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ABSTRACT

Given a graph G, a K3-decomposition of G, also called a triangle decomposition, is

a set of subgraphs isomorphic to K3 whose edges partition the edge set of G. Further,

a rational K3-decomposition of G is a non-negative rational weighting of the copies

of K3 in G such that the total weight on any edge of G equals one. In this thesis, we

explore the problem of rational triangle decompositions of dense graphs.

We start by considering necessary conditions for a rational triangle decomposition,

which can be represented by facets of a convex cone generated by a certain incidence

matrix. We identify several infinite families of these facets that represent meaningful

obstructions to rational triangle decomposability of a graph. Further, we classify all

facets on up to 9 vertices and check all 8-vertex graphs of degree at least four for

rational triangle decomposability. As the study of graph decompositions is closely

related to design theory, we also prove the existence of certain types of designs.

We then explore sufficient conditions for rational triangle decomposability. A

famous conjecture in the area due to Nash-Williams states that any sufficiently large

graph (satisfying some divisibility conditions) with minimum degree at least 3
4
v is

K3-decomposable; the same conjecture stands for rational K3-decomposability (no

divisibility conditions required). By perturbing and restricting the coverage matrix

of a complete graph, we show that minimum degree of at least 22
23
v is sufficient to
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guarantee that the given graph is rationally triangle decomposable. This density

bound is a great improvement over the previously known results and is derived using

estimates on the matrix norms and structures originating from association schemes.

We also consider applications of rational triangle decompositions. The method

we develop in the search for sufficient conditions provides an efficient way to generate

certain sampling plans in statistical experimental design. Furthermore, rational graph

decompositions serve as building blocks within certain design-theoretic proofs and

we use them to prove that it is possible to complete partial designs given certain

constraints.
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Chapter 1

Introduction

The study of graph decompositions dates back to the 19th century and has since

become one of the central problems in combinatorics. It has connections to design

theory and the study of association schemes as well as applications to coding theory

and design of efficient statistical experiments. The result of this multi-disciplinary

popularity is the ability to approach the problem through many angles; amongst the

most common ones are combinatorial design theory with its algebraic tools and graph

theory with its well-developed algorithms.

Definition 1.1. Given a simple graph G, a K3-decomposition of G, also called a

triangle decomposition or triangulation, is a set of subgraphs isomorphic to K3 whose

edges partition the edge set of G. In this case, we say that G is K3-decomposable.

Example 1.2. A triangle decomposition of K9−C9, that is the complete graph on 9

vertices minus a cycle on 9 vertices (labelled 0 through 8), can be obtained by taking

translates of the 3-subset {0, 2, 5} modulo 9 (see Figure 1.1 on the following page).

Example 1.3. Reminiscent of tilings but covering only the edges, consider an infinite

grid in Z2 defined by directions (1, 0), (0, 1) and (1, 1). It has a natural triangulation

as seen in Figure 1.2 on the next page.
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Figure 1.1: Triangle decomposition of K9 − C9.

Figure 1.2: Triangulation of an infinite grid.

Example 1.4. Due to their connection to Latin squares, triangle decompositions of

complete balanced tripartite graphs have been extensively studied in combinatorics.

Let [n] = {1, . . . , n} and recall that a Latin square of order n is an n×n array whose

cells are filled with n different symbols such that each symbol occurs exactly once in

each row and exactly once in each column. Each entry of a Latin square L of order

n can be written as a triple (i, j, k), i, j, k ∈ [n], where i is the row, j is the column

and k is the symbol in the cell L(i, j). Then a triangulation of a complete tripartite

graph Kn,n,n is equivalent to a Latin square with parts representing rows, columns

and symbols.

Example 1.5. We can easily find graphs which cannot be decomposed into triangles.

Indeed, it is necessary that every edge of G belongs to a triangle and this rules out

many graph families, including bipartite graphs and graphs of girth at least four. But
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even the presence of many triangles does not guarantee triangle decomposition; take,

for instance, K4 and K5. Each of these graphs fails to be triangle decomposable: in

K4 each vertex has degree 3 while in K5 the total number of edges is 10.

This example motivates the following necessary conditions for a graph G to be

K3-decomposable: every vertex of G must be of even degree and the total number of

edges of G must be divisible by 3. We say that the graphs satisfying these necessary

conditions are K3-divisible. However, the necessary K3-divisibility conditions are not

sufficient for K3-decomposition. In fact, the search for sufficient conditions for K3-

decomposability is ongoing. The first full result came in 1847 from design theory on

the existence of so-called Steiner triple systems, which are equivalent to triangulations

of the complete graph Kv.

Definition 1.6. A Steiner triple system on v vertices is a set V of v elements together

with a set B of 3-subsets (also called triples or blocks) of V such that every 2-subset

of V occurs in exactly one triple of B.

Example 1.7. The unique (up to isomorphism) Steiner triple system on 7 vertices

is the famous Fano plane or projective plane of order 2. It has vertex set V =

{1, 2, 3, 4, 5, 6, 7} and block set

B = {{1, 2, 4}, {1, 3, 6}, {1, 5, 7}, {2, 3, 5}, {2, 6, 7}, {3, 4, 7}, {4, 5, 6}}

represented by the lines in Figure 1.3 on the following page.

Thought of as a K3-decomposition of K7, every pair of vertices in V corresponds

to an edge in K7 and every line above corresponds to a triangle in K7. Then the

property that every pair is contained in exactly one block of the Steiner triple system

translates to the fact that every edge of K7 is used exactly once in the decomposition.
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Figure 1.3: Fano plane.

1 36

2

54 7

The question on the existence of Steiner triple systems was first raised by W. S.

B. Woolhouse in 1844 in the Lady’s and Gentlemen’s Diary [51]. The solution to

this problem was published by Reverend Thomas Kirkman in 1847: he showed, by

construction, that a Steiner triple system on v vertices, and hence a K3-decomposition

of Kv, exists if and only if v ≡ 1, 3 (mod 6) [32]. Therefore, for complete graphs

the necessary K3-divisibility conditions are also sufficient for K3-decomposability.

Independently, in 1853, Jacob Steiner introduced and studied triple systems and, as

his work was better known at the time, these objects were named in his honour.

As such, the problem of triangulations of compete graphs has been settled. A

natural question arises — how close to complete does a K3-divisible graph have to be

in order to be K3-decomposable? This ‘closeness’ may be measured by the minimum

degree and it is convenient to introduce the following definition: we say that a graph

G is (1− ε)-dense if δ(G) ≥ (1− ε)(v − 1), where δ(G) denotes the minimum degree

of G. That is, a graph is (1 − ε)-dense if the proportion of the missing edges at

each vertex is at most ε. One of the largest and most interesting conjectures on

triangle decompositions of non-complete graphs is due to Nash-Williams [35] stating

that ε < 1/4 suffices:

Conjecture 1.8 ([35]). Any sufficiently large K3-divisible 3/4-dense graph is K3-
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decomposable.

An interesting thing to note is that the conjectured density threshold is sharp.

This is proved via a counting argument from a construction (presented in Theorem

2.8). The only existence result in the area of non-complete graph decompositions is

asymptotic, due to Gustavsson [26] and, most recently, Keevash [31], but it requires

a very small ε ∼ 10−7.

Here, we are interested in a fractional relaxation of the problem.

Definition 1.9. Given a simple graph G, a rational K3-decomposition of G is a non-

negative rational weighting of the copies of K3 in G such that the total weight on

any edge of G equals 1. If G admits a rational K3-decomposition, we say that G is

rationally triangle decomposable or that G has a rational triangulation.

Clearly, the K3-divisibility conditions from the integral case are no longer nec-

essary for the rational decomposition to exist; however, due to the non-negativity

requirement, for G to be rationally K3-decomposable, we must still have that every

edge of G belongs to a copy of K3. In this vein, note that any complete graph on

more than 3 vertices is rationally K3-decomposable: take all possible embeddings of

K3 in Kv with weight 1/(v − 2). In fact, a rational K3-decomposition of a simple

graph G is equivalent to an (integral) K3-decomposition of a λ-fold graph Gλ, that is

G where every edge appears λ times for some integer λ > 0.

We approach the problem of rational triangle decompositions from two directions,

both through necessary (Chapter 3) and sufficient (Chapter 4) conditions. We often

represent graphs as vectors, so the following notation is used throughout:

Definition 1.10. Let
(
V
i

)
represent the set of all i-subsets of a v-set V . A vector in

R(V
2) is a 1×

(
v
2

)
row matrix indexed by the 2-subsets of V representing a weighting

of the 2-subsets. For any subset G ⊆
(
V
2

)
, the characteristic vector of G, denoted by

1G, is a vector in R(V
2) with 1 in theith coordinate if i ∈ G and 0 otherwise.
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In Chapter 3, we explore the following connection between vectors in R(V
2) and

K3-decompositions of graphs on v vertices, which is a consequence of Farkas’ Lemma

(Theorem 2.22): a graph G on a v-set V of vertices has a K3-decomposition if and only

if 〈y,1G〉 ≥ 0 whenever y ∈ R(V
2) is such that 〈y,14〉 ≥ 0 for all triangles 4 in G.

This connection motivates the study of such vectors y ∈ R(V
2) since each one of them

provides a necessary condition for a (rational) K3-decomposition of G. Furthermore,

any such vector y is a positive linear combination of some finite set Y of extremal

vectors in R(V
2). While determining the full set of such vectors is believed to be very

difficult, we initiate work on a partial classification. Our results in this direction

include the classification of several infinite families in Y that present meaningful

obstructions to triangle decompositions, an upper bound on |Y | and the establishment

of a relationship between Y and a metric polytope, all defined in Chapter 3. We also

provide computer-generated data for small v and formulate some conjectures based

on this data. As a related result, due to the connection between graph decomposition

and designs, in Section 3.3, we also prove the existence of certain kinds of designs.

Interestingly, the conjectured Nash-Williams’ bound for the integral triangle de-

composition stands as the conjectured bound for the rational triangle decomposition.

Conjecture 1.11. Any sufficiently large 3/4-dense graph is rationally K3-decomposable.

Since integral triangle decomposition implies rational triangle decomposition, this

bound is also sharp. The best bound on density known to date is due to Yuster

[54]: using probabilistic methods he shows that ε < 1/90, 000 is sufficient for rational

triangle decomposition. In Chapter 4, we improve this bound with the following

result: any (1− ε)-dense graph G has a rational triangle decomposition provided that

ε < 1/23. This bound is much closer to the conjectured 1/4 than any of the previous

results and is possibly stronger than is necessary since it guarantees a rational triangle

decomposition of a specific type. We achieve this bound by exhibiting nonnegative
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vectors x as solutions to a certain system of linear equations by using tools from

associations schemes defined in Chapter 2.

In Chapter 5, we highlight two applications of rational triangle decompositions.

First, rational triangle decompositions provide constructions of certain statistical ex-

perimental designs. While our bound for sufficient conditions for the existence of

these designs is worse than the previously established one, the method we develop

in Chapter 4 provides an efficient way of generating these statistical designs even

below the sufficiency threshold. Furthermore, rational graph decompositions serve as

building blocks within certain design-theoretic proofs and we use them to prove that

it is possible to complete a partial design given certain constraints.

Finally, the appendices include computer code for several computations, including

characterizing all the obstructions for K3-decomposability for 8-vertex graphs and

then applying them to check rational triangle decomposability for all 8-vertex graphs

of minimum degree at least 4.
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Chapter 2

Background

We consider both the necessary and sufficient conditions for rational decompos-

ability of dense graphs into triangles. Our approach to necessary conditions, to be

developed in Chapter 3, consists of examining facets of a particular convex cone

that represent meaningful obstructions to graph decompositions. In Chapter 4, we

consider sufficient conditions for rational K3-decomposability through studying asso-

ciation schemes and their linear algebraic structure. In this chapter, we provide the

background needed for both approaches.

2.1 Preliminary definitions and results

While we are interested in K3-decompositions, decompositions can be defined

more generally.

Definition 2.1. Given two graphs G and H, a decomposition of G into copies of H

or an H-decomposition of G is an edge-colouring of G such that every colour class

induces a graph isomorphic to H.

Example 2.2. Figure 2.1 on the next page represents an interesting decomposition
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of the Petersen graph G into a certain tree H:

Figure 2.1: Decomposition of the Petersen graph into a tree.

For the simplest case of H = K2, the decomposition of G into single edges is

trivial; however, decomposing a graph into triangles is already a hard problem that

has been well-studied [52]. In general, there are divisibility conditions on the number

of edges and degrees of the two graphs involved.

Definition 2.3. We say that a graph G is H-divisible if it satisfies two conditions

necessary for admitting an H-decomposition:

• the number of edges of G is divisible by the number of edges of H;

• every vertex degree of G is divisible by the greatest common divisor of all the

vertex degrees of H.

Unfortunately, as discussed in Chapter 1, H-divisibility is not sufficient for H-

decomposition, which motivates the search for nice sufficient conditions. In fact,

the decomposition problem translates naturally into the design-theoretic setting: a

Kk-decomposition of Kv is a 2-(v, k, 1) design.

Definition 2.4. A t-(v, k, λ) balanced incomplete block design (BIBD), or simply a

t-design, is a pair (V,B), where V is a set of v elements called points and B is a
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collection of k-subsets of V , called blocks, such that every t-subset of the point set V

is contained in exactly λ blocks.

Example 2.5. Another interesting example (besides the Fano plane) is that of the

2-(9, 3, 1) design or the affine plane of order 3. The vertex set is V = {1, . . . , 9} and

the block set is

B ={{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},

{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}},

which is graphically represented in Figure 2.2 on the left:

Figure 2.2: Affine plane of order 3.

When considered as a K3-decomposition of K9, each block of the affine plane

(above left) corresponds to a triangle of K9 (above right). While we generally do not

concern ourselves with it, it is interesting to remark that this Steiner triple system

has even more underlying structure: the block set can be partitioned into parallel

classes, that is groups of 3 mutually disjoint blocks that partition the vertex set (or

3 mutually disjoint triangles in the triangulation of K9), indicated above by colours.

We are mainly interested in 2-designs due to their connection to graph decompo-
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sitions and will assume that t = 2 from now on, unless otherwise specified. In this

case, simple counting of the parameters of the design provides immediate necessary

divisibility conditions for their existence.

Lemma 2.6. In a 2-(v, k, λ) BIBD, we have the following:

λv(v − 1) = bk(k − 1) and bk = vr,

where b is the number of blocks and r is the common number of blocks to which any

point belongs (replication number).

Therefore, the following divisibility conditions are necessary for the existence of a

2-design:

λ(v − 1) ≡ 0 (mod (k − 1)), (2.1)

λv(v − 1) ≡ 0 (mod k(k − 1)). (2.2)

Sufficiency for the smallest interesting family of cases with k = 3 and λ = 1 was

solved by Kirkman in 1847 when he constructed Steiner triple system for each allowed

v. Mathematicians then turned their attention to other designs. In 1979, Brouwer

[7] proved that a 2-(v, 4, 1) design exists if and only if v ≡ 1, 4 (mod 12). Therefore,

K4-divisibility is sufficient for K4-decomposition to exist. Finally, Beth et al. [2]

showed that a 2-(v, 5, 1) design exists if and only if v ≡ 1, 5 (mod 20). This is the

last fully completed case. For H = Kk, k = 6, 7, 8, 9, it has been shown that the

above necessary conditions are sufficient except for a small list of undecided cases.

Several other small cases have been settled; however, the constructions get more and

more involved and often fail to generalize.

The major breakthrough came in an asymptotic form of Wilson’s theorem, stating
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that the necessary conditions are sufficient for large enough complete graphs.

Theorem 2.7 ([46]). For every fixed graph H, there exists an integer N(H) so that

for all v > N(H), if Kv is H-divisible, then Kv is H-decomposable.

In Wilson’s result, “large enough” means truly astronomical, with v > ee
kk

2

neces-

sary for the decomposition of Kv into Kk, this being a 2-(v, k, 1) design. This asymp-

totic result, extended to higher values of t and hypergraphs, has been proved recently

by Keevash by using randomized algorithms and probabilistic algebraic constructions

[31]. With this in mind, in this thesis, we will concentrate on K3-decompositions of

non-complete graphs.

2.2 Nash-Williams’ bound and motivation

Given a graph, consider the following weighting of its edges: arbitrarily partition

the vertices of the graph into two parts, assign a weight of 2 to all edges within each

part and a weight of −1 to all edges crossing between the parts as illustrated in Figure

2.3.

Figure 2.3: Weighted partition.

2

2

2
2

−1

−1

Then, in any K3-decomposition of the graph, all triangles will have a non-negative

inherited weight; more precisely, each triangle will have weight of six if it is contained

within one of the two parts and weight of zero otherwise. This method provides a
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certificate of when a given graph cannot be decomposed into triangles — it is exactly

when there exists a partition and an assignment of weights as described above such

that each triangle receives nonnegative weight, but the total sum of all the weights on

all the edges is negative. Alternatively, given a partition of the graph into two parts

S1 and S2, we can have at most twice as many “cross-over” edges as we can have

within S1 and S2. We shall refer to this as the bipartition or cut test. In fact, this is

one of many tests that can be applied to check for triangle non-decomposability and

these tests will be further explored in Chapter 3.

This idea and the cut test motivate the following construction that shows the

tightness of the Nash-Williams’ bound.

Theorem 2.8 ([35]). There are infinitely many v for which there exist K3-divisible

graphs on v vertices with minimum degree at least 3
4
v−1 that are not K3-decomposable.

Proof. Let v = 24m+12 and consider the following graph G = K6m+3�C4 consisting

of 4 vertex-disjoint cliques on 6m+ 3 vertices each connected as shown in Figure 2.4.

Figure 2.4: The graph G = K6m+3 � C4.

K6m+3 K6m+3

K6m+3 K6m+3

Assign weight 2 to each edge within each K6m+3 and weight −1 to all the edges

with end vertices in distinct copies (so Si is the union of two non-adjacent K6m+3).

Then all the triangles in this graph will have weight 0 or 6. However, the total weight
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on all the edges is

2 · 4 ·
(

6m+ 3

2

)
+ (−1) · 4 · (6m+ 3)2 = 4

(
(6m+ 3)(6m+ 2)− (6m+ 3)2

)
< 0.

Since the total inherited weight of the graph is negative, G cannot be decomposed

into triangles of non-negative weights. Moreover, notice that

• G has 1
2
(18m+ 8)(24m+ 12) = 3(9m+ 4)(8m+ 4) edges and

• G is regular of degree (6m+ 2) + 2(6m+ 3) = 18m+ 8 = 3
4
(24m+ 12)− 1.

Therefore, G is K3-divisible, but not K3-decomposable.

The construction in the proof above is generalized in a straightforward way: take

a graph G = (Kk+1−M)�Kp, where M is a matching and p = k(k− 1)m+ k. This

G is regular of degree k
k+1

v − 1, is Kk-divisible, but is not Kk-decomposable. This

proves the following theorem, which in turn motivates the corresponding conjecture.

Theorem 2.9. For each k ≥ 3, there are infinitely many v for which there exist

Kk-divisible graphs on v vertices with minimum degree at least k
k+1

v − 1 that are not

Kk-decomposable.

Conjecture 2.10. For each k ≥ 3, there exists an integer N(k) so that for all

v > N(k) any Kk-divisible graph G on v vertices with minimum degree δ ≥ k
k+1

v is

also Kk-decomposable.

In his Ph.D. thesis, Gustavsson proved the above conjecture for any H when the

bound for δ is replaced by δ ≥ (1 − ε(H))v with ε ∼ 10−7. Gustavsson uses the

connection between triangulations and Latin squares (as discussed in Example 1.4):

given a nearly complete tripartite graph, its tripartite complement is equivalent to a

partially filled Latin square and filling it will correspond to triangulating the original
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nearly complete tripartite graph. Then Gustavsson relies on the following result by

Chetwynd and Häggkvist [10]:

Theorem 2.11. Any partial Latin square of order v in which each symbol, row, and

column contains no more than 10−5v nonblank cells can be completed, provided that

v is even and v > 107.

Recently, the above results have been improved by Bartlett [1], who strengthens

Gustavsson’s bound to ε = 1.197 ·10−5. Using a different technique, Keevash general-

izes Gustavsson’s result to hypergraphs, but with another asymptotic bound. Using

probabilistic methods, Yuster [54] brings the constant down to 1/9k10 for rational

decompositions into Kk and down to 1/90, 000 for triangles in particular.

Our approach to necessary conditions for the existence of triangle decompositions

will consist of examining the full set of tests (of which the cut test above is only

one) that a graph must pass in order to be K3-decomposable. Formally, we have the

following definition.

Definition 2.12. A graph G of order v passes a y-test if, for a 1×
(
v
2

)
edge weight

vector y indexed by pairs of points, we have the following:

1. 〈y,14〉 ≥ 0 for all triangles 4 in G,

2. 〈y,1G〉 ≥ 0, where 1G denotes the characteristic vector of G.

In later sections, we will investigate the edge-weight vectors y which provide

meaningful obstructions that prevent G from having a triangle decomposition. For

now, notice that as the first condition runs over all triangles in G, it can be written

as a matrix inequality yW ≥ 0, where W records all interactions between pairs and

triangles. We shall closely study this matrix W .
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2.3 Convex geometry of the inclusion matrix

Since we are interested in interactions between various subsets of points (pairs and

triples in particular), it is useful to define a matrix that records all these interactions.

Definition 2.13. The inclusion matrix Wt,k(v), or just Wt,k, is a
(
v
t

)
×
(
v
k

)
(0, 1)-

matrix with rows indexed by all t-subsets T of V and columns indexed by all k-subsets

K of V such that Wt,k(T,K) = 1 if and only if T ⊂ K for |T | = t and |K| = k.

The ordering of the subsets used in indexing W or any vectors does not matter

as long as it is consistent and will be specified when needed. We can also consider

inclusion matrices indexed by a certain subset of all k-subsets; this will be further

explored in Section 3.3.

Example 2.14. Let V = {1, . . . , 5} and consider its 3-subsets {α1, . . . , α10}, where

α1 = {1, 2, 3} α6 = {1, 4, 5}

α2 = {1, 2, 4} α7 = {2, 3, 4}

α3 = {1, 2, 5} α8 = {2, 3, 5}

α4 = {1, 3, 4} α9 = {2, 4, 5}

α5 = {1, 3, 5} α10 = {3, 4, 5}
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Then we have:

W2,3(5) =



α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

{1, 2} 1 1 1 0 0 0 0 0 0 0

{1, 3} 1 0 0 1 1 0 0 0 0 0

{1, 4} 0 1 0 1 0 1 0 0 0 0

{1, 5} 0 0 1 0 1 1 0 0 0 0

{2, 3} 1 0 0 0 0 0 1 1 0 0

{2, 4} 0 1 0 0 0 0 1 0 1 0

{2, 5} 0 0 1 0 0 0 0 1 1 0

{3, 4} 0 0 0 1 0 0 1 0 0 1

{3, 5} 0 0 0 0 1 0 0 1 0 1

{4, 5} 0 0 0 0 0 1 0 0 1 1


The following observation follows easily after one recalls Definition 2.4 of a design.

Observation 2.15. A t-(v, k, λ) design exists if and only if Wt,k(v)x = λ1 has a non-

negative integer solution x, where 1 is the all ones vector of the necessary dimension.

The vector x is called the characteristic vector of the design as it records the

number of occurrences of each k-subset as a block of the corresponding design. In

particular, the number of blocks of the design is equal to |x| = λ
(
v
t

)
/
(
k
t

)
. The inclusion

matrix Wt,k(v) itself has several nice properties. It has constant row and column sum

of
(
v−t
k−t

)
and so W1 =

(
v−t
k−t

)
1. Therefore, Wx = λ1 always has a non-negative rational

solution x = λ/
(
v−t
k−t

)
1.

Since we are looking for vectors y that are nonnegative on all the triangles, i.e.

such that yW ≥ 0, we are led to the study of cones and their facets defined below.

Definition 2.16. Consider a finite-dimensional real vector space K. A convex cone in

K is a subset ofK closed under vector addition and non-negative scalar multiplication.
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The ray generated by x ∈ K is the set {kx : k ≥ 0}. The cone generated by a set

of vectors {xi}N1 ⊂ K is the set of non-negatively scaled sums {
∑N

i=1 kixi : ki ≥ 0}.

The number n of linearly independent vectors in {xi}N1 is called the dimension of the

cone.

Definition 2.17. A cone is called full if n = dim(K) and it is called pointed if the

only vector contained in the cone together with its negative is the zero vector. A cone

is called polyhedral if it is full, pointed and generated by a finite set of vectors.

The cones we consider will all be polyhedral cones in real Euclidean space.

Example 2.18. The cone in R2 generated by the vectors (1, 0) and (0, 1) is a polyhe-

dral cone that consists of the entire non-negative orthant of R2, that is all the points

(x, y) ∈ R2 such that x, y ≥ 0.

Definition 2.19. A face F of a cone C ∈ Rm is a subcone of C such that for all

x ∈ F , x = x1 + x2, x1,x2 ∈ C implies that x1,x2 ∈ F . A face of dimension 1 is

called an extremal ray of C. A face of codimension 1 (or dimension m − 1) is called

a facet of C.

From now on, let 〈·, ·〉 denote the inner product. Given an m × n matrix A, the

set CA = {Ax : x ∈ Rn,x ≥ 0} is a polyhedral cone in Rm called the cone of A. We

say that a vector y ∈ Rm such that yA ≥ 0 supports CA; that is because the space

of vectors b such that 〈y,b〉 ≥ 0 contains the entire convex cone generated by the

columns of A. Then the cone itself is the intersection of all half spaces described by its

supporting vectors and the columns of A are, in fact, extreme rays of CA. Furthermore,

we say that y ∈ Rm supports CA on a facet if yA ≥ 0 and the set of columns of A

that are orthogonal to y spans a subspace of dimension n − 1. Geometrically, this

means that y is orthogonal to a facet of CA and we shall refer to it as a facet normal.

A facet normal of the cone cannot be written as a non-negative linear combination
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of other facet normals or supporting vectors [44], so facet normals are irreducible

extreme supporting vectors of a cone. We also define the dual cone C∗A as the cone

generate by facet normals of CA.

Example 2.20. Given the n × n identity matrix I, the cone CI is the non-negative

orthant of Rn, that is all the points (x1, . . . , xn) ∈ RN such that xi ≥ 0 for all

i = 1, . . . , n.

Example 2.21. Let A =

 2 1

1 3

 and consider the cone CA in R2 as shown in

Figure 2.5.

Figure 2.5: Cone of A.

x

y

CACA

Here, the shaded region represents the cone of A. Furthermore, the black vectors,

which are the columns of A, represent the extremal rays, the red vectors represent

facet normals and the blue vectors represent some of the supporting vectors of CA.

As is clearly seen, the facet normals are the farthest possible supporting vectors.

Alternatively, we can define this cone using half-spaces described by inequalities 3x−

y ≥ 0 and −x+ 2y ≥ 0.

Note that there are two distinct ways to specify a cone. A vertex representation or

a V-representation is equivalent to defining the cone as the convex hull of its extreme



20

points (in our case, extreme rays). The minimal V-representation is also unique and

is given by the set of extreme rays of the cone. A half-space representation or an H-

representation is equivalent to defining the cone as the intersection of a finite number

of half spaces. Then the minimal H-representation is also unique and is given by the

half spaces defined by facets.

Motivated by graph decompositions, we are mainly interested in the cone of

W2,3(v) as it records interactions between pairs and triangles. From now on we shall

refer to the cone CW2,3(v) as the triangulation cone Triv. Notice that when considering

triangle decompositions, instead of assigning weights to edges, we can consider assign-

ing weights to triangles. Then a graph G being decomposable into triangles implies

the existence of a nonnegative
(
v
3

)
× 1 vector x that satisfies the matrix equation

Wx = 1G. Together with the conditions for passing a y-test from Definition 2.12, we

have that if yW ≥ 0, then

〈y,1G〉 = 〈y,Wx〉 = 〈yW,x〉 ≥ 0,

which is one direction of the following important result.

Theorem 2.22 ([42]). [Farkas’ Lemma] Let A be an m× n matrix and b be an m-

dimensional real vector. The equation Ax = b has a non-negative solution x ∈ Rn

(i.e. b ∈ CA) if and only if 〈y,b〉 ≥ 0 for all y ∈ Rm such that yA ≥ 0.

Geometrically, Farkas’ Lemma can be interpreted as follows: given a convex cone

and a vector, either the vector is in the cone or there is a hyperplane separating the

vector and the cone. Now, according to the Krein-Milman theorem from functional

analysis, we have that any compact convex subset of a finite-dimensional space is the

closed convex hull of its extreme points. Here, it means that the set of extremal rays

of a polyhedral cone CA generates it and hence in Farkas’ Lemma it is enough to check
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facets of CA to ensure that b ∈ CA.

In our triangle decomposition case, we are looking to decide whether or not 1G

is in the cone Triv and so we consider the facets and facet normals of this cone as

tests (in the sense of Definition 2.12) for rejecting or not rejecting the given graph

G as having a rational triangle decomposition. As the first small example, let y =

(−1 1 1 1 0 0 0 0 0 0) be the weight vector indexed by 2-subsets of a 5-set (unless

otherwise specified, the indices occur in lexicographic order), where the edge {u,w}

receives weight y{u,w}. For this particular vector y, that means that edge {1, 2}

receives weight −1, edges {1, 3}, {1, 4} and {1, 5} receive weight 1, while all other

edges receive weight 0. Then yW2,3(5) = (0 0 0 2 2 2 0 0 0 0) is similarly indexed by

3-subsets of a 5-set and represents their respective weights. Notice that y supports

W2,3(5) since yW2,3(5) is entry-wise non-negative, but it does not support it on a facet

since there are not enough zero entries (namely, there are less than 9 =
(
5
2

)
−1). Quite

naturally, to represent the supporting vectors and facets graphically, we consider

the graph on 5 vertices, labelled 1 through 5, with edge weights given by y. We

shall further colour-code this in a straightforward way: red edges will correspond to

negative weight, green ones to the positive weight and the missing edges correspond

to weight 0. In our graphical representation, from now on we shall label the edges

(usually on the boundary) with labels representing the weight of all the edges of the

corresponding colour. Then, in this case we have the representation as in Fugure 2.6

on the following page.

While it is easy to check nonnegativity on all triangles, it is trickier to see whether

some such edge-weighted graph corresponds to a facet (normal). For this, we need to

check that the set of all zero-weight triangles spans a space of codimension 1 in R(v
2).

The facet normals of W2,3(v) are not characterized and get increasingly complex

for larger values of v. We generate them using the following algorithm [17].
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Figure 2.6: Graphical representation of vector y = (−1 1 1 1 0 0 0 0 0 0).

−1

1

Algorithm 2.23. Consider the following variation of the “dual simplex algorithm”.

1. Given an n×m matrix A and start with a vector y ∈ Rm supporting CA, that

is such that yA ≥ 0.

2. If the columns of A that are orthogonal to y span a subspace of dimension

m− 1, then y supports CA on a facet and we are done. Otherwise, choose any

z ∈ Rm such that zA ≥ 0 (i.e. it supports CA) and zA vanishes on at least the

same coordinates as yA.

3. Let

ε = min
i

(yA)i
(zA)i

,

where i ranges over all positive entries of yA and zA.

4. Set y := y − εz and go to step 2.

Figure 2.7 on the next page shows some of the facet normals that occur for v = 8.

Notice that the first one is exactly of the same form as the example in Section 2.2:

the graph is partitioned into two parts with green edges having weight 2 and the

red edges having weight −1. We shall call these facets the bipartition or cut facets.

However, the other two facets present a new kind of obstruction — the last one even
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Figure 2.7: Facet normals for v = 8.

2−1 1

−1

1

−1

2

has more than two weight values (recall that all edges of the same colour receive the

same weight).

In Chapter 3, we will explore facets as representing obstructions to triangle de-

composability of a graph. In Section 3.2, we prove the existence of various families

of facets for all values of v ≥ 5 and characterize all facets for up to v = 8. While

a computer attack can enumerate all facets for v ≤ 8, the number of isomorphism

classes grows very fast.

2.3.1 The metric cone

Our cone Triv (that is, the cone CW2,3(v)) appears in the context of metrics on a

finite set.

Definition 2.24. A metric d on a set V is a function d : V × V → R that satisfies

the following properties for all x, y, z ∈ V :

1. d(x, y) ≥ 0,

2. d(x, y) = 0 if and only if x = y,

3. d(x, y) = d(y, x),

4. d(x, z) ≤ d(x, y) + d(y, z).
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A semi-metric is a function d : V × V → R that satisfies conditions 1, 3 and 4 and

also that d(x, x) = 0.

We define the metric cone Metv ⊆ R(V
2) to consist of all semi-metrics on V , where

|V | = v. If we further want to bound the allowed distances from above, we obtain a

metric polytope metv. Alternatively, we have the following definition:

Definition 2.25 ([12]). For a v-set V , let xij represent a coordinate of a point in

R(V
2). Then the metric cone Metv is defined by the 3

(
v
3

)
halfspaces in the form of

triangle inequalities

xij + xik − xjk ≥ 0,

where {i, j, k} ∈
(
V
3

)
. The metric polytope metv is defined by bounding Metv by the(

v
3

)
perimeter inequalities

xij + xik + xjk ≤ 2.

From the above, we have that metv has a total of 4
(
v
3

)
facets. It has two “extreme”

vertices, (0, . . . , 0) and 2
3
(1, . . . , 1), and all of its extreme rays go through one of those

vertices (see Figure 2.8).

Figure 2.8: Metric polytope.

(0, . . . , 0)

2
3
(1, . . . , 1)

There is an immediate connection between the metric cone and the triangulation

cone as the former is a signed version of the latter. Recall that Triv = {Wx : x ∈
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R(V
2),x ≥ 0}, where W = W2,3(v) is the

(
v
2

)
×
(
v
3

)
inclusion matrix (with three positive

1’s in each column). Then Metv = {Mx : x ∈ R(V
2),x ≥ 0} where M is the

(
v
2

)
×3
(
v
3

)
whose columns are three copies of those in W with a different non-zero entry negated

in each. So

M


I

I

I

 = W.

It is then easy to see that any supporting vector of Metv is also a supporting vector of

Triv since yM ≥ 0 implies yW ≥ 0. Moreover, if we add the three triangle inequalities

for every unordered triple {i, j, k} ∈
(
V
3

)
, we get inequalities xij +xik+xjk ≥ 0, which

define the dual of Triv.

The metric cone and the metric polytope have been studied in particular for

their applications in combinatorial optimization [12, 13] and through a more general

setting. The metric cone is a relaxation of the cut cone that has more facets than

those described by the triangular inequalities above.

Definition 2.26 ([12]). Given a subset S of a v-set V , the cut of S consists of pairs

of points (i, j) ∈ V × V such that exactly one of i, j is in S. The cut is also defined

by a vector δ(S) ∈ R(V
2) with δ(S)ij = 1 if exactly one of i, j is in S and 0 otherwise.

Now, define the following operation: given a cut δ(S), the switching reflection

applied to a vector (or point) x produces a vector y with yij = 1 − xij if (i, j) is in

the cut δ(S) and yij = xij otherwise. Note that the switching reflection switches the

roles of inequalities in Definition 2.25 as long as not all xij, xik, xjk are in the same

part. The cuts themselves define both a cone and polytope.

Definition 2.27 ([12]). The cut cone Cutv is the cone defined by all 2v−1−1 nonzero

cuts and the cut polytope cutv is the cone generated by all 2v−1 cuts.
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So cutv is a
(
v
2

)
-dimensional polyhedron with 2v−1 vertices and metv is a

(
v
2

)
-

dimensional polytope containing cutv and inscribed in the cube [0, 1](
v
2).

The two polytopes are very close to each other. We have that cutv ⊂ metv for

v ≥ 5; in particular, 2
3
(1, . . . , 1) belongs to metv but not to cutv. All vertices of cutv

are vertices of metv; in fact, the cuts are exactly the integral vertices of metv [14]. For

v ≥ 5, the two polytopes share the symmetry group consisting of permutations and

switching reflections. Therefore, the faces and the vertices of metv are partitioned

into orbits under permutations and switching reflections [14]. Due to the connection

of Triv and the neighbourhood of the vertex 2
3
(1, . . . , 1), we are interested in the

orbit formed by 2v−1 so-called anticuts δ∗(S)ij = 2
3
(1, . . . , 1) − 1

3
δ(S). In general,

x 7→ 2
3
(1, . . . , 1) − x maps the direction vectors in the neighbourhood of 2

3
(1, . . . , 1)

in metv to facet normals of Triv.

In addition to generating the cone useful for studying obstructions for triangle

decompositions, the matrixW is also connected to association schemes and the related

Bose-Mesner algebra introduced in the next section.

2.4 Association schemes

In this section, we provide the background for proving the sufficient conditions for

rational triangle graph decompositions. We start by introducing some notation.

2.4.1 Definitions and notation

The first definitions of an association scheme appear in the works of Bose and Nair

[5] in 1939 and Bose and Shimamoto [6] in 1952, both in the context of statistical

experimental designs. In 1959, Bose and Mesner [4] provided the algebraic setting for

these objects, which was crucial in their further study.
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Given any two edges in a graph, they can interact in 3 different ways: they can

coincide, intersect at one of the endpoints or be altogether disjoint. This idea of

various interactions between k-subsets of a v-set is the essence behind the definition

of an association scheme.

Definition 2.28 ([42]). A d-class association scheme on a set X of points is a set

of d+ 1 non-empty symmetric binary relations R0, . . . Rd that partition X ×X such

that R0 = {(x, x) : x ∈ X} is the identity relation and the following holds:

there exist nonnegative integers plij (0 ≤ i, j, l ≤ d) such that given any

(x, y) ∈ Rl, there are exactly plij elements z ∈ X with (x, z) ∈ Ri and

(z, y) ∈ Rj.

We say that x and y are ith associates if (x, y) ∈ Ri. The integers plij are called

intersection numbers (also structure constants or parameters) of the scheme. Figure

3.1 is a pictorial representation of intersection numbers with labels on each edge

representing the relationship between the two points incident to that edge.

Figure 2.9: Intersection numbers.

x y

i j

l

plij

Example 2.29 ([42]). A regular graph is strongly regular if every two adjacent ver-

tices have λ common neighbours and every two non-adjacent vertices have µ common

neighbours for some λ, µ ∈ Z+. Any strongly regular graph G gives rise to a 2-class

association scheme, where two distinct vertices are 1st associates if they are adjacent

in G and 2nd associates if they are not. Here p111 = λ and p211 = µ.
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Example 2.30. The Hamming scheme, denoted H(k, q), is defined as follows: the

points of H(k, q) are the qk ordered k-tuples over an alphabet of size q. Two k-tuples

x and y are ith associates if they disagree in exactly i coordinates.

Example 2.31. The Johnson scheme, denoted J(v, k), is defined as follows: the

points of J(v, k) are the
(
v
k

)
k-subsets of a v-set. Two k-subsets X and Y are ith

associates if they disagree in exactly i elements, i.e. if |X ∩ Y | = k − i.

2.4.2 Bose-Mesner algebra

For an alternative view of association schemes, consider adjacency matrices of the

relations of Definition 2.28. Then we immediately get that a symmetric association

scheme on n points with d classes is a set A = {A0, . . . , Ad} of (0, 1)-matrices such

that:

1. A0 = I,

2.
∑d

i=0Ai = J , where J is the all-ones n× n matrix,

3. A>i = Ai for each i = 0, . . . d,

4. AiAj =
∑d

l=0 p
l
ijAl, i, j = 0, . . . d.

The Ai are linearly independent, since each of them has at least one 1 and in any

position only one of the Ai is non-zero. Moreover, the Ai span a (d+ 1)-dimensional

commutative algebra over R, called the Bose-Mesner algebra as it was first introduced

by Bose and Mesner in [4].

Example 2.32. The smallest example of an association scheme has just one class.

Then A0 = I and A1 = J − I. Note A2
1 is a linear combination of I and J .
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Example 2.33. To better understand the structure of the Ai, consider the 3-class

Hamming scheme H(3, 2). The all-ones matrix below identifies the ith associates as

follows: black entry corresponds to an entry of 1 in A0, blue to A1, green to A2 and

red to A3.

J =



00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

000 � � � � � � � �

001 � � � � � � � �

010 � � � � � � � �

011 � � � � � � � �

100 � � � � � � � �

101 � � � � � � � �

110 � � � � � � � �

111 � � � � � � � �


Note also the following relations between the Ai of this Hamming scheme:

A2
3 = A0,

A1A3 = A2,

A1A2 = 2A1 + 3A3.

An extension of the spectral theorem gives that a commutative algebra of real

symmetric matrices has a basis of orthogonal idempotents with respect to regular

matrix multiplication [42], therefore providing us with another basis for Bose-Mesner

algebra.

Theorem 2.34 ([24]). The algebra R[A] has a basis E0, . . . , Ed of orthogonal idem-

potents such that
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1. EiEj =


Ei if i = j,

0 if i 6= j,

and E0 =
1

n
J ,

2.
∑d

i=0Ei = I,

3. Ei is symmetric for each i = 0, . . . d.

Geometrically, RV can be written as a direct sum of mutually orthogonal eigenspaces

and orthogonal idempotents are projections of RV onto these eigenspaces.

Lemma 2.35. Given the algebra R[A] with a basis E0, . . . , Ed of orthogonal idempo-

tents, each column of Ei is an eigenvector of each matrix in R[A].

Proof. Let A be a matrix in R[A]. It can therefore be written as a linear combination

of the Ei, so that

A =
d∑
i=0

aiEi

for some constants ai ∈ R. Then multiplying both sides of the above equation by

some fixed Ei and invoking property 1 of Theorem 2.34, we get

AEi = aiEi,

so every column of Ei is an eigenvector of A.

In light of the above lemma, we have the following definition.

Definition 2.36. For j = 0, . . . d, the basis change coefficients pij defined by Ai =∑d
j=0 pijEj are called the eigenvalues of the scheme. Similarly, scalars qij defined by

Ei = 1
n

∑d
j=0 qijAj are called the dual eigenvalues of the scheme.

While the notation in the definition above is not ideal (pij of eigenvalues versus plij

of intersection numbers), it has been historically used and we shall use it throughout.
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Since AiEj = pijEj, i, j = 0, . . . d, so pij is an eigenvalue of Ai with multiplicity

mj = rank(Ej). We define the eigenmatrix and the dual eigenmatrix of R[A] by

P [i, j] = pij and Q[i, j] = qij, respectively.

Proposition 2.37. We have PQ = nI.

Proof. By Definition 2.36, we have:


A0

...

Ad

 = P ·


E0

...

Ed

 = P · 1

n
Q


A0

...

Ad

 .

Therefore, PQ = nI.

2.4.3 Johnson scheme

From now on, we will work with the Johnson association scheme with 2 classes.

We shall build it from the line graph of Kv, so the vertex set consists of all 2-subsets

of a v-set, where two vertices x and y are ith associates if |x∩ y| = 2− i for i = 0, 1, 2.

Then the Ai are (0, 1)-matrices indexed by n =
(
v
2

)
pairs constructed as follows: any

given row of Ai, i = 0, 1, 2, indexed by the edge {x, y}, records (with an entry of 1)

the edges that intersect {x, y} in 2, 1 and 0 points, respectively.

Example 2.38. Consider the complete graph on 4 vertices, labelled a, b, c, d, and

construct the Ai from its line graph. As before, we have a partition of the all-ones

matrix according to ith associates: an entry of i corresponds to an entry of 1 in the

matrix Ai, i = 0, 1, 2:
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J =


a
b

a
c

a
d

bc bd cd

ab 0 1 1 1 1 2

ac 1 0 1 1 2 1

ad 1 1 0 2 1 1

bc 1 1 2 0 1 1

bd 1 2 1 1 1 1

cd 2 1 1 1 1 0


Proposition 2.39. We can obtain all of the possible products AiAj for i, j = 0, 1, 2:

A2
1 = 2(v − 2)A0 +(v − 2)A1 +4A2,

A1A2 = A2A1 = +(v − 3)A1 +2(v − 4)A2,

A2
2 =

(
v−2
2

)
A0 +

(
v−3
2

)
A1 +

(
v−4
2

)
A2.

Proof. Given two matrices Ai and Aj, the coefficient of Ai in the expansion of the

product AiAj is the number of ith associates of one edge and jth associates of another

(not necessarily distinct) edge, simultaneously.

Consider A2
1. In the product A1A1, consider the row in the first matrix indexed

by the edge {x, y} and the column in the second matrix indexed by the edge {e, f}.

Recall that A1 records edges that are incident with a given edge in exactly one vertex.

Therefore, A2
1 records the edges that are 1st associates of each of {x, y} and {e, f}, i.e.

edges that touch each of {x, y} and {e, f} at exactly one vertex. We now have three

cases corresponding to the coefficient of the Ai in the expansion of A2
1 as recorded in

Table 2.1 on the following page.

Therefore, A2
1 = 2(v − 2)A0 + (v − 2)A1 + 4A2.

Similarly, A1A2 records the edges that are 1st associates of {x, y} and 2nd associates

of {e, f}, i.e. edges that touch {x, y} at exactly one vertex and are disjoint from
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Table 2.1: Coefficients of A2
i in Johnson scheme.

Edges interaction Coefficient in expansion

same edge 2(v − 2)

incident edges v − 3 + 1

disjoint edges 4

{e, f}. Finally, A2
2 records the edges that are disjoint from each of {x, y} and {e, f}.

Considering the three cases for A1A2 and A2
2 produces the counts as stated above.

Proposition 2.40. The eigenmatrix of R[A] is given by P [i, j] = pij with

P =


1 1 1

2(v − 2) v − 4 −2(
v−2
2

)
−v + 3 1

 .

Proof. Recall that Ai =
∑d

j=0 pijEj = pi0E0 + pi1E1 + pi2E2. We index the rows and

the columns of matrix P by 0, 1, 2.

Since the Ei are orthogonal idempotents and E0 =
1(
v
2

)J , we have that AiJ = pi0J .

Therefore, the pi0 are the common row sums of the Ai, given by Proposition 4.5.

Since A0 = I and E0 + E1 + E2 = I, we get that pi0 = 1 for i = 0, 1, 2.

The derivation of the rest of the entries of P is not straightforward and we will

rely on the use of the following combinatorial identity [25]:

pij =
i∑

r=0

(−1)i−r
(
k − r
i− r

)(
v − k + r − j

r

)(
k − j
r

)
.

In our case, k = 2 and the corresponding values are computed in Appendix A.1.
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With the necessary background in place, we can proceed to consider the necessary

and sufficient conditions for rational triangle decompositions.
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Chapter 3

Cone conditions and facet

structure

In this chapter, we study necessary conditions for rational triangle decompositions:

a graph G is rationally triangle decomposable if its characteristic vector 1G lies in

the triangulation cone Triv. Since by Farkas’ Lemma it is enough to check facet

normals of Triv in order to decide whether or not 1G ∈ Triv, we concentrate our

efforts on studying these objects. We classify several infinite families of facet normals

of Triv as well as fully characterize and enumerate all facet normals for v < 9. We

also run facet normal tests on all 8-vertex graphs with minimum degree four and

consider some observations arising from the computational data. We produce several

interesting examples of graphs that fail to be triangle decomposable but are not

rejected by certain large families of facet normals. Finally, the study of Triv, and

W2,3 in particular, leads us into proving the existence of certain three-fold triple

systems.

In this Chapter, we employ a graphical approach by representing facet normals as

graphs on v vertices with weights attached to them. As such, for t = 1 we establish
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a correspondence between v-vertex weighted graphs and vectors in RV ; for t = 2, the

correspondence is between edge-weighted v-vertex graphs and vectors in R(V
2). So a

coordinate of the vector corresponds to a vertex (edge) in the graph and its value

corresponds to the weight of that vertex (edge). Then, in a graphical setting, to span

a vertex (edge) using a set S ⊂
(
V
k

)
means to be able to obtain the characteristic

vector of that vertex (edge) as a linear combination of characteristic vectors of the

k-subsets in S. We always consider facet normals up to isomorphism, that is up to

scaling and permutations, by taking them to be in standard form in which all entries

are integers and the greatest common divisor of all the entries is equal to 1.

3.1 Characterization of the facet normals of CW1,k(v)

Before moving on to examining facet normals of Triv = CW2,3(v), we characterize

the facet normals of CW1,k(v). Recall that the matrix W1,k(v) records interactions

between 1-subsets and k-subsets of a v-set V . As such, a row vector y ∈ RV supports

CW1,k(v) if yW1,k(v) ≥ 0 entry-wise, that is if every k-subset of coordinates of y has

non-negative total weight. Furthermore, y is a facet normal if the columns of W1,k(v)

orthogonal to y span a space of codimension 1 in RV . An interesting fact to notice

here is that W1,kW
>
1,k =

(
v−1
k−1

)
I +

(
v−2
k−2

)
(J − I), so it is always full rank.

Lemma 3.1. Given a (k+1)-vertex graph with weights assigned to each vertex, every

vertex in this graph is spanned by the (k + 1) k-subsets in it.

Proof. To span any given vertex, take all k-subsets incident with it with coefficient 1
k

(there are k of them) and the one k-subset disjoint from it with coefficient −k−1
k

.

Proposition 3.2. The vectors (1, 0, 0, . . . 0) and (−(k−1), 1, 1, . . . 1) in RV are facet

normals of the CW1,k(v) for k ≥ 2, v ≥ 5 and v > k + 1. We refer to these facet

normals as trivial facet normal and base facet normal, respectively.
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Proof. By Lemma 3.1, the vector (1, 0, 0, . . . 0) is a facet normal as we can span every

coordinate except for the one with weight 1.

To prove that (−(k − 1), 1, 1, . . . 1) is a facet normal, let K denote the set of

all zero-weight k-subsets in this vector’s graphical representation. We will prove

that all zero-weight k-subsets together with the addition of another k-subset span

RV . Without loss of generality, let S = {i1, i2, . . . , ik−2, j1, j2} ⊂ V , 1 /∈ S, be the

additional k-subset and set K′ = K∪{S}. By Lemma 3.1, the vertices in S ∪{1} are

all spanned by K′ and it suffices to show that any vertex outside of S ∪ {1}, say x,

can also be written as a linear combination of the sets in K′. This is done using the

coefficients as in Table 3.1.

Table 3.1: Coefficients of k-subsets used to span the vertex x.

k-subset Coefficient

{1, i1, i2, . . . , ik−2, j1} −k − 1

k

{1, i1, i2, . . . , ik−2, j2} −k − 1

k

{1, i1, i2, . . . , ik−2, x} 1

{1, i1, . . . , ip−1, ip+1, . . . , ik−2, j1, j2}
1

k

{i1, i2, . . . , ik−2, j1, j2}
1

k

While most of the k-subsets above appear only once, note that there are k − 2 k-

subsets of the form {1, i1, . . . , ip−1, ip+1, . . . , ik−2, j1, j2}. After checking all the points,

we can see that point x will receive a contribution of 1 and the rest of the points will

receive the total contribution of 0.
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Observation 3.3. In a graphical representation of a facet normal, every vertex be-

longs to a zero-weight k-subset; alternatively, every coordinate of a facet normal

belongs to a zero-weight k-subset of coordinates. Otherwise, if a coordinate belongs

to only positive k-subsets, the corresponding vector can be decomposed into a (scalar

multiple of) the trivial facet and another supporting vector, meaning it is not a facet

normal.

Proposition 3.4. The only facet normals, up to isomorphism, of the cone CW1,k(v)

(k ≥ 2, v ≥ 5 and v > k + 1) are the trivial facet normal (1, 0, 0, . . . , 0) and the base

facet normal (−(k − 1), 1, 1, . . . , 1).

Proof. Proposition 3.2 guarantees that (1, 0, 0, . . . , 0) and (−(k − 1), 1, 1, . . . , 1) are

indeed facet normals of CW1,k(v). Next, we show that there are no other facet normals.

A facet normal with no negative coordinates can only be the trivial facet normal

since it decomposes into a positive combination of them. Now consider a facet normal

with exactly one negative coordinate. By Observation 3.3, all positive-valued coor-

dinates have to be of the same value. Therefore, any facet normal with exactly one

negative coordinate is a scalar multiple of the base facet normal.

Suppose now that a vector y is a facet normal with at least two negative coor-

dinates. By Observation 3.3, the weights of all negative-valued coordinate must be

equal (otherwise, there exists a negatively weighted k-subset) and, similarly, all the

positive-valued coordinates must have the same weight. Therefore, y must be of the

form (−a, . . . ,−a︸ ︷︷ ︸
r

, 1, . . . , 1) (up to isomorphism), where r < k and a ≥ k−r
r

. With

some calculations, this vector can be written as non-negative linear combination of

r base facet normals and trivial facet normals with coefficient a − k−r
r

. It therefore

cannot be a facet normal.

All facet normals of CW1,k(v) are now characterized. It is easy to see that a facet
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normal of CW1,3(v) induces a supporting vector of CW2,3(v). However, the converse is

not true. In fact, the structure of facet normals of CW2,3(v) (not even general k) is

much more complex.

3.2 Structural properties of facet normals of Triv

We now return to the rational triangle decompositions and to the study of the

facets of CW2,3(v), or simply Triv. Recall that y ∈ R(V
2) supports Triv on a facet if

yW ≥ 0 and the set of all columns in W2,3(v) orthogonal to y spans the space of

dimension
(
v
2

)
− 1; that is, the set of all zero-weight triangles spans the space of the

edges of dimension
(
v
2

)
− 1. As such, facet normals can be thought of as critically

non-spanning structures and, as in Section 3.1, we will employ the following technique

for checking something is a facet normal: add in one additional triangle to the space

of all zero-weight triangles and ensure that the resulting set of triangles spans R(V
2).

Some properties of the facet normals are immediate:

1. Since zero-weight triangles have to span a space of codimension 1 in R(V
2), for

every facet normal y, we have that yW vanishes on at least
(
v
2

)
−1 coordinates.

Equivalently, y induces at least
(
v
2

)
− 1 zero-weight triangles.

2. Since every facet normal is orthogonal to a space of dimension
(
v
2

)
− 1, any

two facet normals that vanish on the same triangles are scalar multiples of each

other.

3. In a facet normal, every pair of coordinates (except for possibly one) has to

appear together in at least one zero-weight triangle, since otherwise zero-weight

triangles have deficient span.
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Moreover, from the definition and property 2, we also get an easy upper bound

for the number of facet normals:

Lemma 3.5. The number of facets of the cone Triv is at most

( (
v
3

)(
v
2

)
− 1

)
.

Proof. Given any facet normal, by property 2 above, there is a unique set of
(
v
2

)
− 1

columns that are orthogonal to it. At worst, every set of
(
v
2

)
− 1 columns of W2,3(v)

corresponds to a different facet normal.

For more structural results, we shall investigate some particular facet normals

closer in the next section.

3.2.1 General properties of facet normals

To start off with, consider minimal spanning configurations of pairs and zero-

weight triangles.

Lemma 3.6. Every pair in a 5-set is spanned by the
(
5
2

)
triples in that set.

Proof. The statement is equivalent to proving that the matrix W2,3(5) is full rank.

We have W2,3(5)W2,3(5)> = 3I+A, where A is the adjacency matrix of the line graph

of K5. Since the eigenvalues of A are known to be (−2)5, 14 and 61, [36], it follows

that W2,3(5) has full rank.

The lemma above can also be proven using graphical representation of facet nor-

mals: take a 5-vertex graph with vertices labelled 1 through 5 and consider the space

spanned by the triangles in this graph. We would like to show that the characteristic

vector of any edge can be obtained as a linear combination of characteristic vectors

of triangles. This can be done by taking all the triangles through the desired edge

and the one triangle disjoint from it with weight 2/6, while taking the remaining 6

triangles with weight −1/6.
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We will now consider some infinite families of vectors and prove that they are facet

normals of Triv. Note that the first reasonable case is v = 5 since for smaller values

of v there are simply not enough total triangles available to span the dimension of

the needed size. Even for v = 5 there is only one possible isomorphism type of facet

normal. In fact, we will prove that some structures give rise to whole families of facet

normals starting at some small value of v.

Proposition 3.7. For any v ≥ 6, the 1×
(
v
2

)
vector y = (1, 0, . . . , 0) is a facet normal

of Triv, called the trivial facet normal.

Proof. Graphically, we have the representation in Figure 3.1.

Figure 3.1: Trivial facet normal.

1

The vector y = (1, 0, . . . , 0) is clearly a supporting vector of Triv as all of the tri-

angles have non-negative total weight. Note that by repeated applications of Lemma

3.6 to any subset of 5 vertices, every edge but one (of weight one) is spanned by

triangles of zero-weight.

Roughly speaking, the following proposition shows how to extend a facet normal

into an infinite family by “gluing” copies of it along a triangle.

Proposition 3.8. Let y0 be a facet normal of Triv such that 〈y0,1{1,2,3}〉 > 0. Let

i > v and suppose y supports Trii. Suppose further that every element of
(
[i]
2

)
is

contained in some v-set S ⊃ {1, 2, 3} such that the restriction y|S of y to R(S
2) agrees

with y0 (upon a relabelling of points fixing {1, 2, 3}). Then y is a facet of Trii.
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Proof. All that is needed to show is that y vanishes maximally on
(
V
3

)
. Here, it

suffices to show that every pair in
(
[i]
2

)
is a linear combination of zero-weight triangles

with {1, 2, 3} added in. More formally, we want to show that

1T ∈ 〈14 : yW (4) = 0 or 4 = {1, 2, 3}〉

for every T ∈
(
[i]
2

)
. By assumption, T ⊂ S where y|S is a copy of y0 containing

{1, 2, 3}. Since this is a facet normal of lower dimension, it follows that 1T is indeed

a non-negative linear combination as claimed.

Let us call a family of facets which arise from ‘copies of y0’ in this way a seeded

family. We shall say that y0 is the seed and {1, 2, 3} is the anchor of the family. For

example, the family of trivial facet normals is seeded for v ≥ 6 with the seed being

the trivial facet normal on 6 vertices. For more complex facet families, we will also

have to specify the anchor to allow it to span all the edges in the configuration.

Observe that if a facet normal has no negative coordinates, it can have only one

positive coordinate, since otherwise it can be decomposed into a combination of trivial

facet normals. Therefore, the trivial facet normal is the only facet normal with no

negative coordinates.

To construct infinite seeded families of facet normals, we now only need to consider

their seeds. Note that for every case below, the seed is the smallest possible element of

the corresponding family that is itself a facet normal. As such, different facet normal

families emerge starting from different values of v.

In what follows, for sets X, Y ⊂ V = {1, 2, . . . , v}, let
(
X
2

)
denote the set of

all possible pairs of points in X and let X · Y denote the unordered version of the

cartesian product, that is the set of pairs of points with exactly one point in each set.

In a facet normal description, braces underneath specify the pairs of points receiving
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the corresponding weight. The ordering, unless specified otherwise, is lexicographical.

Proposition 3.9. The 1×
(
v
2

)
vector y = (−1,︸︷︷︸

{1, 2}

1, 1, . . . , 1,︸ ︷︷ ︸
{1} · {3, . . . , v}

0, . . . , 0) is a facet normal

of Triv, v ≥ 6, called the star facet normal.

Proof. The weighted star configuration (pictured below) is supporting and is minimal

in a sense that it cannot be decomposed into supporting vectors of Triv.

By Proposition 3.8, it suffices to show that the seed of this seeded family, the

star on 6 vertices, is indeed a facet normal. Without loss of generality, consider the

labelling as in Figure 3.2.

Figure 3.2: Star on 6 vertices.

−1

1

3

21

6

5 4

Note that the only non-zero-weight triangles here are of the form {1, i, j}, i, j 6= 2.

Now, consider the space spanned by the zero-weight triangles with the addition of one

more triangle, the anchor; without loss of generality, let the anchor be the triangle

{1, 5, 6}. It is sufficient to show that the 15× 15 (0, 1)-incidence matrix A of all the

possible pairs versus all the available triples (that is, the triples with total weight zero

together with the anchor) is invertible. This implies that a matrix system Ax = b

has a solution for a characteristic vector b of any edge. In this case, the matrix can

be easily constructed and its invertability is checked using a computer.

The technique of finding a seed and proving (via a computer-assisted method)
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that it is a facet normal will be employed in many proofs to follow.

A generalization of the star facet normal is a binary star vector, consisting of a

negative edge of weight −1 and positive edges of weight 1 attached to each end of it

as shown in Figure 3.3.

Figure 3.3: Binary star.

−1

1

An (a, b)-binary star has a positive edges on one side and b positive edges on the

other side of the negative edge.

Proposition 3.10. Let {A,B} be a partition of V \{1, 2}, |A| = a, |B| = b, a, b ≥ 3.

Then the 1 ×
(
v
2

)
(a, b)-binary star vector y = (−1,︸︷︷︸

{1, 2}

1, . . . , 1,︸ ︷︷ ︸
{1} ·A

1, . . . , 1,︸ ︷︷ ︸
{2} ·B

0, . . . , 0) is a

facet normal of Triv for v ≥ 8.

Proof. The binary star is clearly a supporting vector of Triv, so by Proposition 3.8 it

suffices to show that the seed (3, 3)-binary star is a facet. This is accomplished by

adding an anchor and employing the help of the computer to show that every edge

in this configuration is spanned.

The star and binary star facets together form a special family of facets.

Proposition 3.11. The star and binary star facet normals are the only facet normals,

up to isomorphism, with exactly one negative coordinate.

Proof. Towards contradiction, assume that there is different facet normal with exactly

one negative coordinate. In graphical representation, it implies the existence of the
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negative edge, say e. Since every edge has to lie in a zero-weight triangle, there cannot

be any positive edges disjoint from e. Furthermore, since all the triangles have to have

non-negative weight and this graph cannot be a star or a binary star, e must lie in at

least one triangle with two other positive edges (see Figure 3.4).

Figure 3.4: Edge e in triangles with 2 positive edges.

e

Moreover, we can assume there are no positive edges disjoint from e. There is at

least one zero-weight edge incident with each of the endpoints of e: if not, subtract

from this vector an appropriately scaled star facet normal rooted at that vertex and

obtain another supporting vector. Therefore, the structure looks as in Figure 3.5.

Figure 3.5: Modified structure.

e

Repeatedly applying the process as described above to the remaining non-zero

edges forming triangles with e, we obtain a (binary) star facet.

The star and binary star facet families provide the smallest examples to illustrate

that the structure of the negative graph, that is the subgraph formed by the negatively

weighted edges of a vector, does not uniquely determine the facet normal. This can

also be seen with other examples for larger values of v (for list of facets of Tri8, please

see Appendix B).
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With two negative edges, we see two emerging structures for v ≥ 7 that we call

negative fan and octopus (see Figure 3.6).

Figure 3.6: Negative fan and octopus.

1−1

2

−1

1

Using proofs similar to above, we obtain the following result:

Proposition 3.12. Let S = ({1, 2} · {5, 6, . . . , v})∪{{1, 2}, {3, 4}}. Then the 1×
(
v
2

)
vectors

(−1,︸︷︷︸
{1, 3}

−1,︸︷︷︸
{3, 4}

1, . . . , 1,︸ ︷︷ ︸
S

0, . . . , 0),

(−1,︸︷︷︸
{1, 2}

−1,︸︷︷︸
{1, 3}

2,︸︷︷︸
{2, 3}

1, . . . , 1,︸ ︷︷ ︸
{1} · {4, . . . , v}

0, . . . , 0),

are facet normals of Triv for v ≥ 7.

So far, we have considered sparse, in the sense of non-zero coordinates, facet

normals. We now study dense facet normals with no zero-weight edges.

Proposition 3.13. Let v ≥ 5 and consider any partition of the vertex set into two

parts A and B, each of size at least 2, with |A| = a and |B| = b. Then the 1 ×
(
v
2

)
vector y = (2, . . . , 2︸ ︷︷ ︸(A

2

) ,−1, . . . ,−1︸ ︷︷ ︸
A ·B

, 2, . . . , 2︸ ︷︷ ︸(B
2

) ) is a facet normal of Triv, called the (a, b)-

cut facet.

Proof. The above vector y is a supporting vector of Triv as all of the triangles formed

by it have weight 0 or 6.
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In a graphical representation, since v ≥ 5, one part contains at least 3 vertices

and we have the following 5-vertex structure containing only one non-zero triangle

(Figure 3.7).

Figure 3.7: Cut partition.

By adding this one non-zero triangle into the space of zero-weight triangles and

applying Lemma 3.6, we see that (3, 2)-cut is indeed a facet normal. Now, use it as

the seed and apply Proposition 3.8.

Proposition 3.14. For any v ≥ 6, Table 3.2 shows the counts of zero-weight triangles

in seeded facet normal families.

Table 3.2: Counts of zero-weight triangles.

Facet normal Number of zero-weight triangles

Trivial 2(v − 2) +
(
v−2
3

)
Star v − 2 +

(
v−1
3

)
(a, b)-binary star

(
a+b
3

)
+
(
a
2

)
+
(
b
2

)
+ a+ b

Negative fan
(
v−2
3

)
+ 2(v − 2)

Octopus
(
v−3
3

)
+ 2
(
v−3
2

)
+ 2v − 5

(a, b)-cut a
(
b
2

)
+ b
(
a
2

)
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Proof. The counts below are based on graphical representation of the facet normals.

In the trivial facet normal, zero-weight triangles are v − 2 triangles through each

endpoint of the positive edge as well as the
(
v−2
3

)
triangles disjoint from the positive

edge.

In the star facet normal, zero-weight triangles are v − 2 triangles through the

negative edge and
(
v−1
3

)
triangles not through the “root” vertex.

In the binary star facet normal, zero-weight triangles are a + b triangles through

the negative edge,
(
a
2

)
+
(
b
2

)
triangles containing only one endpoint of the negative

edge and
(
a+b
3

)
triangles disjoint from the negative edge.

In the negative fan, let a and b denote the vertices that are incident to the v − 3

edges of weight one. Then there are
(
v−2
3

)
zero-weight triangles avoiding a and b and

2(v − 2) containing a or b.

In the octopus, there is one zero-weight triangle containing both negative edges,

2(v − 3) containing exactly one negative edge, 2
(
v−3
2

)
zero-weight triangles incident

with exactly one negative edge and
(
v−3
2

)
zero-weight triangles disjoint from the neg-

ative edges.

In the cut facet normal, the only zero-weight triangles are the triangles crossing

between the two parts.

Since any facet normal induces at least
(
v
2

)
− 1 zero-weight triangles, the above

values provide necessary lower bounds for the existence of the seed facet normal and

hence for the entire family of facet normals. For example, for v = 5, there is not

enough zero-weight triangles in trivial or star facet normals to span the space of the

necessary dimensions and the binary star is only a facet normal for v ≥ 8. This count

also proves that the (2, 4)-binary star is not a facet normal for v = 8.

We can use the above families and a built-in cone package in Sage to characterize
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the facet normals for v = 5, 6, 7, 8. Unfortunately, the package exhaustively enumer-

ates all facet normals with no regard for isomorphisms, and, since the number of

facet normals grows fast, it quickly reaches the limit of its computational efficiency.

However, we can compute the automorphism groups of the known families of facet

normals (through the lemmas above as well as by analyzing the output of the simplex

algorithm searching for facet normals) and hence determine all isomorphism types of

facet normals for small values of v as summarized in Tables 3.3 on the next page and

Table 3.4 on page 51 as well as Appendix A.2. The number of facet normals is now

Sequence A246427 in The On-Line Encyclopedia of Integer Sequences [37].

Recall from Section 2.3.1 that in metv the points adjacent (along the extreme

rays) to the point 2
3
(1, . . . , 1) correspond to the facet normals of Triv. This connection

with the metric cone provides another algorithm for enumeration of facet normals of

Triv and the numbers produced by Deza (see http://www.cas.mcmaster.ca/~deza/

metric.html) confirm our counts for v < 9.
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v Number of
facet normals

Isomorphism class Class counts

5 10 (2, 3)-cut
(
5
2

)
= 10

6 70 trivial
(
6
2

)
= 15

star 2
(
6
2

)
= 30

(2, 4)-cut
(
6
2

)
= 15

(3, 3)-cut
(
6
3

)
/2 = 10

Table 3.3: Classification of facets of Triv for v = 5, 6.
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v Number of
facet normals

Isomorphism classes Class counts

7 896 trivial
(
7
2

)
= 21

star 2
(
7
2

)
= 42

(2, 5)-cut
(
7
2

)
= 21

(3, 4)-cut
(
7
3

)
= 35

disjoint red edges 2
(
7
2

)(
5
2

)
= 420

red P2 3
(
7
3

)
= 105

C5+red edge 12
(
7
2

)
= 252

Table 3.4: Classification of facets of Triv for v = 7.
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3.2.2 Facets of Triv and triangle decompositions

In this section, we study facet normals of Triv as obstructions to rational triangle

decomposability of a fixed graph. We are interested in understanding the properties

that a fixed graph G must possess in order to not be rationally triangle decomposable.

Since the set of all facets of Triv represents all needed tests a graph of v vertices must

pass to be rationally triangle decomposable, we examine particular structures rejected

or not rejected by various facet normals. We shall say that a graph passes a facet

y if, for all permutations of that facet’s normal, its inner product with the graph’s

characteristic vector is non-negative.

Trivial facet normals do not reject any graphs. Star facet normals represent a

better test as they reject graphs with pendant vertices, that is vertices of degree 1.

As it is clear from the motivating example of Section 2.2, a graph passes a cut test

if it has at most twice as many “cross-over” edges as “inside” ones. Recall the Nash-

Williams’ density conjecture that minimum degree of 3/4v (and hence at least 3v2/8

edges) is enough for triangle decomposition. The following lemma highlights that this

edge density bound is also the bound at which the cut facets no longer represent an

obstruction to rational triangle decompositions.

Proposition 3.15. Any graph with more than 3v2/8 edges passes all the cut facet

normals.

Proof. Given a graph on v vertices, the cut facet normal with the most negative

coordinates is (bv
2
c, dv

2
e)-cut facet normal. Take the inner product of this cut facet

normal and the graph’s characteristic vector. There are at most v2/4 edges that will

receive weight of−1, leaving v2/8 edges to receive weight 2, resulting in a non-negative

total weight.

Using Sage, we run facet normal tests on all graphs with up to 8 vertices (see
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Appendix A.2) and every graph that fails to be rationally triangle decomposable fails

the (bv
2
c, dv

2
e)-cut facet normal (among others). It is therefore tempting to believe that

it is enough to pass cut facets to guarantee rational triangle decomposition. However,

if we drop the density requirement of Proposition 3.15, then we can construct examples

of graphs that pass all the cut tests but are not rational triangle decomposable.

Consider G = 2Kv/2 +M , where M is a matching and v is even (Figure 3.8).

Figure 3.8: Graph G = 2Kv/2 +M .

Kv/2 Kv/2

Clearly, G is not triangle decomposable, rationally or otherwise, since the edges

of the matching belong to no triangles. This graph is regular of degree v/2, has v2/4

edges and is not rejected by any cut facet. To see the latter, note that applying the

(bv
2
c, dv

2
e)-cut facet diagonally across the matching produces the most crossing (i.e.

negative) edges as shown in Figure 3.9.

Figure 3.9: Cut facet applied to G = 2Kv/2 +M .

Kv/4 Kv/4

Kv/4 Kv/4
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The total weight (that is the inner product of the facet with the characteristic

vector of the graph) is twice the number of inside edges minus the number of edges

crossing between parts. In this case, it amounts to

2 · 4
(
v/4

2

)
− 1 ·

(
2 ·
(v

4

)2
+ 2 · v

4

)
=
v2 − 12v

8
,

which is non-negative for all v ≥ 12. This graph is rejected not by cut facet normals,

but by a binary star applied as shown in Figure 3.10.

Figure 3.10: Binary star applied to G = 2Kv/2 +M .

Kv/2 Kv/2

The total weight here is −1 and therefore G is rejected by the binary star as

having a (rational) triangle decomposition.

Recall that in the rational decomposition case, the divisibility conditions necessary

for integral decomposition are no longer required; however, in order to be rationally

triangle decomposable, the given graph must have K3 as a subgraph (if fact, every

edge of G must belong to a copy of K3). Note here that if a graph G on v vertices is

triangle-free, then δ(G) < v
2
: simply consider two adjacent vertices in G and require

their neighbourhoods to be disjoint. Moreover, by Turán’s Theorem [42] we have that

the maximum number of edges in a triangle-free graph is bv2
4
c. Of course we require

not just one triangle, but many of them, so these conditions are weak, but they do

justify our search for good examples in specific graph families.
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Interestingly, rational triangle decomposability is not preserved under edge addi-

tion. In the integral case, this is proven in [39] with an addition of a 6-cycle (which

preserves K3-divisibility); in the rational case, addition of a single edge is enough.

Proposition 3.16. There exists an arbitrary large graph G with minimum degree

at least 2
3
|E(G)| such that G + e is not rationally triangle decomposable for some

additional edge e.

Proof. Let G be a complete tripartite graph on v vertices. Clearly, it is regular of

degree 2
3
v and it is rationally triangle decomposable. Now, add an edge e to one of the

parts. Towards contradiction, assume thatG+e has a rational triangle decomposition.

In this decomposition, edge e has to use a combination of the two types of triangles

illustrated in Figure 3.11.

Figure 3.11: Triangle decomposition of the complete tripartite graph.

Kv/3

Kv/3

e

Considering the graph G+ e without the contribution of these triangles leaves us

with a misbalanced tripartite graph. Every triangle in this graph uses three edges in

between the parts; however, there is no longer the same number of edges in between

each pair of parts. Therefore, G+ e cannot be rationally decomposed into triangles.
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The graph G + e constructed in the proof above, while not rationally triangle

decomposable, passes all the cut facets. The cut facet normal with the most crossing

edges has one Kv/3 as one part and the two other Kv/3 as the other part. Then the

total inherited weight is

2 ·
((v

3

)2
+ 1

)
− 1 ·

(
2
(v

3

)2)
= 2.

In fact, this graph passes all infinite families of facet normals identified in the previous

section (trivial, star, binary star, octopus and negative fan). Moreover, it is not hard

to persuade oneself that the facet normal that rejects this graph will have to be dense

and hence comes from one of yet to be studied complex families.

In view of Farkas’ Lemma (Theorem 2.22), we know that every hyperplane sep-

arates some vectors from being in the triangulation cone, which means that every

facet does reject some vectors that other facets do not reject. However, this need not

be the case here when the only vectors we consider are (0, 1)-characteristic vectors of

graphs. In other words, there might be a cone C wrapping Triv so closely that if a

graph passes facets of C, then it passed facets of Triv and hence is rationally triangle

decomposable.

Motivated by the above example and Proposition 3.15, we have a conjecture that

for all sufficiently dense graphs the triangular cut cone (that is, the cone generated

by all the cut facets) can replace the tests of the triangulation cone.

Conjecture 3.17. Suppose G is a graph on v vertices with δ(G) > 2
3
v. Then G

admits a rational triangle decomposition if and only if G passes all cut facets.
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3.3 Three-fold triple systems of full rank

In the sections before, we are interested in the dimension of the space spanned by

certain columns of W2,3(v). Here, we consider the inclusion matrices of designs (where

columns are indexed only by blocks of the design rather than all possible k-subsets)

and prove the existence of designs with full rank inclusion matrices. The contents of

this section appear in [22].

Definition 3.18 ([20]). Let D = (V,B) be an incidence structure with points V =

{x1, . . . , xv} and blocks B = {B1, . . . , Bb}. An incidence matrix N for D is a v × b

matrix defined by N(i, j) = 1 if xi is incident with Bj and N(i, j) = 0 otherwise. A

higher incidence matrix Nt for D is a
(
v
t

)
× b matrix with Nt(i, j) = 1 if and only if

the ith t-subset is contained in the jth k-subset. If D consists of all k-subsets of V ,

then Nt = Wt,k(v).

Recall the definition of a design (Definition 2.4). Here, we shall work with 2-

(v, 3, 3) designs, called three-fold triple systems and abbreviated by TS3(v). First of

all, we note the following:

Lemma 3.19. For any triple system TS3(v, λ), we have

r =
λ(v − 1)

2
and b =

λ

3

(
v

2

)
,

where r is the number of times any given point occurs within a block (replication

number) and b is the number of blocks.

Proof. Use Lemma 2.6 with k = 3.

A classical result in design theory, Fisher’s inequality, states that v ≤ b for any

design with k < v. Therefore, the v × b incidence matrix N of a design is often of
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full rank. On the other hand, by the above lemma, any three-fold triple system has

a property that its higher incidence matrix N2 is square since the number of blocks

of the design equals the number of 2-subsets on v points. Therefore, the problem of

determining when N2 is full rank is more interesting.

We can rule out certain types of designs that fail to have a full rank N2 for any

v. For example, any design that has repeated blocks also has repeated columns in N2

and therefore its N2 does not have full rank. Furthermore, full rank N2 designs have

to be trade-free, where a trade is defined as a pair of subsets of blocks that cover the

same 2-subsets of points, since the sum of columns corresponding to those subsets

will be the same. Designs containing trades include the so-called resolvable designs

with their parallel classes (such as the affine plane of order 3 in Example 2.5), which

do not have full rank N2.

Let us now consider the rank of N2 matrices for three-fold triple systems, starting

with the smallest case of v = 5.

Lemma 3.20. There exists only one TS3(5) (up to an isomorphism) and it has full

rank N2.

Proof. By Lemma 3.19, TS3(5) has 10 blocks and hence contains all possible triples

on 5 points. So in this case, N2 = W2,3(5) and it has full rank.

The following example illustrates how using this small three-fold triple system

together with a larger design produces a full rank square N2 design.

Example 3.21. Start with a 2-(v, 5, 1) design (they exist for all v ≡ 1, 5 (mod 20)

[2]) and replace all blocks with TS3(5); that is, replace each block with all possible

triples on those 5 points. The resulting larger structure is a TS3(v): every pair in the

original 2-(v, 5, 1) design occurs together in exactly once block and it occurs together

in exactly 3 blocks of the TS3(5). As for its N2, it is a block-diagonal matrix with
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W2,3(5) on the diagonal and zeros everywhere else:

N2 =



W2,3

W2,3

. . .

W2,3


Since W2,3(5) is a full rank square matrix, the resulting N2 is also full rank and square.

For v = 7 and v = 9, there are more non-isomorphic three-fold triple systems.

The following lemma is proved by using computer software to check the ranks of the

N2 of the non-isomorphic TS3(7) and the non-isomorphic TS3(9).

Lemma 3.22. There exists a unique TS3(7) and at least one TS3(9) with a full rank

square N2.

Proof. Of the 10 non-isomorphic TS3(7) designs, there is exactly one TS3(7) with full

rank N2:

{{0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 3}, {0, 2, 5}, {0, 3, 6}, {0, 4, 5},

{0, 4, 6}, {0, 5, 6}, {1, 2, 4}, {1, 2, 6}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5},

{1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}}.

The following is one of exactly 27 non-isomorphic TS3(9) with full rank N2:

{{0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 3}, {0, 2, 5}, {0, 3, 6}, {0, 4, 6}, {0, 4, 7}, {0, 5, 7},

{0, 5, 8}, {0, 6, 8}, {0, 7, 8}, {1, 2, 4}, {1, 2, 5}, {1, 3, 6}, {1, 3, 8}, {1, 4, 7}, {1, 5, 6},

{1, 5, 8}, {1, 6, 7}, {1, 7, 8}, {2, 3, 4}, {2, 3, 7}, {2, 4, 8}, {2, 5, 6}, {2, 6, 7}, {2, 6, 8},

{2, 7, 8}, {3, 4, 5}, {3, 4, 8}, {3, 5, 7}, {3, 5, 8}, {3, 6, 7}, {4, 5, 6}, {4, 5, 7}, {4, 6, 8}}.
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Now we can use the small three-fold triple systems as ingredients to create larger

full rank square N2 designs. However, we need the designs to put them into, so we

require some background and existence results from classical design theory.

Definition 3.23. Let K ⊂ N \ {0, 1} be a set of block sizes and let λ be a positive

integer. A pairwise balanced design PBD(v,K) is a set V of v elements together with

a collection B of k-subsets of V , where k ∈ K, such that every 2-subset of V occurs

in exactly one block of B.

This is one of the generalizations of a 2-design as we are now allowed blocks of

various pre-specified sizes. The necessary conditions for the existence of a PBD(v,K)

are, not surprisingly, the generalization of the necessary conditions for the existence

of a t-design as in equations (2.1) and (2.2).

Lemma 3.24 ([48]). The necessary conditions for the existence of a PBD(v,K) are

v − 1 = 0 (mod α(K)),

v(v − 1) = 0 (mod β(K)),

where α(K) = gcd{k − 1 : k ∈ K}, β(K) = gcd{k(k − 1) : k ∈ K}.

In [49], Wilson proves that the above necessary conditions are asymptotically

sufficient for the existence of a PBD(v,K). This can further be restated in terms of

the PBD-closure.

Definition 3.25. For a set K ⊂ {1, 2, . . .}, its PBD-closure is defined as B(K) =

{v : PBD(v,K) exists}. A set K such that B(K) = K is called PBD-closed.

For example, the necessary and sufficient conditions for Steiner triple systems to

exist now translate to B({3}) = {v : v ≡ 1, 3 (mod 6)}. The following theorem by
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Wilson ties it all together and provides an avenue for using PBD-closure to prove the

existence of designs.

Theorem 3.26 ([49]). If K is a PBD-closed set, then K is eventually periodic with

period β(K). That is, there exists a constant c(K) such that for every k ∈ K and

v ≥ c(K), we have {v : v ≡ k (mod β(K))} ⊂ K.

This theorem implies that to prove the existence of a certain set of designs, one

only needs a rich enough set of small examples and PBD-closure will imply the rest.

Theorem 3.27. Full rank square N2 designs exist for all odd v ≥ 181.

Proof. PBD-closure guarantees the existence of a PBD(v, {5, 7, 9}) for all odd v ≥

181 (see tables in [38]). Now, similar to the construction in Example 3.21, we can use

the full rank squareN2 three-fold triple systems on 5, 7 and 9 points from Lemmas 3.20

and 3.22 to replace the blocks of the given PBD(v, {5, 7, 9}). Then, the corresponding

N2 is a block-diagonal matrix consisting of ingredient full rank square N2 matrices of

the TS3(5), TS3(7) and TS3(9) and it is, therefore, itself full rank.

It is also interesting to consider a p-rank, that is a rank over Fp, of N2. In general,

if a matrix does not have a full rank in a field of characteristic zero, then it does not

have a full p-rank. However, full rank over rationals does not imply full p-rank.

Proposition 3.28. The 3-rank of N2 for a TS3(v) is at most
(
v
2

)
− 1 for all v ≥ 5.

Proof. Consider the matrix N2N
>
2 that records interactions between pairs of points

in the design. Since every 2-subset lies in exactly 3 blocks, the matrix N2N
>
2 has 3’s

on the diagonal and six ones in off-diagonal positions. Therefore, the matrix has a

constant row sum of nine. Hence, the all-ones vector is in the kernel of N2N
>
2 over

F3 and therefore N2 does not have a full 3-rank.
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Chapter 4

Association schemes and

perturbation matrices

In this chapter, we study sufficient conditions for rational triangle decomposition.

Recall that the conjectured density bound that guarantees rational triangle decom-

posability of a graph is ε < 1/4; that is, the conjecture states that if a graph is

missing at most 1/4 of all the edges at each vertex, it can still be rationally decom-

posed into triangles. The best bound on ε known to date is due to Yuster [54], who

uses probabilistic methods to show that ε < 1/90, 000 is sufficient for rational triangle

decomposability. In this chapter, we show that ε < 1/23 is sufficient. We do so by

examining the magnitude of the perturbation that we are allowed to perform on ev-

ery vertex of a complete graph and still keep it rationally triangle decomposable. We

explore the related matrices through the Johnson association scheme, which allows

us to derive accurate estimates.
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4.1 Motivation and notation

We are interested in studying how far a v-vertex graph G can be from Kv and

still remain rationally triangle decomposable. Before we define the notion of the

“difference” between G and Kv, we introduce the following matrices associated with

both graphs.

Definition 4.1. Let A denote the
(
v
2

)
×
(
v
2

)
matrix indexed by the edges of Kv such

that A(i, j) represents the number of triangles in Kv containing i ∪ j. Furthermore,

given a non-complete graph G of order |V | = v, let Â denote the matrix indexed by

the edges of a fixed graph G such that Â(i, j) represents the number of triangles in

G containing i ∪ j. Finally, the matrix A|G is the matrix A with rows and columns

corresponding to non-edges of G being deleted.

Note the immediate connection between the matrix A and the inclusion matrix

W2,3(v): we have that A = W2,3W
>
2,3. An interesting thing to note here is that since

the matrix A is full rank, so is the matrix W2,3.

From now on, let 1 denote the all-ones column vector of the necessary dimensions

understood from the context (it will be either of full dimension
(
v
2

)
or of dimension

|E(G)|). Define a fan of an edge e in a graph G to be the set of all triangles in G

that use the edge e as illustrated in Figure 4.1.

Figure 4.1: Fan of edge e.

e
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Then a non-negative solution to Ax0 = 1 corresponds to a rational decomposition

of a complete graph into fans, where the coordinates of x0 represent the weights

assigned to fans. A rational fan decomposition, in turn, implies a rational triangle

decomposition, where the weight of a triangle {x, y, z} is the sum of the weights of

the fans of edges {x, y}, {x, z} and {y, z}. In fact, given a row vector f ∈ R(V
2)

representing weights of fans, we can obtain the row vector x ∈ R(V
3) representing the

weights of triangles by x = fW . This is illustrated with a particular graph together

with both its rational fan and its rational triangle decomposition in Example 4.2.

However, since the matrix A has constant row sums of 3(v−2), the equation Ax0 =

1 always has a unique rational non-negative solution, so rational fan decomposition

of complete graphs is resolved. For a non-complete graph G, we consider the system

Âx̂ = 1 whose non-negative solution, if it exists, corresponds to a rational fan, and

hence triangle, decomposition of G. The general idea is that, for dense graphs, the

perturbation that transforms A into Â is small and hence the non-negative solution

to Âx̂ = 1 indeed exists. This will require showing that Â is non-singular and that

the corresponding x̂ is entrywise non-negative, which is done in Sections 4.3 and 4.4.

We index matrices A, Â, A|G first by edges and then non-edges of G. This gives

the following structure of the matrix A:

A =


A|G C1

C2 C3


.

Since we are interested in perturbations occurring between the matrices A, Â and

A|G, it is convenient to let B̂ = A|G − Â denote the perturbation matrix and let B

be defined as follows:
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B =


B̂ C1

0 C3 − (v − 2)I


=


A|G C1

C2 C3


︸ ︷︷ ︸

=A

−


Â 0

C2 (v − 2)I


︸ ︷︷ ︸

=A−B

.

For illustration purposes, let us consider one particular example.

Example 4.2. Suppose v = 6 and the graph G is nearly complete, namely G =

K6−{{5, 6}}. As Â is a perturbation of A|G, below bold entries in the A|G portion of

A indicate the entries that will be reduced by 1 in Â and hence determine the pattern

for B̂ (indices on rows and columns below represent unordered pairs):
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A =

12 13 14 15 16 23 24 25 26 34 35 36 45 46 56



12 4 1 1 1 1 1 1 1 1 0 0 0 0 0 0

13 1 4 1 1 1 1 0 0 0 1 1 1 0 0 0

14 1 1 4 1 1 0 1 0 0 1 0 0 1 1 0

15 1 1 1 4 1 0 0 1 0 0 1 0 1 0 1

16 1 1 1 1 4 0 0 0 1 0 0 1 0 1 1

23 1 1 0 0 0 4 1 1 1 1 1 1 0 0 0

24 1 0 1 0 0 1 4 1 1 1 0 0 1 1 0

25 1 0 0 1 0 1 1 4 1 0 1 0 1 0 1

26 1 0 0 0 1 1 1 1 4 0 0 1 0 1 1

34 0 1 1 0 0 1 1 0 0 4 1 1 1 1 0

35 0 1 0 1 0 1 0 1 0 1 4 1 1 0 1

36 0 1 0 0 1 1 0 0 1 1 1 4 0 1 1

45 0 0 1 1 0 0 1 1 0 1 1 0 4 1 1

46 0 0 1 0 1 0 1 0 1 1 0 1 1 4 1

56 0 0 0 1 1 0 0 1 1 0 1 1 1 1 4

The solution to the corresponding system Âx̂ = 1 is

x̂ =
1

36

( 12 13 14 15 16 23 24 25 26 34 35 36 45 46

2 2 2 5 5 2 2 5 5 2 5 5 5 5

)
The vector x̂ provides a fractional decomposition of G into fans, where the weights

of the fans in the rational decomposition are given by the entries of x̂. So here, for

instance, each triangle in the fan of {1, 2} receives weight 2/36 and each triangle

in the fan of {1, 6} receives weight 5/36. A rational decomposition of G into fans
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implies a rational decomposition of G into triangles, with each triangle receiving

weight equalling the sum of the weights of the fans supported by its edges. Therefore,

the following vector represents the weights of the triangles in the decomposition of G:

1

36

( 12
3

12
4

12
5

12
6

13
4

13
5

13
6

14
5

14
6

23
4

23
5

23
6

24
5

24
6

34
5

34
6

6 6 12 12 6 12 12 12 12 6 12 12 12 12 12 12

)

It is not hard to check that each edge will receive the total weight of 1. Take, for

instance, edge {1, 2}: it will get contributions from the triangles {1, 2, 3}, {1, 2, 4},

{1, 2, 5} and {1, 2, 6} for a total of (6 + 6 + 12 + 12)/36 = 1.

Observation 4.3. As illustrated above, a rational fan decomposition of a graph

implies a rational triangle decomposition. The converse, however, is not true. Out of

46 graphs on 8 vertices with minimum degree at least 5 (up to an isomorphism), 22

graphs pass the facets tests, meaning they are rationally triangle decomposable. Out

of those 22, only 14 graphs are rationally fan decomposable. Among those that are

rationally triangle but not rationally fan decomposable are 8-vertex graphs such as

the complement of a cycle on 6 vertices and the complement of a path on 6 vertices.

See Appendix A.2 for corresponding Sage code.

4.2 Properties of the matrix A and its inverse

In this section, we derive some useful properties of A and its inverse. From the

Johnson association scheme, we have the following result:

Proposition 4.4. The matrix A lies in the Bose-Mesner algebra with A = (v−2)A0+

A1.

Proof. By definition, matrix A counts triangles in Kv and matrices Ai from the John-
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son scheme record the edge interactions within the graph itself. Given any edge (or

two coinciding edges), there are v − 2 triangles containing it, which corresponds to

the coefficient of A0. Given any two incident edges, there is exactly one triangle con-

taining both of them corresponding to the coefficient of A1. Finally, given any two

disjoint edges, there are no triangles containing them both rendering no contribution

from A2.

The all-ones matrix J commutes with each Ai in the Johnson scheme (since J is

the sum of all the Ai) meaning that each Ai has constant column and row sum as

we calculate in the following proposition. For convenience, we shall use the following

norm notation throughout: let the infinity norm of a matrix be its maximum absolute

row sum, that is ‖A‖∞ = maxi
∑

j |aij|. Clearly, the infinity norm of a matrix A is

always non-negative and is equal to zero only if and only if A is the all-zero matrix.

Moreover, the infinity norm satisfies the triangle inequality and sub-multiplicativity

(for square matrices), that is ‖A+B‖∞ ≤ ‖A‖∞+‖B‖∞ and ‖AB‖∞ ≤ ‖A‖∞‖B‖∞.

Proposition 4.5. ‖A0‖∞ = 1, ‖A1‖∞ = 2(v − 2) and ‖A2‖∞ =
(
v−2
2

)
.

Proof. First consider the matrix A0. Since there is only one edge that intersects any

given edge in 2 points, we have that A0 = I.

For matrix A1, we record edges that intersect any given edge in exactly one point.

Disregarding the fixed edge itself, there are v − 2 edges incident with each of its

endpoints. Therefore, ‖A1‖∞ = 2(v − 2).

Finally, A2 records edges that are disjoint from a given edge and there are
(
v−2
2

)
of those. Hence, ‖A2‖∞ =

(
v−2
2

)
.

As an immediate consequence of the Propositions 4.4 and 4.5, we have:

Lemma 4.6. The matrix A is symmetric with constant row (column) sum of 3(v−2)

and diagonal entries of v − 2.
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The next natural thing is to write A in the basis of orthogonal idempotents of

Bose-Mesner algebra.

Proposition 4.7. We have:

A = 3(v − 2)E0 + 2(v − 3)E1 + (v − 4)E2.

Proof. Using Lemma 4.4 and Proposition 2.40, we get:

A = (v − 2)A0 + A1

= (v − 2)(p00E0 + p01E1 + p02E2) + p10E0 + p11E1 + p12E2

= (v − 2)(E0 + E1 + E2) + 2(v − 2)E0 + (v − 4)E1 − 2E2

= 3(v − 2)E0 + 2(v − 3)E1 + (v − 4)E2.

Corollary 4.8. The eigenvalues of A are 3(v − 2), 2(v − 3) and v − 4.

Since we are ultimately interested in solving the perturbed variation of the system

Ax0 = 1, we wish to examine the structure of A−1 and estimate its infinity norm.

Proposition 4.9. We have that A−1 = c0A0 + c1A1 + c2A2, where

c0 =
3v2 − 18v + 26

3(v − 2)(v − 3)(v − 4)
,

c1 = − 3v − 10

6(v − 2)(v − 3)(v − 4)
,

c2 =
2

3(v − 2)(v − 3)(v − 4)
.

So, asymptotically, c0 ∼
1

v
, c1 ∼ −

1

2v2
and c2 ∼

2

3v3
.
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Proof. First of all, since A lies in Bose-Mesner algebra, so does A−1, i.e. A−1 =

c0A0 + c1A1 + c2A2 or A−1 = c[A0 A1 A2]
> for some c = [c0 c1 c2], c0, c1, c2 ∈ R.

For convenience, write A = θ0E0 + θ1E1 + θ2E2, where θ = [θ0 θ1 θ2] is determined

by Proposition 4.7.

Then by Definition 2.36 and Proposition 2.37, we have:

A = θ[E0 E1 E2]
> = θP−1[A0 A1 A2]

>,

where P is the eigenvalue matrix as computed in Proposition 2.40. Then, since the

Ei are orthogonal idempotents, we have:

A−1 = [1/θ0 1/θ1 1/θ2][E0 E1 E2]
> = ([1/θ0 1/θ1 1/θ2]P

−1)[A0 A1 A2]
>.

We can now compute the coefficient vector c:

c = [1/θ0 1/θ1 1/θ2]P
−1

=

(
1

3(v − 2)

1

2(v − 3)

1

v − 4

)


1/
(
v
2

)
1/
(
v
2

)
1/
(
v
2

)
2

v

v − 4

v(v − 2)

v − 4

v(v − 2)

v − 3

v − 1
− v − 3

(v − 1)(v − 2)

2

(v − 1)(v − 2)


.

Completing the computations (see Appendix A.1), we get the expressions for the

ci as in the statement.

Corollary 4.10. Asymptotically, ‖A−1‖∞ ∼
7

3v
.
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Proof. Combining Propositions 4.5 and 4.9, we get:

‖A−1‖∞ ≤ |c0| · ‖A0‖∞ + |c1| · ‖A1‖∞ + |c2| · ‖A2‖∞

= |c0 · 1|+ |c1 · 2(v − 2)|+
∣∣∣∣c2 · (v − 2

2

)∣∣∣∣
=

7v2 − 39v + 52

3(v − 2)(v − 3)(v − 4)
∼ 7

3v
.

4.3 Perturbation matrix B and its properties

In this section, we derive bounds on the perturbation matrix B in terms of the

missing degree of the graph. Recall that a graph G is (1 − ε)-dense if δ(G) ≥ (1 −

ε)(v − 1), where δ(G) denotes the minimum degree of G.

Lemma 4.11. The infinity norm of the matrix B̂ satisfies ‖B̂‖∞ ≤ 4(v − δ(G)).

Proof. Fix one row of B̂ indexed by the edge e = {x, y}. Consider the diagonal

entry B̂(e, e) = A|G(e, e) − Â(e, e). Recall A|G(e, e) and Â(e, e) count the number

of triangles containing e in Kv and G, respectively. Therefore, B̂(e, e) counts the

number of vertices z such that {x, y, z} is not a triangle in G. The vertex x has

at most v − 2 − (δ(G) − 2) non-neighbours, similarly for the vertex y. Therefore

B̂(e, e) ≤ 2(v − δ(G)).

Consider the off-diagonal entries in the row indexed by e. The only entries affected

(reduced from 1 to 0) correspond to one of the two scenarios:
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x y

z

x y

z

Therefore, the non-diagonal entries also count the number of vertices z such that

{x, y, z} is not a triangle in G. Hence, the row sum of B̂ is calculated as follows:

∑
f∈G

B̂(e, f) ≤ 4(v − δ(G)).

Using the density notation, the above result translates to ‖B̂‖∞ ≤ 4vε.

Furthermore, we have:

Lemma 4.12. The infinity norm of the matrix B satisfies the bound ‖B‖∞ ≤ 6vε.

Proof. Similar to the proof of Lemma 4.11, we have that ‖C1‖∞ ≤ 2vε and ‖C3 −

(v − 2)I‖∞ ≤ 2vε. Then, together with the fact that ‖B̂‖∞ ≤ 4vε, we obtain the

result.

Before we proceed, recall the following classical result.

Theorem 4.13 ([27]). [Cauchy’s interlacing theorem] Let A be a real symmetric n×n

matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. Suppose that a symmetric matrix B

is obtained from A by removing row and column i for some i ∈ {1, . . . n}. Then

the eigenvalues of B, say µ1 ≤ µ2 ≤ . . . ≤ µn−1, satisfy the interlacing property

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ . . . ≤ µn−1 ≤ λn.

Lemma 4.14. If δ(G) > 3
4
v+ 1, then the corresponding matrix Â is positive definite

and hence non-singular.
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Proof. Invoking Lemma 4.11, the largest eigenvalue of B̂ is bounded above by

‖B̂‖2 ≤ ‖B̂‖∞ ≤ 4(v − δ(G)) < 4

(
1

4
v − 1

)
= v − 4 = λmin(A),

which, by Cauchy’s interlacing theorem, is bounded above by λmin(A|G). Since the

maximum eigenvalue of B̂ is strictly smaller than the smallest eigenvalue of A|G, we

have that all eigenvalues of Â = A|G−B̂ are positive. Therefore, Â is positive definite

and invertible.

Lemma 4.15. If δ(G) > 3
4
v+1, then the corresponding matrix A−B is non-singular.

Proof. Recall that

A−B =


Â 0

C2 (v − 2)I


.

By Lemma 4.14, matrix Â is non-singular and hence A−B has non-singular diagonal

blocks and is therefore itself nonsingular. In fact, we have that

(A−B)−1 =



Â−1 0

− 1
v−2C2Â

−1 1
v−2I


.

Since A1 = 3(v−2)1 and we will consider perturbations of this system, from now

on, to avoid cumbersome fractions, we consider the solutions to the matrix systems

where the right-hand side is a multiple of θ0 = 3(v− 2) as defined in Proposition 4.9.
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Lemma 4.16. The system Âx̂ = θ01 has a solution if and only if the system (A −

B)x = θ01 has a solution. Furthermore, if the solution to (A − B)x = θ01 is non-

negative, then the solution to Âx̂ = θ01 is also non-negative.

Proof. Given the form of A − B as above, the solution x̂ to Âx̂ = θ01 implies that

the system (A − B)x = θ01 has a solution of the form x = [x̂ y], where y =

3 · 1 − C2x̂/(v − 2). Moreover, if the system (A − B)x = θ01 has a non-negative

solution, it implies that the system Âx̂ = θ01 also has a non-negative solution.

By Lemma 4.14, we now know that the system Âx̂ = θ01 has a unique solution.

All that remains to show is that the corresponding x̂ is non-negative.

4.4 Non-negativity of the solution

We consider the system (A−B)x = θ01 as a perturbation of the system Ax0 = θ01,

where x0 = 1. For the first estimate on the density required for x̂ to be non-negative,

we will use the following result from linear algebra.

Lemma 4.17 ([9]). Let Ax = b and let δA and δb be perturbations of A and b,

respectively. If ‖A−1δA‖∞ < 1, then A + δA is nonsingular and there is a unique

solution x + δx to the equation (A+ δA)(x + δx) = b− δb where

‖δx‖∞
‖x‖∞

≤ ‖A‖∞‖A
−1‖∞

1− ‖A−1δA‖∞

(
‖δA‖∞
‖A‖∞

+
‖δb‖∞
‖b‖∞

)
.

By applying the above lemma to the system (A− B)x = θ01, we obtain the first

bound.

Theorem 4.18. The system Âx̂ = θ01 has a unique solution x̂ ≥ 0 for ε ≤ 1

28
.
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Proof. Consider the system (A − B)(1 − δx) = θ01. By Proposition 4.10, Lemma

4.12 and the submiltiplicativity of matrix norms, we have the following inequality:

‖A−1B‖∞ ≤ ‖A−1‖∞ · ‖B‖∞ ≤
7

3v
· 6vε = 14ε,

which is less than 1 (as required by Lemma 4.17) for ε < 1/14. Then a non-

negative solution x = 1−δx is implied by ‖δx‖∞ ≤ 1. By applying Lemma 4.17 with

δA = B, x = 1, b = 3(v − 2)1 and δb = 0 we have:

‖δx‖∞
‖1‖∞

≤ ‖A
−1‖∞‖B‖∞

1− ‖A−1B‖∞
≤

7
3v
· 6vε

1− 14ε
=

14ε

1− 14ε
,

which is at most 1 for ε ≤ 1

28
.

With a little more finesse and knowledge about the structure of A−1 and B within

the Johnson association scheme, we can improve the above bound.

Observation 4.19. Since B is a perturbation matrix of A, we can decompose it

within the structure of Bose-Mesner algebra as follows: B = B0 + B1 + B2, where

each Bi is supported by Ai in the sense that all non-zero entries of Bi are contained

in the non-zero entries of Ai, i = 0, 1, 2. Notice the slight change in notation here as

the coefficients of the Bi in this decomposition are all ones, which is not the case for

the decomposition of the matrix A into the Ai. Given the structure of B, we know

that 0 ≤ B0 ≤ 2vεA0 and B2 = 0. However, the structure of B1 is a little more

complicated, since the entries of it are not just scaled entries of A1, rather at most

2εv of ones in A1 (per row) remain in B1 and even fewer in its border. We shall use

this observation to sharpen our analysis.

Theorem 4.20. The system Âx̂ = θ01 has solution x̂ ≥ 0 for ε <
1

22.6
.
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Proof. By Lemma 4.15, matrix A−B is invertible, so consider the following:

(A−B)−1A = (I − A−1B)−1 =
∑
r≥0

(A−1B)r.

Therefore, we have: (A − B)−1 =
[∑

r≥0(A
−1B)r

]
A−1. Using Observation 4.19 and

Proposition 4.9, consider the following product:

A−1B = (c0A0 + c1A1 + c2A2)(B0 +B1)

= c0A0B0 + c1A1B0 + c2A2B0 + c0A0B1 + c1A1B1 + c2A2B1.

Recall from Propositions 4.5 and 4.9, we have: ‖A0‖∞ = 1, ‖A1‖∞ = 2(v − 2),

‖A2‖∞ =
(
v−2
2

)
and, asymptotically, c0 ∼

1

v
, c1 ∼ −

1

2v2
, c2 ∼

2

3v3
.

Term c0A0B0. Since B0 ≤ 2vεA0 entry-wise, we have A0B0 ≤ 2vεA0. Therefore,

‖c0A0B0‖∞ ≤
1

v
· 2vε = 2ε.

Term c1A1B0. We have A1B0 ≤ A1 · 2vεA0 ≤ 2vεA1 entry-wise and therefore

‖c1A1B0‖∞ ≤
∣∣∣∣− 1

2v2

∣∣∣∣ · 2vε · ‖A1‖∞ ≤ ε.

Term c2A2B0. Here, A2B0 ≤ A2 · 2vεA0 = 2vεA2. Hence

‖c2A2B0‖∞ ≤
2

3v3
· 2vε · ‖A2‖∞ ≤

2

3
ε.

Term c0A0B1. We have that A0B1 = B1. Here, recall that ‖B1‖∞ ≤ 4vε as we

have a contribution of 2vε coming from the off-diagonal entries of B̂ and 2vε coming
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from the border C1. We have:

‖c0A0B1‖∞ ≤
1

v
· 4vε = 4ε.

Term c1A1B1. Using submultiplicativity of the infinity norm, we get:

‖c1A1B1‖∞ ≤
∣∣∣∣− 1

2v2

∣∣∣∣ · ‖A1‖∞‖B1‖∞ ≤
1

2v2
· 2(v − 2) · 4vε ≤ 4ε.

Term c2A2B1. Similarly to the A1B1 term, we get:

‖c2A2B1‖∞ ≤
2

3v3
‖A2‖∞‖B1‖∞ ≤

2

3v3
·
(
v − 2

2

)
· 4vε ≤ 4

3
ε.

Furthermore, using the triangle inequality for infinity norms, we have:

‖A−1B‖∞ ≤ 2ε+ ε+
2

3
ε+ 4ε+ 4ε+

4

3
ε = 13ε.

Note that the terms involving c1 provide the only negative contribution to A−1B,

which is at most 5ε. Now, ignoring the positive contribution from ‖A−1B‖∞ in the

first term, we have:

x = (A−B)−1 · θ01 = 1 + (A−1B) · 1 +

(∑
r≥2

(A−1B)r

)
· 1

≥

(
1− 5ε− (13ε)2

1− 13ε

)
· 1 ≥ 0.

Solving the last inequality, we get x ≥ 0 when ε <

√
185− 9

104
. 1/22.6.

Interpreting the solution to the above system as a rational fan and then triangle

decomposition, we immediately obtain the following results:
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Corollary 4.21. Any (1−ε)-dense graph G has a rational fan decomposition provided

that ε <
1

23
.

Corollary 4.22. Any (1 − ε)-dense graph G has a rational triangle decomposition

provided that ε <
1

23
.

As mentioned in Observation 4.3, a rational triangle decomposition does not imply

a rational fan decomposition and hence the above bound for the latter is probably

stronger than it needs to be.



79

Chapter 5

Applications of rational graph

decompositions

Rational graph decompositions have several applications that are quite different

from those of integral graph decompositions and are interesting in their own right. In

this chapter, we highlight the use of rational graph decompositions in the statistical

design of experiments. We prove the existence of certain types of statistical exper-

imental designs for a large enough number of points. Our bound on the number of

points required for the existence of these designs is worse than the bound in [16];

however, our method provides an easy and fast way of generating these statistical

designs even below the sufficiency threshold.

Furthermore, rational decompositions (together with signed decompositions) pro-

vide one key step in a large index embedding theorem for partial designs and, with

our improved bound on rational triangle decompositions, we prove that it is possible

to complete a partial 2-(v, 3, 1) design with certain constraints.
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5.1 Balanced sampling plans

In statistical studies, particularly in survey methodology, setting up a system

to obtain a random yet suitable sample is an important consideration. Depending

on the nature of the experiment, it might not be desirable for each possible subset

of the population to occur as a sample with equal probability. Since resources are

usually limited, researchers have to specify certain constraints on their samples while

keeping them random and well distributed. For example, in an environmental setting,

neighbouring units (of land) provide similar information and therefore should be

avoided in any sample. This leads to a study of sampling avoiding adjacent units, the

focus of this section.

The construction of sampling plans avoiding adjacent units was first proposed

in 1988 [29, 30]. While in some situations there exists a natural ordering of units

(whether in time or space), in general the notion of adjacency depends on the context

and can be adjusted as needed. Note here that this ordering can be linear, when the

last and first unit are not adjacent, or cyclic, when they are. We will generally work

with the one-dimensional version of the latter situation.

Let us now define the terms more rigorously.

Definition 5.1 ([16, 29]). Let X be a population of size N . Then the sampling plan

is defined as

{(si, pi) : i = 1, 2, . . . t},

where the si are k-subsets of units and pi > 0 is the probability of selecting the subset

si.

Clearly,
∑t

i=1 pi = 1.

Definition 5.2 ([16, 29]). The first-order inclusion probability πx is the probability
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of selecting a particular unit x ∈ X. The second-order inclusion probability πxy,

x, y ∈ X is the probability of selecting a sample containing both x and y.

In the situations discussed above, we want first-order probabilities to be con-

stant over all x ∈ X giving every unit equal probability of being considered, while

second-order probabilities will have to vanish on neighbouring units and be constant

otherwise.

Definition 5.3 ([16]). Identify the population X with integers modulo N and declare

two units x and y adjacent if |x − y| ≤ m for some fixed positive integer m. A

circular balanced sampling plan avoiding adjacent units, or simply a BSA(N, k,m),

is a sampling plan such that the second-order inclusion probabilities are zero for all

adjacent pairs and constant, say λ, for all non-adjacent pairs.

Example 5.4. Here is an example of a BSA(9, 3, 1) that can be obtained by taking

translates of the 3-subset {0, 2, 5} modulo 9:

{0, 2, 5}, {1, 3, 6}, {2, 4, 7}, {3, 5, 8}, {4, 6, 0}, {5, 7, 1}, {6, 8, 2}, {7, 0, 3}, {8, 1, 4}.

Here, all first-order inclusion probabilities are equal to 1
3
, while the second-order

inclusion probabilities are 1
9

for non-adjacent units and 0 for adjacent ones. This

revisits our first example of a graph decomposition, Example 1.2.

Interestingly, BSA(N, k,m) are equivalent to rational graph decompositions of

certain classes of graphs.

Definition 5.5. An undirected simple graph G = (ZN , E) is a circulant if {u, v} ∈ E

implies {u+ x, v + x} ∈ E for all x ∈ V , where arithmetic is done modulo N .

Examples of circulant graphs include complete graphs and cycles. An equivalent

definition of a circulant graph is as follows:
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Definition 5.6. Let D ⊂ ZN \ {0} be a set nonzero allowable distances closed under

subtraction. An undirected simple graph G = (ZN , E) is circulant if {u, v} ∈ E if

and only if u− v ∈ D.

For a fixed set D = {±(m + 1),±(m + 2), . . . ,±bN/2c} of distances, denote the

circulant graph associated with these distances by G(N,m). With the requirement

that non-adjacent units appear together in a constant number of samples, say λ,

the existence of BSA(N, k,m) is equivalent to an integral decomposition of λ-fold

G(N,m) into copies of Kk or a fractional decomposition of a simple G(N,m) into

copies of Kk. In the fractional decomposition, the rational weights of k-subsets cor-

respond to the probability of that sample being selected. With these connections in

mind, we will concern ourselves with the case of BSA(N, 3,m).

Example 5.7. The BSA(9, 3, 1) from Example 5.4 can be obtained as a triangle

(integral) decomposition of G(9, 1) as illustrated in Figure 1.1 on page 2.

Necessary lower bounds and existence results for certain values of parameters

(particularly for small values of m and k) have been previously studied in numer-

ous settings, including design theory since BSA(N, k,m) is equivalent to a so-called

polygonal design. Here we cite the relevant cases.

Proposition 5.8 ([40]). Suppose there exists a BSA(N, k,m). If k ≥ 3, then N ≥

(2m+ 1)k.

On the asymptotic side, in [16], it is proven (via a linear algebraic and combina-

torial construction) that BSA(N, k,m) exist for all k ≥ 2, m ≥ 1 and sufficiently

large N . In the case of k = 3, they require N > 12m + 7. We can provide a similar

asymptotic existence of BSA(N, 3,m), albeit with a worse bound on N . Using Corol-

lary 4.21 on rational triangle graph decompositions, we obtain the following existence

result.
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Proposition 5.9. BSA(N, 3,m) exist for all N > 45.2m+ 1.

Proof. Given a graph G on N vertices with minimum degree δ(G) ≥ (1− ε)(N − 1),

Corollary 4.21 guarantees a rational triangle decomposition of G for ε > 1/22.6. The

circulant graph G(N,m) is regular of degree N − 1− 2m and hence we only need to

find a suitable lower bound for N . We have:

N − 1− 2m > (1− 1/22.6)(N − 1) ⇐⇒ N > 45.2m+ 1.

Note that Corollary 4.21 and hence Proposition 5.9 guarantee the existence of

BSA(N, 3,m) for large values of N , but it does not rule out their existence for

smaller values of N . In fact, the method developed in Chapter 4 provides the means of

constructing BSA(N, 3,m): construct the matrix Â corresponding to some circulant

graph G(N,m) and solve the matrix system Âx̂ = 1. This allows us to create balanced

sampling plans avoiding adjacent units for smaller values of N than those guaranteed

by Proposition 5.9.

Example 5.10. Rational triangle graph decompositions give solutions for sampling

plans as small as BSA(11, 3, 1) with the triples and probabilities of their as shown in

Table 5.1 on the following page.
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Table 5.1: Example of BSA(11, 3, 1).

Probability Triple

5/22 {0, 3, 7}, {0, 4, 7}, {0, 4, 8}, {1, 4, 8}, {1, 5, 8}, {1, 5, 9},

{3, 6, 10}, {3, 7, 10}, {2, 5, 9}, {2, 6, 9}, {2, 6, 10}

7/33 {0, 3, 6}, {0, 3, 8}, {0, 5, 8}, {1, 4, 7}, {1, 4, 9}, {1, 6, 9},

{2, 5, 8}, {2, 5, 10}, {2, 7, 10}, {3, 6, 9}, {4, 7, 10}

7/66 {0, 2, 4}, {0, 2, 9}, {0, 7, 9}, {1, 3, 5}, {1, 3, 10}, {1, 8, 10},

{2, 4, 6}, {3, 5, 7}, {4, 6, 8}, {5, 7, 9},{6, 8, 10}

29/132 {0, 2, 6}, {0, 2, 7}, {0, 4, 6}, {0, 4, 9}, {0, 5, 7}, {0, 5, 9},

{1, 3, 7}, {1, 3, 8}, {1, 5, 7}, {1, 5, 10}, {1, 6, 8}, {1, 6, 10},

{2, 4, 8}, {2, 4, 9}, {2, 6, 8}, {2, 7, 9}, {3, 5, 9}, {3, 5, 10},

{3, 7, 9}, {3, 8, 10}, {4, 6, 10}, {4, 8, 10}

23/132 {1, 7, 9}, {1, 7, 10}, {1, 3, 6}, {1, 3, 9}, {0, 6, 8}, {0, 6, 9},

{0, 2, 8}, {0, 3, 5}, {0, 3, 9}, {0, 2, 5}, {1, 4, 6}, {1, 4, 10},

{2, 4, 7}, {2, 4, 10}, {2, 5, 7}, {2, 8, 10}, {3, 5, 8}, {3, 6, 8},

{4, 6, 9}, {4, 7, 9}, {5, 7, 10}, {5, 8, 10}

5.2 Large index embeddings of partial designs

Given a problem of integral graph decompositions, several relaxations of the prob-

lem arise. One of them is rational graph decomposition, equivalent to an integral

decomposition of the λ-fold version of the same graph (that is a graph where each

edge occurs λ times). Another one is signed graph decomposition, where negative

edge-weights are allowed. By combining these two variations, we can obtain certain

results for the integral case.

In this section, we consider the problem of completing partial designs. A partial

t-(v, k, λ) design is a set of v elements (points) with a collection of k-subsets (blocks)
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such that every t-subset of the point set is contained in at most λ blocks. A natural

question arises of when a given partial t-(v, k, λ) design can be completed or embedded

into some t-(w, k, λ) design, where w ≥ v and the blocks of the partial design are

contained within the blocks of the t-(w, k, λ) design. For λ = 1, this question is

hard even for t = 2. It has been recently settled for Steiner triple systems [8];

other full results are also known for various combinations of small values of t and k.

The solutions range from various constructions, many coming from finite fields, to

asymptotic and probabilistic asymptotic results.

Here, we showcase the use of rational decompositions for embedding a partial

t-(v, k, 1) design into a t-(v, k, λ) design. The idea is as follows: given a partial

design P , first obtain a rational decomposition of its leave L, that is the set of

all t-subsets that do not occur together in any block. Then, consider the rational

weights of all the blocks and take an appropriate multiple of this decomposition by

taking the least common multiple of all rational weights therefore transforming a

rational decomposition of a λ = 1 design into an integral decomposition of a higher

index design. Next, use a signed decomposition to adjust that index to the desired

value. Finally, by taking the corresponding number of copies of P itself, obtain the

embedding of P into a design with a higher index. The general case is considered

in [21]; we will consider the particular case of t = 2 and k = 3 for which we have

improved bounds for such a construction.

Recall that for a fixed graph G, we let the 1 ×
(|G|

2

)
vector 1G denote the char-

acteristic vector of G. Then, given the (0, 1)-inclusion matrix W2,3, a decomposition

of G into triangles is equivalent to a (0, 1) solution x to W2,3x = 1G. We will use

Corollary 4.21 for the existence of rational triangle decompositions and the following

modified result by Wilson for the existence of signed decompositions:

Lemma 5.11 ([21, 50]). Given positive integers t ≤ k and v ≥ t + k, the necessary
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and sufficient conditions for the existence of an integral solution x ∈ Z(v
k) of Wt,kx = f

are

Wi,tf ≡ 0 (mod

(
k − i
t− i

)
)

for each i = 0, . . . , t.

Theorem 5.12. Let P be a partial 2-(v, 3, 1) design where every point belongs to at

most 1
46

(v − 1) blocks. Then for any large enough Λ satisfying necessary conditions

for existence of a 2-design (equations (2.1) and (2.2)), there exists a 2-(v, 3,Λ) design

containing Λ copies of P .

Proof. Let L be the graph representing the leave of P , that is the 2-subsets (edges)

that do not occur together in any triangle (block) of P . First note that any Λ can

be written as Λ = m · λ+ λ0, where λ0 ≤ λ. We will use the rational decompositions

to construct decomposition of index λ (and hence any multiple of it) and signed

decompositions to adjust it by index λ0, therefore obtaining all possible large enough

values.

Since L has minimum degree at least 22
23

(v − 1), by Corollary 4.21 it has a ratio-

nal triangle decomposition. Therefore, the system W2,3x = λ1L has a non-negative

solution x for some λ.

Next, by Lemma 5.11, the system W2,3x0 = λ01L has an integral solution x0.

While x0 can have negative entries, for a large enough multiple m, the vector x∗ =

mx + x0 is entry-wise non-negative. Then we have:

W2,3x
∗ = W2,3mx +W2,3x0 = mλ1L + λ01L = Λ1L. (5.1)

This is equivalent to an integral non-negative decomposition of the leave L of

index Λ and, together with taking Λ copies of P itself, we have the embedding of P

into a design with index Λ.
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Chapter 6

Further questions and open

problems

In this chapter, we briefly summarize the results of Chapters 3 and 4, pose several

questions and highlight several possible future directions in the study of rational

triangle decompositions.

6.1 Necessary conditions

6.1.1 Facet enumeration and structure

In this thesis, we have studied necessary conditions for triangle decomposition by

considering facets of the triangulation cone. In Chapter 3, we identified several infinite

families of facets, which has allowed us to better understand certain obstructions when

it comes to triangle decomposability. We also classified and enumerated the facets

for up to v = 8. Since knowing the full set of facets on v vertices allows us to check

all v-vertex graphs for their triangle decomposability (which is done for v = 8 in

Appendix A.2), it is desirable to extend this result for higher values of v.
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Problem 6.1. Enumerate and identify the isomorphism classes for facets of Triv for

v ≥ 9.

Moreover, due to the connection between the facets of Triv and the vertices of

metv, the enumeration of isomorphism classes is of interest in the study of metric

polytopes (the current count due to Deza also stops at v = 8). Moreover, of interest

would be a closer connection between the cut cone Cutv and the cone generated by

cut facets of W2,3(v).

As the computational data shows, the number of isomorphism classes of facets

grows very fast, so classifying or enumerating facets for large values of v appears to

be hard. However, an asymptotic result may be possible. Recall that Lemma 3.5

provides a rough bound for the number of facets of Triv of order 2v
3
. Recall also

that in metv the points adjacent (along the extreme rays) to the point 2
3
(1, . . . , 1)

correspond to the facet normals of Triv. The best known applicable upper bound is

the upper bound on the number of extreme rays of Metv or, alternatively, the size of

the neighbourhood of the point (0, . . . , 0) is given by 22.72v2 [23]. A conjecture due

to Laurent and Poljak states that any vertex of the metric polytope is adjacent to a

cut, in which case the size of the neighbourhood of 2
3
(1, . . . , 1) is bounded above by

22.72v2 · 2v−1, which motivates the following problem:

Problem 6.2. Prove that the number of facet of Triv or, alternatively, the number

of vertices in metv adjacent to the point 2
3
(1, . . . , 1) is at most cv

2
for some constant

c ∈ R.

Similarly, we can consider the problem on the bound for the number of isomor-

phism classes of facets for Triv.

Enumeration aside, by studying the structural properties of facets, we get closer to

understanding families of important obstructions to triangle graph decompositions.
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Some important questions remain to be investigated. Proposition 3.11 is the first

result in examining the structure of the negative subgraph as it classifies all facets with

exactly one negative edge. This result also shows that the structure of the negative

subgraph does not uniquely define a facet. With two negative edges, two negative

subgraphs are possible: negative edges are adjacent or negative edges are disjoint

and we see both of the possibilities with the existence of negative fan and octopus.

However, without proof, we cannot guarantee that those are the only two structures

with two negative edges. With three negative edges, there are more structures still

(see Appendix B), but not all interactions between the negative edges are possible:

clearly we cannot have an all-negative triangle. This raises the following question.

Question 6.3. What are (some of) the impossible negative subgraphs in a facet of

Triv?

Another possible direction is to look at the magnitude of the coordinates in facet

normals. Recall that we consider facets in their standard form, that is when all the

entries are integers and their greatest common divisor is 1. Then, for example, in any

facet with no zero entries, the absolute value of the most negative weight can be at

most the sum of the two most positive weights. This fact, however, does not allow us

to estimate the largest or smallest possible entry in a facet or the ratio between the

two.

Problem 6.4. Find an upper and a lower bound on the magnitude of the entries of

standardized facets of Triv.

6.1.2 Structure of the W matrix

There are many directions that can be taken when continuing the study of the

cone of the W matrix and the matrix itself. One interesting approach is to decompose
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the support of a vector y not directly onto W , but onto EiW (i = 0, 1, 2), where the

Ei are orthogonal idempotents of the Bose-Mesner algebra of the Johnson scheme.

Consider the following:

yW = yIW = y(E0 + E1 + E2)W = yE0W + yE1W + yE2W ≥ 0.

Question 6.5. Given a supporting vector y of W , does it support the Ei? Which of

the terms yEiW are non-negative?

Another approach is to consider a singular value decomposition of W , a factor-

ization of the matrix as follows: W = UΣV >, where U consists of eigenvectors of

WW>, V consists of eigenvectors of W>W and Σ is a diagonal matrix contain-

ing non-negative real numbers on the diagonal. Consider yW = yUΣV > and let

z = yUΣ, then yW = zV >. Therefore, y being a supporting vector of W implies

that z is a supporting vector of V >, so the question is whether we can describe sup-

porting vectors or facets of V >. What supporting vector or facets of V > have zeros

in the last
(
v
3

)
−
(
v
2

)
positions? By a more careful analysis, it might be possible to

study the facets of W by studying facets of V >.

6.1.3 Structure of the zero hypergraph

Let us start with some definitions. A hypergraph is a generalization of a graph,

where edges (also called hyperedges) may connect more than two vertices. A hyper-

graph is said to be k-uniform if all of its hyperedges have size k. Then regular graphs,

that is graphs where all the vertices have the same degree, are 2-uniform hypergraphs.

A hypergraph is k-chromatic if its vertex set can be partitioned into k classes such

that no edge is a subset of any of them; further, a graph is critically k-chromatic if

it is k-chromatic and a deletion of any edge decreases the chromatic number.
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We can consider facets in the setting of hypergraphs: given a facet y, define the

zero hypergraph of y to be a 3-uniform hypergraph whose edges are zero-weight trian-

gles in y. In a cut facet, for example, the zero hypergraph is bipartite and 2-chromatic.

It would be interesting to investigate the properties of the zero hypergraphs of various

facets.

Consider the incidence matrix for a (hyper)graph: let Bk−1(H) be the incidence

matrix of (k − 1)-subsets of V versus the edges of H. In Section 3.3, we exam-

ined higher incidence matrices of certain designs. Here, some interesting results on

incidence matrices exist for both ordinary graphs and hypergraphs.

Theorem 6.6 ([43]). The rows of the incidence matrix of a graph are linearly inde-

pendent over the reals if and only if no component is bipartite.

Lemma 6.7 ([33]). If H is a critically 3-chromatic k-uniform hypergraph, then the

columns of Bk−1(H) are linearly independent.

Recall that the set of all zero-weight triangles in a facet spans the space of dimen-

sion
(
v
2

)
− 1 and it is a maximally non-spanning structure since the addition of an

extra zero-weight triangle implies the spanning of all the edges. One could look for an

analogue of the above lemma that applies to critically non-spanning hypergraphs. It

would also be interesting to see whether there exists a connection between critically

3-chromatic hypergraphs and zero hypergraphs of certain facets.

6.2 Sufficient conditions

In Chapter 4, we considered sufficient conditions for rational triangle decomposi-

tion and improved the bound on the density threshold to e < 1/22. Our analysis can

be potentially sharpened in several places.
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Question 6.8. Can we use the non negativity of A−B to estimate ‖(A−1B)k‖∞ for

k > 1?

Question 6.9. Is there a proof of Theorem 4.20 that avoids using a series approxi-

mation of (I − A−1B)−1?

Now, Conjecture 1.11 on the 3
4

density still stands. However, an interesting ques-

tion to consider is whether the requirement on the minimum degree alone is too strict

and can be modified to include an average degree.

Question 6.10. Given a graph G with minimum degree at least 1
6
v and an average

degree at least 3
4
v, does G have to be K3-decomposable?

The minimum degree bound of 1
6
v is proven to be necessary via a counterexample

[34].

When it comes to generalizations, can a similar technique be applied to consider

rational decompositions of graphs into subgraphs other than triangles? Finally, the

decomposition question can also be considered for a more general setting of hyper-

graphs.
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Appendix A

Sage code

In this Appendix, we include computer code (in Sage software) used for several

computations in this thesis.

Appendix A.1 includes computations corresponding to association schemes; specif-

ically, it computes the eigenvalue matrix P for the Johnson scheme with two classes

(Proposition 2.40), the coefficients of matrix A−1 (the inverse of the matrix recording

edge interactions in Kv) in the Bose-Mesner algebra and its infinity norm (Proposition

4.9).

The first part of the code in Appendix A.2 uses facets on 8 vertices to check all

8-vertex graphs with minimum degree at least 4 for rational triangle decomposability.

We do so by first using a built-in graphs package to create a collection of all graphs

on 8 vertices of minimum degree 4. Then for each graph G in this collection, we

create a matrix where each row represents a permutation of the characteristic vector

of G. We then multiply this matrix by each facet on 8 vertices and output facets that

produce negative entries in the product, that is those that reject G, if any. In the

process, we also record which graphs are rational triangle decomposable (passed84)

and which ones are not (rejects84).
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The second part of the code in Appendix A.2 checks which 8-vertex graphs with

minimum degree at least 5 are rationally triangle decomposable but not fan decom-

posable. Here, we also first build the collection of graphs under consideration and,

by running these graphs against the facets on 8 vertices, create a list of graphs that

are rational triangle decomposable (passed85). Then, for each graph that passed all

facet tests, we construct the matrix Â, check its rank and output the result: if it is

of full rank, then the corresponding graph has a fan-decomposition, otherwise it does

not.
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A.1 Code for association schemes

sage: v,k,r = var(’v,k,r’); R = PolynomialRing(QQ, ’v’)

def p(i,j):

...s=sum((-1)^(i-r)*binomial(k-r,i-r)*

binomial(v-k+r-j,r)*binomial(k-j,r),r,0,i)

...return s

sage: P=matrix(R,3,3,lambda i,j:p(i,j).substitute(k=2));

sage: print P.str()

[ 1 1 1]

[ 2*v - 4 v - 4 -2]

[1/2*v^2 - 5/2*v + 3 -v + 3 1]

sage: print P.inverse().simplify_rational().str()

[ 2/(v^2 - v) 2/(v^2 - v) 2/(v^2 - v)]

[ 2/v (v - 4)/(v^2 - 2*v) -4/(v^2 - 2*v)]

[ (v - 3)/(v - 1) -(v - 3)/(v^2 - 3*v + 2) 2/(v^2 - 3*v + 2)]

sage: theta=matrix([[v-2,1,0]])*P; theta

[3*v - 6 2*v - 6 v - 4]

sage: Pi=P.inverse();

sage: coeff=matrix([1/theta[0,0], 1/theta[0,1], 1/theta[0,2]])*Pi

sage: c0=coeff[0,0].simplify_rational().factor(); c0
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1/3*(3*v^2 - 18*v + 26)/((v - 2)*(v - 3)*(v - 4))

sage: c1=coeff[0,1].simplify_rational().factor(); c1

-1/6*(3*v - 10)/((v - 2)*(v - 3)*(v - 4))

sage: c2=coeff[0,2].simplify_rational().factor(); c2

2/3/((v - 2)*(v - 3)*(v - 4))

sage: Ainv=(c0-c1*2*(v-2)+c2*binomial(v-2,2)).simplify_rational();

sage: Ainv

1/3*(7*v^2 - 39*v + 52)/((v - 2)*(v - 3)*(v - 4))

A.2 Code for facets tests on dense 8-vertex graphs

sage: n=8; T=[[i,j] for j in range(n) for i in range(j)]

sage: def permuted_char_vector(g,p):

... ans=[0 for t in T]

... for edge in g.edges():

... for i in range(len(T)):

... if [p[edge[0]], p[edge[1]]] == T[i] or

[p[edge[1]], p[edge[0]]] == T[i]:

... ans[i] = 1

... break

... return ans
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sage: def densegraphs(n,i):

... G=[]

... for g in graphs.nauty_geng(n):

... if min(g.degree_sequence()) > i:

... G.append(g)

... return G

sage: perms=Permutations([0..n-1])

sage: D=densegraphs(8,3); rejects84=[]; passed84=[];

sage: for i in range(len(D)):

... gperms=[];

... rejecters=[];

... for p in perms:

... gperms.append(permuted_char_vector(D[i],p));

... Aperms=matrix(gperms);

... ind=0;

... for j in range(len(f8)):

... b=Aperms*(matrix([f8[j]]).transpose());

... for k in range(len(gperms)):

... if b[k][0] < 0:

... ind=1;

... rejecters.append(j)

... break
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... if ind==0:

... passed84.append(D[i])

... if ind==1:

... print ’Graph’,i,’is rejected by facets’, rejecters

... rejects84.append(D[i])

Graph 0 is rejected by facets [0, 3, 5, 6]

Graph 1 is rejected by facets [0, 1, 3, 5, 6, 11, 16]

Graph 2 is rejected by facets [0, 1, 3, 5, 6, 16]

Output truncated

sage: #similarly to above, build rejects85 and passes85

sage: len(densegraphs(8,4)); len(rejects85); len(passed85);

46

24

22

sage: def edges(g):

... edges=[];

... for i in range(len(g.edges())):

... edges.append([g.edges()[i][0],g.edges()[i][1]])

... return edges

...

sage: def Ahat_values(x,y):

... k=0; z=Set(x).union(Set(y))
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... for i in range(len(triangles)):

... if z.issubset(Set(triangles[i])):

... k=k+1

... return k

sage: D=passed85;

... for ii in range(len(D)):

... triangles=[]; T=edges(D[ii]);

... Ts=[Set(T[i]) for i in range(len(T))];

... Adj=matrix(ZZ,n,n,lambda i,j:Set([i,j]) in Set(Ts));

... for i in range(n):

... for j in [i+1..n-1]:

... if Adj[i,j]==1:

... for k in[j+1..n-1]:

... if Adj[i,k]==1 and Adj[j,k]==1:

... triangles.append([i,j,k])

... Ahat=matrix(ZZ,len(T),len(T),lambda

i,j:Ahat_values(Set(T[i]), Set(T[j])));

... Y = vector([1 for i in range(len(T))]);

... if (Ahat.augment(Y)).rank() <= Ahat.rank():

... X = Ahat.solve_right(Y);

... for j in range(len(X)):

... ind=0;

... if X[j]<0:

... ind=1;

... print ’Graph’, ii,’is not fan-decomposable’
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... break

... else:

... print ’Graph’, ii, ’is not fan-decomposable at all’

Graph 0 is not fan-decomposable

Graph 5 is not fan-decomposable

Graph 7 is not fan-decomposable

Graph 8 is not fan-decomposable

Graph 10 is not fan-decomposable

Graph 13 is not fan-decomposable

Graph 15 is not fan-decomposable

Graph 16 is not fan-decomposable
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Appendix B

Facet normals of Triv for v = 8

In this Appendix, we present the 19 families of facet normals of Triv for v = 8.

In the table below, they are represented by their characteristic vectors indexed in

colexicographical ordering of the pairs. We label all the known families and note

several new seeds that clearly extend for larger values of v, such as the two structures

in Figure B.1 that arise for v = 8.

Figure B.1: Facet normals for v = 8 with 3 negative edges.

1

−1

2

−1

1

Moreover, in the facets with 3 negative edges, we see various interactions between

negative edges. In particular, in Figure B.2 on the next page, we can once again see

that the structure of the negative subgraph does not uniquely determine the facet:

For v = 9, the number of facets is over 130 and the currently computed list can
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Figure B.2: Facet normals for v = 8 with the same negative subgraph.

1

−1

1

−1

be found at http://www.math.uvic.ca/~dukes/facets-tri9.txt.
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