
EFFECTIVE HEURISTIC-BASED TEST GENERATION TECHNIQUES FOR

CONCURRENT SOFTWARE

by

Niloofar Razavi

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2014 by Niloofar Razavi

Abstract

Effective Heuristic-based Test Generation Techniques for Concurrent Software

Niloofar Razavi

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2014

With the increasing dependency on software systems, we require them to be reliable and cor-

rect. Software testing is the predominant approach in industry for finding software errors.

There has been a great advance in testing sequential programs throughout the past decades.

Several techniques have been introduced with the aim of automatically generating input val-

ues such that the executions of the program with those inputs provide meaningful coverage

guarantees for the program.

Today, multi-threaded (concurrent) programs are becoming pervasive in the era of multi-

processor systems. The behaviour of a concurrent program depends not only on the input

values but also on the way the executions of threads are interleaved. Testing concurrent pro-

grams is notoriously hard because often there are exponentially large number of interleavings

of executions of threads that has to be explored. In this thesis, we propose an array of heuristic-

based testing techniques for concurrent programs to prioritize a subset of interleavings and test

as many of them as possible. To that end, we develop:

(A) a sound and scalable technique that based on the events of an observed execution,

predicts runs that might contain null-pointer dereferences. This technique explores the inter-

leaving space (based on the observed execution) while keeping the input values fixed and can

be adapted to predict other types of bugs.

(B) a test generation technique that uses a set of program executions as a program under-

approximation to explore both input and interleaving spaces. This technique generates tests

ii

that increase branch coverage in concurrent programs based their approximation models.

(C) a new heuristic, called bounded-interference, for input/interleaving exploration. It is

defined based on the notion of data-flow between threads and is parameterized by the number of

interferences among threads. Testing techniques that employ this heuristic are able to provide

coverage guarantees for concurrent programs (modulo interference bound).

(D) a testing technique which adapts the sequential concolic testing to concurrent programs

by incorporating the bounded-interference heuristic into it. The technique provides branch

coverage guarantees for concurrent programs.

Based on the above techniques, we have developed tools and used them to successfully find

bugs in several traditional concurrency benchmarks.

iii

Acknowledgements

I want to take this opportunity to thank all the people that had an influence in the work pre-

sented in this thesis. First and foremost, none of this work would have been possible without

Azadeh Farzan’s support. I am grateful for the time she dedicated to my projects, as well as her

inspiration. I would like to thank my committee members, Marsha Chechik, Sheila McIlraith,

Steve Easterbrook, and Scott Stoller for their insightful comments and suggestions about my

work.

I have to thank my collaborators Madhusudan Parthasarathy and Francesco Sorrentino from

University of Illinois at Urbana Champaign for their collaboration on the null-pointer derefer-

ence prediction work, and Helmut Veith and Andreas Holzer from the Vienna University of

Technology for their collaborations on (conc)2olic testing work. I need to thank the people at

the NEC Laboratories America, Aarti Gupta, Franjo Ivancic and Vineet Kahlon, for the amaz-

ing internship experience I had at NEC. I learned a lot from them and enjoyed every minute

of working at NEC. A special thanks to all my Toronto friends and officemates: Varada Kol-

hatkar, Jocelyn Simmons, Golnaz Elahi, Alicia Grubb, Zachary Kincaid, Aws Albarghouthi

and Michalis Famelis.

Finally and foremost, I would like to thank my family. My parents, Seyed Alireza and

Sousan, whose constant love and encouragement has helped me to be optimistic even in the

most difficult days of my life. My sisters, Negin and Negar, who were always listening to my

complains patiently. My love, Andreas, whose unwavering love, support, and understanding

made the experience easier.

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Contributions . 6

1.3 Outline . 10

2 Predicting Null-Pointer Dereferences in Concurrent Programs 12

2.1 Motivating Example . 14

2.2 Preliminaries . 16

2.2.1 Global Traces . 16

2.2.2 Maximal Causal Model of Prediction 19

2.3 Predicting Null-Pointer Dereferences . 21

2.3.1 Identifying null-WR Pairs Using Lock-based Analysis 22

2.3.2 Static Pruning . 24

2.4 Encoding as an SMT Problem . 26

2.4.1 Precise Prediction . 26

2.4.2 Relaxed Prediction . 31

2.5 Encoding based on AI Automated Planning Techniques 33

2.5.1 Background on Planning . 34

2.5.2 Precise Prediction . 36

2.6 Evaluation . 41

2.6.1 Implementation . 42

v

2.6.2 Experiments . 44

2.7 Related Work . 52

2.8 Summary . 54

3 Test Generation Based on Under-approximations of Programs 55

3.1 Motivating Example . 57

3.2 Preliminaries . 59

3.2.1 Symbolic Traces . 59

3.2.2 Concurrent Trace Program (CTP) . 61

3.2.3 Predicting Bugs Using CTPs . 62

3.2.4 Sequential Concolic Testing . 64

3.3 Overview of Test Generation Using MTA . 65

3.4 Testing Algorithm . 66

3.4.1 Sequential Testing of Concurrent Programs 66

3.4.2 Multi-Trace Analysis (MTA) for Test Generation 67

3.5 Evaluation . 75

3.5.1 Implementation . 75

3.5.2 Experiments . 76

3.6 Related Work . 80

3.7 Summary . 82

4 Bounded-Interference: A Heuristic for Providing Coverage Guarantees 83

4.1 Bounded-Interference Through An Example 84

4.2 Comparison with Context Bounding . 87

4.3 Bounded-Interference in Testing Concurrent Programs 90

5 Testing Based on Bounded-Interference Sequentialization 93

5.1 Preliminaries . 95

5.1.1 A Simple Sequential/Concurrent Programming Language 96

vi

5.1.2 Global Traces (Revisited) . 97

5.2 Sequentialization Algorithm . 99

5.2.1 Transformation Scheme . 101

5.2.2 Feasibility Check Constraints . 106

5.3 Soundness and Completeness . 108

5.4 Evaluation . 113

5.4.1 Implementation . 113

5.4.2 Experiments . 114

5.5 Related Work . 117

5.6 Summary . 119

6 Bounded-Interference Concolic Testing of Concurrent Programs 120

6.1 A Running Example . 122

6.2 Preliminaries . 124

6.2.1 Global Symbolic Traces . 125

6.3 Interference Scenarios . 128

6.3.1 Concepts and Definitions . 128

6.3.2 Constraint Systems . 132

6.4 (Conc)2olic Testing . 134

6.4.1 General Framework . 135

6.4.2 Testing Algorithm . 137

6.4.3 Soundness and Completeness . 144

6.4.4 Relaxing Assumptions . 146

6.4.5 Optimizations . 148

6.5 Evaluation . 149

6.5.1 Implementation . 149

6.5.2 Experiments . 150

6.6 Related Work . 155

vii

6.7 Summary . 156

7 Conclusion and Future Work 158

Bibliography 168

viii

List of Tables

2.1 Experimental results for precise/relaxed prediction using logical constraint en-

coder/solver . 45

2.2 Experimental results for precise prediction using planning encoder/solver. . . . 49

2.3 Experimental results for predicting data races and atomicity violations using

planning encoder/solver. 50

3.1 Experimental results for test generation using MTA 77

3.2 Comparing MTA with symbolic prediction using FUSION. 79

5.1 Experimental results for testing based on bounded-interference sequentialization 115

6.1 Experimental results for (conc)2olic testing according to bounded-interference

heuristic . 150

6.2 Optimization effects on pfscan benchmark 152

6.3 Comparing (conc)2olic testing with MTA . 153

ix

List of Figures

2.1 Code snippet of the buggy implementation of Pool 1.2. 15

2.2 Static lock-based analysis for feasibility of a null-WR pair α = (e, f). 23

2.3 Static pruning according to a null-WR pair α = (e, f). 25

2.4 Constraint system capturing the maximal causal model. 27

2.5 EXCEPTIONULL with logical constraint encoder/solver built on top of PENE-

LOPE [82] framework. 42

2.6 Planning encoder/solver component in run prediction. 44

2.7 Prediction times with/without pruning in log scale. 47

3.1 A concurrent program with a reachable error state. 57

3.2 Test generation based on MTA for the program in Figure 3.1. 58

3.3 Concolic Testing. 64

3.4 Test generation using MTA. 76

4.1 The simplified model of Bluetooth driver [62]. 85

4.2 A buggy implementation of accessing critical sections. 89

5.1 Syntax of a simple sequential/concurrent programming language. 96

5.2 Sequentialized program P̂k. 101

5.3 Transformation scheme for T and T ′. 104

5.4 Constraints for checking the existence of a feasible schedule 107

5.5 Test generation by bounded-interference sequentialization. 114

6.1 A buggy implementation of function addAll of a concurrent vector. 123

x

6.2 Symbolic trace π obtained from the assertion violating execution of the pro-

gram presented in Figure 6.1 and its corresponding interference scenario IS(π) 127

6.3 Example of an interference forest . 129

6.4 Constraint systems DC(I) and TC(I) for an interference scenario I = (V,E, `). 133

6.5 (Conc)2olic testing framework. 135

6.6 An example showing initial path exploration for thread T ′ (cf. 6.2). 141

6.7 Interference scenario IS (π) from Figure 6.2, extended by dangling nodes d1,

d2, d3, and d4. 142

1 Code snippet of a buggy program with null-pointer dereference. 182

xi

Appendices

Examples of the Logical Constraints and AI Planning Encodings in Prediction 181

Proof of Lemma 6.4.2 . 186

Proof of Lemma 6.4.6 . 191

xii

Chapter 1

Introduction

1.1 Background

Software systems nowadays affect every aspect of our life; they are used in medical services,

transportation, education systems, businesses, and etc. Even a small error in any of these

systems may lead to huge loss of money, time, or lives. Therefore, there is a great need to

develop techniques to ensure that software systems are reliable, safe, and secure. In industry,

software testing is still the predominant technique to find correctness and performance issues

in software systems. Billions of dollars are spent on software testing each year which includes

half of the cost of software development [20].

Sequential software systems consist of a single thread of execution. The testing process of a

sequential system includes providing different input values to the system and investigating the

behaviour of the system under the given inputs. For example, Concolic testing [24, 73, 5, 84, 4]

is an automatic sequential testing technique which executes the program with both concrete and

symbolic inputs simultaneously and uses path constrains (i.e., branch conditions encountered

during execution) on symbolic inputs to generate input values that lead the execution towards

uncovered parts of the program. Sequential software testing techniques are often coupled with a

notion of coverage that the technique provides. Various coverage criteria have been introduced

1

CHAPTER 1. INTRODUCTION 2

for sequential program testing over the years, e.g., path coverage [24, 4, 73], control-flow

coverage [84], predicate coverage [34], etc. These coverage criteria quantify the testing process

and give the tester some meaningful information about how much the software has been tested.

Nowadays, multi-threaded (concurrent) software systems are becoming prevalent due to

the increase in the usage of multi-core hardware. However, testing concurrent software is more

challenging than testing sequential software since the behaviour of a concurrent program not

only depends on input values but also is affected by the way the executions of threads are

interleaved; i.e., even under fixed input values, different interleavings of executions of threads

may lead to different behaviours. Test generation for concurrent systems includes both (i)

exploring the input space to find a set of input values that may trigger a bug (input generation),

and (ii) exploring the interleaving space, with bug-triggering input values, to find possible

bugs (schedule generation). However, the exploration space is huge for real programs and it is

infeasible to fully explore both input and interleaving spaces.

Stress testing [2] and randomized testing [11, 83, 71, 58, 43, 3] are two traditional testing

techniques for concurrent programs. Stress testing [2] is an approach which puts programs

under pressure by providing a set of input values to the program and then executing the program

with each input for a long time (for server applications) or for many times with many threads

(for other types of applications) with the hope of exploring different interleavings in different

executions. Randomized testing [11, 83, 71, 58, 43, 3], on the other hand, aims at exploring

distinct interleavings in different executions by changing the priorities of the threads on the fly

or strewing the code with sleep commands for random time intervals. However, both of these

techniques are highly ineffective in finding concurrency bugs.

More recent techniques employ some heuristics to restrict the exploration space to a man-

ageable subset of input values or interleavings. Heuristic-based techniques can be categorized

as follows:

CHAPTER 1. INTRODUCTION 3

(i) Interleaving exploration based on fixed inputs:

Techniques in this category rely on a given set of input values and focus on interleaving ex-

ploration while keeping the inputs fixed. For example, there is an array of prediction tech-

niques [17, 82, 35, 93, 92, 90, 89, 7, 59, 74, 68] which are based on the philosophy of using

heuristics to target interleavings that are more likely to contain bugs, e.g., interleavings that

contain data races [13, 95, 57, 50, 69, 18] or atomicity violations [75, 58, 49, 94, 19, 15], and

testing as many of those as possible (under the given time and space limitations).

A data race occurs when two threads access a shared memory location at the same time

and at least one of the accesses is a write access. Data races might lead to unpredictable

program behaviors and could be symptomatic of errors. A code unit is not atomic if it is

interrupted during an execution by statements from another threads, and the interaction cannot

be ruled out as harmless by presenting an equivalent execution in which this interruption does

not occur. Atomicity violations could lead to concurrent program behaviours overlooked by

programmers [47]. Many prediction techniques use data races and atomicity violations as

heuristics to reduce the interleaving exploration space [82, 90, 59, 68]. Prediction techniques

utilize a static lock-based [17, 82, 35, 59, 93, 92] or symbolic [90, 89] (using SMT solvers)

analysis on a single observed run of the program to predict buggy runs.

There is also an array of search techniques [53, 54, 12, 55] that take a more coverage-

oriented approach than the prediction techniques. They characterize a subset of the search

space by a bounding parameter p. More behaviors are explored as p is increased, and in the

limit all behaviors are explored. Context bounding [53, 54, 55] has been used as a heuris-

tic to prioritize interleavings within a bounded number of context-switches over the others.

The intuition behind this search strategy is that many bugs in concurrent programs manifest

themselves by a few number of context-switches occurring during the program execution. For

example, CHESS [53] is a tool that explores all interleavings (under the fixed input values)

up to a bounded number of context-switches. Delay bounding [12] has been used to transform

a deterministic scheduler into a sufficiently non-deterministic one (for the testing purpose) by

CHAPTER 1. INTRODUCTION 4

enabling it to delay each ready task for a bounded number of times. The non-deterministic

scheduler allows efficient exploration of the interleaving space by increasing the possibility of

exploring different program behaviours in different program executions.

The main advantage of the techniques in this category is that they are both simple and

efficient in finding simple concurrency bugs that do not require complicated input values to be

revealed. They simplify the testing process by ignoring input exploration and have been proven

to be very effective in bug finding. As a result, these techniques are used for testing software

in earlier development stages under some manually provided input values where the goal is to

catch simple bugs as soon as possible.

(ii) Input/interleaving exploration based for under-approximated programs:

Techniques in this category use program under-approximations as heuristics to limit the ex-

ploration space; i.e., input/interleaving exploration is done for the approximated programs.

Most of these techniques [80, 79] use concurrent trace programs, i.e., program slices built

from program executions, as an under-approximation of concurrent programs. They perform

a static symbolic analysis on concurrent trace programs, based on encoding possible execu-

tions of concurrent trace programs as a set of logical constraints and using SMT solvers, to

check safety properties (of course they are incomplete for proving properties because of the

approximations); e.g., the output of the analyses is whether an assertion can be violated or not.

The main advantage of these techniques over the techniques in the first category is that they

perform input exploration (although it is limited to the approximated programs) and hence

could be used to catch more complicated bugs; of course, this advantage comes at the expense

of more complicated analyses. Therefore, these techniques are best to be applied after testing

the software with the techniques in the first category to search for bugs that might be overlooked

there, i.e., bugs that occur under specific input values that are not tested by the techniques in

the first category.

CHAPTER 1. INTRODUCTION 5

(iii) Input/interleaving exploration for programs:

Techniques that fall into this category explore both input and interleaving spaces of the whole

program while using some heuristics for interleaving exploration. Sequentialization tech-

niques [44, 42, 85, 63, 62, 21] transform a concurrent program into a sequential program and

then analyze the sequential program statically (e.g., for finding assertion violations) using se-

quential analysis techniques. These techniques utilize some heuristics to embed a subset of

behaviours of the concurrent program in the resulting sequential program. Most of these se-

quentialization techniques are based on the context bounding heuristic; the sequential program

encodes all program behaviours within a bounded number of context-switches by allowing a

context-switch non-deterministically after each concurrent program statement if the bound has

not been reached yet.

Other techniques in this category [73, 70] leverage concolic testing techniques, using some

heuristics for interleaving exploration, to generate tests for concurrent programs. For example,

jCute [73] is a concolic testing tool for concurrent Java programs that uses data races as a

heuristic to prune the interleaving space. It executes the program and identifies data races in

the observed execution. After each program execution, jCute either keeps the interleaving fixed

as before and performs input generation to cover a previously uncovered part of the program

or keeps the input values fixed as before and explores a new interleaving by simply re-ordering

the events involved in a data race.

The techniques in this category are more expensive than the techniques in the second cate-

gory since the input/interleaving exploration is performed for the whole program rather than its

approximated model. However, by using an appropriate heuristic in interleaving exploration,

these techniques are capable of providing coverage guarantees for the concurrent programs af-

ter the testing process is finished. Therefore, these techniques can be applied in later stages

of software development (when techniques in other categories fail to find any more bugs) to

provide quality assurance certifications for software.

CHAPTER 1. INTRODUCTION 6

1.2 Contributions

In this dissertation, we focus on effective test generation for concurrent programs and advance

the state-of-the-art heuristic-based concurrent program testing techniques mentioned above.

Specifically, we have the following contributions:

A. Sound and scalable prediction of null-pointer dereferences from a single

program run

A prediction technique (in category (i)) is sound if the predicted runs are feasible program runs

and is scalable if it works for large runs. Having an analysis which is both sound and scalable

is a common challenge in all prediction techniques and often one of these issues is sacrificed

for the benefit of the other. On the other hand, prediction techniques have mostly focused on

data races, atomicity violations and assertion violations as heuristics to explore interleavings

that might contain any of these violation patterns. However, the applicability of prediction

techniques is not restricted to these bugs; i.e., they can target other types of bugs (e.g., memory

bugs, deadlocks, and etc.) that are also common in concurrent programs. That requires to

come up with appropriate violation patterns (reflecting these bugs) and provide corresponding

analyses.

We introduce a new pattern, called null reads, for predicting null-pointer dereferences in

concurrent programs. The intuition behind this pattern is that null is a critical value and in

many cases reading null values might lead to memory bugs. Our prediction technique is both

sound and scalable. To provide scalability, the analysis is performed at the shared commu-

nication level (i.e., accesses to shared variables and synchronization events) by suppressing

local computation in the observed runs. We also develop a static pruning technique which

drastically reduces the size of the prediction problem. To provide soundness, we employ the

maximal causal model [74] which works at the shared communication level and guarantees

soundness. We also develop a relaxation technique that allows us to deviate from the maxi-

CHAPTER 1. INTRODUCTION 7

mal causal model gradually to predict some (not necessarily sound) runs when the prediction

problem has no answer in the maximal causal model.

We propose two different techniques for encoding the prediction problem based on the

maximal causal model; in the first technique, the problem is encoded as a constraint satisfac-

tion problem and the state-of-the-art SMT (Satisfiability Modulo Theories) solvers are used to

search for solutions. The second technique is based on conceptualization and realization of the

prediction problem as an AI automated planning [56] problem. This enables us to benefit from

compact encoding techniques and advanced heuristic-based searching algorithms embedded in

AI planners.

B. Test generation based on under-approximated programs

Most of the techniques that use program approximations to perform input/interleaving explo-

ration (in category (ii)), so far, were aimed at finding assertion violations. In fact, none of these

techniques have targeted test generation (i.e., input and schedule generation) for exploring dif-

ferent possible program behaviours. Furthermore, all existing techniques in category (ii) fix

the approximation model a priori which does not allow exploring program code or behaviors

that are beyond the approximation. For example, they cannot catch the violation of assertions

that are not present in the approximation.

We use concurrent trace programs (i.e., program slices built from program executions) as

program approximation models and develop a multi-trace analysis to generate tests for concur-

rent programs. The multi-trace analysis is built on top of symbolic prediction techniques and

utilizes information available in multiple program runs to generate tests that would increase

code coverage in concurrent programs.

However, we do not fix the approximation model a priori, i.e., the approximation is aug-

mented by the observed run after running each generated test. Furthermore, we make the

multi-trace analysis target test generation for branches that are not present in the approximation

which allows us to explore program behaviours that are beyond the approximation. Note that in

CHAPTER 1. INTRODUCTION 8

an active testing framework [25], many runtime bugs can be encoded as branches. Therefore,

by targeting branch coverage, one can implicitly aim for catching those bugs. We use this fact

and combine a sequential testing technique with the multi-trace analysis such that individual

threads are exposed to sequential test generation first to increase branch coverage as much as

possible. Upon saturation, we fall back to our multi-trace analysis to generate tests for covering

branches that are not covered in sequential testing.

C. Bounded-interference heuristic

Heuristics used by techniques in category (iii) have following problems:

(i) Inefficiency: most sequentialization techniques use the context bounding heuristic. Note

that many thread interleavings might be equivalent to each other according to the way threads

interfere with each other. Therefore, exploring all such interleavings reduces the efficiency

without discovering any new bugs.

(ii) Lack of coverage guarantees: most concolic testing techniques for concurrent programs

use data races as a heuristic for exploring the interleaving space. Due to this heuristic, these

techniques are unable to quantify the partial work done during the testing process as a coverage

measurement. Therefore, they cannot provide any coverage guarantees (on program code or

behaviours) for concurrent programs when the time or memory limit is hit.

We introduce a new heuristic, called bounded-interference, for heuristic-based techniques

in category (iii), to efficiently provide coverage guarantees for concurrent programs. An in-

terference happens whenever a thread reads a value that is written by another thread. The

idea behind the bounded-interference heuristic is to gradually explore all program behaviours

within a bounded number of interferences among threads. This heuristic is parameterized with

the number of interferences and therefore can be used to provide coverage guarantees (modulo

the parameter bound) for concurrent programs.

Another property of this heuristic is that it is defined based on the notion of data flow

among the threads, in contrast to the control-based notions such as context bounding that are

CHAPTER 1. INTRODUCTION 9

tied to schedules. Therefore, it can be naturally incorporated into sequential testing techniques

to explore the input space and the interference space in a unified manner.

To verify the effectiveness of the bounded-interference heuristic in finding concurrency

bugs, we develop a sequentialization technique which transforms a concurrent program into a

sequential program such that the sequential program embeds all behaviours of the concurrent

program within a bounded number of interferences. We keep the sequentialization technique

simple by considering concurrent programs with only two threads where only one thread can

be interfered by the other one.

A nice property of the sequentialization technique is that inputs of the concurrent program

and interference scenarios are both encoded as inputs of the generated sequential program and

hence the underlying sequential testing technique is able to explore both input and interference

scenario spaces side by side. The sequentialization is sound, i.e., every bug in a generated

sequential program represents a bug in the corresponding concurrent program and applying a

sequential testing technique with specific coverage guarantees provides coverage guarantees

(modulo the interference bound) on the concurrent program.

D. Concolic testing of concurrent programs with coverage guarantees

Existing concolic test techniques for concurrent programs (in category (iii)) use data races as a

heuristic for exploring the interleaving space; i.e., interleaving exploration is done by switching

the order of events involved in a data race in a previous execution. However, these techniques

are able to provide coverage guarantees only when the testing algorithm is terminated after

considering all possible orderings of events involved in a data race. Note that this exploration

space is often very large for real world programs such that the testing algorithm fails to ter-

minate in a reasonable amount of time. Unfortunately, due to the data race heuristic, these

techniques are unable to quantify the partial work done (e.g., at the occasion of a timeout) as a

meaningful coverage measure for the program.

We employ the bounded-interference heuristic in leveraging a sequential concolic testing

CHAPTER 1. INTRODUCTION 10

technique to generate tests for concurrent programs. Using the bounded-interference heuristic,

our concolic testing technique provides coverage guarantees (modulo the interference bound)

for concurrent programs both after the testing process is finished and when a time/computation

limit is reached. We introduce a new component in concolic testing that explores possible

interference scenarios (within the interference bound), and build a general framework which

can employ different exploration strategies for inputs and interference scenarios.

We develop a search strategy that targets branch coverage in concurrent programs; i.e., in-

terference scenario and input spaces are explored based on branches of the concurrent program

that are yet uncovered during the testing process. This test generation technique is sound and

provides branch coverage guarantees (modulo interference bound) for concurrent programs.

1.3 Outline

This thesis is organized as follows:

• Chapter 2 describes a sound and scalable technique for predicting null-pointer derefer-

ences in concurrent programs. This chapter is based on two of our publications on this

technique (i.e., [65] and [16]). We discuss the null reads pattern and present our static

pruning which targets increasing scalability. Then, we present the logical constraints

and planning encodings of the prediction problem based on the maximal causal model.

We discuss the relaxation technique and experimentally show the effectiveness and effi-

ciency of the prediction technique. Finally, we describe the related work and compare it

to our null-pointer prediction technique.

• Chapter 3 is about the test generation technique based on under-approximated programs.

This chapter is organized according to our publication on test generation based on multi-

trace analysis (i.e., [66]). We present our multi-trace analysis in detail and show how

it can be combined with a traditional sequential testing to efficiently increase branch

coverage in concurrent programs. We experimentally evaluate the effectiveness of this

CHAPTER 1. INTRODUCTION 11

test generation technique in increasing branch coverage and finding concurrency. At the

end of the chapter, we present the related work and compare it to our multi-trace analysis

technique.

• Chapter 4 introduces the bounded-interference heuristic through some examples. We

provide a theoretical comparison between the bounded-interference and context bound-

ing heuristics. We show how this heuristic can be leveraged/employed by sequential

testing techniques to generate tests with coverage guarantees for concurrent programs.

• Chapter 5 contains the sequentialization technique based on the bounded-interference

heuristic. This chapter is based on our publication on bounded-interference sequential-

ization (i.e., [64]). We present the transformation algorithm and prove it to be sound and

complete (depending on the coverage guarantees of the underlying sequential testing

tool). We evaluate the effectiveness and efficiency of testing based on this sequential-

ization technique through a set of experiments. Finally, we provide an overview of the

sequentialization techniques in the literature and compare them to our sequentialization

technique.

• Chapter 6 describes our concolic testing technique for concurrent programs. This chapter

is organized based on our publication on bounded-interference concolic testing of con-

current programs (i.e., [14]). We show how the general testing framework is built based

on adapting a sequential concolic testing technique to concurrent programs by employing

the bounded-interference heuristic in the search strategies. Then, we present algorithms

for a search strategy that targets branch coverage in concurrent programs. We prove the

algorithms to be sound and complete. We experimentally evaluate the effectiveness of

the testing technique in code coverage and finding concurrency bugs. Finally, we present

the related work and compare it to our bounded-interference concolic testing.

• Chapter 7 summarizes the research in thesis and identifies possible directions for future

work.

Chapter 2

Predicting Null-Pointer Dereferences in

Concurrent Programs

Prediction-based testing is a promising approach for testing concurrent programs [82, 59, 89,

90, 74, 68, 7, 77, 78]. It involves observing one execution of the program under test with some

input values, and from that predict alternate interleavings of thread executions with the same

input values. Prediction only explores the interleavings of thread executions that are close to

the observed executions only, while at the same time explores interesting interleavings that are

likely to lead to errors.

Prediction techniques, so far, have focused on predicting bugs that correspond to atomicity

violations [82, 59, 90], data races [68], and assertion violations [89, 7]; i.e., these violation

patterns are used as heuristics to reduce the exploration space to interleavings that are more

probable to realize any of these patterns. Although these heuristics have been very successful

in finding concurrency bugs, a recent research [96] shows that memory bugs (e.g., null-pointer

dereferences) are often more harmful than many other types of bugs since they normally cause

program crashes. Therefore, memory bugs could be good candidates to be targeted by predic-

tion techniques.

Here, we propose a new violation pattern for prediction that is different from data races or

12

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS13

atomicity violations; we propose null reads that target interleavings that lead to null-pointer

dereferences. Given an arbitrary execution of a concurrent program, we investigate fundamen-

tal techniques to soundly and scalably predict executions that are likely to realize null reads

patterns:

1. Approximation: We use an approximation of the prediction problem that ignores local

computation entirely to achieve scalability; we use the maximal causal model [74] which

works at the shared communication level (i.e., accesses to shared variables and synchro-

nization events). Our approximation of the prediction problem asks for runs that force

threads to read null values where possible. Predicted runs in this model will be feasi-

ble but may not actually cause a null-pointer dereference (e.g., the thread reading a null

value might dereference a pointer only if it is not null), though they are likely to do so.

2. Static Pruning: We use a static analysis that aggressively prunes the executions by identi-

fying a small segment of the observed run on which the prediction effort can be focused.

Pruning of executions does not affect feasibility of the runs, but increases the scalability

of our technique.

3. Relaxed prediction: We utilize a formulation of the prediction at the shared communica-

tion level that allows some leeway so that the prediction algorithm can predict runs with

mild deviations from the maximal causal model; this makes the class of predicted runs

larger at the expense of possibly making them infeasible, though in practice, we found

the majority of the predicted runs to be feasible.

4. SMT and AI planning encodings: We encode the prediction problem both as a constraint

satisfaction problem and as an AI planning problem. The former enables the applicabil-

ity of state-of-the-art SMT solvers while the latter enables us to benefit from the compact

encoding and fast heuristic-based searching techniques available in AI planners by con-

ceptualization and realization of the prediction problem as an AI automated planning [56]

problem.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS14

5. Re-execution: The runs predicted using the above techniques might be infeasible (in case of

relaxed prediction), or might be feasible and yet not cause any null-pointer dereference.

We mitigate this by re-executing the program according to the predicted runs to check

if a null-pointer dereference actually occurs. Errors reported are always real (i.e., they

cause an uncaught exception or result in failing the test harness), and hence we incur no

false positives.

This chapter is based on our publications on these techniques (i.e., [65] and [16]). We

elaborate these techniques in detail and evaluate them experimentally.

2.1 Motivating Example

Consider the code snippet extracted from the Pool 1.21 library in the Apache Commons

collection, presented in Figure 2.1. In the returnObject method, first, the state of the shared

object pool, is tested outside the synchronized block, by checking the value of the flag variable

isClosed. If it is true, then some local computation occurs, followed by a synchronized

block that dereferences the shared object pool. Method close, on the other hand, closes the

pool by writing null to pool and setting isClosed to true, signaling that the pool has been

closed.

The error in this code (and such errors are very typical) stems from the fact that the check of

isClosed in method returnObject is not within the synchronized block; hence, if a thread

executing the returnObject method performs the check at line 3, and then a concurrent

thread executes the method close before the synchronized block begins, then the access to

object pool at line 10 will raise an uncaught null-pointer dereference exception.

In a dynamic testing setting, consider the scenario where we observe an execution π with

two threads T and T ′, where T executes the method returnObject first, and then, T ′ exe-

cutes the method close after T finishes executing returnObject. There is no null-pointer

1http://commons.apache.org

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS15

1 public void returnObject(Object o){

2 ...

3 if (isClosed)

4 throw new PoolClosedEx();

5 synchronized (this) {

6 numActive--;

7 ...

8 ... = modCount;

9 ...

10 pool.push(o);

11 }

12 }

13 public void close(){

14 synchronized (this) {

15 ...

16 modCount = ...

17 ...

18 pool = null;

19 isClosed = true;

20 }

21 }

Figure 2.1: Code snippet of the buggy implementation of Pool 1.2.

dereference in the execution. Our goal is to predict a permutation of the events of π (called

schedule) that causes a null-pointer dereference.

Our prediction for null-pointer dereferences works as follows. In the run π, thread T reads

a non-null value from the shared object pool when the object method pool is called at line

10. Also, T ′ writes a null value to the same shared object pool at line 18. Our prediction

approach identifies that read-write pair and searches for alternative schedules π′ in which, the

read at line 10 (in T) reads the value null written by the write at line 18 (in T ′). Therefore,

it predicts a run π′ in which T is executed first until it gets to the synchronized block at line 5,

followed by the execution of T ′ and then the execution of the synchronized block in T , which

leads to a null-pointer dereference exception.

Our prediction algorithm observes accesses to shared variables and synchronization events

but suppresses the semantics of the local computation entirely and does not even observe them.

Then, it identifies null-WR pairs α = (e, f), where e is a write of null to a variable and f is a

non-null read of the same variable in the observed run. Then, it encodes the problem of finding

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS16

a sound permutation of events of the observed run in which f is reading the null value written

by e as a logical constraint system or an AI planning problem and uses the state-of-the-art SMT

solvers and planners to search for an answer (if there exists any solution).

2.2 Preliminaries

Our prediction technique, similar to other prediction techniques, is based on program runs,

i.e., a run of the program is observed and then the information available in the run is used for

predicting other runs. Here, we first discuss what kind of information is available in program

runs and then provide a background on the maximal causal model [74] which is the basis for

our prediction technique.

2.2.1 Global Traces

We define a global trace to be a sequence of global computation (i.e., accesses to shared vari-

ables) and synchronization events. Note that a global trace does not contain any information

about local computation (i.e., reads and writes to local variables) in the execution.

We assume a set of thread identifiers T= {T1, T2, ...} and define a set of shared variables

SV = {sv1, sv2, ...} that the threads can access. Let Init(x) and V al(x) represent the initial

value and the set of possible values that the shared variable x ∈ SV can get, respectively. We

also fix a set of global lock variables L.

The set of actions that a thread can perform on the set of shared variables SV and global

locks L is defined as:

Σ = {rd(x, val), wt(x, val) | x ∈ SV, val ∈ V al(x)} ∪

{ac(l), rel(l) | l ∈ L} ∪ {tf(Ti) | Ti ∈ T}

Actions rd(x, val) and wt(x, val) correspond to reading value val from and writing value

val to shared variable x, respectively. Actions ac(l) and rel(l) represent acquiring and releasing

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS17

lock l, respectively. Action tf(Ti) represents the creation of thread Ti.

We denote the execution of an action by a thread as an event. Formally, an event is a tuple

(Ti, a) ∈ T ×Σ. Let EV denote the set of all possible events. The sequence of events observed

during an execution of a concurrent program forms a global trace:

Definition 2.2.1 (Global Trace). A global trace is a finite string π ∈ EV ∗. By π[n], we denote

the nth event of π. Given a global trace π, π|Ti is the projection of π to events involving Ti.

In this chapter, whenever we refer to traces we mean global traces. A global trace π is

lock-valid iff it respects the semantics of locking, i.e., two threads cannot obtain the same lock

simultaneously.

Definition 2.2.2 (Lock-Valid Traces). Let π be a global trace and π|Ti,l be the projection of

π|Ti on acquire and release events of lock l. Then, π is lock-valid iff

(i) For each lock l, π|Ti,l (if it is not empty) starts with an acquire event (Ti, ac(l)) and

acquire events (Ti, ac(l)) alternate with corresponding lock release events (Ti, rel(l)) in

π|Ti,l, and

(ii) For each acquire event π[m] = (Ti, ac(l)) either (1) there exists a corresponding release

event π[n] = (Ti, rel(l)) such that m < n, and there are no acquire or release events of

lock l by other threads between π[m] and π[n], or (2) the lock is not released by Ti in π

(i.e, there is no event (Ti, rel(l)) after π[m]) and there are no acquire or release events

of lock l by other threads after π[m].

Let π be a lock-valid trace. Lock-sets and lock acquisition histories for π are defined as

follows:

Definition 2.2.3 (Lock-Sets and Acquisition Histories (from [39])). Lock-Set(Ti, π[j]) is de-

fined to be the set of locks acquired but not released by Ti before π[j] in π. Then, for thread Ti

and lock l such that l ∈ Lock-Set(Ti, π[n]), where n is the length of π, we define AH(Ti, l, π) be

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS18

the set of locks that were acquired (and possibly released) by Ti after the last (Ti, ac(l)) event

in π.

A global trace π is data-valid iff it respects the read-write constraints, i.e., each read from

a shared variable should read the value written by the most recent write event to that shared

variable.

Definition 2.2.4 (Data-Valid Traces). Let π be a global trace. Then, π is data-valid iff for each

n such that π[n] = (Ti, rd(x, val)), either

(i) The last write event to x writes value val; i.e., there is m such that m < n and π[m] =

(Ti,wt(x, val)) and there is no k such that m < k < n and π[k] = (Tq,wt(x, val′)) for

any val′ and any thread Tq, or

(ii) There is no write event to variable x before the read and val is the initial value of x; i.e.,

there is no m such that m < n and π[m] = (Tj,wt(x, val′)) (for any val′ and any thread

Tj), and val = Init(x).

A global trace π is creation-valid iff every thread is created at most once and the events of

each thread occur after it is created.

Definition 2.2.5 (Creation-Valid Traces). A global trace π is creation-valid iff for every Ti ∈ T ,

there is at most one event of the form (Tj, tf(Ti)) in π, and, if such an event exists, then all events

in πTi happen after this event in π.

Each global trace obtained from an execution of a program defines a total order on the set

of events in it. Furthermore, there is an induced partial order between the events of each thread:

Definition 2.2.6 (Program Order). Let π be a global trace obtained from an execution of a

program. We define a partial relation vk such that π[i] vk π[j] iff π[i], π[j] ∈ π|Tk , and i ≤ j.

The union of these partial orders ∪Ti∈T vi is referred to as program order.

The program order arranges the events in each thread according to their order in π.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS19

Definition 2.2.7 (Causal Relation). Let π be a global trace. We define a partial order � on the

set of events in π such that π[i] � π[j] iff i ≤ j and

(i) π[i] and π[j] are performed by the same thread, or

(ii) π[i] = (Tp, ac(l)), π[j] = (Tq, rel(l)), and Tp 6= Tq, or

(iii) π[i] = (Tp, rel(l)), π[j] = (Tq, ac(l)), and Tp 6= Tq, or

(iv) π[i] = (Tp,wt(x, val)) and π[j] = (Tq, rd(x, val′)) or π[j] = (Tq,wt(x, val′)) for some

shared variable x and values val and val′, and Tp 6= Tq, or

(v) π[i] = (Tp, rd(x, val)), π[j] = (Tq,wt(x, val′)) for some x, val, val′, and Tp 6= Tq, or

(vi) π[i] = (Tp, tf(Tq)) and π[j] is performed by Tq (i.e., π[j] = (Tq,−)), and Tp 6= Tq.

Transitive closure of � (represented by �∗) is called causal relation.

The causal relation, for each event in the trace, defines a set of events on which the event

depends.

2.2.2 Maximal Causal Model of Prediction

Our prediction technique is based on the maximal causal model [74]. The maximal causal

model works at the shared communication level, i.e., it only considers accesses to shared vari-

ables and synchronization events. Given a global trace of a concurrent program, a causal model

is obtained which is both sound and maximal; i.e., all traces consistent with the causal model

correspond to feasible executions of the concurrent program under analysis, and assuming only

the global trace and no knowledge about the source code of the program, the model captures

more feasible executions than any other sound causal model. In the following, we define the

maximal causal model as a set of precisely predictable runs.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS20

Definition 2.2.8 (Precisely Predictable Runs (adapted from [74])). Let π be a global trace

over a set of threads T , shared variables SV , and locks L, obtained from a program execution.

Global trace π′ is precisely predictable from π if

(i) for each Ti ∈ T , π′|Ti is a prefix of π|Ti ,

(ii) π′ is lock-valid,

(iii) data-valid, and

(iv) creation-valid.

Let PrPred(π) denote the set of all runs with global traces that are precisely predictable from

π, called precisely predictable runs from π.

The first condition above ensures that the sequence of events of Ti occurred in π′ is a prefix

of the sequence of events of Ti occurred in π. Note that we are forcing the thread Ti to read

the same values of shared variables as it did in the original run. Along with data-validity, this

ensures that the thread Ti reads precisely the same values and updates the local state in the

same way as in the observed run. Lock-validity and creation-validity are, of course, required

for feasibility. The following theorem states the soundness of the prediction that guarantees all

predicted runs to be feasible:

Theorem 2.2.9 (from [74]). Let P be a program and π be a global trace corresponding to an

execution of P . Then, every precisely predictable run in PrPred(π) is a feasible of P .

The complete proof of this theorem can be found in [74]. The intuition behind why the

theorem holds is that as long as each read event reads in the same value as it did in the observed

run, each thread is forced to take the same path as it took in the observed run. Since the

observed run is a feasible run, all predicted runs are guaranteed to be feasible.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS21

2.3 Predicting Null-Pointer Dereferences

Although null-pointer dereferences could occur on both local and shared variables, a predic-

tion that takes into account local variables and local computation encounters scalability issues

for large program runs. We propose an approximation to null-pointer dereference prediction

that works at the shared communication level, i.e., accessing to shared variables and synchro-

nization events. Consider a thread T that in some interleaving reads a non-null value from

shared variable x and subsequently does some computation locally using the non-null value,

and consider the task of predicting whether this could result in a null-pointer dereference. Our

approximation of the prediction problem at the shared communication level asks for a run that

forces the thread T to read a null value from x. Note that this approximation is neither sound

nor complete: Thread T may read null for x but may not dereference the pointer (e.g., it could

check if x is null), and there may be runs where the value read is not null and yet the local

computation causes a null-pointer dereference. However, such an approximation is absolutely

necessary to scale to large runs, as it is imperative that local computation is not modeled. To

guarantee the feasibility of the predicted runs, our prediction approach is based on the maximal

causality model (discussed in Section 2.2.2). Now, we formally define the precise prediction

problem for forcing null-reads.

Definition 2.3.1 (Precisely Predictable Null-Reads). Let π be a global trace obtained from an

execution of a program P . We say that a run with global trace π′ is a precisely predictable run

from π that forces null-reads if there is a thread Ti and a variable x such:

(i) π′ = π′′.f where f is of the form rd(x, null) and π′′ is a precisely predictable from π (see

Definition 2.2.8), and

(ii) there is some val 6= null such that (π′′|Ti).rd(x, val) is a prefix of π|Ti .

Intuitively, the above conditions require that the π′ be a precisely predictable from π fol-

lowed by a read of null by a thread Ti on variable x, and further, in the observed trace π, thread

Ti must be performing a non-null read of variable x after performing its events in π′′. The

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS22

above captures the fact that we want a precisely predictable run followed by a single null-read

that corresponds to a non-null read in the original observed run. Note that π′ itself is not in

PrPred(π), but is always feasible in the program P .

The first step of our prediction is to identify a set of null-WR pairs α = (e, f), where e

is a write of null to a variable and f is a non-null read of the same variable, in the observed

trace. Then, we perform a static lock-based analysis according to the null-WR pairs to identify

a small segment of the observed run on which the prediction can focus. Finally, we encode the

prediction problem as an SMT problem or an AI planning problem to find an answer. In the

following, we discuss how we identify the null-WR pairs and then present the static pruning

analysis. The encodings are presented in Sections 2.4 and 2.5.

2.3.1 Identifying null-WR Pairs Using Lock-based Analysis

Each null-WR pair α = (e, f) is a tuple where e is a write of null to a shared variable x and f

is a non-null read of the same shared variable. We would like to identify pairs that are feasible

at least according to the hard constraints of thread-creation and locking in the program. For

instance, if a thread writes to a shared variable x and reads from it in the same lock-protected

region of code, then clearly the read cannot match a write protected by the same lock in another

thread. Similarly, if a thread initializes a variable x to a non-null and then creates another thread

that reads x, clearly the read cannot see the uninitialized x. We use a lock-based static analysis

of the run (without using a constraint solver) to filter out such infeasible null-WR pairs .

The idea is to check if for a null-WR pair α = (e, f), f can read from e in a (not neces-

sarily feasible) run that only respects lock-validity and creation-validity constraints (and not

data-validity). Creation validity is captured by computing a causal relation among the threads

(Definition 2.2.7) by considering only the program order and thread creation constraints (i.e.,

items (i) and (vi)) in Definition 2.2.7. If f �∗ e according to this relation, then clearly f cannot

occur after e and the null-WR pair should be discarded. Lock-validity is captured by reduc-

ing the problem of realizing the pair (e, f) to pairwise reachability under nested locking [39],

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS23

e

e′′

f

Ti Tj

...

.

.
...

...

e′
...

AH 1 AH 2

LS 2LS 1} {

LS 1 ∩ LS 2 = ∅
AH 1 compatible with AH 2

{

: writeX,null

: readX,¬null

: writeX,•
.

Figure 2.2: Static lock-based analysis for feasibility of a null-WR pair α = (e, f).

which is then solved by computing lock-sets and acquisition histories for each event. Similar

techniques have been exploited for finding atomicity violations in the tool PENELOPE [82].

Here, we briefly discuss the reduction for lock-validity checking.

Consider an observed trace π and a null-WR pair α = (e, f) where f (a read in thread Tj)

occurs before e (a write in thread Ti) in π. Let us assume that e′′ is the next write event (to the

same variable accessed in e and f) in Ti after e.

We claim that if there exists a lock-valid run with global trace π′ (obtained by permuting

the events in π) in which f reads the null value provided by e, then in π′, f should be scheduled

after e, but before e′′; if f is scheduled before e, then it would not read from e. If f is scheduled

after e′′ then the write in e′′ overwrites the null value written by e before it reaches f . This

means that there should exist an event e′ of thread Ti, occurring between events e and e′′, that

is right before (or after) f in π′; in other words, e′ and f are co-reachable. Note that in cases

that there is no write event (to the same variable accessed in e and f) in Ti after e, e′ could be

any event in Ti after e.

As shown in Figure 2.2, we iterate over all possible events e′ of Ti between e and e′′ in π

and use a simple technique [39] to check the co-reachability of e′ and f . As proposed in [39],

the co-reachability check is done by examining the lock-sets and acquisition histories (See

Definition 2.2.3) at e′ and f : The lock-sets at e′ and f must be disjoint and the acquisition

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS24

histories at e′ and f must be compatible, i.e., there are no locks l ∈ Lock-Set(Ti, e′) and l′ ∈

Lock-Set(Tj , f) with l′ ∈ AH(Ti, l, π) and l ∈ AH(Tj , l′, π).

2.3.2 Static Pruning

Given a global trace π, we collect all null-WR pairs α = (e, f) as discussed in the previous

section. Then, according to the prediction problem for each null-WR pair α = (e, f), we have

to search for a lock-valid, data-valid and creation-valid trace, consisting of the events in π, in

which f is reading the null value written by e. However, instead of using the whole π (which

can be very large) for the purpose of prediction, we slice a relevant segment of it, and use the

segment instead. This segment is often orders of magnitude smaller than π itself, and hence

the scalability of prediction is increased. However, any run predicted from the segment will

still be feasible. While this limits the number of predictable runs in theory, it does not prevent

us from finding errors in practice (in particular, no error was missed due to pruning in our

experiments).

Consider a global trace π and a null-WR pair α = (e, f). The idea behind pruning is to

first prune away a set of events in π which are not causally before e or f as they play no role

in occurrence of e or f . Assume that π′ is the new trace obtained after pruning. Then, in the

next step we find the largest prefix of π′ before reaching e and f such that all of the locks are

free at the end of this prefix. The intuition behind this is that such a prefix can be replayed in

the predicted run precisely in the same way as it occurred in the observed run. The prediction

problem is then restricted to the remained suffix, containing e and f , while the initial values of

shared variables for prediction is obtained by the last write to each shared variable in the prefix

segment. The prefix then can be stitched to a run predicted from the suffix since the suffix will

start executing from a state where no locks are held.

For the first step, let ρα define the smallest subset of events of π that satisfies the following

properties: (1) ρα contains events e and f , (2) for any event e′ in ρα, all events e′′ that are

causally before it (i.e., e′′ �∗ e′ according to Definition 2.2.7) are in ρα, and (3) for every event

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS25

T1 T2 T3T4

f

•
•

•• •

•
•

•

•• e

ρα

σα

t1

t2

t3

t4
λα

Figure 2.3: Static pruning according to a null-WR pair α = (e, f).

corresponding to a lock acquire in ρα, its corresponding release event is also in ρα.

The intuition is that events that are not in ρα are not relevant for the scheduling of the null-

WR pair. Figure 2.3 presents a run of a program with 4 threads that is projected into individual

threads. Here, e belongs to thread T1 and f belongs to thread T2. The cut labeled ρα marks

the boundary after which all events are not causally before e or f , and hence, need not be

considered for the generation of the new run.

For the second step, we identify a causally prefix-closed set of events before e and f to

remove. For the null-WR pair α, let λα define the largest subset of events of ρα that has the

following properties: (1) it does not contain e or f , (2) for any event e′ in λα, all events e′′ that

are causally before it (i.e., e′′ �∗ e′) are in λα, and (3) for any event e′ in Ti such that e′ is the

last event of Ti in λα, the Lock-Set(Ti, e′) is empty. In the figure, the curve labeled λα marks

the boundary of λα where events T1, . . . , T4 have empty lock-sets.

The run segment relevant to a null-WR pair α is then defined as the set of events in σα =

ρα \ λα scheduled according to the total order in π. This run segment is passed to the run

prediction phase, in the place of the whole run π.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS26

2.4 Encoding as an SMT Problem

In this section, we encode the problem of precisely predicting a run that realizes a null-

WR pair as a set of logical constraints. More specifically, given a trace π and a null-WR pair α =

(e, f), we encode the set of all possible runs in the maximal causal model that forces the read

f to read the null value written by e as a set of constraints and use a constraint solver to search

for a solution. The constraints fall into the Difference Logic [52] which is efficiently decid-

able [41].

Prediction according to the maximal causal model is basically an encoding of the creation-

validity, data-validity, and lock-validity constraints using logic, where quantification is re-

moved by expanding over the finite set of events under consideration. Modeling this using

constraint solvers has been done before ([68]) in the context of finding data races. We refor-

mulate this encoding briefly here (in Section 2.4.1) and adapt it to predict null-pointer derefer-

ences. We also propose a wide set of carefully chosen optimizations on this encoding.

Prediction based on the maximal causal model is sound, in the sense that it guarantees fea-

sibility of the predicted runs. However, sound prediction under the maximal causal model can

be too restrictive in some cases, i.e., the constraint system is unsatisfiable. Slightly diverging

from the maximal causal model can lead to prediction of runs that are also feasible in the origi-

nal program in many cases. In Section 2.4.2, we present a relaxation technique on the maximal

causal model and show how the precise encoding is changed to reflect the relaxation technique.

2.4.1 Precise Prediction

In this section, first we present how the maximal causal model can be captured by logical

constraints. Then, we show how these constraints are adapted for predicting runs realizing a

specific null-WR pair. Finally, we provide a set of optimizations that reduce the size of the

constraint system soundly.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS27

ψ: PO ∧ FC ∧ LC ∧ DC

PO:
∧
Ti∈T POTi ∧ Cinit

Cinit:
∧n
i=1 (tinit < tei,1)

POTi:
∧mi−1
j=1 (tei,j < tei,j+1

)

FC:
∧
Ti∈T (tetf(Ti)

< tei,1)

LC: LC1 ∧ LC2

LC1:
∧
Ti 6=Tj

∧
l∈L
∧

[aq,rl]∈LTi,l
[aq′,rl′]∈LTj,l

(trl< taq′ ∨ trl′< taq)

LC2:
∧
Ti 6=Tj

∧
l∈L
∧

aq∈NoRelTi,l

[aq′,rl′]∈LTj,l
(trl′< taq)

DC:
∧
x∈SV

∧
val∈V al(x)

∧
r∈Rx,val(

∨
w′∈Wx,val

Coupled(r, w′))

Coupled(r, w): (tw < tr) ∧
∧
w′∈Wx\{w}((tr < tw′) ∨ (tw′ < tw))

Figure 2.4: Constraint system capturing the maximal causal model.

Capturing Maximal Causal Model Using Logic

Given a trace π, we first encode the constraints on all runs precisely predictable from it, using

the maximal causal model, independent of the specification that we want runs that realize a

given null-WR pair. A predicted run can be seen as a total ordering of the set of events E

in the trace π. We use an integer variable te to encode the timestamp of an event e ∈ E in

the predicted run. Using these timestamps, we logically model the constraints required for

precisely predictable runs (see Definition 2.2.8); i.e., the runs should respect the program order

implied by π, and should be lock-valid, data-valid, and creation-valid.

Figure 2.4 illustrates the various constraints. The constraint system is a conjunction of

program order constraints (PO), creation-validity constraints (FC), data-validity constraints

(DC), and lock-validity constraints (LC).

Suppose that the given trace π consists of the events of n different threads, and let π|Ti =

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS28

ei,1, ei,2, ..., ei,mi be the sequence of events in π that relates to thread Ti.

PO: The program order constraint (PO) captures the condition that the predicted run respect

the program order of the observed run. We consider an initial event einit which corresponds

to the initialization of shared variables. This event should happen before any thread starts the

execution in any predicted run; constraint Cinit encodes this fact. The constraint POi requires

that the predicted run obey the order of events in thread Ti, and PO requires that all threads

meet their program order.

FC: Turning to creation-validity, suppose that etf(Ti) is the event that creates thread Ti. Then,

the constraint FC requires that the first event of Ti can only happen after etf(Ti). Combined with

program order constraint, this means that all events before the creation of Ti in the thread that

created Ti must also occur before the first event of Ti in the predicted run.

LC1 ∧ LC2: Lock-validity (see Definition 2.2.2) is captured by the formula LC. We assume

that each lock acquire event aq of lock l in the observed run is matched by precisely one lock

release event rl of lock l in the same thread, unless the lock is not released by the thread in the

run. Each lock acquire event aq and its corresponding lock release event rl define a lock block,

represented by [aq, rl]. Let LTi,l be the set of lock blocks in thread Ti regarding lock l. Then,

LC1 ensures that no two threads can be inside lock blocks of the same lock l, simultaneously.

Turning to locks that never get released, the constraint LC2 ensures that the acquire of lock l by

a thread that never releases it must always occur after all releases of lock l in other threads. In

this formula, NoRelTi,l stands for lock acquire events in Ti with no corresponding lock release

event.

DC: The data-validity constraints DC (see Definition 2.2.4) capture the fact that reads must

be coupled with appropriate writes; more precisely, that every read of a value from a variable

must have a write before it writing that value to that variable, and moreover, there is no other

intermediate write to that variable. Let Rx,val represent the set of all read events that read value

val from variable x in π, Wx represent the set of all write events to variable x, and Wx,val

represent the set of all write events that specifically write value val to variable x. For each

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS29

read event r = rd(x, val) and write event w ∈ Wx,val, the formula Coupled(r, w) requires that

in the predicted run, w should happen before r and all other writes to variable x should either

happen before w or after r; i.e., w should be the most recent write to variable x before r and

hence r is coupled with w. The constraint DC requires that each read be coupled with a write

that writes the same value as the read reads in the observed run.

Predicting Runs for a null-WR Pair

Now, we present how the constraint system proposed above can be adapted for predicting runs

(consistent with the maximal causal model) that realize a null-WR pair. Suppose that α = (e, f)

is the null-WR pair and π is (the segment of) the observed trace containing e and f which is

considered for prediction. Notice that in the observed run f reads a non-null value while we

will force it to read null in the predicted run by coupling it with write event e. Therefore, we

drop from the data-validity formula (DC) that the value read at f should be the same as in

the observed run. In addition, we need to add a constraint NC = Coupled(f, e) that forces the

read f be coupled with the write e, i.e., e occurs before f while avoiding any other write to the

corresponding variable between e and f .

Suppose that f is performed by thread Ti and e is performed by thread Tj . Since both e and

f should occur in the predicted run, according to the program order, all of the events in Ti and

Tj before f and e should appear in the predicted run. Note that once f reads a different value,

we no longer have any predictive power on what the program will do (as we do not examine the

code of the program but only its runs). Consequently, we cannot predict any events causally

later than f , i.e., f should be the last event in the predicted run.

A further complication is how to deal with events that are after e in Tj and events in threads

other than Ti and Tj . Note that some of these events may need to occur in order to satisfy the

requirements of events before f in the predicted run (for instance a read before f may require

a write after e to occur). However, not all of these events are required to happen before f . Our

strategy is to let the solver figure out the precise set of events that are required in the predicted

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS30

run. Therefore, the lock-validity and data-validity constraints are enforced on events that are

scheduled before f (i.e., their timestamp is less than the timestamp of f). More precisely, we

replace:

(i) (
∨
w′∈Wx,val

Coupled(r, w′)) in the formula DC with (
∨
w′∈Wx,val

(tr < tf ∧ tw′ < tf) ⇒

Coupled(r, w′)),

(ii) (trl′< taq) in LC2 with (((trl′< tf) ∧ (taq< tf))⇒ (trl′< taq)),

(iii) (trl< taq′ ∨ trl′< taq) in LC1 with ((taq′< tf) ∧ (taq< tf))⇒ (trl< taq′ ∨ trl′< taq)),

and add
∧
Ti∈T

∧
l∈L
∧

[aq,rl]∈LTi,l
(taq < tf ⇒ trl < tf) to the constraint system to ensure that

each lock block is completely scheduled before f if its lock acquire event is scheduled before

f . This is to avoid introducing new non-released locks in the predicted runs that might lead to

deadlock.

Optimizations

The data-validity constraint (DC) is expensive to express, as it is in Figure 2.4; in the worst case,

it is cubic in the maximum number of accesses to any variable. There are several optimizations

that reduce the number of constraints in the encoding. Suppose that r = (Ti, rd(x, val)) is a

read from shared variable x. Then,

(i) each write event w′ to x that occurs after r in Ti, i.e., r vi w′, can be excluded in the

constraints related to coupling r with a write in constraint DC.

(ii) suppose that w is the most recent write to x before r in Ti. Then, each write event w′

before w in Ti, i.e., w′ vi w, can be excluded in the constraints related to coupling r

with a write in constraint DC.

(iii) when r is being coupled with w ∈ Wx,val in thread Tj , each write event w′ before w in

Tj , i.e., w′ vj w, can be excluded as candidates for e′′ in the formula Coupledr,w.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS31

(iv) suppose that r is being coupled with w ∈ Wx,val in thread Tj and w′ is the next write

event to x after w in thread Tj . Then, each write event w′′ after w′ in Tj , i.e., w′ vj w′′,

can be excluded as candidates for e′′ in the formula Coupledr,w.

(v) event r can be coupled with einit only when there is no other write event to x before r in

Ti, i.e., @w. (w vi r ∧ w ∈ Wx). Furthermore, it is enough to check that the first write

event to x in each thread (if it exists) is performed after r.

The lock-validity constraint (LC), which is quadratic in the number of lock blocks, is also

quite expensive in practice. We optimize the constraints as follows:

(i) If a read event r in thread Ti can be coupled with only one write event w which is in

thread Tj then in all precisely predictable runs, w should happen before r. Therefore, the

lock blocks according to each lock l that are in Tj before w and the lock blocks according

to lock l that are in Ti after r are already ordered. Hence, there is no need to consider

constraints preventing Ti and Tj to be simultaneously in such lock blocks in LC1. In

practice, this greatly reduces the number of constraints.

(ii) When considering lock acquire events with no corresponding release events in LC2, it is

sufficient to only consider the last corresponding lock blocks in each thread and exclude

the earlier ones from the constraint.

We present a simple example of a null-pointer dereference prediction problem in Appendix

A and provide the logical constraint encoding of the problem based on the encoding presented

in this section.

2.4.2 Relaxed Prediction

To guarantee feasibility of predicted runs, the encoding based on the maximal causal model

restricts all of the reads in the predicted run (except f) to read the same value as they did in the

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS32

observed trace. However, this can be too restrictive in the sense that no run can be predicted

with this restriction. For instance, suppose that α = (e, f) is a null-WR pair where e is in thread

Ti and f is in thread Tj . Furthermore, suppose that in the observed trace π, all events of Tj

occur before events of Ti. In this case, if there is a read event r in thread Ti before e (r vi e)

that can be matched only with a write w in Tj after f (f vj w) then there is no precisely

predictable run in which α is realized. However, if the value being read by r does not affect

the paths taken by the threads (for example, there is no conditional that checks the value of this

variable), ignoring the constraints related to r will help us in finding a feasible run.

We hence have a trade-off between two choices; we would like to maintain the same values

read for as many shared variable reads as possible to increase the probability of getting a

feasible run, but at the same time allow a few reads to read different values to make it possible

to predict some runs. Our proposal is an iterative algorithm for finding the minimum number of

reads that can be exempt from data-validity constraints that will allow the prediction algorithm

to find at least one run. We define a suitable relaxed logical constraint system to predict such

a run. Our experiments show that exempting a few reads from data-validity constraints greatly

improves the flexibility of the constraints and increases the possibility of predicting a run, and

at the same time, the predicted runs are often feasible.

Suppose that there are n read events in trace π. The iterative algorithm works as follows:

The data-validity constraints are expressed so that we specifically ask for n reads to be coupled

precisely. If we fail to find a solution then we attempt to find a solution that couples n − 1

reads precisely in the next round. We keep decrementing n and searching for a solution until

the constraint system becomes satisfiable and a run (solution) is found or a threshold for the

number of relaxed reads is reached. The changes required in the encoding to make this possible

are described below.

For every read event ri ∈ R, we introduce a new Boolean variable, bi, that is true if the

data-validity constraint for ri is satisfied, and false, otherwise. In addition, we consider an

integer variable bInti which is 0 if bi is false, and 1 if bi is true. This is enforced through a set

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS33

of constraints, one for each ri ∈ R: [(bi ⇒ bInti = 1) ∧ (¬bi ⇒ bInti = 0)]. Furthermore,

for each ri ∈ R, in the DC constraint, we change the sub-term (
∨
w′∈Wx,val

(tr < tf ∧ tw′ <

tf) ⇒ Coupled(r, w′)) to (bi ⇒ (
∨
w′∈Wx,val

(tr < tf ∧ tw′ < tf) ⇒ Coupled(r, w′))), forcing

the data-validity constraint for read ri to hold when bi is true. Note that with these changes,

we require a different theory, i.e., Linear Arithmetic in the SMT solver to solve the constraints,

compared to the Difference Logic which was used for our original set of constraints.

Initially, we set a threshold η to be |R|, i.e., the number of all read events. In each iteration,

we assert the constraint
∑

1≤i≤|R| bInti = η, which specifies the number (η) of data-validity

constraints that should hold in that iteration. If no run can be predicted with the current thresh-

old η (i.e., the constraint solver reports unsatisfiability), then η is decremented in each iteration,

until the formula is satisfiable. This way, when a satisfying assignment is found, it is guaran-

teed to have the maximum number of reads that respect data-validity possible for predictable

run. Note that once η < |R|, the predicted run is not theoretically guaranteed to be a feasi-

ble run. However, in practice, η is close to |R| and predicted runs are usually feasible in the

program.

2.5 Encoding based on AI Automated Planning Techniques

AI automated planning is a rich and rapidly evolving area of research [56]. The last 15 years

have seen tremendous advances in the field with the development of compact encoding tech-

niques for state representation and transition functions, together with highly effective search

techniques based on both satisfiability (SAT) and heuristic search. These advances have not

only led to the development of fast and highly effective AI planning systems, but they have

also led to advances in model checking [23, 26, 28] and related fields. Therefore, we elected

to explore the effectiveness of AI automated planning as a vehicle for prediction. In this con-

text, the prediction of a run realizing a null-WR pair is characterized as a sequential planning

problem with the temporally extended goal of achieving the particular violation being sought.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS34

In this section, we propose a means of encoding the realization of a null-WR pair as a tem-

porally extended goal and characterizing the overall task as a classical planning problem using

the maximal causal model (discussed in Section 2.2.2). Despite the focus on null reads, it is

important to note that a very similar encoding can be applied to prediction of runs contain-

ing other types of concurrency violations like atomicity violations and data races. Indeed, the

merit of using AI planning is in exploiting the rich compact encodings of transition systems

that planners use, the ability to encode complex violation patterns (at least anything that can be

encoded in Linear Temporal Logic [60, 87]) as planning goals and the highly optimized heuris-

tic search techniques that have been honed over the past decade. Here, we only focus on the

encoding of precise prediction, using the maximal causal model. Note that our precise predic-

tion technique does not require incorporating any numerical data. We leave the investigation

of possible encodings of prediction based on the relaxation technique for future work.

In the rest of this section, we first present a background on planning. Then, we show how

the prediction problem can be encoded as a planning problem.

2.5.1 Background on Planning

Informally, a planning problem can be described as follows: given a description of a set of ac-

tions an agent can perform, together with a specification of an initial state and a goal, the task

of automated planning is to generate a set of actions, together with some ordering constraints,

such that if those actions are executed by an agent, starting in the initial state, following the

ordering constraints, they will lead to a state in which the goal is achieved. Classical planning

problems are characterized by a finite initial state that is completely specified, a finite set of

actions that are deterministic, and a goal condition that is restricted to conditions placed on the

final state of the system. More formally, a STRIPS classical planning problem [56] is defined

as a tuple P = (S0, F, A, G) where F is a finite set of atomic facts, S0 ⊆ F is the initial

state, G ⊆ F specifies a set of goal states where the facts comprising G hold, and A is a fi-

nite set of deterministic actions. Each action a ∈ A is described by a tuple (pre(a), add(a),

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS35

del(a)) where pre(a) is a pair (pre+(a), pre−(a)) of disjoint subsets of F that define, respec-

tively, the positive and negative preconditions of action a, respectively. (For STRIPS classical

planning, pre−(a) is empty.) Further, add(a) and del(a) are disjoint subsets of F that define,

respectively, the positive and negative effects of action a.

Here, a planning state is a subset of elements in F . Classical planning assumes complete

information about the planning state. Therefore, every f ∈ F that is not explicitly mentioned

in a planning state, including the initial state, is assumed to be false in that state. Action a is

applicable in a planning state s ⊆ F iff pre+(a) ⊆ s and pre−(a) ∩ s = ∅. Applying action

a in state s would result in a new, successor state, succ(a, s) = (s\del(a)) ∪ add(a). The

goal G corresponds to a set of planning states and a plan, (strictly speaking a sequential plan,

henceforth just “plan”) π = −→a , consists of a finite sequence of actions a0, ..., an which, when

applied to the initial state, will produce a state in G.

Much of the research and many of the advances in automated planning have been with

respect to classical planning. However, many real-world planning problems do not fit within

this narrow characterization. One such restriction is that the goal to be achieved by an agent

– the objective of the search – is restricted to some property of the final state of the system.

A relaxation of this restriction is to support goals that are temporally extended, i.e., where

the objective can specify properties that occur along the trajectory of states realized by a plan

execution. In the spirit of this, a temporally extended planning problem, P (e.g., [1]), in this

setting is a classical planning problem P = (S0, F, A, G) where the goal G is not restricted

to a final-state goal, but rather is a set of facts together with some ordering constraints. Such

temporally extended goals are often specified in linear temporal logic (LTL) [60]. A sequential

plan for a temporally extended goal G is simply a sequence of actions, π = −→a , which when

applied to the initial state results in a sequence of states that entails G.

Automated planning problems are typically encoded in terms of a planning domain de-

scription that describes the dynamics of the planning problem – parameterized representations

of the actions, their preconditions and effects, and by a problem instance that includes a de-

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS36

scription of the initial state and the goal. The de facto standard for specifying planning domains

and planning instances is PDDL, the Planning Domain Definition Language [51]. PDDL has

evolved over the years to address increasing needs for expressiveness, and is firmly estab-

lished as the input specification language for most automated planning systems. PDDL3 [22],

a recent version of PDDL, allows for the specification of temporally extended constraints and

preferences in a subset of LTL.

Automated planning systems themselves vary in their approaches to plan generation. Two

popular approaches are those based on heuristic search, as exemplified by the very successful

Fast-Forward (FF) domain independent planning systems used here [31], and those based on

SAT (e.g., [67, 40]). While these systems take PDDL as input, most transform the PDDL

into an internal representation that is tailored to the needs of their search algorithm. Recent

advances in automated planning have seen the development of effective planning techniques for

a diversity of planning problems including cost-optimal planning, preference-based planning,

net-benefit planning, and planning with nondeterministic effects of actions. These advances

present further opportunities for the exploitation of planning in test generation.

2.5.2 Precise Prediction

We encode the dynamics of the given trace as an initial state S0, a set of facts F , and a set

of actions A. Actions correspond to events within the given trace. The facts record which

actions (i.e., run events) have been executed and some specific properties relating to the most

recent write to each shared variable and lock availability. The preconditions and effects for

individual actions are written so as to enforce program order, and also to enforce lock-validity,

data-validity and creation-validity that ensure that any plan generated from this planning in-

stance corresponds to a precisely predictable run from the given global trace that guarantees

feasibility. We illustrate this encoding in this section in detail.

We treat each null-WR pair α = (e, f) as a temporally extended goal. More specifically, it

can be specified as an LTL formula eventually (Happenede and next eventually (Happenedf))

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS37

where Happenede and Happenedf encode the occurrence of events e and f , respectively. As

such, the task of predicting a run that realizes α is viewed as the automated generation of a

plan with a temporally extended goal. Exploiting results proposed in [1] such problem can

be transformed into a classical planning problem, by exploiting an established correspondence

between LTL and Büchi automata [81]. In more restrictive cases, such as realizing a null-

WR pair described here, there is an even simpler transformation of the temporally extended

goals into a final-state goals [29] via what is effectively precondition control on the actions.

We elaborate on this transformation at the end of this section.

Here, we present schemas or templates for the general PDDL encoding we employ for

prediction. For ease of explanation, syntax does not strictly conform to PDDL syntax but is

expressively equivalent. First, we illustrate how the maximal causal model is encoded in a

planning domain such that any sequence of applicable actions correspond to a feasible execu-

tion of the corresponding program. Then, we describe how null reads, considered as temporary

extended goals, can be compiled into constraints on the evaluation of the domain.

Capturing Maximal Causal Model Using Planning

Given a trace π, we use the maximal causal model to encode the set of precisely predictable

runs from π (Definition 2.2.8).

Events and Program Order: We encode each event in π as an action in the planning do-

main. Therefore, we may have five different types of actions: read, write, thread creation,

lock acquire, and lock release actions. Let π|Ti = {ei,1, ei,2, ..., ei,m} be the projection of π

on thread Ti. Suppose that we have ei,1 vi ei,2, ei,2 vi ei,3, ..., ei,m−1 vi ei,m. According to

the program order, event ei,j+1 cannot occur before event ei,j . Let action Aci,j represent event

ei,j , i.e., the jth event in thread Ti. For each action Aci,j we introduce a predicate (Donei,j)

that indicates whether the action has been applied or not. These predicates are initially false

and become true after the application of action Aci,j . To enforce program order, action Aci,j

requires (Donei,(j−1)) to be true as a precondition.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS38

In a general planning problem, an action may be applied several times to find a solution for

the planning problem. Note that this cannot happen in our case as each action represents an

event which can occur at most once in any run. Therefore, each action cannot be applied more

than once in any plan. To encode this fact, predicate (NOT Donei,j) is considered as one of the

preconditions of each action Aci,j . Putting it all together, the following forms the template for

action Aci,j encoding event ei,j:

(: ACTION Aci,j

: PRECONDITION (AND (Donei,(j−1)) (NOT Donei,j) . . .)

: EFFECT (AND (Donei,j) . . .)

)

Note that if an actions is encoding the first event in a thread Ti, then its precondition only con-

sists of (NOT Donei,1). The actions may also have other preconditions and effects according

to the type of the event (i.e., read, write, thread creation, lock acquire, and release) they rep-

resent. The . . . denotes that other event-specific conditions may be added to the preconditions

and effects of the template. In the following, we describe each of these event types in detail.

Write Events: Let Wx represent the set of all write events to variable x in the observed run.

To keep track of the most recent write event to variable x, we consider a set of predicates,

represented by writes(x) = {(xm,n)| em,n ∈ Wx}
⋃
{(xinit)}.

Predicate (xinit) indicates whether x has its initial value. It is initially true, indicating that

no write event has been performed to x. Predicate (xm,n) indicates whether event em,n has

performed the most recent write to x. Predicates of this type are all initially false. When action

Acm,n, which encodes a write to x, is applied, predicates (xm,n) becomes true. In addition, all

predicates in writes(x) other than (xm,n), are set to false indicating that they are not the most

recent write to x. Therefore, at each point in time only one of the predicates in writes(x) can

be true. The following shows how action Aci,j , which corresponds to a write event to variable

x, is encoded:

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS39

(: ACTION Aci,j

: PRECONDITION (AND (Donei,(j−1)) (NOT Donei,j))

: EFFECT(AND (Donei,j) (xi,j)∀p ∈ [writes(x)\{(xi,j)}] : (NOT (p)))

)

Read Events: According to data-validity in the maximal causal model, each read event in the

predicted run should read the same value as it did in the original run. However, we are not

encoding the real values in the planning domain and it is just enough to recognize for each read

event, the set of write events that write the same value to the corresponding variable as the read

event read in the observed run.

Suppose that event ei,j = (Ti, rd(x, val)) reads the value val from variable x and let

Writex,val denote the set of events that write value val to variable x. In any precisely pre-

dictable run, read event ei,j can only be coupled with a write event in Writex,val. Therefore,

for each write event em,n ∈ Writex,val an action is considered as follows which forces read

event ei,j to be coupled with write event em,n:

(: ACTION Aci,j coupledm,n

: PRECONDITION (AND (Donei,(j−1)) (NOT Donei,j) (xm,n))

: EFFECT (AND (Donei,j))

)

Having (xm,n) as the precondition of the action would force the read event to read the value

provided by the write event em,n.

Thread Creation Events: According to creation-validity in the maximal causal model, each

thread can start execution only after it is created. For each thread Ti, we consider a predicate

(Createdi) which indicated whether Ti has been created or not. Each of these predicates

(Createdi) is initially false and is set to true by the action corresponding to the event creating

Ti. Furthermore, Aci,1 requires (Createdi) to be true in its preconditions.

Lock Acquire and Lock Release Events: According to lock-validity, each lock can be ob-

tained by at most one thread at each point of time. Therefore, if a lock is obtained by thread Ti

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS40

then other threads cannot acquire it unless Ti releases the lock. Assume that L = {l1, ..., lm} is

the set of locks acquired in the observed run. To guarantee lock-validity, a predicate (Availablelj)

is introduced for each lock lj , indicating whether lock lj is obtained by any thread or is free.

These predicates are initially true since all of the locks are available at the beginning.

Suppose that actionAci,j corresponds to a lock acquire event on lock l. It requires (Availablel)

to be true as a precondition and sets (Availablel) to false as an effect of the action.

(: ACTION Aci,j

: PRECONDITION (AND (Donei,(j−1)) (NOT Donei,j) (Availablel))

: EFFECT (AND (Donei,j) (NOT (Availablel)))

)

Having (Availablel) as a precondition requires lock l to be available before the application of

the action. Note that after performing the action, lock l is not available anymore and cannot be

acquired by any other thread.

Actions corresponding to a lock release event of lock l set (Availablel) to true, making the

lock available again. Therefore, action Aci,j which corresponds to a lock release event on lock

l is encoded as follows:

(: ACTION Aci,j

: PRECONDITION (AND (Donei,(j−1)) (NOT Donei,j))

: EFFECT (AND (Donei,j) (Availablel))

)

A domain description following these template transformations of a given trace will enable us

to generate feasible runs based on the maximal causal model. Next, we will show how we can

predict feasible runs that realize a null-WR pair.

Predicting Runs for a null-WR Pair

A null-WR pair α = (e, f) consists of a write e, writing a null value to a shared variable, and a

read f from the same shared variable, reading a non-null value. A null read with respect to α

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS41

happens when f reads the null value written by e.

Suppose that Aci,j is the action corresponding to the write event e which writes a null value

to variable x, and Acf is the action corresponding to the read event f . Recall that after the

application of action Aci,j , predicate (xi,j) becomes true indicating that Aci,j has performed

the most recent write to x. According to the encoding of write events, any other write to

variable x after the application of Aci,j would set (xi,j) to false. Since e should be the most

recent write to x when the read f is about to happen, it is enough to make (xi,j) a precondition

of action Acf .

We also consider a predicate (Happenedf) which represents whether action Acf has hap-

pened or not. This predicate is initially false and is set to true in the effect set of action Acf .

Then, the final-state goal is defined as (: goal(Happenedf)). In this case, f is guaranteed to

read the null value written by e when (Happenedf) becomes true because Acf can be applied

only when e is the most recent write to x.

We present a simple example of a null-pointer dereference prediction problem in Appendix

A and provide the planning encoding of the problem based on the encoding presented in this

section.

2.6 Evaluation

We implemented a tool, named EXCEPTIONULL, for predicting null-pointer dereferences in

multi-threaded Java programs. EXCEPTIONULL is built on top of PENELOPE [82] which is

a tool that predicts atomicity violations using a lock-based analysis. The implementation is

equipped with both logical constraint and planning encoding techniques. To evaluate our null-

pointer dereference prediction technique, we subjected EXCEPTIONULL to a benchmark suite

of multi-threaded Java programs. In the following, we briefly discuss EXCEPTIONULL and

then present our experimental results.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS42

Figure 2.5: EXCEPTIONULL with logical constraint encoder/solver built on top of PENE-

LOPE [82] framework.

2.6.1 Implementation

Figure 2.5 demonstrates the architecture of EXCEPTIONULL with logical constraint encoder/-

solver. It consists of three main components: a monitor, a run predictor, and a scheduler. The

monitor and scheduler are built on top of PENELOPE, with considerable enhancements and

optimizations, including the extension of the monitoring to observe values of shared variables

at reads and writes. In the following, we will explain each of these components in more detail.

Monitor: The monitor component has an instrumenter which uses the Bytecode Engineering

Library (BCEL)2 to (automatically) instrument every class file in bytecode so that a call to

an event recorder is made after each relevant action is performed. These relevant actions in-

clude field and array accesses, acquisitions and releases of locks, thread creations, but exclude

accesses to local variables. The instrumented classes are then used in the Java Virtual Ma-

chine (JVM) to execute the program and generate a global trace. For the purpose of generating

data-validity constraints, values read/written by shared variable accesses are also recorded.

Run Predictor: The run predictor consists of several components: null-WR pair extractor,

2http://jakarta.apache.org/bcel

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS43

segment generator, logical constraint and planning encoder/solver, and run extractor. The

null-WR pair extractor generates a set of null-WR pairs from the observed trace by the static

lock analysis described in Section 2.3.1. The segment generator component, for each null-

WR pair α = (e, f), isolates a part of the observed trace π that is relevant to α as described in

Section 2.3.2 and passes it to the logical constraint or planning encoder/solver.

Given a null-WR pair and the relevant segment, the logical constraint encoder/solver (as

shown in Figure 2.5), first, produces a set of constraints according to the encoding presented

in Section 2.4. Then, it utilizes the Z3 [9] SMT solver to find a solution. Any model found

by Z3 represents a partial run. The run extractor component generates a run by attaching the

partial run generated based on the model returned by Z3 to the prefix generated by the segment

generator. When Z3 cannot find a solution, the logical constraint encoder/solver iteratively

weakens the constraints according to the relaxation method proposed in Section 2.4.2 and calls

Z3 until a solution is found or a threshold is reached.

Figure 2.6 shows the planning encoder/solver. Given a null-WR pair and the relevant seg-

ment, the planning encoder/solver, first, uses the segment to generate a planning problem en-

coding the maximal causal model as discussed in Section 2.5.2. Then, null-WR pair is encoded

as a temporally extended goal. The planning domain and the temporally extended goal are

then compiled into a classical planning problem according to the algorithm proposed in Sec-

tion 2.5.2. To find a plan, one can use a variety of plan generation algorithms. Here we use FF,

which is a domain independent planning system. FF is complete in that if a planning goal is

reachable, FF is guaranteed to find it.

Scheduler: The scheduler is implemented using BCEL as well; the scheduling algorithm is

instrumented into Java classes using bytecode transformations, so that the program interacts

with the scheduler when it is executing an action regarding shared variable accesses or syn-

chronization events. The scheduler, at each point, looks at the predicted run, and directs the

appropriate thread to perform a sequence of n steps. The communication between the sched-

uler and threads is implemented using wait-notify synchronization which allows us to have a

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS44

Figure 2.6: Planning encoder/solver component in run prediction.

finely orchestrated scheduling process.

2.6.2 Experiments

We evaluate the effectiveness and efficiency of our null-pointer dereference prediction tech-

nique by subjecting EXCEPTIONULL to a benchmark suite of 13 concurrent programs, against

several test cases and input parameters. We investigate the effects of the static pruning and

relaxed prediction discussed in Sections 2.3.2 and 2.4.2, respectively. Finally, we evaluate uti-

lizing planning techniques in null-pointer dereference prediction (as discussed in Section 2.5).

Benchmarks: The benchmarks are all concurrent Java programs that use synchronized

blocks and methods as means of synchronization. They include RayTracer from the Java

Grande multi-threaded benchmarks3, elevator from ETH [88], StringBuffer, Vector,

Stack, and HashSet from Java libraries, Pool (3 releases) and StaticBucketMap from the

Apache Commons Project4, Apache FtpServer5, Hedc6, and Weblech7. The elevator

program simulates multiple lifts in a building, RayTracer renders a frame of an arrangement

of spheres from a given view point, Pool is an object pooling API in the Apache Commons

3http://www.javagrande.org/
4http://commons.apache.org
5http://mina.apache.org/ftpserver
6http://www.hedc.ethz.ch
7http://weblech.sourceforge.net

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS45

Monitoring Prediction Scheduling

Pr
og

ra
m

(L
O

C
)

In
pu

t

B
as

e

N
um

.o
fT

hr
ea

ds

N
um

.o
f

Sh
ar

ed
V

ar
ia

bl
es

N
um

.o
fL

oc
ks

N
um

.o
fP

ot
en

tia
l

In
te

rl
ea

vi
ng

Po
in

ts

Ti
m

e
to

M
on

ito
r

N
um

.o
fn

ul
l-

W
R

Pa
ir

s

N
um

.o
fP

re
ci

se
ly

Pr
ed

ic
te

d
R

un
s

A
dd

iti
on

al
Pr

ed
ic

te
d

R
un

s
by

R
el

ax
at

io
n

N
um

.o
fF

ea
si

bl
e

Pr
ed

ic
tio

ns

A
ve

ra
ge

Ti
m

e
pe

r

Pr
ed

ic
te

d
R

un

To
ta

lT
im

e

N
ul

lP
oi

nt
er

D
er

ef
.b

y
Pr

ec
is

e

Pr
ed

ic
tio

n

A
dd

iti
on

al
N

ul
l-

Po
in

te
r

D
er

ef
.b

y
R

el
ax

at
io

n

Elevator

(566)

Data 7.3s 3 116 8 14K 7.4s 0 - - - - 7.9s 0 0

Data2 7.3s 5 168 8 30K 7.4s 0 - - - - 8.9s 0 0

Data3 19.2s 5 723 50 150K 19.0s 0 - - - - 58.5s 0 0

RayTracer

(1.5K)

A-10 5.0s 10 106 10 648 5.0s 9 9 - 9 5.6s 50.5s 1∗ 0

A-20 3.6s 20 196 20 1.7K 4.4s 19 19 - 19 6.7s 2m15s 1∗ 0

B-10 42.4s 10 106 10 648 42.5s 9 9 - 9 42.7s 6m24s 1∗ 0

Pool 1.2

(5.8K)

PT1 <1s 4 28 1 98 <1s 3 2 1 3 <1s 1.6s 2 0

PT2 <1s 4 29 1 267 <1s 3 0 0 - - 8.8s 0 0

PT3 <1s 4 20 3 180 <1s 26 0 23 16 1.2s 27.0s 0 3

PT4 <1s 4 24 3 360 <1s 32 2 21 15 2.5s 57.8s 0 1

Pool 1.3

(7K)

PT1 <1s 4 30 1 100 <1s 3 0 3 3 <1s 2.6s 0 0

PT2 <1s 4 31 1 271 <1s 3 0 0 - - 9.8s 0 0

PT3 <1s 4 20 3 204 <1s 35 0 30 19 1.4s 42.9s 0 0

PT4 <1s 4 23 3 422 <1s 62 1 48 29 2.2s 1m49s 0 1

Pool 1.5

(7.2K)

PT1 <1s 4 33 2 124 <1s 2 0 1 1 1.5s 1.5s 0 0

PT2 <1s 4 34 2 306 <1s 5 0 1 0 10.5s 10.5s 0 0

PT3 <1s 4 15 2 108 <1s 3 0 0 - - 4.1s 0 0

PT4 <1s 4 18 2 242 <1s 18 1 7 8 3.4s 27.4s 0 1

SBucketMap

(750)

SMT <1s 4 123 19 892 <1s 2 2 - 2 <1s 1.3s 1 0

Vector

(1.3K)

VT1 <1s 4 44 2 370 <1s 21 11 10 21 <1s 14.3s 2 0

VT2 <1s 4 34 2 536 <1s 31 21 10 31 1.1s 33.0s 1 0

VT3 <1s 4 34 2 443 <1s 32 22 10 32 <1s 22.1s 1 0

VT4 <1s 4 29 2 517 <1s 30 0 30 30 2s 59.4s 0 1∗

VT5 <1s 4 29 2 505 <1s 85 1 84 82 2s 2m57s 0 1∗

Stack

(1.4K)

ST1 <1s 4 29 2 205 <1s 11 6 5 11 <1s 5.5s 2 0

ST2 <1s 4 24 2 251 <1s 16 11 5 15 <1s 10.9s 1 0

ST3 <1s 4 24 2 248 <1s 17 12 5 17 <1s 10.3s 1 0

ST4 <1s 4 29 2 515 <1s 30 0 30 30 1.8s 53.2s 0 1∗

ST5 <1s 4 29 2 509 <1s 85 1 84 83 2.0s 2m51s 0 1∗

HashSet

(1.3K)

HT1 <1s 4 76 1 432 <1s 7 7 - 7 <1s 3.2s 1 0

HT2 <1s 4 54 1 295 <1s 0 - - - - <1s 0 0

StringBuffer

(1.4K)

SBT <1s 3 16 3 80 <1s 2 2 - 2 <1s 1.3s 1+ 0

Apache

FtpServer

(22K)

LGN 1m2s 4 112 4 582 60s 116 78 32 65 1m13s 2h14m46s 9 3

Hedc (30K) Std 1.7s 7 110 6 602 1.74s 18 9 1 10 11.7s 1m57s 1 0

Weblech

v.0.0.3

(35K)

Std 4.9s 3 153 3 1.6K 4.92s 55 10 29 30 16.26s 10m34s 1 1@

Total Number of Errors 27 14

Table 2.1: Experimental results for precise/relaxed prediction using logical constraint encoder/-

solver. Symbols ∗, +, and @ represent test harness failure, array-out-of-bound exception, and

unexpected behavior, respectively. All other errors are null-pointer dereference exceptions.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS46

suite, StaticBucketMap is a thread-safe implementation of the Java Map Interface, Apache

FtpServer is a FTP server by Apache, and Vector, Stack, HashSet and StringBuffer

are Java libraries that respectively implement a concurrent vector, stack, HashSet and String-

Buffer data structures. Hedc is a Web crawler application and Weblech is a websites download

tool.

Table 2.1 illustrates the experimental results for null-pointer dereference prediction using

the logical constraint encoder/solver. It provides information about monitoring, run prediction,

and scheduling phases. In the monitoring phase, the number of threads, shared variables, locks,

the number of potential interleaving points (i.e., number of global events), and the time taken

for monitoring are reported. For the prediction phase, we report the number of null-WR pairs in

the observed run, the number of precisely predicted runs, and the additional number of runs

predicted by relaxation (when there is no precisely predicted run for a null read-write pair). In

the scheduling phase, we report the total number of feasible (i.e., could be scheduled) predicted

runs. Finally, we report the average time for prediction and rescheduling of each run, the total

time taken to complete the tests (for all phases), and also the number of errors found using the

precise and relaxed prediction.

Observations: Comparing the number of null-WR pairs with the number of precisely predicted

runs, we can see that our precise prediction technique performs very well in practice; i.e., for

most of the benchmarks, the precise prediction is able to generate feasible runs for many of the

null-WR pairs . Furthermore, we could find 27 errors in total in our set of benchmarks using

the precise prediction technique that also proves the effectiveness of the precise prediction.

According to the number of additional runs predicted by relaxation, we conclude that relax-

ation technique works extremely well; The relaxation method could predict lots of runs for the

null-WR pairs for which the precise prediction technique cannot find any solution. Comparing

the number of feasible predictions and number of precisely predicted runs, we can see that a

large number of runs predicted by the relaxed prediction technique were feasible. Furthermore,

we could find 14 additional errors by the relaxed prediction technique.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS47

 0.1

 1

 10

 100

 1000

 10000

RayTracer

Pool 1.2

Pool 1.3

Pool 1.5

SBuckerMap

Vector

Stack
HashSet

StringBuffer

FtpServer

Hedc
Weblech

Ti
m

e
(S

ec
on

ds
)

Prediction Time (w/o Pruning)
Prediction Time (w Pruning)

Figure 2.7: Prediction times with/without pruning in log scale.

In our experiments, the errors manifested in the form of raised exceptions in most of the pro-

grams. In Weblech, in addition to a null-pointer dereference, an unwanted behavior occurred

(the user is asked to push a stop button even after the website is downloaded completely, result-

ing in non-termination!). RayTracer has a built-in validation test which was failed in some of

the predicted runs. For some of the test cases of Vector and Stack the output produced was

not the one expected. In Table 2.1, exceptions raised in different parts of the code are counted

as separate errors. For example, the 9 exceptions in FtpServer are raised in 7 different func-

tions and at different locations inside the functions, and involve null-pointer dereferences on 5

different variables.

In general, we can see that EXCEPTIONULL performs considerably well, predicting a large

number of feasible program runs leading to null-pointer dereferences. In total, it finds about

40 executions with null-pointer dereferences in the benchmarks. All the errors are completely

reproducible deterministically using the scheduler. Furthermore, despite the use of fairly so-

phisticated static analysis and logic-solvers, the time taken for prediction is very reasonable.

The effect of pruning: Figure 2.7 illustrates the substantial impact of our pruning algorithm

(presented in Section 2.3.2) in reducing prediction time. It presents prediction time with and

without using the pruning algorithm. Note that the histogram is on a logarithmic scale. For ex-

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS48

ample, in the case of Weblech, the prediction algorithm is about 16 times faster with pruning.

Furthermore, all errors found without the pruning were found on the pruned runs, showing that

the pruning did not affect the quality of error-finding on our benchmarks.

Effectiveness and efficiency of planning encoder/solver: To evaluate the planning encoding

of predicting null-pointer dereferences (presented in Section 2.5.2), we apply EXCEPTIONULL

using the planning encoder/solver on some of the benchmarks. As mentioned before, the en-

coding is based on the maximal causal model and can only support precise prediction. There-

fore, from the Java benchmarks, we pick ones for which relaxed prediction does not have any

effect regarding the number of errors found. In Table 2.2, in addition to the information about

the observed runs, i.e., number of threads, shared variables, locks and events, we provide the

number of null-WR pairs, number of precisely predicted runs, average time per prediction and

number of null-pointer dereferences found by the predicted runs for both logical constraint and

planning encodings.

Although we have used FF (which is a heuristic-based planner) in our experiments, one

can observe that the number of predicted runs is not affected by the heuristics used in FF.

This is because FF is complete in that if a planning goal is reachable, FF is guaranteed to find

it. Therefore, according to the number of predicted runs logical constraint encoder/solver and

planning encoder/solver are equal to each other. As a result, using the planning encoder/solver

we could find all of the errors found by using the logical constraint encoder/solver; in fact, the

errors found in both approaches are the same.

Another observation is that the planning encoder/solver is much more faster than the logi-

cal constraint encoder/solver. The average time per prediction is 0.01 second for FF which is

negligible. This implies that the heuristic-based search algorithm embedded in FF can perform

very well on the planning problems obtained through the encoding outlined in Section 2.5.2.

This suggests that maybe other test generation techniques also can employ a planning encoder/-

solver to speed up and benefit from the advance search algorithms embedded in planners.

As noted previously, the novelty and effectiveness of the planning encoding is in the con-

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS49

Run Information Prediction

Pr
og

ra
m

(L
O

C
)

In
pu

t

N
um

.o
fT

hr
ea

ds

N
um

.o
fS

ha
re

d
V

ar
s

N
um

.o
fL

oc
ks

N
um

.o
fP

ot
en

tia
l

In
te

rl
ea

vi
ng

Po
in

ts

N
um

.o
fn

ul
l-

W
R

Pa
ir

s

N
um

.o
fP

re
ci

se
ly

Pr
ed

ic
te

d
R

un
s

by
F

F

N
um

.o
fP

re
ci

se
ly

Pr
ed

ic
te

d
R

un
s

by
SM

T

A
ve

ra
ge

Ti
m

e
pe

r

Pr
ed

ic
te

d
R

un
by

F
F

(s
)

A
ve

ra
ge

Ti
m

e
pe

r

Pr
ed

ic
te

d
R

un
by

SM
T

(s
)

N
ul

lP
oi

nt
er

D
er

ef
.

by
Pr

ec
is

e
Pr

ed
ic

tio
n

by
F

F

N
ul

lP
oi

nt
er

D
er

ef
.

by
Pr

ec
is

e
Pr

ed
ic

tio
n

by
SM

T

Vector

(1.3K)

VT1 4 44 2 370 21 11 11 0.01 0.33 2 2

VT2 4 34 2 536 31 21 21 0.01 0.39 1 1

VT3 4 34 2 443 32 22 22 0.01 0.34 1 1

Stack

(1.4K)

ST1 4 29 2 205 11 6 6 0.01 0.63 2 2

ST2 4 24 2 251 16 11 11 0.01 0.75 1 1

ST3 4 24 2 248 17 12 12 0.01 0.65 1 1

SBucketMap

(750)
BMT 4 123 19 892 2 2 2 0.01 0.25 1 1

Pool 1.2

(5.8K)

PT1 4 28 1 98 3 2 2 <0.01 0.27 2 2

PT2 4 29 1 267 0 0 0 - - - -

PT4 4 24 3 360 32 2 2 <0.01 1.5 0 0

Pool 1.3

(7K)

PT1 4 30 1 100 3 0 0 - - - -

PT2 4 31 1 271 3 0 0 - - - -

PT4 4 23 3 422 62 1 1 <0.01 1.33 0 0

HashSet

(1.3K)

HS1 4 76 1 432 7 7 7 0.01 0.19 1 1

HS2 4 65 1 295 0 0 0 - - - -

StringBuffer

(1.4K)
SBT 3 16 3 80 2 2 2 <0.01 0.15 1 1

Elevator

(566)
Data 3 116 8 14K 0 - - - - - -

Table 2.2: Experimental results for precise prediction using planning encoder/solver.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS50

Data Races Atomicity Violations

Program

(LOC)
Input

Num. of

Access Patterns

Num. of

Predicted Runs

Avg. Time per

Predicted Run

by FF (s)

Num. of

Access Patterns

Num. of

Predicted Runs

Avg.Time per

Predicted Run

by FF (s)

Vector

(1.3K)

VT1 0 - - 0 - -

VT2 0 - - 11 11 0.01

VT3 0 - - 4 4 0.01

Stack

(1.4K)

ST1 0 - - 0 - -

ST2 0 - - 22 22 0.01

ST3 0 - - 8 8 0.01

SBucketMap

(750)
BMT 1 1 0.02 2 2 0.01

Pool 1.2

(5.8K)

PT1 2 2 <0.01 1 1 <0.01

PT2 7 2 <0.01 15 10 <0.01

PT4 7 1 <0.01 57 18 <0.01

Pool 1.3

(7K)

PT1 0 - - 0 - -

PT2 0 - - 12 10 <0.01

PT4 0 - - 127 10 <0.01

HashSet

(1.3K)
HT1 20 20 0.01 3 3 0.01

StringBuffer

(1.4K)
SBT 0 - - 1 1 <0.01

Elevator

(566)
Data 0 - - 4 0 -

Table 2.3: Experimental results for predicting data races and atomicity violations using plan-

ning encoder/solver.

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS51

ceptualization and realization of the test generation task as an AI automated planning task

where the null reads patterns are characterized as temporally extended goals. Nevertheless,

our conceptualization of the test generation task allows for predicting runs with other violation

patterns as well. This ability to elegantly and effectively deal with arbitrary violation patterns

is a strength of the approach. We investigated the applicability of this test generation technique

for predicting data races and atomicity violations as well.

We used PENELOPE [82] to extract a set of data race and atomicity violation patterns from

the observed runs. Each data race pattern is a tuple (e, f) where e and f are accesses to the

same shared variable in different threads which conflict with each other (i.e., least one of them

is a write access). Each atomicity violation pattern is a tuple (e1, e2, f) where e1, e2 and f are

accesses to the same shared variable, e1 and e2 are in one thread and f is in another thread,

and f conflicts with both e1 and e2. For each data race pattern (e, f), the planning goal is to

perform the actions corresponding to e and f , back to back. For each atomicity violation pattern

(e1, e2, f) the planning goal is to perform the corresponding action of f after the corresponding

action of e1 (and before the corresponding action of e2) is performed.

Table 2.3 shows the experimental results for predicting data races and atomicity violations

using planning encoder/solver. We report the number of access patterns, number of predicted

runs, and average time per predicted run by FF for both data races and atomicity violations.

According to the experiments, the planning encoder/solver was able to predict runs for most

of the access patterns pretty fast (i.e., average 0.01 sec.). This confirms the applicability of the

planning techniques in predicting runs with arbitrary violation patterns.

Conclusion: Our experiments showed that our prediction technique in predicting null-pointer

dereferences is very effective in practice. Using this technique, we could find 41 bugs in our

set of benchmarks. We showed that our relaxation technique is very useful when there is no

precise solution for the prediction problem. According to the relaxation technique, we could

predict runs (actually many of them were feasible runs) that resulted in finding 13 additional

bugs. We also showed that our pruning technique made the prediction process up to 16 times

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS52

faster for some of the benchmarks without affecting the quality of bug-finding. We compared

the logical constraints and AI planning encoding approaches for the precise prediction. Our

experiments showed that the planning encoder/solver is much more faster than the logical con-

straints encoder/solver. Finally, we showed that our prediction technique is general and can be

applied in predicting runs with other violation patterns.

2.7 Related Work

Prediction techniques use heuristics (e.g., atomicity violations, data races, and assertion viola-

tions) to reduce the interleaving exploration space under fixed inputs. Similar to our prediction

technique for finding null-pointer dereferences, several prediction techniques work at shared

communication level, i.e., accesses to shared variables and synchronization events. These

techniques either enhance a lock-based analysis [17, 82, 77, 78, 35] or a graph-based anal-

ysis [93, 92] for prediction. For example, PENELOPE [17, 82] is a testing tool for predicting

atomicity violations in concurrent program. It works at shared communication level and uses a

lock-based analysis that guarantees all of the predicted runs respect the semantics of locking.

However, since data-flow is ignored in the analysis, the predicted runs are not guaranteed to be

feasible. Other lock-based techniques [77, 78, 35] follow a more restrictive approach in inter-

leaving exploration to guarantee soundness; in the predicted runs each read should be matched

with exactly the same write as it was matched in the observed run. Techniques that utilize a

graph-based analysis [93, 92], on the other hand, build a dependency graph based on the events

in the observed run to identify atomicity violations. These techniques are even more restrictive

than lock-based techniques according to the set of explored interleavings since in addition to

the constraint that each read should be matched with exactly the same write as it did in the

observed run, the predicted runs should preserve the order of lock blocks as in the observed

run. These restrictions guarantee soundness for the prediction technique. The maximal causal

model (MCM) [74] is another technique working at the shared communication level that targets

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS53

sound prediction. It is the maximal precise prediction technique one can achieve at the shared

communication level. We discussed this technique in this chapter in detail. It has been used by

Said et al. [68] for finding data race witnesses. Our null-pointer prediction technique utilizes

MCM to guarantee soundness.

There are also prediction techniques [90, 89] that works at the statement level. These

techniques observe a run and symbolically encode every single instruction executed (local

computation as well as global computation) in the observed run and use a sound symbolic

analysis to predict atomicity violations and assertion violations. These techniques have too big

an overhead to scale to large executions.

A more liberal notion of generalized dynamic analysis of a single run has also been studied

in a series of papers by Chen et al. [7, 6]. JPREDICTOR [7] offers a predictive runtime analysis

that uses sliced causality [6] to exclude the irrelevant causal dependencies from an observed run

and then exhaustively investigates all of the interleavings consistent with the sliced causality to

detect potential errors.

CTRIGGER [59] is another testing tool that targets finding atomicity violations in concur-

rent programs. It first extracts a set of atomicity violation patterns from an observed run. Then,

for each pattern, it instruments the program code by inserting some synchronization around the

accesses corresponding to the pattern, with the aim of increasing the probability of realizing

the violation pattern in the execution of the instrumented program. However, the atomicity

violation patterns are not guaranteed to be realized in the instrumented program, i.e., it is not

sound.

Another closely related work is CONMEM [96], where the authors target a variety of mem-

ory errors in testing concurrent programs, including null-pointer dereferences, but the predic-

tion algorithms are much weaker and quite inaccurate compared to our robust prediction tech-

niques; their prediction analysis is mostly based on the synchronization events present in an

observed run (ignoring the flow of data among the threads) and hence is not sound. Therefore,

they had to build a validator to automatically prune false positives by enforcing the predicted

CHAPTER 2. PREDICTING NULL-POINTER DEREFERENCES IN CONCURRENT PROGRAMS54

interleavings.

2.8 Summary

In this chapter, we introduced a new pattern for interleaving selection that targets null-pointer

dereferences in concurrent programs. We utilized a carefully chosen set of techniques for

sound and scalable prediction. For the sake of scalability, our prediction is based on an approx-

imation that ignores local computation entirely. We also proposed a static pruning technique

that reduces the size of the prediction problem drastically. We exploited the maximal causal

model [74] that guarantees sound prediction at shared communication level. For cases where

there is no sound solution, we proposed a relaxation method at the expense of losing soundness

guarantees. However, our experiments showed that the majority of the runs predicted by the re-

laxation method are feasible. We developed two different encodings for our prediction problem

based on logical constraints and AI planning. The former encoding allows us to use state-of-

the-art SMT solvers to search for a solution. The latter encoding allows us to benefit from the

compact encoding and advanced heuristic-based search algorithms embedded in the planners.

According to our experiments, both approaches are equal regarding the effectiveness in bug

finding. However, the planning approach showed to be much more faster than the logical con-

straints approach. We implemented our prediction technique in a tool that predicts null-pointer

dereferences in Java multi-threaded programs. We performed some experiments, based on our

tool, that proved the efficiency and the effectiveness of our null-pointer dereference prediction

technique.

Chapter 3

Test Generation Based on

Under-approximations of Programs

Program slices built from concurrent program executions, referred to as concurrent trace pro-

grams, have been used as program under-approximations to find bugs in the corresponding pro-

grams [89, 77, 80, 79]. Concurrent trace programs encode program runs as a set of thread-local

computations and a set of inter-thread communications on shared variables or synchronization

operations. Some techniques [80, 79] subject concurrent trace programs (instead of the whole

program) to input/interleaving exploration for finding assertion violations. However, none of

these techniques target test generation (i.e., input/schedule generation) for exploring different

program behaviours. Rather, they focus on finding assertion violations corresponding to as-

sertions that present in the approximation model. Furthermore, in all of these techniques, the

approximation model is fixed at the beginning, and none of these techniques consider program

behaviours that are beyond the approximation model.

Here, we also utilize concurrent trace programs as under-approximations of concurrent

programs. However, our main goals are (i) to use the approximation model as a basis for test

generation, and (ii) to generate tests that increase code coverage in the concurrent program.

More specifically, test generation targets covering static branches in the program that have not

55

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS56

been covered by previous tests. Note that in an active testing framework [25], many runtime

bugs can be encoded as branches. Therefore, by targeting branch coverage, we can implicitly

aim for catching those bugs.

We develop a heuristic, based on exploiting interesting def-use pairs, where a definition

(def) represents a write to a shared variable in some thread and a use represents a read from

that variable in some other thread, that would lead to covering a previously uncovered branch.

We exploit the fact that it is easy to generate a set of different test runs (e.g., by executing

the program with different input values) without any significant effort. By observing already

available test runs for various writes to shared variables, we are then able to select segments

of previously observed runs, and insert them (not necessarily atomically) into other runs to

exploit previously unseen def-use pairs leading to covering previously uncovered branches of

the program. In the following, we call such segments containing a write to a shared variable

interloper segments.

Given this intuition, we have to address the following challenges: (1) How to generate an

interesting set of test inputs and thread schedules to start with, if none is provided, (2) How to

effectively search for feasible interloper segments, and (3) How to generate inputs and feasible

schedules corresponding to inserting an interloper segment into another run leading to covering

a previously uncovered branch.

To address the first question, we rely on sequential test generation techniques; i.e., we

subject each thread to sequential testing individually, first. We utilize the fact that state-of-

the-art sequential test generation techniques are generally able to quickly cover a large part of

the program in terms of branches in individual threads. Indeed, the branches of a concurrent

program that are not covered using sequential testing techniques alone may require interesting

interactions between the threads of the concurrent program that are worth further exploration.

To address the second question, we develop a static Multi-Trace Analysis (MTA) technique.

In our MTA technique, we advance the symbolic predictive analysis technique [89, 77] (which

considers fixed inputs) with symbolic inputs to be able to generate input values. Furthermore,

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS57

1 public void Thread1(){

2 x = 1;

3 if (x > 1)

4 error();

5 }

6 public void Thread2(int input){

7 x = 0;

8 if(input > 0)

9 x = input;

10 y = x;

11 }

Figure 3.1: A concurrent program with a reachable error state.

unlike symbolic predictive analysis, our MTA exploits information in multiple program runs.

Finally, to address the third question, we generate an appropriate logical constraint system,

whose model implies a set of input values and a schedule, and use SMT solvers to search for

solutions.

This chapter is based on our publication on MTA technique (i.e., [66]). We elaborate the

MTA technique in detail and evaluate it experimentally.

3.1 Motivating Example

Consider the simple concurrent program consisting of two threads that call Thread1 and

Thread2 in Figure 3.1, respectively. Variable x is shared among the threads and input is

the input of the program. The error in Thread1 is not reachable (i.e., the if-branch is not

coverable) when the threads are executed sequentially back to back. However, the error will

become reachable when input ≥ 2 and the read of x at line 3 in Thread1 reads the value

written by the write in other thread at line 9. Our goal is to generate a test (i.e., input values

plus a schedule) such that the execution of the program with the generated inputs according to

the schedule gets to the error state.

Suppose that we subject each thread to sequential test generation to increase code coverage

as much as possible in individual threads. Sequential test generation, will not do much for

Thread1 since its behavior does not depend on the inputs of the program. However, for

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS58

Figure 3.2: Test generation based on MTA for the program in Figure 3.1.

Thread2, sequential test generation will generate two different values for input, one≤ 0 and

one > 0, corresponding to skipping and covering the if-branch at line 8, respectively. Without

loss of generality, suppose that 0 and 1 are the two values generated for input.

Now, we execute the concurrent program with the generated inputs and get two concurrent

runs Run1 and Run2 depicted in Figure 3.2. One can see that the if-branch in Thread1

(which leads to the error) is skipped in both of these runs since the read of x in the branch

condition always reads the value written to x locally at line 2. However, we observe that in

Run2 there is a write to x by the other thread that could be a candidate for providing a value for

the read of x in the branch condition (overwriting the value written at line 2). Therefore, we

select an appropriate interloper segment from Run2, containing the candidate write to variable

x (as shown in Figure 3.2), and insert it between the write to x at line 2 and the read from x at

line 3 in Run1 (shown by an arrow in Figure 3.2) and search for input values and a schedule

that would result in covering the if-branch at line 8 (if possible). Figure 3.2, on the right

side, depicts a generated test that results in covering the if-branch at line 8 and hence leads to

the error state. Note that the error state cannot be reached by applying prediction techniques

(which work on fixed inputs) on Run1 or Run2.

Similar to symbolic prediction [89, 90], we symbolically encode the set of all feasible runs,

where the interloper segment is inserted in Run1 and the if-branch at line 3 is taken, as a set

of logical constraints. Unlike symbolic prediction which works on fixed inputs, we consider

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS59

symbolic values for inputs to be able to do input generation. In this example, the interloper

segment is inserted atomically between the write to x and the read from x in Run1. How-

ever, in general, these two events might be far from each other and in that case, the generated

constraints encode all feasible runs in which the statements in the interloper segment are inter-

leaved with the statements in Run1 appearing between the corresponding write and read. We

use the state-of-the-art SMT solvers to find a solution.

3.2 Preliminaries

In this section, we first formally define symbolic traces and concurrent trace programs which

form the basis for our test generation technique. Then, we discuss how a concurrent trace pro-

gram, obtained from a single execution of a concurrent program, is used by symbolic prediction

techniques to predict bugs in the concurrent program. Finally, we provide a brief overview of

concolic testing for sequential programs.

3.2.1 Symbolic Traces

In Section 2.2.1, we defined the notion of a global trace as the sequence of events correspond-

ing to accesses to shared variables and synchronization events. In this section, we define the

notion of a symbolic trace that contains information about both global and local computation

in program executions.

For a concurrent program, let T= {T1, T2, ...} represent the set of thread identifiers, and SV

be the set of shared variables. Each thread Ti has a finite set of local variables LVi, and can

access the set of variables in Vi = SV ∪ LVi during its execution. Each thread Ti executes a

set of trace statements.

Definition 3.2.1 (Trace Statement). A trace statement is a tuple (sId, stmt) where sId is a

unique identifier (e.g., a combination of a thread identifier and location in the program), and

stmt is one of the following forms:

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS60

• (assume(c), asgn) is the atomic guarded assignment, where asgn is a set of assignments,

each of the form v := exp, where v ∈ Vi is a variable and exp is an expression over Vi.

assume(c) means the conditional expression c over Vi must be true for the assignments

in asgn to execute.

• assert(c) is the assertion statement. The conditional expression c over Vi must be true

when the statement is executed; otherwise, an error is raised.

The guarded assignment (assume(c), asgn) may have the following variants: (1) when

c = true, it can represent normal assignments; (2) when the assignment set is empty, assume(c)

itself can represent the then-branch of an if(c)-statement, while assume(¬c) can represent

the else-branch; and (3) with both guard and assignments, it can represent an atomic check-

and-set, which is the foundation for synchronization primitives. In particular, it can precisely

capture the semantics of all synchronization primitives in the standard PThreads library. For

example, acquiring lock lk in thread Ti is modeled as (assume(lk = 0), {lk := Ti}).

Let stmtIds represent the set of trace statement identifiers in the program. We refer to the

execution of trace statements as events. An event e is a tuple (tid, loc), where tid ∈ T is a

thread index, loc = (sId, instId) represents the location of thread Ttid where sId ∈ stmtIds

is the identifier of the statement and instId represents the thread-local instance identifier of the

trace statement with statement identifier sId; i.e., if a trace statement is executed again inside

a loop, a new event will be generated at run-time with the same sId and a new instId. Let EV

denote the set of all possible events.

Definition 3.2.2 (Symbolic Traces). A symbolic trace of a program is a finite sequence ρ ∈

EV ∗.

In this chapter, whenever we refer to traces, we mean symbolic traces.

Definition 3.2.3 (Global Locations in Symbolic Traces). Let ρ be a symbolic trace. The global

location at ρ[j] is defined as a tuple (loc1, loc2, . . .) where loci is the location of thread Ti at

ρ[j], i.e., the location of Ti in the last event of thread Ti in ρ before ρ[j].

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS61

A global location at a specific point in a symbolic trace defines the location of each thread

at that point.

3.2.2 Concurrent Trace Program (CTP)

Given a symbolic trace ρ, we build a concurrent program where each thread Ti consists of

a single path of execution (specifically the path it took in ρ). We refer to this program as a

concurrent trace program (or CTP). The semantics of CTPs is defined using state transition

systems.

Let V =
⋃k
i=1{LVi} ∪ SV , be the set of variables and V al be a set of values. A state is a

map s : V → V al assigning a value to each variable. We use s[v] and s[exp] to denote variable

and expression values in state s, respectively.

A state transition s e−→ s′, where s, s′ are states and e = (Ti, (sId, instId)) is an event,

exists iff one of these conditions holds:

• sId refers to a statement of form (assume(c), asgn), s[c] is true, and for each assignment

v := exp in asgn, s′[v] = s[exp] holds; s and s′ agree on other variables. Note that if

s[c] is false, the transition does not exist, i.e., the execution is blocked.

• sId refers to a statement of form assert(c) and s[c] is true. When s[c] is false, an attempt

to execute event e raises an error.

Now, we formally define concurrent trace programs obtained from symbolic traces.

Definition 3.2.4. Let ρ = e1, . . . , en be a symbolic trace of a concurrent program. A concurrent

trace program of ρ is a partially ordered set CTPρ = (E,v) such that E = {e | e is in ρ}

is a set of events, and v is a partial order, where for any ei, ej ∈ E, we have ei v ej iff

tid(ei) = tid(ej) and i < j (in ρ, event ei appears before ej).

A concurrent trace program CTPρ orders events from the same thread by their execution

order in ρ; events from different threads are not explicitly ordered. Let ρ′ = e′1 . . . e
′
n be a

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS62

linearization of CTPρ. ρ′ is said to be a feasible linearization iff there exist states s0, . . . , sn

such that, s0 is the initial state of the program and for all i = 1, . . . , n there exists a transition

si−1
e′i−→ si.

3.2.3 Predicting Bugs Using CTPs

CTPs have been used to predict bugs in concurrent programs [90, 89]: Given a symbolic trace ρ,

a model CTPρ is derived to symbolically check all its feasible linearizations. For this, a logical

constraint formula ΦCTPρ is created such that ΦCTPρ is satisfiable iff there exists a feasible

linearization of CTPρ. To generate ΦCTPρ , CTPρ is first transformed into a concurrent static

single assignment (CSSA) [45].

CSSA Encoding. The CSSA form has the property that each variable is defined exactly once.

A definition of variable v is a trace statement that modifies v, and a use is a trace statement

where v appears in an expression. Unlike in the classic sequential SSA form, we do not need to

add φ-functions to model the confluence of multiple if-else branches, because in CTPρ, each

thread has a single control path. Throughout the transformation, trace statements in CTPρ are

changed as follows:

1. Create unique names for local/shared variables in their definitions.

2. For each use of a local variable v ∈ LVi, replace v with the most recent (unique) defini-

tion v′.

3. For each use of a shared variable v ∈ SV , create a unique name v′ and add the definition

v′ = π(v1, . . . , vl) where each vi, 1 ≤ i ≤ l, is either the most recent definition of v in

the same thread, or a definition of v in another concurrent thread. Then, replace v with

the new definition v′.

From CSSA to ΦCTPρ . Each event e is assigned a fresh integer variable O(e) denoting its

execution time. Let HB(e, e′) denote that e happens before e′ which is encoded as a logical

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS63

constraint: O(e) < O(e′). A path condition g(e) is defined for each event e inCTPρ as follows

such that e can be executed iff g(e) is true:

• If e is the first event of a thread in the CTPρ then let g(e) := true.

• Otherwise, let e1, . . . , ek be the sequence of thread-local events preceding e, and gin :=∧k
i=1 g(ei). Then,

g(e) =


c ∧ gin if the statement of e contains assume(c)

gin otherwise

Formula ΦCTPρ consists of three main sub-formulas: ΦCTPρ = ΦPO
CTPρ

∧ ΦST
CTPρ

∧ Φπ
CTPρ

where ΦPO
CTPρ

, ΦST
CTPρ

, and Φπ
CTPρ

encode program order, statements, and π-Functions, respec-

tively, and are constructed as following:

1. Let ΦPO
CTPρ

= ΦST
CTPρ

= Φπ
CTPρ

= true, initially.

2. Program Order: For each event e in CTPρ with a thread-local preceding event e′, let

ΦPO
CTPρ

:= ΦPO
CTPρ

∧HB(e′, e).

3. Statements: For each event e in CTPρ, if the corresponding statement of e has lval :=

exp, let ΦST
CTPρ

:= ΦST
CTPρ

∧ (lval = exp). If e contains assume(c), let ΦST
CTPρ

:= ΦST
CTPρ

∧

(g(e)→ c).

4. π-Functions: For each w = π(v1, . . . , vk), defined in e, suppose that ei is the event that

defines vi. Let Φπ
CTPρ

:= Φπ
CTPρ

∧
∨k
i=1[(w = vi) ∧ g(ei) ∧HB(ei, e) ∧∧k

j=1,j 6=i(HB(ej, ei) ∨HB(e, ej))].

Intuitively, the π-function evaluates to vi iff it chooses the ith definition in the π-set.

Having chosen vi, all other definitions occur before ei or after the use of vi.

Checking for Bugs. Formula ΦCTPρ encodes all feasible linearizations of CTPρ. To check for

a specific bug, e.g., an assertion or atomicity violation, another formula Φbug is built such that

ΦCTPρ ∧ Φbug is satisfiable iff there is a linearization of CTPρ which leads to the bug.

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS64

Figure 3.3: Concolic Testing.

3.2.4 Sequential Concolic Testing

Concolic testing is an effective test generation technique for sequential programs [24, 73, 5,

84, 4] for which different coverage criteria have been studied throughout the years. It assumes

that the behavior of a sequential program solely depends on the values of inputs provided by

the external environment, i.e., the program is deterministic. The main idea behind concolic

testing is to use information available in previous executions of the program to generate input

values that drive the execution towards covering uncovered parts of the program. It augments

traditional symbolic execution with concrete execution by falling back upon concrete values

observed during concrete execution to handle non-linear computations or calls to external li-

brary functions, for which no good symbolic representation is available.

As shown in Figure 3.3, concolic testing has three main components: concolic execution

engine, path exploration, and realizability checker. Concolic execution engine executes the

program with a given input vector concolically (i.e., executes the program with concrete and

symbolic input values at the same time) and as a result, generates a symbolic trace that con-

sists of a sequence of path constraints on symbolic inputs (i.e., branch conditions based on

symbolic inputs encountered during execution). It generally fall back upon concrete values to

handle non-linear computations or calls to external library functions. Different coverage cri-

teria have been investigated and employed by concolic testing techniques. For example, path

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS65

coverage targets exploring all possible program execution paths, or control-flow coverage and

its variations such as basic block coverage and explicit branch coverage target code coverage.

These coverage criteria quantify a degree to which the program has been tested.

Given a symbolic trace, the path exploration component then selects one of the branch con-

ditions and negates it (while keeping the previous branch conditions the same). The goal is to

try to diverge from the already observed executions by taking a different side of an encountered

branch. The path exploration component can follow a simple DFS or utilize some heuristics

(e.g., branch statements, overall stack trace, the depth of the branches, and etc.) in selecting

the target branch. Finally, the realizability checker component uses SMT solvers to generate

an input vector (if possible) that would satisfy the new path constraints, with the understanding

that such an input vector is likely to drive the execution of the program towards a different path.

3.3 Overview of Test Generation Using MTA

We target increasing branch coverage in concurrent programs using CTPs as under-approximation

models for programs. To that end, each thread is subjected to sequential concolic testing, first,

to increase branch coverage in individual threads. After each execution, essential information

about the run (i.e., statements executed), current coverage (i.e., covered/skipped branches), and

writes to shared variables in the execution is stored. Upon saturation, multi-trace analysis is

used to generate new test inputs and thread schedules to cover previously uncovered branches.

The intuition behind this approach is that some of the bugs in concurrent programs might

be sequential bugs that do not relate to any specific interleaving. The idea is to catch those bugs

by sequential testing, which is cheaper than concurrent testing, without requiring to consider

the interleaving space. Then, concurrent test generation aims to cover the remaining uncov-

ered branches by exploring the input space and the interleaving space simultaneously to find a

combination that would cause the branch to be taken.

Our MTA works as follows: First, we select a target branch of interest based on the current

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS66

coverage information. Then, we pick a stored run that has been previously observed to come

close to the target branch but skipped it, i.e., the condition of the branch did not hold when

the branch was hit. Suppose that the uncovered branch depends on a set of shared variables

S. Generally, the branch condition may not be in terms of shared variables, but by intra-thread

value tracking, we can obtain S.

Then, we choose candidate interloper segments from the set of so-far stored runs, such that

the interloper segments contains a write to a shared variable in S. Note that these interloper

segments may contain executions of multiple threads. The idea is to select an interloper seg-

ment and insert it (not necessarily atomically) into the runs that came close to the target branch,

such that some of the shared variables on which the uncovered branch depends, are overwritten

by the interloper segment before the branch condition gets evaluated.

We encode all possible interleavings where the interloper segment is inserted in the se-

lected run and the target branch condition is satisfied as an SMT problem. Any solution to this

problem implies input values and a schedule that covers the target branch.

3.4 Testing Algorithm

In this section, we first briefly discuss how we perform sequential testing of concurrent pro-

grams as the first step of our test generation technique. Then, we present our multi-trace

analysis in detail.

3.4.1 Sequential Testing of Concurrent Programs

In order to perform sequential testing of a concurrent program, we first execute the program

with a set of random inputs, I , to obtain a symbolic trace of the program (represented by ρ).

Then, we focus on sequential testing of each thread Ti at a time. Based on the observed trace,

we generate a trace ρ′, which represents a sequential execution of Ti, by enforcing a set of

ordering constraints between the events of different threads in ρ such that thread Ti is executed

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS67

sequentially and without any interference from other threads (if possible).

To do so, we generate happens-before relations on the events of ρ to enforce all of the events

of other threads to happen after the last event of Ti in ρ. In cases where the complete sequential

execution of Ti is not possible due to some synchronization, we stick to the corresponding

orderings between the events of different threads in ρ to let Ti complete.

For sequential testing of thread Ti, we apply a traditional concolic testing technique [4]

starting with input set, I , and following the schedule implied by ρ′. Then, we perform a depth-

first search, making a path constraint (i.e., conjunction of the condition of the branches tra-

versed) corresponding to the inner-most uncovered branch in Ti while requiring the condition

of the uncovered branch to be true according to ρ′. A satisfiable solution for these constraints

provides a set of inputs for the next round in concolic testing.

3.4.2 Multi-Trace Analysis (MTA) for Test Generation

Without loss of generality, we assume that there is an if-branch in thread Ti (whose condition

depends on a shared variable x) which could not be covered by sequential concolic testing.

Furthermore, we assume that there is a run rn which hits the corresponding if-statement

while the condition of the if-statement is evaluated to false. The main goal is to generate a

test (i.e., input values and a schedule) in which the last write to x before the if-branch in rn is

overwritten by another write to x and the branch is covered. To that end, we find an interloper

segment from a run (could be different from rn), with a write to x, that could be soundly (but

not necessarily atomically) inserted after the last write to x in rn and search for possible input

values and schedules by inserting the interloper segments into rn.

Algorithm 1 presents our test generation technique using MTA. The inputs of the algorithm

include a concurrent program P , a set of branches Brs that are left uncovered during sequen-

tial testing, and a set of successful runs of the program Rns. Initially, Rns mostly contains

sequential runs, but over time it accumulates multi-threaded executions as well. In fact, we

extend the set of program runs (that form an under-approximation for the concurrent program)

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS68

Algorithm 1: CMTA(program P , branchSet Brs, runSet Rns)

1 while brs 6= ∅ do

2 pick and remove br from Brs

3 Rns′ ← set of runs from Rns hitting br

4 while Rns′ 6= ∅ do

5 pick and remove rn from Rns′

6 V ars← set of variables affecting condition of br in rn

7 while V ars 6= ∅ do

8 pick and remove var from V ars

9 (w, r)← last write/read of var in rn before br

10 foreach event e such that w < e < r in rn do

11 gLoc← getGlobalLocation(rn, e)

12 Segs← findEnterloperSegments(gLoc, var, rns)

13 while segs 6= ∅ do

14 pick and remove seq from Segs

15 cs← logicalEncoder(rn, br, var, r, seg, w, gLoc)

16 if cs is satisfiable then

17 extract input and schedule from the solution

18 rn′ ← P (input, schedule)

19 Rns← run ∪ {rn′}

20 Brs← brs ∪ getUncoveredBranches(rn′)

For each uncovered branch, the algorithm goes over the runs hitting the branch and tries to find interloper segments
from other runs (with a write of variable var affecting the branch condition) and insert it in the runs hitting the
branch and search for input values and a schedule that cover the branch. The interloper segment should be inserted
between the last write (w) and the last read (r) of var before the branch. getGlobalLocation returns global location at
the insertion point, findEnterloperSegments returns interloper segments, logicalEncoder encodes the insertion problem
as a logical constraint system. Any solution to the constraint system implies input values and a schedule that cover
the branch. getUncoveredBranches returns yet uncovered branches according to the newly executed test run.

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS69

after each program execution correspondingly. The set of branches Brs is also updated with

the branches skipped in the execution (if they have not been previously covered).

The main loop (lines 1-20) goes over the uncovered branches in Brs one by one and tries

to generate a test that covers the target branch. For each uncovered branch br, it picks a set of

runs Rns′ from Rns that hit the branch condition. Obviously, the branch condition is false

in all of these runs. Then, in lines 4-20, it iterates over these runs, searching for an appropriate

interloper segment that could be inserted in the run. For each of these runs rn, it first finds

the set of shared variables V ars whose values affect the branch condition by performing a

traditional def-use analysis on rn. Then, for each of these variables var, it tries to find a

segment containing a write to var that can be inserted after the last write to var in rn (lines 7-

20).

For a variable var ∈ V ars, let (w, r) be a pair of events where w denotes the last write

to var before the target branch and r denotes the read of var just before the branch in rn. To

break this write/read matching and overwrite the effect of w, the interloper segment should be

inserted between w and r in rn. The interloper segments should be selected in such a way that

they could be inserted soundly in rn. At a minimum, threads executing in the segment should

be at the same locations as they are at the insertion point in rn, i.e., the global locations at the

beginning of the segment and insertion point should be the same. The while loop at line 10,

goes over the global locations at an event e in rn, such that w < e < r, where < represents the

order of the events in rn, and tries to find an appropriate set of interloper candidates.

Given a global location gLoc, a variable var ∈ V ars, and a set of runs Rns, algorithm

findEnterloperSegments returns a set of segments from Rns such that the global location at

the beginning of the segments is consistent with gLoc and each segment contains a write to var.

We discuss findEnterloperSegments (Algorithm 2) in detail, later. The while loop at line 13,

goes over the interloper segments and calls logicalEncoder engine which generates a set of

logical constraints encoding the set of all feasible runs of the program that result from inserting

a specific segment seg at gLoc in rn before the affecting read r such that the condition of br

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS70

is satisfied. We present logicalEncoder (Algorithm 2) in detail, later. Then, an SMT solver is

used to check the satisfiability of the constraints. Any model satisfying the constraints implies

a set of input values and a schedule that would cause the branch to be covered. In that case,

the program is executed with the generated inputs according to the generated schedule to get a

new run rn′. Then, rn′ is added to Rns and the skipped branches in rn′ are added to Brs if

they are not covered previously (getUncoveredBranches returns such branches).

Finding Interloper Segments

Given a global location gLoc, a shared variable var, and a set of runs Rns, findEnterloperSeg-

ments (Algorithm 2) returns a set of segments from Rns such that the global location at the

beginning of the segments is consistent with gLoc and each segment contains a write to var.

The while loop at line 3 goes over the runs in which there is at least one write to var. For each

run, it iterates over the set of writes to var and finds candidate segments containing a write w

to var and starting at a global location consistent with gLoc. Note that write w might be pro-

tected by some locks in the corresponding thread. In that case, the interloper segment should

release all of those locks to let other threads be able to obtain the locks in the future without

being blocked. Therefore, to build the interloper segment, the algorithm first moves forward to

the first event ev after w in rn where the corresponding thread of w does not hold any locks.

Let getFirstLockFreePoint(rn, w) return such event ev at line 7 (ev is equal to w when w is not

a protected write).

Then, event ev is added to the segment and the algorithm moves backwards in rn, adding

events to the segment, until it reaches w (lines 10-13). Then, it continues moving backwards

in rn, considering the preceding events and adding them to the segment, until it reaches at

a global location consistent with gLoc (if possible). Note that there might be some threads

not active in the segment. Requiring the location of such threads to match with gLoc is too

restrictive and could miss useful segments. Therefore, as we move backwards in rn, we keep

track of the active threads in a set Threads. While moving backwards in rn, the algorithm

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS71

Algorithm 2: findEnterloperSegments(global location gLoc, variable var, runSet Rns)

1 segmentSet Segs← ∅

2 Rns′ ← set of runs in Rns that write to var

3 while Rns′ 6= ∅ do

4 pick and remove rn from Rns′

5 Wrts← set of all writes to var in rn

6 foreach w ∈Wrts do

7 ev ← getFirstLockFreePoint(rn,w)

8 seg ← ev

9 Threads← {tid(ev)}

10 while ev 6= w do

11 ev ← preceding event of ev in rn

12 seg ← ev.seg

13 Threads← Threads ∪ {tid(ev)}

14 gLoc′ ← getGlobalLocation(rn, ev)

15 while gLoc|Threads 6= gLoc′|Threads and ev is not the first event in rn do

16 ev ← preceding event of ev in rn

17 gLoc′ ← getGlobalLocation(rn, ev)

18 seg ← ev.seg

19 Threads← Threads ∪ {tid(ev)}

20 if gLoc|Threads = gLoc′|Threads then

21 Segs← Segs ∪ {seg}

22 return segs

Given a global location gLoc, variable var, and a set of runs Rns, the algorithm returns all interloper segments
consisting of a write to var from Rns which start at a global location consistent with gLoc and end at the first
lock-free point after the write. getFirstLockFreePoint returns the first lock-free point after a given write in a given
run. The algorithm then moves backwards in the run, until it reaches a global location consistent with gLoc (if
possible). Threads keep track of the active threads in the interloper segment which are the only threads whose
locations are required to match gLoc at the beginning of the interloper segment.

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS72

searches for a global location gLoc′ where the projection of gLoc′ and gLoc to the threads in

Threads are equal (lines 15-19); i.e., gLoc|Threads = gLoc′|Threads. If such global location is

reached then the segment is added to the set of appropriate segments which is returned by the

algorithm at the end.

Logical Constraint Encoding

Given a run rn, an uncovered branch br (which is skipped in rn), a shared variable var that

affects the branch condition, an event r in run which reads from a shared variable var, an

interloper segment seg, an event w in seg that writes to var, and a global location gLoc in rn

representing the insertion point, logicalEncoder generates a logical constraint system encoding

the set of all feasible runs, in which the schedule is the same as in rn until reaching gLoc and

then events in the interloper segment are interleaved with the events in rn after global location

gLoc in a way that r is guaranteed to read the value written by w, and the condition of br is

satisfied.

We call the event sequence in rn before the global location gLoc, the prefix segment and

the event sequence after gLoc and before br, the main segment. The inputs of the program are

treated symbolically such that we could use SMT solvers [9, 10] to simultaneously search for

input values and a schedule that would cause br to be covered. The SMT encoding is based

on the concurrent trace programs (See Definition 3.2.4) of the main and interloper segments.

However, unlike symbolic prediction, we consider symbolic values for inputs to be able to

generate input values in addition to schedules.

Let CTPmain and CTPint denote the CTPs of the main and interloper segments, respec-

tively. Note that findEnterloperSegments ensures that the location of each thread, being active

in the interloper segment, is the same at the beginning of both segments. Therefore, each active

thread in the interloper segment should have a maximum common prefix of locations in both

CTPmain and CTPint. The thread may then diverge after this prefix in the segments.

Suppose thatEmain andEint represent the set of events in the main and interloper segments,

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS73

respectively. Note that not all of these events may be required for test generation. Indeed,

certain events may be inconsistent with each other, e.g., if they originated from diverging runs.

Therefore, for each event ei ∈ Emain ∪ Eint, an indicator bit bei is considered whose value

determines whether the event is required to happen before the target branch or not.

logicalEncoder generates a constraint formula Φ such that Φ is satisfiable iff there exist

input values and a schedule (which follows the prefix segment and then interleaves the execu-

tion of threads in the main and interloper segments) that covers br. Φ consists of 7 different

sub-formulas:

Φ = ΦFP ∧ ΦPO ∧ ΦST ∧ Φπ ∧ ΦBR ∧ ΦAWR ∧ ΦInd.

Let ΦFP = Φπ = ΦInd = true, initially. Φ is constructed as follows:

1. Fixed Prefix (ΦFP): For each event ei in the prefix segment:

• if ei is the first event in rn, do nothing. Otherwise, let ΦFP = ΦFP ∧ HB(e′i, ei)

where e′i is the predecessor of ei in the prefix segment. This keeps the order of

events the same as in the prefix segment.

• if the corresponding statement of ei has lval := exp, let ΦFP = ΦFP ∧ g(ei) ∧

(lval = exp). If ei contains assert(c), let ΦFP = ΦFP ∧ g(ei)∧ (g(ei)→ c). Note

that g(ei) is required to be true in any case since all of the events in the prefixed

segment are required to be enabled.

2. Program Order (ΦPO): Let ΦPO = ΦPO
CTPmain

∧ ΦPO
CTPint

where ΦPO
CTPρ

is as defined in

Section 3.2.3. This reserves the order of events in both main and interloper segments.

3. Statements (ΦST): Let ΦST = ΦST
CTPmain

∧ ΦST
CTPint

where ΦST
CTPρ

is as defined in Sec-

tion 3.2.3. This encodes the statements in both main and interloper segments.

4. π-Functions (Φπ): Define a new π-function for each shared variable use inEmain∪Eint−

{r} to include definitions in the prefix, main, and interloper segments. As in standard

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS74

CTPs, for each w = π(v1, . . . , vk), let Φπ = Φπ ∧
∨k
i=1[(w = vi) ∧ g(ei) ∧HB(ei, e) ∧∧k

j=1,j 6=i(HB(ej, ei) ∨HB(e, ej))], where ei denotes the event that defines vi.

5. Target Branch (ΦBR): Suppose that (assume(c), ∅) is the statement corresponding to

the uncovered target branch. In rn, there is an event ebr that relates to the statement

(assume(¬c), ∅) corresponding to the other branch of the same conditional statement.

Let ΦBR = c ∧ g(e′) where e′ is the predecessor of ebr in the corresponding thread. This

enures that the target branch is covered.

6. Affecting Write/Read Matching (ΦAWR): Let Wvar represent the set of all events that

write to var in Emain ∪ Eint. Then, ΦAWR = HB(w, r) ∧
∧
ei∈Wvar

(HB(ei, r) ∨

HB(w, ei)), guarantees that the read of var in r is matched the write to var in w.

7. Indicator Bits (ΦInd): For each event ei in Emain ∪ Eint:

• ΦInd := ΦInd ∧ (bei → g(ei)) ∧ (bei → HB(ei, ebr)) ∧ (¬(bei) → HB(ebr, ei))

saying that if bei is true then its path condition should be true as well and it should

happen before the target branch. Otherwise, it should happen after the branch.

• If ei belongs to thread Ti, let ej be the predecessor of ei in Ti. Then, ΦInd =

ΦInd∧ (bei → bej) saying that each event happening before the branch requires that

its preceding event (in the same thread) also happen before the branch.

• Let demainTi
and deintTi represent the first events of thread Ti after the common prefix

in CTPmain and CTPint, respectively. Since the segments diverge at demainT i and

deintT i , for each thread after this point we should consider events either from the

main segment or from the interloper segment; i.e., for each active thread Ti in the

interloper segment: ΦInd = ΦInd ∧ (bdemainTi
→ ¬(bdeintTi

)) ∧ (bdeintTi
→ ¬(bdemainTi

)).

Discussion on Scalability. As mentioned in Section 2.7, the main drawback of symbolic pre-

diction (using CTPs) is that it would encounter scalability issues for large runs. The reason is

that the SMT encoding is done at statement level which considers local computation as well as

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS75

global computation. As it symbolically encodes all possible interleavings of events of different

threads, the size of the SMT problem grows rapidly as the size of CTP increases. Although our

test generation technique here utilizes CTPs, the proposed SMT encoding is scalable to large

CTPs. This is because normally, both the main and interloper segments are very small com-

pared to the length of the runs. The SMT encoding keeps a large part of the generated schedule

(i.e., the prefix segment) fixed and only encodes the interleavings of events in the main and

interloper segments. This decreases the size of the generated SMT problem. We show this

issue in our experiments.

3.5 Evaluation

We have implemented the test generation technique based using MTA on top of FUSION [90]

- a symbolic prediction tool for multi-threaded C programs. To be able to generate inputs,

FUSION is changed to consider symbolic values for input variables. We subjected our tool

to a benchmark suite of multi-threaded C programs to evaluate the effectiveness of the test-

ing technique. In the following, we briefly discuss the implementation and then present our

experimental results.

3.5.1 Implementation

Figure 3.4 presents the architecture of the tool. It has four main components: a sequential

concolic execution engine, a multi-trace analysis engine, an SMT solver, and a concurrent

execution engine. Sequential concolic execution engine performs sequential testing of con-

current programs as discussed in Section 3.4.1. Multi-trace analysis engine consists of four

sub-components: coverage-guided target selection, concurrent test run selection, interloper se-

lection, and multi-trace SMT encoder. Coverage-guided target selection selects a target branch

according to the number of attempts that have been made for covering that branch; branches

with less number of attempts have priorities over the others. For a target branch, concurrent test

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS76

Figure 3.4: Test generation using MTA.

run selection returns a set of runs with different prefixes before skipping the branch. Interloper

selection and multi-trace SMT encoder implement the algorithms presented in Section 3.4.

Given a set of inputs and a schedule, concurrent execution engine executes the program with

the inputs according to the schedule.

3.5.2 Experiments

We evaluated the effectiveness and efficiency of the test generation technique using MTA by

subjecting the tool to a benchmark suite of multi-threaded C programs.

Benchmarks: bluetooth is a program based on a simplified model of bluetooth driver [62].

apache1 and apache2 are programs corresponding to two bugs in APACHE FTP server from

BugBench [46]. apache1s and apache2s are simplified versions of apache1 and apache2,

respectively, where we removed parts of the code that were immaterial to branches with re-

spect to shared variables. ctrace is a fast, lightweight trace/debug C library. ctrace1 and

ctrace2 are two test drivers using this library, which contain some data races. splay is a

program built using a C library implementing several tree structures. Finally, aget is a multi-

threaded download accelerator. All of the benchmarks consist of two threads.

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS77

Sequential Testing Multi-Trace Analysis

Pr
og

ra
m

(L
O

C
)

N
um

.o
fi

np
ut

s

T
hr

ea
d

N
um

.o
fb

ra
nc

he
s

N
um

.o
ft

es
ts

N
um

.o
f

co
ve

re
d

br
an

ch
es

Ti
m

e
(s

)

N
um

.o
ft

es
ts

N
um

.o
f

co
ve

re
d

br
an

ch
es

N
um

.o
fb

ra
nc

he
s

w
ith

in
te

rl
op

er
s

A
vg

.n
um

.o
fi

nt
er

lo
pe

rs

pe
ru

nc
ov

er
ed

br
an

ch

Ti
m

e
(s

)

B
ug

fo
un

d

%
br

an
ch

co
ve

ra
ge

se
q.
→

co
nc

.

bluetooth
3 each 12 2 7 1 4 5 3 1 1 yes 58→100

(88)

apache1s
1 each 8 4 7 3 1 1 1 2 8 yes 87→100

(253)

apache1
3 each 22 6 16 10 2 2 2 2 32 yes 72→81

(640)

apache2s
2 each 10 3 7 2 2 2 3 1 5 yes 70→90

(268)

apache2
3 each 22 4 15 9 1 1 3 2 81 yes 68→73

(864)

ctrace1 1-fixed T1 64 1 35 17 1 3 8 2.3 341 yes 54→59

(1466) T2 22 1 14 11 0 0 - - 9 - 64→64

ctrace2 1-fixed T1 114 1 67 17 1 14 3 5 447 yes 59→71

(1523) T2 22 1 14 11 0 0 - - 9 - 64→64

splay 1-fixed T1 16 1 5 5 3 7 3 2.3 90 no 33→75

(1013) T2 16 1 11 10 1 1 2 2 75 bug 69→75

aget
1-fixed each 18 1 12 121 1 1 2 1 179 yes 66→72

(680)

Table 3.1: Experimental results for test generation using MTA

Table 3.1 presents the experimental results. We report the number of inputs of programs and

for each thread in each program we show the total number of branches reported by FUSION.

Note that according to the simplifications (e.g., constant propagation and etc.) applied on the

observed traces by FUSION, the number of branches reported by FUSION is less than the actual

number of branches in the program. For example, FUSION omits branches which depend only

on local variables or relate to sanity checks on the system execution and does not include them

in the total number of branches.

The table also contains information about the sequential testing of threads and the multi-

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS78

trace analysis. For sequential testing, we report number of generated tests, number of covered

branches, and total time spent in testing each thread. For multi-trace analysis, we report number

of generated tests, number of covered branches, total time, whether any bug is found, number of

branches for which some interloper segments were found, and the average number of interloper

segments found per branch. The table also presents the improvement in the percentage of

branch coverage from sequential test generation to multi-trace analysis.

Observations: The experiments show that the sequential testing is able to cover a large number

of branches quite fast. Note that some programs in our benchmark suite have fixed inputs. For

example, aget expects a URL as input which we fixed for testing purposes. The sequential

testing of these programs consists of a single execution of the program. As can be seen in the

table, execution of these programs itself takes some considerable amount of time.

The experiments also show that MTA is successful in increasing branch coverage over se-

quential testing. For example, in case of splay, MTA increases branch coverage from 33% (in

sequential testing) to 80%. According to the number of branches with interloper segments, we

can see that for not many uncovered branches MTA could find interloper segments. However,

often a test generated to cover an uncovered branch can lead to covering some other yet un-

covered branches as well. Furthermore, trying only a few number of interloper segments were

enough to find tests that cover such branches.

Another observation is that the total time spent on MTA is reasonable in practice. This is

largely due (1) relying on the strength of sequential testing techniques to cover most branches

sequentially, and (2) the effectiveness of MTA in finding interloper segments to cover target

branches.

Furthermore, MTA is very effective in finding concurrency bugs. All of the bugs found

in the benchmark suite were revealed by MTA by covering a branch that was not coverable

in sequential testing. This suggests that branches that cannot be covered by purely sequential

testing are good candidates for test generation.

Comparison with prediction techniques: Some programs in our benchmark suite have fixed

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS79

Bench- FUSION on FUSION on inputs

mark random inputs generated by MTA

Runs Time bug found Runs Time bug found

bluetooth 423 27s no 33 4s yes

apache1s 35 9s no 2 1s yes

apache1 399 3m4s no 2 1s yes

apache2s 126 2m2s no 2 1s yes

apache2 5974 23m50s no 2 2s yes

ctrace1 DNF DNF

ctrace2 DNF DNF

splay 30 27s no bug N/A

aget 6 43s yes N/A

Table 3.2: Comparing MTA with symbolic prediction using FUSION. DNF: did not finish,

N/A: not applicable since inputs are fixed.

inputs. One can claim that predictive analysis may generate the same results in these bench-

mark. Note that MTA is different from predictive analysis (for which the inputs are fixed as

well) in the sense that MTA aims to increase branch coverage (by exploring both input and in-

terleaving spaces of the program) while predictive analysis does not perform input exploration

and only explores the permutations of events of a single observed run.

To investigate the need for automated input generation for concurrent programs, we com-

pared our tool with FUSION [90], based on our set of benchmarks. FUSION tries to find con-

currency bugs such as data races. Since it does not report on coverage, here we only highlight

whether the known bugs in the benchmarks are discovered by FUSION or not. In Table 3.2, we

report the number of generated runs (i.e., schedules in this case) and the time spent by FUSION

on prediction with both some randomly generated fixed inputs and some bug-triggering inputs

generated by MTA.

We observe that for most of the benchmarks, FUSION cannot discover the bugs with random

inputs. It can spend substantial analysis time in searching for alternative thread interleavings

without finding the known bugs, as in the case of apache2. However, it performs pretty

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS80

well for some of the benchmarks with bug-triggering inputs generated by MTA. For ctrace

benchmarks, FUSION did not finish due to the large overhead of symbolic prediction using

CTPs which encodes all feasible permutations of events considering all computation (global

as well as local) in the observed run. Although MTA also utilizes CTPs to generate tests, it

was able to handle ctrace benchmarks, since as discussed before, often a large prefix of the

generated schedule is fixed according to the runs in which interloper segments are inserted.

Conclusion: Our experiments showed that our MTA is very effective in increasing branch cov-

erage in concurrent programs. Furthermore, using the MTA, we could find a large number of

bugs in our benchmarks. This confirms that increasing branch coverage in concurrent programs

is an appropriate approach for bug finding. We also compared our MTA with FUSION which

is a symbolic prediction tool that explores the interleaving space with fixed inputs. Our ex-

periments showed that applying FUSION with some randomly generated inputs on concurrent

programs in most cases fails to find program bugs. However, our MTA analysis was able to find

the bugs in the benchmarks as it performs input exploration as well as interleaving exploration.

This shows the need for automated input generation in bug finding.

3.6 Related Work

Similar to MTA, some recent work [80, 79] use concurrent trace programs as approximation

models of concurrent programs. These work target assertion violations, i.e, input/interleaving

exploration is tailored towards finding assertion violations. The technique in [80] utilizes both

over- and under-approximations of inter-thread communication on shared variables in concur-

rent trace programs to capture a suitable communication for finding assertion violations (in

concurrent trace programs). In [79], a two-staged analysis is proposed which separates intra-

and inter-thread reasoning. The first stage uses sequential program semantics to obtain a pre-

cise summary of each thread in terms of the accesses to shared variables made by the thread.

The second stage performs inter-thread reasoning by composing these thread-modular sum-

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS81

maries using the notion of sequential consistency to find assertion violations. However, there

are main differences between MTA and these work; MTA targets test generation, for exploring

different program behaviours according to the uncovered parts of the program. Moreover, these

techniques keep the under-approximation fixed and are restricted to concurrent trace program

behaviours; e.g., they cannot check program assertions that do not show up in the concurrent

trace program. MTA, on the other hand, extends the program approximation during the testing

process. It uses program approximations to generate tests that target exploring parts of the

program that do not appear in the approximation; i.e., it explores program behaviours that are

beyond the approximation.

There are also some work exploiting analyses based on (def-use) pairs of shared variables

in concurrent programs. For example, Shi et al. use invariants based on a def-use relation (ob-

tained from a set of bug-free program runs) for bug detection and error diagnosis [76]. Wang et

al. [91] follow a similar approach for coverage-guided testing. They utilize dynamic informa-

tion collected from bug-free test runs to learn ordering constraints over the memory-accessing

and synchronization statements. These ordering constraints are treated as likely invariants and

are used to guide the selection of interleavings for future test execution. However, none of

these techniques target structural coverage or perform input exploration.

Our notion of interloper segments is related to a work by Shacham et al. [75], where they

consider testing linearizability [30] of concurrent collection operations by interleaving opera-

tions from a single adversarial environment. There, the search is guided towards interleaving

non-commutative simple operations. However, interloper segments used by MTA may contain

events from multiple threads, and are used to increase branch coverage in concurrent programs.

At a high level, our main insight to separate sequential coverage and leverage it for con-

current programs is similar to the insight by Joshi et al. [38], that many bugs in concurrent

programs can be found by sequential analysis. Their goal, however, was to improve the us-

ability of concurrent bug finding tools by filtering away bugs that can be reproduced purely

sequential.

CHAPTER 3. TEST GENERATION BASED ON UNDER-APPROXIMATIONS OF PROGRAMS82

3.7 Summary

In this chapter, we proposed a test generation technique based on approximation models of

concurrent programs. We used concurrent trace programs as approximation models and devel-

oped a multi-trace analysis to cover the uncovered part of the program based on the so far seen

executions. More specifically, the analysis targets increasing branch coverage in concurrent

programs. It combines information available in multiple runs of the program to (1) focus on an

interloper segment of a run that provides values needed to take an uncovered branch, (2) insert

the interloper segment in another run by searching for input values and an interleaving that

would result in covering the uncovered branch. The multi-trace analysis encodes this problem

as a set of logical constraints and uses SMT solvers to search for possible input values and in-

terleaving. Our test generation technique utilizes the fact that the state-of-the-art sequential test

generation techniques are generally able to quickly cover a large part of the program. There-

fore, at the beginning, individual threads are exposed to sequential testing to increase branch

coverage as much as possible. Upon saturation, our test generation technique falls back to the

proposed multi-trace analysis to increase branch coverage. We implemented our technique in

a tool that supports concurrent C programs. We performed some experiments that show the ef-

fectiveness of our multi-trace analysis in increasing branch coverage and finding concurrency

bugs in concurrent programs.

Chapter 4

Bounded-Interference: A Heuristic for

Providing Coverage Guarantees

Testing techniques for sequential programs are often coupled with a notion of coverage that the

techniques provide. Different program coverage criteria (e.g., path coverage, branch coverage,

etc.) have been introduced and targeted by sequential testing techniques. These coverage

criteria quantify the effort put into the testing process in a meaningful way. For example, a

sequential testing technique that provides branch coverage assures the tester that all of the

branches in the program that could be covered under some input values are actually explored

during the testing process.

Providing such coverage guarantees for concurrent programs is challenging since in ad-

dition to the input values, the exploration space is affected by the interleaving of execution of

threads. Heuristics like context bounding [53, 54, 55] and delay bounding [12] were introduced

and used by many techniques to reduce the exploration space into a manageable set that pro-

vides a meaningful coverage for concurrent programs. They characterize a subset of the search

space by a bounding parameter p. As p is increased, more program behaviors are explored and

in the limit it is guaranteed that all program behaviors are explored. For example, CHESS [53]

is a tool from Microsoft that provides coverage guarantees on the interleaving space, i.e., all

83

CHAPTER 4. BOUNDED-INTERFERENCE: A HEURISTIC FOR PROVIDING COVERAGE GUARANTEES84

interleavings up to a bounded number of context-switches are explored by keeping the inputs

of the program fixed. Also, several sequentialization techniques [44, 42, 85, 62, 63] utilize

the context bounding heuristic to search over both input and interleaving spaces (modulo con-

text bound) for finding assertion violations in concurrent programs. The main problem with

these heuristics is that they are defined based on the notion of control-flow among the threads

(ignoring data completely) and therefore search strategies that utilize these heuristic are not

guaranteed to be efficient. In fact, many thread interleavings might be equivalent to each other

according to the way threads interfere with each other and therefore exploring all such inter-

leavings imposes a huge overhead without exploring any new behaviour.

In this chapter, we introduce a new heuristic, called bounded-interference, for generating

tests with coverage guarantees for concurrent programs. An interference happens whenever a

thread reads a value from a shared variable which is provided by another thread. Based on the

bounded-interference heuristic, the exploration space is limited to program behaviours within

a bounded amount of interference among threads. A nice property of bounded-interference is

that, since it is defined from the point of view of flow of data between threads (in contrast to

the control-based notions such as context bounding), it can be very naturally incorporated into

a setting in which the search for input values and interleaving can be performed in a unified

manner. This heuristic might have applications beyond test generation; e.g., it can be used in

model checking and program verification, bug localization, bug fixing, and etc. Here, we focus

on the test generation aspect. Utilizing this heuristic, we have developed two different test

generation techniques, based on concolic testing techniques, for concurrent programs, which

are explained in Chapters 5 and 6 in detail.

4.1 Bounded-Interference Through An Example

An interference happens whenever a thread reads a value from a shared variable which is pro-

vided (i.e., written) by other threads. Bounded-interference heuristic is parameterized by the

CHAPTER 4. BOUNDED-INTERFERENCE: A HEURISTIC FOR PROVIDING COVERAGE GUARANTEES85

1 public void Add(){

2 int status, pIO;

3 if (stoppingFlag)

4 status = -1;

5 else {

6 atomic{pendingIO++;}

7 status = 0;

8 }

9 if (status == 0){

10 assert(stopped==false);

11 //do work here

12 }

13 atomic{

14 pendingIO--;

15 pIO = pendingIO;

16 }

17 if (pIO == 0)

18 stoppingEvent = true;

19 }

20 public void Stop(){

21 int pIO;

22 stoppingFlag = true;

23 atomic{

24 pendingIO--;

25 pIO = pendingIO;

26 }

27 if (pIO == 0)

28 stoppingEvent = true;

29 assume(stoppingEvent==true);

30 stopped = true;

31 }

Figure 4.1: The simplified model of Bluetooth driver [62].

number of interferences among threads. The intuition behind it is to incrementally increase

the degree of interference among threads while exploring program behaviours; i.e., first all

program behaviours without any interference are explored. After that, all program behaviours

with only one interference are explored. Then, all program behaviours with only two interfer-

ences are explored, and so on. In the following, we present the application of the bounded-

interference heuristic for finding bugs in concurrent programs by an example.

Figure 4.1 shows a simplified model of the Bluetooth driver [62]. There are two dispatch

functions, called Add and Stop. Function Add is called by the operating system to perform I/O

in the driver and Stop is called to stop the device. There are four shared variables: pendingIO,

CHAPTER 4. BOUNDED-INTERFERENCE: A HEURISTIC FOR PROVIDING COVERAGE GUARANTEES86

stoppingFlag, stoppingEvent, and stopped. The integer variable pendingIO is initial-

ized to 1 and keeps track of the number of concurrently executing threads in the driver. It

is incremented atomically whenever a thread enters the driver and is decremented atomically

whenever it exits the driver. The boolean variable stoppingFlag is initialized to false and

will be set to true to signal the closing of the device. New threads are not supposed to enter

the driver once stoppingFlag is set to true. Variable stoppingEvent is initialized to false,

and will be set to true after pendingIO becomes zero. Finally, stopped is initialized to false

and will be set to true once the device is fully stopped; the thread stopping the driver sets it to

true after it is established that there are no other threads running in the driver. Threads that call

function Add expect stopped to be false (assertion at line 10) after they enter the driver.

Consider a concurrent program with two threads, T and T ′, calling Add and Stop, respec-

tively. The assertion at line 10 in function Add ensures that the driver is not stopped before

T starts working inside the driver. It is easy to see that this assertion always passes if T is

executed sequentially, i.e., without any interference from T ′. Therefore, if the assertion at line

10 is to be violated, it will have to be with some help from T ′, where a shared variable read in

T reads a value written by a write in T ′; we call these reads non-local reads.

We start by digressing slightly from the fully sequential execution of T , by letting only one

read of a shared variable in T to be non-local. If the read from stoppingFlag at line 3 in T

reads the value written by T ′ at line 22 then the assert statement at line 10 is not reachable

since the if-branch at line 9 will not be covered. Selecting the read from pendingIO at line

6 in T as the non-local read, forces the read from stop in the assertion statement to read the

initial value false (since only one read can be non-local), and hence the assertion check will

be passed successfully. Finally, if we select the read from stopped in the assertion statement

as the non-local read then it has to read the value written by T ′ at line 30. However, since

both threads read and write to pendingIO at lines 6 and 24, there is no interleaving in which

none of the reads from pendingIO is non-local. Therefore, the assertion cannot be violated by

making only one read non-local. So, we digress more by allowing two reads of shared variables

CHAPTER 4. BOUNDED-INTERFERENCE: A HEURISTIC FOR PROVIDING COVERAGE GUARANTEES87

to be non-local.

With two non-local reads, one can see that the assertion at line 10 can be falsified if the

reads from pendingIO (at line 6) and stopped (at line 10) read the values written by T ′ at

lines 24 and 30, respectively. A feasible interleaving that realizes this interference scenario

would be the one in which T is executed first until it evaluates the branch condition at line 3,

then thread T ′ is executed completely and then T continues execution.

4.2 Comparison with Context Bounding

The concept of context bounding was first introduced by Qadeer et al. [62] and later used by

many techniques in test generation [53, 55], model checking [61], and sequentialization [44, 42,

85]. It characterizes a subset of program execution with a bounding parameter, i.e., the number

of context-switches between threads. The idea is to incrementally increase this bound (starting

from 0) and explore all program executions within the bounded number of context-switches.

It is based on the conviction that most concurrency errors will be discovered within a small

number of context-switches. In practice, the bound for the number of context-switches cannot

go beyond 2 or 3 for real programs because of the large number of interleavings required to be

explored even for a small bound. The main drawback of the context bounding heuristic is that

it is defined based on the notion of control-flow among the threads and it completely ignores

data-flow. In fact, many thread interleavings might be equivalent to each other according to the

way threads interfere with each other and therefore exploring all such interleavings imposes a

huge overhead without exploring any new behaviour.

Bounded-interference heuristic, on the other hand, is defined based on the notion of data

flow among threads. All program executions with exactly the same set of interferences are

behaviourally equivalent under the same input values, no matter how the execution of threads

are interleaved. Therefore, for given input values it suffices to try only one of possible in-

terleavings that realize each interference scenario. This property presents an advantage of

CHAPTER 4. BOUNDED-INTERFERENCE: A HEURISTIC FOR PROVIDING COVERAGE GUARANTEES88

bounded-interference over context bounding; according to context bounding, all possible in-

terleavings (no matter whether they are introducing new interference scenarios or not) with a

bounded number of context-switches will be explored.

One interesting question is that whether there is any relation between the minimum bound

required to catch a bug using bounded-interference and context bounding heuristics, respec-

tively. Note that in both heuristics, all program behaviours will be explored in the limit, and

therefore all program bugs will be caught by both heuristics in the limit. However, the prob-

lem is that the search space (even for a small bound) can be really large for real programs that

makes it impossible to reach the limit. Theoretically, every bug that can be discovered using the

bounded-interference heuristic with minimum bound k, appears on an execution with some k′

number of context-switches, and therefore is discoverable using the context bounding heuristic

with a bound at least as large as k′. However, there is no relation between k and k′ in general;

there are program bugs for which k is smaller than k′ and program bugs in which k′ is smaller

than k. For example, the bug in the program presented in Section 4.1 requires at least 2 num-

ber of interferences and 2 number of context-switches according to bounded-interference and

context bounding heuristics, respectively (i.e., k = k′). It is easy to imagine cases where k′ is

smaller than k; there a single context-switch can introduce several interferences. However, the

cases where k is smaller than k′ might not be so obvious in the first place. In the following, we

present a buggy program which requires at least 3 context-switches but only one interference

to reveal the bug.

Consider the buggy program in Figure 4.2. There are two threads, Thread1 and Thread2

where both have a batch update section in which they update a shared memory location G

several times. Let us assume that according to the specification of the program, threads cannot

be in their batch update section simultaneously. The input variable turn determines which

thread can perform its updates first. Shared variables start and done identify the thread that

just started and finished its updates, respectively. Each thread waits until turn indicates that it

has permission to start its batch update (implemented by a while loop with a wrong condition).

CHAPTER 4. BOUNDED-INTERFERENCE: A HEURISTIC FOR PROVIDING COVERAGE GUARANTEES89

1 public void Thread1(){

2 //entering batch update section

3 while(turn == 2);

4

5 //batch update

6 atomic{ started = 1; }

7 for(int i=0; i< 50; i++)

8 atomic{ G[i]=...; }

9

10 //finishing batch update

11 atomic{ turn = 2; }

12 atomic{ done = 1; }

13 assert(!(started==1 &&

14 turn==1 && done==1));

15 }

16 public void Thread2(){

17 //entering batch update section

18 while(turn == 1);

19

20 //batch update

21 atomic{ started = 2; }

22 for(int i=0; i< 50; i++)

23 atomic{ G[i+1]=...; }

24

25 //finishing batch update

26 atomic{ turn = 1; }

27 atomic{ done = 2; }

28 assert(!(started==2 &&

29 turn==2 && done==2));

30 }

Figure 4.2: A buggy implementation of accessing critical sections.

As soon as it gets the permission it updates start and enters the batch update section where it

updates G for 50 times. After performing the updates, it gives the turn to the other thread to give

it a chance to perform its updates (if it has not performed its updates yet) and updates done

accordingly. An assertion then ensures that if the thread is the most recent one that started

updating G and also the most recent one that finished its updates, then turn should be set for

the other thread. Assume that the assertion statement is executed atomically.

However, the wrong condition of the while loops would cause input values other than 1

and 2 violate the specification requirement. This bug requires at least 3 context switches to be

found, i.e., k′ = 3. One execution that violates the assertion in Thread1 would be the one in

which Thread2 is executed until it updates the start variable. Then, there is a context-switch

and Thread2 enters its batch update section (overwriting start), performs its batch updates,

and updates the turn variable. Then, there is another context-switch and Thread2 completes

CHAPTER 4. BOUNDED-INTERFERENCE: A HEURISTIC FOR PROVIDING COVERAGE GUARANTEES90

its execution by performing its batch updates, overwriting turn and updating variable done.

Then, another context-switch happens and Thread1 continues execution by overwriting done.

At this point, the assertion in Thread1 is falsified and the bug is revealed. However, the

assertion violation in Thread1 can be discovered using the bounded-interference heuristic

with the bound set to one (i.e., k = 1); it is enough to only consider the read from turn in

the assertion as a non-local read that reads the value written by Thread2 while finishing its

batch updates. Note that any schedule that realizes this interference scenario still requires 3

context-switches, but this way, one can focus on finding a feasible schedule (e.g., encoding it

as a SMT problem) realizing the interference scenario as opposed to exploring all interleavings

with 3 or less number of context-switches.

However, none of the bounded-interference and context bounding heuristics is guaranteed

to always perform better than the other in catching concurrency bugs. We believe that these

heuristics can be viewed as two complementary heuristics and suggest that program analysis

techniques use both of them side by side.

4.3 Bounded-Interference in Testing Concurrent Programs

The bounded-interference heuristic is defined based on the notion of data flow among threads.

Therefore, it can be incorporated into the sequential concolic testing techniques to explore the

interference scenario space (in addition to input exploration) to provide coverage guarantees

for concurrent programs. We have developed two different techniques with coverage guar-

antees for concurrent programs, called bounded-interference sequentialization and bounded-

interference concolic testing, by incorporating the bounded-interference heuristic into the se-

quential concolic testing. Here, we briefly discuss these two techniques. A detailed description

of the techniques is provided in Chapters 5 and 6, respectively.

In bounded-interference sequentialization, we use the bounded-interference heuristic to

transform concurrent programs into sequential programs, with the aim of being able to ap-

CHAPTER 4. BOUNDED-INTERFERENCE: A HEURISTIC FOR PROVIDING COVERAGE GUARANTEES91

ply sequential concolic testing techniques to the generated sequential program without any

modification. Bounded-interference sequentialization is parameterized with respect to a bound

on the number of interferences; given a concurrent program and a bound k on the number of

interferences, the sequentialization transforms the concurrent program into a sequential pro-

gram such that every execution of the sequential program corresponds to an execution of the

concurrent program with maximum k number of interferences. To be able to use the power of

sequential concolic testing techniques (namely, input exploration) to explore both input and in-

terference scenario spaces of concurrent programs, inputs of the generated sequential programs

consist of the inputs of the corresponding concurrent program as well as some other inputs that

specify interference scenarios (i.e., non-local reads and their matching writes). Therefore, by

applying concolic testing on the generated sequential program, the input space and the inter-

ference space of the concurrent program will be explored systematically. The main advantage

of this technique is that one can utilize of-the-shelf sequential concolic testing tools without

any modification and benefit from their coverage-oriented search algorithms to generate tests

for concurrent programs. Furthermore, it provides coverage guarantees (modulo interference

bound) depending on the coverage guaranteed that the underlying sequential concolic testing

tools provide. We present the bounded-interference sequentialization in Section 5 in detail.

Bounded-interference concolic testing, on the other hand, adapts sequential concolic test-

ing techniques to support concurrent programs in the first place by incorporating the bounded-

interference heuristic in their search algorithms. To that end, sequential concolic testing is

equipped with one additional component, called interference exploration component, that enu-

merates all different interference scenarios in a systematic way. Bounded-interference con-

colic testing, exploits the fact that sequential concolic testing is able to quickly cover a large

part of individual threads. Therefore, individual threads are exposed to sequential concolic

testing first to increase coverage as much as possible in individual threads. Indeed, parts

of the concurrent program that are not covered by sequential concolic testing may require

some interferences among threads to be covered. After sequential concolic testing of threads,

CHAPTER 4. BOUNDED-INTERFERENCE: A HEURISTIC FOR PROVIDING COVERAGE GUARANTEES92

bounded-interference concolic testing considers uncovered parts of the program and explores

the interference space (modulo the interference bound) searching for input values and thread

schedules that would result in covering an uncovered part of the program. The main advantage

of this technique over bounded-interference sequentialization is that the exploration algorithm

in bounded-interference concolic testing, provides coverage guarantees by its own and the

completeness of the technique does not depend on the coverage guarantees of sequential con-

colic testing techniques. We present the bounded-interference concolic testing technique in

Section 6 in detail.

Chapter 5

Testing Based on Bounded-Interference

Sequentialization

To verify the effectiveness of the bounded-interference heuristic in finding concurrency bugs,

we develop a sequentialization technique based on this heuristic. Several sequentialization

techniques have been introduced in the literature [44, 42, 85, 62, 63] with the aim of reducing

the problem of concurrent program analysis to sequential program analysis. Throughout the

sequentialization, a concurrent program is transformed into a sequential program such that the

sequential program embeds a subset of behaviours of the concurrent program. Then, avail-

able techniques for sequential program analysis can be utilized for analyzing the resulting

sequential program (and hence the concurrent program). Most of the proposed sequential-

ization techniques utilize the context bounding heuristic to reduce the search space, i.e., the

sequential program embeds a set of concurrent program behaviours within a bounded number

of context-switches.

However, there are some problems with these sequentialization techniques that make it

infeasible to apply traditional sequential testing techniques on the generated sequential pro-

grams: (1) The generated sequential program is highly non-deterministic. This is because

it embeds a context-switch non-deterministically after each statement of the concurrent pro-

93

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 94

gram. Most sequential testing techniques (specifically those that provide coverage guarantees

like concolic testing) assume that sequential programs are deterministic and hence they do not

perform well on non-deterministic sequential programs. (2) Most of these sequentialization

techniques [44, 42, 63] are aimed to be used in a static setting (where the programs are not

executed) and for finding assertion violations. According to these sequentialization techniques

if one wants to execute the generated sequential program, he has to guess the values of shared

variables at the beginning of each context. As the result, the sequential program can get to un-

reachable states for wrong guesses. (3) The context bounding heuristic makes the exploration

process inefficient, i.e., many thread interleavings might be equivalent to each other accord-

ing to the way threads interfere with each other and therefore exploring all such interleaving

imposes a huge overhead without exploring any new behaviour.

Because of the aforementioned problems, sequentialization techniques have been used only

in static program analysis so far. Naturally, they suffer from static program analysis limitations;

they do not perform well regarding memory tracking and calls to function libraries for which

the source code is not available. They normally cannot handle complicated cases and also

suffer from false positives (i.e., they might warn users in cases where the program is correct).

Our proposed sequentialization technique [64], called bounded-interference sequentializa-

tion, targets test generation and hence state-of-the-art sequential testing techniques (e.g., con-

colic testing [24, 73, 4]) can be applied on the resulting sequential program without any mod-

ification. This way, we can employ and benefit from the advanced exploration algorithms

embedded into sequential testing techniques for an effective testing of concurrent programs.

Given a concurrent program P and an interference bound k, we propose a transformation

that transforms P into a sequential program P̂k such that every execution of P̂k corresponds to

at least one execution of P (might be a partial execution) in which there are at most k number

of interferences. Our transformation effectively defers both the input generation and interfer-

ence scenario selection tasks to the sequential testing technique, by encoding both as inputs

to the newly generated sequential program. All program behaviours within a certain degree

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 95

of interference are encoded into the resulting sequential program, but the set of interferences

is determined by the values of some inputs in the sequential program. Therefore, both input

and interference spaces of the concurrent program P will be explored when the corresponding

sequential program is subjected to sequential testing. We effectively encode all feasible inter-

leavings for a set of interferences (defined by the inputs) as a set of constraints, and then use

SMT solvers to ensure the soundness of our transformation.

Our concurrent program testing technique is then as follows: Each individual thread is ex-

posed to sequential concolic testing (i.e., interference bound k = 0), first. Then, we incremen-

tally increase k (starting with k = 1), sequentialize and perform sequential concolic testing on

the resulting sequential program to find bugs. Applying a sequential testing technique with spe-

cific coverage guarantees would provide coverage guarantees (modulo the interference bound)

on the concurrent program.

Our transformation has the following limitations: (i) It works for concurrent programs con-

sisting of two threads. However, a study of concurrency bugs by Lu et al. [47] found that 96%

of concurrency bugs involve only two threads. Therefore, the choice of limiting concurrent

programs to contain only two threads should not be restrictive in finding concurrency bugs. (ii)

It only allows one thread to be interfered by the other one. Our experiments show that this was

not restrictive in finding concurrency bugs in our benchmarks, i.e., we could catch all of the

known bugs in our benchmarks.

5.1 Preliminaries

In this section, we first fix the syntax of a simple sequential/concurrent programming language.

We use it later, in Section 5.2, to present the transformation algorithm. We also define the

notion of a consistent global trace which is used to prove the soundness of the sequentialization

technique.

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 96

< seq pgm > ::= < input decl >< main method >

< input decl > ::= inputs: < var decl >∗

< var decl > ::= int x; | bool x; | int[c] x; | bool[c] x;

< main method > ::= main { < var list >< stmt >; }

< var list > ::= vars: < var decl >∗

< stmt > ::= < stmt >;< stmt > | < simple stmt > | < complex stmt >

< simple stmt > ::= skip | x =< expr > | assume(< b expr >) | assert(< b expr >)

< complex stmt > ::= if (< b expr >) { < stmt >; } else{ < stmt >; }

< expr > ::= x | c | < b expr >

< b expr > ::= true | false | x | ¬ < b expr > | < b expr > ∨ < b expr >

(a) Syntax of a simple sequential programming language.

< conc pgm > ::= < input decl >< var list >< init method >< seq pgm >+

< init method > ::= init { < stmt >; }

< complex stmt > ::= if (< b expr >) { < stmt >; } else { < stmt >; } |

lock (x) { < stmt >; }

(b) Syntax of a simple concurrent programming language.

Figure 5.1: Syntax of a simple sequential/concurrent programming language.

5.1.1 A Simple Sequential/Concurrent Programming Language

Here, we define the syntax of a simple sequential/concurrent programming language with vari-

ables, either scalars or arrays, ranging over integer and boolean domains (Figure 5.1). We

assume that array sizes are specified statically during variable declaration. We also assume that

programs are bounded, while loops are unrolled for a bounded number of times, and function

calls are in-lined.

Figure 5.1a presents the syntax of a simple sequential programming. A sequential program

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 97

has a list of inputs and a method named main, from which it starts the execution. The main

method has a list of variables and a sequence of statements. Statements are either simple (e.g.,

skip, assignment, assume, and assert) or complex (e.g., conditional statement). Expressions can

be integer constants, variables, or boolean expressions. Boolean expressions can be true, false,

or boolean variables and can be combined using standard boolean operations. Furthermore,

non-boolean expressions are implicitly transformed to boolean expressions in the natural way

(i.e., false when the expression is evaluated to zero and true, otherwise) when assigned to

boolean variables.

We define a concurrent program (Figure 5.1b) to be a finite collection of sequential pro-

grams (called threads) running in parallel. Threads share some variables, and their inputs are

included in the inputs of the concurrent program. Here, definition of the complex statement is

augmented by lock statements as a synchronization mechanism for accessing shared variables.

A lock statement consists of a sequence of statements which are executed after acquiring a lock

on a shared variable x. The semantics of locking mechanism is standard; whenever a thread

obtains a lock on a variable, other threads cannot acquire a lock on the same variable unless the

thread releases the lock. Each concurrent program has a method, named init, for initializing

shared variables, and also for linking the inputs of the concurrent program to the inputs of the

individual threads.

5.1.2 Global Traces (Revisited)

We defined the notion of a global trace in Section 2.2.1, which is a sequence of accesses to

shared variables and synchronization operations. Note that a global trace does not contain any

information about local computations (i.e., reads and writes to local variables). In this chapter,

wherever we refer to program traces we mean global traces. However, we assume that program

threads are created statically (as in Figure 5.1b) at the beginning of the program and there is no

dynamic thread creation inside the threads.

Definition 5.1.1 (Consistent Global Traces). A global trace (Definition 2.2.1) is consistent

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 98

if it is lock-valid (Definition 2.2.2), data-valid (Definition 2.2.4), and creation-valid (Defini-

tion 2.2.5).

Note that the programming language in Figure 5.1b does not allow dynamic thread creation

(i.e., all of the threads are created statically at the beginning). Therefore, every global trace is

creation-valid by default. As a result, the definition of consistent global traces are reduced to

those that are lock-valid and data-valid.

Definition 5.1.2 (n-Interference Thread-Local Traces). A thread-local (i.e., all events corre-

spond to the same thread) global trace α is a n-interference thread-local trace if there are n

read events in α for which data-validity does not hold.

According to the above definition, an n-interference thread-local trace contains n read

events that read values different from what is written by the most recent write events to the

corresponding variables.

Definition 5.1.3 (Feasible n-Interference Thread-Local Traces). Let P be a concurrent pro-

gram with an input set I . A n-interference thread-local trace α for thread Ti is feasible if

it corresponds to an execution of Ti under some input values I while allowing n reads from

shared variables to read arbitrary values during the execution. We call such executions inter-

fered thread-local executions under I .

Note that the above definition does not consider any restriction for the arbitrary values read

by interfered read events. In fact, there might be no execution of P (under input values I) with

global trace ρ where ρ|Ti = α.

Lemma 5.1.4. Let P be a concurrent program and ρ be a consistent global trace. If there

exists some input values I such that for each thread Ti in P , ρ|Ti is a feasible n-interference

thread-local trace (for some n) under I then ρ represents a feasible execution of P under I .

Proof. Since ρ|Ti corresponds to a thread-local execution of each thread Ti under I with n

interference, therefore ρ respects program order (i.e., execution order in each thread). More-

over, ρ is data-consistent which shows that for each interfered read from a shared variable x

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 99

in a thread Ti there is another thread that can provide the value read by the interfered read for

x. These facts together with lock-consistency of ρ guarantee that ρ corresponds to a feasible

execution of P under I .

5.2 Sequentialization Algorithm

Let P be a bounded concurrent program consisting of two threads T and T ′, with a set of inputs

I . Given an interference bound k in T (i.e., number of reads that are allowed to read values

written by T ′), we transform P into a sequential program P̂k such that each execution of P̂k

corresponds to at least one (partial) execution of P with at most k interferences in T while T ′

is not interfered by T . The sequential program P̂k has an input set Îk where I ⊂ Îk. The inputs

in Îk \ I specify the interference scenario (i.e., the set of non-local reads and their matching

writes). Once k is fixed, there is a choice of which k reads to choose to get interfered in T and

which k writes to choose as their corresponding writes in T ′. Program P̂k takes all of these

choices as inputs. This means that any sequential testing tool that explores the input space

systematically will naturally try all possible interference scenarios (within the computation

limit).

The sequential program P̂k has two copies of shared variables; each thread reads/writes on

its own copy. P̂k first simulates the execution of T ′ to let it perform all writes that are supposed

to provide values for non-local reads. Then, it simulates the execution of T where non-local

reads read corresponding values produced by T ′.

The sequential program P̂k simulates the execution of T ′ from the beginning until the first

lock-free point (i.e., thread T ′ does not hold any lock), where all writes that are supposed

to produce values for non-local reads, have occurred. The reason that the execution of T ′

is continued to a lock-free point (after all writes that provide values for non-local reads are

performed) is that P̂k ultimately simulates the executions of P in which the events of T and T ′

are interleaved. Therefore, by moving to a lock-free point in T ′, we prune away unrealizable

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 100

executions in which T is blocked forever for acquiring locks that are never released by T ′.

Since T ′ uses its own copy of shared variables during execution, the sequential program

stores the values written by writes that are supposed to provide values for non-local reads, in

some auxiliary variables and later loads these values while the corresponding non-local reads

are being performed. When P̂k simulating the execution of T , it retrieves the value stored in

the corresponding auxiliary variable as each non-local read is being performed.

Note that not all interference scenarios defined by inputs are realizable. Therefore, we

have to ensure that there exists a feasible trace of P which (1) consists of the same events

as in the execution of P̂k, (2) observes for each interfered read in T the value written by the

corresponding write in T ′, and (3) all other reads that are not involved in any interference read

values written by their own thread (or the initial value of corresponding variable when there is

no write to the variable before the read in that thread). To achieve this, all global events (i.e.,

accesses to shared variables and synchronization events) are logged during the execution of P̂k,

and a set of constraints is generated that corresponds to the existence of a feasible trace. Every

time that T performs a read from a shared variable, we use a call to a SMT solver to check

for the satisfiability of these constraints. If the feasibility check passes, it means that there

exists a trace (representing an execution of P), with the same set of global events, in which the

previous reads involved in interferences are reading from the writes defined by the interference

scenario, and all other reads read from local writes. In this case, the execution of P̂k continues.

Otherwise, the execution is abandoned to prevent exploring unreachable states. Note that since

the interferences are limited to the ones specified by the inputs, the state of the program after

passing each feasibility check is the same for any possible model of the constraint system.

Therefore, it is just enough to ensure the existence of a feasible trace to be able to proceed the

execution soundly. In the remainder of this section, we precisely define the transformation that

was informally described here.

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 101

inputs: I;

int[k] rds, wrts;

vars: G, G’;

int[k] vals;

bool[k] rDone, wDone;

main(){

//initialize G, G’

...

//read-write assumptions

...

τ[T’];

assume(allWsDone());

τ[T];

}

Figure 5.2: Sequentialized program P̂k.

5.2.1 Transformation Scheme

Figure 5.2 illustrates the sequential program P̂k generated based on concurrent program P

consisting of threads T and T ′. We assume that both T and T ′ are bounded sequential pro-

grams where loops are unrolled for a bounded number of times and function calls are in-lined.

Therefore, all reads from shared variables in T and all writes to shared variables in T ′ can be

identified and enumerated, according to their order in the corresponding thread. The input set

of P̂k consists of I (i.e., inputs of the concurrent program P), and two arrays, rds and wrts,

of size k specifying k interferences; rds[i] stores the identifier of the ith non-local read in

T and wrts[i] stores the identifier of the write in T ′ which is supposed to provide a value

for rds[i]. In the case that the number of interferences is k′ < k, we assume that rds[i] =

null and wrts[i] = null for all k′ < i ≤ k.

The sequential program P̂k has two copies of shared variables, G and G’, on which T and

T ′ operate, respectively. Variable vals is an array of size k, where vals[i] stores the value

written by wrts[i]. There are also two arrays of size k, named rDone and wDone, such

that rDone[i] and wDone[i] indicate whether the ith non-local read and its matching write

have occurred, respectively. All elements of these arrays are initialized to false. wDone[i]

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 102

and rDone[i] become true when wrts[i] and rds[i] are performed, respectively. These

arrays are used to ensure that the corresponding reads and writes show up in the execution of

P̂k.

The main method in P̂k first initializes shared variables (according to the init method of

concurrent program P). Then, it prunes away some obvious unrealizable interference scenarios

(explained in the next paragraph). Then, it calls the transformed version of T ′ (represented by

τ [T ′]) and ensures that all writes specified by wrts have occurred during the execution of

τ [T ′]. This is done by assume(allWsDone()) where function allWsDone() returns true

if wDone[i] is true for all 1 ≤ i ≤ k (if wrts[i] is not null) and false, otherwise. Finally,

it calls the transformed version of T (represented by τ [T]).

As mentioned earlier, not all interference scenarios defined by rds and wrts are realiz-

able. The minimum (but not sufficient) requirement is that for each non-local read rds[i]

from a shared variable, its matching write wrts[i] should write to the same shared variable.

This is ensured through a set of assumption statements in the main method. Note that in our

transformation scheme, one always has the option of approximating the search space by allow-

ing only a subset of reads in T to be non-local, and also by selecting only a subset of writes

to the corresponding variable in T ′ as candidates for each non-local read. The main method

also ensures that in the case that the number of interferences is less than k (say k′ < k), then

rds[1..k’] and wrts[1..k’] define the interference scenario and the rest of the elements

in rds and wrts are set to null. This is done by a set of assumptions ((rds[i] = null)

⇒ (
∧k
j=i+1rds[j] = null

∧k
j=iwrts[j] = null)) for 1 < i ≤ k. Note that we do not

fix the number of interferences in advanced and it is defined by the rds and wrts inputs.

Furthermore, to avoid exploration of redundant interference scenarios (where the same set of

interferences are perturbed in rds and wrts arrays), the main method imposes an order on

the the set of non-local reads such that rds[i] < rds[i+1] for 1 ≤ i < k (if rds[i] and

rds[i+1] are not null) using assume statements.

In the following, we discuss the transformation of T and T ′. The transformation uses

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 103

two auxiliary functions, append and isFeasible, to check for the existence of a feasible

trace realizing the input interference scenario. Function append is used to add information

about global events to a log file. Each global event is a tuple (Ti, a) where Ti is the identifier

of the thread performing the event and a is a read/write action to a shared variable x or is

a lock acquire/release action on a lock variable l. At any point during the execution of P̂k,

this log provides the exact sequence of global events that occurred up to that point. Function

isFeasible checks whether the log can correspond to a feasible trace of program P (cf.

Section 5.2.2).

Transformation Scheme for Interfering Thread T ′

Figure 5.3 (on the right side) contains the transformation function τ for the statements of thread

T ′. The transformed program τ [T ′] is called by the main method and is executed until the first

lock-free point (i.e., T ′ does not hold any locks) at which all writes specified in wrts have

occurred. Note that the log contains all information necessary to determine which locks are

held at any point in the execution. Function returnCondition, used in τ [T ′], returns true

if T ′ is at a lock-free point and all writes in wrts are performed; otherwise, it returns false.

As mentioned before, T ′ operates on its own copy of shared variables, G’. However, to

have a consistent log, for each shared variable access, we log an access to the corresponding

variable in G instead of G’. For each shared variable x, let x′ denote the corresponding copy

for thread T ′ and let (b)expr′ be a (boolean) expression in which each shared variable x is

replaced by x′.

For each expression, the transformation logs a read event from each shared variable read

in the expression. For each assignment statement writing to a variable x, the right-hand side

expression (b)expr is transformed first and (b)expr′ is assigned to the corresponding variable;

if x is a local variable then x is used as the left-hand side of the assignment, otherwise, x′ is

used as the left-hand side of the assignment to let T ′ work on its own copy of shared variables.

In case that the assignment statement writes to a shared variable, the transformation checks

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 104

S in T Transformation τ [S] S in T ′ Transformation τ [S]

(b)expr //for each read r of x in (b)expr (b)expr // for each read r from shared var

//where x is a shared var // x in (b)expr

if (r == rds[1]) { append(log,(T’, rd("x", x)));

x = vals[1]; x = (b)expr τ [(b)expr];

rDone[1] = true; (x is a local var) x = (b)expr′

append(log,(T, rd("x", x)), 1); x = (b)expr τ [(b)expr];

assume(isFeasible(log)); (x is a shared var x’ = (b)expr′;

} else if (r == rds[2]) { and w is the id if (w == wrts[1]) {

x = vals[2]; of this write) vals[1] = x’;

assume(rDone[1]); wDone[1] = true;

rDone[2] = true; append(log,(T’, wt("x", x’)), 1);

append(log,(T, rd("x", x)), 2); if (returnCondition()) return;

assume(isFeasible(log)); } else if (w == wrts[2]) {

} vals[2] = x’;

... wDone[2] = true;

else if (r == rds[k]) { append(log,(T’, wt("x", x’)), 2);

x = vals[k]; if (returnCondition()) return;

assume(rDone[k-1]); }

append(log,(T, rd("x", x)), k);
...

assume(isFeasible(log)); else if (w == wrts[k]) {

} else { vals[k] = x’;

append(log,(T, rd("x", x))); wDone[k] = true;

assume(isFeasible(log)); append(log,(T’, wt("x", x’)), k);

} if (returnCondition()) return;

x = (b)expr τ [(b)expr]; x = (b)expr; }

(x is a shared var) append(log,(T, wt("x", x))) lock(x){ S } append(log,(T’, ac(x)));

x = (b)expr τ [(b)expr]; τ [S];

(x is a local var) x = (b)expr append(log,(T’, rel(x)));

lock(x){S} append(log,(T, ac(x))); if (returnCondition()) return;

τ [S]; assume(b expr) τ [b expr];

append(log,(T, rel(x))) assume(b expr′)

assume(b expr) τ [b expr]; assert(b expr) τ [b expr];

assume(b expr) assert(b expr′)

assert(b expr) τ [b expr]; if(b expr){S1} τ [b expr];

assert(b expr) if(b expr′){τ [S1]}

if(b expr){S1} τ [b expr]; else{τ [S2]}

else{S2} if(b expr){τ [S1]} S1;S2 τ [S1]; τ [S2]

else{τ [S2]} skip skip

S1;S2 τ [S1]; τ [S2]

skip skip

Figure 5.3: Transformation scheme for T and T ′.

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 105

whether the write is in wrts. If the write is supposed to provide a value for the jth non-

local read (i.e., the write is equal to wrts[j]), the value of the shared variable is stored in

vals[j] and wDone[j] is set to true. Then, a write event to x by T ′ is logged and function

returnCondition is called to return when T ′ gets to an appropriate point.

For a lock statement on variable x, a lock acquire and a lock release event are logged right

before and after the transformation of the lock body, respectively. Furthermore, after logging a

lock release event function returnCondition is called to check whether the execution of

T ′ should be stopped. Note that sequential programs do not have any lock statement. Therefore,

here only the body of the lock statement is considered in the sequential program.

For assume and assert statements, the corresponding boolean expressions are transformed

before these statements and the transformed statements refer to (b)expr′ instead of (b)expr.

For each conditional statement, the transformation generates a conditional statement (having

(b)expr′ instead of (b)expr as the conditional expression) where the statements in both if

and else branches are transformed, correspondingly. Here, the conditional boolean expression

is transformed right before the conditional statement as well. The transformation of a sequence

of statements includes the sequence of transformation of individual statements. Finally, skip

statements stay unchanged.

Transformation Scheme for Interfered Thread T

Figure 5.3 (on the left side) presents the transformation function τ for the statements of thread

T . The goal of transformation is to let each read of a shared variable in an expression in T be

a candidate for a non-local read (observing a value provided by a write in T ′) while restricting

the total number of non-local reads to k. When transforming a (boolean) expression, for each

read r from a shared variable x we perform a case distinction:

(i) r is selected as one of the non-local reads by inputs; if r is the jth non-local read, where

1 ≤ j ≤ k, then x will read the value vals[j] written by wrts[j] in τ [T ′] and

rDone[j] is set to true, indicating the jth non-local read has been performed which is

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 106

required when the next non-local read (i.e., rds[j+1]) is performed. Then, a read event

from x by T is logged and it records that it was the jth non-local read. Finally, it ensures

that a feasible trace exists that realizes the interference scenario so far. Therefore, it calls

isFeasible(log) and stops the execution if no such feasible trace exists.

(ii) r is a local read, i.e., it does not belong to the input set rds. A read event from x by

T is logged and then isFeasible(log) is called to ensure that a feasible trace in

which this read and all previous local reads see values written locally (while all previous

non-local reads are matched with the corresponding writes as specified by inputs) exists.

For each assignment statement, the right-hand side expression, is transformed (as discussed

above), first. Then, the assignment comes unchanged. In case that the assignment writes to

a shared variable, a write event to the corresponding variable is logged. For a lock state-

ment on variable x, lock acquire and lock release events are logged right before and after

the transformation of the lock body, respectively. Assume and assert statements remain the

same unless the corresponding boolean expressions are transformed before these statements.

For each conditional statement, the transformation generates a conditional statement (with the

same conditional expression) where the statements in both if and else branches are trans-

formed, correspondingly. Here, the conditional boolean expression is transformed right before

the statement as well. The transformation of a sequence of statements includes the sequence of

transformation of individual statements. Finally, skip statements stay unchanged.

5.2.2 Feasibility Check Constraints

The isFeasible function gets a log ρ as its input and checks for the existence of a feasible

trace of the concurrent program (consisting of the events in ρ) in which rds[i] in ρ is reading

from wrts[i] for 1 ≤ i ≤ k′ (where k′ ≤ k is the number of non-local reads appearing in

ρ) and all other reads are reading values written by local writes. The isFeasible function

generates a constraint system that encodes all such feasible traces and uses SMT solvers to

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 107

ψ: PO ∧ LC ∧WRCinterference ∧WRClocal

PO:
∧m−1
i=1 (tei < tei+1

) ∧
∧n−1
i=1 (te′i < te′i+1

) ∧ Cinit

Cinit: (tinit < te1) ∧ (tinit < te′1)

LC: LC1 ∧ LC2

LC1:
∧
l∈L
∧

[aq,rl]∈LT,l
[aq′,rl′]∈LT ′,l

(trl< taq′ ∨ trl′< taq)

LC2:
∧
l∈L
∧

aq∈NoRelT,l
[aq′,rl′]∈LT ′,l

(trl′< taq)

WRCinterference:
∧

1≤i≤k Coupled(rds[i], wrts[i])

WRClocal:
∧
r not in rds Coupled(r,LocW(r))

Coupled(r, w): (tw < tr) ∧
∧
w′∈Wx\{w}((tr < tw′) ∨ (tw′ < tw))

Figure 5.4: Constraints for checking the existence of a feasible schedule

find an answer. For each logged event e in ρ, an integer variable te is considered to encode

the timestamp of the event. The constraints required for such feasible traces are captured using

timestamps.

Figure 5.4 illustrates the constraint system. It is a conjunction of program order constraints

(PO), lock-validity constraints (LC), write-read constraints for interferences (WRCinterference),

and write-read constraints for local reads (WRClocal).

PO: Let ρ|T = e1, e2, ..., em and ρ|T ′ = e′1, e
′
2, ..., e′n be the sequence of events in ρ projected

to threads T and T ′, respectively. According to the program order, each event cannot happen

unless its preceding event in that thread (according to ρ) has occurred. We also consider an

initial event einit which corresponds to the initialization of shared variables. This event should

happen before any thread starts its execution in any feasible trace; it is encoded as the constraint

Cinit in Figure 5.4. The constraint PO, ensures that the order of events in T and T ′ is preserved.

LC: Each feasible trace should be lock-valid; i.e., threads cannot hold the same lock simul-

taneously. Each lock acquire event aq of lock l in the log is matched by precisely one lock

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 108

release event rl of lock l in the same thread, unless the lock is not released by thread T in the

log. Each lock acquire event aq and its corresponding lock release event rl define a lock block,

represented by [aq, rl]. Let LT,l and LT ′,l be the set of lock blocks of lock l in threads T and

T ′, respectively. Then, LC1 ensures T and T ′ cannot be inside lock blocks of the same lock

l, simultaneously. Turning to locks that are not released by T in the log, the constraint LC2

ensures that the acquire of lock l by thread T which is not released must always occur after all

releases of lock l in thread T ′. In this formula, NoRelT,l stands for lock acquire events in T

with no corresponding lock release event.

WRCinterference & WRClocal: Let Wx represent the set of all write events to shared variable x in

the log, and LocW be a function that for each read event r from a shared variable x returns the

most recent write event to x in the log performed by the same thread; in case there is no such

write event, einit is returned. For each read event r from a shared variable x and write event

w to the same variable, the formula Coupled(r, w) ensures that r is coupled with w by forcing

all events that write to x to happen either before w or after r. Therefore, WRCinterference ensures

that each read rds[i] is coupled with wrts[i] and WRClocal ensures that all other reads are

coupled with the most recent local writes to the corresponding variables.

5.3 Soundness and Completeness

Now, we discuss soundness and completeness of our testing technique based on bounded-

interference sequentialization. Let P be a concurrent program with threads T and T ′, and P̂k

be the corresponding sequential program which allows at most k interferences in T (while T ′

is not interfered by T).

Lemma 5.3.1. Suppose that an error is reached in τ [T ′] when P̂k is executed with some input

values I, rds, and wrts. The error corresponds to an error in concurrent program P , i.e.,

there exists an execution of P which leads to the error.

Proof. Let log be the log generated by P̂k during the execution. Since the error was revealed

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 109

in τ [T ′] and τ [T ′] simulates the execution of T ′ (on its own copy of shared variables) without

any interferences from T , log should represent a consistent feasible n-interference thread-

local trace of thread T ′ (for n = 0). Therefore, log corresponds the execution of P with input

values I where T ′ is executed sequentially first, which leads to the error.

Lemma 5.3.2. Let log be a log (written by P̂k during the execution of P̂k with input values

I, rds, and wrts) at a feasibility check point. Suppose that the constraint system made by

isFeasible(log) is satisfiable and ρ is a global trace obtained by ordering the events in

log according to the timestamps satisfying the constraint system. Then, ρ is a feasible global

trace of P (i.e., corresponds to an execution of P) under input values I.

Proof. log|T represents a feasible n-interference thread-local trace (for some n ≤ k) and

log|T ′ represents a sequential execution of thread T ′ (i.e., a feasible n-interference thread-

local trace for n = 0) under input values I. According to the lock-validity and write-read

constraints in the feasibility check, ρ is a consistent global trace. According to the program

order constraints ρ|T = log|T and ρ|T ′ = log|T ′ . Therefore, both ρ|T and ρ|T are feasible

n-interference thread-local traces. Based on Lemma 5.1.4, ρ should be a feasible global trace

of P under input values I.

Lemma 5.3.3. Suppose that an error is reached in τ [T] when P̂k is executed with some input

values I, rds, and wrts). The error corresponds to an error in concurrent program P , i.e.,

there exists an execution of P which leads to the error.

Proof. Let log be the log generated by P̂k before revealing the error. There are two cases:

(i) The error is revealed before any non-local read. In this case, log|T is a consistent feasi-

ble n-interference thread-local trace of T (for n = 0). Therefore, log|T corresponds the

execution of P with input values I where T is executed sequentially first which leads to

the error.

(ii) The error is revealed after some non-local reads in τ [T]. Let logpre be the prefix of

log which is passed to the last call of function isFeasible in the execution of P̂k

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 110

before the error. We know that isFeasible(logpre) returns true since otherwise the

execution would have been aborted. According to Lemma 5.3.2, there exists a (partial)

execution R of program P under input values I with a global trace ρ such that ρ|T =

logpre|T and ρ|T ′ = logpre|T ′ . Let R′ be an execution of P under I where partial run

R is continued by executing T and let ρ′ be the global trace according R′. logpre|T

is a common prefix of log|T and ρ′|T . On the other hand, log|T and logpre|T are

feasible n-interference thread-local traces of T (for some n) under I with exactly the

same interfered reads. Therefore, ρ′|T = log|T and the error is revealed in T in R′.

Theorem 5.3.4. Every error revealed in the execution of P̂k corresponds to an error in the

concurrent program P , i.e., there exists an execution of P that leads to the error.

Proof. The error is either revealed in τ [T] or in τ [T ′]. According to Lemmas 5.3.1 and 5.3.3,

in either case there exists an execution of P which leads to the error.

Now, we discuss the coverage guarantees of bounded-interference sequentialization, based

on the coverage guarantees of the backend sequential testing tools.

Lemma 5.3.5. Let P̂k be the sequential program obtained from a concurrent program P ac-

cording to the transformation presented in Section 5.2. Suppose that a bug requires k′ inter-

ferences (where 0 ≤ k′ ≤ k) in thread T and no interference in thread T ′ to be revealed under

some input values in P . Then, there exists some input values I , wrts and rds for P̂k such that

the execution of P̂k with these inputs reveals the bug.

Proof. Let ρ be the global trace corresponding to an execution R of program P with k′ inter-

ferences in T under input values I that reveals the bug. There are two cases:

• k′ = 0, i.e., the bug is a sequential bug either in T or in T ′. Let rds[i] = null and

wrts[i] = null for all i ≤ k. We claim that the execution of P̂k under input values I ,

wrts and rds reveals the bug. Let log be the log generated during the execution of P̂k.

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 111

First, assume that the bug is in T ′. ρ|T ′ represents a feasible 0-interference global trace

for sequential execution of T ′ under input values I . On the other hand, P̂k, calls τ [T ′]

which simulates the sequential execution of T ′ (on its own copy of shared variables)

under input values I . Furthermore, since wrts[i] = null for all i ≤ k, the execution

of τ [T ′] will not be stopped by any return statement added in τ [T ′] (to return after the

first lock-free point where all writes in wrts are performed). Therefore, log|T ′ = ρ|T ′

which reveals the bug.

Now, assume that the bug is in T . ρ|T represents a feasible 0-interference global trace

for sequential execution of T under input values I . P̂k first calls τ [T ′] which works on

the second copy of shared variables. Therefore, when τ [T ′] returns, the main copy of

shared variables have their initial values. Since rds[i] = null for all i ≤ k, each from

a shared variable reads a value generated locally during the execution of τ [T] and hence

P̂k simulates the sequential execution of T under input values I . Therefore, log|T = ρ|T

which reveals the bug.

• k′ > 0, i.e., the bug is a concurrency bug that is revealed in T . From ρ, we obtain a set

of input values for P̂k as follows:

Let γ = {(id(r), id(w)) | r is a read event by T and w is its matching write performed by

T ′ in ρ} where function id returns the identifier of the corresponding read or write;

i.e., γ specifies the set of interferences in ρ. We sort γ such that (id(r), id(w)) <

(id(r′), id(w′)) iff id(r) < id(r′). Let rds[1..k’] = Reads(γ) and wrts[1..k’]

= Writes(γ) where Reads and Writes return arrays consisting of the reads and writes

involved in γ in the sorted order. Let rds[k’+1..k] = null and wrts[k’+1..k] =

null. We claim that P̂k reveals the bug when it is executed with input values I , wrts

and rds:

Let vw[1..k’] and vr[1..k’] represent the values written by wrts[1..k’] or read

by rds[1..k’] in ρ, respectively. Assume that the execution of P̂k with input values I ,

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 112

wrts and rds generates a log file log. We prove that log|T = ρ|T which reveals the

bug.

P̂k first calls τ [T ′]. The execution of τ [T ′] with input values I , wrts and rds, sim-

ulates sequential execution of T ′ with I . We know that ρ|T ′ represents a feasible 0-

interference global trace for sequential execution of T ′ with input values I that contains

wrts[1..k’]. Therefore all writes in wrts[1..k’] occur in the execution of τ [T ′] as

well and vals[1..k’] = vw[1..k’] by the time that τ [T ′] is returned.

P̂k calls τ [T] after τ [T ′]. Let log|T,i and ρ|T,i represent prefixes of log|T and ρ|T right

before the ith non-local read, respectively. ρ|T,1 corresponds to sequential execution of

T under input values I until the first non-local read. Also, before reaching the first non-

local read, P̂k simulates the sequential execution of T under input values I . Therefore,

rds[1] will occur in the execution of P̂k and log|T,1 = ρ|T,1. When reaching rds[1],

P̂k loads value vals[1] = vw[1] into rds[1]. Therefore, P̂k continues simulating

the same thread-local execution path of T as the thread-local execution path of T in R,

until reaching rds[2]. As a result log|T,2 = ρ|T,2. The same kind of argument is

valid for later non-local reads and therefore log|T,k′ = ρ|T,k′ . When reaching rds[k’],

P̂k loads value vals[k’] = vw[k’] into rds[k’]. After rds[k’] is performed, P̂k

continues simulating the same thread-local execution path of T as the thread-local exe-

cution path of T in R (i.e., log|T = ρ|T), which reaches the error. Note that according

to ρ, isFeasible(log) is guaranteed to return true wherever it is called during the

execution of P̂k. Therefore, the execution of P̂k will not be aborted before getting to the

error.

Theorem 5.3.6. Suppose that a testing tool provides path coverage guarantees. Let P̂k be the

sequential program obtained from a concurrent program P according to the transformation

presented in Section 5.2. Subjecting the testing tool to P̂k will catch all bugs that require k′

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 113

interferences (where 0 ≤ k′ ≤ k) in thread T and no interference in thread T ′ to be revealed

under some input values in P .

Proof. Assume that a bug requires k′ interferences (where 0 ≤ k′ ≤ k) in thread T and no in-

terference in thread T ′ to be revealed under some input values in P . According to Lemma 5.3.5

there exists some input values I , wrts and rds such that the execution of P̂k under these inputs

reveals the bug. Therefore, there exists at least one execution path in P̂k that leads to the bug.

Hence, a sequential testing tool that provides path coverage guarantees should be able to catch

the bug.

5.4 Evaluation

We have implemented a prototype testing tool for multi-threaded C# programs according to the

bounded-interference sequentialization and applied it on a benchmark suite. In the following,

we first briefly discuss the implementation and then present the experimental results.

5.4.1 Implementation

Figure 5.5 presents a high-level view of testing based on bounded-interference sequentializa-

tion. We used a C# parser, CSPARSER1, for source-to-source transformation. We changed the

parser such that in addition to a concurrent program, it gets an unrolling bound (u) for loops

and an interference bound (k) as inputs and transforms the concurrent program to a sequential

program, according to the transformation rules presented in Section 5.2. Throughout the trans-

formation, each loop in the concurrent program is unrolled for u times, and all reads and writes

to shared variables are identified and enumerated. In this prototype, the assumptions in the

main method of the sequential program (defining the set of possible interference scenarios),

are generated manually.

1http://csparser.codeplex.com/

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 114

Figure 5.5: Test generation by bounded-interference sequentialization.

According to Theorem 5.3.6, the testing technique is complete if the resulting sequential

program is subjected to a sequential testing tool that provides path coverage guarantees. How-

ever, providing path coverage guarantees can be very expensive in practice. We used Microsoft

PEX [84] as our backend sequential testing tool which itself uses Z32 [9] as the underlying

SMT solver. PEX targets different variations of control-flow coverage such as basic block cov-

erage, explicit and implicit branch coverage. Control-flow coverage, in general, is weaker than

path coverage in the sense that it might miss some program bugs. However, PEX managed to

find all known bugs and some new bugs in our benchmarks.

For a given concurrent program, we sequentialize the program, starting with interference

bound k = 1, and use PEX to test the resulting sequential program. In the case that no error

is found by PEX, the interference bound is increased incrementally and the same process is

repeated until the time/computation limit is hit, an error is found, or all possible interference

scenarios are explored.

5.4.2 Experiments

Benchmarks: To evaluate the effectiveness of our tool, we performed some experiments on

a benchmark suite of C# programs. Bluetooth is simplified model of the bluetooth driver

presented in Figure 4.1. Account is a program that creates and manages bank accounts.

Meeting [44] is a sequential program for scheduling meetings. Like in [44], we assumed that

there are two copies of the program running concurrently. Vector, Stack, StringBuffer,

2http://research.microsoft.com/en-us/um/redmond/projects/z3/

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 115

program Num. of bugs Num. of bugs Num. of bugs Num. of tests total

(LOC) (1 interference) (2 interferences) (3 interferences) generated by PEX time (sec.)

Bluetooth (55) 0 1 0 18 26

Account (103) 1 0 0 38 28

Meeting (101) 1 0 0 12 16

Vector1 (345) 0 1 0 55 104

Vector2 (336) 0 1 0 51 80

Vector3 (365) 0 1 0 82 102

Stack1 (340) 0 1 0 52 100

Stack2 (331) 0 1 0 49 74

Stack3 (361) 0 1 0 79 98

HashSet (334) 1 0 0 32 22

StringBuffer (198) 1 0 0 12 12

Series (230) 1 0 0 9 10

SOR (214) 0 1 0 372 490

Ray (1002) 1 0 0 7 18

FTPNET (2158) 2∗ 0 0 10 56

Mutual (104) 1 0 0 28 10

Table 5.1: Experimental results for testing based on bounded-interference sequentialization.

Symbol * means new bugs found.

and Hashset are all classes in Java libraries. To test these library classes, we wrote pro-

grams with two threads, where each thread executes exactly one method of the corresponding

class. Series, SOR, and Ray are Java Grande multi-threaded benchmarks3. For the above

Java programs, we used a Java to C# converter to transform the corresponding Java classes to

C#. FTPNET4 is an open source FTP server in C# and Mutual is a buggy program (presented

in Figure 4.2) in which threads can be in a critical section simultaneously due to improper

synchronization.

We set the loop unrolling bound u to 2 and sequentialized the programs for interference

bound 1 ≤ k ≤ 3 (there was no interference scenario with k ≥ 4 interferences in one thread T

3http://www.javagrande.org/
4http://sourceforge.net/projects/ftpnet/

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 116

in any of the benchmarks). In the main method of the sequential program, we added assump-

tions allowing all possible interference scenarios; i.e., we let each shared variable read in T to

be a non-local read and consider all writes to the corresponding shared variable in thread T ′ as

possible matches for the read.

Table 5.1 contains information about the number of bugs found by allowing k interferences

for 1 ≤ k ≤ 3, the total number of tests generated by PEX, and the total time spent by PEX for

testing the generated sequential programs for each benchmark.

Observations: The experiments show that the bounded-interference heuristic is very effective

in finding concurrency bugs. All of the bugs were found by allowing only one or two inter-

ferences. This implies that concurrency bugs are not very complex, normally. In all of the

benchmarks, no new error was found when k was increased to 3. Since these benchmarks have

been used by other tools before, we know of no (previously found) bugs that were missed by

our tool. Moreover, we found some new bugs that were not previously reported in FTPNET.

Another observation is that the total number of generated tests by PEX is reasonable. Since

this number is directly affected by the total number of possible interference scenarios (in which

one thread is interfered by the other one), we can conclude that the bounded-interference

heuristics performs pretty well in reducing the search space while being effective in finding

bugs.

Furthermore, the testing technique is very time efficient; the testing time for all of the

benchmarks (except SOR) was less than two minutes. For SOR, the majority of time (about 7

minutes) was spent for testing the program with 3 interferences. This is because there are many

shared variables reads in SOR and many options for the coupling writes for each read.

Although the main goal of the sequentialization was to quickly test whether the bounded-

interference heuristic performs well in practice, we were curious to see how it performs com-

pared to the other sequentialization techniques. We selected POIROT5, which is a tool that

exploits context-bounding sequentialization of concurrent programs and performs a static anal-

5http://research.microsoft.com/en-us/projects/poirot/

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 117

ysis to find assertion violations, and compared our tool with it. However, a side by side com-

parison with POIROT, when it does not aim for test generation to increase code coverage, is not

meaningful.

POIROT has its own input language. We picked two of the benchmarks (i.e., SOR and

Mutual), which did not use the object oriented paradigm and could be transformed to the the

input language of POIROT more naturally, and translated them manually. Our experiments

showed that POIROT did not scale well for these benchmarks. POIROT failed to catch the bug

(which is an assertion violation) in SOR for context bound of 2, 3, and 4 within 30 minutes (for

each bound). For Mutual, which requires 3 context switches to expose the bug, we set the

loop unrolling bound u = 50. Our tool found the bug in a few seconds while Poirot failed to

catch the bug for context bound of 3 within 30 minutes.

Conclusion: Our experiments showed that the bounded-interference heuristic is very effective

in finding concurrency bugs. In fact, all of the bugs in our benchmarks were found by allowing

only a few number of interferences among threads. This suggests that the bounded-interference

heuristic can be used by test generation techniques to efficiently search through the exploration

space. We also performed some experiments to compare our testing technique based on the

bounded-interference sequentialization with a POIROT that uses the context bounding sequen-

tialization to find bugs. Our experiments showed that the bounded-interference heuristic is

more efficient than the context bounding.

5.5 Related Work

The idea of sequentializing concurrent programs and analyzing the resulting sequential pro-

grams was first proposed by Qadeer et al. in [62]. According to their sequentialization tech-

nique, the generated sequential program simulates the behaviours of the concurrent program

up to only two context-switches. Their transformation algorithm is cheap in the sense that it

does not introduce any additional copies of the shared variables. However, allowing maximum

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 118

two context-switches is too restrictive for catching many concurrency bugs.

Lal and Reps [44] proposed another sequentialization technique in which a boolean concur-

rent program with finitely many threads is transformed to a boolean sequential program which

encodes the behaviours of the concurrent program corresponding to k rounds of executions of

threads (in a round-robin manner). Their transformation introduces k extra copies of shared

variables, one to keep the values of shared variables at each round. The sequential program

calls the threads sequentially, and each thread uses the corresponding set of shared variables

in each round. It then ensures that the values of shared variables at the end of each round are

equal to the values of them at the beginning of the next round. Lahiri et al [42] adapted the

sequentialization technique of Lal and Reps for C programs. Appealing to this transformation,

Rakamaric implemented a tool, called STORM [63], for static unit checking. Later, La Torre et

al. [85] adjusted the sequentialization technique of Lal and Reps for k context-switches instead

of k context-rounds. However, all of these sequentialization techniques are meant to be used in

static program analysis; execution of the sequential programs requires guessing the values of

shared variables at the beginning of each context/round which might lead to unreachable states

for wrong guesses.

La Torre et al [85] also proposed a lazy sequentialization technique using the context bound-

ing heuristic that does not introduce any additional copies of shared variables. The idea is to

execute the active thread in each context from the beginning to re-compute the values of local

variables at the beginning of that context while using the corresponding pre-computed values

of shared variables at the beginning of each previous context in which the thread was active.

The main problem with the lazy transformation is that it has a huge overhead calling threads

multiple times.

Another common problem with all of the aforementioned sequentialization techniques is

that the generated sequential programs are highly non-deterministic; a context-switch is added

after each statement of the concurrent program non-deterministically in the sequential program.

Therefore, it is not feasible to apply sequential testing techniques on the generated sequential

CHAPTER 5. TESTING BASED ON BOUNDED-INTERFERENCE SEQUENTIALIZATION 119

programs. In contrast, the bounded-interference sequentialization technique is tailored for test

generation, and available sequential testing techniques can be applied to the generated sequen-

tial programs without any modification.

5.6 Summary

In this chapter, we introduced a sequentialization technique based on the bounded-interference

heuristic to verify the effectiveness the bounded-interference heuristic. Based on our sequen-

tialization, a concurrent program is transformed to a sequential program such that the execu-

tions of the generated sequential program are equal to executions of the concurrent program

(within a bounded number of interferences among threads). One advantage of our sequential-

ization technique is that (in contrast to the sequentialization techniques based on context bound-

ing) state-of-the-art sequential testing techniques can be applied on the generated sequential

programs without any modification to explore both input and interference spaces of concur-

rent programs. Furthermore, using sequential testing tools with coverage guarantees (like path

coverage) would imply coverage guarantees (modulo the interference bound and computation

limits) on the concurrent program after the testing process is finished. We implemented a pro-

totype for multi-threaded C# programs. Our experiments showed that the bounded-interference

heuristic is very effective in finding concurrency bugs.

Chapter 6

Bounded-Interference Concolic Testing of

Concurrent Programs

Concolic testing [24, 73, 5, 84, 4] is a powerful technique in providing coverage guarantees for

sequential programs.

a successful technique in testing sequential programs. Concolic testing assumes that pro-

grams are deterministic, i.e., they will take the same execution path when the same input values

are given to them. Several advanced search algorithms over the input space (which is the only

parameter for sequential programs) have been proposed and embedded in concolic testing, tar-

geting different coverage criteria (e.g., path coverage, branch coverage, etc.). However, apply-

ing concolic testing to concurrent programs is very challenging. The behaviour of a concurrent

program is influenced not only by input values but also by interleavings of execution of threads.

Therefore, concolic execution of concurrent programs would result in a set of constraints that

are closely tied to the specific schedule performed during program execution.

Data races have been used to leverage concolic testing to generate tests for concurrent

programs [73, 70]. For example, jCUTE [73] is a concolic testing tool for multi-threaded

Java programs that uses data races as a heuristic for interleaving exploration. It first executes

the program with some random input values and observes an execution of the program under

120

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS121

some random thread scheduling. It identifies possible data races in the execution and repeat-

edly either generates new inputs (by keeping the schedule same as before) or generates a new

schedule (by keeping the input values same as before) by re-ordering the events that form a

data race. The main problem with this testing technique is that it can provide coverage guar-

antees only when the testing algorithm is terminated after considering all possible orderings

of events involved in a data race. Note that this exploration space is often very large for real

world programs such that the testing algorithm fails to terminate in a reasonable amount of

time. Therefore, due to the data race heuristic, jCUTE is unable to quantify the partial work

done (e.g., at the occasion of a timeout) as a meaningful coverage measure for the program.

In this chapter, we generalize concolic testing to concurrent programs, and hence we call it

concurrent concolic testing, or (conc)2olic testing in short [14]. However, we use the bounded-

interference heuristic (proposed in Chapter 4) to guide the input/interleaving exploration in a

way that we can quantify the effort spent on testing as a coverage measure. We introduce a

new component in concolic testing, called interference scenario exploration component, that

explores possible interference scenarios (within the interference bound) and for each of them

generates a test (i.e., input values and a schedule) that realizes it (if possible). Using the inter-

ference scenario exploration component, we build a general testing framework where one can

employ different strategies in exploring both input space and interference scenario space. We

have implemented a search strategy that targets achieving maximal branch coverage for concur-

rent programs (time and space allowing) while considering a bounded amount of interferences

among the threads.

(Conc)2olic testing can theoretically guarantee completeness in the limit; i.e., if the test-

ing algorithm runs for long enough without encountering memory issues, then, in the limit,

we can cover every program branch or declare it unreachable. However, it can also provide

coverage guarantees (modulo the maximum bound reached) at the occasion of timeouts or out-

of-memory errors. Naturally, (conc)2olic testing is limited by the same constraints that hold

concolic testing back, namely, external function libraries or limitations of the SMT solvers for

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS122

undecidable logics.

We implemented the (conc)2olic testing technique as a tool for testing multi-threaded C

programs and used a set of benchmarks in concurrency research literature to demonstrate the

practical efficiency of our technique in providing coverage and finding bugs in these bench-

marks. We present the (conc)2olic testing in this chapter in detail.

6.1 A Running Example

Figure 6.1 shows a buggy implementation of function addAll of a concurrent vector. We use

this example to explain ideas and algorithms presented in this chapter. This example also nicely

demonstrates why there is a need for systematic exploration of both input and interleaving

spaces for testing concurrent programs.

Function addAll has two input parameters which are pointers to vector structures. It ap-

pends all elements of the second vector to the end of the first vector. Each vector has three

fields: data which is an array holding vector elements, size which represents the size of

data, and cnt which keeps track of the number of elements in data. Function addAll uses

a lock lk to synchronize the calls to this function. It first checks whether there is enough

space to insert all elements of u->data into v->data, i.e., v->cnt + u->cnt ≤ v->size

(cf. line 4). If not, it increases the size of v->data accordingly. The invariant v->size ≥

u->cnt + v->cnt is stated as an assertion at line 8. Finally, it copies the elements and updates

v->cnt. The bug in addAll corresponds to the fact that the value of v->cnt is being read (at

line 2) outside the lock block and hence v->cnt can be changed by other threads before the

lock block is executed, leading to an inconsistent state.

Imagine a concurrent program with two threads T and T ′, each of them calling addAll

with v and u as arguments, where v is shared between the threads and u is an input of the

program. Therefore, each individual field of v is treated as a shared variable and each individual

field of u is treated as an input. Also, suppose that initially v->cnt is 10 and v->size is 20.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS123

typedef struct {int cnt, int size, int* data} vector;

pthread_mutex lk;

1 void addAll(vector* v, vector* u) {

2 int numElem = v->cnt + u->cnt;

3 pthread_mutex_lock(&lk);

4 if(numElem > v->size) {

5 v->data = realloc(numElem * 2);

6 v->size = numElem * 2;

7 }

8 assert(v->size ≥ u->cnt + v->cnt);

9 ... //copy data from u to v

10 v->cnt = v->cnt + u->cnt;

11 pthread_mutex_unlock(&lk);

12 }

Figure 6.1: A buggy implementation of function addAll of a concurrent vector.

Now, consider the situation where u->cnt=7 and the program is executed as follows:

(i) The first thread T executes line 2, reading 10 from v->cnt, 7 from u->cnt and storing

value 17 in numElem.

(ii) The second thread T ′ is executed completely. It reads values 10 and 7 from v->cnt and

u->cnt, respectively (at line 2) and assigns 17 to numElem. Then, it enters the lock

block. Since v->size is greater than 17 it skips lines 5 and 6 and assigns 17 to the

shared variable v->cnt before exiting the lock block.

(iii) Then, T continues execution: It skips lines 5 and 6 since (numElem=17)< (v->size=20).

However, when T gets to the assertion, v->cnt has value 17 written by T ′. Therefore,

(v->size=20) < (17 + 7), and hence the assertion is violated.

This error is interesting because it requires a combination of a particular concurrent sched-

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS124

ule combined a with particular (relative) values for the input vectors to manifest. If the threads

are executed sequentially back to back, nothing goes wrong. On the other hand, if we execute

the same interleaving (as described above), but start with u->cnt having the value 3 (instead

of 7), then nothing goes wrong again; the first thread assigns 13 to numElem, the second thread

skips lines 5 and 6 and assigns 13 to u->cnt. Then, the first thread skips lines 5 and 6 since

(numElem=13) < (v->size=20). This means that triggering this concurrency bug does not

solely depend on the schedule, nor does it solely depend on the chosen input values; it depends

on finding the right combination of input values and a schedule. Any testing technique that

does not explore the combination space systematically has the potential of missing on this bug.

6.2 Preliminaries

In this section, we introduce some notions from concolic testing adjusted to our application.

Classical sequential concolic testing (discussed in Section 3.2.4) logs a set of path constraints

over input variables during concolic execution which describes the conditions on the values of

the inputs that have to be true to drive the execution of the program along the same path. How-

ever, doing the same for concolic execution of multi-threaded programs would result in a set of

constraints that are closely tied to the specific schedule performed during program execution.

To solve this problem, we proceed as follows: Instead of explicitly tracking scheduling deci-

sions, we introduce symbolic variables which enable us to track the information flow between

threads. More precisely, we introduce an additional symbolic variable each time a shared vari-

able is read. Furthermore, for each shared variable write, we store the symbolic value (based on

symbolic inputs and symbolic read variables). By doing so, we will be able to flexibly combine

reads from and writes to shared variables and build a set of path constraints in a way which is

not tied to a specific schedule but rather depends on a set of interferences among the threads.

In the following, we define the notion of global symbolic traces. Same as global traces in-

troduced in Section 2.2.1, global symbolic traces does not contain any information about local

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS125

computations (i.e., accesses to local variables). However, for shared variable read and write

events, instead of concrete values read or written during the execution, we record symbolic

values. Furthermore, to be able to generate path constraints, global symbolic traces include

branching decisions (that depend on shared variables or input values) made throughout the

execution as well.

6.2.1 Global Symbolic Traces

Formally, a concurrent program consists of a set of threads T = {T1, T2, . . .}, a set of input

variables IN, a set of shared variables SV, a set of local variables LV, and a set of locks L that the

threads manipulate. Let SymbIN be a set of symbolic input variables {i0, i1, . . .} and SymbRV

be a set of symbolic shared read variables {r0, r1, . . .}. Furthermore, let Expr represent the

set of all expressions over SymbIN and SymbRV, and let Pred(Expr) represent the set of all

predicates over Expr. Then, the set of actions Σ that a thread can perform is defined as:

Σ = {rd(x, r) | x ∈ SV, r ∈ SymbRV} ∪

{wt(x, val) | x ∈ SV, val ∈ Expr} ∪ {tf(Ti) | Ti ∈ T} ∪

{ac(l), rel(l) | l ∈ L} ∪ {br(ψ) | ψ ∈ Pred(Expr)}

Action rd(x, r) corresponds to reading symbolic value r from a shared variable x. Each time

we observe a read from a shared variable during concolic execution, we introduce a new sym-

bolic variable r ∈ SymbRV that is uniquely associated with that specific read. Action wt(x, val)

corresponds to writing a symbolic value which is represented as an expression val to a shared

variable x. To couple a read of x with a write to x, it is enough to connect the stored expres-

sion at write to the symbolic value of the read, i.e., r = val. Action tf(Ti) represents forking

thread Ti. Actions ac(l) and rel(l) represent acquiring and releasing of lock l, respectively.

Finally, action br(ψ) denotes a branch which requires predicate ψ to be true. We model asser-

tions in a program by two branches, i.e., one branch for passing the assertion and one branch

for violating the assertion.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS126

We denote the execution of an action by a thread as an event. Formally, an event is a tuple

(Ti, a) ∈ T × Σ. Let EV denote the set of all possible events. During concolic execution, we

observe a sequence of events, a so-called global symbolic trace:

Definition 6.2.1 (Global Symbolic Trace). A global symbolic trace is a finite string π ∈ EV ∗.

By π[n], we denote the nth event of π. Given a global symbolic trace π, π|Ti is the projection

of π to events performed by Ti. A global symbolic trace π is thread-local, if π = π|Ti for some

Ti.

In this chapter, wherever we refer to symbolic traces (or shortly traces), we mean global

symbolic traces. The inputs to the concolic execution engine (which is adapted to execute

multi-threaded programs) are an input vector of the program and a schedule which exactly

specifies the resulting program run:

Definition 6.2.2 (Program Run). Consider a deterministic concurrent program P . A (par-

tial) run of P , represented by R = P (in, σ), is uniquely described by a valuation of the in-

put variables IN (presented by in) and a schedule σ. A schedule σ is defined by a sequence

(Ti1 , n1)(Ti2 , n2) . . . (Tim−1 , nm−1) (Tim ,−) where Tij ∈ T , for all 1 ≤ j ≤ m, and nj > 0,

for 1 ≤ j < m, specifies the number of executed actions. A tuple (Tij ,−) represents the ex-

ecution of thread Tij until Tij terminates. A program run R = P (in, σ) is feasible if P can

be executed with input vector in and according to schedule σ. Each feasible program run R

yields a symbolic trace π(R).

We assume that the program is instrumented in such a way that all program actions covered

in EV are actually observed by π(R).

Figure 6.2, on the left, shows a symbolic trace π obtained from the assertion violating ex-

ecution of the program in Figure 6.1, discussed in Section 6.1. Note that concolic execution

does not log any information about accesses to local variables. Internally, the concolic ex-

ecution engine keeps track of the symbolic values of local variables and is therefore able to

correctly update symbolic values written to shared variables.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS127

Initial thread: T

1 rd(v->cnt, r0)

Context switch: T → T ′

2 rd(v->cnt, r′0)

3 ac(lk)

4 rd(v->size, r′1)

5 br(r′0 + i0 ≤ r′1)

6 rd(v->size, r′2)

7 rd(v->cnt, r′3)

8 br(r′2 ≥ i0 + r′3)

9 rd(v->cnt, r′4)

10 wt(v->cnt, r′4 + i0)

11 rel(lk)

Context switch: T ′ → T

12 ac(lk)

13 rd(v->size, r1)

14 br(r0 + i0 ≤ r1)

15 rd(v->size, r2)

16 rd(v->cnt, r3)

17 br(r2 < i0 + r3)

2[r′0 = 10]

3

4[r′1 = 20]

5br(r′0 + i0 ≤ r′1)

6[r′2 = 20]

7[r′3 = 10]

8br(r′2 ≥ i0 + r′3)

9[r′4 = 10]

10wt(v->cnt, r′4 + i0)

11

1 [r0 = 10]

12

13 [r1 = 20]

14 br(r0 + i0 ≤ r1)

15 [r2 = 20]

16 [r3 = r′4 + i0]

17 br(r2 < i0 + r3)

T ′

T

Figure 6.2: Symbolic trace π obtained from the assertion violating execution of the program

presented in Figure 6.1 and its corresponding interference scenario IS(π). i0 represents the

symbolic value of input v->cnt. r0, r′0, r
′
3, and r′4 read initial value 10, and r1, r2, r′1, and r′2

read initial value 20, and r3 reads r′4 + i0.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS128

6.3 Interference Scenarios

In this section, we formally define the concept of interference scenarios, its variations, and

some applicable operations, which form the basis for (conc)2olic testing. We also define two

constraint systems to generate input values and schedules according to interference scenarios,

respectively.

6.3.1 Concepts and Definitions

An interference occurs whenever a thread reads a value that is written by another thread. We

introduce interference scenarios to describe a class of program executions under which certain

interferences happen during concolic execution. Intuitively, an interference scenario is a set

of thread-local symbolic traces extended with an interference relation between write and read

events from different threads. We represent a set of interference scenarios in a data structure

called interference forest. Formally, an interference forest is a finite labeled directed acyclic

graph whose nodes represent events and whose edges express relations between events.

Definition 6.3.1 (Interference Forest). An interference forest is a tuple I = (V,E, `) where

V is a set of nodes, ` : V → EV is a labeling function which assigns events to nodes. For

v ∈ V where `(v) = (Ti, a), we also define Th(v) = Ti and Ac(v) = a to be the thread and

the action of the corresponding event, respectively. The set of edges E is the disjoint union

E = EL ∪̇ EI of thread-local edges EL and interference edges EI . A thread-local edge (or,

simply, a local edge) is an edge (s, t) ∈ EL where Th(s) = Th(t). An interference edge

(s, t) ∈ EI is an edge where Th(s) 6= Th(t) and Ac(s) = wt(x, val) and Ac(t) = rd(x, r) for

some x, val, and r. We require that EI is an injective relation, i.e., each read is connected to at

most one write by EI . The thread-local edges can be naturally partitioned according to their

threads, i.e., EL = ET1 ∪̇ ET2 . . . ∪̇ ETn . Each ETi induces a subforest GTi which consists

of all nodes with Th(v) = Ti and edges in ETi . We require that each GTi is a rooted tree.

The number of interference edges |EI | is called the degree of the interference forest. Given

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS129

wt(y)

...
rd(x)

...

rd(x)

...
...

Thread T1

wt(z)

rd(y)
wt(x)

...

rd(y)
wt(x)

...
...

Thread T2

n

Figure 6.3: Example of an interference forest. Dashed lines enclose an interference scenario in

the interference forest.

an interference forest J , RI(J) denotes the read nodes involved in the interference edges of J ,

i.e., RI(J) = {nr | ∃nw.(nw, nr) ∈ EI}.

Figure 6.3 shows an interference forest. The nodes labeled with read/write and branch

actions are represented by squares and diamonds, respectively. Local edges are presented by

arrows and interference edges are presented by dotted arrows. The left tree represents GT1 and

the right tree represents GT2 . The degree of the interference forest is 2.

Definition 6.3.2 (Interference Scenario). An interference scenario (IS) is an interference forest

where each GTi is a path.

As mentioned at the beginning of this section, an interference forest is a compact represen-

tation for a set of interference scenarios.

Definition 6.3.3 (Causal Interference Scenario). Let I = (V,E, `) be an interference forest.

The transitive closure E∗ of the edge relation E is called the causality relation of I . Given a

node n, the causal interference scenario (CIS) of n is the subforest of I induced by the causal

predecessors of n, i.e., by the node set {v | (v, n) ∈ E∗}. We denote it by C = CIS (I, n) and

call n the sink of C, i.e., sink(C) = n.

Every causal interference scenario is itself an interference scenario. This is also the cru-

cial property why interference forests serve as compact representations for sets of interference

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS130

scenarios. In Figure 6.3, the causal interference scenario of node n is the interference scenario

enclosed by dashed lines.

Definition 6.3.4 (Isomorphic Interference Forests). Let J = (VJ , EJ , `J), K = (VK , EK , `K)

be two interference forests. Let RdsJ and RdsK be the symbolic variables corresponding to

reads from shared variables in node labels of J and K, respectively. J and K are isomorphic

if there exists a bijection f : RdsJ → RdsK , and a bijection g : VJ → VK such that (i)

g(vj) = vk iff `I(vk) is equal to `J(vj) where each symbolic variable r ∈ RdsJ is replaced by

f(r). (ii) (u, v) ∈ EJ iff (g(u), g(v)) ∈ EK .

Isomorphism on interference forests is like isomorphism on labeled graphs while the iso-

morphic nodes have the same labels modulo symbolic variables corresponding to reads from

shared variables. Construction of new interference scenarios from existing ones and merging

interference scenarios into an interference forest are two central operations in (conc)2olic tech-

nique. However, we cannot combine arbitrary interference forests/scenarios; they have to be

compatible with each other:

Definition 6.3.5 (Compatible Interference Forests). Two interference forests I , J are compati-

ble if there is an interference forest K and interference subforests I ′, J ′ of K such that I ′ and

J ′ are interference forests themselves and I is isomorphic to I ′ and J is isomorphic to J ′.

Definition 6.3.5 also applies to compatible interference scenarios since each interference

scenario is an interference forest by definition.

Remark 6.3.6. Two compatible interference forests can be merged into an interference forest

by naturally taking the minimal K, i.e., K only contains nodes and edges corresponding to I ′

and J ′. Note that if interference scenarios I and J are not compatible, then there is at least

one thread for which I and J describe different computations.

Each symbolic trace π (obtained from a program execution) defines an interference sce-

nario, denoted by IS (π). Intuitively, each event represents a unique node in IS (π) which is

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS131

labeled with that event. For each thread Ti, thread-local edges are added between the cor-

responding nodes according to the order in π|Ti (where π|Ti = πi,1, πi,2, .., πi,m denotes the

projection of events in π on thread Ti.) An interference edge is added for each node labeled

with a read event if the last write event to the same shared variable before the read event in π

is performed by another thread. More formally, IS (π) = (V,E, `) is defined as:

• V =
⋃
Ti
{ni,j | ni,j is a unique node for event πi,j},

• `(ni,j) = πi,j for each node ni,j ,

• ETi = {(ni,k, ni,k+1) | 0 ≤ k ≤ m− 1}, and

• EI = {(ni,k, nj,h) | Th(ni,k) 6= Th(nj,h),Ac(ni,k) = wt(x, val),Ac(nj,h) = rd(x, r)

for some x, val, r and πi,k is the last write to x in π before πj,h}.

Figure 6.2 shows the interference scenario for the symbolic trace obtained from the assertion

violating execution of the program in Figure 6.1 discussed in Section 6.1.

Definition 6.3.7 (Realizable Interference Scenario). An interference scenario I is realizable in

concurrent program P iff there is a feasible partial run R of P with π = π(R) such that IS (π)

is isomorphic to I . We say R realizes I for a such feasible program run R.

Realizable interference scenarios define equivalence classes on the set of program runs

which represent the same flow of data among the threads. Note that interference scenarios

are not monotonic wrt. realizability. Let I and I ′ be two interference scenarios where I is a

subgraph of I ′. Then, the realizability of I does not imply the realizability of I ′ and vice versa.

We will discuss the reasons for this behaviour at the end of this section.

Interference scenarios specify partial program runs and therefore unanticipated behaviour

can be observed:

Definition 6.3.8 (Unforeseen Interferences). Let I be a realizable interference scenario and

R be a partial program run with π = π(R) such that I is isomorphic to IS (π). Let R′ be a

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS132

run that extends R, i.e., π′ = π(R′) and π is a prefix of π′. Then, IS (π′) is a supergraph of

IS (π). More specifically, IS (π′) might contain some additional interferences. We refer to these

interferences as interferences unforseen by interference scenario I in run R′.

6.3.2 Constraint Systems

Each interference scenario implies constraints on both data and temporal order of the events.

Here, we describe these constraints in detail. In Section 6.4.3, we present a theorem (Theo-

rem 6.4.3) that shows how these constraints can be used to check for the realizability of an

interference scenario.

Data Constraints. Each interference scenario I = (V,E, `) defines a data constraint DC(I) as

shown in Figure 6.4. Any solution to DC(I) (if one exists), defines an input vector ī for the

concurrent program. The constraint DC(I) consists of three parts: (i) DCbranch, (ii) DCinterference,

and (iii) DClocal. The constraint DCbranch encodes all branch conditions occurring in I . The

intuition behind this constraint is that the program execution should follow the control path

in each thread represented by the respective branching conditions. DCinterference relates each

read from a shared variable, which should be interfered by a write from another thread, to the

symbolic value of the corresponding write. Finally, DClocal relates each read from a shared

variable, which should not be interfered by any write from other threads, to the most recent

write to the same shared variable performed by the same thread. If there is no such write

before the read, the symbolic value of the shared variable is constrained to the initial value of

the variable. In this formula, let intReads represent all nodes v with Ac(n) = rd(x, r) such that

v is involved in an interference edge inEI , and let LocW be a function that for each node v with

Ac(v) = rd(x, r) and Th(v) = Ti returns a node u with Ac(u) = wt(x, val) and Th(u) = Ti in

I such that u is the closest such node to v before v in GTi .

Temporal-Consistency Constraints. Each interference scenario I also defines a temporal con-

sistency constraint TC(I). Any solution to this constraint defines a schedule for the concurrent

program. The constraints in TC(I), as defined in Figure 6.4, are divided into the following

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS133

Data Constraints DC(I) :

DC(I): DCbranch(V) ∧ DCinterference(I) ∧ DClocal(I)

DCbranch(V):
∧
ψ∈BR(V) ψ where BR(V) = {ψ | v ∈ V,Ac(v) = br(ψ)}

DCinterference(I):
∧

(vrd,vwt)∈EI DCmatch(vrd, vwt)

DClocal(I):
∧
vrd 6∈intReads DCmatch(vrd,LocW(vrd))

DCmatch(vrd, vwt): (r = val) for Ac(vwt) = wt(x, val), Ac(vrd) = rd(x, r)

Temporal-Consistency Constraints TC(I) :

TC(I):
∧
Ti∈T POTi ∧ FC ∧ LC1 ∧ LC2 ∧WRCinterference ∧WRClocal

POTi :
∧
ni,j∈GTi , ni,j is not a leaf (tni,j < tni,j+1)

FC:
∧
Ti∈T (tntf(Ti)

< tni,1)

LC1:
∧
Ti 6=Tj

∧
l∈L
∧

[aq,rl]∈LTi,l
[aq′,rl′]∈LTj,l

(
trl< taq′ ∨ trl< taq

)
LC2:

∧
Ti 6=Tj

∧
l∈L
∧

aq∈NoRelTi,l

[aq′,rl′]∈LTj,l

(trl′< taq)

WRCinterference:
∧

(u,v)∈EI Coupled(v, u)

WRClocal:
∧
v 6∈intReads Coupled(v,LocW(v))

Coupled(v, u): (tu < tv) ∧
∧
n∈Wx\{u}((tn < tu) ∨ (tv < tn))

Figure 6.4: Constraint systems DC(I) and TC(I) for an interference scenario I = (V,E, `).

four categories: (i) thread-local program-order consistency (POTi), (ii) thread-fork consistency

(FC), (iii) lock consistency (LC1&LC2), and (iv) write-read consistency (WRC1&WRC2). For

each node n in I , an integer variable tn (timestamp) is considered to encode the index of the

event of the node in a symbolic trace π. In the constraints in Figure 6.4, let ni,j represent the

jth node in GTi , and let ntf(Ti) represent the node n where Ac(n) = tf(Ti). The constraints

of TC(I) are:

POTi: Ensures that for thread Ti, the thread-local program order is respected in the schedule.

FC: Ensures that no thread can be scheduled before it is forked.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS134

LC1 & LC2: Each lock acquire node aq with Ac(aq) = ac(l) and Th(aq) = Ti and its

corresponding lock release node rl in Ti define a lock block, represented by [aq, rl]. Let LTi,l

be the set of lock blocks in thread Ti regarding lock l. LC1 ensures that no two threads can be

inside lock blocks of the same lock l, simultaneously. LC2 ensures that the acquire of lock l

by a thread that never releases it in I must occur after all releases of lock l in other threads. In

this formula, NoRelTi,l stands for lock acquire nodes in Ti with no corresponding lock release

nodes.

WRCinterference & WRClocal: Let Wx represent the set of all nodes u with Ac(u) = wt(x, val),

and intReads and LocW as defined before. For each read node v and write node u, the formula

Coupled(v, u) ensures that the read event of v is coupled with the write event of u in π by

forcing all events that write to the corresponding variable to happen either before the event of

u or after the event of v in π.

Non-Monotonicity of Realizability. We can now explain the non-monotonic behaviour of

interference scenarios wrt. realizability that was mentioned in the discussion following Def-

inition 6.3.7. Let I and I ′ be two interference scenarios where I is a subgraph of I ′. Then,

according to the data constraints, all constraints in DCbranch(I) and DCinterference(I) appear

in DCbranch(I
′) and DCinterference(I

′), respectively. However, the constraints in DClocal(I) and

DClocal(I
′) are incomparable. The same phenomenon exists in the temporal-consistency con-

straints, i.e., WRClocal in I and I ′ are incomparable. This implies that, by extending an interfer-

ence scenario, the resulting constraint systems do not change in a monotonic way.

6.4 (Conc)2olic Testing

In this section, we first propose a general concolic testing framework for concurrent programs

based on the notion of interference scenarios defined in the previous section. Then, we develop

a concrete instance of this general framework by employing the bounded-interference heuristic

in the search algorithm which is both sound and complete.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS135

Path Exploration

Interference

Scenarios

Interference

Exploration

Realizability Check

Multi-threaded

Concolic Execution

Symb.

Trace

Yes:

realizable

Schedule &

Inputs

No: not

realizable

Seq. Schedule &

Random Inputs

Figure 6.5: (Conc)2olic testing framework.

6.4.1 General Framework

Figure 6.5 shows the (conc)2olic testing framework. Similar to concolic testing (see Fig-

ure 3.3), (conc)2olic testing has a concolic execution engine, a path exploration component

and a realizability check component. However, (conc)2olic testing has one more component,

called interference exploration component, that explores the space of interference scenarios.

In (conc)2olic testing, the execution engine is leveraged to execute a concurrent program

with the provided input values based on a given schedule. Symbolic traces obtained from

concolic execution are stored in an interference forest that keeps track of various interference

scenarios that have already been explored. The path exploration component then, based on an

already-seen interference scenario, aims to cover a previously uncovered part of the program

(e.g., uncovered branches), by doing input exploration according to that interference scenario.

Based on the interference scenario and a target branch defined by the path exploration, the

realizability check component investigates whether there exist a set of input values and a fea-

sible schedule such that the execution of the concurrent program with the inputs and based

on the schedule results in covering the branch. If the answer is yes, the next round of con-

colic execution uses some input values and a schedule that realizes the interference scenario

and covers the branch. In the case that the answer is no, the interference exploration compo-

nent extends the interference scenario by introducing new interferences. In the following, we

explain (conc)2olic testing components in more detail.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS136

Concolic Execution. There are two input parameters for the concolic execution engine in

(conc)2olic testing: (1) an input vector and (2) a schedule. The concolic execution engine exe-

cutes the concurrent program with the given input vector and according to the given schedule.

The program is instrumented such that, during the execution, all accesses to shared variables,

synchronization events, and branching events are recorded to generate a global symbolic trace.

This global symbolic trace contains all necessary information for the (conc)2olic engine to

make progress. However, it excludes any extra information, such as details of local com-

putations of threads, that can safely be ignored in (conc)2olic testing to gain scalability and

efficiency.

Path Exploration. The role of the path exploration component is to explore the input space for

a new set of input values that according to a previously-seen interference scenario covers a yet

uncovered part of the program. As in concolic testing, it gets a symbolic trace and selects a

branching event whose condition should be flipped to drive the execution towards an uncovered

part of the program. The goal of path exploration is to use the exact set of interferences seen

in a global symbolic trace and explore the input space based on that. Therefore, the path

exploration component does not introduce any new interference scenario.

Realizability Checker. Getting an interference scenario with an uncovered target branch, the

realizability checker determines if there is a set of input values and a feasible schedule such that

the execution of the program with the input values and under the schedule realizes the given

interference scenario and leads to covering the target branch. It generates the corresponding

constraint systems (discussed in Section 6.3.2) for the interference scenario. There are two

possibilities for such constraint systems:

(i) The combined constraint system has a solution. Then, any solution implies an input vec-

tor and a schedule which give rise to a program execution leading to covering the target

branch with exactly the same set of interferences as defined in the given interference sce-

nario. Therefore, we can formulate a new execution for the next round of the concolic

execution module.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS137

(ii) At least one of the constraint systems does not have a solution. This means that the

interference scenario has to change. The current interference scenario is passed to the in-

terference exploration module (described below), so that a new ones are produced based

on it.

Interference Exploration. The interference exploration component produces new interference

scenarios from previously explored interference scenarios, essentially by introducing a new

interference. This is done by picking a read from the given interference scenario that is not

interfered by other threads, and an appropriate write from the forest, and adding an interference

from the write to the read to generate a new interference scenario. Note that the occurrence

of the write event itself may be conditional on existence of other interferences. Therefore, to

preserve soundness, all of those interferences should be included in the produced interference

scenario as well.

Search Strategy. Having the above components, (conc)2olic testing can exploit different

search strategies and heuristics to explore the interference scenario space. We have devel-

oped an instance of it by employing the bounded-interference heuristic in the search strategy

and targeting branch coverage. According to this search strategy, all interference scenarios

with one interference are explored first, and then interference scenarios with two interferences

are explored, and so on. A nice feature of this exploration strategy is that it is complete (Theo-

rem 6.4.3) modulo the interference bound (and of course concolic testing limitations).

6.4.2 Testing Algorithm

Here, we present an algorithm that instantiates the (conc)2olic testing framework by employing

the bounded-interference heuristic in the search strategy and targeting branch coverage. Each

assertion in the program can be modeled by two branches, one for passing the assertion and one

for assertion violation. Therefore, our (conc)2olic testing implicitly aims at finding assertion

violations. We are specifically interested in interference scenarios related to nodes labeled with

branch actions:

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS138

Definition 6.4.1 (Interference Scenario Candidate, ISC). Let n be a node with Ac(n) = br(ψ),

for some ψ. A causal interference scenario C is an interference scenario candidate for node n

if sink(C) = n.

Note that each ISC C with sink(C) = n (if realizable) defines a set of partial program runs

where Ac(n) is the last action in the run. According to the bounded-interference heuristic, our

algorithm enumerates all ISCs of degree i, and checks their realizability, before moving to ISCs

of degree (i+ 1) for all 0 ≤ i ≤ kmax − 1 where kmax is the interference bound.

Assumptions. For a concurrent program P , we assume that (i) individual threads in P are

deterministic sequential programs. (ii) all threads are created by the main method of program

P . Furthermore, to keep the exposition simple, we will make the following simplifying as-

sumptions: (iii) There are no unforeseen interferences for an ISC C, i.e., each program run R′

extending a partial run R, with C = IS (R), results in an interference scenario IS (R′) which

has exactly the same interferences as C. (iv) There are no locks in concurrent programs. Note

that we state assumptions (iii) and (iv) for ease of presentation and our (conc)2olic testing is

not limited to settings where these assumptions are true; specially, all benchmark programs in

Section 6.5.2 contain locks. We address removing these assumptions in Section 6.4.4.

Algorithm 3 shows our (conc)2olic testing algorithm. Given a concurrent program P and a

threshold kmax for the number of interferences, the algorithm explores ISCs of degree ≤ kmax

with the aim of increasing branch coverage. For each such ISC, the algorithm tries to compute

a corresponding test.

1-5: Data Structures. The algorithm utilizes three central data structures: (i) a global inter-

ference forest forest that stores all interference scenarios explored by concolic execution, (ii) a

list of sets W0, . . . , Wkmax , where each Wk, for 0 ≤ k ≤ kmax , serves as a worklist for ISCs of

degree k, and (iii) a list of sets UN 0, . . . , UN kmax , where each UN k, for 0 ≤ k ≤ kmax , stores

all processed but unrealizable ISCs of degree k. All these data structures are initially empty

(cf. lines 1 to 5). During the execution of Algorithm 3, each generated ISC C of degree k is

initially inserted into Wk. Later on, Algorithm 3 checks for the realizability of C and moves it

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS139

Algorithm 3: Test(program P , bound kmax)

1 IForest forest← ∅

2 ISC-Set W0, . . . ,Wkmax , UN 0, . . . ,UN kmax

3 for k = 0 to kmax do

4 Wk ← ∅

5 UN k ← ∅

6 ī← random inputs

7 foreach thread Tj do

8 π ← ConcolicExecution(P, (̄i, (Tj ,−)))

9 W0 ← W0 ∪ ExtractISCs(π)

10 for k = 0 to kmax do

11 while Wk 6= ∅ do

12 pick and remove C from Wk

13 ISC-Set iscs ← ∅

14 (result, ī, σ)← RealizabilityCheck(C)

15 if result 6= realizable then

16 UN k ← UN k ∪ {C}

17 iscs ← ExploreISCs(C,write-nodes(forest))

18 else

19 π ← ConcolicExecution(P, (̄i, σ))

20 Wk ← Wk ∪ ExtractISCs(π)

21 Wrts ← new-write-nodes(forest, π)

22 foreach C′ ∈ UN i, 0 ≤ i ≤ k − 1 do

23 iscs ← iscs ∪ ExploreISCs(C′,Wrts)

24 foreach C′ ∈ iscs do

25 k′ ← Degree(C′)

26 if k′ ≤ kmax then

27 W k′ ←W k′ ∪ {C′}

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS140

Algorithm 4: ExtractISCs (Symbolic Trace π) : ISC-Set

1 F← addDanglingNodes(IS (π))

2 MergeInterferenceForests(forest,F)

3 ISC-Set iscs← ∅

4 foreach dangling node n newly added to forest do

5 iscs← iscs ∪ {CIS (forest, n)}

6 return iscs

to UN k, if it is not realizable, for further exploration.

6-9: Initial Path Exploration. We initialize W0 by executing a test (̄i, (Tj,−)) for each

thread Tj (line 8), where ī is a random input vector (we use the same ī for each thread Tj)

and the schedule (Tj,−) allows only a sequential execution of thread Tj without any interrup-

tion from other threads. After concolic execution of thread Tj , program execution is aborted

without executing any other thread, and a global symbolic trace π is returned. The global

symbolic trace π, is passed to ExtractISCs (at line 9), which derives new ISCs for uncovered

branches with the exactly the same set of interferences implied by π. Since π corresponds to

a thread-local execution here, the degree of all generated ISCs is equal to 0. The ExtractISCs

algorithm is described in the next paragraph. The returned ISCs are inserted into worklist W0.

After the initial path exploration phase, W0 contains, for each thread in P , a set of ISCs for

further exploration.

Algorithm ExtractISCs. ExtractISCs, shown in Algorithm 4, gets a global symbolic trace π

as input. It first obtains an interference scenario according to π, i.e., IS(π). For example, Fig-

ure 6.6a shows IS(πT ′) where πT ′ is the global symbolic trace returned by the initial sequential

execution of thread T ′ (introduced in Figure 6.2). Then, the algorithm tries to generate new

ISCs for uncovered branches according to IS(π). Each branch node in IS(π), has a corre-

sponding dual branch node where its symbolic constraint is negated. ExtractISCs (at line 1),

extends IS(π) to an interference forest F by introducing for each branch, a dual branch node,

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS141

2

T ′

3 4 5

br(r′0 + i0 ≤ r′1)

6 7 8

br(r′2 ≥ i0 + r′3)

9 10 11

(a) Interference scenario IS (πT ′) for a symbolic trace πT ′ obtained by a sequential execution of thread

T ′ (cf. 6.2).

2

T ′

3 4 5

br(r′0 + i0 ≤ r′1)

6 7 8

br(r′2 ≥ i0 + r′3)

9 10 11

d1

br(r′0 + i0 > r′1)

d2

br(r′2 < i0 + r′3)

(b) Interference scenario IS (πT ′) extended with dangling nodes d1 and d2.

2

T ′

3 4 5

br(r′0 + i0 ≤ r′1)

6 7 8

br(r′2 ≥ i0 + r′3)

9 10 11

d1

br(r′0 + i0 > r′1)

d2

br(r′2 < i0 + r′3)

(c) Interference scenario candidates CIS (forest, d1) and CIS (forest, d2).

Figure 6.6: An example showing initial path exploration for thread T ′ (cf. 6.2).

called a dangling node. Figure 6.6b shows the extension of the IS(πT ′) in Figure 6.6a by

dangling nodes. The generated interference forest F is then merged into forest (cf. line 2)

as described in Remark 6.3.6. Finally, for each dangling node which was not merged with an

existing node, ExtractISCs creates an ISC (cf. lines 4 and 5). For example, CIS (forest, d1)

and CIS (forest, d2) in Figure 6.6c are the ISCs generated by ExtractISCs from the interference

forest in Figure 6.6b. Generated ISCs are returned to the main algorithm. Note that all of

these ISCs will have the same interferences as IS (π). Since forest is initially empty, during the

initialization phase one ISC is generated for each dangling node in F .

10-27: Main Loop. The testing algorithm processes worklists W0, . . . ,Wkmax in ascending

order. While processing Wk, each ISC C ∈ Wk is removed from Wk and its realizability is

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS142

2 3 4 5

br(r′0 + i0 ≤ r′1)

6 7 8

br(r′2 ≥ i0 + r′3)

9 10 11

1 12 13 14

br(r0 + i0 ≤ r1)

15 16 17

br(r2 < i0 + r3)

d3

br(r0 + i0 > r1)

d4

br(r2 ≥ i0 + r3)

d1

br(r′0 + i0 > r′1)

d2

br(r′2 < i0 + r′3)

T ′

T

Figure 6.7: Interference scenario IS (π) from Figure 6.2, extended by dangling nodes d1, d2,

d3, and d4.

checked. Given an ISC C, RealizabilityCheck returns a triple (result, ī, σ) where result indicates

whether C is realizable or not. We discuss algorithm RealizabilityCheck in Section 6.4.3, in

detail. If C is realizable, then (̄i, σ) forms a test that realizes C.

15-17: ISC Exploration. C is stored into UN k for later processing if it is not realizable. Since

the realizability of ISCs is not monotonic (as discussed in Section 6.3), C still has a chance

to become realizable if some more interferences are introduced in it. Therefore, the algorithm

collects all write nodes stored in forest (cf. line 17) and further calls ExploreISCs (Algorithm 5)

to extend C to a set of ISCs for target branch sink(C) by introducing a new interference from

a write in Wrts to a read in C. Each of the generated ISCs has a degree i > k and is added

to Wi in lines 24 to 27. Since i > k, the newly generated ISCs will be processed after Wk is

processed completely. We discuss ExploreISCs in detail later in this section.

19-20: Path Exploration. If C is realizable, then the program is concolically executed with

input vector ī and according to schedule σ (cf. line 19). The moment sink(C) is executed,

the schedule σ enforces an exclusive execution of thread Th(sink(C)) without any interruption

from other threads. The concolic execution returns a global symbolic trace π which is fed

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS143

Algorithm 5: ExploreISCs(ISC C,write nodes Wrts) : ISC-Set

1 ISC-Set iscs ← ∅

2 foreach nr ∈ read-nodes(C) \RI(C) do

3 let Ac(nr) = rd(x, r) for some x

4 foreach nw ∈Wrts do

5 if Ac(nw) = wt(x, val) for some val then

6 if Th(nw) 6= Th(nr) then

7 Iw ← CIS (forest, nw)

8 if nr /∈ RI(Iw) and compatible(C, Iw) then

9 C′ ← merge(C, Iw)

10 C′′ ← extend C′ by interference (nw, nr)

11 //uncomment the following code for supporting locks

12 //C′′ ← ExtendToLockFreePoints(C′′, forest)

13 iscs ← iscs ∪ {C′′}

14 return iscs

to ExtractISCs to update forest and derive ISCs from π similar to the k = 0 case described

earlier. Figure 6.7 shows an example where k > 0. There, the loosely dashed lines enclose the

interference scenario candidate CIS (forest, d4). All generated ISCs will be added to Wk.

21-23: ISC Re-Exploration. When forest is updated with IS(π) during the path exploration,

some write nodes might be added to the forest. For each of these write nodes, all previously

unrealizable ISCs have to be reconsidered and extended (if possible) by an interference from

the new write node to a read node in these ISCs. This happens at lines 21 to 23; each previously

unrealizable ISC C with degree smaller than k is re-explored by introducing an interference

corresponding to the newly observed write (if possible). All of these writes requires exactly k

interferences to happen since they occur after sink(C) is covered. Therefore, the ISCs generated

at line 23 have a degree greater than k and are added to the according worklists at lines 24–27.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS144

Algorithm ExploreISCs. Algorithm ExploreISCs explores ISCs by extending existing ISCs

with new interferences. Let nr be a read node in a given ISC C. Let nw be a write node in

forest and let Iw be the causal interference scenario of nw, i.e., Iw = CIS (forest, nw). To create

an ISC C′′ which extends C by the interference (nw, nr), the algorithm checks the following

conditions:

1. nr and nw are in different threads, i.e., Th(nr) 6= Th(nw).

2. nr and nw correspond to the same shared variable, i.e., if Ac(nr) = rd(x, r), for some

symbolic variable r, then Ac(nw) is of the form wt(x, val), for some expression val.

3. nr is not involved in any interference in C or Iw, i.e., nr /∈ RI(C) and nr /∈ RI(Iw) (cf.

Section 6.3).

4. C and Iw are compatible (cf. Definition 6.3.5).

If all conditions are satisfied then C and Iw are merged as described in Remark 6.3.6 and form

an ISC C′. Then, C′ is extended to ISC C′′ by introducing the interference edge (nw, nr).

Algorithm 5 collects all generated ISCs and finally returns them at line 14. Note that each

generated ISC C′′ has the same sink as C, i.e., sink(C′′) = sink(C), and has at least one more

interference than C, i.e., Degree(C′′) ≥ Degree(C) + 1. The degree of C′′ might increase by

more than one interference, because Iw might contain interferences which are not present in C,

but, due to the merge, they show up in C′ and C′′ as well.

6.4.3 Soundness and Completeness

In Section 6.3.2, we discussed data constraints DC(I) and temporal constraints TC(I) corre-

sponding to an interference scenario I. In the following, we first show that these constraints

can be used to check the realizability of I which guarantees soundness. Then, prove that Algo-

rithm 3 is complete.

The soundness of our (conc)2olic testing is proved by the following lemma:

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS145

Lemma 6.4.2. Assume that TC(C) and DC(C) are satisfiable for an ISC C generated by Al-

gorithm 3. Let ī be a model for DC(C) and σ be a schedule obtained according to the values

of timestamps (sorted in ascending order) from a model of TC(C). Then, R = P (i, σ) is a

feasible run of program P and IS(R) is isomorphic to C.

The proof of this lemma is provided in Appendix B.

Theorem 6.4.3. Let C be an ISC generated by Algorithm 3. C is realizable if and only if DC(C)

and TC(C) are satisfiable.

Proof. ⇒: First, we assume that C is realizable, i.e., there exists a program run R = P (̄i, σ)

such that IS(R) is isomorphic to C. In this case ī and σ are models for DC(C) and TC(C),

respectively. Therefore, both DC(C) and TC(C) are satisfiable.

⇐: Now, we assume that if for an ISC C generated by Algorithm 3, DC(C) and TC(C)

are satisfiable. Let ī be a model for DC(C) and σ be a schedule obtained from a model of

TC(C). According to Lemma 6.4.2, R = P (i, σ) is a feasible run of program P and IS(R) is

isomorphic to C. Therefore, C is realizable.

Algorithm RealizabilityCheck. Given an ISC C with sink(C) = n, the realizability of C is

checked by determining whether DC(C) and TC(C) are both satisfiable. Assume that C is

realizable, ī is a model for DC(C) and σ′ is a schedule obtained according to the values of

timestamps (sorted in ascending order) from a model of TC(C). Then, the RealizabilityCheck

algorithm (called in Algorithm 3 at line 14) returns a triple (result, ī, σ) where result determines

that C is realizable and σ = σ′(Th(n),−) which forces the sequential execution of thread Th(n)

after σ′.

Theorem 6.4.4 (soundness). Each program test run R = P (i, σ) generated by Algorithm 3 to

realize an ISC C is feasible and IS(R) is isomorphic to C.

Proof. A program test run R = P (i, σ) is generated whenever an ISC C is found to be realiz-

able. In this case, i is a solution to DC(C) and σ is a schedule according a model of TC(C).

According to Lemma 6.4.2, R is feasible and IS(R) is isomorphic to C.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS146

To state the completeness theorem, we first define the notion of k-coverable branches:

Definition 6.4.5 (k-coverable branch). A branch of concurrent program P is k-coverable if it

requires k interferences to be covered and k is minimal.

The completeness of our (conc)2olic testing is proved by the following lemma:

Lemma 6.4.6. For each k-coverable branch br where k ≤ kmax , either k = 0 and br is covered

by the initial random test (at line 8) or there exists a realizable ISC C in W k (sink(C) might

be different from br) whose generated test covers br. This implies that all writes that require k

interferences to happen are added to the interference forest while processing W k.

The proof of this lemma is provided in Appendix C.

Theorem 6.4.7 (Completeness). Given a concurrent program P and a bound kmax on the

number of interferences, Algorithm 3 covers all k-coverable branches of P where 0 ≤ k ≤

kmax (modulo concolic execution limits).

The theorem is implied trivially by Lemma 6.4.6. Like all completeness results in con-

colic testing our completeness theorem relies on several idealizing assumptions. The theorem

states that for deterministic programs without non-linear arithmetics and calls to external li-

brary functions, our (conc)2olic testing algorithm covers all branches of P that require at most

kmax many interferences to be covered. In practice, concolic execution falls back upon concrete

values observed during execution to handle non-linear computations or calls to external library

functions, for which no good symbolic representation is available.

6.4.4 Relaxing Assumptions

Dealing with Unforeseen Interferences. In order to drop assumption (iii) stated at the begin-

ning of Section 6.4.2 about unforseen interferences, we need to make the following changes:

(1) The concolic execution engine stops as soon as an unforeseen interference is observed and

returns a global symbolic trace π that ends with the read event of the unforeseen interference.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS147

(2) The ExtractISCs algorithm is extended as follows: When building forest F at line 1, a

distinguished dangling node is added which is labeled with the read event of the unforeseen

interference. However, the unforeseen interference is not added to F . As an effect, Extrac-

tISCs algorithm will then create a causal interference scenario for this special dangling node

(at line 5). Consequently, Test algorithm will then try to realize this interference scenario, first

without introducing any interference. If this is not possible then it will introduce some inter-

ferences later. Note that the notion of CIS should be extended to allow sink nodes labeled with

read events. Since our algorithms never make use of the fact that the sink of a CIS is a branch

node, the overall testing algorithm is not changed.

Dealing with Locks. At the beginning of Section 6.4, we assumed that programs do not contain

locks. Here, we present the issues that locks in programs introduce and discuss how the testing

algorithm can be changed slightly to handle programs with locks. Consider an ISC C with

sink(C) = n. It might be the case that for a thread Ti 6= Th(sink(C)), the last node in GTi is

labeled with a write event (interfering with a read node in GTh(sink(C))) that happened while Ti

was holding some locks. This situation may cause the following problems: (i) C might never

become realizable, e.g., if n is also protected by the same locks, then Ti does not have any

chance to release the locks for Th(sink(C)). (ii) C might be realizable but the test generated

for C may lead to a deadlock, e.g., thread Th(sink(C)) acquires any of these locks later.

To solve the problems, whenever we create a new ISC C, we extend all thread-local sub-

scenarios of C according to forest, except for thread Th(sink(C)), such that for each thread Ti

the last node in GTi according to C is not protected by any lock. This change to the testing al-

gorithm can be done by uncommenting the commented line in ExploreISCs algorithm; assume

that for an ISC C algorithm ExtendToLockFreePoints creates the extension. As an example

consider the ISC shown in Figure 6.7. There, T ′ holds a lock at node 10. Therefore, the ISC

is extended to include node 11 where T ′ releases the lock. We assume that this extension is

always unique, i.e., each lock acquire operation corresponds to exactly one lock release opera-

tion in the code, where both operations are in the same block of code under the same branches.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS148

Note that this assumption is not unrealistic since many widely-used programming languages

(e.g., Java, C#, etc.) use lock block instructions to handle locks (i.e., the lock is acquired at the

beginning of the lock block and is released at the end of the lock block) that inherently satisfy

the above assumption.

6.4.5 Optimizations

Unsat-Core Guidance. In ExploreISCs algorithm, ISC exploration is performed by adding

new interferences to unrealizable ISCs. For an unrealizable ISC, it might be the case that

no extension of it by interferences will ever get realizable. From the unsatisfying core of

the constraint systems (defined in Section 6.3.2), we can identify such situations. Let C =

(V,E, `) be an ISC. Data constraint DC(C) is then equal to DCbranch(V) ∧ DCinterference(C) ∧

DClocal(C). Extending C to a new interference scenario C′ by adding an interference to C

removes some predicates in DClocal(C) from DC(C′) but the predicates in DCbranch(V) and

DCinterference(C) remain as part of DC(C′). Therefore, if the unsatisfying core of DC(C) does

not involve predicates from DClocal(C), we can conclude that DC(C′) or any other extension

of C will not be realizable as well and, therefore, we can exclude C from further exploration.

Analogously, if TC(C) is not satisfiable and no constraints from WRClocal are involved in the

unsatisfying core then, again, we can conclude that C will not become realizable by adding

new interferences and we can exclude C from further exploration. Furthermore, in both cases,

the unsat core can be used to guide the exploration by introducing an interference for a so far

local read whose constraints are involved in the unsat core.

Duplication Freedom. The ExploreISCs algorithm allows multiple instantiations of the same

ISC. For example, suppose that an ISC C becomes realizable by introducing interferences for

two reads. The algorithm can first select any of these reads and generate two ISCs in which one

of these reads is interfered. Then, in the future, these two ISCs can be extended such that the

other read is also interfered, generating two instances of the same ISC. To avoid duplication

of ISCs, we use a caching mechanism. In this way, an ISC will be processed only if it is not

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS149

already in the cache.

Prioritized Exploration. While processing each worklist Wk, we can choose to prioritize the

ISCs in Wk. For example, in our implementation, we assign higher priorities to ISCs which

would cover some yet uncovered part of program code (in case they are realizable). Based

on this exploration strategy, the ExploreISCs algorithm (at line 11) first processes ISCs with

higher priorities.

6.5 Evaluation

We implemented our (conc)2olic testing technique in a tool called CONCREST. We built CON-

CREST on top of CREST [4] which is a concolic testing tool for sequential C programs. To

evaluate CONCREST, we subjected it to a benchmark suite of multi-threaded C programs. In

the following, we briefly discuss the implementation and then present our experimental results.

6.5.1 Implementation

In Section 6.4.1, we discussed how a traditional concolic testing technique can be leveraged

to (conc)2olic testing. Figure 6.5 shows the high-level components of (conc)2olic testing. We

implemented (conc)2olic testing by extending a sequential concolic testing tool CREST [4] as

follows: (i) Concolic execution engine is changed such that in addition to an input vector,

it also gets a schedule, executes the program with the given input vector according to the

schedule and generates a global symbolic trace. (ii) The path exploration component is adapted

to Algorithm 4. (iii) An interference scenario exploration component is added which realizes

Algorithm 5. (iv) The constraint system generated by the realizability check component is

lifted as discussed in Section 6.3.2. (v) The search algorithm is changed based on the bounded-

interference heuristic according to Algorithm 3.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS150

Program]Thrd]Inputs]Br]Br Max k reached]Br Bug found] ISC time

(total) k=0/1/2/3/4/ (reason) k=0→Max (k) (total) (total)

bluetooth 3 2 24 14/8/2 2 (Full Cov.) 14→24 yes(2) 282 1

sor 3 - 48 37/8/0/0/3 4 (Full Cov.) 37→48 yes(3) 145 1

ctrace1 3 - 94 54/3 5 (Max Cov.) 54→57 yes(1) 28 1

apache2 3 3 72 41/0/1 11 (Max Cov.) 41→42 yes(2) 392 1

splay 3 - 112 46/14/4 15 (Max Cov.) 46→64 no 3501 6

apache1 3 3 48 35/3 11 (Max Cov.) 35→38 yes(1) 22150 15

aget 3 - 88 56/0/1 21 (Max Cov.) 56→57 yes(2) 23197 170

rbTree 3 - 146 67/22/4/2 24 (Max Cov.) 67→95 no 77037 296

pfscan 3 2 130 92/0/0/0/1 4 (Timeout) 92→93 yes(4) 3012548 7200

ctrace2 3 - 128 75/5 2 (Timeout) 76→81 yes(1) 315639 7200

art2 3 2 8 7/1 1 (Full Cov.) 7→8 yes(1) 80 0.3

art3 4 3 12 10/1/1 2 (Full Cov.) 10→12 yes(2) 17942 21.8

art4 5 4 16 13/1/1/1 3 (Full Cov.) 13→16 yes(3) 2842066 197.1

art5 6 5 20 16/1/1/1/1 4 (Full Cov.) 16→20 yes(4) 10851573 741.1

Table 6.1: Experimental results for (conc)2olic testing according to bounded-interference

heuristic.]Br: number of static branches, i.e., number of basic code blocks. k: number of

interferences. Full Cov.: all branches are covered. Max Cov.: all possible interference sce-

nario candidates are explored.

6.5.2 Experiments

Benchmarks: bluetooth is a simplified version of the Bluetooth driver from [62]. sor

is from Java Grande multi-threaded benchmarks (which we translated to C). ctrace1 and

ctrace2 are two test drivers for the ctrace library. apache1 and Apache2 are test drivers

for APACHE FTP server from BugBench [46]. splay and rbTree are test drivers for a C li-

brary which implements several types of trees. aget is a multi-threaded download accelerator.

pfscan is a multi-threaded file scanning program. Finally, art is an example designed by us

to evaluate the scalability of our (conc)2olic testing according to the number of threads. It has

the property that a new assertion can be violated every time we increase the number of threads

by one. In this example, there is a shared variable x among the threads. Each thread has an

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS151

integer input i such that 0 ≤ i ≤ 5, and performs x = x + 10i for 9 times in a loop. There is

also an assertion in the loop checking that x does not have a specific value.

The experiments were performed with kmax = 100 (at most 100 interferences) and a time-

out of 2 hours. In Table 6.1, we report the number of threads and inputs, the total num-

ber of static branches in the benchmarks, the number of static branches covered by having

0/1/2/3/4/etc. interferences, the maximum bound reached for the number of interferences (and

the reason why it did not go beyond it), branch coverage improvement over sequential testing

(i.e., 0 interference), if any bug was found (and the number of interferences required to expose

the bug), the total number of explored ISCs, and the time spent on testing, respectively.

Observations: The experiments show that CONCREST is effective in increasing branch cov-

erage. For some of the benchmarks, a substantial number of branches were not sequentially

coverable and were only covered after interferences were introduced, e.g., for rbTree, the

number of covered branches increases from 67 in sequential testing to 95 in (conc)2olic test-

ing.

From the maximum bound reached in each benchmark for the number of interferences, we

can see that although we set the maximum number of interferences to be 100, the actual bound

explored by CONCREST is much smaller. This is because in most cases (with the exception

of 2 timeout cases), we either achieved maximum branch coverage or explored all possible

ISCs (i.e., no more branches are coverable). In the lack of a bug found, reaching the maximum

coverage provides guarantees to the tester that, e.g., no assertions in the code can be violated.

There are cases where maximum branch coverage is achieved, but the number does not

coincide with the total number of static branches. We found that the remaining branches were

either not coverable by the test driver, or were branches on local variables, related to sanity

checks on the system execution. Such sanity checks include checks on system call executions,

such as whether a file-open operation using fopen succeeded or not. Since our test execution

was not providing any mock environment, such as for the file system, these sanity checks could

not fail.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS152

Row U P D Assertion Violation Found (time (s)) Max k Reached Total Time (s)

1 + + + yes (4554) 4 7200 (timeout)

2 - + + no 2 7200 (timeout)

3 + - + yes (6701) 4 7200 (timeout)

4 + + - no 3 7200 (timeout)

5 - - + no 2 7200 (timeout)

6 - + - no 2 out of memory

7 + - - no 3 7200 (timeout)

8 - - - no 2 out of memory

Table 6.2: Optimization effects on pfscan benchmark. U = unsat core guidance, P = priori-

tized exploration, D = duplication freedom. Symbols + and - represent optimizations being on

and off, respectively.

Another observation is that CONCREST is very effective at finding bugs; all of the known

bugs in the benchmarks were discovered by CONCREST. All of the bugs found in our bench-

marks were revealed by covering a branch that could not be covered by sequential testing.

Moreover, as the table shows, all bugs were discovered under a relatively small number of in-

terferences (maximum 4). This implies that concurrency bugs are not very complex according

to the number of interferences they require to be revealed.

Furthermore, we can see that the time spent by CONCREST is very reasonable. In all

of the benchmarks (except two), we could get full coverage or maximum coverage in a few

minutes. The interference spaces of pfscan and ctrace2 were so huge that the interference

bound could not go beyond 4 and 1 (within the time limit of 2 hours), respectively. However,

CONCREST was able to find the bugs in these benchmarks within the time limit.

Effect of Optimizations: Table 6.2 presents the effects of the optimizations discussed in Sec-

tion 6.4.5 for pfscan (as an example). The bug in pfscan corresponds to an assertion vio-

lation which is discovered at k = 4. For each configuration of the optimizations, we report

whether the assertion violation is found (and the time spent on testing until it is found), the

maximum number of interferences explored, and the total time spent for testing.

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS153

(conc)2olic testing MTA

Program] Br. covered by k>0 Time to find the bug (s) timeout?] Br. covered by MTA Time to find the bug (s)

apache1 3 1 no 2 32

apache2 1 1 no 1 81

aget 1 3 no 1 180

splay 18 no bug no 8 no bug

ctrace1 3 1 no 3 341

ctrace2 5 757 yes 14 447

Table 6.3: Comparing (conc)2olic testing with MTA

We can observe that when there is no optimization enabled, CONCREST runs out of mem-

ory with k = 2. The efficiency of unsat-core guidance is clear because without this optimiza-

tion k cannot go higher than 2. In fact, to move to k = 4 and catch the assertion violations,

both unsat-core guidance and duplication-freedom optimizations have to be enabled. The ef-

fect of prioritized exploration can be observed by comparing rows 1 and 3: when prioritization

is enabled the assertion violation is found earlier. Therefore, all of the optimizations are effec-

tive in reducing the exploration space (and the time spent on exploration accordingly) to catch

program bugs.

Comparison with MTA: The goal of multi-trace analysis (discussed in Chapter 3) is to in-

crease branch coverage in concurrent programs. (Conc)2olic testing also generates tests tar-

geting branch coverage. However, it has another goal as well, which is to provide coverage

guarantees (modulo the explored interference bound). We performed some experiments to

compare these testing techniques against each other. In Chapter 3, we discussed how MTA is

implemented on top of FUSION. As mentioned in that chapter, FUSION performs a simplifica-

tion process on program approximations (i.e., set of program runs) by omitting branches which

depend only on local variables or relate to sanity checks on the system execution and does not

include them in the total number of branches. Therefore, a side by side comparison of the

percentage of branch coverage in both techniques is not appropriate. To be fair, we compare

the number of branches covered by MTA (after sequential testing of individual threads) and

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS154

(conc)2olic testing (with k > 0 interferences). Furthermore, we compare the time spent by

each of these techniques to catch the bugs in the benchmarks.

In Table 6.3, we consider the benchmarks used to evaluate both testing techniques (i.e.,

benchmarks common in Tables 6.1 and 3.1). For each benchmark, we report the number of

branches covered after sequential testing and the time spent until the bug was found by each

technique. We consider a timeout of 2 hours for (conc)2olic testing (as in Table 6.1) and also

report if the (conc)2olic testing of the benchmarks reaches the timeout.

Comparing the number of covered branches, we can see that except in ctrace2 (where

(conc)2olic testing reaches the timeout), (conc)2olic testing performs better than MTA. This

is because (conc)2olic testing guarantees to cover each branch that can be covered by some

tests (modulo the interference bound) where as MTA employs heuristics in selecting the inter-

loper segments and exploring the input and interleaving spaces that do not provide coverage

guarantees.

Another observation is that for benchmarks where (conc)2olic testing does not reach the

timeout, MTA requires more time to find the bug. This is because the analysis in (conc)2olic

testing is performed at global computation level (i.e., it is based on accesses to shared variables

and synchronization events), while MTA considers and encodes all computation (local as well

as global) in the runs which naturally increases the size of the test generation problem and

correspondingly affects the computation time.

From the above observations, one might conclude that (conc)2olic testing is better than

MTA in any ways. However, that is not true. In case of ctrace2, where (conc)2olic test-

ing reached the timeout, MTA performs better than (conc)2olic testing regarding both branch

coverage and bug finding time. The interference scenario space of ctrace2 is so huge that

(conc)2olic testing could not get to k = 2 in 2 hours. In this case, MTA required less time to

find the bug and had a chance to cover more branches. These branches are covered under inter-

ference scenarios that (conc)2olic testing did not get the chance to explore them. This suggests

that for programs with large interference scenario spaces, MTA might actually perform better

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS155

than (conc)2olic testing regarding bug finding. Therefore, both techniques have their own right

of existence.

Conclusion: Our experiments showed that (conc)2olic testing is effective in increasing branch

coverage in concurrent programs. In fact for many of bur benchmarks, it was able to provide

maximum branch coverage that provides bug finding guarantees for the tester, e.g., no more

assertion in the code can be violated. Furthermore, (conc)2olic testing was able to find a large

number of bugs in our benchmarks. All of the bugs in our benchmarks were found by allow-

ing only a few number of interferences among threads which shows the effectiveness of the

bounded-interference heuristic in bug finding. We also showed that all of the optimizations

that we proposed for reducing the interference scenario exploration space are necessary for

scalability of (conc)2olic testing. Furthermore, we compared (conc)2olic testing with MTA.

Our experiments showed that none of them outperforms the other and both techniques have

their own right of existence. (Conc)2olic testing performs better than MTA for programs with

manageable interference scenario spaces as it can provide maximum coverage guarantees for

them. However, for programs with huge interference scenario spaces, MTA may perform better

in bug finding as it might be able to try interference scenarios that the (conc)2olic testing does

not have a chance to try in a reasonable amount of time.

6.6 Related Work

Concolic testing of multi-threaded programs has been introduced by Sen et al. [73, 72, 70]

and realized in a tool for testing concurrent java programs, named jCUTE. There are several

differences between the technique proposed by Sen et al. and (conc)2olic testing: Their tech-

nique uses data races as a heuristic to limit the interleaving space, i.e., interleaving exploration

is done based on the data races found in previous executions by delaying the execution of the

threads at the data race points to get schedules in which the order of the execution of the events

involved in a data race is flipped. (Conc)2olic testing uses the bounded-interference heuristic

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS156

to reduce the exploration space. This algorithm is proved to be complete in [70]. However, in

contrast to (conc)2olic testing that provides coverage guarantees modulo the maximum bound

reached, jCUTE cannot provide coverage guarantees on partial work done (e.g., at the occasion

of hitting time or memory limitations). This is due to the use of the data race heuristic that does

not quantify the partial work done as a meaningful coverage measure for the program.

Our notion of interference-based search is related to work by Wang et al. [80, 79], where

they use concurrent trace programs as an under-approximation of the programs and explore

the interference scenario space to find bugs in program approximations. The proposed method

in [80] utilizes both over- and under-approximations of interferences among the threads in con-

current trace programs to capture suitable interferences for finding assertion violations. In [79],

a two-staged analysis is proposed which separates intra- and inter-thread reasoning. The first

stage uses sequential program semantics to obtain a precise summary of each thread in terms

of the global accesses made by the thread. The second stage performs inter-thread reason-

ing by composing these thread-modular summaries using the notion of sequential consistency

to find assertion violations. However, there are several differences between these techniques

and (conc)2olic testing: They work on program approximations as opposed to programs. Fur-

thermore, they target discovering assertion violations (by performing a symbolic analysis) in

concurrent trace programs as opposed to generating tests for exploring different program be-

haviours. Moreover, their analysis is based on symbolic traces, which include all computation

(local as well as global) and synchronization in program executions. The analysis in (conc)2olic

testing uses global symbolic traces, which ignores local computation, and therefore is much

more scalable.

6.7 Summary

In this chapter, we adapted a sequential concolic testing technique, based on the bounded-

interference heuristic, to generate tests for concurrent programs. We introduced a new com-

CHAPTER 6. BOUNDED-INTERFERENCE CONCOLIC TESTING OF CONCURRENT PROGRAMS157

ponent in concolic testing, called interference scenario exploration component, that explores

possible interference scenarios (within the interference bound). Using the interference scenario

exploration component, we built a general testing framework where one can employ different

strategies in exploring both input and interference scenario spaces. We have developed a search

strategy that targets providing maximum branch coverage by incrementally increasing the in-

terference bound. Therefore, it is able to provide coverage guarantees (modulo the interference

bound and concolic execution limitations) after the testing process is finished or when a time

or computation limit is reached. We proved that our testing technique is both sound and com-

plete. We implemented the testing technique by leveraging the concolic testing tool CREST to

test multi-threaded C programs and performed some experiments that show the effectiveness

of (conc)2olic testing in increasing branch coverage and finding concurrency bugs.

Chapter 7

Conclusion and Future Work

Testing concurrent programs is notoriously hard because the behavior of a concurrent program

not only depends on input values but also is affected by the way the executions of threads

are interleaved. There is often an exponentially large number of interleavings that need to be

explored and an exhaustive search is mostly infeasible. The research in this thesis focused

on heuristic-based test generation techniques for concurrent programs. We proposed a set of

techniques that use heuristics to reduce the exploration space by focusing on a manageable

subset of inputs and interleavings.

Summary

The first approach that we took to alleviate the exploration problem was to ignore input explo-

ration and explore the interleaving space under fixed inputs. However, the interleaving space

itself is huge enough for real world concurrent programs to make the complete exploration

infeasible. Therefore, many techniques that follow this approach (e.g., prediction techniques)

target specific types of bugs and try to select and explore a subset of the interleavings that have

more chances to reveal those bugs. These techniques have focused mostly on bugs correspond-

ing to atomicity violations, data races, and assertion violations. However, there are other types

of bugs (e.g., memory bugs, deadlocks, etc.) that have not been studied in this approach and

158

CHAPTER 7. CONCLUSION AND FUTURE WORK 159

are worth to be considered.

In Chapter 2, we introduced a pattern, called null reads, for targeting memory bugs that lead

to null-pointer dereferences in concurrent programs; i.e., interleavings that realize this pattern

are good exploration candidates to find null-pointer dereferences. We developed a prediction

technique that according to a single observed execution of the program, predicts other runs

(under fixed inputs) that realize a null read pattern. We studied two different encodings of the

prediction problem, one as a set of logical constraints and one as an AI planning problem. The

former allows us to use SMT solvers to search for solutions while the latter enables us to ben-

efit from the compact encoding techniques and advanced heuristic-based searching algorithms

embedded in AI planners. Our prediction technique is both sound and scalable. We provided

a theorem that proves the soundness. The scalability of the prediction technique is supported

by our set of experiments. Our experiments also showed that our prediction technique is very

fast and effective in finding null-pointer dereferences in concurrent programs. Another valu-

able property of the prediction technique is that it provides a general framework which can be

applied on patterns other than null reads to find other types of bugs.

The next approach that we took to alleviate the exploration problem in testing concurrent

programs was to explore both input and interleaving spaces of the programs but based on an

approximation model. Most of the techniques that follow this approach, use concurrent trace

programs, i.e., program slices built based on program executions, as approximation models for

concurrent programs. These techniques fix the approximation model a priori and utilize static

symbolic analyses to find assertion violation in the approximation model.

In Chapter 3, we developed a test generation technique based on concurrent trace programs.

According to a previous research [25], many runtime bugs (including assertion violations) can

be encoded as branches in an active testing framework. We used this result and built a multi-

trace analysis with the aim of increasing branch coverage in concurrent programs which inher-

ently targets a broader set of bugs than assertion violations. The multi-trace analysis, for each

uncovered branch, tries to find an interloper segment from an execution trace that provides a

CHAPTER 7. CONCLUSION AND FUTURE WORK 160

value needed to cover the branch and searches for input values and a schedule that would cover

the uncovered branch by inserting the interloper segment in another run. Our test generation

technique combines the sequential concolic testing with the multi-trace analysis by subjecting

each thread to sequential concolic testing first to increase branch coverage in individual thread

as much as possible. Then, upon saturation multi-trace analysis targets uncovered branches.

Furthermore, the test generation technique does not fix the approximation model; it extends

the approximation model by each generated test run. Our experiments showed that the test

generation technique is very effective in increasing branch coverage in concurrent programs

and catching concurrency bugs.

The last approach in test generation for concurrent programs was to consider the programs

in the first place and use heuristics for input/interleaving exploration that allow us to provide

some meaningful coverage guarantees for the programs. Most of the techniques that follow this

approach use context bounding (which is defined based on the notion of control flow among

threads) as the heuristic to limit the interleaving exploration. However, many thread interleav-

ings might be equivalent to each other according to the way threads interfere with each other.

Therefore, exploring all such interleavings reduces the efficiency without discovering any new

bugs.

In Chapter 4, we introduced a new heuristic, called bounded-interference, for input/inter-

leaving exploration in concurrent programs. This heuristic characterizes a subset of interleav-

ing space by a parameter that bounds the number of interferences among the threads. Therefore,

it can be used to provide coverage guarantees modulo interference bound. Another property of

this heuristic is that it is defined based on the notion of flow of data between threads (in con-

trast to the control-based notions such as context bounding). Therefore, it can be incorporated

into sequential testing techniques to explore the input and interleaving spaces of the concurrent

programs in a unified manner.

In Chapter 5, we evaluated the effectiveness of the bounded-interference heuristic by de-

veloping a sequentialization technique based on this heuristic. Given a concurrent program

CHAPTER 7. CONCLUSION AND FUTURE WORK 161

and an interference bound k, our sequentialization transforms the concurrent program into a

sequential program such that the resulting sequential program encodes all behaviours of the

concurrent program with maximum k number of interferences among the threads. One ad-

vantage of this sequentialization is that traditional sequential testing techniques can be applied

on the resulting sequential program without any modification. Inputs of the concurrent pro-

gram and interference scenarios are both encoded as inputs of the resulting sequential program

and therefore underlying sequential testing tools are able to explore both input and interfer-

ence scenario spaces, side by side. We proved that our sequentialization is sound and could

be complete (modulo interference bound) depending on the coverage guarantees that the un-

derlying sequential testing tool provides. Our experiments showed that most of concurrency

bugs can be revealed by allowing a few number of interferences among the threads and hence

bounded-interference is an effective heuristic in finding concurrency bugs.

After ensuring the effectiveness of the bounded-interference heuristic and to avoid the over-

head of sequentialization and the dependency of the coverage guarantees on the underlying

sequential testing tools, we adapted a sequential concolic testing technique with the bounded-

interference heuristic to generate tests for concurrent programs with coverage guarantees. In

Chapter 6, we introduced a new component in concolic testing that explores possible interfer-

ence scenarios, within the interference bound. Then, for each interference scenario, it generates

a test (i.e., input values and a schedule) that realizes the interference scenario (if possible). A

nice property of this testing technique is that it provides a general framework where one can

employ different strategies in exploring inputs and interference scenarios. We implemented a

search strategy that targets branch coverage in concurrent programs; i.e., interference scenar-

ios are explored based on uncovered branches in the program. We proved that this technique

is both sound and complete (modulo interference bound). The completeness does not depend

on coverage guarantees of sequential concolic testing techniques since the search strategy in

concolic testing is adapted according to the bounded-interference heuristic which guarantees

completeness by nature. Furthermore, in contrast to the existing concolic testing techniques

CHAPTER 7. CONCLUSION AND FUTURE WORK 162

for concurrent programs where coverage guarantees can be provided only when the testing al-

gorithm terminates (after the exploration is completed according to the underlying heuristic),

our concolic testing technique is able to quantify the partial work done and provide coverage

guarantees at each point of time (e.g., at the occasion of a timeout) modulo the explored bound.

Conclusion

We developed several heuristic-based techniques for testing concurrent programs. These tech-

niques attack the problem of test generation from different points of views and each of them has

its own right of existence. In fact, this is the testing goal that defines which of these techniques

should be used for testing. The testing goal can range from simplicity and time efficiency to

targeting specific types of bugs and providing coverage guarantees.

Our prediction technique simplifies the testing problem by exploring the interleaving space

under fixed inputs. Furthermore, interleaving exploration is directed by targeting a specific

type of bugs. Although we have developed our prediction technique by targeting null-pointer

dereferences in concurrent programs, our technique provides a framework which can be used

to investigate other types of bugs as well. This technique is very simple and therefore, can be

used in earlier stages of the program design where the goal is to catch simple bugs that does

not require complicated scenarios for input values as fast as possible. It can also be used when

the tester has an idea under which input values the program might encounter some problems.

Furthermore, since interleaving exploration is performed based on a specific type of bugs, it is

the most efficient technique when the goal is to catch a specific type of bugs.

Our test generation technique based on program approximations is more expensive than

the prediction technique since it performs input exploration as well as interleaving exploration.

This technique does not target any specific type of bugs; it tries to find bugs by increasing

branch coverage in concurrent programs. In contrast to the prediction technique, this tech-

nique is able to catch bugs that depend on complicated scenarios for input values. During the

CHAPTER 7. CONCLUSION AND FUTURE WORK 163

software testing process, we suggest to apply prediction techniques first to catch simple bugs

with less cost. Then, our test generation technique based on program approximation can be ap-

plied to catch bugs that might be overlooked by the prediction techniques because of ignoring

input exploration. However, due to approximations, this technique cannot provide coverage

guarantees for concurrent programs.

The bounded-interference concolic testing technique, like the test generation technique

based on program approximations, tries to find bugs by increasing branch coverage in con-

current programs. However, it is able to provides branch coverage guarantees for concurrent

programs (modulo interference bound). Therefore, in the limit all coverable branches are guar-

anteed to be covered at the end of the testing process. However, this technique is more ex-

pensive than the other techniques and hence is best to be used at the last stages of software

development to provide quality assurance for the software.

Now, one might wonder why do we need the previous techniques when the bounded-

interference concolic testing technique is able to provide full coverage guarantees. The answer

is that for many large programs, the time and computation limitations might not let the inter-

ference exploration to reach its limit. Therefore, for such programs, the interference bound

cannot go beyond a certain bound. In this case, by using the previous techniques, one still has

a chance to find bugs that require larger number of interferences.

Future Work

In the following, we mention some interesting open problems of this theses that are worth to

be addressed in future:

Future Work on Prediction: Our prediction technique targets null-pointer dereferences in

concurrent programs by exploring the interleavings that realize a null read pattern. We believe

that there is still lots of room to investigate new violation patterns that target other types of

program bugs. For example, some array out-of-bound errors could be detected by a pattern

CHAPTER 7. CONCLUSION AND FUTURE WORK 164

(e, f) where e is a read from a shared variable indexing an array and f is a write to the same

shared variable that writes a value that is out of the array bound. Any run that realizes this

pattern, i.e., forcing e to read the value written by f , would lead to an array out-of-bound error.

Other interesting patterns would be the ones that target deadlocks in concurrent programs. For

example, some simple deadlock situations could be detected by a pattern (ac1, ac2, ac
′
1, ac

′
2)

where ac1 and ac2 are lock acquisition events of locks l and l′ in one thread, respectively, and

ac′1 and ac′2 are lock acquisition of locks l′ and l in another thread, respectively, and ac2 and

ac′2 are inside the lock blocks corresponding to ac1 and ac′1, respectively; any run in which ac2

and ac′2 are co-reachable would block both threads. We leave investing these violation patterns

for future work.

To guarantee soundness, we utilized the maximal causal model in our prediction technique

that requires each read in the predicted run (except the one involved in the null read pattern)

to read the same value as it did in the original run. Note that a prediction problem does not

necessarily have a solution in the maximal causal model. We proposed a relaxation technique,

which deviates from the maximal causal model gradually, by allowing some reads to read

different values than what they read in the original run. The relaxation technique searches

for a run, realizing the given null read pattern, with the minimum number of relaxed reads

while there is no preference on which reads to relax. Runs that are predicted by the relaxation

technique are no more guaranteed to be feasible. We believe that a more detailed analysis

based on the program source code to detect the set of reads whose values do not affect affect

any branch condition could help in predicting more feasible runs by adapting the relaxation

technique such that those reads have priorities over others to get relaxed.

We also showed that the prediction problem can be encoded as an AI automated planning

problem to benefit from the compact encoding techniques and advanced heuristic-based search-

ing algorithms embedded in AI planners. Note that the encoding employed for sound prediction

did not exploit numerics. A variety of planners, including a variant of FF, METRIC-FF [32],

plan with numeric fluents. There has also been significant work on planning with numerics

CHAPTER 7. CONCLUSION AND FUTURE WORK 165

using a diversity of approaches including SAT-encodings (e.g., [33]), and most recently with

encodings using so-called Planning Modulo Theories [27], the latter holding great promise

for test generation with numeric reasoning but with the computational advantages of domain-

independent heuristic search-based planning techniques. In the future, we plan to investigate

the applicability of these techniques in our relaxation technique which involves numeric rea-

soning.

Future Work on Test Generation Based on Approximation Models: Our test generation

based on program approximations targets increasing branch coverage in concurrent programs.

We developed a search algorithm that prioritizes yet uncovered branches according to the num-

ber of attempts that have been made for covering them; branches with less number of attempts

have priorities over the others. Then, for the branch with highest priority, the multi-trace anal-

ysis enumerates all possible interloper segments, looking for input values and a schedule that

would result in covering the branch by inserting the interloper segment into another run. Al-

though our experiments showed that this search strategy is effective in increasing branch cov-

erage and finding concurrency bugs, we believe that the test generation technique can still be

improved by realizing other heuristics in the search algorithm. For example, the depth of the

uncovered branches in the control-flow graph of the program could also be used as a heuristic

to prioritize the branches; branches with less depth have priorities over others since covering

them might lead to discovering a larger part of the program. Furthermore, interloper segments

could also be prioritized according to different factors. For example, interloper segments with

shorter lengths could have priorities over others since they are less restrictive w.r.t. generating

feasible tests. Finally, the search algorithm can be adapted to incremental testing where it can

skip covering some of the uncovered branches (e.g., according to a list provided by the tester).

Another topic for future work would be to investigate more sophisticated and targeted search

strategies in the multi-trace analysis.

Future Work on Bounded-Interference Concolic Testing: Our bounded-interference con-

colic testing technique provides coverage guarantees for concurrent programs (modulo inter-

CHAPTER 7. CONCLUSION AND FUTURE WORK 166

ference bound). We developed a search strategy where all interference scenarios of degree k

(i.e., consisting of k interferences) for all uncovered branches are explored before exploring

interference scenarios of degree k + 1 (starting at k = 0). This search strategy is not guaran-

teed to always be the most efficient one. For example, a search strategy that focuses on one

branch at a time and explores the interference space (increasing the number of interferences to

the bound) accordingly might be a more efficient strategy when some branches have priorities

over the others, e.g., they correspond to assertion violations. Another issue is the size of the

interference scenario space that could get very large even for small bounds for large programs.

Our current search strategy enumerates all possible interference scenarios (modulo interfer-

ence bound). We believe that the search strategy can borrow ideas from partial order reduction

techniques [86, 26] in verification to avoid redundant exploration of interference scenarios that

have the same effect. However, one has to be very careful with applying reduction techniques

to preserve completeness. We leave investigating other search strategies and possible reduction

techniques in interference scenario exploration as a research topic for future.

Future Work Based on Bounded-Interference Heuristic: The bounded-interference heuris-

tic can be used in program analysis areas other than test generation. For example, the context

bounding heuristic has been used in model checking to develop context-bounded model check-

ers [61, 8] that verify properties modulo a context bound. We can consider similar applica-

tion for the bounded-interference heuristic to verify properties modulo an interference bound.

As another example, the bounded-interference heuristic can be used in bug localization (i.e.,

identifying the roots of the bug) and bug fixing [36, 37, 48]. Concurrency bugs often relate

to improper communication or synchronization among threads. According to the bounded-

interference heuristic, we can find interference scenarios with the minimum number of inter-

ferences that lead to a single bug. These interference scenarios can be analyzed automatically

to localize the bug. Applying the bounded-interference heuristic in automatic bug localization

is another interesting topic for future work.

In Chapter 4, we mentioned that the context bounding heuristic is not so efficient as many

CHAPTER 7. CONCLUSION AND FUTURE WORK 167

interleavings might be equivalent to each other according to the interferences that exist among

the threads. We think that partial order reduction techniques [86, 26] can be combined with

context bounding to avoid this inefficiency. However, the partial order techniques would define

equivalent classes on the set of interleavings such that interleavings in the same class realize the

same interference scenarios. In this case, the combination of partial order reduction techniques

with context bounding would result in exploring all interference scenarios within a bounded

number of context switches. Implementing this approach and comparing it with the bounded-

interference heuristic is a topic for future work.

Bibliography

[1] Jorge A. Baier and Sheila A. McIlraith. Planning with first-order temporally extended

goals using heuristic search. In Proceedings of the 21st National Conference on Artificial

Intelligence - Volume 1, AAAI’06, pages 788–795, 2006.

[2] David Bainbridge, Ian H. Witten, Stefan Boddie, and John Thompson. Stress-testing

general purpose digital library software. In Proceedings of the 13th European Conference

on Research and Advanced Technology for Digital Libraries, ECDL’09, pages 203–214,

2009.

[3] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte.

A randomized scheduler with probabilistic guarantees of finding bugs. In Proceedings of

the 15th International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS’10, pages 167–178, 2010.

[4] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation. In Pro-

ceedings of the 2008 23rd IEEE/ACM International Conference on Automated Software

Engineering, ASE’08, pages 443–446, 2008.

[5] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. En-

gler. EXE: Automatically generating inputs of death. In Proceedings of the 13th ACM

Conference on Computer and Communications Security, CCS’06, pages 322–335, 2006.

168

BIBLIOGRAPHY 169

[6] Feng Chen and Grigore Roşu. Parametric and sliced causality. In Proceedings of the

19th International Conference on Computer Aided Verification, CAV’07, pages 240–253,

2007.

[7] Feng Chen, Traian-Florin Serbanuta, and Grigore Roşu. jPredictor: a predictive runtime

analysis tool for Java. In Proceedings of the 30th International Conference on Software

Engineering, ICSE’08, pages 221–230, 2008.

[8] Lucas Cordeiro and Bernd Fischer. Verifying multi-threaded software using smt-based

context-bounded model checking. In Proceedings of the 33rd International Conference

on Software Engineering, ICSE’11, pages 331–340, 2011.

[9] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In

Proceedings of the 14th International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, TACAS’08, pages 337–340, 2008.

[10] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T).

In Proceedings of the 18th International Conference on Computer Aided Verification,

CAV’06, pages 81–94, 2006.

[11] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby, and Shmuel Ur. Multithreaded Java

program test generation. IBM Systems Journal, 41(1):111–125, 2002.

[12] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. Delay-bounded scheduling. In

Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL’11, pages 411–422, 2011.

[13] Dawson Engler and Ken Ashcraft. RacerX: effective, static detection of race conditions

and deadlocks. SIGOPS Operating Systems Review, 37:237–252, 2003.

BIBLIOGRAPHY 170

[14] Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith. (Conc)2olic Testing.

In Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, FSE’13, pages 37–47, 2013.

[15] Azadeh Farzan and P. Madhusudan. Causal atomicity. In Proceedings of the 18th Inter-

national Conference on Computer Aided Verification, CAV’06, pages 315–328, 2006.

[16] Azadeh Farzan, P. Madhusudan, Niloofar Razavi, and Francesco Sorrentino. Predicting

null-pointer dereferences in concurrent programs. In Proceedings of the 18th ACM SIG-

SOFT International Symposium on Foundations of Software Engineering, FSE’12, pages

47–56, 2012.

[17] Azadeh Farzan, P. Madhusudan, and Francesco Sorrentino. Meta-analysis for atomicity

violations under nested locking. In Proceedings of the 21st International Conference on

Computer Aided Verification, CAV’09, pages 248–262, 2009.

[18] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic race

detection. Communictions of the ACM, 53:93–101, 2010.

[19] Cormac Flanagan and Shaz Qadeer. Types for atomicity. In Proceedings of the 2003 ACM

SIGPLAN International Workshop on Types in Languages Design and Implementation,

TLDI’03, pages 1–12, 2003.

[20] John Foley and Chris Murphy. Q&A: Bill Gates On Trustworthy Com-

puting. InformationWeek, 2002. http://www.informationweek.com/

qa-bill-gates-on-trustworthy-computing/6502378.

[21] Pranav Garg and P. Madhusudan. Compositionality entails sequentializability. In Pro-

ceedings of the 17th International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, TACAS’11, pages 26–40, 2011.

BIBLIOGRAPHY 171

[22] Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yannis Dimopou-

los. Deterministic planning in the fifth international planning competition: PDDL3 and

experimental evaluation of the planners. Artificial Intelligence, 173:619–668, 2009.

[23] Patrice Godefroid. Model checking for programming languages using VeriSoft. In Pro-

ceedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL’97, pages 174–186, 1997.

[24] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random

testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI’05, pages 213–223, 2005.

[25] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Active property checking. In

Proceedings of the 8th ACM & IEEE International Conference on Embedded Software,

EMSOFT’08, pages 207–216, 2008.

[26] Patrice Godefroid and Pierre Wolper. A partial approach to model checking. Information

and Computation, 110:305–326, 1994.

[27] Peter Gregory, Derek Long, Maria Fox, and J. Christopher Beck. Planning modulo theo-

ries: Extending the planning paradigm. In Proceedings of the 22nd International Confer-

ence on Automated Planning and Scheduling, ICAPS’12, pages 65–73, 2012.

[28] Alex Groce and Willem Visser. Model checking Java programs using structural heuristics.

In Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing

and Analysis, ISSTA’02, pages 12–21, 2002.

[29] Patrik Haslum and Alban Grastien. Diagnosis as planning: Two case studies. In Proceed-

ings of the International Scheduling and Planning Applications Workshop, SPARK’11,

pages 37–44, 2011.

BIBLIOGRAPHY 172

[30] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for

concurrent objects. ACM Transactions on Programming Languages and Systems, 12:463–

492, 1990.

[31] Jöerg Hoffmann. FF: The Fast-Forward planning system. AI Magazine, 22:57–62, 2001.

[32] Jöerg Hoffmann. The Metric-FF planning system: Translating ”ignoring delete lists” to

numeric state variables. Journal of Artificial Intelligence Research (JAIR), 20:291–341,

2003.

[33] Jöerg Hoffmann, Carla Gomes, Bart Selman, and Henry Kautz. SAT encodings of state-

space reachability problems in numeric domains. In Proceedings of the 20th International

Joint Conference on Artificial Intelligence, IJCAI’07, pages 1918–1923, 2007.

[34] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith. Query-

driven program testing. In Proceedings of the 10th International Conference on Verifica-

tion, Model Checking, and Abstract Interpretation, VMCAI ’09, pages 151–166, 2009.

[35] Jeff Huang and Charles Zhang. Persuasive prediction of concurrency access anomalies.

In Proceedings of the 2011 ACM SIGSOFT International Symposium on Software Testing

and Analysis, ISSTA’11, pages 144–154, 2011.

[36] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Automated atomicity-

violation fixing. In Proceedings of the 32nd ACM SIGPLAN conference on Programming

language design and implementation, PLDI’11, pages 389–400, 2011.

[37] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. Automated

concurrency-bug fixing. In Proceedings of the 10th USENIX conference on Operating

Systems Design and Implementation, OSDI’12, pages 221–236, 2012.

BIBLIOGRAPHY 173

[38] Saurabh Joshi, Shuvendu K. Lahiri, and Akash Lal. Underspecified harnesses and inter-

leaved bugs. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL’12, pages 19–30, 2012.

[39] Vineet Kahlon, Franjo Ivanăić, and Aarti Gupta. Reasoning about threads communicat-

ing via locks. In Proceedings of the 17th International Conference on Computer Aided

Verification, CAV’05, pages 505–518, 2005.

[40] Henry A. Kautz and Bart Selman. Unifying SAT-based and graph-based planning. In Pro-

ceedings of the 16th International Joint Conference on Artificial Intelligence, IJCAI’99,

pages 318–325, 1999.

[41] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic Point of

View. Springer Publishing Company, Incorporated, 1 edition, 2008.

[42] Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. Static and precise detec-

tion of concurrency errors in systems code using SMT solvers. In Proceedings of the

21st International Conference on Computer Aided Verification, CAV’09, pages 509–524,

2009.

[43] Zhifeng Lai, Shing-Chi Cheung, and Wing Kwong Chan. Detecting atomic-set serializ-

ability violations in multithreaded programs through active randomized testing. In Pro-

ceedings of the 32nd International Conference on Software Engineering, ICSE’10, pages

235–244, 2010.

[44] Akash Lal and Thomas Reps. Reducing concurrent analysis under a context bound to

sequential analysis. Formal Methods in System Design, 35:73–97, 2009.

[45] Jaejin Lee, David A. Padua, and Samuel P. Midkiff. Basic compiler algorithms for parallel

programs. SIGPLAN Notices, 34(8):1–12, 1999.

BIBLIOGRAPHY 174

[46] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. BugBench:

Benchmarks for evaluating bug detection tools. In Workshop on the Evaluation of Soft-

ware Defect Detection Tools, 2005.

[47] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a

comprehensive study on real world concurrency bug characteristics. In Proceedings of

13th International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS’08, pages 329–339, 2008.

[48] Shan Lu, Soyeon Park, and Yuanyuan Zhou. Detecting concurrency bugs from the per-

spectives of synchronization intentions. IEEE Transactions on Parallel and Distributed

Systems, 23(6):1060–1072, 2012.

[49] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: Detecting atomicity

violations via access-interleaving invariants. IEEE Micro, 27:26–35, 2007.

[50] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. LiteRace: effective sam-

pling for lightweight data-race detection. SIGPLAN Notices, 44(6):134–143, 2009.

[51] Drew V. McDermott. PDDL — The Planning Domain Definition Language. Technical

report, Yale Center for Computational Vision and Control, 1998.

[52] Jesper B. Møller, Jakob Lichtenberg, Henrik Reif Andersen, and Henrik Hulgaard. Dif-

ference decision diagrams. In 8th Annual Conference of the EACSL on Computer Science

Logic, CSL’99, pages 111–125, 1999.

[53] Madan Musuvathi and Shaz Qadeer. Chess: systematic stress testing of concurrent soft-

ware. In Proceedings of the 16th International Conference on Logic-Based Program

Synthesis and Transformation, LOPSTR’06, pages 15–16, 2007.

[54] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic testing

of multithreaded programs. SIGPLAN Notices, 42(6):446–455, 2007.

BIBLIOGRAPHY 175

[55] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Aru-

muga Nainar, and Iulian Neamtiu. Finding and reproducing heisenbugs in concurrent

programs. In Proceedings of the 8th USENIX Conference on Operating Systems Design

and Implementation, OSDI’08, pages 267–280, 2008.

[56] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory & Practice.

Morgan Kaufmann Publishers Inc., 2004.

[57] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In Pro-

ceedings of the 9th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP’03, pages 167–178. ACM, 2003.

[58] Chang-Seo Park and Koushik Sen. Randomized active atomicity violation detection in

concurrent programs. In Proceedings of the 16th ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering, FSE’16, pages 135–145, 2008.

[59] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: exposing atomicity violation bugs

from their hiding places. SIGPLAN Notices, 44(3):25–36, 2009.

[60] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Sym-

posium on Foundations of Computer Science, SFCS’77, pages 46–57, 1977.

[61] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent software.

In Proceedings of the 11th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS’05, pages 93–107, 2005.

[62] Shaz Qadeer and Dinghao Wu. KISS: keep it simple and sequential. SIGPLAN Notices,

39:14–24, 2004.

[63] Zvonimir Rakamarić. STORM: static unit checking of concurrent programs. In Proceed-

ings of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE’10,

pages 519–520, 2010.

BIBLIOGRAPHY 176

[64] Niloofar Razavi, Azadeh Farzan, and Andreas Holzer. Bounded-interference sequential-

ization for testing concurrent programs. In Proceedings of the 5th International Confer-

ence on Leveraging Applications of Formal Methods, Verification and Validation: Tech-

nologies for Mastering Change, ISoLA’12, pages 372–387, 2012.

[65] Niloofar Razavi, Azadeh Farzan, and Sheila A. McIlraith. Generating effective tests for

concurrent programs via AI automated planning techniques. Journal of Software Tools

for Technology Transfer, 2013.

[66] Niloofar Razavi, Franjo Ivanăić, Vineet Kahlon, and Aarti Gupta. Concurrent test gen-

eration using concolic multi-trace analysis. In Proceedings of the 10th Asian Symposium

on Programming Languages and Systems, APLAS’12, pages 239–255, 2012.

[67] Jussi Rintanen. Planning with specialized SAT solvers. In Proceedings of the 25th AAAI

Conference on Artificial Intelligence, AAAI’11, pages 1563–1566, 2011.

[68] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. Generating data race

witnesses by an SMT-based analysis. In Proceedings of the 3rd International Conference

on NASA Formal Methods, NFM’11, pages 313–327, 2011.

[69] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Ander-

son. Eraser: a dynamic data race detector for multithreaded programs. ACM Transactions

on Computer Systems, 15(4):391–411, 1997.

[70] Koushik Sen. Scalable automated methods for dynamic program analysis. In PhD Dis-

sertation, 2006.

[71] Koushik Sen. Race directed random testing of concurrent programs. SIGPLAN Notices,

43(6):11–21, 2008.

[72] Koushik Sen and Gul Agha. A race-detection and flipping algorithm for automated testing

of multi-threaded programs. In Proceedings of the 2nd International Haifa Verification

BIBLIOGRAPHY 177

Conference on Hardware and Software, Verification and Testing, HVC’06, pages 166–

182.

[73] Koushik Sen and Gul Agha. CUTE and jCUTE: concolic unit testing and explicit path

model-checking tools. In Proceedings of the 18th International Conference on Computer

Aided Verification, CAV’06, pages 419–423, 2006.

[74] Traian-Florin Serbanuta, Feng Chen, and Grigore Rosu. Maximal causal models for se-

quentially consistent systems. In Proceedings of 3rd International Conference on Runtime

Verification, RV’12, pages 136–150, 2012.

[75] Ohad Shacham, Nathan Bronson, Alex Aiken, Mooly Sagiv, Martin Vechev, and Eran

Yahav. Testing atomicity of composed concurrent operations. In Proceedings of the 2011

ACM International Conference on Object Oriented Programming Systems Languages and

Applications, OOPSLA’11, pages 51–64, 2011.

[76] Yao Shi, Soyeon Park, Zuoning Yin, Shan Lu, Yuanyuan Zhou, Wenguang Chen, and

Weimin Zheng. Do I use the wrong definition?: DeFuse: definition-use invariants for de-

tecting concurrency and sequential bugs. In Proceedings of the ACM International Con-

ference on Object Oriented Programming Systems Languages and Applications, OOP-

SLA’10, pages 160–174, 2010.

[77] Arnab Sinha, Sharad Malik, and Aarti Gupta. Efficient predictive analysis for detecting

nondeterminism in multi-threaded programs. In Proceedings of the 12th Conference on

the Theory and Applications of Formal Methods in Hardware and System Verification,

FMCAD’12, pages 6–15, 2012.

[78] Arnab Sinha, Sharad Malik, Chao Wang, and Aarti Gupta. Predictive analysis for de-

tecting serializability violations through trace segmentation. In Proceedings of the 9th

IEEE/ACM International Conference on Formal Methods and Models for Codesign,

MEMOCODE’11, pages 99–108, 2011.

BIBLIOGRAPHY 178

[79] Nishant Sinha and Chao Wang. Staged concurrent program analysis. In Proceedings of

the 18th ACM SIGSOFT International Symposium on Foundations of Software Engineer-

ing, FSE’10, pages 47–56, 2010.

[80] Nishant Sinha and Chao Wang. On interference abstractions. In Proceedings of the 38th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL’11, pages 423–434, 2011.

[81] Fabio Somenzi and Roderick Bloem. Efficient Bchi automata from LTL formulae. In Pro-

ceedings of the 12th International Conference on Computer Aided Verification, CAV’00,

pages 247–263, 2000.

[82] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. PENELOPE: weaving threads

to expose atomicity violations. In Proceedings of the 18th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE’10, pages 37–46, 2010.

[83] Scott D. Stoller. Testing concurrent Java programs using randomized scheduling. In

Proceedings of 2nd Workshop on Runtime Verification, RV’02, pages 143–158, 2002.

[84] Nikolai Tillmann and Jonathan De Halleux. Pex: white box test generation for .NET.

In Proceedings of the 2nd International Conference on Tests and Proofs, TAP’08, pages

134–153, 2008.

[85] Salvatore Torre, P. Madhusudan, and Gennaro Parlato. Reducing context-bounded con-

current reachability to sequential reachability. In Proceedings of the 21st International

Conference on Computer Aided Verification, CAV’09, pages 477–492, 2009.

[86] Antti Valmari. A stubborn attack on state explosion. In Proceedings of the 2nd Interna-

tional Workshop on Computer Aided Verification, CAV’90, pages 156–165, 1991.

[87] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff Higher

Order Workshop, pages 238–266, 1995.

BIBLIOGRAPHY 179

[88] Christoph von Praun and Thomas R. Gross. Object race detection. In Proceedings of the

16th ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, OOPSLA’01, pages 70–82, 2001.

[89] Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. Symbolic predictive analysis

for concurrent programs. In Proceedings of the 2nd World Congress on Formal Methods,

FM’09, pages 256–272, 2009.

[90] Chao Wang, Rhishikesh Limaye, Malay Ganai, and Aarti Gupta. Trace-based symbolic

analysis for atomicity violations. In Proceedings of the 16th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, TACAS’10, pages

328–342, 2010.

[91] Chao Wang, Mahmoud Said, and Aarti Gupta. Coverage guided systematic concurrency

testing. In Proceedings of the 33rd International Conference on Software Engineering,

ICSE’11, pages 221–230, 2011.

[92] Liqiang Wang and Scott D. Stoller. Accurate and efficient runtime detection of atomicity

errors in concurrent programs. In Proceedings of the 11th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP’06, pages 137–146, 2006.

[93] Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for multi-threaded

programs. IEEE Transactions on Software Engineering, 32:93–110, 2006.

[94] Jaeheon Yi, Caitlin Sadowski, and Cormac Flanagan. SideTrack: generalizing dynamic

atomicity analysis. In Proceedings of the 7th Workshop on Parallel and Distributed Sys-

tems: Testing, Analysis, and Debugging, PADTAD’09, pages 8:1–8:10, 2009.

[95] Yuan Yu, Tom Rodeheffer, and Wei Chen. RaceTrack: efficient detection of data race

conditions via adaptive tracking. SIGOPS Operating Systems Review, 39(5):221–234,

2005.

180

[96] Wei Zhang, Chong Sun, and Shan Lu. ConMem: detecting severe concurrency bugs

through an effect-oriented approach. In Proceedings of 15th International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS’10,

pages 179–192, 2010.

Appendix A

Examples of the Logical Constraints and AI Planning Encod-

ings in Prediction

Consider the buggy program in Figure 1. initialize and exit are the methods of the same

class with x and y being the fields of the class of types myObject and int, respectively.

Method initialize is for initializing x and y, which calls a function func of x after initial-

izing x and y. Method exit reads an input and if the value of the input is greater than zero

writes zero and null to y and x, respectively. Now, consider a concurrent program consisting

of two threads T1 and T2 calling initialize and exit, respectively.

Suppose that we execute the program with input value 1 and observe a run in which T1 is

executed before T2. Global trace p1p2p3p4p5p6p7p8q1q2q3q4 is the global trace corresponding to

this run where p1 = (T1, ac(l)), p2 = (T1,wt(x, obj)), p3 = (T1,wt(y, 1)), p4 = (T1, rd(y, 1)),

p5 = (T1, rel(l)), p6 = (T1, ac(l)), p7 = (T1, rd(x, obj)), p8 = (T1, rel(l)), q1 = (T2, ac(l)),

q2 = (T2,wt(x, obj)), p3 = (T2,wt(y, 1)), and q4 = (T2, rel(l)). Based on this global trace and

using the maximal causal model, we want to predict a run for the null-WR pair α = (q3, p7).

Here is the set of constraints obtained by the logical constraints encoding proposed in Sec-

tion 2.4.1:

Ψ = PO ∧ FC ∧ LC ∧ DC ∧ α C where

PO = (tinit < tp1)(tinit < tq1)

FC = (true)

181

182

public void initialize(){

int a;

p1: synchronized (this) {

p2: x = new myObject();

p3: y = 1;

p4: a = y;

p5: }

if (a > 0){

p6: synchronized (this){

p7: x.func();

p8: }

}

}

}

public void exit(){

q1: synchronized (this) {

if (input() > 0) {

q2: y = 0;

q3: x = null;

}

q4: }

}

Figure 1: Code snippet of a buggy program with null-pointer dereference.

LC = (tp5 < tq1 ∨ tq4 < tp1)(tq4 < tp6)

DC = (tq2 < tp3 ∨ tq2 > tp4)

and α C = (tp3 < tp7 ∧ tp1 < tq3) for realizing α.

This constraint system is satisfiable and tinit < tp1 < tp2 < tp3 < tinit < tp4 < tp5 < tq1 <

tq2 < tq3 < tq4 < tp6 < tp7 defines a schedule which would lead to a null-pointer dereference at

event q3 when the program reads value 1 from the input (as in the observed run).

We also developed a planning encoding for predicting null-pointer dereferences in Sec-

tion 2.5.2. Here is the set of actions in the planning domain that encode the null-pointer deref-

erence prediction:

(: ACTION Acp1

: PRECONDITION (AND (NOT Donep1) (Availablel))

: EFFECT (AND (Donep1) (NOT (Availablel)))

)

183

(: ACTION Acp2

: PRECONDITION (AND (Donep1) (NOT Donep2))

: EFFECT (AND (Donep2) (xp2))

)

(: ACTION Acp3

: PRECONDITION (AND (Donep2) (NOT Donep3))

: EFFECT (AND (Donep3) (yp3))

)

(: ACTION Acp4 coupledp3

: PRECONDITION (AND (Donep3) (NOT Donep4) (yp3))

: EFFECT (AND (Donep4))

)

(: ACTION Acp5

: PRECONDITION (AND (Donep4) (NOT Donep5))

: EFFECT (AND (Donep5) (Availablel))

)

(: ACTION Acp6

: PRECONDITION (AND (Donep5) (NOT Donep6) (Availablel))

: EFFECT (AND (Donep6) (NOT (Availablel)))

)

(: ACTION Acp7

184

: PRECONDITION (AND (Donep6) (NOT Donep7) (xq3))

: EFFECT (AND (Donep7) (Happenedp7))

)

(: ACTION Acq1

: PRECONDITION (AND (NOT Doneq1) (Availablel))

: EFFECT (AND (Doneq1) (NOT (Availablel)))

)

(: ACTION Acq2

: PRECONDITION (AND (Doneq1) (NOT Doneq2))

: EFFECT (AND (Doneq2) (yq2))

)

(: ACTION Acq3

: PRECONDITION (AND (Doneq2) (NOT Doneq3))

: EFFECT (AND (Doneq3) (xq3))

)

(: ACTION Acq4

: PRECONDITION (AND (Doneq3) (NOT Doneq4))

: EFFECT (AND (Doneq4) (Availablel))

)

(: goal(Happenedp7))

According to this encoding, sequence Acp1 , Acp2 , Acp3 , Acp4 , Acp5 , Acq1 , Acq2 , Acq3 , Acq4 ,

185

Acp6 , Acp7 is a solution for the planning problem which implies a bug-triggering schedule for

the program.

Appendix B

Proof of Lemma 6.4.2

Proof. The key feature of ISCs generated by Algorithm 3 that proves the lemma, is that they are

generated based on feasible program runs. In fact, this lemma does not hold for any arbitrary

C. For an interference scenario S = (V,E, `), let GTi(S), V (S), E(S), and EI(S) represent

GTi , V , E, and EI in S, respectively. We assume that σ is flattened as a sequence of thread

identifiers that shows which thread should be executed at each step. We show that R is feasible

and IS(R) is isomorphic to C.

Let Rk = P (̄i, σ[1..k]) be the partial program run obtained by executing program P ac-

cording to σ for k steps and let Ck be a sub-interference scenario of C such that for each thread

Ti, Ck contains the first m nodes of GTi(C) if Ti is executed for m steps in σ[1..k]. Ck contains

edges of C for which both involving vertexes are in Ck. Let πi(Ck) be the sequence of labels

of the nodes in the path GTi(Ck) from the root to the leave.

Now, we have to prove that Rk is feasible and IS(Rk) and Ck are isomorphic for all 1 ≤

k ≤ n (where n = |σ|). To prove the isomorphism of IS(Rk) and Ck, we prove that (1)

GTi(IS(Rk)) and GTi(Ck) are isomorphic for every thread Ti and (2) EI(IS(Rk)) and EI(Ck)

are isomorphic, i.e., there is an interference edge (u, v) in Ck iff (isom(u), isom(v)) is an

interference edge in IS(Rk), where isom(n) maps a node n in Ck to its isomorphic node in

IS(Rk). We prove by the induction on the number of steps of σ.

Induction base: Without loss of generality we assume that thread Ti performs action a in

186

187

the first step in R. First of all, R1 is feasible because the first step cannot be blocked as no

blocking synchronization event (like lock acquire) happens before it in R. We know that C is

built from feasible executions of P (i.e., πi(C1) corresponds to a feasible thread-local execution

of Ti) and there is no interference in C1. Furthermore, Ti is deterministic. Therefore, if Ti is

reading/writing to a shared variable or acquiring a lock as its first action a in an execution of the

program, then it should read/write to the same variable or acquire the same lock, respectively,

as its first action in all program executions. If Ti performs a branching action corresponding

to a conditional statement as its first action a, then the action of the node in C1 should also

be a branching action corresponding to the same conditional statement. Let br(ψ) be the label

of the node in C1. Without loss of generality we assume that ψ corresponds the branch where

the condition of the conditional statement is true. The conditional statement can only depend

on inputs (and not any shared variable reads since there is no read from a shared variable

before a in Ti). On the other hand, input vector ī is obtained from DC(C) which forces the

condition of the conditional statement to be true. Therefore, action a = br(ψ) in R1. This

proves that GTi(IS(R1)) and GTi(C1) are isomorphic. Also, there is no interference for the

first step in both IS(R1) and C1 and hence EI(IS(R1)) and EI(C1) are both empty. As a

result, EI(IS(R1)) and EI(C1) are isomorphic.

Induction hypothesis: Suppose that for all 1 < k ≤ n − 1, Rk is feasible, and IS(Rk) is

isomorphic to Ck. Each symbolic variable r corresponding to a read from a shared variable in

IS(Rk) is mapped to a symbolic variable r′ in Ck, according to the isomorphism.

Induction step: We prove thatRn is feasible, and IS(Rn) is isomorphic to Cn. Without loss of

generality, assume that in the nth step, thread Ti performs an action a. We have the following

cases according to the type of a:

• a = wt(x, val): Thread Ti is able to perform a since it is not a synchronization action

and hence Rn is feasible. We know that πi(Cn) represents a feasible thread-local ex-

ecution of Ti. According to induction hypothesis, GTi(IS(Rn−1)) and GTi(Cn−1) are

isomorphic meaning that Ti in run Rn−1 takes exactly the same path as it takes in the

188

feasible thread-local execution represented by πi(Cn−1). Together with the determinism

of Ti, it is implied that the action corresponding to the last node in GTi(Cn) is wt(x, val′)

and val′ is equal to val where each symbolic variable r is replaced by its map r′. There-

fore, GTi(IS(Rn)) and GTi(Cn) are isomorphic. Furthermore, a does not introduce any

new interference in IS(Rn) since it is the last event in Rn. Therefore, EI(IS(Rn))

= EI(IS(Rn−1)) which is, by induction hypothesis, isomorphic to EI(Cn−1). On the

other hand, EI(Cn−1) is equal to EI(Cn) since all nodes in Cn−1 are causally before the

last node of GTi(Cn) in Cn and hence the last node in GTi(Cn) does not involve in any

interference in Cn. Therefore, EI(IS(Rn)) is isomorphic to EI(Cn).

• a = ac(l): Thread Ti is able to perform perform a without getting blocked since Rn fol-

lows the schedule σ which is lock consistent according to the temporal-consistency con-

straints TC(C). Therefore,Rn is feasible. According to induction hypothesis,GTi(IS(Rn−1))

andGTi(Cn−1) are isomorphic meaning that Ti in runRn−1 takes exactly the same path as

it takes in the feasible thread-local execution represented by πi(Cn−1). Together with the

determinism of Ti, it is implied that the action corresponding to the last node in GTi(Cn)

is ac(l). Therefore, GTi(IS(Rn)) and GTi(Cn) are isomorphic. Furthermore, a does

not introduce any new interference in IS(Rn). Therefore, EI(IS(Rn)) = EI(IS(Rn−1))

which is, by induction hypothesis, isomorphic to EI(Cn−1) = EI(Cn). As a result,

EI(IS(Rn)) is isomorphic to EI(Cn).

• a = rel(l): Thread Ti is able to perform a since it is not a blocking action and hence

Rn is feasible. According to induction hypothesis, GTi(IS(Rn−1)) and GTi(Cn−1) are

isomorphic meaning that Ti in run Rn−1 takes exactly the same path as it takes in the

feasible thread-local execution represented by πi(Cn−1). Together with the determinism

of Ti, it is implied that the action corresponding to the last node in GTi(Cn) is rel(l).

Therefore,GTi(IS(Rn)) andGTi(Cn) are isomorphic. Furthermore, a does not introduce

any new interference in IS(Rn). Therefore, EI(IS(Rn)) = EI(IS(Rn−1)) which is, by

189

induction hypothesis, isomorphic to EI(Cn−1) = EI(Cn). As a result, EI(IS(Rn)) is

isomorphic to EI(Cn).

• a = br(ψ) corresponding to a conditional statement S: Thread Ti is able to perform a

since it is not a synchronization action and hence Rn is feasible. According to induction

hypothesis, GTi(IS(Rn−1)) and GTi(Cn−1) are isomorphic meaning that Ti in run Rn−1

takes exactly the same path as it takes in the feasible thread-local execution represented

by πi(Cn−1). Together with the determinism of Ti, it is implied that the action corre-

sponding to the last node in GTi(Cn) should be branching action corresponding to the

same conditional statement S in Ti. Let the expression of this branching action be ψ′.

Without loss of generality, we assume that ψ represents that the condition of statement

S is true. We prove that ψ′ represents that the condition of statement S is true as well,

i.e., ψ′ is equal to ψ where each symbolic variable r is replaced by its map r′. ī satisfies

DC(C), and therefore it also satisfies DC(IS(Cn)) = DC(IS(Cn−1)) ∧ ψ′. ī also satis-

fies DC(IS(Rn−1)) ∧ ψ (i.e., conditions on the execution path in Rn). Since IS(Rn−1)

is isomorphic to IS(Cn−1), therefore any model for DC(IS(Rn−1)) is a model for

DC(IS(Cn−1)) and vice versa. Therefore, ψ′ cannot correspond to the condition of

statement S being false. As a result, GTi(IS(Rn)) and GTi(Cn) are isomorphic. Further-

more, a does not introduce any new interference in IS(Rn). Therefore, EI(IS(Rn)) =

EI(IS(Rn−1)) which is, by induction hypothesis, isomorphic to EI(Cn−1) = EI(Cn).

As a result, EI(IS(Rn)) is isomorphic to EI(Cn).

• a = rd(x, r): Thread Ti is able to perform a since it is not a synchronization action and

henceRn is feasible. According to induction hypothesis, GTi(IS(Rn−1)) andGTi(Cn−1)

are isomorphic meaning that Ti in run Rn−1 takes exactly the same path as it takes in the

feasible thread-local execution represented by πi(Cn−1). Together with the determinism

of Ti, it is implied that the action corresponding to the last node in GTi(Cn) should be

equal to rd(x, r′) for some symbolic variable r′. Therefore, GTi(IS(Rn)) and GTi(Cn)

190

are isomorphic. To prove EI(IS(Rn)) = EI(Cn) we consider the following cases:

– The leaf of GTi(Cn), is a node nr (labeled with (Ti, rd(x, r′))) that is involved in

an interference edge in Cn. Let nw be a node such that (nw, nr) ∈ EI(Cn). We

prove that there is an interference edge from isom(nw) to isom(nr) (i.e., the leaf

of GTi(IS(Rn))) in IS(Rn). σn is a model for TC(Cn) that orders the nodes in

Cn. Since, (nw, nr) ∈ EI(Cn), nw should be the last node writing to x before nr,

according to σn. Since IS(Rn−1) and Cn−1 are isomorphic, σn−1 orders the nodes

in IS(Rn−1) such that isom(nw) be the last node writing to x. Therefore, there

is an interference edge from isom(nw) to isom(nr) in EI(IS(Rn)). Therefore,

EI(IS(Rn)) is isomorphic to EI(Cn).

– The leaf of GTi(Cn), is a node nr (labeled with (Ti, rd(x, r′))) that is not involved

in any interference edge in Cn. Let nw be the last node before nw in GTi(Cn) such

that it is labeled with (Ti, rd(x, val)) for some val. We prove that isom(nr) (i.e.,

the leaf of GTi(IS(Rn))) is not involved in any interference edge in IS(Rn). σn

is a model for TC(Cn) that orders the nodes in Cn. According to σn, nw should

be the last node writing to x before nr. Since IS(Rn−1) and Cn−1 are isomorphic,

σn−1 orders the nodes in IS(Rn−1) such that isom(nw) be the last node writing

to x. isom(nw) is labeled with (Ti, rd(x, val′)) where val′ is equal to val where

each symbolic variable r is replaced by its map r′. Therefore, the last write to x

is done by thread Ti and hence isom(nr) is not involved in any interference edge.

Therefore, EI(IS(Rn)) = EI(Cn).

Appendix C

Proof of Lemma 6.4.6

Proof. We prove by induction on k.

Induction Base: When k = 0, Algorithm 3 performs traditional sequential concolic testing

of individual threads by path exploration. Therefore, for each branch br that is coverable by

sequential testing, either it is covered by the initial random test (at line 8), or there exists a

corresponding realizable ISC C in W 0 such that either sink(C) = br or sink(C) = br′ where

br′ is in thread Th(br) before br, and the generated test for C covers br. As a result, all writes

that can happen without any interference are added to the interference forest after processing

W 0.

Induction Hypothesis: For each k-coverable branch br (1 ≤ k ≤ n − 1), there exists a

realizable ISC C in W k whose generated test covers br. This implies that each write that

require k interferences (where 1 ≤ k ≤ n − 1) to happen is added to the interference forest

while processing W k.

Induction Step: Let br be an n-coverable branch. We prove that W n contains a realizable ISC

C′ whose generated test covers br (C′ could have a sink other than br). Let C be a realizable

ISC with n interferences and sink(C) = br. Suppose that α = br0,1, br0,2, ..., br0,m0 , brk1,1,

brk1,2, ..., brk1,mk1 , brk2,1, ..., brkh,1, ..., brkh,mkh is the sequence of branch nodes in GTh(br)

where bri,j represents the jth branch node that requires exactly i interferences according to

C to be covered. Note that the set of interferences required to cover a branch bri,j according

191

192

to C might be a subset of interferences in the causal interference scenario of bri,j in C; i.e.,

i ≤ |EI(CIS (C, bri,j))|. For example, a read involved in an interference in GTh(br) before

bri,j might only affect a branch that comes after bri,j although it appears in EI(CIS (C, bri,j)).

According to α, the first m0 branches are coverable during sequential testing, then the next

mk1 branches require (same) k1 interferences, then the next mk2 branches require (same) k2

interferences, and so on, where 0 < k1 < k2 < .. < kh = n, and br = brkh,mkh . Let Ck1 , Ck2 ,

..., Ckh be the minimal realizable ISCs (which are subgraphs of C) for branches brk1,1, brk2,1,

..., brkh,1, respectively. Each Cki is a subgraph of Cki+1
for all 1 ≤ i < h.

We first prove (by induction) that W n contains Ckh at some point during the execution of

Algorithm 3. Then, we show that an ISC C′ with sink(C′) = brkh,i (for some 1 ≤ i ≤ mkh)

which is a super-IS of Ckh with exactly the the same set of interferences in Ckh , is put in W n

at some point during the execution of Algorithm 3, whose generated test covers br. Now,

we prove by induction that W kh = W n contains Ckh at some point during the execution of

Algorithm 3.

Induction Base: We show that W k1 contains Ck1 at some point during the execution of Algo-

rithm 3. Since br0,1, br0,2, ..., br0,m0 are coverable by sequential concolic testing, the algo-

rithm covers them through the initial path exploration. The test that covers br0,m0 , skips brk1,1

since it requires some interferences to be covered. Therefore, a dangling node correspond-

ing to brk1,1 will be added to forest and the algorithm generates an ISC I with degree 0 (i.e.,

I = CIS (forest, brk1,1)) and inserts it inW 0. Note thatGTh(brk1,1)
(I) is equal toGTh(brk1,1)

(Ck1).

According to Ck1 , there should be k ≤ k1 reads in Th(brk1,1) in I before brk1,1 that are

required to be interfered with writes from other threads. Each of those writes requires < k1

interferences to happen. We order these reads based on the number of interferences their cor-

responding writes require. Suppose that each read node ri is interfered with wi that requires

wdi interferences (for 1 ≤ i ≤ k), and wd1 ≤ .. ≤ wdk. According to the induction hypothesis,

each write wi is added to the interference forest while the algorithm processes Wwdi .

While processingW 0, the algorithm picks and removes I fromW 0 at line 12. Since I is not

193

realizable, it will be added to UN 0. If wd1 = 0 then ExploreISCs (called at line 17) generates

an ISC for brk1,1 by using I and introducing an interference from w1 to r1. If wd1 > 0 then

ExploreISCs (called at line 23) generates the same ISC, while processing Wwd1 and after w1

has occurred, by selecting I from UN 0 and introducing an interference from w1 to r1. In both

cases, the generated ISC I ′ is of degree wd1 + 1 and will be added to Wwd1+1.

Now, either wd2 < Wwd1+1 or wd2 >= Wwd1+1. In the first case, the algorithm picks and

removes I ′ from Wwd1+1 (while processing Wwd1+1) at line 12 and generates an ISC I ′′ by

calling ExploreISCs (called at line 17) where an interference is added from w2 to r2. In the

second case, since I ′ is not realizable, it will be added to UN wd1+1 while processing Wwd1+1.

While processing Wwd2 and after wd2 has occurred, the algorithm selects I ′ from UN wd1+1 and

generates the same ISC I ′′ by adding an interference is added from w2 to r2. In both cases,

the resulting I ′′ will be added to W combined(w1,w2)+2 where combined(w1, w2) represents the

number of distinct interferences that are required for both w1 and w2. This pattern continues

by the algorithm until the last read rk is interfered and by then the generated ISC is equal to

Ck1 and will be added to W combined(w1,..,wk)+k = W k1 .

Induction Hypothesis: W ki contains Cki for all 1 < i < h at some point during the execution

of Algorithm 3.

Induction Step: W kh−1 contains Ckh−1
at some point during the execution of Algorithm 3.

While processing W kh−1 , the algorithm generates a test that realizes Ckh−1
and leads to cov-

ering the branch brkh−1,1. Assume that this test covers branches brkh−1,1, ..., brkh−1,i for some

1 ≤ i ≤ mkh−1
.

If i 6= mkh−1
then the test skips the branch brkh−1,i+1. Therefore, a dangling node is added

to the forest according to brkh−1,i+1 and an ISC I = CIS (forest, brkh−1,i+1) for brkh−1,i+1 is

generated and added to W kh−1 which is also realizable. As a result, while processing W kh−1 ,

Algorithm 3 generates a test for ISC I that covers brkh−1,i+1. Algorithm 3 continues path

exploration until all branches brkh−1,1, ..., brkh−1,mkh−1
are added to forest and covered by some

tests.

194

The test that covers brkh−1,mkh−1
(could be the test that realized Ckh−1

in the first place if

i = mkh−1
) would skip brkh,1 since it requires some additional interferences. Therefore, brkh,1

is added as a dangling node in forest and the algorithm generates an ISC I with degree kh−1

(i.e., I = CIS (forest, brkh,1)) and inserts it in W kh−1 . Note that I is a sub-IS of Ckh . According

to Ckh , there should be k ≤ kh = n reads in I which are not involved in any interference but

are interfered in Ckh . These reads are interfered with writes that require < n interferences to

happen. We order these reads based on the number of interferences their corresponding writes

require. Suppose that each read node ri is interfered with wi that requires wdi interferences (for

1 ≤ i ≤ k), and wd1 ≤ .. ≤ wdk. According to the induction hypothesis, each write wi is added

to the interference forest while the algorithm processes Wwdi .

While processing W kh−1 , the algorithm picks and removes I from W kh−1 at line 12. Since

I is not realizable, it will be added to UN kh−1 . If wd1 ≤ kh−1 then ExploreISCs (called at

line 17) generates an ISC for brkh,1 by using I and introducing an interference from w1 to r1.

If wd1 > kh−1 then ExploreISCs (called at line 23) generates the same ISC while processing

Wwd1 after w1 occurred, by selecting I from UN kh−1 and introducing an interference from w1

to r1. In both cases, the generated ISC I ′ is of degree combined(I, w1) + 1 and is added to

W combined(I,w1)+1 where combined(I, w1) represents the number of the distinct interferences

that are in I or are required for w1 to happen.

Now, either wd2 < W combined(I,w1)+1 or wd2 >= W combined(I,w1)+1. In the first case, the

algorithm picks and removes I ′ from W combined(I,w1)+1 (while processing W combined(I,w1)+1) at

line 12 and generates an ISC I ′′ by calling ExploreISCs (called at line 17) where an interfer-

ence is added from w2 to r2. In the second case, since I ′ is not realizable, it will be added

to UN combined(I,w1)+1 while processing W combined(I,w1)+1. After wd2 has occurred while pro-

cessing Wwd2 , the algorithm selects I ′ from UN combined(I,w1)+1 and generates the same ISC I ′′

by adding an interference from w2 to r2. In both cases, the resulting ISC I ′′ will be added

to W combined(I,w1,w2)+2 where combined(I, w1, w2) represents the number of distinct interfer-

ences that are in I or are required for w1 or w2. This pattern continues by the algorithm until

195

the last read rk is interfered and by then the generated ISC is equal to Ckh and will be added to

W kh = W n.

We have proved that W n contains Ckh which we know is realizable. Therefore, while

processing W n, the algorithm generates a test for Ckh that covers brkh,1. Assume that this test

covers branches brkh,1, ..., brkh,i for some 1 ≤ i ≤ mkh . If i = mkh then the proof is complete

and C′ = Ckh is the ISC in W n whose generated test covers br. If i 6= mkh then the test skips

the branch brkh,i+1. Therefore, a dangling node is added to the forest according to brkh,i+1

and an ISC I = CIS (forest, brkh,i+1) for brkh,i+1 is generated and added to W n which is also

realizable. As a result, while processingW n, Algorithm 3 generates a test for ISC I that covers

brkh,i+1. Algorithm 3 continues path exploration until all branches brkh,1, ..., brkh,mkh are added

to forest and covered by some tests. Here as well, W n contains a realizable ISC C′, at some

point of time, whose generated test covers br = brkh,mkh .

