
ABSTRACT 

LE, QUANG VAN. Relationship between Microstructure and Mechanical Properties in 
Bi2Sr2CaCu2Ox Round Wires Using Peridynamic Simulation. (Under the direction of Justin  
Schwartz). 

Bi2Sr2CaCu2Ox (Bi2212) superconducting round wires are a well-known high temperature 

superconductor due to their isotropic properties, high fill factor, and ease of winding. There 

have been extensive experiments to improve the wires’ performance, yet there is little 

understanding of how the internal microstructure of the wires influences the mechanical 

behavior. This is due to the multiple phases and their complex arrangements inside the wires, 

making it challenging for traditional approaches to investigate and simulate the wires’ 

behavior. The peridynamic theory, using non-local interactions and integral constitutive 

equations, can provide a solution to these challenges from the Bi2212 wires microstructure. 

To reduce computation cost, in this study the peridynamic formulas are developed for 2D 

simulations. Dynamic relaxation and energy minimization methods to find the steady-state 

solution are used and compared. The model shows m-convergence and δ-convergence 

behaviors when m increases and δ decreases. Model verification shows close quantitative 

matching to finite element analysis results. The 2D peridynamic model is then used to 

simulate mechanical behavior of Bi2212 wires. Various types of natural and artificial defects 

are simulated and compared quantitatively. Both defect geometry and physical characteristics 

are investigated to study their influence on the stress concentration in the material. The 

results show significant stress concentration around defects and protruding growths of the 

Bi2212 phase.  
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1. INTRODUCTION 

1.1. Superconductors 

Superconductors are materials that can carry an electrical current without generating heat. 

This is a desired property for applications where reducing energy waste or high current 

density is critical; since a resistive conductor with a high current will generate much heat and 

may damage the system. Superconductors show promises in applications using high field 

magnets such as maglev trains, magnetic resonance imaging, nuclear magnetic resonance, or 

in power transfer and storage applications. Other applications include digital circuits and 

sensitive magnetic sensors. 

Superconductivity was first discovered by Heike Kamerlingh Onnes in 1911 in some pure 

metals such as mercury, tin, and lead. These metals have very low critical temperature above 

which superconductivity disappears: mercury at 4.2K, tin at 3.7K and lead at 7.2K. Other 

than temperature, superconductivity will also disappear if applied magnetic field is higher 

than a critical value. Also, below critical temperature and critical magnetic field, there is a 

maximum limit of electric current density a superconductor can carry, which is called critical 

current density. As Figure 1.1 shows, this critical current density decreases with increase of 

either temperature or magnetic field. Another feature of these superconductors is when they 

are in superconducting state, all outside magnetic field is expelled from the material. This 

effect is called Meissner effect and should not be confused with the Faraday shield effect of 

perfect conductors.  
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Figure 1.1. Superconductivity surface: superconductivity exists only when temperature, 

magnetic field, and current density all smaller than critical values. 

 
 
 

After the discovery in mercury, tin, and lead, superconductivity was discovered in most other 

elements as well.  Most pure elements (except vanadium, technetium and niobium) have type 

1 superconductivity, in these superconductors the Meissner effect is an all or nothing 

phenomenon. If the magnetic field is less than critical value, no magnetic flux penetrates the 

material. But if the magnetic field is higher than that critical value, superconductivity is lost 

totally and the magnetic field penetrates the material completely. 

1.2. High Temperature Superconductors 

In 1930, another type of superconductivity was discovered by DeHaas and Voogd in PbBi 

alloy. Unlike type 1 superconductor, in PbBi there are two critical magnetic fields Hc1 and 

Hc2. Below the magnetic field Hc1, all magnetic field is totally expelled from the conductor, 

similar to type 1 superconductors. But when magnetic field is increasing from Hc1 to Hc2, the 
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magnetic field does not penetrate the whole material immediately. It instead penetrates the 

material in quantized fluxes called vortices. These vortices comprise some but not all of the 

conductor’s volume, thus superconductivity still remains. The superconductivity is only lost 

when magnetic field reaches the value Hc2. This behavior is called type 2 superconductivity. 

Most of type 2 superconductors that have been found are metallic compounds and alloys.  

High temperature superconductors have advantages of lower cooling cost and higher critical 

current density. Among them, Bi2212 and YBCO are 2 most well-known high temperature 

superconductors. Figure 1.2 shows Bi2212 and YBCO have significantly higher critical 

current densities than others at high magnetic field. YBCO material has higher critical 

current density but it requires to be biaxially textured to be able to conduct the current. 

Consequently, YBCO must be made in tape form, while Bi2212 can be made in wire form 

which has higher fill factor than YBCO. In fact, Bi2212 is currently the only superconducting 

material that can be made in wires. A high fill factor is essential in applications that require 

high effective critical current density such as high field magnets.  
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Figure 1.2. Engineering critical current density versus magnetic field for low 

temperature superconductor wires, high temperature superconductor wires and tapes 

and MgB2 wires [1]. 

 
 
 

1.3. Bi2212 Round Wires 

As mentioned previously, the Bi2212 superconductor is a promising material due to high 

critical current density and the ability to conduct current when made in wire form. However, 

the superconductor is brittle and has to be reinforced with silver and silver magnesium. The 

conductor’s performance is sensitive to the heat treatment parameters, and there is a wide 

variation of the outcome. Figure 1.3 shows the statistical analysis of the Bi2212 round wire 



5 

 
 

conductor reliability as a function of critical current. The statistical approach is needed is 

because even individual samples of the same heat treatment batch, under the same 

mechanical loading condition, usually have different critical currents. On Figure 1.3 the 

reliability at a certain value of Ic on the graph is the probability a sample will have the current 

of at least that Ic value or higher. By definition, this probability is equal to 1 at zero critical 

current because every sample has a critical current of at least zero.  

 
 
 

 

Figure 1.3. Reliability vs. critical current in Bi2212 round wires [2]. 
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The reliability does not necessarily decrease immediately as Ic increases, in fact for samples 

under no mechanical loading (strain equal to zero), reliability stay constantly equal to one 

until Ic reaches the critical value γ = 579A. This means at no load condition, it is certain that 

every sample has critical current of at least 579A or higher. Value of γ however decreases 

markedly with loading strain: when strain increases from 0% to 0.25%, γ decreases from 

579A to 448.1A. When strain increases to 0.40%, γ approaches 0A. This means at strain of 

0.40%, there is no certainty that a sample will carry a non-zero superconducting current. 

From this statistical analysis, one can see that the current carrying performance depends not 

only on the loading condition but also on individual samples. One question remains: how do 

samples have such large variation in performance even when they undergo the same 

manufacturing processes?  

One possible explanation is the variation in the electrical performance is caused by the 

variation in the micro-structure of the superconducting wire, which in turn is highly sensitive 

to heat treatment parameters. Powder-in-tube method is used in the manufacturing of the 

Bi2212 wires, in which Bi2212 powder is filled in silver tubes, and then the tubes are drawn 

to create the untreated or “green” wires. The green wires become superconducting after they 

have gone through a heat treatment process to create connected, solid Bi2212 filaments from 

the initial powder. As Figure 1.4(a) shows, there are hundreds of untreated Bi2212 filaments 

inside a green wire and initially, they are all separated from each other. However, Figure 

1.4(b) shows after a heat treatment, there are voids, multiple phases and intergrowth between 

the filaments.  
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Figure 1.4. Cross-sectional scanning electron microscopy images of Bi2112 round wires: 

(a) Before heat treatment, and (b) After heat treatment. 

 
 
 

Various heat treatment processes have been implemented and optimized to achieve higher 

critical current density via improving the microstructure of the conductor. The most well-

known processes in treating the wires are partial-melt, split-melt, and saw-tooth process [3, 

4]. Figure 1.5 shows the heat treatment schematics of these processes. In a partial-melt heat 

treatment process, the Bi2212 powder is heated above its peritectic temperature. This melts 

the Bi2212 powder to liquid and also creates other phases such as alkaline earth cuprate 

(AEC) and copper-free phases [5]. After that, a slow cooling to room temperature process 

will allow the Bi2212 phase to re-crystalize from the melt to create connected, 

superconducting filaments.  A split-melt heat treatment process is basically a partial melt heat 

treatment process that is split into two heat treatment steps. 
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Figure 1.5. Temperature–time schematics (not to scale) of the heat treatment profiles 

for (a) partial-melt processing, (b) split-melt processing, and (c) saw-tooth processing 

[3] . 

 
 
 

It has been found the split melt process results in 40% increase in critical current in Bi2212 

round wires, compared the to the partial melt process [6]. While study [3] shows that a saw-

tooth heat treatment process can increase the critical current density 120% at 5 Tesla 

magnetic field and 70% at self-field, compared to the partial melt heat treatment process. 
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However, all heat treatment processes are often not 100% effective. As mentioned above, 

other than the Bi2212 superconducting phase and silver, there are also remaining non-

superconducting phases and bubbles/voids. Limiting the amount of these phases is often the 

underlying mechanism for improving the material’s performance. 

Bubbles first come from the porosity in the Bi2212 powder, comprising typically about 30% 

to 40% of the total volume of the powder [5]. In the heat treatment process, impurities and 

even oxygen from the Bi2212 phase could evaporate thus introduce more gas into the wires. 

The result is after a heat treatment, there can still be large volume percentage of the wires 

that is made of bubbles. Figure 1.6(a) shows a tomographic image where there is still 

significant amount of porosity still inside a wire after a heat treatment. Figure 1.6(b) shows 

the scanning electron microscopy image of a single filament inside the wire. The filament is 

cut out to show a hollow core inside the filament.  
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Figure 1.6. (a) Tomographic image of a heat treated wire, dark gray areas are bubbles. 

(b) Scanning electron microscopy image of a cut-out Bi2212 filament, showing the 

hollow core inside it [5]. 

 
 
 

Bubbles play an important role in the wires’ electrical performance. Especially when they 

become comparable in size to the filaments’ diameters as shown in Figure 1.6(b), they can 

significantly impact or completely block the current flow in the filaments. Thus reducing 

either the bubbles’ size or volume fraction could result in performance improvement. The 

study [7] shows by cold iso-static pressing at the pressure of 2 GPa on the green wires before 

heat treatment, critical current density can be more than doubled compared to the regular heat 

treatment without the pressing. The study shows that, after going through the same heat 

treatment profile with maximum temperature of 885oC then tested 4.2K and 5T magnetic 

field, the wire without iso-static pressing achieves a critical current density of 1332 A/mm2
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while the wire with iso-static pressing achieves 3661 A/mm2. The reason why the cold 

pressing results in such improvement is it densifies the (untreated) wires, resulting in lower 

porosity or the volume fraction of the bubbles in the wires. Also, in the study, SEM image 

analysis of the quenched samples shows a change in shape and size of the bubbles. The wires 

without cold pressing have elongated bubbles with length about 2-3 times their diameters, 

while the wires undergoing the cold pressing have smaller and more rounded bubbles.  

Similar to bubbles, non-superconducting phases also limit or block the current flow inside the 

Bi2212 filaments. Thus by reducing their volume fractions, one could also improve the 

performance of the wires. One of the methods of doing so is the saw-tooth heat treatment 

process [3]. In the process, by the multiple heating and cooling cycles, more nucleation sites 

for growing the superconducting phase Bi2212 are formed compared to just one cycle as in 

the split-melt process. This results in a higher percentage of the superconducting phase 

Bi2212, and conversely, lower percentages of other non-superconducting phases. Figure 

1.7(a) shows an example of a filament where a significant fraction is the non-

superconducting phase Bi2201 (light gray) instead of the desired superconducting phase 

Bi2212 (dark gray). Such filament would not conduct current well. While Figure 1.7(b) 

shows a dense filament comprised of mostly the Bi2212 phase. It is found in [3] that more 

filaments of the type in Figure 1.7(b) result in higher overall performance of the wires. 
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Figure 1.7. Cross-sectional SEM images of (a) filament with significant amount of 

Bi22012 phase and (b) filament consisting mostly Bi2212 phase [3]. 

 
 
 

Another important microstructure feature in Bi2212 round wires is the intergrowths between 

the Bi2212 filaments. In the study [4], it is found that by varying the split and the return 

temperatures of the split-melt process, there’s a significant change in microstructure of the 

wires and consequently, the electrical performance. Specifically, the amount of intergrowths 

between the superconducting filaments is highly dependent on both the split and the return 

temperatures. Figure 1.8 (a) shows an example cross-sectional SEM image of the wire, while 

Figure 1.8(b) shows the transformed image of Figure 1.8(a) by analyzing and marking the 

superconducting areas different colors by different thicknesses. The red color corresponds to 

areas with half-width from 0 to 1 micron, yellow: 1 to 2 microns, green: 2 to 3 microns, blue: 

3 to 4 microns, black: larger than 4 microns.  
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Figure 1.8. (a) Original cross-sectional SEM image analysis of Bi2212 wire showing 

intergrowths between the filaments. (b) Image analysis: bridges with different widths 

are marked with different colors from red to blue. 

 
 
 

By analysis of SEM images of multiple wires then matching the results with heat treatment 

profiles, relationships between bridges growth and heat treatment temperatures are 

established [4]. Figure 1.9(a) shows the correlation between the split temperature and the 

volume percentage of bridges/intergrowths. Similarly, Figure 1.9(b) shows the correlation 

between return temperature and the bridges volume percentage. In the range of the 

temperatures investigated, there is a positive relation between the temperatures and the 

bridges volume fraction. 
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Figure 1.9. (a) Relationship between  split temperature and bridge size and bridge area 

percentage. (b) Relationship between return temperature and bridge size and bridge 

area percentage [4]. 

 
 
 

Also, matching the image analysis results with data on critical current densities of the wires 

shows the strong correlation between bridge percentage and electrical performance. More 

specifically, Figure 1.10 shows that when the bridges are categorized by sizes, the larger 

bridges (Figures 1.10(c) and 1.10(d)) have a strong positive correlation with effective critical 

current density.  
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Figure 1.10. Relationship between 4.2 K, self-field Je, bridge size and bridge area 

percentage (of the non-Ag area) with bridges size, (a) 0–1 μm; (b) 1–2 μm; (c) 2–3 μm 

and (d) 3–4 μm [4]. 

 
 
 

One possible explanation for this behavior is the intergrowths enhance the connectivity of the 

Bi2212 filaments by connecting them together to form a single network. As shown 
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previously, there are bubbles and non-superconducting phases inside Bii2212 filaments. They 

can severely limit the current running through them or even block the current completely. 

When this happens in a filament, the intergrowths allow other pathways for the current to 

flow from the blocked filament to other ones. In other words, the relationship between the 

filaments and the intergrowths is similar to a system of highways and detours. When one 

highway gets congested, traffic can redirect to detours to get into other highways. This 

enhanced connectivity results in higher electrical performance. The reason why thicker 

bridges have more influence than thinner bridges on performance could be simply because 

the thicker bridges can bypass a higher electric current from filament to filament because of 

their bigger sizes. Also, another possible explanation is thicker bridges tend to be made of 

single grain, while thinner bridges can be formed from joined grains with different 

orientations [8]. Grain boundaries (especially high angle ones) are barriers to 

superconducting currents. Thus qualitatively the single grain bridges can carry currents better 

than the multi-grain bridges. 

While microstructure certainly has great influence on the electrical performance of Bi2212 

wires under zero mechanical load, microstructure also plays an important role on how the 

wires deform under applied strain and ultimately, critical current under non-zero strains. As 

shown previously in [2],  statistical analysis shows strong dependence of critical current on 

the applied strain in the sample. There have been studies aim to explain the role of 

microstructure in electrical performance under strain [9, 10]. Figure 1.11 shows a descriptive 

model on critical current – strain relationship. In tensile strain region, the strain-critical 

current relationship in Bi2212 wires exhibits reversible behavior when the strain is smaller 



17 

 
 

than a critical value and irreversible/degrading behavior when the strain is higher than the 

critical value.  

 
 
 

 

Figure 1.11. Dependence of critical current on compressive and tensile strains in Bi2212 

in modified descriptive strain model [10]. 
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Experimentally, it has been found that this threshold strain value varies from wire to wire, 

with the average value about 0.31% in tension.  From zero to 0.31% applied tensile strain, the 

critical current slightly decreases when the applied strain increases. In the study, it is 

considered that in this region, the Bi2212 phase is actually in the compressive state. The 

reason is due to differences in thermal expansion coefficients, when the Bi2212 wire is 

cooled from room temperature to cryogenic temperature where experiments are taken, the B-

i2212 phase will be in compression stress/strain state, while silver is in expansion state. So 

the externally applied strain in this region only alleviates the internal compression already 

present in the B-i2212 phase, and around the critical applied strain 0.31% is where the 

externally applied strain neutralizes the internal strain in Bi2212. The irreversible 

degradation of critical current at strains larger than 0.31% is stipulated as the result of the 

cracking in Bi2212 filaments in tension. 

Intrinsically, Bi2212 material itself has higher critical current in compression [10]. This 

explains why in Figure 1.11 the critical current decreases when the externally applied tensile 

strain goes up from zero to 0.31%, this is because the compression is neutralized in the 

process. But conversely, when the applied strain goes in the compression direction, the 

studies [9, 10] show there is no increasing in critical current density as expected from the 

intrinsic property of Bi2212 material. Instead, the critical current shows immediate 

irreversible degradation. The studies postulate that in this region, the intrinsic property of 

Bi2212 is overshadowed by another phenomenon in Bi2212 wire under compression: 

buckling of thin Bi2212 columns under compression. SEM images from [10] show regions 

inside the wire where the Bi2212 grains grow into columnar shapes and without much 
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support from the silver matrix. Although the descriptive models are reasonable, there need 

more understandings as well as quantitative experiments to confirm the suggestions of the 

models. However, due to the micro-scale of the features in Bi2212 wires, experimental 

approaches would face significant difficulties to be conducted at such as small scale. 

So far, it has been found that that bubbles, non-superconducting phases, and filament shapes 

and  inter-filamentary bridges all play important roles in the electrical performance for the 

Bi2212 round wires. But how do they influence the mechanical behavior? For example, do 

wires with bubbles have lower strength than wires without them, and how much lower? Or 

how do the spatial arrangements of different phases affect the relationship between local 

strain and the macroscopic strain? The micrometer scale of these features in Bi2212 round 

wires make it difficult for experimental approaches to correlate a specific microstructure 

feature to the material’s mechanical behavior, since each wire can contain multiple features. 

Since mechanical experiments on these wires are usually implemented on macroscopic scale, 

it is challenging to correlate some specific microstructure features and the macroscopic 

properties.  

There have been few computer simulation approaches to investigate behavior of Bi-2212 

round wires. The simulations are mainly on magnetic and electrical properties of the wires 

[11-14]. The main reason it is difficult to simulate mechanical behavior of the wires is as 

shown in previous picture, the wires have very complex microstructure with multiple phases 

and defects. Especially, the interfaces between phases often have irregular, jagged edges with 

sharp corners. Also, there are discontinuities such as cracks present in the wires. All these 

pose significant challenges for traditional approaches using classical mechanics equations to 
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investigate the system’s behavior. The reason is classical mechanics rely on partial 

differential equations to establish the constitutive stress-strain relationship in the material. 

Classical approaches using finite element method usually requires rounding off the geometry 

at those sharp corners. 

In order to eliminate those rough edges/sharp corners, in [15] a fractal analysis is used to re-

generate the microstructure of the Bi2212 wires. In the study, a longitudinal SEM image of 

Bi2212 filament is used to analyze the irregular shape of the boundary between the Bi2212 

filament and the silver matrix. A fractal dimension number is assigned to this boundary line. 

Then using computer simulation, fractal curves of the same fractal dimension number (as the 

original line) are generated. Figure 1.12(b) shows a simulated microstructure in which, two 

fractal curves are used for generating the Bi2212/silver interface. The computer generated 

fractal curves in Figure 1.12(b) have the same fractal dimension of the real silver/Bi2212 

boundary curves obtained from the Figure 1.12(a). The computer generated fractal curves 

have the advantage of being mathematically smooth, thus eliminate the sharp corner problem. 

However, though the simulated microstructure is equivalent to the microstructure from the 

original image in terms of fractal dimension, their shapes are not the same. Thus the 

simulations are not performed on the real microstructure. 
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Figure 1.12. Original and simulated microstructures using fractal analysis [15]. 

 
 
 

Figure 1.13 shows the von-Mises stress distribution in the simulated microstructure. Stress 

concentration factor ranging from 1.5 to 2.5 is found in the system. However, since the 

simulated microstructure does not have the same shape as the original SEM image, it’s still a 

remaining question whether the real microstructure would have the same behavior as that of 

the simulated microstructure.  
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Figure 1.13. Steady-state von-Mises stress distribution with fixed load of 60 N/m to 

simulated microstructure [15]. 

 
 
 

1.4. Peridynamic Theory 

1.4.1. Peridynamics as a Non-local Theory 

As shown previously, there are significant challenges simulating the mechanical behavior of 

Bi2212 round wires using traditional approaches because of sharp corners and 

discontinuities. This is because in classical mechanics, interactions only happen over 

infinitesimal distances, and the theory is based on spatial derivatives for its formula. This 

leads to difficulties at discontinuities such as cracks, since the spatial coordinates are 
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undefined there. Thus one needs to redefine the body and its boundary so the cracks are on 

the boundary [16]. Also, at phase boundary where coordinates are defined and continuous, 

their spatial derivatives are not continuous - there is a jump at the interface. This also 

requires classical mechanics to define the phase boundary and its corresponding boundary 

conditions. For a composite material with complex phase structure, this could lead to 

complex boundary problems. So far, finite element method (FEM) is the most commonly 

used to simulate mechanical behaviors of a material or system. Since FEM is based on partial 

differential equations, stress and strain singularities at sharp corners create undefined 

derivatives at these regions, resulting in convergence problems. Especially in materials with 

complex phase arrangements where there are many “sharp corners” at the phase boundaries 

or voids, FEM faces significant difficulties. Partial differential equations are also limited with 

respect to systems with discontinuities such as cracks. Additional modeling techniques, such 

as adaptive meshing, are required to model the growth of an existing crack. 

In order to solve these difficulties with classical mechanics, another approach was developed  

by Stewart Silling  [16] with the peridynamics theory. The theory name comes from the 

words “peri” which means “near” and the root “dyna” which means “force”, which reflects 

the basis of the theory: a non-local mechanics theory.  In peridynamics, interactions between 

peridynamics volumes happen over finite distances, similar to molecular dynamics. So from 

the application point of view, the peridynamics can be viewed as an upscaled molecular 

dynamics theory [17, 18]. In fact, some peridynamic models have been implemented as a part 

of the molecular dynamics software LAMMPS, developed by Sandia National Laboratories 

[19]. The main difference with molecular dynamics is while molecular dynamics involves 
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interactions between discrete points, in peridynamic theory material points are continuous, 

like in classical mechanics. It is just that in practice of computer modeling and simulation, 

the continuum peridynamic body is approximated by a discrete set of peridynamic nodes. 

Finally, the difference between peridynamics and classical mechanics is peridynamics uses 

integral equations instead of partial derivative equations for its formulas, and the force 

interactions happen over a finite distance instead of contact/ local forces. 

Figure 1.14 shows the schematic of interaction between 2 points in peridynamic theory. In 

the figure, each peridynamic point interacts with all other points around it within a cut off 

distance δ called the horizon.  

 
 
 

 

Figure 1.14. Interaction forces between 2 points in an ordinary peridynamic system. 
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In peridynamics, the motion of a point depends on forces other points acting on it: 

,ܠሺܝሻ̈ܠሺߩ ሻݐ ൌ ׬ ,ᇱܠሺ܎ ,ܠ ሻୌݐ d ᇱܠܸ ൅ ,ܠሺ܊  ሻ (1.1)ݐ

where ߩሺܠሻ is the mass density at reference point x (kg/m3). u is the displacement of point x 

at time t. H is the neighborhood region of point x containing all points that interact with it. 

The region of H depends on the specific peridynamic model, usually it is defined as a region 

around the point x within the cut off distance δ as illustrated in Figure 1.14. ܎ሺܠᇱ, ,ܠ  ሻ is theݐ

force density the reference point x act on reference point x at time t: f has the unit of 

Newton/m6. d ᇱܠܸ  is the differential volume at point x’ (m3). And ܊ሺܠ,  ሻ is the externallyݐ

applied body force at point x and time t (Newton/m3). To satisfy Newton’s third law, the 

function f is anti-symmetric: 

,ᇱܠሺ܎ ,ܠ ሻݐ ൌ 	െ	܎ሺܠ, ,ᇱܠ  ሻ (1.2)ݐ

Also, when f is anti-symmetric, the linear momentum conservation of a peridynamic system 

is satisfied, as shown in [20]. The specific dependence of force ܎ሺܠᇱ, ,ܠ ሻݐ  on bond 

deformations determines how a peridynamic system behaves and is called the constitutive 

equation.  

There are two types of peridynamic models: bond based and state based models. In the bond 

based model, force interaction between two peridynamic points depends only on their 

relative position/displacement. While in state based models, the interaction force between 

two points depends on the relative deformations of all other points inside the neighborhoods 

of both points. The vast majority of peridynamic applications use the bond based model since 

it is the first model introduced in peridynamics. In a 3D, bond based model for linearly 

elastic solid by Silling and Askari [21], peridynamic constitutive equation is: 
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,ሺિ܎ ૆ሻ ൌ િା૆

|િା૆|
cs (1.3) 

where ૆ is the original relative position of the point exerting force on the point of interest, ૆ is 

also called the bond vector, િ	is the relative displacement and ૆ ൅ િ is the deformed bond 

vector. Figure 1.15 shows the physical presentation of those vectors when a peridynamic 

body is in deformation. In the figure, point 1 moves a distance u1, while point 2 moves a 

distance u2. Thus the relative displacement of point 2 to point 1 is: 

િ ൌ ଶܝ െ  ૚ (1.4)ܝ

 
 
 

 

Figure 1.15. Undeformed and deformed peridynamic bonds. 

 
 
 

s is the bond stretch which is defined as: 

ݏ ൌ 	
|િା૆|ି|૆|

|૆|
 (1.5) 
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c is a constant named micromodulus, and this bond based model is called the prototype 

microelastic brittle (PMB) model . The interaction between two points in this peridynamic 

model is like that of a spring: the direction of the force is parallel to the deformed bond 

vector, while the magnitude is proportional to the relative displacement from the 

original/equilibrium position. By comparing the strain energy density of this model and that 

of classical mechanics, the authors find that this PMB model is equivalent to a classical 

mechanic elastic model with a Poisson’s ratio of 1/4, and the micromodulus c is related to the 

bulk modulus k by the equation: 

ܿ ൌ ଵ଼௞

గఋర
 (1.6) 

Where δ is horizon size mentioned previously. Although this model is a linearly elastic 

model, mathematically the model is not linear. The reason is although the interaction force is 

linear to the bond elongation, it is not linear to the material coordinates. A linearized bond 

based model based on this model has been proposed in [22]. Also, a generalized PMB model  

is proposed  by Seleson and Parks in [23] by adding a function named influence function to 

the constitutive equation: 

,ሺિ܎ ૆ሻ ൌ િା૆

|િା૆|
߱cs (1.7) 

The micromodulus c of this generalized PMB model takes the form:  

ܿ ൌ ଵ଼௞

׬ |૆|૛࣓࢙〈|૆|〉ௗ௏૆ಹ

 (1.8) 

s is the bond stretch defined above. The influence function ߱ is a scalar function of the 

undeformed bond vector 	૆ . In most researches, the influence function is chosen to be 

dependent on the bond length only but not the bond direction, ߱〈|૆|〉 ൌ 		߱ୱ〈|૆|〉. Influence 
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function is used to give different weight contributions to different point, usually to give 

closer points greater weights of force than points further away. Constant, inverse polynomial, 

triangle/conical, and Gaussian functions have been used for influence function in various 

studies [23-30]. Figure 1.16 gives a graphical presentation of these functions. Note that all 

the functions are cut off at the bond length |૆| ൌ 	δ.  

 
 
 

 

Figure 1.16. Dependence of different influence functions on bond vector. 
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The PMB and generalized PMB models above are 3D models, meaning each peridynamic 

point has a spherical neighborhood. Development of constitutive equations for 1D and 2D 

bond based models has been proposed in [26, 31-33]. The bond-based models can only have 

a fixed Poisson’s ratio =1/4 in 3D and 1/3 in 2D plane stress [32, 34]. This is the main 

limitation of the bond-based model, because in reality materials have a wide range of 

Poisson’s ratio. Especially in composite materials, where the difference in Poison’s ratio in 

different phases has important influences on mechanical stress, the bond-based models would 

not be able to account for such influences. State-based peridynamics was developed to solve 

this limitation.  

In a state-based peridynamic system, the force density f is decomposed into two parts [34]: 

,ᇱܠሺ܎ ,ܠ ሻݐ ൌ ,ܠሾ܂	 ′ܠ〉ሿݐ െ 〈ܠ െ ,′ܠൣ܂ ܠ〉൧ݐ െ  (1.9) 	〈′ܠ

,ܠሾ܂ ′ܠ〉ሿݐ െ  is called the force vector state. In peridynamic theory, a state is a function that 〈ܠ

takes the bond vector ૆ ൌ ′ܠ െ  as input and produces an output which could be a scalar or  ܠ

a vector. The variable or input of a peridynamic state is written in angle brackets. In this case, 

T takes a vector input and produces another vector output. Note that output of T has the same 

unit as that of the force density f: force/volume2, or N/m6
,ܠሾ܂  .  ሿ is similar to the concept ofݐ

second order tensors in classical mechanics: it uses the bond vector (ܠ′ െ  as input and (ܠ

produces another vector as output. The main difference with tensors is: T does not always 

have to be linear or even continuous. In state-based peridynamics, the formula of ܂ሾܠ, ′ܠ〉ሿݐ െ

 depends on deformations of all bond vectors in the neighborhood of x, not just the bond 〈ܠ

vector ૆ ൌ ′ܠ െ  The state based peridynamic model can be formulated for both solids and  .ܠ

fluids. The peridynamic fluid model can be set up simply by setting the shear modulus in the 
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model to zero. In [34], a 3D ordinary model for linear peridynamic solids is proposed. In the 

model, the force state is set as: T = tM, where M is the unit vector along the deformed bond 

direction  and t is a scalar named force scalar state (see [34], equation (43)). For linearly 

elastic solids, the peridynamic formula of t in the 3D model is: 

ݐ ൌ ିଷ௞ఏ

௤
ݔ߱ ൅             ௗ  (1.10)݁߱ߙ	

where  

ߠ ൌ 3
ఠ௫●௘

௤
 (1.11) 

݁ୢ ൌ ݁ െ	
ఏ௫

ଷ
 (1.12) 

θ is the called the volumetric strain, which is equal to the volume dilatation one would obtain 

by taking the trace of the strain tensor in classical mechanics when horizon size is small 

enough so that the strain field could be considered uniform within the neighborhood of the 

point of interest. ω〈૆〉 is the influence function mentioned previously. x is the position scalar 

state whose value at a bond vector ξ is the scalar bond length |ξ|; and e is the extension scalar 

state whose value at a bond vector ξ is the bond elongation, which is the difference between 

the deformed and undeformed bond lengths. ݁ୢ is the deviatoric part of the extension state e: 

݁ୢ ൌ ݁ െ	
ఏ௫

ଷ
. q is the weighted volume, defined as the dot product of the influence function 

and the position scalar state, ݍ ൌ  The dot product (●) of two peridynamic states is .ݔ●ݔ߱	

defined in [34], equation (11). In the case where two peridynamic states are scalars as in this 

case, then the dot product is simply the integration of their regular product over the 

neighborhood region [34]: 

۰●ۯ ൌ ׬ ࡴۯ
〈૆〉۰〈૆〉݀ ૆ܸ (1.13) 



31 

 
 

The scalar constants k and α can be chosen so the peridynamic solid corresponds to a 

classical elastic solid. By equalizing the peridynamic and classical strain energy density for 

the same deformation, it is found that k is equal to the bulk modulus, while α is related to the 

shear modulus μ by the formula: 

ߙ ൌ ଵହఓ

௤
 (1.14) 

This 3D state based model is also linear to the bond elongation but not to the material 

coordinates. Linearized theory of state based peridynamics has been proposed in [35]. 

Recently, there has been development frame work for modeling plasticity with peridynamics 

[36, 37]. 

One advantage of the peridynamic models is that they can incorporate cracking behavior 

natively without any additional equations. In both bond based and state based models, this is 

simply done by setting a peridynamic bond to break irreversibly when it gets longer than 

some critical value. Once a bond breaks, there will be no interaction between the two 

peridynamic points. In the study by Silling and Askari [21], a bond is broken if its bond 

stretch is larger than a critical value s0. They also show that for the 3D PMB model, the 

critical stretch is related to the energy release rate G0 by: 

଴ݏ ൌ ටହீబ
ଽ௞ఋ

 (1.15) 

To calculate the degree of damage, a history-dependent function that takes the values of 

either 1 or 0 is introduced [21]: 

,ܠሺߤ ,ݐ ૆ሻ ൌ ቄ1	if	ݏሺܠ, ݐ
ᇱ, ξሻ ൏ 	 	0	all	for	଴ݏ ൑ ᇱݐ ൑ ݐ

0	other	wise																																													
 (1.16) 
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The damage index, representing the portion of bonds connected to a peridynamic point, thus 

can be calculated by: 

߮ሺܠ, ሻݐ ൌ 1 െ	
׬ ఓሺܠ,௧,૆ሻௗ௏૆ܠࡴ

׬ ௗ௏૆ܠࡴ

 (1.17) 

By making maps of damage index, cracking patterns in peridynamics can be visualized and 

studied. Most of dynamic simulation studies in peridynamics focus on the cracking behavior 

and pattern. The dynamic behavior of a peridynamic system depends strongly on the choice 

of horizon size. Peridynamic simulations of crack propagation when dynamic load is applied 

on the sample boundaries show that the propagation speed is dependent on the horizon size 

[26, 38]; but when the mechanical load is applied directly on the crack surface, study by 

Bobaru and Hu [38] shows crack propagation speed is largely unaffected by the choice of 

horizon size, as illustrated by Figure 1.17. It is explained that in the previous case, there is 

interaction between the propagating crack and the reflected stress waves from the sample 

boundaries. The magnitude and frequency of these waves depend strongly on horizon size 

[16, 38], that is why in that case the crack propagation speed also depends on horizon size.  
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Figure 1.17. Crack propagation speed with three different horizon sizes [38]. 

 
 
 

The shape of the influence function also has influences on the dynamic behavior of a 

peridynamic system. In the study [23], the authors use the influence function of the forms: 

߱〈૆〉 ൌ 	 ቀ ଵ

|૆|ାఢ
ቁ
௣
 (1.18) 

and ߱〈૆〉 ൌ 	 ቀ ଵ
|૆|
ቁ
௣
 (1.19) 

Where ߳ and p are constants. In both formulas above, the higher the value of p, the more 

weight the shorter bonds have compared to the longer bonds in the interactions of 

peridynamic points. By using a 1D, bond-based peridynamic model for plane wave, the 

researchers find that p has significant influence on the dispersion relation between the 
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angular frequency Ω and wave number k. When values of p are small, peridynamic 

dispersion curve shows significant difference from the linear relationship (which is typical of 

classical mechanics), as shown in Figure 1.18. In fact, when p is negative, Figure 1.18(b) 

even shows a range where Ω even decreases when k increases. When p is positive and large, 

the peridynamic dispersion curve becomes linear just like in classical mechanics. This is 

understandable because the higher than value of p, the more local the peridynamic system 

becomes. 

 
 
 

 

Figure 1.18. Dispersion relations for various values of p. (a) with influence function in 

equation (1.18). (b) with influence function in equation (1.19) [23]. 

 
 
 
The choice of p also influences results in a dynamic fracture simulation using peridynamics 

[23]. Figure 1.19 shows 3D, bond-based peridynamic simulation results of an impact 

between a hard sphere and a brittle disc at 5x10-5 s after impact. Only the brittle disc is shown 



35 

 
 

on the figure from the top down view, the colors denote the damage index. From the figure it 

can be clearly seen the crack or damage pattern is strongly dependent on the choice of p.  

 
 
 

 

Figure 1.19. Impact of a hard sphere on a disc of brittle material at 5x10-5s after impact. 

(a) p = 0. (b) p = 5. (c) p = 10 [23]. 

 
 
 

1.4.2. Relations between Classical Mechanics and Peridynamics 

In classical mechanics, there are two basic concepts: stress and strain. The infinitesimal strain 

tensor is defined as the spatial derivative of displacement [39]: 

ઽ ൌ ଵ

ଶ
ሺ்ܝߘ ൅  ሻ (1.20)ܝߘ

where ܝߘ  is the displacement gradient of the displacement field u with respect to the 

reference coordinates. The strain tensor at a point depends on the displacement at that point 

only, in other words it is a local quantity. One important physical interpretation of the strain 

tensor ઽ	is the formula of unit elongation: 

ௗ௦ିௗௌ

ௗௌ
ൌ .ܖ ઽ(1.21) ܖ 
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where dS and ds are the length of a small element vector before and after deformation. n is 

unit vector at the direction of the element before deformation.  

Similar to the strain tensor, in classical mechanics stress is also a local quantity. In classical 

mechanics, the forces are contact forces, meaning the interactions happen over an 

infinitesimal distance between two touching surfaces. The force acting on a small surface 

area is proportional to that area by the formula: 

܎܌ ൌ dAો(1.22) ܖ 

where df is the force acting on the surface area dA at the point of interest, n is the surface 

normal vector (n is a unit vector). σ is the stress tensor. Though the force df depends on the 

direction of the surface normal, the stress tensor σ does not, at a point σ only depends on the 

state of deformation at that point.  

 
 
 

 

Figure 1.20. Force acting on a surface in classical mechanics. 
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When there is mechanical loading on a solid, the system will deform and reach equilibrium 

where there is a balance between external and internal forces. How the system deforms 

depends on the external load distribution, the system’s intrinsic material properties, and its 

geometry. Constitutive equation in classical mechanics is the equation describing the 

relationship between the intrinsic stress and strain tensors, which depends only on the 

material’s characteristics but not its macroscopic shape. Typically, in solids there are elastic 

and plastic deformations, which have different stress-strain relationships. The elastic region 

is where a material deforms reversibly under mechanical load, the material comes back to its 

original shape after the load is removed. There is a maximum limit of stress or strain under 

which the material will deform elastically, over that limit is the plastic region or fracture. 

Many materials, especially metals and alloys, display a linear relationship between stress and 

strain when it is in elastic region. In such relationship is described by Hooke’s law [39]: 

ો ൌ ۱ઽ    (1.23) 

Or conversely: 

ઽ ൌ  ો (1.24)܁

where C is the stiffness tensor and S is the compliance tensor. Note that since stress and 

strain tensors are second order tensors, C and S are fourth order tensors. Not all materials 

show this linear behavior in elastic region. For example, rubber is a known material having 

non-linear elasticity. But the scope of this study is focused on linearly elastic solids only.  

As shown above, in classical mechanics both stress and strain tensors in classical mechanics 

are local quantities, based on the concept of infinitesimal deformations and surface contact 

forces. But in peridynamics, interactions happen over finite distances. So how would one 
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relate and compare the results in peridynamics and classical mechanics? And what would be 

an equivalent classical mechanic system to given a peridynamic system? It has been proven 

that in the limit where to horizon in peridynamics goes to zero, a peridynamic system will 

converge to classical mechanics [20, 40]. Specifically, from peridynamic deformations of all 

bonds connected to a peridynamic point one can calculate equivalent deformation gradient 

tensor at that point [34, 40]:  

۴ ൌ 	 ቀ׬ ߱〈૆〉܇〈૆〉⨂૆dV૆ு ቁ . ቀ׬ ߱〈૆〉૆⨂૆dV૆ு ቁ
ିଵ

 (1.25) 

The force interactions in peridynamics however are not contact forces, so the concept of 

contact surface stress in classical mechanics is not applicable. Thus the equivalent stress on a 

surface can be computed by summating all the interaction force between bonds that “go 

through” the area, as shown in the Figure 1.21 [41]. This definition of stress is actually 

considered to be closer to the original definition of stress in early elasticity theories.  
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Figure 1.21. Interpretation of the force flux at x across a plane with unit normal n [41]. 

 
 
 

From this concept, the equivalent Piola stress tensor can be calculated from the force state T 

via the collapsed stress tensor [20, 35, 40]: 

ો ൌ ׬ ு܂
〈૆〉⨂૆݀ ૆ܸ (1.26) 

The symbol ⨂	denotes the dyadic product between two vectors, which results in a tensor. 

This collapsed stress tensor has been proven to converge to classical dynamic stress when the 

horizon goes to zero [40]. Conversely, from deformation and stress in a classical system, an 

equivalent peridynamic system would have the bond deformation state Y and force vector 

state T of the forms [20, 34, 40]: 

〈૆〉܇ ൌ ۴૆	 (1.27) 
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〈૆〉܂ ൌ ߱〈૆〉ો ቀ׬ ߱〈૆〉૆⨂૆dV૆ு ቁ
ିଵ
૆ (1.28) 

1.4.3. Peridynamic Applications 

Most of applications of peridynamic theory have been on simulations of cracking behaviors 

in various materials. The majority of these simulations have bond based model since the state 

based model is relatively new. The applications mostly focus on dynamic cracking behavior 

of different geometries, which is the strength of the peridynamic theory. Various types of 

materials and geometries have been studied. In the study by Doh Ha and Bobaru [42], a 3D 

bond based peridynamic model is used to study crack path instability and branching. Figure 

1.22 shows the simulated crack paths in pre-notched samples with sudden mechanical loads. 

The simulated crack paths show much similarity to the ones obtained from real experiments, 

as shown in Figure 1.23. Other than sudden force, sudden change of speed at the surface has 

also been used to induce cracking in peridynamic simulations [43, 44]. In the studies, it is 

shown that the simulated cracks propagate in “almost identical” fashion as experimental 

observations.  
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Figure 1.22. Damaged maps for tests of crack path instability and branching, with 

sudden loads on top and bottom. (a) 12 MPa load, t = 46 μs. (b) 27 MPa load, t = 38 μs 

[42]. 

 
 
 

 

Figure 1.23. Experimental results of cracking from sharp and blunt pre-notches [42, 

45]. 

 
 
 

Thermal expansion can also be incorporated into peridynamic models simply by 

decomposing the total bond stretch into two parts: thermal expansion and mechanical 

deformation [24, 46]. Non-local heat transfer equation has also been incorporated to the 

peridynamic theory [47]. Figure 1.24(a) illustrates a real experiment where a single phase 
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glass plate at high temperature is cooled by being pushed from an oven into the water. The 

crack is induced by internal stress, which is the result of uneven temperature distribution. 

Figure 1.24(b) shows the peridynamic simulation of crack branching pattern when the 

temperature difference between the oven and the water is 2500 K [46]. By varying the 

temperature difference, the researchers find as the difference increases, the crack pattern 

changes from straight to oscillating to branching cracks. This agrees well with experimental 

results. 

 
 
 

 

Figure 1.24. (a) Crack growth in a glass plate under thermal cooling. (b) Peridynamic 

simulation result when 2500 = ࢀࢤ K [46]. 
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Peridynamics has also been used for modelling 2D and 1D structures such as membranes and 

fibers. Currently only there are only bond based but not state based models for 2D and 1D 

peridynamic simulations. Figure 1.25(a) shows a 2D peridynamic simulation of a spherical 

membrane bursting when it is impacted by a sharp object [48]. It can be seen from the Figure 

that the cracks have irregular and uneven patterns, although the initial simulation conditions 

are symmetric. It is still not known if such simulation result reflects the instabilities also 

observed in real experiments, or if it is only due to numerical effects. Figure 1.25(b) shows a 

network of peridynamic fibers [48]. Both short range and long range, van der Waals forces 

are incorporated into the 1D peridynamic model. Initially, the fibers were straight, running in 

horizontal and vertical directions. But due to their force interactions, they deformed into an 

irregular pattern as shown in the Figure. 
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Figure 1.25. Peridynamic application in fracture of membrane (a); and a fiber network 

in initial and deformed configuration (b) [48]. 

 
 
 

Other than for modeling of single phase materials mentioned previously, the bond based 

peridynamic model has also been adapted to study mechanical behavior in composite 

materials [28, 49, 50]. Figure 1.26(a) shows the peridynamic discretization scheme for a 

material composed of a matrix phase and fibers. After the discretization, there are two types 
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of nodes of peridynamic nodes corresponding to two phases in the system. Figure 1.26(b) 

shows the simulation result of damage pattern at an interface between two laminas in the 

study. 

 
 
 

 

Figure 1.26. (a) Peridynamic discretization scheme of matrix and fibers in a laminate 

composite. (b) Local damage at interface between two lamina [28]. 

 
 
 



46 

 
 

In contrast with classical mechanic modeling for composite materials, in peridynamic 

modeling there is no boundary condition at the interface between two phases. Instead, the 

two peridynamic nodes of different phases just have force interactions, depending on their 

relative displacement. The formula of force interaction between two nodes of different phase 

has important influence on the interface characteristics. For example, in a bond based 

peridynamic model, the interface rigidity can be increased by increasing the spring constant 

c, while the interface strength could be increased by either increasing the spring constant c or 

the critical stretch s0, or both. It is important to note that the bond based model used on these 

researches can only have a same fixed Poisson’s ratio for all phases. In reality materials have 

different Poisson’s ratio, and especially inside a composite the difference in Poisson’s ratio 

can have great influences on stress strain distribution. Thus a state based peridynamic model 

would be a better fit for composite materials. 

Peridynamics shares one challenge similar to molecular dynamics, computation cost. For a 

typical simulation, each peridynamic subdomain/node has bonds with around a hundred other 

nodes. This can result in millions of bonds in a whole sample, while calculating interaction 

forces in just a bond requires several integrations. This results in a huge number of 

calculations, especially for samples with complex geometries. One way to resolve this issue 

is by coupling peridynamics with finite element analysis to take the advantages of both 

methods [22, 29, 51, 52]. Peridynamic model can be implemented within conventional finite 

element analysis software by using the truss elements [22]. Figure 1.27 shows such 

schematic for the coupling between peridynamic and finite element models. In the figure, 

there are two regions: the region on the left is modeled with finite element analysis while the 
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region on the right is with peridynamics. Two regions must be bound to each other somehow 

to create a seamless system. To do so, an overlapping domain between the finite element and 

the peridynamics regions is created. In that domain, both peridynamic and finite element 

equations are used. This combination of two methods can utilize both peridynamics’ ability 

for spontaneous crack growth prediction and finite element analysis’ reduced computation 

cost. The coupling scheme has been used for modeling fracture in a rectangular bar under 

mechanical loading [29, 51]. 

 
 
 



48 

 
 

 

Figure 1.27. Schematic for coupling of finite element method and peridynamics [29]. 

 
 
 

Another way that has been used to achieve equilibrium state faster in peridynamics 

simulation is to use adaptive dynamic relaxation with a variable damping coefficient and 

modified material density [24, 27, 30]. In the method, an artificial damping coefficient value 

is chosen to make the system go to equilibrium point as fast as possible. Since an optimum 

value of damping coefficient is not always achievable, the study uses an adaptive algorithm 

to determine the value of the coefficient at each time step. This means the coefficient is not 
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constant but can be changed during the simulation, thus it might result in unphysical effects 

in the simulated system.  
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2. 2D STATE BASED PERIDYNAMICS 

2.1. Introduction 

As mentioned in chapter 1, currently in peridynamics there are only bond based models for 

2D structures.  Since the bond based models can only have a fixed Poisson’s ratio of 1/3, 

they are not adequate for modeling materials with different Poisson’s ratios. Thus one goal of 

this study is to develop 2D models for linearly elastic solids in plane stress and plane strain 

conditions.  

In 3D peridynamics, the neighborhood of each node is a sphere whose radius is the horizon δ. 

In the 2D peridynamics models developed here, only one layer of peridynamic nodes, lying 

on a flat x-y plane, exists. Thus the neighborhood region is a disk. For a 2D model to 

correspond to a classical continuum mechanics model, the formulas from 3D peridynamics 

must be modified accordingly.  

The key to ensuring that a peridynamics model corresponds to a classical continuum 

mechanics model is that under the same strain/displacement condition, both models must 

have the same energy density. Thus, the peridynamic system behaves the same as the 

classical system under the same loading conditions. To develop a force vector state of a 

peridynamics model in 2D, four steps are followed: 

 Find the classical strain energy density as a function of strain and elastic constants (k, υ) in 

2D. 

 Propose a formula of 2D state-based peridynamic energy density as a function of 

displacements. 

 Equalize the two energies to find the relationship between the peridynamics and classical 



51 

 
 

constants. 

 Derive the peridynamic force vector state by taking the Frechet derivative of the 

peridynamic energy density. 

2.2. Peridynamic Model for 2D Plane Stress 

Classical strain energy density in plane stress 

In continuum mechanics, the linearly elastic strain energy density function is decomposed 

into two parts, the volumetric energy density and the distortional energy density [34]: 

ߗ  ൌ ௞

ଶ
ቀୢ௏
௏
ቁ
ଶ
൅ ୧୨ߝߤ

୧୨ߝୢ
ୢ (2.1) 

where k and μ are the bulk and shear moduli, respectively, dV/V is the volume dilatation, and 

୧୨ߝ
ୢ  is the ij component of the deviatoric strain tensor. In the second term, the Einstein 

summation notation is used, meaning a summation is made over all ij components of the 

deviatoric strain tensor. 

To find the energy density function in plane stress, the stress/strain components in the z 

directions are not independent. Thus the energy density can be written as a function of strains 

in the x-y plane only. In plane stress, all stress components on the surface normal to the third 

direction are equal to zero. The ߝଷଷ component of the strain tensor, however, is non-zero 

[53]: 

ો ൌ ൥
ଵଵߪ ଵଶߪ 0
ଶଵߪ ଶଶߪ 0
0 0 0

൩                 ઽ ൌ ൥
ଵଵߝ ଵଶߝ 0
ଶଵߝ ଶଶߝ 0
0 0 ଷଷߝ

൩ (2.2) 

The ߝଷଷ  component is not independent of other components. Using Hooke's law for an 

isotropic material, its dependence on ߝଵଵ and ߝଶଶ is determined: 
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ଵଵߝ ൌ
ଵ

ா
ሺߪଵଵ െ ଶଶߪߥ െ ଷଷሻߪߥ ൌ

ଵ

ா
ሺߪଵଵ െ  ଶଶሻ (2.3)ߪߥ

ଶଶߝ ൌ
ଵ

ா
ሺߪଶଶ െ ଵଵߪߥ െ ଷଷሻߪߥ ൌ

ଵ

ா
ሺߪଶଶ െ  ଵଵሻ (2.4)ߪߥ

ଷଷߝ ൌ
ଵ

ா
ሺߪଷଷ െ ଵଵߪߥ െ ଶଶሻߪߥ ൌ

ିఔ

ா
ሺߪଵଵ൅ߪଶଶሻ (2.5) 

where E is the Young modulus and υ is Poisson's ratio. 

ሺଶ.ହሻ

ሺଶ.ଷሻାሺଶ.ସሻ
→ ଷଷߝ	 ൌ

ఔ

ఔିଵ
ሺߝଵଵ൅ߝଶଶሻ (2.6) 

The volume dilatation is also a function of strain in the x-y plane: 

ୢ௏

௏
ൌ ሺߝଵଵ൅ߝଶଶ൅ߝଷଷሻ ൌ

ଶఔିଵ

ఔିଵ
ሺߝଵଵ൅ߝଶଶሻ (2.7) 

Taking 
ሺଶ.଺ሻ

ሺଶ.଻ሻ
 :ଷଷ as a function of the volume dilatation becomesߝ ,

ଷଷߝ ൌ
ఔ

ଶఔିଵ

ୢ௏

௏
 (2.8) 

Also, from (2.7) the deviatoric strain tensor is: 

ઽୢ ൌ ઽ െ ଵ

ଷ

ୢ௏

௏
۷ ൌ ቎

ଵଵߝ
ୢ ଵଶߝ

ୢ 0
ଶଵߝ
ୢ ଶଶߝ

ୢ 0
0 0 ଷଷߝ

ୢ

቏ (2.9) 

where I is the identity tensor. The component ߝଷଷ
ୢ  is given by: 

ଷଷߝ 
ୢ ൌ ଷଷߝ െ

ଵ

ଷ

ୢ௏

௏
ൌ ఔାଵ

ଷሺଶఔିଵሻ

ୢ௏

௏
 (2.10) 

Substituting (11) into (2), the classical strain energy density in plane stress is: 

ߗ ൌ ൤௞
ଶ
൅ ߤ ቀ

ሺఔାଵሻ

ଷሺଶఔିଵሻ
ቁ
ଶ
൨ ቀୢ௏

௏
ቁ
ଶ
൅ ߤ ∑ ୧୨ߝ

ୢ
୧,୨ୀଵ,ଶ ୧୨ߝ

ୢ (2.11) 

From (2.7) and (2.11), Ω is only a function of strain components in the x-y plane. Note that in 

the second term of the right hand side, i and j range from 1 to 2. 

Peridynamic strain energy density formula 
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Now that the energy density in classical mechanics has been established, the peridynamic 

energy density in 2D to match (2.11) is needed. Similar to the 3D case, first the scalar-valued 

function θ, is defined. Later it will be proven to be equal to the volume dilatation. 

ߠ ൌ ଶሺଶఔିଵሻ

ሺఔିଵሻ

ఠ௫●௘

௤
 (2.12) 

In this model, ω also depends only on the bond length |ξ| but not its direction, ߱ ൌ		߱ୱ〈|ξ|〉. 

Similar to the 3D case, to see that θ is equal to the volume dilatation, consider the 

transversely isotropic plane stress condition, ε11 = ε22 = ε0, in which the peridynamic 2D 

deformation takes the form Y = (1+ε0)X. Taking the integration in (2.12), and comparing to 

(2.7), both result in the same value of 
ଶሺଶఔିଵሻ

ሺఔିଵሻ
 .଴ߝ

Now suppose that the peridynamic energy density at a point takes the form: 

ܹ൫ߠ, ݁ୢ൯ ൌ ௞ᇲఏమ

ଶ
൅ ஑

ଶ
൫߱݁ୢ൯●݁ୢ (2.13) 

where k' and α are parameters to be found. θ is the volume dilatation in (2.12). Here ݁ୢ is the 

deviatoric part of the extension state e and still keeps the same form as in 3D case: ݁ୢ ൌ ݁ െ

	
ఏ௫

ଷ
 . It is important to note that to calculate W at a point of interest correctly, one must use the 

value of θ at that point only, not at other points within the neighborhood region of that point 

since θ varies.  

Relationship between the peridynamics and classical constants 

First relate the peridynamic extension (elongation) ݁〈૆〉  and the classical strain tensor ε. 

Since the bond vector ξ can be viewed as a small material element in continuum mechanics, 

the bond extension ݁〈૆〉	(change in bond length) is the element's elongation [39]: 
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݁〈૆〉 ൌ |૆|	ܖ ∙ ઽܖ ൌ ଵ

|૆|
૆ ∙ ઽ૆ ൌ ଵ

|૆|
 ୨ (2.14)ߦ୧ߦ୧୨ߝ

where n is the unit vector in the bond vector's direction, n = ξ/|ξ|. Similar to [34], the 

deviatoric part of the extension state is given by: 

݁ୢ〈૆〉 ൌ ଵ

|૆|
୧୨ߝ
୨ߦ୧ߦୢ ൌ

ଵ

|૆|
∑ ୧୨ߝ

ୢ
୧,୨ୀଵ,ଶ  ୨ (2.15)ߦ୧ߦ

The main difference from the 3D model is that in the 2D model the indices i and j only run 

from 1 to 2, not to 3. Since all peridynamic nodes lie on a same x-y plane, the third 

component (ξ3) is always zero. 

Using (2.15) to calculate the second term of (2.13), noting that ߝ୧୨
ୢ ൌ 	 ୨୧ߝ

ୢ : 

ߙ
2
൫߱݁ୢ൯●݁ୢ ൌ

ߙ
2
න߱
ୌ

〈૆〉 ቎
1
|૆|

෍ ୧୨ߝ
ୢ

୧,୨ୀଵ,ଶ

୨቏ߦ୧ߦ ൥
1
|૆|

෍ ୩୪ߝ
ୢ

୩,୪ୀଵ,ଶ

୪൩ߦ୩ߦ d ૆ܸ ൌ 

ఈ

ଶ
׬

ఠ〈૆〉

|૆|మୌ ൣሺߝଵଵ
ୢ ሻଶሺߦଵሻସ ൅ ሺߝଶଶ

ୢ ሻଶሺߦଶሻସ ൅ 4ሺߝଵଶ
ୢ ሻଶሺߦଵሻଶሺߦଶሻଶ ൅ ଵଵߝ2

ୢ ଶଶߝ
ୢ ሺߦଵሻଶሺߦଶሻଶ ൅

ଵଵߝ4
ୢ ଵଶߝ

ୢ ሺߦଵሻଷߦଶ	൅	4ߝଶଶ
ୢ ଵଶߝ

ୢ ଶሻଷ൧dߦଵሺߦ ૆ܸ (2.16) 

Since it is assumed that the influence function ω depends on the bond length |ξ| only, but not 

its direction, terms that have an odd number of any index integrate to zero due to the 

symmetry of the integration region (a disk). Thus only the integration of terms that contain 

(ξ1)
4, (ξ2)

4, and (ξ1)
2(ξ2)

2 are calculated. Due to the symmetry of the 2D integration region, 

integrations of (ξ1)
4 and (ξ2)

4 are equal. Thus, to evaluate equation (2.16), only two 

integrations are required. 

Using polar coordinates, ξ1 = rcosΦ, ξ2 = rsinΦ, and dVξ = lzrdrdΦ, where lz is the thickness 

of the system or the peridynamic nodes in the z direction. Since this is a 2D simulation, lz can 

be set as any value or can be of unit length. lz is displayed explicitly to keep the units of 
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quantities including volume, energy density, etc., consistent with ones in the classical model 

or 3D peridynamic model. Thus, 

׬
ఠ〈૆〉

|૆|మ
ଵߦ
ସd ૆ܸୌ ൌ ׬ ׬

ఠ౩〈௥〉

௥మ
ߔdݎdݎ௭݈ߔସcosସݎ

ଶగ
଴

ఋ
଴ ൌ ݈௭ ׬ ߱ୱ〈ݎ〉ݎଷdݎ ׬ cosସߔdߔ

ଶగ
଴

ఋ
଴ ൌ ௤

ଶగ

ଷగ

ସ
	ൌ ଷ௤

଼
  

 (2.17)  

and 

׬
ఠ〈૆〉

|૆|మ
ଵߦ
ଶߦଶ

ଶd ૆ܸୌ ൌ ׬ ׬
ఠ౩〈௥〉

௥మ
ߔdݎdݎ௭݈ߔsinଶߔସcosଶݎ

ଶగ
଴

ఋ
଴ ൌ

݈௭ ׬ ߱ୱ〈ݎ〉ݎଷdݎ ׬ cosଶߔsinଶߔdߔ
ଶగ
଴

ఋ
଴ ൌ 	 ௤

ଶగ

గ

ସ
ൌ ௤

଼
 (2.18) 

where in this 2D model it is assumed that the influence function ω depends on the bond 

length only,  ߱ ൌ ߱ୱ〈|૆|〉 ൌ ߱ୱ〈ݎ〉.  

To prove that the integration ݈௭ ׬ ߱ୱ〈ݎ〉ݎଷdݎ
ఋ
଴ ൌ ௤

ଶగ
 , by using polar coordinates one finds that 

q is given by: 

ݍ ൌ ݔ●ݔ߱ ൌ ׬	 ߱ୱ〈ݎ〉ݎଶd ૆ܸୌ ൌ ௭݈ߨ2	 ׬ ߱ୱ
ఋ
଴

 (2.19) ݎଷdݎ〈ݎ〉

Substituting results from (2.17) and (2.18) to (2.16): 

ఈ

ଶ
൫߱݁ୢ൯●݁ୢ ൌ ఈ

ଶ
ቂଶ௤
଼
∑ ୧୨ߝ

ୢ
୧,୨ୀଵ,ଶ ୧୨ߝ

ୢ ൅ ௤

଼
൫∑ ୧୧ߝ

ୢ
୧ୀଵ,ଶ ൯

ଶ
ቃ (2.20) 

By utilizing the property ߝଵଵ
ୢ ൅ ଶଶߝ

ୢ ൅ ଷଷߝ
ୢ ൌ 0, the second summation on the right hand side 

of (2.20) is equal to െߝଷଷ
ୢ . Then: 

ఈ

ଶ
൫߱݁ୢ൯●݁ୢ ൌ ఈ௤

ଵ଺
൫ߝଷଷ

ୢ ൯
ଶ
൅ ఈ௤

଼
∑ ୧୨ߝ

ୢ
୧,୨ୀଵ,ଶ ୧୨ߝ

ୢ (2.21) 

Substituting (2.21) into (2.13) and θ by dV/V, one obtains: 

ܹ൫ߠ, ݁ୢ൯ ൌ ௞ᇲ

ଶ
ቀୢ௏
௏
ቁ
ଶ
൅ ఈ௤

ଵ଺
൫ߝଷଷ

ୢ ൯
ଶ
൅ ఈ௤

଼
∑ ୧୨ߝ

ୢ
୧,୨ୀଵ,ଶ ୧୨ߝ

ୢ (2.22) 
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In plane stress, substitute ߝଷଷ
ୢ  in (2.10) to (2.22), obtaining: 

ܹ൫ߠ, ݁ୢ൯ ൌ ቀ௞
ᇲ

ଶ
൅ ఈ௤

ଵସସ

ሺఔାଵሻమ

ሺଶఔିଵሻమ
ቁ ቀୢ௏

௏
ቁ
ଶ
൅ ఈ௤

଼
∑ ୧୨ߝ

ୢ
୧,୨ୀଵ,ଶ ୧୨ߝ

ୢ (2.23) 

Equalizing (2.23) and (2.11), the relationships between classical and peridynamic parameters 

in plane stress are obtained: 

ఈ௤

଼
ൌ ߙ   or                                           ߤ ൌ ଼ఓ

௤
 (2.24) 

௞ᇲ

ଶ
൅ ఈ௤

ଵସସ

ሺఔାଵሻమ

ሺଶఔିଵሻమ
ൌ ௞

ଶ
൅ ఓ

ଽ

ሺఔାଵሻమ

ሺଶఔିଵሻమ
     or   ݇′ ൌ ݇ ൅ ఓ

ଽ

ሺఔାଵሻమ

ሺଶఔିଵሻమ
 (2.25) 

The peridynamic force state 

Similar to the 3D model in [34], the model developed here is also an ordinary model: T = tM, 

where M is the unit vector along the deformed bond direction ([34], equation (43)). Thus the 

force vector state is parallel to the bond vector. Here t is the magnitude of T and is called 

“scalar force state”. t is calculated from the Frechet derivative of the energy density function 

W with respect to the extension state e. From (2.13): 

Δܹ ൌ ൯●Δ݁ߠ௘׏൫ߠ′݇ ൅  ൫߱݁ୢ൯●Δ݁ୢ (2.26)ߙ

where ׏௘ߠ	is the Frechet derivate of θ with respect to e; this quantity will be calculated later. 

To calculate Δ݁ୢ from the definition in [34]: 

 ݁ୢ ൌ ݁ െ
ఏ௫

ଷ
	 →  Δ݁ୢ ൌ Δ݁ െ

௫

ଷ
൫׏௘ߠ൯●Δ݁ (2.27) 

Substitute (2.27) to (2.26) and after some rearrangements one obtains: 

Δܹ ൌ ቂቀ݇′ߠ െ ఈ

ଷ
൫߱݁ୢ൯●ݔቁ׏௘ߠ ൅ ቃ●Δ݁ୢ݁߱ߙ ൌ  Δ݁ (2.28)●ݐ

This gives  ݐ ൌ ቀ݇′ߠ െ ఈ

ଷ
൫߱݁ୢ൯●ݔቁ׏௘ߠ ൅  (2.29) ୢ݁߱ߙ
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To calculate ׏௘ߠ	in plane stress, use the definition of θ in (2.12): 

ߠ௘׏ ൌ
ଶሺଶఔିଵሻ

ሺఔିଵሻ

ఠ௫

௤
 (2.30) 

Thus in the 2D plane stress model, the force state t takes the form: 

ݐ ൌ ଶሺଶఔିଵሻ

ሺఔିଵሻ
ቀ݇′ߠ െ ఈ

ଷ
൫߱݁ୢ൯●ݔቁ

ఠ௫

௤
൅  (2.31) ୢ݁߱ߙ

where θ, α, and k' are given in (2.12), (2.24) and (2.25). Unlike in the 3D case, the formula 

for the force state t in this 2D case has more terms. Also, t is not decomposed into co-

isotropic co-deviatoric parts as in the 3D model. 

2.3.  Peridynamic Model for 2D Plane Strain 

Classical strain energy density in plane strain 

As opposed to plane stress, in plane strain ε33 is zero, but the stress component is not zero 

[53]: 

ો ൌ ൥
ଵଵߪ ଵଶߪ 0
ଶଵߪ ଶଶߪ 0
0 0 ଷଷߪ

൩  ઽ ൌ ൥
ଵଵߝ ଵଶߝ 0
ଶଵߝ ଶଶߝ 0
0 0 0

൩ (2.32) 

 Because ε33 is now zero, even with the same strains in the x-y plane, volume dilatation in the 

plane strain condition is different from that in the plane stress condition (2.7) by a factor:  

ୢ௏

௏
ൌ ሺߝଵଵ൅ߝଶଶ൅ߝଷଷሻ ൌ ሺߝଵଵ൅ߝଶଶሻ (2.33) 

Compared to (2.7), volume dilatation in (2.33) does not have the factor 
ଶఔିଵ

ఔିଵ
.  

Similarly, the component ߝଷଷ
ୢ  is given by: 

ଷଷߝ	
ୢ ൌ ଷଷߝ െ

ଵ

ଷ

ୢ௏

௏
ൌ െ ଵ

ଷ

ୢ௏

௏
 (2.34) 

Substituting (2.34) into (2.1), the classical strain energy density in plane strain is obtained: 
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ߗ ൌ ቂ௞
ଶ
൅ ఓ

ଽ
ቃ ቀୢ௏

௏
ቁ
ଶ
൅ ߤ ∑ ୧୨ߝ

ୢ
୧,୨ୀଵ,ଶ ୧୨ߝ

ୢ (2.35) 

Peridynamic strain energy density 

In plane strain the volume dilatation differs from that of plane stress, so the peridynamic 

function θ now is given by: 

ߠ ൌ 2
ఠ௫●௘

௤
 (2.36) 

Again assume that the form of 2D peridynamic energy density remains as in (2.13). Matching 

(2.13) and (2.35), the values of k' and α for plane strain are obtained. 

Relationship between the peridynamics and classical constants 

Since the 2D peridynamic energy is still of the same form as in (2.13) with θ, k', and α taking 

new values, the relationships are the same as in (2.22): 

ܹ൫ߠ, ݁ୢ൯ ൌ ௞ᇲ

ଶ
ቀୢ௏
௏
ቁ
ଶ
൅ ఈ௤

ଵ଺
൫ߝଷଷ

ୢ ൯
ଶ
൅ ఈ௤

଼
∑ ୧୨ߝ

ୢ
୧,୨ୀଵ,ଶ ୧୨ߝ

ୢ (2.37) 

In plane strain, the relationship between ߝଷଷ
ୢ  and dV/V is in (2.34). Substituting (2.34) into 

(2.37): 

ܹ൫ߠ, ݁ୢ൯ ൌ ቀ௞
ᇲ

ଶ
൅ ఈ௤

ଵସସ
ቁ ቀୢ௏

௏
ቁ
ଶ
൅ ఈ௤

଼
∑ ୧୨ߝ

ୢ
୧,୨ୀଵ,ଶ ୧୨ߝ

ୢ (2.38) 

Comparing (2.38) and (2.35): 

ఈ௤

଼
ൌ ߙ   or                  ߤ ൌ ଼ఓ

௤
 (2.39) 

௞ᇲ

ଶ
൅ ఈ௤

ଵସସ
ൌ ௞

ଶ
൅ ఓ

ଽ
   or   ݇′ ൌ ݇ ൅ ఓ

ଽ
 (2.40) 

The peridynamic force state 
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As the 2D peridynamic energy density still takes the same form, (2.29) still applies for t but 

just with new values of θ, α, and k' given in (2.36), (2.39) and (2.40). To calculate ׏௘ߠ for 

plane strain, use the definition of θ in (2.36), so in 2D plane strain: 

ߠ௘׏ ൌ 2
ఠ௫

௤
  (2.41) 

The force state t becomes: 

ݐ ൌ 2 ቀ݇′ߠ െ ఈ

ଷ
൫߱݁ୢ൯●ݔቁ

ఠ௫

௤
൅  (2.42) ୢ݁߱ߙ

2.4. Simulation Approach 

2.4.1. Finding the Peridynamic Steady-State Solution 

To obtain steady state in the 2D peridynamics simulation, two different approaches are 

applied: dynamic relaxation and energy minimization. The purpose of using both these 

methods is to prove that the 2D peridynamic model is stable and results can be achieved with 

either of them. With dynamic relaxation, a viscous force is added to dissipate the kinetic 

energy of the system such that, after a sufficiently long time, the system approaches the 

steady state. In the 2D model, viscous forces between a pair of peridynamic nodes are 

parallel to the bond vector. Their values are given by: 

۴ଵଶ ൌ െ۴ଶଵ ൌ ߛ	
మܞ
౦౗౨౗ିܞభ

౦౗౨౗

|૆|
d ଵܸd ଶܸ   (2.43) 

Figure 2.1 shows a schematic of the velocities of two bonded peridynamic nodes. Only the 

relative velocity between them results in a friction force. More specifically, only the parallel 

component of the velocity is used to ensure that there is no damping force when the system 

undergoes a rigid body rotation or translation. This allows the model to mimic the dynamic 

behavior of a real-life system more closely because it is analogous to the dynamic viscosity 
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of solids in classical mechanics. But if only the steady state results are of interest, as shown 

previously, adaptive dynamic relaxation can be used [24, 28, 30] with the advantage of less 

computation. It may, however, result in unphysical effects due to a variable viscosity 

coefficient.  

 
 
 

 

Figure 2.1. Viscous interaction forces between two peridynamic nodes. 

 
 
 

To implement the dynamic relaxation simulation, velocity-Verlet algorithm is used in the 

simulation code to calculate trajectories and velocities of peridynamic nodes:  

௡ାଵܡ ൌ ௡ܡ ൅ ݐ∆௡ܞ ൅
ଵ

ଶ
 ሻଶ (2.44)ݐ∆௡ሺ܉
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௡ାଵܞ ൌ ௡ܞ ൅
ଵ

ଶ
ሺ܉௡ ൅  (2.45) ݐ∆௡ାଵሻ܉

where ܡ௡, ܞ௡, and ܉௡ are position, velocity, and acceleration of the peridynamic node at the 

simulation step n. Similarly, ܡ௡ାଵ, ܞ௡ାଵ, and ܉௡ାଵ are position, velocity, and acceleration of 

the peridynamic node at the simulation step n+1. The acceleration ܉௡ is known since it is 

proportional to the total force acting on the node, which a function of coordinates at step n. 

After ܡ௡ାଵ is calculated in (2.44), ܉௡ାଵ, which depends on ܡ௡ାଵ, is also known. Thus ܞ௡ାଵ in 

(2.45) is also known. 

Similar to adaptive dynamic relaxation, energy minimization methods can be used when only 

the steady-state condition is of interest. The steady state or equilibrium point is where the 

total force on each and every node is zero; this also occurs when the total potential energy of 

the system is minimized.  Here an iterative minimization technique based on the nonlinear 

conjugate gradient method using Polak-Ribiere formula for finding search line direction is 

used. The algorithm is chosen because of its high convergence speed and robustness. The 

outline of the algorithm is: the total energy of a system is a function of all peridynamic 

nodes’ coordinates. So in the multidimensional space formed from those coordinates, the 

energy function is a multidimensional surface. At each iteration, the conjugate gradient 

algorithm chooses a line on the energy surface and searches for point of minimum energy on 

that line, which is equivalent to finding where the projection of the total force on that line is 

zero. The force function on a specific search line is a one-variable function, thus various root 

finding methods can be used for finding the zero point, such as bisection, Newton–Raphson, 

or secant method. In this study, the secant method is used because it does not require to 

calculate the second derivative of energy, it only requires to calculate the first derivate of 
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energy, which is force and is already formulated. The key of the method is optimizing the 

line search direction. Initially, this direction d0 is actually the total residual force f0 at time 

zero. In other words, the initial search direction of the conjugate gradient method is the same 

as the search direction of the steepest descent method [54]: 

଴܌ ൌ ଴ܚ ൌ 	െܹ′ሺܡ଴ሻ  (2.46) 

At a step i, on the search line ܌௜ , find the scalar variable ߙ௜  that minimizes the energy 

ܹሺܡ௜ ൅   .௜ሻ܌௜ߙ

At next step i+1, the new coordinates are ܡ௜ାଵ ൌ ௜ܡ	 ൅  ௜ାଵ is܌ ௜. The new search direction܌௜ߙ

updated, using the information of the total residual forces at the last two steps		ܚ௜ and 	ܚ௜ାଵ: 

௜ାଵ܌ ൌ ௜܌௜ାଵߚ	 ൅  ௜ାଵ (2.47)ܚ	

where ߚ௜ାଵ is a non-unit, scalar number. There are various formulas for this variable. In this 

study, the Polak-Ribiere formula is used [54]: 

௜ାଵߚ
௉ோ ൌ 	

೔శభܚ
೅ ሺ	ܚ೔శభି	ܚ೔ሻ

೔ܚ
೅	ܚ೔

 (2.48) 

The superscript T in (2.48) denotes the mathematical transpose. Thus the product used in 

(2.48) is the inner product between two vectors.  The Polak-Ribiere formula has the 

advantage of fast convergence speed, but it can in some cases cycle infinitively [54]. To 

avoid this problem, the line search can be reset to the direction of the residual force when this 

happens. Mathematically, this is done simply by resetting ߚ௜ାଵ
௉ோ  to zero whenever the 

calculated value in (2.48) is negative: 

௜ାଵߚ
௉ோ ൌ max	൬

೔శభܚ
೅ ሺ	ܚ೔శభି	ܚ೔ሻ

೔ܚ
೅	ܚ೔

, 0൰ (2.49) 
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Figure 2.2 plots of the average von Mises stress vs. simulation step of a typical simulation. In 

Figure 2.2(a), dynamic relaxation with a constant viscosity coefficient is used. Each 

simulation step in this figure corresponds to a real time step of 5 nanoseconds. The viscosity 

coefficient is chosen large enough so the system goes to the final result as quickly as possible 

(near critical damping condition). In Figure 2.2(b), each step is simply a conjugate gradient 

step that does not correlate to any real time step. With energy minimization, peridynamic 

forces are elastic forces only, there is no need to add viscous forces to the system to find the 

solution. Though different in implementation, both methods give the same final result. 

However, the conjugate gradient method requires much fewer steps and is orders of 

magnitude faster than the dynamic relaxation method. 

 
 
 

 

Figure 2.2. von Mises stress vs. simulation step in a system of 33144 nodes with (a) 

dynamic relaxation and (b) energy minimization. 
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2.4.2. Modifying the Node Interaction Volume 

In peridynamic theory, each infinitesimal volume interacts with an infinite number of other 

volumes within a perfectly circular disk region. But in discrete numerical implementation, 

each peridynamic node has a finite volume defined by the node size ri. Figure 2.3(a) shows 

two neighboring nodes with a horizon centered at node 1. Node 2 has a center located near 

the cut off distance of the horizon; only a part of its volume is inside the horizon. Thus, for 

interaction between node 2 and node 1, only the volume fraction inside the horizon is 

counted. In [19], the volume fraction around the cut-off distance decreases continuously from 

1 to 1/2, then abruptly from ½ to 0 as the bond length increases. Here a volume fraction 

scheme similar to the one in [19] is used. The difference is that in this study, the volume 

fraction decreases continuously from 1 to 0 around the cut-off distance. In the 2D 

implementation, the volume fraction is approximated by a linearly decreasing function near 

the neighborhood boundary: 

୮ܠ൫ߥ െ ୧൯ܠ ൌ 	

ە
ۖ
۔

ۖ
ۓ 1											if	หܠ୮ െ ୧หܠ ൑ ߜ	 െ

௥౦
ଶ

ଵ

ଶ
൅

ఋି	หܠ౦ିܠ౟ห

௥౦
		if	ߜ െ

௥౦
ଶ
൏ หܠ୮ െ ୧หܠ ൏ ߜ	 ൅

௥౦
ଶ

0											if	หܠ୮ െ ୧หܠ ൒ ߜ	 ൅
௥౦
ଶ
	

 (2.50) 

where xi and xp are positions of a node and its neighbor and ݎ୮ is the neighbor node’s size. 

This volume fraction function is plotted in Figure 2.3(b). The benefit of this volume 

modification scheme is that it reduces the discretization effect, resulting in a more stable, 

faster m-convergence. Here m-convergence is the convergence of simulation results when the 

horizon is fixed while the node size is reduced, which is discussed further in the sections 

about convergence. 
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Figure 2.3. (a) Two-dimensional diagram showing discrete nodes with boundaries 

(dotted lines), node 2 has about half of its volume inside the horizon region of node 1. 

(b) Volume fraction as a function of distance. 

 
 
 

2.5. Verification with FEM Analysis 

The 2D peridynamics model for plane stress is implemented using Matlab code. The 

simulations are run on a CUDA-enabled, 384-core Graphic Processing Unit (GPU) installed 

on a personal computer with a 4-core Intel CPU. The simulations are written in parallel 

Matlab code to improve computation speed. Matlab's GPU-enabled functions enable the 

peridynamics code to be run in parallel in GPU computing, which results in a processing time 

6 to 7 times faster than running on the CPU of the same computer. A simple rectangle plate 

with a hole in the center, shown in Figure 2.4, is used to validate the 2D peridynamics model. 

The plate is 50 mm by 100 mm and the hole has a radius of 10 mm. The left side of the plate 

is fixed while the right side is stretched under an evenly distributed tensile stress of 1 MPa.  
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Figure 2.4. Rectangular plate with a hole in the middle. The left side is fixed and a 

tensile load is applied to the right. 

 
 
 

The bulk modulus is set at k = 100 GPa and Poisson’s ratio is set at ν = 0.4. For computer 

simulation, the system is discretized by a uniform grid into a finite set of peridynamic nodes. 

The nodes that fall inside the hole are simply uncounted. Since the hole is of circular shape 

while the grid is a rectangular one, some geometry detail is lost around the hole edge, 

especially if the grid is coarse. A non-uniform grid that follow the geometrical contour as 

shown in [25] will preserve the hole’s geometry better and might give  more accurate results.  

The stationary displacements and von Mises stress distributions measured along the center 

horizontal and vertical lines are then compared to the same quantities obtained from a 

counterpart finite element model. To estimate the stress tensor in the 2D peridynamics 

model, the peridynamics “collapsed stress tensor” function [40] is used. It has been proven 

that the collapsed stress tensor is equivalent to the first Piola-Kirchoff stress tensor [40].  
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The results from peridynamic simulations are then matched with ones from finite elements 

simulations of the exact same sample geometry, physical properties, and testing conditions. 

All the finite element simulations are done with very fine meshes and quadratic shape 

functions to ensure that all the results converged accurately. 

2.5.1. Convergence to Continuum Peridynamics 

The peridynamics quantities are defined by integral equations. In numerical simulation, 

however, the continuum body is approximated by a system of a finite number of nodes, with 

each node interacting with a finite number of neighbor nodes and the peridynamics 

integrations are approximated by numerical integrations. Here a simple summation of every 

node is used in this article. In order to approximate the integrations adequately, each 

peridynamic node must have a sufficiently large number of neighbors.  In other words, the 

ratio between the horizon size and node size must be sufficiently large.  

To test the convergence in the 2D numerical simulation, the horizon is kept at a fixed value, δ 

= 3 mm, while the node size r is reduced from 1.5 mm to 0.375 mm (in a single simulation, 

every node has the same size ri = r). Thus, the ratio m = δ/r ranges from 2 to 8, as shown in 

Figures 2.5 and 2.6. This type of convergence is called “m-convergence” in [33, 47]. Figure 

2.5 shows displacement and von Mises stress profiles observed on the central horizontal line 

of the samples (the red lines across the rectangles in Figure 2.5) with a fixed horizon size δ = 

3mm and values of m ranging from 2 to 8, where  m = δ/r is the ratio between the horizon 

and node sizes. Similarly, Figure 2.6 shows the displacement and stress profiles observed on 

the central vertical lines with the same fixed δ and m varying over the same range. From the 

graphs in Figures 2.5 and 2.6, both the displacement and stress profiles start to converge for 
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m  >= 5, meaning that at m = 5 the discrete peridynamics implementation is close enough to 

the continuum peridynamic theory.  

 
 
 

 

Figure 2.5. Distribution along the horizontal line with different m values and a fixed δ. 

(a) Displacement vs. position (b) von Mises stress vs. position. 
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Figure 2.6. Distribution along the vertical line with different m values and a fixed δ. (a) 

Displacement vs. position. (b) von Mises stress vs. position. 

 
 
 

Figures 2.5(b) and 2.6(b) also show that, near the free boundaries, the von Mises stress shows 

some anomalies. In the thickness of about 2δ near the free boundaries, the stress in the 

peridynamic model always deviates from the FEM model, no matter what the values of m is. 

This is expected because the peridynamic collapsed stress tensor only converges to the 

classical mechanics stress tensor when there is a full neighborhood region (a disk in this 

case). A peridynamic node at an edge has only a half disk neighborhood region, while a node 

at a corner has only a quarter of a disk. Thus, near the boundaries, the system deviates from 

the theoretical model. This “skin effect” is a general issue in peridynamics models [42]. The 

thickness of this skin layer is reduced when the horizon size δ is reduced, however at the 

outermost peridynamic nodes, the peridynamic system will always be different from classical 

system regardless of horizon size. To reduce this effect, Macek and Silling [22] proposed a 
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method to reduce this effect in bond-based models.  Also see [55] for another possible 

method that may be applicable to both bond- and state- based models. 

2.5.2. Convergence to Classical Mechanics 

Peridynamic theory is a non-local theory based on integral equations, while classical 

mechanics is a local theory based on partial differential equations. It has been proven 

theoretically that peridynamics results converge to classical mechanics results when the 

horizon size goes to zero [40]. In practice, for steady-state problems this convergence occurs 

when the horizon size is small enough compared to the length scale of the stress/strain field 

in the system. For dynamic problems such as simulations of cracks, wave dispersion is 

strongly dependent on the horizon size [38]. In such cases the horizon should be chosen as 

small as possible while keeping m, the ratio between the horizon size and node size, 

sufficiently large,  to have matching results to classical model. Also when the horizon is 

small, the skin effect is reduced as well since the skin’s thickness is reduced. This 

convergence, when reducing horizon size, is called δ-convergence [33, 47].  

To study δ-convergence, the 2D simulations are performed with horizon sizes decreasing 

from 3 mm to 1 mm. To study the influence of horizon size only, without the influence of m-

convergence, the ratio m is fixed at m = 5 in Figures 2.7 and 2.8. Figures 2.7 and 2.8 show 

the displacement and stress profiles on the central horizontal and vertical lines  δ varying 

from 3 mm to 1mm. Figures 2.7 and 2.8 show that as δ decreases, the peridynamic 

displacement and stress profiles match more closely to the finite element results, again except 

at the nodes at the free boundaries. This is because at those nodes, the neighborhood within a 

horizon is not a full circle, regardless of the horizon size, thus causing the skin effect to 



71 

 
 

happen. The difference between Figures 2.7(b) and Figure 2.5(b), and between Figure 2.8(b) 

and Figure 2.6(b) is, now as the horizon  decreases, the skin layer where there are stress 

anomalies reduces in thickness.  Figure 2.8(b) also shows that at the uppermost and 

lowermost points of the hole, the stress concentration factor of both the peridynamic and the 

FEM model is about 3.7. It is worthy to note that in theoretical analysis of stress 

concentration factor around a hole in an infinite media under uniaxial stress condition, the 

concentration factor at those points is 3, which is of similar range but not the exact value 

found here. The reason of difference is in these numerical simulations, the media is not 

infinite. Also, in the peridynamic and FEM simulations here, the left edge of the rectangle is 

fixed and not allowed to shrink vertically; thus the externally applied stress condition is not 

purely uniaxial like in the theoretical analysis. 
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Figure 2.7. Distribution along the horizontal line with different horizon sizes and a fixed 

m. (a) Displacement vs. position. (b) von Mises stress vs. position. 

 
 
 

 

Figure 2.8. Distribution along the vertical line with different horizon sizes and a fixed 

m. (a) Displacement vs. position. (b) von Mises stress vs. position. 
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For a visual comparison, Figure 2.9 shows both FEM and peridynamics samples with 

displacements magnified 15,000 times. In Figure 2.9(b), the horizon is set at smallest value δ 

= 1 mm, and m = 5. The colors denote the von Mises stress levels. Again, the two samples 

have similar deformed shapes and stress distribution patterns except near the free boundaries. 

 
 
 

 

Figure 2.9. von Mises stress distribution of (a) finite element simulation and (b) 

peridynamics simulation. Colors denote stress levels. Displacements are magnified 

15,000 times in both cases. 
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2.6. Peridynamics Stress at the Sharp Corners 

It is known that in FEM simulation using classical mechanics, the stress at a sharp 

corner/notch may increase to infinity when the element size is reduced to zero. Does the 

same phenomenon happen in peridynamics, when horizon size is reduced to zero? To answer 

this question, a rectangle plate with a square hole in its center is simulated to investigate the 

stress concentration. The plate is 50 mm by 100 mm and the square hole has the edge 

dimension of 14.14 mm. The plate and the testing conditions are illustrated in Figure 2.10. 

Similar to previous sample, the left side of the plate is fixed while the right side is stretched 

under an evenly distributed tensile stress of 1 MPa. While the bulk modulus is also set at k = 

100 GPa and Poisson’s ratio at ν = 0.4. Figure 2.11 shows not all sharp corners of the hole 

have stress concentration, only the uppermost and lowermost corners are where the stress 

concentrates. While Figure 2.12 shows that as the horizon size reduces, the stress at the 

corner increases and does not show any sign of saturation. This is similar to the result 

observed in classical mechanics simulation. This is understandable because when the horizon 

size is the length scale of the non-local peridynamic theory, thus the smaller the horizon size 

the more local the peridynamic theory becomes. Classical mechanics can be viewed as the 

convergence limit of peridynamics when the horizon size vanishes [20]. This simulation 

shows that 2D state based peridynamic model proposed in this research also shows the 

convergence to classical mechanics behavior observed in previous peridynamic models. 
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Figure 2.10. Rectangular plate with a square hole in the middle. The left side is fixed 

and a tensile load is applied to the right. 
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Figure 2.11. Tensile test with different values of horizon size δ.  (a) δ = 5 mm. (b) δ = 4 

mm. (c) δ = 3 mm. (d) δ = 2mm. 
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Figure 2.12. Dependence of von Mises stress at the sharp corner on horizon size. 
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3. Bi2212 STUDY RESULTS 

3.1.  Scanning Electron Microscopy Image Analysis 

The simulations use longitudinal and cross-sectional SEM images as input for the 

peridynamic system. Figure 3.1 shows the longitudinal SEM images of (a) single and (b) 

multiple Bi2212 filaments embedded in silver matrix. These two images are used as initial 

input for peridynamic simulations. As seen on the images, the silver is of a light grey color 

while the superconducting filaments actually contain many phases: the Bi2212 with dark 

grey color, the Bi2201 phase of light grey color, holes and AEC phases usually appear as 

dark regions in the SEM images. Thus for the simulation program to recognize different 

phases and to simplify the microstructure, silver and Bi2212 regions are selected either by 

their grayness levels or by using magic wand tool in Photoshop software. Then the silver 

regions are marked with white color, Bi2212 regions with black color, while defects are 

marked with red color. Figure 3.1(c) and 3.1(d) show the processed images from Figures 

3.1(a) and 3.1(b). Notice that the black region in Figure 3.1(b) is marked with the red color in 

Figure 3.1(d). The simulation program will then read the processed images and assign the 

black/white/red colors to different phases with their matching physical constants. 
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Figure 3.1. (a) Longitudinal SEM image of a Bi2212 filament. (b) Longitudinal SEM 

image of multiple Bi2212 filaments. (c) Processed microstructure from (a). (d) 

Processed microstructure from (b). 

 
 
 

Using the natural defects has the disadvantage that there is no control of the defect size and 

shape. And currently, there is little experimental study that link specific defect geometries 

and macroscopic properties. To study the effects of defect size and shape, artificial defects 

are also introduced into the system by also marking certain region with red color. Figure 3.2 

shows all different types of defect geometries used in this study, including natural and 

artificial defects. The reason to introduce artificial defects into the simulation is because of 

the lack of high resolution SEM images with desired variation in defect geometries. Also, 



80 

 
 

artificial defects allow the study to isolate and control influences of a single defect type. 

While in “real life” SEM images, different defects and phase shapes co-exist in one sample 

thus experimentally, it is difficult to attribute which microstructure feature dominates the 

macroscopic properties of the wires. 

 
 
 

 

Figure 3.2. Different defect shapes studied. (a) Single real defect. (b) Multiple real 

defects. (c) Artificial rectangle defect. (d) Artificial 45 degree slanted defect. (e) 

Artificial circular defect. (f) Artificial irregular defect. 



81 

 
 

After being processed, the images are put into a Matlab program for discretization to 

generate a discrete peridynamic system. In the discretization program, the red areas will be 

either ignored to create voids (no peridynamic node) or set up as solid defects with certain 

bulk modulus and Poisson’s ratio. 

3.2. Peridynamics System Construction 

The peridynamics theory is a continuum theory in the sense that the media is continuous. 

Though analytic solution can be found in very simple cases, the vast majority of peridynamic 

applications use numerical simulation which requires approximating the continuous media by 

a discrete set of peridynamic nodes. In this article, an even rectangular grid is used to set up 

these nodes. Figure 3.3(a) illustrates the discretization scheme on a processed SEM image, in 

which the grid is drawn much coarse that what is really used to give a clear illustration. Each 

square of the grid has a finite volume and is assigned to a peridynamic node located at the 

center of the square. Since each peridynamic node is associated with a finite volume, 

peridynamic volume integrations are simply estimated by summations in numerical 

simulation. It’s important to note that after discretization, each peridynamic node is simply a 

computation point and does not “remember” its shape anymore. In other words, geometrical 

details at the node level are lost.  
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Figure 3.3. (a) Discretization scheme from SEM image to peridynamic system. (b) 

Additional peridynamic nodes are added at the free boundary. 

 
 
 

Each peridynamic node is assigned a phase based on the phase of the original square. So at 

the phase boundary in the image, there could be squares that contain pixels of multiple 

phases. For these heterogeneous squares, the phase of the peridynamic node is assigned to the 

phase of the center pixel in that square. So the grid size determines what how much of 

original geometry in the SEM image is conserved: the smaller the grid size, the more detail is 

conserved in the peridynamic system. Also, after the discretization process from the 

processed SEM image to a finite set of peridynamic nodes, 10 additional layers of 

peridynamic nodes are added around the outer boundary of the system as illustrated in Figure 

3.3(b). In Figure 3.3 (b), these peridynamic nodes are of blue color. In the   simulations, these 



83 

 
 

nodes are set up of the same mechanical constants as the nodes in the silver phase (white 

color). Later in final visualization of results, these additional nodes are ignored. The reason 

for adding then removing them later is, at the outer boundary the peridynamic stress shows 

deviation from classical mechanics stress especially when there is externally applied force on 

these outer nodes (the ܊ሺܠ,  .ሻ in the equation of motion).  This effect has been shown in [56]ݐ

So adding then removing these dummy nodes helps removing those anomalies. 

The limitation using the digital image directly and the uniform mesh to discretize the 

microstructure into a discrete peridynamics system is, in order to have good approximation of 

the microstructure and test the convergence, one would want to refine the mesh size and the 

horizon size of the peridynamics model. The finer the grid is, the less relative amount of 

these heterogeneous squares will become and the closer the peridynamic system will be to 

the original SEM image. But if the grid is too fine, the system will also include artificial 

sharp corners caused by the nature of the digital, pixel images. Figure 3.4(a) shows the 

discretization scheme where the grid size is equal to pixel size, and Figure 3.4(b) shows 

another where grid size is only half of pixel size. In Figure 3.4(a), at the phase interface the 

red and blue peridynamic nodes align to smooth straight lines; while in Figure 3.4(b), they do 

not: the red and blue nodes now form jagged lines at their interface. In other words, 

oversampling in Figure 3.4(b) introduces artificial sharp corners to the peridynamic system. 

Thus it is advantageous to never get the grid size smaller than pixel size. In this study, the 

grid size is set to 2 times of the pixel size. The horizon is set up of 5 times the peridynamic 

node size in all simulations. 
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Figure 3.4.  Effects of discretization grid size on phase boundary. (a) When grid size is 

equal to pixel size. (b) When grid size is half of pixel size. 

 
 
 

After discretization, in simulation each peridynamic node is set up with specific mechanical 

properties according to their associated phase. Silver’s mechanical properties are set at: bulk 

modulus 91.0 GPa, Poisson’s ratio 0.37. Bi2212 phase’s bulk modulus is 21.9 GPa, Poisson’s 

ratio is 0.2. Since there is no experimental information of mechanical properties of non-

superconducting phases (such as AEC and Bi2201), their Poisson’s ratio is also set at 0.20 

like Bi2212. But their bulk modulus is set either half that of Bi2212 (10.95 GPa) or twice of 

it (43.80 GPa).  
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3.3. Peridynamic Simulation Method 

Similar to molecular dynamics, in peridynamics the static or steady state could be achieved 

by either adding a viscous force to dynamically relaxing the system into equilibrium position 

or by directly finding it with energy minimization. Dynamic adaptive relaxation technique 

has been used in other peridynamics studies to find static solutions with improved speed 

compared to regular relaxation with fixed coefficient of viscosity [24, 28, 30].  In this study, 

static stress distribution in Bi2212 wires is achieved by energy minimization with non-linear 

conjugate gradient algorithm using Polak-Ribiere line search, the same method used in 

chapter 2 for verification of the theory. The 2D plane stress model developed in chapter 2 is 

used for computer simulations. Typically, peridynamic systems contain from 100,000 to 

400,000 computation nodes and require 1 to 2 hours per simulation. Each simulation is 

stopped when the stress distribution in the sample becomes stable and no longer changes with 

additional iteration steps.  

Stress tensor estimation: 

In classical mechanics, interactions are contact forces where interactions happen at 

infinitesimal distances, and stress is defined as force per unit surface area. But in 

peridynamics, interactions happen over finite distances. As mentioned in chapter 1, the 

“collapsed stress tensor” is defined and proven to be equivalent to the Piola-Kirchhoff stress 

in classical mechanics [20, 35, 40]. In this article, a slightly modified form of collapsed stress 

tensor (equation (1.26)) is used to calculate stress tensor at a point x:  

ોሺܠሻ ൌ
ଵ

ଶ
׬ ሺ܂ሾܠ, ′ܠ〉ሿݐ െ 〈ܠ െ ,′ܠሾ܂ tሿ〈ܠ െ ሻ⨂ୌ〈′ܠ ሺܠᇱ െ ሻdܠ  ᇱ  (3.1)ܠܸ
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where σ is the stress tensor, x is the point/node of interest, x’ is another peridynamic node 

interacting with the node x, thus x’-x is the bond vector. The ⨂ is the symbol for dyadic 

product of two vectors, which results in a tensor.  

The reason for using this modified formula is, the formula of collapsed stress tensor in 

equation (1.26) is more suitable for a single phase peridynamics system, where all the nodes 

are of the same phase. It is because when the horizon size is small enough: ܂ሾܠ, ′ܠ〉ሿݐ െ 〈ܠ ൎ

െ܂ሾܠᇱ, tሿ〈ܠ െ 〈ᇱܠ ൎ 	 ଵ
ଶ
൫܂ሾܠ, ′ܠ〉ሿݐ െ 〈ܠ െ ,′ܠሾ܂ tሿ〈ܠ െ ൯〈′ܠ . So for one phase material, the 

equations (1.26) and (3.1) are essentially equal. But in this article, there are multiple phases 

in the peridynamic systems, and for interactions between 2 peridynamic nodes of different 

phases,   ܂ሾܠ, ′ܠ〉ሿݐ െ ,ᇱܠሾ܂and െ 〈ܠ tሿ〈ܠ െ  ᇱ〉 will always be different from each other noܠ

matter how small the horizon size is, thus in this case equation (3.1) is chosen for stress 

calculation. It is worth noting that equation (3.1) is also applicable for one phase, not just 

multiphase, materials. 

3.4. Simulation Results 

Because of the complex phase arrangements, stress state at a local point inside the Bi2212 

wires is almost always multi-axial, even when the externally applied load is uniaxial. Thus 

von Mises stress is used to investigate the stress distribution and concentration inside the 

wires. von Mises stress is directly related to deviatoric strain energy density and is a 

commonly used criterion to assess stress states in metallic materials. It is important to note 

that if the stress state is homogeneous and uniaxial, von Mises stress is equal to the externally 

applied, macroscopic stress.  
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All the simulations in this study are 0.1% macroscopic strain tests, implemented by moving 

the outermost nodes on the left and right side of the peridynamic system a total distance of 

0.1% the sample length then keep them fixed. The fixed macroscopic strain (instead of stress) 

tests are chosen to minimize the extensive effect of a defect’s volume relative to the whole 

sample on the outcome. Also, different SEM images have slightly different ratios of silver 

and non-silver phases. Fixed macroscopic stress tests would make comparing results between 

images less meaningful, because the results would also be influenced by phase volume ratio, 

not just microscopic structure which is the focus of this study. 

3.4.1. Samples with no defect 

Figure 3.5(a) shows stress distribution in a sample with a single Bi2212 filament in the 

middle, at 0.1% macroscopic strain condition. Here the colors denote the von Mises stress 

levels, with red color being the highest and blue color the lowest value in the color bar. 

Figure 3.5(b) is the 3D presentation of the stress distribution on the same sample, with the 

von Mises stress displayed both by color and by height (z axis). The average, macroscopic 

stress applied on the two ends of the sample is 56.4 MPa. The highest von Mises stress in 

Bi2212 phase is 70.6 MPa, while in silver the highest value is 88.9 MPa, both are higher than 

the macroscopic stress. As Figure 3.5(b) shows, the stress in both Bi2212 and silver tends to 

concentrate at their interface where the Bi2212 is of convex shape and conversely, silver 

phase is concave. This is similar to the findings in [15], except that in this study a real 

microstructure from SEM image is used. Experimental studies have shown the intrinsic 

fracture strain in Bi2212 phase is about 0.12% [57, 58], which is equivalent to fracture stress 

of 47.3 MPa; while the yield point in silver is generally accepted at 0.076% strain or 54MPa 
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stress. Thus at this test condition in a real experiment, certain parts of Bi2212 and silver 

phases would have past the fracture/yielding point and the assumed linear elasticity of the 

model would not be adequate for them. The value of the results is that they show the relative 

stress distribution in the elastic region, because in the elastic region spatial distribution of 

stress is independent of strain. Meanwhile, the magnitude of stress (both average and 

maximum stress) is proportional to the applied strain. So by linear interpolation, it could be 

calculated from Figure 3.5 results that the maximum stress in silver will reach the yielding 

value 54MPa when the macroscopic strain is approximately 0.061%. At that 0.061% 

macroscopic strain condition, the maximum stress in Bi2212 would be 42.9 MPa, slightly 

below the fracture stress for the material. It is worthy to note that as Figure 3.5 shows, due to 

the complex microstructure there is a large variation of local stress in Bi2212 and silver, so 

not every point in a same phase reaches the yielding/fracture stress at the same time. In fact, 

even at 0.1% strain condition, stress in a large proportion of Bi2212 is still under the limit. 

This explains why in experiments, the material does not show the sudden degradation of 

critical current with increasing strain. Due to variation in stress concentration factor, different 

parts of Bi2212 phase would break at different strain values. 

It is worth noting that in all simulations in this article, the Bi2212 is set up as an isotropic, 

continuous phase. But experimental studies have shown that there are colonies of grains 

inside the Bi2212 phase, and it is suggested that the boundaries between the colonies are 

mechanically weaker and could be prone to breakage [59, 60]. There have not been 

quantitative experimental results for the mechanical properties of these boundaries, thus they 
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are not included in this study. A more complex model including these boundaries would 

yield a more complete understanding of the Bi2212 wires’ mechanical behavior. 

 
 
 

 

Figure 3.5. von Mises stress distribution in single-filament sample (a) 2D representation 

of the stress. (b) 3D representation of the stress, showing the concentrations at the phase 

boundary. 

 
 
 

In Figure 3.5, there is only one filament in the sample, one may question if the result from 

the simulation could be representative of the Bi2212 wires, which may contain hundreds of 

filaments. Thus in Figure 3.6, multiple filament SEM images are used for simulation to 

investigate possible interactions. Figure 3.6(a) shows simulation result of von Mises stress 

distribution in the sample with no defect; this figure is frequently used later to compare with 

other figures with defect throughout the whole study.  The maximum stresses in Figure 3.6(a) 
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are in the same range as Figure 3.5(a), 67.7 MPa in Bi2212 and 88.1 MPa in silver. This is 

understandable because both Figures 3.5(a) and 3.6(a) are of defect-free samples; the only 

difference between them is single filament versus multiple filaments in a sample. 

The simulations using the longitudinal SEM images do not show an important microstructure 

feature of Bi2212 wires, the interfilament bridges. Usually, in longitudinal SEM images, 

these intergrowths are not well captured due to the difficulties in the sample preparing 

process. So a cross-sectional image with visible bridges is used in Figure 3.6(b) to study the 

effects of the bridges to stress concentration. The highest von Mises stresses in Figure 3.6(b) 

are of the similar range as in Figures 3.5(a) and 3.6(a), 72.1 MPa in Bi2212 and 81.6 MPa in 

silver. The only difference is now the stress is located in the bridges that run in the vertical 

direction, perpendicular to the external force direction (horizontal). The protruding parts of 

Bi2212 phase in Figure 3.5(a) could be also viewed as unconnected bridges. So the 

simulations indicate that in Bi2212 wires, while bridges are important to carrying current yet 

they also bear more mechanical load than the main filament thus will break first if external 

forces are high enough.  
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Figure 3.6. von Mises stress distribution in a cross-sectional microstructure with 

multiple filaments. (a) Longitudinal image. (b) Cross-sectional image. 

 
 
 

3.4.2. Samples with a single natural defect from a SEM image 

In the samples in the previous section, there are no defects such as voids or secondary phases. 

But numerous experiments have shown there are such defects in in Bi2212 wires. For 

example, Figure 3.1(b) one can see multiple defects inside the Bi2212 filaments. The black 

area defect in the uppermost filament is of the shape (a) in Figure 3.2. This natural defect is 

set up either as a void or a solid phase in the simulations in this section. In reality, defects 

always vary in both shape and stiffness, thus it is difficult to compare and attribute the 

macroscopic outcome to the influence of the microscopic defect geometry or stiffness. Thus 

this is one advantage of using simulations: because the same geometry is set up for different 

defect phases, the influence of defect geometry when comparing the different results is 

eliminated. 
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In Figure 3.7(a) the defect is set up as a void. While in Figure 3.7(b) it is set up as a phase 

with same Poisson’s ratio but half the bulk modulus of Bi2212 phase (10.95 GPa), this phase 

is referred to as “soft phase” in this study. In Figure 3.7(c) it is set up with twice the bulk 

modulus of Bi2212 phase (43.80 GPa), and is referred to as “hard phase”. Figure 3.7(a) 

shows when the defect is a void, the maximum stress in Bi2212 phase increases significantly 

from 67.7 MPa (Figure 3.6(a)) to 111 MPa, and the maximum stress in Bi2212 no longer 

stays at the interface but rather at the void boundary. The maximum stress in silver also 

increases from 88.1 MPa to 89.9 MPa and is now at the Bi2212/silver boundary near the void 

defect. This indicates that voids may have more negative influence on the wire strength than 

the rough Bi2212/silver interface.  

Secondary phases do not seem to impact the stress concentration in Figures 3.7(b, c). 

Compared with Figure 3.6(a), the maximum stress in Bi2212 phase in Figures 3.7(b, c) stays 

at the same place and is of nearly the same value. And the maximum stress in silver is still at 

a corner of the figures. 
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Figure 3.7. von Mises stress distribution in the multiple-filament SEM image. (a) When 

there is a single void defect. (b) When the defect is a soft phase. (c) When the defect is a 

hard phase. 

 
 
 

3.4.3. Samples with a multiple natural defects from a SEM image 

To study the effects of multiple defects, in Figure 3.8(a) von Mises stress distribution in the 

presence of multiple voids is presented. Similar to the previous case, in Figure 3.8(b) the 

voids are replaced by the “soft phase” with half the bulk modulus of Bi2212; and in Figure 
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3.8(c) the defects are of a “hard phase” with twice the bulk modulus of Bi2212. These defects 

are also natural defects and are of shape (b) Figure 3.2. 

Figure 3.8 differs from Figure 3.7 because of multiple defects instead of only one defect. The 

results however are remarkably similar: the stress concentration is the highest in the sample 

with voids, while samples with soft and hard secondary phases do not result in significant 

change in maximum stresses (compared to the sample without defect). The similarity 

between them suggests that there is little mechanical interaction of defects in different 

filaments: defects in a filament seem to only influence stress concentration in that filament 

and not others, in other words they are isolated from each other by the silver matrix. This 

could be because of sufficient silver thickness between filaments. It still remains to see 

whether a thinner silver insulation layer between the filament would result in more 

interaction between defects or not. 
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Figure 3.8. von Mises stress distribution. (a) When there are multiple void defects. (b) 

When there are multiple soft phase defects. (c) When there are multiple hard phase 

defects. 

 
 
 

3.4.4. Samples with rectangle artificial defects of different vertical lengths 

The simulation using SEM images with natural defects have one difficulty; the defect size 

and shape are not controllable. Thus it is difficult to have a quantitative assessment on 

influence of defect geometry on mechanical behavior. So the artificial defects of shape (c) in 

Figure 3.2 are included to study stress concentration in the wires. Figure 3.9(a) shows von 
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Mises stress distribution when a void defect introduced into the processed SEM image. The 

void defect in Figure 3.9(a) represents a pre-existing void in a Bi2212 filament. The defect 

has the lower edge in silver phase and upper end in Bi2212 phase, with the horizontal 

thickness of 2.8 μm and vertical length of 7.56 μm. To study the effect of defect length on 

stress concentration, the defect horizontal width (w) is fixed, but its vertical length (h) is 

increased from 0 to 15.2 μm by fixing the lower edge while raising the upper edge until the 

defect is long enough to cut through the whole filament.  

Other than geometry, the influence of defect phase type could also be studied with artificial 

defects. So, in Figure 3.9(b) the same defect geometry as in Figure 3.9(a) is set up as the soft 

phase; while in Figure 3.9(c) it is set up as the hard phase. For meaningful comparison, it is 

important to note that in this study, results are only compared between defects of same type 

but different geometries, or of same geometry but different types. In other words only one 

variable is varied at a time when making comparison. Figure 3.9 shows the same trend as 

previous section when comparing defects of different types: stress is highest in sample with 

void, while no significant change of maximum stress is observed with “soft phase” and “hard 

phase” defects.  

Figures 3.10(a, b, c) show the influence of defect length on maximum von Mises stress in the 

sample when the defect is a void, a soft phase, and a hard phase, respectively. Note that the 

result at zero length is obtained from the defect-free sample in Figure 3.6(a), while the 

longest defect at 15.12 μm is when the red area completely cuts through the Bi2212 filament. 

As shown in the graph in Figure 3.10(a), when the void expands its length across a Bi2212 

filament vertically, the maximum stress in both silver and Bi2212 increases. This is 
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somewhat similar to the classic case of elliptical hole in a single phase with its long axis 

aligned perpendicular to the applied force: the higher the ratio between the major and minor 

axis, the higher the stress concentration. Also, the fact that the longer void has higher stress 

concentration means that once a gap starts to develop, it will not stop until it cuts through the 

whole filament. But when the void completely cuts through the Bi2212 filament, there is a 

sudden reduction of stress concentration in Bi2212 phase while stress still continues to 

increase in silver phase. This means that the load has been transferred from the broken 

Bi2212 filament to the adjacent silver matrix but not to other Bi2212 filaments; and silver 

matrix therefore may have the potential to blunt the void from continuing to develop (if the 

strain is not increased any further). This agrees with experimental results that critical current 

in a wire degrades gradually, not suddenly with strain [10]. It’s noteworthy to mention that 

these simulations are based on equilibrium stress distribution calculation, thus ignoring the 

yielding characteristics of Bi2212 and silver at high strain/stress. A more sophisticated model 

that includes yielding and/or plastic behavior could give more understanding. Also, similar to 

previous simulations, Figures 3.10(b, c) also show when the defect is a soft or hard solid 

phase, maximum stresses are very similar to defect-free case of Figure 3.6(a) with no 

significant change in maximum stress. 

 

 



98 

 
 

 

Figure 3.9. von Mises stress distribution when there is a rectangle defect. (a) When 

defect is a void. (b) When defect is a soft phase. (c) When defect is a hard phase. 
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Figure 3.10. Dependence of maximum von Mises stress on rectangle defect’s vertical 

length. (a) When defect is a void. (b) When defect is a soft phase. (c) When defect is a 

hard phase. 

 
 
 

3.4.5. Samples with rectangle artificial defects of different horizontal widths 

In the previous section, the rectangle defects’ width w is fixed while the length h is varied. In 

contrast, in this section the width w is varied from 0 to 11.2 μm, while the defect length h is 

fixed at 15.2 μm. All the defects in this section have cut through the Bi2212 filament, as 
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shown in Figure 3.11. Figure 3.11(a) shows the stress distribution when there is a void defect 

expanding through the whole filament. In Figure 3.11(b) the defect is the soft phase, and in 

Figure 3.11(c) it is the hard phase. The effect of the thickness on maximum von Mises stress 

is shown on Figures 3.12(a, b, c) when the defect is respectively a void, a soft phase, and a 

hard phase. 

For vertical voids that have cut through the Bi2212 filament in Figure 3.11(a), there is a 

slight decrease of maximum stress in both Bi2212 and silver when the void’s horizontal 

thickness increases as shown in Figure 3.12(a). This could be also explained by the 

decreasing vertical/horizontal size ratio mentioned above.  This means a thinner void 

weakens the Bi2212 wire more than a thicker one. Meanwhile, Figures 3.12(b, c) also 

indicate that soft and hard solid defects will not have much influence on stress concentration 

of the system.  
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Figure 3.11. von Mises stress distribution when there is a vertical defect cutting through 

the whole filament.  (a) When defect is a void. (b) When defect is a soft phase. (c) When 

defect is a hard phase. 
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Figure 3.12. Dependence of maximum von Mises stress on vertical defect’s horizontal 

width. (a) When defect is a void. (b) When defect is a soft phase. (c) When defect is a 

hard phase. 

 
 
 

3.4.6. Samples with 45 degree slanted artificial defects of different widths 

In this section, the defects are of shape (d) in Figure 3.2 are used for simulation. Figures 

3.13(a) shows simulation result with a defect at 45 degree angle crossing the whole the 

Bi2212 filament when the defect is a void. The defect thickness (w) is varied from 0 to 11.2 
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μm to study the influence of void thickness to stress concentration. In Figure 3.13(b), the 

same defect geometry is set up as a soft phase; while in Figure 3.13(c) it is a hard phase. The 

influence of defect thickness on highest von Mises stress value is shown on Figure 3.14. 

For defects of void type, Figures 3.13(a) shows very similar trend as the vertical defects in 

previous section, just with slightly lower stress concentration. Also, there is some slight 

increase of maximum stress in Bi2212 phase with the thickest void. This slight increase may 

not have something to do with the void thickness but with the specific boundary roughness of 

that void at the void/Bi2212 interface. And as expected, soft and hard solid defects in this 

case also do not change the maximum stress in the system. 
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Figure 3.13. von Mises stress distribution when there is a 45 degree defect crossing the 

whole filament. (a) When defect is a void. (b) When defect is a soft phase. (c) When 

defect is a hard phase. 
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Figure 3.14. Dependence of maximum von Mises stress on 45 degree defect’s width. (a) 

When defect is a void. (b) When defect is a soft phase. (c) When defect is a hard phase. 

 
 
 

3.4.7. Samples with circular defects of different diameters 

The defects of shape (e) in Figure 3.2 are used for simulations in this section. Similar to 

previous section, void, soft phase, and hard phase circular defects are illustrated in Figures 

3.15(a, b, c), respectively. The defects’ diameter (D) is varied from 0 to 22.4 μm; and the 

effect of diameter size on maximum von Mises stress is shown on Figures 3.16(a, b, c). 
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Similar to rectangle voids of increasing length, Figure 3.16(a) shows circular voids also show 

a trend of maximum stress increasing with void size; and when the void is large enough to 

completely cut through the Bi2212 filament stress in Bi2212 also drops while stress in silver 

keeps increasing. But compared to the rectangle void case, in this case there is one noticeable 

difference. When the void diameter is less than filament width (15.12 μm), the stress in 

Bi2212 phase rises significantly more than in silver phase when the void increases in size. In 

fact only in this case stress in Bi2212 becomes higher than in silver at some point. This could 

be due to the fact that unlike the rectangle voids that always have at least one end touching 

the silver phase, most circular voids are entirely encompassed in the Bi2212 phase.  

Another difference is when the void diameter starts to become equal to the filament width 

(15.12 μm), the stress in Bi2212 does not drop like in other cases. This is because in this 

case, the low angle between the void’s circular boundary and the filament’s boundary creates 

sharp Bi2212 “tips” near the highest and lowest vertical positions of the void. These sharp 

tips make the stress in Bi2212 high despite the fact that the circular void has lower aspect 

ratio and smoother boundary line compared to other rectangle voids in previous sections. 

Only the when the void is large enough (22.4 μm diameter), then the Bi2212 tips become 

blunt and the stress in Bi2212 drops again. While the maximum stress in silver still continues 

to increase because the silver layers directly above and below the void get thinner as the void 

size increases.  

Previously, experimental results have shown that smaller bubbles result in higher critical 

electric current. Now the simulations also show smaller bubbles could result in higher 

mechanical strength. Though this can be difficult to verify experimentally because in a real 
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sample, there could be multiple bubbles and there is no direct control yet on the maximum 

size of the bubbles, which the highest stress concentration depends on. Meanwhile, the 

macroscopic critical current depends more on the average, not the maximum bubble size. 

And similar to other simulations, Figures 3.16(b, c) show soft and hard circular defects also 

do not affect Bi2212’s maximum stress. The only difference is silver’s maximum stress 

increases with diameter when the circular defect is of the soft phase as shown in Figure 

3.16(b).  
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Figure 3.15. von Mises stress distribution when there is a round defect. (a) When defect 

is a void. (b) When defect is a soft phase. (c) When defect is a hard phase. 
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Figure 3.16. Dependence of maximum von Mises stress on round defect’s diameter. (a) 

When defect is a void. (b) When defect is a soft phase. (c) When defect is a hard phase. 

 
 
 

3.4.8. Samples with artificial rectangle voids inside a Bi2212 filament 

The simulation results so far have shown void geometry has great influence on stress 

concentration in Bi2212 wires. But does the shape or the size of the void have more 

importance on the outcome? In previous simulation, there is a change of voids’ both shape 

and size (or size alone in simulation with circular voids). So it is difficult to separate the 
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influence of the two attributes. Thus in this study, three different rectangle voids of shape (c) 

in Figure 3.2 are used. Both the width w and the length h are varied, but the area A = w.h is 

kept the same for all three voids. Figure 3.17 shows the von Mises stress results of these 

voids. The h:w ratio is 4 in Figure 3.17(a), 1 in Figure 3.17(b), and 0.25 in Figure 3.17(c). 

The figures show there is a clear influence of defect aspect ratio on the stress concentration. 

Namely, Figure 3.17(a) with highest vertical to horizontal aspect ratio shows the highest 

stress concentration, 133 MPa in Bi2212 and 103 MPa in silver. While Figure 3.17(c) shows 

the lowest one, 78.8 MPa in Bi2212 and 88.1 MPa in silver. In fact, by comparing Figure 

3.6(a) (the sample without any defect) and Figure 3.17(c), one finds that the stress in silver is 

essentially the same in both cases, with only some slight difference of stress in Bi2212.  Thus 

it is apparent that defect’s aspect ratio plays an important part on material’s stress 

concentration. The voids’ size still have influence on stress though, as shown previously in 

simulations with circular voids where there is no change in aspect ratio. 
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Figure 3.17. von Mises stress distribution when there is a rectangle void. (a) When 

defect’s h:w aspect ratio is 4. (b) When the ratio is 1. (c) When the ratio is 0.25. 

 
 
 

3.4.9. Sample with artificial voids around a Bi2212 filament 

Figure 3.18 shows a different type of voids, in this figure the voids are not inside the Bi2212 

filament but around it. The voids are artificially created to study the effect of detached 

Bi2212 filament on stress behavior. These voids are type (f) defect in Figure 3.2. 

Figure 3.18 shows a different type of voids. In previous simulations, the voids are always 

inside the Bi2212 filaments. But it has been shown there are also voids between Bi2212 
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filaments and silver matrix [10]. These detached Bi2212 filaments are considered the “weak 

component” in electric conductivity of the wires because they are more prone to breakage 

when in compression. The result in Figure 3.18 is also from 0.1% strain test so it cannot be 

related to buckling behavior mentioned in [10]. But from the result, it can be concluded that 

these voids raise the stress concentration on the same range of magnitude as the internal 

voids do in Bi2212 phase. 

 
 
 

 

Figure 3.18. von Mises stress distribution when a fraction of a Bi2212 is detached from 

the silver matrix. 

 
 
 

3.4.10. Simulation of stress concentration due to thermal cooling 

In all previous simulation, it is assumed that there is no temperature change and initially, the 

Bi2212 wires are in stress-free state. But in experiments, the wires are often subjected to low 
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temperature of cryogenic liquids such as helium and nitrogen, and experiments suggest that 

there is significant internal stress in the material, due to different thermal expansion 

coefficients of silver and Bi2212 phase. The peridynamic theory can easily incorporate 

thermal expansion into its model, simply by decomposing the total bond stretch s into two 

mechanical and thermal parts: 

ݏ  ൌ ௠௘௖௛௔௡௜௖௔௟ݏ ൅ ௧௛௘௥௠௔௟ݏ ൌ 	 ௠௘௖௛௔௡௜௖௔௟ݏ ൅	ߙ௧௛௘௥௠௔௟∆ܶ	 (3.2) 

where ߙ௧௛௘௥௠௔௟ is the thermal expansion coefficient and ∆ܶ is the temperature change. Then 

the same peridynamic formulas can be applied using ݏ௠௘௖௛௔௡௜௖௔௟  in place of the total 

stretch	ݏ. This is analogous to thermal strain in classical mechanics, and it has been applied in 

bond based models in other studies [24, 27, 29, 30, 46]. Figure 3.19 shows the von Mises 

stress distribution in the defect free sample when it is subjected to a temperature change of -

300 K. This is the amount of change from room to liquid helium temperature. Thermal 

expansion coefficient of silver is set at 17x10-6 K-1, Bi2212 at 12.7x10-6 K-1. As expected, 

Figure 3.19(a) shows the Bi2212 phase in compression and silver in tension (negative 

pressure). The maximum von Mises stress in silver is 115 MPa, and in Bi2112 is 104 MPa. 

These are beyond the experimental yield stress in silver and fracture stress in Bi2212. Thus 

from the result, it can be predicted that silver goes into plastic deformation when cooling 

down to liquid helium temperature. A more advanced 2D peridynamic model including 

plasticity in it would be more adequate for modeling the mechanical behavior in the Bi2212 

wires when they are under large temperature changes often seen in real experiments. 
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Figure 3.19. Stress distribution when temperature change is -300 K. (a) Pressure. (b) 

von Mises stress. 
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4. CONCLUSION AND SUGGESTED FUTURE WORK 

2D state-based peridynamic model for plane stress simulation is used for investigating 

mechanical response in Bi2212 round wires. Compared to 3D model, the 2D model has the 

advantage of a smaller system and reduced computation time. Both m-convergence and δ-

convergence of the model are investigated. For verification, both displacements and stresses 

are compared with results from a counterpart FEM model. The 2D peridynamics simulations 

show that both the displacements and stresses match well to the FEM results, except for the 

stresses on the sample boundaries where the free-boundary effect common to peridynamics 

modeling occurs. Energy minimization method with conjugate gradient algorithm is used for 

finding static stress distribution in the system, and different defect geometries and physical 

properties are investigated. The simulation is implemented with parallel Matlab code and ran 

on GPU to improve computation speed.  

Simulation results show in Bi2212 phase, stress concentrates the most around void defects 

both inside and outside the Bi2212 filament. The voids’ aspect ratio and their dimension in 

the direction perpendicular to the Bi2212 filaments have important influence on the stress 

concentration in the case of internal voids. Protruding growths and bridges of Bi2212 phase 

also concentrate stress to a lesser extent. Hard and soft secondary phases have the least 

influence in stress concentration in Bi2212. In silver, stress tends to concentrate on the 

Bi2212/silver interface. Thus where the cracks start to happen in a Bi2212 wire strongly 

depends on whether there are voids presenting in it or not. Reducing the maximum void size 

in Bi2212 is predicted to positively increase the mechanical strength of the Bi2212 wires. 
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Simulation shows on samples with a void defect inside a Bi2212 filament, maximum stress 

Bi2212 phase is increases with defect size in the direction perpendicular to the filament; until 

the defect completely cuts through it then the maximum stress in Bi2212 phase decreases, 

except for the round defects. This indicates that once a Bi2212 filament is broken, the load is 

transferred mostly to the silver matrix rather than other adjacent filaments. It is unknown 

how much influence the Bi2212 filament-to-filament distance has on the behavior of load 

transferring when a filament breaks. Additional simulations with various distances could be 

implemented to study this behavior and determine the minimum distance where the 

maximum stress in Bi2212 phase will not increase when a filament breaks. This distance is 

important to know to have the highest filament density (and electrical current) without 

negatively affecting the mechanical strength of the wire. 

The peridynamics models have potential for investigating different microstructures and 

defects in Bi2212 wires or other similarly complex phase arrangements. Because of nature of 

digital images, the resolution or fineness of the simulation is currently limited by the quality 

of the input images when discretizing the images into peridynamic nodes. The elements/areas 

have to be fine enough to still retain the important microstructure features but coarse enough 

to smooth out the artifacts caused by the pixelation of the images. For example, in Figure 

4.1(a), that requires the red and yellow regions must contain at least a few hundred pixels 

each. And the mesh size should be about a few times the pixel size at least. So this method 

can work well when the length scale of the jagged edges, or pixel size, is small compared to 

the other features in the digital image. If they had only a few pixels each then the method 
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won’t work out well. So the quality of the input images is very important to achieve 

reasonable results.  

For better preservation of the boundary symmetry, an uneven mesh that (roughly) follows the 

phase boundary could also be used, as illustrated in Figure 4.1(b). From the images, we can 

see that the jagged edges have been replaced by piece-wise smooth boundary lines with 

smaller angle change between adjacent edges (this angle is usually called “edge angle” in 

finite element literatures).It can be seen that the uneven mesh in Figure 4.1(b) preserves the 

defect geometry better than the even mesh in Figure 4.1(a). Then the uneven mesh can be 

further discretized to have finer results with higher resolutions. But the phase boundary line 

of this mesh should not be refined in the process because otherwise the phase boundaries 

would contain the artificial, jagged edges again. This scheme can overcome the minimum 

element size limitation in even mesh scheme; the only limitation is the phase boundary still 

cannot be refined. 
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Figure 4.1.  (a) A crude, uniform mesh. (b) A mesh that roughly follows the image’s 

interface and smoothens out the pixel artifacts [61]. 

 
 
 

Another possible way to overcome this limitation of jagged edges is to first convert the pixel 

images to vector-based images first before implementing discretization. In a vector image, all 

the points, curves, or surfaces are described by mathematical expressions. Thus the jagged 

edges in the original, pixel image can be replaced by smooth mathematical curves.  After 

that, the vector image can be discretized into a mesh of elements. With the vector image, the 

discretization grid size can be set to any size since there will be no pixels or jagged edges in 

the vector image. And different to the previous scheme, in this scheme the phase boundary 

lines can also refined indefinitely.  It is because no matter how much one “zooms in”, the 

boundary lines of a vector image can always be smooth, not jagged.   
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The 2D peridynamic models proposed in this study are elastic models and do not include 

plastic deformation, so applications are limited to the behavior of the wires in elastic region. 

Yielding in silver is of particular importance in mechanical behavior of the wires, as studies 

have shown silver yields significantly before failure from both the thermal cooling and 

mechanical loading the wires undergo while inside a magnet. The models are capable of 

modeling mechanical failure in Bi2212 phase because Bi2212 deformation is linearly elastic 

up until the failure strain, then it breaks suddenly. Silver however has a wide range of strain 

where it deforms plastically before failing. This plastic deformation has not been included in 

the models. Thus, more complete understanding of the composite wires via peridynamic 

simulation could be achieved if plasticity is added to the models. 
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