
ABSTRACT

HWANG, JEEHYUN. Improving the Quality of Security Policies. (Under the direction of
Dr. Laurie A. Williams).

Systems such as web applications, database systems, and cloud services regulate users’

access control to sensitive resources based on security policies. Organizations often manage

security policies in an ad-hoc and inconsistent manner due to a lack of budget, resources, and

staff. This management could cause crucial security problems such as unauthorized access to

sensitive resources.

A security policy is a set of restrictions and properties that specify how a computing

system prevents information and computing resources from being used in violation of an

organization’s security laws, rules, and practices. In computer systems, security policies are

enforced to ensure correct functioning of access control such as “who” (e.g., authorized users

or processes) can perform actions under “what” conditions.

Policy authors may follow common patterns in specifying and maintaining security

policies. Researchers applied data mining techniques for deriving (implicit) patterns such as a

group of users (i.e., roles in RBAC policies) who have the same access permissions. Policy

authors reuse common patterns to reduce mistakes. Anomalies of those patterns are

candidates for inspection to determine whether these anomalies expose faults.

Faults (i.e., misconfigurations) in security policies could result in tragic consequences,

such as disallowing an authorized user to access her/his resources and allowing malicious

users to access critical resources. Therefore, to improve the quality of security policies in

terms of policy correctness, policy authors must conduct rigorous testing and verification

during testing and maintenance phases of software development process. However, manual

test-input generation and verification is an error-prone, time-consuming, and tedious task.

In this dissertation, we propose approaches that help improve the quality of security

policies automatically. Our research goal is to help policy authors through automated

pattern mining and testing techniques in the efficient detection and removal of faults. This

dissertation is comprised of three research projects where each project focuses on a specific

software engineering task. The three research projects are as follows:

Pattern Mining. We present an approach to mine patterns from security policies used in

open source software products. Our approach applies data mining techniques on policy

evolution and specification data of those security policies to identify common patterns, which

represent usage of security policies. Our approach uses mined patterns as policy specification

rules and detect faults in security policies under analysis as deviations from the mined

patterns..

Automated Test Generation. We present a systematic structural testing approach for

security policies. Our approach is based on the concept of policy coverage, which helps test a

policy’s structural entities (i.e., rules, predicates, and clauses) to check whether each entity is

specified correctly. Our approach analyzes security policies under test and generates test

cases automatically to achieve high structural coverage. These test cases can achieve high

fault-detection capability (i.e., detecting faults).

Automated Test Selection for Regression Testing. We present a safe-test-selection

approach for regression testing of security policies. Among given initial test cases in access

control systems under test, our approach selects and executes only test cases that could

expose different policy behaviors across multiple versions of security policies. Our approach

helps detect unexpected policy behaviors (i.e., regression faults) caused by policy changes

efficiently.

These three research project have resulted in the following contributions:

• Patterns characterizing correlations of attributes in security policies help detect faults.

• Structural coverage for security policies is closely related to fault-detection

capability. An original set of test cases with higher structural coverage often achieves

higher fault-detection capability. Furthermore, its reduced set of test cases while

maintaining the same structural coverage achieves similar fault-detection capability

with the original set.

• Substantial number of test cases for regression testing can be reduced to help improve

performance.

	

© Copyright 2014 JeeHyun Hwang

All Rights Reserved

Improving the Quality of Security Policies

by
JeeHyun Hwang

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2014

APPROVED BY:

_______________________________ ______________________________
Dr. Laurie A. Williams Dr. Mladen A. Vouk
Committee Chair

________________________________ ________________________________
Dr. Gregory T. Byrd Dr. Xuxian Jiang

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3584006

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3584006

ii

DEDICATION

To my wife, Da Young.

iii

BIOGRAPHY

JeeHyun Hwang was born in Seoul, Korea. He completed his Master of Science degree in

2005 at Stony Brook University and his Bachelor of Science degree at Korea University,

Seoul, Korea, in 2003, all in Computer Science. After Stony Brook, He attended North

Carolina State University for his Doctoral work. His primary research interests are in the area

of Software Engineering and Security with use of ideas from data analytics, testing, mining,

and formal methods. His research goals are to develop techniques and tools that can help in

improving software security and reliability efficiently. His industry internship experiences

include Samsung Data Systems (Summer 2002), ABB (Summer 2007/2008), Fermi National

Accelerator Laboratory (Summer 2009), and Cisco (Summer 2010). He is a member of

NCSU’s Realsearch group, led by Dr. Laurie Williams. He is also a student member of IEEE.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Laurie Williams, for her guidance, encouragement

and financial support. Her outstanding professional advice helped me improve my research

skills, technical writing, and effective presentations. I thank Dr. Mladen Vouk for his help

and inspirational, valuable feedback on my research. I thank Dr. Gregory Byrd for finding

errors and grammatical mistakes in my dissertation draft. I thank Dr. Xuxian Jiang for

serving on my dissertation committee. I thank Dr. Tao Xie for his valuable advice and

financial support over years.

I would like to thank my wife, Da Young, for supporting me with a big smile and prayers.

I would additionally like to thank my collaborators Dr. Alex Liu (Michigan State Univ.),

Dr. Fei Chen (Michigan State Univ.), Dr. Vincent Hu (NIST), Dr. Mine Altunay (Fermilab),

Donia Elkateb (Univ. of Luxembourg), and Dr. Tejeddine Mouelhi (Univ. of Luxembourg)

for their help in publishing our research papers.

My deepest thanks goes to Chris, Eric, Jason, John, Maria, Pat, Patrick, and Rahul in the

Realsearch group for their valuable comments and discussion on both research and life.

Special thanks goes to Madhuri, Suresh, Kunal, Xusheng, Yoonki, Evan and Chris for

sharing during my PhD journey.

v

I am thoroughly thankful for my family. My family Junghee Choi (mother), Hwa-Sook

Hwang (father), Danam Hong (mother-in-law), Youngho Lee (father-in-law), Hyemin

Hwang (sister), Yonho Son (brother-in-law), Injae Hwang (brother), Jiyeon Yoo (sister-in-

law), Seeun Lee (sister-in-law), and Samuel Ahn (brother-in-law) were my constant source of

prayers and encouragement throughout my PhD journey. Without their prayers and support, I

would not have completed this dissertation.

I would like to thank God for giving me wisdom and guidance. Some trust in chariots and

some in horses, but we trust in the name of the Lord our God (Psalm 20:7).

vi

TABLE OF CONTENTS

LIST OF TABLES .. x	

LIST OF FIGURES .. xi	

GLOSSARY .. xiii	

1	
 INTRODUCTION ... 1	

1.1	
 CONTRIBUTIONS ... 5	

1.2	
 SCOPE ... 7	

1.3	
 DISSERTATION ORGANIZATION .. 8	

2	
 BACKGROUND ... 9	

	
 ACCESS CONTROL POLICY .. 9	
 2.1

2.1.1	
 Concept .. 9	

2.1.2	
 Access Control Policy Models .. 9	

2.1.3	
 Access Control Processing .. 10	

2.1.4	
 Example ... 12	

	
 FIREWALL POLICY .. 14	
 2.2

2.2.1	
 Concept .. 14	

2.2.2	
 Firewall Policy Model ... 15	

2.2.3	
 Example ... 16	

3	
 RELATED WORK .. 19	

	
 MINING PATTERNS ... 19	
 3.1

	
 ACP EVOLUTION AND SOFTWARE EVOLUTION .. 19	
 3.2

vii

	
 TESTING OF SECURITY POLICIES ... 21	
 3.3

	
 REGRESSIONS TEST GENERATION ... 23	
 3.4

4	
 MINING PATTERNS VIA ASSOCIATION RULE MINING 25	

	
 INTRODUCTION ... 25	
 4.1

	
 EXAMPLE .. 26	
 4.2

	
 FAULT DETECTION WITH ASSOCIATION PATTERNS .. 28	
 4.3

	
 EVALUATION .. 33	
 4.4

4.4.1	
 Research Questions and Metrics ... 33	

4.4.2	
 Evaluation Setup .. 35	

4.4.3	
 Evaluation Subjects ... 37	

4.4.4	
 Results ... 38	

	
 CHAPTER SUMMARY ... 41	
 4.5

5	
 MINING PATTERNS THROUGH ANALYSIS OF HISTORICAL DATA 43	

	
 INTRODUCTION ... 43	
 5.1

	
 EXAMPLE .. 46	
 5.2

	
 RESEARCH METHODOLOGY .. 47	
 5.3

5.3.1	
 Data Collection .. 48	

5.3.2	
 Metrics and Approach ... 51	

	
 RESULTS ... 56	
 5.4

5.4.1	
 Threats to Validity and Limitations ... 68	

	
 CHAPTER SUMMARY ... 69	
 5.5

viii

6	
 SYSTEMATIC STRUCTURAL TESTING ... 70	

	
 INTRODUCTION ... 70	
 6.1

	
 EXAMPLE .. 72	
 6.2

6.2.1	
 Definition ... 73	

6.2.2	
 Structural Coverage ... 76	

6.2.3	
 Structural Coverage and Fault Detection .. 78	

	
 APPROACH .. 78	
 6.3

6.3.1	
 Test Packet Generation .. 79	

6.3.2	
 Test Reduction ... 86	

6.3.3	
 Measuring Fault-Detection Capability .. 87	

6.3.4	
 Implementation .. 88	

	
 EVALUATION .. 90	
 6.4

6.4.1	
 Instrumentation .. 92	

6.4.2	
 Comparison of Structural Coverage .. 92	

6.4.3	
 Comparison of Fault-Detection Capability ... 96	

	
 LIMITATION .. 100	
 6.5

	
 CHAPTER SUMMARY ... 101	
 6.6

7	
 AUTOMATED REGRESSION TEST SELECTION FOR REGRESSION TESTING

FOR SECURITY POLICY EVOLUTION ... 102	

	
 INTRODUCTION ... 102	
 7.1

	
 EXAMPLE .. 104	
 7.2

	
 REGRESSION TEST SELECTION APPROACH ... 104	
 7.3

ix

7.3.1	
 Test Selection based on Mutation Analysis ... 105	

7.3.2	
 Test Selection based on Coverage Analysis .. 106	

7.3.3	
 Test Selection based on Recorded Request Evaluation 107	

7.3.4	
 Safe Test-Selection Techniques .. 108	

	
 EVALUATION .. 108	
 7.4

	
 CHAPTER SUMMARY ... 113	
 7.5

8	
 CONCLUSIONS AND FUTURE WORK .. 114	

	
 CONCLUSIONS .. 114	
 8.1

	
 FUTURE WORK ... 115	
 8.2

REFERENCES .. 118	

x

LIST OF TABLES

Table 2.1. Summary of ACP Models .. 11	

Table 4.1. Policy Behavior with regards to ExternalGrade. ... 29	

Table 4.2. Policy Behavior with regards to InternalGrade. .. 29	

Table 4.3. Subjects used in our evaluation .. 37	

Table 4.4. Fault-detection capability results of Change-Rule Decision (CRD) mutants 39	

Table 5.1. Systems used in our study .. 49	

Table 5.2. Result classification .. 55	

Table 5.3. ACP evolution trends. .. 58	

Table 5.4. System evolution trends ... 58	

Table 5.5. ACP evolution patterns in our subject ACPs. .. 61	

Table 5.6. Permissions in SELinux ACP ... 62	

Table 5.7. Permissions in VCL ACP ... 64	

Table 5.8. Permissions use in Snort ACP .. 65	

Table 6.1. Summary of notations .. 74	

Table 6.2. Mutation operators for policy mutation testing .. 89	

Table 6.3. Experimental results on firewall policies. .. 93	

Table 7.1. The number of selected test cases on average for each policy group. 111	

Table 7.2. Elapsed time (millisecond) for each test-selection technique. 113	

xi

LIST OF FIGURES

Figure 2.1. An Example XACML Policy .. 13	

Figure 2.2. An example firewall policy. .. 17	

Figure 4.1. An example policy .. 28	

Figure 4.2. Fault-detection ratios of faulty policies for each policy, each fault type, and each

technique/approach .. 40	

Figure 5.1. The number of policy lines (Bottom) and system LOC (Top) for SELinux (Left),

VCL (Middle), and Snort (Right) .. 58	

Figure 5.2. SELiux ACP evolution prediction precision, recall, and F-measure by choosing

the most likely first 1, first 2, …, first 9 states based on ranking by SELinux ACP 67	

Figure 5.3. Snort ACP evolution prediction precision, recall, and F-measure by choosing the

most likely first 1, first 2, …, first 9 states based on ranking ... 67	

Figure 6.1. Example firewall rules. ... 76	

Figure 6.2. Sample packets for all combinations of true and false values of predicates 𝑝1 and

𝑝2. ... 77	

Figure 6.3. Sample packets for all combinations of true and false values of clauses 𝑐1 and 𝑐2.

 ... 77	

Figure 6.4. Framework overview. ... 80	

Figure 6.5. Rule coverage achieved by each packet set. ... 95	

Figure 6.6. Predicate coverage achieved by each packet set. .. 97	

Figure 6.7. Clause coverage achieved by each packet set. .. 97	

Figure 6.8. Mutant-killing ratios for all operators by subjects. ... 99	

xii

Figure 6.9. Mutant-killing ratios for all subjects by operators. ... 100	

Figure 7.1. An example policy specified in XACML. .. 105	

Figure 7.2. An example mutant policy by changing the first rule’s decision (i.e., effect). ... 107	

Figure 7.3. LMS1 (LMS2), VMS1 (VMS2), and ASMS1 (ASMS2) show test-reduction

percentages for our subjects with modified policies, respectively, using TSM and TSC

(TSR). Y-axis denotes the percentage of test reduction. X-axis denotes the number of

policy changes on our subjects. ... 112	

xiii

GLOSSARY

• access control. access control ensures that resources are only granted to those users who

are entitled to them.

• Access Control Policy (ACP). An ACP consists of a set of rules, each of which describes

permission of accesses to resources by specified users or processes.

• Clause Coverage Criterion (CCC). CCC assures that a Boolean expression in each clause

(e.g., Source IP address field) in a firewall policy to be evaluated to true and false at least

once with packets. Because all decisions of the clauses are binary, McCabe cyclomatic

complexity is v(G) = c +1 where c is the number of the clauses. Therefore, the cyclomatic

complexity of satisfying CCC is c +1.

• firewall policy. A firewall consists of a set of rules that examine and filter packets

passing in a network.

• McCabe cyclomatic complexity. McCabe's cyclomatic complexity is a quality metric that

measures the number of linearly independent paths through the program. Cyclomatic

complexity (i.e., McCabe number) is defined as v(G) = e – n + 2 where e and n are the

number of edges and nodes in the control flow graph of the program. v refers to

cyclomatic number and G indicates control flow graph. For simplified complexity

calculation, if all decisions of predicates are binary, McCabe cyclomatic complexity is

v(G) = p + 1 where p is the number of binary predicates.

• mutant. A mutant is a faulty policy that has been purposely altered from an original

policy.

• mutation operator. A set of instructions for making a simple change to an original policy.

xiv

• mutation testing. A testing methodology in which two or more mutants are evaluated

using the same test cases to evaluate the ability of the test cases to detect differences in

the mutants.

• Predicate Coverage Criterion (PCC). PCC assures that a Boolean expression in each

predicate of the rules in a firewall policy to be evaluated to true and false at least once

with packets. Because all decisions of the predicates are binary, McCabe cyclomatic

complexity is v(G) = p +1 where p is the number of the predicates. Therefore, the

cyclomatic complexity of satisfying PCC is p +1.

• Rule Coverage Criterion (RCC). RCC assures that a Boolean expression in each predicate

of the rules in a firewall policy to be evaluated to true at least once with packets. Because

all decisions of the predicates of the rules are binary, McCabe cyclomatic complexity is

v(G) = p +1 where p is the number of the predicates. The cyclomatic complexity of

satisfying RCC is p because we remove a case where all predicates are evaluated to be

false from V(G) based on the definition of RCC.

• Security Enhanced Linux (SELinux). SELinux provides the mechanism for supporting

access control security policies in Linux.

• Security Policy. A security policy is a set of restrictions and properties that specify how a

system prevents information and computing resources from being used in violation of an

organization’s security laws, rules, and practices.

• Virtual Computing Lab (VCL). VCL provides cloud services such as reservations,

management, or access (called checkout) to virtual machine images.

xv

• OASIS eXtensible Access Control Markup Language (XACML). XACML is an XML-

based policy specification language.

 1

1 Introduction

Systems such as web applications, database systems, and cloud services regulate users’

access to sensitive resources based on security policies (such as firewall policies and access

control policies). Organizations often manage security policies in an ad-hoc and inconsistent

manner due to a lack of budget, resources, and staff [5, 70]. As security policies are crucial

elements in securing resources in organizations, ad-hoc and inconsistent management can

create security problems (e.g., misconfigurations) such as unauthorized access to sensitive

resources.

Wool [59] examined 37 network security policies (i.e., firewall policies) in production

enterprise network in 2004. The security policies had between 5 and 2,671 rules. Wool

reported that all of the security policies included at least one configuration error, which could

allow unauthorized access.

NIST [67] defines security policy as “a set of restrictions and properties that specify how a

computing system prevents information and computing resources from being used in

violation of an organizational security laws, rules, and practices.”

In computer systems, security policies specify “who” (e.g., users or processes) can

perform actions under “what” conditions according to which access control must be

regulated. A misconfiguration (i.e., fault) of security policies could cause severe damages to

an organization, including financial and reputational losses [3].

 2

Correctly specifying security policies is a critical and yet challenging task for building

reliable security policies with three factors. First, the rules in a security policy are could be

complex because of organization regulations and structure. Second, a security policy may

consist of a large number of rules. For example, Wool [59] examined firewall policies with

up to 2,671 rules in production enterprise network. Third, a security policy often consists of

rules that are written by multiple policy authors, at different times, and for different reasons,

which make maintaining security policies even more difficult [5]. Bauer et al. [5] interviewed

13 professional policy authors of large organizations. They reported that policy authors are

concerned about potential mistakes due to security-policy management by multiple policy

authors. Consider that a policy author may change security policies without notifications to a

peer policy author. The peer policy authors may make mistakes in future due to a lack of

information about this security policy change.

To help facilitating manage security policies correctly, policy authors may follow

common patterns in specifying and maintaining security policies. However, these patterns

may not be documented. For example, researchers applied data mining techniques [56] for

deriving patterns such as a group of users (i.e., roles in RBAC policies) who have the same

access permissions. Policy authors reuse common patterns and reduce mistakes. Anomalies

of those patterns are candidates for inspection to determine whether these anomalies expose

faults.

 3

In addition, to improve the quality of security policies in terms of correctness, policy

authors must conduct rigorous testing and verification during testing and maintenance phases

of software development process. However, manual test-input generation and verification is

an error-prone, time-consuming, and tedious task.

Our research goal is to help policy authors through automated pattern mining and testing

techniques in the efficient detection and removal of faults.

To improve the quality of security policies in terms of correctness, researchers and

practitioners have developed various policy analysis and testing tools. The main function of

these policy analysis tools is to detect “bad smell” (i.e., “anomalies”) in security policies

based on some common patterns of configuration mistakes [4, 39]. The main drawback of

these tools is that the “anomalies” may be false-positives and the number of “anomalies”

could be too large to be practically useful. Several security policy testing techniques have

been proposed [22, 37]. However, these security policy-testing techniques are not based on

well-established testing techniques in software engineering. For example, these techniques do

not consider coverage criteria [61] for security policy testing.

We focus on mining patterns and detecting faults effectively and efficiently in security

policies under analysis. This dissertation is comprised of three research projects.

 4

• Pattern Mining. We mined patterns [28] from security policies of open source software

products.

o In the first study, we applied association rule mining to mine patterns, called

patterns characterizing correlations of policy behaviors with regards to attribute

values. For example, in the security policy, called codeD [20], for a grading

system, based on similar policy behaviors of a lecturer and a faculty member, our

approach mines a property: if a lecturer is permitted to conduct actions (e.g.,

assign/modify) on grades, a faculty member is likely to be permitted to conduct

the same actions on grades. Our approach gives alerts if the faculty member is

permitted to conduct different actions (e.g., denied to modify) on grades.

o In the second study, we mined patterns, called evolution patterns, which

characterize common patterns of security policy evolution. We first empirically

observe evolution trends of security policies by measuring growth (i.e., lines of

code related to security policies) trends. We extract evolution patterns

characterizing changes of permissions (i.e., rights to perform certain actions). A

evolution pattern st1 → st2 presents that st1 (e.g., “read”) evolves into st2 (e.g.,

“read” and “write”) indicating that policy authors add “write” permission in

addition to existing “read” permission. Our approach helps specify security

policies effectively and efficiently by recommending how to change policies

based on evolution patterns.

• Automated Test Generation. We developed a systematic structural testing approach

[26, 27]. Our approach is based on the concept of policy coverage, which helps test a

 5

policy’s structural entities (i.e., rules, predicates, and clauses) to check whether each

entity is specified correctly. As manual test-packet generation is tedious, our approach is

an automated test generation tool (that can generate test cases such as packets) for

achieving high structural coverage. The reason for achieving high structural coverage is

that a set of test cases with higher structural coverage (including rule, predicate, and

clause coverage) investigates a large portion of policy entities for fault detection.

• Regression Test Selection. We developed a safe-test-selection approach [29] for

regression testing of security policies. Our approach helps improve the quality of security

policies by detecting unexpected policy behaviors (i.e., regression faults) caused by

policy changes efficiently. With the change of security requirements, developers may

modify security policies to comply with the requirements. After the modification, policy

authors validate and verify the given system to determine that this modification is correct

and do not introduce unexpected behaviors (i.e., regression faults). Among given initial

test cases in access control systems under test, our approach selects and executes only test

cases that could expose different policy behaviors across multiple versions of security

policies.

1.1 Contributions

In summary, this dissertation makes the following contributions:

• Approach of Pattern Mining.

 6

o We develop two approaches that mine patterns. The first one is to mine usage

patterns via association mining approach. The second one is to mine evolution

patterns by analyzing changes across multiple versions of security policies.

o We conduct mutation testing [41]. Mutation testing creates faulty versions of

policies by making small syntactic and semantic changes. We first identify

patterns of the faulty versions, and determine whether the anomalies of patterns

expose faults (i.e., fault-detection) of the faulty versions. Our evaluation results

show that these anomalies help detect faults.

• Approach of Automated Test Generation.

o We develop a systematic structural testing approach based on the concept of

policy coverage.

o Our approach generates a set of test cases automatically based on well-established

testing techniques in software engineering, such as an existing constraint solver.

o We conduct mutation testing to measure fault-detection capability (i.e., detecting

more injected faults). Our evaluation results show that a packet set with higher

structural coverage has higher fault-detection capability

• Approach of Regression Test Selection.

o We develop a test selection approach to select only test cases (from existing test

cases) that reveal different policy behaviors due to policy changes.

o Our approach uses three techniques; the first one is based on mutation analysis,

the second one is based on coverage analysis, and the third one is based on

evaluated decisions of requests issued from test cases.

 7

o Our evaluation results show that our test selection techniques achieve up to

51%~97% of test reduction for a modified version with given synthesized 5~25

policy changes for three Java programs.

• Empirical Study of Policy Evolution.

o We conduct an empirical study of policy evolution for security policies (such as

access control policies) of three open-source systems. We empirically observed

that (1) the number of lines in policies continue to increase over time and (2)

some of the evolution patterns appear to occur more frequently.

1.2 Scope

We aim to improve the quality of security policies such as access control policies and

firewall policies. Both access control policies and firewall policies govern access controls.

An access control policy selectively permits or denies certain users or processes to critical

resources. Policy authors may use access control policies for various purposes such as

authorization of users based on roles and filtering traffic on network interfaces. A firewall

policy has only one purpose: it is used to examine traffic passing in a network and it makes

decisions about whether these packets are allowed to pass.

In this dissertation, we evaluate our pattern mining and regression test selection

approaches on access control policies. We evaluate our automated test generation on firewall

policies.

 8

• Our pattern mining approach mine patterns based on the observations that policy authors

follow patterns in specifying and maintaining access control policies. However, firewall

policies include many exception rules (such as whitelists and blacklists). Due to these

exception rules, our approach could not be effective for detecting patterns for firewall

policies.

• Our automated test generation approach generates test cases covering structure entities

(such as rules) of firewall policies. This approach could generate test cases for an access

control policy as well because an access control policy consists of a set of rules.

• Our regression test selection approach selects test cases by observing interactions

between test cases and access control policies. Given firewall policies and test cases, this

approach could select test cases that are impacted by firewall policy changes.	
 	

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 provides background with

respect to security policies such as access control policies and firewall policies. Chapter 3

presents related work. Chapter 4 presents our study to mine patterns via association rule

mining. Chapter 5 presents our study to mine evolution patterns from security policies.

Chapter 6 presents our systematic structural testing approach. Chapter 7 presents our test

selection approach for regression testing of security policies. Chapter 8 summarizes our

conclusions and future work.

 9

2 Background

In this chapter, we discuss details of access control policies (ACPs) and firewall policies.

We show examples of access control policies and firewall policies. An ACP typically

governs access to critical resources in organizations. A firewall policy regulates access

controls in inter or intra-networks by monitoring and filtering packets.

 Access Control Policy 2.1

This sub-section provides background with regard to ACP concepts and terminology,

access control architecture, and ACP models.

2.1.1 Concept

An ACP is a policy specification that defines “who” (e.g., users or processes) can perform

actions under “what” conditions. An ACP typically consists of a set of rules, each of which

describes permission or denial of accesses to resources by specified users or processes.

2.1.2 Access Control Policy Models

We present three popular ACP models: Role-Based Access Control (RBAC) [19, 50],

Type Enforcement (TE) access control [52], and Network Access Control List (ACL) models

[30]. ACP models are formal representations to express ACPs and their operations. For

example, the RBAC model allows policy authors to express explicit ACPs based on role(s)

(e.g., user groups) of a user instead of individual users. The benefit of the RBAC model is the

reduction of the management costs by specifying ACPs based on roles instead of individual

 10

users. Specifying access control of each individual user is tedious due to the increasing

number of users.

Table 2.1 describes a summary of each ACP model. ACP models provide a means of fine-

grained access control over given subjects in a system. Different ACP models formalize

different entities and their relations to describe which subjects can take an action on objects.

Typically, subjects are users or processes that use the system. Objects are resources to be

protected from unauthorized access. Actions are the operations that subjects can perform

(e.g., write or read) on the objects.

2.1.3 Access Control Processing

To facilitate ACP management, security mechanisms are designed to abstract and

externalize ACPs to be a separate component. The benefit of this design is to reduce the

management costs because policy authors can modify ACPs without changing functionality

(e.g., business logic) in a system. The processing of access to critical resources in a system is

as follows.

At an abstract level, program code interacts with ACPs. Program code includes security

checks, called Policy Enforcement Points (PEPs), to check whether a given subject can have

access to protected information. The PEPs formulate and send an access request to a security

component, called Policy Decision Point (PDP) loaded with policies. The PDP evaluates the

 11

request against the policies and determines whether the request should be permitted or

denied. Finally, the PDP sends the decision back to the PEPs to proceed.

Policy authors can specify and maintain ACPs in one place (in the form of a piece of code,

configuration, dataset, or specification). Policy authors specify ACPs in various ways. One

Table 2.1. Summary of ACP Models

ACP
Models

Subjects Objects Description

RBAC
Model

Roles Resources (e.g., sensitive
information within an
organization)

RBAC model is used to specify
explicit access controls based on
the role(s) of a subject. In
organizations, a user typically
can be assigned to one or more
roles associated with
permissions.

TE Model System
processes

Files, sockets, directories,
etc.

TE model supports fine-grained
control over processes and
objects in operating systems. TE
model defines a type of every
process and object. TE model is
used to specify which processes
(grouped by subject types) can
take an action on which objects
(grouped by object types).

Network
ACL
model

Packet System resources Network ACL model controls
access through network traffic by
monitoring content in packet
payload to detect malicious
network traffic. The content
typically includes
source/destination IP addresses,
source/destination port numbers,
and protocol.

 12

common way is that policy authors specify ACPs using policy specification languages such

as eXtensible Access Control Markup Language (XACML) [68] and Policy Description

Language (PDL) [69]. Another common way is that policy authors use configuration files or

relational databases to store ACPs.

2.1.4 Example

We illustrate an example ACP specified in XACML. XACML has become the de facto

standard for specifying ACPs. Typically, XACML policies are specified separately from

actual functionality (i.e., business logic) in program code.

An XACML policy consists of a policy set, which further consists of policy sets and

policies. A policy consists of a sequence of rules, each of which specifies under what

conditions C subject S is allowed or denied to perform action A (e.g., read) on certain object

(i.e., resources) O in a given system.

More than one rule in an ACP may be applicable to a given request. A combining

algorithm is used to combine multiple decisions into a single decision. There are four

standard combining algorithms. The deny-overrides algorithm returns Deny if any rule

evaluation returns Deny or no rule is applicable. The permit-overrides algorithm returns

Permit if any rule evaluation returns Permit. Otherwise, the algorithm returns Deny.

 13

The first-applicable algorithm returns what the evaluation of the first applicable rule

returns. The only-one-applicable algorithm returns the decision of the only applicable rule if

1<Policy PolicyId="univ" RuleCombAlgId="first-applicable">
2 <Target>
3 <Subjects> <AnySubjects/> </Subjects>
4 <Resources> <AnyResource/> </Resources>
5 <Actions> <AnyAction/> </Actions>
6 </Target>
7 <Rule RuleId="1" Effect="Permit">
8 <Target>
9 <Subjects><Subject> Faculty </Subject></Subjects>
10 <Resources>
11 <Resource> ExternalGrades </Resource>
12 <Resource> InternalGrades </Resource>
13 </Resources>
14 <Actions><Action> View </Action>
15 <Action> Write </Action></Actions>
16 </Target></Rule>
17 <Rule RuleId="2" Effect="Permit">
18 <Target>
19 <Subjects><Subject> Student </Subject></Subjects>
20 <Resources>
21 <Resource> ExternalGrades </Resource>
22 </Resources>
23 <Actions><Action> View </Action></Actions>
24 </Target>
25 </Rule>
26 <Rule RuleId="3" Effect="Deny">
27 <Target>
28 <Subjects><Subject> Student </Subject></Subjects>
29 <Resources>
30 <Resource> ExternalGrades </Resource>
31 </Resources>
32 <Actions><Action> Write </Action></Actions>
33 </Target>
34 </Rule> Figure 2.1. An Example XACML Policy

 14

there is only one applicable rule, and returns error otherwise.

Figure 2.1 shows an example XACML policy adapted from a sample policy used by Fisler

et al. [20]. This example illustrates a policy that uses the first-applicable algorithm, which

determines to return the evaluated decision of the first applicable rule. In this example, there

are two subjects or roles (Faculty, Student), two resources (ExternalGrades, InternalGrades),

and two actions (View, Write).

There are four rules in the XACML policy. Lines 7-16 define the first (permit) rule, which

allows a faculty to view or write external or internal grades. Lines 17-25 define the second

(permit) rule, which allows a student to view external grades. Lines 26-34 define the third

(deny) rule, which denies a student to write external grades. Line 36 defines the last default

(deny) rule, which denies any request that does not match any of the three preceding rules.

 Firewall Policy 2.2

We next provide background of firewall policies. A firewall is typically placed at the point

of entry between a private network and the outside Internet such that firewalls are responsible

for filtering, monitoring, and securing packets [38].

2.2.1 Concept

A firewall policy is composed of a sequence of rules that specify under what conditions a

packet is accepted or discarded while passing between a private network and the outside

 15

Internet. In other words, the policy describes a sequence of rules to decide whether packets

are accepted (i.e., being legitimate) or discarded (i.e., being illegitimate). A rule is composed

of a set of fields (generally including source/destination IP addresses, source/destination port

numbers, and protocol type) and a decision. Each field represents the range of possible values

(to match the corresponding value of a packet), which are either a single value or a finite

interval of non-negative integers.

A packet matches a rule if and only if each value of the packet satisfies the corresponding

values in the rule. Upon finding a matching rule, the corresponding decision of that rule is

derived. When evaluating a packet, the firewall policy follows the first-match semantic: the

first matching rule is given the highest priority among all the matching rules.

2.2.2 Firewall Policy Model

This section illustrates a model of a firewall policy based on common generic features. A

firewall policy is composed of a sequence of rules, each of which has the form (called the

generic representation) as follows.

<predicate> → <decision>

A <predicate> in a rule is a boolean expression over fields on which a packet arrives. The

<decision> of a rule can be “accept” or “discard”; it is returned as the evaluation result when

 16

the <predicate> is evaluated to be true. The <predicate> is represented as a conjunction form

as follows.

F1 ∈ 𝑆1 ∧ ... ∧ Fn ∈ 𝑆𝑛

In a policy model, we represent a value in a field F𝑖 (e.g., IP address) as its corresponding

range 𝑆𝑖 (e.g., F𝑖 ∈ [2,5]) to simplify the representation format. We refer to each F𝑖 ∈ 𝑆𝑖 as a

<clause>, which can be evaluated to either true or false.

The first-match semantic (of a firewall policy) shows the same behavior with the

execution of a series of IF-THEN-ELSE statements in program code. Given a sequence of

rules, the following process is iterated until reaching the last rule: if a <predicate> in a rule is

evaluated true, then the corresponding decision is returned; otherwise, the next rule (if exists)

is evaluated.

2.2.3 Example

Figure 2.2 shows an example of a firewall policy. The symbol “*” denotes that the

corresponding field’s range (in a rule) is equal to the domain of the field and is satisfied by

any packet. An IP address is a 32 bit value, which is represented as a four-part dotted-

decimal address (e.g., 192.168.0.0). Classless Inter-domain Routing (CIDR) notation is used

to represent IP ranges over an IP address with a subnet mask (e.g., /16 or /24). For example,

the range of 192.168.0.0/24 implies IP addresses from 192.168.0.0 to 192.168.0.255. This

 17

range consists of all possible IP addresses starting with the same left-most 24 bits (i.e.,

192.168.0) on the given IP address. Each of the remaining 8 bits (which do not have fixed

values) is either 0 or 1.

The example has three firewall rules r1, r2, and r3. Rule r1 accepts any packet whose

destination IP address is the network 192.168.0.0/16 (which indicates the range [192.168.0.0,

192.168.255.255]). Rule r2 discards any packet whose source IP address is the network

1.2.3.0/24 (which indicates the range [1.2.3.0, 1.2.3.255]) and port is the range [1, 28 − 1]

with the TCP protocol type. Rule r3 is a tautology rule to discard all packets. Consider a

packet whose destination IP address is 192.168.0.0 and protocol type is UDP. When

evaluating the packet, we find that the packet can match both r1 and r3. Between the two

rules, as r1 is the first-matching rule, the packet is evaluated to be accepted (with regards to

the decision of r1). If a packet matches no rules in a firewall policy, there exists the last

tautology rule to discard the packet.

Both ACPs and firewall policies govern access. ACPs selectively permit or deny certain

users or processes to critical resources. Policy authors may use ACPs for various purposes

such as authorization of users based on roles and filtering traffic on network interfaces. ACPs

Figure 2.2. An example firewall policy.

 18

are typically stateless. However, a firewall has only one purpose: a firewall is a device which

examines traffic passing in a network and makes decisions whether these packets are allowed

to pass or not.

 19

3 Related Work

Our work builds on prior work in four areas: pattern mining, software evolution, policy

testing, and regression test generation. In this chapter, we provide relate work in these area.

 Mining Patterns 3.1

Martin et al. [40, 42] developed an approach for measuring the quality of policy properties

in policy verification. Given user-specified properties, they developed an approach that

measures the quality of the properties based on fault-detection capability. In addition, they

developed an approach to use machine-learning algorithms (e.g., a classification algorithm)

to mine policy properties automatically. Given request-decision pairs, this previous approach

mines request-classification rules based on a statistical policy-behavior model. Therefore,

faults are likely to be detected when the policy violates this model. Bauer et al.’s approach

[6] proposed an approach to mine association rules, which are used to detect

misconfiguration in a policy. Their approach considers only object attributes for mining

patterns from historical access data.

 ACP Evolution and Software Evolution 3.2

The closest research relating to our work is an empirical study on permission

evolution/usage in the Android platform conducted by Wei et al. [57]. They used multiple

Android platform releases and application versions. They reported that a list of permissions

and usage for Android platforms and applications is growing over time. With the increasing

 20

number of permissions, the number of dangerous permissions (e.g., personal data-related

resource access privileges) increases over time. Our evolution study differs in the following

ways. First, our empirical study relied on ACPs specified by policy authors for various

systems such as operating and database systems. The collected ACPs are specified based on

popular ACP models such as RBAC and TE policy models, which allow policy authors to

add/delete subjects. However, Wei et al. studied permissions specific for Android

application, such as permission on GPS location access of users. Android application

developers are allowed to choose necessary permissions within the set of pre-defined

permissions. They cannot add/delete subjects. Additionally, Wei et al. studied permission

evolution based on concerns and behaviors related to the least privilege property and

dangerous/secure permissions. Our study focuses on understanding why and how ACPs

evolve in general over time.

Chia et al. [11] conducted a characterization study on user-consent permission systems in

Facebook, Chrome, and Android applications. These permissions are given to applications

based on user consent for granting explicit permissions upon the request of applications.

They found that community and user ratings on applications’ privacy were not reliable for

determining privacy risks of the applications. They reported that free applications request

more permissions than those necessary for the application. Their study focuses on permission

characterization and effectiveness of single-release applications. In contrast, our evolution

study focuses on evolution of ACP by analyzing multiple versions of ACPs.

 21

Another research direction is the formalism of ACP evolution. Koch et al. [32] have

proposed a model to formalize ACP and its evolution using graph transformations. Their

formalism helps describe ACP evolution precisely. Pretschner et al. [46] have proposed the

approach of an evolution model with regards to ACP usage control. However, their work

focuses on a theoretical ACP evolution model without any empirical observations on ACPs

in practice. Different from their study, our evolution study focuses how ACPs evolve in

practice. Moreover, we propose a model to help predict how ACPs evolve.

Software evolution is a very active research area in software engineering. Kemerer et al.

[31] conducted an empirical study to understand characteristics of software evolution and

developed taxonomy of software maintenance. They studied the historical growth and

changes of 23 software applications over 20 years. They categorize maintenance causes of

software evolution. Buckley et al. [9] proposed taxonomies of software evolution based on

characterizing the mechanisms of change. This taxonomy helps identify and evaluate tools,

methods and formalisms for a given software change. They conducted an empirical approach

to understand various aspects such as driving factors, impact, taxonomy and processes in

software evolution. In this dissertation, different from general software evolution, we focus

on the evolution of ACPs.

 Testing of Security Policies 3.3

A firewall policy is translated to program code (i.e., IF-THEN-ELSE statements) that

includes a large number of conjunctive logical expressions to illustrate rules. Ammann et al

 22

[2] proposed coverage criteria for such logical expressions. For example, they proposed

predicate and clause coverage criteria in notions of logical expressions. Although they

proposed such criteria, they did not generate test suites for real program code to show the

effectiveness of their coverage criteria. We propose logical coverage criteria that are suitable

for a firewall policy. We also develop test packet generation and mutation testing techniques

to show the effectiveness in terms of fault-detection capability. Our work targets test

generation and mutation testing especially for a large number of logical expressions (in a

firewall policy).

Black et al. [7] and Wimmel et al. [58] proposed mutation testing for specifications.

However, their mutation operators change operators (e.g., replacing an expression by its

negation) and pre/post conditions of specifications. In our automated test-generation

approach, instead of changing operators and pre/post conditions, we mutate clauses and a

rule’s decision, where policy authors could make mistakes in specifying rules (e.g.,

specifying incorrect values). For testing access control policies such as XACML policies

[68], Martin et al. [43] proposed to mutate policies [41], and generate random requests

automatically. Their proposed structural coverage criteria and mutation operators are not

directly applicable to firewall policies due to the semantic and syntactic differences between

access control policies and firewall policies. While firewall policies consist of a set of ranges

(intervals) in rules, access control policies consist of structural elements such as policies,

rules, subjects, objects, and actions. They do not use a well-established test generation

technique to cover certain entities.

 23

Some researchers proposed firewall testing with test cases generated based on their

proposed criteria. Jürjens et al. [30] proposed specification based testing, which generated

test sequences to cover a state transition model of a firewall and its surrounding network. El-

Atawy et al. [17] proposed policy criteria identified by interactions between rules, called

“policy segmentation” identified by interactions between rules. Different from their

approaches, we use structural coverage criteria in each rule to help detect which entities are

specified incorrectly. In addition, we also use mutation testing to evaluate our automated test-

generation.

Several firewall policy testing techniques [22, 37] inject packets into a firewall and check

whether the decisions of the firewall concerning the injected packets are correct. However,

these techniques lack rigorousness in terms of the use of coverage criteria and effective

mechanisms for generating covering packets. Furthermore, these testing techniques are

inefficient when a tester needs to inject a large number of packets and examine their

decisions. In contrast, our automated test-generation approach is based on solid foundations

and advanced test-packet generation techniques.

 Regressions Test Generation 3.4

Various techniques have been proposed on regression testing of software programs [16,

21, 48]. These techniques aim to select test cases that could reveal different behaviors after

modification in programs. These techniques are related to regression-test selection [21, 48],

and test-suite prioritization [16]. Note that these techniques focus on changes at code level.

 24

None of these techniques consider potential changes that can arise from code-related

components (such as security policies specified separately). Polices and general programs are

fundamentally different in terms of structures, semantics, and functionalities, etc. Therefore,

techniques for regression testing of programs are not suitable for addressing the test-selection

problem for policy evolution. Our regression-test-selection approach is the automatic test-

selection approach for policy evolution.

 Fisler et al.’s approach [20] developed a tool called Margrave that enabled conducting

change-impact analysis between two XACML policies. We could use Margrave to identify

semantic policy changes between two policies. However, Margrave supported only limited

functionality of XACML. Moreover, Margrave did not support test selection as our work

does.

 25

4 Mining Patterns via Association Rule Mining

 Introduction 4.1

Systems adopt access control mechanisms to offer access control to sensitive resources

based on ACPs. An ACP consists of a set of rules, each of which describes permission of

accesses to resources by specified users or processes. Identifying discrepancies between

ACPs and their expected functions is crucial because these discrepancies may result in

unexpected access controls such as allowing malicious users to access sensitive resources. To

increase our confidence on the correctness of ACPs, ACPs must undergo rigorous

verification and testing.

To help improve the quality of ACPs in terms of correctness, we develop an approach to

mine patterns (in ACPs) that policy authors often follow implicitly. The reason for

identifying these patterns is based on observations that the policy authors often follow these

patterns in specifying and maintaining ACPs. Anomalies of those patterns should be

inspected to determine whether these anomalies expose faults.

More specifically, we apply association-rule-mining [8] to mine patterns from subject,

object, and action attribute values used in ACPs. Association rule mining searches patterns,

which are in the form (A, D) ⇒ (B, D) where A and B are sets of attribute values and D is

either a “Permit” or “Deny” decision. The form represents that (A, D) implies (B, D) where

(A, D) is <premise> and (B, D) is <conclusion>. In other words, if <premise> holds true,

 26

<conclusion> is likely to hold true. Consider that o1, o2, o3, and o4 are object attribute values

(e.g., file name) in an ACP. An example is (o1, “Permit”) ⇒ (o2, “Permit”), which

represents that a user with access to o1 is likely to have access to o2. Another example (o3,

“Permit”) ⇒ (o4, “Deny”) represents that a user with access to o3 is not likely to have access

to o4. From all possible patterns, we collect patterns with a pre-defined probability value or

above.

We define policy behaviors as a set of all possible access requests and their corresponding

access decisions (e.g., Permit or Deny). Our approach mines such patterns that may not be

true for all the policy behaviors, but are true for most of the policy behaviors. Therefore,

patterns may lead to a small number of anomalies. As these anomalies are deviations from

the policy’s normal behavior, these anomalies should be inspected to determine whether

these anomalies expose faults.

 Example 4.2

Figure 4.1 illustrates an example policy [20] for a grading system in a university as if-else

statements in code. This example is the RBAC policy used by Fisher et al. [20]. We next

explain this example policy. The policy includes six rules. Lines 1-3 include rules that allow

a faculty member to assign or modify ExternalGrade or InternalGrade. Lines 4-6 include

rules that allow a Teaching Assistant (TA) to assign or receive InternalGrade. Lines 7-9

include rules that allow a student to receive ExternalGrade. Lines 10-12 include rules that

allow a family member to receive ExternalGrade. Lines 13-15 include rules that allow a

 27

lecturer to assign or modify ExternalGrade or InternalGrade. Line 16 is a tautology rule to

deny requests that are not applicable in the preceding rules.

We next describe an example pattern related to the two action attribute values of

“Modify” and “Receive”. Table 4.1 and Table 4.2 describe access decisions (i.e., “P” as

Permit or “D” as Deny) associated with object attribute values, ExternalGrade and

InternalGrade, respectively. In these tables, column 1 shows all possible subject (role)

attribute values. Columns 2-3 describe corresponding access decisions of a subject attribute

value associated with the action attribute value “Modify”, or “Receive”, respectively. For

example, in the second row of Table 4.1, given a role attribute value (Faculty) and an object

value (ExternalGrade), the table describes access decisions associated with action attribute

values “View” and “Receive”. The corresponding decisions are “P” and “D.”

We consider an example pattern1 as follows.

• Pattern1: If a subject (e.g., Student) is Permitted to Receive a grade (e.g.,

ExternalGrade or InternalGrade), the subject is Denied to Modify the grade.

In Table 4.1 and Table 4.2, column 4 describes whether Pattern1 is satisfied for given

attribute values. We found that three cases satisfy the <premise> of Pattern1. The three cases

are combinations of subject and object attribute values: (1) a student with ExternalGrade and

(2) a family member with ExternalGrade, and (3) a TA with InternalGrade). All of these

 28

cases satisfy the <conclusion> as well. Conditional probability, which measures the

probability of satisfying <conclusion> given that <premise> is satisfied, is 100%.

 Fault Detection with Association Patterns 4.3

This section first presents definitions for attribute values and relations that our approach is

based on. This section next presents our approach for detecting faults in a policy with our

pattern mining techniques. Our approach includes three steps: (1) generate relation-table (2)

identify association patterns, and (3) prioritize anomalies.

• Generate Relation-table. The relation-table generation component takes a policy p as an

input and generates tables based on attribute values in the policy p. The association rule

1 If role = Faculty
2 and resource = (ExternalGrade or InternalGrade)
3 and action = (Modify or Assign) then Permit
4 If role = TA
5 and resource = (InternalGrade)
6 and action = (Assign or Receive) then Permit
7 If role = Student
8 and resource = (ExternalGrade)
9 and action = (Receive) then Permit
10 If role = Family
11 and resource = (ExternalGrade)
12 and action = (Receive) then Permit
13 If role = Lecturer
14 and resource = (ExternalGrade or InternalGrade))
15 and action = (Assign or Modify) then Permit
16 Deny

Figure 4.1. An example policy

 29

mining component takes attribute values (from the table produced by the previous

component) and mines patterns r.

• Identify Association Patterns. The pattern identification component takes p and r as

inputs and verifies p against r. The component produces verification reports based on

whether the given patterns p are satisfied; when a property is violated, anomalies are

generated accordingly.

• Prioritize Anomalies. The policy authors inspect anomalies to determine whether they

expose faults. To detect faults effectively, we propose a prioritization technique to

Table 4.1. Policy Behavior with regards to ExternalGrade.

 Modify Receive Pattern1

Faculty P D

TA D D

Student D P Yes

Family D P Yes

Lecturer P D

Table 4.2. Policy Behavior with regards to InternalGrade.

 Modify Receive Pattern1

Faculty P D

TA D P Yes

Student D D

Family D D

Lecturer P D

 30

recommend that the policy authors inspect anomalies by the order of their fault-detection

likelihood.

4.3.1.1 Generate Relation-Table

Our approach first analyzes a policy p and generates a policy behavior report showing all

possible request-response pairs in the policy p where a request is an access request and its

response is its evaluation (Permit or Deny). Our approach next analyzes the policy behavior

report, and then generates relation tables (including all request-response pairs) that can be

used as input for an association rule-mining tool. For example, to mine patterns, we generate

a relation table that organizes all possible policy behaviors. Based on this table, we generate

our proposed patterns used to mine relations of attribute values. For example, Table 4.1 and

Table 4.2. describe relation-table with regards to the two action attribute values of “Modify”

and “Receive”.

4.3.1.2 Identify Association Patterns

Let s ∈ S, o ∈ O, and a ∈ A, respectively, denote the set of all the subject attribute values

(e.g., user’s role or rank), objects (e.g., file) and actions (e.g., write or read) in an access

control system.

In this dissertation, we propose three types of patterns based on subjects, actions, and

subject-action attribute values, as presented next. Each of these relations focuses on mining

relations of specific attribute values.

 31

• Subject relations (S-pattern type). We denote this relation as {s1, d1} ⇒ {s2, d2}

where s1 and s2 are subjects (i.e., s1 ∈ S and s2 ∈ S). An example (s1, “Permit”) ⇒ (s2,

“Permit”) represents that s2 is likely to inherit all of the permissions from s1.

• Action relation (A-pattern type). We denote this relation as {a1, dec1} ⇒ {a2, dec2}

where a1 and a2 are actions (i.e., a1 ∈ A and a2 ∈ A). An example (a1, “Permit”) ⇒ (a2,

“Permit”) represents that given an object o, a user who is permitted to take an action

a1 on o is likely to be permitted to take an action a2 on o.

• Subject-Action relation (SA pattern type). We denote this relation as {s1, a3, d1} ⇒

{s2, a, dec2} where s1 and s2 are subjects, and a3 is an action (i.e., s1 ∈ S, s2 ∈ S, and a

∈ A). An example (s1, a3, “Permit”) ⇒ (s2, a3,“Permit”) represents that if s1 is

permitted to take a3, s2 is likely to be permitted to take a3. These subject-action

relations subsume subject and action relations.

In association rule mining, thresholds such as support and confidence are used to constrain

generating association relations. Let t denote the total number of transactions corresponds to

the number of rows in a relation table. For example, the sum of transactions in Table 4.1 and

Table 4.2 includes 10 transactions. Let d denote the number of transactions including an

attribute item X (that is attribute values and decision set). The support supp(X) of X is !
!
. We

measure confidence, which is the likelihood of a relation: confidence (X ⇒ Y) = !"##(!∪!)
!"##(!)

.

These relations are patterns if support values and confidence in the patterns are above pre-

defined thresholds.

 32

4.3.1.3 Prioritize Anomalies

Our approach next verifies the policy with the patterns to check whether the policy

includes a fault. Our rationale is that, as patterns are true for most of the policy behaviors,

anomalies (which do not satisfy the patterns) deviate from the policy’s normal behaviors and

should be inspected.

Basic and Prioritization Techniques. A basic technique is to inspect anomalies without

any inspection order among the anomalies. Since the number of generated anomalies can be

large, manual inspection of the anomalies can be tedious. To address the preceding issue, we

propose a prioritization technique that classifies anomalies into a ranked order based on their

fault-detection likelihood. The technique evaluates anomalies in each of the anomalies by the

order of their fault-detection likelihood until a fault is detected. The prioritization technique

maintains the same level of fault-detection capability of the basic technique when the policy

contains a single fault.

We next describe how we classify anomalies into a ranked order CSdu, CS1, ..., CSn, based

on their fault-detection likelihood. First, we give the highest priority to duplicate anomalies,

which are classified to CSdu. When multiple patterns triangulate on a single rule, this rule

may be more likely to contain a fault. Second, we investigate the number of anomalies

produced by patterns to rank an order among anomalies. As a pattern may lead to anomalies,

the policy authors are required to verify anomalies to ensure the correctness of a given

policy. Given a property that has w anomalies, we classify these anomalies to CSw (1≤ w ≤ m

 33

where m is the largest number of anomalies generated for a pattern). The policy authors first

inspect anomalies in CSdu. The policy authors then inspect anomalies in CSi by the order of

CS1, ..., CSm (1≤ i ≤ m) until a fault is detected.

 Evaluation 4.4

We next describe the evaluation results to show the effectiveness of our approach with

four policies. These policies are codeD, continue-a, continue-b, and univ policies (in Table

4.3).

4.4.1 Research Questions and Metrics

In our evaluation, we try to address the following research questions:

RQ1: In terms of the percentage of faults detected, how does our approach compare to a

decision-tree-classification-based approach [42]?

RQ2: In terms of distinct anomalies, how does our approach compare to the decision-tree-

classification-based approach [42]?

RQ3: For cases where a fault in a faulty policy (i.e., mutant) is detected by our approach,

does percentage of distinct anomalies (for inspection) are reduced by our prioritization

technique (in terms of detecting the first-detected fault) over our basic technique?

 34

To measure fault-detection capability, we synthesize faulty policies, f1, f2, ..., fn by seeding

faults into a subject policy fo, with only one fault in each faulty policy.

Then, the chosen approach generates anomalies (i.e., counterexamples) for each faulty

policy to detect the seeded fault. Note that we seed a single fault for fi. For n faulty policies, n

faults exist. Let CP (fi) be distinct anomalies generated by the chosen approach for fi. Let

Count(fi) be the number of distinct anomalies in CP (fi) for fi. Let DE (fi) be the reduced

number of distinct anomalies by the prioritization technique to detect the fault in fi for cases

where the fault in fi is detected by our approach.

We next describe our metrics for the evaluation:

• Fault-detection ratio (FR). Let p be the number of True Positives (i.e., injected

faults) detected by anomalies (generated by the chosen approach) for f1, f2, ..., fn. The

FR is !
!
. The FR is measured to address RQ1.

• Anomalies count (AP) for each policy. This metrics is the number of anomalies

generated by the chosen approach for each policy.

• Anomalies count (AM) for our generated mutants. This metric is the average

number of distinct anomalies generated by the chosen approach for each faulty policy.

The anomalies count is !"#$% (!")!
!!!

!
. Note that an anomaly is synonymous to a

 35

request. The AM is measured to address RQ2. The AM is used to define the ARB

metric below.

• Anomalies-reduction ratio (ARB) for our approach over the existing approach.

Let AM1 and AM2 be anomalies counts (AMs) by our approach and the existing

approach, respectively. The ARB is !"# !!"#
!"#

. The ARB is measured to address RQ2.

• Anomalies-reduction ratio (ARP) for the prioritization technique over the basic

technique. Let fp1, fp2, ..., fpm be faulty policies that are detected by our generated

anomalies. The ARB is a percentage that measures the reduction ratio in terms of the

number of the anomalies for inspection to detect the first fault by the prioritization

technique over the basic technique. The ARP is !"#$% (!"#)!
!!! ! !"(!"#)!

!!!
!"#$% (!"#)!

!!!
. The ARP

is measured to address RQ3.

4.4.2 Evaluation Setup

We use four fault types to automatically seed a policy with faults for synthesizing faulty

policies (i.e., mutants), with only one fault in each policy for ease of evaluation: Change-

Rule Decision (CRD), Rule-Target True (RTT), Rule-Target False (RTF), and Removal Rule

(RMR).

• A CRD fault inverts a decision (e.g., change Permit to Deny) in a rule.

• An RTT fault indicates changing a rule to be applicable for any request.

• An RTF fault indicates changing a rule to be applicable for no request.

 36

• An RMR fault indicates that a rule is missing.

We seed one fault to form each of mutants, i.e., each mutant includes only a single fault.

For the inspection for our approach, we use a verification tool [66] for XACML policies.

Margrave also has a feature that statically analyzes an XACML policy and produces all

possible request-decision pairs in a summarized format. Given a mutant, Margrave generates

all possible request-decision pairs to be used for generating relation tables. We next mine

relations from the relation tables using an association rule-mining tool [8].

4.4.2.1 Mining Patterns based on Decision Tree Classification

We compare the results of our approach with those of a previous related approach [42].

The related approach uses a decision-tree-classification approach to mine patterns. Let a

decision tree (DT) denotes the related approach. Given request-decision pairs, DT learns

policy behaviors and generates request-classification rules. Therefore, incorrectly classified

requests (i.e., anomalies) deviate from normal policy behaviors, and are required to be

inspected. We specify a confidence threshold as 0.4% based on our tuning of evaluation

setup for DT to generate similar anomalies as our approach for the small sample of mutants

used in the tuning of evaluation setup. In our evaluation, inspection of anomalies (to

determine whether the anomalies expose faults) is automatically conducted by comparing the

two decisions evaluated by a mutant and its corresponding original policy (that is assumed to

 37

be correct). However, in general, this inspection is often a manual process conducted by the

policy authors.

4.4.3 Evaluation Subjects

In our evaluation, we use four policies written in XACML [68]. XACML is an access

control policy specification language. Table 4.3 summarizes the characteristics of each

policy. Columns 1-5 show the evaluation subject name, the number of rules, and distinct

attribute values in the subject, resource, and action attributes in the policy, respectively. A

subject attribute corresponds a role attribute since the policies are based on the RBAC model

[50]. We denote the number of roles, actions, and resources as # roles, # actions, and #

resource, respectively.

The largest policy consists of 306 rules. The codeD2 is a modified version of the codeD11

by adding rules for a Lecturer role. For grading, a Lecturer role has the same privileges as a

Faculty role. Two of the policies, namely continue-a and continue-b, are examples used by

1. http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/college

Table 4.3. Subjects used in our evaluation

Policy # Rules # Roles # Actions # Resources
codeD2 12 5 3 2
continue-a 298 5 5 26
continue-b 306 5 5 26
univ. 27 7 7 8

 38

Fisler et al. [20] to specify access control policies for a conference review system. The univ

policy is an RBAC policy used by Stoller et al. [53].

4.4.4 Results

We conducted our evaluation on a laptop PC running Windows XP SP2 with 1G memory

and dual 1.86GHz Intel Pentium processor. We also measure the total processing time of

request-response-pair generation, pattern generation, anomalies generation, and automated

inspection for correctness of given anomalies. For each mutant (with at most 306 rules), our

results show that the total processing time is less than 10 seconds.

We first show our detailed evaluation results for only Change-Rule-Effect mutants. We

then show our summarized evaluation results in Figure 4.2 for Rule-Target-True, Rule-

Target-False, and Removal-Rule mutants. Table 4.4 summarizes the detailed results for

Change-Rule-Decision (CRD) mutants of each policy. Columns 1-2 show the evaluation

subject name and the number of CRD mutants. Columns 3-8 show fault-detection ratio

(denoted as “%FR”), anomalies count for each policy (denoted as “#AP”), and anomalies

count for our generated mutants (denoted as “#AM”) for DT approach and our approach,

respectively. Columns 9-10 show ARB and ARP for our approach.

Results to address RQ1. In Table 4.4, we observe that DT and our approach detect

34.5% and 62.3% (in Column “% FR”) of CRD mutants, respectively. Let Basic and

Prioritization denote our basic and prioritization techniques, respectively. Our approach

 39

(including Basic and Prioritization techniques) outperforms DT in terms of fault-detection

capability. Our approach uses relations based on similar policy behaviors of different

attributes values (e.g., Faculty and Lecturer). Therefore, if a faulty rule violates certain

patterns of attribute items, our techniques have better fault-detection capability than that of

DT. However, DT constructs classification rules based on the number of the same decisions

without taking into how different attribute values interact. Therefore, these generated rules

are rigid and often may easily miss certain correct policy behaviors.

Results to address RQ2. Our goal is to detect a fault with anomalies for inspection

possible. Intuitively, with more anomalies to be inspected, fault-detection capability is likely

to be improved. Our results show that our approach reduced the number of anomalies by

49.3% (in Column “% ARB”) over DT. As a result, we observe that our approach

Table 4.4. Fault-detection capability results of Change-Rule Decision (CRD) mutants

 DT Approach Our Approach
Policy #MT %FR #AP #AM %FR #AP #AM %ARB %ARP
code2D 12 66.6 3 3.5 83.3 0 2.4 31.4 58.3
continue-a 201 35.7 84 84.4 58.2 37 42.9 49.2 67.8
continue-b 209 35.7 84 84.4 55.9 37 42.8 49.3 68.0
univ. 27 0 26 26 51.8 8 8.5 67.3 84.7
AVERAGE 112.3 34.5 49.3 49.6 62.3 20.5 24.2 49.3 69.7

- FR: fault-detection ratio
- AP: the number of anomalies generated by the chosen approach for each policy
- AM: the average number of anomalies generated by the chosen approach for mutants
- ARB: anomalies reduction ratio for our approach over the existing approach [42]
- ARP: anomalies reduction ratio for the prioritization technique over the basic
technique

 40

significantly reduced the number of anomalies while our approach detected a higher

percentage of faults (addressed in RQ1). Given Ns subject, Na action, and Nr resource values,

the maximum number MAXc of possible anomalies is Ns × Na × Nr. For example, for the

continue-b policy, MAXc is 5(Ns) × 5(Na) × 26(Nr) = 650 anomalies. However, our approach

generated only averagely 24.2 anomalies (in Column “# AC”) for inspection.

Results to address RQ3. Prioritization is a technique that inspects anomalies by the order

of their fault-detection likelihood while keeping the same level of fault-detection capability

of the Basic technique. Table 4.4 shows that Prioritization reduced 69.7% of anomalies (for

inspection) (in Column “% ARP”) over Basic.

Note that inspecting anomalies could not always detect faults. The continue-a policy

consists of 298 rules and is complex enough to handle corner cases for granting correct

Figure 4.2. Fault-detection ratios of faulty policies for each policy, each fault type, and

each technique/approach

 41

decisions to different roles (e.g., an Administrator and a Member for paper review). Consider

that rel3 {Write, Permit} ⇒ {Read, Permit} represents a pattern of “Write” and “Read”

attribute values. For the continue-a policy (without any seeded fault), 41 cases satisfy both

<premise> and <conclusion> of rel3. However, we found that three cases (anomalies) that do

not follow rel3. One false positive is that Members are Denied to read their Password

resources, while they are Permitted to write Password resources. Considering a Password

resource as a critical resource and are Denied to be read, this anomaly does not reveal a fault

in the policy. We suspect that inspecting these cases of policy behaviors would still provide

value in gaining high confidence on the policy correctness, reflected by the preceding

password example.

In addition, Figure 4.2 illustrates the average fault-detection ratios for each policy; each

other fault type, and each technique/approach. For other fault types, our results show that

Prioritization and Basic achieve the highest fault-detection capability.

 Chapter Summary 4.5

We have developed an approach that analyzes a policy under verification and mines

patterns based on relations of subject, action, and subject-action attributes values via

association rule mining. We compared our two techniques in our approach with a previous

related approach [42] in terms of fault-detection capabilities in four different XACML

policies. Our results showed that our approach has more than 25% higher fault-detection

capability than that of the previous related approach. Our results showed that our basic and

 42

prioritization techniques reduce a significant percentage of anomalies for inspection

compared to the related technique. Moreover, the prioritization technique further reduced a

number of anomalies (for inspection) to detect a first fault over the basic technique.

 43

5 Mining Patterns through Analysis of Historical Data

In this chapter, we present our empirical study of ACP evolution by providing

observations about ACP evolution trends, practices, and patterns.

 Introduction 5.1

As operational and security requirements of a system evolve, ACPs must evolve, thereby

requiring maintenance. Policy authors may add permissions or remove unnecessary

permissions. The US National Institute of Standards and Technology (NIST) recommends

that policy authors periodically update ACPs by reviewing the current ACPs and access

control procedures [71].

To facilitate the management of access controls, policy authors extract ACPs from the

functionality (i.e., business logic) of a system and typically maintain ACPs in one place (in

the form of a piece of code, configuration, dataset, or specification) [18]. Forrester Research

[55] reported that such centralized ACPs improve not only security and privacy, but also the

effective management of access controls. The report recommended that organizations use

centralized ACPs instead of decentralized access controls that are implemented in custom

code scattered across multiple locations.

In this chapter, our research goal is to assist policy authors to improve the quality of ACP

evolution based on the understanding of trends, practices, and evolution patterns in ACPs

through the mining of historical data.

 44

To achieve this goal, we conducted an empirical study of the evolution of centralized

ACPs by providing observations about ACP evolution trends, practices, and their

accompanying evolution patterns. We conduct an empirical study of the ACPs of three large,

open source systems (as shown in Table 5.1): Security Enhanced Linux (SELinux) [72]; a

Virtual Computing Lab platform (VCL) [65]; and a network intrusion detection system [73]

called Snort. These ACPs govern system resources, network traffic, and organizational

operations on system usages. The ACPs of the three systems had between 2723 and 94,652

policy lines with between 238 and 5,489 policy changes over a 1-3 year period.

We first empirically observe growth trends of ACPs and corresponding systems in terms

of the number of policy lines and lines of code (LOC), respectively. A well-fitting regression

model is useful for predicting expected growth in the future. To assess “goodness of fit” of a

regression model, we perform statistical testing of our observed growth against the linear

regression model.

We then extract evolution patterns identifying how permissions (i.e., rights to perform

certain actions such as read and write) change in rules. More specifically, to extract evolution

patterns, we analyze differences of permissions of a subject (e.g., users) with respect to an

object (e.g., sensitive resource). Let st1 and st2 are original permissions and modified

permissions of a subject with respect to an object, respectively. An evolution pattern st1 →

st2 represents that st1 evolves into st2. For example, in addition to existing “read” permission

for files, policy authors add “write” permission to allow the application to write files. In this

 45

situation, an evolution pattern is st1 = {read} → st2 = {read, write}. Our rationale is that, as

policy authors maintain ACPs through their lifecycles, they are likely to follow evolution

patterns with higher frequency. These evolution patterns help understand which parts of

ACPs are prone to evolve and how they evolve.

To evaluate the predictive power of our prediction model, we divide our evolution

patterns into training and testing sets for cross validation.

Our study was designed to answer the following research questions:

RQ1. How do the number and growth rate of policy lines of ACPs change?

RQ2. How many of the rules in ACPs evolve?

RQ3. What are the frequent evolution patterns of ACPs?

RQ4. How effective is our model at predicting the change of ACPs?

Our empirical results will help practitioners develop tools (e.g., policy management and

refactoring tools) to support these practices. In addition, our empirical results regarding

evolution patterns are directed towards policy authors to better understand which parts of

ACPs are prone to evolve and how they evolve.

 46

 Example 5.2

This section provides background with regard to ACP concepts and terminology, access

control architecture, ACP models, and software change types.

ACP evolution refers to the specification and modification of ACPs. ACPs evolve due to

various reasons such as the addition of new rules and ACP fault fixing. We introduce ACP

and ACP evolution concepts through an example ACP from one of our systems, VCL. VCL

provides cloud services such as reservations, management, or access (called checkout) to

virtual machine images. The example ACP of a system is a set of rules. Each rule specifies

access control of subjects based on roles such as virtual user groups (e.g., students enrolled in

cloud computing course in Fall 2013). These roles are associated with specific permissions of

operations (e.g., check out) to objects (e.g., virtual machine images).

The example ACP consists of two rules. We illustrate each rule to help understand its

operation.

• Rule 1: user group s1 is permitted to check out virtual machine images o1.

Under the example ACP, s1 can check out o1. To specify specific access controls, policy

authors add or modify rules. For example, the policy authors may modify the Rule 1 as

follows:

 47

• Rule 1+: s1 is permitted to check out and administer (denoted by “AdminImage”)

virtual machine images o1.

Rule 1 evolves to Rule 1+ with the addition of “administer” permission (e.g.,

administrative tasks). In addition to the “check out”, s1 can administer o1.

Access Control Policy Rules (rules): ACP is a set of rules based on a concept of access

control matrix. Formally, let O and S denote a set of objects (e.g., specific file name and

directory name) and a set of subjects (e.g., users and processes), respectively. Let R denote a

set of permissions (i.e., rights to perform certain operations such as read and write). Let D

denote a set of domains of objects (e.g., file, directory, and virtual image). ACP is a set of

rules, each of which has the form (s, o, r(s,o), d) where s S, o O, r(s,o) R, and d D.

In the example ACP, the policy authors add an additional permission to, Rule 1+. We

represent the example ACP as a set of rules: Rule 1 is represented as (s1, o1, {CheckOut},

virtual image) and Rule 1+ is represented as (s1, o1, {CheckOut, AdminImage}, virtual

image).

 Research Methodology 5.3

We next describe our collected data, methodology, and metrics for studying the evolution

of ACPs.

∈ ∈ ⊆ ∈

 48

5.3.1 Data Collection

We collected the ACPs of three large open source systems: Security Enhanced Linux

(SELinux), a Virtual Computing Lab platform (VCL), and a network intrusion detection

system, called Snort. Table 5.1 shows our subject statistics of ACPs. Columns 2-3 show the

time frame we consider for each ACP and the number of revisions, respectively. Columns 4-

7 show ACP size in terms of the number of files (tables) and policy lines (records), for the

first and last releases within the time frame, respectively. As VCL uses ACPs that are stored

in MySQL database instead of files, we measure ACP size in terms of tables and records (i.e.,

rows) related to ACPs. The last column shows the ACP model that each system uses.

We selected ACPs with the following criteria. First, because our focus is ACP evolution,

the ACPs should have a long release history. Second, the ACPs should have significant size

(i.e., policy lines). Third, the systems that use ACPs should be widely used open-source

projects under active maintenance. Fourth, the open source projects archives contain a large

number of software artifacts such as change logs, bug reports, documents, or patches for the

ACPs. The criteria help conduct empirical study based on meaningful statistical trends of

ACP evolution.

• SELinux ACP [72] is a default ACP of SELinux. SELinux ACP controls access to

subsystems and applications in Security Enhanced Linux (SELinux). SELinux is a

default security mechanism in various Linux distributions including Redhat (Version

6 and higher), Gentoo, Fedora, and Debian. SELinux ACP uses the TE policy model.

 49

SELinux ACP enhances flexible security and privacy for Linux systems. For example,

policy authors specify permissions (e.g., open, read, search, and lock) for any

directory. SELinux ACP consists of rules that are described using declaration of types

(i.e., groups), inheritance of types, and interfaces (to facilitate specifying permissions

of a type that are repeated in multiple times).

• VCL ACP [65] is a user-specified ACP of VCL maintained by Apache. VCL ACP

specifies users, roles, roles’ relation, and users’ permissions (e.g., users’ permissions

to reserve, use, or administer virtual computing images in VCL) in database. For

example, “userpriv” table includes records of user’s permissions. VCL ACP uses the

RBAC model.

• Snort ACP [73] is a default ACP of Snort that identifies potential intrusion attempts.

Snort ACP uses the network ACL policy model. Snort inspects a packet against Snort

ACP by examining incoming/outgoing addresses, ports, protocol types (e.g., TCP),

Table 5.1. Systems used in our study

ACP Time Frame # Rev First Release Last Release ACP
Model

Files/
Tables

Policy
Lines

#Files/
Tables

Policy
Lines

SELinux ACP
2010~
2013 5489 83 57550 116 94652 TE

ACP
2012~
2013 896 1 4093 1 4989 RBAC

Snort
ACP

2010~
2013 238 57 2723 129 13394 ACL

 50

and contents of the packet. If an incoming/outgoing packet matches against Snort

ACP, Snort gives alerts that the packet is suspicious for intrusion attempts.

We collected files and database records with regards to ACPs. SELinux ACP is freely-

available via its version control system and websites such as Koij [64] that distribute

SELinux ACP as a format of source-code and pre-compiled Linux packages. SELinux ACP

is specified in its application-specific ACP specification format. We obtained change

histories and patches of SELinux ACP from its version control system [72].

The VCL system and its sample ACP are freely available on the Apache VCL website.

Organizations use VCL to provide cloud services (e.g., virtual computing, email and

storage). We collected VCL ACP, used by faculty, staff, and students in one department. We

examined “userpriv” and “querylog” tables: the “userpriv” table includes records of user’s

permissions, and the “querylog” table includes records of logs that store users and their

permission changes.

Snort ACP is freely available via the Snort website. We obtained Snort ACP change

histories from the Snort website. Policy authors typically update and release Snort ACP

several times a week. Snort ACP is mainly written in application-specific configuration

formats in text files. Snort ACP is a set of Snort rules. Each Snort rule includes its unique

identifier called Snort ID number (SID).

 51

In addition to ACPs, we collected releases of Linux (that includes SELinux), Snort, and

VCL systems: 5 Linux kernel (versions 3.6-3.12 released Aug 2012-Sep 2013), 5 VCL

systems (versions 2.1-2.3.2 released Oct 2010-Mar 2013), and 46 Snort systems (released

Aug 1999-Sep 2013).

5.3.2 Metrics and Approach

To answer RQ1 (How do the number and growth rate of policy lines of ACPs change over

time?), we measure the number and growth rate of policy lines of ACPs over time. We

exclude comments and empty lines when we measure the number of policy lines. As VCL

ACPs are stored in the MySQL database instead of files, we measure the number and growth

rate of records (i.e., rows) in the “userpriv” table of VCL ACPs. To compare a system and its

ACP in terms of growth rate, we measure the number and growth rate of lines of code (LOC)

of systems over time.

To answer RQ2 (How many of the rules in ACPs evolve?), we measure two metrics: the

number of rules (denoted by ACPsur) that remain (either unchanged or evolved) and the

number of evolved rules (denoted by ACPevo) for a given period of time. ACPsur helps

understand how many of the rules remain after a given period of time. ACPevo helps

understand how many of the rules evolve (i.e., showing differences of permissions that

granted to a subject with respect to an object) over a given period of time.

 52

We formally represent ACPsur and ACPevo. Let ACPo and ACPl refer to the earliest and

latest ACP release in the established time frame in Table 5.1, respectively. Let Ro (Rl) refer

to a set of rules in ACPo (ACPl). Recall that O and S are a set of objects (e.g., specific file

name and directory name) and a set of subjects (e.g., users and processes), respectively. R is

a set of permissions (i.e., rights to perform certain operations such as read and write). D is a

set of domains of objects (e.g., file, directory, and virtual image). ACP is a set of rules, each

of which has the form (s, o, r(s,o), d) where s S, o O, r(s,o) R, and d D.

ACPsur is a set of rules {r1, r2, r3, …, rn} Ro such that (1) rn = (sn, on, r (sn, on), dn) Ro

and (2) there exists rl = (sl, ol, r (sl, ol), dl) Rl where sn = sl, on = ol , and dn = dl.

ACPevo is a set of rules {r1, r2, r3, …, rn} Ro such that (1) rn = (sn, on, r (sn, on), dn) Ro

and (2) there exists rule rl = (sl, ol, r (sl, ol), dl) Rl where sn = sl, on = ol, dn = dl, and r(sn, on)

≠ r(sl, ol).

We extract rules from an ACP by mapping between attributes in a given ACP and

attributes in a rule. The mapping step for SELinux ACP (based on the TE policy model) and

VCL ACP (based on the RBAC model) is straightforward. Both the TE policy model and the

RBAC model use concepts of subjects S, objects O, and a set of permissions R as shown in

Table 2.1. To construct a rule (s, o, r(s,o), d), we analyze an ACP and collect all of

permissions r(s,o) for a pair of a subject s and an object o where s S, o O, and r(s,o) R.

Given an object, its corresponding object domain d is explicitly specified in SELinux ACP.

∈ ∈ ⊆ ∈

⊆ ∈

∈

⊆ ∈

∈

∈ ∈ ⊆

 53

However, VCL ACP does not explicitly state object domains. Therefore, we use “virtual

image” as a default object domain d for rules in VCL ACP.

Snort ACP (based on network ACL) uses attributes to indicate how Snort inspects certain

parts of a packet. We use SIDs (Snort ID numbers) as subjects S, packet destinations as

objects O, and attributes called rule option keywords as a set of permissions R. We use

“packet” as a default object domain d for rules in Snort ACP.

To answer RQ3 (What are the evolution patterns of ACPs?), we find a set of evolution

patterns P = {p1, p2, p3,…, pn} where pn represents changes in terms of permissions. Recall

from the example ACP of VCL (in Section 5.2), Rule 1 is that user group s1 is permitted to

check out virtual machine images o1 in Rule 1. Rule 1+ is that s1 is permitted to check out and

administer (denoted by “AdminImage”) o1. From the example ACP, we observe that

evolution pattern p1 = st1 → st2 where st1 = {check out} and st2 = {check out, ImageAdmin}.

Formally, we define pn as follows:

• State Pattern: pn is staten → statel such that (1) staten = r(sn, on) and statel = r(sl, ol), (2)

rn = (sn, on, r (sn, on), dn) Ro and (3) there exists rule rl = (sl, ol, r (sl, ol), dl) Rl

where sn = sl, on = ol, dn = dl, and r(sn, on) ≠ r(sl, ol).

∈ ∈

 54

• Transition Pattern: pn is transition set that is statel - staten such that (1) staten = r(sn, on)

and statel = r(sl, ol), (2) rn = (sn, on, r (sn, on), dn) Ro and (3) there exists rule rl = (sl,

ol, r (sl, ol), dl) Rl where sn = sl, on = ol, dn = dl, and r(sn, on) ≠ r(sl, ol).

A set of evolution patterns is viewed as a directed graph G= (V, E) where V is a set of

nodes (i.e., states that represent a set of permissions) and E is a set of edges. Each element of

E is a pair of nodes that represent a link between two nodes. Suppose that we have an

additional evolution pattern p2 = st2 → st3 where st3 = {check out, ImageAdmin, block}.

An edge represents a move from one state to another state. We calculate frequency and

probability for each evolution pattern. Frequency f (Pn) is the number of occurrences of pn.

Probability Pr(Pn) is ! !"
! !"!

!!!
 . For p1 = st1 →st2, we calculate f(P1) = 1 and Pr(P1) = 0.5.

To answer RQ4 (How effective is our model at predicting the change of ACPs?), we

develop a prediction model of ACP evolution based on historical data of evolution patterns.

Our rationale is that, as policy authors maintain and enhance ACPs through their lifecycles,

they are likely to follow evolution patterns with higher frequency. Suppose that we found an

evolution pattern pab = A → B that happened 20 times. Suppose that we found another

evolution pattern pac = A → C that happened 5 times. Suppose that we find a state A that is to

evolve. Based on our observations of evolution patterns in the past, A is likely to more likely

to evolve to B (20 times) rather than C (5 times) based upon past occurrences. We calculate

∈

∈

 55

Pr (Pab) = 0.8 (20/25) and Pr(Pac) = 0.2 (5/25). We observe that the most likely state is B and

the second most likely state is C.

Our prediction model generates an ordered rank of next states based on Pr(Pn). Given a list

of next states, our prediction model selects the most likely first 1, most likely first 3, …, most

likely first 9 states based on ranking.

To measure the effectiveness of our prediction model, we classify our prediction results in

four groups illustrated in Table 5.2: True Positive (TP), False Positive (FP), False Negative

(FN), and True Negative (TN). We measure precision, recall, and F-measure: (1)

precision = !"
!"!!"

 , (2) recall = !"
!"!!"

, and (3) f−measure = !∗!"#$%&%!"∗!"#$%%
!"#$%&%'(!!"#$%%

If the precision and recall are good enough, our model is effective at predicting future

trends of ACP evolutions.

Table 5.2. Result classification

 Predict next states Not predict next states
Actually a current state
evolves to be one of
predicted states

True Positive False Negative

Actually a current state
does evolve to be one of
predicted states

False Positive True Negative

 56

For evaluating our prediction model, we classify evolution patterns into two sets: training

and testing sets. For SELinux ACP, evolution patterns that happened for 2011/12/04-

2013/01/02 are used as a training set while evolution patterns happened for 2013/01/02-

2013/10/02 are used as a testing set. From Snort ACP, Snort rules with SID 1-15000 are used

as a training set and Snort rules with SID 15001-16559 as a testing set.

 Results 5.4

RQ1. How do the number and growth rate of policy lines of ACPs change?

Figure 5.1 shows that the number of policy lines (system LOC) of ACPs (systems)

continues to increase over time. Our results show that the number of policy lines increases

linearly. We observed that system LOC increases linearly as well. We assessed the statistical

significance of growth of policy lines and system LOC using statistical testing methods

against the linear regression model. We measured RSquare and p-value. The p-value [51]

represents the probability of satisfying the linear regression model. For example, a test is

statistically significant at 99% level if p-value = 0.01. The RSquare [51] are estimates of the

'goodness of fit' of the linear growth model. The RSquare values represent the variation of

the data that fits to the linear growth model. For example, 90% of the variance is explained

by the linear regression model if RSquare = 0.9.

Table 5.3 and Table 5.4 summarize our results according to the growth rate of policy lines

of ACPs and system LOC over time, respectively. Columns 2-5 denote growth models, the

 57

monthly increased number policy lines (system LOC) on average, RSquare, and p-value. In

Table 5.3 and Table 5.4, we observed that our statistical testing results show statistical

significance (p-value <= 0.0082 and RSquare >= 0.9) when we tested the growth rate of

ACPs and system LOCs, respectively, against the linear regression model.

Policy authors maintain ACPs in response to evolving security and privacy requirements,

such as the prevention of new security attacks. System developers actively maintained

corresponding systems (with respect to LOC). The slope of the policy lines of ACPs is less

than that of lines of code of their corresponding systems.

We measure monthly growth rates, which show the number of policy (lines of code)

added each month for ACPs (systems). The monthly growth rates of ACPs on average are

886, 99, and 254 from SELinux, VCL, and Snort ACPs, respectively. The monthly growth

rates of system LOC on average are 90870, 7739, and 1172 from SELinux, VCL, Snort

systems, respectively.

In summary, the number of policy lines in ACPs continues to increase linearly over time.

This result implies that ACPs are continually increased in response to changing/evolving

security and privacy requirements. Furthermore, system developers maintain systems that

ACPs rely on to achieve functionalities. We observed that the slope of the policy lines of

ACPs is less than that of lines of code of their corresponding systems.

 58

RQ2. How many of the rules in ACPs evolve?

We found 83,304, 2,223, and 9,074 rules from SELinux ACPo, VCL ACPo, and Snort

ACPo, respectively. From these rules, we identified 57,848, 2,223, 7,677 rules that remain.

Figure 5.1. The number of policy lines (Bottom) and system LOC (Top) for SELinux
(Left), VCL (Middle), and Snort (Right)

Table 5.3. ACP evolution trends.

ACPs Growth
Model Avg RSquare p-value

SELinux
ACP Linear 886 0.91 0.0001*

VCL ACP Linear 99 0.98 0.0001*

Snort ACP Linear 254 0.97 0.0001*

Table 5.4. System evolution trends

Systems Growth
Model Avg RSquare p-value

SELinux
System Linear 90870 0.95 0.0041*

VCL System Linear 7739 0.92 0.0082*
Snort System Linear 1172 0.9 0.0001*

 59

Among these rules, we identified 2,714, 7, and 2,019 rules that evolve. We noticed that

only VCL ACP yielded a low number of ACP evolutions. We could find more evolved rules

if we collect larger and longer historical data of VCL ACP. Rules in VCL ACP do not evolve

often with the following reason. One reason is that policy authors identify desired

permissions based on purposes of VCL user-groups’ operations (e.g., administrator groups

and user groups). Moreover, the number of permissions that are possible to use is small. Note

that a VCL user/user-group could grant up to 14 permissions. Among these 14 permissions,

policy authors can find which permissions should be granted for a user/user-group based on

roles in advance.

In summary, we can find a large number of evolved rules from ACPs. We identified

2,714, and 2,019 rules that evolved from SELinux ACP and Snort ACP. This result implies

that policy authors often modify existing rules in ACPs by adding permissions or removing

unnecessary permissions.

RQ3. What are the frequent evolution patterns of ACPs?

We analyze ACPs and collect frequent evolution patterns. We collected frequent evolution

patterns of which probability (defined in Section 5.3.2) is above a threshold value. Our

threshold value is the percentage of occurrences of a certain evolution pattern out of a total

number of evolution occurrences. The total number of frequent patterns depends on a

 60

threshold. Given a pattern and a threshold, when its probability exceeds the threshold, we

identify the pattern as a frequent pattern. We use 2% as a threshold.

Table 5.5 summarizes our results of ACP evolution patterns. Columns 2-5 the number of

frequent evolution patterns FP (“# Frequent Patterns”), the percentage covering 86.2%,

100%, and 38.6% of evolved rules with FP (% Coverage”), the sum of frequencies of FP (“#

Sum of Frequency”), and the highest frequency and probability of the most frequent pattern

(“# Highest Frequency”).

SELinux ACP specifies resources classified in one of object domains such as directory,

file, sockets, and processes. We collect patterns from SELinux ACP changes related to

directory permissions. Each of object domains uses different sets of permissions. Among the

object domains, directory is an object domain with most frequently changed permissions. Out

of a total of 2714 permissions changes, we observe that permissions related to directory, file,

process, and socket object domains change 1222 (45.0%), 803 (29.5%), 199 (7.3%), and 146

(5.3%) times, respectively.

We observed that some of the evolution patterns appear to occur more frequently. We

found five, one, and three evolution patterns covering 86.2%, 100%, and 38.6% of evolved

rules for SELinux ACP, VCL ACP, and Snort ACP, respectively.

 61

For SELinux ACP, in Table 5.6, we categorize permissions to four permissions sets

according to purpose of a use (such as read and write). To control a directory, policy authors

can use some of 23 permissions (that are pre-defined in SELinux). Policy authors often

follow a pattern: “read”, “Ioctl”, and “lock” permissions together for allowing the reading of

a directory. For each group, we use terms, “Basic Access Permission Set (BS)”, “Read File

Permission Set (RS)”, “Write File Permission Set (WS)”, and “Advanced Permissions Set

(AS)”. We describe top five most frequent patterns that appear in SELinux ACP.

• Remove Read Permission Pattern: The most frequently occurring evolution pattern is

BS ∪ RS → BS. We observed that this evolution pattern happened 568 times (46%)

out of the total number of directory permission changes. This pattern infers that the

policy authors remove “Read File Permission Mode”. As a result of this evolution,

subjects can perform access, open, and search directory described in “Basic Access

Permission Mode”.

Table 5.5. ACP evolution patterns in our subject ACPs.

ACPs # Frequent Patterns % Coverage # Sum of
Frequency

Highest
Frequency

SELinux
(Directory
permission)

5 86.2 1066 568 (46%)

VCL 1 100 7 7 (100%)
Snort 3 38.6 780 488 (24%)

 62

• Add Read Permission Pattern: BS → BS ∪ RS. We observed that this evolution

pattern happened 234 times (19%) out of the total number of directory permission

changes.

• Remove Read & Write Permission Pattern: BS ∪ RS ∪ WS → BS. We observed that

this evolution pattern happened 86 times (7%) out of the total number of directory

permission changes.	

Table 5.6. Permissions in SELinux ACP

Permissions Description

Basic Access
Permissions

• getattr: get file attributes for file, such as
access mode

• open: open a directory
• search: search access

Access, open, and
search directory

Read File
Permissions

• read: read file contents
• Ioctl: IO control system call requests
• lock: set and unset file locks

Read, lock, and IO
control for file
contents

Write File
Permissions

• write: general write access
• add_name: add a file to the directory
• remove_name: remove a file from the

directory

Write file contents
which required
adding and removing
the file

Advanced Control
Directory (ACD)
Permissions

• create: create new file.
• link: create another hard link to file
• rename: rename a file
• reparent: rename into a different parent

directory
• rmdir: remove the directory
• setattr: change file attributes such as

access mode
• unlink: Remove hard link (delete)

Advanced access
controls such as
remove, rename,
change file locations,
etc.

 63

• Add Read & Write Permission Pattern: BS → BS ∪ RS ∪ WS. We observed that this

evolution pattern happened 81 times (7%) out of the total number of directory

permission changes.

• Add Write Permission Pattern: BS ∪ RS → BS ∪ RS ∪ WS. We observed that this

evolution pattern happened 81 times (5%) out of the total number of directory

permission changes.

• Add Advanced Permission Pattern: BS ∪ RS ∪ WS → BS ∪ RS ∪ WS ∪ AS

happened 39 times (3%) out of the total number of directory permission changes.

Table 5.7 shows three permission groups for VCL ACP. From VCL ACP, we found only

one evolution pattern, which happened seven times (100%) out of the total number of VCL

permission changes.

• Add Share Permissions Pattern: the most frequently occurring evolution pattern is to add

“Share Permissions” for existing permissions set. This pattern is to allow users to share

her/his virtual computing images (100%).

Due to our limited data of VCL ACP, we do not find evolution patterns that happened

often. We could find more evolution patterns if we collect larger and longer historical data of

VCL ACP. Moreover, share permissions and other permissions are independent.

 64

Table 5.8 shows permissions used in Snort ACP. In Snort ACP, we identified three

evolution patterns:

• Add “fast_pattern” and “content” Pattern: the most frequently occurring evolution pattern

is to add fast_pattern permission into an existing permissions set for allowing the rules to

use the fast pattern matcher for filtering packets. This pattern happens 488 times (24%)

out of the total number of Snort permission changes.

Table 5.7. Permissions in VCL ACP

Permissions Description

Basic Permissions

• imageAdmin: allows users to do
administrative tasks with images
in image groups

• imageCheckOut: allows users to
make reservations for images in
image groups

Allow reserve and use virtual
computing images

Share Permissions

• serverCheckOut: allows users to
make reservations through the
Server Profiles and allow other
users access to the reservations

• serverProfileAdmin: allows
users to manage the Server
Profiles

Allow share one’s reserved
virtual computing image

Advanced
Administrative

Permissions

• groupAdmin - grants users
access to the Manage Groups
portion

Allow advanced resource
controls

	

 65

• Add “fast_pattern” and “metadata” Pattern: this pattern is to add “fast pattern” with

“metadata” together. This pattern happens 228 times (11%). “metadata” allows the users

to write additional information in the rule.

• Remove “distance” Pattern: this pattern is to remove “distance”. This pattern happens 64

times (3%).

In summary, we can find evolution patterns covering a large number of evolved rules. We

extracted five, one, and three evolution patterns from SELinux, Snort, and VCL ACPs. We

observed that some of evolution patterns appear to occur more frequently. For example, we

Table 5.8. Permissions use in Snort ACP

Permissions Description

Basic Snort Rule
Permissions

• flow: permit rules to only apply to certain
directions of the network traffic flow.

• content: permit the rules to search for
specific content in the packet.

• classtype: categorize a rule as detecting
one of attack types.

Access, open, and
search directory

Optional Snort
Rule Permissions

• fast_pattern: allows the rules to use the
fast pattern matcher for monitoring
packets

• metadata: allows the users to write
additional information such as a key-
value-format

• pcre: allows the rule to be written using
perl compatible regular expressions.

• The distance keyword allows the rule
writer to specify distance that helps ignore
parts of content.

Read, lock, and IO
control for file
contents

	

 66

found evolution patterns that happened for 568 and 488 times in SELinux and VCL ACPs,

respectively. This result implies that policy authors tend to use common evolution patterns

when they modify rules.

RQ4. How effective is our model at predicting the evolution of ACP change patterns?

Figure 5.2 and Figure 5.3 show our prediction results. We evaluated effectiveness of our

model for prediction. Y-axis shows the probability of precision, recall, and F-measure values.

X-axis indicates the number of the most likely states (i.e., predicted states) that we can

choose.

Given a state BS ∪ RS, we expect that this state is likely to evolve into BS, BS ∪ RS ∪

RS. We first consider BS (indicating the highest probability) as a predicted state. If the given

state evolves into BS, our prediction result is classified into “True Positive”. Otherwise, our

prediction result is classified into “True Negative”.

For SELinux ACP, we observed that the prediction precision and recall values are roughly

0.8 (80%) and 0.7 (70%), respectively, using the most likely first four states. The recall value

0.7 means that seven out of ten evolution cases can be predicted (showing a list of predicted

states). The precision value 0.8 means that eight out of ten evolution cases (that can be

predicted) are correctly predicted.

 67

For Snort ACP, we observed that the prediction precision and recall values are roughly 0.6

(60%) and 0.8 (80%), respectively, using the most likely first four states. The recall value 0.8

means that eight out of ten evolution cases can be predicted (showing a list of predicted

Figure 5.2. SELiux ACP evolution prediction precision, recall, and F-measure by

choosing the most likely first 1, first 2, …, first 9 states based on ranking by SELinux
ACP

Figure 5.3. Snort ACP evolution prediction precision, recall, and F-measure by

choosing the most likely first 1, first 2, …, first 9 states based on ranking

 68

states). The precision value 0.6 means that six out of ten evolution cases (that can be

predicted) are correctly predicted. The prediction value for Snort ACP is lower than that of

SELinux ACP by roughly 10%. However, the recall value for Snort ACP is higher than

SELinux ACP by roughly 10%.

We do not consider VCL ACP for our experiments on prediction since VCL ACP has

rarely occurring evolution patterns. Therefore, due to an insufficient number of evolution

patterns, we have difficulty in prediction.

In summary, for SELinux ACP and Snort ACP, we observed that historical data of

evolution patterns is effective at predicting ACP evolution. When we consider the most likely

four states to move (for ACP evolution), we measured a precision of 50-80% and a recall of

70-90% showing high predictive power. This result implies that policy authors tend to use

evolution patterns when they modify ACPs. Such information could further help improve

tools by recommending frequent evolution patterns over infrequent evolution patterns to

policy authors.

5.4.1 Threats to Validity and Limitations

We identified limitations within our study. However, we believe that these limitations

could not invalidate our results. First, the systems and their ACPs in evolution studies may

not be representative of the entire population. To make our results statistically significant,

we collect ACP changes over a long timeframe (1-3 years) to yield statistically meaningful

 69

results. Second, because ACPs are constantly evolving, some of the evolution patterns may

be different for other versions of ACPs. Our study does not consider such effects that result

from different versions and thus may suffer from this limitation.

 Chapter Summary 5.5

We have conducted an empirical study of the evolution of centralized ACPs by providing

observations about ACP evolution trends, practices, and their accompanying evolution

patterns. We found evolution patterns characterizing changes of permissions of a subject

(e.g., users or processes) with respect to an object (e.g., sensitive data).

We performed an empirical study by analyzing the ACP changes of three systems:

SELinux, VCL, and Snort. We empirically observed growth trends of ACPs and

corresponding systems in terms of the number of policy lines and lines of code (LOC),

respectively. We found that the growth of our subject ACPs and systems increase linearly.

We formalized evolution patterns characterizing policy changes. We observed that policy

authors follow common evolution patterns that appear to occur more frequently. We built a

prediction model based on the collected evolution patterns. Our evaluation results indicated

that our model could predict evolution patterns in ACPs with a precision of 50-80%, a recall

of 70-90% and an F-measure of 65-75%.

 70

6 Systematic Structural Testing

We next present a systematic structural testing approach [26, 27] for security policies. Our

approach analyzes security policies under test and generates test cases automatically to

achieve high structural coverage. As the quality of protection provided by a security policy

directly depends on the quality of its policy (i.e., configuration), ensuring the correctness of

security policies is important and yet difficult. We present a systematic structural testing

approach, which is effective in scenarios when usage patterns are difficult to infer from

security policies under analysis to help detect faults. Instead of mined usage patterns, our

approach is based on the concept of policy coverage, which helps test a policy’s structural

entities (i.e., rules, predicates, and clauses) to check whether each entity is specified

correctly.

 Introduction 6.1

A firewall is typically placed at the point of entry between a private network and the

outside Internet such that all network traffic has to pass through it. In a distributed system,

messages are encapsulated into packets, which often pass through multiple access points in a

network and firewalls are responsible for filtering, monitoring, and securing such packets

[38]. Corruption or misconfiguration in firewalls may cause that the firewalls fail to filter

malicious packets properly and affect the performance and security of a distributed system.

Correctly specifying firewall policies is a critical and yet challenging task for building

reliable firewalls [59] with three factors. First, the rules in a firewall policy are logically

 71

entangled because of the conflicts among rules and the resulting order sensitivity. Second, a

firewall policy may consist of a large number of rules. A firewall on the Internet may consist

of hundreds or even a few thousands of rules. Third, an enterprise firewall policy often

consists of legacy rules that are written by different operators, at different times, and for

different reasons, which make maintaining firewall policies even more difficult.

In this chapter, we propose firewall policy testing based on the concept of firewall policy

coverage, which helps test a firewall policy’s structural entities (i.e., rules, predicates, and

clauses) to check whether each entity is specified correctly. In firewall policy testing, test

inputs and outputs are packets and their evaluated decisions (against the firewall policy under

test), respectively. Given test packets and the policy under test, when evaluating packets

against the policy, our coverage measurement tool measures firewall policy coverage —-

which entities of the policy are involved (called “covered”) in the evaluation. Moreover, our

systematic firewall policy testing helps detect faults with the test packets, which often do not

follow some configuration mistake patterns (e.g., anomalies [4, 39] and configuration errors

[59]). Intuitively, policy testers shall generate test packets to achieve high structural

coverage, which helps investigate a large portion of policy entities for fault detection.

As manual test-packet generation is tedious, we have developed an automated packet-

generation tool (that can generate packets) for four packet-generation techniques: the random

packet generation technique, the one based on local constraint solving (considering

individual rules locally in a policy), the one based on global constraint solving (considering

 72

multiple rules globally in a policy), and the one based on boundary values. As generated

packets are often large and manual inspection of packet- decision pairs is tedious, we have

developed an automated packet reduction tool to reduce the number of packets while keeping

the same level of structural coverage.

We have conducted an experiment on a set of real firewall policies with mutation testing

[2], which is a specific form of fault injection that creates faulty versions of a policy by

making small syntactic and semantic changes. We generate packet sets (for each policy) with

the packet generation techniques. Our experimental results show that a packet set with higher

structural coverage (including rule, predicate, and clause coverage) often achieves higher

fault-detection capability (i.e., detecting more injected faults), which is measured through the

number of “killed mutants” (i.e., detected faults). On the comparison of packet sets and their

reduced packet sets, our experimental results also show that a reduced packet set achieves

similar fault-detection capability with the original packet set.

 Example 6.2

In firewall testing, exhaustive testing (i.e., executing all possible test packets) is time

consuming and inefficient. Instead of exhaustive testing, we focus on testing to cover only

specific entities (i.e., a predicate tested to be false or true) based on a set of defined coverage

criteria.

 73

6.2.1 Definition

Treating the firewall policy under test as program code (i.e., IF-THEN-ELSE statements),

we apply structural coverage criteria similar to the ones defined by Ammann et al [2]. In this

dissertation, a test suite is a set of packet-decision pairs to check whether a packet is

evaluated to its corresponding expected decision. Table 6.1 summarizes the notations used in

this chapter.

To measure cyclomatic complexity of our structural coverage criteria, we use McCabe's

cyclomatic complexity [74] that is a quality metric that measures the number of linearly

independent paths through the program. If all decisions of predicates are binary, McCabe

cyclomatic complexity (i.e., McCabe number) is v(G) = NP + 1 where NP is the number of

binary predicates.

We next define rule, predicate, and clause coverage criteria as follows.

Definition 1: Rule Coverage Criterion (RCC) for a test suite requires that for each rule 𝑟 in

a policy, the evaluation of the test packets in the test suite needs to match 𝑟 (i.e., make a

Boolean expression in 𝑟’s predicate 𝑝 to be evaluated to true) at least once, respectively.

Because all decisions of the predicates of the rules are binary, McCabe cyclomatic

complexity is v(G) = NP + 1 where NP is the number of the predicates. The cyclomatic

complexity of satisfying RCC is NP because we remove a case where all predicates are

evaluated to false from V(G) based on the definition of RCC.

 74

In other words, RCC requires that for each predicate 𝑝, 𝑝 is evaluated to true at least once.

Figure 6.1 shows example firewall rules where only two fields F1 and F2 are used.

For example, given two test packets, 𝑘1 (3, 5) and 𝑘2 (6, 10) over two fields F1 and F2,

both predicates p1 and p2 (of r1 and r2, respectively) are evaluated to true. These two test

packets achieve RCC. More specifically, 𝑘1 evaluates p1 to true, causing r1’s decision to be

returned without further evaluating p2. 𝑘2 evaluates p1 to false and next evaluates p2 to true.

Note that when a packet finds the first-matching rule 𝑟 (i.e., evaluating a predicate to true),

policy evaluation stops and returns r’s decision as a final decision.

Definition 2: Predicate Coverage Criterion (PCC) for a test suite requires that for each

predicate 𝑝 of the rules in a policy, the evaluation of the test packets in the test suite needs to

Table 6.1. Summary of notations

𝑃 a set of predicates of the rules in a policy
𝐶 a set of clauses of the predicates in a policy
𝑟𝑖 a rule in a firewall policy
𝑝𝑖 a predicate in a rule 𝑟𝑖
𝑐𝑖 an 𝑖th clause in a predicate
𝐹𝑖 a field (e.g., IP address)

𝐷𝑖
domain of field 𝐹𝑖 (e.g., [0, 232 − 1] for the IP

address)
𝑆𝑖 a subset of domain 𝐷𝑖 (e.g., [2,5])

𝐶𝑝𝑖 (𝑐𝑗) a constraint of a clause 𝑐𝑗 in a predicate 𝑝𝑖
𝐶(𝑝𝑖) a constraint of a predicate 𝑝𝑖

 75

make a Boolean expression in 𝑝 to be evaluated to true and false at least once, respectively.

Because all decisions of the predicates are binary, McCabe cyclomatic complexity is v(G) =

NP + 1 where NP is the number of the predicates. Therefore, the cyclomatic complexity of

satisfying PCC is NP + 1.

To achieve PCC, in addition to 𝑘1 and 𝑘2, we require one more packet such as 𝑘3 (6, 11)

that evaluates p2 to false. Figure 6.2 illustrates these three test packets that evaluate all

combinations of true and false (of p1 and p2). N/A represents a not-applicable predicate or

rule during packet evaluation. For 𝑘1, we mark N/A in p2’s evaluation because 𝑘1’s decision

is determined without further evaluating p2.

Covering every predicate in a firewall requires at most 2𝑛 test packets, where 𝑛 is the

number of rules. However, the minimal number of test packets (for PCC) could be less than

2𝑛 because a single test packet can satisfy multiple true or false branches of predicates. As

RCC and PCC do not require each clause to be covered, we then define clause coverage

criterion (CCC), which specifically targets at covering each clause in a predicate.

Definition 3: Clause Coverage Criterion (CCC) for a test suite requires that for each

clause 𝑐 of the predicates in a policy, the evaluation of the test packets in the test suite needs

to make a Boolean expression in 𝑐 to be evaluated to true and false at least once, respectively.

Because all decisions of the clauses are binary, McCabe cyclomatic complexity is v(G) = NC

 76

+1 where NC is the number of the clauses. Therefore, cyclomatic complexity of satisfying

CCC is NC +1.

In CCC, each clause is required to be evaluated to true and false at least once

independently from other clauses. Consider that p1 includes two clauses 𝑐1 and 𝑐2 (with

regards to F1 and F2, respectively). Note that the boolean value of p1 is equal to 𝑐1 ∧ 𝑐2 .

Figure 6.3 illustrates four test packets that evaluate all combinations of true and false (of 𝑐1

and 𝑐2) and the corresponding boolean value of p1. There are several ways to cover clauses in

p1: (1) select 𝑘2 and 𝑘3 or (2) select 𝑘1 and 𝑘4. However, instead of the first selection, the

second selection has an advantage to increase the coverage in terms of RCC and PCC.

6.2.2 Structural Coverage

We have developed three structural coverage measurements that monitor whether rules,

predicates, or clauses are covered when evaluating packets against the policy under test. For

each structural coverage criterion, we define coverage measurements as follows.

𝑟1 : F1 ∈ [2, 5] ∧ F2 ∈ [5, 10] → 𝑎𝑐𝑐𝑒𝑝𝑡
𝑟2 : F1 ∈ [6, 7] ∧ F2 ∈ [5, 10] → 𝑑𝑖𝑠𝑐𝑎𝑟𝑑

Figure 6.1. Example firewall rules.

 77

Rule coverage measurements. For the rule coverage criterion, rule coverage is the

percentage of the number of covered rules (i.e., a Boolean expression in a predicate being

evaluated to true) in a policy.

Predicate coverage measurements. For the predicate coverage criterion, predicate

coverage is the percentage of the number of covered predicates (i.e., a Boolean expression in

a predicate being evaluated to true or false).

Clause coverage measurements. For the clause coverage criterion, clause coverage is the

percentage of the number of covered true or false values of clauses (i.e., a Boolean

expression in a clause being evaluated to true or false) .

Figure 6.2. Sample packets for all combinations of true and false

values of predicates 𝑝1 and 𝑝2.

Figure 6.3. Sample packets for all combinations of true and false

values of clauses 𝑐1 and 𝑐2.

 78

6.2.3 Structural Coverage and Fault Detection

Policy testers may generate and select a test suite to achieve a certain (high) level of

coverage. However, our main objective, through testing, is to detect faults in the firewall

policy while reaching a certain level of coverage. Coverage analysis helps investigate a larger

portion of entities for fault detection using a test suite that achieves higher structural

coverage.

Consider that a fault in entities (i.e., rules, predicate, or clause) may cause to output

incorrect decisions when evaluating some packets. A fault in a rule’s decision (e.g., using

accept by mistake instead of discard) is discovered if and only if the rule is covered and the

derived decision is verified. A test suite with high rule coverage may detect such faults easily

and increase our confidence on the correctness of the policy against such faults. Similarly, a

test suite with high predicate/clause coverage may have a high chance to detect faults in

predicates/clauses. Therefore, we are interested in covering each entity at least once to

exercise a wide range of the policy’s behavior.

 Approach 6.3

This section presents our framework for testing firewall policies. Figure 6.4 shows the

overview of framework of our approach. Our framework includes three phases: test packet

generation, test reduction, and fault detection. In the test packet generation phase, our test

packet generation component analyzes a firewall policy and generates test packets to cover

entities (e.g., predicates and clauses) in the policy. We propose four different test packet

 79

generation techniques. In the test reduction phase, the test reduction component reduces the

number of packets based on coverage criteria by including only packets that help increase

policy coverage measurement during evaluation. In the fault detection phase, the policy

authors manually inspect whether the actual decisions (i.e., evaluated decisions of the

generated packet against the firewall policy) are consistent with expected decisions. If the

authors find any inconsistent decisions, the authors determine that they detect a fault in the

policy.

6.3.1 Test Packet Generation

As manually generating packets for testing policies is tedious, we have developed four

techniques to automatically generate packets for the policy under test. The objective is to

generate packets for achieving high structural coverage. This section describes four packet

generation techniques (developed in our approach): the random packet generation technique,

the packet generation technique based on local constraint solving, the packet generation

technique based on global constraint solving, and the packet generation technique based on

boundary values. The key difference between the second and third techniques is the scope

(i.e., local or global) of constraints used in the packet generation. While the second and third

techniques generate packets based on random values within values solved by each constraint

solving, the fourth one generates test packets based on boundary values within values solved

by local constraint solving.

 80

In this section, 𝑝 and (𝑝) denote a predicate and its constraint, respectively. To evaluate 𝑝

to be true (false), a packet should satisfy the constraint (𝑝) (¬𝐶(𝑝)) (for the true (false) branch

of 𝑝). (𝑝) is represented in the form of 𝐶𝑝(𝑐1) ∧ ∧ 𝐶(𝑐𝑛), where 𝐶𝑝(𝑐1), ..., 𝐶𝑝(𝑐𝑛) are the

constraints of the clause 𝑐1, ..., 𝑐𝑛 in 𝑝, respectively.

1) Random Packet Generation Technique: The random packet generation technique is

straightforward. A packet 𝑘 is in the form of (𝑘1, ..., 𝑘𝑛), where 𝑘1, ..., 𝑘𝑛 are numeric values

over fields (such as source addresses), whose domains are denoted by 𝐷1, ..., 𝐷𝑛). Given the

Figure 6.4. Framework overview.

 81

domains of the policy under test, the generator for the technique automatically generates a

packet 𝑘 by randomly selecting 𝑘1, ..., 𝑘𝑛 (within the domain 𝐷1, ..., 𝐷𝑛, respectively). While

the technique does not require the policy itself in test generation and can quickly generate a

large number of test packets, the technique often lacks effectiveness to achieve high

structural coverage with the generated packets. Due to randomness, the number of the entities

(i.e., predicates or clauses) being covered is often small in comparison to the total number of

the entities in the policy under test.

2) Packet Generation Technique based on Local Constraint Solving: In general, packet

generation should focus on generating packets to cover those entities (i.e., predicates and

clauses) that have not been covered previously. Different from the preceding technique, the

technique based on local constraint solving statically analyzes the entities in an individual

rule and generates packets to evaluate the constraints (i.e., conditions) of the entities to be

true or false. The technique takes into account local constraints (given by a rule) without

considering the impact of other rules in the policy.

More specifically, the generator constructs constraints (𝑝) and ¬𝐶(𝑝) (for both true and

false branches of 𝑝) for each rule. The generator generates a packet based on the concrete

values to satisfy each constraint. As the generator generates packets based on satisfying

constraints in predicates, the generated packets may not be effective in covering each clause

(to be true and false). To target at covering many clauses, the generator constructs

combinations of 𝐶(𝑐𝑖) and ¬𝐶𝑝(𝑐𝑖). For example, combinations 𝐶(𝑐1) ∧ ∧ 𝐶(𝑐𝑛) (for true

 82

branches of all clauses) and ¬𝐶𝑝(𝑐1) ∧ ∧ ¬𝐶(𝑐𝑛) (for false branches of all clauses) can be

considered.

There are two major limitations of the technique. First, the generated packets may fail to

cover target entities due to overlapping predicates (i.e., predicates that can be satisfied by the

same packet) across multiple rules. As shown in Figure 2.2, a packet 𝑘 (whose destination IP

address is 192.168.0.0 and protocol type is UDP) satisfies the predicates of both 𝑟1 and 𝑟3 but

fails to be evaluated against 𝑟3, which can be 𝑘’s potential target entities. Second, the

technique cannot determine whether a structural entity could be covered in advance. Some

rules may be completely shadowed by other rules and never evaluated. In such cases, there is

no criterion to decide whether to generate additional packets (based on other more capable

solutions to solve the same constraints) or stop testing.

3) Packet Generation Technique based on Global Constraint Solving: To better generate

packets to cover target entities, our generator (based on global constraint solving) analyzes

the policy under test and generates packets by solving global constraints (collected from the

policy). The motivation of global constraint solving is to take into account the influence of

overlapping predicates across rules. Covering entities in a rule requires that the predicates of

all the preceding rules should be evaluated to false. To find such entities, we define rule

reachability as follows.

 83

Definition 4: Rule reachability of a packet 𝑘 to reach a rule 𝑟𝑖 in a policy requires that 𝑘

evaluates 𝑟𝑖’s preceding rules’ predicates to false and reaches the rule.

We may generate packets to reach and evaluate all the reachable rules in the policy. To

cover entities in a rule 𝑟𝑖, we explore a (path) constraint 𝑃𝑎𝑡ℎ(𝑟𝑖) that represents rule 𝑟𝑖

reachability. 𝑃𝑎𝑡ℎ(𝑟𝑖) is additionally used upon the preceding technique to cover target

entities by taking into account the impact of overlapping predicates in the preceding rules.

More specifically, 𝑃𝑎𝑡ℎ(𝑟𝑖) is represented as the form of ¬𝐶(𝑝1) ∧ ∧ ¬(𝑝𝑖−1) where

𝐶(𝑝1), ..., 𝐶(𝑝𝑖−1) are the predicate constraints in the preceding rules 𝑟1, ..., 𝑟i-1. Given the path

constraint 𝑃𝑎𝑡ℎ(𝑟𝑖), to cover the predicate 𝑝𝑖 in 𝑟𝑖, the generator constructs two constraints

𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ 𝐶(𝑝𝑖) (for the true branch of 𝑝𝑖 after reaching 𝑟𝑖) and 𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ ¬𝐶(𝑝𝑖) (for the

false branch of 𝑝𝑖 after reaching 𝑟𝑖). As the generator generates packets based on solutions of

constraints 𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ 𝐶(𝑝𝑖) and 𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ ¬𝐶(𝑝𝑖), the packets reach 𝑟𝑖 and exercise 𝑟𝑖’s

true and false branches, respectively.

Given the constraints, the generator generates packets based on solutions for the collected

constraints. This technique is useful to generate packets with high structural coverage by

taking into account the impact of the preceding rules of a target rule. However, this technique

requires higher analysis time (e.g., constraint-solving cost) than the two preceding

techniques.

 84

4) Packet Generation Technique based on Boundary Values: To better generate packets to

detect a fault in a firewall policy, our generator (based on boundary values) analyzes the

policy under test and generates packets based on boundary values by solving local constraints

(collected from the policy). The generated packets include boundary values, which are on the

Algorithm 1. Packet Generation Technique Based On Boundary Values.

 85

range boundaries (i.e., the smallest value and the largest value) of each field. Intuitively,

when a fault is injected to a firewall policy, the policy could reveal a faulty policy behavior.

The technique selects boundary values instead of random values from values satisfying

rule constraints. Boundary values are the values around the smallest and largest values of a

clause in a rule. For example, Figure 6.1 has a rule 𝑟1 that includes two fields 𝐹1 ∈ [2, 5] and

𝐹2 ∈ [5, 10]. For the smallest value 2 of 𝐹1, boundary values are 1 and 2 that evaluate 𝐹1 to

be false and true, respectively. For the largest value 5 of 𝐹1, boundary values are 5 and 6 that

evaluate 𝐹1 to be true and false, respectively. Similarly, we can select boundary values 4, 5,

10, and 11 for 𝐹2 ∈ [5, 10]. Given boundary values of 𝐹1 and 𝐹2, we can generate four

packets (1, 4), (2, 5), (5, 10), and (6, 11) to cover true and false branches of clauses in 𝑟1.

More specifically, the generator generates packets based on boundary values to cover true

and false branches of clauses in a rule 𝑟𝑖. Algorithm 1 presents our technique to generate

packets based on boundary values. 𝐶(𝑐𝑗) is the 𝑗th clause constraint in a rule. In the

algorithm, Lines 4-7 present that the generator generates a packet based on the smallest

boundary values 𝑆 to satisfy positive constraints (i.e., 𝐶(𝑐1) ∧ ∧ 𝐶(𝑐𝑛) for true branches

of all clauses) of each rule. Lines 8-15 present that the generator generates a packet based on

boundary values (next to 𝑆) to satisfy negative constraints (i.e., ¬𝐶(𝑐1) ∧ ∧ ¬𝐶(𝑐𝑛) for

false branches of all clauses) of each rule. Lines 16-19 present that the generator generates a

packet based on the largest boundary values 𝐿 to satisfy positive constraints of each rule.

 86

Lines 20-27 present that the generator generates a packet based on boundary values (next to

𝐿) to satisfy negative constraints of each rule.

The generator generates packets based on boundary values within solutions for the

collected constraints. This technique generates packets with high structural coverage (that

can be achieved based on local constraint solving) and fault detection with using boundary

values instead of any other values feasible to cover a target entity.

However, the packets generated based on boundary values of a rule’s constraints could not

reach the rule due to the impact of overlapping predicates in the preceding rules. To further

generate packets based on correctly identified boundary values, we leverage an existing

technique [36] to remove redundant overlapping predicates of firewall policies. In addition,

this redundancy removal technique helps reduce the number of generated packets based on

boundary values when redundant rules are removed and the number of rules is decreased.

6.3.2 Test Reduction

Manual inspection of a test suite (which is a set of packet-decision pairs) is time-

consuming and tedious. Therefore, we should reduce the size of the test suite for inspection

without incurring substantial loss in fault-detection capability. Since structural coverage is an

important factor for reflecting fault detection capability, we can reduce the size of the test

suite while keeping its coverage level.

 87

Given a packet set, we evaluate each packet set against the policy. We use a greedy

algorithm that removes a packet from the packet set if and only if evaluating the packet does

not increase any of the coverage metrics that are achieved by previously evaluated packets in

the packet set.

6.3.3 Measuring Fault-Detection Capability

Fault detection is a focus of any testing process. We aim to investigate the relationship

between firewall policy structural coverage achieved by a packet set and the packet set’s

fault-detection capability. We adopt mutation testing [2] to measure the fault-detection

capability of the packet set.

In policy mutation testing, we inject a fault into the original policy and thereby create a

mutant (faulty version). Injected faults can be of various types including simple mistakes

(e.g., incorrect decision in a rule) and complex configuration errors involving multiple rules.

The intuition behind mutation testing is that if a policy contains a fault, there will usually be

a set of mutants that can be detected (killed) only by a test packet that also detects that fault.

When different decisions are produced by the evaluations of the same test packet on the

original policy and its mutant, the test packet is adequate to detect the fault in the mutant and

we say that the mutant is “killed”. When various mutants are used, fault-detection capability

of a test suite is measured through the mutant-killing ratio, which is the number of mutants

killed by the test suite divided by the total number of mutants.

 88

Table 6.2 shows the chosen mutation operators for firewall policies and their descriptions.

Mutation operators may change predicates, clauses, or decisions of a policy. We classify

mutation operators into two groups: (1) rule-level mutation operators including 𝑅𝑃, 𝑅𝑃𝐹,

𝐶𝑅𝑂, 𝐶𝑅𝐷, 𝐴𝑅 and 𝑅𝑀𝑅 and (2) clause-level mutation operators including 𝑅𝐶𝑇, 𝑅𝐶𝐹,

𝐶𝑅𝑆𝑉, 𝐶𝑅𝐸𝑉, 𝐶𝑅𝑆𝑂, and 𝐶𝑅𝐸𝑂. The first group adds, removes, or modifies a rule in a

policy. The number of generated mutants with each mutation operator is equal to the number

of rules of the policy. The second group modifies a clause in a rule. The number of generated

mutants with each mutation operator is equal to the number of clauses.

However, syntactic changes of firewall policies cannot guarantee semantic changes of the

firewall policies. In other words, the mutant generator for each mutation operator may

generate semantically equivalent mutants that are mutants with the same behaviors as the

original policy; any test packet cannot kill an equivalent mutant. In order to guarantee

semantic changes of firewall policies after fault injection, we leverage an existing change-

impact analysis tool [34] on firewall policies to determine whether the modifications incur

any semantic changes. Given two policies 𝑝1 (an original policy) and 𝑝2 (its corresponding

mutant), change-impact analysis is to analyze what would be different policy behaviors

between 𝑝1 and 𝑝2.

6.3.4 Implementation

Our implementation (written in Java) includes four components: packet generation, packet

evaluation, packet reduction, and mutation generation. In the packet generation component,

 89

for packet generation based on local constraint solving, our packet generator selects random

values (that satisfy a given constraint) for each field value of a test packet. For packet

generation based on global constraint solving, we leveraged a theorem prover called Z3 [62].

The component statically analyzes and finds concrete solutions (i.e., numeric values), each of

which is transformed to a test packet. If no solution exists, Z3 outputs unsolvable. For packet

generation based on boundary values, our packet generator selects boundary values (that

Table 6.2. Mutation operators for policy mutation testing

Name Description

Rule Predicate True (𝑅𝑃𝑇) A rule is applied to all packets by modifying every clause
range to “*”.

Rule Predicate False (𝑅𝑃𝐹) A rule is never applied to any packet by modifying every
clause range to an invalid range (e.g., [10, 5]).

Rule Clause True (𝑅𝐶𝑇) A clause 𝑐𝑖 is applied to the field value 𝑓𝑣𝑖 of all packets by
modifying the clause range to “*”.

Rule Clause False (𝑅𝐶𝐹)
A clause 𝑐𝑖 is never applied to the field value 𝑓𝑣𝑖 of all
packets by modifying the clause range to an invalid range
(e.g., [10, 5]).

Change Range Start point
Value (𝐶𝑅𝑆𝑉)

The range in a clause is changed by modifying the start
point value randomly.

Change Range End point
Value (𝐶𝑅𝐸𝑉)

The range in a clause is changed by modifying the end point
value randomly.

Change Range Start point
Operator (𝐶𝑅𝑆𝑂)

The range in a clause is changed by increasing the start
point value by one.

Change Range End point
Operator (𝐶𝑅𝐸𝑂)

The range in a clause is changed by decreasing the end
point value by one.

Change Rule Order (𝐶𝑅𝑂) Rule order is changed by exchanging the locations of two
adjacent rules.

Change Rule Decision
(𝐶𝑅𝐷)

A rule’s decision is inverted (i.e., accept to discard or
discard to accept).

Add Rule (𝐴𝑅) add a randomly generated rule in a policy.
Remove Rule (𝑅𝑀𝑅) remove the rule in a policy.

 90

satisfy a given constraint) for each field value. In order to remove redundancy, we leverage

an existing tool [36] to detect redundancy in a firewall policy.

In the packet evaluation component, we developed a generic firewall evaluation engine to

simulate evaluating packets against the policy under test. The engine parses and stores rules

as a List. When evaluating a packet, the engine searches for the first-applicable rule and

outputs the rule’s decision. The engine also automatically compares the evaluated decisions

(on the policy and the mutated policies) and log “killed” mutant information if the decisions

are inconsistent.

In the packet reduction component, our packet reduction tool observes the details of

covered entities and their covering packets as well as the details of uncovered entities when

evaluating a packet set.

In the mutation generation component, our mutator automatically generates mutant

policies by modifying the policy under test using the selected mutation operator.

 Evaluation 6.4

We carried out our experiments on a laptop PC running Windows XP SP2 with 1G

memory and dual 1.86GHz Intel Pentium processor. Our packet generation tool generates

packet sets using the four techniques (random packet generation, packet generation based on

local constraint solving, one based on global constraint solving, and one based on boundary

 91

values). We use 𝑅𝑎𝑛𝑑, 𝐿𝑜𝑐𝑎𝑙, and 𝐺𝑙𝑜𝑏𝑎𝑙 to denote the packet sets generated by these first

three techniques, respectively. We use 𝐵𝑜𝑢𝑛𝑑1 and 𝐵𝑜𝑢𝑛𝑑2 to denote the packet sets

generated by the fourth technique on an original policy and its redundancy-removed policy,

respectively. For each policy, we measured the structural coverage of each packet set and

reduce the size of each packet set while keeping the same level of structural coverage. We

use 𝑅𝑎𝑛𝑑−, 𝐿𝑜𝑐𝑎𝑙−, 𝐺𝑙𝑜𝑏𝑎𝑙−, 𝐵𝑜𝑢𝑛𝑑1−, and 𝐵𝑜𝑢𝑛𝑑2− to denote the reduced packet sets,

respectively.

The mutator generates mutants (using the defined mutation operators) by seeding faults in

each policy (with one mutant including one seeded fault). For each policy and its mutants,

the evaluation engine checked if a mutant is “killed” and measured mutant-killing ratios of

each packet set (i.e., the number of mutants killed by the packet set divided by the total

number of mutants). We compare our proposed four packet-generation techniques in terms of

effectiveness to achieve structural coverage by the generated packet sets. In order to

investigate the effect of structural coverage on fault-detection capability, we aim to

demonstrate that packet sets with higher coverage can detect more faults than packet sets

with lower coverage. We have also conducted the same experiment with reduced packet sets

to further investigate whether this reduction significantly affects their fault-detection

capability.

 92

6.4.1 Instrumentation

We conducted experiments on 14 real-life firewall policies collected from a variety of

sources. For the local and global constraint-solving packet-generation techniques, we first

generated the following two constraints for each rule: (1) a constraint for evaluating every

clause in the rule to true and (2) a constraint for evaluating clauses, each of which is within

(but not equal to) its domain, to false and the remaining clauses (which subsume their

domains) to true. Because many clauses in firewall policies subsume their domains (e.g.,

clauses with “*” marks in Figure 2.2) and these clauses cannot be evaluated to false, we

evaluated such clauses to true in the second constraint as described earlier. The local

constraint-solving packet-generation technique generated 𝑛×2 packets. The global constraint-

solving packet-generation technique conjuncts the path constraint for a target rule with its

two preceding constraints to form a new constraint for solving. If the new constraint is found

to be infeasible (due to the impact of the path condition), this technique cannot generate

packets to satisfy such constraints and may include fewer than 𝑛×2 packets. The packet-

generation technique based on boundary values generated at most 𝑛×4 packets. The

technique removes duplicate packets to reduce the number of packets. Moreover, the

technique removes redundancy to help reduce the number of rules, which reflects the number

of packets.

6.4.2 Comparison of Structural Coverage

Table 6.3 shows the basic statistics of each firewall policy. Columns 1-3 show subject

names, numbers of rules (denoted by “#RL”), and generated mutants for each firewall policy

 93

Table 6.3. Experimental results on firewall policies.

Policy #RL #MT # Packets # Reduced packets

 Rand Local
Glob
al

Bou
nd1

Bou
nd2

Ran
d−

Loc
al−

Glob
al−

Bou
nd1−

Bou
nd2−

1 Firewall1 3 51 6 6 6 10 10 1 3 3 3 3
2 BACKUP 5 26 10 10 9 12 6 1 5 4 6 3
3 LAN-OUT 28 280 56 56 43 104 29 1 17 17 18 12
4 MAILOUT 18 206 36 36 26 64 22 1 10 9 12 9
5 MAIL 26 378 52 52 44 96 62 2 18 19 22 21
6 MAIL2 26 338 52 52 39 96 42 2 14 14 15 14
7 MAIL3 27 360 54 54 41 100 46 3 15 15 16 15
8 MAIL4 28 494 56 56 53 101 87 3 24 27 29 28
9 NEWS-OUT 14 185 28 28 25 48 34 2 11 11 13 12
10 NS3-OUT 17 179 34 34 29 56 22 1 11 13 14 10
11 RCPRO 23 233 46 46 34 77 30 3 14 11 15 11
12 RCPRO1 6 44 12 12 11 16 10 1 6 5 7 5
13 SSHOUT 16 152 32 32 23 54 18 1 8 7 9 8
14 WANIN 24 313 48 48 40 58 42 2 19 17 18 14

Average 18.6
231.

3 37.2 37.2 30.2 63.7 32.8 1.7 12. 12.2 14.0 11.7

(denoted by “#MT”). Column group “# Packets” shows the size of the generated packet sets

𝑅𝑎𝑛𝑑 𝐿𝑜𝑐𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2, respectively for each packet generation

technique. Columns 9-13 show the size of their reduced packet sets (denoted by 𝑅𝑎𝑛𝑑−,

𝐿𝑜𝑐𝑎𝑙−, 𝐺𝑙𝑜𝑏𝑎𝑙−, 𝐵𝑜𝑢𝑛𝑑1−, and 𝐵𝑜𝑢𝑛𝑑2-), respectively. Note that the last row shows the

average.

𝐺𝑙𝑜𝑏𝑎𝑙, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2 can achieve 100% of rule, predicate, and clause coverage

when global constraints can be feasible to be solved. Firewall policies may include rules,

 94

predicates, and clauses that are infeasible to reach. We consider only feasible constraints

when we measure structural coverage.

We observe that 𝐺𝑙𝑜𝑏𝑎𝑙 may contain fewer packets than 𝑅𝑎𝑛𝑑 and 𝐿𝑜𝑐𝑎𝑙. The reason is

that when solving a global constraint, the constraint can be infeasible to be solved and a

constraint solver returns a decision of unsolvable — no packets are generated based on the

decision. We observe that 𝐵𝑜𝑢𝑛𝑑2 contains fewer packets than 𝐵𝑜𝑢𝑛𝑑1 since the number of

rules in the policy under test is reduced after redundancy removal.

Figure 6.5, Figure 6.6, and Figure 6.7 show the rule, predicate, clause coverage metrics,

respectively, of each policy achieved by 𝑅𝑎𝑛𝑑, 𝐿𝑜𝑐𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2. We

observe that 𝑅𝑎𝑛𝑑 achieved the lowest structural coverage. The reason is that randomly

generated field values in generated packets have a low chance of satisfying constraints for a

rule, predicate, or clause.

We observe that 𝐺𝑙𝑜𝑏𝑎𝑙 achieves higher rule/predicate coverage than other packet sets.

This observation is consistent with our expectation described in Section 6.3. On average,

𝐺𝑙𝑜𝑏𝑎𝑙 is approximately 5% (2%) and 86% (35%) higher than 𝐿𝑜𝑐𝑎𝑙 and 𝑅𝑎𝑛𝑑 in terms of

rule (predicate) coverage. 𝐵𝑜𝑢𝑛𝑑1 achieves similar rule/predicate coverage with 𝐺𝑙𝑜𝑏𝑎𝑙.

𝐵𝑜𝑢𝑛𝑑2 achieves lower coverage than 𝐵𝑜𝑢𝑛𝑑1 because packets (generated based on a

redundancy-removed policy) are not suitable to achieve high structural coverage for its

original policy due to structure change after redundancy removal.

 95

We also observe that for clause coverage, 𝐺𝑙𝑜𝑏𝑎𝑙 achieves approximately similar

(sometimes less) coverage with 𝐿𝑜𝑐𝑎𝑙. As illustrated earlier, 𝐺𝑙𝑜𝑏𝑎𝑙 may include fewer

packets based on the constructed constraints. When a constraint is found to be infeasible, we

did not take into account other clause constraint combinations, which may be feasible to

solve for covering some of uncovered clauses. Instead, 𝐿𝑜𝑐𝑎𝑙, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2 may

cover some (but not all) target clauses among such uncovered clauses.

Furthermore, as our subjects have only a few or no overlapping predicates across rules,

the packet-generation technique based on local constraint solving could generate a packet set

Figure 6.5. Rule coverage achieved by each packet set.

 96

with almost the highest structural coverage. If predicates are more complex, we expect that

𝐺𝑙𝑜𝑏𝑎𝑙 shall perform better than 𝐿𝑜𝑐𝑎𝑙.

6.4.3 Comparison of Fault-Detection Capability

To find correlation between each structural coverage and mutation-killing ratios, we

classify mutation operations into two categories, rule-level and clause-level mutation

operators (explained in Section 6.3.3).

Figure 6.8 shows the average mutant killing ratios for all operators by policies. We

observe that the mutant killing ratios are similar over the generated packet sets and their

reduced packet set. For 𝑅𝑎𝑛𝑑, 𝐿𝑜𝑐𝑎𝑙, and 𝐺𝑙𝑜𝑏𝑎𝑙, the largest ratio difference between the

generated packet sets and their reduced packet set is less than 2%. 𝑅𝑎𝑛𝑑 and 𝑅𝑎𝑛𝑑− show

the lowest mutant-killing ratios. As 𝑅𝑎𝑛𝑑 contains a relatively large number of packets and

the lowest mutant-killing ratios, we observe that the size of a packet set is not highly

correlated with fault-detection capability. We also observe that 𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑1-) achieves

the highest mutant-killing ratios among the generated packet sets (the reduced packet sets).

While 𝐿𝑜𝑐𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙, and 𝐵𝑜𝑢𝑛𝑑1 achieve similar structural coverage, 𝐵𝑜𝑢𝑛𝑑1 achieves the

highest mutant-killing ratios. This result is expected as the evaluation of these packet sets can

involve more structural entities and boundary values than the other packet sets.

 97

Figure 6.6. Predicate coverage achieved by each packet set.

Figure 6.7. Clause coverage achieved by each packet set.

 98

We also observe that, in Figure 6.8 for most cases, mutant killing ratios are below 60%.

The reason for such low mutant killing ratios is that a policy can include various types of

faults denoted in Table 6.2 and our test packet generation could not find all possible changed

behaviors of a given policy. For a 𝐶𝑅𝑂-mutated policy, two rules swap locations. In order to

detect such a fault, packets should match intersections of two packets. However, our test

packet generation does not consider such intersections for test packet generation and cannot

easily detect such a fault.

We next present more details about mutants being killed. Figure 6.9 shows the average

mutant killing ratios for all policies by operators. For rule-level mutation operators, we

observe that 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙−, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑1− achieve highest mutant-killing ratios.

The reason is that the highest rule/predicate coverage achieved by 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙−, 𝐵𝑜𝑢𝑛𝑑1,

and 𝐵𝑜𝑢𝑛𝑑1− helps exercise more rules and detects faults in rules.

In Figure 6.9, we observe that our generated packet sets cannot detect any faults in the

policies with 𝐴𝑅 faults. 𝐴𝑅 simulates a forgotten rule in a given policy. The reason for such

low mutant-killing ratios is that our test packet generation is based on a set of rules in a given

policy and does not have any information of a forgotten rule to help detect its fault.

Moreover, randomly generating a packet for fault detection is not trivial as well due to a

large domain of a firewall policy representation.

 99

For example, an IP address field in a rule includes a subset of the IP address domain (i.e.,

[0, 28 − 1]), which is huge. There is a very low possibility that a randomly generated IP

address field value in a packet could detect such a fault. In other words, in order to detect a

fault in a rule, a packet matches not only an IP address field in the rule. The packet is

required to match other fields in the rule as well. A randomly generated packet may match

some of fields, especially when a field is a subset of a relatively small domain (e.g.,

Boolean). However, matching all of the fields in the rule with a randomly generated packet is

not trivial.

Among clause-level mutation operations, 𝐵𝑜𝑢𝑛𝑑1 and 𝐵𝑜𝑢𝑛𝑑1- achieves the highest

mutant-killing ratios over 𝑅𝐶𝑇, 𝑅𝐶𝐹, 𝐶𝑅𝐸𝑉, and 𝐶𝑅𝐸𝑂 mutated policies. As 𝐵𝑜𝑢𝑛𝑑1 and

Figure 6.8. Mutant-killing ratios for all operators by subjects.

 100

𝐵𝑜𝑢𝑛𝑑1- evaluate more clauses to true or false, the packet sets are more effective to detect

faults in a larger portion of clauses in the policy. 𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑1-) and 𝐵𝑜𝑢𝑛𝑑2 (𝐵𝑜𝑢𝑛𝑑2-)

detect more faults in 𝐶𝑅𝑆𝑉 and 𝐶𝑅𝑆𝑂 mutated policies. The reason is that a packet in

𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑1-) and 𝐵𝑜𝑢𝑛𝑑2 (𝐵𝑜𝑢𝑛𝑑2-) are based boundary values in the constraint.

Therefore, 𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑1-) and 𝐵𝑜𝑢𝑛𝑑2 (𝐵𝑜𝑢𝑛𝑑2−) are effective to detect faults caused

by the change of the boundary value of a clause over other packet sets.

 Limitation 6.5

Our approach is based on the concept of policy coverage, which helps test a policy’s

structural entities (i.e., rules, predicates, and clauses) to check whether each entity is

specified correctly. Our approach has the following limitation: our approach is designed for

Figure 6.9. Mutant-killing ratios for all subjects by operators.

 101

firewall policies that follow first-match semantic based on the order of rules. In this semantic,

each packet is evaluated to the decision of the first rule that the packet matches. For

example, if a firewall policy includes a rule that matches a packet, structural entities in

subsequent rules of the rule are not covered (i.e., evaluated to either true or false). Therefore,

our approach may not be suitable for firewall policies that follow semantics other than first-

match semantic for conflict resolution.

 Chapter Summary 6.6

We presented a systematic structural testing approach for firewall policies. We defined

three types of structural coverage for firewall policies: rule, predicate, and clause coverage

criteria. Among the four proposed packet generation techniques, the global constraint solving

technique often generated packet sets to achieve the highest structural coverage. Generally,

our experimental results showed that a packet set with higher structural coverage has higher

fault-detection capability (i.e., detecting more injected faults). Our experimental results

showed that a reduced packet set (maintaining the same level of structural coverage with the

corresponding original packet set) maintains similar fault-detection capability with the

original set.

 102

7 Automated Regression Test Selection for Regression Testing for
Security Policy Evolution

We present a safe-test-selection approach [29] for regression testing of security policies.

Among given initial test cases in access control systems under test, our approach selects and

executes only test cases that could expose different policy behaviors across multiple versions

of security policies.

 Introduction 7.1

With the change of security requirements, developers may modify policies. After the

modification, policy authors should verify the given system to determine that this

modification is correct and does not introduce unexpected behaviors (i.e., regression faults).

Consider that the system’s original policy P is replaced with a modified policy P′. The

system may exhibit different system behaviors affected by different policy behaviors (i.e.,

given a request, its evaluated decisions against P and P′, respectively, are different) caused

by the policy changes. Such different system behaviors are “dangerous” portions where

regression faults could be exposed.

Given existing test cases for P, a naive strategy of regression testing is to rerun all existing

system test cases. However, rerunning these test cases could be costly and time-consuming,

especially for large-scale systems. Instead of this strategy, developers can use regression-test

selection before execution of test cases. This regression-test selection selects and executes

 103

only test cases that may expose different behaviors across multiple versions of the policies.

This regression-test selection may require substantial cost to select and execute such system

test cases. If the cost of regression-test selection and selected test execution is smaller than

rerunning all of the initial system test cases, regression-test selection helps reduce overall

cost in validating whether the modification is correct. Safety is an important aspect in

regression-test selection. A safe approach of regression-test selection selects only test case

that may reveal a fault in a modified program [48].

In this chapter, we present a safe approach of regression-test selection to select a superset

of fault-revealing test cases, i.e., test cases that reveal faults due to the policy modification.

Our approach includes three regression-test selection techniques: the first one based

mutation analysis, the second one based on coverage analysis, and the third one based on

recorded request evaluation. The first two techniques establish correlation (i.e., of rules and

test cases.

The first technique selects a rule ri in P and creates P’s mutant M(ri) by changing ri’s

decision. This technique selects test cases that reveal different policy behaviors by executing

test cases on program code interacting with P and M(ri), respectively. Our rationale is that, if

a test case is correlated with ri, the test case may reveal different system behaviors affected

by modification of ri in P. However, this technique requires at least 2×n executions of each

 104

test case to find all correlations between test cases and rules where n is the number of rules in

P.

The second technique uses coverage analysis to establish correlations between test cases

and rules by monitoring which rules are evaluated (i.e., covered) for requests issued from

program code. Compared with the first technique, this technique substantially reduces cost

during the correlation process because it requires execution of each test case once.

The third technique captures requests issued from program code while executing test

cases. This technique evaluates these requests against P and P′, respectively. This technique

then selects only test cases that issue requests evaluated to different decisions.

 Example 7.2

Figure 7.1 shows an example policy specified in XACML. Due to space limit, we describe

only one rule in the policy in a simplified XACML format. Lines 3-12 describe a rule that

borrower is permitted to borroweractivity (e.g., borrowing books) book in working days.

 Regression Test Selection Approach 7.3

As manual selection of test cases for regression testing is tedious and error-prone, we have

developed three techniques to automate selection of test cases for security policy evolution.

Consider that program code interacts with a PDP loaded with a policy P. Let P′ denote P’s

modified policy. Let SP denote program code interacting with P. For regression-test selection,

 105

our goal is to select T′⊆ T where T is an existing test suite and T′ reveals different system

behaviors due to the modification between P and P′.

7.3.1 Test Selection based on Mutation Analysis

Our first technique establishes correlation between rules and test cases based on mutation

analysis before regression-test selection.

Correlation between rules and test cases. For rule ri in P, we create P’s rule-decision-

change (RDC) mutant M(ri) by changing ri’s decision (e.g., Permit to Deny). Figure 7.2

illustrates an example mutant by changing the decision of the first rule in Figure 7.1. The

technique next executes T on SP and SM(ri), respectively, and monitors evaluated decisions.

If the two decisions are different for t ∈ T, the technique establishes correlation between ri

and t.

Figure 7.1. An example policy specified in XACML.

 106

Regression-test selection. This step selects test cases correlated with rules that are

involved with syntactic changes between P and P′. In particular, this technique analyzes

syntactic difference, SDiff, between P and P′ (e.g., a rule’s decisions or locations are

changed) and identifies rules that are involved in the syntactic difference.

The drawback of this technique is that it requires the correlation step, which could be

costly in terms of execution time. This technique executes T for 2×n times where n is the

number of rules in P. Moreover, if the policy is modified, the correlation step should be done

again for the changed rules. As this regression-test selection is based on SDiff, this technique

may select rules that may not be involved with actual policy behavior changes (i.e., semantic

policy changes).

7.3.2 Test Selection based on Coverage Analysis

To reduce the cost of the correlation step in the preceding technique, our second technique

correlates only rules that can be evaluated (i.e., covered) by test cases.

Correlation between rules and test cases. Our technique executes test cases T on SP and

monitors which rules are evaluated for requests issued from the execution of test case t ∈ T.

Our technique establishes correlation between a rule ri and ti ∈ T if and only if ri is evaluated

for requests issued from PEPs while executing ti.

 107

Regression-test selection. We use the same selection step in the preceding technique. An

important benefit of this technique is to reduce cost in terms of execution of test cases. This

technique requires executing T only once. Similar to the preceding technique, this technique

finds the modified rules based on SDiff between P and P′, which may not be involved with

actual policy behavior changes.

7.3.3 Test Selection based on Recorded Request Evaluation

To reduce correlation cost in the preceding techniques, we develop a technique that does

not require correlation between test cases and rules. The third technique executes T on SP.

The technique captures and records requests Rrs issued from PEPs while executing T on SP.

For test selection, our technique evaluates Rrs against P and P′. Our technique selects test

case t ∈ T that issues requests engendering different decisions for P and P′.

Figure 7.2. An example mutant policy by changing the first rule’s decision (i.e., effect).

 108

This technique requires the execution of T only once. Moreover, this technique is useful

especially when polices are not available, but only evaluated decisions are available. As

different decisions are reflected by actual policy behavior changes (i.e., semantic changes)

between P and P′, this technique can select fault revealing test cases more effectively.

7.3.4 Safe Test-Selection Techniques

A test-selection algorithm is safe if the algorithm includes the set of every fault-revealing

test case that would reveal faults in a modified version. In our work, the first test-selection

technique is safe when a policy uses the first-applicable algorithm. If the policy uses other

combining algorithms, we use an approach [35] to convert the policy to its corresponding

policy using the first-applicable algorithm. The second and third techniques are safe for any

policies specified in XACML. Due to space limit, proof of safety of our three techniques is

presented on our project website.

 Evaluation 7.4

We conducted experiments for evaluating our proposed techniques of regression-test

selection. We carried out our experiments on a PC, running Windows 7 with Intel Core i5,

2410 Mhz processor, and 4 GB of RAM. As experimental subjects, we collected three Java

programs [45] each interacting with policies written in XACML. The Library Management

System (LMS) provides web services to borrow/return/manage books in a library. The

Virtual Meeting System (VMS) provides web conference services to organize online

meetings. The Auction Sale Management System (ASMS) provides web services to manage

 109

online auction. These three subjects include 29, 10, and 91 security test cases, which target at

testing security checks and policies. The test cases cover 100%, 12%, and 83% of 42, 106,

and 129 rules from policies in LMS, VMS, and ASMS, respectively.

Instrumentation. We implemented a regression simulator, which injects any number of

policy changes based on three predefined regression types. RMR (Rule Removal) removes a

randomly selected rule. RDC (Rule Decision Change) changes the decision of a randomly

selected rule. RA (Rule Addition) adds a new rule consisting of attributes randomly selected

among attributes collected from P. Combination of the three regression types can incur

various policy changes.

For our experiments, the regression simulator injects 5, 10, 15, 20, and 25 policy changes,

respectively. Our experiments are repeated 12 times to avoid the impact of randomness of

policy changes. We measure effectiveness and efficiency of our three techniques by

measuring test-reduction percentage, the number of fault-revealing test cases, and elapsed

time.

Research questions. We intend to address the following research questions:

• RQ1: How high percentage of test cases (from an existing test suite) is reduced by our test-

selection techniques?

 110

• RQ2: How high percentage of selected test cases can reveal regression faults?

• RQ3: How much time our techniques take to conduct test selection?

Results. To answer RQ1, we measure test-reduction percentage (%TR), which is the

number of selected test cases divided by the number of existing security test cases. Table 7.1

shows the number of selected test cases on average for each technique. “Regression - m”

denotes a group of modified policies where m is the number of policy changes on P. “#SMC”,

denotes the number of selected test cases on average by our two test-selection techniques,

one based on mutation analysis (TSM) and one based on coverage analysis (TSC). “#SR”

denotes the number of selected test cases on average by our technique based on recorded

request evaluation (TSR). We observe that TSR selected a fewer number of test cases than the

other two techniques. The reason is that, while TSM and TSC select test cases based on

syntactic difference, TSR selects test cases based on actual policy behavior changes (i.e.,

semantic policy changes). As illustrated in Section 7.3, syntactic difference may not result in

actual policy behavior changes.

Figure 7.3 shows the results of test-reduction percentage for our three subjects with

modified policies. LMS1 (LMS2), VMS1 (VMS2), and ASMS1 (ASMS2) show test-

reduction percentages for our three subjects, respectively, using TSM and TSC (TSR). We

observe that our techniques achieve 42%~97%of test reduction for our subjects with 5~25

 111

policy changes. Such test reduction reduces a substantial cost in terms of test-execution time

for regression testing.

To answer RQ2, we show the percentage of selected test cases that reveal regression

faults. Detection of regression faults is dependent on the quality of test oracles in test cases.

The test cases for our three subjects include test oracles, which check correctness of

decisions evaluated for all the requests issued from PEPs. Therefore, selected test cases by

TSR would all detect regression faults (caused by semantic policy changes). On average, the

percentages of selected test cases that reveal regression faults are 87%, 87%, and 100% for

our three techniques TSM, TSC, and TSR, respectively.

To answer RQ3, we compare efficiency by measuring elapsed time of conducting test

selection. Table 7.2 shows the evaluation results. For TSM and TSC, the results show the

elapsed time of correlation (“Cor”) and test selection (“Sel”), respectively. For TSR, the

results show the elapsed time of request recording (“Col”) and test selection (“Sel”). We

observe that correlation (11,714 milliseconds on average) of TSC takes substantially less time

Table 7.1. The number of selected test cases on average for each policy group.

Subject Regression-5 Regression-10 Regression-15 Regression-20 Regression-25
#SMC #SR #SMC #SR #SMC #SR #SMC #SR #SMC #SR

LMS 4.7 4.5 11.0 9.5 12.9 10.2 14.8 13.8 16.8 14.6
VMS 0.1 0.1 0.4 0.2 1.2 0.8 1.6 1.2 1.8 1.1
ASMS 6.6 5.9 10.9 10.0 16.4 14.8 21.3 19.3 22.4 17.2

Avg. 3.8 3.5 7.4 6.6 10.2 8.6 12.6 11.4 13.7 11.0

 112

than correlation (69,505 milliseconds on average) of TSM. The reason is that TSC executes

the existing test cases only once but TSM executes the existing test cases for 2×n times where

n is the number of rules in a policy under test. For total elapsed time by each technique, we

observe that the total elapsed time of TSR is 43 and 8 times faster than that of TSM and TSC,

respectively.

Threats to validity. The threats to external validity primarily include the degree to which

the subject programs, the policies, and regression model are representative of true practice.

These threats could be reduced by further experimentation on a wider type of policy-based

software systems and a larger number of policies. The threats to internal validity are

Figure 7.3. LMS1 (LMS2), VMS1 (VMS2), and ASMS1 (ASMS2) show test-

reduction percentages for our subjects with modified policies, respectively, using
TSM and TSC (TSR). Y-axis denotes the percentage of test reduction. X-axis denotes

the number of policy changes on our subjects.

 113

instrumentation effects that can bias our results such as faults in the PDP, and faults in our

implementation.

 Chapter Summary 7.5

Our approach could be practical and effective to select test cases for policy-based software

systems interacting not only with XACML policies but also with policies specified by other

policy specification languages (e.g., EPAL). We make two key contributions. First, we

proposed three automatic test-selection techniques in the context of policy evolution. Second,

we conducted experiments to assess the effectiveness and efficiency of our three test-

selection techniques.

Table 7.2. Elapsed time (millisecond) for each test-selection technique.

Subject
TSM TSC TSR

Cor Sel Cor Sel Col Sel
LMS 70,496 4 5,214 4 2,096 2
VMS 19,771 1 7,506 1 1,873 2
ASMS 118,248 11 22,423 11 1,064 21
Average 69,505 5 11,714 5 1,678 8

 114

8 Conclusions and Future Work

In this chapter, we present conclusions and future work.

 Conclusions 8.1

Faults (i.e., misconfigurations) in security policies may result in tragic consequences such

as disallowing an authorized user to access her/his resources and allowing malicious users to

access critical resources. Therefore, to improve the quality of security policies in terms of

policy correctness, policy authors must conduct rigorous testing and verification.

In this dissertation, we proposed approaches that improve the quality of security policies.

We first present approaches that mine patterns from security policies. Our approaches

collected common patterns such that anomalies of those patterns are inspected to determine

whether these anomalies expose faults. In addition, we conducted an initial empirical study

of policy evolution to answer questions such as how security policies evolve. We conducted

two studies:

• Our first study mines patterns with regards to the correlations of attributes showed. Given

these mined patterns, our approach has more than 30% higher fault-detection capability

than that of the previous related approach, which mines properties based on a

classification algorithm. Our results showed that we could reduce the number of

 115

anomalies (that could detect potential faults) for inspection while maintaining the similar

level of fault detection capabilities.

• In our second study, we empirically observed that ACPs continue to increase and some of

evolution patterns appear to occur more frequently than other evolution patterns. This

observation could help build a prediction model for future policy changes with a

precision of 50-80%, a recall of 70-90% and an F-measure of 65-75%.

We next developed a systematic structural testing approach based on well-established

testing techniques in software engineering. We defined three types of structural coverage for

firewall policies: rule, predicate, and clause coverage criteria. We developed automated test-

packet generation for achieving high structural coverage. In general, our evaluation results

showed that a packet set with higher structural coverage has higher fault-detection capability

(i.e., detecting more injected faults).

We developed a test-selection approach, which selects only system test case that may

reveal regression faults caused by policy changes. We showed show that our test-selection

approach reduces a substantial number of system test cases efficiently.

 Future Work 8.2

While we introduced several approaches that improve the quality of security policies by

helping detecting faults, we do not claim that our approaches could detect every fault in

security policies. Future research could improve the effectiveness of our approaches to help

 116

detect other types of faults. For example, our mining approach (in Chapter 5) may detect

suspicious activities of policy authors based on frequently used permissions. If policy authors

specify rarely used permissions (e.g., “unlink”) before frequently used permissions (e.g.,

“read”), our approach may give alerts to policy authors for inspection. To reduce false-

positives, we could consider cases such that policy authors may use rarely used permissions,

which may not be faulty to reduce human efforts. In addition, we consider patterns (in

Chapter 4) based on resource, subject-resource, or action-resource attribute values. We could

consider other types of patterns for improving fault-detection capabilities.

Second, our approach could be practical and effective to detect real faults in security

policies. Future work could empirically investigate how our approaches are effective in terms

of fault-detection capability. Real faults may consist of one or several simple faults as

described in our evaluation, and may cause a policy’s behaviors to deviate from the policy’s

normal behaviors. Detecting real faults often depend on detecting such simple faults, which

could be detected effectively by our proposed approaches. Empirical studies could

demonstrate the effectiveness of our research approaches.

Third, our work (in Chapter 5) showed that while security by default could be the most

secure setting, policy authors continue to change permissions of ACPs in practice. Future

work could be a comprehensive study of regressions faults in security policies. Our approach

(in Chapter 7) could aid policy authors avoid regression faults that could happen during ACP

evolution. However, we do not know how and why policy authors make regression faults. If

 117

we better answer these questions, we could improve our approaches to detect regression

faults.

 118

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large

databases. In Proc. 20th International Conference on Very Large Data Bases, pages 487–

499, 1994.

[2] P. Ammann, J. Offutt, and H. Huang. Coverage criteria for logical expressions. In Proc.

International Symposium on Software Reliability Engineering, pages 99–107, 2003.

[3] A. Andress. Surviving security: how to integrate people, process, and technology. CRC

Press, 2003.

[4] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed firewalls. In

Proc. 2004 IEEE Conf. on Communications, pages 2605–2616, 2004.

[5] L. Bauer, L. Cranor, R. W. Reeder, M. K. Reiter, and K. Vaniea. Real life challenges in

access-control management. In Proc. 2009: Conference on Human Factors in Computing

Systems, pages 899–908, 2009.

[6] L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy misconfigurations

in access-control systems. In Proc. 13th ACM Symposium on Access control Models and

Technologies, pages 185–194, 2008.

[7] P. E. Black, V. Okun, and Y. Yesha. Mutation operators for specifications. In Proc. 2000

IEEE International Conference on Automated Software Engineering, pages 81–88, 2000.

[8] C. Borgelt. Apriori - Association Rule Induction/Frequent Item Set Mining.

http://www.borgelt.net/apriori.html/, 2009.

 119

[9] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a taxonomy of

software change: Research Articles. J. Softw. Maint. Evol., vol. 17, no. 5, pages 309–332,

2005.

[10] B. Caswell, and B. Jay. Snort 2.1 intrusion detection. Syngress, 2004.

[11] P. H. Chia, Y. Yamamoto, and N. Asokan. Is this app safe?: a large scale study on

application permissions and risk signals. In Proc. 21st international conference on World

Wide Web, pages 311–320, 2012.

[12] J. Chomicki, L. Jorge, and N. Shamim. Conflict resolution using logic programming.

IEEE Transactions on Knowledge and Data Engineering, 15.1, pages 244-249, 2003.

[13] N. Damianou , N. Dulay , E. Lupu, and M. Sloman. The Ponder policy specification

language. In Proc. International Workshop on Policies for Distributed Systems and

Networks, pages 18–38, 2001.

[14] T. Das, B. Ranjita, and N. Prasad. Baaz: A System for Detecting Access Control

Misconfigurations. In Proc. USENIX Security Symposium, pages 161-176, 2010.

[15] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: help for

the practicing programmer. IEEE Computer, vol. 11, no. 4, pp. 34–41, 1978.

[16] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test cases for

regression testing. In Proc. ACM SIGSOFT International Symposium on Software

Testing and Analysis, pages 102–112, 2000.

[17] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin, C. Pham, and S. Li. An

automated framework for validating firewall policy enforcement. In Proc. 2007 IEEE

 120

International Workshop on Policies for Distributed Systems and Networks, pages 151–

160, 2007.

[18] T. Erl, SOA Design Patterns, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall

PTR, 2009.

[19] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed

NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4, pages 224–

274, 2001.

[20] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and

change-impact analysis of access-control policies. In Proc. 27th International Conference

on Software Engineering, pages 196–205, 2005.

[21] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An empirical

study of regression test selection techniques. ACM Trans. Softw. Eng. Methodol., pages

184–208, 2001.

[22] D. Hoffman and K. Yoo. Blowtorch: a framework for firewall test automation. In

Proc. 2005 IEEE/ACM international Conference on Automated Software Engineering,

pages 96–103, 2005.

[23] H. Hu, and G. Ahn. Enabling verification and conformance testing for access control

model. In Proc. 13th ACM symposium on Access control models and technologies,

pages 195-204, 2008.

[24] V. Hu, D. F. Ferraiolo and D. R. Kuhn. Assessment of access control systems. US

Department of Commerce, National Institute of Standards and Technology, 2006.

 121

[25] G. Hughes and T. Bultan. Automated verification of access control policies.

Technical Report 2004-22, Department of Computer Science, University of California,

Santa Barbara, 2004.

[26] J. Hwang, T. Xie, F. Chen, and A. X Liu. Systematic structural testing of firewall

policies. In Proc. 2008 IEEE Symposium on Reliable Distributed Systems, pages 105-

114, 2008.

[27] J. Hwang, T. Xie, F. Chen, and A. X Liu. Systematic structural testing of firewall

policies. Network and Service Management, IEEE Transactions on, 9(1), 1-11, 2012.

[28] J. Hwang, T. Xie, V. Hu, and M. Altunay. Mining likely properties of access control

policies via association rule mining. In Proc. 2010 Data and Applications Security and

Privacy XXIV, pages 193-208, 2010.

[29] J. Hwang, T. Xie, D. El Kateb, T. Mouelhi, and Y. Le Traon. Selection of regression

system tests for security policy evolution. In Proc. 27th IEEE/ACM International

Conference on Automated Software Engineering, pages 266-269, 2012.

[30] J. Jürjens and G. Wimmel. Specification-based testing of firewalls. In Proc. 2001

International Andrei Ershov Memorial Conference on Perspectives of System Informatics,

pages 308–316, 2001.

[31] C. F. Kemerer and S. Slaughter. An empirical approach to studying software

evolution. IEEE Transactions on Software Engineering, vol. 25, no. 4, pages 493–509,

1999.

 122

[32] M. Koch, L. V. Mancini, and F. P. Presicce. On the specification and evolution of

access control policies. In Proc. 6th ACM symposium on Access control models and

technologies, pages 121–130, 2001.

[33] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski,. Metrics

and laws of software evolution - the nineties view. In Proc. 4th International Symposium

on Software Metrics, IEEE Computer Society, 1997, pages 20–32, 1997.

[34] A. X. Liu. Change-impact analysis of firewall policies. In Proc. 2007 European

Symposium Research Computer Security, pages 155–170, 2007.

[35] A. X. Liu, F. Chen, J. Hwang, and T. Xie. XEngine: A fast and scalable XACML

policy evaluation engine. In Proc. International Conference on Measurement and

Modeling of Computer Systems, pages 265–276, 2008.

[36] A. X. Liu and M. G. Gouda. Complete redundancy detection in firewalls. In Proc.

2005 Annual IFIP Conference on Data and Applications Security, pages 196–209.

[37] A. X. Liu, M. G. Gouda, H. H. Ma, and A. H. Ngu. Non-intrusive testing of firewalls.

In Proc. 2004 International Computer Engineering Conference, pages 196–201, 2004.

[38] S. W. Lodin and C. L. Schuba. Firewalls fend off invasions from the net, IEEE

Spectrum, vol. 35, no. 2, pages 26–34, 1998.

[39] M. R. Lyu and L. K. Y. Lau. Firewall security: policies, testing and performance

evaluation. In Proc. International Conference on Computer Systems and Applications,

pages 116–121, 2000.

 123

[40] E. Martin, J. Hwang, T. Xie, and V. Hu. Assessing quality of policy properties in

verification of access control policies. In Proc. Annual Computer Security Applications

Conference, pages 163–172, 2008

[41] E. Martin and T. Xie. A fault model and mutation testing of access control policies. In

Proc. International Conference on World Wide Web, pages 667–676, 2007.

[42] E. Martin and T. Xie. Inferring access-control policy properties via machine learning.

In Proc. 7th IEEE Workshop on Policies for Distributed Systems and Networks, pages

235–238, 2006.

[43] E. Martin, T. Xie, and T. Yu. Defining and measuring policy coverage in testing

access control policies. In Proc. International Conference on Information and

Communications Security, pages 139–158, 2006.

[44] A. Mockus and L. G. Votta. Identifying reasons for software changes using historic

databases. In Proc. International Conference on Software Maintenance, pages 120-130,

2000.

[45] T. Mouelhi, Y. Le Traon, and B. Baudry. Transforming and selecting functional test

cases for security policy testing. In Proc. 2nd International Conference on Software

Testing, Verification, and Validation, pages 171–180, 2009.

[46] A. Pretschner, F. Sch¨utz, C. Schaefer, and T. Walter. Policy Evolution in Distributed

Usage Control. Electron. Notes Theor. Comput. Sci., vol. 244, pages 109–123, 2009.

[47] M. Roesch. Snort: Lightweight Intrusion Detection for Networks. In Proc. Large

Installation System Administration, vol. 99, pages 229-238, 1999.

 124

[48] G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques. IEEE

Trans. Softw. Eng., 22:529–551, 1996.

[49] P. Samarati and S. Vimercati. Access control: Policies, models, and mechanisms.

Foundations of Security Analysis and Design. Springer Berlin Heidelberg, pages 137-196,

2001.

[50] R. S. Sandhu and E. J. Coyne. Role-based access control models. Computer 29.2,

pages 38-47, 1996.

[51] H. Seltman. Experimental design and analysis. Pittsburgh, PA: Carnegie Mellon

University, 2012.

[52] S. Smalley. Configuring the SELinux policy. NAI Labs Rep: 02-007, 2002.

[53] S. D. Stoller, P. Yang, C. amakrishnan, and M. I. Gofman. Efficient policy analysis

for administrative role based access control. In Proc. 14th ACM Conference on

Computer and Communications Security, pages 445–455, 2007.

[54] J. Trent. Managing access control complexity using metrices. In Proc. 6th ACM

symposium on Access control models and technologies, pages 131-139, 2001

[55] D. Truog, J. Bernoff, T. Ritter, and H. Goldman. Centralize Access Control Now.

Cambridge (MA): Forrester Research, 1999.

[56] J. Vaidya, A. Vijayalakshmi, and G. Qi. The role mining problem: finding a minimal

descriptive set of roles. In Proc. 12th ACM symposium on Access control models and

technologies, pages 175-184, 2007.

 125

[57] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Permission evolution in the

Android ecosystem. In Proc. 28th Annual Computer Security Applications Conference,

pages 31–40, 2012.

[58] G. Wimmel and J. Jürjens. Specification-based test generation for security-critical

systems using mutations. In Proc. 2002 International Conference on Formal Engineering

Methods, pages 471–482, 2002.

[59] A. Wool. A quantitative study of firewall configuration errors, Computer, vol. 37, no.

6, pages 62–67, 2004.

[60] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra. FIREMAN: a

toolkit for FIREwall Modeling and Analysis. In Proc. 2006 IEEE Symposium on

Security and Privacy, pages 199–213, 2006.

[61] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy.

ACM Comput. Surv., vol. 29, no. 4, pages 366–427, 1997.

[62] Constraint Solver Z3, http://research.microsoft.com/projects/z3/, 2014

[63] Example Policies.

http://www.cs.brown.edu/research/plt/software/margrave/versions/01-

01/examples/college, 2014

[64] Koji, http://arm.koji.fedoraproject.org/koji/packageinfo?packageID=8645, 2013

[65] Virtual Computing Lab, http://vcl.apache.org/, 2013

[66] Margrave Policy Analysis Tool, http://www.margrave-tool.org/, 2014

 126

[67] A. Oldehoeft, Foundations of a Security Policy for Use of the National Research and

Educational Network, NIST special publication 4734, 1992.

[68] OASIS eXtensible Access Control Markup Language (XACML), http://www.oasis-

open.org/committees/xacml/, 2013.

[69] Ponder2 Policy Analysis Tool, http://ponder2.net/, 2014

[70] Ponemon Institute, 2010 Access Governance Trends Survey

[71] Security and Privacy Controls for Federal Information Systems and Organizations

NIST Special Publication 800-53, 2013

[72] SELinux Reference Policy Repository, https://git.fedorahosted.org/git/selinux-

policy.git, 2013

[73] Snort Rules, http://www.snort.org/snort-rules/, 2013

[74] A. H. Watson, T. J. McCabe, and D. R. Wallace. Structured testing: A testing

methodology using the cyclomatic complexity metric. NIST special Publication 500, no.

235, pages 1-114, 1996.

