
Simple, Faster Kinetic Data Structures

by

Zahed Rahmati

B.Sc., University of Isfahan, 2007

M.Sc., Sharif University of Technology, 2010

A Dissertation Submitted in Partial Fullfilment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

c© Zahed Rahmati, 2014

University of Victoria

All rights reserved. This report may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Simple, Faster Kinetic Data Structures

by

Zahed Rahmati

B.Sc., University of Isfahan, 2007

M.Sc., Sharif University of Technology, 2010

Supervisory Committee

Dr. Valerie King, Co-Supervisor

(Department of Computer Science)

Dr. Sue Whitesides, Co-Supervisor

(Department of Computer Science)

Dr. Frank Ruskey, Departmental Member

(Department of Computer Science)

Dr. Jing Huang, Outside Member

(Department of Mathematics and Statistics)

iii

Supervisory Committee

Dr. Valerie King, Co-Supervisor

(Department of Computer Science)

Dr. Sue Whitesides, Co-Supervisor

(Department of Computer Science)

Dr. Frank Ruskey, Departmental Member

(Department of Computer Science)

Dr. Jing Huang, Outside Member

(Department of Mathematics and Statistics)

ABSTRACT

Proximity problems and point set embeddability problems are fundamental and well-

studied in computational geometry and graph drawing. Examples of such problems

that are of particular interest to us in this dissertation include: finding the closest

pair among a set P of points, finding the k-nearest neighbors to each point p ∈ P ,

answering reverse k-nearest neighbor queries, computing the Yao graph, the Semi-Yao

graph and the Euclidean minimum spanning tree of P , and mapping the vertices of

a planar graph to a set P of points without inducing edge crossings.

In this dissertation, we consider so-called kinetic versions of these problems, that

is, the points are allowed to move continuously along known trajectories, which are

subject to change. We design a set of data structures and a mechanism to efficiently

update the data structures. These updates occur at critical, discrete times. Also, a

query may arrive at any time. We want to answer queries quickly without solving

problems from scratch, so we maintain solutions continuously.

iv

We present new techniques for giving kinetic solutions with better performance

for some of these problems, and we provide the first kinetic results for others. In

particular, we provide:

• a simple kinetic data structure (KDS) to maintain all the nearest neighbors

and the closest pair. Our deterministic kinetic approach for maintenance of all

the nearest neighbors improves the previous randomized kinetic algorithm by

Agarwal, Kaplan, and Sharir.

• an exact KDS for maintenance of the Euclidean minimum spanning tree, which

improves the previous KDS by Rahmati and Zarei.

• the first KDS’s for maintenance of the Yao graph and the Semi-Yao graph.

• the first KDS to consider maintaining plane graphs on moving points.

• the first KDS for maintenance of all the k-nearest neighbors, for any k ≥ 1.

• the first KDS to answer the reverse k-nearest neighbor queries, for any k ≥ 1

in any fixed dimension, on a set of moving points.

v

Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 KDS Framework . 2

1.2 Problem Statement . 4

1.3 Dissertation Contributions . 8

1.3.1 Proximity Problems in R2 . 8

1.3.2 Proximity Problems in Rd . 11

1.3.3 Point Set Embedding Problem 14

1.4 Dissertation Organization . 14

2 Background and Related Work 15

2.1 Kinetic Tournament Trees . 15

2.2 Kinetic Range Trees . 19

2.3 Previous Results . 23

2.3.1 All Nearest Neighbors and Closest Pair 23

2.3.2 Euclidean Minimum Spanning Tree 24

2.3.3 Reverse k-Nearest Neighbor Queries 26

2.3.4 Point Set Embeddability for Plane Graphs 27

3 Kinetic All Nearest Neighbors and Closest Pair in the Plane 28

3.1 New Method for Computing All Nearest Neighbors and Closest Pair . 28

vi

3.2 Kinetic Equilateral Delaunay Graph 34

3.3 Kinetic All Nearest Neighbors . 38

3.4 Kinetic Closest Pair . 40

4 Kinetic Euclidean Minimum Spanning Tree in the Plane 41

4.1 New Method for Computing the Yao Graph and the EMST 41

4.2 Kinetic Pie Delaunay graph . 43

4.3 Kinetic Yao Graph . 47

4.4 Kinetic EMST . 49

5 Kinetic All Nearest Neighbors in Higher Dimensions 53

5.1 Computing the Semi-Yao Graph and All Nearest Neighbors in Rd . . 53

5.2 Kinetic Semi-Yao Graphs . 56

5.2.1 Preprocessing Step . 56

5.2.2 Processing the Events . 58

5.3 Kinetic All Nearest Neighbors . 63

5.4 Kinetic All (1 + ε)-Nearest Neighbors 64

6 Kinetic Reverse k-Nearest Neighbor Problem in Higher Dimensions 67

6.1 RkNN Queries on Stationary Points 67

6.1.1 Key Lemmas . 68

6.1.2 Computing the k-SYG and All k-Nearest Neighbors 69

6.1.3 RkNN Queries in R2 . 71

6.1.4 RkNN Queries in Rd . 72

6.2 RkNN Queries on Moving Points . 73

6.2.1 Kinetic k-SYG . 74

6.2.2 Kinetic All k-Nearest Neighbors 77

6.2.3 RkNN Queries . 79

7 Kinetic Point Set Embedding for Plane Graphs 80

7.1 Drawing with k bends . 80

7.1.1 Drawing with 3 bends . 81

7.1.2 Drawing with 2 bends . 85

7.2 The Kinetic Drawing . 88

8 Conclusions and Open Problems 92

vii

Bibliography 95

viii

List of Tables

Table 1.1 The previous results and our results for kinetic proximity problems. 13

ix

List of Figures

Figure 1.1 The nearest neighbor graph of a set of 10 points. 4

Figure 1.2 The Euclidean minimum spanning tree (EMST) of 10 points. . 5

Figure 1.3 The Delaunay triangulation of 10 points based on a circle. . . . 5

Figure 1.4 (a) Point r is the nearest point to p in the indicated cone of

p, and is associated with p in the case of the Yao graph where

θ = π/3. (b) The Yao graph of 10 points in the plane, where

space around each point is partitioned into six cones. (c) Point t

is the point associated with p in the case of the Semi-Yao graph

where θ = π/3. 6

Figure 1.5 (a) A planar graph G. (b) A planar embedding of G. 7

Figure 1.6 (a) A plane graph G with four vertices. (b) A set P of four

points. (c) A straight-line embedding of G on P 8

Figure 1.7 (a) Partition of a unit disk into six pieces of pie. (b) Partition of

a hexagon into six equilateral triangles. 9

Figure 2.1 Tracking the lowest point among a set of four moving points. . 16

Figure 2.2 The 3-level of a set of four moving points. 19

Figure 2.3 Some parts of a 4-dimensional range tree. 20

Figure 2.4 A cone C(p) and its reflection C̄(p) associated to p = (x1, x2). . 22

Figure 3.1 Projection of the point pj to the bisector b0(pi) of the wedge W0(pi). 29

Figure 3.2 Point pi is the closest point to pj; among the points in Vl(pi), pj
has the minimum length projection on the bisector x0(pi). . . . 30

Figure 3.3 In-edges and out-edges of pj. 30

Figure 3.4 (a) Partitioning the unit regular hexagon into six equilateral tri-

angles. (b) Some 0-tri’s. 31

Figure 3.5 The Delaunay triangulation based on the 0-tri. 32

x

Figure 3.6 (a) The point pj has the minimum x0-coordinate inside the wedge

W0(pi). (b) The 1-tri corresponding to the edge pipj in EDT1

does not contain any other points of P . (c) The point pj is inside

the wedge W5(pi) and has the minimum x5-coordinate. 33

Figure 3.7 (a) The NotInTri certificate corresponding to the edge pi′pj′ cer-

tifies that pr is outside the 0-tri of pi′ , pj′ , and pr′ . The Not-

InWedge certificate of the edge pipj certifies that ps1 , ps2 , and

ps3 are outside the corresponding k-wedge. (b) The changes to

EDT0 after pr moves inside the 0-tri passing through pi′ , pj′ , and

pr′ and after ps1 moves inside the k-wedge of pipj. 35

Figure 3.8 (a) A 0-tri. (b) The k-wedges created by the 0-tri; edge pipj

divides the 4-wedge ←−→a4oa5 into the bounded area opipj and the

unbounded area ←−−−−→a4pipja5. 35

Figure 3.9 A hull edge is incident to at most four other hull edges. 36

Figure 3.10The consecutive changes to EDT0 when ps2 moves inside the

k-wedge of pipj. 37

Figure 4.1 (a) Partitioning the unit disk into six pieces of pie. (b) Some

0-pie’s. 42

Figure 4.2 Nearest point to pi inside the wedge Wl(pi). 43

Figure 4.3 (a) A 0-pie. (b) Two k-cones corresponding to the hull edge

pipj. (c) The k-cone approaches a right-angled wedge as o goes

to infinity. 44

Figure 4.4 Combinatorial changes for an arbitrary edge pipj. 46

Figure 4.5 The nearest point to pi inside each wedge around pi in the Yao

graph in the L∞ metric. 48

Figure 4.6 The edge connecting two subtrees T1(P1, E1) and T2(P2, E2): (a)

At time t−, |pipr| > |pipj| > |pjpr| and the edge connecting T1

and T2 is pipj. (b) At time t+, |pipj| > |pipr| > |pjpr| and the

edge connecting T1 and T2 is pipr. 50

Figure 5.1 An infinite right circular cone and a polyhedral cone. 54

Figure 5.2 The cone Cl with apex at o. 55

Figure 5.3 The case d = 2 and c = 6. For each l, 0 ≥ l ≥ c − 1, the

apex point p is connected to the point in P ∩Cl(p) that has the

minimum xl-coordinate. 55

xi

Figure 5.4 The point p is the nearest neighbor to q, so q has the minimum

xl-coordinate among the points in P ∩ Cl(p). 56

Figure 5.5 A u-swap between p and q does not change the points in other

cones. 58

Figure 5.6 Two cases when an x-swap between p and q occurs. 60

Figure 5.7 The point q̂ (resp. p) has minimum (resp. maximum) xl-coordinate

among the points in Ri (resp. Bi). 64

Figure 6.1 (a) A partition of the plane into six wedges with common apex

at o. (b) A translation of W0 that moves the apex to p. 68

Figure 6.2 Point p3 is the 3rd nearest neighbor of p, and p is among the first

three points in L(P ∩W0(p3)). 69

Figure 6.3 The wedge W0 is bounded by f1 and f2. The coordinate axes u1

and u2 are orthogonal to f1 and f2. 70

Figure 7.1 (a) Two separating triangles v1v2v6 and v1v9v12 in a plane graph.

(b) Adding two dummy vertices z1 and z2 and new edges creates

a plane graph with a Hamiltonian cycle (bold edges). 82

Figure 7.2 Drawing the hull, interior, and exterior edges. 83

Figure 7.3 Removing the dummy points q8 and q12 and corresponding edges

from Figure 7.2. 84

Figure 7.4 Saving bends at dummy points of a 3-bend drawing to obtain a

2-bend drawing. 86

Figure 7.5 (a) The edges above the chain q1, q2, ..., q8 of a 3-bend drawing;

q7 is a dummy point. (b) The nested tree T for the drawing. . . 86

Figure 7.6 The 2-bend drawing of Figure 7.5(a). 88

Figure 7.7 (a) Before changing the ordering of qi and qj. (b) After points qi

and qj change their order. (c) Allocating Inc(qi) to the point qj

and vice versa. 89

xii

ACKNOWLEDGEMENTS

First, I would like to thank my mother, father, brothers, and sisters, who have

over the years loved, supported, and encouraged me not to give up on my dreams.

Second, I wish to thank my co-supervisors, Valerie King and Sue Whitesides, for

their support and advice during these past three years. They have done a great job at

challenging me to do my best, introducing me to the research world, and sponsoring

my travels to several conferences in and outside Canada.

Next, I want to thank Mohammad Ali Abam and Alireza Zarei for their discussions

and comments on results in Chapters 4 and 5.

I also want to thank the University of Victoria for two fellowships in the two

academic years 2011 and 2012, the British Columbia Ministry of Advanced Education,

Innovation and Technology for a fellowship in the academic year 2013, and the Natural

Sciences and Engineering Research Council (NSERC) for supporting my research

through my co-supervisors.

Finally, I wish to thank my external examiner, Timothy M. Chan, for the helpful

suggestions, and the thoughtful questions and comments at the final oral examination.

Chapter 1

Introduction

The geometric world around us is in motion, full of moving objects, e.g., robots, flying

machines, ships, buses, and mobile devices such as cell phone. Motion is typically

a continuous change in the position of an object with respect to time. In many

applications, objects move with predictable trajectories in the short term, but may

be subject to unpredictable changes in trajectory in the long term.

Modeling real-world phenomena by computer raises different types of (data struc-

ture) problems. Two types of such problems are static problems and dynamic prob-

lems. For static problems, we are given the input objects once and for all, and for

dynamic problems, we can have insertions and deletions to the input objects. Mo-

tion has been considered in the context of theoretical computer science over the last

few decades, and adds a new challenging category, namely kinetic problems, to data

structure problems.

For kinetic problems, the input objects move along trajectories given by functions

of time. Kinetic problems deal with both discrete and continuous aspects: moving

objects with continuous trajectories can have collisions at discrete moments, and

attributes (properties such as the closest pair) of moving objects change at discrete

times. Some common examples of kinetic problems include “Is there a data structure

to answer a query X at any time, for a set of moving objects, with efficient time

complexity?” and “Is there a data structure to solve a problem Y efficiently, at any

time, without recomputing from scratch?”.

Consideration of kinetic problems arises in many areas, e.g., mobile communica-

tion, air-traffic control, power consumption control, database systems, and geographic

information systems. Tracking attributes of moving objects in computational geome-

try has been studied extensively over the past 15 years [3, 6, 10, 11, 12, 17, 57, 79, 81];

2

several PhD dissertations [1, 15, 82] have been written that focus on maintaining

(tracking) attributes of moving objects.

The efficiency of data structures for static and dynamic problems is commonly

evaluated in terms of time and space, i.e., construction time, space of the data struc-

ture, query response time, and update time of insertions and deletions. It is important

to understand what is meant by efficiency when we design data structures for solving

kinetic problems. In addition to efficiency in preprocessing time and space of the data

structure, we might want to consider the efficiency in (i) the time to obtain a solution

to the kinetic problem at any given moment during the motion, (ii) the time to make

changes to the data structure repeatedly as the points move along trajectories, and

(iii) the time to update the data structure when an object changes its trajectory.

To obtain efficiency in such times, in 1997, Basch, Guibas and Hershberger [17] in-

troduced a theoretical framework, which is called the kinetic data structure (KDS)

framework.

We describe the concepts and terminology for the KDS framework in Section 1.1

as basic background for our work. Then in Section 1.2, we formally review the

statements of the various proximity problems we consider. Next in Section 1.3, we

present the techniques, the improvements, and the concrete results we obtain in this

dissertation.

1.1 KDS Framework

Basch, Guibas and Hershberger [17] first introduced the kinetic data structure (KDS)

framework to track the attributes (e.g., the closest pair) of a set of moving points.

This framework has been used extensively to model motion [15, 52, 1, 82]. In the

KDS framework, we assume each point in d-dimensional space has a trajectory given

by d known polynomial functions of bounded degree s, where each function gives one

of the d coordinates of the point; however, the point can change its trajectory at any

moment which is not necessarily known in advance.

Using the KDS framework one can design and analyse a set of data structures

and algorithms, namely a kinetic data structure (KDS), for maintenance of attributes

of moving points. A KDS includes a set of certificates that together attest that the

attribute of interest holds over time. A certificate is a boolean function of time, and

it may have a failure time t. A certificate is valid until time t. The failure time t of a

certificate obtains by solving a polynomial equation of constant degree. We assume

3

that there is a model of computation which solves any polynomial equation exactly in

constant time. When the failure time of a certificate is equal to the current time, we

say an event occurs. To track the next failure time after the current time we define

a priority queue of the failure times of the certificates over time. The certificate with

highest priority in the priority queue is the next certificate after the current time

that will become invalid. When an event occurs, we invoke an update mechanism to

replace the certificates that become invalid with new valid ones, and then we apply

the necessary changes to the kinetic data structure. Similarly, if a trajectory changes

at some moment, we invoke update mechanisms.

The performance of a KDS is measured in terms of four criteria.

1. Responsiveness: This is one of the most important KDS performance criteria,

namely the processing time to handle an event. The KDS is called responsive

if the response time of the update mechanism for an event is O(logc n), where

n the number of points and c is a constant.

2. Compactness: This is the total number of certificates stored in the KDS at any

fixed time. The number of certificates is not necessarily the same as the amount

of space used by the KDS, but the space of a KDS bounds the compactness of

the KDS. If the compactness is O(n logc n), the KDS is called compact.

3. Locality: This is the number of certificates associated with any particular point

at any fixed time. If it is O(logc n), the KDS is called local. Locality is an impor-

tant criterion. Satisfaction of this criterion ensures that when a point changes

its trajectory, no point participates in too many certificates, and therefore, only

a small number of changes are needed in the KDS.

4. Efficiency: The efficiency of a KDS concerns the number of events in the KDS

over time. In the KDS framework, to count the number of events over time we

make the assumption that the trajectories of the points are polynomial functions

of maximum degree bounded by some constant s.

We identify two types of events to analyse the efficiency of a KDS. Some events

do not necessarily change the attribute of interest (also called the desired at-

tribute) and may only change some internal data structures. Such events are

called internal events. Those events that change the attribute of interest are

called external events. The efficiency of a KDS is the ratio of the worst-case

number of internal events in the KDS to the worst-case number of external

4

events. If the efficiency is O(logc n), the KDS is called efficient. The efficiency

of a KDS can be viewed as measuring the fraction of events that are due to

overhead.

1.2 Problem Statement

Let P be a set of n points in arbitrary but fixed dimension d. Here we describe some

of the proximity problems and the point set embedding problem that we consider in

this dissertation.

Proximity Problems. Finding the nearest neighbor in P to a query point is called

the nearest neighbor problem. The all nearest neighbors problem is to find the nearest

point in P to each point p ∈ P . The (directed) graph constructed by connecting each

point p ∈ P to its nearest neighbor p1 ∈ P with a (directed) edge −→pp1 is called the

nearest neighbor graph (NNG); Figure 1.1 depicts the NNG of a set of points in the

plane. The closest pair problem is to find a pair of points whose separation distance is

minimum; the endpoints of the edge(s) with minimum length in the NNG constitute

the closest pair(s). Given any ε > 0, the all (1 + ε)-nearest neighbors problem is to

find some q̂ ∈ P for each point p ∈ P , such that the Euclidean distance |pq̂| between

p and q̂ is within a factor of 1 + ε of the Euclidean distance between p and its nearest

neighbor p1.

Figure 1.1: The nearest neighbor graph of a set of 10 points.

Generalizations of the above problems are defined as follows. The k-nearest neigh-

bor (kNN) problem is to find the k-nearest neighbors to a query point among the

points in P . The all k-nearest neighbors problem is to find the k-nearest neighbors

in P to each point in P . The graph that is constructed by connecting each point to

its k-nearest neighbors is called the k-nearest neighbor graph (k-NNG).

5

The reverse k-nearest neighbor (RkNN) problem is a popular variant of the kNN prob-

lem that asks for the influence of a query point on a point set P . Given an in-

teger k, 1 ≤ k < n, and a query point q /∈ P , the RkNN problem is to find the

set RkNN(q) of all p in P for which q is one of k-nearest neighbors of p. Thus

RkNN(q) = {p ∈ P : |pq| ≤ |ppk|}, where |.| denotes Euclidean distance, and pk is

the kth nearest neighbor of p among the points in P . Unlike the kNN problem, the

exact number of reverse k-nearest neighbors of a query point is not known in advance,

but as we prove in Chapter 6 the number is upper-bounded by O(k).

For a point set P , there exists a complete graph G(V,E), where V = P and E is

the set of edges in the graph, such that the weight of each edge is the distance between

its two endpoints in the Lp metric. An Lp-minimum spanning tree (Lp-MST) of G is

a connected subgraph of G such that the sum of the edge weights in the Lp metric is

minimum possible; Figure 1.2 depicts the Euclidean minimum spanning tree (EMST

or L2-MST, for short) of a set of points in the plane.

Figure 1.2: The Euclidean minimum spanning tree (EMST) of 10 points.

The Delaunay triangulation of a point set P based on a convex shape is the

maximal set of edges such that no two edges intersect except at common endpoints,

and such that the endpoints of each edge lie on the boundary of an empty scaled

translate of the convex shape. Figure 1.3 depicts the Delaunay triangulation based

on a circle in the plane.

Figure 1.3: The Delaunay triangulation of 10 points based on a circle.

6

(a) (b) (c)

p

t
r p

t
r

Figure 1.4: (a) Point r is the nearest point to p in the indicated cone of p, and is
associated with p in the case of the Yao graph where θ = π/3. (b) The Yao graph of
10 points in the plane, where space around each point is partitioned into six cones.
(c) Point t is the point associated with p in the case of the Semi-Yao graph where
θ = π/3.

The Yao graph and the Semi-Yao graph1 of P with respect to θ are two geometric

graphs with vertex set P and edges defined in the following way. At each point

p ∈ P , space is partitioned into a set of polyhedral cones of opening angle θ with

apex at p. Then for each cone the apex p is connected to a particular point inside

the cone. In the Yao graph, the particular point is the point in the cone with the

minimum Euclidean distance to p (see Figures 1.4(a) and 1.4(b)). In the Semi-Yao

graph, we define an axis for each cone, a ray emanating from the apex of the cone

(in Figure 1.4(c), the cone axis is the bisector of the cone); the particular point is the

point in the cone with the minimum length projection on the axis of the cone.

Such problems (e.g., the closest pair problem) that deal with attributes arising

from the distances between points are known as proximity problems. Tracking and

maintenance of proximity attributes on moving points in order to solve a proximity

problem is called a kinetic proximity problem. From now on, when we say maintenance

of an attribute over time, we mean having the exact value of the attribute over time;

precisely, at any moment t within the time interval of consideration (but not at critical

times), the problem solution (e.g., the closest pair) is available to be the output.

In the kinetic setting, for each point p ∈ P in Rd, we denote the d coordinates of

the trajectory of p by d polynomial functions of maximum degree bounded by some

constant s; the trajectory can be changed to a new one at any time.

The goal is to provide a kinetic data structures to maintain the attributes of the

1This graph is called the theta-graph in [60], but we prefer to call it the Semi-Yao graph instead
of the theta-graph, because of its close relationship to the Yao graph.

7

(a) (b)

Figure 1.5: (a) A planar graph G. (b) A planar embedding of G.

moving points so that certain queries about these points can be answered efficiently.

Point Set Embedding Problem. A graph G(V,E) is typically represented as

a set V of vertices and a set E of edges such that each edge in E is a curve with

endpoints at two vertices in V . A straight-line drawing of G is a drawing in which each

edge of G is mapped to a curve that is a line segment. A k-bend drawing is a drawing

of G such that each edge is mapped to a chain (curve) of at most k+ 1 line segments;

this is also known as a polyline drawing with at most k bends per edge; Figure 1.5(b)

depicts a 1-bend drawing. A planar graph is a graph that can be embedded in the

plane such that no two edges intersect except at common vertices; see Figure 1.5(a).

A plane graph is a planar embedding of a planar graph, such that each vertex of the

planar graph maps to a distinct point in the plane and each edge maps to a curve so

that no two edges intersect except at common vertices; Figure 1.5(b) depicts a plane

graph, a planar embedding of the graph in Figure 1.5(a). A plane graph partitions

the plane into a set of internal faces and an outer face (infinite face); the circular

order of the edges incident to each vertex in the plane graph is fixed.

Given a plane graph G on n vertices and a point set P , the problem of point set

embedding without mapping is to draw G on P such that each vertex is mapped to a

point of P and the curves representing the edges intersect only at common vertices.

Figure 1.6 depicts an embedding of a plane graph on a set of points.

The kinetic point set embedding problem without mapping, with at most k bends

per edge, is to maintain without mapping a k-bend drawing of an embedding of G on

a set P of n moving points in the plane. In the kinetic setting, as mentioned before,

the trajectory of each point pi(t) = (xi(t), yi(t)) is defined by two known polynomial

functions of constant maximum degree s. As the points move, the drawing of an

embedding changes over time and may develop crossings or change the embedding.

8

(b) (c)(a)

Figure 1.6: (a) A plane graph G with four vertices. (b) A set P of four points. (c) A
straight-line embedding of G on P .

It is easy to imagine a moving drawing, where vertices move and edges are drawn as

straight segments between them. The goal is to design a kinetic data structure to

repair the embedding by remapping the vertices to the points of P .

Our motivation for kinetic graph drawing is to initiate an investigation of kinetic

versions of graph drawing problems. However, the specific kinetic point set embedding

problem described above does not arise naturally in a kinetic setting, as far as we

are aware. Problems such as morphing problems and visualizing social networks may

give rise to more natural kinetic graph drawing problems.

1.3 Dissertation Contributions

Here we present our contributions in three subsections. Sections 1.3.1 and 1.3.2 pro-

vide the contributions for giving kinetic solutions to some of the proximity problems

in R2 and Rd, respectively. Section 1.3.3 provides our contribution for considering

the point set embedding problem for a set of moving points in the plane.

1.3.1 Proximity Problems in R2

For a set of moving points in the plane, we provide a simple method that underlies

all the results we obtain for maintenance of all the nearest neighbors, the closest pair,

the Euclidean minimum spanning tree (EMST or L2-MST), the Yao graph, and the

Semi-Yao graph. We present our techniques, concrete results, and improvements as

follows.

The heart of our approach is to define, compute, and kinetically maintain su-

pergraphs for the Yao graph and the Semi-Yao graph. Then we take advantage of

the fact that these graphs are themselves supergraphs of the EMST and the nearest

9

(a) (b)

σ0

σ1σ2

σ3

σ4 σ5

∆0

∆1∆2

∆3

∆4 ∆5

Figure 1.7: (a) Partition of a unit disk into six pieces of pie. (b) Partition of a hexagon
into six equilateral triangles.

neighbor graph, respectively.

We define a supergraph for the Yao graph as follows. We partition a unit disk

into six “pieces of pie” σ0, σ2, ..., σ5 with equal angles such that all the σl, l = 0, ..., 5,

share a point at the center of the disk; see Figure 1.7(a). Each piece of pie σl is a

convex shape. For each σl we construct a triangulation of a set P of points as follows.

Using the fact that a Delaunay triangulation of P can be defined based on any convex

shape [35, 43], we define a Delaunay triangulation DTl based on each piece of pie σl.

We prove that the union of all these Delaunay triangulations DTl, l = 0, ..., 5, which

we call the Pie Delaunay graph, is a supergraph of the Yao graph. The Yao graph

is guaranteed to contain the EMST, where the plane is partitioned into at least six

equal wedges at each point of P . Thus the Pie Delaunay graph contains the EMST.

We provide a similar approach to obtain a supergraph for the nearest neighbor

graph. We partition a hexagon into six equilateral triangles ∆0,∆2, ...,∆5 (see Fig-

ure 1.7(b)), and for each equilateral triangle ∆l we define a Delaunay triangulation

DTl. The union of all of these Delaunay triangulations DTl, l = 0, ..., 5, which we call

the Equilateral Delaunay graph, is a supergraph of the Semi-Yao graph. We prove

that the Semi-Yao graph is a supergraph of the nearest neighbor graph, which implies

that the Equilateral Delaunay graph is a supergraph of the nearest neighbor graph.

In the case that the Delaunay triangulation DTl is based on a piece of pie, the

triangulation can easily be maintained over time. This leads us to have a kinetic

data structure for the union of the DTl’s, i.e., the Pie Delaunay graph. Then we

show how to use the Pie Delaunay graph over time to give kinetic data structures

for maintenance of the Yao graph and the EMST. Similarly, in the case that each

DTl arises from an equilateral triangle, we are lead to a kinetic data structure for

10

the Equilateral Delaunay graph. Using the kinetic Equilateral Delaunay graph, we

give kinetic data structures for maintenance of the Semi-Yao graph, all the nearest

neighbors, and the closest pair.

The following items describe our results and improvements.

• We give the first KDS for maintenance of a well-studied sparse graph, the Yao

graph, and provide a new exact KDS for maintenance of the EMST. Our KDS’s

for maintenance of the Yao graph and the EMST use O(n) space, take O(n log n)

preprocessing time, and process O(n3β2
2s+2(n) log n) events, each in amortized

time O(log n). Here, βs(n) is an extremely slow-growing function. In terms of

the KDS performance criteria, which are formally defined in Section 1.1, our

KDS’s are responsive in an amortized sense, compact, and local on average.

We improve the previous EMST KDS by Rahmati and Zarei [79] by a near-linear

factor in the number of events.

• We give simple KDS’s for maintenance of all the nearest neighbors and the

closest pair, and give the first KDS for maintenance of the Semi-Yao graph.

Our KDS’s use O(n) space and O(n log n) preprocessing time. The all nearest

neighbors KDS and the closest pair KDS process O(n2β2
2s+2(n) log n) events,

and the Semi-Yao graph KDS processes O(n2β2s+2(n)) events; each event can be

handled in amortized time O(log n). Our KDS’s are responsive in an amortized

sense, compact, local on average, and efficient.

The certificates of our KDS for maintenance of the closest pair are simpler

than the certificates of the previous kinetic algorithms by Basch, Guibas, and

Hershberger [16], Basch, Guibas, and Zhang [18], and Agarwal, Kaplan, and

Sharir [10].

Our deterministic algorithm for maintenance of all the nearest neighbors in R2

is simpler and more efficient than the randomized kinetic algorithm by Agarwal,

Kaplan, and Sharir [10] in the following ways. While their kinetic algorithm and

ours need a priority queue containing all certificates of the KDS, our priority

queue uses linear space, but their priority queue uses O(n log2 n) space. Further-

more, our KDS uses a graph data structure for the Equilateral Delaunay graph

and a tournament trees for each point, but their KDS uses a 2-dimensional

range tree implemented by randomized search trees (treaps), a constant num-

ber of sorted lists, and in fact it maintains O(log2 n) tournament trees for each

11

point. In particular,

– we perform one-dimensional range searching, as opposed to the two-dimensional

range searching of their work;

– the sparse graph representation allows us to obtain a linear space KDS,

which improves the space complexity O(n log2 n) of their KDS. Their KDS

in fact maintains a supergraph of the nearest neighbor graph withO(n log2 n)

candidate edges;

– in our kinetic algorithm, the number of changes to the Equilateral De-

launay graph when the points are moving is O(n2β2s+2(n)); this leads us

to have total processing time O(n2β2
2s+2(n) log2 n), which is an improve-

ment of the total expected processing time O(n2β2
2s+2(n) log4 n) of their

randomized algorithm;

– each point in our KDS participates in O(1) certificates on average, but in

their KDS each point participates in O(log2 n) certificates on average.

1.3.2 Proximity Problems in Rd

We provide a KDS for maintenance of all the nearest neighbors on moving points in

any fixed dimension d, and also give the first solution to the kinetic RkNN problem,

for any k ≥ 1.

Our technique for maintenance of all the nearest neighbors in Rd is similar to

our technique in R2: In both cases we maintain a supergraph, the Semi-Yao graph,

for the nearest neighbor graph. For the Rd case, we use a constant number of d-

dimensional range trees to maintain the Semi-Yao graph, whereas for the R2 case, we

use a constant number of planar graphs, the Equilateral Delaunay triangulations.

Our Semi-Yao graph KDS uses O(n logd n) space and processes O(n2) events

with total processing time O(n2βs+2(n) logd+1 n), and it is compact, efficient, re-

sponsive in an amortized sense, and local. Our all nearest neighbors KDS uses

O(n logd n) space and processes O(n2β2
2s+2(n) log n)) events with total processing time

O(n2β2s+2(n) logd+1 n). It is compact, efficient, responsive in an amortized sense, and

local on average. We improve the previous randomized result by Agarwal, Kaplan,

and Sharir [10] by a factor of logd n in the number of events and by a log n factor in

the total cost. Note that for maintaining all the nearest neighbors, neither our KDS

nor the KDS by Agarwal et al. is local in general, and furthermore, each event in

12

our KDS and in their KDS is handled in polylogarithmic time in an amortized sense.

To satisfy the locality criterion and to get a worst-case processing time for handling

events, we provide a KDS for maintenance of all the (1 + ε)-nearest neighbors in Rd.

This KDS uses O(n logd n) space. It handles O(n2 logd n) events, each in worst-case

time O(logd n log log n), and it is compact, efficient, responsive, and local.

We answer RkNN queries as follows. For a query point q /∈ P , we partition d-

dimensional space into a set of polyhedral cones around q, and then among the points

of P in each cone, we examine the k points having shortest projections on the cone

axis. We obtain O(k) candidate points for q such that q might be one of their k-

nearest neighbors. If we maintain the kth nearest neighbor pk of each point p ∈ P , we

can easily check whether a candidate point p is one of the reverse k-nearest neighbors

of q; this can be done by checking whether |pq| ≤ |ppk|.
For answering RkNN queries on a set of n continuously moving points in a fixed

dimension d, our KDS uses O(n logd n + kn) space and O(n logd n + kn log n) pre-

processing time. In the preprocessing step, we introduce a new, simple method for

reporting all the k-nearest neighbors for all the points p ∈ P in order of increasing

distance from p. It uses O(n logd n + kn) space and O(n logd n + kn log n) prepro-

cessing time. For k = Ω(logd−1 n), both our result and the best previous result by

Dickerson and Eppstein [42] have the same complexity for reporting all the k-nearest

neighbors, but in our view, our method is simpler in practice.

Given a query point at any time t, our KDS finds O(k) candidate points. To

check whether a candidate point is a reverse neighbor to the query point at time t,

our kinetic approach maintains all the k-nearest neighbors over time. This is the first

KDS for maintenance of all the k-nearest neighbors, for any k ≥ 1. Our all k-nearest

neighbors KDS processes O(φ(s, n) ∗ n2) events, each in amortized time O(log n).

Here, φ(s, n) is the complexity of the k-level of a set of n partially-defined polynomial

functions, such that each pair of them intersects at most s times. At any time t, an

RkNN query can be answered in time O(logd n+ k). Note that if an event occurs at

the same time t, we first spend O(log n) amortized time to update all the k-nearest

neighbors, and then we answer the query.

Table 1.1 summarizes all the (previous and new) results for the kinetic proximity

problems. In this table, “Dim.”, “Num.”, “Proc.”, and “Ch.” stand for “Dimension”,

“Number”, “Processing”, and “Chapter”, respectively. Here, β(n) is an extremely

slow-growing function.

13

K
in

e
ti

c
p
ro

b
le

m
D

im
.

S
p
a
ce

N
u
m

.
o
f

e
v
e
n
ts

P
ro

c.
ti

m
e

/
e
v
e
n
t(

s)
L

o
ca

l

C
lo

se
st

p
ai

r
in

[1
6]

2
O

(n
)

O
(n

2
β

(n
)

lo
g
n

)
O

(l
og

2
n

)
/e

ve
n
t

Y
es

C
lo

se
st

p
ai

r
in

[1
8]

O
(1

)
O

(n
lo

g
d
−

1
n

)
O

(n
2
β

(n
)

lo
g
n

)
O

(l
og

d
n

)
/e

ve
n
t

Y
es

C
lo

se
st

p
ai

r
in

[1
0]

O
(1

)
O

(n
lo

g
d
−

1
n

)
O

(n
2
β

(n
)

lo
g
n

)
O

(l
og

d
n

)
/e

ve
n
t

Y
es

C
lo

se
st

p
ai

r
in

C
h
.

3
2

O
(n

)
O

(n
2
β

2
(n

)
lo

g
n

)
O

(n
2
β

2
(n

)
lo

g
2
n

)
/e

ve
n
ts

N
o

A
ll

N
N

s
in

[1
0]

O
(1

)
O

(n
lo

g
d
n

)
O

(n
2
β

(n
)

lo
g
d
+

1
n

)
O

(n
2
β

(n
)

lo
g
d
+

2
n

)
/e

ve
n
ts

N
o

A
ll

N
N

s
in

C
h
.

3
2

O
(n

)
O

(n
2
β

2
(n

)
lo

g
n

)
O

(n
2
β

2
(n

)
lo

g
2
n

)
/e

ve
n
ts

N
o

A
ll

N
N

s
in

C
h
.

5
O

(1
)

O
(n

lo
g
d
n

)
O

(n
2
β

2
(n

)
lo

g
n

)
O

(n
2
β

(n
)

lo
g
d
+

1
n

)
/e

ve
n
ts

N
o

A
ll

(1
+
ε)

-N
N

s
in

C
h
.

5
O

(1
)

O
(n

lo
g
d
n

)
O

(n
2

lo
g
d
n

)
O

(l
og

d
n

lo
g

lo
g
n

)
/e

ve
n
t

Y
es

A
ll
k
N

N
s

in
C

h
.

6
O

(1
)

O
(n

lo
g
d
+

1
n

+
k
n

)
O

(φ
(s
,n

)
∗n

2
)

O
(φ

(s
,n

)
∗n

2
lo

g
n

)
/e

ve
n
ts

N
o

(1
+
ε)

-E
M

S
T

in
[1

8]
O

(1
)

O
((

1/
ε)

(d
−

1
)/

2
n

lo
g
d
−

1
n

)
O

((
1/
ε)
d
−

1
n

3
)

O
(l

og
d
n

)
/e

ve
n
t

Y
es

E
M

S
T

in
[7

9]
2

O
(n

)
O

(n
4
)

O
(l

og
2
n

)
/e

ve
n
t

N
o

E
M

S
T

in
C

h
4

2
O

(n
)

O
(n

3
β

2
(n

)
lo

g
n

)
O

(n
3
β

2
(n

)
lo

g
2
n

)
/e

ve
n
ts

N
o

Y
ao

gr
ap

h
in

C
h
.

4
2

O
(n

)
O

(n
3
β

2
(n

)
lo

g
n

)
O

(n
3
β

2
(n

)
lo

g
2
n

)
/e

ve
n
ts

N
o

S
em

i-
Y

ao
gr

ap
h

in
C

h
.

3
2

O
(n

)
O

(n
2
β

(n
))

O
(n

2
β

(n
)

lo
g
n

)
/e

ve
n
ts

N
o

S
em

i-
Y

ao
gr

ap
h

in
C

h
.

5
O

(1
)

O
(n

lo
g
d
n

)
O

(n
2
)

O
(n

2
β

(n
)

lo
g
d
+

1
n

)
/e

ve
n
ts

Y
es

T
ab

le
1.

1:
T

h
e

p
re

v
io

u
s

re
su

lt
s

an
d

ou
r

re
su

lt
s

fo
r

k
in

et
ic

p
ro

x
im

it
y

p
ro

b
le

m
s.

14

1.3.3 Point Set Embedding Problem

We investigate the problem of point set embedding of a plane graph on a set of points

as follows. We maintain a 3-bend drawing “without mapping” of a given plane graph

G with n vertices on a set P of n moving points.

Denote by p1, ..., pn the points of P sorted in non-decreasing order by their x-

coordinates. We find a Hamiltonian cycle (v1, ..., vn, v1) of the plane graph G that

has an edge v1vn on the outer face, and then we map the Hamiltonian path (v1, ..., vn)

to the chain (p1, ..., pn). Note that if in a plane graph there is no Hamiltonian cycle,

by adding some dummy points and dummy edges to the plane graph, we can find a

Hamiltonian cycle. For each edge vivj ofG, we draw a polygonal curve of line segments

such that the slopes of the line segments are defined based on the difference between

the subscripts i and j and the maximum slope of the edges p1p2, p2p3, ..., pn−1pn. This

assignment prevents intersections between edges during the motion except at times

when two points change the ordering of their x-coordinates.

Our KDS uses O(n) space and O(n log n) preprocessing time, and it processes

O(n2β2s+2(n) log n) events, each in worst-case time O(log2 n). In terms of the four

standard KDS performance criteria, our KDS is efficient, responsive, local, and com-

pact. At any time t, the drawing of an edge vivj of G can be obtained in an efficient

time; if an event occurs at time t, it takes O(log2 n) to generate the slopes for the

drawing of vivj; otherwise, it takes O(1) time.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews the necessary

background for our work and reviews the most important related work.

Chapters 3 - 6 consider the kinetic proximity problems: Chapters 3 and 4 provide

simple KDS’s for maintenance of the closest pair, all the nearest neighbors, and the

EMST in R2. Chapters 5 and 6 give KDS’s for maintenance of all the k-nearest

neighbors and answering the reverse k-nearest neighbor queries for a set of moving

points in Rd.

Chapter 7 considers the kinetic point set embedding problem for plane graphs.

The last chapter contains discussions and some open problems.

15

Chapter 2

Background and Related Work

In this chapter, we describe the necessary background for our work, and give an

overview of previous results. In Sections 2.1 and 2.2, we briefly introduce two KDS’s,

kinetic tournament trees and kinetic range trees, and review the theorems that we

use throughout this dissertation. In Section 2.3, we discuss the best current results

to the problems we consider.

2.1 Kinetic Tournament Trees

Here we introduce a basic KDS, which is called a kinetic tournament tree [17]. We

use this KDS for maintenance of an attribute of interest for a set of moving points,

and then we analyse the KDS based on the four standard KDS performance criteria

as defined in Section 1.1.

Let P = {p1, p2, ..., pn} be a set of n moving points in the plane, where the y-

coordinate yi(t) of each point pi is a polynomial function of at most constant degree

s. The attribute of interest that we want to maintain is the lowest point with respect

to the y-axis among the set P of moving points. In Figure 2.1, the lower envelope

tracks the lowest point of four moving points over time; the lowest point changes at

the breakpoints on the lower envelope at times t1, ..., t4.

To maintain the lowest point over time we can use a kinetic tournament tree. A

kinetic tournament tree is a balanced binary tree T such that the points are stored

at the leaves of the tree T in an arbitrary order, and each internal node v of the tree

maintains the lowest point between its two children. In more detail, denote by Tv

the subtree rooted at internal node v and denote by P (v) the set of points stored at

16

y1(t)

t

y2(t)

y3(t)

y4(t)

y(t)

t1 t2 t3 t4

breakpoint

lower envelope

Figure 2.1: Tracking the lowest point among a set of four moving points.

the leaves of Tv. The point stored at v in the tournament tree is the lowest point

among all the points in P (v); this point is called the winner of the subtree Tv. For

each internal node v of the tournament tree, we define a certificate to attest whether

the left-winner (winner of the left subtree) or the right-winner (winner of the right

subtree) is the winner for v. The failure time of the certificate corresponding to v

is the time when the winner at v changes. The set of all certificates is stored in a

priority queue, with the failure times as the keys, to track the next time after the

current time that a certificate will become invalid.

When the certificate corresponding to an internal node v fails, it may imply the

need to change some winners on the path from the parent of v to the root. In

some cases the winner of a node v′ on the path does not change, but the failure

time corresponding to the certificate of the node v′ may change. Therefore, we must

update the failure times of the certificates of the nodes on the path from the parent

of v to the root, and then we must replace the invalid certificates with new valid

ones in the priority queue; this takes O(log2 n) time, which implies that the KDS is

responsive. Since the size of the priority queue is linear, the KDS is compact. Each

point participates in O(log n) certificates, which implies that the KDS is local.

We need the following theorem to obtain the efficiency of the KDS. It follows

from Theorem 2.1 that the number of external events, which in fact is the number of

changes to the root of the tournament tree, is at most λs(n). Here, λs(n) = nβs(n) is

the maximum length of Davenport-Schinzel sequences of order s on n symbols, and

βs(n) is an extremely slow-growing function. In particular, the following states the

sharp bounds on λs(n).

17

λs(n) =

8>>>>>>>>>>><
>>>>>>>>>>>:

n, for s = 1;

2n− 1, for s = 2;

2nα(n) +O(n), for s = 3;

Θ(n2α(n)), for s = 4;

Θ(nα(n)2α(n)), for s = 5;

n2(1+o(1))αt(n)/t!, for s ≥ 6;

here t = b(s− 2)/2c and α(n) denotes the inverse Ackermann function [72].

The number of internal events for all the internal nodes is
P
v λs(|P (v)|) = O(λs(n) log n).

Thus the ratio of the number of internal events to the number of external events is

O(log n). This implies that the KDS is efficient.

Theorem 2.1. [85] The number of breakpoints on the lower envelope of n totally-

defined, continuous, univariate functions, such that each pair of them intersects at

most s times, is at most λs(n).

Note that Theorem 2.1 holds for totally-defined functions; there exists a similar

result for partially-defined functions:

Theorem 2.2. [85] The number of breakpoints on the lower envelope of n partially-

defined, continuous, univariate functions, such that each pair of them intersects at

most s times, is at most λs+2(n).

Dynamic and Kinetic Tournament Trees. Now consider a dynamic version of

the above example, where insertions and deletions into the point set P are allowed,

such that the y-coordinates of newly inserted points are polynomials of maximum

degree bounded by s.

It is convenient for our purpose to make the kinetic tournament tree dynamic,

to support point insertions and deletions ; the dynamic version of the kinetic tourna-

ment tree is called a dynamic and kinetic tournament tree [10]. The dynamic and

kinetic tournament tree can be implemented using any dynamic balanced search tree.

Agarwal et al. [10] used a weight-balanced (BB(α)) tree [68, 70] to obtain their results

for the number of the events. The total number of events in a kinetic tournament

tree is O(
P
v λs+2(|P (v)|)) = O(βs+2(n)

P
v |P (v)|). Therefore, for a sequence of m

insertions and deletions, we only need to count the number of increases in
P
v |P (v)|.

18

Each insertion in a weight-balanced tree increases by one the size of all the subtrees

rooted at nodes v on the corresponding search path. Since the length of each search

path is O(log n), the number of increases in
P
v |P (v)| by a sequence of m insertions is

O(m log n). Furthermore, each rotation around an edge (vi, vj) in a weight-balanced

tree causes one of |P (vi)| and |P (vj)| to increase and the other one to decrease.

Though the cost of a rotation in a weight-balanced tree is a function of |P (vi)| and

|P (vj)|, the total cost for a sequence of m operations is O(m log n) [68, 70]. Hence

rotations can contribute O(m log n) to
P
v |P (v)|. Therefore, for any sequence of m

insertions and deletions, the tournament tree implemented by a weight-balanced tree

generates O(mβs+2(n) log n) events.

The total cost to handle all the events is bounded by the processing time of each

event in the priority queue, which is O(log n), times the total number of events. Thus

it is O(mβs+2(n) log2 n). Note that each insertion or deletion in a weight-balanced

tree takes time O(log n) [68, 70], and it may change O(log n) certificates along the

corresponding search path. Thus replacing the invalid certificates with new valid

ones in the priority queue takes time O(log2 n), which implies that an update can be

handled in worst-case time O(log2 n).

The following theorem summarizes the results above.

Theorem 2.3. (Theorem 3.1. of [10]) Assume one is given a sequence of m

insertions and deletions into a kinetic tournament tree whose maximum size at any

time is n (assuming m ≥ n). The tournament implemented by a weight-balanced tree

tree generates O(mβs+2(n) log n) events for a total cost of O(mβs+2(n) log2 n). Each

update can be handled in time O(log2 n). A kinetic tournament tree on n elements

can be constructed in O(n) time.

The Complexity of k-level. Consider a set of n moving points, where the y-

coordinate yi(t) of each point pi is a polynomial function of at most constant degree

s. The k-level of these polynomial functions is a set of points q ∈ R2 such that each

point q lies on a polynomial function, and such that it is above exactly k − 1 other

polynomial functions; Fugure 2.2 depicts the 3-level and breakpoints on the 3-level of

four polynomials. The k-level tracks the kth lowest point with respect to y-axis.

Theorems 2.1 and 2.2 give the complexity of the 1-level (i.e., the number of break-

points on the lower envelope) for a set of polynomial functions. The following theorem

gives the current bounds on the complexity of the k-level.

19

y1(t)

t

y2(t)

y3(t)

y4(t)

y(t)

breakpoint

3-level

Figure 2.2: The 3-level of a set of four moving points.

Theorem 2.4. [29, 30] The complexity of the k-level of a set of n partially-defined

polynomial functions, such that each pair of them intersects at most s times, is as

follows.

φ(s, n) =

8>>>>>>>>>>><
>>>>>>>>>>>:

O(n3/2 log n), for s = 2;

O(n5/3poly log n), for s = 3;

O(n31/18poly log n), for s = 4;

O(n161/90−δ), for s = 5, for some constant δ > 0;

O(n2−1/2s−δs), for odd s, for some constant δs > 0;

O(n2−1/2(s−1)−δs), for even s, for some constant δs > 0.

In general, a bound f(n) of φ(s, n) can be converted to the k-sensitive bound

O(f(k)(n/k)β(n/k)) [5]. The complexity of the (≤ k)-level is O(knβ(n/k)) [84].

Here, nβ(n) is the complexity of the lower envelope.

2.2 Kinetic Range Trees

Denote by u1, u2, ..., and ud the d coordinate axes in Rd. The range query problem is to

process a set P of stationary points in Rd to report the points of P inside a rectangular

query range R := [x1 : x′1] × [x2 : x′2] × ... × [xd : x′d]. The rectangular range queries

can efficiently be answered using a d-dimensional range tree data structure [21]. A

d-dimensional range tree is a multi-level data structure which is described as follows.

The first-level tree is a balanced binary search tree T built on the u1-coordinate of

the points in P , where the points are stored at the leaves of T . For each internal

node or leaf node v of a tree at level i, the points in P (v) (i.e., the set of points stored

20

v

u3

p(v)

u2 p(v)

u2

u4

level 1 level 2 level 3 level 4

u1

Figure 2.3: Some parts of a 4-dimensional range tree.

at the leaves of the subtree rooted at v) are stored in a balanced binary search tree

Tv at level i + 1 according to their ui+1-coordinates. Figure 2.3 depicts some parts

of a 4-dimensional range tree, where the points at level i are stored at the leaves

of the i-level tree(s) according to their ui-coordinates. A rectangular range query

can be answered by finding O(logd n) subtrees at level d of the range tree, and then

reporting the points of the subtrees. The following gives the complexity for answering

rectangular range queries.

Theorem 2.5. [21] Let P be a set of n points in d-dimensional space, where d ≥ 2. A

range tree for P uses O(n logd−1 n) storage and it can be constructed in O(n logd−1 n)

time. One can report the points in P that lie in a rectangular query range in O(logd−1 n+

k) time, where k is the number of reported points 1.

Let p = (x1, x2, ..., xd) be a point in Rd. Let C(p) be the cone bounded by d half-

spaces u1−x1 ≥ 0, u2−x2 ≥ 0, ..., ud−1−xd−1 ≥ 0, and ud−xd ≥ 0; Figure 2.4 depicts

a cone C(p) in R2. For reporting the points of P inside a cone C(p), one can use

Theorem 2.5 with the rectangular query range R := [x1 :∞]× [x2 :∞]× ...× [xd :∞].

Thus the points in P∩C(p) can be reported in O(logd n+k) time, where k = |P∩C(p)|
is the cardinality of the set P ∩ C(p).

1For a set of stationary points, there are lots of improvements for answering rectangular range
queries (e.g., see [32]).

21

Range Trees on Moving Points. Given a set P of moving points, where the

trajectory of each point is a polynomial function of constant maximum degree s, the

kinetic range query problem is to process the moving points in P such that the points

of P inside a query range C(p) can efficiently be reported at any given time t. By

designing a KDS for maintenance of a range tree, one can report the points in P∩C(p)

for a query range C(p) at time t.

The range tree remains unchanged as long as the order of the points in each of the

coordinates u1, ..., ud−1, and ud remains unchanged. Therefore, for applying necessary

changes to the range tree over time, we maintain sorted lists L(u1), ..., L(ud−1), and

L(ud) of the points in each of the coordinates u1, ..., ud−1, and ud, respectively. For

each two consecutive points in each sorted list L(ui) we define a certificate that

certifies the order of the two points in the ui-coordinate. To track the closest time

to the current time that an event (i.e., a change to the range tree) occurs we put

the failure times of all the certificates in a priority queue; the element with the

highest priority in the queue gives the closest time. When an event occurs the update

mechanism is invoked to repair the range tree data structure.

Basch et al. [18] and Agarwal et al. [10] use dynamic balanced trees to implement

a range tree for a set of moving points. Using rebalancing operations, they handle

events to maintain a range tree. In particular, in their approaches, when an event

between two points p and q occurs, we must delete p and q and reinsert them into

the range tree. Thus the range tree can be maintained over time using a dynamic

range tree. One of the approaches to update the range trees is to carry out local

and global rebuilding after a few operations, which gives O(logd n) amortized time

per operation [69]. Another approach, which uses merge and split operations, gives

worst-case time O(logd n) per operation [96].

Abam and de Berg [2] introduced a variant of the range trees, a rank-based range

tree (RBRT), which avoids rebalancing the range tree and gives a polylogarithmic

worst-case processing time when an event occurs. Similar to that of a regular range

tree, the points at level i of the RBRT are sorted at the leaves in ascending order

according to their ui-coordinates. The skeleton of an RBRT is independent of the

position of the points in Rd and depends on the ranks of the points in each of the

ui-coordinates. The rank of a point in a tree at level i of the RBRT is its position in

the sorted list of all the points ordered by their ui-coordinates. Any tree at any level

of the RBRT is a balanced binary tree, and no matter how many points are in the

tree, it is a tree on n ranks. Here we shall give a detailed description of an RBRT.

22

p

C(p)C̄(p) u2

u1

Figure 2.4: A cone C(p) and its reflection C̄(p) associated to p = (x1, x2).

Let v be an internal node or a leaf node at level d of the RBRT. Denote by R(v)

the set of points at the leaves of the subtree rooted at v. Corresponding to v we

define another set B(v). Let p ∈ P be a point stored at a leaf node of a tree at level

d of the RBRT. Denote by Pp the path from the parent of p to the root. A point p

belongs to B(v) if v is the right child of some node v̄ ∈ Pp. The set of all the pairs

(B(v), R(v)), for all the nodes v at level d of the RBRT, is called a cone separated

pair decomposition (CSPD) for P ; denote this set by Ψ = {(B1, R1), ..., (Bm, Rm)}.
Let C̄l(p) = −Cl(p) be the reflection of Cl(p) through p, which is intuitively

formed by following the lines through p in the half-spaces of Cl(p); see Figure 2.4. In

particular, the cone C̄(p) is the intersection of the half-spaces u1 − x1 ≤ 0, u2 − x2 ≤
0, ..., ud−1 − xd−1 ≤ 0, and ud − xd ≤ 0.

The following gives the complexity of a (kinetic) RBRT.

Theorem 2.6. [2] A d-dimensional rank-based range tree (RBRT) uses O(n logd n)

storage and can be constructed in O(n logd n) time. It can be described as a set of

pairs Ψ = {(B1, R1), ..., (Bm, Rm)} with the following properties.

• Each pair (Bj, Rj) ∈ Ψ is generated from an internal node or a leaf node of a

tree at level d of the RBRT.

• For any two points p and q in P where q ∈ C(p), there is a unique pair

(Bj, Rj) ∈ Ψ such that p ∈ Bj and q ∈ Rj.

• For any pair (Bj, Rj) ∈ Ψ, if p ∈ Bj and q ∈ Rj, then q ∈ C(p) and p ∈ C̄(q).

• Each point p ∈ P is in O(logd n) pairs of (Bj, Rj) which implies that the number

of elements of all the pairs (Rj, Bj) is O(n logd n).

• For any point p ∈ P , all the sets Bj (resp. Rj) where p ∈ Bj (resp. p ∈ Rj)

can be found in time O(logd n).

23

• The set P ∩ C(p) (resp. P ∩ C̄(p)) of points is the union of O(logd n) sets Rj

(resp. Bj), where the subscript j is such that p ∈ Bj (resp. p ∈ Rj).

For a set of n moving points, where the trajectories are polynomial functions of con-

stant degree, the RBRT can be maintained by processing O(n2) events, each in worst-

case time O(logd n).

2.3 Previous Results

Here we review the best current results to each of the problems for two scenarios: a

set of stationary points, and a set of moving points.

2.3.1 All Nearest Neighbors and Closest Pair

Stationary setting. The nearest neighbor problem, which was also called the post

office problem by Donald Knuth in 1973 [61], is a fundamental, well-studied proximity

problem in computational geometry. The closest pair problem, a variant of the nearest

neighbor problem, was efficiently solved in 1975 by Shamos and Hoey [83]. They gave

an O(n log n)-time algorithm to compute the closest pair of a set of n stationary

points in the plane. For a set of n points in Rd, Bentley and Shamos [20] solved the

problem with the same complexity. There is also a linear-time randomized algorithm

to find the closest pair whereas the known deterministic algorithms take O(n log n)

time [74].

Vaidya [91] in 1989 gave an O(n log n)-time algorithm to solve the all nearest

neighbors problem in Rd. A few years later the all k-nearest neighbors problem was

solved, for any k ≥ 1. In time O(kn log n) [42] one can report all the k-nearest

neighbors, for a point set in any fixed dimension, where the neighbors are reported in

order of increasing distance from each point; reporting the unordered set takes time

O(n log n+ kn) [27, 38, 42].

Kinetic setting. Basch, Guibas, and Hershberger [16] provided a KDS for mainte-

nance of the closest pair for a set of moving points in R2. Their KDS uses linear space

and processes O(n2β2s+2(n) log n) events, each in worst-case time O(log2 n). Their

KDS is efficient, responsive, compact, and local.

Basch, Guibas, and Zhang [18] used d-dimensional range trees to maintain the

closest pair. For a fixed dimension d, their KDS uses O(n logd−1 n) space and pro-

24

cesses O(n2β2s+2(n) log n) events, each in worst-case time O(logd n). Their KDS is

responsive, efficient, compact, and local.

Agarwal, Kaplan, and Sharir [10] gave KDS’s for both maintenance of the closest

pair and all the nearest neighbors in Rd. Agarwal et al. claimed that their closest

pair KDS simplifies the certificates used by Basch, Guibas, and Hershberger [16]; but

Agarwal et al. independently presented a KDS for the closest pair with the same

approach as that of [18] by Basch, Guibas, and Zhang. The closest pair KDS by

Agarwal et al. uses O(n logd−1 n) space and processes O(n2β2s+2(n) log n) events, each

in amortized time O(logd n). Their closest pair KDS is efficient, responsive (in an

amortized sense), local, and compact.

Agarwal et al. gave the first efficient KDS to maintain all the nearest neighbors in

Rd. To obtain the efficiency of their KDS, they implemented multidimensional range

trees by using randomized search trees (treaps). Their randomized kinetic approach

uses O(n logd n) space and processes O(n2β2
2s+2(n) logd+1 n) events; the expected time

to process all events is O(n2β2
2s+2(n) logd+2 n). On average, their KDS is local, mean-

ing that each point in their KDS participates in O(logd n) certificates. Their all

nearest neighbors KDS is efficient, responsive (in an amortized sense), compact, but

in general is not local.

To the best of our knowledge there is no KDS for maintenance of all the k-nearest

neighbors, for any k > 1, even for a set of points in R2.

2.3.2 Euclidean Minimum Spanning Tree

Stationary setting. The EMST problem is an old, well-studied proximity prob-

lem in computational geometry and has been extensively studied in the literature.

Given a supergraph for the EMST of m edges, one can compute the EMST in

time O(m log n) using the Prim’s algorithm [73], or in time O(m + n log n) using

the Kruskal’s algorithm [63]. Shamos and Hoey [83] used the Delaunay triangula-

tion, a supergraph of the EMST, to solve the problem. Since a Delaunay triangula-

tion of a point set P in the plane has O(n) edges, and can be constructed in time

O(n log n) [21], the EMST in R2 can be obtained in time O(n log n). Yao [99] proved

that the EMST can be found in time O(n1.8 log1.8 n) for a set of points in R3, and in

time O(n2−1/2d+1
log1−1/2d+1

n) for a set of points in Rd, where d ≥ 3. These bounds

were later improved by Agarwal et al. [7]. Their method, which is randomized, yields

running times O(n4/3 log4/3 n) for d = 3, and O(n2−2/(dd/2+1e)+σ) for d ≥ 4 and any

25

σ > 0. It is still an open problem whether the EMST in Rd can be computed in time

close to the lower bound Ω(n log n) [41]; event for d = 3, it is conjectured that there

is no o(n4/3)-time algorithm to compute the EMST [45, 40].

For any given ε > 0, Vaidya [92] gave an O((1/ε)dn log n)-time algorithm to com-

pute a (1+ε)-EMST, whose total weight is within a factor of 1+ε of the total weight of

an exact EMST. This bound was later improved to O∗(n log n+(1/ε)d/2n) by Callahan

and Kosaraju [26]; here, notation O∗ is used to hide factors 1/εc, where c is a small

constant not more than 1 or 2. Recently, Arya and Chan [31] achieved better bounds

O∗((1/ε)d/3n log n) and O∗(n+ (1/ε)d/3n/ log2/3 n) to construct a (1 + ε)-EMST.

Kinetic setting. Fu and Lee [47] proposed the first kinetic algorithm for mainte-

nance of an EMST on a set of n moving points in the plane. Their algorithm uses

O(n4 log n) preprocessing time and O(m̃) space, where m̃ is the maximum possible

number of changes in the EMST from time t = 0 to t = ∞. At any given time, the

algorithm constructs the EMST in linear time.

Agarwal et al. [8] proposed a sophisticated algorithm for a restricted kinetic version

of the MST over a graph where the distance between each pair of points in the graph

is defined by a linear function of time. The processing time for each combinatorial

change in the MST is O(n2/3 log4/3 n); the bound reduces to O(n1/2 log3/2 n) for planar

graphs. Their data structure does not explicitly bound the number of changes, but a

bound of O(n4) is easily seen.

For any ε > 0, Basch, Guibas, and Zhang [18] presented a KDS for a (1+ε)-EMST.

For a set of points in Rd, their KDS uses O(ε−(d−1)/2n logd−1 n) space and processes

O(ε−(d−1)n3) events, each in O(logd n) time. They state that their structure can be

used to maintain the MST in the L1 and L∞ metrics.

Rahmati and Zarei [79] improved the previous result by Fu and Lee [47]; they

presented an exact kinetic algorithm for maintenance of the EMST on a set of n

moving points in R2. In O(n log n) preprocessing time and O(n) space, they build

a KDS that processes O(n4) events, each in O(log2 n) time. Their KDS uses the

method of Guibas et al. [53] to track changes to the Delaunay triangulation, which is

a supergraph of the EMST [71]. Whenever two edges of the Delaunay triangulation

swap their length order, their kinetic algorithm makes the required changes to the

EMST. In fact, the number of changes in their algorithm is within a linear factor of the

number of changes to the Delaunay triangulation [53]. Rubin proved that the number

of discrete changes to the Delaunay triangulation is O(n2+ε), for any ε > 0, under the

26

assumption that any four points can be co-circular at most twice [81], or at most three

times where each point moves along a straight line at unit speed [80]. Under these

assumptions, the kinetic algorithm of Rahmati and Zarei processes O(n3+ε) events,

and hence within a linear factor of changes to the Delaunay triangulation.

The kinetic approach by Rahmati and Zarei [79] can maintain the minimum span-

ning tree of a plane graph whose edge weights are polynomial functions of constant

maximum degree; the processing time of each event is O(log2 n).

2.3.3 Reverse k-Nearest Neighbor Queries

Stationary setting. The reverse k-nearest neighbor problem was first posed by

Korn and Muthukrishnan [62] in the database community, and then considered exten-

sively in this community due to its many applications, e.g., decision support systems,

profile-based marketing, traffic networks, business location planning, clustering and

outlier detection, and molecular biology [64, 65, 87, 88, 89, 100, 101].

In computational geometry community, there exist two data structures [66, 34]

that give solutions to the RkNN problem. Both of these solutions answer RkNN queries

for a set P of stationary points and both only work for k = 1. Maheshwari et al. [66]

gave a data structure to solve the R1NN problem in R2. Their data structure cre-

ates an arrangement of largest empty circles centered at the points of P and answers

R1NN queries by point location in the arrangement. Their data structure uses O(n)

space and O(n log n) preprocessing time, and an R1NN query can be answered in

time O(log n). Cheong et al. [34] considered the R1NN problem in fixed dimension

Rd, where d = O(1). Their method, which uses a compressed quadtree, partitions

space into cells such that each cell contains a small number of candidate points. To

answer an R1NN query, their solution finds a cell that contains the query point and

then checks all the points in the cell. Their data structure uses O(n) space and

O(n log n) preprocessing time, and can answer an R1NN query in O(log n) time. It

seems that the approach by Cheong et al. can be extended to answer RkNN queries

with preprocessing time O(kn log n), space O(kn), and query time O(log n+ k).

Kinetic setting. The reverse k-nearest neighbor queries for a set of continuously

moving objects has attracted the attention of the database community [94, 19, 56,

97, 98, 56, 44]. To the best of our knowledge, in computational geometry, there is no

KDS to answer the reverse k-nearest neighbor queries.

27

2.3.4 Point Set Embeddability for Plane Graphs

Stationary setting. Cabello [25] proved that deciding whether a graph G can be

embedded by straight-line edges without mapping onto a given set P of points is NP-

complete, even when G is 2-connected. Gritzmann et al. [51] showed that the class

of planar graphs such that all vertices are on the outer face (outerplanar graphs) is

the largest class of graphs that can be embedded with straight-line edges without

mapping onto any point set in general position (no three or more points collinear).

There are algorithms for special cases in which the graph G is a tree [24, 55] or an

outerplanar graph [23, 51].

For k-bend drawing without mapping, Kaufmann and Wiese [59] gave a 1-bend

drawing algorithm for 4-connected plane graphs and a 2-bend drawing algorithm for

general plane graphs; for general graphs, their algorithm takes time O(n log n) (resp.

O(n2)) to draw a point set embedding with at most three (resp. two) bends per

edge. In particular, their algorithm draws a 3-bend drawing in O(n log n) time and

then spends O(n2) time, using rotation, to transfer the 3-bend drawing to a 2-bend

drawing. In addition, they proved that deciding whether there is a mapping such

that each edge has at most one bend is NP-complete. Giacomo et al. [50] presented

an O(n log n)-time algorithm which improves the previous O(n2)-time algorithm by

Kaufmann and Wiese [59] and guarantees that no rotation is needed to obtain a

2-bend drawing.

Kinetic setting. To our knowledge there are no previous results for point set em-

bedding of a plane graph on a set of points moving along predictable trajectories.

28

Chapter 3

Kinetic All Nearest Neighbors and

Closest Pair in the Plane

In this chapter we present KDS’s for maintenance of all the nearest neighbors and

the closest pair, for points moving with known trajectories given by bounded degree

polynomial functions. In Section 3.1, we first introduce two new supergraphs of

the nearest neighbor graph, the Semi-Yao graph and the Equilateral Delaunay graph

(EDG), and then we show that these graphs are in fact the same. We provide the first

KDS to maintain the Semi-Yao graph in Section 3.2. Finally, in Sections 3.3 and 3.4,

we use the Semi-Yao graph KDS to give simple, deterministic KDS’s for maintenance

of all the nearest neighbors and the closest pair.

Our KDS for maintenance of all the nearest neighbors improves the previous

randomized KDS by Agarwal, Kaplan, and Sharir [10].

The results of this chapter were published as a paper in the Proceedings of the

29th ACM Symposium on Computational Geometry (SoCG 2013) [76].

3.1 New Method for Computing All Nearest Neigh-

bors and Closest Pair

Partition the plane into six wedges (cones) W0, ...,W5, each of angle π/3 with common

apex at the origin o. For 0 ≤ l ≤ 5, let Wl span the angular range [(2l− 1)π/6, (2l+

1)π/6). Denote by xl the unit vector in the direction of the bisector ray of Wl. Let

Wl(pi) denote the translate of wedge Wl that moves the apex to point pi, and let

Vl(pi) denote the intersection of P with wedge Wl(pi): Vl(pi) = P ∩Wl(pi). Denote

29

pi

pj

p̂j

x0(pi)

Figure 3.1: Projection of the point pj to the bisector b0(pi) of the wedge W0(pi).

by xl(pi) the unit vector emanating from pi in the direction of the bisector ray of

Wl(pi); see Figure 3.1. Observe that, in Figure 3.1, since pi is the closest point to pj,

there are no other points of P in the interior of the disc centered at pj with radius

d(pi, pj), where d(pi, pj) is the distance between points pi and pj.

The following straightforward lemma is key for obtaining our KDS’s for the all

nearest neighbors and the closest pair problems. Consider pj ∈ P , and let pi denote

the point of P closest to pj and distinct from pj. Let Wl(pi) denote the wedge of

pi that contains pj, and denote by p̂j the projection of pj to the bisector xl(pi); see

Figure 3.1.

Lemma 3.1. (Lemma 2.1. of [10]) Point pj has the minimum length projection

to xl(pi), where the minimum is taken over Vl(pi). That is,

|p̂jpi| = min{|p̂kpi| : pk ∈ Vl(pi)} (3.1)

Proof. We prove the lemma by contradiction: Assume there is a point pr ∈ Vl(pi)
whose xl-coordinate is less than the xl-coordinate of pj; see Figure 3.2. Consider the

triangle pipjpr, which is inscribed in an equilateral triangle. Since pi is the closest

point to pj, |pjpi| < |pjpr|, which implies that the angle ∠pjpipr > ∠pjprpi. This is a

contradiction, because ∠pjpipr ≤ π/3 and ∠pjprpi > π/3.

Thus Lemma 3.1 gives a necessary condition for pi to be the nearest neighbor to

pj. We now use this lemma to define a supergraph of the nearest neighbor graph of

P . To find the nearest neighbor for each point pj ∈ P , we seek a set of candidate

points C(pj) = {pi| pi and pj satisfy Equation (3.1)}. From now on, when we say

pj has the minimum xl-coordinate inside the wedge Wl(pi), we mean that pj and pi

30

pjpi

pr

x0(pi)

Figure 3.2: Point pi is the closest point to pj; among the points in Vl(pi), pj has the
minimum length projection on the bisector x0(pi).

pj

Figure 3.3: In-edges and out-edges of pj.

satisfy Equation (3.1).

Consider a Semi-Yao graph which is constructed as follows. Connect each point

pi ∈ P to a point pj ∈ Vl(pi) with a directed edge −−→pjpi from pj to pi whenever pj

is the point with the minimum xl-coordinate, among all the points in Vl(pi). The

edge −−→pjpi is called an in-edge for pi and it is called an out-edge for pj. Each point in

the Semi-Yao graph has at most six in-edges and has a set of out-edges; Figure 3.3

depicts the in-edges and the out-edges of the point pj. Denote by Sout(pj) the end

points of the out-edges of pj. From the above discussion, it is easy to see the following

observation, which gives Lemma 3.2 below.

Observation 3.1. C(pj) = Sout(pj).

Lemma 3.2. The Semi-Yao graph of a point set P is a supergraph of the nearest

neighbor graph of P .

From now on, when we say a convex set, e.g., a triangle, is empty, we mean it has

no point of P in its interior.

From Lemma 3.1, we can get the following straightforward observation, which

makes a connection to the Delaunay triangulations of the point set P .

31

(a) (b)

o ∆0

∆1∆2

∆3

∆4 ∆5

Figure 3.4: (a) Partitioning the unit regular hexagon into six equilateral triangles.
(b) Some 0-tri’s.

Observation 3.2. If pj has the minimum xl-coordinate inside the wedge Wl(pi), then

pi and pj touch the boundary of an empty equilateral triangle; pi touches a vertex and

pj touches an edge of the triangle.

A unit regular hexagon is a regular hexagon whose edges have unit length; let 9

be the unit regular hexagon with center at the origin o and vertices at (
√

3/2, 1/2),

(0, 1), (−
√

3/2, 1/2), (−
√

3/2,−1/2), (0,−1), and (
√

3/2,−1/2); see Figure 3.4(a).

Partition 9 into six equilateral triangles Ml, l = 0, 1, .., 5 and call any translated and

scaled copy of Ml an l-tri ; see Figure 3.4(b).

A Delaunay graph can be defined based on any convex shape, e.g., a square, a

diamond, any triangle, or a piece of pie [3, 4, 43]. Chew and Drysdale [35, 43] gave

divide-and-conquer algorithms to compute the Delaunay triangulation based on a

convex shape 1. The following summarizes the construction time of the Delaunay

triangulation in their algorithms.

Theorem 3.1. [35, 43] The Delaunay triangulation of a set of n points based on

a convex shape can be constructed in O(n log n) time.

Here we call the Delaunay triangulation constructed based on an equilateral tri-

angle an Equilateral Delaunay triangulation (EDT).

There is a nice connection between the Semi-Yao graph and the Equilateral De-

launay triangulations. In general, the Semi-Yao graph is the union of two Equilateral

Delaunay triangulations [22]. Next, we describe this connection in a different, and in

our view simpler, way than [22].

1Other standard approaches, such as the randomized incremental construction [21], would work
to obtain a Delaunay triangulation based on a convex shape.

32

Figure 3.5: The Delaunay triangulation based on the 0-tri.

Denote by EDTl the Equilateral Delaunay triangulation based on the l-tri. The

edge pipj is an edge of EDTl if and only if there is an empty l-tri such that pi and

pj are on the boundary of the l-tri; Figure 3.5 depicts EDT0 for a set of four points.

Let E(G) be the set of edges of graph G; the set of vertices of G is P . Since M0,

M2, and M4 are translates of one another, and similarly for M1, M3, and M5, we have

that E(EDT0) = E(EDT2) = E(EDT4) and E(EDT1) = E(EDT3) = E(EDT5). Thus

there are two different types of l-tri’s. We define the Equilateral Delaunay graph

(EDG) to be the union of EDT0 and EDT1, i.e., pipj ∈ E(EDG) if and only if

pipj ∈ E(EDT0) or pipj ∈ E(EDT1).

Corollary 3.1. The Equilateral Delaunay graph (EDG) of a set of n points can be

constructed in O(n log n) time.

Proof. Since each Ml, 0 ≤ l ≤ 5, is a convex shape, one can construct the correspond-

ing Equilateral Delaunay triangulation EDTl inO(n log n) time (by Theorem 3.1).

Let pipj ∈ E(EDTl). By definition there exists an empty l-tri such that pi and pj

are on its boundary. By scaling down the l-tri, one of the l-tri vertices will be placed

at pi or pj; see Figures 3.6(b) and 3.6(c).

Observation 3.3. If there is an empty l-tri such that pi and pj are on its boundary,

then there is an empty l-tri with the same property such that either pi or pj is a vertex

of the l-tri.

The next lemma proves that the (undirected) Semi-Yao graph and the Equilateral

Delaunay graph are equal to each other.

Lemma 3.3. Edge pipj ∈ E(SY G) if and only if pipj ∈ E(EDG).

Proof. Let pipj be an edge of the Semi-Yao graph such that pj has the minimum xl-

coordinate inside some wedge Wl(pi); see Figure 3.6(a). The bounded area created by

the wedge Wl(pi) and the line through pj perpendicular to xl(pi) is an l-tri. Therefore,

33

pj

pi

W5(pi)

x5(pi)

pj

pi

(a) (b)

pj
pi

W0(pi)

x0(pi)

(c)

Figure 3.6: (a) The point pj has the minimum x0-coordinate inside the wedge W0(pi).
(b) The 1-tri corresponding to the edge pipj in EDT1 does not contain any other
points of P . (c) The point pj is inside the wedge W5(pi) and has the minimum
x5-coordinate.

for the edge pipj, there exists an empty l-tri such that pi and pj are on its boundary.

This implies that pipj is an edge of EDTl.

Let pipj ∈ E(EDTl). By the definition of EDTl, there exists an empty l-tri such

that pi and pj are on its boundary; see Figure 3.6(b). By Observation 3.3, we can

get a new rescaled l-tri such that pi and pj are on its boundary and such that one of

the l-tri vertices is pi or pj (see Figure 3.6(c)); without loss of generality assume it is

pi. Point pj is inside the wedge Wk(pi), where k ∈ {l, (l + 2) mod 6, (l + 4) mod 6}.
Point pj has the minimum bk-coordinate inside the wedge Wk(pi); otherwise, there

would be a point of P inside the rescaled l-tri, which means that pipj /∈ E(EDTl), a

contradiction. Therefore, pipj ∈ E(SY G).

Now we can give the following, which is deriving known results in a new way.

Theorem 3.2. The all nearest neighbors and the closest pair problems in R2 can be

solved in O(n log n) time.

Proof. From Corollary 3.1 and Lemma 3.3, the Semi-Yao graph can be constructed

in O(n log n) time. Since the number of edges in the Semi-Yao graph is at most 6n,

by traversing the Semi-Yao graph edges incident to each point, we can find all the

nearest neighbors and the closest pair in linear time.

34

3.2 Kinetic Equilateral Delaunay Graph

Since E(EDT0) = E(EDT2) = E(EDT4) and E(EDT1) = E(EDT3) = E(EDT5), to

maintain the EDG, which is the union of EDT0 and EDT1, we only need to have

kinetic data structures for EDT0 and EDT1. We describe how to maintain EDT0;

EDT1 is handled similarly.

The Delaunay triangulation EDT0 is locally stable as long as the points are in

general position. Note that we assume the set of points P is in general position

with respect to a 0-tri; this means that no four or more points are on the boundary

of any scaled, translated 0-tri. When the points are moving, at a moment t this

assumption may fail. In fact for moving points, we make a further assumption: no

four points are on the boundary of the 0-tri throughout any positive interval of time.

This ensures that the points are in general position over time except at some discrete

moments. The number of these discrete moments over time is in the order of the

number of changes to EDT0, because the failure of the general position assumption is

a necessary condition for changing the topological structure of EDT0. When a point

moves, EDT0 can change only in the graph neighborhood of the point, and so the

correctness of EDT0 over time is asserted by a set of certificates. Our approach for

maintenance of EDT0 is a known approach also used in [3, 4, 9, 11] for maintenance

of Delaunay triangulations based on convex shapes.

Figure 3.7(a) depicts the EDT0 of a set P of points. Each edge on the boundary of

the infinite face of EDT0, e.g., pipj, is called a hull edge; the other edges, e.g., pi′pj′ ,

are called interior edges. Corresponding to these two types of edges, we define two

types of certificates, NotInWedge and NotInTri, respectively. Below, we first consider

the interior edges and then the exterior edges.

NotInTri certificates. Each interior edge pi′pj′ ∈ EDT0 is incident to two triangles

pi′pj′pr′ and pi′pj′pr; see Figure 3.7(a). For the triangle pi′pj′pr′ (resp. pi′pj′pr), there

exists an empty 0-tri, denoted by ∆0
r′ (resp. ∆0

r), such that pi′ , pj′ and pr′ (resp. pr)

are on the boundary of ∆0
r′ (resp. ∆0

r). For pi′pj′ , we define a NotInTri certificate

certifying that pr (resp. pr′) is outside ∆0
r′ (resp. ∆0

r). For sufficiently short time

intervals, pr and pr′ are the only points that can change the validity of edge pi′pj′

(see [3, 4, 9, 11]). Let t be the time when the four points pi′ , pj′ , pr′ , and pr are on

the boundary of a 0-tri; at time t−, pr (resp. pr′) is outside ∆0
r′ (resp. ∆0

r). When

pr (resp. pr′) moves inside ∆0
r′ (resp. ∆0

r), at time t+, this certificate fails and there

35

ps1ps2

ps3 pi′

pj′
pr′

pr

pi

pj

ps2

ps3 pi′

pj′
pr′

pr

pi

pj

ps1

(a) (b)

Figure 3.7: (a) The NotInTri certificate corresponding to the edge pi′pj′ certifies that
pr is outside the 0-tri of pi′ , pj′ , and pr′ . The NotInWedge certificate of the edge pipj
certifies that ps1 , ps2 , and ps3 are outside the corresponding k-wedge. (b) The changes
to EDT0 after pr moves inside the 0-tri passing through pi′ , pj′ , and pr′ and after ps1
moves inside the k-wedge of pipj.

(a) (b)

o

a0

a1

a2

a3

a4

a5

pi

pj

Figure 3.8: (a) A 0-tri. (b) The k-wedges created by the 0-tri; edge pipj divides the
4-wedge ←−→a4oa5 into the bounded area opipj and the unbounded area ←−−−−→a4pipja5.

is no empty 0-tri such that pi′ and pj′ are on its boundary. Thus at time t, we have

to delete the edge pi′pj′ and add the new edge pr′pr, because at time t+ there exists

an empty 0-tri for prpr′ ; see Figure 3.7(b). Also, we must define new certificates

corresponding to the newly created triangles.

NotInWedge certificates. By removing one of the 0-tri edges and extending the

other two edges to infinity, three types of wedges are created (see Figure 3.8); call

these wedges k-wedges, for k = {0, 2, 4}, and denote them by ←−−−→akoak+1; the two sides
−→oak and −−−→oak+1 of the boundary of the k-wedge are parallel to the two corresponding

sides of the wedge Wk.

For a hull edge pipj, there exists an empty k-wedge such that pi and pj are on the

36

ps3

pi

pj

ps2

ps4

ps5

Figure 3.9: A hull edge is incident to at most four other hull edges.

boundary. Each hull edge is incident to at most one triangle pipjps1 (see Figure 3.7(a)),

and adjacent to at most four other hull edges pips2 , pips3 , pjps4 and pjps5 on the

boundary cycle of the infinite face (see Figure 3.9); the point ps1 can be one of

the points ps2 to ps5 . If pipj is adjacent to four other hull edges, this edge cannot be

incident to a triangle, and if it is incident to a triangle, it cannot be adjacent to more

than two other hull edges.

Note that the only points that can change the validity of the edge pipj over a

sufficiently short time interval are the points psi , 1 ≤ i ≤ 5. Therefore, we define at

most four NotInWedge certificates for the hull edge pipj, certifying that the points

psi , 1 ≤ i ≤ 5, are outside the k-wedge; see Figure 3.7(a). Next we describe how to

update the edges of EDT0 when a NotInWedge certificate fails.

Let t be the time when three points pi, pj, and psi are on the boundary of the

k-wedge; at time t−, psi is outside the k-wedge. As shown in Figure 3.8(b), a hull

edge pipj divides its corresponding k-wedge ←−−−→akoak+1 into a bounded area opipj and

an unbounded area ←−−−−−→akpipjak+1.

If psi moves inside the bounded area opipj at time t+, the NotInWedge certificate

of pipj fails, and we must delete pipj from the hull edges at time t and replace it

with two edges incident to psi . In Figure 3.7(a), if ps1 moves inside the bounded area

opipj, then we replace the hull edge pipj with two edges pips1 , ps1pj; in particular, the

chain [..., ps2pi, pipj, pjps3 , ...] of hull edges changes to [..., ps2pi, pips1 , ps1pj, pjps3 , ...]

when ps1 moves inside the k-wedge (see Figure 3.7(b)). When this event occurs the

previous interior edges pips1 and ps1pj become hull edges, and we must replace the

previous certificates of these edges with new valid ones.

If psi moves inside the unbounded area ←−−−−−→akpipjak+1, without loss of generality let

psi be incident to pi, we replace the hull edges psipi and pipj with psipj. Then the

previous hull edge pipj either is an edge of EDT0, in which case we must define a

37

pi

pj ps1

ps2

pi

pj

ps2

ps1

pi
ps2

ps1pj

(a) (b) (c) (d)

pi
ps2

pi′

ps′2

pi′′

Figure 3.10: The consecutive changes to EDT0 when ps2 moves inside the k-wedge of
pipj.

valid certificate for it, or it is not, in which case we must delete it from EDT0 and

add a new edge; In Figure 3.10(a) we delete pipj and add the new edge psips1 , where

pipj is incident to a triangle pipjps1 (see Figure 3.10(c)).

Consecutive Changes to EDT0. In some cases, when a certificate fails, we must

apply a sequence of changes to EDT0. These kinds of changes occur at incident

triangles, and as we will see, they can be handled consecutively.

When a NotInWedge certificate fails, we apply a sequence of edge insertions and

edge deletions to EDT0. In Figure 3.10(a), when ps2 moves inside the k-wedge of

pipj, we replace chain ps2pi, pipj of hull edges with ps2pj (see Figure 3.10(b)), and

then we apply a sequence of changes; the previous hull edge pipj is no longer an edge

in E(EDT0), because now the interior of its corresponding 0-tri contains the point ps2 ,

and so we replace it with the edge ps1ps2 (see Figure 3.10(c)). Finally, by checking

the 0-tri’s of other incident triangles, we can obtain a set of valid edges for EDT0 (see

Figure 3.10(d)).

A similar scenario could happen when a NotInTri certificate fails. In Figure 3.10(d),

if pi moves inside the 0-tri of ps2 , ps′2 , and pi′ , we must apply a sequence of changes

to EDT0 that is the reverse of what we did above when the NotInWedge certificate

failed. First we replace ps2ps′2 with pipi′ . Then we must replace ps2pi′ with pipi′′ ,

because pi is inside the 0-tri of ps2 , pi′ , and pi′′ . By checking the 0-tri’s of other

incident triangles we can obtain a valid set of edges for EDT0; see Figure 3.10, read

from (d) to (a). Therefore, after any change to EDT0 we must check the validity of

the incident triangles, which can be done easily.

38

Theorem 3.3 below enumerates the changes to the Equilateral Delaunay graph

when the points move, and gives the total processing time for all these events

Theorem 3.3. For a set of n moving points, when they move according to polynomial

functions of at most constant degree s, there exists a KDS to maintain the Equilat-

eral Delaunay graph (i.e., the Semi-Yao graph) that uses linear space and processes

O(n2βs+2(n)) events, each in amortized time O(log n).

Proof. For each edge in the EDG, there exists a constant number of certificates; this

implies that the size of the KDS is linear.

From Lemma 3.3, the Equilateral Delaunay graph changes if and only if the Semi-

Yao graph changes. Fix a point pi in the Yao graph and one of its wedges Wl(pi).

Since the trajectory of each point pi(t) = (xi(t), yi(t)) is defined by two polynomial

functions of at most constant degree s, each point can insert into Vl(pi) at most s

times. The xl-coordinates of the points inserted into Vl(pi) create at most sn partial

functions of at most constant degree s. From Theorem 2.2, the minimum value of

these sn partial functions changes at most λs+2(sn) times, which is equal to the

number of all changes for the point with minimum xl-coordinate among the points in

Vl(pi). Since s is a constant, we have that λs+2(sn) = O(λs+2(n)). Thus the number

of all changes for all points is O(nλs+2(n)) = O(n2βs+2(n)).

The number of all the certificates over time is in the order of the number of the

changes to EDT0. When a change to EDT0 occurs, we update the EDT0 and replace

the invalid certificate(s) in the priority queue with new valid one(s). The time to

make a constant number of deletions/insertions into the priority queue is O(log n).

Therefore, the total time to process all events is O(n2βs+2(n) log n).

3.3 Kinetic All Nearest Neighbors

The Equilateral Delaunay graph (Semi-Yao graph) is a supergraph of the nearest

neighbor graph (by Lemma 3.2). Therefore, in order to maintain the nearest neighbor

to each point pi, we need to track the edge with the minimum length among the edges

incident to pi in the Equilateral Delaunay graph.

Let Inc(pi) be the set all edges incident to pi in the Equilateral Delaunay graph,

and let ni be the cardinality of the set Inc(pi). Using a dynamic and kinetic tour-

nament tree (see Section 2.1), we can maintain the edge with the minimum length

among the edges in Inc(pi). For each Inc(pi), i = 1, 2, ..., n, we construct a dynamic

39

and kinetic tournament tree Ti whose elements are the edges in Inc(pi); the root of

Ti maintains the edge with minimum length among all edges in Inc(pi).

Corollary 3.2. Given a sequence of mi insertions and deletions into Ti. The tourna-

ment tree Ti generates O(miβ2s+2(ni) log ni) events, for a total cost of O(miβ2s+2(ni) log2 ni).

The tournament tree Ti of ni elements can be constructed in O(ni) time.

Proof. From Theorem 2.3 and the fact that the lengths of any two edges in Inc(pi)

can become equal at most 2s times, the proof obtains.

Now we can prove the following.

Lemma 3.4. All the dynamic and kinetic tournament trees Ti’s can be constructed in

O(n) time. These dynamic and kinetic tournament trees generate O(n2β2
2s+2(n) log n)

events, for a total cost of O(n2β2
2s+2(n) log2 n).

Proof. By Corollary 3.2, all the dynamic and kinetic tournament trees Ti, i = 1, ..., n,

generate at mostO(
Pi=n
i=1 miβ2s+2(ni) log ni) = O(β2s+2(n) log n

Pi=n
i=1 mi) events. Since

each edge is incident to two points, inserting (resp. deleting) an edge pipj into the

Equilateral Delaunay graph causes two insertions (resp. deletions) into the tourna-

ment trees Ti and Tj. By Theorem 3.3, the number of all insertions/deletions into the

tournament trees is
Pi=n
i=1 mi = O(n2βs+2(n)) = O(n2β2s+2(n)). Hence the number of

all events is O(n2β2
2s+2(n) log n), and the total cost is O(n2β2

2s+2(n) log2 n).

Now we can prove the following theorem, which gives the results about our kinetic

data structure for the all nearest neighbors problem.

Theorem 3.4. Our kinetic data structure for maintenance of all the nearest neighbors

uses linear space and O(n log n) preprocessing time. It handles O(n2β2
2s+2(n) log n)

events with total processing time O(n2β2
2s+2(n) log2 n). It is compact, efficient, re-

sponsive in an amortized sense, and local on average.

Proof. Since
P
i ni = n, the total size of all the tournament trees Ti, i = 1, ..., n, is

O(n). The number of all edges in the EDG is O(n). For each edge in the EDG, we

define a constant number of certificates. Furthermore, the number of all certificates

corresponding to the internal nodes of all Ti is linear. Thus the KDS is compact.

The ratio of the number of internal events O(n2β2
2s+2(n) log n) to the number of

external events O(n2β2s) is polylogarithmic, which implies that the KDS is efficient.

40

By Lemma 3.4, the ratio of the total processing time to the number of internal

events is polylogarithmic, and so the KDS is responsive in an amortized sense.

Since the number of all certificates is O(n), each point participates in a constant

number of certificates on average, which implies that the KDS is local on average.

3.4 Kinetic Closest Pair

The edge pipj with minimum length in the nearest neighbor graph gives the closest

pair (pi, pj). Since the Equilateral Delaunay graph is a supergraph of the nearest

neighbor graph, to maintain the closest pair (pi, pj) we need to maintain the edge

with minimum length in the Equilateral Delaunay graph.

By constructing a dynamic and kinetic tournament tree, whose elements are the

edges of the Equilateral Delaunay graph, we can maintain the closest pair (pi, pj)

over time; the edge at the root of the dynamic and kinetic tournament tree gives the

closest pair. The insertions and deletions into the dynamic and kinetic tournament

tree occur when a change to the Equilateral Delaunay graph occurs. Therefore, we can

obtain the same results for maintenance of the closest pair over time as we obtained

for maintenance of all the nearest neighbors in Theorem 3.4; the analysis is similar.

Theorem 3.5. Our kinetic data structure for maintenance of the closest pair uses

linear space and O(n log n) preprocessing time. It handles O(n2β2
2s+2(n) log n) events

with total processing time O(n2β2
2s+2(n) log2 n), and it is compact, efficient, responsive

in an amortized sense, and local on average.

41

Chapter 4

Kinetic Euclidean Minimum

Spanning Tree in the Plane

In this chapter, we provide a KDS for maintenance of the EMST, when the points

move according to bounded degree polynomial functions. In Section 4.1, we introduce

a new supergraph of the Yao graph, namely the Pie Delaunay graph (PDG), which

in fact gives a new supergraph of the EMST, and give a new method for computing

the Yao graph and the EMST; our approach is similar to that of idea of computing

all the nearest neighbors and the closest pair in Chapter 3. We show how to maintain

the PDG over time in Section 4.2. Using the kinetic version of the PDG, we provide

the first KDS for maintenance of the Yao graph in Section 4.3. Finally, in Section 4.4,

we use the Yao graph KDS to give a KDS for maintenance of the EMST.

Our KDS for maintenance of the EMST improves the previous KDS by Rahmati

and Zarei [79] by a near-linear factor in the number of events.

The results of this chapter were published as a paper in the Proceedings of the 13th

Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2012) [4].

4.1 New Method for Computing the Yao Graph

and the EMST

Consider a partition of a unit disk into six pieces of pie σ0, ..., σ5, each of angle π/3

with common apex at the origin o. For 0 ≤ l ≤ 5, let σl span the angular range

[(2l − 1)π/6, (2l + 1)π/6), and call any translated and scaled copy of σl an l-pie;

Figure 4.1 depicts a unit disc and some 0-pie’s.

42

(a) (b)

o σ0

σ1σ2

σ3

σ4 σ5

Figure 4.1: (a) Partitioning the unit disk into six pieces of pie. (b) Some 0-pie’s.

We define a Delaunay triangulation, which we call a Pie Delaunay triangulation,

of the set P of n points, based on the convex shape σl. Denote by PDTl the Pie

Delaunay triangulation based on the l-pie. For two points pi and pj in P , the edge

pipj is an edge of PDTl if and only if there is an empty l-pie such that pi and pj are

on its boundary. We define the Pie Delaunay graph (PDG) to be the union of all

PDTl for i = 0, ..., 5; i.e., pipj is a PDG edge if and only if it is an edge in PDTl,

where 0 ≤ l ≤ 5.

Lemma 4.1. The Pie Delaunay graph (PDG) of a set of n points can be constructed

in O(n log n) time.

Proof. Each σl, 0 ≤ l ≤ 5, is a convex shape. Therefore, by Theorem 3.1, the

corresponding Delaunay triangulation PDTl can be constructed in O(n log n) time.

For each point pi ∈ P , partition the plane into six wedges W0(p), ...,W5(p) of angle

π/3 where pi is the common apex of the wedges. For 0 ≤ l ≤ 5, let Wl(pi) span the

angular range [(2l − 1)π/6, (2l + 1)π/6) around pi. Consider a Yao graph which is

constructed by connecting the point pi to its nearest points inside the wedges Wl(p)

for all i = 0, ..., 5. Denote the Yao graph of a set of n points by YG, the set of its

edges by E(Y G), and the set of Pie Delaunay graph edges by E(PDG). The following

lemma shows that the Pie Delaunay graph is a supergraph of the Yao graph (YG).

Lemma 4.2. E(Y G) ⊆ E(PDG).

Proof. Let edge pipj ∈ E(Y G) and let pj to be the nearest point to pi inside the

wedge Wl(pi); see Figure 4.2. The two sides of the wedge Wl(pi) are parallel to the

43

pi Wl(pi)
pj

Figure 4.2: Nearest point to pi inside the wedge Wl(pi).

two corresponding sides of σl, so there is an empty l-pie such that pi and pj lie on its

boundary. Therefore, pipj is an edge of PDTl and hence pipj ∈ E(PDG).

Now we can state and prove the main result of this section.

Theorem 4.1. The Yao graph and the EMST can be constructed in O(n log n) time.

Proof. The Pie Delaunay graph is the union of six Pie Delaunay triangulations, which

implies that it has a linear number of edges. By Lemma 4.2, the Pie Delaunay graph is

a supergraph of the Yao graph. Thus by tracing over the edges incident to each point

pi, we can find the edge with minimum length inside each wedge Wl(pi), for l = 0, ..., 5;

this gives the Yao graph. Since the Pie Delaunay graph can be constructed in time

O(n log n) (by Lemma 4.1), the Yao graph can be constructed in time O(n log n).

The Yao graph is a supergraph of the EMST [99]. Thus the minimum spanning

tree of the Yao graph is equal to the EMST. Since the cardinality of the set of

edges in the Yao graph is at most 6n, the EMST can be constructed using the Prim

algorithm [73] or the Kruskal algorithm [63] in time O(n log n).

4.2 Kinetic Pie Delaunay graph

Our KDS for maintenance of the Pie Delaunay graph is similar to the KDS for main-

tenance of the Equilateral Delaunay graph in Section 3.2. The Pie Delaunay graph

(PDG) is the union of all PDTl, for l = 0, .., 5: E(PDG) =
S
l E(PDTl). Here, we

only describe a KDS for PDT0; the other PDTl, for l = 1, .., 5, are handled similarly.

Similar to Section 3.2, we call each edge that is not on the boundary of the infinite

face of PDT0 an interior edge and the other edges on the boundary of the infinite face

hull edges, and corresponding to them we define two kinds of certificates, NotInPie

and NotInCone, respectively.

44

w̃1
pi

pj
o

(b)

w1

pi

pj

(c)

w0 o

w1

w0
w̃0

w1

w0

o

(a)

Figure 4.3: (a) A 0-pie. (b) Two k-cones corresponding to the hull edge pipj. (c) The
k-cone approaches a right-angled wedge as o goes to infinity.

NotInPie certificates. By definition, an interior edge pipj ∈ E(PDT0) is incident

to two triangles of PDT0 that together form a quadrilateral. Let pr′ and pr be the two

other vertices of the quadrilateral. For the edge pipj, we define a NotInPie certificate

which certifies that point pr (resp. pr′) is outside the 0-pie passing through pi′ , pj′ ,

and pr′ (resp. pr). When the certificate fails, we replace pipj by prpr′ . In general,

when the certificates corresponding to an interior edge fails, we perform such an edge

swap.

NotInCone certificates. Let o, w0, and w1 be vertices of a 0-pie (see Figure 4.3(a)).

Two of the edges on the boundary of the 0-pie are line segments and one of them is

an arc; denote the line segments by ow0 and ow1 and the arc by úw0w1. By removing

one of them and extending the line segment(s) to infinity, a cone can be created. We

call these cones pie-cones. By definition, the edge pipj is a hull edge of PDT0 if and

only if there exists an empty pie-cone such that pi and pj are on its boundary.

Consider the pie-cone ow1w0 corresponding to the edge pipj where one of the

endpoints pi lies on the half-line −−→w0o and the other point pj lies on the half-arc −−−→w0w1

(see Figure 4.3(b)). Let
−−−→
w̃1w̃0 be the half-line perpendicular to −−→w1o through pj. For

such a pie-cone we assume that the line segment −−→w1o goes to infinity. This means

that w1 (resp. w0) tends to w̃1 (resp. w̃0) and the pie-cone approaches a right-angled

wedge; see Figure 4.3(c).

Each hull edge pipj is adjacent to at most four other hull edges, denoted by pips2 ,

pips3 , pjps4 , pjps5 , and incident to at most one triangle. Let ps1 be the third vertex of

this triangle if it exists; ps1 can be one of the si where 2 ≤ i ≤ 5. If pipj is adjacent

45

to at most four other edges, then it cannot be incident to a triangle. In particular, at

any time, the number of points psi is at most four. Therefore, for the pie-cone passing

through pi and pj, we define at most four NotInCone certificates certifying that the

psi are outside of the pie-cone. Note that in the case that a pie-cone approaches a

right-angled wedge (see Figure 4.3(c)), the certificate of the hull edge pipj fails when

a point either crosses the half-line −−→w1o, or reaches the line-segment w̃1pj, or crosses

the half-line
−−→
pjw̃0.

The changes that can occur to PDT0 are similar to the changes to EDT0 and can

easily be handled; see the paragraph “Consecutive Changes to EDT0” in Section 3.2

for more details.

Next we state a theorem that enumerates the number of the combinatorial changes

to the Pie Delaunay graph.

Theorem 4.2. The number of all changes (edge insertions and edge deletions) to the

Pie Delaunay graph of a set of n moving points with trajectories given by polynomial

functions of at most constant degree s is O(n3β2s+2(n)).

Proof. Consider PDT0. The number of hull-edge changes to PDT0 is O(n3) as three

points are involved in any hull change. Since n3 = O(n3β2s+2(n)), we focus on the

number of changes to the triangles of PDT0.

For each edge pipj of a triangle in PDT0, four different cases are possible as

shown in Figure 4.4. It is easy to see that, for any triangle ∆ in the PDT0, case (a)

of Figure 4.4 may happen to one of its edges. We charge any change to ∆ to this

edge. Therefore, we consider the number of combinatorial changes to PDT0 for an

arbitrary edge pipj that satisfies case (a) of Figure 4.4. The analysis of other cases is

similar.

Consider the corresponding 0-pie of the edge pipj; see Figure 4.4(a). The two

edges of this 0-pie are line segments ow0 and ow1 and one of them is an arc úw0w1.

The edge pipj partitions this 0-pie into two convex areas opipj and pipjw0w1. Let

Cw0w1 be the cone whose sides are created by removing the arc úw0w1 of the 0-pie and

extending the two line segments to infinity; the wedge Cw0w1 is the area between two

half-lines −−→ow0 and −−→ow1. Let V(Cw0w1) be the set of all points inside the wedge Cw0w1 .

The trajectory of the apex o of the cone Cw0w1 is a polynomial function of constant

maximum degree s.

A change for triangle pipjpr corresponding to pipj occurs in two cases:

46

u

v

pr

pi

o

pt′

(a) (b)

pt
pj

Figure 4.4: Combinatorial changes for an arbitrary edge pipj.

(I) When a point such as pt′ passes through the segment opi or the segment opj

and enters inside the area opipj; see Figure 4.4(a).

Map each point pi = (xi(t), yi(t)) to a point p′i = (ui(t), vi(t)) in a new para-

metric plane where ui(t) = xi(t) +
√

3yi(t) and vi(t) = xi(t)−
√

3yi(t). Passing

the point pt′ through the segment opi or the segment opj means that the point

pt′ exchanges its u-coordinate or its v-coordinate with the u-coordinate or v-

coordinate of p′i or p′j. We call these changes swap-changes. Observe that the

total number of swap-changes for all cases is bounded by the number of all

swaps between points in their ordering with respect to the u-axis and v-axis.

The number of the all u-swaps and v-swaps between points is at most O(n2).

(II) When a point moves inside the area pipjw0w1. In particular, for some pt ∈
V(Cw0w1), the length of the edge opt becomes smaller than the length of the

edge opr.

Note that since the degree of each function describing each point’s motion is

at most s, each point of P except pi and pj, can move inside the cone Cw0w1

at most s times. Summing over all points in P there are O(sn) insertions into

V(Cw0w1). The distance of these points from the apex o, in the L2 metric, creates

O(sn) partial functions, and each pair of these functions intersects at most 2s

times. Therefore, the number of the combinatorial changes corresponding to

an arbitrary edge pipj equals λ2s+2(sn), which is equal to the number of the

breakpoints in the lower envelope of sn partial functions of at most degree 2s

(see Theorem 2.2). Since the maximum degree s is a constant, λ2s+2(sn) =

O(λ2s+2(n)). The number of all possible edges is O(n2). Thus the number of

the combinatorial changes corresponding to all edges is O(n2λ2s+2(n)).

47

Hence the number of changes to the Pie Delaunay graph is O(n3β2s+2(n)).

Now we can get the main results of this section.

Theorem 4.3. For a set of n points in the plane with trajectories given by polynomial

functions of at most constant degree s, there exists a KDS for maintenance of the

Pie Delaunay graph that uses linear space, O(n log n) preprocessing time, and that

processes O(n3β2s+2(n)) events, each in amortized time O(log n).

Proof. After any change to the Pie Delaunay graph, we replace a constant number of

(invalid) certificates from the priority queue with new valid ones, which takes O(log n)

time. Since the total number of events is O(n3β2s+2(n)) (by Theorem 4.2), the total

processing time is O(n3β2s+2(n) log n). From Lemma 4.1, together with the fact that

|E(PDG)| = O(n), our KDS uses O(n) space and O(n log n) preprocessing time.

4.3 Kinetic Yao Graph

To maintain the Yao graph, for each point pi ∈ P , we must maintain the nearest

points to pi inside the wedges Wl(pi), where 0 ≤ l ≤ 5. Since the Yao graph is a

subgraph of the Pie Delaunay graph (by Lemma 4.2), to maintain the nearest points

inside the wedges of pi, we only need to track the edges of the Pie Delaunay graph

incident to pi with minimum length inside the wedges Wl(pi) for all l = 0, ..., 5.

Let Incl(pi) be the set all edges of the Pie Delaunay graph incident to pi inside

the wedge Wl(pi). We create a dynamic and kinetic tournament tree Tl,i whose ele-

ments are the edges in Incl(pi). The root of Tl,i maintains the winner, the edge with

minimum length among all edges in Incl(pi).

Theorem 4.4. The KDS for maintenance of the Yao graph uses O(n) space, O(n log n)

preprocessing time, and processes O(n3β2
2s+2 log n) (internal) events with total process-

ing time O(n3β2
2s+2 log2 n). It is compact, responsive in an amortized sense, and local

on average, but it is not efficient.

Proof. Given the KDS of the Pie Delaunay graph and making an analysis similar to

that of Corollary 3.4 and Theorem 3.4, the proof obtains.

For linearly moving points in the plane, Katoh et al. [58] showed that the number

of changes to the Yao graph is O(n2β4(n)). In the following theorem we bound

the number of combinatorial changes to the Yao graph of a set of moving points

48

pi

W0(pi)W1(pi)

W2(pi) W3(pi)

Figure 4.5: The nearest point to pi inside each wedge around pi in the Yao graph in
the L∞ metric.

whose trajectories are given by polynomial functions of at most constant degree s.

For maintenance of the Yao graph, our KDS processes O(n3β2
2s+2 log n) events, but

the following proves that the number of exact changes to the Yao graph is nearly

quadratic, which explains why our KDS is not efficient.

Lemma 4.3. The number of all changes to the Yao graph, when the points move with

polynomial trajectories of at most constant degree s, is O(n2β2s+2(n)).

Proof. Consider the point pi ∈ P and one of its wedges Wl(pi). Each of other points

in P can be moved inside the wedge Wl(pi) at most s times. Thus there exist O(sn)

insertions into the wedge Wl(pi). The distance of these points from pi creates O(sn)

partial functions; each pair of these functions intersects at most 2s times. By The-

orem 2.2, the lower envelope of these functions, which in fact gives the edge with

minimum length, changes at most λ2s+2(sn) = O(λ2s+2(n)) times.

Hence, the number of all changes to the Yao graph of a set of n moving points is

O(nλ2s+2(n)).

Remark 4.1. Using an argument similar to the KDS we obtained for the Yao graph

in the L2 metric, a KDS for Yao graph in the L∞ metric can be obtained; Figure 4.5

depicts the nearest points to pi inside the wedges Wl(pi), l = 0, ..., 3, in the Yao graph

in the L∞ metric.

Denote by � the unit square with corners at (0, 0), (1, 0), (0, 1), and (1, 1) in a

Cartesian coordinate system, and call any translated and scaled copy of � an SQR.

The edge pipj is an edge of the Delaunay triangulation based on an SQR in the L∞

49

metric 1 if and only if there is an empty SQR such that pi and pj are on its boundary,

i.e., the interior of SQR contains no point of P .

Abam et al. [3] showed how to maintain a Delaunay triangulation based on a

diamond. They claimed that a Delaunay triangulation based on a diamond can

be maintained by processing at most O(nλs+2(n)) events, each in worst-case time

O(log n). A similar scenario to that of the example in Section 3.2 can happen to a

KDS for maintenance of a Delaunay triangulation based on a diamond; in particular,

we might need to apply a sequence of changes to the Delaunay triangulation, when

an event occurs. Thus a correction to the claim by Abam and de Berg is that each

event can be handled in amortized time O(log n).

Each SQR is a diamond, so the approach by Abam and de Berg applies. The

Delaunay triangulation based on an SQR can be maintained kinetically by process-

ing at most O(nλs+2(n)) events, each in amortized time O(log n). The Delaunay

triangulation based on an SQR is a supergraph for the Yao graph in the L∞ metric.

Therefore, we can have a KDS for the Yao graph in the L∞ metric that uses O(n)

space, O(n log n) preprocessing time, and that processes O(n2β2
s+2(n) log n) events,

each in amortized time O(log n).

4.4 Kinetic EMST

Our kinetic approach for maintaining the EMST is based on the fact that the EMST

is a subgraph of the Yao graph, where the number of the wedges around each point

in the Yao graph is greater than or equal to six [99].

The edges of the Yao graph are stored at the roots of the dynamic and kinetic

tournament trees Tl,i, for each point pi ∈ P and l = 1, ..., 6n (see Section 4.3). Let

L be a list of the Yao graph edges, sorted with respect to their Euclidean lengths.

A change to the EMST may occur when two edges in L change their ordering. For

each pair of consecutive edges in L, we define a certificate certifying the respective

sorted order of the edges. Whenever the ordering of two edges in this list is changed,

we apply the required changes to the EMST KDS. Therefore, to update the EMST

when the points are moving, we must track the changes to L. There exist two types

of changes to L:

1The Delaunay triangulation in the L1 metric can be constructed/maintained analogously, by
rotating all points 45 degrees around the origin and constructing/maintaining the Delaunay trian-
gulation in the L∞ metric.

50

pi
pj

pr

(a) (b)

T1 T1
T2

T2

pi
pj

pr

Figure 4.6: The edge connecting two subtrees T1(P1, E1) and T2(P2, E2): (a) At time
t−, |pipr| > |pipj| > |pjpr| and the edge connecting T1 and T2 is pipj. (b) At time t+,
|pipj| > |pipr| > |pjpr| and the edge connecting T1 and T2 is pipr.

(I) edge insertion and edge deletion from L, and

(II) a change in the order of two consecutive edges in L

The following discusses how to handle these two types of events.

Handling Case (I). As soon as an edge is deleted from L a new one is inserted.

Both the deleted edge and the inserted edge are in the same dynamic and kinetic

tournament tree, and both of them have a common endpoint; see Figure 4.6. Call

the deleted edge and the inserted edge pipj and pipr, respectively. Denote by Ti,l the

dynamic and kinetic tournament tree that contains pipj and pipr. The deleted edge

pipj can be one of the EMST edges at time t− and if so, we have to find a new edge

to repair the EMST at time t+. The following lemma proves that this new edge is

pipr.

Lemma 4.4. Let pipj be the winner of the dynamic and kinetic tournament tree Ti,l.
Suppose pipj ∈ E(EMST) at time t− and let pipr be the winner of Ti,l at time t+.

Then (i) at time t−, pipr /∈ E(EMST), and (ii) at time t+, pipr ∈ E(EMST) and

pipj /∈ E(EMST).

Proof. Deleting an edge pipj from EMST creates two subtrees T1(P1, E1) and T2(P2, E2).

Let pi ∈ P1 and pj ∈ P2; see Figure 4.6. At time t−, since pipj ∈ E(EMST),

|pipr| > |pipj| > |pjpr|, and ∠pjpipr ≤ π/3, we have that pr ∈ P2. This can be

concluded by contradiction. Thus (i) at time t−, pipr /∈ E(EMST).

51

The proof that pipj /∈ E(EMST) at time t+ is analogous to the proof for (i). Thus,

at time t+, the EMST is the union of two trees T1 and T2 and the edge pipr.

Handling Case (II). Let path(e) be the simple path in the EMST between the

endpoints of edge e and let |e| be the Euclidean length of e. A change in the sorted

list L corresponds to a pair of edges e and e′ in E(Y G) such that at time t−, |e| < |e′|,
and at time t+, |e| > |e′|. Thus at time t, e may be replaced by e′ in the EMST. It is

easy to see the following.

Observation 4.1. The EMST changes if and only if at time t−, for some e and e′,

|e| < |e′|, e ∈ E(EMST), e′ /∈ E(EMST), e ∈ path(e′), and at time t+, |e| > |e′|.

Such events can be detected and maintained in O(log n) time per operation using

the link-cut tree data structure of Sleator and Tarjan [86].

Given a KDS for maintenance of the Yao graph, the following bounds the number

of events for maintaining the EMST.

Lemma 4.5. Given a Yao graph KDS for a set of n points moving with polynomial

trajectories of constant maximum degree s, there exists a KDS for maintenance of the

EMST that processes O(n3β2s+2(n)) events.

Proof. The set of Yao graph edges is a superset of the set of the EMST edges, and

any change in the order of consecutive edges in the sorted list L of the Yao graph

edges may change the EMST. More precisely, any edge insertion/deletion in the Yao

graph implies an insertion/deletion into L, and each insertion into L may cause O(n)

changes to the order of the edges in L. Each change in the order may cause a change

in the EMST. From Lemma 4.3, the number of all insertions and deletions into the

sorted list L is O(n2β2s+2(n)). Therefore, given a KDS for the Yao graph, the number

of events that our KDS processes is O(n3β2s+2(n)).

Now we obtain the following.

Theorem 4.5. The KDS for maintenance of the EMST uses linear space and requires

O(n log n) preprocessing time. The KDS processes O(n3β2
2s+2(n) log n) events, each

in amortized time O(log n). The KDS is compact, responsive in an amortized sense,

and local on average, but it is not efficient.

Proof. The KDS for maintenance of the EMST uses the Pie Delaunay graph KDS

and the Yao graph KDS. Therefore, by combining the results of Theorems 4.3 and

52

4.4, and Lemma 4.5, and since handling Cases (I) and (II) can be done in O(log n)

time, the proof obtains.

53

Chapter 5

Kinetic All Nearest Neighbors in

Higher Dimensions

In this chapter, we provide a KDS for maintenance of all the nearest neighbors in

any fixed dimension d. Section 5.1 describes the construction of the Semi-Yao graph,

a supergraph of the nearest neighbor graph in Rd, and gives a solution to the all

nearest neighbors problem. In Section 5.2, we show how the Semi-Yao graph can

be maintained kinetically, when the points are moving along trajectories of bounded

degree polynomials. Next, in Section 5.3, we use the kinetic Semi-Yao graph to give

a KDS for maintenance of all the nearest neighbors. Finally, in Section 5.4, we show

how to maintain all the (1 + ε)-nearest neighbors with better performance than our

KDS in Section 5.3 for the exact nearest neighbors.

The results of this chapter were published as a paper in the Proceedings of the

26th Canadian Conference on Computational Geometry (CCCG 2014) [75].

5.1 Computing the Semi-Yao Graph and All Near-

est Neighbors in Rd

Here we describe the construction of the Semi-Yao graph and construction of all the

nearest neighbors, which will aid in understanding how our kinetic approach works.

Let −→v be a unit vector in Rd with apex at the origin o, and let θ be a constant.

We define an infinite right circular cone K with respect to −→v and θ to be the set of

points x ∈ Rd such that the angle between −→ox and −→v is at most θ/2; Figure 5.1(a)

depicts an infinite right circular cone in R3. We define a polyhedral cone of opening

54

θ
2

−→v

θ
2

−→v

(a) (b)

o o

Figure 5.1: An infinite right circular cone and a polyhedral cone.

angle θ with respect to −→v to be the intersection of d nonparallel half-spaces such

that the intersection is contained in an infinite right circular cone K with respect

to −→v and θ, and such that all the half-spaces contain the origin o; Figure 5.1(b)

depicts a polyhedral cone in R3, which is contained in the infinite right circular cone

of Figure 5.1(a). The angle between any two rays inside a polyhedral cone of opening

angle θ emanating from o is at most θ.

Lemma 5.1. [2] The d-dimensional space around a point can be covered by a col-

lection of c = O(1/θd−1) interior-disjoint polyhedral cones of opening angle θ.

Let C = {C0, ..., Cc−1} be a set of polyhedral cones of opening angle θ with their

apex at the origin o that together cover Rd. We assume d is arbitrary but fixed, so c

is a constant. Consider a polyhedral cone Cl ∈ C with respect to −→v . Denote by xl the

vector in the direction of the unit vector −→v of Cl, 0 ≤ l ≤ c− 1. Denote by f1, ..., fd

the bounding half-spaces of Cl. Let ui be the normal to fi, 1 ≤ i ≤ d. Figure 5.2

depicts u1 and u2 for the half-spaces f1 and f2 of a polyhedral cone Cl ∈ C in R2. Let

Cl(p) denote a translated copy of Cl with apex at p.

Now we consider a construction of the Semi-Yao graph in Rd for the set C of

polyhedral cones as follows. Connect each point p ∈ P to the point in P ∩ Cl(p),
0 ≤ l ≤ c − 1, whose xl-coordinate is minimum. Figure 5.3 depicts some edges

incident to the point p in the Semi-Yao graph in R2, where θ = π/3; the dotted lines

are orthogonal to the cone axes x0, ..., x5; here x0 = −x3, x1 = −x4, and x2 = −x5.

Lemma 5.2. (Lemma 8.1. of [10]) Let p be the nearest point to q and let Cl(p)

55

u2

u1

o xl

f2

f1

Cl

θ/2 o

u2

u1

xl+−

(a) (b)

Figure 5.2: The cone Cl with apex at o.

p
x0

x5

x1x2

x3

x4

o

Figure 5.3: The case d = 2 and c = 6. For each l, 0 ≥ l ≥ c− 1, the apex point p is
connected to the point in P ∩ Cl(p) that has the minimum xl-coordinate.

be a cone of opening angle θ ≤ π/3 that contains q (see Figure 5.4). Then q has the

minimum xl-coordinate among the points in P ∩ Cl(p).

For a set of points in R2, in Section 3.1, we used a 2-dimensional version of

Lemma 5.2 to show that the Semi-Yao graph is a super-graph of the nearest neighbor

graph. It is easy to see the same result for a set of points in higher dimensions.

Lemma 5.3. The Semi-Yao graph of a set of points in Rd is a super-graph of the

nearest neighbor graph.

Proof. Let (p, q) be an edge in the nearest neighbor graph such that p is the nearest

neighbor to q. The point q is in some cone Cl(p). The restriction θ ≤ π/3 of the

cone Cl(p) together with Lemma 5.2 imply that the point q has the minimum length

projection on xl among the points in P ∩Cl(p). Thus (p, q) is an edge of the Semi-Yao

graph.

56

p

q

xl

o

Figure 5.4: The point p is the nearest neighbor to q, so q has the minimum xl-
coordinate among the points in P ∩ Cl(p).

By Theorem 2.5, we can obtain the following, which gives the construction time

of the Semi-Yao graph in higher dimensions.

Lemma 5.4. The Semi-Yao graph of a set of n points in Rd can be constructed in

time O(n logd−1 n).

Now we obtain the following.

Lemma 5.5. Given the Semi-Yao graph, the all nearest neighbors problem in Rd can

be solved in O(n) time.

Proof. The Semi-Yao graph is a supergraph of the nearest neighbor graph (by Lemma

5.3). Thus, by examining the edges incident to each point in the Semi-Yao graph, we

can find the nearest neighbor to the point. Since the Semi-Yao graph has O(n) edges,

all the nearest neighbors can be reported in linear time.

5.2 Kinetic Semi-Yao Graphs

Here we first in Section 5.2.1 provide data structures for maintaining the Semi-Yao

graph, and then in Section 5.2.2 we show how to update these data structures when

the points move.

5.2.1 Preprocessing Step

The Semi-Yao graph remains unchanged as long as the order of the points in each of

the coordinates u1, ..., ud, and xl associated to each cone Cl ∈ C remains unchanged.

57

Thus to maintain the Semi-Yao graph over time, we distinguish between two types

of events:

• u-swap event: Such an event occurs if two points exchange their order in the

ui-coordinate.

• x-swap event: This event occurs if two points exchange their order in the xl-

coordinate.

The u-swap events can be tracked by maintaining the sorted lists L(u1), ..., L(ud)

of the points in each of the coordinates u1, ..., ud. In addition, we maintain a list L(xl)

of the points sorted according to their xl-coordinates to track the x-swap events.

We use kinetic ranked-based range trees (RBRTs) Tl, for l = 0, ..., c − 1 (see

Section 2.2) as basic data structures for maintaining the Semi-Yao graph. Note that,

from Section 2.2, we also use the sorted lists L(u1), ..., L(ud) to apply changes to a

RBRT Tl when the points move.

For a fixed cone Cl ∈ C, denote by Ψl = {(B1, R1), ..., (Bm, Rm)} the corresponding

cone separated pair decomposition (CSPD) to Tl (see Section 2.2). Let rj be the

point with minimum xl-coordinate among the points in Rj. Denote by ẅl the point

in P ∩ Cl(w) with minimum xl-coordinate. Note that to maintain the Semi-Yao

graph, for each point w ∈ P , in fact we must track ẅl; ẅl is the point with the

minimum xl-coordinate among the points rj’s, where the subscripts j are such that

P ∩ Cl(w) =
S
j Rj. To apply required changes to ẅl for all w ∈ P , when an event

occurs, in addition rj, we need to maintain more information for each subscript j

(i.e., at each internal node v at level d of Tl). The next paragraph describes the extra

information.

Allocate a label to each point in P . Let B′j = {(w, ẅl)| w ∈ Bj} and let L(B′j)

be a sorted list of the pairs of B′j according to the labels of the second components

ẅ of the pairs (w, ẅl). This sorted list is used to answer the following query while

processing x-swap events: Given a query point p, find all the points w ∈ Bj such that

ẅl = p. Since we perform updates (insertions/deletions) to the sorted lists L(B′j) over

time, we implement them using a dynamic binary search tree (e.g., a red-black tree);

each update is performed in worst-case time O(log n). Furthermore, we maintain a

set of links between each point w ∈ P and the pair (w, ẅl) in the sorted lists L(B′j)

where w ∈ Bj; denote this set by Link(w); we use this set to efficiently delete the

pair (w, ẅl) from the sorted lists L(B′j) when we are handling the events.

58

p

q

w1

w2
w3

w4

Figure 5.5: A u-swap between p and q does not change the points in other cones.

In the preprocessing step before the motion, for any subscript j and for any point

w ∈ P , we find rj and ẅl, and then we construct L(B′j) and Link(w).

Lemma 5.6. Our KDS uses O(n logd n) space and O(n logd+1 n) preprocessing time.

Proof. By Theorem 2.6, each point p ∈ P is in at most O(logd n) sets Bj’s, and

O(logd n) sets Rj’s, so the cardinality of each set Link(p) is O(logd n), and the number

of the members in the sets Bj and Rj, for all j’s, is O(n logd n). This implies that (i)

the KDS uses O(n logd n) storage, (ii) we can find all the rj and ẅ in time O(n logd n),

and (iii) we can sort all the B′j according to the labels of the second components in

O(n logd+1 n) time, and then using the sorted lists L(B′j), we can create Link(p) for

all p ∈ P in the same time O(n logd+1 n).

5.2.2 Processing the Events

Now let the points move. The following shows how to maintain and reorganize

Link(w), L(B′j) and rj, for any subscript j and for any point w ∈ P , when a u-

swap event or an x-swap event occurs. Note that maintenance of the sets Link(w),

for all w ∈ P , gives a kinetic maintenance of the Semi-Yao graph.

Handling u-swap events. Consider a u-swap between p and q. Without loss of

generality, assume q ∈ Cl(p) before the event; see Figure 5.5. After the event, q moves

outside the cone Cl(p). Note that this event does not change the points in cones Cl(w)

of other points w ∈ P . Therefore, the only change that can happen to the Semi-Yao

graph is deletion of an edge incident to p inside the cone Cl(p) and addition of a new

one.

In particular, when two points p and q exchange their order in the ui-coordinate,

we perform the following steps.

59

U1) We swap p and q in the sorted list L(ui) and update the invalid certificates with

new valid ones.

U2) A u-swap event may change the structure of the RBRT Tl, so we update the

RBRT Tl.

U3) We update the values in {rj | p ∈ Rj ∨ q ∈ Rj}.

U4) We delete the pairs (p, p̈l) of the sorted lists L(B′j) where p ∈ Bj.

U5) We delete the members of Link(p).

U6) We find the point p̈l in P ∩ Cl(p) whose xl-coordinate is minimum among all

the rj such that p ∈ Bj.

U7) We add the pair (p, p̈l) into all the sorted lists L(B′j) according to the label of

p̈l. Then we construct Link(p) of the new links between p and the pair (p, p̈l)

in the sorted lists L(B′j).

The following lemma gives the complexity of the steps U1,...,U7 above.

Lemma 5.7. For maintenance of the Semi-Yao graph, our KDS handles O(n2) u-

swap events, each in worst-case time O(logd+1 n).

Proof. For a fixed dimension d, the number of swaps between the points in the sorted

lists L(ui), 1 ≤ i ≤ d, is O(n2).

Applying a constant number of changes to the priority queue takes O(log n) time

(Step U1). By Theorem 2.6, an update to the RBRT Tl takes O(logd n) (Step U2),

and all the Rj can be found in O(logd n) time, so the values rj can be updated in

worst-case time O(logd n) (Step U3).

By using the links in Link(p), Step U4 can be done in time O(logd+1 n). Each

point is in O(logd n) sets Bj, so Step U6 takes O(logd n) time. Since each operation in

a sorted list L(B′j) can be done in O(log n) time, Step U7 takes O(logd+1 n) time.

Handling x-swap events. The structure of RBRT Tl remains unchanged when

an x-swap event between p and q occurs. Such an event might change the second

components of the pairs in some sorted lists L(B′(.)) and if so, we must apply the

changes to the Semi-Yao graph.

60

p
q

w

xl

w

pw

q

(a) (b)

Rj

Rj̄

Rj

o
xl

o

Figure 5.6: Two cases when an x-swap between p and q occurs.

Let xl(p) be the xl-coordinate of p. Let p and q be two consecutive points with p

preceding q in the sorted list L(xl) before the event (i.e., xl(p) < xl(q)). When p and

q exchange their order, we first perform the following step.

X1) We swap p and q in L(xl) and update the invalid certificates with new valid

ones.

The number of all changes to the Semi-Yao graph depends on how many points

w ∈ P have both p and q in their cones Cl(w). While reporting the points in P∩Cl(w),

note that w can have both p and q in the same set Rj (see Figure 5.6(a)) or in two

different sets Rj and Rj̄ (see Figure 5.6(b)). To find such points w, when an x-swap

event between p and q occurs, we seek (I) subscripts j where {p, q} ⊆ Rj, and (II)

subscripts j and j̄ where p ∈ Rj and q ∈ Rj̄. In the first case, we must find any

point w ∈ Bj such that p is the point with minimum xl-coordinate in the cone Cl(w),

meaning that ẅl = p. Then we replace p by q after the event (ẅl = q). This means

that we replace the edge wp of the Semi-Yao graph with wq.

Note that in the second case there is no point w1 ∈ Bj such that ẅ1l = q, because

xl(p) < xl(q). Also note that if there is a point w2 ∈ Bj such that ẅ2l = p, we change

the value of ẅ2l to q if q ∈ Cl(w2); in the case that q ∈ Cl(w2), we can find w2 in

Bj̄ and we do not need to check whether such points w2 are in Bj or not. Therefore,

for the second case, we only need to check whether there is a point w ∈ Bj̄ such that

ẅl = p; if so, we change the value of ẅl to q (ẅl = q).

From the above discussion, the following three steps, together with Step X1, sum-

marize the update mechanism of our KDS for maintenance of the Semi-Yao graph

when an x-swap event occurs.

61

X2) We find all the subscripts j such that {p, q} ⊆ Rj and rj = p. Also, find all the

subscripts j where rj = q (see Figure 5.6).

X3) For each subscript j (from Step X2), we find all the pairs (w, ẅl) in the sorted

list L(B′j) where ẅl = p.

X4) For each w (from Step X3), using the links in Link(w), we find all the corre-

sponding sorted lists L(B′j) where w ∈ Bj, delete the pair (w, ẅl) from them,

change the value of the second component ẅl to q, and add (w, ẅl) into the

sorted lists according to the label of q.

The number of edges incident to a point p in the Semi-Yao graph is O(n). Thus

when an x-swap event between p and some point q occurs, it might cause O(n)

changes to the Semi-Yao graph. The following lemma shows that an x-swap event

can be handled in polylogarithmic amortized time.

Lemma 5.8. For maintenance of the Semi-Yao graph, our KDS handles O(n2) x-

swap events with total processing time O(n2βs+2(n) logd+1 n).

Proof. Step X1 takes O(log n) time. By Theorem 2.6, all the subscripts j at Step X2

can be found in O(logd n) time.

For each j of Step x3, the update mechanism spends O(log n+ kj) time where kj

is the number of all the pairs (w, ẅl) ∈ B′j such that ẅl = p. For all the subscripts

j, the second step takes O(logd+1 n +
P
j kj) time. Note that

P
j kj is equal to the

number of exact changes to the Semi-Yao graph. Since the number of changes to the

Semi-Yao graph of a set of n moving points in a fixed dimension d is O(n2βs+2(n)) (see

Theorem 3.3), the total processing time of Step X3 for all the O(n2) x-swap events is

O(n2 logd+1 n+ n2βs+2(n)) = O(n2 logd+1 n).

For each w of Step X4, the processing time to apply changes to the KDS, which in

fact is a change to the Semi-Yao graph, is O(logd+1 n). Thus the update mechanism

spends O(n2βs+2(n) logd+1 n) time to handle all the O(n2) events.

Hence the total processing time for all the x-swap events is O(n2βs+2(n) logd+1 n).

Now we state the main result of this section, which summarizes the complexity of

the proposed KDS for the Semi-Yao graph.

Theorem 5.1. Our KDS for maintenance of the Semi-Yao graph of a set of n mov-

ing points in Rd, where the coordinates of each point are polynomial functions of at

62

most constant degree s, uses O(n logd+1 n) preprocessing time, O(n logd n) space and

handles O(n2) events with a total cost of O(n2βs+2(n) logd+1 n). The KDS is compact,

efficient, responsive (in an amortized sense), and local.

Proof. From Lemma 5.6, the KDS usesO(n logd+1 n) preprocessing time andO(n logd n)

space. The toral cost to process all the O(n2) events is O(n2β2s+2(n) logd+1 n) (see

Lemmas 5.7 and 5.8); this implies that the KDS is responsive in an amortized sense.

Since the number of the certificates is O(n), the KDS is compact.

A particular point in a sorted list L(ui) participates in two certificates, one created

with the previous point and one with the next point. Thus the number of certificates

associated to a particular point is O(1), which implies that the KDS is local.

Since the number of the external events is O(n2βs+2(n)) and the number of the

events that the KDS processes is O(n2), the KDS is efficient.

Remark 6.1. We have provided two KDS’s for maintenance of the Semi-Yao graph.

The KDS in Section 5.2 generalizes the KDS in Section 3.2 that only works in R2.

Also, our KDS in Section 5.2 yields improvements in the number of events and

the locality of the KDS: In the KDS of Section 5.2, each point participates in O(1)

certificates, but each point in the KDS of Section 3.2 participates in O(n) certificates.

The KDS of Section 5.2 handles O(n2) events (see Theorem 5.1), but the KDS of

Section 3.2 handles O(n2βs+2(n)) events (see Theorem 3.3).

63

5.3 Kinetic All Nearest Neighbors

Given the kinetic Semi-Yao graph, a super-graph of the nearest neighbor graph over

time, in the same way to our approach in Section 3.3, we can easily maintain the

nearest neighbor to each point p ∈ P . We use a dynamic and kinetic tournament tree

to maintain the nearest neighbor to p over time, where the elements of the tournament

tree are edges in the Semi-Yao graph incident to the point p.

The following theorem gives the complexity of our KDS for maintenance of all the

nearest neighbors in a fixed dimension.

Theorem 5.2. Our KDS for maintenance of all the nearest neighbors of a set of n

moving points in Rd, where the coordinates of each point are polynomial functions of

at most constant degree s, has the following properties.

1. The KDS uses O(n logd n) space and O(n logd+1 n) preprocessing time.

2. It processes O(n2) u-swap events, each in worst-case time O(logd+1 n).

3. It processes O(n2) x-swap events, for a total cost of O(n2β2s+2(n) logd+1 n).

4. The KDS processes O(n2β2
2s+2(n) log n) tournament events, and processing all

the events takes O(n2β2
2s+2(n) log2 n) time.

5. The KDS is compact, efficient, responsive in an amortized sense, and local on

average, meaning that each point participates in O(1) certificates on average.

Proof. Theorem 5.1 gives the statements 1−3. The proofs of 4 and 5 can be obtained

using the same analysis as that of Theorem 3.4.

Remark 6.2. We have provided two KDS’s for maintenance of all the nearest neigh-

bors. Our KDS in Section 5.3 generalizes our KDS in Section 3.3 that only works in

R2. Also, for Rd, we can handle the same number of events as our KDS in R2 does.

In particular, both our KDS’s handle O(n2β2
2s+2(n) log n) events to maintain all the

nearest neighbors.

64

5.4 Kinetic All (1 + ε)-Nearest Neighbors

Let q be the nearest neighbor of p and let q̂ be some point such that |pq̂| < (1+ε)∗|pq|.
We call q̂ a (1 + ε)-nearest neighbor of p. Here we maintain some (1 + ε)-nearest

neighbor for each point p ∈ P .

Consider a collection C of polyhedral cones with apex at the origin o and open-

ing angle θ that together cover Rd. Let xl denote a vector inside the infinite right

circular cone of the polyhedral cone Cl ∈ C with apex at o. Recall the CSPD

Ψl = {(B1, R1), ..., (Bm, Rm)} for P with respect to the cone Cl. Figure 5.7 de-

picts the cone Cl and a pair (Bj, Rj) ∈ Ψl. Let bj (resp. rj) be the point with the

maximum (resp. minimum) xl-coordinate among the points in Bj (resp. Rj). Let

El = {(bj, rj)| j = 1, ...,m}. We call the graph G(P,El) the relative nearest neighbor

graph with respect to Cl (or RNNl graph for short), and G(P,∪lEl) the RNN graph.

RjBj

p q

q̂

xl
Cl θ
o

Figure 5.7: The point q̂ (resp. p) has minimum (resp. maximum) xl-coordinate among the
points in Ri (resp. Bi).

The RNN graph has the following interesting properties:

• It can be constructed in O(n logd n) time by using a d-dimensional RBRT of

O(n logd n) storage.

• It has O(n logd−1 n) edges.

• The degree of each point is O(logd n).

Lemma 5.10 below shows another property of the RNN graph which leads us to

find some (1 + ε)-nearest neighbor each point p ∈ P ; Lemma 5.9 is used in its proof.

Lemma 5.9. (Lemma 2.1. of [2]) Let C be a collection of polyhedral cones of

opening angle θ, where cos 2θ − sin 2θ ≥ 1/(1 + ε). Let Cl ∈ C, and let q and r

65

be two points in Cl(p) such that the xl-coordinate of r is less than or equal to the

xl-coordinate of q. Then |pr|+ (1 + ε) ∗ |rq| ≤ (1 + ε) ∗ |pq|.

Lemma 5.10. Among all the O(logd n) edges incident to a point p in the RNN graph,

there exists an edge (p, q̂) such that q̂ is some (1 + ε)-nearest neighbor to p.

Proof. Let q be the nearest neighbor to p and let q ∈ Cl(p). By Theorem 2.6, for

p and q there exists a unique pair (Bj, Rj) ∈ Ψl such that p ∈ Bj and q ∈ Rj. By

Lemma 5.2, p has the maximum xl-coordinate among the points in Bj.

Let q̂ be the point with the minimum xl-coordinate among the points in Rj. By

Lemma 5.9, for any ε > 0, there exist an appropriate angle θ and a vector xl such that

|pq̂|+(1+ ε)∗ |q̂q| ≤ (1+ ε)∗ |pq|; this satisfies the constraint that |pq̂| ≤ (1+ ε)∗ |pq|.
Thus (p, q̂), which is an edge of the RNN graph, gives some (1 + ε)-nearest neighbor

to p.

Consider the set El of the edges of the RNNl graph. Let Nl(p) = {ri| (bi, ri) ∈
El and bi = p}. Denote by nl(p) the point in Nl(p) whose xl-coordinate is minimum.

Let L(Nl(p)) be a list of the points in Nl(p) sorted in ascending order according to

their xl-coordinates; the first point in L(Nl(p)) gives nl(p).

From Lemma 5.10, if the nearest neighbor of p is in some set Rj, then rj gives

some (1 + ε)-nearest neighbor to p. Note that we do not know which cone Cl(p),

0 ≤ l ≤ c − 1, of p contains the nearest neighbor of p; but it is obvious that the

nearest point to p among these c points n0(p), ..., nc−1(p) gives some (1 + ε)-nearest

neighbor of p. Thus for all l = 1, ..., c, we track the distances of all the nl(p) to p over

time, so all we need to do is to maintain nl(p), 0 ≤ l ≤ c− 1.

Handling events. Similar to Section 5.2 we handle two types of events, u-swap

events and x-swap events. Note that we do not need to define a certificate for each

two consecutive points in L(Nl(.)). The following shows how to apply changes (e.g.,

insertion, deletion, and exchanging the order between two consecutive points) to the

sorted lists L(Nl(.)) when an event occurs.

Each event makes O(logd n) updates to the edges of El. Consider an updated pair

(bj, rj) such that the value of rj (resp. bj) changes from p to q. For this update, we

must delete p (resp. rj) from the sorted list L(Nl(bj)) (resp. L(Nl(p))) and insert q

(resp. rj) into L(Nl(bj)) (resp. L(Nl(q))).

66

Note that if the event is an x-swap event, we must find all the subscripts j where

rj = q and check whether nl(bj) = p or not; if so, p and q are in the same set Nl(.)

and we need to exchange their order in the corresponding sorted list L(Nl(.)).

Now the following theorem summarizes the complexity of our KDS for mainte-

nance of all the (1+ε)-nearest neighbors; as opposed to the all nearest neighbors KDS

in Section 5.3, each event in this KDS can be handled in a polylogarithmic worst-case

time, and the KDS is local.

Theorem 5.3. Our KDS for maintenance of all the (1+ ε)-nearest neighbors of a set

of n moving points in Rd, where the coordinates of each one are polynomial functions

of constant degree s, uses O(n logd n) space and O(n logd n) preprocessing time, and

handles O(n2 logd n) events, each in worst-case time O(logd n log log n). It is compact,

efficient, responsive, and local.

Proof. The proof of the preprocessing time and space (compactness) follows from the

properties of an RNN graph.

A kinetic sorted list (or a tournament tree) of size c with O(1) certificates is used

to maintain the nearest point to p among n0(p), ..., nc−1(p). Since each event makes

O(logd n) changes to the values of nl(.), and since the size of each kinetic sorted

list is constant, the number of all events/changes to maintain all the (1 + ε)-nearest

neighbors is O(n2 logd n). This implies that the KDS is efficient, and each point

participates in O(logd n) certificates (locality).

Each update to a sorted list L(Nl(.)) can be done in timeO(log log n) as |L(Nl(.))| =
O(logd n), so an event can be handled in O(logd n log log n) time (responsiveness).

Remark 6.3. For maintaining all the nearest neighbors, neither the KDS in Sec-

tion 5.3 nor the KDS in Section 3.3 is local, and furthermore, each event in both

KDS’s is handled in a polylogarithmic amortized time. To deal with this problem,

we have provided a KDS in Section 5.4 for maintenance of all the (1 + ε)-nearest

neighbors, which satisfies all the KDS performance criteria. In particular, the KDS

of Section 5.4 is local, responsive, compact, and efficient.

67

Chapter 6

Kinetic Reverse k-Nearest

Neighbor Problem in Higher

Dimensions

In this chapter, we provide the first solution to the kinetic reverse k-nearest neighbor

(RkNN) problem, for any k ≥ 1, in any fixed dimension d 1.

In Section 6.1, we show an approach for answering RkNN queries about a set

P of stationary points. This section provides a simple method for reporting all

the k-nearest neighbors in the stationary case. Then, in Section 6.2, we answer

RkNN queries for moving points, where the trajectory of each point is a polynomial

function of constant maximum degree. We provide the first KDS for maintenance of

all the k-nearest neighbors in order to answer RkNN queries at any time.

The results of this chapter were published as a paper in the Proceedings of the

25th International Workshop on Combinatorial Algorithms (IWOCA 2014) [77].

6.1 RkNN Queries on Stationary Points

Here we use similar terminology and notation as in Chapters 3 and 4 for a set P of

points in R2, and as in Chapter 5 for a set P of points in Rd. We denote by W a

wedge (cone) which is bounded by two half-spaces in the plane, and by C a cone in

d-dimensional space which is bounded by d half-spaces.

1The results of this chapter are submitted to a conference.

68

p

(a) (b)

W0(p)

x0(p)
o

W0

W1W2

W3

W4
W5

x0

W3(p)

x3(p)

Figure 6.1: (a) A partition of the plane into six wedges with common apex at o. (b)
A translation of W0 that moves the apex to p.

6.1.1 Key Lemmas

From Section 3.1, recall the partition of the plane around the origin o into six wedges,

W0, ...,W5, each of apex angle π/3 (see Figure 6.1(a)), and recallWl(p), the translation

of wedge Wl, 0 ≤ l ≤ 5, such that its apex moves from o to point p (see Figure 6.1(b)).

Also, recall xl (resp. xl(p)), the vector along the bisector of Wl (resp. Wl(p)) directed

outward from the apex at o (resp. p). Let Wl′(p) be the reflection of Wl(p) through

p.

Consider the ith nearest neighbor pi of p. Denote by L(P ∩Wl(pi)) the list of the

points in P ∩Wl(pi), sorted by increasing order of their xl-coordinates (orthogonal

projections to xl). The following lemma provides the key insight we need to obtain a

simple solution for answering RkNN queries.

Lemma 6.1. Let pi be the ith nearest neighbor of p among a set P of points in R2,

and let Wl(pi) be the wedge of pi that contains p. Then point p is among the first i

points in L(P ∩Wl(pi)).

Proof. Let P ′ = P\{p1, ..., pi−1}. Then the point pi is the closest point to p among

the points in P ′; see Figure 6.2. By Lemma 5.2, p has the minimum xl-coordinate

among the points in P ′ ∩Wl(pi).

Now we add back the points p1, ..., pi−2, and pi−1 to the point set P ′. Consider

the worst case scenario that all these i− 1 points insert inside the wedge Wl(pi), and

that the xl-coordinates of all these points are less than the xl-coordinate of p. Then

the point p is still among the first i points in the sorted list L(P ∩Wl(pi)).

For example, consider the 3rd nearest neighbor p3 of p in Figure 6.2. If we ignore

69

p
p1

p2

p3 x0(p3)

Figure 6.2: Point p3 is the 3rd nearest neighbor of p, and p is among the first three
points in L(P ∩W0(p3)).

p1 and p2, then p3 is the closest point to p, and p has the minimum x0-coordinate

among the points in (P\{p1, p2}) ∩W0(p3). If we add back the two points p1 and

p2 to P\{p1, p2}, then p is still among the first three points in L(P ∩W0(p3)), even

though p1 and p2 belong to W0(p3) and have smaller x0-coordinates than does p.

If we connect each point p ∈ P to the first k points in the sorted list L(P ∩Wl(p)),

for l = 0, ..., 5, we obtain what we call the k-Semi-Yao graph (k-SYG). The k-SYG has

the following interesting property.

Lemma 6.2. The k-NNG of a set P of points in R2 is a subgraph of the k-SYG of

the set P .

Proof. Lemma 6.1 gives a necessary condition for pi to be the ith nearest neighbor

of p: The point p is among the first i points in L(P ∩Wl(pi)), where l is such that

p ∈ Wl(pi). Therefore, the edge set of the k-SYG covers the edges of the k-NNG.

6.1.2 Computing the k-SYG and All k-Nearest Neighbors

Here, we first compute the k-SYG, and then via a construction of the k-SYG, we give

a simple method for reporting all the k-nearest neighbors.

To construct the k-SYG efficiently, we need a data structure to perform the fol-

lowing operation efficiently: For each p ∈ P and any of its wedges Wl(p), 0 ≤ l ≤ 5,

find the first k points in L(P ∩Wl(p)). Such an operation can be performed by using

70

o

x0

f1

f2

u2

u1

π
6

π
3

W0

+

+

+

−

−

−

f−
2

f+
2

f+
1

f−
1

Figure 6.3: The wedge W0 is bounded by f1 and f2. The coordinate axes u1 and u2

are orthogonal to f1 and f2.

range tree data structures (see Section 2.2). For each wedge Wl with apex at origin

o, we construct an associated 2-dimensional range tree Tl as follows.

Consider a particular wedge Wl with apex at o. The wedge Wl is the intersection

of two half-spaces f+
1 and f+

2 bounded by f1 and f2; see Figure 6.3. Let û1 (resp.

û2) denote the normal to f1 (resp. f2) pointing to f+
1 (resp. f+

2). We define two

coordinate axes u1 and u2 through û1 and û2, where û1 and û2 give the respective

directions of increasing u1- and u2-coordinate values2.

The range tree Tl is a regular 2-dimensional range tree based on the u1- and u2-

coordinates. The points at level 1 (resp. level 2) are sorted at the leaves according

to their u1-coordinates (resp. u2-coordinates) (for more details about range trees,

see Section 2.2). From Theorem 2.5, any 2-dimensional range tree, e.g., Tl, uses

O(n log n) space and can be constructed in time O(n log n), and for any point r ∈ R2,

the points of P inside the query wedge Wl(r) whose sides are parallel to f1 and f2

can be reported in time O(log n+ z), where z is the cardinality of the set P ∩Wl(r).

Now we add a new level to Tl, based on the coordinate xl. Let Cl(p) be the set of

the first k points in the sorted list L(P ∩Wl(p)). To find Cl(p) in an efficient time, we

use the third level of Tl, which is constructed as follows: For each internal node v at

level 2 of Tl, we create a list L(R(v)) sorted by increasing order of xl-coordinates of

the points in R(v). For the set P of n points in R2, the modified range tree Tl, which

now is a 3-dimensional range tree, uses O(n log2 n) space and can be constructed in

2Since the normal vectors to the sides of the wedge Wl are parallel to the normal vectors of the
wedge Wl′ , where l′ = (l+3) mod 6, one can implement three range trees instead of six range trees;
one for W0 and W3, one for W1 and W4, and one for W2 and W5.

71

time O(n log2 n) (by Theorem 2.5).

The following establishes the processing time for obtaining a Cl(p).

Lemma 6.3. Given Tl, the set Cl(p) can be found in time O(log2 n+ k).

Proof. The set P ∩Wl(p) is the union of m̂ = O(log2 n) sets R(vj), where vj ranges

over internal nodes at level 2 of Tl. Consider the associated sorted lists L(R(vj)).

Given the m̂ sorted lists, the kth point in L(P ∩ Wl(p)) can be obtained in time

O(m̂ + k) [46]. By examining the points in each of the m̂ sorted lists whose xl-

coordinates are less than or equal to the xl-coordinate of the kth point, in time O(k)

we can find Cl(p).

By Lemma 6.3, we can find all the Cl(p), for all p ∈ P . This gives the following.

Corollary 6.1. Using a data structure of size O(n log2 n), the edges of the k-SYG of

a set of n points in R2 can be reported in time O(n log2 n+ kn).

Now we state and prove the main result for reporting all the k-nearest neighbors.

Theorem 6.1. For a set of n points in the plane, our data structure can report

all the k-nearest neighbors, in order of increasing distance from each point, in time

O(n log2 n+ kn log n). The data structure uses O(n log2 n+ kn) space.

Proof. Suppose we are given the k-SYG (from Corollary 6.1), which is a supergraph

of the k-NNG (from Lemma 6.2), and we want to report all the k-nearest neighbors.

Let Ep be the set of edges incident to the point p in the k-SYG. By sorting

these edges in non-decreasing order according to their Euclidean lengths, which can

be done in time O(|Ep| log |Ep|), we can find the k-nearest neighbors of p ordered by

increasing Euclidean distance from p.

Since the number of edges in the k-SYG is at most 6kn and each edge pq belongs

to exactly two sets Ep and Eq, the time to find all the k-nearest neighbors, for all the

points p ∈ P , is
P
pO(|Ep| log |Ep|) = O(kn log n). The proof obtains by combining

this with the results of Corollary 6.1.

6.1.3 RkNN Queries in R2

Suppose we are given a query point r /∈ P . For k = 1, the number of reverse k-nearest

neighbors of r is O(1) [66, 34]. The following gives the upper bound for any given k.

Lemma 6.4. The number of reverse k-nearest neighbors of a query point is O(k).

72

Proof. Consider Cl(r), the set of the first k points in L(P ∩Wl(r)). From Lemma 6.1,

Cl(r) contains the candidate points for r such that r might be one of their k-nearest

neighbors. Since |Cl(r)| = O(k), and since there is a constant number of wedges

(cones) around r, the number of reverse k-nearest neighbors of r is O(k).

Theorem 6.2. Our data structure uses O(n log2 n + kn) space and O(n log2 n +

kn log n) preprocessing time to answer RkNN queries with query time O(log2 n+ k).

Proof. For the query point r /∈ P , we have |∪l=5
l=0 Cl(r)| = O(k) candidate points such

that r might be one of their k-nearest neighbors.

The set P ∩ Wl(r) of the points of P in the wedge Wl(r) of r is the union of

O(log2 n) sets R(vj), where vj ranges over the internal nodes at level 2 of the range

tree Tl. Since we have the sorted lists L(R(vj)), from Lemma 6.3, the total time to

find the O(k) candidate points (Cl(r), l = 0, ..., 5) is O(log2 n+ k).

By Theorem 6.1, we can keep the kth nearest neighbor pk of each p ∈ P ; checking

a candidate point can be done in O(1) time by comparing distance |pr| to distance

|ppk|. Therefore, checking which elements of Cl(r), for l = 0, ..., 5, are reverse k-nearest

neighbors of the query point r takes time O(k).

It follows from Theorem 6.1 that our approach uses O(n log2 n + kn) space and

O(n log2 n+ kn log n) preprocessing time.

6.1.4 RkNN Queries in Rd

Recall from Section 5.1 that C0, ..., Cc−1 are the set of polyhedral cones with opening

angle θ, where θ ≤ π/3, that together cover d-dimensional space around the origin o

(see Lemma 5.1), and xl is the cone axis of Cl. Also, recall that Cl(p) is the translation

of Cl where o moves to p.

Using a similar proof to that of Lemma 6.1, the following lemma results.

Lemma 6.5. Let pi be the ith nearest neighbor of p in a set P of points in Rd, and

let Cl(pi) be the cone of pi that contains p. Then p is among the first i points in

L(P ∩ Cl(pi)).

Since the above lemma gives a necessary condition for pi to be the ith nearest

neighbor of p, we obtain the following, which extends Lemma 6.2 to higher dimensions.

Lemma 6.6. The k-NNG for a set P of points in Rd is a subgraph of the k-SYG of

the set P .

73

In Section 6.1.2 we used a range tree to construct the k-SYG in R2. Note that

each cone (wedge) Wl(p) of the k-SYG in R2 is bounded by two half-spaces, but each

cone Cl(p) of the k-SYG in Rd is bounded by d half-spaces f1, ..., fd. To obtain the

set Cl(p) of the first k points in the sorted list L(P ∩Cl(p)) for any p ∈ P , we use a d-

dimensional range tree Tl. For each internal node v at level d of Tl we create a sorted

list of the points in R(v), the set of points at the leaves of the subtree rooted at v.

In fact it creates a new level for Tl; this modified range tree Tl behaves like a (d+ 1)-

dimensional range tree. A similar approach and analysis as that in Section 6.1.2 gives

the following theorem. This is deriving the known results in a new way 3.

Theorem 6.3. For a set of n points in Rd, our data structure can report all the k-

nearest neighbors, ordered by distance from each point, in time O(n logd n+kn log n).

The data structure uses O(n logd n+ kn) space.

An analysis similar to that of Lemma 6.3 shows, for a query point r, all the O(k)

candidate points can be reported in time O(logd n+k). By Theorem 6.3 we can check

whether these candidate points are the reverse k-nearest neighbors of the query point

r. Therefore, we obtain the followings.

Lemma 6.7. Given a set of n points in Rd, the number of reverse k-nearest neighbors

for a query point is O(k).

Theorem 6.4. For a set of n points in Rd, our data structure uses O(n logd n+ kn)

space and O(n logd n + kn log n) preprocessing time. A reverse k-nearest neighbor

query can be answered in time O(logd n+ k).

6.2 RkNN Queries on Moving Points

Suppose we are given a set P of n continuously moving points, where the coordinates

of the trajectory of each point in P are given by polynomial functions of bounded

degree s. To answer RkNN queries on the moving points, we must keep a valid range

tree and track all the k-nearest neighbors during the motion.

In Section 5.2, we used an RBRT to provide a KDS for maintenance of the

1-SYG (a supergraph of the 1-NNG, which is formed by connecting each point p ∈ P
to the point with minimum xl-coordinate among the points in P∩Cl(p), 0 ≤ l ≤ c−1).

3For k = Ω(logd−1 n), both our data structure and the best previous data structure [42] have the
same complexity for reporting all the k-nearest neighbors.

74

We use a similar approach to that in Section 5.2 to give a KDS for maintenance of

the k-SYG, for any k ≥ 1. Using the kinetic k-SYG, we can easily maintain all the

k-nearest neighbors over time.

6.2.1 Kinetic k-SYG

Denote by Tl the RBRT of the cone Cl, 0 ≤ l ≤ c−1, and consider the corresponding

CSPD ψl = {(B1, R1), ..., (Bm, Rm)} (see Section 2.2). To maintain the k-SYG, we

must track the set Cl(p) for each point p ∈ P . Therefore, for each subscript j ∈
{1, ...,m}, we need to maintain a sorted list L(Rj) of the points in Rj in ascending

order according to their xl-coordinates over time. Note that each set Rj is some R(v),

the set of points at the leaves of the subtree rooted at some internal node v at level d

of Tl. To maintain these sorted lists L(Rj), we add a new level to the RBRT Tl; the

points at the new level are sorted at the leaves in ascending order according to their

xl-coordinates. Therefore, in the modified RBRT Tl, in addition to the u-swap events,

we handle new events, called x-swap events, that occur when two points exchange

their xl-order. The modified RBRT Tl behaves like a (d+1)-dimensional RBRT. From

the last property of an RBRT in Theorem 2.6, when a u-swap event or an x-swap

event occurs, the RBRT Tl can be updated in worst-case time O(logd+1 n).

Denote by p̈l,k the kth point in L(P ∩ Cl(p)). To track the sets Cl(p), for all the

points p ∈ P , we need to maintain the followings over time:

• A set of d + 1 kinetic sorted lists L(ui), i = 1, ..., d, and L(xl) of the point

set P . We use these kinetic sorted lists to track the order of the points in the

coordinates ui, 1 ≤ i ≤ d, and xl, respectively;

• For each Bj, a sorted list L(B′j) of the points in B′j, where B′j = {(p, p̈l,k)| p ∈
Bj}. The order of the points in L(B′j) is according to a label of the second points

p̈l,k. This sorted list L(B′j) is used to answer the following query efficiently:

Given a query point q and a Bj, find all p ∈ Bj such that p̈l,k = q; and

• The kth point rj,k in the sorted list L(Rj). We maintain the values rj,k in order

to make necessary changes to the k-SYG when an x-swap event occurs.

Handling u-swap events. Without loss of generality, let q ∈ Cl(p) before the u-

swap event. When a u-swap event between p and q occurs, the point q moves outside

75

the wedge Cl(p); after the event, q /∈ Cl(p). Note that the changes that might occur

in the k-SYG are the deletions and insertions of the edges incident to p inside Cl(p).

Whenever two points p and q exchange their ui-order, we perform the following

updates.

U1) We update the kinetic sorted list L(ui).

U2) We update the RBRT Tl . If a point is deleted or inserted into a Bj, we update

the sorted list L(B′j).

U3) We update the values of rj,k. After updating the RBRT Tl, point q might be

inserted or deleted from some Rj and change the values of ri,k. Thus for all Rj

where q ∈ Rj, before and after the event, we perform the following. We check

whether the xl-coordinate of q is less than or equal to the xl-coordinate of rj,k;

if so, we take the successor or predecessor point of rj,k in L(Rj) as the new value

for rj,k.

U4) We query to find Cl(p).

U5) If we obtain a new value for p̈l,k, we update all the sorted lists L(B′j) such that

p ∈ Bj.

Now the following gives the complexity of handling u-swap events.

Lemma 6.8. Our KDS for maintenance of the k-SYG handles O(n2) u-swap events,

each in worst-case time O(logd+1 n+ k log log n).

Proof. Each swap event in a kinetic sorted list can be handled in time O(log n) (Step

U1). Since each update (insertion/deletion) to L(B′j) takes O(log n) time, and since

each point is in O(logd n) sets Bj, Step U2 takes O(logd+1 n) time. It is obvious that

processing time of Steps U3 and U5 is O(logd+1 n). From Lemma 6.3, Step U4 takes

O(logd n+ k log log n) time.

Considering the complexity of each step above, and assuming the coordinates

of the trajectory of each point are given by bounded degree polynomials, the proof

obtains.

76

Handling x-swap events. When an x-swap event between two consecutive points

p and q with p preceding q occurs, it does not change the elements of the pairs (Bj, Rj)

of the CSPD Ψl. Such an event can only change the k-SYG if both p and q are in

the same Cl(w), for some w ∈ P , and such that ẅl,k = p.

We perform the following updates to our KDS when two points p and q exchange

their xl-order.

X1) We update the kinetic sorted list L(xl); this takes O(log n) time.

X2) We update the RBRT Tl, which takes O(logd+1 n) time.

X3) We find all the sets Rj where both p and q belong to Rj and such that rj,k = p.

Also, we find all the sets Rj where rj,k = q. This takes O(logd n) time.

X4) For each Rj (from Step X3), we extract all the pairs (w, ẅl,k) from the sorted

lists L(B′j) such that ẅl,k = p. Note that each change to the pair (w, ẅl,k) is a

change to the k-SYG.

X5) For each w (from Step X4), we update all the sorted lists L(B′j) where (w, ẅl,k) ∈
B′j: we replace the previous value of ẅl,k, which is p, by the new value q.

Now we obtain Lemma 6.10 below, which summarizes the complexity of handling

x-swap events; we use Lemma 6.9 in its proof to obtain an upper bound for χk, the

number of exact changes to the k-SYG of a set of moving points, where the trajectories

are given by bounded degree polynomials.

Lemma 6.9. The number of changes to the k-SYG of a set of n moving points, where

the coordinates of each point are given by polynomial functions of at most constant

degree s, is χk = O(φ(s, n) ∗ n).

Proof. Fix a point p ∈ P and one of its cone Cl(p). There areO(n) insertions/deletions

into the cone Cl(p) over time. The xl-coordinates of these points create O(n) partial

functions. The k-SYG changes if a change to p̈l,k occurs. The number of all changes

to p̈l,k is equal to φ(s, n), the complexity of the k-level of partially-defined polynomial

functions of bounded degree s.

Therefore, summing over all the n = |P | points, the number of changes to the

k-SYG is within a linear factor of φ(s, n): χk = O(φ(s, n) ∗ n).

Lemma 6.10. Our KDS for maintenance of the k-SYG handles O(n2) x-swap events

with a total cost of O(φ(s, n) ∗ n logd+1 n).

77

Proof. The complexities of the first three steps are clear. For each found Rj from

Step X3, Step X4 takes O(log n+ ξj) time, where ξj is the number of pairs (w, ẅl,k) ∈
B′j such that ẅl,k = p. Thus, for all the O(logd n) sets Rj of Step X3, Step X4

takes O(logd+1 n +
P
j ξj) time, where

P
j ξj is the number of exact changes to the

k-SYG when an x-swap event occurs. Therefore, for all the O(n2) x-swap events, the

total processing time for this step is O(n2 logd+1 n+ χk) = O(χk).

The processing time for Step X5 is a function of χk. For each change to the k-SYG,

this step spends O(logd+1 n) time to update the sorted lists L(B′j). Therefore, the

total processing time for all the x-swap events in this step is O(χk ∗ logd+1 n).

Now we can obtain the following.

Theorem 6.5. For a set of n moving points in Rd, where the coordinates of each

point are polynomial functions of at most constant degree s, our k-SYG KDS uses

O(n logd+1 n) space and O(n logd+1 n) preprocessing time, and handles O(n2) events

with a total cost of O(kn2 log log n+ φ(s, n) ∗ n logd+1 n).

Proof. The proof obtains by combining the results of Theorem 2.6 and Lemmas 6.8

and 6.10.

6.2.2 Kinetic All k-Nearest Neighbors

Given a KDS for maintenance of the k-SYG, a supergraph of the k-NNG (see The-

orem 6.5), this section shows how to maintain all the k-nearest neighbors over time.

For maintenance of the k-nearest neighbors of each point p ∈ P , we only need to

track the order of the edges incident to p in the k-SYG according to their Euclidean

lengths. This can easily be done by using a kinetic sorted list. The following gives

the complexity of our kinetic approach.

Theorem 6.6. For a set of n moving points in Rd, where the coordinates of each point

are given by polynomials of at most constant degree s, our KDS for maintenance of all

the k-nearest neighbors, ordered by distance from each point, uses O(n logd+1 n+ kn)

space and O(n logd+1 n+kn log n) preprocessing time. Our KDS handles O(φ(s, n)∗n2)

events, each in O(log n) amortized time.

Proof. Let Ep(t) be the set of edges incident to point p ∈ P in the k-SYG at time t.

Let L(Ep(t)) denote a kinetic sorted list that maintains the edges in Ep(t) sorted by

their Euclidean lengths.

78

Let mp be the number of insertions/deletions to the set Ep(t) over time. Since the

cardinality of Ep(t) is O(n), each insertion into a kinetic sorted list L(Ep(t)) can cause

O(n) swaps. Each change (e.g., inserting/deleting an edge pq) to the k-SYG, creates

two insertions/deletions in the kinetic sorted lists L(Ep(t)) and L(Eq(t)); this implies

that
P
pmp = O(χk). Therefore, from Lemma 6.9, all the kinetic sorted lists handle

a total of O(n
P
pmp) = O(φ(s, n) ∗ n2) events. Each event in a kinetic sorted list is

handled in time O(log n). Combining this and Theorem 6.5 gives the total processing

time O(kn2 log log n + φ(s, n) ∗ n logd+1 n + φ(s, n) ∗ n2 log n) = O(φ(s, n) ∗ n2 log n)

for all the events.

Now we measure the performance of our KDS for maintenance of all the k-nearest

neighbors in Rd by the four standard criteria in the KDS framework.

Lemma 6.11. The efficiency, responsiveness, locality, and compactness of our KDS

are O(φ(s,n)
kβ2s(n/k)

), O(log n) on average, O(k) on average, and O(kn), respectively.

Proof. Fix a point p ∈ P . The distances of the n−1 points of P\{p} to p as functions

of time create 2s-intersecting curves, meaning that each pair intersects at most 2s

times. The number of changes to the (ordered) k-nearest neighbors p1, ..., pk of p is

equal to the complexity of the (≤ k)-level, which is O(knβ2s(n/k)). Thus the total

for all points p ∈ P is O(kn2β2s(n/k)). Since the number of events in our KDS is

O(φ(s, n) ∗ n2), the efficiency of our KDS is O(φ(s,n)
kβ2s(n/k)

).

Each event in our KDS can be handled in amortized time O(log n). Thus the

responsiveness of our KDS is O(log n) on average.

In our KDS, for each two consecutive elements in each of the kinetic sorted lists

L(ui), L(xl), and L(Ep(t)), we have a certificate. This implies that a point partici-

pates in a constant number of these certificates in the kinetic sorted lists L(ui) and

L(xl). Since the number of edges in the k-SYG is O(kn), the number of certificates

corresponding to each point, in the kinetic sorted lists L(Ep(t)), is O(k) on average.

Therefore, the locality of our KDS is O(k) on average.

The number of certificates of the kinetic sorted lists L(ui) and L(xl) is O(n),

and the number of certificates of the kinetic sorted lists L(Ep(t)) is O(kn), so the

compactness of our KDS is O(kn).

79

6.2.3 RkNN Queries

Consider a query point r /∈ P at some time t. A similar approach to that in Sec-

tion 6.1.3 can report the reverse k-nearest neighbors for r. Note that if one asks the

query at time t, which is coincident with the time when an event occurs in the KDS

for maintenance of all the k-nearest neighbors, we first handle the event and then

answer the query.

The following theorem gives the main results of this section.

Theorem 6.7. Consider a set P of n moving points in Rd, where the coordinates of

each one are given by bounded-degree polynomials. The number of reverse k-nearest

neighbors for a query point q /∈ P is O(k). Our KDS uses O(n logd+1 n + kn) space,

O(n logd+1 n + kn log n) preprocessing time, and handles O(φ(s, n) ∗ n2) events. At

any time t, an RkNN query can be answered in time O(logd n+k). If an event occurs

at time t, the KDS spends amortized time O(log n) on updating itself.

Proof. By Theorem 2.6, in time O(logd n) we can find a set of Rj where P ∩Cl(r) =P
j Rj. From Lemma 6.3, and since we have sorted lists L(Rj) at level d+ 1 of Tl, the

O(k) candidate points for the query point r can be found in worst-case time O(logd n+

k). By handling O(φ(s, n) ∗ n2) events, we can maintain all the k-nearest neighbors

(from Theorem 6.6). Thus we can easily check whether or not these candidate points

are the reverse k-nearest neighbors of the query point r at time t.

If one asks a query at time t, which coincides with the time when one of the

O(φ(s, n)∗n2) events occurs, our KDS first spends amortized time O(log n) to handle

the event, and then spends time O(logd n+ k log log n) to answer the query.

80

Chapter 7

Kinetic Point Set Embedding for

Plane Graphs

In this chapter, we investigate a kinetic version of a point set embedding problem.

Given a plane graph G(V,E) where |V | = n, and a set P of n moving points, we

provide the first kinetic data structure to maintain a point set embedding of G on P

with few bends per edge over time. This requires reassigning the mapping of vertices

to points from time to time.

As a preliminary step, in Section 7.1, we give a new algorithm to obtain a 2-

bend drawing of a given plane graph G on a stationary point set P . This algorithm

first draws a 3-bend drawing, and then transforms the 3-bend drawing to a 2-bend

drawing. Section 7.2 gives a kinetic data structure to maintain such drawings.

The results of this chapter were published as a paper in the Proceedings of the

20th International Symposium on Graph Drawing (GD 2012) [78].

7.1 Drawing with k bends

In this section we first provide an O(n log n) algorithm for point set embedding of a

given plane graph G(V,E) on P with at most three bends per edge. Then, given this

3-bend drawing, we provide a 2-bend drawing of G on P in linear time, although this

is not used in the later sections.

Given a plane graph G(V,E) on n = |V | vertices and a set P of n = |P | points,

the point set embedding of G on P with at most k bends is to draw G on P such

that each vertex v ∈ P is mapped to a point p ∈ P , and such that each edge (curve)

81

of G is drawn by a chain of k + 1 polyline; the drawn chains representing the edges

of G intersect only at common points representing the vertices of G.

For any given plane graph G(V,E), we add a set of edges E ′ to the graph G to

make it maximally planar 1, and then we embed the graph G(V,E ∪E ′) on the set of

given points P , and finally we remove the extra edges mapped from E ′. The remaining

drawing is the point set embedding of the graph G(V,E) on the set of points P . From

now on, we assume the given plane graph G is a triangulation; Figure 7.1(a) depicts

a maximal plane graph (a triangulation).

7.1.1 Drawing with 3 bends

We use a similar approach to that of Kaufmann and Wiese [59] to construct an initial

polyline drawing of a plane graph G on a set of stationary points P . Our algorithm

draws a point set embedding with at most three bends per edge that we later extend

to the kinetic setting. The key insight from [59] is the idea of creating a Hamiltonian

cycle that has at least one edge, called an external edge, on the outer face of G. Such

Hamiltonian cycle can be created in linear time [50, 59] by adding dummy vertices ;

we explain the approach of [59] as follows.

Each 4-connected planar graph is Hamiltonian [90]. In fact, any maximal plane

graph with at most two separating triangles is Hamiltonian [33, 54, 95]; a sepa-

rating triangle is a triangle whose removal separates the graph into more compo-

nents (Figure 7.1(a), see triangles v1v2v6 and v1v9v12). We now review how to con-

struct a 4-connected graph from any plane graph. Using the algorithm by Chiba and

Nishizeki [37], the separating triangles of a maximal plane graph can be found effi-

ciently. Kaufmann and Wiese [59] destroy the separating triangles by adding dummy

vertices and edges to create a 4-connected graph. Then, using the algorithm of Chiba

and Nishizeki [36], a Hamiltonian cycle of the 4-connected graph with external edge

can be found in linear time. To illustrate the main idea, on an example, consider Fig-

ure 7.1(a) which depicts a plane graph with separating triangles; v1v2v6 and v1v9v12

are two of the separating triangles. Create a new graph as follows; see Figure 7.1(b).

Add two new vertices z1 and z2 to destroy the two separating triangles v1v2v6 and

v1v9v12. Place z1 on the edge v1v6, which partitions it into two edges v1z1 and z1v6

that replace v1v6. Then create two new edges v7z1 and z1v8. Similarly, place z2 on

1A maximal plane graph is a triangulation, i.e., a plane graph such that no edge can be added
without losing planarity.

82

v1

v2

v3 v4 v5

v6
v7

v8

v9v10 v11

v12

v1

v2

v3 v4 v5

v6
v7

v8

v9v10 v11

v12

z1

z2

(a) (b)

Figure 7.1: (a) Two separating triangles v1v2v6 and v1v9v12 in a plane graph. (b)
Adding two dummy vertices z1 and z2 and new edges creates a plane graph with a
Hamiltonian cycle (bold edges).

v9v12 and add edges v10z2 and z2v11. The new graph still has separating triangles

(e.g., v1v2v4 and v2v4v6), but it has a Hamiltonian cycle (bold edges) with external

edge v1v12.

Now we set up some notation and terminology. Let p1, p2, ..., pn be the points of

P , ordered by increasing x-coordinate. We assume that no two points have the same

x-coordinate. For each dummy vertex zk we add a dummy point to the given set

of points P . As described above a dummy vertex may have been placed on an edge

vivj of the given graph G, which partitioned vivj into two edges vizk and zkvj. The

corresponding dummy point is inserted in the middle of the segment pipj. Let m be

the number of dummy vertices, let C = (u1, u2, ..., un+m) be the circular sequence of

vertices and dummy vertices on the Hamiltonian cycle with external edge u1un+m;

two dummy vertices z1 and z2 of Figure 7.1(b) are called by u8 and u12, respectively,

in Figure 7.2(a). Let chain Q = {q1, q2, ..., qn+m} be the list of P plus the dummy

points sorted in increasing order by their x-coordinates; in particular, for two points

qi = (xi, yi) and qj = (xj, yj), if i < j then xi < xj. In Figure 7.2(b), the dummy

point q8 (resp. q12) is inserted in the middle of q7q9 (resp. q11q13).

Call the edges on the Hamiltonian cycle of the plane graph G hull edges, the edges

inside the Hamiltonian cycle interior edges, and the edges outside of the Hamilto-

83

(a) (b)

q1
q2

q3
q4 q5 q6

q7 q9
q10

p11 p13 q14q8 q12
u1

u2

u3 u4
u5

u6
u7

u9

u10u11

u13

u14

u8

u12

Figure 7.2: Drawing the hull, interior, and exterior edges.

nian cycle exterior edges. In order to support kinetic drawing, we assign different

slopes to the edges of the polyline drawing than does the algorithm of Kaufmann and

Wiese [59]; our slopes prevent intersections between interior edges during the motion

of the points; see Section 7.2. Let δ be the maximum absolute slope of the edges of the

chain Q. In particular, δ = maxi | yi+1−yi
xi+1−xi | where qi = (xi, yi) and qi+1 = (xi+1, yi+1)

are consecutive edges of the chain Q. To draw the point set embedding we map the

hull edge uiui+1 to the edge qiqi+1, for i = 1, ..., n+m− 1. For the external Hamilto-

nian edge u1un+m and each interior edge uiuj, where i < j, we also draw an edge with

one bend bij at the intersection of two lines, one through ui with slope (1 + j−i
n+m

)δ

and the other one through uj with slope −(1 + j−i
n+m

)δ; the mapping of the edge uiuj

is qibijqj which has one bend at bij. The interior edges are drawn above the chain

q1, q2, ..., qn+m and the exterior edges are drawn in a similar way below the chain.

To obtain a point set embedding of the original plane graph G on the original point

set P , we regard dummy vertices as bends in the original edges they subdivided, and

we remove the newly added edges. For example, if we remove the dummy points q8

and q12 and the corresponding edges q7q8, q8q9, q11q12, and q12q13 from the embedding

of Figure 7.2(b), we obtain the embedding in Figure 7.3(b), which has at most three

84

(a) (b)

q1
q2

q3
q4 q5 q6

q7 q9
q10

p11 q14
u1

u2

u3 u4
u5

u6
u7

u9

u10u11

u13

u14

p13

Figure 7.3: Removing the dummy points q8 and q12 and corresponding edges from
Figure 7.2.

bends per edge.

Theorem 7.1. The above point set embedding of plane graph G(V,E) onto the set of

n = |V | points P is crossing-free, has at most three bends per edge, and is constructed

in O(n log n) time.

Proof. After sorting the set of points P by x-coordinate in O(n log n) time, we map

the hull edges to edges of the chain Q plus q1qn+m. The chain Q separates the interior

edges and the exterior edges, and it prevents intersections between these two types.

In the following, we consider whether there are intersections among the interior edges;

the proof that there is no intersection among the exterior edges is analogous.

Let qiqj and qkql be two interior edges; without loss of generality, assume i ≤ k.

There are two possible situations: either j ≤ k, in which case it is obvious that edge

qibijqj does not cross edge qkbklql (Figure 7.2(b), see q1q4 and q4q7), or j > k, which

implies that j ≥ l because the embedded plane graph G has no edge crossing (edge

uiuj does not cross edge ukul). In the second case (i ≤ k < l ≤ j), the slope of qibij

(resp. bijqj) is (1 + j−i
n+m

)δ (resp. −(1 + j−i
n+m

)δ) which is steeper than the slope of

qkbkl (resp. bklql) because j − i > l− k. Therefore, bij is above bkl which implies that

85

edge qibijqj does not cross edge qkbklql (Figure 7.2(b), see q1q7 and q4q7).

As we removed the dummy points and the new edges, each edge of the original

graph G is mapped to a chain of at most four line segments. If an edge uiuj of the

original graph is partitioned into two edges uiuk and ukuj by a dummy vertex uk,

the mapping of uiuj has at most three bends (see the mapping of u1u6 to q1q6 in

Figure 7.3); otherwise, the mapping has at most one bend (see the mapping of u1u4

to q1q4 in Figure 7.3).

7.1.2 Drawing with 2 bends

Given a 3-bend drawing of a plane graph G on a set P of points (from Section 7.1.1),

there exists a way in [59] to obtain a 2-bend drawing of G on P . The method in [59],

which we explain in the next paragraph, saves bends at dummy points.

Consider an edge uiuj of G with a dummy vertex uk in the middle of uiuj, and

consider the drawing qiqj of uiuj, where k > max(i, j), with a dummy point qk in

the middle of qiqj; see Figure 7.4. The drawing qiqj has three bends, one at bik (the

intersection of two lines, one through qi with slope (1 + k−i
n+m

)δ and the other one

through qk with slope −(1 + k−i
n+m

)δ) which is above the chain Q, one at dummy point

qk, and one at bkj (the intersection of two lines, one through qk with slope (1 + k−j
n+m

)δ

and the other one through qj with slope −(1+ k−j
n+m

)δ) which is below the chain Q. To

reduce the number of bends to at most two bends, we replace the chain bikqkbkj with

a vertical line segment through qk saving a bend at qk (see Figure 7.4(b)). The new

drawing qiqj of the edge uiuj may cross other edges and destroy the planarity. Thus

we rotate the edges in the point set embedding to avoid crossings (see Figure 7.4(c).

Given a 3-bend drawing, the method of [59] takes O(n2) time.

Next we describe our approach, a linear time drawing algorithm with at most two

bends per edge without rotating the edges. We provide our method for the interior

edges, which are drawn above the chain q1, q2, ..., qn+m; the exterior edges are drawn

in a similar way below the chain.

Let rij = [i, j] denote the range of subscripts for the edge qiqj. The idea behind

our 2-bend drawing algorithm is to find the edges whose ranges contain the range

rij, for all edges qiqj. If rkl covers rij we assign slopes to segments of qkbklql so that

they do not intersect the segments of qibijqj. To store these nested layers of ranges

we construct a nested tree T data structure. Each node nij of T corresponds to an

edge qiqj, and the subtree rooted at nij stores all ranges covered by rij at its nodes.

86

(a)

qi
qj qk qi

qj
qk

(b)

bik

bkj
bkj

bik

qi
qj

qk

(c)

bkj

bik

Figure 7.4: Saving bends at dummy points of a 3-bend drawing to obtain a 2-bend
drawing.

q1
q2

q3
q4 q5 q6 q7

q8

b18

b15

b13
b35 b57

b58

n18

n15

n13
n35 n57

n58

(a) (b)

T

Figure 7.5: (a) The edges above the chain q1, q2, ..., q8 of a 3-bend drawing; q7 is a
dummy point. (b) The nested tree T for the drawing.

Figure 7.5(b) shows the nested tree T for the graph in Figure 7.5(a).

Lemma 7.1. Given a 3-bend drawing of a plane graph G on P with at most three

bends per edge (from Theorem 7.1), the nested tree T can be built in O(n) time.

Proof. Using a stack we can easily construct the nested tree T as follows. For the

external Hamiltonian edge q1qn+m, we push q1 onto the stack, and create a node

n1n+m as the root of T and a pointer pointing to the node n1n+m.

We process the endpoints of edges in order of increasing x-coordinate; if there

are two or more edges incident to the same point, then we process these edges by

decreasing order of their corresponding ranges. If we encounter the first endpoint of

87

an edge qiqj, where i < j, we push the point qi and insert into T a new rightmost

child of the node to which the pointer points; after this the pointer must point to the

newly created node. If we encounter the second endpoint qj of qiqj, clearly, the top

of the stack is the first endpoint qi and we pop the point qi and make the pointer

point to the parent of the node nij. For example, in Figure 7.5(a), after creating

the root n18, first we see the point q1 of the edge q1q5, whose range r15 includes the

range r13, and so we create the node n15 as the rightmost child of n18; the pointer

then points to n15. After encountering the point q1 of the edge q1q3 and creating the

node n13, the pointer points to the node n13. Here, there are three q1’s in the stack

corresponding to the three edges q1q8, q1q5, and q1q3. When we encounter q3 we pop

its corresponding q1 and make the pointer point to n15; continuing this process gives

the nested tree T in Figure 7.5(b).

The running time is clear.

Next we show how to draw a 2-bend drawing by traversing the nested tree T from

the leaves to the root. For each node nij of T , where nij corresponds to the edge qiqj,

we store two values δl and δr; the slopes of qibij and bijqj will be generated from δl and

δr. If nij is a leaf and neither endpoint of qiqj is a dummy point we set δl = δr = δ,

where δ is the maximum slope of the edges of the chain Q. Then we set the slopes

of qibij and bijqj equal to (1 + j−i
n+m

)δl and −(1 + j−i
n+m

)δr, respectively. If qj (resp. qi)

is a dummy point we set δl = δ (resp. δr = δ), and then bij is the intersection of the

vertical line through qj (resp. qi) and the line through qi with slope (1+ j−i
n+m

)δl (resp.

−(1 + j−i
n+m

)δr). Let nkl be the parent of the node nij corresponding to the edge qkql.

In order to assign slopes to the edge qkql whose range rkl covers the range rij, we find

the slope α of the line through ql (resp. qk) and bij (see Figure 7.6) and set δr = |α|
(resp. δl = α).

After assigning the slopes δl and δr to all leaves we can find the slopes of the edges

corresponding to the internal nodes of T as follows. For each internal node nij we

set δl (resp. δr) to be the maximum of the δl’s (resp. δr’s) of the children of the node

nij; the slope of qibij (resp. bijqj) is (1 + j−i
n+m

)δl (resp. −(1 + j−i
n+m

)δr). If one of the

endpoints of the edge qiqj corresponding to the internal node nij is a dummy point

we handle nij as we did for a leaf.

Now we can obtain the following.

Theorem 7.2. Given a 3-bend drawing of the plane graph G on P , which can be

constructed in O(n log n) time (see Theorem 7.1), a crossing-free 2-bend drawing of

88

q2
q3

q4 q5 q6 q7
q8

b18

b15

b13
b35

b57

b58

α

Figure 7.6: The 2-bend drawing of Figure 7.5(a).

G on P can be constructed in linear time.

Proof. We assign slopes to the edges such that if the range rkl covers the range rij then

the slope of qkbkl (resp. bklql) is steeper than the slope of qibij (resp. bijqj), except

when one of the endpoints of qiqj is a dummy point. Without loss of generality,

assume pj is a dummy point. In this case, we compute a slope α, and use it to assign

a valid slope to bklql so that it does not intersect bijqj. Thus qiqj does not cross qkql.

By Lemma 7.1 and the fact that traversing the nodes of T takes linear time, the

construction time of obtaining a 2-bend drawing from a 3-bend drawing is O(n).

7.2 The Kinetic Drawing

Next we kinetically maintain the drawing we provided in Section 7.1.1. We give a

KDS for maintaining the edges above the chain Q = {q1, q2, ..., qn+m}; the edges in

the lower part can be maintained analogously.

Each edge qiqj above the chain of the 3-bend drawing, in Section 7.1.1, is defined

by two line segments qibij and bijqj with positive slope (1 + j−i
m+n

)δ and negative slope

−(1 + j−i
m+n

)δ, respectively, where δ is the maximum slope of the edges of the chain

Q. Since the slopes of each edge are generated from δ, we only need to maintain the

maximum slope δ in order to maintain the point set embedding over time. We create

a dynamic and kinetic tournament tree T T to maintain δ, whose elements (leaves)

are the edges of the chain Q; the root of T T always has the steepest slope among all

edges of the chain Q.

89

qjqi
qj

qi qi

qj

(a) (b) (c)

qi′
qi′ qi′

qj′ qj′ qj′

Figure 7.7: (a) Before changing the ordering of qi and qj. (b) After points qi and qj
change their order. (c) Allocating Inc(qi) to the point qj and vice versa.

We also maintain a list LQ of the set of points Q sorted by increasing order of

their x-coordinates. When the points move, the order of the x-coordinates of two

consecutive points may change. For each pair of consecutive points qi and qj, where

j = i + 1, we maintain a certificate certifying that the x-coordinate of qi is smaller

than the x-coordinate of qj. The failure time of the certificate is the time t when

xi(t) = xj(t); we say that an order event occurs at time t+. We put the certificates

in a priority queue with the failure times as their keys.

Lemma 7.2. The dynamic and kinetic tournament tree T T can be constructed in lin-

ear time. It generates O(n2β2s+2(n) log n) events, each in worst-case time O(log2 n).

Proof. By Theorem 2.3, a dynamic and kinetic tournament tree on O(n) elements

can be constructed in linear time.

Since the coordinate functions for each point are polynomials of at most constant

degree s, the order of the points according to their x-coordinates changes m̄ = O(n2)

times, which is equal to the number of all insertions and deletions into the tournament

tree T T . The functions of each pair of edges at leaves of T T intersect at most

2s times. Therefore, from Theorem 2.3, the T T generates O(m̄β2s+2(n) log n) =

O(n2β2s+2(n) log n) events, each in time O(log2 n).

Let qi′ , qi, qj, and qj′ be four consecutive points of LQ. Whenever an order event

between qi and qj occurs, we update the dynamic and kinetic tournament tree T T
as follows. We delete two edges qi′qi and qjqj′ from T T and add two new edges qi′qj

and qiqj′ into T T . Then we delete the certificates corresponding to qi and qj, and

replace them with new ones certifying that the order of the x-coordinates of qi′ , qj,

qi, and qj′ is in increasing order; the failure times are the times when two consecutive

points change their x-coordinate ordering.

90

Note that when an order event between qi and qj occurs, the embedding might

have edge crossings (see Figure 7.7). Thus we must repair the embedding to avoid

edge crossings. Let Inc(qi) be the set of edges incident to qi. When such event

occurs, some edges in the set Inc(qi), if non-empty, might cross some edges in the set

Inc(qj), if non-empty; see Figure 7.7(b). To remove the edge crossings and restore

the embedding, we allocate Inc(qi) to the point qj; similarly, we allocate Inc(qj) to

the point qi; see Figure 7.7(c).

Now we can state and prove the main result of this section.

Theorem 7.3. Given an initial point set embedding of a plane graph G = (V,E) with

at most three bends per edge on a set P of n = |V | points, where the trajectory of each

point is given by a polynomial function of constant degree at most s, there is a KDS

that maintains the embedding and that satisfies the following properties. The KDS

has linear size, and processes O(n2β2s+2(n) log n) events, each in O(log2 n) time. The

KDS is efficient, responsive, compact and local. At any time, the mapping of each

edge of G can be obtained in worst-case time O(log2 n).

Proof. Since the number of dummy vertices is O(n), the size of the T T together with

the number of certificates is O(n). Thus the KDS uses O(n) space, and it is compact.

When an order event between qi and qj occurs, we first allocate Inc(qi) to the

point qj and Inc(qj) to the point qi, and then apply a constant number of changes to

the priority queue which takes O(log n) time. Next a constant number of insertions

and deletions is made in T T ; each change to T T can be processed in time O(log2 n).

This implies that the KDS is responsive.

The number of changes to the maximum slope δ, which is equal to the number of

all changes at the root of T T , is O(n2β2s+2(n)). By Lemma 7.2 the number of internal

events is O(n2β2s+2(n) log n). Therefore, the ratio of the number of internal events to

the number of external events is polylogarithmic in n, so the KDS is efficient.

Each point involves in a constant number of order events in LQ, and O(log n)

tournament events in T T , so the number of all certificates associated with a particular

point is polylogarithmic in n. Thus the proposed KDS is local.

At any time t, we can obtain the slopes of a given edge in an efficient time. If an

event occurs at time t, we spend O(log2 n) time to handle the event by updating the

maximum slope δ, and then generating the slopes of the given edge from δ; otherwise,

it takes O(1) time.

91

Remark 5.1. Recall from Section 7.1.2 that the slopes of edge qiqj, for a 2-bend per

edge drawing, arise from two values δl and δr stored at node nij. In order to maintain

these values in the kinetic setting we define two dynamic kinetic tournament trees

T T l and T T r whose roots store δl and δr, respectively. The values δl (resp. δr) stored

at the children of nij are stored at the leaves of T T l (resp. T T r); the root of T T l
(resp. T T r) maintains the larger value δl (resp. δr) of the children.

Let nkl be the parent of node nij and let Pkl be the path from nkl to the root of the

nested tree T . When the root of the tournament tree T T l (resp. T T r) corresponding

to nij changes, the δl (resp. δr) of a child of nkl is replaced by a new one. Thus an

insertion and a deletion are done in the corresponding tournament tree of nkl; this

tournament tree may cause an insertion and a deletion in the parent of nkl and hence

updates to all corresponding tournament trees on the path Pkl.
Therefore, when two points qi and qj change their x-coordinate ordering, we up-

date the values δl and δr of the nodes corresponding to these points, up to the root

of T . Using this process we obtain a compact KDS for a 2-bend drawing.

92

Chapter 8

Conclusions and Open Problems

In this chapter, we briefly review the known results for the problems discussed in this

dissertation, and then pose several open problems.

Kinetic All Nearest Neighbors. In Chapter 3, we have provided a kinetic data

structure for the all nearest neighbors problem for a set of moving points in the

plane. We have applied our structure to maintain the closest pair as the points move.

Comparison of our algorithm with the algorithm of Agarwal et al. [10] shows that in

R2, our deterministic algorithm is simpler and more efficient than their randomized

algorithm for maintaining all the nearest neighbors. In higher dimensions, our deter-

ministic method for maintaining the Equilateral Delaunay graph does not satisfy all

four kinetic performance criteria in Section 1.1. For example, in R3, the number of

edges of the Equilateral Delaunay graph is O(n2), and so for maintenance of all the

nearest neighbors, our kinetic approach needs O(n2) space. By contrast, the random-

ized kinetic data structure by Agarwal et al. [10] uses O(n log3 n) space. Thus, for

higher dimensions (d ≥ 3), their approach is asymptotically more efficient, but the

simplicity of our algorithm may make it more attractive.

In Chapter 5, we have provided a new method for finding a deterministic kinetic

algorithm to maintain all the nearest neighbors in any dimension d ≥ 2, that does

satisfy the performance criteria of the efficiency and the compactness. In fact, Chap-

ter 5 gives deterministic KDS’s for maintenance of both the Semi-Yao graph and all

the nearest neighbors in Rd. These KDS’s are responsive in an amortized sense.

Therefore, open directions include:

Open Problem 1. Design KDS’s for the Semi-Yao graph and all the nearest neigh-

93

bors such that each event can be handled in a polylogarithmic worst case time.

Open Problem 2. Design an exact KDS for maintenance of all the nearest neighbors

that is local in the worst-case.

In Chapter 6, we have provided a KDS for maintenance of all the k-nearest neigh-

bors in order to answer RkNN queries over time. This is the first KDS for maintenance

of all the k-nearest neighbors in Rd, for any k ≥ 1. It processes O(φ(s, n)∗n2) events,

each in time O(log n) in an amortized sense. Thus an open problem, where each point

moves along a bounded degree polynomial function, is:

Open Problem 3. Design a KDS for maintaining all the k-nearest neighbors that

processes less than O(φ(s, n) ∗ n2) events.

Arya et al. [13] have a kd-tree implementation to approximate the nearest neigh-

bors of a query point that is in use by practitioners [39] who have found it challenging

to implement the theoretical algorithms [91, 27, 38, 42]. To report all the k-nearest

neighbors ordered by distance from each point, our method uses multidimensional

range trees, which can be easily implemented. Consequently, we believe our method

may be useful in practice.

Kinetic EMST. In Chapter 4, we have provided a KDS for maintenance of the

EMST and the Yao graph on a set of n moving points in the plane. Our EMST

KDS processes O(n3β2
2s+2(n) log n) events, which improves the previous O(n4) bound

of Rahmati and Zarei [79]. The kinetic algorithm of Rahmati and Zarei results in

a KDS having O(n3+ε) events, for any ε > 0, under the assumption that any four

points can be co-circular at most twice [81], or at most three times where each point

moves along a straight line at unit speed [80]. Our KDS further improves the upper

bound O(n3+ε) under the above assumptions. Our kinetic approach can also be used

to maintain an L1-MST and an L∞-MST. In addition, by defining the Pie Delaunay

graph and the Yao graph in higher dimensions, one might use our approach to give a

KDS for maintenance of the EMST in Rd, but this approach does not satisfy all the

performance criteria.

For the number of combinatorial changes of the EMST (resp. L1-MST and L∞-

MST) of linearly moving points in the plane, Katoh et al. [58] proved an upper

bound of O(n32α(n)) (resp. O(n5/2α(n)). Here, α(n) is the inverse Ackermann func-

tion. The upper bound was later improved to O(λps+2(n)n2−1/(9.2ps−3
) log2/3 n) for

94

the Lp-MST in Rd, where the coordinates of the points are polynomial functions of

constant maximum degree s by Chan [28]; for p = 2 and s = 1, this formula gives

the first improvement O(n25/92α(n) log2/3 n) over Katoh et al.’s O(n32α(n)) bound. An

even better bound O(n8/32α(n) log4/3 n) can be obtained by combining the results of

Chan [28] with those of Marcus and Tardos [67].

Therefore, for a set of n moving points where the trajectory of each point is a

polynomial function of bounded degree, future directions are:

Open Problem 4. Find a tight upper bound for the number of combinatorial changes

of the EMST.

Open Problem 5. Find a KDS for the EMST that processes a sub-cubic number of

events, and such that it is responsive, local, and compact.

Kinetic Point Set Embedding. In Chapter 7, we have provided a KDS for main-

taining a drawing for plane graph G on a set of moving points with at most three

bends per edge. In terms of the standard evaluation criteria in the KDS framework,

the KDS is efficient, responsive, local, and compact. We can kinetically maintain a

2-bend drawing, but while this KDS is compact, it does not satisfy the other three

performance criteria. Thus some future continuations of the new research area of

kinetic graph drawing include:

Open Problem 6. Find a KDS for a point set embedding of a plane graph on a set

of points with at most two bends per edge that satisfies all four performance criteria.

Open Problem 7. Find a KDS for maintenance of straight-line, crossing-free draw-

ings on moving points for some special graphs like outerplanar graphs and trees.

The k-colored Point Set Embedding problem [14, 48, 49, 93] is a general version

of the point set embedding problem, and is defined as follows. Given: a planar graph

G of n vertices with a partition of the vertex set into subsets V0, ..., Vk−1, and a point

set P of n points in the plane with a partition of the point set into P0, ..., Pk−1. To

find: a drawing such that the vertices of Vi are mapped to the points Pi, respectively,

and such that the number of bends along each edge is kept small. Another future

direction in the area of kinetic graph drawing would be:

Open Problem 8. Find a kinetic algorithm for maintenance of a k-colored point set

embedding of a planar graph G on a point set P , such that the number of crossings

and the number of bends per edge are kept small.

95

Bibliography

[1] Mohammad Ali Abam. New Data Structures and Algorithms for Mobile Data.

PhD Thesis, Eindhoven University of Technology, 2007.

[2] Mohammad Ali Abam and Mark de Berg. Kinetic spanners in Rd. Discrete &

Computational Geometry, 45(4):723–736, 2011.

[3] Mohammad Ali Abam, Mark de Berg, and Joachim Gudmundsson. A simple

and efficient kinetic spanner. Computational Geometry: Theory and Applica-

tions, 43:251–256, 2010.

[4] Mohammad Ali Abam, Zahed Rahmati, and Alireza Zarei. Kinetic pie Delaunay

graph and its applications. In Proceedings of the 13th Scandinavian Symposium

and Workshops on Algorithm Theory (SWAT ’12), volume 7357 of Lecture Notes

in Computer Science, pages 48–58. Springer-Verlag, 2012.

[5] P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir. On levels in arrange-

ments of lines, segments, planes, and triangles. Discrete & Computational Ge-

ometry, 19(3):315–331, 1998.

[6] Pankaj K. Agarwal, Lars Arge, and Jeff Erickson. Indexing moving points.

Journal of Computer and System Sciences, 66:207–243, 2003.

[7] Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo

Welzl. Euclidean minimum spanning trees and bichromatic closest pairs. Dis-

crete & Computational Geometry, 6(5):407–422, 1991.

[8] Pankaj K. Agarwal, David Eppstein, Leonidas J. Guibas, and Monika Rauch

Henzinger. Parametric and kinetic minimum spanning trees. In Proceedings of

the 39th Annual Symposium on Foundations of Computer Science (FOCS ’98),

pages 596–605, Washington, DC, USA, 1998. IEEE Computer Society.

96

[9] Pankaj K. Agarwal, Jie Gao, Leonidas Guibas, Haim Kaplan, Vladlen Koltun,

Natan Rubin, and Micha Sharir. Kinetic stable Delaunay graphs. In Proceedings

of the 26th ACM Symposium on Computational Geometry (SoCG ’10), pages

127–136, New York, NY, USA, 2010. ACM.

[10] Pankaj K. Agarwal, Haim Kaplan, and Micha Sharir. Kinetic and dynamic

data structures for closest pair and all nearest neighbors. ACM Transactions

on Algorithms, 5:4:1–37, 2008.

[11] Gerhard Albers, Joseph S.B. Mitchell, Leonidas J. Guibas, and Thomas Roos.

Voronoi diagrams of moving points. International Journal of Computational

Geometry and Applications, 8:365–380, 1998.

[12] Giora Alexandron, Haim Kaplan, and Micha Sharir. Kinetic and dynamic data

structures for convex hulls and upper envelopes. Computational Geometry:

Theory and Applications, 36(2):144–158, 2007.

[13] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and An-

gela Y. Wu. An optimal algorithm for approximate nearest neighbor searching

in fixed dimensions. Journal of the ACM, 45(6):891–923, 1998.

[14] Melanie Badenta, Emilio Di Giacomo, and Giuseppe Liotta. Drawing colored

graphs on colored points. Theoretical Computer Science, 408:129 – 142, 2008.

[15] Julien Basch. Kinetic Data Structures. PhD Thesis, Stanford University, 1999.

[16] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for

mobile data. In Proceedings of the 8th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA ’97), pages 747–756, Philadelphia, PA, USA, 1997.

Society for Industrial and Applied Mathematics.

[17] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for

mobile data. Journal of Algorithms, 31:1–19, 1999.

[18] Julien Basch, Leonidas J. Guibas, and Li Zhang. Proximity problems on mov-

ing points. In Proceedings of the 13th Annual Symposium on Computational

Geometry (SoCG ’97), pages 344–351, New York, NY, USA, 1997. ACM.

97

[19] Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas, and Simonas Salte-

nis. Nearest and reverse nearest neighbor queries for moving objects. VLDB

Journal, 15(3):229–249, 2006.

[20] Jon Louis Bentley and Michael Ian Shamos. Divide-and-conquer in multidi-

mensional space. In Proceedings of the 8th Annual ACM Symposium on Theory

of Computing (STOC ’76), pages 220–230, New York, NY, USA, 1976. ACM.

[21] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Com-

putational Geometry: Algorithms and Applications. Springer-Verlag TELOS,

Santa Clara, CA, USA, 3rd edition, 2008.

[22] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and David Ilcinkas. Connec-

tions between theta-graphs, Delaunay triangulations, and orthogonal surfaces.

In Proceedings of the 36th International Conference on Graph-theoretic Con-

cepts in Computer Science (WG’10), volume 6410 of Lecture Notes in Computer

Science, pages 266–278, Berlin, Heidelberg, 2010. Springer-Verlag.

[23] Prosenjit Bose. On embedding an outer-planar graph in a point set. Computa-

tional Geometry: Theory and Applications, 23(3):303–312, 2002.

[24] Prosenjit Bose, Michael McAllister, and Jack Snoeyink. Optimal algorithms to

embed trees in a point set. Journal of Graph Algorithms and Applications, 1,

1997.

[25] Sergio Cabello. Planar embeddability of the vertices of a graph using a fixed

point set is NP-hard. Journal of Graph Algorithms and Applications, 10(2):353–

363, 2006.

[26] Paul B. Callahan and S. Rao Kosaraju. Faster algorithms for some geomet-

ric graph problems in higher dimensions. In Proceedings of the 4th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA ’93), pages 291–300,

Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathematics.

[27] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional

point sets with applications to k-nearest-neighbors and n-body potential fields.

Journal of the ACM, 42(1):67–90, 1995.

[28] Timothy M. Chan. On levels in arrangements of curves. Discrete and Compu-

tational Geometry, 29:375–393, 2003.

98

[29] Timothy M. Chan. On levels in arrangements of curves, ii: A simple inequality

and its consequences. Discrete & Computational Geometry, 34(1):11–24, 2005.

[30] Timothy M. Chan. On levels in arrangements of curves, iii: further improve-

ments. In Proceedings of the 24th annual Symposium on Computational Geom-

etry (SoCG ’08), pages 85–93, New York, NY, USA, 2008. ACM.

[31] Timothy M. Chan and Sunil Arya. Better ε-dependencies for offline approximate

nearest neighbor search, Euclidean minimum spanning trees, and ε-kernels. In

Proceedings of the 30th Annual Symposium on Computational Geometry (SoCG

’14), New York, NY, USA, 2014. ACM.

[32] Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal

range searching on the ram, revisited. In Proceedings of the 27th Annual Sym-

posium on Computational Geometry (SoCG ’11), pages 1–10, New York, NY,

USA, 2011. ACM.

[33] Chiuyuan Chen. Any maximal planar graph with only one separating triangle

is hamiltonian. Journal of Combinatorial Optimization, 7(1):79–86, 2003.

[34] Otfried Cheong, Antoine Vigneron, and Juyoung Yon. Reverse nearest neighbor

queries in fixed dimension. International Journal of Computational Geometry

and Applications, 21(02):179–188, 2011.

[35] L. Paul Chew and Robert L. (Scot) Drysdale, III. Voronoi diagrams based

on convex distance functions. In Proceedings of the 1st Annual Symposium on

Computational Geometry (SoCG ’85), pages 235–244, New York, NY, USA,

1985. ACM.

[36] N. Chiba and T. Nishizeki. The hamiltonian cycle problem is linear-time solv-

able for 4-connected planar graphs. Journal of Algorithms, 10(2):187–211, 1989.

[37] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algo-

rithms. SIAM Journal on Computing, 14(1):210–223, 1985.

[38] Kenneth L. Clarkson. Fast algorithms for the all nearest neighbors problem. In

Proceedings of the 24th Annual Symposium on Foundations of Computer Science

(FOCS ’83), pages 226–232, Washington, DC, USA, 1983. IEEE Computer

Society.

99

[39] Michael Connor and Piyush Kumar. Fast construction of k-nearest neighbor

graphs for point clouds. IEEE Transactions on Visualization and Computer

Graphics, 16(4):599–608, 2010.

[40] Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan Newman,

Ronitt Rubinfeld, and Christian Sohler. Approximating the weight of the eu-

clidean minimum spanning tree in sublinear time. SIAM Journal on Computing,

35(1):91–109, 2005.

[41] Erik D. Demaine, Joseph S. B. Mitchell, and Joseph ORourke. The Open

Problems Project. http://www.cs.smith.edu/orourke/TOPP.

[42] Matthew T. Dickerson and David Eppstein. Algorithms for proximity problems

in higher dimensions. International Journal of Computational Geometry and

Applications, 5(5):277–291, 1996.

[43] Robert L. (Scot) Drysdale, III. A practical algorithm for computing the Delau-

nay triangulation for convex distance functions. In Proceedings of the 1st Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA ’90), pages 159–168,

Philadelphia, PA, USA, 1990. Society for Industrial and Applied Mathematics.

[44] Tobias Emrich, Hans-Peter Kriegel, Peer Kröger, Matthias Renz, Naixin Xu,

and Andreas Züfle. Reverse k-nearest neighbor monitoring on mobile objects.

In Proceedings of the 18th SIGSPATIAL International Conference on Advances

in Geographic Information Systems (GIS ’10), pages 494–497, New York, NY,

USA, 2010. ACM.

[45] Jeff Erickson. On the relative complexities of some geometric problems. In Pro-

ceedings of the 7th Canadian Conference on Computational Geometry (CCCG

’95), pages 85–90, 1995.

[46] Greg N. Frederickson and Donald B. Johnson. The complexity of selection and

ranking in x + y and matrices with sorted columns. Journal of Computer and

System Sciences, 24(2):197–208, 1982.

[47] Jyh-Jong Fu and R. C. T. Lee. Minimum spanning trees of moving points in

the plane. IEEE Transactions on Computers, 40(1):113–118, 1991.

100

[48] Emilio Giacomo, Giuseppe Liotta, and Francesco Trotta. Drawing colored

graphs with constrained vertex positions and few bends per edge. Algorith-

mica, 57:796–818, 2010.

[49] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Henk Meijer, Francesco

Trotta, and Stephen K. Wismath. k-colored point-set embeddability of out-

erplanar graphs. Journal of Graph Algorithms and Applications, 12(1):29–49,

2008.

[50] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K. Wismath.

Curve-constrained drawings of planar graphs. Computational Geometry, 30(1):1

– 23, 2005.

[51] P. Gritzmann, B. Mohar, Jnos Pach, and Richard Pollack. Embedding a planar

triangulation with vertices at specified points. American Mathematical Monthly,

98:165–166, 1991.

[52] Leonidas J. Guibas. Kinetic data structures. In Dinesh P. Mehta and Sartaj

Sahni, editors, Handbook of Data Structures and Applications, pages 23–1–23–

18. Chapman and Hall/CRC, 2001.

[53] Leonidas J. Guibas and Joseph S. B. Mitchell. Voronoi diagrams of moving

points in the plane. In Proceedings of the 17th International Workshop on

Graph-Theoretic Concepts in Computer Science (WG ’91), Lecture Notes in

Computer Science, pages 113–125. Springer, 1991.

[54] Guido Helden. Each maximal planar graph with exactly two separating triangles

is hamiltonian. Discrete Applied Mathematics, 155(14):1833 – 1836, 2007.

[55] Yoshiko Ikebe, Micha A. Perles, Akihisa Tamura, and Shinnichi Tokunaga. The

rooted tree embedding problem into points in the plane. Discrete & Computa-

tional Geometry, 11:51–63, 1994.

[56] James M. Kang, Mohamed F. Mokbel, Shashi Shekhar, Tian Xia, and Donghui

Zhang. Continuous evaluation of monochromatic and bichromatic reverse near-

est neighbors. In Proceedings of the 23rd International Conference on Data

Engineering (ICDE ’07), pages 806–815, 2007.

101

[57] Menelaos I. Karavelas and Leonidas J. Guibas. Static and kinetic geometric

spanners with applications. In Proceedings of the 12th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA ’01), pages 168–176, Philadelphia,

PA, USA, 2001. Society for Industrial and Applied Mathematics.

[58] Naoki Katoh, Takeshi Tokuyama, and Kazuo Iwano. On minimum and maxi-

mum spanning trees of linearly moving points. Discrete & Computational Ge-

ometry, 13:161–176, 1995.

[59] Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few

bends suffice for planar graphs. Journal of Graph Algorithms and Applications,

6(1):115–129, 2002.

[60] J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the

complete euclidean graph. Discrete & Computational Geometry, 7:13–28, 1992.

[61] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and

Searching. Addison-Wesley, 1973.

[62] Flip Korn and S. Muthukrishnan. Influence sets based on reverse nearest neigh-

bor queries. In Proceedings of the 2000 ACM SIGMOD International Conference

on Management of Data (SIGMOD ’00), pages 201–212, New York, NY, USA,

2000. ACM.

[63] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling

Salesman Problem. In Proceedings of the American Mathematical Society, 7,

1956.

[64] Yokesh Kumar, Ravi Janardan, and Prosenjit Gupta. Efficient algorithms for re-

verse proximity query problems. In Proceedings of the 16th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems (GIS

’08), pages 39:1–39:10, New York, NY, USA, 2008. ACM.

[65] Jessica Lin, David Etter, and David DeBarr. Exact and approximate reverse

nearest neighbor search for multimedia data. In Proceedings of the 2008 SIAM

International Conference on Data Mining (SDM ’08), pages 656–667. SIAM,

2008.

102

[66] Anil Maheshwari, Jan Vahrenhold, and Norbert Zeh. On reverse nearest neigh-

bor queries. In Proceedings of the 14th Canadian Conference on Computational

Geometry (CCCG ’02), pages 128–132, 2002.

[67] Adam Marcus and Gábor Tardos. Intersection reverse sequences and geometric

applications. Journal of Combinatorial Theory, Series A, 113(4):675–691, 2006.

[68] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching.

Springer Verlag, Berlin, 1984.

[69] Kurt Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Search-

ing and Computational Geometry. Springer-Verlag New York, Inc., New York,

NY, USA, 1984.

[70] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance.

SIAM Journal on Computing, 2(1):33–43, 1973.

[71] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press,

New York, NY, USA, 2nd edition, 1998.

[72] Seth Pettie. Sharp bounds on Davenport-Schinzel sequences of every order. In

Proceedings of the 29th Annual Symposium on Computational Geometry (SoCG

’13), pages 319–328, New York, NY, USA, 2013. ACM.

[73] R. C. Prim. Shortest connection networks and some generalizations. Bell Sys-

tems Technical Journal, pages 1389–1401, 1957.

[74] Michael O. Rabin. Probabilistic algorithms. In Algorithms and Complexity:

New Direction and Results, pages 21–39. Academic Press, 1976.

[75] Zahed Rahmati, Mohammad Ali Abam, Valerie King, and Sue Whitesides.

Kinetic data structures for the Semi-Yao graph and all nearest neighbors in Rd.

In Proceedings of the 26th Canadian Conference on Computational Geometry

(CCCG ’14), 2014.

[76] Zahed Rahmati, Valerie King, and Sue Whitesides. Kinetic data structures

for all nearest neighbors and closest pair in the plane. In Proceedings of the

29th Symposium on Computational Geometry (SoCG ’13), pages 137–144, New

York, NY, USA, 2013. ACM.

103

[77] Zahed Rahmati, Valerie King, and Sue Whitesides. Kinetic reverse k-nearest

neighbor problem. In Proceedings of the 25th International Workshop on

Combinatorial Algorithms (IWOCA ’14), Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2014.

[78] Zahed Rahmati, Sue Whitesides, and Valerie King. Kinetic and stationary

point-set embeddability for plane graphs. In Proceedings of the 20th Interna-

tional Symposium on Graph Drawing (GD ’12), volume 7704 of Lecture Notes

in Computer Science, pages 279–290. Springer-Verlag, 2013.

[79] Zahed Rahmati and Alireza Zarei. Kinetic Euclidean minimum spanning tree

in the plane. Journal of Discrete Algorithms, 16(0):2–11, 2012.

[80] Natan Rubin. On kinetic Delaunay triangulations: A near quadratic bound for

unit speed motions. In Proceedings of the 54th Annual IEEE Symposium on

Foundations of Computer Science (FOCS ’13), pages 519–528, Los Alamitos,

CA, USA, 2013. IEEE Computer Society.

[81] Natan Rubin. On topological changes in the Delaunay triangulation of moving

points. Discrete & Computational Geometry, 49(4):710–746, 2013.

[82] Daniel Russel. Kinetic Data Structures in Practice. PhD Thesis, Stanford

University, 2007.

[83] Michael Ian Shamos and Dan Hoey. Closest-point problems. In Proceedings of

the 16th IEEE Symposium on Foundations of Computer Science (FOCS ’75),

pages 151–162, 1975.

[84] Micha Sharir. On k-sets in arrangements of curves and surfaces. Discrete &

Computational Geometry, 6(1):593–613, 1991.

[85] Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel Sequences and their

Geometric Applications. Cambridge University Press, New York, NY, USA,

1995.

[86] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees.

Journal of Computer and System Sciences, 26(3):362–391, 1983.

[87] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Reverse nearest neigh-

bor queries for dynamic databases. In Proceedings of the 2000 ACM SIGMOD

104

Workshop on Research Issues in Data Mining and Knowledge Discovery, pages

44–53, 2000.

[88] Yufei Tao, Dimitris Papadias, Xiang Lian, and Xiaokui Xiao. Multidimensional

reverse knn search. The VLDB Journal, 16(3):293–316, 2007.

[89] Yufei Tao, Man Lung Yiu, and Nikos Mamoulis. Reverse nearest neighbor search

in metric spaces. IEEE Transactions on Knowledge and Data Engineering,

18(9):1239–1252, 2006.

[90] W.T. Tutte. A theorem on planar graphs. Transactions of the American Math-

ematical Society, 82:99–116, 1956.

[91] P. M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors problem.

Discrete & Computational Geometry, 4(2):101–115, 1989.

[92] Pravin M. Vaidya. Minimum spanning trees in k-dimensional space. SIAM

Journal on Computing, 17(3):572–582, 1988.

[93] Mereke van Garderen, Giuseppe Liotta, and Henk Meijer. Universal point sets

for 2-coloured trees. Information Processing Letters, 112:346 – 350, 2012.

[94] Shengsheng Wang, Qiannan Lv, Dayou Liu, and Fangming Gu. Efficient filter

algorithms for reverse k-nearest neighbor query. In Proceedings of the 12th

International Conference on Web-Age Information Management (WAIM ’11),

volume 6897 of Lecture Notes in Computer Science, pages 18–30. Springer Berlin

Heidelberg, 2011.

[95] H Whitney. A theorem on graphs. Annals of Mathematics, 32:378–390, 1931.

[96] Dan E. Willard and George S. Lueker. Adding range restriction capability to

dynamic data structures. Journal of the ACM, 32(3):597–617, 1985.

[97] Wei Wu, Fei Yang, Chee-Yong Chan, and K.-L. Tan. Continuous reverse k-

nearest-neighbor monitoring. In Proceedings of the 9th International Conference

on Mobile Data Management (MDM ’08), pages 132–139, 2008.

[98] Tian Xia and Donghui Zhang. Continuous reverse nearest neighbor monitor-

ing. In Proceedings of the 22nd International Conference on Data Engineering

(ICDE ’06), pages 77–77, 2006.

105

[99] Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-

dimensional spaces and related problems. SIAM Journal on Computing,

11(4):721–736, 1982.

[100] Man Lung Yiu and Nikos Mamoulis. Reverse nearest neighbors search in ad hoc

subspaces. IEEE Transactions on Knowledge and Data Engineering, 19(3):412–

426, 2007.

[101] Ming Zhang and Reda Alhajj. Effectiveness of NAQ-tree in handling reverse

nearest-neighbor queries in high-dimensional metric space. Knowledge and In-

formation Systems, 31(2):307–343, 2012.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	KDS Framework
	Problem Statement
	Dissertation Contributions
	Proximity Problems in R2
	Proximity Problems in Rd
	Point Set Embedding Problem

	Dissertation Organization

	Background and Related Work
	Kinetic Tournament Trees
	Kinetic Range Trees
	Previous Results
	All Nearest Neighbors and Closest Pair
	Euclidean Minimum Spanning Tree
	Reverse k-Nearest Neighbor Queries
	Point Set Embeddability for Plane Graphs

	Kinetic All Nearest Neighbors and Closest Pair in the Plane
	New Method for Computing All Nearest Neighbors and Closest Pair
	Kinetic Equilateral Delaunay Graph
	Kinetic All Nearest Neighbors
	Kinetic Closest Pair

	Kinetic Euclidean Minimum Spanning Tree in the Plane
	New Method for Computing the Yao Graph and the EMST
	Kinetic Pie Delaunay graph
	Kinetic Yao Graph
	Kinetic EMST

	Kinetic All Nearest Neighbors in Higher Dimensions
	Computing the Semi-Yao Graph and All Nearest Neighbors in Rd
	Kinetic Semi-Yao Graphs
	Preprocessing Step
	Processing the Events

	Kinetic All Nearest Neighbors
	Kinetic All (1+)-Nearest Neighbors

	Kinetic Reverse k-Nearest Neighbor Problem in Higher Dimensions
	RkNN Queries on Stationary Points
	Key Lemmas
	Computing the k-SYG and All k-Nearest Neighbors
	RkNN Queries in R2
	RkNN Queries in Rd

	RkNN Queries on Moving Points
	Kinetic k-SYG
	Kinetic All k-Nearest Neighbors
	RkNN Queries

	Kinetic Point Set Embedding for Plane Graphs
	Drawing with k bends
	Drawing with 3 bends
	Drawing with 2 bends

	The Kinetic Drawing

	Conclusions and Open Problems
	Bibliography

