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Abstract 

 

Binary classification plays an important role in many decision-making processes. 

Random forests can build a strong ensemble classifier by combining weaker 

classification trees that are de-correlated. The strength and correlation among individual 

classification trees are the key factors that contribute to the ensemble performance of 

random forests. We propose roughened random forests, a new set of tools which show 

further improvement over random forests in binary classification. Roughened random 

forests modify the original dataset for each classification tree and further reduce the 

correlation among individual classification trees. This data modification process is 

composed of artificially imposing missing data that are missing completely at random 

and subsequent missing data imputation.  

 

Through this dissertation we aim to answer a few important questions in building 

roughened random forests: (1) What is the ideal rate of missing data to impose on the 

original dataset? (2) Should we impose missing data on both the training and testing 

datasets, or only on the training dataset? (3) What are the best missing data imputation 

methods to use in roughened random forests? (4) Do roughened random forests share the 

same ideal number of covariates selected at each tree node as the original random forests? 

(5) Can roughened random forests be used in medium- to high- dimensional datasets? 
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Chapter 1. Introduction 

 

The Oxford Advanced Learner’s Dictionary defines “wisdom” as “the ability to make 

sensible decisions and give good advice because of the experience and knowledge that 

you have”. In statistical terms, making decisions based on our past experience and 

knowledge is called “supervised learning”. In addition, a decision can be usually 

simplified as the answer to a clearly stated “Yes or No” question, or in statistical terms, a 

binary classification problem. Therefore, statistically speaking, a good supervised 

learning algorithm for binary classification is an important part of “wisdom”.  

 

In the past decades we have seen the exponential increase of information storage 

capacity, which makes it impossible for us to solely rely on the human brain for 

information processing. Developing computer software with advanced supervised 

learning algorithms for binary classification is of paramount importance, as it can help us 

gain analytical “wisdom” and make better decisions. 

 

1.1 Brief Summary of Binary Classification Methods 

In the following discussion, we let N denote a number of sampled units which are 

observed on their M covariates. We denote the covariate matrix as X. For each 

observation xi, xi = (xi1, xi2, xi3, . . xiM),  where i = 1, 2, ...., N. Let X1, X2, X3,

. . . XM denote each of the M covariates. Further, we will use Y to denote a binary outcome 

variable Y. For each individual yi, there are two classes labeled as 0 and 1, and we let 
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pi denote P(yi = 1|xi) .  In supervised learning literature, we usually use a training 

dataset to find the function that defines the relationship between X and Y, and then apply 

the function in the testing dataset to test the effectiveness of the learning algorithm. In our 

case, these learning algorithms are binary classification methods. The training dataset and 

testing dataset are assumed to be from the same data sample. The Y values of the testing 

dataset are predicted from the X values in the testing dataset based on the relationship 

between X and Y in the training dataset. The binary classification method is assessed by 

comparing the predicted Y values and the observed Y values in the testing dataset. 

1.1.1 Logistic Regression  

Logistic regression is one of the most widely used parametric methods for binary 

classification. Logistic regression models the probability that Y=1 given X. For pi =

P(yi = 1|xi), the logit transformation of pi is a linear function of xi:      

log (
pi

1−pi
) =  xi

𝑇β + β0                         (1.1) 

where β is the coefficient vector and β0 is the intercept. Maximum Likelihood methods 

(ML) can be used to estimate β and β0 (Hosmer & Lemeshow, 2000). After obtaining the 

estimated β and β0 values from the training dataset, we can directly apply them in the 

testing dataset using the above equation (1.1) to predict the corresponding pi  value. 

Conventionally, we use pi ≤ 0.5 and pi > 0.5 to separate both classes of 0 and 1. 
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1.1.2 Linear Discriminant Analysis  

Linear discriminant analysis (LDA) uses the linear combination of covariates to separate 

the two classes of 0 and 1 (Ripley, 1996; Hastie, et al., 2009). Let Ci denote a linear 

combination of xi as shown below.  

Ci =  xi
𝑇β + β0                              (1.2) 

Let Sw denote the variance of Ci within both classes, and let Sb denote the variance of Ci 

between both classes. LDA aims to find the β vector which maximizes the ratio of Sb/Sw. 

After getting the estimated β and β0  values from the training dataset, we can directly 

apply them in the testing dataset using the above equation (1.2) to predict the 

corresponding Ci  value. Conventionally, we use Ci ≤ 0  and Ci > 0  to separate both 

classes of 0 and 1.  

1.1.3 Naive Bayes Classifier  

The naive Bayes classifier assumes the independence between covariates within each 

class. Therefore, based on Bayes’ rule, we can get   

P(Y = 1|X) =  
π1 ∏ f1(Xj)M

1

π1 ∏ f1(Xj)M
1 +π0 ∏ f0(Xj)M

1
                      (1.3) 

In the above equation (1.3), π1 and π0 denote the proportion of observations with Y=1 

and Y=0, or the default prior. Further, f1(Xj) denotes the marginal density for covariate 

Xj when Y=1, f0(Xj) denotes the marginal density for covariate Xj when Y=0 (Hastie, et 

al., 2009). The likelihood function for Y=1 is ∏ f1(Xj)
M
1 , and the likelihood function for 

Y=0 is ∏ f0(Xj)
M
1 . For each observation in the testing dataset, we can get the estimated pi 

using the above equation (1.3). Conventionally, we use pi ≤ 0.5 and pi > 0.5 to separate 
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both classes of 0 and 1. The naive Bayes classifier is easy and quick to build due to its 

simplicity, and it is not sensitive to irrelevant covariates. It does not, however, take 

covariate interactions into consideration due to its assumption of independence between 

covariates within each class. 

1.1.4 K-Nearest Neighbor 

K-Nearest Neighbor (KNN) does not train a model for prediction. For each new 

observation ui  in the testing dataset, KNN calculates the Euclidean distance |xi − ui| 

between ui and all current observations xi in the training dataset (Hastie, et al., 2009). 

|xi − ui| = √∑ (xij − uij)2M
j=1                           (1.4) 

Based on the above equation (1.4), we can find the K observations with the shortest 

Euclidean distances to ui. Then, the frequency of classes within these K observations are 

used to predict the class for ui . KNN does not require model building, but it is 

computationally expensive as it needs to calculate the Euclidean distances between each 

new observation and all observations in the training dataset. Therefore, it is difficult to 

apply KNN in high-dimensional datasets. 

1.1.5 Neural Networks  

Neural networks are created by imitating the function of neural systems in living 

organisms. A model based on neural networks can usually include an input layer, a 

hidden layer and an output layer as shown in Figure 1 (Ripley, 1996; Hastie, et al., 2009). 
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Figure 1: An illustration of neural networks 

Mathematically, it can be written as: 

g(xi) =  f(h(xi
𝑇w +  w0)𝑇β + β0)                        (1.5) 

The two linking functions h() and f() are usually both non-linear functions, which help 

transform the original data from the input layer to the hidden layer and then to the output 

layer. The output layer gives out the probability for each class. w and β are weights for 

the input layer and the hidden layer. w0 and β0 are intercepts. For each observation in the 

testing dataset, the estimated probability for both classes of 0 and 1 can be obtained using 

the above equation (1.5). Then, the class with the larger probability is selected as the final 

prediction. Neural networks are good at handling non-linearity in binary classification, 

but they often suffer from local minima and they tend to overfit the training data.  
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1.1.6 Support Vector Machines  

Support vector machines separate the two classes within the dataset by a hyperplane. For 

a vector space of dimension M, a hyperplane has a dimension of (M-1). If the weighted 

average of covariates cannot separate the two classes, quadratic terms are added. If 

separation still does not occur, cubic terms are added.  As the dimensionality increases, a 

separating hyperplane can usually be found between these two classes. The optimal 

hyperplane should have the maximum distance to the closest vectors from both classes. It 

can be written as in the equation below. 

g(xi) =  h(xi)
𝑇β + β0                     (1.6) 

Figure 2 illustrates an example of optimal linear hyperplane that separates two classes in 

a dataset with two covariates. The dots and circles represent vectors for two different 

classes. The vectors in each class which have minimum distances to the optimal 

hyperplane are called support vectors (Cortes & Vapnik, 1995). 

 

For each observation in the testing dataset, we can obtain the corresponding g(xi) using 

the above equation (1.6). The sign of g(xi) can help us decide the predicted class of the 

new observation based on which side of the optimal hyperplane it falls in. Support vector 

machines and neural networks are both good at handling non-linearity in data. Support 

vector machines, however, do not suffer from local minima and they are less likely to 

overfit the training data (Hastie, et al., 2009).  
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Figure 2: An illustration of support vector machines 

1.1.7 Classification Tree  

A classification tree is composed of a sequence of tree nodes. Each tree node applies a 

certain rule to split the sample into two subsamples (Breiman, et al., 1984). Figure 3 

illustrates a simple classification tree which answers the question “Is your BMI in the 

normal range?”. First, we use “BMI < 18.5 or BMI >= 18.5” to split the sample into two 

subsamples. The subsample on the left, with BMI < 18.5, is not in the normal BMI range. 

For the subsample on the right with BMI >= 18.5, we use “BMI >= 25 or BMI < 25” to 

further split it into two subsamples. The subsample on the left, with BMI >= 25, is again 

not in the normal BMI range. The subsample on the right, with BMI < 25 and BMI >= 

18.5, is in the normal BMI range. 
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Figure 3: An illustration of classification tree 

There are different splitting criteria to build the nodes for a classification tree, Leo 

Breiman (1984) originally proposed to use the Gini impurity criterion (G) at each node 

inside the classification tree. For each subset after splitting, if the proportion for each type 

of binary response is P0 and P1, Gini impurity criterion in this subset can be computed as 

(G=1- P0
2- P1

2). Gini impurity criterion reaches the minimum value of 0 when all 

observations in the subset belong to a single type of binary response, and it reaches the 

maximum value of 0.5 when all observations in the subset are evenly distributed between 

two binary responses. Each split should minimize the weighted (by proportion of sample 

in the subset) sum of Gini impurity, and the decrease in Gini impurity should at least 

reach a threshold value that is set as penalization parameter on complexity. For each 
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terminal node, the majority class is used as the predicted class for all observations that 

fall within this terminal node. 

 

Figure 4 illustrates the difference between a parametric logistic regression model and a 

non-parametric classification tree with a simple example. The original function of Y=f(X) 

is as below: Y=1 when X is between 25 and 50, or between 75 and 100; Y=0 when X is 

between 0 and 25, or between 50 and 75.  When we directly apply logistic regression on 

the data, it does not display the relationship between X and Y correctly. When we apply a 

classification tree on the data, however, it perfectly explains the relationship between X 

and Y in a tree structure. 

 

 

Figure 4: A comparison of logistic regression and classification tree 
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A single classification tree can be intuitive to understand and easy to apply in datasets 

with simple patterns. However, for datasets with a large number of covariates and high-

order interactions, a simple classification tree can be ineffective for prediction. If a single 

tree seems problematic, many trees might be combined to improve the prediction of 

responses. 

1.1.8 Bagging, Random Forests and Boosting 

Leo Breiman introduced the concept of bagging (short for “bootstrap aggregating”), 

which is able to generate a wide variety of individual classifiers when data are perturbed 

(Breiman, 1996). Bagging was found to improve the performance of classification trees. 

Tin Ho proposed the idea of random decision forests (Ho, 1995) built with multiple 

classification trees by sub-sampling of covariates at each tree node. Leo Breiman further 

combined bagging and random decision forests into random forests (Breiman, 2001). For 

a dataset of size N with M covariates, the algorithm to build the random forests can be 

briefly explained as below.  

 

First, randomly sample N data records with replacement; second, find a split among m 

(m<M) randomly chosen covariates at each tree node, and each tree is grown to the 

largest extent without pruning; third, repeat the above process to build multiple 

classification trees. Each individual tree produces a vote, and the final classification is 

based on averaging the votes from all individual trees (Breiman, 2001). Random forests 

have been widely used across different research disciplines since then due to their 
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excellent performance in classification and regression (Palmer, et al., 2007; Touw, et al., 

2013; Cutler, et al., 2007; Cordell, 2009; Gislason, et al., 2006).  

 

Along with the success of bagging and random forests, another widely acclaimed 

ensemble algorithm called adaptive boosting (Adaboost) was developed (Freund & 

Schapire, 1997). In contrast to the parallel approach of building individual classifiers in 

random forests, boosting takes the iterative approach. Instead of building a large un-

pruned individual classification tree in a bootstrap sample, a simple decision stump (one-

split tree) is built at each step with the whole dataset. Then, the data is reweighted by 

putting more weights on the wrongly classified data points before another stump is built. 

At every iterative step, the data is reweighted by putting more emphasis on previously 

misclassified data points. Each individual classifier is also given a weight based on its 

performance. The final ensemble learner is a weighted combination of stumps that have 

superb performance, especially when noise level is low. 

 

Leo Breiman praised Adaboost with trees as the “best off-the-shelf classifier in the 

world”. Discussions regarding the theories behind the success of boosting have not 

ceased since its invention (Mease & Wyner, 2008). In the meantime, many variants of 

Adaboost have been developed by tweaking the weights for wrongly classified data 

points, the tree depths and regularization for each individual classifier. The popular 

variants include gradient boosting (Friedman, 2001) and Bayesian additive regression 

trees (Chipman, et al., 2010). To restrict the contribution of individual classification trees, 

gradient boosting uses a shrinkage parameter and Bayesian additive regression trees use a 
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regularization prior. Gradient boosting can handle categorical variables directly, while 

Bayesian additive regression trees need to transform categorical variables into dummy 

variables before use.  

1.2 Comparison of Binary Classification Methods 

Caruana (2006) did an extensive empirical comparison of the ten most popular supervised 

learning algorithms: support vector machines, neural networks, logistic regression, naive 

Bayes classifier, KNN, random forests, classification trees, bagged decision trees, 

boosted decision trees, and boosted stumps. Eleven binary classification problems were 

tested with these ten algorithms with regards to eight different performance measures. 

The results suggested that boosted decision trees ranked first overall with a 58% chance 

of being the best algorithm, and random forests ranked second overall with a 39% chance 

of being the best algorithm (Caruana & Niculescu-Mizil, 2006). Even though the “no free 

lunch” theorem (Wolpert & Macready, 1997) suggests that there is no universally best 

supervised learning algorithm, boosted decisions trees and random forests often end up as 

the top choices in binary classification problems. Past winners of data prediction 

competitions on the Kaggle website (Kaggle, 2010) also often included boosted decision 

trees and random forests in their final winning models to make binary classification 

predictions. 

 

Boosted decision trees and random forests are both ensemble classifiers based on 

classification trees. While boosted decision trees build classification trees step-by-step 

with each following classification tree dependent on the previous tree, the classification 
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trees within random forests are independent of each other. Boosted decision trees usually 

take more calibration and longer computation time than random forests. In this 

dissertation, we will focus on further improving random forests in binary classification. 

1.3 Dissertation Outline  

In Chapter 2, an overview of random forests (RF) is given and previous attempts to 

improve random forests are summarized. Then, a new kind of random forests called 

“Roughened Random Forests (RRF)” is introduced. And an algorithm, which we call 

“Roughened Random Forests - A (RRFA)”, is implemented. RRFA intends to improve 

the diversity within random forests by imposing missing data and then replacing them 

with median/mode imputation. RRFA shows improvements over the original random 

forests in binary classification with respect to misclassification error and area under the 

curve (AUC). 

 

In Chapter 3, three new RRF algorithms are further explored. They are called 

“Roughened Random Forests - B (RRFB)”, “Roughened Random Forests - C (RRFC)” 

and “Roughened Random Forests - D (RRFD)”. RRFB restricts the introduction of 

missing data to the training dataset. RRFC explores different imputation methods for 

missing data. RRFD seeks to find the ideal number of variables selected at each tree node 

within RRFB. RRFB leads to better AUC performance as well as shorter computation 

time than RRFA. RRFC and RRFD can be both better than RRFB with regards to AUC at 

the expense of longer computation time.  
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In Chapter 4, the RRFE algorithm is presented for binary classification in medium- to 

high-dimensional datasets. The major difference between RRFE and RRFB is the 

selective introduction of missing data based on variable importance according to the 

original random forests. RRFE can lead to improved AUC over the original random 

forests in both medium- to high-dimensional datasets. For high-dimensional microarray 

datasets, after applying variable selection based on variable importance from the original 

random forests, RRFB and RRFE can both lead to improvement with regards to AUC. 

 

The conclusion and future research topics are discussed in Chapter 5.  
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Chapter 2. Roughened Random Forests (RRF)  

An Improved Random Forests Approach in Binary Classification 

 

Abstract 

Random forests (RF) can build a strong ensemble classifier by combining a diverse set of 

weaker classifiers. The strength of individual classifiers and the correlations among them 

are the key factors of the random forests’ ensemble classification performance. Our work 

aims to improve the binary classification performance of random forests by modifying 

the original dataset before building each individual classifier. This modification decreases 

correlations among individual classifiers by imposing missing values under a mechanism 

that is missing completely at random (MCAR). These missing values are then replaced by 

single imputation or multiple imputation.  We call this new method “Roughened Random 

Forests (RRF)”.  An algorithm which we call “Roughened Random Forests - A (RRFA)” 

is introduced to implement RRF. We demonstrate and contrast performance of RRFA 

with RF in real-life datasets as well as simulated datasets. We observe significant 

improvements in RRFA over RF with respect to measures including misclassification 

error and area under the curve (AUC).  

2.1 Introduction 

2.1.1 Random Forests 

Random forests are based on un-pruned growth of individual classification trees through 

bagging of data as well as sub-sampling of covariates. Each individual classification tree 
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starts by sampling the original dataset with replacement using the same sample size. For 

sampling with replacement using N observations, the probability that one particular 

observation is selected can be expressed as 1 − (1 −
1

N
)

N

, which is in the value range of 

(0.632, 0.635) for N ≥ 65. Therefore, about 63% of the observations are used to build 

each individual classification tree, the remaining 37% of the sample, or out-of-bag (OOB) 

sample, can be used for internal validation. 

 

The instability of individual classification trees, combined with the variety of 

combinations in bagging of data as well as sub-sampling of covariates, can help build 

diverse individual classifiers in binary classification. There is usually a trade-off 

relationship between strength and correlation of individual classification trees, which 

together determine the random forests’ classification performance.  

 

There are different splitting criteria to build the nodes for a classification tree, Leo 

Breiman originally proposed to use the Gini impurity criterion (G) at each node inside the 

classification tree (Breiman, et al., 1984). For a single classification tree, the decrease in 

Gini impurity criterion should at least reach a threshold value that is set as the 

penalization parameter on complexity. For random forests, there is usually no 

penalization parameter on complexity, and an individual classification tree can grow as 

complex as possible.  

 

Median/mode imputation and proximity-based imputation were both used in the original 

random forests to deal with missing data (Breiman & Cutler, 2004). Median/mode 
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imputation, implemented by the R (R Development Core Team, 2012) function 

na.roughfix in randomForest package (Liaw & Wiener, 2002), performs median 

imputation on continuous variables and mode imputation on categorical variables. For 

each pair of cases, the proximity is defined as the proportion of trees where these two 

cases occupy the same terminal node. The proximity matrix quantifies the similarity 

between each pair of cases based on their location in the individual tree terminals, and the 

similarities can be used as weights for missing data imputation. The proximity-based 

imputation is dependent on the binary outcome and therefore it cannot be used when the 

binary outcome is unknown. The median/mode imputation is not dependent on the binary 

outcome and therefore it can be used for predicting new classifications when there are 

missing data in the covariates.  

2.1.2 Related work 

Rotation forests (Rodriguez, et al., 2006) use a combination of covariate sub-sampling 

and rotation of covariate axes by principal component analysis to improve the diversity 

and accuracy within individual classifiers. The rotation forest was favored over random 

forests on a random selection of 33 benchmark datasets from University of California 

Irvine (UCI) Machine Learning Repository (Bache & Lichman, 2013). 

 

Robnik-Sikonja (2004) presented two new approaches aimed to improve performance of 

random forests. The first approach was to increase the diversity of classifiers by using a 

combination of different node splits measures called Gain ratio, MDL, ReliefF in addition 

to the original Gini impurity criterion. This method was found to significantly improve 
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prediction accuracy but not the area under the curve (AUC). The second approach was to 

use weighted voting instead of un-weighted voting as adopted by the original random 

forests. For each case to be classified, the 30 cases most similar to this case were 

selected. The final prediction for this case was a weighted average of select trees from the 

trained random forests based on their performances on these 30 cases while they were not 

used to build these individual trees. The weighted voting method was found to 

significantly improve accuracy and AUC (Robnik-Sikonja, 2004). 

 

Conditional inference forests are based on conditional inference trees (Hothorn, et al., 

2006) instead of regular classification trees. The main difference between a conditional 

inference tree and a regular classification tree is that a conditional inference tree first 

picks the best variable based on statistical testing and then picks the best split within this 

variable, while a regular classification tree picks the best split among all available 

variables which can lead to biased selection for variables with more categories. 

Conditional inference forests were found to be less biased than the original random 

forests in assessing variable importance. 

 

Oblique random forests (Menze, et al., 2011) are based on oblique splits instead of 

orthogonal splits used by the original random forests. The main difference between an 

oblique split and an orthogonal split is that the oblique split is based on a combination of 

variables while an orthogonal split is based on a single variable. In oblique random 

forests, linear discriminant models can be used to find the optimum splits. Menze (2011) 
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found oblique random forests to outperform the original random forests in numerical and 

spectral data.  

 

Voting on Classifications from Imputed learning sets (VCI) was introduced to improve 

classification accuracy in different supervised learning algorithms (Su, et al., 2009). For a 

classification dataset, VCI randomly imposes 30% of missing data nine times, then 

missing values are imputed for each of them. A classifier is used in each of these nine 

imputed datasets and the resulting predictions are combined by majority rule. Both single 

imputation and multiple imputation are used by VCI. Ten different classifiers, including 

the naive Bayes classifier, support vector machines , neural networks, random forests and 

several others, were each applied in ten different complete datasets. VCI was found to 

improve classification accuracies in KNN, naive Bayes classifier, support vector 

machines and neural networks, but not in random forests. The original random forests 

were able to achieve better classification accuracy than all other classifiers with or 

without using VCI. 

2.2 Background  

2.2.1 Notations and Assumptions 

We will let X denote a covariate matrix with N rows corresponding to observational units 

and M columns corresponding to a set of covariates used in forming the classification 

trees. Our particular use of the random forests is to predict an outcome variable that is of 

binary nature. We will use Y to denote this binary outcome variable. We assume that 
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Y ~ Bernoulli (P(Y = 1)). A value of 0 (or negative) and a value of 1 (or positive) are 

used to refer to the two different values of Y. We will refer to these as “classes” in Y. 

Prediction of the probability of a positive class using available covariates will be denoted 

as   P̂(Y = 1|X). Similarly,  Ŷ will indicate the predicted outcome for Y. Yc will be used to 

indicate a cut off value to predict Y, i.e. Ŷ, based on P̂(Y = 1|X) . Note that Yc is in the 

range of 0 and 1. The default value of Yc is usually set as 0.5 in binary classification. The 

rule to reach Ŷ based on P̂(Y = 1|X) and Yc is as below. 

Ŷ = {
1,  P̂(Y = 1|X) > 𝑌𝑐

0,   P̂(Y = 1|X)  ≤ 𝑌𝑐

 . 

 

We will let FP refer to false positive, a case with Ŷ= 1 and Y = 0. And let FN refer to 

false negative, a case with Ŷ = 0 and Y = 1. Similarly, we will let TP refer to true 

positive, a case with Ŷ = 1 and Y = 1 and let TN refer to true negative, a case with Ŷ = 0 

and Y = 0.  

 

We will let FPR refer to false positive rate, or P (Ŷ = 1 | Y = 0). And let FNR refer to 

false negative rate, or P (Y ̂= 0 | Y = 1). Similarly, we will let TPR refer to true positive 

rate, or P (Ŷ = 1| Y = 1) and let TNR refer to true negative rate, or P (Ŷ = 0| Y = 0).  

 

We will generate receiver operating characteristic (ROC) curve, by plotting FPR on the X 

axis and TPR on the Y axis as shown in Figure 5. ROC curve covers all possible Yc 

values when Yc moves from 0 to 1. Let AUC denote the size of the area under the ROC 

Curve. As both TPR and FPR are within the range of 0 and 1, the maximum value of 
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AUC is 1. Let t denote the Yc value between 0 and 1, we can derive the AUC value using 

AUC =  ∫ TPR(t)FPR′(t)dt.  

 

Figure 5: Area under the curve (AUC) 

 

We will let Z denote the variable of interest for which missingness will be imposed. We 

will use R as the missingness indicator variable for Z, i.e. R = 1 if Z is observed and R = 

0 if Z is missing. Missing values will be imposed under the missing completely at random 

(MCAR) mechanism (Little & Rubin, 2002). MCAR means that the mechanism creating 

missingness is independent of both observed and missing values. It can be written 

as P(R | Zobs, Zmis, X) = P(R).  
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We will let RF refer to random forests, a combination of independently constructed 

classification trees. RF is usually called an ensemble classifier. We will use Ntree  to 

denote the number of classification trees inside the random forests. The default value of 

Ntree  is usually set as 500. Let m  denote the number of randomly chosen covariate 

candidates at each node of a single classification tree within the random forests. Let 

⌊√𝑀⌋ denote the integer part of the square root of M. The default value of m is usually set 

as ⌊√𝑀⌋. We will use Ntr to denote the sample size in the training dataset, and Nte to 

denote the sample size in the testing dataset. Let Cn
k  denote the number of possible 

combinations of n items taken k at a time without repetition. 

           

We will use RRF to refer to roughened random forests, a new random forests approach 

proposed in this dissertation. As missing data are imposed in RRF, we will use MISpct to 

denote the percentage of missing data. We will use WTL (“Win/Tie/Loss”) to compare 

RRF and RF. For example, a simulation experiment is repeated 50 times using RRF and 

RF. If RRF is better than RF in 30 experiments, equal to RF in 5 experiments, and worse 

than RF in 15 experiments, we can say that the RRF has a WTL value of “30/5/15” over 

RF.           

2.2.2 Definitions 

Throughout this paper, we will make use of the following definitions. These definitions 

are commonly used in the context of binary classification and missing data analysis. 

 

Misclassification error: We will denote misclassification error as e which indicates the 
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percentage of false positive cases and false negative cases among all cases, or P (Ŷ ≠ Y). 

 

Accuracy:  Percentage of true positive cases and true negative cases among all cases, or 

P (Ŷ = Y). When misclassification error is e, accuracy is just (1-e). 

 

Bayes error: Statistically the lowest possible misclassification error rate for a given 

classification problem. Bayes error exists due to the overlap between different classes’ 

statistical distributions. 

 

Median/mode imputation: Impute the missing values in a continuous variable by its 

median value and impute the missing values in a categorical variable by its mode value. 

 

Mean/mode imputation: Impute the missing values in a continuous variable by its mean 

value and impute the missing values in a categorical variable by its mode value. 

 

Minimum-value/mode imputation: Impute the missing values in a continuous variable 

by its minimum value and impute the missing values in a categorical variable by its mode 

value. 

 

Maximum-value/mode imputation: Impute the missing values in a continuous variable 

by its maximum value and impute the missing values in a categorical variable by its 

mode value. 
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Variable importance: A variable’s importance is measured by the average decrease in 

Gini impurity criterion due to splitting on this variable among all classification trees. 

 

Relative importance: A variable’s relative importance is defined by its variable 

importance divided by the maximum variable importance among all covariates in this 

dataset. 

2.2.3 Metrics for Performance Assessment 

Misclassification error and AUC are two highly used performance measures in binary 

classification. AUC is also known as “c statistics” and it is similar to the Mann–Whitney 

U statistic or Wilcoxon rank-sum test (Hastie, et al., 2009). In the first ten Kaggle 

competitions focusing on binary classifications, eight of them used AUC or equivalent as 

the measure to assess binary classification performance (Kaggle, 2010). The maximum 

value of AUC is 1 and the minimum value of AUC is 0. Statistically speaking the 

minimum value of AUC should be 0.5, which can be achieved by random guesses. In 

practice, AUC value can get below 0.5. For AUC value under 0.5, we can make it reach 

over 0.5, or (1 - AUC), by flipping the binary predictions from negative to positive (0 to 

1), and vice versa, positive to negative (1 to 0). 

2.2.4 Pearson Correlation Coefficient (or Phi Coefficient)  

For any two binary classifiers (Ci, Cj ), predictions of any observation can have four 

distinct combinations: (0,1), (1,1), (1,0) and (0,0). Suppose that we have a pairs of (0,1), 

b pairs of (1,1), c pairs of (1,0) and d pairs of (0,0) as shown in Table 1.  
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Table 1: Four possible combinations of predictions by two binary classifiers 

Predictions by Ci Predictions by Cj Number of pairs 

0 1 a 

1 1 b 

1 0 c 

0 0 d 

 

The Pearson correlation coefficient (r) for two sets of binary predictions is also called phi 

coefficient. The phi coefficient assumes that the two sets of binary predictions follow 

bivariate discrete distribution, while tetrachoric correlation coefficient assumes that the 

two sets of binary predictions follow bivariate normal distribution (Ekstrom, 2011). In 

our binary classification problems, the predictions are more likely to be following 

bivariate discrete distribution. Therefore, we will choose the phi coefficient over the 

tetrachoric correlation coefficient. And the phi coefficient (r) can be calculated as below. 

 

r =  cor(Ci, Cj) =  
cov(Ci, Cj)

√var(Ci)var(Cj)

=  
bd − ac

√(b + c)(a + d)(a + b)(c + d)
 

2.2.5 Leo Breiman’s Generalization Error Bound    

Margin is the probability of correct classification minus the maximum probability of 

incorrect classification of a case.  For binary classification using random forests, margin 

can be calculated as the proportion of votes for the correct class minus proportion of 

votes for the wrong class. Strength (s) is the average of margins in the testing dataset. 
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Correlation (ρ) is the average correlation between the margins of any two different 

classification trees of the random forests (Breiman, 2001; Liu, et al., 2008)  

Margin ∶  si = P(Ŷ  =  Y)  −  P(Ŷ  ≠  Y) 

Strength ∶  s =  
1

Nte
∑ si

Nte
1      (2.1) 

Correlation ∶  ρ =  
 

1

Nte
∑ si   

 2Nte
1 − ŝ2

2

Ntree
 ∑ √P(Ŷ = Y)P(Ŷ ≠ Y)

Ntree
1

   (2.2) 

 

PE is the generalization error of random forests. Based on Leo Breiman’s inference, PE 

has an upper bound conditional on s and ρ in equations (2.1) and (2.2). Mathematically, it 

can be written as below. 

PE ≤  
ρ (1−s2)

s2     (2.3) 

For simplicity, we can also use the average phi coefficient between any two sets of binary 

predictions within random forests to substitute ρ when we are comparing different error 

bounds of PE based on equation (2.3). 

 

Throughout this dissertation, we also use “Breiman’s error bound” or “Breiman’s 

generalization error bound” to refer to Leo Breiman’s generalization error bound for 

random forests. 

2.2.6 Ensemble Classification 

For a given number of observations in binary classification, an individual classifier can 

give one set of predictions for the possible outcomes. The most common way to combine 

predictions from individual classifiers is by majority rule. For an observation, if 5 out of 
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9 classifiers predict the binary outcome as “1” and 4 out of 9 classifiers predict the binary 

outcome as “0”, the majority rule will infer that the ensemble classifier’s prediction is 

“1”. Also, this ensemble classifier can be used to predict that  P̂(Y = 1) =  5/9 .  

 

When we have completely independent individual classifiers, we can easily compute the 

accuracy of the ensemble classifier through knowledge of the accuracy of the individual 

classifiers. For example, when three independent individual classifiers are combined to 

make a binary classification, and each classifier comes with an error rate e, the 

cumulative probability that at least two classifiers make the correct decision is  

P3  =  1 −  C3
0(1 − e)0e3  −  C3

1(1 − e)1e2 

 

Figure 6 shows the ensemble classifier accuracy for 9, 99 and 999 independent 

classifiers. As long as individual classifiers have accuracy levels higher than 0.5 and they 

are independent of each other, we can improve the accuracy of the ensemble classifier by 

adding more individual classifiers. The equation (2.4) below is used to calculate 

cumulative accuracy for 999 independent classifiers as P999 . Given that individual 

independent classifiers have an accuracy of at least 0.6,  P999 ≥  (1 − 10−10).  

P999  =  1 − C999
0 (1 − e)0e999  −  C999

1 (1 − e)1e998 − ⋯ −  C999
499(1 − e)499e500     (2.4) 

 

When individual independent classifiers have accuracies below 0.5, one can interchange 

binary predictions (from 1 to 0, or from 0 to 1) to achieve an accuracy larger than 0.5. 

Hence, Figure 6 is symmetrical at (0.5, 0.5).   
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Figure 6: The Ensemble classifier accuracy and individual classifiers’ accuracy by 

number of classifiers (theoretical results with r = 0) 

 

However, in applications it would be unrealistic to expect wholly independent individual 

classifiers, especially if there were many of them.  In a new simulation experiment using 

binary classification, we aim at building an ensemble classifier by combining 500 

correlated classifiers through majority rule to make predictions for 2000 observations. 

The accuracy of the ensemble classifier is plotted against the average accuracy of 
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individual classifiers across different levels of individual classifier correlation from 0.1 to 

0.9 in Figure 7.  

 

Figure 7: The Ensemble classifier accuracy and individual classifiers’ accuracy by levels 

of correlations (simulated results with 500 classifiers) 

 

As complete independence cannot be simulated empirically, results for r=0 in Figure 7 

are theoretically derived similar to Figure 6. Results for r=0.1 to r=0.9 are based on 

empirical simulations using functions in the R (R Development Core Team, 2012) 
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package bindata (Leisch, et al., 2011), and smoothed by locally-weighted polynomial 

regression. 

 

As seen in Figure 7, the accuracies of ensemble classifiers decrease with increasing 

correlations. When the correlation coefficient is 0.1, we can still build an ensemble 

classifier with accuracy over 0.9 based on individual classifiers at an accuracy level 

around 0.6 or more. When the correlation coefficient reaches 0.9, the accuracy gain from 

combining 500 individual classifiers is marginal.  

2.3 Roughened Random Forests - A (RRFA)  

The successes of random forests are largely due to the subtle balance of accuracy and 

correlation among individual classification trees. We propose to further decrease the 

correlation within random forests by modifying the original dataset before building each 

classification tree. The resulting roughened random forests should have a decrease in 

both correlation among individual classification trees and the accuracy of individual 

classification trees. In our first proposed algorithm, RRFA, we modify the original 

dataset through imposing missing data followed by missing data imputation. RRFA 

algorithm is composed of four steps as below. 

 

1. Impose missing values under the mechanism of missing completely at 

random on all covariates of both training and testing datasets. 

2. Impute the missing data by median imputation for continuous variables and 

mode imputation for categorical variables. 
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3. Build one tree in random forests using the above imputed training dataset, 

and then use it to predict the binary outcomes in the imputed testing dataset. 

4. Repeat 1 to 3 for Ntree times, in total Ntree different trees are built, and Ntree 

different sets of predictions are made for the binary outcomes in the 

imputed testing dataset.  

 

During the Ntree repeats, different sets of predictions in RRFA are averaged and RRFA’s 

performances are compared with performances of the original random forests (RF) which 

directly use the complete dataset. The major differences between RF and RRFA are 

illustrated in Figure 8. 

 

Figure 8: The differences between RF and RRFA 
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2.4 Datasets 

2.4.1 Pima Indians Dataset 

The Pima Indians dataset is the combination of Pima.tr and Pima.te datasets in R 

package MASS (Ripley, et al., 2014). Pima.tr and Pima.te were originally collected 

by the United States’ National Institute of Diabetes and Digestive and Kidney Diseases. 

The combined dataset includes 532 Pima Indian women who are at least 21 years old. 

Among them, 177 women have diabetes, and 355 women do not have diabetes. In this 

dataset there are seven covariates, which are number of pregnancies, plasma glucose 

concentration in an oral glucose tolerance test, diastolic blood pressure, triceps skin fold 

thickness, body mass index, diabetes pedigree function, and age. 

2.4.2 Blowdown Dataset 

The blowdown dataset is from R package alr3 (Weisberg, 2011). This dataset comes 

from the Boundary Waters canoe area wilderness in northern Minnesota, USA. A major 

storm hit this area on July 4, 1999. After the storm, 3666 trees were examined for 

survival. 1684 trees died and 1982 trees survived during the follow-up. There are three 

variables in this dataset, tree diameter, local severity of the storm, and tree species.  

2.4.3 Simulated Datasets (Mease1 and Mease2) 

We will simulate two datasets using two different simulation rules (Mease & Wyner, 

2008). These two simulated datasets will be called Mease1 and Mease2. For the first 

simulated dataset Mease1, it is based on the equation below: 
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𝑃(𝑌 = 1|𝑋) = 𝑞 + (1 − 2𝑞) 𝐼 [∑ 𝑋𝑗
𝐽

𝑗=1
> 𝐽/2] 

X is distributed iid uniform on the d-dimensional unit cube [0,1]d.  We will set q (Bayes 

error) at 0.1, d (total number of available variables) at 20, J is set at 5. Also, 1000 

observations will be simulated for use. There should be around 500 observations each for 

Y=1 and Y=0. 

 

For the second simulated dataset Mease2, it is based on the equation below: 

𝑃 (𝑌 = 1|𝑋) = 1/(1 + 𝑒𝑘(∑ 𝑋𝑗𝐽
𝑗=1  −𝐽/2)) 

X is distributed iid uniform on the d-dimensional unit cube [0,1]d.  Here we also set d at 

20, J at 5, and k is set at 8 so that Bayes error is also at around 0.1 here. Also, 1000 

observations will be simulated for use. There should be around 500 observations each for 

Y=1 and Y=0. 

2.5 Experiments  

For N observations in a given dataset, we randomly draw Ntr observations as training 

dataset, and the rest of Nte (N- Ntr) observations are used as testing dataset. Besides using 

the original RF in the complete dataset, we apply the above new random forests 

algorithm RRFA using five different rates of missing data (MISpct) that are MCAR. The 

five different rates of missing data are initially set as: 10%, 20%, 30%, 40% and 50%, 

and they can also be adjusted in different scenarios. The same experiment will be also 

repeated with different values of Ntr and Nte. For the number of trees (Ntree), we will use 

the default value of Ntree=500. 
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To address the simulation error, we divide the existing dataset into training and testing 

datasets at different data size ratios (Ntr/Nte) and randomly sample training and testing 

datasets 50 times for each Ntr/Nte. We will compare the overall performance of RRFA 

and RF across different datasets at different Ntr/Nte and different MISpct. We will compare 

RRFA with the original RF by their relative performance using W/T/L tables. Also, we 

will calculate the average misclassification errors and average AUC values with each 

additional tree in the random forests. 

 

2.6 Results 

2.6.1 Pima Indians Dataset 

2.6.1.1 Ntr =200 and Nte=332 

The results for the first experiment, with Ntr =200 and Nte=332, are presented in Table 2. 

The format of Table 2 can be explained using the first row of results as an example. 

When RRFA with 10% of missing data is compared with the original RF in 

misclassification errors, RRFA has 33 wins, 4 ties and 13 losses, with a W/T/L value of 

“33/4/13”. When RRFA with 10% of missing data is compared with the original RF in 

AUC, RRFA has 47 wins, 0 ties and 3 losses, with a W/T/L value of “47/0/3”. As 

misclassification error reaches the best at the minimum and AUC reaches the best at the 

maximum, a smaller value means “win” for misclassification error and “loss” for AUC. 

On the contrary, a larger value means “loss” for misclassification error and “win” for 
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AUC. Also, we make the cell value bold if the number of “win” in that cell is more than 

the number of “loss”, and we make the cell value bold (bold and underlined) if the 

proportion of “win” is significantly higher than 0.5. The cell values in Table 2 are all 

bold, therefore, RRFA beats the original RF in both misclassification error and AUC 

when 10%, 20%, 30%, 40% and 50% of missing data are imposed. Among all of them, 

RRFA with 20% of missing data has the most wins (37/6/7) in misclassification error 

comparison and RRFA with 30% of missing data has the most wins (49/0/1) in AUC 

comparison.  

 

Table 2: The performance comparison of RRFA and RF in the Pima Indians dataset with 

a training/testing data size ratio of 200/332 over 50 trials in a W/T/L/ table  

MISpct Misclassification Error AUC 

10% 33/4/13 47/0/3 

20% 37/6/7 48/0/2 

30% 31/8/11 49/0/1 

40% 28/4/18 46/0/4 

50% 25/4/21 42/0/8 

 

Results are also presented in Figure 9 showing how the average misclassification errors 

and average AUC values evolve when the number of trees increases from 1 to 500. 

RRFA with 10%, 20%, 30% and 40% of missing data start to show improvement over the 

original RF in average misclassification error when Ntree reaches 100 and the 

improvements continue until Ntree reaches 500. RRFA with 50% of missing data has 

similar performance as the original RF. RRFA with 20% and 30% of missing data show 
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the best performances in average misclassification error. For AUC values, RRFA with 

10%, 20%, 30%, 40% and 50% of missing data start to show improvements over the 

original RF before Ntree reaches 100 and the improvements continue untile Ntree reaches 

500. RRFA with 20%, 30% and 40% of missing data show the best performances in 

average AUC value.  

2.6.1.2 Ntr =266 and Nte=266 

For Ntr =266 and Nte=266, RRFA also beats the original RF in both misclassification error 

and AUC when 10%, 20%, 30%, 40% and 50% of missing data are imposed as shown in 

Table 3. Among all of them, RRFA with 30% of missing data has the most wins in 

misclassification error comparison (32/8/10) and RRFA with 10% of missing data has the 

most wins in AUC comparison (49/0/1). 

 

Table 3: The performance comparison of RRFA and RF in the Pima Indians dataset with 

a training/testing data size ratio of 266/266 over 50 trials in a W/T/L/ table   

MISpct Misclassification Error AUC 

10% 32/5/13 49/0/1 

20% 28/7/15 47/0/3 

30% 32/8/10 47/0/3 

40% 31/3/16 45/0/5 

50% 28/2/20 43/0/7 

 

Results are also presented in Figure 10 showing how the average misclassification errors 

and average AUC values evolve when the number of trees increases from 1 to 500. 

RRFA with 10%, 20%, 30% and 40% of missing data start to show improvement over the 
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original RF in average misclassification error when Ntree reaches 100 and the 

improvements continue until Ntree reaches 500. RRFA with 50% of missing data starts to 

outperform the original RF when Ntree reaches 400. RRFA with 30% of missing data 

shows the best performances in average misclassification error. While for average AUC 

values, RRFA with 10%, 20%, 30%, 40% and 50% of missing data start to show 

improvements over the original RF before Ntree reaches 100 and the improvements 

continue until Ntree reaches 500. RRFA with 30% and 40% of missing data show the best 

performances in average AUC value.  
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Figure 9: The average performance comparison of RRFA and RF in the Pima Indians 

dataset with a training/testing data size ratio of 200/332 over 50 trials 
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Figure 10: The average performance comparison of RRFA and RF in the Pima Indians 

dataset with a training/testing data size ratio of 266/266 over 50 trials 
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2.6.2 Blowdown Dataset  

2.6.2.1 Ntr =200 and Nte=3466 

For Ntr =200 and Nte=3466, the results are first shown in Table 4. RRFA beats the original 

RF in misclassification error when 10%, 20% and 30% of missing data are imposed, and 

RRFA beats the original RF in AUC when 10%, 20%, 30%, 40% and 50% of missing 

data are imposed. Among all of them, RRFA with 10% of missing data has the most wins 

in both misclassification error comparison (38/1/11) and AUC comparison (50/0/0). 

 

Table 4: The performance comparison of RRFA and RF in the blowdown dataset with a 

training/testing data size ratio of 200/3466 over 50 trials in a W/T/L/ table   

MISpct Misclassification Error AUC 

10% 38/1/11 50/0/0 

20% 30/1/19 47/0/3 

30% 26/0/24 45/0/5 

40% 13/1/36 39/0/11 

50% 9/0/41 27/0/23 

 

Results are also presented in Figure 11 showing how the average misclassification errors 

and average AUC values evolve when the number of trees increases from 1 to 500. 

RRFA with 10%, and 20% of missing data start to show improvement over the original 

RF in misclassification error when Ntree reaches 100 and the improvements continue until 

Ntree reaches 500. RRFA with 30% of missing data has similar performance as the 

original RF. RRFA with 40% and 50% of missing data show worse performances in 

average misclassification error than the original RF. As for AUC values, RRFA with 
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10%, 20%, 30% and 40% of missing data start to show improvements over the original 

RF before Ntree reaches 100 and the improvements continue until Ntree reaches 500. RRFA 

with 20% and 30% of missing data show the best performances in average AUC value.  

2.6.2.2 Ntr =666 and Nte=3000 

Due to poor performance associated with 40% and 50% of missing data for Ntr =200 and 

Nte=3466 in the previous experiment, we will use five lower rates (5%, 10%, 15%, 20% 

and 30%) of missing data instead for Ntr =666 and Nte=3000. The results are first shown in 

Table 5. RRFA beats the original RF in misclassification error when 5%, 10%, 15% and 

20% of missing data are imposed, and RRFA beats the original RF in AUC when 5%, 

10%, 15%, 20% and 30% of missing data are imposed. Among all of them, RRFA with 

10% of missing data has the most wins in both misclassification error comparison 

(35/1/14) and AUC comparison (49/0/1). 

 

Table 5: The performance comparison of RRFA and RF in the blowdown dataset with a 

training/testing data size ratio of 666/3000 over 50 trials in a W/T/L/ table   

MISpct Misclassification Error AUC 

5% 31/3/16 48/0/2 

10% 35/1/14 49/0/1 

15% 29/1/20 46/0/4 

20% 30/0/20 45/0/5 

30% 21/0/29 40/0/10 
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Results are also presented in Figure 12 showing how the average misclassification errors 

and average AUC values evolve when the number of trees increases from 1 to 500. 

RRFA with 5%, 10%, 15% and 20% of missing data start to show improvement over the 

original RF in misclassification error when Ntree reaches 100 and the improvements 

continue until Ntree reaches 500. RRFA with 30% of missing data has worse performance 

than the original RF. RRFA with 10% of missing data show the best performances in 

average misclassification error. While for AUC values, RRFA with 5%, 10%, 15%, 20% 

and 30% of missing data start to show improvements over the original RF before Ntree 

reaches 100 and the improvements continue until Ntree reaches 500. RRFA with 15% and 

20% of missing data show the best performances in average AUC value.  

2.6.2.3 Ntr =1833 and Nte=1833 

For Ntr =1833 and Nte=1833, the results are first shown in Table 6. We also use five lower 

rates (5%, 10%, 15%, 20% and 30%) of missing data instead. RRFA beats the original 

RF in misclassification error when 5%, 10%, 15%, 20% and 30% of missing data are 

imposed, and RRFA beats the original RF in AUC when 5%, 10%, 15% and 20% of 

missing data are imposed. Among all of them, RRFA with 10% of missing data has the 

most wins (42/0/8) in misclassification error comparison and RRFA with 5% of missing 

data has the most wins (47/0/3) in AUC comparison.  
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Table 6: The performance comparison of RRFA and RF in the blowdown dataset with a 

training/testing data size ratio of 1833/1833 over 50 trials in a W/T/L/ table   

MISpct Misclassification Error AUC 

5% 36/5/9 47/0/3 

10% 42/0/8 45/0/5 

15% 38/2/10 42/0/8 

20% 30/1/19 36/0/14 

30% 27/0/23 16/0/34 

 

Results are also presented in Figure 13 showing how the average misclassification errors 

and average AUC values evolve when the number of trees increases from 1 to 500. 

RRFA with 5%, 10%, 15% and 20% of missing data start to show improvement over the 

original RF in misclassification error when Ntree reaches 100 and the improvements 

continue until Ntree reaches 500. RRFA with 30% of missing data has better performance 

than the original RF when Ntree gets over 200 until Ntree reaches 500. RRFA with 15% of 

missing data shows the best performances in average misclassification error. While for 

AUC values, RRFA with 5%, 10%, 15% and 20% of missing data start to show 

improvements over the original RF before Ntree reaches 100 and the improvements 

continue until Ntree reaches 500. RRFA with 10% of missing data shows the best 

performances in average AUC value.  
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Figure 11: The average performance comparison of RRFA and RF in the blowdown 

dataset with a training/testing data size ratio of 200/3466 over 50 trials 
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Figure 12: The average performance comparison of RRFA and RF in the blowdown 

dataset with a training/testing data size ratio of 666/3000 over 50 trials 
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Figure 13: The average performance comparison of RRFA and RF in the blowdown 

dataset with a training/testing data size ratio of 1833/1833 over 50 trials 
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2.6.3 Mease1 Dataset   

2.6.3.1 Ntr =200 and Nte=800 

For Ntr =200 and Nte=800, the results are first shown in Table 7. RRFA beats the original 

RF in misclassification error when 10%, and 20% of missing data are imposed, and 

RRFA beats the original RF in AUC when 10%, 20%, and 30% of missing data are 

imposed. Among all of them, RRFA with 10% of missing data has the most wins 

(29/3/18) in misclassification error comparison and RRFA with 20% of missing data has 

the most wins (34/0/16) in AUC comparison.  

Table 7: The performance comparison of RRFA and RF in the Mease1 dataset with a 

training/testing data size ratio of 200/800 over 50 trials in a W/T/L/ table   

MISpct Misclassification Error AUC 

10% 29/3/18 33/0/17 

20% 29/1/20 34/0/16 

30% 23/4/23 28/0/22 

40% 15/2/33 25/0/25 

50% 12/1/37 18/0/32 

 

Results are also presented in Figure 14 showing how the average misclassification errors 

and average AUC values evolve when the number of trees increases from 1 to 500. 

RRFA with 10% and 20% of missing data start to show improvement over the original 

RF in average misclassification error when Ntree gets over 400.  While for average AUC 

values, RRFA with 10%, 20% and 30% of missing data start to show improvements over 

the original RF when Ntree gets over 300. RRFA with 10% of missing data shows the best 
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performance in average misclassification error. RRFA with 20% of missing data shows 

the best performances in average AUC value.  

2.6.3.2 Ntr =400 and Nte=600 

For Ntr =400 and Nte=600, the results are first shown in Table 8. RRFA beats the original 

RF in misclassification error when 10% and 20% of missing data are imposed, and RRFA 

beats the original RF in AUC when 10%, 20%, 30% and 40% of missing data are 

imposed. Among all of them, RRFA with 10% of missing data has the most wins in both 

misclassification error comparison (30/4/16) and AUC comparison (40/0/10). 

Table 8: The performance comparison of RRFA and RF in the Mease1 dataset with a 

training/testing data size ratio of 400/600 over 50 trials in a W/T/L/ table   

MISpct Misclassification Error AUC 

10% 30/4/16 40/0/10 

20% 25/4/21 37/0/13 

30% 19/1/30 30/0/20 

40% 14/2/34 26/0/24 

50% 12/2/36 17/0/33 

 

Results are also presented in Figure 15 showing how the average misclassification errors 

and average AUC values evolve when the number of trees increases from 1 to 500. 

RRFA with 10% of missing data start to show improvement over the original RF in 

average misclassification error when Ntree gets over 300. While for average AUC value, 

RRFA with 10%, 20% and 30% of missing data start to show improvements over the 
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original RF when Ntree gets over 300.  RRFA with 10% and 20% of missing data show 

the best performances in average AUC value.  

 

2.6.4 Mease2 Dataset   

2.6.4.1 Ntr =200 and Nte=800 

For Ntr =200 and Nte=800, the results are first shown in Table 9. RRFA beats the original 

RF in misclassification error when 10% and 20% of missing data are imposed, and RRFA 

beats the original RF in AUC when 10%, 20%, 30% and 40% of missing data are 

imposed. Among all of them, RRFA with 10% of missing data has the most wins 

(38/0/12) in misclassification error comparison and RRFA with 20% of missing data has 

the most wins (43/0/7) in AUC comparison.  

 

Table 9: The performance comparison of RRFA and RF in the Mease2 dataset with a 

training/testing data size ratio of 200/800 over 50 trials in a W/T/L/ table   

MISpct Misclassification Error AUC 

10% 38/0/12 41/0/9 

20% 30/1/19 43/0/7 

30% 22/2/26 32/0/18 

40% 20/4/26 33/0/17 

50% 16/2/32 25/0/25 

 

Results are also presented in Figure 16 showing how the average misclassification errors  
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and average AUC values evolve when the number of trees increases from 1 to 500. 

RRFA with 10% and 20% of missing data start to show improvement over the original 

RF in average misclassification error when Ntree gets over 350.  While for average AUC 

values, RRFA with 10%, 20%, 30% and 40% of missing data start to show improvements 

over the original RF when Ntree gets over 300. RRFA with 10% of missing data shows the 

best performance in average misclassification error. RRFA with 10% and 20% of missing 

data show the best performances in average AUC value.  

2.6.4.2 Ntr =400 and Nte=600 

For Ntr =400 and Nte=600, the results are first shown in Table 10. RRFA beats the original 

RF in misclassification error when 20% and 30% of missing data are imposed, and RRFA 

beats the original RF in AUC when 10%, 20%, and 30% of missing data are imposed. 

Among all of them, RRFA with 20% of missing data has the most wins (30/5/15) in 

misclassification error comparison and RRFA with 10% as well as 30% of missing data 

both have the most wins (35/0/15) in AUC comparison.  

 

Table 10: The performance comparison of RRFA and RF in the Mease2 dataset with a 

training/testing data size ratio of 400/600 over 50 trials in a W/T/L/ table 

MISpct Misclassification Error AUC 

10% 24/2/24 35/0/15 

20% 30/5/15 33/0/17 

30% 26/7/17 35/0/15 

40% 18/2/30 22/0/28 

50% 15/5/30 12/0/38 
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Results are also presented in Figure 17 showing how the average misclassification errors 

and average AUC values evolve when the number of trees increases from 1 to 500. 

RRFA with 10%, 20% and 30% of missing data start to show improvement over the 

original RF in average misclassification error when Ntree reaches 400.  While for average 

AUC values, RRFA with 10%, 20% and 30% of missing data start to show similar 

improvements over the original RF when Ntree reaches 350. RRFA with 20% and 30% of 

missing data show the best performance in average misclassification error.  

 

 

For all of the above experiments in four different datasets, RRFA achieves better binary 

classification performance than RF when the rates of imposed missing data are 10% or 

20%. Using 200 trees can be enough to show the superior performance of RRFA in two 

real-life datasets. Using 400 trees can be enough to show the superior performance of 

RRFA in two simulated datasets. And using 500 trees always lead to even better 

improvements. As random forests generally do not overfit the data (Breiman & Cutler, 

2004), more trees should be used when computational resources are not limited.  
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Figure 14: The average performance comparison of RRFA and RF in the Mease1 dataset 

with a training/testing data size ratio of 200/800 over 50 trials 
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Figure 15: The average performance comparison of RRFA and RF in the Mease1 dataset 

with a training/testing data size ratio of 400/600 over 50 trials 
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Figure 16: The average performance comparison of RRFA and RF in the Mease2 dataset 

with a training/testing data size ratio of 200/800 over 50 trials 



 55   
 

 

Figure 17: The average performance comparison of RRFA and RF in the Mease2 dataset 

with a training/testing data size ratio of 400/600 over 50 trials 
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2.7 Discussion 

Our primary goal in this chapter is to compare the binary classification performance of 

RRFA with RF. For the above two real-life datasets and two simulated datasets, RRFA 

can have superior performance than the original RF in both misclassification error and 

AUC. RRFA works the best when the rates of imposed missing data under MCAR are 

10% and 20%. In addition, the improvements in AUC are much more significant than 

misclassification error. Furthermore, the performance improvements are more significant 

in real-life datasets than simulated datasets. Fewer trees are also needed to show 

performance improvements in real-life datasets than simulated datasets. This is likely due 

to the higher number of covariates in our two simulated datasets.  

 

There are multiple techniques which could potentially further improve the classification 

performance of RRFA. Missing data are imposed in both training and testing datasets in 

RRFA. One potential technique would be to limit the missing data introduction to the 

training dataset. Median/mode imputation is the only imputation method used in RRFA. 

Another potential technique would be to use different single imputation and multiple 

imputation methods. 

2.7.1 Misclassification Error and Pearson Correlation Coefficient   

To learn the underlying reason for the improvement in RRFA, we can look at the 

individual tree performances with an example. We will use Pima.tr (Ntr=200) and 

Pima.te (Nte=332) from R package MASS as the training dataset and the testing dataset. 

Instead of using the default value of Ntree = 500, we further increase it to Ntree = 2000 to 
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have more stable results. We look at the individual trees’ misclassification errors and 

pairwise correlations in both the original random forests and RRFA with 20% of missing 

data.  

 

As seen in the probability density distribution plots in Figure 18, even though the 

individual trees’ misclassification errors increase, the pairwise correlations between trees 

decrease substantially. When the same example is repeated using different datasets and 

with different rates of missing data, we find the only common characteristic among all 

successful improvements is the increase of misclassification error and the decrease of 

pairwise correlation, while the shape and span of the probability density plots vary 

largely. 

2.7.2 AUC and Leo Breiman’s Generalization Error Bound 

Leo Breiman proposed the generalization error for random forests with an upper bound as 

given in equation (2.3). Here we use the same example related to the Pima Indian dataset. 

When rates of imposed missing data (MISpct) range from 0 to 50% by 10%, we generate 

100 random forests with the same size of Ntree =2000 for each MISpct. RRFA with 0% of 

missing data is just the original RF. For computational simplicity, here we will use 

average Pearson correlation coefficient r (the same as phi coefficient) to replace ρ while 

calculating Breiman’s error bounds. As shown in Figure 19, AUC is inversely related to 

Breiman’s error bound. As the percentage of missing data increases from 0 to 50%, the 

error bound becomes smaller, and the AUC values gets bigger. 
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Figure 18: Comparison of misclassification error and Pearson correlation coefficient in 

RF and RRFA in the Pima Indians dataset with Ntr = 200 and Nte = 332 



 59   
 

 

Figure 19: AUC vs. Breiman’s error bound in both RF and RRFA in the Pima Indians 

dataset with Ntr = 200 and Nte = 332 

2.7.3 Assessment Metrics for Binary Classification Performance  

AUC is inversely associated with the misclassification error and it is more sensitive than 

misclassification error in detecting performance improvements. For all of the above four 

datasets, the Hand index (Hand, 2009), and the Kolmogorov-Smirnov test statistic can 

also be used to assess the predictive performance in testing datasets. Similar 

improvements are also observed and therefore results are not shown here.    
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Chapter 3. Improved Roughened Random Forests Algorithms 

 

Abstract 

Based on the RRFA algorithm from Chapter 2, here we further develop three different 

versions of RRF algorithms. These three new RRF algorithms are called “Roughened 

Random Forests - B (RRFB)”, “Roughened Random Forests - C (RRFC)” and 

“Roughened Random Forests - D (RRFD)”. RRFB restricts the introduction of missing 

data to the training dataset. RRFC allows users to choose one of the seven imputation 

methods and they are separately named as RRFC1 to RRFC7. These imputation methods 

are mean/mode imputation, minimum-value/mode imputation, maximum-value/mode 

imputation, hot-deck imputation, regression-based imputation, multiple imputation by 

chained equations (MICE) and proximity-based imputation. RRFD uses different 

numbers of variables at each tree node split. These three new RRF algorithms (RRFB, 

RRFC and RRFD) are compared with RRFA and RF with respect to AUC values. RRFB 

leads to better classification as well as shorter computation time than RRFA. RRFC6 

(with MICE as the imputation method) produces slightly better overall performances than 

RRFB, but RRFC6 requires much longer computation time than RRFB. RRFD also 

provides better overall performance than RRFB, but computational cost is also higher in 

RRFD. When there are limited computational resources, RRFB is preferred. When 

computational resources are not a problem, RRFC and RRFD can potentially provide 

better performance than RRFB. 
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3.1 Introduction 

In Chapter 2, we discussed that RRFA can help boost the performance of random forests, 

and that this effect can be used even when complete data are already available for 

classification. It appears that the virtues of the RRFA can be explained mostly by the 

reductions in pairwise correlations among all individual trees.  Thus, we further propose 

several new methods that improve random forests’ performance in binary classification 

by modifying pairwise correlations among all individual trees. 

3.2 Motivations for Improving RRFA  

We will use one example from Chapter 2 to demonstrate the subpar performance of 

RRFA when the imposed missing values exceed certain percentages. While these 

algorithms performed satisfactorily in moderate amounts of artificially imposed missing 

data, their classification performance measured by AUC does not show an inverse linear 

relationship with Breiman’s error bound across the rates of missing data. Below, we 

summarize our empirical evidence that motivates the further modifications in our original 

roughened random forest algorithm RRFA. 

 

We use Pima.tr (Ntr=200) and Pima.te (Nte=332) from R package MASS as the 

training dataset and the testing datasets. We apply RRFA in the Pima Indians dataset with 

different rates of missing data (MISpct) from 10% to 90% by 10%.  Instead of using the 

default value of Ntree = 500, we further increase it to Ntree = 2000 to have more stable 

results. We repeat both the original random forests (RF) and RRFA 100 times with the 

same training dataset and the same testing dataset. In addition, we derive the 2.5th 
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percentile (2.5%), median, mean and 97.5th percentile (97.5%) for AUC based on these 

100 repeated experiments as shown in Table 11. The improvement peaks at MISpct = 50% 

and starts going down between 60% and 90%. For the original complete dataset, RF 

generated an AUC of 0.822.  RRFA has the best AUC value of 0.841 with MISpct = 50%, 

a 2.3% improvement (p < 0.05). 

 

Table 11: AUC comparison of RF vs. RRFA with MISpct  between 10% and 90% in the 

Pima Indians dataset 

MISpct 2.5% median mean 97.5% 

0% (RF) 0.818 0.822 0.822 0.826 

10% 0.826 0.831 0.831 0.835 

20% 0.833 0.837 0.838 0.843 

30% 0.833 0.839 0.839 0.844 

40% 0.834 0.840 0.840 0.846 

50% 0.835 0.841 0.841 0.848 

60% 0.830 0.838 0.838 0.844 

70% 0.823 0.832 0.832 0.843 

80% 0.804 0.815 0.815 0.826 

90% 0.784 0.797 0.797 0.815 
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Figure 20: AUC vs. Breiman’s error bound in both RF and RRFA (with MISpct  between 

10% and 90%) in the Pima Indians dataset with Ntr =200 and Nte=332 

 

As shown in Figure 20, even though the error bound decreases between 50% and 90% of 

MISpct, the AUC does not increase any more. This is mostly because the RRFA algorithm 

imposes missing data into both the training and testing dataset, but Breiman’s error bound 

does not take into consideration of the modification of the testing dataset.  
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3.3 Roughened Random Forests - B (RRFB)  

Next, we introduce the RRFB algorithm which only imposes missing data on the training 

dataset. The RRFB algorithm is implemented in the following four steps. 

 

1. Impose missing values under the mechanism of missing completely at 

random on all covariates of the training dataset. 

2. Impute the missing data by median imputation for continuous variables and 

mode imputation for categorical variables. 

3. Build one tree in random forests using the above imputed training dataset, 

and then use it to predict the binary outcomes in the original testing dataset. 

4. Repeat 1 to 3 for Ntree times, in total Ntree different trees are built, and Ntree 

different sets of predictions are made for the binary outcomes in the testing 

dataset.  

 

We apply RRFB in the same experiment as in 3.2. For the original complete dataset, 

random forests (RF) generate a mean AUC value of 0.822, with a 2.5th percentile of 0.818 

and a 97.5th percentile of 0.826 in 100 repeated experiments.  When MISpct = 70%, RRFB 

achieves a mean value of AUC value at 0.845 with a 2.5th percentile of 0.840 and a 97.5th 

percentile of 0.850 in 100 repeated experiments. When MISpct = 70%, RRFB achieves a 

2.8% improvement over the original RF in average AUC. In Table 12, we report more 

detailed results for each different MISpct. We also observe that RRFB leads to similar 

performance with respect to width of the underlying empirical 95% confidence interval.  
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RRFB and RRFA both have significant improvements (p<0.05) over the original RF. 

RRFB is also better than RRFA with a 0.5% improvement over RRFA in average AUC, 

but the improvement from RRFA to RRFB is not significant (p>0.05). We further 

investigate the relationship between AUC and Breiman’s error bound in Figure 21 for 

RRFB. As the testing dataset is kept complete under RRFB, Figure 21 shows a negative 

linear relationship between AUC and Breiman’s error bound. MISpct = 70% helps achieve 

the lowest Breiman’s error bound and the highest AUC value. 

 

Table 12: AUC comparison of RF vs. RRFB with MISpct  between 10% and 90% in the 

Pima Indians dataset 

MISpct 2.5% median mean 97.5% 

0% (RF) 0.818 0.822 0.822 0.826 

10% 0.822 0.826 0.826 0.830 

20% 0.826 0.830 0.830 0.834 

30% 0.829 0.834 0.834 0.838 

40% 0.835 0.839 0.839 0.845 

50% 0.836 0.842 0.842 0.846 

60% 0.838 0.844 0.844 0.851 

70% 0.840 0.845 0.845 0.850 

80% 0.839 0.844 0.845 0.850 

90% 0.827 0.835 0.835 0.843 

 

In real-life applications, imputing only the training dataset can save users from repeating 

the lengthy random forests building process when we apply it on a different testing 

dataset. These results imply that, users may prefer RRFB when the computation time is 
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deemed to be a factor in decision-making as RRFB significantly reduces computation 

time by only imposing missing data in the training data.   

 

 

Figure 21: AUC vs. Breiman’s error bound in both RF and RRFB (with MISpct  between 

10% and 90%) in the Pima Indians dataset with Ntr =200 and Nte=332 
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3.4 Roughened Random Forests - C (RRFC)  

We used single imputation (median/mode imputation) in RRFA and RRFB because it is 

the faster one between the two missing data imputation methods used in the original 

random forests (Breiman & Cutler, 2004). Single imputation has been criticized 

extensively in the statistical literature (Rubin, 1987; Schafer & Graham, 2002; Little & 

Rubin, 2002) as it potentially underestimates uncertainty measures, RRFC is motivated to 

include multiple imputation methods (Little & Rubin, 2002; Yucel, 2011) which can 

circumvent this problem. The RRFC algorithm is described below in four steps. 

 

1. Impose missing values under the mechanism of missing completely at 

random on all covariates of the training dataset. 

2. Impute the missing data by one of the 7 listed* imputation methods other 

than median/mode imputation (called RRFC1, RRFC2, … , RRFC7). 

3. Build one tree using the above imputed training dataset, and then use it to 

predict the binary outcomes in the original testing dataset. 

4. Repeat 1 to 3 for Ntree times, in total Ntree different trees are built, and Ntree 

different sets of predictions are made for the binary outcomes in the testing 

dataset.  

 

*The imputation methods used in Step 2 of RRFC include: 

RRFC1. Impute the missing values in a continuous variable by its mean value and impute 

the missing values in a categorical variable by its mode value (Mean/mode imputation). 
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RRFC2. Impute the missing values in a continuous variable by its minimum value and 

impute the missing values in a categorical variable by its mode value (Minimum-value 

/mode imputation). 

RRFC3. Impute the missing values in a continuous variable by its maximum value and 

impute the missing values in a categorical variable by its mode value (Maximum-value 

/mode imputation). 

RRFC4. Hot-deck imputation for all variables. For each variable, observed values are 

randomly selected to impute missing values. 

RRFC5. Regression-based imputation for all variables. Linear regression is used to 

impute continuous variables. Logistic regression is used to impute binary variables. And 

multinomial logistic regression is used to impute categorical variables with three or more 

categories. 

RRFC6. Multiple imputation by chained equation (Van Buuren & Groothuis-Oudshoorn, 

2011) is used to produce the imputed dataset (implemented by mice function in R 

package  mice). 

RRFC7. Missing data is imputed based on proximity from random forests (implemented 

by rfImpute function in R package randomForest).  

3.4.1 Differences Between RRFC5, RRFC6 and RRFC7 

RRFC5 and RRFC6 are both regression-based imputation methods. Missing data are 

imposed to each variable in both RRFC5 and RRFC6. In RRFC5, for each variable Xi, a 

regression model is built using all other variables in the complete dataset before any 

missing data is imposed. Therefore, the regression model can produce fitted values for 
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each variable in each observation. Then, these fitted values are used to impute missing 

data that are imposed in RRFC5. RRFC6 uses multiple imputation by chained equation 

(MICE) which is based on fully conditional specification. In RRFC6, each variable with 

missing data is imputed sequentially. This process repeats for a few iterations. For a 

variable Xi with missing values, we denote the observed and missing values as Xi
obs and 

Xi
mis. A regression model is applied using Xi

obs as the outcome and all other variables as 

predictors, in which missing values are initially replaced by single imputations. Then 

Xi
misis replaced by predicted values based on the above fitted regression model. This 

process cycles through all variables with missing values until the convergence of the 

sampling distribution of all variables with imputed values, or reaching the maximum 

number of iterations (Van Buuren & Groothuis-Oudshoorn, 2011).  

 

RRFC7 adopts a completely different method to impute missing values. After filling in 

missing values by median/mode imputation, it builds a random forest to find the 

proximity matrix between observations. The proximity matrix is then used to fill in the 

originally missing values to create a newly imputed dataset, which is again used to build 

a new random forest to find a new proximity matrix. This process is usually repeated for 

a few iterations and the last imputed dataset is kept for use. The proximity matrix is used 

differently for imputation of continuous variables and categorical variables. For 

continuous variables, missing values are imputed based on the proximity-based weighted 

average of observed values; for categorical variables, missing values are imputed based 

on the proximity-based weighted mode of observed values (Breiman & Cutler, 2004; 

Liaw & Wiener, 2002). 



 70   
 

3.4.2 Datasets  

The following 12 different datasets are mainly from the University of California Irvine 

(UCI) Machine Learning Repository (Bache & Lichman, 2013). They are a diverse 

combination of datasets that can be used to compare our RRFC algorithms with RRFB 

and RF. After data cleaning, there are no missing data or duplicated records. We briefly 

describe these datasets below. 

 

Balance 

This data set is from the UCI Machine Learning Repository with the original name 

“Balance Scale Data Set”. It has four continuous variables besides the outcome variable. 

The outcome variable includes: 49 “B”, 288 “L” and 288 “R”. We will only keep the 288 

“L” and 288 “R” for our analysis. 

 

Blood 

This data set is from the UCI Machine Learning Repository with the original name 

“Blood Transfusion Service Center Data Set” (Yeh, et al., 2009). It has four continuous 

variables besides the outcome variable. There were originally 748 cases. After 

deduplication, the outcome variable has 149 donors and 384 non-donors. 

 

Blowdown  

This data set is from R package alr3 (Weisberg, 2011). The dataset has two continuous 

variables and one categorical variable besides the outcome variable. There were 
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originally 3666 cases. After deduplication, the outcome variable has 1582 live trees and 

1736 dead trees. 

 

Contraceptive 

This data set is from the UCI Machine Learning Repository with the original name 

“Contraceptive Method Choice Data Set”. It has two continuous variables and seven 

categorical variables besides the outcome variable. There were originally 1473 cases. 

After deduplication, the outcome variable has 811 long-term and short-term contraceptive 

users plus 614 non-users. 

 

Credit 

This data set is from the UCI Machine Learning Repository with the original name 

“Credit Approval Data Set”. It has six continuous variables and nine categorical variables 

besides the outcome variable. There were originally 690 cases. After deduplication and 

taking out missing values, the outcome variable has 296 positive cases and 357 negative 

cases. 

 

CTG 

This data set is from the UCI Machine Learning Repository with the original name 

“Cardiotocography Data Set”. It has 21 continuous variables besides the outcome 

variable. There were originally 2126 cases. After deduplication and taking out the 

“Normal” cases, the outcome variable has 175 “Pathologic” and 292 “Suspect” cases in 

our analysis.  
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Haberman 

This data set is from the UCI Machine Learning Repository with the original name 

“Haberman’s Survival Data Set”. It has three continuous variables besides the outcome 

variable. There were originally 306 cases. After deduplication, the outcome variable has 

79 deaths and 210 survivors. 

  

ILPD 

This data set is from the UCI Machine Learning Repository with the original name 

“ILPD (Indian Liver Patient Dataset) Data Set”. It has nine continuous variables and one 

categorical variable besides the outcome variable. There were originally 583 cases. After 

deduplication, the outcome variable has 162 positive cases and 404 negative cases. 

 

Mammography 

This data set is from the UCI Machine Learning Repository with the original name 

“Mammographic Mass Data Set” (Elter, et al., 2007). It has two continuous variables and 

two categorical variables besides the outcome variable. There were originally 961 cases. 

After deduplication and taking out missing data, the outcome variable has 230 malignant 

cases and 257 benign cases. 

 

Statlog 

This data set is from the UCI Machine Learning Repository with the original name 

“Statlog (Heart) Data Set”. It has seven continuous variables and six categorical variables 
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besides the outcome variable. The outcome variable has 120 positive cases and 150 

negative cases. 

 

Titanic 

This dataset is from the Vanderbilt University Department of Biostatistics website with 

the original name “titanic3” (Wang, 2014). We will use three continuous variables 

(“Age”, “Number of Siblings/Spouses Aboard”, “Number of Parents/Children Aboard”) 

and three categorical variables (“Passenger class as 1st”, “Passenger class as 2nd”, “sex”) 

besides the outcome variable. There were originally 1309 cases. After deduplication and 

taking out missing data, the outcome variable has 324 survivors and 356 deaths. 

 

Yeast 

This data set is from the UCI Machine Learning Repository with the original name 

“Yeast Data Set”. It has eight continuous variables besides the outcome variable. There 

were originally 1484 cases. We will only keep two major categories “CYT” and “NUC” 

for our analysis. After deduplication, the outcome variable has 438 “CYT” and 425 

“NUC”. 

3.4.3 Experiments 

Our experiments aim to compare RF with RRFB and RRFC in the above listed 12 

datasets as well as the Pima Indians dataset. After data cleaning, all these datasets are 

complete and have no duplicated records. Also, we only use the same amount of 
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observations from each class to avoid the influence of class imbalance (Chen, et al., 

2004).  

 

We propose to use a special 10-fold cross-validation method that can deal with datasets 

with small sample sizes. For each dataset containing N(Y=1) positive cases and N(Y=0) 

negative cases, the first Q pairs of positive and negative cases are selected for use. Q is 

set as the minimum value among N(Y=1), N(Y=0) and 500. These Q pairs of cases are then 

divided into five subsamples with equal sizes, and each subsample should have 50% of 

positive cases and 50% of negative cases. We randomly choose two subsamples out of 

the five total subsamples to create a testing dataset, and the rest of three subsamples 

should form a training dataset. The training dataset should have 60% of the total data and 

the testing dataset should have 40% of the total data. In total, we should have C5
2 = 10 

different pairs of training and testing datasets. RF, RRFB and RRFC (RRFC1 to RRFC7) 

are simultaneously built on each training dataset with MISpct ranging from 10% to 90% 

by 10% and Ntree=1000. The resulting random forests are applied on the testing datasets 

for predictions. 

3.4.4 Results 

For each of the 13 datasets, the AUC values are averaged across the 10-fold cross-

validation for each of the nine different MISpct. The highest average AUC values among 

these nine different MISpct are recorded for each dataset and each algorithm in the first 13 

rows of Table 13. The best AUC value in each row is shown in bold font. RF does not 

provide the best performance in any of the 13 datasets. 
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The 14th to 17th rows of Table 13 show relative performance of RRFB and RRFC using 

RF as the reference. The 14th row, “#imp”, shows the number of times each algorithm 

outperforms RF. RRFB and RRFC6 both outperform RF in 12 of the 13 datasets except 

the CTG dataset. The 15th row, “Max imp%”, shows the highest percentage of AUC 

improvement among the 13 datasets for each algorithm. RRFC1 has the best performance 

in this row with 9.1% improvement in “Mammography” dataset. The 16th row, “Median 

imp%”, shows the best median percentage of AUC improvement among the 13 datasets 

for each algorithm. RRFC6 has the best performance in this row with 1.4% improvement. 

The 17th row, “Mean imp%”, shows the best mean percentage of AUC improvement 

among the 13 datasets for each algorithm. RRFC6 has the best performance in this row 

with 1.7% improvement.  

 

Overall, RRFC6 provides slightly better performance than RRFB. However, RRFC6 

takes much longer computation time than RRFB, as shown in Figure 22. For the CTG 

dataset, when MISpct = 50%, RRFB only takes 0.8 seconds to finish ten imputations, but 

RRFC6 takes 78.32 seconds to finish ten imputations. The above imputations were done 

in R 2.15.1 on a computer with Intel Core i5-3570 CPU @ 3.40 GHz and 4.00G RAM in 

a 32-bit Windows 7 Enterprise operation system. 
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Table 13: AUC comparison in 13 different datasets using RF, RRFB and RRFC 

 

 

 

Figure 22: Difference in computation time between RRFB and RRFC6 with regards to 

missing data imputation. 

 



 77   
 

3.5 Roughened Random Forests - D (RRFD)  

3.5.1 RRFD Algorithm 

RRFD is based on RRFB, with further exploration on the ideal choice of m in Step 3. The 

four steps of RRFD algorithm are listed below. 

 

1. Impose missing values under the mechanism of missing completely at 

random on all covariates of the training dataset. 

2. Impute the missing data by median imputation for continuous variables and 

mode imputation for categorical variables. 

3. Build one tree with a certain m (between 1 and M) value using the above 

imputed training dataset, and then use it to predict the binary outcomes in 

the original testing dataset. 

4. For each m value, repeat 1 to 3 for Ntree times, in total Ntree different trees 

are built, and Ntree different sets of predictions are made for the binary 

outcomes in the testing dataset. The m value with the best final AUC is 

selected for use.  

 

3.5.2 RRFD in the Pima Indians Dataset 

We apply RRFD in the same experiment as in 3.2. The results are shown in Figure 23. 
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Figure 23: RF, RRFB and RRFD in the Pima Indians dataset 

 

In Figure 23, the red dashed line represents the AUC of the original random forests (RF) 

with the default m value. For the Pima Indians dataset, m=2, or the integer part of the 

square root of 7. The red solid line, or RRFB, shows how AUC changes with different 

rates of missing data when m is set to the default value. The black solid line, or RRFD, 

shows how the best AUC changes with different rates of missing data when m is chosen 

from all the possible values. For the Pima Indians dataset, m is chosen from 1, 2, 3, 4, 5, 

6 and 7. The blue numbers on the black line show the ideal m values at each rate of 

missing data in RRFD.  
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For the original complete dataset, m = 2 is the ideal choice. However, when we impose 

more missing data, the ideal m value also goes up. The best AUC value of 0.852 is 

achieved with MISpct  = 70% and m = 5. In this case, RRFD produces a 3.6% increase 

over the original random forests while RRFB only produces a 2.8% increase at m = 2. 

3.5.3 RRFD in 12 Different Datasets 

We further test RRFD using the same 12 datasets from 3.4.2. Due to the computation 

time requirement, we will not do 10-fold cross-validation using RRFD. Instead, we aim 

to illustrate the performance of RRFD for each dataset across different rates of imposed 

missing data. For each one of the 12 datasets, we divide the original dataset evenly into 

the training dataset and the testing dataset using the same rule. For example, if there are 

200 observations, all the even-numbered observations (2nd, 4th, 6th until 200th) will be 

used as the training dataset, and all the odd-numbered observations (1st, 3rd, 5th until 

199th) will be used as the testing dataset. We apply RF, RRFB and RRFD in each dataset 

and the AUC results are shown in Figure 24 and Table 14. 

 

In each of the 12 graphs in Figure 24, the red dashed line represents the AUC of the 

original RF using the default m value. The red solid line, or RRFB, shows how AUC 

changes with different rates of missing data using the default m value. The black solid 

line, or RRFD, shows the best AUC with different rates of missing data using the ideal m 

values. The blue numbers on the black line show the ideal m values for each rate of 

missing data. 
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Figure 24: RF, RRFB and RRFD in 12 different datasets with Ntr/Nte =1 
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Table 14: Summary of RF, RRFB and RRFD in 12 different datasets 

 Covariates RRFB RRFD 

 #cont #cat Improve% m (MISpct) Improve% m (MISpct) 

Balance 4 0 1.0% 2 (50%) 1.1% 1 (60%) 

Blood 4 0 8.7% 2 (90%) 9.3% 1 (80%) 

Blowdown 2 1 0.4% 1 (30%) 0.9% 3 (50%) 

Contraceptive 2 7 3.2% 3 (60%) 3.3% 4 (50%) 

Credit 6 9 0.1% 3 (10%) 0.8% 14 (30%) 

CTG 21 0 0% 4 (0%) 0.7% 21 (0%) 

Haberman 3 0 3.4% 1 (60%) 3.7% 2 (60%) 

ILPD 9 1 0.8% 3 (50%) 1.3% 1 (30%) 

Mammography 2 2 10.8% 2 (90%) 11.9% 4 (90%) 

Statlog 7 6 1.1% 3 (40%) 2.9% 1 (0%) 

Titanic 3 3 0% 2 (0%) 0% 2 (0%) 

Yeast 8 0 0.5% 2 (30%) 0.5% 2 (30%) 

 

As shown in Figure 24 and Table 14, RRFB on average produces a 2.5% increase in 

AUC with a range between 0% and 10.8% over the original random forests. RRFD on 

average produces a 3.0% increase in AUC with a range between 0% and 11.9% over the 

original random forests. The ideal m value can be larger or smaller than the default m 

value. The best MISpct varies across different datasets Also, the improvements do not 

seem to correlate with the ratio of the number of continuous variables (#cont) and the 

number of categorical variables (#cat).  

 

For the two least improved datasets (CTG and Titanic datasets) above, we change the size 

ratio of training and testing datasets a few times and rerun the same experiments, the 

results are shown in Figure 25.   
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Figure 25: AUC comparison of RF, RRFB and RRFD in the CTG and Titanic datasets 

with size ratios between training and testing datasets at 1, 2 and 4 

 

For the CTG dataset, RRFB does not show any improvement over RF even after 

changing the size ratio of training and testing data. RRFD can achieve slightly better 

performance than RF when no missing data is imposed. We just need to change the m 

value in the original RF to improve the AUC performance in the CTG dataset. For the 

Titanic dataset, after changing the size ratio of the training and testing data, RRFB and 

RRFD can both produce improvements over RF.  
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3.6 Discussion 

In this chapter, we investigate three different algorithms (RRFB, RRFC and RRFD) that 

aim at improving RRFA’s binary classification performance. AUC is used as the only 

assessment metric in this chapter as it is more sensitive than accuracy in detecting 

performance improvement based on the discussion in Chapter 2.  

 

RRFB achieves better AUC performance than RRFA with shorter computation time in 

the Pima Indians dataset. Also, there is an inverse linear relationship between AUC and 

Breiman’s error bound when using RRFB. RRFC6 has slightly better classification 

performance than RRFB but RRFC6 requires much longer computation time. None of the 

other RRFC algorithms match RRFB in overall performance.  

 

The purpose of imposing missing data and subsequent imputation in any RRF algorithm 

is mainly to create diversion from the original data. The main advantage of multiple 

imputation over single imputation is its reflection of uncertainty in imputing missing 

values. Therefore, conceptually multiple imputation is not more useful than single 

imputation in roughened random forests. RRFC7 uses proximity-based imputation which 

is usually better than RRFB’s median/mode imputation in handling regular missing data 

analysis. However, RRFC7 is not any better than RRFB in AUC improvement. On the 

other hand, with the help of multiple imputation by MICE, RRFC6 provides slightly 

better AUC performance than RRFB at the cost of significantly longer computation time.  
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Leave-one out cross validation was found to be asymptotically inconsistent in selecting 

the best linear model in terms of predictive ability (Shao, 1993).  Shao (1993) concluded 

that the sample size used for validation should be as large as possible. In another words, 

Nte/Ntr should be as large as possible in cross-validation for linear model selection. To 

compare different RRFC algorithms, we used a special 10-fold cross-validation so that 

Nte/Ntr is equal to 4/6 instead of 1/9 in each fold. We did not further increase Nte/Ntr so 

that we have enough sample size for training the roughened random forests.   

 

Finally, we look at the most important parameter m value within RF. The default m value 

can usually achieve good classification performance in RF, but RRF algorithms do not 

necessarily share the same default m values as RF. RRFD can produce further 

improvements over RRFB by using different m values. However, there is no golden rule 

as to what should be the ideal m value used in RRFD. Consequently, RRFD needs to test 

different m values and requires much longer computation time than RRFB. 

 

Among the 13 datasets used in this chapter, the CTG dataset which has 21 continuous 

variables is least improved by any above RRF algorithms. We might need to further 

modify RRF algorithms when we are dealing with datasets with higher dimensions in 

order to achieve AUC improvement over the original RF.  
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Chapter 4. Roughened Random Forests - E (RRFE) Algorithm in             

Medium- to High-dimensional Datasets 

 

Abstract 

The RRFE algorithm is created for implementing roughened random forests in medium- 

to high-dimensional datasets. The major difference between RRFE and RRFB is the 

selective introduction of missing data based on variable importance according to the 

original random forests. In five medium-dimensional datasets with between 20 to 200 

covariates, experimental results show that RRFB generally does not outperform the 

original random forests with respect to AUC, but RRFE can lead to improved AUC over 

the original random forests. The improvement in RRFE mainly comes from the uneven 

decreases in strength and correlations among individual classification trees, and 

consequently the decrease in Breiman’s generalization error bound. RRFE is also 

computationally more efficient than RRFB. In two high-dimensional microarray datasets 

with 2000 and 2905 covariates and under 200 observations, experimental results show 

that RRFB and RRFE can both improve AUC over the original RF after variable 

selection, with RRFB slightly better than RRFE. 

 

4.1 Introduction 

Previously introduced RRF algorithms (RRFA, RRFB, RRFC and RRFD) achieve AUC 

improvement in binary classification over RF mainly by unevenly reducing both strength 

and correlation among individual classification trees, which lead to a lower Breiman’s 
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generalization error bound. All of these RRF algorithms non-discriminately impose the 

same amount of missing data to each variable, which work relatively well in datasets with 

under 20 covariates. However, RRFB and RRFC6 algorithms did not lead to any AUC 

improvement in the CTG dataset with 21 continuous variables. In this chapter, we further 

propose to show how RRFE can be used to improve the performance of random forests in 

medium- to high-dimensional datasets with between 20 to 3000 covariates. 

4.2 RRFE Algorithm 

In random forests, a value is given to represent each variable’s importance based on its 

role in reducing Gini impurity among all individual classification trees. In RRFE, the 

probability that missing data is imposed on a certain variable is conditional on the 

variable’s relative importance. The RRFE algorithm is listed as below. 

 

1. Impose missing values under the mechanism of missing completely at 

random on selected covariates of the training dataset, and the probability 

that missing data is imposed on a certain variable is based on the k-th power 

of the variable’s relative importance. A variable’s relative importance is 

defined as its variable importance divided by the maximum variable 

importance among all available covariates according to the original random 

forests. 

2. Impute the missing data by median imputation for continuous variables and 

mode imputation for categorical variables. 
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3. Build one tree in random forests using the above imputed training dataset, 

and then use it to predict the binary outcomes in the original testing dataset. 

4. Repeat 1 to 3 for Ntree times, in total Ntree different trees are built, and Ntree 

different sets of predictions are made for the binary outcomes in the testing 

dataset.  

4.3 Datasets 

CTG is the same dataset from 3.4.2 

 

Dermatology 

This data set is from the UCI Machine Learning Repository with the original name 

“Dermatology Data Set”. It has 33 continuous variables besides the outcome variable. 

There were originally 366 cases. After deduplication and taking out missing values, the 

outcome variable has 187 positive cases and 171 negative cases. 

 

Ionosphere 

This data set is from the UCI Machine Learning Repository with the original name 

“Ionosphere Data Set”. It has 34 continuous variables besides the outcome variable. 

There were originally 351 cases. After deduplication, the outcome variable has 225 

positive cases and 125 negative cases. 
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Musk 

This data set is from the UCI Machine Learning Repository with the original name 

“Musk (Version 1) Data Set”. It has 166 continuous variables besides the outcome 

variable. All 476 unique cases are unique and complete. The outcome variable contains 

207 musks and 269 non-musks. 

 

Steel 

This data set is from the UCI Machine Learning Repository with the original name “Steel 

Plates Faults Data Set” (It is provided by Semeion, Research Center of Sciences of 

Communication, Via Sersale 117, 00128, Rome, Italy). It has 27 continuous variables 

besides the outcome variable. All 1941 unique cases are unique and complete. The 

outcome variable contains 673 positive cases and 1268 negative cases. 

 

Alon  

This microarray dataset is from R package datamicroarray (Ramey, 2013; Alon, et 

al., 1999). It has 2000 continuous variables besides the binary outcome variable. The 

outcome variable contains 40 positive cases and 22 negative cases. 

 

Gravier 

This microarray dataset is from R package datamicroarray (Ramey, 2013; Gravier, 

et al., 2010). It has 2905 continuous variables besides the binary outcome variable. The 

outcome variable contains 111 positive cases and 57 negative cases. 
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4.4 Experiments 

We aim to compare RF with RRFB and RRFE in the above listed datasets with the same 

10-fold cross-validation experiment used in 3.4.3. For each dataset containing N(Y=1) 

positive cases and N(Y=0) negative cases, the first Q pairs of positive and negative cases 

are selected for use. Q is set as the minimum value among N(Y=1), N(Y=0) and 500. These 

Q pairs of cases are then divided into five subsamples with equal sizes, and each 

subsample should have 50% of positive cases and 50% of negative cases. We randomly 

choose two subsamples out of the five total subsamples to create a testing dataset, and the 

rest of three subsamples should form a training dataset. The training dataset should have 

60% of the total data and the testing dataset should have 40% of the total data. In total, 

we should have C5
2 = 10 different pairs of training and testing datasets. RF, RRFB and 

RRFE are simultaneously built on each training dataset with k values ranging from 1 to 5 

by 1, MISpct ranging from 10% to 50% by 10%, as well as MISpct ranging from 1% to 5% 

by 1%. Ntree=1000 is used in all experiments. The resulting random forests are applied on 

the testing datasets. All AUC performance for RF, RRFB and RRFE are averaged across 

these 10-fold cross-validations.    

4.5 Results in Medium-dimensional Datasets  

We show all results in the following tables. Those results better than the original RF are 

in bold font. The best results for each dataset among all listed results (Table 15, Table 16, 

Table 17, Table 18, Table 19 and Table 20) are both bold and underlined. 

 



 90   
 

In Table 15, for the dermatology and musk datasets, RRFE shows consistent 

improvement over RF for all five different k values (1, 2, 3, 4 and 5) when MISpct 

changes from 10% to 50% by 10%. But RRFB does not show any improvement over RF 

when MISpct changes from 10% to 50% by 10%. No improvement is observed by either 

RRFB or RRFE in three other datasets. In Table 16, RRFE with MISpct =1% and k=3 

produces improvements over the original RF in all five listed datasets. However, the 

improvements in dermatology and musk datasets using MISpct ranging from 1% to 5% by 

1% are not as good as using MISpct ranging from 10% to 50% by 10%. 

 

In Table 17, when we change m value from ⌊√𝑀⌋ to ⌊2√𝑀⌋ and use MISpct ranging from 

10% to 50% by 10%, RRFE with MISpct =10% and k=3 produces improvements in AUC 

in all five datasets, and RRFE produces AUC improvements in four out of five datasets in 

16 other scenarios. In Table 18, when we change m value from ⌊√𝑀⌋ to ⌊2√𝑀⌋ and use 

MISpct ranging from 1% to 5% by 1%, RRFE produces AUC improvements in all five 

datasets in 4 different scenarios, and RRFE produces AUC improvements in four out of 

five datasets in 7 other scenarios. 

 

In Table 19, when we change m value from ⌊√𝑀⌋ to ⌊√𝑀/2⌋ and use MISpct ranging 

from 10% to 50% by 10%, again we only see AUC improvements by RRFE in the 

dermatology and musk datasets. In Table 20, when we change m value from ⌊√𝑀⌋ to 

⌊√𝑀/2⌋ and use MISpct ranging from 1% to 5% by 1%, the improvements in AUC are 

much less frequent than Table 16 and Table 18 where m values are set as ⌊√𝑀⌋ and 

⌊2√𝑀⌋. 
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Table 15: AUC comparison of RF, RRFB and RRFE in medium-dimensional datasets 

with m set as square root of M and MISpct ranging from 10% to 50% by 10% 

 

MISpct k CTG Dermatology Ionosphere Musk Steel IMP 

RF 0% 0 0.989428 0.997451 0.968297 0.951957 0.934287 ref 

RRFE 10% 1 0.988235 0.997594 0.966380 0.952203 0.931516 2/5 

RRFE 10% 2 0.988704 0.997637 0.967260 0.952023 0.932391 2/5 

RRFE 10% 3 0.988878 0.997753 0.967100 0.952944 0.932773 2/5 

RRFE 10% 4 0.988704 0.997724 0.967020 0.953238 0.933183 2/5 

RRFE 10% 5 0.989418 0.997647 0.966600 0.952564 0.933531 2/5 

RRFE 20% 1 0.987439 0.997488 0.964560 0.952638 0.929233 2/5 

RRFE 20% 2 0.987969 0.997872 0.964960 0.953833 0.931885 2/5 

RRFE 20% 3 0.988306 0.997693 0.966340 0.953090 0.932873 2/5 

RRFE 20% 4 0.988510 0.998010 0.965220 0.952857 0.933143 2/5 

RRFE 20% 5 0.989082 0.997936 0.965800 0.953195 0.933543 2/5 

RRFE 30% 1 0.987286 0.997606 0.963800 0.952961 0.929409 2/5 

RRFE 30% 2 0.987878 0.997840 0.965020 0.954514 0.931060 2/5 

RRFE 30% 3 0.988490 0.998078 0.964460 0.953675 0.931925 2/5 

RRFE 30% 4 0.988571 0.998143 0.965340 0.953603 0.932651 2/5 

RRFE 30% 5 0.989010 0.998009 0.965820 0.953501 0.932916 2/5 

RRFE 40% 1 0.986755 0.997798 0.961600 0.954071 0.928116 2/5 

RRFE 40% 2 0.987112 0.998056 0.963260 0.954691 0.931015 2/5 

RRFE 40% 3 0.988102 0.998054 0.963640 0.954058 0.931425 2/5 

RRFE 40% 4 0.987837 0.997969 0.963980 0.953485 0.932480 2/5 

RRFE 40% 5 0.988643 0.998205 0.963820 0.953193 0.932624 2/5 

RRFE 50% 1 0.985980 0.998013 0.960780 0.956217 0.926246 2/5 

RRFE 50% 2 0.987031 0.997948 0.962860 0.955097 0.930105 2/5 

RRFE 50% 3 0.987520 0.998171 0.962700 0.954590 0.931200 2/5 

RRFE 50% 4 0.987796 0.998085 0.963280 0.953427 0.931968 2/5 

RRFE 50% 5 0.988224 0.998215 0.963200 0.953847 0.933053 2/5 

RRFB 10% 0 0.987163 0.996795 0.965540 0.948493 0.927493 0/5 

RRFB 20% 0 0.986347 0.996045 0.961920 0.945333 0.921015 0/5 

RRFB 30% 0 0.984398 0.995143 0.959580 0.941416 0.915219 0/5 

RRFB 40% 0 0.981878 0.993767 0.956060 0.935001 0.909144 0/5 

RRFB 50% 0 0.978398 0.992442 0.954000 0.930389 0.900593 0/5 
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Table 16: AUC comparison of RF, RRFB and RRFE in medium-dimensional datasets 

with m set as square root of M and MISpct ranging from 1% to 5% by 1% 

 

MISpct k CTG Dermatology Ionosphere Musk Steel IMP 

RF 0% 0 0.989428 0.997451 0.968297 0.951957 0.934287 ref 

RRFE 1% 3 0.989429 0.997593 0.968960 0.952302 0.934430 5/5 

RRFE 1% 2 0.988939 0.997579 0.968540 0.952795 0.934408 4/5 

RRFE 1% 5 0.989561 0.997474 0.968380 0.952539 0.933488 4/5 

RRFE 4% 3 0.989112 0.997530 0.968320 0.952081 0.934341 4/5 

RRFE 1% 4 0.989357 0.997592 0.969600 0.951869 0.934674 3/5 

RRFE 2% 3 0.989071 0.997569 0.968820 0.951578 0.934355 3/5 

RRFE 1% 1 0.989112 0.997538 0.968500 0.951307 0.933825 2/5 

RRFE 2% 2 0.989092 0.997611 0.967940 0.952904 0.933814 2/5 

RRFE 4% 2 0.988847 0.997551 0.967320 0.951981 0.934110 2/5 

RRFE 4% 4 0.989357 0.997583 0.967760 0.952549 0.933985 2/5 

RRFE 4% 5 0.989163 0.997485 0.967300 0.952956 0.933921 2/5 

RRFE 5% 2 0.988388 0.997561 0.967100 0.952620 0.932889 2/5 

RRFE 5% 5 0.989367 0.997625 0.967420 0.952066 0.933624 2/5 

RRFB 1% 0 0.989153 0.997453 0.968160 0.952740 0.933570 2/5 

RRFE 2% 1 0.989347 0.997656 0.967280 0.951320 0.933553 1/5 

RRFE 2% 5 0.989265 0.997589 0.968240 0.951833 0.933435 1/5 

RRFE 3% 1 0.988929 0.997570 0.967480 0.951650 0.933461 1/5 

RRFE 3% 2 0.989092 0.997540 0.968260 0.951701 0.933241 1/5 

RRFE 3% 3 0.989010 0.997623 0.967520 0.950730 0.934000 1/5 

RRFE 3% 4 0.989255 0.997283 0.967960 0.953325 0.934218 1/5 

RRFE 3% 5 0.989224 0.997325 0.968060 0.952631 0.934223 1/5 

RRFE 5% 1 0.988592 0.997211 0.966600 0.952098 0.932668 1/5 

RRFE 5% 3 0.988959 0.997346 0.967460 0.952870 0.933931 1/5 

RRFE 5% 4 0.989122 0.997369 0.967660 0.952974 0.933786 1/5 

RRFE 2% 4 0.989071 0.997315 0.968280 0.950935 0.933914 0/5 

RRFE 4% 1 0.988663 0.997412 0.968000 0.951827 0.932825 0/5 

RRFB 2% 0 0.989041 0.997440 0.967480 0.951356 0.931986 0/5 

RRFB 3% 0 0.988714 0.997260 0.966800 0.951719 0.931999 0/5 

RRFB 4% 0 0.988449 0.997090 0.966520 0.950571 0.930853 0/5 

RRFB 5% 0 0.988214 0.997037 0.966660 0.949947 0.931218 0/5 
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Table 17: AUC comparison of RF, RRFB and RRFE in medium-dimensional datasets 

with m set as twice the square root of M and MISpct ranging from 10% to 50% by 10% 

 

MISpct k CTG Dermatology Ionosphere Musk Steel IMP 

RF 0% 0 0.989067 0.996524 0.968378 0.947438 0.932779 ref 

RRFE 10% 3 0.989112 0.996914 0.968600 0.949233 0.933065 5/5 

RRFE 10% 5 0.989194 0.997107 0.967440 0.948641 0.933479 4/5 

RRFE 20% 3 0.989092 0.997195 0.966460 0.949929 0.934124 4/5 

RRFE 20% 4 0.989071 0.997394 0.966080 0.950618 0.933926 4/5 

RRFE 20% 5 0.989071 0.997490 0.965560 0.949239 0.934519 4/5 

RRFE 30% 2 0.989633 0.997612 0.964380 0.951975 0.933181 4/5 

RRFE 30% 3 0.989173 0.997547 0.964980 0.950587 0.934191 4/5 

RRFE 30% 4 0.989469 0.997576 0.964620 0.950490 0.934278 4/5 

RRFE 30% 5 0.989480 0.997694 0.965100 0.950713 0.934959 4/5 

RRFE 40% 2 0.989490 0.997878 0.963100 0.953425 0.933649 4/5 

RRFE 40% 3 0.989602 0.997867 0.964260 0.953308 0.933366 4/5 

RRFE 40% 4 0.989388 0.997811 0.964140 0.952571 0.934750 4/5 

RRFE 40% 5 0.989214 0.997639 0.964040 0.951347 0.934479 4/5 

RRFE 50% 2 0.989194 0.997976 0.961980 0.953834 0.933198 4/5 

RRFE 50% 3 0.989582 0.997870 0.963320 0.953895 0.933325 4/5 

RRFE 50% 4 0.989643 0.997794 0.963060 0.952713 0.933949 4/5 

RRFE 50% 5 0.989633 0.997770 0.963620 0.952962 0.933923 4/5 

RRFE 10% 4 0.988888 0.997063 0.968240 0.949402 0.933733 3/5 

RRFE 20% 2 0.989408 0.997063 0.966880 0.951096 0.932718 3/5 

RRFE 30% 1 0.989092 0.997539 0.963980 0.951634 0.931064 3/5 

RRFE 50% 1 0.989092 0.998044 0.961160 0.954487 0.930680 3/5 

RRFE 10% 1 0.989000 0.996669 0.967180 0.948287 0.931045 2/5 

RRFE 10% 2 0.988857 0.996871 0.967560 0.948873 0.932236 2/5 

RRFE 20% 1 0.988684 0.997074 0.965860 0.950436 0.931835 2/5 

RRFE 40% 1 0.989010 0.998021 0.961960 0.952230 0.931045 2/5 

RRFB 10% 0 0.988051 0.995973 0.966640 0.946589 0.926559 0/5 

RRFB 20% 0 0.988000 0.995060 0.963760 0.942250 0.920983 0/5 

RRFB 30% 0 0.987276 0.994447 0.961060 0.941287 0.915086 0/5 

RRFB 40% 0 0.985398 0.993350 0.957200 0.935024 0.909379 0/5 

RRFB 50% 0 0.983235 0.991918 0.953580 0.926977 0.903255 0/5 
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Table 18: AUC comparison of RF, RRFB and RRFE in medium-dimensional datasets 

with m set as twice the square root of M and MISpct ranging from 1% to 5% by 1% 

 

MISpct k CTG Dermatology Ionosphere Musk Steel IMP 

RF 0% 0 0.989067 0.996524 0.968378 0.947438 0.932779 ref 

RRFE 2% 2 0.989082 0.996551 0.968420 0.948823 0.932853 5/5 

RRFE 2% 3 0.989306 0.996604 0.968740 0.947963 0.933184 5/5 

RRFE 3% 4 0.989122 0.996699 0.968520 0.947950 0.932809 5/5 

RRFE 4% 5 0.989184 0.996678 0.968420 0.948311 0.932808 5/5 

RRFE 2% 4 0.989102 0.996646 0.967620 0.948337 0.933068 4/5 

RRFE 2% 5 0.989194 0.996625 0.968060 0.948317 0.933424 4/5 

RRFE 4% 3 0.988745 0.996686 0.968680 0.948551 0.933116 4/5 

RRFE 5% 2 0.989071 0.996751 0.967980 0.948422 0.932976 4/5 

RRFE 5% 3 0.989194 0.996755 0.967880 0.948343 0.932899 4/5 

RRFE 5% 4 0.989102 0.996699 0.968880 0.948885 0.932475 4/5 

RRFE 5% 5 0.988347 0.996934 0.968800 0.947939 0.932911 4/5 

RRFE 1% 1 0.988888 0.996550 0.969540 0.947287 0.932883 3/5 

RRFE 1% 2 0.988602 0.996604 0.968160 0.948529 0.933483 3/5 

RRFE 1% 5 0.989500 0.996592 0.968340 0.947319 0.933699 3/5 

RRFE 3% 2 0.988867 0.996647 0.968480 0.948792 0.932713 3/5 

RRFE 3% 3 0.988520 0.996740 0.968660 0.948151 0.932644 3/5 

RRFE 3% 5 0.989041 0.996841 0.968160 0.947555 0.932785 3/5 

RRFE 4% 2 0.988388 0.996529 0.967940 0.949391 0.933244 3/5 

RRFE 1% 4 0.989296 0.996509 0.967480 0.947613 0.932316 2/5 

RRFE 2% 1 0.988867 0.996656 0.968340 0.948376 0.932394 2/5 

RRFE 4% 1 0.988694 0.996667 0.967900 0.948239 0.931724 2/5 

RRFE 4% 4 0.988694 0.996699 0.968120 0.947834 0.932549 2/5 

RRFE 5% 1 0.988561 0.996658 0.967800 0.949153 0.932031 2/5 

RRFE 1% 3 0.988990 0.996497 0.968300 0.948246 0.932651 1/5 

RRFE 3% 1 0.988612 0.996614 0.968300 0.946953 0.932141 1/5 

RRFB 1% 0 0.988949 0.996334 0.968940 0.947342 0.932594 1/5 

RRFB 3% 0 0.988592 0.996531 0.967880 0.946768 0.930345 1/5 

RRFB 4% 0 0.988878 0.996486 0.968180 0.947595 0.930599 1/5 

RRFB 2% 0 0.988786 0.996485 0.967920 0.947433 0.931244 0/5 

RRFB 5% 0 0.988367 0.996314 0.967540 0.945920 0.929269 0/5 
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Table 19: AUC comparison of RF, RRFB and RRFE in medium-dimensional datasets 

with m set as half of the square root of M and MISpct ranging from 10% to 50% by 10% 

 

MISpct k CTG Dermatology Ionosphere Musk Steel IMP 

RF 0% 0 0.987950 0.997306 0.966285 0.953610 0.932301 ref 

RRFE 10% 5 0.987673 0.997330 0.965140 0.953844 0.931671 2/5 

RRFE 20% 3 0.986480 0.997434 0.964400 0.954533 0.929580 2/5 

RRFE 20% 4 0.986398 0.997596 0.964040 0.954224 0.929998 2/5 

RRFE 20% 5 0.986755 0.997383 0.964740 0.954697 0.930821 2/5 

RRFE 30% 2 0.985051 0.997584 0.963300 0.955403 0.928018 2/5 

RRFE 30% 3 0.986061 0.997478 0.963860 0.954883 0.927979 2/5 

RRFE 30% 4 0.986122 0.997658 0.963300 0.954272 0.929188 2/5 

RRFE 30% 5 0.986235 0.997467 0.963900 0.954251 0.929729 2/5 

RRFE 40% 2 0.984490 0.997524 0.962060 0.955783 0.927004 2/5 

RRFE 40% 3 0.985306 0.997640 0.962920 0.955058 0.926944 2/5 

RRFE 40% 4 0.985306 0.997573 0.962660 0.954556 0.928336 2/5 

RRFE 40% 5 0.985806 0.997649 0.963360 0.954806 0.928724 2/5 

RRFE 50% 2 0.983949 0.997616 0.961640 0.955086 0.924815 2/5 

RRFE 50% 3 0.984561 0.997711 0.962480 0.955042 0.926361 2/5 

RRFE 50% 4 0.984867 0.997668 0.962940 0.955004 0.926934 2/5 

RRFE 50% 5 0.985786 0.997607 0.963620 0.954924 0.927325 2/5 

RRFE 10% 1 0.986847 0.997369 0.964340 0.953257 0.929788 1/5 

RRFE 10% 2 0.986745 0.997276 0.965140 0.954885 0.931254 1/5 

RRFE 10% 3 0.986898 0.997434 0.965340 0.953484 0.930099 1/5 

RRFE 10% 4 0.987224 0.997294 0.964960 0.953801 0.931240 1/5 

RRFE 20% 2 0.986051 0.997253 0.964520 0.954820 0.928846 1/5 

RRFE 30% 1 0.984633 0.997198 0.961620 0.955168 0.925164 1/5 

RRFE 50% 1 0.981194 0.996964 0.960500 0.955362 0.920734 1/5 

RRFE 20% 1 0.985582 0.997006 0.963580 0.952751 0.927519 0/5 

RRFE 40% 1 0.983408 0.997097 0.961320 0.953080 0.922604 0/5 

RRFB 10% 0 0.985704 0.996281 0.963840 0.950643 0.926774 0/5 

RRFB 20% 0 0.983327 0.995211 0.961240 0.945740 0.921079 0/5 

RRFB 30% 0 0.980357 0.994017 0.958280 0.941863 0.914679 0/5 

RRFB 40% 0 0.977265 0.992506 0.955360 0.935903 0.908853 0/5 

RRFB 50% 0 0.972735 0.989281 0.952000 0.930563 0.898846 0/5 
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Table 20: AUC comparison of RF, RRFB and RRFE in medium-dimensional datasets 

with m set as half of the square root of M and MISpct ranging from 1% to 5% by 1% 

 

MISpct k CTG Dermatology Ionosphere Musk Steel IMP 

RF 0% 0 0.987950 0.997306 0.966285 0.953610 0.932301 ref 

RRFE 1% 4 0.987684 0.997314 0.966300 0.953699 0.932773 4/5 

RRFE 1% 5 0.987582 0.997488 0.966460 0.952695 0.932699 3/5 

RRFE 5% 5 0.987265 0.997478 0.966440 0.953811 0.931568 3/5 

RRFE 1% 2 0.987622 0.997299 0.966340 0.953829 0.931540 2/5 

RRFE 2% 3 0.987418 0.997392 0.965900 0.954412 0.931700 2/5 

RRFE 2% 4 0.987408 0.997391 0.966000 0.954070 0.932273 2/5 

RRFE 3% 5 0.987755 0.997399 0.965980 0.954162 0.931923 2/5 

RRFE 4% 2 0.987602 0.997369 0.966000 0.954213 0.931441 2/5 

RRFE 4% 3 0.987265 0.997376 0.965360 0.953868 0.931805 2/5 

RRFE 5% 3 0.987510 0.997422 0.965800 0.954169 0.931936 2/5 

RRFE 1% 1 0.987765 0.997220 0.966380 0.953298 0.931860 1/5 

RRFE 1% 3 0.987888 0.997230 0.965760 0.953537 0.932913 1/5 

RRFE 2% 1 0.987276 0.997232 0.966780 0.952449 0.931198 1/5 

RRFE 3% 1 0.987214 0.997337 0.966160 0.953450 0.931143 1/5 

RRFE 3% 2 0.987286 0.997275 0.966340 0.953433 0.932023 1/5 

RRFE 3% 3 0.987571 0.997320 0.965840 0.953386 0.931665 1/5 

RRFE 3% 4 0.987408 0.997187 0.965760 0.954236 0.931440 1/5 

RRFE 4% 4 0.987663 0.997134 0.967340 0.953112 0.931578 1/5 

RRFE 4% 5 0.987602 0.997474 0.966100 0.953130 0.931720 1/5 

RRFE 5% 2 0.986765 0.997499 0.965900 0.953342 0.931108 1/5 

RRFE 2% 2 0.987357 0.997231 0.965960 0.952663 0.931930 0/5 

RRFE 2% 5 0.987633 0.997125 0.966200 0.952825 0.931739 0/5 

RRFE 4% 1 0.987143 0.997178 0.964840 0.953110 0.930961 0/5 

RRFE 5% 1 0.987082 0.997283 0.965700 0.952936 0.931010 0/5 

RRFE 5% 4 0.987531 0.997126 0.965460 0.953038 0.931328 0/5 

RRFB 1% 0 0.987827 0.997178 0.966140 0.953175 0.931283 0/5 

RRFB 2% 0 0.987388 0.997078 0.965380 0.953516 0.930151 0/5 

RRFB 3% 0 0.987102 0.996996 0.964500 0.952944 0.930108 0/5 

RRFB 4% 0 0.987010 0.997082 0.965080 0.952648 0.929175 0/5 

RRFB 5% 0 0.987071 0.996869 0.965020 0.952643 0.929400 0/5 
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Table 21: Summary of the best AUC performance among RF, RRFB and RRFE in five 

medium-dimensional datasets 

Dataset m MISpct k Algorithm AUC AUC (RF) IMP% 

CTG ⌊2√𝑀⌋ 50% 4 RRFE 0.989643 0.989067 0.06% 

dermatology ⌊√𝑀⌋ 50% 5 RRFE 0.998215 0.997451 0.08% 

ionosphere ⌊√𝑀⌋ 1% 4 RRFE 0.969600 0.968297 0.13% 

musk ⌊√𝑀⌋ 50% 1 RRFE 0.956217 0.951957 0.45% 

steel ⌊2√𝑀⌋ 30% 5 RRFE 0.934959 0.932779 0.23% 

 

The best AUC performances of RRFE and RRFB in all five datasets are listed in Table 21 

together with the AUC performances provided by the original RF. The best performances 

among RF, RRFB and RRFE are always provided by RRFE rather than RRFB. Three out 

of five algorithms use the default m value of ⌊√𝑀⌋. Four out of five algorithms use 

MISpct = 50%. Four out of five algorithms used k values at either 4 or 5. The percentage 

of improvement in AUC varies from 0.06% to 0.45%. 

 

We will use one of the 10-fold cross-validations within the steel dataset at MISpct = 30% 

to demonstrate how RRFE achieves improvement over RF while RRFB does not. The 

average strength of individual classification trees, the average correlation among 

individual classification trees, the accuracy and AUC as well as Breiman’s generalization 

error bound are together listed for RF, RRFB and RRFE algorithms in steel dataset in 

Table 22 and Figure 26. The algorithm with the lowest accuracy and AUC is RRFB, 

which also has the lowest average strength, the lowest average correlation as well as the 

highest Breiman’s error bound. For RRFE with k=5, it does not have the lowest 

correlation among all five RRFE algorithms, but it has the highest average strength 
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among all five RRFE algorithms. Among all listed algorithms, RRFE with k=5 has the 

lowest Breiman’s error bound, the highest AUC value as well as the highest accuracy. 

 

Table 22: AUC vs. Breiman’s error bound in the steel dataset for RF, RRFB and RRFE 

Algorithm Strength Correlation Accuracy AUC Breiman’s error bound 

RF 0.495150 0.208246 0.830000 0.935425 0.641137 

RRFB 0.376300 0.161005 0.817500 0.908263 0.976025 

RRFE (k=1) 0.441225 0.166230 0.852500 0.935338 0.687635 

RRFE (k=2) 0.463240 0.175527 0.850000 0.939225 0.642431 

RRFE (k=3) 0.473585 0.180483 0.852500 0.938850 0.624230 

RRFE (k=4) 0.479285 0.182693 0.855000 0.939700 0.612613 

RRFE (k=5) 0.485735 0.182699 0.862500 0.942038 0.591650 

 

 

Figure 26: AUC vs. Breiman’s error bound in the steel dataset for RF, RRFB and RRFE 
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4.6 Results in High-dimensional Microarray Datasets 

In high-dimensional microarray datasets, variable selection is an important step in data 

analysis (Lu, et al., 2011; Schumi, et al., 2008). Here, we rank all variables by their 

variable importance according to random forests for the two microarray datasets. The 

criterion for assessing variable importance is the mean decrease in Gini impurity 

criterion. For both microarray datasets, we run the same experiment as listed in 4.4 first 

with all variables (AUC2000/AUC2905), and then with the best 800 variables (AUC800), 

the best 400 variables (AUC400), the best 200 variables (AUC200) and the best 100 

variables (AUC100). 

4.6.1 Alon Dataset 

Figure 27 shows the sorted variable importance in the Alon dataset (2000 variables) 

according to the original random forests (Ntree = 2000).  

 

Figure 27: Variable importance in the Alon dataset based on random forests 
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The variable importance values for the most important 100 variables vary between 0.5 

and around 0.05. The least important 1900 variables have variable importance values 

between 0 and 0.05. The experimental results for AUC2000, AUC800, AUC400, 

AUC200 and AUC100 are listed in Table 23. 

 

In Table 23, the best AUC performance for RF is underlined in the first row, the best 

AUC performance for each column is underlined and bold. AUC800, AUC400, AUC200 

and AUC100 are all much better than the original AUC2000. Both RRFE and RRFB can 

achieve improvements over the original random forests. The best AUC performance is 

produced by the best 100 variables (AUC100) using RRFB with MISpct =30%. 

4.6.2 Gravier Dataset 

Figure 28 shows the sorted variable importance in the Gravier dataset (2905 variables) 

according to the original random forests (Ntree = 2000).  

 

Figure 28: Variable importance in the Gravier dataset based on random forests 



 101   
 

The variable importance values for the most important 400 variables vary between 0.6 

and around 0.05. The least important 2505 variables have variable importance values 

between 0 and around 0.05. The experimental results for AUC2905, AUC800, AUC400, 

AUC200 and AUC100 are listed in Table 24. 

 

In Table 24, the best AUC performance for RF is underlined in the first row, the best 

AUC performance for each column is underlined and bold. AUC800, AUC400, AUC200 

and AUC100 are all much better than the original AUC2905. Both RRFE and RRFB can 

achieve improvements over the original random forests. The best AUC performance is 

produced by the best 400 variables (AUC400) using RRFB with MISpct =40%. 
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Table 23: AUC comparison of RF, RRFB and RRFE with MISpct ranging from 10% to 

50% by 10% in the Alon dataset 

  MISpct k AUC2000 AUC800 AUC400 AUC200 AUC100 

RF    0% 0 0.939151  0.970725  0.972306  0.971016  0.969073  

RRFB  10% 0 0.919524  0.977530  0.973006  0.977514  0.978311  

RRFB  20% 0 0.911351  0.977951  0.976045  0.983201  0.973576  

RRFB  30% 0 0.913560  0.971559  0.978850  0.976607  0.985671  

RRFB  40% 0 0.853735  0.950135  0.976591  0.971762  0.981388  

RRFB  50% 0 0.834257  0.950450  0.977045  0.976045  0.981600  

RRFE 10% 1 0.942215  0.978600  0.978163  0.979983  0.972225  

RRFE 20% 1 0.934596  0.976061  0.978530  0.981327  0.977686  

RRFE 30% 1 0.934321  0.972796  0.983671  0.976710  0.978733  

RRFE 40% 1 0.934470  0.976186  0.980858  0.979022  0.980421  

RRFE 50% 1 0.943894  0.974990  0.980202  0.983092  0.978279  

RRFE 10% 2 0.934846  0.967287  0.973061  0.971592  0.970991  

RRFE 20% 2 0.944074  0.977694  0.977093  0.971428  0.974514  

RRFE 30% 2 0.939471  0.979311  0.979093  0.974662  0.972764  

RRFE 40% 2 0.941096  0.971521  0.979327  0.978655  0.977951  

RRFE 50% 2 0.929339  0.976373  0.982359  0.975733  0.977623  

RRFE 10% 3 0.932236  0.975803  0.974296  0.967232  0.972671  

RRFE 20% 3 0.947448  0.970248  0.976639  0.977655  0.975241  

RRFE 30% 3 0.940035  0.973389  0.984069  0.976030  0.972029  

RRFE 40% 3 0.922446  0.969068  0.980546  0.978437  0.976796  

RRFE 50% 3 0.933245  0.974295  0.982905  0.976296  0.977623  

RRFE 10% 4 0.954145  0.977983  0.974968  0.973217  0.972264  

RRFE 20% 4 0.931799  0.972389  0.977546  0.973843  0.975749  

RRFE 30% 4 0.944980  0.972171  0.984687  0.975530  0.979921  

RRFE 40% 4 0.941620  0.970444  0.977257  0.972936  0.977006  

RRFE 50% 4 0.930291  0.971482  0.985015  0.972357  0.977296  

RRFE 10% 5 0.938666  0.970045  0.975623  0.973280  0.973061  

RRFE 20% 5 0.947660  0.972389  0.974968  0.979546  0.973498  

RRFE 30% 5 0.937112  0.972678  0.979093  0.977123  0.972881  

RRFE 40% 5 0.940354  0.975779  0.978530  0.975765  0.977045  

RRFE 50% 5 0.947339  0.973662  0.978546  0.977623  0.975154  

 

 



 103   
 

Table 24: AUC comparison of RF, RRFB and RRFE with MISpct ranging from 10% to 

50% by 10% in the Gravier dataset 

  MISpct k AUC2905 AUC800 AUC400 AUC200 AUC100 

RF    0% 0 0.889785  0.924021  0.933349  0.922233  0.918333  

RRFB  10% 0 0.892035  0.929214  0.936669  0.923356  0.922037  

RRFB  20% 0 0.892163  0.937507  0.937805  0.920334  0.916377  

RRFB  30% 0 0.879934  0.927562  0.940217  0.926042  0.919480  

RRFB  40% 0 0.885349  0.933591  0.945776  0.924673  0.920810  

RRFB  50% 0 0.871786  0.931683  0.940454  0.925417  0.909974  

RRFE 10% 1 0.891004  0.925117  0.934732  0.924742  0.916842  

RRFE 20% 1 0.893667  0.934079  0.932559  0.924173  0.919757  

RRFE 30% 1 0.890101  0.924498  0.941722  0.923756  0.920221  

RRFE 40% 1 0.887674  0.929960  0.935077  0.926061  0.914231  

RRFE 50% 1 0.888533  0.920026  0.935680  0.924959  0.921122  

RRFE 10% 2 0.888433  0.924755  0.940791  0.925698  0.919322  

RRFE 20% 2 0.891797  0.930520  0.937528  0.920230  0.918518  

RRFE 30% 2 0.892968  0.931070  0.935172  0.920278  0.920037  

RRFE 40% 2 0.895718  0.925144  0.933396  0.927003  0.922259  

RRFE 50% 2 0.895602  0.924993  0.935749  0.923040  0.921105  

RRFE 10% 3 0.886558  0.928336  0.932929  0.926710  0.919550  

RRFE 20% 3 0.893690  0.930641  0.932620  0.925356  0.919408  

RRFE 30% 3 0.892806  0.932040  0.937093  0.922291  0.916572  

RRFE 40% 3 0.890163  0.929064  0.935075  0.919683  0.916946  

RRFE 50% 3 0.892059  0.925915  0.929957  0.926929  0.916720  

RRFE 10% 4 0.888338  0.923128  0.932727  0.925843  0.919248  

RRFE 20% 4 0.890978  0.928639  0.932466  0.926026  0.922285  

RRFE 30% 4 0.889675  0.927168  0.939355  0.921029  0.918905  

RRFE 40% 4 0.890158  0.925295  0.936021  0.922657  0.918718  

RRFE 50% 4 0.887385  0.922091  0.934694  0.927020  0.917575  

RRFE 10% 5 0.891045  0.925559  0.932133  0.924483  0.916788  

RRFE 20% 5 0.890246  0.929859  0.936622  0.922387  0.915720  

RRFE 30% 5 0.886487  0.927792  0.934548  0.921660  0.919245  

RRFE 40% 5 0.893580  0.927530  0.939836  0.927406  0.920229  

RRFE 50% 5 0.892611  0.923032  0.931449  0.927665  0.921173  
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4.7 Discussion 

When dealing with medium-dimensional datasets, in most cases RRFB does not perform 

better than RF with regards to AUC, but RRFE takes advantage of the variable 

importance information provided by RF and RRFE can further improve RF with regards 

to AUC.  

 

When MISpct changes from 10% to 50% by 10%, RRFE is more likely to produce the 

best improvement in an individual medium-dimensional dataset. When MISpct changes 

from 1% to 5% by 1%, RRFE is more likely to produce consistent improvements across 

all five medium-dimensional datasets. However, in both MISpct ranges, the maximum 

AUC improvement is below 0.5%. The margin for improvement by RRFE seems 

relatively small for these five medium-dimensional datasets.  

 

RRFE is also slightly faster than RRFB, as RRFE only imposes missing data in selected 

variables instead of all variables. For part of the simulation experiments using the steel 

dataset, we carried it out in R 2.15.1 on a computer with Intel Core i5-3570 CPU @ 3.40 

GHz and 4.00G RAM in a 32-bit Windows 7 Enterprise operation system. It took one 

minute using RF, 16 minutes using RRFB and 13 minutes using RRFE. 

 

Besides the default value of m= ⌊√𝑀⌋, here we only experimented with two alternative m 

values, m= ⌊2√𝑀⌋ and m=⌊√𝑀/2⌋. m=⌊2√𝑀⌋ produced better improvement than m= 

⌊√𝑀⌋ in 2 out of 5 datasets. RRFE with other m values might provide further 

improvements for these medium- dimensional datasets. 
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When dealing with high-dimensional microarray datasets using random forests, variable 

selection is an important step. After variable selection, both RRFB and RRFE can 

achieve AUC performance improvement over the original RF. For these two microarray 

datasets, RRFB is slightly better than RRFE in terms of AUC improvement after variable 

selection. 
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Chapter 5. Conclusion and Future Directions 

5.1 Conclusion  

This dissertation has introduced the roughened random forests (RRF), a simple and 

effective method to improve the original random forests (RF) in binary classification. By 

imposing missing data and then imputing missing data in the originally complete dataset 

before building each individual classification tree, RRF algorithms are able to unevenly 

decrease strength and correlation and lead to decreased Breiman’s error bound.  

 

We first examined RRFA, an algorithm which imposes missing data in both the training 

and testing datasets. RRFA uses a quick and easy method, median/mode imputation, to 

replace the missing data. Experimental results show that RRFA can produce consistent 

improvements over RF with regards to accuracy and AUC, especially AUC.  

 

However, when the percentage of imposed missing data gets over 50% in the Pima 

Indians dataset, we find that Breiman’s error bound and AUC no longer have a negative 

linear relationship in RRFA. This problem is solved by RRFB algorithm, which only 

imposes missing data in the training dataset. RRFB shows further improvement over 

RRFA with regards to AUC in the Pima Indians dataset. Also, RRFB is much quicker 

than RRFA in making predictions for new testing datasets. 

 

In addition to RRFA and RRFB which use median/mode imputation, we further 

investigated RRFC algorithms using seven different imputation methods. These seven 
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RRFC algorithms are named as RRFC1, RRFC2, RRFC3, RRFC4, RRFC5, RRFC6 and 

RRFC7. RRFC6 uses multivariate imputation by chained equations (MICE) as the 

imputation method and RRFC6 produces slightly better overall AUC performances than 

RRFB, but RRFC6 requires much more computational resources than RRFB. None of the 

other six RRFC algorithms match RRFB in overall AUC performance. 

 

One of the most important parameter within random forests is the m value, or mtry 

value as in R package randomForest. The default value of m usually works well for 

the original random forests. However, it is not necessarily the best choice for roughened 

random forests. RRFD tests all possible m values instead of using the default m value. 

RRFD can provide considerable improvement over RRFB with regards to AUC. 

However, RRFD is computationally expensive, especially when the dataset’s dimension 

gets higher.   

 

For medium-dimensional datasets with between 20 and 200 covariates, we further 

proposed RRFE algorithm which selectively imposes missing data in the more important 

variables. A variable’s importance value is based on its average contribution to reducing 

Gini impurity criterion in the original random forests. RRFE demonstrates better AUC 

performance than RF in medium-dimensional datasets while RRFB fails to do so. 

 

For high-dimensional microarray datasets with 2000 or more covariates, variable 

selection is an important step. For the two tested microarray datasets, experimental results 

demonstrate that RRFB and RRFE can both improve AUC performance over RF after 
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variable selection. RRFB is slightly better than RRFE after variable selection in these two 

microarray datasets. 

 

The original RF’s computation time can be represented as cNtreeN√M log N (Breiman, 

2003). The value of the constant c is restricted by the hardware configuration. For RRF 

algorithms, the additional computation time is just the time used for missing data 

introduction (Tmis) and missing data imputation (Timp) in each classification tree. 

Therefore, it can be written as c(NtreeN√M log N +  NtreeTmis +  NtreeTimp) . As we 

impose missing data completely at random in all our RRF algorithms, Tmis is usually 

negligible. Timp depends largely on the selection of imputation methods. For single 

imputation, such as median/mode imputation used in RRFB, Timp is also negligible. 

However, for multiple imputation such as MICE used in RRFC6, Timp can get very big 

for larger datasets with high rates of missing data.  

 

Both RRF and RF build classification trees independently. Therefore, both can improve 

computational efficiency through parallel computing. 

 

5.2 Future Directions 

5.2.1 Expand RRF to Alternative Random Forests 

As the RRF algorithms mostly focus on modifying the original dataset instead of the 

inner workings of random forests, they can be easily extended to alternative random 
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forests. Preliminary results show that RRFB and RRFD can both significantly improve 

oblique random forests and conditional inference forests in binary classification. We will 

further test RRF algorithms in oblique random forests and conditional inference forests. 

5.2.2 Other Applications 

Our current RRF algorithms are all used in binary classification with complete datasets. 

They will be further applied in binary classification with incomplete datasets.  

 

We tested RRFB and RRFE in high-dimensional microarray datasets with around 2000 to 

3000 covariates. We will further test them in microarray datasets with ultra-high 

dimensions.  

 

As random forests use the same algorithm for all classifications, we will also apply RRF 

similarly in multiclass classification. Also, we will further extend RRF to regression 

analysis based on random forests. 

 

 

 

 

 

 

 



 110   
 

Bibliography 

Alon, U. et al., 1999. Broad patterns of gene expression revealed by clustering analysis of 

tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of 

the National Academy of Sciences, 96(12), pp. 6745--6750. 

Bache, K. & Lichman, M., 2013. UC Irvine Machine Learning Repository. [Online]  

Available at: http://archive.ics.uci.edu/ml/ 

[Accessed 21 April 2014]. 

Breiman, L., 1996. Bagging predictors. Machine learning, 24(2), pp. 123-140. 

Breiman, L., 2001. Random forests. Machine Learning, 45(1), pp. 5-32. 

Breiman, L., 2003. RF/tools : A class of two-eyed algorithms, San Francisco: SIAM 

WORKSHOP. 

Breiman, L. & Cutler, A., 2004. Random forests. [Online]  

Available at: 

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm 

[Accessed 18 April 2014]. 

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J., 1984. Classification and 

regression trees. Belmont, CA: Wadsworth International Group. 

Caruana, R. & Niculescu-Mizil, A., 2006. An empirical comparison of supervised 

learning algorithms. Pittsburgh, Pennsylvania, The Proceedings of the 23rd 

International Conference on Machine Learning (ICML2006), pp. 161-168. 

Chen, C., Liaw, A. & Breiman, L., 2004. Using random forest to learn imbalanced data, 

Berkeley, CA: University of California at Berkeley, Mathematics Statistics 

Library. 



 111   
 

Chipman, H. A., George, E. I. & McCulloch , R. E., 2010. BART: Bayesian Additive 

Regression Trees. Annals of Applied Statistics, 4(1), p. 266–298. 

Cordell, H. J., 2009. Detecting gene–gene interactions that underlie human diseases. 

Nature Reviews Genetics, Volume 10, pp. 392-404. 

Cortes, C. & Vapnik, V., 1995. Support-vector networks. Machine Learning, Volume 20, 

pp. 273-297. 

Cutler, D. R. et al., 2007. Random forests for classification in ecology. Ecology, Volume 

88, p. 2783–2792. 

Ekstrom, J., 2011. The Phi-coefficient, the tetrachoric correlation coefficient, and the 

Pearson-Yule Debate. [Online]  

Available at: http://escholarship.org/uc/item/7qp4604r 

[Accessed 18 April 2014]. 

Elter, M., Schulz-Wendtland, R. & Wittenberg , T., 2007. The prediction of breast cancer 

biopsy outcomes using two CAD approaches that both emphasize an intelligible 

decision process. Medical Physics, 34(11), pp. 4164-4172. 

Freund, Y. & Schapire, R. E., 1997. A decision-theoretic generalization of on-line 

learning and an application to boosting. Journal of Computer and System 

Sciences, 55(1), p. 119–139. 

Friedman, J. H., 2001. Greedy function approximation: A gradient boosting machine. 

Annals of Statistics, 29(5), pp. 1189-1232. 

Gislason, P. O., Benediktsson, J. A. & Sveinsson, J. R., 2006. Random forests for land 

cover classification. Pattern Recognition Letters, 27(4), p. 294–300. 



 112   
 

Gravier, E. et al., 2010. A prognostic DNA signature for T1T2 node-negative breast 

cancer patients. Genes, Chromosomes and Cancer, 49(12), pp. 1125-1134. 

Hand, D., 2009. Measuring classifier performance: a coherent alternative to the area 

under the ROC curve. Machine Learning, 77(1), pp. 103-123. 

Hastie, T., Tibshirani, R. & Friedman, J., 2009. The elements of statistical learning: data 

mining, inference, and prediction. 2nd ed. s.l.:Springer. 

Hosmer, D. W. & Lemeshow, S., 2000. Applied logistic regression. 2nd ed. s.l.:Wiley-

Interscience Publication. 

Hothorn, T., Hornik, K. & Zeileis, A., 2006. Unbiased recursive partitioning: A 

conditional inference framework. Journal of Computational and Graphical 

Statistics, 15(3), pp. 651--674. 

Ho, T. K., 1995. Random decision forest. Montreal, QC, Proceedings of the 3rd 

International Conference on Document Analysis and Recognition, pp. 278-282. 

Kaggle, 2010. Kaggle competitions. [Online]  

Available at: http://www.kaggle.com/competitions 

[Accessed 18 April 2014]. 

Leisch, F., Weingessel, A. & Hornik, K., 2011. bindata: generation of artificial binary 

data. [Online]  

Available at: http://CRAN.R-project.org/package=bindata 

Liaw, A. & Wiener, M., 2002. Classification and regression by randomForest. R News, 

2(3), pp. 18-22. 

Little, R. J. & Rubin, D. B., 2002. Statistical analysis with missing data. Hoboken, New 

Jersey: John Wiley & Sons, Inc.. 



 113   
 

Liu, F. T., Ting, K. M., Yu, Y. & Zhou, Z.-H., 2008. Spectrum of variable-random trees. 

Journal of Artificial Intelligence Research, Volume 32, pp. 355-384. 

Lu, T., Liang, H., Li, H. & Wu, H., 2011. High dimensional ODEs coupled with mixed-

effects modeling techniques for dynamic gene regulatory network identification. 

Journal of the American Statistical Association, 106(496), pp. 1242-1258. 

Mease, D. & Wyner, A., 2008. Evidence contrary to the statistical view of boosting. 

Journal of Machine Learning Research, Volume 9, pp. 131-156. 

Menze, B. H. et al., 2011. On oblique random forests. Machine Learning and Knowledge 

Discovery in Databases · Lecture Notes in Computer Science, Volume 6912, pp. 

453-469. 

Palmer, D. S., O'Boyle, N. M., Glen, R. C. & Mitchell, J. B. O., 2007. Random forest 

models to predict aqueous solubility. Journal of Chemical Information and 

Modeling, 47(1), pp. 150-158. 

R Development Core Team, 2012. R: A Language and Environment for Statistical 

Computing. [Online]  

Available at: http://www.R-project.org 

Ramey, J., 2013. datamicroarray. [Online]  

Available at: https://github.com/ramhiser/datamicroarray 

[Accessed 21 April 2014]. 

Ripley, B. D., 1996. Pattern recognition and neural networks. s.l.:Cambridge University 

Press. 



 114   
 

Ripley, B. et al., 2014. MASS: Support Functions and Datasets for Venables and Ripley's 

MASS. [Online]  

Available at: http://cran.r-project.org/web/packages/MASS/index.html 

[Accessed 18 April 2014]. 

Robnik-Sikonja, M., 2004. Improving random forests. s.l., ECML 2004 Proceedings, pp. 

359-370. 

Rodriguez, J. J., Kuncheva, L. I. & Alonso, C. J., 2006. Rotation forest: A new classifier 

ensemble method.. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 28(10), pp. 1619-30. 

Rubin, D. B., 1987. Multiple imputation for nonresponse in surveys. New York: Wiley. 

Schafer, J. L. & Graham, J. W., 2002. Missing data: our view of the state of the art. 

Psychological Methods, 7(2), pp. 147-177. 

Schumi, J., DiRienzo, A. G. & DeGruttola, V., 2008. Testing for associations with 

missing high-dimensional categorical covariates. The International Journal of 

Biostatistics, 4(1). 

Shao, J., 1993. Linear model selection by cross-validation. Journal of the American 

Statistical Association, 88(422), pp. 486-494. 

Su, X., Khoshgoftaar, T. M. & Greiner, R., 2009. Making an accurate classifier ensemble 

by voting on classifications from imputed learning sets. International Journal of 

Information and Decision Sciences, 1(3), pp. 301-22. 

Touw, W. G. et al., 2013. Data mining in the life sciences with random forest: a walk in 

the park or lost in the jungle?. Briefings in Bioinformatics, 14(3), pp. 315-326. 



 115   
 

Van Buuren, S. & Groothuis-Oudshoorn, K., 2011. mice: Multivariate Imputation by 

Chained Equations in R.. Journal of Statistical Software, 45(3), pp. 1-67. 

Wang, L., 2014. Vanderbilt Biostatistics Wiki. [Online]  

Available at: http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets 

[Accessed 30 April 2014]. 

Weisberg, S., 2011. alr3: Data to accompany Applied Linear Regression 3rd edition. 

[Online]  

Available at: http://cran.r-project.org/web/packages/alr3/index.html 

[Accessed 18 April 2014]. 

Wolpert, D. H. & Macready, W. G., 1997. No free lunch theorems for optimization. EEE 

Transactions on Evolutionary Computation, 1(1), pp. 67-82. 

Yeh, I.-C., Yang, K.-J. & Ting, T.-M., 2009. Knowledge discovery on RFM model using 

Bernoulli sequence. Expert Systems with Applications, 36(3), p. 5866–5871. 

Yucel, R. M., 2011. State of the multiple imputation software. Journal of Statistical 

Software, 45(1). 

 

 

 

 

 

 

 

 



 116   
 

Appendix : R Functions and Example R Codes with Output 

################################################ 

###############The start of R functions  ############# 

################################################ 

 

###The following three R packages are requied 

library(randomForest)   #Required in all RRF-related functions 

library(nnet)     #Required in rrfc5() 

library(mice)     #Required in rrfc6() 

 

 

##### The following eleven functions are based on the dissertation  

## rrfa() is the function for RRFA algorithm 

## rrfb() is the function for RRFB algorithm 

## rrfc1() is the function for RRFC1 algorithm 

## rrfc2() is the function for RRFC2 algorithm 

## rrfc3() is the function for RRFC3 algorithm 

## rrfc4() is the function for RRFC4 algorithm 

## rrfc5() is the function for RRFC5 algorithm 

## rrfc6() is the function for RRFC6 algorithm 

## rrfc7() is the function for RRFC7 algorithm 

## rrfd() is the function for RRFD algorithm 

## rrfe() is the function for RRFE algorithm 

 

 

###parameters used in all above functions are listed below 

#dat : a dataframe containing both training and testing datasets.  

##the last column of 'dat' should be the binary outcome variable (factor) 

#yvar : the column number for the binary outcome variable,  

##defaulted value of yvar is ncol(dat) 

#tr : row numbers of all training data 

#te : row numbers of all testing data 

#mispct : proportion of missing data, ranging from 0 to 1 

#number.trees : number of trees used in roughened random forests 

 

##the following parameter is specifically used in RRFD 

#m : the number of covariates selected at each tree node in RRFD 

##the following parameter is specifically used in RRFE 

#k : the power to be used on each variable's relative importance  

 

#mfix() is the function used in RRFA,RRFB, RRFC1, RRFC2 and RRFC3  

#mfix() is based on na.roughfix() function from randomForest package  

 

  

mfix=function(x,mmmm){ 
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##x is the name of the dataset with missing data 

##mode imputation is always used on categorical variables 

##mmmm is used to set imputation method for continuous variables 

##mmmm = 1/2/3/4 refers to median/mean/min/max imputation 

##when mmmm=1, mfix() is just the same as na.roughfix()    

 

m4m=function(x){ 

c(median(x,na.rm=T),mean(x,na.rm=T), 

min(x,na.rm=T),max(x,na.rm=T))[mmmm]} 

 

mmfix <- function(object, ...) 

  UseMethod("mmfix") 

 

mmfix.data.frame <- function(object, ...) { 

  isfac <- sapply(object, is.factor) 

  isnum <- sapply(object, is.numeric) 

  if (any(!(isfac | isnum))) 

      stop("mfix only works for numeric or factor") 

  roughfix <- function(x) { 

      if (any(is.na(x))) { 

          if (is.factor(x)) { 

              freq <- table(x) 

              x[is.na(x)] <- names(freq)[which.max(freq)] 

          } else { 

              x[is.na(x)] <- m4m(x) 

          } 

      } 

      x 

  } 

  object[] <- lapply(object, roughfix) 

  object 

} 

 

mmfix.default <- function(object, ...) { 

  if (!is.atomic(object)) 

    return(object) 

  d <- dim(object) 

  if (length(d) > 2) 

    stop("can't handle objects with more than two dimensions") 

  if (all(!is.na(object))) 

    return(object) 

  if (!is.numeric(object)) 

    stop("mfix can only deal with numeric data.") 

  if (length(d) == 2) { 

      hasNA <- which(apply(object, 2, function(x) any(is.na(x)))) 

      for (j in hasNA) 
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          object[is.na(object[, j]), j] <- m4m(object[, j]) 

  } else { 

      object[is.na(object)] <- m4m(object) 

  } 

  object 

} 

mmfix(x) 

} 

 

################## RRFA ############################ 

rrfa=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees){ 

 

rdms=function(dt,pct,kpc){ 

nr=nrow(dt);nc=ncol(dt) 

nd=dt; nm=floor(nr*pct) 

for (z in 1:nc){ 

if(!(z %in% kpc)) nd[sample(nr,nm,rep=F),z]=NA} 

mfix(nd,1)} 

 

 

fin=matrix(0,length(te),number.trees) 

for (i in 1:number.trees){ 

pmr=rdms(dat,mispct,yvar) 

rf=randomForest(pmr[tr,-yvar],pmr[tr,yvar],ntree=1)  

fin[,i]=as.numeric(predict(rf, pmr[te,-yvar]))-1} 

list(pred=fin)} 

 

 

################## RRFB ############################ 

rrfb=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees){ 

 

rdms=function(dt,pct,kpc){ 

nr=nrow(dt);nc=ncol(dt) 

nd=dt; nm=floor(nr*pct) 

for (z in 1:nc){ 

if(!(z %in% kpc)) nd[sample(nr,nm,rep=F),z]=NA} 

mfix(nd,1)} 

 

 

fin=matrix(0,length(te),number.trees) 

for (i in 1:number.trees){ 

pmr=rdms(dat[tr,],mispct,yvar) 

rf=randomForest(pmr[,-yvar],pmr[,yvar],ntree=1)  

fin[,i]=as.numeric(predict(rf, dat[te,-yvar]))-1} 

list(pred=fin)} 
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################## RRFC1 ############################ 

rrfc1=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees){ 

 

rdms=function(dt,pct,kpc){ 

nr=nrow(dt);nc=ncol(dt) 

nd=dt; nm=floor(nr*pct) 

for (z in 1:nc){ 

if(!(z %in% kpc)) nd[sample(nr,nm,rep=F),z]=NA} 

mfix(nd,2)} 

fin=matrix(0,length(te),number.trees) 

for (i in 1:number.trees){ 

pmr=rdms(dat[tr,],mispct,yvar) 

rf=randomForest(pmr[,-yvar],pmr[,yvar],ntree=1)  

fin[,i]=as.numeric(predict(rf, dat[te,-yvar]))-1} 

list(pred=fin)} 

 

 

################## RRFC2 ############################ 

rrfc2=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees){ 

 

rdms=function(dt,pct,kpc){ 

nr=nrow(dt);nc=ncol(dt) 

nd=dt; nm=floor(nr*pct) 

for (z in 1:nc){ 

if(!(z %in% kpc)) nd[sample(nr,nm,rep=F),z]=NA} 

mfix(nd,3)} 

 

fin=matrix(0,length(te),number.trees) 

for (i in 1:number.trees){ 

pmr=rdms(dat[tr,],mispct,yvar) 

rf=randomForest(pmr[,-yvar],pmr[,yvar],ntree=1)  

fin[,i]=as.numeric(predict(rf, dat[te,-yvar]))-1} 

list(pred=fin)} 

 

 

################## RRFC3 ############################ 

rrfc3=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees){ 

 

rdms=function(dt,pct,kpc){ 

nr=nrow(dt);nc=ncol(dt) 

nd=dt; nm=floor(nr*pct) 

for (z in 1:nc){ 

if(!(z %in% kpc)) nd[sample(nr,nm,rep=F),z]=NA} 

mfix(nd,4)} 
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fin=matrix(0,length(te),number.trees) 

for (i in 1:number.trees){ 

pmr=rdms(dat[tr,],mispct,yvar) 

rf=randomForest(pmr[,-yvar],pmr[,yvar],ntree=1)  

fin[,i]=as.numeric(predict(rf, dat[te,-yvar]))-1} 

list(pred=fin)} 

 

 

################## RRFC4 ############################ 

rrfc4=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees){ 

 

hotdeckimp=function(dt,mispct,yvar=ncol(dt)){ 

nr=nrow(dt);nc=ncol(dt);  

nd=dt; nm=floor(nr*mispct) 

for (z in 1:nc){ 

if(!(z %in% yvar)) nd[sample(nr,nm,rep=F),z]=nd[sample(nr,nm,rep=F),z]} 

nd} 

 

fin=matrix(0,length(te),number.trees) 

for (i in 1:number.trees){ 

pmr=hotdeckimp(dat[tr,],mispct,yvar) 

rf=randomForest(pmr[,-yvar],pmr[,yvar],ntree=1)  

fin[,i]=as.numeric(predict(rf, dat[te,-yvar]))-1} 

list(pred=fin)} 

 

 

################## RRFC5 ############################ 

rrfc5=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees){ 

 

library(nnet) 

regdat=function(dat){datmis=dat;  nc=ncol(dat) 

for (i in 1:nc){ 

if(is.factor(dat[,i]))  datmis[,i]=predict(multinom(dat[,i] ~ ., data=dat[,-i])) 

if(!is.factor(dat[,i])) datmis[,i]=predict(glm(dat[,i] ~ ., data=dat[,-i]))} 

datmis} 

regdat=regdat(dat[tr,]) 

 

regimp=function(dt,mispct,yvar=ncol(dt)){ 

nr=nrow(dt);nc=ncol(dt); 

nd=dt; nm=floor(nr*mispct) 

for (z in 1:nc){ 

smpcs=sample(nr,nm,rep=F) 

if(!(z %in% yvar)) nd[smpcs,z]=regdat[smpcs,z]} 

nd} 

 

fin=matrix(0,length(te),number.trees) 
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for (i in 1:number.trees){ 

pmr=regimp(dat[tr,],mispct,yvar) 

rf=randomForest(pmr[,-yvar],pmr[,yvar],ntree=1)  

fin[,i]=as.numeric(predict(rf, dat[te,-yvar]))-1} 

list(pred=fin)} 

 

 

################## RRFC6 ############################ 

rrfc6=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees){ 

 

library(mice) 

 

rdms=function(dt,pct,kpc){ 

nr=nrow(dt);nc=ncol(dt) 

nd=dt; nm=floor(nr*pct) 

for (z in 1:nc){ 

if(!(z %in% kpc)) nd[sample(nr,nm,rep=F),z]=NA} 

compdat=complete(mice(nd,m=1,print=F),1)   

na.roughfix(compdat)} 

 

fin=matrix(0,length(te),number.trees) 

for (i in 1:number.trees){ 

pmr=rdms(dat[tr,],mispct,yvar) 

rf=randomForest(pmr[,-yvar],pmr[,yvar],ntree=1)  

fin[,i]=as.numeric(predict(rf, dat[te,-yvar]))-1} 

list(pred=fin)} 

 

 

################## RRFC7 ############################ 

rrfc7=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees){ 

 

rdms=function(dt,pct,kpc){ 

nr=nrow(dt);nc=ncol(dt) 

nd=dt; nm=floor(nr*pct) 

for (z in 1:nc){ 

if(!(z %in% kpc)) nd[sample(nr,nm,rep=F),z]=NA} 

nd} 

 

fin=matrix(0,length(te),number.trees) 

for (i in 1:number.trees){ 

misdat=rdms(dat[tr,],mispct,yvar) 

pmr=rfImpute(misdat[,-yvar],misdat[,yvar]) 

rf=randomForest(pmr[,-1],pmr[,1],ntree=1)  

fin[,i]=as.numeric(predict(rf, dat[te,-yvar]))-1} 

list(pred=fin)} 
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################## RRFD ############################ 

rrfd=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees, m){ 

 

rdms=function(dt,pct,kpc){ 

nr=nrow(dt);nc=ncol(dt) 

nd=dt; nm=floor(nr*pct) 

for (z in 1:nc){ 

if(!(z %in% kpc)) nd[sample(nr,nm,rep=F),z]=NA} 

mfix(nd,1)} 

 

fin=matrix(0,length(te),number.trees) 

for (i in 1:number.trees){ 

pmr=rdms(dat[tr,],mispct,yvar) 

rf=randomForest(pmr[,-yvar],pmr[,yvar],ntree=1,mtry=m)  

fin[,i]=as.numeric(predict(rf, dat[te,-yvar]))-1} 

list(pred=fin)} 

 

 

################## RRFE ############################ 

rrfe=function(dat,yvar=ncol(dat),tr,te,mispct,number.trees,k){ 

 

rf=randomForest(dat[tr,-yvar],dat[tr,yvar]) 

vp=varImpPlot(rf) 

 

rdms=function(dt,pct,kpc,k){ 

colmis=c(1:length(vp))[rbinom(length(vp),1,(vp/max(vp))^(k))==1] 

nr=nrow(dt);nc=ncol(dt) 

nd=dt; nm=floor(nr*.01) 

for (z in 1:nc){ 

if((z %in% colmis)) nd[sample(nr,nm,rep=F),z]=NA} 

mfix(nd,1)} 

 

fin=matrix(0,length(te),number.trees) 

for (i in 1:number.trees){ 

pmr=rdms(dat[tr,],mispct,yvar,k) 

rf=randomForest(pmr[,-yvar],pmr[,yvar],ntree=1)  

fin[,i]=as.numeric(predict(rf, dat[te,-yvar]))-1} 

list(pred=fin)} 

 

 

 

#RFvsRRF() is a wrapper function  

#RFvsRRF() is used to compare RF with all above RRF algorithms 

 

RFvsRRF=function(dat,tr,te,yvar,mispct,number.trees){ 
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rrfres=NULL 

rf=randomForest(dat[tr,-yvar],dat[tr,yvar],dat[te,-yvar],ntree=number.trees) 

rrfres[1]=colAUC(rf$test$votes[,2],dat[te,yvar]) 

 

r=rrfa(dat,yvar,tr,te,mispct,number.trees) 

rrfres[2]=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

 

r=rrfb(dat,yvar,tr,te,mispct,number.trees) 

rrfres[3]=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

 

r=rrfc1(dat,yvar,tr,te,mispct,number.trees) 

rrfres[4]=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

 

r=rrfc2(dat,yvar,tr,te,mispct,number.trees) 

rrfres[5]=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

 

r=rrfc3(dat,yvar,tr,te,mispct,number.trees) 

rrfres[6]=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

 

r=rrfc4(dat,yvar,tr,te,mispct,number.trees) 

rrfres[7]=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

 

r=rrfc5(dat,yvar,tr,te,mispct,number.trees) 

rrfres[8]=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

 

r=rrfc6(dat,yvar,tr,te,mispct,number.trees) 

rrfres[9]=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

 

r=rrfc7(dat,yvar,tr,te,mispct,number.trees) 

rrfres[10]=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

 

rrfdres=NULL 

for (k in 1:(yvar-1)){ 

r=rrfd(dat,yvar,tr,te,mispct,number.trees,k) 

rrfdres[k]=colAUC(apply(r$pred,1,mean),dat[te,yvar])} 

 

r=rrfe(dat,yvar,tr,te,mispct,number.trees,1) 

rrfe1=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

r=rrfe(dat,yvar,tr,te,mispct,number.trees,2) 

rrfe2=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

r=rrfe(dat,yvar,tr,te,mispct,number.trees,3) 

rrfe3=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

r=rrfe(dat,yvar,tr,te,mispct,number.trees,4) 

rrfe4=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 

r=rrfe(dat,yvar,tr,te,mispct,number.trees,5) 

rrfe5=colAUC(apply(r$pred,1,mean),dat[te,yvar]) 
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finres=c(rrfres,rrfdres,rrfe1,rrfe2,rrfe3,rrfe4,rrfe5) 

names(finres)=c("RF","RRFA","RRFB","RRFC1","RRFC2","RRF3","RRFC4", 

"RRFC5","RRFC6","RRFC7",paste("RRFD_m",1:(yvar-1),sep=""), 

"RRFE_k1","RRFE_k2","RRFE_k3","RRFE_k4","RRFE_k5") 

finres} 

 

################################################ 

###############The end of R functions############### 

################################################ 

 

 

 

 

################################################## 

############ Example R codes to test above R functions  ## 

################################################## 

 

library(MASS)    #Pima Indians dataset is from this package  

library(alr3)         #Blowdown dataset is from this package 

library(caTools)  #AUC calculation function  is from this package 

 

###Pima Indians dataset is prepared 

dat=rbind(Pima.tr,Pima.te) 

number.trees=3 

tr=1:200 

te=201:532 

mispct=0.1 

yvar=ncol(dat) 

###Pima Indians dataset is compared between RF and RRF  

###using 10% of imposed missing data and 3 trees 

pima.3trees.auc=RFvsRRF(dat,tr,te,yvar,mispct,number.trees) 

 

 

###Blowdown dataset is prepared 

dat=blowdown[,c(1,2,4,3)] 

dat$y=factor(dat$y) 

tr=seq(1,3666,2) 

te=seq(2,3666,2) 

yvar=ncol(dat) 

mispct=.1 

number.trees=3 

###Blowdown dataset is compared between RF and RRF  

###using 10% of imposed missing data and 3 trees 
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blowdown.3trees.auc=RFvsRRF(dat,tr,te,yvar,mispct,number.trees) 

 

### We usually use at least 500 trees in our RRF experiments.  

### Here we only use 3 trees for illustration purpose. 

### Results are shown below 

pima.3trees.auc 

blowdown.3trees.auc 

 

################################################ 

###############The end of Example R codes   ######## 

################################################ 

 
 
 
 
 

################################################ 

###############                    R output                ######## 

################################################ 

 

We tested all above example R codes on 4/28/2014 using R 2.15.1, below is the output 

screenshot in R. The AUC value for each RRF algorithm is listed. For example, 

RRFD_m1 refers to using RRFD algorithm with m value set as 1. RRFE_k1 refers to 

using RRFE algorithm with k value set as 1. 

 
 


