
Proactive System for Digital Forensic Investigation

by

Soltan Abed Alharbi
B.S., Florida Institute of Technology, USA, 1998
M.S., Florida Institute of Technology, USA, 2000

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Electrical and Computer Engineering

c© Soltan Abed Alharbi, 2014
University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

ii

Proactive System for Digital Forensic Investigation

by

Soltan Abed Alharbi
B.S., Florida Institute of Technology, USA, 1998
M.S., Florida Institute of Technology, USA, 2000

Supervisory Committee

Dr. Jens Weber, Co-Supervisor
(Department of Computer Science)

Dr. Issa Traore, Co-Supervisor
(Department of Electrical and Computer Engineering)

Dr. Fayez Gebali, Departmental Member
(Department of Electrical and Computer Engineering)

Dr. Afzal Suleman, Outside Member
(Department of Mechanical Engineering)

iii

Supervisory Committee

Dr. Jens Weber, Co-Supervisor
(Department of Computer Science)

Dr. Issa Traore, Co-Supervisor
(Department of Electrical and Computer Engineering)

Dr. Fayez Gebali, Departmental Member
(Department of Electrical and Computer Engineering)

Dr. Afzal Suleman, Outside Member
(Department of Mechanical Engineering)

ABSTRACT

Digital Forensics (DF) is defined as the ensemble of methods, tools and techniques
used to collect, preserve and analyse digital data originating from any type of digital
media involved in an incident with the purpose of extracting valid evidence for a court
of law.

DF investigations are usually performed as a response to a digital crime and,
as such, they are termed Reactive Digital Forensic (RDF). An RDF investigation
takes the traditional (or post-mortem) approach of investigating digital crimes after
incidents have occurred. This involves identifying, preserving, collecting, analyzing,
and generating the final report.

Although RDF investigations are effective, they are faced with many challenges,
especially when dealing with anti-forensic incidents, volatile data and event recon-
struction. To tackle these challenges, Proactive Digital Forensic (PDF) is required.
By being proactive, DF is prepared for incidents. In fact, the PDF investigation has

iv

the ability to proactively collect data, preserve it, detect suspicious events, analyze
evidence and report an incident as it occurs.

This dissertation focuses on the detection and analysis phase of the proactive
investigation system, as it is the most expensive phase of the system. In addition,
theories behind such systems will be discussed. Finally, implementation of the whole
proactive system will be tested on a botnet use case (Zeus).

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables viii

List of Figures ix

Acronyms xi

Glossary xiii

Acknowledgements xv

Dedication xvi

1 Introduction 1
1.1 Motivations . 1
1.2 Problem Statement . 3
1.3 Contributions . 4
1.4 Dissertation Outline . 4

2 Overview of Proactive and Reactive Digital Forensic Investigation
Processes: A Systematic Literature Review 6
2.1 Introduction . 6
2.2 Related Work and Motivation for the Proactive Investigation Process 7
2.3 Planning the Systematic Literature Review (SLR) 9

2.3.1 Specify Research Questions 9
2.3.2 Develop Review Protocol . 9

vi

2.3.3 Validate Review Protocol . 9
2.4 Conducting the Systematic Literature Review 9

2.4.1 Identify Relevant Research Sources 9
2.4.2 Select Primary Studies . 12
2.4.3 Assess Study Quality . 13
2.4.4 Extract Required Data . 14
2.4.5 Synthesize Data . 14

2.5 Documenting the Systematic Literature Review 14
2.5.1 Write Review Report . 14
2.5.2 Validate Report . 14

2.6 Research Findings . 14
2.7 Summary . 19

3 Theory for Proactive Digital Forensics 22
3.1 Complexity of Digital Forensic Investigation from the First Principles 22

3.1.1 Fundamental Principles of Computer Forensics 23
3.1.2 Fundamental Principles of Proactive Digital Forensics 23
3.1.3 DF Multidimensional Space 25

3.2 Modelling the Proactive system . 26
3.2.1 Related Work . 26
3.2.2 A Model for a Proactive System 28

3.3 Theory of Events, Targets and Actions 32
3.3.1 Short Theory on Events . 32
3.3.2 Short Theory of Targets . 37
3.3.3 Short Theory on Actions . 38
3.3.4 Zone-Based Classification and Forensic Space Reduction . . . 41

3.4 Towards Universal Analysis of Forensic Crimes 42

4 Towards Automated Analysis for PDF 46
4.1 Information Theory Background . 46
4.2 Overview on Outlier Detection . 47
4.3 Outlier Detection for Automated DF Analysis 47
4.4 Information-Based Temporal Outlier Analysis 56

4.4.1 Moving Window Temporal Analysis 56
4.4.2 Fixed Window Temporal Analysis 57

vii

4.4.3 Hierarchical Temporal Analysis 58
4.4.4 Modulo Temporal Analysis . 58

4.5 Event-Based Outlier Detection and Analysis 59
4.6 Information-Based Spatial, Temporal, and Event Outlier Analysis . . 61

5 Implementation of Proactive Digital Forensics 65
5.1 Proactive System Components . 66
5.2 Work-Flow of the Proactive System Implementation 67
5.3 Distributed Proactive System . 68

5.3.1 A Multi-Resolution Framework for Digital Forensics 69
5.3.2 Implementation and Results 72
5.3.3 Honeypot Challenge Test Case: Implementation Verification

and Validation . 74
5.4 Zeus Use Case . 78

5.4.1 Why Zeus? . 78
5.4.2 Description of Zeus Crimeware Toolkit 79
5.4.3 Zeus Proactive System . 80
5.4.4 Zeus Installation . 81
5.4.5 Proactive System Implementation 82

5.5 Summary . 84

6 Conclusion and Future Work 85
6.1 Proactive Digital Forensics at the Literature Level 85
6.2 Proactive Digital Forensics from the First Principles 86
6.3 Proactive Digital Forensics at the Theory Level 86
6.4 Proactive Digital Forensics at the Implementation Level 87
6.5 Future Work on Proactive Digital Forensics 87

A UML Class Diagram for the Proactive Digital Forensics 89

Bibliography 91

viii

List of Tables

Table 2.1 Paper genre and the number of primary studies. 14
Table 2.2 Processes of digital forensics investigation. 20
Table 2.3 Mapping phases of the proposed proactive and reactive digital

forensics investigation process to phases of the existing processes. 21

Table 3.1 Tabular forensic rule engine. 42

Table 5.1 Number of files left from running iterative z algorithm (Algo-
rithm 1) for size, mtime and inode attributes under uniform
distributions. 75

Table 5.2 Comparing the percentage of size, mtime and inode attributes
under uniform distributions for iterative z algorithm (Algorithm 1). 76

Table 5.3 Number of files left from running probabilistic iterative z algo-
rithm (Algorithm 2) for size, mtime and inode attributes under
global/local mtime distributions. 76

Table 5.4 Comparing the percentage of size, mtime and inode attributes
under global/local mtime distributions for probabilistic iterative
z algorithm (Algorithm 2). 77

Table 5.5 Number of files left from running uniform (Algorithm 1) and
global/global atime (Algorithm 2) distributions under mtime at-
tribute. 77

Table 5.6 Comparing the percentage of uniform (Algorithm 1) and global/global
atime (Algorithm 2) distributions under mtime attribute. 78

Table 5.7 Number of files left from running global/global and local/local
mtime distributions under information iterative z algorithm (Al-
gorithm 3) using mtime attribute. 78

Table 5.8 Comparing the percentage of global/global and local/local mtime
distributions under information iterative z algorithm (Algorithm 3)
using mtime attribute. 79

ix

List of Figures

Figure 2.1 Proactive and Reactive Digital Forensic Investigation Framework. 16

Figure 3.1 Relation between actions, targets and events. 26
Figure 3.2 Investigation System. 28
Figure 3.3 Targets Preservation as a Bijection Function. 30
Figure 3.4 Events and Targets binary relation. 31
Figure 3.5 Preorder relation on Events (grouping events based on subse-

quent events). 34
Figure 3.6 Dependency relation on Events (causal relationship between events). 34
Figure 3.7 Equivalence relation on Events (connect graph). 35
Figure 3.8 Equivalence class relation on Events (replacing loops with a sin-

gle vertex). 35
Figure 3.9 Family of pairwise totally independent subset of Events. 36
Figure 3.10Mapping between Targets and Events. 37
Figure 3.11Classifications of Events and Targets according to their priority

levels. 41

Figure 4.1 Flowchart of Iterative z Algorithm. 49
Figure 4.2 Flowchart of the Probabilistic Iterative z Algorithm. 51
Figure 4.3 Moving Windows Temporal Analysis. 57
Figure 4.4 Fixed Windows Temporal Analysis. 57
Figure 4.5 Moving Fixed Windows Temporal Analysis. 57
Figure 4.6 Hierarchical Temporal Analysis. 58

Figure 5.1 Proactive System Architecture. 66
Figure 5.2 General Architecture of Distributed Proactive System (PSA: Proac-

tive Sub-agent; PA: Proactive Agent; HN: Head Node; WN:
Worker Node). 69

Figure 5.3 Zeus Command and Control server. 80

x

Figure 5.4 Zeus Bot Builder. 81
Figure 5.5 Zeus Stolen information with victim screen-shot from infected

machine. 82
Figure 5.6 Testbed System for Zeus. 82

Figure A.1 Class diagram of the Proactive Digital Forensics System. 90

xi

Acronyms

CC Command Control

CP Control Panel

CT Control Terms

DF Digital Forensics

DFA Deterministic Finite Automaton

DFR Digital Forensic Rules

FSM Finite State Machine

GUI Graphical User Interface

HPC High Performance Computing

I/O Input/Output

IB InfiniBand

IDS Intrusion Detection Systems

MAC Modification Access Creation

MPI Message Passing Interface

PA Proactive Agent

PDF Proactive Digital Forensic

PS Primary Studies

PSA Proactive Sub-Agent

xii

RDF Reactive Digital Forensic

RDMA Remote Direct Memory Access

SLR Systematic Literature Review

SSH Secure Shell

TM Turing Machine

UML Unified Modeling Language

VM Virtual Machines

xiii

Glossary

Feedback Dynamical System — an approach to understand the behavior of
complex system over time. Also, it deals with feedback loops to adjust the system
accordingly, as is the case in our proactive system.
Feedback System — the proactive component that takes the output from the
forward system (system under investigation) and takes proactive measures to feed it
in again as input to the forward system as an adjustment.
T — a set of elements of the digital forensic investigation called Targets.
E — a set of elements of the digital forensic investigation called Events.
A — a set of elements of the digital forensic investigation called Actions; each
action is viewed as a transfer function of targets and events.
f — Single target.
S(f) — possible states for target f which it can be in.
T — the state space of the system’s targets.
e — single event.
S(e) — possible status for event e.
↑ — triggered.
↓ — not triggered.
↑t e — the event e is triggered at time t.
E — the state space of all the system’s events.
a — an action.
Γ — set representing time.
~r — vector of targets.
~e — vector of events.
ψ — the evolution function ψ is defined from Γ× (T × E)× A to T × E by

ψ(t, (~r,~e), a) = a(t, ~r, ~e).

xiv

∅T — empty target.
∅E — empty event.
∅A — empty action.
P−1(T) — targets in the domain of P .
F = (T,E, t) — the full space of investigation.
[E] — events equivalence class.
∼E — dependency relation: when an event happens the other has to happen.
≈E — equivalence relation.
∼=E — equivalence class relation.
Ψ — mapping from targets to events that associates each target with its change of
status event.
Ā — composite actions.
F — full forensic space.
F ′ — sub-space.
F = T × E × Γ — digital forensic space containing targets, events and time.
P (S, tc) — incomplete profile of the system.
Pα(S) — family of profiles for the system.
C(h, g) — the correlation between the two profiles h and g.
Cα — the correlation (C) between all the profiles.
π(T ′,E′,Γ′) — projection function that takes a profile in the space F and projects it
onto F ′ to produce a reduced profile.
Θ — digital forensic reduction operator, considered to be an extension operator for
the projection function.
MPI Allreduce — performs a reduction operation (MPI operation) and is used to
compute the mean and the standard deviation.
MPI SUM — performs a collective operation (MPI operation) and is used to
compute the mean and the standard deviation collectively.
MPI MAXLOC — performs a collective operation (MPI operation) to find the
maximum value and its location. It is used in selecting the largest value and its
location.
size — size as file attribute.
mtime — modification time as file attribute.
atime — access time as file attribute.
ctime — creation time as file attribute.
inode — inode number as file attribute.

xv

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my thesis advisers Dr. Jens Weber
and Dr. Issa Traore for their continuous support and valuable comments. With their
help and encouragement, I was able to put this work together.

Moreover, I wish to thank Dr. Fayez Gebali, the supervisory committee member
for his valuable discussions and support.

Furthermore, I would like to thank Dr. Belaid Moa from Compute Canada for
his help and support during the implementation phase which enabled me to use their
resources. The suggestion and feedback from him was a valuable resource.

Special thanks to my wife, Enas, who was so patient with me during my journey.
Also, I want to extend my thanks to my father, mother, sister and brothers.

Many thanks go to my sponsors in Saudi Arabia: Taif University, the Saudi
Government and Saudi Arabian Cultural Bureau in Canada.

Finally, thanks to all of those friends and loved ones that I have met here in
Victoria.

xvi

DEDICATION

To my father, mother, wife, sister and brothers. To all of those who supported me
during my journey.

Chapter 1

Introduction

1.1 Motivations

Our daily lives depend, now more than ever, on digital data on many fronts: health-
care, banking, socializing, national and international security, and so on. As such,
these digital data need to be protected and, more importantly, to be enabled and
ready for digital forensic investigation. Instead of thinking about a forensic inves-
tigation only in the aftermath of a breach, one should be proactive and equip the
system with the necessary forensic capabilities before any incident. Such capabilities
will earn the trust of the customers and ease the tasks of law enforcement and service
providers to carry out legal actions and prosecution against the offenders under any
circumstances.

With the increase of digital crimes both in number and sophistication, a Proactive
Investigation System is becoming a must in Digital Forensics (DF). According to the
FBI annual report 2010 [16], the size of data processed during the 2010 fiscal year
reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that
requested Regional Computer Forensics Laboratory assistance increased from 689 in
2009 to 722 in 2010. Since most investigation tools are reactive in nature (or post-
mortem) and can be easily challenged with anti-forensic methods (see Chapter 2), the
next-generation digital forensic tools are required to be proactive and distributed [52].
The proactive nature of these tools allows them to better handle anti-forensic attacks
by performing collection and preservation before hand. The need for distribution
is even more evident when on-site investigation, requiring intensive computational
resources, or Proactive Digital Forensic (PDF) analysis, or requiring semi-real time

2

processing, is to be performed. This is also the case for investigating crimes on clouds.
According to Garfinkel [19], the golden age of “reactive” digital forensics has come

to an end and is faced with an inevitable crisis due to the advances and fundamental
changes in the digital world:

• Digital device storages are diverse and so large that imaging and processing
their contents is becoming expensive and time-consuming. In fact, a hard drive
with 2 TB may take more than 7 hours to image.

• Embedded flash storages are widespread and challenging to remove and image.

• The proliferation of operating systems and file formats are increasing the com-
plexity of attacks and the cost of developing digital forensic tools.

• The use of multiple devices is making the usual single-device analysis incomplete
as the evidence is usually spread across multiple devices.

• The increased use of encryption makes it difficult to process the data even if it
is successfully recovered.

• The widespread use of clouds for remote processing and storage renders local
investigation useless as the data and the code cannot be found locally but
“somewhere” on the cloud.

• The increased number of attacks that use RAM instead of a persistent storage
medium, as well as those defeating encryption, requires expensive DF RAM-
based tools.

Moreover, the existing digital forensic tools are becoming inadequate as they
are reactive and evidence-oriented, and designed to investigate crimes carried out
against people using computers [19]. Digital forensics is now in dire need of tools
that are proactive and investigation-oriented, that address “computers against com-
puters and/or people” crimes and that scale up with data. Instead of only helping
investigators to locate a specific evidence after the harm is done, these tools should be
proactive in collecting and preserving the necessary data and evidence and allowing
for automated investigation and analysis. In fact, they should be able to perform,
among other functions, data exploration, outlier and anomaly detection, and report
generation.

3

1.2 Problem Statement

Every successful digital forensic investigation is supposed to answer the following
major questions:

• Did a digital crime happen?

• What happened?

• When did it happen?

• Who committed it?

• How did it happen?

• What damage did it do after it happened?

• Is the evidence provided strong enough to hold up in a court of law?

Given the advanced state of digital crimes and their anti-forensic [18, 50] capabili-
ties, we are interested in providing the necessary framework to automate digital foren-
sic investigation and answer most, if not all, of the above questions. Since analysing
the crime after it happens, which is usually called reactive forensic analysis, is usu-
ally not enough and is limited in providing information about the above questions—
especially what happened (i.e., event reconstruction) and when (i.e., timeline)—we
propose a proactive digital forensic framework which complements the reactive frame-
work. The main questions that we need to address are:

1. What should the proactive digital forensic process look like and how is it related
to the reactive digital forensic process?

2. How to theoretically model a proactive DF system and how should it be imple-
mented in practice?

3. To what extent can the proactive system provide an answer to the major ques-
tions above?

The first question is addressed in Chapter 2. The second question is tackled in
Chapters 3, 4 and 5. The last question is handled in Chapters 3, 4 and 5.

4

1.3 Contributions

Our main contributions are as follows:

1. Propose a framework for a functional Proactive Digital Forensic system in [60]
and [2] (see Chapter 2).

2. Extend in [1] the iterative z algorithm [36, 12] to different elements of DF inves-
tigation including events and targets, and take into account the fact that files are
weighted differently (see Chapter 4). In fact, old files are usually legitimate and
should be weighted more than the new ones. This weighting can be done locally
(i.e., inside a directory) or globally (across all directories) and carried out using
different probability distributions (see Chapter 5).

3. Parallelize the extended algorithms in [1] using Message Passing Interface (MPI)
so that the Reactive Digital Forensic (RDF) and Proactive Digital Forensic (PDF)
analysis can be done in parallel and across distributed worker nodes (see Chapter
5).

4. Generalize the extended algorithm to the information-based iterative z algorithm
in [1] (see Chapter 4). These algorithms are introduced as a novel approach to
express the outlier detection from an information theory perspective. As an exam-
ple, the attribute and summary functions in the iterative z algorithm are replaced
with the information and entropy functions respectively.

5. Introduce a multi-resolution approach in [1] to tackle a large set of DF investigation
elements for which the parallel outlier detection algorithms above may take a long
time or produce many outliers (see Chapters 4 and 5). Under this approach, the
outlier detection algorithms are treated as reduction operators that can be applied
as many times as desired.

1.4 Dissertation Outline

The next few chapters of the dissertation will be organized as follows. In Chapter
2, an overview of Proactive and Reactive Digital Forensic Investigation based on a
Systematic literature review is presented. Chapter 3 provides the details of the theory
behind our proactive digital forensic system. Chapter 4 presents an automation for

5

the analysis phase of the proactive digital forensics. Chapter 5 describes the imple-
mentation done and the results obtained. Finally, Chapter 6 presents our conclusions
as well as the main future work.

6

Chapter 2

Overview of Proactive and
Reactive Digital Forensic
Investigation Processes: A
Systematic Literature Review

2.1 Introduction

Computer crimes have increased in frequency and their degree of sophistication has
also advanced. An example of such sophistication is the use of anti-forensics meth-
ods as in the Zeus Botnet Crimeware toolkit (see Section 5.4) that can sometimes
counteract digital forensic investigations through its obfuscation levels. Moreover,
volatility and dynamicity of the information flow in such a toolkit require some type
of a proactive investigation method or system. The term anti-forensics refers to
methods that prevent forensic tools, investigations, and investigators from achiev-
ing their goals [18, 50]. Two examples of anti-forensic methods are data overwriting
and data hiding. From a digital investigation perspective, anti-forensics can do the
following [18, 50]:

• Prevent evidence collection.

• Increase the investigation time.

• Provide misleading evidence that can jeopardize the whole investigation.

7

• Prevent detection of digital crime.

To investigate crimes that rely on anti-forensic methods, more digital forensic
investigation techniques and tools need to be developed, tested, and automated. Such
techniques and tools are called proactive forensic processes. Proactive forensics has
been suggested in [21, 18, 19, 42]. To date, however, the definition and the process of
proactive forensics have not been explicated [21].

In order to develop an operational definition for the proactive forensic process
and related phases, we have conducted a Systematic Literature Review (SLR) to an-
alyze and synthesize the results published in the literature concerning digital foren-
sic investigation processes. This SLR has ten steps, described in sections 2.3.1
to 2.5.2, grouped under three main phases: planning, conducting, and document-
ing the SLR [8]. As result of this SLR, a proactive forensic process has been derived.

The SLR approach was selected for a couple of reasons. Firstly, SLR results are
reproducible. Secondly, since all resources (databases) will be queried systematically,
there is less chance of missing an important reference.

The rest of the chapter is organized as follows. Section 2.2 outlines the related
work and the motivation behind the proactive investigation process. Section 2.3 lays
out the plan of the systematic literature review prior to implementation. Section 2.4
describes the implementation of the review and the extraction of the primary studies
from the selected resources. Section 2.5 generates the report of the review after
synthesizing the data collected in the previous section. Section 2.6 presents the review
findings, results, and the proposed process. Section 2.7 provides the summary of this
chapter as well as a few suggestions for future direction.

2.2 Related Work and Motivation for the Proac-
tive Investigation Process

Inspecting the literature, only a few papers have proposed a proactive digital forensic
investigation process. Some of these papers have mentioned the proactive process
explicitly, while in others the process was implicit, but all have emphasized the need
for such a process.

In [54], Rowlingson stated that in many organizations, the incident response and
crime prevention team already performs some activities of evidence collection proac-
tively. But he added that collecting that evidence and preserving it with a systematic

8

proactive approach is not yet addressed and implemented.
In [18], Garfinkel implicitly suggested that, in order to investigate anti-forensics,

organizations need to decide in advance what information to collect and preserve in
a forensically sound manner.

In [21], Grobler et al. proposed structuring DF into proactive, active (live) and
reactive DF. The authors defined proactive DF as “the DF readiness and the proac-
tive responsible use of DF to demonstrate good governance and enhance governance
structures.” As such, proactive DF was considered as a set of specific policies and
general guidelines on DF as required by an organization. Therefore, the proactive
stage in their perspective does not contain an operational process and, hence, cannot
be automated. Their general bird’s-eye view of proactive DF should be enhanced
with a concrete DF protocol and explicit phases as they did for the active and re-
active DF. Moreover, doing alive (active) investigation only after the IDS Incident
Detection/Alert is triggered is still passive, as the detection component itself need
to be forensically sound and be a part of a more general and operational proactive
system.

In [19], Garfinkel summarized digital forensics investigation processes that have
been published in the literature. In his summary, he stated that it would be unwise
to depend upon “audit trails and internal logs” in digital forensic investigation. In
addition, he noted that a future digital forensic investigation process will only be
possible if future tools and techniques make a proactive effort at evidence collection
and preservation.

In [42], Orebaugh emphasized that the quality and availability of the evidence col-
lected in the reactive stage of DF is a passive aspect of the investigation. Conversely,
the proactive DF is an active stage involving collecting and preserving potential evi-
dence. In addition, a high-level proactive forensic system was proposed and its ideal
components were briefly discussed. As future work, the author suggested that in or-
der to address anti-forensics crimes, methods should be identified to handle proactive
evidence collection and forensic investigation.

In summary, previous papers have shown the importance of a proactive digital
forensics investigation process. The proposed notion of proactiveness is, however,
still insufficient and imprecise, and more work needs to be done. To this end, we will
follow a systematic literature review and derive the missing components.

9

2.3 Planning the Systematic Literature Review (SLR)

The planning stage of the systematic literature review consists of the following steps:

2.3.1 Specify Research Questions

This step defines the goal of the SLR by selecting the research question that has to
be answered by the review. The research question is: “What are all the processes in
digital forensics investigation?”

Processes include the phases of any digital forensics investigation. According
to [43], the six phases of digital forensics investigation are: identification, preservation,
collection, examination, analysis, and presentation. The reader can refer to [43] for
elaboration of these phases.

2.3.2 Develop Review Protocol

The review protocol is outlined in steps 2.4.1 through 2.5.2 below. These steps show
how data for the review is selected and summarized.

2.3.3 Validate Review Protocol

The review protocol was validated by querying the selected databases and looking at
the search results. Those results were meaningful and showed the feasibility of the
developed protocol.

2.4 Conducting the Systematic Literature Review

The review was conducted by extracting data from the selected sources using the
following steps:

2.4.1 Identify Relevant Research Sources

Five well-known database sources were selected as being most relevant to the fields
of computer science, software engineering, and computer engineering. The expert
engineering librarian at the University of Victoria recommended another indexed
database that is considered to contain reliable sources: Inspec. Two extra public

10

indexed databases were used for sanity check: CiteSeer and Google Scholar. The In-
ternational Journal of Computer Science and Network Security (IJCSNS) was located
while conducting a sanity check in Google Scholar using “digital forensic investigation
process” as keywords.

All of the searches were limited in date from 2001 to 2010.

1. IEEE Xplore: http://ieeexplore.ieee.org/Xplore/dynhome.jsp

2. ACM Digital Library: http://portal.acm.org/dl.cfm

3. Inspec: http://www.engineeringvillage2.org/

4. SpringerLink: http://www.springerlink.com

5. ELSEVIER: http://www.sciencedirect.com

6. IJCSNS: http://ijcsns.org/index.htm

7. CiteSeer: http://citeseerx.ist.psu.edu (indexed database)

8. Google Scholar: http://scholar.google.ca (indexed database)

The queries used to search the databases above, except for IJCSNS, were as fol-
lows:

(Computer OR Digital) AND (Forensic OR Crime) AND (Investigation
OR Process OR Framework OR Model OR Analysis OR Examination)

For IEEE Xplore, the basic search screen window was used to search only within
title and abstract (metadata, not a full text).

In ACM Digital Library, the basic search screen window was used to search for
the queries within the database.

In the case of SpringerLink, the advanced search screen window was used to search
within the title and abstract. Furthermore, in SpringerLink the search field for queries
could not take all of the queries, so the last two keywords, “Analysis” and “Exami-
nation,” had to be excluded.

In the case of ELSEVIER, the advanced search screen window was used to search
within abstract, title, and keywords.

Running the above queries against the databases gave the following numbers of
papers:

11

• IEEE Xplore: 42 (on Nov 1, 2010)

• ACM Digital Library: 27 (on Nov 3, 2010)

• SpringerLink: 158 (on Nov 3, 2010)

• ELSEVIER: 346 (on Nov 4, 2010)

For IJCSNS, as an exception, the keywords “Digital Forensic Investigation” were
used in the search screen window. The search returned this number of papers:

• IJCSNS: 86 (on Nov 24, 2010)

Since using the above queries for Inspec and CiteSeer would result in a considerable
number of irrelevant Primary Studies (PS), Control Terms (CT) were used instead.
In addition, CT were run against previous databases as well, to be able to capture
more relevant PS. The CT recommended by the Inspec database as well as the subject
librarian are:

(Computer Crime) OR (Computer Forensics) OR (Forensic Science)

The first two CT (computer crime OR computer forensics) were used to search
IEEE Xplore, ACM, SpringerLink, and ELSEVIER. “Forensic Science” was excluded
since it returns PS out of the scope of this study. For IEEE Xplore, the advanced
search screen window was used in searching the metadata only. In the ACM digital
library, the advanced search screen window was used to fetch the database within
the keywords field. In SpringerLink, the advanced search screen window was used to
search within title and abstract. For ELSEVIER, the advanced search screen window
was used to search within the keywords.

In the case of Inspec, using the CT above, the database was searched in three
categories. In the first category, all of the CT (including “forensic science”) were used
with an AND Boolean operator between them in the quick search screen window for
searching within CT fields in the database. In the second category, only “computer
forensics” was used in the quick search screen window to search within the CT field.
In the third category, “forensic science” was used in the quick search screen window
to search within CT.

For CiteSeer, the advanced search screen window was used. In addition, since
CiteSeer does not have the option to search within CT, it was necessary to search its

12

database using keywords. These keywords were “Computer Crime” OR “Computer
Forensics” OR “Digital Forensic”. The search was conducted in two categories. First,
an OR operator was used between all the keywords in the abstract field. Second,
only the first two keywords were used, with an OR operator between them, in the
keywords field.

When the above CT and keywords were run on different dates, the following
numbers of papers were returned from the databases listed above:

• IEEE Xplore: 1,053 (on Nov 6, 2010)

• ACM Digital Library: 134 (on Nov 8, 2010)

• SpringerLink: 128 (On Nov 10, 2010)

• ELSEVIER: 69 (on Nov 14, 2010)

• Inspec: 459 (on Nov 5, 2010). The PS were distributed as follows:

– Category 1: 13

– Category 2: 290

– Category 3: 156

• CiteSeer: 162 (on Nov 15, 2010)

– Category 1: 143

– Category 2: 19

Finally, the primary studies that were collected from running all the above queries
are [21, 47, 10, 4, 33, 63, 62, 24, 5, 28, 31, 46, 57, 6, 67, 55, 58, 32, 56, 45]. Additional
primary studies were collected by examining the previous primary studies [43, 9, 14,
53, 17, 30].

2.4.2 Select Primary Studies

Selection Language

Publications in the English language only were selected from the above database
resources.

13

Selection Criteria

Primary studies were selected and irrelevant ones were excluded using three filters.
The criteria for those filters are as follows:

• The first filter excludes any papers whose titles bear no relation to the question
in Section 2.3.1. According to this filter, the total number of papers is 32.

• The second filter excludes any papers that do not target processes of the dig-
ital forensics investigation in their abstract or title. After this filter, the total
number of papers is 26.

• The third filter excludes any papers that do not discuss processes of the digital
forensics investigation in more detail in their full text. This leaves only the
primary studies that need to be included in the systematic review. With this
filter, the total number of PS remaining is 20, as follows: [21, 47, 10, 4, 33, 63,
62, 24, 5, 28, 31, 46, 57, 6, 67, 55, 58, 32, 56, 45]. Six additional primary studies
were found by investigating the 20 PS. Out of these 26 primary studies only 18
papers dealt with the processes of digital forensics investigation.

2.4.3 Assess Study Quality

The primary studies were assessed according to the following categorizations, starting
from the highest level to the lowest:

1. Peer-reviewed journals: Level 5 (Highest)

2. Peer-refereed book chapters: Level 4

3. Peer-reviewed conference papers: Level 3

4. Peer-reviewed workshop papers: Level 2

5. Non-peer refereed papers: Level 1 (Lowest)

Table 2.1 shows the summary of the primary studies genre. Nine of the 18 primary
studies were journals; these reveal the maturity of the processes listed in this chapter
and its patterns.

14

Genre Number of Primary Studies
Peer-reviewed journals 9

Peer-refereed book chapters 1
Peer-reviewed conference papers 7
Peer-reviewed workshop papers 1

Non-peer-refereed papers 0

Table 2.1: Paper genre and the number of primary studies.

2.4.4 Extract Required Data

The processes of digital forensics investigation that were extracted from the total 26
primary studies are grouped in Table 2.2.

2.4.5 Synthesize Data

The processes of digital forensics investigation were mapped to the proposed investi-
gation process in Table 2.3.

2.5 Documenting the Systematic Literature Re-
view

This stage is about generating the systematic literature review report.

2.5.1 Write Review Report

The review report is contained in the current chapter.

2.5.2 Validate Report

The same review protocol was used to validate the systematic literature review twice
during execution of the review.

2.6 Research Findings

All the processes of digital forensics investigation, as shown in Table 2.3, share the
reactive component, but only one [21] includes the proactive component. (In [21], this

15

proactive component has been named the active component.) The reactive component
of all processes was inspired by [43]. Recent papers such as [21, 18, 19, 42] have
suggested that there is a need for advancement in the area of proactive forensic
systems.

In [21], a multi-component view of digital forensics process is proposed. This
process is at a high level and consists of three components: proactive, active, and
reactive. The term “proactive” as it is used in [21] deals with the digital forensics
readiness of the organization as well as the responsible use of digital forensics tools.
The active component, considered a part of the proactive component in the current
study, deals with the collection of live evidence in real time while an event or incident
is happening. The active component of the investigation is not considered to be a
full investigation since it lacks case-specific investigation tools and techniques. The
reactive component is the traditional approach to digital forensics investigation. The
process proposed in our study is derived from [21], but has only two components,
proactive and reactive [60], [2] (see Figure 2.1). Our proposed proactive component
encompasses the active component described in [21].

Both our proposed process and the multi-component process share the reactive
component. Table 2.3 maps phases of the proposed proactive and reactive digital
forensic investigation process to phases of the existing processes.

Description of the two components in the proposed process is as follows:

1. Proactive Digital Forensic Component has the ability to proactively col-
lect data, preserve it, detect suspicious events, gather evidence, carry out the
analysis and build a case against any questionable activities. In addition, an
automated report is generated for later use in the reactive component. The
evidence gathered in this component is the proactive evidence that relates to a
specific event or incident as it occurs [42]. As opposed to the reactive compo-
nent, the collection phase in this component comes before preservation since no
incident has been identified yet.

Phases under the proactive component are defined as follows:

• Proactive Collection: automated live collection of predefined data in the
order of volatility and priority, and related to a specific requirement of an
organization or incident.

• Proactive Preservation: automated preservation, via hashing, of the evi-
dence and the proactively collected data related to the suspicious event.

16

Proac&ve	
Collec&on	 &	
Preserva&on	

Proac&ve	
Detec&on	 &	
Analysis	

Report	

Iden&fica&on	 Preserva&on	 collec&on	 Analysis	 Report	

Con&nue	 Inves&ga&on	

Proac&ve	 Inves&ga&on	

Reac&ve	 Inves&ga&on	

Decision	 Exit	
Inves&ga&on	

No	

Yes	

Figure 2.1: Proactive and Reactive Digital Forensic Investigation Framework.

• Proactive Event Detection: detection of suspicious event via an intrusion
detection system or a crime-prevention alert.

• Proactive Analysis: automated live analysis of the evidence, which might
use forensics techniques such as data mining and outlier detection to sup-
port and construct the initial hypothesis of the incident.

• Report: automated report generated from the proactive component analy-
sis. This report is also important for the reactive component and can serve
as the starting point of the reactive investigation.

This proactive component differs from common Intrusion Detection Systems
(IDS) by ensuring the integrity of evidence and preserving it in a forensically
sound manner (maintain the chain of custody to ensure the admissibility of
evidence in a court of law [21]). An IDS can be used in a proactive system as
its event detection component. In addition, the analysis of the evidence will be

17

done in such a way as to enable prosecution of the suspect and admission to a
court of law.

2. Reactive Digital Forensics Component is the traditional (or post-mortem)
approach of investigating a digital crime after an incident has occurred [43].
This involves identifying, preserving, collecting, analyzing, and generating the
final report. Two types of evidence are gathered under this component: active
and reactive. Active evidence refers to collecting all live (dynamic) evidence
that exists after an incident. An example of such evidence is processes running
in memory. The other type, reactive evidence, refers to collecting all the static
evidence remaining, such as an image of a hard drive.

Phases under the reactive component are defined in [43]. It is worth mentioning
that the examination and analysis phases in [43] are combined in the proposed
process under a single phase called analysis.

In order to see how the two components work together, let us take the scenario
that electronic health records with an elevated risk will be proactively collected
all the time for any read access of such records. This live collection is automated
and is conducted without the involvement of the investigator. When a suspicious
event is triggered and detected during collection, all evidence related to that
event will be preserved by calculating MD5 hashing function. Thereafter, a
forensic image will be made from the preserved evidence, and this image must
produce the same MD5 number. Next, a preliminary analysis will be conducted
on the forensic image and maybe some data mining and/or outlier detection
techniques will be applied to identify whether the event is attributed to a crime
and its severity. Finally, an automated report will be generated and given to
the person in charge to decide if the reactive component needs to take over or
not.

Next, if needed, the reactive component will conduct a more comprehensive
investigation by taking the proactive report as a preliminary evidence for the
occurrence of the incident. Since this is a post-mortem of an incident or an event,
the evidence will be preserved first by calculating the MD5 hashing function.
Then a forensic image will be made from the original source of evidence. This
forensic image must produce the same MD5 number to preserve the integrity
of the original evidence. Thereafter, a deeper analysis will be conducted using
forensic tools and techniques to enable the investigator to find the necessary

18

clues and reach a conclusion. A report will be generated accordingly.

A proactive component should aim at achieving the following goals:

• Develop new proactive tools and techniques to investigate sophisticated digital
crimes, including the ones using anti-forensic methods.

• Capture more accurate and reliable evidence in real time while an incident is
happening [21, 19, 42].

• Promote automation and minimize user intervention in all proactive phases:
collection, preservation, event detection, analysis, and report.

• Provide strong cases and reliable leads for the reactive component.

• Save time and money by reducing the resources needed for an investigation.

As opposed to the multi-component process proposed in [21], our system has the
following features:

• It offers a functional proactive process with the above goals.

• It specifies explicitly two functional processes compared to the high-level view
of the multi-component framework.

• It can be used to develop techniques and automated tools to investigate anti-
forensic attacks [50].

• It automates most if not all the phases of the proactive component.

• It encompasses the active component of [21] in a more reliable component,
namely the proactive component.

One of the disadvantages of the proposed process is as follows:

• The investigator will have to decide whether to move from the proactive to
the reactive component or to exit the whole investigation. This decision is not
automated yet.

19

2.7 Summary

In order to investigate anti-forensic attacks and to promote automation of the live
investigation, a proactive and reactive functional process has been proposed. The pro-
posed process came as result of a SLR of all the processes that exist in the literature.
The phases of the proposed proactive and reactive digital forensics investigation pro-
cess have been mapped to existing investigation processes. The proactive component
in the proposed process has been compared to the active component in the multi-
component framework. All phases in the proactive component of the new process
are meant to be automated. To this end, a theory for the proactive digital forensics
is necessary to lay down a strong foundation for the implementation of a reliable
proactive system. This is the purpose of the next chapters.

20

Process
No.

Reference
No., Genre

Digital Forensic
Investigation process
name

No. of Phases

1 [43], Confer-
ence

Investigative Process for
Digital Forensic Science

6 phases

2 [47], Journal An Abstract Digital Foren-
sics Model

9 phases

3 [9], Journal An Integrated Digital Inves-
tigation Process

17 phases organized
into 5 major phases

4 [63], Journal End-to-End Digital Investi-
gation Process

9 phases

5 [4], Journal The Enhanced Digital In-
vestigation Process

5 major phases includ-
ing sub-phases

6 [14], Journal The Extended Model of Cy-
bercrime Investigations

13 phases

7 [10], Confer-
ence

An Event-based Digital
Forensic Investigation
Framework

5 major phases includ-
ing sub-phases

8 [24], Journal The Lifecycle Model 7 phases
9 [5], Journal The Hierarchical,

Objective-based Frame-
work

6 phases

10 [33], Confer-
ence

The Investigation Frame-
work

3 phases

11 [30], Journal The Forensic Process 4 phases
12 [53], Confer-

ence
The Computer Forensics
Field Triage Process Model

6 major phases includ-
ing sub-phases

13 [28], Journal FORZA - Digital Foren-
sics Investigation Frame-
work Incorporating Legal
Issues

8 phases

14 [17], Confer-
ence

The Common Process
Model for Incident Re-
sponse and Computer
Forensics

3 major phases includ-
ing sub-phases

15 [31], Work-
shop

Two-Dimensional Evidence
Reliability Amplification
Process Model

5 major phases includ-
ing sub-phases

16 [57], Confer-
ence

Digital Forensics Investiga-
tion Procedure Model

10 phases including
sub-phases

17 [6], Book
Chapter

An Extended Model for E-
Discovery Operations

10 phases

18 [21], Confer-
ence

A Multi-component View of
Digital Forensics

3 major phases includ-
ing sub-phases

Table 2.2: Processes of digital forensics investigation.

21

Digital Forensic
Investigation Process Name
& Reference No.

Pro. Invest. Rea. Invest.

Pr
oa

ct
iv

e
C

ol
le

ct
io

n
Pr

oa
ct

iv
e

Pr
es

er
va

tio
n

Pr
oa

ct
iv

e
Ev

en
t

D
et

ec
tio

n
Pr

oa
ct

iv
e

A
na

ly
sis

R
ep

or
t

Id
en

tifi
ca

tio
n

Pr
es

er
va

tio
n

C
ol

le
ct

io
n

A
na

ly
sis

R
ep

or
t

Investigative Process for Digital Forensic
Science [43]

√ √ √ √ √

An Abstract Digital Forensics Model [47]
√ √ √ √ √

An Integrated Digital Investigation Pro-
cess [9]

√ √ √ √ √

End-to-End Digital Investigation Pro-
cess [63]

√ √

The Enhanced Digital Investigation Pro-
cess [4]

√ √ √ √ √

The Extended Model of Cybercrime Inves-
tigations [14]

√ √ √ √ √

An Event-based Digital Forensic Investi-
gation Framework [10]

√ √ √ √ √

The Lifecycle Model [24]
√ √ √ √ √

The Hierarchical, Objective-based Frame-
work [5]

√ √ √ √ √

The Investigation Framework [33]
√ √ √ √ √

The Forensic Process [30]
√ √ √ √

The Computer Forensics Field Triage Pro-
cess Model [53]

√ √ √ √

FORZA - Digital Forensics Investigation
Framework Incorporating Legal Issues [28]

√ √ √ √ √

The Common Process Model for Incident
Response and Computer Forensics [17]

√ √ √ √ √

Two-Dimensional Evidence Reliability
Amplification Process Model [31]

√ √ √ √ √

Digital Forensics Investigation Procedure
Model [57]

√ √ √ √ √

An Extended Model for E-Discovery Op-
erations [6]

√ √ √ √ √

A Multi-component View of Digital
Forensics [21]

√ √ √ √ √ √ √ √ √ √

Table 2.3: Mapping phases of the proposed proactive and reactive digital forensics
investigation process to phases of the existing processes.

22

Chapter 3

Theory for Proactive Digital
Forensics

The complexity of digital crimes, in general, and anti-forensic attacks, in particular,
requires a well-founded formalism for digital forensic tools. This requirement is even
more stringent for proactive systems; as they need to be formally defined, validated
and verified, and ready for anti-forensic attacks. In this chapter, we present an
intuitive theory for proactive digital forensics and show how it can be used as a novel
formalism for implementing proactive digital forensic systems.

3.1 Complexity of Digital Forensic Investigation
from the First Principles

As opposed to the usual crimes, digital attacks are so complex that it is hard to inves-
tigate them forensically. The elements involved in a digital crime are located in a large
multidimensional space and cannot be easily identified. With the increase of storage
and memory sizes, and the use of parallelism, virtualization and cloud, the parameters
to take into account during an investigation can even become unmanageable.

The complexity of the multidimensional space is an immediate consequence of the
fundamental principles of computer forensics, discussed next.

23

3.1.1 Fundamental Principles of Computer Forensics

Peisert et al. [44] identified five fundamental principles for an ideal computer forensic
investigation. These principles are so critical that any tool that does not take them
all into account is doomed to fail in providing the full picture of a digital incident [44].
A tool that only follows some but not all of the principles will still fail to identify
many scenarios and events or do so incorrectly.

The five fundamental principles are stated below:

Principle 1 Consider the entire system. This includes the user space as well as the
entire kernel space, file system, network stack, and other related subsystems.

Principle 2 Assumptions about expected failures, attacks, and attackers should not
control what is logged. Trust no user and trust no policy, as we may not know
what we want in advance.

Principle 3 Consider the effects of events, not just the actions that caused them,
and how those effects may be altered by context and environment.

Principle 4 Context assists in interpreting and understanding the meaning of an
event.

Principle 5 Every action and every result must be processed and presented in a way
that can be analyzed and understood by a human forensic analyst.

The complexity of the investigation space can immediately be inferred from the
five principles: they require considering the whole state of the entire operating sys-
tem, including user and kernel space events, files, network interfaces, and the rest
of subsystems, at all times and in all possible contexts. In addition, the investiga-
tors should interpret all the events generated from the system at different levels of
abstraction within the environment in which they occur. Moreover, the sequence of
events that led to a specific incident needs to be reconstructed from the collected data
with a high degree of certainty. On top of all of these considerations, every element
of any investigation needs to be analyzed and presented in a more readable form to
be ready for deeper investigation.

3.1.2 Fundamental Principles of Proactive Digital Forensics

Based on a few observations and assumptions, Bradford et al. [7] introduced three
proactive forensic principles, which are listed and described below.

24

• The small-security-breach principle: Small attacks should not be ignored, as
they might lead to a fatal one.

• The small-user-world principle: Employees usually use a small number of sys-
tems and applications and they do so in a manner similar to their peers.

• The incremental violation principle: Internal violators usually go through in-
cremental baby steps and a noticeable learning curve before being proficient in
their attacks.

In our point of view, the above principles suffer from the following drawbacks:

• They are, in general, based on assumptions that may not hold. In particular,
they are restricted to the insiders of an organization and may fail when an
outsider performs the attack. As such, they go against the second principle of
the five fundamental principles discussed in Section 3.1.1.

• They are limited and do not capture sophisticated crimes that use advanced
techniques as in the anti-forensics realm.

• The entirety of the process of the forensic investigation is not considered, and the
principles were geared towards the analysis phase of the process. For example,
the preservation phase, which is considered a critical phase of any proactive
forensic investigation, is not taken into account.

Therefore, in addition to the five fundamental principles, we need better principles for
conducting an automated proactive investigation in real time. They should be general
enough, forensically sound and compatible with the five fundamental principles. The
following observations are necessary to synthesize the additional principles:

• Intruders can compromise the system at any time, thus one should expect an
attack to happen at any time. One should also expect an attack to tamper with
any element including the logs. This implies that the full history of the system
is important.

• By nature, a proactive component should monitor the system forensically and
have the ability to preserve the state of the system for further investigation.
More precisely, it should permit the investigator to compare the current state
of the system with its previous states and be able to restore the system to a

25

good state if the current one is detected to be illegitimate. In addition, it should
ensure that the preserved data is protected.

• A proactive system should detect the crimes in their early stages and reduce the
damage they would cause.

• A proactive system should implement preventive measures to stop the attack and
be able to predict the location of the damage and protect it forensically.

The first and the last two observations lead to the sixth and seventh principle [1],
respectively:

Principle 6 Preserve the entire history of the system.

Principle 7 Perform the analysis and report the results in real time.

By preserving the entire history of the system, we can go back in time and recon-
struct what happened and answer reliably all the necessary questions about an event
or incident. The reconstructed timeline is based on the actual states of the system
before and after the event or incident. In addition and due to the large amount of
data, events and actions involved, performing a proactive analysis and reporting re-
quire real time techniques that use high-performance computing. The analysis phase
should be automated and have the necessary intelligence to investigate the suspicious
events in real time and across multiple platforms.

3.1.3 DF Multidimensional Space

In addition to the actions and events that the seven principles listed above emphasize,
we introduce the notion of targets. A target is any resource or object related to the
system under investigation (e.g., a file, memory, register, etc.). We will use an element
of DF investigation to refer to a target, an action or an event. At a time t and as
shown in Figure 3.1, the system is in the process of executing an action that reacts
to some targets and events, and produces new targets and events or modifies the
existing ones. Therefore to describe the dynamics of the system at a single instant
t, one needs to know at least the states of the targets, the events generated and
the actions executed at t. For a full description of the dynamics, these elements of
investigation need to be specified at every instant of time; and the complete analysis
of the dynamics of the system requires a large multidimensional space [1].

26

Targets	

Events	

Events	

Targets	
Ac.ons	

Figure 3.1: Relation between actions, targets and events.

Being proactive implies that when many systems are involved (as is the case in
networks or clouds), one has to consider not only one system at a time but the
ensemble in a single combined space.

3.2 Modelling the Proactive system

The diversity of the digital systems and the complexity of their spaces require building
investigation tools from the ground up. As the size of the investigation space is getting
larger, the tools must be able to reduce it in a systematic way without focusing on
finding a specific piece of evidence [19]. This investigation-oriented aspect of the
forensic tools requires a solid theory to formalize their implementations.

3.2.1 Related Work

Few attempts have been made to formalize digital forensics. Some of these attempts
dealt with the analysis phase only, while others were concerned about the general
methodology followed during an investigation.

Colored Petri Nets were used in [64] to model past events and the interaction
between them. However, it is not general enough [23] and requires preliminary infor-
mation about the attack.

Stallard et al. [61] used, in a reactive analysis context, expert systems with decision
tree-based semantic integrity checking that relies on the principle of invariance in the
data redundancies of a system. It requires having some prior information about the
good states of the system to be able to investigate complex attacks.

27

In [20, 29], Gladyshev et al. used Finite State Machine (FSM) to model potential
attack from the evidence found. Carrier et al. [13] proposed a framework for digi-
tal forensic investigation based on the computer history that also uses FSM. Both
approaches, however, are not reliable when exposed to anti-forensic attacks [50]. In
addition, Hankins et al. [23] proposed a new model based on a Turing Machine (TM)
to reconstruct computer forensic events.

Arasteh et al. [3] presented an approach of analysing log files based on Compu-
tational logic and formal automatic verification. Rekhis et al.[48] introduced also a
Computational logic (proof-based) approach for digital investigation of security inci-
dents and called it Investigation-based Temporal Logic of Actions (I-TLA). I-TLA is
used to prove or disprove the existence of possible attack scenarios that will lead to
the evidence observed. The attack scenarios are modelled and generated to emulate
how the attack was carried out. In [49], they also developed a theory for network
digital forensic analysis to prove or disprove the occurrence of network attacks such
as IP spoofing attacks.

Hypothesis testing [70, 71, 7] was used by Willassen to support timestamp inves-
tigation for anti-forensic attacks. Hypotheses were formulated about tampered-with
timestamps and they were statistically tested using observed evidence.

Both Deterministic Finite Automaton (DFA) and hypothesis testing was used by
Carrier [11] to create a mathematical model for digital forensics investigation and
deal with event construction based on historical data and hypothesis testing.

Ryan et al. [34] proposed a formal framework for analysing digital crimes and it
was used to construct forensic procedures to investigate attacks. It is, however, a
signature-based framework, as it is restricted to known attacks.

The common feature of these digital forensic formalisms is that they are mostly
dealing with reactive digital forensics or they are limited to a specific phase during the
investigation process. As such, they do not assume any prior information about the
normal state or any forensic-readiness of the system. Moreover, as Hankins pointed
out in [23], they are not general enough to be applied in most real investigations.

28

3.2.2 A Model for a Proactive System

In our perspective, a proactive digital forensic system is viewed as a feedback dynam-
ical system1 in which the forward system is the system under investigation and the
feedback system2 is the proactive component, as shown in Figure 3.2.

>

T0
T1
T2

Tn

E0
E1 E2

Em

Actions
User

Forensic Rules

T0

T2
T1

Tn

E0 E1
E2

Em

>
>
>

>

>
>
>

>

>

>

>

 >
>

 >
 > >

> > > > > > > >

>
>
>

>

>
>
>

>

Figure 3.2: Investigation System.

Both systems (the forward and the feedback) can be modelled as a tuple (T,E,A),
where T is a set of targets, E is a set of events, and A is a set of possible actions each
of which is viewed as a transfer function of targets and events. To clarify this, each
target f ∈ T is associated with a set S(f) representing the possible states in which
it can be. The Cartesian product of S(f) for all targets f defines the state space of

1It is an approach to understand the behaviour of complex system over time. Also, it deals with
feedback loops to adjust the system accordingly, as is the case in our proactive system.

2It is the proactive component that takes the output from the forward system (system under
investigation) and takes proactive measures to feed it in again as input to the forward system as an
adjustment.

29

the system’s targets and we denote it by T . We do the same for every event e but
we consider S(e) to contain two and only two elements, namely ↑ (triggered event)
and ↓ (not triggered event). The Cartesian product of all the system’s events (S(e)
for every event e) is denoted by E (status space). An action a is therefore a function
from Γ × T × E to T × E , where Γ represents the time dimension. The evolution
function ψ is defined from Γ× (T × E)× A to T × E by

ψ(t, (~r,~e), a) = a(t, ~r, ~e)3.

At a time t ∈ Γ, we say that an event e is triggered if its status at time t is ↑, and
not triggered ↓ otherwise. The notation ↑t e will be used to denote that the event e is
triggered at time t. We extend the set of targets and events with two special elements
∅T and ∅E representing empty target and empty event. The ∅A represents the empty
action; that is, for every (~r,~e) ∈ (T × E), we have

∅A(t, ~r, ~e) = (~r,~e).

In addition to the tuple (T,E,A) specifying a digital system, the proactive com-
ponent is specified by an extra tuple (D, P, C,R), where D is a set of binary relations
on E × T , P is a computable bijection function from T to T , C is a set of logical
expressions, and R is a set of rules called Digital Forensic Rules (DFRs). If, for each
target f in the domain of P (denoted by P−1(T)), there is a computable bijection
from S(f) to S(P (f)), which we denote by Pf , we say that P is a preservation func-
tion. In this case, the domain of P is called the collected targets and the image of
P , denoted by P (T), is called the preserved targets as shown in Figure 3.3. A DFR
is a tuple of the form (e, c, a, e′) ∈ E × C × A× E representing the execution of the
action a and triggering of e′ when e is triggered and the condition c is true. To ease
the interpretation of the tuple, we denote such a DFR by @e c→ a, ↑ e′. This is the
general form of the DFR and, therefore, we qualify it as generalized. If the event e′

is ∅E, then the DFR is a conditional DFR and is written as @e c→ a. A simple DFR
is the one for which c is true all the time and the event e′ is ∅E. The notation can
therefore be simplified to @e→a. In summary, we distinguish three kinds of forensic
rules:

3In practice, we take finite targets {f1, . . . , fn} and events {e1, . . . , em} and produce state vector
targets of the form ~r = (r1, r2, ..., rn), where ri is a state of the target fi, and status vector events
of the form ~e = (u1, u2, ..., um), where ui is a status of the event ei.

30

• Simple forensic rule which has the form: @e→a,

• Conditional forensic rule with the form: @e c→ a,

• Generalized forensic rule, which has the form: @e c→ a, ↑ e′.

T1
	 	 T2
	 	

Tn
	 	

P(T1)
	 	 P(T2)
	 	

P(Tn)	
	 	

T T

P(T)	

P-‐1(T)	

P	

Figure 3.3: Targets Preservation as a Bijection Function.

Events (E) can be associated to targets (T) using a binary relation D ∈ D (D ⊆
E×T) , which can be viewed as in Figure 3.4. An example of D would be the binary
relation that associates each event to targets that need to be preserved when the
event is triggered. Yet another example of D is the relation that associates events to
the targets that trigger them. A target T triggers an event e when the change of the
T ’s state causes e to fire.

To illustrate what is really happing in Figure 3.2 as well as the different notions
introduced above, we give the following example associated with the botnet called
Zeus, as it is the case study we used for the whole proactive system implementation
(see Section 5.4). The forward system is the system under the investigation, the
computer (operating system — Windows XP machine) susceptible to Zeus attacks.
The proactive forensic component that we implemented is the feedback system and is
responsible for continuously collecting and preserving important targets and events as
well as doing the analysis and generating reports. More specifically, Zeus’s important

31

T1
	 	 T2
	 	

Tn
	 	

E1
	 	 E2
	 	

Em
	 	

E T

Figure 3.4: Events and Targets binary relation.

targets and events are the system32 folder and its status change. Therefore the target
“system32 folder metadata” is collected and preserved at prespecified time intervals.
When the system32 folder changes, this event is captured by the proactive component
and is used by the forensic rule engine to trigger the right forensic rules, which are
responsible for handling the analysis of this incident. In addition to adding extra
targets and events to be collected and preserved, these forensic rules may take extra
actions that can be sent as feedback to the forward system to do those adjustments and
take proactive measures. The feedback system will generate a report (a target) and
alerts (events) for the system administrators when it is done analysing and correlating
the evidence.

With this we set the stage for the DF analysis and the specification of events and
targets as discussed in the next sections. Before we move on, it is worth pointing out
that the proactive component phases can be expressed using DFRs. For example,
given an event e and a relation D ∈ D, the preservation phase can be expressed as a
forensic rule as follows:

@e→A(P{De}),

where De is the set of targets associated with e via D and A(P{De}) is the action
of preserving every target in De.

Collecting and preserving all targets as well as analysing the system in the full
space of F = (T,E, t) are infeasible as they would require unlimited resources to store
the profiles and execute the analysis in real time. Therefore, we need ways to reduce

32

F to a better subspace requiring reasonable computational resources.

3.3 Theory of Events, Targets and Actions

Keeping track of all events and targets is expensive. To reduce them, we introduce
a few classifications using preorder and equivalence relations. To illustrate the idea
behind these classifications, imagine a botnet writing into a file. This event will
trigger other events including checking the permission on the file, updating the access
time of the file, changing the inode and writing the data to the actual disk. The idea
behind our formalization is to be able to know which events are important (maximal)
and which ones can be ignored. The same thing holds for the targets.

3.3.1 Short Theory on Events

Let e1 and e2 be two events in E. We defined the relation ≤E on E as follows:
e1 ≤E e2 if and only if (⇐⇒) whenever the event e1 happens at a time t, the event
e2 must also happen at a time t′ greater than or equal to t. Formally, this can be
expressed as:

e1 ≤E e2 ⇐⇒ (∀t ↑t e1 ⇒ ∃t′ ≥ t ↑t′ e2)

Lemma 3.1. The relation ≤E is a preorder relation.

Proof. To prove the lemma, we need to show that the relation ≤E is reflexive and
transitive. That is what we do next.

1. Reflexivity: it is obvious that e1 ≤E e1.

2. Transitivity: suppose that e1 ≤E e2 and e2 ≤E e3. This means that when e1

happens at a time t, e2 must happen at a t′ ≥ t. Because e2 ≤E e3, e3 must
happen at t′′ ≥ t′ ≥ t. Therefore, e1 ≤E e3.

The events that are less than or equal to an event e are called the subsequent
events of e. Note that if the subsequent events of any event e in E cannot trigger e,
then the relation ≤E is an order relation.

33

The preorder≤E can be turned into a partial order relation≤[E] on the equivalence
classes [E] of the following equivalence relation

e1 ∼=E e2 ⇐⇒ e1 ≤E e2 ∧ e2 ≤E e1

Lemma 3.2. Let ∼E be the relation defined by

e1 ∼E e2 ⇐⇒ e1 ≤E e2 ∨ e2 ≤E e1

The relation ∼E is a dependency relation. This follows from the fact that ∼E is
reflexive and symmetric. Informally, e1 ∼E e2 means that when one of them happens,
the other one has to happen. Two events are partially independent if they are not
related by ∼E. Two subsets of events are partially independent if any two events from
both are partially independent. Based on ∼E, we defined the following relation:

e1 ≈E e2 ⇐⇒ e1 ∼E e2 or there exist e3 such that e1 ∼E e3 and e3 ∼E e2

Theorem 3.1. The relation ≈E is an equivalence relation.

The proof is as follows.

Proof. The theorem holds iff ≈E is reflexive, symmetric and transitive. These are
shown next.

• Reflexivity: since e1 ∼E e1, it follows that e1 ≈E e1.

• Symmetry: e1 ≈E e2 implies that there exist e3 such that e1 ∼E e3 and e3 ∼E e2.
Given the symmetry of ∼E, we have e2 ≈E e1.

• Transitivity: e1 ≈E e2 and e2 ≈E e3 implies that e1 ∼E e2 and e2 ∼E e3.
Therefore e1 ≈E e3.

Two events are totally independent if they are not related by ≈E. Two subsets of
events are independent if any two events from both are independent.

Theorem 3.2. There exists a family of pairwise totally independent subsets of events
{Ei

s} such that
E =

⋃
i

Ei
s

34

Proof. The proof follows from the fact that ≈E is an equivalence relation on E. The
family can be taken to be the equivalence classes related to ≈E.

From a graph theory perspective, The preorder relation ≤E induces a directed
graph on the events (see Figure 3.5); the graph corresponds to the Hasse diagram
(directed graph with no loops and arcs implied by the transitivity) of the preorder
≤E. The dependency relation ∼E transforms the directed graph to an undirected one
as in Figure 3.6. The connected components of the undirected graph are transformed
into equivalence classes given by the equivalence relation ≈E in Figure 3.7. The
equivalence class relation ∼=E replaces the cycles from the undirected graph with a
single vertex as in Figure 3.8. In addition, the family of the equivalence classes
associated with ≈E can be seen in Figure 3.9.

e0	

e01	

e012	

e03	

e031	 e032	

e02	

e011	

e1	

e11	

e112	

e12	

e121	 e122	 e111	

Grouping	 events	 based	 on	 subsequent	 events	 (direct	 graph)	 	

Maximal	 events	 (elements)	 Maximal	 events	 (elements)	 Maximal	 events	 (elements)	 Maximal	 events	 (elements)	

Minimal	 events	 (elements)	 Minimal	 events	 (elements)	

Figure 3.5: Preorder relation on Events (grouping events based on subsequent events).

e0	

e01	

e012	

e03	

e031	 e032	

e02	

e011	

e1	

e11	

e112	

e12	

e121	 e122	 e111	

Causal	 rela-onship	 between	 events	 (undirected	 graph)	

Figure 3.6: Dependency relation on Events (causal relationship between events).

35

e0	

e01	

e012	

e03	

e031	 e032	

e02	

e011	

e1	

e11	

e112	

e12	

e121	 e122	 e111	

Connect	 graph	 	

Figure 3.7: Equivalence relation on Events (connect graph).

e0	

e30	 e50	 e40	

e1	

e10	 e20	

Replacing	 loops	 with	 a	 single	 vertex	

Minimal	 events	 (elements)	

Maximal	 events	 (elements)	 Maximal	 events	 (elements)	

Minimal	 events	 (elements)	

Figure 3.8: Equivalence class relation on Events (replacing loops with a single vertex).

All the relations defined above can be stated for the equivalence classes [E] given
by the relation ∼=E. We will replace E by [E] in all the definitions above.

Each equivalence class of ≈[E] is a tree under the relation ∼[E] and a directed tree
under ≤[E]. Therefore, the set [E] is a forest.

Lemma 3.3. Since each equivalence class is finite and ordered by ≤[E], each equiva-
lence class of ≈[E] has a maximal and minimal element (see Figure 3.8).

Definition 3.1. A stealth attack is a digital attack that triggers events that the
monitoring system in use cannot notice.

Theorem 3.3. A stealth attack that triggers an event in E cannot bypass a moni-
toring system that monitors an event in every maximal element of each equivalence
class of [E], given that the monitor system itself is not attacked. If these events are
not watched, then a digital forensic attack can bypass the monitor system.

The theorem basically states that when an attack triggers an event e in E, it must
trigger an event in a maximal element of the equivalence class of [e], where [e] is the

36

e0	

e30	 e50	 e40	

e1	

e10	 e20	

Par,ally	 independent	 Totally	 independent	

Figure 3.9: Family of pairwise totally independent subset of Events.

equivalence class of e under ∼=E. Therefore, if the greatest events are watched, the
attack cannot go unnoticed unless the attack modified the monitoring system and
caused it not to see events that are maximal elements.

If, however, the monitor system is watching an event that is not the maximal,
then the attack can manage to only trigger bigger events than the ones watched by
the monitoring system and, therefore, to bypass it.

Note that the theorem does not state that the system will detect that a stealth
attack happened when a maximal event is triggered. It only states that the stealth
property of the attack does not hold any more.

It is worth pointing out that the classification above is not effective in handling
events that trigger other events when specific conditions are true and/or specific
actions are carried out. To be precise, we distinguish at least three ways in which the
triggering of two events e1 and e2 can be related:

1. ∀t ↑t e1 ⇒ ∃t′ ≥ t ↑t′ e2

2. ∀t ↑t e1 ⇒ (∃t′ ≥ t and ∃c ∈ C, c⇒↑t′ e2)

3. ∀t∃c ∈ C, c⇒ (↑t e1 ⇒ ∃t′ ≥ t and ∃c′ ∈ C, c′ ⇒↑t′ e2)

Once the conditions are added into the picture, the order property of the relation
between events does not hold any more. In addition, the conditions, as well as the
actions, may depend on time and, as such, the classification of events becomes an
undecidable problem. In fact, there is no universal procedure to know when an event
is supposed to trigger another.

37

3.3.2 Short Theory of Targets

Let Ψ be the mapping from T to E (Figure 3.10) that associates each target with
its change of status event. The mapping Ψ and ≤E induces a preorder relation ≤T
defined by

T1 ≤T T2 ⇐⇒ Ψ(T1) ≤E Ψ(T2)

Informally, this means that whenever target T1 changes at time t the target T2 must
change at t′ ≥ t. Similarly, the relations ∼=E, ∼E and ≈E induce the relations ∼=T ,
∼T and ≈T on targets:

T1rTT2 ⇐⇒ Ψ(T1)rEΨ(T2), where r is ∼=,∼ or ≈

As we did with events, we can state properties of T and [T] (the equivalence classes
given by ∼=T). We can also define the partial and the total independence similar to
events.

e0	

e01	

e012	

e03	

e031	 e032	

e02	

e011	

T1	

T11	

T112	

T12	

T121	 T122	 T111	

ψ	

Figure 3.10: Mapping between Targets and Events.

Using the theorem stated above, the maximal targets are enough to detect whether
a target has changed. They may not, however, be sufficient to gather all the evidence
of an attack. As such, monitoring only the maximal targets may not be enough to
gather the necessary evidence. As an example, when a file is written to a disk, it is
done in the binary format. Considering only the disk may require extra information
about the way the file was written in order to read, interpret and find the evidence
in that file.

In what follows, we suppose that each target/event has a set of features that
characterize it. These features include priority level, privilege levels, modification

38

time, creation time, access time, etc.

3.3.3 Short Theory on Actions

The set of actions A is extended to Ā using the following operators:

• An associative binary operator called sequential operator and denoted by ;.
Given two actions a1 and a2, the action a1; a2 is semantically equivalent to
carrying out a1 and then a2 (the two transfer functions are in series). Note that
∅A is a neutral element of A with respect to ; (i.e., a; ∅A = ∅A; a = a for every
action a).

• A commutative binary operator called parallel operator and denoted by ||. In
this case a1||a2 is equivalent to carrying a1 and a2 simultaneously (the two
transfer functions are in parallel). The action ∅A is also a neutral element of A
with respect to ||.

• A conditional operator defined as follows. Given two conditions ci and ce in C,
and an action a, the operator ciace represents the action of iteratively carrying
out a only when ci is true and stopping when ce is false. That is:

ciace =

a; ciace if ci is true and ce is false
∅A if ci is false
a if ci is true and ce is true

If ce is true, then ciace is denoted by cia. If ci is true, it is denoted by ace. Note
that if both are true, then ciace is a. Note that ci∅Ace = ∅A for any ci and ce in
C. As far as we know, the conditional operator does not have an equivalent in
dynamical system theory.

The elements of A will be called primitive actions and those of Ā composite actions.
Since, in practice, the evaluation of a condition and the execution of an action

take time, we introduce the running time function d from Γ× (T × E)× (A ∪ C) to
Γ such that d(t, x, ∅A) = t and d(t, x, y) ≥ t. The evolution function ψ satisfies the
following formula for the sequential operator:

ψ(t, (~r,~e), a1; a2) = ψ(t+ d(t, (~r,~e), a1), a1(t, ~r, ~e), a2)

39

For the conditional operator, it should satisfy:

ψ(t, (~r,~e), ciace) =

ψ(t+ tci
+ ta + tce , a(t+ tci

, ~r, ~e), ciace), where tci
= d(t, (~r,~e), ci),

ta = d(t+ tci
, (~r,~e), a), tce = d(t+ tci

+ ta, (~r,~e), ce)
if ci is true and ce is false

(~r,~e) if ci is false
a(t+ d(t, (~r,~e), ci), ~r, ~e) if ci is true and ce is true

Given an action a ∈ Ā and an event e ∈ E, we say that a triggers e if e changes its
status for some input event status and target state of a at some instant t. We denote
this by a→ ↑ e. We say that an action a changes a target f if the state of f changes
for some input event status and target state and at some time t. Given an action a,
we denote by T (a) and E(a) the set of targets and events changed and triggered by
a respectively:

T (a) = {f |f is a target that a changes} and E(a) = {e|e is an event that a triggers}

Definition 3.2. The action support and the target support of an action a, denoted
by sup(a) and Tsup(a) respectively, are defined recursively as follows:

• If a is primitive, then sup(a) = {a} and Tsup(a) = T (a).

• If a is of the form a1; a2 or a1||a2, then sup(a) = sup(a1)∪sup(a2) and Tsup(a) =
Tsup(a1) ∪ Tsup(a2).

• If a is of the form c1a
′c2, then sup(a) = sup(a′) and Tsup(a) = Tsup(a′).

Since the conditions may mask an action, we have the following lemma.

Lemma 3.4. Given an action a in Ā, we have

T (a) ⊆ Tsup(a).

Definition 3.3. We assume that the state space of targets is partitioned into two
regions: legitimate L and non-legitimate Lc. An attack is an action k that causes the
states of the targets to be in Lc at some instant of time. The target evidence of k is
defined as T (k) and its event evidence is E(k).

40

Proposition 3.1. Let k be an attack and let Tsup(k) be its target support. Let M
be the set of targets, denoted by M , that the monitoring system is observing. If
M ∩Tsup(k) = ∅, then the monitoring system will not detect any target evidence of k.

Since T (k) ⊆ Tsup(k), we have M ∩ T (k) = ∅. As such the targets affected
(changed) by the attack are not part of M .

In Definition 3.3, we assumed that an action can lead to either a legitimate region
or not. And to be proactive, we are interested in computationally deciding in advance
which region should avoid the damage. Unfortunately, such an aim is not possible as
stated in the following theorem.

Theorem 3.4. In general, there is no universal computational procedure to detect
attacks.

The proof follows from the following facts:

• The model used to represent the proactive system is general enough to include
all possible Turing Machines (TM). In fact, every TM , including the universal
ones, can be represented using the tuple (T,E,A), where T contains the tape of
the machine, its states, current state register, the head position and its direction;
E contains all the events corresponding to the changes of these targets; and A

contains the actions corresponding to the transition function of the machine
TM according to its targets and events.

• Deciding where an action is legitimate implies deciding whether a Turing Ma-
chine causes its tape to have a specific state. Since this is not always decidable,
there is no universal computational procedure to generally decide that actions
are legitimate. In particular, if we take non-legitimate to be the region charac-
terizing viruses, deciding whether an action is an attack is equivalent to deciding
it is a virus. This is, of course, undecidable [27, 39, 41].

Based on the same reasoning as above, detecting whether an action will modify the
state of a target to a specific one or trigger a specific event are all undecidable in
general. In fact, if the final state of a TM is taken to be the specific state we are
interested in, then the decidability is exactly that of the halting problem [39, 41]. As
such we have the following theorem.

Theorem 3.5 (Target and Event Undecidability). In general, there is no universal
computational procedure that decides whether an action will trigger a specific event
or modify a target to a specific state.

41

It is worth emphasizing that these two theorems strongly support the seven prin-
ciples we discussed previously and suggest subdividing the state space not only into
two crisp regions, as done above, but into many regions as described next.

3.3.4 Zone-Based Classification and Forensic Space Reduc-
tion

To address the limitation of the classification described previously and address the
undecidability issue above, we classify the event and target state into a set of prior-
ity zones. These zones can be represented with different colors: green, yellow, and
red; starting from a lower priority to a higher one as shown in Figure 3.11. The
different sequence of symbols ? (profile 1), ◦ (profile 2), and � (profile 3) shown in
the figure specify different profiles of the system affecting different targets and events
as it evolves in time. When important events/targets with high-priority levels are
triggered, a more thorough analysis is expected. Moreover, the zones can be used as
a quantifying matrix that provides numbers reflecting the certainty level for the oc-
currence of an incident. In our case, this number is an important piece of information
in the final report.

Targets	

Time/Sec	

Red	 Zone	

Yellow	 Zone	

Green	 Zone	

Red	 Zone	

Yellow	 Zone	 	

Green	 Zone	

Events	

★
★ ★

★

★
★

★ ★
★

★

★
★

★

¢

¢
¢

¢

¢ ¢

¢

¢

¢

¢
¢

¢

nn

n

n

n
n

n

n

n

n

n

n

n

n

n nn

n

n

n

★ Profile	 1	

Profile	 2	

Profile	 3	

¢

¢

¢

¢

Figure 3.11: Classifications of Events and Targets according to their priority levels.

In addition, if the events/targets are within the high-priority zone, then certain
proactive actions can be taken, such as providing a fake identity in the case of the

42

Zeus botnet, which is discussed in Section 5.4. Those proactive actions can come
from a tabular forensic rule engine that has both targets and events listed according
to their priority zones (see Table 3.1).

For example, in the case of Zeus, described in Section 5.4, the high-priority events
can involve one of the following: IDS, Antivirus, Firewall off and changing the win-
dows system32 folder. On the other hand, the high-priority targets are the system32
folder, registry, network traffic and memory dump.

Events	

Targets	 Green	 Zone	 Yellow	 Zone	 Red	 Zone	

Green	 Zone	 R11	 R12	 R13	

Yellow	 Zone	 R21	 R22	 R23	

Red	 Zone	 R31	 R32	 R33	

Table 3.1: Tabular forensic rule engine.

Given that the number of targets and events are large, this classification is not
enough, especially during the analysis phase. As such, we need to reduce the forensic
space. Similar to the principal component analysis technique [59], we suggest restrict-
ing the analysis to “important” targets and events based on a specific organization
policy. This can be seen as projecting the full forensic space F onto a sub-space F ′ in
which the evidence is most probably located. In the case of the Zeus botnet attack
(please refer to Section 5.4), if the projection is done on the Zeus’s targets and events,
then the analysis and the detection of the Zeus attack can be easily done.

As the reader may have guessed, the full space is used to state our theoretical
facts while the restricted (projected) spaces will be used to implement the theoretical
framework.

3.4 Towards Universal Analysis of Forensic Crimes

Based on the previous sections, we propose analyzing the “digital forensic scene”
based on the following observation. The usual non-digital forensic crimes occur in a

43

space such as a room or a subway, during a time interval and using objects such as a
knife and a key. By analogy, digital forensic crimes can be analyzed as a profile in a
space F . As Section 3.2.2 suggests, this space is given by T × E × Γ (space dictated
by targets, events and time); see Figure 3.11.

Definition 3.4. The profile of a system is the evolution of all target and event states
in time.

The profile can visually be viewed as a sequence of points (symbols) in the digital
forensic space F = T × E × Γ (see Figure 3.11). Armed with this information, the
activity of analyzing a crime can be done in one of the following ways (as done in
Intrusion Detection Systems):

• Signature-based proactive analysis: each digital forensic incident that occurred
has a special profile in the F space similar to a serial killer signature/profile.
During signature-based analysis, we try to correlate the profile of the system
gathered so far with the existing signatures to determine any similarities. As
the actual profile is being built, we can use it to find the most similar known
digital forensic attack scenario. Based on that guidance, we can predict the
next move in F and take the necessary proactive actions accordingly. As an
example, imagine that the profile gathered so far is similar to that of the Zeus
botnet. Imagine also that, following the Zeus profile, the Zeus’s next move is
to copy our bank information from a fake website page. As a proactive action
and given that the profile of the system so far is similar to the Zeus profile, it
makes sense to provide fake information and see whether that information is
transferred to the wrong location, named the control master server.

Although this proactive analysis is prone to unknown digital forensic crimes, it
provides:

– The signature of the crime (since we are building the profile of the system
as we go and we are adding it to the knowledge base of known digital
forensic crimes). In other words, we are building the timeline of the crime
as it occurs as opposed to the reactive systems that try to build it after the
crime has occurred. This is an effective way of handling crimes that try to
hide or erase their traces/history as is the case for anti-forensics methods.

– The evidence of the crime (since we are keeping track of the necessary
records).

44

• Anomaly-based proactive analysis: our objective here is to analyze the be-
haviour of the system and see whether it follows its normal profile. If we notice
that the system is not behaving as usual, we can take proactive measures as
needed. Our focus in this thesis is based on this type of analyzing a digital
crime since we do not know in advance what to look for proactively. A new
metric based on outlier analysis [12] will be extended and a novel information
theory approach will be introduced.

• Protocol-based proactive analysis: in the case, the system profile must conform
to a certain protocol [69, 40]. If this is breached, then proactive actions must
be taken.

All three analyses can be expressed in the same framework as follows. As the
system S proceeds in time, we build a profile for it in the space F . This profile can
be denoted by P (S, tc), where tc is the current time. The profile is incomplete in the
sense that it is only known for time t in the interval [ti, tc], where ti is the initial time.
We consider a family of profiles Pα(S) for the system, where α is an index in any set.
In this context, analyzing the system means to correlate the profile of the system as
specified by P (S, tc), and the family of profiles given by Pα(S). Based on the kind of
the analysis intended, the family Pα(S) can be specified as follows.

• Signature-based proactive analysis: in this case Pα(S) corresponds to the sig-
natures of different digital forensic crimes.

• Anomaly-based proactive analysis: Pα(S) corresponds to the normal profiles of
the system.

• Protocol-based proactive analysis: Pα(S) is the family of profiles that matches
the protocol.

Finding the similarities between two profiles boils down to computing the corre-
lation between the two. Let Bu(Ei) be the profile of the system up to time t, where
t is the time where the event Ei is triggered. Let Ex(Ei) be the set of “interesting”
profiles with respect to the event Ei, and C(h, g) be the correlation between the two
profiles h and g. Computing the correlation between profiles is an action that could
be carried out each time a new event is triggered. As such, we see the advantage
of using DFRs. In fact, the full analysis in all three kinds of proactive analysis can

45

be modelled in a general single framework and expressed easily using the following
DFRs:

1. @Ei→P (S, t) = Bu(Ei) : This rule builds the profile of the system until time t,
where t is the time where the event Ei happened.

2. @Ei→{Pα(S)} = Ex(Ei) : This rule extracts a set of “interesting” profiles.

3. @Ei→{Cα} = C(P (S, t), {Pα(S)}) : This rule computes the correlation between
the profiles. This rule should be executed for each α and as soon as Pα(S) and
P (S, t) are available.

In the previous section, we introduced the idea of reduced forensic space to handle
the complexity of the digital crimes. Instead of carrying out the analysis of profiles
in the full space F = T ×E ×Γ associated with the full targets T , events E and time
Γ, we use a sub-space F ′ = T ′ × E ′ × Γ′ associated with targets in T ′ ⊆ T , events
E ′ ⊆ E and time Γ′ ⊆ Γ. For this, we introduce the projection function π(T ′,E′,Γ′) that
takes a profile P(T,E,Γ) in the space F and projects it onto F ′ to produce a reduced
profile P(T ′,E′,Γ′). If we denote the set of profiles in F and F ′ by P(T,E,Γ) and P(T ′,E′,Γ′)

respectively, we have

π(T ′,E′,Γ′) : P(T,E,Γ) // P(T ′,E′,Γ′)

P(T,E,Γ)
� // P(T ′,E′,Γ′) such that

∀(~r′, ~e′, t) ∈ T ′ × E ′ × Γ′, (~r′, ~e′, t) ∈ P(T ′,E′,Γ′) ⇒ ∃(~r,~e) ∈ T × E such that

(~r,~e, t) ∈ P(T,E,Γ), and ~r′ and ~e′ are the projections of ~r and ~e onto T ′ and E ′,
respectively.

The analysis framework introduced above can take advantage of this concept and
use the reduced space F ′ instead of F to efficiently process the profiles. Since our
proactive system is modelling a feedback system, it is natural for the reduced space
F ′ to not be enough to discern legitimate and non-legitimate attacks. Therefore,
the subspace on which the projection is done should be dynamic in the sense that it
should be adjusted as the analysis proceeds in time.

46

Chapter 4

Towards Automated Analysis for
PDF

Forensic analysis is the most demanding phase in both reactive and proactive digital
forensics. Investigators usually carry out this step manually as there is no automated
tool to do so. In this chapter, following our previous ideas on universal analysis (see
Section 3.4) for digital forensics, we propose a framework to execute and automate the
analysis step [1]. The framework makes use of two important concepts: information
theory and outlier detection [12] techniques, which we introduce next.

4.1 Information Theory Background

The following definitions in information theory are borrowed from [22]. The en-
tropy (self-information) H(X) of a discrete random variable X is defined in [H(X) =
−∑x p(x) log p(x)]. This definition evaluates the uncertainty of X. The value of
H(X) decreases as the certainty about the event represented by X increases.

The Conditional entropy H(Y |X) is defined by

H(Y |X) = −
∑
y

∑
x

p(x, y) log p(x|y),

This will give us the amount of information uncertainty about X when Y is known.
Mutual information is given by

I(X;Y) =
∑
x

∑
y

p(x, y) log
(
p(x, y)
p(x) p(y)

)
,

47

This shows the amount of reduction of uncertainty in X if Y is known. Moreover, it
gives us the amount of information shared between X and Y .

The main idea behind introducing information theory in our work is to quantify
the uncertainty of a profile being legitimate based on the nearby profiles and/or on
other elements of the profile itself. For example, if we consider the files in a directory
d and their sizes for the analysis, the uncertainty associated with a file f can be taken
to be the information of f being legitimate based on the sizes of the files in d. The
entropy is therefore the average of the information across all the files.

4.2 Overview on Outlier Detection

To handle the large number of elements of investigation and to perform the PDF anal-
ysis in real time, as the seven principles dictate [1], one has to automate the analysis.
A promising technique for such an automation is the spatial outlier detection intro-
duced in [12]. It is an anomaly-based technique that detects suspicious elements by
examining one or many of its attributes using the iterative z algorithm [36]. This algo-
rithm finds the outlier in a set of spatial features, referred to as points, by calculating
the differences between their attributes and a summary function of their neighbours.
These differences are then normalized with respect to their mean and standard de-
viation. When the point with the maximum normalized difference is greater than
a prefixed threshold, it is marked as an outlier and its attribute is taken to be the
summary function of its neighbours. The process is then repeated until no outliers
are found. A flowchart of the algorithm is shown in Figure 4.1 and the algorithm
itself is presented in Algorithm 1 [12].

4.3 Outlier Detection for Automated DF Analysis

Carrier et al. [12] adopted the iterative z algorithm to automate the DF analysis.
Algorithm 1 shows how it is expressed when the elements of DF investigation are
regular files and the attribute functions are the sizes of the file. In this algorithm, a
regular file is denoted by φi, its size by |φi| and its directory by D(φi). The set of all
files is denoted by N and its cardinality by |N |.

The outlier detection algorithm considers all points to have the same importance
and, as such, the summary function is the arithmetic mean of the attribute functions.
In practice, however, some attribute functions may be weighted more than others. In

48

Algorithm 1 The iterative z algorithm using files as the elements of DF investigation
and size as the attribute function.

1: Let θ be a threshold
2: Let n be |N |
3: outlier=true
4: σ = 0;µ = 0
5: for i = 1→ n do
6: Let N(φi) be the set of files in D(φi) and |N(φi)| its cardinality
7: Set the attribute function f(φi) to be |φi|
8: Compute the summary function g(φi) = 1

|N(φi)|
∑
φ∈N(φi) f(φ)

9: Compute the comparison function h(φi) = f(φi)− g(φi)
10: µ = µ+ h(φi)
11: σ = σ + h(φi)2

12: end for
13: σ =

√
σ
n
− (µ

n
)2 . The standard deviation

14: while outlier==true do
15: outlier=false
16: φq = arg maxφ |

h(φ)−µ
σ
|

17: if |h(φq)−µ
σ
| ≥ θ then . φq is an outlier

18: Mark φq as an outlier
19: f(φq) = g(φq)
20: Update g(φ) and h(φ) for every φ in N(φq)
21: Update µ and σ
22: outlier=true
23: end if
24: end while

49

End	

Compute	 Summary/Average	 func6on	 for	 all	 files	
according	 to	 their	 neighbors	

Compute	 Comparison/Distance	 func6on	 for	 all	
files	 according	 to	 their	 neighbors	

Compute	 the	 mean	 and	 standard	 devia6on	 of	
comparison	 func6on	

Normalize	 data	 and	 select	 the	 largest	 øq	

øq	 ≥	 Threshold	

Start	

Update	 øq	 aCribute	 	 to	 be	 the	 summary	 func6on	
and	 update	 its	 summary	 func6on	 and	 its	

neighbors	 	
Yes	 (Outlier)	

No	

Figure 4.1: Flowchart of Iterative z Algorithm.

fact, when a system becomes unstable or malfunctions, the first step towards fixing it
is to check the latest changes that were made to it. In the case of files, this translates
to weighting old files more than the new ones.

As such, we introduce two kind of probability distributions: local and global com-
petitive distributions. The latter gives the relative weights of a file with respect to all
the files and the former gives its relative weights with respect to its neighbours. Al-
gorithm 2 [1] is the new algorithm and the flowchart of the algorithm is in Figure 4.2.

If the local and the global competitive probabilities are uniform (i.e., pl(φ) =
1/|N(φi)| and pg(φi) = 1/|N |), then we obtain Algorithm 1 [12]. But if, for example,
old accessed files weigh more than the new ones, then non-uniform local and the
global competitive probabilities should be used as illustrated below.

Let ta(φ) be the atime (access time) of a file φ and let taref be a reference time,
which we usually take to be the latest atime of all the files (global atime) or of
the files in the directory D(φ) (local atime). The local and the global competitive
probabilities can be then taken to be

50

Algorithm 2 The probabilistic iterative z algorithm.
1: Let θ be a threshold
2: Let n be |N |
3: outlier=true
4: σ = 0;µ = 0
5: for i = 1→ n do
6: Let N(φi) be the set of files in D(φi) and |N(φi)| its cardinality
7: Let plN(φi)(φi) be the local competitive probability of φi
8: Let pg(φi) be the global competitive probability of φi
9: Set the attribute function f(φi) to be |φi|

10: Compute the summary function g(φi) = ∑
φ∈N(φi) p

l
N(φi)(φ)f(φ)

11: Compute the comparison function h(φi) = f(φi)− g(φi)
12: µ = µ+ pg(φi)h(φi)
13: σ = σ + pg(φi)h(φi)2

14: end for
15: σ =

√
σ − µ2 . The standard deviation

16: while outlier==true do
17: outlier=false
18: φq = arg maxφ |

h(φ)−µ
σ
|

19: if |h(φq)−µ
σ
| ≥ θ then . φq is an outlier

20: Mark φq as an outlier
21: f(φq) = g(φq)
22: Update g(φ) and h(φ) for every φ in N(φq)
23: Update µ and σ
24: outlier=true
25: end if
26: end while

51

End	

Compute	 Summary/Average	 func6on	 for	 all	 files	
with	 weights	 (Local	 Prob.)	 within	 local	 directory	

Compute	 Comparison/Distance	 func6on	 for	 all	
files	 within	 local	 directory	

Compute	 the	 mean	 and	 standard	 devia6on	 of	
comparison	 func6on	 with	 weights	 (Global	 Prob.)	

within	 all	 directory	

Normalize	 data	 and	 select	 the	 largest	 øq	 	

Øq	 ≥	 Threshold	

Start	

Update	 øq	 aJribute	 	 to	 be	 the	 summary	 func6on	
and	 update	 its	 summary	 func6on	 and	 its	

neighbors	 	
Yes	 (Outlier)	

No	

Figure 4.2: Flowchart of the Probabilistic Iterative z Algorithm.

pl(φi) = (taref − ta(φi) + 1)2∑
φ∈N(φi)(taref − ta(φ) + 1)2

pg(φi) = (taref − ta(φi) + 1)2∑
φ∈N (taref − ta(φ) + 1)2

Depending on the value of taref , we may have pl with either local or global atime
and pg with either local or global atime. In the case, for example, where pl uses
local atime and pg uses global atime, the two distributions will be referred to as
global/local atime distributions. The other three cases are easy to infer.

The competitive aspect of the current perspective can be easily seen from the two
algorithms: the files are mutually exclusive entities and their probabilities add up to
one. As such, the files are treated as if they are mutually independent. Of course,
this is a limited perspective that we will improve next.

52

In the probabilistic iterative z algorithm, if we have

f(φi) = − log
(

|φi|∑
φ∈N(φi) |φ|

)
,

then the attribute function f can be viewed as the information associated with each
file. In addition, by taking

plN(φi)(φi) = |φi|∑
φ∈N(φi) |φ|

,

we transform the probabilistic iterative z algorithm to the information iterative z

algorithm shown in Algorithm 3 [1].

Algorithm 3 The information iterative z algorithm.
1: Let θ be a threshold
2: Let n be |N |
3: outlier=true
4: σ = 0;µ = 0
5: for i = 1→ n do
6: Let N(φi) be the set of files in D(φi) and |N(φi)| its cardinality
7: Let plN(φi)(φi) be the local competitive probability of φi
8: Let pg(φi) be the global competitive probability of φi
9: Set the attribute function f(φi) to be the information I(φi) = − log plN(φi)(φi)

10: Set the summary function g(φi) to be the entropy H(φi) =∑
φ∈N(φi) p

l
N(φi)(φ)f(φ)

11: Compute the comparison function h(φi) = f(φi)− g(φi)
12: µ = µ+ pg(φi)h(φi)
13: σ = σ + pg(φi)h(φi)2

14: end for
15: σ =

√
σ − µ2 . The standard deviation

16: while outlier==true do
17: outlier=false
18: φq = arg maxφ |

h(φ)−µ
σ
|

19: if |h(φq)−µ
σ
| ≥ θ then . φq is an outlier

20: Mark φq as an outlier
21: f(φq) = g(φq)
22: Update g(φ) and h(φ) for every φ in N(φq)
23: Update µ and σ
24: outlier=true
25: end if
26: end while

53

In all of the previous algorithms, the comparison function h(φ) is expressed as the
difference between the attribute function f(φ) and the summary function g(φ). This
difference is supposed to quantify to what extent f(φ) is independent from g(φ). From
the information theory perspective, it is more convenient to use mutual information
for that. The idea behind mutual information is to compute the dependency between
files instead of the difference as done in the outlier analysis. In fact, files created
under a directory are expected to be somehow related (dependent) on each other.
Therefore, mutual information is the right tool that will allow us to quantify such a
dependency. For this to be done, the files should support each other and be treated as
cooperative entities instead of being competitive entities only. This, however, entails
introducing the cooperative probability (pr(φi))1 distribution of files in addition to
their competitive distributions as done in Algorithms 2 and 3.

The cooperative aspect between files leads to different Algorithms 4 [1] and 5.
Notice how the comparison function h(φ) is expressed as the mutual information
between φ and a virtual file with size g(φ). In addition, the inequality in line 21 of
Algorithm 4 has≤ instead of≥ used in the previous Algorithms 1, 2 and 3. The reason
is that h(φ) expresses the dependency between files instead of their independence.

In some cases, we may want to consider the directories as independent entities as
done in [12]. In these cases, one should use the local means and the local standard
deviations instead of the global ones (i.e., µ and σ).

Algorithms 1, 2, 3, 4 and 5 can be generalized to treat any elements of investiga-
tion (instead of files only) as well as multiple attributes (instead of a single attribute,
namely the size). They can also be adapted to PDF by running them as needed,
for example, when a new element of investigation is created or an attribute of an
existing one changes. In addition, they can be run at regular intervals of time. As a
remark, the previous runs of the algorithms should be used to reduce the processing
by only computing the necessary functions. For example, the summary functions of
investigation elements that are not neighbors of the updated elements should not be

1It is used in computing mutual information I(φi, φ̃i) between files. An example of computing
pr(φi) in practice is as follows. Let pr(φi) be the probability that the file φi is legitimate based on
size relative to other files within a directory. Let ε be a non-negative real number and let Nε(φi) be
the number of files with size in interval [|φi| − ε, |φi| + ε] within a directory. Also, let n(d) be the
total number of files within the same directory. That is,

pr(φi) = Nε(φi)
n(d) .

54

Algorithm 4 The centered mutual information iterative z algorithm.
1: Let θ be a threshold
2: Let n be |N |
3: outlier=true
4: σ = 0;µ = 0
5: for i = 1→ n do
6: Let N(φi) be the set of files in D(φi) and |N(φi)| its cardinality
7: Let plN(φi)(φi) be the local competitive probability of φi
8: Let pg(φi) be the global competitive probability of φi
9: Set the attribute function f(φi) to be |φi|

10: Set the summary function g(φi) = ∑
φ∈N(φi) p

l
N(φi)(φ)f(φ)

11: Let pr(φi) be the cooperative probability of φi
12: Let φ̃i be a virtual file with size g(φi)
13: Compute the dependency function h(φi) = I(φi, φ̃i)
14: µ = µ+ pg(φi)h(φi)
15: σ = σ + pg(φi)h(φi)2

16: end for
17: σ =

√
σ − µ2 . The standard deviation

18: while outlier==true do
19: outlier=false
20: φq = arg minφ |

h(φ)−µ
σ
|

21: if |h(φq)−µ
σ
| ≤ θ then . φq is an outlier

22: Mark φq as an outlier
23: f(φq) = g(φq)
24: Update g(φ) and h(φ) for every φ in N(φq)
25: Update µ and σ
26: outlier=true
27: end if
28: end while

55

recomputed.

Algorithm 5 The averaged mutual information iterative z algorithm.
1: Let θ be a threshold
2: Let n be the total number of files
3: outlier=true
4: σ = 0;µ = 0
5: for i = 1→ n do
6: Let N(φi) be the set of files in D(φi) and |N(φi)| its cardinality
7: Let pr(φi) be the cooperative probability of the file φi being legitimate
8: Let plN(φi)(φi) be the local competitive probability of selecting φi as the legit-

imate file amongst the files in N(φi)
9: Let pg(φi) be the global competitive probability of selecting φi as the legitimate

file amongst all files
10: Set the attribute function be f(φi) = ∑

φ∈N(φi) pr(φ|φi)I(φi, φ)
11: Set the summary function g(φi) = ∑

φ∈N(φi) p
l
N(φi)(φ)f(φ)

12: Compute the comparison function h(φi) = f(φi)− g(φi)
13: µ = µ+ pg(φi)h(φi)
14: σ = σ + pg(φi)h(φi)2

15: end for
16: σ =

√
σ − µ2 . The standard deviation

17: while outlier==true do
18: outlier=false
19: φq = arg maxφ |

h(φ)−µ
σ
|

20: if |h(φq)−µ
σ
| ≥ θ then . φq is an outlier

21: Mark φq as an outlier
22: f(φq) = g(φq)
23: Update g(φ) and h(φ) for every φ in N(φi)
24: Update µ and σ
25: outlier=true
26: end if
27: end while

A more computationally expensive mutual information-based algorithm is given
in 5.

An important aspect that should be emphasized is that the spatial outlier analysis
as done in [12] uses the difference between the file sizes, as opposed to our case in
which we are measuring the dependency between the files based on their sizes. So,
our approach can be easily generalized by only changing the way the probabilities are
computed; instead of basing the calculations on the sizes only, we can extend it to
other attributes such as MAC (modification, access and creation) times, application

56

type, and so on, as done next.

4.4 Information-Based Temporal Outlier Analysis

In the previous sections, especially Section 4.2, we discussed the spatial outlier analy-
sis by focusing on particular element attributes fixed in time. This has the drawback
of not considering the whole history of a target attribute and of possibly missing the
time at which suspicious activities might happen. Looking at the whole history is
a practical way to detect and trace most digital crimes. Such a requirement is even
more stringent for a proactive system such as ours.

To make our generalization easy to follow, we will first focus on a single attribute,
namely file size, as we did in Section 4.2.

Let φ be a file and let (|φ|(ti))i∈N be the time series of its size at times (ti)i∈N.
Let [tb, te] be the time interval in which the analysis is desired. For every |φ|(ti) for
which ti ∈ [tb, te] we associate a virtual file φti with size |φti | = |φ|(ti) .

The probabilistic and information-based Algorithms 2, 3, 4, 5 can be used to do
the outlier analysis of the (virtual) files φti . Any outlier file φtj detected during the
analysis represents a suspicious activity on the file φ at time tj.

The interval [tb, te] could be taken to be the whole timeline of the file but, for
efficiency purposes, it needs to be restricted, especially when the sampling frequency
of recording the size is high. In what follows we propose three approaches to deal
with a large number of samples.

4.4.1 Moving Window Temporal Analysis

This way of restricting the number of virtual files is based on the intuition that the
suspicious size is an outlier compared to its neighbours in time. As such, the moving
window outlier analysis has a Markov-like (memoryless) property as it does not take
into consideration the past, far-distant virtual files (see Figure 4.3).

A novel criterion to detect strong outliers is to find files that stay outliers for
all the windows they belong to. This could be enhanced with a voting system by
comparing the number of windows for which the file is an outlier against those for
which it is not.

57

Timeline	 of	 files	 under	 considera1on	 	

Win	 1	 	 Win	 2	 	
1me	

Both	 windows	 are	 moving	 together	 	

Figure 4.3: Moving Windows Temporal Analysis.

4.4.2 Fixed Window Temporal Analysis

The intuition supporting this kind of analysis is based on the observation that the
old file sizes tend to be more legitimate. As such, the file sizes are compared against
some past file sizes. The most forward way to implement this is to consider a time
interval (fixed window) in the past [tpb , tpe] and carry out the outlier analysis for the
virtual files in that interval and the file under consideration (see Figure 4.4).

Timeline	 of	 files	 under	 considera1on	 	

Win	 1	 	
1me	

Win	 2	 	

Win	 2	 Moving	 	 Win	 1	 Fixed	 	

Figure 4.4: Fixed Windows Temporal Analysis.

If we allow the fixed window to move according to its distance to the virtual file
under consideration, then we obtain what we call Moving Fixed-window Temporal
Analysis (see Figure 4.5).

Timeline	 of	 files	 under	 considera1on	 	

Win	 1	 	
1me	

Win	 2	 	

Win	 2	 Moving	 	 Win	 1	 Moving	 Fixed	 	

Dist.	 	

Figure 4.5: Moving Fixed Windows Temporal Analysis.

58

4.4.3 Hierarchical Temporal Analysis

In this case, we partition the timeline into a sequence of slots, then we carry out
the outlier analysis on each. The outliers detected are then partitioned and the
outlier analysis is again performed on them. The process is repeated until we reach
a predetermined number of outliers (see Figure 4.6). The advantage of this multi-
resolution approach is that it is parallel by nature (see Chapter 5).

Timeline	 of	 files	 under	 considera1on	 	

1me	
Win	 2	 Win	 3	 Win	 4	 Win	 1	 	

Win	 5	 Win	 6	
1me	

Win	 7	
1me	

Figure 4.6: Hierarchical Temporal Analysis.

4.4.4 Modulo Temporal Analysis

A legitimate question that we did not address yet in this section is: “Why not use
the time as an attribute and use the outlier detection algorithm to find the suspicious
times at which the files were changed instead of all these variant temporal analysis
algorithms?” The main reason is that time, by default, is changing (increasing). As
such, the comparison function, which gives a sort of a distance, is not reliable to
compare two changes in time. To avoid this natural time progression, the time could
be used as an attribute but with a modulo transformation. By doing this, the time
is represented within an interval, and any activity in time is mapped to this interval
using the right modulo transformation. The choice of the interval depends on the kind
of activity pattern the investigator is interested in. For example, a 24-hour interval
should be used if daily patterns are sought. Just to be more precise, the modulo
transformation we are dealing with is defined as follows.

Definition 4.1 (Modulo Transformation). Given two positive real numbers a and b

such that a < b, the modulo transformation M with respect to the time interval [a, b]

59

is defined as:
M(t) = t− (b− a)b(t− a)/(b− a)c.

For a given time t (a real number), the value M(t) will be denoted t[a, b].

4.5 Event-Based Outlier Detection and Analysis

As opposed to the above sections in which we consider the targets (with and without
time), we briefly present how events can be used in the outlier analysis. The fact
that most activities of a system are recorded in logs in the form of events makes this
kind of analysis an excellent candidate for investigation. As we previously defined it,
an event is a change in the target. This change is usually augmented with attributes
such as when and who.

To simplify our discussion, we focus on file-change events, specifying that a file has
changed, and, especially, on the file size change attribute. The size change and the
time at which the event occurred will constitute the attributes (∆s, t) of a file-change
event e (ef is used to denote the file changed). This implies combining the usual
outlier detection algorithm with a temporal-based one to produce a multi-attribute
outlier detection algorithm as shown in Algorithm 6. This algorithm uses the modulo
transformation to map the time change of files to an interval I and the multi-attribute
function f(e) = (∆s, t[I]). In the algorithm, we used the covariance matrix, as well
as its inverse, to compute the so called Mahalanobis distance. This distance is better
than the Euclidean distance as it takes into account any dependencies between the
attributes [35].

Note that, in addition to its special temporal aspect, our algorithm is different
from the one by Lu et al. [35] in the sense that it is an extension of the single attribute
and it only marks the element with the maximum distance that is greater than or
equal to the threshold θ as the outlier. The algorithm by Lu et al. does not have this
iterative aspect that makes outlier detection algorithms more reliable. Our algorithm
is also different from that of Carrier et al. ([12]) as it, in addition to the above, uses
the right definition of Mahalanobis distance; in fact, Carrier et al. used the actual
covariance matrix instead of its inverse.

60

Algorithm 6 The iterative z algorithm on file-change events using the multi-
attributes (∆s, t).

1: Let θ be a threshold
2: Let N be the set of file-changed events triggered in an interval of time
3: Let n be |N |
4: Let I be a time interval
5: outlier=true
6: for i = 1→ n do
7: Let N(ei) be the set of events for which the files are in D(eif) and let |N(ei)|

its cardinality
8: Take the attribute function of ei to be f(ei) = (∆si, ti[I])
9: Compute the summary function g(ei) = 1

|N(ei)|
∑
e∈N(ei) f(e)

10: Compute the comparison function h(ei) = f(ei)− g(ei)
11: end for
12: µ = 1

n

∑
e∈N h(e) . the mean vector

13: σ = 1
n−1(h(e)− µ)T (h(e)− µ) . the covariance matrix

14: while outlier==true do
15: outlier=false
16: eq = arg maxe(h(e)− µ)σ−1(h(e)− µ)T
17: if (h(e)− µ)σ−1(h(e)− µ)T ≥ θ then . eq is an outlier
18: Mark eq as an outlier
19: f(eq) = g(eq)
20: Update g(e) and h(e) for every e in N(eq)
21: Update µ and σ
22: outlier=true
23: end if
24: end while

61

4.6 Information-Based Spatial, Temporal, and Event
Outlier Analysis

Instead of dealing with targets and events separately, we generalize the outlier analysis
presented in the previous sections to all elements of investigation. Following the
framework presented in the previous chapter, we suppose that we have a set of profiles
P(T,E,Γ), which we take to be the functional space F = (T ×E)Γ. This space not only
includes the profiles that can happen on a real system (actual profiles) but also all
kinds of imaginary profiles (virtual profiles). By doing so, a projection of an actual
profile is treated as a (virtual) profile. The corresponding information iterative z

algorithm is given by Algorithm 7.
Considering the profiles as points hides the dependency of the profiles on time and

makes Algorithm 7 time-independent. In a proactive system, the profile is partially
available and unfolds as the time progresses. For this reason, we propose looking at
the profiles as a sequence of points (symbols) evolving in time and deal with time in
a special manner. As done in Section 4.4, different algorithms could be given and
we opt for Algorithm 8 to illustrate the idea. Moreover, the algorithms discussed so
far do not take known profiles into consideration. It is very common to have some
profiles that are known to be malicious and others that are not. Therefore we propose
making use of such information to improve our algorithms, as discussed next.

Using known malicious profiles: Let Pm(T,E,Γ) be the set of known malicious
profiles and let P be a given profile. If an analysis technique, for example one of
the outlier detection algorithms, is applied to the set of profiles Pm(T,E,Γ) ∪ {P} and
detects that P is not that different from the malicious profiles (e.g., P is not an outlier
when an outlier detection algorithm is applied), then, most likely, P is a malicious
profile. If that is not the case, then it is probably not a malicious profile similar to
the known ones. To make sure it is not a new malicious profile, it still needs to be
checked against the other usual profiles. To take this into account and to simplify the
algorithm, we denote by Om(P ,Pm(T,E,Γ)) the function that returns true if P is not
similar to the malicious profiles known so far Pm(T,E,Γ) and false otherwise.

Using known safe profiles: Running an outlier detection algorithm on the set
of safe profiles can be used to compute the minimum threshold for which no outlier
is to be found. This threshold could be used to detect outliers in the unclassified
profiles. From a practical perspective, however, this may yield a large value for the
threshold, which can cause high false positives. In this dissertation, safe profiles will

62

Algorithm 7 The information iterative z algorithm on profiles.
1: Let θ be a threshold
2: Let N be the set of profiles P(T,E,Γ), which we assume is finite
3: Let n be |N |
4: Let .∗ denote the element-wise multiplication of vectors
5: outlier=true
6: for i = 1→ n do
7: Compute the neighborhood N(Pi) of the profile Pi
8: Let ~plN(Pi)(Pi) be the local competitive probabilities of Pi
9: Let ~pg(Pi) be the global competitive probabilities of Pi

10: Set the attribute function f(Pi) to be the information vector I(Pi) =
− log ~plN(Pi)(Pi)

11: Set the summary function g(Pi) to be the entropy vector H(Pi) =∑
P∈N(Pi) p

l
N(Pi)(P)f(P)

12: Compute the comparison function h(Pi) = f(Pi)− g(Pi)
13: end for
14: µ = ∑

P∈N ~p
g(P). ∗ h(P) . the mean vector

15: σ = ∑
P∈N (~pg(P). ∗ (h(P)− µ))T (h(P)− µ) . the covariance matrix

16: while outlier==true do
17: outlier=false
18: Pq = arg maxP(h(P)− µ)σ−1(h(P)− µ)T
19: if (h(P)− µ)σ−1(h(P)− µ)T ≥ θ then . Pq is an outlier
20: Mark Pq as an outlier
21: f(Pq) = g(Pq)
22: Update g(P) and h(P) for every P in N(Pq)
23: Update µ and σ
24: outlier=true
25: end if
26: end while

63

be used in a rudimentary way: the outlier profiles should not include the known safe
profiles. More precisely, if the set of profiles used in the outlier detection algorithm is
P(T,E,Γ) and the set of known safe profiles is denoted by Ps(T,E,Γ), then the maximum
of the Mahalanobis distances is taken over P(T,E,Γ) \ Ps(T,E,Γ). This ensures that the
outliers found are not part of the safe profiles.

To each profile P , we associate a threat level P th that we initialize at zero when
the profile is created. As the time progresses, the threat level is adjusted according
to the outlier detection outcome. When the threat level exceeds a specified threshold
γ, the proactive component system should generate a notification and a report to the
designated personnel. Proactive actions could also be taken as required.

64

Algorithm 8 The generalized information iterative z algorithm on profiles.
1: Let θ and γ be thresholds
2: Let N be the set of profiles P(T,E,Γ), which we assume is finite
3: Let n be |N |
4: Let .∗ denote the element-wise multiplication of vectors
5: Initialize all threat levels to 0
6: outlier=true
7: for i = 1→ n do
8: Update the set of malicious profiles Pm(T,E,Γ)
9: if Om(Pi,Pm(T,E,Γ)) ==false then

10: Mark Pi as an outlier and remove it from the set of profiles
11: continue
12: end if
13: Update the set of safe profiles Ps(T,E,Γ)
14: Compute the neighborhood N(Pi) of the profile Pi at time t
15: Let ~plN(Pi)(Pi, t) be the local competitive probabilities of Pi at time t
16: Let ~w(Pi, t) be probability distributions of Pq in time
17: Let ~pg(Pi, t) be the global competitive probabilities of Pi at time t
18: Set the attribute function f(Pi, t) to be the information vector I(Pi, t) =
−
∫ t
−∞ ~w(Pi, x) log ~plN(Pi)(Pi, x)dx

19: Set the summary function g(Pi, t) to be the entropy vector H(Pi, t) =∑
P∈N(Pi) p

l
N(Pi)(P , t)f(P , t)

20: Compute the comparison function h(Pi, t) = f(Pi, t)− g(Pi, t)
21: end for
22: µ(t) = ∑

P∈N ~p
g(P , t). ∗ h(P , t) . The mean vector

23: σ(t) = ∑
P∈N (~pg(P , t). ∗ (h(P , t)− µ(t)))T (h(P , t)− µ(t)) . The covariance

matrix
24: while outlier==true do
25: outlier=false
26: Pq = arg maxP∈P(T,E,Γ)\Ps

(T,E,Γ)
(h(P , t)− µ(t))σ(t)−1(h(P , t)− µ(t))T

27: if h(Pq, t)− µ(t))σ(t)−1(h(Pq, t)− µ(t))T ≥ θ then
28: P thq + = h(Pq, t)− µ(t))σ(t)−1(h(Pq, t)− µ(t))T
29: f(Pq, t) = g(Pq, t)
30: Update g(P , t) and h(P , t) for every P in N(Pq)
31: Update µ(t) and σ(t)
32: outlier=true
33: end if
34: end while
35: Report every profile P with P th ≥ γ if any

65

Chapter 5

Implementation of Proactive
Digital Forensics

For a successful implementation of the proactive digital forensics, one needs to keep
the design and the implementation as close as possible to the phases and the work-
flow of the proactive system depicted in Figure 2.1. Moreover, the design should
satisfy other requirements such as modularity, extensibility, reliability and efficiency.
As such, we opted for an object-oriented design and modelled our proactive system
accordingly, as discussed in the next section.

Moreover, for testing, validating and verifying our proactive system implementa-
tion, we used two main cases:

• The Honeypot test case to evaluate and validate only the analysis phase of the
proactive system. Algorithms 1 [12], 2 [1] and 3 [1] were used for this.

• The other case is Zeus, which allows us to validate all phases of the proactive
system. In the analysis phase, Algorithm 8 was used.

In addition, the implementation done in this chapter is based on the theory de-
veloped in Chapter 3 from the following perspectives:

• Projecting the profiles of the system onto important targets and events (this
related to Sections 3.3.2, 3.3.1, 3.3.4, 3.4 and 5.4).

• Developing the forensic rules and the forensic rule engine to take actions when
events are triggered (this related to Sections 3.2.2, 3.4 and 5.4).

66

• Analyzing the profiles of the system in the Zeus case via an analysis forensic
rule implementing Algorithm 8 (this related to Sections 3.4, 4.6 and 5.4).

5.1 Proactive System Components

The UML component architecture diagram of our proactive system is shown in Fig-
ure 5.1 and matches the phases of the proactive system in Figures 2.1 and 3.2.

Figure 5.1: Proactive System Architecture.

The first component is the proactive collection and preservation component, which
collects and preserves specific elements of the targeted system based on their critical-
ity. More elements can be handled by this component as needed.

The second component is the proactive detection and analysis component. It is
responsible for detecting any suspicious event by relying on external applications,
such as an IDS, and/or internal implementation of event triggering functions (e.g.,
outlier detection analysis). When a suspicious event is detected, a more in-depth
analysis is carried out accordingly by calling the appropriate digital forensic rules, as
dictated by the digital forensic rules component. In addition, the analysis ensures
that more elements of investigation are collected and preserved as required.

The third component is the preliminary/proactive report component where the
relevant evidence is gathered, logged and sent to the investigator. The report is
nothing more than a summary of the findings of the second component.

The last component is the Digital Forensic Rules (DFR) component. DFR is
the brain of the proactive digital forensic system; it controls and executes forensic
rules depending on the events triggered by different components. A forensic rule,
introduced in Section 3.2.2, is implemented as an event-driven rule, similar to a

67

statement in the usual languages such as Java or C/C++ or to an expert system
rule. DFR is an event-driven model of computation composed of forensic rules. By
that we mean, when specific events happen, DFR activates specific forensic rules
accordingly to a model of computation. Each activated rule carries out a sequence of
actions and triggers a sequence of events.

To fulfil the requirements of the design mentioned above, we adhered to a few de-
sign patterns including those of the following types: strategy (used in targets, actions
and forensics rules), observer (used in triggering function and forensic rule engine),
composition (used in collector) and decoration (used in targets bijection). A class
diagram for the whole system is provided in Appendix A.

5.2 Work-Flow of the Proactive System Implemen-
tation

As mentioned in Section 3.3.4, the implementation of the system is done in a projected
space, which the user should initially specify. This space should include all targets and
events that the user or the organization has classified as important. The collection
and preservation are restricted to the projected space but the analysis can be done
on any space including the projected one.

More precisely, the work-flow of the proactive system is as follows:

1. The user specifies a set of targets T = {T1, T2, T3, . . . , Tn} that she/he is in-
terested in collecting, preserving and/or analyzing. These targets can be cus-
tomized to match the needs of any individual organization. Examples of such
targets are network traffic, firewall, processes, file system and registry.

2. The user also specifies a set of events E = {E1, E2, E3, . . . , Em} that she/he is
interested in watching for. These events can be customized according to the
user’s requirements. Examples of events are suspicious network traffic, firewall
status, process state change, file system modification, and registry modification.

3. Initially, a set of targets is proactively collected and preserved in a forensically
sound manner. When an event, which can be associated with a target from
DFR or an outside source such as IDS, is trigged, specific targets including
the ones associated with the event triggered can proactively be collected and
preserved as well.

68

4. When one or more events are detected, via a proactive event detection system
such as an IDS/outlier detection analysis, the forensic rules are executed.

5. When an event Ei is trigged, the preservation mapping, which plays the role of
a hashing function, proactively preserves all the predefined targets (i.e., targets
associated with the event Ei). Moreover, extra targets T ′, which have not been
included in the predefined ones, can be proactively collected and preserved.
The advantage of having forensic rules is that the preservation phase can be
expressed as a forensic rule as follows:

@Ei→P{DEi ∪ T ′},

where DEi is the set of targets associated with Ei via a binary relation D.

6. The proactive analysis initiates the analysis forensic rules, such as the outlier
analysis, and correlates the evidence from the data collected.

7. The preliminary report is then generated based on the evidence gathered as well
as its timeline. In addition, a confidence number that quantifies the uncertainty
of an incident is also reported. For the outlier analysis this number represents
the normalized distance from the mean for single attribute or the Mahalanobis
distance for the generalized case.

5.3 Distributed Proactive System

To be proactive and to handle the cases where many systems are involved (as is
the case for networks or clouds), one has to consider not only one system but the
ensemble. For that we propose a simple framework in which each system is equipped
with a Proactive Sub-Agent (PSA) that may carry out PDF on the system it is
running on and relies on a Proactive Agent (PA) to do the full PDF for the ensemble.
As an illustration, PSA could deal with known safe and malicious profiles while PA
runs the full outlier detection analysis.

Although PA can do most of the processing, PA in turn may rely on a High
Performance Computing (HPC) cluster to store data and do the analysis in real
time. Figure 5.2 depicts this framework. In addition, a multi-resolution approach is
introduced to cope with the increasing size of data when an investigation is needed.

69

PSA:	 Proac*ve	 Sub-‐agent;	 PA:	 Proac*ve	 Agent;	 HN:	 Head	 Node;	 WN:	 Worker	 Node	

PSA	

PSA	

PSA	

PA	

HPC	 Cluster	 WN	

WN	

WN	

HN	

Figure 5.2: General Architecture of Distributed Proactive System (PSA: Proactive
Sub-agent; PA: Proactive Agent; HN: Head Node; WN: Worker Node).

In this section, we are only considering the analysis phase, which is the most
expensive phase of the proactive system. We have used our dataset from the Honeypot
Challenge test case [26] to evaluate and validate some of the outlier algorithms in
Chapter 4 which are also published in [12] and [1].

5.3.1 A Multi-Resolution Framework for Digital Forensics

The projection framework presented in Section 3.3.4 can be extended by iteratively
applying it to an initial space. This leads to what we call the multi-resolution frame-
work for digital forensics.

The multi-resolution approach allows us to cope with the large number of elements
of DF investigation and the high dimensional space of the system by reducing the set
of initial elements of DF investigation S0 to a smaller one S1. This in turn is reduced
to S2 and so on. The sequence (Sn)n∈N obtained satisfies

S0 ⊇ S1 ⊇ . . . ⊇ Sn ⊇ . . .

A set Sn+1 is usually the outcome of applying an operator Θp to Sn, that is

Sn+1 = Θp(Sn)

Definition 5.1. A DF reduction operator Θ is an operator that maps a set S of
elements of investigation to S ′ = Θ(S) such that S ′ ⊆ S.

Although the DF reduction operator is a new concept, it is commonly used in

70

practice. For example, taking a snapshot of the system at a specific time t can be
viewed as a DF reduction operator that reduces the elements of investigation to the
files at t. Another example is generating the timeline of the system in the interval
[ti, te]. It can be seen as reducing all the events and activities on the system to the
ones reported by the operating system in the interval [ti, te]. It is worth noting that
a DF reduction operator can also be viewed as a projection operator that projects a
DF space to a smaller one.

In our present work, the reduction operators are constructed from the spatial
outlier detection algorithms. Given a set of investigation elements E , the spatial
outlier analysis reduces E to suspicious investigation elements using single and/or
multiple attributes.

Lemma 5.1. Given a sequence of DF reduction operators Θ1, . . . ,Θn, then the com-
position Θ1 ◦ . . . ◦ Θn is a DF reduction operator. In particular, if Θ1 = Θ2 = . . . =
Θn = Θ, the composition Θn = Θ1 ◦ . . . ◦Θn is a reduction operator for every n ∈ N.

Definition 5.2. A DF reduction operator Θ is said to preserve V iff V ⊆ Θ(V ∪ S)
for every DF state set S.

In the definition above, if we take S = ∅, then we have the following lemma.

Lemma 5.2. If a DF reduction operator Θ preserves V , then V is a fixed point of
Θ, i.e.,

Θ(V) = V.

Definition 5.3. A DF reduction operator is safe if it preserves the evidence.

Since it is undecidable to find the evidence of all kind of DF attacks, it is impossible
to build a safe computational DF reduction operator.

Definition 5.4. Given a DF reduction operator Θ and a set S of elements of investi-
gation, we define the reduction amplitude at level n of Θ on S with respect to another
set H of elements of investigation as

|Θ|nH(S) = 1− |H ∩Θn(S)|
|H ∩ S|

In what follows, |Θ|n(S) will be used to denote |Θ|nS0(S), where S0 is the initial
set of investigation elements. Note that the amplitude of reduction at level n of Θ is

71

the same as the amplitude of reduction at level 1 of Θn. In other words, |Θn|H(S) =
|Θ|nH(S).

The reason for introducing the amplitude of reduction is to quantify the effective-
ness of a reduction operator. For example in the Honeypot Challenge test case (see
Section 5.3.3), when using the mtime attribute under Algorithm 1, the amplitude of
reduction at level 1 with respect to all possible set of states S0 is

|Θm|(S0) = 1− |Θm(S0)|
|S0|

= 1− 8127
20861 = 0.6

The size attribute, however, gives

|Θs|(S0) = 1− |Θs(S0)|
|S0|

= 1− 20067
20861 = 0.04

From these results we can see using the mtime attribute give us better reduction than
using the size attribute (see Tables 5.1 and 5.2). With respect to the evidence E,
we have

|Θm|E(S0) = 1− |E ∩Θm(S0)|
|E ∩ S0|

= 1− 18
60 = 0.7

and
|Θs|E(S0) = 1− |E ∩Θs(S0)|

|E ∩ S0|
= 1− 58

60 = 0.03

The goal is to have |Θ| as big as possible for the initial set S0 but as small as
possible for the evidence E. As such, we introduce the evidence amplitude at level n
to be

[Θ]n(S) = |E ∩Θn(S)|
|E ∩ S|

= 1− |Θ|nE(S)

For example, we have

[Θm]E(S0) = 1− |Θm|E(S0) = 1− 0.7 = 0.3

and
[Θs]E(S0) = 1− |Θs|E(S0) = 1− 0.03 = 0.97

This implies that using the size attribute, the evidence was reduced compared to
mtime attribute (see Tables 5.1 and 5.2). Therefore mtime attribute is better when

72

the evidence is considered.
It is clear that a good reduction operator should have |Θ|nS0(S) and [Θ]n(S) as

large as possible. In other words, it should reduce S to the greatest possible extent
while leaving E intact. Therefore, the perfect reduction operator is the one for which
Θn(S) converges to E ∩ S as n increases.

5.3.2 Implementation and Results

The requirement of analysing data in real time, as stated in the seven principles, led
us to implement parallel versions of the spatial outlier analysis Algorithms 1 [12],
2 [1] and 3 [1] based on Message Passing Interface (MPI). MPI is a standard for
writing parallel libraries that allows processes on different machines to communicate
and share a common address space through Remote Direct Memory Access (RDMA).
Several implementations of MPI exist and support the InfiniBand (IB) standard for
low-latency and high throughput network communications. Since WestGrid has the
IB hardware as well as the MPI implementations (openMPI and Intel MPI), we opted
to using WestGrid as the HPC cluster for our distributed proactive system.

The parallel implementation is based on the following steps:

1. Group regular files according to their folders.

2. Distribute the groups across the processes.

3. Initialize the attribute functions and the probability distributions.

4. Compute the summary/average function g(φ) for each file φ.

5. Compute the comparison/distance function h(φ) = f(φ)− g(φ) for each file φ.

6. Compute the partial mean µl of the comparison functions and the partial mean of
their squares ζl locally.

7. Compute the sum µ of µl and the sum ζ of ζl collectively using MPI_Allreduce
with MPI_SUM as its operation.

8. Compute the standard deviation σ =
√
ζ − µ2.

9. Compute the normalized value y(φ) = |(h(φ)− µ)/σ| for each file φ and select its
largest value yl locally.

73

10. Select the largest value ym amongst yl across all the processes and its location sr

using MPI_Allreduce with MPI_MAXLOC as its operation.

11. If ym is greater than or equal to a threshold θ, then it is an outlier.

(a) If my rank is equal to sr,

i. Update the attribute of the outlier to be the summary function.
ii. Update its summary function and that of its neighbours.

iii. Update the partial means µl and ζl.

(b) go to step 7.

12. Stop if ym is less than θ.

Since most forensic images have many directories, and to reduce the amount of
communications involved in computing the summary functions, we first partition the
files into groups based on the directories. This partition is done using a Perl script
that uses GNU Parallel [66] to create the groups on multiple processes. To ensure a
reasonable workload balance among, say, P processes, we sort the groups ascendingly
according to their number of files and distribute them in a slightly modified round-
robin fashion: if W is the number of directories, then at each round r the process with
rank r%P (remainder of r by P) is chosen to be the initial round-robin element for
the first W/P directories. The rest (W%P directories) is distributed to the processes
with less workload. Then for each process, the name of the files it handles are written
to a formatted file.

Each process then reads its file and initializes the local and global probability
distributions. Different probability distributions were implemented to compare their
effect on the outlier analysis as discussed below. The summary functions, the com-
parison functions and its partial mean and squares are then computed locally. Using
MPI_Allreduce the mean and the standard deviation are computed. These are then
used to normalized the comparison functions and compute the maximum value of the
local normalized values. To get the global maximum value ym and the rank r of the
process from which it originated, we use the operation MPI_MAXLOC in MPI_Allreduce
instead of MPI_MAX. The outlier detection is then executed by comparing ym with a
threshold θ. If ym is greater than or equal to θ, then the process of rank r updates
the necessary functions and recomputes the partial means and mean squares. All
the processes then compute the global mean and the global standard deviation as

74

outlined above. These steps are repeated until no outliers are detected (i.e., ym is less
than θ).

Since the group of files that each process handles are specified in a formatted
file F , implementing the multi-resolution approach is straightforward: each time an
outlier is detected, it is recorded in a formatted file similar to F . This file is read
instead of F when the next multi-resolution level is desired.

Note that when the directories are assumed to be independent entities, the two
MPI calls above are ignored and the code becomes a pure, embarrassingly parallel
one. This of course an oversimplification and it is not the case in practice as the
directories are usually correlated.

5.3.3 Honeypot Challenge Test Case: Implementation Veri-
fication and Validation

Although our aim is to run the outlier detection algorithms in a PDF context, we
needed a benchmark dataset to evaluate the effectiveness of our algorithms in [1]
and to test and compare our implementation with the work in [12]. The comparison
showed promising results which we discuss next.

The Honeypot Challenge benchmark [26] is set of images of a computer that was
attacked just after it was brought online. The images are of six partitions and the
largest is the /usr partition (honeypot.hda5.dd) This partition contains a total
number of 20,861 files. The attacker used the Linux root kit version 4 (lrk4) to
compromise the system and introduced around 60 infected files in /usr.

To handle the I/O bound aspect of DF, we first mounted the images on ramdisk
on a cluster worker node with 24 GB of memory and 8 cores with read-only access.
We then run the serial and parallel versions of different algorithms to make sure that
our parallel implementation results match the serial ones. All the parallel algorithms,
including the ones using the multi-resolution technique, completed in less than 2
minutes. On a Dual core MacBook Pro with 4 GB of memory, it took almost 12
minutes. Although the dataset used is small, we obtained a speedup of 6.

The analysis was done for many attributes including size , mtime , atime ,
ctime and inode number, for different global and local probability distributions such
as uniform (represents Algorithm 1 by Carrier et al. in [12]), mtime [1], atime [1]
and ctime [1] distributions, and for the information iterative z algorithm [1]. Some
of the results obtained are presented in Tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8.

75

For more clarification of the tables listed below, we have two types of tables. The
first table is for displaying the number of files left over after applying the outlier
algorithms at each reduction level (up to 5 levels). The second table is for showing
the percentage of reductions in both reduction and evidence amplitudes which is
generated from the first table (see Section 5.3.1). Terms, used in tables, are defined
as follows:

• Set Reduction: the reduction in the number of files in a set after applying the
outlier detection algorithms.

• Evidence Reduction: the reduction in the number of files that were actually
involved in the incident after applying the outlier detection algorithms.

• Reduction Amplitude: the percentage of reduction in the reduction amplitude
generated after applying the outlier detection algorithms on a set (see Sec-
tion 5.3.1). This number is a reflection of what is in the first table (set reduction
column). For the best results, this percentage has to be as big as possible.

• Evidence Amplitude: the percentage of reduction in the evidence amplitude
(actual files involved in the incident) generated after applying the outlier de-
tection algorithms (see Section 5.3.1). In addition, this number is a reflection
of what is in the first table (evidence reduction column). For the best results,
this percentage has to be as small as possible to keep evidence intact.

θ = 2, Prob. Dist. = Uniform
Multi-
resolution
Level

size mtime inode
Set Red. Evidence

Red.
Set Red. Evidence

Red.
Set Red. Evidence

Red.
1 20067 58 8127 18 19964 50
2 20002 58 7198 17 19428 41
3 19814 54 1883 6 19251 39
4 19653 50 1511 5 19251 39
5 19652 50 1450 5 19251 39

Table 5.1: Number of files left from running iterative z algorithm (Algorithm 1) for
size, mtime and inode attributes under uniform distributions.

A brief analysis of the results is as follows:

76

θ = 2, Prob. Dist. = Uniform
Multi-
resolution
Level

size mtime inode
Reduction
Amp.(%)

Evidence
Amp.(%)

Reduction
Amp.(%)

Evidence
Amp.(%)

Reduction
Amp.(%)

Evidence
Amp.(%)

1 4 97 60 30 4 83
2 4 97 65 28 7 68
3 5 90 91 10 8 65
4 6 80 93 8 8 65
5 6 80 93 8 8 65

Table 5.2: Comparing the percentage of size, mtime and inode attributes under
uniform distributions for iterative z algorithm (Algorithm 1).

θ = 2, Prob. Dist. = Global/Local mtime
Multi-
resolution
Level

size mtime inode
Set Red. Evidence

Red.
Set Red. Evidence

Red.
Set Red. Evidence

Red.
1 20221 53 9312 16 20403 53
2 19531 48 6843 11 20202 48
3 11904 43 5389 9 20131 47
4 4942 31 2506 6 20091 47
5 4668 30 2386 6 20065 47

Table 5.3: Number of files left from running probabilistic iterative z algorithm (Algo-
rithm 2) for size, mtime and inode attributes under global/local mtime distributions.

• The results we obtained in Tables 5.3 and 5.4 for the size attribute under
Algorithm 2 [1] were better than the results obtained via implementing Algo-
rithm 1 [12] in Tables 5.1 and 5.2. In a sense, we have got a bigger reduction
for the reduction amplitude and less evidence reduction for the evidence am-
plitude. For example, at the multi-resolution level 5 (under size attribute) in
Table 5.4, we got 70% difference (bigger) for the reduction amplitude and 30%
less (smaller) for the evidence amplitude than what is in Table 5.2 (under size
attribute). For the other attributes (mtime and inode) in Tables 5.2 and 5.4,
we got similar results. More comparison can be seen in Tables 5.5 and 5.6.

• The reduction amplitude for mtime attribute is higher than that of size and
inode attributes (see Tables 5.2 and 5.4). In addition, the evidence amplitude
for mtime is less than that of size and inode for the same tables.

77

θ = 2, Prob. Dist. = Global/Local mtime
Multi-
resolution
level

size mtime inode
Reduction
Amp.(%)

Evidence
Amp.(%)

Reduction
Amp.(%)

Evidence
Amp.(%)

Reduction
Amp.(%)

Evidence
Amp.(%)

1 3 88 55 27 2 88
2 6 80 67 18 3 80
3 43 72 74 15 3 78
4 76 52 88 10 4 78
5 78 50 89 10 4 78

Table 5.4: Comparing the percentage of size, mtime and inode attributes under
global/local mtime distributions for probabilistic iterative z algorithm (Algorithm 2).

θ = 2, mtime
Multi-
resolution
level

Prob. Dist. Uniform Prob. Dist. Global/Global atime
Set Red. Evidence

Red.
Set Red. Evidence

Red.
1 8127 18 8136 16
2 7198 17 7332 13
3 1883 6 7036 13
4 1511 5 4541 10
5 1450 5 4413 10

Table 5.5: Number of files left from running uniform (Algorithm 1) and global/global
atime (Algorithm 2) distributions under mtime attribute.

• The information-based outlier detection algorithm [1] using the mtime attribute
outperformed the rest of the algorithms including the one reported by Carrier
et al. [12] (see Table 5.2) in most cases as in Table 5.8. This can be seen
from the fact that we got a bigger reduction in the reduction amplitude and a
smaller one for the evidence amplitude. As an example, at the multi-resolution
level 1 (under Prob. Dist. global/global mtime) in Table 5.8, we got a 55%
difference (bigger) for the reduction amplitude and 54% less for the evidence
amplitude than what is in Table 5.2 (under size attribute). Moreover, at the
multi-resolution level 1 (under Prob. Dist. global/global mtime) in Table 5.8,
we got a 56% difference (bigger) for the reduction amplitude and 45% less for
the evidence amplitude than what is in Table 5.4 (under size attribute).

• Global/local distribution can help in increasing the reduction amplitude as the

78

θ = 2, mtime
Multi-
resolution
level

Prob. Dist. Uniform Prob. Dist. Global/Global atime
Reduction
Amp.(%)

Evidence
Amp.(%)

Reduction
Amp.(%)

Evidence
Amp.(%)

1 61 30 61 27
2 65 28 65 22
3 91 10 66 22
4 93 8 78 17
5 93 8 79 17

Table 5.6: Comparing the percentage of uniform (Algorithm 1) and global/global
atime (Algorithm 2) distributions under mtime attribute.

θ = 2, Information-based detection using mtime
Multi-
resolution
level

Prob. Dist. Global/Global mtime Prob. Dist. Local/Local mtime
Set Red. Evidence

Red.
Set Red. Evidence

Red.
1 8612 26 11209 21
2 7018 23 9277 13
3 1805 7 8582 12
4 1603 6 8242 12
5 1473 6 7979 12

Table 5.7: Number of files left from running global/global and local/local mtime
distributions under information iterative z algorithm (Algorithm 3) using mtime at-
tribute.

multi-resolution level increases as shown for the example in Table 5.4.

5.4 Zeus Use Case

5.4.1 Why Zeus?

The Zeus toolkit has become the hacker’s best toolkit due to its user-friendly interface
and its stealth capabilities. According to Symantec Corporation [65], it is considered
to be the “King of the Underground Crimeware Toolkits.” On Damballa [15], Guntter
Ollmann ranked it as the number-one threat which infected 3.6 million hosts in the
US alone (this accounts for 19% of the Internet-connected PCs in the US). Moreover,
about 44% of banking malware infections were attributed to Zeus [37]. As such, we

79

θ = 2, Information-based detection using mtime
Multi-
resolution
level

Prob. Dist. Global/Global mtime Prob. Dist. Local/Local mtime
Reduction
Amp.(%)

Evidence
Amp.(%)

Reduction
Amp.(%)

Evidence
Amp.(%)

1 59 43 46 35
2 66 38 56 22
3 91 12 59 20
4 92 10 60 20
5 93 10 62 20

Table 5.8: Comparing the percentage of global/global and local/local mtime distribu-
tions under information iterative z algorithm (Algorithm 3) using mtime attribute.

took Zeus as an excellent use case to test and validate our implementation.

5.4.2 Description of Zeus Crimeware Toolkit

The Zeus botnet acts as a spy on the infected machine and sends credential and
financial information to the attacker. The affected user is tricked into entering his
banking information in fake or hijacked websites configured by the attacker. The
information gathered is then sold on the black market [25].

The toolkit can be sold within the range of $800 to $4000 [51] and sometimes
more depending on its capabilities.

The Zeus crimeware toolkit that we used is version 1.2.4.2, and has the following
components:

1. A Control Panel (CP) (see Figure 5.3), which is installed on the attacker ma-
chine and acts as Command and Control (C& C) server for the Zeus botnet.

2. A builder program shown in Figure 5.4, which generates two files: a binary file
for the botnet (bot.exe) and an encrypted configuration file (config.bin).

Two configuration files are included with the builder program and are used to configure
the botnet parameters. Those files are config.txt and webinjects.txt; the former
has the basic configuration information and the latter lists the targeted websites and
some injection rules. The CP component is developed using PHP scripting language
and a MySQL database and it is used to manage, control and collect the information
from the botnets. The MySQL database is used to store the stolen information as

80

Figure 5.3: Zeus Command and Control server.

illustrated in Figure 5.5. Another important function of the CP is to communicate
with the botnets (the infected machines) and to display all related information for each
botnet on the MySQL database. The configuration file (webinjects.txt) contains a
list of URLs that can be hijacked and the corresponding HTML that will be injected
instead. The injection file webinjects.txt is customizable and the attacker can adjust
it to define new rules for web injection as needed. When a machine is infected, the
hijacked page is shown and it is used to steal information entered by the end user.
The stolen information is encrypted with the RC4 algorithm and transferred to the
C& C server where it gets decrypted and stored in the MySQL database.

5.4.3 Zeus Proactive System

Testbed System

Two machines are used as a testbed for our proactive system. The two machines are
connected through a wireless switch as shown in Figure 5.6. One of the machines has
a couple of Virtual Machines (VMs) running. Windows XP (service pack 2) VM was
chosen to host the PSA and used for Zeus infection. The PSA does the collection and
preservation as well as event detection and triggering.

The most critical system assets, such as the system32 folder, are collected and
preserved. When a critical event is detected or triggered by the event triggering

81

Figure 5.4: Zeus Bot Builder.

function, the remote PA is notified to carry out the analysis and generate the report.
The report is sent to the investigator, via SMS and email, as well as to the PSA.

PA is a Mac OS X machine equipped with the necessary software to run the
parallel implementation of the outlier detection algorithms.

5.4.4 Zeus Installation

Zeus components, the Control Panel and the Builder, were downloaded from the
underground community (such as opensc.ws). They both came as separated zipped
folders or sometimes under one folder depending on where it was downloaded from.
The CP was installed on a Linux VM. After many trials and errors, we managed to
get the proper installation work-flow by first installing the XAMPP-linux-1.7.4 pack-
age which includes Apache 2.2.17, MySQL 5.5.8, PHP 5.3.5 and other components.
We then installed CP and configured its web interface to work properly. CP web
navigation was intuitive and did not require considerable time.

The Builder is provided as an already made executable and was copied to the
Windows XP VM. A few mouse clicks were enough to launch the Builder and generate
the botnet binary, which we then used to manually infect the Windows XP machine.
It was challenging to get the systems to work together, as the underground community

82

Figure 5.5: Zeus Stolen information with victim screen-shot from infected machine.

PSA	 with	 VM	 running	 PA	

Figure 5.6: Testbed System for Zeus.

was not of much help and the manuals found were not easy to follow. Since then,
more straightforward documentation on Zeus and its installation are available online;
examples include [68, 72].

5.4.5 Proactive System Implementation

To test and validate our theoretical framework, we implemented a distributed system,
which we described generally in Section 5.2 and Section 5.3. The implementation
details are as follows:

• On the Proactive Sub-Agent (PSA) component:

– We run the PSA component on the target system, which is connected
remotely to the Proactive Agent (PA) through a secure connection (SSH).

83

– PSA starts collecting and preserving important targets and events such as
the System32 folder and network status. The important targets are those
specified by the user. Since Zeus mainly infects the System32 folder, we
used the System32 folder as the main target for our analysis.

– Important events, which the user also specifies, are captured and used to
trigger forensic rules. The main event we have for Zeus is System32 folder
change.

– When Zeus attacks the system, the System32 folder is changed. This event
is associated with the forensic rule that carries out the analysis step. This
forensic rule, as well as others, is added to the forensic rule engine and
is ready to be triggered when System32 changes. When Zeus attacks the
system, the System32 directory is changed, and the forensic rule engine
starts the analysis as follows: 1) checks for any inconsistencies or known
attack patterns on the hosts (PSA), 2) sends a copy of the forensic image
of System32 folder to the PA, and 3) requests the PA to carry out the rest
of the analysis.

• On the Proactive Agent (PA) component:

– The PA component is up and running and waiting for the PSA component
to request analysis. The PA is designed to listen to multiple PSAs but can
only carry out one analysis at a time.

– The forensic image of the important targets and events is moved to PA for
further analysis. For the Zeus case, the System32 folder is the important
target and it is copied to the PA when the “System32 folder change” event
is triggered.

– Outlier analysis based on Algorithm 8 with known attacks (as described
in Section 4.6) embedded in the multi-resolution framework described in
Section 5.3.1 is conducted on the image.

– A final report that shows all outlier-detected files and their respected ex-
tracted and computed values is generated. It is then copied to the PSA
for reference and sent to the investigator.

84

5.5 Summary

In this chapter, we presented a distributed and HPC proactive system as well as its
implementation. Parallel versions of the outlier detection algorithms were also de-
scribed and implemented. These algorithms were then incorporated, as DF reduction
operators, into a multi-resolution framework that permitted us to iteratively reduce
the number of false positives.

Although the performance of our implementation was encouraging (the results of
the analysis were obtained in less than two minutes), more testing on large datasets is
recommended. Moreover, using our algorithms [1], we were able to get better results
in comparison to Carrier et al.’s work in [12]. This can be seen from the fact that
we got a bigger reduction for the reduction amplitude and less evidence reduction for
the evidence amplitude.

Lastly, we discussed Zeus and chose it as the perfect use case to verify and validate
our proactive system.

85

Chapter 6

Conclusion and Future Work

Nowadays, digital data is becoming more critical than ever. Although it can take
many forms and reside on many different platforms, it has to be forensically pro-
tected against sophisticated attacks. As we argued in the introduction as well as in
other chapters, being proactive is the necessary step toward ensuring sound forensic
investigations, especially against anti-forensic crimes, which affect the reactive investi-
gation process in many ways: preventing evidence collection, increasing investigation
time and cost, providing misleading evidence that can lead to unsuccessful or wrong
prosecution, and/or preventing detection of the attack.

In this thesis, we have addressed proactive digital forensics at different levels,
which we summarize below.

6.1 Proactive Digital Forensics at the Literature
Level

In Chapter 2, we presented a proactive investigative system framework based on a
thoroughly systematic literature review of the existing digital forensic processes. The
SLR approach was followed for a couple of reasons. Firstly, SLR results are repro-
ducible. Secondly, since all resources (databases) are queried systematically, there is
less chance of missing important references. The framework presented combines two
main components, proactive and reactive components, to form a self-contained dig-
ital forensic process to investigate anti-forensic attacks and promote an automation
in semi-real time. Phases of the proposed process were defined and mapped to the
existing investigation processes.

86

6.2 Proactive Digital Forensics from the First Prin-
ciples

In Chapter 3, we reviewed and extended the existing five principles to proactive digital
forensics. We also introduced two extra principles based on practical observations.
From the seven principles, we deduced the inherent complexity and the large number
of dimensions of the space in which the proactive digital forensic system resides. A
theoretical foundation was proposed to formalize the implementation of the proactive
system.

6.3 Proactive Digital Forensics at the Theory Level

Our theory behind the proactive digital forensics began mainly from Chapter 3 and
was used to lay down the foundation of a reliable proactive system. The system was
modelled as a feedback dynamical system in which the forward system is the system
under investigation and the feedback system is the proactive component. An event-
driven model of computation, called digital forensic rules, was used as the essential
engine for the proactive component.

The targets, events and actions were found as the main elements of investigation
and were reduced, classified and structured via relations, a zoning approach and space
projection.

Given that the analysis is the most demanding phase, we not only classified it
into three categories (signature-based, anomaly-based, and protocol-based) as done in
intrusion detection systems, but we also unified the three categories using correlation
on the space of profiles.

As the automated analysis is important in a proactive system, we dedicated Chap-
ter 4 for it and formalized it based on the theoretical framework presented in Chapter
3. Two main ingredients were used: outlier analysis and information theory. From
an outlier analysis perspective, we extended the iterative z algorithm to different el-
ements of DF investigation, including events and targets. We also added local and
global probability distributions to weight elements of DF investigation as required.
We then generalized our probability-based algorithm to information-based iterative z
algorithms. These information-based algorithms were introduced as a novel approach
to express the outlier detection from an information theory perspective. Temporal

87

and event information-based iterative z algorithms were proposed to deal with the
time aspects of a proactive system as well as its events. Lastly, we combined the
spatial, temporal and event information-based algorithms into a single information-
based outlier detection algorithm involving the space of profiles. This algorithm was
slightly modified to carry out both signature-based and anomaly-based analyses.

6.4 Proactive Digital Forensics at the Implemen-
tation Level

As the size of the investigation space is becoming large, a successful proactive tool
must be able to reduce it in a systematic way without focusing on finding a specific
piece of evidence and ignoring others. This investigation-oriented aspect is the main
purpose behind the theory presented in Chapter 3 and Chapter 4, and the major drive
for implementing different outlier detection algorithms (including the mutli-resolution
one presented in Chapter 5).

In addition to being a theoretically well-founded system, the proactive system
should be designed with other software engineering requirements and best practices
in mind such as modularity, extensibility, reliability and decent performance. As such,
we opted for an object-orientated design. The UML diagrams for the system were
showing in Chapter 5. Furthermore, we discussed a distributed and HPC proactive
system as well as its parallel implementation. Both serial and parallel versions of
the outlier detection and analysis algorithms were verified and validated based on the
dataset from the Honeypot challenge test case and compared with the work of Carrier
et al. in [12]. These algorithms were then incorporated, as DF reduction operators,
into a multi-resolution framework that permitted us to iteratively reduce the number
of false positives. Finally, our full proactive system was verified and validated using
the Zeus use case.

6.5 Future Work on Proactive Digital Forensics

In this thesis we restricted our implementation to three algorithms (1, 2 and 3)
and left the rest for immediate and major future work on proactive digital forensics.
Implementing and comparing the rest of the algorithms, especially the multi-attribute
one, are of great importance not only to our work but also to the digital forensic

88

community. This community will be eager to know how outlier detection algorithms
are performing and how they could be enhanced using other data mining and analysis
techniques.

Although the overall performance of our algorithm’s implementation was promis-
ing compared to the work in [12], and our proactive outlier analysis algorithms weigh
the recent elements of investigation less than the older ones, it is challenging to find
the proper weighting of the probability distributions. It is even more challenging to
find the right order in which to compose the outlier analysis algorithms and use them
as DF reduction operators in the multi-resolution algorithm.

Moreover, in our final outlier detection analysis Algorithm 8 and in our implemen-
tation, we dealt with the unknown attacks (anomaly-based analysis) and the known
ones (signature-based analysis) only, and we did not have any protocol-based analysis.

Lastly, the implementation of our proactive system lacks a Graphical User Inter-
face (GUI) to help the users navigate, add and choose the right elements of inves-
tigation, specify the triggering events to watch for, add new forensic rules, and so
on. Given that false positives were observed with the outlier detection algorithms
implemented so far, enhancing our system with other searching techniques may be
required. The enhancement we plan to do is to join our system with the Digital Foren-
sics Framework software [38], a promising open-source initiative for reactive digital
forensics. This will bring the GUI as well as many existing tools to the fingertips of
the users of our proactive system.

89

Appendix A

UML Class Diagram for the
Proactive Digital Forensics

The diagram shown next constitutes the full UML class diagram of the proposed
Proactive Digital Forensics.

90

<
<

P
ro

p
e

rty>
>

 -n
a

m
e

 : S
trin

g

+
A

ctio
n

(n
m

 : S
trin

g
)

+
ca

rry(tg
ts : V

e
cto

r<
T

a
rg

e
t>

) : b
o

o
le

a
n

A
c

tio
n

-lo
g

 : S
trin

g
<

<
P

ro
p

e
rty>

>
 -ta

rg
e

ts : T
a

rg
e

t
<

<
P

ro
p

e
rty>

>
 -e

ve
n

ts : E
ve

n
t

<
<

P
ro

p
e

rty>
>

 -re
p

o
rte

r : R
e

p
o

rte
r

+
A

n
a

lyze
r()

+
A

n
a

lyze
r(tg

s : V
e

cto
r<

T
a

rg
e

t>
, e

vts : V
e

cto
r<

E
ve

n
t>

)
+

A
n

a
lyze

r(tg
s : V

e
cto

r<
T

a
rg

e
t>

, e
vts : V

e
cto

r<
E

ve
n

t>
, lg

 : S
trin

g
)

+
A

n
a

lyze
r(tg

s : V
e

cto
r<

T
a

rg
e

t>
, e

vts : V
e

cto
r<

E
ve

n
t>

, rp
tr : R

e
p

o
rte

r)
+

A
n

a
lyze

r(tg
s : V

e
cto

r<
T

a
rg

e
t>

, e
vts : V

e
cto

r<
E

ve
n

t>
, rp

tr : R
e

p
o

rte
r, lg

 : S
trin

g
)

+
a

n
a

lyze
() : b

o
o

le
a

n

A
n

a
ly

z
e

r

<
<

P
ro

p
e

rty>
>

 -ta
rg

e
ts : T

a
rg

e
t

+
C

o
lle

cto
r(n

m
 : S

trin
g

)
+

C
o

lle
cto

r(n
m

 : S
trin

g
, tg

ts : V
e

cto
r<

T
a

rg
e

t>
)

+
a

d
d

T
a

rg
e

t(t : T
a

rg
e

t) : vo
id

+
co

lle
ct() : V

e
cto

r<
F

ile
>

+
co

lle
ct(t : T

a
rg

e
t) : V

e
cto

r<
F

ile
>

+
m

a
in

(a
rg

s : S
trin

g
 []) : vo

id

C
o

lle
c

to
r

-in
te

rva
l : lo

n
g

-co
lle

cto
r : C

o
lle

cto
r

+
C

o
lle

cto
rR

u
n

n
e

r(co
l : C

o
lle

cto
r, d

 : lo
n

g
)

+
ru

n
() : vo

id

C
o

lle
c

to
rR

u
n

n
e

r

-co
n

d
itio

n
 : b

o
o

le
a

n

+
C

o
n

d
itio

n
a

lF
ro

n
e

sicR
u

le
(n

m
 : S

trin
g

, e
 : E

ve
n

t, cn
d

 : b
o

o
le

a
n

, a
 : A

ctio
n

)
+

e
xe

cu
te

(e
vts : V

e
cto

r<
E

ve
n

t>
) : b

o
o

le
a

n

C
o

n
d

itio
n

a
lF

ro
n

e
sicR

u
le

-p
a

th
s : V

e
cto

r<
S

trin
g

>
-w

a
tch

e
r : W

a
tch

S
e

rvice
-ke

ys : M
a

p
<

W
a

tch
K

e
y, P

a
th

>
-re

cu
rsive

 : b
o

o
le

a
n

-tra
ce

 : b
o

o
le

a
n

 =
 fa

lse
-e

ve
n

tT
e

m
p

la
te

s : E
ve

n
tT

e
m

p
la

te

~
ca

st(e
ve

n
t : W

a
tch

E
ve

n
t<

?
>

) : W
a

tch
E

ve
n

t<
T

>
-re

g
iste

r(d
ir : P

a
th

) : vo
id

-re
g

iste
rA

ll(sta
rt : P

a
th

) : vo
id

+
D

ire
cto

ryW
a

tch
e

rE
ve

n
tT

rig
g

e
rin

g
F

u
n

ctio
n

(e
vts : V

e
cto

r<
E

ve
n

tT
e

m
p

la
te

>
)

+
D

ire
cto

ryW
a

tch
e

rE
ve

n
tT

rig
g

e
rin

g
F

u
n

ctio
n

(e
vts : V

e
cto

r<
E

ve
n

tT
e

m
p

la
te

>
, re

cu
rsive

 : b
o

o
le

a
n

)
+

D
ire

cto
ryW

a
tch

e
rE

ve
n

tT
rig

g
e

rin
g

F
u

n
ctio

n
(e

vts : V
e

cto
r<

E
ve

n
tT

e
m

p
la

te
>

, p
th

s : V
e

cto
r<

S
trin

g
>

, re
cu

rsive
 : b

o
o

le
a

n
)

+
ru

n
() : vo

id

D
ire

c
to

ry
W

a
tc

h
e

rE
v

e
n

tT
rig

g
e

rin
g

F
u

n
c

tio
n

+
D

u
m

m
yA

ctio
n

(n
m

 : S
trin

g
)

+
ca

rry(tg
ts : V

e
cto

r<
T

a
rg

e
t>

) : b
o

o
le

a
n

D
u

m
m

y
A

c
tio

n

-in
te

rva
l : lo

n
g

-e
ve

n
tT

e
m

p
la

te
s : E

ve
n

tT
e

m
p

la
te

+
D

u
m

m
yE

ve
n

tT
rig

g
e

rin
g

F
u

n
ctio

n
(e

vts : V
e

cto
r<

E
ve

n
tT

e
m

p
la

te
>

, d
 : lo

n
g

)
+

ru
n

() : vo
id

D
u

m
m

y
E

v
e

n
tT

rig
g

e
rin

g
F

u
n

c
tio

n

-so
u

rce
 : O

b
je

ct
<

<
P

ro
p

e
rty>

>
 -te

m
p

la
te

 : E
ve

n
tT

e
m

p
la

te
<

<
P

ro
p

e
rty>

>
 -sp

e
cificT

a
rg

e
ts : T

a
rg

e
t

+
E

ve
n

t(tp
lt : E

ve
n

tT
e

m
p

la
te

)
+

E
ve

n
t(tp

lt : E
ve

n
tT

e
m

p
la

te
, sp

T
a

rg
e

ts : V
e

cto
r<

T
a

rg
e

t>
)

+
E

ve
n

t(tp
lt : E

ve
n

tT
e

m
p

la
te

, src : O
b

je
ct, sp

T
a

rg
e

ts : V
e

cto
r<

T
a

rg
e

t>
)

+
E

ve
n

t(n
m

 : S
trin

g
)

+
E

ve
n

t(n
m

 : S
trin

g
, src : O

b
je

ct, sp
tg

ts : V
e

cto
r<

T
a

rg
e

t>
)

+
E

ve
n

t(tg
ts : V

e
cto

r<
T

a
rg

e
t>

, n
m

 : S
trin

g
, src : O

b
je

ct, sp
tg

ts : V
e

cto
r<

T
a

rg
e

t>
)

+
g

e
tT

a
rg

e
ts() : V

e
cto

r<
T

a
rg

e
t>

+
a

d
d

S
p

e
cificT

a
rg

e
t(t : T

a
rg

e
t) : vo

id
+

re
m

o
ve

S
p

e
cificT

a
rg

e
t(t : T

a
rg

e
t) : b

o
o

le
a

n
+

a
d

d
T

a
rg

e
t(t : T

a
rg

e
t) : vo

id
+

re
m

o
ve

T
a

rg
e

t(t : T
a

rg
e

t) : b
o

o
le

a
n

+
g

e
tA

llT
a

rg
e

ts() : V
e

cto
r<

T
a

rg
e

t>

E
ve

n
t

-n
a

m
e

 : S
trin

g
<

<
P

ro
p

e
rty>

>
 -ta

rg
e

ts : T
a

rg
e

t

+
E

ve
n

tT
e

m
p

la
te

(n
m

 : S
trin

g
)

+
E

ve
n

tT
e

m
p

la
te

(n
m

 : S
trin

g
, tg

ts : V
e

cto
r<

T
a

rg
e

t>
)

+
a

d
d

(t : T
a

rg
e

t) : vo
id

+
re

m
o

ve
(t : T

a
rg

e
t) : b

o
o

le
a

n

E
v

e
n

tT
e

m
p

la
te

-fe
L

iste
n

e
rs : F

ro
n

e
sicE

ve
n

tL
iste

n
e

r

+
E

ve
n

tT
rig

g
e

rin
g

F
u

n
ctio

n
()

+
a

d
d

F
ro

n
e

sicE
ve

n
tL

iste
n

e
r(fe

vl : F
ro

n
e

sicE
ve

n
tL

iste
n

e
r) : vo

id
+

re
m

o
ve

F
ro

n
e

sicE
ve

n
tL

iste
n

e
r(fe

vl : F
ro

n
e

sicE
ve

n
tL

iste
n

e
r) : b

o
o

le
a

n
+

fire
F

ro
n

e
sicE

ve
n

ts(e
vts : V

e
cto

r<
E

ve
n

t>
) : vo

id
+

ru
n

() : vo
id

E
v

e
n

tT
rig

g
e

rin
g

F
u

n
c

tio
n

+
a

d
d

F
ro

n
e

sicE
ve

n
tL

iste
n

e
r(fe

vl : F
ro

n
e

sicE
ve

n
tL

iste
n

e
r) : vo

id
+

re
m

o
ve

F
ro

n
e

sicE
ve

n
tL

iste
n

e
r(fe

vl : F
ro

n
e

sicE
ve

n
tL

iste
n

e
r) : b

o
o

le
a

n
+

fire
F

ro
n

e
sicE

ve
n

ts(e
vts : V

e
cto

r<
E

ve
n

t>
) : vo

id

<
<

In
te

rfa
c

e
>

>
E

v
e

n
tT

rig
g

e
rin

g
In

te
rfa

c
e

-co
m

m
a

n
d

L
in

e
 : S

trin
g

-file
P

re
fixN

a
m

e
 : S

trin
g

-fo
ld

e
r : S

trin
g

-file
S

yste
m

F
o

ld
e

r : S
trin

g

+
F

ile
S

yste
m

T
a

rg
e

t(n
m

 : S
trin

g
)

+
F

ile
S

yste
m

T
a

rg
e

t(n
m

 : S
trin

g
, cm

d
L

n
 : S

trin
g

)
+

F
ile

S
yste

m
T

a
rg

e
t(n

m
 : S

trin
g

, cm
d

L
n

 : S
trin

g
, fp

n
 : S

trin
g

)
+

F
ile

S
yste

m
T

a
rg

e
t(n

m
 : S

trin
g

, cm
d

L
n

 : S
trin

g
, fp

n
 : S

trin
g

, fd
 : S

trin
g

, fsF
o

ld
e

r : S
trin

g
)

+
co

lle
ct() : V

e
cto

r<
F

ile
>

+
g

e
tT

im
e

S
ta

m
p

() : S
trin

g
+

g
e

tL
o

ca
tio

n
() : S

trin
g

F
ile

S
yste

m
T

a
rg

e
t

-B
U

F
F

E
R

_S
IZ

E
 : int =

 8192

+
F

ile
S

yste
m

T
a

rg
e

tB
ije

ctio
n

(n
m

 : S
trin

g
, tg

t : T
a

rg
e

t)
+

co
lle

ct() : V
e

cto
r<

F
ile

>

F
ile

S
yste

m
T

a
rg

e
tB

ije
ctio

n

+
fro

n
e

sicE
ve

n
tT

rig
g

e
re

d
(e

vts : V
e

cto
r<

E
ve

n
t>

) : b
o

o
le

a
n

<
<

In
te

rfa
c

e
>

>
F

ro
n

e
sicE

ve
n

tL
iste

n
e

r

+
ru

n
(e

vts : V
e

cto
r<

E
ve

n
t>

) : b
o

o
le

a
n

+
a

d
d

(fr : F
ro

n
e

sicR
u

le
) : vo

id
+

re
m

o
ve

(fr : F
ro

n
e

sicR
u

le
) : b

o
o

le
a

n

<
<

In
te

rfa
c

e
>

>
F

ro
n

e
s

ic
M

o
d

e
lO

fC
o

m
p

u
ta

tio
n

+
m

a
in

(a
rg

s : S
trin

g
 []) : vo

id

F
ro

n
e

sicP
ro

a
ctive

S
yste

m

<
<

P
ro

p
e

rty>
>

 -n
a

m
e

 : S
trin

g
<

<
P

ro
p

e
rty>

>
 -e

ve
n

tT
e

m
p

la
te

 : E
ve

n
tT

e
m

p
la

te
<

<
P

ro
p

e
rty

>
>

 -a
c

tio
n

 : A
c

tio
n

+
F

ro
n

e
sicR

u
le

(n
m

 : S
trin

g
)

+
F

ro
n

e
sicR

u
le

(n
m

 : S
trin

g
, e

 : E
ve

n
tT

e
m

p
la

te
, a

 : A
ctio

n
)

+
F

ro
n

e
sicR

u
le

(n
m

 : S
trin

g
, e

 : E
ve

n
t, a

 : A
ctio

n
)

+
e

xe
cu

te
(e

vts : V
e

cto
r<

E
ve

n
t>

) : b
o

o
le

a
n

F
ro

n
e

sicR
u

le

<
<

P
ro

p
e

rty>
>

 -n
a

m
e

 : S
trin

g
-fro

n
e

sicR
u

le
sM

o
C

 : F
ro

n
e

sicM
o

d
e

lO
fC

o
m

p
u

ta
tio

n

+
F

ro
n

e
sicR

u
le

sE
n

g
in

e
(n

m
 : S

trin
g

)
+

e
xe

cu
te

(e
vts : V

e
cto

r<
E

ve
n

t>
) : b

o
o

le
a

n
+

fro
n

e
sicE

ve
n

tT
rig

g
e

re
d

(e
vts : V

e
cto

r<
E

ve
n

t>
) : b

o
o

le
a

n
+

a
d

d
(fr : F

ro
n

e
sicR

u
le

) : vo
id

+
re

m
o

ve
(fr : F

ro
n

e
sicR

u
le

) : b
o

o
le

a
n

F
ro

n
e

sicR
u

le
sE

n
g

in
e

-co
n

d
itio

n
 : b

o
o

le
a

n
-fe

L
iste

n
e

rs : F
ro

n
e

sicE
ve

n
tL

iste
n

e
r

-p
o

stE
ve

n
tT

e
m

p
la

te
 : E

ve
n

tT
e

m
p

la
te

+
G

e
n

e
ra

lize
d

lF
ro

n
e

sicR
u

le
(n

m
 : S

trin
g

, e
 : E

ve
n

tT
e

m
p

la
te

, cn
d

 : b
o

o
le

a
n

, a
 : A

ctio
n

, p
e

 : E
ve

n
tT

e
m

p
la

te
)

+
e

xe
cu

te
(e

vts : V
e

cto
r<

E
ve

n
t>

) : b
o

o
le

a
n

+
a

d
d

F
ro

n
e

sicE
ve

n
tL

iste
n

e
r(fe

vl : F
ro

n
e

sicE
ve

n
tL

iste
n

e
r) : vo

id
+

re
m

o
ve

F
ro

n
e

sicE
ve

n
tL

iste
n

e
r(fe

vl : F
ro

n
e

sicE
ve

n
tL

iste
n

e
r) : b

o
o

le
a

n
+

fire
F

ro
n

e
sicE

ve
n

ts(e
vts : V

e
cto

r<
E

ve
n

t>
) : vo

id

G
e

n
e

ra
lize

d
lF

ro
n

e
sicR

u
le

+
Id

e
n

tityA
ctio

n
(n

m
 : S

trin
g

)
+

ca
rry(tg

ts : V
e

cto
r<

T
a

rg
e

t>
) : b

o
o

le
a

n

Id
e

n
tity

A
c

tio
n

-n
a

m
e

 : S
trin

g
-e

m
a

ilA
d

d
re

ss : S
trin

g
-p

h
o

n
e

 : S
trin

g

+
In

ve
stig

a
to

r()
+

n
o

tify(rp
t : S

trin
g

) : vo
id

In
v

e
s

tig
a

to
r

-fro
n

e
sicR

u
le

s : F
ro

n
e

sicR
u

le

+
L

in
e

a
rF

ro
n

e
sicM

o
d

e
lO

fC
o

m
p

u
ta

tio
n

()
+

L
in

e
a

rF
ro

n
e

sicM
o

d
e

lO
fC

o
m

p
u

ta
tio

n
(frs : V

e
cto

r<
F

ro
n

e
sicR

u
le

>
)

+
a

d
d

(fr : F
ro

n
e

sicR
u

le
) : vo

id
+

re
m

o
ve

(fr : F
ro

n
e

sicR
u

le
) : b

o
o

le
a

n
+

ru
n

(e
vts : V

e
cto

r<
E

ve
n

t>
) : b

o
o

le
a

n

L
in

e
a

rF
ro

n
e

s
ic

M
o

d
e

lO
fC

o
m

p
u

ta
tio

n

-co
m

m
a

n
d

L
in

e
 : S

trin
g

-file
P

re
fixN

a
m

e
 : S

trin
g

-fo
ld

e
r : S

trin
g

+
N

e
tw

o
rkT

a
rg

e
t(n

m
 : S

trin
g

)
+

N
e

tw
o

rkT
a

rg
e

t(n
m

 : S
trin

g
, cm

d
L

n
 : S

trin
g

)
+

N
e

tw
o

rkT
a

rg
e

t(n
m

 : S
trin

g
, cm

d
L

n
 : S

trin
g

, fp
n

 : S
trin

g
)

+
N

e
tw

o
rkT

a
rg

e
t(n

m
 : S

trin
g

, cm
d

L
n

 : S
trin

g
, fp

n
 : S

trin
g

, fd
 : S

trin
g

)
+

co
lle

ct() : V
e

cto
r<

F
ile

>
-g

e
tT

im
e

S
ta

m
p

() : S
trin

g

N
e

tw
o

rk
T

a
rg

e
t

-B
U

F
F

E
R

_S
IZ

E
 : int =

 8192

+
N

e
tw

o
rkT

a
rg

e
tB

ije
ctio

n
(n

m
 : S

trin
g

, tg
t : T

a
rg

e
t)

+
co

lle
ct() : V

e
cto

r<
F

ile
>

N
e

tw
o

rk
T

a
rg

e
tB

ije
c

tio
n

-a
n

a
lyze

r : R
e

m
o

te
O

u
tlie

rA
n

a
lyze

r

+
R

e
m

o
te

O
u

tlie
rA

n
a

lysisA
ctio

n
(rm

o
a

 : R
e

m
o

te
O

u
tlie

rA
n

a
lyze

r)
+

R
e

m
o

te
O

u
tlie

rA
n

a
lysisA

ctio
n

()
+

R
e

m
o

te
O

u
tlie

rA
n

a
lysisA

ctio
n

(n
m

 : S
trin

g
)

+
ca

rry(tg
ts : V

e
cto

r<
T

a
rg

e
t>

) : b
o

o
le

a
n

R
e

m
o

te
O

u
tlie

rA
n

a
ly

s
is

A
c

tio
n

-h
o

stn
a

m
e

 : S
trin

g
-re

m
o

te
C

o
m

m
a

n
d

 : S
trin

g
-re

m
o

te
F

o
ld

e
r : S

trin
g

-u
se

rN
a

m
e

 : S
trin

g
-in

te
rva

l : lo
n

g

+
R

e
m

o
te

O
u

tlie
rA

n
a

lyze
r()

+
R

e
m

o
te

O
u

tlie
rA

n
a

lyze
r(tg

s : V
e

cto
r<

T
a

rg
e

t>
, e

vts : V
e

cto
r<

E
ve

n
t>

)
+

R
e

m
o

te
O

u
tlie

rA
n

a
lyze

r(tg
s : V

e
cto

r<
T

a
rg

e
t>

, e
vts : V

e
cto

r<
E

ve
n

t>
, lg

 : S
trin

g
)

+
a

n
a

lyze
() : b

o
o

le
a

n

R
e

m
o

te
O

u
tlie

rA
n

a
ly

z
e

r

<
<

P
ro

p
e

rty
>

>
 -re

p
o

rt : S
trin

g
-lo

g
 : S

trin
g

-in
ve

stig
a

to
r : In

ve
stig

a
to

r

+
R

e
p

o
rte

r()
+

R
e

p
o

rte
r(rp

t : S
trin

g
)

+
R

e
p

o
rte

r(rp
t : S

trin
g

, lg
 : S

trin
g

, in
vstr : In

ve
stig

a
to

r)
+

g
e

n
e

ra
te

() : vo
id

+
a

le
rt() : vo

id
+

a
p

p
e

n
d

R
e

p
o

rt(rp
t : S

trin
g

) : vo
id

R
e

p
o

rte
r

+
S

im
p

le
F

ro
n

e
sicR

u
le

(n
m

 : S
trin

g
, e

 : E
ve

n
tT

e
m

p
la

te
, a

 : A
ctio

n
)

+
e

xe
cu

te
(e

vts : V
e

cto
r<

E
ve

n
t>

) : b
o

o
le

a
n

S
im

p
le

F
ro

n
e

sicR
u

le

<
<

P
ro

p
e

rty>
>

 -n
a

m
e

 : S
trin

g

+
T

a
rg

e
t(n

m
 : S

trin
g

)
+

co
lle

ct() : V
e

cto
r<

F
ile

>
+

a
n

a
lyze

() : S
trin

g
+

g
e

tL
o

ca
tio

n
() : S

trin
g

T
a

rg
e

t

<
<

P
ro

p
e

rty>
>

 -ta
rg

e
t : T

a
rg

e
t

+
T

a
rg

e
tB

ije
ctio

n
(n

m
 : S

trin
g

, tg
t : T

a
rg

e
t)

+
g

e
tL

o
ca

tio
n

() : S
trin

g

T
a

rg
e

tB
ije

c
tio

n

+
size

 : d
o

u
b

le
+

m
tim

e
 : d

o
u

b
le

+
a

tim
e

 : d
o

u
b

le
+

ctim
e

 : d
o

u
b

le
+

b
lksize

 : d
o

u
b

le
+

b
lo

cks : d
o

u
b

le
-in

o
 : d

o
u

b
le

-in
fo

 : d
o

u
b

le

<
<

S
tru

c
t>

>
<

<
s

tru
c

t>
>

A
ttrib

u
te

s
+

n
a

m
e

 : strin
g

+
su

m
m

 : d
o

u
b

le
+

co
m

p
 : d

o
u

b
le

+
n

o
rm

 : d
o

u
b

le
+

a
ttrib

u
te

s : A
ttrib

u
te

s
+

o
rig

in
a

lA
ttrib

u
te

s : A
ttrib

u
te

s
-a

ttrib
u

te
 : A

ttrib
u

te
s

-a
ttrib

u
te

2
 : A

ttrib
u

te
s

-o
u

tlie
r : u

n
sig

n
e

d
 in

t
-a

ttrib
u

te
3

 : A
ttrib

u
te

s
-a

ttrib
u

te
4

 : A
ttrib

u
te

s
-in

o
 : d

o
u

b
le

-in
it_

tim
e

 : d
o

u
b

le

<
<

S
tru

c
t>

>
<

<
s

tru
c

t>
>

F
o

re
n

sicD
a

ta

+
lo

ca
lm

a
x : d

o
u

b
le

+
ra

n
k

 : in
t

<
<

S
tru

c
t>

>
<

<
s

tru
c

t>
>

C
o

m
p

P
a

ir

-n
e

ig
fp

ro
b

-g
lfp

ro
b

-th
e

ta
-p

ro
b

D
is

trib
u

tio
n

s
-m

a
xle

ve
l

+
m

a
in

()
+

in
it()

+
o

_
m

a
licio

u
s()

+
in

itP
ro

b
a

b
ilitie

s()
+

o
p

e
ra

to
r<

()
+

o
p

e
ra

to
r<

<
()

+
cm

p
a

tim
e

()
+

cm
p

m
tim

e
()

+
cm

p
ctim

e
()

P
A

O
u

tlie
rA

n
a

ly
z

e
r

~
rsyn

cP
a

tte
rn

s : V
e

cto
r<

S
trin

g
>

+
P

a
tte

rn
s()

+
P

a
tte

rn
s(p

s : S
trin

g
)

+
P

a
tte

rn
s(p

tts : V
e

cto
r<

S
trin

g
>

)
+

g
e

tK
n

o
w

P
a

tte
rn

s(file
N

a
m

e
 : S

trin
g

) : P
a

tte
rn

s
+

m
a

tch
e

s(re
p

 : S
trin

g
) : b

o
o

le
a

n

P
a

tte
rn

s

-fe
L

iste
n

e
rs

*

-e
ve

n
tT

e
m

p
la

te

-o
rig

in
a

lA
ttrib

u
te

s

-sp
e

cificT
a

rg
e

ts*

-m
a

xP
a

ir

-fro
n

e
sicR

u
le

s*

-ta
rg

e
ts

*

-re
p

o
rte

r

-ta
rg

e
ts

*

-ta
rg

e
ts

*

-e
ve

n
tT

e
m

p
la

te
s

*

0
..*

g
lo

b
a

lm
a

xp
a

ir

0
..*

0
..*

-ta
rg

e
t

-p
o

stE
ve

n
tT

e
m

p
la

te

0
..*

-lo
ca

lfd
a

ta

0
..*

-in
ve

stig
a

to
r

-a
c

tio
n

-fro
n

e
sicR

u
le

sM
o

C

-e
ve

n
ts

*

-a
n

a
lyze

r

0
..*

-te
m

p
la

te
-e

ve
n

tT
e

m
p

la
te

s
*

0
..*

-c
o

lle
c

to
r

-a
ttrib

u
te

s

-fe
L

iste
n

e
rs

*

Figure A.1: Class diagram of the Proactive Digital Forensics System.

91

Bibliography

[1] Soltan Alharbi, Belaid Moa, Jens Weber-Jahnke, and Issa Traore. High per-
formance proactive digital forensics. In Journal of Physics: Conference Series,
volume 385, pages 01–15. IOP Publishing, 2012.

[2] Soltan Alharbi, Jens Weber-Jahnke, and Issa Traore. The proactive and reac-
tive digital forensics investigation process: A systematic literature review. In
Information Security and Assurance, pages 87–100. Springer, 2011.

[3] A.R. Arasteh, M. Debbabi, A. Sakha, and M. Saleh. Analyzing multiple logs for
forensic evidence. digital investigation, 4:82–91, 2007.

[4] V. Baryamureeba and F. Tushabe. The enhanced digital investigation process
model. In Proceedings of the 4th Annual Digital Forensic Research Workshop,
Baltimore, MD. Citeseer, 2004.

[5] N.L. Beebe and J.G. Clark. A hierarchical, objectives-based framework for the
digital investigations process. Digital Investigation, 2(2):147–167, 2005.

[6] D. Billard. An extended model for e-discovery operations. Advances in Digital
Forensics V, pages 277–287, 2009.

[7] P.G. Bradford, M. Brown, J. Perdue, and B. Self. Towards proactive computer-
system forensics. In Information Technology: Coding and Computing, 2004.
Proceedings. ITCC 2004. International Conference on, volume 2, pages 648–652.
IEEE, 2004.

[8] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, and M. Khalil. Lessons
from applying the systematic literature review process within the software engi-
neering domain. Journal of Systems and Software, 80(4):571–583, 2007.

92

[9] B. Carrier and E.H. Spafford. Getting physical with the digital investigation
process. International Journal of Digital Evidence, 2(2):1–20, 2003.

[10] B. Carrier and E.H. Spafford. An event-based digital forensic investigation frame-
work. In Digital forensic research workshop, 2004.

[11] B.D. Carrier. A hypothesis-based approach to digital forensic investigations. Pro-
Quest, 2006.

[12] B.D. Carrier and E.H. Spafford. Automated digital evidence target definition
using outlier analysis and existing evidence. In Proceedings of the 2005 Digital
Forensic Research Workshop (DFRWS). Citeseer, 2005.

[13] B.D. Carrier and E.H. Spafford. Categories of digital investigation analysis tech-
niques based on the computer history model. digital investigation, 3:121–130,
2006.

[14] S. Ciardhuáin. An extended model of cybercrime investigations. International
Journal of Digital Evidence, 3(1):1–22, 2004.

[15] Damballa. Top-10 botnet outbreaks in 2009. https://blog.damballa.com/
archives/569/, 2009.

[16] Federal Bureau of Investigation. Program annual report for fiscal year
2010. http://www.rcfl.gov/downloads/documents/RCFL_Nat_Annual10.
pdf, 2010.

[17] F.C. Freiling and B. Schwittay. A common process model for incident response
and computer forensics. In Proceedings of Conference on IT Incident Manage-
ment and IT Forensics, 2007.

[18] S. Garfinkel. Anti-forensics: Techniques, detection and countermeasures. In Pro-
ceedings of 2nd International Conference on Information Warfare and Security,
page 77, 2007.

[19] S.L. Garfinkel. Digital forensics research: The next 10 years. digital investigation,
7:S64–S73, 2010.

[20] P. Gladyshev and A. PATEL. Finite state machine analysis of a blackmail in-
vestigation. International Journal of Digital Evidence, 4(1):1–13, 2005.

93

[21] CP Grobler, CP Louwrens, and SH Von Solms. A multi-component view of digital
forensics. In Availability, Reliability, and Security, 2010. ARES’10 International
Conference on, pages 647–652. Ieee, 2010.

[22] G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skoric. Towards an information-
theoretic framework for analyzing intrusion detection systems. Computer
Security–ESORICS 2006, pages 527–546, 2006.

[23] R. Hankins, T. Uehara, and J. Liu. A turing machine-based model for com-
puter forensic reconstruction. In Secure Software Integration and Reliability Im-
provement, 2009. SSIRI 2009. Third IEEE International Conference on, pages
289–290. IEEE, 2009.

[24] W. Harrison. The digital detective: An introduction to digital forensics. Advances
in Computers, 60:75–119, 2004.

[25] Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning more about the
underground economy: A case-study of keyloggers and dropzones. Springer, 2009.

[26] Honeynet Project. Forensic challenge. http://www.honeynet.org/, 2001.

[27] Philip K Hooper. The undecidability of the turing machine immortality problem.
The Journal of Symbolic Logic, 31(2):219–234, 1966.

[28] R.S.C. Ieong. Forza–digital forensics investigation framework that incorporate
legal issues. digital investigation, 3:29–36, 2006.

[29] J. James, P. Gladyshev, M.T. Abdullah, and Y. Zhu. Analysis of evidence using
formal event reconstruction. Digital Forensics and Cyber Crime, pages 85–98,
2010.

[30] K. Kent, S. Chevalier, T. Grance, and H. Dang. Guide to integrating forensic
techniques into incident response. NIST Special Publication, pages 800–86, 2006.

[31] M. Khatir, S.M. Hejazi, and E. Sneiders. Two-dimensional evidence reliability
amplification process model for digital forensics. In Digital Forensics and Incident
Analysis, 2008. WDFIA’08. Third International Annual Workshop on, pages 21–
29. IEEE, 2008.

94

[32] J.M. Kizza. Computer crime investigations–computer forensics. Ethical and
Social Issues in the Information Age, pages 263–276, 2010.

[33] M. Kohn, JHP Eloff, and MS Olivier. Framework for a digital forensic investi-
gation. In Proceedings of Information Security South Africa (ISSA) 2006 from
Insight to Foresight Conference, 2006.

[34] R. Leigland and A.W. Krings. A formalization of digital forensics. International
Journal of Digital Evidence, 3(2):1–32, 2004.

[35] Chang-Tien Lu, Dechang Chen, and Yufeng Kou. Detecting spatial outliers with
multiple attributes. In Tools with Artificial Intelligence, 2003. Proceedings. 15th
IEEE International Conference on, pages 122–128. IEEE, 2003.

[36] C.T. Lu, D. Chen, and Y. Kou. Algorithms for spatial outlier detection. In Data
Mining, 2003. ICDM 2003. Third IEEE International Conference on, pages 597–
600. IEEE, 2003.

[37] Online. Banking malware zeus sucessfully bypasses anti-
virus detection. http://www.ecommerce-journal.com/news/
18221zeusincreasinglyavoidspcsdetection, 2010.

[38] Online. Digital forensics framework. http://www.digital-forensic.org/,
2013.

[39] Online. Halting problem. http://en.wikipedia.org/wiki/Halting_problem,
2013.

[40] Online. Intrusion prevention system. http://en.wikipedia.org/wiki/
Intrusion_prevention_system#cite_note-WhitmanMattord2009-3, 2013.

[41] Online. Undecidable problem. http://en.wikipedia.org/wiki/Undecidable_
problem, 2013.

[42] A. Orebaugh. Proactive forensics. Journal of Digital Forensic Practice, 1(1):37–
41, 2006.

[43] G. Palmer. A road map for digital forensics research-report from the first digital
forensics research workshop (dfrws). Utica, New York, 2001.

95

[44] S. Peisert, S. Karin, M. Bishop, and K. Marzullo. Principles-driven forensic
analysis. In Proceedings of the 2005 workshop on New security paradigms, pages
85–93. ACM, 2005.

[45] S. Perumal. Digital forensic model based on malaysian investigation process.
IJCSNS, 9(8):38, 2009.

[46] M.M. Pollitt. An ad hoc review of digital forensic models. In Systematic Ap-
proaches to Digital Forensic Engineering, 2007. SADFE 2007. Second Interna-
tional Workshop on, pages 43–54. IEEE, 2007.

[47] M. Reith, C. Carr, and G. Gunsch. An examination of digital forensic models.
International Journal of Digital Evidence, 1(3):1–12, 2002.

[48] S. Rekhis and N. Boudriga. A formal approach for the reconstruction of potential
attack scenarios. In Information and Communication Technologies: From Theory
to Applications, 2008. ICTTA 2008. 3rd International Conference on, pages 1–6.
IEEE, 2008.

[49] S. Rekhis and N.A. Boudriga. Visibility: a novel concept for characterising prov-
able network digital evidences. International journal of security and networks,
4(4):234–245, 2009.

[50] Slim Rekhis and Noureddine Boudriga. Formal digital investigation of anti-
forensic attacks. In Systematic Approaches to Digital Forensic Engineering
(SADFE), 2010 Fifth IEEE International Workshop on, pages 33–44. IEEE,
2010.

[51] Marco Riccardi, Roberto Di Pietro, Marta Palanques, and Jorge Aguila Vila.
TitansâĂŹ revenge: detecting zeus via its own flaws. Computer Networks, 2012.

[52] G.G. Richard III and V. Roussev. Next-generation digital forensics. Communi-
cations of the ACM, 49(2):76–80, 2006.

[53] M.K. Rogers, J. Goldman, R. Mislan, T. Wedge, and S. Debrota. Computer
forensics field triage process model. In Proceeding of the Conference on Digital
Forensics Security and Law, pages 27–40, 2006.

[54] R. Rowlingson. A ten step process for forensic readiness. International Journal
of Digital Evidence, 2(3):1–28, 2004.

96

[55] C. Ruan and E. Huebner. Formalizing computer forensics process with uml.
Information Systems: Modeling, Development, and Integration, pages 184–189,
2009.

[56] S.R. Selamat, R. Yusof, and S. Sahib. Mapping process of digital forensic in-
vestigation framework. International Journal of Computer Science and Network
Security, 8(10):163–169, 2008.

[57] Y.D. Shin. New digital forensics investigation procedure model. In Networked
Computing and Advanced Information Management, 2008. NCM’08. Fourth In-
ternational Conference on, volume 1, pages 528–531. Ieee, 2008.

[58] J. Slay, Y.C. Lin, B. Turnbull, J. Beckett, and P. Lin. Towards a formalization
of digital forensics. Advances in Digital Forensics V, pages 37–47, 2009.

[59] Lindsay I Smith. A tutorial on principal components analysis. Cornell University,
USA, 51:52, 2002.

[60] S.A. Soltan Alharbi, J.W.J. Jens Weber-Jahnke, and I.T. Issa Traore. The proac-
tive and reactive digital forensics investigation process: A systematic literature
review. International Journal of Security and Its Applications, 5(4):59–72, 2011.

[61] T. Stallard and K. Levitt. Automated analysis for digital forensic science: Se-
mantic integrity checking. In Computer Security Applications Conference, 2003.
Proceedings. 19th Annual, pages 160–167. IEEE, 2003.

[62] P. Stephenson. Completing the post mortem investigation. Computer Fraud &
Security, 2003(10):17–20, 2003.

[63] P. Stephenson. A comprehensive approach to digital incident investigation. In-
formation Security Technical Report, 8(2):42–54, 2003.

[64] P. Stephenson. Modeling of post-incident root cause analysis. International
Journal of Digital Evidence, 2(2):1–16, 2003.

[65] Symantec Corporation. Zeus, king of the underground crime-
ware toolkits. http://www.symantec.com/connect/blogs/
zeus-king-underground-crimeware-toolkits, 2010.

97

[66] Ole Tange. Gnu parallel-the command-line power tool. login: The USENIX
Magazine, pages 42–47, 2011.

[67] A. Tanner and D. Dampier. Concept mapping for digital forensic investigations.
Advances in Digital Forensics V, pages 291–300, 2009.

[68] Shahzad Waheed. Implementation and evaluation of a botnet analysis and detec-
tion method in a virtual environment. PhD thesis, Edinburgh Napier University,
2012.

[69] Michael E Whitman and Herbert J Mattord. Principles of information security.
Cengage Learning, 2010.

[70] S. Willassen. Hypothesis-based investigation of digital timestamps. Advances in
Digital Forensics IV, pages 75–86, 2008.

[71] S.Y. Willassen. Timestamp evidence correlation by model based clock hypothesis
testing. In Proceedings of the 1st international conference on Forensic applica-
tions and techniques in telecommunications, information, and multimedia and
workshop, page 15. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2008.

[72] James Wyke. What is zeus? Sophos, May, 2011.

