
Program Comprehension Support for Assembly Language:

Assessing the Needs of Specialized Groups

by

Jennifer Ellen Baldwin

B.Sc., University of Victoria, 2004

M.Sc., University of Victoria, 2006

A Dissertation Submitted in Partial Ful�llment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

© Jennifer Ellen Baldwin, 2014

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Program Comprehension Support for Assembly Language:

Assessing the Needs of Specialized Groups

by

Jennifer Ellen Baldwin

B.Sc., University of Victoria, 2004

M.Sc., University of Victoria, 2006

Supervisory Committee

Dr. Yvonne Coady, Supervisor

(Department of Computer Science)

Dr. Margaret-Anne Storey, Departmental Member

(Department of Computer Science)

Dr. Alex Thomo, Departmental Member

(Department of Computer Science)

Dr. Stephen W. Neville, Outside Member

(Department of Electrical and Computer Engineering)

iii

Supervisory Committee

Dr. Yvonne Coady, Supervisor

(Department of Computer Science)

Dr. Margaret-Anne Storey, Departmental Member

(Department of Computer Science)

Dr. Alex Thomo, Departmental Member

(Department of Computer Science)

Dr. Stephen W. Neville, Outside Member

(Department of Electrical and Computer Engineering)

ABSTRACT Advances in software engineering and programming languages have

had an impact on productivity, time to market, comprehension, maintenance, and evo-

lution of software. Low-level systems have been largely overlooked in this arena, not

only because of their complexities, but also the �bare bones� culture of this domain.

This dissertation investigates the program comprehension needs of two stakeholder

groups using di�erent assembly languages: a mainframe development group and a

malware analysis group. Exploratory interviews and surveys suggest that the groups'

needs may be similar at a high-level. However, a detailed study involving requirements

elicitation and case studies, reveals that the truth is much more complicated.

As a proof of concept, we have created the AVA (Assembly Visualization and

Analysis) framework, which is independent of the underlying assembly language. De-

spite this independence, tools within AVA could not be applied with equal e�cacy,

even just within these two groups. This dissertation shows that there exist funda-

mental di�erences not only in the highly-specialized nature of each group's work, but

also in the assembly languages themselves. This reality necessitates a disjoint set of

tools that cannot be consolidated into a universally applicable framework.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables x

List of Figures xii

Acknowledgements xiv

Dedication xv

1 Introduction 1

1.1 Problem Space . 2

1.1.1 Stakeholders . 2

1.1.2 Background of HLASM and x86 2

1.1.3 Challenges in Assembly Code Comprehension 4

1.2 Dissertation Overview . 6

1.2.1 Agenda . 8

2 Related Work 10

2.1 Social Psychology Background . 10

2.1.1 Normative Manipulation . 10

2.1.2 Need-for-Closure (NFC) Scale 11

2.1.3 Individualism-Collectivism (INDCOL) Scale 11

2.1.4 Group Decision-Making Techniques 12

2.2 Related Work in Tool Support . 13

2.2.1 Assembly Speci�c Tools . 14

v

2.2.2 Software Exploration Tools . 16

2.2.3 Concern Mining Tools . 17

2.2.4 Control Flow Tools . 17

2.2.5 Runtime Tools . 18

2.2.6 Intermediate Common Formats 20

2.3 Implementation Technologies . 20

2.3.1 Diver: The Sequence Explorer for Eclipse 21

2.3.2 GEF: Graphical Editing Framework 22

2.3.3 The AJDT Visualiser . 23

2.4 Chapter Summary . 24

3 Exploratory Interviews and Surveys 25

3.1 Interviews with Mainframe Developers 25

3.1.1 First Engineer . 25

3.1.2 Second and Third Engineer 26

3.1.3 Fourth Engineer . 26

3.1.4 Fifth Engineer . 27

3.1.5 Summary of Interviews . 27

3.2 Exploratory Survey . 28

3.2.1 Results: About the Participants 29

3.2.2 Results: Assembly Experience 30

3.2.3 Results: Current Tools . 33

3.2.4 Results: Browsing and Navigation 36

3.2.5 Results: Debugging . 39

3.2.6 Results: Control Flow . 40

3.2.7 Results: Potential Tools and Wish List 43

3.2.8 Survey Summary . 46

3.3 Collaboration and Documentation for Malware 46

3.3.1 Results: Collaboration . 46

3.3.2 Results: Documentation . 48

3.3.3 Results: Summary . 50

3.4 Chapter Summary . 51

4 Requirements Elicitation 52

4.1 Elicitation Method . 52

vi

4.1.1 Elicitation Setting . 53

4.1.2 User Pro�les . 54

4.1.3 Activity-Based Protocol Elicitation 55

4.1.4 Priming and Requirements Elicitation Exercise 58

4.1.5 Nominal Group Session . 60

4.1.6 Exit Process . 60

4.2 Results of Applied Techniques . 61

4.2.1 User Pro�les . 61

4.2.2 Activity-Based Protocol Observations 62

4.2.3 Nominal Group Session . 63

4.3 Requirements Elicited . 65

4.3.1 Mainframe Group: Requirements Elicited 65

4.3.2 Mainframe Group: Discussion of Ranking Results 70

4.3.3 Mainframe Group: Requirement Areas and Current Work . . 71

4.3.4 Malware Group: Requirements Elicited 73

4.3.5 Malware Group: Discussion of Ranking Results 77

4.3.6 Malware Group: Requirement Areas and Current Work 79

4.4 Analysis of Elicitation . 80

4.4.1 User Pro�le Survey . 80

4.4.2 Exit Survey . 81

4.4.3 Analysis of Interaction . 83

4.4.4 Applicability to Other Groups 85

4.4.5 Results . 86

4.5 Chapter Summary . 86

5 Comparison Between Groups 88

5.1 Comparison of Survey Results . 88

5.1.1 About the Participants . 88

5.1.2 Assembly Experience . 89

5.1.3 Current Tools . 91

5.1.4 Browsing and Navigation . 92

5.1.5 Debugging . 92

5.1.6 Control Flow . 93

5.1.7 Potential Tools . 94

5.1.8 Comparison Summary . 96

vii

5.2 Comparison of Requirements Elicited 96

5.2.1 Comparison Summary . 100

5.3 Ships Passing in the Night? . 101

5.4 Chapter Summary . 101

6 Design and Implementation 104

6.1 AVA Framework Overview . 104

6.1.1 AVA User-Interface (Eclipse) 106

6.1.2 IDA Pro Plugin . 106

6.1.3 Communication Mechanism Module 107

6.2 Obtaining Data . 108

6.2.1 Data for Mainframe (HLASM) 109

6.2.2 Data for Malware (x86) . 113

6.3 Tracks: Sequence Diagrams for Assembly 115

6.3.1 Static View . 119

6.3.2 Dynamic Views . 124

6.3.3 Navigation History View . 126

6.3.4 MSDN Documentation . 127

6.3.5 Comment Threads within Tracks 128

6.4 LegaSee: Visualiser Extension for Mainframe Assembly 130

6.5 REwind: State Diagram Debugging Tool 133

6.6 Additional Contributions . 134

6.6.1 Multiple Executables . 135

6.6.2 Comment Support . 135

6.6.3 Tagging for IDA Pro . 137

6.6.4 Data (Including Data Flow) 137

6.7 Chapter Summary . 138

7 Assessment of the AVA Project Lifecycle 139

7.1 Challenges and Limitations . 139

7.1.1 Mainframe . 140

7.1.2 Malware . 140

7.2 AVA: One Framework (Not to Rule Them All) 142

7.2.1 LegaSee . 142

7.2.2 REwind . 143

viii

7.3 Tracks: One Tool to Rule Them All 143

7.3.1 Mainframe: Static Control Flow for Algol 144

7.3.2 Mainframe: Log File Visualization 146

7.3.3 Malware: Mariposa Botnet Case Study 150

7.3.4 Malware: Collaboration and Documentation in Tracks 156

7.4 Phase II and Phase III Limitations and Threats to Validity 161

7.4.1 Limitations . 162

7.4.2 External Validity . 163

7.4.3 Internal Validity . 163

7.5 The Great Language Divide: Nature or Nurture? 164

7.6 Chapter Summary . 167

8 Future Research Directions and Conclusions 169

8.1 Future Research Directions . 169

8.1.1 Analysis of Requirements Elicitation Data 169

8.1.2 Tools to Satisfy Elicited Requirements 170

8.1.3 Integration of AVA with Other Systems 173

8.1.4 User Studies of Proof of Concept Tools 173

8.2 Conclusions . 173

Bibliography 177

A Exploratory Survey Summary 189

B Script Used During the Nominal Group Session 192

C Activity-Based Elicitation Results 195

C.1 First Session at the Mainframe Group 195

C.2 Second Session at the Mainframe Group 196

D Installing the AVA Framework 197

D.1 Installing AVA . 197

D.2 Setting up the Development Environment 197

E Running the Mariposa Botnet with IDA Pro and Tracks 200

E.1 Environment Setup . 200

E.2 Running Mariposa with Tracks . 201

ix

E.2.1 IDA Pro Hot Keys . 202

E.2.2 Running Mariposa . 202

F Ethics Approval 206

x

List of Tables

Table 3.1 Summary of Interviews with the Mainframe Group. 28

Table 3.2 About the Mainframe Respondents. 30

Table 3.3 About the Malware Respondents. 31

Table 3.4 Assembly Experience of Mainframe Respondents. 32

Table 3.5 Assembly Experience of Malware Respondents. 34

Table 3.6 Current Tool Use of Mainframe Respondents. 35

Table 3.7 Current Tool Use of Malware Respondents. 36

Table 3.8 Browsing and Navigation for Mainframe. 37

Table 3.9 Browsing and Navigation for Malware. 38

Table 3.10 Importance of Debugging Features for Mainframe. 39

Table 3.11 Importance of Debugging Features for Malware. 40

Table 3.12 Control Flow Requirements for Mainframe. 42

Table 3.13 Control Flow Requirements for Malware. 43

Table 3.14 Importance of IDE Features for Mainframe. 43

Table 3.15 Importance of IDE Features for Malware. 45

Table 3.16 Survey of Malware Collaboration and Documentation. 50

Table 4.1 Adapted NFC Items. 56

Table 4.2 Adapted INDCOL Items. 57

Table 4.3 Cue Sheet for Activity-Based Protocol. 58

Table 4.4 Normative Manipulation and Critical Priming Exercises. 59

Table 4.5 List of Mainframe Requirements Ordered by Final Rank. . . . 66

Table 4.6 Rankings by Mainframe Group Participant (A1 - A6). 70

Table 4.7 List of Malware Requirements Ordered by Final Rank. 74

Table 4.8 Rankings by Malware Group Participant (B1 - B4). 77

Table 4.9 Free Responses on Opinion of NFC and INDCOL Survey. . . . 81

Table 4.10 Exit Survey for Mainframe and Malware Groups. 82

Table 4.11 Interaction Process Analysis. 84

xi

Table 5.1 About the Respondents Comparison. 89

Table 5.2 Assembly Experience Comparison. 90

Table 5.3 Current Tool Use Comparison. 91

Table 5.4 Browsing and Navigation Comparison. 92

Table 5.5 Debugging Comparison. 93

Table 5.6 Control Flow Comparison. 94

Table 5.7 Potential Tool Comparison. 95

Table 5.8 Comparison of Features from Exploratory Survey. 97

Table 5.9 Comparison of Issues for Mainframe and Malware Groups. . . 100

Table 5.10 Summary of Issues from Survey and Requirements Elicitation. 102

Table 6.1 Data Phases for CA Labs. 109

Table 6.2 Diver versus Tracks: Feature Comparison. 120

Table 7.1 Summary of Requirements Supported by LegaSee. 142

Table 7.2 Summary of Requirements Supported by REwind. 143

Table 7.3 Summary of Requirements Supported by Tracks. 144

Table 7.4 Comparison of IDA Pro and Tracks. 157

Table 7.5 Summary of Collaboration and Documentation Interviews. . . 161

Table 7.6 �Hello World� Programs in Low- and High-Level Languages. . . 165

Table 7.7 Key Characteristics of x86, ARM and HLASM. 166

Table 7.8 Summary of Group Requirements Supported by Tool. 168

Table A.1 Summary of Survey Results for Mainframe Respondents. . . . 190

Table A.2 Summary of Survey Results for Malware Respondents. 191

xii

List of Figures

Figure 1.1 Complex Control Flow Graph. 4

Figure 1.2 Mariposa Function Call Graph from IDA Pro. 5

Figure 1.3 Dissertation Overview. 8

Figure 2.1 Overview of Related Work. 13

Figure 2.2 BinCrowd in IDA Pro. 15

Figure 2.3 ATLANTIS (Assembly Trace Analysis Environment). 16

Figure 2.4 MapUI and Zeus' 375 Functions (23,320 Lines). 19

Figure 2.5 Example KDM for Hello World Program Written in C. 21

Figure 2.6 Diver used with a Large Java Project. 23

Figure 2.7 The AJDT Visualiser. 24

Figure 3.1 Mockup UI Design for Mainframe Debugging Tool. 26

Figure 3.2 The Graph View in IDA Pro. 49

Figure 4.1 NFC and INDCOL Pro�les. 63

Figure 4.2 Mainframe Group Preliminary and Final Rankings. 72

Figure 4.3 Malware Group Preliminary and Final Rankings. 78

Figure 6.1 AVA Framework Architecture Overview. 105

Figure 6.2 Messages between IDA Pro and Tracks. 108

Figure 6.3 HLASM Snippet for BLKSCAN Module in CBT019. 110

Figure 6.4 Listing Snippet for BLKSCAN Module in CBT019. 111

Figure 6.5 CSECT and DSECT Data for CBT019. 112

Figure 6.6 Static Control Flow Information for CBT019. 114

Figure 6.7 LegaSee XML Format. 115

Figure 6.8 OASIS Sequence Explorer Output for Eclipse.exe 116

Figure 6.9 Static Control Flow Data for calc.exe 117

Figure 6.10 Dynamic Control Flow Data for calc.exe 118

Figure 6.11 Tree View of Functions in calc.exe 121

xiii

Figure 6.12 Forward Control Flow View for sub_1001635 in calc.exe . . . 122

Figure 6.13 Reversed Control Flow View for memcpy Wrapper in calc.exe 123

Figure 6.14 Diagram State Information Format. 124

Figure 6.15 Tracks' Dynamic View. 125

Figure 6.16 Tracks' Preferences. 126

Figure 6.17 Tracks' Navigation History View. 127

Figure 6.18 MSDN Help View in Tracks. 128

Figure 6.19 Google Sidewiki. 129

Figure 6.20 Tracks with Comment Threads. 130

Figure 6.21 LegaSee Visualiser Files (content.vis and markup.vis). 131

Figure 6.22 LegaSee Visualization of CBT019. 132

Figure 6.23 REwind Tool. 134

Figure 6.24 XML used by the REwind Tool. 135

Figure 6.25 Comment Templates in IDA Pro. 136

Figure 7.1 Static Control Flow Snippet for Algol. 145

Figure 7.2 Nested Tree View of Modules and Subroutines in Algol. 146

Figure 7.3 Control Flow of TSTDCBRT Function in Algol. 147

Figure 7.4 Mainframe Log File. 148

Figure 7.5 Mainframe Log File with Calls to NM000233. 149

Figure 7.6 Tracks for Log File. 149

Figure 7.7 Listing of Modules with Title Values Set. 150

Figure 7.8 Description Field in the Source Management System. 151

Figure 7.9 Mainframe Module Description Flat File. 151

Figure 7.10 Decryption Loop in x86. 153

Figure 7.11 Decryption Loop in the Sequence Viewer. 153

Figure 7.12 Finding Each Process in x86. 154

Figure 7.13 Finding the Process to Inject. 155

Figure 7.14 Communication with the Server. 156

Figure 7.15 MSDN Comments Imported into IDA Pro. 159

Figure E.1 IDAStealth Settings. 201

xiv

ACKNOWLEDGEMENTS

I would like to thank:

CA, for providing developers' time for interviews, feedback, and requirements elici-

tation.

DRDC, for contributing the ideas that led to winning the Hex Rays Best Plugin

award in 2011, as well as the continuous testing and feedback from the team.

NSERC, for providing the resources that allowed me to complete this work.

xv

DEDICATION

This dissertation is dedicated to my father. Without him, I would never have begun

this journey.

I think back on how he tutored me every Sunday in Physics, an event I never looked

forward to. But it was not just my Sunday, it was also his he gave up. My

education was always so important to him.

I will always truly appreciate his encouragement and devotion.

Chapter 1

Introduction

Program comprehension is complex and time-consuming, particularly in manually

tuned, low-level system codebases such as those written in assembly language. The

current lack of adequate tool support for these systems further exacerbates this prob-

lem. Whereas engineers of higher-level systems quite often rely on tools for e�ectively

navigating codebases and analyzing design, corresponding support for lower-level sys-

tems is severely lacking.

Software engineering and programming language evolution have distanced main-

stream developers from low-level languages, having a dramatic impact on productiv-

ity, time to market, comprehension, maintenance and evolution of software in gen-

eral. Low-level systems have been largely overlooked in this arena, partially due to

the complexities they o�er and partially due to the inherent �bare bones� culture in

this domain. We believe this perceived cultural resistance is in part due to the fact

that tool support, as we know it today, was not available to developers who worked

primarily with assembly language and therefore, adoption is not widely accepted.

Assembly language comprehension tools have the potential to aid developers in

many of the same ways as their high-level counterparts. Increased comprehension,

coupled with navigation and development tools, could enable easier, faster and more

reliable implementation in mainframe software, and analysis of security threats in

malware. Another important factor is ensuring continuity when an expert leaves

the team. New generations of developers are accustomed to a certain level of tool

support. By reducing the barrier to adoption and possibility eliminating the cultural

resistance, these developers may be able to reap the bene�ts that comprehension tools

have brought to higher-level languages.

2

1.1 Problem Space

This section introduces the two groups of industry stakeholders we investigate in

this dissertation: mainframe developers, and malware analysts. We further introduce

the two assembly languages used by each group: HLASM and x86, respectively.

Finally, we identify several unique challenges present in assembly code comprehension

in general, and conclude with an overview of the concrete research questions and

chapters in this dissertation.

1.1.1 Stakeholders

The �rst stakeholder group is CA (formerly known as Computer Associates). CA is a

large software corporation with many o�ces worldwide. They create systems software,

some of which runs in a mainframe environment. Furthermore, some of these systems

are written in IBM's High Level Assembler language (or HLASM) [1] which runs

on the z/Architecture mainframe environment. To our knowledge, teams located in

Canada, USA, Czechoslovakia, and Australia, employ individuals who specialize in

HLASM software development. Of these teams, we were able to cooperate with those

in both Czechoslovakia and Australia.

The second stakeholder group is Defence Research and Development Canada

(DRDC) Valcartier. DRDC is an agency of Canada's Department of National De-

fence (DND) which provides knowledge and technology to other areas of government.

There are nine centres making up DRDC, one of which is the military research station

located in Valcartier, Quebec. Our stakeholders at DRDC Valcartier are members of

a team that use reverse engineering to investigate malware and security �aws. They

disassemble malware executables into the x86 assembly language for analysis.

1.1.2 Background of HLASM and x86

Low-level languages can be of two types: machine languages and assembly lan-

guages [2]. These low-level languages are either machine code, or very close to machine

code, providing little abstraction from a computer's instruction set architecture, and

therefore the hardware. No compiler, or interpreter, is needed for such languages

since the language itself maps directly to machine code. While these languages may

be construed as �simple�, they are in fact inherently complicated due to the intimate

knowledge of the hardware architecture required to program e�ectively.

3

Assembly language is one step above machine language, in that it uses operands

and operations, instead of binary digits, to compose a program. A program called

an assembler then translates these slightly higher level instructions into machine

language.

HLASM

High Level Assembler, or HLASM, is an assembly language created by IBM for its

z/Architecture mainframe computers. The program structure di�ers greatly from

most other assembly languages as it attempts to provide functionality that is usually

only provided by high-level languages. In order to simulate the high-level approach

to programming, certain structures not present in standard assembly languages were

added to HLASM. There are two of interest in this dissertation, the DSECT and

CSECT.

The dummy section (or DSECT) acts much like a struct in C and de�nes a set of

data that is to be stored, but does not actually reserve any virtual memory for that

data. The dummy section code is not translated into object code by the assembler.

Control sections (or CSECTs) are sections of code that are �independently relocat-

able� and can be moved to a di�erent location in the assembly without a�ecting the

functionality of the program. There are multiple assembler options that can be set

that in�uence many aspects of control sections, such as the THREAD or NOTHREAD

options. If THREAD is speci�ed, the location counter is reset to zero at the beginning

of each control section. Otherwise, the counter is continuous throughout the program

unless it over�ows, which would cause an assembler warning to be issued [3].

Since mainframes are speci�cally designed to support multiple users making large

amounts of concurrent requests to the processor, the mainframe architecture is sig-

ni�cantly more powerful than that of a standard personal computer. This adds to

the complexity of the HLASM language.

x86

This assembly language is also known as the Intel 80x86 Series Assembly Language.

The Intel 80x86 series consists of several generations of processors starting with the

Intel 8086, which was released in 1978, and led to the current line of Pentium pro-

cessors. The instruction set architecture, to this day, remains completely backwards

compatible, although it has obviously been greatly expanded from the original 8086 in-

4

Figure 1.1: Complex Control Flow Graph.

struction set. This backwards compatibility has complicated the language somewhat

since the original architecture was based on an 8-bit word, and was later expanded

to support 16-, 32-, and 64-bit word architectures.

1.1.3 Challenges in Assembly Code Comprehension

Though program understanding has received much attention from the research com-

munity, these approaches and corresponding tools only have limited application to

large scale low-level systems. Even fundamental characteristics such as control �ow

are exceedingly hard to track at scale in the systems we propose to target, as in

those with excess of 100 KLOC and 10,000 branches. Unfortunately, assembly source

code development leads to heavily optimized control �ow with multiple entries and

multiple exits. Additionally, the intertwining of multiple computation threads in a

single source code module often results in complex control �ow graphs for which

decompositions are not easy, as shown in Figure 1.1 [4].

This is not meant to show bad programming structure, but instead a structure

that is almost unavoidable in assembly programming. While this particular image is

5

provided by CA for HLASM systems, the same principle holds for applications written

in other assembly languages. For example, analysts at DRDC have issues with the

intentional obfuscation in malware, so that it is exceedingly di�cult to pinpoint the

security threat it contains. Consider the ways in which a typical call diagram is

presented to developers in a state-of-the-art disassembler and debugger: IDA Pro [5].

Figure 1.2 shows a function call graph generated by executing the Mariposa botnet [6],

and analyzing the memory dump.

One of the �rst things to note is that this is a static view that does not show

an actual execution trace. The analyst cannot follow a call, see the ordering of the

calls, or even know if a call occurs more than once�all of which are critical for

comprehension. Additionally, this display is very limited in IDA Pro. For example,

there is no way to locate a speci�c function; it has to be done by visually searching

through the diagram.

Figure 1.2: Mariposa Function Call Graph from IDA Pro.

6

1.2 Dissertation Overview

This chapter has introduced some of the unique challenges present in comprehending

large low-level systems written in assembly language, such as di�cult decomposition

of control �ow graphs, and motivated the need for tool support beyond what is now

considered state-of-art for assembly language.

In response, we have created AVA (Assembly Visualization and Analysis), a pro-

gram comprehension framework that is designed to be applied to speci�c challenges

for multiple assembly languages. The particular languages we support are HLASM

and x86, which are used by our stakeholders. Our initial assumption for AVA was

that tools could be built to encompass the universe of all assembly languages. This as-

sumption was made previous to requirements elicitation, and detailed understanding

of the technical di�erences between the languages.

In order to build AVA, our �rst and second research questions were:

� What are the requirements currently not being met in the comprehension of

assembly code within two unique groups: mainframe developers and malware

analysts?

and

� What are the similarities and di�erences in the requirements?

Phase II In order to answer the above questions, we conducted interviews, issued

an exploratory survey, as well as elicited requirements within a team at each group.

Our results show that while the same categories of requirements exist, the majority

of requirements within those categories are speci�c to the domain in which they were

elicited. However, the requirements do show that tool support is lacking for each

group, and the speci�c ways in which it can be improved. This brought us to our

third research question:

� Can program comprehension tools for high-level languages be retro�tted to apply

to low-level languages?

Phase III, Part I As mentioned previously, we have created the Assembly Visu-

alization and Analysis (AVA) tool framework, which comprises the re-purposing of

tools originally designed for the comprehension of control �ow and structure within

7

high-level languages. While we were successfully able to retro�t these tools, the fourth

and �nal research question we ask is:

� Are tools in our proof of concept framework e�ective at supporting the require-

ments of both groups?

Phase III, Part II In Part I, we discuss the design and implementation of three

proof of concept tools in our AVA framework. While one of these tools, called Tracks,

is found to be e�ective for both groups of stakeholders, we �nd that the other two

tools within this framework�LegaSee and REwind�are not. Though initial surveys

and requirements elicitation foreshadowed this result, we further assess through case

studies using each of the tools in mainframe and malware contexts.

Following these questions, the claim of this dissertation is that: While program

comprehension tools can be e�ectively applied to low-level programming languages,

such as assembly language, they cannot be universally applied due to their specialized

use in industrial software groups, compounded by fundamental construct di�erences.

We demonstrate our claim by investigating two di�erent assembly language di-

alects in use within two specialized groups, and show that:

1. There exists a minimal intersection of requirements between these two highly

specialized industrial software groups;

2. High-level program comprehension tools can be retro�tted to work with low-

level language constructs;

3. Fundamental di�erences in both languages and groups necessitate a disjoint set

of tools that do not bene�t from consolidation into a uni�ed framework.

To a�rm our �rst point, we provide the results of surveys and requirements elicita-

tion in Chapters 3 and 4 respectively, comparing and reasoning about the di�erences

between groups in Chapter 5. In Chapter 6, we discuss the design and implementa-

tion of the Assembly Visualization and Analysis (AVA) tool framework built in order

to illustrate our second point. The third and �nal point is demonstrated in Chapter

7, which provides case studies using our proof of concept tools, showing that while

speci�c tools can be built for universal use, others are specialized to the architecture

and/or stakeholders involved. Chapter 7 concludes with further explanation of our

�ndings, drawing on results from Chapter 5, as well as technical issues brought to

light in Chapter 6. The dissertation outline is shown in Figure 1.3.

8

Figure 1.3: Dissertation Overview.

1.2.1 Agenda

This dissertation is outlined as follows:

� Chapter 2 provides a survey of related work in both requirements elicitation

and tool support. We end with an introduction of technologies that are used in

the implementation within this dissertation.

� Chapter 3 provides the results of preliminary interviews within the mainframe

stakeholder domain, as well as results of a large exploratory survey that was

conducted with each group of stakeholders. We �nish the chapter by providing

a more in-depth survey of collaboration and documentation within the malware

analyst group.

� Chapter 4 provides the research method and results of requirements elicitation

performed with each group of stakeholders.

� Chapter 5 provides a comparison between the mainframe developer group,

and malware analyst group. We further discuss why both groups have unique

9

needs based on their particular area of expertise. This chapter demonstrates

how the same set of tools cannot accommodate the needs of both groups.

� Chapter 6 introduces the tool support built to address needs discussed in

previous chapters. We discuss the implementation of these tools, as well as

work completed by colleagues within the scope of this project.

� Chapter 7 provides an assessment of this dissertation. We analyze the re-

quirements elicitation process that we followed in Chapter 4. Following this,

we consider the assessment �rst in terms of the mainframe developer domain,

followed by the malware analyst domain.

� Chapter 8 concludes with a summary of future work, and our �ndings. This

future work includes further studies in this context, as well as further feature

development possible for the tools we have created thus far.

� Appendices There are six appendices included within this dissertation. The

�rst appendix is a summary reference of results from the exploratory survey.

The second appendix provides the script for the group session used for require-

ments elicitation. The third appendix lists issues observed during activity-based

elicitation within the mainframe context. The fourth appendix describes how

to download and install the AVA tool framework, both for use and for develop-

ment. The �fth appendix explains how to run the Mariposa botnet within IDA

Pro, which is useful in seeing how our control �ow tool can create sequence di-

agrams for malware. The sixth and �nal appendix provides our ethics approval

for the study.

10

Chapter 2

Related Work

This chapter provides the background information necessary in understanding Chap-

ter 4 on Requirements Elicitation, as well as Chapter 6 on Design and Implementation.

We also provide a survey of related tool support in this chapter. While the majority

of these surveyed tools are not discussed again in this dissertation, they provide an

important landscape from which prototypes beyond the scope of our work could be

derived.

2.1 Social Psychology Background

This section outlines the social psychology theory and background necessary to un-

derstand our requirements elicitation process.

2.1.1 Normative Manipulation

From a psychological perspective, requirements elicitation can be seen as an informa-

tion sampling task: in order to be successful, groups of people have to get together

to share relevant information. Information sharing within a group, however, can be

moderated by group e�ects such as production blocking and groupthink [7, 8]. Pro-

duction blocking occurs when one person blocks others during a group session, for

example when only one person can speak at a time. Similarly, groupthink occurs

when a group tends towards harmony and rejects any input that is contrary to their

views.

Group norms are de�ned as groups developing personalities or identities of their

own which override individual personalities in the group [9]. This can be a problem

11

for requirements elicitation, for example, when people are reluctant to express ideas

during a brainstorming session because they may be judged by the group. Postmes

et al. [10] discuss how priming was used to discourage groupthink.

Group norms can be manipulated (through normative manipulation) so that group

members adopt a norm that is predicted to be bene�cial for the task at hand. The

only previous work we are aware of that explores using these group norms for re-

quirements elicitation in software is provided by Teh et al. [11]. Their study used

two group norm conditions: consensus and critical. A consensus group norm leads to

an establishment of groupthink, whereas a critical group norm prevents people from

converging too quickly. They show that with two similar groups, the critically primed

group produced, on average, more unique and correct requirements for an elicitation

task.

The requirements elicitation process used in this dissertation adopted the social

psychology technique of normative manipulation to promote the sharing of require-

ments by participants. However, the type of normative manipulation that can be

applied is dependent on the pro�les of the participant groups. These pro�les are

based on two social psychology measures, the Need-for-Closure [12] and Individualism-

Collectivism [13] scales.

2.1.2 Need-for-Closure (NFC) Scale

The NFC scale was originally proposed by Kruglanski [12], and is de�ned as the desire

for �an answer on a given topic, any answer... compared to confusion and ambiguity�.

High NFC individuals tend to be closed-minded and do not appreciate having their

opinions challenged [14].

The NFC predicts epistemic motivation or willingness to expend e�ort to achieve a

thorough and rich understanding of the world [15]. Epistemic motivation is associated

with trait-based openness to experience and may indicate how willing participants

are to adopt new tools during future studies. It may also correlate with how our

requirements elicitation process was received.

2.1.3 Individualism-Collectivism (INDCOL) Scale

The INDCOL scale is a measure of how independent individuals are of one another,

or, to what degree groups are bound and mutually obligated to one another [16]. We

use this measure to determine the type of normative manipulation to apply.

12

It was shown by Goncalo and Staw [17], that individualistic groups generate sig-

ni�cantly more ideas when they are instructed (primed) to be creative, whereas col-

lectivist groups generate somewhat more ideas when they are told to be practical. Ad-

ditionally, individualistic groups that are instructed to be creative generate a higher

percentage of creative ideas, whereas there is no signi�cant di�erence between col-

lectivist groups instructed to be creative rather than practical. Goncalo and Staw

de�ned creativity by ideas that were both novel and useful. These studies were done

by not only priming creativity/practicality but by �rst priming the individualistic or

collectivist mindset with a series of questions to make participants think either about

themselves, or about their group.

2.1.4 Group Decision-Making Techniques

There were three possible decision-making group techniques that we could employ:

Interacting Group, Delphi Group and Nominal Group [18].

The Interacting Group is the most common form where team members talk

amongst themselves and come to a decision through arguments and agreements. The

main advantage is that new ideas can be generated, and understanding improved.

The major disadvantage is that political process can play a large role.

The Delphi Group is used to develop group agreement about the relative impor-

tance of issues [19]. The process is similar to the nominal technique in that there

exists the generation of ideas based on a question, and ranking of these ideas. But

the process di�ers in that ranked lists of the original ideas are sent out repeatedly to

each expert for re-ranking, until agreement by calculated mean rank is achieved. This

means that the process may be timely and participants do not need to be co-located,

an advantage in some circumstances.

The Nominal Group is a structured process where ideas are generated based on

a question, but the issues are discussed and ranked within the group session. We

selected this technique for this dissertation. It was chosen over the Interacting Group

since we wanted to avoid issues of pre-existing hierarchy within the team, as well

as issues such as production blocking and groupthink. The Delphi Group was also

not chosen since it is the most time-consuming of all methods, and is best when

participants are not co-located.

13

Figure 2.1: Overview of Related Work.

2.2 Related Work in Tool Support

This section summarizes areas of tool support that we believe are important within

the scope of this dissertation. Figure 2.1 shows these areas as well as the tools we

have found within. Some tools may appear in more than one area.

We �rst discuss assembly speci�c tools to see what exists in the problem space,

followed by software exploration tools which are abundant, but only a handful are

geared towards assembly. Concern mining has not been applied to low-level languages

and could be an interesting avenue of research. For example, Figure 1.1 may bene�t

from separation of control �ows into chunks based on concerns, providing a better

way to understand a system than trying to �gure out intertwined LOADs and GOTOs.

Control �ow tools are of great interest, as we will see later in this dissertation, and

some tools already exist to aid with low-level languages. Interestingly enough, many

14

runtime tools exist for assembly, yet developers are still asking for di�erent features

such as register usage and propagation, as well as being able to step back and forth

through program execution. Finally in the interest of creating language agnostic tool

support, we look at potential intermediate formats, as well as tools that exist for one

of those formats�Knowledge Discovery Metamodel (KDM) [20].

2.2.1 Assembly Speci�c Tools

This set of tools is a collection of what could be found for assembly language and are

not necessarily visual tools, but some of their features may be useful in the future.

Some tools that are currently employed in industry for assembly include IDA

Pro [5], a disassembler and debugger, PaiMei [21], which is a reverse engineering

framework, Responder [22], a runtime and memory analysis tool, and Visual Studio's

debugger. BitBlaze [23], is a binary analysis platform to analyze, understand, and

develop defenses against malicious code. Zynamics' BinDi� and BinNavi [24] are also

tools for comparing, and analyzing, disassembled code respectively.

ASMPlugin [25] is an assembler plugin for Eclipse that includes an assembler

editor (with syntax highlighting) and includes a linker and debugger. GSPIM [26]

is used for visualization of low-level MIPS Assembly programming and simulation.

There has also been some work at University of Victoria with ARM simulation for

education purposes [27]. Finally, TextMaestro [28] converts assembly language to its

corresponding C code.

There are two tools, that we are aware of, that try to address collaboration

within reverse engineering tools. These are BinCrowd by Zynamics [24] and Col-

labREate [29, 30]. BinCrowd provides a database that can be used to share disas-

sembly information with team members. This information can then be shared via a

web interface or through an IDA Pro plugin. It works by allowing an analyst to doc-

ument code and then upload these comments to the database. BinCrowd then uses

its BinDi� format to �nd related functions, and �les, as well as comparing �les and

displaying statistics about them. These comments are inlined within the code using

IDA Pro's commenting capability. Though reasonable as a means of documentation

for a single developer, this form of commenting may not be conducive to discussion

and collaborative documentation. Figure 2.2 shows the importing of comments to

functions within IDA Pro using the BinCrowd plugin. In this case, two functions are

identi�ed as having a high match quality.

15

Figure 2.2: BinCrowd in IDA Pro.

16

CollabREate works somewhat similarly to BinCrowd in that it uses an IDA Pro

plugin and pushes changes to IDA Pro database (IDB) �les to a server. Any user

that is subscribed to the same CollabREate project will receive these updates, and

therefore remain synchronized. These IDB updates include comment changes, but

also quite a few more including adding or deleting functions, enums and structs.

Again, these comments surround functions, but may not be su�cient to support

collaboration.

There are other tools that have been created by colleagues during the course of

this project, some of which are discussed at the end of Chapter 6. However, one tool

that is not discussed in Chapter 6 is ATLANTIS (Assembly Trace Analysis Environ-

ment) [31]. While related to our project, this is a separate project undertaken by the

CHISEL group at the University of Victoria, and DRDC Valcartier. ATLANTIS aids

malware analysts in identifying exploits in software by using execution traces, rather

than the original source code. Figure 2.3 shows an example of this environment.

Figure 2.3: ATLANTIS (Assembly Trace Analysis Environment).

2.2.2 Software Exploration Tools

Software exploration is an active area of research which provides tools that allow a user

to explore a software system visually. This includes call graphs [32], graph-based tools

such as LSEdit [33], GraphViz [34], Walrus [35], aiSee [36] and distribution [37] and

terrain maps [38], reverse engineering tools like PaiMei [21], Rigi [39] and ERESI [40],

17

and visualization and exploration tools, for example, Evolve [41], SHriMP [42] and

SEXTANT[43]. There are also many tools in the area of tree maps such as Sequoia [44]

and Disk Inventory [45]. Others use a city analogy to represent architecture such as

CocoViz [46] and CodeCity [47], and many are built as Eclipse plugins, including

SourceMiner [48], X-Ray [49], JQuery [50] and JIRISS [51].

2.2.3 Concern Mining Tools

These tools locate feature implementations, or concerns, within the code and are able

to automatically extract them, and potentially view them in some way. These tools

include FINT [52], the Aspect Mining Tool (AMT) [53] and others [32, 54, 55, 56].

Additionally, Robillard et al. [57] present a technique using concern graphs, which are

abstract models that describe which parts of the source code are relevant to di�erent

concerns. We believe these tools may be interesting to look at in order to abstract

features from assembly code, which could aid in control �ow decomposition as well

as in other areas.

2.2.4 Control Flow Tools

While it is relatively easy to understand a few lines of assembly, the problem is

much more di�cult when trying to understand thousands of lines of code. One

quickly gets lost, especially if the code is obfuscated. There has been little work in

the area of control �ow visualization for malware analysis and assembly in general.

Most notably, VERA (Visualization of Executables for Reversing and Analysis) [58],

presents a graph that uses basic blocks as nodes to support dynamic analysis. In

most tools, the visualization is limited to a static function call graph, such as in IDA

Pro and Bin Navi [5, 24]. Other tools are limited to text interfaces with very little

access to modern development environments' UI features.

VERA provides a high-level dynamic view of basic blocks, loops and color coding

to describe where code is located. It also provides navigational links to IDA Pro.

While it allows users to quickly pinpoint areas of interest, it is not very useful after

this point. The user must return to IDA Pro to understand the �ner details.

One e�ort towards static control �ow information for assembly is a tool called

MapUI. DeLine [38] and others came up with the idea to represent source code with a

software terrain map to use the brain's spatial memory. DeLine came to the conclusion

that there are better representations for source code (e.g. Code Thumbnails [59]).

18

However, the team at DRDC decided to try software terrain maps with assembly

code since many of the other representations cannot be applied. Figure 2.4 shows a

software terrain map from the MapUI prototype of the Zeus builder [60, 61]. The

Zeus crimeware toolkit is a set of programs which are designed to set up a botnet

over a high-scale networked infrastructure.

Each function is represented as a country. The size of the country depends on

the number of lines of assembly in that function. The relationship of countries is

calculated by the number of static calls to/from each function. The functions with

greatest a�nity are laid out �rst. Continents or islands are created when there are

no links to other functions (e.g. exception handling, dead code). Then colors can be

applied and layers can be created according to di�erent concepts. For example, in

Figure 2.4, red represents functions related to building a customized bot and green

represents functions related to removing the spyware. This functionality is provided

by the Zeus builder in case the hacker accidentally infects himself.

For languages other than assembly, Bohnet and Döllner [32] show the value of

visually exploring call graphs to �nd features in large C/C++ systems (over 1 million

lines of code). Their approach is a control �ow graph that combines dynamic and

static analysis techniques.

Other control �ow tools exist for higher-level languages such as Code Bubbles [62],

an IDE for Java to create bubbles containing methods that are linked when the user

selects a static call in the source code. They also provide bubbles for notes and status

�ags for easy documentation. However, while many of the features of Code Bubbles

are useful, its focus is more on the code within the bubbles. There is no view that

contains just the calls. It also does not focus on extremely large traces which we must

contend with in assembly code.

Finally, Diver [63] is an open-source, extensible Eclipse-based framework for cre-

ating sequence diagrams. Diver contains an example implementation which provides

sequence diagrams for Java. We discuss Diver later in Section 2.3.1.

2.2.5 Runtime Tools

This set of tools is helpful for a developer to discover information during the execution

of their system. The tools we look at include the Visualization Execution Tool or

VET [64], which helps programmers manage the complexity of execution traces, and

also other tools for debugging such as Bin Di� and Bin Navi [24], the Visual Studio

19

Figure 2.4: MapUI and Zeus' 375 Functions (23,320 Lines).

20

debugger, the IDA Pro debugger [5], the Syser debugger [65], OllyDbg [66], and

SoftICE [67], and memory analysis tools like Responder [22] and HeapDraw [68]. We

believe this class of tools is important in helping developers identify memory leaks,

bu�er over�ows, causes of segmentation faults, as well as understand how registers

and their values are propagated throughout the system.

2.2.6 Intermediate Common Formats

One of the objectives of the initial project proposal was to establish if a common

intermediate representation for a large set of assembly languages would be possible.

In particular, what is necessary to support abstractions required for comprehension

tasks. While not a contribution of this dissertation, other colleagues have investi-

gated potential existing representations such as the Knowledge Discovery Metamodel

(KDM) [20], the Low Level Virtual Machine (LLVM) object code representation [69]

that uses simple RISC-like instructions, and leaner experimental candidates such as

Zynamics' Reverse Engineering Intermediate Language (REIL) [70].

Ultimately, no existing intermediate language (IL) could support our goals. That

is, to be the one IL for multiple dialects, as well as provide the speci�c information

necessary for our intended comprehension tools [71]. Due to these limitations, we

have created our own data format discussed in the beginning of Chapter 6.

As an example of challenges faced with existing metamodels, let us look more

closely at KDM. Unfortunately, KDM produces enormous XML �les to describe only

small amounts of code. For example, a KDM �le for a HelloWorld.c program is

42 lines, shown in Figure 2.5. Therefore, it was not a viable option for this project.

Nevertheless, we investigated possible tools for KDM in case they could be applicable.

The most interesting tool for KDM is MoDisco [72], which can create UML dia-

grams from KDM code. It also includes a tool called the Discoverer, which discovers

a full abstract syntax tree for Java, and builds models from it. Additionally, there is

the Knowledge Discovery Metamodel SDK [20], an Eclipse plugin which provides a

set of tools for working with KDM.

2.3 Implementation Technologies

This section discusses the technologies we utilized to create the prototype tools in

our AVA framework. Our base technology for building these tools was Eclipse. This

21

<?xml version=''1.0'' encoding=''UTF-8''?>
<kdm:Segment xmi:version=''2.1''
xmlns:xmi=''http://www.omg.org/XMI''
xmlns:action=''http://kdm.omg.org/action''
xmlns:code=''http://kdm.omg.org/code''
xmlns:kdm=''http://kdm.omg.org/kdm''
xmlns:source=''http://kdm.omg.org/source''
name=''HelloWorld Example''>
<model xmi:id=''id.0'' xmi:type=''code:CodeModel'' name=''HelloWorld''>

<codeElement xmi:id=''id.1'' xmi:type=''code:CompilationUnit'' name=''hello.c''>
<codeElement xmi:id=''id.2'' xmi:type=''code:CallableUnit'' name=''main'' type=''id.5'' kind=''regular''>
<source xmi:id=''id.3'' language=''C'' snippet=''int main(int argc, char* argv[]) {}''/>
<entryFlow xmi:id=''id.4'' to=''id.12'' from=''id.2''/>
<codeElement xmi:id=''id.5'' xmi:type=''code:Signature'' name=''main''>

<source xmi:id=''id.6'' snippet=''int main(int argc, char * argv[]);''/>
<parameterUnit xmi:id=''id.7'' name=''argc'' type=''id.25'' pos=''1''/>
<parameterUnit xmi:id=''id.8'' name=''argv'' type=''id.9'' pos=''1''>
<codeElement xmi:id=''id.9'' xmi:type=''code:ArrayType''>

<itemUnit xmi:id=''id.10'' type=''id.19''/>
</codeElement>

</parameterUnit>
<parameterUnit xmi:id=''id.11'' type=''id.25'' kind=''return''/>

</codeElement>
<codeElement xmi:id=''id.12'' xmi:type=''action:ActionElement'' name=''a1'' kind=''Call''>

<source xmi:id=''id.13'' language=''C'' snippet=''printf("Hello, World!\n");''/>
<codeElement xmi:id=''id.14'' xmi:type=''code:Value'' name=''"Hello, World!\n"'' type=''id.19''/>
<actionRelation xmi:id=''id.15'' xmi:type=''action:Reads'' to=''id.14'' from=''id.12''/>
<actionRelation xmi:id=''id.16'' xmi:type=''action:Calls'' to=''id.20'' from=''id.12''/>
<actionRelation xmi:id=''id.17'' xmi:type=''action:CompliesTo'' to=''id.20'' from=''id.12''/>

</codeElement>
</codeElement>

</codeElement>
<codeElement xmi:id=''id.18'' xmi:type=''code:LanguageUnit''>

<codeElement xmi:id=''id.19'' xmi:type=''code:StringType'' name=''char *''/>
<codeElement xmi:id=''id.20'' xmi:type=''code:CallableUnit'' name=''printf'' type=''id.21''>

<codeElement xmi:id=''id.21'' xmi:type=''code:Signature'' name=''printf''>
<parameterUnit xmi:id=''id.22'' name='''' type=''id.25'' kind=''return'' pos=''0''/>
<parameterUnit xmi:id=''id.23'' name=''format'' type=''id.19'' pos=''1''/>
<parameterUnit xmi:id=''id.24'' name=''arguments'' kind=''variadic'' pos=''2''/>

</codeElement>
</codeElement>
<codeElement xmi:id=''id.25'' xmi:type=''code:IntegerType'' name=''int''/>

</codeElement>
</model>
<model xmi:id=''id.26'' xmi:type=''source:InventoryModel'' name=''HelloWorld''>

<inventoryElement xmi:id=''id.27'' xmi:type=''source:SourceFile'' name=''hello.c'' language=''C''/>
</model>

</kdm:Segment>

Figure 2.5: Example KDM for Hello World Program Written in C.

choice is discussed further in Chapter 6.

First we discuss the sequence diagram tool used to create control �ow graphs.

Second we introduce a graphical editor and graph-creation tool, and �nally an Eclipse

plugin for visualizing system constructs at a high-level.

2.3.1 Diver: The Sequence Explorer for Eclipse

One of the more di�cult challenges in understanding assembly code is following con-

trol �ow. This is due to the inherent, unstructured nature of the code. To create

Tracks, we extended Diver, an open-source and extensible sequence diagram tool built

using the Eclipse framework [73]. The design of Diver has two primary goals: model

independence and interactivity/navigability.

22

Much work in industry and in research has been spent implementing multiple

instantiations of very similar visualizations for program control �ow. Therefore, a

need was seen for a reusable, interactive sequence diagram viewer in order to eliminate

duplicate work.

Model-independence means that the viewer is not tied to any particular model or

data format in its back-end. The viewer has been employed to visualize program con-

trol �ow from various sources. Such sources include control �ow of assembly language

instructions (in this research), dynamic traces from instrumented Java programs [74],

and call structures of static Java source code. This has been accomplished by using

a framework compatible with the Eclipse JFace [75] viewer framework. This means

that implementors must write some Java code in order to realize their application,

but they are also abstracted far away from the details about how to draw the lines,

boxes, and labels necessary for displaying the view.

The second goal of interactivity and navigability was inspired by the fact that

sequence diagrams can quickly become very large and extremely complex. Diver has

integrated features to help overcome this problem. A short listing of the features

includes: animated layout, highlighting of selected elements and related sub-calls,

grouping of related calls (such as loops), hiding/collapsing of call trees and package

or module structures, customisable colors and labels for visual elements such as acti-

vation boxes and messages, keyboard navigation through components, and the ability

to reset (focus) the sequence diagram on di�erent parts of the call structure. These

features have been extensively studied and evaluated [74, 76]. Figure 2.6 shows an

example of Diver visualizing a sequence diagram of a Java program.

2.3.2 GEF: Graphical Editing Framework

The Graphical Editing Framework (GEF) [77] bundles three components that are

used to create graphical editors within Eclipse. The GEF component of particular

interest is Zest, which is a visualization toolkit used to create graphical views within

Eclipse. The Zest project contains within itself a graph layout package that includes

various layout algorithms. Apart from the use of Zest in Diver, we also use Zest in

the creation of the state diagram tool that we see in Chapter 6 on implementation.

23

Figure 2.6: Diver used with a Large Java Project.

2.3.3 The AJDT Visualiser

In order to visualize certain aspects of assembly code at a high-level, we needed some

sort of tree map. The Visualiser [78] is not a tree map, but somewhat similar with

its use of colored stripes and blocks. It is also freely available and easily extended,

which is why it was selected as a �rst step towards a scalable tool for this purpose.

The Visualiser is an extensible Eclipse plugin, originally part of AspectJ Devel-

opment Tools (AJDT), that can be used to visualize anything that lends itself to a

`bars and stripes' style representation. It began as the Aspect Visualiser, which was

used to visualize how aspects were a�ecting classes in a project. It did so by showing

each class as a bar, with its length corresponding to its length in lines of code. Each

aspect was then color-coded and drawn as a stripe based on its location and number

of a�ected lines of code (or lines of code in the aspect itself). The Visualiser provides

extension points and there are a few publicly available providers, including those for

Google searches and CVS history. We have also used it before in the context of patch

24

tool support for systems code [79].

Figure 2.7 shows an example of an AspectJ project and how aspects have crosscut

�les within the system. One can also switch to a package view, which shows how

packages are a�ected. Navigation is supported by double-clicking stripes, and the

colors used are customizable. Each di�erent menu item can be toggled in order to

hide them from the visualization.

Figure 2.7: The AJDT Visualiser.

2.4 Chapter Summary

This chapter provided the groundwork in the social psychology methods and mea-

sures that are used in our requirements elicitation. We have also provided a survey of

multiple tools in the di�erent areas that we believe are necessary in the context of com-

prehension support for assembly language. These areas include: Assembly-Speci�c,

Software Exploration, Concern Mining, Control Flow, Runtime, and Intermediate

Formats. While we believe a combination of features from these tools are needed

to e�ectively assist developers in understanding and maintaining low-level software,

there is no existing framework of tools for the comprehension of assembly language

programs speci�cally. Finally, we have introduced the background of technologies

that will be seen in Chapter 6 on Design and Implementation.

25

Chapter 3

Exploratory Interviews and Surveys

This chapter provides the results of three separate exploratory studies. Our �rst study

involved four interviews with engineers working with mainframe code. The second

study was a large exploratory survey which encompassed experience, current work,

browsing and navigation, control �ow, and debugging. The �nal study takes a closer

look at the issues of malware collaboration and documentation. Ethics approval for

this study is shown in Appendix F. These issues are investigated further since they

emerged from the malware analysts in the exploratory survey.

3.1 Interviews with Mainframe Developers

In March 2009, we visited the CA Prague Technology Center (PTC). CA PTC is

known primarily for its mainframe and distributed computing applications and solu-

tions used by businesses. Here we met with �ve developers from various backgrounds.

They were able to freely discuss their issues as well as what they believed was funda-

mental for their understanding. Their stories are summarized below.

3.1.1 First Engineer

Rob1 was an experienced assembly developer who was working with an extremely large

module. Rob spent some time showing us his mainframe development environment,

and how he often worked with the code. He also told us which the most important

tools that he wanted were. These included connections between modules, analyzing

1The names used in this study are �ctitious for the purposes of preserving individual privacy.

26

subroutines (HLASM does not have functions, only coding conventions), support for

dummy sections (DSECTs) and control sections (CSECTs), as well as register usage.

In order to �nd DSECTs, Rob was using text search. There was no way to see

where they were de�ned or used at a high level, and no navigation to them.

3.1.2 Second and Third Engineer

The second interview we had was with two engineers, David and Joe, who both worked

on a database written in assembly. When bugs occurred in the system, usually it was

due to an instruction modifying a DSECT. When this occurred, they had to use a

cross-reference tool to �nd everything that modi�ed the DSECT, and it had some

shortcomings.

David and Joe wanted something similar to a debugging tool, which would allow

them to jump through modules to follow data �ow by using a log �le. Navigation

would allow them to move back and forth with their selections and also back and

forth with how the program ran, with the addition of breadcrumbs to show this.

They also needed to know the values in each register. Additionally, they wanted to

have architectural diagrams that developers could collaborate on. Figure 3.1 shows

their mockup of this tool.

Figure 3.1: Mockup UI Design for Mainframe Debugging Tool.

3.1.3 Fourth Engineer

Alex had created an Eclipse plugin that provides syntax highlighting for HLASM

assembly, as well as the ability to upload/download �les from the mainframe and

27

execute them. It could also view log �les as well as the outline of the assembly code

(macros, DSECT, CSECT).

Future work that Alex wanted for this tool included code completion and syntax

support in the editor, so the code would not have to run on the mainframe before

syntax errors were shown. Also being able to search and graph references for where

symbols are used (or de�ned).

3.1.4 Fifth Engineer

Bill had been given the task of trying to understand a huge assembly system called

reportbroker, which has 493 modules. He had written a tool that separates data from

the listing into two di�erent �les, one for the source code and one for the usage of

each label, varname, etc. by module. This was because it was important for him to

know which modules to look at when he was dealing with a speci�c label or variable

name.

3.1.5 Summary of Interviews

In looking at the results of these interviews, there seem to be three separate areas of

concern:

1. Development Tools

2. Debugging/Runtime Tools

3. Visualization/Comprehension Tools

The development tools would include syntax highlighting/checking, code comple-

tion and being able to search for references, basically common IDE support. Debug-

ging tools would allow viewing values of registers at runtime, or from a log �le, and

stepping through the system. Finally, visualization and comprehension tools would

include tools such as those for control �ow, data �ow, references, and architectural

diagrams.

Table 3.1 shows a summary of the results from the interviews with developers.

To brie�y summarize this Table, the �rst and last developer were both experienced

with assembly but still had di�culties. These included connections between modules,

identifying subroutines, understanding and locating the use of DSECTs and CSECTs,

seeing how register usage is propagated throughout the system, and understanding

28

where variables and labels are used throughout modules in the system. The second

team of developers were maintaining a mainframe database and had many issues

debugging their system, since most errors were caused by a runtime modi�cation to

a dummy section. The third developer had already created an Eclipse plugin for his

own use that included syntax highlighting and integration for syncing �les with the

mainframe, but still lacked many features such as syntax checking, code completion

and reference lists and graphs.

Interview Issues

1. Assembly Developer Connections between modules, identi�cation of subroutines,
DSECT and CSECT support, register support.

2. Database Developers DSECT modi�cation, debugging tools, data �ow.
3. Eclipse Plugin Creator Syntax highlighting/checking, integration with mainframe,

code completion, reference lists and graphs.
4. Assembly Developer Separate listings into:

- source code
- modules using each label/variable name

Table 3.1: Summary of Interviews with the Mainframe Group.

3.2 Exploratory Survey

This section discusses the results of a large exploratory survey that was distributed

to two separate groups. The �rst group included our stakeholder contacts within the

mainframe systems group, as well as those who responded from a public invitation

made on the IBMMainframe Assembler mailing list. The second group included those

that work with security issues, and included our stakeholders in the malware group, as

well as their clients and trainees, and students within the computer security laboratory

at Concordia University. We had 25 participants from the mainframe group and 15

from the malware group.

This exploratory survey looked at seven factors: respondent experience and prefer-

ences with programming in general, familiarity with assembly language, their current

toolset for assembly, browsing and navigation concerns, features of debugging, control

�ow, and potential tools. We discuss the results for each group separately within each

section.

29

3.2.1 Results: About the Participants

The �rst section of the survey established characteristics of the developers. We wanted

to know about their current and past experience with assembly as well as other

programming languages. We also wanted to establish their use of tool support in

general.

Mainframe Context

Table 3.2 summarizes the pro�les of our mainframe respondents. It is important

to note that for some of these questions, respondents could provide more than one

answer (i.e. favorite tools). We found that the majority of people had over 10 years

of experience and were most familiar with assembly language. They also preferred

assembly language over others in many cases. Their favorite software tools fell under

two categories: debuggers and text editors. There were nine who responded with

some type of text editor, which included Emacs, VI, KEdit, XEdit, UltraEdit and

more. Of those who mentioned a debugger, XDC was mentioned most often.

In addition to these results, we also asked why these programming languages and

tools were their favorite. With regard to languages, assembly was preferred because

it is easy, elegant, maps to hardware, powerful, e�cient, simple/intuitive, versatile,

and fun. REXX was also listed as fun, easy and had string handling. C/C++ has

better abstractions, easier syntax, portable and simple. Python was mentioned as

having a good API and �ts all paradigms. Though text editors were mentioned more

often, no particular reasons were given other than the text editor they chose was

con�gurable and customizable. Debuggers were mentioned for tracing instruction

�ows, and examining/manipulating the program environment (e.g. data/registers).

Visual Studio was mentioned because it has a debugger and has syntax checking.

Eclipse also was mentioned for being so well integrated with the Java language.

Malware Context

In the malware context, Table 3.3 outlines the pro�les of our respondents. Again,

most of the respondents had over 10 years of experience, and while they may work

often with assembly, they are more familiar with C/C++ and Java, and also only

prefer C/C++, Java and Python. In fact, these were the only provided favorite

programming languages, so no respondent actually preferred assembly. Their favorite

30

Asked Reported

Experience 88% (22/25) 10+ Years
Most Familiar 100% (25/25) Assembly
Programming 48% (12/25) REXX
Language 48% (12/25) C/C++

16% (4/25) COBOL
Favorite Programming 56% (14/25) Assembly
Language 16% (4/25) REXX

16% (4/25) C/C++
Favorite Tools 36% (9/25) Text Editor

32% (8/25) Debugger
16% (4/25) ISPF

Table 3.2: About the Mainframe Respondents.

tools included IDEs such as IDA Pro, Eclipse and Visual Studio. In contrast to above,

only a few listed a text editor and/or debugger.

Their reasons for preferring these languages varied. For Java, it avoids mem-

ory problems, has an API, object-oriented and has easy network communication.

For C/C++ they said it had the most control, was more �exible, fast execution de-

vice drivers, could be embedded on multiple platforms and had memory management.

Python was mentioned as being fast, good for prototyping and simple.

In regard to tools, IDA Pro was stated by multiple respondents to be the best

disassembler. It was also stated that it is a wonderful static debugging tool, and is

very scriptable and extendable. Though it was also mentioned that the extensibility

is poorly documented. One respondent also said that it has features not found in any

other tool. Eclipse was preferred due to the abundance of plugins, cross-platform, code

completion and refactoring, debuggers, that it has a community, and supported large

software projects. Visual Studio was mentioned under the same umbrella as Eclipse

with code completion, refactoring, and good debuggers. NetBeans was also mentioned

because it is easier to setup than Eclipse.

3.2.2 Results: Assembly Experience

The second section of the survey established how comfortable our respondents were

with assembly language itself. This was important in knowing whether the tool

support we build should be geared towards novices or experts. We also wanted to know

in which context it was used, and what, if anything, is di�cult or time consuming

about working with assembly.

31

Asked Reported

Experience 79% (11/15) 10+ Years
Most Familiar 93% (14/15) C/C++
Programming 67% (10/15) Java
Language 47% (7/15) Assembly

27% (4/15) Python
Favorite Programming 47% (7/15) C/C++
Language 40% (6/15) Java

20% (3/15) Python
Favorite Tools 47% (7/15) IDA Pro

40% (6/15) Eclipse
33% (5/15) Visual Studio
20% (3/15) Text Editor

Table 3.3: About the Malware Respondents.

Mainframe Context

Table 3.4 summarizes the results for respondents' experience. With regard to expe-

rience with assembly itself, developers reported being slightly less adept at writing

assembly than they were at understanding it. They were, however, very sure of them-

selves on both, averaging at 4.42 and 4.46 respectively on a 1 - 5 Likert scale [80].

As for whether assembly was more di�cult to understand than other languages, 16

respondents thought that this was true. Of those that said it was more di�cult, six

said it was because you had to really understand the instruction set for which there

were many operations and rules ; �ve said it was because it was hard to see a high-

level picture since there were so many lines for a simple task, and that also meant the

developer had a lot to remember at once. Finally, four said it was because you had to

have a thorough knowledge of the underlying hardware or operating system. Of those

that said it was not more di�cult, there was no convergence on why, although some

reasons were that it depended on the quality of the code written, that each instruc-

tion was overall simpler (although more tedious), and it was easier to �nd bugs or

performance problems. Of the 18 respondents who thought there were more di�cult

languages, the majority (7 respondents) thought that C/C++ was the most di�cult

because of the more di�cult syntax, method overloading and multiple inheritance,

the preprocessor, and memory issues such as leakage, and controlling pointers. Other

languages worth mentioning are COBOL and LISP.

The most familiar assembly language mentioned was HLASM by 20 respondents.

In terms of what assembly was used for, 18 used it for development and 7 mentioned

32

maintenance. This development included operating system changes, databases, mon-

itoring and language support. Other types of development included times when high

performance was critical (�nancial uses) and for security and encryption. Finally,

three respondents used it while debugging and only one used it for reverse engineer-

ing.

They were also asked what the most di�cult task they had to perform was as

well as which took the most amount of time. The top reported most di�cult tasks

were testing, debugging, understanding code written by others, and understanding

new systems. Multi-threaded applications were mentioned, as well as performance

analysis, application structure and �nding out which path through the code had

been executed. Equally reported were the tasks of �guring out speci�cations and

documenting results. These were also the highest-rated, most time-consuming tasks.

Asked Reported

Experience writing 4.42 (out of 5) / 0.97 Standard Deviation
Experience understanding 4.46 (out of 5) / 1.06 Standard Deviation
Is assembly more di�cult? 64% (16/25) Yes
If so, why? 38% (6/16) Many low-level operations

31% (5/16) Big picture obscured
25% (4/16) Knowledge of underlying hardware/OS

Are any more di�cult? 25% (6/24) No
29% (7/24) C/C++
12% (3/24) COBOL
8% (2/24) LISP

Most familiar dialect 80% (20/24) HLASM
How assembly is mostly used 78% (18/23) Development

30% (7/23) Maintenance
13% (3/23) Debugging

Most di�cult task 19% (4/21) Testing
19% (4/21) Debugging
19% (4/21) Documentation
14% (3/21) Understanding others' code
10% (2/21) Understanding new systems

Most time-consuming task 25% (5/20) Testing
20% (4/20) Debugging
20% (4/20) Understanding others' code
15% (3/20) Documentation
10% (2/20) Understanding new systems

Table 3.4: Assembly Experience of Mainframe Respondents.

33

Malware Context

Table 3.5 summarizes the results for assembly experience. Respondents in this context

reported being slightly less adept at writing assembly than they were at understanding

it, averaging around 2.9 and 3.5 respectively on a 1 - 5 Likert scale. There were

12 respondents who thought assembly was more di�cult to understand than other

languages. The reasons for this included that there were so many low-level operations

that each do not do much, hard to see the big picture, not high-level so hard to translate

and having too many coding conventions. Other reasons included the limited number

of registers in x86 which caused many copy/reuse instructions so it was hard to see

real variables, logic conditions less apparent, following control �ow of instructions,

data �ow (may e�ect other registers and side e�ects of instructions), having to keep

the stack in your head, and that optimizations change the code. We also asked if there

were more di�cult languages than assembly. Functional programming languages as

well as LISP and Prolog were identi�ed.

Every respondent mentioned x86 as being one of their most familiar assembly di-

alects, though seven respondents also mentioned another, including ARM, and Power

PC. They used assembly mostly for malware understanding and second for program

understanding, which was de�ned as including embedded systems, as well as looking

for security holes. In this manner, these two may fall under the same category. Re-

verse engineering was also mentioned both for software as well as for devices. Other

answers included comparison of malware families, core dump understanding, perfor-

mance bottlenecks, hand optimization and debugging in �release only�.

They were also asked what the most di�cult task they had to perform was, as

well as which took the longest. The top reported most di�cult task was control �ow,

followed by data �ow, deobfuscation and decryption. Although many other tasks

were mentioned, including documentation, getting the high-level picture, debugging

and process communication, the most time-consuming tasks were locating certain

behaviour within the code, control �ow analysis, data �ow analysis, deobfuscation

and decryption. Again, the same tasks were noted in the most di�cult task section.

3.2.3 Results: Current Tools

This third section of the survey aimed to �nd out which tools are currently being

used by each group. We wanted to know those they used to work with assembly, and

what their strengths and weaknesses were.

34

Asked Reported

Experience writing 2.9 (out of 5) / 0.92 SD
Experience understanding 3.5 (out of 5) / 0.74 SD
Is assembly more di�cult? 80% (12/15) Yes
If so, why? 33% (5/15) Many low-level operations

20% (3/15) Big picture obscured
13% (2/15) Translation to high-level
13% (2/15) Reliance on conventions

Are any more di�cult? 47% (7/15) No
33% (5/15) Functional PLs
7% (1/15) Prolog

Most familiar dialect 100% (15/15) x86
How assembly is mostly used 47% (7/15) Malware understanding

33% (5/15) Program understanding
20% (3/15) Reverse engineering

Most di�cult task 27% (4/15) Control �ow
20% (3/15) Data �ow
13% (2/15) Deobfuscation
13% (2/15) Decryption

Most time-consuming task 20% (3/15) Locate behaviour
13% (2/15) Control �ow
13% (2/15) Data �ow
13% (2/15) Deobfuscation
13% (2/15) Decryption

Table 3.5: Assembly Experience of Malware Respondents.

Mainframe Context

Table 3.6 summarizes the results for respondents' current tool use. The tool primarily

used by the majority of developers (17) for working with assembly language was some

kind of text editor. We then asked what other tools they used besides the primary

one. In this case, 15 respondents mentioned a particular debugger, XDC being the

one mentioned most often. Other tools mentioned were being able to do di�s, greps

and view traces.

As for de�ciencies with these tools, eight respondents said that there were none,

but �ve wanted extra features in their text editor such as syntax checking and high-

lighting. Three respondents wanted to be able to navigate more easily by following

cross references. Two respondents mentioned some sort of diagram support including

trace/�ow or code diagramming tool, and one mentioned being able to integrate with

a modern GUI with tools allowing querying about the code.

When asked what the best features of these tools were, �ve people responded that

they were interested in data, for example, what contents are in a variable or register

35

Asked Reported

Primary tool 68% (17/25) Text editor
12% (3/25) HLASM Assembler

Secondary tools 60% (15/25) Debugger
De�ciencies 33% (8/24) None

21% (5/24) Text editing (syntax highlighting, checking)
13% (3/24) Navigation within code

Best features 31% (5/16) Data (register/var contents, memory/data �ow)
19% (3/16) Single step execution
13% (2/16) Syntax highlighting
13% (2/16) Trace or Dump output

Table 3.6: Current Tool Use of Mainframe Respondents.

and how that data is used throughout the system (data �ow). Single step execution

was most important for three respondents, and two found syntax highlighting the

most bene�cial and two mentioned being able to see a trace or dump �le.

The �nal question in this section was in regard to IDA Pro. This question was

included for the malware context. None of the respondents in this domain used it, and

one person may have heard of it although understood it did not work with mainframe

assembler.

Malware Context

Table 3.7 summarizes malware tool use results. The tool primarily used by 13 mal-

ware analysts was IDA Pro. Secondary tools included di�erent hex editors, WinDbg,

various IDA Pro plugins, as well as other various debugger, memory analysis and sim-

ulation tools. Table 3.7 outlines the tools used and their strengths and weaknesses.

The most reported de�ciency with current tools was that there is no integration

between them, no way to link their best features. Other reasons included providing

de�nitions of instructions, documentation (for example to be able to add notes), and

converting to C. Other requests included having assembly debugging in Eclipse, to be

able to take a snapshot of a debugging session and restart execution to a particular

location, customize IDA Pro's graph view, as well as IDA creating better function

names based on hierarchy.

They were also asked what the best features of the tools they used were. The

graph view in IDA was mentioned �rst, followed by the extensibility of IDA Pro

through plugins, search patterns in IDA Pro, and being able to inspect and modify

registers, stack and heap space. PaiMei was mentioned due to being able to quickly

36

Asked Reported

Primary tool 87% (13/15) IDA Pro
7% (1/15) PVDasm
7% (1/15) NASM

Secondary tools 33% (5/15) Hex editors (e.g. 010)
27% (4/15) WinDbg
20% (3/15) IDA Pro plugins

De�ciencies 20% (3/15) Lack of integration
13% (2/15) Instruction assistance
13% (2/15) Documentation
13% (2/15) Convert to higher-level

Best features 20% (3/15) IDA Pro Graph View
13% (2/15) IDA Pro extensibility
13% (2/15) IDA Pro search patterns
13% (2/15) Inspect and modify heap/registers/stack

Table 3.7: Current Tool Use of Malware Respondents.

and dynamically pinpoint functions.

We further asked which IDA views they used most frequently, already knowing

that IDA Pro would be the target platform for this group. By far, 10 respondents

mentioned the graph view, 9 mentioned the text view, 5 mentioned the hex view and

the function view. After that the most popular in decreasing order were registers,

names, strings, and imports.

It is important to note that the industry proposes other good tools for malware

analysis such as Norman's Sandbox Analyzer Pro [81], Sunbelt's CWSandbox [82]

and HBGary's Responder [22]. These tools, however, are usually extremely expensive

(in the tens of thousands of dollars (USD)) and were out of reach for our respondents.

3.2.4 Results: Browsing and Navigation

This was the fourth section of the survey. When trying to form a bird's eye view

of the system, it is important to provide varying degrees of granularity. For this

reason, we targeted questions as to what beacons exist in assembly. A beacon is a

recognizable, familiar feature in the code that acts as a cue to the presence of certain

structures. Beacons are used to move from high-level abstractions or concepts to

lower-level details [83].

37

Asked Reported

Beacons 76% (19/25) Speci�c instruction
16% (4/25) Comments
16% (4/25) Macros
16% (4/25) Loops
16% (4/25) None

Task-focused interface 36% (8/22) No
32% (7/22) Yes
32% (7/22) Unsure

Zoom 15% (4/25) Do not have long modules
29% (5/17) Subroutines
12% (2/17) Macros
12% (2/17) CSECTs

Additional features 33% (5/15) Follow links
(branches, cross references, declarations)

Table 3.8: Browsing and Navigation for Mainframe.

Mainframe Context

Table 3.8 summarizes the following results. The �rst section dealt with browsing

and navigation, and to see which cues we can use for navigation. The majority, 19

respondents, mentioned a speci�c instruction, BALR being the most common, which

is used to make subroutine calls. Other important responses were comments, macros

and loops, mentioned by four respondents each. Finally, four respondents thought

that there were no beacons at all.

The next question asked whether they could bene�t from a task-focused inter-

face. The task-focused interface is a type of user interface which extends the desktop

metaphor of the graphical user interface to make tasks, not �les and folders, the pri-

mary unit of interaction. A well-known example of this would be Mylyn [84]. The

results were split almost equally; eight thought no, seven said yes, and seven were

unsure. Judging by the responses, it was not clear what the idea of a task-oriented

interface actually meant.

We then asked if there were artifacts in the code that would be useful to zoom

into a higher level of detail. There were eight who did not respond, or said it was

not applicable, with four respondents mentioning that it was policy not to write long

modules, so zooming was not necessary within a module. Of the 17 that did respond,

the majority mentioned subroutines, including separating OS functions and external

subsystems from application code. Macros, CSECTs, DSECTs and dynamic storage

areas were mentioned but only by a minority.

38

They were lastly asked for any general comments on this topic, the majority of

those that answered wanted to be able to follow �links� in the source. Such links would

include branches and cross references, but also being able to jump to declarations and

return. One of the answers mentioned that something like CTAGS would be useful,

which provides di�erent linking depending on the language, but with a good idea of

what items to link.

Malware Context

Table 3.9 summarizes the results for beacons and other aspects that could be used for

navigation. Possible beacons given by this group included control �ow features such

as function calls, and branching. Ways in which data is used were also mentioned,

tied with code conventions such as load/stores to indicate the start of functions.

As for whether a task-focused interface would be useful. Of the six who responded,

all said that yes, it would be useful. We propose that those who did not respond were

unsure and did not understand the concept.

We also wanted to know which artifacts existed in the code that they thought could

be used as means of navigation by zooming. Functions were mentioned foremost,

followed by modules. Also mentioned were basic blocks, instructions, and blocks of

memory locations.

As for comments on other features they would like for browsing/navigation, a his-

tory view that could show all paths taken, color-coded by the number of times, was

mentioned twice. The following were also mentioned: having a two column viewing

showing callers and callees, navigation between high-level and low-level details, cus-

tomizable interfaces, sequence charts, and data �ow. These were only mentioned by

one individual however, so we do not show them as an aggregate in the table.

Asked Reported

Beacons 27% (4/15) Function Calls (Control Flow)
27% (4/15) Data Usage
27% (4/15) Coding Conventions
20% (3/15) Function De�nitions

Task-focused interface 100% (6/6) Yes

Zoom 40% (6/15) Functions
20% (3/15) Modules

Table 3.9: Browsing and Navigation for Malware.

39

Feature χ SD

Where is a particular subroutine/procedure invoked? 4.44 0.92
What are the arguments and results of a function? 4.76 0.66
How does control �ow reach a particular location? 4.68 0.85
Where is a particular variable set, used or queried? 4.6 0.76
Where is a particular variable declared? 3.76 1.16
Where is a particular data object accessed? 4.28 0.98
What are the inputs and outputs of a module? 4.44 0.92

Table 3.10: Importance of Debugging Features for Mainframe.

3.2.5 Results: Debugging

In this �fth section of the survey, we wanted to see how important debugging was. In

order to do so, we asked about existing theories of comprehension about debugging [85]

and their importance with respect to assembly. Each aspect could be given a score

on a Likert scale of 1 - 5.

Mainframe Context

We show the mean response as well as standard deviation in the order presented

in [85] in Table 3.10. Many of the respondents simply answered �ve for all, which

resulted in a similarly high rank for many items, while only one item scored below

four.

We then asked if there were any other features of debugging that were important

with regard to assembly. Eight respondents mentioned something to do with data

�ow. This included where a data object or storage was written, and how registers

pertained to storage. Another somewhat common answer was to do with variables,

where they were used, how they were declared and if they were ever used in a way

they should not be.

We then showed the mockup of a potential debugging tool that resulted from

interviews with mainframe developers. This tool is shown in Figure 3.1. The general

reaction was very positive. There were a few suggestions made that will de�nitely need

to be taken into account. That is the addition of extra data information. Currently we

only show the values in the registers, however showing the current module's storage,

including variables and data structures, was mentioned by six of the respondents.

Showing a distinction between the module and CSECT, and to show DSECTs as

well, was also mentioned by two respondents.

40

Feature χ SD

Where is a particular subroutine/procedure invoked? 4.80 0.41
What are the arguments and results of a function? 4.53 0.83
How does control �ow reach a particular location? 4.60 0.51
Where is a particular variable set, used or queried? 4.60 0.63
Where is a particular variable declared? 3.53 1.51
Where is a particular data object accessed? 4.33 0.82
What are the inputs and outputs of a module? 4.13 0.92

Table 3.11: Importance of Debugging Features for Malware.

Malware Context

Table 3.11 shows the importance of the same debugging features, on a Likert scale of

1 - 5. These results show that the top two most important features pertain to control

�ow, further highlighting its importance in this domain. Again, the same item fell

below the score of four.

The responses for any missing features of debugging in assembly were extremely

varied but included data �ow, doing trace �di�s�, memory view, stepping back in

debugging to see how a var value was assigned, setting register/variable values and

re-running, access list to speci�c memory address, simulate execution statically, multi-

application debugging (malware and the infected �le), and �nally using a standard so

all tools can communicate. One area of concern we see in a few sections of the survey

is the ability to change input values and run the system again.

Since we distributed the same version of the survey to both the mainframe and

malware groups, the mockup debugging tool for mainframe assembly was also shown

to this group. None of the responses were positive, with most respondents not under-

standing the diagram, or not believing it would be useful. We therefore conclude that

this particular form of a debugging tool is only useful within the mainframe context.

3.2.6 Results: Control Flow

The sixth section of the survey was dedicated to control �ow, which we knew from

previous conversations with stakeholders was a huge issue for those working with

assembly.

41

Mainframe Context

Table 3.12 summarizes the results for control �ow. The �rst question asked about

static control �ow scenarios, of which our Tracks tool (Section 6.3) has two. The

�rst is static control �ow that shows all of the functions that could possibly be called

from a speci�c function. It also provides navigation support to the function in IDA

Pro through double-click. The second is a history view which diagrams the functions

the user has navigated to within IDA Pro. We asked if the developers could see any

other static scenarios. The only comments here pertained to dynamic control �ow,

suggesting that static control �ow may not be of interest.

We were also curious how useful a reversed control �ow would be. Reversed control

�ow means given a function, you can step backwards to see what paths led there. We

asked how useful each was on a Likert scale of 1 - 7. We used a 7-point scale for

greater accuracy on this question because it is not asked in other ways elsewhere.

Forward control �ow was rated at 5 and reversed at 5.08. We also asked if it was

useful as a yes or no response, and 19 respondents said that it was useful. We then

asked when people would use this reversed �ow, most answered as we expected, which

is, once a point of interest is identi�ed, see what paths led there. Others included

looking at a dump �le during post-mortem analysis and assessing impact of a change.

Next we looked at dynamic control �ow, of which Tracks has one scenario. We

can open a dynamic control �ow diagram on a function and when it is opened, a

breakpoint is set in IDA Pro at that function. When a breakpoint is reached, users

can step through the code and each new function reached is added to the diagram.

There is also the option to diagram all calls even if they were not stepped into. This

information can then be saved to a trace �le. We asked if the developers could see

any other dynamic scenarios. Two respondents mentioned being able to see paths of

execution taken most often to identify hotspots in the program, and also see common

loops and �ow.

Finally, we asked what information developers might want to mine from control

�ow. There were three areas that stood out. The �rst was with concern to data �ow,

what values were in the registers when a subroutine was called and when we returned

(parameter values), as well as register values at interrupts. Additionally, how base

registers are mapped and who modi�ed what memory and when. The second area of

interest had to do with analyzing performance by using timing information with the

dynamic trace. Finally, being able to mine statistics about the subroutine and system

42

Asked Reported

Static concerns None
Dynamic concerns 8% (2/25) Most executed paths
Forward control �ow 5.0 (out of 7) 1.66 SD
Reversed control �ow 5.08 (out of 7) 1.73 SD
Reversed �ow useful 90% (19/21) Yes
Information to mine 24% (6/25) Register values/mapping, memory usage

12% (3/25) Performance
12% (3/25) System and subroutine call statistics

Table 3.12: Control Flow Requirements for Mainframe.

calls. These statistics might be used to identify code that could be refactored into a

subroutine or macro.

Malware Context

Table 3.13 summarizes the following results. The �rst control �ow question was again

about static control �ow. We asked if they could see any other static scenarios. They

did not list any but did show concern for how loops, recursion and random locations

in the function table would be handled.

We also wanted to know how useful reversed control �ow would be. We asked how

useful each was on a Likert scale of 1 - 7. Forward control �ow was rated at 6.4 and

reversed at 6.15. We also asked �yes or no, is reversed �ow useful?�, and 13 responded

said that it was.

Next we looked at dynamic control �ow. We asked if the developers could see any

other dynamic scenarios other than an execution trace. They did not, but expressed

that these dynamic diagrams should be able to handle multi-threaded traces and show

when execution switched between IDA Pro instances. They also wanted to be able

to compare two traces, and see how often a branch was taken to see which branches

are critical.

Finally we asked what information developers might want to mine from the control

�ow data. Mentioned most was call patterns, as well as API call patterns, and

network/communication patterns. Again, being able to do a di�/compare of traces,

and looking at what data is used to determine branching was mentioned.

43

Asked Reported

Static concerns 20% (3/15) Loops and recursion
Dynamic concerns Multi-threaded traces

Compare traces
Branch frequency

Forward control �ow 6.38 (out of 7) 0.87 SD
Reversed control �ow 6.15 (out of 7) 1.07 SD
Reversed �ow useful 87% (13/15) Yes
Information to mine 47% (7/15) Call patterns

13% (2/15) Compare traces
12% (2/15) Reach execution points (jump conditions)

Table 3.13: Control Flow Requirements for Malware.

3.2.7 Results: Potential Tools and Wish List

The �nal section of the survey asked the respondents speci�c questions about existing

IDE features, as well as our proof of concept and other potential tools.

Mainframe Context

First we asked how useful developers would �nd the standard IDE features in regard

to assembly on a scale of 1 to 5. The results are listed in Table 3.14. We can tell from

these results that most people in this domain are actually writing assembly code, as

well as trying to understand it.

Asked Reported

Syntax Highlighting 3.52 (1.42 SD)
Syntax Checking 3.48 (1.36 SD)
Code Completion 2.56 (1.29 SD)
Search for References 3.96 (1.31 SD)
Go to Declaration 3.88 (1.20 SD)

Table 3.14: Importance of IDE Features for Mainframe.

We then asked about a tool prototype called LegaSee (based on the AJDT Vi-

sualiser) that we had developed after discussing issues with mainframe developers.

This tool is further discussed in Section 6.4. Developers were asked to comment on

its usefulness, and 10 thought that it would be useful (some even commented very

useful), 8 had no comment, 4 were unsure and only 3 said no. We also asked for any

other comments and the one thing that stood out is that developers wanted to be able

to see from which modules or CSECTs, that DSECTs were actually referenced from,

44

and also if they were referenced or updated. We also asked what parts of the system

would be useful if we wanted to be able to zoom into the system to see more detail.

Five of the respondents replied subroutines, which included di�erentiating between

local calls, OS calls and external subsystem calls, while four said they never have to

work with long modules, and one mentioned using macros, which included site-speci�c

macros. This means that the type of macros used would need to be customizable in

the tool. One example included macros at the start and end of functions which had

provided issues for other similar tools. Finally, one respondent mentioned showing

the DSECTs and storage used being linked to where they are used in this diagram.

The next question asked users about a tool called MapUI that is discussed further

in Section 2.2.4. Only �ve respondents thought there may be a use for this tool,

and seven were unsure. It was mentioned that the size of the countries should be

con�gurable, for example, their size in lines of source code might not be important,

but their size in number of other subroutines that call it might be very useful.

The next question asked how users felt about a split view with assembly on one

side and a high-level language on the other, such as C. This would give a beginning

assembly programmer a better idea of what was going on. Of course in this domain,

the developers have a thorough understanding of the assembly. Only �ve respondents

said it would not be useful, but the others had taken it to mean that the assembly

view would only be to aid with the development of the higher-level language, in almost

all cases, the language mentioned was COBOL.

An interesting question that we asked last is since sequence diagrams have shown

promise, are there other UML diagrams that might also be useful? It seems here that

most people were not sure what UML diagrams were since 11 did not answer, and 5

said they were unsure. Only one respondent mentioned state diagrams and one class

diagrams.

The very last section asked if there were any other items on their wish list for

assembly. Four respondents wanted something for pattern recognition. The reasons

varied for this, but included to refactor redundant code, see the relationship between

naming conventions in labels, and see which code accessed the same variables (or data).

Here we also note three other areas that were seen frequently in responses. The �rst

is being able to have a better macro processor and language as well as visualization

of macros. Second is to have better debugging including better breakpoints. Finally

having a better pro�ler to improve performance.

45

Malware Context

As far as rating what most high-level IDE tools provide, the most important feature

was �nding references, followed by �nding the declaration and syntax highlighting.

Syntax checking and code completion were noticeably less important, likely due to

the fact that this group focuses on understanding existing code, rather than creating

new code. The results are shown in Table 3.15.

Asked Reported

Syntax Highlighting 4.40 (0.74 SD)
Syntax Checking 3.33 (1.29 SD)
Code Completion 2.93 (1.10 SD)
Search for References 4.73 (0.46 SD)
Go to Declaration 4.60 (0.63 SD)

Table 3.15: Importance of IDE Features for Malware.

We then asked about the LegaSee prototype that had been developed in response

to an observed issue with the mainframe group. We wanted to see if there was a

perceived potential from this group as well. We asked if they thought this type of

tool could be useful. Only one of the respondents could see a use, with the majority

not understanding the concept behind it. We conclude that within this particular

domain, LegaSee may have no use.

The tool we asked about next was the MapUI software terrain map tool. This

tool was initially developed with feedback from members within this survey group.

When asked if it was useful, �ve thought that it was useful, while three were unsure.

Of those that thought it had a use, function interaction was mentioned, as well as

size and relationships of modules. The ability to combine this view with tasks was

mentioned as well.

As for the usefulness of a split view with assembly and another higher-level lan-

guage, 11 thought it was useful. One comment made was that it would be good for

beginners. Two respondents mentioned that they already used this feature within the

Visual Studio debugger, and the Hex-Rays decompiler plugin for IDA Pro.

In regard to further UML concepts, �ve of the developers felt that state diagrams

would be useful, and two thought that activity diagrams would be useful. A lone

response suggested package diagrams with packages representing modules.

The �nal question was open ended and asked about any tools on their wish list.

Only one item was listed by two respondents which was better integration with other

46

tools, one person mentioning using meta-assembly to push back and forth with other

tools. The rest were only mentioned once and included: data �ow, sequence viewer,

pattern recognition, documentation, creating C from ASM to guess what a function is

doing, and omniscient debugging.

3.2.8 Survey Summary

This exploratory survey has looked at seven factors: respondent experience and prefer-

ences with programming in general, familiarity with assembly language, their current

toolset for assembly, browsing and navigation concerns, features of debugging, con-

trol �ow, and a look thus far at some potential tools. The following two subsections

summarize the key points for each group with respect to these factors. We further

compare the results of these two groups in Chapter 5. In an e�ort to condense the in-

formation shown in previous sections, we organize the most salient results and display

them for both groups in Appendix A.

3.3 Collaboration and Documentation for Malware

We invited malware analysts by email, to take a small survey to �nd out how doc-

umentation and collaboration are currently used and whether or not their current

tools are su�cient. The emails were sent to people we had contact with, who were

able to freely forward it to others they thought would be interested. We had six

respondents, all reverse engineers in industry or academia. The survey was issued via

Google Forms, contained 11 questions in total, and was expected to take 10 minutes

to complete. The results are discussed below for each topic, and a summary and

analysis are provided at the end of this section.

3.3.1 Results: Collaboration

This part of the survey contained six questions that �rst asked whether or not there

was a need to collaborate, how the collaboration occurred and what tools were cur-

rently used for that collaboration. Finally, we asked whether or not these tools were

su�cient and what features they would like to see. The results for each question are

discussed in this section.

47

When you're working at the assembly level, do you have a need to collaborate with

others? This question was given as a simple yes or no answer, with four respondents

answering yes, they did collaborate, while two did not.

If yes, how do you collaborate? Of the four respondents who did collaborate, they

did so by talking to each other (including giving each other crash courses on what

they had done) and sharing information. In one case, this was achieved by working

on the same computer.

For document sharing, three mentioned that they shared IDA Pro [5] database �les

(IDB �les) which included documented pieces of code, whereas two mentioned sharing

information from other sources as well, such as documents, internet links, and reports.

If yes, who do you collaborate with? Do you collaborate with them all at once? Of

the four out of six respondents who collaborated, all of them did so with co-workers

(members of the same team) or co-researchers. All of them collaborated in small

groups, with one or two colleagues at a time, and three respondents also collaborated

all at once in a large group. One respondent mentioned that the large group would

be to share end results, so it may be that the group size is dependent on the collab-

oration intent.

If yes, what tools do you currently use to support your collaboration? Of the four

respondents, three did not mention any software tools, though all respondents did

use devices such as phones, presentations on projectors, email for sharing documents

as well as memory sticks and shared folders. There was one respondent who had tried

CollabREate, but the tool was not usable in practice since their malware analysis

required them to be on isolated computers not connected to the internet for security

purposes.

Are these tools su�cient? Again, this was a yes or no answer, and �ve respon-

dents answered this particular question. Four said that no, the tools are not su�cient

while one said that they were.

If not, what features do you wish you had for collaboration in your tool environ-

ment(s)? Or if you don't use any tools, what features do you wish you had? Answers

to this question varied but answers included:

48

� synchronize documentation e�orts by importing pieces that were already docu-

mented

� share comments on speci�c parts of code

� share renamed variables and functions

� retrace steps that an analyst did that were useful

� status updates on what an analyst just did or found, such as �X just renamed

sub_0000ABCD to XYZ�

3.3.2 Results: Documentation

This part of the survey contained �ve questions, asking whether or not there was a

need to create documentation and if so, what kind of documentation and what tools

were used to create it. We then asked whether or not these tools were su�cient and

what features they would like to see. The results for each question are discussed below.

When you are working at the assembly level, do you have a need to create docu-

mentation? This was a simple yes or no answer, and all six respondents said that

yes, they do create documentation.

If yes, what form does the documentation take? If you can, please post a sample in

the box below. Otherwise please comment on what a sample of documentation would

look like. The most prevalent answer to this question was comments within IDA Pro

which four respondents mentioned. There was one respondent who mentioned that

they rely on making the comments appear semi-Javadoc so that they are easier to

parse, and one respondent who also mentioned that comments were made on paper.

There were four respondents who mentioned analysis summaries within reports

while two respondents mentioned that they created these reports with code snippets

of the disassembly. One respondent also added that a sequence diagram might be

included in the report to show the call sequence leading to the problem.

If yes, what tools do you currently use to support your documentation? While two

respondents reported using no tools at all, an equal number used Microsoft Word,

Excel and OneNote. One use of Excel was to create control �ow graph representations

using hyperlinks. Tools mentioned by one respondent each included LaTeX, Visio,

OneNote, IDA Pro, and a WIKI.

49

Are these tools su�cient? Given as a yes or no option, �ve respondents said that no,

the tools were not su�cient while one said that they were.

If not, what features do you wish you had for documentation in your tool environ-

ment(s)? Or if you do not use any tools, what features do you wish you had? There

were four responses to this question, with two respondents mentioning being able to

integrate information from various sources, including from reverse engineering tools.

This would include pulling information from di�erent sources (i.e. IDB �les, API

documents, diagramming tools) to consolidate into one report, and one respondent

mentioned that this may be possible through tagging.

Figure 3.2: The Graph View in IDA Pro.

The need for comment support was discussed by two respondents. One discussed

tagging and grouping of comments as well as searching for them. The tagging would

allow comments on speci�c code, basic blocks and variables. The other respondent

mentioned having to annotate a snapshot of the graph view in IDA Pro. This graph

view is shown in Figure 3.2. This respondent also mentioned the need to make

50

Collaboration

67% (4 out of 6) is needed
80% (4 out of 5) current support is insu�cient

Features requested:
Share existing documentation
Retrace others' steps
Status updates on analysts' actions

Documentation

100% (6 out of 6) is needed
83% (5 out of 6) current support is insu�cient

Features requested:
Better comment support
Better documentation integration
Document execution paths

Table 3.16: Survey of Malware Collaboration and Documentation.

integration automated by being able to export comments to the documentation system

so that it remains up-to-date when changes are made in IDA Pro.

There was one respondent who mentioned being better able to document execu-

tion paths, as well as creating small videos to explain concepts that will need to be

repeated, such as how we reached a location and the path that led there and why a

function is being renamed.

3.3.3 Results: Summary

Table 3.16 shows a summary of the results from this user survey. Collaboration was

reported as necessary by four of the respondents, however four also reported that their

tools were not su�cient. The features requested included being able to share existing

analysis documentation, including comments and renamed variables and functions,

retrace steps that another analyst took as well as follow status updates on analysts'

work.

As for documentation, all six respondents needed to create documentation while

�ve reported that the tools were insu�cient. Respondents wanted better support

for comments within the reverse engineering tools, better integration between the

di�erent documentation tools, and the ability to document execution paths.

51

3.4 Chapter Summary

This chapter provided the results of interviews and surveys with both mainframe de-

velopers and malware analysts. Within the mainframe group, interviews took place

with a select few individuals and were presented by each interview. The large ex-

ploratory survey that was issued to each group was identical, and the results for each

group are discussed and presented by each section of the survey. We summarize all

results in Appendix A for each group, respectively. Finally, we presented the results

of a survey conducted with a small group of malware analysts on the speci�c topics

of collaboration and documentation.

The following chapter provides the results of the requirements elicitation per-

formed with each group. Chapter 5 then further evaluates these results, by comparing

and contrasting the groups' pro�les and issues.

52

Chapter 4

Requirements Elicitation

The previous chapter, in addition to related work [86, 87], has shown that current tool

support for the systems we are investigating is inadequate. While our exploratory sur-

vey aided us in forming a preliminary view of the problem space, we still need to elicit

requirements to drive the future development of assembly language comprehension.

This chapter reports the results of a requirements elicitation study that took

place at two industrial software teams [88]. The �rst of these teams falls under the

mainframe development category. The second team represents the malware analysis

perspective. We will discuss the method we used for the study, as well as requirements

elicited from each group.

4.1 Elicitation Method

This section introduces the two groups that we study, as well as each step of the elic-

itation process. The background and motivation behind the method used is provided

in Chapter 2.1.

The requirements elicitation process we followed can be split into the following

steps. Each of these steps is described in order within this section. Steps 2 and 5

required us to meet face-to-face with participants, and were therefore not possible

with the malware group.

1. Identify the pro�les of participants through surveys.

2. Activity-based protocol elicitation (mainframe group only).

3. Normative manipulation techniques to increase information sharing.

4. Nominal group technique to elicit requirements.

53

5. Exit interviews (mainframe group only).

6. Exit survey to capture �nal opinions.

4.1.1 Elicitation Setting

The mainframe group consists of seven co-located team members of one company

working in the area of assembly language programming on the company's mainframe.

The team belongs to a large multinational company which employs more than 13,000

sta�. Every member of the group is a long term employee in the area of relevance.

The malware group is in a national military research department. The team

consists of eight members that investigate how to create more secure software and

better secure existing software. They use reverse engineering tools and techniques

to provide hindsight on malware and security �aws. Additionally, in contrast to

the mainframe group, the malware group has been a stakeholder in our Assembly

Visualization and Analysis (AVA) project from the beginning. We do not see this

having a�ected our results, but it is a factor to consider for those looking at performing

this elicitation with other unique teams.

The subjects in each group were not made aware that normative manipulation

was carried out for the duration of the study. For each group, an initial survey was

distributed to the team in advance to perform user pro�ling. This was then followed

by normative manipulation and requirements elicitation, and �nally an exit survey.

Ethics approval for this study is shown in Appendix F.

Mainframe Group Process

Previous to arriving, we distributed the user pro�le survey by email weeks in advance.

We then spent three mornings on site. On the �rst morning, we observed two em-

ployees and distributed the individual priming and requirements elicitation exercise

to each team member. On the following morning, we led the nominal group session

based on this exercise. On the �nal morning we conducted exit interviews with two

team members to discuss the meaning of requirements produced by the group ses-

sion. Finally, we issued an online exit survey by email to capture thoughts about the

process one week after our visit.

54

Malware Group Process

It was not possible to be on-site with the malware group due to travel constraints.

Furthermore, observational studies would not have been allowed due to the malware

group's nature as a security facility. Therefore, we performed all of the same elicitation

steps, except the activity-based elicitation and exit interviews. The user pro�le survey,

and the individual priming and requirements elicitation exercise, were completed over

email. The nominal group session was conducted over video conference, with the

malware group located together face-to-face. Finally, the exit survey was sent by

email invitation within a week of the group session.

4.1.2 User Pro�les

The user pro�le survey was administered online as double-blind with the LimeSur-

vey platform [89]. This initial survey had three goals: to determine how the group

interacts and how knowledge is distributed, to obtain an NFC measurement for each

individual, and �nally to determine their INDCOL score. After the pro�les of the

participant groups were determined, the normative manipulation appropriate to the

group type could be applied.

NFC and INDCOL Measures

The original NFC scale developed by Webster and Kruglanski [90] contained 42 items

and included �ve facets. Due to constraints on participants' time, the full NFC scale

was not used. Instead, we used a revised version, developed by Roets and van Hiel,

that contained 15 items [91]. The revised version does not allow for the assessment

of each facet of the scale, but provides an overall measure of individual di�erences in

NFC.

For the INDCOL scale, we used that which was proposed by Oyserman et al.

in [16]. It contained 15 items: eight for collectivism and seven for individualism.

These items accounted for 88% of items across each of the 27 scales found cited in

the past 20 years.

In our elicitation, we further customized each scale to suit the experimental setting

by developing a translation mapping. This was necessary since it was observed by

Postmes et al. [10], that in order to improve results, participants must view the whole

process as relevant. The mapping process was identical for each scale: we mapped the

55

generic terms to speci�c software development terms and transformed all statements

into questions. For instance, in the original �I �nd that establishing a consistent

routine enables me to enjoy life more�, we replaced any incidence of the word life

with development, which became �Do you �nd that establishing a consistent routine

enables you to enjoy development more?� Our reasons for rewording into questions

were twofold: an expert was consulted who indicated participants in the software �eld

would be more receptive to questions, and it �t the format of other questions in the

survey. The items are shown in Tables 4.1 and 4.2.

The responses to each question were recorded on a 6-point Likert scale. Typically,

a high question score by an individual correlated to a high NFC or INDCOL response.

During the NFC remapping process, some items had their meanings reversed (reverse-

coded). In the case of reverse-coded items, the applicable scores were reversed, or the

reverse-coding was adjusted by reversing the points of the Likert scale. An example of

a reverse-coded item would be �I dislike unpredictable situations.� becoming �What is

your opinion of unpredictable requirements?�. All INDCOL items that were reverse-

coded in the original scale are also reverse-coded in the translation.

The NFC questions were interspersed with the INDCOL in sections corresponding

to each of the three scales used (i.e. �Strongly Dislike � Strongly Like�, �Not at All �

Very Much�, �Never � Very Often�). They were also randomly ordered within each

section by the survey framework, so that no participant would be presented with

them in the same order.

4.1.3 Activity-Based Protocol Elicitation

The �rst half-day session with the mainframe group included two consecutive hour-

long observations of one subject at a time, which were video recorded and later

transcribed.

Protocol analysis asks a participant to engage in some task and concurrently

talk aloud. The claim is that this will result in a direct verbalization of cognitive

processes [92]. The most well known of these may be the think-aloud and talk-aloud

protocols. Think-aloud was originally introduced by Lewis and Rieman [93], and

involves the participant thinking aloud as they perform a set of speci�ed tasks. A

related technique, talk-aloud protocol, involves participants describing their actions,

but not to the degree of think-aloud where they also explain them.

Goguen and Linde [94] discuss why talk-aloud protocols are an unnatural dis-

56

Original Adapted Translation Mapping Used Reverse-
Coded

I don't like situations that are
uncertain.

What is your opinion of re-
quirements that are uncertain?

I don't like = What is your
opinion of?
situation = requirement

Yes
(adjusted)

I dislike questions which could
be answered in many di�erent
ways.

What is your opinion of cod-
ing tasks which could be im-
plemented in many di�erent
ways?

I dislike = What is your opin-
ion of?
questions = coding tasks
answered = implemented

Yes
(adjusted)

I �nd that a well ordered life
with regular hours suits my
temperament.

Do you �nd that a well ordered
development routine is helpful?

life = development
suits my temperament = is
helpful
with regular hours = routine

I feel uncomfortable when I
don't understand the reason
why an event occurred in my
life.

Are you concerned when you
don't understand the rea-
son why code behaved unpre-
dictably during development?

uncomfortable = concerned
an event occurred = code be-
haved unpredictably

I feel irritated when one per-
son disagrees with what every-
one else in a group believes.

Are you concerned when a
team member holds a unique
opinion from everyone else in
the team?

irritated = concerned
one person = team member
disagrees = holds a unique
opinion
a group = the team

I would quickly become impa-
tient and irritated if I would
not �nd a solution to a prob-
lem immediately.

Would you quickly become
impatient or irritated if you
would not �nd a solution to a
coding problem immediately?

problem = coding problem

I don't like to go into a situ-
ation without knowing what I
can expect from it.

What is your opinion of being
assigned a requirement to im-
plement without knowing what
you can expect from it?

I don't like = What is your
opinion of?
go into = being assigned

Yes
(adjusted)

I don't like to be with people
who are capable of unexpected
actions.

What is your opinion of work-
ing with a team that lacks pro-
cess?

I don't like = What is your
opinion of?
be with = work with
people = team
capable of unexpected actions
= lacks process

Yes
(adjusted)

When I have made a decision,
I feel relieved.

Do you feel relieved when you
have made a decision on how
to implement a requirement?

made a decision = made a de-
cision on how to implement a
requirement

I dislike it when a person's
statement could mean many
di�erent things.

What is your opinion of when
a team member's technical in-
formation is ambiguous?

I dislike = What is your opin-
ion of?
statement = technical informa-
tion
could mean many di�erent
things = is ambiguous

Yes
(adjusted)

When I am confronted with a
problem, I'm dying to reach a
solution very quickly.

When confronted with a coding
problem, do you need to reach
a solution very quickly?

problem = coding problem
dying = need

I �nd that establishing a con-
sistent routine enables me to
enjoy life more.

Do you �nd that establishing a
consistent routine enables you
to enjoy development more?

life = development

I enjoy having a clear and
structured mode of life.

Do you enjoy having a clear
and structured development
process?

mode of = process
life = development

I do not usually consult many
di�erent opinions before form-
ing my own view.

Do you consult many di�erent
opinions before forming your
own view?

Yes

I dislike unpredictable situa-
tions.

What is your opinion of unpre-
dictable requirements?

I dislike = What is your opin-
ion of?
situation = requirement

Yes
(adjusted)

Table 4.1: Adapted NFC Items.

57

Original Adapted Translation Mapping Used Reverse-
Coded

I tend to do my own thing,
and others in my family do the
same.

Do you tend to work individ-
ually, and others in your team
do the same?

do my own thing = work indi-
vidually

I take great pride in accom-
plishing what no one else can
accomplish.

Are you proud of accomplish-
ing tasks that others have not
yet accomplished?

no one else can = others have
not yet

It is important to me that I
perform better than others on
a task.

How important to you is com-
petitive spirit on a team?

perform better than others on
a task = competitive spirit on
a team

I am unique - di�erent from
others in many respects.

Are your work habits or skills
di�erent from others on your
team?

many respects = work habits
or skills
others = others on your team

I like my privacy. Do you value work privacy? privacy = work privacy
like = value

I know my weaknesses and
strengths.

Do you know your weaknesses
and strengths?

I always state my opinions very
clearly.

Do you always state your opin-
ions clearly?

(�very� removed because of
scale used)

To understand who I am, you
must see me with members of
my group.

How easily can your work
be understood independently
from the work of others on your
team?

who I am = your work

To me, pleasure is spending
time with others.

Do you enjoy working with
others?

pleasure is spending time = en-
joy working

Yes

I would help, within my means,
if a relative was in �nancial dif-
�culty.

Would you help others with
their work tasks, within your
means?

relative = others
�nancial di�culty = work
tasks

Yes

Before making a decision, I al-
ways consult with others.

Do you consult other team
members before making a de-
cision on how to implement a
requirement?

decision = implementation de-
cision
others = team members

Yes

How I behave depends on who
I am with, where I am, or both.

Do you approach problems
di�erently depending on the
team, the project or both?

behave = approach problems
where = project
am with = the team

Yes

I have respect for the authority
�gures with whom I interact.

Do you respect the work deci-
sions made by those senior to
you?

authority �gures = those se-
nior to you

Yes

I make an e�ort to avoid
disagreements with my group
members.

Do you make an e�ort to avoid
disagreements with team mem-
bers?

respect = respect the work de-
cisions
group = team

Yes

I would rather do a group pa-
per or lab than do one alone.

Would you rather work on a
task as part of a team than
alone?

group paper or lab = task Yes

Table 4.2: Adapted INDCOL Items.

58

Activity Question

Call Trace: Looking at the execution trace
of the program.

�What information are you looking for and why?�

Notes: Taking notes, drawing diagrams, or
reading past notes.

�What information are you looking up and why?� or �What
information are you recording and why?�

Consult: Either being consulted or consulting
someone else.

�Why did you need to be consulted? For what particular prob-
lem?� or �Why did you need to consult that particular person?
For what problem?�

Debug: Using the debugger. �What information are you looking for?� or �What issue are you
trying to resolve?�

Documentation: Looking at documentation. �What information are you looking for?�
Reference Information: Looking at an in-
formation source.

�What information are you looking for?�

Tools: Switching between tools. �What function does that tool provide that caused you to
switch?�

Search: Using grep, in-house search tools, or
searching in an editor.

�What information are you looking for?�

Pause: Not taking any action. �What problem are you trying to understand?�
Navigation: A trail of navigating through the
system.

�What information are you trying to �nd?�

Reaction: Recoils or says �huh?� �What did you expect to happen?�
Focus: Leaning forward and squinting. �What information are you looking for?� or �What are you try-

ing to understand better?�

Table 4.3: Cue Sheet for Activity-Based Protocol.

course format, including subjects trying to provide what the experimenter desires or

�uctuating between talking to oneself and to the observer. To overcome issues such as

these, we used a cuing system that would ask participants speci�cally about when they

might be forming mental visualizations or understandings. We were unable to �nd an

already published and veri�ed form of such an �activity-based� protocol. Therefore,

we looked at daily software engineering work practices from Singer et al. [95].

They name fourteen activities observed when shadowing software engineers. Of

these fourteen, six practices were applicable to our study. Applicability here refers

to a work practice that could be observed, and would be of interest in the creation

of tool support for program comprehension. For example, issuing a general UNIX

command, or interacting with hardware, are both observable but we did not believe

them to be part of program comprehension. In addition to these seven, we added

�ve body-language and comprehension-speci�c activities. These include: Reference

Information, Tools, Pause, Navigation, Reaction, Focus. This protocol is shown in

Table 4.3.

4.1.4 Priming and Requirements Elicitation Exercise

The INDCOL results from the user pro�le survey showed that each group was more

individualistic than collectivist (see Section 4.2.1). Following this, we prime them for

59

creativity to not only generate more ideas, but to also generate more creative ideas.

The priming process is as follows: �rst, the participants were given a set of ma-

terial containing the normative manipulation and requirements elicitation exercises.

Second, the participants were instructed to (a) complete the exercises in the order

presented, and (b) to the best of their ability.

The normative manipulation exercises consisted of two parts. First, we primed

the participants to be more individualistic�this was done by applying a series of

questions, adapted to suit the context, from those used by Goncalo and Staw [17].

Second, we primed participants to be more critical by simply asking them to think

critically about a particular tool they used in the course of their work. We did

so since critical groups are more likely to share not only more but higher quality

information [10]. Additionally, critical groups tend to avoid production blocking

e�ects such as groupthink. The adapted individualistic manipulation and critical

priming questions are shown in Table 4.4.

Original Individualistic Manipulation
Question

Adapted

Write three statements describing yourself. Write three statements describing your particular area(s) of ex-
pertise (i.e. topics that other team members consult you on).

Write three statements about why you think
you are not like most other people.

Write three statements about how your area(s) of expertise does
not overlap with that of other team members.

Write three statements about why you think
it might be advantageous to stand out from
other people.

Write three statements about why you think it is advantageous
for individuals to have an area of expertise.

Critical Manipulation Question Adapted

Instructed to be critical. Critically comment on one particular tool, does not matter
which one, which you use in the course of your work (e.g. how
e�ective it is, or how its e�ectiveness could be improved). Please
provide at least three comments.

Table 4.4: Normative Manipulation and Critical Priming Exercises.

The �nal exercise was intended to elicit requirements. The example shown is for

the mainframe group. The example for the malware group is �locating every system

call to [function]� where we used the example function lstrcmpi :

While working with assembly, there may be times when you wish you had additional tool sup-

port or visualization support.

Please write down the tasks for which you wish you had that support. For example, note

times when you think �I WISH I COULD SEE...� or �I WISH I COULD FIND...� An ex-

ample might look like �locating every modi�cation of a particular DSECT�.

60

Please add to the list during the day as you work. Anything you can come up with is �ne, but

the focus should be on problems and not solutions.

4.1.5 Nominal Group Session

The nominal group technique [96] can be used to improve the quantity and quality of

information shared in groups, and therefore directly mitigate the detrimental e�ects

of groupthink and production blocking. It is a structured procedure for gathering

information from people that takes everyone's opinion into account. It consists of the

following seven steps:

1. Introduction: Researchers introduce purpose of session, participants introduce
themselves and area of work.

2. Listing of Ideas: A round table listing of ideas, which are transcribed si-
multaneously and projected on a screen. Talking out of turn and discussion is
discouraged. New ideas that emerge are added and skipping a turn is allowed.

3. Discussion of Ideas: Unstructured discussion on each item to clarify, elabo-
rate, defend or dispute items.

4. Ranking to Select `Top 10': Each participant selects 10 items and orders
them from 1 to 10, where 10 is the most important.

5. Break: Scores are tallied and items reordered by score.

6. Discussion of Vote: Unstructured discussion about the top 10 items � in
particular, opinions on items that were either included or excluded.

7. Re-ranking Revised `Top 10' Items: Each participant re-selects his or her
top 10 items and assigns each a score between 0 and 100. Items can have the
same score, but at least one must be given 100.

It has been shown that nominal groups produce nearly twice as many di�erent

ideas than real groups, and in 22 past experiments, 18 reported the performance of

nominal groups to be superior to that of real groups [97]. Real groups refer to group

brainstorming sessions. In regard to quality, they �nd that in all six studies that

assessed quality, the nominal groups outperformed the real groups.

For the purpose of repeatability of our elicitation, we followed the script shown in

Appendix B.

4.1.6 Exit Process

Due to constraints at the malware group's site, exit interviews were conducted at only

the mainframe group with two participants. Each interview was an hour long and

61

was video recorded and then transcribed for analysis. These interviews were used

to clarify and understand the requirements brought up during the session the day

before.

An exit survey was administered to participants using the same survey platform

as the user pro�le questionnaire. The same process was used to ensure that it was

double-blind. This exit survey is used in the discussion (see Section 4.4.2) to assess

how the adaptation was received and how well the normative manipulation had been

followed. The exit survey questions are shown in Table 4.10.

4.2 Results of Applied Techniques

This section presents the NFC and INDCOL pro�les for both the mainframe and mal-

ware groups, �nding that each group has a higher than average score in both scales,

with the mainframe group having a 10% higher average in both. Next, we discuss

our experience with performing observational studies. Finally, we provide interest-

ing points of discussion from the experience of using the nominal group technique.

The requirements and their importance derived from this technique are discussed in

Section 4.3.

4.2.1 User Pro�les

The invitation to this �rst survey was distributed to all seven members of the main-

frame group and six members of the malware group. Although the malware group

consists of eight members, we were provided contact information for six since they

perform reverse engineering and are therefore relevant to our study. We received a

100% response rate from the mainframe group, whereas only four members (66.6%)

of the malware group responded. The di�erence in response rate can be explained by

the fact that participation in the exercise was made mandatory by the manager in

the mainframe group, whereas in the malware group, participation was voluntary.

NFC and INDCOL Pro�les

In order to calculate the measures for NFC and INDCOL, reverse-coded items have

had their responses corrected and the score for each individual was summed and

converted to a percentage. We corrected reverse-coded responses by applying the

formula 7 � response where response is from 1 to 6. This sum is then converted to a

62

percentage by dividing by the total maximum score (6 × 15 = 90) and multiplying

by 100. Any score that is greater than 45 (or 50%) would generally be regarded as a

higher than average NFC or INDCOL scale. The formula for this conversion is:

NFC−15∑
i=NFC−1

i

6× 15
× 100

Figure 4.1 shows the NFC and INDCOL measures for both the mainframe and

malware groups. The results of the survey show that both groups have a higher than

average NFC and a slightly higher INDCOL. This indicates that both groups have a

greater than average need to reach solutions quickly, and are more individualistic in

nature. This matched our expectations for these highly-specialized industrial software

groups due to the complex and intricate nature of assembly language comprehension.

The mainframe group's median score for NFC was 71.11 (69.84 mean, 4.51 STDEV),

about 20% above average, while their median score for INDCOL was 61.11 (60 mean,

3.85 STDEV), about 10% above average. The malware group's median score for

NFC was 62.22 (60.56 mean, 11.98 STDEV) and for INDCOL was 51.11 median

(51.39 mean, 4.09 STDEV). These results show that the mainframe group has both a

considerably higher NFC and INDCOL than the malware group (approximately 10%

in both cases). While the malware group does have a higher than average NFC, their

INDCOL is only slightly above average.

4.2.2 Activity-Based Protocol Observations

The observation sessions were conducted by two researchers with two participants

from the mainframe group. These sessions were intended to last one hour and were

video recorded, and later transcribed. The �rst session was with a participant whose

primary role was considered maintenance while the second was development. Each

participant was asked to work on a typical task involving assembly language. In the

�rst session, the participant did not have any work to complete with assembly, so

he walked through a bug that he had recently �xed. Though we intended to use

the activity cues, the participant still continued to think-aloud and ask us questions

about what we wanted to see, though he was never told to do so.

The second participant diligently began refactoring existing assembly code, which

he, himself, had written approximately 20 years ago. This developer worked so quickly

that it was initially hard to follow without the context of what he was trying to

63

Figure 4.1: NFC and INDCOL Pro�les.

accomplish. At �ve minutes into the session without any communication or observable

activities, one researcher asked a question about what the participant was working

on. After this link was established, the cuing system became much more valuable.

In essence, the protocol �ltered out what could have been unnecessary information

in favor of data directly relevant to issues that could be assisted by visualization

and analysis tool support. The process was also useful to the participant; after one

particularly long pause, he remarked, �It's funny... that pause you don't think twice

about until somebody asks why you do it�.

The two observers combined notes on issues that had been experienced by the two

participants (available in Appendix C).

4.2.3 Nominal Group Session

We allotted two hours for each nominal group session. With the mainframe group, we

took exactly two hours to complete the process with all seven participants and two

facilitators. With the malware group, we had a total of four participants, though only

three could make it to the group session and the fourth participated asynchronously

by email. The session with the malware group lasted a total of 1hr 18min and was

conducted by three facilitators. One facilitator was the same at each group session.

64

Critical Thinking and Evaluation

One participant in the mainframe group commented afterwards that it was unfor-

tunate we had not visited earlier since he had found the sessions quite useful. He

mentioned that they had intended to have regular group meetings but those meetings

had never occurred.

Each group was observed to have spent the entire allotted time (10 minutes and

into the following break) to assign points to issues. In the �nal ranking, where they

could give a score between 0 and 100, many were selected at a �ne-grain level (i.e. 88

versus rounding to 90).

Another aspect of each group is that they were keen to discuss issues as soon

as they were brought up, and not during the given discussion period. This did not

seem to a�ect the process, except discussion was not that plentiful during the allotted

period since most of it had already occurred.

Each group had experience building tools for themselves and mentioned a desire

to build solutions to the issues brought up. Within the mainframe group, this desire

was more pronounced. For example, one participant commented on three issues in a

row with:

�...that's actually quite, quite achievable, that we could do that... all of that stu�

is feasible... we don't have it, we should do it, yes, I agree� � [another issue] � �That's

quite achievable too� � [another issue] � �We could do all of that stu� without much

e�ort, we just haven't done it, we should do it�.

While we presume that participants were swayed by the rankings of others, it

is not a question we asked them directly. The participant in the malware group

that could not attend the group session sent his exercise sheets in advance, and one

researcher �lled in for him to list his issues. We then sent him the total unranked list

by email and asked for his preliminary ranking. Once tallied with the group scores,

we sent him the preliminary rankings to ask for his �nal ranking. It is interesting to

note a comment that this participant wrote in his email after seeing the preliminary

ranking:

�I re-ranked my answers and changed some of them as well (I am somewhat biased

by the re-ordering). It has been so long since I intensively used [tool] that I forgot a

few of the `annoyances' I had...�

While we cannot provide anecdotal evidence that this is true for all participants,

we do believe observable evidence exists within the di�erences between preliminary

65

and �nal ranking score data.

Information Sharing

Both groups appeared to share information that was previously not discussed. One

participant in the mainframe group remarked to an issue �you know you've got a fair

bit of that...� in regard to functionality they already had, and the same participant

interrupted during one issue with:

�Before you go o� with what you're saying, what you're saying is pretty close to

what gets provided in [an existing tool we have]...�

In the malware group, after one participant had related an issue (16 - 64 bit

issue), another participant pointed to the overhead and spoke in French (their primary

language). The participant who mentioned the issue then said: �Breaking news,

apparently you can do that!� The interesting observation here, is that in each group,

some of the participants had worked together upwards of 10 years and yet, they did

not freely discuss their issues.

4.3 Requirements Elicited

This section focuses on the requirements elicited from the nominal group sessions

for the mainframe and malware group respectively. For each group, we present a

table listing each requirement as well as its total preliminary and �nal ranking. Each

requirement is described in detail and salient conversation points are additionally

provided. Further, for each group, we provide the preliminary and �nal scores given

by each individual to each requirement. We additionally use charts to show how each

requirement's perceived importance changed during the nominal process. We attempt

to group requirements into corresponding task areas for each group to further discuss

and explore the problem space.

4.3.1 Mainframe Group: Requirements Elicited

In this section, we present the issues discussed by the mainframe group during the

nominal group session. The full list is shown in Table 4.5, sorted by the �nal rank.

With six participants, a requirement could have received the highest initial ranking of

60 and �nal ranking of 600. Each issue is expanded upon below based on discussion

66

No. Reported Issue Initial Final
1. The ability to see in context changes to any piece of source. All changes, not

just the last one, including by whom, when and why.
44 440

2. XDC debugger could be integrated with source editing (step through). 36 410
3. A simple way to recompile all a�ected modules and links when I change

something (similar to make).
35 400

4. Read a DSECT, read bits and bytes, and label the various �elds. IPCS
functionality for a running system.

23 340

5. Logic �ow (i.e. create charts that document the code). Would need to be
multi threading compliant.

19 280

6. Better support for identifying timing problems. 11 265
7. XDC debugger is too intrusive (interacts too much with the environment in

which it is being debugged).
16 260

8. Integration of source, documentation, logic and make. 12 260
9. DSECT display (like XREF) that includes the �elds within the DSECT. 250
10. Looking at the assembler macro (in the source - not the listing), see from

which macro library and from what level it came.
13 235

11. Ask for a macro to expand with the argument speci�ed in the code without
assembling the whole system.

24 220

12. Unable to use XDC (unable to add debugging traps) in the VTAM environ-
ment.

23 140

13. Internal debugger to work with subtask engine. 15 140
14. XDB supporting internal debug command with panel support. 9 30

Table 4.5: List of Mainframe Requirements Ordered by Final Rank.

that occurred during the group session. We use A1 through A6 to refer to each of

the participants.

1. The ability to see in context changes to any piece of source (440/600
points) This requirement was the �rst brought up in the session, and was by A1.
He mentioned being able to see in context changes to any piece of source code (not
just a module or DSECT but anything). This would include all changes (not just
the last one) including by whom, when and if available, why. They do currently have
a basic facility to see the last change, or a speci�c change, but he would like to roll
them all together. He mentioned at the moment that there are areas of the source
code where there have been twenty changes made over the last �ve years by di�erent
people for di�erent reasons all on the same piece of code and it is important to see
why they were done and in context altogether.

2. XDC debugger could be integrated with source editing (410/600 points)
This was part of A2's �rst requirement (item 7 below). He would like their debugger
to be integrated with source code editing so that they have an IDE type setup where
one can �ip between the source and actually stepping through the code.

3. A simple way to recompile all a�ected modules and links (400/600
points) This was the second item brought up by A1. He wanted a simple way to
recompile all a�ected modules and links when he changes something. A2 commented
that this is similar to the make utility. A1 said that he would have used that term

67

but wanted to ensure he was speaking speci�cally about their environment on the
mainframe. He expanded on it saying that it is not something that can be done 100%
mechanically. He gave as an example, changing a comment in a common copybook
which the developer knows does not require recompilation.

Similarly, he mentioned de�ning a new �ag bit in an existing byte and that you
do not need to compile anything that currently uses it unless you are making changes
to them because of it. Therefore he would like the ability to �nd out what has been
a�ected and adjust the list accordingly. As an example, he mentioned that you might
get a list of 50 places that use this modi�ed byte, and you can then click on the source
and each one expands out to show you where it is used. You can then ignore and
delete it from the list before compilation begins. He mentioned that this would save
a lot of time. A2 then commented that they have previously requested this exact
requirement. A3 then wanted to add to this by being able to compile the code at
levels below the current level (previous versions). A2 mentioned that this can be done
in Java.

4. Read a DSECT, read bits and bytes, and label the various �elds
(340/600 points) This was the fourth requirement from A4. He mentioned that
he would like something that can read a DSECT and then read the bits and bytes
and label the various �elds. A1 then asked if it meant the ability to point to a piece
of storage and expand it out to look like X where X is the name of something that
can be used to decode the data. There was then some discussion that IPCS (Interac-
tive Process Control Facility) currently supports something similar in a control box,
however, the di�erence with this requirement is that it is for a running system. In
other words, this would be a running system equivalent to what IPCS is doing.

5. Logic �ow (i.e. create charts that document the code) (280/600 points)
This was the �rst requirement from A4. He said that since they do not have much
documentation, he would like the logic �ow, as in reverse engineer and create charts
that document the code. He added that it would need to understand multi-threading,
which also means it would need to understand macros. He commented that they have
special infrastructure macros that will not be understood by a generic tool.

6. Better support for identifying timing problems (265/600 points) This
is a requirement that came out of discussion, originally brought up by A4, however,
expanded upon by A1. He mentioned that at the level they work at, timing problems
can be a nightmare since they are very hard to produce, let alone reproduce. It is
often a thought exercise to try and look at a piece of code, or two pieces of code that
interact and work out whether or not there could be timing issues. Since they deal so
much with multiprocessing, they have to be very careful. He said that sometimes you
can prove that there is no timing issue, but often you cannot, so you have to assume
that there could be one and therefore be defensive. They often spend a lot of time
tracking down problems and make a best guess that it is indeed a timing problem

68

that cannot be reproduced. A2 mentioned that in the worst case, they send out �xes
that hopefully address the problem for the time being.

7. XDC debugger is too intrusive (260/600 points) This is the �rst require-
ment brought up by A2. He mentioned that the XDC debugger runs in the same
environment as the thing that is being debugged, so by walking through it, you are
changing it. He said that this is ok most of the time but in some cases it can be
very di�cult, and the ways around it are very messy. Coming from a virtual machine
background, he found the method of debugging from outside the virtual machine far
less intrusive. He did comment that it is a problem with the operating system itself
and that the person who wrote the debugger could probably not have done any better
at the start.

8. Integration of source, documentation, logic and make (260/600 points)
This was the third requirement mentioned by A3. He would like there to be the logical
integration of source code, documentation and logic. Currently if they are lucky
they have documentation and if they are very lucky, they have the logic. However
he would like all of them to exist on one media, integrated in their environment.
He commented as well that this would require some kind of discipline among the
developers that would need to be o�cial. Further discussion mentioned that they
would need management commitment in order to allow people the time for this. The
consensus was that they would never have that, and that there is always a new project
more important than the previous one. This means that they always need to �nish
the current one as soon as possible and move on.

9. DSECT display that includes the �elds within the DSECT (250/600
points) This requirement was mentioned by A4 before the session o�cially started
as something that came to mind in a recent issue he worked on. He mentioned a panel
that could show all the references to various �elds in a DSECT that would save him
from searching through individually �eld by �eld to �nd the references. He mentioned
XREF was useless in this regard because of the long labels. However, A1 mentioned
that they are in fact there and A4 then asked how to access them and commented
that he had learned something already. Everyone laughed and then A2 joked �you
could write down I wish this assembler stu� was better documented�. He recon�rmed
this issue during the session before listing his second requirement.

10. Looking at the assembler macro (in the source - not the listing), see
from which macro library and from what level it came (235/600 points)
This was A3's �rst requirement. He wished that when looking at the assembler source
code, he would be able to select the macro, select a special key and get information
about the macro. For example, this macro under this environment comes this this
macro library. Also if the macro is in their own library, show information on what
level it currently is. A2 mentioned that this is quite achievable.

69

11. Ask for a macro to expand with the argument speci�ed in the code
without assembling the whole system (220/600 points) This is A3's second
requirement which followed up on the previous one. He would like to expand a macro
with a speci�c argument without involving the entire CSECT assembly. He simply
wanted to see what it looks like without assembling the whole CSECT, which may
be a thousand lines long. A CSECT is an independently relocatable section of code.

A2 asked if he would be prepared to have it done in such a way that the relevant
bit of the listing is shown as a window on top of the source. A3 said of course and
A2 commented that this is quite achievable too. A4 then said that this would be
handy since he often goes to the listing just to �nd the address (o�set) where the
various �elds of a DSECT are. He said he does this especially when reading a dump,
in which all you see is bytes, since the dump tool does not understand DSECTs, and
the macro does not tell you what o�sets the various �elds are until you get to the
assembly listing. A2 commented again that all this can be done without much e�ort
and that they should simply do it.

12. Unable to use XDC in the VTAM environment (140/600 points) This
was the �rst item brought up by A5. The main problem he had was that he wanted to
use the XDC debugger within a VTAM exit environment. Speci�cally he wanted to
put XDC debugging traps into the VTAM (production) environment. A2 commented
that he mentioned something similar on his exercise sheets, which was being able to
integrate the debugger with source editing so one could have an IDE setup where
you can �ip between the source and the debugger stepping through the code. He
mentioned also that right now their debugger is too speci�c and gets in the way
(point 7 above). P1 then commented that this actually can be done and he would
show him how o�ine. Some private discussion ensued to clarify and P1 con�rmed
that it could be done.

13. Internal debugger to work with subtask engine (140/600 points) This
was the third item from A4. He would like the internal debugger to work with the
subtask engine. The only discussion was that he asked A1 if this were possible, which
A1 con�rmed.

14. XDB supporting internal debug command with panel support (30/600
points) This was the second requirement brought up by A4. Ultimately he would
like a DSECT display with �elds and references. He went on to explain that they
have an internal debugging program (XDB) and he would like it to support internal
debug commands with some panel support. For example, instead of having to look
up commands (i.e. set an app trap or display the storage), that could be done within
the panel. Particularly if it could read a DSECT, for example, which register the
DSECT is based o� of, or see a particular �eld.

70

4.3.2 Mainframe Group: Discussion of Ranking Results

While Table 4.5 shows the total for the preliminary and �nal rankings for each re-

quirement, Table 4.6 further expands on this by showing the participants' individual

scores. Figure 4.2 shows these as side-by-side bar charts with the lighter bar being

the preliminary ranking (multiplied by 10 to use the same scale) and darker bar the

�nal ranking. These numbers show us how individuals may have changed their scores

based on the opinions of others, or perhaps how an issue was strongly felt by a par-

ticular individual and therefore they did not change their mind. We do not wish to

describe these results in great detail and leave this for future work, however we will

discuss some interesting observations by three di�erent phenomena.

No. A1 A2 A3 A4 A5 A6
1. 5 100 9 100 8 90 8 50 8 100 6 -
2. 8 80 4 70 10 100 7 80 7 70 - 10
3. 10 100 8 70 4 80 - 50 6 50 7 50
4. - 40 - - 2 30 2 100 10 70 9 100
5. 7 10 2 50 5 40 3 100 1 - 8 80
6. 6 25 - 50 - 50 1 100 4 10 - 30
7. - - - 100 3 90 - - 3 70 - -
8. 2 - 1 80 9 80 - - - 20 - 80
9. 3 - 3 50 1 - 4 100 - - 10 100
10. 1 35 7 80 7 70 - - 5 30 - 20
11. - 20 6 70 6 90 10 20 2 20 - -
12. - - 5 - - - 9 20 9 100 - 20
13. 9 40 - - - - 6 80 - - - 20
14. 4 30 10 - - - 5 - - - - -

Table 4.6: Rankings by Mainframe Group Participant (A1 - A6).

Di�ering Opinions: There were of course di�ering opinions of requirements,

some that may be based on the work process of an individual. We noticed that there

is no trend towards a di�erence existing in a speci�c category (categories shown in

Section 4.3.3), but we did notice some interesting di�erences within a requirement

itself. For example, if we look at Figure 4.2 and the chart for No. 2, we see that there

are varying opinions, between 100 at the maximum and 10 at the minimum. We see

a similar pattern in No. 4 with half of the participants giving it a less than 50 score.

Other requirements with interesting di�erences in opinion are 7, 9 and 12.

Individual Opinion: Similarly to above, we see a di�erence in score produced

by a speci�c individual. Looking at No. 4, 5, 6 and 9, we see that A4 ranked them

all at 100 (the maximum), while others ranked them far below. We also see that

these requirements were those introduced by A4 so therefore he was biased towards

them. It is interesting to note that while A4 did not give these requirements the best

71

score in his preliminary rankings, he made a push for them in his �nal rankings. In

fact, the only score that A4 gave that was high and not his own was No. 2. We

see a similar pattern with other requirements/individuals, however, the case is most

present for this participant.

Shifting of Scores: A further facet to inspect is how the preliminary rankings

and/or �nal discussion in�uenced individuals to change their initial opinions. In this

case we are looking for a marked di�erence between the lighter bar and corresponding

darker bar for an individual. The starkest example is in No. 7 and A2, having given it

a zero ranking in preliminary, yet 100 points in the �nal ranking. Of further interest

is that this requirement was introduced by A2. This may have been an error on A2's

behalf but perhaps not. A further example can be seen in No. 8 with A6, where he

went from a zero ranking to a �nal ranking of 80.

4.3.3 Mainframe Group: Requirement Areas and Current Work

We have classi�ed all of the reported requirements into categories. These are shown

below with their corresponding requirement numbers as ordered in Table 4.5.

� Browsing and Navigation: (0 points, observed)

� Build: 3, 11 (520 points)

� Control Flow: 6 (265 points)

� Data: 4 (340 points)

� Debugging: 7, 14 (290 points)

� De-obfuscation: (0 points, observed)

� Documentation (including comments, tags and commit messages): 5 (280 points)

� Integration (tool, system): 2, 8, 12, 13 (950 points)

� References: 9, 10 (485 points)

� Source Control: 1 (440 points)

� Source Editing: (0 points, observed)

These categories were created to the best of our ability however it is important

to note that some requirements crosscut categories. For example, requirement 8

states that there should exist integration between source code, documentation, logic

and make. This has been slotted into the Integration category but the requirement

also mentions lack of documentation so this could also exist in the Documentation

category. There are two categories that have no requirements reported from the

mainframe group. These are Browsing and Navigation, and De-obfuscation. However

during our activity-based protocol elicitation, we observed issues in both.

72

Figure 4.2: Mainframe Group Preliminary and Final Rankings.

73

In the case of Browsing and Navigation, we observed several issues belonging to

this category (see Appendix B), for example, rudimentary bookmarking of lines of

code and ine�cient searching with the XREF tool. Similarly for De-obfuscation,

we know that in certain mainframe systems, code has been purposely obfuscated to

prevent its theft (or misuse). We know this to be true of modern software as well.

However, even looking at our observation notes, we see that the mainframe group

faces issues where redundant code makes the code confusing to read. While this is

not done on purpose, it is a clear case of obfuscation.

Each category has the sum of its points provided. From these numbers, we see

that integration of di�erent tools and systems is the foremost issue for the mainframe

group. Following this, the three most important categories are: building the system;

�nding references in the codebase; and performing basic source control functions.

While we aim to create solutions for both groups of assembly language developers,

there are inherent challenges with creating solutions for the mainframe environment.

The �rst being access to the systems and code themselves, and the second being that

any visualization support would need to be run outside the mainframe with hooks into

it. We therefore aim to create language agnostic tools with the understanding that

these hooks could be created by an employee on-site. For example, we have created

the Tracks [86] tool for control �ow that uses its own dialect-agnostic XML format

to represent function calls. Additionally, Tracks can receive messages from external

sources (using sockets) to build diagrams. Although Tracks works with High-Level

Assembler (HLASM) [1] code (as is used in the mainframe group), it is currently

not integrated directly with the mainframe. Another possible solution to work with

external tools is to use FTP to transfer log �les from the mainframe, that can then

be opened in another tool.

4.3.4 Malware Group: Requirements Elicited

The full list of issues for the malware group is shown in Table 4.7. With four partic-

ipants, a requirement could have received the highest initial ranking of 40 and �nal

ranking of 400. For each of the 15 issues generated, we further discuss the details for

each below. One important note to mention is that IDA Pro [5] is the predominant

tool for the participants so most comments are in regard to what it lacks in tool

support currently. We use B1 through B4 to refer to each of the participants.

74

No. Reported Issue Initial Final
1. Disassemble more than one executable �le at a time in IDA Pro (e.g. DLL

libraries) and link between them.
31 380

2. During dynamic analysis, changes you make (comments, renaming of func-
tions) are lost the next time the debugger runs.

21 300

3. When you have �oating code (code that is not in an executable), it is very
di�cult to �nd the entry point so help to �nd possible entry points.

22 297

4. I often get lost while going deeper in the code�where I started from or how
I got there. A map of my analysis could be useful.

20 295

5. A tagging mechanism (like in TagSea [98]) but for assembly (tag a global
variable and see where it comes from, possibly with links).

27 295

6. Easily access API documentation - e.g. a web-based doc to see how a function
works.

16 293

7. Some sort of de-obfuscation help, e.g. �nd and remove predicates that are
always true but only there to confuse the human.

16 248

8. In IDA Pro you do not have repeatable comments for external modules - see
the comment every place you call this function.

8 225

9. Trace replayer. 11 220
10. Insert boilerplate documentation or comments in IDA Pro - usually tend to

format comments similarly and have to do this by hand.
14 210

11. Show the stack trace during static analysis (name or value of register pushed,
instead of just the value of the stack pointer).

11 100

12. Cross reference mechanism between a given function in an executable �le to
a DLL.

6 95

13. Get a value of a constant in IDA in di�erent formats (int, �oat, date)�hard
to �gure out what the numbers actually mean.

9 70

14. Show possible values stored in variables in static mode, and where they came
from. A linkable pop-up would be nice.

7 50

15. IDA cannot disassemble the same �le when parts are in 16 bit, 32 bit, 64 bit
(have to open IDA Pro multiple times with that setting).

1 0

Table 4.7: List of Malware Requirements Ordered by Final Rank.

1. Multiple executables (380/400 points) This requirement received the high-
est ranking and was brought up by B3. He mentions that the problem with IDA Pro
is that you can only disassemble one executable �le at a time. When you want to
analyze a DLL, you have to use multiple IDA Pro instances, and you have to manu-
ally make the link between the exported function used inside the executable and the
library. This process is time consuming.

2. Retain dynamic analysis actions (300/400 points) This point came from
B1 and was the last item on his list. During dynamic analysis, the user may make
comments to the code, or also restructure it (e.g. create a function, rename, mark as
data vs. code). If this happens to be a DLL that was brought in, but is no longer
a part of the IDA Pro database (idb), then it is not saved and the user has to redo
these actions each time; unless the user does a snapshot. However, this creates a very
large �le that is hard to manipulate. In essence, dynamic analysis could be persisted
and replayed once you restart dynamic analysis. B2 commented that IDA Pro has a
di�erent database for dynamic information, so if the dynamic information is in the
static information then it is kept, but if it is truly dynamic then it is lost.

75

3. Find entry points in �oating code (297/400 points) This requirement was
brought up by B2. Floating code refers to code that is not actually in an executable,
and in such cases, it is sometimes very di�cult to �nd the entry point. Assistance to
�nd likely entry points into a piece of code would be helpful.

4. Map of analysis (295/400 points) This came from B4. The issue is that while
the user goes deeper into the code, they often get lost, not being able to remember
where they started from or how they got there. In this case, a map of the analysis
would be helpful.

5. Tagging (295/400 points) B2 brought up the need to have some sort of
tagging mechanism for documentation within assembly code that would be similar to
TagSea for Java [98]. You could then, for example, tag a global variable and specify
where it came from, possibly with links.

6. Access API documentation (293/400 points) This requirement came from
B1, and was the �rst item on his list. This was the ability to easily access API
documentation so that if there is a call to some function, then the user would be able
to easily visit a web page or local help that describes how this function works. This
would be easily integrated and would enumerate API documentation.

7. De-obfuscation help (248/400 points) B2 wanted some sort of de-obfuscation
help, for example to �nd and remove predicates that are always true but only ex-
ist to confuse the analyst. Other examples of obfuscation are removing all object-
oriented/functional structures to make it �at (spaghetti-like code), making arithmetic
calculations more complex by adding operations that have no e�ect, or simply adding
lots of dead code [99].

8. Cross-module repeatable comments (225/400 points) This was men-
tioned by B3. In IDA Pro you have repeatable comments, that is when you put a
comment to a function, every place where this function is called you can see that
comment in place. However, you might want to add a comment to an exported
function�one that exists in another module or DLL of the executable. Then each
time this exported function is called, you could see the comment in the same manner
as local calls.

9. Trace replayer (220/400 points) B2 brought up that a trace replayer would
be helpful. However, it was mentioned during the discussion that a trace replayer
would be available in the next version of IDA Pro (6.3). At the time of this study,
this was not yet available.

We later spoke with B2 about whether or not the trace replayer was as useful as
he had hoped. He commented that it is a good step in the right direction, but that it

76

is still missing important features such as a static view of multiple trace values, the
ability to start a replay from any address (replay only parts of the trace) and also
recording the data in memory (not just the registers).

10. Boilerplate documentation (210/400 points) B1 mentioned the need for
boilerplate documentation or comments in IDA Pro. Speci�cally, B1 noted �I usually
try to format all the comments similarly, which has to be done by hand. In some
cases in 16 bit code, such as function calls or interrupt calls, I have to add 20 or 40
some lines�. This would entail being able to de�ne templates for documentation so
that they could be inserted at a certain line, or at the beginning of each function.

11. Static stack trace (100/400 points) B1 also mentioned that when doing
static analysis, being able to show static information from the stack would be helpful.
In IDA Pro, one can see stack pointer references, but when available, another view
could show possible variables which could be on the stack at this point. He mentioned
�Even if it's just the name of the register that gets pushed, or the value if it's an
immediate value in the code�.

We followed up with B1 to clarify. What he ultimately wanted is a view that shows
what is on the stack when a particular address is selected. IDA can track changes
fairly reliably, including taking care of calling conventions, when the code is not too
obfuscated. However, in cases where the code is obfuscated, the actual push of an
argument onto the stack can be several hundred lines above the call due to additional
code that has no side e�ect. He mentioned that some obfuscation techniques could
break IDA's stack pointer tracking, but when it works, the stack view would be
helpful. Additionally, IDA allows the user to manually adjust the stack pointer to �x
potential errors, at which point the stack view could become useful again.

12. Cross reference mechanism (95/400 points) B3 mentioned that cross-
module references would be useful, such that a user could zoom between a given
function, an executable part and a variable. The example which was given is a global
variable which is also used in a DLL, a cross reference could be made between this
global variable and the DLL. B2 commented, in order to clarify, �matching variables
from di�erent executables or libraries�. B1 mentioned in his preliminary ranking sheet
(and gave this 10 points) that requirements #8 (cross-module repeatable comments)
and #12 (cross reference mechanism) would be �xed by this.

13. Constant values in di�erent formats (70/400 points) This was the �rst
item brought up by B2. The idea is that if you have a value for a constant that
is given in di�erent formats, one would be able to infer what the numbers actually
mean. For example, you would see a list of the possible constant values as a date,
�oat, integer (32 bit, 64 bit) etc. This does not currently exist in IDA Pro, but exists
in various hex viewers.

77

14. Possible static variable values (50/400 points) This was a requirement
from B4. When analyzing malware in static mode, he wanted to know what values
could possibly be stored in the variable, and where this value could have come from.
He mentioned that a popup to show this information that could be linkable would be
desirable.

15. Disassemble 16/32/64 bit parts (0/400 points) B1 mentioned that some-
times you have code with parts in 16 bit and parts in 32 bit. He said you must open
the same �le in di�erent IDA Pro instances in di�erent modes for each. Instead he
wanted to be able to specify that a particular range would be 16, 32, or 64 bit code.
However, after B1 listed this issue, B3 pointed to the overhead and spoke in French
(their primary language). B1 then said: �Breaking news, apparently you can do that!�
This requirement had the lowest rank of all, in all likelihood due to this fact.

4.3.5 Malware Group: Discussion of Ranking Results

As with the mainframe group, Table 4.7 shows the summary of requirements while

Table 4.8 shows the participants' individual scores and Figure 4.3 graphs these same

preliminary scores (lighter bars), and �nal scores (darker bars), by each requirement

and individual. We again discuss interesting observations by the same three phenom-

ena as the mainframe group, but do not exhaustively cover each scenario.

No. B1 B2 B3 B4
1. 10 100 10 100 9 100 2 80
2. 5 60 6 70 - 70 10 100
3. - 58 7 60 6 80 9 99
4. 8 75 5 70 - 50 7 100
5. 7 95 8 100 10 100 - -

(+2)a

6. 6 80 3 65 3 60 4 88
7. 4 70 9 90 - - 3 88
8. - 55 - 80 8 90 - -
9. - 55 4 85 7 - - 80
10. 9 80 - 70 5 60 - -
11. 1 - - - 2 50 8 50
12. - - 2 - 4 95 - -
13. 3 - 1 - - - 5 70
14. - - - - 1 - 6 50
15. - - - - - - 1 -

Table 4.8: Rankings by Malware Group Participant (B1 - B4).

aB1 ranked the issue twice, only the �rst (7) is counted.

78

Figure 4.3: Malware Group Preliminary and Final Rankings.

79

Di�ering Opinions: Again there exists a di�erence of opinions between indi-

viduals on the same requirements. However, we again do not see a pattern based on

category of requirement. If we look at No. 1, we see only a small di�erence where

one individual (B4) gave it 100. Since B4 was not involved in the discussion and sent

his results by email, this could have made a di�erence. However, No. 7, 8, 9 and 10

also show obvious di�erences in score not solely caused by B4.

Individual Opinion: As above, due to B4 being apart for the group session, we

see that his score di�ers widely from others, most obviously in No. 5, 8, and 10 where

he gave no score at all. However, B4 is not the only individual that displays this

characteristic. The other di�erence we note is B3, which can easily be seen in No. 7,

9 and 12. In fact we notice an interesting pattern with No. 7 - 10 where there exists

an alternation between B3 giving a high score, and B4 giving no score and vice-versa.

From this we can see that B3 and B4 have contrasting opinions.

Similarly to the mainframe group, we also see the case where an individual ranks

their own requirement higher than others. For example, No. 4 was only given 100

by B4 but it was also introduced by him. It could be said that since B4 was not

present, he could not properly explain the necessity for this requirement to others.

However this exists for B3 as well, and more notably No. 12 which has a zero ranking

by everyone except for B3 who gave it 95, and it was also B3's requirement.

Shifting of Scores: Again if we look at No. 1 and B4, we see that he changed his

mind considerably from his preliminary score. Since B4 was not involved in discussion,

it is clear that he was strongly in�uenced by the scores given by others. B4 is the

same individual that commented that he was reminded of his annoyances after seeing

the preliminary scores given by others. However he is not the only individual who

did so. There are varying di�erences in preliminary and �nal scores throughout, but

we see the same for B2 in No. 9 and B3 in No. 12 (their own requirements). If we

look at examples that are not introduced due to bias, we need only look at No. 8

which shows both B1 and B2 moving from a zero ranking to above 50, while this

requirement was in fact introduced by B3.

4.3.6 Malware Group: Requirement Areas and Current Work

All of the above requirements are categorized into the same areas as before. They

are shown below with their corresponding requirement numbers. These requirement

numbers can be referenced in Table 4.7. From the summation of rankings, we see that

80

documentation is the largest main issue for the malware group followed by debugging

issues and �nding references in the codebase.

� Browsing and Navigation: 4 (295 points)

� Build: 15 (0 points, already exists)

� Control Flow: 3 (297 points)

� Data: 11, 13, 14 (220 points)

� Debugging: 2, 9 (520 points)

� De-obfuscation: 7 (248 points)

� Documentation (including comments, tags and commit messages): 5, 6, 8, 10
(1023 points)

� Integration (tool, system): (0 points)

� References: 1, 12 (475 points)

� Source Control: (0 points)

� Source Editing: (0 points)

As mentioned before, some of these categories have been included since the main-

frame group had issues pertaining to them. Therefore some categories have a 0 point

score for the malware group. There may also be some requirements that could po-

tentially belong in more than one category but we have chosen what we believe to

be the best �t. From the sum of points in each, we see that documentation is by far

the greatest concern for the malware group. Following that, debugging and reference

support are closely tied at about half the points of documentation and the other

categories fall well below.

4.4 Analysis of Elicitation

In this section, we discuss the success of the social psychology techniques used for

requirements elicitation within highly-specialized industrial software groups. A suc-

cessful use of these techniques include the translation appearing relevant, increased

information sharing through the normative manipulation techniques, and how par-

ticipants reacted to their use. We investigate this through surveys and self reporting,

as well as codifying statements during the nominal group sessions.

4.4.1 User Pro�le Survey

To address relevancy, as part of the initial user pro�le survey we included a �nal ques-

tion to obtain a measure of how successful the translation mapping was in masking

81

the psychological background of the original questions. We asked participants �What

is your opinion on taking this survey?�, both on a Likert Scale, and also as a free

response question. On a scale of 1 (Strongly Dislike) to 6 (Strongly Like), the mean

response from the mainframe group was 4.57 (above Somewhat Like) with a standard

deviation of 0.53, while from the malware group, the mean response was 4.25 (slightly

above Somewhat Like) with a standard deviation of 0.5. These results indicate that

most participants felt that the translation mapping was relevant while only one may

not have (see free responses in Table 4.9). We did not address the question of rele-

vancy directly as we did not want our methods to be exposed, potentially biasing the

subsequent requirements elicitation exercise.

Mainframe Group Responses
There are no changes I would make to the questions in the survey.
I would start with some time devoted on �nding out how the team you sent the survey to works, what types
of projects they work on and how the formal/informal structure of the team is. Besides, we do not work on
one project at the time, we are interrupted by bugs detected, more or less urgent to solve, critical customer
situations, decision changes on �y, cancelling projects in the middle due to high management changes of mind
and alike.
As long as the responders are providing truthful and honest answers I believe surveys can help people understand
things better.
I get the impression of questions suggesting competition within a team. In general, a team is not meant to
compete within itself. A team is meant to pull together, and on the whole, within a good team, everyone
respects everyone else, and all are encouraged and/or happy to ask or help others.
I found that the last question of 15 is a bit ambiguous: �How easily can your work be understood independently
from the work of others on your team?�
It's hard to give accurate answers to some questions concerning time allocation. I don't keep anything but
collective records e.g. how much time per week spent on customer issues (all tasks and with code in several
languages).

Malware Group Responses
The survey was short and to the point.
Many of the questions are only relevant for forward software engineering and don't apply to reverse engineering
at all so it was tough to answer (particularly the last 3).

Table 4.9: Free Responses on Opinion of NFC and INDCOL Survey.

4.4.2 Exit Survey

To capture results of the normative manipulation, we issued an exit survey within

a week after the nominal group session. This survey determined if the participants

had followed the normative manipulation instructions, whether they had found the

process intrusive, and whether they found it useful. We had �ve participants complete

the exit survey from the mainframe group and two from the malware group. Their

results are summarized in Table 4.10. Any results shown with a standard deviation

are averages on a Likert scale from 1 to 6 where 1 was least signi�cant.

82

Asked Reported by Mainframe
Group

Reported by Malware
Group

Were you able to �ll out Sections A, B and
C in entirety BEFORE beginning the last
exercise (Section F)?

60% Yes (3/5), could not list 3
statements, did not do any ASM
that day

100% Yes (2/2)

Were the objectives of the overall exercise
and group session clearly explained and
easy to understand?

80% Yes (4/5), not technical and
detailed - more about team mem-
ber's interactions than ASM cod-
ing

50% Yes (1/2), some confusion
about the end goal - questions
were too vague or generic

Did you feel motivated to share your per-
sonal opinions? (i.e. you said every issue
that came to mind). Why or why not?

100% (5/5), discussions drew me
in

100% (2/2), people involved
made it easy to share, open dis-
cussion that fed into each other's
ideas

Do you think that being videotaped dur-
ing the process inhibited or promoted your
ability to participate fully in making sug-
gestions or discussion? (1 - Strongly Inhib-
ited, 6 - Strongly Promoted)

4 (Slightly Promoted, 0.71
STDEV)

4 (Slightly Promoted, 0 STDEV)

Do you think that having an external per-
son drive the discussion process inhibited
or promoted your ability to participate
fully in making suggestions or discussion?
(1 - Strongly Inhibited, 6 - Strongly Pro-
moted)

4.6 (between Slightly Promoted
and Promoted, 0.55 STDEV)

5 (Promoted, 0 STDEV)

Was there su�cient communication during
the activity? (Quantity) (1 - Very Insu�-
cient, 6 - Very Su�cient)

4 (Slightly Su�cient, 1 STDEV) 5 (Su�cient, 0 STDEV)

Was there su�cient communication during
the activity? (Quality) (1 - Very Insu�-
cient, 6 - Very Su�cient)

4 (Slightly Su�cient, 1.1
STDEV)

5 (Su�cient, 0 STDEV)

Did you think the process was useful for
the organization? If so, how?

60% Yes (3/5), communication
of points otherwise not brought
up, new ideas could be useful if
implemented

50% Yes (1/2), 50% Unclear
(1/2), con�rmed issues were
mostly shared with other team
members, a few good ideas that
might be implemented internally

Did you think the process was useful for
yourself? If so, how?

80% Yes (4/5), communication
of points otherwise not brought
up, new ideas could be useful
if implemented, made me think
about my work

50% Yes (1/2), 50% Unclear
(1/2), forced me to put problems
I was vaguely aware of into words

Is there any way in which you think the
process could be improved?

The assumption that they code
assembler every day was incor-
rect

Future surveys should be about
speci�c features or tools

Do you think that some part of the process
should be adopted within your group? For
example, this might include open discus-
sion of issues, future work, review, etc.

60% (3/5), process improvement,
more discussion on improving
ASM programming environment

50% (1/2), we are already open
but probably could use the pro-
cess as a more formal way to dis-
cuss and evaluate issues, we do
that regularly

Overall, was it a positive or negative expe-
rience?

80% Positive (4/5), 20% Neutral
(1/5)

100% Positive (2/2)

Table 4.10: Exit Survey for Mainframe and Malware Groups.

83

From the results of the exit survey, we see that most people were able to �ll out

the priming exercise sheets in advance. Of the two that did not, one had begun

the attempt but did not �nish, while the other did not do the exercises at all. We

conclude therefore, that priming was performed for the greater majority of the par-

ticipants. Only one comment questioned the validity of these questions in the context

of assembly language, which means they were mostly deemed relevant. In 100% of

the responses, participants felt motivated to share their personal opinions. Even with

such a small sample size, evidence suggests that the priming exercise was successful.

In each group, videotaping the session as well as having an external person drive

the discussion was seen as promoting the participants' ability to make suggestions or

engage in discussions. The quantity and quality of the communication was seen as

Slightly Su�cient by the mainframe group and Su�cient by the malware group. Since

the malware group has a 10% lower INDCOL score and regularly communicates about

their issues, we assume they would be more communicative to begin with, accounting

for this slight score di�erence.

We also asked about the usefulness to both the organization and to themselves.

The mainframe group had just above half of its participants claiming usefulness for

the organization and almost all reported it having been useful for themselves. In

the malware group, one participant thought it was useful to both, and the other was

unclear though he did mention, �It might have raised a few good ideas that will be

implemented internally�. Related to being useful, we asked if there was some part

of the process that should be adopted. Just over half of the participants from the

mainframe group said yes, including a desire for process improvement and better

communication practices. At the malware group, one participant thought that using

a more formal process such as this was useful, while the other believed that they

already regularly communicated about their issues. Lastly, we asked the participants

if the experience was positive or negative. Not one participant answered that it was

negative, and one answered neutral.

4.4.3 Analysis of Interaction

The �nal analysis conducted ensured that our requirements elicitation methods were

successful over and above self reporting. To do so, we used Interaction Process Anal-

ysis (IPA) to codify the statements from the transcribed video sessions. IPA was

developed by Bales [100] for studying small groups. It can be used to derive a set of

84

Social-Emotional Area Category Mainframe
Group

Totals Malware
Group

Totals

Shows solidarity, raises
other's status, gives help,
reward

0.27% 1.55%

Positive Reactions Shows tension release,
jokes, laughs, shows
satisfaction

16.13% 30.65% 12.89% 28.35%

Agrees, shows passive
acceptance, understands,
concurs, complies

14.25% 13.92%

Gives suggestion, direc-
tion, implying autonomy
for other

8.33% 8.76%

Attempted Answers Gives opinion, evaluation,
analysis, expresses feeling,
wish

30.91% 53.76% 18.56% 51.03%

Gives orientation, infor-
mation, repeats, clari�es,
con�rms

14.52% 23.71%

Asks for orientation, infor-
mation, repetition, con�r-
mation

12.36% 14.95%

Questions Asks for opinion, evalua-
tion, analysis, expression of
feeling

2.42% 15.59% 5.67% 20.62%

Asks for suggestion, direc-
tion, possible ways of ac-
tion

0.81% 0.00%

Disagrees, shows passive
rejection, formality, with-
holds help

0.00% 0.00%

Negative Reactions Shows tension, asks for
help, withdraws out of �eld

0.00% 0.00% 0.00% 0.00%

Shows antagonism, de-
�ated other's status,
defends or asserts self

0.00% 0.00%

Table 4.11: Interaction Process Analysis.

empirical generalizations about participant behavior. The basic process of IPA is that

observers rate interactions of participants according to a scale and set of simple rules.

Each response from a participant is codi�ed against twelve categories. The twelve

categories are grouped into four types of reactions: Positive Reactions, Attempted

Answers, Questions and Negative Reactions. For the purposes of this study, the video

sessions were transcribed and then the IPA was applied by one of the researchers. The

categories are shown in Table 4.11, as well as the percentage of statements for each

nominal group session. Further information on the IPA analysis can be found in [101].

In the mainframe group, the largest percentage of interaction is in gives opinion at

30.9% followed by shows tension release at 16.1%. For the malware group, the largest

is in gives orientation followed by gives opinion. No interactions were codi�ed in the

�nal three categories (the only negative categories). Since no negative reactions were

85

recorded and information sharing (attempted answers) was ranked highest followed

by positive reactions, we conclude that the adaptation we used made the techniques

relevant, and the priming was e�ective.

4.4.4 Applicability to Other Groups

While we are not the �rst to use these research methods adopted from social psy-

chology, we do believe we are the �rst to do so for software requirements elicitation

in an industrial context. We report on this experience with two teams comprised of

highly-specialized individuals utilizing assembly language. That is not to say that

the process could not be applied successfully to groups consisting of less-specialized

individuals, but we do believe there are potential issues in doing so.

We previously used the nominal group technique to elicit requirements for a web-

based Community Information System (CIS) to manage First Nations' land, coastal,

and marine use [102]. This session took place during a two-hour period of a two-

day workshop which gathered six people who were either employed by First Nations

to manage their resources, or were involved in similar projects. We could not com-

plete user-pro�ling due to limited access to participants and their time. Therefore

we primed only for creativity since individualistic groups generate more novel and

useful ideas when told to do so, and no negative di�erence is observed in collectivist

groups [17]. We allowed 15 minutes for silent brainstorming. The elicitation question

we asked was:

While working as a First Nations' resource manager, there may be times when you wish you

had additional tool support.

Please write down the tasks for which you wish you had that additional support. An example

might look like �easily locating every individual associated with a particular referral/proposal�.

The focus should be on the tasks and problems and not solutions.

Priming for creativity resulted in requirements that were broad in nature, as

expected for creativity primed groups. Further, while the participants had an un-

derstanding of the problem space, they did not have a specialized understanding of

the technology. Therefore, many of the requirements were unrelated to the potential

tool in question. For example, one participant requested �Fieldwork and archaeology

teams need weatherproof tools for mobile data collection�.

86

Although the requirements generated are valuable in the context of the problem

space, some of them were outside of the scope of inquiry. Additionally the sheer

number of issues generated per person was much larger, which may be in large part

due to the lack of scope. For six participants, 51 issues were generated; an average

of 8.5 per person. In contrast, the mainframe group generated only 2.33 per person,

while the malware group generated 3.75.

We posit that in terms of controlling the volume of responses, a slightly more

directed elicitation question to limit the domain of interest would allow us to harness

the creative inputs of the participants in a more directed manner. However, this

runs the risk of sti�ing response creativity. In the context of this exercise, either

more resources should have been allocated to allow participants full reign with their

responses, or a more rigorously screened question could have been posed to direct

discussion and minimise the risk of reduced creativity. In our case, we allotted two

hours due to the similarly sized mainframe and malware groups. However, given the

vast number of issues, we had only enough time to complete up to and including the

preliminary ranking of the session.

4.4.5 Results

Based on the results of this study, we conclude that the majority of participants did

not notice any irregularities in the entire process and reported it as being a positive

experience. This indicates that the translation of the social psychology measures

and adaptation of the normative manipulation techniques were seen as relevant. We

also note that the nominal group sessions were seen as generally productive for the

organization, but more so for the individual. Finally, all participants reported being

motivated to share their opinions which included mentioning every one of their issues.

The results of the interaction process analysis also support these claims as no negative

reactions were codi�ed, and information sharing was foremost. We therefore believe

that the priming exercise was also successful.

4.5 Chapter Summary

This chapter provided the results of a novel approach to requirements elicitation.

The process we followed at each site is similar, though we did perform observational

sessions with the mainframe group and therefore provide requirements observed in

87

addition to those elicited.

We showed that each team has a higher than average Need-for-Closure (NFC)

with the mainframe group having a median of 71.11 and the malware group a median

of 62.22 (out of 100). This shows that both groups desired to reach solutions quickly,

even if the solution they reach is incorrect. We also measured their Individualism-

Collectivism (INDCOL) scale, where the mainframe group has 61.11 and the malware

group has 51.11 (again out of 100). This shows that both groups are slightly above

average, and are more individualistic in nature. In both scales, the mainframe group

was roughly 10% higher than the malware group. Following on these results, we

were able to prime the group for creativity in their individual requirements elicitation

exercise.

Next, we used the nominal group session to rank and discuss the elicited require-

ments from each team separately. The mainframe group consisted of six members

while the malware group had four. Each group generated almost the same number

of requirements with fourteen for the mainframe group and �fteen for the malware

group. We then categorized these requirements along with those observed within the

mainframe group into eleven areas. Of these eleven, top three areas of concern for

the mainframe group were: Integration, Build, and References. The malware group's

top three were: Documentation, Debugging, References.

Next we looked at how scores changed over time, identifying three patterns. These

were group members that had opinions in contrast with one another (Di�ering Opin-

ions), one group member with a strong opinion (Individual Opinions), and discussion

that may have a�ected an individual's score (Shifting of Scores).

Finally, we provided an analysis of our requirements elicitation process. We

showed that the process was seen as both relevant, as well as useful, through self-

reporting in exit surveys. We further showed that no negative responses were made

during the group brainstorming session through analysis of interaction.

The elicited requirements for each group are shown in Table 4.5 and 4.7, respec-

tively. We see that while high-level categories may be the same, the requirements

themselves are speci�c to the group's assembly language and particular work itself.

The following chapter will further examine these requirements by each category and

compare and contrast them with survey results and the activity-based observations.

88

Chapter 5

Comparison Between Groups

The previous two chapters have reported on issues that have been experienced by two

distinct groups of individuals: those responsible for development and maintenance of

mainframe software systems, and those who reverse engineer malware threats. In this

chapter, we will provide a summary and comparison across these groups for both the

survey, as well as the requirements elicitation study. This chapter shows that while

initially the problem of assembly code comprehension seemed uniform across groups,

the truth is that the needs of each group are as unique as their work itself.

5.1 Comparison of Survey Results

The following section explores the comparison for survey results between the two

groups: mainframe and malware. We do so by each section of the exploratory survey.

5.1.1 About the Participants

Table 5.1 shows a summary of the categories and results from each group. Addition-

ally, it provides a column with notes on comparison between the two. In this category,

there are notable di�erences in the preferences between the two groups. While both

groups deal primarily with assembly language, it was not the preference of the mal-

ware group. While assembly language was listed as the most familiar language of all

mainframe respondents, it ranked only third place within the malware group. As far

as favorite programming language, assembly again was �rst place with the mainframe

group (though not for everyone), but is not even reported as a favorite within the

malware group. The �nal di�erence is with their reported favorite tools. While the

89

mainframe group prefers text editors, including those they can con�gure for their own

needs, the malware group prefers IDE environments.

Asked Mainframe Group Malware Group Comparison

Development
Experience

88% 10+ Years 79% 10+ Years
Mainframe group has more
experience in years.

Most Familiar
Programming
Language

100% Assembly
48% REXX
48% C/C++
16% COBOL

93% C/C++
67% Java
47% Assembly
27% Python

Assembly language was most
familiar for the mainframe
group, and third for the mal-
ware group.

Favorite
Programming
Language

56% Assembly
16% REXX
16% C/C++

47% C/C++
40% Java
20% Python

Assembly language was most
preferred by the mainframe
group, and not at all by the
malware group.

Favorite Tools

36% Text
Editor
32% Debugger
16% ISPF

47% IDA Pro
40% Eclipse
33% Visual Studio
20% Text
Editor

The mainframe group prefers
text editors while the malware
group lists primarily IDEs as
their favorite tools.

Table 5.1: About the Respondents Comparison.

5.1.2 Assembly Experience

This section compares how experienced each group is with assembly, and also how

they work with assembly. Table 5.2 shows the comparison between the two groups.

We see that the mainframe group has reported themselves to be quite adept at both

writing and understanding assembly code. There is a notable di�erence between

their score and that of the malware group, which rated themselves lower on both but

slightly more adept at understanding. Throughout, we see that this di�erence appears

to arise because the malware group rarely writes assembly code, and rather aims to

understand it. We also see that the assembly dialect that both groups use is di�erent,

with the mainframe group mostly using HLASM and the malware group using x86. As

for how they use assembly language, the mainframe group is focused on development,

as well as maintenance and debugging. However the malware group is more concerned

with understanding malware and programs, as well as reverse engineering them. This

is shown again in their most di�cult and most time-consuming tasks. While the

mainframe group spends the most time on testing, debugging and new systems, the

malware group spends their time trying to follow control �ow, data �ow and dealing

with malware-speci�c issues such as deobfuscation and decryption.

90

Asked Mainframe Group Malware Group Comparison

Writing 4.42/5 2.9/5 Notable di�erence.

Understanding 4.46/5 3.5/5 Notable di�erence.

Most Pro�cient 80% HLASM 100% x86
Di�erent assembly
dialects used.

Used For
78% Development
30% Maintenance
13% Debugging

47% Malware
understanding
33% Program
understanding
20% Reverse
engineering

The mainframe
group performs
development ac-
tivities, while the
malware group
does analysis.

Assembly More
Di�cult

64% Yes
38% Many low-level
operations
31% Big picture obscured
25% Knowledge of under-
lying hardware/OS

80% Yes
33% Many low-level
operations
20% Big picture obscured
13% Translate to high-
level, reliance on conven-
tions

More malware
analysts thought
assembly was more
di�cult. However,
the reasons are
similar.

More Di�cult
29% C/C++
12% COBOL
8% LISP

47% No
33% Functional PLs
7% Prolog

Notable di�erence.

Most Di�cult Task

19% Testing
19% Debugging
19% Documentation
14% Understanding oth-
ers' code
10% Understanding new
systems

27% Control �ow
20% Data �ow
13% De-obfuscation
13% Decryption

Mainframe group
has development
activities as their
most di�cult.

Most Time-
Consuming Task

25% Testing
20% Debugging
20% Understanding oth-
ers' code
15% Documentation
10% Understanding new
systems

20% Locate behaviour
13% Control �ow
13% Data �ow
13% De-obfuscation
13% Decryption

Same as most dif-
�cult tasks, except
for the malware
group, which is
locating behaviour.

Table 5.2: Assembly Experience Comparison.

91

Asked Mainframe Group Malware Group Comparison

Primary
Tool

68% Text editor
12% HLASM Assembler

87% IDA Pro

Mainframe
group's text
editor versus
IDA Pro disas-
sembler.

Secondary
Tool

60% Debugger
33% Hex editors
27% WinDbg
20% IDA Pro plugins

Debugger is a
common sec-
ondary tool.

De�ciencies

38% None
21% Text features (syn-
tax highlighting, syntax
checking)
13% Navigation within
code

20% Lack of integration
13% Instruction assis-
tance
13% Documentation
(notes)
13% Conversion to high-
level

Some main-
frame respon-
dents mention
syntax features
and navigation.
The malware
group needs
integration be-
tween their
existing tools.

Best Fea-
tures

31% Data (register/var
contents, memory/data
�ow)
19% Single step execution
13% Syntax highlighting
13% Trace or dump
output

20% IDA Pro graph view
13% IDA Pro extensibil-
ity
13% IDA Pro search
patterns
13% Inspect and modify
heap, registers, stack

Malware
group's best
features are
IDA Pro spe-
ci�c.

Table 5.3: Current Tool Use Comparison.

The one area where the two groups had common ground is in the reasons why

they believed assembly language was in fact more di�cult than other languages. The

reasons they listed are almost the same for both groups. These reasons included that

there are so many low-level operations that the big picture of what the code is doing

is obscured.

5.1.3 Current Tools

This section looks at the current tools of each group. We see in Table 5.3, that

the mainframe group primarily uses a text editor and a debugger, while the malware

group relies heavily on IDA Pro. As far as de�ciencies, the mainframe group mentions

syntax-related issues as well as code navigation. The malware group's largest issue

is that there is no integration between the tools they use, but also that they need

assistance with instruction de�nitions, being able to take notes, as well as converting

to C. Therefore, these de�ciencies have no common ground. We see that this is true

92

Asked Mainframe Group Malware Group Comparison

Beacons

76% Speci�c instructions
16% Comments
16% Macros
16% Loops
16% None

27% Function calls (control
�ow)
27% Data usage
27% Coding conventions
27% Function de�nitions

Notable di�erence
of opinion.

Task-
Focused
UI

36% No
32% Yes
32% Unsure

100% Yes Notable di�erence.

Zoom By

29% Subroutines
15% Do not have long mod-
ules (N/A)
12% Macros
12% CSECTs

40% Functions
20% Modules

Functions (or sub-
routines) are com-
mon.

Additional
33%Following links
(branches, cross-refs, dec-
larations)

Table 5.4: Browsing and Navigation Comparison.

for the best features of their tools as well. While the malware group's best features

include particular functionality of IDA Pro, the mainframe group is most interested

in features pertaining to data. While this comes up for the malware group as well, it

is much lower on the list.

5.1.4 Browsing and Navigation

As far as beacons in the code, there was no similarity between responses. Table 5.4

shows that while the mainframe group was concerned with speci�c instructions, the

malware group was more concerned with other issues such as control �ow. In fact,

macros came up often as an issue for the mainframe group, which was not an issue

at all for the malware group. The task-focused UI was of high interest within the

malware group, but created a divide within the mainframe group. We do however

see some commonality with a question of how code could be zoomed into, where

both groups mentioned subroutines (or functions). Only the mainframe group gave a

response to additional issues within this section.

5.1.5 Debugging

Table 5.5 shows results of debugging features on a scale from 1 to 5. We see that

generally the values are quite similar. The top three are the same for both groups,

93

Asked Mainframe

Group

Malware

Group

Comparison

What are the arguments and results
of a function?

4.76 4.53 *Mainframe group's
most important.

How does control �ow reach a par-
ticular location?

4.68 4.60 *Malware group's
most important.

Where is a particular variable set,
used or queried?

4.6 4.60 *Malware group's
most important.

Where is a particular variable de-
clared?

3.76 3.53 *Least important
for all.

Where is a particular data object ac-
cessed?

4.28 4.33

What are the inputs and outputs of
a module?

4.44 4.13

Features Missing Data �ow concerns Varied Data �ow is an issue
for both groups.

Debugger Mockup Positive Negative Notable di�erence.

Table 5.5: Debugging Comparison.

as are the bottom three. Additionally both groups agree that where a variable is de-

clared was least important. However, the most important for mainframe respondents

was the arguments and results of a function, whereas for the malware group, we see

that control �ow and where a variable is set/used/queried is most important. The

di�erence in scores may be negligible, however, we do see a trend that puts control

�ow ahead of other concerns for the malware group.

With regard to features missing, the mainframe group had only data �ow concerns.

The malware group did not converge but had a multitude of responses, including: data

�ow, trace di�s, memory view, stepping backward, re-running system with reg/var

values, access list to speci�c memory addresses, simulating execution statically, multi-

application debugging, standard so all tools can communicate. We see that data �ow

was an issue for both groups.

Finally, the mockup tool (Figure 3.1) discussed during interviews showed promise

with the mainframe developers, but not with the malware analysts, so this type of

tool will most likely not be helpful for both.

5.1.6 Control Flow

We see that control �ow was a larger concern for the malware group. On a scale of 1 -

7, both forward and reversed control �ow was more important for them by a factor of

greater than one. We also see that they had further static concerns. However as far

94

as dynamic concerns, both groups were interested in how often paths are executed,

though the malware group was also interested in being able to compare traces and

have multi-threaded trace support. As far as data that could be mined, the views

from the two groups did not share any similarity. The mainframe group was interested

in data, as well as performance. However, the malware group was more interested

in call patterns, as well as comparing traces and seeing how control �ow reached a

speci�c point. Table 5.6 summarizes these di�erences.

Asked Mainframe Group Malware Group Comparison

Static Con-
cerns

None 20% Loops and recursion

Dynamic
Concerns

8% Most executed paths
7% Multi-threaded
7% Compare traces
7% Branch frequency

Path frequency is
an issue for both
groups.

Forward CF 5.0/7 Useful 6.38/7 Useful
More useful for
malware group.

Reversed CF 5.08/7 Useful
90% Useful

6.15/7 Useful
87% Useful

More useful for
malware group.

Data to
Mine

24% Register val-
ues/mapping and mem-
ory usage (data)
12% Performance
12% System, subroutine
call statistics

47% Call patterns
13% Compare traces
12% How to reach ex-
ecution points (jump
conds)

Notable di�er-
ence.

Table 5.6: Control Flow Comparison.

5.1.7 Potential Tools

Table 5.7 shows the comparison for this section on ideas for potential tools. First, we

asked about features common to IDEs. We reorder these elements from the original

asking order to the order of most important to least. We see that in fact both groups

have the same order of importance, though each item rated lower in the mainframe

group than for the malware group.

As for proof of concept tools, we see that LegaSee may be useful in the main-

frame context, for which it was originally designed. However, we see that there was

e�ectively no perceived usefulness from the malware group. When we spoke with the

malware analysts about this, they told us since there will usually be one very large

module, combining this view with a treemap will be the most e�ective. The engineer

can then move from large granularity to small granularity.

95

Asked
Mainframe

Group
Malware Group Comparison

Search for References 3.96 4.73 Same order
Go to Declaration 3.88 4.60 for both
Syntax Highlighting 3.52 4.40 groups.
Syntax Checking 3.48 3.33
Code Completion 2.56 2.93

LegaSee
40% Useful
12% Not Useful

0% Useful May be useful for
the mainframe
group.

MapUI 31% Useful
33% Useful
20% Unsure

May be useful for
both groups.

High-Level Split View

28% Not useful.
Confusion of using
assembler to de-
velop in high-level
PL.

85% Useful.
Already exists in
VS Studio, and
Hex-Rays decom-
piler plugin.

Only useful for the
malware group.

UML Diagrams
7% state
7% class

33% state
13% activity
7% package

More positive re-
sponse from the
malware group.

Wish List

- Pattern recogni-
tion.
- Better macro
processor, language
and visualization.
- Better debugging
and breakpoints.
- Better pro�ler
to improve perfor-
mance.

- Better integration
with other tools.
- Meta-assembly
to push back and
forth with other
tools.
- Data �ow, se-
quence viewer, pat-
tern recognition,
documentation,
creating C from
ASM to guess
what a function is
doing, omniscient
debugging.

Table 5.7: Potential Tool Comparison.

96

For the MapUI tool, we see that there is a lukewarm response to its usefulness

from both groups. The high-level split view was a popular idea for malware analysts,

however, it was either confusing or not useful to the mainframe group.

UML diagrams showed more promise within the malware group, especially for

state diagrams. Since state is mentioned for both, there may be some potential in

this area, even though it was only mentioned by a small number of respondents.

The wish list varies greatly between groups. We see again, in the mainframe group,

the need for better pattern recognition and macro support, and better debugging and

performance. Within the malware group, we see again that better integration between

tools is needed, as well as data �ow and control �ow support, better documentation

capabilities and malware-safe debugging.

5.1.8 Comparison Summary

The comparison of groups in this section has shown that both groups not only work

with di�erent assembly dialects, but also with completely di�erent purposes in mind.

The mainframe group for developing and maintaining existing systems written in

HLASM, versus the malware group, which tries to understand disassembled x86 code.

We also see that the mainframe group's toolset is limited to text editors, whereas the

malware group primarily uses IDA Pro, and therefore needs other tools to integrate

with it.

Further, we see that the pro�les of the developers is di�erent. We note that

while assembly is the more familiar and the most preferred language for mainframe

developers, it is much less familiar and not even a favorite of malware analysts. The

malware analysts also prefer IDE environments which mainframe developers do not.

While di�erences exist, there are similarities as well. They do agree on why

assembly language is more di�cult: there are simply too many low-level operations

that obscure the big picture. Unfortunately, while the underlying reason behind

each group's di�culties may be the same, the solution to ease these di�culties is not.

Table 5.8 shows the highest-rated issues that de�ne the problem space for each group.

5.2 Comparison of Requirements Elicited

While both groups use assembly language and face shortcomings in their current tool

support, we can see from the elicited requirements that assembly language in itself is

97

Area Mainframe Group Malware Group

Existing Syntax (highlighting, checking) Better tool integration
Tool Navigation within code Instruction de�nitions
Support Documentation support

Higher-level representation
Browsing Speci�c instructions Function calls
and Links (branches, xrefs, decls) Coding conventions
Navigation Comments Data usage

Macros Function de�nitions
Loops Modules

Debugging Data �ow Save debugging state
Reset values/rerun
Data �ow
Static simulation
Multi-threaded support in IDA Pro

Control Register values/mapping System call patterns
Flow Memory usage Loops and recursion

Performance Compare traces
System/subroutine call statistics Data to reach execution point
Most executed paths Branch frequency

Multi-threaded traces
Potential LegaSee High-Level Split View
Tools UML Diagrams (State, Activity)

Table 5.8: Comparison of Features from Exploratory Survey.

not a great enough similarity to enable the creation of the same tools for both groups.

These groups are di�erent in many ways. The mainframe group uses HLASM code to

write and maintain mainframe systems, whereas the malware group reverse engineers

x86 code to analyze security threats, all the while using completely di�erent tool sets

to accomplish these tasks. However, while these groups are very di�erent, there are

a few similarities in the issues they face. Both their di�erences and similarities are

discussed below by requirement category.

Browsing and Navigation As discussed previously, while this issue came up ex-

plicitly in only the malware group's session, we have been able to determine through

observation that issues in this area during our activity-based observation sessions

(Appendix B). The malware group's requirement was a map of their analysis to save

where they have gone so that they do not get lost. There was no similar observation

at the mainframe group, however, we did note that their search functionality only

found one item at a time, and that they required many screens open at once with

di�erent segments of the same module, since it is so di�cult to navigate.

98

Build This only came up as an issue for the mainframe group as their primary

work involves development. It is important to note that executing malware requires

a specialized environment. However, issues related to this were not considered part

of this category.

Control Flow One of the similarities that is not obvious in the elicited requirements

is the need for control �ow tools. While the mainframe group mentioned the need

for a tool to document the code (logic �ow), this was not brought up by the malware

group. However this was the �rst requirement ever brought up by the malware group

at the beginning of the AVA project and was created at their request. While this

may not have been brought up in the session, it was indeed a high priority issue for

the malware group. The other issue we have categorized as control �ow is similar for

both the mainframe and malware group. From our observations at the mainframe

group, we �nd that it is di�cult to �nd the main task, whereas the malware group

brought up in the group session that it can be di�cult to �nd the entry point.

Data The mainframe group's data requirement involved reading a DSECT and ex-

panding it out by decoding the data. The malware group had two data requirements.

Their �rst was to show possible values of a constant (int, �oat, date) so that the

analyst could make a best guess at what the data contains. Their second was to

statically show possible values stored in a variable and where these assignments could

have occurred.

Debugging This was one area in which there were many issues brought up by both

the mainframe and malware groups. The mainframe group had many issues related

to debugging that have been categorized into more speci�c areas, though they still

fall under the debugging umbrella. For example, the integration of the XDC tool in

the VTAM environment was instead placed under Integration. While both groups

had many issues with debugging (including those observed at mainframe), they were

speci�c to their own tooling environments.

De-obfuscation This issue came up explicitly for the malware group, and not for

the mainframe group. However, as we noted previously, this is an issue we came

across during our observations at the mainframe group in the case of redundant code,

making the code di�cult to read.

99

Documentation Both the mainframe and malware groups had a number of issues

in regards to documentation. The mainframe group mentioned two during their

session which were charts that document the code, as well as integration of their

documentation artifacts, neither of which have counterparts in the malware group.

However, the malware group brought up four issues that do have comparisons to

mainframe from the observation sessions. The �rst is a tagging mechanism and in

the mainframe group we observed that they use single character bookmarking, or

comments, for lines of code as well as TODOs, which is insu�cient. The malware

group's second documentation requirement was to easily access API documentation.

We see for the mainframe group that they also reference IBM manuals and have to

do so manually. Two of the four from the malware group brought up shortcomings

with the comment system in IDA Pro. At the mainframe group, we saw that multiple

developers printed o� the code and wrote comments directly on the paper, or used

sticky notes to make comments. The issues for this category are therefore closely

comparable.

Integration This issue only came up for the mainframe group in the group session.

There are many tools/environments that they use within the mainframe but there

were many issues listed about them not working together. We know that the malware

group predominantly uses IDA Pro although does occasionally use other tools (such

as PaiMei [21]). In the survey, they mentioned lack of integration as the largest

de�ciency with IDA Pro.

References The mainframe group's reference requirements are for references to

�elds within a DSECT, as well as seeing which library (and level), an assembler

macro came from. The malware group needed a link between the main executable �le

and DLL's that they referenced. The observation we noted for the mainframe group

was dependencies between code and modules. This observation is quite similar to the

malware group's needs.

Source Control This issue only arose for the mainframe group as their work di�ers

from the malware group as development-based.

100

5.2.1 Comparison Summary

While there may be similarity across the two groups and the issues they face, we see

that both groups reported issues related directly to their own work processes rather

than issues with assembly language in general. For example, the mainframe group has

issues related to version control that most high-level systems have already addressed.

This is a re�ection of antiquated mainframe tools rather than an issue with assembly

language itself. Even where similarities do exist, the same tool support could likely

not be built to satisfy them. An interesting note is that we found more similarity

between the mainframe and malware groups from our activity-based elicitation than

what was self-reported by the mainframe group.

Table 5.9 shows the number of issues observed at the mainframe group and re-

ported by the mainframe and malware groups. Darker shaded rows show categories

that were self-reported by both groups. Lighter shaded rows show categories that had

issues reported by the malware groups but only observed at the mainframe group and

not reported. Unshaded rows show categories that existed for either group, but not

both. An additional twelfth category was introduced based on our observations which

is source editing. The total number of issues we observed across both hour-long ses-

sions was 24, with the majority belonging to browsing and navigation followed closely

by debugging and documentation.

Category Observed at

Mainframe

Group

Reported by Mainframe

Group

Reported by Malware

Group

Browsing and
Navigation

Yes (5 Issues) No (0 points, 0 Issues) Yes (295 points, 1 Issue)

Build Yes (3 Issues) Yes (520 points, 2 Issues) No (0 points, 1 Issue)
Control Flow Yes (2 Issues) Yes (265 points, 1 Issue) Yes (297 points, 1 Issue)
Data No (0 Issues) Yes (340 points, 1 Issue) Yes (220 points, 3 Issues)
Debugging Yes (4 Issues) Yes (290 points, 2 Issues) Yes (520 points, 2 Issues)
De-obfuscation Yes (1 Issue) No (0 points, 0 Issues) Yes (248 points, 1 Issue)
Documentation Yes (4 Issues) Yes (280 points, 1 Issue) Yes (1023 points, 4 Issues)
Integration No (0 Issues) Yes (950 points, 4 Issues) No (0 points, 0 Issues)
References Yes 1 Issue Yes (485 points, 2 Issues) Yes (475 points, 2 Issues)
Source Control Yes (1 Issue) Yes (440 Points, 1 Issue) No (0 points, 0 Issues)
Source Editing Yes (3 Issues) No (0 Issues, 0 Issues) No (0 Issues, 0 Issues)

Table 5.9: Comparison of Issues for Mainframe and Malware Groupsa.

aDark rows were self-reported by both the mainframe and malware groups, lighter rows show
issues reported by the malware group but only observed at the mainframe group, unshaded rows
existed for either the mainframe of malware group, but not both.

101

5.3 Ships Passing in the Night?

We have shown that while there is crossover in speci�c instances with both groups,

there is no one tool framework to rule them all. The reason for this is twofold. First,

the assembly language used is quite technically di�erent. Second, the type of work

that each group does is highly-specialized. The initial goal of the project was to

create one set of assembly tools that would help with the blanket topic of assembly

visualization and analysis. However, we have shown that while tools would de�nitely

help both groups, our results have clearly established fundamental disparities that

would indicate no one set of tools would simultaneously be equally e�ective for both

groups. In the most stark example, we see that while 40% of mainframe developers

said a tool, such as a high-level construct visualiser, could be useful, 0% of malware

analysts said it would be. Conversely while control �ow issues seem to be a bigger

concern for the malware analysts, it still remains a large concern for the mainframe

developers as well.

We therefore conclude that while some tools could be built to work with both

groups, we �rst must ask if the tool is useful, and second we must procure the data

to make its use possible. This can be a large challenge, especially in mainframe sys-

tems. These challenges are also further discussed in the following chapter. The most

important factor to consider may be that of �exibility. A tool capable of visualizing

whatever is passed to it, through a �exible intermediate language or model, is neces-

sary. However, this tool must also be extensible for purposes speci�c to the context

it is applied to.

In concluding this section, we bring together the issues faced by both groups from

the surveys, as well as the requirements elicitation, in one place. Table 5.10 combines

the issues identi�ed through the survey, with those from the requirements elicitation.

They are listed by category identi�ed through the requirements elicitation. Finally,

issues that are present within both groups are highlighted by using a boldfaced font.

5.4 Chapter Summary

This chapter provided a direct comparison between the mainframe developers and

malware analysts by each section of the survey presented in Chapter 3. We then pro-

vided a comparison of the two groups by each category identi�ed in the requirements

elicitation in Chapter 4. Each section provided a comparison table that outlines

102

Category Issues for the Mainframe Group Issues for the Malware Group

Browsing
and
Navigation

Navigation within code
Speci�c instructions
Links, Comments, Macros, Loops
Observed: search �nds one at a time
Observed: many screens open at once to view
same module

Function calls
Coding conventions
Data usage
Function de�nitions
Modules
Map of analysis

Build

Recompile a�ected modules/links (make)
Macro expansion given an argument without
assembling entire system
Observed: register usage
Observed: stub errors
Observed: compile errors to �nd changes

Disassemble �le with parts in 16, 32, 64 bit
(already exists)

Control
Flow

Register values/mapping
Memory usage
Performance
System/subroutine call statistics
Most executed paths
Identifying timing problems
Observed: di�cult to �nd main task
Observed: Multi-threaded traces

System call patterns
Loops and recursion
Compare traces
Data to reach execution point
Branch frequency
Multi-threaded traces
Find entry point in �oating code

Data Visualiser
Label various �elds in a DSECT

Stack trace during static analysis
Value of constant in di�erent formats
Possible values stored in variables, and
where they came from, in static mode

Debugging

Data �ow
XDC debugger is too intrusive
XDB supporting internal debug command
with panel
Observed: No breakpoints in XDC
Observed: need to trap events
Observed: correct location to debug

Save debugging state
Reset values/rerun
Data �ow
Static simulation
Multi-threaded support for IDA Pro
Trace replayer

De-obfuscation Observed: redundant code
De-obfuscation help (remove code only there
to confuse human)

Documentation

Logic �ow (charts that document the
code)
Observed: characters and comments
used to bookmark
Observed: Reference IBM manuals
Observed: print code to write comments

Instruction de�nitions
Documentation support
Higher-level representation
UML Diagrams (State, Activity)
Tagging mechanism
Access API documentation easily
Repeatable comments for external modules
Insert boilerplate documentation/comments

Integration

XDC debugger integrated with source edit-
ing
Integrate source, documentation, logic and
make
Use XDC in VTAM environment
Internal debugger work with subtask engine

Better tool integration
High-Level Split View

References

DSECT �eld display
See assembler macro library/level in source
Observed: dependencies between code
and modules

Disassemble multiple �les at once, and link
between them
Cross-reference between function and
DLL

Source Control

In context changes to any piece of source
(who by and why)
Observed: module replacement issues

Source Editing

Syntax Highlighting
Syntax checking
Observed: No save reminder
Observed: Code templates

Table 5.10: Summary of Issues from Survey and Requirements Elicitationa.

aSimilar issues present in both groups are boldfaced.

103

where issues lie for each group to further highlight di�erences and/or commonality

between them. The �nal section of the chapter discussed that, while similarities do

exist, ultimately no one set of tools can equally satisfy the spectrum which our two

stakeholders establish in terms of program comprehension. While this may not cor-

respond directly to the initial project plan, it does not mean to say that tools cannot

be built with multiple purposes in mind.

This concludes Phase II of the study, where we have established from the surveys

and requirements elicitation that there are fundamental disparities between the needs

of these stakeholders. The research questions that Chapters 3, 4 and 5 have answered

are: What are the requirements currently not being met in the comprehension of

assembly code within two unique groups: mainframe developers and malware analysts?

and What are the similarities and di�erences in the requirements? However, in order

to more concretely determine how these disparities may play out in a framework,

Phase III explores proof of concept tools aligned with these requirements and applied

to stakeholder speci�c tasks. In our investigation of higher-level tool support in this

low-level domain, we have created one tool in particular that has been shown to be

useful for both stakeholder groups.

104

Chapter 6

Design and Implementation

This chapter discusses the design and implementation of proof of concept tool sup-

port built alongside survey feedback and elicited requirements described in previous

chapters. We �rst introduce the architecture of the AVA framework1. Next, we intro-

duce how we obtain data for both the mainframe and malware groups, as well as the

data formats used in each tool. Following that, we discuss each tool belonging to the

framework. First we introduce our sequence diagramming tool, called Tracks, which

provides �exible visualizations for control �ow. Next we show the visualiser extension

called LegaSee, which shows a high-level view of speci�c constructs within a main-

frame system. Finally, we show REwind, a debugging tool that can save and rerun a

user's reverse engineering actions through a state diagram. At the end of this chap-

ter, we discuss tools that our colleagues have built to satisfy malware requirements

identi�ed in the work of this dissertation.

6.1 AVA Framework Overview

The AVA framework consists of the program comprehension tools, as well as the

integration with other tools through further plugin and communication mechanisms.

Additionally, the tool suite can work directly o� of text �les. Figure 6.1 shows an

overview of the AVA framework. All of the user-interface level tools are built as

plugins using the Eclipse Rich-Client-Platform (RCP). We decided to use Eclipse due

to the number of modeling plugins and tools already available as open source for the

Eclipse platform, but also familiarity of Eclipse within the malware group's user base

1Available at: https://github.com/jebaldwin/AVA

https://github.com/jebaldwin/AVA

105

Figure 6.1: AVA Framework Architecture Overview.

as well as research groups such as CHISEL.

While we could build these tools within Eclipse, we still needed to integrate our

tools with those already in use. Our current implementation is built to work directly

with IDA Pro through its own plugin architecture. Since our IDA Pro plugins are

written in C++ and our user-interface written in Java, we provide a communication

module within Eclipse that is explained later in Section 6.1.3.

Finally, even though we showed that integration is possible with the predominant

tool used by malware analysts, we still face limitations as far as integration with

the mainframe environment. These limitations are discussed further in Section 7.1.1.

To summarize, it was di�cult to gain access to mainframe systems, in addition to

the steep learning curve required to program such a system. We show that the

communication structure we use is �exible enough to allow integration with multiple

other systems but in the meantime, rely on text output from the mainframe, which

is manually fed into our suite of tools.

106

6.1.1 AVA User-Interface (Eclipse)

AVA consists of either a set of Eclipse plugins, or a single RCP application, depending

on user preference. The Eclipse plugins (shown in Figure 6.1) include: Tracks, which

includes sequence diagrams, links to MSDN documentation as well as collaboration

and documentation mechanisms; LegaSee, which provides a `bars-and-stripes' style

representation of code constructs; and REwind, a state diagram tool for saving and

re-running a user's debugging actions. AVA also includes the communication module

that can be used across all tools. The RCP application is provided as a simpli�ed

Eclipse executable containing these tools and no others. The intention was that some

users may not be familiar with Eclipse and providing the entire Eclipse IDE along

with AVA would overcomplicate the AVA toolset. These tools are discussed separately

in detail later in this chapter.

While the malware group may have been familiar and even fond of Eclipse as

shown in the surveys, they also use IDA Pro predominantly in their analysis activities.

Therefore, it was imperative that our tools worked seamlessly alongside IDA Pro. This

gave us the opportunity to leverage the IDA Pro plugin framework to create this link,

as well as retrieve the data necessary for our tools. We realize that all tools built

as part of the AVA framework will need to be �exible in order to be used alongside

other systems, such as mainframes. The communication mechanism implemented to

this end is discussed in Section 6.1.3.

6.1.2 IDA Pro Plugin

The IDA Pro plugin was written in C++ and supports communication between IDA

Pro and other tools. The plugin is also responsible for providing the data necessary for

the AVA tool suite, including static control �ow information and real-time information

such as dynamic control �ow, and user interactions with the system.

The IDA Pro plugin framework [103] provides event noti�cations for four di�erent

types of events. These include HT_IDP for processor module events, HT_IDB for

database events, HT_UI for user interface events and �nally HT_DBG for debugger

events. To use these events, we simply register a callback function that hooks to

the noti�cation point. With these callback functions, we can retrieve data related to

the event type, including the noti�cation code. For example, noti�cation codes for

the HT_DBG event could include dbg_process_start for the process having started,

dbg_bpt for a user breakpoint being hit, or even dbg_trace for an instruction being

107

executed. The latter requires that step tracing be enabled which can also be set

through the plugin. Using these events, we can send messages with the pertaining

information to AVA to be processed.

Additionally the IDA Pro plugin receives messages from AVA. One common event

we may see is to update the cursor to a speci�c location. Should we receive this

message, we can use the jumpto method within the IDA Pro plugin to move the

user's cursor to the address provided as an argument.

Further information regarding these events and how the IDA Pro plugin framework

can be used is found in the manual written by Steve Micallef [103].

6.1.3 Communication Mechanism Module

To maintain independence between tools, we implemented a messaging mechanism

for AVA such that any external tool could be extended to work with the AVA frame-

work. We discuss this messaging in regard to IDA Pro for which it was implemented.

However, it is important to note that this communication is not limited to IDA Pro.

To pass messages between IDA Pro and the AVA framework, we needed to create

the IDA Pro plugin, discussed above, to generate the required data. We then send

these messages using sockets since IDA Pro plugins are written in C++ and AVA

is written in Java. Figure 6.2 shows a sample of messages that can be exchanged

between IDA Pro and the Tracks tool within AVA.

The �rst message from Tracks is to initiate contact with IDA Pro, which causes

IDA Pro to send back the path to the XML �le describing static control �ow. Next

the Tracks framework can receive navigation, debugging and renaming events from

IDA Pro, which contain additional information about functions. This information

includes the index of the call (8 in this case), the function's address, the function's

name, the name of the external �le where the function resides (if applicable), and

the executable �le name (in this case, calc.exe). The executable �le name is needed

when there are multiple IDA Pro instances open, so that we interact with the correct

one. The top requirement from the requirements elicitation in the malware group

(380 out of 400) was the ability for IDA Pro to handle more than one executable at

a time, so it is important that wherever possible we keep this in mind.

Additionally, we can send events to all IDA Pro instances such as enable/disable

tracing messages, enable/disable tracing calls within a library module, update pref-

erence count for loops, disable tracing of a speci�c loop and send goodbye messages.

108

Figure 6.2: Messages between IDA Pro and Tracks.

6.2 Obtaining Data

In order to create tools, we �rst needed to de�ne a model for the data we would need.

The initial project proposal anticipated the solution would include an intermediate

common format for multiple assembly languages. Ultimately, no existing intermediate

language (IL) could support our goals due to fundamental di�erences between the

languages [71]. Therefore, each of our tools use their own home-grown XML format

speci�c to their needs. We discuss how data was obtained and the XML format

of such data by both assembly languages: mainframe code written in HLASM, and

disassembled assembly in x86.

109

6.2.1 Data for Mainframe (HLASM)

Due to limited access to mainframe code, one of our research partners at CA labs

created tools to scrape mainframe assembler listing �les to extract the necessary data.

The data provision was planned in phases as shown in Table 6.1. Phase one involved

the extraction of a list of modules in the system, their CSECTs and DSECTs as well

as external symbols. This phase was planned to aid in building tools based on the

architecture. Phase two included which modules are included by a given module,

which would further complete the package structure. Phase three dealt with code

shared among CSECTs. Phase four contained the data necessary to reason about

control �ow.

Phase Data

One Modules, CSECTs, DSECTs and External Symbols
Two Modules, Macros, Copybooks and How They are Applied
Three Combination of Macros and CSECTs
Four Procedures, Calls and Entry Points

Table 6.1: Data Phases for CA Labs.

Unfortunately our contact at CA who was providing us with this data left the

company and we were therefore not able to obtain data for all four phases. We were

able to obtain some data from phase one which was fed into our LegaSee tool, as well

as preliminary data from phase four for control �ow for Tracks. Since access to CA

programs was limited due to intellectual property constraints, we instead used data

obtained from large open source projects written in HLASM that were comparable

in size to CA Labs' projects. We use two such systems in this dissertation. The �rst

is an MVS program called CBT019 [104], otherwise known as FOOD LION Utilities

by John Hooper, and the second is an Algol package [105].

This data was produced through python scripts that directly parse the textual

listing �les. The assembler listing �les are produced by compiling the system which

produces �les which are a mixture of the original assembler as well as what is produced

by the compiler. A snippet of the listing �le for CBT019 is shown in Figure 6.4,

while the corresponding assembly code for the same portion of the listing is shown in

Figure 6.3.

While a correct approach would be based o� of the ADATA �le [106] produced

by the compiler, this would have required assembly language programming by our

contact, who rather preferred python as an immediate solution. The scripts created

110

* *

* OPEN THE FILE FOR INPUT , AND GET READY TO PROCESS *

* EACH MEMBER *

* *

OPENCK OPEN CHECKDCB OPEN THE FILE

L R10 ,TBLADDR LOAD ADDRESS OF TABLE

FIND FIND CHECKDCB ,0(R10),D POSITION TO MEMBER

MVC MEMBER ,0(R10) SAVE MEMBER NAME

READBLK L R6,BUFADDR LOAD ADDRESS OF INPUT BUFFER

READ DECB1 ,SF,CHECKDCB ,(R6),'S' READ BLOCK FROM MEMBER

CHECK DECB1 WAIT FOR I/O TO COMPLETE

LA R9,CHECKDCB LOAD ADDRESS OF DCB

USING IHADCB ,R9 SET ADDRESSABILITY TO DCB

LH R14 ,DCBBLKSI LOAD BLOCKSIZE

L R15 ,DECB1 +16 LOAD IOB ADDRESS

SH R14 ,14(,R15) SUBTRACT RESIDUAL BYTE COUNT

SRDA R14 ,32 SHIFT TO ODD REG FOR DIVIDE

D R14 ,=F'80' DIVIDE BY LRECL FOR RECORD COUNT

LTR R14 ,R14 TEST REMAINDER

BZ FIND1 ZERO , OK

WTO 'BSCN005E ACTUAL BLOCKSIZE NOT A MULTIPLE OF LRECL ', X

ROUTCDE =11

Figure 6.3: HLASM Snippet for BLKSCAN Module in CBT019.

intermediate structures in memory, in �les accessible through seeks and in a number

of database tables. Tables and seekable �les were used because the code analyzed

has roughly 900,000 lines of assembly code. By several passes through structures,

the script resolve code entities and built their relationships. The raw XML data for

CBT019, produced from these python scripts, is shown in Figure 6.5.

From this raw XML data, we used XSL translations to create the speci�c XML

�les for both Tracks and LegaSee. Figure 6.6 shows a snippet of the data transformed

for CBT019 which provides the control �ow information for our Tracks tool. One of

the important challenges within HLASM was there not being an explicit concept of

a subroutine call. �Subroutine calls� were then based on conventions of how registers

were used, which registers were used, and typical patterns of code around this. Ba-

sically, if a branch instruction saves the next address and makes a jump to another

address (typically instructions like BAL, BALR, BASR), then the location is classi�ed

as a subroutine call. If an address is the target address of more such locations, then

the target address is classi�ed as a subroutine entry point. However, code classi�ed

as a subroutine should end with a branch instruction that transfers control back to

the saved address (saved by the calling branch instruction). It is important to note

111

SEARCH PARTITIONED DATA SET FOR BLOCK SIZES Page 11
Active Usings: BLKSCAN,R11,R12
Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R5.0 2008/04/28 09.49

294 ***
295 * *
296 * OPEN THE FILE FOR INPUT, AND GET READY TO PROCESS *
297 * EACH MEMBER *
298 * *
299 ***
300 OPENCK OPEN CHECKDCB OPEN THE FILE

000230 301+ CNOP 0,4 ALIGN LIST TO FULLWORD 01-OPEN
000230 4510 B238 00238 302+OPENCK BAL 1,*+8 LOAD REG1 W/LIST ADDR. @L2A 01-OPEN
000234 80 303+ DC AL1(128) OPTION BYTE 01-OPEN
000235 000C6C 304+ DC AL3(CHECKDCB) DCB ADDRESS 01-OPEN
000238 0A13 305+ SVC 19 ISSUE OPEN SVC 01-OPEN
00023A 58A0 B8C8 008C8 306 L R10,TBLADDR LOAD ADDRESS OF TABLE

307 FIND FIND CHECKDCB,0(R10),D POSITION TO MEMBER
00023E 4110 BC6C 00C6C 309+FIND LA 1,CHECKDCB LOAD PARAMETER REG 1 02-IHBIN
000242 410A 0000 00000 310+ LA 0,0(R10) LOAD PARAMETER REG 0 02-IHBIN
000246 1211 311+ LTR 1,1 IS DCB ADDRESS 0 01-FIND
000248 4770 B258 00258 312+ BNZ *+16 NO, BRANCH 01-FIND
00024C 41F0 0008 00008 313+ LA 15,8 SET RETURN CODE 01-FIND
000250 4100 0010 00010 314+ LA 0,16 SET REASON CODE 01-FIND
000254 47F0 B25C 0025C 315+ B *+8 BR AROUND FIND SVC 01-FIND
000258 1311 316+ LCR 1,1 INDICATE TYPE D 01-FIND
00025A 0A12 317+ SVC 18 ISSUE FIND SVC 01-FIND
00025C D207 B931 A000 00931 00000 318 MVC MEMBER,0(R10) SAVE MEMBER NAME
000262 5860 B8CC 008CC 319 READBLK L R6,BUFADDR LOAD ADDRESS OF INPUT BUFFER

320 READ DECB1,SF,CHECKDCB,(R6),'S' READ BLOCK FROM MEMBER
000266 0700 322+ CNOP 0,4 02-IHBRD
000268 4510 B280 00280 323+ BAL 1,*+24 LOAD DECB ADDRESS 02-IHBRD
00026C 00000000 324+DECB1 DC F'0' EVENT CONTROL BLOCK 02-IHBRD
000270 80 325+ DC X'80' TYPE FIELD 02-IHBRD
000271 80 326+ DC X'80' TYPE FIELD 02-IHBRD
000272 0000 327+ DC AL2(0) LENGTH 02-IHBRD
000274 00000C6C 328+ DC A(CHECKDCB) DCB ADDRESS 02-IHBRD
000278 00000000 329+ DC A(0) AREA ADDRESS 02-IHBRD
00027C 00000000 330+ DC A(0) RECORD POINTER WORD 02-IHBRD
000280 5061 000C 0000C 331+ ST R6,12(1,0) STORE AREA ADDRESS 02-IHBRD
000284 58F0 1008 00008 332+ L 15,8(,1) LOAD DCB ADDR @01M 02-IHBRD
000288 BFF7 F031 00031 333+ ICM 15,B'0111',49(15) LOAD RDWR ROUTINE ADDR @01M 02-IHBRD
00028C 05EF 334+ BALR 14,15 LINK TO RDWR ROUTINE @L1C 02-IHBRD

335 CHECK DECB1 WAIT FOR I/O TO COMPLETE
00028E 4110 B26C 0026C 337+ LA 1,DECB1 LOAD PARAMETER REG 1 02-IHBIN
000292 58E0 1008 00008 338+ L 14,8(0,1) PICK UP DCB ADDR 01-CHECK
000296 1BFF 339+ SR 15,15 @01A 01-CHECK
000298 BFF7 E035 00035 340+ ICM 15,B'0111',53(14) LOAD CHECK ROUTINE ADDR @01C 01-CHECK
00029C 05EF 341+ BALR 14,15 LINK TO CHECK ROUTINE 01-CHECK
00029E 4190 BC6C 00C6C 342 LA R9,CHECKDCB LOAD ADDRESS OF DCB

R:9 00000 343 USING IHADCB,R9 SET ADDRESSABILITY TO DCB
0002A2 48E0 903E 0003E 344 LH R14,DCBBLKSI LOAD BLOCKSIZE
0002A6 58F0 B27C 0027C 345 L R15,DECB1+16 LOAD IOB ADDRESS
0002AA 4BE0 F00E 0000E 346 SH R14,14(,R15) SUBTRACT RESIDUAL BYTE COUNT
0002AE 8EE0 0020 00020 347 SRDA R14,32 SHIFT TO ODD REG FOR DIVIDE
0002B2 5DE0 B7A8 007A8 348 D R14,=F'80' DIVIDE BY LRECL FOR RECORD COUNT
0002B6 12EE 349 LTR R14,R14 TEST REMAINDER
0002B8 4780 B30C 0030C 350 BZ FIND1 ZERO, OK

351 WTO 'BSCN005E ACTUAL BLOCKSIZE NOT A MULTIPLE OF LRECL', X

Figure 6.4: Listing Snippet for BLKSCAN Module in CBT019.

112

<softwarePackage name=''CBT019 ''>

<copybook name=''$HASPGBL ''>

</copybook >

<copybook name=''SMFDSECT ''>

</copybook >

<sourceModule name=''BLKSCAN '' language=''ASM'' lastAddress=''000 D20''

isIgnored=''false'' description=''''>

<controlSection name=''BLKSCAN '' startAddress=''00000'' length=''00D24''

stmt=''80''>

<addressPoints >

<addressPoint id=''BLKSCAN@BLKSCAN .000000 '' label=''BLKSCAN ''

section=''BLKSCAN '' hexOffset=''000000 ''>

<callToAddress id=''DETAIL@BLKSCAN .000448 ''></callToAddress >

</addressPoint >

<addressPoint id=''None@BLKSCAN .0002A9'' label=''None'' section=''BLKSCAN ''

hexOffset=''0002A9''>

</addressPoint >

<addressPoint id=''HEADINGS@BLKSCAN .0003 F4'' label=''HEADINGS ''

section=''BLKSCAN '' hexOffset=''0003F4''>

<callToAddress id=''None@BLKSCAN .000 CF5''></callToAddress >

</addressPoint >

<addressPoint id=''DETAIL@BLKSCAN .000448 '' label=''DETAIL ''

section=''BLKSCAN '' hexOffset=''000448 ''>

<callToAddress id=''None@BLKSCAN .000 CF5''></callToAddress >

</addressPoint >

<addressPoint id=''SCAN@BLKSCAN .00049E'' label=''SCAN'' section=''BLKSCAN ''

hexOffset=''00049E''>

<callToAddress id=''DETAIL@BLKSCAN .000448 ''></callToAddress >

</addressPoint >

<addressPoint id=''None@BLKSCAN .000 C3D'' label=''None'' section=''BLKSCAN ''

hexOffset=''000 C3D''>

</addressPoint >

<addressPoint id=''None@BLKSCAN .000 CA5'' label=''None'' section=''BLKSCAN ''

hexOffset=''000 CA5''>

</addressPoint >

<addressPoint id=''None@BLKSCAN .000 CF5'' label=''None'' section=''BLKSCAN ''

hexOffset=''000 CF5''>

</addressPoint >

</addressPoints >

</controlSection >

<dummySection name=''IHADCB '' startAddress=''00000'' length=''00058''>

</dummySection >

</sourceModule >

Figure 6.5: CSECT and DSECT Data for CBT019.

113

that some uses of BAL, BALR and BASR serve completely di�erent purposes than

subroutine calls. We see that stating whether or not something is a subroutine is

non-trivial and will not be 100% accurate. Since our contact at CA left at this stage

of data extraction, our current control �ow information follows a set of over-simpli�ed

classi�cation rules for subroutines. While this may lead to some confusing situations

with some data, it is an issue that can be �xed given future work on listing parsing,

without any changes to the control �ow tool itself.

Figure 6.7 shows a snippet of the XML produced for the LegaSee tool through the

XSLT. This data pertains to CSECTs and DSECTs only.

6.2.2 Data for Malware (x86)

IDA Pro provides an extensive API that allows users to extend it through plugins,

or by running python scripts directly from the plugin menu. Since IDA Pro was the

primary tool used by all malware analysts, we leverage this API in order to extract the

necessary data. The original DRDC project that looked at control �ow within IDA

Pro was called Opening up Architectures of Software-Intensive Systems (OASIS). In

particular, the OASIS Sequence Explorer (OSE) [107] contained an IDA Pro plugin

that gathered control �ow information, and dumped this information to a text �le.

Figure 6.8 shows the output �le for the Eclipse executable.

The plugin works by going through the binary and �rst listing all entry points

into that binary. There is usually only one for an executable, but DLLs can have

several. Then for each function in the binary, the plugin lists every call made. It is

only one level deep, as opposed to an execution trace. The �rst line is an entry point,

denoted by �>>�, which contains the function address and function name of that entry

point. Sections delimited by �<� and �>� indicate the start of calls for a particular

function, and the information is the same for that of an entry point (address, name).

Within this section are all the calls made within that function which also contain the

function address and name. If the call line starts with a �-1�, then it indicates a call

to an external function and the binary which contains this function is listed at the

end of the call line. A call line that begins with BADADDR indicates that retrieving

that information failed, usually meaning that the call is to an address contained in a

register. Otherwise the �rst number indicates the index.

We extended this functionality through our own plugin that similarly retrieves

control �ow information from IDA Pro. However we use XML as our format, and

114

<softwarePackage name=''CBT019 ''>

<copybook name=''$HASPGBL ''>

</copybook >

<copybook name=''SMFDSECT ''>

</copybook >

<section name=''BLKSCAN ''>

<functionEntryPoint address=''00000'' section=''BLKSCAN '' name=''BLKSCAN ''

index=''00D24''>

<function address=''000000 '' name=''BLKSCAN '' index=''1''

section=''BLKSCAN ''>

<call calladdress=''000448 '' name=''DETAIL '' functionaddress=''000448 ''

index=''local''

externalFile=''BLKSCAN ''/>

</function >

<function address=''0002A9'' name=''None'' index=''2'' section=''BLKSCAN ''/>

<function address=''0003F4'' name=''HEADINGS '' index=''3''

section=''BLKSCAN ''>

<call calladdress=''000 CF5'' name=''None'' functionaddress=''000 CF5''

index=''local''

externalFile=''BLKSCAN ''/>

</function >

<function address=''000448 '' name=''DETAIL '' index=''4''

section=''BLKSCAN ''>

<call calladdress=''000 CF5'' name=''None'' functionaddress=''000 CF5''

index=''local''

externalFile=''BLKSCAN ''/>

</function >

<function address=''00049E'' name=''SCAN'' index=''5'' section=''BLKSCAN ''>

<call calladdress=''000448 '' name=''DETAIL '' functionaddress=''000448 ''

index=''local''

externalFile=''BLKSCAN ''/>

</function >

<function address=''000 C3D'' name=''None'' index=''6'' section=''BLKSCAN ''/>

<function address=''000 CA5'' name=''None'' index=''7'' section=''BLKSCAN ''/>

<function address=''000 CF5'' name=''None'' index=''8'' section=''BLKSCAN ''/>

</functionEntryPoint >

</section >

<section name=''CA''>

<functionEntryPoint address=''0'' section=''TFVSENV '' name=''TFVSENV ''

index=''0''/>

<functionEntryPoint address=''0'' section=''OPSAMD '' name=''OPSAMD ''

index=''0''/>

<functionEntryPoint address=''0'' section=''TFVSEOPE '' name=''TFVSEOPE ''

index=''0''/>

<functionEntryPoint address=''0'' section=''TFVSESR '' name=''TFVSESR ''

index=''0''/>

<functionEntryPoint address=''0'' section=''TSIDSYS '' name=''TSIDSYS ''

index=''0''/>

<functionEntryPoint address=''0'' section=''TFVSERR '' name=''TFVSERR ''

index=''0''/>

</section >

<section name=''CHECKPVT ''>

<functionEntryPoint address=''00000'' section=''CHECKPVT '' name=''CHECKPVT ''

index=''001D2''/>

</section >

Figure 6.6: Static Control Flow Information for CBT019.

115

<softwarePackage name=''CBT019 ''>

<sourceModule name=''BLKSCAN '' language=''ASM'' lastAddress=''000 D20''

isIgnored=''false'' description=''''>

<controlSection name=''BLKSCAN '' startAddress=''00000'' length=''00D24''

stmt=''80''/>

<dummySection name=''IHADCB '' startAddress=''00000'' length=''00058''/>

</sourceModule >

<sourceModule name=''CHECKPVT '' language=''ASM'' lastAddress=''0001C8''

isIgnored=''false'' description=''''>

<controlSection name=''CHECKPVT '' startAddress=''00000'' length=''001D2''

stmt=''65''/>

<dummySection name=''CVT'' startAddress=''00000'' length=''00500''/>

<dummySection name=''CVTXTNT1 '' startAddress=''00000'' length=''0000C''/>

<dummySection name=''CVTVSTGX '' startAddress=''00000'' length=''00050''/>

<dummySection name=''CVTXTNT2 '' startAddress=''00000'' length=''00084''/>

</sourceModule >

</softwarePackage >

Figure 6.7: LegaSee XML Format.

we also additionally provide the address at which the call to a function is made.

Figure 6.9 shows the XML output created for the calculator executable included with

Windows.

While this approach satis�ed static control �ow data requirements, it is not a

solution for dynamic traces, or user navigation. Therefore we created another XML

format speci�c to these dynamic control graphs. This format is similar to the above

but maintains the order of calls, as well as multiple calls to the same function which

are not available for static graphs. This format is shown in Figure 6.10.

6.3 Tracks: Sequence Diagrams for Assembly

One of the most di�cult challenges identi�ed in our surveys and requirements elici-

tation, is to follow control �ow within assembly due to the inherently unstructured

nature of assembly code (see Sections 5.1.6 and 5.2).

Tracks is built on top of the Diver framework which was introduced in Sec-

tion 2.3.1. To summarize, Diver is an open-source and extensible sequence diagram

tool built using the Eclipse framework [73] by the CHISEL Group at the University

of Victoria. Diver provides features for extremely large traces, for example, users

may set any of the functions as the root of the diagram to reduce the amount of

information displayed. There are breadcrumbs at the top of the diagram to navigate

back to the previous view. There is also a thumbnail outline pane to quickly navigate

116

>> 57: 404907 start

> 0: 401000 _wmain

-1: 405020 ds:GetVersionExW KERNEL32.dll

-1: 405068 ds:malloc MSVCRT.dll

-1: 405040 ds:WideCharToMultiByte KERNEL32.dll

-1: 405068 ds:malloc MSVCRT.dll

-1: 405040 ds:WideCharToMultiByte KERNEL32.dll

10: 401BC0 sub_401BC0

-1: 405064 ds:free MSVCRT.dll

-1: 405064 ds:free MSVCRT.dll

1: 401188 sub_401188

< 0

> 1: 401188 sub_401188

-1: 40508C ds:setlocale MSVCRT.dll

-1: 405068 ds:malloc MSVCRT.dll

58: 404A18 memcpy

-1: 405084 ds:wcschr MSVCRT.dll

2: 401539 sub_401539

4: 40173D sub_40173D

20: 402691 sub_402691

19: 4025D0 sub_4025D0

3: 401629 sub_401629

3: 401629 sub_401629

5: 401796 sub_401796

-1: 405080 ds:_wcsdup MSVCRT.dll

8: 4018C9 sub_4018C9

6: 401831 sub_401831

9: 401949 sub_401949

34: 4037A3 sub_4037A3

-1: 40507C ds:wcslen MSVCRT.dll

-1: 40507C ds:wcslen MSVCRT.dll

-1: 405068 ds:malloc MSVCRT.dll

-1: 405078 ds:swprintf MSVCRT.dll

32: 4036D3 sub_4036D3

-1: 405070 ds:fwprintf MSVCRT.dll

-1: 405064 ds:free MSVCRT.dll

-1: 40506C ds:exit MSVCRT.dll

36: 4037C1 sub_4037C1

BADADDR [ebp+var_2C]

32: 4036D3 sub_4036D3

-1: 405070 ds:fwprintf MSVCRT.dll

-1: 40506C ds:exit MSVCRT.dll

36: 4037C1 sub_4037C1

BADADDR [ebp+var_10]

32: 4036D3 sub_4036D3

-1: 405070 ds:fwprintf MSVCRT.dll

-1: 40506C ds:exit MSVCRT.dll

35: 4037B2 sub_4037B2

-1: 405064 ds:free MSVCRT.dll

-1: 405064 ds:free MSVCRT.dll

-1: 405064 ds:free MSVCRT.dll

-1: 405064 ds:free MSVCRT.dll

< 1

Figure 6.8: OASIS Sequence Explorer Output for Eclipse.exe

117

<sourcecode filename=''calc.exe.ose''>

<functionEntryPoint address=''1009768'' index=''250'' module=''calc.exe'' name=''start''>

<function address=''1001635'' index=''0'' module=''calc.exe'' name=''sub_1001635''>

<call calladdress=''10016A0'' externalfile=''KERNEL32.dll'' functionaddress=''1001194''

index=''external''

module=''calc.exe''

name=''GetModuleHandleW''/>

<call calladdress=''10016A3'' externalfile=''USER32.dll'' functionaddress=''10013F4''

index=''external''

module=''calc.exe''

name=''LoadStringW''/>

<call calladdress=''10016B7'' externalfile=''calc.exe'' functionaddress=''100943C''

index=''244''

module=''calc.exe''

name=''sub_100943C''/>

<call calladdress=''10016D0'' externalfile=''calc.exe'' functionaddress=''1009337''

index=''238''

module=''calc.exe''

name=''sub_1009337''/>

<call calladdress=''10016E2'' externalfile=''KERNEL32.dll'' functionaddress=''1001194''

index=''external''

module=''calc.exe''

name=''GetModuleHandleW''/>

<call calladdress=''10016E5'' externalfile=''calc.exe'' functionaddress=''1009E97''

index=''260''

module=''calc.exe''

name=''sub_1009E97''/>

<call calladdress=''100171D'' externalfile=''calc.exe'' functionaddress=''1009405''

index=''243''

module=''calc.exe''

name=''sub_1009405''/>

<call calladdress=''100172A'' externalfile=''calc.exe'' functionaddress=''1009405''

index=''243''

module=''calc.exe''

name=''sub_1009405''/>

<call calladdress=''100173B'' externalfile=''USER32.dll'' functionaddress=''10013D0''

index=''external''

module=''calc.exe''

name=''LoadCursorW''/>

<call calladdress=''1001756'' externalfile=''KERNEL32.dll'' functionaddress=''1001194''

index=''external''

module=''calc.exe''

name=''GetModuleHandleW''/>

Figure 6.9: Static Control Flow Data for calc.exe

118

<dynamicTrace filename=''calc.exe''>

<functionEntryPoint address='''' index=''0'' module='''' name=''''>

<function address='''' externalfile=''User'' index=''1'' module='''' name=''User''

stereotype=''''>

<call act=''0'' calladdress=''100739D'' externalfile='''' functionaddress=''100739D''

index=''79''

module=''calc.exe''

name=''_WinMainCRTStartup''/>

</function>

<function act=''0'' address=''100739D'' externalfile='''' index=''2'' module=''calc.exe''

name=''_WinMainCRTStartup''

stereotype=''''>

<call act=''0'' calladdress=''1007568'' externalfile='''' functionaddress=''1007568''

index=''80''

module=''calc.exe''

name=''__SEH_prolog''/>

<call act=''0'' calladdress=''7C80B741'' externalfile=''KERNEL32.DLL''

functionaddress=''7C80B741''

index=''-1''

module=''calc.exe''

name=''GetModuleHandleA''/>

<call act=''0'' calladdress=''77C3537C'' externalfile=''MSVCRT.DLL''

functionaddress=''77C3537C''

index=''-1''

module=''calc.exe''

name=''__set_app_type''/>

<call act=''0'' calladdress=''77C1F1DB'' externalfile=''MSVCRT.DLL''

functionaddress=''77C1F1DB''

index=''-1''

module=''calc.exe''

name=''__p__fmode''/>

<call act=''0'' calladdress=''77C1F1A4'' externalfile=''MSVCRT.DLL''

functionaddress=''77C1F1A4''

index=''-1''

module=''calc.exe''

name=''__p__commode''/>

<call act=''0'' calladdress=''10075F4'' externalfile='''' functionaddress=''10075F4''

index=''86''

module=''calc.exe''

name=''__setargv''/>

<call act=''0'' calladdress=''10075DD'' externalfile='''' functionaddress=''10075DD''

index=''85''

module=''calc.exe''

name=''__setdefaultprecision''/>

<call act=''0'' calladdress=''10075D2'' externalfile='''' functionaddress=''10075D2''

index=''84''

module=''calc.exe''

name=''__initterm''/>

<call act=''0'' calladdress=''77C1EEEB'' externalfile=''MSVCRT.DLL''

functionaddress=''77C1EEEB''

index=''-1''

module=''calc.exe''

name=''__getmainargs''/>

</function>

Figure 6.10: Dynamic Control Flow Data for calc.exe

119

around the diagram.

We extended Diver by de�ning our own content and label providers for each of

the sequence diagrams (both static and dynamic), as well as implementing additional

features such as a function tree view, saving diagram state, detecting cycles within

the diagram, showing external calls and custom functionality for events (such as

navigation and setting breakpoints). Table 6.2 outlines the feature additions that are

made by our Tracks tool. Ellipses indicate where further extensions may have been

provided by Diver, in addition to the examples for Java which are included in the

Diver project.

Tracks was initially developed to show both static and dynamic sequence diagrams,

as well as navigation histories. However, it was later extended to provide MSDN

documentation, and collaboration and documentation support. Tracks was the winner

of IDA Pro's Plugin Contest in 2011 [108]. A demo video of Tracks is available online

at: www.jenniferbaldwin.info/diva/presentations.html.

This section presents the features of Tracks including the three distinct views:

static traces, dynamic traces and navigation histories. We additionally discuss the

MSDN documentation tie-in, and the collaboration/documentation features. Finally,

we discuss how Tracks supports multiple IDA Pro instances. This was necessary be-

cause IDA Pro is single-threaded and we may need to debug more than one executable

at a time (e.g. a program and its libraries). We will also see later in the following chap-

ter, Section 7.3.3, that the Mariposa botnet injects code into explorer.exe which

then needs to be debugged separately in another IDA Pro instance. This means that

Tracks can show a complete dynamic control �ow graph, but it also means that if you

double click on an element, Tracks will navigate to the correct IDA Pro instance.

6.3.1 Static View

To see the static control �ow diagram, the user can select any function de�ned within

the executable being disassembled and then view and select any call this function

makes, expanding the diagram as calls are selected. Additionally the user can right-

click on any activation and choose to expand all calls within the diagram. This

static view shows every call that could possibly be made from a function. However

it does not guarantee ordering, and does not show calls to the same function that

are made more than once. The XML data format used for static views within Tracks

was discussed previously in Section 6.2, and shown speci�cally for the calculator

www.jenniferbaldwin.info/diva/presentations.html

120

Feature Diver Tracks

Providers Java Static Assembly
... Dynamically built Assembly

Trace
Reversed

Save Diagram Root, expanded calls and current location
Save diagram to XML (dynamic to trace)

System API Calls Icon indication and use of module names
Loops and Cycles Cycle detection Adapted cycle detection

Loop detection (based on preference)
Collaboration and Comment threads
Documentation Stars added to indicate comments

Color coding of cycles based on number of
comments

Diagram Editing Calls can be pruned
Integration with IDA Pro Included:

- data, navigation, breakpoints
- multiple exe diagrams supported

Hierarchy View Java Package Explorer Assembly View based on model
...

Table 6.2: Diver versus Tracks: Feature Comparison.

executable in Figure 6.9.

In order for the user to select a function to view the static diagram for, Tracks

provides a tree view that lists all of the functions de�ned within an executable. This

tree view is shown in Figure 6.11. By double clicking a function (or right clicking for

other options), the static control �ow graph for that function is opened within the

Tracks sequence diagram editor. An example diagram is shown in Figure 6.12. This

screenshot shows that the user has selected the function sub_1001635, and can then

expand the function calls they are interested in to see what calls that function makes.

Functions that have an I icon next to them are imported functions, meaning they are

located in another module. At the top of the �gure, there is a diagram that shows

which module this function is de�ned in. Here we can see that many of the imported

functions come from the KERNEL32.dll �le. When an imported function is selected,

the XML �le corresponding to it, if it exists, is parsed and the information added to

the diagram. We can also see the thumbnail view in the outline pane at the bottom.

The viewer allows users to set any of the calls as the new root of the diagram and reset

the root to the caller of that function. These are available as right-click options on

the subroutine's lifeline. Additionally, breadcrumbs at the top of the diagram allow

the user to select any function along the path to navigate through the calls.

121

Figure 6.11: Tree View of Functions in calc.exe

If the user double clicks on an activation, IDA Pro displays that function. If the

user double clicks on a call, IDA Pro shows where the call is made. It is also possible

to automatically synchronize the navigation as we step through the diagram.

Finally, a user can open a reversed control �ow view for a function through a right

click option on the function tree. This diagram will show all possible paths that �nish

by calling the selected function. The interaction is similar to that of forward control

�ow in that users can follow the path that they are interested in. The diagram also

draws from left to right, however we see that the arrow heads have been reversed to

indicate that the control �ow is indeed in the opposite direction. An example of this

is shown in Figure 6.13.

When the user is �nished with their analysis, Tracks will ask if they would like to

save the state of the diagram. Should they choose to do so, Tracks will save which

calls are expanded/collapsed, the current root of the diagram, as well as the visible

portion of the diagram if the user has scrolled. An example of how the state is saved

to a .dat �le is shown in Figure 6.14.

122

Figure 6.12: Forward Control Flow View for sub_1001635 in calc.exe

123

Figure 6.13: Reversed Control Flow View for memcpy Wrapper in calc.exe

124

<sequence >

<function name=''sub_1001635 ''>

<root callindex=''0'' externalfile=''calc.exe'' name=''sub_1001635 ''/>

<expanded externalfile=''calc.exe'' module=''calc.exe'' name=''sub_1001635 ''/>

<selection callindex=''0'' callingnode=''sub_1001635 ''

externalfile=''calc.exe''

module=''calc.exe''

name=''sub_1001E8F ''/>

</function >

</sequence >

Figure 6.14: Diagram State Information Format.

6.3.2 Dynamic Views

Dynamic sequence diagrams are created while an executable is being debugged within

IDA Pro. We have previously discussed in Section 6.1.2 how these events are generated

and how the messages are received by Tracks. These messages are received whenever

a new function is executed during a debugging session, and each call is then added

to the correct executable's dynamic diagram. In contrast to the static view, ordering

is accurate and if the same function is called twice, that is also shown. The dynamic

diagram can be opened through the File menu, or as a right-click option in the

function tree view. If the diagram is opened from the tree view, a breakpoint is set at

that function within the corresponding IDA Pro instance. An example of a dynamic

diagram is shown in Figure 6.15.

Users also have the option of setting which particular debugging events they would

like to trace. These are available through Tracks' preferences which are shown in

Figure 6.16. When these preferences are changed in Tracks, a message is sent to all

open instances of IDA Pro. The user has two choices for this diagram: to diagram all

of the calls (enables step tracing within IDA Pro), or to diagram just the calls that

are stepped into. When diagramming only the calls that are stepped into, hitting a

breakpoint adds that function call to the User lifeline. There is also an option to

trace calls within imported modules.

Additionally, a loop count number can be set so that if a cycle (or loop) is en-

countered this number of times, it is collapsed (or colored as a loop). In this context,

loops refer to iterations within a single function and cycles refer to iterations of a pat-

tern of function calls. Loops are detected within the IDA Pro plugin and cycles are

detected within Tracks. This functionality occurs in the IDA Pro plugin by recording

125

Figure 6.15: Tracks' Dynamic View.

the address whenever a command that jumps is executed. If the jumps occur within

the same function and to the same address n times, where n is the preference for loop

count, then a message is sent to Tracks to color the activation red.

Cycles are detected by Tracks using a simple algorithm to detect graph cycles.

This algorithm works on an array of function calls, represented as strings, to �nd

repeating strings. If a cycle is detected, it is immediately collapsed. A message is

then sent to IDA Pro to stop sending messages for the cycle along with the address

pattern to ignore. Examples including screenshots of loops and cycles are shown in

the following chapter.

When the user is �nished with the debugging session, they can choose to save the

dynamic sequence diagram as a trace �le so that it can be opened and analyzed at a

later time. The dynamically built diagram is then exported to a list of calls in XML

126

Figure 6.16: Tracks' Preferences.

format, as shown in Figure 6.10. The user can then reopen this trace �le similar to

the static view, as well as save the state of the diagram.

6.3.3 Navigation History View

This navigation view provides a history of the analysis a user has done within IDA

Pro. This diagram is similar to the dynamic control �ow diagram in that it is built

dynamically and uses the User lifeline as the root, but it does so based on IDA Pro

UI events instead of debugging events. The diagram is opened again through the File

menu or by right clicking a function from the function tree. If it is selected through

the function tree, then IDA Pro will automatically navigate to this function to begin

analysis. Function calls are then added to the diagram as the user navigates through

127

the codebase within IDA Pro. Selecting a new function from the function view in

IDA Pro adds it as a call from the User lifeline. Then, selecting a cross reference

(or call) from within that function adds it as a call from that function's lifeline. An

example of a navigation view is shown in Figure 6.17. This requirement came up in

elicitation, see Section 4.3.4, requirement 4.

Figure 6.17: Tracks' Navigation History View.

6.3.4 MSDN Documentation

This feature was added to Tracks in direct response to a request made by the malware

group both directly as well as in the requirements elicitation session (Section 4.3.4,

requirement 6). The requirement was to easily access API documentation from the

tool support (by visiting a web page or local help). Currently, analysts have to

open a web browser and type in the function name they are looking for to retrieve

the MSDN documentation. They most likely do so on a separate machine since

the analysis machine cannot be connected to the Internet due to risk of spreading

infection. Another option is to use the help functionality that comes installed locally

in Visual Studio.

For our prototype shown in Figure 6.18, we simply embed a web browser window

in a view alongside Tracks. Whenever an external function is selected and the MSDN

128

documentation chosen through the right-click option, we simply use Google's �I'm

Feeling Lucky� search on the msdn.microsoft.com website to load the appropriate

page in the embedded browser. This has worked correctly for all functions tried so far.

The only limitation at this point is the necessity for internet access. Future plans are

to download the MSDN library and index it for local use. Another potential option

is to access the installed Visual Studio help.

Figure 6.18: MSDN Help View in Tracks.

6.3.5 Comment Threads within Tracks

In order to address some of the issues discovered in the survey (Section 3.3), namely

the lack of commenting support, including importing existing documentation and

documentation of execution paths, we built a comments view into Tracks, the idea

being to add comments over shared artifacts [109]. One example of this is Google's

Sidewiki [110] which is a browser sidebar that lets you contribute and read information

alongside any web page, shown in Figure 6.19. Users can add information such as

background, tips and perspectives to annotate web content.

In order to add collaborative documentation support to Tracks, we added the

ability to create comments on calls, lifelines and cycles within the sequence diagram.

A preference is given to the user to import the comment data when the sequence

diagram �les are loaded. If comments exist, the artifacts are marked with color-

129

Figure 6.19: Google Sidewiki.

coded stars. Red stars indicate that there is little activity and is used for items with

less than 10 comments. Yellow stars indicate a medium level of activity and are

used when there are 10 or more comments but less than 25. Green stars are used

to indicate high activity and are used when there are 25 or more comments. This

color selection is based on the download health colors commonly used in bit torrent

applications, where green represents that the �le is available for download from many

others.

A sequence diagram showing the comment annotations is shown in Figure 6.20.

In this screenshot, we are investigating the Mariposa botnet [6, 111] and the trace �le

for server communication. The left panel shows the sequence diagram with comments

on the two lifelines to the far right, indicated by the red stars within the lifeline boxes.

The �gure also displays a cycle, which is outlined in red and �lled in with grey, and

contains the text �1 comment� to the far left of it. The right panel contains the

comment thread view, which shows the ID of the thread at the top, the logged in user

below that, as well as the box to enter comments, followed by the comment thread

itself.

The comment functionality was built as a web application using Google App

130

Figure 6.20: Tracks with Comment Threads.

Engine [112]. Comments are stored in the Google App Engine database with an ID

of the artifact it pertains to. We then use this ID to query for the comment count,

as well as a URL argument for loading the comment thread view. This ID includes

a combination of the executable name, the source lifeline and parent names, the call

lifeline and parent names, and the loop information if applicable. We also use a

Google account login to add user information to each comment. This web application

was incorporated into Eclipse as a view containing an embedded browser.

6.4 LegaSee: Visualiser Extension for Mainframe As-

sembly

In previous work of ours, the Visualiser provided by AJDT was found to be useful

in looking at system modi�cations, introduced through patches, from a high-level

in a tool called Eclippers2. In initial interviews and surveys with developers, only

those in the mainframe group could see a potential application for a tool such as this

2Available at: https://github.com/jebaldwin/Eclippers

https://github.com/jebaldwin/Eclippers

131

(Section 3.2.7). For example, trying to see where DSECTs are de�ned and used at a

high level was quite di�cult for a mainframe developer, who was using text search

within the code to �nd all of its uses. Therefore we built a provider to show these

speci�c HLASM constructs (DSECTs and CSECTs) from a system-wide perspective.

We also provide navigation from the colored blocks within LegaSee to the listing �les

contained within the same project.

We previously showed the textual output from scraping listing �les for data about

DSECTs and CSECTs in Section 6.2. In order to use this data in LegaSee, we created a

translator to generate the bars and stripes information, and created our own Visualiser

provider. The �le that provides information about the bars (or modules) within the

system is called content.vis, while the �le that provides data about the stripes is

called markup.vis. A snippet from each �le is shown in Figure 6.21. Here we see

which group each bar belongs to but also the ID and size of that bar. We also see

that the stripe refers to a speci�c bar, but has its own ID group, as well as an o�set

(where in the bar it begins) and a depth (length of the stripe).

Group:CBT019 Member:BLKSCAN Size :000 D20 Tip:CBT019.BLKSCAN

Group:CBT019 Member:CA Size :0001C8 Tip:CBT019.CA

Group:CBT019 Member:CHECKPVT Size :0001 C8 Tip:CBT019.CHECKPVT

Stripe:CBT019.BLKSCAN Kind:BLKSCAN Offset :00000 Depth :00D24

Stripe:CBT019.BLKSCAN Kind:IHADCB Offset :00000 Depth :00058

Stripe:CBT019.CA Kind:TFVSENV Offset :0 Depth:0

Stripe:CBT019.CA Kind:OPSAMD Offset :0 Depth:0

Stripe:CBT019.CA Kind:TFVSEOPE Offset :0 Depth:0

Stripe:CBT019.CA Kind:TFVSESR Offset :0 Depth:0

Stripe:CBT019.CA Kind:TSIDSYS Offset :0 Depth:0

Stripe:CBT019.CA Kind:TFVSERR Offset :0 Depth:0

Stripe:CBT019.CHECKPVT Kind:CHECKPVT Offset :00000 Depth :001D2

Stripe:CBT019.CHECKPVT Kind:CVT Offset :00000 Depth :00500

Stripe:CBT019.CHECKPVT Kind:CVTXTNT1 Offset :00000 Depth :0000C

Stripe:CBT019.CHECKPVT Kind:CVTVSTGX Offset :00000 Depth :00050

Stripe:CBT019.CHECKPVT Kind:CVTXTNT2 Offset :00000 Depth :00084

Figure 6.21: LegaSee Visualiser Files (content.vis and markup.vis).

The visualization of LegaSee for CBT019 is seen in Figure 6.22. The menu, which

shows each of the CSECTs and DSECTs, is shown on the right of the screenshot. Each

bar (or column) represents a module with its length equal to its last address, and each

CSECT and DSECT is color-coded. CSECT and DSECT lengths are calculated by

the di�erence between the start and end address (length in the XML). The start

132

locations of the CSECTs and DSECTs are equal to their start address. This view

allows developers to see at a high-level where all of the DSECTs and CSECTs are

located and also how much memory of the entire system they consume. Developers

can also interact with the diagram by double-clicking on each colored segment, or

module heading, to navigate to the listing �les. There are also additional options

provided by the AJDT Visualiser itself, such as zooming in and out, �t to view, limit

view to a�ected bars, and group and member views (when packages are present).

Figure 6.22: LegaSee Visualization of CBT019.

This example is a memory view since lengths and locations are determined by

addresses. A source view would instead mean that lengths and locations are based on

lines of code. However, retrieving source lines for control sections is not as easy as it

might seem. First, the source code does not have any line numbering, and second, the

listing provides only the memory addresses. Statement line numbers for the beginning

of CSECTs are provided, and present within the XML, though are currently only used

for navigation within the textual listing �le. A control section might be interrupted

anywhere, and another control section started. Then the programmer might go back

133

to the �rst control section. Thus, a whole control section code might be composed

from several segments that might be intertwined with other control sections. In

summary, control section code might be scattered both in memory and source code.

Since neither a source code view, nor memory address view is a complete solution,

either a combined view or two separate views will be required. Additionally, right

now we see one large bar with many colored blocks. Therefore, it will be important

to provide some ease of exploration by splitting the bars up �rst by module, then by

subroutine, then into the CSECTs and DSECTs. We envision building an interactive

treemap combined with bars and stripes to provide this interactivity to move from

large to small granularity.

6.5 REwind: State Diagram Debugging Tool

The second overall most important issue from the requirements elicitation within the

malware group, was being able to save debugging state (Section 4.3.4, requirement 2).

We are currently working on a tool called REwind that will allow the user to start

recording their actions within IDA Pro and save them periodically as states [113].

This means that the user can select a state within REwind and repeat all of their

debugging actions up to that point within IDA Pro. REwind was created with the

tedious nature of analyzing malware in mind�that is, once you have �gured out how

to run to one place in the execution, you can simply work from there without having

to carefully repeat all of your previous steps.

An example of what the tool and such a state diagram would look like is shown in

Figure 6.23, which shows states from running the Mariposa botnet. The �rst button

on the REwind toolbar allows the user to begin recording a debugging session. This

will ask you to choose which IDA Pro instance you want to use, as well as give a state

name for that particular set of actions. We can see that the selected state is yellow,

and we can choose to run to that state, delete that state or rename that state. We

can also create connections between di�erent states. If we have run to a particular

state, then that state will be indicated as the current state by changing its border

to a thick red line, and removing the yellow highlighting. States may also be freely

moved around the canvas during use, however, the graph is rearranged by the Zest

framework when reopened.

REwind works by saving actions for each state in the XML format shown in

Figure 6.24. We can capture when each action is taken through the IDA Pro plugin

134

Figure 6.23: REwind Tool.

events we discussed previously.

This prototype works so far as to show that this idea is possible. However more

work is needed to add all of the necessary actions to both the REwind plugin as well

as the supporting IDA Pro plugin. This tool will be completed as part of future work.

6.6 Additional Contributions

We have discussed the contributions supported by AVA, however there were other

contributions made by those working on di�erent aspects of this project. While these

are not directly related to the above contributions, they are related to the project

itself and the requirements elicited. The �rst is support towards managing multiple

IDA Pro instances. The second is comment support, while the third is related but

includes tagging support for IDA Pro. Finally, the fourth is initial data �ow support

for IDA Pro.

135

<states >

<state name=''Entry Point ''>

<action address=''41D469'' command=''set bp''/>

<action address=''41D482'' command=''set bp''/>

</state >

<state name=''Obfuscation ''>

<action address='''' command=''runto''/>

</state >

<state name=''First Decryption ''>

<action address='''' command=''runto''/>

<action address=''41D047'' command=''step''/>

</state >

<state name=''Second Decryption ''>

<action address='''' command=''runto''/>

<action address=''41D047'' command=''step''/>

</state >

<state name=''Third Decryption ''>

<action address='''' command=''runto''/>

<action address=''41D047'' command=''step''/>

</state >

</states >

Figure 6.24: XML used by the REwind Tool.

6.6.1 Multiple Executables

The most important issue for the malware group was being able to disassemble more

than one executable �le at a time in IDA Pro. While Tracks itself does provide

support for multiple executables by keeping tracking of which diagram relates to

which instance of IDA Pro, there is no speci�c support within AVA for multiple

executables. Rails [71] is a plugin developed for IDA Pro that aims to facilitate

communication between multiple instances. Rails is a part of a related project called

ICE or Integrated Comprehension Framework. While Rails does not address the exact

elicited requirement (Section 4.3.4, requirement 1), which is to automatically launch

a new IDA Pro from the current instance of IDA Pro, it does allow for comments to

be propagated between instances, and eases navigation between instances.

6.6.2 Comment Support

Many of the issues brought up by the malware group had to do with comment support.

In particular, saving comments during dynamic analysis, repeatable comments in

external modules, and boilerplate comments. During the project, we had a student

join to look at how IDA Python worked and to create some sample scripts to showcase

this functionality. The student created two Python scripts that can be executed as

136

IDA Pro plugins to accomplish both viewing comments between modules, as well

as comment templates. The former plugin supports comments between modules by

storing comments in the network service, along with enough information to know

where in the IDA project they were stored. The comments are then synced between

instances of IDA Pro that have registered with the daemon. In the future, we would

like to be able to have this run across multiple machines. The comment templates

plugin allows a user to have a folder of comment header templates as text �les, and

easily add them from the IDA Pro plugin menu to the start of functions in the

code. These plugins are freely available3. Figure 6.25 shows the �ow of the comment

templates feature, from text �les containing the comment template to their addition

to the plugins menu, to being inlined within the code. The requirements these plugins

address are in Section 4.3.4, requirements 8 and 10.

Figure 6.25: Comment Templates in IDA Pro.

3Available at: https://github.com/cbenning/idapro_comment and https://github.com/

cbenning/idapro_comment_template

https://github.com/cbenning/idapro_comment
https://github.com/cbenning/idapro_comment_template
https://github.com/cbenning/idapro_comment_template

137

6.6.3 Tagging for IDA Pro

The �fth most important issue for the malware group was incorporating a tagging

mechanism into IDA Pro. Another group at the University of Victoria (CHISEL) pre-

viously created an Eclipse plugin for tagging locations of interest called TagSEA [98].

This plugin worked for tagging Java, C and C++ source code, as well as breakpoints,

tasks and resources. These tags would include keywords, data and author informa-

tion, but also the ability to �lter and navigate to tags. This functionality was already

familiar to DRDC for use in Java projects, and was requested speci�cally for IDA

Pro (Section 4.3.4, requirement 5). To this end, the initial version of TagSEA for

IDA [114] was created, again by the CHISEL group. This port of TagSEA was built

for IDA Pro as an IDA Python plugin and allowed tags to be added, jumped to,

removed, �ltered, and renamed�all within the IDA Pro user-interface.

Currently, another member of the CHISEL team is working on progressing TagSEA

for IDA and has since renamed it to Tags for IDA Pro, so as not to be confused with

the original TagSEA implementation for Java. This tool extends the initial version

by adding a default author, and allowing additional columns to be created and as-

sociated with each tag. These columns can also be hidden or deleted as necessary.

These comments are then saved to the IDA Pro Database (IDB) as opposed to an

external �le.

6.6.4 Data (Including Data Flow)

When speaking with assembly language developers about their challenges, data �ow

was the second most important topic brought up after control �ow. Many of the

requirements brought up by the malware group are in regard to data, including the

�ow of data through a program. While good tools exist for data �ow such as REF

(internal tool) and Boomerang [115], looking at IDA Pro only, Sobek seems to be

the only attempt at solving data �ow issues. Sobek is a deprecated IDA Pro plugin

which provides simple data �ow analysis and allows users to trace forward and back-

ward [116]. When tracing forward, it shows instructions where the selected operand is

used and/or propagated and tracing backward, it shows preceding instructions which

the value of the selected operand depends on. Comments from the malware group

on Sobek were: it does not seem to support backward analysis above a few lines up,

forward is a bit better but it gets confused easily, the interface is not clear, the ad-

dresses are all relative so it is di�cult to follow, and some of it just does not make

138

sense. We had issues even running Sobek with the newest version of IDA Pro. As a

starting point, our student started to reimplement basics of the plugin as a Python

script4. Currently, this script displays the register data at the point of a speci�c code

segment.

6.7 Chapter Summary

This chapter has introduced the architecture overview of the AVA framework and each

component within it. The framework consists of tools for control-�ow, system-wide

constructs and debugging. The framework also includes communication mechanisms

with an example of an integrated industrial standard tool, in our case IDA Pro.

Though we note that textual data can be fed directly into the tools if necessary.

Next, we discussed how data was obtained for both the mainframe and malware

groups, in addition to the XML formats that are created from this data. Following

this, we discussed each of our tools in-depth by providing descriptions and screenshots

of their features, as well as how these features were implemented. These tools include

Tracks, which uses sequence diagrams to show control �ow and trace information,

LegaSee which provides a high-level view of mainframe system constructs (CSECTs

and DSECTs), and REwind, which provides malware analysts the ability to repeat

debugging actions through a state diagram user-interface, therefore easing the process

of reverse engineering.

We ended the chapter by discussing the contributions of others towards the mal-

ware requirements elicited in the work of this dissertation. In particular, we discussed

working with multiple IDA Pro instances, extending comment support including the

use of tags within IDA Pro, and how data �ow can be supported through investigation

of a deprecated IDA Pro plugin called Sobek.

This chapter has answered our third research question: Can program comprehen-

sion tools for high-level languages be retro�tted to apply to low-level languages? This

encompasses the �rst portion of Phase III. This phase is concluded in the follow-

ing chapter, which provides case studies using our proof of concept tools to further

explore the disparities between groups.

4https://github.com/cbenning/idapro_data�ow

139

Chapter 7

Assessment of the AVA Project

Lifecycle

This chapter provides an assessment of the AVA framework through case studies

that aim to answer our �nal research question: Are tools in our proof of concept

framework e�ective at supporting the requirements of both groups? We begin this

chapter by providing our technical challenges and limitations. We then show how

two tools that are part of AVA were unsuccessful at applying to issues within both

groups, preventing the existence of a framework with universal application. However,

we did have success with a universally applicable tool called Tracks, which was built to

satisfy requirements for not only di�erent groups of developers and therefore purposes,

but also di�erent assembly languages. We provide case studies using Tracks for the

mainframe group using both control �ow for Algol, as well as log data. Next we

provide a case study of using Tracks in the malware context, analyzing the Mariposa

botnet. These studies show that one tool can be built to work across both domains.

Finally, we provide study limitations and threats to validity, and provide a discussion

on the source of the divide between the two groups in our study.

7.1 Challenges and Limitations

This section discusses the challenges we faced for each group, as well as the limitations

that existed due to the nature of the tasks performed within each group respectively.

140

7.1.1 Mainframe

There were three major issues for developing tools within this domain. These are the

use of a mainframe in itself, issues with intellectual property, and the involvement of

the stakeholders.

Mainframe Tool Development

With the malware group, we were able to easily write plugins for their primary reverse

engineering tool. However this was not the case with the mainframe group. We did

propose the idea to our CA contact early on and initial plans were to have research

students on his end write these mainframe hooks. For us to write these hooks ourselves

would have required an in-depth knowledge of the mainframe system, as well as access

to it, both of which we did not have. Unfortunately when our contact left CA, we lost

access to his graduate students that may have been able to complete this integration.

Intellectual Property Issues

While we use HLASM programs of similar size in our mainframe case studies, we

did not have access to any of the programs actually created by CA. For this reason

we could not test proof of concept tools with actual CA code, and use the results to

discuss e�cacy with developers.

Stakeholder Involvement

While we had close ties to the malware group, and recurring feedback on our im-

plementation, we unfortunately did not have the same with CA. It is important to

note that CA is a private company, and in particular we were looking at product

development groups�not research groups. In such a case, it is hard to gain access to

participants since they have hard deadlines to meet and therefore are less available

time-wise. While we did obtain the time necessary for the requirements elicitation

session, and a follow-up visit, any more time would have been hard to receive.

7.1.2 Malware

Within the malware domain, again there were three major issues. The �rst was

associated with reverse engineering malware, the second was the lack of network

connectivity for security reasons, and the third was proprietary issues.

141

Anti-Debugging and IDA Pro

Important limitations remain in regard to using Tracks with IDA Pro, most notably,

anti-debugging traps. Anti-debugging traps are used to detect if a program is run-

ning under the control of a debugger and to prevent this runtime debugging [117].

Ideally, one would be able to run the executable with the sequence viewer open and

afterwards investigate the entire call graph. Unfortunately, with the anti-debugging

traps within Mariposa, this is an impossibility, since we cannot single step over the

code. Therefore it is up to the user to know how to debug the executable. This means

that they must have some prior knowledge about the system and cannot gain this

prior knowledge directly from the sequence diagrams. We hope that better anti-anti-

debugging tools will solve some of these issues. VERA addresses this through the

Ether framework [118], which is an avenue that could be investigated.

Another limitation is the ability to properly trace stack locations while step trac-

ing. Manually stepping through each instruction during a debugging session, we are

able to log correctly since IDA Pro generates the names. However, when step tracing

and executing code on the stack, the names are not generated.

Lack of Network Connectivity for Malware Analysis

The biggest challenge in this area is the common lack of network access on machines

dedicated to malware analysis. In the case of Tracks' comments, using Google App

Engine would no longer be possible o�ine. The comment service would need to

change such that data would be saved locally and then shared after analysis by sav-

ing the �le to an external drive manually, or from another machine with network

access. This is also an issue for easily accessing API documentation, meaning that

any documentation referenced would need to be stored locally.

Proprietary Issues

Since the DRDC is an operating government defence facility, there is much about the

nature of their work we are not privy to. For example, we do not know the speci�c

malware they reverse engineer, the exact nature of their work, or even whom their

clients are. We only know what they are able to disclose to us. Observing them was

also not an option, as it was with CA.

142

7.2 AVA: One Framework (Not to Rule Them All)

In this section, we examine two tools that are part of the AVA framework, that are

not applicable to both groups: LegaSee and REwind.

7.2.1 LegaSee

The idea for LegaSee came during initial interviews with developers in the mainframe

group, and witnessing their di�culty in locating CSECTs and DSECTs within the

code. For example, using repeated text search functionality until the appropriate

location of interest was found. We previously had experience in using the AJDT

Visualiser to visualize system-wide constructs in other systems, and therefore thought

it worth considering in this domain as well. As we have seen from our mainframe

respondents in the exploratory survey, 10 of 25 respondents thought that it would be

useful (some even commented very useful), 8 had no comment, 4 were unsure and only

3 said not useful. In contrast, only one malware respondent said it was useful with

the remainder either seeing no use, or not understanding the concept. We therefore

created the LegaSee tool as discussed in Section 6.4, for the mainframe group only.

Due to the lack of interest from the malware group, and more speci�cally, lack of

suggestion for any system-wide constructs, we did not attempt to create data or a

case study for this particular tool. Table 7.1 summarizes the issues that LegaSee aims

to address. This includes a high-level system view that displays the location and size

of DSECTs and CSECTs, as well as navigation to them. There were no overlapping

issues within the malware group.

Tool Requirement

Category

Mainframe Malware

LegaSee Browsing High-Level System View, N/A
and Navigation Navigation to DSECTs and

CSECTs
Data DSECT Module Location and

Size
N/A

References CSECT Module Location and
Size

N/A

Table 7.1: Summary of Requirements Supported by LegaSee.

143

7.2.2 REwind

The need for the REwind tool was made evident when we were trying to understand

how to run the Mariposa botnet in IDA Pro in order to build malware-speci�c features

into Tracks. The process was tedious, and error-prone. If any mistake was made, we

either had to start over with analysis, or in the worst case, infected our machine and

had to restore the system to begin again. This process in itself was also extremely

time-consuming. The idea behind capturing a user's actions is a simple one, and also

not a di�cult one to implement using the IDA Pro API. This very request was also

brought up during requirements elicitation at the malware group and was voted as

the second most important issue with 300/400 points. While many issues related to

debugging were brought up by the mainframe group, none were in regard to being able

to repeat debugging commands. In contrast, the issues brought up by the mainframe

group were very speci�c to their own work environment, and their work process likely

did not follow the same repetitive nature of reverse engineering. Table 7.2 shows the

issues that REwind addresses, namely: repeat debugging actions, iterative execution

as a means of reverse engineering, avoiding anti-debugging traps, and state diagrams

with descriptions. No corresponding issues are noted within the legacy group.

Tool Requirement

Category

Mainframe Malware

REwind Data N/A (Re-running with New Data)
Debugging N/A Repeat Debugging Actions
De-obfuscation N/A Discover Malware Intent

through Iterative Execution,
Anti-Debugging Trap Avoid-
ance

Documentation N/A State Diagram,
State Descriptions

Integration N/A IDA Pro

Table 7.2: Summary of Requirements Supported by REwind.

7.3 Tracks: One Tool to Rule Them All

This section provides case studies for Tracks in both the mainframe and malware

contexts. In regard to mainframe, we look at an example of control �ow for Algol,

as well as how Tracks can be used to visualize log �les. Within the malware context,

144

we look at how Tracks can be used with a particular piece of malware to visualize

its activities. We further provide the results of interviews with malware analysts on

the collaboration feature within Tracks which provides comment threads on speci�c

points of control �ow. This section shows that while these case studies may di�er

greatly, one tool can in fact be built to support both groups. These case studies show

how Tracks' requirements shown in Table 7.3 are satis�ed.

Tool Requirement

Category

Mainframe Malware

Tracks Browsing Navigation to Listing Navigation within IDA Pro,
and Navigation Navigation History View
Control Flow Static Control Flow, Static Control Flow,

Reversed Static, Reversed Static
Trace Log

Debugging Dynamic Control Flow
De-obfuscation Cycle/Loop Detection,

API Call Patterns
Documentation Module Descriptions, MSDN Documentation,

Comment Threads, Comment Threads,
Save to Image File, Save to Image File

Integration (Socket Message Capable) IDA Pro
References DLLs Referenced

Table 7.3: Summary of Requirements Supported by Tracks.

7.3.1 Mainframe: Static Control Flow for Algol

The ability to ascertain control �ow for mainframe systems has been anecdotally

referred to as the �Holy Grail�. As we mentioned previously in Section 6.2.1, one

of the major challenges with HLASM code is that it contains no explicit concept of

subroutines. We therefore rely on coding conventions and known patterns to infer

where a subroutine call takes place, and where a subroutine exists. In this section we

show how Tracks can be used to show control �ow for mainframe systems, speci�cally

the Algol package [105]. While the XML format is the same for Algol as for the

CBT019 example, we show the static control �ow data in Figure 7.1.

We previously showed how Tracks presents the list of functions available in an

executable in a tree view. The tree view used for HLASM systems is similar, however

this tree view uses a nested structure. This is shown in Figure 7.2. The top-level

items represent the modules within the package, which are labelled as <section>

145

<softwarePackage name=''Algol''>

<copybook name=''FSACONV ''>

</copybook >

<copybook name=''FSAREA ''>

</copybook >

<copybook name=''IEX60000 ''>

</copybook >

<copybook name=''WORKAREA ''>

</copybook >

<section name=''CA''>

<functionEntryPoint address=''0'' section=''TFVSENV '' name=''TFVSENV ''

index=''0''/>

<functionEntryPoint address=''0'' section=''OPSAMD '' name=''OPSAMD ''

index=''0''/>

<functionEntryPoint address=''0'' section=''TFVSEOPE '' name=''TFVSEOPE ''

index=''0''/>

<functionEntryPoint address=''0'' section=''TFVSESR '' name=''TFVSESR ''

index=''0''/>

<functionEntryPoint address=''0'' section=''TSIDSYS '' name=''TSIDSYS ''

index=''0''/>

<functionEntryPoint address=''0'' section=''TFVSERR '' name=''TFVSERR ''

index=''0''/>

</section >

<section name=''IBM''>

<functionEntryPoint address=''0'' section=''IJBPROC '' name=''IJBPROC ''

index=''0''/>

</section >

<section name=''IEX00''>

<functionEntryPoint address=''00000'' section=''IEX00000 '' name=''IEX00000 ''

index=''0052C''/>

</section >

<section name=''IEX10''>

<functionEntryPoint address=''00B70'' section=''IEX10001 '' name=''IEX10001 ''

index=''00016''>

<function address=''000 B70'' name=''IEX10001 '' index=''1''

section=''IEX10001 ''>

<call calladdress=''000 EE8'' name=''COBSPEC '' functionaddress=''000 EE8''

index=''external ''

externalFile=''IEX11001 ''/>

</function >

</functionEntryPoint >

<functionEntryPoint address=''00000'' section=''IEX10000 '' name=''IEX10000 ''

index=''00B6C''>

<function address=''00041C'' name=''TSTDCBRT '' index=''1''

section=''IEX10000 ''>

<call calladdress=''0004AE'' name=''COMEXRT '' functionaddress=''0004AE''

index=''local''

externalFile=''IEX10000 ''/>

</function >

<function address=''0004AE'' name=''COMEXRT '' index=''2''

section=''IEX10000 ''>

<call calladdress=''000526 '' name=''CLOSE'' functionaddress=''000526 ''

index=''local''

externalFile=''IEX10000 ''/>

</function >

<function address=''000526 '' name=''CLOSE'' index=''3''

section=''IEX10000 ''/>

</functionEntryPoint >

</section >

Figure 7.1: Static Control Flow Snippet for Algol.

146

Figure 7.2: Nested Tree View of Modules and Subroutines in Algol.

elements within the XML data. These modules then contain subroutines, as de�ned

and ascertained by the python scripts discussed in Section 6.2.1.

Once we have selected a subroutine from the second level of the tree, we can view

the same static control �ow information as we have previously seen for the calculator

example. The static control �ow information for the TSTDCBRT function is shown in

Figure 7.3. In this example, we see that the package diagram at the top is used to

show us from which module this subroutine comes, as opposed to which executable

or DLL.

7.3.2 Mainframe: Log File Visualization

The previous example showed the expected usage for viewing control �ow information

for an HLASM package. However, during our requirements elicitation session with the

mainframe group, we ended with two one-hour long sessions to discuss issues brought

up with two developers to ensure we understood the requirements. During one of these

sessions, the developer showed us a log �le (or trace table) that he used to investigate

147

Figure 7.3: Control Flow of TSTDCBRT Function in Algol.

issues. It was immediately evident that such a log �le could be visualized within the

Tracks tool. The developer told us that the log �le could easily be downloaded via

FTP from the mainframe. After this visit, we worked with this developer over email

to further re�ne the design of this speci�c sequence diagram. A snippet from this

log �le is shown in Figure 7.4. The entries for XPB WAIT indicate that the thread

is suspended and the next bit of work will start with an XPB DISPATCH. If the

XPB address is the same then it is the same thread that is resuming. In this way, we

do have the data necessary to provide some sort of multi-threading diagram support

within Tracks, however we have not implemented any such support at this time.

The $NMXCTL entries are when a module switches control to another module,

instead of calling and expecting a return. In this trace NM000038 eventually does a

$NMXCTL to NM000040. NM000040 then does a $NMXCTL into NM000038. What

is actually happening is that NM000040 is a module that does setup for running the

NCL language (NM000038). Therefore, this sequence is an NCL procedure calling

another NCL procedure. The developer did not expect that the trace tool would be

able to deal with this, but would expect it to simply not create issues for the tool.

We therefore do not recognize calls of that kind in Tracks.

Another issue with this particular log trace is that there are speci�c calls that

are not logged by the system. For example, NM000233 is the variable manager

for their internal scripting language (NCL). It is set not to trace because otherwise

148

RETURN TO: NM000038 FROM NM000241 AT 9BE2D6DA REGISTER 15 0000000C 31

03 F0F3F8F2F4F1029BE2D6DA0000000C

CALL TO: NM00025C FROM NM000038 AT OFFSET +0BBA CALL ADDR 9BE2D6DA F/C 00 31

02 F2F5C3F0F3F8029BE2D6DA0BBA0000

CALL TO: NM000103 FROM NM00025C AT OFFSET +00F8 CALL ADDR 9BE625A0 F/C 44 31

02 F1F0F3F2F5C3029BE625A000F84404

RETURN TO: NM00025C FROM NM000103 AT 9BE625A0 REGISTER 15 00000000 31

03 F2F5C3F1F0F3029BE625A000000000

CALL TO: NM000276 FROM NM00025C AT OFFSET +0E40 CALL ADDR 9BE632E8 31

02 F2F7F6F2F5C3009BE632E80E406B04

XPB WAIT: NM000276 AT OFFSET +00B4 XPB ADDRESS 1CD8D2F8 24

06 F2F7F61CD8D2F8800510F400B40000

$NMPOST: ISSUED BY UNKNOWN MODULE AT 800 E875E NMPOST CODE 00000000 24

07 FFFFFF800E875E000E663400000000

TARGET ECB 000 E6634

$NMPOST: ISSUED BY UNKNOWN MODULE AT 800 E758E NMPOST CODE 00000000 24

07 FFFFFF800E758E1E88DF2400000000

TARGET ECB 1E88DF24

XPB DISPATCH: NM00029I AT OFFSET +00A6 XPB ADDRESS 1DF492F8 24

01 F2F9C91DF492F8800E76F600A60100

RETURN TO: NM000090 FROM NM00029I AT 8004 BBAC REGISTER 15 00000000 31

03 F0F9F0F2F9C9608004BBAC00000000

CALL TO: NM000065 FROM NM000090 AT OFFSET +0314 CALL ADDR 8004 BA4C F/C 0C 31

02 F0F6F5F0F9F0028004BA4C03140C00

RETURN TO: NM000090 FROM NM000065 AT 8004 BA4C REGISTER 15 00000000 31

03 F0F9F0F0F6F5028004BA4C00000000

$NMPOST: NM000090 AT OFFSET +032A NMPOST CODE 00000000

07 F0F9F0032AF2C41C7E99F800000000

TARGET ECB 1C7E99F8

$NMPOST: NM000090 AT OFFSET +036E XPB ADDRESS 1D2816A4

07 F0F9F0036EF402FFFFFFFF1D2816A4

THIS IS AN XPB POST

THREAD FINISH: NM000090 TERMINATED XPB 1DF492F8

09 F0F9F01DF492F89BEA83F61DB93604

XPB DISPATCH: NM000042 AT OFFSET +0230 XPB ADDRESS 1DA543B4 24

01 F0F4F21DA543B4800E854002300100

CALL TO: NM000035 FROM NM000042 AT OFFSET +052C CALL ADDR 800 E883C F/C 18 31

02 F0F3F5F0F4F202800E883C052C1804

RETURN TO: NM000042 FROM NM000035 AT 800 E883C REGISTER 15 00000000 31

03 F0F4F2F0F3F502800E883C00000000

$NMXCTL TO: NM000074 FROM NM000042 AT OFFSET +03E0 XCTL ADDR 800 E86F0 31

0AF0F7F4F0F4F202800E86F003E08000

CALL TO: NM000045 FROM NM000074 AT OFFSET +02BE CALL ADDR 9BEA83F6 F/C 0C 31

02 F0F4F5F0F7F4029BEA83F602BE0C04

RETURN TO: NM000074 FROM NM000045 AT 9BEA83F6 REGISTER 15 1DDA6148 31

03 F0F7F4F0F4F5029BEA83F61DDA6148

CALL TO: NM000043 FROM NM000074 AT OFFSET +0306 CALL ADDR 9BEA843E F/C 00 31

02 F0F4F3F0F7F4029BEA843E03060004

RETURN TO: NM000074 FROM NM000043 AT 9BEA843E REGISTER 15 00000004 31

03 F0F7F4F0F4F3B49BEA843E00000004

CALL TO: NM000065 FROM NM000074 AT OFFSET +035E CALL ADDR 9BEA8496 F/C 0C 31

02 F0F6F5F0F7F4029BEA8496035E0C00

RETURN TO: NM000074 FROM NM000065 AT 9BEA8496 REGISTER 15 00000000 31

03 F0F7F4F0F6F5029BEA849600000000

Figure 7.4: Mainframe Log File.

149

every variable reference would be traced and create too much output. The developer

thought the best solution would be to alias NM000233 to NM000038. This is shown

in Figure 7.5. The issue being that we never know how we arrived at NM000233 so

including it creates an erroneous diagram.

CALL TO: NM00023C FROM NM000036 AT OFFSET +08DC CALL ADDR 9BE41D7C F/C 6B

31 02 F2F3C3F0F3F6029BE41D7C08DC6B00

RETURN TO: NM000036 FROM NM00023C AT 9BE41D7C REGISTER 15 00000000

31 03 F0F3F6F2F3C3029BE41D7C00000000

RETURN TO: NM000038 FROM NM000036 AT 9BE2D9A2 REGISTER 15 00000004

31 03 F0F3F8F0F3F6029BE2D9A200000004

CALL TO: NM000234 FROM NM000233 AT OFFSET +0D24 CALL ADDR 9BE2F7EC F/C A0

31 02 F2F3F4F2F3F3029BE2F7EC0D24A000

Figure 7.5: Mainframe Log File with Calls to NM000233.

Figure 7.6: Tracks for Log File.

Figure 7.6 shows Tracks visualizing this trace �le by ignoring all calls to and from

NM000233. After discussion with the developer, he mentions that associating module

descriptions with the module names of the activations would be useful. He provided a

�at �le dump of the module names and descriptions from the mainframe. Figure 7.7

shows how this list appears within the mainframe when their TITLE value is set,

150

while Figure 7.8 shows the description available when a particular module is viewed

within the Source Management System. Figure 7.9 shows the �at �le containing

short descriptions for the module. Since Tracks includes module information for every

activation, this provides an area where description information could be contained.

Figure 7.7: Listing of Modules with Title Values Set.

7.3.3 Malware: Mariposa Botnet Case Study

This section provides a case study of using Tracks in the malware context, and for

analyzing malware itself. Previously we saw how Tracks could be used for a regu-

lar executable (calc.exe). However in this section we see how Tracks can truly be

leveraged in the analysis of malware, which is purposefully obfuscated to hide its true

malicious intent. We �rst discuss what Mariposa is and then show how Tracks can

be used to visualize di�erent phases of the botnet.

About Mariposa

Mariposa is a botnet, a collection of computers under the control of a single malicious

entity. The most dangerous capability of this botnet is that it can download and

execute arbitrary programs, which means the bot master can in�nitely extend the

151

Figure 7.8: Description Field in the Source Management System.

NM000A00 apinm - bootstrap loader

NM000A10 loaded apinm front -runner module

NM000A11 apinm - init anwa and read ctl file

NM000A13 apinm - handle misc local requests

NM000A14 apinm - send event trigger to pa event handler

NM000A19 apinm - loaded mod - general subroutines

NM000A20 rexx -callable ('address link NMREXAPI ') pgm to init apinm

NM000A40 PASS FEATURE INITIALIZATION

NM000A41 NCL &PASSCHK PROCESSING VERB

NM000A43 BLACK BOX PASS MODULE

NM000BSE NetMaster SYSDB Batch Utility: ESTAE/Dump services

NM000BSG NetMaster SYSDB Batch Utility: GVT

NM000BSH NetMaster SYSDB Batch Utility: Commands definitions table

NM000BSK SYSDB Filter compiler variable table

NM000BST NetMaster SYSDB Batch Utility: Tables

NM000BSX NetMaster SYSDB Batch Utility: GREXX interface init

NM000BSY NetMaster SYSDB Batch Utility: GREXX interface GVT

NM000BS0 NetMaster SYSDB Batch Utility: startup module

NM000BS1 NetMaster SYSDB Batch Utility: command input

NM000BS2 NetMaster SYSDB Batch Utility: command parse

NM000B20 EXTERNAL OBJECT SERVICES API VIA PPI ASM3

NM000B21 EXTERNAL OBJECT SERVICES API VIA PPI ASM3

NM000B22 EXTERNAL OBJECT SERVICES API VIA PPI ASM3

NM000B23 EXTERNAL OBJECT SERVICES API VIA PPI ASM3

NM000B24 EXTERNAL OBJECT SERVICES API VIA PPI ASM3

Figure 7.9: Mainframe Module Description Flat File.

152

functionality of the malicious software. This also reduces or eliminates the detection

rates of traditional host detection methods. Due to this capability, 1500 variants of

Mariposa have been detected so far and an estimated 12.7 million computer systems

have been compromised (circa October 2009) [111]. We used information from [111]

and [6] to create the following three use cases, which show meaningful interactions

through sequence diagrams.

The botnet has three phases: obfuscation, decryption and injection. The ob-

fuscation phase hides the intended functionality of the code. The decryption phase

decrypts code and data that is used in the injection phase. The �nal phase, injection,

is where Mariposa injects code into a legitimate system process in order to compro-

mise the operating system. We now look at some of these particular interactions in

detail and show how Tracks' sequence diagrams can aid in identifying these interac-

tion patterns. There are two particular areas of interest as we will see: the detection

of loops/cycles, and the patterns of system calls as a means to detect malicious intent.

We use the Mariposa variant with the MD5 hash of 3E3F7D8873985DE888CE3200

92ED99C5. The instructions for running this variant of Mariposa on Windows XP, in

order to create these control �ow diagrams with Tracks, is shown in Appendix E.

Obfuscation

Obfuscation is the art of transforming the application into one that is functionally

identical to the original but which is much more di�cult. . . to understand [99]. Com-

monplace within malware, the Mariposa bot includes one such obfuscation, a large

cycle that does nothing but useless computations, 889,976,605 times! The purpose

is to confuse the person who is debugging the software and also, possibly, to confuse

automated unpacking tools or malware analysts. This obfuscation shows up as a cycle

in Tracks, discussed in more detail in the injection phase. After this loop, control

�ow is transferred to an address pushed onto the stack, which begins the decryption

phase.

Decryption

After the obfuscation phase, Mariposa must decrypt its own actual payload code.

The �rst decryption layer XORs1 the range of data between addresses 0x41D000 and

0x41D4C0 with the constant 0x0CA1A51E5. The address 0x41D047 is then pushed to

1An XOR is a logical bitwise exclusive OR.

153

the stack as a return value to transfer control �ow to this address at function return.

The assembly code for this �rst decryption layer is shown in Figure 7.10 and the

corresponding sequence diagram is shown in Figure 7.11. Remember that large loops

occurring within a single function are colored red to show that a large loop occurs,

which may be suspicious.

loc_13FFA6:

xor dword ptr [ecx], 0CA1A51E5h

nop

add ecx , 4

nop

nop

cmp ecx , offset dword_41D4C0

jl short loc_13FFA6

nop

push offset loc_41D047

retn

Figure 7.10: Decryption Loop in x86.

Figure 7.11: Decryption Loop in the Sequence Viewer.

Injection

There has been much work in the malware �eld to detect intrusion through sequences

of system calls [119, 120]. The idea being that short sequences of system calls exe-

cuted by running processes can be a good discriminator between what is a normal

process and what is an abnormal one. For example, �nding code that modi�es the

registry that is not an installer or code that injects bytecode into another process

154

could indicate malicious activity. Such code injection is a technique to hide malicious

processes within a legitimate process and is a popular method for compromising an

operating system. We hope that this type of information can be discovered more eas-

ily through the sequence viewer. We now consider the system call patterns involved

in Mariposa's injection process and their functionality once infected.

Preparing for Injection: The �rst step of injection is to prepare the data

that is used by the injected code. This includes the creation of directories, getting

the operating system version (need to check if CreateRemoteThread can be called)

and creating �les. The next step is to �nd the process to inject into. To do so,

CreateToolhelp32Snapshot is called to obtain a snapshot of the processes that are

running in the system. Process32First is called to retrieve the �rst of these processes

and then Process32Next is called until the required process name is found. There

are 107 total lines of code for this step. Figure 7.12 shows the snippet of this code

which calls Process32Next. As we can see, the call is made on Line 8. However,

since the address is stored in the register, it is not easily apparent statically that

this is a call to Process32Next. This information becomes apparent while debugging

and stepping through the call. It is even more apparent in the sequence diagram, as

shown in Figure 7.13.

loc_13591F:

lea ecx , [ebp+var_128]

push ecx

mov edx , [ebp+var_134]

push edx

mov eax , [ebp+var_12C]

mov ecx , [eax+6Ch]

call ecx

test eax , eax

jnz loc_135899

Figure 7.12: Finding Each Process in x86.

Injection: Having found the process to inject, Mariposa calls OpenProcess to

get a handle to this process. It then calls VirtualAllocEx to allocate memory

within the target process, NtWriteVirtualMemory to inject the code, followed by

CreateRemoteThread to execute it.

155

Figure 7.13: Finding the Process to Inject.

Injected Process: Once the process has been injected, we can follow the control

�ow from the address where the injection occurred. In this study, we have actu-

ally injected winlogon.exe instead of explorer.exe. We did so because injecting

into explorer.exe makes working on the computer extremely di�cult. We used

winlogon.exe because it is also a system process (which Mariposa checks for) and

has the same name length, making it easy to modify during runtime.

Several interesting things occur within the injected process, as seen in Figure 7.14.

These include ensuring that the �les to reinfect the system on startup are present,

that their values are set in the registry, and that communication with the server is

set. Here we only discuss this last step.

The infected process connects to the command and control server. The events that

take place here are creating a socket with 32_ioctlsocket and then 32_inet_addr

converts the domain names into proper addresses. Next, the bot retrieves host infor-

mation from the host name by calling 32_gethostbyname. The 32_htons function

converts an unsigned short number from the host to a TCP/IP network byte order

(big endian). In order to authenticate with the server, an encrypted magic word is

156

sent. Figure 7.14 shows a collapsed loop at this point in the diagram. This loop is

responsible for encrypting the magic word. Once the magic word is encrypted, it is

sent using the 32_sendto function. It then receives a reply from the server using the

32_recvfrom function (not shown). The injected process is then ready to decrypt

and decode received commands.

Figure 7.14: Communication with the Server.

Is Value Added by Tracks?

Table 7.4 compares the ways in which IDA Pro and Tracks address the control �ow

requirements from our exploratory survey. Relative to IDA Pro, the visualization in

Tracks reduces cognitive overhead by better supporting navigation, showing a more

intuitive control �ow and allowing zoom/collapse interaction with visual cues. Addi-

tionally, added features integrated into this visual framework�system call patterns,

dynamic traces, loops and recursion, call ordering and traces involving more than one

executable. The data is available to compare traces and analyze branch frequency in

Tracks, whereas no data is easily available for export directly from IDA Pro.

7.3.4 Malware: Collaboration and Documentation in Tracks

This section shows how features can be added to Tracks to support additional func-

tionality, seamlessly within the same tool. We previously discussed how the comment

157

Control Flow Issue IDA Pro Tracks

API Call Pattern Static control �ow with local
functions only. No search or
navigation capability.

Static or dynamic control �ow
with both local and external
functions. Functions can be lo-
cated through a tree view and
customized perspective.

Loops and Recursion No call ordering and no
indication if call is made more
than once

Shows the order of calls, includ-
ing each time a call is made. Also
shows recursion, loops and cy-
cles.

Trace Comparison No support. No support. Data is available.
Data Required to Reach
Execution Points

No support. No support.

Branch Frequency No support. No support. Data is available.
Multi-Executable Traces No support. Can merge call paths into one

Tracks diagram from multiple
IDA Pro instances.

Table 7.4: Comparison of IDA Pro and Tracks.

threads were implemented alongside Tracks in Section 6.3.5. In order to gauge how

useful our approach was, we contacted �ve survey participants who gave us permission

to do so. Of those �ve, we conducted telephone interviews with three for approxi-

mately 30 minutes each. They were issued a demo video of the features in advance2.

Participants were able to freely respond with comments but some of the questions we

asked included:

� Is there anything particularly useful in the tool?

� Is there anything not useful?

� Are there any features missing?

� Do you think the stars/colors are the best representation?

� Are there other artifacts you would like to be able to add comments to?

� Do you think there is a need to create documentation, for personal use, in the

same fashion?

� How many comments do you foresee being in a thread?

The three interviews are summarized below, followed by a brief overview and

analysis of these results.

2The demo video is available at http://jenniferbaldwin.info/ava/CommentDemo.mp4

http://jenniferbaldwin.info/ava/CommentDemo.mp4

158

Interview 1: Comments on Basic Blocks

Rob3 typically does not work on projects with other people but his clients do. He be-

lieves that reverse engineering tools fall down without collaboration but also remarks

that this is changing as more tools are adding support.

As for usefulness, he �nds that the history of comments is useful and that it is

similar to having a WIKI alongside the diagram. He also likes the ability to see

comments by their post date, but would want to be able to navigate from the newest

comment to where it pertains to in the code.

Extra features he would like to see include being able to incorporate comment

threads directly into a report either by exporting it or printing it to PDF. He often

puts snippets of code into reports alongside the documentation, which he would like to

have happen automatically. Rob would also want to be able to look at the di�erences

in comments between two executables, for example if a new version of an executable

is released. He would also like to be able to link comment threads, for example if code

is duplicated in another executable, and to have the comments themselves link to the

Internet or to �les. Finally, Rob could see the potential to have comments approved,

for example by a team leader. This means that if a particular part of the code has

been approved by reaching a level of saturation of comments, then no more analysis

would need to occur on it. In this way it becomes a tool for managing work �ow.

As for other artifacts, he often comments basic blocks of code, for example, if

statements and would like to be able to add comments to these. One idea for this

would be to add boxes to the lifeline image that could be double-clicked to load their

comment threads.

Rob mentioned that having the ability to create private documentation (docu-

mentation for personal use) would be useful as a personal workspace for rough notes.

As for the length of comment threads, this was di�cult to answer but Rob sug-

gested having a tree hierarchy or nested overlay for long comment threads and thought

that interesting sections might have 8 to 12+ comments.

Interview 2: Comments on Mouseover

Joe usually works as an individual, with maybe one other person at a time. However,

he does not work in a group so he is not used to working in this context and has a

greater need to create documentation privately. He usually creates documentation

3The names used in this study are �ctitious.

159

with the comments in IDA Pro, but does �nd the ability to ask questions to other

people interesting.

Joe believes that double clicking to have the comments load on the right is dis-

ruptive to the work �ow and instead suggests that they appear on mouseover with a

summary of comments in place. In this way, the user does not have to navigate to

the side panel and back again, wondering what they were looking at, especially in a

large trace.

He would also like to be able to pull in information from other sources. For

example, he is almost always looking up functions on the Microsoft Developer Network

(MSDN) since he forgets what the parameters are. The �rst thing he would like to

do, if he had the prototype code, is to add links to it from the comments. There

is an IDA Pro plugin that provides similar functionality [121]. A screenshot of this

tool having imported functions is shown in Figure 7.15. Here we can see that MSDN

documentation describing function parameters has been pulled in as comments into

the code. However, since speaking with Joe, we have added a view alongside Tracks

to show the MSDN documentation (discussed in Section 6.3.4).

Figure 7.15: MSDN Comments Imported into IDA Pro.

160

When asked about the use of the color-coded stars, he did mention that numbers

might be more useful and that highlighting the most recent would be helpful, with

perhaps an exclamation mark. He also thinks that people will adapt to whichever

colors or methods are used.

Interview 3: Tracks as an Authoring Tool

Mark �nds the comments view pretty interesting and believes it would be useful with

even only two to three people in a team. However, he would need to have a local server

to support the comment threads since the machines used for analysis are standalone

(not connected to the Internet) due to security reasons. He would also need to be able

to link to the comments in IDA Pro, otherwise there would be two sets of comments

spread out over two tools.

He does not think that the colors would be useful as they probably would not

reach 5, 10 or 25 comments within their team. Mark mentions that a metric that

might be better is the level of certainty of a comment. For example, red might be

asking a question while green is a response to a question.

As for the granularity of commenting artifacts, he believes that for sequence di-

agrams, commenting calls, lifelines and cycles are pretty good. However, when he

makes comments in IDA Pro, he often comments particular instructions.

Private documentation was seen as useful and especially so if it can be saved

locally and shared o�ine.

An interesting use of the Tracks tool that Mark mentions is the ability to add and

remove calls from both the static diagram and the dynamic traces. In this way, Tracks

can be used as a sequence diagram authoring tool. Currently they are using Rational

Rose [122], but he is not satis�ed with it, and would also like to have integration with

IDA Pro.

Interview Overview and Analysis

Table 7.5 shows a summary of the results from the interviews. We split up the results

by question, but major points include the ability to have comments stored on a local

server, being able to link comment threads with one another and with existing IDA

Pro comments, being able to manually edit the sequence diagrams, and �exibility of

what elements can have comments added to them (i.e. basic blocks).

161

Is there anything particularly useful in the demo?
History of comments
Post date to sort by newest comment
Ability to ask questions (have a discussion)
Useful even with a small team

Is there anything not useful?
Comments on mouseover
Would need a local server for standalone machines

Are there any features missing?
Navigate from comment to code
Automatically extract code/comments to report
Di�erences in comments between two executables
Link comment threads
Comment approval
Link with existing IDA Pro comments
Manually edit sequence diagram

Do you think the stars/colors are the best representation?
Number of comments
Highlighting most recent
Certainty of comment

Are there other artifacts you would like to be able to add comments to?
Basic blocks
Instructions

Do you think there is a need for private documentation in the same fashion?
100% (3 out of 3) Yes
Good place for rough notes
Save locally and share o�ine

How many comments do you foresee being in a thread?
Tree hierarchy or nested overlay

Table 7.5: Summary of Collaboration and Documentation Interviews.

7.4 Phase II and Phase III Limitations and Threats

to Validity

As with any research study performed in an industrial setting, we faced challenges

such as time constraints and intellectual property. We also may have threats to

validity due to the research method used, as previously outlined in Section 4.1. This

section further discusses these limitations as well as the external and internal threats

to validity as they apply to both Phase II and III of this dissertation.

162

7.4.1 Limitations

The largest limitation was access to participants. In the mainframe group's case, we

had to be very clear about the amount of time required for requirements elicitation.

For example, the mainframe group's manager mistook the elicitation exercise as an

all day exercise, rather than one to write notes down during the day: �...for people

onsite who will attend the meeting, are you expecting them to complete the handout?

To be honest, I am not sure I can a�ord them the time to complete this beforehand�.

This misunderstanding was resolved with a follow-up phone call but it highlights the

strict timelines with which we were bound.

In regard to elicitation within the malware group, while the team consisted of eight

members, we were provided contact information for only six since they performed

reverse engineering and were therefore relevant to our study. Of those six, we had

four that responded to the user survey and subsequent elicitation exercise. The

comment given during the group session was �Some of my colleagues didn't really feel

like entering because they thought it [the survey] was too vague in terms of questions.

They would like more precise questions in the user survey, in order to get them back

in�. The process was completely voluntary in comparison to the mainframe group,

the comment from the malware group's manager being that �Their boss can tell them

you go there and you do it, I can't really do that here�.

We note that while our exploratory survey had 25 and 15 respondents for main-

frame and malware respectively, our requirements elicitation had only 6 and 4. Pre-

vious work in usability studies found that statistically signi�cant results are unlikely

in a group size of less than eight participants, although it is possible [123]. Spyri-

dakis and Fisher [124] found that between 10 and 12 participants will often produce

statistical signi�cance. Our smaller participant numbers are expected due to per-

forming our study in industry, rather than with students, and each approach presents

issues. While using groups of students would produce greater statistical signi�cance

with greater participant numbers, the data obtained would not be from target users.

One possible technique used to produce statistical signi�cance is bootstrapping. Boot-

strapping creates new data samples by repeatedly choosing random values from the

original sample set [125]. While this approach may be useful for modeling speci�c

types of data, it would not have been useful in our particular study, which aimed to

discover detailed requirement information from real users.

Another limitation we faced, was with the nature of the malware group as part of

163

a government defence facility. Due to security issues, we could not freely interview

the team members about the nature of their daily work.

Finally, English was not the malware group's �rst language so there were times

when discussion broke o� in French (their primary language). At these points we

would ask what the discussion was about, however it is possible we may have missed

some important points. It is also possible that requirement descriptions were not

explained as fully as they could have been.

7.4.2 External Validity

While each group was a practicing software group, they may be atypical of other

groups. For example, the mainframe and malware groups each consisted of highly

experienced developers working in a speci�c area. A di�erent software group with less

experience, or in a more generalized software �eld, could produce di�erent results.

Additionally, our focus was on two assembly languages: HLASM and x86. The

mainframe group, while not having an explicit notion of subroutines, was able to

produce control �ow data and therefore make the value for HLASM and Tracks

known. Other combinations of groups may be able to use these seemingly isolated

tools through similar means. While our results showed early on the issues with trying

to consolidate di�erences between two languages, should our focus have been on x86

and perhaps ARM, the results may have appeared di�erent.

7.4.3 Internal Validity

In regard to our requirements elicitation, the biggest threat to validity is possible con-

�rmation bias, meaning that negative participant cues were ignored. We attempted

to mitigate this by using double-blind responses and a coding scheme to determine

the level of positivity in the results. In addition, the nominal session was scripted

to ensure that we strictly adhered to the protocol. Finally, the nature of the study

was not revealed to the participants, therefore changes in their behavior caused by

an anticipation of what the experimenters were looking for should be minimized.

Another internal threat to validity with our requirements elicitation, is that par-

ticipants were videotaped and aware of the researchers at all times, which may have

introduced a Hawthorne e�ect [126]. This is when participants improve or modify an

aspect of their behavior simply because they know they are being studied. This also

164

applied to the malware group, where certain information had to be kept secure at all

times so participants may have needed to monitor their discussion.

Internal validity is also an issue since we were only able to spend a small amount

of time with the groups. This a�ected our ability to isolate whether or not our

requirements elicitation approach gave more requirements, or if the participants were

naturally communicative.

In regard to the latter two internal validity threats, we attempted to isolate

the e�ects of our approach by minimizing any additional factors that would alter

motivation�participants were not directly involved with success of the process nor

did they receive any judgemental feedback [126]. Participants also indicated they

were used to informal meetings of this nature.

7.5 The Great Language Divide: Nature or Nur-

ture?

We previously discussed two proof of concept tools that, unlike Tracks, could not be

designed to meet requirements of both groups. Though it would appear that this

stems solely from the groups' di�erences in terms of the daily tasks they perform, we

believe our results support the argument that there are two factors. The �rst we see

exempli�ed with LegaSee and is the existence of fundamental construct di�erences

between these two particular assembly languages, and the nature of the instruction

sets involved. The second is the speci�c daily tasks nurtured within the subcultures

of the groups, compacted with the speci�c development/analysis environment.

The latter of the two is easily seen throughout our surveys, observations and

requirements elicitation, presented as Phase II of this dissertation. In fact, Chapter 5

deals speci�cally with these di�erences in-depth. However, up until this point in the

dissertation, we have not investigated how these two particular dialects�HLASM

and x86�might have factored into the fracturing of the AVA framework.

We began this project with the simple research question: Can program compre-

hension tools for high-level languages be retro�tted to apply to low-level languages?

This dissertation has shown that retro�tting high-level comprehension tools to low-

level codebases can be a means of addressing a wide variety of requirements derived

directly from developers working in this domain. However, by virtue of working with

two stakeholders with a diverse set of needs, we were also able to explore a deeper

165

x86 ARM HLASM [127]

.data

HelloWorldString:

.ascii ''Hello World''

.text

.globl _start

_start:

Load all the

arguments for write ()

movl $4, %eax

movl $1, %ebx

movl $HelloWorldString, %ecx

movl $12, %edx

int $0x80

Need to exit the program

movl $1, %eax

movl $0, %ebx

int $0x80

.data

HelloWorldString:

.ascii ''Hello World''

.text

.globl _start

_start:

Load all the

arguments for write ()

mov r7, #4

mov r0, #1

ldr r1,=HelloWorldString

mov r2, #12

svc #0

Need to exit the program

mov r7, #1

mov r0, #0

svc #0

EX1 CSECT

EX1 AMODE 31

EX1 RMODE 24

STM 14,12,12(13)

BALR 12,0

USING *,12

LA 5,WTO_AR

WTO TEXT=(5)

LMRET LM 14,12,12(13)

BR 14

IN_STRING DC C'Hello World'

WTO_AR DC AL2(L'OUT_STRING)

OUT_STRING DS CL(L'IN_STRING)

LTORG ,

END

Java C Python

class HelloWorld {

public static void

main(String[] args) {

System.out.println

(''Hello World'');

}

}

#include <stdio.h>

int main(void) {

printf(''Hello World'');

return 0;

}

class HelloWorld():

def __init__(self):

print 'Hello World'

Table 7.6: �Hello World� Programs in Low- and High-Level Languages.

question, Are tools in our proof of concept framework e�ective at supporting the re-

quirements of both groups? Though future research in intermediate representations

to capture meaningful artifacts from a spectrum of languages may hold promise, our

work has revealed that the fundamental disparity extends beyond the language con-

structs and into the nature of the work involved. In the case of our stakeholders, our

results indicate that there would be no bene�t in coalescing such disparate tools into

one framework.

At the start of this project, we accepted the de�nition that assembly language

could include any and all of the available dialects labelled as such. However, issues

existed from the very beginning in even utilizing the same intermediate language for

them due to issues surrounding instruction sets. We have come to the understand-

166

Characteristic x86 ARM HLASM

Instruction Set CISC RISC IBM s370 CISC with Z-Series
Additions

Opcodes 303 34 1505 [128]
General Registers 6 (16 bit) 16 (32 bit) 16 (64 bit)
Target Hardware PC, Embedded PC, Embedded z/Architecture Mainframe
Subroutines Yes Yes No
Structure Areas Modules, Sections, Classes, El-

ements, Parts
Macros Yes Yes Yes
Unique DSECTs, CSECTs
Constructs

Table 7.7: Key Characteristics of x86, ARM and HLASM.

ing that the spectrum of dialects available under the umbrella �assembly language�

taxonomy is potentially far more varied than even the spectrum for what we refer to

as �high-level� languages. We would argue that the two languages we investigate in

this dissertation are in fact on opposite ends of the spectrum. If we look at ARM in

comparison to x86, we already begin to see more similarity than we do with HLASM,

which could have produced very di�erent results.

To further illustrate our point, we have provided Table 7.6 which shows the same

�Hello World� program written in six di�erent languages. Three of these languages are

assembly: x86, ARM and HLASM; whereas three are high-level languages: Java, C

and Python. We infer that even by looking at a simple program, we can immediately

see more similarity between x86 and ARM, as well as between all three high-level

languages, than we can between x86 and HLASM. In fact, HLASM is a major outlier.

While these similarities may only be syntactic, we provide yet another comparison

in Table 7.7. This table shows di�erent factors which could be used in comparing

programming languages. We observe that there exist marked di�erences between

all three assembly languages, which include instruction sets, in addition to lack of

fundamental constructs such as subroutines. We originally labelled x86 and HLASM

as di�erent assembly language dialects, but have since come to the realization that

they were, in fact, di�erent languages altogether.

167

7.6 Chapter Summary

This chapter began by providing technical challenges and limitations. We then showed

two tools that are part of the AVA framework, LegaSee and REwind, that have only

shown promise to one of the two groups, mainframe and malware respectively. These

two tools exemplify how speci�c the two domains really are. While these tools do

not show promise universally, that does not preclude the existence of tools that do

apply to both groups. Tracks solves problems that exist in both domains by providing

additional support for the mainframe by superimposing functional decomposition on

the codebase. This chapter provided limitations and threats to validity of our study.

Phase III was concluded by answering our �nal research question: Are tools in our

proof of concept framework e�ective at supporting the requirements of both groups?

Table 7.8 shows a summary of each tool split into each category de�ned from the

requirements elicitation which took place in Chapter 4. This table highlights the fact

that while a category at the high-level may seem like the same problem, when we dig

deeper, we see that the issues that exist within that category for each group are quite

unique.

168

Tool Requirement

Category

Mainframe Malware

Tracks Browsing Navigation to Listing Navigation within IDA Pro,
and Navigation Navigation History View
Control Flow Static Control Flow, Static Control Flow,

Reversed Static, Reversed Static
Trace Log

Data (Data Required to Reach Exe-
cution Points)

Debugging (Multi-Threading Support) Dynamic Control Flow,
(Compare Traces)

De-obfuscation Cycle/Loop Detection,
API Call Patterns

Documentation Module Descriptions, MSDN Documentation,
Comment Threads, Comment Threads,
Save to Image File, Save to Image File,
(Error Code Reference)

Integration (Socket Message Capable) IDA Pro,
(Filter with PaiMei)

References DLLs Referenced
LegaSee Browsing High-Level System View,

and Navigation Navigation to DSECTs and
CSECTs

Data DSECT Module Location and
Size

References CSECT Module Location and
Size

REwind Data (Re-running with New Data)
Debugging Repeat Debugging Actions
De-obfuscation Discover Malware Intent

through Iterative Execution,
Anti-Debugging Trap Avoid-
ance

Documentation State Diagram,
State Descriptions

Integration IDA Pro

Table 7.8: Summary of Group Requirements Supported by Toola.

aItems in brackets are yet to be implemented. Categories without points are not shown.

169

Chapter 8

Future Research Directions and

Conclusions

This �nal chapter concludes the main claim of this dissertation, while program com-

prehension tools can be e�ectively applied to low-level programming languages, such

as assembly language, they cannot be universally applied due to their specialized use

in industrial software groups, compounded by fundamental construct di�erences. This

chapter discusses future research directions stemming from this work, including fur-

ther data analysis from our requirements elicitation, as well as further tool develop-

ment towards these requirements. We conclude by revisiting the research questions

and results of this dissertation.

8.1 Future Research Directions

There are many avenues of future research that could result from the work provided

in this dissertation. We cover these avenues by their topics: requirements elicitation,

feature additions to existing tools, integration with other assembly language tool

support or work environments, and user studies that could take place to validate

such tools.

8.1.1 Analysis of Requirements Elicitation Data

In terms of future research for disseminating the data collected as part of our require-

ments elicitation process, much more could be done. For example, we have numerical

data for scores, and have shown graphs for the preliminary and �nal rankings and

170

have given a possible reasoning for �uctuations of scores. However, given this data,

evaluations of how scores changed over time could be done.

While we use Interaction Process Analysis (IPA) on the transcribed audio from

our group sessions, we could perform additional qualitative data analysis by using the

transcribed audio with software which supports grouping and analyzing textual data

such as ATLAS.ti [129]. We could then compare these results with that of our study

to see if any requirements were not explicitly reported. For example if the words �seg

fault� had been mentioned noticeably often, we could deduce that they are an area

of interest despite perhaps not being mentioned as a speci�c issue.

8.1.2 Tools to Satisfy Elicited Requirements

This dissertation has brought to light many issues that assembly language developers

and analysts face. We have only implemented proof of concept tools to satisfy a

small portion of these requirements1. However, there are additional features for the

tools we have already implemented that could be added to satisfy even more of these

requirements. We discuss those feature additions below, in terms of each tool they

could be integrated into.

Tracks

Our exploratory surveys, as well as requirements elicitation and interviews have iden-

ti�ed multiple features that could be added to the Tracks tool. These include:

1. recognizing (suspicious) system call patterns

2. documentation support (adding notes, modifying diagram for reports)

3. comparing traces

4. multi-threading support

5. data required to reach execution points

6. calculating branch frequency

7. performance statistics

The system call patterns can be a good indicator as to whether or not a program

is malicious. For example, we could mark a cycle as Decryption. In reality, these call

patterns would likely be obfuscated and being able to automatically detect whether

1These requirements are examined in-depth in Chapters 3 and 4 so we do not revisit them here.

171

or not code is malicious would be non-trivial. Therefore, the malicious call pattern

would still need to be recognized by a human and pattern data could be grown over

time, or this functionality could be used as a training tool. As for documentation

support, like Code Bubbles, we feel that it is important, when faced with so much

information, to be able to make notes and �ag items from within the tool. This is

something we would like to contend with both in Tracks and future tools. Comparing

two traces to see how the program executes di�erently from one run to the next is

very important as well. It can show which data to use to execute a particular scenario.

Lastly, branch frequency would indicate how often speci�c code is run. This can be

helpful to locate performance bottlenecks.

Comment Threads

There are many avenues of future work for the comment capabilities within Tracks.

While we discuss these in terms of how they connect with Tracks' sequence diagrams,

these features are also important for comment integration across all of AVA's suite of

tools.

Since most users currently create their comments inline in the assembly code

within IDA Pro, we would need to be able to export those into the comment threads.

Another important feature will be the use of sequence diagrams within reports. For

example, the ability to link a code snippet to the comment thread so that it can be

exported to documentation may be of importance.

As for the granularity of what can be commented, we need to be able to support

some level of arbitrary comment placement. For example, users need to comment

parts of the code such as basic blocks and particular instructions. We need to indicate

placement of such comments within the sequence diagram. To alert the users to the

presence of comments, we may look at metrics other than the number. Other metrics

that presented themselves were the most recent posts as well as the certainty of the

post (e.g. question versus answer).

We will also need to consider the scalability of comment threads and the amount

by which the threads will grow in practice. If size becomes an issue, we may need to

look at other ways to represent them, such as with a tree hierarchy or with nested

overlays. We may also need to have the comments window show up on top of the

sequence diagram if we do not want to interrupt the work �ow in a large trace. As for

the comment capability itself, the ability to categorize, tag and search for posts will

172

need to be added. The tagging can lend itself to inclusion within other documents

but also to link comment threads and be used for searching. We need to allow users

to link to external information such as internet links, and �les, as well as provide

support for private documentation that can be saved locally and shared o�ine. This

gives the user a private area in which to save notes. This might be implemented as

a separate tab within the comments view in much the same way as the collaborative

approach.

Other areas of future work include updates on what other analysts are doing,

support for comments on a private server, retracing steps that an analyst took, the

di�erence listing between comments on two executables and comment approval.

References to Documentation

We provided integration of the MSDN library to Tracks at the request of malware

analysts. Therefore the documentation that was linked to Tracks' diagrams and ex-

ternal functions was the MSDN documentation. There are two avenues of future work

for these features. The �rst is taking the data o�ine, and the second is integrating

further documentation sources.

The �rst point is integral to the nature of the work performed by the malware

analysts. Since they reverse engineer malware, it is imperative that these analysis

machines stay disconnected from any network, most de�nitely including the Internet.

This made our current approach of using Google to search the MSDN website of

little use. While our approach was to show how this feature could potentially work,

and to gauge its usefulness, this functionality will need to be updated to use locally

saved MSDN documentation. There are two possibilities we see for this: saving the

entire website and indexing it using Google Desktop, or somehow accessing the MSDN

information provided as part of the Visual Studio installation.

As far as integrating further documentation sources, this should ideally be done

in a way that is independent of the documentation. If we use the desktop-indexing

method as discussed in the previous paragraph, we could provide results across mul-

tiple documentation resources. Further, we can incorporate documentation indepen-

dent of the system the diagram was built for. For example, the mainframe developers

often need to look up mainframe error codes. If we were able to capture this infor-

mation within our data sources, regardless of whether or not this was shown in the

diagram, we could then load pertaining documentation based on search.

173

8.1.3 Integration of AVA with Other Systems

While our AVA framework is implemented in such a way as to make it independent

of the tools it interfaces with, we have only integrated it directly with IDA Pro at

this stage. Since IDA Pro was the primary tool used by the malware analysts, it was

already a preferred option. However, what allowed us to create the integration easily

was the plugin capability it provides. While this is not a prerequisite for working with

our framework, since we only require messages to be sent over sockets, it created an

avenue for us to quickly realize a result. We had originally planned to show a similar

integration with the mainframe environment, however that would have required access

to their systems, as well as a thorough understanding of it. Initial plans were to have

students involved in this domain to implement this messaging service, however when

our CA research contact left, we also lost access to these resources. We therefore know

that such integration is a possibility, and would be a further proof of applicability of

our tools within other domains.

8.1.4 User Studies of Proof of Concept Tools

We provide an assessment of AVA in Chapter 7, which shows case studies of how the

framework's tools can be applied within the two industrial domains we investigate. In

this assessment, we show how the Tracks tool was able to solve issues present within

both groups, whereas both the LegaSee and REwind tools could not. The claim of

this dissertation is to explore whether or not high-level comprehension tools could

be applied to two speci�c low-level assembly languages. We therefore required the

implementation of these tools to illustrate our claim.

However, we are aware that the Tracks tool is already being used in industry, and

we have received preliminary feedback from its use. We recognize that user studies

are necessary to assess how these tools need to evolve, as well as to compare how they

perform in comparison to existing tools. The results of such a user study would be

one avenue of future work to further validate our requirements elicitation process.

8.2 Conclusions

In this dissertation, we were able to demonstrate why understanding certain aspects of

low-level languages, such as assembly language, can be far more challenging than high-

level languages. For example, control �ow contains unstructured branching, and in

174

some cases, a lack of functions altogether. While we know these issues exist, currently

there is little in the way of tool support to aid with these program comprehension

issues.

We began this journey asking whether or not high-level program comprehension

tools could be e�ectively applied to low-level languages. To do so, we had to elicit

requirements from two specialized groups: a mainframe development group using

HLASM, and a government agency that analyzes malware threats, predominantly

in x86. This in turn led us to a deeper investigation. Our original claim was that,

while program comprehension tools can be e�ectively applied to low-level programming

languages, such as assembly language, they cannot be universally applied due to their

specialized use in industrial software groups, compounded by fundamental construct

di�erences.

In the process of demonstrating our claim, we showed the following:

Phase II Surveys and requirements elicitation, presented in Chapters 3 and 4 re-

spectively, showed there exists a minimal intersection of requirements between these

two highly-specialized industrial software groups. We compared the results of each

side-by-side in Chapter 5, and reason about why the di�erences exist. This phase

answered our �rst two research questions: What are the requirements currently not

being met in the comprehension of assembly code within two unique groups: main-

frame developers and malware analysts? andWhat are the similarities and di�erences

in the requirements?

We started by issuing an exploratory survey to better understand the wide range

of issues involving assembly language comprehension within each of these groups. We

next conducted requirements elicitation studies within two industrial groups using

techniques adopted from social psychology. We showed that these techniques from

social psychology can be used successfully in a highly-specialized industrial develop-

ment context, without the techniques being deemed as intrusive or irrelevant. Further,

we provided a ranked list of requirements and descriptions, in order to build proof

of concept tools. While both the survey and requirements elicitation provided rich

details for each group, we noticed that, while issues each group faced seemed similar

at a high-level, when we dug deeper, the speci�c issues they faced are in fact quite

di�erent. We dedicated all of Chapter 5 to discussing the similarities and di�erences

between each group, giving an explanation as to why these exist. These di�erences

are key in how the program comprehension framework we call AVA was built.

175

Phase III, Part I In Chapter 6, we provided the design and implementation for

tools within the AVA framework: LegaSee, REwind, and Tracks. These tools an-

swered our third research question: Can program comprehension tools for high-level

languages be retro�tted to apply to low-level languages?

We discussed in-depth how AVA was created with independence of the underlying

assembly language in mind. However, even with this being the case, certain tools can

only meaningfully exist in a space where there is a legitimate problem for them to

solve. While tools can be built that can solve problems universally, there are others

which cannot.

Phase III, Part II Chapter 7 illustrated case studies using the three tools in

the AVA framework. Of these three tools, only the Tracks tool has been successful at

addressing issues universally. Tracks is a control �ow tool we have built that can show

control �ow sequence diagrams for both HLASM and x86 code, and has been built

with mainframe and malware issues in mind. We show in our assessment how it can be

used for both groups, and also showcase some of the features helpful for each. While

Tracks cannot �x inherent issues with irreducible control �ow or �spaghetti-code�, it

does reduce the cognitive overhead for large traces, as well as provides assistance with

both navigation and de-obfuscating API calls.

We additionally showed two tools that could not be applied to both groups,

LegaSee and REwind. LegaSee shows a high-level construct view for DSECTs and

CSECTs within HLASM, and REwind provides the ability to repeat debugging steps

in the course of reverse engineering malware threats. The reasons for this lack of

universal applicability are two-fold. First, the work conducted by each group di�ers

signi�cantly, meaning that issues simply do not exist for both groups. Second, the

languages themselves di�er along so many facets that they are very distinct from one

another. These case studies answered our �nal research question: Are tools in our

proof of concept framework e�ective at supporting the requirements of both groups?

As with any research study, we may have limitations and threats to validity due to

the research method used. Our largest limitation was access to participants, as well

as with intellectual property issues surrounding the nature of the stakeholder groups.

Additionally, our study only took into account two highly-specialized groups which

each used their own assembly language: HLASM or x86. It is possible that with dif-

ferent groups, or with di�erent assembly languages, our results would have appeared

di�erent. For example, ARM was investigated as a possible intermediate language

176

candidate that showed some promise for x86, however the inclusion of HLASM made

this an impossibility [130]. Should our case studies have been ARM and x86, we may

have been able to �nd more common ground, though ultimately the truth remains

the same�there exists no silver bullet to reconcile issues across all assembly language

domains.

Ultimately, our AVA (Assembly Visualization and Analysis) program compre-

hension framework comprises tools that can work independently of the underlying

language by using intermediate data formats, as well as communication mechanisms

to interface with external systems. While all of the tools we build aim to be �exible

and language agnostic, the bottom line is that there are fundamental disparities be-

tween the two groups that make a universal approach unrealistic. There are two main

reasons for these disparities. First, the assembly languages used are technically quite

di�erent from one another and therefore contain fundamental construct di�erences

between them. Second, these highly-specialized groups perform speci�c work tasks,

within speci�c development and analysis environments. Despite these disparities, we

have shown that tools do exist that can work for both groups in our study. Addition-

ally, we provided requirements that can spawn further tool development and analysis.

Through AVA, we have provided the ability for future researchers to expand upon

our work by integrating the framework with not only their own assembly languages,

but also their speci�c systems.

177

Bibliography

[1] L. M. Surhone, M. T. Tennoe, and S. F. Henssonow, IBM High Level Assembler

(HLASM). Mauritius: Betascript Publishing, 2010.

[2] D. B. Kahanwal, �Abstraction level taxonomy of programming language frame-

works,� International Journal of Programming Languages and Applications (IJ-

PLA), vol. 3, no. 4, 2013.

[3] IBM Corporation, HLASM: V1R6 Language Reference, 1982-2000.

[4] R. Marik, �GREX Architecture - Package Comprehension Report,� tech. rep.,

CA Labs, July 2009.

[5] C. Eagle, The IDA Pro Book: The Uno�cial Guide to the World's Most Popular

Disassembler. San Francisco, CA, USA: No Starch Press, 2008.

[6] P. Sinha, A. Boukhtouta, V. H. Belarde, and M. Debbabi, �Insights from the

Analysis of the Mariposa Botnet,� in 5th International Conference on Risks and

Security of Internet and Systems (CRISIS), (Montreal, Quebec, Canada), 2010.

[7] C. Stangor, Social groups in action and interaction. Psychology Press, 2004.

[8] I. L. Janis, Groupthink: psychological studies of policy decisions and �ascoes.

Boston: Houghton Mi�in, 1982.

[9] H. Tajfel, M. G. Billig, R. P. Bundy, and C. Flament, �Social categorization

and intergroup behaviour,� European Journal of Social Psychology, vol. 1, no. 2,

pp. 149�178, 1971.

[10] T. Postmes, R. Spears, and S. Cihangir, �Quality of decision making and group

norms.,� Journal of Personality and Social Psychology, vol. 80, no. 6, pp. 918�

930, 2001.

178

[11] A. Teh, E. Baniassad, D. van Rooy, and C. Boughton, �Social psychology and

software teams: A preliminary look at establishing task-e�ective group norms,�

IEEE Software, vol. 99, no. PrePrints, 2011.

[12] A. W. Kruglanski, �Motivations for judging and knowing: Implications for

causal attribution,� The handbook of motivation and cognition: Foundation of

social behavior, vol. 2, pp. 333 � 368, 1990.

[13] C. H. Hui, �Measurement of individualism-collectivism,� Journal of Research in

Personality, vol. 22, no. 1, pp. 17 � 36, 1988.

[14] A. W. Kruglanski and D. M. Webster, �Motivated closing of the mind:�seizing�

and �freezing�,� Psychological Review, vol. 103, no. 2, pp. 263�283, 1996.

[15] M. N. Bechtoldt, C. K. W. De Dreu, B. A. Nijstad, and H.-S. Choi, �Moti-

vated information processing, social tuning, and group creativity,� Journal of

Personality and Social Psychology, vol. 99, no. 4, pp. 622�637, 2010.

[16] D. Oyserman, H. M. Coon, and M. Kemmelmeier, �Rethinking individualism

and collectivism: evaluation of theoretical assumptions and meta-analyses,�

Psychological Bulletin, vol. 128, no. 1, pp. 3�72, 2002.

[17] J. Goncalo and B. Staw, �Individualism-collectivism and group creativity,� Or-

ganizational Behavior and Human Decision Processes, vol. 100, no. 1, pp. 96�

109, 2006.

[18] R. Gri�n, Management. Houghton Mi�in Co., 2006.

[19] C. Okoli, �The delphi method as a research tool: an example, design considera-

tions and applications,� Information & Management, vol. 42, no. 1, pp. 15�29,

2004.

[20] �Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model

(KDM),� Object Management Group, 2009.

[21] P. Amini, �PaiMei - Reverse Engineering Framework,� in RECON `06: Reverse

Engineering Conference, (Montreal, Canada), 2006.

[22] HBGary, �Responder Pro.� https://www.hbgary.com/products-services/

responder-pro, 2010.

https://www.hbgary.com/products-services/responder-pro
https://www.hbgary.com/products-services/responder-pro

179

[23] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,

J. Newsome, P. Poosankam, and P. Saxena, �Bitblaze: A new approach to

computer security via binary analysis,� in ICISS `08: Proceedings of the 4th

International Conference on Information Systems Security, (Hyderabad, India),

pp. 1�25, Springer-Verlag, 2008.

[24] �Zynamics.� http://www.zynamics.com, 2010.

[25] �ASMPlugin.� http://sourceforge.net/projects/asmplugin, 2010.

[26] P. Borunda, C. Brewer, and C. Erten, �GSPIM: graphical visualization tool for

MIPS assembly programming and simulation,� in SIGCSE `06: Proceedings of

the 37th SIGCSE technical symposium on Computer science education, (New

York, NY, USA), pp. 244�248, ACM, 2006.

[27] R. N. Horspool, W. D. Lyons, and M. Serra, �ARMSim# - a Customizable

Simulator for Exploring the ARM Architecture,� in FECS `09: Proceedings

of the 2009 World Congress in Computer Science, Computer Engineering and

Applied Computing, (Las Vegas, NV, USA), July 2009.

[28] �TextMaestro.� http://www.textmaestro.com, 2010.

[29] �The collabREate Project.� http://www.idabook.com/collabreate/, 2010.

[30] C. Eagle and T. Vidas, �Next Generation Collaborative Reversing with Ida Pro

and CollabREate,� in Black Hat Brie�ngs, (Las Vegas, USA), August 2008.

[31] B. Cleary, M.-A. Storey, L. Chan, M. Salois, and F. Painchaud, �Atlantis -

assembly trace analysis environment,� in Reverse Engineering (WCRE), 2012

19th Working Conference on, pp. 505�506, 2012.

[32] J. Bohnet and J. Döllner, �Visual exploration of function call graphs for feature

location in complex software systems,� in SoftVis `06: Proceedings of the 2006

ACM symposium on Software visualization, (New York, NY, USA), pp. 95�104,

ACM, 2006.

[33] N. Synytskyy, R. C. Holt, and I. Davis, �Browsing software architectures with

LSEdit,� in IWPC `05: Proceedings of the 13th International Workshop on Pro-

gram Comprehension, (Washington, DC, USA), pp. 176�178, IEEE Computer

Society, 2005.

http://www.zynamics.com
http://sourceforge.net/projects/asmplugin
http://www.textmaestro.com
http://www.idabook.com/collabreate/

180

[34] E. R. Gansner and S. C. North, �An open graph visualization system and its

applications to software engineering,� Softw. Pract. Exper., vol. 30, no. 11,

pp. 1203�1233, 2000.

[35] T. Munzer, Interactive Visualization of Large Graphs and Networks. Phd dis-

sertation, Stanford University, Palo Alto, California, 2000.

[36] �aiSee Graph Layout Software.� http://www.aisee.com, 2010.

[37] S. Ducasse, T. Girba, and A. Kuhn, �Distribution map,� in ICSM `06: Pro-

ceedings of the 22nd IEEE International Conference on Software Maintenance,

(Washington, DC, USA), pp. 203�212, IEEE Computer Society, 2006.

[38] R. DeLine, �Staying Oriented with Software Terrain Maps,� in Workshop on

Visual Languages and Computation, pp. 309�314, 2005.

[39] M.-A. Storey, K. Wong, and H. A. Müller, �Rigi: a visualization environment

for reverse engineering,� in ICSE '97: Proceedings of the 19th international

conference on Software engineering, (Boston, Massachusetts, United States),

pp. 606�607, ACM, 1997.

[40] A. Desnos, S. Roy, and J. Vanegue, �ERESI: a kernel-level binary analysis

framework,� in SSTIC `08: Symposium sur la Securite des Technologies de

l'Information et Communications, (Rennes, France), 2008.

[41] Q. Wang, W. Wang, R. Brown, K. Driesen, B. Dufour, L. Hendren, and C. Ver-

brugge, �EVolve: an open extensible software visualization framework,� in Soft-

Vis `03: Proceedings of the 2003 ACM symposium on Software visualization,

(New York, NY, USA), pp. 37��, ACM, 2003.

[42] M.-A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu, and M. Musen,

�SHriMP views: an interactive environment for information visualization and

navigation,� in CHI `02: CHI `02 extended abstracts on Human factors in com-

puting systems, (New York, NY, USA), pp. 520�521, ACM, 2002.

[43] M. Eichberg, M. Haupt, and M. Mezini, �The SEXTANT Software Exploration

Tool,� IEEE Trans. Softw. Eng., vol. 32, no. 9, pp. 753�768, 2006.

http://www.aisee.com

181

[44] J. van Wijk and H. van de Wetering, �Cushion treemaps: visualization of hier-

archical information,� in Information Visualization, 1999. (Info Vis '99) Pro-

ceedings. 1999 IEEE Symposium on, pp. 73�78, 147, 1999.

[45] �Disk Inventory X.� http://www.derlien.com, 2010.

[46] S. Boccuzzo and H. C. Gall, �CocoViz: Supported Cognitive Software Visual-

ization,� inWCRE `07: Proceedings of the 14th Working Conference on Reverse

Engineering, (Washington, DC, USA), pp. 273�274, IEEE Computer Society,

2007.

[47] R. Wettel and M. Lanza, �CodeCity: 3D visualization of large-scale software,�

in ICSE Companion `08: Companion of the 30th international conference on

Software engineering, (New York, NY, USA), pp. 921�922, ACM, 2008.

[48] G. de F. Carneiro, R. Magnavita, E. Spinola, F. Spinola, and M. Mendonça,

�An Eclipse-Based Visualization Tool for Software Comprehension,� in Tools

Session of the Brazilian Symposium on Software Engineering (SBES'2008).

[49] J. Malnati, �X-Ray: An Eclipse Plug-in for Software Visualization,� Master's

thesis, Lugano University, 2007.

[50] K. De Volder, �JQuery: A generic code browser with a declarative con�guration

language,� in PADL 2006: Proceedings of the 8th International Symposium on

Practical Aspects of Declarative Languages, (Charleston, SC), pp. 88�102, 2006.

[51] D. Poshyvanyk, A. Marcus, and Y. Dong, �JIRiSS - an Eclipse plug-in for Source

Code Exploration,� in ICPC `06: Proceedings of the 14th IEEE International

Conference on Program Comprehension, (Washington, DC, USA), pp. 252�255,

IEEE Computer Society, 2006.

[52] M. Marin, L. Moonen, and A. van Deursen, �FINT: Tool Support for Aspect

Mining,� inWCRE `06: Proceedings of the 13th Working Conference on Reverse

Engineering, (Washington, DC, USA), pp. 299�300, IEEE Computer Society,

2006.

[53] J. Hannemann and G. Kiczales, �Overcoming the Prevalent Decomposition

in Mainframe Code,� in Workshop on Advanced Separation of Concerns, Int'l

Conf. Software Engineering (ICSE), 2001.

http://www.derlien.com

182

[54] P. Tonella and M. Ceccato, �Aspect Mining through the Formal Concept Anal-

ysis of Execution Traces,� in WCRE `04: Proceedings of the 11th Working Con-

ference on Reverse Engineering, (Washington, DC, USA), pp. 112�121, IEEE

Computer Society, 2004.

[55] J. Krinke, �Identifying Similar Code with Program Dependence Graphs,� in

WCRE `01: Proceedings of the Eighth Working Conference on Reverse Engi-

neering (WCRE`01), (Washington, DC, USA), p. 301, IEEE Computer Society,

2001.

[56] T. Eisenbarth, R. Koschke, and D. Simon, �Locating features in source code,�

IEEE Transactions on Software Engineering, vol. 29, no. 3, pp. 210�224, 2003.

[57] M. P. Robillard and G. C. Murphy, �Representing concerns in source code,�

ACM Transactions on Software Engineering Methodology (TOSEM), vol. 16,

no. 1, p. 3, 2007.

[58] D. A. Quist and L. M. Liebrock, �Visualizing compiled executables for mal-

ware analysis,� in The 6th International Symposium on Visualization for Cyber

Security (VizSec), 2009.

[59] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. M. Drucker, and G. G.

Robertson, �Code Thumbnails: Using Spatial Memory to Navigate Source

Code,� in IEEE Symposium on Visual Languages and Human-Centric Com-

puting, (Brighton, UK), pp. 11�18, IEEE Computing Society, 2006.

[60] D. Macdonald, �Zeus: God of DIY Botnets,� FortiGuard Center � Threat

Research and Response, Oct. 2009.

[61] H. Binsalleeh, T. Ormerod, A. Boukhtouta, S. Prosenjit, A. Youssef, M. Deb-

babi, and L. Wang, �On the Analysis of the Zeus Botnet Crimeware Toolkit,�

in 8th Annual Conference on Privacy, Security and Trust (PST), (Ottawa, On-

tario, Canada), 2010.

[62] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,

C. Coleman, F. Adeputra, and J. J. LaViola, Jr., �Code bubbles: rethinking

the user interface paradigm of integrated development environments,� in ICSE

`10: Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering, (New York, NY, USA), pp. 455�464, ACM, 2010.

183

[63] C. Bennett, D. Myers, M.-A. Storey, and D. M. German, �Working with `mon-

ster' traces: Building a scalable, usable, sequence viewer.,� in In Proceedings of

the 3rd International Workshop on Program Comprehension Through Dynamic

Analysis (PCODA), (Vancouver, Canada), pp. 1�5, 2007.

[64] M. McGavin, T. Wright, and S. Marshall, �Visualisations of execution traces

(VET): an interactive plugin-based visualisation tool,� in AUIC `06: Proceed-

ings of the 7th Australasian User interface conference, (Hobart, Australia),

pp. 153�160, 2006.

[65] �Sysersoft.� http://www.sysersoft.com, 2010.

[66] J. Russell and R. Cohn, Ollydbg. Book on Demand, 2012.

[67] �SoftICE.� http://en.wikipedia.org/wiki/SoftICE, 2010.

[68] �Corelabs site.� http://corelabs.coresecurity.com, 2010.

[69] C. Lattner and V. Adve, �LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation,� in CGO `04: Proceedings of the International

Symposium on Code generation and Optimization, (Washington, DC, USA),

p. 75, IEEE Computer Society, 2004.

[70] T. Dullien and S. Porst, �REIL : A platform-independent intermediate rep-

resentation of disassembled code for static code analysis,� In Proceeding of

CanSecWest, 2009.

[71] D. W. Pucsek, �Visualization and analysis of assembly code in an integrated

comprehension environment,� Master's thesis, University of Victoria, 2013.

[72] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, �MoDisco: A generic and

extensible framework for model driven reverse engineering,� in Proceedings of

the IEEE/ACM International Conference on Automated Software Engineering,

ASE `10, (New York, NY, USA), pp. 173�174, ACM, 2010.

[73] J. desRivieres and J. Wiegand, �Eclipse: A platform for integrating development

tools,� IBM Systems Journal, vol. 43, no. 2, pp. 371�383, 2004.

[74] C. Bennett, D. Myers, M.-A. Storey, D. M. German, D. Ouellet, M. Salois,

and P. Charland, �A survey and evaluation of tool features for understanding

http://www.sysersoft.com
http://en.wikipedia.org/wiki/SoftICE
http://corelabs.coresecurity.com

184

reverse-engineered sequence diagrams,� Journal of Software Maintenance and

Evolution: Research and Practice, vol. 20, no. 4, 2008.

[75] R. Harris and R. Warner, The de�nitive guide to SWT and JFace. Apress, 2004.

[76] C. Bennet, �Tool features for understanding large reverse engineered sequence

diagrams,� Master's thesis, University of Victoria, 2008.

[77] Eclipse Development Using the Graphical Editing Framework and the Eclipse

Modeling Framework. Riverton, NJ, USA: IBM Corp., 2004.

[78] A. Clement, A. Colyer, and M. Kersten, �Aspect-oriented programming with

AJDT,� in ECOOP Workshop on Analysis of Aspect-Oriented Software, 2003.

[79] J. Baldwin and Y. Coady, �Adaptive Systems Require Adaptive Support - When

Tools Attack!,� in Proceedings of the Hawaii International Conference on Sys-

tem Sciences (HICSS), p. 10, 2007.

[80] R. Likert, �A Technique for the Measurement of Attitudes,� Archives of Psy-

chology, vol. 22, no. 140, p. 55, 1932.

[81] Norman Sandbox, �Norman Sandbox Whitepaper,� tech. rep., 2003. http:

//www.norman.com/documents/wp_sandbox.pdf.

[82] Sunbelt Software, Inc., �CWSandbox.� http://www.sunbeltsoftware.com/

Malware-Research-Analysis-Tools/Sunbelt-CWSandbox, 2010.

[83] R. Brooks, �Towards a theory of the comprehension of computer programs.,� in

International Journal of Man-Machine Studies, vol. 18, pp. 534�554, 1983.

[84] M. Kersten and G. C. Murphy, �Using task context to improve programmer pro-

ductivity,� in SIGSOFT `06/FSE-14: Proceedings of the 14th ACM SIGSOFT

international symposium on Foundations of software engineering, (New York,

NY, USA), pp. 1�11, ACM, 2006.

[85] K. Erdös and H. M. Sneed, �Partial comprehension of complex programs

(enough to perform maintenance),� in IWPC '98: Proceedings of the 6th In-

ternational Workshop on Program Comprehension, (Washington, DC, USA),

p. 98, IEEE Computer Society, 1998.

http://www.norman.com/documents/wp_sandbox.pdf
http://www.norman.com/documents/wp_sandbox.pdf
http://www.sunbeltsoftware.com/Malware-Research-Analysis-Tools/Sunbelt-CWSandbox
http://www.sunbeltsoftware.com/Malware-Research-Analysis-Tools/Sunbelt-CWSandbox

185

[86] J. Baldwin, P. Sinha, M. Salois, and Y. Coady, �Progressive user interfaces for

regressive analysis: Making tracks with large, low-level systems,� in Proceedings

of the Australasian User Interface Conference (AUIC), (Perth, Australia), 2011.

[87] C. Treude, F. Figueira Filho, M.-A. Storey, and M. Salois, �An exploratory

study of software reverse engineering in a security context,� in 18th Working

Conference on Reverse Engineering (WCRE), pp. 184 �188, Oct. 2011.

[88] J. Baldwin, A. Teh, E. Baniassad, D. van Rooy, and Y. Coady, �Requirements

for comprehension tools to help highly-specialized industrial software groups

and how to elicit these requirements,� In submission to Requirements Engineer-

ing, 2014.

[89] �LimeSurvey: An Open Source survey tool.� http://www.limesurvey.org,

2012.

[90] D. M. Webster and A. W. Kruglanski, �Individual di�erences in need for cog-

nitive closure,� Journal of Personality and Social Psychology, vol. 67, no. 6,

pp. 1049�1062, 1994.

[91] A. Roets and A. van Hiel, �Item selection and validation of a brief, 15-item

version of the need for closure scale,� Personality and Individual Di�erences,

vol. 50, no. 1, pp. 90�94, 2011.

[92] K. A. Ericsson and H. Simon, Protocol analysis: verbal reports as data. Cam-

bridge, MA: MIT press, 1993.

[93] C. Lewis and J. Rieman, Task-Centered User Interface Design:A Practical In-

troduction. 1994.

[94] J. Goguen and C. Linde, �Techniques for requirements elicitation,� in Pro-

ceedings of IEEE International Symposium on Requirements Engineering (RE),

pp. 152 �164, Jan. 1993.

[95] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, �An examination of soft-

ware engineering work practices,� in Proceedings of the Centre for Advanced

Studies Conference (CASCON), IBM Press, 1997.

http://www.limesurvey.org

186

[96] A. L. Delbecq and A. H. van de Ven, �A Group Process Model for Problem

Identi�cation and Program Planning,� Journal Of Applied Behavioral Science

VII, pp. 466 �91, 1971.

[97] M. Diehl and W. Stroebe, �Productivity loss in brainstorming groups: Toward

the solution of a riddle,� Journal of Personality and Social Psychology, vol. 53,

no. 3, pp. 497�509, 1987.

[98] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, �Shared waypoints and social

tagging to support collaboration in software development,� in Proceedings of

the 2006 20th anniversary conference on Computer supported cooperative work,

CSCW `06, (New York, NY, USA), pp. 195�198, ACM, 2006.

[99] C. Collberg, C. Thomborson, and D. Low, �A Taxonomy of Obfuscating Trans-

formations,� Tech. Rep. 148, Department of Computer Sciences, The University

of Auckland, New Zealand, July 1997.

[100] R. F. Bales, Interaction Process Analysis. 1950.

[101] A. Teh, Normative Manipulation as a way of Improving the Performance of

Software Engineering Groups: Three Experiments. PhD thesis, The Australian

National University, 2012.

[102] �First Nations' Stewardship Tools Partnership.� http://web.uvic.ca/fnst/,

2013.

[103] S. Micallef, IDA PLUG-IN WRITING IN C/C++. 1.1 ed., 2009.

[104] �CBT Tape - MVS Freeware.� http://www.cbttape.org, 2010.

[105] A. S. Tanenbaum, �A tutorial on algol 68,� Computing Surveys, vol. 8, 1976.

[106] �Introducing ASMPUT.� http://pic.dhe.ibm.com/infocenter/zos/v1r11/

index.jsp?topic=/com.ibm.zos.r11.asmk200/putintr.htm, 2013.

[107] P. Charland, D. Dessureault, D. Ouellet, and M. Lizotte, �Opening up architec-

tures of software-intensive systems: A �rst prototype implementation,� Techni-

cal Memorandum TM 2006-781, DRDC Valcartier, 2007.

[108] �Plug-In Contest 2011: Hall Of Fame.� http://www.hex-rays.com/contests/

2011/index.shtml, 2012.

http://web.uvic.ca/fnst/
http://www.cbttape.org
http://pic.dhe.ibm.com/infocenter/zos/v1r11/index.jsp?topic=/com.ibm.zos.r11.asmk200/putintr.htm
http://pic.dhe.ibm.com/infocenter/zos/v1r11/index.jsp?topic=/com.ibm.zos.r11.asmk200/putintr.htm
http://www.hex-rays.com/contests/2011/index.shtml
http://www.hex-rays.com/contests/2011/index.shtml

187

[109] J. Baldwin and Y. Coady, �Social security: collaborative documentation for

malware analysis,� in Proceedings of the 12th Annual Conference of the New

Zealand Chapter of the ACM Special Interest Group on Computer-Human In-

teraction, CHINZ `11, (New York, NY, USA), pp. 17�24, ACM, 2011.

[110] J. Russell and R. Cohn, Google Sidewiki. Book on Demand, 2012.

[111] M. Thompson, �Mariposa botnet analysis,� tech. rep., Defence Intelligence,

2010.

[112] D. Sanderson, Programming Google App Engine. 2009.

[113] J. Baldwin and Y. Coady, �AVA: Assembly Visualization and Analysis,� in

Eclipse Demo Camp, (Vancouver, BC, Canada), June 2012.

[114] J. Ryall, D. Myers, and J. Anvik, �TagSEA for IDA.� http://thechiselgroup.

org/2012/07/19/tagsea-for-ida/, 2006.

[115] M. van Emmerik and T. Waddington, �Using a decompiler for real-world source

recovery,� in WCRE `04: Proceedings of the 11th Working Conference on Re-

verse Engineering, (Washington, DC, USA), pp. 27�36, IEEE Computer Soci-

ety, 2004.

[116] �IDA Plugins: Sobek.� http://www.openrce.org/downloads/details/38/

Sobek, 2012.

[117] N. Falliere, �Windows anti-debug reference,� Symantec Connect, September

2007.

[118] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, �Ether: Malware analysis via

hardware virtualization extensions,� in Proceedings of the 15th ACM Conference

on Computer and Communications Security, CCS '08, (New York, NY, USA),

pp. 51�62, ACM, 2008.

[119] S. A. Hofmeyr, S. Forrest, and A. Somayaji, �Intrusion detection using sequences

of system calls,� J. Comput. Secur., vol. 6, no. 3, pp. 151�180, 1998.

[120] M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala, �Mal-

ware detection using assembly and API call sequences,� Journal in Computer

Virology, April 2010.

http://thechiselgroup.org/2012/07/19/tagsea-for-ida/
http://thechiselgroup.org/2012/07/19/tagsea-for-ida/
http://www.openrce.org/downloads/details/38/Sobek
http://www.openrce.org/downloads/details/38/Sobek

188

[121] S. Porst, �Importing MSDN documentation into IDA Pro,� in O�cial Zy-

namics Company Blog, 2010. http://blog.zynamics.com/2010/04/30/

importing-msdn-documentation-into-ida-pro/.

[122] T. Quatrani, Visual modeling with rational Rose and UML. Addison-Wesley

object technology series, Addison-Wesley-Longman, 1998.

[123] J. Nielsen and T. K. Landauer, �A mathematical model of the �nding of usabil-

ity problems,� in Proceedings of the INTERACT '93 and CHI '93 Conference

on Human Factors in Computing Systems, CHI '93, (New York, NY, USA),

pp. 206�213, ACM, 1993.

[124] J. H. Spyridakis and J. R. Fisher, �Usability testing in technical communication:

The application of true experimental designs,� in Technical Communication,

pp. 469�72, 1992.

[125] D. Shasha and M. Wilson, Statistics is Easy! Synthesis lectures on mathematics

and statistics, Morgan & Claypool Publishers, 2008.

[126] R. H. Franke and J. D. Kaul, �The hawthorne experiments: First statistical

interpretation,� American Sociological Review, vol. 43, no. 5, pp. pp. 623�643,

1978.

[127] �Introduction to HLASM,� in SHARE - High Level Assembler Bootcamp,

(Boston), IBM UK, 2013.

[128] �System z Instructions Mnemonic List.� http://www.tachyonsoft.com/

inst390m.htm, 2013.

[129] S. Friese, Qualitative Data Analysis with ATLAS.ti. SAGE Publications, 2011.

[130] J. Wall, �ARM Assembly Language as an Intermediate Representation for Mul-

tiple CISC Assembly Languages,� work term report, University of Victoria,

2009.

http://blog.zynamics.com/2010/04/30/importing-msdn-documentation-into-ida-pro/
http://blog.zynamics.com/2010/04/30/importing-msdn-documentation-into-ida-pro/
http://www.tachyonsoft.com/inst390m.htm
http://www.tachyonsoft.com/inst390m.htm

189

Appendix A

Exploratory Survey Summary

This appendix provides a summary reference for the large exploratory survey in Chap-

ter 3. Table A.1 summarizes the results of the survey for the mainframe group, while

Table A.2 shows the results for the malware analysts. Each top-level row refers to

each section of the survey.

190

Section Topic Result

About the Dev Experience 88% 10+ Years
Participant Most Familiar PL 100% Assembly, 48% REXX, 48% C/C++

Favorite PL 56% Assembly
Favorite Tool 36% Text editor, 32% Debugger

Assembly Writing 4.42/5
Experience Understanding 4.46/5

Most Familiar 80% HLASM
Used For 78% Development, 30% Maintenance, 13% Debugging
Assembly 64% Yes
More 38% Many low-level operations
Di�cult 31% Big picture obscured

25% Knowledge of underlying hardware/OS
More Di�cult 29% C/C++, 12% COBOL, 8% LISP
Most Di�cult 19% Testing, Debugging, Documentation
Task 14% Understanding others' code, 10% Understanding new systems
Most Time-Consuming 25% Testing, 20% Debugging, 20% Understanding others' code
Task 15% Documentation, 10% Understanding new systems

Existing Primary Tool 68% Text editor, 12% HLASM Assembler
Tool Secondary Tool 60% Debugger
Support De�ciencies 38% None

21% Text features (syntax highlighting, syntax checking)
13% Navigation within code

Best Features 31% Data (register/var contents, memory/data �ow)
19% Single step execution
13% Syntax highlighting
13% Trace or dump output

Browsing and Beacons 76% Speci�c instructions, 16% Comments, Macros, Loops, None
Navigation Task-Focused UI 36% No, 32% Yes, 32% Unsure

Zoom By 29% Subroutines, 15% Do not have long modules (N/A)
12% Macros, CSECTs

Additional 33%Follow links (branches, cross-refs, declarations)
Debugging Features Where is a particular subroutine/procedure invoked? 4.44

What are the arguments and results of a function? 4.76
How does control �ow reach a particular location? 4.68
Where is a particular variable set, used or queried? 4.6
Where is a particular variable declared? 3.76
Where is a particular data object accessed? 4.28
What are the inputs and outputs of a module? 4.44

Features Missing 32% Data �ow concerns
Mockup Positive response

Control Flow Static Concerns None
Dynamic Concerns 8% Most executed paths
Forward CF 5.0/7 Useful
Reversed CF 5.08/7 Useful, 90% Useful
Data to Mine 24% Register values/mapping and memory usage (data)

12% Performance, 12% System, subroutine call statistics
Potential Tools IDE Features Syntax Highlighting 3.52

Syntax Checking 3.48
Code Completion 2.56
Search for References 3.96
Go to Declaration 3.88

LegaSee 40% Useful, 12% Not Useful
MapUI 31% Useful
High-Level Split View 28% Not useful

Confusion of using Assembly to develop in the High-Level PL
UML Diagrams 7% state, 7% class
Wish List Pattern recognition

Better macro processor, language and visualization
Better debugging and breakpoints
Better pro�ler to improve performance

Table A.1: Summary of Survey Results for Mainframe Respondents.

191

Section Topic Result

About the Dev Experience 79% 10+ Years
Participant Most Familiar PL 93% C/C++, 67% Java, 47% Assembly, 27% Python

Favorite PL 47% C/C++, 40% Java, 20% Python
Favorite Tool 47% IDA Pro, 40% Eclipse, 33% Visual Studio, 20% Text Editor

Assembly Writing 2.9/5
Experience Understanding 3.5/5

Most Familiar 100% x86
Used For 47% Malware understanding, 33% Program understanding

20% Reverse engineering
Assembly 80% Yes
More 33% Many low-level operations, 20% Big picture obscured
Di�cult 13% Translate to high-level, reliance on conventions
More Di�cult 47% No, 33% Functional PLs, 7% Prolog
Most Di�cult Task 27% Control �ow, 20% Data �ow, 13% Deobfuscation, Decryption
Most Time-Consuming 20% Locate behaviour
Task 13% Control �ow, Data �ow, Deobfuscation, Decryption

Existing Primary Tool 87% IDA Pro
Tool Secondary Tool 33% Hex editors, 27% WinDbg, 20% IDA Pro plugins
Support De�ciencies 20% Lack of integration

13% Instruction assistance, documentation
13% Conversion to high-level

Best Features 20% IDA Pro graph view
13% IDA Pro extensibility, IDA Pro search patterns
13% Inspect and modify heap/registers/stack

Browsing Beacons 27% Function calls (control �ow)
and 27% Data usage, 27% Coding conventions, 27% Function de�nitions
Navigation Task-Focused UI 100% Yes

Zoom By 40% Functions, 20% Modules
Debugging Features Where is a particular subroutine/procedure invoked? 4.80

What are the arguments and results of a function? 4.53
How does control �ow reach a particular location? 4.60
Where is a particular variable set, used or queried? 4.60
Where is a particular variable declared? 3.53
Where is a particular data object accessed? 4.33
What are the inputs and outputs of a module? 4.13

Features Missing Varied (data �ow, trace di�s, memory view, stepping backward, re-
running system with reg/var values, access list to speci�c memory ad-
dresses, simulating execution statically, multi-application debugging,
standard so all tools can communicate)

Mockup Negative response
Control Flow Static Concerns 20% Loops and recursion

Dynamic Concerns 7% Multi-threaded, compare traces, branch frequency
Forward CF 6.38/7 Useful
Reversed CF 6.15/7 Useful, 87% Useful
Data to Mine 47% Call patterns

13% Compare traces, 12% How to reach execution points (jump conds)
Potential Tools IDE Features Syntax Highlighting 4.40

Syntax Checking 3.33
Code Completion 2.93
Search for References 4.73
Go to Declaration 4.60

LegaSee 7% Useful
MapUI 33% Useful, 20% Unsure
High-Level Split View 85% Useful

Already exists in VS Studio, Hex-Rays decompiler plugin
UML Diagrams 33% state, 13% activity, 7% package
Wish List Better integration with other tools

Meta-assembly to push back and forth with other tools
Data �ow, sequence viewer, pattern recognition, documentation, cre-
ating C from ASM to guess what a function is doing, omniscient
debugging

Table A.2: Summary of Survey Results for Malware Respondents.

192

Appendix B

Script Used During the Nominal

Group Session

Time Action Script

0 min

Introduction

SAY Hi, I'm Jennifer Baldwin from the University of Victoria in Canada. For my PhD in

Computer Science, I am exploring how visualization and tool support for assembly

language might be useful. My work is being funded by the Department of Defence

and CA in Canada.

Since you are experts in the area, we really value your experience and exper-

tise in de�ning the issues.

This is Alvin and I'll let him introduce himself.

- ANU

- Degree

- Research Interest

To get started, I'd like to collect the ethics forms that you were given yester-

day.

DO Collect the ethics forms.

SAY This session should take no longer than 2 hours, including a 20 minute break. The

aim is to discuss and critically rank all of the items from the exercise yesterday. If

you come up with new ideas during the session, please add them to your list. Feel

free to be creative.

Does everyone have the blue pages?

First of all, I'd like to go around the table and have everyone introduce them-

selves and tell us about your job. We also know from the survey that your teams are

expertise-centered, so it would be great to hear about that, as well as your interests.

193

10 min

Listing of Ideas

SAY Now to begin the group exercise, we will go around the table and each person will

share one item from their list at a time. At this time, please avoid discussion or

talking out of turn.

After all of the items are listed, we will have a discussion to clarify the items.

If you have any new ideas then feel free to add them to your sheet. If you want to

skip a turn, that is also �ne.

DO Record word for word what each person says on the power point slide.

30 min

Discussion of

Ideas

SAY We will now have a 30 minute discussion on all the ideas generated.

Now is the time to ask for clari�cation or elaboration on an idea, or dispute

or defend an item.

You are also welcome to suggest new items during this time, but no items

can be eliminated.

We'll go through them item by item.

DO Announce each item on the list and ask what it means, or how people feel about it.

Record any new ideas on the power point slide.

60 min

Ranking to Se-

lect the �Top-

Ten� Ideas

SAY Now if everyone could take out their yellow sheet for preliminary ranking.

You can see there are 10 spaces to be �lled in. You can select 10 items that

are the most important for you from all of the options. Then assign them a rank

which is a numbering between 1 and 10, where 10 is the most important.

Once you are �nished, please turn it face down on the table and then you are

free to take a break for about 20 minutes.

70 min

Break

DO Go around the table and transcribe and sum up the points from the ranking sheets

onto the power point slides. Then reorder them on the slide based on the greatest

number of points.

Collect everyone from after their break.

90 min

Discussion of

Vote

SAY We have reordered the items according to rank and you can see the score for them.

We have also highlighted the top-ten.

We will now have a free-for-all discussion about the nature and content of the

top-ten.

We would also like to hear how you feel about items that should have been

included or excluded from this list.

194

110 min

Re-Ranking

and Rating

Revised �Top-

Ten� Items

SAY Now if everyone could take out their green sheet for �nal ranking. Here you will

again list the top ten items that you think are the most important.

This may be the same ten, or feel free to modify which items are in your top

ten.

The ranking here is di�erent in that 100 points will be given to the most im-

portant item. Every other item can have a value between 0 and 100. Two items can

have the same ranking.

Once you are �nished, please hand in your sheets to me face down, and then

we're all done!

DO Collect the green sheets from everyone and tally up the �nal scores based on the 0

to 100 ranking.

END CASE STUDY AT (START + 120 MIN)

195

Appendix C

Activity-Based Elicitation Results

C.1 First Session at the Mainframe Group

Requirement

Category

Issue Description

Browsing and

Navigation

XREF works on only 8 charac-

ter long names

When there are more, search must be used, which only �nds

them one at a time in the code.

Bookmarking lines of code Have to create names �a�, �b�. If the name already exists, it is

just overwritten.

Lack of navigation Need to scroll through many screens of code to look for the

right spot.

Control Flow
Hard to �nd main task

Tools would need to support

multi-threading

Debugging

Timing issues were tricky Timing dumps not useful because they are too complicated.

Couldn't work out what was

causing the cancel

Need some way to trap the event.

XREF plus debugger to �nd

the correct place to debug

Step through debugging might be helpful.

De-obfuscation Redundant code makes the

code confusing to read

Statements such as branching to the next address. Unneces-

sary since that code is next to be executed.

Documentation

Look up vendor error code in

CA documentation

Not indexable online so need to download CA docs to search

them. CA error code is then used to look up IBM Manual

error code. Codes are OS version dependent.

User prints o� whole modules The printo� is portable and more comfortable to look at (eas-

ier on the eyes). There are also sticky notes and writing on the

pages. These written notes include variable names, addresses

and error codes.

The dump was scrolling o� the

page

There were so many errors, it did not �t. Need a way to

condense it.

Source Control Object module replacement Overwrites whole module, have to be careful not to overwrite

a change. Have to check prerequisite chain, and which �xes

supersede others.

196

C.2 Second Session at the Mainframe Group

Requirement

Category

Issue Description

Browsing and

Navigation

*temp is used as a TODO Shows up only when you dig into the module you're

interested in. Used pdsman to scan and �nd. Scan

doesn't show the active module however.

Switching terminal screens constantly Need to scroll through many screens of code to look for

the right spot. Kept many terminal screens open. Was

hard to keep track of which showed the right code.

Build

Register usage Waits for compile error to say that the register is in

use.

? at the start of lines To ensure you get errors, but do no want to deal with

the actual errors (stub error).

Scanning software for changes he

knows he has to make

Otherwise waits for compile errors. Compile errors

would be better if they occurred during editing. Con-

text aware correction suggestions (i.e. doesn't exist,

did you mean...?). Calls out to code that does not

exist anymore.

Debugging No breakpoints in XDC Puts code in to make it fail.

Documentation IBM Principles of Hardware Manual Useful to double check some things.

References Code module - fan in, fan out Wanted to know what module was being called depen-

dent on the code and what code it depended on.

Source Editing

Tedious refactoring of modules Splitting larger modules into smaller ones to use as

templates. Templates are not useful, not maintained

that much, but useful for people starting from scratch.

Instead he uses something else he's working on, copies

it and butchers it (side by side editing).

Forgot to save the �le No alert was given.

Code shortcuts Stu� he does more than once.

197

Appendix D

Installing the AVA Framework

This appendix outlines how to install AVA for personal use. If you wish to further

extend AVA, then please follow the development environment setup instructions in-

stead.

D.1 Installing AVA

The binaries and source code for the AVA framework can be retrieved from GitHub

at https://github.com/jebaldwin/AVA. Once the binaries have been downloaded,

please copy the contents of the plugins folder to the plugins folder of the IDA Pro

installation. You should have SequenceDiagramPlugin.plw under the plugins folder.

The java folder with its contents should also reside in the same folder, for example

C:/IDA/plugins/java/ava/ava.exe.

You may now run AVA by selecting �AVA Framework� under the plugins menu

in IDA Pro. AVA will then launch and the connection with IDA Pro will be created

automatically. If this plugin is selected from another running IDA Pro then it will

connect with the single instance of AVA and not launch another.

D.2 Setting up the Development Environment

In order to develop for AVA, you will need to download the latest version of Eclipse

for RCP and RAP developers. You will also need Visual C++ installed. Visual

C++ 2008 Express Edition is recommended. AVA uses the Diver framework to cre-

ate sequence diagrams, with minimal changes. The Diver framework with modi�-

https://github.com/jebaldwin/AVA

198

cations is available at https://github.com/jebaldwin/Diver. You will need the

org.eclipse.zest.custom.sequence project to compile AVA.

There are 4 source folders on the AVA GitHub repository (https://github.com/

jebaldwin/AVA). These are:

IDAPlugin contains the code for the IDA Pro plugin

RCPApp contains the Eclipse code for the standalone RCP executable application

SocketModule contains the code for socket communication between the IDA Pro

(C++) and Eclipse (Java) plugins

org.eclipse.zest.custom.sequence.assembly contains the Eclipse plugin code for

the Assembly extension to Diver

In order to run the code, you will need to have two path variables set up as follows:

IDASDK = IDA Pro SDK directory

IDAPATH = IDA Pro installation directory

You will also need to have Java installed and included on your path.

When debugging or running the application from Visual Studio, you will see a

message asking �Please specify the name of the executable �le to be used for the

debug session�. Close Visual Studio and a vcproj �le containing your computer and

user name will have been created. The following lines in both the debug and release

section must be changed to:

Command=''"$(IDAPATH)\idag.exe"''

WorkingDirectory=''"$(IDAPATH)\plugins"''

When debugging or running from Visual Studio, the SequenceDiagramPlugin.plw

�le will be automatically created and placed in the IDA Pro plugin directory. If you

make changes to the Eclipse plugins, you can re-export the ava.exe �le and place it

within the java/ava folder under the IDA Pro plugins folder.

For easier debugging of the Eclipse plugin, you can establish the IDA Pro link

without launching the executable. To do so, you must add -p:40010 to the Eclipse

program arguments. This parameter is normally sent to the Java communication

module when starting it from the IDA pro plugin. Next comment out the call to

startUI() in the onRun function in IDAModule.cpp (line 249 at time of writing).

https://github.com/jebaldwin/Diver
https://github.com/jebaldwin/AVA
https://github.com/jebaldwin/AVA

199

Finally there may be some dependencies that will need to be installed in your

development Eclipse workbench to use all features of AVA. You will de�nitely need

the following:

Zest The Eclipse Visualization Toolkit (http://www.eclipse.org/gef/zest/)

AJDT AspectJ Development Tools (http://www.eclipse.org/ajdt/)

http://www.eclipse.org/gef/zest/
http://www.eclipse.org/ajdt/

200

Appendix E

Running the Mariposa Botnet with

IDA Pro and Tracks

For more information on the Mariposa Botnet, please see Section 7.3.3. Additionally,

[6] and [111] provide extensive analysis.

E.1 Environment Setup

The �rst step is to install the necessary tools. You will need to install Tracks as

outlined in Appendix D.

You will also need to install the IDAStealth plugin (available at http://newgre.

net/idastealth). Simply download the plugin to the plugins directory of your IDA

Pro installation. Once installed, we will need to set up the correct preferences. To

do, launch IDA Pro with any executable, then go to Edit -> Plugins -> IDA Stealth.

The plugins menu is not visible unless an executable is loaded. You should enable

everything on the two tabs �Stealth Techniques (1)� and �Stealth Techniques (2)�. Set

GetTickCount to 10. Your settings should look like Figure E.1.

Next, themost important step is to set a system restore point in Windows. This

guide will provide information and address that will work while running Mariposa in

Windows XP. These instructions will not work as written in other variants of Windows

and will need to be altered accordingly. The restore point will allow us to revert to

an uninfected state of the operating system. Set the system restore point by going

to Start -> All Programs -> Accessories -> System Tools -> System Restore. Then

click to create a restore point, go to next, then enter a restore point description and

http://newgre.net/idastealth
http://newgre.net/idastealth

201

Figure E.1: IDAStealth Settings.

create.

Now that the restore point is created, you will need to temporarily disable your

anti-virus protection. For some anti-virus tools this means uninstalling them. Others

have the ability to momentarily suspend them.

E.2 Running Mariposa with Tracks

This guide will walk you through running Mariposa to create a dynamic control �ow

diagram of its behaviour with Tracks. This guide was written for Windows XP and

used Butter�y_2009-08-26.exe for the botnet version.

202

E.2.1 IDA Pro Hot Keys

This is a list of important hot keys to be aware of, which we will use in our instructions.

As a note, if you do not need to trace everything, then uncheck the appropriate tracing

options in IDA Pro, as they will interfere with anti-debugging techniques.

F4 - run to cursor (put cursor on address listed and press F4)

F7 - step into

F8 - step over

F9 - continue (must have breakpoint set so you do not infect yourself)

Store Funcs - Memory Dump

Esc - goes back an instruction

G - Jump to address

Shift F2 - Brings up command window so you can �Analyze Area�

Ctrl E - set entry point

Ctrl F7 - step out

X - look for cross references

R - rename function

E.2.2 Running Mariposa

Before we begin analysis, DO NOT FORGET to create a System Restore Point!

Once the environment setup is completed, we will load the mariposa executable

into IDA Pro and launch Tracks by selecting AVA Framework from the plugins menu.

Once AVA is launched, a project called IDAPlugin will be created automatically and

the static control �ow �le generated and placed inside. However there are no functions

within IDA Pro since the code is packed, so this �le will not be useful for us. Instead,

we need to create a dynamic control �ow diagram.

To do so, we will right click the IDAPlugin project, and go to New -> Other ->

Assembly -> Debugging Diagram. The diagram will open with the user as the root

of the diagram. Next we need to check are tracing options in IDA Pro. If we are not

tracing then no calls will be sent to Tracks unless they are user-initiated (stepped

through). If we experience an error, then toggle the following in IDA Pro:

Debugger -> Tracing -> Function Tracing

Debugger -> Tracing -> Instruction Tracing

203

First Decryption Layer and Obfuscation

We will need to create extra breakpoints after loops because Tracks automatically

stops debugging for performance reasons once the loop/cycle count preference has

been reached. However to resume tracing, Tracks needs to stop at another breakpoint

to re-enable it. Create breakpoints at 41D469 and 41D482.

Next run to 41D469. Since this is the �rst breakpoint, either press F9 or start

debugging to do so. There is a big cycle for decryption at loc_41D476 between the

�rst two breakpoints. F7 or F9 to 41D482. A big loop for obfuscation exists at loc_-

133FFA6, right before loc_41D047. F7 until 41D047. To make life easier, F4 over

loop at loc_13FFA6.

Start of Anti-Debugging Traps

We need to enter a command by typing Shift F2. In the console window, enter -

�AnalyzeArea(0x41D042, 0x41DDDD);� (without the quotes). Next we need to pass

over over the big loop located at loc_41D057. This loop is used for obfuscation

purposes. We do so by pressing F7 once, and then using F4 to get to 41D100. At this

point, we may get an exception if this is the time running Mariposa. Select to pass

the exception to the application. Then press F7 instead of F4. This HideDebugger.dll

�le comes from the IDA Stealth plugin. Now we use F4 to get to 41D127. There

exists a big cycle for decryption at loc_41D137 between loc_41D14C.

Use G to jump to 41D2E0. Then press F4 to run to this address, followed by F7

to execute an instruction. Then press F8 to step over an instruction. At this point

the second line should be 4100A7. Press F7.

Use G to jump to 410034. Then press F4 followed by F7.

Start of Second, Third and Fourth Decryption Layers

Now we are at loc_401000, which is the �rst location of data in this range, and goes

to 0x415FB3.

Use G to jump to 40104B. Then press F4 followed by F7. We create a function

here by pressing �p�. This function will become sub_1320A0.

Use G to jump to 132323. Then press F4 followed by F7.

204

Code Injection

We create a function here at 1332D0 by pressing �p�.

Use G to jump to 1334C0. Then press F4. The preparation for injection starts

here at loc_1334C0. We therefore need to use F8 through here so we do not go into

the APIs themselves.

Use G to jump to 135830. Press �p�. Ensure that Tracks is not open at this stage

otherwise we will get kicked out. Press F4. Use F7 to step through here, but use F8

over system calls so we do not enter into them.

Finding the process that Mariposa wants to inject into is done here at sub_135830.

As a reminder, Mariposa injects into the �explorer.exe� process.

Use G to jump to G to 1357D0. Then press �p� and F4. The process of injection

starts at loc_1357D0.

Use G to jump to 419e32. Press F4. You will now see �explorer.exe� on the screen.

Go to View -> Open Subviews -> Hex dump.

At this point we want to prevent Mariposa from injecting into explorer.exe because

the machine grinds to a halt, and further analysis is impossible. The process we

change it to has to be a system process and has to have a name that is the same

length. We have tried a few and found that winlogon.exe works best even though it

requires restarting the machine. We have also tried uphclean.exe, mspdbsrv.exe and

tfswctrl.exe which all have not worked.

Click on explorer.exe in the IDA Pro hex dump view, and press F2 to edit. Type

in winlogon to replace explorer. Press F2 to commit the change. Then press Esc and

Esc again to back out.

Use G to jump to 133765. Press F4 to run to here.

Now you will need to write down the address located in the stack view since it

changes each time Mariposa runs. It should look like _ _ _ 0000 (EAX).

Use G to jump to 133CCF and then press F4.

Injected Code

In order to see the infected code running, we need to open another IDA Pro instance

and press �Go� to work on our own.

In IDA Pro, go to Debugger -> Attach -> to local windows debugger. Now we

pick the process we injected into. In our case, we pick winlogon.exe and then OK.

Use G to _ _ _ 1A20. These three empty spaces are the numbers from the

205

address that we wrote down in the previous step. This is the address at where the

process will be injected.

Type Shift F2 to enter a command. Type �AnalyzeArea(0x_ _ _ 0000, 0x_ _-

_ edfd);� in the console window (without quotes).

Use G to _ _ _1A20 (address as above), then press �p� to create a function. Set

a breakpoint here at _ _ _ 1A20.

Then go to the Threads View -> Select All -> Right Click -> Suspend.

Now we go back to the other IDA Pro instance which is running Mariposa, and

press F8 to create a remote thread. Then we go back to the IDA Pro instance running

the process to be injected, and press F7 to see infected functionality.

Server communication starts one call before loc_1429BE9. Injecting the registry

starts three API calls before loc_1431615, and injected functionality starts two API

calls before loc_1431A9D.

After Analysis

Once our analysis has been complete, it is important that we reset our system. First

close IDA Pro and do not pack the database, and do not save.

The most important step now is to reset windows. We do so by going to Start

-> All Programs -> Accessories -> System Tools -> System Restore. Then select to

restore my computer to an earlier time -> Next. Choose the date and description

from the restore point created at the beginning and press next and con�rm. Your

system will restore and restart.

To con�rm that we are not infected, we will go to Start -> Run -> and then type

regedit and press ok. Select My Computer. Search by pressing Ctrl-f and typing

�Taskman�, check Values and Match Whole String. If found, delete it and wait a few

seconds. Then press F5 to refresh. If it shows up again, then the machine is infected.

206

Appendix F

Ethics Approval

This appendix provides the renewal approval certi�cate for ethics protocol number

10-241 from the University of Victoria. Ethics was originally approved on June 22,

2010.

207

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Problem Space
	Stakeholders
	Background of HLASM and x86
	Challenges in Assembly Code Comprehension

	Dissertation Overview
	Agenda

	Related Work
	Social Psychology Background
	Normative Manipulation
	Need-for-Closure (NFC) Scale
	Individualism-Collectivism (INDCOL) Scale
	Group Decision-Making Techniques

	Related Work in Tool Support
	Assembly Specific Tools
	Software Exploration Tools
	Concern Mining Tools
	Control Flow Tools
	Runtime Tools
	Intermediate Common Formats

	Implementation Technologies
	Diver: The Sequence Explorer for Eclipse
	GEF: Graphical Editing Framework
	The AJDT Visualiser

	Chapter Summary

	Exploratory Interviews and Surveys
	Interviews with Mainframe Developers
	First Engineer
	Second and Third Engineer
	Fourth Engineer
	Fifth Engineer
	Summary of Interviews

	Exploratory Survey
	Results: About the Participants
	Results: Assembly Experience
	Results: Current Tools
	Results: Browsing and Navigation
	Results: Debugging
	Results: Control Flow
	Results: Potential Tools and Wish List
	Survey Summary

	Collaboration and Documentation for Malware
	Results: Collaboration
	Results: Documentation
	Results: Summary

	Chapter Summary

	Requirements Elicitation
	Elicitation Method
	Elicitation Setting
	User Profiles
	Activity-Based Protocol Elicitation
	Priming and Requirements Elicitation Exercise
	Nominal Group Session
	Exit Process

	Results of Applied Techniques
	User Profiles
	Activity-Based Protocol Observations
	Nominal Group Session

	Requirements Elicited
	Mainframe Group: Requirements Elicited
	Mainframe Group: Discussion of Ranking Results
	Mainframe Group: Requirement Areas and Current Work
	Malware Group: Requirements Elicited
	Malware Group: Discussion of Ranking Results
	Malware Group: Requirement Areas and Current Work

	Analysis of Elicitation
	User Profile Survey
	Exit Survey
	Analysis of Interaction
	Applicability to Other Groups
	Results

	Chapter Summary

	Comparison Between Groups
	Comparison of Survey Results
	About the Participants
	Assembly Experience
	Current Tools
	Browsing and Navigation
	Debugging
	Control Flow
	Potential Tools
	Comparison Summary

	Comparison of Requirements Elicited
	Comparison Summary

	Ships Passing in the Night?
	Chapter Summary

	Design and Implementation
	AVA Framework Overview
	AVA User-Interface (Eclipse)
	IDA Pro Plugin
	Communication Mechanism Module

	Obtaining Data
	Data for Mainframe (HLASM)
	Data for Malware (x86)

	Tracks: Sequence Diagrams for Assembly
	Static View
	Dynamic Views
	Navigation History View
	MSDN Documentation
	Comment Threads within Tracks

	LegaSee: Visualiser Extension for Mainframe Assembly
	REwind: State Diagram Debugging Tool
	Additional Contributions
	Multiple Executables
	Comment Support
	Tagging for IDA Pro
	Data (Including Data Flow)

	Chapter Summary

	Assessment of the AVA Project Lifecycle
	Challenges and Limitations
	Mainframe
	Malware

	AVA: One Framework (Not to Rule Them All)
	LegaSee
	REwind

	Tracks: One Tool to Rule Them All
	Mainframe: Static Control Flow for Algol
	Mainframe: Log File Visualization
	Malware: Mariposa Botnet Case Study
	Malware: Collaboration and Documentation in Tracks

	Phase II and Phase III Limitations and Threats to Validity
	Limitations
	External Validity
	Internal Validity

	The Great Language Divide: Nature or Nurture?
	Chapter Summary

	Future Research Directions and Conclusions
	Future Research Directions
	Analysis of Requirements Elicitation Data
	Tools to Satisfy Elicited Requirements
	Integration of AVA with Other Systems
	User Studies of Proof of Concept Tools

	Conclusions

	Bibliography
	Exploratory Survey Summary
	Script Used During the Nominal Group Session
	Activity-Based Elicitation Results
	First Session at the Mainframe Group
	Second Session at the Mainframe Group

	Installing the AVA Framework
	Installing AVA
	Setting up the Development Environment

	Running the Mariposa Botnet with IDA Pro and Tracks
	Environment Setup
	Running Mariposa with Tracks
	IDA Pro Hot Keys
	Running Mariposa

	Ethics Approval

