
ABSTRACT 

LUGO, RAFAEL ANDRES. Statistical Entry, Descent, and Landing Flight Reconstruction with 

Flush Air Data System Observations using Inertial Navigation and Monte Carlo Techniques. (Under 

the direction of Dr. Robert Tolson.) 

 

 A method is introduced to consider flush air data system (FADS) pressures using a technique 

based on inertial navigation to reconstruct the trajectory of an atmospheric entry vehicle. The 

approach augments the recently-developed Inertial Navigation Statistical Trajectory and Atmosphere 

Reconstruction (INSTAR), which is an extension of inertial navigation that provides statistical 

uncertainties by utilizing Monte Carlo dispersion techniques and is an alternative to traditional 

statistical approaches to entry, descent, and landing trajectory and atmosphere reconstruction.  

 The method is demonstrated using flight data from the Mars Science Laboratory (MSL) entry 

vehicle, which contained an inertial measurement unit and a flush air data system called the Mars 

Entry Atmospheric Data System (MEADS). An MSL trajectory and atmosphere solution that was 

updated using landing site location in INSTAR is first presented. This solution and corresponding 

uncertainties, which were obtained from Monte Carlo dispersions, are then used in a minimum 

variance algorithm to obtain aerodynamic estimates and uncertainties from the MEADS observations. 

MEADS-derived axial force coefficient and freestream density estimates and uncertainties are also 

derived from the minimum variance solutions independent of the axial force coefficients derived from 

computation fluid dynamics (CFD), which have relatively high a priori uncertainty. Results from 

probabilistic analyses of the solutions are also presented. 

 This dissertation also introduces a method to consider correlated CFD uncertainties in INSTAR. 

From a priori CFD uncertainties, CFD force and pressure coefficients are dispersed in a Monte Carlo 

sense and carried over into the reconstructions. An analysis of the subsequent effects on the 

trajectory, atmosphere, and aerodynamic estimates and statistics is presented. 

 Trajectory, atmospheric, and aerodynamic estimates compare favorably to extended Kalman filter 

solutions obtained by the MSL reconstruction team at NASA Langley Research Center. The 

uncertainties obtained through the methods from this work are generally smaller in magnitude 

because of assumptions made regarding sources of error in the MEADS pressure transducer 

uncertainties. Using data-derived uncertainties in the pressure measurement noise covariance results 

in aerodynamic parameter estimate uncertainties that are in better agreement with the uncertainties 

derived from the Monte Carlo dispersions. CFD database errors dominate the uncertainties of 

parameters derived from aerodatabase axial force coefficients.   
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Chapter 1  

Chapter 1: Introduction 

NAVIGATION (nævə’geɪʃ(ə)n), n. [late 13
th
 cent. Old French] The art 

or science of directing the movements of an aircraft or spacecraft, 
esp. with regard to the determining of position and course by the use 
of instruments, electronic aids, etc.  

Oxford English Dictionary, Third Edition 

 

I am well convinced that Aerial Navigation will form a most 
prominent feature in the progress of civilization. 

George Cayley, aeronautical engineer, 1804 

 

 

Guidance, navigation, and control, often abbreviated GNC, is a broad field of engineering that is of 

particular importance in autonomous vehicles. Guidance is the process of directing a vehicle from the 

present location to the destination. Navigation is the process of determining the present location of a 

vehicle relative to the destination using estimates and observations of the current state and 

surroundings. Control is the process of maintaining the course and stability of the vehicle. Whether it 

is a sailboat crossing an ocean or a satellite orbiting a planet, the process of determining the vehicle 

state is essential for accurate navigation, and is the fundamental component of this dissertation. 

 Many navigation techniques exist, some of which date back centuries. Ancient mariners used 

dead reckoning, a technique in which position is determined by taking into account the ship’s present 

speed and course heading at regular intervals, using the classical distance = speed × time.
1
 Dead 

reckoning is particularly susceptible to accumulation errors since errors in position and velocity 

estimates affect later estimates when no information about the surroundings or environment is used. 

Despite this danger, however, the technique has been used successfully for centuries. Perhaps most 



2 

 

 

 

famously, Christopher Columbus made four voyages from Spain to the so-called New World using 

only dead reckoning, returning each time with exceptional accuracy.
2
 These are shown in Figure 1.1. 

 

Figure 1.1. The four voyages of Christopher Columbus, navigated using dead reckoning.
*
 

 Eventually it was discovered that the angles between the stars in the sky and the local horizon 

could be used with yearly celestial almanacs to obtain an estimate, or fix, of the ship’s current 

location independent of previous position estimates, thus correcting or eliminating accumulation 

errors. This resulted in the method of celestial navigation.
2
 

 The rise of powered flight and the early rocketry work of Robert Goddard in the early 20th 

Century spurred development of automated navigation methods that relied on data from sensors 

located onboard the vehicle.
†
 Austrian engineer Johannes Boykow formulated such a technique in the 

                                                      
* http://en.wikipedia.org/wiki/Voyages_of_Christopher_Columbus, accessed 25 March 2013. 
† Although mathematical formulations of sensor-based navigation did not begin in earnest until this time, in 1873 the Irish 

scholar and philosopher Joseph John Murphy wrote a letter to the journal Nature in which he described, as a response to a 

letter on animal navigation by Charles Darwin, a process by which the position and heading of a train carriage could be 

obtained by tracking and integrating the movements of a free-swinging ball suspended from the roof of the carriage. 
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late 1920s, but was unable to demonstrate it successfully with contemporary instruments before his 

death in 1935.
3
 It was not until late 1944 that Wernher von Braun, technical director of the Nazi V-2 

rocket program, implemented a variation of Boykow’s method to guide missiles to their targets using 

onboard gyroscopes and an accelerometer. The V-2 GNC system, while effective, was crude in that it 

was designed simply to maintain a stable, roughly vertical flight to a certain altitude. After World 

War II and the relocation of von Braun and his engineers to the United States, Cold War fueled 

interest in self-guided intercontinental ballistic missiles (ICBMs) led a team headed by Charles 

Draper of MIT to refine and formalize the method into the now-standard inertial navigation. Draper’s 

designs, informed by the V-2 systems, were implemented with increasingly accurate sensors in a 

variety of vehicles in the 1950s and 1960s, including the Atlas ICBM and the Apollo spacecraft. 

Today, inertial navigation is still extensively used in terrestrial, marine, aerial, and space 

applications.
4
   

 Inertial navigation requires the use of three mutually orthogonal accelerometers and three 

mutually orthogonal gyroscopes typically contained in a single package called an inertial 

measurement unit
*
 (IMU). By numerically integrating acceleration and angular rate measurements 

provided by these sensors, the vehicle position, velocity, and attitude may be continuously propagated 

from an initial state, which is in turn fed to the navigation computer to update guidance and control 

routines.
4
 Thus, despite tremendous advances in technology

†
 since the days of sextants and almanac 

table lookups, inertial navigation is essentially a much more accurate version of dead reckoning. 

 Modern navigation systems often augment IMU data with information from other sources. 

Terrestrial vehicles, for example, use the Global Positioning System (GPS), a network of Earth 

satellites broadcasting radio timing signals that are used to quickly determine the present location of 

the GPS receiver to within a few meters.
5
 Spacecraft such as interplanetary probes, however, must 

rely on internal sensors, radiometric tracking from Earth ground stations, or—paralleling the 

terrestrial form of celestial navigation—known and fixed star positions to determine the current state.  

 In modern times, a significant navigation challenge has been the robotic exploration of Mars and 

its atmosphere.
6
 Beginning in the 1970s, NASA has successfully landed seven surface assets in the 

form of landers and rovers: Viking 1 & 2 (landed 20 July & 3 September 1976), Mars Pathfinder (4 

July 1997), Mars Exploration Rover A & B (4 & 25 January 2004), Mars Phoenix (25 May 2008), 

and Mars Science Laboratory (6 August 2012). Placing these rovers and landers on the surface 

                                                                                                                                                                     
Unfortunately, Murphy postulated that while such a device may work in theory, “such delicacy of mechanism is not to be 

hoped for.” (Murphy, J. J., “A Mechanical Analogy,” Nature, 1873.) 
* Also referred to as an inertial reference unit (IRU) or, when coupled with a navigation computer, an inertial navigation 

system (INS).  
† Early IMUs, such as those aboard the Apollo spacecraft, were gimbaled, meaning that they were isolated and stabilized 

from the vehicle using gyroscopes. While this simplified the navigation algorithms at a time when portable computing 

power was at a premium, the units were bulky and had many moving parts. Most modern IMUs are strapdown, meaning 

that they are attached to the “rigid body” of the vehicle, and many utilize micro electro-mechanical system (MEMS) 

technology that result in cheaper units that can fit on platforms as small as a smartphone, but require more complex 

computations. 
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requires the vehicle to go through an entry, descent, and landing (EDL) sequence through the Mars 

atmosphere. A notional Mars EDL sequence is shown in Figure 1.2. 

 

Figure 1.2. Notional entry, descent, and landing sequence. 

 For Mars EDL, the point of entry interface is typically defined at the time at which the vehicle is 

at an altitude of 125 km from the surface. The hypersonic phase of the EDL sequence is characterized 

by high-temperature gas dynamics, during which the vehicle undergoes peak heating and deceleration 

while protected by the heat shield. All Mars entry missions to date have utilized a parachute to reduce 

the vehicle velocity when deployed at low supersonic or transonic Mach numbers. The heat shield is 

discarded to enable ground acquisition with the landing radar, after which the backshell, which 

provides the interface between the parachute and rover or lander, separates and terminal descent 

operations are initiated. Methods of terminal descent and landing vary. The most recent Mars mission, 

MSL, used a “Skycrane” maneuver in which the rover was lowered to the surface with a tether from a 

hovering platform, but other solutions include crushable landing struts (Viking), descent thrusters 

(Viking/Mars Exploration Rover/Phoenix), and/or impact-absorbing airbags (Pathfinder/Mars 

Exploration Rover). 

 Post-flight analysis of the data collected during the EDL sequence enables post-flight 

reconstructions of the trajectory, aerodynamics, and atmosphere along the flight path.
7,8,9,10,11,12

 The 

results of these reconstructions in turn present opportunities to validate pre-flight model predictions 

and aid in planning of future missions. 

 For each of the Mars missions, the reconstructions utilized both inertial navigation and statistical 

reconstruction techniques, the latter of which was typically comprised of variations of the Kalman 
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filter. Statistical techniques blend all available data and provide uncertainties, but often require 

assumptions regarding probability and careful “tuning” of the process noise covariance. Inertial 

navigation makes no such assumptions and is totally data-driven; if the IMU measurements and initial 

conditions were perfect, the solution obtained through inertial navigation would be the true trajectory. 

Of course, measurements are never perfect, and furthermore inertial navigation by itself does not 

provide any useful statistics. Therefore, the purpose of the present work is to present an alternative to 

traditional statistical reconstruction methods that is based on classical inertial navigation, takes into 

account observations other than those made by the IMU, and provides useful solution statistics.  

 Ultimately, understanding and quantifying vehicle entry dynamics in the Martian atmosphere and 

how they compare to expectations is critical to the success of future missions to the Red Planet and 

beyond. In the next section, this environment and the implications it presents with regard to 

navigation will be discussed. 

1.1 Mars and its Atmosphere 

 The planet Mars, so named after the Roman god of war and colloquially referred to as the Red 

Planet due to its reddish appearance, has been studied for at least 3,500 years. The ancient 

Babylonians and Egyptians were known to have tracked the orbital characteristics as Mars is easily 

observable in the night sky with the naked eye, though their interests were mostly superstitious and 

lacked scientific reasoning. The Greeks attempted to explain Mars’s apparently peculiar orbital 

behavior, but their elaborate solutions were ultimately flawed as they used geocentric models of the 

Solar System. Middle-Eastern and Eastern astronomers made some advancements while Europe 

underwent the so-called Dark Ages, but it was in the 16th and 17th centuries that astronomers such as 

Tycho Brahe, Johannes Kepler, Galileo Galilei, Giovanni Cassini, and Christiaan Huygens pioneered 

systematic observations of the Red Planet.
13

  

 Observation of the surface of Mars began in 1610, when Galileo became the first to observe Mars 

using a telescope. As even these early telescopes revealed global-scale features on Mars, over the next 

300 years its surface was mapped by dozens of astronomers. Perhaps most notably, in 1877 the 

astronomer Giovanni Schiaparelli published a map of Mars, shown in Figure 1.3, on which he 

identified a vast network of straight, narrow features he called canali. This was translated to English 

as canals, which was mistakenly construed as being artificial in nature.
*
 The revelation that there 

apparently existed artificial constructs on the surface of Mars spurred many dubious claims, such as 

those by Percival Lowell,
13

 that Mars was inhabited by sentient Martians—an idea that remained 

popular even well after it was determined that Mars was incapable of supporting the vast water 

                                                      
* The word canal does not necessarily refer to an artificial construct and may be used to describe natural geographic 

features. The nature of this apparent misunderstanding is unclear, but it is likely that the idea of Martian canals captivated a 

public yearning to know more about the Cosmos. 
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oceans, lakes, and rivers that the 19th Century maps seemed to imply.
*
 Despite this incident, many of 

the names Schiaparelli applied to various Martian features are still in use today.  

 

Figure 1.3. Martian “canals” as mapped by Giovanni Schiaparelli.
†
  

 Robotic observation and exploration of Mars was achieved in the second half of the 20th Century, 

triggered by the rapid advancement of post-World War II technology coupled with the Space Race 

between the United States and the Soviet Union. Early mission planning placed an emphasis on 

surface exploration until it was proposed that the vehicle entry phase could provide valuable 

information about the structure of the atmosphere.
14,15

  

Photographs from the Mariner 9 spacecraft in 1971 and the later Viking orbiters provided critical 

information about the Mars surface and atmosphere (and finally dispelled any notions of artificial 

canals or structures). The photos also confirmed the presence of massive dust storms that had puzzled 

                                                      
* The concept of life on Mars has become thoroughly embedded in popular imagination, famously exemplified by the hostile 

Martians in Orson Welles’ now-infamous 1938 radio adaptation of H. G. Wells’ The War of the Worlds. Even today, the 

robotic exploration of Mars is in part driven by the search for evidence of past life. At the time of this writing, definitive 

evidence of life on Mars remains elusive, though it has been determined that Mars was in fact once covered with water 

oceans and rivers in its early history. 
† http://planetologia.elte.hu/ipcd/ipcd.html?cim=schiaparelli1888, accessed 18 January 2013. 
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early Mars observers, including Schiaparelli.
16

 A Mars dust storm photographed by Viking Orbiter 2 

is shown in Figure 1.4.  

 

Figure 1.4. Dust storm in the Thaumasia region of Mars, photographed by Viking Orbiter 2.
*
  

 Some relevant physical characteristics of Mars are listed in Table 1.1. Characteristics of the 

Martian atmosphere are listed in Table 1.2 and the atmospheric chemical composition is listed in 

Table 1.3 (both of which are adapted from Ref. 17). 

Table 1.1. Physical characteristics of Mars. 

Parameter Symbol Value 

Radius (km) R 3396.19 

Standard gravitational parameter (km3/s2)    42828.376212 

Second dynamic form factor (zonal harmonic) 2J   
31.95639057765 10   

Rotation rate (rad/s)    
57.088212079 10  

                                                      
* http://nssdc.gsfc.nasa.gov/imgcat/html/object_page/vo2_176b02.html, accessed 13 August 2013. 
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Table 1.2. Characteristics of Mars atmosphere and comparison to Earth. 

Parameter Earth Mars 

Surface pressure (mb) 1014 4.0 to 8.7 

Surface density (kg/m3) 1.217 ~0.020 

Scale height (km) 8.5 11.1 

Average temperature (K) 288 ~210 

Mean molecular weight (g/mol) 28.97 44.01  

Table 1.3. Composition of Mars atmosphere. 

Chemical species Percentage 

Carbon dioxide 95.32 

Nitrogen 2.70 

Argon 1.60 

Oxygen 0.13 

Carbon monoxide 0.08 

Water, nitrogen oxide, hydrogen- 

deuterium-oxygen, krypton, xenon 

<0.1 

 

 

 

From a qualitative standpoint, the Martian atmosphere is quite cold and thin when compared to 

that of Earth. The low density in particular poses a significant challenge to landing on Mars, since 

there is less drag and parachutes are less effective.
6
 Thus, although parachutes are used to slow the 

vehicle, they provide insufficient drag to soft-land a vehicle by themselves. The Mars Science 

Laboratory rover Curiosity, which is significantly more massive than previous landers and rovers, 

was placed at a higher altitude than previous missions by the “Skycrane” landing system that will be 

discussed in more detail in Chapter 2.  

1.2 Fundamentals 

 The work presented in this dissertation explores post-flight reconstruction of spacecraft trajectory 

and atmosphere, specifically with regard to Mars atmospheric entry, descent, and landing (EDL) 

navigation. Knowledge of the vehicle dynamics and atmosphere are essential, as trajectory 

reconstruction involves, to varying degrees, the disciplines of aerodynamics, gas dynamics, 

probability, and estimation theory. A review of the fundamental topics in these disciplines in the 

context of navigation and reconstruction will be presented in Chapter 3. 

1.2.1 Definitions 

 In this dissertation, the trajectory is the position, velocity, and orientation history of a vehicle in a 

specified reference frame. The atmosphere is the ambient density, pressure, and temperature along the 

vehicle flight path as a function of altitude. The aerodynamics of the vehicle are the forces, moments, 
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and other parameters that are induced by the dynamic interactions with the flow field during flight. 

Generally, trajectory and atmospheric parameters are derived from flight data measured in situ during 

entry. The state formally refers to the set of parameters that define the position and velocity of the 

vehicle, but in the present work it will be used to include the attitude. It may also refer to other groups 

of parameters, such as the atmospheric state or the aerodynamic state. Redundant data are any 

observations other than those required for inertial navigation. 

 There are four types of quantities that will be frequently used throughout this work. True 

quantities, represented by the unembellished symbol x, are the actual and unknowable values of the 

parameter being estimated. Measurements or observations, represented by ,x  are quantities returned 

by sensors and instrumentation. Estimates, represented by ˆ,x  are quantities returned by statistical 

algorithms designed to give a “best guess” of the true values x by using the measurements .x  

Modeled quantities, represented by ,x  are produced by mathematical representations of a system that 

simulate the relevant physical processes.  

1.2.2 Error and Uncertainty 

 In recent years, there has been an effort to take a more formal approach to quantifying the 

accuracy of the quantities in question, particularly in the field of computational fluid dynamics.
18

 

Errors are differences between the true or expected values and the observations or estimates. 

Uncertainties describe the confidence in the precision and accuracy of the observation or estimate in a 

statistical sense by characterizing the contributions of the different error sources, and are sometimes 

informally described as estimates of the errors. In the field of metrology, the uncertainty corresponds 

to the range or spread of observed values for a measured parameter. In the field of statistics, the 

uncertainty may be obtained from the covariance in an estimator or from the dispersions in a Monte 

Carlo analysis. In each case, the uncertainty is closely related to the standard deviation, which 

describes how much a parameter varies from its true or expected value. These particular definitions 

are widely used in metrology and statistics; more formal definitions are used in model verification 

and validation and are provided in Ref. 19.
*
  

 Errors may be categorized as random or systematic. Random errors vary from measurement to 

measurement and are due to lack of precision or instrument noise. For example, repeatedly measuring 

the height of a coffee table with a meter stick might result in values that range between 0.96 and 0.98 

m with a mean value of 0.97 m; thus, the table may be said to have a height of 0.97±0.01 m. The 

±0.01 m term is the uncertainty due to random errors. Systematic errors are consistent between 

measurements and may be due to poor calibration, lack of knowledge of the relevant physics, poor 

assumptions or models, etc., and are more difficult to quantify. For example, the aforementioned 

                                                      
* A measurement or estimate is essentially meaningless without an accompanying uncertainty. For example, an 

accelerometer reading of 10 m/s2 may be (perhaps incorrectly) construed to be useful until the uncertainty in that 

measurement is determined to be ±50 m/s2. Ideally, the errors lie within the range of uncertainty. 
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meter stick may actually have been 2 cm short of a meter; thus, the measurements were systematically 

biased by 2 cm. If the true and unknowable height is 0.99 m, then the solution lies outside of the 

uncertainty—a situation that may be rectified only by using a more accurate meter stick or improving 

the knowledge of the length of the current meter stick. In practice, a priori estimates of 

instrumentation errors are typically provided by the manufacturer. These errors may later be 

estimated in a statistical process and compared to the a priori value.  

 In summary, one of the fundamental challenges of reconstruction—and indeed, of any field 

involving data analysis—is obtaining accurate estimates of the unknowable true values using 

erroneous observations and imperfect models.  

1.2.3 Notation 

 In this dissertation, vectors are series of elements arranged in a column or row and are 

represented by boldfaced uppercase or lowercase Roman or Greek letters. Scalar quantities or vector 

components are represented by italicized, lightface letters. Boldface is used exclusively for vectors 

and quaternions. Notation is illustrated with the arbitrary vector v (column vectors are typically used 

so that the quantity T
v v  is a scalar): 

 v   vector 

 v̂   unit vector 

 v  or v Euclidian norm of vector, i.e. T
v v   

 iv   ith component of vector 

Components of a vector are the projections of the vector onto the coordinate system axes, and are 

typically identified with numeric subscripts such that 
T

1 2[ , ,..., ]nv v vv . For the special case of a 

three-dimensional Cartesian vector, an ordered triplet may be used, i.e., T[ , , ]x y zv v vv  or 

ˆ ˆ ˆ ,x y zv v v  v i j k  where ˆ,i   ̂ ,j  and k̂  are unit vectors that identify the orthogonal axes of the 

coordinate system such that 
Tˆ [1,0,0] ,i

Tˆ [0,1,0] ,j  and 
Tˆ [0,0,1] .k  In general, the symbols x, y, 

and z are reserved for identifying components of a three-dimensional Cartesian vector (when used as 

subscripts) or axes of a Cartesian coordinate system (when used as normal scripts) in three-

dimensional Euclidian space.  

 Matrices are rectangular arrays of elements and are represented by non-emphasized uppercase 

Roman or Greek letters. Notation is illustrated with the arbitrary matrix M: 

 M   matrix 

 
1M

 matrix inverse  

 
TM  matrix transpose 

 Mij  component of matrix in the ith row and jth column 

  det M  determinant of matrix 

  diag M  diagonal of matrix 
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Vectors and scalars may be considered special cases of the matrix. For example, a matrix with 

dimensions m n   is a vector if 1m   or 1.n   Similarly, a scalar is a matrix with dimensions 

1.m n   A matrix with more than two dimensions is referred to as an array.    

 Although every effort has been made to maintain consistency in notation and terminology in this 

work, exceptions will be widespread due to historical convention and practicality. The observant 

reader will have already noticed an abuse of notation: an estimate is signified by a letter embellished 

with a carat, which also signifies a unit vector. In general, the context will resolve ambiguities. 

 This dissertation will use the International System of Units (SI). In this system, the base units of 

length, mass, time, and temperature are the meter (m), kilogram (kg), second (s), and kelvin (K), 

respectively. The derived units of force, pressure, and energy are the newton (N), pascal (Pa), and 

joule (J), respectively. 

1.3 Previous Work and Principal Issues 

Historically, there have been two common trajectory reconstruction techniques. Probabilistic or 

statistical approaches process measurements in a stochastic algorithm that minimizes a payoff 

function defined by system models. Examples of these methods include weighted least squares, 

minimum variance, extended and unscented Kalman filters, etc.
20,21,22

 Statistical methods may utilize 

a priori information and blend various types of observations to reduce solution uncertainties, which 

are readily available from estimator covariances. These techniques, however, often require 

assumptions of probability distribution functions and use of dynamical models, such as for 

aerodynamics, data and state noise, observation equations, etc. Furthermore, statistical filters often 

require “tuning” of the process noise or a priori covariance to ensure convergence.
20

 Despite these 

apparent issues, statistical techniques have been used extensively and successfully for decades. In 

particular, the Kalman filter has been used in a wide variety of applications since its development in 

the early 1960s, from GPS-based automobile navigation to satellite tracking. 

The other common trajectory reconstruction technique is inertial navigation, a deterministic 

method in which the vehicle position and velocity are propagated using acceleration and angular 

velocity measurements from an IMU.
4
 This method has been used on every

*
 NASA Mars mission and 

has proven to be a relatively straightforward and fast trajectory reconstruction technique.
7-12

 It is 

identical to the algorithm used aboard spacecraft to determine position and velocity during entry for 

navigation purposes.
†
 Inertial navigation does not require the use of models to relate the observations 

to the vehicle dynamics (with the exception of gravity models, which are often well-known), and does 

                                                      
*  Mars Pathfinder (1997) carried a single gyroscope for spin stabilization about the principal axes, so the attitude could not 

be propagated using angular rate measurements as in classical inertial navigation. 
†  The term “inertial navigation” formally refers to the navigation technique used by vehicles equipped with an IMU to 

determine position and velocity during flight. The same algorithm, however, is used post-flight for reconstruction 

purposes, and therefore in the present work “inertial navigation” may refer to either the navigation or reconstruction 

technique. 
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not rely on pre-flight simulations or computational fluid dynamics (CFD). However, as it is a 

deterministic method, inertial navigation lacks the advantages of statistical techniques, namely that in 

its classical form it cannot incorporate redundant data (pressure, altimetry, etc.), and solution statistics 

are unavailable. This dissertation focuses on addressing these limitations. 

1.3.1 Inertial Navigation and Atmosphere Reconstruction with Statistics 

 A technique has recently been developed that uses the inertial navigation approach to trajectory 

reconstruction in a Monte Carlo dispersion process to take advantage of available redundant 

observations (that is, any observations other than body accelerations and angular velocities) and 

obtain parameter uncertainties. This process, called Inertial Navigation Statistical Trajectory and 

Atmosphere Reconstruction (INSTAR), utilizes the inertial navigation algorithm to reconstruct the 

trajectory and a classical approach to reconstruct the atmosphere. Statistics are introduced by using 

Monte Carlo dispersion techniques that are often used in pre-flight design and development of EDL 

missions. Thus, the INSTAR method enables the inclusion of redundant data types as well as a 

statistical approach to estimating parameter uncertainties, but still uses the framework of inertial 

navigation. INSTAR also does not require any linearization and is therefore well-suited to nonlinear 

problem. A particular advantage of this approach is that it permits specification and estimation of 

arbitrary probability distributions throughout the process, which enables analysis of parameter 

solutions in probability space.  

 In the trajectory reconstruction component of the INSTAR process, illustrated in the Venn 

diagram in Figure 1.5, the initial state conditions and IMU error parameters are dispersed in a Monte 

Carlo sense using specified uncertainties. From these dispersed initial conditions, the observed IMU 

accelerations and angular rates are integrated using inertial navigation to obtain a set of dispersed 

reconstructed trajectories. Though not shown here, dispersed atmosphere profiles may be obtained 

from the trajectory and an initial atmospheric state using a classical atmosphere reconstruction 

technique. Redundant data not normally used in inertial navigation such as landing site location, 

altimetry, air data system observations, etc. are then used to constrain the dispersed trajectories in the 

“measurement space” to the subset that satisfies those observations. Trajectory and atmosphere 

probability density functions and parameter uncertainties in the form of standard deviations may then 

be obtained from this subset of constrained trajectories and atmospheres. 

 The fundamental concept of INSTAR, namely using redundant data to update parameter 

uncertainties in a Monte Carlo process, was introduced by Blanchard and Tolson and demonstrated by 

Huh using flight data from the X-43A Hyper-X research vehicle, using GPS tracking data as the 

redundant observations.
23

 The primary interest in that analysis was reconstruction of the aerodynamic 

forces and moments and how the corresponding uncertainties compared to uncertainties in pre-flight 

CFD aerodynamic databases. Reconstruction and analysis of the atmosphere and related parameters 

was not included, which is of greater significance in EDL.  



13 

 

 

 

 

Figure 1.5. INSTAR trajectory reconstruction process. 

 The process was also demonstrated by Blanchard et al. using flight data from Mars Science 

Laboratory EDL sequence and using the landing site as the redundant observation.
24

 It was 

determined that simply using the landing site significantly constrained the range of possible 

trajectories, thus reducing the uncertainty in the initial state conditions. In this application, however, 

reconstruction of the atmosphere was also excluded. A revised approach to including landing site, 

with atmosphere reconstruction, will be presented in Chapter 4.  

1.3.2 Flush Air Data Systems 

A flush air data system (FADS) provides pressure measurements along the surface of a vehicle 

using pressure transducers. FADS pressure data may be used in conjunction with CFD, wind tunnel 

data, and/or Newtonian flow approximations to estimate aerodynamic parameters and associated 

uncertainties. The original FADS-based parameter estimation algorithm based on least squares was 

developed for the Shuttle Entry Air Data System (SEADS),
25,26

 and was later applied to other vehicles 

such as the X-43 Hyper-X.
27

 FADS instrumentation was also used in free-flight aeroballistic 

experiments of scale models of the Crew Exploration Vehicle (CEV) in 2008 and 2009, as well as 

scale models of Mars Science Laboratory in 2012.
28,29,30

 These experiments were conducted at 

Aberdeen Proving Grounds in Maryland as a joint effort between NASA Langley Research Center 

(LaRC) and the US Army Research Laboratory (ARL). In each of these free-flight tests, the 

estimation techniques described in Ref. 30 were used to estimate the aerodynamic parameters and 
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associated uncertainties from the FADS pressure data. Most recently, a flush air data system was 

flown on Mars Science Laboratory in the form of the Mars Entry Atmospheric Data System 

(MEADS). A variation of the original formulation was applied to pressure data from this mission.
31,32

 

 A complete description of the FADS-based statistical estimation method with results using MSL 

MEADS pressures will be discussed in §4.3. This algorithm will be used extensively to address how 

pressures from a flush air data system may be considered within the INSTAR framework, and how 

the inclusion of these data validate or improve estimates and uncertainties beyond statistical 

approaches. 

1.3.3 Uncertainties in Computational Fluid Dynamics 

 Computational fluid dynamics (CFD) plays a significant role in mission planning and atmosphere 

reconstruction. Typically, CFD provides tables of aerodynamic coefficients and surface pressures. 

Experimental wind tunnel data may be used to validate and augment the CFD results. Because CFD 

models are not perfectly representative of the flow field, various trajectory parameters are dispersed 

in a Monte Carlo sense and dispersed CFD solutions are obtained. Uncertainties from these 

dispersions are then said to be representative of the accuracy of the CFD model. In general, CFD data 

uncertainty is difficult to quantify and until recently, uncertainties were sometimes not even 

available.
18

 Furthermore, CFD solutions are typically run in a grid (i.e., pressures are given at 

designated Mach numbers, angles of attack, and port location on the heat shield). Different grids are 

used to study effect of node spacing, geometry, etc. until the solution is determined to be insensitive 

to the grid. However, between any two grid points, data must be interpolated, leading to more errors 

and uncertainty. This dissertation will address how the effects of uncertainties and correlations in 

CFD data may be characterized and quantified within the INSTAR framework. 

 FADS-based reconstruction methods rely on CFD model pressures, and therefore model pressure 

errors are tied to the solution errors. Furthermore, CFD errors affect density estimates, as the axial 

force coefficient needed to compute density is obtained from CFD. This dissertation will address how 

FADS-derived density and axial force coefficient estimates may be reconciled with IMU- and CFD-

derived density and axial force coefficient estimates. 

1.3.4 Summary of Principal Issues 

The principal issues that will be addressed in this dissertation may be summarized as follows: 

1. How INSTAR solutions may be interpreted in a probabilistic sense, 

2. How the effects of uncertainties and correlations in CFD tables may be characterized and 

quantified within the INSTAR framework,  

3. How FADS pressures may be considered using INSTAR, and how the inclusion of these data 

validate or improve estimates and uncertainties beyond traditional statistical approaches, and 
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4. How FADS-derived density and axial force coefficient estimates may be reconciled with 

IMU- and CFD-derived density and axial force coefficient estimates. 

1.4 Contributions 

The objectives of this dissertation are to formally develop an alternative to traditional statistical 

approaches to EDL reconstruction, to implement it using flight data with multiple sources of 

redundant observations, and to compare the resultant estimates and uncertainties to those from 

corresponding Kalman filter solutions. Pursuant to these objectives, the recently-developed 

reconstruction scheme based on inertial navigation, called INSTAR, is extended to include 

atmosphere reconstruction by utilizing the classical approach to obtaining freestream density, 

pressure, and temperature. INSTAR provides statistical uncertainties by utilizing Monte Carlo 

dispersion techniques. 

A method is introduced to consider FADS pressures in the INSTAR approach by first assuming 

that the trajectory estimates and uncertainties cannot be appreciably improved using FADS after 

introducing landing site as a redundant observation. This trajectory solution is then used in a 

minimum variance algorithm in conjunction with Monte Carlo dispersions to obtain aerodynamic 

estimates and uncertainties from FADS observations. Atmospheric parameters and uncertainties are 

then derived from the FADS minimum variance solutions and compared to those derived from 

INSTAR. A method to interpret INSTAR trajectory solutions in a probabilistic sense is also 

presented. 

This dissertation also introduces a method to consider correlated CFD uncertainties in INSTAR. 

Using a priori CFD uncertainties, CFD force and pressure coefficients are dispersed in a Monte Carlo 

sense and carried over into the reconstructions. An analysis of the subsequent effects on the 

trajectory, atmosphere, and aerodynamic estimates and statistics is presented.  

These techniques are implemented in INSTAR and demonstrated using flight data from the Mars 

Science Laboratory entry vehicle, which contained an IMU and a flush air data system called 

MEADS. A complete set of trajectory, aerodynamic, and atmospheric parameter estimates and 

uncertainties are presented, along with comparisons to statistical Kalman filter solutions. 

1.5 Overview 

 A roadmap for this dissertation is shown in Figure 1.6. All of the topics fall under the broad 

subject of planetary entry, descent, and landing navigation. The numbered circles indicate chapter 

numbers. 
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Figure 1.6. Dissertation roadmap. 

 An overview of the Mars Science Laboratory mission, hardware, and data in the context of 

trajectory reconstruction is provided in Chapter 2. The elements and definitions that form the basis of 

the more advanced methods of navigation and reconstruction are then established in Chapter 3. The 

reconstruction methodologies used in this dissertation are reviewed in detail in Chapter 4. The 

development and validation of the techniques used to address the principal issues that are the main 

subject of the dissertation are presented in Chapter 5. The results of applying these techniques to the 

MSL EDL data are presented and discussed in Chapter 6. Finally, the conclusions drawn from the 

results, a summary of the dissertation, and topics and applications that may be explored in future 

investigations are presented in Chapter 7.  

Elements of 

Navigation

Reconstruction 

Techniques

Mars Science 

Laboratory EDL

Inertial navigation

Atmosphere reconstruction

INSTAR

FADS minimum variance

Principal Issues

FADS pressures in INSTAR

Effects of CFD errors

INSTAR probabilistic analysisCompressible flow

Coordinate systems

Parameter definitions

Estimation theory

Probability & statistics

PLANETARY ENTRY, DESCENT, 

AND LANDING

Results & Analysis

Trajectory

Atmosphere

Aerodynamics

2

3 4 5 6

Summary & 

Conclusions

7

Probabilistic analysis

Performance analysis



17 

 

 

 

Chapter 2  

Chapter 2: Mars Science Laboratory 

Mars Science Laboratory is a Flagship NASA mission that landed in Gale Crater on 6 August 2012, 

and is currently the largest and most sophisticated vehicle ever sent to Mars.
33

 It presents an 

opportunity to apply the methods and techniques developed in this dissertation to an actual Mars 

flight. A review of the MSL mission, EDL sequence, and data is provided in this chapter.  

 

Figure 2.1. Artist’s rendering of MSL on approach to Mars.* 

                                                      
* http://mars.jpl.nasa.gov/msl/multimedia/images/?ImageID=3644, accessed 11 November 2013. 
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 Table 2.1 lists some relevant information regarding MSL and comparisons to previous NASA 

Mars missions. Notably, MSL was heavier, larger, has a higher ballistic coefficient and lift-to-drag 

ratio, and currently has been the only actively guided entry vehicle to successfully place a surface 

asset on Mars. The difficulty of placing such a high useful landed mass at such a high altitude in a 

low-density atmosphere dictated many mission requirements and necessitated the use of the Skycrane 

maneuver that will be described later in this chapter. 

Table 2.1. Comparison of Mars Missions (adapted from Ref. 6). 

Landing Year 1976 1997 2004 2008 2012 

Mission Viking 1 & 2 Pathfinder MER A & B Phoenix MSL 

Entry velocity (km/s) 4.7 7.26 5.4 5.59 5.8 

Ballistic coefficient (kg/m2) 63.7 62.3 89.8 65 135 

Entry mass (kg) 930 585 840 602 3152 

Heat shield diameter (m) 3.505 2.65 2.65 2.65 4.518 

Hypersonic trim total angle of 

attack 
11.2° 0° 0° 0° 16° 

Hypersonic L/D 0.18 0 0 0 0.24 

Attitude control 3-axis RCS 

unguided 

2 RPM 

passive 

2 RPM 

passive 
Uncontrolled 

3-axis RCS 

guided 

Lift control CM offset Non-lifting Non-lifting Non-lifting CM offset 

Peak heating rate (W/cm2) 26 100 44 47 <210 

Useful landed mass (kg) 244 92 173 167 800 

3σ land. ellipse major axis (km) 280 200 80 100 20 

3σ land. ellipse minor axis (km) 100 100 12 21 20 

Landing site elevation (km from 

MOLA) 
-3.5 -2.5 -1.9 -4.0 2.0 

  

 

 

 The MSL flight data have been the subject of intensive post-flight analysis, and various 

trajectory, aerodynamic, and atmospheric reconstructions using both statistical and deterministic 

techniques have been carried out.
24,32

 A comprehensive and rigorous statistical solution using an 

iterative extended Kalman filter that blends information from all available data sources, including 

initial conditions, inertial measurement unit data, FADS pressures, altimetry, and landing site location 

has also been presented.
34,35

 A thorough analysis and discussion by the same reconstruction group of 

the MSL EDL aerodynamics is provided in Ref. 36. 

2.1 Entry, Descent, and Landing Sequence 

MSL was launched from Cape Canaveral SLC-41 on an Atlas V 541 on November 26th, 2011, 

and arrived at Mars and began its entry sequence on August 6th, 2012. Table 2.2 lists the relevant 

events in the EDL timeline, referenced from 0.t  The reference time 0t  is defined to be 9 min (540 s) 
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prior to entry interface and corresponds to a spacecraft clock time of 397501174.937729 s and a 

Julian Date of 2456145.71033450. 

Table 2.2. MSL event timeline referenced from t0. 

Event Time (s) 

Entry interface 540.00 

Guidance start 585.88 

Bank reversal 1 612.88 

Peak deceleration 620.33 

Bank reversal 2 633.88 

Bank reversal 3 663.38 

Heading alignment 675.63 

Entry ballast mass jettison 779.87 

Parachute deployment 799.12 

Final MEADS measurement 808.86 

Heat shield separation 818.87 

Radar lock 837.12 

Backshell separation 915.92 

Powered descent 918.38 

Skycrane start 952.89 

Touchdown sensed 971.52 

Fly away 972.31 

 

 

 

 Figure 2.2 shows the MSL entry, descent, and landing profile with information obtained post-

flight. During interplanetary cruise, the spacecraft was spin-stabilized at 2 rpm with no center of mass 

offset. Separation of the entry vehicle from the cruise stage occurred at EI-10 min. After a de-spin 

maneuver, two tungsten balance masses were jettisoned to produce a center of mass offset and enable 

a lifting trajectory with a hypersonic trim total angle of attack of approximately 16°. Three bank 

reversal maneuvers were executed during the hypersonic phase to provide range control. After the 

final heading alignment, six additional tungsten balance masses were jettisoned to remove the center 

of mass offset and bring the trim angle of attack back to zero. Deployment of the parachute occurred 

at approximately Mach 1.8, followed by heat shield separation at approximately 19 s later. After 97 s 

of parachute descent, the decent stage separated from the backshell and the Mars Landing Engines 

(MLEs) fired at an altitude of 250 m to bring the horizontal velocity to 0 m/s. The Skycrane maneuver 

was initiated and lowered the rover until touchdown occurred 431 s after EI and approximately 972 s 

after 0.t  Immediately after touchdown, the tether was disconnected from the rover and the navigation 

computer commanded the decent stage to execute the “flyaway” maneuver, firing the MLEs to bring 

the descent stage a safe distance from the rover before impacting the surface. 



20 

 

 

 

 

Figure 2.2. MSL entry, descent, and landing profile.
*
 

 Of particular interest in Figure 2.2 are the regions of the trajectory where observations were made 

by the various onboard sensors. Radar data were collected 18 seconds after heat shield separation to 

touchdown. Flush air data system pressure observations are not shown, but useful measurements were 

made from approximately peak heating to one minute prior to parachute deploy (these limits were 

defined by the 850 Pa dynamic pressure threshold specified by science objectives, though pressure 

observations continued to be made until ten seconds prior to heat shield jettison). Location of the 

landing site was obtained post-flight using photography by existing orbital assets. Finally, throughout 

the entire EDL sequence the IMU collected continuous body acceleration and angular velocity 

measurements, which are the main data types used in inertial navigation. 

 Figure 2.3 is an image taken by MRO that shows the relative locations of the various EDL system 

elements on the surface of Mars, including the backshell and parachute, descent stage, heat shield, 

and Curiosity rover. 

                                                      
* Jet Propulsion Laboratory/CalTech. 
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Figure 2.3. Relative locations of entry system components at Gale crater, photographed by 

MRO. Curiosity is 1500 m from the heat shield, 615 m from the backshell, and 650 m from the 

Skycrane (descent stage).
*
  

2.2 Overview of Flight Systems, Hardware, and Operations 

 The Mars Science Laboratory cruise and entry vehicle consisted of five major components, 

shown in Figure 2.4. The cruise stage performed trajectory corrections and provided thermal control 

to the spacecraft during interplanetary cruise. Just prior to entry and cruise stage separation, it aligned 

the vehicle orientation for the EDL sequence.  The backshell contained the interface to the cruise 

stage and parachute. The descent stage carried the entry vehicle IMUs, guidance and navigation 

computer, umbilicals and tethering systems to hold the rover, and engines for the terminal descent and 

landing phase of the entry. The rover, named Curiosity, was carried by the descent stage and lowered 

to the surface using the Skycrane maneuver. The heat shield protected the vehicle from the extreme 

thermal environment during the entry phase. The entry vehicle with some dimensions labeled is 

shown in Figure 2.5. 

                                                      
* http://mars.jpl.nasa.gov/msl/multimedia/images/?ImageID=4299, accessed 21 May 2013. 
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Figure 2.4. Major components of Mars Science Laboratory.
*
 

 

Figure 2.5. Simplified dimensions of MSL entry vehicle (all units in millimeters or degrees).
*
 

                                                      
* Jet Propulsion Laboratory/CalTech. 
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2.2.1 Coordinate Systems 

 Mars Science Laboratory utilized several coordinate systems fixed to the various components of 

the spacecraft. Thorough descriptions of coordinate system nomenclature and other frames related to 

trajectory reconstruction will be discussed in §3.2. Figure 2.6 illustrates the relationship between the 

cruse stage frame (CS), spacecraft frame (SC), descent stage frame (DS), and rover frame (R). As 

indicated, the SC and CS frames are coincident. 

 

Figure 2.6. Comparison of Mars Science Laboratory coordinate systems.
37

 Note that the 

spacecraft (SC) and cruise stage (CS) frames are coincident.  

 The origin of the spacecraft frame is the center of the circle defined by three specific separation 

bolts on the surface of the backshell.
37

 The SCz  axis is pointed towards the nose of the heat shield, 

the SCx  axis is pointed towards the forward direction of the rover, and the SCy  axis completes the 

right-hand orthogonal frame. 

 The cruise stage frame, the descent stage frame, and rover frame shown in Figure 2.6 are all 

defined relative to the spacecraft frame. The orientations of these frames are identical to the 

spacecraft frame. The center of the cruise stage frame is coincident with the spacecraft frame, the 

center of the descent stage frame is translated 100 mm down the SCz  axis from the origin of the 

spacecraft frame, and the center of the rover frame is translated 1300 mm down the SCz  axis from 

the origin of the spacecraft frame.
37

  

 The descent IMU (DIMU) frame is the frame in which data from the inertial measurement unit is 

provided. The description here is that of DIMU-A, the relevance of which will be described in the 

+xSC+xCS +xDS +xR

+zCS,SC,DS,R
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next section. The origin of the descent IMU frame is described by a position vector in the descent 

stage frame: 

  
TDIMU/DS 868.7235 640.7420 508.0068  mm r  (2.1) 

The DIMUx  axis is parallel to the descent stage x-y plane, perpendicular to the installation plane, 

positive into the installation frame, and rotated +207.209° from the SCx  axis about the SCz  axis. 

The DIMUy  axis is parallel installation plane and one of the reference mirrors and rotated +45° about 

the DIMUx  axis to form a 135° angle from the SCz  axis. The DIMUz  axis is parallel installation 

plane and one of the reference mirrors and rotated -45° about the DIMUx  axis to form a 45° angle 

from the SCz  axis. This orientation is shown in Figure 2.7.
37

 

 

Figure 2.7. MSL DIMU frame orientation relative to descent stage frame.
37

  

 The as-measured quaternion that describes the rotation from the descent IMU frame to the 

descent stage frame is
37

 

+xSC

+xDIMU209.207º about 

+zSC (into page)

DIMU-A on descent stage
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DIMU/DS

0.09656567168731096

0.3700392720635329

0.8940638772203431

0.2332290540048484

 
 

 
 
 
 

q  (2.2) 

where the fourth component is the scalar term.   

2.2.2 Navigation Sensors 

 The entry vehicle was equipped with two Honeywell miniature inertial measurement units 

(MIMUs), also referred to as descent IMUs A and B (DIMU-A and DIMU-B).  Only DIMU-A was 

active during entry due to bandwidth restrictions; for the remainder of this work, the term “IMU” in 

the context of MSL will refer specifically to this unit.
38

 The strap-down
*
 IMUs carried solid-state 

micro electro-mechanical system (MEMS) accelerometers and solid-state fiber optic gyroscopes to 

measure vehicle accelerations and angular rates, respectively. The onboard navigation computer used 

these IMU measurements and inertial navigation to determine the vehicle position, velocity, and 

orientation and to manage vehicle guidance and control. The DIMU-A unit mounted to the descent 

stage structure is shown in Figure 2.8. 

 

Figure 2.8. MSL descent IMU (DIMU-A).
37

 

  

 

 

                                                      
* A strap-down IMU is one that is attached to the rigid body, as opposed to one on a stabilized gimbaled platform. 
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 The IMU error models are 
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  (2.4) 

where aB  and aSF  are accelerometer biases and scale factors, respectively, B  and SF  are rate 

gyroscope biases and scale factors, respectively, and   are misalignments. Thus, there are a total of 

15 variables that essentially corrupt the measurements of the true and unknowable values. Table 2.3 

lists the a priori IMU error parameter uncertainties.  

Table 2.3. A priori IMU error parameter uncertainties. 

Parameter Accelerometer Gyroscope 

Misalignment (3σ) 0.05° 0.05° 

Noise (3σ) 0.8665 mg 0.1719 °/s 

Quantization 0.54 m/s 0.0618 °/s 

Scale factor (3σ) 450 ppm 100 ppm 

Bias (3σ) 100 μg 0.03 °/hr 

 

 

 

2.2.3 Mars Entry Atmospheric Data System 

 MSL also carried the Mars EDL Instrumentation (MEDLI) suite.
39,40

 MEDLI included a series of 

seven ports on the heat shield connected to pressure transducers that formed the Mars Entry 

Atmospheric Data System (MEADS). These transducers measured heat shield surface pressures 

during the entry and descent phases of the EDL sequence, and are essentially analogous to a flush air 

data system (FADS). The success of MSL marked the first time that a planetary probe has carried a 

dedicated flush air data system that directly applied to the reconstruction of aerodynamic and 

atmospheric properties. It should be noted, however, that the Viking Lander Capsules carried FADS 

ports (five on the heat shield and one on the backshell), but ultimately only data from the stagnation 

port was used to aid in reconstruction.
41,42

 The MEADS science objectives
40

 were to 

1. Estimate angle of attack to within 0.5°, 

2. Estimate angle of sideslip to within 0.5°, and 

3. Measure dynamic pressure to within 2% in a 3  sense.  
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 Secondary objectives were to estimate Mach number, freestream density, and atmospheric winds 

from the pressure observations. The MEADS transducer locations on the heat shield are shown in 

Figure 2.9 (the nominal stagnation region during hypersonic flight is between ports 1 and 2). 

 

Figure 2.9. MEADS transducer port locations.
35

 

 MEDLI also included a series of thermocouples embedded in the heat shield to measure the 

thermal characteristics during entry. Analysis of data from these instruments has been performed
43,44

 

and will not be discussed further in this dissertation.  

 The MEDLI sensors were controlled by the Sensor Support Electronics (SSE) unit, a literal 

“black box” containing electronics to collect data and convert analog signals to digital. The SSE also 

monitored the spacecraft health and temperature.
40

 Photographs of a MEADS transducer and the SEE 

are shown in Figure 2.10. Figure 2.11 shows the interior of the heat shield (i.e., the side not exposed 

to the incoming flow during entry) prior to spacecraft assembly. Visible in this photograph are the 

seven transducers linked by the orange-brown cabling and connected to the SSE box on the left side 

of the heat shield. 
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Figure 2.10. MEADS and MEDLI hardware: pressure transducer (left) and SSE (right).
*
 

 

Figure 2.11. Interior of heat shield showing MEDLI hardware.
†
  

2.3 Pre-Flight Aerodynamics 

 The MSL CFD aerodynamic database
45

 is a tabulation of the aerodynamic pressure, force and 

moment coefficients and is generated using the Langley Aerothermal Upwind Relaxation Algorithm 

(LAURA) (see §3.1 for a discussion of the definition of pressure coefficient and §3.2 for the 

                                                      
* http://msl-scicorner.jpl.nasa.gov/Instruments/MEDLI, accessed 29 October 2013. 
† http://mars.jpl.nasa.gov/msl/multimedia/images/?ImageID=3501, accessed 29 October 2013. 
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definitions of force and moment coefficients). For MSL, LAURA was run using thin layer Navier-

Stokes (TLNS) equations, meaning that longitudinal viscous gradients were neglected. Pre-flight 

analysis indicated that these gradients did not contribute significantly to the solutions.
45

  

 The CFD database is separated into two sets of tables and interpolation wrappers, one for surface 

pressure coefficients and one for force and moment coefficients. The pressure coefficients are 

tabulated as a function of Mach number, angle of attack, and pressure port clock and cone angle: 

  ,CFD , , , ,PC f M      (2.5) 

Other geometric constants such as port diameter are also specified.   

 The force and moment coefficient tables are set up as a function of freestream velocity, Mach 

number and total angle of attack: 

  ,CFD T, ,AC f V M    (2.6) 

Depending on the flow regime, either velocity or Mach number is used to interpolate into the tables 

(Knudsen number may also be used). These parameters will be defined in Chapter 3.  

 The force and moment coefficient database accounts for the base pressure correction, which is an 

adjustment to the pressure and axial force coefficient below Mach 6 due to backshell flowfield 

effects. The correction is 

 
1 2 3

, , 0 2 3P base A base

a a a
C C a

M M M  

       (2.7) 

where 0 0.0083253,a   1 0.112933,a   2 1.801004,a    and 3 1.288481.a  45
 This correction is 

sometimes referred to as the Viking base pressure correction because the constants are derived from 

measurements taken by the Viking entry vehicles.
*
 

 It is necessary to note the relationship between the surface pressure coefficient and the axial force 

coefficient. For a blunt body, the axial force coefficient is approximately equal to the integral of the 

pressure coefficient across the surface of the heat shield with corrections for backshell/base pressure 

contributions, or 

 ,A P A base
S

C C dS C    (2.8) 

The implications of this relationship will be discussed further in Chapters 5 and 6.  

 LAURA surface pressure coefficient solutions near the stagnation region are well-characterized 

and are supported by analytical flowfield solutions. However, confidence in LAURA solutions 

decreases near the edges of the heat shield where the surface deflection angle increases sharply and 

no analytical solutions exist. This leads to larger variances in CFD surface pressure distribution 

                                                      
*  The 1976 Viking entry vehicles were the first, and so far only, capsules equipped with FADS pressure ports on the 

backshell. The base pressure adjustment described here was derived (though not published) from these measurements by 

R. A. Mitcheltree of NASA Langley Research Center, and has also been used for the Pathfinder, MER, and Phoenix entry 

vehicles.  
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solutions near these areas.
46

 Thus, while there may be relatively low uncertainty in the CFD surface 

pressure coefficient at a given point, particularly at the stagnation region, the uncertainty in the CFD 

axial force coefficient, which is strongly dependent on the surface pressure coefficient distribution per 

Eq. (2.8), is significantly higher. The CFD uncertainties will be discussed further in §5.3. 

2.4 Landing Site 

 The MSL landing site was determined by the MSL Landing Location Working Group from 

MARDI data relative to a surface map derived from the High Resolution Imaging Science 

Experiment (HiRISE). Note that because the IMU used in the reconstruction process was located on 

the descent stage, the altitude at touchdown was 9.4 m, which is equivalent to the length of the 

descent stage tether and the height of the rover. The targeted and measured landing site values are 

listed in Table 2.4.
47

 

 Table 2.4. MSL targeted and measured landing site. 

Parameter Targeted Measured 

East longitude    137.4019° 137.4417° 

Areocentric latitude    -4.5965° -4.5895° 

Radius r 3391134.0 m 3391133.3 m 

Radius + tether & rover (9.4 m) -- 3391142.7 m 

 

 

 

 Landing site uncertainties from radio tracking were unavailable, so it is assumed that the landing 

site is known to an accuracy of 150 m in any direction. This assumption may be interpreted 

differently depending on the assumed probability distribution. For a uniform distribution, 150 m is 

interpreted to be the bounds of the interval on which the distribution is nonzero. For a normal 

distribution, 150 m is interpreted to be the standard deviation in a 3  sense. See §3.3 for further 

discussion of probability distributions. The measured landing site will also be referred to in this work 

as the reference landing site. 

2.5 Flight Data 

 Existing orbital assets such as Mars Reconnaissance Orbiter (MRO) enabled high-bandwidth 

communications between MSL and Earth tracking stations. Accelerations in the descent stage frame 

are shown in Figure 2.12, angular rates are shown in Figure 2.13. Significant EDL events are labeled 

to identify causes of change in signal behavior. 
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Figure 2.12. Body frame accelerations. 
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Figure 2.13. Body frame angular rates. 

 The MSL IMU data consists of 200 Hz engineering unit accelerations a and angular rate 

measurements   expressed in the body frame. The data are interpolated to a unified time vector with 

0.005 s time intervals using a nearest-neighbor technique to satisfy the uniform time step requirement 

of the integrator. The onboard navigation computer provides filtered accelerations at 64 Hz.  
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Figure 2.14. MEADS pressure measurements and a priori uncertainties as absolute values and 

percentage of observations. 

 Pressure data were collected at 8 Hz by the MEADS transducers and are shown with the 

instrument uncertainties
48

 in Figure 2.14. The onboard navigation computer tagged each of the seven 

pressure histories with a separate time vector. The pressure measurements are interpolated to the time 

vector associated with port 4 and smoothed using a 3-point running mean. 
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Chapter 3  

Chapter 3: Elements of Atmospheric 

Entry Navigation 

In this chapter the topics, theories, and definitions that form the basis of navigation in the context of 

trajectory and atmosphere reconstruction are established. A brief overview of compressible flow and 

applications to flush air data systems is first presented. The various coordinate systems and 

parameters that will be used throughout this work are then defined, followed by an overview of 

concepts in probability, statistics and estimation theory as it pertains to the present work. 

3.1 Compressible Flow 

 This review of compressible flow is intended to provide a framework for understanding the 

fundamental aspects of entry, descent, and landing. Thorough treatments of compressible flow and 

hypersonic flight are provided in Refs. 49, 50, and many other textbooks. 

 Compressible flow is a moving fluid that is susceptible to changes in density   as a function of 

pressure P, such that 

 d dP   (3.1) 

where   is a measure of the compressibility of the fluid. Generally, gases have much higher 

compressibility than liquids (i.e., gas liquid  ), so that small changes in pressure produce large 

changes in density. Thus, for compressible flow, Bernoulli’s equation  

 21
2

constP V   (3.2) 

is not applicable. Conversely, a theoretical incompressible flow has constant density, and is useful for 

the study of low-speed vehicles such gliders and those used in general aviation.  
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 Comparison of flows may be accomplished using speed of sound, 

 
s

v
a


  (3.3) 

where v is the volume and the subscript s on the compressibility factor indicates isentropic 

compressibility, i.e., the compression process is adiabatic and reversible. From this equation, it is 

evident that an incompressible fluid may be defined as a fluid in which the speed of sound approaches 

infinity, that is, in the limit as s  approaches zero. 

 For a calorically perfect gas, Eq. (3.3) may be written as  

 
P

a



  (3.4) 

Using the equation of state ,P RT  the speed of sound may then be expressed as  

 a RT  (3.5) 

where   is the ratio of specific heats, R is the ideal gas constant R  divided by the molecular weight 

w , and T is the local temperature of the fluid in kelvin. Mach number is a measure of velocity of the 

flow relative to the local speed of sound: 

 M V a  (3.6) 

Anderson
49

 suggests that a flow may be considered compressible at approximately Mach 0.3 or if the 

fractional change in density, ,d   is greater than 5%, though these demarcations are not 

definitions. 

 In addition to being compressible or incompressible, fluids in motion may be categorized into 

different regimes based on their velocity. Table 3.1 lists the regimes and associated Mach number 

ranges. Note that these ranges are approximate, and there are no well-defined boundaries or 

transitions between the different regimes.  

Table 3.1. Approximate fluid velocity regimes 

Regime Mach range 

Subsonic 0 0.8M   
Transonic 0.8 1.2M   
Supersonic 1.2 5.0M   
Hypersonic 5.0 M  

 

 

 

 Vehicles in entry, descent and landing trajectories pass through all of these velocity regimes, and 

therefore must be able to withstand the high heat environments that characterize hypersonic flow.  
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3.1.1 Pressure 

 Pressure is the ratio of a force to the area upon which that force is exerted. For example, the force 

of atmospheric particles impacting a spacecraft during EDL results in a pressure distribution across 

the surface of the heat shield.
*
 The laws of fluid dynamics govern the behavior and characteristics of 

the flow around the vehicle.  

 Atmospheric pressure P  is the pressure of the fluid at a point far from disturbances caused by 

the vehicle, and is also referred to as ambient, static, or freestream pressure. Atmospheric pressure is 

the result of the “weight” of the column of particles above an infinitesimally small control volume at 

a specified altitude; thus, this pressure increases as altitude decreases. 

 Total or stagnation pressure tP  is the pressure at the point of a body in a flow where the fluid 

velocity is zero. For incompressible flow, it is the sum of the static and dynamic pressures.  

Dynamic pressure q  is, by definition,  

 21
2

q V    (3.7) 

For incompressible flow, this quantity is exactly the difference between the total and the static 

pressure, i.e., tP P q   . This is not true for compressible flow since density is not constant.
50

 

Despite this lack of physical meaning for compressible flows, dynamic pressure is still used in high-

speed flow and may be rewritten in a more convenient form, assuming thermally perfect flow, as 

 21
2

q P M    (3.8) 

This is sometimes referred to as the hypersonic dynamic pressure, but again it does not equate to 

tP P . 

 The pressure coefficient PC  is a dimensionless quantity often used to describe the pressure at a 

point in the fluid. It is defined as 

 

2 1

21
1 122 1

1 2

2
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all flows
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1 compressible flow
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P P
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C

q P

PM








 
  

     

 (3.9) 

Generally, point 1 is taken to be far upstream, so that 1P , 1 , and 1V  are ambient or atmospheric 

conditions. Point 2 is the location of interest, typically on the surface of the body. 

3.1.2 Newtonian Flow Theory and Flush Air Data Systems 

Consider a blunt body in a high-speed, calorically perfect flow, such as in Figure 3.1. Now 

consider a point on the surface of the body and exposed to the flow, such as a FADS pressure port. At 

the ith port, the pressure coefficient from Eq. (3.9) is 

                                                      
*  It may be intuitive to imagine a vehicle in motion relative to an essentially stationary atmosphere or fluid, as is typically 

the case, but it is traditional in the study of flight to instead consider the fluid in motion around the vehicle. 
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Figure 3.1. Blunt body in high-speed flow. 

 ,
i

P i

P P
C

q






  (3.10) 

Solving for iP  yields 

 ,i P iP q C P    (3.11) 

Substituting Eq. (3.8) into Eq. (3.11) yields the equation for the pressure at the ith FADS port: 

 21
,2i P iP P M C P      (3.12) 

 It is informative to examine how this pressure may be modeled using Newtonian flow 

approximations, which state that the pressure coefficient at a point on a surface in a flow field is a 

function of the surface deflection angle   at that point. Newton’s classical sine-squared equation
50

 

describing this behavior was first published in his Principia in 1687:  

 22sinPC   (3.13) 

Newton’s attempt to describe incompressible flow, though elegant, is exact only in the limits 

M   and 1  . A more general form of this equation was introduced by Lester Lees
50

 in 1955: 

 
2

,max sinP PC C   (3.14) 

where ,maxPC  is the value of the pressure coefficient at the stagnation point, i.e., the total pressure 

coefficient.  

 In the context of flush air data systems, it is useful to re-define the incidence angle
*
   as the 

angle between the freestream velocity vector V  and the unit vector normal to the ith port ˆ
ih , where 

                                                      
* In Anderson’s nomenclature (Ref. 50), this “re-defined” angle is .  

Bow shock 1M 

1M 



Elliptic

region

Sonic line

Hyperbolic
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 ˆ ˆ ˆcos cos sin sin cosV      
   
 

V i j k  (3.15) 

 ˆ ˆˆ ˆcos sin cos sin sini i i i i i      h i j k  (3.16) 

and V  is the magnitude of the velocity vector,   is angle attack,   is angle of sideslip, i  is the 

cone angle, and i  is the clock angle of the pressure port (see §3.2 for definitions of these 

parameters).
25

 This is shown in Figure 3.2.  

 

Figure 3.2. FADS pressure port vectors. 

 From the definition of the dot product, ˆ cosi iV   V h  and 

 cos cos cos cos sin sin cos sin cos sin sini i i i i i              (3.17) 

Thus, at the ith FADS port, for 1,M  the measured local pressure may be approximated as 

 
2

, , cosP i P i iC C   (3.18) 

   2cosi t iP P P P     (3.19) 

where the cosine-squared term is defined by Eq. (3.17). Note the change from sine-squared to cosine-

squared, which arises from re-defining the incidence angle. It is useful to rewrite Eq. (3.19) as 

   21 cosi t iP P R R   
 

 (3.20) 

where R is the ratio of static pressure to total pressure (not to be confused with the ideal gas constant). 

The ratio R is dependent on the flow regime: 

V


i
ˆ unit vectorh

normal at i

ĥ
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 (3.21) 

For Mach numbers greater than unity, R is described by the Rayleigh-Pitot equation derived from the 

normal shock relations and assumes the flow is adiabatic and thermally and calorically perfect. For 

subsonic flow, R is derived from the compressible continuous one-dimensional flow relations and 

assumes the flow is isentropic (i.e., adiabatic and reversible) and thermally and calorically perfect.
51

 It 

will be shown in §4.3.3, at high Mach numbers the ratio R becomes constant. 

 In summary, the measured pressure at a FADS port is a function of the atmosphere, vehicle 

velocity, wind angles, and port location: 

  , , , , , , : ,i i iP f P T V          (3.22) 

or, more compactly, 

  , , , , , : ,i i iP f P q M         (3.23) 

where the colon separates the flow variables from the geometric variables. 

 Pruett et al.
25

 determined that in the case of a body in a high-speed, compressible, steady, 

adiabatic flow, neglecting gravitational forces, there are four independent variables: 

  , , , : ,i i iP f q M       (3.24) 

where again the colon separates the flow variables from the geometric variables. These four variables 

are not unique, however, since Mach number, dynamic pressure, total pressure, and freestream 

pressure are related by Eqs. (3.8) and (3.21). Thus, in addition to angle of attack   and sideslip angle 

,  any two variables from the set ,[ , , ]tP P q M    may be estimated simultaneously. 

 Although Newtonian flow approximations may give reasonable estimates of port pressures, in 

most cases it is preferential to use models derived from CFD or wind tunnel experiments that are 

more representative of the trajectory and environment.  

3.2 Coordinate System and Parameter Definitions 

 The state of the vehicle is generally defined relative to a coordinate system, or reference frame. 

All reference frames used in this dissertation are right-handed and orthogonal and are categorized as 

either inertial or non-inertial. Inertial frames are homogeneous and isotropic systems in which 

Newton’s laws of motion are valid, e.g., bodies move with uniform velocity or remain at rest until 

acted upon by external forces. Inertial frames may either be at rest or move with uniform velocity. 
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Non-inertial reference frames are systems that undergo acceleration, rotation, nutation, and/or 

precession. In either case, three elements are required to completely define the coordinate system:  

1. Origin. The center of the coordinate system, commonly selected to be at the center of a planet 

or other mass. 

2. Fundamental plane. A two-dimensional plane that passes through the origin and is normal to 

the +z axis. Common examples are a planetary equator or orbital plane. 

3. Fundamental direction. Direction of the +x axis. Together with the origin and fundamental 

plane, the fundamental direction defines the orientation of the coordinate system. A common 

example is the vernal equinox, which is the ascending node or intersection of the Earth orbital 

plane with respect to the Earth equator.  

A fourth element, the reference time or epoch, is often used in celestial mechanics where bodies are 

always in motion relative to each other. The epoch is used to define the orientation of the coordinate 

system at a point in time, often when it has some physical significance. In these cases, it is customary 

to say that the coordinate system is “of date” or “of epoch,” where date refers to a specific time or 

range of time. A common epoch is J2000, which is the Julian date at 12:00:00 ET (noon) of 1 January 

2000 CE, or 2451545.0.
*
 If the reference time is selected so that it varies across some range, then the 

frame is non-inertial. 

 Reference frame notation in the present work will follow the following conventions: 

 Reference frames are indicated by non-italicized acronyms. For example, the descent stage 

reference frame is identified by the acronym DS.  

 When used as superscripts and paired with a vector or component of a vector, these acronyms 

indicate the reference frame in which that vector is expressed. For example, DS
a  is the 

spacecraft acceleration vector a represented in the descent stage frame DS. 

 When used as subscripts and paired with the symbols x, y, and z, these acronyms indicate the 

axes of the reference frame. For example, DS,x  DS,y  and DSz  are the axes of the descent 

stage frame DS. 

 The components of a three-dimensional vector in Euclidean space are indicated by the 

subscripts x, y, and z. For example, the vector DS DS DS DS T[ , , ]x y za a aa  are the vehicle 

accelerations a expressed in the descent stage frame DS which is in turn described by axes 

DS,x  DS,y  and DS.z  

 Transformations between reference frames are indicated by a matrix (typically C) with two 

superscripts separated by a forward slash, where the right superscript is the starting frame and 

the left superscript is the ending frame. For example, the equation 
b b/DS DSCa a  describes 

                                                      
*  The Julian date is the number of days elapsed since noon of 1 January 4713 BCE. 
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the acceleration vector a represented in the descent stage frame DS, transformed to the 

reference frame b by the rotation matrix b/DSC .   

 This notation will be used when explicit identification of the frame is required, such as when 

different reference frames are being used in a single equation. In situations where the reference frame 

is implied by context or explicitly stated, this notation will be dropped.   

3.2.1 Inertial Coordinate Systems 

 There are three major inertial coordinate systems used in this dissertation: the Mars-centered 

Earth mean equator and equinox of J2000 frame, the Mars-centered Mars mean equator and prime 

meridian of J2000 frame, and the Mars-centered Mars mean equator and prime meridian of 0t  frame. 

The first two are general to Mars EDL missions and are thoroughly described in Ref. 52. The third 

inertial frame is specific to MSL. 

 

Figure 3.3. Mars-centered Earth mean equator and equinox of J2000 frame (EME2000). 

 The Mars-centered Earth mean equator and equinox of J2000 frame (EME2000), shown in Figure 

3.3, is the frame from which all other inertial Mars frames in this work are described. It does not 

include any information about the orientation or orbit of Mars as it is simply the classical Earth-

centered frame translated to the center of Mars. The EME2000z  axis is normal to the Earth mean 

Earth Mean Planet Pole of date J2000

EME2000X

Earth Mean Equator

of date J2000

Earth Mean Orbit

Pole of date J2000

Earth Mean Orbit 

of date J2000

EME2000Y

EME2000Z

Earth Mean Vernal 

Equinox of date J2000
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equator at epoch J2000, the EME2000x  axis is parallel to the vernal equinox of the Earth mean orbit at 

epoch J2000, and the EME2000y  axis completes the right-handed orthogonal coordinate system.  

 It is necessary to define elements that relate the Mars reference frames to the Earth mean equator 

and equinox of J2000 frame using the node Q and the IAU vector. Q is defined to be the ascending 

node of the Mars mean equator of date plane with respect to the Earth mean equator of J2000 plane. 

The IAU vector is defined to be the vector that originates at the center of Mars and points towards the 

node Q. Thus, the IAU vector is a function of the location of the Mars pole and not fixed in inertial 

space, though fundamental directions may be defined with respect to it at specified epochs. Note that 

the IAU vector may also be defined as the cross product between the EME2000 pole vector and the 

Mars pole vector of date. 

 From these elements, the location of the Mars prime meridian and pole may be described. By 

historical convention, the Mars prime meridian is defined to be the longitudinal line that passes 

through crater Airy-0.
53

 The right ascension   of the prime meridian is the angle between the IAU 

vector (of date) and intersection of the prime meridian with the Mars mean equator of date, measured 

positive Eastward: 

 0 Ω 176.630 (350.89198226 )d dt t       (3.25) 

where 0  is the right ascension of the Mars prime meridian of J2000 in degrees,   is the angular 

rotation rate of Mars in degrees per day, and dt is the number of days since the J2000 reference epoch 

to date. The location of the Mars pole is described by right ascension   and declination   in the 

EME2000 frame: 

 0 0 317.68143 0.1061c ca t t      (3.26) 

 0 0 52.8865 0.0609c cb t t      (3.27) 

where ct  is the number of Julian centuries since J2000 to date such that  date 2451545 / 36525ct t   

and datet  is the reference time.  

 The Mars-centered Mars mean equator and prime meridian of J2000 frame (MME2000) is shown 

in Figure 3.4. The origin of this frame is the center of Mars, the fundamental plane is the Mars mean 

equator, and the fundamental direction is the intersection of the fundamental plane with the Mars 

prime meridian at J2000, i.e., the IAU vector of J2000. The reference epoch for this frame is J2000, 

so that 0.c dt t   
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Figure 3.4. Mars-centered Mars mean equator and prime meridian of J2000 frame 

(MME2000). 

 The third inertial coordinate system is the Mars-centered Mars mean equator and prime meridian 

of 0t  frame (M) and is shown in Figure 3.5. The origin of this frame is the center of Mars, the 

fundamental plane is the Mars mean equator, and the fundamental direction is the intersection of the 

fundamental plane with the Mars prime meridian at epoch 0.t  The reference time 0t  is defined to be 9 

minutes (540 s) prior to MSL entry interface and corresponds to a Julian date of 2456145.71033450. 

The right ascension of the Mars prime meridian on the Mars mean equator at this epoch is 

288.99902397 .    JPL defines the quaternion describing the transformation from EME2000 to M 

as 

 
MME2000/M

0.16234458063

0.27379507615

-0.19169632531

0.92840347494

 
 
 
 
 
 

q  (3.28) 
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Figure 3.5. Mars-centered Mars mean equator and prime meridian of t0 frame (M).  

3.2.2 Non-Inertial Coordinate Systems 

 Most observations and aerodynamic parameters are defined relative to non-inertial coordinate 

systems fixed to the moving vehicle. The cruise frame, spacecraft frame, descent stage frame, and 

rover frame described in §2.2.1 are examples of non-inertial coordinate systems used for MSL.  

 In classical flight dynamics, it is common to use a frame in which the +x axis is pointed towards 

the nose of the vehicle, the +y axis is pointed out of the right wing, and the +z is pointed down 

towards the ground in straight, level flight, completing the right-handed orthogonal system. This is 

referred to as the body frame (b), and the relationship between this frame and the MSL descent stage 

frame is shown in Figure 3.6. 

 The body frame is simply the descent stage frame rotated -90° about the DSy  axis, so that the 

body x axis is aligned with the spacecraft axis of symmetry. The transformation matrix from the 

descent stage frame to the body frame is therefore 

 b/DS

0 0 1

C 0 1 0

1 0 0

 
 


 
  

 (3.29) 
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IAU Vector

of date t0

Q

0 dt  
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Figure 3.6. Relationship between MSL descent stage (DS) and body (b) coordinate systems. 

3.2.3 Trajectory Parameters 

 The trajectory, which consists of the vehicle location, speed, and orientation, is typically 

described in an inertial frame. The position and velocity are the vectors describing the spacecraft 

location in the inertial frame M shown in Figure 3.5: 

 T T[ ] [ ]x y zr r r X Y Z r  (3.30) 

 T T[ ] [ ]x y z X Y Zv v v V V V v  (3.31) 

The first three components in Eqs. (3.30) and (3.31) are strictly consistent with the notation scheme 

described earlier in this section. The second three components are consistent with how position and 

velocity components are typically described in the literature, and will be used for the remainder of 

this work. 

 The attitude of the spacecraft is described by the quaternion 

 1 2 3 4
ˆˆ ˆq i q j q k q   q  (3.32) 

where 4q  denotes the scalar component and the magnitude (scalar norm) of q is 1, i.e., 
T 1.q q The 

components of the quaternion are described by
22

  

DS b,y y 
DS b,z x 

bz

y

x

z

DSx
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 (3.33) 

where 
T

1 2 3ˆ [ , , ]e e ee  is the Euler axis about which the angle   completely describes the rotation of 

the rigid body. The quaternion may also be expressed as a direction cosine matrix: 

 

   

   

   

2 2 2 2
1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2
1 2 3 4 1 2 3 4 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 1 2 3 4

2 2

C 2 2

2 2

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

     
 

       
 

       

 (3.34) 

While quaternions are commonly used in computer codes for integration purposes, it is also common 

to express the orientation as Euler angles. The quaternion may be converted to a 3-2-1 set of Euler 

angles, i.e., successive rotations of yaw angle ,  pitch angle ,  and roll angle   by  
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4 1 2 3

2 2
1 2

4 2 3 1
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2
arctan

1 2
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q q q q

q q







 
 
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  

   
      
  
 

 (3.35) 

The computer function “atan2” is normally used instead of the arctangent.
54

 Conversely, the 3-2-1 

Euler angles may be converted to quaternions by  

 

2 2 2 2 2 21

2 2 2 2 2 2 2

3
2 2 2 2 2 2

4
2 2 2 2 2 2
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    

    
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    
    
   
       

 (3.36) 

 The altitude is nominally the difference between the Euclidean norm of the inertial position 

vector and the mean equatorial radius of the planet R: 

 2 2 2h R X Y Z R     r  (3.37) 

3.2.4 Aerodynamic Parameters 

 Aerodynamic forces, moment coefficients, and wind-relative angles   and   are shown in 

Figure 3.7. In the present work, Mach number M  and dynamic pressure q  are considered 

aerodynamic parameters because of their dependence on vehicle velocity. Definitions for Mach 
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number and dynamic pressure are listed in Eqs. (3.6) and (3.8), respectively. Refer to §3.1 for further 

discussion of these parameters in the context of compressible flow. 

 

Figure 3.7. MSL body coordinate system with wind angles and aerodynamic forces and 

moments. 

 The atmosphere-relative vehicle velocity in the inertial frame M is 

     V v r W   (3.38) 

where 
T[ , , ] ,u v w V  r and v are the position and velocity vectors from Eqs. (3.30) and (3.31), 

respectively, and 
T[0,0, ]   where 5088212079 07. 1    rad/s is the Mars rotation rate. If it is 

assumed that there are no winds, 
T[0,0,0]W  and Eq. (3.38) becomes the velocity relative to the 

stationary atmosphere, ,rel    V V v r  and may be obtained directly from the inertial 

navigation solution.  

 Angle of attack   and sideslip angle   are often referred to as wind angles and describe the 

orientation of the atmosphere-relative velocity: 
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         (3.39) 
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 
 



      (3.40) 

where V  V  and 0.u   

 The velocity components in the body frame may be written in terms of the wind angles: 
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sin
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u V

v V

w V

 



 













 (3.41) 

 The total angle of attack T  may be written as a function of the wind angles: 

 Tcos cos cos    (3.42) 

 The forces and moments shown in Figure 3.7 are induced by the vehicle aerodynamics. They are 

the components of the total aerodynamic forces and moments: 

 
ˆ ˆ ˆ

ˆ ˆ ˆ

A N Y

l m n

  

  

F i j k

M i j k
 (3.43) 

where xA ma   is the aftward axial force, zN ma   is the upward normal force, yY ma  is the 

rightward side force, l is the rolling moment (positive right-hand side down), m is the pitching 

moment (positive nose up), and n is the yawing moment (positive nose right). The vectors î , ĵ , and 

k̂  are the unit vectors along the b ,x b ,y  and bz  axes, respectively.  

 It is convenient to express the forces and moments as non-dimensional coefficients: 

 
2 2 21 1 1

2 2 2

A N Y

A N Y
C C C

V S V S V S       

    (3.44) 

 
2 2 21 1 1

2 2 2

l m n

l m n
C C C

V Sc V Sc V Sc       

    (3.45) 

where   is the freestream density, V  is the freestream velocity, S is the reference area, and c is the 

reference length. 

3.3 Concepts in Probability and Statistics 

 Many of the estimation techniques used in this dissertation are formulated on concepts in 

probability that are briefly summarized in this section. Thorough treatments of probability as it 

pertains to estimation theory are presented in Refs. 20 and 21, as well as many other textbooks. 
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3.3.1 Functions of Random Variables 

 Let x be the real-number value of the result of an experiment. If the experiment is run many times 

and different results are obtained for each run, then x may be said to be a random variable. The 

probability distribution function (also referred to as the cumulative distribution function or CDF) 

defines the probability Pr of every possible value of x occurring, so that for the jth event that has a 

finite number of possible values,  

    Prj jF x x x   (3.46) 

where ( ) 0F    and ( ) 1.F    For example, if an unweighted six-sided die were rolled, the 

probability of rolling a particular value would be one in six, i.e., Pr( ; 1,2,3,4,5,6) 1/ 6.x x    The 

derivative of the probability distribution function is the probability density function 

 
( )

( )
dF x

p x
dx

  (3.47) 

and only exists if the distribution function is differentiable; therefore, the condition  

 ( ) ( )
x

F x p x dx


   (3.48) 

must be satisfied. The term ( )p x dx  may be thought of as the probability that x is in the infinitesimal 

interval between x and .x dx  The probability density function, or PDF, is positive real everywhere 

and the area under the curve is equal to one: 

 
 0 1

( ) ( ) 1

jp x

F p u du




 

  
 (3.49) 

 It is common to describe the random variable in terms of its moments. Consider the univariate 

case where the random variable x has a probability density function ( ).p x  The first absolute moment 

or expectation of the random variable is 

 ( ) ( )E x xp x dx



    (3.50) 

This is also referred to as the expected value or mean
*
 of x. The first central moment, ( ),E x   is 

zero, and not typically of interest. Thus, an absolute moment is taken about zero and a central 

moment is taken about the mean. 

 In examining second moments, consider first a function of the random variable x, ( ),g x  where 

the value of ( )g x  is itself a random variable. In this case, the expectation is  

  ( ) ( ) ( )E g x g x p x dx



   (3.51) 

                                                      
* The expectation of the random variable is the sample mean according to the strong law of large numbers, which states that 

as the sample size increases, the sample mean almost surely converges to the expectation, or  Pr lim 1.n
n

x 


    
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The second absolute moment or mean squared value then arises as 

 2 2( ) ( )E x x p x dx



   (3.52) 

 The second central moment or variance of a random variable is the squared deviation from the 

mean: 

    
2 22 ( )E x x p x dx  





    
    (3.53) 

which may also be written as  

      
22 2 2 2E x E E x         (3.54) 

 Two common quantities used in statistics are the standard deviation and the root-mean-square. 

The standard deviation   is simply the square root of the variance and is a measure of the uncertainty 

of the random variable. It is a particularly useful statistic because it has the same units as the variable 

x. The root-mean-square or RMS is defined as the square root of the mean squared value 
2( ),E x  so 

that 
2 2 2RMS .    Thus, if the random variable x has a mean of zero, then the standard deviation 

and root-mean-square are equal.  

3.3.2 Functions of Random Vectors 

 Consider the multivariate case of random variables 1 2, ,..., .nx x x  The joint probability distribution 

function is 

    1, 2, , 1 1, 2 2, ,, ,..., Pr , ,...,j j n j j j n n jF x x x x x x x x x     (3.55) 

The joint probability density function is 

  1 2
1 2

( ) , ,...,
...

n

n
n

x

p x F x x x
x x x



  

 (3.56) 

And again only exists if the joint distribution function is differentiable; therefore, the condition 

    1 2 1 2 1 2, ,..., , ,..., ...
x

n n nF x x x p x x x dx dx dx


   (3.57) 

must be satisfied. As with the univariate case, the probability density function is positive real 

everywhere and the area under the hypersurface is equal to one. 

 Consider now the random vector x containing n elements ix  that are jointly distributed random 

variables, such that 
T

1 2[ , ,..., ] .nx x xx  Generally, only the first absolute and second central moments 

are of interest. The first absolute moment is the vector of the expected values of each element in x, or 

 ( ) ( )E p d



  x x x x  (3.58) 

such that the ith element of   is 
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   1 2 1 2... ( , ,..., ) ...i i i n nE x x p x x x dx dx dx
  

  
      (3.59) 

 The second central moment or covariance is defined as 

 

  

       

       

       

T
x

2
1 1 1 1 2 2 1 1

2
2 2 1 1 2 2 2 2

2
1 1 2 2

cov( )

          

n n

n n

n n n n n n

E

E x E x x E x x

E x x E x E x x

E x x E x x E x

    

    

    

     
 

               
 

               
 
 

               

x x x 

 (3.60) 

The covariance may be compactly written as 

 

2 2
1 12 1 1 12 1 2 1 1

2 2
21 2 2 21 2 1 2 2 2
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         

         

   
   
   

     
   
   
   

 (3.61) 

where 

 

 

  

22 variance of 

covariance of  and 

correlation of  and 

i i i i

ij i i j j i j

ij
ij i j

i j

E x x

E x x x x

x x

 

  




 

   
 

     

 

 (3.62) 

and the subscripts i and j refer to the ith row and jth column of the matrix, respectively. The 

correlation coefficient ij  describes the linear dependence between ix  and jx  and has values 

between 1 . If 0,ij  then ix  and jx  are linearly independent. If the joint density function may be 

written as 

      1 1 1,..., ...n n np x x p x p x  (3.63) 

then ix  and jx  are statistically independent. Like the variance in the univariate case, the covariance 

describes the uncertainty in x in a statistical sense. Note that the covariance matrix is symmetric. 

 A particularly useful identity of the covariance matrix arises from the linearity assumption. If A is 

a matrix that operates on x, then the covariance of Ax is 

 
T

xcov(A ) A A x  (3.64) 

This identity will be used in §3.4. 
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 To summarize the relevant moments, for a random variable, the expected values of x and 
2( )x   

are the mean and variance, respectively. For a random vector, the expected values of x and 

  
T

 x x   are the mean and covariance, respectively. 

3.3.3 Probability Distributions  

 Two very common probability distributions with convenient properties are uniform and normal 

distributions. A uniform distribution function, as its name implies, assigns the same probability to 

every variable in its interval. If a and b are the minimum and maximum values of the interval, then 

the uniform distribution function is defined by the density function 

 

1
for 

( )

0 for  or 

a x b
p x b a

x a x b


 

 
  

 (3.65) 

with mean 1
2

( )a b  and variance 21
12

( ) .b a  The cumulative uniform distribution function is  

 

0 for 

( ) for 

1 for 

x a

x a
F x a x b

b a

x a





  




 (3.66) 

 The probability density and cumulative distribution functions for the uniform distribution are 

shown in Figure 3.8. 

 

Figure 3.8. Uniform probability density and cumulative distribution functions. 
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 The normal or Gaussian distribution function for a random variable x is defined by the density 

function 

 
 

2

2

1
( ) ( ) exp

22

x
p x x




 

 
   
  

 (3.67) 

with mean   and variance 2.  The normal cumulative distribution function is  

 
2 21

( ) ( )
2

x
tF x x e dt






    (3.68) 

 The probability density and cumulative distribution functions for the univariate normal 

distribution are shown in Figure 3.9. 

 

Figure 3.9. Univariate normal probability density and cumulative distribution functions. 

 For the multivariate case of the random vector x, the normal density function takes the form 

 

  
   

T 1
x

x

1 1
( ) exp

2det 2
n

p



 
     

 

x x x   (3.69) 

with mean   and covariance x .  No closed-form solution exists for the multivariate normal 

cumulative distribution. 

 It is common to describe the probability of an event as being within a certain number of standard 

deviations from the mean, such as 1 ,  2 ,  or 3 .   Given a distribution, being within k  is defined 

to be 

 ( ) ( ) ( )
k

k
F k F k p x dx

 

 
   




      (3.70) 
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To illustrate this, consider the normal distribution. Substituting Eq. (3.68) into the left-hand side of 

Eq. (3.70) and assuming a mean of zero and standard deviation of one yields 

 Pr( 2 2 ) (2) ( 2) 0.9772 (1 0.9772) 0.9545x F F               (3.71) 

Thus, for a univariate normal distribution, the probability of a variable being within two standard 

deviations of the mean is approximately 95%. Table 3.2 lists the probabilities of being within k  for 

1-, 2-, 3-, and 4-dimensional spaces. 

Table 3.2. Probability values for multiple variables with normal distributions. 

Number of  

Variables 
1k   2k   3k   

1 0.6827 0.9545 0.9973 

2 0.3935 0.8647 0.9889 

3 0.1987 0.7385 0.9707 

4 0.0902 0.5940 0.9389 

 

 

 

 The table indicates that the probability of being within k  decreases dramatically as the number 

of variables increases. For example, for a univariate problem, there is slightly more than a 95% 

probability that the random variable will be inside the 2  ellipse. When the number of variables 

increases to three, the probability of all three variables being inside the 2  hypersphere reduces to 

just over 59%.  

3.4 Statistics and Estimation Theory 

This section is intended to provide the background to the statistical techniques used in some 

trajectory reconstruction methods. This overview is by no means exhaustive, and a thorough 

treatment of estimation theory, state and parameter estimation techniques, and statistics is provided in 

Refs. 20, 21, and many other textbooks. 

Estimation theory is the field of study in which estimates of a set of state variables are determined 

from measurements containing random components (i.e., a noisy signal). The quality of the estimates 

are dependent on the amount of noise in the measurements, the accuracy of the models that represent 

the physical processes present in the measurements, and the optimality of the estimation technique. 

For the purposes of this dissertation, the terms parameter estimation, state estimation, and filtering are 

synonymous and will be used interchangeably. 

Systems may be described as deterministic or stochastic.  A deterministic or non-probabilistic 

system behaves in a predictable manner and contains no random elements. Given a set of inputs, 

analysis of a deterministic system, or use of a deterministic process, will always result in the same 
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outcome. A stochastic or probabilistic system behaves in a manner dependent on both predictable and 

random processes. In general, the behavior of stochastic systems must be estimated using 

mathematical models of their predicted behavior, while also taking into account the uncertainties 

associated with the random elements. A stochastic process may also be referred to as probabilistic. 

 One of the most widely-used methods of estimation is least squares, which will be the focus of 

the following two sections.  

3.4.1 Least Squares Estimation 

 The method of least squares is a statistical regression technique of finding solutions to an over-

determined system.
20,21

 Legendre and Adrain published independent formulations for least squares in 

1805 and 1808, respectively, though credit is typically given to Gauss who developed it as early as 

1795 but did not publish until 1809.
55

  

 The method of least squares assumes that the measurements take the form 

 ˆA y x   (3.72) 

where A is the sensitivity matrix relating the estimated state parameters x̂  to the observations y  and 

  is the vector containing the random measurement errors (or noise) with εμ 0  and 
T

ε ).E  (εε  

These are referred to as the observation equations. 

 Statistical estimators attempt to select an estimate that minimizes some cost function. In the case 

of least squares, this cost function is 

 T
LS

1

2
J     (3.73) 

Solving Eq. (3.72) for   and substituting into Eq. (3.73), the cost function (dropping the “LS” 

notation) becomes  

      T T T T T1 1
ˆ ˆ ˆ ˆ ˆA A 2 A A A

2 2
J      y x y x y y y x x x  (3.74) 

Thus, the goal is find the estimates x̂  that minimize J using the observations y . To find the global 

minimum, two conditions must be met. From matrix calculus, the Jacobian provides the necessary 

condition: 

 

1

T T
x̂

ˆ

ˆA A A 0

ˆ n

J

J

J

 
 
 

     
 
 
  

x

x y

x

 (3.75) 

The Hessian provides the sufficient condition: 

 
2

2 T
x̂ T

A A  must be positive definite
ˆ ˆ

J
J


  

 x x
 (3.76) 
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Solving Eq. (3.75) yields 

 
T TˆA A Ax y  (3.77) 

which are commonly referred to as the normal equations. From matrix calculus it may be shown that 
TA A  is always positive semi-definite. If A is of full rank then TA A  is positive definite and therefore 

invertible, which yields the classical least squares estimator 

  
1

T Tˆ A A A


x y  (3.78) 

with covariance  

  
1

T
x̂ A A



   (3.79) 

 In the special case where the errors are uncorrelated, have zero mean, and have equal variances 

(i.e., are homoscedastic), the least squares estimator provides the best linear unbiased estimates, 

meaning that the estimates have lower variances than any other linear estimator. This is known as the 

Gauss-Markov theorem.
20

  

 When information regarding the confidence in the parameters is known, a weighting matrix W 

may be introduced. W must be positive definite. In this case, the cost function becomes 

    
T 11

ˆ ˆA W A
2

J   y x y x  (3.80) 

leading to the weighted least squares estimator 

  
1

T Tˆ A WA A W


x y  (3.81) 

with covariance  

  
1

T
x̂ A WA



   (3.82) 

3.4.2 Minimum Variance Estimation 

 Minimum variance estimation is a rigorous, statistical extension of the least squares estimator that 

has a variance less than or equal to any other unbiased estimate.
20

 It differs from least squares in that 

information regarding the measurement uncertainty is introduced into the estimator, and does not 

assume diagonal weighting. The batch linear, unbiased minimum variance estimator is 

  
1

T 1 T 1ˆ A A A


 
   x y  (3.83) 

where y  is the vector of observations, A is the sensitivity or information matrix, and   is the 

measurement covariance. The covariance of the estimate is  

  
1

T 1
x̂ A A



    (3.84) 
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Note that the minimum variance estimator is identical to the batch weighted linear least squares 

estimator, Eq. (3.81), if the weighting matrix W is defined as the inverse of the measurement 

covariance .  

 The minimum variance estimator may take into account prior or a priori knowledge of the 

parameters and prevent the solution from diverging from the expected values. The minimum variance 

estimator with a priori is 

    
1

T 1 1 T 1 1ˆ A A A


   
       x y   (3.85) 

where   is the covariance associated with the a priori state estimates .  Note the limiting cases: (1) 

if the a priori knowledge is poor, then 1 0
   and the solution reduces to the weighted least squares 

estimate ( 1W 
  ), and (2) if the measurement knowledge is poor, then 1 0

   and the solution 

reduces to ˆ .k x   The covariance of the final estimate is  

  
1

T 1 1
x̂ A A


 
      (3.86) 

Compare this covariance with that of Eq. (3.84), which does not include a priori information. The 

inclusion of 1
  in Eq. (3.86) ensures that the minimum variance with a priori covariance is always 

smaller than without a priori. 

 With non-linear problems, it is advantageous to use differential correction to incrementally 

update the solution by using prior estimates .  The minimum variance estimator, when combined 

with a priori and differential correction, is 

     
1

T 1 1 T 1 1ˆ ˆA A Ak k


   
          x y x  (3.87) 

where y  is the vector of the differences between observed and computed data, and 1ˆ ˆ ˆk k k  x x x    

provides the state estimation update. The covariance of the final estimate is the same as in the case of 

minimum variance with a priori, Eq. (3.86). 
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Chapter 4  

Chapter 4: Reconstruction Techniques 

In this chapter various trajectory and atmosphere reconstruction techniques are presented. These 

techniques are the foundation of the methods developed in Chapter 5 that address the Principal Issues 

outlined in Chapter 1.  

4.1 Classical Reconstruction Techniques 

 There exist some reconstruction techniques that require only observations from an inertial 

measurement unit to produce solutions for some trajectory and atmosphere parameters. These 

techniques are deterministic and have been applied to almost all missions that require post-flight 

trajectory reconstruction. 

4.1.1 Inertial Navigation 

Inertial navigation is a deterministic trajectory reconstruction technique that uses data from the 

inertial measurement unit to determine the vehicle position and velocity in an inertial frame. For this 

type of reconstruction, the only required data are the sensed accelerations a  and angular rotation rates 

  from onboard accelerometers and gyroscopes, respectively, as well as estimates of the initial state 

conditions.
4
  

 The inertial navigation process requires that accelerations of the center of mass be integrated in 

the state equations, rather than the sensed accelerations. A transformation must therefore be made to 

account for accelerations due to angular motion of the vehicle by first computing the vector from the 

center of mass to the IMU: 

 b b
CM IMUc  r r r   (4.1) 

The computed center of mass body accelerations are then 
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  b b
CM c c      

 
a a r r     (4.2) 

where b
a  and   are the sensed body acceleration and angular rate vectors, respectively, and cr  is 

assumed to be zero.  

 At a given time the vehicle state x may be expressed in an inertial frame as a function of nine 

parameters: 

 
T

, , , , , , , ,x y z x y zX Y Z V V V      x   (4.3) 

where the Euler angles represent a 3-2-1 rotation. It is convenient in inertial navigation to represent 

the Euler angles as quaternions for integration purposes, as in Eq. (3.32). The rate of change of the 

quaternion is integrated, given an initial attitude, to obtain the quaternion history using the differential 

equations 
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  (4.4) 

where 4q  denotes the scalar component. The vehicle orientation history, often expressed as 3-2-1 

Euler angles, may then be obtained from the quaternions. The quaternions are converted to direction 

cosine matrices M/bC  using Eq. (3.34), which is in turn used to transform the body frame 

accelerations to the inertial frame M: 

 M M/b b
CMCa a   (4.5) 

 The position and velocity equations of motion are obtained by utilizing Newton’s second law in 

an inertial frame: 

 


 

r v

v a g
 (4.6) 

where the accelerations a are the inertial accelerations M
a  from Eq. (4.5). It is necessary to compute 

the acceleration due to gravity g because accelerometers do not measure gravitational acceleration; 

that is, if an accelerometer were in free-fall on Earth, it would measure zero, not 9.81 m/s
2
. The 

acceleration due to gravity is modeled up to the second spherical harmonic in the inertial frame M as 
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g  (4.7) 

where R is the Mars mean equatorial radius and 2 2 2 .X Y Z    r  

4.1.2 Atmosphere Reconstruction 

Atmosphere reconstruction is the recovery of atmospheric density, pressure, and temperature 

along the trajectory of the entry vehicle from the vehicle trajectory and sensed acceleration. The 

classical approach
14

 assumes that the atmosphere behaves as an ideal gas and is in hydrostatic 

equilibrium.  

From the axial force equation in Eq. (3.44), atmospheric density along the flight path is 

proportional to the axial acceleration (recall from Figure 3.7 that a positive axial force is by 

convention opposite in sign of a positive axial acceleration in the body frame): 

 
21

2

x
A

ma
C

V S 

   (4.8) 

where m is the vehicle mass, AC  is the axial force coefficient known from pre-flight CFD, and S is 

the vehicle aerodynamic reference area, all of which are known a priori. The variable V  is the 

velocity of the entry vehicle relative to the atmosphere assuming no winds and is obtained from 

trajectory reconstruction. The variable xa  is the vehicle acceleration along the body x-axis expressed 

in the body frame, obtained from onboard accelerometers.  

 Eq. (4.8) may be rearranged to solve for density: 

 
2

2 x

A ref

ma

V C S




   (4.9) 

Recall from §2.3 that AC  from CFD is usually obtained using Mach number as a table look-up 

parameter. As will be shown in the following equations, Mach number may be updated using the ratio 

of freestream pressure to density (or freestream temperature). This updated Mach number is then used 

to re-compute density, and the entire process is iterated until convergence. 

Freestream atmospheric pressure is computed by assuming that the atmosphere is in hydrostatic 

equilibrium, meaning that the fluid is stationary and the pressure at any given altitude is due to the 

weight of the fluid above that altitude. The hydrostatic equation dP g dh    is integrated to obtain 

the freestream pressure along the flight path: 
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h

h
P P g dh     (4.10) 

where 0P  is the freestream pressure at initial altitude 0 ,h  h is the altitude 0,h r r   and   is the 

density computed from Eq. (4.9). Eq. (4.10) is written as an Euler discretization scheme of the form   

 , , 1 , 1( )k k k k k kP P g h h        (4.11) 

to compute freestream pressure, where k is the current time step.
35

 The acceleration due to gravity in 

the direction normal to the surface, g, is approximated by 
2 .g r  The initial freestream pressure 

0P  is obtained from a mesoscale model and has an assumed error of 10% in a 1  normal sense.  

 Atmospheric temperature is obtained from the gas equation of state under the ideal gas law 

assumption: 

 
P

T








M

R
 (4.12) 

where M is the molar mass of the Mars atmosphere, 0.04401 kg/mol (assuming mixed conditions), 

and R is the universal gas constant, 8.3144624 J/mol-K.  

 Two parameters of interest in this analysis that are derived from the atmosphere and IMU are 

Mach number and dynamic pressure. Mach number is computed using the freestream atmosphere-

relative velocity and the ratio of freestream pressure to density (which is essentially normalized 

freestream temperature): 

 
V

M
P 




 

  (4.13) 

where the ratio of specific heats   is 1.335. As discussed, this Mach number is then used to recover 

an updated CFD axial force coefficient, and Eqs. (4.9) to (4.13) are re-computed and iterated until 

Mach number has converged. 

 Dynamic pressure is computed from the freestream density and velocity, as in Eq. (3.7).  

 21
2

q V     (4.14) 

 In summary, reconstruction of atmospheric parameters depends on axial accelerations and planet-

relative velocity and altitude from the inertial navigation reconstruction. This dependence and the 

flow of data are illustrated in Figure 4.1.  
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Figure 4.1. Diagram of inertial navigation and atmosphere reconstruction process. Rounded 

blocks are outputs. 

4.1.3 Trajectory Integration Scheme 

 A numerical three-point predictor-corrector integration scheme by Hamming
56

 was implemented 

by Huh
23

 to integrate the IMU data and obtain the vehicle state history. The predictor is described by 

the equation 

  1 0 1 1 2 2 0 1 1 2 2k k k k k k ky A y A y A y t B y B y B y            (4.15) 

where k is the current time step, t  is the change in time between steps, y  is the time derivative of 

the function y, and 
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  (4.16) 

and 1A  and 2A  are arbitrary constants where 0 1 21 .A A A    For the present work, 1 0.5A    and 

2 0.5.A   

 Each integration step is then updated by the corrector, which is described by the equation 

  1
1 0 1 1 2 2 1 1 0 1 1 2 224k k k k k k k ky a y a y a y t b y b y b y b y                (4.17) 

where  
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  (4.18) 

and 1a  and 2a  are arbitrary constants where 0 1 21 .a a a    In the present work, 1 0.5a    and 

2 0.5.a   

4.1.4 MSL Initial Conditions 

 Integration of the IMU data requires initial conditions for each of the nine state parameters in Eq. 

(4.3). For EDL operations, the initial position and velocity are obtained from radio tracking and the 

initial orientation is typically obtained from star tracker mapping. Initial states are generally updated 

as late as possible before entry. The INSTAR process also requires the corresponding covariance, 

which supplies the uncertainties associated with the initial conditions and any correlations that may 

exist between the state variables. 

 For MSL, the best estimates of the position and velocity components are at 0 10 s.t  *
 The 

orientation at this time is determined separately by integrating the body rates backwards from 0 ,t  

starting with the orientation estimate at 0t used by the onboard navigation computer. An uncorrelated 

error of 0.1° in a normal 3  sense is assumed for each initial Euler angle since flight values are 

unavailable.
†
 

  Table 4.1 and Table 4.2 list the initial conditions and the corresponding radio tracking navigation 

orientation covariance matrix (including the standard deviations from the covariance diagonals) in the 

Mars-centered Mars mean equator of date 0t  (M) coordinate system. The timing uncertainty is 

assumed to be negligible, i.e., it is assumed that this state occurs at precisely 0 10 s.t   

                                                      
* Martin-Mur, Tomas (2012), personal correspondence of October 8th, MSL Navigation Team Chief, Jet Propulsion 

Laboratory, Pasadena, CA. 
† Way, David (2012), personal correspondence of October 18th, Aerospace Engineer, NASA Langley Research Center, 

Hampton, VA. 
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Table 4.1. MSL initial state conditions in M frame 

Parameter Units Value 1  

it  s -10 --- 

iX  m -8.969338E+04 6.05 

iY  m 5.080899E+06 6.59 

iZ  m -9.912496E+04 18.01 

,X iV  m/s -3.983226E+03 0.01 

,Y iV  m/s -3.685550E+03 0.01 

,Z iV  m/s -2.792490E+02 0.01 

,X i  deg -156.131612 0.03 

,Y i  deg -65.942677 0.03 

,Z i  deg -157.699118 0.03 

Table 4.2. MSL initial state condition covariance in M frame (position in meters, velocity in 

meters per second, and orientation in radians). 

 iX  iY  iZ  ,X iV  ,Y iV  ,Z iV  ,X i  ,Y i  ,Z i  

iX  36.63667 -12.9565 65.17529 0.003463 0.00153 -0.01582 0 0 0 

iY  -12.9567 43.39473 56.56523 0.007566 0.02034 -0.01220 0 0 0 

iZ  65.17529 56.56523 324.3399 -0.00030 0.02778 -0.06416 0 0 0 

,X iV  0.003463 0.007566 -0.00030 4.62E-05 1.36e-06 2.81E-07 0 0 0 

,Y iV  0.001549 0.020342 0.027783 1.36E-06 4.97E-05 -6.3E-06 0 0 0 

,Z iV  -0.01582 -0.01220 -0.06416 2.81E-07 -6.3E-06 6.13E-05 0 0 0 

,X i  0 0 0 0 0 0 3.38E-7 0 0 

,Y i  0 0 0 0 0 0 0 3.38E-7 0 

,Z i  0 0 0 0 0 0 0 0 3.38E-7 

 

 

 

 The initial conditions and covariance shown in Table 4.1 and Table 4.2 have been transformed 

from the Earth mean equator and equinox of J2000 frame (EME2000) to the M frame as described in 

§3.2: 

 

M EME2000

M/EME2000C
i i

i i

  
  

  

r r

v v
 (4.19) 

    
T

M M M/EME2000 EME2000 EME2000 M/EME2000
rv rv, C , Ci i i i    

 
r v r v  (4.20) 

The quaternions from the MSL navigation computer give the transformation from EME2000 to the 

descent stage frame. The transformation from the M frame to the descent stage frame is obtained from 

 
T

DS/M DS/EME2000 M/EME2000C C C 
 

 (4.21) 

where DS/EME2000C  is the quaternion from the navigation computer transformed to a direction cosine 

matrix. 
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 The vehicle mass was 3152.5 kg at entry (540 s) and 3144.5 kg at the “straighten up and fly right” 

maneuver (780 s), or SUFR, when the vehicle ejected ballast masses to shift the center of gravity back 

to the centerline, making the vehicle ballistic in preparation for chute deploy. The mass is linearly 

interpolated between these two times. The vehicle mass is assumed to have an error of 16 kg in a 3  

normal sense. The entry vehicle reference area is modeled as a circle of diameter 4.519 m. 

4.1.5 MSL Nominal Trajectory and Atmosphere 

 The method of inertial navigation and atmosphere reconstruction outlined in Figure 4.1 is applied 

to the as-delivered MSL IMU observations from Figure 2.12 and Figure 2.13 and initial conditions 

from Table 4.1 to obtain the “nominal” trajectory and atmosphere. As will be discussed in the 

following section, it is this nominal case that will be randomly dispersed in the INSTAR process 

using the a priori uncertainties provided by JPL in Table 4.2.  

 The nominal trajectory is shown in the next series of figures. Figure 4.2 shows the position 

history, Figure 4.3 shows the velocity history, Figure 4.4 shows the quaternion history, Figure 4.5 

shows the planet-relative wind angle history, and Figure 4.6 shows the atmosphere profile.  

 

Figure 4.2. Nominal position in M frame from JPL initial conditions. 
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Figure 4.3. Nominal velocity in M frame from JPL initial conditions. 

 

Figure 4.4. Nominal quaternions in M frame from JPL initial conditions. 
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Figure 4.5. Nominal planet-relative wind angles in M frame from JPL initial conditions. 

 

Figure 4.6. Nominal atmosphere from JPL initial conditions. 
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 Table 4.3 lists the differences in the components and vector magnitude between the nominal 

landing site (i.e., the final computed position) and the reference landing site from Table 2.4. 

Immediately it may be seen that the computed landing site is nearly a kilometer away from the 

observed landing site.
*
  

Table 4.3. Comparison of nominal trajectory landing site to reference landing site. 

Component 
Difference from  

reference landing site (m) 

X -522.614 

Y 502.595 

Z 572.713 

Magnitude 923.974 

 

 

 

 It will be shown in the following section that using the INSTAR process with landing site 

location substantially improves this difference. 

4.2 Inertial Navigation Statistical Trajectory and Atmosphere 

Reconstruction 

 As previously stated, inertial navigation lacks the advantages of statistical techniques such as 

Kalman filters in that it cannot utilize redundant data types (pressure, altimetry, etc.), and solution 

uncertainties cannot be directly computed. To address this issue, a method has been developed
24

 that 

utilizes the inertial navigation approach to trajectory reconstruction as a framework to consider of 

available redundant observations and generate statistics. The process, called Inertial Navigation 

Statistical Trajectory and Atmosphere Reconstruction (INSTAR), does not use aerodynamic, control, 

or noise models, though models such as the hydrostatic equation are used in the classical approach to 

atmosphere reconstruction. It also requires no assumptions regarding the linearity of the problem.  

Statistics such as standard deviations and distribution functions are obtained using Monte Carlo 

dispersion techniques, which are a class of computational algorithms in which simulation parameters 

are randomized (or dispersed), resulting in a large number of different solutions.
57

 

 A particular advantage of the INSTAR approach is that it permits arbitrary probability 

distributions on parameters to be specified or estimated throughout the process. The implications of 

this flexibility and an analysis of the solutions in the probability space will be discussed in Chapter 5.  

                                                      
*  Although this algorithm is nearly identical to that used aboard the MSL entry vehicle, the position during terminal descent 

and landing was updated in real-time using radar data beginning at 837 s. 
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 It is important to note that Monte Carlo techniques do not provide the “best estimate” per se, but 

rather provide the probability that a solution may occur. To quote Metropolis and Ulam, “…the 

estimate will never be confined within given limits of certainty, but only—if the number of trials is 

great—with great probability.”
57

 

 There are three “types” of trajectories used in the INSTAR process: 

 Reference trajectory. The trajectory generated using the best estimates of the initial 

conditions prior to introducing redundant data. In the context of INSTAR, this corresponds to 

the trajectory generated using the initial conditions provided by the Jet Propulsion 

Laboratory. The reference trajectory does not change between iterations. 

 Nominal trajectory. The trajectory and initial conditions that are dispersed using the statistics. 

For the first iteration, the nominal trajectory is the reference trajectory. For subsequent 

iterations, this trajectory is updated using mean initial conditions of the valid trajectories from 

the previous iteration. 

 Dispersed trajectory. The dispersed trajectories and initial conditions that are generated from 

the nominal trajectory. The dispersed trajectories that do not satisfy the redundant data are 

discarded. The remaining trajectories that satisfy the redundant data are then used to generate 

statistics and the new nominal trajectory for the next iteration.  

 In the INSTAR process the initial state conditions (position, velocity, and orientation) and IMU 

error parameters (scale factors, biases, and misalignments) are dispersed in a Monte Carlo sense using 

uncertainties provided by the mission radio tracking team and the IMU manufacturer. From these 

dispersed initial conditions, the observed IMU accelerations and angular rates are integrated using 

inertial navigation to obtain a set of dispersed reconstructed trajectories. Dispersed atmosphere 

profiles are obtained from the trajectory and an initial atmospheric state. Redundant data are 

introduced to constrain or “downselect” the dispersed trajectories to those that satisfy the observation 

uncertainties. For example, the landing site observation may be used to constrain the final position, 

and any trajectory that terminates outside of the landing site uncertainty sphere is discarded. Updated 

trajectory and atmosphere statistics are then obtained from this subset of trajectories and atmospheres 

by computing the standard deviations of the dispersions, and used to begin the next iteration. The 

process is considered converged when at least 98.5% of the dispersed trajectories are “valid.” 

 A flowchart of the INSTAR process is shown in Figure 4.7. Here, the bolded blocks represent 

Monte Carlo random dispersions, or solutions resulting from the random dispersions. Note that the 

dashed box is exactly the classical inertial navigation and atmosphere reconstruction process in Figure 

4.1, except for the Monte Carlo random dispersions. The dispersions of the IMU error parameters, 

initial state, and the CFD axial force coefficients result in dispersed solutions for the state and 

atmosphere. Statistics are obtained from the solution dispersions in the form of standard deviations 

and distribution functions. Thus, the INSTAR method enables the inclusion of redundant data types 
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as well as a statistical approach to estimating parameter uncertainties, but still uses the framework of 

inertial navigation. 

 

Figure 4.7. Diagram of INSTAR process. Bolded blocks represent Monte Carlo dispersions, 

rounded blocks are outputs.  
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 The INSTAR process may be summarized in the following steps: 

1. Disperse the initial state conditions and IMU error parameters (accelerations and angular rate 

biases, scale factors, and misalignments) with a priori statistics. 

2. Integrate IMU data using these initial conditions to obtain a dispersed set of trajectories. 

3. Update initial conditions, IMU error parameters, and statistics using the subset of solutions 

that satisfy the redundant data. 

4. Reconstruct atmosphere profiles and statistics from the valid set of trajectories. 

5. Iterate steps 1-4 with the updated sets of initial conditions, IMU errors, and statistics until 

convergence criteria are met.  

4.2.1 Trajectory Dispersion and Recovery of Statistics 

 Dispersion of the nominal trajectory is achieved by utilizing the initial condition covariance. The 

a priori covariance provided by JPL and listed in Table 4.2 is used for the first iteration. For 

subsequent iterations, this covariance is updated using the valid trajectories, i.e., the trajectories that 

satisfy the redundant data. This section will describe how trajectories are dispersed using statistics, 

and how the statistics are recovered from the dispersions.  

 Let x be a state vector of length m with mean x  and covariance x  and N be the number of 

dispersions. If the eigenvectors of x  are arranged in an [ ]m m  array V and the eigenvalues are d, 

then . d  Let y be an [ ]m N  array of normally distributed random numbers with mean x  and 

variance 2 ,  i.e., 

  2
x ,y N     (4.22) 

The dispersed random state vectors are then  

 Vx y   (4.23) 

where the arc embellishment indicates a dispersion and x  is an [ ]m N  array. Thus, correlations 

between parameters are considered in the dispersions.  

 The process of recovering statistics from the dispersed trajectories is more straightforward. The 

mean set of initial conditions and IMU error parameters x  are computed from the pool of valid 

trajectories. The differences between the dispersed states and the mean is then computed 

 xD  x    (4.24) 

where x  is an [ ]m N  array of the random states arranged into N columns, and x  is the mean 

vector repeated into N columns. The covariance x  is then 

 T
x

1
D D

N
    (4.25) 

Statistics in the form of standard deviations may then be obtained from this covariance (see §3.3). 
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4.2.2 Hardware and Software Considerations 

 Using Monte Carlo techniques necessitates careful design of the trajectory generation process so 

that the time required to generate solutions does not become unmanageable. For example, saving one 

second per trajectory integration may save over 16 minutes in processing time when integrating 1,000 

trajectories, depending on the computer. To achieve a compromise between integration speed and 

accuracy, the fixed-step three-point predictor-corrector integration method was programmed
23

 in 

Fortran90 and run using a MATLAB® wrapper. Multi-core processing was implemented with 

OpenMP®, an open-source programming library that interfaces with multiple programming 

languages, including Fortran.
58

  

 The primary computer used to compile and execute the INSTAR software for this dissertation 

was an HP® Z400 Workstation running Microsoft Windows® 7 Service Pack 1 with an Intel® 

Xeon® W3680 hexa-core CPU clocked at 3.33 GHz. Though integration times vary due to many 

factors such as operating system loads, 1,000 trajectories may be integrated in approximately two 

minutes.
*
 Reconstruction of the atmosphere is significantly more time-consuming because the 

atmosphere reconstruction program does not take advantage of multi-core processing. Table 4.4 lists 

the approximate times required to run reconstructions with various numbers of Monte Carlo 

dispersion.  

Table 4.4. Approximate times to run various reconstructions. 

Number of  

trajectories 

Trajectory  

reconstruction 

Atmosphere  

reconstruction 

MEADS  

statistical solver 

1 0.59 s 10 s 40 s 

1,000 2 min (120 s) 45 min (2616 s) 8 hrs 

5,000 9 min (533 s) -- -- 

10,000 17 min (1042 s) -- -- 

50,000 84 min (5016 s) -- -- 

 

 

 

 With the exception of the inertial navigation integrator, all of the scripts and functions used to 

implement the techniques and methods in this dissertation were programmed in MathWorks® 

MATLAB® version 7.5.0.342 (R2007b). 

                                                      
*  Writing results to the hard disk is a significant bottleneck when dealing with thousands of trajectories, each with solution 

profiles that must be saved in ASCII plain text. Improvements in write times may be improved by using a solid state 

drive, but for this application, only the first and final values (initial time and time at landing) were saved.  
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4.2.3 Landing Site in INSTAR 

The INSTAR process outlined in the preceding sections is applied to the MSL EDL sequence 

using the observed landing site as the redundant data type. For this analysis, the nine initial conditions 

and fifteen IMU errors are dispersed in a Monte Carlo sense for a total of 50,000 dispersed 

trajectories. For this analysis a normal distribution is assumed for the initial condition dispersions and 

a uniform distribution is assumed for the landing site, although the flexibility of INSTAR permits any 

form of distribution function.  

The landing site dispersions relative to the reference landing site are shown in Figure 4.8 in the 

landing site measurement space (East longitude, areocentric latitude, and radius) but are computed in 

the non-inertial Mars-centered Mars-fixed (MCMF) frame. The final computed position (denoted by 

the subscript f), which is described in the Mars-centered Mars mean equator and prime meridian of 0t  

frame, is converted to the MCMF frame by  

 MCMF MCMF/M MCf fr r   (4.26) 

where the direction cosine matrix MCMF/MC  describes a positive rotation about the planetary spin 

axis
59

 

 MCMF/M

cos sin 0

C sin cos 0

0 0 1

 

 

 
 

 
 
  

  (4.27) 

and the angle   is the amount the planet has rotated during the time that has elapsed between 0t  and 

the landing time (972 s), or .t   Thus, both precession and nutation is neglected for this 

transformation. Though not used to constrain the solutions, the vehicle velocity in the MCMF frame 

may be computed as
59

  

 MCMF M M  v v r   (4.28) 

where 
T[0,0, ]   and 5088212079 07. 1    rad/s is the Mars rotation rate.  

 The landing site measurement is converted to the same MCMF frame by 
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  (4.29) 

where the declination   and the longitude   are from Table 2.4. The differences are then 
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f
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Z Z Z

  

  

  

  (4.30) 

Note that the landing site location differences use the convention computed–reference (where the 

reference site is from Table 2.4), so that the reference landing site location is subtracted from the 
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dispersed locations. Thus, a negative radius difference means that a dispersed landing site is 

physically below the reference landing site. 

 The computed landing site is converted to the MCMF measurement space in polar coordinates by 

first computing the longitude 

 t     (4.31) 

where the right ascension   is  
1 M Mtan Y X   and t  describes the location of the prime 

meridian. The radius is unchanged. The latitude is then  

 
M

1

2 2
M M

tan
Z

X Y

 

   
   

  (4.32) 

 In Figure 4.8, the nominal landing site is from the trajectory with no dispersed initial conditions 

or IMU errors, that is, the landing site corresponding to the trajectory obtained from the initial 

conditions in Table 4.1. In subsequent INSTAR iterations, this “nominal” trajectory is updated by 

replacing these initial conditions with the mean initial conditions and IMU errors obtained from the 

valid trajectories.  

 

Figure 4.8. Dispersed landing sites, first iteration, 50,000 cases, MCMF of landing time frame. 
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The process described here is nearly identical to that in Ref. 24, but all IMU errors are dispersed, 

rather than just acceleration biases as in that study. The result is that the dispersions for this first 

iteration are much more “spread out” across the landing site space. The spread in radius is between -

7,000 m and +5,000 m, the spread in East longitude is approximately ±2,000 m, and the spread in 

areocentric latitude is between -7,000 m and +5,000 m. The high correlation between radius and 

longitude is governed primarily by the entry flight path angle. The distance from the nominal landing 

site to the reference landing site is approximately 924 m (see Table 4.3). The difference computed by 

the MSL navigation computer was smaller in radius because altimetry data was used to update the 

position and velocity in real-time during terminal descent. 

The INSTAR process is continued by selecting those trajectories that satisfy the observation of 

the reference landing site uncertainty of 150 m. Assuming a uniform distribution in the landing site 

space, any trajectories that lie within a sphere centered at the landing site with radius 150 m are 

candidates. 

There are 38 trajectories that fall within this sphere of uncertainty. Therefore, of the 50,000 

trajectory cases, 38 are used for the calculation of the statistics. Increasing the initial sample size 

would aid in populating the candidate samples and provide a better estimation of the statistics, but the 

current sample is sufficient. The mean of the initial conditions and IMU errors of those trajectories 

that fall within the sphere become the initial conditions (or “new” nominal) for the next iteration, and 

the computed standard deviations from these dispersions result in a new covariance with which to 

disperse the new initial conditions and IMU errors. These updated initial conditions and covariance 

associated with the new updated initial conditions are used to repeat the INSTAR process until 

convergence of the percentage of valid cases (selected to be 98.5%).  Subsequent iterations use 1,000 

trajectories to save processing time in atmosphere and MEADS reconstructions. Convergence was 

achieved in six iterations. 

Figure 4.9 shows the 1,000 new dispersed trajectories for this final INSTAR iteration. 

Immediately, the significantly smaller distribution space is evident. The landing sites are now spread 

across only 200 meters in any direction from the reference landing site. From the valid trajectories, 

initial conditions have been determined such that integrating the acceleration and rate measurements 

provide a close hit (within ten meters) with the reference landing site. In addition, the covariance is 

available at any time along the trajectory. 
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Figure 4.9. Landing site dispersions, end of final iteration, MCMF of landing time frame. 

 Atmosphere reconstructions as described in §4.1.2 are carried out using the valid trajectories from 

the final iteration. Uncertainties are obtained from the standard deviations of the dispersions along the 

trajectories.  

Table 4.5. Convergence history of INSTAR process. 

Iteration 
No. of  

Trajectories 

No. of valid  

trajectories 

Percentage of  

valid trajectories 

Mean distance to  

reference landing site (m) 

0 50,000 38 0.08% 923.974 

1 1,000 822 82.20% 18.156 

2 1,000 935 93.50% 13.230 

3 1,000 948 94.80% 11.609 

4 1,000 971 97.10% 10.409 

5 1,000 978 97.80% 10.213 

6 1,000 985 98.50% 9.371 

 

 

 

 Finally, it is informative to examine the convergence history of the INSTAR process.  Table 4.5 

lists the numerical values for the number of valid trajectories, as well as the mean distance to the 

landing site for each INSTAR iteration.  The marked improvement between the zeroth and first 

iterations is apparent, as the landing site difference has decreased from 924 m to 18 m. 
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4.3 Flush Air Data System Parameter Estimation 

 FADS-based reconstruction methods utilize pressure measurements combined with CFD 

pressures, wind tunnel data, and/or Newtonian flow approximations to estimate aerodynamic and 

atmospheric parameters and associated uncertainties. As discussed in §3.1, the measured pressure at a 

FADS port is a function of the flow field relative to the vehicle and the port location (defined by cone 

angle i  and clock angle i ): 

  , , , , , : ,i i iP f P q M         (4.33) 

and any two variables from the set ,[ , , ]tP P q M    in addition to   and   may be determined 

simultaneously.
*
 In the present work, the estimated parameters will be angle of attack, angle of 

sideslip, dynamic pressure, and freestream pressure. The estimates of these parameters are obtained 

by converging on the values that minimize the residuals between the observed and model pressures in 

a sequential manner, which may be thought of as attempting to fit a point in the parameter space to 

the observed pressures at a given time. The most common methods of minimizing these residuals use 

formulations of the least squares techniques described in §3.4.
25,26,31

  

 The four variables to be estimated, being functions of pressure, change at every time step and are 

described as local parameters. Local parameters are sequentially estimated in the “inner” loop. 

Pressure transducer biases, scale factors, and nonlinear terms apply to the entire dataset and are 

described as global parameters. Global parameters are batch-estimated using the same minimum 

variance estimator by processing all of the observations simultaneously in an “outer” loop, after the 

local parameters have been estimated. This process, illustrated in Figure 4.10, is repeated until 

convergence.  

 The global parameters are described by the pressure model for the ith transducer:  

 
2

,CFD ,CFDi i i i i iP a b P c P     (4.34) 

where CFDP  is the pressure recovered from the CFD database, a is the bias, b is the scale factor, and c 

is the nonlinear term.  

 Note that the only CFD models used in the MEADS algorithm are those for surface pressure 

coefficients. The dynamic pressure estimate is determined primarily by the pressure at the port nearest 

to the stagnation point (port 2, see Figure 2.9), a region that is well-characterized by CFD. Thus, the 

MEADS dynamic pressure estimate is essentially independent of the surface pressure coefficient 

distribution and associated uncertainty (wind angle estimates are more dependent on the distribution 

as they are determined by the destruction of the pressures across several different ports). As will be 

discussed in Chapter 5, the independence of the MEADS dynamic pressure estimates from the surface 

                                                      
*  Recall from §3.1.2 the assumptions made in this formulation: the flow is high-speed, compressible, steady, and adiabatic, 

and gravitational forces are neglected.25 
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pressure distribution will be leveraged to obtain atmospheric parameter estimates that do not rely on 

the CFD axial force coefficients. 

 

Figure 4.10. Diagram of FADS-based parameter estimation process. Rounded blocks are 

outputs. 

4.3.1 MEADS Minimum Variance Estimation Algorithm 

 The selected estimation technique in the present analysis is minimum variance with a priori and 

differential correction,
20

 which has been demonstrated to be an effective method for obtaining state 

estimates and statistics from FADS observations.
28

 Let x be the state vector of local parameters, y be 

the measurement vector, z be the unknown state vector of global parameters (transducer errors), and 

  be the measurement noise, such that  
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T[ , , , ]q P   x  (4.35) 

 
T

1 7 1 7 1 7[ ,..., , ,..., , ,..., ]a a b b c cz  (4.36) 

where 
T

1 7[ ,..., ]a a  are the biases, 
T

1 7[ ,..., ]b b  are the scale factors, and 
T

1 7[ ,..., ]c c  are the nonlinear 

terms for each of the seven transducers, for a total of 21 global parameters. The linearized equations 

relating the observations to the parameters are therefore 

 A B  y x z   (4.37) 

where A is the matrix of sensitivities of the local parameters to the measurements and B is the matrix 

of sensitivities of the global parameters to the measurements. It is assumed that z is a random vector 

with ( ) 0E z  (i.e., mean zero) and covariance zcov( ) . z  It is also assumed that ( ) 0E  , 

εcov( )   , and 
T( ) 0.E z  The unbiased minimum variance estimator with differential correction 

and a priori for the local parameters is then simply Eq. (3.87), or  

     
1

T 1 1 T 1 1ˆ ˆA A Ak k


   
          x y x  (4.38) 

where   is the measurement covariance,   is the covariance associated with the a priori state 

estimates  , y  is the vector of the differences between observed and computed data, and 

1ˆ ˆ ˆk k k  x x x  provides the state estimation update. 

 Consider now the covariance matrix for Eq. (4.37), 

      ẑ

1 1 1
T 1 1 T 1 1 T 1 T 1 T 1 1

x̂ μA A A A A B B A A A
  

       
                    (4.39) 

where the matrix B is the sensitivity of the global parameters to the pressure measurements and 
ẑμ  

is the a priori global parameter covariance. A close examination of Eq. (4.39) shows that the first 

term is simply the covariance matrix for the standard A y x   model, i.e., Eq. (3.84). This 

covariance provides a statistical measure of how well the local parameter estimates fit the data but 

does not take into account the accuracy of the global parameter estimates. The second term in Eq. 

(4.39)  adjusts this covariance by considering the effects of the transducer errors z and including them 

as random biases. This adjustment to the covariance is referred to as the “consider parameters” 

approach.
60

  

 The minimum variance estimator for the global parameters is  

     ˆ ˆz z

1
T 1 1 T 1 1

ˆμ μ zˆ ˆB B Bk k


   
        z y z  (4.40) 

and the global parameter covariance is simply the inverse term of Eq. (4.40), 

  ẑ

1
T 1 1

ẑ μB B


 
     (4.41) 
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4.3.2 Dimensional Analysis 

 If there are n discrete pressure observations per transducer, a dimensional analysis of the local 

parameter estimator defined by Eq. (4.38) yields 

 

1
[4 1] [4 7][7 7] [7 4] [4 4] [4 7][7 7] [7 1] [4 4] [4 1] [4 1]

T 1 1 T 1 1ˆ ˆA A Ak k


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   
   

    
             

    
    

x y x  (4.42) 

where 1..k n  and the sensitivity matrix is 

 

1, 1, 1, 1,

7, 7, 7, 7,
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k k k k

k k k k

P P P P

q P
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q P
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 

  
 
    
     

 (4.43) 

the measurement noise and a priori local parameter covariances are 

   1, 7,

T
2 2

εdiag ,...,
k kP P   

 
 (4.44) 

  
T

2 2 2 2
μdiag , , ,

q P       
 

  
 

 (4.45) 

and the observation vector contains the differences between the observed and model pressures, 

 

1, 1,

7, 7,

k k
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P P

P P

 
 
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  

y  (4.46) 

The off-diagonal terms for the measurement noise and a priori local parameter covariances are zero, 

i.e., they are assumed to be uncorrelated. 

 A dimensional analysis of the global parameter estimator defined by Eq. (4.40) yields 

 
ˆ ˆz z

1
[21 1] [21 7 ][7 7 ][7 21] [21 21] [21 7 ][7 7 ] [7 1] [21 1] [21 1] [21 1]
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n n n n n n n n

j j


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   
 

    
             

    
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z y z  (4.47) 

where 1..j m  global iterations. The sensitivity matrix B is composed of n [7 21]  matrices arranged 

into a [7 21]n  matrix: 
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 (4.48) 

The partials in B may be written explicitly from the pressure model in Eq. (4.34) : 

 21
P P P

P P
a b c

  
  
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 (4.49) 

 The a priori global parameter covariance is diagonal (i.e., uncorrelated): 

  ẑ 1 7 1 7 1 7

T
2 2 2 2 2 2

μdiag ,..., , ,..., , ,...,a a b b c c       
 

 (4.50) 

 The observation vector y  is the [ 1]n  observation vector from Eq. (4.46) replicated into a 

[7 1]n  vector, and the measurement covariance   is the diagonal of each of the kth covariances 

from Eq. (4.44) arranged into the diagonals of a [7 7 ]n n  array. Thus, solving for the global 

parameters is a batch process since all of the observations are processed simultaneously. 

4.3.3 Initial Conditions and Parameter Observability 

 Table 4.6 lists the a priori initial conditions and statistics assumed for the local parameters x and 

global parameters z. The local parameter initial conditions are obtained from the inertial navigation 

and atmosphere reconstruction solutions at 600 s.  

 Of particular note in Table 4.6 is the static pressure a priori uncertainty, 1.0E-6 Pa. This very 

tight restriction effectively prevents the static pressure estimate from diverging from its a priori 

estimate that is obtained from integration of the hydrostatic equation, that is, ,MEADS ,IMU.P P 
*
 In 

contrast, the a priori uncertainties of the other parameters are relatively loose and permit these 

estimates to “float” as necessary to minimize the pressure residuals.  

                                                      
* This convenient assumption is indirectly supported by the MEADS-derived solution presented in Ref. 32, which shows 

that the freestream pressure from the MEADS algorithm is within 0.02% of the hydrostatic freestream pressure from the 

inertial navigation reconstruction. 
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Table 4.6. MEADS algorithm a priori initial conditions, statistics, and convergence tolerances. 

Parameter 
Initial 

condition 

Standard 

deviation 

Convergence 

tolerance 

Angle of attack (deg) -15.8780 6.0 0.005 

Angle of sideslip (deg) -0.2679 4.0 0.005 

Dynamic pressure (Pa) 3518.3 1000 10.0 

Static pressure (Pa) 6.9463 1.0E-6 1.0 

Transducer bias (Pa) 0.0 100 1.0 

Transducer scale factor 1.0 0.1 1.0E-4 

Transducer nonlinearity (1/Pa) 0.0 0.001 1.0E-8 

 

 

 

 To understand the reason for the restriction on the static pressure estimate, recall the pressure 

ratio tR P P  defined by Eq. (3.21). At high Mach numbers, the quantity 2RM  is nearly constant, 

as shown in Figure 4.11. This invariance means that even small deviations in static pressure 

drastically affect Mach number, which is required to call the CFD pressure database.
25,26,31,32

 In 

practice, loosening the static pressure a priori uncertainty to larger than 1.0 Pa results in Mach 

number divergence, indicating that this parameter demonstrates low observability. 

 

Figure 4.11. Variation of pressure ratio across Mach number, γ = 1.335. 

 Thus, although the estimators described here are formulated with static pressure as a parameter, to 

prevent divergence due to poor observability the a priori uncertainty on it is set so that the estimated 

static pressure is the hydrostatic pressure obtained from the IMU-derived atmosphere reconstruction. 

Because of the reliance of the algorithm on IMU-derived planet-relative velocity and freestream 

pressure, the MEADS solution is referred to as the IMU-aided MEADS solution. 
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Chapter 5  

Chapter 5: Statistical Reconstruction 

with Inertial Navigation and Monte 

Carlo Techniques  

 It has been shown that using the observed landing site in INSTAR restricts the range of possible 

initial state conditions by reducing the initial state condition uncertainties.
24

 In that analysis it was 

concluded that for MSL, simply using landing site location as the redundant data in INSTAR results 

in the best estimate of the trajectory and corresponding statistics, and cannot be substantially 

improved with MEADS data. Thus, it will be useful to examine how FADS-based statistical 

reconstruction algorithms improve the estimates of the atmosphere and aerodynamics in concert with 

INSTAR. 

 In this chapter the methods of addressing the principal issues identified in Chapter 1 are 

developed. These methods are extensions of the reconstruction techniques in Chapter 4 that are in 

turn based on the fundamental concepts in Chapter 3, and are applied to the MSL EDL sequence 

described in Chapter 2.  

5.1 Sources of Error and Uncertainty 

 As trajectory reconstruction involves a variety of sources of data, there are a variety of sources of 

error and uncertainty. Statistical reconstruction methods attempt to account for these uncertainties and 

provide solutions coupled with a range of uncertainty. Other methods may provide a solution that has 

the highest probability of occurring. In any case, any solution based on imperfect data is meaningless 
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without an associated uncertainty. In the context of trajectory reconstruction, uncertainties may be 

due to: 

 Sensor errors. Sensors are imperfect devices and may exhibit behavior that alters the output, 

preventing the sensed measurements from being representative of the true and unknowable 

values. Types of sensor errors include biases, scale factors, and misalignments, noise, and 

quantization. 

 Initial condition errors. Initial state conditions (position, velocity, orientation) are not known 

perfectly, and are typically provided with a measurement covariance that specifies the 

uncertainty of each initial state parameter.  

 Landing site measurement errors. Like the initial conditions, measurements of the final 

position (i.e., landing site) are imperfect. Uncertainties associated with the landing site are 

typically provided by the mission radio tracking team. 

 CFD database/modeling errors. Pre-flight planning involves modeling the dynamics of the 

vehicle in the flow along the predicted trajectory. Computational fluid dynamics (CFD) 

models are not perfectly representative of either the dynamics or the atmosphere, and errors 

in CFD solutions will affect reconstructions that use these solutions.  

Other sources of uncertainty are specific to flush air data systems and include port location error, 

timing error, pneumatic lag, thermal transpiration, and system calibration and temperature 

uncertainty. The uncertainty contributions due to these sources are small and for the purposes of this 

study will be neglected (see §5.4.1 for a discussion of pressure measurement uncertainty).
31

 

5.2 Probabilistic Analysis using INSTAR 

 One of the major advantages of the INSTAR approach is that it permits arbitrary parameter 

probability distributions to be specified or estimated throughout the process, permitting analysis of 

the solutions in a probabilistic sense. In this section, a probabilistic approach to implementing 

INSTAR and interpreting the results will be discussed. 

 It is of interest to examine the probability density function p of a set of samples because it 

provides the probability of those samples occurring (see §3.3). Common density functions include 

Gaussian and uniform functions, but these rarely occur in nature and are often used out of 

convenience. It is therefore useful at times to estimate the true density function. 

 By far the most common density function estimator is the histogram. A histogram approximates 

the density function by dividing the array of observations into intervals or “bins” then counting the 

number of observations that fall into each bin. Thus, the bin width, together with the number of 

observations in each bin, defines the histogram.  

 Consider a set of n observations 1... nX X  where iX  is the ith observation of the set. The 

histogram is then  
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  
1

ˆ( ) number of  in same bin as ip x X x
nh

   (5.1) 

where h is the bin width (or bandwidth).  An example of a histogram is shown in the upper chart of 

Figure 5.1. A set of 1,000 normally-distributed random numbers with mean 15 and variance 8 is 

divided into 10 bins to generate the histogram. A Gaussian distribution with the same mean and 

variance is also plotted to show how the histogram estimate compares to the underlying density. 

 

Figure 5.1. Histograms of normally distributed data with mean 15 and variance 8. The upper 

chart has 10 bins and the lower bin has an optimized bin number of 20. 

 Selecting the number of bins k is of great importance when constructing a histogram, as it is 

necessary to choose the number of bins that best approximate the underlying density function. There 

are many methods of optimizing k.
61,62,63

 In the present work, Scott’s method is used.
63,64

 Scott 

determined that an optimal bin width may be approximated by  

 1/33.5 xh n    (5.2) 

where x  is the standard deviation of the observations and n is the number of observations. The 

optimal number of bins is therefore 

 max minX X
k

h


   (5.3) 



86 

 

 

 

where maxX  is the observation maxima and minX  is the observation minima. The value computed in 

Eq. (5.3) is rounded up to the nearest integer. In Figure 5.1, the lower chart shows that the optimized 

number of bins for the same set of 1,000 normally distributed random numbers is 18. The new 

histogram is shown to compare to the histogram with the non-optimized bins in the upper chart.  

 It also useful to verify how well a set of observations matches a specified probability density 

model using the chi-squared 
2( )  goodness-of-fit test, also known as Pearson’s chi-squared test.

65
 

The chi-squared goodness of fit test compares the frequency of the observations (number of 

observations in each bin) to the frequencies expected from the model distribution. The test statistic is  

 
 

2

2

1

k
i i

ii

O E

E





   (5.4) 

where iO  is the number of observations iX  in the ith of k bins and iE  is the expected number of 

observations. If iE  is sufficiently large, the statistic will approximately follow a chi-squared 

distribution, and may be compared to the critical value from the corresponding chi-squared 

distribution. The critical value is obtained from the chi-squared distribution curve with a specified 

significance level (usually 5%) and computed degrees of freedom (usually the number of bins minus 

one minus the number of parameters). If the computed chi-squared value exceeds the critical value, 

the observation distribution does not follow the expected distribution. Otherwise, the observation may 

follow the expected distribution. 

 In summary, the observations may be checked for Gaussian behavior by using the chi-squared 

goodness-of-fit test, with the optimal number of bins provided by Scott’s method. These techniques 

will be used to examine the validity of the Gaussian assumption for the initial conditions and the 

uniform assumption for the landing site dispersions, and discussed in Chapter 6.  

5.3 CFD Aerodynamic Database Dispersion 

 It is necessary to examine how the CFD database may be dispersed in INSTAR. As discussed in 

§2.3, computational fluid dynamics is used to generate tables of force, moment, and pressure 

coefficients for the MSL entry vehicle. Together, these tables make up the MSL aerodynamic 

database.
45

 Since CFD solutions are not perfectly representative of the true and unknowable flow, it is 

necessary to account for the uncertainties in CFD and examine how they affect the atmosphere and 

aerodynamics. In the context of INSTAR, this means randomly perturbing the coefficient profiles 

obtained from the tables for each Monte Carlo run.  

 Traditional CFD dispersion methods consist of shifting the response curve by a fraction of the 

uncertainty magnitude. For a generic function f, this type of dispersion takes the form 

 ( ) ( ) ( )if x f x U x    (5.5) 
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where the arc embellishment indicates a dispersed function, f is the nominal function, U defines the 

magnitude of the uncertainty, and i  is a random value that satisfies 1 1.i    While this method is 

useful in that the probability distribution of f  will essentially be that of ,i  it does not permit “tilts” 

of the response curve or phase shifting.
66

 Thus, in the current analysis, a method proposed by Pinier
66

 

is used to perturb the axial force coefficient. For the ith Monte Carlo run, the dispersion function 

takes the form 

            , ,CFD 1A i A i i iC t C t LU t L G t U t       (5.6) 

where i  is a randomly generated number uniformly distributed between -1 and 1, and L is a bias 

limit that is selected to be 1. The function ( )iG t  is a randomly generated dispersed function of a form 

that is dependent on the curve that is being perturbed. Possibilities include simple polynomial or 

trigonometric functions, Fourier expansions, and Hermite polynomials. For this analysis, the chosen 

form is 

  sin 2iG A ft     (5.7) 

where A is a randomly generated amplitude uniformly distributed between 0 and 1, f is a randomly 

generated frequency with a uniformly distributed period between 200 s and 400 s, and   is a 

randomly generated phase angle uniformly distributed between 0 and 2π rad. The period is selected so 

that the dispersion functions provide “long-term” shifts in the axial force coefficient, corresponding to 

biases and tilts of the AC  surface in Mach- T  space. Note that although uniform distributions are 

assumed for ,i  A, f, and ,  this method does not require such an assumption and any distribution 

function or mix of functions may be used. 

The function ( )U t  is defined by the axial force coefficient uncertainty: 

    ,CFD ,CFDAC AU t C t   (5.8) 

where 
,CFDAC  is the axial force coefficient uncertainty and is a function of Mach number, and ,CFDAC  

is the nominal axial force coefficient obtained from the CFD tables. The CFD axial force coefficient 

uncertainty is ±5% above a Knudsen number of 0.1, ±3% above Mach 10 (hypersonic), and ±10% 

below Mach 5 (supersonic), normally distributed in a 3  sense (see Table 5.1).
46

 The uncertainty is 

linearly interpolated between these two Mach numbers. For comparison, the LaRC model used to 

disperse the CFD axial force coefficient was 
,CFD, ,CFD( ) ( )(1 ).

AA i A CC t C t    

Table 5.1. MSL CFD aerodynamic force and moment uncertainties. 

 AC  ,  N YC C  mC  nC  lC  

Knudsen > 0.1 ±5% ±0.1,  ±10% ±0.005,  ±20% ±0.005,  ±20% 0.0005 

Mach > 10 ±3% ±0.1,  ±10% ±0.006,  ±20% ±0.003,  ±20% 0.00022 

Mach < 5 ±10% ±0.1,  ±10% ±0.005,  ±20% ±0.005,  ±20% 0.00023 
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 Pre-flight uncertainties for the CFD aerodynamic database were generated from heritage values 

from previous Mars missions.
46

 Table 5.1, adapted from Ref. 46, lists the MSL CFD aerodynamic 

force and moment uncertainties for various regimes. Uncertainties are linearly blended between 

regimes. 

An example of the dispersed axial force coefficients is shown in Figure 5.2. Shown are the 

dispersed curves along with the nominal (non-dispersed) axial force coefficient, and the uncertainty 

bands from dispersions. The “long-term” shifts can be seen, as well as dispersions that are mostly 

bias. Note that the selection of uniform distributions forces the limits of the dispersion to be bound by 

,CFD
,

AC  that is, the random number generator will never provide a value of the dispersed axial force 

coefficient that exceeds 
,CFD

.
AC  

 

Figure 5.2. Nominal axial force coefficient (solid black line) with dispersions (blue, red, and 

green lines) bounded by uncertainties (dotted black lines). 

 CFD pressure coefficients are also provided in a database (one table for each of the seven taps), 

and are also dispersed to examine how pressure CFD uncertainties affect the solution uncertainties. 

For the present analysis, however, instead of using polynomial-based dispersion method of the axial 

force coefficient, the CFD table values themselves are perturbed rather than the pressure curve 

obtained through table lookups. This more direct approach is taken to demonstrate the flexibility of 

the INSTAR method. 

 To perturb the CFD pressure coefficients, it is assumed that the pressure at any grid point in the 

table is known to within 2%, normally distributed in a 3  sense. Random numbers are generated 

using these criteria and added to the nominal grid point values. This perturbed database is then used 
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for a single Monte Carlo run. For the next run, new random dispersions are generated and a new table 

is used. CFD correlations are therefore introduced and accounted for by perturbing the grid points 

simultaneously and using the dispersed table to interpolate and obtain the pressure coefficient. 

 According to Eq. (2.8), any adjustment to the surface pressure distribution will affect the axial 

force coefficient, and vice versa. One method of accurately tracking the effects of dispersing the 

surface pressures coefficients on the axial force coefficients (or vice versa) would be to re-run the 

CFD solution for every dispersion, which is impractical. Taking this relationship into account is 

beyond the scope of the present work, but may be of interest in future INSTAR applications. 

5.4 Flush Air Data System Observations in INSTAR 

 Now that the methods of inertial navigation, atmosphere reconstruction, INSTAR, FADS-based 

reconstruction, and CFD database dispersion have been discussed, they may be combined into a 

framework that enables the inclusion of MEADS observations in INSTAR. 

 The method of utilizing pressure data in INSTAR is shown in Figure 5.3. This method assumes 

that the trajectory solutions from INSTAR and the landing site may not be appreciably improved with 

MEADS observations, and it introduces the minimum variance statistical estimation algorithm to the 

INSTAR process. In essence, Monte Carlo dispersions from INSTAR are introduced into the 

MEADS minimum variance algorithm. The upper half of the flowchart is essentially the same as the 

INSTAR process used to update the trajectory initial conditions and uncertainties with the landing site 

location. The box labeled “Inertial Navigation & Atmosphere Reconstruction” consists of the entirety 

of the flowchart in Figure 4.1, and the box labeled “Minimum Variance” consists of the entirety of the 

flowchart in Figure 4.10. The bolded blocks indicate Monte Carlo dispersions and the rounded 

rectangles indicate solution estimates and uncertainties obtained from the dispersions. 

 Of particular note in Figure 5.3 is the relationship between the inertial navigation component and 

the minimum variance component. Parameters derived from the dispersed state and atmosphere 

(namely, inertial velocity and freestream pressure, respectively) that have been constrained by the 

landing site are passed through the minimum variance algorithm, which is run for each of these IMU-

derived trajectory profiles. Thus, the minimum variance solutions are also dispersed using Monte 

Carlo techniques, and therefore statistics may be obtained along the trajectory. Note that the 

minimum variance aerodynamic and atmosphere solutions are not passed back into the INSTAR 

portion of the process, and thus the IMU-derived parameters are not updated using the MEADS 

pressures. 
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Figure 5.3. Method of considering FADS pressures using INSTAR and minimum variance. 

Bolded blocks represent Monte Carlo dispersions, rounded blocks are outputs. 

5.4.1 MEADS-Derived Parameters 

 Because the CFD pressure database is provided partially as a function of Mach number, a Mach 

number estimate is required for each inner loop iteration of the MEADS minimum variance algorithm 

(see Figure 4.10). To obtain this estimate, an approach similar to that by Karlgaard et al. in Ref. 32 is 

taken, in which the planet-relative velocity from the INSTAR solution is passed into the MEADS 

algorithm. The computed Mach number is then 
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where  
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  (5.10) 

and the dynamic and static pressures are from the minimum variance state estimate in Eq. (4.35). 

Recall that the static pressure estimate is simply the pressure obtained from the integration of the 

hydrostatic equation from the IMU observations. Also, note that the only difference between the 

MEADS-derived Mach number and the IMU/INSTAR-derived Mach number is the way density is 

computed.  

 A MEADS-derived ambient temperature may also be computed using the equation of state: 
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  (5.11) 

 The axial force coefficient may be computed directly from the MEADS/INSTAR solution using 

the minimum variance dynamic pressure estimate without the use of the aerodynamic database: 

 ,MEADS

,MEADS

x
A

ref

ma
C

S q
    (5.12) 

 Recall from §2.3 and §4.3 that the CFD surface pressure coefficients are well-characterized near 

the stagnation region and that the MEADS dynamic pressure estimates are determined primarily by 

the pressure port nearest stagnation. Thus, these MEADS dynamic pressure estimates enable 

derivation of axial force coefficient and freestream density estimates that are essentially independent 

of the CFD axial force coefficient, which has higher uncertainty due to larger variances in CFD 

solutions near the edges of the heat shield. The MEADS-derived freestream temperature and Mach 

number also rely on MEADS freestream pressure estimates, which recall are simply the hydrostatic 

pressures and therefore contain CFD axial force coefficient information. In any case, these derived 

estimates and uncertainties may be compared to corresponding estimates and uncertainties from 

INSTAR, which again are dependent on CFD axial force coefficient. 

 The axial force coefficient may also be obtained from the CFD aerodynamic force database, 

which recall is a lookup table that is a function of Mach number and total angle of attack. Mach 

number and angle of attack may be obtained, in turn, from either the inertial navigation or atmosphere 

reconstructions to compute the INSTAR-derived axial force coefficient: 

  ,ADB/IMU ,INSTAR ,CFD ,INSTAR ,INSTAR,A A A TC C C M     (5.13) 

where ,INSTARM  is from Eq. (4.13) and T,INSTAR  is from Eq. (3.42) using the planet-relative wind 

angles from Eqs. (3.39) and (3.40).  
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 The axial force coefficient may also be computed using the CFD aerodatabase tables and the 

MEADS-derived Mach number and total angle of attack: 

  ,ADB/MEADS ,CFD ,MEADS T,MEADS,A AC C M    (5.14) 

where ,MEADSM  is from Eq. (5.9) and T,MEADS  is from Eq. (3.42) using the wind-relative state 

estimates from Eq. (4.35). Analysis of the differences between the axial force coefficient computed 

from these three methods will be useful in understanding the dynamics of the entry vehicle. 

5.4.2 Pressure Measurement Uncertainty 

The a priori MEADS measurement uncertainties shown in Figure 2.14 include errors due to 

uncertainties in transducer and SSE temperature, calibration, quantization, port location, pressure 

leakage, lag uncertainty, thermal transpiration, and time tagging.
48

 However, the minimum variance 

equations in §4.3.1 assume the errors   are random and ( ) 0E   to maintain the unbiased 

characteristic of the estimator. Thus, for this analysis, only random measurement noise is included in 

the measurement covariance .  Systematic errors may be modeled and dispersed using the 

“consider parameters” approach or in a Monte Carlo sense, but will not be considered in this analysis 

since the available error models do not include sufficient information to use more sophisticated 

modeling.  

The measurement noise uncertainty is generated directly from the pressure observations by 

applying a running cubic polynomial fit with a width of 15 data points (approximately two seconds) 

to the unsmoothed pressure data. The standard deviations of the residuals between the unsmoothed 

and smoothed data are the new, data-derived noise uncertainty used in .  

The new measurement uncertainties for ports 2, 4, 6, and 7 (stagnation, nose, and off the vertical 

axis) are shown in Figure 5.4. Results for other taps are comparable, with ports 1-4 having the highest 

reduction relative to the a priori uncertainties. The data-derived noise measurement uncertainties are 

generally lower in magnitude than the a priori uncertainties that contain full instrumentation errors, 

with some minor excursions at approximately 605 s for port 7. The implication here is that if the a 

priori uncertainties were realistic estimates of the random errors, then ports 2 and 4 are dominated by 

the systematic errors while the point-to-point random component dominates the port 6 and 7 

measurement uncertainties. Implementing these smaller measurement uncertainties in   has the net 

effect of reducing the uncertainties of the aerodynamic parameters obtained from the solution 

covariance in Eq. (4.39). These uncertainties may then be compared to those obtained from the Monte 

Carlo dispersions.  
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Figure 5.4. A priori and data-derived MEADS pressure measurement uncertainties. 

 The pressure residuals for the converged minimum variance solution for ports 2, 4, 6, and 7 are 

also shown in Figure 5.4. The residuals are generally smaller than the data-derived random 

component of the uncertainty, indicating that possibly 15 data points is too long an arc or that a higher 

order polynomial should be used. The solution is absorbing much of the signal, but there is some 

small amount of signal still remaining in the residuals that has not been captured by the biases, scale 

factors, or nonlinear terms. Virtually all of the residuals are bounded by the 3  data-derived 

measurement uncertainties, with one or two exceptions occurring after 660 s. The region here, 

characterized by an increase in the measurement noise uncertainty, corresponds to the third bank 

maneuver and an apparent crosswind. 

5.4.3 Summary of Parameters Derived from INSTAR and MEADS  

 Eqs. (5.15)-(5.22) summarize the aerodynamic and atmospheric parameters that may be recovered 

from both INSTAR and MEADS solutions. In general, the INSTAR solutions are computed from 

outputs of the INSTAR algorithm, and MEADS solutions are computed from outputs of both the 

MEADS and INSTAR algorithms. Uncertainties are computed from the standard deviations of the 

Monte Carlo dispersions. 
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Chapter 6  

Chapter 6: Results and Analysis 

The results obtained from INSTAR and the combined INSTAR and MEADS algorithm are now 

demonstrated using MSL flight data. Estimates and uncertainties are obtained for trajectory, 

atmosphere, and aerodynamic parameters. Comparisons are made to the preliminary solutions 

obtained by the reconstruction effort at Langley Research Center.
35,36

 The LaRC extended Kalman 

filter solutions are labeled “NewSTEP” and the LaRC IMU-aided MEADS solutions are labeled 

“MEADS/IMU (LaRC).” 

6.1 Trajectory 

The vehicle trajectory consists of the position, velocity, and orientation through EDL. Table 6.1 

and Table 6.2 lists the final initial conditions, IMU errors, and corresponding uncertainties obtained 

from INSTAR. Also shown are differences between the initial conditions and uncertainties obtained 

from INSTAR and the a priori initial conditions and uncertainties from Table 2.3, Table 4.1, and 

Table 4.2. Note that the listed axes are those of the descent stage frame. 

In general, the changes in the initial conditions and IMU errors from a priori values are quite 

small relative to the values of the updated uncertainties (this is shown in the final column). The 

differences from the a priori initial conditions and IMU errors are almost all uniformly well under the 

1 uncertainties. The only parameters that have changed appreciably relative to the standard 

deviations are the X- and Y-axis Euler angles, the z-component of the acceleration scale factor (which 

recall is in the direction of the axial acceleration of the body frame), and the y-axis misalignment. 

The relatively large change in the z-component of the acceleration scale factor and the small 

uncertainty indicates that the landing site information tightly constrains this value. A slightly different 
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solution would likely have been obtained had the a priori uncertainty been loosened, but 17 of the 21 

uncertainties have decreased and the overall differences are satisfactory. 

Table 6.1. Converged descent stage frame initial conditions, differences from a priori initial 

conditions, and standard deviations. 

Parameter Unit 
Initial Conditions Standard Deviations

ΔIC as  
Value Δ Value Δ 

iX  m -8.969352E+04 0.1400 5.600 -0.4527 0.02 

iY  m 5.080899E+06 0.1490 5.522 -1.0650 0.03 

iZ  m -9.912516E+04 0.1971 12.540 -5.4694 0.02 

,X iV  m/s -3.983227E+03 0.0009 0.007 0.0006 0.12 

,Y iV  m/s -3.685549E+03 0.0006 0.009 0.0017 0.06 

,Z iV  m/s -2.792502E+02 0.0011 0.008 0.0002 0.14 

,X i  deg -156.1162 0.0154 0.025 -0.0088 0.63 

,Y i  deg -65.9259 0.0168 0.018 -0.0150 0.92 

,Z i  deg -157.6956 0.0035 0.025 -0.0083 0.14 

Table 6.2. Converged descent stage frame IMU errors, differences from a priori IMU errors, 

and standard deviations. 

Parameter Unit 
IMU Errors Standard Deviations 

ΔIMU as  
Value Δ Value Δ 

,a xSF  -- 2.5450E-05 2.5450E-05 1.4918E-04 -8.2349E-07 0.17 

,a ySF  -- 2.2670E-05 2.2670E-05 1.6694E-04 1.6943E-05 0.14 

,a zSF  -- 8.7736E-05 8.7736E-05 6.2743E-05 -8.7257E-05 1.40 

,a xB  g  6.5375 6.5375 38.9727 5.6394 0.17 

,a yB  g  -4.9229 4.9229 25.0605 -8.2728 0.20 

,a zB  g  -2.6492 2.6492 27.0719 -6.2614 0.10 

,xSF  -- -6.3704E-06 6.3704E-06 2.9852E-05 -3.4813E-06 0.21 

,ySF  -- -1.0748E-06 1.0748E-06 3.1545E-05 -1.7882E-06 0.03 

,zSF  -- -6.7717E-08 6.7717E-08 3.5922E-05 2.5887E-06 0.00 

,xB  deg/s -2.1619E-07 2.1619E-07 2.7303E-06 -4.7508E-08 0.08 

,yB  deg/s 2.4971E-07 2.4971E-07 2.5629E-06 -2.1491E-07 0.10 

,zB  deg/s 2.5001E-07 2.5001E-07 2.2212E-06 -5.5654E-07 0.11 

x  deg -0.0007 0.0007 0.0168 0.0002 0.04 

y  deg -0.0058 0.0058 0.0131 -0.0035 0.44 

z  deg -0.0005 0.0005 0.0184 0.0017 0.03 

 

 

 

  The inertial position profiles in the M frame are shown in Figure 6.1, inertial velocities are shown 

in Figure 6.2, and quaternions are shown in Figure 6.3. The trajectory profiles are shown with the 

corresponding uncertainties, from both the first and final INSTAR iterations. Recall that the first 
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iteration corresponds to the trajectory computed from the JPL reference initial conditions and 

covariance.  

 In all cases, the change in the standard deviations from the first to final iterations is quite 

significant. The uncertainty of the X position component, for example, has decreased by almost 1.5 

km by landing. Although there are some increases in velocity Z component uncertainty prior to 

maximum dynamic pressure at approximately 620 s, and some increases in quaternion uncertainty 

near chute deploy at approximately 800 s, these increases are small relative to the improvement in the 

remaining regions of the trajectory. Thus, using landing site location to constrain the range of possible 

trajectories provides a significant improvement to the trajectory uncertainties. 

 

Figure 6.1. Reference and final position profiles and uncertainties, first and final INSTAR 

iterations. 
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Figure 6.2. Reference and final velocity profiles and uncertainties, first and final INSTAR 

iterations. 

 

Figure 6.3. Reference and final quaternion profiles and uncertainties, first and final INSTAR 

iterations. 
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 Altitude history in the M frame referenced from the vehicle landing radius in Table 2.4 is shown 

in Figure 6.4. Note that the lower left panel is a zoomed view of the upper left panel, spanning the 

relevant MEADS times. The peak difference between the INSTAR and NewSTEP altitudes is 237 m 

at 640 s. The INSTAR altitude at 640 s is 18.7 km, and as will be shown later, the Mach number is 

10. The altitude uncertainties from INSTAR stay between 30 and 40 m beginning at this time, which 

is higher than those from NewSTEP. Note that the period between 660 s and 710 s is when the 

vehicle is increasing in altitude due to lift control, a feature of the EDL that has not been performed 

on any other Mars entry. The altitude difference between the two solutions at landing is 2.3 m. 

 

Figure 6.4. Altitude estimates, differences from INSTAR estimate, and uncertainties. The lower 

left panel is a zoomed-in view of the upper left panel. 

 INSTAR updates to the landing site are listed in Table 6.3. Since landing site is used to constrain 

and update the initial conditions in INSTAR, there is of course a significant improvement in the 

computed landing site. The reference trajectory, obtained from the radio tracking initial conditions, 

lands nearly a kilometer away from the reference landing site. The landing site from the initial 

conditions obtained by the INSTAR process has decreased this distance to less than ten meters. In 

comparison, the NewSTEP landing site difference is 27 m.
35
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Table 6.3. Comparison of landing site differences from reference using a) a priori initial 

conditions from JPL and b) converged intial conditions from INSTAR. 

Component 
A priori difference from  

reference landing site (m) 

Final difference from  

reference landing site (m) 

X -522.614 6.702 

Y 502.595 -1.604 

Z 572.713 6.350 

Magnitude 923.974 9.371 

 

 

 

 The implications of a decrease in landing site location difference are significant when the updates 

to the initial conditions and IMU errors are considered. Recall from Table 6.1 and Table 6.2 that 

nearly all of the differences between the reference initial conditions and IMU errors and the 

converged initial conditions and IMU errors are below the estimated 1  values. Thus, there exists a 

combination of initial conditions and IMU errors that fall within the a priori uncertainties that enables 

the vehicle to arrive at the observed landing site to within several meters. Consider now that this 

improvement has been achieved simply by using landing site location as the redundant observation to 

constrain the trajectories. The assumption is therefore made that no further improvements may be 

made to the trajectory solution by considering other redundant data, though improvements may still 

be made to the atmosphere and aerodynamics using MEADS observations. 

6.2 Atmosphere 

 Analysis of the atmospheric parameter estimates and uncertainties in the present work are limited 

to the times between 600 s and 720 s, which approximately corresponds to the range where the 

MEADS measurements are above the limit of 850 Pa. Note that in any plot in this work that displays 

a difference or Δ, the convention is that the parameter of interest is subtracted from the INSTAR- or 

IMU-derived parameter. Thus, a negative difference or Δ indicates that the parameter of interest is 

larger in magnitude than the INSTAR-derived parameter. 

 Also note that unless otherwise specified in the legends, black curves are INSTAR results, red 

curves are MEADS/INSTAR results, blue curves are NewSTEP extended Kalman filter results from 

LaRC, and green curves are the LaRC MEADS/INSTAR results. 

 When examining the atmosphere and aerodynamic results, recall from §2.3, §4.3, and §5.4 that 

the MEADS dynamic pressure estimate is determined primarily by the pressure at the port nearest to 

the stagnation point, a region that is well-characterized by CFD and supported by analytical flowfield 

solutions. Thus, the MEADS dynamic pressure estimate is essentially independent of the surface 

pressure coefficient distribution, which is not as well-characterized due to higher variances in CFD 

solutions and lack of analytical solutions near the edges of the heat shield. This distribution directly 

influences the CFD axial force coefficients and increases the associated uncertainties. Using a 
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minimum variance algorithm with Monte Carlo dispersion techniques permits the recovery of axial 

force coefficient and density estimates from MEADS pressures independent of the CFD axial force 

coefficients. MEADS-derived freestream temperature and Mach number rely on both the MEADS 

dynamic pressure and freestream pressure estimates, the latter of which are simply the hydrostatic 

pressures from INSTAR and therefore contain CFD axial force coefficient information. Thus, the 

MEADS dynamic pressures permit the comparison of these MEADS-derived estimates to those 

obtained through INSTAR. 

Freestream density estimates, differences, and uncertainties are shown as a function of altitude in 

Figure 6.5 and as a function of time in Figure 6.6. The oscillations seen in the INSTAR estimate are 

of the same frequency as total angle of attack and have been smoothed out of the LaRC solutions. The 

density ratios in Figure 6.5 and the estimates in Figure 6.6 indicate that the INSTAR density solution 

from Eq. (5.16a) is overestimating freestream density by approximately 1-4% compared to the 

MEADS-derived density from Eq. (5.16b). As will be shown later, this is agreement with the CFD 

axial force coefficient, which is lower in magnitude than the axial force coefficient determined from 

the MEADS pressure-based solutions.  

 

Figure 6.5. Freestream density estimates, differences from INSTAR estimate, and uncertainties, 

vs. altitude. 

 The INSTAR density uncertainties  
 derived from the dispersions of Eq. (5.16a) follow the 

behavior of the CFD axial force coefficient uncertainty shown later in Figure 6.15, indicating that the 
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CFD aerodatabase uncertainties are the dominant contributor. The MEADS/INSTAR  
 derived 

from the dispersions of Eq. (5.16b) is significantly smaller in magnitude than the other uncertainties, 

which is due to the relatively smaller distributions in ,MEADSq  (recall that the MEADS/INSTAR 

density is a function of the IMU freestream velocity, which has almost negligible uncertainty, and the 

MEADS/INSTAR dynamic pressure, which will be shown in Figure 6.11). The MEADS/INSTAR 

 
 is not representative of the true uncertainty as it does not include systematic errors in the 

transducers and does not totally account for the large uncertainties in the axial force coefficient 

because of its independence from the surface pressure coefficient distribution (recall that the surface 

pressure coefficient distribution is used to compute CFD axial force coefficient and has relatively 

high uncertainty). 

 

Figure 6.6. Freestream density estimates, differences from INSTAR estimate, and uncertainties, 

vs. time. 

Freestream pressure estimates, differences, and uncertainties are shown as a function of altitude 

in Figure 6.7 and as a function of time in Figure 6.8. Rather than the solution presented in Ref. 35, the 

NewSTEP freestream pressure presented here is obtained by integrating the NewSTEP density in the 
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hydrostatic equation (this hydrostatic pressure will in turn be used to obtain the NewSTEP freestream 

temperature). Recall that in the present work, the MEADS freestream pressure is simply the IMU-

derived hydrostatic pressure from Eq. (5.17a); thus, the MEADS freestream pressure is not shown in 

this plot.  

 

Figure 6.7. Freestream pressure estimates, differences from INSTAR estimate, and 

uncertainties, vs. altitude. 

 There is agreement between all three solutions to within 2%. Because of the small freestream 

pressure magnitude, the initial P  uncertainty (10% 3 ,  normal distribution) is quickly overtaken by 

the uncertainty in the integral term of Eq. (5.17a). Note the overall low uncertainty, less than 2 Pa, in 

the INSTAR freestream pressure compared to the other solutions. The density uncertainty behavior 

that is dominated by the CFD axial force coefficient uncertainty is not exhibited here since the density 

is integrated in the hydrostatic equation. Because the INSTAR freestream pressure is the only 

atmospheric parameter passed into the MEADS minimum variance algorithm, it will be shown that 

the resultant standard deviations of the MEADS parameter dispersions are small relative to the 

uncertainties in the CFD axial force coefficient. 
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Figure 6.8. Freestream pressure estimates, differences from INSTAR estimate, and 

uncertainties, vs. time. 

Freestream temperature estimates, differences, and uncertainties are shown as a function of 

altitude in Figure 6.9 and as a function of time in Figure 6.10. The NewSTEP solution presented here 

is obtained by using the NewSTEP density and the NewSTEP hydrostatic pressure in the equation of 

state. The oscillations due to the navigation filter accelerations are again present in the INSTAR 

solution. 

The NewSTEP temperatures agree with the INSTAR-derived temperatures from Eq. (5.18.a) to 

within 2%. The MEADS/INSTAR freestream temperatures from Eq. (5.18.b) and MEADS/IMU 

(LaRC) freestream temperatures agree with the INSTAR freestream temperature to within 

approximately 2% before 640 s, with agreement within 4% outside of this range. Note the change in 

behavior in all curves just after 660 s, which again is at the third commanded bank reversal and 

approximately the time when the vehicle encountered an apparent crosswind.
35,36

  

 The INSTAR and MEADS/INSTAR-derived freestream temperature uncertainties T 
 from the 

dispersions of Eqs. (5.18) are smaller than those from the LaRC solutions, since these derived 

uncertainties come from the INSTAR and MEADS/INSTAR  
 and .P 

 The effects of the initial 

freestream pressure uncertainty are prevalent in the hypersonic regime, from 600-640 s, before the 
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CFD axial force coefficient uncertainty begins to dominate. As with the freestream density, the 

MEADS/INSTAR T 
 is not completely representative of the true uncertainty due to the lack of 

systematic errors in the transducers and the small uncertainties in freestream pressure. 

 

Figure 6.9. Freestream temperature estimates, differences from INSTAR estimate, and 

uncertainties, vs. altitude. 
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Figure 6.10. Freestream temperature estimates, differences from INSTAR estimate, and 

uncertainties, vs. time. 

6.3 Aerodynamics 

 The vehicle aerodynamics consist of wind angles, dynamic pressure, Mach number, and forces 

and moments through EDL. Of the forces and moments, only the axial force coefficient will be 

analyzed in the present work. 

Though not strictly considered aerodynamic parameters, the MEADS transducer error estimates 

and uncertainties from the minimum variance algorithm are listed in Table 6.4. The error estimates 

are obtained from the MEADS algorithm solution for the final converged trajectory defined by the 

initial conditions in Table 6.1 and IMU errors in Table 6.2. The statistics are obtained from the 

standard deviations of the dispersed transducer errors. Overall, the transducer errors are quite similar 

to those obtained by the LaRC reconstruction group and presented in Ref. 35, with all differences 

below 2  with the exceptions of the port 1 scale factor (2.1 ),  the port 6 scale factor (2.2 ),  and 

the port 6 nonlinear term (3.3 ).  Note, however, that the LaRC estimates are obtained by processing 

MEADS data for a longer period than the present work (up to 780 s as opposed to 720 s). Thus, 

differences in the solutions may be attributed in part to this, as well as to different data smoothing 

methods. 
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Table 6.4. MEADS transducer error estimates and uncertainties, with comparison to LaRC 

estimates.
35

 

Port 
Bias  
(Pa) 

LaRC 
Bias 

1 
(Pa) 

Scale  
factor 

LaRC 
scale factor

1  
Nonlinearity  

(1/Pa) 
LaRC  

Nonlinearity 
1 

(1/Pa) 

1 -8.21 -1.04 4.96 0.9994 0.9958 0.0017 -1.12E-08 7.64E-08 6.21E-08 

2 -12.65 -2.83 6.95 0.9981 0.9947 0.0026 -8.55E-08 7.37E-09 1.08E-07 

3 -6.26 4.77 8.46 1.0232 1.0209 0.0032 -1.23E-07 -3.94E-08 1.26E-07 

4 -18.00 -7.05 8.93 1.0152 1.0100 0.0039 -3.56E-07 -7.83E-08 1.81E-07 

5 42.64 47.05 9.40 0.9644 0.9635 0.0053 5.51E-07 7.26E-07 3.61E-07 

6 6.44 7.89 9.81 0.9959 0.9868 0.0042 -5.60E-07 1.07E-07 2.03E-07 

7 1.99 3.64 8.43 0.9936 0.9930 0.0037 -2.39E-07 -1.17E-08 1.87E-07 

 

 

 

 Reconstructed dynamic pressure estimates, residuals, and uncertainties are shown in Figure 6.11. 

Immediately it can be seen that the INSTAR dynamic pressure solution obtained from Eq. (5.19a) is 

consistently higher by up to 5% (250 Pa at ,maxq ) than the estimates obtained using other methods. 

This is consistent with the density differences in Figure 6.6, which show that the INSTAR density is 

approximately 1-4% higher than densities derived from MEADS and by LaRC. The MEADS-derived 

dynamic pressure from Eq. (5.19b) is in close agreement with the LaRC estimates. 

Two versions of the dynamic pressure uncertainties q 
 obtained from the covariance in Eq. 

(4.39) are shown in the lower right panel. The curve labeled “MEADS/INSTAR full instrumentation” 

are the uncertainties obtained from the MEADS solution covariance when the a priori pressure 

measurement uncertainty is used in ,  and are directly comparable to the LaRC MEADS/IMU 

uncertainties. The curve labeled “MEADS/INSTAR noise-only” are the uncertainties obtained from 

the MEADS solution covariance when the data-derived pressure noise uncertainty described in §5.4.2 

is used in .  As expected, these noise-only uncertainties are for the most part smaller in magnitude 

than those derived from the MEADS/INSTAR Monte Carlo dispersions. Recall that the 

MEADS/INSTAR q 
 contains uncertainty contributions from all assumed sources of error except 

for systematic measurement errors such as those due to hysteresis. These types of errors will have to 

be included as either “considered parameters” or in a Monte Carlo sense, and are not considered in 

this work.  

 The INSTAR-derived q 
 is obtained from the dispersions of Eq. (5.19a). Thus, the main 

contributor to this uncertainty is the INSTAR freestream density uncertainty from the dispersions of 

Eq. (5.16a), which is in turn dominated by the CFD axial force coefficient uncertainty, shown later in 

Figure 6.15. In fact, the change in 
AC  behavior is visible at 640 s, which corresponds to Mach 10 

and when 
AC  begins to increase from 3% to 10%. Again, recall that the dynamic pressure estimate 

from MEADS is largely independent of the CFD surface pressure coefficient distribution that is used 

to obtain the CFD axial force coefficient and has relatively large uncertainty. INSTAR-derived q 
 

magnitude is therefore large compared to the MEADS q 
 derived from the dispersions of Eq. 

(5.19b).  
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Figure 6.11. Dynamic pressure estimates, differences from INSTAR estimate, and uncertainties. 

 Finally, note that the MEADS/INSTAR full instrumentation uncertainties are generally smaller 

than the LaRC MEADS/IMU uncertainties. This is because a priori information is included in the 

MEADS/INSTAR covariance (see §3.4.2), though the MEADS/INSTAR uncertainty may 

occasionally be higher because of covariance inflation due to the effects of the considered parameters 

(see §4.3.1). This will be seen in the wind angle uncertainties.  

Reconstructed angle of attack and sideslip are shown in Figure 6.12 and Figure 6.13, respectively. 

Recall that the INSTAR angle of attack and sideslip are obtained assuming no winds, such that the 

wind angles define the orientation of the inertial velocity vector with respect to a rigidly rotating 

atmosphere. The INSTAR solution from Eq. (5.20a) and the MEADS solution from Eq. (5.20b) agree 

to within a half of a degree until approximately 660 s, which is just after the third programmed bank 

reversal and the start of an apparent crosswind that causes the deviation between the INSTAR and 

MEADS solutions. At this time the MEADS minimum variance algorithm also began requiring 5-10 

iterations to converge on local parameters, rather than 2-3 in other regions. The apparent crosswind 

and its effects on vehicle dynamics are discussed at length in Refs. 35 and 36. 

As with dynamic pressure, there is good agreement between the MEADS estimates and the LaRC 

MEADS estimates. Differences in noise level are due to differences in data filtering prior to 
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processing. The LaRC MEADS estimate does not capture the amplitude of the angle of attack 

oscillations in the hypersonic regime because of the 1 Hz optimal Fourier filter used in that analysis.
35

 

This causes the high-amplitude differences between the INSTAR solution and the LaRC 

MEADS/IMU solutions in the lower left panels. 

 

Figure 6.12. Angle of attack estimates, differences from INSTAR estimate, and uncertainties, 

planet- and wind-relative. 

The angle of sideslip is expected to oscillate about zero because of the zero radial center of 

gravity offset, however, neither the inertial or MEADS sideslip estimates reflect this. Karlgaard et al. 

determined
35

 that a hysteresis in either port 6 or 7 that results in a 25 Pa bias on either of those ports 

(negative for port 6, positive to port 7) can adjust the MEADS solution. This “corrected” LaRC 

MEADS/IMU solution is shown as the magenta curve (the green curve is the LaRC MEADS/IMU 

solution prior to this correction). It has been shown that accounting for this bias results in better 

agreement between the inertial and wind-relative sideslip angles.
35,36

 

The wind angle uncertainties   and   are shown in the lower right panels of Figure 6.12 and 

Figure 6.13. The uncertainties from the noise-only covariance have high variation due to the point-to-

point variations in the data-derived measurement uncertainties shown in Figure 5.4. The INSTAR-
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derived angle uncertainties from the dispersions of Eq. (5.20a) and Eq. (5.21a) are relatively small 

because these are planet-relative angles that assume zero winds and depend only on the uncertainties 

in the trajectory. These uncertainties are therefore not directly comparable to the other uncertainties 

and are shown only for completeness.  

 

Figure 6.13. Angle of sideslip estimates, differences from INSTAR estimate, and uncertainties, 

planet- and wind-relative. 

 It is interesting to note that while the MEADS dynamic pressure uncertainties from the 

covariance in Eq. (4.39) are for the most part smaller in magnitude than the MEADS Monte Carlo 

uncertainties, the same cannot be said for the wind angle uncertainties from the MEADS covariance 

and the MEADS Monte Carlo dispersions. The implication is that in the case of the wind angles, the 

measurement noise dominates   and .  As before, neither sets of uncertainties include transducer 

calibration errors. Comparison to the uncertainties from the LaRC MEADS/IMU solution implies that 

the transducer calibration is a significant source of uncertainty, which has been determined to be the 

case.
48

  

 As in the case of dynamic pressure, the MEADS/INSTAR angle of attack uncertainties are 

generally smaller than the LaRC MEADS/IMU uncertainties because a priori information is included 
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in the covariance. However, the MEADS/INSTAR sideslip angle uncertainties are slightly larger than 

the LaRC MEADS/IMU uncertainties. This is likely because of covariance inflation due to the effects 

of the considered parameters. Thus, it may be concluded that the a priori information has a stronger 

effect on reducing the angle of attack uncertainties than the sideslip angle uncertainties.  

 

Figure 6.14. Mach number estimates, differences from INSTAR estimate, and uncertainties. 

 Mach number estimates and uncertainties are shown in Figure 6.14. The NewSTEP Mach number 

is obtained from the hydrostatically-derived freestream temperature profile, and agrees with the 

INSTAR Mach number to within approximately 1%. There is agreement to within 2% between the 

INSTAR Mach number from Eq. (5.22a) and MEADS-derived Mach number from Eq. (5.22b). 

Slightly better agreement exists between the MEADS/INSTAR and LaRC MEADS/INSTAR-derived 

solutions. Overall, the high INSTAR Mach number relative to the MEADS solution is consistent with 

the low INSTAR temperature and the relationship in Eq. (5.22a). 

 Mach number uncertainties M  are shown in the lower right panel. The relatively large initial 

INSTAR M  is due to the 10% uncertainty in the initial static pressure, which is used to begin the 

integration of the hydrostatic equation to get static pressure. As the magnitude of static pressure 
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increases, the initial static pressure uncertainty contribution decreases and the CFD aerodatabase 

uncertainty becomes dominant. This is indicated by the now-familiar increase in the INSTAR M  at 

640 s. This increase does not appear in the MEADS-derived M  which recall is obtained from the 

standard deviations of the dispersion of Eq. (5.22b) and do not rely directly on the CFD axial force 

coefficient. 

The reconstructed axial force coefficient with differences from the INSTAR solution are shown 

in Figure 6.15. Immediately it can be seen that there are two sets of curves following distinct 

behaviors. The lower AC  curves are obtained using the CFD aerodatabase from Eqs. (5.13) and 

(5.14) (labeled “ADB” and shown as the black, gray, and purple curves). The upper AC  curves are 

extracted from MEADS using Eq. (5.15b) (labeled “MEADS/INSTAR extracted” and “MEADS/IMU 

(LaRC) extracted” and shown as the red and green curves). Within these two sets there is agreement 

to within 1%. This is consistent with the similarity between the MEADS solutions obtained in this 

work and those obtained by LaRC.  

 

Figure 6.15. Axial force coefficient estimates, differences from INSTAR estimate, and 

uncertainties. 
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There is a marked difference between the two types of solutions, i.e., the difference between the 

aerodatabase-derived AC  and the MEADS-extracted .AC  This difference is between 1% and 2% in 

the hypersonic regime, before 640 s, and begins to increase thereafter to approximately 5% by 720 s. 

Schoenenberger et al. hypothesized that some of the differences between the aerodatabase-derived 

and MEADS-extracted hypersonic AC  could be reconciled by a combination of changes in heat 

shield mass caused by ablation, moisture absorption and outgassing, and CFD grid resolution in the 

shock structure. A “reconciled” AC  obtained by shifting the aerodatabase-derived curve to closer 

agreement with the MEADS-derived curve using hypersonic and supersonic multipliers is presented 

in that work.
36

 

Consider that the AC  recovered from the CFD aerodatabase from Eq. (5.15a) is lower in 

magnitude than that of the AC  extracted from the MEADS solution in Eq. (5.15b). The immediate 

effect is that the INSTAR-derived freestream density, which is obtained using the CFD AC  as in Eq. 

(5.16a), is higher than that obtained using other methods. This was shown in Figure 6.5 and Figure 

6.6 and is consistent with the behavior of other atmospheric and aerodynamic parameters derived 

from the axial force coefficient.  

 The axial force coefficient uncertainties provide some insight into the performance of the 

methods in this work. The 
AC  from the aerodatabase at the INSTAR total angle of attack, derived 

from the dispersions of Eq. (5.15a), is essentially the a priori 
AC  from Eq. (5.8) (recall that this 

uncertainty was chosen to define the upper and lower bounds of the dispersions). The similarity 

between the two uncertainty curves indicates that trajectory, mass, and initial static pressure 

uncertainties do not contribute significantly to the axial force coefficient uncertainty. However, there 

is some variation in 
AC  derived from the dispersions of Eq. (5.14) and shown as the gray curve, 

obtained when the same aerodatabase is queried at the MEADS/INSTAR total angle of attack. This 

indicates that introducing dispersions due to pressure database uncertainties and transducer errors 

modestly increases the axial force coefficient uncertainty. The MEADS/INSTAR extracted ,
AC  

computed from the dispersions of Eq. (5.15b), is smaller in magnitude since the major contributor to 

these dispersions are those from dynamic pressure and this method does not rely directly on the CFD 

aerodatabase. Thus, it may be concluded that the majority of the axial force coefficient uncertainty is 

due to the CFD aerodatabase uncertainty. 

 Finally, recall that the LAURA CFD solutions near the edges of the heat shield are not as well-

determined as the solutions near the stagnation region, and therefore the CFD AC  solutions have 

higher uncertainties than the uncertainties of PC  at a given location on the heat shield. Thus, it is 

expected that an improvement in the CFD aerodynamic database will improve the INSTAR-derived 

freestream density estimates, which will in turn improve the freestream pressure and temperature 

estimates. A more accurate PC  uncertainty model would also enable a better characterization of the 

relationship between the axial force coefficient and density solutions derived from MEADS and 

INSTAR. 



114 

 

 

 

6.4 Probability and Performance Analyses 

 As previously discussed, Gaussian distributions specified by the a priori covariance are assumed 

for the initial state dispersions. Also recall that a uniform distribution is assumed in the landing site 

space, i.e., every trajectory that terminates within 150 m of the reference landing site has an equal 

probability of occurring. The validity of the Gaussian assumption for the initial conditions and the 

uniform assumption for the landing site dispersions will now be investigated. 

6.4.1 Initial Condition Probability Densities 

 Figure 6.16, Figure 6.17, and Figure 6.18 show probability density functions for the 822 valid 

initial position, velocity, and orientation parameters at the end of INSTAR iteration 1, respectively. 

Recall that valid in this case means that these initial conditions correspond to trajectories that satisfy 

the landing site uncertainty, i.e., these trajectories terminate within 150 m of the reference landing 

site. Although the initial condition dispersions were generated assuming Gaussian distributions, the 

distributions of the valid trajectories do not necessarily follow the same distribution. This delineation 

is important because the new initial conditions are generated from this valid pool by again assuming 

Gaussian distributions.  

 Note that in this analysis, correlations are not taken into account and the Gaussian density 

functions shown in the following figures are not precisely the functions used to generate new initial 

conditions and IMU errors (see §4.2.1 for a description of how the parameters are dispersed with 

correlations between iterations). Nevertheless, examining the distributions of each parameter 

separately can provide insight into the validity of the density assumptions.  

 Figure 6.19 through Figure 6.23 show probability density functions for the 822 valid acceleration 

scale factors and biases, body rate scale factors and biases, and misalignments. In each figure, there is 

a histogram and a Gaussian density function. The histogram is constructed with an optimal number of 

bins k based on Scott’s method
63

 that range from 16 to 21 depending on the parameter. The Gaussian 

density function is constructed with the means   obtained from the 822 valid trajectories (see Table 

4.5) and the corresponding standard deviations   (recall that these are the same means and variances 

used to generate new dispersed trajectories for INSTAR iteration 2). 



115 

 

 

 

 

Figure 6.16. Initial position probability densities of valid trajectories, 1st iteration. 

 

Figure 6.17. Initial velocity probability densities of valid trajectories, 1st iteration. 
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Figure 6.18. Initial attitude probability densities of valid trajectories, 1st iteration. 

 

Figure 6.19. Accelerometer scale factor probability densities of valid trajectories, 1st iteration. 
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Figure 6.20. Accelerometer bias probability densities of valid trajectories, 1st iteration. 

 

Figure 6.21. Gyroscope scale factor probability densities of valid trajectories, 1st iteration. 
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Figure 6.22. Gyroscope bias probability densities of valid trajectories, 1st iteration. 

 

Figure 6.23. Misalignment probability densities of valid trajectories, 1st iteration. 
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 To test the Gaussian assumption, a chi-squared goodness-of-fit test is applied to each set of 822 

observations with the same number of optimal bins as the histograms (obtained using Scott’s method) 

and a standard significance level of 5%. With the exception of the x-axis gyroscope scale factor and 

the y-axis misalignment, all of the parameters pass the test, indicating that in general the Gaussian 

assumption used to generate new initial conditions is, in this case, sufficiently accurate. 

 The tests are also applied to subsequent INSTAR iterations. Results are similar, although in some 

iterations all parameters pass the test and in other cases, a parameter other than x-axis gyroscope scale 

factor or y-axis misalignment fails the test. These are listed in Table 6.5. 

Table 6.5. Summary of initial condition and IMU error goodness-of-fit tests for all INSTAR 

iterations. 

Parameter Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 

iX  PASS PASS PASS PASS PASS PASS 

iY  PASS PASS PASS PASS PASS PASS 

iZ  PASS PASS PASS PASS PASS PASS 

,X iV  PASS PASS PASS PASS PASS PASS 

,Y iV  PASS PASS FAIL PASS PASS PASS 

,Z iV  PASS PASS PASS PASS FAIL PASS 

,X i  PASS PASS PASS FAIL PASS PASS 

,Y i  PASS PASS PASS PASS PASS PASS 

,Z i  PASS PASS PASS PASS PASS PASS 

,a xSF  PASS FAIL PASS PASS PASS PASS 

,a ySF  PASS PASS PASS PASS PASS PASS 

,a zSF  PASS PASS PASS PASS PASS PASS 

,a xB  PASS PASS PASS PASS PASS PASS 

,a yB  PASS PASS PASS PASS PASS PASS 

,a zB  PASS PASS PASS PASS PASS PASS 

,xSF  FAIL PASS PASS FAIL PASS PASS 

,ySF  PASS PASS PASS PASS PASS PASS 

,zSF  PASS PASS PASS PASS PASS PASS 

,xB  PASS PASS PASS FAIL PASS PASS 

,yB  PASS PASS PASS PASS PASS PASS 

,zB  PASS PASS PASS PASS PASS PASS 

x  PASS PASS PASS PASS PASS PASS 

y  FAIL PASS PASS PASS PASS PASS 

z  PASS PASS PASS PASS PASS PASS 

 

 

 

 In most cases the data satisfy the chi-squared goodness-of-fit test at a 5% significance level. 

However, some parameters fail this test, i.e., they are likely non-Gaussian. These distributions are 

checked again at the less-stringent 1% significance level, and in each case the distributions that failed 

at the 5% significance level pass at the 1% significance level, with two exceptions: the x-axis 

gyroscope scale factor for iteration 4 and the Z-axis velocity for iteration 5. Thus, in future INSTAR 
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applications, it will be of interest to generate the random initial conditions using an estimate of the 

density function, rather than assuming a Gaussian distribution. 

6.4.2 Landing Condition Probability Densities 

 Similar checks and tests are carried out on the final landed position. Recall that although the final 

positions are not dispersed using a particular distribution (they are simply computed by mapping the 

initial conditions down using inertial navigation), they are used to determine which trajectories are 

valid. The probability densities of the areocentric latitude, East longitude and radius at the landing 

conditions of all 1,000 trajectories for INSTAR iteration 1 are shown in Figure 6.24. Note that 

latitude and longitude are shown in degrees. As before, shown are histograms and Gaussian densities. 

Note that unlike the initial conditions, the assumed distribution at the landing site is uniform rather 

than Gaussian. The Gaussian densities are therefore shown here as a matter of interest. The 

histograms are again constructed using the optimal number of bins specified by Scott’s method.
63

  

 

Figure 6.24. Probability density functions at landing conditions of all trajectories, 1st iteration.   
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 For this iteration, all three parameters pass the chi-squared goodness-of-fit test at a 5% 

significance level, indicating that the densities are near-Gaussian. Moreover, the distributions are 

clearly not uniform, which is the assumption used in determining which trajectories are valid. Recall 

that the uniform probability density assumption relates to the information (or rather, the lack of 

information) regarding the reference landing site uncertainty, which is simply assumed to be accurate 

to within 150 meters. 

 The chi-squared goodness-of-fit test at a 5% significance level is repeated for the final positions 

of each subsequent INSTAR iteration, the results of which are listed in Table 6.6. It can be seen that 

all of the densities are indeed near-Gaussian. Thus, assuming that the initial conditions are normally 

distributed results in trajectories with normally distributed final positions.   

Table 6.6. Summary of landing condition goodness-of-fit tests for all INSTAR iterations. 

Parameter Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 

Areocentric latitude PASS PASS PASS PASS PASS PASS 

East longitude PASS PASS PASS PASS PASS PASS 

Radius PASS PASS PASS PASS PASS PASS 

 

 

 

 The start of an INSTAR iteration is formulated with a trajectory being either valid or invalid. The 

probability of a particular trajectory occurring is determined afterwards and does not necessarily 

impact the value of the estimates or uncertainties. Thus, INSTAR trajectory results may be interpreted 

in a probabilistic sense by using histogram approximations. The same techniques may be applied to 

the reconstructed atmospheres by estimating the probability densities at any point along the trajectory.  

6.4.3 INSTAR Convergence Analysis 

 A convergence analysis is carried out to determine if the INSTAR solutions presented in Table 

6.1 and Table 6.2 may be obtained when beginning from a different set of a priori initial conditions 

and IMU errors. Recall that the presented solution, which will be referred to here as the original 

solution, was obtained by dispersing all 24 parameters simultaneously. To conduct the convergence 

analysis, first only the initial state conditions (position, velocity, and orientation) and acceleration 

biases are dispersed and estimated.
*
 After these twelve parameters have converged, the remaining 12 

IMU error parameters are considered by including their uncertainties in the covariance, and the 

iteration process is continued until a second convergence, or test solution.  

                                                      
* Ref. 24 discusses how the reference landing location cannot be “captured” by initial state dispersions only. It was 

determined that including acceleration biases is both reasonable and enables “capture” of the landing site. The solutions 

presented in that study, which only solved for the initial state and acceleration biases, were within one to two standard 

deviations from the a priori values.   
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 The test process converges (using a 98.5% convergence criteria) in 13 iterations: six iterations to 

converge on the 12 initial conditions and acceleration biases, and seven more to converge on all 

subsequent 24 parameters. Table 6.7 lists and compares the original and test initial condition solutions 

and standard deviations computed from the Monte Carlo dispersions. Table 6.8 lists and compares the 

original and test IMU error parameter solutions and standard deviations computed from the Monte 

Carlo dispersions. The Δ convention is Test – Original so that a negative Δ indicates that the test 

value is smaller. 

Table 6.7. Comparison of converged initial conditions and uncertainties, original and test cases. 

Parameter Units 
Initial conditions Standard deviations 

ΔIC    ΔIC as   
Original Test Original Test

iX  m -89693.52 -89693.18 5.60 7.14 3.44E-01 1.54 0.06 

iY  m 5080898.88 5080899.72 5.52 6.76 8.43E-01 1.24 0.15 

iZ  m -99125.16 -99121.38 12.54 17.04 3.78E+00 4.50 0.30 

,X iV  m/s -3983.23 -3983.22 7.43E-03 5.60E-03 2.07E-03 -1.82E-03 0.28 

,Y iV  m/s -3685.55 -3685.55 8.78E-03 6.34E-03 -6.20E-04 -2.45E-03 -0.07 

,Z iV  m/s -279.25 -279.25 8.07E-03 8.24E-03 2.54E-03 1.73E-04 0.31 

,X i  deg -156.12 -156.12 2.45E-02 2.56E-02 -5.56E-04 1.02E-03 -0.02 

,Y i  deg -65.93 -65.92 1.84E-02 8.42E-03 6.83E-03 -9.94E-03 0.37 

,Z i  deg -157.70 -157.69 2.50E-02 2.80E-02 1.03E-03 2.93E-03 0.04 

Table 6.8. Comparison of converged IMU errors and uncertainties, original and test cases. 

Parameter Units 
IMU errors Standard deviations 

ΔIC    ΔIC as   
Original Test Original Test

,a xSF  -- 2.54E-05 -1.38E-05 1.49E-04 1.34E-04 -3.93E-05 -1.55E-05 -0.26 

,a ySF  -- 2.27E-05 -7.98E-06 1.67E-04 1.48E-04 -3.07E-05 -1.85E-05 -0.18 

,a zSF  -- 8.77E-05 4.18E-06 6.27E-05 3.39E-05 -8.36E-05 -2.88E-05 -1.33 

,a xB  g  6.54 -9.22 38.97 30.71 -1.58E+01 -8.26 -0.40 

,a yB  g  -4.92 -13.17 25.06 31.49 -8.25E+00 6.43 -0.33 

,a zB  g  -2.65 -35.73 27.07 15.27 -3.31E+01 -11.80 -1.22 

,xSF  -- -6.37E-06 -1.68E-06 2.99E-05 3.31E-05 4.69E-06 3.23E-06 0.16 

,ySF  -- -1.07E-06 1.73E-06 3.15E-05 3.08E-05 2.80E-06 -7.62E-07 0.09 

,zSF  -- -6.77E-08 -5.11E-06 3.59E-05 3.08E-05 -5.04E-06 -5.17E-06 -0.14 

,xB  deg/s -2.16E-07 -1.99E-07 2.73E-06 2.71E-06 1.71E-08 -2.13E-08 0.01 

,yB  deg/s 2.50E-07 -4.94E-07 2.56E-06 2.82E-06 -7.44E-07 2.54E-07 -0.29 

,zB  deg/s 2.50E-07 -3.82E-07 2.22E-06 2.52E-06 -6.32E-07 2.95E-07 -0.28 

x  deg -7.17E-04 -3.82E-05 1.68E-02 6.28E-03 6.79E-04 -1.06E-02 0.04 

y  deg -5.78E-03 -1.69E-05 1.31E-02 6.96E-03 5.77E-03 -6.19E-03 0.44 

z  deg -4.88E-04 1.73E-03 1.84E-02 1.51E-02 2.22E-03 -3.31E-03 0.12 
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 Several observations may be made from these tables. Roughly half (11 of 24) of the standard 

deviations from the test solution are smaller in magnitude than those from the original solution. 

Furthermore, nearly all of the standard deviations are on the same order of magnitude. Thus, it may 

be said that the uncertainties from both solutions are comparable, and neither solution offers a 

uniformly smaller covariance.   

 Nearly every difference in converged initial conditions and IMU errors is below the 1  value 

from the original solution. The two exceptions are the z-axis acceleration scale factor and the z-axis 

acceleration bias, both of which are below 2 .  While the standard deviations are still similar in this 

statistical sense, it is worth noting that the body z-axis is parallel to the flight trajectory. Thus, the 

INSTAR solution is particularly sensitive to these two parameters, which is an intuitive result as the 

trajectory is sensitive to axial accelerations. To illustrate this, it is useful to examine the correlations 

between these two parameters by computing the correlation matrix.  

 Consider a covariance   and let   be a square diagonal matrix with diagonal values given by 

the variances of ,  i.e.,  diag .    The correlation matrix, which is positive semi-definite, is 

then given by 

 1 1R      (6.1) 

 The correlation matrix is computed for the converged “original” solution covariance. Thus, the 

variances are precisely the final standard deviations presented in Table 6.1 and Table 6.2. A “heat 

map” is generated from this correlation matrix, such that elements with higher correlations are lighter 

and lower correlations are darker. This heat map is shown in Figure 6.25. The diagonals of the matrix 

are unity. The highest correlations, at 0.8449, are between the 12th and 15th variables. The 12th 

variable is the z-axis acceleration scale factor, and the 15th variable is the z-axis acceleration bias, 

which are the two variables that changed the most between the original and test solutions. The next-

highest correlations, at -0.7397, are between the x- and y-axis Euler angles.  
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Figure 6.25. Heat map of correlation matrix, final INSTAR iteration. 

 In summary, the similarity between the original and test solutions indicate that if the initial 

conditions and IMU errors are within one or two standard deviations from the a priori conditions, the 

INSTAR process will converge on solutions that are within one or two standard deviations from each 

other.  
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Chapter 7  

Chapter 7: Summary and Conclusions 

 The bulk of this dissertation is based on a recently-developed data-driven navigation approach to 

EDL trajectory reconstruction. The process, called Inertial Navigation Statistical Trajectory and 

Atmosphere Reconstruction (INSTAR), utilizes inertial navigation and classical atmosphere 

reconstruction techniques to deterministically reconstruct a trajectory without the use of aerodynamic, 

control, or noise models. Statistics and redundant data are introduced into the INSTAR process using 

Monte Carlo dispersion techniques.  

7.1 Summary of Dissertation 

The purpose of this dissertation was to formally develop an alternative to traditional statistical 

approaches to EDL reconstruction, to implement it using flight data with multiple sources of 

redundant observations, and to compare the resultant parameter estimates and uncertainties to those 

from corresponding Kalman filter solutions. Pursuant to these objectives, a method was introduced to 

consider FADS pressures using a technique based on inertial navigation to reconstruct the trajectory 

and atmosphere along the flight path of a blunt-body entry vehicle. The method augments the 

INSTAR approach and assumes that the trajectory solution and uncertainties could not be appreciably 

improved after introducing landing site location as a redundant observation in INSTAR.  

 The method developed in this dissertation was demonstrated using flight data from the Mars 

Science Laboratory entry vehicle, which contained an IMU and a flush air data system called 

MEADS. An MSL trajectory and atmosphere solution that was updated using landing site location in 

INSTAR was first presented. This solution and corresponding uncertainties, which were obtained 

from Monte Carlo dispersions, was then used in a minimum variance algorithm to obtain 

aerodynamic estimates and uncertainties from the MEADS observations. MEADS-derived axial force 
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coefficient and freestream density estimates and uncertainties were also derived from the minimum 

variance solutions independent of the CFD-derived axial force coefficients, which have relatively 

high a priori uncertainty. Results from probabilistic analyses of the solutions were also presented. 

 This dissertation also introduced a method to consider correlated CFD uncertainties in INSTAR. 

From a priori CFD uncertainties, CFD force and pressure coefficients were dispersed in a Monte 

Carlo sense and carried over into the reconstructions. An analysis of the subsequent effects on the 

trajectory, atmosphere, and aerodynamic estimates and statistics was presented. 

There was favorable agreement between trajectory, atmospheric, and aerodynamic estimates and 

the extended Kalman filter solutions obtained by the MSL reconstruction team at NASA Langley 

Research Center. The MEADS-derived uncertainties obtained through the methods from this work 

were generally smaller in magnitude because of the assumptions made regarding systematic error 

sources in the MEADS pressure transducer uncertainties. Using data-derived uncertainties in the 

pressure measurement noise covariance resulted in aerodynamic estimate uncertainties that were in 

better agreement with the uncertainties derived from Monte Carlo dispersions. CFD database errors 

dominated the uncertainties of parameters derived from aerodatabase axial force coefficients.  

 The following conclusions may be drawn: 

 Small adjustments to the initial conditions and IMU errors that are within the a priori 

uncertainties results in a trajectory solution that lands within ten meters of the reference 

landing site. 

 Differences between INSTAR and MEADS freestream density solutions, on the order of 1-

4%, are due to differences in axial force coefficient solutions. Specifically, CFD-based axial 

force coefficient solutions are lower in magnitude than those from MEADS by 1-4%. This is 

also consistent with differences in solutions that are derived from freestream density, such as 

dynamic pressure. 

 The MEADS dynamic pressure estimate is determined primarily by the pressure at the port 

nearest to the stagnation point, a region that is well-characterized by CFD and supported by 

analytical flowfield solutions. Thus, the MEADS dynamic pressure estimate is independent of 

the surface pressure coefficient distribution, which have higher CFD solution variances due in 

part to lack of analytical solutions near the edges of the heat shield. This distribution directly 

influences the CFD axial force coefficients and increases the associated uncertainties. Using a 

minimum variance algorithm with Monte Carlo dispersion techniques permits the recovery of 

axial force coefficient and density estimates from MEADS pressures independent of the CFD 

surface pressure coefficient distribution. 

 The minimum variance equations assume random measurement uncertainties, i.e., noise. 

However, a priori MEADS measurement uncertainties contain contributions from systematic 

errors, resulting in inflated aerodynamic parameter uncertainties that approximate the true 
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and unknowable uncertainties. By computing noise-only uncertainties from the 

measurements, new aerodynamic parameter uncertainties are obtained that are closer in 

magnitude to the uncertainties obtained from Monte Carlo dispersions. The true and 

unknowable aerodynamic and atmospheric uncertainties therefore are bounded by the noise-

only uncertainties and the INSTAR uncertainties that are dominated by CFD errors. 

 Use of Gaussian distributions for initial conditions during the INSTAR process is, in general, 

not an unreasonable assumption, although in some cases some parameters do not satisfy the 

chi-squared goodness-of-fit test for normal distributions. Furthermore, assuming Gaussian 

distributions for initial conditions result in Gaussian distributions for landing site parameters. 

It will be of interest to include more accurate probability density distributions in future 

INSTAR applications. 

 Running the INSTAR process with different a priori initial conditions and IMU errors results 

in solutions that are within one or two standard deviations from each other. The largest 

differences are in the axial acceleration scale factor and bias, which are highly correlated.  

7.2 Concluding Remarks 

 While the fundamental concept of INSTAR has been demonstrated in this dissertation, it is 

continually being updated and refined. Major avenues of investigation include inclusion of MSL 

altimetry information as a redundant data source, implementing MEADS pressure observations within 

INSTAR without using a statistical algorithm, using observation probability distributions to inform 

trajectory updates in INSTAR, using a more accurate CFD surface pressure uncertainty model, and 

correlating dispersions in CFD surface pressures to CFD axial force coefficients. 

 There is ample opportunity to apply INSTAR to flight data in the coming years. At the time of 

this writing, there are two NASA Mars EDL missions in planning stages. The Discovery-class Mars 

Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) mission is 

scheduled to launch in 2016, and a re-fly of Mars Science Laboratory mission is scheduled for a 2020 

launch. Although InSight will not carry a MEADS-like flush air data system, the MSL re-fly will use 

a revised MEADS design tentatively called MEADS+, with potential for additional ports on the 

backshell to measure base pressure. In either case, the INSTAR process will still be applicable with 

other redundant data, and in the case of the MSL re-fly, the techniques described in this dissertation 

may be used.  

 The INSTAR technique, however, is not limited to Mars missions or even EDL. It may be applied 

to any data set that includes information from an inertial measurement unit and at least one piece of 

additional data. It is the hope of this author that INSTAR may continue to be refined and used in 

parallel with statistical techniques to provide a comparable method of obtaining useful statistics in 

post-flight reconstructions.  
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