
A Framework for Metamorphic Malware Analysis and Real-Time

Detection

by

Shahid Alam

BSc., University of Engineering and Technology Lahore

MSc., Wayne State University

MASc., Carleton University

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

University of Victoria

c© Shahid Alam, 2014

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

A Framework for Metamorphic Malware Analysis and Real-Time

Detection

by

Shahid Alam

BSc., University of Engineering and Technology Lahore

MSc., Wayne State University

MASc., Carleton University

Supervisory Committee

Dr. Robert Nigel Horspool, Supervisor

(Department of Computer Science, University of Victoria)

Dr. Issa Traore, Co-Supervisor

(Department of Electrical and Computer Engineering, University of Victoria)

Dr. Ibrahim Sogukpinar, Outside Member

(Department of Computer Engineering, Gebze Institute of Technology)

Dr. Yvonne Coady, Department Member

(Department of Computer Science, University of Victoria)

iii

ABSTRACT

Metamorphism is a technique that mutates the binary code using different obfus-

cations. It is difficult to write a new metamorphic malware and in general malware

writers reuse old malware. To hide detection the malware writers change the ob-

fuscations (syntax) more than the behavior (semantic) of such a new malware. On

this assumption and motivation, this thesis presents a new framework named MARD

for Metamorphic Malware Analysis and Real-Time Detection. We also introduce a

new intermediate language named MAIL (Malware Analysis Intermediate Language).

Each MAIL statement is assigned a pattern that can be used to annotate a con-

trol flow graph for pattern matching to analyse and detect metamorphic malware.

MARD uses MAIL to achieve platform independence, automation and optimizations

for metamorphic malware analysis and detection. As part of the new framework,

to build a behavioral signature and detect metamorphic malware in real-time, we

propose two novel techniques, named ACFG (Annotated Control Flow Graph) and

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight). Unlike

other techniques, ACFG provides a faster matching of CFGs, without compromising

detection accuracy; it can handle malware with smaller CFGs, and contains more

information and hence provides more accuracy than a CFG. SWOD-CFWeight mit-

igates and addresses key issues in current techniques, related to the change of the

frequencies of opcodes, such as the use of different compilers, compiler optimiza-

tions, operating systems and obfuscations. The size of SWOD can change, which

gives anti-malware tool developers the ability to select appropriate parameter values

to further optimize malware detection. CFWeight captures the control flow seman-

tics of a program to an extent that helps detect metamorphic malware in real-time.

Experimental evaluation of the two proposed techniques, using an existing dataset,

achieved detection rates in the range 94% – 99.6% and false positive rates in the range

0.93% – 12.44%. Compared to ACFG, SWOD-CFWeight significantly improves the

detection time, and is suitable to be used where the time for malware detection is

more important as in real-time (practical) anti-malware applications.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements x

Dedication xi

1 Introduction and Motivation 1

1.1 Malware . 1

1.2 Hidden Malware . 2

1.3 Obfuscations . 3

1.3.1 Opcode Level . 3

1.3.2 Control Flow Level . 4

1.3.3 Self-Modifying Code . 5

1.4 Real-Time Detection . 7

1.5 Problem Statement . 7

1.6 Contributions . 8

1.6.1 Obtained Performance Improvements 10

1.7 Organization of the Thesis . 10

2 Literature Review 12

2.1 Metamorphic Malware Detection Systems 12

2.1.1 Control Flow Analysis . 12

v

2.1.2 Information Flow Analysis . 14

2.1.3 Opcode-Based Analysis . 16

2.1.4 Summary . 20

2.2 Intermediate Languages . 22

2.2.1 Why a New Language for Malware Analysis? 24

3 MAIL (Malware Analysis Intermediate Language) 27

3.1 Why an Intermediate Language for Malware Analysis? 28

3.2 Binary Analysis for Malware Detection 31

3.2.1 More Examples of Obfuscation 33

3.3 Design of MAIL . 36

3.3.1 MAIL Statements . 38

3.3.2 MAIL Library . 40

3.3.3 MAIL Patterns for Annotation 40

3.4 Conclusion . 42

4 MARD (Metamorphic Malware Analysis and Real-Time Detection) 43

4.1 Model . 43

4.2 Design . 44

4.3 Characteristics . 45

4.4 Components of MARD . 47

4.5 Conclusion . 48

5 ACFG (Annotated Control Flow Graph) 49

5.1 Definitions . 49

5.2 ACFG For Metamorphic Malware Detection 50

5.2.1 Subgraph Matching . 51

5.2.2 Pattern Matching . 52

5.3 Runtime Optimization with Parallelization 53

5.4 Runtime Optimization with ACFG Reduction 56

5.5 Summary . 58

6 SWOD-CFWeight (Sliding Window of Difference and Control

Flow Weight) 60

6.1 Motivations and Overview . 60

vi

6.2 Statistical Analysis of MAIL Pattern Distributions for Metamorphic

Malware . 63

6.2.1 Dataset . 63

6.2.2 MAIL Pattern Distributions 64

6.3 Metamorphic Malware Detection Model 68

6.3.1 Sliding Windows of Difference 68

6.3.2 Control Flow Weight and MAIL Program Signature 73

6.3.3 Signature Matching and Malware Detection 74

6.3.4 Complexity Analysis . 75

6.4 Summary . 76

7 Evaluation, Analysis and Comparison 78

7.1 Performance Metrics . 78

7.2 Performance of ACFG . 79

7.2.1 Dataset Based on ACFGs . 79

7.2.2 Empirical Study . 80

7.2.3 Comparison with Others . 82

7.3 Performance of SWOD-CFWeight . 83

7.3.1 Empirical Study . 83

7.3.2 Performance Results of SWOD-CFWeight and Comparison

with ACFG . 83

7.3.3 Comparison with Others . 87

8 Conclusion and Future Work 89

8.1 Discussion . 89

8.1.1 Static Analysis . 89

8.1.2 Dynamic Analysis . 90

8.2 Summary of Contributions . 91

8.3 Future Work . 93

A MAIL Grammar 94

B One of the Reports Generated by MARD 98

Bibliography 105

vii

List of Tables

Table 2.1 Summary of The metamorphic malware analysis and detection

systems discussed in Section 2.1 21

Table 2.2 Summary of the intermediate languages developed for malware

analysis and detection discussed in Section 2.2 and there compar-

ison with MAIL . 25

Table 5.1 Runtime improvement after parallelizing the Subgraph Matching

component (using different number of threads) 55

Table 6.1 An example, comparing the change in frequency of Opcodes with

the change in frequency of MAIL Pattern ASSIGN, of a Windows

program sort.exe compiled with different level of optimizations. 62

Table 6.2 Dataset distribution based on the size of each program sample . 64

Table 6.3 Class distribution of the 1020 metamorphic malware samples . . 65

Table 7.1 Dataset distribution based on the number of Annotated Control

Flow Graphs (ACFGs) for each program sample 80

Table 7.2 Dataset distribution based on the size (number of nodes) for each

Annotated Control Flow Graph (ACFG) after normalization and

shrinking . 81

Table 7.3 Malware detection results for smaller dataset. 82

Table 7.4 Malware detection results for larger dataset. 82

Table 7.5 Summary and comparison with ACFG of the metamorphic mal-

ware analysis and detection systems discussed in Chapter 2 . . . 84

Table 7.6 Malware detection results for SWOD-CFWeight and comparison

with ACFG . 85

Table 7.7 Comparison of SWOD-CFWeight with the malware detection

techniques discussed in Chapter 2 88

viii

List of Figures

Figure 3.1 The CFG and the Source Code in C++ of the Function in Listing

3.1 . 34

(a) The CFG . 34

(b) The Source Code . 34

Figure 4.1 High Level Overview of MARD 45

Figure 5.1 An example of subgraph matching. The graph in Figure (a) is

matched as a subgraph of the graph in Figure (b). 52

(a) A malware sample . 52

(b) The malware embedded inside a benign program 52

Figure 5.2 Example of pattern matching of two isomorphic ACFGs. The

ACFG in (a) is isomorphic to the subgraph (blocks 0 - 3) of the

ACFG in (b). 53

Figure 5.3 Example of ACFG shrinking. ACFG X is not shrinkable. ACFG

Y with 6 blocks is shrinked to ACFG Z with 4 blocks. 56

(a) ACFG X . 56

(b) ACFG Y . 56

(c) ACFG Z . 56

Figure 5.4 Example of an ACFG, of one of the functions of one of the sam-

ples of the MWOR class of malware, before and after shrinking.

The ACFG has been reduced from 92 nodes to 47 nodes. 57

(a) ACFG X . 57

(b) ACFG Y . 57

Figure 5.5 Example of an ACFG, of one of the functions of one of the sam-

ples of the MWOR class of malware, before and after shrinking.

The ACFG has been reduced from 484 nodes to 145 nodes. . . 58

(a) ACFG X . 58

(b) ACFG Y . 58

ix

Figure 5.6 Example of an ACFG, of one of the functions of the Windows

disk free space utility program df.exe, before and after shrinking.

The ACFG has been reduced from 894 nodes to 283 nodes. . . 59

(a) ACFG X . 59

(b) ACFG Y . 59

Figure 6.1 MAIL Patterns distributions based on the percentage of the

MAIL Patterns in each sample in the dataset 66

(a) MAIL Pattern distributions for benign samples 66

(b) MAIL Pattern distributions for malware samples 66

Figure 6.2 Superimposing three of the MAIL Patterns distributions from

Figures 6.1(a) and 6.1(b). 67

Figure 6.3 Sliding Window of Difference (SWODj1) as defined in Definition

10. HWODj1 = {Vj1, Vj2, Vj3, . . . Vjn}, where Vj1, Vj2, Vj3, .

. . Vjn, are the VWODs. 70

Figure 6.4 Sliding Window of Differences (SWODs) for the MAIL Pattern

ASSIGN. 71

Figure 6.5 Malware detection using MAIL program signatures. 75

x

ACKNOWLEDGEMENTS

I would like to thank Dr. Issa, Dr. Ibrahim and Dr. Nigel for their contributions

throughout the course of my PhD studies in the form of contents, resources, commit-

ment and support. I would especially like to mention the support and encouragement

provided by Dr. Nigel that allowed me to pursue and develop my own ideas, without

which it would have been impossible to finish my PhD. Consistent hard work and

thorough discussions with Dr. Issa greatly helped me to gain knowledge and further

insight in this field of research and in turn improved the dissertation. He helped me to

keep focused, which was very difficult to maintain when there were so many diverting

paths to delve into. Profound feedback and comments from Dr. Ibrahim provided

practical directions, and his discerning knowledge of the subject helped to further

polish and fine tune my ideas. I would also like to thank Dr. Yvonne Coady, depart-

ment of Computer Science and the external examiner Dr. Habib Hamam, University

of Moncton, for making my dissertation complete.

Numerous other people deserve to be mentioned for their advice and support dur-

ing my PhD studies. I was inspired and developed a passion for teaching while working

with Dr. LillAnne Jackson, Bette Bultena, Bill Gorman, Victoria Li and other fel-

low teaching assistants. Wendy Beggs and other staff members of the department of

Computer Science office were always there to help and answer any question that I

had about my studies, courses, university and the department.

Special thanks go to my family, my parents, wife and twins for their understanding,

support and help, which enabled me to accomplish this.

Shahid Alam, Victoria, BC, Canada

xi

DEDICATION

To my late father Khan Alam,

mother Naseem Akhtar,

wife Aminah Shahid,

and twins

Shayaan Alam

and

Samrah Shahid.

Chapter 1

Introduction and Motivation

End point security is often the last defense against a security threat. An end point

can be a desktop, a server, a laptop, a kiosk or a mobile device that connects to a

network (Internet). Recent statistics by the International Telecommunications Union

[50] show that the number of Internet users (i.e. people connecting to the Internet

using these end points) in the world have increased from 20% in 2006 to 40% (almost

2.7 billion in total) in 2013. A study carried out by Symantec on the impacts of cy-

bercrime reports that worldwide losses due to malware attacks and phishing between

July 2011 and July 2012 were $110 billion [88]. According to the 2011 Symantec In-

ternet security threat report [89], there was an 81% increase in malware attacks over

2010, corresponding to 403 million new malware infections created, a 41% increase

over 2010. In 2012 there was a 42% increase in the malware attacks over 2011. Web-

based attacks increased by 30% in 2012. With these increases and anticipated future

increases, such end points pose a new security challenge [76]. The onus is on security

professionals and researchers in industry and in academia to devise new methods and

techniques for malware detection and protection.

1.1 Malware

A broad definition of malware, also called malicious code, is used in the literature

that includes viruses, worms, spywares and trojans. Here we use one of the earliest

definitions by Gary McGraw and Greg Morrisett [65]: Malicious code is any code

added, changed, or removed from a software system in order to intentionally cause

harm or subvert the intended function of the system. A malware carries out activities

Introduction and Motivation 2

such as setting up a back door for a bot, setting up a keyboard logger and stealing

personal information etc.

Antimalware software detects and neutralizes the effects of a malware. There are

two basic detection techniques [49]: anomaly-based and signature-based.

1. Anomaly-based detection technique uses the knowledge of the behavior of a

normal program to decide if the program under inspection is malicious or not.

2. Signature-based detection technique uses the characteristics of a malicious pro-

gram to decide if the program under inspection is malicious or not.

Each of the techniques can be performed statically (before the program executes),

dynamically (during or after the program execution) or both statically and dynami-

cally (hybrid).

Detecting whether a given program is a malware is an undecidable problem [22,

62]. Antimalware software detection techniques are limited by this theoretical result.

Malware writers exploit this limitation to avoid detection.

In the early days, the malware writers were hobbyists but now the professionals

have become part of this group because of the incentives attached to it, such as finan-

cial gains, intelligence gathering, and cyber warfare etc. One of the basic techniques

used by a malware writer is obfuscation [61]. Such a technique obscure a code to

make it difficult to understand, analyze and detect malware embedded in the code.

1.2 Hidden Malware

Initial obfuscators were simple and were detected by simple signature-based detectors.

To counter these detectors the obfuscation techniques have evolved in sophistication

and diversity [11, 23, 56, 61, 70]. Such techniques obscure a code to make it difficult

to understand, analyze and detect malware embedded in the code. These techniques

can be divided into three groups [70]: packing, polymorphism and metamorphism.

Packing is a technique where a malware is packed (compressed) to avoid de-

tection. Unpacking needs to be done before the malware can be detected. Current

antimalware tools normally use entropy analysis [70] to detect packing but to unpack

a program they must know the packing algorithm used to pack the program. Packing

Introduction and Motivation 3

is also used by legitimate software companies to distribute and deploy their software.

Therefore a packed program needs to be unpacked before a malware can be detected.

Polymorphism is an encryption technique that mutates the static binary code

to avoid detection. When an infected program executes the malware is decrypted and

written to memory for execution. With each run of the infected program a new version

of the malware is encrypted and stored for the next run. This results in a different

malware signature with each new run of the program. The changed malware keeps

the same functionality, i.e. the opcode is semantically the same for each instance. It

is possible for a signature-based technique to detect this similarity of signatures at

runtime.

Metamorphism is a technique that mutates the dynamic binary code to avoid

detection. It changes the opcodes with each run of the infected program and does

not use any encryption or decryption. The malware never keeps the same sequence

of opcodes in memory. This is also called dynamic code obfuscation. There are two

kinds of metamorphic malware defined in [70] based on the channel of communi-

cation used: Closed-world malware, that do not rely on external communication

and can generate the newly mutated code using either a binary transformer or a

metalanguage. Open-world malware, that can communicate with other sites on the

Internet and update themselves with new features.

1.3 Obfuscations

This Section discusses some of the mutations used in polymorphic and metamorphic

malware. We discuss some more obfuscations in Chapter 3 when we describe binary

analysis for malware detection.

1.3.1 Opcode Level

Instruction reordering: By changing the ordering of instructions with commuta-

tive or associative operators, the structure of the instructions can be changed. This

reordering does not change the behavior of the program. As a simple example:

a = 10; b = 20; a = 10; b = 20;

x = a * b; can be changed to: x = b * a

Introduction and Motivation 4

original machine code and assembly:

c7 45 f4 0a 00 00 00 movl [rbp-0xc], 0xa ; a = 10

c7 45 f8 14 00 00 00 movl [rbp-0x8], 0x14 ; b = 20

8b 45 f4 mov eax, [rbp-0xc] ;

0f af 45 f8 imul eax, [rbp-0x8] ; a * b

89 45 fc mov [rbp-0x4], eax ; x = a * b

changed machine code and assembly:

c7 45 f4 0a 00 00 00 movl [rbp-0xc], 0xa ; a = 10

c7 45 f8 14 00 00 00 movl [rbp-0x8], 0x14 ; b = 20

8b 45 f8 mov eax, [rbp-0x8] ; (reordered)

0f af 45 f4 imul eax, [rbp-0xc] ; b * a (reordered)

89 45 fc mov [rbp-0x4], eax ; x = b * a

Because of the two reordered instructions the original and the changed machine codes

have different signatures. Other instructions can also be reordered if no dependency

exists between the instructions.

Dead code insertion: Dead code is a code that either does not execute or has no

effect on the results of a program. Following is an example of dead code insertion:

mov ebx, [ebp+4]

add ebx, 0x0 ; dead code

nop ; dead code

jmp ebx

Register renaming: To avoid detection registers are reassigned in a fragment of

a binary code. This changes the byte sequence (signature) of the machine code. A

signature-based detector will not be able to match the signature if it is searching for

a specific register. An example of register renaming is given below (register eax is

renamed to edx):

lea eax, [RIP+0x203768] lea edx, [RIP+0x203768]

add eax, 0x10 add edx, 0x10

jmp eax jmp edx

1.3.2 Control Flow Level

Order of instructions: To change the control flow of a program the order of

instructions is changed in the program, keeping the order of execution the same by

Introduction and Motivation 5

using jump instructions. An example of such a code is given in Section 1.3.3.

Branch functions: A branch function is used [61] to obscure the flow of con-

trol in a program. The target of all or some of the unconditional branches

in a program is replaced by the address of a branch function. The branch func-

tion makes sure the branch is correctly transferred to the right target for each branch.

Opaque predicates: These are the predicates (variables) whose values are either

true or false, such as y2 − 1 6= x2 for any integer values of y and x, and still needs to

be evaluated at runtime. To break the control flow of a program, an opaque predicate

is used [23, 61] to create an unconditional branch that looks like a conditional branch.

Jump tables: Compilers use jump tables to implement switch-case statements in a

language [79]. Jump tables are also used in system and function calls in operating

systems. To alter the control flow of a program, either one or the combination of

the following is used: an artificial jump table can be created, artificial jumps can be

added to the existing jump table or the target of a jump in the table can be changed

to point to a malicious code.

Exception tables: Modern compilers use exception tables to implement exceptions

in high level languages for better performance [13, 31]. An exception table contains

information about the various operations required for exception processing, such as

invoking the destructors, adjusting the stack and finding the address of the exception

handler. A malware writer can manipulate an exception table in a binary file to

replace the address of an exception handler with the address of his/her own written

malicious exception handler. A more ambitious malware writer can create a new

exception table pointing to his/her own written malicious exception handler. This

malicious exception handler may steal user information or open a back door for a

botnet.

1.3.3 Self-Modifying Code

Self-modifying code is a code that changes its own instructions at runtime. The

purpose of changing the instructions at runtime can be benign or malicious.

An optimizing program may change its instructions to improve its performance.

Introduction and Motivation 6

For example, to improve the runtime of a program, the numbers of instructions of

parts of the program that run most (> 70%) of the time are reduced. To avoid

branch prediction [73] and exploit instruction level parallelism (ILP) [73], a condi-

tional branch is changed to an unconditional branch during the program execution.

A program is compressed before execution to save space and reduce bandwidth re-

quired for downloading the program (when relevant), and then decompressed during

the execution.

A malware may change its instructions at runtime to hide code to prevent reverse

engineering or to evade detection by anti-malware programs. Self-modifying code

is mostly used by polymorphic and metamorphic malware but is also used in other

malware, for instance, to carry buffer overflow attacks [28].

The following example depicts a snippet of a self modifying original and obfuscated
(order of instructions changed) code:

original assembly changed to obfuscated assembly

mov ebx, 0x402364 mov ebx, 0x402364

add ebx, 0x100 jmp j2

push edx loop: mov edx, [ebx]

loop: mov edx, [ebx] mov [ecx], edx

mov [ecx], edx jmp j3

dec ebx j1: jmp j4

inc ecx j2: add ebx, 0x100

cmp ebx, (0x402364+0x100) push edx

jne loop jmp loop

pop edx j3: dec ebx

inc ecx

jmp j1

j4: cmp ebx, (0x402364+0x100)

jne loop

pop edx

The above code modifies its instructions by copying data (that contains code)

from the data section to the code section of the program. This snippet of code can

be part of a malware or a benign program.

Introduction and Motivation 7

1.4 Real-Time Detection

To provide continuous protection to an end point a security software needs to be op-

erated and threats need to be detected in real-time. Antimalware provide protection

from malware in two ways:

1. They can provide real-time protection by detecting the malware before the soft-

ware is installed. All the incoming network traffic is monitored and scanned for

malware. Depending on the methods used this continuous monitoring and scan-

ning slows down a computer considerably, which is not practical and desirable.

This is one of the main reasons this type of protection is not very popular.

2. They can provide protection by detecting a malware during or after the software

installation. A user can scan different files and parts of the computer as and

when he/she desires. This type of protection is much easier to use and is more

popular.

In this thesis our emphasis is on the second option.

1.5 Problem Statement

As is clear from the above discussion out of the three malware groups mentioned

above, metamorphic malware are getting more complex and pose a special threat

and new challenges to the end point security. Stealthy mutation techniques provided

by metamorphism helps a malware evade detection by today’s signature-based anti-

malware programs. Such malware are very difficult to analyse and detect manually

even with the help of tools.

The number of new malware are increasing significantly and we need to automate

the process of malware analysis and detection. To address effectively the challenges

posed by metamorphic malware, we need to develop new methods and techniques to

analyze the behavior of a program and make a better detection decision with few false

positives.

Current techniques [14, 36, 37, 38, 43, 58, 59, 75, 78, 86, 93, 94, 97] for detecting

malware are compute intensive, have poor detection rates, cannot handle smaller size

malware, and are not suitable for real-time detection.

Introduction and Motivation 8

Some of the recent techniques that use opcodes, such as [75, 78, 93], have the

potential to be used for real-time metamorphic malware detection, but have the fol-

lowing issues. The frequencies of opcodes can change by using different compilers,

compiler optimizations and operating systems. Obfuscations introduced by poly-

morphic and metamorphic malware can change the opcode distributions. Selecting

too many features (patterns) results in a high detection rate but also increases the

runtime.

It is difficult to write a new metamorphic malware [90] and in general malware

writers reuse old malware. To hide detection the malware writers change the ob-

fuscations (syntax) more than the behavior (semantic) of such a new metamorphic

malware. If an unknown metamorphic malware uses all or some of the same class of

behaviors as are used by the training dataset (set of old metamorphic malware) then

it is possible to detect these types of malware. On this assumption and motivation,

we develop new techniques in this thesis to build behavioral signatures and detect

effectively known and unknown metamorphic malware in real-time.

1.6 Contributions

Following are the contributions of this thesis:

1. We propose a new intermediate language named MAIL (Malware Analysis

Intermediate Language) for malware analysis that can enhance the detection of

metamorphic malware. Almost all the malware use binaries, instructions that a

computer can interpret and execute, to infiltrate a computer system. There are

hundreds of different instructions in any assembly language. We need to reduce

and simplify these instructions considerably to optimize the static analysis of

any such assembly program for malware detection.

(a) MAIL provides an abstract representation of an assembly program and

hence the ability for a tool to automate malware analysis and detection.

(b) By translating binaries compiled for different platforms to MAIL, a tool

can achieve platform independence.

(c) Each MAIL statement is annotated with patterns that can be used by a

tool to optimize malware analysis and detection.

Introduction and Motivation 9

2. We propose a novel technique named ACFG (Annotated Control Flow Graph)

that reduces the effects of obfuscations and provides efficient metamorphic mal-

ware detection. ACFG is built by annotating CFG of a binary program and is

used for graph and pattern matching to analyse and detect metamorphic mal-

ware in real-time. We also optimize the runtime of malware detection through

parallelization and ACFG reduction, maintaining the same accuracy (without

ACFG reduction) for malware detection. An ACFG:

(a) Captures the control flow semantics of a program.

(b) Provides a faster matching of ACFGs compared to other such techniques,

without compromising the accuracy.

(c) Can handle malware with smaller CFGs compared to other such tech-

niques.

(d) Contains more information and hence provides better accuracy than a

CFG.

3. We propose a novel technique named SWOD-CFWeight (Sliding Window of

Difference and Control Flow Weight) that reduces the effects of obfuscations

and provides real-time metamrophic malware detection.

(a) SWOD is a window that represents differences in MAIL Patterns1 distri-

butions (instead of opcodes) and hence makes the analysis independent of

different compilers, compilers optimizations, instruction set architectures

and operating systems. This is a significant improvement compared to

existing techniques that use opcodes for malware detection.

(b) Size of SWOD can change, this property gives a user (anti-malware tool

developers) the ability to select appropriate parameters for a dataset to

further optimize malware detection.

(c) Unlike the current techniques that use opcodes for metamorphic malware

detection, CFWeight captures the control flow semantics of a program

and includes this information to an extent that helps detect metamorphic

malware in real-time.

1Patterns present in MAIL are a high level representation of opcodes and can be used in a similar
manner.

Introduction and Motivation 10

4. We present a new framework named MARD for Metamorphic Malware Anal-

ysis and Real-Time Detection. MARD uses MAIL and implements the above

two proposed techniques, and provides:

(a) Automation

(b) Platform independence

(c) Optimizations for real-time performance

(d) Modularity

5. We conduct experimental evaluation of the proposed techniques, using an

existing dataset of 5305 metamorphic malware and benign samples. We also

provide distribution of the samples based on size of the files, number of ACFGs

per sample and size (number of nodes) of ACFGs of the samples.

1.6.1 Obtained Performance Improvements

In the experimental evaluation carried out in Chapter 7, the two proposed techniques

achieve detection rates in the range 94% – 99.6%. When comparing the two proposed

techniques, ACFG achieves a detection rate (DR) of 94% and a false positive rate

(FPR) of 3.1%, whereas SWOD-CFWeight improves over ACFG, and achieves a DR

of 99.08% and a FPR of 0.93%. Compared to ACFG, SWOD-CFWeight significantly

improves the detection time, and is more suitable to be used where the time for

malware detection is important as in real-time (practical) anti-malware applications.

When compared with other such recent techniques, using the best reported re-

sults, the two proposed techniques show superior results, and unlike others are fully

automatic, support malware detection for 64 bit Windows (PE binaries) and Linux

(ELF binaries) platforms and have the potential to be used in a real-time detector.

1.7 Organization of the Thesis

The rest of the thesis is organized as follows:

Chpater 2 discusses the previous research efforts for detecting malware. We cover

these research efforts under two categories: Metamorphic malware detection systems

and Intermediate languages for malware analysis and detection.

Introduction and Motivation 11

Chapter 3 describes in detail the design and components of the new intermediate

language MAIL and illustrates how a binary program can be translated to MAIL.

Chapter 4 describes the new proposed framework MARD in detail.

Chapter 5 describes the novel technique ACFG and how it is used for efficient

metamorphic malware analysis and detection. The Chapter also discusses how par-

allelization and ACFG reduction reduces the runtime of a malware detector.

Chapter 6 defines and develop the novel technique SWOD-CFWeight and shows

how it can be implemented in a malware detector for real-time metamorphic malware

analysis and detection.

Chapter 7 describes the experimental studies in detail to analyse the correctness

and the efficiency of our techniques proposed in this thesis. The Chapter discusses

the experiments, that were carried out to evaluate the performance of the framework

MARD.

Chapter 8 concludes the thesis and discusses the future work that can be carried

out based on the research presented in this thesis.

Literature Review 12

Chapter 2

Literature Review

This chapter discusses previous research into detecting malware. We cover these

research efforts under two categories: (1) Metamorphic malware detection systems.

We cover only academic research efforts that claim to or will extend their detector

to detect metamorphic malware. Our emphasis is on the most recent advances and

their potential for malware detection. We therefore only cover some of the major

research efforts, starting from the year 2012. (2) Intermediate languages. We cover

only those intermediate languages that are used either in commercial or academic

malware analysis and detection systems. We do not cover intermediate languages

that are only used for binary analysis or reverse engineering.

2.1 Metamorphic Malware Detection Systems

We divide these metamorphic malware detection systems into three groups based on

the type of analysis used for malware detection.

2.1.1 Control Flow Analysis

The method described in [86] uses model checking to detect metamorphic malware.

Model checking techniques check if a given model meets a given specification. A

program is modelled and the malware behavior is specified using a mathematical

notation. The behavior of a program is checked without executing the program.

According to the paper [86], previous such techniques did not model the program

stack. The paper [86] used a pushdown system to build a model that takes into

account the behavior of the stack. They use IDA Pro [35] and Jackstab [53] to build

Literature Review 13

a CFG (control flow graph) [1] for a program binary. The CFG contains information

about the contents of registers and memory at each control point of the program. It

is translated into a pushdown system. The pushdown system stores the control points

and the stack of the program.

Model checking is time consuming and sometimes it can run out of memory as

was the case with an earlier approach [87] of the same authors. Times reported in

the paper range from a few seconds (for 10 instructions) to over 250 seconds (for

10000 instructions). Real-life applications are much bigger than the samples tested.

Therefore we believe their system cannot be used as a real-time malware detector.

The technique described in [59] checks similarities between code graphs (called

semantic signatures in the paper) to detect metamorphic malware. A code graph

is generated from the call graph of a program that is build from the binary of the

program. It is not clear from the paper how the call graph is built (e.g. what tools,

disassembler are used) from the binary. Only system calls are extracted from the

binary to build the call graph. The problem of checking if two graphs are isomorphic

is NP-complete [42]. To reduce the size of the call graph, they separated these system

calls into 128 groups (32 objects x 4 behaviors). This reduced the processing time

but also impacted the accuracy of the detector.

The code graph is compared with the already generated code graphs of the known

metamorphic malware samples. Assuming that the new malware samples are the

obfuscated versions of existing known malware, if a similarity is found then the code

is classified as malicious code. However, the paper neither mentions the performance

overheads of generating code graphs from the binaries nor the performance overheads

of comparing the two code graphs.

The technique described in [38] uses an API call-gram to detect malware. An API

call-gram captures the sequence in which API calls are made in a program. First,

a call graph is generated from the disassembled instructions of a binary program.

This call graph is converted to a call-gram. The call-gram becomes the input to a

pattern matching engine. They use WEKA [47], which performs binary classification

using a set of pattern recognition and machine learning algorithms. However, the

paper does not mention the performance overheads of the system implemented. The

system designed is not fully automated and cannot be used as a real-time detector.

Literature Review 14

The method presented in [36] and [37] uses a CFG for visualizing the control

structure and representing the semantic aspects of a program. They extended the

CFG with the extracted API calls to have more information about the executable

program. This extended CFG is called the API-CFG.

Their system consists of three components: a PE-file disassembler, an API-CFG

generator and a classification module. They built the API-CFG as follows. First they

disassemble a PE file using a third party disassembler. Then the unnecessary instruc-

tions that are not required for building the CFG are removed from the disassembled

instructions. The instructions kept are: jumps, procedure calls, API calls and targets

of jump instructions.

A feature vector is generated using the API-CFG which is a sparse graph and can

be represented by a sparse matrix. They store all the nonzero entries in a feature

vector. An algorithm is given in the paper for converting the API-CFG to a feature

vector.

Different classifiers (Decision Stump, Sequential Minimal Optimization, Naive

Bayes, Random Tree, Lazy K-Star and Random Forest) are used to process the data

consisting of the feature vectors of the PE files, and then decide if a PE file contains

malware or not. This learning model based on the classifiers is used by a decision

module to decide if a PE file is a malware or not.

The implemented system is dependent on a third party closed source disassembler.

The disassembler cannot disassemble more than one file at a time, so they used a script

to automate disassembly of a set of files. The proposed system is unsuitable for use

as a real-time malware detector. Furthermore, the proposed techniques cannot be

used to detect metamorphic malware, but as mentioned in the paper, this option will

be explored in the future.

2.1.2 Information Flow Analysis

A recent effort [97] uses dynamic taint analysis (DTA) to automatically detect if an

unknown sample exhibits malicious behavior or not. The proposed design consists

of four engines: taint engine, test engine, malware detection engine and malware

analysis engine. The taint engine tracks the flow of information (all actions taken by

the system are kept as taint graphs) of the whole system. This information is used to

detect malware from unknown samples by comparing extracted information against

a set of defined policies. To perform manual detection, their malware analysis engine

Literature Review 15

can be used to help a human analyst examine the taint graphs in detail.

As a proof of concept, they implemented a system called Panorama as a plugin

of an emulator. Panorama is not fully automatic so a tool was written in Python to

load and install the samples. The tool was able to handle 70% of the samples. The

remaining samples were installed manually. Using automatic and manual analysis

together, the detection rate for these samples became 100%.

Panorama is part of an emulator and all the samples were run inside the

emulator. Running a sample/application in an emulator to detect malware has its

own overheads. The paper does not provide more detailed performance (timings)

results and overheads. Panorama needs human analysts to inspect its data to

detect malware more accurately. Since it runs in an emulator and takes a consid-

erable amount of time for detection, it cannot be used as a real-time malware detector.

The technique described in [58] uses value set analysis (VSA) [6] to detect

metamorphic malware. Value set analysis is a static analysis technique that keeps

track of the propagation and changes of values throughout an executable. They track

only register and stack values for efficiency reasons. This is how their system works:

First they disassemble the executable. Then they apply the value set analysis to

approximate the possible values of each memory location for every instruction in the

program. These values are matched against a reference list of value sets, generated

from infected files. Based on the matching results, a similarity score is computed

and used to detect or classify the malware. They use static analysis so all execution

paths are analysed. The disassembler used and the performance overheads are not

described in the paper, so we cannot comment on the real-time applicability of their

implemented system.

The technique described in [43] also uses VSA for detecting metamorphic

malware. Their technique is based on extending the idea of VSA proposed in

[58]. They track the register values for each API (application programming

interface) call in a dynamic analysis setting. The use of dynamic analysis may

miss some of the execution paths in a program during the analysis. Malware

binaries are run and traced inside a controlled environment to collect register

values. Based on the matching, a similarity score is computed which is used for

detecting or classifying the malware. Because of the dependency on a controlled en-

vironment for execution, the proposed approach cannot be used as real-time detector.

Literature Review 16

The performance overheads of both the techniques proposed in [58] and [43] are

not specified. [58] is based on static analysis and [43] is based on dynamic analysis,

it would have been interesting to see the difference in the performances of these two

techniques.

A framework presented in [7] for polymorphic worm detection is worth mentioning

here, because it has the potential to be used for metamorphic malware detection. It is

a graph based classification framework of content based polymorphic worm signatures.

It relies on using byte-pattern-based signatures to detect worm traffic. A vertex in

the graph is a common invariant string found in the majority of different forms of

polymorphic worms, extracted from flow pools as described in [48], and an edge in the

graph represents the directed sequences of two vertices. A vertex score is calculated

which is a probability of vertex appearing in a suspicious flow pool as opposed to an

innocuous flow pool. On the basis of this score, vertices are differentiated as strong or

weak. Edges which consist of a weak vertex and a strong vertex or two strong vertices

are considered strong. The signature set is defined as a conjunction of strong vertices

and strong directed edges. This signature scheme is called CCM (Conjunction of

Combinational Motifs). If one of these signatures matches completely with a network

flow, then a malware artifact (a worm) has been detected. The experimental results

reported in the paper [7] outperform two other byte-pattern-based techniques for

polymorphic worm detection.

2.1.3 Opcode-Based Analysis

The method described in [80] uses opcode sequences as a representation of executables

for malware detection. Each opcode is given a weight based on its frequency of

occurrence in malware or in benign executables. The authors use the Term Frequency

[52] and the calculated weight to compute the Weighted Term Frequency (WTF).

The calculated weight is the relevance (occurrence of a opcode in malware or benign

executable) of the opcode. Four different machine learning classifiers are trained

and tested using WTF to detect malware, including Decision Tree, Support Vector

Machines, K-Nearest Neighbours and Bayesian Networks.

Their best results based on the detection rate are obtained using the Decision

Tree classifier which also achieves the best malware detection time. Most of the

Literature Review 17

execution time (from 0 – 45 seconds per sample file in the dataset, depending on the

opcode-sequence length used) spent by their malware detector is on feature (calculated

weight) extraction. The authors did not include this time when computing the testing

time of the classifiers, whereas we have included this time when computing the testing

time, as listed in Chapter 7. Therefore, we cannot compare their malware detection

timings with the timings of the techniques proposed in this thesis. By not including

the feature extraction time, the testing time for the Decision Tree classifier used in

[80] is almost 0.

The technique presented in [82], similar to [80], also uses opcode sequences to

represent executables for malware detection. After extracting the opcode sequences

they compute the Term Frequency and Inverse Document Frequency [77] for each

opcode sequence or feature in each file. After reducing the number of features

by using the document frequency measure (number of files in which the feature

appeared) they applied eight commonly used classification algorithms for malware

detection.

The work presented in [96] provides a good introduction to malware generation

and detection, and served as a benchmark for comparison in several other studies

[8, 32, 60, 78, 93] on metamorphic malware. They analysed and quantified (using

a similarity score) the degree of metamorphism produced by different metamorphic

malware generators, and proposed a hidden Markov model (HMM) for metamorphic

malware detection. A HMM is trained using the assembly opcode sequences of the

metamorphic malware files. The trained HMM represents the statistical properties

of the malware family, and is used to determine if a suspect file belongs to the same

family of malware or not.

The malware generators analysed in [96] are G2, MPCGEN, NGVCK and VCL32.

Based on the results, NGVCK (also used in this thesis) outperforms other generators.

VCL32 and MPCGEN have very similar morphing ability, and the malware programs

generated by G2 (also used in this thesis) have a higher average similarity than

the other three. Based on these results, we can conclude that malware programs

generated by NGVCK are the most difficult to detect out of the four.

The method described in [93] uses the chi-squared (χ2) test [95] to detect metamor-

phic malware. Their method is based on the observation that different compilers use

different subsets of instructions, i.e. each compiler has its own subset of instructions

Literature Review 18

for generating code. The instructions that are common between the two compilers

will appear with different frequencies. An estimator function can then estimate if

a set of instructions is generated by a particular compiler. The same concept can

be used to estimate whether sets of instructions were generated by a metamorphic

malware generator.

Their estimator works as follows: First they generate a spectrum of an infected

program. This spectrum contains information about the typical frequencies of the

opcodes (instructions). These are the expected frequencies of the instructions in a

particular metamorphic generator. To detect if a file contains a metamorphic mal-

ware artifact these expected frequencies are compared with the observed frequencies.

A χ2 statistical test as described in [39] is used to determine if there is a significant

difference between the expected and the observed frequencies. If there is a significant

difference then the file under test is considered to be benign. Their implementation

uses IDA Pro [35], a closed source disassembler, to disassemble the executables and

is not fully automatic.

The technique presented in [78] uses the similarity of executables based on opcode

graphs for metamorphic malware detection. Opcodes are first extracted from the

binary of a program. Then a weighted opcode graph is constructed. Each distinct

opcode becomes a node in the graph, and each outgoing edge leads to the node for

a successor opcode. Each edge is given a weight representing the frequency that

control transfers to the successor opcode. This graph is directly compared, using

matrices, with the graph of known malware. This comparison is based on a scoring

function developed in the paper. If the similarity score of the comparison is below

the threshold then malware is detected otherwise the program is considered to be

benign. The threshold is computed using the scoring function based on the scoring

differences between different kinds of files (benign, normal and metamorphic virus

files).

The method described in [75] uses a histogram of instruction opcode frequencies

to detect metamorphic malware. A histogram is built for each file and is compared

against the already built histograms of malware samples to classify the file as

malware or benign. The similarity between two histograms is measured using a

distance metric called Minkowski-form distance [55]. The system implemented

extracts opcodes from a binary file and uses MATLAB to generate a histogram of

Literature Review 19

these opcodes, and is not fully automatic.

The technique presented in [5] used hidden Markov models (HMMs) to capture

how hand written assembly differs from compiled code and how benign code differs

from malware code. This model is used to detect malware. HMMs are built

for both benign and malware programs. For each program, the probability of

observing the sequence of opcodes is determined for each of the HMMs. If the

HMM reporting the highest probability is malware, the program is flagged as malware.

The technique presented in [83] presented an opcode-based similarity measure

inspired by substitution cipher cryptanalysis [51] to detect metamorphic malware.

They obtained promising results. A score is computed using an analog of Jackobsens

algorithm [51] that measures the distance between the opcode sequence of a given

program and the opcode statistics for a malware program. A small distance suggests

that malware has been detected.

The method described in [94] uses bioinformatics sequence alignment methods to

detect metamorphic malware. The basic idea used in the paper is to extract the

structural and functional characteristics of a program from the machine opcodes.

They are aligned into multiple sequences for comparison and detection. The authors

assume that in metamorphic malware some of the machine opcode(s) are replaced

by equivalent machine opcode(s) but a complete rewrite is impossible if the same

functionality is being maintained.

First they disassemble a binary to extract the opcodes. These opcodes are then

aligned using local, global and multiple sequence alignments. Three kinds of signa-

tures, single, group and probabilistic, are generated from these alignments. These

signatures are compared with the signatures of the already known malware. A higher

similarity score means a malware is detected.

They conducted experiments using the three signatures mentioned above and

obtained the following results. A single signature achieved a higher detection rate

(91%) but a very high false positive rate (52%). A group signature achieved a low

detection rate (72.2%) but a very low false positive rate (0.01%). A probabilistic

signature achieved a low detection rate (71%) and a low false positive rate (7%).

The paper does not provide any information about the performance overheads of the

proposed system implemented in the paper. With such low accuracies, the prototype

Literature Review 20

system cannot be used as an effective real-time detector. Because of its low detection

rate, we do not further compare this technique with the techniques proposed in this

thesis.

Recently, [14] presented a technique that uses the frequencies of occurrence of

instructions in the disassembled code to detect metamorphic malware. Their tech-

nique relies on the assumption that some instructions occur within the metamorphic

malware many times. Based on this assumption they build an instruction occurrence

matrix (IOM) for a program. The IOM associates each opcode with the number of

instructions that use the opcode, but have at least 2 occurrences in the program.

A χ2 statistical test is used to select the opcodes. Different types of decision tree

classifiers are used with the selected opcodes to distinguish malware from a benign

program. The paper does not mention the (runtime) performance of the proposed

technique.

There is nothing mentioned in the paper [14] on the testing data (specifically

unknown data) used for validating the proposed technique. For example, how are

known (training) and unknown (testing) datasets are distributed, to validate that

the technique proposed can also detect unknown malware? Due to a lack of such

testing described in the paper, we consider this technique to be incapable of detecting

unknown malware, and we do not include this technique for further comparison with

the techniques proposed in this thesis.

2.1.4 Summary

Table 2.1 gives a summary of all the malware detection systems discussed above. None

of the prototype systems implemented can be used as a real-time detector. The sys-

tems that claim perfect detection rates do not validate such claims with large enough

data sets. They need to perform experiments using more samples. Out of all the re-

search efforts discussed above, API-CFG, Call-Gram and VSA-2 show impressive

results and have the potential to be used as real-time malware detectors. However,

API-CFG does not yet support detection of metamorphic malware, VSA-2 is using

a controlled environment for detection, and Call-Gram is not fully automated and

its performance overheads are not mentioned in the paper.

Literature Review 21

T
ab

le
2.
1:

S
u
m
m
ar
y
of

T
h
e
m
et
am

or
p
h
ic

m
al
w
ar
e
an

al
y
si
s
an

d
d
et
ec
ti
on

sy
st
em

s
d
is
cu
ss
ed

in
S
ec
ti
on

2.
1

S
y
st
e
m

A
n
a
ly
si
s

D
e
te
ct
io
n

F
a
ls
e

D
a
ta

S
e
t
S
iz
e

R
e
a
l

P
la
tf
o
rm

T
y
p
e

R
a
te

P
o
si
ti
v
e
s

B
e
n
ig
n
/
M

a
lw

a
re

T
im

e

M
o
d
el
-C

h
ec
k
in
g
[8
6]

S
ta
ti
c

10
0%

1%
8
/
20
0

7
W

in
32

C
o
d
e-
G
ra
p
h
[5
9]

S
ta
ti
c

91
%

0%
30
0
/
10
0

7
W

in
32

C
al
l-
G
ra
m

[3
8]

S
ta
ti
c

98
.4
%

2.
7%

32
34

/
32
56

7
W

in
32

A
P
I-
C
F
G

[3
6,

37
]

S
ta
ti
c

97
.5
3%

1.
97
%

21
40

/
23
05

7
W

in
32

D
T
A

[9
7]

D
y
n
am

ic
10
0%

3%
56

/
42

7
W

in
X
P
64

V
S
A
-1

[5
8]

S
ta
ti
c

10
0%

0%
25

/
30

7
W

in
32

V
S
A
-2

[4
3]

D
y
n
am

ic
98
%

2.
9%

38
5
/
82
6

7
W

in
X
P
64

O
p
co
d
e-
H
M
M
-W

on
g
[9
6]

S
ta
ti
c

∼
90
%

∼
2%

40
/
20
0

7
W

in
&

L
in
u
x
32

C
h
i-
S
q
u
ar
ed

[9
3]

S
ta
ti
c

∼
98
%

∼
2%

40
/
20
0

7
W

in
&

L
in
u
x
32

O
p
co
d
e-
G
ra
p
h
[7
8]

S
ta
ti
c

10
0%

1%
41

/
20
0

7
W

in
32

H
is
to
gr
am

[7
5]

S
ta
ti
c

10
0%

0%
40

/
60

7
W

in
32

O
p
co
d
e-
H
M
M
-A

u
st
in

[5
]

S
ta
ti
c

93
.5
%

0.
5%

10
2
/
77

7
W

in
&

L
in
u
x
32

O
p
co
d
e-
S
D

[8
3]

S
ta
ti
c

∼
98
%

∼
0.
5%

40
/
80
0

7
L
in
u
x
32

O
p
co
d
e-
S
eq
s-
S
an

to
s
[8
0]

S
ta
ti
c

96
%

6%
10
00

/
10
00

7
W

in
32

O
p
co
d
e-
S
eq
s-
S
h
ab

ta
i
[8
2]

S
ta
ti
c

∼
95
%

∼
0.
1%

20
41
6
/
56
77

7
W

in
32

R
ea
l-
ti
m
e
h
er
e
m
ea
n
s
th
e
d
et
ec
ti
on

is
fu
ll
y
au

to
m
at
ic

an
d
fi
n
is
h
es

in
a
re
as
on

ab
le

am
ou

n
t
of

ti
m
e.

T
h
e
p
er
fe
ct

re
su
lt
s

sh
ou

ld
b
e
va
li
d
at
ed

w
it
h
m
or
e
n
u
m
b
er

of
sa
m
p
le
s
th
an

te
st
ed

in
th
e
p
ap

er
.
T
h
e
va
lu
es

fo
r
O
pc
od
e-
G
ra
p
h
ar
e
n
ot

d
ir
ec
tl
y

m
en
ti
on

ed
in

th
e
p
ap

er
.
W
e
co
m
p
u
te

th
es
e
va
lu
es

b
y
p
ic
k
in
g
a
th
re
sh
ol
d
of

0.
5
fr
om

th
e
si
m
il
ar
it
y
sc
or
e
in

th
e
p
ap

er
.

Literature Review 22

2.2 Intermediate Languages

This Section discusses the academic and the commercial research efforts in the

development of intermediate languages for malware analysis and detection. We

also discuss why we need a new intermediate language for malware analysis and

detection, and compare MAIL (Malware Analysis Intermediate Language), the new

intermediate language developed as part of the thesis and described in detail in

Chapter 3, with these research efforts. First we present one of the commercial efforts

and then move on to the academic efforts. The reasons for selecting these research

efforts are: (1) Information about them is available publicly. (2) They are well

described, i.e. at least part of the syntax and semantics is either described or defined

mathematically. (3) They are currently being used in either academic or commercial

malware analysis and detection tools.

REIL is an intermediate language that is being used in a commercial reverse

engineering tool named BinNavi [34, 92]. Although REIL is not specifically designed

for malware analysis, it is used in BinNavi for manual malware analysis and detec-

tion. In [81], Sepp et al. proposed an extension of REIL with relational information

by translating the instruction’s side effects via its flag setting actions into arithmetic

instructions. The extension also helps reduce the size of a REIL program. The

core language has a very reduced instruction set. It consists of only 17 different

instructions and uses a flat memory model. The native instructions are translated to

REIL instructions using a map. Based on the experiments carried out by the authors,

on average one original native instruction is translated into approximately 20 REIL

instructions. Unhandled native instructions are replaced with NOP instructions

which may introduce inaccuracies in disassembling. There are no examples in the

paper of translating an assembly program into REIL. Furthermore, REIL does not

translate FPU, MMX and SSE instructions, nor any privileged instructions such

as system calls, interrupts and other kernel-level instructions. The reason for not

including these instructions is that the authors think that these instructions are not

yet being used to exploit security vulnerabilities. REIL cannot translate instructions

of the type that select registers with an index, as in the PowerPC. REIL cannot

handle self-modifying code. The reason for this is that the REIL instructions cannot

be overwritten or modified during interpretation of REIL code.

Literature Review 23

SAIL is an intermediate language presented in [20] that represents a CFG of the

program under analysis, and is used in a prototype malware detection tool developed

by the authors. Each instruction in SAIL is either an assignment statement or a call

statement, and becomes a block [1] and a node in the CFG. The operators supported

in SAIL are arithmetic, bit-vector, relational and the special memory addressing

operator. A node in the CFG contains only a single SAIL instruction, which can

make the number of nodes in the CFG extremely large and therefore can make

analysis excessively slow for larger binary programs.

The VINE Intermediate Language (VINE-IL) proposed by Song et al. [85]

is the intermediate language of the static analysis framework VINE used in the

BitBlaze project. BitBlaze provides an extensible binary analysis platform for

security applications. It is not specifically designed for malware detection but

for general security applications. BitBlaze is used in the tool Panorama [97] for

malware analysis and detection. The authors chose simplicity over efficiency, so

VINE first translates a binary to VEX, an intermediate language used in Valgrind

[68] (a dynamic binary instrumentation tool) and then to VINE-IL. The reason

for not using VEX intermediate language directly, is the presence of implicit side

effects in VEX instructions. In VINE-IL the final translated instructions have all

the side effects explicitly exposed as VINE instructions. While exposing all the

side effects in VINE-IL may be appropriate for general security applications such as

program verification, this may not be efficient for specific security applications such

as malware detection. Different platforms have different number and type of flags.

Exposing all the side effects makes this approach general but also makes it difficult

to maintain platform independence. In contrast to VINE-IL, side-effects are avoided

in MAIL, making the language much simpler and providing the basis for efficient

malware detection.

In [4], the authors use an intermediate language called CFGO-IL to simplify trans-

formation of a program in the x86 assembly language to a CFG. After translating a

binary program to CFGO-IL, the program is optimized to make its structure simpler.

The optimizations also remove various malware obfuscations from the program.

These optimizations include dead code elimination, removal of unreachable branches,

constant folding and removal of fake conditional branches inserted by malware. Side

effects of the assembly instructions are exposed explicitly in the instructions of the

Literature Review 24

CFGO-IL. The authors developed a prototype malware detection tool using CFGO-

IL that takes advantage of the optimizations and the simplicity of the language.

However, by exposing all the side effects of an instruction, the language faces the same

problem of maintaining the platform independence as VINE-IL. Furthermore, the

size of a CFGO-IL program tends to much larger than the original assembly program.

In [17], Cesare and Xiang introduce a new intermediate language for malware

analysis named WIRE. The language is currently being used in the Malwise tool [19]

developed by the authors. To the best of our knowledge, this is the only research effort

that has the same goals as the MAIL language. The language is formally defined

using an incomplete set of BNF notations. The authors defined the operational

semantics of WIRE and provided manual examples to check the semantic equivalence

of obfuscated code using these operational semantics. WIRE does not explicitly

specify indirect jumps, making malware detection more complicated. There is only

one instruction ijmp in WIRE that uses a register as the branch target. The register

contents (address) can be known or unknown and hence can complicate the malware

analysis, and may render an incorrect analysis. To simplify malware analysis in MAIL,

this information is made explicit in the instruction.

Furthermore, the authors mention side effects of the assembly instructions as

one of the difficulties of using the native assembly, but do not say anything about

the side effects of the WIRE instructions. It is not clear how the language is used

in the Malwise tool to automate the malware analysis and detection process. None

of the referenced papers [15, 16, 17, 18, 19] covers the automation process using WIRE.

There are other such research efforts [12, 46, 98, 99] that also use an intermediate

representation/language to simplify the static analysis of malware, and do not give

much detail of the language itself, so we are not able to review or compare them here.

2.2.1 Why a New Language for Malware Analysis?

Table 2.2 gives a summary of all the intermediate languages discussed above. The

machine model of all the intermediate languages is based on registers, because the

majority of the platform architectures, such as Intel x86 and ARM, available today

are register-based machines.

A mathematical (formal) model (definition) of a language can be used as a precise,

Literature Review 25

Table 2.2: Summary of the intermediate languages developed for malware analysis
and detection discussed in Section 2.2 and there comparison with MAIL

Intermediate Machine General Side Tool Well
Language Model Format Effects Support Defined

REIL [34] Register Three One BinNavi 7

Address Implicit
Code

SAIL [20] Register Open None Noname 7

Form Tool

VINE-IL [85] Register Open All Panorama 7

Form Explicit

CFGO-IL [4] Register Open All Noname 7

Form Explicit Tool

WIRE [17] Register Three NA Malwise ∼3

Address
Code

MAIL Register Open None MARD 3

Form

Well defined means that a mathematical model of the language is completely defined and is
available publicly. Unlike three address code [1], which always contain three operands, open form
is a combination of different formats and may contain one or more than one operands.

unambiguous and platform independent standard for the language. This definition

can be used to implement the language for any platform. A well defined language

helps us formally reason about the programs written in that language. Techniques

such as model checking [21, 84] can be used on such a language to decide if two

programs are similar or not, which is important for malware detection. MAIL has

been developed as a well defined language with all definitions complete, unlike other

such languages, and hence provides all the advantages as mentioned above.

Whenever a new language is introduced a question arises, why not extend one of

the existing languages? Our answer to this question is as follows.

Extending an intermediate language without a complete formal model being de-

fined may change the semantics of the language into something other than what the

original author intended. In this case we may have to rewrite some or all of the tools

for the extended intermediate language.

None of the previous research efforts on the existing intermediate languages ex-

Literature Review 26

plain in detail how assembly language instructions are translated to intermediate

language statements. For example, how is an Intel x86 instruction PREFETCH (all

other architectures also support some kind of prefetch instruction) transformed to

intermediate language? To translate a set of instructions (e.g. there are 500+ dif-

ferent instructions in Intel x86-64 instruction set architecture [27]), we need to know

what specific information should be included, or excluded from, the intermediate lan-

guage to optimize malware analysis and detection. Without such information, it is

non-trivial to extend a language for malware analysis and detection. We believe it

requires more labour and time to get this information from the source code of the

tools written for an existing language than to write tools for the new language.

The existing intermediate languages, as discussed above, have not shown the ca-

pability of automating malware analysis and detection. Because of the unavailability

of a well defined formal model and detailed explanation, enhancing this capability

of an existing language may require more work than designing a new language with

this capability.

Based on the discussion above there is a need to develop a new intermediate

language for malware analysis and detection. MAIL as an intermediate language

takes a new step towards automating and optimizing malware analysis and detection.

MAIL (Malware Analysis Intermediate Language) 27

Chapter 3

MAIL (Malware Analysis

Intermediate Language)

Intermediate languages are used in compilers to translate the source code into a form

that is easy to optimize and to provide portability. The term intermediate language

also refers to the intermediate language used by the compilers of high level languages

that do not produce any machine code, such as Java and C#. An example of adding

two numbers in the intermediate language CIL (Common Intermediate Language)

used in implementing C# is as follows:

a = a + b;

is translated to the following CIL code:

ldloc.0 ; Push the first local on the stack

ldloc.1 ; Push the second local on the stack

add ; Pop the two locals, add them and push the result on the stack

stloc.0 ; Pop the result and store it in the first local

CIL is a stack-based language, i.e, the data is pushed on the stack instead of

pulled from the registers. That is one of the reasons why, in the example above, one

simple add statement is translated into four stack-based statements. The same add

statement can be translated into the three address code [1] as:

a := a + b

The three address code format is an intermediate language used by most compilers

in current use. The two popular open source compilers GCC [91] and LLVM [57] use

three address code in their intermediate languages.

MAIL (Malware Analysis Intermediate Language) 28

3.1 Why an Intermediate Language for Malware

Analysis?

In Chapter 2, we have discussed and presented a critical review of other languages

used for malware analysis and detection and why we need a new language. Here we

are going to list some of the general reasons why we need to transform a program in

an assembly language to an intermediate language.

1. There are typically hundreds of different instructions in an assembly language.

For example the number of instructions in three ISAs (Instruction Set Archi-

tectures) are: 500+ for Intel x86-64 [27], 200+ for ARM [74] and 500+ for IBM

PowerPC [26]. We need to reduce the number of these instructions considerably

to speed up static analysis of an assembly program.

2. Not only are there many instructions, but they can contain much complex-

ity. Examples include the Intel x86-64 instructions PREFETCH, MOVD and

MOVQ. The instruction PREFETCH moves data from the memory to the

cache. It is unclear whether this action is important if we are performing static

analysis for malware detection. There are other instructions that can be ig-

nored during malware analysis. Our intermediate language hides/ignores these

instructions and makes the language more transparent to static analysis. The

instructions MOVD and MOVQ copy a double word or a quad word, respec-

tively, from the source operand to the destination operand. We do not take into

account the size of the word being copied in our static analysis, and replace

these kinds of instructions with a much simpler ASSIGN instruction. Using

such techniques, an intermediate language allows us to use simpler instructions

to make the static analysis much simpler.

3. We want a common intermediate language that can be used with different plat-

forms, such as Intel x86-64 and ARM (the two most popular architectures in

current computers), so that we do not have to perform a separate static analysis

for each platform.

4. Assembly instructions can have multiple hidden side effects, such as effects on

the flags, that can substantially increase the effort required for static analysis.

In this case, there are three options for an intermediate language that make

static analysis easier; either remove all side effects, or support only one side

MAIL (Malware Analysis Intermediate Language) 29

effect, or explicitly define all side effects in the instruction. Because our focus is

mainly on malware analysis, out of these three, in our opinion the first option

is the best option.

5. An intermediate language can be easily translated into a string, a tree or a

graph and hence can be optimized for various analyses that are required for

malware analysis and detection, such as pattern matching and data mining.

6. To reduce the number of different instructions for static analysis, functionally

equivalent assembly instructions can be grouped together in one intermediate

language instruction, such as:

(xor eax, eax) | (add eax, 0) | (sub eax, eax) => eax = 0

(add ebx, 0x2000) & (add eax, ebx) | (lea eax, [ebx + 0x2000]) => eax = expr

where expr = (ebx + 0x2000) and its value can be known or unknown depend-

ing on the value of ebx. This information should be explicitly defined in the

language.

7. Unknown branch addresses in an assembly program make it difficult to build a

correct CFG for the program. An intermediate language for malware analysis

can take care of these branches. For example, for indirect jumps and calls

(which are branches whose target is unknown or cannot easily be determined

by static analysis) only a change in the source code can affect them, so it is safe

to ignore these branches for malware analysis where the change is only carried

out in the machine code. In the following paragraphs, we explain this in detail

using an example from one of the PARSEC [9] benchmarks. Using the same

example, we also highlight one of the major disadvantages of using dynamic

analysis for malware detection, i.e. the inability to reach and analyse all the

execution paths in a program.

The following example shows the function Condition() from one of the benchmarks

in the PARSEC benchmark suite [9]. This function initializes a static condition

variable of a thread. A local variable rv is used in a switch statement to jump to an

appropriate exception generated by the pthread cond init() function. This function

initializes the condition variable of a thread and returns zero if successful, otherwise

it returns an error number. The value returned by the pthread cond init() function

can only be determined at runtime, as is also the case for the value of rv.

MAIL (Malware Analysis Intermediate Language) 30

The C++ source code with the translated (disassembled) assembly code:

Condition::Condition(Mutex &_M)

throw(CondException)

{ 471b50: push %rbp

int rv; 471b51: push %rbx

M = $_M; 471b52: sub $0x38,%rsp

nWaiting = 0; 471b52: sub $0x38,%rsp

nWakeupTickets = 0; 471b56: mov %rsi,(%rdi)

rv = pthread_cond_init(&c, NULL); 471b59: movl $0x0,0x8(%rdi)

471b60: movl $0x0,0xc(%rdi)

471b67: xor %esi,%esi

471b69: add $0x10,%rdi

471b6d: callq 404b60 <pthread_cond_init@plt>

switch(rv) { [rv UNKNOWN] 471b72: cmp $0x16,%eax

case 0: 471b75: jbe 471bb0 <Condition:Mutex>

break; 471b77: mov 0x21934a(%rip),%r8

case EAGAIN: 471b7e: mov $0x8,%edi

case ENOMEM: { 471b83: lea 0x10(%r8),%rbp

CondResourceException e; 471b87: mov %rbp,(%rsp)

throw e; 471b8b: callq 404d00 <allocate_exception@plt>

break; 471b90: mov 0x219359(%rip),%rdx

} 471b97: mov 0x219342(%rip),%rsi

case EBUSY: 471b9e: mov %rax,%rdi

case EINVAL: { 471ba1: mov %rbp,(%rax)

CondInitException e; 471ba4: callq 404da0 <cxa_throw@plt>

throw e; 471ba9: nopl 0x0(%rax)

break; 471bb0: lea 0x6995(%rip),%rcx <Exception>

} 471bb7: mov %eax,%ebx

default: { 471bb9: movslq (%rcx,%rbx,4),%rax

CondUnknownException e; 471bbd: lea (%rax,%rcx,1),%rdx

throw e; 471bc1: jmpq *%rdx [UNKNOWN BRANCH TARGET]

break; 471bc3: nopl 0x0(%rax,%rax,1)

} 471bc8: mov 0x219231(%rip),%rdi

} 471bcf: lea 0x10(%rdi),%rbx

} 471bd3: mov $0x8,%edi

471bd8: mov %rbx,0x10(%rsp)

Dynamic analysis can be used to determine the value of rv, but it is possible that

such an analysis may not be able to trace all of the executable paths (such as one

of the cases of the switch statements), e.g. when rv is always zero and is non-zero

MAIL (Malware Analysis Intermediate Language) 31

only in rare cases. These rare cases may not get executed, or may be executed only

after running the program for a very long time. In this latter case, analysis becomes

impractical. A malware writer can exploit such a weakness and inject the malware

code by changing the target address of any of the branches inside the switch statement

to his/her own malicious code. In such a case the dynamic analysis may not be able

to detect this malicious behavior.

To overcome this failing of dynamic analysis, we use static analysis to build a

CFG that covers all the execution paths in a program, in this case that would be all

the switch statements. The disassembled code above generates an unknown branch

target address (tagged as [UNKNOWN BRANCH TARGET]). This address cannot

easily be computed using static analysis. It is not possible for a malware writer to use

this particular instruction in its current form for malicious code. He/she will have

to change this instruction. For example, the register rdx can be replaced with the

address of some malicious code, in which case the branch target address will become

known. Therefore it is safe to ignore such branches.

3.2 Binary Analysis for Malware Detection

MAIL is based on binary analysis to optimize malware detection. This section pro-

vides some background on binary analysis for malware detection.

Almost all malware uses binaries (instructions that a computer can interpret and

execute) to infiltrate a computer system. Binary analysis is the process of analysing

the structure and behavior of a binary program either automatically, manually or

both. There are several goals for such analysis. They include optimization, verifi-

cation, profiling, performance tuning, reverse engineering and malware detection. In

this thesis we perform binary analysis for malware detection. We further explain how

binary analysis can help us understand a program and detect malware in the program

by using a simple binary program (a function called sort) that is part of the class

Merge in a sorting program. This function performs a merge sort on an array of inte-

gers. The source code of this function in C++ is shown in Figure 3.1 (b). The binary

analysis of this function is listed below and explained in the following paragraphs.

The listing 3.1 is divided into two columns numbered I and II separated by a colon

(:). There are a total of 104 assembly instructions in this function. This function

is part of a binary program (in ELF x86-64 file) that is first disassembled and then

the disassembled program is analysed and used to build CFGs for functions in the

MAIL (Malware Analysis Intermediate Language) 32

program. In Listing 3.1 each instruction is assigned a block number and an address.

Columns I and II are further divided into five subcolumns. Subcolumn 1 is the block

number, subcolumn 2 is the address, subcolumn 3 is the machine code, subcolumns

4 and 5 are the assembly instructions in Intel syntax.

Listing 3.1 Binary Analysis of The Disassembled Function

Merge::sort(int key[], int size)

Column I Column II

0 40108e 55 PUSH RBP : 5 40113b 488b45c8 MOV RAX, [RBP-0x38]

0 40108f 4889e5 MOV RBP, RSP : 5 40113f 4189f9 MOV R9D, EDI

0 401092 53 PUSH RBX : 5 401142 4189f0 MOV R8D, ESI

0 401093 4883ec48 SUB RSP, 0x48 : 5 401145 4889de MOV RSI, RBX

0 401097 48897dc8 MOV [RBP-0x38], RDI : 5 401148 4889c7 MOV RDI, RAX

0 40109b 488975c0 MOV [RBP-0x40], RSI : 5 40114b e8e2fdffff CALL 0x400f32

0 40109f 8955bc MOV [RBP-0x44], EDX : 5 401150 8b45e8 MOV EAX, [RBP-0x18]

0 4010a2 8b45bc MOV EAX, [RBP-0x44] : 5 401153 01c0 ADD EAX, EAX

0 4010a5 4898 CDQE : 5 401155 0145ec ADD [RBP-0x14], EAX

0 4010a7 48c1e002 SHL RAX, 0x2 : 6 401158 8b45e8 MOV EAX, [RBP-0x18]

0 4010ab 4889c7 MOV RDI, RAX : 6 40115b 8b55bc MOV EDX, [RBP-0x44]

0 4010ae e8e9f9ffff CALL 0x400a9c : 6 40115e 89d1 MOV ECX, EDX

0 4010b3 488945d8 MOV [RBP-0x28], RAX : 6 401160 29c1 SUB ECX, EAX

0 4010b7 c745e801000000 MOV DWORD [RBP-0x18], 0x1 : 6 401162 89c8 MOV EAX, ECX

0 4010be e9f2000000 JMP 0x4011b5 [11] : 6 401164 3b45ec CMP EAX, [RBP-0x14]

1 4010c3 c745ec00000000 MOV DWORD [RBP-0x14], 0x0 : 6 401167 0f9fc0 SETG AL

1 4010ca e989000000 JMP 0x401158 [6] : 6 40116a 84c0 TEST AL, AL

2 4010cf 8b45e8 MOV EAX, [RBP-0x18] : 6 40116c 0f855dffffff JNZ 0x4010cf [2]

2 4010d2 8b55ec MOV EDX, [RBP-0x14] : 7 401172 c745ec00000000 MOV DWORD [RBP-0x14], 0x0

2 4010d5 8d0402 LEA EAX, [RDX+RAX] : 7 401179 e923000000 JMP 0x4011a1 [9]

2 4010d8 0345e8 ADD EAX, [RBP-0x18] : 8 40117e 8b45ec MOV EAX, [RBP-0x14]

2 4010db 3b45bc CMP EAX, [RBP-0x44] : 8 401181 4898 CDQE

2 4010de 0f8e11000000 JLE 0x4010f5 [4] : 8 401183 48c1e002 SHL RAX, 0x2

3 4010e4 8b45ec MOV EAX, [RBP-0x14] : 8 401187 480345c0 ADD RAX, [RBP-0x40]

3 4010e7 8b55bc MOV EDX, [RBP-0x44] : 8 40118b 8b55ec MOV EDX, [RBP-0x14]

3 4010ea 89d1 MOV ECX, EDX : 8 40118e 4863d2 MOVSXD RDX, EDX

3 4010ec 29c1 SUB ECX, EAX : 8 401191 48c1e202 SHL RDX, 0x2

3 4010ee 89c8 MOV EAX, ECX : 8 401195 480355d8 ADD RDX, [RBP-0x28]

3 4010f0 2b45e8 SUB EAX, [RBP-0x18] : 8 401199 8b12 MOV EDX, [RDX]

3 4010f3 eb03 JMP 0x4010f8 [5] : 8 40119b 8910 MOV [RAX], EDX

4 4010f5 8b45e8 MOV EAX, [RBP-0x18] : 8 40119d 8345ec01 ADD DWORD [RBP-0x14], 0x1

5 4010f8 8945e4 MOV [RBP-0x1c], EAX : 9 4011a1 8b45ec MOV EAX, [RBP-0x14]

5 4010fb 8b45ec MOV EAX, [RBP-0x14] : 9 4011a4 3b45bc CMP EAX, [RBP-0x44]

5 4010fe 4898 CDQE : 9 4011a7 0f9cc0 SETL AL

5 401100 48c1e002 SHL RAX, 0x2 : 9 4011aa 84c0 TEST AL, AL

5 401104 4889c1 MOV RCX, RAX : 9 4011ac 0f85ccffffff JNZ 0x40117e [8]

5 401107 48034dd8 ADD RCX, [RBP-0x28] : 10 4011b2 d165e8 SHL DWORD [RBP-0x18], 0x1

5 40110b 8b45ec MOV EAX, [RBP-0x14] : 11 4011b5 8b45e8 MOV EAX, [RBP-0x18]

5 40110e 4863d0 MOVSXD RDX, EAX : 11 4011b8 3b45bc CMP EAX, [RBP-0x44]

5 401111 8b45e8 MOV EAX, [RBP-0x18] : 11 4011bb 0f9cc0 SETL AL

5 401114 4898 CDQE : 11 4011be 84c0 TEST AL, AL

5 401116 488d0402 LEA RAX, [RDX+RAX] : 11 4011c0 0f85fdfeffff JNZ 0x4010c3 [1]

5 40111a 48c1e002 SHL RAX, 0x2 : 12 4011c6 488b45d8 MOV RAX, [RBP-0x28]

5 40111e 4889c2 MOV RDX, RAX : 12 4011ca 4889c7 MOV RDI, RAX

5 401121 480355c0 ADD RDX, [RBP-0x40] : 12 4011cd e82af9ffff CALL 0x400afc

5 401125 8b45ec MOV EAX, [RBP-0x14] : 12 4011d2 4883c448 ADD RSP, 0x48

5 401128 4898 CDQE : 12 4011d6 5b POP RBX

5 40112a 48c1e002 SHL RAX, 0x2 : 12 4011d7 c9 LEAVE

5 40112e 4889c3 MOV RBX, RAX : 12 4011d8 ff0502000000 INC_A [RIP+0x02]

5 401131 48035dc0 ADD RBX, [RBP-0x40] : 12 4011de eb04 JMP_A 0x4011e4

5 401135 8b7de4 MOV EDI, [RBP-0x1c] : 12 4011e0 00000000 CTR_A

5 401138 8b75e8 MOV ESI, [RBP-0x18] : 12 4011e4 c3 RET

The total number of blocks in this function is 12. The block sizes vary. For

example, block number 4 has only 1 instruction whereas block number 5 has 30

MAIL (Malware Analysis Intermediate Language) 33

instructions. A block is a basic block [1] which is a maximal sequence of instructions

with the following properties: (1) It has only one entry point but can have more

than one exit points. (2) An instruction with a branch to another block in the same

function ends the block. (3) If an instruction is a target of another branch within the

same function then that instruction starts a new block.

If an instruction branches to another block in the function listed above, the target

instruction’s block number is listed at the end enclosed in brackets. For example

the last instruction in block 1 ends with 6, because this instruction is branching to

the address 401158 which is the address of the first instruction of block 6. Based on

the analysis information listed above we build a CFG of this function that is shown

in Figure 3.1 (a). We are going to compare this CFG with the source code of this

function in C++ shown in Figure 3.1 (b).

The source code was not made available to our binary analysis tool, and the CFG

that is built by this tool is only based on the information available in the binary

program.

This function has been instrumented, i.e: additional code has been added to this

function. There are three instructions at the end (tagged INC A, JMP A and CTR A)

in Listing 3.1, and are not included in the binary analysis presented here. The addition

of A is to show that these instructions have been added by a binary instrumentation

tool. Malware writers can use such tools to add malicious instructions. The first

instruction INC A increments a 32 bit counter CTR A at address 4011e0. The second

instruction JMP A jumps over the counter storage space to address 4011e4 which

contains the RET instruction. The third instruction CTR A is not an instruction

but a counter that counts the number of times this function is called. This kind of

instrumentation is carried out during the binary analysis of a program for profiling

and optimizing the program.

The CFG of the function shown in Figure 3.1 (a) starts at block 0 and ends at

block 12. Block 11 jumps back to block 1, which indicates a loop (blocks 1 – 11).

This loop has two inner loops, which consist of blocks 2 – 6 and blocks 8 and 9. The

source code of the function Merge::sort() has one outer loop with two inner loops.

3.2.1 More Examples of Obfuscation

Chapter 1 provides some examples of obfuscations used in malware. This section

provides some more examples of such obfuscations and some exploits that can be

MAIL (Malware Analysis Intermediate Language) 34

Entry

b0

Exit

b1

b2

b6

b3

b4

b5

b7

b8

b9

b10

b11

b12

(a) The CFG

/*
 *
 * Sort an array of integers using the merge
 * sort algorithm. key is an array of integers
 * and size is the size of the array. It calls
 * a helper function merge to merge the array
 * elements.
 *
 */
Merge::sort(int key[], int size)
{
 int j, k;
 int *temp = new int[size];

 for (k = 1; k < size; k *= 2)
 {
 for (j = 0; j < size - k; j += 2 * k)
 {
 int r = j+k+k > size ? size-j-k : k;
 merge(key+j, key+j+k, temp+j, k, r);
 }

 for (j = 0; j < size; j++)
 {
 key[j] = temp[j];

 }

 free(temp);
}

 }

(b) The Source Code

Figure 3.1: The CFG and the Source Code in C++ of the Function in Listing 3.1

used for malicious purposes, using the code in Listing 3.1.

A malware writer can change (in just the machine code) the last instruction of

block 11 in Listing 3.1:

from: 11 4011c0 0f85fdfeffff JNZ 0x4010c3 (1)

to: 11 4011c0 ebfdfeffffff JMP 0x4010c3 (1)

This simple example illustrates both an obfuscation and an exploit in the binary

code, by changing the signature and making the outer loop an infinite loop. When

the function Merge::sort() is called, the program never returns. The malware writer

in this case has added an unconditional back jump, which in general is a legal jump.

MAIL (Malware Analysis Intermediate Language) 35

Similarly other back jumps (last instructions of blocks 6 and 9) can also be changed

by a malware writer to make more infinite loops.

What if this unconditional jump instruction is a legal instruction, i.e: it has not

been added by a malware writer and is part of the program? For example event-based

programs contain one or more infinite loops.

A signature based malware detection tool will not be able to detect such kinds of

malware. Without the behavioral information for a binary program, obtained either

statically or dynamically, manual detection with a debugger is required to detect such

malware. This manual labor is very time consuming and can become very expensive

financially.

Other malicious changes, such as the following control flow change combined with

register renaming, in block 2 in Listing 3.1, cannot be detected by a signature based

malware detector:

from:

2 4010cf 8b45e8 MOV EAX, [RBP-0x18]

2 4010d2 8b55ec MOV EDX, [RBP-0x14]

2 4010d5 8d0402 LEA EAX, [RDX+RAX]

2 4010d8 0345e8 ADD EAX, [RBP-0x18]

2 4010db 3b45bc CMP EAX, [RBP-0x44]

2 4010de 0f8e11000000 JLE 0x4010f5

to:

2 4010cf 8b5de8 MOV EBX, [RBP-0x18] ; EAX --> EBX

2 4010d2 8b55ec MOV EDX, [RBP-0x14]

2 4010d5 8d1c1a LEA EBX, [RDX+RBX] ; EAX --> EBX

2 4010d8 035de8 ADD EBX, [RBP-0x18] ; EAX --> EBX

2 4010db 3b5dbc CMP EBX, [RBP-0x44] ; EAX --> EBX

2 4010de 0f8e10100000 JLE 0x4011e5 ; Jump to some malicious code

Another technique used by malware writers to deceive signature based detectors

is to use instructions other than JMP and CALL to change the control flow of a

program. We show this by replacing the last instruction with two instructions in

block 7 in Listing 3.1 as follows:

from: 7 401179 e923000000 JMP 0x4011a1

to: 7 401179 68e5114000 PUSH QWORD 0x4011e5

7 40117e c3 RET

The change in Listing 3.1 is not complete. For the code to work correctly, the

addresses following these instructions and all the affected jump target addresses need

MAIL (Malware Analysis Intermediate Language) 36

to be updated. A malware writer may or may not update them depending on the

complexity of the malware. A tool could be used by the malware writer that can

automate the updating of these addresses.

Further binary analysis on the above instructions reveals that the last value

pushed on the stack before the RET instruction is 4011e5, so the RET instruction

will load the value 4011e5 into the RIP register, the instruction pointer. The

instruction at address 4011e5 (malicious code) will be the next one executed.

In order to detect such malware automatically and to distinguish between a

malicious and a benign change, we may in general need to build specific control flow

patterns (using the binary analysis presented in Section 3.2) and compare them with

the previous control flow patterns of malware of this kind.

Sometimes the binary provides information about the start and end of all the

functions in a program. If this information is not available, it can be difficult to

determine where functions begin and end. For example, the addition of the two

instructions shown above in Listing 3.1 in block 7 divides the function into two

functions, and makes it difficult to find the original function. For malware detection

we may only need to find where the control is flowing (i.e: just the behavior and not

the function boundaries), and then compare this behavior with the previous samples

of malware available to detect such malware.

We have shown above, using an elaborate example, how trivial changes in a binary

program can make malware analysis and detection intricate, difficult and expensive.

With suitable tools and appropriate binary analysis it is possible to analyse and

detect such malware automatically. This is one of the goals of this thesis. In the next

section we describe the design of the intermediate language MAIL that automates

and optimizes this step.

3.3 Design of MAIL

We believe a good language must start small and simple, and must give opportunities

to the language developers to grow (extend) the language with the users. Therefore

MAIL is designed as a small, simple, and extensible language. In this and next

subsections, we describe how MAIL is designed in detail.

MAIL (Malware Analysis Intermediate Language) 37

The basic purpose of MAIL is to represent structural and behavioral information

of an assembly program for malware analysis and detection. MAIL also makes

the program more readable and understandable by a human malware analyst. An

assembly program may consist of the following type of instructions (we use Intel

x86-64 [27] assembly instructions as sample instructions):

Control instructions: include instructions that can change the control flow of

the program, such as JMP, CALL, RET, CMP, CMPS, CMPPS, PCMPEQW, REP

and LOOP instructions.

Arithmetic instructions: perform arithmetic operations, such as ADD,

SUB, MUL, DIV, FSIN, FCOS, PADDW, PSUBW, ADDPS, ADDPD, PMULLD,

PAVGW, DPPD, SHR and SHL.

Logical instructions: perform logical operations, such as AND, OR, and NOT.

Data transfer instructions: involve data moving instructions, such as MOV,

CMOV, XCHG, PUSH, POP, LODS, STOS, MOVS, MOVAPS, MOVAPD, IN,

OUT, INS, OUTS, LAHF, SAHF, PREFETCH, FLDPI, FLDCW, FXSAVE, LEA,

and LDS.

System instructions: provide support for operating system functions and

include instructions such as LOCK, LGDT, SGDT, LTR, STR and XSAVE, etc.

Miscellaneous instructions: All other instructions that do not fit into any of

the above groups are included in this group of instructions, such as NOP, CPUID,

SCAS, CLC, STC, CLI, HLT, WAIT, MFENCE, PACKSSWB, MAXPS, and UD

(undefined instruction).

Designing a language that is small and simple, and accurately represents all these

instructions for structural and behavioral information is non-trivial. Our goal is to

create as few statements as possible in the intermediate language and map as many

instructions as possible to these statements. For example we do not translate (i.e. we

ignore) the following x86 instructions:

CLFLUSH: Flush caches

MAIL (Malware Analysis Intermediate Language) 38

CLTS: Clear TLB (Translation lookaside buffer)

SMSW: Restore machine status word

VERR: Verify if a segment can be read

WBINVD: Writing back and flushing of external caches

XRSTOR: Restore processor extended states from memory

XSAVE: Save processor extended states from memory

The complete list of x86 instructions that are not translated into the MAIL state-

ments appears in [3]. We also provide examples of translating a x86 and an ARM

assembly program into a MAIL program.

3.3.1 MAIL Statements

The MAIL statements are divided into the following 8 basic statements (the complete

MAIL grammar is listed in Appendix A):

statements ::= (statement*) ;

statement ::= assignment_s+ | control_s+

| condition_s+ | function_s+

| jump_s+ | lib_call_s+

| ’halt’ | ’lock’ ;

Every statement in the MAIL language has a type, which is also called a pattern,

that can be used for pattern matching during malware analysis and detection. These

patterns are introduced and explained in Section 3.3.3. MAIL has its own registers

but also reuses the registers present in the architecture that is being translated to the

MAIL language. There are other special registers such as:

• Flag registers: ZF (zero flag), CF (carry flag), PF (parity flag), SF (sign flag)

and OF (overflow flag). These flag registers are of size one byte and are used

in conditional statements.

e.g. if (ZF == 1) jmp 0x405632;

• eflags: stores the flag registers.

• sp: to keep track of the stack pointer.

• gr and fr: these provide an unbounded number of general purpose registers

for use in integer and floating point instructions, respectively. When they are

MAIL (Malware Analysis Intermediate Language) 39

used, they have a numeric suffix. Examples are gr1, gr2, gr3, fr1, fr2, and fr3

etc.

The majority of the assembly instructions are data movement instructions, as

shown above. We introduce, in the following, two MAIL assignment statements

covering the data transfer, arithmetic, logical and some of the system instructions.

We use EBNF [33] notation to define these statements:

assignment_s ::= register_s

| address_s ;

register_s ::= register ’=’ (math_operator)? expr

| register ’=’ (expr)? math_operator expr

| register ’=’ lib_call_s ;

address_s ::= address ’=’ (math_operator)? expr

| address ’=’ (expr)? math_operator expr

| address ’=’ lib_call_s ;

expr ::= register | address | digit+ ;

register ::= ’eflags’

| ’gr_’ digit+ | ’fr_’ digit+ | ’sp’

| register_name (’:’ register_name)? ;

register_name ::= letter+ [’0’ - ’9’]?

| ’ZF’ | ’CF’ | ’PF’ | ’SF’ | ’OF’ ;

address ::= ’[’ digit+ ’]’ | reg_address

| ’UNKNOWN’ ;

Control instructions are very important because they can change the behavior

of a program, and they can be changed or added by polymorphic and metamorphic

malware to avoid detection. The following MAIL control statement represents the

control instructions:

control_s ::= (’if’ condition_s

(jump_s | assignment_s))

(’else’ (jump_s | assignment_s))? ;

jump_s ::= ’jmp’ address ;

lib_call_s ::= letter+ ’(’ address (, args)* ’)’ ;

function_s ::= ’start_function_’ digit+ statement

’end_function_’ digit+ ;

condition_s ::= (expr rel_operator expr)+ ;

MAIL (Malware Analysis Intermediate Language) 40

3.3.2 MAIL Library

The current MAIL library contains 22 functions. The following are some of the

examples of MAIL library functions:

• compare(opl, opr): compares two values opl and opr and then set the flag

register.

• max(opl, opr) and min(opl, opr): returns the maximum and minimum of the

parameters opl and opr respectively.

• swap(opl, opr): swap the bits in opl and write back in opr.

Details about all these library functions are given in [3]. These library functions

can help in translating most of the complex assembly instructions present in current

processor architectures. The purpose of these functions is not to capture the exact

functionality of the assembly instruction(s) but to help in analysing the structure

and behavior of the assembly program, and in capturing some of the patterns in the

program that can help detect malware.

3.3.3 MAIL Patterns for Annotation

MAIL can also be used to annotate a CFG of a program using different patterns

available in the language. The purpose of these annotations is to assign patterns

to MAIL statements that can be used later for pattern matching during malware

detection. There is a total of 21 patterns in the MAIL language as follows:

ASSIGN: An assignment statement, e.g. EAX=EAX+ECX;

ASSIGN CONSTANT: An assignment statement including a constant, e.g.

EAX=EAX+0x01;

CONTROL: A control statement where the target of the jump is unknown,

e.g. if (ZF == 1) JMP [EAX+ECX+0x10];

CONTROL CONSTANT: A control statement where the target of the jump is

known. e.g. if (ZF == 1) JMP 0x400567;

MAIL (Malware Analysis Intermediate Language) 41

CALL: A call statement where the target of the call is unknown, e.g. CALL

EBX;

CALL CONSTANT: A call statement where the target of the call is known, e.g.

CALL 0x603248;

FLAG: A statement including a flag, e.g. CF = 1;

FLAG STACK: A statement including flag register with stack, e.g. EFLAGS =

[SP=SP–0x1];

HALT: A halt statement, e.g. HALT;

JUMP: A jump statement where the target of the jump is unknown, e.g.

JMP [EAX+ECX+0x10];

JUMP CONSTANT: A jump statement where the target of the jump is

known, e.g. JMP 0x680376

JUMP STACK: A return jump, e.g. JMP [SP=SP–0x8]

LIBCALL: A library call, e.g. compare(EAX, ECX);

LIBCALL CONSTANT: A library call including a constant, e.g. compare(EAX,

0x10);

LOCK: A lock statement, e.g. lock;

STACK: A stack statement, e.g. EAX = [SP=SP–0x1];

STACK CONSTANT: A stack statement including a constant, e.g. [SP=SP+0x1]

= 0x432516;

TEST: A test statement, e.g. EAX and ECX;

MAIL (Malware Analysis Intermediate Language) 42

TEST CONSTANT: A test statement including a constant, e.g. EAX and

0x10;

UNKNOWN: Any unknown assembly instruction that cannot be translated.

NOTDEFINED: The default pattern, e.g. all the new statements when cre-

ated are assigned this default value.

3.4 Conclusion

In this Chapter we have presented the design and development of the new language

MAIL for malware anlaysis. The two main contributions of MAIL are: (1) Platform

independence and automation for malware analysis and detection tools. (2) Opti-

mizing the creation of a behavioral signature of a program. In the following chapters,

we show how MAIL provides automation and optimization for malware analysis and

detection.

MARD (Metamorphic Malware Analysis and Real-Time Detection) 43

Chapter 4

MARD (Metamorphic Malware

Analysis and Real-Time Detection)

In this chapter, we define the model and discuss the design principles underlying our

proposed framework for Metamorphic Malware Analysis and Real-Time Detection

(MARD).

4.1 Model

Before discussing the design principles, we formally define MARD as follows:

MARD = 〈C, B〉,
where

C = set of components Cn;

B = set of bindings Bn;

n = number of components.

We define a component (that can contain other sub-components) of MARD as

follows:

C = 〈S, I, P, SC, SB〉,
where

S = system platform of the component and the sub-components;

SC = set of components SCk;

SB = set of bindings SBk;

k = number of sub-components in the component;

MARD (Metamorphic Malware Analysis and Real-Time Detection) 44

I = set of interfaces or services provided by the component;

P = set of functional properties or characteristics of the component.

The SC and SB can be empty sets.

MARD contains two types of bindings, horizontal and vertical, that connect compo-

nents.

Let us assume the following two components:

Ci = 〈Si, Ii, Pi, SCi, SBi〉 and Cj = 〈Sj, Ij, Pj, SCj, SBj〉

We define horizontal binding H and vertical binding V between Ci and Cj as follows:

H = Ii, Ij, Pi, Pj, SCi, SCj, SBi, SBj |= CM

V = Si, Sj, Ii, Ij, Pi, Pj, SCi, SCj, SBi, SBj |= CM

where

CM = component model and |= means complies (staisfy the rules)

These bindings determine whether a set of mutually connected components can

be treated as a component itself. That is, whether an assembly composed of a set

of components fully complies with the rules imposed by the component model. The

two major components of MARD, the Front End and the Back End are connected

through horizontal binding, and all the other components are connected trough ver-

tical bindings, as shown in Figure 4.1.

4.2 Design

Figure 4.1 gives an overview of MARD. First a training dataset is built, also called

Malware Templates in Figure 4.1, using the malware training samples. After a pro-

gram (sample) is translated to MAIL and to a behavioral signature (generated using

one of the two proposed techniques described in Chapters 5 and 6) the Similarity De-

tector (Figure 4.1) detects the presence of malware in the program, using the Malware

Templates. All the steps as shown in Figure 4.1 are completley automated. There is

no manual intervention during the entire run. The tool automatically generates the

report after all the samples are processed.

In the current version of MARD, the component Unpacker is not implemented,

and we assume that all the samples are unpacked before they are disassembled. We

have taken this assumption in accord with the view that if a program cannot be

MARD (Metamorphic Malware Analysis and Real-Time Detection) 45

unpacked by currently available unpackers then the program must be malware, and

also any good available unpacker can be interfaced with MARD.

Front End Back End
MAIL

Data Set

Malware
Templates

Template

Report

Unpacker

Disassembler

Unpacked binary

Binary program

Optimizer

MAIL
Generator

Optimized code

Assembly instructions

MAIL

MAIL

Report
Generator

Results

Mined data

Report

Signature
Generator

Signature

Data Miner

Similarity
Detector

Template

MAIL = Malware Analysis Intermediate Language
In this version of the Malware Detector there are two types of signature generated:
 ACFG (Annotated Control Flow Graph) and
 SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight)
The component “Unpacker” is not implemented in this version of the Malware Detector

Figure 4.1: High Level Overview of MARD

4.3 Characteristics

Some of the major characteristics and advantages of MARD design described above

are as follows:

MARD (Metamorphic Malware Analysis and Real-Time Detection) 46

Platform independence: To help make modern compilers [1, 67] platform-

independent, they are divided into two major components: a front end and a back

end. The design of the MARD framework follows the same principle. In compilers,

the same C++ front end can be used with different back ends to generate code for

different platforms such as x86, ARM and PowerPC etc. In the case of MARD the

same back end can be used with different front ends to detect malware for different

platforms (Windows and Linux etc). For example, we can implement a front end

for the PE (Windows executable) files and another front end for the ELF (Linux

executable) files. Both these front ends generate their output in our intermediate

language (i.e. MAIL) that is used by the back end. Programs compiled for different

architectures such as Intel x86 and ARM (the two most popular architectures) can

be translated to MAIL. So we only need to implement one back end that is able to

perform analysis and detect malware using MAIL. The use of MAIL in our design

keeps the front end completely separate from the back end and therefore provides an

opportunity for platform independence.

Optimization: The main purpose of the optimizations in the front end is to

reduce the number and complexity of assembly instructions for malware analysis

performed by the back end. We achieve this by: (1) Removing the unnecessary

instructions that are not required for malware analysis such as NOP instructions

etc. (2) Generating an optimized intermediate representation using MAIL, which

provides a high level representation of the disassembled binary program. MAIL

includes specific information such as control flow information, function/API calls and

patterns etc, for easier and optimized analysis and detection of malware. We also

use parallelization and graph reduction techniques to optimize the runtime of MARD.

Automation: The use of the MAIL language, that is generated by the front end,

with data mining and similarity detecting in the back end, automates the complete

process of malware analysis and detection. The back end generates a behavioral sig-

nature from the input. The system keeps a database of known malware as signatures.

The signatures from this database are used by the similarity detector to detect known

and unknown malware.

MARD (Metamorphic Malware Analysis and Real-Time Detection) 47

4.4 Components of MARD

The design of MARD is based on the principle of modularity [72] and is a

component-based framework. First we divide the design into two completely

separate components communicating using MAIL as discussed above. Then

each of these components is further divided into separate sub-components with

well defined interfaces. This section describes these components. The Unpacker

component is not implemented in this version of MARD, so we do not describe it here.

TheDisassembler first checks the format (PE or ELF) of the binary program and

then disassembles the program according to that format. If the program is neither

PE or ELF it still disassembles the program, but as a raw binary. There are two

standard techniques for disassembling a binary program.

1. The Linear Sweep technique starts from the first byte of the code and disas-

sembles one instruction at a time until the end. This technique assumes that

the instructions are stored in adjacent memory location and hence does not dis-

tinguish between embedded data and actual instructions. When data is mixed

with the code either by the compiler or by malware writers, this technique may

produce wrong results. The advantage of this technique is that it provides

complete coverage of the code.

2. The Recursive Traversal technique relies on the control flow of the program and

decodes the bytes by following the control flow of the program. This technique

only disassembles an instruction if it is referenced by another instruction. The

advantage of this technique is that it distinguishes code from data. But in case

of a branch whose destination address cannot be known statically, this technique

may fail to find and disassemble valid instructions.

Both techniques have some deficiencies. To overcome these deficiencies a good

disassembler would combine both techniques. One such open source disassembler, for

non-commercial use, is distorm [30]. MARD uses distorm to disassemble a binary

program.

TheOptimizer performs normalization of the assembly code. The normalizations

performed are the removal of NOP, junk and some of the prefixes such as REP in x86

assembly code etc. The Optimizer also prepares the assembly code to be translated

MARD (Metamorphic Malware Analysis and Real-Time Detection) 48

to MAIL by removing other instructions that are not required for malware analysis

as explained in Chapter 3.

The MAIL Generator translates an assembly program to a MAIL program.

We explain the approach in [3] with examples of translating a x86 and an ARM

assembly program into a MAIL program. Some of the major tasks performed by

this component are: (1) Translating each assembly instruction to the corresponding

MAIL statement(s). Some of the assembly instructions, such as PUSHA (x86) and

STMDB (ARM), are translated to more than one MAIL statement. (2) Assigning a

pattern to each MAIL statement.

The Data Miner searches for the control and structural information in a MAIL

program to help build a behavioral signature of the program. Details of this compo-

nent are given in Chapters 5 and 6.

The Signature Generator generates a signature for a MAIL program. Currently

it can generate two types of signature: ACFG (Annotated Control Flow Graph) and

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight). More

details of this component and the signatures are given in Chapters 5 and 6.

The Similarity Detector decides whether a program is benign or malware. The

basic task of this component is to match the signature of the program against the

signatures of the training samples based on thresholds that are computed empirically.

We also parallelize this component to considerably reduce the runtime of MARD.

Signature matching is explained in more detail in Chapters 5 and 6.

The Report Generator generates a report containing the results in a readable

format. One of the reports generated by this component is listed in Appendix B.

4.5 Conclusion

In this Chapter we have presented a formal definition and described the design of

the new proposed framework MARD. MARD uses MAIL and enables detection au-

tomation, platform independence, and optimizations for real-time performance. The

current implementation of MARD provides two sub-components as part of the Sig-

nature Generator component. These two sub-components implement the two new

techniques proposed in this thesis in Chapters 5 and 6 for building a behavioral sig-

nature for metamorphic malware. Antimalware developers can provide, write, and

test their own components to generate a new malware signature based on MAIL for

malware detection.

ACFG (Annotated Control Flow Graph) 49

Chapter 5

ACFG (Annotated Control Flow

Graph)

One of the goals of this thesis is to extract behavioral and structural information from

a program to detect the presence of malware in the program. Control Flow Analysis

(CFA) [1, 67] is one of the techniques used in compilers for optimizing a program.

CFA captures control flow semantics of a program that can be used for malware

analysis and detection. CFA is expressed as a Control Flow Graph (CFG), as defined

below. Current techniques [4, 12, 16, 36, 37, 40, 46, 54, 71, 86] that use CFG for

malware detection are either computationally intensive or have poor detection rates,

cannot handle smaller size malware, and are not suitable for real-time detection.

We propose, in this chapter, a new technique named Annotated Control Flow

Graph (ACFG), that provides a faster matching of ACFGs compared to other such

techniques without compromising accuracy, can handle malware with smaller CFGs

compared to other such techniques, and contains more information and hence provides

better accuracy than a CFG.

5.1 Definitions

Before describing the technique proposed, we first define an ACFG as follows:

DEFINITION 1: A Basic block is a maximal sequence of instructions with a

single entry and a single exit point. There is no instruction after the first instruction

that is the target instruction of a jump instruction, and only the last instruction

ACFG (Annotated Control Flow Graph) 50

can jump to a different block. Instructions that can start a basic block include

the following. The first instruction, target of a branch or a function call, and a

fall through instruction, i.e, an instruction following a branch, a function call or a

return instruction. Instructions that can end a basic block include the following. A

conditional or unconditional branch, a function call and a return instruction.

DEFINITION 2: Control flow edge is an edge that represents a control flow

between basic blocks. A control flow edge from block a to block b is denoted e = (a, b).

DEFINITION 3: A CFG is a directed graph G = (V, E), where V is the set of

basic blocks and E is the set of control flow edges. The CFG of a program represents

all the paths that can be taken during the program execution.

DEFINITION 4: An Annotated Control Flow Graph (ACFG) is a CFG

such that each statement of the CFG is assigned a MAIL Pattern.

5.2 ACFG For Metamorphic Malware Detection

In our proposed approch for metamorphic malware detection using ACFG, a binary

program is first disassembled and translated to a MAIL program. The MAIL program

is then annotated with patterns as described above. We then build a CFG of the

annotated MAIL program yielding the corresponding ACFG. The constructed ACFG

becomes part of the signature of the program and is matched against a database

of known malware samples to see if the program contains a malware or not. This

approach is very useful in detecting known malware but may not be able to detect

unknown malware.

For detecting unknown malware, after a program sample is translated to MAIL, an

ACFG for each function in the program is built. Instead of using one large ACFG as

signature, we divide a program into smaller ACFGs, with one ACFG per function. A

program signature is then represented by the set of corresponding (smaller) ACFGs.

A program that contains part of the control flow of a training malware sample, is

classified as a malware, i.e. if a percentage (compared to some predefined threshold)

of the number of ACFGs involved in a malware signature match with the signature

of a program then the program is classified as a malware.

ACFG (Annotated Control Flow Graph) 51

5.2.1 Subgraph Matching

Before explaining the subgraph matching technique used in this paper for malware

detection, we first define graph isomorphism [45] as follows:

Let G = (VG, EG) and H = (VH , EH) be any two graphs, where VG, VH and

EG, EH are the sets of vertices and edges of the graphs, respectively.

DEFINITION 5: A vertex bijection (one-to-one mapping) denoted as

fV = VG → VH and an edge bijection denoted as fE = EG → EH are con-

sistent if, for every edge e ∈ EG, fV maps the endpoints of e to the endpoints of

edge fE(e).

DEFINITION 6: G and H are isomorphic graphs if there exists a vertex

bijection fV and an edge bijection fE that are consistent. This relationship is

denoted as G ∼= H.

In our malware detection approach, graph matching is defined in terms of sub-

graph isomorphism. Given two graphs, subgraph isomorphism determines if one

of the graphs contains a subgraph that is isomorphic to the other graph. Generally,

subgraph isomorphism is an NP-Complete problem [24]. The ACFG of a program is

usually a sparse graph, therefore it is possible to compute the isomorphism of two

ACFGs in a reasonable amount of time. An example of subgraph matching is shown

in Figure 5.1.

Based on the definition of graph isomorphism presented above we formulate our

ACFG matching approach as follows:

Let P = (VP , EP) denote an ACFG of the program and M = (VM , EM) denote an

ACFG of the malware, where VP , VM and EP , EM are the sets of vertices and edges

of the graphs, respectively. Let Psg = (Vsg, Esg) where Vsg ⊆ VP and Esg ⊆ EP (i.e.

Psg is a subgraph of P). If Psg
∼= M then P andM are considered as matching graphs.

After the binary analysis performed, we obtain a set of ACFGs (each corresponding

to a separate function) of a program. To detect if a program contains malware we

compare the ACFGs of the program with the ACFGs of known malware samples from

ACFG (Annotated Control Flow Graph) 52

entry

a

exit

b

c

d

e

(a) A malware
sample

entry

a

exit

b

d

c

e

hf g

ji

k m

(b) The malware embedded in-
side a benign program

Figure 5.1: An example of subgraph matching. The graph in Figure (a) is matched
as a subgraph of the graph in Figure (b).

our training database. If a percentage of the ACFGs of the program, greater than a

predefined threshold, matches one or more of the ACFGs of a malware sample (from

the database) then the program will be classified as a malware.

5.2.2 Pattern Matching

Very small graphs when matched against a large graph can produce a false positive.

Therefore, to alleviate the impact of small graphs on detection accuracy, we integrate a

Pattern Matching sub-component within the Subgraph Matching component. Every

statement in MAIL is assigned a pattern as explained in Chapter 3. If an ACFG

ACFG (Annotated Control Flow Graph) 53

of a malware sample matches with an ACFG of a program (i.e. the two ACFGs

are isomorphic), then we further use the patterns, assigned to MAIL statements, to

match each statement in the matching nodes of the two ACFGs. A successful match

requires all the statements in the matching nodes to have the same (exact) patterns,

although there could be differences in the corresponding statement blocks.

An example of Pattern Matching of two isomorphic ACFGs is shown in Figure

5.2. One of the ACFGs of a malware sample, shown in Figure 5.2 (a), is isomorphic

to a subgraph of one of the ACFGs of a benign program, shown in Figure 5.2 (b).

The benign program is not detected as a malware, because not all the statements

have the same pattern.

908 RSP = 0x8 - RSP; (ASSIGN)
90c [sp=sp+1] = 0x911; call (0xaec); (CALL_C)

911 [sp=sp+1] = 0x916; call (0xb80); (CALL_C)

916 call (0x180); (CALL_C)

91b RSP = RSP + 0x8; (ASSIGN)
91f jmp [sp=sp-0x1]; (JUMP_S)

Block 0

Block 1

Block 2

Block 3

129 RAX = RAX + 0xf; (ASSIGN)
12d [sp=sp+1] = 0x132; call (0x4b8); (CALL_C)

132 jmp 0xed6; (JMP_C)

138 jmp (0x068); (JMP_C)

13e EDI = EDI; (ASSIGN)
140 [sp=sp+0x1] = EBP; (STACK)
141 EBP = ESP; (ASSIGN)
143 EAX = [EBP+0x8]; (ASSIGN)
146 EAX = [EAX]; (ASSIGN)
148 compare([EAX], 0xe06d7363); (LIBCALL)
14e if (ZF == 0) jmp 0x17a; (CONTROL_C)

Block 0

Block 1

Block 2

Block 3

=

=

=

=

 (a) One of the ACFGs of a malware sample (b) One of the ACFGs of a benign program

Block 4

Figure 5.2: Example of pattern matching of two isomorphic ACFGs. The ACFG in
(a) is isomorphic to the subgraph (blocks 0 - 3) of the ACFG in (b).

5.3 Runtime Optimization with Parallelization

There are two components in the MARD framework that consume most of its runtime,

one is the Translator (part of the MAIL Generator in Figure 4.1) and the other is the

ACFG (Annotated Control Flow Graph) 54

Subgraph Matching (part of the Similarity Detector in Figure 4.1). The Translator

reads each assembly instruction one by one and translates it to the MAIL language.

The translation time increases with the size of the binary. There is little we can do

to optimize this translation time. The Subgraph Matching component matches the

graph (ACFG) against all the malware sample graphs. As the number of nodes in the

graph increases the Subgraph Matching runtime increases. The runtime also increases

with the increase in the number of malware samples.

There are two opportunities to parallelize the Subgraph Matching component.

1. Each ACFG matching in a sample is independent of the other matchings, these

matchings can be performed in parallel.

2. Each sample can be processed independently of the other samples, the process-

ing of the samples can be performed in parallel.

Multicore processors are becoming increasingly common. All the current desktops,

laptops and even the energy efficient small mobile devices contain a multicore proces-

sor. Intel has recently announced its Single-Chip Cloud Computer [64], a processor

with 48 cores on a chip.

Keeping in view the ubiquitousness of multicore CPUs in the host machines (also

called the end points) and the two opportunities discussed above, to optimize the

runtime, we decided to use Windows threads to parallelize the Subgraph Matching

component.

We carried out an experiment using different numbers of threads ranging from

2 to 250. The number of malware samples used was 250 and the number of benign

applications used was 30, each one with a different size for its ACFG. The main reason

for this experiment was to develop an equation to estimate the number of threads

to be used in the Subgraph Matching component, based on empirical results. The

experiment was run on machines with 2 and 4 cores. Details of the machines used

and the results of this experiment are shown in Table 5.1. The percentage of CPU

utilization on average was 3 times more with threads than without threads. This is

also confirmed by the improvement in the runtime.

As we increased the number of threads, reductions in the runtime were observed

up to a certain number of threads (8 in 2 Cores and 64 in 4 Cores), after which the

reductions became less evident. As we increased the number of benign samples from

30 to 1387 (the last row in Table 5.1), the runtime only reduced by a factor of almost

ACFG (Annotated Control Flow Graph) 55

Table 5.1: Runtime improvement after parallelizing the Subgraph Matching compo-
nent (using different number of threads)

2 Cores 4 Cores

Number of Runtime Number of Runtime
Threads Reduced By Threads Reduced By

2 3.20 times 4 3.98 times

4 5.92 times 8 4.11 times

8 7.20 times 32 5.95 times

16 5.72 times 64 7.76 times

32 5.64 times 128 7.53 times

250 5.41 times 250 6.37 times

8 14.87 times 64 14.53 times

Machines used:
Intel Core i5 CPU M 430 (2 Cores) @ 2.27 GHz with 4GB of RAM and Windows 8 Professional
installed
Intel Core 2 Quad CPU Q6700 (4 Cores) @ 2.67 GHz with 4GB of RAM and Windows 7 Profes-
sional installed
The machines used for this experiment have 2/4 Cores. Intel Cores use hyperthreading, so each
core can run 2 threads at the same time. The maximum number of physical threads these
machines can run is 4/8 respectively.

2. Beside other factors such as the number of CPUs/Cores and the memory available

to the application, the main reasons for the smaller performance gains are more time

being spent on thread management and increased communication between threads.

Based on this experiment we developed Equation 5.1 to estimate the maximum

number of threads to be used by the Subgraph Matching component. We also give an

option to the user to choose that maximum number of threads used by the tool for

the Subgraph Matching component.

Threads = (NC)3 (5.1)

where NC = Number of CPUs/Cores

ACFG (Annotated Control Flow Graph) 56

5.4 Runtime Optimization with ACFG Reduction

One of the advantages of using MAIL is that it provides patterns for malware de-

tection. Our detection method use both subgraph matching and pattern matching

techniques for metamorphic malware detection. Even if we reduce the number of

blocks in an ACFG (it is possible for an ACFG of some binaries to reduce to very

few number of blocks) we still get a good detection rate because of the combination

of the two techniques, subgraph and pattern matching.

To reduce the number of blocks (nodes) in an ACFG for runtime optimization

(reduce the time for subgraph matching) we carried out ACFG reduction, also called

ACFG shrinking. We reduce the number of blocks in an ACFG by merging them

together. Two blocks are combined only if their merger does not change the control

flow of the program.

Given two blocks A and B in an ACFG, if all the paths that reach node B pass

through block A, and all the children of A are reachable through B, then A and B

are merged. An example of ACFG shrinking is shown in Figure 5.3.

entry

a

exit

b

c

e

d

f

(a) ACFG X

entry

a

exit

b

c d

e

f

(b) ACFG Y

entry

ab

exit

c d

ef

(c) ACFG Z

Figure 5.3: Example of ACFG shrinking. ACFG X is not shrinkable. ACFG Y with
6 blocks is shrinked to ACFG Z with 4 blocks.

ACFG (Annotated Control Flow Graph) 57

Figures 5.4, 5.5 and 5.6 show examples of ACFGs, from the dataset used in this

paper, before and after shrinking. Figures 5.4 and 5.5 are ACFGs of functions of

two different malware samples and Figure 5.6 is an ACFG of a function of a benign

sample. The shrinking does not change the shape of a graph, as we can see in the

Figures, the shapes of the graphs before and after shrinking are the same. More of

these examples are available at [2].

Entry

b0

Exit

b1

b2

b3

b4

b5

b6

b7

b8
b73

b9

b74

b10

b71

b11
b69

b72

b12

b67

b70

b13

b65

b68

b14

b63

b66

b15

b61

b64

b16

b59

b62

b17

b57

b60

b18

b55

b58

b19

b53

b56

b20

b51

b54

b21

b49

b52

b22

b47

b50

b23

b48

b24

b78

b25

b45

b79

b84

b26

b75
b46

b27

b43

b76
b28

b41

b44

b29b38

b42

b30

b83

b39

b31

b34

b32

b82

b40

b33

b35

b36

b37

b77

b80

b85

b81

b86

b87

b88

b89

b90

b91

(a) ACFG X

Entry

b0

Exit

b1

b40

b2

b39

b41

b3

b38

b4

b37

b5

b36

b6 b35

b7
b34

b8
b33

b9

b32

b10

b31

b11

b30

b12

b29

b13

b28

b14b27

b15

b42

b16

b26

b43

b46

b17

b18

b25

b19

b24

b21

b45

b22

b44

b23

b20

(b) ACFG Y

Figure 5.4: Example of an ACFG, of one of the functions of one of the samples of the
MWOR class of malware, before and after shrinking. The ACFG has been reduced
from 92 nodes to 47 nodes.

We were able to substantially reduce the number of nodes per ACFG (in total

a 90.6% reduction), as shown in Table 7.2. This reduced the runtime of MARD on

average by a factor of 5 (for smaller datasets) and a factor of 100 (for larger dataset),

while still achieving the same detection and false positive rates.

ACFG (Annotated Control Flow Graph) 58

Entry

b0

Exit

b1

b3

b2

b4

b169

b170

b5

b167 b6

b168

b7

b8

b9

b10

b11

b12

b13
b14

b15

b16

b17

b18
b19

b29

b20

b30

b21

b176

b22

b23

b177

b24
b257

b25

b26

b258

b27

b28

b31

b32

b33

b34

b35

b36

b37
b38b39b40

b41

b42b43b44b45

b46

b47b48b49

b50

b51

b226

b52

b227

b53

b54

b55

b56

b57

b58

b59

b60

b61

b62

b63

b64

b65

b66

b67

b68

b69

b70

b71

b72

b73

b74

b75

b76

b77

b78

b254

b79

b255

b80 b81 b82 b83

b84
b85

b86

b87

b88

b89

b90

b91

b92 b93

b94

b95

b98

b96

b99

b97

b100

b101

b102

b232

b103

b261

b111

b233

b104

b346

b262

b384

b105
b362

b347

b106

b361

b363

b107
b108

b109

b110

b112

b173

b113

b174

b114

b277

b115

b116

b278

b117

b272

b118

b273

b324

b119
b180

b120

b193b181

b121

b194

b122

b325

b123

b358

b124

b125

b359

b126

b199

b127

b200

b128b129
b131

b360

b130

b132

b331

b332

b133

b135

b134

b365

b136

b366

b456

b137

b394

b138

b395

b139

b386

b140

b387

b392

b141

b143

b142

b144

b145

b146

b147

b475

b148

b474

b476

b149

b150

b151

b152

b153

b154
b155

b156

b157

b241

b158

b242

b267

b159

b160

b234

b161

b162

b235

b336

b163

b164

b165

b166

b171

b172

b175
b327

b328

b178

b179

b182

b183

b184
b373

b185

b186

b374

b187

b304

b188

b305

b364

b189

b191

b190

b192

b195 b196
b197

b371
b198

b372

b201

b202

b345

b203

b204

b205

b344

b206

b212

b207

b213

b208

b209b210

b370

b211

b214

b215

b290

b279

b285

b216

b299

b291

b217

b294

b300

b433

b218

b266

b295

b385

b219

b220

b221

b222

b223

b224

b225

b348

b228

b229

b230

b231

b236

b337

b237

b238

b239
b240

b243

b268

b244

b245

b246

b468

b247

b251

b469

b248

b343

b252

b249

b250

b349

b427

b253

b256

b259

b260

b263

b473

b264

b265

b269

b270

b271

b274

b275

b434

b276

b435

b280

b282

b286

b281

b283

b284

b287

b375

b288

b289

b292

b293

b296

b297

b298

b301

b302

b303

b306

b307

b308

b329

b309

b310

b330

b311

b315

b312

b316

b313

b314

b317

b318

b319

b426

b320

b321

b408

b322

b397

b409

b413

b323

b398

b326

b333

b334

b335

b436

b448

b338

b470

b339

b471

b340b341

b342

b350

b428

b351

b356

b352

b357

b353

b354

b355

b472

b367

b368

b457

b369

b376

b378

b377

b379

b381

b382

b380

b383

b388

b393

b389

b390

b391

b396

b399
b400

b449

b401

b450

b452

b402

b404 b403

b405

b407

b406

b410

b414

b415

b411

b412

b417

b416

b418

b419

b420

b440

b421

b422

b441

b423

b424

b425b429

b430

b465

b431

b466

b432

b458

b461

b437

b438

b439

b442

b444

b443

b445

b447

b446

b451

b453

b455

b454

b459

b462 b460

b467

b463

b464

b477

b478

b479

b483

b480

b481

b482

(a) ACFG X

Entry

b0

Exit

b28

b26

b27

b1

b23

b29

b4

b30

b2

b43

b5

b31

b54

b3

b55

b6

b44

b53
b7

b8

b9

b13

b45

b10

b88

b107

b140
b56

b11

b96

b89

b12

b95

b97

b61

b14

b78

b62

b15

b60

b16

b76

b123

b17

b33

b104

b32

b93

b18

b102

b34

b77

b94

b19

b80

b21
b20

b99

b87

b35

b81

b124

b22

b110

b129

b100

b109

b111
b138

b142

b141

b48

b24

b143

b144

b58

b103

b49

b25

b46

b82

b47

b79

b105

b69

b98

b70

b86

b36

b101

b37

b64

b41
b63

b38

b67

b65

b39

b122

b68

b57

b40

b108

b66

b42

b90

b83
b137

b59

b136

b52
b50

b85

b51

b120

b91

b106

b71

b72

b73

b119

b74

b112

b75

b113 b114

b128

b127

b125

b84

b134b121

b92

b139

b130

b115

b116

b126

b117
b118

b135

b131

b133

b132

(b) ACFG Y

Figure 5.5: Example of an ACFG, of one of the functions of one of the samples of the
MWOR class of malware, before and after shrinking. The ACFG has been reduced
from 484 nodes to 145 nodes.

5.5 Summary

In this chapter we have presented a new scheme named Annotated Control Flow

Graph (ACFG) to efficiently detect metamorphic malware. An ACFG is built by

annotating the CFG of a binary program. It is used for graph and pattern matching

to analyse and detect metamorphic malware. We also improve the runtime of malware

detection through parallelization and ACFG reduction, while maintaining the same

accuracy (as without ACFG reduction) for malware detection. The ACFG proposed

in this chapter: (1) Captures the control flow semantics of a program. (2) Provides

a faster matching of ACFGs and can handle malware with smaller CFGs, compared

to other such techniques, without compromising the accuracy. (3) Contains more

information and hence provides more accuracy than a CFG.

ACFG (Annotated Control Flow Graph) 59

Entry

b0

Exit

b1

b82

b2

b377

b83

b127

b3

b162

b378

b1325

b4

b240

b163

b334

b5

b592

b241

b6

b505

b593

b603

b7

b375

b506
b507

b8

b12

b376

b9

b11

b13
b15

b10

b876
b875

b877

b14

b1356

b16

b1346

b1357

b1347

b17

b18

b402

b19

b87

b403

b406

b20

b310

b88

b501

b21

b207

b311
b314

b22

b552

b208

b282

b23

b1117

b553

b24

b397

b1118

b1121

b25

b398

b26 b29

b27b28

b30

b916
b31

b917

b32

b33

b34

b35

b36

b37

b1102

b38

b1103

b39
b46

b40
b47

b48

b41

b42
b43

b44

b45

b49

b50

b51

b52

b53

b900

b54

b901

b55

b58

b56

b60

b59
b57

b61

b67
b62
b64

b68

b63

b65

b493

b494

b66

b69

b160

b70

b1257

b161

b71

b73

b1258

b72 b74
b75 b156

b76

b79

b157
b1321

b77

b80

b78

b81

b84

b128

b408

b85

b86

b1364

b1104

b1365

b1369

b89

b249
b502

b90
b495

b226

b250

b91

b985

b496

b92

b986

b93

b94

b227
b95

b96

b1249

b97

b1115

b1250

b98

b1116

b99

b100

b101

b102

b221

b103

b222

b292

b104

b947

b105

b423

b948

b968

b106

b419

b424

b107

b420

b1106

b108

b109
b110

b115

b111
b442

b116

b112

b443

b113

b114

b117

b118

b119

b539

b120

b235

b540

b121

b236

b306

b122

b632

b123

b532

b633

b738

b124

b551

b533

b125

b449

b126

b129

b368

b135

b409

b130

b366

b369

b531

b131

b1178

b367

b132

b361

b1179

b1220

b133

b359

b362

b1100

b134

b360

b136
b138

b137
b139

b1246

b140

b1247

b141
b143 b142

b144

b145
b146

b147

b148

b1134

b149

b150

b1135

b151

b152

b1112

b153

b1113

b154

b155

b158

b159

b1322

b164

b561

b335

b1137

b165

b562

b585

b166

b338

b167

b339 b342

b168

b169

b172

b170 b171

b173 b174

b175

b176

b177

b178

b179b624

b180b625
b181b626

b182

b627

b183

b184

b185

b186

b187b188

b189

b190

b191

b920

b410

b192

b391

b212

b921

b193

b392

b194

b195

b196

b317

b197

b902

b318

b198

b204

b903

b906

b199

b200

b205

b1082

b201

b202 b619

b203

b620

b621b206

b1083

b1084

b209

b1069

b283

b210

b1070

b1073

b211

b213

b214

b215

b216

b217

b218

b219

b220

b976

b977

b223

b1088

b293

b224

b302

b1089

b1098

b225

b303

b228

b229

b230

b231

b232

b233

b234

b978

b979

b237

b1023

b307

b238

b261

b1024

b1036

b239

b262

b242

b243

b244

b245

b246

b247

b248

b1016
b1017

b251

b394

b252

b275

b395

b980

b253

b264

b276

b254

b265

b255

b256

b257

b258

b259

b260

b1087

b263

b266

b267

b268

b269

b270

b271

b272

b273

b274

b982

b983

b277

b278

b279

b280

b281

b1081

b284

b287

b285

b288

b286

b289

b290

b291

b294

b295

b296

b297

b298

b299

b300

b301

b1086

b304

b305

b308

b309

b312

b315

b313b316

b319

b320

b321

b322

b323

b324

b325

b326

b327

b328

b329

b330

b331

b332

b333

b1066

b1067

b336

b1138

b337

b340 b343 b341

b344 b347

b345b348b346

b349

b350

b353

b351

b1018

b352

b354

b1019

b1021

b355

b356

b358

b357

b363

b1101

b364 b365b1248

b370

b1150

b371

b528

b1151

b1157

b372

b526

b529

b918

b373

b527

b374

b1177
b379

b1256

b1326

b380

b1255b381

b382

b384

b383

b385

b386

b387

b388

b389

b390

b393b1132

b1133

b396

b981

b399

b400

b401

b404

b1261

b407
b1105

b405

b1108

b1262

b1109

b411

b412

b413

b1141

b414

b1142

b415

b416

b417

b418

b421

b1107

b422

b425b426

b427

b428
b429

b430

b431

b432

b433

b438

b1259

b434

b439

b440

b435

b436

b437

b441

b444

b445

b446

b984

b447

b448
b450b453

b451

b457

b454b452

b458

b914

b455

b456

b459

b915

b460

b461

b462

b463

b490

b464

b491

b465

b466

b467

b470

b468

b471

b469

b492

b472

b473

b474

b475
b476

b477b478

b479

b480

b481

b486

b482

b487
b483
b484

b488

b485

b489

b497 b498

b499

b500

b503

b504

b508

b1172

b509

b515

b1173

b510

b516

b511

b512
b513

b514

b517
b521

b518

b522
b523

b519

b520

b524

b525

b530

b919

b534

b535

b536

b537 b538

b541

b542

b543b544

b545

b546

b547

b548b549

b550

b554

b555

b556

b557

b558

b559

b560

b1139

b1140

b563

b580

b586

b564

b581
b582

b565

b566
b579

b567

b568

b578

b569

b570

b571

b576

b572

b577
b573

b574
b575

b583

b584

b587

b588

b590

b589

b591

b594

b604
b606

b595

b596
b601

b597
b602

b598

b599

b600

b605

b607

b1068

b608

b1253
b609

b1254

b610

b611

b612

b614

b613

b617

b615

b618

b616

b622

b623

b628

b629

b630

b631

b634

b666

b739
b742

b635

b667
b668

b636
b664

b637

b665

b638

b662

b639

b663

b640
b641

b642
b643

b644

b1244

b645

b1359

b1245

b646

b648

b651

b1360

b647

b650

b649

b652

b653
b654 b655

b1230

b656

b1231 b657 b658 b659 b660 b661

b669
b670

b671
b672

b673
b674

b675

b1242

b676

b1362

b1243

b677

b681

b1363b678
b679

b680
b682

b1290

b683

b1291

b1330

b684 b685

b686

b687

b764

b688
b689

b765

b766

b691
b690

b714

b692

b729

b715

b869

b693

b722

b730

b694

b696

b723
b755

b695

b712

b697 b698

b713

b699

b721

b700
b701

b749

b702

b750

b703

b704

b746

b705

b707b747
b706

b708

b709

b710
b711

b716

b719

b870

b717
b720

b1288

b718

b1289

b724

b756

b1314

b725
b726

b727

b728

b731
b732

b733

b734

b1333

b735

b1334

b736

b737
b740

b743

b741

b744

b745

b1232

b1233

b748

b751

b754b752
b753

b757b1315

b758
b759

b760

b761
b762

b763

b767

b768

b769

b770

b771

b780

b772

b781

b773

b832

b774 b830

b777

b833
b775

b838

b831

b776

b839

b778

b779

b782

b1286

b783
b1284

b1287

b784

b1285

b785

b1235

b786

b1236

b787

b842

b788

b843

b1281

b789
b790

b791
b792

b840

b793 b794 b795 b796

b835

b797

b836

b798

b799

b837

b800

b802

b801

b803

b806

b804 b807

b810

b805

b808

b811

b809

b812

b813

b857

b814

b853

b858

b815b855b854
b816

b817
b856

b818
b821

b819

b822

b860

b820

b823

b866

b861

b824

b828

b867

b825
b829

b826
b827

b834

b841

b844

b1282

b845

b1279

b846

b1228

b1280

b847 b1229

b848

b1240

b849

b1241

b850
b851

b852

b859

b862
b863 b864

b865

b868

b871

b1338

b872

b1339

b873

b874

b878
b879

b880

b886
b881

b883

b887

b889

b882

b884

b885

b888
b890

b892
b891

b893

b1143

b894

b1144

b895

b899
b896

b897
b898

b904

b913

b907

b905

b908

b909

b910

b911

b912

b922

b923

b924

b925

b926

b927

b928

b929

b930

b931

b932

b933

b939

b934

b940

b941

b935

b936

b937

b938

b946

b942

b943

b944

b945

b949

b963

b969

b950

b964

b951
b952

b953

b954

b955

b1145

b956

b957

b1146

b958

b959 b960

b972
b961

b973 b962

b965

b966
b967

b974
b975

b970

b971

b987

b988

b989
b990

b1000

b991

b1328

b1001

b992

b1329

b993

b994
b995

b996

b997
b998

b999

b1002

b1003

b1251

b1004

b1252

b1005

b1006

b1013

b1007
b1008

b1014

b1009

b1010

b1011

b1012

b1015

b1020

b1022

b1025

b1029

b1037

b1026

b1027

b1030

b1028

b1031
b1033

b1032

b1034

b1035

b1038

b1040
b1039

b1041

b1042

b1343

b1043

b1044

b1048

b1344 b1045

b1046

b1049

b1047

b1050

b1056
b1051

b1055

b1057

b1062

b1052
b1054
b1053
b1058
b1061

b1063

b1059b1060

b1064

b1065

b1071

b1074

b1072

b1075
b1077

b1076
b1078

b1079

b1080

b1085

b1345

b1090

b1099

b1091

b1092

b1093

b1094

b1095

b1096

b1097

b1110
b1111

b1114

b1119

b1122

b1120

b1123

b1124

b1129

b1125

b1130

b1126

b1127

b1128

b1131

b1136

b1147

b1340 b1148

b1341

b1149

b1152

b1165

b1158

b1163

b1153
b1166

b1276

b1154

b1171

b1155

b1156

b1159

b1164

b1160

b1161
b1162b1167

b1272

b1277

b1168
b1273

b1169

b1170

b1174
b1175

b1176

b1180

b1197

b1221

b1181

b1198

b1182

b1227

b1183

b1186

b1184

b1187
b1185

b1188

b1189

b1190
b1191

b1222

b1192

b1193

b1194

b1195

b1196

b1199

b1203

b1200
b1202

b1204

b1201

b1205

b1208

b1206

b1209

b1213

b1207
b1210

b1223

b1214

b1211

b1212

b1224

b1226

b1215

b1216

b1217

b1218

b1219

b1225

b1234

b1237

b1238

b1361

b1239

b1260

b1263

b1264

b1265

b1336

b1266

b1337

b1267

b1268

b1269

b1270

b1271

b1323

b1324

b1274
b1275

b1278

b1283

b1292

b1293

b1302
b1331

b1294

b1295
b1296
b1298

b1297

b1299

b1301
b1300

b1303

b1304

b1305

b1306

b1307

b1308
b1309
b1310
b1311

b1312
b1313

b1316

b1317

b1318

b1319

b1320

b1327

b1332

b1335

b1342

b1348

b1349

b1350

b1351
b1352

b1353

b1354

b1355

b1358

b1366

b1370
b1367

b1368

b1371

b1390

b1372
b1374

b1391

b1373

b1375

b1376

b1377
b1378

b1379

b1380

b1381

b1382

b1383

b1384

b1385

b1386

b1387

b1389

b1388
b1392

b1393

b1394
b1395

b1396
b1397

(a) ACFG X

Entry

b0

Exit

b21

b85

b40

b53

b149

b118

b1

b84

b30

b331

b431

b22

b415

b390

b86

b389

b64

b136

b66

b42

b41

b298

b54

b151

b150

b321

b119

b353

b4

b3b2

b255

b5

b426
b424

b254

b259
b256

b258

b91

b62 b48

b135

b337

b90

b267

b6

b425
b427

b92

b393

b334

b117

b116

b290

b51
b23

b63 b58

b322

b49

b26

b342

b339

b338

b264

b268

b330

b7

b263

b8

b10b9

b11

b14

b13

b12

b39

b391

b15

b16

b114

b115

b392

b38

b17

b20

b413

b18

b19

b93

b83

b82

b357

b79

b78

b31

b332

b432
b433

b27

b89
b57

b56

b327

b55

b299

b292
b416

b291

b285

b52

b24
b386

b336

b25

b387

b50

b275

b97

b95

b59

b328

b60

b279b278

b346

b276

b98

b333

b96

b29

b28

b99
b133

b161

b132
b134

b100

b289

b61

b301

b205
b172

b162

b286

b101

b94

b131

b347

b130

b129

b356

b372

b360

b375

b358

b329
b80

b384

b32
b33

b385

b34

b340

b35

b36

b37

b341

b335

b414

b65

b146
b145

b137

b68
b69

b67

b43

b44

b159
b160

b45

b269

b88

b265

b46

b158

b344

b284
b270

b320

b266

b47

b324
b325

b423

b323

b283

b326

b305

b303

b302

b287

b288

b71

b72

b70

b74

b300
b73

b75

b76

b77

b81

b349 b350

b352

b348

b87

b419

b394

b345

b103
b102

b104

b105

b106

b112

b107

b113

b110
b108

b111b109

b123

b120

b121

b354

b355

b124

b122

b126

b125

b127

b128

b343

b147

b148

b144

b143

b138

b139

b142

b140

b141

b152

b153

b388

b154
b156

b155

b157

b378

b206

b173

b174

b171

b169

b383

b428
b164
b163

b165

b170

b167

b166

b429
b377

b168

b175

b382

b430

b176
b177

b179

b178

b402

b180

b417

b403

b404

b181

b213

b193

b203

b182
b199

b214
b215

b194

b252

b418

b204
b183
b185
b200

b210

b184b192b186
b187 b198

b188

b207

b189 b209

b208

b190

b191

b196

b195

b420

b253

b197

b401

b201

b202

b410
b211

b212

b379

b411

b412

b216

b221

b217

b222

b400

b237

b218

b236

b220

b238

b219b240

b241

b223

b399

b224

b242
b225

b380

b243

b398

b226

b227
b239

b228

b229

b230
b249

b247
b248

b231

b250b233

b232

b234

b235

b251

b244

b397

b376
b245
b246 b381

b421

b260

b257

b262
b261

b271

b272

b274

b273

b282

b280

b281

b277

b293
b294b296

b295

b297

b307
b306

b308

b304

b422

b309
b310

b312

b311
b316

b315b314
b313

b319

b317b318

b396
b395

b351

b373
b363

b362

b361

b359

b374

b364

b366

b365

b369
b367

b368

b370

b371

b409

b405
b406

b407 b408

(b) ACFG Y

Figure 5.6: Example of an ACFG, of one of the functions of the Windows disk free
space utility program df.exe, before and after shrinking. The ACFG has been reduced
from 894 nodes to 283 nodes.

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 60

Chapter 6

SWOD-CFWeight (Sliding

Window of Difference and Control

Flow Weight)

We present in this chapter a new approach for malware detection that uses opcodes

and new metrics based on a sliding window of difference.

6.1 Motivations and Overview

Techniques based on behavior analysis [12, 38, 40, 43, 46, 54, 86, 94, 97] are used

to detect metamorphic malware, but are compute intensive and are not suitable for

real-time detection. Some other techniques [5, 75, 78, 80, 82, 83, 93, 96] that use

opcodes to detect malware, such as [5, 75, 78, 83, 93, 96], have been shown to detect

metamorphic malware. One of the advantages of using opcodes for detecting malware

is that it can be performed in real-time. However, the current techniques using

opcodes for malware detection have several disadvantages including the following:

1. The patterns of opcodes can be changed by using a different compiler or the

same compiler with a different level of optimizations.

2. The patterns of opcodes can also change if the code is compiled for a different

platform.

3. Obfuscations introduced by polymorphic and metamorphic malware can change

the opcode distributions.

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 61

4. The execution time depends on the number of features selected for mining in a

program. Selecting too many features results in a high detection rate but also

increases the execution time. Selecting too few features has the opposite effects.

We propose a new opcode-based malware detection technique which addresses the

above limitations by transforming the assembly code to an intermediate language

that makes the analysis independent of different compilers, ISAs and OSs. In order

to mitigate the effect of obfuscations introduced by polymorphic and metamorphic

malware we extract and analyze the control flow semantics of the program. Further-

more we use statistical analysis of opcode distributions to develop a set of heuristics

that helps in selecting an appropriate number of features and reduces the runtime

cost.

The MAIL language that we have introduced in Chapter 3 adequately addresses

some of the problems described above. Table 6.1 depicts an example that highlights

how the frequency of opcodes changes significantly compared to the frequency of a

MAIL Pattern for a Windows program (sort.exe) compiled with different levels of

optimizations. Patterns present in MAIL, which correspond to tokens, are a high

level representation of opcodes and can be used in a similar manner. This high level

representation of opcodes can help select an appropriate number of patterns that

results in a high detection rate and considerably helps reduce the runtime. We use

control patterns present in MAIL to include control flow information of a program

for metamorphic malware analysis and detection.

In this chapter we introduce a novel scheme built around two new metrics derived

from the notions of sliding window of difference (SWOD) and control flow weight

(CFWeight) that help mitigate the challenges mentioned earlier. Likewise, we refer

to the new technique as SWOD-CFWeight. SWOD is a window that represents

differences in opcode distributions; its size can change, and it slides through an opcode

distributions graph. CFWeight captures the control flow of a program to an extent

that helps detect metamorphic malware in real-time. We show how they can be used

on MAIL Patterns for effective metamorphic malware detection.

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 62

T
ab

le
6.
1:

A
n
ex
am

p
le
,
co
m
p
ar
in
g
th
e
ch
an

ge
in

fr
eq
u
en
cy

of
O
p
co
d
es

w
it
h
th
e
ch
an

ge
in

fr
eq
u
en
cy

of
M
A
IL

P
at
te
rn

A
S
S
IG

N
,
of

a
W

in
d
ow

s
p
ro
gr
am

so
rt
.e
xe

co
m
p
il
ed

w
it
h
d
iff
er
en
t
le
ve
l
of

op
ti
m
iz
at
io
n
s.

O
p
co
d
e

O
p
ti
m
iz
at
io
n
L
ev
el

0
O
p
ti
m
iz
at
io
n
L
ev
el

1
O
p
ti
m
iz
at
io
n
L
ev
el

2
/

T
ot
al

In
st
ru
ct
io
n
s
40
45

T
ot
al

In
st
ru
ct
io
n
s
18
80

T
ot
al

In
st
ru
ct
io
n
s
22
76

M
A
IL

N
u
m
b
e
r
o
f

N
u
m
b
e
r
o
f

%
a
g
e

N
u
m
b
e
r
o
f

%
a
g
e

P
a
tt
e
rn

In
st
ru

ct
io
n
s

In
st
ru

ct
io
n
s

C
h
a
n
g
e

In
st
ru

ct
io
n
s

C
h
a
n
g
e

M
O
V

13
39

(3
3.
1%

)
53
2
(2
8.
29
%
)

14
.5
3

60
7
(2
6.
66
%
)

19
.5
0

A
D
D

11
5
(2
.8
4%

)
35

(1
.8
6%

)
34
.5
1

49
(2
.1
5%

)
24
.3
0

L
E
A

59
(1
.4
6%

)
43

(2
.2
9%

)
56
.8
5

54
(2
.3
8%

)
63
.0
1

S
U
B

57
(1
.4
1%

)
22

(1
.1
7%

)
17
.0
2

27
(1
.1
9%

)
15
.6
0

A
N
D

23
(0
.5
7%

)
13

(0
.6
9%

)
21
.0
5

11
(0
.4
9%

)
14
.0
4

IN
C

4
(0
.2
1%

)
21

(0
.5
2%

)
14
7.
62

18
(0
.7
9%

)
27
6.
20

O
R

14
(0
.3
5%

)
4
(0
.2
1%

)
40

4
(0
.1
7%

)
51
.4
3

N
E
G

3
(0
.1
6%

)
5
(0
.1
2%

)
25

6
(0
.2
7%

)
51
.4
3

X
O
R

53
(1
.3
1%

)
62

(3
.3
0%

)
15
1.
91

60
(2
.6
3%

)
10
0.
76

A
S
S
IG

N
16
92

(4
1.
83
%
)

76
1
(4
0.
48
%
)

3
.2
2

86
6
(3
8.
10
%
)

8
.9
1

W
h
il
e
tr
an

sl
at
in
g
an

as
se
m
b
ly

p
ro
gr
am

to
M
A
IL
,
al
l
th
e
9
op

co
d
es

sh
ow

n
ar
e
ta
gg
ed

w
it
h
p
at
te
rn

A
S
S
IG

N
.
W
e
ca
n
se
e

th
e
fr
eq
u
en
ci
es

of
th
e
9
op

co
d
es

ch
an

ge
fr
om

21
.0
5%

to
as

m
u
ch

as
15
1.
91
%

fr
om

op
ti
m
iz
at
io
n
le
v
el

0
to

op
ti
m
iz
at
io
n
le
v
el

1,
an

d
fr
om

14
.0
4%

to
as

m
u
ch

as
27
6.
20
%

fr
om

op
ti
m
iz
at
io
n
le
v
el

0
to

op
ti
m
iz
at
io
n
le
v
el

2,
w
h
er
ea
s
th
e
fr
eq
u
en
cy

of
th
e

M
A
IL

P
at
te
rn

A
S
S
IG

N
ch
an

ge
s
on

ly
b
y
3.
22
%

an
d
8.
91
%
.

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 63

6.2 Statistical Analysis of MAIL Pattern Distri-

butions for Metamorphic Malware

A recent study [10] analysed the statistical distributions of opcodes in 77 malware

and 67 benign programs. The study found that the malware opcode fequencies differ

significantly from non-malicious code and this difference can be used for malware

detection. In general MOV and PUSH were the most used opcodes in the samples

tested. This is the most significant research on opcodes and provides ideas and mo-

tivations to use opcodes [80, 82] for malware detection. Another recent study [5]

presented some interesting opcode statistics of the assembly code produced by differ-

ent compilers. The study found that the opcode distributions are different between

compilers, and can be used to identify the compiler. These results also confirm that

the frequencies of opcodes change through use of a different compiler.

Motivated by these studies [5, 10], we carried out an empirical study using meta-

morphic malware. Our study differs from the studies described in [5, 10], since it

focuses specifically on metamorphic malware and MAIL patterns. The main purpose

of our study is to study MAIL pattern distributions by computing term frequencies,

and establish how MAIL pattern frequencies differ between malware and benign sam-

ples. We then use the findings as the basis for defining new metrics from MAIL

patterns for detecting metamorphic malware. We describe in this section the dataset

used in our work and study mail pattern distributions based on a subset of the dataset.

6.2.1 Dataset

The dataset used for the experiments consists of 5305 sample programs. Out of the

5305 programs, 1020 are metamorphic malware samples collected from three different

resources [63, 75, 78], and the other 4285 are Windows and Cygwin benign programs.

The dataset distribution based on the size of each sample file is shown in Table 6.2.

The dataset contains programs compiled with different compilers (Visual C++,

Visual C#, Visual Basic and GCC) for the Windows (32 and 64 bits, PE format)

and Linux (32 and 64 bits, ELF format) operating systems. The sizes of the malware

samples range over 1 KB – 299 KB and the sizes of the benign samples have a range

of 9 bytes – 10 MB.

The 1020 malware samples belong to the following three metamorphic family of

viruses: Next Generation Virus Generation Kit (NGVCK) [69], Second Generation

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 64

Table 6.2: Dataset distribution based on the size of each program sample

Malware samples (1020) Benign program samples (4285)

Range of Number of Range of Number of
Size (bytes) Samples Size (bytes) Samples

1343 – 1356 50 9 – 19997 817

3584 – 4096 35 20336 – 29984 406

8192 – 16384 215 30144 – 49800 492

29356 – 35324 200 50144 – 119936 935

36864 – 40772 102 120296 – 980840 1514

40960 – 46548 101 1001936 – 1553920 50

52292 – 57828 200 1606112 – 3770368 48

67072 – 69276 101 4086544 – 5771408 12

70656 – 74752 4 6757888 – 8947200 4

271872 – 299520 12 9074688 – 10124353 7

Virus Generator (G2) [41] and Metamorphic Worm (MWOR) generated by metamor-

phic generator [63]. NGVCK and MWOR family of viruses are further divided into

two and seven classes respectively. This class distribution is shown in Table 6.3.

This variety of sample files and malware classes in the samples provides a good

testing platform for the proposed malware detection scheme.

6.2.2 MAIL Pattern Distributions

We used a subset of the dataset presented above that consists of 25% of the samples

selected randomly to compute and analyze mail pattern distributions. First, we

translated each sample from the dataset to the corresponding MAIL program and

then collected the statistics about the MAIL Patterns distributions for each sample.

The distributions for each program sample, benign and malware, are shown in Figure

6.1. Only seven MAIL pattern distributions that have a significant difference in values

are shown. For clarity and readability we made the graphs sparse, and not all the

values of the MAIL pattern distributions are shown.

The graph plots in Figure 6.1 show the number of samples on the X-axis and

the Patterns’ percentage on the Y-axis. On average the occurrence of MAIL pattern

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 65

Table 6.3: Class distribution of the 1020 metamorphic malware samples

Class Number of Comments
Samples

NGVCK 1 70 Generated by NGVCK with simple set of obfus-
cations, such as dead code insertion and instruc-
tion reordering etc.

NGVCK 2 200 Generated by NGVCK with complex set of obfus-
cations, such as indirect jump (e.g; push followed
by a ret instruction) to one of the data sections
etc.

G2 50 Generated by G2

MWOR 1 100 Generated by MWOR with a padding ratio of 0.5

MWOR 2 100 Generated by MWOR with a padding ratio of 1.0

MWOR 3 100 Generated by MWOR with a padding ratio of 1.5

MWOR 4 100 Generated by MWOR with a padding ratio of 2.0

MWOR 5 100 Generated by MWOR with a padding ratio of 2.5

MWOR 6 100 Generated by MWOR with a padding ratio of 3.0

MWOR 7 100 Generated by MWOR with a padding ratio of 4.0

MWOR uses two morphing techniques: dead code insertion and equivalent instruction sub-
stitution. The padding ratio is the ratio of the number of dead code instructions to the core
instructions of the malware. A padding ratio of 0.5 means that the malware has half as many
dead code instructions as core instructions [63].

ASSIGN is the highest in over 85% of the samples. While translating a binary

program to a MAIL program, all assembly instructions that make changes to a register

or a memory place excluding stack, e.g., MOV instructions, are tagged with MAIL

pattern ASSIGN. In [10], MOV instruction is also the most used opcode in the samples

tested.

To show the difference between the malware and benign MAIL pattern distribu-

tions we superimpose the two Figures 6.1(a) and 6.1(b) using all the values of the

MAIL Pattern distributions. For clarity and readability only three Patterns, ASSIGN,

CONTROL C and STACK, are superimposed. Figure 6.2 shows the superimposition

of these MAIL patterns distributions.

The graph in Figure 6.2 is divided using perpendicular lines. When the two plots

(malware and benign) of a pattern horizontally divide the space between two per-

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 66

(a) MAIL Pattern distributions for benign samples

(b) MAIL Pattern distributions for malware samples

Figure 6.1: MAIL Patterns distributions based on the percentage of the MAIL Pat-
terns in each sample in the dataset

pendicular lines, this division is called a pocket of the window. There are significant

pockets of windows in MAIL pattern ASSIGN that show significant differences be-

tween malware and benign samples. There are a few pockets of windows in MAIL

patterns CONTROL C and STACK that show significant difference between malware

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 67

F
ig
u
re

6.
2:

S
u
p
er
im

p
os
in
g
th
re
e
of

th
e
M
A
IL

P
at
te
rn
s
d
is
tr
ib
u
ti
on

s
fr
om

F
ig
u
re
s
6.
1(
a)

an
d
6.
1(
b
).

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 68

and benign samples. We use this observation and the differences as a motivation to

develop a Sliding Window of Difference (SWOD) based on MAIL patterns, which we

define formally in Section 6.3.1. Instead of using the probabilities of the occurrences

and differences of MAIL patterns in a dataset and then applying stochastic processes,

we employ empirical methods using heuristics to develop the SWOD for a dataset.

We believe this is much closer to a practical solution to the problems of malware

detection described above.

Out of the seven patterns shown in Figure 6.1 four of them namely, CALL C,

CONTROL C, JUMP C and JUMP S are the MAIL control patterns. We can use

this difference in MAIL control patterns between a malware sample and a benign

sample for metamorphic malware detection. These statistics persuaded us to develop

CFWeight (Control Flow Weight) as a metric that captures the amount of change in

the control flow of a program.

6.3 Metamorphic Malware Detection Model

In this section we introduce in detail our proposed metamorphic malware detection

technique. We define a set of heuristics based on MAIL patterns that underlie our

detector. The main goal for developing these heuristics is to reduce the runtime

for metamorphic malware detection while keeping the same or improving the other

performance metrics.

6.3.1 Sliding Windows of Difference

Assume that we have a dataset D consisting of m malware samples and b benign

samples. Let Mi be the ith malware sample and PjMi be the percentage of the

jth MAIL pattern in Mi. Similarly, Let Bi be the ith benign sample and PjBi be

the percentage of the jth MAIL Pattern in Bi. We compute the MAIL pattern

distributions in a MAIL program, as follows:

PjXi =
pj∑N
i=1 pi

× 100 (6.1)

where Xi can be either a malware or a benign sample, pj and pi are the number of

times the jth and ith patterns occur in a MAIL program, and N is the total number

of patterns in the MAIL language; currently there are 21 patterns in MAIL (N = 21).

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 69

Let l denote the minimum of b and m: l=min(m,b). Given a mail pattern Pj, let

PDmj denote the l first mail pattern distributions of Pj in the dataset of malware

samples sorted in decreasing order: PDmj = {PjM1, PjM2, PjM3,

PjMl}.
Similarly, PDbj denote the l first mail pattern distributions of Pj in the dataset

of benign samples: PDbj = {PjB1, PjB2, PjB3, PjBl}.

Assume that b and m are selected such that N ≤ l. Let x denote an integer such

that 1 ≤ x ≤ N .

Using the above notation, we define the components of our sliding window of

difference scheme as follows:

DEFINITION 7: Vertical Window of Difference (VWOD) for pattern Pj is

the absolute difference between the percentages of the occurrences of Pj in a malware

sample Mk and a benign sample Bk, where 1 ≤ k ≤ l, and is defined as VWODjk =

|PjMk − PjBk|. This difference is referred to as the size of VWODjk. A minimum

value for the size of VWODjk, denoted minsize , is predefined as a parameter of

our proposed malware detector.

DEFINITION 8: Horizontal Window of Difference (HWOD) for pattern Pj

over interval [(x− 1)n+ 1, xn] is defined as the set HWODjx = {VWODj[(x−1)×n+1],

VWODj[(x−1)×n+2], VWODj[(x−1)×n+3],, VWODj[x×n]}, where n =
⌈

l
N

⌉
.

Size of HWODjx = x× n− [(x− 1)× n+ 1] + 1 = n.

DEFINITION 9: We define the ratio for HWODjx, denoted ratio(HWODjx),

as the percentage out of n of VWODs in HWODjx that are greater or equal to

the minsize. A minimum value for the ratio denoted minratio is predefined as a

parameter of our proposed malware detector. For example, a minratio of 70 for

a HWOD means 70% of all the VWODs in the HWOD are greater or equal tominsize.

DEFINITION 10: A window HWODjx satisfies minratio denoted HWODjx sat

minratio if and only if ratio(HWODjx) ≥ minratio. We refer to this particular kind

of window as a Sliding Window of Difference (SWOD) for pattern Pj over

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 70

interval [(x− 1)n+ 1, xn] denoted SWODjx
1.

DEFINITION 11: The SWOD for pattern Pj denoted SWODj is the union set

of all the SWODjx:

SWODj =
⋃

1≤x≤N SWODjx

The determination of the SWOD depends on the values of minsize and minratio.

They are computed empirically by first selecting a suitable number of malware

samples and benign samples that adequately represent the dataset. Using these

samples we obtain the values of minsize and minratio that yield the best performance

for the malware detector. A graphical depiction of a SWOD is shown in Figure 6.3.

Vj1Vj2

P Mj n

P Bj n

PjM1 P Mj 5

P Bj 1P Bj 5

size of HWODj1

size
of

VWODjkS W O D Vj3Vj4Vjn

Vj5

Figure 6.3: Sliding Window of Difference (SWODj1) as defined in Definition 10.
HWODj1 = {Vj1, Vj2, Vj3, . . . Vjn}, where Vj1, Vj2, Vj3, . . . Vjn, are the VWODs.

Figure 6.4 shows an example of SWOD for the MAIL pattern ASSIGN computed

using 25% of samples selected randomly from the dataset presented earlier, which

corresponds to l = 1020 samples.

The SWOD for the example assumes a minsize = 5 and minratio = 60, and

considers only a subset of the MAIL patterns consisting of N = 20 patterns, which

gives n = 51 (1020
20

).

1In other words, HWODjx is a SWODjx if and only if it satisfies the minratio.

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 71

F
ig
u
re

6.
4:

S
li
d
in
g
W

in
d
ow

of
D
iff
er
en
ce
s
(S
W
O
D
s)

fo
r
th
e
M
A
IL

P
at
te
rn

A
S
S
IG

N
.

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 72

According to the definitions presented above at least 30 (51 × 0.60 ≈ 30) of the

VWODs should have a value ≥ 5, for the example of SWODs shown in Figure 6.4.

Since we assume N = 20 for the example, there are in total 20 virtual SWODs (or

HWODs), and while sliding through the graph of the MAIL Pattern ASSIGN, 17 of

them satisfy the minratio condition, and can then be considered as the real SWODs.

In our work, the cardinality or size of SWODj represents the weight of pattern

Pj over the dataset. For instance, in the above example, the weight assigned to the

MAIL Pattern ASSIGN is 17.

Algorithm 1 presents in detail the steps for computing the weight of a MAIL

pattern in a dataset.

Algorithm 1 Computing weight for a MAIL pattern in a dataset

1 procedure ComputeWeight(PM,PB,N,m, b,minsize,minratio)
2 for p← 1 to N do
3 for i← 1 to m do
4 ListMalware[p]← PM [N][i]
5 end for
6 for i← 1 to b do
7 ListBenign[p]← PB[N][i]
8 end for
9 ListMalware[p]← Sort(ListMalware[p])

10 ListBenign[p]← Sort(ListBenign[p])
11 end for

12 n←
⌈
min(m, b)

N

⌉
13 for p← 1 to N do
14 SWODs← ComputeSWODs(ListMalware[p], ListBenign[p],minsize,minratio, n)
15 PatternWeights[p]← SWODs.Size
16 end for
17 return PatternWeights
18 end procedure

PM and PB are the MAIL pattern distributions. minsize, minratio and n are defined in Def-
initions 7 – 9. N is the number of patterns in MAIL. m is the number of malware samples and
b is the number of benign samples in the dataset. The function Sort sorts the list in descending
order. SWODs = {SWOD1, SWOD2, SWOD3,} are computed as per Definition 11.

Algorithm 1 computes the difference of the data value in two lists, ListMalware

and ListBenign to find the SWODs. These lists are the distributions for each MAIL

pattern as defined earlier. We give priority to the samples that have greater occur-

rences of a MAIL pattern, therefore we first sort the lists in descending order, as

shown in lines 9 and 10. For finding the real SWODs (as explained above) we go

through candidate SWODs in the lists, as shown in lines through 13 – 16 in Algo-

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 73

rithm 1, and stop with the shorter list. The number of real SWODs found in a MAIL

Pattern is assigned as weight of the MAIL pattern.

6.3.2 Control Flow Weight and MAIL Program Signature

We assign to each statement in a MAIL program a partial weight computed from a

control flow graph (CFG), and referred to as CFWeight (for Control Flow Weight).

Before computing CFWeight we build an interprocedural CFG (a CFG for each func-

tion) of a MAIL program. The heuristics for computing CFWeight are summarized

as follows.

1. Each block’s last statement, and each JUMP and CALL statement is assigned

a weight of 1.

2. Each CONTROL statement is assigned a weight of 2.

3. Each control flow change (JUMP, CONTROL or CALL) is assigned a weight

equal to the length of the jump, which correlates with the number of blocks

jumped.

4. The weight of a backwards jump (possibly used for a loop) is double the length

of the jump.

5. A jump whose target is outside the function is assigned a weight equal to the

distance (measured as the number of blocks) of the jump statement from the

last block of the function + 1.

Every MAIL statement is assigned a pattern during translation from assembly

language to MAIL. The CFWeight of a MAIL statement is computed by adding all

the weights assigned to the elementary statements involved in it, based on the above

categorization.

The final weight of a MAIL statement is the sum of its CFWeight and the weight

of the pattern assigned to the statement. The final weights of the statements of a

MAIL program are stored in a weight vector that represents the program signature.

This signature is then sorted in ascending order for easy and efficient comparison.

Algorithm 2 presents in detail the steps for building the signature of a MAIL

program. In Algorithm 2, lines 4 – 20 express the heuristics for computing CFWeight.

Lines 21 – 27 of Algorithm 2 show the computation of a MAIL program signature

using the final weight of each MAIL statement in the program computed earlier.

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 74

6.3.3 Signature Matching and Malware Detection

To detect if a new program is malware or not, we build its signature as explained

above. This signature is compared with the signatures of all the training malware

samples. In case of a match with any of the signatures of the training malware samples

we tag the new program as a malware.

Let Si = [sik]1≤k≤p and Sj = [sjk]1≤k≤q denote the signature vectors, sorted in

decreasing order, of two different programs, such that p ≤ q.

To match the two signatures, we compare each weight’s value in one of the signa-

tures with the corresponding weight’s value in the other signature, by computing the

following:

dijk =
∣∣∣ sik−sjk
max(sik,sjk)

∣∣∣× 100, where 1 ≤ k ≤ p.

Two weights sik and sjk match if and only if dijk ≤ ε1, where ε1 = 3×minsize.

Let y and r denote the total number of weight pairs (sik, sjk) and the number

of non-zero values in Sj, respectively. Signatures Si and Sj match if and only if
y
r
× 100 ≥ ε2, where ε2 =

minratio
2.25

.

The two values, ε1 and ε2 are computed empirically from the dataset.

Figure 6.5 shows an example of malware detection using MAIL program signa-

tures. There are in total 19 statements in the sample MAIL program. To generate the

signature each statement is assigned a weight as explained above. After sorting the

signature, it is stored in an index-based array for efficient comparison. This index-

based array stores the number of weights with same value at the index corresponding

to the value. For the example shown in Figure 5 there are three weights with the

value 3, so we store a 3 at index 3. There is only one weight with the value 5, so

we store a 1 at index 5, and so on. This index-based signature array of the MAIL

program is compared with the index-based signature arrays of the training malware

samples. We can see that there is a successful match of the signature of the MAIL

program with the signature of the malware sample number M12 and hence the pro-

gram is tagged as a malware. The comparison stops after the first successful match

with the signature of a malware sample. The lines without a × (12 of them, ≥ ∼ε2)

show a match (percentage of difference is ≤ ε1) between the corresponding weights,

and the lines marked with a × (6 of them) show no match (percentage of difference

is > ε1) between the corresponding weights.

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 75

Signature
Generator

MAIL
Program

Original
signature

Signature
sorted

Signature
stored for

comparison

Signatures
of Malware
Samples

0
0
0
3
0
1
3
0
7
0
0
0
0
0
2
0
0
2
0
0
0
0
0
1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

3

3

3

23

14

17

17

14

8

8

8

6

6

6

5
3

8

3
3

23

17
17

14

8
8

8

6
6
6

5
3

8

0
2

2
0

3
1
0
4

M1

0
4

0
3

0
1
2
0

M2

0
2

3
1

2
1
0
1

M12

0
0

0
5

8
0
9
4

Mz

0
2
1
3
0
1
3
0
6
0
2
0
0
2
2
1
0
1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

3

8
8
8

8

8

14

8

Figure 6.5: Malware detection using MAIL program signatures.

6.3.4 Complexity Analysis

Time complexity of Algorithm 1: There are two outer loops in function

ComputeWeight(). The run time of the second loop depends on the function

ComputeSWODs(). Basically this function finds the difference of the data value

in two lists and stops with the shorter list. Therefore the time of the function

ComputeSWODs() depends on the number of either malware or benign samples

(whichever is smaller). We compute the time complexity of Algorithm 1 as follows:

time first loop + time second loop = N(nm + nb + nm log nm + nb log nb) + N

min(nm, nb), and is simplified to O(N n log n), where N is the number of patterns

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 76

in MAIL, and n is either the number of malware samples or the number of benign

samples whichever is larger.

Time complexity of Algorithm 2: The time for the initialization of Sig at

line 2 and the two loops in the function BuildSignature() depends on the num-

ber of statements (NS) in the MAIL program. Including the time for function

Sort() at line 23 the time complexity of Algorithm 2 is 3NS + NS log NS, and is

simplified to O(n log n), where n is the number of statements in the MAIL program.

The average and worst case time complexities of both algorithms depend on the

Sort() function used in the implementation. The time computed (both average and

worst case) above is for a merge sort implementation [25].

6.4 Summary

Techniques based on opcode patterns have the potential to be used for real-time

malware detection, but have the following issues: (1) The frequencies of opcodes can

change by using different compilers, compiler optimizations and operating systems.

(2) Obfuscations introduced by polymorphic and metamorphic malware can change

the opcode distributions. (3) Selecting too many features (patterns) results in a high

detection rate but also increases the runtime and vice versa.

In this chapter we have presented a novel technique named SWOD-CFWeight

(Sliding Window of Difference and Control Flow Weight) that helps mitigate these

effects and provides a solution to these problems. The SWOD size can be changed;

this property gives anti-malware tool developers the ability to select appropriate pa-

rameters to further optimize malware detection. The CFWeight feature captures

control flow information to an extent that helps detect metamorphic malware in real-

time.

SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight) 77

Algorithm 2 Computing CFWeight (Control Flow Weight) and Signature of a
MAIL program

Precondition: PatternWeights assigned using Algorithm 1
1 procedure BuildSignature(MailProgram,PatternWeights,NS)
2 Sig ← 0
3 for s← 1 to NS do
4 CFWeight← PatternWeights[MailProgram[s].Pattern]
5 if MailProgram[s].Pattern = ControlPattern then
6 if MailProgram[s].IsJumpOutsideFunction then
7 CFWeight← CFWeight+MailProgram[s].DistanceLastStatement+ 1
8 else if MailProgram[s].IsBackJump then
9 CFWeight← CFWeight+ 2×MailProgram[s].LengthOfJump

10 else
11 CFWeight← CFWeight+MailProgram[s].LengthOfJump
12 end if
13 if MailProgram[s].Pattern = IfPattern then
14 CFWeight← CFWeight+ 2
15 else if MailProgram[s].Pattern = JumpCallPattern then
16 CFWeight← CFWeight+ 1
17 end if
18 else if MailProgram[s].IsLastStmtOfBlock then
19 CFWeight← CFWeight+ 1
20 end if
21 Sig[s]← CFWeight
22 end for
23 Sig ← Sort(Sig)
24 Signature← AssignMem(Sig[Sig.Size] + 1)
25 for s← 1 to Sig.Size do
26 Signature[Sig[s]]← Signature[Sig[s]] + 1;
27 end for
28 return Signature
29 end procedure

NS is the number of statements in the MAIL program. The function Sort sorts the array Sig
in ascending order. The loop in lines 25 - 27 stores the Signature for easy and fast comparison.
e.g: The Signature: 11111444777777777 is stored as: 05003009 i.e: there are 5 1’s, 3 4’s and 9
7’s in the Signature.

Evaluation, Analysis and Comparison 78

Chapter 7

Evaluation, Analysis and

Comparison

In this chapter we evaluate the correctness and the efficiency of our proposed meta-

morphic malware detection techniques, and present results, discussions and analysis

of this evaluation. We compare the proposed techniques with other similar malware

detection techniques.

7.1 Performance Metrics

We use n-fold cross validation to estimate the performance of our techniques. In

n-fold cross validation the original sample is divided into n equal size subsamples.

One of the samples is used for testing and the remaining n − 1 samples are used

for training. The cross validation process is then repeated n times with each of the

n subsamples used exactly once for validation. The overall performance results are

obtained by averaging the results obtained in the n different runs.

Before evaluating the performance of the proposed techniques, we first define the

following performance metrics:

True positive (TP) is the number of malware programs that are classified as

malware. True negative (TN) is the number of benign programs that are classified as

benign. False positive (FP) is the number of benign programs that are classified as

malware. False negative (FN) is the number of malware programs that are classified

as benign.

Precision is the fraction of detected malware samples that are correctly identified.

Evaluation, Analysis and Comparison 79

Accuracy is the fraction of samples, including malware and benign, that are correctly

identified as either malware or benign. These two metrics are defined as follows:

Precision =
TP

TP + FP
Accuracy =

TP + TN

M +N

where M and N are the total number of malware and benign programs respectively.

Now we define the mean maximum precision (MMP) and mean maximum accuracy

(MMA) for n-fold cross-validation as follows:

MMP =
1

n

n∑
i=1

Precisioni (7.1)

MMA =
1

n

n∑
i=1

Accuracyi (7.2)

We also define two other metrics, TP rate and FP rate. The TP rate (TPR), also

called detection rate (DR), indicates the number of samples correctly recognized as

malware out of the total malware dataset. The FP rate (FPR) metric indicates the

number of samples incorrectly recognized as malware out of the total benign dataset.

These two metrics are defined as follows:

TPR =
TP

M
(7.3)

FPR =
FP

N
(7.4)

7.2 Performance of ACFG

We carried out an empirical study to analyse the correctness and efficiency of the

proposed ACFG technique. We present, in this section, the empirical study, obtained

results and analysis.

7.2.1 Dataset Based on ACFGs

Graph matching is a computationally intensive task, therefore we selected a subset

of the dataset described in Section 6.2.1 for the experiments carried out to analyse

the performance of ACFG. The subset contained 3350 sample Windows and Cygwin

programs. Out of the 3350 programs, 1020 are metamorphic malware samples. The

Evaluation, Analysis and Comparison 80

dataset distribution based on the number of ACFGs for each sample, and size of the

CFG after normalization is shown in Tables 7.1 and 7.2. The normalizations carried

out are removal of NOP, junk (some prefixes etc) and other instructions that are not

required for malware analysis as listed in [3].

Table 7.1: Dataset distribution based on the number of Annotated Control Flow
Graphs (ACFGs) for each program sample

Malware samples (1020) Benign program samples (2330)

Number of Number of Number of Number of
ACFGs Samples ACFGs Samples

2 250 0 – 50 1277

5 – 32 204 51 – 100 317

33 – 57 222 101 – 199 310

58 – 84 133 201 – 399 282

85 – 133 105 400 – 598 111

140 – 249 94 606 – 987 30

133 – 1272 12 1001 – 1148 3

The dataset contains a variety of programs with ACFGs, ranging from simple

to complex for testing. As shown in Table 7.1, the number of ACFGs per malware

sample range from 2 to 1272 and the number of ACFGs per benign program range

from 0 to 1148. Some of the Windows DLLs (dynamic link libraries) that were used

in the experiment do not contain code but only data (cannot be executed) and that

is why they have 0 node graphs (ACFGs). The sizes of these ACFGs are shown in

Table 7.2. The sizes of the ACFGs of the malware samples range from 1 node to 301

nodes, and the sizes of the ACFGs of the benign programs range from 1 node to 521

nodes.

7.2.2 Empirical Study

In this section, we discuss the experiments, and present the results for precision, and

accuracy, to evaluate the performance of ACFG. The experiments were run on the

following machine: an Intel Core i5 CPU M 430 (2 Cores) @ 2.27 GHz with 4GB

RAM, running Windows 8 Professional.

Evaluation, Analysis and Comparison 81

Table 7.2: Dataset distribution based on the size (number of nodes) for each Anno-
tated Control Flow Graph (ACFG) after normalization and shrinking

Malware samples (1020) Benign program samples (2330)

Number of Number of Number of Number of
Nodes ACFGs Nodes ACFGs

1 – 10 60284 1 – 10 242240

11 – 20 1652 11 – 20 3466

21 – 39 2177 21 – 39 1086

41 – 69 288 40 – 69 368

70 – 96 207 70 – 99 61

104 – 183 254 100 – 194 60

221 – 301 2 245 – 521 15

Total number of nodes before ACFG shrinking = 4908422
Total number of nodes after ACFG shrinking = 462974 (90.6% reduced)
Runtime on average reduced by a factor of 5 (for smaller datsets) and a factor of 100 (for larger
datasets)

To get accurate and the best results from the available dataset, we carried out two

experiments: one with a smaller dataset using 10-fold cross validation and the other

with a larger dataset using 5-fold cross validation. In the following two sections we

present and describe these two experiments.

Experiment with Smaller Dataset Using 10-fold Cross Validation

10-fold cross validation is a compute intensive experiment, so out of 3350 Windows

programs we selected 1351 Windows programs. Out of these 1351 programs, 250 are

metamorphic malware samples belonging to classes NGVCK 1 and NGVCK 2, and

the other 1101 are benign programs. The size of the training set used was 25 samples.

We conducted further evaluation by increasing the size of the training set from 25

samples to 125 malware samples (50% of the malware samples). The obtained results

are listed in Table 7.3. The DR improved from 94% when the size of the training set

is 25 to 99.6% when we used a training dataset of 125 samples.

Evaluation, Analysis and Comparison 82

Table 7.3: Malware detection results for smaller dataset.
Training set size DR FPR MMP MMA Real-Time

25 94% 3.1% 0.86 0.96 3

125 99.6% 4% 0.85 0.97 3

Real-time here means the detection is fully automatic and finishes in a reasonable amount of time.
On average it took MARD 15.2037 seconds with ACFG shrinking and 40.4288 seconds without
ACFG shrinking to complete the malware analysis and detection for 1351 samples including 25
training malware samples. This time excludes time for the training. MARD achieved the same
values for all the other performance metrics (DR, FPR, MMP and MMA) with and without
ACFG shrinking.

Experiment with Larger Dataset Using 5-fold Cross Validation

The size of the training set used was 204 samples. We conducted further evaluation

by increasing the size of the training set from 204 samples to 510 malware samples

(50% of the malware samples). The obtained results are listed in Table 7.4. The DR

improved from 97% when the size of the training set is 204 to 98.9% when we used a

training dataset of 510 samples.

Table 7.4: Malware detection results for larger dataset.

Training set size DR FPR MMP MMA Real-Time

204 97% 4.3% 0.91 0.96 3

510 98.9% 4.5% 0.91 0.97 3

Real-time here means the detection is fully automatic and finishes in a reasonable amount of time.
On average it took MARD 946.5824 seconds with ACFG shrinking and over 125400 seconds (over
34 hours) without ACFG shrinking to complete the malware analysis and detection for 3350 sam-
ples including 204 training malware samples. This time excludes time for the training. Because
of the time constraints we did not perform 5-fold cross validation without ACFG shrinking. The
time (over 34 hours) reported is just for one run of the experiment without ACFG shrinking.

7.2.3 Comparison with Others

Table 7.5 gives a comparison of ACFG with the research efforts of detecting malware

(including metamorphic malware) discussed in Chapter 2. None of the prototype

systems implemented can be used as a real-time detector. Furthermore a few systems

that claim perfect detection rate were validated using small datasets.

Out of all the research efforts, API-CFG, Call-Gram and VSA-2 show impressive

Evaluation, Analysis and Comparison 83

results. API-CFG does not yet support detection of metamorphic malware, VSA-2 is

using a controlled environment for detection, and Call-Gram is not fully automated

and their performance overheads are not mentioned in the paper. The dataset used

by VSA-2 is comparatively smaller than the other two.

Table 7.5 reports the best DR results achieved by these detectors. Out of the 9

systems, ACFG clearly shows superior results and, unlike others is fully automatic,

supports metamorphic malware detection for 64 bit Windows (PE binaries) and Linux

(ELF binaries) platforms and has the potential to be used as a real-time detector.

7.3 Performance of SWOD-CFWeight

We carried out an empirical study to analyse the correctness and efficiency of the pro-

posed SWOD-CFWeight technique. We present, in this section, the empirical study,

obtained results and analysis. We also present a comparison of SWOD-CFWeight

with ACFG using the same dataset and experimental settings as used in Section 7.2.

7.3.1 Empirical Study

First we compute the values of minsize and minratio, as defined in Definition 7 and

Definition 9 (Chapter 6) respectively. We computed and used the following values:

minsize = 5 and minratio = 70 for the dataset used in our experiments.

Eight experiments were conducted using different sizes of the dataset (described

in Section 6.2.1). We also change the training set size to provide more variations

for testing. The results of different set of experiments were validated using different

(value of n) n-fold cross validations. For example for a fair comparison we used the

same n-fold cross validation as used in Section 7.2 while comparing SWOD-CFWeight

with ACFG.

7.3.2 Performance Results of SWOD-CFWeight and Com-

parison with ACFG

All the eight experiments were run on the following machine: Intel Core i5 CPU M

430 (2 Cores) @ 2.27 GHz with 4GB RAM, operating system Windows 8 professional.

The results of all the experiments are listed in Table 7.6.

Evaluation, Analysis and Comparison 84

T
ab

le
7.
5:

S
u
m
m
ar
y
an

d
co
m
p
ar
is
on

w
it
h
A
C
F
G

of
th
e
m
et
am

or
p
h
ic

m
al
w
ar
e
an

al
y
si
s
an

d
d
et
ec
ti
on

sy
st
em

s
d
is
cu
ss
ed

in
C
h
ap

te
r
2 S
y
st
e
m

A
n
a
ly
si
s
T
y
p
e

D
R

F
P
R

D
a
ta

S
e
t
S
iz
e

R
e
a
l-
T
im

e
P
la
tf
o
rm

B
e
n
ig
n
/
M

a
lw

a
re

A
C
F
G

S
ta
ti
c

98
.9
%

4.
5%

23
30

/
10
20

3
W

in
&

L
in
u
x
64

A
P
I-
C
F
G

[3
6,

37
]

S
ta
ti
c

97
.5
3%

1.
97
%

21
40

/
23
05

7
W

in
32

C
al
l-
G
ra
m

[3
8]

S
ta
ti
c

98
.4
%

2.
7%

32
34

/
32
56

7
W

in
32

C
o
d
e-
G
ra
p
h
[5
9]

S
ta
ti
c

91
%

0%
30
0
/
10
0

7
W

in
32

D
T
A

[9
7]

D
y
n
am

ic
10
0%

3%
56

/
42

7
W

in
X
P
64

M
o
d
el
-C

h
ec
k
in
g
[8
6]

S
ta
ti
c

10
0%

1%
8
/
20
0

7
W

in
32

M
S
A

[9
4]

S
ta
ti
c

91
%

52
%

15
0
/
12
09

7
W

in
32

V
S
A
-1

[5
8]

S
ta
ti
c

10
0%

0%
25

/
30

7
W

in
32

V
S
A
-2

[4
3]

D
y
n
am

ic
98
%

2.
9%

38
5
/
82
6

7
W

in
X
P
64

R
ea
l-
ti
m
e
h
er
e
m
ea
n
s
th
e
d
et
ec
ti
on

is
fu
ll
y
au

to
m
at
ic

an
d
fi
n
is
h
es

in
a
re
as
on

ab
le

am
ou

n
t
of

ti
m
e.

T
h
e
p
er
fe
ct

re
su
lt
s

sh
ou

ld
b
e
va
li
d
at
ed

w
it
h
m
or
e
sa
m
p
le
s
th
an

te
st
ed

in
th
e
p
ap

er
.
T
h
e
va
lu
es

fo
r
O
pc
od
e-
G
ra
p
h
ar
e
n
ot

d
ir
ec
tl
y
m
en
ti
on

ed
in

th
e
p
ap

er
.
W
e
co
m
p
u
te

th
es
e
va
lu
es

b
y
p
ic
k
in
g
a
th
re
sh
ol
d
of

0.
5
fo
r
th
e
si
m
il
ar
it
y
sc
or
e
in

th
e
p
ap

er
.

Evaluation, Analysis and Comparison 85

T
ab

le
7.
6:

M
al
w
ar
e
d
et
ec
ti
on

re
su
lt
s
fo
r
S
W
O
D
-C

F
W
ei
gh
t
an

d
co
m
p
ar
is
on

w
it
h
A
C
F
G

T
e
ch

n
iq
u
e
U
se
d

T
ra

in
in
g
S
e
t

D
a
ta
se
t
S
iz
e

D
R

F
P
R

M
M

A
C
ro

ss
T
e
st
in
g
T
im

e
S
iz
e

B
e
n
ig
n
/
M

a
lw

a
re

V
a
li
d
a
ti
o
n

(s
e
co

n
d
s)

A
C
F
G

25
11
01

/
25
0

94
%

3.
1%

0.
96

10
-f
ol
d

15
.2

S
W
O
D
-C

F
W
ei
gh

t
25

11
01

/
25
0

99
.0
8%

0.
93
%

0.
99

10
-f
ol
d

2.
27

A
C
F
G

20
4

23
30

/
10
20

97
%

4.
3%

0.
96

5-
fo
ld

94
6.
58

S
W
O
D
-C

F
W
ei
gh

t
20
4

23
30

/
10
20

94
.6
9%

10
.5
9%

0.
91

5-
fo
ld

6.
13

S
W
O
D
-C

F
W
ei
gh

t
61
2

23
30

/
10
20

97
.2
6%

12
.4
4%

0.
91

1-
fo
ld

8.
38

S
W
O
D
-C

F
W
ei
gh

t
20
4

41
68

/
10
20

94
.6
9%

9.
12
%

0.
92

5-
fo
ld

12
.0
8

S
W
O
D
-C

F
W
ei
gh

t
61
2

41
68

/
10
20

97
.3
6%

10
.1
4%

0.
92

1-
fo
ld

15
.8
9

S
W
O
D
-C

F
W
ei
gh

t
61
2

42
85

/
10
20

97
.2
6%

11
.2
9%

0.
92

1-
fo
ld

15
.9
2

T
h
e
d
at
as
et

u
se
d
in

th
e
la
st

ro
w

co
n
ta
in
s
ad

d
it
io
n
al

b
en
ig
n
fi
le
s
w
h
os
e
si
ze
s
ra
n
ge

fr
om

1
M
B

to
10

M
B
.
A
ll
th
e
ot
h
er

d
at
as
et
s
co
n
ta
in

fi
le
s
(b
ot
h
b
en
ig
n
an

d
m
al
w
ar
e)

w
h
os
e
si
ze
s
ra
n
ge

u
p
to

1
M
B
.
T
es
ti
n
g
ti
m
e
is

th
e
ti
m
e
to

ch
ec
k
if
a
fi
le

is
b
en

ig
n
or

n
ot

an
d
d
o
es

n
ot

in
cl
u
d
e
th
e
tr
ai
n
in
g
ti
m
e.

T
h
e
ti
m
e
re
p
or
te
d
is
th
e
te
st
in
g
ti
m
e
of

al
l
th
e
fi
le
s
in

th
e
d
at
as
et
.

Evaluation, Analysis and Comparison 86

The first four rows in Table 7.6 compare the results of SWOD-CFWeight with

ACFG. For the smaller dataset, SWOD-CFWeight shows a much better DR and

FPR than ACFG, but for the larger dataset, ACFG shows a better DR. The main

difference between SWOD-CFWeight and ACFG is the testing time. ACFG uses

graph matching for malware detection, and in spite of reducing the graph size consid-

erably and hence the time by 2.7 times for the smaller dataset and 100 times for the

larger dataset, still the testing time is much larger compared to SWOD-CFWeight

especially for the larger dataset. As the size of a program (sample) increases the size

of the resulting graph (ACFG) also increases, and hence the time for graph match-

ing. The testing time increases from the smaller dataset to the larger dataset by 1.7

times for SWOD-CFWeight and by 61.3 times for ACFG. Keeping in view these re-

sults SWOD-CFWeight should be used instead of ACFG where the time for malware

detection is more important as in practical (real-time) anti-malware applications.

The next four rows give more insight into SWOD-CFWeight. As expected, the

testing time increases linearly with the size of the dataset. The DR decreases by

over 4% and the FPR increases by over 10% as the size of the dataset increases. We

believe that the reason for this is the size of the SWOD used in the experiments.

As mentioned before, we randomly selected 25% of the samples from the dataset to

compute the size parameters of SWOD. This shows that the size of the SWOD effects

the performance of the malware detector and needs to be computed for every new

dataset.

In our future work we will investigate this more and see how we can improve the

selection of the samples to compute an optimal size of the SWOD for a dataset. For

example, dividing benign and malware samples into classes, and then selecting an

appropriate number of samples from each class, can further optimize computation

of the size parameters of the SWOD. To achieve optimal size values for the SWOD,

the frequency of MAIL patterns in each sample must be considered when classifying

these samples.

The last row shows how the sizes of the files affects the performance of the detector.

The dataset used in the last row contains additional benign files whose sizes range

from 1 MB to 10 MB. Comparing the results in the last two rows, the testing time does

increase but just by 30 ms, the DR is almost the same and the FPR increases only by

1.15. This shows that the sizes of the files have a very small effect on the results and

can be neglected. Therefore we can say that the performance (DR and FPR, and to a

certain extent testing time) of the proposed scheme is almost independent of the size

Evaluation, Analysis and Comparison 87

of the files. To verify this claim, it will be validated in future work with additional

experiments.

7.3.3 Comparison with Others

Table 7.7 gives a comparison of SWOD-CFWeight with the existing opcode-based

malware detection approaches discussed in Chapter 2. None of the prototype systems’

current implementations can be used as a real-time detector. Most of the techniques,

such as Chi-Squared, Opcode-SD, Opcode-Graph and Opcode-Histogram show good

results, and some of them may have the potential to be used in a real-time detector by

improving their implementation. Opcode-Seqs-Santos and Opcode-Seqs-Shabtai also

show impressive results but do not yet support detection of metamorphic malware.

SWOD is a window that represents differences in MAIL Patterns distributions

(instead of opcodes) and hence makes the analysis independent of different compilers,

ISAs and OSs, compared to existing techniques. SWOD size can change, this property

gives a user (anti-malware tool developers) the ability to select appropriate parameters

for a dataset to further optimize malware detection.

All the systems use the frequency of occurrence of opcodes to capture the execution

flow of a program, but fail to capture the control flow of a program that changes

the execution flow of the program. CFWeight proposed in this paper include this

information to an extent that helps detect metamorphic malware.

Table 7.7 reports the best DR result achieved by these detection techniques. Out of

the 9 techniques, SWOD-CFWeight clearly shows superior results and, unlike others

supports metamorphic malware detection for 64 bit Windows (PE binaries) and Linux

(ELF binaries) platforms and has the potential to be used in a real-time detector.

Evaluation, Analysis and Comparison 88

T
ab

le
7.
7:

C
om

p
ar
is
on

of
S
W
O
D
-C

F
W
ei
gh
t
w
it
h
th
e
m
al
w
ar
e
d
et
ec
ti
on

te
ch
n
iq
u
es

d
is
cu
ss
ed

in
C
h
ap

te
r
2

T
e
ch

n
iq
u
e

A
n
a
ly
si
s

D
R

F
P
R

D
a
ta
se
t
S
iz
e

R
e
a
l

P
la
tf
o
rm

T
y
p
e

B
e
n
ig
n
/
M

a
lw

a
re

T
im

e

S
W
O
D
-C

F
W
ei
gh

t
S
ta
ti
c

99
.0
8%

0.
93
%

11
01

/
25
0

3
W

in
&

L
in
u
x
64

O
p
co
d
e-
H
M
M
-W

on
g
[9
6]

S
ta
ti
c

∼
90
%

∼
2%

40
/
20
0

7
W

in
&

L
in
u
x
32

C
h
i-
S
q
u
ar
ed

[9
3]

S
ta
ti
c

∼
98
%

∼
2%

40
/
20
0

7
W

in
&

L
in
u
x
32

O
p
co
d
e-
H
M
M
-A

u
st
in

[5
]

S
ta
ti
c

93
.5
%

0.
5%

10
2
/
77

7
W

in
&

L
in
u
x
32

O
p
co
d
e-
S
D

[8
3]

S
ta
ti
c

∼
98
%

∼
0.
5%

40
/
80
0

7
L
in
u
x
32

O
p
co
d
e-
G
ra
p
h
[7
8]

S
ta
ti
c

10
0%

1%
41

/
20
0

7
W

in
&

L
in
u
x
32

O
p
co
d
e-
H
is
to
gr
am

[7
5]

S
ta
ti
c

10
0%

0%
40

/
60

7
W

in
&

L
in
u
x
32

O
p
co
d
e-
S
eq
s-
S
an

to
s
[8
0]

S
ta
ti
c

96
%

6%
10
00

/
10
00

7
W

in
32

O
p
co
d
e-
S
eq
s-
S
h
ab

ta
i
[8
2]

S
ta
ti
c

∼
95
%

∼
0.
1%

20
41
6
/
56
77

7
W

in
32

S
om

e
of

th
e
ab

ov
e
te
ch
n
iq
u
es
,
n
ee
d
m
or
e
n
u
m
b
er

of
b
en
ig
n
sa
m
p
le
s
(m

or
e
th
an

40
/4
1)

th
an

te
st
ed

in
th
e
p
ap

er
s
fo
r
fu
rt
h
er

va
li
d
at
io
n
.
T
h
e
D
R

an
d
F
P
R

va
lu
es

fo
r
O
pc
od
e-
G
ra
p
h
ar
e
n
ot

d
ir
ec
tl
y
m
en
ti
on

ed
in

th
e
p
ap

er
.
W
e
co
m
p
u
te
d
th
es
e
va
lu
es

b
y
p
ic
k
in
g
a
th
re
sh
ol
d
of

0.
5
fr
om

th
e
si
m
il
ar
it
y
sc
or
e
in

th
e
p
ap

er
.

Conclusion and Future Work 89

Chapter 8

Conclusion and Future Work

8.1 Discussion

There are two basic techniques for malware analysis and detection on the end host.

The technique proposed in this thesis is based primarily on static analysis. We discuss

the advantages and weaknesses of static analysis versus dynamic analysis and then

summariaze the contributions made in this thesis.

8.1.1 Static Analysis

Static analysis is performed on a binary program without executing the program. This

technique is mostly used by antimalware software for automatic malware analysis and

detection. In general, the complexity of the methods used ranges from simple to deep

analysis. Simple static analysis is usually based on string or instruction sequence

scanning and matching [44, 90]. More sophisticated methods (deep analysis) rely on

control flow analysis [1, 67], value set analysis [6], opcode-based analysis [10] or more

complex methods such as model checking [21], etc.

Depending on the method used, static analysis has the potential to be used for

real-time malware detection. It captures all the paths taken by an executable program

and is easier to automate. There is no possibility of infecting the end point system,

because there is no need to run the program to detect the malware. These advantages

make static analysis suitable for use in an industrial antimalware software product

for malware detection in end point systems.

Beside these advantages, there are some disadvantages of static analysis:

Conclusion and Future Work 90

1. It is difficult for a static analysis tool to support different platforms for malware

detection.

2. Static analysis for malware detection can be time consuming when conducted

manually.

3. When a program cannot be unpacked, then the instructions in a binary file on

disk will be different than the instructions at runtime. This makes it difficult for

a static analysis tool to detect malware that introduce changes during runtime,

such as with metamorphic malware.

8.1.2 Dynamic Analysis

Dynamic analysis is performed on a binary program when the program is executing.

This technique is mostly used by antimalware software for manual malware analysis

to get a specific signature of a malware to be used later for malware detection. This

technique is also used when a program cannot be unpacked during static analysis.

The emphasis on this thesis is more on correct malware detection than malware

analysis, so our approach (as mentioned before in Chapter 4) to the problem of un-

packing is, that if a program cannot be unpacked with the available unpackers then

it is detected as malware. Dynamic analysis can then be performed in a controlled

environment for unpacking and classifying the malware. Observing different behav-

iors of a running program in a dynamic environment may produce a high malware

detection rate but is not suitable for real-time detection.

The program automatically unpacks itself when it runs, and with appropriate

tools, dynamic analysis is easier to conduct on any platofrm.

Beside these advantages, there are some disadvantages of dynamic analysis:

1. The inability to capture all the executable paths of a program for malware

detection, as shown in Chapter 3. One possible solution of this problem, is

to force a conditional branch to take multiple paths, which is a non-trivial

problem to solve. In general, exploring all the multiple execution paths in a

program using this method is time consuming and may render this technique

impractical. Recently, Moser et al. [66] explored multiple execution paths

for malware analysis in a dynamic-only environment (an emulator), based on

specific inputs, and therefore, in general, failed to consider all the execution

paths in a program.

Conclusion and Future Work 91

2. There is a possibility of infecting the end point system, because there is a need

to run the program to detect the malware.

3. The ability of a malware program to detect if it is running in a controlled envi-

ronment (emulator, virtual machine, etc) and stop to evade analysis makes this

technique unreliable for malware detection. Recently a sophisticated banking

malware program, Shylock Trojan [100], detected execution on virtual machines

to evade analysis.

4. Running a program in a controlled environment for automatic analysis may take

more time than performing an automatic static analysis on the same program.

These disadvantages make dynamic analysis unsuitable for use in an industrial

antimalware software product for malware detection at the end point systems.

8.2 Summary of Contributions

As is clear from the above discussion, out of the two techniques described, static

analysis is more suitable for real-time malware detection. For a complete malware

analysis and detection system, a combination of these two techniques are used, and

is called a hybrid system.

In this thesis, we use static analysis, and mitigate its disadvantages by providing

platform independence, automation and optimizations for real-time metamorphic

malware detection. In the future we will combine lightweight dynamic analysis with

static analysis for in-browser malware analysis and detection.

In this thesis, we have presented a new real-time metamorphic malware detection

framework named MARD. The framework is based on MAIL as a new intermediate

language, and implements two novel malware detection techniques, ACFG and

SWOD-CFWeight. We have shown through experimental evaluation, its effectiveness

for metamorphic malware analysis and real-time detection. We have also compared

MARD with other such detection systems. MARD with MAIL and the two proposed

techniques provide: (1) detection automation (2) platform independence and (3)

optimizations for real-time performance. In the future, an adequate unpacker will be

interfaced with MARD.

Conclusion and Future Work 92

MAIL provides an abstract representation of an assembly program and hence the

ability for a tool to automate malware analysis and detection. By translating binaries

compiled for different platforms to MAIL, a tool can achieve platform independence.

Each MAIL statement is annotated with patterns that can be used by a tool to

optimize malware analysis and detection.

It is important to note that a program translated to MAIL when executed may

not produce the same output as the original program. MAIL is designed to perform

static binary analysis and is not suitable for performing dynamic binary analysis.

The patterns developed, if used with a behavioral signature of a binary program,

have the capability to produce useful classifications for malware analysis and detec-

tion, as shown by the results in Chapter 7. However if the patterns are used alone, it

may not produce the desired results.

The side effects of an assembly instruction are not directly included in the MAIL

statement. With the presence of various flag registers in the MAIL language it

is possible for a malware analysis tool to include the side effect(s) of an assem-

bly instruction by generating more statements and updating the affected flag registers.

ACFG can enhance the detection of metamorphic malware and can handle mal-

ware with smaller CFGs. We have also optimized the runtime of a malware detector

through parallelization and ACFG reduction, that makes the comparison (matching

with other ACFGs) faster, keeping the same accuracy (without ACFG reduction)

for malware detection, than other techniques that use CFG for malware detection.

The annotations in an ACFG provide more information, and hence can provide more

accuracy than a CFG.

Currently we are carrying out further research into using similar techniques for

web malware analysis and detection. Our future work will also consist of strengthen-

ing our existing algorithms by investigating and incorporating more powerful pattern

recognition techniques.

SWOD mitigates and addresses issues related to the change of the frequency of

opcodes in a program, such as the use of different compilers, compiler optimizations

and OSs. CFWeight includes control flow semantics of a program to an extent that

helps reduce the runtime considerably compared to other techniques (that also use

control flow semantics) and results in a high detection rate for metamorphic malware

detection.

Conclusion and Future Work 93

8.3 Future Work

The techniques and mechanisms of infection and malware are moving from PCs to

mobile devices, so in the future we will be extending the techniques and tools that

are developed in this thesis for web and mobile applications security.

Lightweight dynamic analysis combined with static analysis may be suitable to

analyse applications that run inside a web browser for malware detection, such as a

combination of Javascript, HTML and CSS (cascading style sheets) that rely on a

common web browser to render the application. Such a hybrid system [29] can use

an already processed structure (e.g. an abstract syntax tree [1] of the Javascript) by

the web browser for malware analysis and detection.

In the future, we will explore different methods to select samples from the dataset

to compute an optimal size of SWOD. We will also investigate the performance of

SWOD-CFWeight using much larger files (over 10 MB) and datasets. Keeping in

view the ubiquitousness of multicores in the host machines (also called the end points)

and to further optimize the runtime, we plan to parallelize the implementation of

SWOD-CFWeight in MARD. We have only tested metamorphic malware as part of

our experiments, but we believe that our proposed technique can also be used for the

detection of other malware and would like to carry out such experiments in the future.

The MARD framework proposed in this thesis contains parameters and com-

ponents that can be adjusted, fine tuned and extended to adapt to different

environments and systems. The tool developed as part of this thesis to implement

the framework is a prototype system. It has the potential to be used in an industrial

product after refinement of the two proposed techniques with extensive experiments.

SWOD-CFWeight is very suitable for use in a real-time detector.

We believe our work in this thesis provides a promising basis for future researchers

interested in the area of real-time metamorphic malware analysis and detection.

MAIL Grammar 94

Appendix A

MAIL Grammar

TITLE: MAIL (Malware Analysis Intermediate Language) Grammar in EBNF

AUTHOR: Shahid Alam (salam@cs.uvic.ca)

DATED: March 24, 2013

REVISION: 1.0

DESCRIPTION:

The grammar can be defined by a 3-tuple G = (T, N, P) where

T = set of terminals

N = set of non-terminals

P = set of production rules

This document describes the grammar for MAIL. The grammar uses the EBNF,

syntax where ’|’ means a choice, ? means optional, * means zero or more

times and + means one or more times. Line Comments start with "--".

Terminator symbol is ";". Terminals are enclosed in single quotes.

-- PRODUCTION RULES --

statements ::= (statement*) ;

statement ::= assignment_s+

| control_s+

| condition_s+

| function_s+

| jump_s+

| lib_call_s+

MAIL Grammar 95

| ’halt’

| ’lock’ ;

assignment_s ::= register_s

| address_s ;

register_s ::= register ’=’ (math_operator)? expr

| register ’=’ (expr)? math_operator expr

| register ’=’ lib_call_s ;

address_s ::= address ’=’ (math_operator)? expr

| address ’=’ (expr)? math_operator expr

| address ’=’ lib_call_s ;

control_s ::= (’if’ condition_s (jump_s | assignment_s))

(’else’ (jump_s | assignment_s))? ;

jump_s ::= ’jmp’ address ;

lib_call_s ::= letter+ ’(’ address (, args)* ’)’ ;

function_s ::= ’start_function_’ digit+ statement ’end_function_’ digit+ ;

condition_s ::= (expr rel_operator expr)+ ;

-- HELPER RULES --

expr ::= register

| address

| digit+ ;

register ::= ’eflags’

| ’gr_’ digit+

| ’fr_’ digit+

| ’sp’

| register_name (’:’ register_name)? ;

register_name ::= letter+ [’0’ - ’9’]? ;

MAIL Grammar 96

address ::= ’[’ digit+ ’]’

| reg_address

| ’UNKNOWN’ ;

reg_address ::= ’[’ register (arith_operator (register | digit+))* ’]’

| ’[’ sp ’=’ sp (’+’ | ’-’) digit+ ’]’

| ’[’ register (’:’ register)? ’]’ ;

letter ::= [’a’ - ’z’] [’A’ - ’Z’] ;

digit ::= ’0x’ [’0’ - ’9’] | [’A’ - ’F’] ;

math_operator ::= arith_operator | log_operator ;

arith_operator ::= ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’.’ ;

log_operator ::= ’and’ | ’or’ | ’xor’ | ! | ’<<’ | ’>>’ ;

args ::= address (’,’ address)* ;

rel_operator ::= ’<’ | ’>’ | ’<=’ | ’>=’ | ’==’ | ’!=’ ;

comment ::= ’--’ blank | tab | character | comment* newline ;

character ::= ’!’ | ’"’ | ’#’ | ’$’ | ’%’ | ’&’ | ’’’ | ’(’ | ’)’

| ’[’ | ’\’ | ’]’ | ’^’ | ’_’ | ’‘’ | ’{’ | ’|’ | ’}’

| ’*’ | ’+’ | ’-’ | ’/’ | ’,’ | ’.’ | ’~’

| ’:’ | ’;’ | ’<’ | ’=’ | ’>’ | ’?’ | ’@’

| [’0’ - ’9’] | letter ;

-- TOKENS --

WS ::= blank | tab | newline ;

COMMENT ::= ’--’ blank | tab | character | comment* newline ;

NUM ::= digit+ ;

COMMA ::= ’,’ ;

COLON ::= ’:’ ;

SCOLON ::= ’;’ ;

LOP ::= ’and’ | ’or’ | ’xor’ | ! | ’<<’ | ’>>’ ;

AOP ::= ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’.’ ;

MAIL Grammar 97

ROP ::= ’<’ | ’>’ | ’<=’ | ’>=’ | ’==’ | ’!=’ ;

SFUN :: ’start_function_’ digit+ ;

EFUN :: ’end_function_’ digit+ ;

EQUAL :: ’=’ ;

MUL ::= ’*’ ;

DIV ::= ’/’ ;

PLUS ::= ’+’ ;

MINUS ::= ’-’ ;

LBRKT1 ::= ’(’ ;

RBRKT1 ::= ’)’ ;

LBRKT2 ::= ’[’ ;

RBRKT2 ::= ’]’ ;

IF ::= ’if’ ;

ELSE ::= ’else’ ;

UNKNOWN ::= ’UNKNOWN’ ;

One of the Reports Generated by MARD 98

Appendix B

One of the Reports Generated by

MARD

The complete report is more than 20000 lines long, so is not listed here in its entirety.

The translation time reported here includes the time to read, disassemble, translate

to MAIL and building CFG of the program. The total testing time reported here

is the testing (a 1 means benign and a 0 means a malware) time of all the testing

programs in the dataset, and excludes the translating time.

--

| Printing Report |

--

MAX THREADS: 0

|

| Parsing ..\Virus-Samples\M__MWOR\DC0.5\MWOR_0

|

Parser::BuildCFG: PE signature not found. Now checking for the ELF signature

Parser::Parse: ELF file

Translation time: 0.015 second(s)

Number of blocks: ..\Virus-Samples\M__MWOR\DC0.5\MWOR_0: 660

Number of functions: ..\Virus-Samples\M__MWOR\DC0.5\MWOR_0: 23

|

| Parsing ..\Virus-Samples\M__MWOR\DC0.5\MWOR_1

|

Parser::BuildCFG: PE signature not found. Now checking for the ELF signature

Parser::Parse: ELF file

Translation time: 0.014 second(s)

Number of blocks: ..\Virus-Samples\M__MWOR\DC0.5\MWOR_1: 625

Number of functions: ..\Virus-Samples\M__MWOR\DC0.5\MWOR_1: 34

One of the Reports Generated by MARD 99

- - - - - - - -

- - - - - - - -

- - - - - - - -

Parser::Parse: PE file

Translation time: 0.001 second(s)

Number of blocks: ..\Virus-Samples\M__NGVCK\NGVCK_1.EXE: 93

Number of functions: ..\Virus-Samples\M__NGVCK\NGVCK_1.EXE: 13

|

| Parsing ..\Virus-Samples\M__NGVCK\NGVCK_10.EXE

|

Parser::Parse: PE file

Translation time: 0.001 second(s)

Number of blocks: ..\Virus-Samples\M__NGVCK\NGVCK_10.EXE: 90

Number of functions: ..\Virus-Samples\M__NGVCK\NGVCK_10.EXE: 13

|

| Parsing ..\Virus-Samples\M__NGVCK\NGVCK_11.EXE

|

Parser::Parse: PE file

Translation time: 0.002 second(s)

Number of blocks: ..\Virus-Samples\M__NGVCK\NGVCK_11.EXE: 95

Number of functions: ..\Virus-Samples\M__NGVCK\NGVCK_11.EXE: 12

|

| Parsing ..\Virus-Samples\M__NGVCK\NGVCK_12.EXE

|

- - - - - - - -

- - - - - - - -

- - - - - - - -

|

| Parsing ..\sample\agcore.dll

|

Parser::Parse: PE file

Translation time: 9.378 second(s)

Number of blocks: ..\sample\agcore.dll: 505666

Number of functions: ..\sample\agcore.dll: 32283

- - - - - - - -

- - - - - - - -

- - - - - - - -

|

| Parsing ..\sample\GoogleUpdaterService.exe

|

Parser::Parse: PE file

Translation time: 0.132 second(s)

Number of blocks: ..\sample\GoogleUpdaterService.exe: 13195

Number of functions: ..\sample\GoogleUpdaterService.exe: 1121

- - - - - - - -

- - - - - - - -

- - - - - - - -

|

| Parsing ..\sample\iecleanup.exe

|

Parser::Parse: PE file

Translation time: 0.111 second(s)

Number of blocks: ..\sample\iecleanup.exe: 6759

One of the Reports Generated by MARD 100

Number of functions: ..\sample\iecleanup.exe: 483

- - - - - - - -

- - - - - - - -

- - - - - - - -

Parser::Parse: PE file

Translation time: 1.377 second(s)

Number of blocks: ..\sample\gij-3.exe: 85613

Number of functions: ..\sample\gij-3.exe: 8048

- - - - - - - -

- - - - - - - -

- - - - - - - -

|

| Parsing ..\sample\iTunes.exe

|

Parser::Parse: PE file

Translation time: 0.02 second(s)

Number of blocks: ..\sample\iTunes.exe: 2196

Number of functions: ..\sample\iTunes.exe: 203

|

| Parsing ..\sample\WORDVIEW.EXE

|

- - - - - - - -

- - - - - - - -

- - - - - - - -

Parser::Parse: PE file

Translation time: 10.14 second(s)

Number of blocks: ..\sample\WORDVIEW.EXE: 484739

Number of functions: ..\sample\WORDVIEW.EXE: 18929

- - - - - - - -

- - - - - - - -

- - - - - - - -

| Printing Report For Signature Matching |

Filename Number Benign

..\sample_bisect.dll 0 1

..\sample_bsddb.dll 1 1

..\sample_Client.dll 2 1

..\sample_codecs_cn.dll 3 1

..\sample_codecs_hk.dll 4 1

..\sample_codecs_iso2022.dll 5 1

..\sample_codecs_jp.dll 6 1

..\sample_codecs_kr.dll 7 1

..\sample_codecs_tw.dll 8 1

..\sample_collections.dll 9 1

..\sample_Core.dll 10 1

..\sample_csv.dll 11 1

..\sample_ctypes.dll 12 1

..\sample_ctypes_test.dll 13 1

..\sample_curses.dll 14 1

..\sample_curses_panel.dll 15 1

..\sample_Delta.dll 16 1

One of the Reports Generated by MARD 101

..\sample_elementtree.dll 17 1

..\sample_Fs.dll 18 1

..\sample_functools.dll 19 1

..\sample_hashlib.dll 20 1

..\sample_heapq.dll 21 1

..\sample_hotshot.dll 22 1

..\sample_io.dll 23 1

..\sample_ispmres.dll 24 0

..\sample_isusres.dll 25 1

..\sample_json.dll 26 1

..\sample_locale.dll 27 1

..\sample_lsprof.dll 28 1

..\sample_multibytecodec.dll 29 1

..\sample_multiprocessing.dll 30 1

..\sample_Ra.dll 31 1

..\sample_random.dll 32 1

- - - - - - - -

- - - - - - - -

- - - - - - - -

..\sample\Microsoft.Expression.Utility.resources.dll 1734 1

..\sample\Microsoft.Expression.WindowsXamlPlatform.dll 1735 1

..\sample\Microsoft.Expression.WindowsXamlPlatform.resources.dll 1736 1

..\sample\Microsoft.Expression.WpfPlatform.dll 1737 1

..\sample\Microsoft.Expression.WpfPlatform.resources.dll 1738 1

..\sample\Microsoft.Ink.dll 1739 1

..\sample\Microsoft.JScript.dll 1740 1

..\sample\Microsoft.Management.Infrastructure.dll 1741 1

..\sample\Microsoft.Management.OData.dll 1742 1

..\sample\Microsoft.ManagementConsole.dll 1743 1

..\sample\microsoft.msxml.dll 1744 1

..\sample\Microsoft.NetEnterpriseServers.ExceptionMessageBox.dll 1745 1

..\sample\Microsoft.PowerShell.Activities.dll 1746 1

..\sample\Microsoft.PowerShell.Commands.Management.dll 1747 1

..\sample\Microsoft.PowerShell.Commands.Utility.dll 1748 1

..\sample\Microsoft.PowerShell.ConsoleHost.dll 1749 1

..\sample\Microsoft.PowerShell.Core.Activities.dll 1750 1

..\sample\Microsoft.PowerShell.Diagnostics.Activities.dll 1751 1

..\sample\Microsoft.PowerShell.Management.Activities.dll 1752 1

..\sample\Microsoft.PowerShell.ScheduledJob.dll 1753 1

..\sample\Microsoft.PowerShell.Security.Activities.dll 1754 1

..\sample\Microsoft.PowerShell.Security.dll 1755 0

..\sample\Microsoft.PowerShell.Utility.Activities.dll 1756 1

..\sample\Microsoft.PowerShell.Workflow.ServiceCore.dll 1757 1

..\sample\Microsoft.SqlServer.ConnectionInfo.dll 1758 1

..\sample\Microsoft.SqlServer.ConnectionInfoExtended.dll 1759 1

..\sample\Microsoft.SqlServer.Dac.dll 1760 1

..\sample\Microsoft.SqlServer.Dac.resources.dll 1761 0

..\sample\Microsoft.SqlServer.DataStorage.dll 1762 1

..\sample\Microsoft.SqlServer.DlgGrid.dll 1763 1

..\sample\Microsoft.SqlServer.Dmf.Adapters.dll 1764 1

..\sample\Microsoft.SqlServer.Dmf.dll 1765 1

..\sample\Microsoft.SqlServer.DmfSqlClrWrapper.dll 1766 1

..\sample\Microsoft.SqlServer.GridControl.dll 1767 1

One of the Reports Generated by MARD 102

..\sample\Microsoft.SqlServer.Management.Collector.dll 1768 1

..\sample\Microsoft.SqlServer.Management.CollectorEnum.dll 1769 1

..\sample\Microsoft.SqlServer.Management.Controls.dll 1770 1

..\sample\Microsoft.SqlServer.Management.HelpViewer.dll 1771 1

..\sample\Microsoft.SqlServer.Management.MultiServerConnection.dll 1772 1

..\sample\Microsoft.SqlServer.Management.Sdk.Sfc.dll 1773 1

..\sample\Microsoft.SqlServer.Management.SDK.SqlStudio.dll 1774 1

..\sample\Microsoft.SqlServer.Management.SqlWizardFramework.dll 1775 1

..\sample\Microsoft.SqlServer.Management.UserSettings.dll 1776 1

..\sample\Microsoft.SqlServer.Management.Utility.dll 1777 1

..\sample\Microsoft.SqlServer.Management.UtilityEnum.dll 1778 1

..\sample\Microsoft.SqlServer.Management.XEvent.dll 1779 1

..\sample\Microsoft.SqlServer.Management.XEventEnum.dll 1780 1

..\sample\Microsoft.SqlServer.PolicyEnum.dll 1781 1

..\sample\Microsoft.SqlServer.RegSvrEnum.dll 1782 1

..\sample\Microsoft.SqlServer.ServiceBrokerEnum.dll 1783 1

..\sample\Microsoft.SqlServer.SmoExtended.dll 1784 1

..\sample\Microsoft.SqlServer.SqlWmiManagement.dll 1785 1

..\sample\Microsoft.SqlServer.Sqm.dll 1786 1

- - - - - - - -

- - - - - - - -

- - - - - - - -

..\sample\wcstoreproxy.dll 4010 1

..\sample\wcsync.dll 4011 1

..\sample\WDE.dll 4012 1

..\sample\WDExpress.exe 4013 1

..\sample\WDExpressDesc.dll 4014 1

..\sample\WDExpressMnu.dll 4015 1

..\sample\WDExpressmui.dll 4016 1

..\sample\weave.exe 4017 1

..\sample\webapprt-stub.exe 4018 1

..\sample\webapp-uninstaller.exe 4019 0

..\sample\webdirprj.dll 4020 1

..\sample\webdirprjui.dll 4021 1

..\sample\WebKit2WebProcess.exe 4022 1

..\sample\WebKitQuartzCoreAdditions.dll 4023 1

..\sample\WFC.exe 4024 1

..\sample\wget.exe 4025 1

..\sample\where.exe 4026 1

..\sample\whets32MP.exe 4027 1

..\sample\whets32SSE.exe 4028 1

..\sample\whets64MP.exe 4029 1

..\sample\whets8thread32.exe 4030 1

..\sample\whets8Thread64.exe 4031 1

..\sample\which.exe 4032 1

..\sample\who.exe 4033 1

..\sample\whoami.exe 4034 1

..\sample\WiLogUtl.exe 4035 1

..\sample\wimax.dll 4036 1

..\sample\wimaxasncp.dll 4037 1

..\sample\wimaxmacphy.dll 4038 1

..\sample\wimserv.exe 4039 1

..\sample\Win32.dll 4040 1

One of the Reports Generated by MARD 103

..\sample\Win32BinaryFile.dll 4041 1

..\sample\Win32Site.dll 4042 1

..\sample\winamp.exe 4043 1

..\sample\winampa.exe 4044 1

..\sample\windmc.exe 4045 1

..\sample\WindowsBase.dll 4046 1

..\sample\WindowsFormsIntegration.Design.dll 4047 1

..\sample\WindowsFormsIntegration.dll 4048 0

..\sample\WindowsFormsIntegration.Package.dll 4049 1

..\sample\WindowsFormsIntegration.PackageUI.dll 4050 1

..\sample\WindowsLive.Client.dll 4051 1

..\sample\WindowsLive.Writer.Api.dll 4052 1

..\sample\WindowsLive.Writer.ApplicationFramework.dll 4053 1

..\sample\WindowsLive.Writer.BlogClient.dll 4054 1

..\sample\WindowsLive.Writer.BrowserControl.dll 4055 1

..\sample\WindowsLive.Writer.Controls.dll 4056 1

..\sample\WindowsLive.Writer.Extensibility.dll 4057 1

..\sample\WindowsLive.Writer.FileDestinations.dll 4058 1

..\sample\WindowsLive.Writer.HtmlEditor.dll 4059 1

..\sample\WindowsLive.Writer.HtmlParser.dll 4060 1

..\sample\WindowsLive.Writer.Instrumentation.dll 4061 1

..\sample\WindowsLive.Writer.Interop.dll 4062 1

..\sample\WindowsLive.Writer.Interop.Mshtml.dll 4063 1

..\sample\WindowsLive.Writer.Interop.SHDocVw.dll 4064 1

- - - - - - - -

- - - - - - - -

- - - - - - - -

..\Virus-Samples\M__MWOR\DC1.0\MWOR_30 4409 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_31 4410 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_32 4411 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_33 4412 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_34 4413 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_35 4414 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_36 4415 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_37 4416 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_38 4417 1

..\Virus-Samples\M__MWOR\DC1.0\MWOR_39 4418 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_4 4419 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_40 4420 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_41 4421 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_42 4422 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_43 4423 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_44 4424 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_45 4425 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_46 4426 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_47 4427 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_48 4428 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_49 4429 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_5 4430 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_50 4431 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_51 4432 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_52 4433 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_53 4434 0

One of the Reports Generated by MARD 104

..\Virus-Samples\M__MWOR\DC1.0\MWOR_54 4435 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_55 4436 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_56 4437 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_57 4438 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_58 4439 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_59 4440 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_6 4441 0

..\Virus-Samples\M__MWOR\DC1.0\MWOR_60 4442 0

- - - - - - - -

- - - - - - - -

- - - - - - - -

..\Virus-Samples\M__NGVCK\ngvck190.EXE 5244 0

..\Virus-Samples\M__NGVCK\ngvck191.EXE 5245 0

..\Virus-Samples\M__NGVCK\ngvck192.EXE 5246 0

..\Virus-Samples\M__NGVCK\ngvck193.EXE 5247 0

..\Virus-Samples\M__NGVCK\ngvck194.EXE 5248 0

..\Virus-Samples\M__NGVCK\ngvck195.EXE 5249 0

..\Virus-Samples\M__NGVCK\ngvck196.EXE 5250 0

..\Virus-Samples\M__NGVCK\ngvck197.EXE 5251 0

..\Virus-Samples\M__NGVCK\ngvck198.EXE 5252 0

..\Virus-Samples\M__NGVCK\ngvck199.EXE 5253 0

..\Virus-Samples\M__NGVCK\ngvck200.EXE 5254 0

..\Virus-Samples\M__G2\G2_1.EXE 5255 0

..\Virus-Samples\M__G2\G2_10.EXE 5256 0

..\Virus-Samples\M__G2\G2_11.EXE 5257 0

..\Virus-Samples\M__G2\G2_12.EXE 5258 0

..\Virus-Samples\M__G2\G2_13.EXE 5259 0

..\Virus-Samples\M__G2\G2_14.EXE 5260 0

..\Virus-Samples\M__G2\G2_15.EXE 5261 0

- - - - - - - -

- - - - - - - -

- - - - - - - -

..\Virus-Samples\M__G2\G2_40.EXE 5289 0

..\Virus-Samples\M__G2\G2_41.EXE 5290 0

..\Virus-Samples\M__G2\G2_42.EXE 5291 0

..\Virus-Samples\M__G2\G2_43.EXE 5292 0

..\Virus-Samples\M__G2\G2_44.EXE 5293 0

..\Virus-Samples\M__G2\G2_45.EXE 5294 0

..\Virus-Samples\M__G2\G2_46.EXE 5295 0

..\Virus-Samples\M__G2\G2_47.EXE 5296 0

..\Virus-Samples\M__G2\G2_48.EXE 5297 0

..\Virus-Samples\M__G2\G2_49.EXE 5298 0

..\Virus-Samples\M__G2\G2_5.EXE 5299 0

..\Virus-Samples\M__G2\G2_50.EXE 5300 0

..\Virus-Samples\M__G2\G2_6.EXE 5301 0

..\Virus-Samples\M__G2\G2_7.EXE 5302 0

..\Virus-Samples\M__G2\G2_8.EXE 5303 0

..\Virus-Samples\M__G2\G2_9.EXE 5304 0

Total testing time: 15.915 second(s)

105

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2006.

[2] Shahid Alam. Examples of CFGs Before and After Shrinking. http://www.cs.

uvic.ca/~salam/PhD/cfgs.html, 2013.

[3] Shahid Alam. MAIL: Malware Analysis Intermediate Language. http://www.

cs.uvic.ca/~salam/PhD/TR-MAIL.pdf, 2013.

[4] S. S. Anju, P. Harmya, Noopa Jagadeesh, and R. Darsana. Malware Detection

Using Assembly Code and Control Flow Graph Optimization. In A2CWiC,

2010, pages 65:1 – 65:4, New York, NY, USA, 2010. ACM.

[5] Thomas H. Austin, Eric Filiol, Sebastien Josse, and Mark Stamp. Exploring

Hidden Markov Models for Virus Analysis: A Semantic Approach. In Sys-

tem Sciences (HICSS), 2013 46th Hawaii International Conference on, pages

5039–5048, Jan 2013.

[6] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum. WYSINWYX: What

You See Is Not What You eXecute. PhD thesis, University of Wisconsin, 2005.

[7] Burak Bayoglu and Ibrahim Sogukpinar. Graph Based Signature Classes for

Detecting Polymorphic Worms via Content Analysis. Comput. Netw., 56(2):

832–844, February 2012. ISSN 1389-1286.

[8] Donabelle Baysa, RichardM. Low, and Mark Stamp. Structural entropy and

metamorphic malware. Journal of Computer Virology and Hacking Techniques,

9(4):179–192, 2013.

http://www.cs.uvic.ca/~salam/PhD/cfgs.html
http://www.cs.uvic.ca/~salam/PhD/cfgs.html
http://www.cs.uvic.ca/~salam/PhD/TR-MAIL.pdf
http://www.cs.uvic.ca/~salam/PhD/TR-MAIL.pdf

Bibliography 106

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PAR-

SEC Benchmark Suite: Characterization and Architectural Implications. In

PACT’08, pages 72 – 81, New York, NY, USA, 2008. ACM.

[10] Daniel Bilar. Opcodes As Predictor for Malware. International Journal of

Electronic Security and Digital Forensics, 1(2):156–168, January 2007.

[11] Jean-Marie Borello and Ludovic M. Code obfuscation techniques for meta-

morphic viruses. Journal in Computer Virology, 4(3):211–220, 2008. ISSN

1772-9890.

[12] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting Self-

Mutating Malware Using Control-Flow Graph Matching. In DIMVA, 2006,

pages 129 – 143, Berlin, Heidelberg, 2006. Springer-Verlag.

[13] PeterA. Buhr and Roy Krischer. Bound Exceptions in Object-Oriented Pro-

gramming. In Advanced Topics in Exception Handling Techniques, volume 4119

of Lecture Notes in Computer Science, pages 1–21. Springer Berlin Heidelberg,

2006.

[14] Gerardo Canfora, AntonioNiccolo Iannaccone, and CorradoAaron Visaggio.

Static analysis for the detection of metamorphic computer viruses using

repeated-instructions counting heuristics. Journal of Computer Virology and

Hacking Techniques, 10(1):11–27, 2014.

[15] S. Cesare and Yang Xiang. A fast flowgraph based classification system for

packed and polymorphic malware on the endhost. In AINA, 2010, pages 721 –

728, April 2010.

[16] S. Cesare and Yang Xiang. Malware Variant Detection Using Similarity Search

over Sets of Control Flow Graphs. In TrustCom, 2011, pages 181 – 189, Novem-

ber 2011.

[17] S. Cesare and Yang Xiang. Wire – A Formal Intermediate Language for Binary

Analysis. In TrustCom, 2012, pages 515 – 524, June 2012.

[18] Silvio Cesare and Yang Xiang. Classification of Malware Using Structured Con-

trol Flow. In AusPDC, 2010, pages 61 – 70, Darlinghurst, Australia, Australia,

2010. Australian Computer Society, Inc.

Bibliography 107

[19] Silvio Cesare, Yang Xiang, and Wanlei Zhou. Malwise – An Effective and

Efficient Classification System for Packed and Polymorphic Malware. IEEE

Transactions on Computers, 62(6):1193–1206, 2013. ISSN 0018-9340.

[20] M. Christodorescu, S. Jha, S.A. Seshia, D. Song, and R.E. Bryant. Semantics-

Aware Malware Detection. In Security and Privacy, 2005 IEEE Symposium on,

pages 32 – 46, May 2005.

[21] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model checking.

MIT Press, Cambridge, MA, USA, 1999.

[22] F. Cohen. Computer Viruses: Theory and Experiments. Computer Security, 6

(1):22 – 35, Feburary 1987.

[23] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing

Cheap, Resilient, and Stealthy Opaque Constructs. In Proceedings of the

25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’98, pages 184–196, New York, NY, USA, 1998. ACM. ISBN

0-89791-979-3.

[24] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Pro-

ceedings of the third annual ACM symposium on Theory of computing, STOC

’71, pages 151–158, New York, NY, USA, 1971. ACM.

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[26] IBM Corporation. POWER ISA Version 2.03, September 2006.

[27] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s

Manual Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z, January

2013.

[28] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole.

Buffer overflows: Attacks and defenses for the vulnerability of the decade.

In DARPA Information Survivability Conference and Exposition, 2000. DIS-

CEX’00. Proceedings, volume 2, pages 119–129. IEEE Computer Society, 2000.

Bibliography 108

[29] Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert.

ZOZZLE: Fast and Precise In-browser JavaScript Malware Detection. In Pro-

ceedings of the 20th USENIX Conference on Security, SEC’11, pages 3–3, Berke-

ley, CA, USA, 2011. USENIX Association.

[30] Gil Dabah. Powerful Disassembler Library For x86/AMD64. http://code.

google.com/p/distorm, Last accessed: August 16, 2014.

[31] C. De Dinechin. C++ Exception Handling. Concurrency, IEEE, 8(4):72 – 79,

2000.

[32] Sayali Deshpande, Younghee Park, and Mark Stamp. Eigenvalue analysis for

metamorphic detection. Journal of Computer Virology and Hacking Techniques,

10(1):53–65, 2014.

[33] International Standard Organization document reference ISO/IEC. Information

Technology - Syntactic Metalanguage - Extended Backus-Naur Form, 1996.

[34] Thomas Dullien and Sebastian Porst. REIL : A Platform-Independent Inter-

mediate Representation of Disassembled Code for Static Code Analysis. In

Proceeding of CanSecWest, 2009.

[35] Chris Eagle. The IDA Pro Book: The Unofficial Guide to the World’s Most

Popular Disassembler. No Starch Press, San Francisco, CA, USA, 2008.

[36] Mojtaba Eskandari and Sattar Hashemi. A Graph Mining Approach for De-

tecting Unknown Malwares. Journal of Visual Languages and Computing, 23

(3):154 – 162, June 2012.

[37] Mojtaba Eskandari and Sattar Hashemi. ECFGM: Enriched Control Flow

Graph Miner for Unknown Vicious Infected Code Detection. Journal in Com-

puter Virology, 8(3):99 – 108, August 2012.

[38] Parvez Faruki, Vijay Laxmi, M. S. Gaur, and P. Vinod. Mining Control Flow

Graph as API Call-Grams to Detect Portable Executable Malware. In Secu-

rity of Information and Networks, SIN ’12, New York, NY, USA, 2012. ACM

SIGSAC.

[39] Eric Filiol and Sbastien Josse. A Statistical Model for Undecidable Viral De-

tection. Journal in Computer Virology, 3:65 – 74, 2007.

http://code.google.com/p/distorm
http://code.google.com/p/distorm

Bibliography 109

[40] Halvar Flake. Structural Comparison of Executable Objects. In Ulrich Flegel

and Michael Meier 0001, editors, DIMVA, volume 46 of LNI, pages 161–173.

GI, 2004.

[41] G2. Second Generation Virus Generator. http://vxheaven.org/vx.php?id=

tg00, Last accessed: August 16, 2014.

[42] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1990.

[43] Mahboobe Ghiasi, Ashkan Sami, and Zahra Salehi. Dynamic Malware Detection

Using Registers Values Set Analysis. In Information Security and Cryptology,

pages 54 – 59, 2012.

[44] Kent Griffin, Scott Schneider, Xin Hu, and Tzi-cker Chiueh. Automatic Gen-

eration of String Signatures for Malware Detection. In Engin Kirda, Somesh

Jha, and Davide Balzarotti, editors, Recent Advances in Intrusion Detection,

volume 5758 of Lecture Notes in Computer Science, pages 101–120. Springer

Berlin Heidelberg, 2009. ISBN 978-3-642-04341-3.

[45] Jonathan L. Gross and Jay Yellen. Graph Theory and Its Applications, Second

Edition (Discrete Mathematics and Its Applications). Chapman & Hall/CRC,

2005.

[46] Haoran Guo, Jianmin Pang, Yichi Zhang, Feng Yue, and Rongcai Zhao. Hero:

A novel malware detection framework based on binary translation. In ICIS,

2010, volume 1, pages 411 – 415, oct. 2010.

[47] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H. Witten. The weka data mining software: an update. SIGKDD

Explor. Newsl., 11(1):10–18, November 2009.

[48] Lucas Chi Kwong Hui. Color Set Size Problem with Application to String

Matching. In Proceedings of the Third Annual Symposium on Combinatorial

Pattern Matching, CPM ’92, pages 230–243, London, UK, UK, 1992. Springer-

Verlag. ISBN 3-540-56024-6.

[49] Nwokedi Idika and Aditya P. Mathur. A Survey of Malware Detection Tech-

niques. Purdue University, 2007.

http://vxheaven.org/vx.php?id=tg00
http://vxheaven.org/vx.php?id=tg00

Bibliography 110

[50] ITU. The World in 2013: ICT Facts and Figures. c© ITU, 2013.

[51] Thomas Jakobsen. A fast method for cryptanalysis of substitution ciphers.

Cryptologia, 19(3):265–274, 1995.

[52] Karen Sparck Jones. A statistical interpretation of term specificity and its

application in retrieval. Journal of Documentation, 28:11–21, 1972.

[53] Johannes Kinder and Helmut Veith. Jakstab: A Static Analysis Platform for

Binaries. In Aarti Gupta and Sharad Malik, editors, Computer Aided Verifi-

cation, volume 5123 of Lecture Notes in Computer Science, pages 423 – 427.

Springer Berlin Heidelberg, 2008.

[54] Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni Vigna, and

Richard A. Kemmerer. Behavior-based Spyware Detection. In Proceedings of

the 15th Conference on USENIX Security Symposium - Volume 15, USENIX-

SS’06, Berkeley, CA, USA, 2006. USENIX Association.

[55] J.B. Kruskal. Multidimensional Scaling by Optimizing Goodness of fit to a

Nonmetric Hypothesis. Psychometrika, 29:1 – 27, 1964.

[56] Nikolay Kuzurin, Alexander Shokurov, Nikolay Varnovsky, and Vladimir Za-

kharov. On the Concept of Software Obfuscation in Computer Security. In Pro-

ceedings of the 10th International Conference on Information Security, ISC’07,

pages 281–298, Berlin, Heidelberg, 2007. Springer-Verlag.

[57] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In CGO, 2004, Washington, DC, USA,

2004. IEEE Computer Society.

[58] F. Leder, B. Steinbock, and P. Martini. Classification and Detection of Meta-

morphic Malware Using Value Set Analysis. In MALWARE, 2009, pages 39 –

46, oct. 2009.

[59] Jusuk Lee, Kyoochang Jeong, and Heejo Lee. Detecting Metamorphic Malwares

Using Code Graphs. In SAC, 2010, pages 1970 – 1977, New York, NY, USA,

2010. ACM.

[60] Da Lin and Mark Stamp. Hunting for undetectable metamorphic viruses. Jour-

nal in Computer Virology, 7(3):201–214, 2011. ISSN 1772-9890.

Bibliography 111

[61] Cullen Linn and Saumya Debray. Obfuscation of Executable Code to Improve

Resistance to Static Disassembly. In ACM CCS, pages 290 – 299, New York,

NY, USA, 2003. ACM.

[62] David M. Chess and Steve R. White. An Undetectable Computer Virus. Virus

Bulletin Conference, September 2000.

[63] Sudarshan Madenur Sridhara and Mark Stamp. Metamorphic worm that car-

ries its own morphing engine. Journal of Computer Virology and Hacking Tech-

niques, 9(2):49–58, 2013.

[64] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner

Haas, Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl,

and Saurabh Dighe. The 48-core SCC Processor: the Programmer’s View. In

SC’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer Society.

[65] Gary McGraw and Greg Morrisett. Attacking Malicious Code: A Report to the

Infosec Research Council. IEEE Softw., 17(5):33 – 41, September 2000. ISSN

0740-7459.

[66] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple exe-

cution paths for malware analysis. In Proceedings of the 2007 IEEE Symposium

on Security and Privacy, SP ’07, pages 231–245, Washington, DC, USA, 2007.

IEEE Computer Society. ISBN 0-7695-2848-1.

[67] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[68] Nicholas Nethercote and Julian Seward. Valgrind: a Framework for Heavy-

weight Dynamic Binary Instrumentation. SIGPLAN Not., 42(6):89 – 100, June

2007.

[69] NGVCK. Next Generation Virus Construction Kit. http://vxheaven.org/

vx.php?id=tn02, Last accessed: August 16, 2014.

[70] Philip OKane, Sakir Sezer, and Kieran McLaughlin. Obfuscation: The Hidden

Malware. IEEE Security and Privacy, 9(5):41 – 47, September 2011.

[71] Vinod P., Vijay Laxmi, Manoj Singh Gaur, GVSS Phani Kumar, and Yadven-

dra S. Chundawat. Static CFG Analyzer for Metamorphic Malware Code. In

http://vxheaven.org/vx.php?id=tn02
http://vxheaven.org/vx.php?id=tn02

Bibliography 112

Proceedings of the 2Nd International Conference on Security of Information and

Networks, SIN ’09, pages 225–228, New York, NY, USA, 2009. ACM SIGSAC.

[72] D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules.

Commun. ACM, 15(12):1053 – 1058, December 1972.

[73] David A. Patterson and John L. Hennessy. Computer Architecture: A Quanti-

tative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2011. ISBN 978-0123838728.

[74] ARM Holdings plc. ARM R© Architecture Reference Manual ARMv7-A and

ARMv7-R edition, January 2012.

[75] B.B. Rad, M. Masrom, and S. Ibrahim. Opcodes Histogram for Classifying

Metamorphic Portable Executables Malware. In ICEEE, pages 209 – 213,

September 2012.

[76] Thomas Raschke. The New Security Challenge: Endpoints. c© International

Data Corporation, 2005.

[77] Stephen Robertson. Understanding inverse document frequency: On theoretical

arguments for idf. Journal of Documentation, 60, 2004.

[78] Neha Runwal, Richard M. Low, and Mark Stamp. Opcode Graph Similarity

and Metamorphic Detection. Journal in Computer Virology, 8(1-2):37 – 52,

May 2012.

[79] A.H.J. Sale. The Implementation of Case Statements in PASCAL. Technical

Report. Department of Information Science, University of Tasmania, 1979.

[80] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G. Bringas. Op-

code sequences as representation of executables for data-mining-based unknown

malware detection. Information Sciences, 231(0):64 – 82, 2013. Data Mining

for Information Security.

[81] Alexander Sepp, Bogdan Mihaila, and Axel Simon. Precise Static Analysis

of Binaries by Extracting Relational Information. In Proceedings of the 2011

18th Working Conference on Reverse Engineering, WCRE ’11, pages 357 – 366,

Washington, DC, USA, 2011. IEEE Computer Society.

Bibliography 113

[82] Asaf Shabtai, Robert Moskovitch, Clint Feher, Shlomi Dolev, and Yuval Elovici.

Detecting unknown malicious code by applying classification techniques on op-

code patterns. Security Informatics, 1(1):1–22, 2012.

[83] Gayathri Shanmugam, Richard M Low, and Mark Stamp. Simple substitu-

tion distance and metamorphic detection. Journal of Computer Virology and

Hacking Techniques, 9(3):159–170, 2013.

[84] P.K. Singh and A. Lakhotia. Static Verification of Worm and Virus Behavior in

Binary Executables Using Model Checking. In Information Assurance Work-

shop, 2003. IEEE Systems, Man and Cybernetics Society, pages 298 – 300, june

2003.

[85] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung

Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Sax-

ena. BitBlaze: A New Approach to Computer Security via Binary Analysis. In

ICISS, 2008, pages 1 – 25, Berlin, Heidelberg, 2008. Springer-Verlag.

[86] Fu Song and Tayssir Touili. Efficient Malware Detection Using Model-Checking.

In Dimitra Giannakopoulou and Dominique Mry, editors, FM: Formal Methods,

volume 7436 of Lecture Notes in Computer Science, pages 418–433. Springer

Berlin Heidelberg, 2012.

[87] Fu Song and Tayssir Touili. Pushdown model checking for malware detection.

In Cormac Flanagan and Barbara Knig, editors, Tools and Algorithms for the

Construction and Analysis of Systems, volume 7214 of Lecture Notes in Com-

puter Science, pages 110–125. Springer Berlin Heidelberg, 2012.

[88] Corporation Symantec. Norton Cybercrime Report. c©Symantec Corporation

(http://www.symantec.com), August 2012.

[89] Corporation Symantec. Internet Security Threat Report - 2011 Trends. c©
Symantec Corporation, 17, April 2012.

[90] Peter Szor. The Art of Computer Virus Research and Defense. Addison-Wesley

Professional, 2005.

[91] GCC Team. GCC: The GNU Compiler Collection. http://gcc.gnu.org, 2013.

Bibliography 114

[92] Zynamics team at Google. BinNavi: Binary Code Reverse Engineering Tool c©
Google Inc. http://www.zynamics.com/binnavi.html, Last accessed: August

16, 2014.

[93] AnnieH. Toderici and Mark Stamp. Chi-squared Distance and Metamorphic

Virus Detection. Journal in Computer Virology, pages 1 – 14, 2013.

[94] P. Vinod, V. Laxmi, M.S. Gaur, and G. Chauhan. MOMENTUM: Metamorphic

Malware Exploration Techniques Using MSA Signatures. In IIT, pages 232 –

237, March 2012.

[95] Eric W. Weisstein. Chi-Squared Test. In MathWorld - A Wolfram

Web Resource. Wolfram Research Inc., http://mathworld.wolfram.com/

Chi-SquaredTest.html, Last accessed: August 16, 2014.

[96] Wing Wong and Mark Stamp. Hunting for Metamorphic Engines. Journal in

Computer Virology, 2:211–229, 2006.

[97] Heng Yin and Dawn Song. Privacy-Breaching Behavior Analysis. In Automatic

Malware Analysis, SpringerBriefs in Computer Science, pages 27–42. Springer

New York, 2013.

[98] Qinghua Zhang. Polymorphic and Metamorphic Malware Detection. PhD thesis,

North Carolina State University, 2008.

[99] Qinghua Zhang and D.S. Reeves. MetaAware: Identifying Metamorphic Mal-

ware. In ACSAC, 2007, pages 411 – 420, December 2007.

[100] Zeljka Zorz. New wave of Shylock Trojan targets bank customers. http://

www.net-security.org/malware_news.php?id=2592, Last accessed: August

16, 2014.

http://mathworld.wolfram.com/Chi-SquaredTest.html
http://mathworld.wolfram.com/Chi-SquaredTest.html
http://www.net-security.org/malware_news.php?id=2592
http://www.net-security.org/malware_news.php?id=2592

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction and Motivation
	Malware
	Hidden Malware
	Obfuscations
	Opcode Level
	Control Flow Level
	Self-Modifying Code

	Real-Time Detection
	Problem Statement
	Contributions
	Obtained Performance Improvements

	Organization of the Thesis

	Literature Review
	Metamorphic Malware Detection Systems
	Control Flow Analysis
	Information Flow Analysis
	Opcode-Based Analysis
	Summary

	Intermediate Languages
	Why a New Language for Malware Analysis?

	MAIL (Malware Analysis Intermediate Language)
	Why an Intermediate Language for Malware Analysis?
	Binary Analysis for Malware Detection
	More Examples of Obfuscation

	Design of MAIL
	MAIL Statements
	MAIL Library
	MAIL Patterns for Annotation

	Conclusion

	MARD (Metamorphic Malware Analysis and Real-Time Detection)
	Model
	Design
	Characteristics
	Components of MARD
	Conclusion

	ACFG (Annotated Control Flow Graph)
	Definitions
	ACFG For Metamorphic Malware Detection
	Subgraph Matching
	Pattern Matching

	Runtime Optimization with Parallelization
	Runtime Optimization with ACFG Reduction
	Summary

	SWOD-CFWeight (Sliding Window of Difference and Control Flow Weight)
	Motivations and Overview
	Statistical Analysis of MAIL Pattern Distributions for Metamorphic Malware
	Dataset
	MAIL Pattern Distributions

	Metamorphic Malware Detection Model
	Sliding Windows of Difference
	Control Flow Weight and MAIL Program Signature
	Signature Matching and Malware Detection
	Complexity Analysis

	Summary

	Evaluation, Analysis and Comparison
	Performance Metrics
	Performance of ACFG
	Dataset Based on ACFGs
	Empirical Study
	Comparison with Others

	Performance of SWOD-CFWeight
	Empirical Study
	Performance Results of SWOD-CFWeight and Comparison with ACFG
	Comparison with Others

	Conclusion and Future Work
	Discussion
	Static Analysis
	Dynamic Analysis

	Summary of Contributions
	Future Work

	MAIL Grammar
	One of the Reports Generated by MARD
	Bibliography

