
© 2013 by Miles J. Johnson. All rights reserved.

INVERSE OPTIMAL CONTROL FOR DETERMINISTIC
CONTINUOUS-TIME NONLINEAR SYSTEMS

BY

MILES J. JOHNSON

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Professor Timothy Bretl, Chair
Professor Bruce Conway
Professor Cedric Langbort
Professor Seth Hutchinson

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3632073

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3632073

Abstract

Inverse optimal control is the problem of computing a cost function with

respect to which observed state input trajectories are optimal. We present

a new method of inverse optimal control based on minimizing the extent to

which observed trajectories violate first-order necessary conditions for opti-

mality. We consider continuous-time deterministic optimal control systems

with a cost function that is a linear combination of known basis functions. We

compare our approach with three prior methods of inverse optimal control.

We demonstrate the performance of these methods by performing simulation

experiments using a collection of nominal system models. We compare the

robustness of these methods by analyzing how they perform under pertur-

bations to the system. We consider two scenarios: one in which we exactly

know the set of basis functions in the cost function, and another in which

the true cost function contains an unknown perturbation. Results from sim-

ulation experiments show that our new method is computationally efficient

relative to prior methods, performs similarly to prior approaches under large

perturbations to the system, and better learns the true cost function under

small perturbations. We then apply our method to three problems of inter-

est in robotics. First, we apply inverse optimal control to learn the physical

properties of an elastic rod. Second, we apply inverse optimal control to learn

models of human walking paths. These models of human locomotion enable

automation of mobile robots moving in a shared space with humans, and

enable motion prediction of walking humans given partial trajectory obser-

vations. Finally, we apply inverse optimal control to develop a new method of

learning from demonstration for quadrotor dynamic maneuvering. We com-

pare and contrast our method with an existing state-of-the-art solution based

on minimum-time optimal control, and show that our method can generalize

to novel tasks and reject environmental disturbances.

ii

To my family.

iii

Acknowledgements

My work would not have been possible without the support of many people.

First I would like to thank my advisor Timothy Bretl for teaching me so

much about how to do research, how to be professional, and how to nourish

a driving passion for excellence in everything I do. I would also like to thank

my committee, all of whom have provided wonderful support through every

phase of my time here. I would like to thank Dan Block for his seemingly

effortless leadership in the mechatronics lab. It has been my pleasure to work

near him and learn from him – I wish I could follow him around all day, every

day. My research group, thank you. In particular, thank you Abdullah Akce

for being a constant source of calm, patience, and efficiency. Or Dantsker,

thank you for being a Motie (you have to read the book) – an inventive

and fearless builder of everything, from research aircraft to hobby bicycles.

Aadeel Akhtar, thank you for your boundless energy, critical eye, musical

talent, and wonderful taste for movies and anime. Navid Aghasadeghi, thank

you for always having a fresh, confident, and down-to-Earth perspective on

everything. Andy Borum and Joseph DeGol, so many good things are ahead.

Thank you Syed Bilal Mehdi for your constantly uplifting attitude in the

lab. What fun we had! James Norton, thank you for your constant will

to inspire scientific thinking around so many engineers. Bob Sandheinrich,

Sophie Puydupin-Jamin, and Olaoluwa Adeniba, thank you for your fresh

ideas, sparky attitude, and pepper soup! Aniket Aranake, thank you for

being the best intern ever, and a continuing source of brilliant ideas and

conversation. Zoe McCarthy and Cyrus Omar, thank you for reminding us

how research should be done, with a smile, blazing curiosity, and fearless

spirit. Aaron Becker, you have been a constant inspiration to myself and the

lab, even after you graduated. Jonathan Ponniah, couldn’t ask for a better

partner on the wall. Colin Das, once a colleague, now a brother. Dennis

Matthews, what can I say!? I hope we continue breaking the odds. Wow,

what a group. Finally, I’d like to thank my family. Nothing would be possible

without their amazing energy, love, support, and inspiration. Period.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

Chapter 1 Inverse Optimal Control 1
1.1 Introduction . 1
1.2 Inverse Optimal Control: Problem Statement 3
1.3 Related Work . 5
1.4 Applications of Inverse Optimal Control 7

Chapter 2 A Comparison of Inverse Optimal Control Methods 9
2.1 Three Prior Methods of Inverse Optimal Control 9
2.2 A New Method Based on Necessary Conditions for Optimality 18
2.3 Simulation Experiments . 23
2.4 Results and Discussion . 30

Chapter 3 Calibration of the Kirchoff Elastic Rod 39
3.1 Introduction . 39
3.2 Model . 42
3.3 Simulation Experiments . 44
3.4 Hardware Experiments . 46

Chapter 4 Modeling Human Locomotion 52
4.1 Introduction . 52
4.2 Optimal Control Model of Human Locomotion Paths 54
4.3 Experimental Results . 55

Chapter 5 Learning Quadrotor Dynamic Maneuvers 57
5.1 Introduction . 57
5.2 Learning from Demonstration: Method 59
5.3 Learning from Demonstration: Experiments 65
5.4 Time-Optimal Control: Method 68
5.5 Time-optimal Control: Experiments 73

Chapter 6 Conclusion and Future Work 77

v

Appendix A Quadrotor Dynamics and Control 79
A.1 Quadrotor Controller . 83

Appendix B Generalized LQR Solution 86
B.1 Solution: discrete-time dynamic programming 86
B.2 Solution: continuous time HJB 88
B.3 Existence and uniqueness . 89

Appendix C Differential Dynamic Programming 93
C.1 Introduction . 93
C.2 Algorithm . 93
C.3 Some properties of DDP . 101
C.4 Simulations . 103
C.5 First order method . 107

Appendix D Iterative LQR 110
D.1 Introduction . 110
D.2 Problem Statement . 110
D.3 Tracking LQR . 111
D.4 Iterative-LQR Algorithm . 114
D.5 ILQR Given Inaccurate Model 119

References . 123

vi

List of Tables

2.1 Results for perfect observations with known basis functions. . 31

3.1 Results for perfect observations with known basis functions. . 45
3.2 Hardware results. 49
3.3 Learned physical properties of the elastic rod from inverse op-

timal control. Errors here can be due to observation noise,
model inaccuracy (e.g. we ignore gravity), and plastic defor-
mation of the steel wire that we model as a perfectly elastic
rod. 50

4.1 Results from human walking data experiments. 55

5.1 Comparison of time-optimal control and new method of in-
verse optimal control . 75

C.1 Optimal costs for LQR and DDP solutions. 105

vii

List of Figures

2.1 Overview of the method of Mombaur, et al. [1]. 11
2.2 Overview of the method of Abbeel and Ng [2]. 13
2.3 Overview of the maximum margin planning method of Ratliff,

et al. [3]. 18
2.4 LQR example walk through, part 1. This figure shows three

separate trajectories, shown in red, green, and blue curves.
These three trajectories arise from minimizing three respective
cost functions that are shown next to the curves in the figure.
Note that each trajectory shares the same initial condition,
shown by a green circle, but each trajectory terminates at a
slightly different terminal point. 27

2.5 LQR example walkthrough, part 2. This figure shows the
result of applying each method of inverse optimal control to
learn the unknown cost function weights c1, c2, c3. See the text
for further discussion of the behavior of each method. 28

2.6 This figure shows the behavior of each of the iterative methods.
For the method of Mombaur, this figure shows the evolution of
the trajectory error for each trial. For the method of Abbeel,
this figure shows the evolution of the margin for each trial.
For the method of Ratliff, we show the evolution of the feature
vector error for each trial. 33

2.7 This figure shows how the feature vector and trajectory errors
change for varying magnitude perturbations. Blue: Mombaur,
Green: Abbeel, Red: Ratliff, Magenta: new method. 34

2.8 Comparison of methods under inaccurate system dynamics
perturbation for the Example 1 system. This figure shows the
average error in trajectory prediction for varying magnitude
perturbation of the underlying system dynamics. 36

viii

2.9 (a) Comparison of methods under sampled-data observations
that are then converted to continuous-time observations using
cubic spline interpolation. This figure shows how the error
in the learned cost function parameter vector c changes for
varying magnitude sample period (x-axis). (b) Comparison of
methods under noisy sampled-data observations that are then
converted to continuous-time observations using cubic spline
interpolation. This figure shows how the error in the learned
cost function parameter vector c changes for varying magni-
tude additive Gaussian noise (x-axis). The sample period is
held fixed in this set of data at one percent the total time of
the trajectories. 37

3.1 Quasi-static manipulation of an elastic rod (orange) by robotic
grippers (blue). Notice that the grippers begin (frame a) and
end (frame i) in the same position and orientation. This mo-
tion corresponds to a single straight-line path in the global
coordinate chart derived in [4]. 40

3.2 Hardware experimental setup for the 3D elastic rod. A steel
cable is fixed at one end to a table and held at the other end
by an Adept industrial robot. 47

3.3 Example observation of physical 3D elastic rod used for inverse
optimal control. Here, t denotes the arc length parameter, and
the length of the rod has been normalized to 1. The circles
denote the raw measurements of position markers along the
rod. The solid curve represents our spline interpolation of
those markers. 48

3.4 This figure shows the predicted configuration of the elastic
rod after estimating the physical properties of the rod using
inverse optimal control. The blue samples represent the in-
terpolated measurement of the observed rod. The red curve
shows the configuration of the rod given the initial conditions
and learned physical properties – i.e. it is the solution of the
forward optimal control problem after we learn the cost func-
tion via inverse optimal control. Errors here can be due to
observation noise, model inaccuracy (e.g. we ignore gravity),
and plastic deformation of the steel wire that we model as a
perfectly elastic rod. 49

ix

4.1 This figure shows eight examples of human walking trajecto-
ries captured by a motion capture system capable of tracking
the human subjects’ torsos. The subjects were asked to start
at a fixed initial condition and walk freely to a final destination
designated by a gate that the subjects should walk through.
Here, green circles represent the starting position, and red cir-
cles represent the terminal position that typically coincided
with a non-zero terminal velocity. 53

4.2 In this figure, observed and predicted trajectories are pro-
jected on the x-y plane. Blue curves represent observed tra-
jectories obtained from experimental data. Red dashed curves
show predicted results obtained when using individual obser-
vations to recover the value of parameter c independently for
each trajectory. 56

4.3 In this figure, observed and predicted trajectories are pro-
jected on the x-y plane. Blue curves represent observed tra-
jectories obtained from experimental data. Red dashed curves
show predicted results obtained when using all observations to
recover the value of parameter c. 56

5.1 This figure shows an outline of our quadrotor learning from
demonstration method. Inverse optimal control plays the crit-
ical role of efficiently representing the task in a way that can
generalize. 61

5.2 Human demonstration flights used as input for our inverse
optimal control method. This figure shows that the primary
translation maneuver takes place in approximately 1 second,
with a repeatable transition to hover at the goal location. . . . 66

5.3 This figure shows the flight results of the feedback control
policy resulting from our learning from demonstration method. 67

5.4 This figure shows the evolution of the position of the real
quadrotor at the first iteration of Iterative Learning Control,
i.e. applying the nominal control obtained from the switching
time optimization. This trajectory exhibits large terminal er-
ror with respect to the goal state of the maneuver (2 meter
translation along the x-axis). 75

5.5 This figure shows the evolution of the position of the hardware
quadrotor at iteration 20 of the Iterative Learning Control
algorithm, i.e. applying the nominal control obtained from the
open loop policy using modified switching times and terminal
time. This trajectory exhibits much better performance in
terms of matching the desired goal state of the maneuver (2
meter translation along the x-axis). 76

x

5.6 This figure shows the evolution of the terminal error at each
iteration of the Iterative Learning Control algorithm. This be-
havior is sensitive to a variety of tuning parameters, including
the step size η in the parameter update rule. 76

A.1 An Ascending Technologies Hummingbird with two counter-
clockwise and two clockwise rotors. 81

C.1 DDP algorithm overview. 96
C.2 DDP results from linear system with quadratic cost. Algo-

rithm converged in one iteration to the standard LQR solution.103
C.3 LQR results from linear system with quadratic cost. 104
C.4 DDP results for system with nonlinearity in control. This fig-

ure shows a phase portrait with x1 (position) on the x-axis and
x2 (velocity) on the y-axis. The red line shows the switching
curve x2 = −0.4446x1|x1| that the discrete-time DDP solution
approaches as R is reduced. 108

C.5 First-order DDP algorithm overview. 109

D.1 ILQR algorithm overview. 115

xi

Chapter 1

Inverse Optimal Control

1.1 Introduction

In the problem of optimal control we are asked to find input and state trajec-

tories that minimize a given cost function. In the problem of inverse optimal

control we are asked to find a cost function with respect to which observed

input and state trajectories are optimal. Methods of inverse optimal control

are beginning to find widespread application in robotics. In this chapter, we

consider this problem under deterministic continuous-time nonlinear systems

and cost functions modeled by a linear combination of known basis functions.

Three existing methods that solve this problem are the following:

• The max-margin inverse reinforcement learning method of Abbeel, et

al. [2]. This method is motivated by the problem of efficiently au-

tomating vehicle navigation tasks that currently require human expert

operation. This method works by trying to learn a cost function that,

when minimized, yields a trajectory with similar features as the ex-

pert. This method recently contributed to a framework that enables

autonomous helicopter aerobatic flight based on observations of human

expert pilots.

• The maximum-margin planning method of Ratliff, et al. [3]. This

method shares the motivation of Abbeel and Ng, and works by min-

imizing a regularized risk function using an incremental subgradient

method. This method contributed to a framework that mimics human

driving of an autonomous mobile robot in complex off-road terrain.

• The method of Mombaur, et al. that we will call bi-level inverse optimal

control [1]. This work is motivated by the problem of generating hu-

manoid robot behavior that is similar to natural human motion. This

1

method works by minimizing the sum squared error between predicted

and observed trajectories. This method is applied to develop a model of

human goal-oriented locomotion in the plane (i.e. paths taken during

goal-oriented walking tasks) using observations from motion capture,

and implement the model on a humanoid robot.

Despite differences in how learning is performed, these methods exhibit

common structure. Each method models the cost function as a linear combi-

nation of known basis functions, often referred to as features. Each method

also contains an inner loop that computes a predicted trajectory by minimiz-

ing a candidate cost function. In other words, each method solves a forward

optimal control problem repeatedly in an inner loop. These methods also

yield nominal convergence results. In the work of Abbeel and Ng, after a

finite number of iterations, the method returns a cost function with respect

to which at least one predicted trajectory performs as well as the observation

with known margin. In the work of Ratliff, et al., the method converges lin-

early to a region around the true cost function, and then only sub-linearly to

the true cost function. The method of Mombaur, et al., uses derivative-free

optimization methods that generally do not have a complete convergence

theory for non-convex objectives. These properties combined with the com-

plexity of solving forward optimal control problems form a computational

bottleneck.

We develop an approach that does not solve a forward optimal control

problem repeatedly in an inner loop. Our method is inspired by ideas from

inverse optimization in [5], making the assumption that observations may

arise from a system that is only approximately optimal. We define how op-

timal a trajectory is based on how closely it satisfies necessary conditions

for optimal control. This assumption allows us to define residual functions

based on these necessary conditions. As a result, the inverse optimal control

problem reduces to minimizing these residual functions in order to recover

the parameters that govern the cost function. As we will show, this ap-

proach reduces to solving a matrix Riccati differential equation followed by

one least-squares minimization.

It is unclear at this point how these methods compare in terms of predic-

tion accuracy, computational complexity and robustness to system pertur-

bations. We compare these methods using three example systems: (1) linear

2

quadratic regulation, (2) quadratic regulation of a kinematic unicycle, and

(3) characterization of a planar elastica. We compare the robustness of these

methods by analyzing how they perform under perturbations to the system.

To this purpose, we consider two scenarios: one in which we exactly know

the set of basis functions in the cost function, and another in which the true

cost function contains an unknown perturbation. Results from simulation ex-

periments show that our new method is more computationally efficient than

prior methods, performs similarly to prior approaches under large pertur-

bations to the system, and better learns the true cost function under small

perturbations.

The rest of the paper proceeds as follows. In Section 1.2 we formally

describe the class of continuous-time, deterministic, nonlinear systems we

consider, and the associated inverse optimal control problem. In Section 2.1

we describe the existing methods of inverse optimal control with which we

compare our new method [1–3]. In Section 2.2 we develop the new method

based on necessary conditions for optimal control. In Section 2.3 we describe

the simulation experiments we use to explore the behavior of the methods

and their robustness with respect to uncertainty. In Section 2.4 we present

experimental results and discussion.

1.2 Inverse Optimal Control: Problem

Statement

Consider the following class of optimal control problems

minimize
x,u

∫ tf

t0

cTφ[t, x(t), u(t)]dt

subject to ẋ(t) = f [t, x(t), u(t)]

x(0) = xstart

x(tf) = xgoal

(1.1)

where x(t) ∈ X ⊂ Rn is the state, u(t) ∈ U ⊂ Rm is the input, φ : R× X ×
U → Rk

+ are known basis functions, and c ∈ Rk is an unknown parameter

vector to be learned. We assume, without loss of generality, that ‖c‖ ≤ 1.

3

We assume that the system equations

ẋ(t) = f [t, x(t), u(t)] (1.2)

are well posed, that is, for every initial condition xstart and every admissi-

ble control u(t), the system ẋ(t) = f [x(t), u(t)] has a unique solution x on

t ∈ [0, tf]. This is satisfied, for example, when f is continuous in t and u

and differentiable (C1) in x, fx is continuous in t and u, and u is piecewise

continuous as a function of t [6,7]. The objective basis function φ is assumed

to be smooth in x and u. This problem also assumes there are no input and

state constraints. These constraints are often important in practice, and will

be the subject of future work.

The problem of inverse optimal control is to infer the unknown parameters

with respect to which a given trajectory, the observation, is a local minimum

to problem (1.1). This observed trajectory is denoted by

(x∗, u∗) = {x∗(t), u∗(t) : t ∈ [0, tf]} . (1.3)

For convenience, we will often drop the asterisk and refer to an optimal

trajectory as (x, t). We also consider observing multiple trajectories, each

local minima of problem (1.1) for different boundary conditions. We will

refer to a set D of M observations as follows

D =
{(
x∗(i), u∗(i)

)}
for i = 1, . . . ,M (1.4)

where each trajectory has boundary conditions(
x

(i)
start, x

(i)
goal

)
for i = 1, . . . ,M. (1.5)

An important quantity in the methods discussed in this chapter is the accu-

mulated value of the unweighted basis functions along a trajectory. We will

call this the feature vector of a trajectory µ(x, u), defined by

µ(x, u) =

∫ tf

t0

φ[t, x(t), u(t)]dt. (1.6)

In practice, one would generally have sampled observations of the behavior

of the system, but for the analysis in this chapter, we assume we have perfect

4

observations of the continuous-time system trajectories.

We evaluate the solution to the inverse optimal control problem by com-

puting the sum-squared difference between actual and recovered values of the

cost function parameters c.

1.3 Related Work

The classical problem of inverse optimal control is to infer the class of objec-

tive functions that makes a given control policy optimal. This is in contrast

to the data-driven formulation of the problem in which the control policy is

not known and the cost function must be learned from observations of system

behavior.

Solution methods for the control-theoretic inverse optimal control prob-

lem have been developed for linear systems with quadratic cost along with

extensions to nonlinear and stochastic problems [8–28] These methods were

first developed in the context of linear time-invariant regulation [8–18]. In

particular, this early work focused on determining the class of quadratic cost

functions that makes a given linear controller optimal. Extensions of this

problem to nonlinear systems are given in [19–22]. Krstic and Tsiotras [21]

use inverse optimal control to reconstruct optimal controllers from knowledge

of a control Lyapunov function and a particular stabilizing control policy. Li,

et al. [22] present an inverse optimal control method for nonlinear systems

based on computing an approximate value function given a control policy.

Work has also been presented for stochastic nonlinear systems [23, 24]. The

H∞ inverse optimal control problem was presented as the counterpart of the

LQ inverse optimal control posed by Kalman [25–27]. An extension poses the

problem of computing the plant (system model) whose H2 or H∞ controller

is equal to a given controller [28].

The data-driven formulation of the classical problem does not assume a

given control policy, but instead learns the objective function of a system

given observations of its behavior. In this context, inverse optimal control is

often used as a solution approach to the more general problem of learning

from demonstration. This problem is often referred to as imitation learning

or apprenticeship learning. The problem of learning from demonstration is

to derive a control policy (a mapping from states to actions) from examples,

5

or demonstrations, provided by a teacher. Demonstrations are typically con-

sidered to be sequences of state-action pairs recorded during the teacher’s

demonstration.

There are generally two methods of approach. One approach is to learn

a map from states to actions using classification or regression [29–43]. Clas-

sification techniques range from k-nearest-neighbors to sequencing motion

primitives using neural networks. Regression techniques range from those

that use lazy learning, where function approximation does not occur until

a current query point is given, to full off-line function approximation using

neural networks. Also included in this category are works that learn a plan

of sequenced logical actions that bring the system from initial to goal state.

For further details on these methods, see the survey by Argall, et al. [44].

The second general approach is to learn a cost function with respect to

which observed input and state trajectories are (approximately) optimal,

i.e. inverse optimal control [1–3, 45–61]. In particular, these methods have

focused on finite-dimensional optimization problems, and stochastic optimal

control problems.

In the context of finite parameter optimization, Keshavarz, et al. [45]

develop an inverse optimization method that learns the value function of a

discrete-time stochastic control system given observations. These ideas were

extended to learn a cost function for a deterministic discrete-time system in

Puydupin-Jamin, et al. [46]. Similarly, Terekhov, et al. [47, 48] and Park,

et al. [49] develop an inverse optimization method for deterministic finite-

dimensional optimization problems with additive cost functions and linear

constraints. Our work takes inspiration from these methods of inverse op-

timization, applying the concepts of necessary and sufficient conditions for

optimality to continuous-time optimal control.

A variety of methods were developed in the context of stochastic optimal

control problems, in particular, Markov decision processes [2,51–60]. Ng and

Russell [51] developed a method for stationary Markov decision processes

based on linear programming. The method of Abbeel and Ng [2] extends that

work by finding a cost function with respect to which the expert’s cost is less

than those of predicted trajectories by a margin. Later work by Abbeel, et al.

[52–54] simultaneously learns the system dynamics along specific trajectories

of interest. The method developed in Ramachandran, et al. [56] takes a

Bayesian approach and assumes that actions are distributed proportional to

6

the future expected reward. The method developed in Ziebart, et al. [57,58]

works by computing a probability distribution over all possible paths that

matches features along the observed trajectory. Many distributions satisfy

this constraint of matching features, and the principle of maximum entropy

is used to resolve this ambiguity. Dvjijotham and Todorov [59] develop a

method of inverse optimal control for linearly-solvable stochastic optimal

control problems. Their method takes advantage of the fact that, for the class

of system model they consider, the Hamilton-Jacobi-Bellman equation gives

an explicit formula for the cost function once the value function is known.

Aghasadeghi and Bretl [60] develop a method of inverse optimal control that

uses path integrals. The use of path integrals leads to a distribution over all

possible paths, and the problem is then one of maximizing the likelihood of

observations.

Learning from demonstration methods are applied in three different ar-

eas. First, learning from demonstration has been applied as a method of

data-driven automation [2, 3, 34, 40, 43, 51–55, 57, 59]. In this case, the pur-

pose is to automate a task currently performed by humans. Tasks of interest

include bipedal walking, navigation of aircraft, operation of agricultural and

construction vehicles. Second, learning from demonstration methods have

been applied to cognitive and neural modeling [1, 22, 38, 41, 42, 47–50, 58].

Instead of automation, these applications aim to understand how to quanti-

tatively model a system in a manner that captures or explains system behav-

ior. For example, [58] explain why taxi drives make specific route choices,

and [41] predict future trajectories taken by human pedestrians in crowds.

Third, learning from demonstration methods have been applied to system

identification of deformable objects [61]. In this context, the system under

consideration is a mechanical structure with static configurations that lie in

local energy minima. In Javdani, et al. [61], a method is developed that

learns elastic stiffness parameters of objects such as surgical suture, rope,

and hair.

1.4 Applications of Inverse Optimal Control

In this dissertation, we compare our new method of inverse optimal control

for deterministic nolinear systems with three prior methods of inverse opti-

7

mal control, and show simulation results on three canonical systems (Chapter

2). We apply our method of inverse optimal control for deterministic non-

linear systems to three problems in robot motion planning: (a) determin-

ing the physical parameters of a Kirchoff elastic rod, (b) modeling human

goal-oriented locomotion, and (c) learning a feedback controller for dynamic

quadrotor flight maneuvers. Chapter 3 presents the problem and solution

for the elastic rod. Chapter 4 similarly handles the problem of modeling

human locomotion. In Chapter 5 we show how our method of inverse opti-

mal control can be applied to learn feedback control policies for quadrotor

dynamic maneuvering. For these applications we show both simulation and

hardware experimental results demonstrating the robustness of our approach

under various system perturbations such as unknown cost function, system

dynamics, and noisy sampled-data observations.

8

Chapter 2

A Comparison of Inverse
Optimal Control Methods

In this chapter we formally describe the three prior methods of inverse opti-

mal control with which we compare the new method developed in Section 2.2.

In their original form, the method of Abbeel and Ng, and the method of

Ratliff, et al. were developed in the context of Markov decision processes.

The general structure and theoretical guarantees of the methods apply with

slight modification to the deterministic continuous-time class of problems we

consider in this chapter, specified in Equation (1.1).

2.1 Three Prior Methods of Inverse Optimal

Control

2.1.1 Method of Mombaur, et al.

In Mombaur, Truong, and Laumond (2010) [1] inverse optimal control is

used to generate humanoid robot behavior that is similar to natural human

motion. The framework of inverse optimal control is used to understand and

identify the underlying optimality criteria of biological motions based on

measurements. The solution of this problem yields optimal control models

that generate natural humanoid robot motion.

This method works by searching for the cost function parameter c that

minimizes the sum-squared error between predicted and observed trajecto-

ries. This method has two main components. In the upper-level, a derivative-

free optimization technique is used to search for the cost function parameter

c. In the lower-level, a numerical optimal control method is used to solve the

forward optimal control problem (1.1) for a candidate value of c. We will

now discuss the two levels in detail.

The objective of the upper-lever derivative-free optimization is given by

9

the following

minimize
c

∫ tf

t0

‖[xc(t);uc(t)]− [x∗(t);u∗(t)]‖2dt (2.1)

where [x∗(t);u∗(t)] is the vector concatenation of the state and input of the

observed trajectory at time t, and [xc(t);uc(t)] is the solution to the forward

problem (1.1), given the parameter vector c. The typical starting point for

derivative-free methods is the Nelder-Mead simplex algorithm. For example,

the fminsearch function in Matlab, or the NMinmimze function in Mathemat-

ica can be used. Higher performance algorithms are discussed in [1] that im-

prove computational running time. For our baseline analysis in this chapter,

however, we use the Matlab fminsearch implementation of the Nelder-Mead

algorithm. The Nelder-Mead algorithm is a heuristic search method that

compares objective function values at vertices of a simplex over the space of

parameters c. At each iteration, the worst vertex in the simplex is replaced

by a new test point. The new test point is derived by reflecting the worst

vertex through the centroid of the simplex. If the value of this new point is a

new minimum, then the simplex is expanded in the direction of the reflection.

If the value of the new point is a new maximum, the simplex is contracted.

Each new test point is a new value of the cost function parameter vector c.

These iterations constitute the top-level of the method of Mombaur, et al.

Upon selecting the new point, the lower-level proceeds by solving (1.1)

for the current value of c to generate the predicted trajectory (xc, uc). Given

this trajectory, the objective function can be evaluated, and the method

continues. The solution of (1.1) is obtained using a numerical optimal control

solver such as direct multiple shooting or collocation. In this chapter, we use

the recently developed pseudospectral optimal control package GPOPS [62]

to solve the forward problem (1.1). This method terminates when both

the objective function (sum-squared error between predicted and observed

trajectories) and the variable of optimization (the unknown weight vector c)

do not change more than ε from one iteration to the next. See Figure 2.1 for

a summary of this method.

This method is easily extended for the case where multiple trajectories

are observed, where each trajectory has different initial and goal conditions.

10

procedure MethodOfMombaur(x∗, u∗, c0)
ĉ← DerivativeFreeOptimization(J, c0)
return ĉ

end procedure

function J(c)
(x, u)← SolveForwardProblem(c)
return

∫ tf
t0
‖[x(t);u(t)]− [x∗(t);u∗(t)]‖2dt

end function

Figure 2.1: Overview of the method of Mombaur, et al. [1].

Given M observed trajectories,

D =
{(
x(i), u(i)

)}
for i = 1, . . . ,M (2.2)

The upper-level objective function becomes

minimize
c

M∑
i=1

∫ tf

t0

‖[xc(i)(t);uc(i)(t)]− [x∗(i)(t);u∗(i)(t)]‖2dt (2.3)

where [xc(i)(t);uc(i)(t)] is the solution to the forward problem (1.1) for bound-

ary conditions (x
(i)
start, x

(i)
goal) and cost function parameterized by the candidate

c.

We note that Mombaur, et al. originally specify the upper-level objective

as follows

minimize
c

m∑
j=1

‖[xc(tj);uc(tj)]− [x∗(tj);u
∗(tj)]‖2 (2.4)

where tj are sample times along the trajectory from t0 to tf . Given a uniform

grid with small sample period, this is equivalent to an approximation of the

L2 norm between the predicted and observed trajectories.

2.1.2 Method of Abbeel and Ng

The method of Abbeel and Ng [2] was originally developed for infinite-horizon

Markov decision processes with discounted reward. In this section, we adapt

this method to solve the deterministic continuous-time nonlinear inverse op-

timal control problem defined in Section 1.2. We are given an observation

(x∗, u∗) that is assumed to be a local minima of problem (1.1) with cost

11

function parameterized by some c = c∗. The goal of this method is to find

a control policy that yields a feature vector close to that of the observation.

Recall that the observed feature vector is given by

µ(x∗, u∗) =

∫ tf

t0

φ[t, x∗(t), u∗(t)]dt (2.5)

This is the deterministic analog of the feature expectations defined by Abbeel

and Ng [2].

The method is initialized by selecting a random cost function parameter

vector c(0) and solving the forward problem (1.1) to obtain an initial predicted

trajectory (x(0), u(0)) and associated feature vector µ(0). On the i-th iteration,

solve the following quadratic program:

maximize
c(i),m(i)

m(i)

subject to (c(i))Tµ∗ ≤ (c(i))Tµ(j) −m(i)

for j = 0, . . . , i− 1

‖c‖ ≤ 1

(2.6)

where m(i) is the margin on the i-th iteration. If m(i) < ε, then terminate.

Otherwise, given c(i), solve the forward optimal control problem, Equation

(1.1), with c = c(i) to obtain the predicted trajectory (x(i), u(i)) and associated

feature vector µ(i). Set i = i + 1 and repeat. A summary of this method is

shown in Figure 2.2.

Upon termination, this algorithm returns a set of policies Π. In the

stochastic system case, one could then form a mixture of these policies to

produce a new policy that produces feature expectations closest to those of

the observed trajectory. In the deterministic case, this mixing concept still

holds, although it has little practice use. Instead, note that upon termination,

there exists at least one policy in Π that results in a feature vector that differs

from the expert’s by no more than ε.

We will now adapt the theoretical results from [2] for the deterministic,

continuous-time case. First, we will introduce some notation. Given a set

of policies Π, let M(Π) denote the convex hull of the set of feature vectors

12

procedure MethodOfAbbeel(x∗, u∗)
c0 ← RandomVector
(x(0), u(0))← SolveForwardProb(c0)
µ(0) ← FeatureVector(x(0), u(0))
i← 0
repeat

m(i+1), c(i+1) ← QuadProgram (problem (2.6))
(x(i+1), u(i+1))← SolveForwardProb(c(i))
µ(i+1) ← FeatureVector(x(i), u(i))
i← i+ 1

until m(i) ≤ ε
return c(j) for j = 1, . . . , i

end procedure

Figure 2.2: Overview of the method of Abbeel and Ng [2].

attained by the policies in Π,

M(Π) = Co {µ(π) : π ∈ Π} . (2.7)

Another important concept that we use is that the feature vectors are bounded,

φ : R × X × U → [0, φmax]
k for some finite φmax. This upper bound may

depend on xstart, xgoal, tf , and c for a particular problem. For example, this

upper bound is easy to compute in the case of linear quadratic regulation,

while Lyapunov function analysis can be performed for nonlinear systems.

The following Lemma is adapted from Lemma 3 in [2] and establishes im-

provement in a single iteration of the max margin algorithm.

Lemma 1. Consider problem 1.1, and a set of policies Π, and the convex

hull of feature vectors M(Π). Consider the case µ∗ ∈M . Consider a feature

vector µ̄(i) ∈M . Let π(i+1) be the optimal policy for the cost function defined

by c = (µ∗ − µ̄(i)). Define the projection of µ∗ onto the line through µ̄(i) and

µ(i+1), denoted by µ̃(i+1), as follows

µ̃(i+1) =
(µ∗ − µ̄(i)) · (µ(i+1) − µ̄(i))

‖µ(i+1) − µ̄(i)‖2

(
µ(i+1) − µ̄(i)

)
+ µ̄(i). (2.8)

Then
‖µ∗ − µ̃(i+1)‖
‖µ∗ − µ̄(i)‖

≤ k√
k2 + ‖µ∗ − µ̄(i)‖2/(φmaxtf)2

(2.9)

Proof. For simplicity of notation, let µ̄(i) = 0 (shift coordinates so that it

13

coincides with the origin). The proof develops just as in [2].

(µ̃(i+1) − µ∗) · (µ̃(i+1) − µ∗)
µ∗ · µ∗

=
µ(i+1) · µ(i+1) − (µ(i+1)·µ∗)2

µ∗·µ∗

µ(i+1) · µ(i+1)
(2.10)

≤ µ(i+1) · µ(i+1) − 2µ∗ · µ(i+1) + µ∗ · µ∗

µ(i+1) · µ(i+1)
(2.11)

≤ (µ(i+1) − µ∗) · (µ(i+1) − µ∗)
(µ(i+1) − µ∗) · (µ(i+1) − µ∗) + µ∗ · µ∗

(2.12)

≤ k2(φmaxtf)
2

k2(φmaxtf)2 + µ∗ · µ∗
(2.13)

The preceding steps are described as follows. The definition of µ̃(i+1) was

used in step (2.10). The fact (µ(i+1) · µ∗ − µ∗ · µ∗)2 ≥ 0 was used in step

(2.11). The fact µ(i+1) · µ∗ ≥ µ∗ · µ∗ was used in step (2.12). Finally, the last

step (2.13) used the fact that all of the feature vectors involved lie in M and,

further, that all feature vectors are bounded and lie in [0, φmaxtf]
k.

The following Theorem provides a bound on the number of iterations re-

quired to achieve a desired margin ε. This Theorem is adapted from Theorem

1 in [2].

Theorem 2 (Theorem 1 in [2]). The maximum margin inverse optimal con-

trol algorithm will terminate with w(i) ≤ ε after at most

n = O

(
k

ε2/(φmaxtf)2
log

k

ε/(φmaxtf)

)
iterations.

Proof. Given a µ̄(i), Lemma 1 constructs a point µ̃(i+1) ∈M (i+1) that is closer

to µ∗ by a factor given by Eq. (2.9). If µ̄(i) is such that ‖µ∗− µ̄(i)‖ ≥ ε, then

using Lemma 1 yields

‖µ∗ − µ̃(i+1)‖
‖µ∗ − µ̄(i)‖

≤ k√
k2 + ε2/(φmaxtf)2

14

Now, the algorithm sets µ̃(i+1) = arg minµ∈M(i+1)‖µ∗ − µ‖, therefore

t(i+1)

t(i)
≤ k√

k2 + ε2/(φmaxtf)2

Since the maximum distance between vectors in M is
√
k(φmaxtf),

t(i) ≤

(√
k√

k + ε2/(φmaxtf)2

)i√
k(φmaxtf) (2.14)

So t(i) ≤ ε if

i ≥ log

√
k(φmaxtf)

ε
/ log

√
k + ε2/(φmaxtf)2

√
k

= O

(
k

ε2/(φmaxtf)2
log

k(φmaxtf)

ε

) (2.15)

2.1.3 Method of Ratliff, et al.

The maximum margin planning method of Ratliff, et al. [3] is an inverse

optimal control method that tries to learn a cost function for which the

expert policy has lower expected cost than every alternative policy by a

margin that scales with the loss of that policy. This is formalized using ideas

from maximum margin structured classification. In this section, we show

the development of this method applied to the deterministic continuous-time

nonlinear problem defined in Section 1.2.

We are given a set of M observations D

D =
{(
x(i), u(i)

)}
for i = 1, . . . ,M (2.16)

that are assumed to be local minima of problem (1.1) given corresponding

boundary conditions
{
x

(i)
start, x

(i)
goal

}
and cost functions parameterized by the

same (unknown) c = c∗. The notion and effect of the loss of a policy is

captured by the following set of constraints

∀π ∈ G cTµ∗(i) ≤ cTµ(π)− L(π) (2.17)

15

where G denotes the space of feasible policies, L denotes a loss function that

defines the closeness of two policies, µ∗(i) is the feature vector of the i-th

observation, and

µ(π) =

∫ tf

t0

φ[t, xπ(t), uπ(t)]dt (2.18)

is the feature vector of the trajectory that results from executing policy

π. Typical loss functions are 0 near observed state-input trajectories, and

increase gradually to 1 away from the observed trajectory. These constraints

will be satisfied for all π ∈ G if the single constraint holds for the policy that

minimizes the right hand side expression. That is, for observation i, all the

constraints are satisfied if

cTµ∗(i) ≤ min
π∈G

(
cTµ(π)− L(π)

)
(2.19)

These constraints are nonlinear, but convex in c. This method now finds the

smallest weight vector c for which the constraints are satisfied. Since there

may not be a parameter vector c that exactly satisfies the constraint, slack

variables ζ are introduced that allow constraint violations. These criteria

result in the following convex optimization problem

minimize
c,ζ

1

M

M∑
i=1

ζi +
λ

2
‖c‖2

subject to cTµ∗(i) ≤ min
πinG

{
cTµ(π)− L(π)

}
+ ζi

for each i

(2.20)

where λ ≥ 0 is a constant that trades off between the penalizing constraint

violations and a desire for small weight vectors. Since the slack variables are

in the objective and thus driven to be as small as possible, they will equal

the constraint violation at the minimizer.

ζi = cTµ∗(i) −min
π∈U

{
cTµ(π)− L(π)

}
(2.21)

We can use this to pull the constraint into the objective function to obtain:

J(c) = λ‖c‖2 +
1

M

M∑
i=1

(
cTµ∗(i) −min

π∈U

{
cTµ(π)− L(π)

})
(2.22)

16

Instead of directly solving this convex program, this method utilizes a iter-

ative subgradient technique. The subgradient of a convex function f at a

point x is any vector g such that

∀x′ ∈ X f(x′) ≥ f(x) + gT (x′ − x) (2.23)

In general, there are a continuum of subgradients, and at points where f is

differentiable, the gradient is the unique subgradient. We want the subgradi-

ent of J(c) with respect to c. The only nontrivial term for which we need to

compute the subgradient is −minπ∈U
{
cTµ(π)− L(π)

}
. To solve this, note

that this term is a convex (but nondifferentiable) function. The subgradient

is the gradient of the one function forming the active surface at the value

of c. That is, we solve the forward problem at the given value c and obtain

the feature vector µc associated with the solution. We can now write the

subgradient g(c) of J(c) as:

g(c) =
1

N

N∑
j=1

{
µ∗(j) − µ(j)

}
+ λc (2.24)

where µ(j) represents the solution to arg minµ
(
cTµ+ L(µ)

)
, i.e. the solution

to the forward optimal control problem (1.1) for the j-th boundary conditions

and with cost function augmented by the loss function. An overview of this

method is shown in Figure 2.3.

The theoretical guarantees of this approach are reproduced from [3]

Theorem 3. Let {αi} be chosen as αi = 1
λ

. Assume that for a particu-

lar radius R around the true minimum, ∀c ‖g‖ ≤ C. Then the algorithm

converges at a linear rate to a region around the minimum cost bounded by

‖J − J∗‖ ≤
√

αC2

λ
≤ C

λ
.

Proof. By the strong convexity of J(c) and Proposition 2.4 of (Nedic and

Bertsekas, 2000)

‖ci+1 − c∗‖2 ≤ (1− αλ)i+1‖c0 − c∗‖2 +
αC2

λ
(2.25)

→ αC2

λ
≤ C2

λ2
as i→∞ (2.26)

17

procedure MethodOfRatliff(x∗(i), u∗(i), {α} , λ,N)
j ← 1
c← RandomVector
while j ≤ N do

for i = 1 to M do
(xc(i), uc(i))← SolveForwardProb(c)
µc(i) ← FeatureVector(xc(i), uc(i))

end for
g ← Subgradient(c, xc(i), uc(i))
c← c− αjg
Project c on to any additional constraints.

end while
return c

end procedure

Figure 2.3: Overview of the maximum margin planning method of Ratliff,
et al. [3].

This Theorem specifies that for constant step size α, linear convergence

to a neighborhood of the minimum cost is achieved. However, [3] also show

that for a diminishing step size αj = 1/j, this method will converge to the

minimum, but only at a sub-linear rate. In other words, it is expected that

this method will make good improvement in a few iterations, but then can

slow down. We also note that this method requires as input a variety of

additional parameters that, in general, must be tuned for each problem. In

particular, the choice of step size has an important affect on the rate of

convergence of the method.

2.2 A New Method Based on Necessary

Conditions for Optimality

The three methods described in the previous section exhibit common struc-

ture. In particular, each method solves a forward optimal control problem

repeatedly in an inner loop. They do this in order to compare the observed

trajectory (or feature vectors) with predicted trajectories given a candidate

cost function. In this section, we derive another approach inspired by recent

work in inverse convex optimization by Keshavarz, et al. [5]. The key idea

in our approach is that we assume that the observations are perfect mea-

18

surements of the system evolution, and that the expert is only approximately

optimal, where we define what it means to be approximately optimal below.

Under this new set of assumptions, we can immediately say how optimal the

agent is by looking at how well the demonstration trajectory satisfies the

necessary conditions for optimal control. To do this, we use the necessary

conditions to define a set of residual functions. The inverse optimal control

problem is then solved by minimizing these residual functions over the un-

known parameters. In the remainder of this section, we will describe these

different stages in detail.

2.2.1 Residual Function Formulation

Consider a trajectory (x, u) of the system given in Equation (1.2). The mini-

mum principle gives us necessary conditions for (x, u) to be a local minimum

of Eq. (1.1) [63,64]. The following theorem states these necessary conditions.

Theorem 4 (Free endpoint, fixed final time). If (x, u) is both regular and a

local optimum, then there exists a costate trajectory

p : R→ Rn

such that x and p are a solution of

ẋ(t) = ∇pH [x(t), u(t), p(t)] x(0) = x0

ṗ(t) = −∇xH [x(t), u(t), p(t)] p(tf) = 0

and the Hamiltonian H [x(t), u(t), p(t)] has a local minimum as a function of

u(t) at u(t) = u(t) for t ∈ [t0, tf], where

H [x(t), u(t), p(t)] = cTφ (t, x(t), u(t)) + p(t)Tf (t, x(t), u(t))

We apply these necessary conditions to our problem (1.1) to obtain

−ṗ(t)T = cT∇xφ [t, x(t), u(t)] + p(t)T∇xf [t, x(t), u(t)]

p(tf) = 0

and

0 = cT∇uφ [t, x(t), u(t)] + p(t)T∇uf [t, x(t), u(t)]

19

We now consider that we are given an observation (x, u) that may be thought

of as the solution to problem (1.1) for some unknown value of c, although

this need not hold. We now form residual equations from the necessary

conditions. Let

z(t) =

[
c

p(t)

]
∈ Rk+n v(t) = ṗ(t) ∈ Rn

The residual function r[z(t), v(t)] is then defined as

r[z(t), v(t)] =

∇xφ
∣∣∣T
(x,u)

∇xf
∣∣∣T
(x,u)

∇uφ
∣∣∣T
(x,u)

∇uf
∣∣∣T
(x,u)

 z(t) +

[
I

0

]
v(t)

= F (t)z(t) +G(t)v(t)

(2.27)

where we have just rearranged the necessary conditions. The notation (·)
∣∣
(x,u)

is shorthand for evaluating the particular function along the trajectory given

in the observation, for example

∇xφ
∣∣∣
(x,u)
≡ ∇xφ [t, x(t), u(t)] . (2.28)

We say the observation (x, u) is approximately optimal for some c and p(t)

(i.e. for some z(t), v(t)) if r[z(t), v(t)] is close to zero, where we will formalize

what it means to be close to zero in Section 2.2.2.

This formulation can also be extended to handle multiple observations.

Consider M trajectories that may have different boundary conditions but

have the same fixed final time tf{(
x(i), u(i)

)}
i = 1, . . . ,M (2.29)

with each (x(i), u(i)) =
{
x(i)(t), u(i)(t) : t ∈ [0, tf]

}
. The vector of unknown

parameters z(t) is extended to include the M unknown costates and v(t) is

20

extended to include the time derivatives of the costates

z(t) =

c

p(1)(t)
...

p(M)(t)

 v(t) =

ṗ(1)(t)

...

ṗ(M)(t)

Let the following matrices be defined for each trajectory (for i = 1 . . .M)

Ā(i)(t) =

∇xφ

∣∣∣T
(x(i),u(i))

∇uφ
∣∣∣T
(x(i),u(i))

 ∈ R(n+m)×k (2.30)

B̄(i)(t) =

∇xf

∣∣∣T
(x(i),u(i))

∇uf
∣∣∣T
(x(i),u(i))

 ∈ R(n+m)×n (2.31)

C̄(i)(t) =

[
I

0

]
∈ R(n+m)×n (2.32)

The residual function considering all M trajectories can now be written as

follows

r[z(t), v(t)] =

Ā1 B̄1 . . .

Ā2 0 B̄2 . . .
...

. . .

ĀM . . . B̄M

 z(t)

+

C̄1 0 · · ·
0 C̄2

...
. . .

C̄M

 v(t)

= F (t)z(t) +G(t)v(t).

(2.33)

The particular structure of this residual function will play an important role

in Section 2.4.4 where we discuss how the complexity of this approach scales

with the number of observed trajectories.

21

2.2.2 Residual Optimization

We now solve for the unknown parameters z(t) and v(t) by minimizing the

residual functions. In other words, we solve the following problem

minimize
z(t),v(t)

∫ tf

t0

‖r[z(t), v(t)]‖2dt

subject to ż(t) =

[
0

I

]
v(t)

z(0) = z0 (unknown)

(2.34)

where

‖r[z(t), v(t)]‖2 = zTF TFz + vTGTGv + zTF TGv (2.35)

where the argument t has been dropped for convenience. If z(0) were known,

this would be a standard LQR problem (with cross terms)

min
z(t),v(t)

∫ tf

t0

{
zTQz + vTRv + zTSv

}
dt

subject to ż(t) = Az +Bv

z(0) = z0

(2.36)

where

A(t) = 0 B(t) =

[
0

I

]
Q(t) = F (t)TF (t) R(t) = G(t)TG(t)

S(t) = F (t)TG(t).

Solving this LQR problem yields the linear control policy and quadratic value

function

v(t) = K(t)z(t) V (z0) = zT0 P (0)z0

where

K(t) = −(G(t)TG(t))−1
(
G(t)TF (t) +B(t)TP (t)

)

22

and where P (t) represents the solution to the LQR Riccati equation. We

complete our solution for z(t) by solving the following problem

minimize
z0

zT0 P (0)z0.

Without normalization, this quadratic program is satisfied by the trivial

solution z0 = 0. Normalization is performed by using prior knowledge about

the problem domain. For example, when the forward optimal control problem

has a quadratic cost function, one can often assume that one of the weights

is equal to 1. Throughout all of our simulation experiments described below,

we employ this method of normalization.

2.3 Simulation Experiments

To evaluate the performance of the three recent inverse optimal control meth-

ods described in Section 2.1 and the new method introduced in Section 2.2,

we perform numerical simulations in which we observe optimal trajectories

of three different systems and learn the objective function for each system.

For each system, we collect the optimal trajectories by simulating the system

acting under the optimal control policy for particular boundary conditions

and fixed terminal time. We collect simulations for 50 random boundary

conditions.

2.3.1 Unknown Basis Functions

To evaluate the robustness of the four methods, we perform the following

perturbation to the inverse optimal control problem. Up to this point we have

considered the true cost function to be perfectly modeled by the weighted

combination of known basis functions

J(u) =

∫ tf

t0

cTφ[t, x(t), u(t)]dt. (2.37)

In our perturbed problem, we perturb the true cost function such that the

model given by the weighted combination of basis functions is only an ap-

proximation to the true cost function. In particular, we set the true cost

23

function to be

J(u) =

∫ tf

t0

cTφ[t, x(t), u(t)] + dTρ[x(t), u(t)]dt. (2.38)

where ρ : X × U → [0, 1]l are perturbation basis functions and d ∈ Rl

are perturbation weights such that ‖d‖ < ε for some ε > 0. In particular,

we model a general perturbation with a linear combination of k-th order

multivariate Fourier basis functions. The multivariate basis functions are

defined as

ρi[z(t)] =

1 if i = 0

1 + cos (2πai · z) for odd i

1 + sin (2πai · z) for even i

(2.39)

for i = 1, . . . l, where ai = [a1, . . . , an+m], each aj ∈ [0, . . . , l]. Here z is the

concatenation of the state and input vectors at time t, z(t) = [x(t), u(t)].

A particular set of basis functions is formed by systematically varying the

elements in each ai. Note that we limit the values that ai take by assuming

only one nonzero element for each i. Note that in the case of the planar

elastica, described below, the perturbation basis functions have the same

form as the primary cost basis functions. In this case, we perturb the system

by simply including higher order terms.

2.3.2 Three Example Systems

The three systems we use are (a) linear quadratic regulation, (b) regulation of

a kinematic unicycle, (c) characterizing the planar elastica. We now describe

the forward optimal control problem of each of these systems.

Linear Quadratic Regulation

In our first system, we consider a linear system with quadratic cost

minimize
x,u

∫ tf

t0

xTQx+ uTRu (2.40)

subject to ẋ(t) = A(t)x(t) +B(t)u(t),

x(0) = xstart

x(tf) = Free,

24

where states are denoted by x(t) ∈ Rn and control inputs are denoted by

u(t) ∈ Rm. We simulate 50 instances (trials) of this LQR problem using state

dimensions n = 5 and m = 3, but using different dynamics, initial conditions

and cost functions. The dynamic matrices A(t) and B(t) are assumed time-

invariant, with elements drawn from a N(0, 1) Gaussian distribution for each

trial. The resulting matrices A are scaled such that |λmax(A)| < 1, and

controllability of the systems are verified manually. The initial state of the

system x0 for each trial is drawn from a N(0, 5), and the final time tf = 10 is

fixed for all trials. Moreover, for each trial we select cost matrices Q and R,

with diagonal elements generated according to the uniform distributions of

U [0, 1] and U [ε, 1] respectively, to obtain nonnegative-definite and positive-

definite matrices Q and R. Solving the LQR problem (2.40) for these values

results in 50 examples of regulating a linear system from a random initial

condition to the origin.

Before discussing the full set of simulation results, we will walk through

a simple example of applying our method of inverse optimal control to a

two-dimensional LQR system. Consider, for example, the following optimal

control problem

minimize
x,u

∫ tf

t0

c1x1(t)2 + c2x2(t)2 + c3u(t)2dt (2.41)

subject to

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

0 0

][
x1(t)

x2(t)

]
+

[
0

1

]
u(t), (2.42)

x(t0) = xstart (2.43)

x(tf) ∈ Rn (2.44)

The necessary conditions of optimal control for this problem can be written

as follows

0 = ṗ∗(t) +

[
2x∗1(t) 0 0

0 2x∗2(t) 0

]
c+

[
0 0

1 0

]
p∗(t) (2.45)

0 =
[
0 0 2u(t)

]
c+

[
0 1

]
p∗(t) (2.46)

These conditions are approximately satisfied if the following residual function

25

is near zero given an exemplar trajectory (x, u)

r (z(t), v(t)) =

2x1(t) 0 0 0 0

0 2x2(t) 0 1 0

0 0 2u(t) 0 1

 z(t) +

1 0

0 1

0 0

 v(t) (2.47)

Now, Figure 2.4 shows three separate trajectories, shown in red, green, and

blue curves. These three trajectories arise from minimizing three respective

cost functions that are shown next to the curves in the figure. Note that

each trajectory shares the same initial condition, shown by a green circle, but

each trajectory terminates at a slightly different terminal point. Figure 2.5

shows the result of applying each method of inverse optimal control to learn

the unknown cost function weights c1, c2, c3. Right away, certain properties

of each method stand out: the method of Mombaur, et al. exhibits the

most iterations (shown in green curves), but achieves very good trajectory

prediction upon termination (final predicted trajectory shown in red). The

maximum margin planning method (by Ratliff, et al.) is very fast in that

it requires very few iterations to get a good answer, however it terminates

before refining the solution. Our new method is not iterative, and, since

the observed exemplar trajectories were not corrupted by noise, perfectly

recovers the unknown cost function.

Quadratic Regulation of the Kinematic Unicycle

As our second test system, we consider quadratic regulation of the kinematic

unicycle

minimize
x,u

∫ tf

t0

xTQx+ uTRudt (2.48)

subject to ẋ(t) =

cosx3(t)

sinx3(t)

u(t)

 ,
x(0) = xstart

x(tf) = free,

where states are denoted by x(t) ∈ R3 (with xi(t) representing the i-th el-

ement of the vector x(t)), and control inputs are denoted by u(t) ∈ R. We

26

−1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x1

x2

c(1) =

 1
1

0.01

c(2) =

1
1
1

c(3) =

 1
1
10

0 5 10

−1

0

1

2

3

4

t

x1(t)

0 5 10
−1

0

1

2

3

t

x2(t)

0 5 10
−2

−1

0

1

t

u(t)

Figure 2.4: LQR example walk through, part 1. This figure shows three
separate trajectories, shown in red, green, and blue curves. These three tra-
jectories arise from minimizing three respective cost functions that are shown
next to the curves in the figure. Note that each trajectory shares the same
initial condition, shown by a green circle, but each trajectory terminates at a
slightly different terminal point.

27

−1 0 1 2 3

−0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

ĉ =

 1.0
0.94
9.9

Bi-Level IOC

0 1 2 3 4 5

−1

0

1

2

3

x1

x2

ĉ =

 1.0
0.98
10.1

Max-Margin IRL

−1 0 1 2 3

−0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

ĉ =

1.0
0.1
6.8

Maximum Margin Planning

−1 0 1 2 3

−0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

ĉ =

 1.0
1.0
10.0

New Method

Figure 2.5: LQR example walkthrough, part 2. This figure shows the result
of applying each method of inverse optimal control to learn the unknown cost
function weights c1, c2, c3. See the text for further discussion of the behavior
of each method.

28

simulate 50 instances (trials) of this problem using different initial conditions

and different cost functions. The initial state of the system x0 for each trial

is drawn from a N(0, 5), and the final time tf = 10 is fixed for all trials.

Moreover, for each trial we select cost matrices Q and R, with diagonal ele-

ments generated according to the uniform distributions of U [0, 1] and U [ε, 1]

respectively, to obtain a nonnegative-definite and positive-definite matrices

Q and R. Solving the optimal control problem (2.48) with these values re-

sults in 50 examples of regulating a kinematic unicycle from a random initial

condition to the origin.

Characterizing the Planar Elastica

Consider a planar, variable-stiffness, elastica, i.e. a perfectly elastic wire

confined to motion in a plane. Such a restriction is realized in practice by

considering a wide elastic strip, each end of which is kept perpendicular to

the plane of motion. One end is held fixed while a robot manipulator holds

the other end. Let (x1(t), x2(t)) ∈ R2 be the curve traced out by this elastica,

as a function of its arc-length t ∈ [0, 1]. Let x3(t) ∈ S1 be the tangent angle

to this curve. The curvature of the elastica is denoted by u(t). Without

loss of generality, we will always assume x(0) = 0. In steady-state, for given

boundary conditions x(1) = xgoal, x(t) is a locally optimal solution to the

following optimal control problem

minimize
x(·),u(·)

∫ 1

0

cTσ(t)u(t)2dt

subject to ẋ(t) =

cosx3(t)

sinx3(t)

u(t)

x(0) = 0

x(1) = b,

(2.49)

29

where σ(t) represents a Fourier basis using a finite collection of terms from

the Fourier series as basis functions

σ(t) =

1

1 + sin (2πt)
...

1 + sin
(
k−1

2
2πt
)

1 + cos (2πt)
...

1 + cos
(
k−1

2
2πt
)

∈ [0, 2]k. (2.50)

In this model, the cost function can be considered the energy of the system

– in this case the bending energy of the object. In the experiments we per-

form, in each trial we randomly select boundary condition xf , and randomly

choose cost function parameters c. We generate random boundary conditions

by sampling configurations such that the initial costate of the trajectories are

uniformly distributed. We randomly choose c by sampling the uniform dis-

tribution U [0, 1] for each component, and normalize the parameter vector

such that the first element is 1.

Another recent work models deformable one-dimensional objects such as

surgical suture, rope, and hair [61]. In this recent work, exhaustive search

is used to find the unknown parameters that minimize the squared error be-

tween the observed and predicted state trajectories, where the predicted state

trajectories are derived by finding local minima of the energy of the object.

In other words, this method, when adapted to deterministic continuous-time

problems, is analogous to the method of Mombaur, et al. [1].

2.4 Results and Discussion

2.4.1 Perfect Observations with Known Basis

Functions

In this set of experiments, each algorithm was given one perfect observation

of an optimal trajectory and learned the unknown cost function parameters c.

After learning the cost function, predicted trajectories are computed. This

allows us to compute other statistics such as the error in total cost, error

30

Table 2.1: Results for perfect observations with known basis functions.

Mombaur Abbeel Ratliff New

LQR computation (s) 280 68 117 4

forward problems 129 28 48 0

parameter error 7.03e-2 1.71e-1 6.99e-1 6.35e-8

feature error 2.30e-3 3.07e-3 1.15e-1 2.81e-9

trajectory error 1.36e-5 1.04e-4 2.64e-2 1.04e-16

Unicycle computation (s) 448 63 280 2

forward problems 133 20 100 0

parameter error 3.27-2 5.12e-1 5.23e-1 2.54e-5

feature error 3.53e-3 1.69e-2 1.42e-2 1.03e-5

trajectory error 1.55e-5 1.12e-3 4.64e-3 8.09e-10

Elastica computation (s) 428 60 43 3

forward problems 301 31 4 0

parameter error 1.78e-1 1.28e+0 1.18e+0 2.96e-7

feature error 6.28e-3 9.11e-3 2.31e-2 3.44e-3

trajectory error 6.22e-4 6.55e-4 3.22e-3 3.38e-4

in feature vectors, and sum squared error between observed and predicted

trajectories.

Table 2.1 shows results averaged over 50 trials with randomly selected

boundary conditions in each trial. These results are consistent with what

we expect from the theoretical analysis of each algorithm. In the method of

Mombaur, the sum-squared error between predicted and observed trajecto-

ries converges near zero as the number of iterations increases. However the

inferred cost function parameters are not learned perfectly. Similarly, upon

termination of the methods of Abbeel and Ratliff, the error between predicted

and observed feature vectors is small, but the cost function parameters are

not learned perfectly.

The new method developed in this chapter also performs as expected –

learning the unknown parameters perfectly (within the accuracy and preci-

sion tolerances of ODE and least squares solvers). In the case of the elastica,

the new method learns the unknown cost parameters c to high precision, but

shows relatively less precision for the feature vector and trajectory errors.

This is due to the numerical forward problem solver being attracted to local

minima. In other words, despite having a more precise learned cost function

than the other methods, the predicted trajectory is very similar to those

31

predicted by the other methods.

Figure 2.6 shows the convergence of all trials for each of the iterative

inverse optimal control methods and each system. This figure also shows

that in the method of Mombaur and Ratliff, there are a few trajectories that

were problematic for these methods. The occurrence of this issue for the

method of Ratliff in each of the three systems is likely due to the fact that

the step size sequence in that algorithm is very important in determining the

speed of convergence of the algorithm (also see discussion in Section 2.1.3).

2.4.2 Perfect Observations with Perturbed Cost

In this set of experiments, the true cost function consists of a linear combi-

nation of known basis functions plus a bounded deterministic perturbation

(see Section 2.3.1). For each system, one particular set of boundary condi-

tions was selected, and observations of optimal trajectories are gathered for

a range of perturbation magnitudes. Figure 2.7 shows the performance of

each method over varying magnitude perturbations. These results generally

show:

• All of the methods learn cost functions that are able to approximate

the observation in terms of feature vector and trajectory errors.

• The performance of the iterative methods remains close to the results

obtained with known basis functions for small perturbations, and then

degrades at larger perturbations,

• The performance of our new method (KKT) is linearly proportional to

the magnitude of perturbation.

Note that in the case of the elastica, all of the methods, including the new

approach based on necessary conditions flattens out at small perturbations.

This is due to the forward solver getting stuck in local minima. This is

supported by the fact that in the case of perfect observations with completely

known basis functions, the new method learns the unknown cost function

parameters to a higher precision than is reflected in the feature and trajectory

errors (see Section 2.4.1.

32

50 100 150 200 250
10

−6

10
−4

10
−2

10
0

iterations

tr
a

je
c
to

ry
 e

rr
o

r

(a) Method of Mom-
baur, LQR.

50 100 150 200
10

−6

10
−4

10
−2

10
0

iterations
tr

a
je

c
to

ry
 e

rr
o

r

(b) Method of Mom-
baur, Unicycle.

50 100 150 200 250 300 350
10

−6

10
−4

10
−2

10
0

iterations

tr
a

je
c
to

ry
 e

rr
o

r

(c) Method of Mom-
baur, Elastica.

10 20 30 40

10
−4

10
−2

10
0

10
2

10
4

iterations

m
a

rg
in

(d) Method of Abbeel,
LQR.

5 10 15 20 25

10
−4

10
−2

10
0

10
2

10
4

iterations

m
a

rg
in

(e) Method of Abbeel,
Unicycle.

5 10 15 20 25 30 35

10
−4

10
−2

10
0

10
2

10
4

iterations

m
a

rg
in

(f) Method of Abbeel,
Elastica.

100 200 300 400
10

−3

10
−2

10
−1

10
0

10
1

iterations

fe
a

tu
re

 e
rr

o
r

(g) Method of Ratliff,
LQR.

50 100 150 200 250 300
10

−3

10
−2

10
−1

10
0

10
1

iterations

fe
a

tu
re

 e
rr

o
r

(h) Method of Ratliff,
Unicycle.

10 20 30 40 50 60
10

−3

10
−2

10
−1

10
0

10
1

iterations

fe
a

tu
re

 e
rr

o
r

(i) Method of Ratliff,
Elastica.

Figure 2.6: This figure shows the behavior of each of the iterative methods.
For the method of Mombaur, this figure shows the evolution of the trajectory
error for each trial. For the method of Abbeel, this figure shows the evolution
of the margin for each trial. For the method of Ratliff, we show the evolution
of the feature vector error for each trial.

33

10
−5

10
−4

10
−3

10
−2

10
−10

10
−8

10
−6

10
−4

10
−2

(a) LQR system, Tra-
jectory error.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

(b) Unicycle system,
Trajectory error.

10
−5

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

(c) Elastica system,
Trajectory error.

Figure 2.7: This figure shows how the feature vector and trajectory errors
change for varying magnitude perturbations. Blue: Mombaur, Green: Abbeel,
Red: Ratliff, Magenta: new method.

2.4.3 Inaccurate Model and Sampled Observations

In our baseline comparison of our new method of inverse optimal control with

three existing methods, we considered perturbations in the structure of the

cost function. In other words, under this perturbation the known cost basis

functions are an approximation of the true cost, and no parameter vector

c can perfectly reproduce observed behavior. Thus, a cost perturbation is

a direct way to begin understanding how robust these methods are to cost

function inaccuracy. We will now consider two other types of system per-

turbation. First, we will consider inaccurate system dynamics models. This

is important in practice when an approximate model is all that is available.

Second, we will consider the case when the observed trajectories consist of

noisy sampled measurements. The analysis of these types of perturbation

will help us understand how robust inverse optimal control methods are to

deterministic structural uncertainties and additive stochastic noise.

Inaccurate Dyamics

In practice, the system being studied is not perfectly known or is modeled

using simplified or approximate equations of motion. In this case, our new

method of inverse optimal control will clearly be affected because it depends

on explicit partial derivatives of the dynamics with respect to the state and

control vectors. To study the behavior of our method under this type of

perturbation, we will consider a set of simulation experiments in which the

true dynamics are not available to the IOC methods. In particular we will

consider the following perturbations for each of the three example systems

34

in the baseline comparison.

1. Linear Quadratic Regulation: In this system, the nominal dynam-

ics are given by ẋ = Ax + Bu where A,B ∼ N(0, 1). We will model

the unknown true dynamics by Ā = A+Ap where Ap ∼ N(0, 1) and is

scaled such that |λmax(Ap)| < ε for a range of small ε > 0.

2. Kinematic Unicycle: The nominal dynamics for this system are

given by

ẋ =

cosx3

sinx3

u

We will model the unknown true dynamics by

ẋ =

s cosx3

s sinx3

u

where s = 1 + ε, and ε ∼ U(0, δ), for a range of small δ > 0.

3. Planar Elastic Rod: The nominal system was defined as a unit length

rod. We will model the unknown true system with an additive length

perturbation of ε ∼ U(0, δ for a range of small δ > 0.

Figure 2.8 shows how the performance of each inverse optimal control algo-

rithm change under perturbations of varying magnitude.

Noisy Sampled-Data Observations

In practice, one will often only have access to noisy observations of the sys-

tem. In this case, one way to improve the accuracy of the learned cost func-

tion is to average over multiple observations. This is handled naturally by the

multiple-observation formulations for the methods of Mombaur, Ratliff, and

the new method developed in this paper. The inverse optimal control prob-

lem we consider requires a continuous and differentiable trajectory. Thus,

one way to handle noisy observations is to consider sampled observations of

the optimal trajectory that are perturbed by zero-mean Gaussian noise, and

then interpolated using smooth cubic spline interpolation. The resulting ob-

servations will in general not be local extremals, but will be approximations.

35

10
−5

10
−4

10
−3

10
−2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Perturbation magnitude

Error

Figure 2.8: Comparison of methods under inaccurate system dynamics per-
turbation for the Example 1 system. This figure shows the average error in
trajectory prediction for varying magnitude perturbation of the underlying
system dynamics.

In particular, we perform a set of simulation experiments in which we

construct observations as follows. First, we begin with a continuous time

local extremal trajectory (x∗, u∗). We then sample this trajectory with a

fixed sample period h, yielding a collection of N state and control samples

{(x0, u0), . . . , (xN , uN)} where each (x∗i , u
∗
i) = (x(ti)

∗, u(ti)
∗) for i = 1, . . . , N .

Next, we add Gaussian noise to each sampled state and control to yield a

sampled noisy observation xi = x∗i + ηx,i where ηx,i ∼ N(0,Σx), and ui =

u∗i + ηu,i where ηu,i ∼ N(0,Σu), for diagonal and positive Σx ∈ Rn,Σu ∈ Rm.

Figure 2.9(a) shows how the performance of each inverse optimal control

algorithm changes for varying sample period and Figure 2.9(b) shows how

performance changes for varying magnitudes of zero-mean additive Gaussian

noise.

2.4.4 Complexity of the Approaches

An important property of the approaches is how they scale with the number

of observations. In the methods of Mombaur and Ratliff, the complexity is

roughly linear in the number of observations (recall that Abbeel’s method

was not posed for multiple observations). In other words, in each iteration,

instead of solving one forward optimal control problem, these two methods

solve N forward problems, one corresponding to the boundary conditions

36

10
−5

10
−4

10
−3

10
−2

10
−15

10
−10

10
−5

10
0

Perturbation magnitude

Error

(a) Sampled-data observations.

10
−5

10
−4

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Perturbation magnitude

Error

(b) Noisy sampled-data observa-
tions.

Figure 2.9: (a) Comparison of methods under sampled-data observations
that are then converted to continuous-time observations using cubic spline
interpolation. This figure shows how the error in the learned cost function
parameter vector c changes for varying magnitude sample period (x-axis). (b)
Comparison of methods under noisy sampled-data observations that are then
converted to continuous-time observations using cubic spline interpolation.
This figure shows how the error in the learned cost function parameter vector
c changes for varying magnitude additive Gaussian noise (x-axis). The sample
period is held fixed in this set of data at one percent the total time of the
trajectories.

appropriate for each of the observed trajectories. In our new approach, the

primary computation is the solution of a Riccati differential equation of di-

mension (k +Nn)× (k +Nn)

Ṗ − (PB + S)R−1 (PB + S)T +Q = 0 (2.51)

where A, B, Q, R, S were derived in Section 2.2.2. This matrix differential

equation is, however, very sparse. The sparse structure of these matrices and

the fact that P is symmetric allow us to partition P in the following way

(where the diagonal and upper right parts of P are shown)

P =

P11 P
(1)
12 P

(2)
12 · · · P

(N)
12

· P
(1)
22 0 · · · 0

· · P
(2)
22 0 · · ·

...
...

. . .
...

· · · · P
(N)
22

(2.52)

37

where P11 ∈ Rk×k, P
(i)
12 ∈ Rk×n, and P

(i)
22 ∈ Rn×n. After some algebra, the

differential equations for these partioned matrices become

Ṗ11 =
N∑
i=1

{
P

(i)
12

(
P

(i)
12

)T
+ P

(i)
12

(
∇xφ

(i)
)T

+ ∇xφ
(i)
(
P

(i)
12

)T
−∇uφ

(i)
(
∇uφ

(i)
)T} (2.53)

Ṗ
(i)
12 = P

(i)
12 P

(i)
22 + P

(i)
12

(
∇xf

(i)
)T

+∇xφ
(i)P

(i)
22 −∇uφ

(i)
(
∇uf

(i)
)T (2.54)

Ṗ
(i)
22 = P

(i)
22 P

(i)
22 + P

(i)
22

(
∇xf

(i)
)T

+∇xf
(i)P

(i)
22 −∇uf

(i)
(
∇uf

(i)
)T (2.55)

For N observations, our new method involves solving N differential equations

of size n × n, N differential equations of size k × n, and one differential

equation of size k × k. This shows that our new method grows linearly with

the number of observations used to infer the unknown cost function.

38

Chapter 3

Calibration of the Kirchoff
Elastic Rod

3.1 Introduction

Figure 3.1 shows a thin, flexible wire of fixed length that is held at each

end by a robotic gripper. Such thin elastic rods have been of mathemati-

cal and engineering interest for centuries, beginning with the study of equi-

librium shapes of planar rods by Euler and the Bernoullis [65]. Kirchhoff

would later extended Euler’s analysis to three-dimensional rods [66], while

Max Born would be the first to show agreement between the theory and

experiments [67]. Today, the equilibrium shapes of elastic rods and their

stability have been studied extensively [68, 69]. Much work has also been

done on the dynamics of elastic rods [70]. These theoretical investigations

have found applications in a variety of environments, both natural and engi-

neered. Examples of natural structures that can be modeled as elastic rods

are human hair [71], twining plants [72], ripples in plant leaves [73], and

DNA [74–76]. Engineered examples include electrical cables, wires, rope,

deep-sea cables [77], flexible pipelines used in offshore drilling [78], carbon

nanotubes [54, 79,80] and graphene sheets [81,82].

Despite this large collection of work on elastic rods, one seemingly fun-

damental problem remains challenging: Consider a thin elastic rod of fixed

length that is held at each end by a robotic gripper. Given starting and goal

equilibrium shapes of the elastic rod, find a path of each gripper that causes

the rod to move between the two shapes while remaining in static equilib-

rium and avoiding self-collision. Equivalently, one can think of the problem

as finding a path of the rod through its set of equilibrium shapes, beginning

at the start configuration and ending at the goal configuration. This set of

equilibrium shapes is the set of all configurations of the rod that would be in

equilibrium if both ends of the rod were held fixed by the robotic grippers.

This problem is challenging for multiple reasons. First, an equilibrium

39

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1: Quasi-static manipulation of an elastic rod (orange) by robotic
grippers (blue). Notice that the grippers begin (frame a) and end (frame i)
in the same position and orientation. This motion corresponds to a single
straight-line path in the global coordinate chart derived in [4].

shape of the rod is a continuous map q : [0, 1] → SE(3). Therefore, the

configuration space is infinite dimensional. Second, configurations of the rod

in general cannot be computed in closed form and must be approximated

using numerical techniques. Lastly, specifying the position and orientation

of the two robotic grippers does not uniquely determine the configuration of

the rod. In Figure 3.1, note that configurations (a) and (i) have the same

robotic gripper placements, but are different elements of the configuration

space. Thus, simply moving the robotic grippers from their starting place-

ment to their goal placement does not guarantee that the rod will move

from its starting configuration to its goal configuration. For these reasons,

previous literature addressing this problem suggests planning in the configu-

ration space indirectly, by sampling displacements of the robotic grippers and

numerically computing the resulting configuration of the elastic rod. This

approach was developed in the seminal work of Lamiraux and Kavraki [83]

and later applied to manipulation of “deformable linear objects” by Moll and

Kavarki [84]. This previous work states that manipulation planning should

be done in the configuration space of the elastic rod. However, the indirect

method described above is ultimately used.

A novel approach to manipulation planning for an elastic rod was de-

veloped by Bretl and McCarthy [85], in which the rod was modeled as a

40

Kirchhoff elastic rod [86]. The main result in this work is that the config-

uration space of the rod is a smooth six dimensional manifold that can be

parameterized by a single (global) coordinate chart. This was shown by for-

mulating the problem of finding equilibrium shapes of the rod in an optimal

control framework. Equilibrium configuration were shown to be local solu-

tions to a geometric optimal control problem, with boundary conditions that

vary with the position and orientation of each robotic gripper [86,87]. Coor-

dinates for the configuration space of the rod (i.e., for all equilibrium shapes

over all boundary conditions) are provided by the initial value of costates

that arise in necessary and sufficient conditions for optimality. These coor-

dinates describe all possible equilibrium configurations of the rod that can

be achieved by moving the robotic grippers. This coordinate chart makes

the seemingly difficult problem of manipulation planning easy to solve. This

work is an extension of a similar manipulation planning method for planar

elastic kinematic chains [85] and was implemented in hardware experiments

for a planar elastic rod [88].

Although these experimental results are proof-of-concept, we are mo-

tivated by a variety of applications. Common manufacturing tasks that

involve handing and assembly of deformable objects are fixturing of sheet

metal [89–91], cutting and layup of composites [92,93], installation of a wire

harness [94], and assembly of flexible circuit boards [95–98]. Medical proce-

dures and equipment that could benefit from this work include automated

knot tying and surgical suturing [99–103], retraction of tissue [104], and ma-

nipulation of flexible needles [105]. Other applications include cable rout-

ing [106], folding clothes [107, 108], and protein folding [109]. Finally, we

are motivated by the link between manipulation of deformable objects and

control of hyper-redundant [110] and continuum robots [111,112], as pointed

out by Tanner [113].

Two main approaches to manipulation planning for deformable objects

have been taken in previous literature. One relies on numerical simulations

of the objects, while the other uses task-based decomposition. The first ap-

proach is considered by Moll and Kavraki in [84], in which they propose a

sampling-based planning algorithm for quasi-static manipulation of an in-

extensible elastic rod by robotic grippers in a three-dimensional workspace.

Equilibrium configurations of the rod are those that locally minimize the total

elastic energy. The algorithm samples placements of the robotic grippers and

41

then numerically approximates equilibrium configurations that satisfy these

boundary conditions. The distance between configurations is measured by

the integral of the sum-squared difference in curvature and torsion of the

rod, and nearby configurations are connected by spherical interpolation of

the gripper placement. The resulting path of the rod between nearby config-

urations is again approximated numerically. The choice of numerical method

used has a significant impact on the performance of this approach. While

Moll and Kavarki [84] used recursive subdivision, other potential methods

include finite elements, finite differences, and discrete geometric models of

elastic rods [114]. The second approach involves tasks that are topological

rather than geometric. One such task is knot tying with rope, in which the

sequence of crossings of the rope is much more important that the exact

shape. Motion primitives can be designed to ensure that crossing operations

are realizable by robotic grippers. Such primitives may rely on the rope begin

placed on a table [103] or being held by fixtures [102]. Another example of a

topological goal is folding of objects such paper [115] and clothes [107].

3.2 Model

We refer to the object in Figure 3.1 as a rod. Assuming that it is thin, inex-

tensible, and of unit length, we describe the shape of this rod by a continuous

map q : [0, 1]→ G, where G = SE(3). As defined in Bretl and McCarthy [4],

let Lq denote the left translation map Lq : G→ G. Let e denote the identity

element of G, and let g = TeG and g∗ = T ∗eG. Abbreviating TeLq(ζ) = qζ as

usual for matrix Lie groups, we require this map to satisfy

q̇ = q(u1X1 + u2X2 + u3X3 +X4) (3.1)

42

for some u : [0, 1]→ U , where U = R3 and

X1 =

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 X2 =

0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 X3 =

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

X4 =

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 X5 =

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 X6 =

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

is a basis for g. Denote the dual basis for g∗ by {P1, . . . , P6}. We refer to q

and u together as (q, u) : [0, 1]→ G× U or simply as (q, u). Each end of the

rod is held by a robotic gripper. We ignore the structure of these grippers,

and simply assume that they fix arbitrary q(0) and q(1). We further assume,

without loss of generality, that q(0) = e. We denote the space of all possible

q(1) by B = G. Finally, we assume that the rod is elastic in the sense of

Kirchhoff [86], so has total elastic energy

1

2

∫ 1

0

(
c1u

2
1 + c2u

2
2 + c3u

2
3

)
dt

for given constants c1, c2, c3 > 0. For fixed endpoints, the rod will be motion-

less only if its shape locally minimizes the total elastic energy. In particular,

we say that (q, u) is in static equilibrium if it is a local optimum of

minimize
q,u

1

2

∫ 1

0

(
c1u

2
1 + c2u

2
2 + c3u

2
3

)
dt

subject to q̇ = q(u1X1 + u2X2 + u3X3 +X4)

q(0) = e, q(1) = b

(3.2)

for some b ∈ B.

The problem of inverse optimal control is to infer the unknown parameters

with respect to which a given trajectory, the observation, is a local minimum

to problem (3.2). This observed trajectory is denoted by

(q∗, u∗) = {q∗(t), u∗(t) : t ∈ [0, 1]} . (3.3)

43

3.2.1 Necessary Conditions for Static Equilibrium

The new method of inverse optimal control derived in Section 2.2 will be

modified to handle the geometric optimal control problem 3.2. We have seen

that if a Kirchhoff elastic rod is in static equilibrium, then its configuration

(q, u) must be a local solution to the geometric optimal control problem (3.2).

In this section, we apply necessary conditions for optimality to show that the

set of all normal (q, u) is a smooth six-manifold that can be parameterized

by a single chart. Coordinates for this chart are given by the open subset

A ⊂ R6 that is defined by (3.7) in the following theorem.

Theorem 5. A trajectory (q, u) is normal with respect to (3.2) if and only

if there exists µ : [0, 1]→ g∗ that satisfies

µ̇1 = u3µ2 − u2µ3 µ̇4 = u3µ5 − u2µ6

µ̇2 = µ6 + u1µ3 − u3µ1 µ̇5 = u1µ6 − u3µ4 (3.4)

µ̇3 = −µ5 + u2µ1 − u1µ2 µ̇6 = u2µ4 − u1µ5,

q̇ = q(u1X1 + u2X2 + u3X3 +X4), (3.5)

ui = c−1
i µi for all i ∈ {1, 2, 3}, (3.6)

with initial conditions q(0) = e and µ(0) =
∑6

i=1 aiPi for some a ∈ A, where

A =
{
a ∈ R6 : (a2, a3, a5, a6) 6= (0, 0, 0, 0)

}
. (3.7)

These necessary conditions will be used to derive residual functions anal-

ogous to those derived in Section 2.2. We will again say that the system is

approximately optimal when these residual functions are close to zero. The

problem is now to derive an efficient solution to the minimization of the

residual functions given the system equations and costate equations.

3.3 Simulation Experiments

3.3.1 Perfect Observations with Known Basis

Functions

In this set of experiments, each algorithm was given one perfect observation

of an optimal trajectory and learned the unknown cost function parameters c.

44

After learning the cost function, predicted trajectories are computed. This

allows us to compute other statistics such as the error in total cost, error

in feature vectors, and sum squared error between observed and predicted

trajectories.

Table 3.1 shows results averaged over 50 trials with randomly selected

boundary conditions in each trial. In the method of Mombaur, the sum-

squared error between predicted and observed trajectories converges near

zero as the number of iterations increases. However the inferred cost function

parameters are not learned perfectly. Similarly, upon termination of the

methods of Abbeel and Ratliff, the error between predicted and observed

feature vectors is small, but the cost function parameters are not learned

perfectly.

Table 3.1: Results for perfect observations with known basis functions.

System Error Type Mombaur Abbeel Ratliff New

Elastic
Rod

computation (s) 95 9 15 1

forward problems 71 5 10 0

parameter error 3.38e-2 8.92e-1 9.71e-1 3.96e-5

feature error 6.77e-7 6.24e-3 4.48e-3 4.87e-7

trajectory error 1.94e-5 7.95e-3 8.82e-3 6.14e-6

The new method developed in this paper also performs as expected –

learning the unknown parameters perfectly (within the accuracy and preci-

sion tolerances of ODE and least squares solvers).

3.3.2 Perfect Observations with Perturbed Cost

In this set of experiments, the true cost function consists of a linear combi-

nation of known basis functions plus a bounded deterministic perturbation

(see Section 2.3.1). For each system, one particular set of boundary condi-

tions was selected, and observations of optimal trajectories are gathered for

a range of perturbation magnitudes. Figure 2.7 shows the performance of

each method over varying magnitude perturbations. These results generally

show:

• All of the methods learn cost functions that are able to approximate

the observation in terms of feature vector and trajectory errors.

45

• The performance of the iterative methods remains close to the results

obtained with known basis functions for small perturbations, and then

degrades at larger perturbations,

• The performance of our new method (KKT) continues to improve as the

perturbation descreases, reflecting exact recovery of the cost function

(to specified numerical method tolerances).

Note that in the case of the elastic rod, all of the methods, including our new

approach, stop improving as the perturbation magnitude gets small. This

trend occurs because the numerical method for solving the forward optimal

control problem terminates before reaching the observed local minima under

our standard convergence and tolerance parameters that are fixed for all

experiments.

3.4 Hardware Experiments

In this section, we perform hardware experiments analogous to those per-

formed in simulation in the previous section. We place the rod in a sequence

of static equilibrium configurations, and use a camera motion tracking sys-

tem to detect sampled locations along the length of the rod. We then use

cubic spline interpolation to generate continuous observations. We manip-

ulated a 33 cm long steel cable, with one end of the cable rigidly attached

to the ground and the other end held by an Adept industrial robot arm, see

Figure 3.2. The cross-section of the cable was approximately circular and

was constant along the length of the rod. Therefore the bending stiffnesses

c2 and c3 are approximately equal. Figure 3.3 shows the observations used

in our inverse optimal control method.

Our observations of the rod begin as sparsely sampled-data observations

of position markers along the rod, and orientation at the endpoints and at

a subset of the positions along the rod. To generate continuous observa-

tions of the rod configuration, we separately interpolate the position and

orientation of the rod sampled measurements. Interpolation of the posi-

tion measurements is performed in a standard way using cubic smoothing

splines. Interpolation of the orientation is spline technique on Lie Groups

as developed in [116], and related to other interpolation techniques over ro-

tations [117–119]. Figure 3.4 shows an example of the rod configuration

46

Figure 3.2: Hardware experimental setup for the 3D elastic rod. A steel
cable is fixed at one end to a table and held at the other end by an Adept
industrial robot.

47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x

(a) x(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t

y

(b) y(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

t

z

(c) z(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0

0.05

0.1

0.15

x

y

z

(d) 3D plot

Figure 3.3: Example observation of physical 3D elastic rod used for inverse
optimal control. Here, t denotes the arc length parameter, and the length
of the rod has been normalized to 1. The circles denote the raw measure-
ments of position markers along the rod. The solid curve represents our spline
interpolation of those markers.

predicted after learning the stiffness parameters of the rod using our inverse

optimal control method. Table 3.2 shows a comparison of results for all of our

implementations of inverse optimal control, where the results are averaged

over two observations of the rod.

Comparison to Ideal Model

For an ideal elastic rod the bending stiffness is equal to the Young’s modulus

of the cable, E, times the area moment of inertia, I, of the cross-section

of the rod. The torsional stiffness, c1, is equal to the shear modulus of the

rod, G, times the cross-sectional polar moment of inertia of the rod, J . The

elastic potential energy of the rod can be normalized by the bending stiffness

48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x

(a) x(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

t

y

(b) y(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

t

z

(c) z(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0

0.05

0.1

0.15

x

y

z

(d) 3D plot

Figure 3.4: This figure shows the predicted configuration of the elastic rod
after estimating the physical properties of the rod using inverse optimal con-
trol. The blue samples represent the interpolated measurement of the observed
rod. The red curve shows the configuration of the rod given the initial con-
ditions and learned physical properties – i.e. it is the solution of the forward
optimal control problem after we learn the cost function via inverse optimal
control. Errors here can be due to observation noise, model inaccuracy (e.g.
we ignore gravity), and plastic deformation of the steel wire that we model as
a perfectly elastic rod.

Table 3.2: Hardware results.

System Error Type Mombaur Abbeel Ratliff New

Elastic Rod

computation (s) 424 132 93 1

forward problems 26 15 13 0

feature error 0.521 0.618 0.715 0.532

trajectory error 11.4 12.3 13.6 12.5

49

c1 c2 c3

Theoretical model 0.77 1 1
Learned value from IOC 0.77 0.4 0.3

Table 3.3: Learned physical properties of the elastic rod from inverse optimal
control. Errors here can be due to observation noise, model inaccuracy (e.g.
we ignore gravity), and plastic deformation of the steel wire that we model as
a perfectly elastic rod.

as follows:
1

2

∫ 1

0

(
GJ

EI
u2

1 + u2
2 + u2

3

)
dt (3.8)

For circular cross sections, we have

I =
π

4
r4 J =

π

2
r4 (3.9)

where r is the radius of the cross-section. We also have the following rela-

tionship between E and G [120]:

G =
E

2(1 + ν)
(3.10)

where ν is the Poisson’s ratio of the material. Therefore we have

GJ

EI
=

1

1 + ν
(3.11)

The Poisson’s ratio of steel is approximately ν ≈ 0.3 [120].

One source of error is in the assumptions made when deriving the stiff-

nesses c1, c2, and c3. The steel cable consists of multiple smaller steel cables

braided together, so the cross-section is not exactly circular. This problem

does not arise with the planar rod, as the elastic energy can be normalized by

the bending stiffness and then no stiffnesses appear in the normalized elastic

energy. Other sources of error include uncertainty in the length of the rod,

uncertainty in the position and orientation of each endpoint, uncertainty in

the motion capture data, and non-constant stiffnesses along the rod. Also,

since we assumed that the rod had a naturally straight shape, uncertainty in

the unstressed shape of the rod could have contributed to the error. Finally,

we note that a portion of the error can be attributed to the fact that the

weight of the rod due to gravity was ignored in this analysis.

50

In future work, the weight of the rod due to gravity could be added

into the analysis, although this complicates the application of Lie-Poisson

reduction. With gravity, the Hamiltonian is no longer left-invariant.

51

Chapter 4

Modeling Human Locomotion

4.1 Introduction

Human locomotion is studied from many different perspectives. In this ap-

plication of inverse optimal control, we will study the natural high-level tra-

jectories that humans take as they walk from an initial rest position to a

given target position and orientation. That is, we are not concerned with

the biomechanical modeling of joint actuation and kinematics, and only with

the selection and execution of trajectories in the plane. In recent work, Mom-

baur, et al. [1] derived a system model that captures relevant dynamics and

investigates a particular cost function that is able to approximate human

walking trajectories. In our own previous work [46] we developed a method

of discrete-time inverse optimal control and validated the approach using a

discrete-time unicycle model of human locomotion. Experimental data came

from a database of human walking trajectories provided to us by Gustavo

Arechavaleta, Jean-Paul Laumond, Halim Hicheur, and Alain Berthoz [121].

In summary, subjects were asked to walk in a gymnasium from a starting

point to a final destination represented by a porch. The starting point was

always the same, but the final position and final orientation of the porch were

varying. The subjects were asked to walk from one point to another freely,

without time or velocity constraints, and the trajectories were recorded us-

ing motion capture technology. An example of a subset of eight observed

trajectories for one subject is presented in Figure 4.1.

52

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

x

y

Figure 4.1: This figure shows eight examples of human walking trajectories
captured by a motion capture system capable of tracking the human subjects’
torsos. The subjects were asked to start at a fixed initial condition and walk
freely to a final destination designated by a gate that the subjects should
walk through. Here, green circles represent the starting position, and red
circles represent the terminal position that typically coincided with a non-zero
terminal velocity.

53

4.2 Optimal Control Model of Human

Locomotion Paths

We will consider the following locomotion model that was first described

in [1]. The system dynamics are given as follows

ẋ = v1 cos θ − v2 sin θ

ẏ = v1 sin θ + v2 cos θ

θ̇ = ω

v̇1 = u1

v̇2 = u2

ω̇ = u3

(4.1)

where x, y, θ denote the position and orientation of the system in the plane,

v1, v2 denote the forward and sideward velocities in the body-fixed reference

frame, and ω denotes the angular velocity of the system. The inputs u1, u2, u3

represent forward, sideward, and rotational accelerations, respectively. The

cost function is modeled as a linear combination of basis functions that pe-

nalize time, input energy, and squared-error between body orientation and

direction to the goal. This cost function is given by

J(x(t), u(t)) =

∫ tf

t0

cTφ[t, x(t), u(t)]dt (4.2)

where the basis functions are

φ[t, x(t), u(t)] =

1

u1(t)2

u2(t)2

u3(t)2

ψ[x(t), xgoal]
2

 (4.3)

and

ψ[x(t), xgoal] = arctan

(
yf − y(t)

xf − x(t)

)
− θ(t) (4.4)

where xf , yf are the position coordinates of the goal configuration xgoal. The

problem of inverse optimal control is now to learn the values of c that make

54

Table 4.1: Results from human walking data experiments.

System Error Type Mombaur Abbeel Ratliff New

Locomotion

computation (s) 138 64 41 2

forward problems 58 31 27 0

feature error 0.186 0.109 0.853 0.716

trajectory error 0.135 0.102 0.761 0.358

observations of human walking trajectories local minima of problem 1.1 with

the cost function and system dynamics defined in this section.

4.3 Experimental Results

We now apply our new method of inverse optimal control, as well as the three

existing methods for comparison, to the model of human locomotion defined

by equations (4.1) through (4.3). Experimental data came from a subset

of the database of human walking trajectories provided to us by Gustavo

Arechavaleta, Jean-Paul Laumond, Halim Hicheur, and Alain Berthoz [121].

For this subset of trajectories, shown in Figure 4.1, we perform inverse opti-

mal control independently on each single trajectory. We then perform inverse

optimal control given the set of all trajectories as observations, and learn one

cost function that best models the set of observations. Results from our new

method of inverse optimal control are shown in Figures 4.2 and 4.3 that show

trajectories produced by solving the forward optimal control problem using

the cost function learned by our inverse optimal control algorithm. In Figure

4.2, we performed inverse optimal control independently on each observed

trajectory. In Figure 4.3 we used all eight observations to compute one cost

function. One can see that better results are obtained when using multiple

observations to recover the cost function. These results suggest that more

observations used to compute the basis weights c, the better the cost function

will predict observed trajectories.

55

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

x

y

Figure 4.2: In this figure, observed and predicted trajectories are projected
on the x-y plane. Blue curves represent observed trajectories obtained from
experimental data. Red dashed curves show predicted results obtained when
using individual observations to recover the value of parameter c independently
for each trajectory.

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

x

y

Figure 4.3: In this figure, observed and predicted trajectories are projected
on the x-y plane. Blue curves represent observed trajectories obtained from
experimental data. Red dashed curves show predicted results obtained when
using all observations to recover the value of parameter c.

56

Chapter 5

Learning Quadrotor Dynamic
Maneuvers

5.1 Introduction

Inverse optimal control is a tool that can be used to learn a cost function for

the purpose of developing a convenient representation of behavior that can

be generalized to new domains. There are two sources of computational com-

plexity that have typically limited the application of inverse optimal control

to low-dimensional problems. First, there is the complexity of the inverse

optimal control algorithm itself. Standard methods have utilized iterative

approaches that require the solution of an optimal control problem in an in-

ner loop. Second, the particular instance of a single forward optimal control

problem can often be difficult and computationally expensive to solve to high

precision. In this chapter, we develop an approximate inverse optimal con-

trol algorithm that overcomes these challenges. In particular, from human

flight demonstrations we learn cost functions for a highly dynamic and non-

linear quadrotor flight task – rapidly translating from a given initial hover

condition to hover at a desired goal position. We will compare our learning

from demonstration method with an existing numerical method that solves

a minimum-time formulation of this problem which we will refer to as the

ETH Zürich method [122,123].

57

5.1.1 Problem Statement

Consider the standard quadrotor system (e.g. derived in [124–128])

q̇ = v

v̇ =

0

0

g

+
1

m
R0

1

 0

0

−u4

θ̇ = Sω

ω̇ = J−1

u1

u2

u3

− ω × Jω

(5.1)

where the position is denoted by q = [q1, q2, q3]T , the velocity v = [v1, v2, v3]T ,

Euler angles θ = [θ1, θ2, θ3]T , body angular velocity ω = [ω1, ω2, ω3], mass m,

moment of inertia J = diag(J1, J2, J3), and R0
1 ∈ SO(3) rotates vectors

from the body frame 1 to the world frame 0. The input to the system

consists of roll, pitch, and yaw torques and total thrust, and is denoted by

u = [u1, u2, u3, u4]T ∈ R4. We consider the full state of the quadrotor system

to be

x = [q; v; θ;ω]

Task: The flight task we consider is rapid translation of the quadrotor

from a specified initial condition x0 to a desired goal position xgoal. Recent

related work approaches this task as a minimum-time optimal control prob-

lem. However, features of this flight task make such a formulation difficult:

• High-acceleration maneuvers are difficult to engineer due to unmodeled

dynamics and approximate knowledge of the system’s physical charac-

teristics.

• Exact solutions to constrained minimum-time optimal control problems

for highly nonlinear systems in complex environments are computation-

ally prohibitive.

• Recent solutions typically develop open loop controllers or similar so-

lutions that are designed for one specific initial condition and goal, and

do not generalize over direction of flight nor distance of motion.

58

Goal: Our goal is to learn a time-invariant policy that captures the desired

flight task behavior and generalizes over direction and distance of motion. In

particular, we will learn such a policy by observing human demonstrations of

the flight task. The learning from demonstration approach to this problem

poses the flight task to the human pilot as follows: fly from hover at initial

condition x0 to hover at the goal position xgoal as quickly as possible. We

expect the result of these flights to very closely approximate solutions to the

formal minimum time optimal control problem given as follows.

minimize
x,u

tf

subject to ẋ(t) = f(t, x(t), u(t))

x(0) = x0

x(tf) = xgoal

(5.2)

We compare our learning approach to an existing solution from the Flying

Machine Arena at ETH Zürich [122, 123]. As mentioned above, this recent

state-of-the-art method has yielded interesting results in terms of automat-

ing very particular high-acceleration maneuvers such as multiple flips. The

method runs into the issues raised above: it’s implementation must be care-

fully tuned to handle model inaccuracies of the particular hardware system

used, its solutions are specific to one precise maneuver in free-space and thus

must be recomputed for every maneuver of interest. We show hardware re-

sults for both our method based on learning from demonstration and the

ETH Zürich method.

5.2 Learning from Demonstration: Method

In this section we develop a method of learning from demonstration that

begins with observations of human pilot flights and ultimately computes a

time-invariant feedback policy capable of replicating the flight task while also

generalizing over direction of flight and distance of motion. Our approach

is composed of a combination of inverse optimal control and guided policy

search, and is inspired by recent work in reinforcement learning [129,130]. In

reinforcement learning, direct policy search methods are often used to tackle

high-dimensional problems in robotics [129, 131, 132]. However, it can often

59

be beneficial to limit the class of policies so that convergence is achieved in

fewer iterations without getting stuck in poor local optima. In our method,

we aim to learn policies with general and flexible representations capable of

representing a broad range of behaviors. An outline of our method is shown

in Figure 5.1. In particular, our method begins with a small number of obser-

vations of human flights. We then take advantage of the differential flatness

of the quadrotor dynamics to generate continuous-time full state trajectories

given sampled-data observations of the position of the center of mass and

quadrotor heading. Then, a central component of our method is to use in-

verse optimal control to learn a cost function for the full quadrotor model

that efficiently represents the flight task. In particular, we use the learned

cost function to generate simulated flights from novel initial conditions, con-

ditions not seen in the human demonstrations. This provides us with a richer

class of observed trajectories than that provided by human demonstrations

alone. Finally, we define a desired class of feedback control policies and use

direct policy search to find a time-invariant feedback policy capable of gen-

erating the desired flight task. In the following subsections, we will describe

each of these components.

5.2.1 Quadrotor Differential Flatness

In our hardware experiments, we fly in an indoor laboratory fitted with an

Optitrack motion capture system that tracks the position of the quadrotor

center of mass and its orientation at 50Hz. In order to utilize our knowledge

of the quadrotor’s equations of motion, and our continuous-time method of

inverse optimal control, we must generate continuous-time full-state trajec-

tories from the sampled-data position and orientation measurements of the

motion capture system. To do this, we take advantage of the differential

flatness of the quadrotor dynamics, a feature that allows us to compute full

state trajectories from observations of flat outputs. We follow the develop-

ment in [133]. Consider flat outputs

y = [q1, q2, q3, θ1]T (5.3)

The full state, x, of the system can be written as functions of y, ẏ, ÿ, and
...
y .

The position and velocity are the first three components of y and ẏ. The

60

Initial Observations

Differential Flatness

IOC – full model

Generate new
exemplars

Direct
policy search

u = π(x) = −K1(x− x∗)

full state trajectory

cost function

new exemplars

params K

Figure 5.1: This figure shows an outline of our quadrotor learning from
demonstration method. Inverse optimal control plays the critical role of effi-
ciently representing the task in a way that can generalize.

61

rotation matrix R0
1 is obtained as follows. First define the body frame z-axis

z1

z1 =
t

‖t‖
t = [ÿ1, ÿ2, ÿ3 − g]T (5.4)

that points the body z-axis along the gravity corrected acceleration vector of

the quadrotor center of mass. Next define

xC = [cos y4, sin y4, 0]T (5.5)

Then

y1 =
z1 × xC
‖z1 × xC‖

x1 = y1 × z1 (5.6)

that yields

R0
1 = [x1y1z1] (5.7)

The angular velocity ω is obtained as follows. Take the derivative of the

velocity equations of motion (in the body frame) to get

mȧ = −u4z1 + ω ×−u4z1 (5.8)

Project this vector along z1 and use the fact that u̇4 = z1 · −mȧ to get

h = ω × z1 = −m
u4

(ȧ− (z1 · ȧ)z1) (5.9)

where h is the project of (m/u4)ȧ onto the x1–y1 plane. Now

ω1 = −h · y1

ω2 = −h · x1

ω3 = ω · z1 = θ̇1z0 · z1

(5.10)

The inputs u are computed as follows. First, u4 = m‖t‖, the gravity-

corrected acceleration. The other components of u can be solved using the

Euler equations in the system equations (5.1).

5.2.2 Quadrotor Inverse Optimal Control

A central component of our method is to use inverse optimal control to

learn a cost function for the full quadrotor model that efficiently represents

the flight task. In particular, we use the learned cost function to generate

62

simulated flights from novel initial conditions, conditions not seen in the

human demonstrations. This provides us with a richer class of observed

trajectories than that provided by human demonstrations alone.

We define the following basis functions for this flight task:

φ(t, x(t), u(t)) =

(q1(t)− xg)2

(q2(t)− yg)2

(q3(t)− zg)2

v1(t)2

v2(t)2

v3(t)2

θ1(t)2

θ2(t)2

θ3(t)2

p(t)2

q(t)2

r(t)2

u1(t)2

u2(t)2

u3(t)2

(u4(t)−mg)2

(5.11)

5.2.3 Generating Novel Exemplar Trajectories

We use the learned cost function to generate simulated flights from novel

initial conditions, conditions not seen in the human demonstrations. This

provides us with a richer class of observed trajectories than that provided

by human demonstrations alone. To generate novel exemplar trajectories,

we simply sample new initial and goal conditions around those seen in hu-

man demonstrations. For example, we will add zero-mean Gaussian noise to

each component of the initial condition: position, velocity, orientation, and

angular velocity, each with an independent standard deviation. We are then

ready to solve the forward optimal control problem given the cost function

learned via inverse optimal control in the previous section. We again use

the generic numerical optimal control tool, GPOPS2, to solve the forward

optimal control problem. The outcome of this step is a set of approximately

optimal exemplar trajectories that we combine with the human demonstra-

63

tions to compose the total set of trajectories that will be used in the next

step of our method: direct policy search.

5.2.4 Direct Policy Search

We now define a desired class of feedback control policies and use direct pol-

icy search to find a time-invariant feedback policy capable of generating the

desired flight task. In this particular flight task, we begin with a very straight-

forward class of policies, the class of time-invariant PD outer loop controllers.

By outer loop controller we mean the following. Due to current quadrotor

hardware designs, there is a natural decomposition of the quadrotor control

in a two level hierarchical architecture. One level consists of an onboard fast

inner loop controller that typically regulates attitude and angular velocity at

up to 1000Hz. A slower, typically off-board outer loop controller regulates

position errors. Thus, when we consider a class of feedback control policies

for quadrotor position control tasks, we are generally talking about the outer

loop control component. See Appendix A for a derivation of both quadrotor

dynamics and the standard hierarchical control architecture. Ultimately, the

outer loop controller can be thought of in the following context: consider a

simplified model of the position dynamics of the quadrotor as a second order

system

ẍ(t) = u(t) (5.12)

where x(t) = (q1, q2, q3)T here is simply the 3D position in the world frame

and u(t) = (u1, u2, u3, u4)T here represents desired 3D acceleration of the

center of mass (u1, u2, u3) and the yaw angular acceleration u4. The class of

time-invariant feedback controllers we will consider, PD controllers, can now

be written as

u1 = −K1(q1 − q1,goal)−K4q̇1

u2 = −K2(q2 − q2,goal)−K5q̇2

u3 = −K3(q3 − q3,goal)−K6q̇3

u4 = −K8(θ1 − θ1,goal)−K9θ̇1

(5.13)

64

By definition, we can also write:

v̇1 = u1

v̇2 = u2

v̇3 = u3

θ̈1 = u4

(5.14)

And the full equations of motion for the quadrotor give us expressions for

these translational and angular accelerations. Therefore, because we earlier

derived continuous-time, full state and control observed trajectories, we now

have a system of equations that is linear in the gains K1, . . . , K9. In other

words, given full state and control observations and the class of PD feed-

back control policies described in this section, we can sample the observed

trajectories to generate an overdetermined system of equations linear in the

unknown gains Ki. We then use least squares to solve for the gains Ki that

are most consistent with the observed trajectories. The result of this process

is a set of gains that define a feedback control policy that represents the

PD controller that is best able to reproduce observed flight behavior given

boundary conditions similar to those seen in the original observed trajecto-

ries.

5.3 Learning from Demonstration:

Experiments

We collected a set of human flight trajectories for the task of rapidly trans-

lating 2 meters in the x-axis direction while maintaining altitude. Figure

5.2 shows a subset of these human flight trajectories. From this figure, one

can see that the primary translation motion took place in approximately 1

second, and stabilization in hover at the goal location is shown for approx-

imately 2 seconds. During each flight, an Optitrack motion capture system

recorded the position of the center of mass of the quadrotor and its orien-

tation (as Euler angles and quaternions) at 50Hz. The pilot controlled the

quadrotor via a standard hobby radio transmitter.

65

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x vs time

time (s)

x

(a) x(t)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

y vs time

time (s)

y

(b) y(t)

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

z vs time

time (s)

z

(c) z(t) −1

0

1

2

−1
−0.5
0

0.5
1

−3

−2

−1

0

1

2

x

3D position

y

z

(d) 3D plot

Figure 5.2: Human demonstration flights used as input for our inverse opti-
mal control method. This figure shows that the primary translation maneuver
takes place in approximately 1 second, with a repeatable transition to hover
at the goal location.

66

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

x vs time

time (s)

x

(a) x vs time

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

y vs time

time (s)

y

(b) y vs time

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

y vs time

time (s)

y

(c) z vs time

Figure 5.3: This figure shows the flight results of the feedback control policy
resulting from our learning from demonstration method.

67

5.4 Time-Optimal Control: Method

This method uses a reduced two-dimensional model of the quadrotor with

three degrees of freedom: the horizontal position x, vertical position z, and

pitch angle θ. It is assumed that the angular velocity θ̇ can be controlled

directly without dynamics and delay. This assumption is motivated by the

fact that quadrotors can achieve high angular accelerations (several hundred

rad/s2) and high-bandwidth angular velocity sensors.

Model

In this section, we define the two-dimensional model of the quadrotor used

to compute time-optimal translation maneuvers. We simplify the standard

system equations given in equation 5.1 by considering only the following

degrees of freedom: the horizontal position q1, vertical position q3, and pitch

angle θ2. These degrees of freedom are controlled by total thrust u4 and pitch

rate ω2, both subject to saturation

umin ≤ u4 ≤ umax |ω2| ≤ ωmax (5.15)

For notational simplicity, we will consider the position of the simplified model

q = [q1, q3]T , the velocity v = [v1, v3]T , the orientation θ = θ2. We thus

consider the reduced state vector x = [q, v, θ]. We define the control vector

u = [ω2, u4]. The simplified two-dimensional equations of motion can now be

written as

q̇ = v

v̇ =

[
0

g

]
− 1

m

[
sin θ

cos θ

]
u2

θ̇ = u1

(5.16)

with control constraints

u ∈ U = {u : |u1| ≤ u1,max, u2,min ≤ u2 ≤ u2,max} (5.17)

In vector form, we will refer to this system by

ẋ = f(x, u) u ∈ U. (5.18)

68

Minimum Principle for Time-Optimal Maneuvers

We are considering the time-optimal maneuver that brings the quadrotor

from a given initial state x0 to a given final state xT . Such a trajectory is

the solution to the optimal control problem

minimize

∫ T

0

g(x, u) dt =

∫ T

0

1 dt = T

subject to ẋ = f(x, u)

x(0) = x0

x(T) = xT

u ∈ U ∀ t ∈ [0, T]

(5.19)

This problem can be solved using Pontryagin’s minimum principle to provide

necessary conditions for optimal control. The Hamiltonian for this problem

is

H(x, u, p) = g(x, u) + pTf(x, u)

= 1 + p1ẋ+ p2ż − p3
1

m
sin θu2 + p4

(
g − 1

m
cos θu2

)
+ p5u1

(5.20)

Because the terminal time is free, the Hamiltonian is zero along optimal

trajectories H = 0∀t ∈ [0, T], i.e. H ≡ 0. Optimal trajectories satisfy the

adjoint equations

ṗ = −∇xH(x∗, u∗, p). (5.21)

For this problem, the adjoint equations yield

ṗ1 = 0 p1 = c1

ṗ2 = 0 p2 = c2

ṗ3 = −p1 p3 = c3 − c1t

ṗ4 = −p2 p4 = c4 − c2t

(5.22)

where c = (c1, . . . , c4) is an unknown parameter vector. The differential

equation for the last costate is

ṗ5 = p3
1

m
sin θu2 − p4

1

m
cos θu2 (5.23)

69

Now to compute the optimal angular velocity input, u∗1, we minimize the

Hamiltonian over possible inputs

u∗1 = arg min
|u1|≤u1,max

{p5u1} (5.24)

Along regular arcs, where p5 is nonzero, the optimal control is

u∗1 = ±u1,max (5.25)

depending on the sign of p5. If p5 = 0 over some interval of time, the optimal

trajectory is a singular arc. Along this interval ṗ5 is also zero and yields the

condition

ṗ5 = p3
1

m
cos θu2 − p4

1

m
sin θu2 = 0 (5.26)

Since the thrust u2 is always greater than zero by definition, we can solve for

the pitch along the singular arc

θ∗(t) = arctan

(
p3(t)

p4(t)

)
= arctan

(
c3 − c1t

c4 − c2t

)
(5.27)

From the system dynamics, we have u1 = θ̇, so we can differentiate the above

equation to get

u1,singular = θ̇∗ =
c3c2 − c1c4

(c2
1 + c2

2) t2 − 2(c1c3 + c2c4)t+ c2
3 + c2

4

(5.28)

that holds along the singular arc. To summarize, the optimal control u∗1 is

given by

u∗1 =

u1,max if p5 < 0

u1,singular if p5 = 0

−u1,max if p5 > 0

(5.29)

We can similarly solve for the optimal thrust u∗2 by minimizing the Hamilto-

nian with respect to u2

u∗2 = arg min
u2∈U

(
−p3

1

m
sin θ∗u2 − p4

1

m
cos θ∗u2

)
(5.30)

70

Define a switching function

Φ = p3 sin θ∗ + p4 cos θ∗ (5.31)

For a singular arc to exist, the switching function must be zero for a finite

interval interval of time. Using the solution of u∗1 that determines θ∗, it can

be shown that the switching function is not zero for a finite interval of time.

Therefore the optimal thrust control u∗2 is given by

u∗2 =

u2,max if Φ ≤ 0

u2,min if Φ > 0
(5.32)

Computing Bang-Bang Optimal Controls

Consider maneuvers with no singular arcs and only bang-bang control be-

havior. The Zurich method for these maneuvers consists of three steps:

(1) switching time optimization (STO) is used to find a bang-bang ma-

neuver from the specified initial conditions to the desired goal position; (2)

given the resulting trajectory from the previous step, the parameter vector

c = (c1, c2, c3, c4) is computed such that necessary conditions for optimal

control are satisfied; (3) the resulting trajectory and costate trajectory are

used as a very good initial guess in a numerical boundary value problem

solver to refine the solution; (4) iterative learning control is used to adapt

the switching times to handle model inaccuracies between the simplified 2D

model and the real hardware system.

(1) Switching Time Optimization: The first step of the method makes

an initial guess of (a) the initial control inputs u(0), (b) switching times for

the two control inputs {t1,i} for i = 1, . . . , n1 and {t2,j} for j = 1, . . . , n2

and (c) the terminal time tf . Now, the switching time optimization method

attempts to minimize the final state error defined by the following residual

function

Jres ({t1,i} , {t2,j} , tf) = (x(tf)− xgoal)TW (x(tf)− xgoal) (5.33)

For a given set of switching times and terminal time, the final state x(tf)

is computed using simulation of the simplified 2D dynamic model acting

under open control that is fully specified by the initial control, switching

71

times, and terminal time. Our implementation uses MATLAB’s fmincon

to perform numerical constrained optimization, where the objective is given

above and the simulation is performed inside the function’s iteration loop.

(2) Costate parameter estimation: After finding a bang-bang trajectory in

the previous step, it must be shown that the trajectory satisfies the necessary

conditions of optimal control. To do this, the costate parameter vector c =

(c1, c2, c3, c4) is computed and the costates are shown to satisfy the necessary

conditions of optimal control. To compute the parameter vector c, a set of

overdetermined linear constraint equations is formed and then solved using

linear least squares. The first set of equations come from the condition that

the costate p5(t) must be zero at the switching times t = t1,i. The condition

H ≡ 0 is used to form an equation for p5(t).

Another set of constraint equations comes from satisfying the integral of

ṗ5(t) over arbitrary intervals [a, b] ∈ [0, tf]:

p5(b)− p5(a) =

∫ b

a

ṗ5dt (5.34)

where, again, the condition H ≡ 0 is used to compute the left hand side.

The final set of constraints come from the thrust control switching curve

vanishing at switching times:

Φ(t2,i) = 0 for i = 1, . . . , n2 (5.35)

These constraints all yield expressions that are linear in the parameter

vector c. Thus, the equations can be written in the form:

Ac = r (5.36)

that is an overdetermined system of equations and has the least squares

solution

c∗ = (ATA)−1AT r (5.37)

If the resulting c∗ yields a small residual, i.e. Ac∗−r ≈ 0, then the necessary

conditions for optimal control are approximately satisfied.

(3) Refinement via Numerical Solver: In our implementation we use the

numerical solver GPOPS2 to refine the solution given the state and costate

trajectories determined above as initialization. GPOPS2 is a general-purpose

72

tool for solving nonlinear optimal control problems using an hp-adaptive

Radau pseudospectral Gaussian quadrature method where collocation is per-

formed at the Legendre-Gauss-Radau quadrature points. GPOPS2 is able to

use SNOPT and IPOPT compiled libraries for solving nonlinear programs.

(4) Adapting for Hardware via Iterative Learning Control: In this step, we

develop the iterative learning control method outlined in [123]. This method

numerically computes a Jacobian that describes small changes in the final

state error due to small changes in the set of switching times and terminal

time. Let P refer to the parameter vector composed of switching times

singular arc durations and terminal time. Let the function F (P) denote the

final state error resulting from simulation under the control policy defined

by parameter P . Consider the switching times and terminal time resulting

from the previous switching time optimization and refinement in simulation

denoted by P0. The Taylor expansion of F (P) around P0 is given by

F (P0 + P) = F (P0) +
∂F

∂P
P = 0 + JP (5.38)

where F (P0) = 0 by definition. The Jacobian J is computed numerically by

performing multiple simulations for changes in a single component of P at a

time:

Jij =
Fi(P0 + hjej)− F (P0)

hj
(5.39)

where hj is a small increment, ej is a unit vector in the j-th coordinate

direction, and again F (P0) = 0. Once J is computed, we use it to update

the parameter vector P in iterated hardware flights as follows:

Pi+1 = Pi − γJ−1Ei (5.40)

where Ei is the terminal state error achieved in the i-th hardware flight

iteration.

5.5 Time-optimal Control: Experiments

We implemented the method of [122, 123] in hardware using an Ascending

Technologies hummingbird and an Optitrack motion capture system for posi-

tion tracking. As outlined above, the method begins by off-line computing a

73

nominal trajectory that satisfies the minimum principle for the time-optimal

control problem. Then, in repeated flights, the iterative learning control al-

gorithm adapts the switching times and total duration of the flight to reduce

terminal state error. Figure 5.4 shows the resulting trajectory upon the first

iteration of flight. The task is to perform a 2 meter translation along the

x-axis while maintaining altitude and minimizing time of flight. Figure 5.4

exhibits approximately half meter final position error in the nominal flight

time. Figure 5.5 shows the resulting trajectory after 20 iterations of the iter-

ative learning control algorithm. Figure 5.6 shows the norm of the terminal

state error over iterations of the algorithm. Iterative learning control is able

to provide a benefit in this task because the simplified 2D model did not

take into consideration the rotational inertia and dynamics of the real sys-

tem, and instead directly commanded body angular velocity. Thus, directly

applying the original nominal open loop control policy on the full system

introduces lag that can be compensated for by adjusting the switching time

of the bang-singular control policy.

In comparison with our learning from demonstration approach, one can

see that the ETH Zürich method produces a slightly shorter duration flight.

That is, they do a better job of solving the minimum-time optimal control

problem given the constraints of the vehicle. This is, in fact, a major mo-

tivation for their work: to produce trajectories at the limits of the vehicles

capabilities. However, the difference in total flight time between the ETH

Zürich method and our learning approach is approximate 0.25 seconds, or

20% of the total flight time. Also, the result of our learning method is a

very simple and general feedback policy that is robust to direction of motion

and distance traveled, as well as robust to environmental disturbances such

as slight gusts. The open loop policy of ETH Zürich works well in the nom-

inal environment, but does not generalize to any other tasks than the one

it was designed for. A simple demonstration of this behavior is to consider

an experiment in which point to point trajectories were flown repeatedly to

the same desired goal position starting from a distribution of initial condi-

tions. Table 5.1 shows results comparing the outcome of flights executed

under the control policy resulting from the minimum-time optimal control

approach of ETH Zürich and the control policy resulting from our learning

from demonstration and policy search method. Another point of comparison

is computational complexity and manual parameter tuning. Qualitatively,

74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.5

0

0.5

1

1.5

2

2.5

3

Positions

time (s)

Figure 5.4: This figure shows the evolution of the position of the real quadro-
tor at the first iteration of Iterative Learning Control, i.e. applying the nom-
inal control obtained from the switching time optimization. This trajectory
exhibits large terminal error with respect to the goal state of the maneuver (2
meter translation along the x-axis).

Table 5.1: Comparison of time-optimal control and new method of inverse
optimal control

System Measurement Time-optimal New

Aggressive
Flight

x0 error 0.5 0.5

xf error 0.49 0.21

the ETH Zürich implementation requires a larger number of different opti-

mizations and requires tuning parameters that affect the performance of the

algorithm.

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.5

0

0.5

1

1.5

2

Positions

time (s)

Figure 5.5: This figure shows the evolution of the position of the hardware
quadrotor at iteration 20 of the Iterative Learning Control algorithm, i.e. ap-
plying the nominal control obtained from the open loop policy using modified
switching times and terminal time. This trajectory exhibits much better per-
formance in terms of matching the desired goal state of the maneuver (2 meter
translation along the x-axis).

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

iteration

Figure 5.6: This figure shows the evolution of the terminal error at each
iteration of the Iterative Learning Control algorithm. This behavior is sensitive
to a variety of tuning parameters, including the step size η in the parameter
update rule.

76

Chapter 6

Conclusion and Future Work

In this thesis, we presented a new method of inverse optimal control, and

compared the method to three existing methods using a set of example sys-

tems designed to yield insight about the differences between the approaches.

The classical problem of inverse optimal control is to infer the class of objec-

tive functions that make a given control policy optimal. In recent work, it

is assumed that the underlying control policy is unknown. In this case the

objective function is inferred from observations of trajectories of the system.

The existing solution approaches to this problem search for values of the pa-

rameters that minimize the difference between predicted and observed trajec-

tories. These approaches require solving a forward optimal control problem

at each iteration. The approach presented in this chapter minimizes residual

functions derived from first order necessary conditions for optimality. We

compared our new approach with the following methods: inverse reinforce-

ment learning by Abbeel and Ng [2], maximum margin planning by Ratliff, et

al. [3], and inverse optimal control by Mombaur, et al. [1]. We demonstrate

the performance of these methods by performing simulation experiments in

which cost function parameters are inferred given optimal state-input trajec-

tories of the system. We test the robustness of the methods by perturbing

the true cost function – in other words, by considering the parameterized

structure of the cost function as an approximation to the true cost function.

Our results show that the new method we develop is better able to recover

unknown parameters and is less computationally expensive than the existing

methods. We then apply our method to three problems of interest in robotics.

First, we apply inverse optimal control to learn the physical properties of an

elastic rod. Second, we apply inverse optimal control to learn models of

human walking paths given observations of people performing goal oriented

walking. These models of human locomotion enable automation of mobile

robots moving in a shared space with humans, and enable motion prediction

77

of walking humans given partial trajectory observations. Finally, we apply

inverse optimal control to develop a method of learning from demonstration

for quadrotor dynamic maneuvering. We develop a new method and com-

pare our learning-based method with a numerical method to an analogous

minimum-time optimal control problem, developed by the Flying Machine

Arena at ETH Zürich.

There are many exciting opportunities and avenues for future work. One

problem of interest is to use inverse optimal control to transfer behavior that

is possible given one system (sensors and actuators) to another potentially

completely different system (set of sensors and actuators). For example,

quadrotor flight tasks are quite simple given a motion capture system such

as Optitrack or Vicon. However, if the quadrotor is fitted with an onboard

monocular or RGB-D camera, it is not immediately clear what algorithm

one should use to automate a similar flight task. For example, the literature

on monocular visual servo control is expansive and diverse, with seemingly

special tuning and algorithm modification presented in each publication. Can

principles from inverse optimal control and reinforcement learning provide a

convenient way to transfer control algorithms that are simple given motion

capture sensors to a system that only uses monocular or RGB-D onboard

cameras and control? A central idea is that one gets to observe trajectory

features from both sets of sensors during learning. Another avenue of future

work lies in taking advantage of systems with differential flatness to simplify

or alter the performance of the inverse optimal control algorithm.

78

Appendix A

Quadrotor Dynamics and
Control

We use the “modeling for control” approach that is common in recent litera-

ture [124–127]. We now derive nonlinear differential equations of motion for

the quadrotor system

ẋ(t) = f (x(t), u(t), t, p)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control vector, and

p ∈ Rp is a parameter vector containing constants such as mass, moments of

inertia, etc. Sometimes we will leave off the parameter vector and consider

it an implicit component of the system. The state vector is defined as

x = (x, y, z, vx, vy, vz, φ, θ, ψ, p, q, r)
T

where x, y, z represent the position of the center of mass in the world frame,

vx, vy, vz represent the velocity of the center of mass in the world frame,

φ, θ, ψ represent ZYX Euler angles specifying the attitude of the vehicle, and

p, q, r represent the angular velocity in the body frame. The control vector

we will consider consists of the applied thrust and torques on the rigid body

u = (u1, u2, u3, u4)

where u1, u2, u3 are roll, pitch, and yaw torques on the rigid body and u4 is the

overall thrust force applied by the rotors. We define two coordinate frames,

the world frame that we will call frame 0, and the body-fixed frame that we

will call frame 1. Unit vectors representing the world frame are denoted by

(Î , Ĵ , K̂), and unit vectors representing the body frame are (̂i, ĵ, k̂). We begin

with the Newton-Euler equations to describe the translational and rotational

79

dynamics of the rigid body quadrotor (in the body frame)(
F

M

)
=

(
mI 0

0 J

)(
q̈

ω̇

)
+

(
0

ω × Jω

)
(A.1)

where m is the mass of the body, F is the total force acting on the center

of mass (in the body frame), M is the total moment acting about the center

of mass (in the body frame), J is the moment of inertia about the center

of mass, I is a 3 × 3 identity matrix, q̈ is the acceleration of the center of

mass (in the body frame), and ω is the angular velocity of the body (in

the body frame). We assume the body frame is aligned with the principle

axes, and that the moment of inertia J is diagonal. Now, we parameterize

the rotational state of the quadrotor using roll, pitch, and yaw Euler angles,

φ, θ, ψ (using the ZYX system). We denote the rotation matrix that rotates

the body frame to the world frame as R0
1.

We model the rotor induced forces and moments as functions of the rotor

angular velocities, σi

Fi = −kFi
σ2
i k̂ (A.2)

M1 = −kM1σ
2
1 k̂ M2 = kM2σ

2
2 k̂ (A.3)

M3 = −kM3σ
2
3 k̂ M4 = kM4σ

2
4 k̂ (A.4)

where the moments act in the k̂ direction, for i = 1, 2, 3, 4. In vector form,

let ωr = (ω1, . . . , ω4). Note that rotors 1 and 3 rotate in the −zB direction,

while rotors 2 and 4 rotate in the +zB direction. The rotors are built such

that Fi act in the zB direction, while M1 and M3 act in the zB direction and

M2 and M4 act in the −zB direction.

The input vector u representing total control torques and thrust force

acting on the vehicle is related to the individual motor thrust forces Fi and

80

x1

y1

σ1

σ2

σ3

σ4

`

`

Figure A.1: An Ascending Technologies Hummingbird with two counter-
clockwise and two clockwise rotors.

aerodynamic torques Mi
u1

u2

u3

u4

 =

0 −lkF 0 lkF

lkF 0 −lkF 0

−kM kM −kM kM

kF kF kF kF

σ2

1

σ2
2

σ2
3

σ2
4

= W

σ2

1

σ2
2

σ2
3

σ2
4

where l is the distance from the motor to the center of mass and σi is the

angular velocity of the i-th motor.

The Euler angle rates are related to body angular velocities through the

81

matrix S(φ, θ, ψ) defined by

S =
1

cos θ

cos θ sinφ sin θ cosφ cos θ

0 cosφ cos θ − sinφ cos θ

0 sinφ cosφ

 (A.5)

Now, we are ready to write down our final equations of motion

ẋ

ẏ

ż

=

vx

vy

vz

v̇x

v̇y

v̇z

=

0

0

g

+
1

m
R0

1

 0

0

−u4

φ̇

θ̇

ψ̇

= Sω

ω̇ = J−1

u1

u2

u3

− ω × Jω

(A.6)

We gather the parameters in this model, and call this the parameter vector

p = (m, J, l, kF1 , . . . , kF4 , kM1 , . . . , kM4) (A.7)

We can now write the equations of motion in vector format

ẋ(t) = f (x(t), u(t), p)

Nominal values of parameters can be extracted using first principles and

experimental data. We use the following as nominal, or “true” values of the

82

parameter vector:

m = 0.7kg

J = diag (Jxx, Jyy, Jzz) = diag (0.004, 0.004, 0.008)

L = 0.17m

kF1 = · · · = kF4 = 6.7e− 6
N

rad/sec2

kM1 = · · · = kM4 = 1.7e− 7
Nm

rad/sec2

(A.8)

A.1 Quadrotor Controller

In our analysis, the system state and input vectors are:

x = (x, y, z, vx, vy, vz, φ, θ, ψ, p, q, r) (A.9)

u = (u1, u2, u3, u4) (A.10)

where u1,u2,u3,u4 are roll, pitch moments and thrust repectively. The control

architecture uses an inner loop to control the roll, pitch and yaw of the vehicle

and runs at approximately 1kHz. An outer loop computes desired angles

based on world position and velocity tracking error.

A.1.1 Outer Loop: Position Control

The outer loop computes desired angles based on world frame position and

velocity tracking error. The first step is to compute desired translational ac-

celerations in the world frame. These desired accelerations are then mapped

to a desired vehicle attitude (roll, pitch, and yaw) that is then sent to the

inner control loop as a setpoint for regulation. Desired accelerations are com-

puted from an outer loop LQR based on the position (and velocity) errors

as shown:

a = K3×6

x− x∗

y − y∗

z − z∗

vx − v∗x
vy − v∗y
vz − v∗z

(A.11)

83

where a = (ax, ay, az) are the desired accelerations and x∗, y∗, z∗, v∗x, v
∗
y, v
∗
z are

the desired vehicle positions and velocities. The LQR controller is derived

based on the simplified system equations:

mẍ = u (A.12)

where here x is simply 3D position in the world, and u is a 3D control vector.

Around hover conditions, φ∗, θ∗ = 0, ψ∗ = a 6= 0, and u4 = mg, we

linearize the translation portion of the equations of motion A.6 to get a

relationship between the desired accelerations a and roll and pitch angles φ

and θ. The equations we will linearize are re-written here

a =

axay
az

 =

v̇xv̇y
v̇z

 =

0

0

g

+
1

m
R0

1

 0

0

u4

 (A.13)

After expanding the rotation matrix, we obtain

ma =

 0

0

mg

−
cosφ sin θ cosψ + sinφ sinψ

cosφ sin θ sinψ − cosψ sinφ

cosθ cosφ

u4 (A.14)

We use the following trigonometry identities during linearization

cos(ε+ δε) = cos ε− δε sin ε

sin(ε+ δε) = sin ε+ δε cos ε

The linearized result is[
δφ

δθ

]
=

[
− cosψ − sinψ

− sinψ cosψ

][
ax

ay

]
1

g
(A.15)

and

δu4 = maz (A.16)

84

Thus, the information that is sent to the inner loop is given by
φ∗

θ∗

ψ∗

u4

 =

δφ

δθ

a

mg − δu4

 (A.17)

A.1.2 Inner Loop: Attitude Control

In the inner loop, three independent LQR loops are used for roll, pitch and

yaw controls around the nominal hover state, φ̇ ≈ p, θ̇ ≈ q and ψ̇ ≈ r:

u1 = − K

[
φ− φ∗

p− p∗

]
(A.18)

u2 = − K

[
θ − θ∗

q − q∗

]
(A.19)

u3 = − K

[
ψ − ψ∗

r − r∗

]
(A.20)

where inputs u1, u2 and u3 are the roll, pitch and yaw torques respectively.

The attitude controller is used to track trajectories in SO(3) that are close

to the nominal hover state where the roll and pitch angles are small. Note

that in hardware, we must then obtain the vector of desired rotor speeds is

from the control vector u
σ2

1

σ2
2

σ2
3

σ2
4

 = W−1

u1

u2

u3

u4

 (A.21)

The motor speeds are then mapped to a hardware command vector using a

mapping obtained from a motor-propeller calibration
cmd1

cmd2

cmd3

cmd4

 = f

σ1

σ2

σ3

σ4

 (A.22)

85

Appendix B

Generalized LQR Solution

Consider the following optimal control problem

min
z(t),v(t)

∫ tf

0

‖F (z, v, t)z(t) +G(z, v, t)v(t) + h(z, v, t)‖2dt

s.t. ż = A(t)z(t) +B(t)v(t)

z(0) = z0

(B.1)

We will begin by considering a similar discrete time problem

min
z(0)...,v(0)...

N−1∑
k=0

‖F (z(k), v(k), k)z(k) +G(z(k), v(k), k)v(k) + h(z(k), v(k), k)‖2

s.t. z(k + 1) = A(k)z(k) +B(k)v(k)

z(0) = z0

(B.2)

B.1 Solution: discrete-time dynamic

programming

This derivation of the LQR solution via dynamic programming is inspired

by [134]. Write the recursive form of the value function as

V (z(k)) = min
v(k)

{
‖Fz(k) +Gv(k) + h‖2 + V (z(k + 1))

}
(B.3)

Now, assume the value function has the form

V (z(k) = zT (k)P (k)z(k)) + 2dT (k)z(k) + c(k) (B.4)

where P (k) = P T (k) ≥ 0. Now, we can solve the minimization over v(k) by

taking the derivative of the value function with respect to v(k) and setting

86

it to zero

0 = vT (G(k)TG(k)+B(k)TP (k+1)B(k))+z(k)TF (k)TG(k)+z(k)TA(k)TP (k+1)B(k)

+ h(k)TG(k) + d(k + 1)TB(k) (B.5)

Thus we have the optimal control

v∗(k) = −(G(k)TG(k)+B(k)TP (k+1)B(k))−1
{

(G(k)TF (k) +B(k)TP (k + 1)A(k))z(k)

+G(k)Th(k) +B(k)Td(k + 1)
}

(B.6)

We can rewrite this as

v∗(k) = K(k)z(k) + q(k) (B.7)

where

K(k) = −(G(k)TG(k) +B(k)TP (k + 1)B(k))−1
(
G(k)TF (k) +B(k)TP (k + 1)A(k)

)
q(k) = −(G(k)TG(k) +B(k)TP (k + 1)B(k))−1

(
G(k)Th(k) +B(k)Td(k + 1)

)
(B.8)

Plugging this expression for v∗(k) back into the recursive value function, and

equating like terms, we derive the recursive Riccati equations

P (k) = F (k)TF (k) +K(k)TG(k)TG(k)K(k) + 2F (k)TG(k)K(k)

+A(k)TP (k+1)A(k)+K(k)TB(k)TP (k+1)B(k)K(k)+2A(k)TB(k)K(k)

(B.9)

d(k) = K(k)TG(k)TG(k)q(k) + F (k)TG(k)q(k) + F (k)Th(k)

+K(k)TG(k)Th(k) +K(k)TB(k)TP (k + 1)B(k)q(k) + A(k)TB(k)q(k)

(B.10)

c(k) = h(k)Th(k) + q(k)TG(k)TG(k)q(k) + 2q(k)TG(k)Th(k)

+ q(k)TB(k)TP (k + 1)B(k)q(k) + c(k + 1) (B.11)

87

with terminal conditions P (N) = 0, d(N) = 0, c(N) = 0.

B.2 Solution: continuous time HJB

This derivation follows the general outline of [17,135]. Similar to the discrete

time case, assume the value function has the following form

V (z(t)) = z(t)TP (t)z(t) + 2d(t)T z(t) + c(t) (B.12)

The Hamilton-Jacobi-Bellman (HJB) equation is given by

− ∂V

∂t
= min

v

{
L(z, v, t) +

∂V

∂z
f(z, v, t)

}
(B.13)

where
∂V

∂t
= z(t)T Ṗ (t)z(t) + 2ḋ(t)T z + ċ(t) (B.14)

and
∂V

∂z
= 2z(t)TP (t) + 2d(t)T (B.15)

L(z, v, t) = ‖F (t)z(t) +G(t)v(t) + h(t)‖2 (B.16)

Taking the minimization over v(t) on the right hand side, we find the optimal

control

v∗(t) = −(G(t)TG(t))−1
{

(G(t)TF (t) +B(t)TP (t))z(t) +G(t)Th(t) +B(t)Td(t)
}

(B.17)

We can rewrite the optimal control as

v∗(t) = K(t)z(t) + q(t) (B.18)

where

K(t) = −(G(t)TG(t))−1
(
G(t)TF (t) +B(t)TP (t)

)
q(t) = −(G(t)TG(t))−1

(
G(t)Th(t) +B(t)Td(t)

) (B.19)

88

Now, plugging this back into the HJB equation, and equating like terms, we

obtain

−Ṗ (t) = F (t)TF (t)+K(t)TG(t)TG(t)K(t)+F (t)TG(t)K(t)+K(t)TG(t)TF (t)

+ P (t)A(t) + A(t)TP (t) + P (t)B(t)K(t) +K(t)TB(t)TP (t) (B.20)

−ḋ(t) = K(t)TG(t)TG(t)q(t)+F (t)TG(t)q(t)+F (t)Th(t)+K(t)TGT (t)h(t)

+ P (t)B(t)q(t) + A(t)Td(t) +K(t)TB(t)Td(t) (B.21)

− ċ(t) = h(t)Th(t) + q(t)TG(t)TG(t)q(t) + 2q(t)TG(t)Th(t) + 2d(t)TB(t)q(t)

(B.22)

with terminal conditions P (tf) = 0, d(tf) = 0, c(tf) = 0.

B.3 Existence and uniqueness

In this section, we follow the development of necessary and sufficient condi-

tions for optimality given in [63]. Define the Hamiltonian as

H(z(t), p(t), v(t)) = ‖F (t)z(t)+G(t)v(t)+h(t)‖2 +p(t)T (A(t)z(t)+B(t)v(t))

(B.23)

where p(t) is the costate of the system. We will make the following assump-

tions:

GT (t)G > 0 (B.24)

and

F (t)TF (t)− F (t)TG(t)
(
G(t)TG(t)

)−1
G(t)TF (t) ≥ 0 (B.25)

This is similar to the regular LQR assumption that R is positive definite and

Q is positive semidefinite.

Theorem 6. Let v∗(t) be an admissible control, and z∗(t) be the trajectory

corresponding to v∗, originating at z(0) = z0. In order that v∗ be optimal

for the cost functional (B.1), it is necessary that there exist a function p∗(t)

such that:

89

1. z∗(t) and p∗(t) are solutions to the canonical system

ż∗(t) = DpH(z∗, p∗, u∗) (B.26)

ṗ∗(t) = −DzH(z∗, p∗, u∗) (B.27)

with boundary conditions

z∗(0) = z0 z∗(tf) free (B.28)

.

2. The Hamiltonian has a minimum as a function of v at v = v∗(t) for

t ∈ [0, tf]

min
v
H(z∗, p∗, v) = H(z∗, p∗, v∗) (B.29)

3. The costate has boundary condition

p∗(tf) = 0 (B.30)

4. The Hamiltonian is constant along the optimal trajectory

H∗(t) = H∗(tf) = const (B.31)

Proof. This is the minimum principle for free endpoint, fixed final time, opti-

mal control. The proof can be approached from the HJB equations, or from

variational calculus.

Now, consider the following form of solution for the costate

p(t) = P (t)z(t) + d(t) (B.32)

where P (t) is the solution of a Riccati differential equation. Then, using the

second necessary condition, and the fact that H(z, p, v) is smooth, we take

the gradient of H with respect to v and set it equal to zero. This leads us

to:

v∗(t) = −(G(t)TG(t))−1
{

(G(t)TF (t) +B(t)TP (t))z(t) +G(t)Th(t) +B(t)Td(t)
}

(B.33)

90

We can plug this back into the canonical equations to get the reduced canon-

ical equations: [
ż(t)

ṗ(t)

]
= M

[
z(t)

p(t)

]
(B.34)

Differentiating the supposed form for p(t), and then using the reduced canon-

ical equations, we come to the Riccati differential equations:

−Ṗ (t) = F (t)TF (t)+K(t)TG(t)TG(t)K(t)+F (t)TG(t)K(t)+K(t)TG(t)TF (t)

+ P (t)A(t) + A(t)TP (t) + P (t)B(t)K(t) +K(t)TB(t)TP (t) (B.35)

−ḋ(t) = K(t)TG(t)TG(t)q(t)+F (t)TG(t)q(t)+F (t)Th(t)+K(t)TGT (t)h(t)

+ P (t)B(t)q(t) + A(t)Td(t) +K(t)TB(t)Td(t) (B.36)

− ċ(t) = h(t)Th(t) + q(t)TG(t)TG(t)q(t) + 2q(t)TG(t)Th(t) + 2d(t)TB(t)q(t)

(B.37)

Now, using the terminal condition p(tf) = 0, we can find the boundary

conditions for the Riccati equations: P (tf) = 0, d(tf) = 0, c(tf) = 0.

Existence and uniqueness of the costate solution follows from existence

and uniqueness of the Riccati equation above. The Riccati equation is an

initial value problem.

Sufficient conditions for optimality are as follows:

∂2H

∂v(t)2
> 0 (B.38)

and [
∂2H
∂z2

∂
∂v

(
∂H
∂z

)
∂
∂z

(
∂H
∂v

)
∂2H
∂v2

]
≥ 0 (B.39)

In our problem, these conditions become:

∂2H

∂v(t)2
= G(t)TG(t) > 0 (B.40)

which holds from our assumptions. The second condition is[
∂2H
∂z2

∂
∂v

(
∂H
∂z

)
∂
∂z

(
∂H
∂v

)
∂2H
∂v2

]
=

[
F (t)TF (t) F (t)TG(t)

G(t)TF (t) G(t)TG(t)

]
≥ 0 (B.41)

91

Because the upper left block is positive semidefinite and lower right block is

positive definite, and the diagonal blocks are transposes of each other, this

matrix is also positive semidefinite. Thus, the optimal control given above

exists and is unique, and minimizes the objective function.

Lemma 7. If v(t) 6= 0 then the cost J must be positive.

Proof. This follows from the assumptions that GTG > 0.

Lemma 8. The Riccati solution P (t) along normal extremal trajectories is

positive semidefinite for all t.

Proof. The proof is given in Wonham [136] and Dieci and Eirola [137]. We

reproduce the outline here. The standard form of the Riccati equation is

Ẋ(t) = −Ā(t)X(t)−X(t)ĀT (t) +X(t)B̄(t)X(t)− C̄(t) (B.42)

with symmetric positive semidefinite boundary condition X(tf) = Xf . It is

assumed that B̄(t) and C̄(t) are symmetric and positive semidefinite. The

cited papers prove that the solution of (B.42) is symmetric and positive

semidefinite for all t ≥ 0. Further, if X(s) or C̄(s) is positive for some s ≥ 0,

then X(t) is positive for all t > s.

We can rearrange our Riccati equation for P (t) such that it is equivalent

to this standard problem by gathering matrices. After rearranging, we have:

Ā(t)← A(t)−B(t)
(
G(t)TG(t)

)−1
GT (t)F (t) (B.43)

B̄(t)← B(t)(GT (t)G(t))−1BT (t) (B.44)

C̄(t)← F T (t)F (t)− F T (t)G(t)(GT (t)G(t))−1GT (t)F (t) (B.45)

Note that this is the same form as the standard LQR with cross terms deriva-

tion, where

Q(t) = F T (t)F (t) R(t) = GT (t)G(t) S(t) = F T (t)G(t) (B.46)

These equations motivate the assumptions we made in the LQR development

above.

92

Appendix C

Differential Dynamic
Programming

C.1 Introduction

Differential dynamic programming is an iterative numerical algorithm that

finds a locally-optimal trajectory given an initial nominal trajectory and con-

trol policy. Differential dynamic programming is a well-used method, some-

times appearing with variation under the title of iterative-LQR or Gauss-

Newton LQR, and has much in common with a variety of first and second

order gradient algorithms [64, 138]. Jacobson and Mayne (1970) [139] is the

dominant reference in recent related literature, and we will explore the algo-

rithm given there. We are motivated to understand this algorithm because

it solves interesting problems in biological control and reinforcement learn-

ing [52, 140–143]. Specifically, we will use DDP in a reinforcement learning

scheme that will teach a fixed-wing UAV to perform path-tracking as well as

aerobatic maneuvers.

C.2 Algorithm

In this paper, we will consider systems described by nonlinear difference equa-

tions. While continuous-time systems have more extensive global minima

results, we focus on discrete-time systems that approximate the continuous

problem. Such systems are also natural in the context of stochastic control

problems that we are interested in exploring in future studies.

The system we will consider is defined by

xi+1 = fi(xi, ui) i = 0, 1, . . . , N − 1 (C.1)

x0 = x̄0 (C.2)

93

The sequence {ui} for i = 0, . . . , N − 1 is often referred to as a control

sequence or control schedule. The sequence {xi} is referred to as the state

trajectory. A control policy π is defined as a sequence of state feedback

control laws ui = hi(xi). Let π◦ denote the optimal policy. The cost function

that we wish to minimize is defined by

V0 (x0, {ui}) =
N−1∑
i=0

Li(xi, ui) + F (xN) (C.3)

where Li and F are nonnegative nonlinear functions representing the one-step

cost at time i and terminal cost, respectively.

Dynamic Programming: The dynamic programming solution to this prob-

lem is as follows. Let V ◦i (xi) denote the optimal cost – the cost starting from

xi if the optimal policy π◦ is followed. Then, from the principle of optimality,

we have the recursive Bellman equation:

V ◦i (xi) = min
ui

[
Li(xi, ui) + V ◦i+1(fi(xi, ui))

]
(C.4)

Performing the minimization in C.4 at time i yields the optimal control action

and the optimal cost for state xi. Repeating this minimization for all xi ∈ En

yields the optimal cost-to-go from time i, Vi(·), and the optimal control law

at time i, hi(·). Iteration backwards in time, using the boundary condition

V ◦N(xN) = F (xN) (C.5)

yields the optimal cost function V ◦0 (·) [and all intermediate optimal cost-to-

go functions V ◦i (·)] as well as the optimal policy π◦ =
{
h◦0(·), . . . , h◦N−1(·)

}
.

Such direct dynamic programming implementations suffer from the curse of

dimensionality: both computational time and storage requirements are dif-

ficult to meet for systems with more than two or three states. Iterative

techniques get around this by comparing the nominal trajectory with neigh-

boring trajectories and selecting the neighboring trajectory that yields the

most significant decrease in cost. The new trajectory, and the associated

control sequence become the nominal sequences for the next iteration.

Differential Dynamic Programming: In this section we give an overview

of the algorithm. As mentioned above, the central idea of DDP and other it-

erative gradient algorithms is to search neighboring trajectories in the hopes

94

of slightly lowering the cost in each iteration and converging to a local min-

ima. To accomplish this efficiently, DDP computes an approximation of the

value function along the current nominal trajectory by a Taylor series expan-

sion (second order terms are retained). Then, a new linear state feedback

control policy is hypothesized. This policy is substituted into the approxi-

mated value function. Finally, the principle of optimality is used to choose

the control that will minimize the approximated value function. The steps

up to this point are referred to as the backward-sweep. This new control

policy is used to generate a new trajectory, and the new cost is compared

with the previous cost (forward-sweep). If the cost has improved, then we

begin another iteration. If the cost has not improved, the new control policy

is reduced in magnitude and the forward-sweep is computed again. A critical

requirement for the algorithm to succeed is that variations in the state from

the nominal state due to the new control sequence should remain sufficiently

small so that the Taylor series expansion is a good approximation. Next, we

will give the full definition of the algorithm and its derivation.

C.2.1 Algorithm overview

An overview of the differential dynamic programming algorithm is shown in

Figure C.1.

C.2.2 Derivation

The algorithm begins with a nominal control schedule {ūi} and corresponding

state trajectory {x̄i}. The value function (non-optimal) obtained from these

nominal sequences is V̄i(xi, {ūi}). If this function is a sufficiently smooth

function of xi, it can be approximated in a small neighborhood of x̄ by the

following Taylor series expansion (truncated after second order terms):

V̄i(xi) = V̄i(x̄i) +
[
V̄ i
x(x̄i)

]T
δxi +

1

2
δxTi

[
V̄ i
xx(x̄i)

]
δxi (C.6)

where V̄ i
x is a column vector whose j-th component is given by ∂/∂(xi)jV̄i(x̄i).

Now, the terms V̄i(x̄i), V̄
i
x(x̄i), V̄

i
xx(x̄i) are the terms we need to calculate. We

will find recursive equations for these terms. First, lets recall the recursive

95

DDP algorithm overview:

1. Given nominal control schedule {ui} and initial condition x̄0,
compute nominal trajectory {xi}.

2. Backward-sweep: Calculate second-order approximation of
value function. Compute δui that maximally reduces cost.
Store αi, βi, and estimated cost ai (use Equations (C.27),
(C.28)).

3. Forward-sweep: Set ε = 1. Calculate the new control and state
sequences using:

xi+1 = fi(xi, ui), x0 = x̄0

ui = ui + εαi + βi(xi − xi)

Calculate the actual change in cost:

∆V0 = F (xN)− F (x̄N)

+
N−1∑
i=0

[Li(xi, ui)− Li(xi, ui)]

If ∆V0 is positive (new policy increased cost) or if it is negative
but,

|∆V0|
|ε(1− ε/2)a0|

< c

set ε = ε/2 and go back to beginning of Step 2 (forward sweep).
Otherwise, ∆V0 < 0 and is not too much smaller than the
predicted change in cost, and the new sequences {xi} and {ui}
are stored and used as the nominal sequences in a new iteration
starting with the Step 1 (backward-sweep).

4. The algorithm is terminated when

|a0(x̄0)| ≤ η

where η > 0 is a small quantity determined from numerical
stability considerations.

Figure C.1: DDP algorithm overview.

Bellman equation (principle of dynamic programming):

V̄i(xi) = Li(xi, ui) + V̄i+1(xi+1) (C.7)

96

with

xi+1 = fi(xi, ui) (C.8)

and boundary condition

V̄N(xN) = F (xN) (C.9)

Also, lets introduce a pseudo-Hamiltonian function:

Hi(xi, ui, λ) = Li(xi, ui) + λTfi(xi, ui) (C.10)

for i = 0, . . . , N − 1. Now, to obtain recursive equations for the Jacobian

and Hessian of V̄i(·), let us differentiate both sides of Equation (C.7):

V̄ i
x(xi) = Lix(xi, ui) + [f ix(xi, ui)]

T V̄ i+1
x (xi+1)

= H i
x(xi, ui, V̄

i+1
x (xi+1)

(C.11)

Now, let us differentiate Equation (C.11) with respect to xi:

V̄ i
xx(xi) = H i

xx(xi, ui, V̄
i+1
x (xi+1))

+ [f ix(xi, ui)]
T [V̄ i+1

xx (xi+1)][f ix(xi, ui)]
(C.12)

Letting xi = xi, we now have difference equations for V̄i(x̄i), V̄
i
x(x̄i), V̄

i
xx(x̄i):

V̄i(xi) = Li(xi, ui) + V̄i(x̄i+1)

V̄ i
x(xi) = H i

x(xi, ui, V̄
i+1
x (x̄i+1)

V̄ i
xx(xi) = H i

xx(xi, ui, V̄
i+1
x (x̄i+1))

+ [f ix(xi, ui)]
T [V̄ i+1

xx (x̄i+1)][f ix(xi, ui)]

(C.13)

with boundary conditions

V̄N(x̄N) = F (x̄N)

V̄ N
x (x̄N) = Fx(x̄N)

V̄ N
xx(x̄N) = Fxx(x̄N)

(C.14)

These equations are calculated backward in time and produce the time his-

tory of the Taylor series approximation to the value function in a small

neighborhood of xi. Also, by replacing ui with hi(xi), and V̄i with Vi(xi, π)

we obtain the Taylor series approximation of Vi(xi, π) about xi. Recall that

97

Vi(xi, π) is the cost due to initial condition xi and policy π = {h0(·), . . . , hN−1(·)}.
We will now apply the above differentiation of the Bellman equation, with

the following additional assumptions:

ui = ui + δui(xi) (C.15)

and

δxi = xi − xi (C.16)

where δui is a function of xi. The goal now is to find δui(xi) that minimizes

the approximate value function in the neighborhood of xi.

Now, using Equations (C.15) and (C.16), our (non-optimal) value func-

tion becomes:

Vi(xi + δxi) = Li(xi + δxi, ui + δui)

+ Vi+1(x̄i+1 + δxi+1)
(C.17)

where

δxi+1 = fi(xi + δxi, ui + δui)− x̄i+1 (C.18)

Now, expand both sides of Equation (C.17) about the xi and ui:

Vi(xi) + [V i
x(xi)]

T δxi +
1

2
δxTi [V i

xx(xi)]δxi =

Li(xi, ui) + Vi+1(x̄i+1)

+ [H i
x]
T δxi + [H i

u]δui +
1

2
δxTi [H i

xx]δxi

+ δuTi [H i
uu]δxi +

1

2
δuTi [H i

uu]δui

+
1

2
δxTi [f ix]

T [V i
xx(x̄i+1)][f ix]δxi

+ δuTi [f iu]
T [V i+1

xx (x̄i+1)][f ix]δxi

+
1

2
δuTi [f iu]

T [V i+1
xx (x̄i+1)][f iu]δui + h.o.t.

(C.19)

We now apply the principle of optimality and find δui to minimize the

left-hand side of Equation (C.19). Dropping the higher order terms, and

considering unconstrained δui, we can find the minimizing value by differ-

entiating the right-hand side of Equation (C.19) with respect to δui. The

98

resulting expression is

0 = H i
u

+
(
H i
uu + [f iu]

T [V i+1
xx (x̄i+1)][f iu]

)
δui

+
(
H i
ux + [f iu]

T [V i+1
xx (x̄i+1)][f ix]

)
δxi

= H i
u + Ciδui +Biδxi

(C.20)

where

Bi = H i
ux + [f iu]

T [V i+1
xx (x̄i+1)][f ix]

Ci = H i
uu + [f iu]

T [V i+1
xx (x̄i+1)][f iu]

(C.21)

Thus, if Ci is positive-definite , the unique minimum of the right-hand side

of Equation (C.19) is

δui = −[Ci]
−1H i

u − [Ci]
−1Biδxi

= αi + βiδxi
(C.22)

where

αi = −[Ci]
−1H i

u

βi = −[Ci]
−1Bi

(C.23)

We can now substitute this expression for δui back into Equation (C.19), and

equate coefficients of like-powers of δxi. This will give us recursive difference

equations for Vi(xi), V
i
x(xi), V

i
xx(xi). First, let us define the difference in cost

obtained when starting from state xi and using the nominal control schedule

{ūi, . . . , ūN−1} and the new schedule {ui, . . . , uN−1}:

ai = Vi(xi)− V̄i(xi) (C.24)

where V̄i(xi) is the cost starting from xi and following policy {ūi, . . . , ūN−1},
and Vi(xi) is the cost starting from xi and following policy {ui, . . . , uN−1}.
Now, plugging in δui = αi + βiδxi into Equation (C.19) and equating like

99

powers of δxi yields

ai = ai+1 + [H i
u]
Tαi +

1

2
αTi Ciαi

V i
x(xi) = H i

x + βTi H
i
u + [Ciβi +Bi]

Tαi

V i
xx(xi) = Ai + βTi Ciβi + βTi Bi +BT

i βi

(C.25)

where

Ai = H i
xx + [f ix]

T [V i+1
xx (x̄i+1)][f ix] (C.26)

Finally, plugging in the values for αi and βi from Equations (C.23) into

Equation (C.25), we have

ai = ai+1 −
1

2
[H i

u]
T [Ci]

−1[H i
u]

V i
x(xi) = H i

x + βTi H
i
u

V i
xx(xi) = Ai − βTi Ciβi

(C.27)

and the boundary conditions are:

aN = 0

V N
x (x̄N) = FN

x (x̄N)

V N
xx(x̄N) = FN

xx(x̄N)

(C.28)

At this point, we have an estimate for a linear controller that will maximally

improve the cost (approximated to second-order). However, this only holds

when δxi is sufficiently small. Also note that the parameter that directly

affects the magnitude of δxi is αi. If the derived contol improvement does

not actually lead to a lower cost, we can replace Equation (C.23) with

αi = −ε[Ci]−1H i
u (C.29)

where ε > 0. If Ci is positive-definite, then this ensures that αi is of order ε.

Once we have the new control policy for a particular ε, we can compute the

estimated change in total cost:

a0 = −ε(1− ε/2)
N−1∑
i=0

[H i
u]
T [Ci]

−1[H i
u] (C.30)

100

and thus a0 is of order ε. If Ci is positive-definite, then a0 is negative. Let

∆V0 denote the true change in cost. Then,

|∆V0 − a0| = O(ε3) (C.31)

Thus, there exists an ε sufficiently small such that a0 < 0 guarantees ∆V0 < 0,

i.e. gaurantees that the new policy produces a reduction in cost. Finally, the

algorithm is terminated when the reduction in cost passes a fixed threshold

that is chosen by considering numerical stability.

C.3 Some properties of DDP

C.3.1 Reduction to LQR

An important property of the algorithm is that it reduces to the standard

LQR solution in one iteration when the system is linear and the cost is

quadratic in the state and control. This is easily shown – consider the system

and cost function:

xi+1 = Axi +Bui (C.32)

V0(x0) = xTNQfx+
1

2

N−1∑
i=0

xTi Qxi + uTi Rui (C.33)

We then have:

Hi(xi, ui, λ) = xiQ
Txi + uTi Rui + λTfi(xi, ui) (C.34)

and

H i
x = xTi Q+ λTA

H i
u = uTi R + λTB

H i
uu = R

H i
ux = 0

(C.35)

101

Now the difference equation for V i
xx in Equations (C.27),(C.28) becomes the

matrix Riccati difference equation.

V i
xx(xi) = Hxx + [f ix]

T [V i+1
xx][f ix]− βTCβ

= Q+ ATV i+1
xx A− βTCiβ

= Q+ ATV i+1
xx A− [−C−1

i Bi]
T [Ci][−C−1

i Bi]

= Q+ ATV i+1
xx A−BT

i C
−1
i Bi

(C.36)

where Bi reduces to

Bi = Hux + [f iu]
T [V i+1

xx][f ix]

= BTV i+1
xx A

(C.37)

and Ci reduces to

Ci = Huu + [f iu]
T [V i+1

xx][f iu]

= R +BTV i+1
xx B

(C.38)

Thus, letting vixx = Pi, we obtain the matrix Riccati difference equation

Pt−1 = Q+ ATPtA

− ATPtB
(
R +BTPtB

)−1
BTPtA

(C.39)

with boundary condition

PN = Qf (C.40)

Similarly, we can see that the new control reduces to the LQR solution

δui = αi + βiδxi

= −C−1
i Hu − C−1

i Biδxi

= −C−1
i [Hu −Biδxi]

= −(R +BTV i+1
xx B)−1BTV i+1

xx Aδxi

(C.41)

noting that Hu = 0 is satisfied through construction of the co-state equation

in the LQR solution.

102

0 100 200 300 400 500
-1.5

-1.0

-0.5

0.0

0.5

1.0

position
speed
input

Figure C.2: DDP results from linear system with quadratic cost. Algorithm
converged in one iteration to the standard LQR solution.

C.4 Simulations

In this section, we will show two simple simulations: one that demonstrates

the single iteration solution to an LQR problem, and one that demonstrates

the solution to an optimal control problem where the system is nonlinear in

control. The second-order DDP algorithm is implemented in python (the file

can be found under trunk/documents/miles/mjj-0001/ddp.py).

C.4.1 Simple LQR problem

Consider a point mass being accelerated by a scalar input u. This system is

given by

xi+1 = Axi +Bui x0 = [1, 0]T (C.42)

and cost function

V0(x0) = xTNQfx+
1

2

N−1∑
i=0

xTi Qxi +Ru2
i . (C.43)

103

0 100 200 300 400 500
time step

-1.5

-1.0

-0.5

0.0

0.5

1.0
Discrete LQ Control (tf=5.00, dt=0.01)

position
speed
input

Figure C.3: LQR results from linear system with quadratic cost.

The system and cost parameters are given by

A =

[
1 ∆t

0 1

]
B =

[
0

∆t

]
(C.44)

and

Q =

[
1 0

0 1

]
R = 0.5 Qf =

[
1 0

0 1

]
(C.45)

Now use DDP to find the control sequence {ui} that minimizes the cost in

Equation (C.43). To initialize the algorithm, let ui = 0 for i = 0, . . . , N − 1.

Also, let ∆t = 0.01, and N = 500 (equivalent to tf = 5 seconds).

Results: After one iteration, the DDP algorithm produces the results

shown in Figure C.2 (this can be compared to the LQR solution shown in

Figure C.3). The optimal costs for the DDP solution and LQR solution are

shown in Table C.1.

104

LQR DDP
Optimal cost 156.367 156.366

Table C.1: Optimal costs for LQR and DDP solutions.

C.4.2 Nonlinear in control problem

Consider the following continuous-time problem:

ẋ1 = x2

ẋ2 = sat(u)
(C.46)

where

sat(u) =

u, |u| ≤ D

1, u > D

−1, u < −D

(C.47)

where D > 0. Let the cost function of this continuous-time problem be given

by

V0 =

∫ tf

0

1

2
x2

1dt. (C.48)

The discrete-time version of this problem is given by:

x1
i+1 = x1

i + ∆tx2
i +

∆t2

2
s(ui)

x2
i+1 = x2

i + ∆ts(ui)

(C.49)

where

s(ui) =

ui |ui| ≤ D

1− (1−D)exp
{−u+D

1−D

}
u > D

−1 + (1−D)exp
{
u+D
1−D

}
u < −D

(C.50)

And the cost function for the discrete-time version becomes:

V0 =
1

2
[x1
N]2 +

1

2

N−1∑
i=0

(
[x1
i]

2 +Ru2
i

)
(C.51)

The system and cost can be written in a more compact way. The system is

xi+1 = Axi + g(u) (C.52)

105

where

A =

[
1 ∆t

0 1

]
(C.53)

and

g(u) =

[
∆t2

2
s(u)

∆ts(u)

]
(C.54)

The cost is

V0 = xTNQfxN +
N−1∑
i=0

xTi Qxi +Ru2
i (C.55)

where

Q =

[
1 0

0 0

]
Qf =

[
1 0

0 0

]
(C.56)

Now, some of the intermediate variables we have to provide the DDP algo-

rithm are:

f ix = A (C.57)

f iu =

[
∆t2/2su(u)

∆tsu(u)

]
(C.58)

where

su(u) =

1 |u| ≤ D

exp
{−u+D

1−D

}
u > D

exp
{
u+D
1−D

}
u < −D

(C.59)

f iuu =

[
∆t2/2suu(u)

∆tsuu(u)

]
(C.60)

where

suu(u) =

0 |u| ≤ D

−1
1−Dexp

{−u+D
1−D

}
u > D

1
1−Dexp

{
u+D
1−D

}
u < −D

(C.61)

106

and derivatives of the Hamiltonian

H i
u = Rui + [V i+1

x]T [f iu]

H i
x = xTi Q+ [V i+1

x]T [f ix]

H i
ux = 0

H i
uu = R + [V i+1

x]T [f iuu]

H i
xx = Q

(C.62)

In the simulation ∆t to 0.01 seconds, and N was set to 1000, corresponding

to tf = 10 seconds.

Results: Results for two values of R are shown in Figure C.4. This figure

shows the phase portrait x1 vs x2 for two different values of R. The red

line in the figure shows the switching curve defined by x1 = −0.4446x2|x2|
that is obtained in the optimal solution of the continuous-time problem. An

interesting note here is that the number of iterations required by the DDP

algorithm increases as R decreases. As R decreases, the control is able make

larger swings, and this effects the change in cost. A difficulty with this

system is that even though the algorithm attempts to change the control,

the saturation function reduces the affect of changing δui on the total cost.

C.5 First order method

Finally, it is interesting to note that a simple first-order algorithm can be ob-

tained by neglecting second-order and above terms in the previous derivation.

Thus, the local control law becomes

δui = −εH i
u (C.63)

And recursive equations for Vi and V i
x become:

ai = ai+1 − ε[H i
u]
T [H i

u]

V i
x(xi) = H i

x

(C.64)

with boundary conditions as given before. It is clear here that there will be

a reduction in cost if H i
u 6= 0. Now, the simple first-order algorithm is shown

in Figure C.5.

107

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

x1

x2 R = 0.1

R = 0.01

x1 = −0.4446x2|x2|

Figure C.4: DDP results for system with nonlinearity in control. This figure
shows a phase portrait with x1 (position) on the x-axis and x2 (velocity) on
the y-axis. The red line shows the switching curve x2 = −0.4446x1|x1| that
the discrete-time DDP solution approaches as R is reduced.

108

First-order DDP algorithm overview:

1. Given nominal control schedule {ui} and initial condition x0,
calculate trajectory {xi}.

2. Backward-sweep: Starting from the final time, calculate {ai}
and {V i

x(xi)} using Equations (C.64) and boundary conditions
given in Equation (C.28).

3. Forward-sweep: Set ε = 1. Calculate new control and state
sequences using

xi+1 = fi(xi, ui), x0 = x̄0

ui = ui − εH i
u

Calculate the actual change in cost ∆V0 and compare with the
estimated reduction |a0|. If ∆V0 is sufficiently negative, accept
the new control and trajectory, otherwise reduce ε and go back
to beginning of Step 3 (forward-sweep).

4. The algorithm terminates when |a0| < η for small η > 0.

Figure C.5: First-order DDP algorithm overview.

109

Appendix D

Iterative LQR

D.1 Introduction

Iterative linear quadratic regulation (ILQR) is an iterative, gradient based,

local dynamic programming method. This method also falls under the cat-

egory of model-based policy search algorithms in reinforcement learning, in

which control policies are found using a model or simulator of a dynamic

system. Models range from general Markov decision processes (MDPs) to

deterministic ordinary differential equations. However, it is often the case

that ones model is known to be inaccurate, or only an approximation of a

real system, and thus control policies are found that work well in simulation,

but poorly in real-life. In this paper, we are concerned with learning control

policies that allow steady horizontal flight of a real aircraft, using reduced

order kinematic model as an initialization only. We describe the techniques

in [138, 143] that can be used for vehicle trajectory tracking problems. We

briefly discuss the related work of [?, 144] that describe algorithms to learn

to fly an aircraft using behavioral cloning and relational abstraction of the

state space.

D.2 Problem Statement

Our objective is to design a control policy that causes a UAV to track

a smooth planar trajectory in the presence of environmental disturbances

(steady and turbulent wind). Further, we assume the trajectory is composed

of piecewise circular arc segments of constant arc length. We also assume that

we have prior knowledge of this target trajectory up to some finite horizon.

Many performance measures can be considered, but for this paper we will

consider cost functions that are quadratic in the deviation from the target

trajectory and integrated over the duration of the flight.

110

Consider a dynamic system

xk+1 = fk(xk, uk) (D.1)

that can be linearized about a nominal trajectory {xk, uk} to

xk+1 = Akxk +Bkuk (D.2)

The accuracy of linearization is an important issue that we will return to

in more detail below. Our objective is to track a target trajectory {x∗k, u∗k}
over a finite horizon N , and we will do this by minimizing a quadratic cost

function

J(x0) = (xN − x∗N)TQN(xN − x∗N)

+
N−1∑
k=0

(
(xk − x∗k)TQk(xk − x∗k)

+ (uk − u∗k)TRk(uk − u∗k)
)

(D.3)

where Q, QN are positive semi-definite, and R is positive definite. Thus

far, we have described the general linear quadratic tracking (LQR) problem.

However, we will further consider system dynamics models that are inaccu-

rate, or only an approximation of the real system. We have access to the

real system – we can run a control policy and observe the resulting system

behavior. Thus our problem is to use trials of the real system to learn a

control policy that causes the real system to track the target trajectory.

In the next section, we will briefly review standard LQR. Following that,

we will review iterative LQR (iLQR) in the reinforcement learning context.

D.3 Tracking LQR

LQR is an optimal control algorithm that computes a feedback control policy

that drives a system such that a quadratic cost function is minimized. There

are many minor variations that cover continuous time system, discrete time

systems, infinite horizon, finite horizon, set point regulation, servo problems,

tracking problems, model-following problems [?,17]. We will consider discrete

time, finite horizon, set point regulation and tracking formulations.

111

D.3.1 Set point Regulation

The LQR algorithm assumes a linear (or linearized) dynamical system

xk+1 = Akxk +Bkuk

and a quadratic cost function

J(x0) =
N−1∑

0

(xTkQxk + uTkRuk)

Minimizing this cost function will generally drive the state to the origin.

There are generally two ways to derive the LQR solution: using the vari-

ational methods and using dynamic programming. We will briefly highlight

a dynamic programming derivation in this section, and show a more in-

volved minimum principle derivation in Section D.4.2. A starting point for

the derivation is value iteration. The value of a state x is the expected fu-

ture cost of the system starting from x and executing policy π. A recursive

equation can be written for the optimal value function

Ji+1(x) = min
u

[xTQx+ uTRu+
∑

x′=Ax+Bu

Ji(x
′)] (D.4)

For deterministic systems as implied above, this becomes

Ji+1(x) = min
u

[xTQx+ uTRu+ Ji(Ax+Bu)] (D.5)

Now, assume that J0 has a quadratic form:

J0(x) = xTP0x (D.6)

Then J1 becomes

J1(x) = min
u

[xTQx+ uTRu+ J0(Ax+Bu)]

= min
u

[xTQx+ uTRu+ (Ax+Bu)TP0(Ax+Bu)]
(D.7)

112

Now, we can try to find the optimal u by taking the derivative of the brack-

eted expression with respect to u and setting it equal to zero to obtain

Ru+BTP0(Ax+Bu) = 0 (D.8)

Solving (C.38) for u yields

u = −(R +BTP0B)−1BTP0Ax (D.9)

Substituting this expression for u back into the value iteration equation

(C.37) yields

J1(x) = xTP1x (D.10)

where

P1 = Q+KT
1 RK1 + (A+BK1)TP0(A+BK1)

K1 = −(R +BTP0B)−1BTP0A
(D.11)

This process can be continued, and it can be shown that the form of the

value iteration update is the same at each iteration, and can be reduced to

a closed form computation. In summary, set P0 = 0. Then for i = 1, 2, 3, . . .

Ki = −(R +BTPi−1B)−1BTPi−1A

Pi = Q+KT
i RKi + (A+BKi)

TPi−1(A+BKi)
(D.12)

and the optimal policy is given by

π(xv) = Kix (D.13)

and the optimal cost-to-go function is given by

Ji(x) = xTPix (D.14)

D.3.2 Trajectory Tracking

Let us now consider LQR for trajectory tracking under nonlinear system

dynamics. Let x∗k, u
∗
k denote the desired target trajectory. We now want to

113

minimize the quadratic cost function

J(x0) =
N−1∑
k=0

(xk − x∗k)TQ(xk − x∗k) + (uk − u∗k)TR(uk − u∗k) (D.15)

subject to the system dynamics

xk+1 = fk(xk, uk) (D.16)

We now linearize the system dynamics around the target trajectory

xk+1 ≈ fk(x
∗
k, u

∗
k) + Ak(xk − x∗k) +Bk(uk − u∗k) (D.17)

where Ak = Dxfk(xk, uk), Bk = Dufk(xk, uk), and Dx, Du denote the Jaco-

bian of fk(·) with respect to x and u respectively. Now we have

xk+1 − x∗k+1 ≈ Ak(xk − x∗k) +Bk(uk − u∗k) (D.18)

and we can run the standard LQR backup iterations. These result in the

control sequence

uk − u∗k = Kk(xk − x∗k) (D.19)

that can be rearranged

uk = u∗k +Kk(xk − x∗k) (D.20)

D.4 Iterative-LQR Algorithm

D.4.1 Algorithm Overview

Iterative-LQR is a local policy improvement algorithm – it iteratively makes

local improvements upon the current policy. Each iteration starts with a

nominal control state-action sequence x̄k, ūk, where the states x̄k are obtained

by running the system fk(·, ·), and the inputs ūk are obtained from a control

policy π

π: ūk = hk(x̄k) ∀k ∈ 0, . . . , N − 1

114

iLQR algorithm overview:

1. Set i = 0. Obtain initial policy π(0).

2. Execute policy π(i) and record state-action history
{x(i)

0 , u
(i)
0 , . . . }

3. Linearize fk(x, u) about {x(i)
0 , u

(i)
0 , . . . } to obtain Ak, Bk

4. Run LQR that computes policy

π(i+1): h
(i+1)
k (x

(i)
k) = u∗k + bk +Kk(x

(i+1)
k − x∗k)

5. Set i = i+ 1.

Figure D.1: ILQR algorithm overview.

D.4.2 Derivation

Let us first derive the ILQR algorithm in the context of a standard set point

regulation problem [138]. Consider the system

xk+1 = fk(xk, uk) (D.21)

and cost function

J0 =
1

2
(xN − x∗N)TQN(xN − x∗N)

+
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
(D.22)

The ILQR algorithm is initialized with a nominal control sequence uk and

corresponding nominal trajectory xk obtained by applying uk to the system.

A typical initialization is uk = 0. Each iteration produces an improved con-

trol sequence by linearizing the system dynamics around uk, xk and solving

an LQR problem. This process repeats until convergence. Denote deviations

from the nominal uk, xk by δuk, δxk. The linearized system is then given by

δxk+1 = Akδxk +Bkδuk (D.23)

where Ak = Dxfk(xk, uk), Bk = Dufk(xk, uk), and Dx, Du denote the Jaco-

bian of fk(·) with respect to x and u respectively. Using the linearized model,

115

we can write the cost function

J =
1

2
(xN + δxN − x∗N)TQN(xN + δxN − x∗N)

+
1

2

N−1∑
k=0

(
(xk + δxk)

TQ(xk + δxk)

+ (uk + δuk)
TR(uk + δuk)

)
(D.24)

Now, define the Hamiltonian function

Hk =
1

2
(xk + δxk)

TQ(xk + δxk)

+
1

2
(uk + δuk)R(uk + δuk)

+ λTk+1(Akδxk +Bkδuk)

(D.25)

where λk+1 is a Lagrange multiplier. The optimal control improvement δuk

is now computed by setting the derivative of the Hamiltonian with respect

to δuk to zero, and solving the state equation (D.23) and co-state equation

λk = ATk λk+1 +Q(xk + δxk) (D.26)

with boundary condition

λN = QN(xN + δxN − x∗N) (D.27)

Setting the derivative of the Hamiltonian equal to zero

Huk = R(uk + δuk) +BT
k λk+1 = 0 (D.28)

and solving for δuk yields

δuk = −R−1BT
k λk+1 − uk (D.29)

Now, substituting (D.29) into (D.23) and combining with (D.26), we have

116

the resulting Hamiltonian system(
δxk+1

λk

)
=

(
Ak −BkR

−1BT
k

Q ATk

)(
δxk

λk+1

)

+

(
−Bkuk

Qxk

) (D.30)

This system is not homogeneous, but is driven by a forcing term that depends

on the current trajectory uk, xk. Thus, the form of solution for δuk will not

be strictly linear, but will have additional terms that are functions of the

current trajectory. Based on the boundary condition (D.27), let us try a

solution for the co-state equation of the form

λk = Pkδxk + vk (D.31)

for unknown sequences Pk and vk. We will now substitute this assumption

into the state and co-state equations, apply the matrix inversion lemma, and

find the resulting solution for δuk.

Substituting the assumed form of the costate solution into the state equa-

tion (D.23) yields

δxk+1 =
(
I +BkR

−1BT
k Pk+1

)−1
(Akδxk

−BkR
−1BT

k vk+1 −Bkuk
) (D.32)

Next, substituting the assumption (D.31) into the costate equation (D.26)

gives

Pkxk + vk = Qδxk + ATkPk+1(I +BkR
−1BT

k Pk+1)−1

(Akδxk −BkR
−1BT

k vk+1 −Bkuk)

+ ATk vk+1 +Qxk

(D.33)

We now apply the matrix inversion lemma

(A+BCD)−1 = A−1 − A−1B
(
DA−1B + C−1

)−1
DA−1 (D.34)

and group all terms that multiply δxk and all terms that do not. After this,

117

we obtain

Pk = ATkPk+1

[
I −Bk

(
BT
k Pk+1Bk +R

)−1
BT
k Pk+1

]
Ak

+Q
(D.35)

and

vk = ATk vk+1 − ATkPk+1

[
I −Bk(B

T
k Pk+1Bk +R)−1

BT
k Pk+1

]
BkR

−1BT
k vk+1

− ATkPk+1[I −Bk(B
T
k Pk+1Bk +R)−1BT

k Pk+1]Bkuk

+Qxk

(D.36)

Using the matrix inversion lemma again on the matrix inverse in (D.36) we

have

(R +BT
k Pk+1Bk)

−1 = R−1

− (R +BT
k Pk+1Bk)

−1BT
k Pk+1BkR

−1

The second term in vk is now

−ATkPk+1Bk(R +BT
k Pk+1Bk)

−1BT
k vk+1

and the third term in vk becomes

−ATkPk+1Bk(R +BT
k Pk+1Bk)

−1Ruk.

To simplify the form of these equations, let us define

K = (BT
k Pk+1Bk +R)−1BT

k Pk+1Ak (D.37)

Now we can write Pk and vk as

Pk = ATkPk+1(Ak −BkK) +Q (D.38)

and

vk = (Ak −BkK)Tvk+1 −KTRuk +Qxk (D.39)

Finally, substituting the assumed costate solution (D.31) and (D.32) into

118

(D.29) gives

δuk = −(R +BT
k Pk+1Bk)

−1BT
k Pk+1Akδxk

− (R +BT
k Pk+1Bk)

−1BT
k vk+1

− (R +BT
k Pk+1Bk)

−1Ruk

(D.40)

We now summarize the results in the following

K = (BT
k Pk+1Bk +R)−1BT

k Pk+1Ak

Kv = (BT
k Pk+1Bk +R)−1BT

k

Ku = (BT
k Pk+1Bk +R)−1R

Pk = ATkPk+1(Ak −BkK) +Q

vk = (Ak −BkK)Tvk+1 −KTRuk +Qxk

δuk = −Kuuk −Kvvk+1 −Kδxk

(D.41)

with boundary conditions

PN = QN vN = QN(xN − x∗N) (D.42)

From these boundary conditions, we see that we can solve for the entire

sequence of Pk using the backward recursion in (D.41). Once this LQR

problem is solved, our improved nominal control sequence becomes

u∗k = uk + δuk (D.43)

D.5 ILQR Given Inaccurate Model

Now that we have derived the ILQR in it’s traditional form, we can extend it

to the reinforcement learning context. Let us now consider that our system

dynamics model is inaccurate, or simply an approximation of a real system.

Also, assume that we have access to the real system, enabling us to execute

a feedback control policy and record the resulting state-action history. With

this information, we can improve our control policy by iterating over real

executions.

The major modification here is that when we execute a policy on the real

system, for any particular time step k and state xk, the result of our control

119

input u
(i)
k = h

(i)
k (x

(i)
k) will differ from our prediction, i.e.

x
(i)
k+1 6= fk(x

(i)
k , u

(i)
k) (D.44)

D.5.1 Linear Time Varying Formulation

We will now state ILQR for inaccurate models in the linear time varying

(LTV) format. Here again, the LQR objective is to regulate to a set point

(drive the state to origin). Again we have the state equation and quadratic

cost function

xk+1 = Akxk +Bkuk

J =
N−1∑

0

(xTkQxk + uTkRuk)

Linearizing the state equation around x
(i)
k , u

(i)
k gives us

xk+1 = fk(x
(i)
k , u

(i)
k) +Dxf(x

(i)
k , u

(i)
k)(xk − x(i)

k)

+Duf(x
(i)
k , u

(i)
k)(uk − u(i)

k)
(D.45)

or

xk+1 = fk(x
(i)
k , u

(i)
k) + Akδxk +Bkδuk (D.46)

where δxk = xk − x(i)
k and δuk = uk − u(i)

k . Subtracting x
(i)
k+1 from both sides

yields the following error dynamics

δxk+1 = fk(x
(i)
k , u

(i)
k)− x(i)

k+1 + Akδxk +Bkδuk (D.47)

Now, we can slightly change variables to obtain the standard LQR structure

– let zk = [δxTk 1]T . Then we can redefine the state equation as

zk = [δxTk 1]T

wk = δuk

Ak =

[
Dxfk(x

(i)
k , u

(i)
k) fk(x

(i)
k , u

(i)
k)− x(i)

k+1

0 1

]

Bk =

[
Dufk(x

(i)
k , u

(i)
k)

0

] (D.48)

Similarly, Q and R can be derived using the new variables.

120

A very important issue here is that this formulation will work in practice

only when the learned policy keeps the system close to the current nominal

trajectory! This is a very serious assumption, and often in practice some

further work must be done to ensure that the as-run state remains close to

the nominal trajectory. One way to do this is to modify the cost function in

each iteration such that each one step cost function becomes

(1− α)g(x
(i)
k , u

(i)
k) + α(‖δxk‖2 + ‖δuk‖2) (D.49)

As α approaches one the second term will dominate and the LQR solution will

work harder to keep the state-action history close to the nominal trajectory,

ensuring that the linearization above is a good approximation of the system

dynamics.

D.5.2 Trajectory Tracking Formulation

Above we showed ILQR with reinforcement learning for set point regulation.

A similar method is outlined for trajectory tracking. Let x∗k, u
∗
k denote a

desired target trajectory. Note that this is not necessarily a feasible state

action history for the real system. Again, let x
(i)
k , u

(i)
k denote the current

nominal trajectory obtained from an execution of the real dynamics. We will

linearize the system dynamics around the nominal trajectory, not the target

trajectory!

Let a deviation from the nominal trajectory be given by δxk = xk − x(i)
k

and δuk = uk − u(i)
k . Then we have

xk+1 = fk(x
(i)
k , u

(i)
k) +Dxfk(x

(i)
k , u

(i)
k)δxk

+Dufk(x
(i)
k , u

(i)
k)δuk

(D.50)

Now, we subtract the target state from both sides of the above equation

xk+1 − x∗k+1 = fk(x
(i)
k , u

(i)
k)− x∗k+1

+Dxfk(x
(i)
k , u

(i)
k)δxk

+Dufk(x
(i)
k , u

(i)
k)δuk

(D.51)

To massage this into a linear equation format, we can re-write the above

121

equation as

xk+1 − x∗k+1 = fk(x
(i)
k , u

(i)
k)− x∗k+1

+Dxfk(x
(i)
k , u

(i)
k)(xk − x∗k)

+Dxfk(x
(i)
k , u

(i)
k)(x∗k − x

(i)
k)

+Dufk(x
(i)
k , u

(i)
k)(uk − u∗k)

+Dufk(x
(i)
k , u

(i)
k)(u∗k − u

(i)
k)

(D.52)

Now, a change in variables will bring us to the standard LQR form, let

zk = [(xk − x∗k) 1]T and wk = uk − u∗k. Then we have

zk+1 = Akzk +Bkwk (D.53)

where the upper left block of Ak is given by

Dxfk(x
(i)
k , u

(i)
k)

the upper right block of Ak is

fk(·)− x∗k+1 +Dxfk(·)(x∗k − x
(i)
k) +Dufk(·)(u∗k − u

(i)
k)

the lower left block of Ak is 0 and the lower right is 1.

122

References

[1] K. Mombaur, A. Truong, and J.-P. Laumond, “From human to
humanoid locomotion—an inverse optimal control approach,” Au-
tonomous Robots, vol. 28, pp. 369–383, 2010, 10.1007/s10514-009-9170-
7. [Online]. Available: http://dx.doi.org/10.1007/s10514-009-9170-7

[2] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in ICML ’04: Proceedings of the twenty-first interna-
tional conference on Machine learning. New York, NY, USA: ACM,
2004, p. 1.

[3] N. Ratliff, J. A. D. Bagnell, and M. Zinkevich, “Maximum margin plan-
ning,” in International Conference on Machine Learning, July 2006.

[4] T. Bretl and Z. McCarthy, “Equilibrium configurations of a kirchhoff
elastic rod under quasi-static manipulation,” in WAFR, 2012.

[5] A. Keshavarz, Y. Wang, , and S. Boyd, “Imputing a convex objective
function,” To appear in the Proceedings of the IEEE Multi-Conference
on Systems and Control, 2011.

[6] H. K. Khalil, Nonlinear Systems. Prentice-Hall, Inc., 2002.

[7] D. Liberzon, Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, 2011.

[8] R. E. Kalman, “When is a linear control system optimal?” Transac-
tions of the ASME, Journal of Basic Engineering, vol. 86, pp. 51–60,
1964.

[9] A. Jameson and E. Kreindler, “Inverse problem of linear optimal
control,” SIAM Journal of Control, vol. 11, no. 1, pp. 1–19, 1973.
[Online]. Available: http://dx.doi.org/doi/10.1137/0311001

[10] B. Molinari, “The stable regulator problem and its inverse,” IEEE
Transactions on Automatic Control, vol. 18, no. 5, pp. 454 – 459, oct
1973.

123

http://dx.doi.org/10.1007/s10514-009-9170-7
http://dx.doi.org/doi/10.1137/0311001

[11] J. L. Willems and H. van de Voorde, “The return difference for
discrete-time optimal feedback systems,” Automatica, vol. 14, no. 5,
pp. 511 – 513, 1978. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0005109878900110

[12] T. Fujii and M. Narazaki, “A complete optimality condition in the
inverse problem of optimal control,” SIAM Journal on Control and
Optimization, vol. 22, no. 2, pp. 327–341, 1984. [Online]. Available:
http://dx.doi.org/doi/10.1137/0322022

[13] F. Thau, “On the inverse optimum control problem for a class of nonlin-
ear autonomous systems,” IEEE Transactions on Automatic Control,
vol. 12, no. 6, pp. 674 – 681, dec 1967.

[14] E. Kreindler and A. Jameson, “Optimality of linear control systems,”
Automatic Control, IEEE Transactions on, vol. 17, no. 3, pp. 349 –
351, jun 1972.

[15] Y. Niho and J. H. Makin, “A solution to the inverse problem of
optimal control: Note,” Journal of Money, Credit and Banking,
vol. 10, no. 3, pp. pp. 371–377, 1978. [Online]. Available:
http://www.jstor.org/stable/1991515

[16] J. Casti, “On the general inverse problem of optimal control theory,”
Journal of Optimization Theory and Applications, vol. 32, no. 4,
pp. 491–497, 12 1980. [Online]. Available: http://dx.doi.org/10.1007/
BF00934036

[17] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic
Methods. Prentice-Hall, Inc., 1990.

[18] T. Shimomura and T. Fujii, “Strictly positive real h2 controller synthe-
sis from the viewpoint of the inverse problem,” in Decision and Control,
1997., Proceedings of the 36th IEEE Conference on, vol. 2, dec 1997,
pp. 1014 –1019 vol.2.

[19] W. Rugh, “On an inverse optimal control problem,” IEEE Transactions
on Automatic Control, vol. 16, no. 1, pp. 87 – 88, feb 1971.

[20] P. Moylan and B. Anderson, “Nonlinear regulator theory and an inverse
optimal control problem,” Automatic Control, IEEE Transactions on,
vol. 18, no. 5, pp. 460 – 465, oct 1973.

[21] M. Krstic and P. Tsiotras, “Inverse optimal stabilization of a rigid
spacecraft,” IEEE Transactions on Automatic Control, vol. 44, no. 5,
pp. 1042 –1049, may 1999.

124

http://www.sciencedirect.com/science/article/pii/0005109878900110
http://www.sciencedirect.com/science/article/pii/0005109878900110
http://dx.doi.org/doi/10.1137/0322022
http://www.jstor.org/stable/1991515
http://dx.doi.org/10.1007/BF00934036
http://dx.doi.org/10.1007/BF00934036

[22] W. Li, E. Todorov, and D. Liu, “Inverse optimality design for biological
movement systems,” in IFAC, 2011.

[23] H. Deng and M. Krstic, “Stochastic nonlinear stabilization — ii:
Inverse optimality,” Systems and Control Letters, vol. 32, no. 3, pp.
151 – 159, 1997. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167691197000674

[24] C. Tang and T. Basar, “Inverse optimal controller design for strict-
feedback stochastic systems with exponential-of-integral cost,” in Pro-
ceedings of the 15th IFAC World Congress, 2002.

[25] K. Lenz, P. Khargonekar, and J. Doyle, “When is a controller
H∞-optimal?” Mathematics of Control, Signals, and Systems (MCSS),
vol. 1, pp. 107–122, 1988, 10.1007/BF02551404. [Online]. Available:
http://dx.doi.org/10.1007/BF02551404

[26] T. Fujii and P. Khargonekar, “Inverse problems in h-infinity control
theory and linear-quadratic differential games,” in Proceedings of the
27th IEEE Conference on Decision and Control, dec 1988, pp. 26 –31
vol.1.

[27] M. Kogan, “Solution to the inverse problem of minimax control and
worst case disturbance for linear continuous-time systems,” IEEE
Transactions on Automatic Control, vol. 43, no. 5, pp. 670 –674, may
1998.

[28] D. Alazard, O. Voinot, and P. Apkarian, “A new approach to multi-
objective control design from the viewpoint of the inverse optimal con-
trol problem,” in IFAC Symposium on System Structure and Control,
2004.

[29] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learn-
ing,” Artificial Intelligence Review, vol. 11, no. 1-5, pp. 11–73, 1997.

[30] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in Proceedings of the International Conference on Machine Learning,
1997.

[31] S. Schaal, “Learning from demonstration,” in Advances in Neural In-
formation Processing Systems, 1997.

[32] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques
from nonparametric statistics for real time robot learning,” Applied
Intelligence, vol. 17, pp. 49–60, 2002, 10.1023/A:1015727715131.
[Online]. Available: http://dx.doi.org/10.1023/A:1015727715131

125

http://www.sciencedirect.com/science/article/pii/S0167691197000674
http://www.sciencedirect.com/science/article/pii/S0167691197000674
http://dx.doi.org/10.1007/BF02551404
http://dx.doi.org/10.1023/A:1015727715131

[33] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches
to motor learning by imitation,” Philosophical Transactions of
the Royal Society of London. Series B: Biological Sciences,
vol. 358, no. 1431, pp. 537–547, 2003. [Online]. Available:
http://rstb.royalsocietypublishing.org/content/358/1431/537.abstract

[34] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning
movement primitives,” in Robotics Research, ser. Springer Tracts
in Advanced Robotics, P. Dario and R. Chatila, Eds. Springer
Berlin / Heidelberg, 2005, vol. 15, pp. 561–572. [Online]. Available:
http://dx.doi.org/10.1007/11008941 60

[35] A. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for imi-
tation with nonlinear dynamical systems,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 2, 2001, pp. 752
–757 vol.2.

[36] ——, “Movement imitation with nonlinear dynamical systems in hu-
manoid robots,” in IEEE International Conference on Robotics and
Automation, vol. 2, 2002, pp. 1398–1403.

[37] F. Guenter and A. Billard, “Using reinforcement learning to adapt an
imitation task,” in Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, 29 2007-nov. 2 2007, pp. 1022
–1027.

[38] J. L. Yepes, I. Hwang, and M. Rotea, “New algorithms for aircraft in-
tent inference and trajectory prediction,” Journal of Guidance Control
and Dynamics, vol. 30, pp. 370–382, 2007.

[39] D. Grollman and O. Jenkins, “Sparse incremental learning for inter-
active robot control policy estimation,” in Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on, may 2008, pp.
3315 –3320.

[40] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and gen-
eralization of motor skills by learning from demonstration,” in IEEE
International Conference on Robotics and Automation, May 2009, pp.
763 –768.

[41] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in
dense, interacting crowds,” in Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, oct. 2010, pp. 797 –803.

[42] D. H. Grollman and O. C. Jenkins, “Incremental learning of subtasks
from unsegmented demonstration,” in International Conference on In-
telligent Robots and Systems, Taipei, Taiwan, Oct. 2010.

126

http://rstb.royalsocietypublishing.org/content/358/1431/537.abstract
http://dx.doi.org/10.1007/11008941_60

[43] G. Konidaris, S. Kuindersma, A. Barto, and R. Grupen, “Construct-
ing skill trees for reinforcement learning agents from demonstration
trajectories,” in Advances In Neural Information Processing Systems,
2010.

[44] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous Sys-
tems, vol. 57, no. 5, pp. 469 – 483, 2009.

[45] A. Keshavarz, Y. Wang, and S. Boyd, “Imputing a convex objective
function,” in IEEE International Symposium on Intelligent Control
(ISIC), sept. 2011, pp. 613 –619.

[46] A.-S. Puydupin-Jamin, M. Johnson, and T. Bretl, “A convex approach
to inverse optimal control and its application to modeling human loco-
motion,” in IEEE International Conference on Robotics and Automa-
tion, 2012.

[47] A. Terekhov, Y. Pesin, X. Niu, M. Latash, and V. Zatsiorsky,
“An analytical approach to the problem of inverse optimization
with additive objective functions: an application to human
prehension,” Journal of Mathematical Biology, vol. 61, pp. 423–
453, 2010, 10.1007/s00285-009-0306-3. [Online]. Available: http:
//dx.doi.org/10.1007/s00285-009-0306-3

[48] A. Terekhov and V. Zatsiorsky, “Analytical and numerical analysis
of inverse optimization problems: conditions of uniqueness and
computational methods,” Biological Cybernetics, vol. 104, pp.
75–93, 2011, 10.1007/s00422-011-0421-2. [Online]. Available: http:
//dx.doi.org/10.1007/s00422-011-0421-2

[49] J. Park, V. M. Zatsiorsky, and M. L. Latash, “Finger coordination
under artificial changes in finger strength feedback: A study
using analytical inverse optimization,” Journal of Motor Behavior,
vol. 43, no. 3, pp. 229–235, 2011. [Online]. Available: http:
//www.tandfonline.com/doi/abs/10.1080/00222895.2011.568990

[50] T. D. Nielsen and F. V. Jensen, “Learning a decision maker’s utility
function from (possibly) inconsistent behavior,” Artificial Intelligence,
vol. 160, pp. 53–78, 2004.

[51] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in Proceedings of the Seventeenth International Conference
on Machine Learning, ser. ICML ’00. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2000, pp. 663–670. [Online].
Available: http://portal.acm.org/citation.cfm?id=645529.657801

127

http://dx.doi.org/10.1007/s00285-009-0306-3
http://dx.doi.org/10.1007/s00285-009-0306-3
http://dx.doi.org/10.1007/s00422-011-0421-2
http://dx.doi.org/10.1007/s00422-011-0421-2
http://www.tandfonline.com/doi/abs/10.1080/00222895.2011.568990
http://www.tandfonline.com/doi/abs/10.1080/00222895.2011.568990
http://portal.acm.org/citation.cfm?id=645529.657801

[52] P. Abbeel, “Apprenticeship learning and reinforcement learning with
application to robotic control,” Ph.D. dissertation, Stanford University,
2008.

[53] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous Helicopter
Aerobatics through Apprenticeship Learning,” The International
Journal of Robotics Research, 2010. [Online]. Available: http://ijr.
sagepub.com/content/early/2010/06/16/0278364910371999.abstract

[54] J. Tang, A. Singh, N. Goehausen, and P. Abbeel, “Parameterized ma-
neuver learning for autonomous helicopter flight,” in IEEE Interna-
tional Conference on Robotics and Automation, may. 2010, pp. 1142
–1148.

[55] U. Syed, M. Bowling, and R. E. Schapire, “Apprenticeship
learning using linear programming,” in Proceedings of the 25th
international conference on Machine learning, ser. ICML ’08. New
York, NY, USA: ACM, 2008, pp. 1032–1039. [Online]. Available:
http://doi.acm.org/10.1145/1390156.1390286

[56] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement
learning,” in Proceedings of the 20th international joint conference
on Artifical intelligence, ser. IJCAI’07. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2007, pp. 2586–2591. [Online].
Available: http://dl.acm.org/citation.cfm?id=1625275.1625692

[57] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum en-
tropy inverse reinforcement learning,” in Proc. AAAI, 2008, pp. 1433–
1438.

[58] ——, “Human behavior modeling with maximum entropy inverse opti-
mal control,” AAAI Spring Symposium on Human Behavior Modeling,
2009.

[59] K. Dvijotham and E. Todorov, “Inverse optimal control with linearly-
solvable mdps,” in International Conference on Machine Learning,
2010.

[60] N. Aghasadeghi and T. Bretl, “Maximum entropy inverse reinforcement
learning in continuous state spaces with path integrals,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on, sept. 2011, pp. 1561 –1566.

[61] S. Javdani, S. Tandon, J. Tang, J. O’Brien, and P. Abbeel, “Modeling
and perception of deformable one-dimensional objects,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on, may
2011, pp. 1607 –1614.

128

http://ijr.sagepub.com/content/early/2010/06/16/0278364910371999.abstract
http://ijr.sagepub.com/content/early/2010/06/16/0278364910371999.abstract
http://doi.acm.org/10.1145/1390156.1390286
http://dl.acm.org/citation.cfm?id=1625275.1625692

[62] A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin,
I. Sanders, and G. T. Huntington, “Algorithm 902: Gpops, a
matlab software for solving multiple-phase optimal control problems
using the gauss pseudospectral method,” ACM Trans. Math. Softw.,
vol. 37, no. 2, pp. 22:1–22:39, Apr. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1731022.1731032

[63] M. Athans and P. L. Falb, Optimal Control: An Introduction to the
Theory and Its Applications. McGraw-Hill, 1966.

[64] A. E. Bryson and Y.-C. Ho, Applied Optimal Control. Hemisphere
Publishing Co., 1975.

[65] R. Levien, “The elastica: A mathematical history,” Technical Report
UCB/EECS-2008-103, vol. EECS Department, University of Califor-
nia, Berkeley, 2008.

[66] I. Todhunter and K. Pearson, A history of the theory of elasticity and
the strength of materials from Galilei to Lord Kelvin. Cambridge
University Press, 1893.

[67] M. Born, “Untersuchungen über die stabilität der elastischen linie in
ebene und raum, under verschiedenen grenzbedingungen,” Ph.D. dis-
sertation, University of Göttingen, 1906.

[68] S. S. Antman, Nonlinear Problems of Elasticity, ser. Applied Mathe-
matical Sciences. New York: Springer, 2005, vol. 107.

[69] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity.
Dover Publications, 1944.

[70] R. E. Caflisch and J. H. Maddocks, “Nonlinear dynamical theory of
the elastica,” Procrceedings of the Royal Society of Edinburgh: Section
A Mathematics, vol. 99, no. 1-2, pp. 1–23, 1984.

[71] F. Bertails, B. Audoly, B. Querleux, F. Leroy, J. L. L. evêque, and
M. P. Cani, “Predicting natural hair shapes by solving the statics of
flexible rods,” Eurographics, 2005.

[72] A. Goriely and S. Neukirch, “Mechanics of climbing and attachment
in twining plants,” Physical Review Letters, vol. 97, no. 18, p. 184302,
2006.

[73] B. Audoly and A. Boudaoud, “’ruban à godets’: An elastic model for
ripples in plant leaves,” C. R. Mecanique, vol. 330, pp. 831–836, 2002.

[74] J. E. Hearst and Y. Shi, “New solutions for the stationary states of the
elastic rod model are useful in the representation of dna configurations
in the living cell,” Nonlinear Science Today, vol. 5, no. 1, 1995.

129

http://doi.acm.org/10.1145/1731022.1731032

[75] Y. Shi and J. Hearst., “The kirchhoff elastic rod, the nonlinear
schrd̈ingier equation, and dna supercoiling,” Journal of Chemical
Physics, vol. 101, no. 6, pp. 5186–5200, 1994.

[76] D. Swigon, B. Coleman, and I. Tobias, “The elastic rod model for
dna and its applications to the tertiary structure of dna minicircles in
mononucleosomes,” Biophysics Journal, vol. 78, pp. 2515–2530, 1998.

[77] S. Goyal, N. C. Perkins, , and C. L. Lee, “Nonlinear dynamics and loop
formation in kirchhoff rods with implications to the mechanics of dna
and cables,” Journal of Computational Physics, vol. 209, pp. 371–389,
2005.

[78] S. T. Santillan and L. N. Virgin, “Numerical and experimental analysis
of the static behavior of highly deformed risers,” Ocean Engineering,
vol. 38, pp. 1397–1402, 2011.

[79] P. K. Agnihotri and S. Basu, “Single-walled nanotubes as kirchhoff
elasticas,” International Journal of Applied Mechanics, vol. 2, no. 4,
pp. 719–743, 2005.

[80] E. Mockensturm and A. Mahdavi, “Van der waal’s elastica,” ASME
International Mechanical Engineering Congress and Exposition, 2005.

[81] R. H. Plaut, A. D. Borum, and D. A. Dillard, “Analysis of carbon nan-
otubes and graphene nanoribbons with folded racket shapes,” ASME
Journal of Engineering Materials and Technology, vol. 134, no. 2, p.
021009, 2012.

[82] S. Ryan, D. Golovaty, and J. P. Wilber, “An elastica model of the
buckling of a nanoscale sheet perpendicular to a rigid substrate,” In-
ternational Journal of Solids and Structures, vol. 49, pp. 3681–3692,
2012.

[83] F. Lamiraux and L. E. Kavraki, “Planning paths for elastic objects un-
der manipulation constraints,” International Journal of Robotics Re-
search, vol. 20, no. 3, pp. 188–208, 2001.

[84] M. Moll and L. E. Kavraki, “Path planning for deformable linear ob-
jects,” IEEE Transactions on Robotics, vol. 22, no. 4, pp. 625–636,
2006.

[85] T. W. Bretl and Z. McCarthy, “Quasi-static manipulation of a
kirchhoff elastic rod based on a geometric analysis of equilibrium
configurations,” The International Journal of Robotics Research, 2013.
[Online]. Available: http://ijr.sagepub.com/content/early/2013/06/
13/0278364912473169.abstract

130

http://ijr.sagepub.com/content/early/2013/06/13/0278364912473169.abstract
http://ijr.sagepub.com/content/early/2013/06/13/0278364912473169.abstract

[86] J. Biggs, W. Holderbaum, and V. Jurdjevic, “Singularities of optimal
control problems on some 6-d lie groups,” IEEE Trans. Autom. Control,
vol. 52, no. 6, pp. 1027–1038, June 2007.

[87] G. Walsh, R. Montgomery, and S. Sastry, “Optimal path planning on
matrix lie groups,” in IEEE Conference on Decision and Control, vol. 2,
Dec. 1994, pp. 1258 –1263 vol.2.

[88] D. Matthews and T. Bretl, “Experiments in quasi-static manipulation
of a planar elastic rod,” IEEE/RSJ International Conference on Intel-
ligent Robotics and Systems (IROS), 2012.

[89] K. Gopalakrishnan, K. Goldberg, G. Bone, M. Zaluzec, R. Koganti,
R. Pearson, and P. Deneszczuk, “Unilateral fixtures for sheet-metal
parts with holes,” IEEE Transactions on Automation Science and En-
gineering, vol. 1, no. 2, pp. 110–120, 2004.

[90] K. Kosuge, H. Yoshida, T. Fukuda, M. Sakai, and K. Kanitani, “Manip-
ulation of a flexible object by dual manipulators,” IEEE International
Conference on Robotics and Automation, vol. 1, pp. 318–323, 1995.

[91] W. Nguyen and J. Mills, “Multi-robot control for flexible fixtureless
assembly of flexible sheet metal auto body parts,” IEEE International
Conference on Robotics and Automation, vol. 3, pp. 2340–2345, 1996.

[92] A. Angerer, C. Ehinger, A. Hoffman, W. Reif, G. Reinhart, and
G. Strasser, “Automated cutting and handling of carbon fiber fabrics
in aerospace industries,” IEEE International Conference on Robotics
and Automation, pp. 2713–2718, 2011.

[93] A. Angerer, C. Ehinger, A. Hoffman, W. Reif, and G. Reinhart, “De-
sign of an automation system for performing processes in aerospace
industries,” IEEE Conference on Automation Science and Engineer-
ing, pp. 557–562, 2011.

[94] X. Jiang, K. M. Koo, K. Kikuchi, A. Konno, and M. Uchiyama, “Robo-
tized assembly of a wire harness in a car production line,” Advanced
Robotics, vol. 25, no. 3-4, pp. 473–489, 2011.

[95] Y. Asano, H. Wakamatsu, E. Morinaga, E. Arai, and S. Hirai, “Defor-
mation path planning for manipulation of flexible circuit boards,” in
IEEE/RSJ Int. Conf. Int. Rob. Sys., Oct. 2010, pp. 5386 –5391.

[96] H. Wakamatsu, T. Yamasaki, E. Arai, and S. Hirai, “Modeling of flexi-
ble belt objects toward their manipulation,” IEEE International Sym-
posium on Assembly and Manufacturing, pp. 1–6, 2007.

131

[97] H. Wakamatsu, E. Morinaga, E. Arai, and S. Hirai, “Deformation mod-
eling of belt object with angles,” International Conference on Robotics
and Automation, pp. 606–611, 2009.

[98] ——, “Path planning for belt object manipulation,” IEEE Interna-
tional Conference on Robotics and Automation, pp. 4334–4339, 2012.

[99] M. Bell and D. Balkcom, “Knot tying with single piece fixtures,” in
Int. Conf. Rob. Aut., May 2008, pp. 379–384.

[100] J. E. Hopcroft, J. K. Kearney, and D. B. Krafft, “A case study of
flexible object manipulation,” The International Journal of Robotics
Research, vol. 10, no. 1, pp. 41–50, 1991.

[101] J. Takamatsu, T. Morita, K. Ogawara, H. Kimura, and K. Ikeuchi,
“Representation for knot-tying tasks,” IEEE Trans. Robot., vol. 22,
no. 1, pp. 65 – 78, Feb. 2006.

[102] M. Saha and P. Isto, “Manipulation planning for deformable linear
objects,” IEEE Trans. Robot., vol. 23, no. 6, pp. 1141–1150, Dec. 2007.

[103] H. Wakamatsu, E. Arai, and S. Hirai, “Knotting/unknotting manipu-
lation of deformable linear objects,” International Journal of Robotics
Research, vol. 24, no. 4, pp. 371–395, 2006.

[104] R. Jansen, K. Hauser, N. Chentanez, F. van der Stappen, and K. Gold-
berg, “Surgical retraction of non-uniform deformable layers of tissue:
2d robot grasping and path planning,” in IEEE/RSJ Int. Conf. Int.
Rob. Sys., Oct. 2009, pp. 4092 –4097.

[105] N. Chentanez, R. Alterovitz, D. Ritchie, J. Cho, K. Hauser, K. Gold-
berg, J. R. Shewchuk, and J. F. O’Brian, “Interactive simulation of
surgical needle insertion and steering,” ACM Transactions on Graph-
ics, vol. 28, no. 88, pp. 1–10, 2009.

[106] H. Inoue and H. Inaba, “Hand-eye coordination in rope handling,” in
Robotics Research: The First International Symposium, 1985, pp. 163–
174.

[107] J. van den Berg, S. Patil, R. Alterovitz, P. Abbeel, and K. Goldberg,
“Lqg-based planning, sensing, and control of steerable needles,” in Al-
gorithmic Foundations of Robotics IX, ser. Springer Tracts in Advanced
Robotics, D. Hsu, V. Isler, J.-C. Latombe, and M. Lin, Eds. Springer
Berlin / Heidelberg, 2011, vol. 68, pp. 373–389.

[108] Y. Yamakawa, A. Namiki, and M. Ishikawa, “Motion planning for dy-
namic folding of a cloth with two high-speed robot hands and two
high-speed sliders,” in Int. Conf. Rob. Aut., May 2011, pp. 5486–5491.

132

[109] N. M. Amato and G. Song, “Using motion planning to study protein
folding pathways,” Journal of Computational Biology, vol. 9, no. 2, pp.
149–168, 2002.

[110] G. S. Chirikjian and J. W. Burdick, “The kinematics of hyper-
redundant robot locomotion,” IEEE Trans. Robot. Autom., vol. 11,
no. 6, pp. 781–793, Dec. 1995.

[111] D. C. Rucker, R. J. Webster, G. S. Chirikjian, and N. J. Cowan, “Equi-
librium conformations of concentric-tube continuum robots,” The In-
ternational Journal of Robotics Research, vol. 29, no. 10, pp. 1263–1280,
09 2010.

[112] R. J. Webster and B. A. Jones, “Design and kinematic modeling of
constant curvature continuum robots: A review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 11 2010.

[113] H. Tanner, “Mobile manipulation of flexible objects under deformation
constraints,” IEEE Trans. Robot., vol. 22, no. 1, pp. 179–184, Feb.
2006.

[114] M. Bergou, M. Wardetzky, S. Robin, B. Audoly, and E. Grinspun,
“Discrete elastic rods,” ACM Transactions on Graphics, vol. 27, no. 3,
pp. 1–12, 2008.

[115] D. J. Balkcom and M. T. Mason, “Robotic origami folding,” Interna-
tional Journal of Robotics Research, vol. 27, no. 5, pp. 613–627, 2008.

[116] C. Tomlin, “Splining on lie groups,” 1995.

[117] F. C. Park and B. Ravani, “Smooth invariant interpolation of
rotations,” ACM Trans. Graph., vol. 16, no. 3, pp. 277–295, Jul. 1997.
[Online]. Available: http://doi.acm.org/10.1145/256157.256160

[118] C. Altafini, “The de casteljau algorithm on se(3),” in Nonlinear
control in the Year 2000, ser. Lecture Notes in Control and
Information Sciences, A. Isidori, F. Lamnabhi-Lagarrigue, and
W. Respondek, Eds. Springer Berlin / Heidelberg, 2000, vol.
258, pp. 23–34, 10.1007/BFb0110205. [Online]. Available: http:
//dx.doi.org/10.1007/BFb0110205

[119] C. Belta and V. Kumar, “An svd-based projection method for inter-
polation on se(3),” Robotics and Automation, IEEE Transactions on,
vol. 18, no. 3, pp. 334 –345, jun 2002.

[120] N. E. Dowling, Mechanical Behavior of Materials: Engineering Meth-
ods for Deformation, Fracture, and Fatigue. Upper Saddle River, NJ:
Pearson Prentice Hall, 2007.

133

http://doi.acm.org/10.1145/256157.256160
http://dx.doi.org/10.1007/BFb0110205
http://dx.doi.org/10.1007/BFb0110205

[121] G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, “An op-
timality principle governing human walking,” Robotics, IEEE Trans-
actions on, vol. 24, no. 1, pp. 5 –14, feb. 2008.

[122] R. Ritz, M. Hehn, S. Lupashin, and R. D’Andrea, “Quadrocopter per-
formance benchmarking using optimal control,” in Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Conference on,
2011, pp. 5179–5186.

[123] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple
learning strategy for high-speed quadrocopter multi-flips,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on,
May 2010, pp. 1642 –1648.

[124] S. Bouabdallah, “Design and control of quadrotors with application to
autonomous flying,” Ph.D. dissertation, Ecole Polytechnique Federale
De Lausanne, 2007.

[125] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin,
“Quadrotor helicopter flight dynamics and control: Theory and exper-
iment,” in In the Proceedings of the 2007 AIAA Conference on Guid-
ance, Control, and Navigation, August 2007.

[126] I. Cowling, “Towards autonomy of a quadrotor uav,” Ph.D. disserta-
tion, Cranfield University, 2008.

[127] D. Mellinger, M. Shomin, and V. Kumar, “Control of quadrotors for
robust perching and landing,” in Proceedings of the International Pow-
ered Lift Conference, Oct 2010.

[128] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in
MATLAB. Springer, 2011.

[129] S. Levine and V. Koltun, “Guided policy search,” in Proceedings of the
30th International Conference on Machine Learning, 2013.

[130] T. Park and S. Levine, “Inverse optimal control for humanoid locomo-
tion,” in Robotics Science and Systems Workshop on Inverse Optimal
Control and Robotic Learning from Demonstration, 2013.

[131] J. Peters and S. Schaal, “Reinforcement learning of mo-
tor skills with policy gradients,” Neural Networks, vol. 21,
no. 4, pp. 682 – 697, 2008, robotics and Neuroscience.
[Online]. Available: http://www.sciencedirect.com/science/article/
B6T08-4SCDB0T-2/2/cbce139eb572cc3825906881cf766c9b

[132] J. Z. Kolter and A. Y. Ng, “Policy search via the signed derivative,”
in Robotics: Science and Systems, 2009.

134

http://www.sciencedirect.com/science/article/B6T08-4SCDB0T-2/2/cbce139eb572cc3825906881cf766c9b
http://www.sciencedirect.com/science/article/B6T08-4SCDB0T-2/2/cbce139eb572cc3825906881cf766c9b

[133] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on, 2011, pp. 2520–2525.

[134] S. Boyd. (2009) EE363: Linear Dynamical Systems. [Online].
Available: http://www.stanford.edu/class/ee363/index.html

[135] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 2005.

[136] W. M. Wonham, “On a matrix riccati equation of stochastic control,”
SIAM Journal on Control, vol. 6, no. 4, pp. 681–697, 1968.

[137] L. Dieci and T. Eirola, “Positive definiteness in the numerical
solution of riccati differential equations,” Numerische Mathematik,
vol. 67, pp. 303–313, 1994, 10.1007/s002110050030. [Online]. Available:
http://dx.doi.org/10.1007/s002110050030

[138] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems,” in International Conference
on Informatics in Control, Automation and Robotics, 2004, pp. 222–
229.

[139] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
American Elsevier Publishing Company, Inc., 1970.

[140] E. Todorov and W. Li, “A generalized iterative LQG method for
locally-optimal feedback control of constrained nonlinear stochastic
systems,” in American Control Conference, vol. 1, 2005, pp. 300–306.

[141] Y. Tassa, T. Erez, and B. Smart, “Receding horizon differential dy-
namic programming,” in Advances in Neural Information Processing
Systems (NIPS 2007), 2007, pp. 1465–1472.

[142] E. Todorov and Y. Tassa, “Iterative local dynamic programming,” in
IEEE International Symposium on Adaptive Dynamic Programming
and Reinforcement Learning, 2009.

[143] P. Abbeel, M. Quigley, and A. Y. Ng, “Using inaccurate models in
reinforcement learning,” in Proceedings of the 23rd International Con-
ference on Machine Learning, vol. 148, 2006, pp. 1–8.

[144] E. F. Morales and C. Sammut, “Learning to fly by combining reinforce-
ment learning with behavioural cloning,” in International Conference
on Machine Learning, 2004.

135

http://www.stanford.edu/class/ee363/index.html
http://dx.doi.org/10.1007/s002110050030

	List of Tables
	List of Figures
	Chapter 1 Inverse Optimal Control
	Introduction
	Inverse Optimal Control: Problem Statement
	Related Work
	Applications of Inverse Optimal Control

	Chapter 2 A Comparison of Inverse Optimal Control Methods
	Three Prior Methods of Inverse Optimal Control
	A New Method Based on Necessary Conditions for Optimality
	Simulation Experiments
	Results and Discussion

	Chapter 3 Calibration of the Kirchoff Elastic Rod
	Introduction
	Model
	Simulation Experiments
	Hardware Experiments

	Chapter 4 Modeling Human Locomotion
	Introduction
	Optimal Control Model of Human Locomotion Paths
	Experimental Results

	Chapter 5 Learning Quadrotor Dynamic Maneuvers
	Introduction
	Learning from Demonstration: Method
	Learning from Demonstration: Experiments
	Time-Optimal Control: Method
	Time-optimal Control: Experiments

	Chapter 6 Conclusion and Future Work
	Appendix A Quadrotor Dynamics and Control
	Quadrotor Controller

	Appendix B Generalized LQR Solution
	Solution: discrete-time dynamic programming
	Solution: continuous time HJB
	Existence and uniqueness

	Appendix C Differential Dynamic Programming
	Introduction
	Algorithm
	Some properties of DDP
	Simulations
	First order method

	Appendix D Iterative LQR
	Introduction
	Problem Statement
	Tracking LQR
	Iterative-LQR Algorithm
	ILQR Given Inaccurate Model

	References
	Blank Page

