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ABSTRACT

This dissertation outlines the development of static and dynamic tomographic

wave-front (WF) reconstructors tailored to Multi-Object Adaptive Optics (MOAO).

They are applied to Raven, the first MOAO science and technology demonstrator

recently installed on an 8m telescope, with the goal of increasing the limiting magni-

tude in order to increase sky coverage. The results of a new minimum mean-square

error (MMSE) solution based on spatio-angular (SA) correlation functions are shown,

which adopts a zonal representation of the wave-front and its associated signals. This

solution is outlined for the static reconstructor and then extended for the use of stand-

alone temporal prediction. Furthermore, it is implemented as the prediction model

in a pupil plane based Linear Quadratic Gaussian (LQG) algorithm. The algorithms

have been fully tested in the laboratory and compared to the results from Monte-

Carlo simulations of the Raven system. The simulations indicate that an increase

in limiting magnitude of up to one magnitude can be expected when prediction is

implemented. Two or more magnitudes of improvement may be achievable when the

LQG is used. These results are confirmed by laboratory measurements.
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Chapter 1

Introduction

1.1 Ground-based optical/near IR telescopes in the

coming decades

Ten meter class optical/near IR ground based telescopes are still producing ground-

breaking science thanks to constant improvements and updates to their instrument

packages. The next step in the evolution of telescope technology will be the Extremely

Large Telescope (ELT) class of telescopes. These have the potential to revolutionize

our view of the universe. The Thirty Meter Telescope (TMT) [8] the European ELT

(EELT) [9] and the Giant Magellan Telescope (GMT) [10] are all approaching their

construction phases. Some first light instruments on these ELTs will use seeing limited

light, while others will be fed by facility Adaptive Optics (AO) systems. These facility

systems are a first pass at Wide Field AO (WFAO) technology on such a large scale;

choices regarding the amount of risk to take on have been made which limit the kind

of instruments they will be able to feed, and the amount of multiplexing that can be

carried out for certain science cases.

The second generation of ELT instruments are also being planned; two of the ma-

jor ELT science cases, characterizing first light objects in the universe and performing

detailed measurements of galaxies in the era of peak star formation, are strongly driv-

ing the development of a specific kind of WFAO instrument, called Multi-Object AO

(MOAO). For example, near IR spectrographs with greater than 20 deployable In-

tegral Field Units (IFUs) over a 5 to 10 arc-minute field of regard (FoR) are highly

desirable potential instruments on ELTs because they are ideally suited for studying

the evolution of galaxies from first light to the era of peak star formation. This will
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only be possible, however, when these instruments are fed by an MOAO system.

1.2 Principles of Adaptive Optics

AO is a well established technique of compensating for atmospheric turbulence that

blurs the light from astronomical objects and degrades the resolution capabilities of

a telescope with diameter D from its di↵raction limit (1.22�/D) to the seeing limit

( �/r
0

). The e↵ect is to scale the resolution limit of a large telescope to that of a much

smaller telescope. The parameter r
0

is called the Fried parameter; it is a quantification

of the turbulence strength (Sec. 2.1.3). The e↵ects of the atmosphere can be mitigated

by placing telescopes at strategic locations high on mountain tops, such as Mauna Kea

and Haleakela in Hawaii and on high desert plains such as Armazones and Atacama

in the Chilean Andes. This serves both to reduce the amount of atmosphere above

the telescope and reduce the humidity in the ground layer, but there is still a large

amount of image quality that can be recovered by AO.

1.2.1 Classical Adaptive Optics

The most basic AO system design is a single conjugate (SC) closed loop system.

Control is executed by a simple integrator with a reasonable gain. There are three

main components in any AO system: the wavefront sensor (WFS), deformable mirror

(DM) and the control system. Observing a reference source with a WFS, the esti-

mated integrated wavefront distortion introduced to a flat wavefront (WF) travelling

from the top of the atmosphere to the telescope can be used to command the DM to

optically compensate for this error.

A severe limitation of classical AO is anisoplanatism which is the result of viewing

two sources through the atmosphere separated by a given angular distance (Sec.

2.1.5). The two sources are typically a Guide Star (GS) and the science object of

interest. The GS is a reference source used for WFSing; it is necessary, among other

reasons, because the science target is most often not bright enough or compact enough

to act as a good reference, a near-by bright star must be used. Because AO works

by estimating the turbulence in the column of atmosphere above the telescope in the

direction of a GS and then using that estimate to correct the image in the direction

of a science object, there is always error corresponding to the di↵erent paths the

wavefronts travel through the atmosphere. The characteristics of the atmosphere at
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any given moment determine the size of the isoplanatic patch - the area on the sky

within which the atmosphere behaves in roughly the same manner, typically about

20 arc-seconds. Outside of this patch, correction quality drops o↵ sharply.

1.2.2 Necessary evolution of AO technology

The current generation of large optical telescopes and future ELTs are becoming

increasingly expensive to operate on an hourly basis. As such, multiplexing observa-

tions to simultaneously take advantage of many interesting objects within the FoR is

a necessary step. AO plays a key part in a variety of science goals and its utilization

in future wide field instruments is required. Ways to extend the high quality of correc-

tion delivered by classical closed loop SCAO within the isoplanatic patch over more

area of the sky, without requiring a GS within the isoplanatic area of each target,

must be implemented. This is the goal of WFAO. There are several solutions to this

problem, but the most promising methods require a more sophisticated knowledge of

the real time properties of the atmosphere during observation.

Each method presents challenges, of which some are general to WFAO and some

specific to an individual method. Each challenge must be addressed by way of simu-

lation, laboratory tests and small-scale pathfinder instruments in order to reduce the

risks of developing such an instrument on the scale of an ELT facility-class instrument.

1.2.3 Multi-Conjugate and Ground Layer AO

A first order solution to the WFAO problem is Ground Layer AO (GLAO) which

makes the assumption that the majority of the WF phase aberrations are produced

by turbulence located close to the ground. There are two additional approaches to

WFAO which require a tomographic estimation of the three dimensional atmospheric

wave-front disturbance above the telescope. Tomography, in the context of AO, is

a back-projection of a very limited number of views using a large amount of a pri-

ori assumptions about atmospheric parameters derived either from models or other

sets of measurements, for example, SLOpe Detection And Ranging (SLODAR) [11].

Making an estimate of the turbulent volume requires information from multiple WFSs

locked on multiple GSs that probe di↵erent lines of sight through the atmosphere.

A correction must then be computed from this estimate and there are di↵erent ways

in which this can be done. The first approach is to place multiple DMs in series,

each conjugated to a di↵erent atmospheric altitude. Atmospheric tomography was
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conceived as a method to measure the instantaneous phase perturbations in the atmo-

sphere to deduce the control signals for these DMs in what is called Multi-Conjugate

AO (MCAO) [12, 13]. This MCAO [14, 15, 16] approach can be used to enlarge the

Field of View (FoV) to sizes of an arc-minute or two, but the performance will ulti-

mately still be limited by generalized anisoplanatism [17]. The FoV can be further

enlarged by adding even more DMs in series, to remove the turbulence generated at

even more atmospheric heights, but the complexity of the MCAO system rises (and

the throughput falls) with each additional DM relay.

1.2.4 Multi-Object AO

MOAO is a parallel approach that promises to increase the field over which AO cor-

rections can be applied to 5 or even 10 arc-minutes [18]. MOAO systems use the

fact that there are only so many interesting targets in a given FoR. If a su�ciently

accurate measurement is made of the turbulent volume over a telescope, one can

place a probe with an embedded DM anywhere in the FoR and make the optimal

turbulence correction for that position. To achieve the multiplexing advantage over

a large FoR, MOAO systems use several DMs. Light from individual scientific tar-

gets are directed into separate optical paths, each containing a DM thus enabling

simultaneous multi-wave-front correction. In essence, this means that for a large

FoR, the turbulence-induced aberrations are compensated only within a few smaller

fields. This simultaneous correction from a set of measurements implies that MOAO

systems must run open loop, i.e., the WFSs are separated physically from the DM

optical paths.

Making a measurement on each of several GSs within the FoR provides the req-

uisite lines-of-sight through the atmosphere. Once the information from these mul-

tiple WFSs is combined into a single tomographic model of the turbulence [13], it is

straight-forward to imagine multiple science pick-o↵s in parallel, each incorporating

its own DM, feeding multiple IFUs or being directed to an imaging instrument. Fal-

con for VLT was the first proposed MOAO Integral Field Spectrograph (IFS) [18, 19],

and it has served as a model for the more recent IRMOS and Eagle studies which

are instrument concepts proposed for ELTs. Falcon was proposed as a WFAO sci-

ence instrument to do 3D spectroscopy of IR galaxies - a process which requires high

resolution over a wide FoV. They proposed using “several independent AO systems

spread in the focal plane” with 3 WFSs per IFU measuring the o↵-axis wavefront
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coming from stars located around a galaxy. The on-axis wavefront from the galaxy

would be deduced from the o↵-axis measurements via tomography and corrected with

the AO system within each IFU. The process of on-axis wavefront reconstruction from

o↵-axis measurements was to be repeated as many times as there are spectroscopic

IFUs. This instrument was proposed to have a 25 arc-min FoR with each IFU “local

AO system” FoV having a 3 arc-min FoR [19].

In the modern MOAO case, a tomographic estimate of the phase in the volume is

made from Open Loop (OL)-WFS measurements and then the total integrated phase

in the pupil in an independent direction within the FoR is estimated (Fig. 1.1).

Figure 1.1: Atmospheric tomography: Portions of the atmosphere are measured in
the GS directions, then estimated at discrete layers. The estimate in each layer is
then cropped and propagated to the pupil in the science direction.

The multiplexing advantage of 20-arm ELT MOAO IFSs will enable fundamen-

tally new science. The large surveys of 100’s of galaxies and first light objects needed

to better understand these eras are not possible without multiplexing because the

telescope time required to do these surveys with a single IFU would be highly pro-

hibitive.
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1.2.5 Assessing the challenges of Open Loop AO

Open loop AO systems are perceived as one of the major risks of building MOAO-fed

instruments. Some other major questions include: How does one calibrate a MOAO

system? How does one keep a MOAO system in alignment during the course of regular

operations? Are there limits in the performance of an open loop AO system? How can

we reliably trust that the DM is taking the proper shape and is being well-controlled?

Many of the challenges involved in designing a MOAO system, such as the use of

tomography, Micro-Electro Mechanical Systems (MEMS) mirrors, and woofer-tweeter

control, have all been demonstrated to work in di↵erent lab settings and are included

in advanced instrument concepts. OL control, however, is perhaps the greatest risk to

MOAO, partly because it is the biggest unknown. In an AO system with OL control,

the WFSs do not sense the correction applied by the DM. Instead, the WFSs sense

the full turbulent phase of the atmosphere and the DMs are commanded to take the

appropriate shape without benefit of any feedback. While OL control is not a new

idea, so-called “go to” adaptive optics was first used to make corrections and take

science images immediately following pulses from a Laser Guide Star (LGS) (see Sec.

2.1.6) with a low duty cycle[20], interest in implementing open loop control on sky has

been re-invigorated in the past few years. OL control introduces unique requirements

on an AO system: the WFS needs to have a high dynamic range; e↵ects of DM

hysteresis and non-linearity need to be mitigated; finally, alignment and calibration

become more challenging.

A considerable amount of work both theoretical and practical with respect to

WFAO and tomography has been undertaken in the past two decades. More recently,

dedicated e↵orts toward proofing the concepts and mitigating the risks of MOAO have

been made on multiple fronts, starting from OL-AO demonstrators and working up

to a single science channel MOAO testbed. Work has been done in both the MOAO

and MCAO context on improving tomographic reconstruction techniques, specifically

in low Signal to Noise Ratio (SNR) regimes to improve performance on dim Natural

GSs (NGSs), thus increasing sky coverage. Extensive work is also being carried out

on computational e�ciency in anticipation of ELT WFAO instruments which will

see orders of magnitude increases in the sizes of the matrices which will need to be

manipulated within the data processing pipeline [21].

While the risks associated with MOAO IFSs have kept proposed Very Large Tele-

scope (VLT) and ELT instruments on the drawing board, the scientific promise is
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so great that multiple on-sky demonstrators have been developed. The Visible Light

Laser Guide star Experiments (ViLLaGEs) [22] is a MEMS DM-based AO testbed

on the Nickel 1-meter telescope at Lick Observatory. ViLLaGEs carried out on-axis

experiments in both closed and open loop with NGSs and LGSs. It was the first on-

sky experiment to successfully demonstrate open loop control. ViLLaGEs is one of

the test beds that is being employed to develop the Keck Next Generation Adaptive

Optics (NGAO) [23, 24] instrument, which is a tomographic, high-order open-loop

AO system.

The Victoria Open Loop Test-bed (VOLT) [25] was an experiment aimed at distill-

ing the problems of open loop control into a simple experiment. VOLT demonstrated

open loop control in the laboratory and on-sky at the Dominion Astrophysical Obser-

vatory 1.2 m telescope using a simple, on-axis NGS system [26]. Both the VOLT and

ViLLaGEs open loop AO demonstrators performed below expectations at low tempo-

ral frequencies, which seems to indicate small misalignments in open loop AO systems

may ultimately limit their performance. Neither ViLLaGEs nor VOLT carried out

on-axis wavefront estimation from o↵-axis sources (tomography) but are pivotal to

MOAO instrument development as these experiences have led to a second generation

of MOAO demonstrators that emphasize both calibration and alignment techniques.

Canary is a MOAO demonstrator at the William Herschel Telescope [27, 28, 29]

that is considered a pathfinder for Eagle (recently renamed MOSAIC) on the EELT.

The goals of the Canary project are to perform NGS, and subsequently LGS, based

tomographic wavefront sensing, perform open-loop AO correction on-sky, and develop

calibration and alignment techniques. This experiment saw first light in the Fall 2010

and achieved a MOAO Strehl of 26% (in Hband) [30]. They have since successfully

carried out single channel MOAO science, [31] and on-sky testing of laser tomographic

AO (LTAO) and uses 3 NGSs and 4 LGSs [32].

1.3 Raven: AnMOAO science and technology demon-

strator

Raven will be the first MOAO instrument on an 8 m class telescope feeding an

AO-optimized science instrument: the Subaru InfraRed Camera and Spectrograph

(IRCS). The instrument has been designed and constructed at the University of Vic-

toria Adaptive Optics Laboratory and shipped to Mauna Kea. It is stored on the
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Cassagrain floor and is periodically installed on the IR Nasmyth platform of the 8.2m

Subaru telescope, in between the telescope Nasmyth focus and IRCS [33]. Raven

features 3 NGS WFSs, 1 LGS WFS and 2 science channels patrolling a 3.5’ diameter

FoR. The 2 science channels are each fed by a deployable science pick-o↵ mirror, as

envisioned for MOSAIC and IRMOS.

1.4 Research Objectives

The main challenges of an MOAO system have been identified as: Developing calibra-

tion procedures, computing the tomographic reconstructor, and designing the pick-o↵

systems. Of these challenges, tomographic reconstructors for an MOAO system is the

initial focus of this thesis. This work was carried out in the context of the Raven

project and has attempted to achieve the following specific research objectives:

• Develop an innovative approach to MOAO tomography and be the first to im-

plement it on a science-capable instrument.

• Design a unique, Raven-specific, wavefront reconstruction pipeline which uti-

lizes the characteristics of the opto-mechanical design to augment performance

by using all available measurement data.

• Conduct a comparative study of the unique Raven-specific algorithms vs es-

tablished AO methods to establish the most e↵ective approach both for the

instrument, and in the general case of MOAO.

• Show definitively in the lab and on-sky that MOAO provides superior correction

than GLAO.

• Implement a fully functional tomographic reconstructor on the real time com-

puter (RTC) of Raven such that the minimum performance requirements of the

project are met.

• Improve the performance of Raven in the laboratory environment using the tele-

scope simulator. Improved performance refers both to increased sky coverage
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and improved image quality; building on the experience of other projects to

better understand the sources of errors in a MOAO system is key to developing

novel approaches to attempt to mitigate them.

The contribution of this work to the AO research community is on multiple fronts.

Foremost, is the development of innovative methods of implementation of tomographic

wavefront reconstruction for MOAO including: A so-called spatio-angular (SA) linear

quadratic gaussian (LQG) algorithm which scales in complexity as the order and

number of system WFSs rather than the number and altitude of atmospheric layers.

Second is the handling within the LQG algorithm of the asynchronous case, in which

total system delay is not equal to an integer number of frames. Finally, it also

makes a pivotal contribution as an individual part of the overall instrument project

which is the first attempt to construct a MOAO system with more than a single

science channel; it will be the first MOAO instrument to be installed on an 8m class

telescope which will enable scientific observations to be made on such a system for the

first time. Eventually this technology will lead to astronomical observations which

have never before been possible.

The significance of this work in developing novel wavefront reconstruction algo-

rithms includes the vital contribution it will make to the AO community’s knowledge

and understanding of the challenges and risks faced by MOAO for large telescopes. By

applying the work to a pathfinder instrument project, it progresses the AO commu-

nity toward MOAO for ELTs as well as provides a first opportunity for astronomers

to propose and carry out science observations on an MOAO instrument on an 8m

class telescope. The process of wavefront reconstruction is central to the success of

the Raven project and therefore directly contributes to the future and advancement

of MOAO instrumentation.

1.5 Contents of dissertation

Chapter 1 of this dissertation has outlined some of the di↵erent AO methods and

specified the distinct reasons for developing WFAO instruments along with the par-

ticular di�culties and challenges associated with doing so.

Chapter 2 enumerates some basic concepts and technology required to do AO

in general. It includes a brief description of several of the mathematical and statisti-
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cal tools widely used to describe atmospheric turbulence and control WF correction

instrumentation. Finally, there is a detailed description of the Raven project.

Chapter 3 is a detailed development of the theoretical mathematical tools used to

reconstruct the WF on an MOAO system. The algorithms progress from a generalized

description of standard static tomographic reconstructor and proceed to dynamic

reconstructors of varying complexity. These general algorithms are then developed

specifically in a modal basis (Zernikes) and a zonal basis (phase points) with practical

implementation in mind.

Chapter 4 contains the results of Monte Carlo simulations of the end-to-end

Raven system using each of the algorithms developed in Chapter 3. The performance

of the methods is compared and the potential of the more complex algorithms to

improve image quality and/or increase limiting magnitude over the baseline case is

assessed. The complexity and hence practicality of implementation on the RTC and

Raven Parameter Generator (RPG) is evaluated.

Chapter 5 based on the evaluation and performance comparison carried out in

simulation in Chapter 4, a cross section of reconstruction algorithms were imple-

mented on the Raven system and tested in the laboratory environment using the

telescope simulator. This chapter summarizes the results of these tests and makes a

case for on-sky tests based on their potential to improve performance.

Chapter 6 Conclusions and Future Work.

1.6 List of acronyms and abbreviations

IR Infra Red

ELT Extremely Large Telescope

TMT Thirty Meter Telescope

EELT European Extremely Large Telescope

GMT Giant Magellan Telescope

AO Adaptive Optics

WFAO Wide Field Adaptive Optics

MOAO Multi-Object AdaptiveOptics

IFU Integral Field Unit

FoR Field of Regard

WFS Wavefront Sensor
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DM Deformable Mirror

WF Wavefront

GS Guide Star

SCAO Single Conjugate Adaptive Optics

GLAO Ground Layer Adaptive Optics

SLODAR SLOpe Detection And Ranging

MCAO Multi-Conjugate Adaptive Optics

FoV Field of View

IFS Integral Field Spectrograph

OL-WFS Open Loop Wavefront Sensor

MEMS Micro-Electro Mechanical System

SNR Signal to Noise Ratio

NGS Natural Guide Star

ViLLaGEs Visible Light Laser Guide Star Experiments

LGS Laser Guide Star

NGAO Next Generation Adaptive Optics

VOLT Victoria Open Loop Test bed

LTAO Laser Tomographic Adaptive Optics

IRCS Infra Red Camera Spectrograph

RTC Real Time Computer

SA Spatio-Angular

LQG Linear Quadratic Gaussian

RPG Raven Parameter Generator

PSD Power Spectral Density

CFHT Canada France Hawaii Telescope

SR Strehl Ratio

FWHM Full Width at Half Maximum

PSF Point Spread Function

EE Ensquared Energy

CCD Charged Coupled Device

GeMS Gemini MCAO System

T/T Tip/Tilt

SH-WFS Shack-Hartmann Wavefront Sensor

CoG Centre of Gravity

SVD Singular Value Decomposition
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CU Calibration Unit

CL-WFS Closed Loop Wavefront Sensor

MMSE Minimum Mean Square Error

AR Auto Regressive

BFGS Broyden-Fletcher-Goldfarb and Shanno

SDM Science Deformable Mirror

CDM Calibration Deformable Mirror

OOMAO Object Oriented Matlab Adaptive Optics

MAOS Mulit-threaded Adaptive Optics Simulator

WFE Wavefront Error

IQ Image Quality

NCPA Non-Common Path Aberration
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Chapter 2

Adaptive Optics: Mathematical

Fundamentals and Technologies

The successful operation of an AO instrument hinges upon several key elements: a

well characterized system, including WF sensors, WF correctors, and a good cali-

bration plan that can generate a reliable and robust relationship between them. A

control loop with real-time and background components is required whether the sys-

tem is open loop or closed loop. Particularly important in the case of WFAO and

open loop control, is prior knowledge about the behaviour of the atmosphere. This

chapter provides background information regarding atmospheric statistics. All of the

tomographic WF reconstructors developed in subsequent chapters are based on these

statistics. A brief introduction to the various types of WF sensors and correctors is

provided and finally, the context of the work itself is established with a description of

Raven, the MOAO science and technology demonstrator, and the way it will be used

to achieve the research objectives outlined in Chapter 1.

2.1 Atmospheric turbulence

In the atmosphere, it is understood that small variations in temperature occur, which

induce local changes in the wind velocity; the results of these two phenomena are

evolving random irregularities in the atmosphere’s index of refraction. It is this

optical turbulence that is referred to as ”atmospheric turbulence” throughout this

dissertation (not to be confused with mechanical turbulence due to wind). This

optical turbulence leads to wavelength-dependant degradation of image quality in an



14

optical/near IR imaging instrument, degrading the resolution of the detector from

the di↵raction limit, 1.22�/D where D is the aperture diameter of the telescope, to

the so-called seeing limit, �/r
0

where r
0

<< D (r
0

is called the Fried parameter

and is described in sec. 2.1.3). The main atmospheric e↵ects on electromagnetic

wavefronts are focusing and spreading, as well as scintillation (intensity changes),

beam wander and speckles. Kolmogorov described turbulence in a fluid as the cascade

of kinetic energy from large to small length scales [34]. He states that kinetic energy

associated with large eddies in a fluid is redistributed without loss to successively

smaller eddies until it reaches a regime below a given length scale called the inner

scale I
0

. Below this length scale, the energy is dissipated by small scale processes

such as heat transfer. Because the fluctuations that cause the eddies are random,

the atmosphere can be considered a locally isotropic, continuous random field and

can therefore be characterized by some useful functions. The outer scale, L
0

, is a

(non-constant) radius outside of which the atmosphere can no longer be considered

isotropic. It can range from a few meters to many tens of meters.

2.1.1 Covariance and structure functions

The covariance function, CCC
f

(r
1

, r
2

), of a quantity which varies randomly with time

or space, f(r), characterizes the mutual relationship between the fluctuation of f(r)

at location r

1

and r

2

[35]. An important property is homogeneity; a random field

is called homogeneous if its ensemble average, hf(r)i is constant in r. If this is the

case, the covariance function depends only on the di↵erence r = |r
1

� r

2

|, that is,

CCC
f

(r
1

, r
2

) = CCC
f

(|r
1

� r

2

|) = CCC
f

(|r
2

� r

1

|). (2.1)

The mean values of meteorological variables undergo slow, smooth changes and cannot

therefore be considered strictly homogeneous in either the temporal or spatial domain.

They can be described more generally using their structure function [34],[35]: if hf(r)i
is non-homogeneous, a new function is formulated from the di↵erence,

F
�

(r) = f(r + �)� f(r). (2.2)

For values of � which are not too large (smaller than L
0

for example), low frequency

changes in f(r) can be neglected and F
�

(r) is approximately homogeneous. Both

spatial and temporal structure functions can be developed from the following steps:
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Consider the di↵erence function, F
�

(r), the covariance of that function is given by,

CCC
F

(r
1

, r
2

) = hF
�

(r
1

)F
�

(r
2

)i. (2.3)

By substituting Eq. 2.2 into Eq. 2.3 and expanding, it becomes clear that CCC
F

is

composed of a linear combination of elements of the form,

D
f

(r
i

, r
j

) = h[f(r
i

)� f(r
j

)]2i, (2.4)

which is called the structure function. In order for CCC
F

to be homogeneous (depend

only on |r
1

� r
2

|), it is su�cient to use

D
f

(|r
1

� r
2

|) = D
f

(�) = h[f(r + �)� f(r)]2i. (2.5)

This holds for any quantity, f changing randomly with time, t, or with spatial posi-

tion, r. If f(r) also has zero mean, expanding D
f

(r) gives,

D
f

(�) = hf(r + �)2i+ hf(r)2i � 2hf(r + �)f(r)i. (2.6)

From stationarity, we can say that

hf(r)2i = hf(r)f(r)i

= hf(r + �)f(r + �)i

= CCC
F

(0), (2.7)

and

hf(r + �)f(r)i = CCC
F

(�). (2.8)

Using these definitions, the structure function can be expressed in terms of the co-

variance function,

D
f

(�) = 2(CCC
F

(0)�CCC
F

(�)). (2.9)

Next, make the realistic assumption that CCC
F

(1) ! 0, meaning that as the quan-

tity of interest goes to infinity, the correlation between two occurrences of the random

variable becomes negligible,

D
f

(1) = 2CCC
F

(0). (2.10)

Therefore, plugging this into Eq. 2.9 and rearranging, the covariance function can be
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expressed in terms of the structure function,

CCC
F

(�) =
1

2
[D

f

(1)�D
f

(�)]. (2.11)

The covariance of a homogeneous random field can also be expressed in terms

of its power spectral density (PSD) function, W(!), by taking its inverse Fourier

transform [36],

CCC
F

(�) =

Z 1

�1
ei!�W(!)d!, (2.12)

which can be rewritten,

CCC
F

(�) =

Z 1

�1
cos(!�)W(!)d!, (2.13)

because the covariance function is a real, symmetric function, i.e. CCC
F

(�) = CCC
F

(��).

It can now be seen that the structure function of a homogeneous random process can

be determined directly from its PSD [37],

D
f

(�) = 2

Z 1

�1
[1� cos(!�)]W(!)d!. (2.14)

This holds true so long as the integral,

Z 1

�1
W(!)d! (2.15)

exists, meaning the total power of the property must be finite.

2.1.2 The index of refraction structure function

It has been shown [38],[39],[35] that a relationship exists between velocity fluctuations

in a turbulent flow and concentration fluctuations of a conservative passive additive,

a property of the fluid element that does not change when the volume element is

shifted in space (conservative), and whose quantity does not a↵ect the dynamical

regime of the turbulence, that is it does not exchange energy with the turbulence

(passive). This leads directly to the so-called two-thirds law which states that the

structure function of such a property, n, is expressed as,

D
n

(r) = h[n(r
0

)� n(r
0

+ r)]2i. (2.16)
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The expression for D
n

can be derived [35] from the velocity structure function given

by Kolmogorov [34],

Dv(r) = h[v
r

(r
0

+ r)� v

r

(r)]2i (2.17)

assuming the atmosphere is locally homogeneous, locally isotropic and the turbulence

is incompressible. For separations, r, su�ciently small, a 2/3 power law with r is

observed:

Dv = C2

vr
2/3 (2.18)

D
n

= C2

n

r2/3 (2.19)

The parameters C2

v, C
2

n

are structure constants. C2

n

is called the index of refraction

structure constant and is a measure of the strength and distribution of the optical

turbulence. This strength varies with altitude and with time; a commonly used

model of the C2

n

profile is the Hufnagel-Valley model, an empirical model based on

observations initially formulated by Hufnagel [40], and modified by Valley [1]:

C2

n

(h) = A

"
2.2 ⇤ 10�23h10e�h

✓
V
w

V
w

◆
2

+ 10�16e�h/1.5

#
, (2.20)

which has units ofm�2/3. The value A is a scaling constant, h is the vertical height and

V
w

/V
w

is the ratio of upper atmospheric wind speed to the mean upper atmospheric

wind speed. The model for various wind velocity ratios are plotted by Valley and

shown in Fig. 2.1. These can be compared to measurements of the C2

n

profile, for

example those taken at Mt. Graham [2] are shown in Fig. 2.2. With a WFAO

instrument, direct estimation of the current C2

n

profile from a near-by instrument or

from on-board measurements will be required. The power law in Eq. 2.19 holds so

long as the distance, r, remains smaller than the turbulence outer scale, L
0

. According

to the relationship between the structure function and PSD (Eq. 2.14), an expression

for the spatial PSD can be derived from,

D
n

(r) = 2

Z 1

�1
[1� cos(!r)]W(!)d! = C2

n

r2/3. (2.21)
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Figure 2.1: The Hufnagel C2

n

model plotted by Valley [1] for various wind ratios.

Figure 2.2: Mt Graham C2

n

profile measurements [2]
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Solving for W(!) ultimately results in the following expression for the index of re-

fraction PSD [41],

W(!) =
5

18⇡
C2

n

!

�3

Z
L

0

I

0

sin(!r)r�1/3dr, (2.22)

recalling that I
0

is the inner-scale, the distance scale on-which small scale energy

dissipation processes begin to take over. When the limits of integration are taken

from 0 to infinity, this results in the Kolmogorov spectrum,

W(!) = 0.033C2

n

!

�11/3. (2.23)

For finite outer scales, the von Kármán spectrum eliminates the problem of infinite

energy in the PSD as frequency goes to zero,

W(!) =
�(11/6)⇡�9/2

8�(1/3)

 
C2

n

1.9!2/3

0

!
L3

0

✓
1 +

!

2

!2

0

◆�11/6

, (2.24)

where !
0

= 2⇡/L
0

. Fig. 2.3 shows both the Kolmogorov and von Kármán spectra

for a finite outer scale.

Figure 2.3: Kolmogorov vs von Kármán PSDs with di↵erent outer scales [3].
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2.1.3 Phase aberrations of wavefronts

An optical wavefront is defined as a surface over-which the phase of a light wave has

the same value. The light wave is generally expressed as a complex function with

amplitude, A and phase, ',

 = Aei'. (2.25)

Aberrations in the wavefront phase are introduced when a light wave passes through

the distribution of index of refraction inhomogeneities in the atmosphere. The fluc-

tuations are related to the index of refraction via,

� = k

Z
n(h)dh, (2.26)

where k is the wavenumber of the light waves (2⇡/�) and the integral over h represents

the total phase aberrations incurred by travel from the top of the atmosphere to the

ground along the direction of travel. Throughout this work, the integrated phase at

the ground is denoted by � and the distributed phase at an arbitrary height within

the atmosphere by '. The phase structure function,

D�(r) = h[�(r
1

)� �(r
1

+ r)]2i, (2.27)

characterizes the di↵erences in phase between locations r

1

and r

1

+ r at distance

r = |r| apart in the telescope aperture. Inserting the expression for phase aberrations

as a function of index of refraction from Eq. 2.26 into the structure function and

separating the path length of travel from the height-only dependance of the C2

n

profile,

results in the following expression for the phase structure function [42],

D�(r) = 2.91k2(cos�)�1

Z
C2

n

(h)dhr5/3. (2.28)

Here, � is the zenith angle, the angular distance from straight up which increases the

path length of light traveling through the atmosphere to enter the telescope. Fried

established that the phase structure function could be expressed as a 5/3 dependance

on |r|,
D�(r) = Ar5/3, (2.29)
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and defined the parameter r
0

as [43],

r
0

=


0.423k2

Z
C2

n

(h)dh

��3/5

. (2.30)

Combining the above expressions leads to the common representation of the phase

structure function,

D�(r) = 6.88

✓
r

r
0

◆
5/3

, (2.31)

where the value 6.88 was chosen on the basis of an analysis of the performance of an

optical heterodyne detection system that Fried carried out in [43]. In astronomical

uses r
0

is also called the coherence length and is defined to be the radius of a circle

containing one radian of phase variance. Phase variance below one radian is generaly

considered to have low impact on image quality.

A related property is the coherence time of the atmosphere, ⌧
0

,

⌧
0

= 0.31
r
0

V̄
, (2.32)

where V̄ is a vertical average of the wind velocity over all the turbulence. This is

useful for understanding how quickly an AO system must be run. The amount of

temporal lag error, �2

⌧

where ⌧ is the time lag introduced into the AO loop between

measurement and command (of the DM), is given in terms of residual phase variance

and can be computed for a given instrument and atmospheric coherence time, [44],

�2

⌧

=

✓
⌧

⌧
0

◆
5/3

. (2.33)

In the case of a finite outer scale, the modified phase spatial structure function is

given by [45],

D�(r) =

✓
L
o

r
0

◆
5/3 21/6�(11/6)

⇡8/3
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✓
2⇡r

L
0

◆#
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(2.34)

with � the ”gamma” function and K
5/6

a modified Bessel function of the third kind.

Once again, using the relationship between structure function and PSD, the spatial

PSD of the phase aberrations for a given layer representing a fraction, f
r

0

, of the total
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atmosphere is given by [46],

W�(!) =
�2(11/6)

2⇡11/3
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0
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Finally, the phase spatial covariance function for finite outer scale can be derived

using Eq. 2.13,

C�(r) =

✓
L
0

r
0

◆
5/3 �(11/6)

25/6⇡8/3

✓
2⇡r

L
0

◆
5/6

K
5/6

✓
2⇡r

L
0

◆✓
24

5
�(6/5)

◆
5/6

. (2.36)

These structure functions and PSDs form the basis for both tomographic reconstruc-

tion and temporal prediction of the atmosphere based on a handful of priors and

a limited number of measurement directions. The full tomographic framework is

developed in detail for an MOAO system in Chapter 3.

2.1.4 The e↵ects of optical turbulence on imaging

The e↵ects of turbulence induced focusing, spreading, scintillation, beam wander

and speckles is an image that is smeared out across a detector. Consider a point

source entering a telescope, the theoretical angular width of the point source on a

detector is determined by the di↵raction limit. A characteristic di↵raction limited

image of a point source has a bright inner core surrounded by dimmer Airy rings.

After traveling through the atmosphere, the image of that same point source can

be seen in the top left of Fig. 2.4; the photons are spread over a large area of the

detector. Turning the AO system on (in this example the image is from the Canada

France Hawaii Telescope’s (CFHT) Hokupa’a instrument), the bright core of the point

source is recovered. If the science instrument being fed by the telescope is an imager,

it is obvious that the resolution of a seeing limited system is much worse than for a

di↵raction limited system.

If the instrument is a spectrograph, the light must pass through a narrow slit and

the wider the distribution of the light, the fewer photons will pass through the slit.

There are several metrics commonly used in astronomy which assess the quality of the

light distribution, the first, seen in Fig. 2.4, is the Strehl ratio, (SR). This quantity is

generally defined as the ratio of the peak intensity of an aberrated image of a point

source compared to the maximum attainable intensity using an ideal optical system

limited only by di↵raction over the system’s aperture. The next is Full Width at
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Figure 2.4: E↵ects of atmospheric turbulence on a star (left), AO compensated image
(right)[4].

Half Max (FWHM), the width of the image, or Point Spread Function (PSF), at

half of its maximum intensity. This quantifies the distribution of the light over the

detector. These two quantities are typically applied to images to assess the ability

of an instrument to resolve di↵erent objects. A quantity used often as the figure of

merit in this dissertation is the Ensquared Energy (EE), a take-o↵ from the perhaps

more familiar quantity Encircled Energy, this is e↵ectively the same quantity made

specific to square Charged Coupled Device (CCD) pixels. The EE of an image is the

ratio of the intensity within a selected region of the detector to the total intensity on

the entire detector, that is, how much of the total flux has fallen within a given area.

This quantity has the most meaning for spectrographs, where the shape of the PSF

is slightly less critical, the goal is simply to get as much light into the slit as possible.

2.1.5 Angular anisoplanatism

Although the statistical properties of the atmosphere may be isotropic over a large

(on the order of 10s of meters) distance and for a reasonable length of time, the

instantaneous phase in two di↵erent directions is not the same. It, in fact, becomes

increasingly di↵erent with distance in a way that can be approximated using the

statistical tools described above, combined with site data collected during long term
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surveys. This important quantity is called the isoplanatic angle; this quantity corre-

sponds to the angle between two points on-sky at which the phase variance reaches

one radian. This is a direct result of the turbulence being distributed in altitude, if

all the turbulence was located at the ground, then anisoplanatism would not be a

problem.

The phase variance due to anisoplanatism is written [42],

�2

aniso

✓ = 6.88

✓
✓h̄

r
0

cos�

◆
. (2.37)

Setting this equation equal to one and solving for ✓ gives the isoplanatic angle, ✓
0

,

✓
0

= 6.88�3/5

r
0

cos�

h̄
(2.38)

where h̄ is an average altitude computed from the C2

n

profile,

h̄ =

R
h5/3C2

n

(h)dhR
C2

n

(h)dh

�
3/5

[43]. (2.39)

When two objects are separated by an angle greater than the isoplanatic angle, the

measured WFs from one become su�ciently di↵erent from the other that using the

measurement from the first as a direct estimate of the WF of the other does not

provide good AO correction, they are su↵ering the e↵ects of anisoplanatism (see Fig.

2.6 below). This is the fundamental limitation of classical SCAO systems which

both limits their sky coverage and prevents them from providing wide field correction

and thus is the main motivation for developing higher complexity specialized WFAO

instruments.

2.1.6 Laser Guide Stars

One method developed to increase the sky coverage of AO systems is to create artificial

reference sources that can be pointed toward a science object within its isoplanatic

patch. This is done with powerful laser beacons that excite specific atoms or molecules

in the atmosphere, causing them to re-emit the light thus generating an artificial star

within the atmosphere. There are two types of astronomical LGSs, Rayleigh guide

stars typically use green wavelengths and excite molecules at altitudes around 15km.

Sodium LGSs use the specific 589nm yellow wavelength to excite sodium atoms that

exist in a layer surrounding the earth at an altitude of approximately 90km. LGSs
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are in use at many major observatories to improve the sky coverage of their SCAO

systems; they are also beginning to be implemented not just as single lasers but as

constellations for WFAO instruments. Several of the facility AO systems planned for

ELTs are designed to use constellations of LGSs to do MCAO. The Gemini MCAO

System (GeMS) has successfully carried out MCAO using a constellation of sodium

LGSs [47].

There are limitations to using LGSs which prevent full sky coverage, most notably,

they cannot provide information on atmospheric tip/tilt (T/T), the lowest order

spatial modes which cause global motion of an object (wander), due to the nearly

instantaneous travel of the laser light up then back down through the same volume

of turbulence. LGS systems thus require supplementary information from an NGS

to acquire the T/T measurements. These T/T NGSs do not need to be as bright,

nor as close to a science object to be e↵ective and as such the sky coverage is still

greatly increased. Another limitation is the cone e↵ect; the LGS is generated at

a finite altitude within the atmosphere and enters the telescope as an expanding

cone of light, whereas light from astronomical objects e↵ectively originates at infinity

and passes through a cylinder of atmospheric turbulence, entering the telescope as a

collimated beam. Some of the turbulence a↵ecting the astronomical light will not be

sensed by the LGS light, resulting in an incomplete estimate of the phase aberrations.

Subaru telescope can generate an on-axis sodium LGS, and it is intended to try

to use it in concert with NGSs, either with three NGSs to improve performance or

with two NGSs to increase the sky-coverage of the Raven system.

2.1.7 Representing the phase

The phase aberrations must be represented mathematically in a chosen basis. This

dissertation will present work carried out in both zonal and modal bases. The funda-

mental tools of the modal basis representation are presented here.

Zernike polynomials are an orthogonal set of polynomials defined on a unit circle;

a phase aberration can be represented by a weighted sum of these polynomials. They

are a very useful and intuitive method for describing the aberrations of an optical

system and can be visualized as various shapes as shown in Fig. 2.5. Noll [6] described

a set of Zernike polynomials which is now typical to AO applications:

Z
even j

=
p
n+ 1Rm

n

(r)
p

(2) cosm✓

Z
odd j

=
p
n+ 1Rm

n

(r)
p
(2) sinm✓

)
m 6= 0 (2.40)
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Z
j

=
p
n+ 1R0

n
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where

Rm

n

(r) =
(n�m)/2X

s=0

(�1)s(n� s)!

s![(n+m)/2� s]![(n�m)/2� s]!
rn�2s, (2.41)

and n,m 2 Z are respectively the radial and azimuthal order of the mode and satisfy

m  n, n � |m| = even. The index j is a function of m and n. Noll also gives the

expression for the Fourier transform of Zernike polynomials,

Q
j
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p
n+ 1

J
n+1

(⇡fD)

⇡fD

8
><

>:

(�1)(n�m)/2im
p
2 cosm�, (even j)

(�1)(n�m)/2im
p
2 sinm�, (odd j)

(�1)n/2, (m = 0),

(2.42)

a set of functions that will be useful in the analysis of both the spatial and temporal

behaviour of the atmosphere.

Figure 2.5: Visualization [5] of the first few radial orders of Zernike polynomials in
the ordering given by Noll [6].
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2.2 Adaptive Optics technologies

A closed-loop SCAO system encompasses most of the key technology and control

elements required by any AO system. A typical closed loop AO system layout, shown

in Fig. 2.6, shows a WFS, a DM and a feedback path with a controller. Also

illustrated is the angular separation between science object and GS, leading to error

from anisoplanatism as previously described in Sec. 2.1.5.

telescope aperture 

science 
detector WFS controller 

DM 

guide star science object 

turbulence 

Figure 2.6: Basic closed loop schematic for a single conjugate AO system.

The role of the WFS is to collect the incident light from the reference source in

a way which enables the WF phase aberrations to be estimated (reconstructed) by

relating it to intensity. A clear relationship between phase aberrations and WFS

measurements must therefore exist and be known. There are multiple categories of

WFS devices used in AO, some notable ones are: Curvature sensors, pyramid WFSs,

and Shack-Hartmann WFSs (SH-WFS). The curvature WFS works by comparing the

illumination patterns as a function of the two-dimensional image-plane co-ordinate,

r, in a pair of images, I
1

(r), I
2

(r), one located before the focal plane (intra-focal) at

distance l and one located after the focal plane (extra-focal) at the same distance.

The pyramid WFS is a four-sided pyramid which splits the image into four sub-

images. From these sub-images, the local gradient of the phase can be determined
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by comparing the intensity on the pixel corresponding to the same location in the

aperture in each sub image. The WFS which was used throughout this work is the

SH-WFS; this choice was made for a variety of reasons, mainly driven by the maturity

of the technology, the limitations of other devices and the collective experience of the

Raven team members in working with the SH-WFS.

2.2.1 The Shack-Hartmann WFS

The SH-WFS is the device used for this work, both in simulation and on the in-

strument. It consists of a grid of small lenses termed lenslet array. Each small lens

focuses a portion of the incident wavefront onto a CCD detector, resulting in a grid

of spots. If the incident wavefront is flat, this grid is regular; any aberrations in

the wavefront will cause the spots to move relative to their reference position by an

amount proportional to the angle of arrival of the portion of wavefront focused by

each lenslet, as shown in Fig. 2.7.

Figure 2.7: The e↵ects of turbulence on SH-WFS spot positions. Plane waves (top)
focus to di↵raction limit at the centre of the lenslets; aberrated wavefronts (bottom)
cause distortion in spot shape and overall displacement of the spot centres.

There are many techniques, called centroiding algorithms, to determine the posi-

tion of each spot on its corresponding subaperture of the detector. For example, the
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Centre of Gravity (CoG) centroiding algorithm computes the location of a spot in a

subaperture that is n
p

by n
p

pixels is given by,

c
x

=

P
i.j

x
i,j

I
i,jP

i,j

I
i,j

; c
y

=

P
i.j

y
i,j

I
i,jP

i,j

I
i,j

. (2.43)

It is a function of the position of the pixels within the lenslet, (x
i,j

, y
i,j

), and the

corresponding intensity of the pixel, I
i,j

. Sources of noise include photon noise, pro-

portional to
p
N where N is the number of photons, and read-out noise due to conver-

sion of electron detection events to voltage readings; these reduce the accuracy of the

CoG computation. First order solutions to reduce noise errors include windowing, in-

which a fixed number of pixels surrounding the spot location on the sub-aperture are

selected and used for centroiding. Thresholding is also an e↵ective technique where a

level, based on the known noise properties of the system, can be specified and all pixel

intensities falling below that level are set to zero. More sophisticated techniques to

deal with noise as well as spot distortion or elongation include correlation centroiding

[48] and matched filtering [49]. WFS spot elongation will occur be significant in the

case of LGS spots on ELTs; it also occurs for 8m class telescopes such as Subaru, but

is small and will not be treated as elongation on Raven.

2.2.2 Deformable mirrors

DM technology typically consists of a flexible mirror membrane located over a grid

of controllable micro-actuators. There are several types of DM actuation technology:

piezo-electric actuators, bimorph membranes, voice coil actuators and MEMS. There

are pros and cons to all of these technologies and the trade-o↵ between actuator

stroke, bandwidth, actuator pitch and number of actuators is a balance that must

be evaluated depending on the requirements of the instrument. In general, small

pitch, high bandwidth and high order mirrors (such as a MEMS) will not have as

much stroke, or as large an aperture as a lower order DM with a lower bandwidth.

In some cases, high and low order DMs have been combined in a woofer-tweeter

configuration [50] in order to better correct the entire spectrum of turbulence. This is

possible because the low order atmospheric aberrations also happen to be the largest

(requiring the most stroke), and evolve more slowly in time compared to the higher

order aberrations.

The major contribution made by the DM to the overall system error budget is
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fitting error, �2

f

. This error is again given in terms of residual phase variance and can

be computed for a given DM-instrument pair [44],
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f
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N�5/6 (2.44)

(2.45)

The constant k is a factor dependant on the coupling of the DM influence functions,

D is the pupil diameter, and N is the total number of actuators. The total amount

of stroke (in µm) required to compensate for the atmosphere is given by,

� =
3�
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✓
D

r
0

◆
5/6

. (2.46)

In this expression, l can have a value of 1.03 if the DM is meant to correct atmospheric

T/T, or 0.134 if a separate T/T correction device is included in the instrument. To

avoid actuator saturation in bad seeing conditions, a worst-case scenario r
0

value is

used. In addition, some stroke must be added to accommodate correction of wind-

shake, as well as static and quasi-static errors in the system such as alignment errors,

gravitational flexure, DM flattening and drift.

2.2.3 Command estimation for SCAO

The specific problem in SCAO is to compute DM commands, u, from a sampled map

of local gradients or other measurements, s via a measured linear relation. The basic

static linear measurement model,

s = IMu+ ⌘, (2.47)

indicates that this computation is an inverse problem. Throughout this dissertation,

vectors are indicated by bold lower case characters and matrices by bold upper case

characters. The DM actuator command vector has length m
u

and is typically smaller

than the measurement vector of length, n
s

. This means that the matrix IM which

relates the two quantities is of dimensions n
s

⇥m
u

where n
s

> m
u

. IM is called the

interaction matrix and can be measured directly from the system by pushing each

DM actuator sequentially (or in a more complex arrangement) and recording that

actuator’s influence on the WFS (measuring the slopes). Typically, bright calibration
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sources are used to take these measurements and we can therefore neglect any mea-

surement noise. One can then invert the interaction matrix to obtain the command

matrix. Because IM is not square, this is done via its singular value decomposition

(SVD),

(IM) = USVT, (2.48)

(IM)† = VS�1UT, (2.49)

where S is a diagonal matrix containing the singular values of IM and can therefore

be inverted by taking the inverse of the diagonal values. Thresholding can be carried

out at this step to prevent inverting singular values that are very small which would

lead to large values in S�1. All singular values below a certain threshold can be set to

zero, this avoids the amplification of poorly sensed actuator influence, especially near

the edge of the pupil. V and U are non-square matrices with dimensions m
u

⇥ n
e

and n
s

⇥ n
e

respectively with n
e

the number of eigenvalues maintained by S after

thresholding.

2.2.4 Principles of WF estimation for WFAO

Under the hypothesis that the turbulent atmosphere is a sum of N
l

thin layers located

at a discrete number of di↵erent altitudes h
l

, the aperture-plane phase �(⇢,✓, t)

indexed by the bi-dimensional spatial coordinate vector ⇢ = (⇢
x

, ⇢
y

) in direction

✓ = (✓
x

, ✓
y

) at time t is defined as

�(⇢,✓, t) =
NlX

l=1

W
l

(⇢+ h
l

✓, t) (2.50)

where W
l

(⇢, t) is the lth-layer wave-front. The aperture-plane phase is not measured

directly in most AO systems and the WF phase is reconstructed from a set of discrete

measurements using a measurement model. The SH-WFS introduced in Sec. 2.2.1,

which provides phase gradients, s with measurement noise, will be used from now on.

MOAO systems require an open-loop estimate of the atmosphere over a large

field in a discrete number of correction directions based on WFS data from multiple

measurement directions; s↵ are noisy measurements made in specific GS directions,

↵ = [↵
1

. . .↵
n

]. (2.51)
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When developing the reconstructor in Chapter 3, we will first consider the static case,

which indicates that the solution relates only to the latest available measurement,

i.e. the temporal evolution is not seized by a static algorithm. WF reconstruction

is carried out in the pupil-plane and temporal aspects of the system are ignored,

therefore the simplified SH-WFS measurement model can be used,

s↵ = ��↵ + ⌘ (2.52)

with s↵ 2 <(n↵⇥ns)⇥1 a column-vector of n↵ ⇥ n
s

measurements for all the n-↵

directions, obtained using the pupil-plane gradient operator � , diag {[�
1

, · · ·�
n

]} 2
<(n↵⇥ns)⇥(n↵⇥Nz) that concatenates n

↵

individual pupil-plane �
↵i relating theNz

phase

dimensions in the aperture in the directions ↵ to the n
s

measurements. Noise is

represented by ⌘(t) ,2 <(n↵⇥ns)⇥1 and is assumed to be a gaussian zero-mean white

noise process.

2.3 Raven: A Multi-Object Adaptive Optics test

bed

As stated in the introduction, Raven will be the first MOAO instrument on an 8

m class telescope feeding an AO- optimized science instrument. It is a science and

technology pathfinding instrument, whose purpose is to establish the feasibility of

proposed solutions to known challenges, and to identify and solve any new or un-

expected problems, thus reducing the overall risk of constructing a facility MOAO

instrument.

Much e↵ort was initially invested in establishing the baseline parameters of Raven

[51, 52] and the opto-mechanical design [53]. A functional block diagram of Raven’s

optical system is shown in Fig. 2.8.

Raven consists of 8 main optical subsystems:

• The deployable Calibration Unit (CU) is a telescope simulator and a turbu-

lence generator. It also contains an array of o↵-axis sources and one on-axis

LGS source. The intended functions of the CU are to: 1) help align other

Raven subsystems, 2) calibrate the AO system (generate interaction matrices

and measure field-dependent non-common path aberrations), and 3) test the

MOAO system by including three phase screens, one of which is a 17 ⇥ 17
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Figure 2.8: Functional optical block diagram of RAVEN. Dashed blocks are deploy-
able. Raven consists of 8 main subsystems: the deployable Calibration Unit, the
Open-Loop NGS WFSs, the Science Pick-o↵s, the Science Relays, the Closed-Loop
NGS Truth/Figure WFSs, the Beam Combiner, the LGS WFS and the Acquisition
Camera.

ground-conjugated DM called the Calibration DM (CDM), which by design can

generate turbulence above the (spatial) Nyquist frequency of the WFSs. Labo-

ratory experiments referred to in later sections will be carried out using the CU

as a telescope simulator.

• Three NGS OL-WFSs are mounted on deployable picko↵ arms. These are

mounted on x-y translating stages to manoeuvre them into the positions of the

NGSs within the field of regard as well as track the stars as the field rotates. It

should be noted that this field rotation is due to the inability of Raven to use

the Subaru image de-rotator as a result of space constraints on the Naysmith

platform. The rotation is not a fixed configuration rotation, that is, the axes of

the WFSs remain fixed and their positions relative to each other change. This

has ramifications on the on-sky tomography which requires current knowledge

of the relative positions of the WFSs.

• On-axis LGS WFS will be fed by the Subaru Sodium beacon in order to improve

AO correction and/or the sky coverage.
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• Two science pick-o↵ arms whose design consists of a mirror mounted on an r�✓

arm followed by a trombone mirror that keeps the path length constant. The

science relay for each arm contains a DM which is a custom ALPAO DM with

13x13 actuators and a 25 mm aperture.

• A figure source and closed-loop (CL)-WFS share the science relay optical path

in each arm and can be used to either: 1) measure the shape of the DM using

the figure source; this can be done in real time at a rate equal to or possibly

greater than the system frame rate, 2) use the CL WFS as a truth WFS to

measure the MOAO performance or contribute low temporal frequency correc-

tion information from longer exposures if the science object is compact, or 3)

use the CL WFS as a classical AO system that uses the science target as the

NGS.

• A K-mirror in each science relay which can rotate the images of the science

targets so that extended objects can be properly aligned onto the slit of IRCS.

• The Roof mirror combines light from both arms of the system so that the

common beam shares an identical exit pupil and provides two adjacent 4 arc-

second science fields to the single IRCS slit.

• An acquisition camera is used to determine the telescope pointing and facilitate

target acquisition by ensuring that shadows of the probe arms fall over the

NGSs and science targets.

Some of the main technical specifications are provided in Table 2.1.

2.4 Wavefront reconstruction modes on Raven

MOAO has the potential to deliver near di↵raction-limited images to multiple, small

patches spread across a large FoR. One challenge of an MOAO system is that it is

highly distributed; for Raven, light from up to three NGSs and one LGS will be

sensed within a 3.5 arc-min FoR. Pixels from the OL-WFS detectors will be read by

the RTC and transformed into a tomographic model of the atmosphere above the

observatory. This tomographic model will be sampled in directions defined by the

position of the science probes in the patrol field and DM commands will be generated

and applied. All of these actions are performed using OL control. Accurate knowledge
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Table 2.1: Raven specifications.

Calibration Unit
Telescope D 8 m
r
0

15.6 cm
L
0

40 m
Fractional r

0

[0.596; 0.224; 0.180]
Altitudes [0, 5, 10] km
wind speeds [5.68; 6; 17]m/s
wind direction [90; 180;180] deg
Wavefront Sensor
RON 0.2 e�

N
NGS

3
N

LGS

1
Order 10⇥10
✓
pix

0.4 arcsec
N

pix

12
framerate up to 500Hz
DMs
Science DMs 2
Order 13⇥13
Number of valid actuators 145
Calibration DM 1
Order 17⇥17
Number of valid actuators 225

of the science probe placement in the focal plane and the relative alignment of the

DMs and WFSs in the pupil plane is required.

The primary research objective has been to bring a new perspective to tomo-

graphic wavefront reconstruction for MOAO while giving consideration to the future

directions of the technology. This has required attention to computational complex-

ity and provided proof, both in simulation and in practice, that good performance

can be achieved for multiple science channels acting in parallel. There are several

operational modes used on Raven which have allowed direct comparison of various

OL wavefront reconstruction techniques.
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2.4.1 Closed Loop Mode

Raven has a CL WFS in each of the science picko↵ arms. If the science target(s) are

bright stars, Raven can operate as a classical AO system with on-axis correction. As

the best AO correction Raven can possibly achieve, the closed-loop performance will

be used as a reference for the open-loop performance.

2.4.2 Ground Layer AO

In order to show that the added complexity of doing tomography with MOAO is

advantageous, we must show definitively that it improves performance compared to

GLAO. The GLAO mode is easily implemented within the RTC by bypassing the

tomographic reconstructor completely and implementing an averaging of the OL-

WFS measurements.

2.4.3 Static MOAO Mode

This is the primary MOAO validation tool, it uses a static tomographic reconstructor

and has been used extensively in the lab to characterize system performance and prove

that Raven was ready for on-sky testing. In this mode, the OL-WFSs are deployed

and feed measurements to the RTC. The science picko↵ arms are also deployed and

feed light to IRCS (or the science camera). The RTC reads the OL-WFS pixels,

measures the current slopes, and performs a tomographic reconstruction based on

the location of the OL-WFS probe arms and the science picko↵s. DM commands are

generated and sent to the devices.

2.4.4 MOAO with CL-WFS Mode

The Raven opto-mechanical design includes a CL-WFS on each science path (Fig.

2.9) to facilitate calibration [54, 55] and provide a baseline; however, we can take

advantage of these design components which may also be used during observations to

provide supplementary information on quasi-static errors.

In certain cases, the science target itself may be bright and compact enough to take

slow CL-WFS measurements of the phase in the science direction. This is not enough

to do closed loop AO, but the information can be used to augment the accuracy of

the wavefront estimation. It is an important research objective to design the data
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Figure 2.9: 3D representation of Raven. Highlight on one CL-WFS path and figure
source which will enable more WF correction modes.

processing pipeline and control system to incorporate this information in an optimal

way as it becomes available.

2.4.5 MOAO with Figure WFS mode

The system also includes a reference source on each science path. The same static

MOAO reconstruction process as in Sec. 2.4.3 is carried out, and in addition, the

reference source, or figure source illuminates the DM and CL-WFS only and thus

provides a measurement of the DM shape. The figure source is a bright, visible

wavelength point source. It is independent of the science target and pick-o↵ arm

and can therefore be run very fast (up to 500Hz). The wavefront reconstruction

will generate a set of DM commands which will represent an expected DM shape

according to the calibrated closed loop interaction matrix; the Figure WFS will be

able to measure the actual DM shape. Comparing the measured shape to the expected

shape, a local closed loop can be used to drive the residual to zero. This will reduce

risk posed to open loop systems by DM go-to error and calibration errors. At the

very least, the slopes from the Figure WFS can be archived to compare to what is

expected in post-processing.

Note that all of the AO modes mentioned above except for CL Mode can be

executed either with 3 NGSs, 2 NGSs plus the LGS or all 3 NGSs and the LGS.
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Chapter 3

Tomography for MOAO

3.1 Sky coverage

MOAO systems achieve their scientific potential by taking advantage of their mul-

tiplexing observing capabilities. The availability of su�ciently bright guide-stars

overshadows the utility of AO, even more so when the main scientific goals involve

resolving photometric and kinematic science observations concentrating the light suf-

ficiently to obtain spectra for several targets in a reasonable amount of time. For a

more in-depth description of science cases for MOAO systems see [56]. Since such

targets are usually very faint and not suitable for guiding the AO system, other natu-

ral guide-stars must be found that are su�ciently close. Therefore, the sky-coverage,

i.e. the percentage of available sky for observing, imposes a strong constraint on the

observable targets.

As a pathfinder instrument intended to perform scientific observations, it is of

key importance that interesting science targets are available to Raven. Employing a

static tomographic reconstructor, Raven’s limiting magnitude will approach 14.5 (for

30% EE) using a reduced frame rate of 180Hz. As stated in [51], sky coverage for

Raven will be low. As an example, consider a point with galactic coordinates (b; l)

= (30; 0). Using the Besançon model of the galaxy [57], one finds that there are 750

stars per square degree with R < 14.5 (1040 stars per square degree with R < 15).

The probability that there are three stars with R < 14.5 in a 2 arc-min diameter FoR

is just 3%. This does not even account for asterisms that are unsuitable for Raven; in

some cases the science targets will not be inscribed within the potential NGS asterism

and, therefore, the tomographic error will be too great. Star densities are increasing
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as a power law at these magnitudes, so going 1 magnitude deeper can increase the

density of available stars by 1.8.

There are several ways to approach the challenge of increasing the limiting mag-

nitude, these include longer integration periods on the WFSs to increase SNR, better

centroiding algorithms to obtain more accurate slope measurements in low signal

regimes, and better noise rejection in the tomographic reconstructor itself. Ideally,

an optimal combination of these ideas can be achieved. The development of to-

mographic reconstructors which can operate e↵ectively in the lower WFS framerate

regime, employ better noise rejection and the resulting potential improvement in

terms of Raven’s limiting magnitude are the subject of this chapter. More sophisti-

cated centroiding algorithms can (and will) be used in conjunction with the methods

developed here, but their development and analysis is outside the scope of this work.

This chapter expands and extends the material published in [58] (Appendix B).

It starts by presenting an established solution to the AO minimization criterion in

the context of MOAO and an examination of the information made available by

this solution under di↵erent computational approaches is presented. By increasing

the WFS integration times to increase SNR, a tradeo↵ occurs whereby temporal lag

error is increased, potentially o↵-setting any gain accrued by improving the SNR. To

counteract this trade-o↵, a temporal prediction step can be carried out in an e↵ort

to reduce the e↵ect of the increased lag. Several methods of temporal prediction in

both modal (Zernike) and zonal bases are developed and compared. The temporal

prediction model can also be combined with a Kalman filter to better handle spatial

errors, due to noisy slopes, and to further improve performance with high magnitude

GSs.

3.2 Static Minimum Mean Square Error

In MOAO, in order to maximize SR and EE, the objective cost function is the mini-

mization of the aperture-plane residual phase variance in selected science directions,

� = [�
1

. . .�
N�

]; an estimate is made for each direction, �
i

,

R = argmin
R0

D
k�(�

i

)� b
�(�

i

)k2
L

2

(⌦)

E
(3.1)
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where � is the actual phase (represented in an arbitrary basis), b�(�
i

) , Rs↵, is the

estimated phase (estimated quantities are indicated by the hat symbol), L
2

is the

Euclidean norm over the aperture ⌦ and h· · ·i is the ensemble average over time for

an individual optimization direction. s↵ are noisy measurements made in specific GS

directions,

↵ = [↵
1

. . .↵
n

]. (3.2)

Recall that integrated phase in the telescope pupil plane will be represented by � and

the distributed phase in a discrete number of atmospheric layers will be expressed as

' which, in the case of a modal basis, is a concatenated vector of Zernike coe�cients

representing the phase, and in the case of a zonal basis is a concatenated vector of

phase values.

A well established solution to the minimization criterion in Eq. 3.1 is the Minimum

Mean Square Error (MMSE) solution [21, 59, 60, 61]. It states that for two jointly

Gaussian, zero mean, random variables (in this case s↵ and ��) with covariances,

⌃ =

"
⌃��,��

⌃��,s↵

⌃s↵,��
⌃s↵,s↵

#
, (3.3)

the estimate, �̂�, of the value taken by �� for a given s↵ which minimizes the Mean

Square Error of Eq. 3.1 can be written,

b
�� = ⌃

(��,s↵)

⌃�1

s↵s↵ (3.4)

where, in general, � 6= ↵ for practical reasons, and where b
�� is the pupil-plane

phase estimate representing the decomposition of the WF in all the m-� science

directions. In practice, the measurements are converted to phase space, and the

covariance matrices in Eq. 3.3 are computed according to the expression given in Eq.

2.36 for all baselines, |r| between the phase points.

3.2.1 Explicit layered static MMSE

In many tomographic AO systems the forward measurement model makes explicit

use of the layered phase vector (be it phase points or modal coe�cients [59], [15]).

Using matrix formulation, the resulting aperture-plane WF �(✓, t) in the near-field

approximation relates to the representation of the WF phase ' defined over a discrete
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number of layers in the volume by a simple matrix multiplication [15],

�(✓, t) = P✓'(t) (3.5)

where P✓ is a propagation matrix which crops the phase in each layer in direction ✓

and makes the sum of all the layers and,

' ,
h
'

0

· · · '

hL

iT
. (3.6)

This is a static method, therefore time independent; the measurement model can now

be written,

s↵ = �P↵'+ ⌘. (3.7)

The MMSE reconstructor providing the aperture-plane phase estimate in the � sci-

ence directions via the explicit estimation of phase in the layers is

b
�� = P�Rs↵. (3.8)

By using the phase in each layer in the forward model given in Eq. 3.7, the estimation

breaks into two steps: a 3D tomographic estimation followed by a linear propagation

into the science directions.

The derivation of the explicit static MMSE reconstructor can be made using terms

that can be measured or computed analytically by developing the terms in Eq. 3.4.

Taking the definition of covariance [61],

⌃
x,y

=
⌦
xyT

↵
, (3.9)

and defining the covariance matrices in terms of the measurement model in Eq. 3.7

and the phase estimate in Eq. 3.8 yields the following terms,

⌃s↵ =
⌦
s↵s

T
↵

↵

=
D
(�P↵'+ ⌘) (�P↵'+ ⌘)T

E

= �P↵

⌦
''

T
↵
PT

↵�
T +

⌦
⌘⌘

T
↵

(3.10)

= �P↵⌃'P
T
↵�

T +⌃⌘ (3.11)
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and

⌃
(��,s↵)

=
⌦
��s

T
↵

↵

=
D
P�' (�P↵'+ ⌘)T

E

= P�

⌦
''

T
↵
PT

↵�
T +P�

⌦
'⌘

T
↵

= P�⌃'P
T
↵�

T. (3.12)

It is assumed that no statistical correlation exists between the phase vector and the

measurement noise, therefore
⌦
'⌘

T
↵
= 0. Combining the two matrices, the expression

for the pupil-plane phase estimate in the science directions is written,

b
�� = P�

⌦
''

T
↵
PT

↵�
T
�
�P↵

⌦
''

T
↵
PT

↵�
T +

⌦
⌘⌘

T
↵��1

s↵, (3.13)

noting that the simplified notation for the direction-independent phase covariance in

the layers, ⌃' =
⌦
''

T
↵
, and for the noise covariance, ⌃⌘ =

⌦
⌘⌘

T
↵
, will be used in

later sections.

3.2.2 Spatio-Angular static MMSE

The term spatio-angular (SA) reconstructor, was coined by Rodolphe Conan, to the

best of the author’s knowledge, on account of the nature of the covariance matrices

involved in its definition. It can be seen as a generalization of the work of Whitely

et al [62], in seeking the optimal anisoplanatic reconstructor in classical AO, to the

tomographic, multiple sensor case. Using the SH-WFS measurement model from Eq.

2.52, the pupil-plane estimate of the phase in the science directions can be made in

terms of the slopes measured in the GS directions: The components of the MMSE

solution, R are computed as

⌃s↵ =
⌦
s↵s

T
↵

↵

=
D
(��↵ + ⌘) (��↵ + ⌘)T

E

= �
⌦
�↵�

T
↵

↵
�T +

⌦
⌘⌘

T
↵

(3.14)
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and

⌃
(��,s↵)

=
⌦
��s

T
↵

↵

=
D
�� (��↵ + ⌘)T

E

=
⌦
���

T
↵

↵
�T +

⌦
��⌘

T
↵

=
⌦
���

T
↵

↵
�T (3.15)

where, as in the explicit layered case, no statistical correlation exists between the

pupil-plane phase vector and the measurement noise, and
⌦
��⌘

T
↵
= 0. Using Eqs.

3.14 – (3.15) the spatio-angular MMSE reconstructor becomes

b
�� ,

⌦
���

T
↵

↵
�T

�
�
⌦
�↵�

T
↵

↵
�T +

⌦
⌘⌘

T
↵��1

s↵. (3.16)

The simplified notation for the direction-specific phase covariance in the pupil-plane,

⌃�,↵ =
⌦
���

T
↵

↵
will be used in later sections.

3.2.3 Equivalence of static MMSE reconstructors

Starting from the equations for the explicit reconstructor given in Eqs. 3.8-3.13, it can

be shown that it is mathematically equivalent to the pupil-plane MMSE reconstructor,

given that the solution is found for the same minimum pupil-integrated residual phase

variance cost-functional from Eq. (3.1).

Proof. Proceed by identification. Let

P�

⌦
''

T
↵
PT

↵ =
⌦
���

T
↵

↵
(3.17)

be the pupil-plane phase angular covariance matrix between the m-� and n-↵ direc-

tions and

P↵

⌦
''

T
↵
PT

↵ =
⌦
�↵�

T
↵

↵
(3.18)

be the covariance of phase in all directions ’↵’. The latter is an n⇥n matrix whereas
⌦
''

T
↵
is an n

L

⇥ n
L

block-diagonal matrix since layers in the atmosphere are con-

sidered independent. Hence, the estimated phase in the pupil becomes

b
�� =

⌦
���

T
↵

↵
�T

�
�
⌦
�↵�

T
↵

↵
�T +

⌦
⌘⌘

T
↵��1

s↵ (3.19)
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which is the solution one would otherwise obtain by directly applying the MMSE

linear estimator. Thus, the Spatio-Angular reconstructor is a particular case of the

Explicit-tomography MMSE reconstructor, applicable when one is only interested in

the cumulative phase estimate in the pupil-plane.

3.2.4 Overcoming temporal lag error

As discussed above, sky coverage can be improved by either making better use of

every single photon (more e�cient wave-front sensing), or by relaxing the temporal

lag error constraint which allows for longer integration times if the error can be partly

overcome by temporal prediction of the disturbances.

Lag error is intrinsic to any AO system due to the discrete nature of the measure-

ments, their processing and correction. In Raven, a fixed system delay of 3ms has

been allocated for camera read-out, wavefront reconstruction and DM actuation (the

minimum delay in readout from the cameras is 2ms). The maximum frame rate of

Raven will be 500 Hz (integration time of 2ms) but can and will be reduced by up to

a factor of 10 according to the magnitude of the GSs being used. There are therefore

two delay scenarios: The integration time is less than the system delay, in which case

there are two frames of delay, or the integration time is greater than (or equal to)

the system delay, in which case there is one frame plus a fraction of a frame of delay.

Both scenarios are outlined in Fig. 3.1.

If we consider that the current measurement, s
k

,

s

k

= ��
k

+ ⌘

k

(3.20)

is the result of a finite detector integration period over the previous sampling period,

we can consider the measurement to be an average over that integration period and

make the following definition:

�

k

=
1

T
s

Z
kTs

(k�1)Ts

�(t)dt. (3.21)

This way, the measurement s

k

corresponds to the time at the termination of the

exposure where the phase �

k

was collected. The averaging is implied from now on.

All combined, the WFS data require several milliseconds to read out and compute

which stresses the importance of a predictive capability. The lag error definition
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Figure 3.1: Temporal diagrams. Top: Int(�/T
s

) = 0, Commands u
k

are conditioned
to measurement s

k�1

. Bottom: T
s

< � < 2T
s

; u
k

is conditioned to s
k�2

.

adopted here is the sum of the integration-time plus the pure-delay error accounting

for the real-time processing of measurements and computation of DM commands.

An intermediate step between the static MMSE reconstructors and the spatially

and temporally optimal Kalman filtering-based recursive LQG controller is temporal

prediction. Temporal prediction is a step that must be developed anyway in order

to implement the LQG controller. Therefore, an examination of its potential outside

of this algorithm was undertaken with the goal of achieving improved performance

without adding a large amount of complexity to the real-time data processing pipeline.

Rewriting the spatial minimization criterion given in Eq. 3.1 to include time, we would

like to minimize

R = argmin
R0

⌦
k�(⇢, t+ T

s

)�Rs↵(t)k2
L

2

(⌦)

↵
. (3.22)

Using Taylor’s frozen flow hypothesis, rewrite �(⇢, t + T
s

) = �(⇢ � T
s

v, t) and

assume there is a linear operator which translates the phase, �(⇢�T
s

v, t) = A�(⇢, t).

The primary assumptions are that we have good knowledge of the wind velocity, v,

in each layer of the atmosphere, that each layer of the atmosphere is independent

from the others, and that the atmosphere can be described by a Kolmogorov or von

Kármán spectrum [34], [63]. The minimization can once again be expressed in an
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exclusively spatial domain,

R = argmin
R0

⌦
kA�(⇢)�Rs↵k2

L

2

(⌦)

↵
. (3.23)

Assuming the phase is estimated in a specific direction vector, �, as before, it can be

seen that the predicted phase estimate can be obtained by applying the translation

directly to the static reconstructor,

��(t+ T
s

) = A⌃��,s↵⌃
�1

s↵s↵(t). (3.24)

A full treatment of this problem can be found in [64] Prediction models are de-

veloped for both the modal and zonal bases in Secs 3.3.2 and 3.4.2 respectively.

3.2.5 Linear Quadratic Gaussian Controller

The phase estimation techniques described above are sub-optimal reconstructors. The

well established optimal solution, which minimizes the function given in Eq. 3.23,

corresponds to a discrete-time LQG controller [65]. The LQG controller is appro-

priate for use in AO systems as it can take advantage of the stochastic nature of

the atmosphere. It is particularly well-suited for tomographic AO as both spatial

and temporal errors make significant contributions to the overall performance. Pri-

mary applications of the LQG controller in tomographic AO systems have focussed

on MCAO (CL systems) [66, 67, 68], however the formalism is the same for both

closed and open loop and no adjustments are required in order to apply it to an

MOAO system. The format of the controller is also very flexible, allowing for the

incorporation of asynchronous control as well as vibration cancellation. The purpose

of an LQG controller is to generate an optimal stochastic controller with respect to,

in the case of AO, residual phase error. The system is assumed to be modelled by

the linear stochastic di↵erence equation and state feedback equation,

x

k+1

= Adxk

+ Bduk

+V
k

(3.25)

s

k

= Cdxk

+Dduk

+ ⌘

k

, (3.26)

where x

k

is the input state. The matrix Ad is the state transition matrix; it relates

the state at time k to the state at time k + 1. The matrix Cd is the measurement

model which relates the state to the measurement, s
k

. The measurements are slopes
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in the case of a SH-WFS AO system and Cd is a linear operator, generally containing

the measurement model � used in previous sections to take a selected portion of the

state from phase space to slope space. The quantities V,⌘ are independent zero-

mean Gaussian white noise signals representing process noise and measurement noise

respectively; the covariances of these two noise processes are represented by Q and

R. In the case of an MOAO system, which is open loop, neither the state nor the

current measurement have any dependence on the the feedback term, u
k

, therefore

the terms Bd,Dd are zero.

When discussing the state estimate, x̂
k

, it is important to make the following

distinction: x̂
k|k�1

refers to the a priori state estimate which is the state estimate at

time k given knowledge of the process prior to step k. x̂

k|k is the a posteriori state

estimate which is the state estimate at step k given measurement s

k

. We can now

define terms for the state estimate error in each case:

e

k|k�1

⌘ x

k

� x̂

k|k�1

(3.27)

e

k|k ⌘ x

k

� x̂

k|k, (3.28)

and the covariance of the a posteriori error estimate can be expressed,

⌃
k

= he
k|ke

T

k|ki. (3.29)

The goal is to find an equation that computes an a posteriori state estimate, x̂
k|k,

as a linear combination of an a priori estimate, x̂
k|k�1

and the weighted di↵erence

between an actual measurement, s
k

, and the measurement prediction, made at the

previous time step,

x̂

k|k = x̂

k|k�1

+M
k

(s
k

� ŝ

k|k�1

), (3.30)

which minimizes the a posteriori error. The measurement estimate is expressed,

ŝ

k|k�1

= Cdx̂k|k�1

, (3.31)

and the weighting is carried out by the matrix M
k

. The term s

k

� ŝ

k|k�1

is referred

to as the measurement innovation and reflects the discrepancy between the predicted

measurement and actual measurement at time k. The matrix M
k

is the Kalman gain
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which minimizes the a posteriori error covariance ⌃
k

,

M
k

= ⌃
k

CT
d (Cd⌃k

CT
d +R)�1. (3.32)

Substituting Eq. 3.32 into Eq. 3.30 and subsequently into Eq. 3.28, the expectation in

Eq. 3.29 can be developed. The result of this operation is the discrete, time-invariant

Riccati di↵erence equation [65],

⌃
k+1

= Ad⌃k

AT
d +Q�Ad⌃k

CT
d (Cd⌃k

CT
d +R)�1Cd⌃k

AT
d , (3.33)

which is solved recursively for ⌃
k

, called ⌃1 as it approaches convergence. In the

case of AO, the WF error must be minimized for long exposure images, thus this

asymptotic solution can be used without loss of performance. The gain, M1 is

expressed as,

M1 = ⌃1CT
d (Cd⌃1CT

d +R)�1. (3.34)

In practice, there are three real-time steps to the recursive filter, assuming that

the amount of delay in the system is a full sample period:

x̂

k|k = x̂

k|k�1

+M1(s
k

� Cdx̂k|k�1

)

x̂

k+1|k = Adx̂k|k.

u

k

= (IM)†�x̂
k+1|k (3.35)

The first is the computation of the measurement estimate from the predicted phase

of the previous step combined with the estimation of the state, as in Eq. 3.30. The

second is the prediction step, or state transition, which is the same as the pure pre-

diction described in Sec. 3.2.4. In this notation, the matrix Ad is a composite matrix

which transitions the state using a linear combination of the state elements accord-

ing to the particular prediction model. The LQG controller is developed for several

di↵erent prediction models in modal and zonal bases in Sections 3.3.4 and 3.4.4. The

final step is the computation of DM commands from the estimated, predicted state

via conversion from phase space to command space. For practical reasons, the phase

is mapped back onto slopes in the � directions; this is due to the DM calibration

available from the system. In Raven, the science DMs (SDMs) are calibrated via

an interaction matrix between them and the CL-WFS on each science channel. The

easiest DM fitting step therefore goes from slopes to commands, so it is convenient
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to estimate bs�

Non-integer frame delay

The assumption depicted by Eqs. 3.35 is that the amount of delay in the system is

a full sample period. As stated above, in Raven (or in any instrument), this may

not be the case. With the LQG controller, timing is of key importance; care must

be taken to apply the predicted commands at the time step for which they were

conditioned. The particular application to MOAO systems, specifically the open-

loop tomography, allows for the construction of a LQG model that easily admits

asynchronous timing cases. To do so one assumes the measurements are available at

the end of the integration step, regardless of the actual delay. One a↵ects thus the

whole delay to the commands instead of the measurements.

In Eq. 3.35, the measurement estimate is ŝ
k|k�1

= ��̂
k|k�1

, and the state vector,

x contains N
k

phase estimates,

x̂

k|k =
h
�̂

k|k, �̂k�1|k, . . . �̂k�Nk|k

iT
, (3.36)

Applying the prediction step to get x̂
k+1|k and using the assumption of a fractional

number of frame delays for readout and processing, we would like to compute the

DM commands from the current measurement s
k

at the moment it will actually be

applied in the system, i.e. at time k+�, for fractional delays either greater or smaller

than the integration time.

The controller is applied in real-time by computing, at iteration k for either case

� � 1 or �  1, � 2 Q+

b
x

k|k = b
x

k|k�1

+M1
�
s

k

� C
d

b
x

k|k�1

�
(3.37a)

b
x

k+1|k = A
d

b
x

k|k (3.37b)

b
x

k+1+�|k = A
�

b
x

k+1|k

u

k

= (IM)†�bx
k+1+�|k (3.37c)

where A
�

is the matrix that overcomes the pure lag delay and is not included in the

recursion.

It will be shown in Sec. 3.3.3 that the greater the system lag, the more benefit

can be derived from carrying out temporal prediction (see Fig. 3.7). With this in

mind, and looking forward to simulation results and laboratory measurements to be
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shown in Chaps. 4 and 5 respectively, it is likely that the system will be operated in

the scenario of � < T
s

when prediction or LQG control is being carried out.

3.3 Modal reconstruction

When a modal basis is used to develop the reconstructor, the general measurement

model given in Eq. 2.52 can be specified as,

s = �z
c

+ ⌘, (3.38)

where � is the linear operator that transforms Zernike coe�cients to slopes and z

c

is

a vector of Zernike coe�cients representing the phase.

3.3.1 Static Reconstructors in Zernike Space

Recalling the MMSE solution from Eq. 3.16,

b
�� ,

⌦
���

T
↵

↵
�T

�
�
⌦
�↵�

T
↵

↵
�T +

⌦
⌘⌘

T
↵��1

s↵ (3.39)

It is clear that an expression for the covariance of the atmospheric phase in the

Zernike basis is required. The angular pupil-plane covariance matrix between any

Zernike polynomial is analytically computed from [69] for the infinite outer-scale case

of turbulence

ha
i

(0), a
i

(⇠)i = 3.895

✓
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R
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0

C2
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ij
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�
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0

C2

n

(h)dh
(3.40)

with D = 2R the telescope diameter, r
0

the Fried parameter, h the altitude above

the telescope, ⇠ the angle between the pupils over which the Zernike polynomials are

defined, C2

n

the atmospheric vertical profile and,

I
ij

(x) =(�1)
n
1

+n
2

�m
1

�m
2

2
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2
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with K+

1,2

and K�
1,2

coe�cients that depend on m
i

and n
i

. For the general case, take

⇠ to be the angular di↵erence of ↵
i

and ↵
j

.

The cross-correlation functions have been extended for the finite outer-scale case

in [70] and later extensively used and generalized in [71, 62]. The layered spatial

covariance matrix is a block-diagonal matrix (layers are independent) and can be

found in [6] for the infinite outer scale case and in [72] for the finite case.

The measurement model, �, is a concatenation of derivatives of Zernike polynomi-

als in x and y sampled over a grid with resolution equal to the number of WFS lenslets.

The derivatives of Zernike polynomials can be represented as a linear combination of

Zernike polynomials, as given by [6],

rZ
j

=
X

j

0

�
jj

0Z
j

0 . (3.42)

The coe�cients, �
jj

0 can be expressed in rectangular coordinates, resulting in an x

and y derivative,

�x

jj

0 =

Z
d2⇢Z

j

0
dZ

j

dx
(3.43)

�y

jj

0 =

Z
d2⇢Z

j

0
dZ

j

dy
(3.44)

It was shown in Sec. 3.2.3 that explicit layered and spatio-angular formulations of the

static MMSE reconstructor are equivalent. In a modal basis such as Zernike space, this

equivalence is only strictly true when the number of Zernike modes considered when

computing the propagation matrices, P↵,P�, and the phase covariance,
⌦
''

T

↵
of

the explicit-tomography reconstructor goes to infinity. The number of reconstructed

modes is truncated according to the order of the system (through out this work,

n = 9 radial orders are used as all WFSs are 10x10), however the projection of all

modes is technically required to eliminate aliasing e↵ects. In practice, a su�ciently

large number of modes can be determined which reduces the error in the first 9 radial

orders to a negligible amount. As has been shown, the expressions, P↵

⌦
''

T
↵
PT

↵ and
⌦
�↵�

T
↵

↵
should give identical results. By performing the matrix multiplications for a

specific case with a single atmospheric layer and comparing the diagonals of the two

resulting matrices, Fig. 3.2 shows that as the number of modes used to compute the

left-hand side of Eq. 3.18 is increased, its diagonal approaches that of the right-hand

side, which is computed analytically.

The propagation matrices, P�,P↵, are the modal projection of Zernike polynomi-
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Figure 3.2: Aliasing error in the computation of explicit layered covariance matrix,
P↵⌃'PT

↵, is reduced with increasing radial order.

als onto a resized pupil which is displaced in x and y. They are computed analytically

using Noll indexing based on the function TransformC developed by Lundstrom and

Unsbo and available in [73].

3.3.2 Predictive MMSE in Zernike space

Several temporal prediction models are developed for the modal basis reconstructor

and a theoretical analysis of their ability to reduce temporal lag error is presented here.

Based on this analysis, only two were selected for comparative study in simulation.

Auto-Regressive models of first, second and third order

Auto-Regressive (AR) models are relatively coarse models, typically used for predic-

tion when embedded in the reconstructor and implemented in a dynamic controller

such as Kalman filtering. They can be used for the o↵-line computation of low order
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optimal gains. The Zernike-space AR models assume that each Zernike mode behaves

independently, thus generating diagonal prediction matrices.

An AR model of order n is defined by the recursion,

'

k+1

= f('
k

, . . . ,'
k�n�1

) + "

k

, (3.45)

where f(. . . ) is a linear function and "

k

is called the excitation noise; it is a Gaussian-

distributed spectrally white zero-mean random sequence with variance such that the

output variance is conserved and is constrained to be equal to the value prescribed

by the Kolmogorov or von Kármán turbulence models. The covariance of "
k

can be

derived for each AR model from the expression of the specified model.

A first order AR model (AR1) employs the current estimate only,

'

AR1
k+1

= AAR1'
AR1
k

+ "

AR1
k

(3.46)

Computing the covariance of both sides leads directly to an expression for the exci-

tation noise covariance,

h'AR1
k+1

('AR1
k+1

)Ti = h(AAR1'
AR1
k

+ "

AR1
k

)(AAR1'
AR1
k

+ "

AR1
k

)Ti

⌃AR1
' = AAR1⌃

AR1
' AT

AR1 +⌃AR1
"k

⌃AR1
"k

= ⌃AR1
' �AAR1⌃

AR1
' AT

AR1. (3.47)

Note that
⌦
'

k

'

T
k

↵
=
⌦
'

k+1

'

T
k+1

↵
= ⌃' = ⌃AR1

' , (3.48)

which, due to stationarity, loses its temporal dependence. In the AR1 case, the

prediction model, A
AR1

, is a diagonal matrix of independent modal coe�cients. The

method for estimating these coe�cients is discussed below.

Using the second order AR model (AR2), the phase in each atmospheric layer can

be estimated as a linear combination of the phase at the two previous time-steps plus

process noise,

'

AR2
k+1

= AAR2'
AR2
k

+BAR2'
AR2
k�1

+ "

AR2
k

(3.49)

Assuming the coe�cients of AAR2 and BAR2 are known, and imposing ⌃AR2
' = ⌃' as

before, compute the expectation as in the AR1 case and solve for the process noise
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covariance, ⌃AR2

✏

,

⌃AR2
" = ⌃' �AAR2⌃'A

T
AR2 �BAR2⌃'B

T
AR2 �AAR2⌃

AR2
1⌧

BT
AR2 �BAR2⌃

AR2
1⌧

AT
AR2

(3.50a)

⌃AR2
1⌧

=
⌦
'

AR2
k+1

('AR2
k

)T
↵
,
⌦
'

AR2
k

('AR2
k�1

)T
↵
= (I�BAR2)

�1 AAR2⌃' (3.50b)

Noting that, again, due to stationarity,

⌦
'

AR2
k+1

('AR2
k

)T
↵
=
⌦
'

AR2
k

('AR2
k+1

)T
↵
= ⌃AR2

1⌧

. (3.51)

⌃AR2
1⌧

is a one-step modal spatio-temporal cross-covariance matrix between Zernike

modes at any times k + 1 and k separated by a single time step. Use Eq. 3.49, 'T
k

,

and the expression for ⌃AR2
1⌧

in Eq. 3.51, and take the expectation,

⌦
'

AR2
k+1

('AR2
k

)T
↵
=
⌦
(A

AR2

'

AR2
k

+B
AR2

'

AR2
k�1

+ "

AR2
k

)('AR2
k

)T
↵
, (3.52)
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↵
, (3.53)

⌃AR2
1⌧

= A
AR2

⌃' +B
AR2

⌃AR2
1⌧

. (3.54)

Solving for ⌃AR2
1⌧

gives,

⌃AR2
1⌧

=
A

AR2

1�B
AR2

⌃'. (3.55)

This matrix can also be computed by noting that the temporal covariance between

adjacent time steps is equivalent to the spatial covariance between points x
0

and

x
1

= vT
s

for a given wind-speed and sampling time. This is exactly the computation

described by Eqs. 3.40 and 3.41 where a
i

(0), a
i

(⇠) is the angular separation between

x
0

and x
1

.

For completeness, the third order model (AR3) is developed,

'

AR3
k+1

= AAR3'
AR3
k

+BAR3'
AR3
k�1

+CAR3'
AR3
k�2

+ "

AR3
k

(3.56)

the noise covariance matrix is found from

⌃AR3
" =⌃' �AAR3⌃'A

T
AR3 �BAR3⌃'B

T
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T
AR3
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CT
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AR3
2⌧

AT
AR3 (3.57a)
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where ⌃AR3
1⌧

is again the 1-step modal cross-covariance matrix this time for the AR3

model and ⌃AR3
2⌧

,
⌦
'

AR3
k+1

('AR3
k�1

)T
↵
,

⌦
'

AR3
k

('AR3
k�2

)T
↵
is a two-step modal spatio-

temporal cross-covariance matrix, with

⌃AR3
1⌧

=
�
BAR3 +CAR3AAR3 +C2

AR3

��1

(AAR3 +CAR3BAR3)⌃' (3.57b)

⌃AR3
2⌧

= BAR3⌃' + (AAR3 +CAR3BAR3)⌃
AR3
1⌧

(3.57c)

AR model parameter identification

To carry out temporal prediction, we must identify the coe�cients of the prediction

matrices A, B, and up to N (for arbitrarily high ordered AR models). This must be

done such that the model has the same temporal auto-correlation as the data (within

a reasonable temporal horizon). A practical method to identify the coe�cients is to

fit the initial T
fit

seconds of the temporal auto-correlation function of each and every

mode as previously suggested in [74]. An alternative is to match the decorrelation at

the coherence time of each mode [66]. For AR1 models, both strategies lead to roughly

the same modal decorrelation functions and can therefore be used interchangeably.

For higher order models (AR2 and AR3), fitting the initial T
fit

seconds leads to

the overall best prediction performances, although the existence of a general T
fit

is

debatable and subject to optimization.

In general, we would like to determine some parameters a, b, . . . ,n of a model of

the modal atmospheric temporal covariance function, CCC (t)
model

, such that the error

between it and the analytical modal atmospheric temporal covariance function, CCC (t)

is minimized mode-by-mode for each Zernike in each layer over a given temporal

horizon,

(a, . . . ,n) = argmin
a,...,n

Z
Tfit

0

|CCC (t)�CCC (t)
model

|2dt. (3.58)

The current estimated state of the atmosphere (estimated layer altitudes, wind-

speeds, and power) can be used to compute an expression for the current temporal

covariance matrix of Zernike modes in the atmosphere. According to the Wiener-

Khinchine theorem [75, 36], the theoretical temporal autocorrelation of Zernike modes

can be computed from the normalized Fourier transform of the temporal PSD,

CCC (t) = F{W
t

(⌫)}. (3.59)

In this case CCC (t) is the normalized Fourier transform of the temporal PSD, Wj

t

, of
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each mode in each layer. For a given layer with wind velocity v, the temporal PSDs

of the modes can be computed analytically, as outlined in [76], as the integral of the

product of the spatial power spectrum, W�(!) and the squared modulus of a spatial

function, M
G

(r) defined on the pupil and related to the temporal domain via the

Taylor frozen flow hypothesis [77]. The spatial PSD for a given layer with fractional

r
0

, f
r

0

is given in Eq. 2.35. We can model the temporal PSD as the square modulus

of the continuous time transfer function of the ARn model given in Eq. 3.45. Thus

the modelled temporal autocorrelation of each mode is computed from the Fourier

transform of the square modulus of that transfer function,

CCC (t)
model

= F{|H(s)|2}. (3.60)

Therefore it is the coe�cients of the continuous time transfer function we wish to

identify in order to minimize Eq. 3.58. For the ARn system represented by the

recursion in Eq. 3.45, the continuous time transfer function of mode j is,

H
j

(s) =
1

sn � a
j

sn�1 � b
j

sn�2 � . . .� n
j

. (3.61)

The coe�cients, [a
j

, b
j

, . . . , n
j

] are the continuous time coe�cients for mode j which

are diagonal elements of the matrices [A,B, . . . ,N ]. This expression can be factored

and written in terms of the poles of the transfer function, a form that will be useful

for converting to a discrete model for practical applications,

H
j

(s) =
1

(s� p
1

)(s� p
2

)(. . .)(s� p
n

)
. (3.62)

Specific examples of the derivation of the continuous transfer function are given

here for AR1 and AR2 models. Starting from Eq. 3.46 for an AR1 model, the

discrete problem can be recast to the continuous domain by replacing the samples

[k, k+1, . . . , k+n] by [t, t+�, . . . , t+n�]. As � becomes small, the expression can

be written in terms of its temporal partial derivatives,

'̇(t)�A'(t) = ✏(t). (3.63)

The discrete excitation noise is converted to continuous excitation noise as described

in [68]. Recall that the phase vector is a set of Zernike modes, therefore we can take

the Laplace transform of Eq. 3.63 mode-by-mode. Rearranging gives an expression
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of the continuous transfer function for mode j,

�
j

(s)s� a
j

�
j

(s) = E(s) (3.64)

H
j

(s) =
E(s)

�
j

(s)
=

1

s� a
j

. (3.65)

Similarly, for a second order model, the continuous representation of Eq. 3.49 can

be written as a temporal di↵erential equation,

'̈(t)�A'̇(t)� B'(t) = ✏(t). (3.66)

Taking the Laplace transform of Eq. 3.66 mode-by-mode and rearranging once again

gives an expression of the continuous transfer function of mode j,

�
j

(s)s2 � a
j

�
j

(s)s� b
j

�
j

(s) = E(s), (3.67)

�
j

(s)(s2 � a
j

s� b
j

) = E(s), (3.68)

H
j

(s) =
1

s2 � a
j

s� b
j

. (3.69)

With a computed temporal covariance, CCC (t), and a model of the temporal covariance,

CCC (t)
model

, we can now determine the coe�cients [a
j

, b
j

, . . . , n
j

], such that the mini-

mization problem in Eq. 3.58 is satisfied for each Zernike mode in each layer over a

selected temporal horizon. Because the highest order AR model considered is AR3,

and the sample times fall in the range of 2 to 20 milliseconds, the temporal horizon

does not need to be larger than 0.1 seconds.

There are many angles from which to approach this parameter identification prob-

lem. The first attempt was a brute force two dimensional grid search using the built

in Matlab function fminbnd (a bounded one dimensional search). This method works

well enough for a one dimensional parameter search, but it quickly becomes a liability

for higher dimensions as it su↵ers from extremely long computing time when using

fine enough sampling required in order to achieve good accuracy.
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Broyden-Fletcher-Goldfarb-Shanno method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for parameter identification

is of the quasi-Newton algorithm class for multidimensional optimization. The basic

steps of a quasi-Newton algorithm are as follows [78]:

• Step 1:

Input an initial parameter vector, x
0

, and initialize the tolerance ✏.

Set the iteration count to zero, k = 0, and approximate the second partial

derivative matrix of the function as the identity, S
0

= I
n

.

Compute the vector of first partial derivatives, g
0

, at x
0

.

• Step 2:

Set d
k

= �S
k

g
k

.

Find ↵
k

, the value of ↵ that minimizes f(x
k

+ ↵d
k

), using a one dimensional

line search.

Set �
k

= ↵
k

d
k

and x
k+1

= x
k

+ �
k

.

• Step 3:

If ||�
k

|| < ✏, output x⇤ = x
k+1

and f(x⇤) = f(x
k+1

), and stop.

• Step 4:

Compute g
k+1

and set �
k

= g
k+1

� g
k

.

Compute S
k+1

using the BFGS updating formula (see Eq. 3.70).

Set k = k + 1 and repeat from Step 2.

The BFGS updating formula is given by,

S
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= S
k

+

✓
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k
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k
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k
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k

�T

k

S
k

+ S
k

�
k

�T
k

�T

k

�
k

. (3.70)

As k increases, S
k

approaches the matrix of second partial derivatives of f(x
k

) without

requiring a closed form expression. In this case, f(x
k

) =
P

Tfit

t=0

|⌃(t)�⌃(t)
model

|2 (the
continuous integral from Eq. 3.58 is replaced by a finely sampled time vector). In

place of computing a closed form expression for the partial derivatives g
k

of this

function, a numerical approximation was used,

@f(x
k

)

@x
i

=
f(x1, ...x

i

+ �, ...x
n

)� f(x
1

, ..., x
i

, ...x
n

))

�
(3.71)
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where � is a fixed small value, typically 10�9 < � < 10�6, and is not related to �
k

in

Eq. 3.70.

In the AR2 case, the results of the brute force parameter identification process was

compared to the BFGS method described here. The two dimensional fminbnd search

required several hours, placing it outside of the realm of practical implementation in

any system, whereas the the BFGS method took less than 60 seconds. The resulting

(discretized) coe�cients of the first state matrix, AAR2, identified by each method

for the first 45 Zernike modes are shown in Fig. 3.3 and shows that there is good

agreement between the methods.
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Figure 3.3: Parameter identification using di↵erent search minimization algorithms.
BFGS search provides a speed up factor of more than 2 orders of magnitude in the
AR2 case.
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Discretized transfer function

Once the coe�cients of Eq. 3.69 have been determined, a discrete time representation

of H(s) is required. The relationship between s and z,

z = esTs , (3.72)

s =
log z

T
s

(3.73)

can be substituted, in the AR2 case, directly into Eq. 3.69,

H
j

(z) =
1

log

2

z

Ts
� a

j

log z

Ts
� b

j

, (3.74)

however this form of H(z) does not fit well with the intended AR filtering of Eq. 3.49.

A similar type of problem was addressed in [67] in which they applied the adapted

transformation given in [79] which maintains the poles of the transfer function. The

transformation is carried out by equating the following,

1

s� p
ji

=
T
s

1� epjiTsz�1

, (3.75)

where p
ji

is the ith pole of H
j

(s). Factoring the denominator of H
j

(s) for the AR2

case gives the poles of the continuous transfer function in terms of the coe�cients,

p
j1

=
�a

j

+
q

a2
j

� 4b
j

2
, (3.76)

p
j2

=
�a

j

�
q

a2
j

� 4b
j

2
(3.77)

Substituting the corresponding terms of Eq. 3.75 into Eq. 3.62, the discrete transfer

function of mode j is written,

H
j

(z) =
T 2

s

(1� epj1Tsz�1)(1� epj2Tsz�1)
, (3.78)

=
T 2

s

1� (epj1Ts + epj2Ts)| {z }
z

a
j

z�1 + e(pj1+pj2)Ts

| {z }
z

b
j

z�2

. (3.79)

To verify that the discretized model has the same response as the continuous
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model, the bode plots were compared (Fig. 3.4). The coe�cients of the z�1 and z�2

Figure 3.4: Bode plots of continuous and discrete TFs.

terms are functions of the poles of the continuous transfer function, za
j

(p
1

, p
2

), zb
j

(p
1

, p
2

),

and now populate the discrete time prediction model matrices AAR2 and BAR2 in Eq.

3.49. For a set of Zernike modes from 1 to n
z

, this second order prediction takes on

the following structure for a single layer phase vector,

"
'̂

k+1

'̂

k

#
=

2

6666666666666664

za
1

zb
1

za
2

zb
2

. . . . . .

za
nz

zb
nz

1 0

1 0
. . . . . .

1 0

3

7777777777777775

"
'̂

k

'̂

k�1

#
. (3.80)

For a multi-layered atmosphere, a concatenation of all layer coe�cients, [za(l
1

), za(l
2

), ....]

and [zb(l
1

), zb(l
2

), ....], populate the diagonals. In the AR1 case, the discrete form of

the transfer function can be obtained directly by substitution from Eq. 3.75 using
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directly a
j

= p
j1

,

H(z) =
T
s

1� epj1Tsz�1

. (3.81)

The plots in Fig. 3.5 show the temporal auto-correlation functions from Zernike

polynomials 2 to 9 using the Wiener-Khinchine theorem and the spatio-angular for-

mulation. There is good general agreement between the two methods. Also over-

plotted are the second-order continuous model and its auto-regressive discretization

for T
s

= 10ms (though any frequency can be selected), when fitting the initial 50ms.

Spatio-Angular first order prediction model

A more general method that complies with tomographic phase estimation is sought

that fully takes into account the temporal cross-correlations of modes. Such cross-

correlations are known to exist and to evolve as time elapses. Thanks to Eq. 3.40 the

time-evolution of the cross-correlation between Zernike polynomials can be assessed

[71]. Figure 3.6 depicts the modal cross-correlation functions for tip and focus (poly-

nomials 2 and 4 respectively [6]) up to the 9th mode. Exploiting this knowledge is

paramount to obtain the best temporal prediction possible.

Recasting the problem as a proper criterion minimization, the best linear predictor

(in the MMSE sense) is the solution to the following criterion

A⇤
�

= argmin
A�

⌦
k'(t+ T

s

)�A
�

'(t)k2
L

2

(⌦)

↵
, (3.82)

Restricting the sample time, T
s

to a fixed value means '(t+T
s

) , '

k+1

and '(t) , '

k

which are the sampled phase vectors with T
s

lag in between. The solution is found

to be

A⇤
�

,
⌦
'

k+1

'

T
k

↵ ⌦
'

k

'

T
k

↵�1

. (3.83)

This predictor is in what follows called the 1-step SA predictor. It is a non-diagonal,

densely populated matrix – a sign of the temporal cross-correlations between modes

explored in Fig. 3.6 coming into play. The same predictor is outlined by [60] for the

case of phase represented by its samples on a regular grid of points (also called the

zonal representation).

Furthermore, Eq. 3.83 is a general method to generate and predict phase in a 2D

plane (any wind velocity can be used) according to the Quasi-Markovian model

'

k+1

= A⇤
�

'

k

+ "

�

k

(3.84)
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Figure 3.5: Theoretical temporal auto-correlation functions assuming frozen-flow
against the 2nd-order continuous and discrete predictive models fitting the initial
50ms of the theoretical curves.
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Figure 3.6: Temporal auto and cross-correlation functions for the tip and focus modes.
Although at t = 0 these plots show the spatial values in [6], for t > 0 correlations
appear and vanish as shown. One can see, for the case of focus, that although it isn’t
correlated to any other mode plotted for t = 0, a strong (anti) correlation appears
with tilt as time elapses.

where "�
k

is an excitation noise whose properties are fixed to guarantee proper turbu-

lence statistics.

This model can either be used for generating a fully developed turbulence, or for

control-oriented purposes such as a Kalman filter gain computation [61]. In either

case the pair (A⇤
�

,⌃�

") is required. The excitation noise covariance matrix ⌃�

" is found

from imposing the output statistics to be those of a Kolmogorov or von Kármán

model. Hence ⌃�

" = ⌃' � A⇤
�

⌃'A⇤,T
�

, since
⌦
'

k+1

('
k+1

)T
↵

= A⇤
�

⌃'A⇤,T
�

+ ⌃�

".

Note ⌃' ,
⌦
'

k+1

'

T
k+1

↵
,

⌦
'

k

'

T
k

↵
, which, due to stationarity, loses it temporal

dependence.

Assémat’s method for simulating infinitely long, non-stationary phase screens [80]

is based on a truncated version of Eq. 3.83 when a point-wise (zonal) representation

of the phase is used. However, only a sub-set of the columns of A⇤
�

is used to include

bounded-region correlations. An extension can be found in [81, 82].

Despite the temporal cross-correlation being taken into account in this model, A⇤
�

is strongly diagonally dominated, suggesting that simpler diagonal models, i.e. the

mode-by-mode AR models, could be potentially applied with equal results (the AR

models have been extensively used in AO simulations [83]). A theoretical examination

of the reduction in temporal lag error for both methods is required.
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3.3.3 Theoretical temporal lag errors

The predictive capabilities of di↵erent models can be assessed using the predicted

phase temporal structure function. Define the temporal lag error (no prediction)

as the average phase variance taken two instants apart, i.e. the temporal structure

function of the phase

D
t

(⌧) =
⌦
|'(⇢, t)�'(⇢, t+ ⌧)|2

↵
(3.85)

which relates to the spatial structure function of phase D' through Taylor’s frozen-

flow hypothesis by

D
t

(⌧) =
⌦
|'(⇢, t)�'(⇢� |v|⌧, t)|2

↵
⇢

= D
⇢

(|v|⌧) (3.86)

with h· · ·i
⇢

the ensemble average over the spatial distances ⇢. Expanding the squared

term and assuming stationarity gives 2(CCC (0) � CCC
t

(⌧)) = 2(CCC (0) � CCC
⇢

(|v|⌧)), where
CCC

t

(·) and CCC
⇢

(·) are the phase temporal and spatial covariance functions developed

in Sec. 2.1.1. CCC
t

(⌧) = CCC
⇢

(|v|⌧) i.e the temporal covariance function is deduced from

the phase spatial covariance function evaluated at ⇢ = |⇢| = |v|⌧ . The phase spatial

structure function is developed in Sec. 2.1.3 and given for a finite outer scale in Eq.

2.34.

It is useful to consider the general formulation for the temporal lag error that is

compatible with the case of atmospheric prediction

�2(⌧) =
D
k'

k

� b
'

k

k2
L

2

(⌦)

E
, (3.87)

where b
'

k

is the phase estimate using any of the predictive models.

In the no prediction case the estimated phase is simply a replication of the phase

at the previous time step, b'
k

= '

k�1

. The temporal lag error from Eq.(3.87) becomes

�2

0

(⌧) = trace
�
⌃' �⌃1

'(⌧)
 
, D

t

(⌧), (3.88)

which is simply the temporal structure function of phase from Eq 3.86, with the 1-step

covariance matrix ⌃1

' = ⌃✓(✓ = |v|⌧)
These temporal structure functions can now be expanded for the case of predicted

phase using various prediction models. The theoretical temporal lag error for the

modal prediction models can be computed and compared to the no prediction tem-
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poral lag error. With the first order models (the AR1 or the SA predictor) one has

directly Eq. 3.88,

�2

lag

(⌧, p = 1) = trace
�
P

✓

�
⌃' +A⌃'AT � 2⌃

1⌧

AT
�
PT

✓

 
, (3.89)

with A = AAR1 for the AR1 model and A = A⇤
�

for the SA predictor model. For the

AR2

�2

lag

(⌧, p = 2) = trace {P
✓

(⌃
'

+AAR2⌃'

AAR2 +BAR2⌃'

BAR2+

�2AAR2⌃1⌧

+ 2AAR2⌃1⌧

BT
AR2 � 2BAR2⌃2⌧

�
PT

✓

 
(3.90)

with ⌃
1⌧

= ⌃(⇢ = v⌧) and ⌃
2⌧

= ⌃(⇢ = 2v⌧).

Likewise for the AR3

�2

lag

(⌧, p = 3) = trace {P
✓

(⌃
'

+AAR3⌃'

AAR3 +BAR3⌃'

BAR3+

+C⌃
'

CAR3 � 2AAR3⌃1⌧

� 2BAR3⌃2⌧

� 2CAR3⌃3⌧

+

+2AAR3⌃1⌧

BT
AR3 + 2BAR3⌃1⌧

CT
AR3 + 2AAR3⌃2⌧

CT
AR3

�
PT

✓

 
(3.91)

with ⌃
3⌧

= ⌃(⇢ = 3v⌧). The matrices ⌃
p⌧

are computed for a fully-developed

turbulence following Eq. 3.40 and thus di↵er from those associated with any specific

model.

The theoretical error introduced due to pure system lag of increasing length is

shown in Fig. 3.7 along with the performance of all the predictive models presented

above.

• The 1-step SA predictor provides the best performance (as expected) for large

lags above ⇠ 5ms, which stems from its optimality (it minimizes the prediction

error variance in Eq. 3.82) and cross-mode prediction. However, the predictor

is only a truncated version: in practice a finite number of modes is to be used.

When more modes are added in, the 1-step SA predictor beats the AR2-3 models

for lower lags,

• For lags below ⇠ 5ms AR models of orders 2 and 3 slightly outperform the

1-step SA predictor estimating the same number of modes since the short term

decorrelation of the AR models is quite similar to that of the turbulence.

• the AR2 is a su�cient model-order above which the performance gains are
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little and not worth the increased complexity for both parameter identification

or real-time processing; an AR2 model presents a temporal PSD / ⌫�4 which

is a good approximation to the actual phase whose spectrum is / ⌫�11/3, with

⌫ = |⌫| the temporal frequency vector modulus,

• although the AR1 has been successfully used in control-oriented models for

Kalman filtering [83, 66, 84], it performs quite poorly to predict phase and is

patently incapable of providing any improvement over the no prediction case.

Simulations show that when the o↵-diagonal values of the 1-step SA predictor

are nulled out, the predictive capability degrades to that of a diagonal AR1,

suggesting that it is this feature that plays the most important role in the

predictive process.
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Figure 3.7: Comparison of temporal lag errors on an equivalent single layer atmo-
sphere see Table 4.2 for further parameters.

Approaching this from a di↵erent point of view, it can be seen that potential gains

in performance can be traded for an increase in limiting magnitude. In the presence

of temporal prediction, the lag error �2

lag

decreases and one can thus achieve the same

performance as the static case when tolerating more measurement noise from fainter

sources. Increased measurement noise, resulting in increased noise propagation �2

np

(averaged over the field) for the same aggregate wave-front error, is defined in the
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first order as

�2

total

= �2

lag

+ �2

np| {z }
�

2

+other terms (3.92)

where ’other terms’ relates to errors that are independent from the system lag (to a

first degree approximation). The latter is computed from Eq. 3.87 whereas the noise

propagation error is

�2

np

= trace
�
R⌃⌘R

T
 
, (3.93)

where the noise covariance matrix⌃⌘ = �2

⌘

I is assumed diagonal with �2

⌘

the measure-

ment noise variance on each WFS sub-aperture. The latter is a decreasing function

of the star brightness, i.e. photon-noise increases for dimmer guide-stars. The prop-

agated noise �2

np

relates to star magnitude by standard centroiding error functions

[85].

The AO system bandwidth is chosen to minimize the error �2 = �2

lag

+ �2

np

. Thus

one has

�2 = �2

np

(m
v

, ⌧) + �2

lag

(⌧, p = 0) = �2

np

(m0
v

, ⌧) + �2

lag

(⌧, p > 0) (3.94)

where �2

lag

(⌧, p = 0) � �2

lag

(⌧, p > 0) and �2

np

(m
v

, ⌧)  �2

np

(m0
v

, ⌧), with m0
v

�m
v

the

limiting magnitude increase.

This rather coarse approximation will give some insight into the potential magni-

tude increase factor. Figure 3.8 plots the result m0
v

� m
v

as a function of lag. The

noise propagation coe�cient used was computed to be �2

np

/�2

⌘

⇡ 0.5, following an

extension to tomography of the analytical derivation in [86].

As expected, the minima in �2 (in blue, ordinate on the right) are achieved for

longer integration times as the GS are fainter. These minima are indicated by vertical

dotted lines, for which red circles indicate the increased limiting magnitudes when the

sources vary from magnitudes 13 to 17. A consistent value around half a magnitude

increase is obtained. Only a full end-to-end Monte Carlo simulation can inform about

the e↵ective magnitude increase gain, considering the actual EE and SR figures of

merit; this numerical simulation is carried out in Chapter 4.
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Figure 3.8: Temporal lag error is traded by increased noise propagation through
the wave-front reconstruction. Black markers: increase in limiting magnitude; blue
markers: combined temporal plus noise propagation error; red circles indicate the
increased limiting magnitudes for the minima of �.

3.3.4 Linear Quadratic Gaussian controller with modal pre-

diction models

Based on the analysis of the various prediction models, the LQG controller formulated

in Sec.4.3.3 was developed using two state transition models: a second order AR

model, and a first order SA model, both applying an explicit layer-by-layer prediction.

In the case of the AR2 model, the state x
k

contains, at any given time, two instances

of the phase estimate vector as the phase estimate at time k+1 is a linear combination

of phase from k and k � 1,

'̂

k+1

= AAR2'̂
k

+BAR2'̂
k�1

. (3.95)

Prediction matrices AAR2 and BAR2 are computed for each layer following the method

laid out in Sec. 3.3.2.

In the case of any first order prediction model, only the current measurement

(corresponding to a specific time in the past) is used and no additional data is required.

A single state LQG controller can therefore be implemented, leading to a significant

reduction in the size of the state matrix. Given the promising performance projected

to be achieved by the first order SA predictor, a single state LQG controller can be
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implemented as follows if a one-step delay is assumed,

ŝ

(↵)

k|k�1

= �P
↵

'̂

k|k�1

'̂

k|k = '̂

k|k�1

+M1(s
k

� ŝ

k|k�1

)

'̂

k+1|k = A⇤
�

'̂

k|k

u

k

= (IM)†�P
�

'̂

k+1|k. (3.96)

The AR2 state transition matrices, AAR2 and BAR2, are block diagonal matrices

with each block, a diagonal matrix of coe�cients corresponding to the AR2 model for

a given layer in the atmosphere whereas the prediction matrix, A⇤
�

is a block diagonal

matrix where each block is a full matrix corresponding to the SA prediction for a

given layer. So the dimensions of the state vector are smaller for the SA case, but

the state transition is more complex. In both cases, the dimensions are still driven by

the number of estimated Zernike modes and the number of layers in the atmosphere

model. The Kalman gain, M1 generates, by construction, an estimate of the phase

in each layer. Its dimensions are driven by the number of Zernike modes, the number

of layers and the number of WFS slope measurements. One can imagine that, if a

large number of layers are being estimated, these matrices could become large and

cumbersome.

The additional asynchronous prediction step can also be carried out before projec-

tion onto the DM commands by applying A
�

computed from any arbitrary prediction

model, although we used the first order SA model in all cases.

3.4 Zonal Reconstructors

A parallel set of tomographic reconstructors following the same progression from

static to predictive to dynamic can be developed with a point-wise representation

of the phase. In this zonal approach, the SH-WFS measurement model remains

unchanged,

s = �'+ ⌘, (3.97)

however � is now a linear transformation from discrete phase points, representing

specific spatial locations, to SH-WFS slopes. It is a two-dimensional concatenation of
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both regular (Simpson weights) stencils and modified stencils to account for physical

edge e↵ects where the pupil of the system leads to partially illuminated WFS sub-

apertures. Each of the modified stencils are computed individually according to the

specific nature of the partial illumination - i.e. how many grid points are cut o↵ by

the pupil, and the configuration of the remaining points. The stencil grid up samples

the WFS lenslet grid by a factor of 2, resulting in a 3 ⇥ 3 stencil overlaid on each

subaperture whose corners make a 2 ⇥ 2 grid. The regular stencil has the Simpson

weights for a fully illuminated subaperture,

2
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The stencils expand the phase as a bilinear spline and compute the phase in each of

the quadrants for each subaperture. The stencil can be generalized for any partially

illuminated subaperture: according to the work done by [87] for the TMT facility AO

system, NFIRAOS, 2
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The values s
i,j

are computed as follows,
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The values a
i,j

are the weights given in Matrix 3.98.

3.4.1 Zonal static MMSE reconstructors

Spatio-Angular MMSE

In this zonal approach, to compute the SA covariance matrix, the separation vector,

r is defined as a function of the altitude of the layer, hl , and the coordinates of

the subapertures, ⇢. Computing the covariance between lenslets on di↵erent WFSs
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requires the position in the pupil of subaperture i on WFS n: (⇢
i,n

), projected into

layer l at hl in the direction of that WFS, (✓
n

). The coordinates of the the subaperture

in any layer are,

[(⇢
xi,n + ✓

xnhl), (⇢yi,n + ✓
ynhl)], (3.101)

and the separation vector between subaperture i on WFS n and subaperture j on

WFS m at layer l is,

r

i,j,l

= (⇢
i,n

� ⇢

j,m

) + hl(✓n

� ✓

m

), (3.102)

where the first term of the right hand side of the equation is the particular separation

between the subapertures in the pupil and the second term is the global WFS sepa-

ration vector. From Eq. 2.13, the phase spatial covariance function for finite outer

scale, the SA covariance matrix between WFSs n and m can be computed for a given

C2

n

profile with N
l

layers for every baseline, r,

⌃(r, r
0

, L
0

)n,m� =
NlX

l=1

fr
0l
⌃�(rl

, r
0

, L
0

), (3.103)

where fr
0l
is the fractional Fried parameter r

0

,
P

l

fr
0l
= 1, L

0

is the outer scale and

r

l

is a concatenation of all the baselines i, j. To simplify notation, this expression is

referred to as ⌃
n,m

.

To be able to use the phase covariance matrices with the input slope measure-

ments, use the phase to slopes model, �,

b
�� = ⌃�,↵�

T(�⌃↵,↵�
T +⌃⌘)

�1

s↵, (3.104)

which is equivalent to Eq. 3.16. Once again, the phase is mapped back onto slopes

in the � directions due to the DM calibration available from the system,

b
s� = �b�� = �⌃�,↵�

T(�⌃↵,↵�
T +⌃⌘)

�1

s↵. (3.105)

Zonal explicit layered MMSE

In the case of the explicit layered MMSE reconstructor in zonal space, the phase

covariance is computed in each layer of the meta-pupil, that is, the number of phase

points increases with layer height to generate h''Ti in each layer according to the
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given sampling and independent of direction. The propagation matrix P✓ introduced

in Sec. 3.2.1 is formulated as the zonal propagation matrix, H✓, which crops the

covariance in each layer in each direction and propagates it into the pupil.

ŝ� = �H�h''TiHT
↵�

T(�H↵h''TiHT
↵�

T +⌃⌘)
�1, (3.106)

where the propagation matrices, H↵,H�, are computed by a bilinear spline inter-

polation between the phase points in the ground grid, z
0

= (x
0

,y
0

) and the phase

points in the grid in the direction defined by the star coordinates in zenith and az-

imuth angle, (⇠,✓), and the height, h
i

, of each atmospheric layer, z
i

= (x
i

,y
i

),

x

i

= h
l

tan⇠cos✓, (3.107)

y

i

= h
l

tan⇠sin✓.

A schematic of the coordinate system is shown in Fig. 3.9a and a plot of the actual

phase-point locations relative to each other for a particular case is shown in Fig. 3.9b.

In the case of astronomical objects (NGSs or science targets), which are located

at infinity, the grid spacing, d
0

, is the same in both ground and layer grids and the

o↵set of the phase points in the layer relative to the ground are defined as,

u =
x

i

� x

0

d
0

(3.108)

v =
y

i

� y

0

d
0

.

In the LGS case, the grid is scaled according to the altitude of the layer and the

distance of the LGS from the telescope to account for the cone e↵ect. Using these

coordinate grids, H(⇠,✓) executes a two dimensional linear interpolation,

H =

(
(1� |u|)(1� |v|), |u|, |v| < 1

0, elsewhere
(3.109)

3.4.2 Predictive Spatio-Angular MMSE

Applying the Taylor frozen flow hypothesis [77] to equate spatial displacement within

the pupil to temporal delay at a fixed position in the pupil, a single step pupil-plane

predictor can be developed by leading out the computation in the direction of the

wind profile. As a result, the reconstructor given in Eq. 3.105 is computed with a
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Figure 3.9: Top: Coordinate system used to define the coordinates of phase point
grid centre in an atmospheric layer at altitude h. Bottom: Phase point locations:
The ground grid (black diamonds) is expanded to fill the meta-pupil at layer i (blue
crosses) and the target phase point locations (red dots) must be interpolated onto
the ground grid locations.
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modified direction vector. To compute the predictive covariance between the OL-

WFS directions, ↵
n

and the science object directions, �
m

, shift the global separation

vector in each layer according to the wind velocity, v, and the sample time, T
s

,

� = vT
s

(3.110)

r

m,n

i,j,l

= (⇢
i,n

� ⇢

j,m

) + hl [↵n

� (�
m

+ �)]. (3.111)

Following Eq. 3.104 above, the predicted phase in direction � can be expressed as

�

(�)
k+1

= �

(�+�)
k

= ⌃�+�,↵�
T(�⌃↵,↵�

T +⌃⌘)
�1

s↵(k). (3.112)

The notation ⌃✓+� used here, and in following sections, is representative of a covari-

ance function adjusted by a small angle that is a function of �. As in the modal SA

prediction in Sec. 3.3.2, this reconstructor will have the same dimensions as the static

reconstructor and adds no computational complexity to the real-time path.

This computation is e↵ectively two steps in one, combining spatial and temporal

estimation into a single step. This is fine for the stand-alone prediction, however the

two steps must necessarily be split up in the zonal SA LQG controller introduced in

the next section. It can be verified that doing the two steps separately is equivalent

to the all-at-once reconstructor:

Proof. All-at-once vs. two-steps scheme

Given the properties of the conditional expectation, namely

E{�|S = s} = E{�|E{Y |S = s}} (3.113)

the all-at-once and the split spatial plus temporal estimations should be the same.

Take the single step calculation

b
�

(�)

k+1

= E{�(�)
k+1

|�(↵)

k

} = ⌃�+�,↵⌃
�1

↵,↵�
(↵)

k

, (3.114)

and compare it to the two-step calculation which reads

b
�

(�)

k+1

= E{�(�)
k+1

|E{�(�)
k

|�(↵)

k

}} = ⌃�+�,�⌃
�1

�,�⌃�,↵⌃
�1

↵,↵�
(↵)

k

. (3.115)

The SA prediction model given in Eq. 3.83 can be recast as a spatial transformation
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model and defined in terms of the pupil-plane phase,

A⇤
�

=
⌦
�✓�

T
↵

↵ ⌦
�↵�

T
↵

↵�1

. (3.116)

Take now �� = A⇤
�

�↵. Thus
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(↵)

k

. (3.117)

It can also be shown numerically that ⌃�+�,↵ = ⌃�+�,�⌃
�1

�,�⌃�,↵.

Equation 3.116 naturally gives rise to a time evolution model of the first order.

The state noise covariance matrix can be likewise computed from Eq. 3.47 for the

zonal case. It turns out that the method presented here generalizes that presented in

[80] to fractional pixel shifts in 2-dimensional directions. Since we are concerned with

phase prediction, the method works out to shift the phase screen in the appropriate

wind direction with shifts given by |v
l

|cos(✓
l

) and |v
l

|sin(✓
l

) for layer l. Furthermore,

the new turbulence that enters in the telescope aperture is estimated using spatial

correlations with all the points in the aperture, not just a few columns of spatially

close-enough turbulence as is the case for phase-screen generation in [80]. Both meth-

ods can finally be seen as a moving aperture over the phase screen where the newly

seen turbulence term is generated on-the-fly. The time however is reversed in both

methods.

It is important to note that this model is specific for frozen-flow, which is but part

of the actual atmospheric disturbances, creating a robustness problem. A finely tuned

model for frozen-flow will generate the best performance in the case of a match to the

real atmosphere, but will, in all likelihood, perform more poorly for the general case.

The numerical simulations and laboratory generated turbulence in this dissertation

use translating phase-screens and thus do not allow to fully investigate this claim.
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3.4.3 Bi-linear spline interpolation model

Figure 3.10 depicts an analytical covariance matrix and a thresholded A⇤
�

from Eq.

3.116. It is apparent that the optimal one-step estimator is largely dominated by a

diagonal term that simply shifts the phase in the appropriate direction. Note however

that points outside the pupil entering the telescope (upper band in Fig.3.10-right) are

computed using their respective covariance function with points inside the pupil. We

thus expect the bilinear interpolation to be a reasonable approximation to the near-

Markov model but with degraded performance.
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Figure 3.10: Left: Spatial phase covariance matrix (single-layer, squared pupil, sam-
pled with 33 points across). Right:MatrixA⇤

�

for an horizontal shift of 0.5m. Sampling
0.25m. The optimal one-step estimator is largely dominated by a diagonal term that
simply shifts the phase in the appropriate direction. The same stands when the shifts
are not integer factors of the spatial sampling. In that case, A⇤

�

becomes more pop-
ulated with up to four main diagonals that interpolate every single point based on
correlations with neighbouring 4 points. Matrix shown for entries > 10�4.

3.4.4 Zonal Linear Quadratic Gaussian controllers

Pupil-plane LQG with Spatio-Angular prediction model

The SA formulation can easily be extended to a state-space model providing a full

dynamic WF reconstruction using the LQG framework. Unlike previous work [88]

we resort to a full-SA LQG which has several computational advantages to add to

those stated above, in particular a reduced number of states, admitting a minimal

representation with a single WF instance at a given time-step.
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In the pupil-plane LQG, the spatio-temporally optimal estimate of the phase in

the pupil at time k + 1 in the direction of the GSs is made,

b
s

k|k�1

= �b�
(↵)

k|k�1

b
�

(↵)

k|k = b
�

(↵)

k|k�1

+M1(s↵ � b
s

k|k�1

)

b
�

(↵)

k+1|k = A⇤
�

b
�

(↵)

k|k . (3.118)

The predictive model, A⇤
�

is the SA model developed for zonal space in Sec. 3.4.2,

except that instead of leading o↵ the position vector in the science direction, Eq.

3.111 is rewritten as,

r = (⇢
i,n

� ⇢

j,m

) + hl [↵n

� (↵
m

+ �)], (3.119)

for n,m = 1 : N
GS

including the cases where n = m, with N
GS

the total number of

GSs. From this lenslet position vector, the prediction matrix, A⇤
�

can be defined as,

A⇤
�

= ⌃↵+�,↵⌃
�1

↵,↵. (3.120)

It can be seen in Eq. 3.118 that the result of the controller is the estimate of the

predicted phase in the GS directions. The predicted phase in the science directions

are then computed from b
�

(↵)

k+1|k using the static SA reconstructor,

b
�

(�)

k+1|k = ⌃�,↵⌃
�1

↵,↵
b
�

(↵)

k+1|k. (3.121)

Thus executing the two-step temporal then spatial scheme discussed in Sec. 3.4.2.

Once again, this algorithm is expressed assuming integer frame delays. A single frame

delay can be assumed in generating the estimated phase, b�
(↵)

k+1|k and, subsequently,

the extrapolation to the science direction given in Eq. 3.121 can be replaced by,

b
�

(�)

k+1+�|k = ⌃�+�,↵⌃
�1

↵,↵
b
�

(↵)

k+1|k. (3.122)

Explicit LQG in phase space

In the explicit layer algorithm, the state vector may contain several instances of the

phase vector which itself contains a vector for each layer in the atmosphere model,

' = ['
1

,'
2

, . . . ,'
Nl
]T. The dimensions of various matrices therefore scale with
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the number of layers. Additional matrix multiplications which propagate the phase

between the layers and the pupil (H↵) must also be carried out at each time step.

Assuming a single state is used, the real-time steps of the explicit layered LQG in

zonal space are as follows,

b
s

k|k�1

= �H↵b'
k|k�1

b
'

k|k = b
'

k|k�1

+M1(s↵ � b
s

k|k�1

)

b
'

k+1|k = A'b'
k|k

b
�

(�)

k+1|k = H�b'
k+1|k. (3.123)

The prediction model, A', is a block-diagonal matrix composed of SA A⇤
�

(l) which

predict the phase in each layer at time-step k + 1; it is computed using the same

principle as the SA LQG prediction model in Eq. 3.118, but over the larger meta-

pupil of each layer,

A' = ⌃'+�,'⌃' (3.124)
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775 (3.125)

where 'i

0

is the meta pupil phase in layer i directly above the pupil, and 'viTs
is the

meta-pupil phase in layer i shifted by the Taylor frozen flow approximation by the

distance equal to the layer wind velocity times the sample period.
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Chapter 4

Results of Tomographic Wavefront

Reconstruction Simulations of

Raven

System modelling of Raven was carried out in two stages. Stage one involved the study

of a broad swath of parameter space using two independent simulation platforms. The

parameter space was explored in order to establish and/or verify design parameters,

as well as make the initial determination that Raven can realistically achieve the

proposed performance requirements and deliver useful MOAO-corrected images to

the Subaru IRCS spectrograph. Stage two focussed specifically on implementing the

tomographic reconstructor algorithms developed in Chapter 3. The intentions of stage

two were three-fold: fully understand the expected performance and system limits in

the baseline case; gain a platform-specific estimate of the computational complexity

required both to execute each reconstructor in the AO loop and compute them in

the background, and finally, evaluate the relative performance of each reconstructor.

The most promising algorithms, in terms of performance increase, were selected and

ported to the Raven system in order to test with the telescope simulator.

This chapter begins with a full description of the end-to-end simulation of the

Raven system, including a series of validation tests which confirm that the simulation

tools are performing as expected. A summary of the stage one parameter space study

follows. Finally the results of the stage two reconstructor study are presented in

detail. Some extensions based on the specific optical design of Raven are included at

the end of the chapter.
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4.1 End-to-end simulation

The OOMAO (Object Oriented MATLAB Adaptive Optics) modelling library, a

MATLAB-based AO simulation tool [89], is a set of MATLAB classes developed

for the purpose of facilitating a clear and accessible end-to-end model of an AO sys-

tem. Objects from the di↵erent classes are assembled to perform di↵ractive numerical

modelling of the optical components of an AO system. OOMAO can be seen as an

extension of the MATLAB language; overloaded operators are used to propagate the

wavefront through the system and to update the status of each object. Asterisms

can be defined, using the source class, with any number of guide stars in constella-

tions specified by polar coordinates. The source class has a very important role in

the OOMAO library as it is the link between other classes. A source object carries

a wavefront, both amplitude and phase, through the di↵erent objects representing

the atmosphere, the telescope, the wavefront sensor, etcetera. Both NGS and LGS

asterisms can be simulated. Currently all guide stars in the same asterism are defined

with the same magnitude and wavelength. Science source objects can be defined in-

dividually, assigned their own magnitude and wavelength, and placed at any point

in the FoR. Using these classes, an end to end open loop model of Raven has been

developed with movable science objects in an adjustable asterism.

In all simulation results that follow, a thresholded CoG algorithm was used to

measure the spot positions on the WFSs, although more sophisticated centroiding

algorithms, such as correlation centroiding, are planned for implementation on Raven

in the future.

4.1.1 Temporal properties

Tests were performed to ensure the statistics of the model were behaving as expected.

This included a study of the temporal decorrelation of Zernike modes in the simulated

atmosphere object. The theoretical temporal decorrelation of several modes was com-

puted as described in Sec. 3.3.2 and compared to the temporal covariance computed

from the modal decomposition of a long series of simulated phase measurements taken

at di↵erent sampling rates. Initially, the temporal behaviour of the simulated phase

was not sample-rate independent and did not match the theoretical curves (Fig. 4.1).

The phase screens are generated as needed based on sampling time, wind speed,

wind direction and pixel scale. It is done using the method described in [80]. It

was thought that there might be a fundamental limitation in the method, however



82

0 0.5 1 1.5 2
−0.5

0

0.5

1

Z
2

 

 

0 0.5 1 1.5 2
−0.5

0

0.5

1

Z
3

0 0.5 1 1.5 2
−0.5

0

0.5

1

Time (s)

Z
4

 

 

0 0.5 1 1.5 2
−0.5

0

0.5

1

Time (s)

Z
5

Theoretical temporal auto−corelation

data sampled at 250Hz

data sampled at 100 Hz

Figure 4.1: Atmosphere simulated phase temporal auto-corelation compared to the-
ory: Does not match.

fixing an error within the implementation handling interpolation of fractional pixel

translations of the phase resolved the issue, leading to good agreement between theory

and simulated data independent of sample rate for the first 0.5 seconds (Fig. 4.2).

Di↵erences after that time window likely arise due to the finite set of measurements

used to compute the auto-correlation. The temporal prediction is carried out only

over intervals up to 50ms where the simulation is a good match to theory.

4.1.2 Spatial properties

The spatial covariance of the simulated phase was computed in Zernike space from a

large series of simulated data and compared to the theoretical expectation (see Sec.

3.3.1). The values of the diagonal (spatial auto-corelation of each mode) are compared

in Fig. 4.3 and it can be seen that the simulation is producing phase screens with the

expected spatial properties.

4.1.3 WFS linearity

The open-loop nature of an MOAO system means the WFS is seeing the full atmo-

spheric disturbance rather then a residual error. It is a concern that the larger spot

motions will push the SH-WFS out of the linear regime, especially as SNR decreases
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Figure 4.2: Atmosphere simulated phase temporal auto-corelation matches theory for
any sample rate after code correction.
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Figure 4.3: Atmosphere simulated phase spatial auto-corelation compared to theory:
Good agreement.

for NGSs of increasing magnitude. A simple test, where a tilt of increasing magni-

tude was introduced to the modelled WFS and the slopes measured for each tilt step,

showed decreasing adherence to the linear model with increasing NGS magnitude
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(Fig. 4.4a). However, the introduction of a threshold before computing the slopes

eliminated the error almost entirely (Fig. 4.4b). As the CoG is almost certainly going

to be thresholded on the real system, this is a necessary parameter and is realistic to

use.
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Figure 4.4: Linearity test of the di↵ractive model of a SH WFS as a function of
magnitude without threshold (left) and with threshold (right).

4.1.4 WFS noise

Photon noise and read-out noise are added to the simulated WFS camera frame at

read-out. The photon noise has Poisson statistics, scaled by an excess noise factor ofp
2 to reflect the photon noise characteristics of the EMCCD cameras used in Raven.

Read-out noise is kept low by these cameras and is set between 0.2 and 0.5 events.

The simulated WFS spot images are shown in Figs. 4.5a and 4.5b for a bright star

(magnitude 0) and a dim star (magnitude 13).

4.1.5 Science images

Verification of the science images was carried out by measuring the FWHM of a long

exposure of an uncorrected science object on the simulated imager. The theoretical

estimate of the FWHM of the long exposure PSF for the baseline atmosphere in J

band (1.2 µm) can be computed for a finite outer scale using the expression developed

in [90] for the ratio, L
0

/r
0

> 20. Starting from the expression of FWHM for infinite
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WFS spots: Mag 0 R−band NGS
1.087x1010 photons (m−2 s−1)
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WFS spots: Mag 13 R−band NGS
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Figure 4.5: Simulated WFS noise properties and photon counts.

outer scale,

✏
0

= 0.98
�

r
0,�

, (4.1)

where the Fried parameter given at 0.5µm can be scaled with wavelength according

to the 6/5 power law,

r
0,�

= r
0

✓
�

0.5

◆
(6/5)

, (4.2)

the modified FWHM due to the atmosphere given a von Kármán model is given as,

✏
vK

= ✏
0

p
1� 2.183(r

0

/L
0

)0.356. (4.3)

With r
0

= 0.156cm at 0.5µm and L
0

= 30m, this computation yields an expected

FWHM of 0.389 arc seconds in J-band. A two dimensional gaussian was fit to a

simulated long exposure science image in J-band from which the FWHM in pixels

was extracted and converted to arc seconds by multiplying by the applied pixel scale

in the simulated imager. The result of this computation was a simulated FWHM of

0.387 arc seconds, confirming good agreement between theory and simulation.
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4.2 Parameter space study

The main focus of this study was setting the basic system parameters, such as system

order, field of regard, and the limiting magnitude. To understand how performance

varies with these and other parameters, we defined an asterism with 3 NGS on a ring

with a 45 arc-second radius and evaluated the performance at multiple field points

within that circle (in some simulations a LGS WFS was included at the field centre).

The average performance is defined over points out to 30 arc-seconds from the field

centre (excluding the field centre when a LGS was used in the simulation).

The analysis was undertaken using two independent simulation platforms: MAOS

(Multi-threaded Adaptive Optics Simulator) and OOMAO. MAOS is an AO simula-

tion tool developed in C by Lianqi Wang and TMT. A more detailed description of

the MAOS code and the results of the parameter space study are available in [51] in

Appendix A.

The figure-of-merit used to establish the quality of the wavefront correction is the

EE, SRs are also computed, as it is a value of interest to the astronomical community,

both quantities are described in Sec. 2.1.4.

As an initial validation, a comparison of results between the two simulation tools

was made. The predicted Raven performances from the MAOS and OOMAO simula-

tions of the baseline system (Table 4.2) are in excellent agreement. Both simulation

tools predicted a mean Strehl ratio of 30% for the points within 30 arc-seconds of

the field centre. The two simulations also predicted an identical 43% ensquared en-

ergy in this area. Only the mean wavefront error (WFE) di↵ered slightly; MAOS

predicted a slightly lower mean WFE of 290 nm while OOMAO predicted 300 nm

rms of WFE. The minimum WFE, reached at the NGS radius, is 220 nm rms. This

is higher than the 180 nm rms best case WFE obtained with MAOS. It is suspected

that either the thresholded CoG used by OOMAO gives slightly poorer performance

than the matched filter used in MAOS under these conditions, or the finite number of

radial orders (8 in this case) of the static modal spatio-angular reconstructor, used as

the preliminary test case, for doing tomography with OOMAO, limits the simulated

performance. Overall, however, the excellent agreement between these two indepen-

dent AO simulation tools provided confidence in our results and signalled that both

tools can be used interchangeably in Raven simulations. The subsequent studies of

tomographic reconstructions were carried out in OOMAO.

The TMT MASS/DIMM site survey data from site MK 13N [91] (on Mauna Kea)
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Table 4.1: Subaru Model Profiles for Raven

h Fractional Layer Strength
(km) 25% 50% 75%
r
0

19.4 cm 15.6 cm 12.1 cm

0 0.6823 0.5960 0.4971
0.5 0.0611 0.0963 0.1382
1 0.0212 0.0325 0.0577
2 0.0172 0.0372 0.0642
4 0.0757 0.0869 0.0833
8 0.0486 0.0684 0.0895
16 0.0939 0.0826 0.0700

was used to assemble a realistic multi-layer profile. The TMT site survey group

created 7 layer profiles by sorting the thousands of individual MASS/DIMM profiles

by the calculated �
fit

+ lag error (uncorrectable residual WFEs). While this quantity

is not equivalent to image quality (IQ), it is an acceptable representation. To assemble

representative profiles corresponding to the quartiles of this residual WFE, 10% of

the profiles clustered around the quartiles were averaged.

We complemented these MASS/DIMM profile measurements with measures of

Subaru IQ taken between 2000 to 2004 [92]. The image-quality derived r
0

values are

smaller than the TMT site testing r
0

measurements. One can interpret these di↵er-

ences as being due to the local ground layer at the Subaru telescope, windshake, and

dome seeing. Assuming an infinite outer scale, we determined the Fried parameter,

r
0

, for each quartile of IQ, generating 3 new profiles with much stronger ground layer

components (Table 4.1).

The added dome/ground seeing component in these profiles skews the fraction of

the turbulence below 1 km to be greater than 60%. We simulated the performance of

Raven using the median Subaru profile defined above. The 3 NGS were placed on a

45 arc-second radius ring and the WFSs have 10 subapertures across the pupil. The

performance was sampled across the FoR out to 60 arc-seconds, as shown in Fig. 4.6.

The results for that system using a static modal reconstructor is shown in Fig.

4.7. A system order trade study outlined in [51] concluded that little improvement in

performance can be gained (with Raven) for higher order systems. A study of asterism

diameter also showed that there is limited improvement on an 8m telescope for guide
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r = 45” 

60######45######30##########0##########30######45######60#
[arcseconds]#

Figure 4.6: Baseline test configuration: A regular asterism with a radius of 45”,
performance was sampled at regular intervals from on-axis out to 60” in opposite
directions. Average performance is computed from samples out to 30” regardless of
asterism radius.

Figure 4.7: Performance for baseline system. Blue triangles are rms WFE from full
error signal, green squares are T/T removed rms WFE (left axis). Open circles are
EE and red X’s are Strehl ratio (right axis).

star separations greater than 2 arc-minutes diameter, as the footprints of the NGSs in

the metapupils separate at relatively low altitudes, leaving much of the atmospheric
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turbulence unsensed and uncorrectable, while reducing the asterism diameter clearly

reduces the field over which targets can be selected. Correction can still be carried

out when a target is outside the asterism, but the narrower the asterism, the faster

performance falls o↵. The performance as a function of Science target position within

asterisms of increasing diameter is shown in Fig. 4.8. Here it can be seen that a 2 arc-

min asterism meets or exceeds the 30% EE requirement over the entire sample range,

using a larger asterism means there will be a reduced fraction of the sky enclosed by

the asterism over-which the minimum performance can be met.

Figure 4.8: Performance for asterisms of varying diameter: Green squares are WFE
(left axis). Open circles are EE and red X’s are Strehl ratio (right axis).
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4.3 Modal reconstructors results and analysis

A series of numerical simulations will show the improvement in system performance,

in terms of EE and SR, starting from the static and predictive modal reconstructors in

Zernike space developed in Secs. 3.3.1 and 3.3.2, leading up to the fully optimal LQG

controller presented in Sec. 3.3.4. A concise summary of the results and formulations

of the static and predictive modal reconstructors is available in [58].

A systematic survey of the performance trade-o↵ as a function of the temporal lag

and SNR parameter space was undertaken in order to establish the peak performance

achievable for each type of reconstructor for NGS magnitudes increasing from R = 13

(bright in this context) to R = 17. This is done with the goal of confirming the

preliminary assessment given in Sec. 3.3.3 that carrying out temporal prediction using

an AR2 model can lead to an e↵ective increase in the system’s limiting magnitude by

half a magnitude and the SA model can provide an increase of one magnitude. The

study will also provide an estimate of how much the LQG algorithm can be expected

to improve the limiting magnitude.

Results of Monte Carlo numerical simulations show the system performance using

EE and SR as the benchmark figures of merit. Simulation parameters were selected

to reflect the laboratory observing conditions of Raven with the telescope and at-

mosphere simulator. This includes an asterism of 3 NGSs within a 2.5 arcmin FoR.

In this case, an asterism with a radius of 0.5 arcmin was selected in order to reduce

tomographic errors and highlight the temporal aspects of system performance. The

full set of simulation parameters are listed in table 4.2.

4.3.1 Static reconstructors: Verifying the equivalence of ex-

plicit and SA formulations

The primary objective in developing the static reconstructors was to demonstrate the

equivalence of the explicit layer estimation and the pupil-plane SA estimation. The

explicit estimate of the phase in the atmospheric layers provides a wealth of informa-

tion that is useful for the more complex prediction algorithms; however, the real time

computational load scales with the number of layers in the atmospheric model. By

contrast, the real-time complexity of the SA reconstructor remains identical regard-

less of the number of atmospheric layers, only increasing the computational load of

the background task required to generate the reconstructor itself. There is, therefore,
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Table 4.2: Raven Baseline Configuration Parameters used in all modal simulation
cases presented below.

Telescope
D 8 m
Atmosphere
r
0

15.6 cm
L
0

30 m
zenith angle 0 deg
Fractional r

0

[0.596; 0.224; 0.180]
Altitudes [0; 5:10] km
wind speeds [7.5; 12.5; 15]m/s
wind direction [0; 0; 0] deg
Wavefront Sensor
RON 0.2 e�

N
NGS

3
NGS radii 30 arcsec
Order 10⇥10
✓
pix

0.4 arcsec
N

pix

15
f
sample

30-200Hz
�
WFS

0.64µm
Centroiding algorithm thresholded Centre-of-Gravity
DM
Order 11⇥11
stroke infinite
influence cubic
AO loop
pure delay 3ms
controlled modes N

z

=55
reconstructor N

p

= 406 modes
predictor 90 modes
Evaluation
�
evl

1.65µm (H-band)

a trade-o↵ which exists between model accuracy, computational complexity and the

amount of information generated by the algorithm.

The simulation results confirm the theoretical computation made in Sec. 3.3.1

which indicated that the performance of the explicit layered reconstructor would

approach that of the SA reconstructor as the number of radial orders used to generated
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the component covariance matrices was increased. The measured EE as a function

of radial order for the baseline test parameters (with an asterism diameter of 1.5

arc-minutes) is shown in Fig. 4.9. As predicted, the error becomes very small at 27

radial orders and becomes negligible at 36 radial orders.
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Explicit−tomography reconstructor

Spatio−Angular reconstructor

Figure 4.9: As the number of Zernike modes used to compute the explicit layer re-
constructor increases, system performance approaches that of the spatio-angular re-
constructor which is computed using an analytical expression and e↵ectively accounts
for an infinite number of modes.

4.3.2 Comparison of first and second order predictive models

Based on the analysis carried out in Sec. 3.3.2, the AR2 and SA prediction models

were implemented in simulation and their performance compared to the static recon-

structor at various frame rates and NGS magnitudes. The results of the numerical

simulations are shown in Fig 4.10 and summarized in table 4.3. Following sec. 3.2.4

turbulence is expanded on 27 radial orders (i.e. 406 modes) from which 9 radial or-

ders (55 modes) are controlled. Because the parameter identification is carried out

mode-by-mode, despite parallelization and the speed up achieved by the minimiza-

tion described in Sec. 3.3.2, the computational load is high. As such, the predictive
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models are computed for 90 out of 406 modes per layer with no significant e↵ect on

the overall performance.

The data show the peak system performance in SR and EE, on the Subaru IRCS

140 milliarcsecond slit, for a 30 arc-second radius asterism of 3 guide stars of the

same magnitude, and the corresponding sampling rate at which the peak occurs for

each of three algorithms: Static SA, 2-step predictive using an AR2 model, and 1-

step predictive using the SA predictive model. For interest and comparison purpose,

the AR1 model was also tested. Lags corresponding to frame-rates of 30 to 200

Hz were tested. The simulation incorporates the fixed system lag of 3ms allotted for

camera readout, data processing and issuing of DM commands. In order to model the

delayed application of the DM commands in the middle of an exposure, the system

is attributed a fixed sample rate of 1kHz. The resulting output phase is summed

over the first 3 milliseconds (three samples) before the new DM command is applied;

subsequently, the output phase for the remaining total exposure time is added to

these first frames to make a total exposure of the desired length. Each simulation

run collected 2000 exposures before computing the SR and EE.

The results confirm that a reduction in frame-rate, combined with SA temporal

prediction – as noted in [60] – will allow the system to achieve a level of performance

for a given GS magnitude which is equal to the performance with a static reconstruc-

tor using GSs one magnitude brighter, and the performance with an AR2 predictive

reconstructor using GSs half a magnitude brighter. The results confirm the compu-

tations shown in Fig. 3.7 that estimate no reduction in temporal error with the use

of an AR1 prediction model.

The simulated science image obtained using the static reconstructor is shown

next to that obtained using the SA prediction model in Fig. 4.11 when using NGSs

of magnitude 17 and OL-WFSs operating at 25Hz.

4.3.3 LQG results and analysis

Based on the results obtained with the di↵erent prediction models in Sec. 4.3.2, the

LQG controllers introduced in Sec. 3.3.4 were implemented in Zernike space. First,

the AR2 prediction model was used in a two-state controller and an improvement in

SR indicates an increase in limiting magnitude by up to 1.5 magnitudes. The increase

in EE gives an equivalent performance at magnitude 17 as that obtained with a static

reconstructor at magnitude 14.
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Table 4.3: Raven End-to-End simulation results. The optimal performance ( % en-
squared energy) for each GS magnitude is shown for three reconstructors: the static
MMSE, Spatio-Angular prediction and the AR2 prediction model. AR1 prediction is
included for comparison purposes

GS mags static MMSE AR2 prediction
(R) EE lag [ms] Strehl lag [ms] EE lag [ms] Strehl lag [ms]

14.0 35.70 7 30.08 7 35.83 9 30.71 10
14.5 35.39 7 28.70 9 35.65 10 29.89 11
15.0 35.32 9 26.69 10 35.38 10 28.38 12
15.5 34.48 10 24.39 12 35.27 12 26.85 14
16.0 33.61 12 21.58 14 34.12 14 24.23 17
16.5 32.24 14 18.05 17 33.59 18 21.60 21
17.0 30.39 18 14.39 27 32.16 21 17.91 28

SA prediction AR1 prediction
EE lag [ms] Strehl lag [ms] EE lag [ms] Strehl lag [ms]

14.0 36.70 9 32.26 10 35.67 8 30.09 8
14.5 36.41 9 30.98 10 35.59 9 28.73 9
15.0 36.00 9 29.74 12 35.11 9 26.71 12
15.5 35.49 12 28.47 17 34.38 10 24.32 13
16.0 35.34 23 26.95 24 33.30 12 21.29 14
16.5 35.10 27 24.81 27 31.98 14 17.97 18
17.0 34.24 33 21.41 33 30.27 19 14.30 28

The success of the stand-alone SA prediction model also translated into improved

performance within the LQG algorithm, making an incremental gain over the LQG

with the AR2 model. Overall, it increased both Strehl and EE values well above the

performance of the static reconstructor. Recall that both the modal SA and AR2

LQG carry out an estimate of the predicted phase in each layer of the atmosphere

model before propagating the estimated phase into the pupil plane in the direction of

the science objects, but the benefit of the SA prediction model is that it only requires

the state vector to contain the phase vector from a single time step, reducing the size

of the state vector by a factor of 2. The simulation results for the LQG implemented

with each prediction model are summarized in Table. 4.4 and Fig. 4.12, which again

show the best performance for each algorithm at increasing GS magnitudes and the

sample time at which that performance was obtained.
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Figure 4.10: Simulation results showing peak values of Strehl ratios (top) and en-
squared energy (bottom) and the WFS framerate at-which they occur as a function
of tomographic algorithm for each magnitude using stand alone prediction models
AR1, AR2 and 1-step SA.

4.3.4 Meeting Raven science requirements

The numerical simulation results presented in the sections above were carried out

with tight asterisms (r = 0.5’) in order to reduce the tomographic error and highlight
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Figure 4.11: The simulated science images for the SA predictive model (left) and the
static reconstructor (right) in modal space.

Table 4.4: Raven End-to-End simulation results. The optimal performance ( % en-
squared energy) for each GS magnitude is shown for the LQG reconstructor using the
Spatio-Angular prediction model and the AR2 prediction model.

GS mags LQG with AR2 LQG with SA
(R) EE lag [ms] Strehl lag [ms] EE lag [ms] Strehl lag [ms]

14.0 43.05 10 36.90 10 45.36 10 41.42 15
14.5 42.56 11 35.28 15 44.84 16 40.63 22
15.0 42.30 11 33.59 14 44.58 15 40.01 23
15.5 41.22 12 30.79 15 43.98 17 37.37 22
16.0 39.57 15 27.36 19 43.58 25 36.88 27
16.5 37.84 16 23.63 24 42.99 30 34.01 33
17.0 35.26 20 19.41 29 41.89 36 30.12 35

the e↵ects of reduced temporal errors. The original science requirement for Raven

states that an EE of 30% should be achieved in H-band in the baseline case, that is for

an r
0

of 0.156m and an asterism diameter of 1.5 arc-minutes. The initial trade study

in [51] concluded that this could be met for NGSs no dimmer than magnitude 14.5

using a static reconstructor and thresholded CoG centroiding algorithm at a reduced

framerate of 180Hz. This was confirmed by the current model and a composite plot

(Fig. 4.13) of system performance with increasing lag at each magnitude for each type

of reconstructor shows that simple prediction (AR2 model) will bring performance

with magnitude 15 NGSs up to the limit, and LQG with SA prediction will bring
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Figure 4.12: Static modal reconstructor is replotted against the modal LQG algorithm
simulation results using the AR2 prediction model and the SA prediction model.
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performance with magnitude 17 NGSs well over the limit, confirming that the results

obtained with low tomographic error hold under less favourable conditions.
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Figure 4.13: The use of more complex predictive algorithms will allow Raven to meet
scientific requirements using dimmer NGSs therefore increasing sky coverage.

4.4 Zonal basis results and analysis

The Zernike basis is an intuitive and well established space for WF reconstruction,

however the need to take into account a large number of modes above those being

corrected to avoid aliasing, and other long computational steps in the background

process make the modal reconstructors largely impractical to implement on Raven.

It is certainly possible to streamline the background tasks through e�cient program-

ming, but that was not the primary focus of this project. The zonal reconstructors

described in Sec. 3.4 are overall much quicker to compute. As was shown in Sec.

3.4.4, a very minimal implementation of the zonal LQG was established by taking

advantage of the specific architecture of MOAO (this could also be developed in modal

space but the high background computational complexity would remain). The static,
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predictive and LQG algorithms in zonal space were implemented in simulation and

the results are shown here.

4.4.1 Static reconstructor

The static zonal SA reconstructor has the benefit of being much faster to compute

than its counterpart in the modal basis. It was also found in simulation that the per-

formance of the zonal representation slightly exceeds that of the modal representation,

even when accounting for the spatial aliasing in the computation and reconstructing

the maximum number of radial orders that can be estimated in the system (Fig.

4.14).
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Figure 4.14: Static reconstructors in zonal and modal basis. A discrepancy in perfor-
mance can be traced to modal aliasing.

It was later established that the cause of this mis-match was the non-analytical

measurement model, � used in simulation to convert slopes to Zernike coe�cients. A

modal DM calibration step was used, leading to spatial aliasing, where an analytical

expression from the derivatives of Zernike polynomials would have been more accu-

rate. When this analytical expression is implemented, the overall performance of the

two reconstructors matches very well.

A numerical comparison of the Explicit,

ŝ� = �H�⌃'H
T
↵�

T(�H↵⌃'H
T
↵�

T +⌃⌘)
�1

s↵ (4.4)

and SA versions of the static slopes estimates,
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ŝ� = �⌃
(�,↵)

�T(�⌃
(↵,↵)

�T +⌃⌘)
�1

s↵ (4.5)

show that the maximum di↵erence between the matrices H�⌃'H
T
↵ and ⌃

(�,↵)

and, likewise the di↵erence between H↵⌃'H
T
↵ and ⌃

(↵,↵)

is 0.5% in both cases.

This can be attributed to the interpolation between phase points taking place in the

layers as well as the computation of the covariance matrices, ⌃' and ⌃
(↵,↵)

using

di↵erent amounts of information - in the former case, the number of phase points

used in the computation grows with the height of the layer and in the latter case

the computation is always carried out on phase points in the pupil. In the Raven

end-to-end simulation, these small numerical di↵erences translate into a di↵erence in

performance results of �SR = 0.32% and �EE = 0.36%.

4.4.2 Predictive reconstructor

After an extensive examination of layer-based prediction in modal space, this sec-

tion will focus strictly on pupil-plane SA prediction in the zonal basis. This is easily

justified by a comparison of the component matrices of the predictive explicit recon-

structor,

ŝ(k + 1)� = �H�⌃('+�)

HT
↵�

T(�H↵⌃'H
T
↵�

T +⌃⌘)
�1

s(k)↵, (4.6)

and the predictive SA reconstructor,

ŝ(k + 1)� = �⌃
(�+�,↵)

�T(�⌃
(↵,↵)

�T +⌃⌘)
�1

s(k)↵. (4.7)

The same amount of numerical di↵erence is seen between H�⌃('+�)

HT
↵ and ⌃

(�+�,↵)

as in the static case, and �SR = 0.38% and �EE = 0.35% in simulation.

First order spatio-angular MMSE prediction in phase space

Only the first order SA predictive model was implemented in zonal space. The results

of the simulations comparing the peak performance for each magnitude to the static

reconstructor are shown in Fig. 4.15 and summarized in Table 4.5. An interesting

trend, also present in the modal case, is the di↵erence between the WFS integration

times at which the best EE and the best Strehl ratio are achieved. It is therefore

important to understand the figure of merit for a given system in order to optimize
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performance.
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Figure 4.15: Strehl ratios and ensquared energy as a function of algorithm and mag-
nitude using the static zonal reconstructor vs the predictive zonal SA reconstructor.
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Table 4.5: Raven End-to-End simulation results. The optimal performance ( % en-
squared energy) for each GS magnitude is shown for the zonal static SA, and compared
to SA Prediction.

GS mags static SA SA Prediction
(R) EE lag Strehl lag [ms] EE lag [ms] Strehl lag [ms]

13.5 47.99 6 28.55 13 49.88 23 31.70 15
14.0 47.48 10 28.05 14 50.01 25 32.32 22
14.5 46.79 12 27.98 15 49.65 24 31.72 24
15.0 45.73 13 25.64 15 49.07 25 30.66 25
15.5 44.36 15 23.41 18 48.41 26 29.11 25
16.0 42.57 16 21.52 22 47.31 30 26.50 25
16.5 40.43 20 18.90 25 45.81 32 23.41 27

4.4.3 LQG

Zonal LQG in phase space

The results of the numerical simulation of the SA LQG controller as a function of GS

magnitudes and WFS frame rates are added to the static and predictive results in

Fig. 4.16 and summarized in Tab. 4.6. In the stand-alone prediction model presented

above, the spatial and temporal estimates are combined into a single step (Eq, 4.7);

in the LQG, the two estimates are necessarily divided into two steps due to the LQG

recursion. The two approaches were shown to be mathematically equivalent in Sec.

3.4.2. To verify the equivalence of the one and two-step spatio-temporal estimation,

the two methods were compared numerically, with the two-step reconstructor,

ŝ� = �⌃�+�,�⌃
�1

�,�⌃(�,↵)

�T(�⌃
(↵,↵)

�T +⌃⌘)
�1

s↵ (4.8)

The maximum numerical di↵erence between ⌃�+�,�⌃
�1

�,�⌃(�,↵)

and ⌃
(�+�,↵)

is 0.1%.

The e↵ect on performance in the Raven simulation was also minimal with �SR =

0.29% and �EE = 0.33%.

The plots show that the LQG algorithm can lead to an increase in limiting mag-

nitude of approximately two magnitudes in SR and more than three magnitudes in

EE. Another interesting trend is that the best framerate for the LQG and predictive

algorithms change very slowly compared to the static reconstructor which changes

quite a lot between magnitudes.
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Table 4.6: Raven End-to-End simulation results. The optimal performance ( % en-
squared energy) for each GS magnitude is shown for the zonal static SA, and compared
to SA LQG.

GS mags static SA SA LQG
(R) EE lag [ms] Strehl lag [ms] EE lag [ms]

13.5 47.99 6 28.55 13 52.27 20 33.54 15
14.0 47.48 10 28.05 14 52.66 22 34.60 22
14.5 46.79 12 27.98 15 52.48 24 34.02 23
15.0 45.73 13 25.64 15 52.06 25 33.12 25
15.5 44.36 15 23.41 18 51.40 25 31.53 25
16.0 42.57 16 21.52 22 50.27 26 29.25 27
16.5 40.43 20 18.90 25 48.98 35 26.72 35
17.0 38.28 25 15.57 25 47.48 45 24.95 45

4.5 Robustness

A large set of parameters exist which can be studied, and exploring the entire space

in a meaningful way would take a prohibitive amount of time using the simulation

tools selected here. Instead, an examination is made of the behaviour of some of the

reconstructors under select error conditions that are likely to arise during lab testing

and observation. The primary sources of error a↵ecting tomography all stem from

using a model of the atmosphere that does not accurately reflect reality. Some of

the main culprits will be: inaccurate fractional r
0

profile, mis-identification of layer

altitudes and, having particular ramifications for prediction, an incorrect or unknown

wind profile. Select cases of these three conditions have been examined in simulation,

in some cases using a simplified one-layer system, and in the lab.

4.5.1 Robustness to wind profile error

Figure 4.17 shows the analytical temporal error functions for a model mismatch in

terms of wind-speed and wind direction. These results indicate that, so long as the

wind speed estimate is not negative, the SA predictor can tolerate an error of up to

a factor of two before performance degrades to that of the no-prediction case. The

results also show that the SA predictor is quite robust wrt wind direction; missing

the estimate by +/� 50o still does better than the no-prediction case.

In consideration of the discussion in Sec. 3.4.3 regarding the estimate of the

covariance of the new phase entering the pupil, the bilinear spline interpolation model
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Figure 4.16: Strehl ratios and ensquared energy as a function of algorithm and mag-
nitude for all three static and dynamic zonal reconstructors.

A, on-which the SA predictor is based, has been built with two versions: one whose

new points entering the aperture are interpolated with no further information from

within the pupil, thus assuming zeroed wave-front outside the pupil and a model
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where for only those new points rows in A are kept, the remainder being the two-

dimensional bilinear spline weights. Results show that if one does not estimate the

new points from a correlation function, the loss in performance is quite drastic with

the bilinear spline interpolator achieving best performance for a wind-speed model

that is 1/2 the true wind-speed. When the new points’ values are computed keeping

the corresponding columns of A then the performance enhancement is dramatic with

some tens of nm rms di↵erence still.
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Figure 4.17: (Left) Robustness of zonal SA temporal predictor with respect to wind-
speed error compared to other predictive methods. (Right) Robustness with respect
to error in wind direction.

4.5.2 Flat C2

n profile

In the absence of accurate information regarding the nature of the C2

n

profile, we

work under the assumption of no knowledge of the profile weights. In the simulation

and in the lab, where the weights on the layers in the input atmosphere are given in

Table 4.2 as [0.596, 0.224, 0.180], the atmosphere model used to generate the recon-

structors is assigned a flat profile with weights, [0.35, 0.35, 0.3]. An examination of

the resulting e↵ect of this assumption on static, predictive and LQG reconstructors

in zonal space shows only a small degradation in performance to the predictive and

LQG reconstructors and no e↵ect on the static reconstructor. Table 4.7 shows the

results for the static and LQG reconstructor where the model uses the known input

atmosphere C2

n

profile compared to the results when the model uses the flat profile.
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Table 4.7: Sensitivity of reconstructors to error in the C2

n

profile estimate.

Method known C2

n

profile flat C2

n

profile
EE [%] SR [%] EE [%] SR [%]

Static 49.8 31.8 49.7 31.8
Predict 52.6 47.5 51.3 45.6
LQG 54.4 50.1 53.1 48.0

4.5.3 Over-modelled atmosphere

The sensitivity of the reconstructors to under-modelling of the atmosphere is a com-

plex question and has been subject to some notable studies [93, 94]. It has been noted

in laboratory measurements on Raven, where the input atmosphere is relatively well

characterized and known to have 3 layers, that using a fixed, large number of layers

(9 in the case of Raven) reduces the sensitivity of the system to model errors even if

they are assigned a small fractional r
0

value. It has been shown that this improves

performance over a model containing 3 layers with a small amount of error in altitude.

4.6 MOAO with CL-WFS correction mode

Taking advantage of the optical design of Raven which has a CL-WFS in each science

path, the potential to provide slow CL corrections to the DM has been investigated.

Specifically, in the absence of any other static or quasi-static aberration, a simulation

was built to establish the CL-WFS framerate at which the injection of un-sensed (by

the OL-WFSs) corrections start to degrade the tomographic estimate. Simulating

a slow CL-WFS observing a dim (mag 17) but compact science object shows that,

in the absence of any drift or quasi-static errors, improved results can be obtained

for a framerate between 5 and 50Hz (when the OL framerate is 500Hz) before the

performance begins to degrade due to conflict between the OL and CL correction.

The control diagram of this AO mode is shown in Fig. 4.18 and the simulation results

are given in Table 4.8. The primary intention of this test was to ascertain the e↵ect

of low frequency corrections injected on the DM on overall performance to make sure

no degradation occurs.

These results indicate that a slow drift or quasi-static error in the science path

could be corrected without disrupting the tomographic reconstructor in some sci-

ence cases with a very slow background update to the DM commands based on long
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Figure 4.18: The data pipeline when injecting command o↵sets to the MOAO cor-
rection from slow CL-WFS frames from the science targets

Table 4.8: Projected improvement in strehl ratio and ensquared energy when slow
CL-WFS measurements of the science target are periodically added as o↵sets to the
real-time (500Hz) tomographic correction.

CLWFS framerate EE SR
no CLWFS 43.78 19.11

5 Hz 44.61 21.95
10 Hz 45.79 24.14
25 Hz 45.57 23.50
50Hz 43.92 22.06

exposure CL-WFS frames.



108

Chapter 5

Implementing tomographic

reconstruction on Raven

The move from simulation to the real system was carried out in stages, in parallel

to the development of the RTC and driving the development of the RPG. The ini-

tial testing of the static reconstructors involved snapshot slope measurements with

one of the upper layer phase screens in the path in a fixed position. Reconstruction

was then carried out o↵ line using the OL-WFS slopes and the quality of the correc-

tion was established by comparing the estimated slopes in the science directions to

those measured by the CL-WFS. This static testing procedure enabled a procedure

to be developed for relating the simulation space to the measurement space; it also

provided the first laboratory verification of the equivalence between explicit and SA

reconstructors.

This chapter begins with a description of the model identification procedures and

system calibration steps directly related to tomography. This is followed by the results

obtained in the lab for a cross section of reconstructors both static and dynamic.

5.1 System calibration overview

The tomographic reconstructors assume a known system geometry is available. Vari-

ous steps to ascertain the precise relationship between the model and the system are

developed here.
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5.1.1 Retrieving reconstructor components from the system

Relating the mathematical model space to the measurement space of the system

is required to define the geometry of the system. In the case of the tomographic

reconstructor, a key element is the spatial location of the GSs and science objects

within the FoR relative to each other and relative to some reference coordinate system.

In the model, these values are defined by the distance of the objects from the central

axis in arc-seconds and the angular distance from an azimuth of zero.

Figure 5.1: Schematic for pinpointing the location of objects in the FoR.

The grid in Fig. 5.2a shows the numbering and location of the calibration unit see-

ing limited pinhole grid. The distance scaling between the pinholes is 0.532 mm/arc-

second and the physical distance is 10 mm. In order to locate the “zero angle” position

corresponding to ✓ = 0 in Fig. 5.1, a frozen volume of turbulence was setup in the

CU - the CDM was set to hold a given shape and the phase screens were inserted and

left stationary. A single OL-WFS was moved to pick up the on-axis pinhole which

is assumed to have location (0, 0), and a measurement of the static perturbation was

taken with that WFS at that location (s↵). One of the science arms was moved to

a pinhole near the central pinhole and a measurement of the static perturbation was

taken with the CL-WFS at this location (s�). Holding all other parameters fixed, the

reconstructor, R, with the best pinhole location parameters, given as (r
i

,✓
i

), should

minimize the di↵erence,

R = argmin
ri,✓i

= h||s� �R(r
i

,✓
i

)s↵||2i. (5.1)

This measurement was repeated for several pinhole locations.

Each plot in Figs. 5.2b-5.2d shows the results of repeatedly carrying out the

computation in Eq. 5.1 for a reconstructor R computed with each (r,✓) science
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object location from 10 < r < 30 arc seconds in one arc second increments and

0 < ✓ < 2⇡ radians in ⇡/36 radian increments. The red indicates the largest error

and the blue the smallest error. The smallest error indicates the proper coordinate

of the pinhole in the model space. Examining the figures, it can be seen that a

reflection in the x-axis occurs between the model space co-ordinates and the system

co-ordinates.

(a) pinhole grid (b) pinhole 20

(c) pinhole 25 (d) pinhole 26

Figure 5.2: Measured locations of pinholes in Raven calibration unit relating model
space coordinates to system coordinates.

5.1.2 CU neutral density filter magnitudes

The pinhole sources in the CU are fed by a single halogen lamp. The magnitude of

the sources can be adjusted by varying the power of the lamp and/or by turning the

filter wheel to one of 6 neutral density filters. The lamp does not provide uniform

illumination across the pinhole grid therefore the magnitudes of the sources increase
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with distance o↵-axis for any given setting. A plot of magnitude vs lamp power for

each filter and a map of o↵sets is given in Fig. 5.3.Magnitude vs. Filter & Field Location 

“diffraction-limited”  pinholes 

1           2 

3         4          5         6    

7         8         9        10      11       12 

13        14      15       16        17       18      19       20 

21        22       23      24       25       26       27       28 

29       30       31       32       33      34 

35       36      37       38 

39        40 

1 

+0.00 mag 
+0.65 mag 
+1.32 mag 
+2.00 mag 
+2.68 mag 
+4.05 mag 

Figure 5.3: Source magnitudes provided by the CU as a function of pinhole location,
filter and lamp power.

5.1.3 Transformation between WFS measurement bases

By design, the OL-WFSs of Raven are rotated with respect to each other and with

respect to the CL-WFSs in the science arms (Fig. 5.4). The model-based tomographic

reconstruction must be carried out in a common reference frame as the reconstructor

makes no assumptions regarding the orientation of the WFS axes.

A transformation matrix is required to relate OL-WFS slopes in their local mea-

surement space to slopes in a common measurement space [27],

s

0
↵ = ⌃

(s0↵i
,s↵i )

⌃�1

s↵i
s↵i . (5.2)

Note that this does not transform the OL slopes measured in direction ↵

i

to slopes in

direction ↵

0
i

as a tomographic reconstructor would; it simply changes the basis onto

which the slopes are projected in an optimal way using an MMSE solution. This is
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OLWFS1' OLWFS3'

40o'40o'

90o'

CLWFSi'

Figure 5.4: The OL-WFS axes are rotated with respect to each other and the CL-WFS
axes.

a minor abuse of notation, as in this instance ↵

i

is not an angular direction, it is a

reference to OL-WFS i where i = [1, 2, 3]. Similarly �

j

, j = [1, 2] indexes the CL-

WFSs. It is convenient to choose the CL-WFS in each science arm as the reference

frame and compute two separate reconstructors. This is convenient because the final

step in the correction process is to apply the DM command matrix corresponding to

each science arm and this is computed directly from the interaction matrix between

the DM and the CL-WFS in each channel.

The components of this change of basis matrix can be computed from system

measurements by applying a time series of common perturbations using the calibra-

tion DM. These are sensed by all WFSs simultaneously; the time series of slopes are

labeled S↵i from the OL-WFSs and S�j
from the CL-WFSs. The transformation

matrix from OL-WFS i to CL-WFS j is therefore,

T↵i!�j
= S�j

ST
↵i
(S↵iS

T
↵i
)�1. (5.3)

Applying this transformation in Eq. 5.2 results in open-loop slopes expressed in

the CL-WFS space, which can be rotated, translated and magnified with respect

to the OL-WFS space. The expression is true provided the perturbations span the
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vector space of the WFSs. In practice, the perturbations are introduced using a set

of pre-computed CDM commands; two sets of perturbations were tested, the first

was the Hadamard matrix of perturbations [95] and the second was a series of two

dimensional sinusoidal waves. It was found that the second method provided slightly

better results and was therefore integrated into the calibration pipeline. Later, a test

using a precomputed set of CDM commands to play ground layer turbulence provided

an even better result than the sine-wave sequence, however we must be cautious as

this is the same ground layer turbulence that is played during tomographic tests.

In real-time operation, the OL-WFS slopes are pre-transformed to CL-WFS space

and then fed to the tomographic reconstructor. Using Eq. 3.105 the slopes in the

science direction are estimated and finally projected onto the DM influence-functions

using a calibrated command matrix computed from the inverse closed-loop interaction

matrix between CL-WFS and science DM using truncated singular value decomposi-

tion. In a single equation we have,

u� = (IM)†| {z }
Command mat.

R T↵i!�j| {z }
Transformation

s↵ (5.4)

A diagram of the calibration steps to measure the basis transformation matrices and

the command matrices is given in Fig. 5.5

An alternative method which has been shown to provide similar performance

quality is developed in [96]. The strategy of this method is to identify a set of

meta-parameters which describe the WFS mis-alignments and generate a synthetic

transformation matrix based on these parameters.

Transforming between RTC and Matlab rasterization conventions

A simple, but important transformation of the WFS slope measurements is the one-to-

one re-ordering matrix which takes the slopes read out by the RTC in a row-oriented

rasterization, and transforms them to the column-oriented rasterization expected by

the Matlab based reconstructor. By generating a series of simulated WFS frames and

feeding these through both the RTC pixel processing and the simulation-based pixel

processing, the slope ordering was compared and the centroiding accuracy assessed

at the same time. The slope order transformation matrix is shown in Fig. 5.6, and

the results of passing a simulated WFS images of Zernike mode 11 through both

OOMAO and the RTC and then applying the transformation are shown in Fig 5.7.
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Figure 5.5: Common disturbances which span the vector space are applied to the
ground-conjugated CDM and measured by all WFSs.

Small discrepancies are due to di↵erent levels of thresholding in the thresholded CoG

spot centroiding algorithm which a↵ects the result in the partially illuminated edge

subapertures.

RTC slope order

M
at

la
b 

sl
op

e 
or

de
r

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Figure 5.6: A one-to-one reordering matrix to link slopes readout of the RTC to
computations carried out in Matlab.
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Figure 5.7: Left: simulated WFS frame of z11. Middle: slopes measured by RTC and Matlab. Right: slopes measured by
RTC and Matlab with order transformation matrix applied to RTC slopes
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5.1.4 Identification of atmosphere parameters from the sys-

tem

A critical element in tomographic WF estimation and temporal prediction is knowl-

edge of the atmosphere. In the results presented here, it is assumed that the input

atmosphere from the CU is well characterized. Some investigation into identification

of the atmosphere, specifically the layer altitudes and strengths has been carried out

by members of the Raven team. The on-board SLODAR method implemented on

GeMS [11] was investigated as was the covariance fitting SLODAR implemented by

the Canary team [27]. Some results from the lab and from the first on-sky run are

shown in Fig. 5.8a and 5.8b

These estimates do not include wind velocity and direction. In the lab test results

in this chapter, good knowledge of the wind profile is assumed based on the design

of the CU phase screen rotation stages and CDM ground layer movie.

5.2 Static reconstructor results

In addition to confirming the results obtained in simulation, the purpose of testing

the four types of static reconstructors (explicit-tomography and SA in both modal

and zonal space) was two-fold. The first was to ensure Raven could perform wave-

front correction and deliver the EE of 30% identified in the design specifications. The

second was to establish a baseline from which the success or failure of both the sim-

ple predictive and LQG reconstructors could be deduced. It was possible to test the

static explicit and AR-based modal reconstructors in the lab setting using the non-

optimized Matlab code; however it will likely be excluded from on-sky experiments

due to long computation times required to compute the reconstructors themselves.

In the laboratory experiments, the atmosphere can be controlled and the same pa-

rameters maintained over the course of the testing. This is not true on-sky and the

reconstructor must be updated at regular intervals by a background task receiving

updated atmospheric parameters from a profiler such as the on-board SLODAR, men-

tioned in the previous section, or other available data. Due to the low order of Raven,

parts of the code relating to background tasks such as reconstructor updating were

not optimized for computation speed; therefore these methods are still of interest and

could be tested on-sky given a commitment to optimized coding of the computations.
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(a)

(b)

Figure 5.8: (a) Left: Expected CU atmosphere profile according to its design. Right:
Measured CU atmosphere profile identified using on-board SLODAR. (b) Atmosphere
identified during observation; results are compared to CFHT MASS measurements.
There is no comparison for the ground layer as the CFHT data does not include a
ground layer estimate. It would be di↵erent anyway due to Subaru dome seeing. The
Raven profiler is constrained to estimate a maximum height of 12km and therefore
attributes all turbulence from higher layers to that height.
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5.2.1 Comparison of static MOAO methods

The first test to be carried out on the partially constructed system was the real world

verification of the assertion made in Sec. 3.2.3 that the static SA and Explicit layered

reconstructors are equivalent in that they produce the same final result by taking a

di↵erent computational path (Figs 5.9). A single OL-WFS was used to move through

the field and take measurements of a frozen turbulence frame at various positions

corresponding to the pinhole grid. Using a post processing program we then selected

certain configurations of guide star and science object asterisms and applied the

static explicit and SA reconstructors in Zernike space, described in Sec. 3.3. The

reconstructed phase in each of the science directions was then directly compared to

the phase measured on the corresponding pinhole position by the WFS.

It was confirmed that explicit and SA methods produce the same results, as was

shown in simulation. In the remaining tests, the Zonal SA static reconstructor is

used, and subsequent predictive and LQG algorithms are based o↵ of this method as

it is the most computationally e�cient of all options.

5.2.2 Learning on the fly

A method for characterizing the turbulence and generating a tomographic reconstruc-

tor based solely on system measurements is presented by the Canary team [27]. The

method has been named Learn and Apply. In the lab and on engineering fields on-sky,

this method can be tested using bright, compact science sources and has been shown

to work very well on Raven in the lab (See sec. 5.2.3). It is used as a baseline, pro-

viding an estimate of the best performance the system can likely obtain while doing

MOAO.

Hybrid Learn And Apply

In the case of a science observation, the necessary data from the CL-WFS directions

will not be available, thus the first half of the reconstructor, ⌃�,↵, cannot be learned

from the system during observation. A hybrid method is therefore being explored

which takes advantage of all available measured data from the OL-WFSs during

observation, and combines it with a model. The measured covariance matrix, ⌃↵,↵

is shown in Fig.5.10.

Since the measured open loop covariance matrix, ⌃↵,↵, is available during obser-
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Figure 5.9: Comparison of residual wavefront error (in nm RMS) across the FoR with
the spatio-angular (left column) and the explicit tomographic reconstructor (central
column), for NGS asterisms 2’, 1.5’ and 1’ apart. Di↵erences plotted in the right
column.

vation, we would like to use this data directly in the reconstructor. The challenge is

to create a model of ⌃�,↵ which matches that covariance measured by the system.

The theoretical model built from an estimate of the C2

n

profile is shown in Fig. 5.11;

this model makes the assumption that all WFSs are exactly aligned to the same axis,

which is clearly not the case in general and in Raven specifically which by design has

OL-WFSs rotated with respect to each other.

The model can be modified using the same calibration technique described in Sec.

5.1.3 which generates a matrix to transform slopes measured on one WFS to the

space of another. In this case, the reverse transformation is required: the model is in

the common reference frame and must be transformed into the individual OL-WFS
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Figure 5.10: Measured ⌃↵,↵.

Figure 5.11: modeled ⌃�,↵.

spaces using,

T�j!↵i = ⌃↵i,�j
(⌃�j ,�j

)�1. (5.5)

The expression for the model then becomes,

⌃̂�,↵ = hs�(T�!↵s↵)
T i (5.6)

= hs�sT↵TT

�!↵i (5.7)

= ⌃model

�,↵ TT

�!↵. (5.8)
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The transformed model is shown in Fig. 5.12a next to the measured covariance ⌃�,↵

shown in Fig. 5.12b.

(a) Transformed model of ⌃�,↵. (b) Measured ⌃�,↵.

Figure 5.12: Comparison of a measured covariance matrix to a modelled covariance
matrix.

Unfortunately, although there is reasonable visual agreement between the mea-

sured covariance matrix, ⌃�,↵ and the transformed model of that matrix after scaling,

there are obvious numerical di↵erences between the two. The resulting reconstructor

does not yet provide viable WF estimates, but the promise of being able to measure

part of the reconstructor directly from the system holds high value and this method

should continue to be explored.

5.2.3 Comparing MOAO to other WF correction modes

Multiple types of AO correction can be carried out with the Raven system; a compar-

ison of the di↵erent modes provides an indication of the quality of correction being

achieved with static MOAO compared to a simpler correction method, GLAO. The

more ideal method which is unusable for science, Learn and Apply, and the best pos-

sible performance, SCAO are also implemented. In the first set of results (Fig. 5.13),

a very ground layer dominated C2

n

profile was used due to an error in construction

of the upper layer phase screens. In the second set of results (Fig. 5.14), the ground

layer turbulence has been reduced to generate a more realistic atmosphere profile,

however the total amount of turbulence is very low. In the final set of results, new

phase screens with the correct physical parameters have been installed in the CU

leading to a realistic C2

n

profile and amount of total turbulence. The atmospheric
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parameters for the three sets of tests are summarized in Table 5.1.

Table 5.1: Atmospheric parameters in three test cases

Test case C2

n

profile r
0

Fig. 5.13 0.90, 0.055, 0.045 0.27 m
Fig. 5.14 0.596, 0.224, 0.180 0.62 m
Fig. 5.15 0.596, 0.224, 0.180 0.156 m

Figure 5.13: Static explicit zonal reconstruction compared to GLAO and SCAO in a
ground layer-dominated case.

These results show that, even in a very ground layer dominated case, MOAO

has the potential to improve over GLAO. In all cases the ideal Learn and Apply

reconstructor out performs the model-based reconstructor, this is an indication that

there are fundamental limitations in the model that do not fully capture either the

system or the turbulence statistics.

Science images in J-Band were taken for a wide asterism case using both GLAO

and MOAO with and without the LGS added on-axis. GLAO improves with the

addition of the LGS, but not as much as MOAO. SCAO and no AO cases are included
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Figure 5.14: Static explicit zonal reconstruction compared to GLAO and SCAO in a
low total turbulence case.

for comparison.

5.3 Dynamic reconstructor results

5.3.1 RTC implementation of the LQG

As stated in previous chapters, the stand-alone predictive model does not require

any changes to the real time pipeline, the reconstructor can simply be replaced by

the predictive matrix. The LQG however, requires a feedback loop in the RTC. To

simplify the control pipeline within the RTC and to merge easily with less complex

data pipeline cases, the control path outlined in Fig. 5.17a was manipulated such

that it could be written as a simple feedback filter. Instead of applying the matrices

A⇤
�

,M1,� individually in the sequence shown,
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Figure 5.15: Static explicit zonal reconstruction compared to GLAO and SCAO in a
realistic atmosphere case.

ŝ

k|k�1

= ��̂
k|k�1

,

�̂

k|k = �̂

k|k�1

+M1(s
k

� ŝ

k|k�1

),

�̂

k+1|k = A⇤
�

�̂

k|k, (5.9)

the predicted phase, �̂
k+1|k, can be expressed,
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Figure 5.16: J-Band Science Images of GLAO vs MOAO for a static zonal SA tomo-
graphic reconstructor. Asterism diameter was 2 arc min and NGS magnitudes were
11.25,12.13, and 12.13.

�̂

k+1|k = A⇤
�

(�̂
k|k�1

+M1(s
k

� ��̂
k|k�1

))

= A⇤
�

�̂

k|k�1

+A⇤
�

M1s

k

�A⇤
�

M1��̂
k|k�1

= A⇤
�

M1s

k

+ (A⇤
�

�A⇤
�

M1�))�̂
k|k�1

. (5.10)

The control path can now be drawn as shown in Fig. 5.17b.

5.3.2 Results with WFS frame rates and guide star magni-

tudes

A cross section of measurements across NGS magnitude and WFS framerate were

taken to show the improvement in performance using prediction and LQG control

over the static reconstructor. These results were first obtained with the ground layer-

dominated atmosphere profile (Fig. 5.19). As tomographic error is orthogonal to the
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(a) LQG control scheme.

(b) LQG control scheme as implemented in the RTC.

Figure 5.17: (a) LQG control scheme. (b) LQG control scheme as implemented in
the RTC.

temporal and noise error terms targeted by the prediction and LQG algorithms, it

was predicted that the trends shown by these results would hold.

The data points in the following plots are labeled by reconstruction method and

NGS magnitudes; the values 11.25, 13 and 15 are approximate values, the precise

magnitudes of the GSs are found using Fig. 5.3 to be [10.8, 11.5, 11.5] for the data

points labeled Mag 11.25, [12.6, 13.25, 13.25] for the data points labeled Mag 13, and

[14.3, 15, 15] for the data points labeled Mag 15. The test asterism is shown in Fig.

5.18.

Once the new phase screens were installed, the three algorithms were tested again

to make sure that the improvement persisted under more challenging atmosphere

conditions. The EE in a 140 milliarcsecond slit in the ground-layer dominated case

was essentially 100% due to the low amount of turbulence and the Strehl ratios in the

more turbulent atmosphere are very low so a direct comparison is di�cult. However,

it can be seen in Fig. 5.20 that the LQG algorithm is still very capable of improv-

ing results over the predictive and static reconstructors under realistic atmospheric

conditions. The brightest data set is omitted. It shows limited improvement across

the frequency space as there is already enough SNR at high frequencies; the LQG

still improves over the other two algorithms, but there is little gain in reducing the
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Figure 5.18: Asterism used in test cases.

framerate.

The performance achieved in lab tests is lower than that predicted by simulations

in all reconstructor cases, but the trend of increasing peak performance by between

2 and 3 % with each increase in reconstructor complexity is reflected in both the

simulation data and the measured data. The exception is the static reconstructor

at magnitude 15 in the laboratory results; at this point, the signal on the WFSs

becomes quite low and the thresholded centre of gravity (CoG) begins to fail in the

lab setting. The overall decrease in performance can be attributed to multiple sources;

these include imperfect calibration, underestimation of noise sources in the simulation

compared to reality, e↵ects of the rotated WFSs, DM fitting, OL go-to errors, and

non-common path aberrations (NCPA) between the OL and science paths, as well as

between the CL-WFSs and the science camera.

A trend noted in the laboratory measurements for brighter GSs is that the peak

performance of the static and LQG reconstructors occur at rates slightly slower than

the frequencies predicted by simulation, but the simple prediction performance peaks

at a much slower frequency than expected. We speculate that this may be due to the

r
0

of the turbulence generated by the CU being a bit higher than expected; there may

also be more noise than anticipated in the real system. As a result, the predictive

algorithm would need to go to lower frequencies (greater temporal lag) to see the
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Figure 5.19: Results using static, predictive and LQG zonal reconstructors at varying
framerates for di↵erent GS magnitudes using the ground layer dominated atmosphere.

most gains. The increased noise may also push the peak performance of the static

reconstructor toward lower frequencies, although not as much because temporal lag

errors are not addressed. Because the LQG handles both noise and temporal lag, the

decrease in turbulence will still push the peak to slower frame rates, but an increase

in noise will have less e↵ect on the LQG than on the simple predictor. This trend

is not reflected in the measurements using dimmer GSs, however the shifting of the

peaks toward lower frequencies may mean that the system cannot be run slow enough

to spot the new peaks in the data.

The science images in J-Band in Fig. 5.21 represent the best performance achieved

for each reconstruction method for a fixed magnitude, they clearly show that the EE

is increased and the spot image becomes progressively smaller for both predictive and

LQG algorithms over the static reconstructor.
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Figure 5.20: Performance comparison for Static, Predictive and LQG tomographic
reconstruction algorithms with varying framerate using the distributed atmosphere
profile.

5.4 Robustness to dynamic errors

There are several dynamic elements to observing on-sky that must be accounted

for. In this section the results are presented from a preliminary investigation into

the ability of the static reconstructor to continue to correct the WF under changing

conditions. The reconstructor must be updated periodically to reflect these changing

conditions, but how often this must be done is an open question and which parameters

will drive the update period depends on the sensitivity of the system to errors as well

as our ability to measure those parameters.
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Figure 5.21: PSFs of best performance science images for the static, predictive and
LQG algorithms.

5.4.1 Sensitivity to atmospheric model layer altitude error

Running a static MOAO test with one atmospheric layer at a time and varying the

input altitude of that layer in the model shows the sensitivity of the system to change

in modelled layer altitude, as well as indicating either a possible discrepancy between
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Figure 5.22: Variation of the single-layer atmosphere model used in the reconstructor
shows the behaviour of the residual error as a function of model layer altitude.

model and system, or providing a more accurate characterization of the CU layer

altitudes. The change in residual rms with model layer altitude for the 10km layer in

Fig. 5.22 shows an obvious minimum at 11.5km. The results indicate an approximate

increase in error in quadrature of 50% when the layer altitude is underestimated by

1km and assuming a close to linear trend, approximate doubling in quadrature when

underestimated by 2km. The system appears slightly less sensitive to over estimation

of altitude.

The full turbulence residual WFE is shown in Fig. 5.23 where the initial model

contains an error and is then updated to something better. This demonstrates both

the e↵ect of the error and the functionality of the system to update smoothly on the

fly without interrupting real-time correction.

It is becoming apparent that a tomographic system can be made less sensitive to

layer altitude errors by estimating more layers; this was found in simulation (4.5.3)

and in laboratory measurements where the use of the profile in the left side of Fig.

5.8a resulted in an rms error of 0.43µm and the use of the measured profile in the right

side of the figure resulted in an rms error of 0.39µm, an improvement in quadrature of

0.18µm rms, despite the fact that it is known that there are only three discrete input

layers. Some of the improvement comes from the improved estimate of r
0

, but just

changing r
0

without using the measured profile does not yield as much improvement.

This result indicates that we may be able to make the reconstructor more robust

against altitude drift between reconstructor updates by modelling a smoother C2

n
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Figure 5.23: Update of the layer altitude profile during an observation.

profile.

5.4.2 Field rotation update constraints

Another dynamic aspect to the system, beyond the changing over time of the at-

mosphere parameters, is the field rotation as the telescope tracks. This changes the

relative positions of the GSs with respect to each other and is an issue specific to

Raven due to its optical design and inability to use Subaru’s image derotator. To

compensate for the field rotation, the reconstructor must be updated periodically

with the new GS positions throughout an on-sky observation. The curves of the

residual on CL-WFS1 in Fig. 5.24 show the e↵ect of updating the reconstructor to a

more accurate representation of current GS positions in the middle of the observation.

The error shown is due to a 45o rotation of the modelled GS positions, this is a very

large error as the field rotation is very slow except near zenith where the maximum

rotation speed will spike briefly to approximately 3o per minute, so although this

parameter must be updated, it will likely not be a factor in driving the update rate

of the reconstructor.
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Figure 5.24: Update of the GS positions during an observation.

5.5 First on-sky results

Static MOAO reconstruction was successfully carried out on-sky using the Subaru

telescope and the Raven science imager; the results are given in Fig. 5.25 and show

a clear improvement using MOAO over no correction and GLAO in two science di-

rections simultaneously. These results were obtained using the field shown in Fig.

5.26 where the OL-WFSs were on stars 5, 6 and 15, and the science picko↵s were on

stars 11 and 7. The approximate diameter of this asterism is 2 arc-minutes and the

magnitudes of the GSs are R = [12.8, 10.2, 12.4] respectively.

Raven was able to feed IRCS with MOAO corrected images. An example of this is

seen in the images of Saturn shown in Fig. 5.27, where three of the moons of Saturn

were used as NGSs and the science picko↵s were used to image two separate areas of

the planet.
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Figure 5.25: First on-sky results: Images from Raven science camera show perfor-
mance for di↵erent AO modes [7].



135

Figure 5.26: Observation field used for first on-sky MOAO test.
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Figure 5.27: Saturn imaged on IRCS with and without MOAO correction [7].
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Chapter 6

Conclusions

Monte-Carlo simulations of an MOAO system using static and dynamic tomographic

reconstructors have been developed in both modal and zonal bases. The results have

shown that a SA reconstructor, which derives no explicit information about the phase

in the atmospheric layers, yields the same result as the more computationally complex

reconstructor which does generate this information. As a result, the SA formulation

has been extended to the more complex algorithms, the first of which uses temporal

prediction alone and the second a spatio-temporally optimal LQG controller. This

method has been identified as the appropriate technique to use in the specific case of

an MOAO system which only requires an estimate of the phase in the pupil-plane.

Theory and simulation have shown that a gain in the limiting magnitude of Raven

can be achieved by exploiting the trade-o↵ between increasing lag error and improved

SNR, by executing temporal prediction to reduce lag error. It was estimated that a

gain of one magnitude can be expected from the use of a simple prediction within

the tomographic step while reducing the overall framerate of the system. This can be

achieved with no increase in the computational complexity of the real time pipeline. It

was also estimated that a gain of two or more magnitudes can be expected if the LQG

algorithm using one of the various prediction models presented in this dissertation is

used; the most gain is achieved using the SA prediction models (whether in modal or

zonal space). It is concluded that the best algorithm is the zonal SA LQG formulation

which allows the most minimal representation of the phase and makes the prediction

directly in the pupil-plane. There is an increase in the number of computations over

that static case, but it is a much more conservative increase compared to the explicit

layered LQG algorithm which, on a system of the scale of Raven, requires a factor of

20 more real-time computations per iteration.
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Static reconstructors, implemented in simulation, have been successfully ported to

the Raven MOAO test bed. Experimental testing has also validated the simulations

and shown that a pupil-plane WF reconstructor is su�cient for an MOAO system and

equal to the more computationally intensive explicit layered estimators. The static

SA zonal reconstructor has performed on-sky tomography and delivered EEs close

to the target of at least 30% EE simultaneously for two science targets. It has been

shown definitively that model-based MOAO out-performs GLAO in the laboratory

and on-sky.

The more complex dynamic reconstructors in a zonal basis have been implemented

on the Raven system; the simulation results are supported by laboratory measure-

ments taken on Raven with the telescope simulator. They show that the LQG algo-

rithm delivers higher EE than the SA prediction algorithm which in turn improves

over the static reconstructor. A comparison of performance for various GS magni-

tudes has shown that the limiting magnitude of Raven can be improved by two or

more magnitudes by using the LQG controller provided knowledge of the wind profile

and other atmospheric parameters are known to a high enough accuracy. A prelim-

inary investigation of robustness indicates that it is su�cient to have an estimate of

the wind speed of any layer within a factor of 2 of the actual value and the wind

direction within +/� 50o of the actual direction.

The cumulative result of the development and comparison of all the static and

dynamic tomographic reconstructors in this chapter is a clear understanding of the

process of doing tomography for MOAO and the specific properties that can be taken

advantage of to simplify it as much as possible.

6.1 Future Work

The dynamic algorithms developed in this dissertation and validated through sim-

ulation and in the lab will be tested on-sky. Based on the quality of these on-sky

results, it would be advisable to take advantage of Raven’s telescope and atmosphere

simulation abilities to do a broad parameter space study to test the robustness and

the stability of the LQG controller to various errors under well known conditions.

This will help to set error budgets for current and future atmospheric profilers and

prioritize the parameters which have a large e↵ect on performance over those that

have less e↵ect.

The identification of vibrations in the system, while Raven is on the Naysmith
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platform of Subaru telescope, along with the addition of corresponding vibration

filters in the LQG controller is a task that is also planned for the future.
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ABSTRACT. RAVEN will be a Multi-Object Adaptive Optics (MOAO) technology and science demonstrator on
the Subaru telescope. The baseline design calls for three natural guide star (NGS) wavefront sensors (WFS) and two
science pickoff arms that will patrol a ∼2′ diameter field of regard (FOR). Sky coverage is an important consideration,
because RAVEN is both a technical and science demonstrator. Early-stage simulation of RAVEN’s performance is
critical in establishing that the key science requirement can be met. That is, 30% of the energy of an unresolved point-
spread function (PSF) be ensquared within a 140 mas slit using existing WFS camera and deformable mirror (DM)
technology. The system was simulated with two independent modeling tools, MAOS and OOMAO, which were in
excellent agreement. It was established that RAVEN will be an order 10 × 10 adaptive optics (AO) system by
examining the tradeoffs between performance, sky coverage, and WFS field of view. The 30% ensquared-energy
(EE) requirement will be met with three NGSs and will exceed 40% if the Subaru Laser Guide Star (LGS) is used on-
axis (assuming median image quality). This is also true for NGSs as faint as mR ¼ 14:5.

Online material: color figures

1. INTRODUCTION

The dawn of Extremely Large Telescopes (ELTs) is upon
us. The Thirty Meter Telescope (TMT; Nelson 2008), the
European-ELT (E-ELT; Kissler-Patig 2010), and the Giant
Magellan Telescope (GMT; Shectman & Johns 2010) are all
approaching their construction phase. Near-infrared spectro-
graphs with 20 or more deployable integral field units over a
5 to 10′ FOR, assisted by MOAO, are highly desirable potential
instruments on ELTs, because they can be used to address major
areas in their top-level science cases. These MOAO integral
field spectrographs (IFSs) are ideally suited for studying the
evolution of galaxies from first light to the era of peak star for-
mation. However, use of such an instrument will not be limited
to extragalactic astronomers; any astronomer seeking multi-
object spectroscopy that takes advantage of the “D4” sensitivity
gain provided by AO will consider a MOAO IFS to be a work-
horse instrument. Infrared Multi-Object Spectrograph (IRMOS;
Gavel et al. 2006; Andersen et al. 2006) and Extremely Large
Telescope Adaptive Optics for Galaxy Evolution (EAGLE;
Cuby et al. 2010) instrument are two examples of MOAOþ
IFS instrument concepts for, respectively, the TMT and the
E-ELT.

To achieve correction over a large FOR, a MOAO system
must overcome an effect known as “anisoplanatism.” For a
given telescope pointing, the light from a distant source is per-
turbed by the turbulence in a cylinder (with a diameter the size
of the telescope primary mirror). Light from a nearby source
will pass through an overlapping, but nonidentical, cylinder
of turbulence on its way to the telescope. In a classical AO sys-
tem, a single WFS will pick off light from a single, relatively
bright, point source, and a DM will be commanded to take the
appropriate shape to null-out the wavefront error induced by the
turbulence along a single line of sight (within a single cylinder).
The AO correction for a different source will not be as good,
because it will be viewed through a slightly different cylinder
of turbulence. Definitions vary slightly, but the isoplanatic
angle, θ0, can be thought of as the angular distance from the
guide star at which the Strehl ratio drops significantly. The
quantity θ0 ∝ λ6=5 and is typically 10′′ in theH band (for a cor-
rected field of view [FOV] of ∼20′′).

There are two approaches for enlarging the isoplanatic angle.
One approach is to place multiple DMs in series, each conjugate
to a different atmospheric altitude. This multiconjugate AO
(MCAO; Johnstron & Welsh 1991; Ragazzoni 1999; Flicker
et al. 2000) approach can be used to enlarge the FOV to sizes
of an arcminute or two, but the performance will ultimately still
be limited by generalized anisoplanatism (Rigaut et al. 2000).
The FOV can be further enlarged by adding even more DMs
in series, to remove the turbulence generated at even more
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atmospheric heights, but the complexity of the MCAO system
rises (and the throughput falls) with each additional DM relay.

MOAO is a parallel approach that promises to increase the
field over which AO corrections can be applied to 5 or even 10′
(Hammer et al. 2002). MOAO systems use the fact that there are
only a limited number of interesting targets in a given FOR, and
astronomers will be happy if AO corrections are made only in
those directions. If a sufficiently accurate measurement is made
of the turbulent volume over a telescope, one can place a probe
with an embedded DM anywhere in the FOR and make the
optimal turbulence correction for that position. Making a mea-
surement of the turbulent volume requires information from
multiple WFSs locked on multiple guide stars that probe differ-
ent lines of sight through the atmosphere. Once the information
from these multiple WFSs is combined into a single tomo-
graphic model of the turbulence (Tokovinin et al. 2001), it is
straightforward to imagine multiple science pickoffs in parallel,
each incorporating its own DM, feeding multiple IFSs. Falcon
for VLT was the first proposed MOAO IFS (Hammer et al.
2002; Puech et al. 2006), and it has served as a model for
the more recent IRMOS and EAGLE studies for ELTs.

Many of the challenges involved in designing a MOAO sys-
tem, such as the use of tomography (Ragazzoni et al. 1999;
Costille et al. 2010; Ammons et al. 2010), microelectromecha-
nical system (MEMS) mirrors (Morzinski et al 2010), and
woofer-tweeter control (Jackson et al. 2010), have all been dem-
onstrated to work in different laboratory settings and are
included in advanced instrument concepts. Open-loop (OL)
control is perhaps the greatest risk to MOAO, however, partly
because it is the biggest unknown. In an AO system with OL
control, the WFSs do not sense the correction applied by the
DM. Instead, the WFSs sense the full turbulent phase of the
atmosphere and the DMs are commanded to take the appropri-
ate shape without benefit of any feedback. While OL control is
not a new idea (Primmerman et al. [1991] used so-called go-to
adaptive optics to make corrections and take science images im-
mediately following pulses from a laser guide star with a low
duty cycle), interest in implementing open-loop control on-sky
has been reinvigorated in the past few years, as we shall see in
the next section. After all, OL control introduces unique require-
ments on an AO system: the WFS needs to have a high dynamic
range; effects of DM hysteresis and nonlinearity need to be miti-
gated; and, finally, alignment and calibration become more
challenging.

1.1. MOAO Demonstrators

While the risks associated with MOAO IFSs have kept pro-
posed VLTand ELT instruments on the drawing board, the scien-
tific promise is so great that multiple on-sky demonstrators have
been developed. The Visible Light Laser Guidestar Experiments
(ViLLaGEs; Gavel et al. 2008; Ammons et al. 2008) is a MEMS
DM-based AO testbed on the Nickel 1 m telescope at Lick Ob-
servatory. ViLLaGEs carried out on-axis experiments in both

closed and open loop with NGSs and LGSs. It was the first
on-sky experiment to successfully demonstrate open-loop
control. ViLLaGEs is a test bed that is being employed to
develop the Keck Next Generation Adaptive Optics (NGAO;
Wizinowich et al. 2010; Ammons et al. 2010) instrument, which
is a tomographic, high-order, open-loop AO system.

The Victoria Open Loop Testbed (VOLT; Andersen et al.
2009) was an experiment aimed at distilling the problems of
open-loop control into a simple experiment. VOLT demon-
strated open-loop control in the laboratory and on-sky at the
Dominion Astrophysical Observatory 1.2 m telescope using a
simple on-axis NGS system (Andersen et al. 2008). Both the
VOLT and ViLLaGEs open-loop AO demonstrators performed
below expectations at low temporal frequencies, which seems to
indicate that small misalignments in open-loop AO systems may
ultimately limit their performance. These experiences have led
to a second generation of MOAO demonstrators that emphasize
both calibration and alignment techniques.

CANARY is a MOAO demonstrator at the William Herschel
Telescope (Vidal et al. 2010; Gendron et al. 2010; Morris et al.
2010) that is considered a pathfinder for EAGLE on the E-ELT.
The goals of the CANARY project are to perform NGS-based
(and, subsequently, LGS-based tomographic wavefront sens-
ing), perform open-loop AO correction on-sky, and develop
calibration and alignment techniques. This experiment saw first
light in the fall of 2010 and achieved a MOAO Strehl ratio of
26% in the H band (Gendron et al. 2011). CANARY will ramp
up to a full MOAO test bed with multiple LGSs by 2013. While
the performance of CANARY at low temporal frequencies was
improved, it still suffered in comparison with the performance in
closed loop (E. Gendron 2011, private communication).

1.2. The RAVEN MOAO Demonstrator

RAVEN will be the first MOAO instrument on an 8 m class
telescope feeding an AO-optimized science instrument, the
Subaru Infrared Camera and Spectrograph (IRCS; Tokunaga
et al. 1998).3 RAVEN has many of the same technical aims
as CANARY, but also has some significant differences. Figure 1
shows a functional block diagram for RAVEN.

RAVEN consists of nine main subsystems:

1. The deployable calibration unit (CU) is a telescope simu-
lator and a turbulence generator. It contains an array of off-axis
NGS sources and one on-axis LGS source. Light from the CU
will feed the three OL WFSs, the LGS WFS, and two science
arms. The three functions of the CU are to (1) help align other
RAVEN subsystems, (2) calibrate the AO system (generate
interaction matrices and measure field-dependent non–
common-path aberrations), and (3) test the MOAO system by

3 See http://www.naoj.org/Observing/Instruments/IRCS/.
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including three phase screens (including a ground-conjugate
DM inside the CU).

2. The three NGS OLWFSs are mounted on x–y translating
stages to prevent the pupil from rotating on the WFS lenslet
array with respect to the DMs.

3. RAVEN includes an on-axis LGS WFS, which will be fed
by the Subaru sodium beacon in order to improve AO correction
and/or the sky coverage (as discussed in § 3.5.2).

4. The science pickoff design consists of a mirror mounted
on a r–θ arm, followed by a trombone mirror that keeps the path
length constant.

5. The science relay for each arm contains a DM (which we
expect to be a custom ALPAO DM with 11 × 11 actuators with
a 25 mm aperture).

6. A figure source and closed-loop (CL) WFS share the
science relay optical path and can be used to either (1) measure
the shape of the DM using the figure source, (2) use the CLWFS
as a truth WFS to help calibrate RAVEN or measure the MOAO
performance, or (3) use the CL WFS as a classical AO system
that uses the science target as the NGS.

7. After the science relay, light from both arms of the system
is combined so that the common beam shares an identical exit
pupil and provides two adjacent 4′′ science fields to the single
IRCS slit. The beam combiner also contains two K mirrors,
which can rotate the images of the science targets so that ex-
tended objects can be properly aligned onto the slits.

8. An acquisition camera can be used to determine the tele-
scope pointing and ensure that shadows of the probe arm fall
over the NGSs and science targets.

9. Finally, pixels from the WFS detectors will be read by the
RAVEN real-time computer (RTC) and transformed into a

tomographic model of the atmosphere above the observatory.
This tomographic model will be sampled in directions defined
by the position of the science probes in the patrol field, and DM
commands will be generated and applied.

The science gain achievable by RAVEN, in comparison with
classical AO systems such as Subaru’s AO188 (Minowa et al.
2010), will be modest, because RAVEN will only have two
science channels. Nevertheless, the 8 m aperture of the Subaru
telescope enables science that is not achievable on smaller tele-
scopes, and RAVEN will be capable of delivering high
ensquared energy into the IRCS slit. The combined technical
and scientific aspects of MOAO that RAVEN will demonstrate
are meant to excite the astronomical community and build
support for future facility-class MOAO instruments with much
larger multiplex advantages for either 8 m class telescopes
or ELTs.

1.3. RAVEN Performance Modeling

MOAO has the potential to deliver near–diffraction-limited
images to multiple small patches spread across a large FOR.
One challenge of an MOAO system is that it is highly distrib-
uted. For RAVEN, light from three or four guide stars will be
sensed by open-loop WFSs and a tomographic model of the
atmosphere generated by the RTC. The RTC will then produce
DM commands specific to the direction of the science pickoff
arms. All of these actions are performed using OL control.
Accurate knowledge of the science probe’s placement in the
focal plane and the relative alignment of the DM and WFS
in the pupil plane is required.

FIG. 1.—Functional optical block diagram of RAVEN. Dashed blocks are deployable. RAVEN consists of nine main subsystems: the deployable calibration unit, the
open-loop NGSWFSs, the science pickoffs, the science relays, the closed-loop NGS truth/figure WFSs, the beam combiner, the LGS WFS, and the acquisition camera.
The real-time computer is not shown. See the electronic edition of the PASP for a color version of this figure.
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A broad swath of parameter space has been explored in order
to determine if RAVEN can realistically meet the proposed per-
formance requirements and deliver useful MOAO-corrected
images to the Subaru IRCS spectrograph. As RAVEN was con-
ceived to be a science-capable, NGS-only MOAO system, in
addition to a technical demonstration, the AO architecture
was designed such that it will deliver the desired performance
when even faint guide stars are used. The addition of the single
on-axis Subaru LGS to the NGS constellation improves perfor-
mance and sky coverage, but does not eliminate the need for
good performance with faint NGSs.

In this article, we assess the performance of the RAVEN
MOAO system. In § 2, we describe MAOS (Multithreaded
Adaptive Optics Simulator) and OOMAO (Object-Oriented
MATLAB Adaptive Optics), the two simulation tools used in
this study. In § 3, we describe the baseline system performance
of RAVEN. This involves a description of the performance
metrics, the derived atmospheric profiles, and the RAVEN
ensquared-energy error budget. In § 4, we describe the trade
studies that led us to our baseline design and describe RAVEN
performance when used with different model atmospheres or at
different zenith angles. Finally, we summarize our findings and
present a road map of more detailed simulations that will be
undertaken as we continue the development of RAVEN.

2. SIMULATION TOOLS

Our analysis was undertaken using two simulation platforms:
MAOS and OOMAO.

2.1. MAOS

MAOS is a new C implementation of the tomographic AO
simulator LAOS, which was written in MATLAB. This tool was
created to efficiently run multithreaded simulations of large AO
systems. MAOS is an ideal modeling tool for RAVEN, because
it fully implements zonal tomography and can be configured for
completely open-loop MOAO operations.4

The atmospheric turbulence in the model is composed of
multiple phase screens that are located at different altitudes.
These independent phase screens can either translate across
the pupil, assuming a frozen flow for a given wind speed
and direction, or MAOS can be run in a temporally uncorrelated
mode in which each step of the simulation is temporally inde-
pendent of the last (i.e., a simulated atmospheric phase is sensed
by theWFSs and corrected by the DM in a single step). Running
RAVEN simulations using this mode is advantageous, because
the temporal errors are small (when run at a 500 Hz sampling
frequency) compared with the tomographic errors, and the time-
averaged PSF is more uniform. The resulting aberrations, due to

the simulated atmosphere, are sensed by multiple NGS (and
LGS) Shack-Hartmann WFSs. MAOS can simulate the full
physical optics WFS model that uses input pixel characteristics.
Centroiding is accomplished using an optimal matched-filter
(MF) estimation algorithm (Gilles & Ellerbroek 2006). The
LGS WFS includes LGS elongation and cone effect. The tomo-
graphic wavefront reconstruction estimates the turbulence at
several different heights from the open-loop gradients measured
by the RAVEN WFSs, using a computationally efficient imple-
mentation of a minimum-variance reconstruction algorithm
(Ellerbroek 2002). The reconstructed turbulent atmosphere is
then projected, in MOAO mode, onto a DM corresponding
to a given field direction. MAOS provides the user with numer-
ous performance metrics, including rms wavefront error (both
total and tip/tilt removed), Strehl ratio, and PSFs (defined at a
given wavelength) for numerous field (DM) locations. Because
MAOS is a highly optimized and proven tomographic Monte
Carlo simulation platform, it was used for most simulations
in this article.

2.2. OOMAO

The OOMAO modeling library is a set of MATLAB classes
developed for the purpose of facilitating a clear and accessible
end-to-end model of the RAVEN system. Objects from the dif-
ferent classes are assembled to perform numerical modeling of
an AO system. OOMAO can be seen as an extension of the
MATLAB language; overloaded MATLAB operators are used
to propagate the wavefront through the system and to update the
status of each object.5

Asterisms can be defined using the source class, with any
number of guide stars in constellations specified by altitude-
azimuth coordinates. The source class has a very important role
in the OOMAO library, as it is the link between other classes. A
source object carries a wavefront, both amplitude and phase,
through the different objects representing the atmosphere, the
telescope, the wavefront sensor, etc. Both NGS and LGS aster-
isms can be simulated. Currently all guide stars in the same
asterism are defined with the same wavelength. Science source
objects can be defined individually, assigned their own magni-
tude and wavelength, and placed at any point in the field of
regard.

A modal tomography algorithm is implemented to recon-
struct the phase, along with a thresholded center of gravity
(CoG) to measure the spot positions on the WFSs. Using these
methods, an end-to-end open-loop model of RAVEN has been
developed with movable science objects in an adjustable
asterism.

4MAOS is available from https://github.com/lianqiw/maos/. MAOS is written
by LianqiWang and developed by LianqiWang, LucGilles, and Brent Ellerbroek
of the TMT AO group.

5 OOMAO is available from https://github.com/rconan/OOMAO. OOMAO
was originally developed by Rodolphe Conan. Peter Hampton, Kate Jackson,
and Olivier Lardière provided additional contributions.

472 ANDERSEN ET AL.

2012 PASP, 124:469–484

This content downloaded  on Mon, 18 Feb 2013 18:29:31 PM
All use subject to JSTOR Terms and Conditions



Various classes have been modified to include functionalities
that will facilitate the simulation of error sources such as
misalignment. The DM class includes the ability to misalign
the DM with respect to the optical path and other system
components by specifying five parameters: horizontal and ver-
tical displacements, rotation, tip, and tilt. Sensor noise has been
included via the detector subclass. Parameters include readout
gain, thermal dark signal, excess noise factor, charge capacity,
and clock-induced charge, which allows for easy modeling of
electron-multiplying CCDs (EMCCDs). The frame rate and
exposure time are decoupled (i.e., the exposure time can be
shorter than the time between frames). An aberration object uses
Zernike modes to create a static or quasi-static aberration at a
selected point in the optical path. This object can also be defined
with a diameter that is much larger than that of the optical path
so that larger optics with static aberration can be modeled easily.
The RotateDisplace object shifts a specified image by a
given number of pixels and then rotates by a given number
of radians and is used within the aberration object to shift
the large optical aberration across the smaller optical path. In
this way, aberrations can be introduced at various points in
the simulated optical path that are representative of potential
errors in the real optical system. As shall be shown in the next
section, OOMAO can reproduce the simulation results. This
verification is important, as it builds confidence in the results
from both simulation tools. It is especially important for us
to trust the OOMAO simulations, because we intend to control
real RAVEN hardware using OOMAO in the early stages of
testing the instrument (before the RAVEN RTC is completed).

3. BASELINE SYSTEM PERFORMANCE OF RAVEN

As will be shown in the following sections, tomographic
errors are the dominant factor limiting the performance of
RAVEN. As a result, the performance will be highly dependent
on the total amount of turbulence (and the distribution of tur-
bulence as a function of altitude) and on the asterism of NGSs
used to sense the turbulence. In this section, the metrics used to
evaluate the performance are described, and the atmospheric
profiles derived to use in simulation are outlined. The
ensquared-energy budget of RAVEN and an estimate of the
system’s limiting magnitude are also presented.

3.1. Performance Metrics

RAVEN will feed the Subaru IRCS infrared imager and slit
spectrograph. Since the majority of RAVEN science will be per-
formed using the spectrograph, ensquared energy within the slit
will be the most important performance metric. The IRCS
echelle slit width is 140 mas wide, so ensquared energy (EE)
within 140 mas at a wavelength of 1.65 μm (H band) was used
as the primary performance metric. EE was evaluated primarily
in theH band, because RAVEN will have a slightly higher ther-
mal background in the K band relative to AO188, due to the

increase in the number of optical elements, and the performance
in theH band will obviously be better than in the J band, due to
the longer wavelength. The requirement for ensquared energy in
theH band was set to 30% in order to match the requirement on
ensquared energy from AO188.6 By meeting this requirement,
the multiplex advantage of RAVEN will be very nearly double
that of AO188 (assuming that the science channel throughput of
RAVEN continues to be greater than 40%).

Since 140 mas is significantly wider than the 42 mas
diffraction-limited spot at 1.65 μm, RAVEN performance is
most dependent on high spatial order wavefront errors (WFEs)
and is relatively immune to modest errors at low spatial frequen-
cies, including tip/tilt and focus. Therefore, another useful me-
tric to evaluate in the simulations is the tip/tilt-removed WFE
(other low-order aberrations, such as focus, could also be
excluded, in principle). The Strehl ratio is also calculated (again
measured at the H band), as is the total WFE, as these will be
the quantities of interest when RAVEN is used with IRCS in
imaging mode.

We have focused on setting the basic system parameters, such
as system order, field of regard, and the limiting magnitude. To
understand how performance varies with these and other param-
eters, we defined an asterism with three NGSs on a ring of
45′′ radius and then evaluated the performance at multiple field
points within that circle (in some simulations, a LGS WFS was
included at the field center). The average performance is defined
over points out to 30′′ from the field center (excluding the field
center when a LGS was used in the simulation).

3.2. Atmospheric Profiles

We derived atmospheric profiles for our RAVEN simulations
by combining image-quality measurements from the Subaru
Observatory and differential image motion monitor (DIMM)
and multiaperture scintillation sensor (MASS) turbulence pro-
files measured by TMT at Mauna Kea. We used a realistic
seven-layer profile generated from the TMT MASS/DIMM site
survey MK 13N data (Els et al. 2009). To assemble represen-
tative profiles corresponding to the quartiles of this residual
WFE, more than 10,000 individual MASS/DIMM profiles were
sorted by uncorrectable residual WFEs (fitting-plus-lag error),
and 10% of the profiles clustered around the quartiles were aver-
aged (M. Schoeck 2011, private communication). While uncor-
rectable residual WFE is not equivalent to image quality (IQ), it
is an acceptable surrogate. These three seven-layer turbulence
profiles (starting 60 m above the MK 13N site), are given in
Table 1.

We complemented these MASS/DIMM profile measure-
ments with measures of Subaru IQ taken between 2000 and
2004 (Miyashita et al. 2004). Assuming an infinite outer scale,

6See the figures at http://www.naoj.org/Observing/Instruments/AO/performance
.html.
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we determined the Fried parameter, r0, for each quartile of IQ
(Table 1).7

The image-quality–derived Fried parameter values are smal-
ler than the TMT site-testing r0 values derived from

r0 ¼ ð16:7=λ2 cos$1 γ
X

i

J2
i Þ$3=5; (1)

where J2
i ¼

R
C2

nðhÞdh over the ith layer, and γ is the zenith
angle. We interpret these differences as being due to the local
ground layer at the Subaru telescope, wind shake, and dome
seeing. While not all of these PSF-broadening terms will neces-
sarily follow a von Kármán spectrum, assuming that all the dif-
ferences in r0 are due to an additional ground-layer term that
follows von Kármán is probably a conservative assumption.
The first row, corresponding to 0 m, in Table 1 corresponds
to this additional turbulence required to decrease the TMT
site-testing–derived r0 values to be in line with the Subaru
image-quality measurements.8

This additional dome/ground seeing component in these
profiles skews the fraction of the turbulence below 1 km to
be greater than 60%. If the dome/ground seeing component
is smaller and the free atmospheric turbulence is stronger
(i.e., the isoplanatic angle is smaller), there will be a significant
impact on RAVEN performance.

3.3. Simulated Performance

We simulated the performance of RAVEN using the median
Subaru profile defined above. The three-NGS WFSs were on a
45′′ radius ring and had 10 subapertures across the pupil. Sec-
tion 4.3.1 shows the results of a system-order trade study that

concludes that little improvement in performance can be gained
for higher-order systems. A study of asterism diameter in § 4.1
also shows that there is limited improvement for guide star
separations greater than 2′ diameter, as the footprints of the
NGSs in the metapupils separate at relatively low altitudes,
leaving much of the atmospheric turbulence unsensed and
uncorrectable. The selected configuration parameters for the
baseline design are given in Table 2.

Initial simulations of this baseline system show the best per-
formance possible for RAVEN, since WFS noise and other im-
plementation errors are not included (Fig. 2). The figure only
shows the performance at points far from the NGSs. At the
location of the NGSs, the WFE is ∼180 nm rms, which is con-
sistent with the fitting error for a 11 × 11 order DM with a r0 of
15.6 cm (145 nm). The fact that the wavefront error over most of
the field is substantially higher than this (∼270 nm) suggests
that the tomographic error is the dominant error source for
RAVEN. It is due, in large part, to the incomplete overlap of
the guide star footprints in the metapupils at higher altitudes,
and this source of tomographic error will therefore decrease
for larger-diameter telescopes (Tokovinin et al. 2001). Because
the tomographic error was large, it was not essential to minimize
the fitting error. Therefore, we adopted a relatively low order
WFS (the 0.8 m d0 value is quite large for most AO systems),

TABLE 1

SUBARU ATMOSPHERIC PROFILES USED FOR RAVEN
PERFORMANCE MODELING

h
(km) J2 25%

R
C2

ndh 50% (m1=3) 75%

0 . . . . . . . . . . . . . . . . 4:380 × 10$14 9:419 × 10$14 9:991 × 10$14

0.06 . . . . . . . . . . . . . 7:345 × 10$14 1:0318 × 10$13 1:5225 × 10$13

0.5 . . . . . . . . . . . . . . 1:407 × 10$14 3:190 × 10$14 6:990 × 10$14

1 . . . . . . . . . . . . . . . . 4:882 × 10$15 1:077 × 10$14 2:919 × 10$14

2 . . . . . . . . . . . . . . . . 3:956 × 10$14 1:233 × 10$14 3:249 × 10$14

4 . . . . . . . . . . . . . . . . 1:744 × 10$14 2:879 × 10$14 4:212 × 10$14

8 . . . . . . . . . . . . . . . . 1:118 × 10$14 2:264 × 10$14 4:525 × 10$14

16 . . . . . . . . . . . . . . . 2:612 × 10$14 2:734 × 10$14 3:538 × 10$14

r0 (500 nm) . . . . . 19.4 cm 15.6 cm 12.1 cm
FWHM . . . . . . . . . . 0.53″ 0.66″ 0.85″

TABLE 2

RAVEN BASELINE CONFIGURATION PARAMETERS

Parameters Values

Telescope
Diameter . . . . . . . . . . . . . . . . . . . . . 8 m
Central obscuration . . . . . . . . . . 2 m

Atmosphere
r0 (500 nm) . . . . . . . . . . . . . . . . . . 15.6 cm
L0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 m
Zenith angle . . . . . . . . . . . . . . . . . . 0°
Profile . . . . . . . . . . . . . . . . . . . . . . . . Subaru 50%
windGL . . . . . . . . . . . . . . . . . . . . . . . 5:6 m s$1

windtop . . . . . . . . . . . . . . . . . . . . . . . 19:1 m s$1 (at 8 km)
winddir . . . . . . . . . . . . . . . . . . . . . . . . random
Sampling . . . . . . . . . . . . . . . . . . . . . 1=64 m

Wavefront Sensor
NNGS . . . . . . . . . . . . . . . . . . . . . . . . . 3
NGS radii . . . . . . . . . . . . . . . . . . . . 45′′
Order . . . . . . . . . . . . . . . . . . . . . . . . . 10 × 10
θpix . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4′′
Npix . . . . . . . . . . . . . . . . . . . . . . . . . . 15
f sample . . . . . . . . . . . . . . . . . . . . . . . . 500 Hz
λWFS . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7 μm

DM
Order . . . . . . . . . . . . . . . . . . . . . . . . . 11 × 11
Stroke . . . . . . . . . . . . . . . . . . . . . . . . Infinite
Influence functions . . . . . . . . . . Bicubic spline

Evaluation
Npoints . . . . . . . . . . . . . . . . . . . . . . . . 49
λevl . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.65 μm
SamplingPSF . . . . . . . . . . . . . . . . . . λ=4=D

7The true value of r0 is probably overestimated by 10 to 20% by assuming an
infinite outer scale (Martinez et al. 2010).

8 In practice, the 0 and 60 m layers were combined into a single ground-layer
profile in the simulations.
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which will allow us to maintain good corrections even when
using a relatively faint NGS. This system should exceed the
RAVEN 30% EE requirement by delivering ∼40% EE within
140 mas, while delivering ∼30% Strehl ratios over most posi-
tions in the field (in the absence of implementation errors
discussed in § 3.4).

3.3.1. Comparison of MAOS and OOMAO Results

The predicted RAVEN performances from the MAOS and
OOMAO simulations of the baseline system (Table 2) are in
excellent agreement. Both simulation tools predicted a mean
Strehl ratio of 30% for the points within 30′′ of the field center.
The two simulations also predicted an identical 43% ensquared
energy in this area. Only the mean WFE differed slightly;
MAOS predicted a slightly lower mean WFE of 290 nm, while
OOMAO predicted 300 nm rms of WFE. The minimum WFE,
reached at the NGS radius, is 220 nm rms. This is higher than
the 180 nm rms best-case WFE obtained with MAOS. It is sus-
pected that either the thresholded CoG used by OOMAO gives
slightly poorer performance than the MF used in MAOS under
these conditions, or the finite number of radial orders (8 in this
case) used in the OOMAO tomographic reconstructor limits the
simulated performance. Overall, however, the excellent agree-

ment between these two independent AO simulation tools pro-
vides us with confidence in our results and signals that both
tools can be used interchangeably in our RAVEN simulations.

3.3.2. RAVEN Performance Gain from the Subaru LGS

RAVEN benefits greatly if it makes use of the Subaru LGS
facility. The NGS WFSs can be moved farther out while still
covering a majority of the metapupil at the top of the turbulent
atmosphere (the NGS could be moved out onto a ∼3′ diameter
ring while maintaining some overlap with the LGS metapupil at
16 km). This will improve sky coverage, because the area over
which NGS can be chosen while still meeting the RAVEN per-
formance requirements will be substantially larger. Addition-
ally, RAVEN can work with one LGS and just two NGSs
(over a 2′ FOR). Again, this will markedly improve sky cover-
age if only two NGSs are required. The LGS is relatively bright;
this can help compensate the AO performance of RAVEN when
the other NGSs are faint, and superior performance can be
achieved if three bright NGSs are found within a 2′ ring. Median
WFE within a 2′ field will be ∼230 nm (∼190 nm of tip/tilt-
removed wavefront error; Fig. 3). This corresponds to a large
increase in ensquared energy (more than 50%) and Strehl ratio
(greater than 50% up to 20′′ from the LGS). These performance

FIG. 2.—RAVEN performance for the baseline NGS-only configuration.
Mean wavefront errors (all modes: thin solid line; tip/tilt removed: thin dashed
line) vs. radius for field locations sampling half the focal plane for three NGSs
on a 45′′ radius ring. Mean fractionalH-band EE (within 140 mas; heavy dashed
line) and Strehl ratios (heavy solid line) measured from the PSFs are shown with
the scale on the right (scaled to WFEs for comparison purposes by employing
the Maréchal approximation, SR≈ expð$ω2Þ, where ω is the rms wavefront
error in radians.) Only field locations not directly adjacent to the NGSs were
considered.

FIG. 3.—RAVEN performance for the baseline three NGSs plus on-axis LGS
configuration. Mean wavefront errors (all modes: thin solid line; tip/tilt re-
moved: thin dashed line) vs. radius for field points sampling half the focal plane
for three NGSs on a 45′′ radius ring and an on-axis LGS. Mean fractional
H-band ensquared energy (within 140 mas; heavy dashed line) and Strehl ratios
(heavy solid line) measured from the PSFs are shown with the scale on the right
(scaled to the WFEs by the Maréchal approximation). Only field locations not
directly adjacent to the NGSs were considered.
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predictions do not include the unmodelable implementation
errors discussed in § 3.4.

A comparison of the open-loop (no AO correction) PSFs and
the RAVEN-corrected PSFs (with and without the central LGS)
is shown in Figure 4.

3.4. Error Budget

While the most important figure of merit for RAVEN is EE
within a 140 mas slit, it is difficult to disentangle how potential
sources of WFEs affect this metric. To give a sense of RAVEN
performance, a WFE budget has been built in that it is easier for
the expected contribution of different errors to be added together
in quadrature. The high-order WFEs are of primary concern,
because low-order errors (e.g., tip, tilt, and focus errors) will
broaden the core of the PSF and not lead to significant losses
in EE within a 140 mas box. The RAVEN WFE budget is listed
in Table 3. The terms that are included in the simulations are
described below, and then some additional implementation er-
rors are listed; these include errors derived from laboratory tests
of an ALPAO DM that is similar to the RAVEN science DMs.

Tomographic Error.—The dominant error term for
RAVEN operating with just three NGSs will be the tomographic
error. The median tomographic tip/tilt-removed WFE averaged
over field points out to 40′′ (not considering the center of the
FOR when the LGS is considered) is 175 nm for RAVEN using
just three NGSs on a 45′′ radius ring and just 105 nm if the
Subaru LGS is positioned at the center of the field. A certain
fraction of this WFE is of relatively low order and will not sub-
stantially decrease the ensquared energy.

DM Fitting Error.—The 11 × 11 RAVEN DM cannot be
used to fit high-order modes and will therefore contribute a
fitting-error term, equal to roughly

FIG. 4.—SimulatedH-band PSFs in open-loop (left), RAVEN with three NGSs evaluated at the field center (middle), RAVEN with three NGSs and the LGS evaluated
at the field center (LGS location; right). The box shows the 140 mas box in which ensquared energy is measured corresponding to the IRCS slit width; the simulated EEs
are 10% with no AO, 40% with three NGSs, and 60% at the location of the LGS. All PSFs use the same stretch, with the scale corresponding to the peak flux of the
perfect diffraction-limited PSF. See the electronic edition of the PASP for a color version of this figure.

TABLE 3

RAVEN TIP/TILT-REMOVED WAVEFRONT ERROR BUDGET

Term Three NGSs þLGS

Simulated WFE Terms (nm rms)
Tip/tilt-removed tomography . . . . . . . . . . . . . . . . . . . . . . . 175 105
DM fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 145
WFS aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 112
WFS sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 62
WFS noise (m ¼ 12; Fs ¼ 500 Hz) . . . . . . . . . . . . . . . 54 83
WFS noise (m ¼ 14; Fs ¼ 180 Hz) . . . . . . . . . . . . . . . 95 96
Simulated total (m ¼ 12; Fs ¼ 500 Hz) . . . . . . . . . . 271 236
Simulated total (m ¼ 14; Fs ¼ 180 Hz) . . . . . . . . . . 280 241

Simulated Ensquared Energy in 140 mas Slit
Simulated EE (m ¼ 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.42 0.47
Simulated EE (m ¼ 14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.40 0.46

Implementation WFE Terms (nm rms)
Calibration þlag ($15 dB saturation; see text) . . . . . 88 88
DM flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7
DM stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27
DM repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22
High-order optical errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 50
Implementation total WFE . . . . . . . . . . . . . . . . . . . . . . . . . 107 107

Total WFE (nm rms)
Total WFE (m ¼ 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 259
Total WFE (m ¼ 14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 264

Total Ensquared Energy in 140 mas Slit
Total EE (m ¼ 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.35 0.39
Total EE (m ¼ 14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.33 0.38
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σ2
fit ≈ 0:25ðd0=r0Þ5=3; (2)

where d0 is the interactuator spacing projected onto the primary
mirror (0.8 m for the baseline system) and yields ∼150 nm of
WFE. This makes fitting error the next greatest contribution to
the high-order WFE budget.

WFSAliasing Error.—The large size of the subapertures on
the WFS will also contribute an aliasing error that arises from
high spatial frequency disturbances that affect the WFS signal.
From simulations, we find that this error can be characterized by
σ2
alias ≈ 0:1ðd0=r0Þ5=3, or ∼100 nm rms WFE, due to aliasing in

the baseline system. This aliasing term will contribute to the
scattering of light out of the PSF core and into the halo (and
outside of the slit).

Taken together with the DM fitting error, the total general-
ized fitting error for RAVEN is large: approximately 180 nm
rms. This is consistent with a generalized fitting error of roughly
σ2 ¼ 0:35ðd0=r0Þ5=3 and is the same as for classical AO sys-
tems. While the generalized fitting error is equal to the tomo-
graphic term for the NGS-only case, the generalized fitting error
dominates the high-order error budget when the LGS in in-
cluded as well. We maintain the large subapertures and rela-
tively low order of the RAVEN MOAO system in order to
achieve a higher sky coverage and WFS dynamic range, as dis-
cussed in §§ 3.5 and 4.3, respectively.

WFS Sampling Error.—This term refers to the WFE that
arises from the undersampling of the WFS spots by the RAVEN
WFSs. The WFSs need to be undersampled, due to the limited
number of pixels available to cover an order 10 × 10 system
with a relatively large FOV. This term is dependent on the
centroiding algorithm. We used the MF to determine this error.
Other centroiding algorithms would have different WFS sam-
pling and noise errors; we will choose a centroiding algorithm
for RAVEN to minimize this error source.

WFS Noise Error.—The WFS noise was calculated from
simulations with and without detector noise, photon noise,
and sky background. This term obviously depends on guide star
magnitude and the sampling rate. The noise errors quoted in
Table 3 assume a 500 Hz sampling frequency for bright stars
and a 180 Hz sampling frequency for fainter stars. This term
can be reduced further if a slower sampling frequency is used
at the expense of a larger lag error (which we include in the
calibration-plus-lag error term of Table 3).

Implementation Errors.—There are a number of error
sources that arise from sources that are not (yet) all simu-
lated. These include the calibration-plus-lag error for an OL
system; the DM flattening and go-to errors, as measured from
the ALPAO DM 97 using a Zygo interferometer in the Uni-
versity of Victoria AO laboratory; and the high spatial fre-
quency, uncorrectable errors on RAVEN optics. We made an
educated guess that this last term will not exceed 50 nm
rms WFE.

The top section of Table 3 contains the simulated error terms
described above. The total errors for two different guide star

brightnesses (with and without the addition of a fourth,
constant-brightness, LGS) are derived by adding the individual
terms together in quadrature. The ensquared energies measured
from the simulated PSFs are also tabulated. The bottom section
of the table includes implementation errors not included in the
end-to-end simulations. The total WFE is a quadrature sum of
the simulated and implementation errors. It should be noted that
the error terms and their values are consistent with those
reported by the CANARY team (Gendron et al. 2010). The
ensquared energy, accounting for implementation errors, is cal-
culated by assuming that the loss of Strehl ratio due to the
high-order implementation errors will remove the same amount
of light from the 140 mas box.

In this RAVEN performance budget, it was found that the
implementation errors will further reduce the ensquared energy
by ∼15%. Most of this is due to the open-loop calibration and
lag errors. We bundle these errors together by modeling the con-
sequences of an open-loop rejection transfer function (RTF; the
amount of turbulence that can be sensed and rejected as a func-
tion of frequency), which includes a constant wavefront error
from misalignment or miscalibration. This constant error is
manifested in the RTF as a plateau at low temporal frequencies;
the amount of rejection over long timescales saturates. All open-
loop AO systems to date have shown a RTF that saturates at low
temporal frequencies. VOLT’s RTF saturated at $15 dB, while
other systems performed somewhat better (see § 4.6 for more
details). In Table 3, a conservative estimate of 88 nm rms was
made by assuming that the RTF of RAVEN will saturate at
$15 dB. (This error only includes Zernike modes between 7
and 45. Errors on low-order Zernike modes will not substan-
tially decrease the EE in 140 mas, and higher-order Zernike
modes will not be fully corrected by RAVEN.) If a better cali-
bration can be achieved, this saturation threshold may be
reduced, perhaps to $25 dB, and the corresponding WFE
would drop from 88 nm to ∼40 nm. In this case, the implemen-
tation error would reduce the ensquared energy by just 10%. As
long as no substantial implementation error remains unac-
counted, the performance requirement of delivering 30% EE
to the 140 mas spaxel will be met at zenith under median con-
ditions. If the temporal error can be reduced through good cali-
bration techniques, 40% EE can be achieved when using the
Subaru LGS.

3.5. Limiting Magnitude of Asterism Guide Stars

The baseline RAVEN OL WFS detector is the EMCCD
camera. These devices have the ability to operate with very high
gain and low read noise. In this mode, the read noise can be
made almost arbitrarily small; however, the background source
plus background photon noise is effectively doubled. The
signal-to-noise ratio (S/N) can be written as follows:

S=N ¼ S0=
ffiffi
ð

p
2ðSD þ ðS0 þBÞÞ þ ðNa=GÞ2Þ; (3)
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where S0 is the source counts (all measured in electrons); B is
the background; SD is effectively the dark current; Na=G is
effectively the read noise divided by the gain, and this ratio
is chosen to be 0.1; and the SD for the Andor cameras is actually
a combination of two effects: the thermal dark signal,

Dt ¼ 3:3 × 106t2e$9080=T ; (4)

which can effectively be ignored for short exposure times when
the cameras are cooled.

3.5.1. NGS-only Case

Using the noise characteristics of this EMCCD device, simu-
lations were run using the baseline configuration. First, simula-
tions of RAVEN using only NGSs were performed. Each
simulation evaluated the performance of RAVEN as we varied
the NGS magnitudes (Table 4). The performance started to de-
grade significantly by mR ¼ 14:5, but almost all of that perfor-
mance could be regained if RAVEN were run slower, at 180 Hz.
The servo-lag error did not start impacting the simulated WFEs,
but it was decided to require that the open loop run at a rate of at
least 180 Hz (for these simulations), because MAOS does not
account for an OL RTF that plateaus at low temporal frequen-
cies (§ 4.6). If RAVEN can be run at 180 Hz without loss in
performance, the limiting magnitude becomes 1 mag fainter.
Figure 5 shows the simulated PSFs for faint-magnitude NGSs
in comparison with a bright star. The bright core is still evident
for the mR ¼ 14:5 NGS asterism running at a sampling fre-
quency of 180 Hz.

3.5.2. NGS with On-Axis LGS

RAVEN system performance improves in several ways with
the addition of a central LGS. In addition to decreasing the to-
mographic error with the addition of another WFS (§ 3.3.2),
RAVEN can use an asterism of three sources, including the
LGS and just two NGSs. This will greatly enhance the sky cov-
erage of RAVEN, as the NGS WFS probes can be moved 105′′
away from the field center. Finally, the LGS can be used with
three faint NGSs and still maintain significant EE. If it is as-
sumed that the LGS is a mR ¼ 11 beacon (Y. Hayano 2011,
private communication), and the three NGSs aremR ¼ 15, then
RAVEN can still deliver an average EE > 40% (before losses
due to implementation errors) over a 1′ diameter field (Fig. 6).

Sky coverage for RAVEN will be low, but the addition of the
LGS to the NGS asterism will significantly improve the fraction
of the sky that can be observed. As an example, consider a point
with Galactic coordinates ðb; lÞ ¼ ð30; 0Þ. Using the Besançon
model of the Galaxy (Robin et al. 2003),9 one finds that there are
750 stars per square degree with R < 14:5 (1040 stars per

square degree with R < 15). The probability that there are three
stars with R < 14:5 in a 2′ diameter FOR is just 3%. This does
not even account for asterisms that are unsuitable; in some
cases, the science targets will not be inscribed within the poten-
tial NGS asterism, and therefore the tomographic error will be
too great. If one just requires two NGSs with R < 15 within a
90′′ diameter, with the third guide star provided by the LGS, the
sky coverage increases to 10%. These asterisms are also more
likely to be acceptable, as the observer will have greater flex-
ibility in choosing the field orientation (and hence the on-sky
coordinates of the LGS). If one can accept three NGSs withR <
15 within a 3′ diameter to be used in addition to the LGS, the
potential sky coverage jumps to 34%. Again, a fraction of these
potential asterisms may ultimately prove unacceptable for the
given science targets, but at this Galactic latitude, the sky cover-
age will likely be 10 times higher with the LGS than without.

4. EXPLORING SIMULATION PARAMETER SPACE

We first focused on identifying and studying the major AO
components: the WFSs and the DMs. Having established the
basic AO architecture, the number of variables we explored
was increased, and we included a closer examination of the pos-
sible consequences of open-loop temporal errors and different
input model atmospheres.

4.1. Field of Regard with Respect to Asterism Geometry

Because RAVEN uses three NGS pickoffs that will patrol a
FOR up to 3.5′ in diameter, we simulated RAVEN performance
using three NGSs on rings of different diameters. As expected, a
reduction in the diameter of the asterism leads to improved per-
formance in the area inscribed within the asterism, with a rapid
falloff in performance outside. This is due to an increased over-
lap of the NGS metapupils at higher altitudes, which leads to a
better tomographic estimate of the turbulence above the tele-
scope. Because of the great flexibility of the RAVEN NGS pick-
offs, the possible asterism geometries are practically limitless.
These simple simulations show, however, that once the guide

TABLE 4

MEAN H-BAND PERFORMANCE OVER CENTRAL 30′′ RADIUS

AS FUNCTION OF NGS MAGNITUDE FOR NGS-ONLY CASE

mR

fs ¼ 500 Hz fs ¼ 180 Hz
EE140 Strehl EE140 Strehl

Bright . . . . . . . . 0.43 0.30 … …
10 . . . . . . . . . . . . 0.43 0.30 … …
12 . . . . . . . . . . . . 0.42 0.27 … …
14 . . . . . . . . . . . . 0.36 0.17 … …
14.5 . . . . . . . . . . 0.33 0.12 0.40 0.18
15 . . . . . . . . . . . . 0.29 0.08 0.37 0.14
15.5 . . . . . . . . . . … … 0.34 0.11

9We generated synthetic catalogs of stars using http://model.obs‑besancon.fr/.
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stars are separated by 2′, the performance becomes very uniform
within that diameter (Table 5).

4.2. Enhanced Reconstruction and Control in Open Loop

RAVEN’s performance and sky coverage could be improved
by enhanced reconstruction and control techniques. Further-
more, it is believed that these methods will be critical to the
success of future MOAO instruments on ELTs. Therefore, we
advocate the use of RAVEN as a demonstrator in two areas
of foremost importance for tomographic AO in general and
MOAO in particular:

1. Operation in open loop makes it straightforward to use
minimum pupil-integrated residual phase reconstructors (no
temporal dynamics involved) in which the von Kármán spec-
trum is used as a priori knowledge for the volumetric estimation.

FIG. 6.—RAVEN performance for the three NGSs plus central LGS config-
uration when all three NGSs are faint (mR ¼ 15) and the sampling frequency is
reduced to 180 Hz. Wavefront errors (all modes: thin solid line; tip/tilt removed:
thin dashed line) vs. radius for evaluation points covering half the FOR for three
NGSs on a 45′′ radius ring. Mean fractional ensquared energy (within 140 mas;
thick dashed line) and Strehl ratios (thick solid line) measured from the PSFs are
shown with the scale on the right (scaled to the WFEs by the Maréchal approx-
imation). Only field locations not directly adjacent to the NGSs were considered.
The performance requirements of RAVEN should be met even when mR ¼ 15
guide stars are used with the LGS.

TABLE 5

MEAN H-BAND PERFORMANCE OVER CENTRAL 15′′ RADIUS

AS FUNCTION OF ASTERISM DIAMETER

Asterism diameter
(arcsec) Strehl ratio

Ensquared
energy

WFE
(nm)

30 . . . . . . . . . . . . . . . . 0.41 0.47 256
45 . . . . . . . . . . . . . . . . 0.41 0.46 256
60 . . . . . . . . . . . . . . . . 0.39 0.46 260
90 . . . . . . . . . . . . . . . . 0.30 0.43 302
120 . . . . . . . . . . . . . . . 0.27 0.42 311

FIG. 5.—Comparison of field center PSFs for the three baseline NGS-only RAVEN simulations using guide stars with various magnitudes and sampling frequencies.
Left:mR ¼ 10 and f ¼ 500 Hz.Middle:mR ¼ 14:5 and f ¼ 500 Hz. Right:mR ¼ 14:5 and f ¼ 180 Hz. In the last of these cases, the core of the PSF is still present
and a large fraction of the PSF energy remains within 140 mas (boxed area). See the electronic edition of the PASP for a color version of this figure.

PERFORMANCE MODELING FOR RAVEN MOAO DEMONSTRATOR 479

2012 PASP, 124:469–484

This content downloaded  on Mon, 18 Feb 2013 18:29:31 PM
All use subject to JSTOR Terms and Conditions



In closed loop, however, to make use of this information, a tech-
nique called pseudo–open-loop control has been proposed, con-
sisting of converting the closed-loop measurements back to
open-loop by adding in the DM contribution (Gilles &
Ellerbroek 2008). Clearly, this is now avoided. It thus makes
RAVEN a perfect candidate to demonstrate the algorithms de-
veloped for closed-loop AO in a much more favorable terrain.
Testing and use of high-performance iterative phase reconstruc-
tors as the conjugate gradient and block Gauss-Seidel have been
pursued. We are currently assessing the optimal number of itera-
tions and the real-time requirements for their implementation.
Iterative algorithms embody an alternative to current vector-
matrix-multiply reconstructors that use the generalized inverse
of the interaction matrix between measurements and voltages.
In addition, since no explicit inverse matrix is computed, itera-
tive methods are more suitable to on-the-fly updates from tele-
metry and calibration data sets. Testing and implementation will
have a great impact in establishing real-time performance me-
trics and suitability for facility-size MOAO systems and in an-
choring simulations to a real-world demonstrator as a precursor
of AO for ELTs.

2. The OL control of the DMs also calls for novel temporal
filtering approaches. Section 3.4 shows that the DM stability
and repeatability (go-to error) is suitable for OL control, but this
can be further enhanced by improving the model of the DM
deformation (Guzmán et al. 2008). The application of mini-
mum-variance techniques makes perfect applicative sense,
and much insight has already been gained in using these tech-
niques in standard closed-loop AO. They can potentially further
reduce the servo-lag errors by embedding a full description of
the delays (integer or fractional multiple of the sensing frame
rate), the WFS and DM temporal dynamics, and the spatiotem-
poral properties of the disturbances (atmospheric phase, wind-
shake, vibrations, and non–common-path aberrations).

The RAVEN team is currently tackling these issues, in the
prospect of enhancing overall performance to increase sky cov-
erage for full exploitation of RAVEN’s capabilities.

4.3. WFS Simulations

TheAndor iXonX3860 camera,whichuses a 128 × 128 pixel
EMCCD, was selected as theWFS detector for the following rea-
sons: this camera has low read noise, can be read out at rates up to
500 frames per second, and is an affordable choice for a MOAO
demonstrator. The drawback of the camera is the number of pix-
els.OLWFSsneed a high dynamic range.Choices had to bemade
regarding the order of theAO system, theWFSFOV, and the pixel
scale, and their impacts on performance and sky coverage had to
be understood.

4.3.1. System Order

A critical system design parameter is the order of the MOAO
system (i.e., the number of subapertures across the WFS and

number of actuators across the diameter of the DM). Three ma-
jor factors were important:

1. A commitment to producing an instrument that will deliver
science data from IRCS to astronomers has been made, so sky
coverage is a driving concern. Larger subapertures will allow
the WFSs to work with fainter stars (as shown in § 3.5).

2. The system should not be limited in performance by fitting
error if it can be avoided.

3. A tertiary concern is that if the number of subapertures
were large, the number of pixels per subaperture will be limited.

A number of simulations were performed that evaluated the
performance with different numbers of subapertures. The simu-
lations were performed for the case of the NGSþ LGS imple-
mentation of RAVEN (Fig. 7) and show that the RAVEN
performance requirements can be met with a system order of
10. The gains achieved as a function of system order are more
modest for the NGS-only implementation of RAVEN. In that

FIG. 7.—Tip/tilt-removed WFE (top) and ensquared energy in the H band
(bottom) vs. the system order of RAVEN using three NGSs (on a 45′′ diameter
ring) and on-axis LGS. Median WFEs and EEs of field points within 45′′ of the
field center are used. Implementation and WFS noise are included in these sim-
ulations. We find that increasing the system order (the number of subapertures
across the WFS and number of actuators across the diameter of the DM) will
decrease the WFE and increase the EE, but RAVEN will more than meet the
performance requirements with a system order of 10 while still allowing for
a relatively large collecting area in each subaperture and a higher sky coverage.
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case, tomographic error dominates the error budget, so as long
as the system order remains greater than ∼6, RAVEN perfor-
mance will not significantly decrease.

4.3.2. WFS FOV

Once the system order had been chosen, the optimal WFS
FOV could be determined. We simulated a single OL WFS for
different atmospheres with r0 ¼ 7, 10, and 15 cm at awavelength
of 500 nm and an outer scale ofL0 ¼ 100 m. Using uncorrelated
realizations of the atmosphere, we evaluated the cumulative dis-
tribution of source photons within each of the d0 ¼ 0:8 m sub-
apertures. If the IQ is very poor (r0 ¼ 7 cm), one needs a WFS
with a FOV approaching 5′′ to not miss light. Under conditions
closer to median, a ∼3′′ FOV could suffice.

We also simulated the effect of different outer scales on
the required FOV, but found only a very weak dependence.
For RAVEN, we chose a FOVof 4.8′′. This should give us some
margin if effects other than the atmosphere shift the spots on
the WFS.

4.3.3. Plate Scale

Having chosen the system order and set limits on the FOV,
the effects of different WFS plate scales on RAVEN perfor-
mance were examined. To preserve a ∼5′′ WFS FOV, the plate
scale needs to be between 0.4 and 0:500 pixel$1. At this scale the
seeing-limited WFS spots are undersampled, and the concern
arises that the sensitivity of the WFS may be compromised.
However, simulations indicated that WFE due to the under-
sampled PSF was only 72 nm for 0.4″ pixels. This centroiding
accuracy was achieved using a MF centroiding algorithm. It is
unlikely, however, that an unmodified MF algorithm will be
used for centroiding in the RAVEN RTC, because the MF is
linear over a limited FOV. We expect to employ either a mod-
ified matched-filter algorithm with a moving center defined by
the center of gravity or a correlation centroiding algorithm in the
RAVEN RTC. We are studying open-loop centroiding in more
detail so that errors arising from undersampling the PSF are
minimized.

4.4. Performance Using Different Atmospheric Profiles

The performance of the RAVEN AO architecture was bench-
marked using the Subaru 50% profile, but the performance of
the baseline system was also checked using the Subaru 25% and
75% atmospheric profiles (Table 1). Simulated RAVEN perfor-
mance for the different profiles, assuming no WFS noise, are
presented in Table 6. Even when r0 is small, RAVEN will still
concentrate a significant fraction of the light within the 140 mas
IRCS slit.

While the 30% ensquared-energy requirement (under median
conditions) will not be met with RAVEN when the IQ is poor,
it appears that the performance will gracefully degrade as
conditions worsen. If conditions improve, the tomographic error
will still dominate the WFE budget. If the central LGS is used,
high Strehl ratios (∼50%) over a 1.5′ diameter field can poten-
tially be measured.

4.5. Performance as a Function of Zenith Angle

MOAO performance will depend on the zenith angle of the
science target, of course. The distance from each of the atmo-
spheric layers to the telescope is stretched by the air mass,
which is equivalent to AM≡ secðγÞ, and the Fried parameter,
r0, is proportional to secðγÞ$3=5. For the LGS, the distance of
the generated beacon and the thickness of the sodium layer are
also proportional to secðγÞ. As a result, the LGS dims in pro-
portion to cosðγÞ if we neglect other contributions to LGS

TABLE 6

H-BAND PERFORMANCE FOR DIFFERENT ATMOSPHERIC

PROFILES

LGSþNGS NGS only
Subaru IQ
profile EE140 Strehl EE140 Strehl

25% . . . . . . . . . 0.59 0.48 0.53 0.35
50% . . . . . . . . . 0.51 0.45 0.43 0.29
75% . . . . . . . . . 0.39 0.35 0.30 0.18

FIG. 8.—Wavefront error (open circles; scale on left) and H-band EE (filled
circles; scale on right) as a function of air mass for a point near a NGS (triangles)
and 45′′ from the nearest NGS (circles). The performance drops more rapidly for
points in the field far from NGSs. At the location of a NGS, the WFE increases
as AM1=2.
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brightness, including fasor power and polarization and the
Earth’s magnetic field (Holzlöhner et al. 2010).

Figure 8 shows the wavefront error and Strehl ratio at the
center of the FOR for the baseline RAVEN configuration with-
out the central LGS as a function of air mass. The derived WFEs
increase rapidly and are well fit by a power law. Even though the
generalized fitting error is a function of the square root of air
mass (§ 3.4), we found that the best-fit exponent for a
power-law function was greater. One can understand this by
considering the overlapping footprints of the guide stars in
the metapupils corresponding to different atmospheric layers
as the zenith angle changes. As the zenith angle increases,
the layers essentially get farther from the telescope, and the
metapupils of the guide stars separate, leaving a larger portion
of the metapupil for a given layer less well-sampled or even
unsensed. If one looks at the power-law index as a function
of distance from the nearest guide star, this effect becomes clear
(Fig. 9).

For classical AO systems dominated by fitting error, the
WFE should be proportional to AM1=2. Since a large fraction
of the RAVENWFE budget is dominated by tomographic error,
we expect that the power-law index β, defined from the relation
WFE ∝ AMβ , will vary with distance from the guide stars
(Fig. 9). We see that near the NGSs, β ∼ 0:5, but that β rises
to ∼1 away from the NGSs. The power-law index β is large even
very close to the LGS, because atmospheric turbulence is domi-
nated by tip/tilt, which is not sensed by the LGS WFS. If tip/tilt

is excluded, the relation between distance to the guide star and β
is virtually indistinguishable between LGSs and NGSs.

FIG. 9.—Power-law index β, as defined in the relation WFE ∝ sec γβ , vs. distance to the nearest guide star considering the full WFE (left) and WFE with the tip/tilt
component removed (right). Points are labeled by whether the closest guide star is the LGS (x), points are inside the 45′′ diameter ring on which the NGSs sit (filled
circles) or are outside that ring (open circles).

FIG. 10.—VOLT rejection transfer function. The behavior of the RTF at fre-
quencies greater than 40 Hz matches the theoretical OL RTF (dashed line), but
at low frequencies, the open-loop VOLT system was not making the full rejec-
tion. This same behavior is observed with both ViLLaGEs and CANARY.
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4.6. Sampling Frequency

ViLLaGEs, VOLT, and CANARY have all demonstrated that
open-loop correction is possible. The gain of an open-loop sys-
tem can be set to unity, because there is no feedback; every
wavefront measurement made is applied to the DM. The over-
shoot is limited to a factor of 2 (because there is no feedback) at
one-fourth of the sampling frequency, fs (assuming a one-frame
delay). The correction bandwidth is high; for VOLT running
with fs ¼ 750 Hz, the correction bandwidth was approximately
70 Hz (Fig. 10). However, it was also noticed that the RTF flat-
tened out at low temporal frequencies (seemingly independently
of spatial frequency). Our best rejection was approximately
$15 dB with VOLT (CANARY was able to achieve
∼$ 25 dB of rejection; E. Gendron 2011, private communica-
tion). This is most likely due to some misalignment in the sys-
tem, which we hope to simulate, but it seems unlikely that this
type of error can ever be completely eliminated in RAVEN.
Much was learned about alignment and calibration from VOLT,
and significant improvement on the OL RTF is anticipated.

To determine the effect that this flattened RTF would have on
RAVEN performance, an OL RTF with and without this plateau
was simulated. Assumptions made include median image qual-
ity of r0 ¼ 15:6 cm at λ ¼ 500 nm, an infinite outer scale, and
a wind speed of 8 m s$1. The residual wavefront error in Zer-
nike modes 7–45 (excluding tip/tilt and second-order radial
modes, because errors on these modes will not lead to signifi-
cant losses in ensquared energy) was measured for different
sampling frequencies between 50 Hz < fs < 500 Hz, different
RTF saturation levels of$15 dB and$25 dB, and no saturation
(Table 7).

The results are quite independent of sampling frequency, at
least above 100 Hz. If RAVEN can be run with fs ¼ 100 Hz,
approximately a half-magnitude more can be gained in the limit-
ing magnitude (down to mR ¼ 15 for the NGS-only case),
which will in turn have a big impact on the RAVEN sky cover-
age. It is also noted that saturation levels must be kept at or be-
low $15 dB; at this level, it is already becoming a significant
source of WFE. If RAVEN can be kept aligned and calibrated so
that this saturation level is approximately $25 dB, the open-
loop temporal error will be only a minor contribution to the total
WFE budget.

5. SUMMARY AND FUTURE DIRECTIONS

A baseline MOAO system architecture for RAVEN has been
established and the expected performance of such a system has
been simulated using two independent modeling tools, MAOS
and OOMAO. These two independently developed AO simula-
tion tools give excellent agreement for the expected perfor-
mance of RAVEN. Based on these results, it has been
established that RAVEN should be able to meet the design re-
quirement that 30% ensquared energy be delivered within a
140 mas wide IRCS slit if three NGSs are used, and perfor-

mance will improve dramatically if the single Subaru facility
on-axis LGS WFS is also included (up to ∼40% ensquared en-
ergy in median conditions). Employing one LGS beacon also
greatly improves the sky coverage, because RAVEN can operate
with the LGS in conjunction with just two NGSs that aremR <
14:5 and perhaps even fainter.

A broad spectrum of the system parameter space has been
explored. We have looked at RAVEN performance as a function
of guide star magnitude. We expect RAVEN to be able to pro-
vide the required ensquared energy if the NGSs have magnitude
R < 14:5 (R < 15 if the LGS is also used). Trade studies on the
DMs and WFSs have allowed us to settle on an AO system ar-
chitecture that includes order 10 × 10 WFSs with a 4.8′′ FOV
and a pixel scale of 0:400 pixel$1 and an order 11 × 11 DM. We
explored how the performance changes as the asterism diameter
decreases, zenith angle increases, and different atmospheric pro-
files were used. We found that the degradation of performance
with zenith angle is dependent on the distance to the nearest
guide star; the farther away the science object sits from a guide
star, the more rapidly performance degrades. A study of the per-
formance with sampling frequency using a realistic open-loop
rejection transfer function that incorporates the effects of optical
misalignments and imperfect calibration concluded that little
performance loss is expected if the sampling frequency is great-
er than or equal to 180 Hz (if the open-loop rejection transfer
function plateaus at $15 dB at low temporal frequencies,
one has larger wavefront errors, of course, but one can use fS ¼
100 Hz without additional WFEs).

As the RAVEN project progresses, we are placing a high
priority on developing tools to simulate RAVEN alignment
and calibration. Exploration of these simulations will improve
the understanding of the spatial and temporal frequencies af-
fected by open-loop misalignments. Existing open-loop on-sky
experiments reported RTFs that flattened-off at low frequencies.
Another issue that needs further study is open-loop centroiding.
The MF seems to work quite well under the conditions studied,
but concern about a steep dropoff in performance must be
addressed in the event that the spots move off of the MF.
Thresholded center of gravity should work well in the high-
S/N regime, but the sensitivity of the thresholded center of

TABLE 7

RAVEN OPEN-LOOP TEMPORAL WFE

Sampling frequency

Saturation
level 50 100 180 250 500

No saturation . . . . . 91(103) 49(56) 31(36) 25(28) 17(19)
$25 dB . . . . . . . . . . 91(105) 52(62) 36(48) 32(45) 28(43)
$15 dB . . . . . . . . . . 108(147) 90(134) 88(133) 88(133) 88(133)

NOTES.—Measured in nm rms, excluding first- and second-order Zernike
modes. Results in parentheses are residual wavefront errors, excluding only
tip and tilt.
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gravity may be limited, due to the undersampled WFS spots. In
addition to these algorithms, we will also explore how well sui-
ted correlation centroiding and a modified MF (with a floating
center set by the center of gravity) are to open-loop centroiding
and RAVEN. Finally, we will continue to explore the feasibility

of using advanced control and reconstruction algorithms in the
context of RAVEN.We hope that RAVENwill help demonstrate
that MOAO projects are indeed feasible and that MOAO instru-
ments are capable of delivering significant multiplex advantages
over single-target IFSs.
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Multi-object adaptive optics (MOAO) systems are still in their infancy: their complex optical designs for tomo-
graphic, wide-field wavefront sensing, coupled with open-loop (OL) correction, make their calibration a challenge.
The correction of a discrete number of specific directions in the field allows for streamlined application of a gen-
eral class of spatio-angular algorithms, initially proposed in Whiteley et al. [J. Opt. Soc. Am. A 15, 2097 (1998)],
which is compatible with partial on-line calibration. The recent Learn & Apply algorithm from Vidal et al. [J. Opt.
Soc. Am. A 27, A253 (2010)] can then be reinterpreted in a broader framework of tomographic algorithms and is
shown to be a special case that exploits the particulars of OL and aperture-plane phase conjugation. An extension
to embed a temporal prediction step to tackle sky-coverage limitations is discussed. The trade-off between length-
ening the camera integration period, therefore increasing system lag error, and the resulting improvement in SNR
can be shifted to higher guide-star magnitudes by introducing temporal prediction. The derivation of the optimal
predictor and a comparison to suboptimal autoregressive models is provided using temporal structure functions.
It is shown using end-to-end simulations of Raven, the MOAO science, and technology demonstrator for the
8 m Subaru telescope that prediction allows by itself the use of 1-magnitude-fainter guide stars. © 2013 Optical
Society of America

OCIS codes: (010.1080) Active or adaptive optics; (010.1330) Atmospheric turbulence.
http://dx.doi.org/10.1364/JOSAA.31.000101

1. MULTI-OBJECT ADAPTIVE OPTICS
Single-object adaptive optics (AO) systems are now routinely
used in most major observatories to attenuate the blurring ef-
fect of the Earth’s atmosphere when imaging through turbu-
lence. This blurring results in loss of angular resolution, set by
the ratio of the imaging wavelength λ and the telescope diam-
eter. Classical AO systems use a single wavefront sensor
(WFS) and deformable mirror (DM) driven in real-time to
measure and correct the wavefront phase aberrations in a
single direction.

To achieve correction over a large field, angular anisopla-
natism must be overcome. This phenomenon is linked to the
variation of the optical disturbances across the field and is
characterized by the anisoplanatic angle, θ0 ∝ λ6∕5, typically
of the order of tens of arcseconds in the H band [1].

Two approaches are envisioned for enlarging the iso-
planatic angle: multi-object AO (MOAO) and multi-conjugate
AO (MCAO). Both involve tomographic estimation of
the 3D atmospheric wavefront disturbance using infor-
mation from multiple WFSs locked on multiple guide stars,
which probe different lines of sight through the atmo-
sphere. The two approaches differ in how the correction is
applied:

• In MCAO, one places multiple DMs in a series, each
optically conjugated to a different atmospheric altitude. Due
to the finite number of DMs, such systems will still suffer from
generalized anisoplanatism [2].

• In MOAO, after the information from multiple WFSs is
combined into a tomographic estimate of the turbulence
[3], multiple science pick-off arms are placed on the scientifi-
cally interesting targets in the field. Each science channel con-
tains a DM, which makes the optimal turbulence correction in
its science direction. This parallel approach promises to in-
crease the field over which AO corrections can be applied
to 5 arcmin or even 10 arcmin.

However, unlike classical and MCAO closed loop AO sys-
tems, in which the WFSs sit after the DMs, MOAO systems
require open-loop (OL) estimation of the atmosphere over a
large field but only a few discrete number of correction direc-
tions. As such, the WFSs do not capture the DM shape, being
bound to measure the total uncorrected disturbance (as op-
posed to measuring only the residual). The DM shape is
not fed back to the system, being blindly applied to the device.

Because of its OL aspect, such systems stress the need for
accurate calibration and call for (quasi) model-independent
reconstructors. One solution for calibrating MOAO systems
is the so-called Learn & Apply algorithm [4] in which the tomo-
graphic reconstructor is formulated as a minimum mean
square error (MMSE) optimization problem, whose solution
involves covariance matrices that can be directly measured
in the MOAO system. These matrices encode a certain number
of instrumental systematics and are, therefore, preferable to
synthetic versions that may undermodel the actual phenom-
ena in the real system.
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A related MMSE solution had been previously proposed in
Whiteley et al. [5] extending results of Valley [6] when dealing
with optimal compensation of angular anisoplanatism in
classical AO. As it turns out, MOAO can be seen as a gener-
alization to multiple directions and any number of ground-
conjugated correction directions. Therefore, a streamlined
application of Whiteley’s algorithm is formulated. Further-
more, the static Strehl-optimal reconstructors under consider-
ation for 30–40 m class telescopes’ closed-loop MCAO systems
[7] can be worked out as variations (albeit mathematically
equivalent) of the MMSE reconstructor.

As it stands, only partial computation of the tomographic
reconstructor can be done from the data. The remainder, per-
forming the angular extrapolation in the field from the guide
stars to the science object direction(s), relies still on fitting
an a priori atmospheric model to the data and cannot be
circumvented.

Furthermore, to overcome temporal loop delays, or at least
to mitigate them, the static reconstructors are then extended
with an extra temporal prediction step. Potential predictive
autoregressive (AR) models are compared to the one-step
spatio-angular (SA) temporal solution under a common tem-
poral structure-function analysis framework.

Temporal prediction has the potential to relax the temporal
constraints, thus allowing for larger integration times and/or
real-time processing. This may in turn increase the limiting
magnitude of stars that can be used for guiding.

The performance analysis is done for Raven, the MOAO
science and technology demonstrator for the 8 m Subaru
telescope, supported by Monte Carlo simulations and exper-
imental results from the Raven optical bench.

This paper has three main sections: in Section 2, two equiv-
alent formulations are recalled and their features outlined.
The explicit layered tomographic reconstructor allows more
easily the formulation of an intermediate predictive step,
whose options are discussed in Section 3. Finally, in Section 4,
the gain in terms of limiting magnitude for the Raven demon-
strator are presented and compared to numerical simulations.

2. SPATIAL, STREHL-OPTIMAL, STATIC
RECONSTRUCTORS
Under the hypothesis that the turbulent atmosphere is a sum
of Nl thin layers located in a discrete number of different
altitudes hj , the aperture-plane phase ω!ρ; θ; t" indexed by
the bi-dimensional spatial coordinate vector ρ # !ρx; ρy" in
direction θ # !θx; θy" at time t is defined as

ω!ρ; θ; t" #
XNl

j#1

Wj!ρ$ hjθ; t"; (1)

where Wj!ρ; t" is the jth-layer wave-front.
In the following, assume the phase is conveniently ex-

panded onto a piston-removed Zernike orthonormal modal
basis [8] with a finite number of Nz polynomials,

ω!ρ; θ; t" #
XNz

i#2

ϕi!θ; t"Zi!ρ∕R"; (2)

with modal coefficients

ϕi!θ; t" #
1
R2

ZZ
Zi!ρ∕R"ω!ρ; θ; t"Ω!ρ"d2ρ; (3)

where Ω!ρ" is the aperture function, R the telescope primary
mirror radius, and Zi!ρ∕R" the ith polynomial function.

Using matrix formulation, the resulting aperture-plane
wavefront coefficients ϕ!θ; t" in the near-field approximation
relate to the coefficients φ of the wavefront phase defined
over a discrete number of layers in the volume by a simple
matrix multiplication [9]:

ϕ!θ; t" # Pθφ!t"; (4)

where

φ ≜

!
φT
0 % % % φhL

"
T

!5"

is a concatenation of phase coefficients of the decomposition
of Wj!ρ; t", 1 ≤ j ≤ Nl onto the basis function set, and Pθ is a
cookie-cutter matrix that remaps and sums the Zernike coef-
ficients from the wavefront modal expansion in the meta-
pupils to the pupil-plane. The superscript T represents vector
transpose.

As is common in AO, the aperture-plane phase is not mea-
sured directly. Instead, the WF is estimated (reconstructed)
from some measured (and noisy) data that is statistically re-
lated to it. Consider only the widely used Hartmann–Shack
wavefront sensor (HS-WFS), which provides the phase
gradient s # !sx; sy" with noise.

In MOAO, the objective cost function is the minimization of
the aperture-plane residual phase variance (MV) for individual
science directions βi ∈ R1×2:

E # argmin
E0

h‖ϕ!βi" − ϕ̂!βi"‖2L2!Ω"i; (6)

where ϕ is the actual phase (or its coefficients as is the case
here), ϕ̂!βi" ≜ Es is the estimated phase (estimated quantities
are indicated by the hat symbol), s are noisy measurements, L2
is the Euclidean norm over the aperture Ω, and h% % %i is the en-
semble average over time for an individual optimization direc-
tion. As is shown in [10], the minimization is independent of
the direction βi, i.e., it is equivalent to minimize the residual
phase variance over a given field-of-view (FoV) of interest.
Due to the particular optimization for individual directions
in MOAO, the reconstructors can be simplified, and a more
compact solution is found as is described next.

A. Equivalent Tomographic Reconstructors
Let the following forward-measurement model, which makes
explicit use of the layered phase vector [9,10],

sα!t" # ΓPαφ!t" $ η!t" (7)

with sα!t" ∈ R!Nα×Ns"×1 a column vector of Nα × Ns measure-
ments for all the Nα GS directions, obtained using the
pupil-plane gradient operator Γ ≜ diagf&Γ1; % % %ΓNα

'g ∈
RNαNs×NαNz that concatenates Nα gradient operators for each
individual WFS. Γi relates the Nz phase dimensions in the
aperture in the directions α ∈ RNα×2 to the Ns measurements.
Noise is represented by η!t" ≜ ∈ RNαNs×1.
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The MV reconstructor providing the aperture-plane phase
estimate in the β science directions is obtained by minimizing
the partial derivatives of Eq. (6) with respect to E0 [7,10,11]:

ϕ̂β # PβEsα; (8a)

# PβhφφT iPT
αΓT !ΓPαhφφT iPT

αΓT $ hηηT i"−1sα; (8b)

where ϕβ ∈ RNβNz×1 is a vector of aperture-plane phase coef-
ficients from the decomposition of the WF in all the Nβ

science directions β ∈ RNβ×2. This representation is preferred
in closed loop wide-field AO systems and has been extensively
used previously coupled to pseudo-OL control [12]. It is par-
ticularly suited to multi-conjugate AO, where the turbulence
profile is needed prior to fitting to a DM’s influence functions
for correction. The deterministic fitting step is a least-squares
fit to the DM influence functions that does not depend upon
the measurement noise nor turbulence statistics.

With this formulation, the turbulence profile is explicitly es-
timated in the layers before being collapsed to the pupil plane
through Pβ; it is therefore referred to as “explicit tomography
reconstructor” in the remainder of this paper.

Before continuing, note that Eq. (8) is equivalent to the
MMSE solution with a simplified measurement model involv-
ing the pupil-plane turbulence only:

sα!t" # Γϕα!t" $ η!t": (9)

Assuming s and ϕ are zero-mean and jointly Gaussian, direct
application of the MMSE solution to estimate the aperture-
plane phase in the Nβ-science directions of interest yields [13]

Efϕβjsαg ≜ Σ!ϕβ;sα"Σ
−1
sα sα # ϕ̂β; (10)

where EfXjYg stands for the mathematical expectation of X
conditioned to Y . Since in general β ≠ α, Eq. (10) follows from
Efϕβjsαg # EfϕβjEfϕαjsαgg. Given that the conditioning relates
only to the last available measurement (as opposed to present
and previous measurements), these reconstructors are la-
beled as static. Developing terms in Eq. (10) using Eq. (9),
the reconstructor becomes

ϕ̂β ≜ hϕβϕT
α iΓT !ΓhϕαϕT

α iΓT $ hηηT i"−1sα: (11)

Equation (11) converts to Eq. (8) by setting

hϕβϕT
α i # PβhφφT iPT

α ; (12a)

hϕαϕT
α i # PαhφφT iPT

α : (12b)

This MMSE reconstructor is dubbed SA reconstructor, a term
coined by Rodolphe Conan, to the best of the authors’ knowl-
edge, on account of the nature of the covariance matrices in-
volved in its definition. It can be seen as a generalization of the
work of Whiteley et al. [5] in seeking the optimal anisoplanatic
reconstuctor in classical AO to the tomographic, multiple sen-
sor case. It has several convenient features: it is much faster to
compute off-line than the explicit tomography reconstructor
and circumvents the truncated expansion on a modal basis.

The numerical equivalence of Eq. (12) is further explored
in Section 4.A for the Raven demonstrator [1].

When phase is expanded onto the Zernike polynomials, the
SA cross-covariance functions can be analytically computed
for the infinite outer-scale case of turbulence [14,15]:

hϕi!0"ϕj!ξ"i # 3.895
#
D
r0

$5
3

R hmax
0 C2

n!h"Iij
%
ξh
R

&
dh

R∞
0 C2

n!h"dh
(13)

with D # 2R, the telescope diameter; r0, the Fried parameter;
h, the altitude; ξ, the angle between the pupils over which the
Zernike polynomials are defined; C2

n, the atmospheric vertical
profile; and Iij!x", a term involving 1D numerical integration.
Equation (13) has been extended for the finite outer-scale
case in [16] and later extensively used and generalized in
[5,17]. The layered spatial covariance matrix hφφT i from
Eq. (8b) is a block-diagonal matrix (layers are independent)
and can be found in [8] for the infinite outer-scale case and
in [18] for the finite case.

B. Spatio Angular versus Explicit Tomography
OL operation of MOAO systems poses a complex problem for
system calibration. MOAO is exposed to potential issues, such
as misregistration, field-dependent distortions, and irregular
sensitivity (to cite a few) since the WFSs do not “see” the ac-
tual DM figures. In closed-loop systems, the recursive nature
of the loop using feedback allows for partial compensation of
miscalibrations.

The SA formulation is thus particularly amenable to MOAO
systems since, at least in principle, the covariance matrices
composing the reconstructor can be directly computed from
acquired data. This could not be achieved in a closed-loop sys-
tem. In regular on-sky operation, Σsα from Eq. (10) can be re-
corded on-line (with use of some caution to ensure statistical
convergence and proper acquisition). This covariance matrix
provides a wealth of valuable information about the system
itself with the strong potential to carry the signature of mis-
alignments and other spatially variant discrepancies not taken
into account in the models. Also, and equally important, it car-
ries an imprint of the vertical turbulence profile, from which
the C2

n profile and integrated atmospheric parameters estima-
tion, such as r0, L0, and eventually the wind velocity vectors,
can be estimated through data postprocessing using the built-
in SLODAR method [19]. These parameters are then used to
constrain a model for the second covariance matrix.

The Learn & Apply algorithm from [4] can now be pre-
sented as the SA reconstructor with covariances defined in
slope space instead of phase space. The choice for remaining
in slope space is due to system calibration; the algorithm
directly collects measurements’ covariances and makes the
angular extrapolation in measurement space, bypassing an
explicit slopes-to-phase reconstruction. Thus the projection
onto and from phase space is circumvented at the expense
of having larger covariance matrices (there are roughly twice
as many slopes as estimated phase vectors).

Provided access to the layered turbulence is granted, linear
prediction could be plugged into the explicit tomography re-
constructor as an intermediary step to counter intrinsic
temporal delays in the AO system, from integration and
processing. The OL working environment excludes dynamical
stability issues associated to feedback systems. Using Taylor’s
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frozen-flow approximation, the wavefront on each layer can
be predicted before collapsing it onto the pupil-plane in the
directions of interest. Options are more broadly investigated
in Section 3.

3. PREDICTIVE MODELS FOR
ATMOSPHERIC RECONSTRUCTION
As is well known for any AO system, the availability of suffi-
ciently bright guide-stars overshadows the utility of AO.
Therefore the sky coverage, i.e., the percentage of available
sky for observing, imposes a strong constraint on the number
of observable targets. Sky coverage can be improved by either
making better use of every single photon (better wavefront
sensing) or by relaxing the temporal lag-error constraint,
which allows for longer integration times if the error can
be partly overcome by temporal prediction. Lag error is intrin-
sic to any AO system due to the discrete nature of the mea-
surements, their processing and correction. All combined
requires several milliseconds to read-out and compute which
stresses the importance of a predictive capability. The lag er-
ror definition adopted here is the sum of the integration time
Ts plus the pure-delay Δ error encompassing the real-time
processing of measurements and computation of DM com-
mands. See the temporal diagram in Fig. 1.

When Δ is not an integer multiple of the frame-rate mea-
surements, commands become asynchronous. Working in
OL greatly simplifies the implementation when compared to
closed-loop systems since in the measurement model the
asynchronous DM commands do not intervene. The latter
are computed as the weighted average over two consecutive
phase instances spanned by the DM commands, using the frac-
tional delays as weights. Such procedure would considerably
increase the computational complexity, in particular when
prediction is on. For this reason, in the remainder the case,
Δ ≠ 0 is considered in the simulations but is not taken into
account on the reconstructors.

A. Beating Down Temporal Lag Errors
As previously stated, the explicit-tomography formulation is
well suited to temporal prediction. Note, though, that with
some extra complexity, the same could be built into the SA
formulation [5], albeit with no flexibility as to the choice of
the predictive model.

Proposition
Temporal prediction can be achieved by means of a linear op-
eration P on current and past samples of the phase vectors,
such that

ϕ̂βj ;k$1 # PβjP&φ̂k; φ̂k−1;…; φ̂k−n'; (14)

where P is a linear prediction operator. For the case of no
prediction, P # I.

In the following, Taylor’s frozen-flow hypothesis is
assumed:

ω!ρ; t$ τ" # ω!ρ$ v · τ; t": (15)

A first approach uses the fact that the spatial gradient of
phase is measured by the HS-WFS. As a consequence, with
a truncated polynomial expansion of Eq. (15) to the first-order
[20], turbulence could be predicted. However, this model is
restricted to single-conjugated AO systems and lacks general-
ity for wide-field tomographic phase estimation—unless
layer-oriented tomography is used [21], a framework not
adopted here.

B. One-Step SA Predictor
Amore general method that complies with tomographic phase
estimation is sought. Time evolution of expansion coefficients
leads to non-null cross correlations [17], which should be fully
grasped to obtain an optimal prediction. Figure 2 depicts the
modal cross-correlation functions for tip and focus (polyno-
mials 2 and 4, respectively, following [8]) up to the 9th mode
recurring to Eq. (13).

Recasting the problem as a proper criterion minimization,
the best linear predictor is the solution to the following
criterion:

Aτ # arg min
A0

τ

h‖φ!t$ τ" −A0
τφ!t"‖2L2!Ω"i; (16)

yielding

Aτ ≜ hφk$1φT
k ihφkφT

k i−1: (17)

This operation in what follows is called a “one-step SA pre-
dictor” (the face-on pattern of Aτ is depicted in Fig. 3). It is a
nondiagonal, densely populated matrix; a sign of the temporal
cross-correlations betweenmodes coming into play. The same
predictor is outlined by [11] for the case of phase represented
by its samples on a regular grid of points (also called the zonal
representation).

The one-step cross-covariance matrix hφk$1φT
k i can be

easily estimated from Eq. (13), under the assumption of iso-
tropic and stationary turbulence. However, it has weak
dependence on the wind direction (see, for instance, the
short-term auto-correlation for modes tip and tilt in Fig. 4).
Therefore, for pure frozen flow, a modal approach can be
short of a high-fidelity phase-shifting approach, although this
could be done at the expense of extra computation.

Furthermore, Eq. (17) is a general method to generate and
predict phase in a 2D plane (any wind velocity can be used),
according to the Markovian model [13]:

Fig. 1. Temporal diagrams. Top: Int!Δ∕Ts" # 0 commands uk are
conditioned to measurement sk−1. Bottom: Ts < Δ < 2Ts; uk is condi-
tioned to sk−2.
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φk$1 # Aτφk $ εδk; (18)

where εδk is an excitation noise whose properties are fixed to
guarantee proper turbulence statistics.

This model can either be used for generating a fully devel-
oped turbulence or for control-oriented purposes such as a
Kalman filter gain computation [13]. In either case, the pair
!Aτ;Σδ

ε" is required. The excitation noise covariance matrix
Σδ
ε is found from imposing the output statistics to be those

of a Kolmogorov or von-Kármán model. Hence Σδ
ε #

Σφ −AτΣφAT
τ since hφk$1!φk$1"T i # AτΣφAT

τ $ Σδ
ε. Note Σφ ≜

hφk$1φT
k$1i ≜ hφkφT

k i, which, due to stationarity, loses it
temporal dependence.

A further remark is that with such Markovian processes
(future values are only conditioned to present ones), a simpli-
fication can be done. It consists of considering the total delay
τ # Ts $ Δm simplicity as the sampling step of the predictive
model. The asynchronous case is thus dealt with efficiently
with no recourse to weighted averaging.

Assémat’s method for simulating infinitely long, nonstation-
ary phase screens [22] turns out to be a truncated version of

Eq. (17) when a pointwise (zonal) representation of the phase
is used. However, only a subset of the columns ofAτ is used to
include bounded region correlations. Extensions can be found
in [23,24].

Despite the temporal cross-correlation being taken into ac-
count in this model, Aτ is strongly diagonally dominated, sug-
gesting that simpler diagonal models, i.e., mode-by-mode,
could be potentially applied, and indeed they have been exten-
sively used in AO simulations in the form of AR models [25].
Their features and relation to the SA predictor are ex-
plored next.

C. Autoregressive Models
For several AO applications constrained by real-time compu-
tational burden, using simpler diagonal AR models can be
quite appealing as they circumvent Aτ, being a dense matrix.
Although these relatively coarse models are not adapted to
simulating atmospheric turbulence, they are used instead
for prediction when embedded in the reconstructor and
plugged into the controller—as is done with Kalman filtering
[26,27]—for off-line computation of optimal gains.

An AR model of order n is defined by the recursion

φk$1 # f !φk;…φk−n$1" $ εk; (19)

where f !% % %" is a linear function yet to be defined, and εk is a
Gaussian-distributed spectrally white zero-mean random
sequence with variance such that the output variance is con-
served as in the previous section.

An AR model of the first order (AR1) is simply

φAR1
k$1 # AAR1φAR1

k $ εAR1k ; (20)

where a diagonal AAR1 replaces Aτ in Eq. (18). The excitation
noise covariance matrix for the model in Eq. (20) is likewise
computed as in Section 3.B.

For a second-order model (AR2):

φAR2
k$1 # AAR2φAR2

k $ BAR2φAR2
k−1 $ εAR2k : (21)

Imposing ΣAR2
φ # Σφ as before, ΣAR2

ε is found from
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ΣAR2
ε # Σφ − AAR2ΣφAT

AR2 − BAR2ΣφBT
AR2 − AAR2ΣAR2

1τ BT
AR2

− BAR2ΣAR2
1τ AT

AR2;

(22a)

ΣAR2
1τ # hφAR2

k$1!φ
AR2
k "T i ≜ hφAR2

k !φAR2
k−1 "

T i # !I − BAR2"−1AAR2Σφ;

(22b)

where ΣAR2
1τ is a one-step modal spatiotemporal cross-

covariance matrix.
Similarly, for a third-order model (AR3):

φAR3
k$1 # AAR3φAR3

k $ BAR3φAR3
k−1 $ CAR3φAR3

k−2 $ εAR3k ; (23)

the noise covariance matrix is found from

ΣAR3
ε # Σφ − AAR3ΣφAT

AR3 − BAR3ΣφBT
AR3 − CAR3ΣφCT

AR3

− AAR3ΣAR3
1τ BT

AR3 − BAR3ΣAR3
1τ AT

AR3 − BAR3ΣAR3
1τ CT

AR3

− CAR3ΣAR3
1τ BT

AR3 − AAR3ΣAR3
2τ CT

AR3 − CAR3ΣAR3
2τ AT

AR3;

(24a)

where ΣAR3
1τ is again the one-step modal cross-covariance

matrix; this time for the AR3 model, and ΣAR3
2τ ≜ hφAR3

k$1

!φAR3
k−1 "

T i ≜ hφAR3
k !φAR3

k−2 "
T i is a two-step modal spatiotemporal

cross-covariance matrix, with

ΣAR3
1τ # !BAR3 $ CAR3AAR3 $ C2

AR3"
−1!AAR3 $ CAR3BAR3"Σφ;

(24b)

ΣAR3
2τ # BAR3Σφ $ !AAR3 $ CAR3BAR3"ΣAR3

1τ : (24c)

1. Model Identification Using Zernike Polynomials
A practical method to identify matrices A, B, and C is to fit the
initial T fit seconds of the temporal auto-correlation function of
each and every mode as previously suggested in [28]. An al-
ternative is to match the decorrelation at the coherence time
of each mode [29]. For AR1 models, both strategies lead to
roughly the same modal decorrelation functions and can
therefore be used interchangeably. For higher-order models
(AR2 and AR3), fitting the initial Tf seconds leads to the over-
all best prediction performances, although the existence of a
general T fit is debatable and subject to optimization.

The temporal auto-correlation function is the Fourier-
transformed temporal power spectral density (PSD), a direct
application of the Wiener–Khinchine theorem (on a mode-by-
mode basis). The PSDs are computed from [30].
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Fig. 4. Theoretical temporal auto-correlation functions assuming frozen flow computed directly (black dash) or as the Fourier-transformed tem-
poral PSDs (red dash). Comparison against the second-order continuous (blue dots) and discrete (green circles) predictive models fitting the initial
50 ms of the theoretical curves. Model fitting uses the Broyden–Fletcher–Goldfarb–Shanno method.
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Amuch faster and effective method builds on the SA covari-
ance matrices of Eq. (13), with an angle given by ξ # τ × jvj∕h
(under Taylor’s frozen-flow hypothesis). This method is much
more cost-effective since the correlation functions are com-
puted directly and only over the T fit horizon and not beyond,
leading to considerable computational gains.

Figure 4 plots the temporal auto-correlation functions from
Zernike polynomials 1 to 9 using the Wiener–Kinchine theo-
rem against the SA formulation. The numerical agreement
is remarkable, with slight discrepancies due to the limits of
integration in either case. Also over-plotted are the second-
order continuous model and its AR discretization for
Ts # 10 ms, when fitting the initial T fit # 50 ms. The AR
(discrete time) model is obtained using standard zero-
order-hold discretization procedures.

D. Prediction Error Structure Functions
The predictive capabilities of different models can be as-
sessed using the predicted phase temporal structure function.
Define the temporal lag error (no prediction) as the average
phase variance taken two instants apart, i.e., the temporal
structure function of the phase,

Dt!τ" # hjω!ρ; t" − ω!ρ; t$ τ"j2i; (25)

which relates to the spatial structure function of phase Dρ

through Taylor’s frozen-flow hypothesis by

Dt!τ" # hjω!ρ; t" − ω!ρ − v · τ; t"j2iρ # Dρ!v · τ"; (26)

with h% % %iρ the ensemble average over the spatial distances
ρ # jρj, v # jvj. Expanding the squared term and assuming sta-
tionarity gives 2!C!0" − Ct!τ"" # 2!C!0" − Cρ!vτ"", where Ct!·"
and Cρ!·" are the phase temporal and spatial covariance func-
tions. Ct!τ" # Cρ!vτ", i.e., the temporal covariance function is
deduced from the phase spatial covariance function evaluated
at ρ # vτ.

The phase spatial structure function is given by [6]

Dρ!ρ" #
#
Lo

r0

$
5∕3

×
21∕6Γ!11∕6"

π8∕3

!
24
5
Γ
#
6
5

$"
5∕6

×
!
Γ!5∕6"
21∕6

−

#
2πρ
L0

$
5∕6

K5∕6

#
2πρ
L0

$"
; (27)

with L0 the outer scale of turbulence, r0 Fried’s coherence
length, Γ the “gamma” function, and K5∕6 a modified Bessel
function of the third kind.

It is useful to consider the general formulation for the tem-
poral lag error that is compatible with the case of atmospheric
prediction:

σ2lag!τ; p" # h‖Pθ!φk − φ̂k"‖2L2!Ω"i; (28)

where φ̂k is the phase estimate using any of the predictive
models of order p # f0; 1; 2; 3g.

In the no prediction case, the estimated phase is simply a
replication of the phase at the previous time step, φ̂k # φk−1.
The temporal lag error from Eq. (28) becomes

σ2lag!τ; p # 0" # 2 tracefPθ!Σφ − Σ1τ"PT
θ g ≜ Dt!τ"; (29)

which is the temporal structure function of phase from
Eq. (26), with the one-step covariance matrix Σ1τ # Σ!ρ #
vτ" computed from Eq. (13) with a proper angle.

These temporal structure functions can now be expanded
for the case of predicted phase. For first-order models (the
AR1 or the one-step SA predictor) one has φ̂k # Aφk−1 (note
the excitation noise is not included). Developing Eq. (28)
yields

σ2lag!τ; p # 1" # tracefPθ!Σφ $ AΣφAT
− 2Σ1τAT "PT

θ g; (30)

with A # AAR1 for the AR1 model and A # Aτ for the SA pre-
dictor model. For the AR2:

σ2lag!τ; p# 2" # tracefPθ!Σφ $AAR2ΣφAAR2 $BAR2ΣφBAR2

−2AAR2Σ1τ $AAR2Σ1τBT
AR2 − 2BAR2Σ2τ"PTg; (31)

with Σ1τ # Σ!ρ # vτ" and Σ2τ # Σ!ρ # 2vτ".
Likewise for the AR3:

σ2lag!τ; p # 3" # tracefPθ!Σφ $ AAR3ΣφAAR3 $ BAR3ΣφBAR3

$ CΣφCAR3 − 2AAR3Σ1τ − 2BAR3Σ2τ − 2CAR3Σ3τ

$ AAR3Σ1τBT
AR3 $ BAR3Σ1τCT

AR3

$ AAR3Σ2τCT
AR3"P

T
θ g; (32)

with Σ3τ # Σ!ρ # 3vτ". The matrices Σpτ are computed for a
fully developed turbulence following Eq. (13) and thus differ
from those associated with any specific model.

In Fig. 5, the theoretical lag errors (for the cases no predic-
tion and with prediction) are plotted [31]. Several comments
follow:

• The one-step SA predictor provides the best perfor-
mance (as expected) for large lags above ∼5 ms, which stems
from its optimality [it minimizes the prediction error variance
in Eq. (16)] and cross-mode prediction. However, the predic-
tor is only a truncated version; in practice, a finite number of
modes is to be used. When more modes are added in, the one-
step SA predictor beats the AR2-3 models for lower lags.

• For lags below ∼5 ms AR models of orders 2 and 3
slightly outperform the one-step SA predictor since the short
term decorrelation of the AR models is quite similar to that of
the turbulence.

• The AR2 is a sufficient model-order above which the per-
formance gains are little and not worth the increased com-
plexity for both parameter identification or real-time
processing; an AR2 model presents a temporal PSD ∝ ν−4,
which is a good approximation to the actual phase whose
spectrum is ∝ ν−11∕3, with ν # jνj the temporal frequency
vector modulus.

• Although the AR1 has been successfully used in control-
oriented models for Kalman filtering [25,29,32], it performs
quite poorly to predict phase and is patently incapable to
provide any improvement over the no prediction case. Simu-
lations show that when the off-diagonal values of the one-step
SA predictor are nulled out, the predictive capability
degrades to that of a diagonal AR1, suggesting that it is this
feature that plays the most important role in the predictive
process.
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Despite the results above, the offline computations of AR
models in general are quite complex in fitting the auto-
correlation functions (Section 3.C.1) and are much higher
than the SA offline load, which does not require a fitting algo-
rithm. Only addressing the synchronous case, the reconstruc-
tor dimensions are given by r # NβNaNαNs for the cases of
no prediction, AR1 prediction, and SA prediction. With p ≥ 2
one has r # NβNz!Na $ pNαNs". Thus the real-time computa-
tional load is not increased over a static reconstructor for AR1
and one-step SA prediction models. For the Raven case,
whose parameters are given in Table 1, this corresponds to
a 30% increase for the AR2 model and an 85% increase for
the AR3 model.

4. INCREASING THE LIMITING
MAGNITUDE FOR THE RAVEN PROJECT
Raven is a MOAO science and technology demonstrator,
which will be the first MOAO instrument on an 8 m class tele-
scope feeding an AO-optimized science instrument, the
Subaru InfraRed Camera and Spectrograph (IRCS). The in-
strument will be equipped with three natural guide star
(NGS), wavefront sensors (WFS), and one laser guide star
(LGS) WFS to generate a tomographic reconstruction of
the atmosphere in a 3.5 arcmin field of regard (FoR) for up
to two science-object directions (see Fig. 6).

The specifics of the system are given below:

• OL-WFSs: Three deployable pick-off mirrors can patrol
the telescope focal plane and pick off three NGS within a 3.5 ft
FoR. Each pick-off mirror feeds one OL WFS consisting of a
10 × 10 SH-WFS (d # 0.8 m) with 12 × 12 pixels per subaper-
ture and a 4.8 in. FoV per subaperture. The system’s baseline
detector is the E2V EMCCD camera. These devices can be set
to run at very high gain. In this mode, the read noise can be
made almost arbitrarily small; however, the background
source plus background photon noise is increased.

• An additional OL-WFS with identical specifications is
fixed on-axis in order to utilize the Subaru on-axis LGS, which
will improve sky coverage and/or AO correction.

• DMs: There are two ALPAO DMs, one in each science
channel, with 11 × 11 actuators and a 25 mm clear aperture.

These will contribute a constant fitting error term of 145 nm
rms at r0 # 15.6 cm.

Table 1 provides further simulation and system parameters.

A. Equivalence of Static Reconstructors
The equivalence of the two formulations for the static recon-
structors presented in Section 2 is now established numeri-
cally. It boils down to checking the similarity between the
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Fig. 5. Comparison of temporal lag errors on an equivalent single layer atmosphere (see Table 1 for further parameters).

Table 1. Raven Baseline Configuration
Parameters

Telescope
D 8 m
Atmosphere
r0 15.6 cm
L0 30 m
Zenith angle 0 deg
Fractional r0 [0.596; 0.224; 0.180]
Altitudes &0; 5∶10' km
Wind speeds &7.5; 12.5; 15' m∕s
Wind direction [0; 0; 0] deg
Sampling 8∕150 m
Wavefront Sensor
RON 0.2 e−

NNGS 3
NGS radii 30 arcsec
Order 10 × 10
θpix 0.4 arcsec
Npix 15
f sample 30–200 Hz
λWFS 0.7 μm
Centroiding Algorithm Thresholded Center of Gravity
DM
Order 11 × 11
Stroke Infinite
Influence Cubic
AO loop
Pure delay Δ # 3 ms
Controlled modes Nz # 55
Reconstructor Np # 406 modes
Predictor 90 modes
Evaluation
λevl 1.65 μm
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angular covariance matrix between Zernike polynomials
appearing in Eqs. (8b) and (11).

Their similarity increases with the increasing number of
modes considered in each layer. Let φβ be expanded onto
a Zernike set of with a fixed number Nz of modes. The layered
turbulence is expanded on a greater number of Np modes.

It is instructive to assess the relative error

εi!Np" #
trace!hϕαϕT

α i − Pα!Np"hφφT iPα!Np"T "
trace!hϕαϕT

α i"
(33)

as a function of Np to obtain a reasonable approximation to
the SA covariance matrices computed using an analytical for-
mulation. The relative error in Eq. (33) falls to the few-percent
level when Np is the result of using three times more radial
orders than in Nz and below the 1% level for a factor of
for, when Nz # 55 (nine radial orders [8]).

With this in mind, static reconstruction of a single-shot WF
from slopes has been conducted on the Raven optical bench
(Fig. 6, Table 1) [1] covering the full 2 arcmin FoV. The con-
tour plots obtained are depicted in Fig. 7, demonstrating the
full equivalence of performance obtained with the SA and the
explicit reconstructors using Raven bench data. Differences
are in the subpercent level.

B. Limiting Magnitude
The science gain achievable by Raven, in comparison to
classical AO systems such as Subaru’s AO188, will be modest
because Raven will only have two science channels and
provide a relatively low-order correction. Nevertheless, the
8 m aperture of the Subaru telescope enables science that
is not achievable on smaller telescopes, and Raven will
be capable of delivering high ensquared energy (EE) into
the IRCS slit. It has been projected that, with a static tomo-
graphic reconstructor, Raven’s limiting magnitude will
approach 14.5 (for 30% EE) using a reduced frame rate of
180 Hz. As stated in [1], sky coverage for Raven will be
low. For example, consider a point with galactic coordinates
!b; l" # !30; 0". Using the Besançon model of the galaxy [33],

one finds that there are 750 stars per square degree with
R<14.5 (1040 stars per square degree with R<15). The prob-
ability that there are three stars with R<14.5 in a 2 arcmin
diameter FOR is just 3%. This does not even account for aster-
isms that are unsuitable for Raven; in some cases, the science
targets will not be inscribed within the potential NGS aster-
ism, and therefore the tomographic error will be too great.
Star densities are increasing as a power law at these magni-
tudes, so going 1 magnitude deeper can increase the density of
available stars by a factor of 1.8.

Results in the previous sections indicate that the potential
gains in performance can be traded for an increase in limiting
magnitude. In the presence of temporal prediction, the lag er-
ror σ2lag decreases, and one can thus tolerate more measure-
ment noise from fainter sources, resulting in increased noise
propagation σ2np (averaged over the field) for the same aggre-
gate wavefront error, defined as

σ2total # σ2lag $ σ2np
|{z}

σ2

$other terms; (34)

where other terms relates to errors that are independent from
the system lag (to a first degree approximation). The latter is
computed from Eq. (28) whereas the noise propagation error
is

σ2np # tracefEΣηETg; (35)

where the noise covariance matrix Ση # σ2ηI is assumed diago-
nal with σ2η the measurement noise variance on each WFS sub-
aperture. The latter is a decreasing function of the star
brightness, i.e., photon-noise increases for dimmer guide
stars. The propagated noise σ2np relates to star magnitude
by standard centroiding error functions [34].

The AO system bandwidth is chosen to minimize the error
σ2 # σ2lag $ σ2np. Thus one has

σ2 # σ2np!mv; τ" $ σ2lag!τ; p # 0" # σ2np!m0
v; τ" $ σ2lag!τ; p > 0";

(36)

Fig. 6. Functional optical block diagram of RAVEN. Dashed blocks are deployable. Raven consists of eight main subsystems: the deployable
calibration unit, the OL NGS WFSs, the science pick-offs, the science relays, the closed-loop NGS truth/figure WFSs, the beam combiner, the
LGS WFS, and the acquisition camera.
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where σ2lag!τ; p # 0" ≥ σ2lag!τ; p > 0" and σ2np!mv; τ" ≤ σ2np
!m0

v; τ", with m0
v −mv the limiting magnitude increase.

This rather simplistic approximation offers insight into
the potential magnitude increase factor. Figure 8 plots the
result, m0

v −mv, as a function of lag. The noise-propagation

coefficient used was computed to be σ2np∕σ2η ≈ 0.5, following
an extension to tomography of the analytical derivation in [35].

As expected, the minima in σ2 (in blue, ordinate on the
right) are achieved for longer integration times as the GS
are fainter. These minima are indicated by vertical dotted
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lines, for which red circles indicate the increased limiting
magnitudes when the sources vary from magnitudes 13 to
17. A consistent value around half a magnitude increase is
obtained. However, only a full end-to-end Monte Carlo simu-
lation can inform about the effective magnitude increase gain,
considering the actual EE and Strehl-ratio (SR) figures
of merit.

C. Sample Numerical Simulation
Results of Monte Carlo numerical simulations show the im-
provement in system performance using EE and SR as the
benchmark figures of merit. Simulation parameters were se-
lected to reflect the observing conditions of Raven with the
telescope and atmosphere simulator. This includes an aster-
ism of 3 NGSs within a 2 arcmin FOR; in this case, an asterism
with a diameter of 0.5 arcmin was selected in order to reduce
tomographic errors and highlight the temporal aspects of sys-
tem performance. The full set of simulation parameters are
listed in Table 1.

The results of the numerical simulations are shown in
Fig. 9 and summarized in Table 2. Following Section 4.A, tur-
bulence is expanded on 27 radial orders (i.e., 406 modes) from
which nine (55 modes) are controlled. For computational
reasons, the predictive models are computed for 90 out of
406 modes per layer with no significant effect on the overall
performance.

The data shows the peak system performance in SR and
EE, on the Subaru IRCS 140 mas slit, for an asterism of three
guide stars of the same magnitude, and the corresponding
sampling rate at which the peak occurs for each of three al-
gorithms: static MV, static MV using an AR2 model, and static
MV using the one-step SA predictive model. For interest and
comparison purposes, the AR1 model also was tested. Lags
corresponding to frame rates of 30–200 Hz were used. The
simulation incorporates the fixed system lag of 3 ms allotted
for camera read-out, data processing, and issuing of DM com-
mands. In order to model the delayed application of the DM
commands in the middle of an exposure, the system is attrib-
uted a fixed sample rate of 1 kHz. The resulting output phase
is summed over the first 3 ms (three samples) before the new
DM command is applied; subsequently, the output phase for
the remaining total exposure time is added to these first
frames to make a total exposure of the desired length. Each
simulation run collected 2000 exposures before computing
the SR and EE.

The results confirm that a reduction in frame rate, com-
bined with SA temporal prediction (as noted in [11]) will allow
the system to achieve a level of performance for a given GS
magnitude, which is equal to the performance with a static
reconstructor using GSs one magnitude brighter, and the per-
formance with an AR2 predictive reconstructor using GSs half
a magnitude brighter. This achievement was underestimated

Table 2. Raven End-to-End Simulation Resultsa

Static MV Static MV$ AR2 Static MV$ One-Step SA Static MV$ AR1

GS Mags EE Lag Strehl Lag EE Lag Strehl Lag EE Lag Strehl Lag EE Lag Strehl Lag

14.0 35.70 7 30.08 7 35.83 9 30.71 10 36.70 9 32.26 10 35.67 8 30.09 8
14.5 35.39 7 28.70 9 35.65 10 29.89 11 36.41 9 30.98 10 35.59 9 28.73 9
15.0 35.32 9 26.69 10 35.38 10 28.38 12 36.00 9 29.74 12 35.11 9 26.71 12
15.5 34.48 10 24.39 12 35.27 12 26.85 14 35.49 12 28.47 17 34.38 10 24.32 13
16.0 33.61 12 21.58 14 34.12 14 24.23 17 35.34 23 26.95 24 33.30 12 21.29 14
16.5 32.24 14 18.05 17 33.59 18 21.60 21 35.10 27 24.81 27 31.98 14 17.97 18
17.0 30.39 18 14.39 27 32.16 21 17.91 28 34.24 33 21.41 33 30.27 19 14.30 28

aThe optimal performance (% ensquared energy, % Strehl ratio) for each GS magnitude is shown for three reconstructors: the static MV, SA prediction, and the
AR2 prediction model. AR1 prediction is included for comparison purposes. Lags quoted in milliseconds.
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Fig. 9. Left: Strehl ratio. Right: ensquared energy. Peak performance achieved in simulation for GS magnitudes from 14 to 17 using each of four
algorithms: static, SA prediction, AR2 prediction, and AR1 prediction (black) and the integration time in ms (ordinates on the right) at which the
peak value was reached (blue).
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through the somewhat simplistic model of Eq. (34) used in
Fig. 8, for the noise is not spatially invariant, its propagation
through the reconstruction isn’t constant for varying magni-
tudes, and neglected terms do indeed depend upon the lag.
The results also confirm the computations shown in Fig. 5 that
estimate no reduction in temporal error with the use of an AR1
prediction model.

5. CONCLUSION AND OUTLOOK
This paper explores the features of two mathematically equiv-
alent versions of algorithms to perform tomography in wide-
field AO systems: the commonly used minimum-variance
estimators with explicit 3D reconstruction of turbulence pro-
file and the MOAO-specific SA reconstructors adopted in the
Learn & Apply from [4] where the wavefront is directly
estimated in the pupil plane.

A merge of both formulations is proposed to overcome (1) a
challenging calibration sinceMOAO systems operate inOL and
(2) intrinsic temporal lag errors by embedding a predictive
model to work with fainter sources and thus increase the
sky coverage. The former is tackled by partially computing
the tomographic reconstructor from OL measurements. This
mitigates issues related to under modeling and unknown sys-
tematics between the WFSs. The latter needs always to be
model-based, with parameters identified by postprocessing
the measurements’ covariance matrix with the built-in
SLODAR method. This renders the tomographic reconstru-
ction a highly data-driven, self-sufficient approach to circum-
vent the complex calibration in OL operation.

Several predictive models are described along with a much
faster and computationally sound identification procedure
over previous methods (assuming Zernike modes). The pre-
dicted error structure functions are analytically derived.
Diagonal AR models of order 2 are shown to perform equally
well as the SA predictor model for small lags below ≈10 ms.
For larger lags, the one-step SA predictor is preferred.

These models can now be plugged into the linear-quadratic-
Gaussian controller, which is expected to push further the lim-
iting magnitude. At this stage, the wind profiles are assumed
known, and only pure frozen flow is simulated. In reality, the
profiles are estimated and frozen flow may not be always
present, which calls for a robustness assessment to be done
in a forthcoming paper.

For instance, on the Raven project, results in this paper
suggest the same level of performance is achieved by combin-
ing temporal prediction with guide stars 1 magnitude fainter.
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