
REGRET-BASED REWARD ELICITATION

FOR MARKOV DECISION PROCESSES

by

Kevin Regan

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2014 by Kevin Regan

Abstract

Regret-Based Reward Elicitation

for Markov Decision Processes

Kevin Regan

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2014

Markov decision processes (MDPs) have proven to be a useful model for sequential decision-

theoretic reasoning under uncertainty, yet they require the specification of a reward function

that can require sophisticated human judgement to assess relevant tradeoffs. This dissertation

casts the problem of specifying rewards as one of preference elicitation and aims to minimize

the degree of precision with which a reward function must be specified while still allowing

optimal or near-optimal policies to be produced. We demonstrate how robust policies can be

computed for MDPs given only partial reward information using the minimax regret criterion.

Minimax regret offers an intuitive bound on loss; however, it is computationally intractable

in general. This work develops techniques for exploiting MDP structure to allow for offline

precomputation that enables efficient online minimax regret computation. To complement this

exact approach we develop several general approximations that offer both upper and lower

bounds on minimax regret. We further show how approximations can be improved online

during the elicitation procedure to balance accuracy and efficiency.

To effectively reduce regret, we investigate a spectrum of elicitation approaches that range

from the computationally-demanding optimal selection of complex queries about full MDP

policies (which are informative, but, we believe, cognitively difficult) to the heuristic selection

of simple queries that focus on a small set of reward parameters. Results are demonstrated on

MDPs drawn from the domains of assistive technology and autonomic computing.

Finally we demonstrate our framework on a realistic website optimization domain, per-

forming elicitation on websites with tens of thousands of webpages. We show that minimax

regret can be efficiently computed, and develop informative and cognitively reasonable queries

that quickly lower minimax regret, producing policies that offer significant improvement in the

design of the underlying websites.

ii

Acknowledgements

I would like to thank my advisor Craig Boutilier for the deep insight and thoughtful guid-

ance he offered on my research topic. I would like to thank my committee members Fahiem

Bacchus, Sheila McIlraith, Richard Zemel and my external examiner Leslie Pack Kaelbling for

their time and for their constructive feedback.

I am grateful to my fellow students at the University of Toronto for their camaraderie and

counsel, and to the staff for making all the bureaucratic details of navigating graduate school

as painless as possible.

I would also like to thank my family: my parents Peggy and Joe, my sister Michelle, and

my partner Elaine for their incredible love and support. Finally, I want to thank my son Phineas

for the inspiration he provided near the end of my long journey.

iii

Contents

1 Introduction 1

1.1 Challenges . 5

1.2 Contributions . 7

1.3 Outline . 9

2 Background 11

2.1 Single-step Preference Elicitation . 11

2.1.1 Basic Decision Theory . 11

2.1.2 Quantitative Preferences . 12

2.1.3 Multi-Attribute Utility . 13

2.1.4 Query Types . 15

2.1.5 Criteria for Decision Making with Partial Preferences 17

2.1.5.1 Strict Uncertainty . 17

2.1.5.2 Bayesian Uncertainty . 18

2.1.5.3 Query Selection . 20

2.1.6 Preference Elicitation in Practice . 22

2.2 Sequential Decision Making . 24

2.2.1 Model . 24

2.2.2 Computing Optimal Policies . 26

2.2.3 Occupancy Frequencies . 28

iv

2.2.4 Vector Notation . 29

2.2.5 Scaling MDP Algorithms . 30

2.3 Sequential Decision Making with Partial Information 32

2.3.1 Reinforcement Learning . 33

2.3.2 Robust MDPs . 34

2.3.3 Partially Observable Markov Decision Processes 37

2.3.4 Inverse Reinforcement Learning . 39

2.4 Example Application Domains . 40

2.4.1 Autonomic Computing . 41

2.4.2 Assistive Technologies . 41

3 Computing Robust Policies using Minimax Regret 43

3.1 Imprecise Reward MDPs and Minimax Regret 43

3.2 Randomly Generating IRMDPs . 46

3.3 Computing Exact Minimax Regret . 47

3.4 Experiments . 50

3.5 Computing Approximate Max Regret . 52

3.5.1 Under-approximation . 52

3.5.2 Over-approximation . 53

3.5.3 Approximating Minimax Regret . 54

3.5.4 Experiments . 55

3.6 Leveraging Nondominated Policies . 58

3.6.1 Experiments . 62

3.7 Generating Nondominated Policies using the πWitness Algorithm 64

3.7.1 The πWitness Algorithm . 64

3.7.2 Empirical Results . 67

3.7.3 Approximating the Nondominated Set 68

3.8 Summary and Conclusions . 73

v

3.8.1 Contributions . 76

4 Reward Elicitation 77

4.1 Introduction . 77

4.2 Heuristic Query Selection . 80

4.2.1 Halve-the-Largest-Gap . 81

4.2.2 Current Solution Heuristics . 83

4.2.3 Experiments . 83

4.3 Myopically Optimal Query Selection . 87

4.3.1 Setwise Max Regret Computation . 89

4.3.2 Experiments . 92

4.4 Summary and Conclusions . 94

4.4.1 Contributions . 97

5 Leveraging Reward Structure 98

5.1 Additive Reward with Local Reward Functions 99

5.2 Structured Query Types . 100

5.3 Computing Minimax Regret . 102

5.3.1 Approximate Minimax Regret . 107

5.3.2 Assessment . 109

5.4 Query Selection . 110

5.4.1 Local Bound Scoring . 111

5.4.2 Global Bound Scoring . 112

5.5 Experiments . 112

5.5.1 Assistive Technology . 113

5.5.2 Autonomic Computing . 116

5.6 Summary and Conclusions . 118

5.6.1 Contributions . 120

vi

6 Online Minimax Regret Computation 121

6.1 Online Adjustment of Nondominated Policies 121

6.2 Nondominated Region Vertex Algorithm . 124

6.2.1 Empirical Evaluation . 128

6.3 A Comparison to the Geometric Traversal Algorithm 134

6.3.1 Exact GT . 134

6.3.2 Approximate GT . 134

6.4 Summary and Conclusions . 138

6.4.1 Contributions . 140

7 Applications 141

7.1 Background . 141

7.2 Model . 143

7.3 Models For Empirical Analysis . 147

7.3.1 Creating a Static Website with Traffic 148

7.3.2 Simulating Webpage version-testing 148

7.4 Reducing Website MDPs . 150

7.5 Experiments . 153

7.5.1 Setup . 153

7.5.2 Efficiency . 153

7.5.3 Lift . 154

7.5.4 Elicitation Effectiveness . 155

7.5.5 Full Policy Queries . 155

7.6 Summary and Conclusions . 157

7.6.1 Contributions . 159

8 Conclusions and Discussion 160

8.1 Summary of Results . 161

vii

8.2 Future Directions . 166

A Proofs 170

A.1 Proof of Observation 1 . 170

A.2 Proof of Theorem 1 (Witness Theorem) . 170

A.3 Proof of Theorem 2 . 172

A.4 Proof of Theorem 3 . 175

B Random MDP Generation Details 181

C RLT Formulations 183

C.1 Max regret for flat IRMDPs . 183

C.2 Max regret for IRMDPs with structured reward 186

D Simulating Website Version Testing 187

D.1 Constructing a Model of User Behaviour for the Static Website 187

D.2 Simulating Version Testing . 188

E MDP Specifications 190

E.1 Assistive Technology . 190

E.2 Autonomic Computing . 193

Bibliography 195

viii

List of Tables

3.1 Varying Number of States . 67

3.2 Varying Dimension of Reward Space . 68

5.1 Performance of Alternative Approximation 109

5.2 Performance of Reformulation-Linearization Approximation 110

7.1 HTTP Access Log details . 148

7.2 Website Optimization - NRV Computation Time 154

7.3 Website Optimization - Policy Improvement 155

E.1 Local Delay Penalty υd(d) . 192

E.2 Local Prompt Penalty υp(a) . 192

E.3 Markov Chain for Server 1 . 193

E.4 Markov Chain for Server 2 . 193

E.5 Local Utility for Server 1 . 194

E.6 Local Utility for Server 2 . 194

ix

List of Figures

1.1 Diagram of reward elicitation steps. 4

2.1 POMDP Policy Tree . 38

3.1 Reduction in regret gap during constraint generation 50

3.2 Scaling of constraint generation with number of states 51

3.3 Relative Max Regret vs. Number of States . 55

3.4 Approximate Max Regret Computation Time vs. Number of States 56

3.5 Relative Minimax Regret vs. Number of States 57

3.6 Minimax Regret Computation Time vs. Number of States 58

3.7 Illustration of policy value as function of reward 59

3.8 Scaling of MMR computation w.r.t. nondominated policies 62

3.9 Scaling of MMR Computation and |Γ| vs Number of States 63

3.10 Relative MMR Error and πWitness Runtime vs. |Γ| 72

3.11 πWitness computation time (hrs.) vs. number of nondominated policies. 73

4.1 MMR and MM vs Number of Queries during Elicitation 85

4.2 Histogram of number of queries at each state-action pair. 87

4.3 Relative MMR and SMR vs Query Number during Elicitation 93

5.1 Preference Elicitation in COACH Domain (30 runs) 116

5.2 Preference Elicitation in Autonomic Domain (30 runs) 118

x

6.1 Diagram of Reward Elicitation Framework with Online Adjustment 122

6.2 Illustration of a nondominated region. 125

6.3 Nondominated Policy Computation Time for NRV and πWitness |R|=6 129

6.4 Nondominated Policy Computation Time for NRV and πWitness |R|=8 130

6.5 Error εV as function of NRV policies generated (20 random IRMDPs, log scale). 130

6.6 Upper Bound on MMR during Elicitation for COACH 132

6.7 Pseudocode for Geometric Traversal Algorithm 135

6.8 MMR Error as Nondominated Policies are Generated 136

7.1 Version A of a User’s LinkedIn homepage. 141

7.2 Version B of a User’s LinkedIn homepage. 142

7.3 Results of reward elicitation: relative minimax regret vs. query number. 156

7.4 Representations for queries comparing goal page occupancy frequencies. 157

xi

List of Algorithms

1 Value Iteration for Finite-Horizon MDP . 27

2 Policy Iteration for Infinite-Horizon MDP . 28

3 The πWitness algorithm . 65

4 Generic Reward Elicitation Procedure . 78

5 Online Adjustment during Elicitation . 124

6 Nondominated Region Vertex algorithm . 127

7 Redundant State Elimination Algorithm . 152

8 Random Generation of Semi-Sparse Flat-State-Space MDP 182

9 SimulateVersionTest . 189

xii

Chapter 1

Introduction

Sequential decision-theoretic reasoning under uncertainty is a general and important problem

in both operations research and artificial intelligence. The aim is to construct policies that

dictate optimal actions given the current state of the world and a model quantifying the impact

of actions on the future state of the world. Policies are chosen to optimize a reward function

that captures the desirability of encountering a particular state and taking a particular action.

Many real-world reasoning problems admit description in these terms. For instance, plan-

ning and logistics at large organizations often involve optimizing processes with series of ac-

tions with stochastic effects. These processes range from shipping and component sourcing

to “virtual” resource allocation in computing infrastructure—known as autonomic computing.

Another example is autonomous vehicles that must optimize their operation in the face of un-

certainty, weighing the risk inherent in a course of action with the reward obtained for achieving

desired goals. Semi-autonomous systems interacting directly with people can be modeled sim-

ilarly; a cognitive assistance system that helps persons with dementia to navigate daily tasks

must take input from noisy sensors and plan a series of actions that trade-off the person’s au-

tonomy with the goal of task completion. The design of websites can be cast as sequential

decision problem that finds a series of actions specifying the webpage to serve in response to

an HTTP request in order to optimize a visitor’s (uncertain) behaviour toward some goals such

1

CHAPTER 1. INTRODUCTION 2

as the purchase of a product.

Markov decision processes (MDPs) have proven to be a useful model sequential decision-

theoretic reasoning under uncertainty, yet they require the specification of a large number of

parameters to capture both the stochastic dynamics of action effects along with the reward func-

tion. While dynamics can be learned by observation of the environment, the reward function

reflects the subjective preferences of some user and can require sophisticated human judgement

to assess relevant tradeoffs. For instance, when designing a website, stochastic user behaviour

can easily be captured by logging activity on each webpage. However, precisely specifying

trade-offs between goals like user-engagement and conversion can be difficult.

In some cases there are a simple set of goals/preferences that map directly to observations

in the environment. However, in general the specification of rewards is problematic, since

it requires the translation of general user preferences into precise quantities—a complex and

cognitively demanding task, well documented in the decision theory literature (Keeney and

Raiffa, 1976). Furthermore, this time-consuming process may need to be repeated to capture

the varying preferences of different users (Slavic, Fischhaff, and Lichtenstein, 1977).

An analog to reward specification can be found in the task of determining utility func-

tions in single-step decision problems. An example of such a problem is the decision support

task of determining a user’s utility for potential car purchases. There is an important trade-off

between the improvement in quality of the decision made possible through eliciting utility in-

formation and the burden associated with eliciting that information. In some cases this burden

takes the form of time or mental effort expended by the user; in other cases, computational

resources that are consumed to run simulations (to gauge the utility of particular configura-

tions in the autonomic computing domain, for example). The improvement in decision quality

offered by eliciting further reward information does not always justify the burden imposed

(Salo and Hämäläinen, 1995; Chajewska, Koller, and Parr, 2000; Wang and Boutilier, 2003;

Boutilier, Das, Kephart, Tesauro, and Walsh, 2003a; Boutilier, Patrascu, Poupart, and Schuur-

mans, 2006), motivating methods for making decisions with partial preference information. In

CHAPTER 1. INTRODUCTION 3

the single-step car recommendation task, a user’s preferences for inexpensive cars may obviate

the need to specify the utility of costly luxury options. This phenomenon extends to sequential

problems, where the dynamics of an MDP may dictate that certain states are rarely visited un-

der any policy of action; omitting the precise specification of reward for such states will have

relatively little impact on expected total reward of a chosen policy.

In some cases reward specification may be assisted by a priori information in the form

of a full probability distribution over possible rewards. We wish to avoid relying on such

assumptions and instead assume only that the unknown reward function is one of a (possibly)

infinite set of possible reward functions. By not being required to construct and maintain

a precise probabilistic model of the unknown reward function, we side-step the potentially

intractable inference required to update the model during elicitation—though we will see that

some assumptions we later adopt yield computational challenges of their own. Given strict,

set-based uncertainty over the reward function we can apply robustness criteria in order to

compute policies that offer tight guarantees on policy value given any instantiation of reward.

Some often cited examples of robustness criteria are the maximin and maximax criteria,

which dictate policies that are respectively optimal w.r.t. worst-case and best-case realizations

of the reward function. While both offer guarantees, the criteria suffer from either being too op-

timistic (maximax) or too pessimistic (maximin). The minimax regret criterion (Savage, 1954)

suggests a more reasonable measure, selecting a policy that minimizes maximum regret (or

reward loss). A policy is thus measured not with respect to the worst-case reward in isolation,

but instead a policy is measured against the best policy that could have been selected w.r.t. a

realized reward. Thus terrible worst-case rewards that penalize all policies equally are effec-

tively ignored. Minimax regret bounds the amount of additional reward that could be gained if

the reward function were fully specified; this bound serves as a natural measure for deciding

whether to undertake the burden of further elicitation.

If minimax regret is shown to be zero, then the resulting policy is provably optimal and no

further elicitation is required. For these reasons the minimax regret criterion has been adopted

CHAPTER 1. INTRODUCTION 4

MDP

Reward

Compute
Robust Policy Satisfied?

Select Query
User

response query

no

yespolicy

measure
Done

Figure 1.1: Diagram of reward elicitation steps.

as a natural and intuitive criterion in a number of settings (Boutilier et al., 2006; Salo and

Hämäläinen, 1995; Xu and Mannor, 2009).

Given a particular robust criterion, the choice of policy can be improved by further speci-

fying the unknown reward function through elicitation. Additional reward information can be

passively gathered by observing user activity. For instance, human care-givers could be moni-

tored to glean reward information in the cognitive assistance domain. The subfield of inverse

reinforcement learning describes approaches for inferring reward function constraints from the

demonstrated behaviour of users (Ng and Russell, 2000). The related theory of revealed pref-

erence in economics holds that a user does not possess a weak preference ordering a priori, but

rather that a preference relation is constructed (or revealed) through observing choices made

by the user (Samuelson, 1948).

In this work we focus on “active” elicitation that directly engages the user with queries

about their preferences. Active elicitation can be viewed as an iterative procedure: at each

step a policy is recommended along with a measure of its “goodness” w.r.t. to a robustness

criterion; if the user is unsatisfied, a query is selected and posed to the user; the response further

circumscribes the set of feasible rewards, potentially improving the recommended policy. This

CHAPTER 1. INTRODUCTION 5

process is visualized in Figure 1.1. The focus of query selection here is not to lower reward

uncertainty for its own sake, but rather to directly improve the recommended policy w.r.t. to the

criterion. In fact, information generated from the current application of the criterion can guide

query selection to outperform methods based solely on the characteristics of the set of feasible

rewards (Boutilier et al., 2006). Techniques for incrementally eliciting utility functions for

single step decision problems using minimax regret have proven effective in allowing optimal

or near-optimal decisions to be found without full utility specification (Boutilier et al., 2006)

and provide the inspiration our work.

We adopt a model for sequential decision making with partially specified reward functions

(McMahan, Gordon, and Blum, 2003; Regan and Boutilier, 2010; Xu and Mannor, 2009)),

replacing the reward function with a set of feasible reward functions (assuming strict uncer-

tainty). We refer to this extended model as the imprecise reward MDP (IRMDP).

The central aim of this thesis is the development of a minimax regret-based frame-

work for the incremental elicitation of reward functions for IRMDPs that lowers

the burden on users while remaining computationally effective.

1.1 Challenges

The first major challenge we face is developing an effective approach to minimax regret com-

putation for IRMDPs, since it is computationally intractable in general (Xu and Mannor, 2009).

A suitable approach must facilitate real-time interactive elicitation with a user, tackling large

“real-world” IRMDPs and delivering results in seconds rather than minutes or hours.

This objective is achieved through exploiting structure to allow for offline precomputation

that enables efficient online computation. For any IRMDP there exists a set of polices that are

dominated w.r.t. possible reward realizations. These dominated policies can be safely ignored,

and a precomputed set of nondominated policies can be leveraged to dramatically improve the

efficiency of computing minimax regret during elicitation. Specifically, the minimax regret

CHAPTER 1. INTRODUCTION 6

computation scales linearly with the number of nondominated policies. We develop a poly-

nomial time algorithm—the πWitness algorithm—to identify the set of nondominated policies

and show that for IRMDPs admitting a polynomial number of nondominated policies, we can

compute minimax regret in polynomial time. Most promising of our approaches to precomput-

ing nondominated policies is an anytime algorithm—the nondominated-region vertex (NRV)

algorithm—that offers a bound on the approximation error that would be incurred at each step

by using the currently identified subset of nondominated policies. As new nondominated poli-

cies are identified, the runtime of the minimax regret approximation using the current set of

nondominated policies increases while the approximation error decreases; selecting the point

at which to terminate the anytime algorithm (NRV) allows for precise trade-offs between ap-

proximation error and efficiency.

Some parameterizations of the IRMDP—such as the uncalibrated additive reward functions

explored in Chapter 5—do not lend themselves to efficient nondominated policy generation.

For these cases we develop several approximations that do not rely on nondominated polices.

These approximations offer both upper and lower bounds on minimax regret; and can be used

to both guide query selection and provide a bound on the regret of the current policy during

elicitation, thereby providing a suitable stopping criterion.

The next major challenge is the reduction of minimax regret through effective elicitation.

Our work investigates a spectrum of elicitation approaches that range from the computationally-

demanding optimal selection of complex queries about full policies (which are informative,

but, we believe, cognitively difficult) to the heuristic selection of simple queries that focus

on a small set of reward parameters. We empirically examine how query structure and query

parameter selection influence the effectiveness of the resulting reward elicitation procedure,

focusing on example IRMDPs drawn from the domains of assistive technology and autonomic

computing.

We show how a factored state space and structural independence in the reward function

can be leveraged to pose more direct (and intuitive) queries that focus on individual attributes

CHAPTER 1. INTRODUCTION 7

of the reward function and streamline elicitation. The elicitation of rewards for large factored

IRMDPs can thus be accomplished with a small number of targeted, intuitive queries.

Effective elicitation can in turn improve the efficiency of minimax regret computation. An

approximate set of nondominated policies can be carefully managed during elicitation to com-

pute approximate minimax regret with bounded error—error that is reduced as elicitation pro-

ceeds and reward uncertainty is reduced. As reward uncertainty is reduced during elicitation,

nondominated policies in this set will become dominated, and can safely be removed, im-

proving the efficiency of minimax regret computation (which depends heavily on the number

of nondominated policies). Additional nondominated policies can then be added to the ap-

proximate set lowering error. This allows us to make explicit tradeoffs between the quality of

approximation and the efficiency of computation.

Finally, we simultaneously tackle the twin challenges of minimax regret computation and

effective reward elicitation for a realistic IRMDPs by tackling a website optimization decision

problem. We build models of user behaviour from four websites, each with tens of thousands of

webpages. We show that minimax regret can be efficiently computed, and develop informative

and cognitively reasonable queries and use these queries to quickly lower minimax regret,

producing policies that offer significant improvement in the design of the underlying websites.

1.2 Contributions

To summarize the novel aspects of this work we list our major contributions below.

Computing Robust Policies using Minimax Regret (MMR)

• An exact procedure for MMR computation using constraint generation and mixed integer

programming

• Several approximate methods for efficiently generating lower and upper bounds on MMR

• An exact approach to minimax regret computation leveraging nondominated policies

• A polynomial time algorithm (πWitness) for generating nondominated policies

CHAPTER 1. INTRODUCTION 8

Reward Elicitation

• The development of of volumetric and current solution heuristics for query selection

• A method for optimal full-policy query selection

Leveraging Reward Structure

• Exact and approximate algorithms computing MMR for IRMDPs with additive reward

• Decision-theoretically sound heuristics for eliciting additive reward using local value

functions

Online Minimax Regret Computation

• The nondominated region vertex (NRV) algorithm for generating nondominated policies

which provides an anytime bound on approximation error for minimax regret

• A method for adjusting the set of nondominated policies online, speeding up computation

and improving the quality of approximation

Reward Elicitation for Website Optimization

• The empirical analysis of public datasets demonstrating effective version testing opti-

mization on websites with thousands of pages.

• Examples of effective and cognitively reasonable full policy queries

Each of these contributions will be placed in the context of related work as our methods

are developed in later chapters. However, it worth noting here that our work comprises the

first fully realized framework for the incremental elicitation of reward for Markov decision

processes.

CHAPTER 1. INTRODUCTION 9

1.3 Outline

This thesis is structured as follows. Chapter 2 introduces the relevant background on single-

step preference elicitation and sequential decision making. Reward function elicitation for

Markov decision processes can be viewed as the confluence of these two streams of research.

Chapter 3 formally specifies the IRMDP model and develops a number of approaches to

computing minimax regret for IRMDPs. We first detail an exact method using constraint gen-

eration and mixed integer programming. We observe that the runtime of this approach scales

superlinearly with size of IRMDPs. To address this, we detail three approximations, two of

which offer lower bounds and one an upper bound on minimax regret. Next, we examine how

a precomputed set of nondominated policies can be used to compute minimax regret. We com-

plete this approach by developing an algorithm for generating the set of nondominated policies

and we observe that the runtime of minimax regret is tightly linked with the number of non-

dominated policies. We then extend our approach to anytime nondominated policy generation

(a topic that we will revisit in depth in Chapter 6).

Chapter 4 introduces our approach to reward elicitation for general IRMDPs (i.e., without

assuming factored structure). We detail two heuristic approaches to query selection: the first

uses information about only the feasible reward set, while the second supplements this with

information from the minimax regret solution at each step of the elicitation. Next we develop

a (myopically) optimal query selection method for full policy queries (which will be demon-

strated on the website optimization domain in Chapter 7) and demonstrate the effectiveness of

this approach.

Chapter 5 describes how reward structure can be leveraged to improve the effectiveness of

elicitation. We extend our approaches to compute minimax regret for IRMDPs with additive

reward composed of local value function and develop decision-theoretically sound heuristics to

elicit information about these local value functions and along with parameters specifying their

global calibration.

Chapter 6 revisits the online use of nondominated policies. Shrewd management of an ap-

CHAPTER 1. INTRODUCTION 10

proximate set of nondominated policies during elicitation can yield efficient computation of ap-

proximate minimax regret. We develop the nondominated region vertex algorithm for anytime

nondominated policy generation, which yields a bound on error and operates by generating

policies to maximally reduce that error. Paired with our online management of nondominated

policies, the NRV algorithm allows for approximate minimax regret computation with bounded

error that is reduced as elicitation proceeds.

Chapter 7 applies many of the methods developed in Chapters 3–6 on a website optimiza-

tion problem. We detail how we simulate website IRMDPs using data from four existing

datasets and describe the results of reward elicitation in this domain.

Chapter 8 concludes this thesis with a summary of contributions and discussion of the many

directions for future work.

Chapter 2

Background

This chapter presents background material referenced throughout the proposed thesis and pro-

vides a survey of related work.

2.1 Single-step Preference Elicitation

In this section we introduce the principles of single-step decision making and preference elic-

itation that, along with Markov decision processes, will form the foundation for preference

elicitation in multi-stage decision processes.

2.1.1 Basic Decision Theory

Decision theory provides a framework for modeling the preferences of a user and stipulates

how optimal decisions are to be made based on these preferences. A comprehensive treatment

can be found in the work of von Neumann and Morgenstern (1944), Fishburn (1970), Keeney

and Raifa (1976) and French (1986).

The simplest case focuses on a single user choosing among a finite set X of possible out-

comes. The preferences of the user are specified by a set of binary relations. The preference

relation x � y denotes that outcome x is preferred to outcome y. The preference relation is

11

CHAPTER 2. BACKGROUND 12

asymmetric and it can not be the case that both x � y and y � x. To capture this notion, the

symmetric indifference relation is used: x ∼ y denotes the user being indifferent between x

and y. A weak preference relation combines the two relations: x � y denotes that x is at least

as preferred as y (either x � y or x ∼ y). It is generally assumed that any decision h is rational

and has the following attitudes towards certain outcomes.

Comparability: All outcomes are comparable: ∀ x, y ∈ X , either x � y, y � x, or x ∼ y.

Transitivity: All orderings of outcomes are consistent. ∀ x, y, z ∈ X , if x � y and y � z,

then x � z.

A weak preference ordering over outcomes that is comparable and transitive can be represented

on the ordinal scale using a scalar value function that maps each outcome to a real number. On

this scale the user prefers outcomes with higher values. However, given simple binary relations

between outcomes, it is not possible to represent the magnitude of a preference (i.e., “By how

much is x preferred to y”?).

2.1.2 Quantitative Preferences

Von Neumann and Morgenstern (1944) showed that binary preference relations can be mapped

to a cardinal scale by pairing outcomes with a probability of occurrence. They introduce the no-

tion of a lottery over outcomes. A simple lottery l is defined as the set 〈p1, x1; p2, x2; . . . ; pn, xn〉

in which each outcome xi has a probability pi of being realized. The probabilities pi sum to

one and form a distribution over the set of outcomes

X ≡ {x1, x2, . . . , xn}.

The user’s preferences over outcomes can be extended to include preferences over lotteries.

When the preferences over lotteries obey a small set of axioms (specifically the decomposabil-

ity, independence, and continuity axioms), they can be represented by a utility function uwhich

maps each lottery to a real-valued utility such that lotteries with higher utility are preferred.

CHAPTER 2. BACKGROUND 13

The utility of a simple outcome x can be measured using degenerate lotteries in which the

outcome x occurs with certainty. It can then be shown that the utility of a lottery is equal to the

expected utility of the outcomes in the lottery (von Neumann and Morgenstern, 1944).

u(l = 〈p1, x1; p2, x2; . . . ; pn, xn〉) =
n∑

i

piu(xi) (2.1)

It follows that when an action has uncertainty as to its outcomes, a rational user should

choose the action that maximizes the expected utility of the outcomes.

2.1.3 Multi-Attribute Utility

It is often natural to consider outcomes as having a multi-dimensional structure. For instance

when choosing a car to buy, we assess the power of the engine, the fuel efficiency, the number

of seats, etc. Each one of these dimensions is referred to as an attribute which can take on

a value from finite or possibly infinite domain. We focus on finite domains in this work. An

outcome consists of an instantiation of all of these attributes and the set of all outcomes is

the Cartesian product of the attribute domains. The number of outcomes grows exponentially

with the number of attributes. However, there often exists some structure in how preferences

over attributes are expressed that allows for a more compact representation of preferences over

outcomes (Fishburn, 1970; Keeney and Raiffa, 1976; French, 1986).

One such structural assumption is preferential independence. Let X1, X2, . . . , Xn be the

set of attributes. Each attribute has a finite domain; for ease of notation we will use Xi inter-

changeably to refer to both the ith attribute and its domain. Let X = X1 ×X2 × · · · ×Xn be

the set of all outcomes, let I ⊆ {1, 2, . . . , n} be the indices of a subset of attributes, and let

the compliment Ic denote {1, 2, . . . , n} \ I . Then the subset of attributes XI are preferentially

independent of the attributes XIc when the following is true:

(xI , y) � (x′I , y) for some y ∈ XIc ⇒ (xI , y
′) � (x′I , y

′) for all y′ ∈ XIc

CHAPTER 2. BACKGROUND 14

where the symbol � indicates a weak preference ordering (Keeney and Raiffa, 1976).

This kind of independence leads to an intuitive expression of preferences using ceteris

paribus (all else being equal) statements of the form xI � x′I . This statement is interpreted

as (XI , y) � (X ′I , y) ∀ y ∈ XIc . An expression of preferences using ceteris paribus state-

ments about subsets of attributes can be represented using a graphical model such as CP-nets

(Boutilier, Brafman, Domshlak, Hoos, and Poole, 2004a). Like graphical models for probabil-

ity distributions, an attribute Xi is connected to other attributes that influence preferences over

Xi. The CP-net can be used to compare full outcomes, and find the most preferred outcome

in polynomial time (in the size of the CP-net); however, in general CP-nets cannot express

arbitrary full preference orderings.

In a similar manner to preferences, the quantitative representation of utilities can be greatly

reduced by introducing independence assumptions (Fishburn, 1970; Keeney and Raiffa, 1976).

A common approach defines additive utility in terms of each attribute in isolation and assumes

that the user is indifferent among lotteries that have same marginals on each attribute. Given

this independence assumption, one can define local, attribute-specific utility functions such that

the utility of an outcome is equal to the sum of the utility of each attribute which in turn can be

represented by a scaled local value function:

u(x) =
n∑

i

ui(xi) =
n∑

i

λiυi(xi) (2.2)

The local value function υi is defined over the single attribute Xi and the scaling factor λi

calibrates the local value function, expressing how much it impacts the global utility function.

Let x>i be the most preferred level and x⊥i be the least preferred level of attribute Xi. Then

the local value function can be specified relative to these “anchor” levels, and the calibration

weights λi set by finding the true utility of the “anchor” levels relative to some full outcome x

Fishburn (1970).

When there is some dependence among attributes, generalized additive independence (GAI)

CHAPTER 2. BACKGROUND 15

models can be used to capture preference structure and decompose the value function into local

utility functions over set of attributes (Fishburn, 1970):

u(x) = u1(xI1) + u2(xI2) + · · ·+ un(xIn)

where the subsets Ii of attributes are mutually independent. For instance, in a four attribute

domain, given I1 = {1, 2}, I2 = {3, 4}, I3 = {2, 3}, then

u(x1, x2, x3, x4) = u1(x1, x2) + u2(x3, x4) + u3(x2, x3).

A similar, but more sophisticated technique can be used to specify the utility for the GAI model

in terms of local value functions (Fishburn, 1970). However, even when utility is decomposed

into a set of value functions, each with respect to a single set of attributes, we cannot expect a

user to be able to directly specify a numerical value for each υi(xi) in an accurate and consistent

way (French, 1986). The next section examines alternatives to directly specifying a numerical

value.

2.1.4 Query Types

Queries can be used to directly or indirectly elicit information about a user’s utility function.

The most desirable queries are those that yield a high amount of information, while not putting

a high cognitive load on the user. Queries can elicit global information with respect to the

utility of whole outcomes, or can elicit local information about value functions over subsets of

attributes.

Comparison A global comparison query asks a user to directly compare two of outcomes (or

lotteries). For example: is outcome x preferred to outcome y? In the case of outcomes

with few attributes this query often requires little cognitive effort on behalf of the user,

but it also elicits little information, providing a simple linear constraint on utility: if

x � y then u(x) ≥ u(y). In a multi-attribute model, a local comparison query asks a user

CHAPTER 2. BACKGROUND 16

to compare two instantiations of a subset of attributes, assuming that (ceteris paribus) the

unspecified attributed are fixed.

Most Preferred A global choice set query asks the user which in a set of n outcomes is most

preferred. This places a higher cognitive load on the user, but yields information equiv-

alent to n− 1 comparison queries (French, 1986) and places n− 1 linear constraints on

the utility function.

Equivalence A global equivalence query asks the user to choose a probability p for which the

user indifferent between the lottery p, 〈x>, (1− p), x⊥〉 and the certain outcome y. This

is known as a standard gamble query and given that we know the utility of x> and x⊥

will directly specify the utility of y. It is unlikely that the typical user will be able to

easily answer this type of query with the required level of precision. A generalization

of the equivalence query is the bound query, which asks the user to directly bound the

utility of an outcome or attribute from above or below.

Ranking A ranking query asks the user to rank a subset (or the entire set) of outcomes. The

query is cognitively demanding since it requires preference information relating every

pair of alternatives. While this query specifies a total ordering over the subset, it does

not reveal the strength of preference between two outcomes.

Information about the preferences of a user can also be gathered implicitly by passively

observing the choices of the user. Section 2.1.6 discusses conjoint analysis and collaborative

filtering techniques which use aggregate information about the preferences of many users to

infer the preferences of a separate individual user. Section 2.3.4 discusses a method for deriving

the equivalent of utility functions for multi-step decision problems using a notion of observed

behaviour.

In practice it can be extremely time consuming and cognitively demanding to entirely spec-

ify a utility function with full precision. The next section outlines criteria that have been pro-

posed for making decisions on the basis of partially specified utilities.

CHAPTER 2. BACKGROUND 17

2.1.5 Criteria for Decision Making with Partial Preferences

The partial information regarding preferences is usually assumed to take one of two possible

forms. The first form assumes that the parameters of the feasible utility functions lie in some

bounded region. These bounds can be derived using many of the queries from Section 2.1.4.

This is referred to as the strict uncertainty setting. The second form of uncertainty assumes that

we can characterize what we know in terms of a probability distribution over the parameters

of the unknown utility function. Such distributions can be derived by aggregating the elicited

utility functions of other users or by a domain expert specifying degrees of belief in possible

utility functions for a user.

2.1.5.1 Strict Uncertainty

Strict uncertainty over preferences is characterized by allowing the decision maker’s actual

utility function to be one from a set of feasible utility functions U . The goal is then to realize

the “best” outcome given a set of feasible utility functions. However, there are many reasonable

measures of what the “best” outcome might be:

Maximax The maximax criterion represents the most optimistic approach. The criterion

chooses the outcome that yields the highest utility over all of the feasible utility func-

tions. However, the “true” utility function may yield a far lower utility for the chosen

outcome than predicted.

[
Maximax

]
x∗U = argmax

x∈X
max
u∈U

u(x)

Maximin The maximin criterion chooses the optimal outcome with respect to the worst choice

of utility function (Wald, 1950). This yields a guarantee that the realized utility will be

no worse than the maximin utility. However, this is a pessimistic measure that may be

far too conservative with its choice of outcome.

[
Maximin

]
x∗U = argmax

x∈X
min
u∈U

u(x)

CHAPTER 2. BACKGROUND 18

Optimism-Pessimism Index The maximax and maximin criteria can be balanced by choos-

ing an outcome which maximizes a combination of the utility functions chosen by each

(Wald, 1950). The optimism-pessimism index (OPI) α determines how skewed the result

is towards being pessimistic or optimistic.

[
OPI

]
x∗U = argmax

x∈X

[
αmin
u∈U

u(x) + (1− α) max
u∈U

u(x)
]

However, it is unclear how to choose the parameter α in a principled way.

Minimax Regret The minimax regret (MMR) criterion (Savage, 1951) compares the out-

comes for each state of uncertainty. The maximum regret of choosing x is defined as

MR(x, U) = max
u∈U

max
x′∈X

[
u(x′)− u(x)

]

which can be thought of as measuring worst case loss with respect to possible realizations

of the utility function u ∈ U . The minimax regret criterion minimizes this worst case

loss.

[
MMR

]
x∗U = argmin

x∈X
MR(x, U) = argmin

x∈X
max
u∈U

max
x′∈X

[
u(x′)− u(x)

]
(2.3)

The minimax regret criterion is less pessimistic than maximin while still providing a

guarantee with respect to worst case loss. This loss is arguably a more intuitive measure

for a user since it is gauges how much better the user could have done if they knew the

true utility.

2.1.5.2 Bayesian Uncertainty

Bernoulli argued that in the absence of any information about the probability of events, we

should assume each event is equally likely (Hacking, 1971). This has been referred to as the

principle of insufficient reason. A criterion based on this should choose the outcome x that

CHAPTER 2. BACKGROUND 19

maximizes the mean w.r.t. the feasible utility functions as follows

x∗ = argmax
x∈X

1

|U |
∑

u∈U
u(x) (2.4)

We can recast the above formulation in Bayesian terms by finding the outcome which max-

imizes expected utility with respect to a distribution σ over possible utility functions.

x∗ = argmax
x∈X

Eσu∈U
[
u(x)

]
(2.5)

Note that this is equivalent to formulation (2.4) when utility functions are drawn from a uniform

distribution. Formulation (2.5) is also known as the “Bayesian criterion for imprecise utility”

and has been used by a number of researchers (Boutilier, 2002; Chajewska, 2002). An example

of how to construct a prior over utility functions can be found in the work of Chajewska and

Koller (2000). They use a database of previously elicited utility functions to estimate the

distribution of utility functions in the population and then use this estimate as a prior for each

individual user.

Another possible criterion used by Delage and Mannor (2007) attempts to balance the

strengths of the Bayesian and strict uncertainty approaches. Delage and Mannor refer to this

approach as percentile optimization (it is also known as chance-constrained optimization) and

it is directly related to the Value-at-Risk measure for mitigating market risk (Jorion, 1997).

The criterion makes use of prior information while offering a form of probabilistic guarantee.

The percentile criterion for choosing an outcome given a set of feasible utility functions is as

follows:

x∗ = argmax
x∈X

max
y

Pr
(
u(x) ≥ y

)
≥ η

where η can be thought of as a confidence interval. Thus, when η = 0.95 we can think of

the percentile criterion as finding the outcome x∗ that yields the highest expected value, y,

CHAPTER 2. BACKGROUND 20

95% of the time. Unfortunately this approach doesn’t entirely realize the strength of either the

Bayesian or strict uncertainty approaches, since it is not truly Bayesian and cannot offer a real

(non-probabilistic) performance guarantee.

2.1.5.3 Query Selection

Given a parameterized partial preference representation and a type of query, the next step is to

select which parameters to query in order to improve the quality of the decision according to

the chosen criterion.

Under the assumption of strict uncertainty, the space of feasible parameters of the unknown

utility function are often restricted to form a convex polytope. Some examples of how the initial

polytope can be specified are 1) placing upper and lower bounds on each utility parameter or

2) bounding each utility parameter using a set of linear constraints imposed by an initial set of

bound or comparison queries.

All responses to the queries in Section 2.1.5.1 impose either a linear bound or a linear

inequality constraint on the utility polytope that potentially reduce its volume. With this geo-

metric interpretation in mind, there are number of strategies that seek to significantly reduce

volume using as few queries as possible.

The Q-Eval approach developed by Iyengar (2001) uses a comparison query whose re-

sponse imposes a hyperplane which partitions the utility polytope into two components. A

response to the query essentially eliminates one component. Iyengar uses a heuristic to choose

the outcomes (and the resulting hyperplane) that will form the next query. The heuristic uses

the distance of the hyperplane from the analytic center of the polytope to prune potential

queries. The volume of the partitions resulting from each hyperplane are examined to find

the query/hyperplane that will make these volumes as close to equal as possible.

The polyhedral methods of Toubia (2003b; 2004) use queries which ask the user to choose

the most preferred of a set of n outcomes. A response yields n − 1 pairwise preference con-

straints and the hyperplanes imposed by each potential response create an n-partition of the

CHAPTER 2. BACKGROUND 21

polytope. Query selection proceeds by attempting to find the set of outcomes that equally par-

titions polytope. This problem is approximately solved by first finding the analytic center of

the polytope and then using an ellipsoid to approximate the volume of the polytope.

One benefit of these volumetric approaches is that they yield bounds on the number of

queries required to reduce to volume to some level ε. However, the end goal is to improve

the quality of decision with respect to one of the criteria described in Section 2.1.5.1 and a

reduction in the volume of the utility polytope does not guarantee an improvement w.r.t. the

decision criteria. Boutilier et al. (2005) describe heuristic strategies for directly improving the

minimax regret criterion. Given an uncertain factored utility function, their strategies select

bound queries that ask about the midpoint of the interval constructed around the upper and

lower bounds at a point in the utility polytope. The halve the largest gap strategy selects a point

with the largest distance between its upper and lower bound. While the current solution strategy

uses information from the solution x and x′ of the minimax regret calculation (Equation (2.3))

in conjunction with the size of the interval to select the point at which to query. In practice

these heuristic strategies have been shown to often outperform volumetric approaches.

Let P be the set of potential query responses. A Bayesian approach to selecting a query

assumes that a prior φ can be established over possible utility functions, and further, that we

can establish a distribution Pr(ρ | q, u) over responses ρ ∈ P to a query q ∈ Q given a utility

function u (this distribution can also incorporate a noise model allowing users to occasionally

give an “incorrect” response). The approach used by Chajewska et al. (2000) is then to select

the query that maximizes the myopic expected value of information (myopic EVOI).1 To calcu-

late myopic EVOI the posterior distribution Pr(u′|q, φ) is found for each possible query. This

is used to find the expected posterior utility EPU for each query, the EPU is then compared

to the maximum expected utility (MEU) given the prior distribution over possible utilities and

1The expected value of information is myopic because it only considers the responses to next query and not
how the next query will effect the responses of future queries.

CHAPTER 2. BACKGROUND 22

the query is selected that yields the most gain:

max
q

EV OI(q, φ) = EPU(q, φ)−MEU(φ)

One challenge of this approach is that the computational cost of updating the posterior Pr(u′|q, φ)

after each query response can be very high.

The myopic EVOI approach can be improved upon by computing the optimal sequence of

queries. Boutilier (2002) and Holloway et al. (2003) have developed models for computing

optimal sequential query policies offline using a partially observable Markov decision process.

However, computing the optimal sequential query policy with these models is intractable for

all but unrealistically small problems.

2.1.6 Preference Elicitation in Practice

Some of the earlier work that incorporates a computational approach to preference elicitation

is that of White (2003) on multi-objective computer aided design. User preferences are used

to guide the exploration of a large and complex design space by a variety of search strategies.

Partial preferences are characterized by imprecisely specified multi-attribute utility theory (IS-

MAUT) in which the utility function is represented by a normalized sum of attribute-specific

value functions. Approaches using ISMAUT have been applied to many problems from the

designing communication networks (Edward A. Sykes, 1985) to fossil fuel boilers (Brown and

White, 1987). The goal is to incorporate constraints on the value functions and generate a set of

non-dominated options that a user may choose among. One potential issue with this approach

is that the set of non-dominated options can be too large for a human user to reasonably assess.

In this case, elicitation approaches have been proposed to narrow the set of non-dominated

options, however, these approaches lack a principled query selection process.

The field of conjoint analysis grew out of research in consumer marketing (Green and Rao,

1971), but shares many similarities with work in preference elicitation. The goal of conjoint

CHAPTER 2. BACKGROUND 23

analysis is to take the aggregate preferences of consumers for products and decompose them

to yield preferences over more general product attributes. Consumer preferences over these

general attributes are then used to predict the success of future products. Like the work with IS-

MAUT, conjoint analysis often assumes an additive utility function. The prediction of attribute

preferences is accomplished using some form of regression, such as least squares (Green and

Srinivasan, 1978, 1990). While conjoint analysis is a useful tool for constructing models of

preference for groups of users, it does not address how preferences can be constructed for a

single user.

Since the work of Konstan et al. on GroupLens (Konstan, Miller, Maltz, Herlocker, Gordon,

and Riedl, 1997), collaborative filtering has been a popular approach for predicting the pref-

erences of users. Much like conjoint analysis, collaborative filtering builds these predictions

using the preferences of a large group of related users. This prediction has been constructed

in many ways using item-to-item similarity (Sarwar, Karypis, Konstan, and Reidl, 2001), user-

to-user similarity (Kautz, Selman, and Shah, 1997) and more recently matrix factorization

(Rennie and Srebro, 2005) which learns an implicit set of features for each item and for each

user that matches the observed preferences of users. The implicit features are then used to

predict the unobserved preferences of users. Much of the work on collaborative filtering solves

a single prediction task without actively eliciting further preferences through queries. How-

ever, collaborative filtering methods can be used to iteratively (Boutilier, Zemel, and Marlin,

2003b) query users in order to improve their predictions. Like conjoint analysis, collaborative

filtering embodies a set of assumptions that are different from classical preference elicitation.

It assumes the presence of a large (but sparse) set of ratings by other users when evaluating the

preferences of an individual user.

The work of Pu and Faltings (2003) on user-involved preference elicitation builds on re-

search in behavioural decision theory and incorporates affordances that aim to mitigate issues

with how people have been observed to make decisions. This work advocates a flexible order-

ing in the elicitation process, allowing the user to choose the focus of the elicitation at each

CHAPTER 2. BACKGROUND 24

step. Examples of this flexibility are present in the work of Viappiani et al. (2006a; 2006b)

and Reilly et al. (2004; 2005; 2007) on example critiquing. The process of example critiquing

presents the user with an example and allows the user to place constraints on one of many

attributes of the example, for instance requiring a car to cost less than $15,000 dollars. The

process iterates as the system generates a new example based on the refined user preferences.

Example critiquing systems have been used to elicit user preferences for a variety of consumer

choices, from rental apartments to travel plans (Faltings, Pearl, and Torrens, 2004). While

these approaches offer a variety of novel interaction paradigms, they often lack a principled

and precise model of the user’s utility function.

There are many applications of preference elicitation to single-stage decision problems, but

few that consider an agent making multiple decisions over time. In the next section we will

describe the standard representation for decision problems that involve time and uncertainty.

2.2 Sequential Decision Making

This section shifts focus to the fundamentals of sequential decision making. We begin with

a review of Markov decision processes (MDPs) and algorithms for computing optimal poli-

cies with emphasis on the linear programming approaches that will form the basis of exact

algorithms for computing minimax regret.

2.2.1 Model

The Markov decision process (MDP) is a powerful formalism for representing an agent making

a sequence of decisions in an uncertain environment. Much of the theory and notation for the

discounted MDPs we will discuss was first developed by Howard (1960). A comprehensive

treatment can be found in the text by Puterman (1994). In the MDP formalism, given the

current state of the world, the agent chooses an action. This action has some stochastic effect

which changes the state. The user then receives some reward based on the current state and

CHAPTER 2. BACKGROUND 25

chooses the next action, repeating the process.

Formally a (finite) Markov decision process is described by the tuple 〈S,A, P, r, β〉 where

S is a finite set of states, A is a finite set of actions, the transition function P : S ×A→ Π(S)

maps the state and action to distribution over next states, the reward function r : S × A → R

defines the reward received after taking an action in a specific state, and the starting state

distribution β expresses the probability β(s) that the process will begin in state s. In this

model the state at time t + 1 depends only on the state at time t and the action taken. This

is referred to as the Markov property and allows for efficient algorithms that decompose the

problem by time step.

We describe an MDP as having finite horizon when the process terminates after a fixed

number of time steps. When there is no stopping point the MDP is described as having an

infinite horizon. In the finite horizon case, the goal is to maximize the total expected sum of

rewards E[
∑k−1

t=0 rt] over k time steps. When there is an infinite horizon, a discount factor

γ ∈ [0, 1) is often introduced to favour immediate reward. The goal is then to maximize the

total expected sum of discounted rewards E[
∑∞

t=0 γ
trt]. The discount factor also has the effect

of bounding the infinite sum to yield a finite amount of total reward.

A policy prescribes an action1 to the agent for each possible state of the decision process.

When the agent’s behaviour is not dependent on the time step, a stationary policy π : S → A

chooses an action given the current state. In an MDP with a finite horizon, a non-stationary

policy {π1, π2, . . . , πT} chooses an action for each state and time step 1, . . . , T . Given an

infinite horizon, Howard (1960) shows that there must exist an optimal stationary policy, since

there is always an infinite amount of time remaining.

Given an MDP and a stationary policy π, the total expected value of executing the policy

with t steps left in a finite horizon is modeled by the value function V π
t , recursively defined as

1Stochastic policies offer a distribution over actions for each state.

CHAPTER 2. BACKGROUND 26

follows:

V π
t (s) = r(s, πt(s)) + γ

∑

s′∈S
P (s, πt(s), s

′)V π
t−1(s′) (2.6)

V π
1 (s) = r(s, π1(s)) (2.7)

In the infinite horizon case the value of a policy Vπ is independent of the time step and can

be expressed as a fixed point of the following equation.

V π(s) = r(s, π(s)) + γ

s′∈S∑
P (s, π(s), s′)V π(s′) (2.8)

This recursive formulation is the basis for the following dynamic programming algorithms that

compute the optimal policy.

2.2.2 Computing Optimal Policies

Let V ∗ be the optimal value function w.r.t. to possible policies. Bellman (1957) established the

following relationship between V ∗ at stage t and t− 1.

V ∗t (s) = max
a

r(s, a) + γ
∑

s′∈S
P (s, a, s′)V ∗t−1(s′) (2.9)

This relationship is the basis of the value iteration algorithm which computes the optimal

policy by first finding the value of the action that yields the highest reward with t = 0 steps

to go and working backward. Algorithm 1 gives the details of the value iteration algorithm

for a finite horizon T . At each step a policy is computed that maximizes the Q-value function

Q(s, a) which captures the value (given the current value function) of taking the immediate

action a in state s and following the optimal policy thereafter.

For MDPs with infinite horizons (with a discount factor less than one) we can apply a

similar approach, iteratively computing the value of the optimal policy at each time step. In

CHAPTER 2. BACKGROUND 27

Algorithm 1: Value Iteration for Finite-Horizon MDP

V0(s) = maxa r(s, a)
π0(s) = argmaxa r(s, a)
foreach t = 1 . . . T do

Qt(s, a) = r(s, a) +
∑

s∈S P (s, a, s′)Vt−1(s′)
Vt(s) = maxaQt(s, a)
πt(s) = argmaxaQt(s, a)

end

this case the sequence of value functions Vt will linearly converge to the value of the optimal

policy Vπ∗ . Let V denote the vectorized value function with entries V(s) and let the error ε at

step t of value iteration be defined by the uniform norm || • ||∞. A policy that is within ε of

optimality (i.e., ε-optimal) is guaranteed after the following stopping criterion has been met:

||Vt+1 −Vt||∞ <
ε(1− γ)

2γ

An alternative approach called policy iteration finds the policy directly (Howard, 1960).

It comprises two steps: the policy evaluation step in which the value of the current policy

is computed, and the policy improvement step which performs one backup and recomputes

the best policy. Algorithm 2 gives the details of the policy iteration algorithm. When no

improving action is available for any state, policy iteration has converged and the resulting

policy is provably optimal (Puterman, 1994).

Value iteration has been show to converge linearly at a rate that is equal to the discount

factor γ (Puterman, 1994). Due to the fact that policy iteration is directly modifying the policy

at each iteration, it has been shown under some conditions to converge quadratically (Puterman,

1994). Many variants to policy iteration have been developed such as Modified Policy Iteration

(Puterman and Shin, 1978) and Asynchronous Value Iteration (Gullapalli and Barto, 1994)

which improve on convergence time.

The optimal value function can also be found using a single linear program (LP) that di-

CHAPTER 2. BACKGROUND 28

Algorithm 2: Policy Iteration for Infinite-Horizon MDP

Initialize π(s) to a random policy
while V πi has not converged do

Compute Vπ based on current policy π [Policy Evaluation]
foreach s ∈ S do

Find a∗ that maximizes Q(s, a) = r(s, a) + γ
∑

s∈S P (s, a, s′)Vπ(s′)
If Q(s, a∗) > V π(s) then π(s) = a∗, else π(s) = π(s) [Policy Improvement]

end
end

rectly solves the system of linear equations which encode the value function (Puterman, 1994).

minimize
V

∑

s∈S
β(s)V (s) (2.10)

subject to V (s)− γ
∑

s′∈S
P (s, a, s′) ≥ r(s, a) ∀ s, a

This formulation allows the optimization to be performed by one of the many fast LP solvers

currently available. The linear program has |S| variables and |S||A| constraints allowing for

small to medium sized MDPs to be solved efficiently.

2.2.3 Occupancy Frequencies

While following a policy π, the occupancy frequency f(s, a) corresponds to the discounted

probability of being in a state s and taking action a. The set of feasible occupancy frequencies

F for an MDP is defined with respect to an initial starting state distribution β:

F ≡
{
f
∣∣∣
∑

s0

f(s0)− γ
∑

s,a

Pr(s0 | s, a)f(s, a) = β(s0) ∀ s0 ∈ S
}

(2.11)

CHAPTER 2. BACKGROUND 29

The occupancy frequencies corresponding to the optimal policy are found with the following

LP (Puterman, 1994):

maximize
f

∑

s∈S

∑

a∈A
f(s, a)r(s, a) (2.12)

subject to
∑

a

f(s0, a)− γ
∑

s,a

Pr(s0 | s, a)f(s, a) = β(s0) ∀ s0 ∈ S

f(s, a) ≥ 0 ∀ s ∈ S, a ∈ A

This LP can be derived as the dual of LP (2.10) that explicitly encodes the value function. In

general occupancy frequency correspond to a probabilistic policy πf :

πf (s, a) =
f(s, a)∑
a′ f(s, a′)

When the occupancy frequencies are optimal with respect to a given reward function r, i.e.,

when

f ∗ = argmax
f∈F

∑

s∈S

∑

a∈A
f(s, a)r(s, a), (2.13)

then there is an optimal, deterministic policy π∗ w.r.t. to r such that (Puterman, 1994):

∑

s∈S

∑

a∈A
f(s, a)r(s, a) =

∑

s∈S
β(s)V (s) (2.14)

In what follows we occasionally refer to occupancy frequencies and policies interchangeable

since one uniquely determines the other.

2.2.4 Vector Notation

The proceeding vector notation allows for more concise expressions of the formulae and math-

ematical programs to follow.

CHAPTER 2. BACKGROUND 30

Let r be an |S|×|A|matrix with entries r(s, a). Let P be an |S||A|×|S|matrix. Restrictions

of each matrix to action a are denoted ra and Pa respectively. For notational convenience we

define the matrix E to be identical to P with 1 subtracted for each self-transition probability

P (s|s, a). Let f denote a |S||A| vector with entries f(s, a) and let β denote an |S| length vector

with entries β(s). Thus we can succinctly express the occupancy frequency constraints from

Equation (2.11) as follows:

F ≡
{
f
∣∣∣ γE>f + β = 0, f ≥ 0

}
(2.15)

2.2.5 Scaling MDP Algorithms

A large amount of research has gone into representations and algorithms that allow optimal

policies to be found for large MDPs. In a similar manner to the way outcomes are represented

in multi-attribute utility functions, the structure of a state x can often be factored into a set of

state attributes x = 〈x1, x2, . . . , xn〉, each with a finite domain.1 A dynamic Bayes-net can then

be used to represent the transition function of the MDP and encode independence relationships

between the state attributes (Boutilier, Dean, and Hanks, 1999). For example, the transition for

a state attribute xi is described by Pr(xti | parents(xi)t−1), where parents(xi) is the subset of

attributes which influence the transition xi. The full transition for an action a is then

Pr(xt | xt−1, a) =
∏

i

Pr(xti | parents(xi)t−1, a)

MDPs in which actions only affect a small set of state attributes can be represented far more

compactly with a factored representation. Reward functions and actions spaces can be similarly

factored and other structures such as algebraic decision diagrams (Hoey, St-Aubin, Hu, and

Boutilier, 1999) have been used for even more concise representations.

Significant work has gone into abstraction techniques which solve the MDP by group-

1There are approaches for continuous domains, however, the focus of this section is on finite state MDPs

CHAPTER 2. BACKGROUND 31

ing together states that are functionally equivalent (Boutilier, Dearden, and Goldszmidt, 1995;

Boutilier and Dearden, 1994; Dean and Givan, 1997; Boutilier et al., 1999; Hoey et al., 1999).

One possibility is grouping together and treating as one any states that have the same optimal

action or have the same value in the value function. Abstraction can also group states that

are not exactly the same to yield approximately optimal solutions introducing a tradeoff be-

tween the quality of the solution and the efficiency of the representation and policy calculation.

Adaptive approaches aggregate states with similar value functions as the MDP is being solved.

The reduction in the problem complexity afforded by these methods can yield a large speed-up

in solution time. However, procedures for generating the abstraction often involve significant

overhead and using these techniques on small MDPs with little regularity can in some cases be

slower than standard approaches.

Decomposition techniques first separate the MDP into a set of smaller sub-MDPs which

are solved independently in an efficient manner (Boutilier, Brafman, and Geib, 1997; Meuleau,

Hauskrecht, Kim, Peshkin, Kaelbling, Dean, and Boutilier, 1998; Singh and Cohn, 1998). The

locally optimal policies for the sub-MDPs are then combined to form an approximately optimal

global policy. The sub-MDPs can be further decomposed to form hierarchies further exploiting

any structure in the sub-MDPs (Dietterich, 2000; Andre and Russell, 2001). The intuition that

drives these approaches is that MDPs can often be thought of as a set minimally interacting sub-

processes. For instance, Meuleau et al. (1998) look at stochastic resource allocation problems

in which there are natural sub-planning problems which are independent of each other given

an allocation. Each sub-planning problem is formulated as an MDP and the value function is

found for different resource allocation levels. A global policy is quickly constructed by using

these value functions to compute a gradient for a heuristic search in the global MDP. When

weakly interacting sub-processes are present in an MDP, decomposition allows for the solution

of extremely large MDPs with more than 21000 states. However, there is no guarantee that a

given MDP will have such structure.

To further scale up MDPs computational techniques have been explored for approximat-

CHAPTER 2. BACKGROUND 32

ing the value function using a linear combination of basis functions bi: Ṽ (x) =
∑

iwibi(xi).

Approximate value iteration, policy iteration and linear programming procedures have been

developed which compute the weights wi to minimize the error between the approximate value

function and the true value function (Schuurmans and Patrascu, 2001; Poupart, Boutilier, Pa-

trascu, and Schuurmans, 2002; Guestrin, Koller, Parr, and Venkataraman, 2003b). For prob-

lems in which the value function does not exhibit a naturally linear structure, neural networks

have been applied (Zhang and Dietterich, 1996; Tesauro, 2002). When the number of basis

functions (or nodes in the neural network) are small, techniques greatly reduce the complexity

of storing and working with the value function, allowing for optimal policies to be found for

MDPs with as many as 1040 states (Poupart et al., 2002).

Factoring, abstraction, decomposition and approximations of the value function allow for

good policies to be found for extremely large MDPs; however, the rewards and transition prob-

abilities for these MDP models must still be completely specified for these techniques to work.

As we have previously discussed, the specification of the parameters (rewards and transitions

probabilities) is often a time consuming process. The next section will mirror Section 2.1.5

and discuss how good policies can be computed for MDPs in which the parameters have only

been partially specified.

Incorporating structure allows for concise representation of decision problems, however,

considerable effort is still required specify the necessary model parameters (i.e., the state and

action space, the transition function, and the reward function). The next section examines

approaches for relaxing this requirement through partial parameter specification.

2.3 Sequential Decision Making with Partial Information

There are a number of existing approaches to sequential decision making when aspects of

the model are not fully specified. This includes related work on partially observable MDPs

(Kaelbling, Littman, and Cassandra, 1998) and inverse reinforcement learning (Ng and Russell,

CHAPTER 2. BACKGROUND 33

2000). We pay particular attention to work that computes robust policies given an imprecise

model of dynamics or reward.

The preference elicitation literature generally focuses on single stage decision problems,

however, there are a few sub-fields of MDP research that contain the seeds of a preference

elicitation approach to multi-step decision problems. We will first review the approaches to

calculating optimal MDP policies when there is only partial information about the model. We

will then discuss notions of elicitation that are used in conjunction with each approach.

2.3.1 Reinforcement Learning

We begin our discussion of MDPs with partial model information, by first examining a field that

assumes no model information. Reinforcement learning involves an agent that learns behavior

through trial-and-error interactions with a dynamic environment. This can be modeled as a

partially specified MDP where initially the agent has no knowledge of the transition function

P or reward function r. The agent begins in state s and must choose an action a ∈ A. Upon

taking this action, the agent observes the realized transition (drawn from the stochastic model)

to a state s′ and receives a reward r(s, a). The goal is to learn a policy online that maximizes

the expected reward
∑

t=0E [r(st, at)]. This is different from MDPs where the optimal policy

is computed offline.

There are two flavours of algorithms for learning policies in reinforcement learning settings

that differ in their representation of the environment. Model-based reinforcement learning

techniques such as E3 (Kearns and Singh, 2002) and R-max (Brafman and Tennenholtz, 2003)

learn and maintain an explicit model of the transition function while model-free techniques

such as TD Learning (Sutton, 1988) and Q-Learning (Watkins and Dayan, 1992) attempt to

assign value to states and actions without an explicit model of the transition function. In all

approaches to reinforcement learning the agent must balance exploration actions which learn

more about the environment with exploitation actions which take what is known and aim to

maximize reward.

CHAPTER 2. BACKGROUND 34

The reinforcement learning paradigm is attractive because it does not assume any prior

knowledge about the dynamics of the environment or the reward function. However, because

the agent must spend time exploring the environment, reinforcement learning algorithms often

exhibit very slow convergence to the optimal (value maximizing) policy.

2.3.2 Robust MDPs

In many situations, a model of the transition dynamics can be estimated from measurements.

However, due to issues like noise in the measurements or limited sample size, the resulting

transition model may not be entirely accurate. This can result in policy that is optimal with

respect to the measured transition model performing poorly in the real world. Work on robust

MDPs aims to mitigate this concern by first allowing transition functions to be partial specified

a priori using strict uncertainty, and then computing policies that are robust to possible worst

case transitions functions.

The work of Iyengar (2005) looks at infinite horizon MDPs and uses the maximin criterion

to compute a robust policy. The uncertainty over the transition function is represented by a set

P of feasible transition functions that forms a convex polytope.1 In this context the maximin

criterion can be thought of in terms of a game where the agent first chooses a policy and an

adversary is then free to choose a transition function P from the set P so as to minimize the

total discounted reward received by the agent. The goal is to choose the policy π∗ that performs

the best given the adversary’s ability to set the transition function P .

π∗ = argmax
π

min
P∈P

EP,π
x

[∑

t

γtr(x)

]
(2.16)

Iyengar is able to efficiently optimize Equation (2.16) and find the robust policy by decom-

posing the problem across time steps. He uses a variant of the value iteration algorithm which

1In practice such a polytope could be constructed by placing bounds on probabilities of each transition, while
enforcing that each probability form a valid distribution.

CHAPTER 2. BACKGROUND 35

computes the best action given the worst transition at each time step. This dynamic program-

ming decomposition essentially computes a set of Q-values (one for each action) and chooses

the action with the highest Q-value. This reduces the problem to computing the Q-values by

finding the worst case transition function given a specific action:

Qt(s, a) = min
P∈P

r(s) + γ
∑

s′

P (s′|s, a)Vt−1(s) (2.17)

There are a variety of approaches to the above optimization that depend on the structure of

the set of feasible transition functions. For example, given an initial estimate of the transition

function q, the set of feasible transition functions can be defined as P ≡ { p | D(p||q) ≤ δ },

where D(p||q) is the relative entropy:

D(p||q) ≡
∑

i

p(i) log

(
p(i)

q(i)

)

The optimization in Equation (2.17) can then be converted by duality to a problem of mini-

mizing a single-variable, convex function and a bisection method is used, with complexity of

O(|S| log(Vmax/ε)), where ε > 0 specifies the error, and Vmax is the global upper bound on the

value function.

Bagnell, Ng & Schneider (2003) adopt the same maximin formulation as Iyengar, but they

offer a different proof of the fact that the global optimization (Equation (2.16)) can be de-

composed into a maximin optimization at each time-step (Equation (2.17)). They contribute a

novel variation in which a cost term C is added to the value function that captures the energy

that has been injected into the system by perturbations of the transition function caused by the

adversary:

Qt(s, a) = min
P∈P

r(s) + γ
∑

s′

P (s′|s, a)Vt−1(s) + λC(P, s′, s)

This cost term has the effect of bounding the power of the adversary, and producing less pes-

CHAPTER 2. BACKGROUND 36

simistic policies.

Nilim & Ghaoui (2005) also formulate the robust optimization problem using the maximin

criterion and Equation (2.16). However, they offer a richer characterization of the feasible tran-

sition functions. In addition to relative entropy, they allow for the set of transition functions to

be bounded by likelihood, and maximum-a-posteriori (MAP) estimators. For bounded likeli-

hood, they define feasible transitions P to be the likelihood region { p | ∑i q(i) log p(i) ≥ δ }

with some constant δ. In some settings there is a natural prior distribution that can be placed on

the set feasible transition functions and this prior can be incorporated using a MAP estimator.

Nilim & Ghaoui use the log MAP estimator Lmap = L(p) + g0(p) where g0 refers to the prior

density function over p and L(p) refers to the log-likelihood of p. The set of feasible transitions

is then defined as { p | Lmap(p) ≥ δ }. Both likelihood and MAP models result in a convex

set of feasible transition functions and offer an efficient solution to the problem of finding the

one-step worst case transition given an action (Equation (2.17)).

McMahan, Gordon & Blum (2003) show how to solve a similar problem, however, they

find a maximin policy with respect to uncertain reward functions:

π∗ = argmax
π

min
r∈R

Eπ
x

[∑

t

γtr(x)

]

In this setting the adversary chooses a reward function from a set of feasible reward functions

R so as to minimize the total discounted reward. Rather than using a dynamic programming

approach, the authors formulate the maximin optimization as a linear program using Benders’

decomposition and use constraint generation to efficiently search through the space of all pos-

sible constraints in the following formulation:

max
δ,π

δ

subject to: δ ≥ V π
r ∀ r ∈ R (2.18)

CHAPTER 2. BACKGROUND 37

where V π
r is the optimal value function with respect to the reward function r. This optimization

is tractable for reasonably sized MDPs, however, the maximin criterion leads to conservative

policies since it attempts to find the best policy for the worst case settings of reward. For

instance, a policy that provides very high value for 99% of reward functions, but a very low

value for 1% of reward functions would be rejected in favour of a policy that provides moderate

value for all reward functions.

Delage & Mannor (2007) take a different approach and adopt a percentile-based criterion to

find policies given partial information about transition and reward functions. The formulation

is similar to that of Equation (2.5) in Section 2.1.5.2 as can be expressed as follows:

max
y,π

y

subj: Pr
(
E(

∞∑

t=0

γtrt(xt) | π) ≥ y
)
≥ η

Given some η, the formulation finds a policy that will performs at least as well as y in η

percent of instances, where an instance is a setting of the uncertain parameters. They show

how to approximately solve this formulation when the prior on the uncertain transition function

takes form of a Dirichlet distribution. An algorithm for solving this formulation exactly for an

uncertain reward function in the form of Gaussian is also described.

Each of the above formulations use criteria that assume strict uncertainty, with the exception

of the percentile criterion of Delage & Mannor which takes a quasi-Bayesian approach given

priors over reward and transitions. The next section will describe how partially specified model

information can be characterized in a fully Bayesian form.

2.3.3 Partially Observable Markov Decision Processes

MDPs have been extended to model environments in which an agent has uncertainty over the

current state. An example of such a setting is a mobile robot tracking its location with noisy

sensors. Partially Observable Markov Decision Processes (POMDPs) assume that the current

CHAPTER 2. BACKGROUND 38
L.P. Kaelbling et al. /Artificial Inrelligence 101 (1998) 99-134

Fig. 4. A t-step policy tree captures a sequence oft steps, each of which can be conditioned on the outcome of
previous actions. Each node is labeled with the action that should be taken if it is reached

can be represented by a policy tree as shown in Fig. 4. It is a tree of depth t that specifies a
complete t-step nonstationary policy. The top node determines the first action to be taken.
Then, depending on the resulting observation, an arc is followed to a node on the next
level, which determines the next action. This is a complete recipe for t steps of conditional
behavior. 5

Now, what is the expected discounted value to be gained from executing a policy tree
y? It depends on the true state of the world when the agent starts. In the simplest case, p

is a l-step policy tree (a single action). The value of executing that action in state s is

Vp(s) = qs, a(p))

where a(p) is the action specified in the top node of policy tree p. More generally, if p is
a t-step policy tree, then

VP(s) = R(s, a(p)) + y . (Expected value of the future)

= R(s, U(P)) + y C P+’ I s, a(p)) C P+i I s’, a(p)) K,,(pj(L~‘)
S’ES 0, EQ

= qs7 Q(P)) + Y c T(k U(P)? s’) c o(d a(p), Oi)vo&&‘)
. F E S 0, EL?

where oi(p) is the (t - l)-step policy subtree associated with observation oi at the top
level of a t-step policy tree p. The expected value of the future is computed by first taking
an expectation over possible next states, s’, then considering the value of each of those
states. The value depends on which policy subtree will be executed which, itself, depends
on which observation is made. So, we take another expectation, with respect to the possible
observations, of the value of executing the associated subtree, oi (p), starting in state s’.

5 Policy trees are essentially equivalent to “decision trees” as used in decision theory to represent a sequential
decision policy; but not to “decision trees” as used in machine learning to compactly represent a single-stage
decision rule.

Figure 2.1: A t-step policy policy tree for a partially observable Markov decision process (Cassandra
et al., 1994).

state is hidden; rather than directly observing the current state, the agent maintains a belief state

b capturing distribution over possible states. Added to the model is a set of observations Ω that

result from an action, and an observation function O(s, a, o) which encodes the probability of

receiving an observation o ∈ Ω given an action a and a resulting state s′. The observation

function is used to find the agent’s updated belief b′ given the previous belief b, and an action

a:

b′(s′) =
Pr(o|s′, a, b) Pr(s′|a, b)

Pr(o|a, b) =
O(s′, a, o)

∑
s P (s, a, s′)b(s)

Pr(o|a, b) (2.19)

An agent’s policy can be represented as a policy tree τ (shown in Figure 2.1) that specifies an

action given a sequence of observations. Let aτ be the action specified by the top node of the

policy tree τ and let o(τ) be the (t − 1)-step policy tree associated with observation o at the

top level of a t-step policy tree τ . Given a starting state s, the value of a policy tree τ can be

expressed as:

Vτ (s) = r(s, aτ) + γ
∑

s′∈S
P (s′|s, aτ)

∑

o∈Ω

O(s′, aτ , o)Vo(τ)(s
′) (2.20)

CHAPTER 2. BACKGROUND 39

However, since states cannot be directly observed, the quantity of interest is the value Vτ (b) of

the agent’s current belief b, which is the expectation
∑

s∈S b(s)Vτ (s). Accordingly, a POMDP

policy can be encoded as, πτ (b) = a, mapping a belief state b to action a.

The POMDP is an extremely general formalism. By augmenting state variables a POMDP

can naturally represent any model parameters of an MDP that are unknown. The transition

dynamics of the POMDP essentially model dynamics of the original MDP, while the observa-

tion dynamics and belief update is able to capture the uncertainty with respect to the model

parameters. The benefit of this approach is that it allows for prior information over the un-

certain model parameters to be incorporated in a manner that is principled and fully Bayesian.

However, unlike robust approaches, it can only offer a probabilistic guarantee of performance

in expectation. The augmented state space can be extremely large (|S×r| in the case of reward

function uncertainty) and the problem of solving POMDPs can quickly become intractable as

the state space grows (Poupart, 2000).

2.3.4 Inverse Reinforcement Learning

Another setting that addresses uncertainty over the reward function of the MDP is that of in-

verse reinforcement learning (IRL) (Ng and Russell, 2000). In this setting the partial informa-

tion about the reward function is presented as observations of optimal behaviour, specifically a

fixed set of observed sequences of actions and state transitions. The challenge is to recover the

reward function and construct a generally optimal policy which is consistent with the observed

behaviour. Given an observed policy π, Ng derives a set of constraints on a reward function

that would induce π:

(Pπ −Pa)(I− γPπ)−1r � 0 (2.21)

where Pπ is the |S| × |S| matrix with entries Pπ[s, s′] = P (s′|π(s), s). Recovering a reward

function using simply the inverse reinforcement learning (IRL) constraints in Equation (2.21)

CHAPTER 2. BACKGROUND 40

is an ill-posed problem, since there are many possible solutions that make π optimal. For

instance, the degenerate case where all rewards are zero is a solution. Different criteria have

been proposed to find the “right” reward function. Along with their original formulation of

the inverse reinforcement learning setting, Ng and Russell (2000) suggest some heuristics that

aim to pick a reward function that maximally differentiates the observed policies from other

sub-optimal policies. Ratliff et al. (2006) modify the problem to find a reward function that

maximizes the margin in the IRL constraints. The work of Ramachandian et al. (2007) relaxes

the hard constraints on reward and takes a Bayesian approach in which they consider the actions

of the expert as evidence used to update a prior on reward functions. They pose the IRL

problem as learning the posterior distribution on rewards. Ziebart et al. (2008) take a similar

approach using a criterion based on maximizing entropy.

Inverse reinforcement learning approaches have been used for a number of tasks such as pi-

loting a helicopter (Coates, Abbeel, and Ng, 2008) and finding optimal routes for taxis (Ziebart

et al., 2008). However, they do not address how uncertainty can be further reduced through

explicit interaction with a user who does not know an optimal policy a priori. In cases where

an optimal policy can be demonstrated, inverse reinforcement learning can compliment the

elicitation approach that we present by providing initial bounds on the reward function.

2.4 Example Application Domains

This section will introduce two application domains as background. These domains will be ref-

erenced throughout the thesis in examples and experiments to explain and assess our contribu-

tions to computing robust policies and eliciting reward. A third domain (website optimization)

will be the subject of Chapter 7.

CHAPTER 2. BACKGROUND 41

2.4.1 Autonomic Computing

The goal of autonomic computing is to build computer systems that self-manage obviating

the need human intervention (Kephart and Chess, 2003). In large computing systems, such

autonomy necessitates the continuous allocation and re-allocation of resources (e.g., units of

storage or compute cycles) to distinct computing servers. When we incorporate the changing

uncertain demands that are placed on individual servers, resource allocation in this setting is

naturally modeled as a Markov decision process.

There is generally no closed-form for server reward; its precise specification, while auto-

mated through simulation, can involve significant expenditure of time and computation (Boutilier

et al., 2003a). Reward specification in this domain can benefit from incremental elicitation.

Queries bounding reward for specific demand/resource settings allow for provably optimal

policies to be identified without a costly full specification of the reward function.

2.4.2 Assistive Technologies

This domain includes systems that provide cognitive assistance for persons with dementia,

enabling them to complete the common activities of daily living. We focus on the COACH

project (Boger, Poupart, Hoey, Boutilier, Fernie, and Mihailidis, 2005, 2006), whose goal is to

guide a person through a small task (e.g., hand-washing) by providing verbal or visual cues,

while allowing the individual to maintain as much independence as possible. Previous work

in this domain specified reward through a time-consuming process of making small changes

to a fully-specified reward function, assessing the resulting policy, and attempting to translate

desired changes in system behaviour into further small changes to the reward function. Reward

elicitation has the potential to dramatically streamline this process.

CHAPTER 2. BACKGROUND 42

Looking Forward

The preceding sections of this chapter laid the groundwork for our reward elicitation frame-

work while highlighting relevant related work. Looking forward, we focus on an extended

Markov decision process that models partially specified reward functions using strict uncer-

tainty. We adopt the minimax regret criterion and adapt existing approaches for computing

minimax regret in single-step decision problems which we complement with methods inspired

by the POMDP literature. We drive reward elicitation with decision-theoretic query selection

approaches derived in part from single-step utility elicitation. We begin in the next chapter by

laying our extended MDP model and detailing several approaches to minimax regret computa-

tion.

Chapter 3

Computing Robust Policies using

Minimax Regret

We begin by formally defining the imprecise reward MDP (IRMDP) that is the focus of the

thesis. Unlike the problem of finding an optimal policy given a known reward function, the

problem of finding a minimax regret optimal policy for an IRMDP does not admit an obvious

dynamic programming decomposition. Instead, we detail an exact method for computing min-

imax regret using constraint generation and mixed integer programming and demonstrate its

effectiveness for small IRMDPs. We further define the set Γ of policies that are nondominated

w.r.t. the imprecision in reward. Section 3.6 explores how this set of nondominated policies

can be exploited to dramatically speed up minimax regret computation.

The work in this chapter primarily stems from the results of Regan and Boutilier (2008;

2009; 2010).

3.1 Imprecise Reward MDPs and Minimax Regret

We define the imprecise reward MDP (IRMDP) as the tuple 〈S,A, P, γ, β,R〉where the reward

function r from a fully specified MDP is replaced by a set of feasible reward functionsR. The

43

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 44

setR naturally arises from observations of user behaviour, partial elicitation of preferences, or

information from domain experts, which typically place linear constraints on reward.

In this work we assume that R is a bounded, convex polytope defined by linear constraint

set {r | Cr ≤ d}. We use |R| to denote the number of constraints. These linear constraints

naturally arise from user responses to a set of queries about the reward function that are detailed

in Chapters 4 and 5.

To compute “good” policies given the set of feasible reward functions we enlist the minimax

regret criterion, since it offers the tightest possible bound on reward loss of the policy over

potential reward realizations. Let f ,g ∈ F be occupancy frequencies (corresponding to MDP

policies), and let r be a reward function. We define the following variants of regret:

[Regret] R(f , r) = max
g∈F

g·r− f ·r (3.1)

[Pairwise Max Regret] PMR(f ,g,R) = max
r∈R

g·r− f ·r (3.2)

[Max Regret] MR(f ,R) = max
r∈R

R(f , r) (3.3)

= max
g∈F

PMR(f ,g,R) (3.4)

= max
g∈F

max
r∈R

g·r− f ·r (3.5)

[Minimax Regret] MMR(R) = min
f∈F

MR(f ,R) (3.6)

= min
f∈F

max
g∈F

max
r∈R

g·r− f ·r (3.7)

R(f , r) is the regret or loss of policy f relative to the fixed reward r and quantifies the difference

in value between f and the optimal policy under r. MR(f ,R) is the maximum regret of the

policy f w.r.t. the feasible reward setR. Given a choice of policy f , maximum regret represents

the worst-case loss over possible realizations of reward, or as the regret incurred in the presence

of an adversary who chooses the reward r to maximize this loss. Equivalently, max regret can

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 45

be viewed as the adversary choosing a policy with greatest pairwise max regret PMR(f ,g,R),

defined as the maximal difference in value between policies f and g under possible reward

realizations.

In the presence of such an adversary, we wish to minimize the max regret. MMR(R)

is the minimax regret of feasible reward set R. This can be seen as a game between a player

choosing f to minimize loss relative to the optimal policy, and an adversary selecting the reward

r to maximize this loss given the player’s choice. We refer to any policy f∗ that minimizes max

regret as a minimax optimal policy. We denote the reward r that maximizes regret of f∗ as

the adversarial reward, and the optimal policy g for r as the adversarial policy. It is worth

noting that minimax regret measures performance by assessing a policy ex post and making

comparisons only w.r.t. specific reward realizations. Thus, policy f is penalized on reward r

only if there exists a f ′ that has higher value w.r.t. r itself.

For our purposes, the minimax regret criterion has many desirable properties. Given a com-

puted minimax regret optimal policy, the criterion gives an intuitive measure of the “goodness”

of the policy by bounding the improvement in policy value that would be realized if one could

eliminate all reward uncertainty. The criterion can also be viewed as measuring the impact

of future elicitation by bounding the possible improvement in policy value. The solution to

minimax regret also serves to inform elicitation, biasing query selection toward “high impact”

queries. However, unlike related criteria (e.g., maximin) it does not admit a dynamic program-

ming decomposition that allows for efficient computation. This is unsurprising given that the

problem of finding the minimax regret optimal policy has been shown to be NP-hard in general

(Xu and Mannor, 2009). Next we will detail a mathematical programming approach for exact

minimax regret computation.

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 46

3.2 Randomly Generating IRMDPs

In addition to IRMDPs that model problems in the domains of autonomic computing, assis-

tive technology, and website optimization, we use randomly generated IRMDPs to conduct a

preliminary evaluation of computational approaches developed in this and future chapters.

We impose some structure on the randomly generated IRMDP by creating a semi-sparse

transition function. For each (s, a)-pair, dlog ne reachable states are drawn uniformly and a

Gaussian is used to generate transition probabilities. We use a uniform initial state distribution

β and discount factor γ = 0.95. An imprecise reward model is generated by:

1. The uniform selection of each true (but hidden) rewards r(s, a) from a predefined range.

2. The random generation of an uncertain interval whose size is normally distributed.

3. The uniform random placement of the interval around the true r(s, a).

The resulting set of feasible rewards forms a hyper-rectangle. We refer to this methodology as

semi-sparse random IRMDP generation. Full details can be found in Appendix B.

It is not our goal to construct a set of IRMDPs that are accurate representations of real-world

decision problems, but rather to provide a rough guide to selecting appropriate computational

methods to then test on more realistic IRMDPs.

The parameters of the random generation process were chosen to find a middle ground

where minimax regret computation is not unrealistically hard nor trivially easy. One mea-

sure of the complexity of the IRMDP w.r.t. to minimax regret computation is the number of

nondominated policies that an IRMDP admits. In Section 3.6 we observe that the number

of nondominated policies admitted by our random MDP generation procedure is far less than

|A||S|, the total number of possible policies for an IRMDP with |A| actions and |S| states. At

the same time, the number of nondominated policies admitted by a more realistic IRMDP—

the website optimization setting explored in Chapter 7—is significantly less than the number

of nondominated policies admitted by our randomly generated IRMDPs of similar dimension.

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 47

3.3 Computing Exact Minimax Regret

Following the formulations for non-sequential problems developed in (Boutilier et al., 2006;

Boutilier, Sandholm, and Shields, 2004b), we formulate minimax regret optimization using a

series of linear and mixed integer programs. We begin with formulation of minimax regret as

the following mathematical program:

minimize
f

max
g

max
r

g·r− f ·r

subject to: γE>f + β = 0, f ≥ 0 (3.8)

γE>g + β = 0, g ≥ 0 (3.9)

Cr ≤ d

Here f is the minimax optimal policy, g is the adversary policy and r is the reward function.

Constraints (3.8)–(3.9) are occupancy frequency constraints derived from Equation (2.11). We

translate the minimax problem over the variables f ,g, r into a minimization problem over f

only by introducing an infinite (continuous) set of constraints, one for each 〈g, r〉 pair:

minimize
f ,δ

δ (3.10)

subject to: δ ≥ g·r− f ·r ∀ g ∈ F , r ∈ R (3.11)

γE>f + β = 0

f ≥ 0

This roughly corresponds to the dual LP formulation of an MDP (introduced in Equation

(2.12)) with the addition of adversarial constraints (3.11). These constraints enumerate the

infinite set of feasible adversary policies and choices of reward. However, the number of active

constraints at the optimal solution is often very small. Rather than minimizing w.r.t. to all pos-

sible constraints, we apply a common approach from the operations research literature, using

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 48

Benders’ Decomposition (Benders, 1962; Nemhauser and Wolsey, 1988) to iteratively generate

the set of active constraints at the optimal solution. Benders’ Decomposition uses a convergent

series of approximations to solve programs of the form in LP (3.10). At each iteration, two op-

timizations are solved. The master problem solves a relaxation of the original program using

a subset of the adversarial constraints, corresponding to a subset GEN of all 〈g, r〉 pairs. We

refer to the set GEN as the generated constraints. Intuitively, in the game against the adversary,

this restricts the adversary to choosing a witness pair 〈g, r〉 from the set GEN.

MMR(R,GEN) = minimize
f ,δ

δ (3.12)

subject to: δ ≥ gi ·ri − f ·ri ∀ 〈gi, ri〉 ∈ GEN (3.13)

γE>f + β = 0

f ≥ 0

Since we are restricting the adversary to choices in GEN, MMR(R,GEN) forms a lower

bound on the true minimax regret MMR(R) (computed given an unrestricted adversary). The

subproblem generates the maximally violated constraint relative to the current solution f to

the master problem by removing restrictions on the adversary, computing maximum regret

MR(f ,R). We refer to the solution as the witness pair 〈g, r〉. MR(f ,R) represents the re-

gret associated with simply recommending policy f to the user and forms an upper bound on

true minimax regret, If MR(f ,R) > MMR(R,GEN), then we add the new witness pair to

GEN and continue the procedure (recomputing the master problem with the updated set of

generated constraints). We terminate the procedure when the lower bound on minimax regret

generated by the master problem is equal to the upper bound generated by the subproblem (i.e.,

MMR(R, GEN) = MR(f ,R)).

The following mixed integer program formulates the subproblem of computing max regret

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 49

using the MDP Value and Q-Value functions:1

maximize
Q,V,I,r

β ·V − f ·r (3.14)

subject to: Qa = ra + γPaV ∀ a ∈ A

V ≥ Qa ∀ a ∈ A (3.15)

V ≤ (1− Ia)Ma + Qa ∀ a ∈ A (3.16)

Cr ≤ d

∑

a

Ia = 1 (3.17)

Ia(s) ∈ {0, 1} ∀a ∈ A, s ∈ S (3.18)

Ma = M> −M⊥
a

The indicator vectors Ia represent the adversary’s policy, with Ia(s) denoting the probability of

action a being taken at state s. The vector Ma serves to render constraint (3.16) non-binding

when present (i.e., when some Ia(s)=0). Constraints (3.17) and (3.18) restrict the policy to be

deterministic and together with constraint (3.15) and (3.16) they ensure that the optimal value

V (s) will be set to the Q-Value Q(s, a) for at a single action a—in fact V (s) will be set to

maxaQ(s, a). We ensure a tight Ma by setting M> to be the optimal value function V> of the

optimal policy with respect to the best setting of each individual reward point and M⊥
a to be

the Q-value Q⊥a of the optimal policy with respect to the worst point-wise setting of rewards

(the resulting rewards need not be feasible).

The subproblem formulation (3.14) does not directly produce a witness pair 〈gi, ri〉 for the

master constraint set GEN. Rather it provides ri and Vi. We do not need access to gi directly.

The adversarial constraint (3.13) can be constructed from the reward function ri and the value

1Specifying max regret in terms of occupancy frequencies (i.e., the standard dual MDP formulation (2.12))
gives rise to a non-convex quadratic program.

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 50

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000
Time (ms)

-20

0

20

40

60

80

100

120

140

R
e
w

ar
d
 G

ap

Reward Gap vs. TimeRegret Gap vs. Time

Re
gr

et
Ga

p

Figure 3.1: Reduction in regret gap during constraint generation

β·Vi, since β·Vi = ri·gi. As a consequence, we use the following modified master formulation:

minimize
f ,δ

δ (3.19)

subject to: δ ≥ β ·Vi − f ·ri ∀ 〈Vi, ri〉 ∈ GEN

γE>f + β = 0

f ≥ 0

3.4 Experiments

We assess the general performance of our approach using a set of randomly generated semi-

sparse MDPs (as preceding section) and specific MDPs arising from the Autonomic Comput-

ing domain. All linear and mixed integer programming results described in this thesis were

obtained using CPLEX 11 on PowerEdge 2950 servers with dual quad-core Intel E5355 CPUs.

To measure the performance of minimax regret computation, we first examine the constraint

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 51

4 5 6 7 8 9 10 11
Number of States

10−1

100

101

102

103

Ti
m

e
(s

ec
s)

-L
og

S
ca

le

Minimax Regret Computation Time vs. Number of States

Figure 3.2: Scaling of constraint generation with number of states

generation procedure. Figure 3.1 plots the regret gap that measures the difference between the

master problem value and subproblem value at each iteration versus the time (in milliseconds)

to reach that iteration. Results are shown for 20 randomly generated MDPs with ten states and

five actions.

Figure 3.2 shows how minimax regret computation time increases with the size of the MDP

(5 actions, varying number of states). Constraint generation using the MIP formulation scales

exponentially, hence computing minimax regret exactly is only feasible for small MDPs using

this formulation. The next section will discuss an approximation that is far more efficient. Note

that, the computations shown here are using the initial reward uncertainty. As queries refine

the reward polytope, regret computation becomes faster in general.

In practice we have found that the constraint generation procedure requires relatively few

iterations to converge; however, the computational cost per iteration can be high. This is due

exclusively to the subproblem optimization, which requires the solution of a MIP with a large

number of integer variables, one per state-action pair. The master problem optimization by

contrast is extremely efficient. It is essentially solving the the standard MDP dual formulation

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 52

(2.12) with the addition of adversarial constraints. This suggests examination of approxima-

tions to the subproblem, i.e., the computation of max regret MR(f ,R). These approximations

will fit well in with elicitation as discussed further in Chapter 5.

3.5 Computing Approximate Max Regret

The high cost of computing exact minimax regret motivates the development of approximation

methods. This section explore several approximation methods and assesses their performance

on small and medium-sized MDPs. The goal of these methods is two-fold: 1) to quickly

compute a solution to inform query selection heuristics; and 2) to generate a reasonable upper

bound on minimax regret to serve as guarantee on regret for the user (in the event that elicitation

is to be terminated). Methods for computing efficient lower bounds on minimax regret include

a relaxation of the mixed integer programming (MIP) component of our constraint generation

procedure and an alternating optimization scheme in which each component is independently

optimized (holding other variables fixed). An efficient upper bound on minimax regret is found

using the reformulation-linearization technique (RLT) of (Sherali and Alameddine, 1992).

3.5.1 Under-approximation

Linear Relaxation

We can dramatically improve the efficiency of the subproblem computation by relaxing all

integrality constraints (3.18) on the binary policy indicators Ia. The value function Ṽ result-

ing from this relaxation may not accurately reflect the (now potentially stochastic) adversar-

ial policy. This is due to Ṽ including a fraction of the big-M term due to constraint (3.15):

Ṽ ≤ (1 − Ia)Ma + Qa. However, the reward function r selected remains in the feasible set,

and, empirically, the optimal value function Vr w.r.t. reward r yields a solution to the sub-

problem that is close to optimal. Finding this optimal value function for r requires solving a

standard MDP LP. Since the reward is a valid choice, this solution is guaranteed to be a lower

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 53

bound on the solution to the subproblem.

Alternating Approximation

The alternating optimization procedure is a hill-climbing approach that iteratively computes

an adversarial policy (for a fixed reward) and an adversarial reward (for a fixed policy). This

reduces the max regret computation to the following sequence of LPs.

Given f , r:

maximize
g

g·r− f ·r (3.20)

subject to: γE>g + β = 0, g ≥ 0

Given f ,g:

maximize
r

g·r− f ·r (3.21)

subject to: Cr ≤ d

The alternating optimization is essentially performing local search and does not guarantee a

global optimum. However, at any iteration the adversary policy and reward are feasible and

represent a valid lower bound on max regret.

3.5.2 Over-approximation

Reformulation-Linearization Technique (RLT)

The max regret optimization can be expressed directly in terms of the adversary policies (as

occupancy frequencies) and the adversarial choice of reward function.

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 54

maximize
g,r

g·r− f ·r (3.22)

subject to: γE>g + β = 0, g ≥ 0

Cr ≤ d

Here the term g·r yields a non-convex bilinear program. We adopt a method from Sherali and

Alameddine (1992) used for the global optimization of such non-convex bilinear programs.

The method reformulates the problem by constructing a set of variable factors using the

problem constraints. Combinations of these factors are multiplied with the original problem

constraints to generate additional valid nonlinear constraints. The resulting nonlinear program

is then linearized by defining a new set of variables, one for each nonlinear term. The “RLT”

process results in a linear program whose optimal value provides an upper bound on the optimal

value to the original bilinear programming problem. Full details of the formulation can be

found in Appendix C.1.

3.5.3 Approximating Minimax Regret

The described techniques for approximating max regret can be used to solve the subproblem

component of constraint generation. However, convergence cannot be guaranteed in the ab-

sence of an exact subproblem solution. At any point during constraint generation, the solution

to the master problem represents a valid lower bound on minimax regret. The upper bound

on max regret generated by the RLT approach during constraint generation serves as an upper

bound on minimax regret.

As we will discuss in the next section, the under-approximations exhibit a low error and can

be used to efficiently guide reward elicitation (by providing an approximate minimax regret

solution to inform query selection). The over-approximation provided by the RLT approach

leads to significantly higher error, however, it offers a genuine upper bound on minimax regret

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 55

5 6 7 8 9 10

1

2

3

4

A
pp

ro
xi

m
at

e
M

R
/E

xa
ct

M
R

Relative Max Regret vs. Number of States

5 6 7 8 9 10
Number of States

0.4

0.6

0.8

1.0

A
pp

ro
xi

m
at

e
M

R
/E

xa
ct

M
R

Reformulation
Linearization
Alternating
Optimization
MIP Relaxation

Figure 3.3: Relative (Approximate/True) Max Regret vs. Number of States. Results averaged over 50
runs.

that can be provided to the user. As elicitation proceeds we have observed that this upper bound

is rendered tighter and tighter as reward uncertainty is reduced. Eventually the bound may drop

low enough to meet a stopping criterion that stipulates minimax regret fall below a threshold.

Experiments demonstrating this phenomena are detailed in Chapter 4 (after we introduce the

prerequisite elicitation details).

3.5.4 Experiments

To evaluate the presented approximation schemes, we randomly generate semi-sparse IRMDPs

(using the methodology from Section 3.2), while varying the number of states. Figure 3.3

shows average relative max regret (approximate MR / exact MR) along with the standard de-

viation over 50 runs. Figure 3.4 shows the average computation time in seconds over those

runs.

The alternating approximation procedure performs extremely well, yielding an average rel-

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 56

5 6 7 8 9 10
10−2

10−1

100

101

102

Ti
m

e
(s

ec
on

ds
)

Computation Time vs. Number of States

5 6 7 8 9 10
Number of States

0.00

0.02

0.04

0.06

Ti
m

e
(s

ec
on

ds
)

Exact MIP
Alternating
Optimization
MIP Relaxation
Reformulation
Linearization

Figure 3.4: Time (in seconds) of Max Regret Computation vs. Number of States. Results averaged over
50 runs.

ative max regret between 0.952 and 0.968 (translating to a relative approximation error of

3.2–4.8%). The MIP relaxation is less effective, yielding an average relative max regret be-

tween 0.641 and 0.735 (translating to relative approximation error of 26.5–35.9%). Addition-

ally, Figure 3.4 shows that the MIP relaxation is the least computationally efficient of the our

approximation procedures.

The RLT procedure is the least effective, substantially over-approximating max regret with

error as high as 390%; on average the measured relative max regret is between 2.33 and 2.60.

Figure 3.4 shows that all of our approximation procedures offer substantial improvement in

runtime over exact methods; for IRMDPs of ten states, approximate max regret on average is

computed in less than 0.05 seconds using any of the three methods compared to 6.4 seconds

for exact max regret computation using our mixed integer program.

We also evaluate the use of each approximation for computing minimax regret (replacing

the MIP for computing the subproblem in our ICG procedure). Figure 3.5 shows the average

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 57

5 6 7 8 9 10

1

2

3

4

A
pp

ro
xi

m
at

e
M

M
R

/E
xa

ct
M

M
R Relative Minimax Regret vs. Number of States

5 6 7 8 9 10
Number of States

0.4

0.6

0.8

1.0

A
pp

ro
xi

m
at

e
M

M
R

/E
xa

ct
M

M
R

Reformulation
Linearization
Alternating
Optimization
MIP Relaxation

Figure 3.5: Relative (Approximate/True) Minimax Regret vs. Number of States. Results averaged over
50 runs.

relative minimax regret (approximate MMR / exact MMR) as the number of states in the ran-

domly generated IRMDPs grow, while Figure 3.6 plots computational time. The approximation

error observed in the minimax regret computation mirrors our results for the max regret com-

putation. The alternating approximation continues to perform well offering relative minimax

regret of between 0.917 and 0.959. In contrast, MIP relaxation resulted in relative minimax

regret of between 0.702 and 0.757. An efficient upper bound on minimax regret is desirable

for providing a guarantee to the user during reward elicitation; empirically our RLT procedure,

while computationally efficient, offers a bound that is on average 2.06–2.40 times that of exact

minimax regret. As elicitation progresses and reward uncertainty is reduced—in turn, reducing

minimax regret—this upper bound is more able to meet a user’s threshold for ending elicitation

with a satisfactory level of regret (as we discuss in Chapter 6).

This suggests an approximate elicitation scheme where alternating approximation drives

query selection and the upper bound derived from the RLT procedure provides a guarantee on

regret (given the current uncertainty) and serves as a stopping criterion. After we introduce

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 58

5 6 7 8 9 10
10−1

100

101

102

103

Ti
m

e
(s

ec
on

ds
)

Computation Time vs. Number of States

5 6 7 8 9 10
Number of States

0.0

0.1

0.2

0.3

0.4

Ti
m

e
(s

ec
on

ds
)

Exact MIP
Alternating
Optimization
MIP Relaxation
Reformulation
Linearization

Figure 3.6: Time (in seconds) of Minimax Regret Computation vs. Number of States. Results averaged
over 50 runs.

the core details of reward elicitation, we empirically examine this approximation approach for

elicitation on random IRMDPs Section 4.2.3.

We need not always resort to approximation for fast minimax regret computation. Our

discussion now shifts to an approach that exploits structure through a precomputation that

facilitates significantly more efficient online computation during elicitation.

3.6 Leveraging Nondominated Policies

From the perspective of the adversary computing max regret, some policies are dominated and

may safely be ignored. Formally we define a policy f to be nondominated w.r.t. to the feasible

reward setR iff

∃ r ∈ R such that f ·r ≥ f ′·r, ∀ f ′ ∈ F (3.23)

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 59

Figure 3.7: Illustration of the value of policies f1, . . . , f5 as a linear function of one-dimensional uncer-
tain reward.

In other words, a nondominated policy is optimal for some feasible reward. Let Γ(R) denote

the full set of nondominated policies w.r.t. R. When R is fixed, we write Γ for simplicity and

understand the “set of nondominated policies” to be implicitly defined w.r.t. the fixedR.

Observation 1 Given an IRMDP and policy f : argmaxg∈F PMR(f ,g,R) ∈ Γ.

A brief proof of this observation can be found in Appendix A.1. It follows that the adver-

sarial policy used to maximize regret of f must lie in Γ, since an adversary can only maximize

regret by choosing some r ∈ R and an optimal policy f∗r for r.

If the set of nondominated policies is relatively small, and can be identified easily, then

the complexity of minimax regret computation is greatly reduced. This section describes an

algorithm for minimax regret computation that is polynomial in the number of nondominated

policies and demonstrates its empirical advantage over related techniques (Xu and Mannor,

2009).

Define V(r) = maxf∈F f ·r to be the optimal value obtainable when r ∈ R is the true

reward. Since policy value is linear in r, V is piecewise linear and convex (PWLC), much

like the belief-state value function in POMDPs (Cheng, 1988; Kaelbling et al., 1998), a fact

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 60

we exploit below. Figure 3.7 illustrates this for a simplified 1-D reward, with nondominated

policy set Γ = {f1, f2, f3, f5} (f4 is dominated, thus optimal for no reward).

Xu and Mannor (2009) propose a method that exploits nondominated policies, computing

minimax regret using a linear program (LP), which “enumerates” Γ using O(|R||Γ|) variables.

Given a set Γ = {f1, . . . , ft} of t nondominated policies, the LP is expressed as follows:

minimize
z,c,δ

δ (3.24)

subject to:
t∑

i=1

ci = 1

c ≥ 0

δ ≥ d>z(i)

C>z(i) + Γ̂c = fi

z(i) ≥ 0





i = 1, 2, . . . , t (3.25)

where R is defined by inequalities Cr ≤ d, and Γ̂ is a matrix whose columns are elements

of Γ. The t-dimensional vector c encodes a randomized policy with support set Γ, which the

authors show must be minimax optimal. For each potential adversarial policy fi ∈ Γ, variable

z(i) and Equations (3.25) encode the dual of the following formulation for computing pairwise

max regret given a player policy cΓ̂ and adversary policy fi:

maximize
r

(
fi − cΓ̂

)
·r

subject to: Cr ≤ d

Thus minimizing z maximizes regret of the player policy encoded with c. We refer to this

approach as LP-ND1. Xu and Mannor provide no computational results for this formulation.

Rather than encoding the player’s policy choice using a convex combination of all nondom-

inated policies: F = {cΓ̂ | c ≥ 0,
∑

i ci = 1}; we can modify the LP to encode the player’s

policy using the occupancy frequency constraints from Equation (2.11):

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 61

F = {f | f ≥ 0, γE>f + β = 0}. The following LP is identical to LP-ND1 save for the new

player policy encoding:

minimize
z,f ,δ

δ (3.26)

subject to: γE>f + β = 0, f ≥ 0

δ ≥ d>z(i)

C>z(i) + f = fi

z(i) ≥ 0





i = 1, 2, . . . , t

This linear program, denoted LP-ND2, reduces the representation of the player’s policy from

O(|Γ|) to O(|S||A|) variables, which is advantageous when |Γ| � |S||A| (as we will see

below).

There is yet a third way to leverage nondominated policies to compute minimax regret.

Rather than solving a single, large LP, we can use the constraint generation approach from

Section 3.1 solving the master problem (3.19) as before:

minimize
f ,δ

δ

subject to: δ ≥ gi ·ri − f ·ri ∀ 〈gi, ri〉 ∈ GEN

γE>f + β = 0

f ≥ 0

However, rather than resorting to the MIP (3.14) we instead exploit Obs. 1 and solve, for each
g ∈ Γ, a small LP to determine the reward that gives g maximal advantage over the current

relaxed solution f :

maximize
r

g·r− f ·r

subject to: Ar ≤ d

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 62

101 102 103

Number of Policies

10−2

10−1

100

101

102

Ti
m

e
(s

ec
)

LP-ND1 (Xu & Mannor)
LP-ND2
ICG-ND

Figure 3.8: Scaling of MMR computation w.r.t. nondominated policies

The g with largest objective value determines the maximally violated constraint. Thus the MIP

computing max regret may be replaced with a set of smaller LPs. We denote this approach

ICG-ND.

3.6.1 Experiments

We compare these three approaches to minimax regret computation using nondominated poli-

cies, as well as the MIP-approach described in Section 3.1, here denoted ICG-MIP. We ran-

domly generate small semi-sparse IRMDPs using the procedure from Section 3.2, while fixing

|A| = 5 and varying the number of states from 3 to 7. We generate 20 MDPs of each size.

Figure 3.8 shows the computation time of the different algorithms as a function of the

number of nondominated policies in each sampled IRMDP. LP-ND1 (Xu and Mannor, 2009)

performs poorly, taking more than 100 seconds to compute minimax regret for IRMDPs with

more than 1000 nondominated policies. Our modified LP, LP-ND2, performs only slightly

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 63

2 3 4 5 6 7
Number of States

10−2

10−1

100

101

102

103

104

Ti
m

e
(s

ec
)

LP-ND1 (Xu & Mannor)
LP-ND2
ICG-ND
ICG-MIP

10−2

10−1

100

101

102

103

104

N
um

be
ro

fN
on

do
m

in
at

ed
Ve

ct
or

s

Figure 3.9: Scaling of MMR computation (lineplot on left y-axis) and nondominated policies (scatter-
plot on right y-axis) w.r.t. number of states

better. The most effective approach is our LP-based constraint generation procedure, ICG-ND,

in which nondominated policies are exploited to determine maximally violated constraints.

While |Γ| LPs must be solved at each iteration, these are relatively small, containing far fewer

variables and constraints than LP-ND1 and LP-ND2. ICG-ND is also more effective than the

original MIP model ICG-MIP, which does not make use of nondominated policies. This is

seen in Figure 3.9, which shows average computation time (lines) and number of nondomi-

nated vectors (scatterplot) for each MDP size. While ICG-MIP performs reasonably well as

the number of states grows (eventually outperforming LP-ND1 and LP-ND2), the ICG-ND

approach still takes roughly an order of magnitude less time than ICG-MIP. As a result, the

proceeding approaches to working with larger MDPs will build upon the iterative constraint

generation approach to leveraging nondominated policies. Next, we shift focus to identifying

nondominated policies.

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 64

3.7 Generating Nondominated Policies using the πWitness

Algorithm

The effectiveness of the iterative constraint generation procedure in exploiting the nondomi-

nated set Γ seems evident, but it relies on identifying the set of nondominated policies. There

is a connection between our use of policies that are nondominated w.r.t. uncertain reward and

algorithms for partially observable MDPs (POMDPs) that compute and leverage the set of

policies that are nondominated w.r.t. to uncertainty over states. This section examines this con-

nection and following the work of Kaelbling et al. (1998) develops the πWitness algorithm for

generating Γ, the set of nondominated policies. The πWitness algorithm allows for Γ to be

computed offline. When the number of policies generated is small, this results in efficient on-

line computation of minimax regret. Chapter 6 will return to the discussion of nondominated

policies, and will focus on computing small approximate sets of nondominated policies (to

ensure efficient computation) while maintaining a bound on the error resulting in the effective

approximation of minimax regret.

3.7.1 The πWitness Algorithm

Crucial to the operation of the πWitness algorithm is the concept of local adjustments of the

occupancy frequencies f corresponding to a policy π. Suppose, when starting at state s we take

action a rather than π(s) as prescribed by π, but follow π thereafter. The occupancy frequencies

induced by this local adjustment to π are given by:

f s:a = β(s)(esa + γ
∑

s′

Pr(s′|s, a)f [s′]) + (1− β(s))f

where esa is an S×A vector with a 1 in position s, a and zeroes elsewhere. f [s] denotes the

occupancy frequencies induced by starting in state s (ignoring the starting state distribution β).

It follows from standard policy improvement theorems (Puterman, 1994) that if f is not optimal

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 65

Algorithm 3: The πWitness algorithm

r← some arbitrary r ∈ R
f ← findBest(r)
Γ← { f }
agenda← { f }
while agenda is not empty do

f ← next item in agenda
foreach s, a do

δ, rw ← findWitnessReward(f s:a,Γ)
while δ > 0 (witness found) do

fbest ← findBest(rw)
add fbest to Γ
add fbest to agenda
δ,rw ← findWitnessReward(f s:a,Γ)

end
end

end

for reward r, then there must be a local adjustment (s, a) such that f s:a · r > f · r.1

Theorem 1 Let Γ′ (Γ be a (strictly) partial set of nondominated policies. Then there is an

f ∈ Γ′, an (s, a), and an r ∈ R such that f s:a ·r > f ′·r, ∀ f ′ ∈ Γ′.

This theorem is analogous to the witness theorem for POMDPs (Kaelbling et al., 1998).

Details of the proof can be found in Appendix A.2. This theorem underpins a Witness-style

algorithm for computing Γ. Our πWitness algorithm begins with a partial set Γ consisting of

a single nondominated policy, namely a policy that is optimal for an arbitrary r ∈ R. At each

iteration, for all f ∈ Γ, it checks whether there is a local adjustment (s, a) and a witness reward

r such that f s:a·r > f ′·r for all f ′ ∈ Γ (determining whether f s:a offers an improvement at r). If

there is an improvement, we add the optimal policy f∗r for that r to Γ. If no improvement exists

for any f , then by Theorem 1, Γ is complete. The procedure is detailed in Algorithm 3. We

define the agenda to hold the policies for which we have not yet explored all local adjustments.

The subroutine findWitnessReward searches for a reward r at which f s:a has higher value than

1For ease of exposition β is assumed to be is strictly positive. Our definitions are easily modified if β(s) = 0
for some s.

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 66

any f ′ ∈ Γ by solving the following LP:

[
findWitnessReward

]
maximize

δ,r
δ

subject to: δ ≤ f s:a ·r− f ′·r ∀ f ′ ∈ Γ

Cr ≤ d

findWitnessReward returns the optimal values for r and δ. The improvement offered by pol-

icy f s:a over the best policy in Γ (given r) is quantified by δ; when δ ≤ 0, there is no witness

reward at which f s:a offers improvement. There may be multiple witnesses for a single adjust-

ment, thus findWitnessReward is called until no more witnesses are found. The subroutine

findBest finds the optimal policy given r and can be implemented using any of the standard

MDP solution algorithm described in Section 2.2.2. We use the following LP:

[
findBest

]
maximize

f
f ·r

subject to: γE>f + β = 0, f ≥ 0

findBest returns the optimal policy f . The runtime of the πWitness algorithm is polynomial

in inputs |S|, |A|, |R|, and output |Γ|, assuming bounded precision in the input representation.

When a witness rw is found by the algorithm, it testifies to a nondominated f which is added

to Γ and to the agenda. Thus, the number of policies added to the agenda is exactly |Γ|. The

subroutine findWitnessReward is called at most |S||A| times for each f ∈ |Γ| to test local

adjustments for witness points (for a total of |Γ||S||A| calls). findWitnessReward requires

solution of an LP with |S||A| + 1 variables and no more than |Γ| + |R| constraints, thus the

LP encoding has polynomial size (hence solvable in polytime). The subroutine findBest is

called only when a witness is found, and thus is used exactly |Γ| times. It requires solving an

MDP, which is polynomial in the size of its specification (Puterman, 1994). Thus πWitness

is polynomial. This also means that for any class of MDPs with a polynomial number of

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 67

State Number of Vectors πWitness Runtime (secs)
Size µ σ µ σ

4 3.463 2.231 0.064 0.045
8 3.772 3.189 0.145 0.144
16 7.157 5.743 0.433 0.329
32 7.953 6.997 1.228 1.062
64 11.251 9.349 4.883 3.981

Table 3.1: Varying Number of States

nondominated policies, minimax regret computation is itself polynomial.

3.7.2 Empirical Results

The number of nondominated policies |Γ| is influenced largely by the dimensionality of the

reward function and less so by conventional measures of MDP size, |S| and |A|. A high di-

mensional r allows variability across the state-action space, admitting different optimal policies

depending on the realization of reward. When reward is completely unrestricted (i.e., reward

points r(s, a) are “independent”) our results from Section 3.6.1 (Figure 3.9) demonstrate that

even small MDPs can admit a huge number of nondominated policies. However, in practice,

reward functions typically have significant structure. Factored MDPs (Boutilier et al., 1999)

have large state and action spaces defined over sets of state variables. Typically reward depends

only on a small fraction of these, often in an additive way. In our empirical investigation of

πWitness, we exploit this fact, exploring how its performance varies with reward dimension.

Chapter 5 will revisit factored IRMDPs to describe how additive structure in reward functions

can be leveraged to streamline elicitation.

To examine the link between factored MDP structure and |Γ|, we generated the full set of

nondominated policies for IRMDPs of varying sizes, but with reward of small fixed dimension.

States are defined by 2–6 binary variables (yielding |S| = 4, . . . , 64), and a factored additive

reward function on two attributes: r(s) = r1(x1) + r(x2). The transition model and feasible

reward set R is generated randomly as in Section 3.2, with random reward intervals gener-

ated for the parameters of each factor rather than for each (s, a)-pair. We continue to use an

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 68

Reward Number of Vectors πWitness Runtime (secs)
Dim. µ σ µ σ

2 2.050 0.887 1.093 0.634
4 10.20 10.05 4.554 4.483
6 759.6 707.4 1178 1660
8 6116 5514 80642 77635

Table 3.2: Varying Dimension of Reward Space

unstructured transition model to emphasize the dependence on reward dimensionality.

Table 3.1 shows the number of nondominated policies discovered (with mean (µ) and stan-

dard deviation (σ) over 20 runs), and demonstrates that Γ does not grow appreciably with |S|,

as expected with 2-D reward. The running time of nondominated policy generation (using

πWitness) is similar, growing slightly greater than linearly in |S|.

We also examine MDPs of fixed size (6 attributes, |S| = 64), varying the dimensionality

of the reward function from 2–8 by varying the number of additive reward attributes from 1–

4. Results (20 instances of each dimension) are shown Table 3.2. While Γ is very small for

dimensions 2 and 4, it grows dramatically with reward dimensionality, as does the running time

of policy generation. This demonstrates the strong impact of the size of the output set Γ on the

running time of nondominated policy generation procedure.

3.7.3 Approximating the Nondominated Set

The complexity of both πWitness and our ICG-ND procedure for computing minimax regret

are influenced heavily by the size of Γ. While the number of nondominated policies remains

manageable with as we scale the MDP state and action space, Γ grows quickly as we increase

reward dimensionality. This motivates investigation of methods that use only a subset of the

nondominated policies that reasonably approximate Γ, or specifically, the PWLC value func-

tion induced by Γ. We first explore theoretical guarantees on minimax regret when ICG-ND

(or any other method that exploits Γ) is run using a subset of Γ.

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 69

Let Γ̃ ⊆ Γ and let the value function induced by Γ̃ w.r.t. to the fixed reward r be defined as:

VΓ̃(r) = max
f∈Γ̃

f ·r (3.27)

Note that VΓ̃(r) forms a lower bound on VΓ(r). Define the error in VΓ̃ to be maximum differ-

ence between the approximate and exact value functions w.r.t. reward:

εV(Γ̃) = max
r∈R

VΓ(r)− VΓ̃(r)

This error is illustrated in Figure 3.7, where the dashed line (marked with a *) shows the error

introduced by using the subset of dominated policies {f1, f3, f5} (removing f2). The error in

VΓ̃ can be used to derive a bound on error in computed minimax regret. Let MMR(Γ) denote

true minimax regret when adversarial policy choice is unrestricted and MMR(Γ̃) denote the

approximation when adversarial choice is restricted to Γ̃.1 MMR(Γ̃) offers a lower bound on

true MMR and the difference, denoted εMMR(Γ̃), can be bounded:

εMMR(Γ̃) = MMR(Γ)−MMR(Γ̃) ≤ εV(Γ̃) (3.28)

Let fΓ and fΓ̃ be the minimax regret optimal ‘player” policies when the adversary is restricted

to policies from Γ and Γ̃ respectively. Let MR(f ,Γ′) be the max regret of policy f when the

adversary’s choice of policies is restricted to Γ′ ⊆ Γ. Then by definition MR(fΓ,Γ)=MMR(Γ)

and MR(fΓ̃, Γ̃) =MMR(Γ̃). If we fix fΓ̃ and relax the constraints on the adversary’s choice to

allow any policy in Γ, then the maximum amount that the adversary can increase regret is

bounded by εV(Γ̃):

MR(fΓ̃,Γ)−MR(fΓ̃, Γ̃) ≤ εV(Γ̃),

1This does not depend on the algorithm used to compute MMR.

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 70

If the player is allowed to vary their policy to minimize regret against the unconstrained

adversary—choosing f = argminf MR(f ,Γ)—it will only decrease regret. Thus MR(fΓ,Γ)−

MR(fΓ̃, Γ̃) ≤ εV(Γ̃) which is equivalent to expression (3.28): MMR(Γ)−MMR(Γ̃) ≤ εV(Γ̃).

The difference between the exact max regret of the approximately optimal policy fΓ̃ and

exact minimax regret can also be bounded:

MR(fΓ̃,Γ)−MMR(Γ) ≤ εV(Γ̃) (3.29)

This bound can be established from the following observation. The exact max regret of fΓ̃

must be at least as great as the exact max regret of fΓ, since by definition fΓ minimizes max

regret. Thus MR(fΓ̃,Γ) ≥ MR(fΓ,Γ). We again examine MR(fΓ̃,Γ), given a fixed player

policy fΓ̃, and observe that restricting the adversary to policies from Γ̃ when computing max

regret will reduce regret by at most εV(Γ̃)—compared to an unrestricted adversary—yielding:

MR(fΓ̃,Γ) −MR(fΓ̃, Γ̃) ≤ εV(Γ̃). Finally, bound (3.28) implies: MR(fΓ,Γ) −MR(fΓ̃, Γ̃) ≤

εV(Γ̃). Taken together these observations imply our bound:

MR(fΓ̃,Γ) ≥ MR(fΓ,Γ)

MR(fΓ̃,Γ)−MR(fΓ̃, Γ̃) ≤ εV(Γ̃)

MR(fΓ,Γ)−MR(fΓ̃, Γ̃) ≤ εV(Γ̃)

∴ MR(fΓ̃,Γ)−MR(fΓ,Γ) ≤ εV(Γ̃)⇔

MR(fΓ̃,Γ)−MMR(Γ) ≤ εV(Γ̃)

Should we generate a set of nondominated policies Γ̃ that ε-approximates Γ, any algorithm

(including ICG-ND) that uses nondominated sets will produce a policy that is within a factor

of εV(Γ̃) of minimizing max regret.

By carefully adding policies to Γ that contribute the most to error reduction, we may be able

to construct a partial set Γ̃ of small size that closely approximates Γ. Our immediate discussion

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 71

will focus on how the agenda in πWitness can be managed to better accommodate perspica-

cious error reduction. Section 6.2 will further the discussion by introducing the NRV algorithm

which seeks to generate nondominated polices in an anytime fashion so as to maximally reduce

the error at each step.

πWitness Anytime Performance We can construct a small approximating set Γ̃ using πWitness

by exploiting its anytime properties and careful management of the agenda. Intuitively, we

want to add policies to Γ̃ that hold the greatest promise for reducing error εV(Γ̃). We quantify

this potential reduction as follows. Let Γ̃n be the nth nondominated set produced by πWitness,

constructed by adding optimal policy f∗n for the nth witness point rn. When f∗n is added to the

agenda, it offers improvement to the current approximation:

∆V(f∗n) =VΓ̃n
(rn)− VΓ̃n−1

(rn).

We process the agenda in priority queue fashion, using ∆V(f) as the priority measure for

any policy f remaining on the agenda. Thus, we examine adjustments to policies that pro-

vided greater increase in value when added to Γ̃ before considering adjustments to policies that

provided lesser value. Chapter 6 will discuss a more principled approach to generating non-

dominated policies in an online settings using a variant of Cheng’s Linear Support algorithm

(Cheng, 1988).

Informal experiments show that using a priority queue reduced the error εV(Γ̃) much more

quickly than using standard stack or queue approaches. Hence we investigate the anytime

performance of πWitness with a priority queue on random MDPs with 128 and 256 states (30

runs of each). The reward dimension is fixed to 6 (3 additive binary factors) and the number

of actions to 5. We first compute the exact minimax regret for the MDP, then run πWitness.

When the nth nondominated policy is found, we compute an approximation of minimax regret

using the algorithm ICG-ND with approximate nondominated set Γn. We measure the relative

error in minimax regret: εMMR(Γ̃)/MMR.

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 72

Figure 3.10: Relative minimax regret error and cumulative πWitness runtime vs. number of nondomi-
nated policies.

Figure 3.10 shows the relative error as nondominated policies are added using the priority

queue implementation. The runtime of ICG-ND algorithm for computing minimax regret is

also shown. On IRMDPs with 256 states, relative error drops below 0.02 after 500 policies

have been added to Γ. Respectively, with 128 states, relative error drops below 0.02 after just

300 policies.

Minimax regret computation using ICG-ND grows linearly with the number of nondom-

inated policies added to |Γ|, but stays well below 1 second: at the 0.02 error point, solution

of 256-state (resp., 128-state) MDPs averages under 0.4 seconds (resp., 0.2 seconds). Given

our goal of using minimax regret to drive preference elicitation, these results indicate that us-

ing a small set of nondominated policies and the ICG-ND algorithm will allow for real-time

interaction with users.

While πWitness is much more computationally intensive, it can be run offline, once, to

precompute nondominated policies (or a small approximate set) before engaging in online

elicitation with users. Figure 3.11 shows the cumulative runtime of πWitness as it adds policies

to Γ. With 256 states, the first 500 policies (yielding an empirical error level of 0.02) are

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 73

Figure 3.11: πWitness computation time (hrs.) vs. number of nondominated policies.

generated in under 2 hours on average. For 128 states, this is accomplished in under 1 hour. In

both cases, runtime πWitness is only slightly super-linear in the number of policies.

3.8 Summary and Conclusions

Previous work has addressed reward uncertainty in Markov decision processes (detailed fully in

Section 2.3). Each approach can be distinguished by the criterion used to compute policies and

the assumptions made about the nature of reward uncertainty. For instance, the work of Delage

and Mannor (2007) adopts the percentile criterion and assume that the prior probability of each

realizable reward function is available. McMahan, Gordon and Blum (2003) compute poli-

cies that optimize maximin value for reward functions with strict uncertainty. Methods from

inverse reinforcement learning establish constraints on the reward function by observing user

behaviour. User behaviour can be interpreted as placing hard constraints on potential reward

functions, giving rise to criteria that maximize the margin to these constraints (Ratliff et al.,

2006) or the margin to other sub-optimal functions (Ng and Russell, 2000). Alternately, prob-

abilistic interpretations of user behaviour have been used to compute policies that minimize

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 74

expected loss (Ramachandran and Amir, 2007) or maximize entropy (Ziebart et al., 2008).

The work presented in chapter is the first to suggest applying the minimax regret criterion

to MDPs with strict reward uncertainty. Minimax regret is an especially suitable measure in

the context of elicitation, since it can guide query selection and offer intuitive guarantees to the

user. Section 3.1 offers—to our knowledge—the first approach to minimax regret computation

for IRMDPs. However, the mixed integer programming at the heart of this approach forms a

computational bottleneck, limiting its usefulness to small IRMDPs. Given the computational

intractability of computing minimax regret for general IRMDPs (Xu and Mannor, 2009) this

limitation is unsurprising.

We develop several computationally efficient approximations. Empirically, the alternating

optimization approximation offers low error and can be used to inform query selection, how-

ever, as an under-approximation it does not yield an upper bound on minimax regret that could

provide a guarantee to the user. The reformulation-linearization (RLT) approximation offers

the desired upper bound, but empirically exhibits relatively high error. We are unaware of any

related approaches to approximate minimax regret for IRMDPs. Further investigation of meth-

ods beyond RLT from the global optimization literature (Torn and Zilinskas, 1989) may yield

improved upper bounds.

The use of nondominated policies for minimax regret computation was simultaneously

suggested by Xu and Mannor (2009), and Regan and Boutilier (2009; 2010). Section 3.6

demonstrates that leveraging the set Γ of nondominated policies can yield orders of magni-

tude improvement in minimax regret computation time. To generate the set c, we introduce

the πWitness algorithm. The complexity of both nondominated policy generation and mini-

max regret computation is tightly tied to the cardinality of Γ which we observe to be related

to the dimension of the reward function. Thus, IRMDPs with large state spaces and compact

reward functions can be tackled efficiently, however, as reward dimensionality grows, an exact

representation of Γ becomes less useful. Section 3.7.3 begins our investigation of anytime ap-

proaches for generating approximate sets Γ; Chapter 6 revisits this topic, offering an improved

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 75

algorithm with anytime error bounds. The related work of Oh & Kim (Oh and Kim, 2011b) de-

velops both exact and anytime algorithms for generating Γ by partitioning reward space using

the inverse reinforcement learning constraints. We empirically examine the efficacy of these

algorithms in conjunction with our own work in Section 6.3.

We briefly offer guidance to selecting among the variety of approaches to minimax regret

computation that have been presented in this chapter. For small IRMDPs the method of con-

straint generation and mixed integer programming presented in Section 3.1 is a good choice;

offers an exact solution and does not require offline pre-computation.

For larger IRMDPs, we recommend exploring potential problem structure by first generat-

ing the set Γ of nondominated policies offline. If the generated set of nondominated policies

is small it can be used to quickly compute exact minimax regret online during reward elici-

tation. When the cardinality of Γ if too large to support efficient exact minimax regret com-

putation, we can resort to approximating minimax regret using partial sets of nondominated

policies. The πWitness algorithm detailed in Section 3.7.1 can be used in an anytime fashion,

and empirically the approximation error drops quickly as policies are generated. However, the

NRV algorithm that will be presented in Section 6.2 holds more promise for generating par-

tial sets of nondominated policies since it provides an anytime bound on approximation error

and operates by generating new nondominated policies to directly reduce this error. For large

IRMDPs the offline generation of nondominated policies may be computationally prohibitive.

In this case, we recommend using the approximation methods that developed in Section 3.5.

The alternating-optimization approach generates lower bounds on minimax regret that exhibit

low error and may be used to guide query selection approaches that use information from the

minimax regret computation. While exhibiting higher error, the reformulation-linearization

technique (RLT) compliments alternating-optimization by constructing an upper bound that

may be communicated to users as a guarantee on the current level of regret.

Future work that efficiently characterized the properties of IRMDPs that give rise to large

sets of nondominated policies would complement the work in this chapter and offer guidance

CHAPTER 3. COMPUTING ROBUST POLICIES USING MINIMAX REGRET 76

as to which domains are amenable to our methods for leveraging nondominated policies.

The investigation of structured MDP dynamics is somewhat orthogonal to the primary aims

of this thesis; however, many of the algorithms detailed in this chapter could benefit from

future work that explicitly models and leverages factored transition functions. Specifically,

linear programming approaches (Guestrin, Koller, Parr, and Venkataraman, 2003a; Poupart

et al., 2002) allow for very large factored MDPs to be compactly encoded and should dovetail

nicely with the constrained optimization methods presented in this Chapter.

3.8.1 Contributions

Completed work from this section constitutes the following contributions to the literature:

• An exact approach to minimax regret computation using constraint generation and mixed

integer programming (Regan and Boutilier, 2008, 2009)

• Two efficient approximate methods for efficient lower bounds on minimax regret

(Regan and Boutilier, 2009)

• An efficient approximate method for upper bounds on minimax regret

(Regan and Boutilier, 2008, 2011a)

• An exact approach to minimax regret computation leveraging nondominated policies

(Regan and Boutilier, 2010)

• A polynomial algorithm for generating nondominated policies

(Regan and Boutilier, 2010)

Chapter 4

Reward Elicitation

4.1 Introduction

Our minimax regret computation produces a robust policy with bounded regret that can be im-

proved by reducing uncertainty over the reward function through elicitation. In this chapter we

focus our attention on general methods for effectively selecting queries that make no assump-

tions about the structure of the reward function and restrict our attention to structurally simple

query types. In the next chapter we explore how additive independence among attributes of

a factored reward function may be exploited to construct highly targeted queries operating on

small sets of attributes.

Let Z be the set of possible queries. For ease of notation we associate each query Z ∈ Z

with a set of potential query responses, denoted ρ ∈ P (Z). Algorithm 4 summarizes our

elicitation procedure. Note that elicitation can be viewed as a form of interactive optimization

(Fisher, 1986) where significant interaction with a user occurs during the optimization process

to further specify the model being optimized.

We begin by computing the solution 〈f ,g,mmr〉 given the initial reward uncertainty R. If

the regret mmr is higher than the user’s termination threshold τ , we select a query Z ∈ Z . Each

query response places additional constraints on R, reducing the volume of R and potentially

77

CHAPTER 4. REWARD ELICITATION 78

Algorithm 4: Generic Reward Elicitation Procedure

Input:
mdp:〈S,A, P, γ, β〉 ← Underlying MDP
R ← Initial imprecise reward specification specification
τ ← Termination threshold
mmr← Initial regret level (∞)

Ouput:
Recommended Policy f , and final regret level mmr

〈f ,g,mmr〉 ← computeMMR(mdp,R)
while mmr > τ do

Z ← selectQuery(mdp,R, f ,g)
Administer query Z and collect response ρ
R ← RZ→ρ

〈f ,g,mmr〉 ← computeMMR(mdp,R)
end

lowering minimax regret. We denote RZ→ρ as the updated set of feasible reward functions

given the additional constraints imposed by response ρ ∈ P (Z). Our goal is not to reduce

reward uncertainty for its own sake; instead we wish to either lower minimax regret below

some desired threshold τ , or to lower regret to zero, at which point the computed policy is

provably optimal. The aim of query selection then is to directly and effectively reduce minimax

regret.

While our policy selection criterion (i.e., minimax regret) assumes strict uncertainty, were

there a precise quantification of the prior probability of all possible query responses, we could

apply Bayesian methods to query selection—while preserving the regret guarantees of the rec-

ommended minimax regret optimal policy. To select the next query Z we could seek to mini-

mize the expected minimax regret of the query polytope that results from the response.

[
Expected MMR

]
Z∗ = argmin

Z∈Z
Eσr∈R

[∑

ρ∈P(Z)

Pr(ρ|Z, r)MMR(RZ→ρ)

]
(4.1)

Note that this formulation assumes both a prior σ over feasible reward instantiations and a prior

Pr(ρ|Z, r) over responses ρ given a query and reward function. The latter prior is known as the

response model and it can be noisy or deterministic. In this work we focus on an approach that

CHAPTER 4. REWARD ELICITATION 79

does not rely on the presence of fully specified prior distributions—instead we select the query

that will guarantee the largest reduction of regret; i.e., the worst-case regret (WR) minimizing

query.

[
WR

]
Z∗ = argmin

Z∈Z
max
ρ∈P(Z)

MMR(RZ→ρ) (4.2)

We refer to Equation 4.2 as the myopically optimal query, since its purview is restricted to the

immediate next step of elicitation. Considering the next k queries will more closely approxi-

mate the optimal sequence of queries (as k→∞), however, the optimization required will be

intractable. Even when restricting look-ahead to k = 1, myopically optimal query selection

(explored in Section 4.3) incurs substantial computational expense. We instead begin our dis-

cussion of query selection strategies with computationally efficient heuristics and proceed to

myopically optimal query selection as a “gold standard” to demonstrate the effectiveness of

our heuristics.

In conjunction with the query strategies we explore, there are many potential types of

queries that may be used. The relevant aspects of a potential query type are: the cognitive

burden it places on the user (i.e., the ease with which the user can form a response), the com-

putational complexity of selecting its parameters, and its effectiveness with respect to the re-

sulting reduction in minimax regret. There is often a tension between the conceptual simplicity

of a query and the effectiveness of the query in reward elicitation. Queries which are con-

strained so as to be quickly understood lack the freedom of more complex queries to elicit the

information that maximally reduces minimax regret.

From the users perspective, queries that involve the assessment and comparison of full poli-

cies are in many cases cognitively intractable, since they require the user to consider contingent

actions for each possible state of the MDP. However, two recent approaches point toward more

intuitive variants of full policy queries. The first explores techniques for explaining MDP poli-

cies to ordinary users (Khan, Poupart, and Black, 2009, 2011) using automatically generated

CHAPTER 4. REWARD ELICITATION 80

templates that convey why each policy action has been chosen. We suggest a second approach

in Section 7.5.5 that expresses a policy in terms of its impact on a small set of reward bearing

states.

In Section 4.3 we suggest that while full-policy queries are complex, they may also be

among the most informative queries, and are amenable to optimal selection of their query

parameters using setwise max regret. For non-factored MDPs reward queries are far simpler

for users to grasp, yet the user is still required to reason with respect to the entire state. Chapter

5 discusses how factored MDPs with additive independence in reward can allow for queries

about a single attribute of the reward function in isolation. To contrast with the complex full

policy queries used for myopically optimal query selection, we use simple bound queries in

our discussion of heuristic query selection strategies. Experiments in Section 4.3.2 demarcate

a spectrum of query types and strategies, with heuristic selection of bound queries at one end,

and myopically optimal selection of full policy queries at the other end.

Other query types in this spectrum include the comparison of (full or partial) state-action

trajectories or distributions over trajectories; and comparisons of outcomes in factored reward

models. Both policy and trajectory comparisons can be facilitated by using counts of relevant

(or reward-bearing) events as dictated by a factored reward model for example. The principles

and heuristics detailed in this chapter can be adapted to these other query types.

4.2 Heuristic Query Selection

We focus on two approaches to heuristic query selection: 1) a volumetric approach that relies

only on information about the uncertain reward polytope, and 2) a current solution approach

which uses information generated by the minimax regret computation. We pair our simple

heuristics with simple bound queries; however, our heuristic strategies can be adapted to more

general query types. In the context of IRMDPs, a bound query takes the form “Is r(s, a) ≥ b?”

where b lies between the upper and lower bound on r(s, a). While this appears to require

CHAPTER 4. REWARD ELICITATION 81

a direct, quantitative assessment of value/reward by the user, it can be recast as a standard

gamble (French, 1986), which can be constructed as follows. We assume that we know the

reward for the most desirable state-action pair (s>, a>) and least desirable state-action pair

(s⊥, a⊥). We define a standard gamble that asks the user to to choose whether they would prefer

to realize the state-action pair (s, a) with certainty or the lottery 〈(s>, a>), p, (s⊥, a⊥)〉 where

p = [b− r(s⊥, a⊥)]/[r(s>, a>)− r(s⊥, a⊥)]. A response to this standard gamble will yield the

same linear constraint as a response to the original bound query. For simplicity, we express

the query in bound form. Unlike reward queries (Delage and Mannor, 2007), which require an

assessment of the exact value of r(s, a), bound queries require only a yes-no response and are

less cognitively demanding. A response tightens either the upper or lower bound.

There are many ways to select the point (s, a) at which to ask a bound query. We ex-

plore some simple heuristic criteria that are straightforward to compute building on work in

(Boutilier et al., 2006).

4.2.1 Halve-the-Largest-Gap

Recall that the feasible reward setR is initially specified by a set of linear constraints Cr ≤ d;

R is closed under the the bound queries that we pose, since each bound query imposes linear

constraints.

We define upper and lower bounds on the reward for each state-action pair as follows:

r>(s, a) = max
r∈R

r(s, a) (4.3) r⊥(s, a) = min
r∈R

r(s, a) (4.4)

For generalR, the lower and upper bounds can be respectively computed by solving an LP for

each of the |S||A| state-action pairs (where each LPs is a direct formation of the optimization

from Equation (4.3) or (4.4) respectively).

The upper bounds can quickly approximated by a single LP (4.5) that solves for all param-

eters at once.

CHAPTER 4. REWARD ELICITATION 82

r> = argmax
r∈R

∑

s∈S

∑

a∈A
r(s, a) (4.5) r⊥ = argmin

r∈R

∑

s∈S

∑

a∈A
r(s, a) (4.6)

The lower bounds can be similarly approximated using LP (4.6). When R forms a hyper-

rectangle, the approximation is exact and (i.e., the respective bounds of (4.3) and (4.4) are

exactly the respective bounds found by (4.6) and (4.6)). We use the upper and lower bound of

each state-action pair to establish the gap, denoted ∆(s, a):

∆(s, a) = r>(s, a)− r⊥(s, a) (4.7)

Following Boutilier et al. (2006) we adapt the halve largest gap (HLG) heuristic to IRMDPs.

The heuristic selects the point (s∗, a∗) with the largest gap,

[
HLG

]
(s∗, a∗) = argmax

a∈A,s∈S
∆(s, a), (4.8)

and queries the user about the midpoint b = r⊥(s∗, a∗) + ∆(s∗, a∗)/2 of that gap. Thus either

response will reduce the interval by half. This process of directly reducing the volume of the

reward polytope is motivated by theoretical considerations. In the context of single-step deci-

sion making, Boutilier et al. (2006) bound the resulting regret level (in terms of utility) after a

fixed number of queries selected by HLG. In our sequential decision making context, the result

implies a bound on our definition of minimax regret, in terms of policy value, after a fixed num-

ber of queries. The approach can further be viewed as a special-case of the polyhedral methods

of Tobia et al. (2003a) operating on a hyper-rectangle. Intuitively, as reward uncertainty is

reduced, minimax regret must eventually be reduced, producing an improved policy.

CHAPTER 4. REWARD ELICITATION 83

4.2.2 Current Solution Heuristics

The halve-the-largest gap heuristic can be augmented to focus on parameters that are directly

involved in the solution to the current minimax regret computation. The current solution (CS)

heuristic uses the occupancy frequencies from the minimax optimal solution f or the adversarial

witness g to weight each gap. Intuitively, if a query involves a reward parameter that influences

the value of neither f nor g (i.e., neither the player nor the adversary is forced to change their

policy in the minimax regret computation), minimax regret may not be reduced, and visitation

frequencies quantify the degree of influence. Formally CS selects the point:

[
CS
]

(s∗, a∗) = argmax
a∈A,s∈S

max
{
f(s, a)∆(s, a), g(s, a)∆(s, a)

}
.

Given the selected (s∗, a∗), the query parameter b is set to the midpoint r⊥(s∗, a∗)+∆(s∗, a∗)/2.

The current solution heuristic does not admit the worst case regret reduction guarantees pro-

vided by HLG, however, the guidance of queries toward parameters that most impact regret

significantly improves elicitation effectiveness in practice.

It is straightforward to apply CS to other robustness criteria such as the maximin value by

using the visitation frequencies associated with the optimal policy w.r.t. to the chosen criterion.

4.2.3 Experiments

The proceeding experiments analyse the effectiveness of the HLG and CS heuristics for select-

ing queries. To reinforce our choice of the minimax regret criterion, we analyse a variant of our

elicitation approach using an alternate robustness criterion: maximin (McMahan et al., 2003;

Bagnell et al., 2003; Nilim and Ghaoui, 2005; Iyengar, 2005).

[Maximin Value] MM (R) = max
f∈F

min
r∈R

f ·r

CHAPTER 4. REWARD ELICITATION 84

In the context of IRMDPs, maximin selects the policy that delivers the highest value given

worst-case setting of reward. To compute the maximin optimal policy for IRMDPs, we imple-

mented a variation of the algorithm developed by McMahan, Gordon and Blum (2003). The

algorithm uses Benders’ Decomposition (1962) to compute maximin value using a constraint

generation procedure that mirrors the exact minimax regret computation technique discussed

in Section 3.1. Constraint generation for maximin value uses following master and subproblem

definitions:

[
master

]
maximize

δ,f
δ

subject to: δ ≤ f ·r ∀ r ∈ GEN

E>f + β = 0, f ≥ 0

Where GEN is the restricted set of reward choices generated by the subproblem. Given a player

choice of policy f , the subproblem finds the wost possible setting of reward.

[
subproblem

]
minimize r f ·r

subject to: Cr ≤ d

The computation time for maximin is significantly less the that of minimax regret—this is

expected since maximin requires only the solution of a pair of linear programs.

We use both maximin value and minimax regret to compute policies at each step of pref-

erence elicitation and pair each criterion with the current solution strategy, yielding (MM-CS)

and (MMR-CS) respectively. We add a third strategy that uses halve-the-largest gap heuristic

to select queries in conjunction with computing the minimax regret optimal policy; we denote

this strategy (MMR-HLG). We assess each procedure by measuring the quality of the policy

produced after each query, using the following metrics: (1) the maximin value given the policy

and the current (remaining) reward uncertainty; (2) the max regret given the policy and the

CHAPTER 4. REWARD ELICITATION 85

0 50 100 150 200 250
Number of Queries

0

1

2

3

M
in

im
ax

R
eg

re
t(

de
cr

ea
si

ng
)

Reward Elicitation on IRMDPs with ISI=10 and IAI=5

15

16

17

M
ax

m
in

Va
lu

e
(in

cr
ea

si
ng

)

Query Selection Method

MM-CS
MMR-CS
MMR-HLG

Figure 4.1: Reward Elicitation of various strategies measuring (decreasing) minimax regret on the left y-
axis and (increasing) maximin value on the right y-axis. Results averaged over 100 randomly
generated IRMDPs.

current (remaining) reward uncertainty. From our perspective max regret is the most critical

since it provides the strongest guarantees.

Figure 4.1 shows results averaged over 100 IRMDPs, which were randomly generated us-

ing the procedure detailed in section 3.2. Each IRMDP has |A| = 5 actions and |S| = 10

states. MMR-CS naturally performs extremely well on the max regret measure. The dotted

horizontal line in Figure 4.1 marks the point at which the MMR-CS strategy has reduced min-

imax regret to 10% of its original value; this reduction is achieved by MMR-CS in 32 queries;

given the 50 reward parameters in this setting, this is significantly less than a single query per

parameter. MMR-HLG takes more than three times that number of queries (97). For further

comparison MM-CS takes more than five times the number of queries (161) to reduce regret

to that level. MMR-CS reduces regret to zero after 97 queries; using less than 2 queries per

reward parameter.

Turning our attention to the maximin measure, we see that while MMR-CS is not directly

optimizing for maximin value, it is competitive with MM-CS, and after 20 queries it produces

CHAPTER 4. REWARD ELICITATION 86

policies with better maximin value than the MM-CS procedure itself. This suggests that MMR-

CS is selecting more informative queries, allowing for a larger reduction in reward uncertainty

at the most relevant state-action pairs, leading to improvements in maximin value. This abil-

ity of MMR-CS to identify the highest impact reward points becomes clearer still when we

examine the total reduction in the reward polytope over the course of elicitation.

Next we look at a measure of how reward uncertainty is reduced with each approach. Using

volume to measureR does not distinguish between queries that halve a very small interval and

queries that halve a large interval—the latter interval representing more reward uncertainty.

Instead, we measure the sum of the length of the reward intervals using χ:

χ =
∑

s∈S

∑

a∈A
∆(s, a) (4.9)

At the end of elicitation, MMR-HLG reduces χ to 5.9% of its original value (averaged over the

100 MDPs) and MM-CS reduces χ to 10.9% of its original value. MMR-CS only reduces χ

to 67.8% of its original value—effectively eliminating regret while leaving a large amount of

uncertainty in many of the reward parameters. Figure 4.2 illustrates this using a histogram of

the number of queries asked by each method about each of the 5000 possible state-action pairs

(50 pairs for each of the 100 runs). We see that MMR-CS asks zero queries about the majority

(3422 out of 5000) of state-action pairs and asks a substantial number of queries (up to twelve)

about a small number of “high impact” pairs.

The minimax regret computation used by the MMR-CS strategy took an average of 8.23

seconds over all queries used by all runs (for comparison, the maximin computation took an

average of 0.16 seconds). An advantage of the HLG strategy is that does not require that

minimax regret actually be computed. Minimax regret is only necessary to assess when to stop

the elicitation process (i.e., to determine if minimax regret has dropped to an acceptable level).

A possible modification the elicitation procedure to reduce time between queries is to adopt

HLG and only compute minimax regret after every k queries. Of course, the HLG strategy will

CHAPTER 4. REWARD ELICITATION 87

0 5 10 15
0

1500

3000

4500

MMR-CS

Histogram of Queries per Reward Parameter

0 5 10 15
0

500

1000

1500

MMR-HLG

0 5 10 15
Queries per Reward Parameter

0

500

1000

1500

MM-CS

Figure 4.2: Histogram of number of queries at each state-action pair.

lead to a slower reduction in minimax regret as shown in Figure 4.1.

4.3 Myopically Optimal Query Selection

This section discusses how we can compute myopically optimal policy queries w.r.t. worst-case

regret (WR). Directly computing the query that minimizes WR is difficult due to interactions

between the parameterization of the set feasible reward functions and the witness reward used

to certify that the minimax regret optimal policy has been found. We adapt a result from

the single-step elicitation literature that proves the equivalence of the WR-minimizing query

to the query minimizing another measure—set-wise max regret (SMR)—which does not suffer

from the same computational difficulties (Viappiani and Boutilier, 2009). This section formally

defines WR and SMR and proves that for full-policy queries, the WR minimizing query is equal

to the SMR minimizing query. We outline the details of the setwise max regret optimization

using constraint generation and mixed integer programming and analyse the effectiveness of

CHAPTER 4. REWARD ELICITATION 88

myopically optimal queries during elicitation.

We focus on comparison queries, requiring the user to state a preference between two

policies. Define a query Z = {fa, fb} as the two policies to be compared. LetRZ→fi denote the

resulting set of feasible rewards consistent with the user’s choice of fi being the most preferred

policy from the set Z:

RZ→fi ≡
{
r ∈ R | fi ·r ≥ fj ·r where fj ∈ Z \ {fi}

}
i ∈ {a, b}

e.g. RZ→fa =
{
r ∈ R | fa ·r ≥ fb ·r

}

Given a user’s choice of fi from Z, the minimax regret of the resulting feasible reward set

is MMR(RZ→fi). We define the worst case regret (WR) of a query Z as:

WR(Z) = max
fi∈{fa,fb}

MMR(RZ→fi) (4.10)

= max
[
MMR(RZ→fa), MMR(RZ→fb)

]

Let the set of potential queries beZ ≡ { {fa, fb} | fa ∈ F , fb ∈ F }. We would like to compute

the query Z ∈ Z that minimizes WR(Z):

min
Z∈Z

WR(Z) = min
Z∈Z

max
fi∈Z

min
f∈F

max
r∈RZ→fi

max
f ′∈F

f ′·r− f ·r (4.11)

Directly optimizing (4.11) is difficult since we are simultaneously varying the constraints defin-

ing the reward polytope and the adversary’s choice of reward point r from within the polytope.

In a related setting—recommending items given an uncertain utility function—Viappiani and

Boutilier (2009) develop an approach to minimizing worst case regret by instead minimizing

setwise max regret (SMR) . They prove equivalence between the query that minimizes SMR

and the query that minimizes WR. We adapt this result to our setting; we begin by defining the

CHAPTER 4. REWARD ELICITATION 89

setwise max regret w.r.t. a set Z={fa, fb} of policies:

SMR(Z) ≡ max
[
MR(fa,RZ→fa), MR(fb,RZ→fb)

]
(4.12)

= max
fi∈Z

MR(fi,RZ→fi)

= max
r∈R

max
f ′∈F

min
fi∈Z

f ′·r− fi ·r

Setwise max regret quantifies the maximal loss experienced by the user if we restrict the user

to choosing a policy from the set Z.

Theorem 2 The query Z∗ ∈ Z that minimizes setwise max regret also minimizes worst-case

regret. Formally,

if Z∗smr = argmin
Z∈Z

SMR(Z) then WR(Z∗smr) = argmin
Z∈Z

WR(Z).

Our proof of this theorem follows Viappiani and Boutilier (2009) and can be found in the

Appendix A.3. This result allows us to shift our focus to SMR, which is more amenable to

effective computation.

4.3.1 Setwise Max Regret Computation

The optimization for finding the query which minimizes setwise regret can be expressed as:

min
Z∈Z

SMR(Z) = min
Z∈Z

max
r∈R

max
f ′∈F

min
fi∈Z

f ′·r− fi ·r (4.13)

We solve this optimization with another variant of the constraint generation approach from

Section 3.1 using a series of linear and mixed integer linear programs. To simply exposition

we continue our assumption that the query is restricted to posing a choice between two policies:

CHAPTER 4. REWARD ELICITATION 90

Z = {fa, fb}. Equation (4.13) be be expressed as a single constrained minimization as follows:

minimize
δ,fa,fb,Ir

δ

subject to: δ ≥ Ir(f
′
r·r− fa ·r) ∀ r ∈ R

δ ≥ (1− Ir)(f ′r·r− fb ·r) ∀ r ∈ R

Here each Ir is a binary indicator variable indicating a choice of policy fa from Z for each

potential adversary reward r (the setting Ir = 0 indicates the choice of fb); f ′r denotes the

optimal adversary policy w.r.t. each reward r. Rather than formulating a constraint for each of

the infinitely many reward points inR, we generate only potentially active constraints. We use

a constraint generation procedure with the master problem as follows:

MASTER minimize
δ,fa,fb,Ir

δ (4.14)

subject to: δ ≥ Ir(f
′
r·r− fa ·r) ∀ 〈 r, f ′r 〉 ∈ GEN

δ ≥ (1− Ir)(f ′r·r− fb ·r) ∀ 〈 r, f ′r 〉 ∈ GEN

We reformulate to remove the quadratic term (I far ·fa) to form a mixed integer linear program.

MASTER minimize
δ,fa,fb,Ir

δ (4.15)

subject to: δ ≥ f ′r·r− fa ·r− (1− Ir)·M ∀ 〈 r, f ′r 〉 ∈ GEN

δ ≥ f ′r·r− fb ·r− (Ir)·M ∀ 〈 r, f ′r 〉 ∈ GEN

γE>fa + β = 0, fa ≥ 0

γE>fb + β = 0, fb ≥ 0

Ir ∈ {0, 1} ∀ r ∈ GEN

CHAPTER 4. REWARD ELICITATION 91

The constant M must be large enough to render the relevant constraints non-binding when the

“opposite” policy is chosen. Note that, during constraint generation, as the set of generated

constraints grows, so too will the number of indicator variables, since we use an indicator Ir

for each reward r in the set of generated constraints.

The subproblem computes the reward point (and optimal policy at that reward point) which

maximizes setwise regret given {fa, fb} from the solution to the master problem:

SUBPROBLEM maximize
δ, r∈R, f ′∈F

δ (4.16)

subject to: δ ≤ f ′·r− fa ·r

δ ≤ f ′·r− fb ·r

We remove the quadratic term f ′· r from the subproblem (as described in Equation (4.16)).

Again we reformulate as a mixed integer program, adapting the MIP developed in Section 3.1

for finding max regret by explicitly representing the adversary’s value and Q-value functions.

Given the master solution Z={fa, fb}, the formulation is as follows:

SUBPROBLEM maximize
δ,Q,V,I,r

δ (4.17)

subject to: δ ≤ β ·V − fa ·r

δ ≤ β ·V − fb ·r

Qa = ra + γPaV ∀ a ∈ A

V ≤ Qa + (1− Ia)·M ∀ a ∈ A (4.18)

Cr ≤ d (4.19)
∑

a

Ia = 1 (4.20)

Ia(s) ∈ {0, 1} ∀ a ∈ A, s ∈ S (4.21)

Here I represents the adversary’s policy, with Ia(s) denoting the probability of action a being

CHAPTER 4. REWARD ELICITATION 92

taken at state s; constraints (4.20) and (4.21) restrict the policy to be deterministic. Constraint

(4.18) ensures that the optimal value V (s) = Q(s, a) for a single action a. Constraint (4.19)

defines the space of feasible reward functions.

The precomputation techniques discussed in Section 3.6 can be leveraged to reduce the

complexity of computing the subproblem. Given the set Γ of nondominated policies generated

by πWitness (or the approaches to be discussed in Sections 6.2 and 6.3), we can compute the

subproblem by solving a small linear program for each g ∈ Γ:

SUBPROBLEM-ND maximize
δ, r

δ (4.22)

subject to: δ ≤ g·r− fa ·r

δ ≤ g·r− fb ·r

Cr ≤ d

The nondominated policy g with the largest objective value determines the maximally violated

constraint. This optimization replaces MIP (4.17) with a series of linear programs. As with

approaches to computing minimax regret using nondominated policies, the efficiency of LP

(4.22) is directly linked with the number of nondominated policies.

4.3.2 Experiments

We assess the general performance of selecting optimal policy comparison queries using set-

wise max regret on randomly generated MDPs and compared the effectiveness of query selec-

tion to two alternative heuristic methods. We use randomly generated MDPs with a factored

additive reward function1. We define the factored state s = 〈x1, x2, . . . xk〉 with k = 2, 3, or

4 binary variables yielding |S| = 4, 8, 16 respectively. The factored additive reward on k at-

tributes is defined by: r(s) = r(x1) + · · · + r(xk). In each case we set the number of actions

1The use of factored MDPs for these experiments as a precursor to work using factored MDPs in Chapter 5.

CHAPTER 4. REWARD ELICITATION 93

Figure 4.3: (top row) Relative minimax regret vs. query number during preference elicitation (averaged
over 30 runs). (bottom row) Setwise max regret computation time (in seconds) for each
query.

|A|=5. We impose a semi-sparse transition function as described in Section 3.2 and generate

30 MDPs of each size.

We compare our myopically optimal policy comparison query selection method (Policy-

SMR) with bound queries chosen by the current solution heuristic from Section 4.2.2, denoted

(Bound-CS). We examine one additional strategy that selects full policy comparison query

Z = {f ,g}, composed of the current solution (Policy-CS), where g is the adversarial policy

that maximizes regret, and f is the minimax regret optimal policy.

Figure 4.3 shows the results (averaged over 30 runs) of preference elicitation using the

three query strategies: Policy-SMR, Policy-CS, and Bound-CS. As expected, the myopically

optimal queries selected by Policy-SMR outperformed the heuristic selection used by Policy-

CS and Bound-CS. When |R|= 4, Policy-CS is performing close to optimal (Fig 4.3. top-left

plot). However as reward dimension increases, we can see that the performance gap between

Policy-SMR and Policy-CS also increases (Figure 4.3 top-row). For |R|=8, regret is reduced

to zero after 29 queries with Policy-CS, while Policy-SMR reduces regret to zero after only

18 queries. Policy queries impose a higher cognitive burden, however, they are also more in-

formative relative to bound queries, allowing for fewer queries. Policy-SMR also requires the

most computational overhead. Both heuristic selection methods use information that in most

CHAPTER 4. REWARD ELICITATION 94

cases has already been computed (assuming the minimax regret is computed at each round

of elicitation). The bottom row of Figure 4.3 shows SMR computation using MIP (4.17) to

solve the subproblem (leveraging nondominated policies to solve the subproblem would likely

further improve results). There are two important trends worth noting: first there is a signif-

icant (exponential) increase in computation time as reward dimension increases; second, the

computation required by Policy-SMR decreases as elicitation progresses. Policy-SMR queries

offer a principled approach to selecting queries that minimize the resulting regret of the worst

case response. While our analysis suggests that Policy-SMR queries produce the quickest re-

gret reduction during elicitation, its advantage over the other query strategies is not necessarily

enough to justify the (significant) additional computation required. However, as elicitation

progresses, it may eventually prove tractable to switch to myopically optimal query selection

using SMR, further improving effectiveness.

4.4 Summary and Conclusions

Related work on inverse reinforcement learning provides an approach to specify reward func-

tions through expert demonstration (Ng and Russell, 2000; Ratliff et al., 2006; Ramachandran

and Amir, 2007; Coates et al., 2008; Ziebart et al., 2008); however, to the best of our knowl-

edge the reward elicitation framework presented here is the first active, incremental approach

to specifying reward functions: active in the sense that users are directly queried for their pref-

erences, and incremental since, at each point during elicitation a robust policy with bounded

regret is available to the user.

Considerable previous work has looked at regret-based elicitation that is both active and

incremental (Patrascu, Boutilier, Das, Kephart, Tesauro, and Walsh, 2005; Boutilier et al., 2005,

2006; Viappiani and Boutilier, 2009; Braziunas and Boutilier, 2010; Boutilier, Regan, and

Viappiani, 2010). However, the scope of this work is limited to single-step decision making

contexts. We build on this work, extending the variants of HLG and CS heuristics developed

CHAPTER 4. REWARD ELICITATION 95

to our sequential decision making domain (i.e., IRMDPs).

To complement these heuristic approaches for selecting simple bound queries, we describe

a method for the optimal selection of more complex full policy queries. This optimal approach

is inspired by work of the Viappiani and Boutilier (2009) that shows a more computationally

tractable measure of setwise max regret (SMR) may be substituted for worst case regret (WR)

when selecting queries (in single-step decision problems). We extended their result to address

sequential decision problems contributing both: a theoretical component, proving that SMR

can used to compute myopically optimal queries; and a practical component, detailing how

the SMR optimizing query may be computed using constraint generation and mixed integer

programming.

We undertook an empirical analysis focusing on the impact of optimal and heuristic query

selection methods on reward elicitation. Of the heuristics we examined, using the current

minimax regret optimal solution (MMR-CS) proved far more effective than using only volu-

metric information (MMR-HLG) or using the current solution w.r.t. other robustness criteria

(MM-CS). The MMR-CS query strategy effectively steered elicitation toward high-impact re-

ward parameters, quickly reducing regret (and increasing maximin value). We observed that

the MMR-CS strategy identified provably optimal policies (i.e., reducing regret to zero) us-

ing a very small number of queries per reward parameter (less than a query per parameter on

average).

Our experiments with myopically optimal selection of policy comparison queries demon-

strated that elicitation effectiveness can be further improved. However, this approach imposes

additional computational cost and cognitive burden. Chapter 6 will detail a domain in which

this cognitive burden is lowered by expressing policy comparisons in terms of a small number

of reward bearing states.

Experiments show that optimal policy comparison queries (Policy-SMR) outperform two

alternative heuristic query methods, however the computation cost of selecting queries using

setwise max regret grows quickly as reward dimension increases rendering optimal query se-

CHAPTER 4. REWARD ELICITATION 96

lection using our setwise max regret technique infeasible for most realistic MDPs. To address

computational difficulties, one avenue of future research is to investigate approximations to set-

wise max regret that lower the computational burden while selecting queries that remain more

effective than current solution heuristics. The computational bottleneck lies in the subproblem

of the constraint generation procedure which must compute SMR(Z) for the solution Z found

by the master problem. Equation (4.12) indicates that SMR(Z) can be computed using a vari-

ant of max regret for each policy in the query Z (since SMR(Z) = maxfi∈ZMR(fi,RZ→fi)).

Re-expressing the subproblem in terms of two max regret computations allows us to leverage

the many approximations that have been developed for the max regret computation. These

approximations include alternating optimization, a relaxation of the original MIP formulation

and a set of exact and approximate methods that make use of the set of nondominated policies.

Another interesting direction involves using setwise max regret to inform queries that have

less cognitive burden than full-policy comparison queries. One possibility is selecting a single

attribute over which to express a comparison query. For instance, given the min-SMR query:

Z = {fa, fb} and an attribute i: a query could ask the user to compare two lotteries over the

instantiations of attribute i: “Would you prefer a policy in which attribute xi occurred with

probability fa(xi) for each xi ∈ Xi or would you prefer a policy in which xi occurred with

probability fb(xi) for each xi ∈ Xi?”. The occupancy frequency f(xi) can be rounded to a

whole number yielding “event counts” which may further simplify things for the user.

In this chapter we have developed a variety of approaches to reward elicitation in MDPs that

eases the burden of reward function specification. The approach to minimax regret developed

in Chapter 3 not only offers robust policies in the face of reward uncertainty, but it can be

further leveraged to focus elicitation attention on the most important aspects of the reward

function. While the computational costs are significant, it is an effective driver of elicitation,

thus reducing the burden of reward determination.

CHAPTER 4. REWARD ELICITATION 97

4.4.1 Contributions

Completed work from this section constitutes the following contributions to the literature:

• The development of volumetric and current solution heuristics for IRMDPs (Regan and

Boutilier, 2009)

• Proof of equivalence between min SMR and min WR for full policy queries (Regan,

2011)

• An exact approach for solving min SMR using constraint generation and mixed integer

programming (Regan, 2011)

Chapter 5

Leveraging Reward Structure

Most sequential decision problems can be naturally expressed as factored MDPs (Boutilier

et al., 1999) that use sets of state variables to compactly encode large state spaces. Typically

reward depends only on a small fraction of these state variables and often in an additive way.

This structure can help to streamline the elicitation of reward information.

In general user preferences over individual attributes are not naturally calibrated, thus we

decompose reward into 1) local reward functions which capture user preferences over individ-

ual attributes, and 2) scaling constants that calibrate the contributions of the local reward. This

decomposition is analogous to the definition of additive utility in terms of local value functions

in Equation (2.2). In our additive model we develop decision-theoretically sound heuristics to

simultaneously elicit information about local reward functions and scaling constants. We de-

velop an exact algorithm for minimax regret computation based on our approach to flat reward

models from Chapter 3, and address complications that arise due to parameter interactions

between scaling constants and local reward in the reward representation. We describe how

reward structure may be leveraged in example IRMDPs from the autonomic computing and

assistive technology domains; we demonstrate substantial gains in elicitation effectiveness in

these domains by applying our approach to structured reward.

98

CHAPTER 5. LEVERAGING REWARD STRUCTURE 99

5.1 Additive Reward with Local Reward Functions

We define the factored states of our IRMDP by a set of attributes: X = X1 × . . .×Xn, where

eachXi is an attribute with finite domain. For ease of notation we useXi to refer to both the ith

attribute and its domain. Let x ∈ X be a state from the set of possible states X. We write x[i]

to denote the value xi of the ith attribute of state x. Let x-i denote the restriction of the state

x to the attributes excluding Xi; we write (xi,x-i) to indicate the state obtained by conjoining

the two. In addition, we assume a user’s reward function is additive independent (Fishburn,

1967; Keeney and Raiffa, 1976) over the attribute space, conditional on the choice of action.

Factored MDPs can also have factored actions, and admit compact specification of dynamics

in addition to reward (Boutilier et al., 1999); however, we exploit only the factored nature of

rewards, since our focus is on reward elicitation.

To formally characterize reward independence we adapt some notation from Chapter 2 on

decision theory to factored MDPs. Let ` = 〈p1,x1; . . . ; pn,xn〉 be a lottery over full states and

let `(xj) be the probability of the lottery realizing full state xj = (x1, . . . , xn). The marginal

lottery `{i} over attribute Xi is defined by probabilities `{i}(xi) =
∑

x-i∈X-i
`(xi,x-i).

Attributes X1, . . . , Xn are additively independent iff (`{1}, . . . , `{n}) = (`′{1}, . . . `
′
{n}) ⇒

` ∼ `′ (Fishburn, 1967). Thus, a reward function is additively decomposable if the user is

indifferent between any lotteries ` and `′ over states x ∈ X (given a fixed action a) whenever

their marginals on each state attribute are the same; in this case we may express reward as:

r(x, a) =
∑

i

ri(xi, a) =
∑

i

λiυi(xi, a), (5.1)

where the ri are sub-reward functions for each attribute, which are themselves expressed using

local utility functions υi and scaling constants λi such that ri(xi, a) = λiυi(xi, a). We assume

explicit dependence on A for ease of exposition, but preferences for some/all attributes will be

independent of A in many MDPs. If preferences over actions are independent of state, we can

simply treat A as another attribute.

CHAPTER 5. LEVERAGING REWARD STRUCTURE 100

To aid concision we introduce the following vector notation: let λ be an n-vector with

entries λi; and υ an n× |X||A| matrix with entries υi(x[i], a). Below we write f ·λυ to mean

f ·(∑i λiυi)

We extend the “flat” reward elicitation techniques from Chapter 3 by incorporating regret-

based approaches to multi-attribute decision problems (Boutilier et al., 2006; Braziunas and

Boutilier, 2007). In the next section we describe some of the natural queries supported by

the additive model. In Section 5.3 we give the details of how our approach to minimax regret

computation from Chapter 3 may be extended to the handle additional complexities due to

parameter interactions between scaling constants and local reward functions. We then develop

a heuristic query selection strategy in Section 5.4 and demonstrate the effectiveness of our

approach on example domains in Section 5.5.

5.2 Structured Query Types

The additive structure of the reward function admits both local queries involving only single

attributes Xi and global queries that involve full state instantiations x. Additive independence

allows the local utility functions υi to be determined for each Xi independently. Global queries

are only required to fix scaling constants λi, which calibrate strength of preference across

attributes (Keeney and Raiffa, 1976; Fishburn, 1967).

Local Anchor Queries For any fixed action a, let x>i,a denote the most preferred value of

attribute Xi given action a, and let x⊥i,a denote the least preferred. Local anchoring is the

process of asking a user to identify these values from the domain of Xi.

The numerical values for υi(x>i,a, a) and υi(x⊥i,a, a) can be chosen arbitrarily, since local

reward function, as we construct it, will be unique up to positive affine transformations (by the

expected utility theorem and axioms described in Section 2.1.2). Given υ′i = aυi + b, a > 0,

both υi and υ′i will represent the same preference relation over attribute Xi. To simply the

expression of other queries w.r.t. the local anchors, we set υi(x>i,a, a) = 1 and υi(x⊥i,a, a) = 0.

CHAPTER 5. LEVERAGING REWARD STRUCTURE 101

Local Bound Queries With local anchors in hand, we can determine υi(xi, a) for any xi

using a standard gamble query: the user is asked to identify the probability p with which they

would be indifferent between xi and a gamble 〈x>i,a, p, x⊥i,a〉 (which gives x>i,a with probability

p, and x⊥i,a with 1− p). This determines υi(xi, a) = p.

Standard gambles, unfortunately, impose a significant cognitive burden on users due to the

precision required. Instead we use local bound queries: given a constant b that we wish to

use as a bound, we set the probability p = [b − υi(x⊥i,a)]/[υi(x>i,a) − υi(x⊥i,a)]. We ask the user

whether xi is preferred to the gamble 〈x>i,a, p, x⊥i,a〉. A positive response implies υi(xi, a) > b,

and a negative response that υi(xi, a) ≤ b. One can ask such queries using gambles, or directly

using the bound itself, depending on the context.

Global Anchoring Scaling parameters λi calibrate strength of preference across attributes;

thus, they require global queries, but only of a specific form. Global anchoring queries ask

the user to specify her most preferred and least preferred state-action pairs (x, a)> and (x, a)⊥,

respectively. We fix a reference outcome x0
a for a ∈ A. While not necessary, the same state

can be chosen for each action a (reducing the number of full states a user is required to assess);

if state rewards are independent of actions, dependence on a is not needed. The reference

outcome can be any salient outcome; we set x0
a = (x⊥1,a, . . . , x

⊥
n,a), which yields:

r((x>i,a,x
0
-i), a) = ri(x

>
i,a, a) +

∑

j 6=i
rj(x

0
j , a)

= ri(x
>
i,a, a) (5.2)

Global Bound Queries The reward r((x>i,a,x
0
-i), a) can be elicited with a standard gamble

asking for the probability p for which the user is indifferent between ((x>i,a,x
0
-i), a) and the

lottery 〈(x, a)>, p, (x, a)⊥〉. Given that υi(x>i,a, a) = 1 and ri(x>i,a, a) = λiυi(x
>
i,a, a), Equation

CHAPTER 5. LEVERAGING REWARD STRUCTURE 102

5.2 implies that λi is exactly the reward elicited for outcome r((x>i,a,x
0
-i), a):

r((x>i,a,x
0
-i), a) = ri(x

>
i,a, a)

[
from (5.2)

]

= λiυi(x
>
i,a, a)

[
from (5.1)

]

= λi
[
since υi(x>i,a, a) = 1

]

As with local queries, rather than asking precise numerical queries we use global bound queries

which, given a bound b, derive the probability p (in the same manner as local bound queries)

such that the response will imply a linear constraint in terms of b. The query asks which

of ((x>i,a,x
0
-i), a) and 〈(x, a)>, p, (x, a)⊥〉 is preferred. Notice global bound queries constrain

each λi independently. The absence of constraints linking components of λ can be leveraged

in minimax regret computation (discussed in Section 5.3).

To summarize, we elicit reward parameters by first asking the user to specify x>i,a and x⊥i,a

(local anchoring) for each Xi, a, and (x, a)> and (x, a)⊥ (global anchoring). We then use local

bound queries to constrain local utilities υ and global bound queries to constrain scaling factors

λ.

We have described a set of simple, focused queries that place constraints on the local reward

functions υi and corresponding scaling constants λi. In order to fill in the picture of elicitation

for our structured reward model, what remains is: 1) a method for computing policies that are

robust to uncertainty over both λ and υ; and 2) procedures for selecting the parameters of

queries to effectively reduce regret.

5.3 Computing Minimax Regret

In our additive reward model with local reward functions, we replace the set R specifying the

uncertain parameters of the flat reward function with two sets: Rλ and Rυ corresponding to

the feasible scaling constants and feasible local reward functions respectively. We assume that

CHAPTER 5. LEVERAGING REWARD STRUCTURE 103

these sets are defined by linear constraints using loose upper/lower bounds or the responses to

any of the queries defined above,

Rλ ≡ {λ | Cλλ ≤ dλ}

Rυ ≡ {υ | Cυυ ≤ dυ},

where Cλ and Cυ are the matrices of coefficients, and dλ and dυ are vectors of values rep-

resenting these constraints. We extend our definitions of max regret and minimax regret to

incorporate our new of parameterization of reward uncertainty:

PMR(f ,g,Rλ,Rυ) = max
λ∈Rλ

max
υ∈Rυ

g·λυ − f ·λυ (5.3)

MR(f ,Rλ,Rυ) = max
g∈F

max
λ∈Rλ

max
υ∈Rυ

g·λυ − f ·λυ (5.4)

MMR(Rλ,Rυ) = min
f∈F

MR(f ,Rλ,Rυ) (5.5)

= min
f∈F

max
g∈F

max
λ∈Rλ

max
υ∈Rυ

g·λυ − f ·λυ (5.6)

Pairwise max regret PMR(f ,g,Rλ,Rυ) is the maximal difference in value between policies

f and g under possible reward realizations (parameterized by Rλ and Rυ). MR(f ,Rλ,Rυ) is

the maximum regret of a policy f given the set of feasible scaling constants Rλ and the set of

feasible local reward functionsRυ. Recall maximum regret represents the worst-case loss over

possible realizations of reward—now parameterized by λυ. MMR(Rλ,Rυ) is minimax regret

which selects the policy that minimizes this loss.

To compute minimax regret we adapt our constraint generation approach from 3.1. At each

iteration, two optimizations are solved. The master problem solves a relaxation of a program

corresponding to Equation 5.6 that restricts the choices of g,λ and υ by the adversary. Given

the solution f to the master problem, the subproblem computes MR(f ,Rλ,Rυ) and adds the

solution (g,λ,υ)—capturing the most violated constraint from the master problem—to the set

of choices available to the adversary in the master problem. When the max regret computed

CHAPTER 5. LEVERAGING REWARD STRUCTURE 104

by the subproblem equals the minimax regret computed by the master problem then we have

converged to the exact solution to minimax regret. The following LP formulates the master

problem in our structured reward context:

minimize
f ,δ

δ (5.7)

subject to: δ ≥ β ·Vi − f ·λiυi ∀ 〈Vi,λi,υi〉 ∈ GEN

γE>f + β = 0

f ≥ 0

This formulation is essentially our original master problem formulation (3.19) with a different

reward parameterization. GEN is a set of constraints corresponding to a subset of possible ad-

versarial choices of policies and rewards; β ·Vi = gi ·λiυi, the value of the adversary’s policy

corresponding to constraint i. If GEN contains all vertices of the polytopes Rλ,Rυ and the

corresponding optimal value function V, this LP computes minimax regret exactly. However,

most constraints will not be active at optimality, so iterative constraint generation is used: given

solution f to the relaxed problem with a subset GEN of constraints, we solve the subproblem

finding the most violated constraint, i.e., the λ,υ,V that maximizes regret of f . If no violated

constraints exist, then f is optimal. Our construction of the subproblem formulation for gener-

ating violated constraints begins with minimal changes to the original subproblem formulation

for flat IRMDPs. To aid with our comparison between new and original formulations we repeat

the original here:

CHAPTER 5. LEVERAGING REWARD STRUCTURE 105

maximize
Q,V,I,r

β ·V − f ·r (3.14)

subject to: Qa = ra + γPaV ∀ a ∈ A

V ≥ Qa ∀ a ∈ A

V ≤ (1− Ia)Ma + Qa ∀ a ∈ A

Cr ≤ d

∑

a

Ia = 1

Ia(s) ∈ {0, 1} ∀a ∈ A, s ∈ S

Ma = M> −M⊥a

The indicator vectors Ia represent the adversary’s policy, with Ia(s) denoting the probability

of action a being taken at state s. Constraints (3.17) and (3.18) restrict the policy to be deter-

ministic. Constraints (3.15) and (3.16) ensure that the optimal value V (s) will be set to the

Q-Value Q(s, a) for at a single action a. The vector Ma of “big-M” constants renders con-

straints non-binding (see Chapter 3). Recall that (3.14) is a mixed integer linear program. To

adapt the subproblem to our structured reward parameterization we replaceRwithRλ andRυ:

maximize
Q,V,I,λ,υ

β ·V − f ·λυ (5.8)

subject to: Qa = λυa + γPaV ∀ a ∈ A

V ≥ Qa ∀ a ∈ A

V ≤ (1− Ia)Ma + Qa ∀ a ∈ A

Cλλ ≤ dλ

Cυυ ≤ dυ
∑

a

Ia = 1

Ia(x) ∈ {0,1} ∀ a ∈ A,x ∈ X

Ma = M> −M⊥a

CHAPTER 5. LEVERAGING REWARD STRUCTURE 106

The term f · r from (3.14) is replaced by f ·λυ. The constraint on reward Cr ≤ d from

(3.14) is replaced by the constraints Cλλ ≤ dλ and Cυυ ≤ dυ on scaling constants and local

reward respectively. Recall that Ia is an |S|-vector of indicator variables denoting whether

(adversarial) policy g takes action a at the corresponding state; and M is a vector of sufficiently

large constants.

Our new formulation (5.8) contains the quadratic term λυ. However, when no constraints

link scaling constants λ (e.g., as with global bound queries), an optimal solution must set λi

to its maximum λ>i or minimum λ⊥i . In such a case, we can linearize the MIP as follows. We

introduce indicators J, where Ji = 1 means λi = λ>i and Ji = 0 means λi = λ⊥i . In the

optimal solution we have: λυ = Jλ>υ − (1 − J)λ⊥υ. The quadratic term Jυ is linearized

using a “big-M” formulation in which we introduce a continuous variable Z which replaces

Jυ, with constraints Z ≤ υ + (1 − J)M′ and Z ≤ JM′. The constant M′ is set sufficiently

large so as to invalidate the constraint when present (i.e., when not multiplied by zero). The

result is a (linear) MIP with continuous variables Q,V,Z,λ,υ and binary variables I,J:

maximize
Q,V,I,J,Z,υ

βV − f
[
Zλ> − λ⊥υ + Zλ⊥

]
(5.9)

subject to: Qa =
[
Zaλ

> − λ⊥υa + Zaλ
⊥
]

+ γPaV ∀ a ∈ A

V ≥ Qa ∀ a ∈ A

V ≤ (1− Ia)Ma + Qa ∀ a ∈ A

Ma = M> −M⊥a ∀ a ∈ A

Z ≤ υ + (1− J)M′ (5.10)

Z ≤ JM′ (5.11)

Cλλ ≤ dλ

Cυυ ≤ dυ
∑

a

Ia = 1

Ia(x) ∈ {0,1} ∀ a ∈ A,x ∈ X

Ji ∈ {0, 1} ∀ i = 1, . . . , n (5.12)

CHAPTER 5. LEVERAGING REWARD STRUCTURE 107

The term λυ has been linearized using the new variables J and Z, and constraints (5.10) to

(5.12) have been added to realize this linearization. This formulation allows us to generate

constraints (solving max regret) using a mixed integer linear program with O(n|X||A|) con-

tinuous variables, O(n|X||A|) binary variables and O(n|X||A|) constraints. Exact minimax

regret computation remains a significant bottleneck that prevents solving any but the smallest

MDPs, leading us to develop approximations, to which we now turn.

5.3.1 Approximate Minimax Regret

While constraint generation with MIP (5.9) solves minimax regret exactly, exact solutions are

not needed to effectively guide query selection (Boutilier et al., 2006): approximations often

suffice. Furthermore, the linearization of the quadratic MIP for MR(f ,R) only works when

independent upper bounds are available on the λi. To this end, we extend the alternating

approximation approach developed in Section 3.5 to construct a tractable approach to minimax

computation.

Alternating Approximation

We repeatedly compute, in turn, an optimal (adversarial) policy g (fixing λ,υ), scaling factors

λ (fixing g,υ), and local utility functions υ (fixing g,λ). This reduces the max regret compu-

tation to the following sequence of LPs:

Given f ,λ,υ:

maximize
g

g·λυ − f ·λυ

subject to: γE>g + β = 0, g ≥ 0

Given f ,g,λ:

CHAPTER 5. LEVERAGING REWARD STRUCTURE 108

maximize
υ

g·λυ − f ·λυ

subject to: Cυυ ≤ dυ

Given f ,g,υ:

maximize
λ

g·λυ − f ·λυ

subject to: Cλλ ≤ dλ

This approach locally explores solution space, avoiding the potentially expensive solution of

the linear MIP; and it is applicable even when the MIP cannot be linearized. Alternating opti-

mization is guaranteed to converge and must return a feasible solution (w.r.t. the subproblem),

and quality can be further improved using random restarts. Finally, when used in constraint

generation, it provides a lower bound on minimax regret.

Reformulation-Linearization Technique

We also apply the reformulation-linearization technique (RLT) introduced in Section 3.5 to

efficiently generate upper bounds on minimax regret. Given the max regret computation as a

single (cubic) maximization:

maximize
g,λ,υ

g·λυ − f ·λυ (5.13)

subject to: γE>g + β = 0, g ≥ 0

Cλλ ≤ dλ

Cυυ ≤ dυ

RLT transforms the problem by introducing a set of variable factors using the problem con-

straints. Combinations of these factors are multiplied with the original problem constraints to

generate additional valid nonlinear constraints. The resulting nonlinear program is then lin-

CHAPTER 5. LEVERAGING REWARD STRUCTURE 109

R dim. Runtime (secs) MMR
|λ| |υ| MIP Alt. MIP Alt. Error (Abs.) Error (Rel.)
2 4 0.51 0.40 90.66 88.79 1.87 2.0 %
3 6 5.65 0.77 107.94 107.45 0.49 0.5 %
4 8 1744.20 1.09 149.52 149.19 0.33 0.2 %

Table 5.1: Performance of Alternative Approximation

earized by replacing each nonlinear term with a new variable. The solution to the resulting

linear program (detailed in Appendix C.2) provides an upper bound on the optimal value to the

original problem.

5.3.2 Assessment

We assessed the performance of exact minimax regret computation with the alternating ap-

proximation (using 10 random restarts) on a small set of random IRMDPs with 2–4 binary

attributes generated using the approach from 3.2. Results are averaged over 30 runs and shown

Table 5.1. While runtime of the exact formulation grows exponentially with reward dimension,

approximation runtime and error remain low enough to admit real-time computation during

interactive elicitation. This suggests that alternating approximation will provide an effective

substitute for the MIP w.r.t. guiding elicitation.

The alternating model gives only a lower bound on MMR. Upper bounds are also valu-

able, since they offer a guarantee on max regret at any point during elicitation—allowing for

termination when this guarantee meets the user’s threshold τ .

Next, we assessed the effectiveness of RLT by computing an upper bound on MMR with

the IRMDPs above, with results in the Table 5.2. The linearization is, naturally, much more

efficient than the MIP, but produces weak upper bounds, that on average are an order of mag-

nitude larger than the exact solution. However, Section 5.5 demonstrates that linearization

often gives better approximations when: (i) the MDP is structured; and (ii) Rλ and Rυ are

sufficiently constrained.

CHAPTER 5. LEVERAGING REWARD STRUCTURE 110

R dim. Runtime (secs) MMR
|λ| |υ| MIP Lin. MIP Lin. Error (Abs.) Error (Rel.)
2 4 0.51 0.18 90.66 1019.28 928.61 1024 %
3 6 5.65 0.31 107.94 1564.87 1456.93 1349 %
4 8 1744.20 0.63 149.52 2236.93 2087.41 1396 %

Table 5.2: Performance of Reformulation-Linearization Approximation

5.4 Query Selection

We limit our discussion of query selection to heuristic approaches. The additional complex-

ities of minimax regret computation in our additive model render myopically optimal query

selection computationally prohibitive, and inadvisable, especially given the demonstrated ef-

fectiveness of the heuristics we develop in this section.

At each round of elicitation we select a query, whose response ρ refines our knowledge of

Rλ orRυ, producingRZ→ρ
λ orRZ→ρ

υ respectively; ideally reducing minimax regret. To select

suitable queries, we adapt the current solution (CS) heuristic developed in Section 4.2, which

uses the solution to the minimax optimization for query selection. Let (f c,gc,λc,υc) be the

solution given current reward polytopes (Rλ,Rυ): f c is the minimax optimal policy; λc,υc are

the reward parameters that maximize regret of f c; and gc is adversarial policy (which will be

optimal for λc,υc).

To inform selection among different query types (e.g., global bound vs. local bound) we

introduce a score S(φ) for the parameters φ of a query that measures the potential to reduce

the max regret of f c. We develop scoring functions for each query type below. The score can

be combined with other factors relevant to query selection, e.g., the cognitive effort required

to answer a query. However, we leave investigations of improved scoring functions to future

work. Our adapted CS heuristic selects the query with the highest score.

For defining scores below we use the concept of occupancy frequencies w.r.t. specific at-

tribute instantiation. Formally, let fi(xi, a) be the marginal occupancy frequencies for an in-

CHAPTER 5. LEVERAGING REWARD STRUCTURE 111

stantiation of state-attribute and action (xi, a) given occupancy frequencies f :

fi(xi, a) =
∑

x-i∈X-i

f((xi,x-i), a)

The marginal occupancy frequency fi(xi, a) corresponds to the discounted probability of being

in a state with attribute xi and taking action a under occupancy frequencies f .

5.4.1 Local Bound Scoring

A local bound query requires selection of an attribute-value, action pair (xi, a) and local utility

bound p. Define the local utility gap of (xi, a) to be:

υ-gap(xi, a) =↑υi(xi, a)− ↓υi(xi, a),

where ↑ υi(xi, a) and ↓ υi(xi, a) are the maximum and minimum values υi(xi, a) can take in

Rυ, when fixing υcj(xj, a) for all j 6= i. In general, the maximum and minimum values can

be respectively computed by solving an LP for each attribute-value pair. When the reward

parameters for each attribute-value action pair are independent (e.g., R is hyper-rectangular)

the upper and lower bounds can be respectively computed by a single LP that solves for all

parameters at once.

We fix the bound p in the local bound query for (xi, a) at the midpoint of this gap (hence

any response narrows the gap by half). To score (xi, a), notice that

PMR(f ,g,Rλ,Rυ) = max
λ,υ

∑

i

λi
∑

xi

∑

a

[
gi(xi, a)− fi(xi, a)

]
υi(xi, a). (5.14)

Thus, the impact on PMR of tightening the bound on υi(xi, a) is mediated by the difference

in policy marginals gi(xi, a) − fi(xi, a) and the scaling constant λi. Assuming that we fix the

query bound p to be the gap midpoint, any response to the query gives a new constraint on

CHAPTER 5. LEVERAGING REWARD STRUCTURE 112

υi(xi, a) that changes PMR by at most

Sυ(xi, a) ≡ λci

[
gi(xi, a)− fi(xi, a)

]
υ-gap(xi, a)

/
2. (5.15)

Thus Equation (5.15) is our score for the parameters φ=(xi, a) of local bound queries.

5.4.2 Global Bound Scoring

A global bound query requires selection of an attribute i and a bound p. Similar to local bound

queries, define the scaling gap

λ-gap(i) =↑λi − ↓λi,

where ↑λi and ↓λi are the max/min values that λi can take inRλ given other reward parameters

fixed by λc,υc. In general, the maximum and minimum values can be respectively computed

by solving an n LPs, one for each attribute i. When the scaling constants are independent,

the upper and lower bounds can be respectively computed by a single LP that solves for all

parameters at once.

We query the midpoint of this gap, a response will induce a constraint such that λi changes

by at most λ-gap(i)/2. We similarly define the score of an anchor bound query parameters

φ=(i) to measure its potential for reducing regret:

Sλ(i) ≡
∑

xi∈Xi

∑

a∈A

[
gi(xi, a)− fi(xi, a)

]
υci (xi, a)λ-gap(i)

/
2

5.5 Experiments

We now examine two of our example domains that are naturally modeled using IRMDPs with

additive reward, and explore the effectiveness of our approach to reward elicitation.

CHAPTER 5. LEVERAGING REWARD STRUCTURE 113

5.5.1 Assistive Technology

We present a simplified model of the COACH system (Boger et al., 2005), whose general goal

is to guide a patient with dementia through a task with ` steps, such as hand-washing, using

verbal or visual cues, while minimizing intrusion. Prompts can be issued at increasing levels

of intrusiveness until (at the highest level k) a caregiver is called to assist the person in task

completion. This results in action space A = {0, 1, . . . , k}. The state is defined by three

variables S = 〈T,D, F 〉; T ≡{0, 1, . . . , `} is the number of tasks steps successfully completed

by the person, D ≡ {0, 1, 2, 3, 4, 5+} is the delay (time taken during the current step), and

F ≡ {0, 1, . . . , k-1} tracks whether a prompt at a specific level was attempted on the current

task step, but failed to immediately get the person to the next step. The dynamics express the

following intuitions. The no-prompt action will cause a “progress” transition to the next step

(setting delay and failed-prompt to zero), or a “stall” transition (same step with delay increased

by one). The probability of reaching the next step with action a = n is higher than a = n−1

since more intrusive prompts have a better chance of facilitating progress; however, progress

probability decreases as delay increases. Reaching the next step after prompting is less likely

if a prompt has already failed at the current step. The reward function is:

r(t, d, f, a) = rg(t) + rd(d) + rp(a),

where: rg(t) is a positive “task completion” reward (non-zero if t = ` task, zero otherwise);

rd(d) is a negative “delay” penalty; and rp(a) is a negative “prompting” penalty associated with

prompting the person. Typically, rp(a = k) is a very large negative cost for calling the caregiver

(relative to other costs); and the sub-reward functions rd(d) and rp(a) are both assumed to

be monotonic (in delay and prompting level, respectively). Each sub-reward function is the

product of a scaling constant and local utility function: ri = λiυi. Attribute F does not occur

in the reward function, so requires no elicitation. A full specification for this domain can be

found in Appendix E.1.

CHAPTER 5. LEVERAGING REWARD STRUCTURE 114

Local Anchoring

Local anchoring requires no elicitation from the user, since the best/worst values for each

attribute T,D,A are given by assumption: penalties for D and A increase monotonically in

level, while t = ` is known to be the preferred value of T (while υg(t) = 0 for all t 6= `). Since

we specify local utility functions on a [0, 1] scale, we use negative scaling constants to ensure

that the sub-reward functions for “penalties” are negative.

Global Anchoring

Our domain also permits global anchoring without input from the user. The most preferred

state-action pair occurs when the task has been completed with no delay and no prompting:

(x, a)> ≡ (t= `, d= 0, a= 0). The least preferred pair is when no progress is made beyond

the first step despite the most intrusive prompts: (x, a)⊥ ≡ (t = 0, d = 5+, a = k). We set

r(x>, a>) = 1 and r(x⊥, a⊥) = −1. In this case r(x⊥, a⊥) 6= 0, and we set reference state

(x0, a0) ≡ (t=0, d=0, a=0).

Local Bound

Local bound queries in this domain are reasonably natural, especially for professional care-

givers for whom our potential elicitation application is designed. For instance, consider a

query involving υd, with this structure: d = 3 � 〈d = 0, b, d = 5+〉? For bound b = 0.6,

we might pose this as: “Would you prefer a certain delay of 3 minutes or a situation in which

there is a 60% chance of delay 0 and a 40% chance of delay 5+? (all else being equal)”. Local

bound queries involving υp are specified similarly. Since only υg(`) has positive reward, no

local elicitation of υg is needed.

Global Bound

We calibrate the scaling constants λ using global bound queries. For instance, consider a query

involving λd of the form: (d⊥,x0
-d, a

0) � 〈(x, a)>, b, (x, a)⊥〉. For b = 0.2 this query could

CHAPTER 5. LEVERAGING REWARD STRUCTURE 115

be expressed as: “Would you prefer the situation in which at step one there is no delay, and a

prompt of level k was issued (calling the caregiver); or would you prefer the following: 20%

of the time the goal is reached with no delay and no prompting, but 80% of the time progress

is not made beyond the first step and the maximal delay occurs despite the most intrusive

prompting?” Given our anchoring assumptions, a positive response constraints λd ≤ 1 − 2b.1

We can bound λp in a similar fashion. Note that λg = 1 is implied by our other settings.

Assessment

We assessed the effectiveness of elicitation on an instance of this domain with ` = 10 steps

and k = 4 prompt levels. We simulate elicitation using a reward function reflecting the actual

use of the COACH system (Boger et al., 2005) to generate user responses. The reward function

has 12 (unknown) parameters and the size of the state-action space is |X||A| = 960. This is

large enough that exact minimax regret computation is not fast enough to support real-time

interaction with a user. Instead we use the alternating approximation to compute minimax

regret; this provides us with a lower bound and max regret. We used RLT to compute an

upper bound as well. We use the current solution strategy to select local and global bound

queries. To determine the advantage of explicitly modeling the additive reward structure in the

COACH domain, we also performed elicitation on the same IRMDP using a flat reward model

in the reward function has |X||A|= 960 dimensions. In this case we use the query selection

strategy and the approximate minimax algorithm (which again gives a lower bound on MMR)

introduced in Section 3.5. This can be viewed as the flat model variant of our additive approach.

Results—shown in Figure 5.1—are averaged over 30 runs with randomized initial (Rλ,Rυ).

A comparison of lower bounds shows a clear advantage for additive elicitation. Comparing

the upper bound for the additive approach with the lower bound for the flat model, we see the

additive model yields significant advantage, provably reducing minimax regret to zero after

1This constraint is different than if all υi were positive, but follows directly from r(d⊥,x0
-d, a

0) ≥
r(〈(x, a)>, b, (x, a)⊥〉).

CHAPTER 5. LEVERAGING REWARD STRUCTURE 116

Regret

Figure 5.1: Preference Elicitation in COACH Domain (30 runs)

70 queries (the lower bound estimates MMR=0 after roughly 28 queries). By comparison,

after 200 queries 8% of the original regret remains in the lower bound produced by the flat

reward model. Furthermore, queries for the flat reward function involve comparisons not over

individual attribute values, but of full state-action instantiations, placing additional cognitive

burden on the user. We also plot true regret, capturing the actual regret (loss) of the minimax

optimal policy in the additive model w.r.t. to the true (but hidden) reward function. We see

that true regret is significantly less than the lower bound on minimax regret. This suggests that

(earlier) termination using the lower bound on max regret would be beneficial in practice.

5.5.2 Autonomic Computing

The autonomic computing task (Kephart and Chess, 2003) involves allocating computing or

storage resources to servers as computing demands from clients change over time. Generally,

server utility has no closed form: utility for a specific allocation is bounded using a combination

of simulation and numerical optimization. Precise specification of utility, while automated, can

involve significant cost.

We have K application server elements e1 . . . ek, and N units of resource which may be

assigned to the server elements (plus a “zero resource”). An allocation is specified by n =

CHAPTER 5. LEVERAGING REWARD STRUCTURE 117

〈n1 . . . nk〉where
∑K

i ni ≤ N . Finally there areD demand levels at which each server element

can operate. A full specification of demand levels is denoted d = 〈d1 . . . dk〉.

A state is given by the current allocation of resources and current demand levels for each

server: x = (n,d). Actions are allocations m = 〈m1 . . .mk〉 of up toN units of resource to the

K application servers. Uncertainty in demand is exogenous and the action in the current state

uniquely determines the allocation in the next state. Thus the transition function is composed

of i Markov chains Pr(d′i | di), one for the demand at each server element.

The reward r(n,d,m) = u(n,d) − c(n,d,m) is composed of a positive utility u(n,d)

and the negative cost c(n,d,m). The cost c(n,d,m) is the sum of the costs of taking away

one unit of resource from each server element at each time step. We assume that the cost term

is known. The utility term u(n,d) can be factored into local utility functions υi(ni, di) for each

server i. In this setting, utility functions are defined with respect to a common unit (potential

revenue), so there is no need for calibration: λ = 1. A full specification for this domain can

be found in Appendix E.2.

Reward elicitation proceeds by having a server bound its local utility for a given demand

and resource level. An example query is: “Given n units of resource and a demand level of

d, are the potential earnings generated greater or equal to b”. An answer of “yes” imposes the

following constraint on the local utility function: υi(ni, di) ≥ b.

Assessment

We examined the effectiveness of our approach to elicitation of additive reward in this domain

using a small IRMDP with K = 2, N = 3, D = 3, yielding a reward function of dimension

24. We used the current solution heuristic to select queries and approximated minimax regret

using alternating optimization (and RLT to produce an upper bound). As with COACH, we

compare to elicitation using a flat version of the reward model in the same IRMDP (with 90

states/reward parameters) using the same methodology as above. Results are shown in Figure

5.2. We see once again that elicitation proceeds quickly and that taking advantage of the

CHAPTER 5. LEVERAGING REWARD STRUCTURE 118

Figure 5.2: Preference Elicitation in Autonomic Domain (30 runs)

additive independence in the reward model yields considerable leverage. The upper bound on

max regret generated by the additive model is reduced to zero after 44 queries, guaranteeing

that an optimal policy has been found. For comparison, the flat model takes 68 queries for the

lower bound to reach zero; thus it takes at least 24 more queries for an optimal policy to be

elicited for the flat model (and likely it would take significantly more queries to reduce an exact

measure of regret to zero).

5.6 Summary and Conclusions

Related work has developed approaches to elicitation of structured utility functions in single-

step decision making domains (Gonzales and Perny, 2004; Braziunas and Boutilier, 2007,

2008, 2010). This work assumes general additive utility (GAI) and thus encompasses a broader

set of possible utility functions than the strictly additive model we adopt. We extend the many

of the query types and selection heuristics of Boutilier and Braziunas (2007) to our sequential

decision making domain. This enables reward elicitation for IRMDPs whose reward functions

exhibit additive independence. As in one-shot multi-attribute decision problems (Boutilier

et al., 2005), this structure admits more cognitively manageable, yet decision-theoretically

CHAPTER 5. LEVERAGING REWARD STRUCTURE 119

sound, queries involving single attributes, and requires very few global queries.

We developed an exact approach to computing minimax regret optimal policies for IR-

MDPs with additive reward and local reward functions that allows for guarantees on loss to

be provided during elicitation. In the general case, an exact method uses a series of linear and

mixed integer quadratic programs; we identify a special (though common) case in which the

mixed integer program may be linearized. We provided tools for efficient approximation of

minimax regret in this context by extending the alternating optimization and the relaxation-

linearization technique (RLT) to handle additive reward structure with local reward functions.

The accuracy of alternating approximation makes it a suitable substitute for generating the

current solution in the CS query selection heuristic, allowing for efficient yet effective query

selection. RLT while far less accurate, provides a valid upper bound on regret that may be

communicated to the user.

To demonstrate the effectiveness of our approach to eliciting additive rewards, we under-

took an experimental assessment in two example domains. In each domain we observed that

leveraging reward structure led to far more effective elicitation. In comparison, variants of each

domain with unstructured reward: 1) took more queries and 2) required more demanding full-

state queries. Our experimental assessments focused primarily on the computational aspects

reward elicitation and carry certain limitations: The local queries that we propose are theoret-

ically simple, however, we have not provided evidence that this simplicity translates into true

cognitive ease on the part of real users. A third example domain detailed in Chapter 7 provides

further argument toward cognitively manageable queries; however these arguments also lack

data from user experiments. Future work that performs a user study on reward elicitation for

a real-world domain is needed to establish the link between the theoretical simplicity of our

queries and the ease with which real users can understand and respond to each query.

Though our approximations address the computational difficulty of minimax regret to an

extent, further research would be beneficial. One promising approach is enlisting the set of

nondominated policies developed in Section 3.6 (and in next chapter). This requires extend-

CHAPTER 5. LEVERAGING REWARD STRUCTURE 120

ing the definition of nondominance to cover policies that are simultaneously nondominated

w.r.t. Rλ and Rυ, while addressing the computational complexities that arise from the inter-

action between λ and υ in the computational machinery that generates and uses the set of

nondominated policies.

As with our algorithms for flat IRMDPs, the minimax regret algorithms detailed in this

chapter could benefit from future work that explicitly models and leverages factored dynamics

(transition functions). Related work on compactly encoding linear programs to solve extremely

large factored MDPs (Guestrin et al., 2003a; Poupart et al., 2002) should be directly translatable

to our constrained optimization approach to minimax regret computation.

Our additive assumption, can be relaxed to allow generalized additive independence (GAI)

(Fishburn, 1967). Techniques for elicitation and computing minimax regret in GAI models

(Braziunas and Boutilier, 2007) should be readily adaptable to MDPs.

In this chapter we developed an approach to reward elicitation for MDPs with additive

reward functions composed of local reward functions. We described a simple set of queries that

restrict attention to single attributes leading to significantly more effective elicitation. In the

next chapter we shift focus back to minimax regret computation in general (flat) IRMDPs. We

describe how the set of nondominated policies may be intelligently wielded during elicitation

to quickly and accurately approximate minimax regret.

5.6.1 Contributions

Completed work from this section constitutes the following contributions to the literature:

• An exact approach to computing MMR for IRMDPs with additive reward structure using

constraint generation and mixed integer programming (Regan and Boutilier, 2010, 2011a)

• Two approximate approaches that provide both upper and lower bounds on MMR

• Decision-theoretically sounds heuristics for eliciting additive reward using local reward

functions (Regan and Boutilier, 2011a)

Chapter 6

Online Minimax Regret Computation

During elicitation, the feasible reward set shrinks as more information is gleaned about the

user’s reward. Policies that were nondominated w.r.t. reward may become dominated when the

feasible reward set is reduced. Since the computational performance of our approach to com-

puting minimax regret using the set of nondominated policies is tightly tied to its cardinality,

pruning away newly dominated policies can offer a significant speed up in computation.

While pruning can improve the efficiency of online computation, it also creates space to

add new nondominated policies to the approximate set. Thus we can improve the quality of the

approximation by adding new policies while maintaining the same online computational over-

head by keeping the number of nondominated policies roughly constant through the effective

use of pruning. This section details an algorithm for online adjustment of the nondominated

policy set and demonstrates the effectiveness of the approach for elicitation. Figure 6.1 dia-

grams how this online adjustment fits into the overall reward elicitation framework.

6.1 Online Adjustment of Nondominated Policies

Let Γ̃ ⊂ Γ be a strict subset of the set of all nondominated policies Γ; we begin by describing

how we can adjust this set online to compute increasingly accurate approximations of minimax

regret during reward elicitation. During elicitation, the feasible reward set R shrinks as more

121

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 122

MDP

Reward

Compute
Robust Policy

policy

measure
Γ

Pre-generate Γ

Adjust Γ

Select Query
User

response query

satisfied?

no

done

yes

Figure 6.1: Diagram of reward elicitation framework with online adjustment of Γ̃, the approximate set
of nondominated policies.

information is gleaned about the actual reward (e.g., as users respond to queries or behavior

is observed). If R′ ⊂ R is the refinement of R implied by this additional information, then

Γ(R′) ⊆ Γ(R); policies that were nondominated w.r.t. R may become dominated when the

feasible reward set is reduced to R′. It is also the case that policies in Γ̃ ⊂ Γ(R) may be

dominated w.r.t. the refinement R′ ⊂ R—these dominated policies can be eliminated without

increasing approximation error (w.r.t. minimax regret). In Section 3.6.1 we observed that the

computational performance of constraint generation using a set of nondominated policies is

tightly tied to the cardinality of the set, hence pruning away newly dominated policies can

offer tremendous speed up in minimax regret computation.

Let Γ̃ be a (not necessarily complete) set of policies that are nondominated w.r.t. to R and

let R′ ⊂ R be a refinement of R. The pruning of Γ̃ w.r.t. to the new reward set R′ can be

realized as follows: for each policy f ∈ Γ̃, we solve a simple LP to find a reward point at which

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 123

f is nondominated:

maximize
r,δ

δ

subj. to: δ ≤ f ·r− f ′·r, ∀ f ′ ∈ Γ̃ \ f (6.1)

r ∈ R′

If the objective δ is negative, then there is no reward r ∈ R′ for which f offers improvement

over some f ′ ∈ Γ̃. Formally: @ r ∈ R′ : f ·r ≥ f ′·r, ∀ f ′ ∈ Γ̃; thus f is dominated and can

be pruned from Γ̃. While pruning can speed up online computation, it can also be viewed as

“creating space” to add new nondominated policies to the approximate set Γ̃. We can improve

the quality of the approximation by adding new nondominated policies to Γ̃, while maintaining

the same online computational overhead by keeping the size of Γ̃ roughly constant through

the effective use of pruning. Adding new policies can be accomplished by running further

iterations of a nondominated policy generation algorithm that allows for anytime computation.

We develop such an algorithm in the Section 6.2. An alternative to anytime generation is to

compute the entire set Γ offline and selectively add policies as elicitation proceeds; however,

as Figures 3.8 and 3.9 from Chapter 3 demonstrate, nondominated policy generation can take

significantly longer than computing minimax regret using the generated set. It follows that

IRMDPs for which it is feasible to fully compute Γ offline will often admit efficient minimax

regret computation without resorting to approximations of Γ.

We focus on the case where prior to online optimization, we have computed an initial set

of nondominated policies Γ̃0 ⊆ Γ(R0) given the the initial feasible reward set R0. The size of

Γ̃0 is determined by the demands of efficient online minimax regret computation. At iteration

t, minimax regret is computed for Rt-1 using Γ̃t-1. The new set Rt is formed (incorporating

constraints given by a query response), and the set Γ̃t is constructed by: (a) pruning policies

in Γ̃t-1 that are dominated relative to Rt; and (b) adding new nondominated policies to Γ̃t-1

to improve approximation quality. Algorithm 5 outlines how pruning and addition can be

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 124

integrated into an elicitation algorithm.

Algorithm 5: Online Adjustment during Elicitation

Input:
mdp : 〈S,A, P, γ, β〉 ← the parameters of our MDP model
R0 ← initial reward polytope
Γ̃0 ← initial nondominated policies (computed offline)
τ ← acceptable level of regret

Ouput:
Recommended Policy f , and final regret level mmr

〈f ,g,mmr〉 ← ComputeMMR(mdp,Rt-1, Γ̃t-1)
foreach step t ≥ 1 do
〈f ,g,mmr〉 ← ComputeMMR(mdp,Rt-1, Γ̃t-1)
Z ← SelectQuery(f ,g,mdp)
Administer query Z and collect response ρ
Rt ← RZ→ρ

t-1

Γ̃t ← Prune(Rt, Γ̃t-1) ∪ Add(Rt, Γ̃t-1)
if mmr < τ then

terminate and return minimax optimal policy f
end

end

Many variants of this scheme exist. The pruning and addition of policies need not be done

in real time, but can take place in some parallel background process. For instance, minimax

regret w.r.t. Rt can be computed using a “lagging” set Γ̃t-k (the set may include some domi-

nated policies and omit some nondominated policies) without detriment; in this case, the error

would be determined by the error of the lagging approximate set. Update of Γ̃ can take place

asynchronously: whenever a set of update operations has been completed relative to any Rt-k,

it can be used at stage t.

6.2 Nondominated Region Vertex Algorithm

The ability to add the most relevant new policies to the approximate set Γ̃ in our online proce-

dure allows error in minimax regret to be reduced significantly while maintaining good online

computational performance. We now describe a principled anytime algorithm for generat-

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 125

Figure 6.2: Illustration of a nondominated region.

ing an approximate set Γ̃ which directly minimizes value function error. Our algorithm is an

adaptation of Cheng’s classic linear support method for POMDPs (1988). Rather than com-

puting nondominated α-vectors over belief states, we compute policies that are nondominated

w.r.t. uncertain reward. We note that unlike the heuristic technique for generating approxima-

tion sets Γ̃ proposed for πWitness in Section 3.7.3, our algorithm yields theoretical bounds

on error, without which we could not offer the user a guarantee on maximum regret during

elicitation.

Let R be some feasible set of reward functions (e.g., a reward polytope). Given a set

Γ̃ ⊆ Γ(R), letRΓ̃(f) be the nondominated region of policy f w.r.t. Γ̃:

RΓ̃(f) ≡
{
r ∈ R

∣∣∣ f ·r ≥ f ′·r, ∀ f ′ ∈ Γ̃
}
, (6.2)

that is the region of R for which f is the best policy in Γ̃. Figure 6.2 illustrates the nondomi-

nated region RΓ̃(f3) of policy f3 with respect to the approximate set Γ̃ = {f1, f5} (depicted in

bold). The nondominated region RΓ̃(f) for any f ∈ Γ̃ is a bounded, convex polytope—since

we define the region by adding the linear constraints in Eq. (6.2) to an already bounded and

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 126

convex polytope,R.

In Section 3.7.3 we defined the value function induced by Γ̃ w.r.t. to the fixed reward r as:

VΓ̃(r) = max
f∈Γ̃

f ·r. (3.27)

Note that VΓ̃ is piecewise linear and convex (PWLC) over r ∈ R. We define the error in VΓ̃

for fixed reward r ∈ R as the difference between the approximate and exact value functions:

εV(Γ̃, r) = VΓ(r)− VΓ̃(r)

The error function εV(Γ̃, r) is convex over r ∈ RΓ̃(f), since error is defined as the difference

between two parameterizations of V, each of which is PWLC. Hence the maximum of εV(Γ̃, r)

over the regionRΓ̃(f) must lie at a vertex ofRΓ̃(f). Formally, for some policy f :

εV(Γ̃,RΓ̃(f)) = max
r∈RΓ̃(f)

VΓ(r)− VΓ̃(r) ∈ VERTICES
(
RΓ̃(f)

)

For example, in Figure 6.2 the maximum over RΓ̃(f3) is found at the vertex labelled r′. Given

any approximate set of nondominated policies Γ̃ ⊆ Γ, the nondominated regions of all non-

dominated policies f ′ ∈ Γ̃ cover the entire feasible reward set:

R =
⋃

f ′∈Γ̃

RΓ̃(f ′)

As a consequence, the maximum error εV(Γ̃, r) over R must lie at the vertex of the nondomi-

nated region of some f ∈ Γ̃.

The nondominated region vertex (NRV) algorithm exploits this fact by computing error

only at vertices of such regions, and adding (optimal) policies to Γ̃ only for those vertices with

maximal error. The algorithm (detailed in Algorithm 6) begins with an initial nondominated

policy f (optimal for some arbitrary r ∈ R) in Γ̃. It adds a policy by: (a) computing EΓ̃, the

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 127

Algorithm 6: Nondominated Region Vertex algorithm

Let δ be allowable error, and r0 some vertex ofR ;
Γ̃← ∅ subset of nondominated policies ;
E ← {r0} vertices of the nondominated regions ;
εV(r0)←∞ (arbitrary) initial error ;
E ′ ← ∅ vertices with error below threshold δ ;
while E − E ′ 6= ∅ do

1 r′ ← argmaxr∈E−E′ εV(r) ;
2 fr′ ← argmaxf∈F f · r′ ;

Γ̃← Γ̃ ∪ {fr′} ;
E ← E ∪ Vertices(RΓ̃(fr′)) ;
E ′ ← E ′ ∪ {r′} ;
foreach r ∈ E − E ′ do

3 εV(r)← V(r)− VΓ̃(r) ;
if εV(r) ≤ δ then

E ′ ← E ′ ∪ {r} ;
end

end
end

set of vertices of the nondominated regions of Γ̃; (b) computing the optimal policy fr for each

r ∈ EΓ̃; and (c) selecting the policy that offers the greatest improvement, i.e., such that the

error fr·r−maxg∈Γ̃ g·r is maximal. The selected policy is added to Γ̃ and the process repeated

until the maximum error at any vertex falls below an acceptable threshold.

As in with the algorithm developed by Cheng (1988), many efficiencies are exploited that

enhance the high-level description in Algorithm 6. For example, caching is used to eliminate

duplication in computing max error (see line 1), finding the optimal policy (line 2) and com-

puting error at each new vertex (line 3). We use the LRS backward search algorithm for vertex

enumeration (Avis, 2000)—the algorithm operates in a manner similar to the simplex method

(Chvátal, 1983) using a pivot rule to move between vertices; however, rather than moving to-

wards an optimal vertex, the enumeration algorithm chooses pivots that guarantee all vertices

are visited.

Secondary information generated by NRV can also be leveraged to speed up the online

adjustment of Γ̃. By storing the vertex r at which each policy f ∈ Γ̃ was found to be optimal, we

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 128

can quickly determine whether f remains nondominated by testing whether r remains feasible.

If r ∈ R′ (i.e., satisfies the new constraints that refine R), then f remains nondominated. If

r /∈ R′, then we resort to LP (6.1).

6.2.1 Empirical Evaluation

We test the NRV algorithm on small MDPs and compare it to the πWitness algorithm (devel-

oped in Section 3.7). We test both methods on small IRMDPs with factored, additive reward

functions. We assume each reward function is naturally calibrated obviating the complica-

tions that arise from representing sub-reward functions as products of local value functions and

scaling constants. A state x = 〈x1, x2, . . . , x7〉 is composed of 7 binary variables, yielding

|X| = 128. We use two different reward functions: the first r(x)=r1(x1)+r2(x2)+r3(x3) with

dimension 6; and the second r(x)=r1(x1)+r2(x2)+r3(x3)+r4(x4) with dimension 8. For each

MDP we generate the transition model and uncertain reward function R using the procedure

from Section 3.2. We generate 20 MDPs for each size of reward dimension, and run both NRV

and πWitness to completion, generating all nondominated policies.

Figures 6.3 and 6.4 show the average runtime of each algorithm. NRV is more efficient

than πWitness on small MDPs—it takes NRV an order of magnitude longer on average to

generate 2000 policies (221 minutes for NRV vs. 22 minutes for πWitness). The performance

gap narrows as reward dimensionality increases—NRV requires roughly double the amount of

time to generate 4900 policies (1194 minutes for NRV vs. 618 minutes for πWitness). The

primary advantage of NRV is the availability of an error bound εV(Γ̃,R) at each iteration.

Figure 6.5 shows that the error εV drops quickly with each added nondominated policy

(note the log scale). For example, εV(Γ̃,R) is reduced to well under 1.0% of its initial value

after only 500 policies, and to nearly 0.1% after 2000 policies. A small set Γ̃ of nondominated

policies can be used to quickly approximate minimax regret as discussed above. We need

only compute Γ̃ once (offline), prior to elicitation. Minimax regret, conversely, needs to be

computed repeatedly and online, since it is integral to our elicitation scheme. Thus offline

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 129

|R|=6

Figure 6.3: Time to generate nondominated policies (20 instances) for both NRV and πWitness: |R|=6.

computation of a small Γ̃ with small error can greatly enhance online performance. For this

reason, the extensive offline computation required for computing nondominated sets is not

necessarily problematic. However, we can further leverage NRV when we allow minimax

regret approximation in the online setting.

We now examine how NRV, used in conjunction with constraint generation for fast, ap-

proximate solution of minimax regret, works in the context of our online optimization scheme.

Recall our online model provides the ability to improve the quality of an approximate solution

during elicitation, while maintaining tractability. We demonstrate this potential by revisiting

the COACH system for guiding persons with dementia through daily living tasks (Boger et al.,

2006).

We review the main elements of the model—described in detail in Section 5.5.1—before

setting out some modifications for our current evaluation. The system guides the user through

a task with ` steps; and can issue one of k prompts at increasing levels of intrusiveness, or

can call a caregiver to assist the person in task completion. The state is defined by three

variables S = 〈T,D, F 〉 where T ≡ {0, 1, . . . , `} is the number of tasks steps successfully

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 130

|R|=8

Figure 6.4: Time to generate nondominated policies (20 instances) for both NRV and πWitness: |R|=8.

Figure 6.5: Error εV as function of NRV policies generated (20 random IRMDPs, log scale).

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 131

completed, D ≡ {0, 1, 2, 3, 4, 5+} is the delay (time taken during the the current step); and

F ≡ {0, 1, . . . , k-1} tracks whether a prompt at a specific level was attempted at the current

step and failed to immediately get the person to the next step. The reward function is as follows:

r(t, d, f, a) = rg(t) + rd(d) + rp(a)

= λgυg(t) + λdυd(d) + λpυp(a).

Where rg(t) is a large positive reward when t = ` for completing the task and is zero when

t < `; rd(d = 0) is a (small) positive reward for progressing to step t (indicated by d being

reset to zero); rd(d > 0) is a small negative reward for delay in completing a step; and rp(a) is

the negative cost associated with prompting the person. The precise values of the rewards are

not known but must be elicited from a caregiver.

The first key modification is as follows: we assume the scaling constants λ that calibrate

the local value functions are already known. While this is not necessarily a realistic assump-

tion, it allows us to focus our evaluation on our current approach to online minimax regret

computation. Removing uncertainty over λ puts aside the computational complications that

result from the interaction between υ and λ that were observed in Section 5.3, allowing for

us to employ the computational machinery (i.e., the NRV algorithm) developed in this chapter

without modification. The task of developing approaches for leveraging policies that are non-

dominated w.r.t. to a quadratic parameterization of reward (i.e., r = λυ) is important future

work.

The second, more minor, modification is to scale up the parameter settings slightly so as

to generated larger IRMDPs; we increase the number of steps ` and prompt levels k. We set

`=14, k=6 and create an IRMDP by setting initial reward bounds to constructR in a manner

similar to the random IRMDPs discussed in the previous section. The resulting IRMDP has

size |X||A|=3012 and reward dimensionality |R|=12. For comparison, the COACH example

from Section 5.5.1 has parameter settings `=14, k=6, resulting in |X||A|=960.

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 132

Figure 6.6: Upper Bound on Minimax Regret (as proportion of initial regret) during Elicitation for the
COACH model.

Reward elicitation is performed with bound queries selected using the current solution

heuristic. Full details of this approach can be found in Sections 5.2 and 5.4. Generally, at

each step t of elicitation: 1) minimax regret is computed w.r.t. the current reward polytopeRt;

2) the minimax regret solution is used to select a query using the CS heuristic; 3) the query

response is used to refineRt to produceRt+1. Elicitation terminates once max regret τ reaches

an acceptable level. When a nondominated set Γ̃ is used to approximate the minimax optimal

policy, we introduce a termination condition that takes into account this approximation and

NRV algorithm’s accompanying error bound: MMR(Γ̃,Rt) + εV(Γ̃,Rt) ≤ τ .

During the offline phase, we use the NRV algorithm generate the initial Γ̃ with the following

criterion in mind. We wish to allow for interactive response times during elicitation, so we

choose the size of Γ̃ so that MMR(Γ̃,R) takes no more than one second to compute. This

results in Γ̃ containing less than 5% of all nondominated policies. We further assume that

during elicitation there are ten seconds available while waiting for a user response to perform

online optimization (pruning and addition) of Γ̃.

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 133

During elicitation we compute minimax regret using: a static set Γ̃ with error εV; and a

dynamic set Γ̃′ with decreasing error ε′V that is optimized online by pruning and adding policies

during the ten-second period provided by response latency. Figure 6.6 shows the upper bounds

MMR(Γ̃,R) + εV(Γ̃,R) and MMR(Γ̃′,R) + εV(Γ̃′,R) on max regret produced by the static

set and online-optimized set, respectively; it is shown as the percentage of the initial upper

bound on minimax regret prior to the start of elicitation. We see that online optimization of

the nondominated set provides a tremendous benefit in terms of elicitation. First, without

online adjustment of Γ̃, it is impossible to find the optimal policy: indeed, the static set stalls

after roughly 40 queries with minimax regret that is still roughly 18% of the initial regret

level. Online optimization of Γ̃ allows discovery of the optimal policy with approximately

60 queries (this is about 5 simple bound queries per reward parameter). Just as importantly,

if an approximately optimal policy is desired, the online-optimized Γ̃ reduces minimax regret

to 20% of its initial levels with only about 12 queries on average, while the static approach

requires almost 35 queries. In this example, a small Γ̃ with less than 5% of all nondominated

policies enables effective reward elicitation, quickly reducing the approximation error to zero

if Γ̃ is optimized online. This demonstrates the power of our online approach. A very small set

of nondominated policies is needed for fast online computation; but a static set of the required

size does not admit an approximation of suitable quality. Pruning newly dominated policies

during elicitation and adding new policies using NRV allows one to maintain online feasibility

while reducing provable max regret to zero, while supporting effective elicitation (both in terms

of number of queries and interactive response time).

In the next section, we continue to investigate the performance of the NRV algorithm by

comparing to it to some related work that exploits the geometric properties of the reward poly-

tope.

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 134

6.3 A Comparison to the Geometric Traversal Algorithm

In their recent paper Oh and Kim (2011a) develop both an exact and approximate algorithm for

generating the set of nondominated policies. We briefly discuss the exact algorithm—which

offers a legitimate improvement over the πWitness algorithm—before detailing an empirical

evaluation of the approximate GT algorithm that undermines its value for the focus of this

chapter: online minimax regret computation.

6.3.1 Exact GT

The geometric traversal (GT) algorithm finds the exact set of nondominated policies by ex-

ploiting the inverse reinforcement learning (IRL) constraints observed by Ng (2000) that char-

acterize the region of reward space where a given policy is optimal. These constraints partition

reward space into the regions defined by policy optimality, where each region corresponds to a

nondominated policy. The geometric traversal algorithm operates by treating each region as a

graph node and performing an exhaustive graph traversal. The approach yields computational

complexity linear in the number of nondominated policies (Oh and Kim, 2011a); this improves

upon the theoretical complexity of the πWitness algorithm (developed in Section 3.7 which is

quadratic in the number of nondominated policies.

6.3.2 Approximate GT

The approximate variant of geometric traversal algorithm is more relevant to the discussion

in this chapter. The essential idea is as follows: at each iteration, the algorithm traverses a

subset of adjacent reward regions that are encountered while moving along a randomly sampled

straight line. Figure 6.7 details the algorithm as described by Oh and Kim (2011a). Like

the exact GT algorithm, the approximate GT algorithm yields a runtime that is linear in the

number of nondominated policies found (unlike both πWitness and NRV which are super-

linear in the number of nondominated policies). However, the runtime of the approximate GT

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 135

algorithm constitutes the offline step of minimax regret computation for which efficiency is

less crucial. More important is the size of approximate set of nondominated policies and the

quality of the approximation. In this regard, results from Oh and Kim (2011a) indicate that

πWitness outperforms the approximate GT algorithm (we later show that NRV outperforms

both πWitness and approximate GT).

Figure 1: An example of 2-dimensional feasible reward
function space R (bold polygon) and its partition in-
duced by nondominated policies. (a) Reward regions
(polygons) of each nondominated policy in R. (b)
Graph representation of the nondominated policies.

space as a connected undirected graph with nodes cor-
responding to nondominated policies and edges cor-
responding to the adjacency of their optimal reward
regions, as shown in Figure 1 (b).

Our geometric traversal algorithm for finding nondom-
inated policies essentially constructs this graph using
the reward optimality condition. Since all the nodes
are connected, any exhaustive traversal algorithm can
be used, e.g., breadth-first or depth-first. Algorithm 2
presents the pseudo-code of the algorithm.

findRewardOptRgn(r, f) constructs the set of hy-
perplanes defined by the reward optimality condition
in equation (8). Specifically, it computes the set H of
hyperplanes, where each hyperplane h ∈ H is repre-
sented as c!

h r ≤ dh. Hence each hyperplane can be
represented as a pair 〈ch, dh〉. Each hyperplane corre-
sponds to one of the edges in the graph of nondomi-
nated policies.

findAdjRewardFn(h,H) yields a reward function
which is located in the adjacent reward region across
the hyperplane h. It is obtained by solving the follow-
ing LP with a small positive constant δ for excluding

Algorithm 2: Geometric Traversal Algorithm

begin
r← some arbitrary r ∈ R
f ← findOptPolicy(r)
Γ← {f}
agenda← {〈r, f〉}
while agenda is not empty do
〈r, f〉 ← next item in agenda
H ← findRewardOptRgn(r, f)
for h ∈ H do

r′ ← findAdjRewardFn(h,H)
if r′ is found then

f ′ ← findOptPolicy(r′)
if f ′ /∈ Γ then

add f ′ to Γ
add 〈r′, f ′〉 to agenda

points exactly on h:

maxr′ 0
s.t. Ar′ ≤ b

c!
h′r′ ≤ dh′ if h′ &= h

c!
h′r′ ≥ dh′ + δ if h′ = h

}
∀h′ ∈ H

(9)

Note that the reward region of interest is adjacent to
the current reward region by h, since we reverse the
direction of the inequality for h while keeping every
other h′ ∈ H unchanged. If the above LP yields a fea-
sible solution, it implies that there exists an adjacent
reward region with potentially a new nondominated
policy.

Upon the termination of the geometric traversal al-
gorithm, Γ will be the complete set of nondominated
policies. If we implement Γ using a hash set, all the
set operations used in the algorithm take O(1) time.

The running time of our geometric traversal algorithm
is polynomial in |S| and |A|, and linear in |Γ| since:

• Each call to findRewardOptRgn(r, f) takes
O(|S|2|A|dim(R)) and is called |Γ| times. Note
that the running time of the procedure is inde-
pendent of |Γ|.

• Since the size of each H is at most |S||A|,
findAdjRewardFn(h,H) is called at most
|S||A| times for each f ∈ Γ, hence it is called a to-
tal of |Γ||S||A| times. Each call to the procedure
requires solving an LP with dim(R) variables and
|H| ≤ |S||A| constraints, of which the running
time is independent of |Γ|.

• findOptPolicy(r) is called only when an ad-
jacent reward function is found, so it is called

Algorithm 3: Approximate Geometric Traversal Al-
gorithm

begin
Γ← {}
agenda← {}
while Γ is not sufficiently gathered do

r← some arbitrary r ∈ R
l← arbitrary straight line passing through r
f ← findOptPolicy(r)
add f to Γ
add 〈r, f〉 to agenda
while agenda is not empty do
〈r, f〉 ← next item in agenda
H ← findRewardOptRgn(r, f)
{r1, r2} ← find two intersections from H
for r′ ∈ {r1, r2} do

f ′ ← findOptPolicy(r′)
add 〈r′, f ′〉 to agenda
if f ′ /∈ Γ then

add f ′ to Γ

O(|Γ||S||A|) times. The running time of the pro-
cedure is again independent of |Γ|.

In short, each iteration in the while loop takes the run-
ning time polynomial in |S| and |A|, but independent
of |Γ| , so the overall time complexity of the geometric
traversal algorithm is linear in |Γ|.

3.3 Approximate Method For Computing
Nondominated Policies

Although the geometric traversal algorithm signifi-
cantly improves the running time, it still can take a
large amount of time since the algorithm collects ev-
ery nondominated policy, potentially as many as |A||S|.
Regan and Boutilier (2010) propose a method for com-
puting a subset of nondominated policies, using the
πWitness algorithm in an anytime manner. Using a
subset of nondominated policies, they use ICG-ND to
compute an approximate minimax regret policy.

Since our algorithm also incrementally constructs Γ,
it can be also used in an anytime fashion to com-
pute a subset of nondominated policies. The idea is
to traverse in each iteration a subset of adjacent re-
ward regions that are encountered while moving along
a straight line. Specifically, our approximate algorithm
starts with an arbitrary reward function r in R and a
random straight line l that passes through r. All the
points r′ on the line l with direction vector w are rep-
resented by the equation r′ = r + w · t.

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

of Nondominated Policies

R
un

ni
ng

 T
im

e
(s

)

piWitness + ICG−ND
GT + ICG−ND
piWitness
GT

Figure 2: Running times of algorithms on 100 random
instances of RUMDP with |S| = 8, |A| = 5,dim(R) =
2.

Then, once we compute the set H of hyperplanes defin-
ing the boundary of the current optimal reward region
using findRewardOptRgn(r, f), we can obtain the
intersection of line l and hyperplane h ∈ H by solving
the system of linear equations:

r′ = r + w · t

c"
h r′ = dh

Two intersections with line l and the boundary de-
fined by H is obtained by taking r′ with the minimum
among the positive solutions and the maximum among
the negative solutions of t. By adding and subtracting
a small positive constant δ to the solutions, we ob-
tain the rewards in the two adjacent reward regions.
Once we gather all the adjacent reward regions along
the current line l, we restart with an arbitrary reward
function r and a new random straight line l. Algo-
rithm 3 presents the pseudo-code of our approximate
method based on the geometric traversal algorithm.

4 Experiments

We tested the performance of our algorithm on ran-
domly generated instances of RUMDPs with differ-
ent state sizes and reward function dimensions. For
each setting of the state size and the reward func-
tion dimension, we randomly generated 100 instances
of RUMDPs, following the same experimental evalua-
tion setup in (Regan and Boutilier 2010). We ran geo-
metric traversal (GT) algorithm, πWitness, and ICG-
ND. Note that GT and πWitness are used to precom-

B:A:

*

*

Figure 6.7: Pseudocode for the Geometric Traversal Algorithm and the Approximate Geometric Traver-
sal Algorithm. The line marked (*) in each algorithm computes the IRL constraints, repre-
sented as the polytope H .

Specifically, the authors compare approximate GT to πWitness on randomly generated

MDPs and measure the number of nondominated policies required to yield an empirical mini-

max regret error of 10%, 5% and 1%. On the largest MDP examined, the approximate GT algo-

rithm required an average of 729.6 policies to reach 5% error where πWitness only required an

average of 72.2 (Oh and Kim, 2011a). We perform our own investigation to corroborate these

findings and include a comparison with the performance of the NRV algorithm. As a baseline

we also include a pure sampling algorithm that operates as follows: at each iteration we sample

a random reward point from the feasible reward polytope, compute the optimal policy for that

reward and, if the optimal policy is not already in the nondominated set, we add the new policy.

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 136

100 101 102 103 104

Size of Approx. Nondom. Policy Set

10-2

10-1

100

R
e
la

ti
v
e
 M

in
im

a
x
 R

e
g

re
t

E
rr

o
r

Anytime Nondominated Policy Generation

¼Witness

Pure Sampling

Approximate GT

NRV

² from NRV

jRj=6

0 500 1000 1500 2000 2500 3000 3500 4000
Size of Approx. Nondom. Policy Set

0.00

0.05

0.10

0.15

0.20

R
e
la

ti
v
e
 M

in
im

a
x
 R

e
g

re
t

E
rr

o
r

Anytime Nondominated Policy Generation

¼Witness

Pure Sampling

Approximate GT

NRV

² from NRV

jRj=6

100 101 102 103 104

Size of Approx. Nondom. Policy Set

10-2

10-1

100

R
e
la

ti
v
e
 M

in
im

a
x
 R

e
g

re
t

E
rr

o
r

Anytime Nondominated Policy Generation

¼Witness

Pure Sampling

Approximate GT

NRV

² from NRV

jRj=8

0 500 1000 1500 2000 2500 3000 3500 4000
Size of Approx. Nondom. Policy Set

0.00

0.05

0.10

0.15

0.20

R
e
la

ti
v
e
 M

in
im

a
x
 R

e
g

re
t

E
rr

o
r

Anytime Nondominated Policy Generation

¼Witness

Pure Sampling

Approximate GT

NRV

² from NRV

jRj=8

100 101 102 103 104

Size of Approx. Nondom. Policy Set

10-2

10-1

100

R
e
la

ti
v
e
 M

in
im

a
x
 R

e
g

re
t

E
rr

o
r

Anytime Nondominated Policy Generation

¼Witness

Pure Sampling

Approximate GT

NRV

² from NRV

jRj=10

0 500 1000 1500 2000 2500 3000 3500 4000
Size of Approx. Nondom. Policy Set

0.00

0.05

0.10

0.15

0.20

R
e
la

ti
v
e
 M

in
im

a
x
 R

e
g

re
t

E
rr

o
r

Anytime Nondominated Policy Generation

¼Witness

Pure Sampling

Approximate GT

NRV

² from NRV

jRj=10

(Linear Scale) (Log Scale)

Figure 6.8: Reduction in (empirical) relative minimax regret error as policies are generated; linear scale
in left column, log scale in right column.

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 137

3.3 Experiments

Our experimental procedure randomly generates 50 MDPs with sparse transition functions

using the procedure described in Section 3.2. Each MDP has 5 actions and states are composed

of 6 binary variables (yielding 128 states). We varied the dimension of the imprecise reward

function generating MDPs with reward dimension |R| = 6, 8, and 10. For each MDP we

run the four nondominated policy generation algorithms: Pure Sampling, Approximate GT,

πWitness, and NRV. At each iteration we use the partial set of nondominated policies generated

by each algorithm to approximate minimax regret and we measure the relative error of the

approximation (w.r.t. exact minimax regret computed using the MIP from Section 3.1).

Figure 6.8 shows results (averaged over 50 runs) comparing the reduction in relative MMR

error (i.e., MMR error / exact MMR) of each algorithm as nondominated policies are generated

(the right column of the figure shows the same results with a log scale). Error levels of 10%, 5%

and 1% percent are marked with horizontal lines. At each iteration the NRV algorithm provides

a bound on the value error, εV induced by the approximate set of nondominated policies at each

iteration, which in turn bounds the error of approximate MMR. We also plot the value error as

a proportion of MMR (i.e. εV / exact MMR) using a dashed line.

The experimental results show that the NRV algorithm makes the best use of the nondom-

inated policies generated, reducing relative MMR error using significantly fewer policies than

all other algorithms. While not as efficient as NRV, the πWitness algorithm in turn signifi-

cantly outperforms the approximate GT algorithm. Our results reflect the experiments of Oh

and Kim (2011a): on average the πWitness algorithm reduces relative MMR error to 5% us-

ing an order of magnitude fewer policies (NRV uses roughly two orders of magnitude fewer

policies than approximate GT to perform the same feat). Interestingly, the performance of the

approximate GT algorithm is initially worse than the pure sampling algorithm, and it is only

after some number of nondominated policies is generated that the line sampling approach of

the approximate GT algorithm is able to match and outperform simple pure sampling.

It is worth emphasizing that the relative MMR error being measured must be computed ex-

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 138

post; only the NRV algorithm can offer a guarantee on MMR error during execution (using the

derived error εV). Figure 6.8 shows that the bound on MMR error computed by NRV (marked

by the dashed line in the figures) is reduced more efficiently than the empirical ex-post error of

the approximate GT algorithm.

6.4 Summary and Conclusions

We have presented a method for computing approximate, robust solutions to imprecise-reward

MDPs (IRMDPs) in the context of online reward elicitation. The NRV algorithm generates

approximate sets of nondominated policies with provable error bounds, which can be leveraged

to efficiently approximate minimax regret using the constraint generation method developed in

Section 3.1.

We have shown how online optimization of the nondominated set, as reward knowledge is

refined, allows regret to quickly decrease to zero with only a small fraction of all nondominated

policies. An empirical analysis on the COACH domain demonstrates the value of our online

approach. Taken together the results of this chapter remove a significant computational barrier

to online reward elicitation for MDPs.

For IRMDPs with more than a handful of states and actions, we recommend using the

NRV algorithm as a first step to gauge whether there is sufficient structure to support minimax

regret computation using nondominated policies. As new nondominated policies are generated

by NRV and added to the set Γ̃, the runtime of the minimax regret approximation using the

Γ̃ increases while the approximation error goes down. A practitioner can select the desired

balance between speed and accuracy when both measures are within acceptable ranges. In

some cases, such as the website optimization domain explored in Chapter 7, the structure of

IRMDP admits small and complete sets of nondominated policies that may be used to compute

minimax regret exactly. For larger IRMDPs without sufficient structure, the offline generation

of nondominated policies using NRV may prove computationally prohibitive. In such cases,

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 139

the approximation methods that developed in Section 3.5 can be used to generated both lower

and upper bounds on minimax regret.

A connection exists between our approach to identifying nondominated policies and work

on solving a restricted class of decentralized MDPs (DEC-MDPs) that feature transition and

observation independence (Becker, Zilberstein, Lesser, and Goldman, 2004). In this setting

agents can be viewed as having nearly independent “local MDPs” that are coupled only by a

joint reward function. The goal in this work is to cooperatively maximize cumulative reward.

Several recent approaches for solving such DEC-MDPs involve identifying the set of poli-

cies for each agent that are nondominated with respect to the space of potential policies chosen

by the other agents (Becker et al., 2004; Petrik and Zilberstein, 2009). With some adaptation,

our NRV algorithm could be used to solve transition independent DEC-MDPs. Likewise the

successive approximation algorithm for DEC-MDPs (Petrik and Zilberstein, 2009)—which

iteratively finds policies that are nondominated with respect to another agent’s policies and

admits an anytime error bound—could potentially be adapted to generating policies that are

nondominated with respect to reward.

The NRV algorithm was inspired by a related approach to solving POMDPs (Cheng, 1988),

as was the πWitness algorithm (Kaelbling et al., 1998). Future work that continues to investi-

gate relevant POMDP algorithms that intelligently generate and managing the set of α-vectors

(the POMDP analog of nondominated policies) could yield further algorithmic improvements.

For instance, point-based value iteration (PBVI) algorithms (Pineau, Gordon, and Thrun, 2003;

Spaan and Vlassis, 2005; Pineau, Gordon, and Thrun, 2006) maintain a subset of α-vectors

that are nondominated w.r.t. small subset of belief points. When this set is well chosen, the

resulting α-vectors constitute a good approximation. An analog in our domain would limit

nondominated policy generation to a subset of well chosen reward points; however, working

out the details of what constitutes a “well chosen” set of reward points in our domain remains

a challenge, especially when we consider that—unlike belief space in POMDPs—the set of

feasible reward points is not static, and is refined as information is gained during elicitation.

CHAPTER 6. ONLINE MINIMAX REGRET COMPUTATION 140

6.4.1 Contributions

• The nondominated-region vertex (NRV) algorithm for generating nondominated policies

which provides an anytime bound on approximation error for minimax regret (Regan and

Boutilier, 2011b)

• A method for adjusting the set of nondominated policies online, speeding up computation

and improving the quality of approximation (Regan and Boutilier, 2011b)

Chapter 7

Applications

7.1 Background

Data driven web companies such as Google and Amazon.com are becoming increasingly so-

phisticated in their approach to improving their web-based products. Webpages are constantly

redesigned in order to optimize various objectives such as user engagement or item sales. The

approach used by most modern companies for evaluating the impact of small changes to web-

pages is referred to A/B, or version-testing. The simplest variant compares two versions of

webpage1 by randomly assigning website visitors to a webpage version while recording the

differences in user behaviour.

1In some cases companies simultaneously compare many more than two examples: Google famously com-
pared 41 shades of blue (Holson, 2009) in order to select the colour of a toolbar.

Figure 7.1: Version A of a User’s LinkedIn homepage.

141

CHAPTER 7. APPLICATIONS 142

Figure 7.2: Version B of a User’s LinkedIn homepage.

Figures 7.1 and 7.2 visualize one example of version-testing performed on a user’s home-

page at LinkedIn.com. One of LinkedIn’s primary goals is to grow its social network by en-

couraging users to add their professional contacts. The LinkedIn homepage typically displays

a right sidebar titled “people you may know” that lists potential contacts. Version A (shown in

Figure 7.1) includes this sidebar along with unrelated functionality in the main pane allowing

the user to post updates. Version B (shown in Figure 7.2) replaces the contents of the main pane

with a personalized message exhorting the user to “quickly grow your professional network”.

A typical version test would randomly assign users among each version and measure the

resulting user behaviour. This measurement typically focuses on the impact each version has

on a goal such as increasing the number of professional contacts added by the user. Formally,

let W be the set of versions and let O be the set of outcomes when a user is assigned to a

particular version w ∈ W . The set of outcomes often corresponds to the set of hyperlinks that

may be clicked by the user in the webpage version. A completed version test induces a function

vt mapping each version to a distribution over outcomes vt :W → Π(O).

Returning to our example, we might expect that the additional message displayed by Ver-

sion B will increase the likelihood that users will take some action to add contacts. However,

we should also expect Version B to decrease the likelihood that a user will “share an update”

(since this functionality is not present in Version B). Given a user’s fixed attention span, direct-

ing a user to undertake either behaviour (i.e., sharing an update or adding a contact) may also

decrease the likelihood that they will remain on the site and engage in other desired behaviour

CHAPTER 7. APPLICATIONS 143

(e.g.,upgrading to a paid account). Choosing a version often involves balancing trade-offs be-

tween multiple goals. A decision theoretic approach to these trade-offs can be adopted by

quantifying the strength preference for each goal and choosing the version that offers highest

expected value.

Current industry practice performs a version-testing on a single page in isolation (though

many version tests may be simultaneously operating) with purpose of optimizing one or more

objectives. However, the results of multiple version tests can be stitched together to create a

stochastic model of user behaviour as they navigate a sequence of webpages. Given this model

and a reward function that precisely quantifies preferences over website goals, the problem

of choosing versions so as to maximize expected reward is naturally modeled as a Markov

decision process.

In this domain specifying the reward function involves precisely quantifying the relative

value of multiple website goals. To alleviate this burden we apply our reward elicitation frame-

work and demonstrate that we can efficiently find the optimal version of each page while spec-

ifying a relatively small amount of high-impact information about the reward function.

The rest of this chapter outlines the MDP model and the assessment of the effectiveness of

reward elicitation in this domain. Empirical analysis using a number of public datasets show

that given loose bounds on reward, the initial policy computed can improve website value by

at least 2–24 percent, and that after a brief elicitation the value of the website is improved by

15–38 percent (details can be found in Section 7.5).

7.2 Model

We focus on version-testing that ignores any user specific information and uniformly assigns

users to versions. The result of version-testing yields a model measuring the impact of a version

in aggregate across all users. Thus, the Markov decision process that we describe captures

expected behaviour of this aggregate user as they navigate the website. More advanced version-

CHAPTER 7. APPLICATIONS 144

testing that assigns versions based on user demographics can be captured by the proceeding

MDP model in a straightforward manner at the expense of additional state space and transition

function complexity. We discuss some related work in this regard in Section 7.6. Another

direction in which the model can be extended is the addition of “user state” variables capturing

relevant aspects of the users interaction with the website. For example, a bought-premium-

membership variable could indicate that a user had already purchased a premium membership

on the website; the reward function could then be tailored to only give reward for a user signing

up for a premium membership when bought-premium-membership is false. Extending the

model in this manner is also straightforward; however, we omit “user state” modeling from our

experiments due to the lack of data for constructing reasonable and realistic models of user

state (and accompanying dynamics).

We define the states S of the MDP to correspond directly to the pages of the website to be

optimized. Given the current page s requested by a user, the dynamics of the MDP predict the

next page s′ that the user will visit.1 Let Svt ⊂ S be the set of pages on which version-testing

is performed. For each page s ∈ Svt, let A(s) be the set of versions that have been tested;

the choice of a version a ∈ A(s) constitutes an action in our model. For s ∈ S \ Svt, there

is a single default action A(s) = {a0} that represents choosing the single static version of the

webpage. Each version test measures user behaviour in terms of clicks on hyperlinks, resulting

in navigation to the subsequent page s′ ∈ S. Thus the results of the version-testing are captured

by Pvt : S × A → Π(S); where Pvt(s′|s, a) is the probability that a user will navigate to page

s′ having been presented with version a of page s.

Independent of any version-testing, most websites log user activity that may be used to

construct a stochastic model of user behaviour w.r.t. to the underlying static website. Let

Pstatic : S \ Svt → Π(S) capture this model; where P (s′|s) is the probability that the user will

navigate from (static) page s to page s′. We define the full transition function P of the MDP as

1Not all user behaviour takes the form of explicitly navigating to another webpage; however, all user interaction
with website involves an HTTP request, and each request can be mapped to an implicit webpage so as to included
in our model.

CHAPTER 7. APPLICATIONS 145

follows:

P (s′|s, a) =





Pvt(s
′|s, a) if s ∈ Svt

Pstatic(s
′|s) otherwise

Given a user request s and the response that chooses a version a to send to the user, the tran-

sition to the next state is understood to be triggered by the user clicking a link somewhere on

the current version a of the webpage, which initiates the next webpage request. Beyond click-

ing on hyperlinks, most user interactions with a webpage can be captured as HTTP requests

and incorporated as subsequent states in our model.

Dynamics

Different versions of a webpage vary its HTML and hyperlink structure affecting the probabil-

ity that a user will click on a link, requesting the next page s′. We assume that version-testing

has already been performed and that these probabilities have been measured and recorded. Let

Pr(s′ | s, a) be the transition function specifying the probability of a user requesting webpage

s′ given that they had been served version a of webpage s.

To model the user entering and exiting the site, we designate two implicit pages senter and

sexit. We set the starting state distribution β(senter) = 1 and and define Pstatic(s′|senter) to be

the probability that a user will begin their session on page s′. For s ∈ Svt, Pvt(sexit|s, a) is

the probability that the user does not click on any links in the version a of page s.; similarly

Pstatic(sexit|s) is the probability that the user clicks on no further links in the static page s ∈

S \ Svt.

Reward

We focus on websites that have multiple goals for the user interaction. The reward function

r : S → R quantifies the value a user visiting some page s ∈ S. We assume that website

CHAPTER 7. APPLICATIONS 146

optimization is focused on funnelling users to a small set of high-value webpages. We do not

attempt to elicit reward for pages outside this high-value set and assume reward for non-high-

value pages is zero.

The tuple 〈S,A, P, r, β〉 forms an infinite horizon MDP. We do not introduce an explicit

discount factor, since the value of most website goals are not diminished by the number clicks

required to reach the goal. For example, the sale of an item on Amazon.com after 8 clicks

generates the same profit as the same item bought after 2 clicks. 1 The exit state sexit is

absorbing and encountered from each state with non-zero probability, ensuring that infinite

reward cannot be accumulated.

Policies

Given a fully specified reward function we wish to find a policy π : S → A that selects a

version for each non-static webpage requested and maximizes the total expected reward EV π:

V π(s) = r(s) +
∑

s′

Pr(s′ | s, a)V π(s′)

EV π = V π(senter) (7.1)

Note that the policy does not use information beyond the identity of the webpage requested;
thus we can view the policy as determining a new static website.

Occupancy Frequencies

A policy induces a set of occupancy frequencies f . Recall that occupancy frequencies form a

deterministic policy π are defined by the following constraints (see Equation 2.11):

f(s, π(s))−
∑

s′

Pr(s | s′, π(s′))f(s′, π(s′)) = β(s) ∀s ∈ S

1There may be other reasons to prefer a buyer reach a goal with fewer clicks. Generally such reasons can be
modeled by additions to the state space without requiring an explicit discount factor.

CHAPTER 7. APPLICATIONS 147

In our domain occupancy frequencies have intuitive form, roughly capturing the proportional

number of visits to a webpage.

Uncertain Reward

To allow for reward to be incrementally specified, we adopt our elicitation framework and use

an imprecise specification of reward R ≡ {r | Cr ≤ d} defined by a set of linear constraints

(with coefficients C,d), resulting in the imprecise reward MDP 〈S,A,Pr, β,R〉.

In the website optimization domain, linear constraints on the feasible set of reward func-

tions can be derived from upper and lower bounds on the value of each goal page. Comparisons

among goal pages can also be used. For instance there may be a primary goal s (e.g., item pur-

chase) that is more valuable than any other goal s′, leading to the constraint r(s) ≥ r(s′). In the

case of LinkedIn, the website design may be able to state upfront that the goal of a user upgrad-

ing to a paid account is more valuable than the user “sharing an update,” or adding contacts.

Note that while a website designer may be able to quickly communicate a preference ordering

that ranks the set of goals, in most cases elicitation is still required to define the strength of

preference, in order to precisely determine the necessary trade-offs between these goals.

Given an IRMDP of in the form described above, our goal is to effectively query the website

designer in order to find a policy (representing an optimized website) with an acceptable regret

with respect to the uncertainty over the value of goal pages. In the next section we discuss how

we generate IRMDPs so that we may empirically investigate the effectiveness of our approach

in this domain.

7.3 Models For Empirical Analysis

We are not aware of existing public datasets that capture the results of website version tests;

however, there are a number of public datasets that record web traffic on static websites that

can used as a foundation for simulated version-testing.

CHAPTER 7. APPLICATIONS 148

Next we detail a procedure for generating version-testing IRMDPs that involves: 1) speci-

fying the probabilities Pstatic that correspond to actual measured web traffic on a static website,

2) specifying the set Svt of pages to be version tested, 3) specifying the impact of each version

on web traffic, 4) specifying the uncertain reward function w.r.t. a subset of “goal” pages.

7.3.1 Creating a Static Website with Traffic

The ACM SIGCOMM Internet Traffic Archive (Archive) is a repository that provides traces of

Internet network traffic. Table 7.1 describes the details of four datasets from the Archive that

we use to construct static websites. The datasets are derived from the HTTP access logs of:

1) the NASA Kennedy Space Center webserver, 2) the University of Calgary Department of

Computer Science webserver, 3) University of Saskatchewan’s university-wide webserver, and

4) the FIFA World Cup 98 webserver.

Website Website Size Log Size
NASA 1,597 3,461,612
University of Calgary 4,757 726,739
University of Saskatchewan 6,078 2,408,625
World Cup 98 11,411 1,352,804,107

Table 7.1: HTTP Access Log details

We use each dataset to construct a model representing the probability Pstatic(s′|s) by con-

ducting counts of the instances in which a user clicks on a link to page s′ from page s. Details

of how this counting is performed can be found in Appendix D.1.

7.3.2 Simulating Webpage version-testing

For our purposes there are two significant short-comings in the public datasets: 1) they do not

measure the impact of version-testing on various webpages, and 2) they do not specify reward-

bearing “goal” pages. Next we propose methods for constructing a hypothetical model of both

of these missing pieces; we begin with the selection of the “goal” pages and the specification

of the uncertain reward polytopeR.

CHAPTER 7. APPLICATIONS 149

Specifying Reward Structure

One reasonable approach to specifying goal pages is to simply browse each website and spec-

ulate on pages that the designers would most prefer users to visit. Unfortunately, the datasets

do not represent the websites in a browsable form;1 instead we select the set G of goal pages

based on link structure and measured user traffic. Following common assumptions (Hollink,

van Someren, and Wielinga, 2007; Perkowitz and Etzioni, 1997; Rupert, Rattrout, and Hassas,

2008; Wang, Wang, and Ip, 2006; Zhou, Chen, Shi, Zhang, and Wu, 2001) we choose a set

of goal pages that are both popular and are encountered near the end of a website navigation

session (i.e., the page is the last page visited before the user exits the site).

We generate a true (but hidden) reward function which reflects the as-yet-unspecified pref-

erences of the website designer. In lieu of a fully specified reward function, we begin with a

reward polytope representing our uncertainty about the true reward function in the form of lin-

ear constraints. We assume that the website designer has predetermined the set of goal pages

and that the reward for non-goal pages is zero; formally, for all s ∈ S \ G we assume that:

r(s) = 0, ∀ r ∈ R. Thus the dimension ofR is effectively |G|.

A simple starting point for the simulation of the true reward function and reward polytope

is to uniformly sample the value of the true reward function and to bound each unknown reward

parameter by a minimum and maximum possible reward value. For instance given a minimum

and maximum reward value of 0.0 and 1.0 respectively, we define the reward polytope: R ≡

{ r | 0.0 ≤ r(s) ≤ 1.0 ∀ s ∈ G }.

Along with specifying the goal pages, website designers are often able to place simple

bounds on reward a priori through a partial ordering of the goal pages in terms of importance.

For instance, an e-commerce website has many different goals beyond simply leading a cus-

tomer to immediately purchase an item. While the website designer cannot easily assess the

exact tradeoffs—between, for example, a user purchasing an item, creating an account with

1The websites are no longer hosted online in their recorded form, and the datasets do not contain the actual
HTML of each site.

CHAPTER 7. APPLICATIONS 150

credit card information, leaving a review—the designer may be able to give a partial ranking,

stating that: a purchase preferred to creating account and creating an account is preferred to

leaving review. We can directly incorporate such ordering constraints into the uncertain reward

polytope. Given an ordered pair of goal pages: sa � sb, R ≡ { r | 0.0 ≤ r(s) ≤ 1.0 ∀ s ∈

G and r(sa) ≥ r(sb) }. For our experiments, we omit any reward goal page ranking constraints

and show effective elicitation can be achieved with a minimal amount of reward information.

Adding goal page ranking results would only improve the results presented below.

Simulating Version-Testing

Generally, the purpose of testing a new version of a page is to boost traffic toward a specific

goal. We can break down our method for simulating version-testing into the following steps:

we select a set of pages to version test; then for each version of each page we select a goal page

as the version target; finally, we simulate how each version shapes traffic toward the target,

increasing traffic toward the target and decreasing traffic to other pages. The full details of

each of these steps can be found in Appendix D.2.

7.4 Reducing Website MDPs

Any page on which version-testing was not carried out corresponds to a state with a single static

action. If such a page is not a reward-bearing goal page, we safely eliminate it and reduce the

size of MDP. In practice the number of pages that are neither goal pages nor pages being version

tested constitutes a large fraction of the website; eliminating this fraction can significantly

reduce the dimension of the corresponding MDP and positively impact the efficiency of our

computational methods.

For generality, we assume the presence of a discount factor in the following discussion; the

results can be directly applied to our version testing domain by setting γ=1. We define a state

to be redundant if the state bears no reward, is not a starting state, and there is a single default

CHAPTER 7. APPLICATIONS 151

action that may be taken in the state. More formally a state y is redundant iff r(s, a0) = 0

and β(y) = 0 and A(y) = {a0}. We seek to create a reduced MDP in which the redundant

state is eliminated. Once we establish the transformation w.r.t. to a single state, extending the

transformation to a larger set of states is straightforward.

To eliminate the state y, we update the transitions of all states s, s′ 6= y for which the

transition s → y → s′ has non-zero probability. Recall that we omit the static action a0 from

the probability of transitioning from a non-version page y: P (s|y) = P (s|y, a0) for all s ∈ S.

We create a new transition function P-y(s
′|s, a) to reflect the discounted probability accrued

from transitions through state y:

P-y(s
′|s, a) = P (s′|s, a)

+ P (s′|y)γP (y|s, a)

+ P (s′|y)γP (y|y)γP (y|s, a)

+ P (s′|y)γP (y|y)γP (y|y)γP (y|s, a)

+ · · ·

= P (s′|s, a) + P (s′|y)γP (y|s, a)

[∞∑

t=0

(
γP (y|y)

)t
]

= P (s′|s, a) + P (y|s, a)γP (s′|y)
1

1− γP (y|y)
(7.2)

Given an underlying MDP and a redundant state y. Let MDP-y = 〈S-y, A, P-y, γ, r〉 be our

reduced MDP with S-y = S\{y} and P-y defined as in Equation (7.2). Given a policy π w.r.t. to

the original MDP, let π-y define the policy that omits of the redundant states eliminated from

our reduced MDP. Formally: π-y = {π-y=π(s) | ∀s ∈ S \ {y}}

Theorem 3 Let V π-y be the expected value of policy π-y w.r.t. to the reduced MDP-y and

let V π be the expected value of policy π w.r.t. to the original MDP. Then V π-y(s) = V π(s)

∀s ∈ S \ {y}.

Proof of this theorem can be found in Appendix A.4. This result allows us to safely remove

CHAPTER 7. APPLICATIONS 152

a redundant state y creating a without altering the value function of a policy. Thus an optimal

policy w.r.t. to the original MDP will remain optimal in the reduced MDP. The result extends

to our minimax regret calculations since minimax regret is defined in terms of value functions.

Minimax regret can be alternately expressed as follows:

MMR(R) = min
π∈P

max
π′∈P

min
r∈R

V π′

r − V π
r ,

where V π
r = fπ ·r, and P is the set of feasible policies.

In our website optimization domain, Theorem 3 implies that we may create a new MDP

with states S ′ and transition function P ′ that removes all redundant pages (i.e., non-goal pages

that are not being version tested) by simply reapplying this process to all redundant pages in

turn. This process is detailed in Algorithm 7.

Algorithm 7: Redundant State Elimination Algorithm

Input:
〈S,A, P, γ, r, β〉 ← The underlying MDP
Y ← a set of redundant states to be eliminated

foreach y ∈ Y do
S ← S − y
foreach s ∈ S, s′ ∈ S, a ∈ A do

P (s′|s, a)← P (s′|s, a)P (s′|s, a) + P (y|s, a)γP (s′|y, a0) 1
1−γP (y|y,a0)

end
end
Return: 〈S,A, P, γ, r, β〉

There is related work on macro-actions (Hauskrecht, Meuleau, Kaelbling, Dean, and Boutilier,

1998), which are also referred to as options (Sutton, Precup, and Singh, 1998). Macro-actions

represent local policies that dictate a course of action for a number of steps; they naturally cap-

ture the consequence of entering a redundant state in our website MDP where a default action

is executed until a transition away from the redundant state. Hauskrecht et al. (1998) detail a

hierarchical approach (using an abstract MDP) that works with macro-actions that would serve

to abstract away redundant states. Parr (1998) presents a related approach to decompose MDPs

CHAPTER 7. APPLICATIONS 153

into a set of weakly-coupled local MDPs. Each local MDP is solved to construct a cache of

policies which are non-dominated given the possible behaviour of adjacent local MDPs. Each

cache can can be viewed as a set of macro-actions for in the global MDP.

7.5 Experiments

7.5.1 Setup

We assess our approach on the four datasets mentioned above. We select 10 goal pages and

simulate the testing of 5 different versions of 50 different pages for each dataset. The impact

of each version increases traffic by an average of 5% (drawn from N(0.05, 0.025)) towards the

version target. The random generation of version-testing IRMDPs with these parameters was

repeated for each dataset over 20 runs and all results were averaged. We perform the reduction

describe in Section 7.4; the resulting IRMDP has:

|S| = |version tested pages|+ |goal pages|+ |exit/entry pages| = 50 + 10 + 2 = 62

|A| = |versions| = 5

|R| = |goals| = 10

7.5.2 Efficiency

We begin by pre-computing the set of nondominated policies (using our NRV algorithm). Ta-

ble 7.2 shows results related to computational efficiency. First observe the number of non-

dominated policies (denoted |Γ|) is a small fraction of the 562 feasible policies. The set Γ of

nondominated policies is small enough to enable online interactive elicitation; Table 7.2 shows

that our procedure for computing minimax regret using Γ takes less than a second. Further-

more, the setwise max regret computation (using Γ) detailed in Section 4.3 is quick enough to

enable the myopically optimal online selection of full policy queries.

CHAPTER 7. APPLICATIONS 154

Offline Online
Dataset NRV-time |Γ| MMR-time SMR-time
NASA 1826 225.7 0.198 1.173
University of Calgary 3592 380.1 0.312 4.019
University of Saskatchewan 2321 245.7 0.270 3.106
World Cup 98 4023 394.6 0.504 6.732

Table 7.2: Average computation time in seconds of nondominated policies (NRV-time) along with the
average number of nondominated policies generated (|Γ|), and computation time for minimax
regret (MMR-time) and optimal policy queries using setwise max regret (SMR-time).

We undertake elicitation using two approaches: the first selects bound queries using the

current solution heuristic; the second selects myopically optimal full policy queries. Details of

both approaches can be found in Chapter 4.

7.5.3 Lift

Figure 7.3 shows (unsurprisingly) that myopically optimal full policy selection provides for

more effective query selection on all datasets (compared to heuristically selected bound queries).

Table 7.3 summarizes some measures of the improvement or “lift” that we observe with

the myopically optimal query selection approach. As a baseline we compute EV-static, the ex-

pected value of the initial (pre-version-tested) static website w.r.t. true reward. After elicitation

has reduced minimax regret to zero, the minimax regret optimal policy is provably the optimal

policy w.r.t. to true reward. We denote the expected value of this optimal policy as EV-opt and

use the phrase full lift to quantify the improvement: full lift = (EV-opt − EV-static). In our

experiments it takes an average of 11–24 queries (across all datasets) to reduce regret to zero,

producing full lift from 15–38 percent. Next, we measure the (ex-post) initial lift as (EV-opt

− Initial MMR). Intuitively, this provides bound on the improvement offered by the initial

minimax regret optimal policy. We observe after the fact that the initial minimax regret policy

provides an average improvement of at least 2–24 percent over the intial static website (across

the datasets) and that by completing reward elicitation (reducing regret to zero) we increase

this improvement to 15–38 percent.

CHAPTER 7. APPLICATIONS 155

Dataset EV-static EV-opt Initial MMR Initial lift Full lift
NASA 1.0 1.151 0.126 0.023 0.151
University of Calgary 1.0 1.381 0.212 0.168 0.381
University of Saskatchewan 1.0 1.223 0.170 0.106 0.223
World Cup 98 1.0 1.325 0.077 0.248 0.325

Table 7.3: EV-static measures the expected value of the static (pre-version-test) website (w.r.t. true re-
ward). All values in the table are normalized w.r.t. to EV-static. EV-opt measures the expected
value of the optimal (post-version-test) policy (w.r.t. true reward). Initial MMR measures the
initial minimax regret of the IRMDP. Initial lift is (EV-opt - Initial MMR) and constitutes
an ex-post lower bound on the improvement over the static policy that the mmr optimal pol-
icy yields. Full lift measures the improvement that the optimal policy (found when MMR is
reduced to zero) offers over the static policy.

7.5.4 Elicitation Effectiveness

Figure 7.3 shows the results of elicitation on each dataset (averaged over 20 runs). For each

dataset minimax regret is quickly reduced. For each website and strategy regret is reduced to

half its original value in less than 5 queries, and regret is reduced to a fifth of its original value

in less than 10 queries. Regret is reduced to zero in all cases in under 30 queries, and in some

cases (NASA with Full Policy SMR) regret is reduced to zero in just 10 queries—one query

per reward parameter. In general full policy queries selected using setwise max regret reduce

minimax regret more quickly than bound queries selected using the current solution heuristic.

This should be unsurprising since the response to full policy queries contain more information

about the reward function. We next discuss how full policy queries may be posed to a website

designer in a cognitively reasonable manner.

7.5.5 Full Policy Queries

Let f and f ′ be the occupancy frequencies induced by the two policies to be compared in a full

policy query. We can summarize each policy by examining its impact on traffic to a goal page

sg by examining f(sg, a0) which represents the proportion of time a user will visit goal page

sg (since goal pages are not version tested, each goal page has default action a0).

Figure 7.4 shows two possible representations for the goal page occupancy frequencies.

CHAPTER 7. APPLICATIONS 156

(a) NASA (b) University of Calgary

(c) University of Saskatchewan (d) World Cup

Figure 7.3: Results of reward elicitation: relative minimax regret vs. query number.

The first row of the figure shows the normalized occupancy frequencies for each goal page

(labeled A through H). The second row shows the “delta” between each occupancy frequencies

of each policy and allows the designer to focus on the relative trade-offs presented by each

policy. Note the most significant trade-offs in query #1 are among the first four goal pages.

Ignoring the small differences among the last four goal pages, the designer roughly needs to

decide if increased traffic to goal page B is worth a decrease in traffic to pages A, C, and D.

Of course one may resort to simpler bound queries that do not require simultaneously rea-

soning about all goals. The results shown in Figure 7.3 suggest that using bound queries rather

than myopically optimal policy queries will have a very slight negative impact elicitation ef-

fectiveness; for instance, on the NASA dataset (7.3 (a)) an additional 12 queries are required

to reduce regret to zero.

CHAPTER 7. APPLICATIONS 157

A B C D E F G H
0.00

0.05

0.10

0.15

0.20

0.25

R
e
la

ti
v
e
 O

cc
.
Fr

e
q
.

Query #1

f
f’

A B C D E F G H

-0.2

-0.1

0.0

0.1

0.2

R
e
la

ti
v
e
 O

cc
.
Fr

e
q
.

Query #1 - Delta

A B C D E F G H
0.00

0.05

0.10

0.15

0.20

R
e
la

ti
v
e
 O

cc
.
Fr

e
q
.

Query #2

f
f’

A B C D E F G H

-0.2

-0.1

0.0

0.1

0.2

R
e
la

ti
v
e
 O

cc
.
Fr

e
q
.

Query #2 - Delta

A B C D E F G H
0.00

0.05

0.10

0.15

0.20

R
e
la

ti
v
e
 O

cc
.
Fr

e
q
.

Query #3

f
f’

A B C D E F G H

-0.2

-0.1

0.0

0.1

0.2

R
e
la

ti
v
e
 O

cc
.
Fr

e
q
.

Query #3 - Delta

A B C D E F G H
0.00

0.05

0.10

0.15

0.20

0.25

R
e
la

ti
v
e
 O

cc
.
Fr

e
q
.

Query #4

f
f’

A B C D E F G H

-0.2

-0.1

0.0

0.1

0.2

R
e
la

ti
v
e
 O

cc
.
Fr

e
q
.

Query #4 - Delta

Figure 7.4: Representations for queries comparing goal page occupancy frequencies.

7.6 Summary and Conclusions

Given a sequence of Web pages accessed by a user, existing work has tackled the problem

of learning to predict subsequent Web page requests using various high-order Markov models.

(Deshpande and Karypis, 2004; Hassan, Jones, and Klinkner, 2010; Sarukkai, 2000). The work

suggests many uses for these predictive user models such as improving web cache performance

and personalizing websites; however, a principled decision theoretic model for actions based

on prediction is not considered in prior work. Richer models of user behaviour could be incor-

porated into our approach at the cost of increasing the complexity of the IRMDP state state and

transition model.

Archak et al. (2010) develop a model for online advertising that captures the behavior of

users, including their responses to advertising actions, as a Markov chain. This allows for

the computation of the optimal policy for allocating budget to a specific user in a way that

adapts the allocation based on observed behavior using a constrained Markov decision process

(Nikolay Archak and Muthukrishnan, 2010). This domain avoids the difficulties of reward

specification, since, there is a simple easily observable reward function that measures a single

“conversion” goal.

CHAPTER 7. APPLICATIONS 158

Existing work on adaptive websites takes the perspective of improving user experience.

User goals are inferred from web access logs and structural changes (e.g., adding new links

or emphasizing existing links) are suggested using several heuristic approaches that aim to

improve various user-centric objectives such as minimizing the path to frequently accessed

content (Hollink et al., 2007; Perkowitz and Etzioni, 1997; Rupert et al., 2008; Wang et al.,

2006; Zhou et al., 2001). Version testing will implicitly capture the goals of users; however,

our work optimizes the goals of the website designer (which may not align with the goals of

the user) and performs the optimization in a sound decision theoretic manner.

In this chapter we described how website optimization through version-testing may be mod-

eled as an MDP. Each choice of versions distributes the expected flow of website traffic among

different (often competing) goals. A reward function capturing the preferences of the website

designer must precisely specify the relative value of these goals—a cognitively demanding and

time consuming task. Our reward elicitation approach lowers the burden of reward specifica-

tion in this domain, enabling website designers to optimize their websites without undertaking

the task of full reward specification.

To demonstrate the effectiveness of our approach in this domain we generated IRMDPs

that simulate version-testing on a set of existing websites. Each simulation is built upon a

large public dataset capturing a model of user behaviour on a static website. We show that the

resulting IRMDPs may be reduced to a fraction of their original size by eliminating redundant

states; exact minimax regret computation and myopically optimal query selection are efficient

enough on the resulting IRMDP to enable elicitation with real-time user interaction.

We described how full policy queries in this domain may be communicated so as to re-

duce their complexity and lower the cognitive burden on users. The results of our elicitation

experiments using these queries suggests that using few queries per goal we may identify the

optimal policy determining the optimal selection of page versions, and that this optimal policy

will significantly increase the expected reward.

CHAPTER 7. APPLICATIONS 159

7.6.1 Contributions

Completed work from this section constitutes the following contributions to the literature:

• The empirical analysis of public datasets demonstrating effective version-testing opti-

mization on websites with thousands of pages.

• Examples of effective and cognitively reasonable full policy queries

Chapter 8

Conclusions and Discussion

In this thesis we have developed a framework for specifying user preferences over the operation

of complex systems for reasoning under uncertainty.

Specifically, we focus on Markov decision processes (MDPs), a well-established model for

sequential reasoning under uncertainty that requires the specification of both a model of the

stochastic dynamics and a reward function capturing user preferences. Many real-world rea-

soning problems are naturally modeled as MDPs. For instance, planning and logistics at large

organisations often involve optimizing processes with series of actions with stochastic effects.

In this thesis we described three concrete examples and detailed MDPs for website optimiza-

tion, autonomic computing, and cognitive assistance systems. While dynamics can be learned

by observation of the environment, the reward function reflects the subjective preferences of

some user and can require sophisticated human judgement to assess relevant tradeoffs.

Our framework extends well understood decision-theoretic approaches representing and

eliciting human preferences (Keeney and Raiffa, 1976) to sequential decision problems. We

make no assumptions about prior probabilistic information about preferences; instead we adopt

a strict uncertainty model and quantify the unknown user preferences in terms of a set of

feasible reward functions.

A significant feature of our framework is the facility for incremental elicitation. At each

160

CHAPTER 8. CONCLUSIONS AND DISCUSSION 161

step of elicitation, we generate a robust policy that minimizes the worst-case loss (i.e., minimax

regret) w.r.t. to the remaining uncertainty over reward. If the bound on loss is too high, a

number of different queries may be posed to the user

By supporting decision-theoretically sound elicitation with effective computation, we demon-

strate the potential for practical elicitation of reward functions; thereby removing a significant

barrier to the specification (and use of) models for sequential decision making under uncer-

tainty.

8.1 Summary of Results

Computing Robust Policies using Minimax Regret Chapter 3 focuses on computing mini-

max regret. We describe an exact constraint generation algorithm; however, the mixed integer

programming at the heart of the approach forms a computational bottleneck, limiting its use-

fulness to small IRMDPs. Given the theoretical intractability of minimax regret for IRMDPs

(Xu and Mannor, 2009) this limitation is unsurprising.

We developed several computationally efficient approximations. Empirically, an alternat-

ing optimization approximation offers low error and can be used to inform query selection,

however, it does not yield an upper bound on minimax regret that could provide a guarantee to

the user. The reformulation-linearization (RLT) approximation offers the desired upper bound,

but empirically exhibits significantly higher error.

Next, we examined how a precomputed set Γ of nondominated policies can be used to com-

pute minimax regret. To generate the set of nondominated policies, we began by describing the

πWitness algorithm. The complexity of both nondominated policy generation and minimax

regret computation is tightly tied to the cardinality of Γ which we observe to be related to the

dimension of the reward function. Thus, IRMDPs with large state spaces and compact reward

functions can be tackled efficiently; however, as reward dimensionality grows, an exact repre-

sentation of Γ becomes less useful. We suggest an anytime variant of the πWitness algorithm

CHAPTER 8. CONCLUSIONS AND DISCUSSION 162

for approaches for generating approximate sets Γ to approximate minimax regret; however,

unlike our NRV algorithm this approach yields no bound on approximation error.

Reward Elicitation We introduced our approach reward elicitation for general IRMDPs (that

may not exhibit factored structure) and detailed two heuristic approaches to selecting simple

bound queries; the first, HLG, using information about only the feasible reward set; the second

supplementing this with information from the current minimax regret solution.

Our empirical analysis suggests that current solution heuristic is far more effective than

using only reward information; and further that using the current solution of minimax regret is

more effective than other robust criteria (such as maxamin value). Elicitation with the current

solution heuristic identified provably optimal policies (i.e., reducing regret to zero) using a

small number of queries per reward parameter.

To complement our heuristic approach to selecting bound queries, we constructed a method

for the optimal selection using more complex full policy queries. To enable the approach we

proved that we may use setwise max regret (SMR) to find myopically optimal queries. This

substitute measure is more amenable to constrained optimization and allows for more tractable

computation. We detailed an exact computational approach using mixed integer programming

and described how nondominated policies may be leveraged to reduce the computation to a

series of linear programs.

Myopically optimal selection of full policy queries further improves elicitation effective-

ness at the cost of additional computational overhead and cognitive burden; however, these

costs can be manageable—the website optimization domain described in Chapter 7 is an exam-

ple of a setting where a compact set of nondominated policies allows for tractable computation

while a small number of reward bearing states enables the cognitively reasonable assessment

full policy queries.

Leveraging Reward Structure We described how reward structure can be leveraged to im-

prove the effectiveness of elicitation. We extend our approaches to compute minimax regret

CHAPTER 8. CONCLUSIONS AND DISCUSSION 163

for IRMDPs with additive reward composed of local value function and develop decision-

theoretically sound heuristics to elicit information about these local value functions and along

with parameters specifying their global calibration.

We developed an exact approach to computing minimax regret in this setting. In the general

case, we propose an exact method that uses a series of linear and mixed integer quadratic

programs and we identify a special (though common) case in which the mixed integer program

may be linearized. We provide tools for efficient approximation of minimax regret in this

context by extending the alternating optimization and the relaxation-linearization technique

(RLT) to handle additive reward structure with local value functions.

To demonstrate the effectiveness of our approach to eliciting additive rewards, we under-

took an experimental assessment in two example domains. In each domain we observed that

leveraging reward structure led to far more effective elicitation. In comparison, variants of each

domain with unstructured reward: 1) required more queries; and 2) required more demanding

full-state queries.

Online Minimax Regret Computation We revisited the online use of nondominated poli-

cies. Shrewd management of an approximate set of nondominated policies during elicitation

can yield efficient computation of approximate minimax regret. We develop the NRV algorithm

for anytime nondominated policy generation, which yields a bound on error and operates by

generating policies to maximally reduce that error. Paired with our online management of non-

dominated policies, the NRV algorithm allows for approximate minimax regret computation

with bounded error that is reduced as elicitation proceeds.

An empirical analysis on the COACH domain demonstrated we may quickly reduce error,

probably reducing regret to zero (and identifying the optimal policy) using only only a small

fraction of all nondominated policies. The online adjustment of nondominated policies when

paired with the NRV algorithm removes a significant computational barrier to online reward

elicitation for MDPs.

CHAPTER 8. CONCLUSIONS AND DISCUSSION 164

Reward Elicitation of Website Optimization Chapter 7 applies our reward elicitation frame-

work to a website optimization problem. A reward function capturing the preferences of the

website designer must precisely specify the relative value of these goals—a cognitively de-

manding and time consuming task. We described how website optimization through version

testing may be modeled as an IRMDP.

We demonstrate the effectiveness of our approach in this domain by simulating version

testing on a set of existing websites, where the simulation is built upon a large public dataset

capturing a model of user behaviour on a static website. We show that the resulting IRMDPs

may be reduced to a fraction of their original size by eliminating redundant states; exact min-

imax regret computation and myopically optimal query selection are efficient enough on the

resulting IRMDP to enable elicitation with real-time user interaction.

We described how full policy queries in this domain may be communicated so as to re-

duce their complexity and lower the cognitive burden on users. The results of our elicitation

experiments using these queries suggests that using few queries per goal we may identify the

optimal policy determining the optimal selection of page versions, and that this optimal policy

will significantly increase the expected reward.

CHAPTER 8. CONCLUSIONS AND DISCUSSION 165

We summarize our contributions in point form below. We include citations for work that

has been previously published.

• An exact procedure for MMR computation using constraint generation and mixed integer

programming (Regan and Boutilier, 2008, 2009)

• Several approximate methods for efficiently generating lower & upper bounds on MMR

(Regan and Boutilier, 2008, 2009, 2011a)

• An exact approach to minimax regret computation leveraging nondominated policies (Re-

gan and Boutilier, 2010)

• A polynomial algorithm (πWitness) for generating nondominated policies (Regan and

Boutilier, 2010)

• The development of of volumetric and current solution heuristics for query selection

during the elicitation of IRMDPs (Regan and Boutilier, 2009)

• A Proof of equivalence between min setwise max regret (SMR) and min worst-case regret

(WR) for full policy queries

• A method for myopically optimal full-policy query selection based on SMR computation

• Exact and approximation algorithms computing minimax regret for IRMDPs with addi-

tive reward structure (Regan and Boutilier, 2010, 2011a)

• Decision-theoretically sounds heuristics for eliciting additive reward using local value

functions (Regan and Boutilier, 2011a)

• The NRV algorithm for generating nondominated policies which provides an anytime

bound on approximation error for minimax regret (Regan and Boutilier, 2011b)

• A method for adjusting the set of nondominated policies online, speeding up computation

and improving the quality of approximation (Regan and Boutilier, 2011b)

• The empirical analysis of public datasets demonstrating effective version testing opti-

mization on websites with thousands of pages.

• Examples of effective and cognitively reasonable full policy queries

CHAPTER 8. CONCLUSIONS AND DISCUSSION 166

8.2 Future Directions

Interface Design and User Studies The work described in this thesis has addressed the

computational considerations of our reward elicitation framework while leaving some psycho-

logical considerations as future work. A practical real-world system for reward elicitation must

take care to express queries in a form that is quickly understood by the user. We consider the

user interface design required for such a system to be outside the scope of this work; however,

we also consider it to be an important and vital aspect of building a system that is easy to use.

An example of how an effective user interface can be built around an elicitation system

with queries similar to those suggested in this thesis can be found in UTPref System (Braziunas

and Boutilier, 2010). The work also serves as an example of how to conduct a user study to

empirically assess the effectiveness of the proposed elicitation approach with real users.

Indifference We currently impose no boundary on the precision with which a user may be

expected to answer. Elicitation with bound queries tends to focus on a small set of high impact

reward points repeatedly querying to slice the interval of feasible reward ever smaller. It is

reasonable to assume that a user may have a limit to the precision with which they can answer

these repeated queries. This motivates allowing users to answer queries with “I dont know”.

The implications of this response varies with query type. For bound queries we can assume that

an “I dont know” response indicates that the true reward value is sufficiently close to the bound

to render a decision difficult. Such a response constrains r(s, a) to be within a small constant

δ of the bound b. For comparison queries, the response suggests that the user is approximately

indifferent between to the two options. For instance, indifference when comparing two policies,

π and π′, imposes the constraint: |V π − V π′ | ≤ δ. Incorporating indifference requires minor

changes in implementation and results in query response options which are more natural for a

user and potentially increase the effectiveness of elicitation.

CHAPTER 8. CONCLUSIONS AND DISCUSSION 167

Leveraging Nondominated Policies with Structured Reward Our work incorporating ad-

ditive reward with local value functions necessitated a quadratic reward parameterization: un-

known local value function are multiplied by unknown scaling constants. It would be useful

to extend our techniques for leveraging nondominated policies to this reward representation.

However this involves identifying policies that are nondominated w.r.t. to both scaling function

and local value function uncertainty.

The approach used by our NRV algorithm to enumerate the vertices of nondominated re-

ward regions will not easily extend to regions which are defined by quadratic rather linear con-

straints. The πWitness algorithm is similar complicated, since finding witness reward points

becomes a quadratic optimization.

Of course these issues do not impact calibrated additive reward functions for which there

is no uncertainty over scaling constants. The autonomic computing domain provides one such

example of an uncalibrated reward function. This suggests an alternative approach of perform-

ing full elicitation of all scaling constants before computing minimax regret and engaging in

incremental elicitation.

Incorporating Probabilistic Priors We have designed our elicitation framework to not re-

quire on the presence of probabilistic information about the unknown reward function. How-

ever, were such information available, it could be incorporated into our framework to guide

query selection—while we continue to use strict bounds on reward to generate policies with

guarantees on regret.

Given a distribution over potential query responses, we could apply Bayesian methods,

and select the query that minimize the expected minimax regret of the response. This is a

principled approach that is likely to effectively reduce minimax regret in practice, however,

it initially additional a priori information (i.e., the distribution over query responses) and the

inference the inference required to maintain the distribution after a query response may require

significant computational overhead (Wang and Boutilier, 2003).

CHAPTER 8. CONCLUSIONS AND DISCUSSION 168

Extending the Elicitation Framework This thesis focuses on the active elicitation of reward

asking the user to answer queries. There are other approaches to accumulating information that

result in linear constraints on the reward polytope that can be incorporated into our framework.

In particular, the tools of inverse reinforcement learning Ng and Russell (2000) may be adopted

in some settings to observe optimal behaviour being demonstrated. For instance, human care-

givers could be monitored to glean reward information in the cognitive assistance domain.

Such demonstrations induces constraints on the reward function that may serve to define the

initial reward polytope. Our reward elicitation framework to further refine our knowledge of

the reward function until a suitable level of regret is reached.

Furthermore, it may be reasonable to use inverse reinforcement learning during elicitation.

The information provided by the current solution to the minimax regret computation may sug-

gest regions of state or action space for which an expert demonstration may be beneficial. In

practice, effectively choosing between queries and demonstrations at each stage of elicitation

requires an additional user cost model to capture the impact of the additional burden imposed

by demonstrations.

Specifying Reward Structure The number of reward bearing states in real-world MDPs can

be extremely small compared to the size of the state space. While a domain expert may be

able to specify which state-action pairs should be the focus of elicitation, it can be desirable

to leave the specification of structure of the reward function up to the user during elicitation.

Recent work conducted by Boutilier, Regan and Viappiani (2009a; 2009b; 2010) has examined

a similar scenario in the single-step decision making setting. They enable the user to specify

groupings of individual features of the decision space to form composite features that are used

during elicitation. For instance, elicitation can determine that one user has specific preferences

about “safe cars” that are heavy, have high ground clearance, child restraints, side air-bags and

anti-lock brakes. Another user may consider “safe” to include a high-performance suspension

and roll-bars. In our website optimization domain, subjective features could be used to help

CHAPTER 8. CONCLUSIONS AND DISCUSSION 169

define ambiguous goals such as “user engagement” that may vary across website designers.

A significant component of this future work is the development of a variant of the optimiza-

tion performed to compute minimax regret with respect to both uncertainty over utility and

uncertainty with respect to the definition of composite features.

Appendix A

Proofs

A.1 Proof of Observation 1

Recall that from our definition of pairwise max regret (PMR):

argmax
g∈F

PMR(f ,g,R) = argmax
g∈F

max
r∈R

g·r− f ·r

Observation 1 Given an IRMDP and policy f : argmaxg∈F PMR(f ,g,R) ∈ Γ.

PROOF Assume the adversary policy g is not nondominated: g /∈ Γ. Then for all r ∈ R there

exists a g′ such that g′·r > g·r (otherwise for all g′ ∈ F , it would be the case that g·r ≥ g′ ·r,

thus g would be nondominated). Let r′ be the pairwise reward that maximizes PMR(f ,g,R).

Since g′·r′ > g·r′, the adversary policy g cannot be the pairwise regret maximizing policy and

we have a contradiction.

�

A.2 Proof of Theorem 1 (Witness Theorem)

Theorem 1 Let Γ′ (Γ be a (strictly) partial set of nondominated policies. Then there is an

f ∈ Γ′, an (s, a), and an r ∈ R such that f s:a ·r > f ′·r, ∀ f ′ ∈ Γ′.

170

APPENDIX A. PROOFS 171

PROOF We prove the result by contradiction and begin by assuming there exists no 4-tuple of

f , s, a, r such that such that f s:a ·r > f ′·r, ∀ f ′ ∈ Γ′.

1. Select f∗ ∈ Γ \ Γ′ and r ∈ R such that f∗ ·r > f ′ ·r for all f ′ ∈ Γ′. If such a pair f∗, r did

not exist then it would imply Γ′ contained the full set of nondominated policies since for

all f ′ ∈ Γ′ it would be the case there exists a reward point r such that f ′ ·r ≥ f ·r for all

f ∈ F .

2. Select the nondominated policy f ∈ Γ′ that maximizes value at r:

f = argmax
f∈Γ′

f ·r

3. By construction, the policy f is not optimal for the given reward r. We now show there is

a local adjustment of f that improves value w.r.t. to the reward r. For clarity we proceed

using the traditional definition of a policy, π : S → A (rather than a policy as occupancy

frequencies).

Let πf be the policy induced by f . Since πf is not optimal w.r.t. to reward r, there is

a state s at which we may improve the value of πf by performing a Bellman backup

(Puterman, 1994):

a = argmax
a∈A

r(s, a) + γ
∑

γP (s′|s, a)V πf
r (s′)

Let πs:af be the local adjustment that performs this improvement by taking action a for

a single step in state s and following π thereafter. We have taken care to construct this

local adjustment so as to offer improvement; thus it is the case that: βV πs:a

r > βV π
r .

4. Recall that, as defined in Section 3.7.1, the local adjustment f s:a w.r.t. a policy π is

the set of occupancy frequencies that result from taking action a for one step and and

following π thereafter. Thus f s:a is the set of occupancy frequencies induced by πs:a.

APPENDIX A. PROOFS 172

Since, βV πs:a = f s:a ·r and βV πs:a > βV π, it must be the case that f s:a ·r > f ·r and we

have constructed a tuple f , s, a, r such that,

f s:a ·r > f ·r ≥ f ′ ·r, ∀ f ′ ∈ Γ′,

providing a contradiction, proving our theorem.

�

A.3 Proof of Theorem 2

The following proofs and lemmas closely follow the work of Boutilier and Viappiani (2009).

We focus on comparison queries of the form Z = {fa, fb}; it is straightforward to extend the

proofs to the case where |Z| > 2. Recall that:

RZ→fa ≡
{
r ∈ R | fa ·r ≥ fb ·r

}

WR(Z) = max
fi∈Z

MMR(RZ→fi)

SMR(Z) = max
fi∈Z

MR(fi,RZ→fi)

Lemma 1 For any Z ∈ Z , WR(Z) ≤ SMR(Z).

PROOF It is the case that:

∀ fi ∈ Z min
f∈F

MR(f ,RZ→fi) ≤MR(fi,RZ→fi)

It follows that MMR(RZ→fi) ≤ MR(fi,RZ→fi) holds for all fi and thus it holds for the

maximum fi. Therefore WR(Z) ≤ SMR(Z).

�

APPENDIX A. PROOFS 173

We make use of a transformation on the query Z that does not increase setwise max regret.

We define following MMR-transformation T :

T (Z) = {f ′a, f ′b} such that f ′i = argmin
f∈F

MR(f ,RZ→fi) for i ∈ {a, b}

Lemma 2 For any Z ∈ Z , let Z ′ = T (Z); then SMR(Z ′) ≤WR(Z).

PROOF Let I be the set indices corresponding to the policies in the query Z. We make use of

set RZ→fi ∩RZ′→f ′j : the partition of utility space where fi is preferred from Z and where f ′j is

preferred from Z ′. We show that WR and SMR can be represented in terms ofRZ→fi∩RZ′→f ′j

as:

WR(Z) = max
i∈I,j∈I

MR(f ′i , RZ→fi ∩RZ′→f ′j) (A.1)

SMR(Z ′) = max
i∈I,j∈I

MR(f ′j, RZ→fi ∩RZ′→f ′j) (A.2)

Expression (A.1) can be verified through the following steps:

WR(Z) = max
i∈I

MMR(RZ→fi)

= max
i∈I

MR(f ′i , RZ→fi)
[
since f ′i =argmin

f∈F
MR(f ,RZ→fi)

]

= max
i∈I

max
rwr∈RZ→fi

f∗rwr ·rwr − f ′i ·rwr
[
by definition of MR

]
(A.3)

where f∗rwr = argmax
f∈F

f ·rwr

= max
i∈I,j∈I

MR(f ′i , RZ→fi ∩RZ′→f ′j)
[
since rwr∈ RZ′→f ′j for some j∈I

]
(A.4)

The regret maximizing reward rwr from (A.3) will maximize the expression (A.4) since the

expression selects the partition RZ′→f ′j to maximize regret and rwr ∈ RZ′→f ′j for some j ∈ I .

APPENDIX A. PROOFS 174

Expression (A.2) can be verified similarly:

SMR(Z ′) = max
j∈I

MR(f ′j, RZ′→f ′j)
[
by definition of SMR

]

= max
j∈I

max
rsmr∈RZ

′→f ′
j

f∗rsmr ·rsmr − f ′j ·rsmr
[
by definition of MR

]

where f∗rsmr = argmax
f∈F

f ·rsmr

= max
i∈I,j∈I

MR(f ′j, RZ′→f ′j ∩RZ→fi)
[
since rsmr∈ RZ→fi for some i∈I

]

We now compare expressions (A.1) and (A.2) in terms of the component with i and the com-

ponent with j. If i = j, then then the two MR components are the same. If i 6= j, consider

any r ∈ RZ→fi ∩ RZ′→f ′j . Since r ∈ RZ′→f ′j , it must be the case that f ′j · r ≥ f ′i · r. There-

fore MR(f ′i ,RZ→fi ∩ RZ′→f ′j) ≥ MR(f ′j,RZ→fi ∩ RZ′→f ′j), and each element of the expres-

sion for SMR (A.2) is no greater than its correspondent in the WR expression (A.1). Thus

SMR(Z ′) ≤WR(Z).

�

Theorem 2 The query Z∗ ∈ Z that minimizes setwise max regret also minimizes worst-case

regret. Formally,

if Z∗smr = argmin
Z∈Z

SMR(Z) then WR(Z∗smr) = argmin
Z∈Z

WR(Z).

PROOF We proceed by contradiction. Assume that Z∗smr does not minimize worst case re-

gret. Consequently there exists a Z ∈ Z such that WR(Z) < WR(Z∗smr). We apply our

transformation T yielding Z ′ = T (Z). Observe,

WR(Z∗smr) ≤ SMR(Z∗smr) [by Lemma 1]

SMR(Z ′) ≤WR(Z) <WR(Z∗smr) [by Lemma 2]

This implies SMR(Z ′) < SMR(Z∗smr), contradicting the optimality of Z∗smr w.r.t. SMR.

APPENDIX A. PROOFS 175

�

A.4 Proof of Theorem 3

In Section 7.4 we defined a state y to be redundant iff for all states s (and with default action

a0): r(s, a0) = 0 and β(y) = 0 and A(y) = {a0}. We defined a transition function P-y that

accounted for the removal of a redundant state y:

P-y(s
′|s, a) = P (s′|s, a) + P (y|s, a)γP (s′|y)

1

1− γP (y|y)
(A.5)

Note that we use the more concise notation P (s|y) to express the probability of transitioning

from a redundant state y, given the implied default action a0 to subsequent state s.

Given an underlying MDP and a redundant state y, let MDP-y = 〈S-y, A, P-y, γ, r〉 be our

reduced MDP with S-y = S\{y} and P-y defined as in Equation (7.2). Given a policy π w.r.t. to

the original MDP, let π-y define the policy that omits mention of the redundant states eliminated

from our reduced MDP. Formally: π-y = {π-y=π(s) | ∀s ∈ S \ {y}}

Theorem 3 Let V π-y be the expected value of policy π-y w.r.t. to the reduced MDP-y and

let V π be the expected value of policy π w.r.t. to the original MDP. Then V π-y(s) = V π(s)

∀s ∈ S \ {y}.

PROOF To prove the result we expand the recursive definition of expected value, at each step

isolating any reference to the redundant state y. We adopt Pπ(s′|s)=P (s′|s, π(s)) for concision

and begin with the definition of expected value for policy π for state s0 ∈ S \ {y}:

V π(s0) = r(s0, π(s0)) + γ
∑

s1∈S
Pπ(s1|s0)V π(s1)

Next we isolate the redundant state y from the sum over future states. Given start state s0

APPENDIX A. PROOFS 176

the expected value of policy π is as follows:

V π(s0) = r(s0, π(s0)) + γ
∑

s1∈S
Pπ(s1|s0)V π(s1)

= r(s0, π(s0)) + γ
∑

s1∈S\y
Pπ(s1|s0)V π(s1) + γPπ(y|s0)V π(y)

= r(s0, π(s0)) + γ
∑

s1∈S\y
Pπ(s1|s0)V π(s1)

+ γPπ(y|s0)
[
r(y, π(y)) + γ

∑

s2∈S
Pπ(s2|y)V π(s2)

]

= r(s0, π(s0)) + γ
∑

s1∈S\y
Pπ(s1|s0)V π(s′)

+ γPπ(y|s0)
[
γ
∑

s2∈S
Pπ(s2|y)V π(s2)

]

︸ ︷︷ ︸
∗

[since r(y, π(y)) = 0]

We have removed the redundant state from the original sum over future states at the next

step t, however, the value of transitioning to the redundant state (denoted (*)) involves another

sum over all future states.

APPENDIX A. PROOFS 177

We continue to isolate reference to the redundant state by performing another expansion.

V π(s0) = r(s0, π(s0)) + γ
∑

s1∈S\y
Pπ(s1|s0)V π(s1)

+ γPπ(y|s0)
[
γ
∑

s2∈S
Pπ(s2|y)V π(s2)

]

= r(s0, π(s0)) + γ
∑

s1∈S\y
Pπ(s1|s0)V π(s1)

+ γPπ(y|s0)

[
γ
∑

s2∈S\y
Pπ(s2|y)V π(s2) + γPπ(y|y)

[
γ
∑

s3∈S
Pπ(s3|y)V π(s3)

]]

(below we expand and collect terms)

= r(s0, π(s0)) + γ
∑

s′1∈S\y
Pπ(s′1|s0)V π(s1)

+ γPπ(y|s0)γ
∑

s2∈S\y
Pπ(s2|y)V π(s2)

+ γPπ(y|s2)γPπ(y|y)γ
∑

s3∈S
Pπ(s3|y)V π(s3)

= r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

]
V π(s1)

+ γPπ(y|s0)γPπ(y|y)γ
∑

s2∈S
Pπ(s2|y)V π(s2)

APPENDIX A. PROOFS 178

We repeat the procedure

V π(s0) = r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

]
V π(s1)

+ γPπ(y|s0)γPπ(y|y)γ

[∑

s2∈S\y
Pπ(s2|y)V π(s2) + Pπ(y|y)

[
γ
∑

s3∈S
Pπ(s3|y)V π(s3)

]]

(we again expand and collect terms)

= r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

]
V π(s1)

+ γPπ(y|s0)γPπ(y|y)γ
∑

s2∈S\y
Pπ(s2|y)V π(s2)

+ γPπ(y|s0)γPπ(y|y)γPπ(y|y)γ
∑

s3∈S
Pπ(s3|y)V π(s3)

= r(s0, π(s0))

+ γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y) + Pπ(y|s0)γPπ(y|y)γPπ(s1|y)

]
V π(s1)

+ γPπ(y|s0)γPπ(y|y)γPπ(y|y)γ
∑

s2∈S
Pπ(s2|y)V π(s2)

= r(s0, π(s0))

+ γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

2∑

t=0

γtPπ(y|y)t

]
V π(s1)

+ γPπ(y|s0)γPπ(y|y)γPπ(y|y)γ
∑

s2∈S
Pπ(s2|y)V π(s2)

Repeating the procedure once more produces the following:

V π(s0) = r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

3∑

t=0

γtPπ(y|y)t

]
V π(s1)

+ γPπ(y|s0)γPπ(y|y)γPπ(y|y)γPπ(y|y)γ
∑

s2∈S
Pπ(s2|y)V π(s2)

We hypothesize the kth expansion as follows:

V π(s0) = r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

k∑

t=0

γtPπ(y|y)t

]
V π(s1)

+ γPπ(y|s0)
[
γPπ(y|y)

]k
γ
∑

s2∈S
Pπ(s2|y)V π(s2),

APPENDIX A. PROOFS 179

We take an inductive step constructing the (k + 1)th expansion in terms of the kth expansion:

V π(s0) = r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

k∑

t=0

γtPπ(y|y)t

]
V π(s1)

+ γPπ(y|s0)
[
γPπ(y|y)

]k
γ
∑

s2∈S
Pπ(s2|y)V π(s2),

= r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

k∑

t=0

γtPπ(y|y)t

]
V π(s1)

+ γPπ(y|s0)
[
γPπ(y|y)

]k
γ

[∑

s2∈S\y
Pπ(s2|y)V π(s2) + Pπ(y|y)

[
γ
∑

s3∈S
Pπ(s3|y)V π(s3)

]]

(we expand and collect terms)

= r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

k∑

t=0

γtPπ(y|y)t

]
V π(s1)

+ γ
∑

s2∈S\y
Pπ(y|s0)γPπ(s2|y)

[
γPπ(y|y)

]k
V π(s2)

+ Pπ(y|s0)
[
γPπ(y|y)

]k+1

γ
∑

s3∈S
Pπ(s3|y)V π(s3)

= r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

k+1∑

t=0

γtPπ(y|y)t

]
V π(s1)

+ γPπ(y|s0)
[
γPπ(y|y)

]k+1

γ
∑

s2∈S
Pπ(s2|y)V π(s2),

Given the base cases k = 2, k = 3 above, and our inductive step, we have shown that our

expression for the kth expansion holds. Finally we take the limit k →∞:

V π(s0) = r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

∞∑

t=0

γtPπ(y|y)t

]
V π(s1)

+ γPπ(y|s0)��
���

��:0[
γPπ(y|y)

]∞
γ
∑

s2∈S
Pπ(s2|y)V π(s2)

= r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

∞∑

t=0

γtPπ(y|y)t

]
V π(s1)

= r(s0, π(s0)) + γ
∑

s1∈S\y

[
Pπ(s1|s0) + Pπ(y|s0)γPπ(s1|y)

1

1− γPπ(y|y)

]
V π(s1)

= r(s, π(s)) + γ
∑

s′∈S′

P ′
π(s′|s)V π(s′)

= V π-y (s0)

APPENDIX A. PROOFS 180

Thus we have shown that we can safely reduce an MDP removing a redundant state without

altering the value function. �

Appendix B

Random MDP Generation Details

Algorithm 8 gives the details for randomly generating the MDP instances used for empiri-

cal analysis. For each state-action-pair, dlog |S|e reachable states are drawn uniformly and a

Gaussian is used to generate transition probabilities. The true reward is drawn uniformly from

a fixed interval and uncertainty w.r.t. the true reward is created by constraining the reward for

each (s, a)-pair independently with bounds drawn randomly. The set of feasible rewards forms

a hyper-rectangle.

181

APPENDIX B. RANDOM MDP GENERATION DETAILS 182

Algorithm 8: Random Generation of Semi-Sparse Flat-State-Space MDP

Input:
S ← State space
A← Action space
γ ← Discount factor
// Specify Transitions
foreach s ∈ S, a ∈ A do

S ′ ← Draw d log |S| e from S without replacement
foreach s′ ∈ S ′ do

P (s′|s, a)← max(0,min(1, N(1/3, 1/5)))
end
// Normalize
foreach s′ ∈ S ′ do

P (s′|s, a)← P (s′|s, a)/
∑

s′∈S′ P (s′|s, a)
end

end
// Specify Rewards
foreach s ∈ S, a ∈ A do

r(s, a)← Uniform(0,1)
1 interval size← N(1/2, 1/5)
2 interval above← U(0, interval size)
3 r>(s, a)← min(1, r(s, a) + interval above)
4 r⊥(s, a)← max(0, r>(s, a)− interval size)

end
R ← { r | r⊥ ≤ r ≤ r> }
Return: 〈S,A, P,R, γ, β〉

Appendix C

RLT Formulations

In this section we describe our application of the reformulation-linearization technique (RLT)

(Sherali and Alameddine, 1992) to approximate the max regret computation for IRMDPs with

flat (unstructured) reward functions. We then describe how the approach may be extended to

compute max regret for IRMDPs with structured reward.

C.1 Max regret for flat IRMDPs

Given a policy f , we wish to linearize the following bilinear program for computing max regret

using RLT:

maximize
g,r

g·r− f ·r (C.1)

subject to: γE>g + β = 0, g ≥ 0

Cr ≤ d

Reformulation The first phase of the RLT technique constructs valid quadratic constraints

by using pairwise products of inequality constraints or products of equality constraints with

variables. We begin by re-expressing the linear program (C.1) so as to explicitly enumerate all

183

APPENDIX C. RLT FORMULATIONS 184

constraints:

maximize
r,g

g·r− fr (C.2a)

subject to:
∑

s0

g(s0)− γP (s0|·)g = β(s0) ∀ s0 ∈ S (C.2b)

ci ·r ≤ di ∀ i ∈ rows of C (C.2c)

g(s, a) ≥ 0 ∀ s ∈ S, a ∈ A (C.2d)

P (s0|·) is an |S||A| length vector with an entries sa mapping to P (s0|s, a); we understand ci

to be row i of coefficient matrix C and di to be entry i of the coefficient vector d. Let Ω denote

the set of constraints (C.2b)–(C.2d). We re-express constraints (C.2c) and (C.2d) as follows:

g(s, a) ≥ 0 ∀ s ∈ S, a ∈ A (C.3)

di − ci ·r ≥ 0 ∀ i ∈ rows of C

The constraints in (C.3) are multiplied:

g(s, a)
[
di − ci ·r

]
≥ 0 ∀ s ∈ S, a ∈ A, i ∈ rows of C (C.4a)

Next the equality constraints are multiplied with each variable f(s, a) and r(s, a).

g(s′, a′)

[∑

s0

g(s0)− γP (s0|·)g = β(s0)

]
= 0 ∀ s′ ∈ S, a′ ∈ A, s0 ∈ S (C.4b)

r(s′, a′)

[∑

s0

g(s0)− γP (s0|·)g = β(s0)

]
= 0 ∀ s′ ∈ S, a′ ∈ A, s0 ∈ S (C.4c)

APPENDIX C. RLT FORMULATIONS 185

Linearization Next a variable substitution strategy is applied that transforms the generated

set of nonlinear constraints (C.4) into a set of linear constraints. We substitute:

Xsa
s′a′ = r(s, a)g(s′, a′) ∀ s ∈ S, a ∈ A, s′ ∈ S, a′ ∈ A (C.5a)

Y sa
s′a′ = r(s, a)r(s′, a′) ∀ s ∈ S, a ∈ A, s′ ∈ S, a′ ∈ A (C.5b)

Zsa
s′a′ = g(s, a)g(s′, a′) ∀ s ∈ S, a ∈ A, s′ ∈ S, a′ ∈ A (C.5c)

This linearizes the reformulated problem into the form:

maximize
r,g,X,Y,Z

∑

s,a

Xsa
sa − g(s, a)r(s, a) (C.6)

subject to: (r,g, X, Y, Z) ∈ Ω ∩ ΩL

Where Ω is our original set of constraints and ΩL is the linearized set of constraints (C.4) under

the transformation (C.5). The resulting LP (C.6) is a relaxation of (C.1) in the following sense:

given a feasible solution (ḡ, r̄) to the latter problem, there exists X̄, Ȳ, Z̄ constructed via the

substitution (C.5), such that (ḡ, r̄, X̄, Ȳ, Z̄) is a feasible solution to the former problem with

the same objective. The converse is not necessarily true, thus (C.6) yields an upper bound on

(C.1).

APPENDIX C. RLT FORMULATIONS 186

C.2 Max regret for IRMDPs with structured reward

We wish to linearize the following cubic program using the reformulation-linearization tech-

nique (Sherali and Alameddine, 1992):

maximize
g,λ,υ

g·λυ − f ·λυ (C.7)

subject to: γE>g + β = 0, g ≥ 0

Cλλ ≤ dλ

Cυυ ≤ dυ

Applying the RLT procedure to a program with a cubic objective (and linear constraints)

involves a straightforward extension of the procedure described above in Section C.1. The

reformulation step is carried out by taking three-way products of the original linear constraints

to form cubic constraints. The linearization step performs variable substitution, creating a new

variable for each quadratic and cubic term. The resulting linear program serves as a relaxation

that bounds the original objective from above. Further details of each step can be found in

Section C.1.

Appendix D

Simulating Website Version Testing

D.1 Constructing a Model of User Behaviour for the Static

Website

HTTP requests do not contain enough information about the origin of the request to differenti-

ate between a user typing the URL directly into the browser, and a user clicking on a link in a

webpage. However, using the request timestamp we can identify cases where a request likely

originated from a user receiving a page from the website and then clicking a link to another

page from the website. 1 For example let s1, s2, . . . , sk be such a sequence of requests. It is

reasonable to assume that si+1 was initiated by clicking on a link in the response to request si.

We can then define Pstatic as follows:

Pstatic(s
′|s) =

count(s→s′)∑
s′′ count(s→s′′)

Where count(si→ sj) is the total instances in which a user requested sj by clicking on a link in

the response to request si and count(si→ s∅) indicates that no further request was by the user

1There are some subtleties to identifying followed hyperlinks (vs. direct requests for a URL), however, given
the popularity of the dataset there is established prior work on resolving such ambiguities (Kallepalli and Tian,
2001; Xu, Zhang, and Chen, 2010).

187

APPENDIX D. SIMULATING WEBSITE VERSION TESTING 188

during the session. In this static website model the request directly corresponds to the page that

is served in response. Thus we can describe Pstatic as the probability that a user will navigate

to page s′ given that they are on page s.

D.2 Simulating Version Testing

Let Pvisit be a distribution over the webpages where the probability Pvisit(s) is proportional to

the number of times a page s has been accessed:

Pvisit(s) =

∑
s′∈S count(s′→s)∑

s′∈S
∑

s′′∈S count(s′→s′′)

The set Svt of pages to be version tested is constructed by sampling without replacement

from the distribution Pvisit. Given Svt we wish to simulate the results of testing on each version

a of page s ∈ Svt; by varying the contents of the page, a version will alter user behaviour,

impacting the distribution P (s′|s, a) over next page page s′ to be visited.

To model the impact of each version on user behaviour, we make some assumptions about

how (and why) a version is constructed. Intuitively the purpose of a particular version is to

boost traffic to some goal page—at the necessary expense of traffic to other pages. Algorithm

9 fleshes out this intuition and details how we randomly select a goal page for each version and

simulate the impact on user behaviour.

APPENDIX D. SIMULATING WEBSITE VERSION TESTING 189

Algorithm 9: SimulateVersionTest

Input:
Sg The set of goal pages
Svt The set of pages to version test
|A| − 1 The number of versions per page
P (· | · , astatic) The transitions for the underlying (static) webgraph
θimp The mean increase in probability that a version yields toward a goal
.

foreach page s ∈ Svt do
foreach version a ∈ A− astatic do

sg ← uniformly sample goal page from Sg (without replacement for page s)
δ ← Normal(θimp,

θimp
2

) sample the improvement that version yields
(average version improves traffic by θimp).

Pr(sg | s, a)← Pr(sg | s, astatic) + δ
Let s1, . . . , s` be the pages linked to by s (excluding sg)
δ1, . . . , δ` ← randomly partition δ probability mass such that δ = δ1 + · · ·+ δ`
for i = 1, . . . , ` do

P (si | s, a)← Pr(si | s, astatic)− δi
end

end
end
Return: P

Appendix E

MDP Specifications

E.1 Assistive Technology

Section 5.5.1 discusses a simplified model of the COACH system (Boger et al., 2005), whose

general goal is to guide a patient with dementia through a task with ` steps, such as hand-

washing, using verbal or visual cues, while minimizing intrusion. Prompts can be issued at

increasing levels of intrusiveness until (at the highest level k) a caregiver is called to assist the

person in task completion. The assessment conducted in Section 5.5.1 uses the settings `= 10

and k=4. This results in action space with prompt levels A={0, 1, 2, 3}. The state is defined

by three variables S = 〈T,D, F 〉; T ≡ {0, 1, . . . , 9} is the number of tasks steps successfully

completed by the person, D ≡ {0, 1, 2, 3, 4, 5+} is the delay (time taken during the current

step), and F ≡ {0, 1, 2, 3} tracks whether a prompt at a specific level was attempted on the

current task step, but failed to immediately get the person to the next step. We use an infinite

horizon Markov decision process with a discount of γ=0.95 and a deterministic starting state

of s0 =〈t=0, d=0, f=0〉.

The dynamics of our model express the following intuitions. Each action will cause a

progress transition to the next step (setting delay and failed-prompt to zero), or a stall transition

(same step with delay increased by one). The probability of reaching the next step with action

190

APPENDIX E. MDP SPECIFICATIONS 191

a=n is higher than a=n−1 since more intrusive prompts have a better chance of facilitating

progress; however, progress probability decreases as delay increases. Reaching the next step

after prompting is less likely if a prompt has already failed at the current step. We define an

initial probability θ = 0.8 of progress on each step. On step t, given a delay of d, a failure

setting of f , and a prompt level of a ∈ {0, k − 1}, we define the probability of progress to the

next step as:

P (t′= t+ 1, d′ = 0, f ′=0 | t, d, f, a) = θ ×
[
intial progress probability

]

(
(a < f) ? (0.75) : 1

)
×

[
impact of failed prompt

]

(0.9)d +
[
impact of delay

]

a
1− θ
k

[
impact of prompt

]

Where the ternary operator a ? b : c selects b when a is true and c otherwise. Alternately, the

probability of a stall is defined as:

P (t′= t, d′ = 1, f ′=a | t, d, f, a) = 1− P (t′= t+ 1, d′ = 0, f ′=0| t, d, f, a)

For state 〈t, d, f〉 and action a, either a progress or stall transition occurs; the probability

of any other transition given state 〈t, d, f〉 and action a is zero. A discount of γ = 0.95 is

used. A special progress transition is defined for states where step t = ` that transitions to a

special absorbing end state s⊗ (where self transition has probability one) that has zero reward—

effectively ending the task. The action a = k represents calling a care-giver to intervene in the

task; the selection of this action in any state will transition the system to the end state s⊗.

APPENDIX E. MDP SPECIFICATIONS 192

d υd(d)
0 0.00
1 -0.15
2 -0.30
3 -0.45
4 -0.60
5+ -0.75

Table E.1: Local Delay Penalty υd(d)

a υp(a)
0 0.00
1 -0.05
2 -0.10
3 -0.75

Table E.2: Local Prompt Penalty υp(a)

The additive reward function is defined as follows:

r(t, d, f, a) = rg(t) + rd(d) + rp(a),

where: rg(t) is a positive “task completion” reward (with a value of 1.0 if t = ` task, zero

otherwise); rd(d) is a negative “delay” penalty; and rp(a) is a negative “prompting” penalty

associated with prompting the person. Typically, rp(a = k) is a very large negative cost for

calling the caregiver (relative to other costs); and the sub-reward functions rd(d) and rp(a) are

both assumed to be monotonic (in delay and prompting level, respectively). Each sub-reward

function is the product of a scaling constant and local utility function: ri = λiυi. Attribute F

does not occur in the reward function, so requires no elicitation. The tables E.1 and E.2 specify

the local delay penalty function and local prompt penalty function. The respective calibration

constants are λd=0.2 and λp=1.0.

To simulate an IRMDP, the uncertain reward functionR is created by generating upper and

lower bounds for each reward parameter independently. These bounds are generated using the

labelled steps 1–4 from Algorithm 8 for randomly generating IRMDPs. These steps essentially:

1) generate of an uncertain interval whose size is normally distributed and 2) uniformly place

the interval around the true reward point .

APPENDIX E. MDP SPECIFICATIONS 193

P (d′1|d1) High Med Low
High 0.70 0.25 0.05
Med 0.45 0.10 0.45
Low 0.05 0.25 0.70

Table E.3: Markov Chain for Server 1

P (d′2|d2) High Med Low
High 0.70 0.25 0.05
Med 0.60 0.10 0.30
Low 0.05 0.45 0.50

Table E.4: Markov Chain for Server 2

E.2 Autonomic Computing

Section 5.5.2 discusses a simplified autonomic computing task (Kephart and Chess, 2003) that

involves allocating computing or storage resources to servers as computing demands from

clients change over time.

The assessment conducted in Section 5.5.2 uses two application server elements e1, e2, and

three units of resource which may be assigned to the server elements (plus a “zero resource”).

An allocation is specified by n = 〈n1, n2〉 where ni ∈ {0, 1, 2, 3} and n1 + n2 ≤ 3. Finally

there are three demand levels at which each server element can operate. A full specification of

demand levels is denoted d=〈d1, d2〉 where di ∈ {1, 2, 3}.

A state is given by the current allocation of resources and current demand levels for each

server: x= 〈n1, n2, d1, d2〉. Actions are allocations m= 〈m1,m2〉 of up to 3 units of resource

to the 2 application servers, such that mi ∈ {0, 1, 2, 3} and m1 + m2 ≤ 3. Uncertainty in

demand is exogenous and the action in the current state uniquely determines the allocation in

the next state. Thus the transition function is composed of i Markov chains Pr(d′i | di), one for

the demand at each server element: P (n′1, n
′
2, d
′
1, d
′
2) = P (d′1|d1)P (d′2|d2).

The tables E.3 and E.4 specify the Markov chain for each application server element. Entry

(i, j) in the table represents P (j|i). We refer to demand level 1 as low, level 2 as med and level

3 as high. The Markov chain for application server element 2 expresses increased likelihood

to move to high demand from the medium demand state (and to medium demand from the low

demand state); these differences are highlighted in tables in bold.

The reward r(n,d,m) = u(n,d)−c(n,d,m) is composed of a positive utility u(n,d) and

the negative cost c(n,d,m). The cost c(n,d,m) is the sum of the costs of taking away one unit

APPENDIX E. MDP SPECIFICATIONS 194

υ1(n1, d1) High Med Low
0 0.00 0.00 0.00
1 1.00 0.50 0.25
2 1.50 1.00 0.50
3 1.75 1.50 1.00

Table E.5: Local Utility for Server 1

υ2(n2, d2) High Med Low
0 0.00 0.00 0.00
1 1.25 0.63 0.31
2 1.88 1.25 0.63
3 2.19 1.88 1.25

Table E.6: Local Utility for Server 2

of resource from each server element at each time step: c(n,d,m) =
∑

i max(0, ni − mi).

We assume that the cost term is known. The utility term u(n,d) can be factored into local

utility functions υi(ni, di) for each server i. In this setting, utility functions are defined with

respect to a common unit (potential revenue), so there is no need for calibration: λ=1. Thus,

u(n,d) = υ1(n1, d1) + υ2(n2, d2).

The tables E.5 and E.6 specify the local utility function for each application server ele-

ment. The general trends to observe are that: 1) there is more local utility realized when higher

demand is met with a high allocation of resource, and 2) application server element 2 pro-

duces slightly more local utility than application server element 1 given the same demand and

allocation profile.

To simulate an IRMDP we generate the uncertain reward functionR as follows. The inter-

val establishing the upper and lower bounds on each uncertain reward parameter is generated

by applying steps 1–4 from Algorithm 8 for randomly generating IRMDPs. These steps essen-

tially: 1) generate of an uncertain interval whose size is normally distributed and 2) uniformly

place the interval around the true reward point .

Bibliography

David Andre and Stuart Russell. Programmable reinforcement learning agents. In Proceedings

of the Fifteenth Annual Conference on Neural Information Processing Systems (NIPS-01),

pages 1019—1025, 2001. 31

ACM SIGCOMM. Internet Traffic Archive. http://ita.ee.lbl.gov/index.html.

148

David Avis. lrs: A revised implementation of the reverse search vertex enumeration algorithm.

In Polytopes–Combinatorics and Computation, pages 177–198. Birkhauser-Verlag, 2000.

127

Andrew Bagnell, Andrew Ng, and Jeff Schneider. Solving uncertain Markov decision prob-

lems. Technical Report CMU-RI-TR-01-25, Carnegie Mellon University, Pittsburgh, 2003.

35, 83

Ralphen Becker, Shlomo Zilberstein, Victor R. Lesser, and Claudia V. Goldman. Solving

transition independent decentralized Markov decision processes. Journal of Artificial Intel-

ligence Research, 22:423–455, 2004. 139

Richard E. Bellman. Dynamic Programming. Princeton University Press, Princeton, 1957. 26

J. F. Benders. Partitioning procedures for solving mixed-variables programming problems.

Numerische Mathematik, 4:238–252, 1962. 48, 84

195

http://ita.ee.lbl.gov/index.html

BIBLIOGRAPHY 196

Jennifer Boger, Pascal Poupart, Jesse Hoey, Craig Boutilier, Geoff Fernie, and Alex Mihailidis.

A decision-theoretic approach to task assistance for persons with dementia. In Proceedings

of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05), pages

1293–1299, Edinburgh, 2005. 41, 113, 115, 190

Jennifer Boger, Pascal Poupart, Jesse Hoey, Craig Boutilier, Geoff Fernie, and Alex Mihai-

lidis. A planning system based on Markov decision processes to guide people with de-

mentia through activities of daily living. IEEE Transactions on Information Technology in

Biomedicine, 10(2):323–333, 2006. 41, 129

Craig Boutilier. A POMDP formulation of preference elicitation problems. In Proceedings

of the Eighteenth National Conference on Artificial Intelligence (AAAI-02), pages 239–246,

Edmonton, 2002. 19, 22

Craig Boutilier and Richard Dearden. Using abstractions for decision-theoretic planning with

time constraints. In Proceedings of the Twelfth National Conference on Artificial Intelligence

(AAAI-94), pages 1016–1022, Seattle, 1994. 31

Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Exploiting structure in policy con-

struction. In Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence (IJCAI-95), pages 1104–1111, Montreal, 1995. 31

Craig Boutilier, Ronen I. Brafman, and Christopher Geib. Prioritized goal decomposition of

Markov decision processes: Toward a synthesis of classical and decision theoretic plan-

ning. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence

(IJCAI-97), pages 1156–1162, Nagoya, 1997. 31

Craig Boutilier, Thomas Dean, and Steve Hanks. Decision theoretic planning: Structural as-

sumptions and computational leverage. Journal of Artificial Intelligence Research, 11:1–94,

1999. 30, 31, 67, 98, 99

BIBLIOGRAPHY 197

Craig Boutilier, Rajarshi Das, Jeffrey O. Kephart, Gerald Tesauro, and William E. Walsh. Co-

operative negotiation in autonomic systems using incremental utility elicitation. In Proceed-

ings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI-03), pages

89–97, Acapulco, 2003a. 2, 41

Craig Boutilier, Richard S. Zemel, and Benjamin Marlin. Active collaborative filtering. In

Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI-

03), pages 98–106, Acapulco, 2003b. 23

Craig Boutilier, Ronen Brafman, Carmel Domshlak, Holger Hoos, and David Poole. Cp-

networks: A tool for representing and reasoning with conditional Ceteris Paribus preference

statements. Journal of Artificial Intelligence Research, 21:135–191, 2004a. 14

Craig Boutilier, Tuomas Sandholm, and Rob Shields. Eliciting bid taker non-price preferences

in (combinatorial) auctions. In Proceedings of the Nineteenth National Conference on Arti-

ficial Intelligence (AAAI-04), pages 204–211, San Jose, CA, 2004b. 47

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans. Regret-based utility

elicitation in constraint-based decision problems. In Proceedings of the Nineteenth Inter-

national Joint Conference on Artificial Intelligence (IJCAI-05), pages 929–934, Edinburgh,

2005. 21, 94, 118

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans. Constraint-based opti-

mization and utility elicitation using the minimax decision criterion. Artifical Intelligence,

170(8–9):686–713, 2006. 2, 4, 5, 47, 81, 82, 94, 100, 107

Craig Boutilier, Kevin Regan, and Paolo Viappiani. Online feature elicitation in interactive op-

timization. In Proceedings of the Twenty-sixth International Conference on Machine Learn-

ing (ICML-09), pages 73–80, Montreal, 2009a. 168

Craig Boutilier, Kevin Regan, and Paolo Viappiani. Preference elicitation with subjective fea-

BIBLIOGRAPHY 198

tures. In Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys09),

pages 341–344, New York, 2009b. 168

Craig Boutilier, Kevin Regan, and Paolo Viappiani. Simultaneous elicitation of preference

features and utility. In Proceedings of the Twenty-fourth AAAI Conference on Artificial

Intelligence (AAAI-10), pages 1160–1167, Atlanta, 2010. 94, 168

Ronen Brafman and Moshe Tennenholtz. R-max- a general polynomial time algorithm for

near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231,

2003. 33

Darius Braziunas and Craig Boutilier. Minimax regret-based elicitation of generalized addi-

tive utilities. In Proceedings of the Twenty-third Conference on Uncertainty in Artificial

Intelligence (UAI-07), pages 25–32, Vancouver, 2007. 100, 118, 120

Darius Braziunas and Craig Boutilier. Elicitation of factored utilities. AI Magazine, 29(4):

79–92, 2008. 118

Darius Braziunas and Craig Boutilier. Assessing regret-based preference elicitation with the

UTPREF recommendation system. In Proceedings of the Eleventh ACM Conference on

Electronic Commerce (EC’10), pages 219–228, Cambridge, MA, 2010. 94, 118, 166

Donald E. Brown and Chelsea C. White. An expert system approach to boiler design. IEEE

Transactions on Systems, Man and Cybernetics,, 17(2):293–297, 1987. 22

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting optimally in

partially observable stochastic domains. In Proceedings of the Twelfth National Conference

on Artificial Intelligence (AAAI-94), pages 1023–1028, Seattle, 1994. 38

Urszula Chajewska. Acting Rationally with Incomplete Utility Information. PhD thesis, Stan-

ford University, Stanford, 2002. 19

BIBLIOGRAPHY 199

Urszula Chajewska and Daphne Koller. Utilities as random variables: Density estimation and

structure discovery. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial

Intelligence (UAI-00), pages 63–71, Stanford, 2000. 19, 21

Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational decisions using adap-

tive utility elicitation. In Proceedings of the Seventeenth National Conference on Artificial

Intelligence (AAAI-00), pages 363–369, Austin, TX, 2000. 2

Hsien-Te Cheng. Algorithms for Partially Observable Markov Decision Processes. PhD thesis,

University of British Columbia, Vancouver, 1988. 59, 71, 125, 127, 139

Vas̆ek Chvátal. Linear Programming. W. H. Freeman and Company, New York, 1983. 127

Adam Coates, Pieter Abbeel, and Andrew Ng. Learning for control from multiple demonstra-

tions. 2008. 40, 94

Thomas Dean and Robert Givan. Model minimization in Markov decision processes. In Pro-

ceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), pages

106–111, Providence, 1997. 31

Erick Delage and Shie Mannor. Percentile optimization in uncertain Markov decision processes

with application to efficient exploration. In Proceedings of the Twenty-fourth International

Conference on Machine Learning (ICML-07), pages 225–232, Corvallis, OR, 2007. 19, 37,

73, 81

Mukund Deshpande and George Karypis. Selective Markov models for predicting web page

accesses. ACM Transactions on Internet Technology (TOIT), 4(2):163–184, 2004. 157

Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value function de-

composition. Journal of Artificial Intelligence Research, 13:227–303, 2000. 31

Chelsea C. White Edward A. Sykes. Specifications of a knowledge system for packet-switched

BIBLIOGRAPHY 200

data network topological design. In Proceedings of Expert Systems Government Symposium,

pages 102–110, 1985. 22

Boi Faltings, Pu Pearl, and Marc Torrens. Designing example-critiquing interaction. In Pro-

ceedings of the Nineth International Conference on Intelligent User Interfaces, pages 22–29,

2004. 24

Peter C. Fishburn. Interdependence and additivity in multivariate, unidimensional expected

utility theory. International Economic Review, 8:335–342, 1967. 99, 100, 120

Peter C. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970. 11, 13, 14, 15

Marshall L. Fisher. Interactive optimization. Annals of Operations Research, 5(1):541–556,

1986. 77

Simon French. Decision Theory. Halsted Press, New York, 1986. 11, 13, 15, 16, 81

Christophe Gonzales and Patrice Perny. GAI networks for utility elicitation. In Proceedings

of the Ninth International Conference on Principles of Knowledge Representation and Rea-

soning (KR2004), pages 224–234, Whistler, BC, 2004. 118

Paul E. Green and Vithala R. Rao. Conjoint measurement for quantifying judgmental data.

Journal of Marketing Research, 8(3):355–363, 1971. 22

Paul E. Green and V. Srinivasan. Conjoint analysis in consumer research: Issues and outlook.

Journal of Consumer Research, 5(2):103–123, 1978. 23

Paul E. Green and V. Srinivasan. Conjoint analysis in marketing: New developments with

implications for research and practice. Journal of Marketing, 54(4):3–19, 1990. 23

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution

algorithms for factored Mdps. In Journal of Artificial Intelligence Research, volume 19,

pages 399–468, 2003a. 76, 120

BIBLIOGRAPHY 201

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution

algorithms for factored MDPs. Journal of Artificial Intelligence Research, 19(10):399 –

468, 2003b. 32

Vijaykumar Gullapalli and Andrew Barto. Convergence of indirect adaptive asynchronous

value iteration algorithms. In Proceedings of the Eighth Annual Conference on Neural In-

formation Processing Systems (NIPS-94), page 695, 1994. 27

Ian Hacking. Jacques bernoulli’s art of conjecturing. The British Journal for the Philosophy of

Science, 22(3):209–229, 1971. 18

Ahmed Hassan, Rosie Jones, and Kristina Lisa Klinkner. Beyond DCG: User behavior as a

predictor of a successful search. In Proceedings of the third ACM international conference

on Web search and data mining, pages 221–230. ACM, 2010. 157

Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas Dean, and Craig

Boutilier. Hierarchical solution of Markov decision processes using macro-actions. In Pro-

ceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-98),

pages 220–229, Madison, WI, 1998. 152

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic planning using

decision diagrams. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial

Intelligence (UAI-99), pages 279–288, Stockholm, 1999. 30, 31

Vera Hollink, Maarten van Someren, and Bob J. Wielinga. Navigation behavior models for

link structure optimization. User Modeling and user-adapted Interaction, 17(4):339–377,

2007. 149, 158

Hillary A. Holloway and Chelsea C. White, III. Question selection for multiattribute decision-

aiding. European Journal of Operational Research, 148:525–543, 2003. 22

Laura M. Holson. Putting a bolder face on Google. New York Times, February 28 2009. 141

BIBLIOGRAPHY 202

Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge,

1960. 24, 25, 27

Garud N. Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30

(2):1–21, 2005. 34, 83

Vijay S. Iyengar, Jon Lee, and Murray Campbell. Q-Eval: Evaluating multiple attribute items

using queries. In Proceedings of the Third ACM Conference on Electronic Commerce, pages

144–153, Tampa, FL, 2001. 20

Phillipe Jorion. Value at Risk: The New Benchmark for Controlling Market Risk. Irwin

Chicago, 1997. 19

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in

partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998. 32,

59, 64, 65, 139

Chaitanya Kallepalli and Jeff Tian. Measuring and modeling usage and reliability for statistical

web testing. IEEE Transactions on Software Engineering, 27(11):1023–1036, 2001. 187

Henry Kautz, Bart Selman, and Mehul Shah. Referral web: Combining social networks and

collaborative filtering. Communications of the ACM, 40(3):63–65, 1997. 23

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.

Machine Learning, 49(2):209–232, 2002. 33

Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Preferences and

Value Trade-offs. Wiley, New York, 1976. 2, 11, 13, 14, 99, 100, 160

Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer, 36

(1):41–52, 2003. 41, 116, 193

BIBLIOGRAPHY 203

Omar Zia Khan, Pascal Poupart, and James P. Black. Minimal sufficient explanations for

factored Markov decision processes. In Proceedings of the 19th International Conference

on Automated Planning and Scheduling, 2009. 79

Omar Zia Khan, Pascal Poupart, and James P. Black. Automatically generated explanations for

Markov decision processes. In Enrique Sucar, Eduardo Morales, and Jesse Hoey, editors,

Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions,

chapter 7, pages 144–163. IGI Global, 2011. 79

Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R. Gordon, and

John Riedl. Grouplens: Applying collaborative filtering to usenet news. Communications of

the ACM, 40(3):77–87, 1997. 23

Brendan McMahan, Geoffrey Gordon, and Avrim Blum. Planning in the presence of cost func-

tions controlled by an adversary. In Proceedings of the Twentieth International Conference

on Machine Learning (ICML-03), pages 536–543, Washington, DC, 2003. 5, 36, 73, 83, 84

Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin, Leslie Pack Kaelbling,

Thomas Dean, and Craig Boutilier. Solving very large weakly coupled Markov decision

processes. In Proceedings of the Fifteenth National Conference on Artificial Intelligence

(AAAI-98), pages 165–172, Madison, WI, 1998. 31

George L. Nemhauser and Laurence A. Wolsey. Integer Programming and Combinatorial

Optimization. Wiley, New York, 1988. 48

Andrew Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In Proceedings

of the Seventeenth International Conference on Machine Learning (ICML-00), pages 663–

670, Stanford, CA, 2000. 4, 32, 39, 40, 73, 94, 134, 168

Vahab S. Mirrokni Nikolay Archak and S. Muthukrishnan. Budget optimization for online ad-

vertising campaigns with carryover effects. In The Eleventh ACM SIGECOM International

Conference on Electronic Commerce, Harvard, 2010. 157

BIBLIOGRAPHY 204

Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with uncer-

tain transition matrices. Operations Research, 53(1):780–798, 2005. 36, 83

Eunsoo Oh and Kee-Eung Kim. A geometric traversal algorithm for reward-uncertain Mdps.

In Proceedings of the Twenty-seventh Conference on Uncertainty in Artificial Intelligence

(UAI-11), 2011a. 134, 135, 137

Eunsoo Oh and Kee-Eung Kim. A geometric traversal algorithm for reward-uncertain Mdps.

In Proceedings of the Twenty-seventh Conference on Uncertainty in Artificial Intelligence

(UAI-11), Barcelona, 2011b. 75

Ronald Parr. Flexible decomposition algorithms for weakly coupled Markov decision pro-

cesses. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence

(UAI-98), pages 422–430, Madison, WI, 1998. 152

Relu Patrascu, Craig Boutilier, Rajarshi Das, Jeffrey O. Kephart, Gerald Tesauro, and

William E. Walsh. New approaches to optimization and utility elicitation in autonomic

computing. In Proceedings of the Twentieth National Conference on Artificial Intelligence

(AAAI-05), pages 140–145, Pittsburgh, 2005. 94

M. Perkowitz and O. Etzioni. Adaptive sites: Automatically learning from user access patterns.

In Proc. 6th Int. World Wide Web Conf., Santa Clara, California, 1997. 149, 158

Marek Petrik and Shlomo Zilberstein. A bilinear programming approach for multiagent plan-

ning. Journal of Artificial Intelligence Research, 35(1):235–274, 2009. 139

Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value iteration: An anytime

algorithm for POMDPs. In Proceedings of the Eighteenth International Joint Conference on

Artificial Intelligence (IJCAI-03), volume 18, pages 1025–1032, 2003. 139

Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Anytime point-based approximations for

large POMDPs. Journal of Artificial Intelligence Research, 27(1):335–380, 2006. 139

BIBLIOGRAPHY 205

Pascal Poupart. Approximate value-directed belief state monitoring for partially observable

Markov decision processes. Master’s thesis, University of British Columbia, Vancouver,

2000. 39

Pascal Poupart, Craig Boutilier, Relu Patrascu, and Dale Schuurmans. Piecewise linear value

function approximation for factored MDPs. In Proceedings of the Eighteenth National Con-

ference on Artificial Intelligence (AAAI-02), pages 292–299, Edmonton, 2002. 32, 76, 120

Pearl Pu, Boi Faltings, and Marc Torrens. User-involved preference elicitation. In IJCAI-03

Workshop on Configuration, Acapulco, 2003. 23

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, New York, 1994. 24, 27, 28, 29, 64, 66, 171

Martin L. Puterman and M.C. Shin. Modified policy iteration algorithms for discounted

Markov decision problems. Management Science, 24:1127–1137, 1978. 27

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In Proceed-

ings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07),

pages 2586 – 2591, 2007. 40, 74, 94

Nathan Ratliff, Andrew Bagnell, and Martin Zinkevich. Maximum margin planning. pages

729 – 736, 2006. 40, 73, 94

Kevin Regan. Myoptically optimal policy comparison queries uing setwise max regret. Uni-

versity of Toronto Tech Report, 2011. 97

Kevin Regan and Craig Boutilier. Regret-based reward elicitation for Markov decision pro-

cesses. In Proceedings of the Twenty-Second Conference on Neural Information Processing

Systems - Workshop on Model Uncertainty and Risk in Reinforcement Learning, 2008. 43,

76, 165

BIBLIOGRAPHY 206

Kevin Regan and Craig Boutilier. Regret-based reward elicitation for Markov decision pro-

cesses. In Proceedings of the Twenty-fifth Conference on Uncertainty in Artificial Intelli-

gence (UAI-09), pages 454–451, Montreal, 2009. 43, 74, 76, 97, 165

Kevin Regan and Craig Boutilier. Robust policy computation in reward-uncertain MDPs using

nondominated policies. In Proceedings of the Twenty-fourth AAAI Conference on Artificial

Intelligence (AAAI-10), pages 1127–1133, Atlanta, 2010. 5, 43, 74, 76, 120, 165

Kevin Regan and Craig Boutilier. Eliciting additive reward functions for markov decision

processes. In Proceedings of the Twenty-second International Joint Conference on Artificial

Intelligence (IJCAI-11), 2011a. 76, 120, 165

Kevin Regan and Craig Boutilier. Robust online optimization of reward-uncertain MDPs. In

Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence

(IJCAI-11), 2011b. 140, 165

James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry Smyth. Dynamic critiquing. In

Proceedings of the European Conference on Case-Based Reasoning, pages 763 – 777, 2004.

24

James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry Smyth. Incremental critiquing.

Knowledge-Based Systems, 18(4-5):143–151, 2005. 24

James Reilly, Kevin McCarthy, and Barry Smyth. Evaluating compound critiquing recom-

menders: a real-user study. In Proceedings of the Eighth ACM Conference on Electronic

Commerce (EC’07), pages 114–123, 2007. 24

Jason Rennie and Nathan Srebro. Fast maximum margin matrix factorization for collabora-

tive prediction. In Proceedings of the Twenty-second International Conference on Machine

Learning (ICML-05), 2005. 23

BIBLIOGRAPHY 207

Maya Rupert, Amjad Rattrout, and Salima Hassas. The web from a complex adaptive systems

perspective. Journal of Computer and System Sciences, 74(2):133–145, 2008. 149, 158

Ahti Salo and Raimo P. Hämäläinen. Preference programming through approximate ratio com-

parisons. European Journal of Operational Research, 82:458–475, 1995. 2, 4

Paul A. Samuelson. Consumption theory in terms of revealed preference. Economica, 15(60):

243–253, 1948. 4

Ramesh R. Sarukkai. Link prediction and path analysis using Markov chains. Computer

Networks, 33(1):377–386, 2000. 157

Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th International Conference

on World Wide Web, pages 285–295, 2001. 23

Leonard J. Savage. The theory of statistical decision. Journal of the American Statistical

Association, 46(253):55–67, 1951. 18

Leonard J. Savage. The Foundations of Statistics. Wiley, New York, 1954. 3

Dale Schuurmans and Relu Patrascu. Direct value-approximation for factored MDPs. In

Proceedings of the Fifteenth Annual Conference on Neural Information Processing Systems

(NIPS-01), volume 14, 2001. 32

Hanif D. Sherali and Amine Alameddine. A new reformulation-linearization technique for

bilinear programming problems. Journal of Global Optimization, 2:379–410, 1992. 52, 54,

183, 186

Satinder P. Singh and David Cohn. How to dynamically merge Markov decision processes.

In Advances in Neural Information Processing Systems 10, pages 1057–1063. MIT Press,

Cambridge, 1998. 31

BIBLIOGRAPHY 208

Paul Slavic, Baruch Fischhaff, and Sarah Lichtenstein. Behavioral decision theory. Annual

Review of Psychology, 28(1):1–39, 1977. 2

Mathis T.J. Spaan and Nikos Vlassis. Perseus: Randomized point-based value iteration for

POMDPs. Journal of Artificial Intelligence Research, 24(1):195–220, 2005. 139

Richard Sutton, Doina Precup, and Satinder Singh. Intra-option learning about temporally

abstract actions. pages 556–564, 1998. 152

Richard S. Sutton. Learning to predict by the method of temporal differences. Machine Learn-

ing, 3:9–44, 1988. 33

Gerald Tesauro. Programming backgammon using self-teaching neural nets. Artificial Intelli-

gence, 134:181 – 199, 2002. 32

Aimo Torn and Antanas Zilinskas. Global Optimization. Springer, Berlin, 1989. 74

Olivier Toubia, John Hauser, and Duncan Simester. Polyhedral methods for adaptive choice-

based conjoint analysis. (4285-03), 2003a. 82

Olivier Toubia, Duncan I. Simester, John R. Hauser, and Ely Dahan. Fast polyhedral adaptive

conjoint estimation. Marketing Science, 22(3):273–303, 2003b. 20

Olivier Toubia, John R. Hauser, and Duncan I. Simester. Polyhedral methods for adaptive

choice-based conjoint analysis. Journal of Marketing Research, 41(1):116–131, 2004. 20

Paolo Viappiani and Craig Boutilier. Regret-based optimal recommendation sets in conversa-

tional recommender systems. In Proceedings of the 3rd ACM Conference on Recommender

Systems (RecSys09), pages 101–108, New York, 2009. 87, 88, 89, 94, 95, 172

Paolo Viappiani, Boi Faltings, and Pearl Pu. Preference-based search using example-critiquing

with suggestions. Journal of Artificial Intelligence Research, 27:465–503, 2006a. 24

BIBLIOGRAPHY 209

Paolo Viappiani, Boi Faltings, and Pearl Pu. Evaluating preference-based search tools: a tale

of two approaches. In Proceedings of the Twenty-first National Conference on Artificial

Intelligence (AAAI-06), pages 205–211, 2006b. 24

John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Prince-

ton University Press, Princeton, 1944. 11, 12, 13

Abrahaml Wald. Statistical Decision Functions. Wiley, New York, 1950. 17, 18

Tianhan Wang and Craig Boutilier. Incremental utility elicitation with the minimax regret deci-

sion criterion. In Proceedings of the Eighteenth International Joint Conference on Artificial

Intelligence (IJCAI-03), pages 309–316, Acapulco, 2003. 2, 167

Youwei Wang, Dingwei Wang, and W. H. Ip. Optimal design of link structure for e-supermarket

website. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions

on, 36(2):338–355, 2006. 149, 158

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292,

1992. 33

Huan Xu and Shie Mannor. Parametric regret in uncertain Markov decision processes. In 48th

IEEE Conference on Decision and Control, pages 3606–3613, Shanghai, 2009. 4, 5, 45, 59,

60, 62, 74, 161

Lei Xu, Weifeng Zhang, and Lianjie Chen. Modeling users’ visiting behaviors for web load

testing by continuous time markov chain. In Web Information Systems and Applications

Conference (WISA), 2010 7th, pages 59–64. IEEE, 2010. 187

W Zhang and T Dietterich. High-performance job-shop scheduling with a timedelay td

(lambda) network. In Proceedings of the Tenth Annual Conference on Neural Information

Processing Systems (NIPS-96), 1996. 32

BIBLIOGRAPHY 210

B. Zhou, J. Chen, J. Shi, H. Zhang, and Q. Wu. Website link structure evaluation and im-

provement based on user visiting patterns. In Proceedings of the 12th ACM conference on

hypertext and hypermedia, pages 241–244. ACM, 2001. 149, 158

Brian Ziebart, Andrew Maas, Andrew Bagnell, and Anind Dey. Maximum entropy inverse

reinforcement learning. In Proceedings of the Twenty-third AAAI Conference on Artificial

Intelligence (AAAI-08), pages 1433 – 1438, 2008. 40, 74, 94

	Introduction
	Challenges
	Contributions
	Outline

	Background
	Single-step Preference Elicitation
	Basic Decision Theory
	Quantitative Preferences
	Multi-Attribute Utility
	Query Types
	Criteria for Decision Making with Partial Preferences
	Strict Uncertainty
	Bayesian Uncertainty
	Query Selection

	Preference Elicitation in Practice

	Sequential Decision Making
	Model
	Computing Optimal Policies
	Occupancy Frequencies
	Vector Notation
	Scaling MDP Algorithms

	Sequential Decision Making with Partial Information
	Reinforcement Learning
	Robust MDPs
	Partially Observable Markov Decision Processes
	Inverse Reinforcement Learning

	Example Application Domains
	Autonomic Computing
	Assistive Technologies

	Computing Robust Policies using Minimax Regret
	Imprecise Reward MDPs and Minimax Regret
	Randomly Generating IRMDPs
	Computing Exact Minimax Regret
	Experiments
	Computing Approximate Max Regret
	Under-approximation
	Over-approximation
	Approximating Minimax Regret
	Experiments

	Leveraging Nondominated Policies
	Experiments

	Generating Nondominated Policies using the Witness Algorithm
	The Witness Algorithm
	Empirical Results
	Approximating the Nondominated Set

	Summary and Conclusions
	Contributions

	Reward Elicitation
	Introduction
	Heuristic Query Selection
	Halve-the-Largest-Gap
	Current Solution Heuristics
	Experiments

	Myopically Optimal Query Selection
	Setwise Max Regret Computation
	Experiments

	Summary and Conclusions
	Contributions

	Leveraging Reward Structure
	Additive Reward with Local Reward Functions
	Structured Query Types
	Computing Minimax Regret
	Approximate Minimax Regret
	Assessment

	Query Selection
	Local Bound Scoring
	Global Bound Scoring

	Experiments
	Assistive Technology
	Autonomic Computing

	Summary and Conclusions
	Contributions

	Online Minimax Regret Computation
	Online Adjustment of Nondominated Policies
	Nondominated Region Vertex Algorithm
	Empirical Evaluation

	A Comparison to the Geometric Traversal Algorithm
	Exact GT
	Approximate GT

	Summary and Conclusions
	Contributions

	Applications
	Background
	Model
	Models For Empirical Analysis
	Creating a Static Website with Traffic
	Simulating Webpage version-testing

	Reducing Website MDPs
	Experiments
	Setup
	Efficiency
	Lift
	Elicitation Effectiveness
	Full Policy Queries

	Summary and Conclusions
	Contributions

	Conclusions and Discussion
	Summary of Results
	Future Directions

	Proofs
	Proof of Observation 1
	Proof of Theorem 1 (Witness Theorem)
	Proof of Theorem 2
	Proof of Theorem 3

	Random MDP Generation Details
	RLT Formulations
	Max regret for flat IRMDPs
	Max regret for IRMDPs with structured reward

	Simulating Website Version Testing
	Constructing a Model of User Behaviour for the Static Website
	Simulating Version Testing

	MDP Specifications
	Assistive Technology
	Autonomic Computing

	Bibliography

