constraint solver. 

o We conduct mutation testing to measure fault-detection capability (i.e., detecting 

more injected faults). Our evaluation results show that a packet set with higher 

structural coverage has higher fault-detection capability 

• Approach of Regression Test Selection. 

o We develop a test selection approach to select only test cases (from existing test 

cases) that reveal different policy behaviors due to policy changes. 

o Our approach uses three techniques; the first one is based on mutation analysis, 

the second one is based on coverage analysis, and the third one is based on 

evaluated decisions of requests issued from test cases. 
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o Our evaluation results show that our test selection techniques achieve up to 

51%~97% of test reduction for a modified version with given synthesized 5~25 

policy changes for three Java programs. 

• Empirical Study of Policy Evolution.  

o We conduct an empirical study of policy evolution for security policies (such as 

access control policies) of three open-source systems. We empirically observed 

that (1) the number of lines in policies continue to increase over time and (2) 

some of the evolution patterns appear to occur more frequently. 

1.2 Scope 

We aim to improve the quality of security policies such as access control policies and 

firewall policies. Both access control policies and firewall policies govern access controls. 

An access control policy selectively permits or denies certain users or processes to critical 

resources. Policy authors may use access control policies for various purposes such as 

authorization of users based on roles and filtering traffic on network interfaces. A firewall 

policy has only one purpose: it is used to examine traffic passing in a network and it makes 

decisions about whether these packets are allowed to pass. 

In this dissertation, we evaluate our pattern mining and regression test selection 

approaches on access control policies. We evaluate our automated test generation on firewall 

policies. 
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• Our pattern mining approach mine patterns based on the observations that policy authors 

follow patterns in specifying and maintaining access control policies. However, firewall 

policies include many exception rules (such as whitelists and blacklists). Due to these 

exception rules, our approach could not be effective for detecting patterns for firewall 

policies. 

• Our automated test generation approach generates test cases covering structure entities 

(such as rules) of firewall policies. This approach could generate test cases for an access 

control policy as well because an access control policy consists of a set of rules. 

• Our regression test selection approach selects test cases by observing interactions 

between test cases and access control policies. Given firewall policies and test cases, this 

approach could select test cases that are impacted by firewall policy changes.	
  	
  

1.3 Dissertation Organization 

The rest of this dissertation is organized as follows. Chapter 2 provides background with 

respect to security policies such as access control policies and firewall policies. Chapter 3 

presents related work. Chapter 4 presents our study to mine patterns via association rule 

mining. Chapter 5 presents our study to mine evolution patterns from security policies. 

Chapter 6 presents our systematic structural testing approach. Chapter 7 presents our test 

selection approach for regression testing of security policies. Chapter 8 summarizes our 

conclusions and future work. 
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2 Background 

In this chapter, we discuss details of access control policies (ACPs) and firewall policies.  

We show examples of access control policies and firewall policies. An ACP typically 

governs access to critical resources in organizations.  A firewall policy regulates access 

controls in inter or intra-networks by monitoring and filtering packets. 

 

 Access Control Policy 2.1

This sub-section provides background with regard to ACP concepts and terminology, 

access control architecture, and ACP models. 

2.1.1 Concept 

An ACP is a policy specification that defines “who” (e.g., users or processes) can perform 

actions under “what” conditions. An ACP typically consists of a set of rules, each of which 

describes permission or denial of accesses to resources by specified users or processes. 

2.1.2 Access Control Policy Models 

We present three popular ACP models: Role-Based Access Control (RBAC) [19, 50], 

Type Enforcement (TE) access control [52], and Network Access Control List (ACL) models 

[30]. ACP models are formal representations to express ACPs and their operations. For 

example, the RBAC model allows policy authors to express explicit ACPs based on role(s) 

(e.g., user groups) of a user instead of individual users. The benefit of the RBAC model is the 

reduction of the management costs by specifying ACPs based on roles instead of individual 
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users. Specifying access control of each individual user is tedious due to the increasing 

number of users. 

Table 2.1 describes a summary of each ACP model. ACP models provide a means of fine-

grained access control over given subjects in a system. Different ACP models formalize 

different entities and their relations to describe which subjects can take an action on objects. 

Typically, subjects are users or processes that use the system. Objects are resources to be 

protected from unauthorized access. Actions are the operations that subjects can perform 

(e.g., write or read) on the objects.  

2.1.3 Access Control Processing 

To facilitate ACP management, security mechanisms are designed to abstract and 

externalize ACPs to be a separate component. The benefit of this design is to reduce the 

management costs because policy authors can modify ACPs without changing functionality 

(e.g., business logic) in a system. The processing of access to critical resources in a system is 

as follows. 

At an abstract level, program code interacts with ACPs. Program code includes security 

checks, called Policy Enforcement Points (PEPs), to check whether a given subject can have 

access to protected information. The PEPs formulate and send an access request to a security 

component, called Policy Decision Point (PDP) loaded with policies. The PDP evaluates the 
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request against the policies and determines whether the request should be permitted or 

denied. Finally, the PDP sends the decision back to the PEPs to proceed. 

Policy authors can specify and maintain ACPs in one place (in the form of a piece of code, 

configuration, dataset, or specification). Policy authors specify ACPs in various ways. One 

Table 2.1. Summary of ACP Models 

ACP 
Models 

Subjects Objects Description 

RBAC 
Model 

Roles Resources (e.g., sensitive 
information within an 
organization) 

RBAC model is used to specify 
explicit access controls based on 
the role(s) of a subject. In 
organizations, a user typically 
can be assigned to one or more 
roles associated with 
permissions.  
 

TE Model System 
processes 

Files, sockets, directories, 
etc. 

TE model supports fine-grained 
control over processes and 
objects in operating systems. TE 
model defines a type of every 
process and object. TE model is 
used to specify which processes 
(grouped by subject types) can 
take an action on which objects 
(grouped by object types). 

Network 
ACL 
model 

Packet System resources Network ACL model controls 
access through network traffic by 
monitoring content in packet 
payload to detect malicious 
network traffic. The content 
typically includes 
source/destination IP addresses, 
source/destination port numbers, 
and protocol.  
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common way is that policy authors specify ACPs using policy specification languages such 

as eXtensible Access Control Markup Language (XACML) [68] and Policy Description 

Language (PDL) [69]. Another common way is that policy authors use configuration files or 

relational databases to store ACPs. 

2.1.4 Example 

We illustrate an example ACP specified in XACML. XACML has become the de facto 

standard for specifying ACPs. Typically, XACML policies are specified separately from 

actual functionality (i.e., business logic) in program code. 

An XACML policy consists of a policy set, which further consists of policy sets and 

policies. A policy consists of a sequence of rules, each of which specifies under what 

conditions C subject S is allowed or denied to perform action A (e.g., read) on certain object 

(i.e., resources) O in a given system. 

More than one rule in an ACP may be applicable to a given request. A combining 

algorithm is used to combine multiple decisions into a single decision. There are four 

standard combining algorithms. The deny-overrides algorithm returns Deny if any rule 

evaluation returns Deny or no rule is applicable. The permit-overrides algorithm returns 

Permit if any rule evaluation returns Permit. Otherwise, the algorithm returns Deny.  
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The first-applicable algorithm returns what the evaluation of the first applicable rule 

returns. The only-one-applicable algorithm returns the decision of the only applicable rule if 

1<Policy PolicyId="univ" RuleCombAlgId="first-applicable"> 
2  <Target> 
3   <Subjects> <AnySubjects/> </Subjects> 
4   <Resources> <AnyResource/> </Resources> 
5   <Actions> <AnyAction/> </Actions> 
6  </Target> 
7  <Rule RuleId="1" Effect="Permit"> 
8   <Target> 
9    <Subjects><Subject> Faculty </Subject></Subjects> 
10    <Resources> 
11     <Resource> ExternalGrades </Resource> 
12     <Resource> InternalGrades </Resource> 
13    </Resources> 
14    <Actions><Action> View </Action> 
15     <Action> Write </Action></Actions> 
16   </Target></Rule> 
17  <Rule RuleId="2" Effect="Permit"> 
18   <Target> 
19    <Subjects><Subject> Student </Subject></Subjects> 
20    <Resources> 
21     <Resource> ExternalGrades </Resource> 
22    </Resources> 
23    <Actions><Action> View </Action></Actions> 
24   </Target> 
25  </Rule> 
26  <Rule RuleId="3" Effect="Deny"> 
27   <Target> 
28    <Subjects><Subject> Student </Subject></Subjects> 
29    <Resources> 
30    <Resource> ExternalGrades </Resource> 
31    </Resources> 
32    <Actions><Action> Write </Action></Actions> 
33   </Target> 
34  </Rule> Figure 2.1. An Example XACML Policy 
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there is only one applicable rule, and returns error otherwise. 

Figure 2.1 shows an example XACML policy adapted from a sample policy used by Fisler 

et al. [20]. This example illustrates a policy that uses the first-applicable algorithm, which 

determines to return the evaluated decision of the first applicable rule. In this example, there 

are two subjects or roles (Faculty, Student), two resources (ExternalGrades, InternalGrades), 

and two actions (View, Write). 

There are four rules in the XACML policy. Lines 7-16 define the first (permit) rule, which 

allows a faculty to view or write external or internal grades. Lines 17-25 define the second 

(permit) rule, which allows a student to view external grades. Lines 26-34 define the third 

(deny) rule, which denies a student to write external grades. Line 36 defines the last default 

(deny) rule, which denies any request that does not match any of the three preceding rules. 

 Firewall Policy 2.2

We next provide background of firewall policies. A firewall is typically placed at the point 

of entry between a private network and the outside Internet such that firewalls are responsible 

for filtering, monitoring, and securing packets [38]. 

 

2.2.1 Concept 

A firewall policy is composed of a sequence of rules that specify under what conditions a 

packet is accepted or discarded while passing between a private network and the outside 
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Internet. In other words, the policy describes a sequence of rules to decide whether packets 

are accepted (i.e., being legitimate) or discarded (i.e., being illegitimate). A rule is composed 

of a set of fields (generally including source/destination IP addresses, source/destination port 

numbers, and protocol type) and a decision. Each field represents the range of possible values 

(to match the corresponding value of a packet), which are either a single value or a finite 

interval of non-negative integers. 

A packet matches a rule if and only if each value of the packet satisfies the corresponding 

values in the rule. Upon finding a matching rule, the corresponding decision of that rule is 

derived. When evaluating a packet, the firewall policy follows the first-match semantic: the 

first matching rule is given the highest priority among all the matching rules. 

2.2.2 Firewall Policy Model 

This section illustrates a model of a firewall policy based on common generic features. A 

firewall policy is composed of a sequence of rules, each of which has the form (called the 

generic representation) as follows. 

<predicate> → <decision>  

A <predicate> in a rule is a boolean expression over fields on which a packet arrives. The 

<decision> of a rule can be “accept” or “discard”; it is returned as the evaluation result when 
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the <predicate> is evaluated to be true. The <predicate> is represented as a conjunction form 

as follows. 

F1 ∈ 𝑆1 ∧ ... ∧ Fn ∈ 𝑆𝑛 

In a policy model, we represent a value in a field F𝑖 (e.g., IP address) as its corresponding 

range 𝑆𝑖 (e.g., F𝑖 ∈ [2,5]) to simplify the representation format. We refer to each F𝑖 ∈ 𝑆𝑖 as a 

<clause>, which can be evaluated to either true or false. 

The first-match semantic (of a firewall policy) shows the same behavior with the 

execution of a series of IF-THEN-ELSE statements in program code. Given a sequence of 

rules, the following process is iterated until reaching the last rule: if a <predicate> in a rule is 

evaluated true, then the corresponding decision is returned; otherwise, the next rule (if exists) 

is evaluated. 

2.2.3 Example 

Figure 2.2 shows an example of a firewall policy. The symbol “*” denotes that the 

corresponding field’s range (in a rule) is equal to the domain of the field and is satisfied by 

any packet.  An IP address is a 32 bit value, which is represented as a four-part dotted-

decimal address (e.g., 192.168.0.0). Classless Inter-domain Routing (CIDR) notation is used 

to represent IP ranges over an IP address with a subnet mask (e.g., /16 or /24). For example, 

the range of 192.168.0.0/24 implies IP addresses from 192.168.0.0 to 192.168.0.255. This 
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range consists of all possible IP addresses starting with the same left-most 24 bits (i.e., 

192.168.0) on the given IP address. Each of the remaining 8 bits (which do not have fixed 

values) is either 0 or 1. 

The example has three firewall rules r1, r2, and r3. Rule r1 accepts any packet whose 

destination IP address is the network 192.168.0.0/16 (which indicates the range [192.168.0.0, 

192.168.255.255]). Rule r2 discards any packet whose source IP address is the network 

1.2.3.0/24 (which indicates the range [1.2.3.0, 1.2.3.255]) and port is the range [1, 28 − 1] 

with the TCP protocol type. Rule r3 is a tautology rule to discard all packets. Consider a 

packet whose destination IP address is 192.168.0.0 and protocol type is UDP. When 

evaluating the packet, we find that the packet can match both r1 and r3. Between the two 

rules, as r1 is the first-matching rule, the packet is evaluated to be accepted (with regards to 

the decision of r1). If a packet matches no rules in a firewall policy, there exists the last 

tautology rule to discard the packet. 

Both ACPs and firewall policies govern access. ACPs selectively permit or deny certain 

users or processes to critical resources. Policy authors may use ACPs for various purposes 

such as authorization of users based on roles and filtering traffic on network interfaces. ACPs 

 
Figure 2.2. An example firewall policy. 
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are typically stateless. However, a firewall has only one purpose: a firewall is a device which 

examines traffic passing in a network and makes decisions whether these packets are allowed 

to pass or not. 
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3 Related Work 

Our work builds on prior work in four areas: pattern mining, software evolution, policy 

testing, and regression test generation.  In this chapter, we provide relate work in these area.  

 

 Mining Patterns  3.1

Martin et al. [40, 42] developed an approach for measuring the quality of policy properties 

in policy verification. Given user-specified properties, they developed an approach that 

measures the quality of the properties based on fault-detection capability. In addition, they 

developed an approach to use machine-learning algorithms (e.g., a classification algorithm) 

to mine policy properties automatically. Given request-decision pairs, this previous approach 

mines request-classification rules based on a statistical policy-behavior model. Therefore, 

faults are likely to be detected when the policy violates this model. Bauer et al.’s approach 

[6] proposed an approach to mine association rules, which are used to detect 

misconfiguration in a policy. Their approach considers only object attributes for mining 

patterns from historical access data. 

 ACP Evolution and Software Evolution 3.2

The closest research relating to our work is an empirical study on permission 

evolution/usage in the Android platform conducted by Wei et al. [57]. They used multiple 

Android platform releases and application versions. They reported that a list of permissions 

and usage for Android platforms and applications is growing over time. With the increasing 
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number of permissions, the number of dangerous permissions (e.g., personal data-related 

resource access privileges) increases over time.  Our evolution study differs in the following 

ways. First, our empirical study relied on ACPs specified by policy authors for various 

systems such as operating and database systems. The collected ACPs are specified based on 

popular ACP models such as RBAC and TE policy models, which allow policy authors to 

add/delete subjects. However, Wei et al. studied permissions specific for Android 

application, such as permission on GPS location access of users. Android application 

developers are allowed to choose necessary permissions within the set of pre-defined 

permissions. They cannot add/delete subjects.   Additionally, Wei et al. studied permission 

evolution based on concerns and behaviors related to the least privilege property and 

dangerous/secure permissions. Our study focuses on understanding why and how ACPs 

evolve in general over time. 

Chia et al. [11] conducted a characterization study on user-consent permission systems in 

Facebook, Chrome, and Android applications. These permissions are given to applications 

based on user consent for granting explicit permissions upon the request of applications. 

They found that community and user ratings on applications’ privacy were not reliable for 

determining privacy risks of the applications. They reported that free applications request 

more permissions than those necessary for the application. Their study focuses on permission 

characterization and effectiveness of single-release applications. In contrast, our evolution 

study focuses on evolution of ACP by analyzing multiple versions of ACPs. 
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Another research direction is the formalism of ACP evolution. Koch et al. [32] have 

proposed a model to formalize ACP and its evolution using graph transformations. Their 

formalism helps describe ACP evolution precisely. Pretschner et al. [46] have proposed the 

approach of an evolution model with regards to ACP usage control. However, their work 

focuses on a theoretical ACP evolution model without any empirical observations on ACPs 

in practice. Different from their study, our evolution study focuses how ACPs evolve in 

practice. Moreover, we propose a model to help predict how ACPs evolve.  

Software evolution is a very active research area in software engineering. Kemerer et al. 

[31] conducted an empirical study to understand characteristics of software evolution and 

developed taxonomy of software maintenance. They studied the historical growth and 

changes of 23 software applications over 20 years. They categorize maintenance causes of 

software evolution. Buckley et al. [9] proposed taxonomies of software evolution based on 

characterizing the mechanisms of change. This taxonomy helps identify and evaluate tools, 

methods and formalisms for a given software change. They conducted an empirical approach 

to understand various aspects such as driving factors, impact, taxonomy and processes in 

software evolution. In this dissertation, different from general software evolution, we focus 

on the evolution of ACPs. 

 Testing of Security Policies 3.3

A firewall policy is translated to program code (i.e., IF-THEN-ELSE statements) that 

includes a large number of conjunctive logical expressions to illustrate rules. Ammann et al 
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[2] proposed coverage criteria for such logical expressions. For example, they proposed 

predicate and clause coverage criteria in notions of logical expressions. Although they 

proposed such criteria, they did not generate test suites for real program code to show the 

effectiveness of their coverage criteria. We propose logical coverage criteria that are suitable 

for a firewall policy. We also develop test packet generation and mutation testing techniques 

to show the effectiveness in terms of fault-detection capability. Our work targets test 

generation and mutation testing especially for a large number of logical expressions (in a 

firewall policy). 

Black et al. [7] and Wimmel et al. [58] proposed mutation testing for specifications. 

However, their mutation operators change operators (e.g., replacing an expression by its 

negation) and pre/post conditions of specifications. In our automated test-generation 

approach, instead of changing operators and pre/post conditions, we mutate clauses and a 

rule’s decision, where policy authors could make mistakes in specifying rules (e.g., 

specifying incorrect values). For testing access control policies such as XACML policies 

[68], Martin et al. [43] proposed to mutate policies [41], and generate random requests 

automatically. Their proposed structural coverage criteria and mutation operators are not 

directly applicable to firewall policies due to the semantic and syntactic differences between 

access control policies and firewall policies. While firewall policies consist of a set of ranges 

(intervals) in rules, access control policies consist of structural elements such as policies, 

rules, subjects, objects, and actions. They do not use a well-established test generation 

technique to cover certain entities.  
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Some researchers proposed firewall testing with test cases generated based on their 

proposed criteria. Jürjens et al. [30] proposed specification based testing, which generated 

test sequences to cover a state transition model of a firewall and its surrounding network. El-

Atawy et al. [17] proposed policy criteria identified by interactions between rules, called 

“policy segmentation” identified by interactions between rules. Different from their 

approaches, we use structural coverage criteria in each rule to help detect which entities are 

specified incorrectly. In addition, we also use mutation testing to evaluate our automated test-

generation. 

Several firewall policy testing techniques [22, 37] inject packets into a firewall and check 

whether the decisions of the firewall concerning the injected packets are correct. However, 

these techniques lack rigorousness in terms of the use of coverage criteria and effective 

mechanisms for generating covering packets. Furthermore, these testing techniques are 

inefficient when a tester needs to inject a large number of packets and examine their 

decisions. In contrast, our automated test-generation approach is based on solid foundations 

and advanced test-packet generation techniques. 

 Regressions Test Generation 3.4

Various techniques have been proposed on regression testing of software programs [16, 

21, 48]. These techniques aim to select test cases that could reveal different behaviors after 

modification in programs. These techniques are related to regression-test selection [21, 48], 

and test-suite prioritization [16]. Note that these techniques focus on changes at code level. 
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None of these techniques consider potential changes that can arise from code-related 

components (such as security policies specified separately). Polices and general programs are 

fundamentally different in terms of structures, semantics, and functionalities, etc. Therefore, 

techniques for regression testing of programs are not suitable for addressing the test-selection 

problem for policy evolution. Our regression-test-selection approach is the automatic test-

selection approach for policy evolution. 

 Fisler et al.’s approach [20] developed a tool called Margrave that enabled conducting 

change-impact analysis between two XACML policies. We could use Margrave to identify 

semantic policy changes between two policies. However, Margrave supported only limited 

functionality of XACML. Moreover, Margrave did not support test selection as our work 

does. 
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4 Mining Patterns via Association Rule Mining 
 

 Introduction 4.1

Systems adopt access control mechanisms to offer access control to sensitive resources 

based on ACPs. An ACP consists of a set of rules, each of which describes permission of 

accesses to resources by specified users or processes. Identifying discrepancies between 

ACPs and their expected functions is crucial because these discrepancies may result in 

unexpected access controls such as allowing malicious users to access sensitive resources. To 

increase our confidence on the correctness of ACPs, ACPs must undergo rigorous 

verification and testing.  

To help improve the quality of ACPs in terms of correctness, we develop an approach to 

mine patterns (in ACPs) that policy authors often follow implicitly. The reason for 

identifying these patterns is based on observations that the policy authors often follow these 

patterns in specifying and maintaining ACPs. Anomalies of those patterns should be 

inspected to determine whether these anomalies expose faults. 

More specifically, we apply association-rule-mining [8] to mine patterns from subject, 

object, and action attribute values used in ACPs. Association rule mining searches patterns, 

which are in the form (A, D) ⇒ (B, D) where A and B are sets of attribute values and D is 

either a “Permit” or “Deny” decision. The form represents that (A, D) implies (B, D) where 

(A, D) is <premise> and (B, D) is <conclusion>. In other words, if <premise> holds true, 
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<conclusion> is likely to hold true. Consider that o1, o2, o3, and o4 are object attribute values 

(e.g., file name) in an ACP. An example is (o1, “Permit”) ⇒ (o2, “Permit”), which 

represents that a user with access to o1 is likely to have access to o2. Another example (o3, 

“Permit”) ⇒ (o4, “Deny”) represents that a user with access to o3 is not likely to have access 

to o4. From all possible patterns, we collect patterns with a pre-defined probability value or 

above. 

We define policy behaviors as a set of all possible access requests and their corresponding 

access decisions (e.g., Permit or Deny). Our approach mines such patterns that may not be 

true for all the policy behaviors, but are true for most of the policy behaviors. Therefore, 

patterns may lead to a small number of anomalies. As these anomalies are deviations from 

the policy’s normal behavior, these anomalies should be inspected to determine whether 

these anomalies expose faults. 

 

 Example   4.2

Figure 4.1 illustrates an example policy [20] for a grading system in a university as if-else 

statements in code. This example is the RBAC policy used by Fisher et al. [20]. We next 

explain this example policy. The policy includes six rules. Lines 1-3 include rules that allow 

a faculty member to assign or modify ExternalGrade or InternalGrade. Lines 4-6 include 

rules that allow a Teaching Assistant (TA) to assign or receive InternalGrade. Lines 7-9 

include rules that allow a student to receive ExternalGrade. Lines 10-12 include rules that 

allow a family member to receive ExternalGrade. Lines 13-15 include rules that allow a 
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lecturer to assign or modify ExternalGrade or InternalGrade. Line 16 is a tautology rule to 

deny requests that are not applicable in the preceding rules. 

We next describe an example pattern related to the two action attribute values of 

“Modify” and “Receive”. Table 4.1 and Table 4.2 describe access decisions (i.e., “P” as 

Permit or “D” as Deny) associated with object attribute values, ExternalGrade and 

InternalGrade, respectively. In these tables, column 1 shows all possible subject (role) 

attribute values. Columns 2-3 describe corresponding access decisions of a subject attribute 

value associated with the action attribute value “Modify”, or “Receive”, respectively. For 

example, in the second row of Table 4.1, given a role attribute value (Faculty) and an object 

value (ExternalGrade), the table describes access decisions associated with action attribute 

values “View” and “Receive”. The corresponding decisions are “P” and “D.” 

We consider an example pattern1 as follows. 

• Pattern1: If a subject (e.g., Student) is Permitted to Receive a grade (e.g., 

ExternalGrade or InternalGrade), the subject is Denied to Modify the grade. 

In Table 4.1 and Table 4.2, column 4 describes whether Pattern1 is satisfied for given 

attribute values. We found that three cases satisfy the <premise> of Pattern1. The three cases 

are combinations of subject and object attribute values: (1) a student with ExternalGrade and 

(2) a family member with ExternalGrade, and (3) a TA with InternalGrade). All of these 



 
 
 

  28 

 

cases satisfy the <conclusion> as well.  Conditional probability, which measures the 

probability of satisfying <conclusion> given that <premise> is satisfied, is 100%. 

 Fault Detection with Association Patterns 4.3

This section first presents definitions for attribute values and relations that our approach is 

based on. This section next presents our approach for detecting faults in a policy with our 

pattern mining techniques. Our approach includes three steps: (1) generate relation-table (2) 

identify association patterns, and (3) prioritize anomalies.  

• Generate Relation-table. The relation-table generation component takes a policy p as an 

input and generates tables based on attribute values in the policy p. The association rule 

1 If role = Faculty 
2  and resource = (ExternalGrade or InternalGrade) 
3  and action = (Modify or Assign) then Permit 
4 If role = TA 
5  and resource = (InternalGrade) 
6  and action = (Assign or Receive) then Permit 
7 If role = Student 
8  and resource = (ExternalGrade) 
9  and action = (Receive) then Permit 
10 If role = Family 
11  and resource = (ExternalGrade) 
12  and action = (Receive) then Permit 
13 If role = Lecturer 
14  and resource = (ExternalGrade or InternalGrade)) 
15  and action = (Assign or Modify) then Permit 
16 Deny 

Figure 4.1. An example policy 
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mining component takes attribute values (from the table produced by the previous 

component) and mines patterns r.  

• Identify Association Patterns. The pattern identification component takes p and r as 

inputs and verifies p against r. The component produces verification reports based on 

whether the given patterns p are satisfied; when a property is violated, anomalies are 

generated accordingly.  

• Prioritize Anomalies. The policy authors inspect anomalies to determine whether they 

expose faults. To detect faults effectively, we propose a prioritization technique to 

Table 4.1. Policy Behavior with regards to ExternalGrade.  

 Modify Receive Pattern1 

Faculty P D  

TA D D  

Student D P Yes 

Family D P Yes 

Lecturer P D  

 
 

Table 4.2. Policy Behavior with regards to InternalGrade.  

 Modify Receive Pattern1 

Faculty P D  

TA D P Yes 

Student D D  

Family D D  

Lecturer P D  
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recommend that the policy authors inspect anomalies by the order of their fault-detection 

likelihood. 

4.3.1.1 Generate Relation-Table 

Our approach first analyzes a policy p and generates a policy behavior report showing all 

possible request-response pairs in the policy p where a request is an access request and its 

response is its evaluation (Permit or Deny). Our approach next analyzes the policy behavior 

report, and then generates relation tables (including all request-response pairs) that can be 

used as input for an association rule-mining tool. For example, to mine patterns, we generate 

a relation table that organizes all possible policy behaviors. Based on this table, we generate 

our proposed patterns used to mine relations of attribute values. For example, Table 4.1 and 

Table 4.2. describe relation-table with regards to the two action attribute values of “Modify” 

and “Receive”.  

4.3.1.2 Identify Association Patterns 

Let s ∈ S, o ∈ O, and a ∈ A, respectively, denote the set of all the subject attribute values 

(e.g., user’s role or rank), objects (e.g., file) and actions (e.g., write or read) in an access 

control system. 

In this dissertation, we propose three types of patterns based on subjects, actions, and 

subject-action attribute values, as presented next. Each of these relations focuses on mining 

relations of specific attribute values. 
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• Subject relations (S-pattern type). We denote this relation as {s1, d1} ⇒ {s2, d2} 

where s1 and s2 are subjects (i.e., s1 ∈ S and s2 ∈ S). An example (s1, “Permit”) ⇒ (s2, 

“Permit”) represents that s2 is likely to inherit all of the permissions from s1. 

• Action relation (A-pattern type). We denote this relation as {a1, dec1} ⇒ {a2, dec2} 

where a1 and a2 are actions (i.e., a1 ∈ A and a2 ∈ A). An example (a1, “Permit”) ⇒ (a2, 

“Permit”) represents that given an object o, a user who is permitted to take an action 

a1 on o is likely to be permitted to take an action a2 on o. 

• Subject-Action relation (SA pattern type). We denote this relation as {s1, a3, d1} ⇒ 

{s2, a, dec2} where s1 and s2 are subjects, and a3 is an action (i.e., s1 ∈ S, s2 ∈ S, and a 

∈ A).  An example (s1, a3, “Permit”) ⇒ (s2, a3,“Permit”) represents that if s1 is 

permitted to take a3, s2 is likely to be permitted to take a3. These subject-action 

relations subsume subject and action relations. 

In association rule mining, thresholds such as support and confidence are used to constrain 

generating association relations. Let t denote the total number of transactions corresponds to 

the number of rows in a relation table. For example, the sum of transactions in Table 4.1 and 

Table 4.2 includes 10 transactions. Let d denote the number of transactions including an 

attribute item X (that is attribute values and decision set). The support supp(X) of X is !
!
. We 

measure confidence, which is the likelihood of a relation: confidence (X ⇒ Y) = !"##(!∪!  )  
!"##(!  )  

. 

These relations are patterns if support values and confidence in the patterns are above pre-

defined thresholds. 
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4.3.1.3 Prioritize Anomalies 

Our approach next verifies the policy with the patterns to check whether the policy 

includes a fault. Our rationale is that, as patterns are true for most of the policy behaviors, 

anomalies (which do not satisfy the patterns) deviate from the policy’s normal behaviors and 

should be inspected. 

Basic and Prioritization Techniques. A basic technique is to inspect anomalies without 

any inspection order among the anomalies. Since the number of generated anomalies can be 

large, manual inspection of the anomalies can be tedious. To address the preceding issue, we 

propose a prioritization technique that classifies anomalies into a ranked order based on their 

fault-detection likelihood. The technique evaluates anomalies in each of the anomalies by the 

order of their fault-detection likelihood until a fault is detected. The prioritization technique 

maintains the same level of fault-detection capability of the basic technique when the policy 

contains a single fault. 

We next describe how we classify anomalies into a ranked order CSdu, CS1, ..., CSn, based 

on their fault-detection likelihood. First, we give the highest priority to duplicate anomalies, 

which are classified to CSdu. When multiple patterns triangulate on a single rule, this rule 

may be more likely to contain a fault. Second, we investigate the number of anomalies 

produced by patterns to rank an order among anomalies. As a pattern may lead to anomalies, 

the policy authors are required to verify anomalies to ensure the correctness of a given 

policy. Given a property that has w anomalies, we classify these anomalies to CSw (1≤ w ≤ m 
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where m is the largest number of anomalies generated for a pattern). The policy authors first 

inspect anomalies in CSdu. The policy authors then inspect anomalies in CSi by the order of 

CS1, ...,  CSm (1≤ i ≤ m) until a fault is detected.  

 Evaluation 4.4

We next describe the evaluation results to show the effectiveness of our approach with 

four policies. These policies are codeD, continue-a, continue-b, and univ policies (in Table 

4.3). 

4.4.1 Research Questions and Metrics 

In our evaluation, we try to address the following research questions: 

RQ1: In terms of the percentage of faults detected, how does our approach compare to a 

decision-tree-classification-based approach [42]? 

RQ2: In terms of distinct anomalies, how does our approach compare to the decision-tree-

classification-based approach [42]? 

RQ3: For cases where a fault in a faulty policy (i.e., mutant) is detected by our approach, 

does percentage of distinct anomalies (for inspection) are reduced by our prioritization 

technique (in terms of detecting the first-detected fault) over our basic technique? 
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To measure fault-detection capability, we synthesize faulty policies, f1, f2, ..., fn by seeding 

faults into a subject policy fo, with only one fault in each faulty policy.  

Then, the chosen approach generates anomalies (i.e., counterexamples) for each faulty 

policy to detect the seeded fault. Note that we seed a single fault for fi. For n faulty policies, n 

faults exist. Let CP (fi) be distinct anomalies generated by the chosen approach for fi. Let 

Count(fi) be the number of distinct anomalies in CP (fi) for fi. Let DE (fi) be the reduced 

number of distinct anomalies by the prioritization technique to detect the fault in fi for cases 

where the fault in fi is detected by our approach.  

We next describe our metrics for the evaluation: 

• Fault-detection ratio (FR). Let p be the number of True Positives (i.e., injected 

faults) detected by anomalies (generated by the chosen approach) for f1, f2, ..., fn. The 

FR is !
!
. The FR is measured to address RQ1. 

• Anomalies count (AP) for each policy. This metrics is the number of anomalies 

generated by the chosen approach for each policy. 

• Anomalies count (AM) for our generated mutants. This metric is the average 

number of distinct anomalies generated by the chosen approach for each faulty policy. 

The anomalies count is !"#$%  (!")!
!!!

!
. Note that an anomaly is synonymous to a 
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request. The AM is measured to address RQ2. The AM is used to define the ARB 

metric below. 

• Anomalies-reduction ratio (ARB) for our approach over the existing approach. 

Let AM1 and AM2 be anomalies counts (AMs) by our approach and the existing 

approach, respectively. The ARB is !"#  !!"#  
!"#  

. The ARB is measured to address RQ2.  

• Anomalies-reduction ratio (ARP) for the prioritization technique over the basic 

technique. Let fp1, fp2, ..., fpm be faulty policies that are detected by our generated 

anomalies. The ARB is a percentage that measures the reduction ratio in terms of the 

number of the anomalies for inspection to detect the first fault by the prioritization 

technique over the basic technique. The ARP is !"#$%  (!"#)!
!!! !   !"(!"#)!

!!!
!"#$%  (!"#)!

!!!
. The ARP 

is measured to address RQ3. 

4.4.2 Evaluation Setup 

We use four fault types to automatically seed a policy with faults for synthesizing faulty 

policies (i.e., mutants), with only one fault in each policy for ease of evaluation: Change-

Rule Decision (CRD), Rule-Target True (RTT), Rule-Target False (RTF), and Removal Rule 

(RMR).  

• A CRD fault inverts a decision (e.g., change Permit to Deny) in a rule.  

• An RTT fault indicates changing a rule to be applicable for any request.  

• An RTF fault indicates changing a rule to be applicable for no request.  
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• An RMR fault indicates that a rule is missing.  

We seed one fault to form each of mutants, i.e., each mutant includes only a single fault.  

For the inspection for our approach, we use a verification tool [66] for XACML policies. 

Margrave also has a feature that statically analyzes an XACML policy and produces all 

possible request-decision pairs in a summarized format. Given a mutant, Margrave generates 

all possible request-decision pairs to be used for generating relation tables. We next mine 

relations from the relation tables using an association rule-mining tool [8]. 

4.4.2.1 Mining Patterns based on Decision Tree Classification 

We compare the results of our approach with those of a previous related approach [42]. 

The related approach uses a decision-tree-classification approach to mine patterns. Let a 

decision tree (DT) denotes the related approach. Given request-decision pairs, DT learns 

policy behaviors and generates request-classification rules. Therefore, incorrectly classified 

requests (i.e., anomalies) deviate from normal policy behaviors, and are required to be 

inspected. We specify a confidence threshold as 0.4% based on our tuning of evaluation 

setup for DT to generate similar anomalies as our approach for the small sample of mutants 

used in the tuning of evaluation setup. In our evaluation, inspection of anomalies (to 

determine whether the anomalies expose faults) is automatically conducted by comparing the 

two decisions evaluated by a mutant and its corresponding original policy (that is assumed to 
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be correct). However, in general, this inspection is often a manual process conducted by the 

policy authors. 

4.4.3 Evaluation Subjects 

In our evaluation, we use four policies written in XACML [68]. XACML is an access 

control policy specification language. Table 4.3 summarizes the characteristics of each 

policy. Columns 1-5 show the evaluation subject name, the number of rules, and distinct 

attribute values in the subject, resource, and action attributes in the policy, respectively. A 

subject attribute corresponds a role attribute since the policies are based on the RBAC model 

[50]. We denote the number of roles, actions, and resources as # roles, # actions, and # 

resource, respectively.  

The largest policy consists of 306 rules. The codeD2 is a modified version of the codeD11 

by adding rules for a Lecturer role. For grading, a Lecturer role has the same privileges as a 

Faculty role. Two of the policies, namely continue-a and continue-b, are examples used by 

                                                
1. http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/college 

Table 4.3. Subjects used in our evaluation 

Policy # Rules # Roles # Actions # Resources 
codeD2 12 5 3 2 
continue-a 298 5 5 26 
continue-b 306 5 5 26 
univ. 27 7 7 8 
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Fisler et al. [20] to specify access control policies for a conference review system. The univ 

policy is an RBAC policy used by Stoller et al. [53]. 

4.4.4 Results 

We conducted our evaluation on a laptop PC running Windows XP SP2 with 1G memory 

and dual 1.86GHz Intel Pentium processor. We also measure the total processing time of 

request-response-pair generation, pattern generation, anomalies generation, and automated 

inspection for correctness of given anomalies. For each mutant (with at most 306 rules), our 

results show that the total processing time is less than 10 seconds. 

We first show our detailed evaluation results for only Change-Rule-Effect mutants.  We 

then show our summarized evaluation results in Figure 4.2 for Rule-Target-True, Rule-

Target-False, and Removal-Rule mutants. Table 4.4 summarizes the detailed results for 

Change-Rule-Decision (CRD) mutants of each policy. Columns 1-2 show the evaluation 

subject name and the number of CRD mutants. Columns 3-8 show fault-detection ratio 

(denoted as “%FR”), anomalies count for each policy (denoted as “#AP”), and anomalies 

count for our generated mutants (denoted as “#AM”) for DT approach and our approach, 

respectively. Columns 9-10 show ARB and ARP for our approach.  

Results to address RQ1. In Table 4.4, we observe that DT and our approach detect 

34.5% and 62.3% (in Column “% FR”) of CRD mutants, respectively. Let Basic and 

Prioritization denote our basic and prioritization techniques, respectively. Our approach 
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(including Basic and Prioritization techniques) outperforms DT in terms of fault-detection 

capability. Our approach uses relations based on similar policy behaviors of different 

attributes values (e.g., Faculty and Lecturer). Therefore, if a faulty rule violates certain 

patterns of attribute items, our techniques have better fault-detection capability than that of 

DT. However, DT constructs classification rules based on the number of the same decisions 

without taking into how different attribute values interact. Therefore, these generated rules 

are rigid and often may easily miss certain correct policy behaviors. 

Results to address RQ2. Our goal is to detect a fault with anomalies for inspection 

possible. Intuitively, with more anomalies to be inspected, fault-detection capability is likely 

to be improved. Our results show that our approach reduced the number of anomalies by 

49.3% (in Column “% ARB”) over DT. As a result, we observe that our approach 

Table 4.4. Fault-detection capability results of Change-Rule Decision (CRD) mutants 

    DT Approach Our Approach 
Policy #MT %FR #AP #AM %FR #AP #AM %ARB %ARP 
code2D 12 66.6 3 3.5 83.3 0 2.4 31.4 58.3 
continue-a 201 35.7 84 84.4 58.2 37 42.9 49.2 67.8 
continue-b 209 35.7 84 84.4 55.9 37 42.8 49.3 68.0 
univ. 27 0 26 26 51.8 8 8.5 67.3 84.7 
AVERAGE 112.3 34.5 49.3 49.6 62.3 20.5 24.2 49.3 69.7 

 
- FR: fault-detection ratio 
- AP: the number of anomalies generated by the chosen approach for each policy 
- AM: the average number of anomalies generated by the chosen approach for mutants 
- ARB: anomalies reduction ratio for our approach over the existing approach [42] 
- ARP: anomalies reduction ratio for the prioritization technique over the basic 
technique 
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significantly reduced the number of anomalies while our approach detected a higher 

percentage of faults (addressed in RQ1). Given Ns subject, Na action, and Nr resource values, 

the maximum number MAXc of possible anomalies is Ns × Na × Nr. For example, for the 

continue-b policy, MAXc is 5(Ns) × 5(Na) × 26(Nr) = 650 anomalies. However, our approach 

generated only averagely 24.2 anomalies (in Column “# AC”) for inspection. 

Results to address RQ3. Prioritization is a technique that inspects anomalies by the order 

of their fault-detection likelihood while keeping the same level of fault-detection capability 

of the Basic technique. Table 4.4 shows that Prioritization reduced 69.7% of anomalies (for 

inspection) (in Column “% ARP”) over Basic. 

Note that inspecting anomalies could not always detect faults. The continue-a policy 

consists of 298 rules and is complex enough to handle corner cases for granting correct 

 
Figure 4.2. Fault-detection ratios of faulty policies for each policy, each fault type, and 

each technique/approach 
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decisions to different roles (e.g., an Administrator and a Member for paper review). Consider 

that rel3 {Write, Permit} ⇒ {Read, Permit} represents a pattern of “Write” and “Read” 

attribute values. For the continue-a policy (without any seeded fault), 41 cases satisfy both 

<premise> and <conclusion> of rel3. However, we found that three cases (anomalies) that do 

not follow rel3. One false positive is that Members are Denied to read their Password 

resources, while they are Permitted to write Password resources. Considering a Password 

resource as a critical resource and are Denied to be read, this anomaly does not reveal a fault 

in the policy. We suspect that inspecting these cases of policy behaviors would still provide 

value in gaining high confidence on the policy correctness, reflected by the preceding 

password example. 

In addition, Figure 4.2 illustrates the average fault-detection ratios for each policy; each 

other fault type, and each technique/approach. For other fault types, our results show that 

Prioritization and Basic achieve the highest fault-detection capability. 

 Chapter Summary 4.5

We have developed an approach that analyzes a policy under verification and mines 

patterns based on relations of subject, action, and subject-action attributes values via 

association rule mining. We compared our two techniques in our approach with a previous 

related approach [42] in terms of fault-detection capabilities in four different XACML 

policies. Our results showed that our approach has more than 25% higher fault-detection 

capability than that of the previous related approach. Our results showed that our basic and 
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prioritization techniques reduce a significant percentage of anomalies for inspection 

compared to the related technique. Moreover, the prioritization technique further reduced a 

number of anomalies (for inspection) to detect a first fault over the basic technique. 

  



 
 
 

  43 

 

5 Mining Patterns through Analysis of Historical Data 

In this chapter, we present our empirical study of ACP evolution by providing 

observations about ACP evolution trends, practices, and patterns. 

 Introduction 5.1

As operational and security requirements of a system evolve, ACPs must evolve, thereby 

requiring maintenance. Policy authors may add permissions or remove unnecessary 

permissions. The US National Institute of Standards and Technology (NIST) recommends 

that policy authors periodically update ACPs by reviewing the current ACPs and access 

control procedures [71].  

To facilitate the management of access controls, policy authors extract ACPs from the 

functionality (i.e., business logic) of a system and typically maintain ACPs in one place (in 

the form of a piece of code, configuration, dataset, or specification) [18]. Forrester Research 

[55] reported that such centralized ACPs improve not only security and privacy, but also the 

effective management of access controls. The report recommended that organizations use 

centralized ACPs instead of decentralized access controls that are implemented in custom 

code scattered across multiple locations. 

In this chapter, our research goal is to assist policy authors to improve the quality of ACP 

evolution based on the understanding of trends, practices, and evolution patterns in ACPs 

through the mining of historical data.  
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To achieve this goal, we conducted an empirical study of the evolution of centralized 

ACPs by providing observations about ACP evolution trends, practices, and their 

accompanying evolution patterns. We conduct an empirical study of the ACPs of three large, 

open source systems (as shown in Table 5.1): Security Enhanced Linux (SELinux) [72]; a 

Virtual Computing Lab platform (VCL) [65]; and a network intrusion detection system [73] 

called Snort. These ACPs govern system resources, network traffic, and organizational 

operations on system usages. The ACPs of the three systems had between 2723 and 94,652 

policy lines with between 238 and 5,489 policy changes over a 1-3 year period.  

We first empirically observe growth trends of ACPs and corresponding systems in terms 

of the number of policy lines and lines of code (LOC), respectively. A well-fitting regression 

model is useful for predicting expected growth in the future. To assess “goodness of fit” of a 

regression model, we perform statistical testing of our observed growth against the linear 

regression model. 

We then extract evolution patterns identifying how permissions (i.e., rights to perform 

certain actions such as read and write) change in rules. More specifically, to extract evolution 

patterns, we analyze differences of permissions of a subject (e.g., users) with respect to an 

object (e.g., sensitive resource). Let st1 and st2 are original permissions and modified 

permissions of a subject with respect to an object, respectively. An evolution pattern st1 → 

st2 represents that st1 evolves into st2. For example, in addition to existing “read” permission 

for files, policy authors add “write” permission to allow the application to write files. In this 
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situation, an evolution pattern is st1 = {read} → st2 = {read, write}. Our rationale is that, as 

policy authors maintain ACPs through their lifecycles, they are likely to follow evolution 

patterns with higher frequency. These evolution patterns help understand which parts of 

ACPs are prone to evolve and how they evolve.  

To evaluate the predictive power of our prediction model, we divide our evolution 

patterns into training and testing sets for cross validation. 

Our study was designed to answer the following research questions: 

RQ1. How do the number and growth rate of policy lines of ACPs change?   

RQ2. How many of the rules in ACPs evolve?   

RQ3. What are the frequent evolution patterns of ACPs?   

RQ4. How effective is our model at predicting the change of ACPs? 

Our empirical results will help practitioners develop tools (e.g., policy management and 

refactoring tools) to support these practices. In addition, our empirical results regarding 

evolution patterns are directed towards policy authors to better understand which parts of 

ACPs are prone to evolve and how they evolve. 
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 Example 5.2

This section provides background with regard to ACP concepts and terminology, access 

control architecture, ACP models, and software change types. 

ACP evolution refers to the specification and modification of ACPs. ACPs evolve due to 

various reasons such as the addition of new rules and ACP fault fixing. We introduce ACP 

and ACP evolution concepts through an example ACP from one of our systems, VCL. VCL 

provides cloud services such as reservations, management, or access (called checkout) to 

virtual machine images. The example ACP of a system is a set of rules. Each rule specifies 

access control of subjects based on roles such as virtual user groups (e.g., students enrolled in 

cloud computing course in Fall 2013). These roles are associated with specific permissions of 

operations (e.g., check out) to objects (e.g., virtual machine images). 

The example ACP consists of two rules. We illustrate each rule to help understand its 

operation. 

• Rule 1: user group s1 is permitted to check out virtual machine images o1. 

Under the example ACP, s1 can check out o1. To specify specific access controls, policy 

authors add or modify rules. For example, the policy authors may modify the Rule 1 as 

follows: 
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• Rule 1+: s1 is permitted to check out and administer (denoted by “AdminImage”) 

virtual machine images o1. 

Rule 1 evolves to Rule 1+ with the addition of “administer” permission (e.g., 

administrative tasks). In addition to the “check out”, s1 can administer o1. 

Access Control Policy Rules (rules): ACP is a set of rules based on a concept of access 

control matrix. Formally, let O and S denote a set of objects (e.g., specific file name and 

directory name) and a set of subjects (e.g., users and processes), respectively. Let R denote a 

set of permissions (i.e., rights to perform certain operations such as read and write). Let D 

denote a set of domains of objects (e.g., file, directory, and virtual image). ACP is a set of 

rules, each of which has the form (s, o, r(s,o), d) where s  S, o  O, r(s,o) R, and d  D. 

In the example ACP, the policy authors add an additional permission to, Rule 1+. We 

represent the example ACP as a set of rules: Rule 1 is represented as (s1, o1, {CheckOut}, 

virtual image) and Rule 1+ is represented as (s1, o1, {CheckOut, AdminImage}, virtual 

image). 

 Research Methodology 5.3

We next describe our collected data, methodology, and metrics for studying the evolution 

of ACPs. 

∈ ∈ ⊆ ∈
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5.3.1 Data Collection 

We collected the ACPs of three large open source systems: Security Enhanced Linux 

(SELinux), a Virtual Computing Lab platform (VCL), and a network intrusion detection 

system, called Snort. Table 5.1 shows our subject statistics of ACPs. Columns 2-3 show the 

time frame we consider for each ACP and the number of revisions, respectively. Columns 4-

7 show ACP size in terms of the number of files (tables) and policy lines (records), for the 

first and last releases within the time frame, respectively. As VCL uses ACPs that are stored 

in MySQL database instead of files, we measure ACP size in terms of tables and records (i.e., 

rows) related to ACPs. The last column shows the ACP model that each system uses. 

We selected ACPs with the following criteria. First, because our focus is ACP evolution, 

the ACPs should have a long release history. Second, the ACPs should have significant size 

(i.e., policy lines). Third, the systems that use ACPs should be widely used open-source 

projects under active maintenance. Fourth, the open source projects archives contain a large 

number of software artifacts such as change logs, bug reports, documents, or patches for the 

ACPs. The criteria help conduct empirical study based on meaningful statistical trends of 

ACP evolution. 

• SELinux ACP [72] is a default ACP of SELinux. SELinux ACP controls access to 

subsystems and applications in Security Enhanced Linux (SELinux). SELinux is a 

default security mechanism in various Linux distributions including Redhat (Version 

6 and higher), Gentoo, Fedora, and Debian. SELinux ACP uses the TE policy model. 
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SELinux ACP enhances flexible security and privacy for Linux systems. For example, 

policy authors specify permissions (e.g., open, read, search, and lock) for any 

directory. SELinux ACP consists of rules that are described using declaration of types 

(i.e., groups), inheritance of types, and interfaces (to facilitate specifying permissions 

of a type that are repeated in multiple times). 

• VCL ACP [65] is a user-specified ACP of VCL maintained by Apache.  VCL ACP 

specifies users, roles, roles’ relation, and users’ permissions (e.g., users’ permissions 

to reserve, use, or administer virtual computing images in VCL) in database. For 

example, “userpriv” table includes records of user’s permissions. VCL ACP uses the 

RBAC model. 

• Snort ACP [73] is a default ACP of Snort that identifies potential intrusion attempts. 

Snort ACP uses the network ACL policy model. Snort inspects a packet against Snort 

ACP by examining incoming/outgoing addresses, ports, protocol types (e.g., TCP), 

Table 5.1. Systems used in our study 

ACP Time Frame #  Rev First Release Last Release ACP 
Model 

# Files/ 
Tables 

Policy 
Lines 

#Files/ 
Tables 

Policy 
Lines 

SELinux ACP 
2010~ 
2013 5489 83 57550 116 94652 TE 

ACP 
2012~ 
2013 896 1 4093 1  4989  RBAC 

Snort 
ACP 

2010~ 
2013 238 57 2723 129 13394 ACL 
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and contents of the packet.  If an incoming/outgoing packet matches against Snort 

ACP, Snort gives alerts that the packet is suspicious for intrusion attempts.  

We collected files and database records with regards to ACPs. SELinux ACP is freely-

available via its version control system and websites such as Koij [64] that distribute 

SELinux ACP as a format of source-code and pre-compiled Linux packages. SELinux ACP 

is specified in its application-specific ACP specification format. We obtained change 

histories and patches of SELinux ACP from its version control system [72]. 

The VCL system and its sample ACP are freely available on the Apache VCL website. 

Organizations use VCL to provide cloud services (e.g., virtual computing, email and 

storage). We collected VCL ACP, used by faculty, staff, and students in one department. We 

examined “userpriv” and “querylog” tables: the “userpriv” table includes records of user’s 

permissions, and the “querylog” table includes records of logs that store users and their 

permission changes. 

Snort ACP is freely available via the Snort website. We obtained Snort ACP change 

histories from the Snort website. Policy authors typically update and release Snort ACP 

several times a week. Snort ACP is mainly written in application-specific configuration 

formats in text files. Snort ACP is a set of Snort rules. Each Snort rule includes its unique 

identifier called Snort ID number (SID). 
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In addition to ACPs, we collected releases of Linux (that includes SELinux), Snort, and 

VCL systems: 5 Linux kernel (versions 3.6-3.12 released Aug 2012-Sep 2013), 5 VCL 

systems (versions 2.1-2.3.2 released Oct 2010-Mar 2013), and 46 Snort systems (released 

Aug 1999-Sep 2013). 

5.3.2 Metrics and Approach 

To answer RQ1 (How do the number and growth rate of policy lines of ACPs change over 

time?), we measure the number and growth rate of policy lines of ACPs over time. We 

exclude comments and empty lines when we measure the number of policy lines. As VCL 

ACPs are stored in the MySQL database instead of files, we measure the number and growth 

rate of records (i.e., rows) in the “userpriv” table of VCL ACPs. To compare a system and its 

ACP in terms of growth rate, we measure the number and growth rate of lines of code (LOC) 

of systems over time. 

To answer RQ2 (How many of the rules in ACPs evolve?), we measure two metrics: the 

number of rules (denoted by ACPsur) that remain (either unchanged or evolved) and the 

number of evolved rules (denoted by ACPevo) for a given period of time. ACPsur helps 

understand how many of the rules remain after a given period of time. ACPevo helps 

understand how many of the rules evolve (i.e., showing differences of permissions that 

granted to a subject with respect to an object) over a given period of time.  
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We formally represent ACPsur and ACPevo. Let ACPo and ACPl refer to the earliest and 

latest ACP release in the established time frame in Table 5.1, respectively. Let Ro (Rl) refer 

to a set of rules in ACPo (ACPl). Recall that O and S are a set of objects (e.g., specific file 

name and directory name) and a set of subjects (e.g., users and processes), respectively. R is 

a set of permissions (i.e., rights to perform certain operations such as read and write). D is a 

set of domains of objects (e.g., file, directory, and virtual image). ACP is a set of rules, each 

of which has the form (s, o, r(s,o), d) where s  S, o  O, r(s,o) R, and d  D. 

ACPsur is a set of rules {r1, r2, r3, …, rn}  Ro such that (1) rn = (sn, on, r (sn, on), dn)  Ro 

and (2) there exists rl = (sl, ol, r (sl, ol), dl)  Rl where sn = sl, on = ol , and dn = dl. 

ACPevo is a set of rules {r1, r2, r3, …, rn}  Ro such that (1) rn = (sn, on, r (sn, on), dn)  Ro 

and (2) there exists rule rl = (sl, ol, r (sl, ol), dl)  Rl where sn = sl, on = ol, dn = dl, and r(sn, on) 

≠ r(sl, ol).  

We extract rules from an ACP by mapping between attributes in a given ACP and 

attributes in a rule. The mapping step for SELinux ACP (based on the TE policy model) and 

VCL ACP (based on the RBAC model) is straightforward. Both the TE policy model and the 

RBAC model use concepts of subjects S, objects O, and a set of permissions R as shown in 

Table 2.1. To construct a rule (s, o, r(s,o), d), we analyze an ACP and collect all of 

permissions r(s,o) for a pair of a subject s and an object o where  s S, o O, and r(s,o) R. 

Given an object, its corresponding object domain d is explicitly specified in SELinux ACP. 

∈ ∈ ⊆ ∈

⊆ ∈

∈

⊆ ∈

∈

∈ ∈ ⊆
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However, VCL ACP does not explicitly state object domains. Therefore, we use “virtual 

image” as a default object domain d for rules in VCL ACP. 

Snort ACP (based on network ACL) uses attributes to indicate how Snort inspects certain 

parts of a packet. We use SIDs (Snort ID numbers) as subjects S, packet destinations as 

objects O, and attributes called rule option keywords as a set of permissions R. We use 

“packet” as a default object domain d for rules in Snort ACP. 

To answer RQ3 (What are the evolution patterns of ACPs?), we find a set of evolution 

patterns P = {p1, p2, p3,…, pn} where pn represents changes in terms of permissions.  Recall 

from the example ACP of VCL (in Section 5.2), Rule 1 is that user group s1 is permitted to 

check out virtual machine images o1 in Rule 1. Rule 1+ is that s1 is permitted to check out and 

administer (denoted by “AdminImage”) o1. From the example ACP, we observe that 

evolution pattern p1 = st1 → st2 where st1 = {check out} and st2 = {check out, ImageAdmin}. 

Formally, we define pn as follows: 

• State Pattern: pn is staten → statel such that (1) staten = r(sn, on) and statel = r(sl, ol), (2) 

rn = (sn, on, r (sn, on), dn)  Ro and (3) there exists rule rl = (sl, ol, r (sl, ol), dl)   Rl 

where sn = sl, on = ol, dn = dl, and r(sn, on) ≠ r(sl, ol). 

∈ ∈
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• Transition Pattern: pn is transition set that is statel -  staten such that (1) staten = r(sn, on) 

and statel = r(sl, ol), (2) rn = (sn, on, r (sn, on), dn)  Ro and (3) there exists rule rl = (sl, 

ol, r (sl, ol), dl)  Rl where sn = sl, on = ol, dn = dl, and r(sn, on) ≠ r(sl, ol). 

A set of evolution patterns is viewed as a directed graph G= (V, E) where V is a set of 

nodes (i.e., states that represent a set of permissions) and E is a set of edges. Each element of 

E is a pair of nodes that represent a link between two nodes. Suppose that we have an 

additional evolution pattern p2 = st2 → st3 where st3 = {check out, ImageAdmin, block}. 

An edge represents a move from one state to another state. We calculate frequency and 

probability for each evolution pattern. Frequency f (Pn) is the number of occurrences of pn. 

Probability Pr(Pn) is ! !"
! !"!

!!!
 . For p1 = st1 →st2, we calculate f(P1) = 1 and Pr(P1) = 0.5. 

To answer RQ4 (How effective is our model at predicting the change of ACPs?), we 

develop a prediction model of ACP evolution based on historical data of evolution patterns. 

Our rationale is that, as policy authors maintain and enhance ACPs through their lifecycles, 

they are likely to follow evolution patterns with higher frequency. Suppose that we found an 

evolution pattern pab = A → B that happened 20 times. Suppose that we found another 

evolution pattern pac = A → C that happened 5 times. Suppose that we find a state A that is to 

evolve. Based on our observations of evolution patterns in the past, A is likely to more likely 

to evolve to B (20 times) rather than C (5 times) based upon past occurrences. We calculate 

∈

∈
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Pr (Pab) = 0.8 (20/25) and Pr(Pac) = 0.2 (5/25). We observe that the most likely state is B and 

the second most likely state is C. 

Our prediction model generates an ordered rank of next states based on Pr(Pn). Given a list 

of next states, our prediction model selects the most likely first 1, most likely first 3, …, most 

likely first 9 states based on ranking. 

To measure the effectiveness of our prediction model, we classify our prediction results in 

four groups illustrated in Table 5.2: True Positive (TP), False Positive (FP), False Negative 

(FN), and True Negative (TN). We measure precision, recall, and F-measure: (1) 

precision = !"
!"!!"

 , (2) recall = !"
!"!!"

, and (3) f−measure = !∗!"#$%&%!"∗!"#$%%
!"#$%&%'(!!"#$%%

  

If the precision and recall are good enough, our model is effective at predicting future 

trends of ACP evolutions. 

Table 5.2. Result classification 

 Predict next states Not predict next states 
Actually a current state 
evolves to be one of 
predicted states 

True Positive False Negative 

Actually a current state 
does evolve to be one of 
predicted states 

False Positive True Negative 
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For evaluating our prediction model, we classify evolution patterns into two sets: training 

and testing sets. For SELinux ACP, evolution patterns that happened for 2011/12/04-

2013/01/02 are used as a training set while evolution patterns happened for 2013/01/02-

2013/10/02 are used as a testing set. From Snort ACP, Snort rules with SID 1-15000 are used 

as a training set and Snort rules with SID 15001-16559 as a testing set. 

 Results 5.4

RQ1. How do the number and growth rate of policy lines of ACPs change? 

Figure 5.1 shows that the number of policy lines (system LOC) of ACPs (systems) 

continues to increase over time. Our results show that the number of policy lines increases 

linearly. We observed that system LOC increases linearly as well. We assessed the statistical 

significance of growth of policy lines and system LOC using statistical testing methods 

against the linear regression model. We measured RSquare and p-value. The p-value [51] 

represents the probability of satisfying the linear regression model. For example, a test is 

statistically significant at 99% level if p-value = 0.01. The RSquare [51] are estimates of the 

'goodness of fit' of the linear growth model. The RSquare values represent the variation of 

the data that fits to the linear growth model. For example, 90% of the variance is explained 

by the linear regression model if RSquare = 0.9. 

Table 5.3 and Table 5.4 summarize our results according to the growth rate of policy lines 

of ACPs and system LOC over time, respectively. Columns 2-5 denote growth models, the 
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monthly increased number policy lines (system LOC) on average, RSquare, and p-value. In 

Table 5.3 and Table 5.4, we observed that our statistical testing results show statistical 

significance (p-value <= 0.0082 and RSquare >= 0.9) when we tested the growth rate of 

ACPs and system LOCs, respectively, against the linear regression model. 

Policy authors maintain ACPs in response to evolving security and privacy requirements, 

such as the prevention of new security attacks. System developers actively maintained 

corresponding systems (with respect to LOC). The slope of the policy lines of ACPs is less 

than that of lines of code of their corresponding systems.  

We measure monthly growth rates, which show the number of policy (lines of code) 

added each month for ACPs (systems). The monthly growth rates of ACPs on average are 

886, 99, and 254 from SELinux, VCL, and Snort ACPs, respectively. The monthly growth 

rates of system LOC on average are 90870, 7739, and 1172 from SELinux, VCL, Snort 

systems, respectively.  

In summary, the number of policy lines in ACPs continues to increase linearly over time. 

This result implies that ACPs are continually increased in response to changing/evolving 

security and privacy requirements. Furthermore, system developers maintain systems that 

ACPs rely on to achieve functionalities. We observed that the slope of the policy lines of 

ACPs is less than that of lines of code of their corresponding systems. 
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RQ2. How many of the rules in ACPs evolve?  

We found 83,304, 2,223, and 9,074 rules from SELinux ACPo, VCL ACPo, and Snort 

ACPo, respectively. From these rules, we identified 57,848, 2,223, 7,677 rules that remain. 

        
 

Figure 5.1. The number of policy lines (Bottom) and system LOC (Top) for SELinux 
(Left), VCL (Middle), and Snort (Right) 

 
 
 

Table 5.3. ACP evolution trends. 

ACPs Growth 
Model Avg RSquare p-value 

SELinux 
ACP Linear 886 0.91 0.0001* 

VCL ACP Linear 99 0.98 0.0001* 

Snort ACP Linear 254 0.97 0.0001* 
 
 

Table 5.4. System evolution trends 

Systems Growth 
Model Avg RSquare p-value 

SELinux 
System Linear 90870 0.95 0.0041* 

VCL System Linear 7739 0.92 0.0082* 
Snort System Linear 1172 0.9 0.0001* 
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Among these rules, we identified 2,714, 7, and 2,019 rules that evolve. We noticed that 

only VCL ACP yielded a low number of ACP evolutions. We could find more evolved rules 

if we collect larger and longer historical data of VCL ACP. Rules in VCL ACP do not evolve 

often with the following reason. One reason is that policy authors identify desired 

permissions based on purposes of VCL user-groups’ operations (e.g., administrator groups 

and user groups). Moreover, the number of permissions that are possible to use is small. Note 

that a VCL user/user-group could grant up to 14 permissions. Among these 14 permissions, 

policy authors can find which permissions should be granted for a user/user-group based on 

roles in advance.  

In summary, we can find a large number of evolved rules from ACPs. We identified 

2,714, and 2,019 rules that evolved from SELinux ACP and Snort ACP. This result implies 

that policy authors often modify existing rules in ACPs by adding permissions or removing 

unnecessary permissions. 

RQ3. What are the frequent evolution patterns of ACPs?  

We analyze ACPs and collect frequent evolution patterns. We collected frequent evolution 

patterns of which probability (defined in Section 5.3.2) is above a threshold value. Our 

threshold value is the percentage of occurrences of a certain evolution pattern out of a total 

number of evolution occurrences. The total number of frequent patterns depends on a 
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threshold. Given a pattern and a threshold, when its probability exceeds the threshold, we 

identify the pattern as a frequent pattern. We use 2% as a threshold. 

Table 5.5 summarizes our results of ACP evolution patterns. Columns 2-5 the number of 

frequent evolution patterns FP (“# Frequent Patterns”), the percentage covering 86.2%, 

100%, and 38.6% of evolved rules with FP (% Coverage”), the sum of frequencies of FP (“# 

Sum of Frequency”), and the highest frequency and probability of the most frequent pattern 

(“# Highest Frequency”).  

SELinux ACP specifies resources classified in one of object domains such as directory, 

file, sockets, and processes. We collect patterns from SELinux ACP changes related to 

directory permissions. Each of object domains uses different sets of permissions. Among the 

object domains, directory is an object domain with most frequently changed permissions. Out 

of a total of 2714 permissions changes, we observe that permissions related to directory, file, 

process, and socket object domains change 1222 (45.0%), 803 (29.5%), 199 (7.3%), and 146 

(5.3%) times, respectively. 

We observed that some of the evolution patterns appear to occur more frequently. We 

found five, one, and three evolution patterns covering 86.2%, 100%, and 38.6% of evolved 

rules for SELinux ACP, VCL ACP, and Snort ACP, respectively. 
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For SELinux ACP, in Table 5.6, we categorize permissions to four permissions sets 

according to purpose of a use (such as read and write). To control a directory, policy authors 

can use some of 23 permissions (that are pre-defined in SELinux). Policy authors often 

follow a pattern: “read”, “Ioctl”, and “lock” permissions together for allowing the reading of 

a directory. For each group, we use terms, “Basic Access Permission Set (BS)”, “Read File 

Permission Set (RS)”, “Write File Permission Set (WS)”, and “Advanced Permissions Set 

(AS)”. We describe top five most frequent patterns that appear in SELinux ACP. 

• Remove Read Permission Pattern: The most frequently occurring evolution pattern is 

BS ∪ RS → BS. We observed that this evolution pattern happened 568 times (46%) 

out of the total number of directory permission changes. This pattern infers that the 

policy authors remove “Read File Permission Mode”.  As a result of this evolution, 

subjects can perform access, open, and search directory described in  “Basic Access 

Permission Mode”. 

Table 5.5. ACP evolution patterns in our subject ACPs. 

ACPs # Frequent Patterns % Coverage # Sum of 
Frequency 

# Highest 
Frequency 

SELinux 
(Directory 
permission) 

5 86.2 1066 568 (46%) 

VCL 1 100 7 7 (100%) 
Snort 3 38.6 780 488 (24%) 
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• Add Read Permission Pattern: BS → BS ∪ RS. We observed that this evolution 

pattern happened 234 times (19%) out of the total number of directory permission 

changes. 

• Remove Read & Write Permission Pattern: BS ∪ RS ∪ WS → BS. We observed that 

this evolution pattern happened 86 times (7%) out of the total number of directory 

permission changes.	
   

Table 5.6. Permissions in SELinux ACP 

 
Permissions Description 

Basic Access 
Permissions 

• getattr: get file attributes for file, such as 
access mode 

• open: open a directory 
• search: search access 

Access, open, and 
search directory  

Read File 
Permissions 

• read: read file contents 
• Ioctl:  IO control system call requests 
• lock: set and unset file locks 

Read, lock, and IO 
control for file 
contents 

Write File 
Permissions 

• write: general write access 
• add_name: add a file to the directory 
• remove_name: remove a file from the 

directory 

Write file contents 
which required 
adding and removing 
the file 
 

Advanced Control 
Directory (ACD) 
Permissions 

• create: create new file. 
• link: create another hard link to file 
• rename: rename a file 
• reparent: rename into a different parent 

directory 
• rmdir: remove the directory 
• setattr: change file attributes such as 

access mode  
• unlink: Remove hard link (delete) 

Advanced access 
controls such as 
remove, rename, 
change file locations, 
etc. 
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• Add Read & Write Permission Pattern: BS → BS ∪ RS ∪ WS. We observed that this 

evolution pattern happened 81 times (7%) out of the total number of directory 

permission changes. 

• Add Write Permission Pattern: BS ∪ RS → BS ∪ RS ∪ WS. We observed that this 

evolution pattern happened 81 times (5%) out of the total number of directory 

permission changes. 

• Add Advanced Permission Pattern: BS ∪ RS ∪ WS → BS ∪ RS ∪ WS ∪ AS 

happened 39 times (3%) out of the total number of directory permission changes. 

Table 5.7 shows three permission groups for VCL ACP. From VCL ACP, we found only 

one evolution pattern, which happened seven times (100%) out of the total number of VCL 

permission changes. 

• Add Share Permissions Pattern: the most frequently occurring evolution pattern is to add 

“Share Permissions” for existing permissions set. This pattern is to allow users to share 

her/his virtual computing images (100%). 

Due to our limited data of VCL ACP, we do not find evolution patterns that happened 

often. We could find more evolution patterns if we collect larger and longer historical data of 

VCL ACP. Moreover, share permissions and other permissions are independent.  
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Table 5.8 shows permissions used in Snort ACP. In Snort ACP, we identified three 

evolution patterns: 

 

• Add “fast_pattern” and “content” Pattern: the most frequently occurring evolution pattern 

is to add fast_pattern permission into an existing permissions set for allowing the rules to 

use the fast pattern matcher for filtering packets. This pattern happens 488 times (24%) 

out of the total number of Snort permission changes. 

Table 5.7. Permissions in VCL ACP 

 
Permissions Description 

Basic Permissions 

• imageAdmin: allows users to do 
administrative tasks with images 
in image groups 

• imageCheckOut: allows users to 
make reservations for images in 
image groups 

Allow reserve and use virtual 
computing images 

Share Permissions 

• serverCheckOut: allows users to 
make reservations through the 
Server Profiles and allow other 
users access to the reservations 

• serverProfileAdmin: allows 
users to manage the Server 
Profiles 

Allow share one’s reserved 
virtual computing image 

Advanced 
Administrative 

Permissions 

• groupAdmin - grants users 
access to the Manage Groups 
portion 

Allow advanced resource 
controls 
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• Add “fast_pattern” and “metadata” Pattern: this pattern is to add “fast pattern” with 

“metadata” together. This pattern happens 228 times (11%). “metadata” allows the users 

to write additional information in the rule. 

• Remove “distance” Pattern: this pattern is to remove “distance”. This pattern happens 64 

times (3%). 

In summary, we can find evolution patterns covering a large number of evolved rules. We 

extracted five, one, and three evolution patterns from SELinux, Snort, and VCL ACPs. We 

observed that some of evolution patterns appear to occur more frequently. For example, we 

Table 5.8. Permissions use in Snort ACP 

 
Permissions Description 

Basic Snort Rule 
Permissions 

• flow: permit rules to only apply to certain 
directions of the network traffic flow. 

• content: permit the rules to search for 
specific content in the packet. 

• classtype:   categorize a rule as detecting 
one of attack types. 

Access, open, and 
search directory  

Optional Snort 
Rule Permissions  

• fast_pattern: allows the rules to use the 
fast pattern matcher for monitoring 
packets 

• metadata: allows the users to write 
additional information such as a key-
value-format 

• pcre: allows the rule to be written using 
perl compatible regular expressions. 

• The distance keyword allows the rule 
writer to specify distance that helps ignore 
parts of content. 

Read, lock, and IO 
control for file 
contents 
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found evolution patterns that happened for 568 and 488 times in SELinux and VCL ACPs, 

respectively. This result implies that policy authors tend to use common evolution patterns 

when they modify rules. 

RQ4. How effective is our model at predicting the evolution of ACP change patterns? 

Figure 5.2 and Figure 5.3 show our prediction results. We evaluated effectiveness of our 

model for prediction. Y-axis shows the probability of precision, recall, and F-measure values. 

X-axis indicates the number of the most likely states (i.e., predicted states) that we can 

choose. 

Given a state BS ∪ RS, we expect that this state is likely to evolve into BS, BS ∪ RS ∪ 

RS. We first consider BS (indicating the highest probability) as a predicted state. If the given 

state evolves into BS, our prediction result is classified into “True Positive”. Otherwise, our 

prediction result is classified into “True Negative”.  

For SELinux ACP, we observed that the prediction precision and recall values are roughly 

0.8 (80%) and 0.7 (70%), respectively, using the most likely first four states. The recall value 

0.7 means that seven out of ten evolution cases can be predicted (showing a list of predicted 

states). The precision value 0.8 means that eight out of ten evolution cases (that can be 

predicted) are correctly predicted. 
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For Snort ACP, we observed that the prediction precision and recall values are roughly 0.6 

(60%) and 0.8 (80%), respectively, using the most likely first four states. The recall value 0.8 

means that eight out of ten evolution cases can be predicted (showing a list of predicted 

 

 
Figure 5.2. SELiux ACP evolution prediction precision, recall, and F-measure by 

choosing the most likely first 1, first 2, …, first 9 states  based on ranking by SELinux 
ACP 

 
 

 
Figure 5.3. Snort ACP evolution prediction precision, recall, and F-measure by 

choosing the most likely first 1, first 2, …, first 9 states  based on ranking 
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states). The precision value 0.6 means that six out of ten evolution cases (that can be 

predicted) are correctly predicted. The prediction value for Snort ACP is lower than that of 

SELinux ACP by roughly 10%. However, the recall value for Snort ACP is higher than 

SELinux ACP by roughly 10%.  

We do not consider VCL ACP for our experiments on prediction since VCL ACP has 

rarely occurring evolution patterns. Therefore, due to an insufficient number of evolution 

patterns, we have difficulty in prediction. 

In summary, for SELinux ACP and Snort ACP, we observed that historical data of 

evolution patterns is effective at predicting ACP evolution. When we consider the most likely 

four states to move (for ACP evolution), we measured a precision of 50-80% and a recall of 

70-90% showing high predictive power. This result implies that policy authors tend to use 

evolution patterns when they modify ACPs. Such information could further help improve 

tools by recommending frequent evolution patterns over infrequent evolution patterns to 

policy authors. 

5.4.1 Threats to Validity and Limitations 

We identified limitations within our study. However, we believe that these limitations 

could not invalidate our results. First, the systems and their ACPs in evolution studies may 

not be representative of the entire population.  To make our results statistically significant, 

we collect ACP changes over a long timeframe (1-3 years) to yield statistically meaningful 
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results.  Second, because ACPs are constantly evolving, some of the evolution patterns may 

be different for other versions of ACPs.  Our study does not consider such effects that result 

from different versions and thus may suffer from this limitation. 

 Chapter Summary 5.5

We have conducted an empirical study of the evolution of centralized ACPs by providing 

observations about ACP evolution trends, practices, and their accompanying evolution 

patterns. We found evolution patterns characterizing changes of permissions of a subject 

(e.g., users or processes) with respect to an object (e.g., sensitive data). 

We performed an empirical study by analyzing the ACP changes of three systems: 

SELinux, VCL, and Snort. We empirically observed growth trends of ACPs and 

corresponding systems in terms of the number of policy lines and lines of code (LOC), 

respectively. We found that the growth of our subject ACPs and systems increase linearly. 

We formalized evolution patterns characterizing policy changes. We observed that policy 

authors follow common evolution patterns that appear to occur more frequently. We built a 

prediction model based on the collected evolution patterns. Our evaluation results indicated 

that our model could predict evolution patterns in ACPs with a precision of 50-80%, a recall 

of 70-90% and an F-measure of 65-75%. 
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6 Systematic Structural Testing 

We next present a systematic structural testing approach [26, 27] for security policies. Our 

approach analyzes security policies under test and generates test cases automatically to 

achieve high structural coverage.  As the quality of protection provided by a security policy 

directly depends on the quality of its policy (i.e., configuration), ensuring the correctness of 

security policies is important and yet difficult. We present a systematic structural testing 

approach, which is effective in scenarios when usage patterns are difficult to infer from 

security policies under analysis to help detect faults. Instead of mined usage patterns, our 

approach is based on the concept of policy coverage, which helps test a policy’s structural 

entities (i.e., rules, predicates, and clauses) to check whether each entity is specified 

correctly. 

 Introduction 6.1

A firewall is typically placed at the point of entry between a private network and the 

outside Internet such that all network traffic has to pass through it. In a distributed system, 

messages are encapsulated into packets, which often pass through multiple access points in a 

network and firewalls are responsible for filtering, monitoring, and securing such packets 

[38]. Corruption or misconfiguration in firewalls may cause that the firewalls fail to filter 

malicious packets properly and affect the performance and security of a distributed system. 

Correctly specifying firewall policies is a critical and yet challenging task for building 

reliable firewalls [59] with three factors. First, the rules in a firewall policy are logically 



 
 
 

  71 

 

entangled because of the conflicts among rules and the resulting order sensitivity. Second, a 

firewall policy may consist of a large number of rules. A firewall on the Internet may consist 

of hundreds or even a few thousands of rules. Third, an enterprise firewall policy often 

consists of legacy rules that are written by different operators, at different times, and for 

different reasons, which make maintaining firewall policies even more difficult. 

In this chapter, we propose firewall policy testing based on the concept of firewall policy 

coverage, which helps test a firewall policy’s structural entities (i.e., rules, predicates, and 

clauses) to check whether each entity is specified correctly. In firewall policy testing, test 

inputs and outputs are packets and their evaluated decisions (against the firewall policy under 

test), respectively. Given test packets and the policy under test, when evaluating packets 

against the policy, our coverage measurement tool measures firewall policy coverage —- 

which entities of the policy are involved (called “covered”) in the evaluation. Moreover, our 

systematic firewall policy testing helps detect faults with the test packets, which often do not 

follow some configuration mistake patterns (e.g., anomalies [4, 39] and configuration errors 

[59]). Intuitively, policy testers shall generate test packets to achieve high structural 

coverage, which helps investigate a large portion of policy entities for fault detection. 

As manual test-packet generation is tedious, we have developed an automated packet-

generation tool (that can generate packets) for four packet-generation techniques: the random 

packet generation technique, the one based on local constraint solving (considering 

individual rules locally in a policy), the one based on global constraint solving (considering 
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multiple rules globally in a policy), and the one based on boundary values. As generated 

packets are often large and manual inspection of packet- decision pairs is tedious, we have 

developed an automated packet reduction tool to reduce the number of packets while keeping 

the same level of structural coverage. 

We have conducted an experiment on a set of real firewall policies with mutation testing 

[2], which is a specific form of fault injection that creates faulty versions of a policy by 

making small syntactic and semantic changes. We generate packet sets (for each policy) with 

the packet generation techniques. Our experimental results show that a packet set with higher 

structural coverage (including rule, predicate, and clause coverage) often achieves higher 

fault-detection capability (i.e., detecting more injected faults), which is measured through the 

number of “killed mutants” (i.e., detected faults). On the comparison of packet sets and their 

reduced packet sets, our experimental results also show that a reduced packet set achieves 

similar fault-detection capability with the original packet set. 

 Example 6.2

In firewall testing, exhaustive testing (i.e., executing all possible test packets) is time 

consuming and inefficient. Instead of exhaustive testing, we focus on testing to cover only 

specific entities (i.e., a predicate tested to be false or true) based on a set of defined coverage 

criteria.  
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6.2.1 Definition 

Treating the firewall policy under test as program code (i.e., IF-THEN-ELSE statements), 

we apply structural coverage criteria similar to the ones defined by Ammann et al [2]. In this 

dissertation, a test suite is a set of packet-decision pairs to check whether a packet is 

evaluated to its corresponding expected decision. Table 6.1 summarizes the notations used in 

this chapter.  

To measure cyclomatic complexity of our structural coverage criteria, we use McCabe's 

cyclomatic complexity [74] that is a quality metric that measures the number of linearly 

independent paths through the program. If all decisions of predicates are binary, McCabe 

cyclomatic complexity (i.e., McCabe number) is v(G) = NP + 1 where NP is the number of 

binary predicates. 

We next define rule, predicate, and clause coverage criteria as follows.  

Definition 1: Rule Coverage Criterion (RCC) for a test suite requires that for each rule 𝑟 in 

a policy, the evaluation of the test packets in the test suite needs to match 𝑟 (i.e., make a 

Boolean expression in 𝑟’s predicate 𝑝 to be evaluated to true) at least once, respectively. 

Because all decisions of the predicates of the rules are binary, McCabe cyclomatic 

complexity is v(G) = NP + 1 where NP is the number of the predicates. The cyclomatic 

complexity of satisfying RCC is NP because we remove a case where all predicates are 

evaluated to false from V(G) based on the definition of RCC. 
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In other words, RCC requires that for each predicate 𝑝, 𝑝 is evaluated to true at least once. 

Figure 6.1 shows example firewall rules where only two fields F1 and F2 are used. 

For example, given two test packets, 𝑘1 (3, 5) and 𝑘2 (6, 10) over two fields F1 and F2, 

both predicates p1 and p2 (of r1 and r2, respectively) are evaluated to true. These two test 

packets achieve RCC. More specifically, 𝑘1 evaluates p1 to true, causing r1’s decision to be 

returned without further evaluating p2. 𝑘2 evaluates p1 to false and next evaluates p2 to true. 

Note that when a packet finds the first-matching rule 𝑟 (i.e., evaluating a predicate to true), 

policy evaluation stops and returns r’s decision as a final decision. 

Definition 2: Predicate Coverage Criterion (PCC) for a test suite requires that for each 

predicate 𝑝 of the rules in a policy, the evaluation of the test packets in the test suite needs to 

 
Table 6.1. Summary of notations 

𝑃 a set of predicates of the rules in a policy 
𝐶 a set of clauses of the predicates in a policy 
𝑟𝑖 a rule in a firewall policy 
𝑝𝑖 a predicate in a rule 𝑟𝑖 
𝑐𝑖 an 𝑖th clause in a predicate 
𝐹𝑖 a field (e.g., IP address) 

𝐷𝑖 
domain of field 𝐹𝑖 (e.g., [0, 232 − 1] for the IP 

address) 
𝑆𝑖 a subset of domain 𝐷𝑖 (e.g., [2,5]) 

𝐶𝑝𝑖 (𝑐𝑗) a constraint of a clause 𝑐𝑗 in a predicate 𝑝𝑖 
𝐶(𝑝𝑖) a constraint of a predicate 𝑝𝑖 
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make a Boolean expression in 𝑝 to be evaluated to true and false at least once, respectively. 

Because all decisions of the predicates are binary, McCabe cyclomatic complexity is v(G) = 

NP + 1 where NP is the number of the predicates. Therefore, the cyclomatic complexity of 

satisfying PCC is NP + 1. 

To achieve PCC, in addition to 𝑘1 and 𝑘2, we require one more packet such as 𝑘3 (6, 11) 

that evaluates p2 to false. Figure 6.2 illustrates these three test packets that evaluate all 

combinations of true and false (of p1 and p2). N/A represents a not-applicable predicate or 

rule during packet evaluation. For 𝑘1, we mark N/A in p2’s evaluation because 𝑘1’s decision 

is determined without further evaluating p2. 

Covering every predicate in a firewall requires at most 2𝑛 test packets, where 𝑛 is the 

number of rules. However, the minimal number of test packets (for PCC) could be less than 

2𝑛 because a single test packet can satisfy multiple true or false branches of predicates. As 

RCC and PCC do not require each clause to be covered, we then define clause coverage 

criterion (CCC), which specifically targets at covering each clause in a predicate. 

Definition 3: Clause Coverage Criterion (CCC) for a test suite requires that for each 

clause 𝑐 of the predicates in a policy, the evaluation of the test packets in the test suite needs 

to make a Boolean expression in 𝑐 to be evaluated to true and false at least once, respectively. 

Because all decisions of the clauses are binary, McCabe cyclomatic complexity is v(G) = NC 
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+1 where NC is the number of the clauses. Therefore, cyclomatic complexity of satisfying 

CCC is NC +1. 

In CCC, each clause is required to be evaluated to true and false at least once 

independently from other clauses. Consider that p1 includes two clauses 𝑐1 and 𝑐2 (with 

regards to F1 and F2, respectively). Note that the boolean value of p1 is equal to 𝑐1 ∧ 𝑐2 . 

Figure 6.3 illustrates four test packets that evaluate all combinations of true and false (of 𝑐1 

and 𝑐2) and the corresponding boolean value of p1. There are several ways to cover clauses in 

p1: (1) select 𝑘2 and 𝑘3 or (2) select 𝑘1 and 𝑘4. However, instead of the first selection, the 

second selection has an advantage to increase the coverage in terms of RCC and PCC. 

6.2.2 Structural Coverage 

We have developed three structural coverage measurements that monitor whether rules, 

predicates, or clauses are covered when evaluating packets against the policy under test. For 

each structural coverage criterion, we define coverage measurements as follows. 

𝑟1 : F1 ∈ [2, 5] ∧ F2 ∈ [5, 10] → 𝑎𝑐𝑐𝑒𝑝𝑡   
𝑟2   : F1 ∈ [6, 7] ∧ F2 ∈ [5, 10] → 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 

Figure 6.1. Example firewall rules. 
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Rule coverage measurements. For the rule coverage criterion, rule coverage is the 

percentage of the number of covered rules (i.e., a Boolean expression in a predicate being 

evaluated to true) in a policy. 

Predicate coverage measurements. For the predicate coverage criterion, predicate 

coverage is the percentage of the number of covered predicates (i.e., a Boolean expression in 

a predicate being evaluated to true or false). 

Clause coverage measurements. For the clause coverage criterion, clause coverage is the 

percentage of the number of covered true or false values of clauses (i.e., a Boolean 

expression in a clause being evaluated to true or false) . 

 
Figure 6.2. Sample packets for all combinations of true and false  

values of predicates 𝑝1 and 𝑝2. 

 

 
Figure 6.3. Sample packets for all combinations of true and false  

values of clauses 𝑐1 and 𝑐2. 
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6.2.3 Structural Coverage and Fault Detection 

Policy testers may generate and select a test suite to achieve a certain (high) level of 

coverage. However, our main objective, through testing, is to detect faults in the firewall 

policy while reaching a certain level of coverage. Coverage analysis helps investigate a larger 

portion of entities for fault detection using a test suite that achieves higher structural 

coverage. 

Consider that a fault in entities (i.e., rules, predicate, or clause) may cause to output 

incorrect decisions when evaluating some packets. A fault in a rule’s decision (e.g., using 

accept by mistake instead of discard) is discovered if and only if the rule is covered and the 

derived decision is verified. A test suite with high rule coverage may detect such faults easily 

and increase our confidence on the correctness of the policy against such faults. Similarly, a 

test suite with high predicate/clause coverage may have a high chance to detect faults in 

predicates/clauses. Therefore, we are interested in covering each entity at least once to 

exercise a wide range of the policy’s behavior. 

 Approach 6.3

This section presents our framework for testing firewall policies. Figure 6.4 shows the 

overview of framework of our approach. Our framework includes three phases: test packet 

generation, test reduction, and fault detection. In the test packet generation phase, our test 

packet generation component analyzes a firewall policy and generates test packets to cover 

entities (e.g., predicates and clauses) in the policy. We propose four different test packet 
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generation techniques. In the test reduction phase, the test reduction component reduces the 

number of packets based on coverage criteria by including only packets that help increase 

policy coverage measurement during evaluation. In the fault detection phase, the policy 

authors manually inspect whether the actual decisions (i.e., evaluated decisions of the 

generated packet against the firewall policy) are consistent with expected decisions. If the 

authors find any inconsistent decisions, the authors determine that they detect a fault in the 

policy. 

 

6.3.1 Test Packet Generation 

As manually generating packets for testing policies is tedious, we have developed four 

techniques to automatically generate packets for the policy under test. The objective is to 

generate packets for achieving high structural coverage. This section describes four packet 

generation techniques (developed in our approach): the random packet generation technique, 

the packet generation technique based on local constraint solving, the packet generation 

technique based on global constraint solving, and the packet generation technique based on 

boundary values. The key difference between the second and third techniques is the scope 

(i.e., local or global) of constraints used in the packet generation. While the second and third 

techniques generate packets based on random values within values solved by each constraint 

solving, the fourth one generates test packets based on boundary values within values solved 

by local constraint solving. 
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In this section, 𝑝 and (𝑝) denote a predicate and its constraint, respectively. To evaluate 𝑝 

to be true (false), a packet should satisfy the constraint (𝑝) (¬𝐶(𝑝)) (for the true (false) branch 

of 𝑝). (𝑝) is represented in the form of 𝐶𝑝(𝑐1) ∧ .... ∧ 𝐶(𝑐𝑛), where 𝐶𝑝(𝑐1), ..., 𝐶𝑝(𝑐𝑛) are the 

constraints of the clause 𝑐1, ..., 𝑐𝑛 in 𝑝, respectively. 

1) Random Packet Generation Technique: The random packet generation technique is 

straightforward. A packet 𝑘 is in the form of (𝑘1, ..., 𝑘𝑛), where 𝑘1, ..., 𝑘𝑛 are numeric values 

over fields (such as source addresses), whose domains are denoted by 𝐷1, ..., 𝐷𝑛). Given the 

 
Figure 6.4. Framework overview. 
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domains of the policy under test, the generator for the technique automatically generates a 

packet 𝑘 by randomly selecting 𝑘1, ..., 𝑘𝑛 (within the domain 𝐷1, ..., 𝐷𝑛, respectively). While 

the technique does not require the policy itself in test generation and can quickly generate a 

large number of test packets, the technique often lacks effectiveness to achieve high 

structural coverage with the generated packets. Due to randomness, the number of the entities 

(i.e., predicates or clauses) being covered is often small in comparison to the total number of 

the entities in the policy under test. 

2) Packet Generation Technique based on Local Constraint Solving: In general, packet 

generation should focus on generating packets to cover those entities (i.e., predicates and 

clauses) that have not been covered previously. Different from the preceding technique, the 

technique based on local constraint solving statically analyzes the entities in an individual 

rule and generates packets to evaluate the constraints (i.e., conditions) of the entities to be 

true or false. The technique takes into account local constraints (given by a rule) without 

considering the impact of other rules in the policy. 

More specifically, the generator constructs constraints (𝑝) and ¬𝐶(𝑝) (for both true and 

false branches of 𝑝) for each rule. The generator generates a packet based on the concrete 

values to satisfy each constraint. As the generator generates packets based on satisfying 

constraints in predicates, the generated packets may not be effective in covering each clause 

(to be true and false). To target at covering many clauses, the generator constructs 

combinations of 𝐶(𝑐𝑖) and ¬𝐶𝑝(𝑐𝑖). For example, combinations 𝐶(𝑐1) ∧ .... ∧ 𝐶(𝑐𝑛) (for true 
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branches of all clauses) and ¬𝐶𝑝(𝑐1) ∧ .... ∧ ¬𝐶(𝑐𝑛) (for false branches of all clauses) can be 

considered. 

There are two major limitations of the technique. First, the generated packets may fail to 

cover target entities due to overlapping predicates (i.e., predicates that can be satisfied by the 

same packet) across multiple rules. As shown in Figure 2.2, a packet 𝑘 (whose destination IP 

address is 192.168.0.0 and protocol type is UDP) satisfies the predicates of both 𝑟1 and 𝑟3 but 

fails to be evaluated against 𝑟3, which can be 𝑘’s potential target entities. Second, the 

technique cannot determine whether a structural entity could be covered in advance. Some 

rules may be completely shadowed by other rules and never evaluated. In such cases, there is 

no criterion to decide whether to generate additional packets (based on other more capable 

solutions to solve the same constraints) or stop testing. 

3) Packet Generation Technique based on Global Constraint Solving: To better generate 

packets to cover target entities, our generator (based on global constraint solving) analyzes 

the policy under test and generates packets by solving global constraints (collected from the 

policy). The motivation of global constraint solving is to take into account the influence of 

overlapping predicates across rules. Covering entities in a rule requires that the predicates of 

all the preceding rules should be evaluated to false. To find such entities, we define rule 

reachability as follows. 
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Definition 4: Rule reachability of a packet 𝑘 to reach a rule 𝑟𝑖 in a policy requires that 𝑘 

evaluates 𝑟𝑖’s preceding rules’ predicates to false and reaches the rule. 

We may generate packets to reach and evaluate all the reachable rules in the policy. To 

cover entities in a rule 𝑟𝑖, we explore a (path) constraint 𝑃𝑎𝑡ℎ(𝑟𝑖) that represents rule 𝑟𝑖 

reachability. 𝑃𝑎𝑡ℎ(𝑟𝑖) is additionally used upon the preceding technique to cover target 

entities by taking into account the impact of overlapping predicates in the preceding rules. 

More specifically, 𝑃𝑎𝑡ℎ(𝑟𝑖) is represented as the form of ¬𝐶(𝑝1) ∧ .... ∧ ¬(𝑝𝑖−1) where 

𝐶(𝑝1), ..., 𝐶(𝑝𝑖−1) are the predicate constraints in the preceding rules 𝑟1, ..., 𝑟i-1. Given the path 

constraint 𝑃𝑎𝑡ℎ(𝑟𝑖), to cover the predicate 𝑝𝑖 in 𝑟𝑖, the generator constructs two constraints 

𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ 𝐶(𝑝𝑖) (for the true branch of 𝑝𝑖 after reaching 𝑟𝑖) and 𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ ¬𝐶(𝑝𝑖) (for the 

false branch of 𝑝𝑖 after reaching 𝑟𝑖). As the generator generates packets based on solutions of 

constraints 𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ 𝐶(𝑝𝑖) and 𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ ¬𝐶(𝑝𝑖), the packets reach 𝑟𝑖 and exercise 𝑟𝑖’s 

true and false branches, respectively. 

Given the constraints, the generator generates packets based on solutions for the collected 

constraints. This technique is useful to generate packets with high structural coverage by 

taking into account the impact of the preceding rules of a target rule. However, this technique 

requires higher analysis time (e.g., constraint-solving cost) than the two preceding 

techniques. 



 
 
 

  84 

 

4) Packet Generation Technique based on Boundary Values: To better generate packets to 

detect a fault in a firewall policy, our generator (based on boundary values) analyzes the 

policy under test and generates packets based on boundary values by solving local constraints 

(collected from the policy). The generated packets include boundary values, which are on the 

Algorithm 1. Packet Generation Technique Based On Boundary Values. 
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range boundaries (i.e., the smallest value and the largest value) of each field. Intuitively, 

when a fault is injected to a firewall policy, the policy could reveal a faulty policy behavior. 

The technique selects boundary values instead of random values from values satisfying 

rule constraints. Boundary values are the values around the smallest and largest values of a 

clause in a rule. For example, Figure 6.1 has a rule 𝑟1 that includes two fields 𝐹1 ∈ [2, 5] and 

𝐹2 ∈ [5, 10]. For the smallest value 2 of 𝐹1, boundary values are 1 and 2 that evaluate 𝐹1 to 

be false and true, respectively. For the largest value 5 of 𝐹1, boundary values are 5 and 6 that 

evaluate 𝐹1 to be true and false, respectively. Similarly, we can select boundary values 4, 5, 

10, and 11 for 𝐹2 ∈ [5, 10]. Given boundary values of 𝐹1 and 𝐹2, we can generate four 

packets (1, 4), (2, 5), (5, 10), and (6, 11) to cover true and false branches of clauses in 𝑟1. 

More specifically, the generator generates packets based on boundary values to cover true 

and false branches of clauses in a rule 𝑟𝑖. Algorithm 1 presents our technique to generate 

packets based on boundary values. 𝐶(𝑐𝑗) is the 𝑗th clause constraint in a rule. In the 

algorithm, Lines 4-7 present that the generator generates a packet based on the smallest 

boundary values 𝑆 to satisfy positive constraints (i.e., 𝐶(𝑐1) ∧ .... ∧ 𝐶(𝑐𝑛) for true branches 

of all clauses) of each rule. Lines 8-15 present that the generator generates a packet based on 

boundary values (next to 𝑆) to satisfy negative constraints (i.e., ¬𝐶(𝑐1) ∧ .... ∧ ¬𝐶(𝑐𝑛) for 

false branches of all clauses) of each rule. Lines 16-19 present that the generator generates a 

packet based on the largest boundary values 𝐿 to satisfy positive constraints of each rule. 



 
 
 

  86 

 

Lines 20-27 present that the generator generates a packet based on boundary values (next to 

𝐿) to satisfy negative constraints of each rule. 

The generator generates packets based on boundary values within solutions for the 

collected constraints. This technique generates packets with high structural coverage (that 

can be achieved based on local constraint solving) and fault detection with using boundary 

values instead of any other values feasible to cover a target entity. 

However, the packets generated based on boundary values of a rule’s constraints could not 

reach the rule due to the impact of overlapping predicates in the preceding rules. To further 

generate packets based on correctly identified boundary values, we leverage an existing 

technique [36] to remove redundant overlapping predicates of firewall policies. In addition, 

this redundancy removal technique helps reduce the number of generated packets based on 

boundary values when redundant rules are removed and the number of rules is decreased. 

6.3.2 Test Reduction 

Manual inspection of a test suite (which is a set of packet-decision pairs) is time-

consuming and tedious. Therefore, we should reduce the size of the test suite for inspection 

without incurring substantial loss in fault-detection capability. Since structural coverage is an 

important factor for reflecting fault detection capability, we can reduce the size of the test 

suite while keeping its coverage level. 
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Given a packet set, we evaluate each packet set against the policy. We use a greedy 

algorithm that removes a packet from the packet set if and only if evaluating the packet does 

not increase any of the coverage metrics that are achieved by previously evaluated packets in 

the packet set. 

6.3.3 Measuring Fault-Detection Capability 

Fault detection is a focus of any testing process. We aim to investigate the relationship 

between firewall policy structural coverage achieved by a packet set and the packet set’s 

fault-detection capability. We adopt mutation testing [2] to measure the fault-detection 

capability of the packet set. 

In policy mutation testing, we inject a fault into the original policy and thereby create a 

mutant (faulty version). Injected faults can be of various types including simple mistakes 

(e.g., incorrect decision in a rule) and complex configuration errors involving multiple rules. 

The intuition behind mutation testing is that if a policy contains a fault, there will usually be 

a set of mutants that can be detected (killed) only by a test packet that also detects that fault. 

When different decisions are produced by the evaluations of the same test packet on the 

original policy and its mutant, the test packet is adequate to detect the fault in the mutant and 

we say that the mutant is “killed”. When various mutants are used, fault-detection capability 

of a test suite is measured through the mutant-killing ratio, which is the number of mutants 

killed by the test suite divided by the total number of mutants. 
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Table 6.2 shows the chosen mutation operators for firewall policies and their descriptions. 

Mutation operators may change predicates, clauses, or decisions of a policy. We classify 

mutation operators into two groups: (1) rule-level mutation operators including 𝑅𝑃, 𝑅𝑃𝐹, 

𝐶𝑅𝑂, 𝐶𝑅𝐷, 𝐴𝑅 and 𝑅𝑀𝑅 and (2) clause-level mutation operators including 𝑅𝐶𝑇, 𝑅𝐶𝐹, 

𝐶𝑅𝑆𝑉, 𝐶𝑅𝐸𝑉, 𝐶𝑅𝑆𝑂, and 𝐶𝑅𝐸𝑂. The first group adds, removes, or modifies a rule in a 

policy. The number of generated mutants with each mutation operator is equal to the number 

of rules of the policy. The second group modifies a clause in a rule. The number of generated 

mutants with each mutation operator is equal to the number of clauses. 

However, syntactic changes of firewall policies cannot guarantee semantic changes of the 

firewall policies. In other words, the mutant generator for each mutation operator may 

generate semantically equivalent mutants that are mutants with the same behaviors as the 

original policy; any test packet cannot kill an equivalent mutant. In order to guarantee 

semantic changes of firewall policies after fault injection, we leverage an existing change-

impact analysis tool [34] on firewall policies to determine whether the modifications incur 

any semantic changes. Given two policies 𝑝1 (an original policy) and 𝑝2 (its corresponding 

mutant), change-impact analysis is to analyze what would be different policy behaviors 

between 𝑝1 and 𝑝2.  

6.3.4 Implementation 

Our implementation (written in Java) includes four components: packet generation, packet 

evaluation, packet reduction, and mutation generation. In the packet generation component, 
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for packet generation based on local constraint solving, our packet generator selects random 

values (that satisfy a given constraint) for each field value of a test packet. For packet 

generation based on global constraint solving, we leveraged a theorem prover called Z3 [62]. 

The component statically analyzes and finds concrete solutions (i.e., numeric values), each of 

which is transformed to a test packet. If no solution exists, Z3 outputs unsolvable. For packet 

generation based on boundary values, our packet generator selects boundary values (that 

Table 6.2. Mutation operators for policy mutation testing 

Name Description 

Rule Predicate True (𝑅𝑃𝑇) A rule is applied to all packets by modifying every clause 
range to “*”. 

Rule Predicate False (𝑅𝑃𝐹) A rule is never applied to any packet by modifying every 
clause range to an invalid range (e.g., [10, 5]). 

Rule Clause True (𝑅𝐶𝑇) A clause 𝑐𝑖 is applied to the field value 𝑓𝑣𝑖 of all packets by 
modifying the clause range to “*”. 

Rule Clause False (𝑅𝐶𝐹) 
A clause 𝑐𝑖 is never applied to the field value 𝑓𝑣𝑖 of all 
packets by modifying the clause range to an invalid range 
(e.g., [10, 5]). 

Change Range Start point 
Value (𝐶𝑅𝑆𝑉) 

The range in a clause is changed by modifying the start 
point value randomly. 

Change Range End point 
Value (𝐶𝑅𝐸𝑉) 

The range in a clause is changed by modifying the end point 
value randomly. 

Change Range Start point 
Operator (𝐶𝑅𝑆𝑂) 

The range in a clause is changed by increasing the start 
point value by one. 

Change Range End point 
Operator (𝐶𝑅𝐸𝑂) 

The range in a clause is changed by decreasing the end 
point value by one. 

Change Rule Order (𝐶𝑅𝑂) Rule order is changed by exchanging the locations of two 
adjacent rules. 

Change Rule Decision 
(𝐶𝑅𝐷) 

A rule’s decision is inverted (i.e., accept to discard or 
discard to accept). 

Add Rule (𝐴𝑅) add a randomly generated rule in a policy. 
Remove Rule (𝑅𝑀𝑅) remove the rule in a policy. 

 
 
 



 
 
 

  90 

 

satisfy a given constraint) for each field value. In order to remove redundancy, we leverage 

an existing tool [36] to detect redundancy in a firewall policy. 

In the packet evaluation component, we developed a generic firewall evaluation engine to 

simulate evaluating packets against the policy under test. The engine parses and stores rules 

as a List. When evaluating a packet, the engine searches for the first-applicable rule and 

outputs the rule’s decision. The engine also automatically compares the evaluated decisions 

(on the policy and the mutated policies) and log “killed” mutant information if the decisions 

are inconsistent. 

In the packet reduction component, our packet reduction tool observes the details of 

covered entities and their covering packets as well as the details of uncovered entities when 

evaluating a packet set. 

In the mutation generation component, our mutator automatically generates mutant 

policies by modifying the policy under test using the selected mutation operator. 

 Evaluation 6.4

We carried out our experiments on a laptop PC running Windows XP SP2 with 1G 

memory and dual 1.86GHz Intel Pentium processor. Our packet generation tool generates 

packet sets using the four techniques (random packet generation, packet generation based on 

local constraint solving, one based on global constraint solving, and one based on boundary 
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values). We use 𝑅𝑎𝑛𝑑, 𝐿𝑜𝑐𝑎𝑙, and 𝐺𝑙𝑜𝑏𝑎𝑙 to denote the packet sets generated by these first 

three techniques, respectively. We use 𝐵𝑜𝑢𝑛𝑑1 and 𝐵𝑜𝑢𝑛𝑑2 to denote the packet sets 

generated by the fourth technique on an original policy and its redundancy-removed policy, 

respectively. For each policy, we measured the structural coverage of each packet set and 

reduce the size of each packet set while keeping the same level of structural coverage. We 

use 𝑅𝑎𝑛𝑑−, 𝐿𝑜𝑐𝑎𝑙−, 𝐺𝑙𝑜𝑏𝑎𝑙−, 𝐵𝑜𝑢𝑛𝑑1−, and 𝐵𝑜𝑢𝑛𝑑2− to denote the reduced packet sets, 

respectively. 

The mutator generates mutants (using the defined mutation operators) by seeding faults in 

each policy (with one mutant including one seeded fault). For each policy and its mutants, 

the evaluation engine checked if a mutant is “killed” and measured mutant-killing ratios of 

each packet set (i.e., the number of mutants killed by the packet set divided by the total 

number of mutants). We compare our proposed four packet-generation techniques in terms of 

effectiveness to achieve structural coverage by the generated packet sets. In order to 

investigate the effect of structural coverage on fault-detection capability, we aim to 

demonstrate that packet sets with higher coverage can detect more faults than packet sets 

with lower coverage. We have also conducted the same experiment with reduced packet sets 

to further investigate whether this reduction significantly affects their fault-detection 

capability. 
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6.4.1 Instrumentation 

We conducted experiments on 14 real-life firewall policies collected from a variety of 

sources. For the local and global constraint-solving packet-generation techniques, we first 

generated the following two constraints for each rule: (1) a constraint for evaluating every 

clause in the rule to true and (2) a constraint for evaluating clauses, each of which is within 

(but not equal to) its domain, to false and the remaining clauses (which subsume their 

domains) to true. Because many clauses in firewall policies subsume their domains (e.g., 

clauses with “*” marks in Figure 2.2) and these clauses cannot be evaluated to false, we 

evaluated such clauses to true in the second constraint as described earlier. The local 

constraint-solving packet-generation technique generated 𝑛×2 packets. The global constraint-

solving packet-generation technique conjuncts the path constraint for a target rule with its 

two preceding constraints to form a new constraint for solving. If the new constraint is found 

to be infeasible (due to the impact of the path condition), this technique cannot generate 

packets to satisfy such constraints and may include fewer than 𝑛×2 packets. The packet-

generation technique based on boundary values generated at most 𝑛×4 packets. The 

technique removes duplicate packets to reduce the number of packets. Moreover, the 

technique removes redundancy to help reduce the number of rules, which reflects the number 

of packets. 

6.4.2 Comparison of Structural Coverage 

Table 6.3 shows the basic statistics of each firewall policy. Columns 1-3 show subject 

names, numbers of rules (denoted by “#RL”), and generated mutants for each firewall policy 
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Table 6.3. Experimental results on firewall policies. 

Policy #RL #MT # Packets # Reduced packets 

      Rand Local 
Glob
al 

Bou
nd1 

Bou
nd2 

Ran
d− 

Loc
al− 

Glob
al− 

Bou
nd1− 

Bou
nd2− 

1 Firewall1 3 51 6 6 6 10 10 1 3 3 3 3 
2 BACKUP 5 26 10 10 9 12 6 1 5 4 6 3 
3 LAN-OUT 28 280 56 56 43 104 29 1 17 17 18 12 
4 MAILOUT 18 206 36 36 26 64 22 1 10 9 12 9 
5 MAIL 26 378 52 52 44 96 62 2 18 19 22 21 
6 MAIL2 26 338 52 52 39 96 42 2 14 14 15 14 
7 MAIL3 27 360 54 54 41 100 46 3 15 15 16 15 
8 MAIL4 28 494 56 56 53 101 87 3 24 27 29 28 
9 NEWS-OUT 14 185 28 28 25 48 34 2 11 11 13 12 
10 NS3-OUT 17 179 34 34 29 56 22 1 11 13 14 10 
11 RCPRO 23 233 46 46 34 77 30 3 14 11 15 11 
12 RCPRO1 6 44 12 12 11 16 10 1 6 5 7 5 
13 SSHOUT 16 152 32 32 23 54 18 1 8 7 9 8 
14 WANIN 24 313 48 48 40 58 42 2 19 17 18 14 

Average 18.6 
231.

3 37.2 37.2 30.2 63.7 32.8 1.7 12. 12.2 14.0 11.7 
 
 
 

(denoted by “#MT”). Column group “# Packets” shows the size of the generated packet sets 

𝑅𝑎𝑛𝑑 𝐿𝑜𝑐𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2, respectively for each packet generation 

technique. Columns 9-13 show the size of their reduced packet sets (denoted by 𝑅𝑎𝑛𝑑−, 

𝐿𝑜𝑐𝑎𝑙−, 𝐺𝑙𝑜𝑏𝑎𝑙−, 𝐵𝑜𝑢𝑛𝑑1−, and 𝐵𝑜𝑢𝑛𝑑2-), respectively. Note that the last row shows the 

average. 

𝐺𝑙𝑜𝑏𝑎𝑙,  𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2 can  achieve 100% of rule, predicate, and clause coverage 

when global constraints can be feasible to be solved. Firewall policies may include rules, 
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predicates, and clauses that are infeasible to reach. We consider only feasible constraints 

when we measure structural coverage. 

We observe that 𝐺𝑙𝑜𝑏𝑎𝑙 may contain fewer packets than 𝑅𝑎𝑛𝑑 and 𝐿𝑜𝑐𝑎𝑙. The reason is 

that when solving a global constraint, the constraint can be infeasible to be solved and a 

constraint solver returns a decision of unsolvable — no packets are generated based on the 

decision. We observe that 𝐵𝑜𝑢𝑛𝑑2 contains fewer packets than 𝐵𝑜𝑢𝑛𝑑1 since the number of 

rules in the policy under test is reduced after redundancy removal. 

Figure 6.5, Figure 6.6, and Figure 6.7 show the rule, predicate, clause coverage metrics, 

respectively, of each policy achieved by 𝑅𝑎𝑛𝑑, 𝐿𝑜𝑐𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2. We 

observe that 𝑅𝑎𝑛𝑑 achieved the lowest structural coverage. The reason is that randomly 

generated field values in generated packets have a low chance of satisfying constraints for a 

rule, predicate, or clause.  

We observe that 𝐺𝑙𝑜𝑏𝑎𝑙 achieves higher rule/predicate coverage than other packet sets. 

This observation is consistent with our expectation described in Section 6.3. On average, 

𝐺𝑙𝑜𝑏𝑎𝑙 is approximately 5% (2%) and 86% (35%) higher than 𝐿𝑜𝑐𝑎𝑙 and 𝑅𝑎𝑛𝑑 in terms of 

rule (predicate) coverage. 𝐵𝑜𝑢𝑛𝑑1 achieves similar rule/predicate coverage with 𝐺𝑙𝑜𝑏𝑎𝑙. 

𝐵𝑜𝑢𝑛𝑑2 achieves lower coverage than 𝐵𝑜𝑢𝑛𝑑1 because packets (generated based on a 

redundancy-removed policy) are not suitable to achieve high structural coverage for its 

original policy due to structure change after redundancy removal.  
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We also observe that for clause coverage, 𝐺𝑙𝑜𝑏𝑎𝑙 achieves approximately similar 

(sometimes less) coverage with 𝐿𝑜𝑐𝑎𝑙. As illustrated earlier, 𝐺𝑙𝑜𝑏𝑎𝑙 may include fewer 

packets based on the constructed constraints. When a constraint is found to be infeasible, we 

did not take into account other clause constraint combinations, which may be feasible to 

solve for covering some of uncovered clauses. Instead, 𝐿𝑜𝑐𝑎𝑙, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2 may 

cover some (but not all) target clauses among such uncovered clauses.  

Furthermore, as our subjects have only a few or no overlapping predicates across rules, 

the packet-generation technique based on local constraint solving could generate a packet set 

  
Figure 6.5. Rule coverage achieved by each packet set. 
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with almost the highest structural coverage. If predicates are more complex, we expect that 

𝐺𝑙𝑜𝑏𝑎𝑙 shall perform better than 𝐿𝑜𝑐𝑎𝑙.  

6.4.3 Comparison of Fault-Detection Capability 

To find correlation between each structural coverage and mutation-killing ratios, we 

classify mutation operations into two categories, rule-level and clause-level mutation 

operators (explained in Section 6.3.3). 

Figure 6.8 shows the average mutant killing ratios for all operators by policies. We 

observe that the mutant killing ratios are similar over the generated packet sets and their 

reduced packet set. For 𝑅𝑎𝑛𝑑, 𝐿𝑜𝑐𝑎𝑙, and 𝐺𝑙𝑜𝑏𝑎𝑙, the largest ratio difference between the 

generated packet sets and their reduced packet set is less than 2%. 𝑅𝑎𝑛𝑑 and 𝑅𝑎𝑛𝑑− show 

the lowest mutant-killing ratios. As 𝑅𝑎𝑛𝑑 contains a relatively large number of packets and 

the lowest mutant-killing ratios, we observe that the size of a packet set is not highly 

correlated with fault-detection capability. We also observe that 𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑1-) achieves 

the highest mutant-killing ratios among the generated packet sets (the reduced packet sets). 

While 𝐿𝑜𝑐𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙, and 𝐵𝑜𝑢𝑛𝑑1 achieve similar structural coverage, 𝐵𝑜𝑢𝑛𝑑1 achieves the 

highest mutant-killing ratios. This result is expected as the evaluation of these packet sets can 

involve more structural entities and boundary values than the other packet sets. 



 
 
 

  97 

 

 

 
Figure 6.6. Predicate coverage achieved by each packet set. 

 
 

 
Figure 6.7. Clause coverage achieved by each packet set. 
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We also observe that, in Figure 6.8 for most cases, mutant killing ratios are below 60%. 

The reason for such low mutant killing ratios is that a policy can include various types of 

faults denoted in Table 6.2 and our test packet generation could not find all possible changed 

behaviors of a given policy. For a 𝐶𝑅𝑂-mutated policy, two rules swap locations. In order to 

detect such a fault, packets should match intersections of two packets. However, our test 

packet generation does not consider such intersections for test packet generation and cannot 

easily detect such a fault. 

We next present more details about mutants being killed. Figure 6.9 shows the average 

mutant killing ratios for all policies by operators. For rule-level mutation operators, we 

observe that 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙−, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑1− achieve highest mutant-killing ratios. 

The reason is that the highest rule/predicate coverage achieved by 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙−, 𝐵𝑜𝑢𝑛𝑑1, 

and 𝐵𝑜𝑢𝑛𝑑1− helps exercise more rules and detects faults in rules. 

In Figure 6.9, we observe that our generated packet sets cannot detect any faults in the 

policies with 𝐴𝑅 faults. 𝐴𝑅 simulates a forgotten rule in a given policy. The reason for such 

low mutant-killing ratios is that our test packet generation is based on a set of rules in a given 

policy and does not have any information of a forgotten rule to help detect its fault. 

Moreover, randomly generating a packet for fault detection is not trivial as well due to a 

large domain of a firewall policy representation.  
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For example, an IP address field in a rule includes a subset of the IP address domain (i.e., 

[0, 28 − 1]), which is huge. There is a very low possibility that a randomly generated IP 

address field value in a packet could detect such a fault. In other words, in order to detect a 

fault in a rule, a packet matches not only an IP address field in the rule. The packet is 

required to match other fields in the rule as well. A randomly generated packet may match 

some of fields, especially when a field is a subset of a relatively small domain (e.g., 

Boolean). However, matching all of the fields in the rule with a randomly generated packet is 

not trivial. 

Among clause-level mutation operations, 𝐵𝑜𝑢𝑛𝑑1 and 𝐵𝑜𝑢𝑛𝑑1- achieves the highest 

mutant-killing ratios over 𝑅𝐶𝑇, 𝑅𝐶𝐹, 𝐶𝑅𝐸𝑉, and 𝐶𝑅𝐸𝑂 mutated policies. As 𝐵𝑜𝑢𝑛𝑑1 and 

 
Figure 6.8. Mutant-killing ratios for all operators by subjects. 
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𝐵𝑜𝑢𝑛𝑑1- evaluate more clauses to true or false, the packet sets are more effective to detect 

faults in a larger portion of clauses in the policy. 𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑1-) and 𝐵𝑜𝑢𝑛𝑑2 (𝐵𝑜𝑢𝑛𝑑2-) 

detect more faults in 𝐶𝑅𝑆𝑉 and 𝐶𝑅𝑆𝑂 mutated policies. The reason is that a packet in 

𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑1-) and 𝐵𝑜𝑢𝑛𝑑2 (𝐵𝑜𝑢𝑛𝑑2-) are based boundary values in the constraint. 

Therefore, 𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑1-) and 𝐵𝑜𝑢𝑛𝑑2 (𝐵𝑜𝑢𝑛𝑑2−) are effective to detect faults caused 

by the change of the boundary value of a clause over other packet sets.  

 Limitation 6.5

Our approach is based on the concept of policy coverage, which helps test a policy’s 

structural entities (i.e., rules, predicates, and clauses) to check whether each entity is 

specified correctly. Our approach has the following limitation: our approach is designed for 

 
Figure 6.9. Mutant-killing ratios for all subjects by operators. 
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firewall policies that follow first-match semantic based on the order of rules. In this semantic, 

each packet is evaluated to the decision of the first rule that the packet matches.  For 

example, if a firewall policy includes a rule that matches a packet, structural entities in 

subsequent rules of the rule are not covered (i.e., evaluated to either true or false). Therefore, 

our approach may not be suitable for firewall policies that follow semantics other than first-

match semantic for conflict resolution. 

 Chapter Summary 6.6

We presented a systematic structural testing approach for firewall policies. We defined 

three types of structural coverage for firewall policies: rule, predicate, and clause coverage 

criteria. Among the four proposed packet generation techniques, the global constraint solving 

technique often generated packet sets to achieve the highest structural coverage. Generally, 

our experimental results showed that a packet set with higher structural coverage has higher 

fault-detection capability (i.e., detecting more injected faults). Our experimental results 

showed that a reduced packet set (maintaining the same level of structural coverage with the 

corresponding original packet set) maintains similar fault-detection capability with the 

original set. 
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7 Automated Regression Test Selection for Regression Testing for 
Security Policy Evolution 

 

We present a safe-test-selection approach [29] for regression testing of security policies. 

Among given initial test cases in access control systems under test, our approach selects and 

executes only test cases that could expose different policy behaviors across multiple versions 

of security policies. 

 Introduction 7.1

With the change of security requirements, developers may modify policies. After the 

modification, policy authors should verify the given system to determine that this 

modification is correct and does not introduce unexpected behaviors (i.e., regression faults). 

Consider that the system’s original policy P is replaced with a modified policy P′. The 

system may exhibit different system behaviors affected by different policy behaviors (i.e., 

given a request, its evaluated decisions against P and P′, respectively, are different) caused 

by the policy changes. Such different system behaviors are “dangerous” portions where 

regression faults could be exposed. 

Given existing test cases for P, a naive strategy of regression testing is to rerun all existing 

system test cases. However, rerunning these test cases could be costly and time-consuming, 

especially for large-scale systems. Instead of this strategy, developers can use regression-test 

selection before execution of test cases. This regression-test selection selects and executes 
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only test cases that may expose different behaviors across multiple versions of the policies. 

This regression-test selection may require substantial cost to select and execute such system 

test cases. If the cost of regression-test selection and selected test execution is smaller than 

rerunning all of the initial system test cases, regression-test selection helps reduce overall 

cost in validating whether the modification is correct. Safety is an important aspect in 

regression-test selection. A safe approach of regression-test selection selects only test case 

that may reveal a fault in a modified program [48]. 

In this chapter, we present a safe approach of regression-test selection to select a superset 

of fault-revealing test cases, i.e., test cases that reveal faults due to the policy modification. 

Our approach includes three regression-test selection techniques: the first one based 

mutation analysis, the second one based on coverage analysis, and the third one based on 

recorded request evaluation. The first two techniques establish correlation (i.e., of rules and 

test cases.  

The first technique selects a rule ri in P and creates P’s mutant M(ri) by changing ri’s 

decision. This technique selects test cases that reveal different policy behaviors by executing 

test cases on program code interacting with P and M(ri), respectively. Our rationale is that, if 

a test case is correlated with ri, the test case may reveal different system behaviors affected 

by modification of ri in P. However, this technique requires at least 2×n executions of each 
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test case to find all correlations between test cases and rules where n is the number of rules in 

P. 

The second technique uses coverage analysis to establish correlations between test cases 

and rules by monitoring which rules are evaluated (i.e., covered) for requests issued from 

program code. Compared with the first technique, this technique substantially reduces cost 

during the correlation process because it requires execution of each test case once. 

The third technique captures requests issued from program code while executing test 

cases. This technique evaluates these requests against P and P′, respectively. This technique 

then selects only test cases that issue requests evaluated to different decisions. 

 Example 7.2

Figure 7.1 shows an example policy specified in XACML. Due to space limit, we describe 

only one rule in the policy in a simplified XACML format. Lines 3-12 describe a rule that 

borrower is permitted to borroweractivity (e.g., borrowing books) book in working days.  

 Regression Test Selection Approach 7.3

As manual selection of test cases for regression testing is tedious and error-prone, we have 

developed three techniques to automate selection of test cases for security policy evolution. 

Consider that program code interacts with a PDP loaded with a policy P. Let P′ denote P’s 

modified policy. Let SP denote program code interacting with P. For regression-test selection, 
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our goal is to select T′⊆ T where T is an existing test suite and T′ reveals different system 

behaviors due to the modification between P and P′. 

7.3.1 Test Selection based on Mutation Analysis 

Our first technique establishes correlation between rules and test cases based on mutation 

analysis before regression-test selection. 

Correlation between rules and test cases. For rule ri in P, we create P’s rule-decision-

change (RDC) mutant M(ri) by changing ri’s decision (e.g., Permit to Deny). Figure 7.2 

illustrates an example mutant by changing the decision of the first rule in Figure 7.1. The 

technique next executes T on SP and SM(ri), respectively, and monitors evaluated decisions. 

If the two decisions are different for t ∈ T, the technique establishes correlation between ri 

and t. 

 

Figure 7.1. An example policy specified in XACML. 
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Regression-test selection. This step selects test cases correlated with rules that are 

involved with syntactic changes between P and P′. In particular, this technique analyzes 

syntactic difference, SDiff, between P and P′ (e.g., a rule’s decisions or locations are 

changed) and identifies rules that are involved in the syntactic difference. 

The drawback of this technique is that it requires the correlation step, which could be 

costly in terms of execution time. This technique executes T for 2×n times where n is the 

number of rules in P. Moreover, if the policy is modified, the correlation step should be done 

again for the changed rules. As this regression-test selection is based on SDiff, this technique 

may select rules that may not be involved with actual policy behavior changes (i.e., semantic 

policy changes). 

7.3.2 Test Selection based on Coverage Analysis 

To reduce the cost of the correlation step in the preceding technique, our second technique 

correlates only rules that can be evaluated (i.e., covered) by test cases. 

Correlation between rules and test cases. Our technique executes test cases T on SP and 

monitors which rules are evaluated for requests issued from the execution of test case t ∈ T. 

Our technique establishes correlation between a rule ri and ti ∈ T if and only if ri is evaluated 

for requests issued from PEPs while executing ti. 
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Regression-test selection. We use the same selection step in the preceding technique. An 

important benefit of this technique is to reduce cost in terms of execution of test cases. This 

technique requires executing T only once. Similar to the preceding technique, this technique 

finds the modified rules based on SDiff between P and P′, which may not be involved with 

actual policy behavior changes. 

7.3.3 Test Selection based on Recorded Request Evaluation 

To reduce correlation cost in the preceding techniques, we develop a technique that does 

not require correlation between test cases and rules. The third technique executes T on SP. 

The technique captures and records requests Rrs issued from PEPs while executing T on SP. 

For test selection, our technique evaluates Rrs against P and P′. Our technique selects test 

case t ∈ T that issues requests engendering different decisions for P and P′. 

 

Figure 7.2. An example mutant policy by changing the first rule’s decision (i.e., effect). 
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This technique requires the execution of T only once. Moreover, this technique is useful 

especially when polices are not available, but only evaluated decisions are available. As 

different decisions are reflected by actual policy behavior changes (i.e., semantic changes) 

between P and P′, this technique can select fault revealing test cases more effectively. 

7.3.4 Safe Test-Selection Techniques 

A test-selection algorithm is safe if the algorithm includes the set of every fault-revealing 

test case that would reveal faults in a modified version. In our work, the first test-selection 

technique is safe when a policy uses the first-applicable algorithm. If the policy uses other 

combining algorithms, we use an approach [35] to convert the policy to its corresponding 

policy using the first-applicable algorithm. The second and third techniques are safe for any 

policies specified in XACML. Due to space limit, proof of safety of our three techniques is 

presented on our project website. 

 Evaluation 7.4

We conducted experiments for evaluating our proposed techniques of regression-test 

selection. We carried out our experiments on a PC, running Windows 7 with Intel Core i5, 

2410 Mhz processor, and 4 GB of RAM. As experimental subjects, we collected three Java 

programs [45] each interacting with policies written in XACML. The Library Management 

System (LMS) provides web services to borrow/return/manage books in a library. The 

Virtual Meeting System (VMS) provides web conference services to organize online 

meetings. The Auction Sale Management System (ASMS) provides web services to manage 
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online auction. These three subjects include 29, 10, and 91 security test cases, which target at 

testing security checks and policies. The test cases cover 100%, 12%, and 83% of 42, 106, 

and 129 rules from policies in LMS, VMS, and ASMS, respectively. 

Instrumentation. We implemented a regression simulator, which injects any number of 

policy changes based on three predefined regression types. RMR (Rule Removal) removes a 

randomly selected rule. RDC (Rule Decision Change) changes the decision of a randomly 

selected rule. RA (Rule Addition) adds a new rule consisting of attributes randomly selected 

among attributes collected from P. Combination of the three regression types can incur 

various policy changes. 

For our experiments, the regression simulator injects 5, 10, 15, 20, and 25 policy changes, 

respectively. Our experiments are repeated 12 times to avoid the impact of randomness of 

policy changes. We measure effectiveness and efficiency of our three techniques by 

measuring test-reduction percentage, the number of fault-revealing test cases, and elapsed 

time. 

Research questions. We intend to address the following research questions: 

• RQ1: How high percentage of test cases (from an existing test suite) is reduced by our test-

selection techniques?  
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• RQ2: How high percentage of selected test cases can reveal regression faults? 

• RQ3: How much time our techniques take to conduct test selection? 

Results. To answer RQ1, we measure test-reduction percentage (%TR), which is the 

number of selected test cases divided by the number of existing security test cases. Table 7.1 

shows the number of selected test cases on average for each technique. “Regression - m” 

denotes a group of modified policies where m is the number of policy changes on P. “#SMC”, 

denotes the number of selected test cases on average by our two test-selection techniques, 

one based on mutation analysis (TSM) and one based on coverage analysis (TSC). “#SR” 

denotes the number of selected test cases on average by our technique based on recorded 

request evaluation (TSR). We observe that TSR selected a fewer number of test cases than the 

other two techniques. The reason is that, while TSM and TSC select test cases based on 

syntactic difference, TSR selects test cases based on actual policy behavior changes (i.e., 

semantic policy changes). As illustrated in Section 7.3, syntactic difference may not result in 

actual policy behavior changes. 

Figure 7.3 shows the results of test-reduction percentage for our three subjects with 

modified policies. LMS1 (LMS2), VMS1 (VMS2), and ASMS1 (ASMS2) show test-

reduction percentages for our three subjects, respectively, using TSM and TSC (TSR). We 

observe that our techniques achieve 42%~97%of test reduction for our subjects with 5~25 
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policy changes. Such test reduction reduces a substantial cost in terms of test-execution time 

for regression testing. 

To answer RQ2, we show the percentage of selected test cases that reveal regression 

faults. Detection of regression faults is dependent on the quality of test oracles in test cases. 

The test cases for our three subjects include test oracles, which check correctness of 

decisions evaluated for all the requests issued from PEPs. Therefore, selected test cases by 

TSR would all detect regression faults (caused by semantic policy changes). On average, the 

percentages of selected test cases that reveal regression faults are 87%, 87%, and 100% for 

our three techniques TSM, TSC, and TSR, respectively.  

To answer RQ3, we compare efficiency by measuring elapsed time of conducting test 

selection. Table 7.2 shows the evaluation results. For TSM and TSC, the results show the 

elapsed time of correlation (“Cor”) and test selection (“Sel”), respectively. For TSR, the 

results show the elapsed time of request recording (“Col”) and test selection (“Sel”). We 

observe that correlation (11,714 milliseconds on average) of TSC takes substantially less time 

Table 7.1. The number of selected test cases on average for each policy group. 

Subject Regression-5 Regression-10 Regression-15 Regression-20 Regression-25 
#SMC #SR #SMC #SR #SMC #SR #SMC #SR #SMC #SR 

LMS 4.7 4.5 11.0 9.5 12.9 10.2 14.8 13.8 16.8 14.6 
VMS 0.1 0.1 0.4 0.2 1.2 0.8 1.6 1.2 1.8 1.1 
ASMS 6.6 5.9 10.9 10.0 16.4 14.8 21.3 19.3 22.4 17.2 

Avg. 3.8 3.5 7.4 6.6 10.2 8.6 12.6 11.4 13.7 11.0 
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than correlation (69,505 milliseconds on average) of TSM. The reason is that TSC executes 

the existing test cases only once but TSM executes the existing test cases for 2×n times where 

n is the number of rules in a policy under test. For total elapsed time by each technique, we 

observe that the total elapsed time of TSR is 43 and 8 times faster than that of TSM and TSC, 

respectively.  

Threats to validity. The threats to external validity primarily include the degree to which 

the subject programs, the policies, and regression model are representative of true practice. 

These threats could be reduced by further experimentation on a wider type of policy-based 

software systems and a larger number of policies. The threats to internal validity are 

 
Figure 7.3. LMS1 (LMS2), VMS1 (VMS2), and ASMS1 (ASMS2) show test-

reduction percentages for our subjects with modified policies, respectively, using 
TSM and TSC (TSR). Y-axis denotes the percentage of test reduction. X-axis denotes 

the number of policy changes on our subjects. 
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instrumentation effects that can bias our results such as faults in the PDP, and faults in our 

implementation. 

 Chapter Summary 7.5

Our approach could be practical and effective to select test cases for policy-based software 

systems interacting not only with XACML policies but also with policies specified by other 

policy specification languages (e.g., EPAL). We make two key contributions. First, we 

proposed three automatic test-selection techniques in the context of policy evolution. Second, 

we conducted experiments to assess the effectiveness and efficiency of our three test-

selection techniques. 

Table 7.2. Elapsed time (millisecond) for each test-selection technique. 

Subject 
TSM TSC TSR 

Cor Sel Cor Sel Col Sel 
LMS 70,496 4 5,214 4 2,096 2 
VMS 19,771 1 7,506 1 1,873 2 
ASMS 118,248 11 22,423 11 1,064 21 
Average 69,505 5 11,714 5 1,678 8 
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8 Conclusions and Future Work 

In this chapter, we present conclusions and future work. 

 Conclusions 8.1

Faults (i.e., misconfigurations) in security policies may result in tragic consequences such 

as disallowing an authorized user to access her/his resources and allowing malicious users to 

access critical resources. Therefore, to improve the quality of security policies in terms of 

policy correctness, policy authors must conduct rigorous testing and verification.  

In this dissertation, we proposed approaches that improve the quality of security policies.  

We first present approaches that mine patterns from security policies. Our approaches 

collected common patterns such that anomalies of those patterns are inspected to determine 

whether these anomalies expose faults. In addition, we conducted an initial empirical study 

of policy evolution to answer questions such as how security policies evolve. We conducted 

two studies: 

• Our first study mines patterns with regards to the correlations of attributes showed. Given 

these mined patterns, our approach has more than 30% higher fault-detection capability 

than that of the previous related approach, which mines properties based on a 

classification algorithm. Our results showed that we could reduce the number of 
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anomalies (that could detect potential faults) for inspection while maintaining the similar 

level of fault detection capabilities.  

• In our second study, we empirically observed that ACPs continue to increase and some of 

evolution patterns appear to occur more frequently than other evolution patterns. This 

observation could help build a prediction model for future policy changes with a 

precision of 50-80%, a recall of 70-90% and an F-measure of 65-75%. 

We next developed a systematic structural testing approach based on well-established 

testing techniques in software engineering. We defined three types of structural coverage for 

firewall policies: rule, predicate, and clause coverage criteria. We developed automated test-

packet generation for achieving high structural coverage. In general, our evaluation results 

showed that a packet set with higher structural coverage has higher fault-detection capability 

(i.e., detecting more injected faults). 

We developed a test-selection approach, which selects only system test case that may 

reveal regression faults caused by policy changes. We showed show that our test-selection 

approach reduces a substantial number of system test cases efficiently. 

 Future Work 8.2

While we introduced several approaches that improve the quality of security policies by 

helping detecting faults, we do not claim that our approaches could detect every fault in 

security policies. Future research could improve the effectiveness of our approaches to help 
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detect other types of faults. For example, our mining approach (in Chapter 5) may detect 

suspicious activities of policy authors based on frequently used permissions. If policy authors 

specify rarely used permissions (e.g., “unlink”) before frequently used permissions (e.g., 

“read”), our approach may give alerts to policy authors for inspection. To reduce false-

positives, we could consider cases such that policy authors may use rarely used permissions, 

which may not be faulty to reduce human efforts. In addition, we consider patterns (in 

Chapter 4) based on resource, subject-resource, or action-resource attribute values. We could 

consider other types of patterns for improving fault-detection capabilities. 

Second, our approach could be practical and effective to detect real faults in security 

policies. Future work could empirically investigate how our approaches are effective in terms 

of fault-detection capability. Real faults may consist of one or several simple faults as 

described in our evaluation, and may cause a policy’s behaviors to deviate from the policy’s 

normal behaviors. Detecting real faults often depend on detecting such simple faults, which 

could be detected effectively by our proposed approaches. Empirical studies could 

demonstrate the effectiveness of our research approaches. 

Third, our work (in Chapter 5) showed that while security by default could be the most 

secure setting, policy authors continue to change permissions of ACPs in practice. Future 

work could be a comprehensive study of regressions faults in security policies.  Our approach 

(in Chapter 7) could aid policy authors avoid regression faults that could happen during ACP 

evolution. However, we do not know how and why policy authors make regression faults. If 
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we better answer these questions, we could improve our approaches to detect regression 

faults. 
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