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ABSTRACT

In speech communication systems such as voice-controlled systems, hands-free mobile

telephones and hearing aids, the received signals are degraded by room reverberation

and background noise. This degradation can reduce the perceived quality and in-

telligibility of the speech, and decrease the performance of speech enhancement and

source localization. These problems are difficult to solve due to the colored and non-

stationary nature of the speech signals, and features of the Room Impulse Response

(RIR) such as its long duration and non-minimum phase. In this dissertation, we fo-

cus on two topics of speech enhancement and speaker localization in noisy reverberant

environments.

A two-stage speech enhancement method is presented to suppress both early and

late reverberation in noisy speech using only one microphone. It is shown that this

method works well even in highly reverberant rooms. Experiments under different

acoustic conditions confirm that the proposed blind method is superior in terms of



iv

reducing early and late reverberation effects and noise compared to other well known

single-microphone techniques in the literature.

Time Difference Of Arrival (TDOA)-based methods usually provide the most ac-

curate source localization in adverse conditions. The key issue for these methods is

to accurately estimate the TDOA using the smallest number of microphones. Two

robust Time Delay Estimation (TDE) methods are proposed which use the informa-

tion from only two microphones. One method is based on adaptive inverse filtering

which provides superior performance even in highly reverberant and moderately noisy

conditions. It also has negligible failure estimation which makes it a reliable method

in realistic environments. This method has high computational complexity due to

the estimation in the first stage for the first microphone. As a result, it can not be

applied in time-varying environments and real-time applications. Our second method

improves this problem by introducing two effective preprocessing stages for the con-

ventional Cross Correlation (CC)-based methods. The results obtained in different

noisy reverberant conditions including a real and time-varying environment demon-

strate that the proposed methods are superior compared to the conventional TDE

methods.
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Chapter 1

Introduction

1.1 Speech Source Signal

In general, wideband speech covering the frequency range 0.3-8 kHz has a more pleas-

ant quality compared to narrowband speech which covers the range 0.3-4 kHz [1]. This

dissertation considers wideband speech with a sampling frequency of 16 kHz. The

speech signal has colored and non-stationary characteristics, making problems such

as speech enhancement and localization more challenging. The analysis of the speech

signal is typically done on a block-by-block basis (here 32 ms). A speech signal, s[n],

can be modeled as an excitation signal, e[n], convolved with a vocal tract filter, hs[n]

[2]. In frequency domain, this can be written as

S(z) = E(z)Hs(z) (1.1)

where S(z), E(z), and Hs(z) are the z-transform of s[n], e[n], and hs[n]. The vocal

tract filter is usually modeled as a linear system that is assumed to be time-varying

such that over short time intervals it can be described by the all-pole transfer function

[2]

Hs(z) =
G

1−
∑p

k=1 akz
−k (1.2)

where G, and p, are the gain and number of poles for the all-pole transfer function.

The signals are related by a difference equation of the form [2]

s[n] =

p∑
k=1

aks[n− k] +Ge[n] (1.3)
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Figure 1.1: The speech signal received by a microphone in a room.

Using standard Linear Predictive (LP) analysis, a set of prediction coefficients ak that

minimize the mean-squared prediction error between s[n] and a predicted signal can

be obtained [2].

1.2 Reverberation in Enclosed Spaces

Signals recorded with a distant microphone in an enclosed room usually contain rever-

beration artifacts caused by reflections from walls, floors, and ceilings. In the context

of this work, reverberation is due to multi-path propagation of the speech signal

from its source to one or more microphones. This leads to spectral colouration caus-

ing a deterioration of the signal quality and intelligibility in many communication

environments such as hands-free telephony and audio-conferencing. This can seri-

ously degrade applications such as automatic speech recognition, speech separation

and source localization. These detrimental effects are magnified when the speaker to

microphone distance is increased.

In addition, the received signal is distorted by additive noise. The main difference

between the noise and reverberation is that the reverberation is dependent on the

speech signal whereas the noise can be assumed to be independent from this signal.

Thus the problem of reverberation is more challenging than the problem of additive

noise.

Figure 1.1 shows the received speech signal at the microphone, x[n], which is

composed of the reverberant speech signal, z[n], and the background noise, ν[n], i.e.

z[n] = s[n] ? h[n] (1.4)

x[n] = z[n] + ν[n] (1.5)
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where ? denotes convolution. s[n] is the clean speech, and h[n] is the Room Impulse

Response (RIR). The impulse response of an acoustic channel is usually very long

and has nonminimum phase, making the problems given above even more difficult.

The reverberation time quantifies the severity of the reverberation in a room, and

is denoted by RT60 . This is usually defined as the time for the sound pressure to be

attenuated by 60 dB after the source is switched off. The RIR is usually modeled by

a finite impulse response (FIR) filter whose length is approximately RT60× fs where

fs is the sampling frequency (here 16 kHz). Reverberation is related to the surface

absorption coefficient αi, i = 1, . . . , 6, where i denotes one of the room surfaces.

This coefficient which determines how much sound is absorbed (and thus reflected)

from room surfaces. This coefficient is a function of the incident angle, frequency, and

material properties. In practice, it is averaged over the possible incidence angles. The

reverberation time is related to the absorption coefficient through Sabines equation

[10]

RT60 = 0.163
V

A
(1.6)

where V is the room volume, Si is the reflection surface area, and A is the total

absorption surface area given by A =
∑

i αiSi.

The perception of reverberation is mainly based on a two-dimensional percep-

tual space. The two components are coloration and echo [10]. While echoes smear

the speech spectra and reduce the intelligibility and quality of the speech signals,

coloration distorts the speech spectrum [10]. Coloration which results from the non-

flat frequency response of the early reflections (reflections that arrive shortly after

the direct sound). The echoes are directly related to the reverberation time. Fur-

thermore, the late reverberation components (reflections that arrive after the early

reverberation), increase as RT60 is increased.

1.3 Scope and Dissertation Outline

This dissertation considers several new techniques aimed to address the problems

of single-channel speech enhancement and speaker localization in adverse conditions

such as high reverberation and additive background noise. For the first problem,

the goal is to effectively suppress the effects of both early and late reverberation

in noisy speech using a signal from one microphone. For the second problem, the

goal is to accurately localize the speaker position in a highly reverberant room with
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additive background noise using the a small number of microphones. These goals are

very challenging yet the problems are significant. Here we briefly mention the main

contributions of this dissertation for both speech enhancement and source localization.

For speech enhancement, we propose a two-stage method using the inverse filtering

to reduce the early reverberation in the first stage and spectral subtraction to reduce

the noise and the residual reverberation in the second stage. Our contributions to

speech enhancement are listed below.

• We propose an adaptive gradient-ascent algorithm for the input LP residual of

a reverberant speech signal based on skewness instead of the commonly used

metric (kurtosis).

• We optimize the algorithm for implementation. This includes an effective al-

gorithm for estimating the expected value of the feedback function, and an

efficient procedure for filter initialization, which can be used with very high

reverberation times (above 2 s).

• A denoising algorithm is presented which is superior to other well-known de-

noising methods in noisy reverberant environments. Several denoising methods

have been proposed [36]-[39] that perform well under noisy conditions. However,

most perform poorly when both noise and reverberation is present, especially

when the noise is non-stationary and speech-like (babble noise). This is largely

because estimation of the short time power spectral density (STPSD) of the

noise is greatly affected by the reverberation, particularly with babble noise.

To solve this problem, for each frequency-bin in a time frame, statistical noise

estimation is used to obtain the optimal spectral weighting based on the es-

timated Signal to Noise Ratio (SNR). This provides more robust denoising in

reverberant conditions.

• A late reverberation reduction method is proposed which is more effective than

the spectral subtraction of Wu and Wang [19]. This is because a better weight

function has been used to estimate the STPSD of the late components. Then

the spectral weight for filtering has been modified using the a priori Signal to

Reverberation Ratio (SRR) to calculate the a posteriori SRR, decision-directed

estimator, and changing the power of the spectral weight based on the SRR.

• A new method is proposed to reduce the effects of the pre-echo components

remaining after inverse filtering. These components are one of the most serious
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problems in speech enhancement because they are not a natural phenomenon

to which the ear is accustomed.

For speaker localization, we propose two new techniques for Time Delay Estimation

(TDE) and the contributions are listed below.

• A novel technique for TDE based on adaptive inverse filtering is proposed.

This method uses the inverse filtering algorithm to estimate the inverse filter

of the channels in order to accurately estimate the Time Difference Of Arrival

(TDOA).

• Two preprocessing stages for TDE method are introduced, namely all-pass pro-

cessing and spectral subtraction. It is shown that with these preprocessing

stages, the performance of the TDE method is improved.

The dissertation is organized as follows.

• Chapter 2 presents a solution to the problem of single-microphone speech en-

hancement in a noisy reverberant room. This chapter consists of 5 sections. In

the first section, a brief review of existing single-microphone speech enhance-

ment methods is provided, and the main challenges and unsolved problems are

given. The next three sections present the steps of the proposed solution. Per-

formance results which demonstrate the effectiveness of the proposed method

in highly reverberant rooms noise are provided in the last section.

• Chapter 3 present a solution to the problem of speaker localization in a rever-

berant room. The three main categories of techniques to solve the problem of

source localization are introduced. TDOA-based methods are the most effective

solutions for this problem. Accurate and robust TDE is the key to the effec-

tiveness of the localization in this category. So this chapter mostly devotes to

the problem of TDE and this problem in reverberant noisy conditions is investi-

gated. The most common TDE methods in the literature are reviewed and the

main challenges to be solved are presented. Then, in Section 3.1.1, our novel

and the most accurate TDE method based on adaptive inverse filtering is thor-

oughly presented. In Section 3.1.2, we introduce another method based on two

novel preprocessing for TDE application. The results shown in Section 3.1.4

demonstrate the effectiveness of our methods compared with the conventional

techniques in the literature.
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• Chapter 4 outlines some future works and the plan for ongoing research. Eight

main ideas are presented to extend and improve the existing methods to solve

the problem of both speech enhancement and speaker localization in a noisy

reverberant room.

• A summary of our research is provided in Chapter 5.
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Chapter 2

Single-Channel Speech

Enhancement in a Noisy

Reverberant Room

Speech enhancement in a noisy reverberant environment is a difficult problem because

(i) speech signals are colored and nonstationary, (ii) noise signals can change dramat-

ically over time, and (iii) the impulse response of an acoustic channel is usually very

long and has nonminimum phase. When multiple microphones are available, spatial

processing can be used to improve the performance of speech enhancement techniques.

However many speech communication systems are equipped with only a single mi-

crophone. As a consequence, a number of single microphone speech enhancement

techniques have been developed.

There has been significant research on single microphone additive noise suppres-

sion algorithms, e.g. [4]. If the noise is negligible, the speech enhancement task is

just speech dereverberation. Bees et al. [5] employed a cepstrum based method to

estimate the Room Impulse Response (RIR), and used a least squares technique for

inversion. Satisfactory results were only obtained for minimum phase or mixed phase

responses with a few zeros outside the unit circle in the z-plane, which restricts the

use of this algorithm in real conditions. Similarly, Kumar and Stern [6] built on

recent developments that represent reverberation in the cepstral feature domain as

a filtering operation. They formulated a maximum likelihood objective function to

obtain an inverse reverberation filter. However, this method can only improve the

Automatic Speech Recognition (ASR) for moderate reverberation times. Unoki et
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al. [7] proposed the power envelope inverse filtering method, which is based on the

Modulation Transfer Function (MTF), to recover the average envelope modulation

spectrum of the original speech. However, this method has limited applicability due

to the assumptions which do not necessarily match the features of real speech (real

speech signals were not considered), and reverberation (a simple exponential model

was employed for the RIR). Nakatani et al. [8] have shown that it is possible to accu-

rately estimate the dereverberation filter for a Reverberation Time (RT60) up to 1 s.

However, the method in [8] requires that the RIR remains constant for a considerable

time duration.

Several researchers have considered only late reverberation suppression by assum-

ing the early and late reverberant speech components are independent. The late

reflection component is suppressed in the Short-Time Fourier Transform (STFT) do-

main using so-called spectral enhancement methods. This is achieved by estimating

the Short-Time Power Spectral Density (STPSD) of the late reverberant speech com-

ponent in order to perform magnitude subtraction without phase correction. Thus the

main challenge is to estimate the STPSD of the late reverberant speech component

from the received signal. More recently, a variety of techniques have been proposed

to estimate the STPSD of the late reverberant speech component [9]-[15].

Spectral subtraction is a commonly employed technique for dereverberation. It can

be used in real-time applications, and results show a reduction in both additive noise

and late reverberation. However, artifacts such as musical noise are introduced due

to the nonlinear filtering, and a priori knowledge of the RIR (i.e. the reverberation

time), is usually required. Yegnanarayana and Murthy [16] proposed an LP residual

based approach which identifies and manipulates the residual signal according to the

regions of reverberant speech, namely, high Signal to Reverberation Ratio (SRR), low

SRR, and reverberant signal only. This temporal domain method mainly enhances

the speech specified features in the high SRR regions. In [17], the authors effectively

combined a modified LP residual based approach (to enhance reverberant speech in

the high SRR regions), with spectral subtraction to reduce late reverberation. In [18],

a method was proposed which makes use of the complex cepstrum and LP residual

signal to deconvolve the reverberant speech signal.

To date, most single microphone dereverberation methods have been designed to

reduce the effects due mostly to late reverberation. However, the early reverberation

frequency response is rarely flat, so it distorts the speech spectrum and reduces speech

quality. Since joint suppression of both early and late reverberation is quite challeng-
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ing, few (single-microphone) two-stage algorithms have appeared in the literature. Wu

and Wang [19] proposed an inverse filtering method which maximizes the kurtosis of

the LP residual to reduce the early reverberation, followed by spectral subtraction to

reduce late reverberation. However, the inverse filtering to reduce early reverberation

effects is only effective when the reverberation time is in the range 0.2-0.4 s. For

high reverberation times, the kurtosis based objective function for adaptive inverse

filtering has many saddle points (along with the maximum points), and convergence is

usually to one of them, leading to an inaccurate filter estimate [28]. Moreover, their

spectral subtraction tends to produce annoying musical noise, particularly at high

reverberation intensities. They also did not consider noisy environments. A similar

approach is described in [20] where temporal averaging to combat early reverberation

is combined with spectral subtraction.

In a real environment, the reverberant speech signals are usually contaminated

with nonstationary additive background noise. This can greatly deteriorate the per-

formance of dereverberation techniques. Some single-microphone methods take the

presence of noise into account, and they typically employ spectral subtraction for

noise reduction. Habets et al. [20] used a statistical model for applying spectral

subtraction to reduce both the reverberation and noise. However, reverberation time

estimation in noisy conditions is required which is a non-trivial problem. Similarly,

joint suppression of late reverberation and additive background noise was achieved

in [14] using a generalized spectral subtraction rule with Maximum Likelihood (ML)

estimation of the reverberation time. Attias et al. [21] presented a unified probabilis-

tic framework for denoising and dereverberation, but their method is not effective for

long reverberation times. The long-term correlation in the Discrete Fourier Transform

(DFT) domain was exploited in [22] to suppress only late reverberation and noise. In

[23], a method was proposed for reducing only the late reverberation of speech signals

in noisy environments using the amplitude of the clean speech signal. This signal was

obtained using an adaptive estimator that minimizes the Mean Square Error (MSE)

under signal presence uncertainty. Finally, an ML based method was proposed in

[24] for noise suppression and dereverberation. However, it requires that the Power

Spectral Density (PSD) of the noise is known.

From the above discussion, it can be concluded that the joint suppression of

early and late reverberation in noisy conditions, especially with long reverberation

times and using only one microphone, is a very challenging yet significant problem.

A two-stage speech enhancement method is proposed to reduce the both early and
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Figure 2.1: Block diagram of the proposed two-stage method for speech signal en-
hancement in noisy reverberant environments.

Figure 2.2: Block diagram of the inverse filtering method for the first stage of speech
enhancement.

late reverberation effects in noisy speech [25]. A block diagram of the two-stage

speech enhancement method is shown in Fig. 2.1. In the first stage, a blind inverse

filtering method [28] is used to reduce the early reverberation effects. Then spectral

subtraction is used to reduce both the noise and the residual reverberation effects

[25]-[26]. In the following sections, each stage of the proposed method is described.

2.1 Inverse Filtering for Early Reverberation Sup-

pression

Generally, methods based on inverse filtering provide better dereverberation and

greatly mitigate early reverberation as long as the RIR is time-invariant. How-

ever, current single-microphone inverse filtering methods are sensitive to noise, and

they perform poorly in highly reverberant rooms. Therefore, a blind inverse filtering

method is presented here which works even in highly reverberant rooms and is robust

to low to moderate additive background noise.

A block diagram of the inverse filtering technique is shown in Fig. 2.2, where x[n]

is the reverberant speech received by the microphone and h(r) is the FIR inverse filter

of length L in the r-th iteration. The LP residual signal x[n] is calculated from the
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reverberant speech using an Linear Predictive Coding (LPC) filter of order 10 with a

frame size of 32 ms. The signal after inverse filtering is given by

yn = (h(r))Tx[n], (2.1)

where

h(r) =
[
h

(r)
0 , h

(r)
1 , . . . , h

(r)
L−1

]T
, (2.2)

and x[n] is a vector of length L containing elements n to n − L + 1 of x[n]. h is

estimated recursively to maximize the skewness, denoted by Ψ(s)(yn) = E{ȳ3
n}

E
3
2 {ȳ2

n}
, using

an adaptive gradient-ascent algorithm. The filter update rule in the time domain is

given by [28]

h(r+1) = h(r) + µ∇Ψ(s)(hr), (2.3)

∇Ψ(s)(hr) ≈ 3

(
ȳ2E{ȳ2} − ȳE{ȳ3}

E
5
2{ȳ2}

)
x̄ = gx̄ (2.4)

where g is the feedback function. µ is the step-size controlling the learning rate which

is set to 3× 10−9.

As a direct time domain implementation may have slow or no convergence, a

frequency domain implementation of the adaptive filter is used [28]. In this formula-

tion, the LP residual of the reverberant speech signal x̄[n] is segmented into blocks of

length L. The blocks are increased to 2L samples by zero-padding, and a Fast Fourier

Transform (FFT) of length 2L is computed for each block. The feedback function g

is segmented into blocks of length 2L with L samples overlapping, and an FFT of

length 2L is computed for each block. Denote the number of blocks by T . The filter

update in the frequency domain is then

H′(r+1) = H(r) +
µ

T

T∑
i=1

GiX̄
∗
i , (2.5)

H(r+1) =
H′(r+1)

|H′(r+1)|
, (2.6)

where H(r) is the FFT of the inverse filter h in the rth iteration. Gi and X̄i denote,

respectively, the FFT of g and x̄ for the ith block. The superscript ∗ denotes complex
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conjugate. The inverse filter is initialized with a simple all-pass filter

H(0) = [1 1 1 . . . 1]T . (2.7)

Equation (2.6) ensures that the inverse filter is normalized. This is necessary to

keep the algorithm numerically stable since an increasing ȳ increases Ψ(ȳn) without

improving the inverse filter estimation, in which case the norm of h(r) grows rapidly

[28]. Our results show that a step size of µ = 3 × 10−9 requires approximately 300

iteration for convergence.

As the RIR length is proportional to the Reverberation Time (RT60)1, the inverse

filter length L should be chosen accordingly. The length should be as short as possible

to limit the computational complexity. Suitable inverse filter lengths for different

reverberation times based on our extensive experimental results are given in Table

2.1 [28]. This table can be used when the reverberation time is known or has been

Table 2.1: Inverse Filter Lengths for Different RT60 Values
RT60 (ms) 150-500 600-1100 1200-4000
L (sample) 2000 4000 6000

estimated, e.g. using our approach in [29]. This table is not precise for all RIRs which

might have different room dimension and different speaker-microphone positions. The

most reliable solution especially when the reverberation time is unknown, is exploiting

a characteristic of good inverse filters, namely a dominant peak that exponentially

decays in reverse time [25].

2.2 Background Noise Reduction

The inverse-filtered speech signal can be expressed as

y[n] = e[n] + ν ′[n], (2.8)

e[n] = s[n] ? heq[n], (2.9)

where heq[n] is the equalized impulse response, s[n] is the clean speech signal and ν ′[n]

is additive noise. ? denotes convolution. A block diagram of the spectral subtraction

method for noise and late reverberation reduction is shown in Fig. 2.3. This method

1The length of the RIR is approximately equal to RT60 ×fs (sampling frequency).
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Figure 2.3: Block diagram of the spectral subtraction method for noise reduction
(symbols without parenthesis) and late reverberation suppression (symbols with
parenthesis).
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is based on modifying the short-time spectral magnitude of the input signal by mul-

tiplying it with the spectral weighting obtained from the noise or late reverberation

Power Spectral Density (PSD).

Since the analysis is in the time-frequency domain, the input speech signal is

transformed using a Short-Time Fourier Transform (STFT) giving

Y (l, k) =
K−1∑
n=0

y[n+ lR]u[n]e−i
2πk
K
n, (2.10)

where i =
√
−1, l = 0, 1, . . . is the time frame index, k = 0, 1, . . . , K − 1 is the

frequency-bin index, u[n] is a Hamming window of size K (here 32 ms), and R is the

frame rate which is the number of samples between two successive frames (here 16

ms).

It can be assumed that e[n] and ν ′[n] are statistically independent so the PSD of

y[n] is equal to the sum of the PSDs of e[n] and ν ′[n]. Let Pν(l, k) and Py(l, k) denote

the estimated STPSD of the noise and inverse-filtered signal, respectively. Pν(l, k) can

be estimated using minimum statistics [33]-[35]. The STPSD of the inverse-filtered

speech signal is obtained as

Py(l, k) = |Y (l, k)|2, (2.11)

where |.| denotes magnitude. Then the PSD of the noise signal P̄ν(l) and the inverse-

filtered speech signal P̄y(l) are

P̄y(l) =
K−1∑
k=0

Py(l, k), (2.12)

P̄ν(l) =
K−1∑
k=0

Pν(l, k). (2.13)

The optimal spectral weighting can be calculated as follows

Gn(l, k) =


min(ρV (l, k), 1) for V (l, k) ≥ 1

o(l,k)+ρ

1− o(l, k)V (l, k) otherwise

(2.14)
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where V (l, k) is defined as

V (l, k) =

√
Pν(l, k)

Py(l, k) + εy
(2.15)

εy is set to a small value (e.g. 1), when Py(l, k) is zero to avoid infinite values for

V (l, k) and is zero elsewhere. ρ is the noise floor parameter which is set to 0.1. o(l, k)

in (3.42) is the subtraction factor which depends on the SNR and is given by

o(l, k) =

√
1 + (omax − 1)

min
(

max
(

10 log10
P̄y(l)

P̄ν (l)+εν
, SNRmaxo

)
, SNRmino

)
−SNRmino

SNRmaxo−SNRmino

for P̄ν(l) > 0 and k = 0, . . . , K − 1

1 for P̄ν(l) = 0 and k = 0, . . . , K − 1

(2.16)

where omax is the maximum subtraction factor value which is set to 3. SNRmaxo = −5

dB and SNRmino = 20 dB are the maximum and minimum SNR values for the

subtraction factor [36]. εν is set to a small value (e.g. 1), when P̄ν(l) is zero to avoid

infinite values and is zero elsewhere.

The amplitude of the STFT of the inverse-filtered speech signal, as shown in Fig.

8, is then

|Ê(l, k)| = |Y (l, k)| Gn(l, k) (2.17)

Finally, ê[n] is obtained from this modified amplitude and the original phase using

an Inverse Short-Time Fourier Transform (ISTFT) via the overlap-add method

ê[n] =
∑
l

K−1∑
k=0

Ê(l, k)ū(n− lR)ei
2π
K

(n−lR)k, (2.18)

where ū(n) is a synthesis window that is biorthogonal to the analysis window u(n)

[10].
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2.3 Residual Reverberation Reduction

The signal after spectral subtraction for noise reduction can be approximated by

ê[n] ≈ s[n] ? heq[n]. (2.19)

The equalized impulse response is a delayed impulse-like function that can be modeled

as

heq[n] = a1δ[n− n1] + a2δ[n− n2] + ...+ adδ[n− nd] + ...+ aNδ[n− nNimp ] (2.20)

where Nimp is the length of the impulse response, and ai is the amplitude of the

reflection arriving after a delay of ni samples. The direct signal has amplitude ad

(maximum value) and delay nd. The replicas arriving before the direct signal (ni for

i < d) are called pre-echoes and those arriving after the direct signal (ni for i > d)

are called late impulse components. The pre-echoes and the direct signal are called

early impulse components. As these components are assumed to be uncorrelated with

the late impulse components, the late reverberation can be mitigated using spectral

subtraction.

2.3.1 Reduction of Late Impulse Effects

Fig. 2.3 shows that the spectral subtraction involves calculating the spectral weights

followed by multiplication with the STFT of the input signal. In order to calculate

the optimal weights, the STPSD of the late impulse response components must be

estimated. The estimation method is given below.

Estimation of the STPSD of the Late Impulse Response Components

The STPSD of ê[n] can be expressed as [17]-[19]

Pê(l, k) ≈ Pearly(l, k) + Plate(l, k), (2.21)

where Pearly(l, k) and Plate(l, k) are the STPSDs of the early and late impulse response

components, respectively. Generally, the STPSD of the late components can be ap-

proximated as a smoothed and shifted version of the STPSD of the inverse filtered
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speech [19]

P̂late(l, k) = γw[l −D] ∗ |Ê(l, k)|2. (2.22)

where γ is a scale factor denoting the relative strength of the late impulse components

(set to 0.32), and w[n] is a weight (smoothing) function which is delayed by D samples.

The short-time speech spectrum is obtained with a Hamming window with a frame

length of 16 ms and a frame shift of 8 ms. Assuming a 50 ms delay between the early

and late impulses and considering the frame shift of 8 ms for FFT analysis, the delay

D in (2.22) is set to 7.

Weight function: The weight function w(n) was previously considered to be

a fixed Rayleigh distribution that provides a reasonable match to the shape of the

equalized impulse response [19]. However, setting w(n) to a fixed function which

does not depend on the RIR can be inaccurate and thus unsuitable for the equalized

impulse response heq[n]. It is better to utilize a weight function which is based on

the equalized impulse response to estimate the STPSD of the late components. Our

algorithm provides a weight function which depends on the input speech signal ê[n],

and hence on heq[n].

The weight function is used to approximate the late components through a weighted

delayed version of ê[n]. Considering the D frames around each frame as the desired

signal and the frame shift of 8 ms, the duration of the weight function is limited to

N samples where

N ≤ RT60 (ms)

8
−D. (2.23)

This is because the duration of the RIR and thus the equalized impulse response is

approximated by RT60, therefore when using block based processing with a frame

shift of 8 ms, the number of previous blocks incorporated in the current frame should

be less than RT60 (ms)/8. In addition, the D frames around each frame are considered

to be the desired signal and so should not be included. For high reverberation times,

the index of the direct component nd is higher, so N should be chosen much less than

the upper bound in (2.23) so that the STPSD of the late impulse components is not

overestimated. Based on our extensive experimental results, it was found that N = 18

provides good dereverberation performance for a range of reverberation conditions.

In contrast to the fixed weight function in [19] which is unrelated to the input

speech signal, our algorithm generates a weight function by averaging the correlation

of the input speech signal spectra in different frequency bins. The weight function
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values are then

w[n] =
|w′[n]|∑
i |w′[i]|

, n = 1, 2, . . . , N (2.24)

where

w′[n] =
1

K(Lf − n−D)

K∑
k=1

Lf∑
l=n+D+1

Ê(l, k)Ê∗(l − n−D, k)

|Ê(l − n−D, k)|2
,

(2.25)

Lf and K refer to the number of time frames and frequency bins, respectively, and |.|
denotes absolute value. Note that w′[n] is a complex function. This weight function

is similar to that introduced in [40].

Spectral Subtraction

The enhanced speech signal is obtained by subtracting the estimated STPSD of the

late impulse response components from the input speech signal. The magnitude of

the enhanced speech spectra is acquired by filtering in the frequency domain which

gives

|Ŝ(l, k)| = |Ê(l, k)|Gr1(l, k), (2.26)

where Gr1(l, k) is the spectral weight for filtering given by

Gr1(l, k) =

(
|Ê(l, k)|2 − P̂late(l, k)

|Ê(l, k)|2

)κ

(2.27)

= 1− 1

(ζ1(l, k))κ
, (2.28)

with

ζ1(l, k) =
|Ê(l, k)|2

P̂late(l, k)
. (2.29)

Thus Gr1(l, k) depends on an estimate of the a posteriori Signal to Reverberation

Ratio (SRR) given by ζ1(l, k). The parameter κ can be fixed for all frames and

frequency bins at a nominal value of 0.5. Note that increasing κ can further reduce

the residual late impulses, but it can also introduce undesirable distortion. This

distortion is related to the SRR of the speech frame, so κ can be increased in low

SRR regions that are mainly reverberation, but kept small when the frame is mainly

speech (high SRR). In order to keep the proposed method simple, we first obtain the
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enhanced speech with a fixed value of κ = 0.5 and directly use the resulting enhanced

speech signal Ŝ(l, k) to determine if speech is present. The ratio of the power of

Ŝ(l, k) and the input signal Ê(l, k) can be used as an indicator of the presence of

speech in the current frame l

λ(l) =

∑K−1
k=0 |Ŝ(l, k)|2∑K−1
k=0 |Ê(l, k)|2

0 ≤ λ(l) ≤ 1. (2.30)

If the frame is mainly speech (high SRR), λ(l) ≈ 1. On the other hand, late reverber-

ation reduction will strongly attenuate the input signal in low SRR regions or during

speech pauses so that λ(l) ≈ 0. Since κ should be chosen based on the SRR, we use

the following decision-directed estimator for determining κ(l) in each frame

κ(l) = ακκ(l − 1) + (1− ακ)((1− λ(l))(κmax − κmin) + κmin), (2.31)

where ακ is the forgetting factor set to 0.9, and κmax and κmin are the maximum and

minimum values of κ(l) set to 1 and 0.5, respectively.

As overestimation of the STPSD of the late impulse components may produce

values of Ŝ(l, k) which are very small or even negative, so the enhanced speech spectra

should be limited using a threshold [19]. In addition, spectral subtraction creates

small, isolated peaks in the spectrum which occur randomly in time and frequency

and sound like frequency tones that change randomly from frame to frame. Thus the

resulting speech signal suffers from musical noise [36]. This common problem with

spectral subtraction for noise or reverberation reduction has been addressed in the

literature. We employ two modifications which have recently been introduced [14].

The first modification for limiting musical noise is to use the a priori SRR ξ1(l, k)

to calculate the a posteriori SRR

ζ1(l, k) = 1 + ξ1(l, k). (2.32)

The modified spectral weight for filtering is then

Gr1(l, k) = 1− 1√
1 + ξ1(l, k)

. (2.33)

Since the first 50 ms of reverberant speech is perceived as part of the direct speech

signal [19], the enhanced speech spectra is equal to the input speech spectra during
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this time. Thus the STPSD of the late impulse components for the first D frames is

considered to be zero

P̂late(l, k) = 0 for 1 ≤ l ≤ D, (2.34)

and the a priori SRR is estimated using a decision-directed approach as in (2.11)

ξ1(l, k) =



βξ1(l − 1, k) + (1− β)(max{ζ1(l, k)− 1, ε})
for l ≥ D + 3

|Ŝ(l, k)|2/P̂late(l, k)

for D < l < D + 3

(2.35)

Three frames are added (giving D + 3), to avoid infinity values in the a priori SRR

for frames close to the first D frames, which have zero STPSD for the late impulse

components. β is the forgetting factor set to 0.5, and ε is the a priori SRR threshold

set to 0.0663.

The second modification to avoid musical noise is the use of a spectral floor,

which confines the enhanced speech spectra above a threshold ς|Ê(l, k)|, where ς is

the spectral floor factor which is set to 0.02. Therefore we have

|Ŝ(l, k)| = max{|Ê(l, k)|Gr1(l, k), ς|Ê(l, k)|}. (2.36)

The enhanced speech signal ŝ[n] is calculated using the enhanced magnitude spectrum

|Ŝ(l, k)| and the original phase. This phase is obtained from the phase of the input

speech signal ê[n] and is used to obtain the enhanced speech signal by using the

overlap-add technique followed by an ISTFT (as described in Section 2.2).

2.3.2 Reduction of the Pre-echo Effects

Inverse filtering can produce pre-echo components which introduce annoying temporal

characteristics which deteriorate the speech quality. Thus speech enhancement using

inverse filtering as the first-stage should incorporate an effective algorithm to reduce

the pre-echo effects, especially in high reverberation environments. In this section,

we propose a simple spectral subtraction based algorithm to deal with this problem.
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Estimation of the STPSD of the Pre-echo Components

Assuming that the STPSD of ŝ[n], denoted by Pŝ(l, k), is an estimate of the STPSD

of the early impulse response components of ê[n], denoted by Pearly(l, k), we have

Pŝ(l, k) ≈ Pearly(l, k) = Pdirect(l, k) + Ppreecho(l, k), (2.37)

where Pdirect(l, k) and Ppreecho(l, k) are the STPSD of the direct path and pre-echo

components of ê[n], respectively. Similarly, the STPSD of the pre-echo components

can be approximated as a smoothed and shifted version of the STPSD of the enhanced

speech signal which is given by

Ppreecho(l, k) = γ
N−1∑
i=0

w(i)Ŝ(l + i+D, k), (2.38)

where the parameters are the same as those in (2.22). The weight function is obtained

using (2.24).

Spectral Subtraction

The final speech signal is obtained by subtracting the estimated STPSD of the pre-

echo components from the enhanced speech signal ŝ[n]. The magnitude of the final

speech spectra is obtained by a filtering operation in the frequency domain given by

|S̃(l, k)| = |Ŝ(l, k)|Gr2(l, k), (2.39)

where the spectral weight for filtering is

Gr2(l, k) =

(
|Ŝ(l, k)|2 − P̂preecho(l, k)

|Ŝ(l, k)|2

)0.5

(2.40)

= 1− 1

(ζ2(l, k))0.5
(2.41)

with

ζ2(l, k) =
|Ŝ(l, k)|2

P̂preecho(l, k)
= 1 + ξ2(l, k). (2.42)
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ξ2(l, k) is the a priori SRR. As before, the STPSD of the pre-echo components for

the last D frames is considered to be zero

Ppreecho(l, k) = 0 for Lf −D ≤ l ≤ Lf ,

where Lf is the number of speech frames. The a priori SRR is estimated using a

decision-directed approach as

ξ2(l, k) =



βξ2(l + 1, k) + (1− β)(max{ζ2(l, k)− 1, ε})
for l ≤ Lf −D − 3

|S̃(l, k)|2/P̂preecho(l, k)

for Lf −D − 3 < l < Lf −D

(2.43)

The final enhanced speech is then given by

|S̃(l, k)| = max{|Ŝ(l, k)|Gr2(l, k), ς|Ŝ(l, k)|}, (2.44)

where the parameters are the same as those defined in (2.35) and (2.36).

Reducing the residual reverberation effects, namely the pre-echo components, by

spectral subtraction after reduction of the late-impulse effects may introduce unde-

sirable distortion due to overestimation of Ppreecho(l, k), especially when the reverber-

ation time is not high. To limit this distortion, we use some simple criteria to ensure

that spectral subtraction is not used a second time. The normalized cross correlation

φj is used as a measure of the similarity between signal frames

φl,j =

∑K
k=1 Ŝ(l, k)Ŝ∗(l + j, k)√∑K

k=1 |Ŝ(l, k)|2
∑K

k=1 |Ŝ(l + j, k)|2
. (2.45)

The energy for each frame is defined as

El =
1

K

K∑
k=1

|Ŝ(l, k)|2. (2.46)

There are two cases when |Ŝ(l, k)| is kept unchanged. First, it is not changed when
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φl,D+1 ≥ φthr and |El+D+1 − El| < Ethr, i.e.

|S̃(l, k)| = |Ŝ(l, k)| if φl+D+1 ≥ φthr and |El+D+1 − El| < Ethr

where φthr = 0.1−0.42 and Ethr = 2 are the thresholds for frame similarity and frame

energy difference, respectively. These conditions are typically satisfied when there

are long, frequent speech components (voiced segments), as a result of prolongated

phonemes. Second, |Ŝ(l, k)| is kept unchanged when the frame energy is less than an

energy floor Emin so that

|S̃(l, k)| = |Ŝ(l, k)| if El < Emin. (2.47)

The energy floor is set to Emin = 0.06. After calculating |S̃(l, k)|, the final speech

signal is obtained using this spectrum and the original phase by applying the overlap-

add technique followed by an ISTFT.

In contrast to noisy conditions, the phase of the strong spectral components is

greatly distorted in reverberant environments [19]. Thus, in this case phase correction

is as important as magnitude correction. Although the second stage of the proposed

method cannot compensate for the phase distortion (mainly caused by reverberation),

the first stage provides this compensation. However, the two-stage method in [19],

as with other single-microphone methods, cannot compensate for this distortion in

highly reverberant conditions. As a result, the speech enhancement is much better

with the proposed approach, as will be shown in the next section.

2.4 Performance Results

In this section, we evaluate our proposed method (prop) and compare it with the

technique in [19] (Wu) and the temporal and spectral processing method presented

in [17] (LP). This is done using 20 s segments of clean speech (for four male and

four female speakers), from the TIMIT database which are sampled at 16 kHz. The

simulated RIRs are constructed using the image method [3]. The speech signals

are assumed to have been received by an omnidirectional microphone placed in a

rectangular room with dimensions [5 × 4 × 6] (m). All six wall surfaces of the room

are assumed to have the same reflection coefficient. We first examine the performance

2For low reverberation times it is better to use a lower value, e.g. 0.1, to limit the possibility of
distortion.
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of our method in reverberant environments free from noise. Then, our denoising

algorithm is evaluated in reverberant environments. Finally, our method is evaluated

in noisy conditions, including real recorded noise, with the reverberation intensity

fixed at a sufficiently high level, i.e., a reverberation time of RT60 = 1 s and a

speaker-microphone distance of d = 2 m.

Four measures are used to evaluate the performance. The Segmental Signal-to-

Interference Ratio (SegSIR) is a measure of the distortion caused by interference

(reverberation and noise) in the time domain, and hence is a good indicator of the

effectiveness of speech enhancement methods [10]. The difference between the clean

speech signal of the direct path sd[n] = αds[n − nd] (see (2.20)), and the enhanced

speech signal s̃[n] can be expressed as [10]

SegSIR =
1

Lb

Lb−1∑
l=0

(
10 log10

( ∑lR+N−1
n=lR s2

d[n]∑lR+N−1
n=lR (sd[n]− s̃[n])2

))
, (2.48)

where Lb is the number of blocks. Bark Spectral Distortion (BSD) is a perceptual-

domain measure of the reduction in colouration and the effects of late reverberation

[10]. The BSD is calculated using three steps: critical-band filtering, equal loudness

pre-emphasis and phon-to-sone conversion, and is defined as [10]

BSD =
1

Lb

Lb−1∑
l=0

(
10 log10

(∑Kb
kb=1(Lsd(l, kb)− Ls̃(l, kb))2∑Kb

kb=1(Lsd(l, kb))
2

))
, (2.49)

where Lsd and Ls̃ are the Bark spectra of the direct signal sd[n] and the enhanced

signal s̃[n], respectively, and kb is a Bark frequency bin. In order to evaluate the

reduction in only colouration caused by early reverberation, we employ segmental LP

residual kurtosis, which is a commonly used measure [20] and is given by

SegKurt =
1

Lb

Lb−1∑
l=0

E{¯̃sl[n]4}
E{¯̃sl[n]2}2

, (2.50)

where ¯̃sl[n] is the LP residual signal of the lth frame of s̃[n] and E{.} denotes ex-

pectation. We also consider the Perceptual Evaluation of Speech Quality (PESQ)

[10], which employs a perceptual model to assess the quality of a processed speech

signal. The PESQ is a recognized estimator for the Mean Opinion Score (MOS) [10].

These four measures are applied on 32 ms frames with a 50% overlap. Finally, subjec-
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tive listening tests were performed following the guidelines described in [10]. Twenty

listeners were asked to give a score between one and five to evaluate the enhanced

speech quality [1 = bad, 2 = poor, 3 = fair, 4 = good, and 5 = excellent]. They were

instructed to rate the reduction in distortion caused by reverberation and noise and

the overall speech quality. The individual ratings, averaged over all listeners, consti-

tutes the widely used MOS [10]. The original clean speech samples (four females and

four males with an average duration of 4 s), were considered as the reference speech

signals with a score of 5, while the speech samples under the worst conditions have a

score of 1.

2.4.1 Speech Dereverberation in Different Environments

We evaluate the dereverberation methods with two sets of RIRs. One set has a

speaker-microphone distance of 2 m and a reverberation time from 200 to 1200 ms,

while the other has a speaker-microphone distance of 4 m with the same reverberation

times. The results averaged over the 8 utterances are shown in Figs. 2.4-2.7 for the

four measures, where “rev”, “inv”, “Wu”, “LP” and “prop” indicate the calculated

values for the reverberant speech signals, the inverse-filtered speech signals using the

our inverse filtering method presented in Section 2.1, and the processed speech signals

using the two-stage method proposed by Wu and Wang [19], the two-stage method

proposed in [17] and the proposed two-stage method3. The upper plots denote a

speaker-microphone distance of d = 2 m, and the lower ones a distance of d = 4 m.

The SegSIR values in Fig. 2.4 show a significant reduction in reverberation dis-

tortion using the proposed two-stage method compared to inverse filtering and the

two other methods. The difference between the first-stage method (inverse filtering)

and the two-stage method (inverse filtering with spectral subtraction) verifies that

the proposed spectral subtraction can effectively reduce the distortion remaining af-

ter inverse filtering. The effectiveness of the proposed method compared to that of

Wu and Wang is very evident with larger speaker-microphone distances (d = 4 m).

This is because in this case, the distortion is dominated by early reverberation effects,

and the inverse filtering method presented in Section 2.1 is superior in reducing these

effects. Fig. 2.5 shows that the BSD is greatly reduced by both inverse filtering and

the proposed two-stage method, compared to the approach by Wu and Wang and the

3In the noise free case, the spectral subtraction algorithm for denoising described in Section 2.2
is not employed.
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spectral-temporal processing method [17], particularly when d = 4 m (lower plot).

The reduction in early reverberation distortion is clearly evident in Fig. 2.6, but the

Wu and Wang method is only effective for low reverberation times (RT60 ≤ 400 ms)

[19]. Note, however, that our inverse filtering method is much better even in this

region. Spectral-temporal processing provides a slightly higher LP residual kurtosis

than the original reverberant speech signal, as it is not able to deal with the problem

of early reverberation. The PESQ results in Fig. 2.7 indicate that the speech quality

is improved by the inverse filtering and proposed methods compared to the others.

The improvement provided by our second stage compared to the first stage indicates

the effectiveness of the spectral subtraction method in reducing the late reverberation

effects while introducing negligible audible artifacts. Finally, the mean opinion score

(MOS) results in Fig. 2.4.1 also confirm that our proposed method provides superior

speech quality for all reverberation times considered.

We also conducted experiments using four measured binaural RIRs from the

Aachen Impulse Response (AIR) database [41]: 1) office, RT60 = 0.66 s, d = 3

m; 2) meeting room, RT60 = 0.67 s, d = 2.8 m; 3) lecture room, RT60 = 1.23 s,

d = 8.68 m; 4) stairway, and RT60 = 1.95 s, d = 3 m, with an azimuth angle of 30o.

All RIRs were measured without a dummy head using only the right channel [41].

The average of the four objective measures for the 8 utterances are shown in Figs.

2.9-2.12. Fig. 2.9 indicates that the proposed two stage method “prop” successfully

decreases the reverberation effects in all four room types, and provides better perfor-

mance than the other methods in all cases. Fig. 2.10 shows that the colouration and

late reverberation effects are mitigated using our inverse filtering method “inv” and

the proposed method “prop”. Thus our inverse filtering is effective in real situations.

Fig. 2.11 (lower plot) demonstrates that these methods can deal with the problem

of early reverberation while the Wu and Wang method “Wu” and spectral-temporal

processing “LP” provides little improvement. Finally, Fig. 2.12 confirms that better

speech quality is obtained using our proposed method in real environments compared

to the other methods.

To further illustrate the performance of the proposed dereverberation method,

the speech enhancement for a female speaker obtained from the TIMIT database is

shown in Fig. 2.15. The reverberant speech is constructed by convolving the clean

speech signal with the RIR for RT60 = 1 s and d = 2 m, which is shown in Fig.

2.13 (a). Fig. 2.15 shows that the reverberation smears the harmonic structure and

temporal properties of the speech signal so that the silent gaps between words are
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Figure 2.4: SegSIR for different reverberation times, d = 2 m (upper plot) and d = 4
m (lower plot). “rev”, “inv”, “Wu”, “LP” and “prop” represent the SegSIR for
the reverberant speech, the inverse-filtered speech using the inverse filtering method
proposed in [27]-[28], and the processed speech using the Wu and Wang method, the
method in [17] and the proposed two-stage method.
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Figure 2.5: BSD for different reverberation times, d = 2 m (upper plot) and d =
4 m (lower plot). “rev”, “inv”, “Wu”, “LP” and “prop” represent the BSD for
the reverberant speech, the inverse-filtered speech using the inverse filtering method
proposed in [27]-[28], and the processed speech using the Wu and Wang method, the
method in [17] and the proposed two-stage method.
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Figure 2.6: LP residual kurtosis for different reverberation times, d = 2 m (upper
plot) and d = 4 m (lower plot). “rev”, “inv”, “Wu”, “LP” and “prop” represent
the values for the reverberant speech, the inverse-filtered speech using the inverse
filtering method proposed in [27]-[28], and the processed speech using the Wu and
Wang method, the method in [17] and the proposed two-stage method.
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Figure 2.7: PESQ for different reverberation times, d = 2 m (upper plot) and d =
4 m (lower plot). “rev”, “inv”, “Wu”, “LP” and “prop” represent the PESQ for
the reverberant speech, the inverse-filtered speech using the inverse filtering method
proposed in [27]-[28], and the processed speech using the Wu and Wang method, the
method in [17] and the proposed two-stage method.
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Figure 2.9: SegSIR for four real reverberant environments. “rev”, “inv”, “Wu”, “LP”
and “prop” represent the reverberant speech, the inverse-filtered speech using the
inverse filtering method proposed in [27]-[28], and the processed speech using the Wu
and Wang method, the method in [17] and the proposed two-stage method.
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Figure 2.10: BSD for four real reverberant environments. “rev”, “inv”, “Wu”, “LP”
and “prop” represent the reverberant speech, the inverse-filtered speech using the
inverse filtering method proposed in [27]-[28], and the processed speech using the Wu
and Wang method, the method in [17] and the proposed two-stage speech enhance-
ment method.



35

1 2 3 4
0

2

4

6

8

10

12

Reverberant room type

S
eg

K
ur

t

 

 
rev
inv
prop
Wu
LP

Figure 2.11: LP residual kurtosis for four real reverberant environments. “rev”, “inv”,
“Wu”, “LP” and “prop” represent the reverberant speech, the inverse-filtered speech
using the inverse filtering method proposed in [27]-[28], the processed speech using
the Wu and Wang method, the method in [17] and the proposed two-stage method.
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Figure 2.12: PESQ for four real reverberant environments. “rev”, “inv”, “Wu”,
“LP” and “prop” represent the reverberant speech, the inverse-filtered speech using
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response using the inverse filtering method proposed in [27]-[28].
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filled. In order to show the effectiveness of our proposed pre-echo reduction algorithm,

the processed speech is shown using our two-stage method with and without this pre-

echo reduction in Figs. 2.15 (g-h) and 2.15 (i-j), respectively. It is clear that without

the reduction algorithm, the processed speech contains pre-echo effects which also

fill the silent gaps. However, these effects are largely reduced when the reduction

algorithm is used. This clearly demonstrates the advantage and effectiveness of our

algorithm to reduce the pre-echo effects. Comparing the results of our method in

Fig. 2.15 (i-j) with the reverberant speech in Fig. 2.15 (c-d), the reverberation effects

are greatly reduced and the harmonic structure is largely restored, with decreased

smearing. The corresponding results for the Wu and Wang method given in Fig. 2.15

(e-f) show little improvement in the harmonic structure. This is because using only

spectral subtraction for inverse filtering is ineffective for long reverberation times [19].

Thus our two-stage dereverberation method significantly outperforms their approach.

2.4.2 Speech Denoising in Reverberant Environment

In this section, we evaluate the performance of our denoising algorithm in different

noisy reverberant conditions. The reverberant speech signals are obtained by con-

volving the clean speech with the RIR (RT60 = 1 s, d = 2 m and d = 0.5 m). These

signals are then added to two types of additive noise: 1) white computer generated

Gaussian noise, and 2) recorded babble noise4. The Signal to Noise Ratio (SNR) was

varied from -5 to 40 dB. Note that only the denoising algorithm is used in this section

in order to evaluate additive noise reduction performance. The denoising algorithm

presented in Section 2.2 is compared with the algorithms in [36]-[39]. The Segmental

Signal-to-Noise Ratio (SegSNR) as defined in [42] (p. 45, eq. 2.12) and the PESQ

are used to evaluate the performance of the denoising algorithms. The SegSNR is

clamped to between 35 dB and -10 dB as suggested in [43]. The results averaged

over 8 utterances (four male and four female speakers) are shown in Figs. 2.16-2.17

where “noisy”, “prop”, “Berouti”, “Cohen”, “Gusta”, and “Kamath” denote the val-

ues for the noisy reverberant speech signal, and the processed speech signal using our

denoising algorithm and methods in [36], [37], [38], and [39], respectively.

Fig. 2.16 shows that the proposed denoising algorithm has higher SegSNR val-

ues compared with the other algorithms. This demonstrates the effectiveness of the

algorithm in reverberant conditions. It is clear that the Berouti algorithm has the

4[online]. Available: http://www.ee.columbia.edu/ dpwe/sounds/noise/babble.wav
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Figure 2.15: Speech signals for RT60 = 1000 ms, d = 2 m and SNR = ∞, (a) clean
speech, (b) spectrogram of the clean speech, (c) reverberant speech, (d) spectrogram
of the reverberant speech, (e) speech processed using the Wu and Wang method, (f)
spectrogram of the processed speech using the Wu and Wang method, (g) speech
processed using the proposed algorithm with out pre-echoes effect reduction, (h)
spectrogram of the processed speech using the proposed algorithm with out pre-
echoes effect reduction, (i) speech processed using the proposed algorithm, and (j)
spectrogram of the processed speech using the proposed algorithm.
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Figure 2.16: SegSNR for different noise conditions with RT60 = 1000 ms d = 2 m and
d = 0.5 m. “noisy”, “prop”, “Berouti”, “Cohen”, “Gusta”and “Kamath” represent
the SegSNR for the noisy reverberant speech, and the processed speech using our
denoising algorithm and the methods in [36], [37], [38], and [39], respectively. The
upper plot corresponds to white noise, and the lower to babble noise.
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Figure 2.17: PESQ evaluations in different noise conditions with RT60 = 1000 ms
d = 2 m and d = 0.5 m. “noisy”, “prop”, “Berouti”, “Cohen”, “Gusta”and “Kamath”
represent the PESQ values of the noisy reverberant speech, the processed speech
using our denoising algorithm, the one using the method in [36], [37], [38], and [39],
respectively. The upper plot corresponds to white noise, and the lower is related to
babble noise.
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next best performance. This is not surprising as the proposed algorithm is based

on the work of Berouti et al. [36]. Fig. 2.17 confirms that better speech quality

is obtained with the proposed algorithm in reverberant environments compared to

the other methods. Our extensive simulation results in different reverberant con-

ditions show similar results. In addition, audio demonstrations can be found at:

https://sites.google.com/site/derverberation/experimental-data for noisy

reverberant conditions with SNR = 25 dB and an RIR for RT60 = 1000 ms and

d = 0.5 m. Based on our experiments, it can be concluded that our denoising algo-

rithm under reverberant conditions is superior to the other methods, especially when

the noise level is high and the additive noise is nonstationary (babble noise). To

further illustrate the performance in low SNR conditions with additive babble noise,

the denoising results for a female speaker from the TIMIT database are shown in

Fig. 2.18. A clean speech signal was convolved with the RIR (with RT60 = 1000 ms

and d = 0.5 m), to produce the reverberant speech. This is shown in Fig. 2.18 (a)

(speech waveform) and Fig. 2.18 (b) (speech spectrogram). The reverberant speech

signal was added to babble noise with SNR = 5 dB resulting in Fig. 2.18 (c-d). The

processed speech using the Berouti et al. algorithm [36] is shown in Fig. 2.18 (e-f),

and using our denoising algorithm is shown in Fig. 2.18 (g-h). It is clear from this

figure that the Berouti et al. algorithm distorts the harmonic structure of the speech

signal in this very noisy environment. Conversely, the proposed algorithm success-

fully suppresses the additive noise while having only a minor effect on the signal when

compared with the original reverberant speech.

2.4.3 Reverberant Speech Enhancement in Noisy Conditions

In this section, we evaluate the performance of our speech enhancement method with

both noise and reverberation. The noisy reverberant speech signals were produced

by convolving the clean speech with the RIR (RT60 = 1 s and d = 2 m), and then

noise was added. As before, the additive noise is white computer generated Gaussian

noise and recorded babble noise. The SNR was varied from -5 to 40 dB. In order

to fairly compare our method with that of Wu and Wang [19] and spectral-temporal

processing [17], their algorithms were modified by adding the denoising algorithm in

Section 2.2 prior to spectral subtraction. The speech signal was convolved with the

RIR and then the white or babble noise was added. The inverse filters were obtained

using the algorithm proposed in Section 2.1. As an example, the equalized impulse
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Figure 2.18: Speech signals for RT60 = 1000 ms, d = 0.5 m and SNR = 5 dB (babble
noise). Reverberant speech (a), spectrogram of the reverberant speech (b), rever-
berant speech added to babble noise (c), and spectrogram of the noisy reverberant
speech (d). Denoising results: speech processed using the Berouti algorithm [36] (e),
spectrogram of the processed speech using the Berouti algorithm (f), speech processed
using the proposed algorithm (g), and spectrogram of the processed speech using the
proposed algorithm (h).
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responses are shown for two SNR values 10 dB and 15 dB in Fig. 2.14. These results

indicate that the inverse filter can be accurately estimated in low-to-moderate noise

conditions (SNR ≥ 10 dB).

The four measures discussed previously were used to evaluate the speech enhance-

ment methods. The results averaged over 8 utterances (four male and four female

speakers) are shown in Figs. 2.19-2.22 where “received”, “Wu”, “LP” and “prop”

denote the values for the noisy reverberant speech signal, and the processed speech

signal using the Wu and Wang method, the spectral-temporal processing algorithm,

and the proposed two-stage method. The upper plots correspond to white noise, and

the lower to babble noise. The SegSIR improvement in Fig. 2.19 shows that our two-

stage method significantly reduces the distortion caused by noise and reverberation.

In addition, compared to the other two methods, the performance of our method

is better for SNR ≥ 10 dB, largely because the first-stage inverse filtering is more

effective under these conditions. The BSD in Fig. 2.20 also shows that the proposed

method can deal with both noise and reverberation, and reduce the colouration and

reverberation tail effects under noisy conditions, whereas the other two method per-

form poorly, especially for SNR ≥ 10 dB. This again shows the usefulness of our

skewness-based inverse filtering method as the first stage and the efficiency of the

proposed spectral subtraction method in dealing with reverberation in noise. The

SegKurt in Fig. 2.21 shows the effectiveness of the methods in removing colouration

effects in noisy reverberant conditions. The proposed method is again superior to the

other two methods for SNR ≥ 10 dB since the inverse filtering method proposed in

[27]-[28] works well under these conditions. The most commonly employed perceptual

measure, PESQ, is shown in Fig. 2.22. This clearly illustrates the effectiveness of

our approach compared with the other methods. Finally, the MOS evaluation for

different reverberant noisy conditions (with both white Gaussian noise and babble

noise), with an SNR from 5 to 35 dB are shown in Figs. 2.23 and 2.24. So it can be

seen from the figures that the proposed method has higher scores in noisy reverberant

conditions than the Wu and Wang method. An audio demonstration can be found at

https://sites.google.com/site/derverberation/experimental-data.

2.4.4 Conclusions

In this chapter, a two-stage single-microphone speech enhancement method was pro-

posed which employs inverse filtering and spectral subtraction. The inverse filtering
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Figure 2.19: SegSIR for different noisy conditions with RT60 = 1000 ms and d = 2
m. “received”, “Wu”, “LP” and “prop” represent the SegSIR of the received speech,
and the processed speech using the Wu and Wang method, the spectral-temporal
processing method [17], and the proposed method. The upper plot corresponds to
white noise, and the lower corresponds to babble noise.
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Figure 2.20: BSD for different noisy conditions with RT60 = 1000 ms and d = 2
m. “received”, “Wu”, “LP” and “prop” represent the BSD of the received speech,
and the processed speech using the Wu and Wang method, the spectral-temporal
processing method [17], and the proposed method. The upper plot corresponds to
white noise, and the lower corresponds to babble noise.
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Figure 2.21: LP residual kurtosis in different noisy conditions with RT60 = 1000 ms
and d = 2 m. “received”, “Wu”, “LP” and “prop” represent the LP residual kurtosis
of the received speech, and the processed speech using the Wu and Wang method,
the spectral-temporal processing method [17], and the proposed method. The upper
plot corresponds to white noise, and the lower corresponds to babble noise.
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Figure 2.22: PESQ in different noisy conditions with RT60 = 1000 ms and d = 2
m. “received”, “Wu”, “LP” and “prop” represent the PESQ of the received speech,
and the processed speech using the Wu and Wang method, the spectral-temporal
processing method [17], and the proposed method. The upper plot corresponds to
white noise, and the lower corresponds to babble noise.



50

5 15 25 35

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R R R RW W W WP P P P

SNR (dB)

M
O

S
 s

co
re
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reduces the early reverberation even in highly reverberant rooms (RT60> 1 s) with

low to moderate additive background noise. A noise suppression method based on

spectral subtraction was used to reduce the additive background noise in reverber-

ant conditions. Finally, the residual reverberation effects were reduced by a method

based on spectral subtraction which provides fewer residual artifacts than other meth-

ods. Consequently, the proposed method has several significant advantages over other

single microphone methods:

a) the speech enhancement method is blind.

b) both early and late reverberation is reduced.

c) speech enhancement is achieved even in very high reverberation conditions,

i.e., a high reverberation time with a low Direct to Reverberation Ratio (DRR).

d) it is robust to additive background noise.

e) only minor artifacts are introduced, including musical noise.
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Chapter 3

Speaker Localization in a Noisy

Reverberant Room

Localization of acoustic sources using microphone arrays is an important task in many

applications of practical interest. Typical examples can be found in videoconferencing,

multimedia, surveillance, hance-free talking systems. The three broad strategies to

deal with this problem are: 1) steered response power of a beamformer [44]-[45],

2) high resolution spectrum estimation [46]-[47], and 3) Time Difference Of Arrival

(TDOA) estimation [48]-[49].

In a steered beamformer, the microphone array is steered to various locations

to search for a peak in the output power. The delay-and-sum beamformer will add

appropriate time shifts to the received signals to compensate for the propagation

delays. Once these signals are time-aligned, they are added to create a single, en-

hanced output signal. While beamforming has been extensively used in speech-array

applications for voice capture, it has rarely been applied to the speaker localization

problem. The task of computing the steered output power for an appropriate dense

set of candidate locations is computationally complex and highly dependent on the

spectral content of the source signal.

The second category of source location algorithms are based on high resolution

spectrum estimation. In this case the spatio-spectral correction matrix is derived from

the signals received at the microphones. This matrix is derived using an ensemble

average of the signals over the intervals in which the noise and the sources are assumed

to be stationary, thus the estimation parameters are assumed to be constant. These

high resolution methods are designed for narrowband stationary signals, and hence
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are difficult to apply in the case of wideband non-stationary signals like speech.

Methods based on TDOA estimation involve a two-step process, and are more

suitable for speech source localization than the previous two approaches. In the first

step, the relative TDOA between pairs of microphone signals is estimated. Then in

the second step, the source position is obtained from the estimated TDOAs according

to some strategy (e.g. geometrical triangulation). Accurate and robust Time Delay

Estimation (TDE) is the key to the effectiveness of the localization in this category.

Thus in this chapter, the TDE problem is considered to provide robust techniques to

estimate the TDOA in a noisy reverberant room.

3.1 Time Delay Estimation in a Noisy Reverber-

ant Room

The goal of Time Delay Estimation (TDE) methods is to estimate the relative Time

Difference of Arrival (TDOA) between spatially separated microphones. The esti-

mated time delay information is useful in determining the location of a speaker in

a room and tracking the source of a signal. It is also used for applications such as

speech enhancement, automatic camera tracking in video-conferencing, and micro-

phone array beam steering. This is a difficult problem since the input signal typically

has colored and non-stationary characteristics, and additive noise is present. The

presence of reverberation is particularly detrimental because of its long duration and

the nonminimum phase nature of the Room Impulse Response (RIR).

The most popular methods for TDE are based on locating the peak in the cross-

correlation of the signals received by a pair of microphones [50]. To better deal

with noise and reverberation, a number of Generalized Cross-Correlation (GCC) al-

gorithms have been proposed which employ weighting functions [51]. These include

constant weighting, the Smoothed Coherence Transform (SCOT), the Phase Trans-

form (PHAT), and Maximum-Likelihood (ML) processing [51]. GCC methods work

well in moderate background noise, but can fail even under moderate reverberation,

which is common in typical acoustic environments. To improve the performance in

noise and reverberation, improved TDE algorithms based on the GCC have been pro-

posed e.g. [54] and [30]. For example, cepstral prefiltering has been employed which

is based on the estimation and subtraction of the minimum-phase component of the

channel cepstrum from the total cepstrum of each microphone signal [54] . However,
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noise remains a problem when the Signal to Noise Ratio (SNR) is low, and most TDE

methods perform poorly in the presence of significant reverberation. The failure to

work well under reverberant conditions is due to the use of an ideal signal model

consisting of single propagation paths from the source to the microphones.

Unlike the methods described above, the adaptive Eigenvalue Decomposition

(EVD) technique [56] models the reverberation explicitly. The RIRs are blindly es-

timated using the covariance matrix of the signals. Although this method provides

improved robustness to reverberation, the zeros of the two RIRs can be close, espe-

cially in high reverberation conditions, which leads to an ill-conditioned system that

is difficult to identify [57]. To deal with this problem, the EVD method has been

extended to employ frequency-domain block-processing and multichannel techniques

[57]. More than two microphones can be used to provide additional (redundant)

information and improve performance. However, in some applications only two mi-

crophones are available to estimate the TDOA. Thus it is of significant practical

importance to develop robust and efficient techniques which utilize the information

from only two microphones for TDE applications. Consequently, in this research

we consider the TDE problem using only two microphones receiving a signal from

a single source. In the case of multiple sources, approaches such as blind source

separation-based localization can be used [58]-[59]. These methods typically rely on

the sparseness of the speech or assume mutually uncorrelated sources.

From the above discussion, TDE using only two microphones when the SNR is

low and the reverberation is high remains a very challenging problem. In this thesis,

two TDE methods are presented using the signals received by two microphones from

a single source. The first is based on Adaptive Inverse Filtering (AIF), and employs

an estimated inverse filter of the RIR. This makes it very robust to reverberation,

but also computationally demanding due to the adaptive estimation of the inverse

filter for at least one microphone. In addition, it performs poorly in very low SNR

conditions and when the input signals have a symmetric pdf. This motivates us to

propose another method to resolve these problems. The second method is based on the

GCC and employs two preprocessing stages, namely all-pass processing and spectral

subtraction, to improve the performance in noisy reverberant conditions. This results

in a robust technique with lower computational complexity that performs better than

existing two microphone-based techniques in time-varying and real noise reverberant

conditions.

The contributions of the first proposed method based on AIF are as follows.



56

• In our previous work [31], the TDOA was estimated using the inverse filter of

the RIRs which were estimated separately using the approach in Section 2.1.

In this work, the estimated inverse filter of the first microphone is used as the

initial filter in estimating the inverse filter of the second microphone. This

increases the speed of estimation and requires less input data. Then the TDE

method in [31] is further improved by estimating the required delay to be used

with the LP residual signals.

• An algorithm is developed to estimate the inverse filter of the second micro-

phone directly using the estimated inverse filter of the first microphone. This

significantly decreases the computational complexity. A general TDE method is

proposed based on this algorithm which performs well in a variety of conditions

with a negligible number of TDOA estimation failures. It can be used for any

input signal which has an asymmetric pdf.

To the best of our knowledge, no other TDE method based on the signals from only

two microphones provides performance similar to the proposed approach in reverber-

ant conditions in terms of the accuracy and number of TDOA estimation failures.

The contributions of the second method based on the GCC are as follows.

• All-pass processing is proven to improve the performance in reverberant condi-

tions.

• Combining spectral subtraction preprocessing with all-pass processing improves

the performance in both noisy and reverberant conditions.

The main advantages of the proposed TDE methods over the other approaches

are summarized below.

1. Signals are required from only two microphones.

2. Both methods are more robust to reverberation and can be used in environ-

ments with high reverberation times and low direct to reverberation ratios.

3. Both methods are more robust to additive noise.

4. The GCC-based method has low computational complexity and can be used

in real-time applications.

5. The GCC-based method performs well in time-varying environments even

with high reverberation, and is not sensitive to the type of input signal.



57

3.1.1 Time Delay Estimation Based on Adaptive Inverse Fil-

tering

In this section, we present a Time Delay Estimation (TDE) method based on Adaptive

Inverse Filtering (AIF). In order to calculate the TDOA between the microphones, the

inverse filter of each Room Impulse Response (RIR) h−1
i , i = 1, 2, is estimated using

the method presented in Section 2.1. TDE estimation based on AIF requires a good

inverse filter with a specific characteristic, namely a dominant peak that exponentially

decays in reverse time (although it may have two dominant peaks). To check if

the inverse filter is good, it is sufficient to check the monotonicity of the envelope

of the inverse filter in reverse time from the maximum. For example, a RIR with

RT60 = 1000 ms obtained using the image method [3] is shown in Figs. 3.1 (a) and

(d). The inverse filter of this RIR was estimated using inverse filter lengths of 3000

and 6000 samples, and the results are shown in Fig. 3.1 (b) and (e), respectively.

Fig. 3.1 (b) illustrates a poor inverse filter as it does not have an envelope which is

exponentially decaying in reverse time. Fig. 3.1 (e) shows a good inverse filter, which

indicates that increasing the filter length results in an inverse filter which is suitable

for TDE applications. This is because the dominant peak can be clearly identified.

The equalized impulse responses obtained by convolving the RIR with the estimated

inverse filters are shown in Figs. 3.1 (c) and (f). Both are impulse-like functions and

thus both inverse filters may be suitable for speech enhancement applications, but

the shorter inverse filter is not suitable for TDE applications.

In order to calculate the TDOA between two microphones, the inverse filter of each

RIR must be estimated, but estimating these separately results in high computational

complexity. Here, this complexity is reduced by estimating the inverse filter for the

second microphone using the estimated filter for the first microphone as the initial

inverse filter. This improves the convergence rate and decreases the amount of input

speech data required. As an example, RIRs with RT60 = 400 ms were obtained using

the image method [3] for two microphones 1.118 m apart. The inverse filters for the

two microphones using an all-pass filter as the initial filter are shown in Figs. 3.2

(a) and (b), and the filter for the second microphone using (a) as the initial filter is

shown in Fig. 3.2 (c). The average LP residual skewness for each estimation iteration

corresponding to these inverse filters is shown in Fig. 3.2 (d). This shows that the

algorithm converges much faster when (a) is used as the initial filter. In addition, the

required input speech data is approximately halved.
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Figure 3.1: RIR with RT60 = 1000 ms (a) and (d), inverse filters estimated using
different filter lengths (b) and (e), and the corresponding equalized impulse responses
(c) and (f), respectively. By definition, (b) represents a poor inverse filter and (e) a
good inverse filter.
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Figure 3.2: The inverse filters for two RIRs with RT60 = 400 ms (a) and (b) in-
verse filters of the first and second RIRs using an all-pass filter as the initial filter,
respectively, (c) inverse filter of the second RIR using (a) as the initial filter, and (d)
the average LP residual skewness for each iteration of the inverse filter estimation in
(a)-(c).
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Relationship between the Inverse Filter and Propagation Delay

If we have a good inverse filter estimate for the i-th microphone then

hi[n] ? ĥ−1
i [n] ≈ κiδ[n−Di], (3.1)

where hi[n] and ĥ−1
i [n] are the RIR and estimated inverse filter, Di is the unknown

delay, κi is a constant, and ? denotes convolution. As an example, two RIRs both with

reverberation time RT60 = 400 ms are given in Figs. 2.13 (a) and (b) for speaker-

microphone distances d = 1 m and d = 2 m, respectively. The corresponding inverse

filters are shown in Figs. 2.13 (c) and (d). These results show that the inverse filters

are similar to delayed time-reversed versions of the RIRs. The equalized impulse

responses obtained by convolving the inverse filters with the corresponding RIRs are

shown in Figs. 3.4 (a) and (b).

Since it can be assumed that the RIR is a white random process [10], the convo-

lution of hi[n] with hi[−n] is approximately proportional to an unit impulse

hi[n] ? hi[−n] ≈ κhδ[n]. (3.2)

This is confirmed by Figs. 3.4 (c) and (d), which show the autocorrelation functions of

the RIRs in Figs. 2.13 (a) and (b), respectively. From this figure, the autocorrelations

of the RIRs are approximately unit impulses located at the origin. This also holds for

the equalized impulse responses. Comparing (3.1) and (3.2), we obtain the following

approximation

ĥ−1
i [n] ≈ κi

κh
hi[Di − n]. (3.3)

This is confirmed by the results in Fig. 2.13. Thus the index of the maximum value

of the inverse filter and the corresponding RIR are related according to

Di = arg max
n

ĥ−1
i [n]− arg max

n
hi[n]. (3.4)

For two microphones, from (3.4) we have that

TDOA = Dinv −D, (3.5)
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Figure 3.3: (a) and (b) RIR with RT60 = 400 ms and d = 1 and d = 2 m, respectively,
and (c) and (d) the corresponding inverse filters.

where

TDOA = arg max
n

h2[n]− arg max
n

h1[n], (3.6)

Dinv = arg max
n

ĥ−1
2 [n]− arg max

n
ĥ−1

1 [n], (3.7)

D = D2 −D1. (3.8)

The Proposed TDE method based on adaptive inverse filtering

A block diagram of the TDE method based on the two-channel AIF algorithm is shown

in Fig. 3.5. The inverse filter estimate for the first microphone is h−1
1 [n]. This estimate

is used as the initial filter for estimating the inverse filter of the second microphone

h−1
2 [n]. In contrast to the method in [31], the required delay D is estimated using the
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Figure 3.4: (a) and (b) the equalized impulse responses for the RIRs in Figs. 1 (a)
and (b), respectively, and (c) and (d) the corresponding autocorrelation functions.
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Figure 3.5: Block diagram of the TDE method based on the two-channel AIF algo-
rithm.

inverse-filtered LP residual signals. The estimated inverse filters used to calculate the

inverse-filtered LP residual signals are

ỹ1[n] = x̃1[n] ? h−1
1 [n], (3.9)

ỹ2[n] = x̃2[n] ? h−1
2 [n], (3.10)

where x̃1[n] and x̃2[n] are the LP residual signals for the first and second microphones,

respectively. The cross-correlation of ỹ1[n] and ỹ2[n] is

R12[n] = ỹ1[n] ? ỹ2[−n], (3.11)

and the index of the maximum of R12[n] is

D = arg max
n
{R12[n]}. (3.12)

Finally, the TDOA between the two microphones is estimated using (3.5).

This method requires that the inverse filter of each channel be estimated sepa-

rately. To reduce the computational complexity, an estimate of the inverse filter of the

second channel can be obtained using the estimated inverse filter of the first channel.
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Figure 3.6: Block diagram of the proposed TDE method based on the one-channel
AIF algorithm.
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This is most effective when the two RIRs have similar characteristics, which is often

the case.

Let the received speech signals obtained by the two microphones be xi[n], i = 1, 2.

The corresponding received speech signals can be modeled as

x1[n] = s[n] ? h1[n], (3.13)

x2[n] = s[n] ? h2[n], (3.14)

where s[n], h1[n], and h2[n] represent the clean speech signal, the first RIR and the

second RIR, respectively. In the frequency domain, these can be written as

X1(f) = S(f)H1(f), (3.15)

X2(f) = S(f)H2(f), (3.16)

where X1(f), X2(f), H1(f), H2(f)), and S(f) are the fast Fourier transforms (FFTs)

of x1[n], x2[n], h1[n], h2[n], and s[n], respectively. The estimated inverse filters can

be expressed as

ĥ−1
1 [n] = h−1

1 [n] ? δ[n−D1], (3.17)

ĥ−1
2 [n] = h−1

2 [n] ? δ[n−D2]. (3.18)

Thus ĥ−1
2 [n] can be estimated using (3.15), (3.16) and (3.17), and the FFT of δ[n−D1]

which is e−j2πfD1 , giving

ĥ−1
2 [n] = F−1

(
X1(f)

X2(f)
F (ĥ−1

1 [n])

)
(3.19)

= F−1

(
S(f)H1(f)

S(f)H2(f)
F (h−1

1 [n] ? δ[n−D1])

)
= F−1

(
H1(f)

H2(f)

e−j2πfD1

H1(f)

)
= F−1

(
e−j2πfD1

H2(f)

)
= h−1

2 [n] ? δ[n−D1], (3.20)

where F and F−1 denote the FFT and inverse FFT, respectively.

For implementation purposes, the reverberant speech signals x1[n] and x2[n] can

be segmented into blocks of length L (the length of the inverse filter), giving x1[n, k]
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and x2[n, k], respectively, where k is the block number. Then the FFT of the averaged

blocks is

X1(f) = F

(
1

K

K∑
k=1

x1[n, k]

)
, (3.21)

X2(f) = F

(
1

K

K∑
k=1

x2[n, k]

)
, (3.22)

where K is the number of blocks. ĥ−1
2 [n] is then estimated using (3.19) as

ĥ−1
2 [n] = F−1

(
X1(f)F (ĥ−1

1 [n])

X2(f)

)
. (3.23)

Equation (3.20) shows that the estimated inverse filter for the second RIR using the

proposed algorithm has the same delay D1 as the first channel and thus D = 0 in

(3.5). A block diagram of the TDE method based on the one-channel AIF algorithm

is given in Fig. 3.6.

Figure 3.7 illustrates the proposed algorithm with two RIRs with RT60 = 400

ms and speaker-microphone distances of d = 2.06 m (Fig. 3.7 (a)), and d = 1.41

m (Figs. 3.7 (d) and (g)). The inverse filter of the first RIR was estimated using

the AIF algorithm in [28], and the resulting filter and corresponding equalized im-

pulse response are shown in Figs. 3.7 (b) and (c), respectively. Equation (3.23) was

then used to estimate the inverse filter of the second RIR and the resulting filter and

corresponding equalized impulse response are shown in Figs. 3.7 (e) and (f), respec-

tively. This clearly indicates that the estimated inverse filter obtained using (3.23) is

accurate and has a delay similar to that of the equalized impulse response. However,

if the AIF algorithm in [28] is used to estimate the inverse filter of the second RIR

independently, the resulting filter has a delay that differs from that of the equalized

impulse response as shown in Figs. 3.7 (h) and (j).

In the unlikely event that the second estimated inverse filter obtained using the

one-channel AIF algorithm is not suitable for TDE applications, i.e., it is not a good

inverse filter (which may occur as when the two microphones are far apart), the second

inverse filter can be estimated using the two-channel AIF algorithm. Based on this,

the AIF algorithm for TDE is summarized below.

1. The first inverse filter is estimated using the method presented in Section 2.1.
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Figure 3.7: The RIRs on the left, their estimated inverse filters in the middle, and the
convolution of each pair on the right. The estimated inverse filters (b) and (h) were
obtained using AIF, while the estimated inverse filter (e) was obtained using (3.23).
h1 has RT60 = 400 ms and d = 2.06 m, and h2 has RT60 = 400 ms and d = 1.41 m.

2. The second inverse filter is estimated using (3.23).

3. This second estimated filter is checked to see whether it is a good inverse filter.

4. If it is good, the TDOA is estimated by subtracting the indexes of the estimated

inverse filters. Otherwise, the second inverse filter is estimated using the first

inverse filter as the initial filter. Then the TDOA is estimated using (3.5).

In practice, the distance between microphones used for source localization is not large,

and the one-channel AIF algorithm almost always produces acceptable results.

Improved maximum value selection

As mentioned previously, an appropriate estimated inverse filter has the characteristic

of an exponentially decaying function in reverse time. According to (3.3), an inverse



68

0 500 1000 1500 2000 2500 3000 3500 4000
-1

-0.5

0

0.5

1

1.5
x 10-3

Sample

A
m

pl
itu

de
First maximum

Second maximum
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sponds to early reverberation while the second highest value corresponds to the direct
component of the RIR.

filter in reverse time should begin with a maximum value (related to the direct com-

ponent of the RIR), followed by smaller amplitude values corresponding to the early

reverberation of the RIR. However, it may happen that an inverse filter does not be-

gin with the maximum value in reverse time. Instead, it may begin with the second,

third or subsequent highest value. For example, Fig. 3.8 shows an inverse filter which

begins in reverse time with the second highest value, while the maximum corresponds

to early reverberation. As a result, instead of using the index of the maximum of the

inverse filter, the index of the first significant value of the inverse filter (which has

an exponentially decaying characteristic), should be used in (3.7). With this slight

modification, the number of TDOA estimation failures becomes negligible.

Figure 3.9 compares the percentage of failures for the proposed AIF method using

the above modification and the GCC method for TDOA estimation with 105 different
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pairs of RIRs and 8 different utterances (4 male speaker and 4 female speaker from

the TIMIT database sampled at 16 kHz). An acceptable estimate is defined as one

that satisfies

|TDOA| ≤ fs
dm
c
, (3.24)

where dm is the distance between microphones, fs = 16000 is the sampling rate,

and c = 340 m/s is the velocity of sound. The percentage of failures with the two

methods is shown in Fig. 3.9. The upper plot is for different reverberation times (15

RIRs for each RT60) and no noise, while the bottom plot is for different SNRs with

RT60 = 1000 ms and a speaker-microphone distance of d = 2 m. With reverberation

and no noise, the PHAT method has better performance than the other GCC methods,

while in noisy conditions the CC method outperforms the others. Thus the PHAT

method was used to obtain the results in Fig. 3.9 (a), and the CC method to obtain

the results in Fig. 3.9 (b). This figure clearly indicates that the proposed AIF method

is superior to the existing methods in terms of the percentage of failures.

Improved AIF-based TDE Method for Time-Varying Environments

In [28], it was shown that inverse filtering can be used in slow time-varying envi-

ronments where the speaker pauses after moving. This pause should be sufficiently

long to allow the inverse filter to be updated. The current inverse filter can be used

to initialize the algorithm. There are two problems with using this technique in a

time-varying environment. First, depending on the reverberation and changes in the

Direct to Reverberation Ratio (DRR)1, 5 to 10 s of input data are required in order

to accurately estimate the new inverse filter. Second, this update requires a sufficient

number of iterations to converge and so creates additional delay in the TDE. However,

these problems can be overcome by using the one-channel AIF algorithm.

Using the one-channel AIF, the inverse filter can be estimated from the received

reverberant speech signal using the method in [28]. This signal and the estimated

inverse filter are considered to be x1[n] and h−1
1 [n]. Then the inverse filter h−1

2 [n]

can be updated after each movement of the speaker even if the pause is very short

(less than 500 ms for high reverberation), using (3.23) where x2[n] is the received

speech signal after the speaker moves. The reason that the pause can be very short

is that the minimum length for x1[n] and x2[n] in (3.23) is the length of the inverse

filters h−1
1 [n] and h−1

2 [n]. According to [25], the maximum inverse filter length in high

1The DRR is the ratio of the direct path energy to the total reflective energy [28].
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Figure 3.9: The percentage of failures using the GCC [51] and proposed AIF methods.
The upper plot shows the results without noise and the bottom plot shows the results
for different SNRs when RT60 = 1000 ms and d = 2 m.

reverberation environments is only 6000 (375 ms), so the updates can be performed

quickly using a non-iterative technique.

Input Signal Types for the AIF-based TDE Method

The AIF method is an adaptive gradient-ascent algorithm with an objective function

which uses skewness (normalized third order moment), as a measure of the asymmetry

of the data around the sample mean [28]. In fact, the input signal should have an

asymmetric distribution with sufficient skewness so that the reverberation moves it

towards a symmetric Gaussian distribution with zero skewness. Then the inverse

filter of the room reverberation can be estimated by maximizing the skewness and

forcing the distribution to be asymmetric. However, speech signals typically have a

symmetric distribution (e.g. Laplacian or more generally super Gaussian) [28]. The

reason these signals can still be used with AIF methods is that a sufficiently long
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Figure 3.10: (a) a sequence of random variables from an asymmetric pdf with an
alpha-stable distribution [63], (b) a RIR with RT60 = 400 ms and d = 1.5 m, (c)
the estimated inverse filter using the proposed AIF method, and (d) the equalized
impulse response.

LP residual of the speech signal has higher skewness compared to the original speech

signal [28]. This is the reason that Figs. 3.5 and 3.6 have LP analysis blocks to

generate the LP residual signal.

As an example of a non-speech signal, a sequence of random variables with an

asymmetric pdf using the alpha-stable random number generator was generated [63].

This signal is shown in Fig. 3.10 (a), and was convolved with the RIR with RT60 =

400 ms given in Fig. 3.10 (b). The inverse filter of the RIR for this signal was

estimated using the technique in [28], and the result is shown in Fig. 3.10 (c). The

convolution of the RIR and the inverse filter (equalized impulse response) given in

Fig. 3.10 (d) verifies that the inverse filter has been accurately estimated. Note that

the LP analysis block is not employed when the input signal is not speech.
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3.1.2 Time Delay Estimation Using All-Pass Component Pro-

cessing and Spectral Subtraction

Although the proposed TDE method based on AIF is very accurate, it has some

drawbacks. First, the inverse filter estimation has high computational complexity.

This means that it requires a long input signal (e.g. 20 s for high reverberation

times) to converge to an acceptable inverse filter. Also, it requires approximately 300

iterations to estimate the inverse filter. Thus it may not be suitable for real-time

applications and time-varying environments. Second, it does not perform well when

the noise level is high (e.g. SNR < 10 dB). Finally, it is limited to input signals which

have an asymmetric pdf with sufficient skewness such as the LP residual of a speech

signal. To resolve these problems, a robust TDE method is presented in this section

based on all-pass component and spectral subtraction processing.

A typical signal x[n] has non-minimum phase and thus consists of a minimum

phase component xmin[n] convolved with an all-pass component xall[n], i.e.

x[n] = xmin[n] ? xall[n]. (3.25)

In the frequency domain, (3.25) can be written as

X(f) = Xmin(f)Xall(f), (3.26)

where X(f), Xmin(f) and Xall(f) are the FFTs of x[n], xmin[n] and xall[n], re-

spectively. Xmin(f) has no poles or zeros outside the unit circle. In addition,

|X(f)| = |Xmin(f)| and |Xall(f)| = 1.

Effect of All-Pass Component Calculation on the Cross-Correlation for

TDE

Let the received signal from the first and second microphones be

x(i)[n] = s[n] ? h(i)[n] i = 1, 2, (3.27)

respectively, where s[n] is the clean speech signal and h(1)[n], and h(2)[n] are the

corresponding RIRs. The noise is first assumed to be negligible and thus is ignored.

The effect of noise will be examined later. In the frequency domain, (3.27) can be
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written as

X(i)(f) = S(f)H(i)(f) i = 1, 2, (3.28)

where S(f), H(1)(f) and H(2)(f) are the FFTs of x(i)[n], h(1)[n], and h(2)[n], respec-

tively. Equation (3.27) can be written in terms of the corresponding minimum-phase

and all-pass components as

x
(i)
min[n] ? x

(i)
all[n] = (smin[n] ? sall[n]) ? (h

(i)
min[n] ? h

(i)
all[n]), (3.29)

= (smin[n] ? h
(i)
min[n]) ? (sall[n] ? h

(i)
all[n]) i = 1, 2. (3.30)

The all-pass components for the microphones are

x
(i)
all[n] = sall[n] ? h

(i)
all[n] i = 1, 2. (3.31)

In the frequency domain, these can be written as

X
(i)
all(f) = Sall(f)H

(i)
all(f) i = 1, 2. (3.32)

The cross-power spectrum of x(1)[n] and x(2)[n] is

Gx(1)x(2)(f) = Gss(f)H(1)(f)conj(H(2)), (3.33)

where Gss(f) is the power spectrum of s[n] and conj(·) denotes complex conjugate.

As a simple example, let h(1)[n] = δ[n] and h(1)[n] = αδ[n − nd], where α is the

amplitude and nd is the delay. Then (3.33) can be written as

Gx(1)x(2)(f) = αGss(f)e−j2πfnd . (3.34)

In order to estimate the delay nd using the Cross-Correlation (CC) method [50], the

index of the maximum peak of the CC must be estimated. The CC of x(1)[n] and

x(2)[n] is given by the IFFT of the cross-power spectrum given by

Rx(1)x(2) [n] = αRss[n] ? δ[n− nd]. (3.35)

One interpretation of (3.35) is that the unit impulse has been spread or smeared by

the signal spectrum Gss(f). If the source s[n] is white noise, its Fourier transform is a
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unit impulse and no spreading occurs. However, the signal spectrum such as that for

speech is typically far from a unit impulse thus it smears the cross-power spectrum.

Thus the CC peak at nd is not sharp. This makes it difficult if not impossible in

realistic situations with multiple delays to distinguish the peaks, which is a serious

problem for TDE.

In order to better understand the smearing problem, a TDE test was conducted

using the CC method with the white noise and voiced speech segments shown in Fig.

3.11. The two RIRs illustrated in Fig. 3.12 were considered. One has a single impulse

component at a delay of 25 samples (Fig. 3.12 (a)), while the second has a broader

response with decreasing amplitudes from samples 25 to 41 (Fig. 3.12 (b)). First, the

white noise segment as x(1)[n] was convolved with the single-delay RIR resulting in

x(2)[n]. The CC of these two signals is given in Fig. 3.13 (a) and shows a prominent

peak at sample 25. Then, the white noise segment as x(1)[n] was convolved with the

multiple component RIR resulting in x(2)[n], and the corresponding CC is shown in

Fig. 3.13 (b). This also has a prominent peak at sample 25. Thus when s[n] is a

white noise source, no spreading takes place and the CC always has an identifiable

peak at the correct delay (here sample 25). Second, the speech segment as x(1)[n] was

convolved with the two RIRs. For the single component RIR, the CC is shown in Fig.

3.13 (c). This again has a peak at sample 25. However, with the multiple component

RIR, the corresponding CC shown in Fig. 3.13 (d) has a peak at sample 31, which

is incorrect. Thus, the speech segment smears the CC which results in a TDE error

when the RIR has multiple components. This is a serious problem as such an RIR is

more typical than a single component RIR.

To solve the above problem, we propose using the all-pass component of the

received signals to calculate the CC. The cross-power spectrum of x
(1)
all [n] and x

(2)
all [n]

is

G
x

(1)
allx

(2)
all

(f) = Gsallsall(f)H
(1)
all (f)conj(H

(2)
all ), (3.36)

= H
(1)
all (f)conj(H

(2)
all ), (3.37)

since Gsallsall(f) = |Sall|2 = 1. For the simple case considered above

G
x

(1)
allx

(2)
all

(f) = e−j2πfnd . (3.38)

This indicates that all-pass processing eliminates the signal spectrum and thus no
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Figure 3.11: (a) a sequence of random variables from an asymmetric pdf with an
alpha-stable distribution [63], (b) a RIR with RT60 = 400 ms and d = 1.5 m, (c)
the estimated inverse filter using the proposed AIF method, and (d) the equalized
impulse response.
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Figure 3.12: The (a) single component RIR, and (b) multiple component RIR, used
for TDE using the CC method in [50].
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Figure 3.13: The CC for the white noise source with (a) single component RIR, and
(b) multiple component RIR; and the CC for the speech segment source with (c)
single component RIR, and (d) multiple component RIR.
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Figure 3.14: The CC for the speech segment source using all-pass processing with (a)
single component RIR, and (b) multiple component RIR.
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Figure 3.15: (a) CC for the speech source with a single component RIR, and (b) CC
for the speech source using all-pass processing with a single component RIR. In both
cases the SNR = 0 dB.

spreading of the unit impulse occurs in the CC. To examine the effectiveness of all-

pass processing for TDE using the CC method, the previous test with the speech

segment as the source s[n] was repeated. The CC for the single component RIR is

given in Fig. 3.14 (a), and correctly shows the peak at sample 25. The CC for the

multiple component RIR is given in Fig. 3.14 (b), and this also shows the peak at

sample 25. These results are similar to those obtained previously with the white noise

segment as the source. Therefore, the problem of cross-power spectrum smearing can

be solved by using all-pass processing.

The performance in noisy conditions is now examined. Let n(1)[n] and n(2)[n] be

the additive noise for the first and second received signals, respectively. The cross-
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Figure 3.16: Minimum-phase and all-pass components for the RIRs of Fig. 3.12: left
plots for the single component RIR and right plots for the multiple component RIR.
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power spectrum for a single component RIR can be approximated as2

Gx(1)x(2)(f) ≈ αGss(f)e−j2πfnd +Gn(1)n(2)(f), (3.39)

where Gn(1)n(2)(f) is the cross-power spectrum of the noise. When the SNR is not very

low (e.g. SNR ≥ 0), Gx(1)x(2)(f) can be characterized by the source spectrum Gss(f)

which has a non-flat spectrum and is largely sparse. Thus the cross-power spectrum

has characteristics similar to those of the source spectrum, so the CC method should

provide adequate performance under noisy conditions as long as the first term in (3.39)

is much larger than the second term. However, when all-pass processing is used, (3.38)

indicates that all-pass component of the source signal has a flat spectrum and thus a

cross-power spectrum which is similar to that of the noise. Therefore the cross-power

spectrum is more sensitive to noise when all-pass processing is used. To illustrate this,

the CC for the speech segment given in Fig. 3.11 (b) using the single component RIR

in Fig. 3.12 (a) when SNR = 0 dB is shown in Fig. 3.15 (a). This CC is broader than

of the noise-free result given in Fig. 3.13 (c), but the peak still occurs at sample 25.

However, when all-pass processing is employed the CC is smeared significantly and

appears random as shown in Fig. 3.15 (b). This CC has a peak at sample 42, which is

far from correct. Thus, while all-pass processing improves the CC performance when

the noise is not significant, this will be degraded by higher noise levels, resulting in

performance worse than without this processing.

Figure 3.16 gives the all-pass and minimum-phase components of the single com-

ponent RIR (left plots) and the multiple component RIR (right plots). This shows

that the all-pass component not only preserves the delay information (at sample 25),

but reduces the effects of secondary peaks after the direct path (called early rever-

beration). In the next section, this feature is exploited to improve the TDE.

TDE using All-Pass Processing in a Reverberant Environment

Reverberation typically affects the minimum phase and all-pass components of the

RIR differently, so these components will have distinct features. Two RIRs generated

using the image method [3] with RT60 = 200 ms are shown in Fig. 3.17 (a)-(b). Their

minimum-phase and all-pass components are shown in Fig. 3.17 (c)-(d) and (e)-(f),

respectively. The minimum phase components contain a dominant peak at the origin

2Here the noise and signal are assumed to be uncorrelated so the noise and signal cross terms are
ignored.



82

followed by several secondary peaks of smaller amplitude with an envelope that decays

rapidly, so the energy is concentrated near the origin [61]. On the other hand, the

all-pass component preserves the direct path delay information as it has a dominant

peak at the same position as in the original RIR. Comparing the secondary peaks

of the all-pass component with those of the original RIR, it is clear that the early

reverberation energy is greatly attenuated in the all-pass component. Thus all-pass

processing can be used to reduce the early reverberation while preserving the direct

path delay information, which is ideal for TDE applications. To better illustrate this

characteristic, 15 different RIRs with different speaker-microphone positions for RT60

ranging from 200 to 1200 ms were generated using the image method [3]. The Early

to Late Reverberation energy Ratio (ELRR) is defined as

ELRR = 10 log10

( ∑N
n=nd

h2[n]∑∞
n=nd

h2[n]−
∑N

n=nd
h2[n]

)
, (3.40)

where nd is the direct path position in samples and N is the boundary which deter-

mines the early reverberation. Here, this boundary is chosen such that subsequent

reflection amplitudes are no more than 10% of the direct path amplitude. The aver-

age ELRR for the 15 different RIRs for each value of RT60 and for the corresponding

all-pass components is shown in Fig. 3.18. It is clear that the ELRR is lower for the

all-pass components regardless of the reverberation time. Thus, using the all-pass

component will decrease the reverberation effects, in particular those due to early

reverberation.

The decomposition of the speech signals x[n] into their minimum phase xmin[n]

and all-pass xall[n] components using homomorphic filtering [61] is shown in Fig.

3.19. The input speech sequence is first zero-padded and then the cepstrum sequence

cx[n] is determined. This is achieved by taking the FFT of x[n] to get X(f), then

calculating the complex logarithm of X(f), and finally taking the IFFT. The complex

cepstrum of the minimum phase sequence cminx [n] is obtained by multiplying cx[n]

with 2u[n] − δ[n] where u[n] and δ[n] are the unit step and unit impulse functions,

respectively. Taking the FFT and then the exponential of cminx [n] gives the minimum

phase component in the frequency domain, Xmin(f). The IFFT of Xmin(f) is the

minimum phase component xmin[n]. Finally, the all-pass component in the frequency

domain Xall(f) is obtained by dividing X(f) by Xmin(f). The IFFT of Xall(f) is

the all-pass component xall[n]. Note that phase wrapping should not be done in the
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FFTs and IFFTs.

The Proposed TDE Method in a Noisy Reverberant Environment

Figure 3.17 (e)-(f) shows that reverberation effects remain in the all-pass component

in the form of small amplitude late impulses after the direct path. This will affect

the TDE especially when the reverberation time is high. In addition, noise will

degrade TDE performance. Spectral subtraction is used to deal with the problems

of late reverberation and additive noise. Thus the noise reduction method proposed

in [25] is first employed as it provides reasonably good performance in the presence

of reverberation. Then, the spectral subtractions method proposed in [19] is used to

deal with the remaining reverberation effects. Finally, all-pass processing is used.

The noise reduction technique in [25] proceeds as follows. First the Short-Time

Fast Fourier (STFT) transform of x[n], denotedX(l, f), l = 0, . . . , L−1, f = 0, . . . , F−
1, is calculated using a Hamming window of 16 ms duration with an 8 ms overlap
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Figure 3.19: Block diagram of the homomorphic filtering for minimum phase and
all-pass component decomposition.
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between frames. Then the amplitude of the enhanced speech spectra X(l, f) is ob-

tained by multiplying the amplitude of X(l, f) with the spectral denoising weight

filter Gn(l, f) giving

|X(l, f)| = |X(l, f)|Gn(l, f). (3.41)

The optimal denoising spectral weighting can be calculated as follows [25]

Gn(l, f) =


min

(
0.1
√

Pnoise(l,f)
|Xall(l,f)|2 , 1

)
for
√

Pnoise(l,f)
|Xall(l,f)|2 ≥

1
o(l,f)+0.1

1− o(l, f)
√

Pnoise(l,f)
|Xall(l,f)|2 otherwise

, (3.42)

where Pnoise(l, f) is the noise Power Spectral Density (PSD) which can be estimated

using the minimum statistics approach as long as the noise is reasonably stationary

[33]. o(l, f) is the subtraction factor which depends on the SNR and is given by [25]

o(l, f) =



√
1− 2

25
×min

(
max

(
10 log10

∑F−1
f=0 |Xall(l,f)|2∑F−1
f=0 Pnoise(l,f)

, −5

)
, 20

)
− 20

for
∑F−1

f=0 Pnoise(l, f) > 0; f = 0, . . . , F − 1

1 for
∑F−1

f=0 Pnoise(l, f) = 0; f = 0, . . . , F − 1

Next spectral subtraction is used to reduce the late reverberation as follows. The

PSD of the late impulse components is calculated as [19]

P late(l, f) = 0.32w(l −Dl) ? |X(l, f)|2, (3.43)

where w[n] is assumed to be the Rayleigh distribution [19]. Assuming a 50 ms delay

between the early and late impulses [19] and considering a frame shift of 8 ms for

FFT analysis, the respective delay for the weight function Dl is set to 7. The final

enhanced speech spectrum is obtained by multiplying the amplitude of X(l, f) with

the spectral dereverberation weight filter Gd(l, f) giving

|X̂(l, f)| = |X(l, f)|Gd(l, f). (3.44)

The optimal dereverberation spectral weighting is then calculated as follows

Gd(l, f) = max
{√

|X(l,f)|2−P late(l,f)

|X(l,f)|2 , 0.02
}
. (3.45)
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Figure 3.20: Block diagram of the proposed preprocessing stages for TDE methods.

Finally, the modified magnitude spectrum and the original phase of X(l, f) are com-

bined, and an Inverse Short-Time Fourier Transform (ISTFT) using the overlap-add

technique is employed to obtain the enhanced signal.

Finally, all-pass processing is used to decrease the early reverberation. While the

spectral subtraction and all-pass processing operations can be done in any order, our

extensive experiments show that spectral subtraction followed by all-pass processing

for the GCC-based TDE method provides better performance.

A block diagram of the preprocessing stages for the proposed TDE method is

shown in Fig. 3.20. The input signal is first transformed to the frequency domain

using the STFT with a Hamming window of size 128 ms with a 50% overlap. The

speech signal is then processed using the spectral denoising weight given in (3.42). The

resulting signal is used to obtain the spectral dereverberation weight from (3.45), the

corresponding enhanced spectrum is combined with the phase of the original signal to

get the final enhanced signal using an ISTFT. Finally, all-pass processing is performed

using the procedure in Fig. 3.19 to obtain the all-pass component. After performing

these preprocessing stages for both received speech signals, the TDOA is estimated

using the GCC method [51] or CC method [50].

3.1.3 The Cramer-Rao Lower Bound of the Reverberant Speech

Signal in Noisy Speech

In this section, we formulate again the Cramer-Rao Lower Bound (CRLB) for a more

general noisy reverberant speech signal which previously was calculated for simple

case of a delayed source signal plus noise in [64]. Let us assume that the received
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speech signal are denoted by x1[n] and x2[n] as

xi[n] = yi[n] ? ni[n], (3.46)

yi[n] = s[n] ? hi[n] i = (1, 2) (3.47)

where yi[n] and hi[n] are the reverberant speech and RIR for i-th microphone, respec-

tively. In frequency-domain, the above equations can be written as

Xi(f) = Yi(f)Ni(f), (3.48)

Yi(f) = S(f)Hi(f) i = (1, 2) (3.49)

where Xi(f), Yi(f), Ni(f), Hi(f) and S(f) are the FFTs transform of xi[n], y[n],

ni[n], hi[n], and s[n], respectively. The signal coherence can be defined as follows.

γ(f) =
X1(f)conj(X2(f))√
|X1(f))|2|X2(f))|2

(3.50)

where conj(.) denotes complex conjugate. The signal coherence has to be confined

as γ(f) ≤ 1. The CRLB can be written as [64]

CRLB = 2π

(
F−1∑
f=0

(
2π

F
f)2 × SNRTD(f)

)−1

(3.51)

where F is the number of frequency bins. SNRTD(f) is a SNR-like expression that

is defined as follows.

SNRTD(f) =

{
1

|γ(f)|2

[
1 +

(
|Y1(f)|2

|N1(f)|2

)−1
][

1 +

(
|Y2(f)|2

|N2(f)|2

)−1
]
− 1

}−1

(3.52)

In Section 3.1.4, we will use the
√
CRLB as the standard deviation of the CRLB for

our comparison.

3.1.4 Performance Results

In this section, the performance of the TDE methods is evaluated and compared in

reverberant and noisy conditions. Towards this end, 8 different utterances (4 male

speaker and 4 female speaker) from the TIMIT database sampled at 16 kHz are used.
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The image method [3] was used to generate the RIRs for a 5× 4× 6 m3 rectangular

room assuming omnidirectional microphones. The proposed TDE methods based on

AIF, and the CC method [50] and GCC method (PHAT is chosen here) [51] with

the proposed preprocessing stages, are compared with the eigenvalue decomposition

method (EVD) [56] and the original CC and GCC methods. A Hamming window

of length 128 ms was used with the GCC-based methods. The two preprocessing

stages (spectral subtraction and all-pass processing), are considered separately and

combined with the CC and GCC methods to clearly illustrate their effects. They are

denoted ”s” for spectral subtraction and ”ap” for all-pass processing. Thus, ”CC-ap”

represents the CC method with only all-pass processing and ”GCC-s-ap” denotes the

GCC method with both spectral subtraction and all-pass processing.

Ten RIRs with different microphone-speaker positions having RT60 in the range

200 ms to 1200 ms were generated. For these RIRs, the source location is [2 1 1] (m),

and the microphone locations are

[1.5 2 2.5], [2 1 2], [1 2 3], [1 1 1], [2 3 1], [3 1 2], [1 1 2], [1 .5 2], [0.5 1 1], and [2 1 2.5] (m)

The Direct to Reverberation Ratio (DRR) values for the RIRs with ten different

microphone positions are shown in Fig. 3.21. The DRR values for the RIRs are

calculated according to [27]. The TDOA estimate for each RT60 value was obtained

for all 45 possible pairs of RIRs with the 8 utterances using the TDE methods. An

acceptable estimate is defined according to (3.24).

Performance in Reverberant Noise-Free Conditions

In this section, the performance of the TDE methods is examined under different re-

verberant conditions when SNR =∞. The average estimation error and the standard

deviation (STD) of this error for the acceptable estimates for each of the methods are

shown in Figs. 3.22 and 3.23, respectively.

These figures show that both spectral subtraction and all-pass processing improve

the performance of the methods. However, all-pass processing provides better per-

formance than spectral-subtraction. It can be seen that using both preprocessing

stages for the GCC method results in better performance than the GCC-based TDE

methods. These results also confirm that the proposed AIF method is very accurate

even in highly reverberant conditions. To the best of our knowledge, no other TDE

method based on two microphones can provide similar performance. The proposed
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having RT60 in the range 200 ms to 1200 ms.
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Figure 3.22: TDOA average estimation error for the TDE methods in different rever-
berant environments using 8 speech utterances.
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Figure 3.23: TDOA estimation error standard deviation (STD) for the TDE methods
in different reverberant environments using 8 speech utterances.

TDE method using both spectral subtraction and all-pass processing (”GCC-s-ap”)

has the next best performance with a low estimation error even with high reverbera-

tion.

Performance in Noisy Reverberant Conditions

In this section, the performance of the TDE methods is evaluated in different noisy

reverberant conditions. Ten RIRs with RT60 = 400 ms and different speaker-

microphone positions were employed. The reverberant speech signal was added to

ten realizations of computer-generated white Gaussian noise with SNRs ranging from

40 dB to -10 dB. The average estimation error and STD of this error for the accept-

able estimates are shown in Figs. 3.24 and 3.25, respectively. It can be seen from

Fig. 3.24 that when SNR > 25 dB, all-pass processing improves the performance

of both the GCC and CC methods (compare ”GCC-ap” with ”GCC” and ”CC-ap”

with ”CC”). As expected, spectral subtraction also provides an improvement so that
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Figure 3.24: TDOA average estimation error for the TDE methods in different noisy
reverberant environments using 8 speech utterances with RT60 = 400 ms.

”GCC-s-ap” and ”CC-s-ap” are better when SNR > 25 dB. However, when the SNR

is low the CC method is better than the GCC method, and all-pass processing does

not improve the performance of the CC method as discussed in Section 3.1.2. Thus

the CC method with spectral subtraction (”CC-s”) provides the best performance

compared to the other TDE methods at low SNR levels. The EVD method based

on two microphones does not work well in noisy conditions. Further, these results

confirm that the proposed AIF method has much better performance when SNR >

10 dB. The Cramer-Rao lower bound (CRLB) for the STD [64] is also given in Fig.

3.25. Only the proposed AIF method is comparable to the CRLB when SNR ≥ 20 dB.

In addition, this figure shows that spectral subtraction preprocessing improves the

STD of the CC method in low SNR conditions, which confirms that the CC method

with this preprocessing (”CC-s”) performs better than the other TDE methods.



94

-10 -5 0 5 10 15 20 25 30 35 40
0

5

10

15

20

SNR (dB)

E
rr

or
 S

T
D

 (
sa

m
pl

e)

 

 

CC
CC_s
CC_ap
CC_s_ap
GCC
GCC_s
GCC_ap
GCC_s_ap
EVD
AIF
CRLB

Figure 3.25: TDOA estimation error standard deviation (STD) for the TDE methods
in different noisy reverberant environments using 8 speech utterances with RT60 =
400 ms.
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Performance with a White Gaussian Noise Input Signal

Thus far, a speech signal has been used as the input. While this is typical in audio

applications, there are many situations where the TDOA must be estimated for input

signals other than speech. White Gaussian noise has a symmetric pdf and thus

methods such as AIF cannot be used with this type of input signal. Conversely, GCC

methods are more general and thus suitable for any input signal. Again ten RIRs

with different microphone-speaker positions having reverberation times in the range

200 ms to 1200 ms are used. This is the same as in Section 3.1.4 except that the

input is a white Gaussian noise signal. The average estimation error and the STD of

this error for the acceptable estimates obtained using the TDE methods are shown

in Figs. 3.26 and 3.27, respectively. It can be seen from these figures that spectral

subtraction does not provide any improvement for the CC and GCC methods when

the input is white Gaussian noise. However, all-pass processing results in a significant

improvement with both methods. In fact, GCC with all-pass processing (”GCC-ap”)

has the best performance followed by CC with this processing.

Performance in a Real Room Environment

In this section, the performance of the TDE methods is evaluated in a real reverberant

environment. Results were obtained for the meeting room binaural RIR from the

Aachen Impulse Response (AIR) database [41] which has RT60 = 0.67 s. The RIR

was measured without a dummy head using only the left channel. Five microphones in

different locations were used for the meeting room [41]. As before, 8 clean utterances

(4 female and 4 male speakers), were convolved with the measured RIR to obtain the

reverberant speech signals. The average TDOA estimation error and error standard

deviation (STD) for the TDE methods are presented in Table 3.1. These results

show that spectral subtraction only slightly improves the performance of the CC

method, but all-pass processing provides a significant improvement in performance.

As expected, the proposed AIF method is best among the TDE methods while the

GCC-based methods with all-pass processing are the next best.

Next the real room performance is examined in noisy conditions. Computer-

generated white Gaussian noise with different SNRs was added to the reverberant

speech signals described above. The average and STD results for the TDE methods

are shown in Figs. 3.28 and 3.29, respectively. It can be seen that all-pass processing

improves the performance of the CC method when SNR > 20 dB, but fails to work for
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Figure 3.26: Average TDOA estimation error for the TDE methods in different re-
verberant environments for a white Gaussian input signal.
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Figure 3.27: TDOA estimation error standard deviation (STD) for the TDE methods
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Figure 3.28: Average TDOA estimation error for the TDE methods in a real meeting
room with RT60 = 0.67 s and additive white Gaussian noise.

Table 3.1: Average TDOA Estimation Error and Error Standard Deviation (STD)
for the TDE Methods in a Real Meeting Room with RT60 = 0.67 s.

CC CC-s CC-ap GCC GCC-s GCC-ap EVD AIF

average 2.47 2.13 0.79 1.52 1.52 0.98 1.20 0.50

STD 3.60 2.91 2.07 2.44 2.50 2.18 2.29 0.51

this method at higher noise levels. However, this preprocessing improve the perfor-

mance of the GCC method for all noise levels. Overall, the CC method with spectral

subtraction preprocessing (”CC-s”) has the best performance in low SNRs, while the

GCC-based methods with both preprocessing stages are best at higher SNRs. As

expected, the proposed AIF method provides the most accurate results when SNR >

10 dB, which confirms the effectiveness of this method in real conditions.
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Figure 3.29: TDOA estimation error standard deviation (STD) for the TDE methods
in a real meeting room with RT60 = 0.67 s and additive white Gaussian noise.
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Performance in Time-Varying Reverberant Conditions

In this section, the performance of the proposed TDE method using all-pass compo-

nent with spectral subtraction is evaluated in a time-varying reverberant environment

having a high reverberation time of 1000 ms. The performance is compared with the

GCC method as it has been shown to be effective in high reverberation, time-varying

conditions. Two microphones are fixed at locations [1 1 3] (m) and [1 2 3] (m) in a

rectangular room with dimensions [5 4 6] (m). The initial speaker position is [2.5 0.5 3]

(m) and he moves every 128 ms as shown in Fig. 3.30 3. The TDOA was estimated

using the GCC method with and without the two preprocessing stages every 128 ms.

The estimation results in the time progression compared with the actual TDOA are

given in Fig. 3.31. This shows that the proposed method (”GCC-s-ap”) follows the

changes in the TDOA more accurately than the GCC method. As a result, the pro-

posed method is more suitable for use in real-time applications and should provide

good performance in many time-varying reverberant environments.

3.1.5 Conclusions

Two Time Delay Estimation (TDE) methods have been proposed which require sig-

nals from only two channels. The first estimates the TDOA between the microphones

by adaptively estimating the inverse filters of the RIRs. This technique is very robust

to reverberation, and so is accurate even in highly reverberant conditions. Moreover,

it was shown that it is effective in low to moderate noise conditions. However, the

computational complexity is high due to the inverse filter estimations, so it may not

be suitable for real-time applications and time-varying environments. This is a com-

mon problem with most TDE methods. In addition, since this solution is based on

maximizing the skewness of the LP residual of the speech for inverse filter estimation,

it is not suitable for input signals with a symmetric pdf.

The second method resolves the above problems by employing two preprocessing

stages to reduce the effects of reverberation and additive background noise. It was

proven that all-pass processing as a preprocessing stage in the CC method [50] can

be used to improve the performance in reverberant, low noise environments. This

improvement is limited to high SNR conditions since otherwise the performance will

be significantly degraded for the CC method. In general, all-pass processing will

3This was simulated using the free software available at http://home.tiscali.nl/ehabets/

signal_generator.html.
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decrease the effects of reverberation, particularly early reverberation which can be

very detrimental to TDE performance. Thus all-pass processing can be used improve

the performance of TDE techniques such as the GCC method [51]. Spectral subtrac-

tion was used to reduce both the noise and reverberation, making the GCC methods

more robust. Using both spectral subtraction and all-pass processing as preprocess-

ing stages results in excellent performance even in very noisy reverberant conditions.

Further, the performance is good in time-varying environments, and this solution is

not sensitive to the type of input signal. Since the computational complexity with

this approach is low, it is suitable for real-time applications.

Performance results in noisy reverberant conditions were presented which demon-

strated that the two proposed solutions are superior to other TDE methods. The

performance was also evaluated in real recorded environments to show that they are

more robust in real conditions. Finally, experimental result in time-varying environ-

ments were presented to illustrate the superiority of the proposed GCC-based method

even in high reverberation conditions (RT60 = 1 s).
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Chapter 4

Future Work

Generally, the proposed research can be categorized into two main subjects. The first

concerns single-microphone speech enhancement and the second speaker localization

in a noisy reverberant environment.

The first subject was presented in Chapter 2. In that chapter, a single-microphone

speech enhancement method was proposed which uses inverse filtering and spectral

subtraction. The inverse filtering can successfully deal with the problem of early re-

verberation and the spectral subtraction reduces the effects of additive background

noise and late reverberation. To the best of our knowledge, this is the best single

microphone technique for suppression of the effects of both early and late rever-

beration in noisy speech even when the reverberation is high. However, the

proposed two-stage method can not be used in time-varying environment. This is be-

cause, in the first stage, we utilize an adaptive technique which requires convergence

after at least 300 iterations. Moreover, this method needs enough input signal (20

sec for high reverberation time) which decreases the computational efficiency and its

usage for real-time applications. On the other hand, the second stage of our method

is based on spectral processing which are done in frequency domain using the FFT

transform. This method can be used in real-time applications and can be applicable

for time-varying environments.

The second subject was presented in Chapter 3. In that chapter, two new methods

were presented to estimate the TDOA in a reverberant room. TDOA-based methods

usually achieve the most accurate source localization in passive systems, and accurate

TDOA estimation is the key to the effectiveness of these methods. In this dissertation,

we proposed two different techniques to deal with the problem of TDE in noisy

reverberant conditions. At first, we proposed a method based on adaptive inverse
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filtering in Section 3.1.1. This method has some advantages and some disadvantages.

For the advantages, it is very accurate and the most reliable method in reverberant

conditions. It also can be used when the noise level is not very high (SNR>10 dB).

For the disadvantages, it has still high computational complexity and it only works

for the asymmetric input signals. It can not work in fast time-varying environment

and in real-time processing. Secondly, we proposed two efficient preprocessing for

the CC-based TDE methods in Section 3.1.2. This method is not as accurate as

the previous TDE method but it is not sensitive to the type of input signals. It

also has very low computational complexity, making it applicable for time-varying

environment and real-time processing.

Although the proposed methods for both single-microphone speech enhancement

and speaker localization have some advantages over the other conventional methods,

there are still some issues that need to be further resolved. These issues include the

computational complexity, to be more robustness to additive background noise and

reverberation, tracking a moving source, and the number of sensors. Toward this end,

some main research directions are planned for further work, and these are presented

below.

4.1 Future Research on Speech Enhancement

As we discussed above, our proposed method has some benefits over the other methods

but it still has some limitations. To overcome some of these limitations, we bring some

new ideas for our future work.

1. One of the limitation of our adaptive inverse filter method is its high compu-

tational complexity due to its adaptively convergence with high enough input

data. One idea is use the Compressed Sensing (CS) and sparse signal processing.

CS can be used to reconstruct sparse vector from less number of measurements,

provided the signal can be represented in sparse domain. Sparse domain is a

domain in which only a few measurements have non-zero values. CS can also

be applied to speech signals. The application of structured sparsity for joint

speech localization-separation in reverberant acoustics has been investigated

for multiparty speech recognition. Now we can use CS to reduce the length

of inverse filter and input speech data, making the adaptive inverse filtering

algorithm converge faster and more efficient. Then the estimated inverse filter
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can be used to enhance the reverberant speech signal. This would reduce the

computational complexity and makes the method more efficient.

2. In reverberant environments, a moving speaker yields a dynamically chang-

ing source-microphone geometry giving rise to a spatially-varying RIR. It is

therefore desirable to reduce the effect of reverberation in such a time-varying

environment. Our idea is the use of a model-based approach such as the one

proposed in [65] in which the sound source is modeled by a block-based time-

varying all-pole filter, and the channel by a linear time-varying all-pole filter.

In this case, the parameters of all-pole filter can be estimated for each block of

speech segment (e.g. every 128 ms) so that the method can be applicable in

time-varying environment and real-time applications. This method can be com-

bined with our efficient second-stage method to reduce the effects of additive

noise and the remaining reverberation.

3. In the second-stage of our method, we use the spectral subtraction method in

which the amplitude of the speech spectrum is only used to drive the spectral

weight filter. However, it is shown in [66] that knowledge of the clean speech

spectral phase can be employed for a more robust amplitude estimation. In

addition, instead of using the original phase of the corrupted signal, the phase

can be modified along with the amplitude to further improve the performance

in noisy reverberant conditions. To do this, one should estimate the phase of

the clean speech signal as this is partially done in [67] for speech separation

application. The idea is to improve our second stage method by incorporat-

ing the phase information for estimating the spectral weight filter to enhance

the speech spectra, and utilize the modified phase instead of the original, and

corrupted phase.

4. In this dissertation, we propose two different methods that are combined to

deal with the problem of noise and reverberation. One may use each of these

algorithms combined with other methods. For example, our second stage can be

combined with the method based on modifying the LP residual signal proposed

in [16]. This can be very effective as our method can deal with problem of noise

and late reverberation and the LP residual based method can deal with the

remaining reverberation effects, in particular due to early reverberation.
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4.2 Future Research on Speaker Localization

In this section, we bring four new ideas for speaker localization in reverberant envi-

ronment. The first one is based on the TDE that can work under noisy reverberant

conditions. The other three methods are based on speaker-microphone distance de-

tection. Knowledge of the actual distance between the source and receiver can be

advantageous not only for source localization but also in other audio and speech ap-

plications such as denoising, dereverberation, and separation. To date, most source

localization methods use the received signal from a microphone array to obtain the lo-

cation of the speaker. However, these methods have high computational complexity

because of the number of microphones. Further, in some applications few micro-

phones are available to localize the position of the source. Thus it is advantageous

to determine the position or at least the speaker microphone distance using as few

microphones as possible. This is possible if channel identification or estimation of

the time of arrival of the direct path is employed. In the literature, the RIR has

been estimated blindly using multi-channel processing, but estimation errors are a

problem.

1. Our idea is to eliminate the source spectrum in the logarithm frequency domain

which is generally called the cepstral domain. The key idea is subtracting the

logarithm of the signal spectrum for the received signals and thus eliminate

the effect of the source spectrum and then extract the TDOA from the phase

information. This leads to a very fast and effective technique in reverberant

conditions. We also suggest adding a noise reduction preprocessing stage before

this in order to reduce the effect of additive noise in noisy reverberant conditions.

2. The problem of absolute distance estimation is becoming more difficult inside

enclosed spaces where reverberation can be a significant component of the re-

ceived signals. Hence, this problem is closely related to the estimation of the

direct-to-reverberant Ratio (DRR) and this has been highlighted in several stud-

ies [68]-[70]. The DRR is typically extracted from a measured room impulse re-

sponse (RIR), but in practice RIRs are not always available and its estimation

is very difficult due to its non-minimum phase characteristic. We proposed an

inverse filtering method in Section 2.1. In Section 3.1.1, we showed that the

estimated inverse filter using our algorithm has the direct delay information as

there is a clearly peak at a position related to the direct path. In addition, the
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energy of the impulses next to the peak in the inverse filter is related to the

early reverberation energy in the corresponding RIR. In most of the literature

(e.g. [71]-[72]) some features which are related to the DRR are extracted from

the received signal and then these features are used to train a classifier based on

Gaussian Mixture Models (GMM) in order to detect the distance. Our idea is to

use inverse filter estimation to classify the different choices of known distance

and detect the correct distance based on this. This method would be more

robust to reverberation and would also work under certain noisy conditions.

3. In Section 3.1.1, we showed how the inverse filter can be used to estimate the

TDOA between two microphones. Thus the direct path information which is

incorporated in the estimated inverse filter. Therefore we are able to estimate

the direct path and also the microphone-speaker distance using only the inverse

filter instead of the corresponding RIR. Our idea is to estimate the inverse

filter of the RIR and calculate the inverse-filtered signal. Then the direct path

information of the RIR can be estimated using the peak index of the inverse

filter and the TDOA between the inverse-filtered signal and the reverberant

signal. Therefore, we can directly estimate the direct path of the RIR using

only single microphone information.

4. In Section 3.2.2, it was shown that the all-pass component of the RIR preserves

the direct path information. In addition, the minimum-phase component of the

RIR starts at time zero and does not depend on the direct path information.

Therefore, these two components can be used to estimate the direct path of the

RIR directly from the received speech data. Then the location of the speaker

can be obtained using the speaker-microphone distances.
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Chapter 5

Conclusions

This dissertation considered single-microphone speech enhancement and speaker lo-

calization in a noisy reverberant room. These difficult yet important problems. Some

of the main obstacles are summarized below.

• Speech signals have colored and non-stationary characteristics with complex

temporal dynamics. Existing techniques are known to be optimal, in particular

for the source localization problem, when the input signal is stationary with

a known spectrum. However, these techniques are of limited use with speech

signals whose spectra can change dynamically and are non-stationary.

• The received speech signal in a room is inevitably contaminated by additive

background noise. This noise makes the speech enhancement and source lo-

calization problems much more difficult, and requires modifications to existing

techniques or the addition of preprocessing.

• In addition to additive noise, problems can occur due to reflections in an en-

closed space. This reverberation can severely degrade the performance of speech

enhancement and source localization techniques. The main difference between

noise and reverberation is that the latter is dependent on the desired signal,

whereas noise can be assumed to be independent of the signal.

• Another problem is related to the nature of the RIR. The RIR has non-minimum

phase and thus its inverse filter is unstable. Moreover, the RIR is usually long

and can change rapidly due to motion (it can be quite sensitive to the source

position, temperature, locations of room furnishings, and movements in the
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room). This can have a significant effect on speech enhancement and source

localization techniques, and in general makes these problems much harder.

The solution to the problems of speech enhancement and source localization in

noisy reverberant environments is thus very difficult. In this dissertation, solutions for

these problems were presented and compared with existing techniques. For the speech

enhancement problem, a two-stage method was proposed which uses inverse filtering

to reduce early reverberation, and spectral subtraction to reduce late reverberation

and additive noise. It is known that early and late reverberation affect speech signals

differently [10]. The effects of reverberation can be considered in a two-dimensional

perceptual space. The two components are colouration caused by early reverberation

and echoes caused by late reverberation. The echoes smear the speech spectra and

reduce the intelligibility and quality of the speech signals. Coloration results from the

non-flat frequency response of the early reflections. It was shown that the proposed

method can deal with both early and late reverberation in different noisy reverberant

environments, and is superior to existing methods. To the best of our knowledge,

this is the best technique for suppressing both early and late reverberation in noisy

speech using only one microphone.

For the speaker localization problem, two techniques were proposed to estimate

the TDOA. Generally, TDOA-based approaches are the most effective. The key issue

with these techniques is the accuracy of the TDE method. A TDE method was

presented which can accurately estimate the TDOA between two spatially separated

microphones even in highly reverberant rooms. The main drawback of this method is

the computational complexity. Thus a GCC-based TDE method was proposed which

is robust to reverberation and has lower computational complexity. It can also be

used in real-time applications and can be employed to track a speaker moving in a

room.
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