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ABSTRACT
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Outside Member

For decades, Remotely Operated underwater Vehicles (ROVs) have been helping mankind
explore the depths of the ocean, and build and maintain infrastructure on the seafloor. Since
the first ROV was developed in 1953, the number of uses for these vehicles has exploded.
They are now an essential part of maintaining the world's energy resources, collecting sci-
entific data about our oceans, and performing underwater search and recovery.

This research will discuss guidance, navigation, and control algorithms for use as a
low-level position controller for ROVs, which will enable semi-autonomous behaviour for
the vehicle. Semi-autonomous behaviour is when the pilot issues high-level position com-
mands and the low-level controller handles station keeping and maneuvering between the
commanded positions. In this configuration, the low level controller compensates for the
environmental disturbances and unknown dynamics (such as current and tether dynamics),
allowing the pilot to focus on other aspects of the task (such as manipulator control).

In this work, the design, implementation, and testing of a complete guidance, navigation,
and control system is presented. A Saab Sea-Eye Falcon ROV is augmented with a suite of
navigation instruments. The augmented vehicle is characterized and a dynamic model is de-
veloped. This model is used in an extended Kalman filter, which will be shown to produce
a position estimate for the vehicle with an error of less than±6 cm. The navigation system
is combined with a guidance system and adaptive controller to enable semi-autonomous
behaviour. With this suite of software, the ROV can operate semi-autonomously. The
resulting ROV system is a research platform, from which the underwater community can
continue research into algorithms for optimal control, remote operations, and other perform-
ance enhancing technologies.
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Chapter 1

Introduction

(a) (b)

Figure 1.1: Modern ROVs: a) Observation Class ROV - the Saab SeaEye Falcon b) Work
Class ROV - ROPOS

For decades, Remotely Operated underwater Vehicles (ROVs) have been helping man-

kind explore the depths of the ocean, and build and maintain infrastructure on the seafloor.

The first ROV, an archeological vehicle named POODLE, was developed by Dimitri Re-

bikoff in 1953. The US Navy soon recognized the utility of the ROV and begun develop-

ment on a vehicle of their own. They wanted to use the vehicle to recover lost torpedoes

from the sea floor. By the 1960s, the Navy had a fully operational vehicle called the Cable-
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Controlled Underwater Research Vehicle (CURV). The ROV soon assumed a vital role in

the military, completing important missions, such as retrieving a lost atomic bomb and res-

cuing stranded crew members in a damaged manned submersible [13]. Over the next few

decades, advances in underwater engineering made ROVs more reliable and commercially

viable. By the 1980s, ROV technology was being extensively used by offshore industries

to work at otherwise unattainable depths [71]. ROVs, like those depicted in Figure 1.1,

are now being used for underwater applications such as: mining, logging, environmental

sampling, welding, and drilling.

There are three main classes of ROV:

Observation Class: The primary purpose of these vehicles is to deliver a camera (or other

sensor) to a site of interest and relay video (or other sensor data) back to the surface

support team. They are typically smaller vehicles with limited ability to manipulate

objects in their environment. This class of vehicle can often be deployed with a small

crew from a vessel of opportunity.

Work Class: These are larger vehicles, specifically designed to carry heavy duty under-

water equipment and tooling. These vehicles are typically very large and have an

abundance of power to support hydraulic tools and manipulators. This class of ve-

hicle normally has an extensive top-side support system and requires a large ship to

facilitate operations.

Special Purpose: These vehicles come in all configurations, ranging from small vehicles

built for academic purposes to large vehicles built for highly specialized tasks, such

as subsea cable burial.

ROV operations require a highly skilled team. At all times the team must be:

1. monitoring the position of the boat, tether, and vehicle;
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2. adjusting flight plans for changing wind, tides, and current;

3. managing the amount of tether that is in the water;

4. piloting the boat;

5. piloting the ROV;

6. operating manipulators or ROV mounted tooling; and

7. collecting mission data.

Small observation class vehicles require upward of three people for a typical mission; more

sophisticated work class vehicles require a full crew for the support ship, plus a 4-6 person

ROV team, including: an ROV pilot, a navigator, one or more manipulator operators, and

one ormoremission specialists. Since ROVoperations often run 24 hours a day (two shifts),

when going to sea, two crews of people will be required to keep the vehicle working.

As new applications for ROVs emerge, the demand for ROVs continues to increase.

According to a summary of the World ROV Report 2013− 20171, the annual expenditures

by the oil and gas industry on ROV operations will likely be $9.7 billion for this five-year

period, an 80% increase over expenditures during the previous five year period. Shortages

in skilled operators have caused the day rates for ROV operational personnel to increase, a

trend that will only be exacerbated by the projected growth in the industry.

1.1 Research Motivation

Given the continued growth in the ROV industry and the work load currently experienced

by ROV crews, there is an imminent need for new technologies that can simplify ROV

operations and automate low level vehicle control; in other words, enable semi-autonomous
1The World ROV Report is an industry market report published yearly by Douglas-Westwood
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capabilities. In a semi-autonomous configuration, the human pilot is given a supervisory

role, providing high-level position commands instead of directly controlling the vehicle's

propulsion system. Therefore, it is the controller that corrects for forces and moments due

to currents, tether drag, and the non-linear vehicle dynamics, thereby allowing the pilot to

focus on the work being performed. In the marine industry, the systems that enable this

type of semi-autonomous behaviour are called Dynamic Positioning (DP) systems2.

The semi-autonomous approach has the following benefits:

Reduction in Pilot Work Load: The pilot assumes a high-level supervisory role, as com-

pared to the traditional role of directly controlling the thrusters via a joystick. This

enables the following:

• A pilot can ignore low-level requirements, such as holding position against a

current, and can focus on the duties required to complete the task (i.e. manipu-

lator control).

• A low-level controller can enable vehicle behaviours that a typical ROV pilot

cannot perform, for example, it could perform precise manoeuvres in high cur-

rents, where human pilots cannot react fast enough to disturbances.

Remote Piloting with High Latency: Latency3, or time delays, injected into the control

loop can limit the bandwidth or performance of a controller. If the pilot is controlling

the thrusters directly, then he/she must respond to environmental disturbances. Con-

sequently, the amount of latency that can exist in the control loop (pilot to vehicle and
2The term "Dynamic Positioning (DP)" system was coined in reference to modern autopilot systems for

ships. On a ship with a DP system, the helmsman can control the position and orientation of the ship with
a joystick (or similar input device) and a low-level autopilot manages the ships primary propulsion and bow
thrusters to achieve the desired position and heading. The low-level autopilot is designed to maintain station
in wind, waves, and current. Many modern ships are equipped with this system including Coast Guard ships,
cable laying ships, ROV support ships, survey ships, tankers, etc.

3In control theory, latency refers to a time delay inserted into the control loop. This has a destabilizing
effect on the closed-loop system. Franklin et al. provide a complete description of latency and its effects on
system dynamics in [22].
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back) has an upper bound that depends on the dynamics of the environment, and is

typically quite small. By locating a low-level controller on the vehicle, the system la-

tency is reduced, as the high latency part of the communication loop is removed. This

allow the pilot to be further removed from the ROV, enabling pilots to remotely con-

trol the vehicle over high-latency jittery mediums, such as satellite communication

or the Internet.

Optimal Control Techniques: Adding a low-level controller allows use of optimal control

techniques in the controller design. Human pilots are not very good at optimizing the

thrust vector when trying to compensate for a current or tether drag. However, a

low-level controller could be designed to minimize thruster power. This would allow

the vehicle to operate in heavier currents and would minimize the vehicle's power

consumption.

In summary, the motivation for this research is to develop a low-level control scheme

that can enable ROVs to be used in a wider variety of applications in a more efficient and

effective manner; these are not new concepts. More than 20 years ago, as part of an educa-

tional program, the JASON ROV was operated remotely over a satellite link4 [77]. More

recently, in [61], Soylu investigated the concept of a unified ROV-manipulator (ROVM)

system. With an ROVM system, the pilot flies the end effector of the manipulator, and

the pose of the vehicle and manipulator arm are determined and maintained through an au-

tonomous control system. In the last few years, industry has also come onboard: several

sonar based DP systems for workclass ROVs have come on the market [66, 1] and, most re-

cently, SeaByte has developed a video-based DP system for observation class ROVs called

the CoPilot [53]. It is clear that semi-autonomous ROV capabilities are not just an interest-

ing idea, but, given the limited resources available, there is a need for these technologies to

increase the productivity of ROV operations.
4In the JASON project, a round trip latency of nearly one second was observed and managed.



6

1.2 Thesis Overview

This thesis is divided into 7 chapters, with Chapter 1 being this introduction. Chapter 2

describes the research facilities that were used to conduct the research contained herein, in-

cluding the Falcon ROV, and the modifications that were made to the vehicle to support this

research. Chapter 3 starts out by describing a theoretical dynamic model for the vehicle and

thrusters, and concludes by presenting experimentally derivedmodel parameters. Chapter 4

presents the design and implementation of an extended Kalman filter, which implements

the dynamic model that is described in Chapter 3. Chapter 4 also includes a discussion

about sensor characterization and modelling. Chapter 5 discusses the implementation of a

Lyapunov based guidance algorithm that is used to guide the vehicle between waypoints.

Chapter 6 presents a full 6 degree of freedom simulation of the vehicle, using the model

described in Chapter 3; then continues, by using the simulation to evaluate two different

control strategies. The two controllers are used in conjunction with the navigation system

from Chapter 4 and the guidance system from Chapter 5. The conclusions and future work

are then summarized in Chapter 7. The beginning of each chapter contains a literature re-

view and background information relevant to the contents.

There are 6 appendices to this document. Appendix A describes the mathematical no-

tation used in this document. Appendix B provides a detailed description of modifications

that were made to the ROV to support this research. Appendix C describes the extended

Kalman filter that was used to process the motion capture camera data from the tracking

system described in Section 2.2.1. Appendix D describes Euler angles, quaternions, and

the associated math. Appendix E presents the derivation of the Jacobians for the extended

Kalman filter presented in Chapter 4, as well as the initial values for the extended Kalman

filter matrices. Lastly, Appendix F is an in-depth discussion on the types of navigation

sensors that are available, as well as their advantages and disadvantages.



7

1.3 Contributions

The primary contributions from this work include:

Vehicle Design (Chapter 2 and Appendix B): This work describes the design and imple-

mentation of a novel vehicle architecture that enables low level dynamic control to

be performed on the vehicle, allowing the operator to command position and attitude,

instead of controlling the thrusters directly and having to compensate for environ-

mental disturbances. This method allows the pilot to effectively control the vehicle

from a remote location.

System Identification (Chapter 3): A 6 DOFmodel of the Saab SeaEye Falcon ROV and

an associated navigation sled was developed that improves upon previously available

models by adding: a physics-based thrust model, a pitch and roll model that include

cross coupling, and a realistic estimate of the rigid body inertia.

Navigation (Chapter 4): A novel method of calibrating and characterising the onboard

sensors using a camera based motion capture system is described. This method al-

lowed all of the sensors to be accurately located and oriented with respect to the

vehicle reference frame and for the compass to be calibrated with respect to the nav-

igation reference frame. The calibrated sensors were used to implement an extended

Kalman filter with a position error of less than 5 cm.

Simulation (Chapter 6): A high fidelity Matlab simulation has been developed that in-

cludes the aforementioned vehicle model, as well as sensor models, which include

discretization, noise, and latency.

Control (Chapter 6): A neural network-based control system, previously used on heli-

copters, has been adapted and implemented. This control system is shown to increase
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tracking performance in the face of external disturbances and modelling errors, such

as those errors created by the ROV tether.
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Chapter 2

Research Facilities and Experimental

Setup

Figure 2.1: Saab Sea Eye Falcon ROV operated by the OTL

The work presented here is demonstrated experimentally using a Saab SeaEye Falcon

ROV; an observation class ROV, shown in it's nominal configuration in Figure 2.1. The

data collected in this work was primarily obtained through the use of UVic's shallow water

acoustic test facility (SWAT) located at Van Isle Marina and a small test tank located at
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UVic's Marine Technology Centre, both located in Sidney, B.C. The SWAT facility is a

floating laboratory that has been developed and instrumented to facilitate research on ROVs

and to enable the collection of dynamic ROV data. To this end, the SWAT is equipped with

a short baseline (SBL) underwater acoustic positioning system which delivers positioning

data for the ROV with centimetre level accuracy at approximately 1 Hz. The SWAT also

has a high speed motion capture (MOCAP) camera for tracking the motion of objects above

the surface. The MOCAP operates at more than 100 Hz and can track objects within it's

field of view at millimetre level accuracy. The two tracking systems are described in more

detail in Section 2.2.1.

2.1 Marine Technology Centre

Figure 2.2: The ROV shown inside of the MTC test tank

The Marine Technology Centre (MTC) is industrial warehouse space managed by UVic

and utilized by the ocean technology community. At the MTC, the OTL has a small bay

that was used for development, as well as assembling and testing the Falcon ROV used in
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this research. The bay contains a small salt water test tank, Figure 2.2, large enough for

the Falcon. The salinity of the water in the test tank was varied such that the density of the

water in the tank closely matched the density of the water at the SWAT facility. Since the

water at the two locations are different temperatures, the salinity of the two locations will

not be the same. This allows the tank to be used for ballasting and taking measurements, as

well as troubleshooting groundfaults and verifying the sensor configurations.

2.2 Shallow Water Acoustic Test Facility (SWAT)

The SWAT facility, shown in Figure 2.3-a, is a fully instrumented floating laboratory for

underwater vehicle research. The facility is a converted boathouse moored at the Van Isle

Marina in Sidney, B.C.; there is a work deck, walkways, and control room for protecting

electronics. The boathouse is a better environment for acoustic instrumentation than a nor-

mal test tank or pool, because it doesn't have any sides. In a pool or test tank, the acoustic

signals bounce off the bottom and walls causing multipath problems, which can degrade

the accuracy of the measurements. The SWAT floats on the water's surface, attached to a

dock, so the sides underneath are open to the ocean, mitigating multipath issues by allowing

acoustic signals to escape into the ocean. Depending on the tide, the water at the SWAT is

between 3 and 5 m deep, and the primary test area is approximately 5.25 m long and 3 m

wide. The opening is used to launch and recover the ROV and for making measurements,

however, once underwater, the ROV can venture outside of these boundaries.

2.2.1 Tracking Systems

The SWAT has two tracking systems for measuring the position of objects inside the testing

arena: the VZ3000 VisualEyez surfaced-based MOCAP system from PhoeniX Technolo-

gies Incorporated, and a SouthStar SBL system fromDesert Star, for tracking motion under-



12

(a)

(b)

Figure 2.3: Shallow Water Acoustic Test Facility (SWAT) located at Van Isle Marina: (a)
image showing deck area and launch area (b) schematic showing the layout of the primary
test area

water. The MOCAP can provide millimetre accuracy at over 100 Hz for objects above the

surface of the water. The SBL provides subsea position updates with centimetre accuracy

at 1 Hz.

The MOCAP system is used to map the location of objects within the boathouse and to

generate "truth" data for verifying the position and orientation of the ROV. The camera unit

is mounted in such a way that it can capture a wide swath of the water surface, as shown in

Figure 2.3-b. The camera contains three high-speed high-resolution imaging sensors that

can estimate the position of a set of optical markers within their field of view and up to 7m
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away from the camera. The MOCAP can be used to track the location of the ROV through

the use of a mast that sticks up above the water. To use the MOCAP system to track the

vehicle while it is underwater, a mast is employed that holds the tracking LEDs out of the

water while the vehicle manoeuvres below the surface. The mast is further described in

Section 2.3.

The SBL system has four acoustic transceivers (receiving stations) mounted in each

corner of the SWAT facility as shown in Figure 2.3-b. The transceivers are located approx-

imately 0.8 m below the surface of the water. The location of the receiving stations are

surveyed using the MOCAP system. This method can provide a position for each acous-

tic element with respect to the boathouse to within a few centimetres. The ROV carries a

roving transceiver (rover), which emits an acoustic ping that is detected by the receiving

stations. The receiving stations and the rover are all cabled to the main control box on deck,

with the rover cable being routed up the vehicle's tether. The cabled configuration permits

synchronized timing between the rover and the receiving stations, enabling a precise mea-

surement of the range between the rover and each receiving station from the time of flight

of the acoustic ping. Using trilateration, the four different ranges can be used to determine

the position of the rover and, thereby, the position of the vehicle. The most accurate posi-

tioning is obtained inside the boathouse in the plane containing the reference stations. The

positioning information from the SBL is available outside of the boathouse as well, but the

accuracy of the estimate decreases as the vehicle moves away from the receiver array.

2.3 Falcon Remotely Operated Underwater Vehicle

The work presented herein utilizes a Saab Sea Eye Falcon ROV, a highly maneuverable

'open frame' observation class ROV, which has been manufactured using polypropylene

and other composite materials. The nominal mass of the vehicle is approximately 55 kg
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(a) (b)

Figure 2.4: The Falcon configured for research: (a) the modified vehicle showing mast and
sled attached, and (b) the layout of the instruments on the navigation sled (shown from top).

and it is powered by five magnetically coupled thrusters (four in the horizontal plane and

one for vertical motion), each capable of achieving 13 kgf thrust or a combined forward

thrust of approximately 50 kgf. The ROV's design makes it rugged and powerful enough to

work in moderate currents and manipulate sizable objects underwater. The vehicle has an

upper and lower mounting surface. The lower surface, located at the bottom of the vehicle,

is an open frame structure for mounting ballast and tooling; the upper mounting surface

is a solid red block, near the top of the ROV, to which all the thrusters, cameras, lights,

and instruments are mounted. All the equipment on the ROV, including the thrusters, are

controllable through RS-485 communication protocol, this is one of the key features that

makes the Falcon a suitable platform for this research.

The off-the-shelf Falcon ROV is equipped with a pressure sensor and compass for nav-

igation. These two instruments alone cannot be used to produce a sufficiently accurate
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estimate of the vehicle's position and attitude. Therefore, for the purposes of this research,

the OTL Falcon has been modified, as shown in Figure 2.4-a, with an auxiliary interface

container (AIC) (in blue, mounted to the centre of the vehicle) and a navigation sled. The

navigation sled, shown in Figure 2.4-b, is mounted to the lower surface of the vehicle. The

sled holds an inertial measurement unit (IMU), a doppler velocity log (DVL), and a Sub-

Sea Controller (SSC). It also has an additional compass and pressure sensor that provide

improved accuracy and resolution over the instruments that come with the Falcon. The

navigation sled was designed as a stand alone addition to the ROV so that it could easily be

installed or removed from the ROV depending on the requirements of a mission.

The base Falcon vehicle was also upgraded such that it was able to interface with the

navigation sled. The AIC, which is a permanent addition to the Falcon, provides power,

Ethernet communication, and a means for communicating on the Falcon's RS-485 commu-

nication buss. The AIC is a multi-purpose interface that can be used to install third party

hardware on the Falcon. On the OTL Falcon, the AIC supports the navigation sled, a high-

definition camera, and a forward looking sonar. A detailed description of the hardware that

was developed to support this project is located in Appendix B.

2.4 Reference Frames andMethodology for Making Mea-

surements

The following reference frames are used throughout this work.

North, East, Down Reference Frame (NRF): This is the navigation frame and, for the

purpose of this work, is also considered to be an inertial frame1. For this work the
1An inertial frame is reference frame where Newton's laws are considered to be valid. For high-speed

aircraft and space craft, the Earth's rotation and curvature have an impact on the equations of motion and a
reference frame attached to a fixed position on the Earth cannot be considered an inertial frame; for this work,
however, the vehicle speeds are very slow and the distances travelled are quite small compared to the scale
of the Earth. As such, one can assume that the Earth is flat in the operating region and that the contribution
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NRF is attached to a reference datum in the boat house and has the x-axis pointing

north, the z-axis pointing down, and the y-axis pointing east.

Vehicle Body Reference Frame (BRF): This frame is defined with the origin at the centre

of gravity of the vehicle, the x-axis pointing forward along the longitudinal axis of

symmetry, parallel to the ROV's upper mounting surface, the y-axis in the same plane,

perpendicular to the x-axis pointing towards the starboard side of the vehicle, and the

z-axis is perpendicular to both x-axis and y-axis pointing down.

SWAT Reference Frame (HRF): This is an intermediate frame attached to the SWAT fac-

ility and is used to orient all of the objects in the boathouse with respect to each other,

including cameras and SBL towers. This reference frame is mounted to the wall of

the SWAT. The x-axis points along the axis from SBL1 to SBL4, the y-axis points

down and the z-axis points out towards the port side, forming a right hand coordinate

system.

Camera Reference Frame (CRF): This is the native frame attached to the MOCAP cam-

era. This frame is not used explicitly, rather, data is collected in this frame and then

immediately transformed into either the BRF or HRF.

Measurement Reference Frame (MRF): This is an intermediate frame, attached to the

vehicle, and used to measure the location of all the pertinent points on the vehicle

using the MOCAP. The MRF exists because it is not always possible to know the

location and orientation of the BRF in the CRF when taking measurements of the

vehicle. The MRF was selected such that it's location and orientation are visible to

the MOCAP system from many different angles and located such that the LEDs that

define it could be mounted to the vehicle in a repeatable fashion. Since the transform-

ation between the CRF and the MRF can always be measured and the transformation

that the Earth's rotation makes to the vehicle dynamics is negligible. This allows us to define an Earth-fixed
reference frame at any arbitrary point and call it an inertial frame.
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between the BRF and theMRF is a measurable constant, theMRF can always be used

to transform positions from the CRF into the BRF.

Sensor Reference Frame (SRF): This frame is attached to the centre of gravity (CG) of

the specific sensors. Each sensor is oriented differently on the vehicle and the rotation

matrix between the sensor frame and the vehicle frame is unique for each one.

2.4.1 SWAT Reference Frame (HRF)

The HRF is a reference frame that is permanently fixed to the SWAT and can be used to

relate different camera reference frames with the NRF. Since the MOCAP cameras are put

up and taken down regularly, the relationship between the NRF and the CRF also changes

regularly. The HRF is established by securing three LEDs to the side of the boathouse test

area as shown in Figure 2.5. After theMOCAP camera is mounted, the position of the LEDs

in the camera frame are captured. With this information, a transformation between the CRF

and HRF can be established and used to create a transformation between the camera and

the NRF.

Figure 2.5: SWAT Reference Frame (HRF) fixed to the boathouse on the starboard side of
the test area.
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The HRF and NRF have a fixed relationship. This was determined by measuring the

direction of gravity and the heading relative to true north in the boathouse frame. The origin

of the NRF is set to be coincident with the origin of the HRF. The rotation matrix that relates

the HRF and NRF is as follows:

RH→N =


0.96460 −0.00951 −0.26356

−0.26334 0.01953 −0.96451

0.01432 0.99976 0.01633

 (2.1)

2.4.2 Mast for Motion Capture System

Figure 2.6: The arrangement of the Falcon mast.

TheMOCAP can be used to measure the position and attitude of the vehicle with respect

to theHRF (and by extension to theNRF), but theMOCAPLEDs can only be used above the

surface of the water. In order to use the MOCAP to estimate the position and orientation of
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the vehicle while it is underwater, markers were affixed to a lightweight mast and mounted

to the ROV as shown in Figure 2.4-a. Since the mast is rigidly mounted to the vehicle, the

position and orientation of the vehicle underwater can be directly inferred from the position

and orientation of the mast. Therefore, the position of the optical markers on the mast can

be used to calculate the position and orientation of the ROV while it performs manoeuvres

up to 1 m below the surface of the water. The mast is installed on the top of the vehicle aft

of the vertical thruster, right next to the vehicle's lifting point. The mast is 1.4m tall and has

a cross member 0.4m from the top. The mast carries 12 optical markers, one cluster of two

on the top, another cluster half way down to the cross member, another at the intersection

point, one on each end of the cross member, and then two single markers pointing aft mid

way down the cross member. Figure 2.6 shows the marker locations on the mast.

The locations of the LED markers in the BRF are given in Table 2.1. As long as four of

the markers are visible to the camera, the orientation of the BRFwith respect to the NRF can

be uniquely determined using a non-linear least squares minimization algorithm (described

in Section 2.4.2). The mast has twelve markers, which provide redundancy for determining

the orientation of the BRF. Having markers pointing forward and aft at each point makes it

more likely at least one marker for each pair will be visible to a camera at any given time.

Determining the Position and Orientation of the Vehicle Using the Mast

Since the marker LEDs visible to the camera are constantly changing, it is not practical to

define a reference frame using specific markers. Two methods of deriving state information

about the vehicle from the mast were derived. The first was a generalized non-linear opti-

mization, which estimated the position and orientation of the mast using 4 or more LEDs.

The second was an EKF, similar to the one designed for the vehicle navigation in Chapter 4.

The generalized non-linear optimization algorithm utilizes the fact that the location of

each LED is known in the body frame (Table 2.1) and minimizes the following cost func-
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Table 2.1: Mast LED Locations in the Body Frame
LED X Y Z
1 −0.05523 0.01295 −1.27840
2 −0.28817 0.00740 −1.27340
3 −0.15688 0.45266 −1.26852
4 −0.17723 0.45209 −1.26794
5 −0.17998 0.02586 −1.74386
6 −0.20050 0.02512 −1.74247
7 −0.16516 −0.43204 −1.28365
8 −0.18800 −0.43211 −1.28468
9 −0.17060 0.02263 −1.50774
10 −0.19118 0.02136 −1.50879
11 −0.18186 0.28964 −1.26754
12 −0.18633 −0.20329 −1.28059

tion:

F =
n∑

i=1

XN
i −
(
RB→N (s)XB

i + TN
)

(2.2)

where n is the number of LEDs that are visible, XB
i is the known location of LEDi in the

BRF, RB→N(s) is the rotation matrix from the BRF to the NRF derived from the attitude

quaternion, s, and XN
i is the measured location of LEDi in the NRF frame2. This mini-

mization estimates the attitude quaternion, s, and the translation vector between the origin

of the BRF and the NRF expressed in the NRF, and TN , subject to the constraint ∥s∥ = 1.

The 125 Hz update rate for the MOCAP frame is relatively fast compared to the vehicle

dynamics, with maximum translational and rotational speeds of 1.5m/s and 50◦/s, the max-

imum amount of expected rotation and translation per MOCAP cycle is 0.4◦ and 1.2 cm.

Therefore, the processing time for the optimization can be minimized by using the solution

from the previous iteration as the initial guess.

The above approach generates a very precise estimate of the position and attitude of the

vehicle, but doesn't provide any information about velocity or angular rates. Numerically

differentiating the position and attitude generates predictably noisy results. Since this work
2The transformation from the Camera Reference Frame (CRF) to the NRF is a known static quantity and

can be applied before the optimization
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relies on the MOCAP data to validate the sensor measurements and navigation estimates,

which includes velocity and rate information, an EKF method was also derived that pro-

vided a better method of estimating rates. The EKF derivation can be found in Appendix C.

Effect of the mast on the vehicle dynamics
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Figure 2.7: Comparison of the (a) pitch and (b) roll angles for high speed forward motion
with and without the mast .

While the mast allows the vehicle to be tracked, it also changes it's mass and buoyancy

characteristics slightly. The mast is made of a sealed light weight aluminum tube that adds

buoyancy as it is submerged. The additional drag from the mast will be negligible compared

to the drag from the rest of the vehicle. However, since the mast adds weight more than a

meter above the centre of buoyancy, it can be expected to affect the vertical stability margin

and change the inertial properties. A comparison of the roll and pitch dynamics with and

without the mast are shown in Figure 2.7. Here it can be seen that the overall effect of the

mast is to increase the roll and pitch stability slightly during high-speed forward motion

(i.e. smaller roll and pitch angles are seen), with the vehicle pitch being affected most. This

is indicative of a larger separation between the center of buoyancy and the center of gravity.
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Chapter 3

Dynamic Model

A dynamic model of the Falcon ROV is an important part of obtaining an accurate estima-

tion of the vehicle state vector and of testing potential control systems. In this chapter, a

dynamic model for the thrusters is presented, followed by a discussion on the vehicle kine-

matics and the equations of motion. In the second half of the chapter, the parameters of the

two models are identified through a series of system identification tests performed at the

SWAT and MTC facilities.

3.1 Background

Researchers have been trying to characterise the dynamics of ROVs since the US Navy first

developed CURV in the 1960's. Dynamic models can be used for guidance, navigation and

control systems (as is presented here), developing simulators for training, and optimising

mechanical designs to improve performance. Conventional dynamic modelling identifies

the primary physical phenomenon (the physics) and conducts some experimental parameter

estimation (PE) experiments. With roots in system identification methods for ships and air-

craft, parameter estimation for ROVs has historically involved the use of a tow tank, where

the vehicle (or a scale model) would be carefully instrumented and then pulled through the
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water in an attempt to isolate and excite the different dynamic modes and measure the re-

sponse. A conventional ROV dynamic model framework includes entrained mass, added

mass, rigid body dynamics, a quadratic drag model, and has 288 different parameters to

be identified [20]. Identifying all of these parameters is an expensive and time-consuming

task, fraught with error. This makes exceptionally accurate dynamic models prohibitively

expensive to develop. They are specific to a particular vehicle configuration, and, as soon as

the vehicle configuration changes (which often occurs between ROV deployments), the hy-

drodynamic characteristics change and the model becomes obsolete [14]. As a result, many

work-class ROVs are designed without consideration for their hydrodynamic properties,

which generally ensures a high level of uncertainty in the vehicle's performance character-

istics. Typical ROV operations rely on visual feedback to a human pilot to overcome these

uncertainties.

Despite the 288 parameters in a conventional ROV model, there are several limitations

to the approach: 1)it will never be able to capture the more intricate higher order dynamics

that occur when a complex body moves arbitrarily through a viscous fluid, 2) it will not ac-

count for the dramatic changes in local water velocity that occur in the vicinity of thrusters,

3) it will not account for the dynamics imparted on the vehicle by the tether. While at-

tempts have been made to model these extraneous phenomena [8, 3, 11], estimating the

contributions of these effects to the ROV motion in real-time on a working vehicle is not

realistic [10]. As such, we are left with a model where dynamic uncertainties can outweigh

the predictable physical factors.

The best approach for generating a dynamic model depends on the application. For ex-

ample, when creating a simulation, one will want to insert some realistic tether dynamics.

These dynamics can be somewhat contrived, as the intent is to provide the pilot with a real-

istic ROV operating experience, not to exactly model what will occur on a specific mission.

For the purpose of navigation and control, the most important thing is to realistically model
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the input/output dynamics. In Clark et al. [14], the authors present a method for identify-

ing system parameters during sea trials using onboard sensors instead of using a test tank.

The results produce a model of similar accuracy albeit less detailed. This methodology is

further explored by Caccia, Indiveri and Veruggio in [11], where they included the introduc-

tion of a thruster interference factor to account for interference from system integration on

the thrust output. The system identification method used in this work differs only slightly

from that presented by Caccia, Indiveri and Veruggio. They used a least squares optimiza-

tion on the steady-state velocities to determine the thrust factor and the drag coefficients;

in this work, the least squares optimization uses data taken during both the acceleration and

steady-state phases to determine the drag coefficients, the added mass coefficients, and the

thruster interference factor simultaneously.

3.2 Theoretical Model of the Dynamics and Kinematics

3.2.1 Thruster Model

Figure 3.1: Diagram showing the relationship between the vehicle velocity, advance speed,
and thrust for a negative command (clockwise propeller rotation).

The thrusters are modelled using the bi-linear thruster model in Eq. 3.1, which is a first

order approximation of the torque developed about the thruster axis, and the corresponding

thrust developed using the lift-force calculations for a single-screw propeller [20]. For this
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work, the motor dynamics are being neglected as are effects from varying angles of attack

of the thruster. A more sophisticated thruster model that includes these additional effects is

concurrently being developed in the OTL, but will not be used here.

Using the sign conventions shown in Figure 3.1, the thrust model can be expressed using

the following:

T = ρD4KT (J0) |Ω|Ω (3.1)

where ρ is the density of water,D is the diameter of the propeller, Ω is the propeller speed,

and KT (J0) is the thrust coefficient. The thrust coefficient is a function of the advance

number, J0. The advance number is the following non-dimensional coefficient:

J0 = Va/(ΩD) (3.2)

where Va is the thruster advance speed (the speed of the water as it enters the thruster).

In general, the advance speed is not the same as the vehicle velocity. A ship's propeller

provides a relatively simple example: the propeller is usually at the stern of a ship and

located inside of the ships wake; as such, the speed of water at the propeller is less than the

speed of the ship. Traditionally, the advance speed has been related to the vessel velocity

by the following relation:

Va(V ) = (1− wT )V (3.3)

where wT is the wake fraction number (typically a constant between 0.1 and 0.4). ROV

systems encounter this same phenomenon, but with much less predictability. When moving

forward, the advance speed for the forward thrusters will be relatively close to the free

stream velocity, but the aft thrusters will be in the wake of the forward ones and the advance

speedwill likely be dramatically different from the free stream velocity. This is an important

concept, as it can lead to variability in the output thrust at any given command.

The physics of the thruster, as described in [40], suggests that KT should be quadratic
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in J0 instead of linear as suggested in [20]. In Section 3.3, measurements will show that

a quadratic function is a reasonable assumption for the Falcon. This allows the following

approximation to be used:

KT (J0) = αJ2
0 + βJ0 + γ (3.4)

Eq. 3.1 through Eq. 3.4 result in a simple method for estimating the thrust over a wide

range of operating conditions. First the advance speed, Va, and advance number, J0, are

found, then the thrust coefficient, KT can be determined. Once KT is known, then the

estimated thrust can be calculated using Eq. 3.1.

3.2.2 Vehicle Model

The rigid body dynamics of an ROV with six degrees of freedom (DOFs) can be described

by the following equation:

η̇ = J(η)ν (3.5)

where η = [x y z s]T ∈ ℜ7 and ν = [u v w p q r]T ∈ ℜ6. x, y, and z are the three

components that make up the position of the vehicle in the NRF and s = [s0 s1 s2 s3]
T

is attitude quaternion1. u, v, and w are the velocities and p, q, and r are the angular rates,

both expressed in the BRF. Finally, J(η) is the transformation matrix which maps the ve-

locities expressed in the BRF to the NRF. J(η) is block diagonal, and can be broken down

as follows:

J(η) =

 J1 03×3

04×3 J2

 (3.6)

In this definition, J1 is a rotation matrix transforming a vector in the BRF to the NRF.

As per the derivation for Eq. D.19 in Appendix D, using the quaternion representation, J1
1The use of quaternions to represent orientation is further described in Appendix D.
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can be written as:

J1(η) =


s20 + s21 − s22 − s23 2(s1s2 − s0s3) 2(s1s3 + s0s2)

2(s1s2 + s0s3) s20 − s21 + s22 − s23 2(s2s3 − s0s1)

2(s1s3 − s0s2) 2(s2s3 + s0s1) s20 − s21 − s22 + s23

 (3.7)

Similarly, J2, the mapping from p, q, r to ṡ, can be written as:

J2(η) =



−s1 −s2 −s3

s0 −s3 s2

s3 s0 −s1

−s2 s1 s0


(3.8)

Eq. 3.7 and Eq. 3.8 highlight one of the advantages of quaternions, the elimination of com-

putationally expensive trigonometry functions in the transformation matrices. The primary

advantage of quaternions, however, is the avoidance of singular conditions, often called

"gimbal-lock", that occur with Euler angles, a complete discussion of the quaternions and

Euler angles is given in Appendix D.

The time-evolution of ν can then be predicted as follows [20]:

ν̇ (δ,ν,η) = M−1 (τE + τ − C (ν)ν − D (ν)ν − g (η)) (3.9)

where M is the mass matrix, C is the coriolis and centripetal matrix, D is the hydrody-

namic contribution, g is the buoyancy and gravitational contributions, and τ and τE are

the forces and moments from the actuators and the environment respectively. Each of these

components will be discussed in-depth in the following sections.
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Inertial Properties

The inertial properties of the vehicle can be divided into the rigid body mass matrix and the

added mass matrix. The rigid body mass matrix comes from the kinematic equations and

can be expressed as:

MRB =

 mI3×3 −mr̃CG

mr̃CG I0

 (3.10)

wherem is the mass of the vehicle, rCG is the vector from the origin of the BRF to the CG

of the vehicle, and I0, the body's inertia tensor, which is defined as:

I0 ,


Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

 (3.11)

For this work, the origin of the BRF is the CG (rCG = 0). Under this assumptions, Eq. 3.10

results in the following:

MRB =



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ix −Ixy −Ixz

0 0 0 −Iyx Iy −Iyz

0 0 0 −Izx −Izy Iz


(3.12)

Coriolis and Centripetal Forces and Moments

The coriolis and centripetal terms in the ROV dynamics come from the ω × v and the

ω×(ω×rCG) terms that appear when you derive Newton's second law in terms of kinematic

variables defined in the rotating BRF. Several skew symmetric parameterizations of these



29

terms are presented in [20]; recalling that rCG = 0 this parameterization can be simplified

as:

CRB = −CT
RB =

 mν̃2 −mν̃2r̃CG

mν̃2r̃CG −Ĩ0ν2

 (3.13)

=

 mν̃2 0

0 −Ĩ0ν2


where ν2 = [p q r]T .

Added Mass

Added mass can be often misunderstood, according to Fossen [20]:

Added (virtual) mass should be understood as pressure-induced forces and mo-

ments due to forced harmonic motion of the body which are proportional to the

acceleration of the body.

For completely submerged vehicles, one can assume the added mass coefficients are

constant. For a more thorough understanding, it can be noted that for a vehicle to accelerate

into a stationary fluid, the fluid must move aside and then close up behind the vehicle.

Therefore, the motion of the vehicle imparts a kinetic energy into the fluid, which it would

otherwise lack if the vehicle was not in motion. Since this kinetic energy comes from the

vehicle, it must be accounted for in the vehicles equation of motion.

Added mass can be accounted for be adding an additional term to the mass and coriolis

matrices in Eq. 3.9, such that:

M , MRB +MA (3.14)

C , CRB + CA
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where MA is the added inertia matrix and CA corresponds to the centripetal and coriolis

components that are added from these same hydrodynamic sources. For a complete deriva-

tion of the added mass dynamics from the kinetic energy of the fluid, one can refer to [20].

For low speed applications, one often assumes that there is relatively little cross cou-

pling between the DOFs so the added inertia matrix can be considered to be diagonal; this

assumption will not be made in this work. Therefore, the added inertia matrix for the two

systems can be defined as:

MA , −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(3.15)

Using the SNAME notation, the hydrodynamic added mass force XA along the x-axis

due to an acceleration ẇ along the z-axis would be calculated byXA = Xẇẇ, whereXẇ ,
∂X
∂ẇ

. Note that for fully submerged vehiclesMA will always be strictly positive2 [20].

From Fossen[20], one can always parameterize CA(ν) such that it can be written as:

CA(ν) =



0 0 0 0 −a3 a2

0 0 0 a3 0 −a1

0 0 0 −a2 a1 0

0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0


(3.16)

2The matrixMA will be strictly positive. The individual elements ofMA are not necessarily positive.
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where the equations for a1, a2, a3, b1, b2, and b3 are given by the following3:

a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

a3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr (3.17)

b1 = Ku̇u+Kv̇v +Kẇw +Kṗp+Kq̇q +Kṙr

b2 = Mu̇u+Mv̇v +Mẇw +Mṗp+Mq̇q +Mṙr

b3 = Nu̇u+Nv̇v +Nẇw +Nṗp+Nq̇q +Nṙr

Potential and Hydrodynamic Damping

With ocean going vessels, hydrodynamic forces can typically be filed into four categories:

potential damping DP , wave damping DW , skin friction DS and vortex shedding DM [20].

The total hydrodynamic drag on the vehicle is defined as:

D (ν) , DP (ν) + DW (ν) + DS (ν) + DM (ν) (3.18)

Potential damping, otherwise known as wave or radiation induced damping, occurs

when a body moving through water creates waves (such as a body bobbing up and down).

These waves transport energy away from the system, which in turn dampens the eliciting

motion. This type of damping is generally negligible for underwater vehicles operating at

depth, as they are not affected by wave action and typically don't exhibit much oscillatory

motion. Wave damping, the added resistance that a ship experiences when cutting through

waves, is also negligible when operating at depth. However, while these two components

do not factor in significantly at depth, they do impact the vehicle while it is on the surface

or operating near the surface, and when neglected will add to the dynamic uncertainties.
3The equations for a1, a2, a3, b1, b2, and b3 are incorrect in [20]. They have been corrected in the subse-

quent version of this book. The equations presented here are the corrected equations



32

Skin friction is the combination of the drag produced by the laminar boundary layer in

response to low frequency motion through a viscous medium and the drag produced by the

turbulent boundary layer in response to high frequency motion. Laminar drag is linear in ν

and the turbulent drag due to high frequency motion is quadratic.

When a viscous fluid flows past an object with sufficient speed, vortices form in the fluid

behind the trailing edge of the object. This phenomenon is often referred to as a wake, and

it occurs because, with the frictional forces present in a viscous fluid, the system (fluid and

vehicle) does not conserve energy. This vortex shedding produces an additional quadratic

damping force on the vehicle.

Therefore, in six DOF, the total drag from skin friction and vortex shedding can be

calculated using a linear and a combined quadratic component:

D (ν) = DLν +



|ν|T DQuν

|ν|T DQvν

|ν|T DQwν

|ν|T DQpν

|ν|T DQqν

|ν|T DQrν


(3.19)

where DL ∈ ℜ6×6 is the linear drag matrix, and DQi i = u, v, w, p, q, r are 6 quadratic

drag matrices, are all contained in ℜ6×6. In a model where all 6 DOFs are decoupled,

the quadratic drag matrices have only a single non-zero element on the diagonal which

corresponds to the DOF in question: for example, the (1, 1) element of DQu, the (2, 2)

element of DQv etc. This allows one to replace the 6 individual matrices with a single

diagonal matrix instead. This assumption will not be made in this work, and the 6 quadratic

matrices will be kept separate to support cross coupling terms.

While in theory all of the coefficients can be populated for this model, only those with
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significant effect will be measurable in the system ID testing, and the majority will be zero.

This is particularly true with the quadratic drag matrices, which will be very sparsely pop-

ulated.

Gravitational Forces and Moments

The gravitational and restoring forces and moments are different than other forces that have

been previously discussed in that their natural frame of reference is the NRF as opposed

to the BRF. This means that, in the BRF, the expression for the gravitational and restoring

forces will involve J1 (η). The two forces in question are the force of gravity, acting at the

CG, and the buoyancy force, which acts at the centre of buoyancy (CB); using simple statics

the force equation can be written as:

g (η) = −

 fG (η) + fB (η)

rCG × fG (η) + rCB × fB (η)

 (3.20)

where rCB is the location of the CB in the vehicle body frame, the location of the CG is

rCG = 0, and

fG (η) = JT1 (η)


0

0

mg

 fB (η) = −JT1 (η)


0

0

ρg∇

 (3.21)
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where ρ is the water density, g is the gravitational acceleration, and ∇ is the displacement

of the vehicle. DefineW , mg and B , ρg∇ then Eq. 3.20 can be expanded to be:

g (η) = −



(W −B) · 2 (s1s3 − s0s2)

(W −B) · 2 (s2s3 − s0s1)

(W −B) · (1− 2 (s21 + s22))

(−yBB) · (1− 2 (s21 + s22))− (−zBB) · 2 (s2s3 − s0s1)

(−zBB) · 2 (s1s3 − s0s2)− (−xBB) · (1− 2 (s21 + s22))

(−xBB) · 2 (s2s3 − s0s1)− (−yBB) · 2 (s1s3 − s0s2)


(3.22)

Thruster and Environmental Forces and Moments

The forces and moments imparted on the vehicle by the environment and the thrusters, are

denoted by τE and τ , respectively. τE is a result of unknown forces applied to the vehicle

by the environment; this includes, but is not limited to, forces and moments from the tether,

hitting the seafloor, and unmodelled wave action. Since these forces are unknown they

cannot be accounted for in the model. Representative environmental forces and moments

can, however, be added to a simulation to create a realistic environment.

The forces and moments from the thrusters are more deterministic. For the Falcon, who

has 5 thrusters, the effect of the thrusters on the CG of the vehicle can be calculated using

the following equation:

τ =

 DB
T1

DB
T2

DB
T3

DB
T4

DB
T5

X̃B
T1
DB

T1
X̃B

T2
DB

T2
X̃B

T3
DB

T3
X̃B

T4
DB

T4
X̃B

T5
DB

T5





T1

T2

T3

T4

T5


(3.23)

= BT
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Table 3.1: Thruster location summary
Location Description Units

Front Port
XB

T1
=
[
0.24765 −0.18203 −0.05528

]T m

DB
T1

=
[
0.79744 0.60316 −0.01717

]T N/A

Rear Stbd
XB

T2
=
[
−0.35850 0.17351 −0.04623

]T m

DB
T2

=
[
0.86426 0.50287 −0.01291

]T N/A

Front Stbd
XB

T3
=
[
0.24572 0.17422 −0.05315

]T m

DB
T3

=
[
0.81275 −0.58236 −0.01725

]T N/A

Rear Port
XB

T4
=
[
−0.35251 −0.18466 −0.04844

]T m

DB
T4

=
[
0.82701 −0.56102 −0.03623

]T N/A

Vertical
XB

T5
=
[
−0.01796 −0.00835 −0.35058

]T m

DB
T5

=
[
0.0 0.0 1.0

]T N/A

whereXB
Ti is the position of each thruster in the BRF,DB

Ti
is the direction of thrust,B ∈ ℜ6×5

is the thruster input matrix and T ∈ ℜ5×1 is the a vector of the thrust from each thruster in

Newtons. The location and the direction of the thrust vector for each thruster, denoted by

XB
Ti
and DB

Ti
respectively, was measured using the MOCAP camera system, and are given

in Table 3.1.
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Figure 3.2: Image of the thruster test apparatus mounted in the UVic Flume tank for the
work done by Amos Buchanan.

3.3 System Identification for the Thruster Model

The system identification for the thrusters on the Falconwas done using the apparatus shown

in Figure 3.2 as part of a Masters project by Amos Buchanan [7]. The thruster was mounted

to a shaft, suspended from the top of the apparatus, and allowed to rotate freely about the

attachment point. The shaft was then constrained to be vertical using four force sensors.

When a force is exerted by the thruster, the reaction force on the sensor can be measured.

The test apparatus was installed in the UVic flume tank. A flume tank is much like a wind

tunnel, and circulates the water past the thruster in a predictable and controllable way. This

allows one to measure the thrust at different advance speeds.

3.3.1 Propeller Speed as a Function of Command

The Falcon thrusters have an open loop control system for regulating the speed of the pro-

peller for an input command. The thruster accepts inputs between−100 and 100with−100

being full speed clockwise rotation of the propeller (moves vehicle in the forward or up di-

rection). The transient response is shown in Figure 3.3, one can see that the internal Falcon

control system does not implement an internal controller for propeller speed. When a step

input is given where the command increases the propeller speed or changes direction of the

propeller, the rise time is approximately 350ms for 0 to 100% step command; however,
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(a)

(b)

Figure 3.3: Propeller speed as a function of time for an input command with the rise time
(RT) indicated for each step.

when a command is given to decrease the propeller speed, the decay time is significantly

longer (approximately 1 second for a 100 to 0% step). This is indicative of the propeller



38

slowing due to drag and friction, as opposed to being driven to a specific propeller speed.

The latency between when a command is sent to the thruster and when the thruster begins

to respond is between 30 and 50 ms.

Since the thruster is operating with an open loop velocity controller, an input com-

mand will result in different propeller speeds for different advance speeds, as is seen in

Figure 3.4-a. With an open loop controller, the propeller speed will also vary between

thrusters, as different units will have different amounts of wear and friction. As a result, for

any given command the propeller speed could vary by 50 rad/sec or more.

When the SSC, described in Chapter 2 and Appendix B, is in control of the vehicle

feedback on the propeller speed for each thruster is available, however, when the surface

control unit (SCU) is in control, it is not4. Whenmeasurements of the propeller speed are not

available, the estimated propeller speed with zero advance speed is used5. This relationship

is shown in Figure 3.4-b and is characterized by the following equations:

δ = −100 → −60 Ω = 0.013827δ2 + 3.667122δ + 130.533044

δ = −60 → 0 Ω = 0.661971δ

δ = 0 → 60 Ω = 0.650779δ

δ = 60 → 100 Ω = −0.015015δ2 + 3.844637δ − 136.578499

(3.24)

where δ is the thruster command in input percent and Ω is the propeller speed in rad/s.
4See Appendix B for details on the hardware configuration and difference between piloting the ROV

through the SCU and the SSC.
5Estimating the propeller speed assuming zero advance speed could lead to error in the propeller speed

and thrust predictions.
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Figure 3.4: Propeller speed as a function of input command (a) for different water speeds
(advance speeds) and (b) for zero water speed. Negative deviations in propeller speed occur
when the water is flowing against the thruster and positive deviations occur when the water
is flowing with the thruster (recall that a negative command gives forward thrust).
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3.3.2 Thrust as a Function of Propeller Speed and Advance Speed

The thrust output at a given propeller speed is heavily dependant on the advance speed,

Va of the thruster. Eq. 3.1 shows that the output thrust is a function of the square of the

propeller speed andKT which is a function of the advance number, J0. Figure 3.5 shows a

plot ofKT versus J0 for the data collected in the flume tank.
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Figure 3.5: Thrust coefficient,KT , as a function of advance number,J0.

According to [40], there are three different operating regimes for the thruster: 'equi-

directional', 'anti-directional', and 'vague-directional'. In the equi-directional regime the

ambient water flow is in the same direction as the flow of water through the thruster noz-

zle; in the anti-directional regime, the thruster is fighting the water and the flow is in the

opposite direction of the flow through the thruster nozzle. In the vague-directional regime,

the desired flow through the nozzle is opposite in direction to the ambient flow, but the

thruster is not spinning fast enough to overcome the ambient flow and the flow in the noz-

zle is unpredictable. Therefore, the equi-directional state would be normal operation, the
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anti-directional state would be similar to braking, where the thrusters are providing force

opposite to the direction of travel, and the vague-directional state would be similar to brak-

ing but without using enough force to be effective. For this research, it will be assumed

that the thruster is always operating in the equi-directional state. As previously mentioned

in Section 3.2.1, the OTL is developing a more complete model that will address all three

states.

Since the thruster is not completely symmetric, one would expect that the relationship

betweenKT and J0 would be different for the two directions, and this has proven to be true.

Figure 3.5 show the KT values corresponding to the equi-directional state for forward and

reverse in blue and red, respectively. The vague- and anti-directional states are shown in

black. The quadratic curve fits to the data result in the following equations:

δ > 0 : KT = −0.025089J2
0 − 0.042911J0 + 0.011350 (3.25)

δ <= 0 : KT = −0.067853J2
0 − 0.026903J0 + 0.011369

Using the value ofKT from Eq. 3.25, Figure 3.6 shows the thrust predicted by Eq. 3.1-

Eq. 3.4 for several different water velocities and compares it to the thrust that was measured

in the flume tank experiment. Since only the equi-directional state is being considered, the

thrust for positive propeller speed is measured with the water flowing with the thruster. The

negative propeller speed is measured in separate runs with the thruster turned around in the

flume tank so that the water flows in the opposite direction.

3.3.3 Determining J0

In order to use this model, an advance number, J0, must be determined for each thruster.

During operations, the advance speed, Va, is not known, as the thrusters are often in the

shadow of another object which deflects the flow of water and causes the local water veloc-
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Figure 3.6: Predicted thrust compared to the measured thrust for different water speeds as
measured in the flume tank experiment.

ity to deviate from the ambient water velocity. In ship design, this is often captured using

a wake number, wt, as described in Eq. 3.3. For an ROV, this effect is constantly chang-

ing and different for each thruster, and cannot be sufficiently captured by a constant. As

such, the local water velocity with respect to the vehicle will be used directly to estimate

the advance speed, with the knowledge there will be modelling errors due to wake effects.

Since the vehicle is undergoing translational and rotational motion, each thruster will

experience a unique advance speed. For the vehicle pictured in Figure 3.7, thrusters 2 and

3 will see an increase in velocity due to rotation, while thrusters 1 and 4 will see a decrease.

Assuming that vertical thruster is only effected by vertical speed, the the advance speed

for the 5th thruster is Va5 = w. For the horizontal thrusters, the total water velocity, VT ,

observed by the thruster will be a combination of the horizontal vehicle velocity and the

yaw rate. This will be given by:
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Figure 3.7: Schematic showing the components of the advance speed, Va

VT = [u v w]T + r · d
ẽ3XB

Ti

∥XB
Ti
∥

(3.26)

where [u v w] is the water velocity due to vehicle translation, r is the yaw rate, d is the

radial distance between the centre of thrust and the CG, as shown in Figure 3.7, e3 is a unit

vector in the direction of the z-axis of the BRF, and XB
Ti
is the location of the thruster in

the BRF. Then Va can be found by determining the component of the velocity vector that is

aligned with the thrusters x-axis.

Vai = VTi(1)cos (γ) + VTi(2)sin (γ) (3.27)

where γ is the angle of the thruster with respect to the x-axis of the BRF, and VTi(1) and

VTi(2) are the elements of the total relative water velocity in the x and y directions of the

BRF, respectively.
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3.3.4 Model Errors

This thruster model was developed with a stand alone test thruster, and produced very re-

peatable and accurate measurements for the ideal thruster. However, in the field the thruster

will not be ideal. Once it is mounted in the vehicle, there will be turbulent flow and interfer-

ence that will diminish the performance of the thruster and, therefore, degrade the accuracy

of the model.

Motor Dynamics and Imparted Moments

In Section 3.2.1 it was stated that the motor dynamics of each thruster will be neglected.

Figure 3.3 shows the transient in the propeller speed from a 0 − 100% step input. The

measured latency between when a commandwas issued and when the propeller speed began

to change is between 30 and 50 milliseconds. The rise time for the step up to 100% is

approximately 350 ms and the step back down to 0 is approximately 1 second. In order for

these dynamics to be negligible, the controller must provide a suitably stable command.

As the propeller spins and pushes water it imparts a moment onto the vehicle in the

opposite direction. This is most clearly seen when the vertical thruster causes the vehicle

to yaw. For this work, these moments will be neglected.

3.4 System Identification for the Vehicle Model

To determine the coefficients for the vehicle model described in Section 3.2, a series of dry

land and wet system identification tests were performed. The wet tests were performed

in a small test tank and at the SWAT facility, described in Section 2.2. These tests use

the MOCAP system, along with the sensors on the navigation sled to capture the dynamic

response of the vehicle to a range of thrust inputs. The MOCAP and navigation sensor

data are all synchronized to within 1 ms, allowing them to be used together to establish an
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augmented estimate of the vehicles attitude and position.

3.4.1 Mass, Inertia, Buoyancy, and Vehicle Body Frame

Origin x-axis xy-plane 

Figure 3.8: The LED locations for the measurement reference frame (MRF) on the ROV

Mass and Vehicle Body Frame (BRF)

The vehicle sled combination has a mass of 116.0kg and has approximately 0.2 kg of posi-

tive buoyancy, when the sled is removed 2.5 kg of ballast is added to the ROV to compensate

for the change. In order to locate the BRF on the vehicle and calculate the location of the

CB, it is first necessary to find the location of the vehicle CG.

The MRF was established so that items could be measured in a consistent reference

frame using the MOCAP. The MRF was chosen so that it was visible from most camera

angles and provided the most repeatable measurements. The MRF is defined using 3 LEDs

as shown in Figure 3.8; the first LED is the origin, then second LED defines the direction
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of the x-axis, and the third LED defines the xy-plane. With this scheme, a rotation matrix

between the native camera frame and the measurement frame can be created as follows:

O = PLEDO (3.28)

X =
PLEDX − PLEDO

∥PLEDX − PLEDO∥

XY =
PLEDY − PLEDO

∥PLEDY − PLEDO∥

Z =
X× XY
∥X× XY∥

Y =
Z× X
∥Z× X∥

whereX,Y,Z are the basis vectors for themeasurement frame. The rotationmatrix between

the measurement frame and the camera frame can then be created using Eq. D.1:

RM→C =


X · ex X · ey X · ez

Y · ex Y · ey Y · ez

Z · ex Z · ey X · ez

 (3.29)

where ex = [1 0 0]T , ey = [0 1 0]T and ez = [0 0 1]T . Once a vehicle fixed measurement

frame is established, then all of the other points of interest can be measured in that frame

and translated/rotated into the BRF.

The BRF was then established by measuring the location of the CG, then determining a

direction for the x-axis and y-axis. The CGwas located by sliding the vehicle back and forth

on a thin metal bar and finding the point where it balanced. This was done on all three axes

(longitudinal, lateral, and vertical), which allowed all three of the components of the CG

position to be determined in the measurement frame. The BRF was constructed, as shown

in Figure 3.9, with the origin at the aft end of the vehicle, the x-axis running along the port

side frame and the xy-plane defined towards the starboard side of the vehicle. Knowing
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Origin xy-plane x-axis 

Figure 3.9: The LED locations for the vehicle reference frame on the ROV

the location of these three LEDs in the measurement frame allows one to create a rotation

matrix between the measurement frame and the vehicle body frame using the equations in

Eq. 3.28. The frame was then translated such that the origin was at the CG instead of the

origin LED at the aft end of the vehicle.

Buoyancy

Once the vehicle reference frame was established, it was possible to locate the CB using a

simple lever test to measure the restoring moment of the vehicle; in order for the test to be

accurate, the vehicle must be completely submerged. A diagram showing the test setup is

shown in Figure 3.10. Using the test tank atMTC, the vehicle was suspended from overhead

using an inline scale. A weight was then added to the front or side of the vehicle so that

the vehicle was negatively buoyant and completely submerged at some pitch or roll angle.

Once the vehicle was in an equilibrium state, the roll angle, pitch angle, and the suspension
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(a) (b)

Figure 3.10: Test setup for determining the CB a) Test diagram showing the forces con-
tributing to the moments b) photo showing the vehicle configured to measure the CB using
the roll axis

force were recorded. The steps for the test are as follows:

1. Determine the buoyancy force: Small calibration weights were placed at the cen-

tre of the vehicle until the vehicle was neutrally buoyant. The net force from these

weights (gravitational minus buoyancy) is equal to the excess buoyancy force.

2. Ensure the vehicle sits flat: Ensure the vehicle is correctly ballasted and sitting as

flat as possible in the water. If it is not then the CB is not over top of the CG.

3. Suspend the vehicle: Suspend the vehicle from the lifting point using a small scale

- the scale will only need to be able to support a few kilograms.

4. Pitch the vehicle forward: Put a ballast weight, that is heavier than vehicle's excess

buoyancy, on the front of the vehicle. Once the vehicle stabilizes record the pitch

angle and the suspension force.

5. Roll the vehicle sideways: Repeat the previous step putting the ballast weight on the

side of the vehicle and recording the roll angle and the suspension force.
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The accuracy of the measurement can be confirmed by repeating the last two steps for

several different weights. Assuming that the CB and the CG are aligned in the xy-plane,

the restoring arm for the buoyancy force can be calculated by summing the moments about

the CG.

∑
M =

∑
r× f = 0 (3.30)

= ˜(
RB→IrCB

)
fB + ˜(

RB→IrW
)
fW + ˜(RB→IrS

)
fS

˜(
RB→IrCB

)
fB = −

[
˜(

RB→IrW
)
fW + ˜(RB→IrS

)
fS
]

= Mf

Designate the right hand side of the equation as Mf , where fB is the buoyancy force of

the vehicle, fW is the force being exerted by the ballast weight, and fS is the suspension

force. The position vectors for the weight and suspension point, expressed in the BRF, are

designated as: rW = [xW yW zW ]T and rS = [xS yS zS]
T . The rotation matrix from the

BRF to the NRF, designated by RB→I , is obtained using ether the measured pitch and roll

angle, setting the other angles to zero.

At this point, it is important to realize that the cross product transformation, (̃·), is not

linear and that fB = [0 0 B]T . Thus fBfTB has a rank of 1, meaning that it is not invertible

and Eq. 3.30 can only be solved for one independent parameter. However, since it is being

assumed that the CB is vertically in line with the CG then only one parameter is needed,

rCB ≈ [0 0 zCB]. If the ballast weight and lifting force both act on the vehicle along the

x-axis for the pitch tests (i.e. yW = yS = 0) then Eq. 3.30 can be reduced to a single scalar

moment equation about the y-axis. Similarly if xW = xS = 0 for the roll tests then Eq. 3.30

reduces to a single scalar moment equation about the x-axis.
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Therefore, for the pitch test:

[(
RB→IrCB

)]
× fB =




cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)




0

0

zCB


×


0

0

−B

(3.31)

=


0

sin(θ)zCBB

0

 = MF

zCB = =
MF y

sin(θ)B

Similarly for the roll test:

[(
RB→IrCB

)]
× fB =




1 0 0

0 cos(ϕ) −sin(ϕ)

0 sin(ϕ) cos(ϕ)




0

0

zCB


×


0

0

−B

(3.32)

=


sin(ϕ)zCBB

0

0

 = MF

zCB = =
MF x

sin(ϕ)B

Table 3.2: Centre of Buoyancy Measurements
Test no. fW fS ϕ θ zCB

Pitch 1 5.67 N 5.30 N N/A −3.2◦ −0.043 m
Pitch 2 8.50 N 7.75 N N/A −5.0◦ −0.041 m
Pitch 3 11.34 N 11.67 N N/A −6.9◦ −0.039 m
Roll 1 5.67 N 5.00 N −3.4◦ N/A −0.044 m
Roll 2 8.50 N 6.67 N −4.8◦ N/A −0.044 m
Roll 3 11.34 N 9.91 N −6.5◦ N/A −0.046 m
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The experimental results are summarized in Table 3.2, using Eq. 3.30 to determine zCB,

where fW = [0, 0,−fW ]T , fS = [0, 0, fS]
T and B = 1140.41 N. The location of the ballast

weight and suspension point for the pitch tests are rW = [0.472, 0.0,−0.237]T and rS =

[−0.023, 0.0,−0.361]T m; the locations for the roll test are rW = [0.0,−0.277,−0.341]T

and rW = [0.0,−0.275, 0.351]T m. The final value of zCB was obtained by averaging the

results from Table 3.2.

zCB is the length of the moment arm for the buoyancy force. In reality, it is not possible

to guarantee that the CB is directly above the CG in the BRF, which may not be perfectly

aligned with the vehicle. To find the location of the CB in the BRF, the vehicle was fully

submerged in the SWAT and the neutral attitude, where the CB is directly above the CG,

was recorded. The location of the CB in the BRF can then be calculated as:

XB
CB = RN→B


0

0

−0.043

 (3.33)

The result was XB
CB = [−0.00045 − 0.00128 − 0.04298]T m.

Rigid Body Inertia Matrix

Estimating the inertia matrix for the vehicle can be challenging. As seen in the derivation

of the dynamic model in Section 3.2, the overall dynamics depend on the inertia matrix

plus an added mass matrix. Therefore, the inertia matrix cannot be identified directly from

the system dynamics in water. In order to get an estimate of the inertial and the added

mass contributions to the mass matrix, the inertia must be estimated separately. A bifilar

torsional pendulum experiment is one method of determining the mass moment of inertia

for a complex object [33].

Figure 3.11 shows the ROV setup for measuring the moment of inertia using a bifilar
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(a) (b)

Figure 3.11: Bifilar pendulum setup for determining the mass moment of inertia a) about
the x-axis (roll) b) about the z-axis (yaw)

pendulum. In Figure 3.11-a the vehicle is suspended with the x-axis of the BRF pointing up.

The two cables are attached to the vehicle such that they are aligned with the y-axis of the

BRF and the CG is situated between them. This configuration will give the mass moment

of inertia about the x-axis. The inertia is estimated by rotating the vehicle slightly about

the x-axis, letting it go and recording the resulting rotational motion. With a bifilar pendu-

lum, rotating the vehicle will cause a change in height, therefore giving the vehicle some

potential energy. Once released the vehicle will oscillate back and forth trading potential

for kinetic energy. The frequency of the oscillations is related to the inertia of the vehicle.

In Figure 3.11-a the MOCAP camera is shown in the foreground. LEDs are mounted to
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the upper surface of the vehicle and the camera is able to capture the oscillatory motion.

Figure 3.11-b shows the vehicle mounted to measure inertia about the z-axis, where the

pendulum wires are attached to the vehicle along the y-axis with the z-axis pointing up.

The setup for the y-axis (not shown) has the vehicle tipped onto its side with the two wires

attached at either end of the vehicle along the x-axis with the y-axis pointing up.

For this work the linearized equation of motion shown in Eq. 3.34 of the bifiliar pendu-

lum was used.

θ̈ +

[(
KD

I

)(
8A

3π

)
+
C

I

]
θ̇ +

(
mgD2

4Ih

)
θ = 0 (3.34)

whereKD andC are quadratic and linear damping terms,A is the average oscillation ampli-

tude,D is the distance between the pendulum wires, h is the length of the pendulum wires,

m is the mass of the assembly, g is gravity, and I is the mass moment of inertia about the

axis of rotation. Since the linearized equation of motion uses small angle approximations,

the amplitude of the rotations were kept small to minimize the error.

Since Eq. 3.34 is in the form of a simple second order linear system, one can also write:

θ̈ + 2ζωnθ̇ + ω2
nθ = 0 (3.35)

and deduce that

ω2
n =

(
mgD2

4Ih

)
⇒ I =

mgD2

4hω2
n

(3.36)

where ωd = ωn

√
1− ζ2 relates the natural frequency, ωn, to the damped natural frequency.

The frequency of the oscillations was measured to get ωd and the damping ratio, ζ , was de-

termined by comparing the amplitude of subsequent peaks using the logarithmic decrement

method.

ζ =
δ√

(4π2 + δ2
; δ =

1

n
ln

(
θ(t)

θ(t+ n∆T )

)
(3.37)

where θ(t) is the amplitude at one peak and θ(t+ n∆T ) is the amplitude n peaks later.
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The calculated ωn and ζ parameters were then used as an initial guess for a least squares

optimization that minimized the error between the measured angle and the angle predicted

by (3.35). The optimized ωn and ζ were then validated by comparing the predicted angle

from Eq. 3.35 against all of the data runs.
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Figure 3.12: Measured and simulated rotation angle as a function of time for the bifilar
pendulum experiment about the x-axis (a), y-axis (b), and z-axis (c)

Three runs were done on each axis, the data in the first x-axis run is questionable due

to problems with the lighting that LED to increased noise in the MOCAP output. The first

two z-axis runs were also compromised due to occlusion of the LEDs at rotation angles

greater than +10 degrees. This problem can still be seen in the first couple of peaks of the

third run (shown in Figure 3.12) but it was still possible to get a reasonable solution from

the data. Table 3.3 shows the mean error between the predicted angles using the optimized
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coefficients for (3.35). For the data runs that were not compromised, the maximum error is

0.034 radians or approximately 2 degrees, which is sufficient for this estimation. Note also

that a small phase shift, or slight errors in ωn will cause significant changes in the magnitude

error being reported here.

Table 3.3: Inertia Measurements
Axis ωn ζ I ē1(rad) ē2(rad) ē3(rad)

X 2.61996 0.00484 9.30079 0.01540 0.00527 0.02677
Y 3.41806 0.00440 14.91636 0.03485 0.00491 0.02184
Z 2.20642 0.00339 13.11394 0.01729 0.09787 0.00463

Summary

Table 3.4 summarizes all of the rigid body mass, inertia, and buoyancy properties of the

Falcon vehicle and sled combination.

Table 3.4: Weight and Balance Summary
Description Value Units
Vehicle Mass 116.0 kg
Vehicle Buoyancy 6 116.2 kg
Vehicle Displacement 0.114 m3

Moment of Inertia about x-axis 9.30079 kg m2

Moment of Inertia about y-axis 14.91636 kg m2

Moment of Inertia about z-axis 13.11394 kg m2

CG in MRF
[
0.164 0.368 −0.351

]T
m

CB in BRF
[
−0.00045 −0.00128 −0.04298

]T
m

3.4.2 Hydrodynamic Coefficients

The addedmass and drag coefficients described in Section 3.2.2 were obtained by collecting

sensor data during a series of system identification manoeuvers. In these tests, the vehicle
6Buoyancy was measured using water with a density of 1022.4kg/m3; this is the average density of

seawater at the SWAT facility.
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was given a step input of command (forwards, lateral, up/down, or spin) and the response

was measured. The drag coefficents are obtained by observing the steady state velocity

at a given thruster command. The added mass coeffiencts can then be deduced from the

acceleration profile.

To isolate the drag effects, the vehicle was flown at a steady state velocity (i.e. ν̇ = 0 )

while exciting only oneDOF at a time. While in practice it is not possible to 100% isolate the

indiviual DOFs, the extraneous motion can be minimized to such an extent that the coriolis

effect is negligible. By further minimizing the environmental forces and moments as much

as possible, the system dynamics can be reduced to the following simplified equation of

motion:

0 = τ (δ)− D (ν)ν − g (η) (3.38)

D (ν)ν = τ (δ)− g (η)

Since D (ν) is a linear function in ν and it is multiplied by ν in the equations of motion,

one would expect that plotting τ (δ)− g (η) as a function of ν for different levels of thrust

would result in a quadratic curve with a zero intercept.

Similarly, when the vehicle first begins to accelerate and ν is still very small, one can

neglect the drag component allowing the added mass can be estimated as follows:

Mν̇ = τ (δ)− g (η) (3.39)

Therefore, by plotting τ (δ) − g (η) as a function of ν̇ for different levels of thrust, one

should obtain a linear relationship with a zero intercept and a slope ofM .

The challenge with this procedure is determining a valid estimate for the thruster forces.

The model presented in Section 3.3 is valid for a single detached thruster, it does not take

into account the interference that occurs when the thruster is mounted onto the vehicle. This
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Figure 3.13: Hydrodynamics coefficient estimates for surge: a) drag profile and b) mass
profile.

uncertainty is handled by introducing an interference factor, IF, that allows for a degrada-

tion in the thrust due to interference effects. The value of the interference factor, drag

coefficients and added mass coefficients can all be determined simultaneously using a least

squares optimization routine.

Surge Coefficients

Figure 3.13-a, shows the quadratic drag curve that was anticipated from the theory. The top

graph shows the translational longitudinal DOFs and the bottom graph shows the rotational

DOF. The y-axis shows τ −G for each of the different directions, which are effectively the

input forces, and the x-axis shows velocities. This shows that the surge DOF is primarily

being excited during these step tests and that the data fits a quadratic drag profile very well.

There is also a small amount of heave that occurs due to surge without there being any input

forces in this direction. Since these graphs show angular rates instead of angles, pitch due

to surge cross coupling will not show up here but will be discussed later in this chapter. The

results for the estimation of M is shown in Figure 3.13-b, as expected the relationship is

linear.

Figure 3.14-a shows estimates of the surge velocity using the measured coefficients.
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Figure 3.14: Estimated velocities in surge using a) measured coefficients and b) optimized
coefficients.

This estimate is good but the vehicle accelerates more quickly in the simulation then was

measured. This effect is even more prevalent on other DOFs (such as sway), and is likely

due to overestimating the thrust being produced by the thrusters (ie not taking into account

the interference effect as described in [11]). By applying an interference factor (IF) to

the thrust, the curves can be corrected to more accurately follow the measured velocity.

To determine the IF an optimization was performed that minimizes the least squares error

between the simulated velocity and the measured velocity while allowing the mass, drag

and IF to vary. The result is shown in Figure 3.14-b.

Even with an optimization, the thrust curves will not be a perfect prediction as they

do not take into account environmental effects, including tether drag. This effect can be

substantial. There are floats attached to the tether to make it neutrally buoyant near the

vehicle. Depending on the depth, the vehicle may be dragging these floats across the surface

of the water or pulling them down through the water column, causing changes in the drag

profile and gravitational forces between and during runs.

A summary of the measured and optimized coefficients for surge are shown in Table 3.5

along with the IF. In the surge direction the IF was 0.87 which is a reasonable number

given that the vehicle and thruster orientations are optimized for forward motion. The surge
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coefficients were only measured in the forward orientation. While it is possible to take

measurements with the vehicle operating in reverse, the measurements are highly corrupted

by tether disturbances and add little value. From the vehicle symmetry, one can expect the

hydrodynamic coefficients to be very similar whether the vehicle is travelling forward or

reverse.

Table 3.5: Hydrodynamic Coefficient Summary for Surge
Coefficient Measured Value Optimised Value Units
m+Xu̇ 248.0 283.6 kg
DLuu 27.9 26.9 kg/s
DQu11

273.6 241.3 kg/m
IFu N/A 0.87 N/A

Sway Coefficients

The results of mass and drag estimates for the sway direction are shown in Figure 3.15.

These plots are similar to the surge plots with the lateral translational DOFs shown on top

and the rotational ones shown on the bottom. In these plots, both drag and mass curves fit

the expected profiles very well. There is a small amount of yaw due to sway, and a small

rolling moment that is applied to the vehicle from the thrusters. Roll due to sway cross

coupling will not show in these graphs but will be discussed along with the other cross

coupling effects will be discussed later in this section.

In the sway direction, the acceleration profile in the simulated results is significantly

different from the acceleration profile in the measured velocities, Figure 3.16-a. This is un-

doubtedly due to the IF as the vehicle is not optimized for travel in this direction. The

simulation results that use the optimized coefficients fits the measured velocities much

better,Figure 3.16-b.

Environmental effects were also more noticeable while taking data in the sway direc-

tion, this is primarily due to the way that the tether is pulled when travelling laterally. In
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Figure 3.15: Hydrodynamics coefficient estimates for sway: a) drag profile and b) mass
profile.
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Figure 3.16: Estimated velocities in sway using a) measured coefficients and b) optimized
coefficients.

practically every run, the steady state velocity decreased by a noticeable amount once the

vehicle started to pull a loop of tether through the water. This limits the accuracy to which

one can estimate the coefficients for this DOF.

A summary of the measured and optimized coefficients for surge are shown in Table 3.6

along with the IF. In the sway direction the IF was 0.83. Note that the added mass and drag

forces are higher in the sway direction than in surge, this is to be expected given the profile

of the vehicle. As with surge, the sway coefficients were only measured in one direction,

but again due to vehicle symmetry, one can expect the hydrodynamic coefficients to be very
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similar whether the vehicle is travelling to the port or starboard side.

Table 3.6: Hydrodynamic Coefficient Summary for Sway
Coefficient Measured Value Optimised Value Units
m+ Yv̇ 315.7 593.2 kg
DLvv 24.8 35.8 kg/s
DQv22

642.0 503.8 kg/m
IFv N/A 0.83 N/A

Heave Coefficients

Obtaining measurements for the heave DOF was difficult, as there is only a few metres

between the surface and the seafloor in the SWAT facility. This issue is exacerbated by the

fact that the DVL loses bottom lock and stops providing velocity measurements when it

is less than one metre above the seafloor. In heave, one can expect significantly different

responses in the positive and negative directions. This is partially due to the addition of

the AIC below the vertical thruster and partially due to the fact that top of the vehicle has

a smooth hydrodynamic fairing, while the bottom of the vehicle is open and can trap large

amounts of water.

The results of mass and drag estimates for the yaw direction are shown in Figure 3.17.

Themeasured coefficients for heave are not nearly as accurate as were seen in either surge or

sway. This is due to the difficulties in obtaining steady state motion as well as the challenges

in identifying the initial acceleration. When the vehicle starts on the surface, the vertical

thruster can take a few seconds before it starts to bite the water and descend. When the

vehicle is on the bottom it is practically impossible to capture the initial acceleration from

a stand still because the DVL cannot measure speed when it is close to the bottom. As

a result, the measured mass and drag characteristics are questionable at best and in some

cases generated non-physical values. Fortunately, the optimization method still works and

generates reasonable coefficients for both directions.
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Figure 3.17: Hydrodynamics coefficient estimates for heave: a) drag profile for negative
heave command b) mass profile for negative heave command, c) drag profile for positive
heave command d) mass profile for positive heave command (NOTE: positive heave com-
mand is down).

The simulated responses for both positive and negative heave motion are shown in

Figure 3.18 and the optimized coefficients works very well. As expected, the positive and

negative directions are significantly different, with larger added mass and drag coefficients

in the down direction. The IFs also differ significantly with the a modest factor of 0.65 for

downward motion (when the thruster is exhausting up) and a factor of 0.15 for upward mo-

tion (when the thruster is exhausting downwards into the AIC). While extreme, these values

are not unexpected and match what the performance that was observed while operating the

vehicle. A summary of the measured and optimized coefficients for heave are shown in

Table 3.7 along with the IF. Also notable in Figure 3.17 is the lack of q as a result of w; this



63

0 5 10 15 20 25 30 35 40 45
−0.2

−0.15

−0.1

−0.05

0

0.05

w
(m

/
s)

Time (s)

Simulated negative heave velocity using optimized coefficients

−10 0 10 20 30 40 50 60
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

w
(m

/
s)

Time (s)

Simulated positive heave velocity using optimized coefficients

(a) (b)

Figure 3.18: Estimated velocities in heave using the optimal coefficients for: a) a negative
command and b) a positive command.

suggests that the cross coupling between q and w is negligible.

Table 3.7: Hydrodynamic Coefficient Summary for Heave
Direction Coefficient Measured Value Optimised Value Units
DOWN m+ Zẇ 859.6 499.0 kg

DZww 30.6 0.0 kg/s
DQw33

330.7 265.6 kg/m
IFw N/A 0.65 N/A

UP m+ Zẇ N/A 351.7 kg
DZww N/A 6.2 kg/s
DQw33

N/A 119.1 kg/m
IFw N/A 0.15 N/A

Yaw Coefficients

For the yaw DOF, it is relatively easy to collect data in both the positive and negative direc-

tions without introducing significant data corruption from tether disturbances. One would

expect the dynamics in the two directions to be similar, and this provides a double check on

the validity of the the parameters and methods. The results of mass and drag estimates for

the yaw direction are shown in Figure 3.19, with all four curves fitting the expected profiles

very well.
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Figure 3.19: Hydrodynamics coefficient estimates for yaw: a) drag profile for negative
yaw command b) mass profile for negative yaw command, c) drag profile for positive yaw
command b) mass profile for positive yaw command.

The simulated responses for both port and starboard, shown in Figure 3.20, fit very well

and the optimized coefficients ended up being very close in value for the two directions

(which is to be expected). A summary of the measured and optimized coefficients for yaw

are shown in Table 3.8 alongwith the IF. Since the final values were so close, themean value

of the two directions were used and no differentiation is made between the two directions.

Pitch and Roll Coefficients

Since neither roll nor pitch are controllable DOFs, it is not possible to excite or control

these dynamics using the thrusters. As such, the pitch and roll dynamics are often ignored
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Figure 3.20: Estimated velocities in yaw using: a) measured coefficients for the negative
command, b) optimized coefficients for negative command, c) measured coefficients for
the positive command, d) optimized coefficients for positive command.

Table 3.8: Hydrodynamic Coefficient Summary for Yaw
Direction Coefficient Measured Value Optimised Value Units
STBD Iz +Nṙ 37.3 28.9 kg ·m2

DLrr 6.97 3.2 kg ·m2/s
DQr66

57.4 63.3 kg ·m2

IFr N/A 0.95 N/A
PORT Iz +Nṙ 38.6 29.0 kg ·m2

DLrr 1.34 3.83 kg ·m2/s
DQr66

86.2 90.5 kg ·m2

IFr N/A 1.06 N/A

completely, and designers rely on the inherent stability of the vehicle to manage the pitch

and roll motion. However, for some applications, such as work in high flow environments,
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and when trying to accurately position a manipulator in real-time [61], identifying these

parameters can be important.

Tomeasure these dynamics, the vehicle was submerged at some angle and then released,

producing oscillations due to the trade off between vehicle angle and restoring forces. The

angle of the vehicle was measured during these oscillations and used to determine the added

mass and drag characteristics. To measure the single DOF dynamics, it is necessary to pro-

duce pitching or rolling motion while imparting as little surge or sway velocity as possible.

Since the vehicle is positively buoyant, there will always be some amount of heave velocity

when the vehicle is submerged. However, looking at the layout of the ROV, the centre of

pressure for pure heave motion will be relatively close to the z-axis of the BRF; therefore,

the moment contribution due to pure heave motion should be negligible. The tether also

ends up in a quasi-static state during this type of motion, minimizing the tether contribu-

tion.

2 4 6 8 10 12 14 16 18 20 22
−15

−10

−5

0

5

10
Comparison of single DOF Roll Dynamics

φ
(d
eg
)

2 4 6 8 10 12 14 16 18 20 22
−10

−5

0

5

10

15

p
(d
eg
/
se
c)

Time (sec)

Measurements
Sim

0 5 10 15 20 25
−20

−10

0

10

20
Comparison of single DOF Pitch dynamics

θ
(d
eg
)

0 5 10 15 20 25 30
−20

−10

0

10

20

q
(d
eg
/
se
c)

Time (sec)

Measurements
Sim

(a) (b)

Figure 3.21: Estimated and measured angular rates (with negligible translational velocity)
for a) roll and b) pitch.

Figure 3.21 shows the decoupled rolling and pitching dynamics. The pitch and roll

characteristics were measured on two different occasions several weeks apart and the results

were obtained using a mix of data from both days. The coefficients for the model were

determined using a least squares optimization between the measured angular rate and the
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simulated one. The runs chosen for inclusion in the optimization were selected based on

the following criteria:

• The translational velocity in the horizontal plane was as small as possible.

• The oscillations were measured and undisturbed for a sufficiently long time to ade-

quately determine the quadratic drag.

• The were no noticeable disturbances due to the tether or other external influences.

More than 40 data sets of roll and pitch motion were collected over the two days, with 4

data sets being chosen for inclusion in each optimization. The primary reason for excluding

data sets was excessive translational velocity. Several data sets were also excluded because

oscillatory motion stopped prematurely leading to inconclusive values for the quadratic

damping (this occurred when the vehicle was not deep enough and came to the surface

too quickly). The results of the optimization are validated using the data sets shown in

Figure 3.21; these data sets are a combination of runs that were selected for inclusion in

the optimization and runs that were rejected. While there is some discrepancy between the

measured data and the simulation at the beginning the period and amplitude of the oscilla-

tions as they decay are captured well. The modelling error at the beginning of the run is

understandable given that: 1) there is typically some small amount of surge or sway motion

at the beginning of the run which quickly dies out, and 2) environmental disturbances (pri-

marily from the tether) are more likely to occur at the beginning of the run before the system

is able to settle into a pseudo-steady state condition. The coefficients for the single DOF

model are listed in Table 3.9. All of the parameters obtained are in line with expectations

given the coefficients previously obtained for yaw.

While the model captures the dynamics well for the case when there is no translational

velocity, it does not accurately predict the angles during translational motion. This can be

seen by comparing the single DOF model with the measurements of pitch and roll that were
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Table 3.9: Hydrodynamic Coefficient Summary for Pitch and Roll
Direction Coefficient Value Units
ROLL Ix +Kṗ 20.9 kg ·m2

DLpp 3.0 kg ·m2/s
DQp44

101.6 kg ·m2

PITCH Iy +Mq̇ 30.4 kg ·m2

DLqq 4.9 kg ·m2/s
DQq55

59.9 kg ·m2

taken during the surge and sway system ID tests presented in the previous sections. the

results are shown in Figure 3.22, it is clear that the pitch and roll angles are not accurately

predicted. It turns out that cross coupling effects due to translational velocities are an impor-

tant part of the pitch and rolling dynamics. This is not an unexpected result. The addition

of the sled to the ROV, added a large flat panel below the centre of gravity; during sway

motion water pushing against this surface will impart a significant positive rolling moment

to the vehicle. Similarly, during surge motion, the water pushing against the frontal area of

the ROV will likely also be a source of pitching dynamics. It should also be pointed out

that the cross coupling terms from the added mass component of the C matrix also play a

significant role in the roll and pitch dynamics while the vehicle is underway. The CA ma-

trix contribution is kinematic but is contingent on the accuracy of the previously determined

coefficients and estimation of the rigid body mass and inertia to accurately predict motion.

In order to determine the contribution of surge and sway to pitch and roll, a second least

squares optimization was done. For this optimization,the single DOF coefficients for roll

and pitch were fixed and only the cross coupling components were allowed to vary. The

results are shown in Figure 3.23. The results are excellent given the complexity of the dy-

namics and all of the potential sources of error (including errors in previously determined

coefficients). The model predicts some level of oscillation which is on par with what was

seen on the vehicle and the steady state angle is also predicted well. The resulting coeffi-
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Figure 3.22: The predicted and measured angles using a single DOF model for a) roll and
b) pitch when translational velocity is present.

cients are presented in Table 3.10.
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Figure 3.23: Estimated and measured angles using a cross coupled model for a) roll and b)
pitch when translational velocity is present.

Hydrodynamic Summary

This section summarizes the results of the system identification for the hydrodynamic pa-

rameters of the dynamicmodel. Statistics on the quality of fits were purposely not presented,

as they can be deceiving in the face of large environmental disturbances primarily due to
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Table 3.10: Hydrodynamic Cross Coupling Coefficient Summary for Pitch and Roll
Direction Coefficient Value Units
ROLL Kv̇ −22.8 kg ·m2

DLpv −3.5 kg ·m2/s
DQp22

−46.4 kg ·m2

PITCH Mu̇ −15.3 kg ·m2

DLqu −1.5 kg ·m2/s
DQq11

−13.7 kg ·m2

the tether. The graphs provide a better means of interpreting the results.

Table 3.11: Interference Factor Summary
Dir. Interference

Factor
Surge 0.87
Sway 0.83
Heave (DN) 0.65
Heave (UP) 0.15
Yaw 1.0

Table 3.11 summarizes all of the IFs determined during the system identification tests.

These factors will be applied to the thruster force and moment vector τ , to create a more ac-

curate prediction of the vehicle dynamics. The different heave factors will be applied to the

vertical thrust depending on the direction of motion. A summary of all the hydrodynamics

properties of the vehicle are presented in Table 3.12.

3.5 Conclusion

In this chapter, a comprehensive vehicle and thruster model was developed. The thrust

model was developed through measurements taken using a test stand. These measurements

produced consistent repeatable results for an ideal stand-alone thruster. The thruster model

was then used to determine the forces and moments on the vehicle during a series of system
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Table 3.12: Hydrodynamic Coefficient Summary
Dir. Rigid Body & Linear Drag Quadratic Drag

Added Mass
Surge m+Xu̇ = 283.6 kg DLuu = 26.9 kg/s DQu11

= 241.3 kg/m

Sway m+ Yv̇ = 593.2 kg DLvv = 35.8 kg/s DQv22
= 503.8 kg/m

Heave(DN) m+ Zẇ = 499.0 kg DLww = 0.0 kg/s DQw33
= 265.6.1 kg/m

Heave(UP) m+ Zẇ = 351.7 kg DLww = 6.19 kg/s DQw33
= 119.1 kg/m

Roll Ix +Kṗ = 20.9 kg m2 DLpp = 3.0 kg m2/s DQp44
= 101.6 kg m2

Kv̇ = −22.8 kg m2 DLpv = −3.5 kg/s DQp22
= −46.4 kg

Pitch Iy +Mq̇ = 30.4 kg m2 DLqq = 4.9 kg m2/s DQq55
= 59.9 kg m2

Mu̇ = −15.3 kg m2 DLqu = −1.5 kg/s DQq11
= −13.7 kg

Yaw Iz +Nṙ = 29.0 kg m2 DLrr = 3.5 kg m2/s DQr66
= 76.9 kg m2

identification tests. The system identification tests were used to determine the hydrody-

namic coefficients for the vehicle model. The final coefficients for the model were deter-

mined using a least squares optimization, which incorporated a thruster interference factor.

The identification of the pitch and roll dynamics was done in two steps. The first step was to

identify the single DOF dynamics by isolating the pitching and rollingmotion. Once the sin-

gle DOF dynamics were identified, additional cross-coupling coefficients due to surge and

sway were obtained using the full 6 DOF model. With the addition of the cross-coupling

coefficients, the pitch and roll model agreed well with the dynamics that were measured

during surge and sway motion.

Deriving an accurate dynamic model for an ROV is a difficult task. There are a lot of

coefficients that need to be estimated at the same time, and it is often difficult to validate

the data. Even if it was easy to obtain system identification data that doesn't contain noise

and environmental disturbances, the quadratic drag model that is being used is only an

approximation. It is unlikely that a simple quadratic drag model will precisely predict the
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drag profile for a complex body, such as an ROV, as it twists and turns through the water.

Despite these complexities, the model presented here is comprehensive and consistent.
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Chapter 4

Navigation

The art of navigation has been evolving for millennia; even the very first humans needed

a way of describing where they were relative to important land marks. Seafarers pushed

the boundaries of navigation, travelling further away from known landmarks in attempts

to discover new parts of the world. Remarkable feats of navigation have been recorded

as early as 350-BC [6]. These early mariners navigated without the use of compasses or

sextants, or any of the other instruments we typically consider to be essential tools for

even the most rudimentary ocean navigation. Things have changed and, in modern times,

we rely heavily on instruments such as compasses, IMUs, and GPSs. When discussing

navigation for autonomous vehicles, one is typically referring to the fusion of information

frommultiple sensors in some kind of optimal way to estimate the state vector of the vehicle.

The state vector is a collection of variables which completely defines the condition of each

independent degree of freedom of the body. This estimation is normally done using an

observer or parameter estimator. The output of the navigation system provides feedback

to the controller. Therefore, the accuracy of the navigation system will directly impact the

design of the control system.

Precise underwater state information is often difficult to obtain. Highly accurate po-
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sition data is challenging to acquire, due to the difficulties in communicating information

through water. This makes the accuracy and stability of the inertial sensors more impor-

tant. Extraneous unmodelled forces, such as tugs on the tether or collisions with the bottom

or other subsea infrastructure, provides an additional challenge as these forces can dwarf

the more subtle hydrodynamic and propulsion forces inherent in the vehicle. However,

the density of water does provide one advantage - underwater vehicle dynamic motion is

well damped. Transient dynamics die out and maintaining a sideslip or non-trimmed angle

of attack requires the application of a constant force. Therefore, under a suitably stable

controller the vehicle should remain in a quasi steady-state condition and follow a model

relatively well.

In this chapter, an extended Kalman filter (EKF) will be developed to estimate the state

vector of the Falcon ROV. The EKF will use the results from Chapter 3 for a the pro-

cess model, and measurement models will be developed for all the sensors described in

Appendix B. The resulting EKF will be validated using the MOCAP tracking system de-

scribed in Chapter 2.

4.1 Background

As remotely operated and autonomous vehicles have become more prevalent, navigation

has become an increasingly more important topic; through this, the Kalman filter, first de-

scribed in 1960 by R.E. Kalman [37], has remained the dominant estimator in the field. The

Kalman filter, also know as the linear quadratic estimator, minimizes theH2 norm of the er-

ror between sensors measurements and an estimate of what those measurements would be,

given an estimate of the position and orientation (state) of the sensors. The original Kalman

filter was a linear estimator, but was extended to address non-linear plants. The EKF simply

linearizes the non-linear models and applies the linear Kalman update equations [69]. This
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approach has been successfully applied to many different robotic applications from aircraft,

to ground vehicles, to underwater vehicles.

While the EKF has dominated the navigation market, it does have some draw backs

[17]. The biggest being that it relies heavily on the accuracy of the covariance matrices for

the process model and measurement models for ensuring the optimality of the estimate. If

these matrices are wrong then the estimate can be very inaccurate and the problemmay even

become ill conditioned. This has provided researchers with incentive to find better solutions

to the nonlinear filtering problem. In 1993, Gordon, Salmond and Smith first proposed the

'bootstrap' filter as a rival to the EKF [25]; this filter has subsequently become known as

the Particle Filter (PF). A PF exploits the Bayesian characteristics of the model and uses

Monte Carlo sampling to obtain an optimal estimation. For a sufficiently well behaved

problem, a PF with superior accuracy and equivalent computationally efficiency can be de-

signed. However, for problems with high degrees modelling uncertainty, the computational

cost can increase dramatically making the PF accuracy sub-optimal given the constraints

of real-time computing. Never the less, over the last two decades, there has been an abun-

dance of research on PFs and methods of augmenting them. In 1997, the unscented Kalman

filter (UKF) was proposed [36]. The unscented filter is more stable and predictable in the

face of non-linearities, as it bypasses the need to linearize the process and measurement

models by using the "unscented transformation". Finite impulse response (FIR) filters have

also been used for navigation, with comparable results to an EKF [49]. Research into the

design and implementation of exact non-linear filters (much like the KF is exact for linear

systems), have also been broached but they are complex and can be prohibitively expensive

computationally. That being said, an exact solution which can produce optimal estimates

to the nonlinear filtering problem is the holy grail of navigation. Research in this area is

occurring1, but there is still much work to be done in this area [17].
1Research on exact non-linear filters is presented in [18, 5]
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Despite the advances in nonlinear filters in the literature, the discrete EKF was chosen

for this work. It has a proven reliability for underwater applications, builds on previous

work in at UVic [61, 78, 64], and is computationally inexpensive. Since the software is

running on a small embedded processor, computational efficiency is an important quality.

4.2 Discrete Extended Kalman Filter

All of the Kalman filters have a few common components:

1. A process model which describes the dynamics of the system,

2. A measurement model which describes the output of the sensors given the state of

the process model,

3. A set of propagation equations which propagates the process model given the error

between the actual and estimated measurements.

The process and measurement models are given by Eq. 4.1 and Eq. 4.2, respectively.

xk = f(xk−1, δk−1,wk−1) (4.1)

zk = h(xk, vk) (4.2)

where xk is the model state vector, δk are the control inputs, zk are the measurements and

wk and vk are the process and measurement noise respectively, which are assumed to be

from independent normally distributed white noise sources. It isn't possible to know the

values of the white noise, wk−1 and vk, at a given time step, but one can use these models to

estimate x and z. The estimates are denoted by (̂·). In this case we have used the symbol x

as a generic state vector; it will be neither η nor ν but a superset which includes both. A full

derivation of the Kalman equations is presented in [69]. The following will just introduce

the discrete EKF and discuss the formulation that is used for this work.
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Given the process and measurements models, an optimal estimate of the state variables

can be obtained using the process outlined in Figure 4.1. In this diagram, P is a covariance
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Figure 4.1: Process for Iterating an Extended Kalman Filter

matrix for the EKF and K is the Kalman Gain. x̂ and ẑ are estimates of the state and mea-

surement vectors, derived from f and h. z is the vector of actual measurements, QP is the

covariance matrix for the process model and RM is the covariance matrix for the measure-

ment model. Finally, A and H are the Jacobians of the process and measurement models

respectively.

In the first step of this process, the state and measurements are predicted using the pro-

cess and measurement models and an interim value of P is calculated; the predicted value

of x is denoted by the superscript x̂−. In the second step, the Kalman gain, K, is calcu-

lated. This is then used along with the predicted estimates to determine a final value for the

state estimate, x̂, and estimate covariance, P. The following sections describe the process

and measurement models; the lengthy derivatives required for the A andHmatrices can be

found in Appendix E.
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4.2.1 Process Model

For this work, the process model is the dynamic model described in Section 3.2. With

underwater vehicles, the accuracy of the process model is important. The measurements

from the SBL come at approximately 1 Hz (as opposed to terrestrial systems like the Global

Positioning System (GPS) which operates at around 10 Hz), so without an accurate process

model the estimate can drift substantially between SBL updates. In general, to ensure a rapid

convergence the process model should be as simple as possible while still capturing all of

the dominant dynamics. In the past, it has been noted that including oscillatory higher order

terms in the model can degrade the accuracy of the solution by causing what is essentially

a limit cycle in the process model; when tuning the EKF, it is essential to look at the higher

order terms and determine which ones are helpful and which ones are not. The Jacobian

of the process model, A, and the a description of which components were neglected is

described in Appendix E.

In addition to the process model and its Jacobian, the initial estimate and error covari-

ance matrices must be defined. The initial estimate is the best guess for the state vector

given the available information. When starting the EKF for the first time, a few things are

known:

• The vehicle is likely at rest on the surface,

• The vehicle is probably inside the boathouse,

• The vehicle is likely sitting level with minimal pitch and roll angle.

From this, we can pick an initial estimate for the position, quaternion, angular and trans-

lational rates as well as the accelerometer and rate gyro biases. The value for x0 used in

this work is listed in Appendix E. The initial estimate for P, denoted by P0, reflects the

confidence in x0. For example, an estimate of the maximum error in the initial estimate of

position will be a function of the size of the boathouse, which is only 3 m wide and 6 m
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long. Poor choices of values for P0 won't stop the estimate from converging, but will af-

fect the speed at which it converges. The values used for P0 in this work are also listed in

Appendix E.

The last matrix to be defined in the process model is QP , the process model covariance

matrix. QP should capture the noise in the process model itself. The values of QP were

determined through trial and error using vehicle data that was recorded while the MOCAP

was running. By comparing the estimated state with the MOCAP measurements, it was

possible to manipulate the process model covariance matrix such that the EKF gave con-

sistent performance under a variety of scenarios. The values used for QP in this work are

listed in Appendix E.

4.2.2 Sensors and the Measurement Model

The sensors used for this research are mounted on the navigation sled as described in

Appendix B. This sled is a removable addition to the Falcon; the sled can be affixed when

precise positioning is required and then easily removed as a unit when a more compact ve-

hicle configuration is necessary. Keeping the entire ensemble together as a single unit is

advantageous because it eliminates the need to survey the locations of all the instruments

each time the vehicle is reassembled.

In an EKF, each of the sensors are modelled such that one can predict the measurement

based on the output of the process model. The difference between the measurements and

the estimated measurements are called the residuals, and are used to produce the final state

estimate. The better the measurement model, the more accurate the residuals will be which

will lead to a more accurate state estimation.

The measurement model includes several components:

1. z(x̂): an equation that describes the measurement in terms of the state vector,
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2. ∆t: the latency between the time the measurement is taken and the time that it is

processed by the EKF,

3. RM : the mean variance of noise in the measurements.

Since both the IMU and MOCAP are low latency systems operating at high frequency

(125 Hz and 100 Hz respectively) with respect to the system dynamics, it can be assumed

that their latency is negligible. The latency in the command loop is obtained by comparing

the time stamp from when the thrust command is initiated with the time stamp from the

first acceleration that is detectable by the IMU. This will indicate the time delay between

when a command is issued and when the action is initiated (i.e., the thrusters fulfill the

command). Each of the sensors will also have their own separate latency between the time

that a measurement is observed and when it is delivered to the control computer. Since

the sensors are measuring position and velocity, this latency is most easily measured by

comparing the sensor output with the motion logged by the MOCAP camera system. The

Jacobian of the measurement model, H, is described in Appendix E.

Inertial Measurement Unit

The inertial measurement unit used here is the EpsonM-G350-PD11, a quartz-MEMS IMU.

Quartz-MEMS units are high-endMEMS IMUs, providing superior stability and sensitivity

to other MEMS devices without a significant increase in price; this sensor outputs accel-

eration and angular rates for all three body axes. See Appendix F for a more complete

discussion on different types of IMUs.

The IMU is mounted as shown in Figure 4.2; note that the IMU is shown with the x-axis

pointing away from the opening for the rip cord (indicated by two small silver posts on the

left hand image), the z-axis pointing away from the black endcap and the y-axis forming

a right had coordinate system. The IMU housing is mounted to the port side of the sled,
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(a) (b)

Figure 4.2: Inertial Measurement Unit: (a) sensor as mounted in the housing (b) custom
interface board

Table 4.1: IMU Sensor Location Summary
Description Value Units

RS→B

 0 −1 0
0 0 1
−1 0 0


N/A

XB
i

 0.37644
−0.26550
0.25732


m

with the rip cord opening facing downwards. The transformation matrix from the SRF to

the BRF as well as the location of the sensor in the BRF are shown in Table 4.1.

In the IMU documentation, the noise density is quoted to be ±0.1 mG/
√
Hz for the ac-

celerometers and±0.004 (◦/sec)/
√
Hz for the rate gyros. Given a sampling rate of±125Hz,

which has a Nyquist frequency of ±62.5 Hz, the static variance for white noise can be cal-

culated to be the square of the noise density times the bandwidth of the signal (which is

the Nyquist frequency). Therefore, the expected variance for the acceleration and angu-

lar rate measurements are ±0.625 (mG)2 and ±0.001(◦/s)2 respectively. Static testing of

the instrument confirmed this with values of ±0.263630 (mG)2, ±0.300581 (mG)2, and

±0.165441 (mG)2 for the three accelerometers. Similarly, the static variance for the three
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Table 4.2: IMU Measurement Summary
Description Unit Biases Static Dynamic Latency

Variance Variance (sec)
Acceleration (ẍ, ÿ, z̈) mG N/A 0.625 900 0
Angular Rate (p, q, r) ◦/s N/A 0.001 0.5625 0

rate gyros was ±0.000553(◦/s)2, ±0.000714(◦/s)2 and ±0.000706(◦/s)2. In practice, how-

ever, when the vehicle is moving the variance will be higher due to vibration in the vehicle

from the thrusters and hydrodynamic forces. The dynamic variance of the measurements

was determined by studying the noise in the sensors during the system ID tests. This is most

readily measured on the off-axes and when the system is moving in a steady state condition.

Determining all of the sensor biases exactly can be impossible and can result in con-

flicting information from the sensors; for example, the rate gyros could have a small bias

and indicate that the roll angle is changing while the compass indicates that the angle is

unchanging. Conflicting sensor information will artificially increase the error covariance

in the P matrix and can drive the EKF to instability. This is especially critical on the low

level sensors in the IMU, where small biases get integrated and can have a large impact

on higher level states. To mitigate this situation, the accelerometer and rate gyro biases are

estimated dynamically in the EKF. This approach has two benefits: 1) it eliminates the need

to try and figure out accurate biases for the IMU (accelerometer and rate gyro biases are

highly sensitive to power cycling and environmental changes) and 2) it stabilizes the EKF

by providing an outlet for other sensor misalignments that create conflicting information.

The acceleration measured by the IMU will be a function of where it is mounted with

respect to the CG of the vehicle. Newton's second law for acceleration of a particle in a

rotating reference frame, whose position with respect to the origin of the rotating frame is
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given by r, can be described as follows:

ṙ = v + ω × r (4.3)

r̈ =
d

dt
(v + ω × r)

= v̇ + ω̇ × r + ω × ṙ

= a+ ω × v + ω̇ × r + ω × (v + ω × r)

= a+ 2ω × v + ω̇ × r + ω × (ω × r)

where r̈ is the measured acceleration vector, a is the BRF translational acceleration vector

(ie the acceleration of the vehicle CG), v is the vehicle velocity vector and ω is the angular

rate vector. Lastly accelerometers measure specific force (or the acceleration with respect

to free fall) [26]. This means that when an object is at rest an accelerometer will show

an acceleration of approximately 9.8 m/s2 in the direction opposite of gravity. As previ-

ously mentioned, there will also be time varying biases in the accelerometers, which will

be estimated in the EKF. Therefore, the total measured acceleration will be:

ha(x) = RB→S (r̈ + sa) + Ba (4.4)

= RB→S

r̈ + RN→B


0

0

−g


+ Ba

where RB→S is the rotation matrix from the body to sensor frame, shown in Table 4.1.

Modelling the measurements from the rate gyros is more straight forward. The roll,

pitch and yaw rate measurements, p, q, and r, as well as the IMU rate biases will also

be estimated directly in the EKF. Figure 4.3 shows IMU measurements versus predicted
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measurements from the EKF.

hg(x) = RB→Sω + Bg (4.5)
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Figure 4.3: IMU measurements: (a) rate gyros (b) accelerometers.

Pressure Sensor

Ambient water pressure is closely related to depth and a pressure transmitter can be used

to determine the depth of the vehicle. The pressure transmitter used here is a Series 30

Preciseline pressure sensor from Keller America. It was chosen primarily for its stability

as opposed to it's absolute accuracy and repeatability. Knowing exact depth from pressure

requires additional sensors on the surface, as the atmospheric pressure (which is constantly

changing), will also contribute to the total pressure that is measured at any particular depth.

For the purposes of this research the most important attribute for a depth sensor is to give

a steady output at a given depth, so that when the vehicle is trying to hold a stable vertical

position it is getting consistent feedback. More information on pressure sensors can be

found in Appendix F.

The pressure sensor is mounted in the SSC as shown in Figure 4.4-a, the sensing di-

aphragm exposed to ambient pressure through the end cap of the SSC. The location of the
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(a) (b)

Figure 4.4: Keller America Pressure Sensor: (a) picture of the Keller America Preciseline
sensor inside the SSC (b) image showing the tube connecting the pressure sensor and the
oil filled bladder

Table 4.3: Pressure Sensor Location Summary
Description Value Units
RS→B N/A N/A

XB
p

 0.10130
−0.22116
0.26171


m

diaphragm in the vehicle body frame is summarized as Table 4.3.

The measured static variance for the pressure sensor is ±4.0 × 10−8 bar2. As with the

other sensors, in practice when the vehicle is moving the variance will be higher due to

pressure variations in the water. Pressure variations can be caused by the vehicle motion

causingmovingwater to push against the sensormembrane; pressure changes can also occur

due to the flow of water around the vehicle structure. The ambient water pressure will be

the sum of the atmospheric pressure, the pressure from the water column, and the dynamic

effects. The predominant effect will be from the vehicle velocity.
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An oil-filled bladder was attached to the inlet of the sensor, as shown in Figure 4.4-b;

the primary reason for the oil filled bladder is to isolate the sensor from seawater and also

protect it from crevasse corrosion. Dynamic pressure (the pressure resulting from moving

water pushing against themembrane) is given by q = 1/2ρV 2; given the density of saltwater

(ρ ≈ 1025 kg/m3) and a maximum vehicle velocity of V = 2 m/s2, the dynamic pressure

on an exposed flat face could result in pressure fluctuations up to 2050 Pa or 0.02 bar. In

shallow water, if this isn't taken into account it could result in an error of as much as 25 cm

in the depth estimate. It isn't possible to completely eliminate pressure fluctuations due to

the hydrodynamics and vehicle motion, but they can be mitigated by keeping the oil filled

bladder inside the ROV so that it is protected from the water flow.

0 20 40 60 80 100 120 140 160
0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86
Ambient Pressure

Time (sec)

P
re
ss
u
re

(b
a
r)

Pressure Measurements
MOCAP Predicted

0 1 2 3 4 5 6
0.875

0.876

0.877

0.878

0.879

0.88

0.881

0.882

0.883

0.884

0.885
Pressure Variance at High Speed

Time (sec)

P
re
ss
u
re

(b
a
r)

(a) (b)

Figure 4.5: Pressure Sensor: (a) plot showing the sensor measurements compared to the
estimated pressure based on the MOCAP measurements of depth (b) variance of the mea-
surement at high speeds.

Dynamic variance measurements were preformed by flying the vehicle forward at the

surface of the water at high speed (Figure 4.5-b), which should produce the maximum

amount of pressure variability. There is very little noise in this sensor with the dynamic

variance being 6.25× 10−8, which is only one order of magnitude larger than the measured

static variance, Table 4.4. The most significant issue with the pressure sensor is drift in the

bias. As shown in Figure 4.5-a, the pressure sensor tracks the vertical motion very well



88

Table 4.4: Pressure Measurement Summary
Description Unit Biases Static Dynamic Latency

Variance Variance (sec)
Pressure bar ≈ 0.7− > 1.05 4× 10−8 6.25× 10−8 ≈ 0.0

but shows a drift of 0.0027 bar over a 150 seconds. This is likely due to poor performance

with the internal temperature compensation algorithm. Given the time line of this research,

changing to a new pressure sensor was not an option. Therefore, to mitigate this issue, all

tests were kept to less than 1.5 minutes long so that the sensor drift doesn't significantly

impact the navigation solution. Since this sensor runs at the same speed as the navigation

filter (20 Hz), there can be no latency compensation as the latency will always be less than

one time step.

The pressure measurements are modelled using the depth-pressure formulas given by

Leroy and Parthiot in [43]. The necessary equations are summarized as follows:

g = 9.7803(1 + 5.3× 10−3sin(Φ)2) (4.6)

k = (g − 2× 10−5zp)/(9.80612− 2× 10−5zp)

h45 = 1.00818× 10−2zp + 2.465× 10−8z2p − 1.25× 10−13z3p + 2.8× 10−19z4p

δh =
.01zp

zp + 100
+ 6.2× 10−6zp

P = 10(h45 · k − δh) +Bp

where P is the pressure in bars, Φ is the latitude in radians and zp is the depth of the sensor.

In this case, the bias, Bp, will be a static constant and will be approximately equal to the

atmospheric pressure in bars. This constant should be updated at the being of each data

collection period and periodically throughout day if the atmospheric pressure is changing

significantly. Note that the exact depth of the sensor will be dependant on the depth of the
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vehicle and on the attitude of the vehicle and the location of the sensor in the vehicle frame.

zp = z + RB→NXB
p (3)− Zs (4.7)

whereRB→NXB
p (3) is the third element in the vector resulting fromRB→NXB

p and Zs is the

vertical location of the water surface in the NRF.

Compass

(a) (b)

Figure 4.6: Spartan Compass: (a) sensor as mounted in the housing (b) sensor orientation
diagram

The compass chosen for this work is the Sparton SP3003D Digital Magnetic Compass;

this sensor outputs roll, pitch and heading and has proven to be a reliable instrument with

built-in calibration algorithms that can mitigate the effects of hard and soft iron distortions.

The sensor uses the tilt-measurements obtained by measuring the direction of the Earth's
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gravitational vector to compensate the heading measurement for the sensor orientation.

The compass is mounted as shown in Figure 4.6; note that the compass is shown with

the z-axis pointing away from the opening for the rip cord (indicated by two small silver

posts on the left hand image), the x-axis pointing away from the black endcap and the y-axis

forming a right hand coordinate system. The compass housing is mounted to the starboard

side of the sled with the rip cord opening facing downward. The sensor is not perfectly

aligned inside the housing and has roll, pitch and yaw alignment errors of approximately

−1.21◦, 1.43◦, and 7.0◦ respectively. Secondly, the compass uses accelerometers tomeasure

pitch and roll angles. Therefore, the measurements will describe the direction of gravity,

not euler angles. Since θ is defined in an intermediate frame, it is not the same as the pitch

angle.

In order to simplify the H matrix, the measurements were used to calculate the euler

angles for the vehicle and then the euler angles were used in the EKF instead of the raw

measurements. Firstly, the roll, pitch and heading measurements in the body frame can be

derived as:

α = (βC +Bα)
π

180
(4.8)

β = (180− αC +Bβ)
π

180

γ = (γC + 90 +Bγ)
π

180

where α, β, and γ are the measured roll, pitch and magnetic heading angles, and Bi are the

respective misalignment angles. θ can then be calculated by creating a unit vector in the

direction described by α and β.

u =

[
tan(α) tan(β) 1

]T
∥u∥

(4.9)
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Table 4.5: Compass Sensor Location Summary
Description Value Units
Bα -1.21 deg
Bβ 1.43 deg
Bγ -7.0 deg

XB
c

 0.36716
0.16087
0.27544


m

The euler angle θ can then be found by rotating u by the roll angle, α, such that it is in the

intermediate frame, and taking the arctangent of the new angle.

uI = Rx (α) u (4.10)

θ = atan

(
uI1
uI3

)

where Rx is the rotation matrix for rotations about the x-axis, and uI1 and uI3 are the first

and third components of the vector uI . Since the roll, α, and heading,γ, are measured in

the proper reference frames for euler angles, ϕ and ψM are simply:

ϕ = α (4.11)

ψM = γ

The transformation matrix from the sensor reference frame to the BRF as well as the

location of the sensor in the BRF are shown in Table 4.5.

In the compass documentation, the quoted covariance for the static heading, roll, and

pitchmeasurements are±0.04 deg2,±0.04 deg2 and±0.25 deg2, respectively. Static testing

of the instrument confirmed this with values of ±0.02 deg2, ±0.03 deg2 and ±0.07 deg2

for the three measurements. When the vehicle is moving the variance will increase due,

primarily, to two factors:
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• Unmodelled magnetic fields from electromagnetic interference due to thrusters and

other electronics, hard and soft iron fluctuations from being in proximity to ferrous

and magnetic materials, and from normal fluctuations in the earth's magnetic field,

and

• Inaccuracies in the internal roll and pitch measurement that occur because the ac-

celerometers in the compass cannot differentiate between the acceleration due to

gravity (which they are trying to measure) and the superimposed acceleration of the

vehicle.

See Appendix F for a more complete discussion on sources of error for compasses and mag-

netometers. The hard and soft iron effects were mitigated by calibrating the compass once

it was mounted onto the vehicle. This was done by suspending the vehicle in the air (us-

ing non-ferrous materials) and swinging it roll, pitch and yaw while running the compasses

built-in calibration routine. The dynamic accuracy and latency of each of the measurements

was then calculated by manually flying the vehicle around with the MOCAP mast in place

and comparing the roll, pitch and heading measurements from the compass to the those

reported by the MOCAP camera.
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Figure 4.7: Compass: (a) plot showing the sensor measurements compared to the measure-
ments predicted by the MOCAP (b) plot showing the interaction between the degrees of
freedom.
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Table 4.6: Compass Measurement Summary
Description Unit Static Dynamic Latency

Variance Variance (sec)
Roll (ϕ) deg 0.02 0.25 0.35
Pitch (θ) deg 0.02 0.25 0.35
Yaw (ψ) deg 0.25 0.5625 0.35

Figure 4.7-a shows the angles from the compass compared to the MOCAP system for

the vehicle siting stationary at different yaw angles. The output of the compass agrees well

with MOCAP predictions. The slight discrepancies that are seen are a cumulation of error

in the compass, error in the MOCAP, and also error in measuring the orientation of the

HRF with respect to the NRF. This is most evident in the yaw angle which can be out by

several degrees depending on the orientation of the vehicle. Figure 4.7-b shows induced

yaw measurements from pitching motion. These small fluctuations are due to changes in

the orientation of the earth magnetic field with respect to the vehicle. These effects have

been minimized through calibration but are none the less still present to some extent. One

interesting this to note is that the latency in the compass is 0.35 seconds. The instrument

provides data at approximately 10Hz, so the latency crosses more than 3 measurements.

This was a repeatable results and is likely due to the extensive amount of filtering that is

used with accelerometers and magnetometers to get a clean data signal. A summary of the

compass measurement attributes is given in Table 4.6.

The measurement model for the compass is dependant on the vehicle quaternion. Since

the compass measurements have already been turned into Euler angles, the measurements

can be modelled by:

ϕ̂ (x̂) = arctan
(

−2 (s1s3 + s0s2)

− (s20 − s21 − s22 + s23)

)
(4.12)

θ̂ (x̂) = arcsin (2 (s1s3 − s0s2))

ψ̂ (x̂) = arctan
(
− (s20 − s21 + s22 − s23)

−2 (s1s2 − s0s3)

)
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See Appendix D, Eq. D.6 - Eq. D.6 for a more complete derivation of these equations.

Doppler Velocity Log

Teledyne RDI's Explorer DVL is one of the few instruments on the market that is small

enough to be used on observation class ROV. It has four transducer heads in a Janus con-

figuration. The Janus configuration, named after a roman god that can look both forward

and backward, has the four transducers arranged in a square with each transducer facing out

at an angle of 30 degrees [24]. In this configuration the transducers act in pairs looking in

opposite directions. With this configuration, the vertical and horizontal velocities in each

direction can be differentiated and it is possible to eliminate much of the velocity error as-

sociated with pitching and rolling motions. For this work, an OEM version of the Explorer

DVL was integrated into a custom housing in the navigation sled as shown in Figure 4.8.

The DVL is mounted as shown in Figure 4.8 with transducer number 3 on the top left at

a 45 degree angle from the x-axis of the vehicle. The DVL reports velocity in a special ships

framewhich happens to be a left hand coordinate systemwhich has the x-axis pointing to the

port, the y-axis pointing aft and the z-axis pointing down. Since this reference frame is fixed

internally in the sensor, the device driver corrects the output such that it matches the body

frame. Therefore, the transformation matrix from the sensor reference frame to the BRF

with the DVL in its current orientation is simply the identity matrix. The transformation

matrix as well as the location of the DVL in the BRF are shown in Table 4.7.

In the documentation, the quoted accuracy of the velocity measurements are±0.02m/s.

As with the other sensors, when the vehicle is moving the variance will be higher. This will

be primarily due to three factors:

• Propagation and multi-path errors,

• Errors in estimating the velocity due to vehicle rotation,
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(a)

(b)

Figure 4.8: RDI Explorer DVL: (a) instrument as mounted in the housing (b) DVL in the
housing orientated on the navigation sled.

• Changes in water depth.

See Appendix F for a more complete discussion on sources of error for DVLs. The static

variance and biases of the DVL was measured by hanging the ROV from a crane in the

SWAT facility. Biases can be caused by ringing and should be relatively constant for any

given vehicle configuration. In this particular installation the biases are all less than 1 ×
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Table 4.7: DVL Sensor Location Summary
Description Value Units

RS→B

 1 0 0
0 1 0
0 0 1


N/A

XB
d

 −0.39774
0.12142
0.35123


m

10−5 m/s which for these purposes is negligible.
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Figure 4.9: DVL: (a) plot showing the sensor measurements compared to the estimated
velocities based on the MOCAP measurements (b) Plot showing the variance in the mea-
surements at high speed.

The dynamic accuracy and latency wasmeasured by flying the vehicle with theMOCAP

mast in place and comparing the velocities to those recorded by the MOCAP camera, as

shown in Figure 4.9. Recall that theMOCAP is recording position in a CRFwhich is related

to the HRF and NRF and these measurements are processed by the mast EKF presented in

Appendix C. The mast EKF does not receive any direct velocity measurements; rather

the velocities are a byproduct kinematic equations in the process model. This method of

estimating the velocities is better than numerical differentiation but will still be noisy and

have effectively been put through a low pass filter. Regardless, one can still clearly see
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Table 4.8: DVL Measurement Summary
Description Unit Biases Static Dynamic Latency

Variance Variance (sec)
Forward (u) m/s 0.000 1.5e− 5 1.6e− 3 0.25
Sideways (v) m/s 0.000 1.5e− 5 1.6e− 3 0.25
Vertical (w) m/s 0.000 1.5e− 5 1.6e− 3 0.25

the latency and that the DVL is giving appropriate measurements for the given motion. A

summary of the measurement covariances is given in Table 4.8.

The measurement model for the DVL is similar to the model for the accelerometers in

that it also includes a rotational term since the DVL is located distal to the CG of the vehicle.

The translational velocities experienced by the DVL can be calculated as:

hd(x) = RB→SẊB
d + Bd (4.13)

= RB→S
(
V + ω × XB

d

)
+ Bd

where V = [u v w]T is the translational velocity of the CG, ω = [p q r]T is a vector of

the rotational rates of the rigid body. Figure 4.10 shows the raw DVLmeasurements and an

estimate of the translational velocity of the CG versus the MOCAP estimate of the transla-

tional velocity of the CG. The effect is not negligible. Extracting the rotational component

can be problematic as the angular rates of the vehicle are measured by the IMU, which has

a much faster update rate, and a different latency. Correcting for the instrument latency is

critical for properly separating the two velocity components. To correct for errors due to

changes in water depth, one must have an accurate estimate of the altitude of the vehicle

from the seafloor as well as the depth from the surface, then one can subtract changes in

water depth from thewmeasurement. Altitude information is not available for this research

and, therefore, w can not be corrected for this.
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Figure 4.10: Plot showing the raw DVL data, DVL data with the rotational component
extracted, and the estimated translational velocity of the vehicle from the MOCAP

Short Baseline Acoustic Positioning System

For position measurements, this system uses the SouthStar SBL system from Desert Star,

described in Section 2.2.1, that is installed in the SWAT facility. This SBL system has cm

level accuracy and can give position updates at up to 2Hz. The network architecture on

this system would allow any acoustic tracking system on the market to be used here. The

SouthStar system has excellent accuracy and was used in previous work [78, 61]; a more

complete description of acoustic positioning systems can be found in Appendix F.

The SouthStar SBL system is comprised of four fixed tracking transponders and one

roving transponder (the rover). The fixed transducers are mounted to poles as shown in

Figure 4.11-b and the poles are located at the four corners of the boathouse test area as shown

in Figure 2.3-b. The roving transponder is fixed to the vehicle as shown in Figure 4.11-a.

For this work, the SBL software is configured to output the range from the rover to each of
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(a)

(b)

Figure 4.11: SouthStar SBL System: (a) Roving transponder mounted on the vehicle (b)
Fixed transponder mounted to a pole in preparation for installing in the SWAT facility.

the four fixed transponders. The precise location of the fixed transponders must be known

to accurately determine the location of the rover from the range data.

The MOCAP system is used to survey the positions of the fixed transponders. The

transponder locations in the horizontal plane were determined by putting the roving unit in

12 different known locations and collecting the reported range data; 8 locations were used to

calculate the location of the fixed transponders and 4were used to validate the solution. The

rover locations were measured using the MOCAP system. The location of the transponders

was then determined by finding a position that minimizes the error between the measured
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range and the range estimate given by:

Resti = ∥Ti − P∥2 (4.14)

where Ti is the estimated position of the ith SBL transducer in the HRF and P is the known

location of the roving transponder in the HRF. Since the 4 SBL transponders are located

in a plane, there is a vertical dilution of precision and the depth of the transducer can't

be accurately determined with this method. To circumvent this problem, the depth of the

transponders were measured separately using a pole instrumented with LEDs. Accurately

measuring the depth of the transponders through measurement is much easier then accu-

rately determining their position in the horizontal plane while they are underwater. Using

these two methods the location of the transponders in the HRF were determined with an

accuracy of a few centimeters. The locations of each fixed SBL transponder in the NRF as

well as the location of the rover in the BRF are in Table 4.9.

In the documentation [65], the quoted accuracy of the range measurements are±0.01m;

but the accuracy of the position estimate will depend on both the accuracy of the range mea-

surement and also the accuracy to which the location of the fixed transducers were mea-

sured. The static accuracy was measured using the four validation measurements in the

location survey. Of these four measurements, the maximum error in the range measure-

ment for transponders 1, 2, 3 and 4 were 2.01, 3.30, 2.01, and 2.91 cm respectively. This

measurement would capture errors in locating the roving transponder but does not capture

errors due to alignment changes in the camera, errors in the location of the transducer on

the vehicle, and errors due to the vehicle motion. The reported errors support the claims in

the documentation to within the accuracy that can be measured at the SWAT.

The dynamic accuracy, transponder biases, and latency of the measurements were mea-

sured using the vehicle, the mast and the MOCAP system. In these tests, the vehicle was

driven around the test area and the ranges reported by the SBL transponders were com-
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Table 4.9: SBL Transducer Location Summary
Description Value Units

XH
s1

 3.09067
1.40936
2.28625


m

XH
s2

 −0.03380
1.48179
−3.05023


m

XH
s3

 0.00410
1.40003
2.33876


m

XH
s4

 3.09126
1.42248
−3.07985


m

XB
r

 −0.48567
0.31449
−0.27278


m

pared with the estimated ranges from the MOCAP measurements. This configuration more

accurately reflects the errors in the real system.

The speed of the vehicle is several orders of magnitude slower than the speed of sound in

water so that shouldn't have a significant effect. Therefore, the dynamic accuracy should be

relatively close to the static accuracy as long as the locations of all the components have been

properly surveyed. Figure 4.12 shows a plot where the vehicle was flown inside the test area

keeping the same orientation at all times. The error in the range estimate gets significantly

larger when the vehicle itself lies between the rover and the fixed SBL transponder; in

these situations the transponder is in an acoustic shadow caused by the vehicle and the

range measurement is unreliable. The red markers indicate when the transponder lies in

the vehicle shadow zone, which extends between between −112.5◦ and 0◦ relative to the

heading of the vehicle. Since removing this error is not realistic, these measurements are
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Figure 4.12: Graph showing the SBLmeasurements compared to the estimated ranges from
the MOCAP measurements. Taking into consideration latency and when different SBL
transponders are in the shadow of the vehicle.

Table 4.10: SBL Measurement Summary
Description Unit Biases Static Dynamic Latency

Variance Variance (sec)
SBL1 m 0.0 4.0× 10−4 1.2× 10−3 0.7
SBL2 m 0.0 4.0× 10−4 1.2× 10−3 0.7
SBL3 m 0.0 4.0× 10−4 1.2× 10−3 0.7
SBL4 m 0.0 4.0× 10−4 1.2× 10−3 0.7

just marked as invalid and not used in the EKF. This issue is an artifact of flying the vehicle

close to the surface (as is necessary when using the mast), when the vehicle is deeper and

the rover is below the transponders in the water column they will not be shadowed.

Correcting for a latency of 0.7 seconds, the variance for the range measurements when

the transponder is not in the shadow of the vehicle is approximately 3.5 cm which is on

par with the static accuracy. 0.7 seconds of latency is also reasonable given the way the

transponders work. A summary of the measurement performance is given in Table 4.10.

Themeasurement model for the SBL involves the attitude quaternion, s, and the position

of the vehicle in the NRF, XN
cg = [x y z]T . For each of the fixed transponders, the range
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from the transponder to the rover is given by:

hsi(x) = ∥ XN
cg + XN

r − XN
si ∥ +Bsi (4.15)

= ∥ XN
cg + RB→N(s)XB

r − XN
si ∥ +Bsi

where i is the transponder number.

4.2.3 Latency Compensation

As shown in the previous section, there is a significant amount of latency in many of the

sensors. Latency in the sensor measurements can have two effects: 1) uniform latency

can result in a latent state estimate, and 2) differences in the sensor latency can result in

instability in the sensor measurements. In this research, there is both cases. Given that the

SBL has 0.7 seconds worth of latency, in order for the state estimate to accurately predict the

measurement it must also have 0.7 seconds of latency. In addition, since the latencies in the

sensors are so different (ranging from 0 to 0.7 seconds), any cross coupling that occurs will

generate conflict though theA andHmatrix. While the EKF, as described, is stable without

any compensation for latency, the accuracy of the state estimate is degraded and the addition

of cross coupling terms to the H matrix can cause instability rather than redundancy. One

method of handling latency in an EKF, is to utilize the predicted state vector x̂− from the time

step that the measurement occurred in the measurement model instead of the current one.

This ensures that the residual is created from one consistent time step. The consistent but

delayed residual is then used at the current time step. This method is one of the better known

"tricks" for making EKFs more accurate, but the accuracy can come at the price of stability.

While the residual is computed at a consistent time step the Jacobians are from a different

one. For this work, latency compensation was used for the SBL measurements only. The

SBL has the most latency and because it is related to a position measurement, there is less
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Table 4.11: Difference between EKF Estimate and MOCAP estimate
Description Mean Unit

Error
x 0.045 m
y 0.039 m
z 0.015 m
s0 0.006 N/A
s1 0.003 N/A
s2 0.007 N/A
s3 0.009 N/A

interaction with the other states in the Jacobians. Compensating for latency in the SBL

improved the average accuracy of the horizontal position estimate by approximately 2 cm

without sacrificing stability.

4.3 Validation of the State Estimate

Figure 4.13 shows the output of the EKF compared to the MOCAP. The attitude discrepan-

cies are primarily due to the errors in the MOCAP that occur when viewing it from differ-

ent angles. Overall the mean position error was less than ±5 cm on all axes. The attitude

quaternion had a mean error of ±0.006 for s0 which corresponds to an error of approxi-

mately 0.7 degrees about the axis of rotation. It should be noted that these errors include

errors in the MOCAP system itself. A summary of the differences between the EKF and

MOCAP estimates is given in Table 4.11.

4.4 Conclusion

An EKF was created using the process model described in Chapter 3, measurement mod-

els described in Section 4.2.2, and Jacobians described in Appendix E. The sensors were

characterized using the MOCAP system, and the following parameters were determined
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Figure 4.13: EKF estimate compared with the MOCAP for a) the NRF positions, b) the
attitude quaternion.

for each sensor: position in the BRF, orientation with respect to the BRF, signal latency,

and mean dynamic noise variance. The measurement models were validated by comparing

sensor measurements to the output of the models using state information obtained with the

MOCAP tracking system. The resulting EKF produced a vehicle position estimate with a
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mean Euclidean error of less than ±6 cm with respect to the MOCAP position estimate.



107

Chapter 5

Guidance

This chapter presents a stand-alone guidance system, which, given the vehicle current loca-

tion and desired destination, produces the desired velocities required to get to the destina-

tion. The theory behind the guidance system is presented first, followed by an explanation

of how it was implemented. The chapter concludes by presenting some simulation results

which highlight the stability of the algorithm and show the performance when applied to

this application.

The theory behind the guidance system employed in this research was previously pre-

sented in Soylu et al. in [63], which built on the Lyapunov stable guidance system presented

by Aicardi, Caiti, Cannata, and Casalino in[2] and was implemented by Caccia and Verug-

gio in [12]. In this approach, a task function is created using the controllable variables of

η, e contained in ℜ4, is defined such that, by minimizing the function, the ROV will meet

its objective. Then by choosing a reference velocity, ė = −λe, one can define a Lyapunov

function V (e) = 1/2eT e, where V̇ = ė is negative definite and V has a globally asymptot-

ically stable equilibrium point at e = 0. The task function can then be designed to ensure

that the objective is met effectively.

This algorithm is well suited to use on ROVs, because of its stability in the presence of
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unmodelled dynamics (such as unexpected forces from the tether). This algorithm inher-

ently handles deviations from the planned path; at each time step a new reference veloc-

ity along an asymptotically stable path is calculated based on the current position. Since

V ≤ 0 ∀ e ∈ ℜ4, every point in the operational space will converge on the equilibrium.

The strength of this approach, in contrast to conventional line-of-sight or fixed-path guid-

ance algorithms is that there is no path planning or replanning required. No matter what

disturbances happen along the path, the vehicle will just keep trying to meet the objective.

The disadvantage of this is that there is no explicit means of controlling the position of the

vehicle, rather the velocities. Therefore, it won't specifically avoid out-of-bound areas in

space.

5.1 Background

A guidance system provides a planned path to take from a designated starting point to a

specified end point. When a driver is planning the path to take from their house to work in

the morning, they usually take into account many variables: path length, traffic, drive time,

coffee stops, etc. The most simple guidance algorithm uses a line-of-sight behavior, where

it points the vehicle at the destination and then moves straight towards it. This algorithm

would minimize the path length, but one can imagine that minimizing the path length is not

always enough.

Since an ROV is typically controlled by a human pilot, they don't normally have a built-

in guidance system. The pilot just naturally figures out where to go. For this work, the ROV

is required to exhibit autonomous behaviour and a guidance algorithm is required for path

planning. Within the context of Autonomous Underwater Vehicles (AUVs), guidance algo-

rithms are used for many purposes. They can coordinate the behaviors of multiple agents

that are acting together to complete a task [19, 54]; they are also be used to manoeuver ve-
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hicles around obstacles and command aggressive manoeuvres such that the vehicle arrives

safely at its destination [29]. They can also be used to optimize power consumption and

many other variables [41].

Most guidance algorithms pre-compute the path for the vehicle to follow. If the vehicle

has to deviate from the path for some reason, then another path needs to be generated before

the vehicle can continue. The guidance algorithm chosen for this work is simple but runs in

real-time, and generates a minimum energy path to the destination point. The algorithm is

similar to the Slotine and Li algorithm for manipulator control presented in [56] and further

discussed by Fossen in [20]. While this algorithm is stable and ensures that the vehicle will

always be given an appropriate path to the destination point, even in the face of disturbances,

the development of a new guidance algorithms that can optimize ROV operations is still

needed. As shown by Zand in [78], the tether dynamics have a significant effect on transit

speeds and a coordinated guidance algorithm that provides a path for the surface vessel, the

ROV and the tether could provide significant improvements in the efficiency of operations.

5.2 Task Function and Synthesis of the Guidance Laws

First, define χ as a subset of η, such that it is a vector containing the controllable variables

of η. Then χd is the desired value of those state variables. For this work:

χ ,



x

y

z

ψ


(5.1)

Since neither the roll or pitch are controllable, they don't need to be included in the guidance.

Rather we will rely on the inherent stability of the vehicle to ensure that these two states tend
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towards 0 after a disturbance. Recall that these variables are defined in the NRF, while the

velocities, ν, are defined in the BRF. To manage this define the following transformation:

L ,

 RN→B 0

0 cos (θ) / cos (ϕ)

 (5.2)

such that ζ = Lχ̇ and ζ is the controllable subset of ν that correspond to the variables in

χ. Note that the cos (θ) cos (ϕ) term comes from the mapping between the vectors [p, q, r]T

and [ϕ̇, θ̇, ψ̇]T (see Appendix D Eq. D.20).

One of the simplest task functions can be defined as: e = L (χ− χd), which is es-

sentially a proportional (or P-type) control scheme. Then the reference velocities can be

defined as:

ζd = ė , −λe (5.3)

= −λL (χ− χd)

where λ is a positive definite diagonal matrix of gains for the different variables.

In order to guarantee Lyapunov stability for the command χ, the mapping between ζ

and χ has to be linear and invertible, which implies that it must be continuous over the

entire operational space. Since the command vector χd is defined using the Euler angle ψ

then it inherits the singularity at θ = ±90◦ (see Appendix D).

Remark 1. In theory, using L to map the error signals into the BRF is a viable means for

deriving the reference velocities. However, in practice, this can cause oscillatory heave

motion due to the uncontrollable pitching and rolling motion that occur as a natural result

of surge and sway motion. When the vehicle is close to the setpoint for Z, and a long way

from the setpoint in X then a small pitch angle can change the heave component of the error

in the BRF from positive to negative, even though the error in Z has not changed signs.
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To manage this problem, the transformation L was not used in the heave direction and the

error signal was simply calculated as ez = z − zd.

In underwater applications, there are often biases in the velocity estimates which could

lead to limit cycles or other instabilities in the guidance loop; an integrator can be added to

the task function to mitigate this problem [12]. Defining a PI task function as:

e = L
[
(χ− χd) + µ

∫ t

0

(χ− χd) dτ

]
(5.4)

Then the reference velocities can be defined as:

ζd = −λL
[
(χ− χd) + µ

∫ t

0

(χ− χd) dτ

]
(5.5)

= −KpL (χ− χd)−KiL
∫ t

0

(χ− χd) dτ

= ζP + ζI

where λ and µ are positive definite diagonal matrix of gains for the different variables,

which for clarity sake can be redefined as Kp = λ and Ki = λµ.

5.3 Implementing Physical Limitations

Given a waypoint sufficiently far away, this algorithm will result in reference velocities

that are not achievable by the vehicle. This problem could be managed effectively in many

ways; however, in the design philosophy used here, the desired state produced by the guid-

ance algorithms should be achievable by the vehicle. To do this, physical limitations can be

imposed on the output of the guidance law. As long as the integral term is properly man-

aged, this will not adversely affect the stability of the overall algorithm. This guidance law

does not make any assumptions about where the vehicle should be at a given time, at each



112

iteration it simply generates a new set of reference velocities based on where the vehicle

actually is.

5.3.1 Managing the Integral Component

Anytime an integral component is utilized in a real system, it must be managed to ensure it

is effective and the magnitude doesn't end up too large. In this work, two mechanisms are

employed to manage the integral component. Firstly, the integral portion of the reference

velocity is limited so that it can assist in mitigating biases in the estimated velocities but

can't grow without bound. Secondly the integral portion is only needed when the vehicle

is close to the commanded waypoint; turning the integral portion off when the waypoint is

far away and only utilizing the proportional control also helps manage the integral wind-up

[12]. Given a set of limits for the integral portion of the reference velocities, ζIMAX
, one

may modify the integral component as follows:

if ∥ζI i∥ > ζIMAXi
then ζI i = sign (ζI i) ζImaxi (5.6)

Secondly, to switch between a P-type task function (described in Eq. 5.3) when the

waypoint is far away and a PI-type task function when the waypoint is close, one can simply

set ζIMAXi
= 0when ei is large and the integral is not needed. Noise in the state estimate can

cause chattering when switching between the two tasks [12]. To mitigate this an anti-chatter

mechanism is implemented. Graphically, the mechanism can be represented as shown in

Figure 5.1. The P-type task law is used when the error function ei becomes greater than the

upper threshold, however, if the error then decreases the PI-type task law isn't re-engaged

until it passes back through the lower threshold.
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Figure 5.1: Graph showing the anti-chatter mechanism used to switch between the P-type
(areas in red) and the PI-type (areas in blue) guidance laws

Logically, this can be described by the following set of conditions:

if ∥ei∥ > TUi then MODE = P− TYPE (5.7)

if ∥ei∥ < TLi then MODE = PI− TYPE

if MODE = P− TYPE then ζI i = 0

where TUi is an upper threshold, TLi is a lower threshold, and MODE is the mode of the

controller. By using only those two conditions and not specifying a state for the area be-

tween TUi and TLi , MODE will retain it's state until it crosses a threshold line moving in

the correct direction.

Since the command, χ is defined in the NRF, while the guidance parameters, e and

ζ are defined in the BRF, the horizontal error components (the ones corresponding to the

body x-axis and y-axis) are coupled through the heading, ψ. To avoid unexpected switching

between the guidance task functions as the vehicle rotates, the task functions for these two



114

axes are switched together. This is done by defining a horizontal error eh, such that ∥eh∥ =√
e2x + e2y. When eh crosses the thresholds then the task function is switched for both the

x-axis and y-axis.

5.3.2 Rate Limits

Once the integral portion of the reference velocities is determined, it is added to the propor-

tional component as described in Eq. 5.5. The sum of these two components may be larger

than the maximum attainable velocity for the vehicle. To solve this problem, the desired

reference velocities are also limited. Given a set of maximum velocities ζMAX for each

element in ζ, one can limit the reference velocities as follows:

if ∥ζi∥ > ζMAXi then ζi = sign (ζi) ζMAXi (5.8)

This assumes that the velocity limits are symmetrical for the positive and negative directions

but asymmetric limits could also be used.

5.4 Simulation Results

The robustness of this guidance algorithm is demonstrated through simulation. First, a sim-

plistic simulation is used to highlight how this guidance algorithm adapts to disturbances,

then the algorithm is applied to the full vehicle simulation. Kp andKi were selected exper-

imentally, such that, given vehicle dynamics and the expected amount of noise in the state

estimate, the guidance algorithm created a smooth attainable trajectory for the vehicle to

follow with minimal overshoot at the destination.
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5.4.1 Demonstration of the Features

To demonstrate the features of the guidance system, a simplified simulation was created

that is easily manipulated to show different scenarios. This simulation does not contain a

controller, instead the vehicle velocities are simply set to the desired value (based on the

scenario being discussed) and then integrated to get the vehicle positions; essentially ig-

noring the vehicle dynamics. This allows the guidance algorithm to be analyzed without

extraneous influences from the control system and vehicle model. As a baseline, the algo-

rithm is first run without any impediments, this means that the vehicle tracks the desired

velocities perfectly. The results are shown in Figure 5.2.
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Figure 5.2: Simulation of the guidance algorithm: a) vehicle positions, b) vehicle velocities,
c) contribution of the integral component d) position error between the estimated state and
the desired trajectory
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In Figure 5.2-a, the final destination or command is shown in blue. The estimated plant

state and actual plant state are shown in black and red, respectively. In this scenario, the

vehicle is commanded to traverse from an initial position of [0, 0, 0], heading of 0.0, and

velocities of 0, to a position of [8.0, 4.3, 2.0] with the final heading pointed along the direc-

tion of travel. Figure 5.2-b shows the reference velocities from the guidance algorithm in

blue, and the estimated and actual plants states in black and red, respectively. In this first

scenario, the estimated and actual velocity track the desired velocity perfectly. The vehicle

reaches it's velocity limits as it tries to follow the desired trajectory, shown in Figure 5.2-d.

In the surge and sway axes the algorithm switches from a P-type to a PI-typle task function

after 4.4 seconds once the error function, while the heave and yaw the error is small enough

that the PI-type task function is used right from the beginning. The integral component,

shown in Figure 5.2-c, increases and reaches it's maximum, set to one half of the velocity

limit, on the surge, sway and yaw axes. Once the vehicle reaches the waypoint, the integral

component returns to zero, which is what one would expect if there is no bias in the velocity

estimate.

In the second scenario, the same starting and termination points are used, but unknown

biases are added to the velocity estimates. This could occur, if the measurements from the

DVL contained unknown biases. Once again Figure 5.3-a shows the destination, trajectory,

position estimate and actual vehicle position. Note that the vehicle still reaches the desti-

nation point despite the unknown velocity biases. The biases can be seen in Figure 5.3-b,

where the estimated velocity tracks the reference velocity, but the actual velocity is offset

by some amount. Once again, the vehicle reaches its velocity limits as it tries to follow the

desired trajectory. In this scenario, the integral component, shown in Figure 5.3-c, increases

and reaches its maximum as before, but this time once the vehicle reaches the waypoint,

the steady state value of the integral is non-zero which compensates for the velocity bias.

Without this compensation, the vehicle would not stay at the waypoint as its velocity would
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Figure 5.3: Simulation of the guidance algorithm when the estimated velocities have an
unmodelled bias: a) vehicle positions, b) vehicle velocities, c) contribution of the integral
component d) position error between the estimated state and the desired trajectory

not actually be zero despite the fact that a zero velocity was being commanded. Instead, it

would hover in the vicinity of the waypoint, constantly moving in a limit cycle.

In the final scenario, unknown velocity limitations are imposed on the vehicle so that it

is unable to achieve the velocities that are requested by the guidance algorithm and signif-

icantly lags the desired trajectory, shown in Figure 5.4. This would occur of the thrusters

became fouled and the vehicle was suddenly unable to perform to its full capacity. Once

again, Figure 5.4-a shows the destination, trajectory, position estimate, and actual vehicle

position, and note that the vehicle still reaches the destination point but takes a significantly

longer time. Once again, the velocities are seen in Figure 5.4-b. In this scenario, the vehi-
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Figure 5.4: Simulation of the guidance algorithm when the estimated velocities have an
unmodelled bias and the vehicle velocity is limited such that it can't closely follow the
desired trajectory: a) vehicle positions, b) vehicle velocities, c) contribution of the integral
component d) position error between the estimated state and the desired trajectory

cle is unable to reach the limiting velocities commanded by the guidance. The estimated

velocity varies with the actual velocity but is offset by the bias amount. It is also clear that

the vehicle is not able to achieve the desired velocities to track the desired trajectory. Even

with imperfect tracking of the desired velocities, the vehicle still reaches the waypoint and

remains at it without any oscillatory behavior.
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5.4.2 Simulation of Full Vehicle Model

The full vehicle simulation contains: sensor noise, sensor latency, discretization, the vehicle

and thruster dynamics as described in Chapter 3, parameter error in the dynamic model (i.e.,

different system ID parameters for the plant and the navigation system), and environmental

disturbances. The simulation runs as follows:

1. The vehicle state is propagated using the dynamic model described in Chapter 3. In

this simulation, this is the true state of the vehicle,

2. The measurements including noise, latency and biases are modelled using the state

vector produced by the vehicle model,

3. The measurements are used to create an estimate of the vehicle's state using the EKF

described in Chapter 4. In experimental studies, this would be the only state informa-

tion that would be available. This is the state that is used by any subsequent guidance

and control algorithms. For this simulation, random modelling error has been added

to the plant model so that it differs from the model in the EKF,

4. The estimated state is used as the input to the guidance algorithm. The guidance

output is the desired velocities in the BRF,

5. The estimated state and desired velocities are used as the input to the control algo-

rithm. The controller output is a command for each of the 5 thrusters,

6. Return to the first step and propagate the plant forward using the thruster commands

from the controller (plus any environmental disturbances).

The simulated results, shown in Figure 5.5, use the adaptive control system that is described

in Chapter 6.

Figure 5.5-b shows that the vehicle is unable to track the reference velocities, especially

in the sway and yawmotions. This is not an unexpected result; when the vehicle is travelling
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Figure 5.5: Full simulation of the ROV dynamics and the guidance algorithm: a) vehicle
positions, b) vehicle velocities, c) contribution of the integral component d) position error
between the estimated state and the destination

forward at a high rate of speed and the guidance and control system request more thrust then

the thrusters can provide, the command gets truncated by the saturation limit and the vehicle

loses the ability to steer. Despite the fact that the vehicle is unable to track the reference

velocity at the beginning, it still arrives at the destination, as shown in Figure 5.5-b and

Figure 5.5-d. In this simulation, a sinusoidal environmental disturbances are applied to the

plant in all 6 DOFs. This means the controller and guidance need to keep working once

the vehicle arrives at the destination in order to hold station. Despite the fact that there is

noise and uncertainty in the state estimate, there is crisp switching between guidance modes

(Figure 5.5-c). This is due to the anti-chattering mechanism presented in Section 5.3.1.
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5.5 Modifying the Vehicle Behaviour

Even though the guidance system is stable, it does not always lead to behaviours that are

desirable for ROV operations. When the waypoint is far away, the vehicle will be im-

mediately commanded to it's maximum speed, which means a maximum command to the

thrusters. In an underwater vehicle this is rarely a desirable behaviour. It will often cause

violent pitching or rolling and, when working near the bottom, may disrupt the surrounding

sediment and impair visibility. There are many possible solutions to this problem. One so-

lution would be to use a planned trajectory to a waypoint instead of of the waypoint itself.

As described previously in Section 5.3, since the guidance algorithm is Lyapunov stable

for a path from any starting point to any other attainable state, it will also be stable when

presented with a sequence of positions that lead it towards the ultimate waypoint. Further, it

will also remain stable if the vehicle deviates from the planned path due to disturbances. In

the event of a disturbance, it will simply generate increased desired velocities to attempt to

catch up to the place it should be on the desired path. The planned trajectory could include

the following special behaviors:

• Lifting off the bottom prior to transiting to a waypoint.

• Rotate to correct heading before transiting.

• Maximum accelerations.

• Maintaining a set altitude during transit.

For this work, the guidance algorithm is left as presented and the distinct behaviours

that are desired are created by using multiple waypoints. Using the examples above, the

first waypoint in a transit would be to lift off the bottom and hover at a given altitude. The

second waypoint, would be to maintain station and rotate to the desired heading, the third

waypoint would be the transit and the then fourth waypoint would be to set the ROV down
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on the bottom. While many of the desired behaviours can be handled this way, limiting the

acceleration can not. Instead it will be handled by the local the controller on the vehicle,

using a reference model. The reference model will give the vehicle a smooth trajectory

between the current and desired velocities that can be tuned to minimize excessive pitching

and rolling moments.

5.6 Conclusion

In this chapter, a Lyapunov-based guidance algorithm that runs in real-time, and is stable

over the entire operating envelope of the vehicle has been described and implemented. The

algorithm was modified to consider the vehicle's velocity limits. An anti-chatter mecha-

nism was implemented to allow the algorithm to switch between a P-Type and PI-Type task

function, which helps to mitigate integral wind-up issues. The integral was further managed

by limiting it's magnitude. Through simulation, the resulting system was shown to be stable

in the face of realistic errors and disturbances, as was predicted by theory.
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Chapter 6

Control System

The final component of the system software is the control system. The control system

takes the desired velocities from the guidance, the estimated state from the navigation, and

determines an appropriate command to the actuators. In general, a control system designer

will have to balance performance and robustness to meet the desired design criteria. For

this work, the controller has been designed such that the vehicle can perform as a stable

work platform, from which a pilot can perform observing and manipulation tasks.

6.1 Performance Criteria and Design Specifications

In order for a controller to effectively make the vehicle into a stable work platform, it must

meet the following criteria:

• Be stable in the face of large time varying unmodelled system dynamics and environ-

mental disturbances,

• Be stable over the full performance envelope,

• Be stable with unmodelled thruster deadband,
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• provide fine control for station keeping while minimizing limit cycles and excessive

thruster fluctuations,

• provide smooth trackable thruster commands.

In this work, the forces and moments from the tether are being considered an environmental

disturbance. As was seen in the system identification chapter, when the vehicle is under-

way pulling the tether through the water can have a significant impact on the steady state

velocity of the vehicle. If the tether is not being actively managed by the boat and tether

operator, then the tension in the Falcon tether can readily end up at more than 100 N [78].

The hydrodynamic model also contains parameter error. As discussed in Chapter 3, the

quadratic drag model is an approximation and will be more accurate in some portions of

the performance envelope than others. An effort was made with the system identification

to minimize the error across the entire envelope, but it will still likely be less accurate at

higher velocities.

One of the goals of this work has been to design a controller that delivers performance

and minimizes chattering in the thruster control signal. Given the thruster dynamics shown

in Figure 3.3, the thrusters are not capable for following a rapidly changing thruster com-

mand. The impact of varying thruster dynamics on control system performance is discussed

in [75].

6.2 Background

The vast majority of control papers on underwater vehicles deal with AUV control not ROV

control. While both types of vehicle use the same dynamic model, an AUV is typically

designed with hydrodynamic characteristics in mind and does not have a tether. As a result

the disturbances and parametric uncertainty in an AUV control problem are much smaller.

None the less, there is still a substantial body of work on problem of ROV positioning
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and many different approaches have been employed. In [58], Smallwood and Whitcomb

discuss an experimental comparison of a linear proportional-derivative control and a family

of fixed and adaptivemodel-based controllers andH∞ control schemes are discussed in [38]

and [15]. Over the years, sliding mode controllers have been the most common control

systems implemented on ROVs [76, 55, 74, 60, 46]. The sliding mode controller is well

suited to the ROV problem as it provides a systematic approach to maintaining stability and

consistent performance in the face of modelling error [57]. However, the high frequency

control action (or chatter) that is often associatedwith slidingmode controllers has proven to

be problematic with this style of controller. The chattering causes losses in electrical power

circuits, premature wear in actuators, and can exasperate many of the problems discussed in

[75]. This has compelled research into modifications to the traditional sliding mode control

that can diminish or eliminate the chattering problem [62].

In this work, a neural network (NN) approach has been chosen; previous work on adap-

tive control of ROVs using neural networks can be found in [32, 79, 72]. For this work,

a single hidden layer NN will be used to approximate the modelling error and augment a

simple linear control scheme. The expectation is that this architecture will be as robust to

unmodelled dynamics as a sliding mode controller, without the problem of chattering; a

similar approach for AUVs was proposed in [44].

6.3 Simulation and Development Environment

To facilitate the testing and development of this control system a full 6 DOF simulation of

the vehicle was developed in Matlab. The simulation includes the following:

• Sensor and control system timing,

• Parameter errors,

• Sensor noise,
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• Environmental disturbances,

• Discretization of thruster commands,

• Thruster deadband.

In the simulation, the sensor messages are populated discretely at a rate between 2 and

100 Hz depending on the sensor, and the guidance, navigation and control algorithms are

run sequentially at 20 Hz. The plant is propagated at 100Hz, using a linear 2-step Adams-

Bashford integration method where:

xk+1 = xk + (1.5ẋk − 0.5ẋk−1)∆T (6.1)

This method is substantially more stable than the first order Euler method, but doesn't re-

quire the additional computation time required for more advanced algorithms like Runge-

Kutta. Runge-Kutta integration methods are most useful on systems with both fast and slow

dynamics, which can be distorted and cause instability in first order integration methods.

The situation is not applicable to ROV dynamics so the 2-step method above is sufficient.

The output of the sensors are determined using the sensor models from Chapter 4 and

white Gaussian noise with the specified standard deviation is added. Modelling errors are

also simulated. The controller and EKF use the system model developed in Chapter 3, and

the plant is propagated using a model with coefficients that have been randomly changed by

up to 20%. The thruster model in the simulation includes, limits, discretization, a randomly

generated deadband, and environmental disturbances.

6.4 PID Control with a Reference Model

The first control system has the structure outlined in Figure 6.1. The hardware is shown in

green, the control system is shown in blue and the software modules discussed in previous
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Figure 6.1: Diagram of the PID controller presented in this chapter. All of the software
modules shown run on the ROV, with only the command signal (a waypoint) being gener-
ated by the pilot.

chapters are shown in grey. All of the software shown in this diagram runs onboard the

vehicle on the SSC. The only input coming from the pilot is the desired waypoint. The

output of the guidance is first filtered by a reference model which generates desired accel-

erations based on the input from the guidance command. The reference model addresses

the issue of commanding excessively rapid accelerations, described in the conclusion of

Chapter 5. A PID controller is used to make the ROV follow the reference model. The

desired accelerations, ν̇des, are the sum of the reference model and the PID controller.

ν̇des = νcrm + νpid (6.2)

An approximate dynamic inversion is use to turn the desired accelerations into desired

forces and moments in the BRF, τ des. These desired forces are then mapped to the thrusters

and turned into desired propeller speeds, Ωdes. The command vector, δ, is then obtained

using one of two methods: an algebraic open loop scheme, or closed-loop control.
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6.4.1 Reference Model

The reference model provides a means of specifying the input output dynamics of the sys-

tem. For this work, four decoupled first order subsystems are used:

ν̇crm = Kprm (νdes − νrm) (6.3)

where ν̇crm is the reference model command and Kprm is a diagonal gain matrix of pro-

portional gains. In this particular control scheme, the dynamics of the reference model are

defined simply as:

ν̇rm = ν̇crm (6.4)

The gain for each axis is chosen such that the requested dynamics are trackable by the vehi-

cle. When using the thrust mapping described in Section 6.4.4, it is important to realize that

when a large amounts of forward thrust are being commanded from the horizontal thrusters

the vehicle has limited residual power for manoeuvering in the yaw and sway directions.

As a result, when the thrusters become saturated the heading control is compromised. This

issue can be mitigated through the choice of velocity limits in the guidance, ζMAX , and

Kprm . The velocity limits were chosen such that the vehicle can achieve a maximum ve-

locity on all axis at the same time. Then the reference model was designed such that, given

a simultaneous step input of the maximum velocities on all axes, only minimal saturation

occurs on the thrusters.

6.4.2 PID Component

The PID component is a controller that drives the vehicle to follow the reference model.

ν̇pid = Kpe+Kdė+Ki

∫
e · dt (6.5)
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where e = νrm − ν̂, and Kp, Kd, and Ki are diagonal gain matrices. To guarantee that the

vehicle tracks the reference model Kp should be the same for the PID controller and the

reference model.

6.4.3 Approximate Dynamic Inversion

Once ν̇des has been determined, an approximate dynamic inversion can be used to estimate

the forces and moments that will be needed to achieve the desired accelerations. From

Chapter 3, the vehicle dynamics are given by Eq. 3.9. The inverse of this equation is simply:

τ des = Mν̇des + C (ν)ν + D (ν)ν +G (η) (6.6)

where τ des is the estimate of the forces and moments necessary to achieve ν̇des.

6.4.4 Thrust Mapping

Thrust Allocation

Each of the thrusters will impart a force and moment on the CG of the vehicle as described

in Eq. 3.23; to determine the thrust required to achieve τ des this equation must be inverted.

Since B is not a square matrix, it is not invertible in the traditional sense. This is a common

issue in robotics problems, and the generally accepted solution is to use a Moore-Penrose

pseudoinverse (called a pseudoinverse from here forward) [59, 48, 21]. The formulation

for the pseudoinverse is based on work by E. H. Moore in 1920 and R. Penrose in 1955-56;

a comprehensive review of theory behind the pseudoinverse is given in [4]. In short, the

pseudoinverse, A†, must satisfy the following four criteria:

AA†A = A A†AA† = A† (
AA†)∗ = AA† (

A†A
)∗

= A†A (6.7)
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In order for a pseudoinverse to exist, A must have maximum rank (i.e. rankA =

min(m,n)). The pseudoinverse has a different formulation depending on whether m ≥ n

(the left pseudoinverse) or m ≤ n (the right pseudoinverse). If the columns of the matrix

A are linearly independent (m ≥ n) then A∗A will be invertible1. In this case, there is at

most one solution to the problem, y = Ax and the pseudoinverse is chosen to minimize

the 2-norm of the vector ∥y − Ax′∥. Hence, in a Euclidean sense, x′ would be the best

approximation for x. One can readily derive the left pseudoinverse as follows:

y = Ax (6.8)

A∗y = A∗Ax

(A∗A)−1A∗y = x

A†y = x

If the rows of the matrix are linearly independent (m ≤ n) then AA∗ will be invertible2. In

this case, there are an infinite number of vectors x that solve the equation y = Ax, as part

of x will be mapped to the nullspace of A. In this instance, the pseudoinverse sets the null

space component to zero, thereby minimizing the Euclidean length of x. In robotics, this is

a means of determining a minimum effort solution. To derive the right pseudoinverse, first

note that since AA∗ is invertible then AA∗ (AA∗)−1 = I.

y = Ax (6.9)

AA∗ (AA∗)−1 y = Ax

A∗ (AA∗)−1 y = x

A†y = x
1The left pseudoinverse would be used for an under-actuated system.
2The right pseudoinverse would be used for an over-actuated system.
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In [4], Barata and Hussein provide proofs that the left and right pseudoinverse as shown

above exist and satisfy the criteria in Eq. 6.7.

The Falcon ROV is both an under, and over, actuated system. There are 5 thrusters

arranged in such a way that 4 of the 6 DOFs are controllable, which means that overall the

system is under-actuated. The vertical thruster controls heave motion and the 4 horizontal

thrusters control the surge, sway and yaw motion. Therefore, in the horizontal plane the

system is over-actuated, since we have 4 thrusters controlling 3 DOFs.

Setting the desired pitch and roll moment to zero (since those DOFs are uncontrollable),

one can split the actuator mapping into an over-actuated horizontal problem and a scalar

vertical problem. Therefore, the force required from the vertical thruster is given as:

T5 = −τdesz (6.10)

where τdesz is the z component of the desired forces and the negative sign comes from the

direction of the 5th thruster as shown in Table 3.1. The forces required from the horizontal

thrusters are determined by:

TH = B†
Hτ desH (6.11)

where TH is the thrust vector for thrusters 1 through 4, τ desH = [τdesx τdesy τdesψ ]
T , and

B†
H is the right pseudoinverse of the horizontal input matrix, BH , which is formulated by

eliminating the 3rd, 4th, and 5th rows and 5th column from B.

Determining the Desired Thruster Speed

Once the desired thrust from each thruster is known, then the an approximation for the

desired propeller speed,Ω, can be found by inverting (3.1) and (3.4) from Chapter 3. Recall

that for this work, it is assumed that J0 is always positive and this is enforced by taking the
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absolute value; therefore, the force as a function of Ω is:

T = KTρD
4 |Ω|Ω (6.12)

=
(
α |J0|2 + β |J0|+ γ

)
ρD4 |Ω|Ω

=

(
α

(
|Va|
|Ω|D

)2

+ β

(
|Va|
|Ω|D

)
+ γ

)
ρD4 |Ω|Ω

= α
(
|Va|2D2ρ

)
sign (Ω) + β

(
|Va|D3ρ

)
Ω + γ

(
ρD4

)
sign(Ω)Ω2

which can be rewritten as:

0 = α1 − T + β1Ω + γ1Ω
2 (6.13)

Hence, given the coefficients for KT that were presented in Eq. 3.25 and Va as described

in Eq. 3.27, Ωdes can be found using the quadratic formula. A positive and negative root

will be obtained, the one with the correct sign for the direction of the desired thrust is the

correct root.

6.4.5 Propeller Speed Control

The simplest way to obtain the command, δ, required to obtainΩdes is to invert the equations

for Ω as a function of δ that given in Eq. 3.24. Since Eq. 3.24 is a piecewise quadratic

equation, it is simple to invert. This is the method that is used in this controller.

While easy to implement, this method does have a draw back. Tthe equations in Eq. 3.24

are only an empirical approximation based on the propeller speed at Va = 0. As was seen

in Figure 3.4, the estimate gets substantially less accurate at higher advance speeds. This

means that the error between the propeller speed that is realized for a given command and

Ωdes will increase when the vehicle is underway. Since the Falcon provides feedback on the

speed of the propeller, an alternate way to obtain the desired propeller speed would be to



133

implement a low level controller that uses the feedback to determine the correct command.

The disadvantage to this, is that one adds a level of unpredictability in the thruster dynamics

which could contribute to unmodelled error in the vehicle dynamics. A low-level controller

is currently being developed by the OTL in [7] and will ultimately be tested as part of this

control scheme.

6.4.6 Control Signal Smoothing

Noise in the velocity estimate, that comes from the EKF, propagates through the guidance

and PID control algorithms to the control signal. If the velocity estimate is sufficiently

noisy (as can happen at higher speeds) then this can result in a noisy control signal, which

was one of the performance criteria for this control system. Filtering the velocity estimates

before they are used in the guidance and control algorithm can have unpredictable results,

a better method is to filter the control command, δ.

To achieve the desired smoothness, the following low pass filter was applied to the

output of the controller:

δfk = δfk−1
+KTH(δ − δfk−1

)∆T ; (6.14)

where δf is the filtered control command,∆T is the length of the time step, andKTH is the

control gain. In the PID controller, excessive filtering can cause oscillatory behavior in the

response as it will introduce latency into the signal. A control gain of 4 was determined to

be sufficiently fast to avoid any detrimental effects while still achieving the desired amount

of control smoothing.
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Table 6.1: Guidance and Control Parameters
Description Variable x y z ψ

Guidance Parameters
Proportional Gain Kp 0.375 0.375 0.375 0.375
Integral Gain Ki 0.001 0.001 0.001 0.001
Velocity/Rate Limit ζMAX 0.4 m/s 0.2 m/s 0.1 m/s 0.2 rad/s
Integral Limit ζIMAX

0.3 m/s 0.15 m/s 0.075 m/s 0.15 rad/s
Upper Switching Threshold TU 3 m 3 m 3 m 0.52 rad
Lower Switching Threshold TL 2 m 2 m 2 m 0.35 rad

PID Controller Parameters
Ref Model Proportional Gain Kprm 3.75 3.75 1.25 5
Proportional Gain Kp 3.75 3.75 1.25 5
Integral Gain Ki 3.51 3.51 0.39 6.25
Derivative Gain Kd 0.0 0.0 0.0 0.0
Control Filter Gain KTH 4.0 4.0 4.0 4.0

6.4.7 Simulation Results for PID Controller

The simulation was set up with the guidance and control parameters shown in Table 6.1.

As was previously mentioned, the simulation results contain environmental disturbances,

sensor noise, latency, discrete timing, model parameter errors, and thruster deadband. In the

simulation, the vehicle is assumed to be at rest at the origin of the NRF and is commanded

to go to a waypoint atχ = [7.0 −2.0 2.0 0.2]T , which is expressed in metres for the three

translational states and radians for ψ. The results of the simulation are shown in Figure 6.2.

Using the PID controller just described, the vehicle reaches the desired waypoint in

approximately 20 seconds (Figure 6.2-a) and is able tomaintain station despite continuously

applied oscillatory disturbances and parameter errors. It does not track the desired velocities

very well (Figure 6.2-b), but the guidance algorithm was still able to provide a trajectory to

the waypoint. The guidance and PID integrals, shown in Figure 6.2-c, are both smooth and

well behaved. The integral on the PID controller is not constrained by the same measures as

the guidance integral. This means that in the event of actuator saturation, integral wind-up

could be a problem. This issue was not pursued as it is handled inherently with the more

advanced adaptive controller. The control signals are shown in Figure 6.2-d. These signals
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Figure 6.2: Full simulation of the ROV dynamics with PID control system: a) positions,
b) velocities, c) contribution of the integral component d) control effort from each thruster
(%)

are smooth and trackable by the thrusters. The vertical, aft-port and front-stbd thrusters do

saturate for a short period of time, but not for a sustained period. Overall this controller

meets the performance objectives, but doesn't track the desired velocities very well and

experimental trials have shown it to be sensitive to errors in the model parameters, which

result in errors in the inversion.
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Figure 6.3: Diagram of the adaptive controller presented in this chapter.

6.5 Adaptive Control

The adaptive control system implemented here has the structure outlined in Figure 6.3. It is

the same as the baseline controller with the addition of two elements, an adaptive element

to compensate for errors in the approximate dynamic inversion and pseudo-control hedg-

ing, a method first proposed by Johnson in [35]. This control architecture, dubbed model

reference adaptive control (MRAC) in previous work, has been used successfully to con-

trol autonomous helicopters [34, 39, 52, 50, 51, 16] and is well suited to handle the level

of unmodelled dynamics present with an ROV. The adaptive element will be integrated by

modifying the desired acceleration as follows:

ν̇des = ν̇crm + ν̇pid − ν̇nn (6.15)

where ν̇nn is the adaptive contribution. The input to the neural network is restricted to

the set of controllable DOFs. From the point forward, ν can assumed to be the truncated

velocity vector [u v w ψ]T .
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6.5.1 Pseudo-Control Hedging

Pseudo-Control Hedging (PCH) was proposed by Johnson in [35] as a method for stopping

an adaptive element from adapting to select input characteristics of the plant. Specifically,

he was interested in preventing a neural network from adapting to actuator saturation and

rate limits. Johnson referred to the equivalent of ν̇des as the "pseudo-control". In a model

reference control system, the PCH concept can be described as follows:

The reference model is moved in the opposite direction (hedged) by an estimate

of the amount the plant did not move due to system characteristics the control

designer does not want the adaptive control element to see [35].

This same methodology can be applied here to compensate for unmodelled thruster

dynamics. The following thruster characteristics would have an adverse effect on the adap-

tation:

• saturation limits for the control,

• inertial dynamics that differ significantly between a positive (powered) and negative

(unpowered) step, as shown in Figure 3.3,

• variations in themapping between the command and propeller speed that is dependant

on the advance speed, Figure 3.4.

For a given ν̇des, the approximate dynamic inversion of the vehicle dynamics, that was

previously described, will produce a set of desired forces and moments, τ des, such that:

ν̇des = f̂ (η̂, ν̂, τ des) (6.16)

where f is the dynamic model described in Chapter 3. Since the propeller speeds are being

measured, an estimate of the achieved pseudo-control can be obtained and the PCH signal
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can be calculated as follows:

ν̇pch = f̂ (η̂, ν̂, τ des)− f̂ (η̂, ν̂, τ̂ ) (6.17)

= ν̇des − f̂ (η̂, ν̂, τ̂ )

where τ̂ is the estimate of what the plant really did given the measured propeller speed.

The hedged reference model dynamics are then:

ν̇rm = ν̇crm − ν̇pch (6.18)

6.5.2 Tracking Dynamics

Define the velocity tracking error as et:

et =

 et1

et2

 =

 ∫ νrm − νdt

νrm − ν

 (6.19)

then a PI compensator for the reference model tracking error would be

ν̇pid =

 Ki 04×4

04×4 Kp

 e (6.20)

where Kp and Ki are diagonal proportional and integral gain matrices.
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Differentiating et, the dynamics of the tracking error can be found as:

ėt2 = ν̇rm − ν̇ (6.21)

= ν̇crm − ν̇pch − ν̇

= ν̇crm − ν̇des + f̂ (η̂, ν̂, τ̂ )− f (η,ν, τ )

= −ν̇pid + ν̇nn −∆f (η̂, ν̂, τ̂ ,η,ν, τ )

= −ν̇pid + ν̇nn −∆fnn (η̂, ν̂, τ̂ ,η,ν, τ )− ϵ (η̂, ν̂, τ̂ ,η,ν, τ )

where∆f is the part of the unmodelled dynamics that can be cancelled by the neural network

and ϵ is the part that the neural network can't correct for, which is primarily unmodelled

thruster dynamics. The overall tracking dynamics can then be expressed as:

ėt = Ae+ Bu (6.22)

=

 04×4 I4×4

−Ki −Kp

 e+
 04×4

I4×4

 (ν̇nn −∆fnn − ϵ) (6.23)

6.5.3 Adaptive Element

It has been proven by Hornik, Stinchcombe, and White in [28] that "standard multilayer

feedforward networks are capable of approximating any measurable function to any desired

degree of accuracy", and that "these “mapping” networks can be considered to be universal

approximators". Single hidden layer neural networks have been successfully used to ap-

proximate unmodelled dynamics in vehicle control applications [30, 52, 50, 39, 35]. The

network architecture proposed here uses state feedback to train a single hidden layer percep-

tron neural network (NN) online to approximate the modelling error in∆fnn and produce a

control contribution, ν̇nn that cancels the modelling error. It is based on the control system

described by Johnson in [35], which uses NN that is based on the control system developed
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Figure 6.4: Neural Network with a Single Hidden Layer.

by Yeşildirek and Lewis in [73].

The structure of the NN is shown in Figure 6.4. The input vector, x̄, is comprised of

of the velocity estimates, ν̂, and the desired forces and moments, τ des. Since the desired

forces and moments are a function of the complete command in the current time step, which

is a function of the output of the NN, there is an algebraic loop. Using ν̇des from the last

time step has been found to be adequate to address this [51].

An input bias, bv, is added to the beginning of the input vector to allow thresholds, Θv,

to be included in the weight matrix V . Similarly, the value of the first hidden layer neuron

is defined as a strictly positive constant bw to allow for thresholds, Θw, to be included in

the weight matrix W; for this work bv and bw are set to 0.5. Assuming there are n1 input

variables, and n2 + 1 hidden layer neurons, then the weight matrix V is a (n1 + 1) × n2
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matrix that maps the input vector, x , to the input for the hidden layer neurons.

V =



Θv1 . . . Θvn2

v1,1 . . . v1,n2

... . . . ...

vn1,1 . . . vn1,n2


(6.24)

The weight matrix W then maps the output of the activation function to the output of the

NN, whereW is defined as a (n2 + 1)× n3 matrix.

W =



Θw1 . . . Θwn3

w1,1 . . . w1,n2

... . . . ...

wn2,1 . . . wn2,n3


(6.25)

The input to the hidden layer neurons is defined as z = VTx and the input-output map

for the hidden layer is a sigmoidal activation function.

σ(zi) =
1

1 + e−aizi
(6.26)

where the variable ai is the activation potential of the neuron. The activation potentials are

distinct for each of the hidden layer neurons. For this work, 5 hidden layer neurons are

used and the activation potentials are [0.2 0.4 0.6 0.8 1.0]. Combining the output of

the activation function and bw yields a vector σ(z) = [bw, σz1 , . . . , σzn2 ]
T . Then, the output

vector of the NN is simply:

ν̇nn = WTσ(z) (6.27)

The update dynamics for the network weight matrices V and W use a learning law based

on a filtered error signal. The learning law controls the rate of adaptation and allows the
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NN to track the modelling error. Defining the filtered error as:

r(e) = (eTPB)T (6.28)

= eT

 1
2
(KiKp)

Ki

[ 1

0.25n2 + b2w

]
(6.29)

P is a solution to the Lyapunov equation ATP + PA + Q = 0, where A comes from the

tracking dynamics presented in Eq. 6.22 [39]. SinceA is Hurwitz, the existence of a unique

P is guaranteed for any positive definite choice of Q. Kp and Ki are diagonal matrices

containing the proportional and integral gains for each set of states in the error vector. The

dynamics of V andW are defined by the learning law presented in [73], where

Ẇ = −
[(
σ − σ′VTx

)
rT + κ∥r̄∥W

]
Γw

V̇ = −Γv

[
x
(
rTWTσ′)+ κ∥r̄∥V

]
(6.30)

In Eq. 6.30, Γw and Γv are the learning rates, which, for this work have been set to 0.2 ×

In3×n3 and 2× In1×n1 respectively. The rate of change of the sigmoidal activation function

is denoted by σ′ ∈ ℜn2+1×n2 . The final term in both equations is the e-modification term,

κ, which is a strictly positive constant, set at 0.1 for this work. A proof of boundedness on

ν̇nn using these update laws is given by Kannan and Johnson in [39].

6.5.4 Simulation Results for Adaptive Controller

The contribution of the neural network to the control system is to cancel out the errors

that occur in the dynamic inversion from inaccurate modelling. The effectiveness of the

neural network is best seen using a simplified simulation. Figure 6.5 shows a simulation that

only includes errors in the model parameters. Starting from rest, the vehicle is being asked

to track a step input in reference velocities, followed by a second step input of twice the
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Figure 6.5: Plot showing the contribution of the neural network to the control system.

Table 6.2: Neural Network Control Parameters
Description Variable value
# of inputs n1 9
# of hidden layer neurons n2 5
# of outputs n3 4
activation potentials a [0.20.40.60.81.0]T

e-modification terms κ 0.1
input bias bv 0.5
hidden layer bias bw 0.5
learning rate for V Γv 2× In1×n1

learning rate forW Γw 0.2× In3×n3

magnitude. During the first step the network is learning the parameter errors and the vehicle

doesn't track the reference model very well. The tracking on the second step, however, is

significantly better despite the fact that the step is twice the magnitude.

To test this control sytem in the full vehicle simulation, the same scenario was used here

as was used for the PID controller in Section 6.4.7. The parameters used for the NN are

listed in Table 6.2. All of the PID and trajectory parameters from Table 6.1 in Section 6.4.7

were also used. The only difference between the two control systems is the addition of the
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NN and PCH.
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Figure 6.6: Full simulation of the ROV dynamics with adaptive control system: a)positions,
b) velocities, c) contribution of the integral component d) control effort from each thruster
(%)

The results of the simulation are shown in Figure 6.6. As with the PID controller, the

vehicle was able to reach the destination point in approximately 20 seconds and hold station

once it arrived (Figure 6.6-a). One of the biggest differences is in the desired velocities

shown in Figure 6.6-b; the adaptive controller tracks the desired velocities much better,

which resulted in less overshoot in the positions. This is especially truewith the yaw control.

A second thing of note is the size of the integral term for the PID compensator, shown in

Figure 6.6-c. The integral term is several orders of magnitude smaller than it was with

the previous controller; this is because the modelling error is being handled by the NN
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and the PID compensator doesn't see it. The control signal, shown in Figure 6.6-d, is also

trackable by the thrusters. The mean thrust demanded by the two control systems have no

statistical differences. The biggest difference in the neural network controller is the ability

to accurately track the reference velocities, which is an important trait for many underwater

applications3. The network weights fromW and V are shown in Figure 6.7; they are stable

and converge on steady-state values within a few seconds.
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Figure 6.7: Plot showing the neural network weights

6.6 Conclusion

In this chapter, two different control schemes were presented. The first was a baseline PID

controller that used a nonlinear dynamic inversion and a reference model. The reference

model was a set of first order sub-systems that provided an trackable trajectory to the desired

velocities from the guidance algorithm. The vehicle tracked the reference model though
3For Example: If the vehicle is being used as an observing platform, it is important that the camera stays

pointed at the object of interest is the transect is performed. If the vehicle is yawing the camera will not be
pointed at the subject.
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the PID controller and approximate nonlinear inversion. In the second control scheme, an

adaptive element was added that used an online learning algorithm to cancel the errors in

the approximate nonlinear inversion, and PCHwas used to prevent the NN from adapting to

the thruster dynamics. Both control systems were able to manage error and get the vehicle

to the destination, but there was a significant decrease in the velocity tracking error with

the addition of the NN to the controller.
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Chapter 7

Conclusion

Semi-autonomous functionality is necessary, if ROV operators are going to meet the grow-

ing demand from the underwater industry. The challenges faced by pilots will continue to

increase as the underwater oil and gas, and mining industries venture into deeper and deeper

water. Science tasks for ROVs have also increased in complexity over the last decade. More

and more countries are installing permanent seafloor observing stations (or observatories).

These installations require ROVs with precise position control that can gently manipulate

instruments and connectors using hydraulic arms with force feedback.

In this work, a complete guidance, navigation, and control system was implemented

on the Saab Sea-Eye Falcon ROV. The Falcon was modified to incorporate a navigation

sled, which contained an IMU, a Compass, a Pressure Sensor, and a DVL. This sled was

used in conjunction with an SBL positioning system to estimate the position of the vehicle

with an overall error, in a Euclidean sense, of less than 6 cm. The output of the navigation

system was validated using a high-speed motion capture camera system that acted as an

independent observer and provided data about the position and attitude of the vehicle while

it was inside the SWAT facility. The guidance algorithm, which was also used in previous

work, was shown to be a stable and provide a reliable trajectory to a given destination point.
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Lastly, two control systems were considered. The first system was a simple PID controller

contained in an architecture with a reference model. The second control system added

an adaptive element to cancel out the errors in the approximate dynamic inversion. Both

control systems produced control signals that met all the stability criteria, but the adaptive

controller showed an increase in tracking performance. Successful field tests of the vehicle,

guidance, navigation, and control systems presented in this document have been conducted;

the results will be published in a future paper.

7.1 Future Work

The Falcon ROV used for this research has been developed as an experimental research

platform. The onboard software uses a combination of Labview by National Instruments

and code generated byMatlab Coder (Mathworks). All of the development for the guidance,

navigation, and control algorithms was done completely in Matlab and ported directly over

to the actual hardware without any intermediate steps. The SWAT facility is a valuable asset

for testing underwater vehicles and related research. While working on this research, there

were many areas of investigation that were not explored but could be easily pursued using

the SWAT and OTL's Falcon ROV:

System Identification: Further investigation into the cross coupled pitch and roll dynam-

ics should be performed. The results in Chapter 3 contradict the current theory that at

low speeds the DOFs of an ROV can be considered uncoupled and addressed sepa-

rately. The SWAT facility could be used to perform additional system ID testing that

could expand on the findings in this work.

Navigation: During this research the following items were identified as topics of interest

for future work with this vehicle.

• It has been shown that other non-linear estimators can out perform conventional
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EKFs in both stability and accuracy. While the results of this research are ade-

quate for most applications, improved accuracy would be needed to implement

an ROVM system or other advanced research,

• Using a highly accurate short range vision-based navigation system in conjunc-

tion with a less precise long range navigation could enable very precise posi-

tioning at a work site. This concept has been realized, to some extent, with

SeaBytes latest software, the CoPilot. However, there are still many potential

research problems that could be investigated at the SWAT,

• Simultaneous localization and mapping is always an interesting topic. The

SWAT is a perfect location for this type of work as one can install features at

precise locations and observe the progress of the ROV during trials using the

MOCAP camera system.

Guidance: The guidance algorithm presented here provides a stable trajectory of velocities

that will get the vehicle to the destination, but does not do it very elegantly. Improved

high-level path planning techniques could be investigated. These techniques could

use fuzzy logic or other rule-based methods for determining trajectories that are more

suitable for a working ROV.

Control: There are many potential controls projects that could be pursued. Firstly, the

controller presented in this work should be subjected to sea trials to determine how

robust it actually is. Once that is complete, there are a number of ways it could be

improved or further investigated:

• Developing an adaptive inner layer control system to manage the thrusters in a

fault tolerant manner,

• Incorporate the latency compensation algorithms presented in [51],
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• Do an indepth comparison between the controller presented here and a sliding

mode controller.

These are only a few suggestions for futurework that could be done using these facilities;

there are many more potential avenues of research that could be followed.
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Appendix A

Mathematical Notation

The following mathematical notation is used throughout this text.

A scalar is depicted by normal text n.

A vector or matrix is depicted by boldface n.

A vector expressed in frame a is denoted as na.

The rotation matrix from frame a to frame b is denoted as Ra→b

Identity matrix with n rows and n columns

In×n ,



1 0 · · · 0

0 1 · · · 0

...
...

0 0 · · · 1


(A.1)

Zero matrix with n rows and m columns

0n×m ,



0 0 · · · 0

0 0 · · · 0

...
...

0 0 · · · 0


(A.2)
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A diagonal matrix is defined by

diag(n) ,


n1 0 0

0 n2 0

0 0 n3

 (A.3)

Skew symmetric matrix operator

ñ ,


0 −n3 n2

n3 0 −n1

−n2 n1 0

 (A.4)
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Appendix B

Supplemental ROV Hardware

In its nominal configuration, the OTL's ROV is a stock Saab SeaEye Falcon with a 350m

copper tether. The vehicle is rated to 300m and is controlled by joystick through the SCU.

The vehicle comes equipped with a camera, compass, rate gyro for heading, and depth

sensor. These nominal navigation sensors are insufficient for generating a position estimate

accurate enough for this work. To address this the vehicle was augmented with a positioning

system, navigation sensors, and several other upgrades, as shown in Figure B.1. To facilitate

this new configuration, three major modifications were made to the vehicle:

1. An "In-Control" switch was added to the junction box to allow the pilot to switch

between the traditional manual control mode and the computer-aided dynamic posi-

tioning mode,

2. An auxiliary interface container, or AIC, was added to the main vehicle to enable

support for auxiliary equipment and additional communication protocols,

3. A navigation sled with additional sensors was added to the bottom of the vehicle.
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Figure B.1: Schematic showing the layout of all the equipment used to support this research

B.1 Vehicle Modifications

The upgraded Falcon is shown in Figure B.2. These major upgrades, as well as some other

minor ones, are described in detail in the following sections.
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Figure B.2: The modified OTL Falcon with navigation skid

B.1.1 In-Control Switch

A small but important detail for this research was adding a reliable way of switching be-

tween the human pilot and the computer control. This provides a level of safety for the

vehicle and operating area by allowing a human supervisor to assume control of the vehi-

cle quickly in case the automatic controller does something unexpected. This was accom-

plished using a spare conductor in the cable that is normally used for a Cathodic Protection

(CP) Probe. This conductor is connected to the black banana plug shown in Figure B.3,

with the green plug being connected to reference ground (also known as Earth). To use this

interface as the "In-Control" switch, a small IC board was added in the vehicle junction

box. When the two plugs are connected together with a shorting cable, a relay is powered

on the IC and the RS-485 telemetry lines from the vehicle are diverted from the tether to

the computer on the navigation sled. When the shorting cable is removed the relay reverts

to its default state and the vehicle telemetry lines are connected back to the tether so that
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the surface control unit is once again in control.

(a) (b)

Figure B.3: In-Control Switch: (a) The In-Control plug on the SCU shown connected
putting the unit in computer aided mode) (b) IC for the In-Control switch located in the
vehicle junction box

B.1.2 Auxiliary Interface Can (AIC)

The vehicle was also equipped with a small housing containing electronics that can pro-

vide power and communications to auxiliary instruments. This housing, referred to as the

Auxiliary Interface Can, or AIC, is shown in Figure B.4. The AIC takes the 48VDC avail-

able from the Falcon and powers internal and external electronics and instrumentation. For

communications, the AIC works in conjunction with topside equipment to provide Ethernet

connectivity to instruments on the ROV. This is done using the Patton 2172 Ethernet Ex-

tender and an ADAM-6520 Industrial Ethernet Switch. The Patton ethernet extender can

transmit up to 25Mbps over a single set of twisted pair conductors in the tether. 10/100

ethernet normally requires two sets of twisted pair conductors and there is only one spare

set of conductors in the falcon tether. Ethernet extenders work by having a transmit/receive

unit at both ends of a wire that is to be transmitted over. The units convert ethernet packets

into a proprietary communication algorithm at one end of the and then decode them and
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turn them back into ethernet packets at the other end. For this work, there is one unit on the

surface and one unit in the AIC. This allows the subsea infrastructure to communicate with

the surface equipment over ethernet and vice versa. Lastly the AIC also provides an access

point to the Falcon RS-485 communication buss when the In-Control switch is in computer

aided mode.

(a) (b)

Figure B.4: Auxiliary Interface Can: (a) Front Side (b) Back Side

There are two devices connected to the AIC, an Imagenex 881L Ethernet based forward

looking sonar system and the SSC. The AIC can also support additional Ethernet instru-

ments or legacy RS-485 instruments using an ADAM-4570 serial server. This device can

be used to transmit and receive serial data over Ethernet. The serial server is required, since

all of the spare conductors in the tether, that would have otherwise been used for serial

communication, have been repurposed to provide the Ethernet service.

B.2 Surface Unit (SCU) Modifications

The SCU is shown in Figure B.5. SeaEye uses a small 12 unit 19 inch rack to house all of the

surface electronics, including a power supply unit, processing unit, keyboard, and monitor.

The keyboard and monitor are used for debugging the vehicle, and the monitor is also used

for displaying the image from the onboard video camera and the overlay with the basic
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Figure B.5: Falcon Surface Equipment - deck equipment including power supply, process-
ing unit, and monitor.

vehicle telemetry. The power supply unit takes in the AC power and outputs 500VDC to

the tether for the vehicle. The power supply compensates for the tether resistance to ensure

that the vehicle receives a consistent 500VDC regardless of which tether is being used or

the amount of current being drawn by the vehicle.

For this research, the surface equipment was augmented with a host workstation, a track-

ing system laptop, a serial/ethernet converter, and a 5-port ethernet switch. The host work-

station is the primary operating and development platform for the Labview software. The

tracking system laptop runs the SBL or USBL software and then transmits the output to

the rest of the system over the serial/ethernet converter. All of the surface equipment uses

ethernet communication and communicates with the subsea infrastructure via the ethernet

extenders.

The state of the In-Control switch determines whether or not the SCU or the SSC is

in control. When the SCU is in control, the SSC does not have access to the Falcon's
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Figure B.6: Falcon Surface Equipment - the isolated RS-232/485 transceiver and isolated
power supply that were added to the CPU box.

RS-485 communication buss; so the only way to view the commands being sent, is on

the surface through the SCU. In order to run the navigation algorithm with the SCU in

charge, it is necessary to be able to monitor the commands being sent to the thrusters. To

facilitate this, the SCU was modified by adding an isolated power supply and isolated RS-

232/485 transceiver to the processing unit. This feed is connected to a serial server (shown

in Figure B.1) on the surface through one of the auxiliary ports on the front of the SCU. The

transceiver and power supply inside of the processing unit are shown in Figure B.6.

B.3 Navigation and Control Sled

The navigation and control sled, holds all of the extra navigation sensors and the SSC.

Unlike the rest of the modifications described here, the sled is not permanently attached to

the vehicle and can be removed and replaced as necessary. This is important, as the sled

is quite large and could be a detriment for ROV missions that don't require the augmented

navigation and control provided by the SSC. Most of the navigation sensors on the sled

have been used in previous graduate work by Zand in [78] and Soylu in [61], and are well

understood.
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B.3.1 SubSea Controller (SSC)

Figure B.7: The SubSea Controller (SSC) showing the National Instruments compactRio
industrial computer and Keller America Pressure Sensor

The SSC, shown in Figure B.7 is the nerve centre of the onboard vehicle control system.

It contains a National Instruments cRio computer and runs all of the Labview control soft-

ware. The data from all the navigation sensors are fed into the cRio via Ethernet or through

integrated modules that support RS-232 and RS-485 communication. The SSC also con-

tains a pressure sensor and an ADAM 4510S RS-485 isolator. The pressure sensor provides

a more accurate depth estimate than is provided by the Falcon depth sensor and the ADAM

isolator is used to electrically isolate the RS-485 telemetry signals going to and from the

main Falcon telemetry buss.

B.3.2 Doppler Velocity Log (DVL)

The DVL housing contains an OEM version of the Teledyne Benthos Explorer DVL and a

power distribution board that acts as a power and communication hub for the compass and

and IMU. The DVL transducer head mounts into the lower end section of the housing and
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(a)

(b) (c)

Figure B.8: The Doppler Velocity Log: (a) DVL assembly (b) power distribution board (c)
power distribution board

the rest of the electronics go in the upper tube section. The transducer is arranged at a 45

degree angle to the x-axis of the vehicle, this is the optimal orientation for error rejection

and mitigating the effects of ringing [31]. The DVL electronics, in the gold metal box, are

attached to the DVL head with two cables, shown in Figure B.8-a. The power distribution

board, shown in Figure B.8-b and Figure B.8-c, is located above the DVL electronics. This

custom-built circuit board takes the nominal 48VDC from the Falcon and provides 24VDC

and RS-232 communication to the DVL, as well as 12V and RS-232 communication for

the IMU and compass, which are housed in separate enclosures and connected to the DVL
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enclosure by subsea cabling. The DVL enclosure is connected to the SSC via underwater

cable and the three sets of RS-232 communication lines are connected directly to an RS-232

module in the cRio control computer.

B.3.3 Inertial Measurement Unit (IMU)

(a) (b)

Figure B.9: Inertial Measurement Unit: (a) sensor as mounted in the housing (b) custom
interface board

The Epson M-G350-PD11 IMU (shown in Figure B.9) was purchased to replace the

Systron Donner MMQ50 IMU that was used in previous work. A custom interface board,

shown in Figure B.9-b, with a TTL/RS-232 level shifter and DCDC power supply, was built

to integrate the IMU into the existing architecture. The IMU is mounted in the housing

as shown in Figure B.9-a and connects to the rest of the infrastructure through the DVL

enclosure.

B.3.4 Compass

The Honeywell Spartan SP3003D compass, which was used in previous work, is also on

the navigation sled. It is mounted inside the compass housing, as shown in Figure B.10.

The compass provides heading as well as a roll and pitch measurement. Power and com-

munication for the compass are provide via the DVL enclosure.
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(a) (b)

Figure B.10: Spartan Compass: (a) sensor as mounted in the housing (b) sensor orientation
diagram
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Appendix C

Mast EKF Derivation

The EKF for analyzing the mast information is similar in structure to the EKF described in

Chapter 4 and Appendix E. It estimates 13 states XN , s, v, and ω. The measurements are

the LED locations in the boathouse frame. The measurement model is simply:

ẑ = XN + RB→NXB
Li (C.1)

where XN is the position of the vehicle in the NRF, RB→N is the rotation matrix from the

BRF to the NRF, and XB
Li is the location of LED i in the BRF.

The process model used the kinematics from Chapter 3, but assumed the velocities and

rates were constant (ie. ν̇ = 0). Therefore, the A matrix contains the partial derivatives of

η̇ from Appendix E but the partial derivatives for ν̇ are all zeros. Therefore,A is comprised

of two components: the partial derivatives for η̇ with respect to ν,

∂η̇

∂ν
=

∂J(s)ν
∂ν

(C.2)

= J
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and the partial derivative of η̇ with respect to si,

∂η̇

∂si
=

∂J(s)
∂si

ν (C.3)

=

 ∂RB→N

∂si
03×3

04×3 ∂J2
∂si

ν

H also borrows from the EKF described in Appendix E, and has two components. The

partial derivative of with respect to XN , and s. The first is simply:

∂ha
∂si

= I3×3; (C.4)

The second is the following familiar equation:

∂ha
∂si

=
∂

∂si
RB→NXB

Li (C.5)

=
∂RB→N

∂si
XB

Li

where ∂RN→B

∂si
can be obtained from Eq. E.3.

The x0 andP0 fromAppendix E are used. This is reasonable as the same vehicle location

is being estimated. The QP , matrix values are as follows:

QPxx = 0.01 QPyy = 0.01 QPzz = 0.01

QPs0s0
= 0.0025 QPs1s1

= 0.0025 QPs2s2
= 0.0025 QPs3s3

= 0.0025

QPuu = 0.25 QPvv = 0.25 QPww = 0.25

QPpp = 0.09 QPqq = 0.09 QPrr = 0.09

(C.6)

Note that the values for the states in η have been kept small while the values for ν are

large. This allows the velocity information to propagate backwards from the position infor-
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mation obtained through the measurements. Since the measurements are all the same and

the MOCAP has a variance for each LED measurement of approximately 0.0001, RM is

simply:

RM = 0.0001 · I13×13 (C.7)
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Appendix D

Representing Orientation of Vehicles in

3D Space

A reference frame is a mathematical abstraction used for defining an observers point of

view of an object; for example: two people sitting on opposite sides of a table looking

at a pencil will each see the pencil differently, to one person the pencil will be pointing

towards them, to the other it will point away. Both people see the same pencil, but they are

viewing it from different frames of reference. By definition, a reference frame has an origin

and n basis vectors, where n is the dimension of the space in question. A reference frame

is typically used as the basis for a coordinate system, which allows one to quantitatively

describe points and objects in space.

When considering the forces and moments on an underwater vehicle, some are fixed

to the earth's reference frame, like gravity and buoyancy, others are fixed to the vehicle

reference frame, like propulsion, and still others which are fixed to the direction of velocity,

like hydrodynamic forces and moments. When creating a dynamic model of a vehicle it is

often helpful to be able to work with quantities in their native frame and then transform the

results. There are two reference frames in particular that are universally used in guidance,
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navigation and control applications:

Inertial frame: The reference frame where Newton's Laws are valid.

Body Frame: A reference frame that is fixed to the vehicle body.

This raises the question of how to best describe the relationship between different reference

frames, and transform vector quantities between them.

D.1 Transformation Matrices

There are two types of transformationmatrices used in this work, the direction cosinematrix

(DCM) and the homogenous transformation matrix (HTM). The DCM is a 3x3 orthonormal

matrix, that is made up of the cosines between the different axes of the two reference frames.

The fundamental method for obtaining the DCM is by taking the dot product of the vectors

that make up the axes for each reference frame:

DCM1→2 ,


e1x · e2x e1x · e2y e1x · e2z

e1y · e2x e1y · e2y e1y · e2z

e1z · e2x e1z · e2y e1z · e2z

 (D.1)

D.2 Euler Angles

Geometric representations of transformations are most common as they are easily visu-

alised. Leonard Euler, an 18th century mathematician, presented the following theorem:

Any two independent orthonormal coordinate frames, whose origins are co-

incident, can be related by a sequence of rotations (not more than three) about

coordinate axes, where no two successive rotations may be about the same axis.
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Figure D.1: Euler Angle Sequence ZYX

This theorem is the basis for the Euler Angle Sequences, which are used to describe a se-

quence of rotations which transforms the observer from one coordinate system to another,

Figure D.1. These sequences are not unique; there are 12 different choices of axes that

can be used to move between coordinate systems. In guidance and control applications, it

is conventional to use the ZYX transformation to go from the inertial to the body frame,

shown in Figure D.1, whereXN , YN , ZN is the inertial frame,XB, YB, ZB is the body fixed

frame and X ′, Y ′, Z ′ X ′′, Y ′′, Z ′′ are intermediate sets of axes. In this transformation, the

first rotation is about the z-axis, the second rotation is about the new y-axis and the final

rotation is about the new x-axis.

Euler angle sequences provide a intuitive method of transforming vectors from one ref-

erence frame to another, because they are composed of a sequence of planar rotations about

one axis of the reference frame. Planar rotations are easy to visualise as they are easily
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described by simple geometry. From Figure D.2, it can be seen that the representation of

Figure D.2: Geometry of a Planar Rotation

vector n in reference frame 1 will be related to the representation in reference frame 2 by a

planar rotation about the z-axis that can be expressed as follows:

n2 = Rz(ψ)n1 (D.2)

=


cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

n1
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The transformation, Rz is also a DCM. By extension, rotations about the x-axis and y-axis

can be expressed by the following matrices:

Rx(ϕ) =


1 0 0

0 cos(ϕ) sin(ϕ)

0 −sin(ϕ) cos(ϕ)

 (D.3)

Ry(θ) =


cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (D.4)

Since an euler angle sequence is just a set of sequential planar rotations the DCM for the

complete ZYX sequence that rotates a vector from the inertial to the body frame, otherwise

denoted as Ri→b, can be calculated as follows:

Ri→b , Rx(ϕ)Ry(θ)Rz(ψ)

=


1 0 0

0 cos(ϕ) sin(ϕ)

0 −sin(ϕ) cos(ϕ)



cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 ...


cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

 (D.5)

The biggest draw back to Euler angle sequences is illustrated when trying to reversing

the process. It is possible to obtain the Euler angles from the DCM itself; for the ZYX
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sequence, shown in Eq. D.5 the following equations can be used to obtain the Euler angles:

ϕ = atan

(
Ri→b(2, 3)

Ri→b(3, 3)

)
(D.6)

θ = −asin
(
Ri→b(1, 3)

)
(D.7)

ψ = atan

(
Ri→b(1, 2)

Ri→b(1, 1)

)
(D.8)

From Eq. D.6 and Eq. D.6 it is clear that if θ = ±nπ/2 n = 0, 1, 2, 3... that cos(θ) = 0

and both the numerator and denominator will be zero leaving ϕ and ψ undefined. To see

exactly why this occurs substitute θ = π/2 back into Eq. D.5.

Ri→b|θ=π
2

(D.9)

=


0 0 −1

sin(ϕ)cos(ψ)− cos(ϕ)sin(ψ) sin(ϕ)sin(ψ) + cos(ϕ)cos(ψ) 0

sin(ϕ)sin(ψ) + cos(ϕ)cos(ψ) − (sin(ϕ)cos(ψ)− cos(ϕ)sin(ψ)) 0



=


0 0 −1

sin(ϕ− ψ) cos(ϕ− ψ) 0

cos(ϕ− ψ) −sin(ϕ− ψ) 0



=


1 0 0

0 cos(ϕ− ψ) sin(ϕ− ψ)

0 −sin(ϕ− ψ) cos(ϕ− ψ)




0 0 1

0 1 0

−1 0 0


From Eq. D.9 it is easy to see that this condition is reduces to a mirroring operation plus

a single rotation about the Z-axis, making it impossible to retrieve ϕ and ψ independently.

This singularity is analogous to gimbal lock, and is unavoidable with any three variable

representation of orientation. This is the major draw back to using euler angles to represent

orientation for vehicles with six degrees of freedom.
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D.3 Quaternions

The following section presents the aspects of quaternions and quaternion math that are rel-

evant to this paper; an in depth treatment of quaternions is available in [42]. Quaternions

are another way of representing orientation. A quaternion is a four element representation

based on Euler's Law of Finite Rotations which states:

Any arbitrary finite rotation that leaves a point fixed can be viewed as a single

rotation of magnitude Φ about a unit vector n.

Note: in this quotation n represents the axis of rotation not a generic vector as it is used

elsewhere in this work. The rotation of a vector using a quaternion can be seen graphically

in Figure D.3.

Figure D.3: A Graphical representation of a quaternion rotation Φ about a specific axis n

The set of quaternions makes up a non-commutative division ring with two operators,

addition and multiplication. A quaternion can be viewed as a concatenation of a scalar and

vector in ℜ3.

s = s0 + s1i+ s2j+ s3k

=

 s0

s

 (D.10)
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where s0 is the scalar part and i, j, and k are the usual orthonormal basis vectors. This

definition provides a convenient framework for defining quaternion mathematics.

The identity quaternion is defined as sI , [1, 0, 0, 0]T , and quaternion addition is anal-

ogous to vector addition with the four components adding separately. Additionally, quater-

nions must obey the following law, which was originally proposed by William Rowan

Hamilton:

i2 = j2 = k2 = ijk = −1 (D.11)

This law does not conform to the laws of multiplication for real numbers, but rather provides

a new law of multiplication, which is the basis for quaternion multiplication. In quaternion

multiplication, similar to multiplying polynomials, each element of the first quaternion is

multiplied through each element of the second. The result of a quaternion multiplication is

as follows:

ps = p0s0 + p0s1i+ p0s2j+ p0s3k

+p1s0i+ p1s1i2 + p1s2ij+ p1s3ik

+p2s0j+ p2s1ji+ p2s2j2 + p2s3jk

+p3s0k+ p3s1ki+ p3s2kj+ p3s3k2 (D.12)
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then by applying Hamilton's law (Eq. D.11), this is reduced to:

ps = p0s0 + p0s1i+ p0s2j+ p0s3k

+p1s0i− p1s1 + p1s2k− p1s3j

+p2s0j− p2s1k− p2s2 + p2s3i

+p3s0k+ p3s1j− p3s2i− p3s3 (D.13)

= p0s0 − p · s+ p0s+ s0p+ p× s (D.14)

=



p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0


s (D.15)

Finally, the inverse to a quaternion (a requirement of a division ring) is simply s−1 = s∗,

where s∗ , s0 − s1i − s2j − s3k. This can be shown simply be expanding the quaternion

product ss∗ to verify that it does equal the identity quaternion.

The mathematical notion of a quaternion can be related to a physical rotation in 3D

space as follows:

s =



s0

s1

s2

s3


=



cos(Φ/2)

sin(Φ/2) · n0

sin(Φ/2) · n1

sin(Φ/2) · n2


; |s| = 1 (D.16)

Notice that this definition of the quaternion provides an additional property ∥ s ∥= 1.

Rotation operators, analogous to the direction cosine matrices described above, can be

created using quaternions [42]. The following double quaternion multiplication will trans-
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form a vector from the inertial frame to the body frame:

n′b = s∗n′is (D.17)

where the n′ denotes the vector n being expressed as a quaternion with a scalar part of 0,

n′ = [0 n1i n2j n3k]T . Note that if one were to rotate the vector n a second time Eq. D.17

would become:

n′x = p∗s∗n′isp

= (sp)∗n′i(sp) (D.18)

where p is a second quaternion. Therefore, quaternion multiplication can be used to repre-

sent a sequence of rotations.

Through extensive manipulation, which is available for review in [42], Eq. D.17 can be

rewritten as follows:

nb =


1− 2(s22 + s23) 2(s1s2 − s0s3) 2(s1s3 + s0s2)

2(s1s2 + s0s3) 1− 2(s21 + s23) 2(s2s3 − s0s1)

2(s1s3 − s0s2) 2(s2s3 + s0s1) 1− 2(s21 + s22)

ni (D.19)

=


s20 + s21 − s22 − s23 2(s1s2 − s0s3) 2(s1s3 + s0s2)

2(s1s2 + s0s3) s20 − s21 + s22 − s23 2(s2s3 − s0s1)

2(s1s3 − s0s2) 2(s2s3 + s0s1) s20 − s21 − s22 + s23

 ni
= Qni

where Q is the quaternion rotation operator, and will perform the same function as RN→B

from Eq. D.5 without being effected by the singularity that is associated with Euler angles.
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D.4 Rotational Rate Equations

In this work, a vehicle is described as a rigid body that is free to move in six degrees of

freedom, three translational degrees and three rotational degrees. The rotational rates are

typically measured using sensors that are rigidly mounted to the vehicle. Therefore, the

sensors are measuring rotational rates about axes that are fixed to the vehicle body, ω ,

[p, q, r]T . Euler angles, on the other hand, are defined as rotations in three different reference

frames, one rotation from the initial frame, and two more rotations in intermediate frames,

before arriving at the final reference frame. Therefore, the time derivative of the Euler

angles and the measured angular rates are not equal.

Since the Euler angles are each defined in their own reference frame, the transformation

between the time derivative of the euler angles [ϕ̇, θ̇, ψ̇] andω is not just the rotational matrix

R defined in the previous section. Rather, the two are related by the following equation:

ω = T


ϕ̇

θ̇

ψ̇

 (D.20)

=


ϕ̇

0

0

+ Rx(ϕ)


0

θ̇

0

+ Rx(ϕ)Ry(θ)


0

0

ψ̇



=


1 0 − sin(θ)

0 cos(ϕ) cos(θ) sin(ϕ)

0 − sin(ϕ) cos(θ) cos(ϕ)



ϕ̇

θ̇

ψ̇


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The transformation from the rotational ratesω to [ϕ̇, θ̇, ψ̇] can be found by taking the inverse:


ϕ̇

θ̇

ψ̇

 = T−1


p

q

r

 (D.21)

=


1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)

0 cos(ϕ) − sin(ϕ)

0 − sin(ϕ)/ cos(θ) cos(ϕ)/ cos(θ)



p

q

r


Note that T is not a DCM and that T T ̸= T−1 and that it is not defined at the singularity

point where θ = ±90◦.

When dealing with quaternions, one is looking for a similar transformation such that

one can calculate ṡ as a function of [p, q, r]T . A derivations of this function can be found

in both [42] and [20]; since the notation used here is different from these two sources, the

derivation is repeated for clarity.

First recall that a sequence of rotations can be represented through quaternion multi-

plication. Therefore, with the following steps we can construct a quaternion difference

equation.

s(t+∆t) = s(t)∆r(t) (D.22)

where ∆r(t) is a transitional quaternion with a rotation of ∆α about an axis nr. If we

assume that ∆t is small then one can also assume that ∆r(t) is small. Therefore, from
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Eq. D.16∆r(t) can be represented as:

∆r(t) =



cos
(
∆α
2

)
sin
(
∆α
2

)
· nr0

sin
(
∆α
2

)
· nr1

sin
(
∆α
2

)
· nr2


=



1

∆α
2

· nr0

∆α
2

· nr1

∆α
2

· nr2


(D.23)

Therefore,

s(t+∆t) = 2



s0 −s1 −s2 −s3

s1 s0 −s3 s2

s2 s3 s0 −s1

s3 −s2 s1 s0





1

∆α
2

· nr0

∆α
2

· nr1

∆α
2

· nr2


(D.24)

=



1 −∆α
2

· nr0 −∆α
2

· nr1 −∆α
2

· nr2

∆α
2

· nr0 1 ∆α
2

· nr2 −∆α
2

· nr1

∆α
2

· nr1 −∆α
2

· nr2 1 ∆α
2

· nr0

∆α
2

· nr2
∆α
2

· nr1 −∆α
2

· nr0 1





s0

s1

s2

s3


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Pulling the identity matrix out, one can rewrite the above equation as:

s(t+∆t) =


I +

∆α

2



0 −nr0 −nr1 −nr2

nr0 0 nr2 −nr1

nr1 −nr2 0 nr0

nr2 nr1 −nr0 0







s0

s1

s2

s3


(D.25)

= s(t) +
∆α

2



0 −nr0 −nr1 −nr2

nr0 0 nr2 −nr1

nr1 −nr2 0 nr0

nr2 nr1 −nr0 0


s(t)

= s(t) +



s0 −s1 −s2 −s3

s1 s0 −s3 s2

s2 s3 s0 −s1

s3 −s2 s1 s0





0

nr0

nr1

nr2


∆α

2

moving s(t) to the left hand side, dividing by ∆t leads to:

s(t+∆t)− s(t)
∆t

=
1

2
s(t)nr(t)

∆α

∆t
(D.26)

taking the limit at ∆t→ 0 yields:

ṡ(t) =
1

2
s(t)nr(t)α̇ (D.27)

= C(t)ω(t)
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where

C(t) =
1

2



−s1 −s2 −s3

s0 −s3 s2

s3 s0 −s1

−s2 s1 s0


(D.28)

and ω(t) is the angular rate vector of the transition quaternion ∆r. Since s was post-

multiplied by∆r in Eq. D.22, then in a physical system where the quaternion, s, represents

a rotation between the navigation frame and the body frame ω(t) will be the angular rate

vector [p, q, r]T expressed in the body frame.
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Appendix E

Navigation EKF Jacobians and Matrices

A complete discussion on Kalman Filters is contained in [70]; the following is a short dis-

cussion on the fundamental components of the Discrete Extended Kalman Filter which is

used throughout this work.

E.1 Derivation of the A Matrix

Given a system described by Eq. 3.9, the Ak matrix from the Kalman Equations shown in

Figure 4.1 is the Jacobian of the process model with respect to the states, and defined as:

Ak , ∂f
∂x

∣∣∣∣
x=x̂k

(E.1)

= I+
∂ẋ
∂x

∣∣∣∣
x=x̂k

dt

The state vector has three components, the positions expressed in the NRF, the attitude

quaternion, and the velocities and rates expressed in the BRF. The dynamics for the positions

and attitude quaternion come from the kinematic equation, Eq. 3.5, and are a function of ν

and s. The first set of partial derivatives for η̇ is the partial derivative with respect to ν and
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is simply:

∂η̇

∂ν
=

∂J(s)ν
∂ν

(E.2)

= J

The second set of partial derivatives, with respect to s, are a little more complicated.

Since J is comprised of J1 = RB→N and J2, one can first note that the partial derivatives

of RB→N with respect to the elements of the attitude quaternion are given by the following

four derivative matrices:

∂RB→N

∂s0
= 2


s0 −s3 s2

s3 s0 −s1

−s2 s1 s0

 ∂RB→N

∂s1
= 2


s1 s2 s3

s2 −s1 −s0

s3 s0 −s1



∂RB→N

∂s2
= 2


−s2 s1 s0

s1 s2 s3

−s0 s3 −s2

 ∂RB→N

∂s3
= 2


−s3 −s0 s1

s0 −s3 s2

s1 s2 s3



(E.3)
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Similarly, the partial derivatives of the J2 with respect to the elements of s, are as follows:

∂J2
∂s0

=



0 0 0

1 0 0

0 1 0

0 0 1


∂J2
∂s1

=



−1 0 0

0 0 0

0 0 −1

0 1 0



∂J2
∂s2

=



0 −1 0

0 0 1

0 0 0

−1 0 0


∂J2
∂s3

=



0 0 −1

0 −1 0

1 0 0

0 0 0



(E.4)

Therefore, the partial derivative of η̇ with respect to si would be given by:

∂η̇

∂si
=

∂J(s)
∂si

ν (E.5)

=

 ∂RB→N

∂si
03×3

04×3 ∂J2
∂si

ν

The dynamics forν are given by Eq. 3.9. Since the coriolis force is small and contributes

a lot of cross coupling, the overall effect of it's inclusion inAwas deemed to be detrimental

and as such it is neglected. Therefore, the simplified dynamics is given by:

ν̇ = M−1 (τ (δ)− D (ν)ν − g (s)) (E.6)

which is a function of s and ν.

The first set of partial derivatives is respect to s. Since only the gravitational component

is a function of s, the partial derivatives with respect to the elements of the quaternion are
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given by:

∂g (η)
∂si

= − ∂

∂si



RN→B


0

0

W −B



rCG × RN→B


0

0

W

+ rCB × RN→B


0

0

−B




(E.7)

= −



∂RN→B

∂si


0

0

W −B



rCG × ∂RN→B

∂si


0

0

W

+ rCB × ∂RN→B

∂si


0

0

−B




where the partial derivatives of the rotation matrix are given in Eq. E.3. The second, and

last partial derivative, is with respect to ν, and is simply.

∂ν̇

∂ν
=

∂

∂ν
−M−1D (ν)ν (E.8)

= −M−1


DL + 2



|ν|T DQu

|ν|T DQv

|ν|T DQw

|ν|T DQp

|ν|T DQq

|ν|T DQr




Since the biases are assumed to be a constant in the model, their partial derivatives are
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all zero.

E.2 Derivation of the H Matrix

TheHk matrix from the Kalman Equations shown in Figure 4.1 is the Jacobian of the mea-

surement model with respect to the states and defined as:

Hk ,
∂h
∂x

∣∣∣∣
x=x̂k

(E.9)

Organizing the measurement vector by instrument allows one to divide the Hk matrix

up into strips as follows:

Hk =



∂hIMU

∂x

∂hPressure
∂x

∂hCompass
∂x

∂hDV L
∂x

∂hSBL
∂x


(E.10)

The derivatives for each sensor are derived in the sections below.

E.2.1 IMU

The measurement model for the IMU accelerometers given in Eq. 4.4 is a function of s, v,

ω and Ba.

Using Eq. D.19 for RN→B and the sensor to body rotation matrix from Table 4.1, the
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first set of partial derivatives is with respect to s can be found as:

∂ha
∂si

=
∂RN→S

∂si


0

0

−g

 (E.11)

= RB→S ∂RN→B

∂si


0

0

−g


where ∂RN→B

∂si
can be obtained from Eq. E.3.

The second set of partial derivatives is with respect to the velocity vector v = [u v w].

This one is slightly simpler and can be left in matrix notation.

∂ha
∂v

= RB→S ∂

∂v
2ω × v = RB→S ∂

∂v
2ω̃v (E.12)

= 2RB→Sω̃

The third set of partial derivatives is with respect to the angular rate vector ω = [p q r].

∂ha
∂ω

= RB→S ∂

∂ω
(2ω × v+ ω × ω × rIMU) (E.13)

= RB→S ∂

∂ω
(−2ṽω + ω̃ω̃rIMU)

∂ha
∂ωi

= RB→S

(
−2ṽ+

∂ω̃ω̃

∂ωi

rIMU

)

= RB→S

−2ṽ+
∂

∂ωi


−(r2 + q2) qp pr

qp −(r2 + p2) qr

pr qr −(p2 + q2)

 rIMU


where rIMU is the position vector of the IMU in the BRF and the partial derivatives of ω̃ω̃
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are:

∂ω̃ω̃
∂p

=


0 q r

q −2p 0

r q −2p

 ∂ω̃ω̃
∂q

=


−2q p 0

p 0 r

0 r −2q



∂ω̃ω̃
∂q

=


−2r 0 p

0 −2r q

p q 0



(E.14)

Lastly, the fourth set of partial derivatives is with respect to the biases. Since the biases

are calculated in the sensor frame they do not need to be rotated. Hence

∂ha
∂Ba

= I3×3 (E.15)

The measurement model for the IMU rate gyros given in Eq. 4.5 is much simpler and

only a function of ω and Bg. For Bg the partial derivatives are given by:

∂hg
∂ω

= RB→S ∂

∂ω
ω = RB→SI3×3 (E.16)

For the biases, similar to the accelerometers, the partial derivatives are simply given by

∂hg
∂Bg

= I3×3 (E.17)

E.2.2 Pressure

The measurement model for the pressure sensors is given in Eq. 4.6 is a function of z and

s. Using the chain rule, the partial derivative of the pressure with respect to z and s will be:

∂P

∂z
=
∂P

∂zp

∂zp
∂z

,
∂P

∂s
=
∂P

∂zp

∂zp
∂s

(E.18)
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If Φ is the latitude in radians, the partial derivative with respect to zp are:

∂k

∂zp
=

2× 10−5 (g − 9.80612)

(9.80612− 2× 10−5zp)2
(E.19)

∂h45
∂zp

= 1.00818× 10−2 + 2 · 2.465× 10−8zp − 3 · 1.25× 10−13z2p + 4 · 2.8× 10−19z3p

∂δh

∂zp
=

1

(zp + 100)2
+ 6.2× 10−6

g = 9.7803(1 + 5.3× 10−3sin(Φ)2)

∂P

∂z
= 10

(
∂h45
∂zp

k + h45
∂k

∂zp

)
− ∂δh

∂zp

Then using Eq. D.19 one can derive the partial derivatives of zp to be:

∂zp
∂z

= 1 (E.20)

∂zp
∂s0

= 2
(
−s2XB

p1
+ s1X

B
p2
+ s0X

B
p3

)
∂zp
∂s1

= 2
(
s3X

B
p1
+ s0X

B
p2
− s1X

B
p3

)
∂zp
∂s2

= 2
(
−s0XB

p1
+ s3X

B
p2
− s2X

B
p3

)
∂zp
∂s3

= 2
(
s1X

B
p1
+ s2X

B
p2
+ s3X

B
p3

)

E.2.3 Compass

The compass measurements are based solely on the quaternion, s. Recall that derivatives

for the trig functions atan(x) and asin(x) are:

d

dx
asin(x) =

1√
1− x2

,
d

dx
atan(x) =

1

1 + x2
(E.21)
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Therefore, using the chain rule the partial derivatives of the measurements can be obtained

as follows

∂

∂si
ϕ = − 1

1 +
(

2(s1s3+s0s2)

s20−s21−s22+s23

)2 ∂

∂si

(
2 (s1s3 + s0s2)

s20 − s21 − s22 + s23

)
(E.22)

∂

∂si
θ =

1√
1− (2 (s1s3 − s0s2))

2

∂

∂si
2 (s1s3 − s0s2) (E.23)

∂

∂si
ψ = − 1

1 +
(

2(s1s3+s0s2)

s20−s21−s22+s23

)2 ∂

∂si

(
2 (s1s3 + s0s2)

s20 − s21 − s22 + s23

)
(E.24)

E.2.4 DVL

The measurement model for the DVL given in Eq. 4.13 is a function of the velocities, V,

and the angular rates, ω. For V the partial derivatives are given by:

∂hd
∂V

= RB→S ∂

∂V
V = RB→SI3×3 (E.25)

For ω the partial derivatives are simply:

∂hd
∂ωi

= RB→S ∂

∂ωi

ω̃XB
D (E.26)

= RB→S ẽiXB
D

where ei is the unit vector along the axis of rotation.

E.2.5 SBL

The measurement model for the SBL given in Eq. 4.15 is a function of the position in the

NRF, XN
CG and the attitude quaternion s. For XN

CG the partial derivatives in matrix notation
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are given by:

∂hsi
∂XN

CG

=

(
XN

cg + XN
r − XN

si

)T
∥ XN

cg + XN
r − XN

si ∥
(E.27)

For s the partial derivatives in matrix notation are given by:

∂hsi
∂sj

=

(
XN

cg + XN
r − XN

si

)T
∥ XN

cg + XN
r − XN

si ∥
· ∂X

N
r

∂sj
(E.28)

=

(
XN

cg + XN
r − XN

si

)T
∥ XN

cg + XN
r − XN

si ∥
· ∂R

B→N

∂sj
XB

r

where the partial derivatives of the rotation matrix RB→N are the partial derivatives de-

scribed in Eq. E.3 and XB
r is the position of the SBL rover in the BRF.

E.3 Initial Values for x0, P0, QP , and RM Matrix Values

E.3.1 x0 Vector

x0 ∈ ℜ19 is the initial state estimate. The EKF is always started with the vehicle in the water,

typically with the vehicle on the surface (which put the CG of the vehicle at approximately

0.92 m in the NRF. This leads to the following initial guess:

x0x = 0 m x0y = 0 m x0z = 0.92 m

x0s0 = 1 x0s1 = 0 x0s2 = 0 x0s3 = 0

x0u = 0 m/s x0v = 0 m/s x0w = 0 m/s

x0p = 0 rad/s x0q = 0 rad/s x0r = 0 rad/s

x0bax = 0 mG/s2 x0bay = 0 mG/s2 x0baz = 0 mG/s2

x0bgx = 0 ◦/s2 x0bgy = 0 ◦/s2 x0bgz = 0 ◦/s2

(E.29)

where x0i is the initial estimate error covariance for state variable i.
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E.3.2 P0 Matrix

P0 ∈ ℜ19×19 captures the uncertainty in the initial state estimate. Tuning the EKF resulted

in the following non-zero entries for P0:

P0xx = 9 P0yy = 9 P0zz = 9

P0s0s0
= 1 P0s1s1

= 1 P0s2s2
= 1 P0s3s3

= 1

P0uu = 1 P0vv = 1 P0ww = 1

P0pp = 1 P0qq = 1 P0rr = 1

P0baxbax
= 10000 P0baybay

= 10000 P0bazbaz
= 10000

P0bgxbgx
= 100 P0bgybgy

= 100 P0bgzbgz
= 100

(E.30)

where P0ik is the initial estimate error covariance for state variable i as a result of errors in

state variable k. The values in P0 are not critical to the ultimate convergence of the EKF,

but smart choice will help it converge faster. The units on the entries are the units of state

variable i multiplied by the unit of state variable k.
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E.3.3 QP Matrix

QP ∈ ℜ19×19 captures the uncertainty in the process model. Tuning the EKF resulted in the

following non-zero entries for QP :

QPxx = 9 QPyy = 9 QPzz = 9

QPs0s0
= 0.25 QPs1s1

= 0.25 QPs2s2
= 0.25 QPs3s3

= 0.25

QPuu = 0.25 QPvv = 0.25 QPww = 0.25

QPpp = 0.25 QPqq = 0.25 QPrr = 0.25

QPbaxbax
= 1 QPbaybay

= 1 PQbazbaz
= 1

QPbgxbgx
= 0.01 QPbgybgy

= 0.01 QPbgzbgz
= 0.01

QPxs1
= 0.25 QPxs2

= 0.25 QPxs3
= 0.25 QPxs4

= 0.25

QPys1
= 0.25 QPys2

= 0.25 QPys3
= 0.25 QPys4

= 0.25

QPzs1
= 0.25 QPzs2

= 0.25 QPzs3
= 0.25 QPzs4

= 0.25

QPxu = 0.25 QPxv = 0.25 QPxw = 0.25

QPyu = 0.25 QPyv = 0.25 QPyw = 0.25

QPzu = 0.25 QPzv = 0.25 QPzw = 0.25

QPs1p
= 0.09 QPs1q

= 0.09 QPs1r
= 0.09

QPs2p
= 0.09 QPs2q

= 0.09 QPs2r
= 0.09

QPs3p
= 0.09 QPs3q

= 0.09 QPs3r
= 0.09

QPs4p
= 0.09 QPs4q

= 0.09 QPs4r
= 0.09

(E.31)

where QPik
is the error covariance for state variable i as a result of errors in state variable

k. The values in QP will determine how much weight the model has compared to the

measurements in the state estimate. The units on the entries are the units of state variable i

multiplied by the unit of state variable k.
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E.3.4 RM Matrix

RM ∈ ℜ17×17 captures the uncertainty in the measurements. Comparison of the sensor

output to known states in a dynamic environment resulted in the following non-zero values

for RM :

RIMUaxax = 900 RIMUayay = 900 RIMUazaz = 900

RIMUgxgx = 0.56 RIMUgygy = 0.56 RIMUgzgz = 0.56

RPpp = 6.25e− 8

(E.32)

RCϕϕ = 0.25
(

π
180

)2 RCθθ = 0.25
(

π
180

)2 RCψψ = 0.56
(

π
180

)2
RDV Luu = X.X RDV Lvv = X.X RDV Lww = X.X

RSBLr1 = 0.0016 RSBLr2 = 0.0016 RSBLr3 = 0.0016 RSBLr4 = 0.0016

where RMik
is the error covariance for measurement i as a result of errors in measurement

k. While in theory there can be cross coupled errors in the measurements it is unlikely, so

for this work we assume that the measurements are all independent and RM is a diagonal

matrix. The units on the entries are the unit of measurement i multiplied by the unit of

measurement k.
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Appendix F

Sensing Systems

Most underwater positioning systems have the same basic components. For example, a

typical Ultra Short Base Line (USBL) system is comprised of an acoustic transceiver and

transponder for obtaining range and bearing from the boat to the underwater vehicle, a

system for determining the position of the vessel (and therefore the transceiver) such as the

Global Positioning System (GPS) or the LOng RAnge Navigation system (LORAN), and a

Motion Reference Unit (MRU) for determining the orientation (roll, pitch, and yaw) of the

vessel. The following section discusses the different types of sensors available to perform

these functions and the errors associated with each.

F.1 Acoustic Tracking Systems

Acoustic tracking systems are the most commonly used instruments for estimating the posi-

tion of ROVs and other subsea vehicles. Acoustic positioning systems are typically divided

into the following types: Long BaseLine (LBL), Short BaseLine (SBL) and USBL) sys-

tems. A brief comparison of the different types of systems is provided below; in depth

discussions on Acoustic tracking systems can be found in [67] and [23].

LBL systems use multiple (3 or more) acoustic transponders on the seafloor, whose
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positions have been carefully surveyed, to estimate the position of a remote transceiver, at-

tached to the underwater vehicle. The transponders each emit an acoustic pulse in response

to an initiating pulse from the transceiver on the vehicle. The system on the vehicle uses

time of flight of the response to trilaterate the position of the vehicle; with an LBL system

the position information is calculated on the vehicle and must be transmitted to the surface

to the pilot. LBL systems are typically the most accurate type of underwater positioning but

are difficult to install and calibrate. Each transponder must be deployed and surveyed before

the system can be used. This type of system is most appropriate on a long term underwater

installation; the deployment challenges typically make this LBL systems inappropriate for

small ROVs that are operating in new areas all the time.

SBL systems use multiple (3 or more) acoustic transceivers attached to the ship's hull

and a transponder on the vehicle. Like LBL, SBL systems use time of flight and trilateration

to determine the position of the vehicle; unlike LBL systems, the position of the vehicle is

calculated on the surface equipment, and the vehicle doesn't have any knowledge of where

it is. The accuracy of the solution will be dependent on how far apart the transceivers

are spaced on the ship's hull. Therefore, SBL systems are typically only used with larger

vessels. Similarly to LBL systems, the position of the transceivers must be very well known

with respect to each other. However, this only provides a tracking solution for the vehicle

relative to the vessel. In order to know the absolute position of the vehicle, the attitude and

position of the vessel must also be known. Therefore, SBL systems also require a MRU

and vessel positioning system such as LORAN or GPS.

USBL systems are the most popular type of acoustic positioning systems with ROV

operators who utilise vessels of opportunity. A USBL system uses a single transponder to

estimate the position of the vehicle. Unlike LBL and SBL systems, USBL systems have

only one transceiver which has an array of acoustic elements. This transceiver computes

both the direction of arrival and range to the pinger on the vehicle. The ranging data comes
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from time of flight and the direction of arrival is calculated through the difference in phase

of the received ping across the acoustic array. USBL systems have the advantage of being

relatively easy to deploy as, unlike LBL and SBL systems, they don't rely on the precise

localisation of transducers to establish a highly accurate solution. Like the SBL system the

USBL system requires knowledge of the position and attitude of the vessel in order to know

the absolute position of the vehicle.

While the advantages of USBL systems are clear, it is often costly to build a system

which can provide a precision tracking solution as the accuracy of the underwater tracking

solution is dependant on the accuracy of the MRU on the vessel. This is especially difficult

on small vessels of opportunity that experience a lot more motion due to sea state than larger

vessels. ROV operators operating in such conditions often use traditional dead reckoning

for navigation and only use the USBL tracking systems to give then a general idea of where

the vehicle is in case of emergency.

F.2 Compasses and Inertial Sensors

Inertial measurement systems are often comprised of an IMUorAttitudeHeadingReference

System (AHRS), and an observer (Kalman filter, particle filter, etc) to optimally combine

the measurements. High-end systems often have the observer contained in the sensor itself.

These devices are often called an Inertial Navigation Systems (INS). However, as with this

research, the observer can also be separate software that uses the raw output of the inertial

sensors. In this work, an IMU refers to an instrument which contains a 3-axis accelerometer

and a 3-axis rate gyro and an AHRS is an instrument that contains a 3-axis accelerometer,

a 3-axis rate gyro, and a 3-axis magnetometer. A compass typically focuses on measuring

heading and will usually contains a 3-axis magnetometer and accelerometers for measuring

the inclination of the instrument. Accelerometers are used to measure the acceleration vec-



198

tor, magnetometers are used to measure the magnetic field vector, and rate gyros are used

to measure the angular rate on each axis.

There isn't an agreed upon standard for classifying the quality of inertial sensors. How-

ever, in general, modern inertial sensors can be loosely classified into the following cate-

gories: Marine grade, Navigation grade, Tactical Grade, Industrial Grade, and Automotive

or Consumer Grade. Marine grade are the highest accuracy systems and are used on sub-

marines, spacecraft and other systems where navigational accuracy is absolutely critical.

An INS built with marine grade sensors can expect to have an unaided navigational ac-

curacy of less than 2 km over a 24 hour period but can cost upward of a million dollars.

Navigation grade sensors are the next best for navigational stability and are typically used

in commercial aircraft and on ships. An INS built with navigation grade sensors would

typically cost a few hundred thousand dollars and have an unaided navigational accuracy

of less than 1.5km over an hour. These systems, when coupled with a Military grade GPS,

can provide navigation solutions that are accurate to within a few centimetres [26].

Tactical and Industrial grade inertial systems are the high-end consumer products. These

systems cost between one thousand dollars for a low-end industrial grade IMU to thirty thou-

sand dollars for a high-end tactical grade. A tactical and industrial grade INSs can provide

a reasonable unaided navigation solution for a few minutes and few seconds, respectively.

These two grades of system typically contain similar accelerometers, but differ in the quality

of the rate gyro. The lowest category is the automotive or consumer grade sensors. These

sensors are often sold individually rather than in an integrated IMU or AHRS package and

typically they are used in airbags, anti-lock brakes, entertainment systems, and other non-

navigation related applications. Often the consumer grade sensing devices are the same

products as those used in an industrial grade system and the primary difference between the

two categories is the sensor calibration [26].
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F.2.1 Accelerometers

Accelerometers measure the specific force on the instrument along a given axis. Histori-

cally, accelerometers were large mechanical devices and had one of two main designs: the

pendulous mass or the vibrating beam. Although there are other more complex precision

accelerometer designs, such as the Pendulating Integrating Gyroscopic Accelerometer, this

type of instrument is typically used for military operations and not readily available for

mainstream applications. Pendulous mass designs have a hinged beam, perpendicular to

the axis of sensitivity, with a proof mass on the end. Pendulous mass accelerometers can

either be open or closed loop designs. Open loop pendulous mass accelerometers suspend

the beam with springs and then measure the deflection of the mass to obtain the specific

force. Closed loop designs use either a magnetic or electrostatic torquer coil to keep the

beam centred, using the position of the mass for feedback. In closed loop designs, the spe-

cific force is function of the current in the torquer coil rather than the position of the mass.

Vibrating beam designs still use the hinged beam with a mass on the end, but in this

type of instrument, the hinged beam is supported top and bottom by a stiff beam parallel to

the axis of sensitivity. These stiff beams are driven to vibrate at their resonant frequencies.

Under acceleration, the hinged beam will push on one vibrating beam and pull on the other

changing their lengths slightly and, therefore, changing their resonant frequencies. The

specific force will be a function of the change in resonant frequency.

Traditional open loop pendulous mass devices suffered from several draw backs: 1)

The force exerted by a spring is not actually linear and usually exhibits hysteresis, 2) Since

the mass is swinging about a pivot as the arm moves so does the axis of sensitivity - this

leads to nonlinearity and sensitivity to specific forces on orthogonal axes, 3) the motion

of the mass makes it necessary to be able to measure the position of the mass over a large

area. The closed loop designs mitigated these issues by keeping the mass stationary, but

are more complex mechanically and when unpowered they are highly susceptible to shock
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damage. High precision vibrating beam devices are typically manufactured using quartz

suspension beams. Since this mechanism is essentially static, with the hinged beam fixed

between the vibrating beams, this type of device does not exhibit the issues seen with either

of the pendulous designs. However, temperature sensitivity and instability in the crystals

can cause drift in the measurement.

Micro-Electro-Mechanical Systems (MEMS) technology has allowed sensor manufac-

turers to use these same basic mechanical principals but make the devices smaller and more

robust. MEMS accelerometers are much cheaper to manufacture and generally out per-

form the equivalent conventionally manufactured sensor, showing improved robustness,

temperature characteristics, repeatability, and bias stability. In these sensors, the force on

or deflection of the proof mass can be measured by a differential capacitor, piezoresis-

tive element, piezoelectric element, hall-effect sensor, magnetoresistive element or optical

sensor. Different sensing structures can combine with variations in mechanical design to

tailor accelerometers to a wide range of applications and price points. MEMS has also

enabled new accelerometer designs, including devices that: 1) detect acceleration related

changes in the temperature profile around a heating element, and 2) measure the changes

in capacitance due to the movement of a liquid bubble in a capillary tube [68]. Marine

and navigational grade accelerometers are typically still manufactured conventionally us-

ing piezoelectric elements, but tactical, industrial and consumer grade accelerometers are

predominantly MEMS sensors.

In the rest of this section, errors found in accelerometers are discussed. The significance

of the error depends on the type and quality of sensor. While it is possible to characterise all

of these error sources, it is not always practical, so a designer must decide which elements

are most important for a given application.

Alignment Errors: Mounting alignment errors occur in two places: 1) alignment of the

instrument on the vessel, and 2) alignment of the accelerometers with respect to each
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other in the triad. The first problem results in a steady state angular error and the

second results in non-orthogonality of the sensitive axes.

Bias Errors: For accelerometers that use a proof mass, bias errors typically arise from the

null position of the proof mass (or bubble) being different from the null position of

the pick-off sensor. This bias can change with temperature, or over longer periods,

from fatigue. Minimising changes in the startup bias is an important consideration

for accelerometers used in strapdown systems which cannot be recalibrated before

each use. Hysteresis of the mechanical and electrical components will contribute to

bias variations during operations.

Scale Factor Errors: Machining imperfections in the sensor will cause the sensitivity on

each axis to be slightly different. One example of this would be minute variations

in thickness of polysilicon springs in a MEMS pendulous mass accelerometer. The

scale factor may even differ between positive and negative accelerations.

Non-linearities: G-squared terms (terms depending on the square of the acceleration or the

product of two orthogonal accelerations) or G-cubed terms arise from non-linearities

in the accelerometer. These effects typically show up in mechanical accelerometers

at higher accelerations when the proof mass is highly deflected. Large deflections

can also cause cross-coupling, by changing the orientation of the axis of sensitiv-

ity. Lastly, orthogonal accelerations can cause changes in the properties of the ac-

celerometer. For example, in pendulous mass accelerometers, a large acceleration

along the axis of the pendulum can cause compression on the hinge altering its dy-

namic performance.

Dynamic Errors: Constant angular velocity, angular acceleration, and the internal sepa-

ration of the accelerometers in the triad can lead to anisonertia, output axis coupling,

and size effects respectively. The first two errors occur predominantly in mechanical
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accelerometers, while the third is an issue with all accelerometer designs. Anison-

ertia effects are torques that arise in the beam or pendulum hinge due to centripetal

acceleration; thereby changing the measurable effect of the acceleration. Output axis

coupling occurs when a similar torque develops due to angular acceleration of the

system. The size effect, which is much less important in MEMS accelerometers, oc-

curs when the individual accelerometers in the triad are not exactly co-located. This

means that angular motion will cause accelerations that are a function of the distance

separating the sensors.

F.2.2 Rate Gyros

A rate gyro is a device that measures angular velocity. Historically, rate gyros were large

spinning disks which would precess when forced to rotate about an axis orthogonal to the

spin axis. These devices were typically large and difficult to handle. Modern rate gyros

use a variety of solid state technologies that range from very low to very high in cost. The

following section describes some of the different types of rate gyros and the errors that are

commonly seen with these devices.

In a spinning mass rate gyro, a motor driving a spinning mass is mounted to a pivot.

The mass spins about the spin axis. The motor and spinning mass are constrained to rotate

with the instrument on one axis, known as the input axis, but is free to rotate about a pivot

(the output axis), which is perpendicular to both the input and spin axes. Rotating the

spinning mass about the input axis introduces a torque on the assembly about the output

axis. The motor assembly is typically suspended by springs that resist the induced torque.

Then the deflection of the motor assembly is proportional to the induced torque which is

related to the angular rate about the input axis. The deflection of the motor assembly can be

measured through capacitive, magnetic, piezoresistive, or piezoelectric means as seen with

the accelerometers.
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Vibratory gyroscopes work on the same principle as the Foucault pendulum which was

invented in 1851 by Jean Bernard Leon Foucault to measure the rotation of the earth. Fou-

cault's pendulum measured the rate of the earths rotation by observing the affects of the

resulting coriolis force on the pendulum. Vibratory gyroscopes use the same principal,

deriving the rate of rotation by observing the affects of the coriolis force, which induces

harmonic motion orthogonal to both the axis of vibration and the axis of rotation, on the

vibrating element. The amplitude of the induced motion is proportional to the angular rate.

This style of gyro comes in many shapes and sizes, where the vibratory element may be a

string, one or more beams, a tuning fork, a ring, a cylinder, or a hemisphere. The method

of detection depends on the design of the rate gyro, but typically uses some arrangement of

pick offs to measure the vibration or a resulting torque. Vibratory gyroscopes tend to be low

cost, low performance, MEMS devices. The exception is the hemispherical resonator gyro

that can provide navigation grade performance. Since vibratory gyroscopes are detecting

an induced acceleration, they can be affected by the relative orientation of gravity or the

acceleration vector of the instrument.

Ring Laser Gyros (RLG) create a closed loop light path inside the sensor chamber using

mirrors. A laser creates two counter propagating beams of light that are compared using a

photo detector. When the instrument is stationary the beams of light interfere constructively.

When the instrument is rotating in the plane of the light rings one beam will have a shorter

path length to the detector than the other (the Sagnac effect). This will cause a change in

the beam interference pattern; the beat frequency of the beams will be proportional to the

angular rate of the instrument. In a ring laser gyro the ring, laser, and detectors are all

an integral unit and the measured phase shift is proportional to the accumulated rotation.

RLGs are very precise instruments, but at low frequencies scattering in the chamber causes

coupling between the two beams, which prevents the photo detector from measuring the

rotation. This is called lock-in and is usually mitigated by dithering the optical chamber
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thereby keeping the instrument out of the lock-in zone.

Fiber Optic Gyros (FOG) also utilise the Sagnac effect to measure angular rotation, but

instead of using an integrated light chamber with mirrors, the light path is created from

fiber optics. In a FOG, beam splitters are used to allow a laser to inject counter propagating

beams into a coil of optical fiber and then recombine the beams back at a detector. When

the FOG is rotated in the plane of the coil the distance travelled by the two beams will

change and the detector will observe a phase change proportional to the angular velocity

and the total path length of the beams. Therefore the sensitivity of the instrument can be

increased by using a fiber coil with more wraps. FOGs were originally introduced as a low

cost alternative to RLGs but the technology has now matured to a point where FOGs are

the most reliable and accurate rate gyros available and are no longer a low cost alternative.

Optical rate gyros are very robust, stable, and highly accurate measuring devices. FOGs

and RLGs are usually the cornerstone instruments in medium and high end INSs. They are

still prone to mounting alignment errors, but since these devices are usually found in high

end systems, care is taken to ensure that they are well aligned to minimise any alignment

issues. Mechanical rate gyros (spinning mass and vibratory) have many of the same sources

of error as described for accelerometers, specifically alignment errors, bias errors, scale

factor errors, non-linearities, and dynamic errors from external accelerations.

F.2.3 Magnetometers

The Earth's magnetic field has been a cornerstone of navigation for centuries. There is ev-

idence that the Chinese developed magnetic direction finding devices as early as 200 BC,

but these devices were used for mystical purposes, and it was many centuries before people

started using magnets for navigation. Sometime between the 9th and 13th century, mag-

netic compasses became common navigational tools on ships in both Eastern and Western

cultures. These early compasses were made using small iron needles that were magnetised
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using loadstones, a naturally occurring permanent magnet [45, 6]. Even back then, compass

calibration was an important part of navigation, and early explorers carried a large loadstone

with them on voyages so that they could remagnetise their compass needle along the way.

The following is a brief review of some key points about magnetism relevant to the use

of magnetic sensors, more in-depth discussions on magnetic theory and it's application to

navigation can be found in [45, 27, 9, 6].

The same theory can be used to explain both electromagnetics and ferromagnetics.

While the magnetic force from an electromagnet is generated by a current carrying wire,

the magnetic force inside of a ferromagnet is generated by electrons spinning around their

atomic nuclei, and the strength of the magnetic field depends on how well aligned the atoms

are with each other. Ferromagnetic substances such as iron or rare earth alloys contain mi-

croscopic regions called domains. In each domain the magnetic fields from the individual

atoms are aligned. In a piece of demagnetised iron, the direction of the domains will be

random, whereas in a magnetised piece the domains will have a dominant direction.

(a) (b)

Figure F.1: Visualization of the magnetic force lines for: a ferromagnetic substance exposed
to (a) an external magnetic field and (b) a permanent magnet.

When a ferromagnetic material is placed in a weak magnetic field, the domains that

are nearly aligned with the external field rotate into alignment, causing the ferromagnetic

material to have a net magnetic field. If the external magnetic field is strong enough, all
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the domains will rotate into alignment, saturating the material, and creating the strongest

field. Magnetism which is present only under the influence of an external field is called in-

duced magnetism and that which remains after the magnetising force is removed is called

residual magnetism. A ferromagnetic substance, which retains its domain alignment after

the external field is removed, is called a permanent magnet and is said to have a high re-

tentivity. The strength of the reverse field that is required to reduce the magnetism back to

zero is called the coercivity of the magnet. In materials with low retentivity, the domains

reorient themselves in a random fashion after the external forces are removed. Hard iron is

a material with high retentivity and soft iron is a material with low retentivity.

All practical magnets have a north and south pole. The lines of magnetic force (or

flux) inside of a magnet point from the south to the north pole, and the density of the lines

represents the intensity of the field in that area. When a ferromagnetic material is placed in a

uniformmagnetic field, the lines of flux tend to get sucked in towards the material, as shown

in Figure F.1-a [6]. If the iron becomes permanently magnetised then after the external field

is removed then the lines of flux of the external field of the permanent magnet will circle

around from the north pole and to the south pole, as shown in Figure F.1-b.

The source of the Earth's magnetic field is still widely debated. However, one point

not debated is that it exists and, on average, the field looks as if there is a short but very

powerful bar magnet in the Earth's core and the overall field has a dipole shape that is sim-

ilar to Figure F.1-b. Although the dipole model provides a convenient means of picturing

the Earth's magnetic field, when one studies the Earth's magnetic field up close, it is far

more complex than that of a simple dipole magnet. Not only is it constantly changing, but

locally the Earth's magnetic field is affected by many local factors and can point in almost

any conceivable direction. The direction of the Earth's magnetic field at a particular loca-

tion is described by the declination, or magnetic variation, and inclination, or dip, angles.

Declination is the angle between the horizontal component of the magnetic flux vector and
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a vector pointing towards true North. Inclination is the vertical angle between the vector

and the horizontal plane. Since the Earth's magnetic field is approximated by a bar magnet,

then in general the inclination of the field will increase from 0 degrees at the equator to 90

degrees near the poles. The magnitude of the Earth's magnetic field also sees considerable

variation, ranging from 0.3 to 0.6 gauss.

When using the Earth's magnetic field for navigation, it is important to use a locally

accuratemagnetic reference for navigation. TheCanadianNational Research Council runs a

number of magnetic observatories around Canada. These observatories can provide precise

details about the local magnetic field. For other regions, a detailed model of the Earth's

magnetic field, called the World Magnetic Model (WMM), is available from the National

Geophysical Data Centre. In practice, local variations due to ferrous deposits and other

highly localised anomalies must still be accounted for, but in this work it is assumed that

the direction and magnitude of the local magnetic field is known and the operations are in

a sufficiently small area that the magnetic field can be considered constant through out the

operating area. It should be noted when discussing the Earth's magnetic field - the North

Pole was so named because it attracts the north magnetic pole of a magnet. Therefore, the

Earth's North Pole has south magnetism and the Earth's South Pole has north magnetism.

This means that the lines of force flow out of the Earth's South Pole and into the Earth's

North Pole.A complete discussion on the variations in the Earth's magnetic field and how

to navigate using the local magnetic field can be found in [6].

In contrast to a compass, which traditionally measures the horizontal component of the

earth's magnetic field and provides a heading, magnetometers measures the magnetic flux

density of the Earth's magnetic field, commonly measured in Gauss or Tesla (1 Gauss is

equivalent to 10−5 Tesla). A 3-axis magnetometer provides the the measured flux density

in all three directions, and this information can be used for navigation or for many other

purposes ranging from finding anomalies in the local magnetic field to medical imaging.
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There are many different magnetometer designs. Fluxgate magnetometers, first intro-

duced in the 1930 and still widely used today, has one or more cores of highly permeable

material wrapped in two coils of wire. The first coil carries an alternating electrical cur-

rent which drives the core through a cycle of magnetic saturation with reversing polarity.

The changing magnetic field induces a current in the second coil. When the system is ex-

posed to an external magnetic field an imbalance is created in the cycle and the induced

current becomes out of step with the driving current. The magnitude of the cycle variation

is dependant on the magnitude of the external field.

Hall Effect and magnetoresistive sensors are the most common low cost magnetometers

today. They are both solid state devices, making them suitable for amultitude of commercial

applications. Hall Effect sensors pass current through a conducting element. When the

element is exposed to a magnetic field perpendicular to the flow of current, the path of the

moving charges is deflected by the Lorentz Force resulting in a net potential, called the

hall voltage, which develops on an axis perpendicular to both the current and the magnetic

field. This voltage is proportional to the magnitude of the field. Magnetoresistive sensors

on the other hand change impedance in the presence of an external field. These sensors are

typically constructed using a nickel-iron magnetic alloy called Permalloy, which changes

resistance as the magnetic domains swing around in response to external fields.

There are also many high precision magnetometers that measure the effects of mag-

netic fields on atomic elements. This type of sensor is used when precise measurements are

required or for sensing very small changes in magnetic fields; they are used in magnetic ob-

servatories, geophysical surveys, medical testing, and other precision applications. Atomic

magnetometers are used in Marine grade and Navigation grade navigation solutions, but

aren't typically found in consumer level products. Examples of atomic magnetometers are

the Proton Precession, Caesium Vapor, Spin-exchange relaxation-free (SERF), and super-

conducting quantum interference devices (SQUID) magnetometers.
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Magnetometers have all the same error sources as accelerometers (alignment errors,

measurement bias and scale factor errors, and non-linearities) and a few more. Many low

cost magnetic sensors rely on measuring changes in the direction and magnitude of mag-

netisation in ferromagnetic element. While these elements have very low retentivity, they

still require some finite change in the magnetic field before the domains begin to reorganise,

this is referred to as the magnetic inertia of the material. In a dynamic environment, this

leads to latency in the sensor which manifests itself as path-dependance or hysteresis.

A magnetometer measures the total magnetic field, which is the sum of the Earth's mag-

netic field and any locally generated magnetic fields. The locally generated magnetic fields

can come from nearby hard and soft iron as well as electric devices generating electromag-

netic fields. Estimating the Earth's magnetic field from the measurement requires knowl-

edge of all the locally generated magnetic fields. In a strap-down system, sources that move

rigidly with the sensor can be removed but sources that move independently from the sensor

or are time-varying (and can't be modelled) can not be removed and will result in measure-

ment errors. The effect of this type of source can often be mitigated by magnetic shielding

or careful selection of the instrument location.

F.3 Pressure Sensors

The concept of pressure, defined as force per unit area, wasn't really understood until the

1640's when Blaise Pascal correctly hypothesised that the height of a column of mercury

inside of an evacuated tube would vary with altitude and that one could calculate the weight

of the air from the height of the mercury. It was 200 years before the first mechanical pres-

sure sensor, which didn't rely on fluid displacement, was built, and almost another century,

before the first electric pressure sensing mechanisms were developed in the 1930's.

Modern pressure sensors come in 3 types; displaying either absolute, differential or
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gauge pressure. Absolute pressure is the pressure relative to a vacuum. Differential pres-

sure is the difference in pressure between two distinct locations and gauge pressure is the

pressure relative to ambient atmospheric pressure. Differential or absolute pressure sen-

sors are most often used for subsea applications, measuring the ambient water pressure or

measuring pressure in hydraulic cylinders.

Most pressure sensors use a diaphragm that is exposed to a specified pressure on one

side (vacuum, ambient pressure, etc.) and a different pressure on the other. The deforma-

tion of the diaphragm will be relative to the difference in the two pressures. The primary

difference in the types of pressure sensors in how that deformation is measured. There are

many different kinds of pressure sensors and the market is continually changing with im-

provements to existing products and the introduction of new ideas. The following is a list

of some of the common sensor types and the style of measurement to which the are most

suited.

Strain Gauge: In this type of sensor, a thin film strain gauge is bonded to the diaphragm.

As the diaphragm moves due to changing pressure on its face, the resistance of the

strain gauge changes. The change in resistance can be measured using a wheatstone

bridge, which then outputs a voltage that is proportional to the change in resistance

and, hence, the pressure. Strain gauge are the simplest and most inexpensive type

of pressure sensor, but they are sensitive to temperature and the bonding process can

cause nonlinearities. Strain gauges are still one of the preferred sensors for measuring

high pressures.

Piezoelectric: Piezoelectric sensors use a quartz crystal to detect pressure. When pressure,

force or acceleration is applied to a quartz crystal an electric charge proportional to

the force develops across the face of the crystal; this charge develops rapidly but

diminishes with time and, therefore, cannot be used to measure static pressures. This

type of sensor is also very sensitive to environmental conditions. It is most often used
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for measuring transient pressure phenomenon such as explosions.

Piezoresistive: Piezoresistive sensors work in a similar fashion to the strain gauge sensors,

except that they utilize the resistive dependence of silicon on stress to measure ap-

plied pressure. In these sensors, a silicon diaphragm with integrated silicone resisters

is used with a wheatstone bridge. This type of sensor is sensitive to changes in tem-

perature, but has benefitted greatly from advances in silicone manufacturing over the

last few decades. It can provide stable and accurate measurements at a reasonable

price.

Capacitive: Capacitive sensors use a diaphragm as one half of a parallel capacitor. In this

case, the diaphragm is separated from a fixed plate. As the diaphragm flexes inwards

it gets closer to the fixed plate, changing the capacitance. Capacitive pressure sen-

sors are more stable than piezoresistive ones, but require a more complicated circuit.

These sensors are slightly more expensive than piezoresistive sensors with compara-

ble performance.

Optical: Optical pressure sensors use a diaphragm to move an opaque shield between a

light source and a sensor. As the pressure increases, the shield moves further into

the light beam and blocks more of the light. This type of sensor is very stable, with

minimal temperature effects, minimal hysteresis, and excellent repeatability. This

type of sensor can be combined with fiber optics to create extremely small rugged

sensors.

The term pressure sensor usually refers to the sensingmechanism, as described in the list

above. A pressure transducer usually includes a sensor, a housing and electronics to condi-

tion the analog output signal (filtering, temperature compensation, etc.) such that it can be

easily interpreted by an end-user. A pressure transmitter is even more complex, digitizing
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the analog signal from the sensor and transmitting the results through a common commu-

nication standard such as ethernet or serial. The measurements from a pressure transducer

will be more susceptible to transmission losses and noise than a pressure transmitter, as it

minimizes the distance that the analog signal is required to travel.

In underwater work, ambient water pressure is closely related to depth. Seawater is a

complex mixture of minerals, salts, and organic materials. In 1980, the international com-

munity agreed on a set of empirical equations called the "International Equation of State

of Seawater" or EOS-80 to describe the density of seawater as a function of temperature,

salinity and pressure. This equation has only recently been replaced by a new equation of

state based on thermodynamic laws TEOS-10 [47]. EOS-80 is sufficiently accurate for this

work so the new standard was not adopted. In 1983, a procedure (UNESCO 83) was de-

veloped to calculate depth from pressure given the temperature and salinity of the water.

In the 1990's, the French Research Institute for Exploitation of the Sea (IFREMER) further

worked with these equations to make them more suitable for use in ROV work where tem-

perature and salinity are not always known. This group developed a set of temperature and

salinity profiles for different regions of the world and built a new set of empirical equations

based on Fofonoff and Millard's work that would simply calculate depth given pressure and

latitude and the inverse, pressure from depth and latitude [43]. Assuming that UNESCO 83

calculates pressure exactly, these equations have an absolute accuracy of less than ±0.2 m

over 80% of the world and ±0.8 m in the remaining 20%.

F.4 Doppler Velocity Logs

Nautical instruments that measure the speed of a vehicle through the water are known as

logs. The word log dates back to the 16th century when mariners used a "common log" for

measuring speed [6]. The common log consisted of a piece of wood tied to a rope and an
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hour glass. The rope had knots tied in it at regular intervals. Mariners would throw the wood

into the water, pay out the line, and count the number of knots that passed during the length

of time measured by the hour glass; this would give them a measurement of the vessel's

speed. The technology has improved but the terms "log" and "knots" have remained, with

"log" meaning nautical instrument for measuring a vessel's speed and "knots" being a unit

of speed equal to 0.514 m/s.

A DVL uses the doppler effect to measure velocity. Single frequency DVLs emit an

acoustic signal at a fixed frequency and listen for the frequency shift in the signal that is

reflected back to it. DVLs can typically be set to listen for signals reflected from the bottom

or from sound scatterers in the water column. Scatterers are small particles or plankton that

are floating in the water column and reflect small amounts of sound back to the DVL.

Broadband DVLs use a different approach but the same basic concepts. A broadband

DVL emits a packet of pulses that are very close together. The propagation delay or the

time it takes the signal to travel outward and get reflected back to the transmitter, can be

measured by noting the time of arrival of the first pulse. Since the pulses in the packet are

very close together, neither the sensor or reflective object will have the chance to move very

far while the packet is being reflected. Therefore, the range to the reflecting object can be

considered constant over the packet and any spreading in the arrival of the reflected pulses

will be due to the relative velocity of the instrument and reflecting object and the doppler

effect. DVLs typically have multiple transducers or a phased array of transducers to enable

the measurement of velocity on all three axes, and allow for the cancellation of effects due

to pitching and rolling of the instrument. Pitching and rolling will cause the swath from the

instrument beams to sweep across the bottom, which can be misinterpreted as translational

velocity in systems without .

If the reflections comes from a fixed location, such as the sea floor, then the measured

velocity will be the velocity of the instrument (or vehicle it is attached to) over ground. If
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the reflection comes from scatterers in the water column, then the measured velocity will

be with respect to the water around the vehicle. Most DVLs can operate in either bottom

following or water column mode. The preceding description is a highly simplified descrip-

tion of how DVLs work. Obtaining an accurate and robust velocity measurement requires

a lot of complex signal processing and analysis. As such, DVLs are a highly specialized

and expensive piece of equipment.

The error sources for a DVL can also be complex:

Acoustic Interference: The DVL transmits and receives acoustic signals, as such it is sus-

ceptible to acoustic noise from other acoustic instruments operating in the same fre-

quency range. It is also susceptible to ringing, where the transmitted acoustic pulse

reverberates in the vehicle for an extended period of time and is then picked up by

the receiver instead of the reflected pulse.

Multipath: Acoustic signals can be reflected by the surface of the water as well as by

the sea floor and mid column scatterers. This means that acoustic signals can act

much like a pinball and bounce around between the surface and bottom taking many

different paths back to the receiver. Multipath problems are especially challenging in

shallow water or confined water environments, for example, the Explorer DVL does

not work in the MTC test tank because there are too many reflected signals.

Sea Floor Variations: The DVL looks for specific characteristics in the reflected signal to

decide if the reflection comes from the bottom. Since there are extensive variations in

the reflectivity of the seafloor, the reflections from some bottom types (such as very

fine deep silt) may not be detected by the instrument.

Vehicle Dynamics: Rapid roll and pitch rates can also affect the instruments ability to de-

tect and process pings, especially when the instrument approaches the maximum op-

erating angle with respect to the seafloor (20 degrees).
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A DVL is an important component of a complete navigation suite but an understanding

of the instrument limitations is important to ensure that the measurements are accurate.
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