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ABSTRACT

An arms-race exists between malware authors and system defenders in which

defenders develop new detection approaches only to have the malware authors develop

new techniques to bypass them. This motivates the need for a formal framework to

jointly reason about malware and its detection. This dissertation presents such a

formal framework termed the extended Maurer model (EMM) and then applies this

framework to develop a game-theoretic model of the malware authors versus system

defenders confrontation.

To be inclusive of modern computers and networks, the EMM has been developed

by extending to the existing Maurer computer model, a Turing-reducible model of

computer operations. The basic components of the Maurer model have been extended
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to incorporate the necessary structures to enable the modeling of programs, concur-

rency, multiple processors, and networks. In particular, we show that the proposed

EMM remains a Turing equivalent model which is able to model modern computers,

computer networks, as well as complex programs such as modern virtual machines

and web browsers.

Through the proposed EMM, we provide formalizations for the violations of the

standard security policies. Specifically, we provide the definitions of the violations

of confidentiality policies, integrity policies, availability policies, and resource usage

policies. Additionally, we also propose formal definitions of a number of common mal-

ware classes, including viruses, Trojan horses, spyware, bots, and computer worms.

We also show that the proposed EMM is complete in terms of its ability to model

all implementable that could exist malware within the context of a given defended

environment.

We then use the EMM to evaluate and analyze the resilience of a number of

common malware detection approaches. We show that static anti-malware signature

scanners can be easily evaded by obfuscation, which is consistent with the results

of prior experimental work. Additionally, we also use the EMM to formally show

that malware authors can avoid detection by dynamic system call sequence detection

approaches, which also agrees with recent experimental work. A measure-theoretic

model of the EMM is then developed by which the completeness of the EMM with

respect to its ability to model all implementable malware detection approaches is

shown.

Finally, using the developed EMM, we provide a game-theoretic model of the con-

frontation of malware authors and system defenders. Using this game model, under

game theory’s strict dominance solution concept, we show that rational attackers are

always required to develop malware that is able to evade the deployed malware de-
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tection solutions. Moreover, we show that the attacker and defender adaptations can

be modeled as a sequence of iterative games. Hence, the question can be asked as

to the conditions required if such a sequence (or arms-race) is to converge towards

a defender advantageous end-game. It is shown via the EMM that, in the general

context, this desired situation requires that the next attacker adaptation exists as,

at least, a computationally hard problem. If this is not the case, then we show via

the EMM’s measure theory perspective, that the defender is left needing to track

statistically non-stationary attack behaviors. Hence, by standard information theory

constructs, past attack histories can be shown to be uninformative with respect to

the development of the next to be required adaptation of the deployed defenses.

To our knowledge, this is the first work to: (i) provide a joint model of malware

and its detection, (ii) provide a model that is complete with respect to all imple-

mentable malware and detection approaches, (iii) provide a formal bridge between

Turing-reducibility and measure theory, and (iv) thereby, allow game theory’s strict

dominance solution concept to be applied to formally reason about the requirements if

the malware versus anti-malware arms-race is to converge to a defender advantageous

end-game.
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Chapter 1

Introduction and Motivation

1.1 Motivations

Cyber attackers (e.g., individuals, organizations, communities, nation-states, etc.)

use malicious software (simply, malware) as one of their main tools to attack targeted

computer systems. With the large scale connectivity of today’s computers, malware

attacks have rapidly increased. For example, Trend Micro has announced an increase

in the number of online banking malware infections of about 200% during 2013 than

2012 [2], and Symantec has reported an increase in the number of mobile malware

families of about 58% during 2012 [3]. Such trends also exist within the mobile

devices’ domains as they become the dominant in-use computers [4].

To defend against malware, a large number of malware detection approaches have

been proposed, such as those of [5–28]. However, using different evasion techniques

(e.g., obfuscation [29, 30], mimicry attacks [31, 32], etc.), malware can be developed

to evade current detection approaches [29, 33, 34]. Hence, an arms-race exists in

which the defenders develop better detection approaches and malware authors develop
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evasion techniques to bypass each new generation of deployed defenses. This arms-

race involves the interplay between:

(i) Malware development and obfuscation approaches,

(ii) The analysis and evaluation of malware detection approaches, and

(iii) The overall analysis of the confrontation occurring between the attackers and

defenders.

A more detailed discussion of these issues is as follows.

1.1.1 Malware Development Approaches

In the past, the process of developing malware required the deep understanding of

both computer assembly language and the intricate working nature of the targeted

computer system. However, creating malware is no longer limited to the technically

elite as the advent of user-friendly malware developing toolkits has made it possible for

lower skilled malware authors with trivial skills to develop novel malware variants by

following simple step-by-step process [29,35,36]. For example, the Anna Kournikova

virus author was able to create a world-wide attack infecting hundreds of thousands

of systems using just such a toolkit [37]. By using these toolkits, attackers can easily

obfuscate malcode and generate large numbers of novel variants structured to evade

commercial anti-malware products [29, 33].

1.1.2 Assessing Malware Detection Approaches

Frameworks for the evaluation and analysis of malware detection approaches in or-

der to assess their capabilities and are therefore required. In general, the analysis
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and evaluation of malware detection approaches can be done through two main app-

toaches: (i) experimental evaluations, and (ii) formal models.

Experimental evaluation has been the principle approach for the evaluation of

malware detection approaches (e.g., [1,29,33,34,38–51]). Various data sets that differ

in many aspects (such as, the size of the malware test subset, the size of the benign

test subset, etc.) have been utilized. This has led to issues in that, in some cases,

the reported results were due to artifacts in the used data sets [52,53]. For example,

in [52], Tan et al. showed that the recommendation for the system call sequence in

the stide anomaly IDS to be of length 6 is due to an artifact in the evaluation data

set, whereas in [54], McHugh discussed the artifacts existing in the 1999 evaluation

data set proposed by Lincoln Laboratory group for the experimental evaluation of

IDSes. In other cases, some approaches have been evaluated using privately held

data sets of anti-virus companies [43, 46, 51]. Hence, the reported results typically

cannot be independently verified. It can be argued that, to avoid these problems,

reference data sets should be created and regularly updated with the newly detected

variants. A counter argument though can be made that malware writers will study

the characteristics of such reference sets and then seek to design their subsequent

malware to deviate from those in these sets (i.e., to bypass detection).

To avoid the limitations of experimental evaluations, formal models can be used

to analytically evaluate the capabilities of malware detectors independently of any

particular data set. In general, a number of formal models have been proposed either

to model malware [55–61]. Or to analyze different aspects of malware and intrusion

detection systems [13,39,62–64]. Currently, the core limitations of these models are:

(i) A lack of generality: Existing intrusion detection models form the main

attack detection models and, as such, are not generic models as they have been

developed specifically to achieve prescribed modeling objectives. Additionally,
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in general, they cannot be used to model malware as they have not been designed

for this purpose.

(ii) Limited expressive capabilities: Existing models have been developed us-

ing standard traditional models of computations (Turing machines, recursive

functions, etc.) which have been shown to be limited in modeling impor-

tant aspects of modern malware such as: interactions, concurrency, and non-

termination [65,66]. Recent process calculi models (join-calculus and κ-calculus)

show more expressive capabilities [65,67]. However, they focus on malware mod-

eling and not the modeling of malware detection solutions.

(iii) A lack of measurable constructs: Generally, malware detection involves the

assessment of measurable information obtained from observing running systems.

Current modeling approaches have largely not sought to provide formal models

that are inclusive of such measurable sets of run-time information.

1.1.3 Analyzing Attackers-Defenders Confrontations

Arguably, a better understanding of the nature of the attackers versus defenders con-

frontations could potentially enable the development of more effective anti-malware

defenses. Also, analyzing the nature of the attacker’s adaptations, strategies, and

decisions could potentially enable the development of better countermeasures. Game

theory provides a powerful mathematical framework to reason about multi-person

competitive decision-making scenarios. Hence, it can be used to formally analyze

such confrontations. Particularly, game theory is an effective framework to formally

analyze the interactions of rational adversarial decision makers, such as, attackers

versus defenders. There exist a number of prior game-theoretic analyses of attackers

versus defenders confrontations, such as those of [68–71]. However, these models tend
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to focus on analyzing specific system configurations or a certain described attack sce-

narios (i.e., specific games). Hence, game theory does not appear to have been used

to analyze the wider question of when and if a given arms-race is likely to become

defender winnable.

1.2 Problem Statement

As discussed in [72], the analysis of malware detection approaches remains an open

research area. This dissertation extends the work in this area by proposing a joint

analysis framework for reasoning about malware and its detection. In particular, to

avoid the limitations of prior experimental based works, the proposed framework is

based on formal models, where as per Gordon et al. in [73], there is a recognized lack

of formal models to evaluate malware detection approaches. The proposed formal

framework seeks to avoid the limitations of existing models by providing:

(i) A generic framework that is complete with respect to its ability to model all

implementable malware as well as implementable malware detection approaches.

(ii) An information-centric model, as detectors must assess measurable information

changes within running computers, where the execution of malware generates

these changes of interest in the system (or more generally, defended environ-

ment).

(iii) A comprehensive framework that is capable of modeling modern computers

and networks inclusive of issues such that: concurrency, multicore processors,

modern virtual machines (VMs) and browsers, interpreted languages, etc.

To develop this framework, an expressive model that is capable of modeling the

information changes within modern computers has been developed. More particularly,
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the Maurer model [74, 75] is used as the basis for this work. The Maurer model is

a Turing reducible (or equivalent) model that has the advantage of simplicity and

its close resemblance to the functions of modern computers [76]. Moreover, as a

set-function model of how instructions executions enact changes to the memory, the

Maurer model provides a natural bridge to the information-centric model required to

address (ii) above. However, the Maurer model is a basic model in that it does not

have the key components that are necessary to represent modern computers, such as,

programs, security policies, concurrency, etc. In this dissertation, the Maurer model

is extended to incorporate these required key structures. The developed model is

termed the extended Maurer model (EMM) and has the following key features:

• It is able to represent various aspects of modern computer systems, such as pro-

grams, multiprocessors, concurrency, the information flows onto and off com-

puter systems, etc. Hence, it is able to capture the nature of today’s modern

complex computing environments.

• It is generic in the sense of its ability to model programs and their execu-

tions. Hence, it can model various categories of malware and malware detection

systems. Moreover, it is complete in the sense of being able to model all imple-

mentable malware and malware detection solutions.

• It clearly defines the various aspects of security in terms of security policy

violations where what constitutes malware is defined in terms of violations of

these standard security policy definitions.

• As will be shown, it also models a σ-finite information space for formally de-

scribing all the operational information that is available about the run-time

defended environment that is modeled.
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Hence, as will be shown, the EMM allows the analysis of the strategic confronta-

tion of attackers and system defenders to be undertaken. A game-theoretic model

is developed to provide a better understanding of the nature of such confrontations.

The analysis focuses on the evolution of the confrontation over the time to determine

the potential factors that underlie its dynamics in terms of what is required for this

arms-race to converge towards a defender winnable (or advantageous) end-game.

1.3 Contributions

The contributions of this dissertation can be summarized as follows:

(1) Developing the EMM, a generic Turing equivalent formal framework as an aug-

mented version of Maurer’s existing computer model (Chapter 3): The developed

EMM will be shown to be comprehensive in its ability to model modern comput-

ers and computer networks. It will also be shown to be able to model complex

modern programs, such as virtual machines and web browsers as well as modern

computer networks.

(2) Formalizing the violations of basic security policies as well as the definitions of

a number of common malware classes (Chapter 4): The formal definitions of

standard security policies associated with confidentiality, integrity, and availabil-

ity violation, as well as resource authorization violations will be developed. The

EMM will be shown to be inclusive of providing formal definitions for a number of

common malware classes. Additionally, the EMM will be shown to be complete

in terms of being able to model all implementable malware.

(3) Evaluating a number of common malware detection approaches (Chapter 5): The

EMM will also be shown to describe a σ-finite measure space. The EMM will

be shown to formally model common malware detection approaches. Moreover,
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the EMM will be shown to be complete in the sense of being able to model any

implementable malware detection approach or composition of approaches.

(4) Formalizing a game-theoretic model of the confrontation between attackers and

system defenders (Chapter 6): An EMM-based game-theoretic model of the con-

frontation between attackers and system defenders will be formulated. The model

is then used to explore the evolution of this arms-race over time (i.e., as an iter-

ative sequence of games). The analysis of the sequence of games then shows that

either the defender must be able to prove that the attackers’ next adaptation

exists as, at least, a computationally hard problem, or the defender is faced with

the problem of needing to track non-stationary attack behaviors (i.e., past infor-

mation is no longer informative with respect to the problem of how the deployed

defenses must be modified or re-tuned).

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces the

related work in formal models for malware modeling and the analysis of malware and

attack detection approaches. It also provides an overview of the basic components of

Maurer model as presented in [74,75].

Chapter 3 discusses the extensions required to enable Maurer model to model

modern malware and malware detection approaches and develops the proposed EMM.

In particular, it discusses the evolution of the EMM’s memory with time. It also

defines the concept of programs, their execution traces, concurrency, and various

information sets related to these issues. It formalizes the definition of the set of

security policies within the EMM. Finally, Chapter 3 discusses the Turing equivalence

of the EMM and discusses the modeling of the computers, computer networks, and
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complex programs (e.g., virtual machines and modern browsers) within the proposed

model.

Chapter 4 shows the application of the EMM to the modeling of standard security

policy violations. It also provides the formal EMM-based definitions for a number

of common malware classes. Finally, Chapter 4 shows that the proposed EMM is

complete in the sense that it is able to model the execution of all implementable

malware within a defined defended environment.

Chapter 5 discusses the application of the EMM to the analysis of malware de-

tection approaches. It provides a formal model for the EMM as a σ-finite measure

space, inclusive of the discussion as to why this is a critically important aspect of the

models development. It introduces the analysis of a number of static and dynamic

malware analysis approaches. Finally, Chapter 5 applies the a measure-theoretic

model of the EMM to show that the EMM is complete in the sense that it can model

all implementable detection approaches.

Chapter 6 applies the developed EMM to produce a game-theoretic model of the

on-going confrontation between the attackers and the system defenders. Game the-

ory’s strict dominance solution concept is then applied to show that rational attackers

are always formally motivated to develop malware structured to bypass current system

defenses. This leads to the overall arms-race being defined in terms of a time evolv-

ing sequence of games. This sequence is then analyzed to determine the conditions

required if it is to converge to a defender advantageous end-game. The implications

of this analysis are to show that either: (i) the defender must formally show that the

attackers’ next adaptation is, at least, computationally hard to achieve, or (ii) the

defender must face the problem of needing to track non-stationary attack behaviors

(i.e., past attack information is no longer informative with respect to understanding

the next attack).
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Finally, Chapter 7 summarizes the contributions of the dissertation and suggests

potential directions for future work.

1.5 Summary

In this chapter, the motivations of this dissertation have been discussed. Also, the

problem statement has been defined. Additionally, the contributions of this disserta-

tion to the field of computer and information security have been outlined. Finally,

the dissertation organization has been previewed.
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Chapter 2

Related Work

2.1 Introduction

As discussed in Chapter 1, there is a need to develop a formal framework for the joint

analysis of malware and its detection. This chapter provides the literature review of

prior approaches in these domains.

In general, formal modeling has been used to model different aspects of computer

security, such as viruses1 and other forms of malware (e.g., [13, 39, 55, 57, 60, 62, 64,

77–79]), various aspects of intrusion detection systems (e.g., [63, 80–89]), and other

areas of security (e.g., access control models [90]). Since this dissertation is concerned

mainly with malware, the primary focus is on existing formal malware and malware

detection models. The limitations of these existing models will be highlighted, moti-

vating the development of the new EMM model based on the Maurer computer. This

chapter also previews the basic Maurer model constructs and how these need to be

extended to model modern malware and its detection solutions.

The remainder of this chapter is organized as follows. Section 2.2 reviews the

existing formal models for both malware modeling and the analysis and evaluation

1Viruses are defined and discussed in more details in Section 4.2.1.
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of malware detection systems. The section also highlights the limitations of existing

models thereby motivating the development of the proposed EMM. Section 2.3 pro-

vides a detailed overview of the basic building blocks of Maurer model. Section 2.4

discusses the limitations of the basic Maurer model and the nature of the extensions

required to enable it to provide a comprehensive model for modern computers and

networks. Finally, Section 2.5 summarizes the chapter.

2.2 Existing Formal Models

This section previews a number of existing formal model in malware modeling and

malware detection modeling and highlights their limitations. In particular, in Sec-

tion 2.2.1, existing malware modeling frameworks will be discussed, whereas in Sec-

tion 2.2.2, existing frameworks for the modeling of malware and attack detection

approaches will be discussed. In Section 2.2.3, the limitations of existing formal mod-

els will be highlighted. Finally, in Section 2.2.4, the use of Maurer model will be

motivated.

2.2.1 Malware Modeling Frameworks

Self-replication is a core aspect in computer virology since it characterizes viruses

and worms. In general, as discussed in [91, Section 2.3, pp. 19], self-replication

was first discussed by von Neumann in 1948 with the introduction of the theory

of cellular automata to study the biological evolution. In the mid 1980s, Cohen

developed the first formal model for computer viruses [55,56]. In Cohen’s framework,

computers were modeled as Turing Machines (TMs) [92–94], and viruses were modeled

as sequences of symbols on the machines’ tapes. In particular, Cohen’s formalization

of computer viruses is introduced in Definition 2.1 as follows.
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Definition 2.1 (Cohen’s Definition of Computer Viruses). Let M be a TM and let

V be a non-empty set of programs for M which is denoted as the viral set. Then,

each v ∈ V is a sequence of symbols that defines a computer virus and satisfies the

following condition: if v exists on the machine’s tape at a time instant t, then there

should exist a time t′ > t and another sequence v′ ∈ V such that v′ exists on the

machine’s tape at t′.

A major conclusion of Cohen’s work was proving that it is undecidable (without

execution) as to whether or not a given sequence is in the viral set [55].

Cohen’s use of TMs to model viruses was criticized by a number of researchers.

In particular, Kauranen et al. pointed out that the primary shortcoming of Cohen’s

model is that traditional TMs do not specify entities corresponding to programs [58].

Hence, Kauranen et al. suggested the use of universal Turing machines (UTMs) to

model computers, and accordingly, viruses are considered TMs which write copies of

themselves somewhere to the UTMs’ tapes. In [59], Jacob et al. presented malware

model using interaction machines (IMs), which are TMs with an added dynamic in-

put/output actions [61]. Jacob et al. provided formal definitions of computer viruses

as well as formal definitions of interactive and distributed viruses. Finally, Jacob

et al. proposed an operational malware modeling framework based on interactive

languages [59].

In 1988, Adleman used recursive functions2 to model viruses [57]. In this model,

Adleman paid attention to the identification and classification of the different cat-

egories of viruses with respect to their destructive power. In particular, a virus is

defined as a total recursive3 function v that applies to all programs p so that v(p)

exhibits viral behaviors such as injury (i.e., damage the system by executing its ma-

2See [91, Chapter 2] for an introduction to recursive functions.
3A function f(.) is called a total function if it is defined for all possible input values, and f(.) is

a recursive function if there is a Turing machine T that computes f(.) [92–94].
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licious payload), infection (i.e., replicate and infect other programs) and imitation

(i.e., imitate the host program with no replication or injury). The main advantage

of Adleman’s model is that it is based on the abstract computability theory allowing

the developed definitions to be independent of any specific computational model.

In 2004, Zuo et al. extended Adleman’s model of computer viruses to include new

aspects such as mutation and stealth [78]. A number of malware modeling frameworks

followed the work of Cohen and Adleman that were also based on different types of

mathematical machines and automata (e.g., Turing machines, sequential machines,

pushdown automata, etc.) [13, 39,59,62,64,77–79].

In 1999, Thimbleby et al. introduced a framework for modeling Trojans4 and

computer virus infections [60]. In particular, in this model, the computer is considered

to be an array of bits (e.g., RAM, screens, backing store, etc.). The exact meaning of

bit patterns depend on their location within the array. An instance of this finite array

is called a representation, and the collection of all possible representations is denoted

as R. The users of computers are not concerned with representations, they are instead

concerned with the names of the programs. Programs may run and accordingly change

the state of the computer. The meaning of a program is defined in terms of what the

program does when it runs. By applying this model, Thimbleby et al. introduced a

formal definition for both Trojans and viruses. However, Thimbleby et al. did not

seek to model other malware categories. In addition, Thimbleby et al. did not seek

to show the application of their model to address the problem of malware detection.

However, as indicated in [65], the increasing sophistication of recently emerging

malware generally reduces the comprehensiveness of these prior models. In particular,

complex malware, such as K -ary malicious codes [95] and multiprocess malware [96],

generally cannot be formulated within these prior models [65].

4Trojans are defined and discussed in more details in Section 4.2.2.
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Similarly, as discussed in [60], Thimbleby et al. showed the inadequacy of tradi-

tional TM models to represent viruses. Specifically, some of the core issues highlighted

by Thimbleby et al. are:

• Traditional TMs are infinite whereas computers are finite (in terms of memory,

processing or other resources), and viruses exist on systems with finite resources.

• Viruses have to enter the system in order to infect it, and this requires the

modeling of the interaction within the computer systems. As illustrated in [97],

traditional TM models are not sufficiently expressive for systems that interact.

• Viruses are programs that, in addition to having the ability to infect other

programs, also have Trojan activities. Hence, the traditional TM equivalent

models are insufficient to capture these important details of viruses’ behaviors

as they do not represent the flow of information onto and off the computers.

• To model infection or replication of programs, the model needs to identify the

notion of ‘other ’ programs. This cannot be modeled within traditional TM as

they generally lack the notion of programs.

Additionally, in [75, Section 10], Maurer indicated that the available mathematical

machines are not adequate models for modeling modern computers as the majority

of these models are either not general enough or they are too general. Moreover,

modern computers have several important common features that are not supported

in these prior models. For example, the instructions of modern computers have input

and output regions [75, Section 2] and the study of these input and output regions

can provide more powerful modeling capabilities.

As the Maurer model was designed to address many of the above issues, it was

selected as the platform model from which to develop the EMM. Moreover, as the
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Maurer model focus on modeling state changes within stored memory, it provides a

natural bridge into developing an information-centric model. The Maurer model is

formally defined and discussed in detail in Section 2.3.

2.2.2 Malware and Attack Detection Modeling Frameworks

Formal modeling has also been used to model detection systems. In particular, as dis-

cussed in [13,39], Christodorescu et al. introduced a formalization for semantics-based

malware detection which modeled a wide variety of the obfuscation transformations

used to develop malware variants. However, the application of this framework was

limited to static analysis of obfuscated malware and, hence, this model is not suited

to model or analyze dynamic malware detection approaches.

In [62], Filiol et al. introduced a statistical testing model of anti-virus detection.

Filiol et al. were able to reason about anti-virus scanners and presented a statistical

variant of Cohen’s undecidability result [55]. However, Filiol et al. did not discuss

how their model could be used to: (1) analyze the potential resiliency of malware

detection approaches, or (2) comprehensively model all malware classes.

In [64], Jacob et al. developed a formal model for the behavioral detection of

malware using context free grammar [93]. Additionally, Jacob et al. also developed

malware detection approach based on their proposed framework. However, the frame-

work is specific to model behavioral-based detection approaches and cannot be used

to model static analysis approaches. Also, the developed detection approach yielded

low detection rate of only 51% of PE malware which suggested limitations in the

applied model [64].

In [84], Gu et al. presented an information-theoretic formal framework for an-

alyzing and quantifying the effectiveness of intrusion detection systems. Gu et al.

started with formally defining a model for IDS, then they analyzed the model via an
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information theoretic approach. Additionally, Gu et al. proposed a set of information-

theoretic metrics to quantitatively measure the effectiveness of an IDS in terms of its

feature representation capability, classification information loss, and overall intrusion

detection capability. This model though is quite specific to the intrusion detection

domain and, as such, cannot be generally applied to model malware. Moreover, the

model did not provide structures for measurable information sets.

2.2.3 Limitations of Existing Formal Models

In general, the following observations about the existing formal malware modeling

frameworks can be highlighted:

• Most existing formal malware models were developed based on traditional math-

ematical machines which, as discussed in Section 2.2.1, have a limited ability

to capture the functional features of modern malware, such as its interactions

with the environment, concurrency, etc.

• Generally, these models tend to target specific malware classes and, hence, have

not been shown to be comprehensive (or complete), where this is becoming more

critical as modern malware instances concurrently incorporate a multiplicity of

attack methodologies.

• Existing models were not designed to concurrently address the analysis and

evaluation of both malware and its detection solutions.

Whereas, the following insights about the existing formal models for malware

detection systems can also be highlighted:

• Formal malware detection models have not been developed to concurrently

model malware.
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• In general, the focus has been on modeling IDS-style detection approaches and,

hence, these approaches have not been shown to be comprehensive of other

detection solutions.

• Moreover, typically only specific aspects of IDS systems have been modeled and

not even the complete IDS process.

• These detection models have not been shown to map into the measure theory

constructs that underlie, for example, probability and statistics theory.

2.2.4 Discussion

As illustrated in the previous section, prior models have not been developed to concur-

rently address the modeling of malware and its detection approaches. Additionally,

the use of traditional mathematical machines to develop these models limits their

ability to model modern program and computer constructs. Finally, since malware

detection is based on assessing measurable information extracted from the systems,

the lack of measurable information constructs prevents these models from providing

comprehensive malware detection models. Hence, a comprehensive formal framework

to model malware and analyze malware detection approaches is required. Moreover, it

should provide additional insights about the operation of different malware classes and

variants and how effective proposed or existing detection approaches may be against

these classes and variants. The development of such a framework is the objective of

this dissertation.

To achieve this objective, the Maurer model [75] has been selected as the base plat-

form from which this framework will be developed for the following reasons. First, the

Maurer model is a Turing equivalent model [76] and, hence, it can be used as a general

model of computation. Second, it has the advantage of being closer to real computers



19

than prior traditional mathematical machine based models [98]. Fundamentally, the

Maurer model focuses on how a computer’s stored memory is changed over time by

the execution of instructions. The Maurer model defines instruction executions as

the mechanism by which these changes to memory contents occur (i.e., changes to

the memory’s state). As this dissertation will show, the Maurer model, therefore,

provides an information-centric view of the computer’s operation where the model’s

memory defines the information that exists within the computer at any time instant,

with the model’s instruction set defining how possible changes to this information can

occur. Hence, the Maurer model provides a natural bridge from Turing-equivalency

into the well developed mathematics of measure theory. Section 2.3 reviews the Mau-

rer model while Chapter 3 details the necessary extensions to the basic Maurer model

that are required to enable it to model modern computers and computer networks

(i.e., IT environments).

2.3 Maurer model

In [75], Maurer reintroduced a revised version of his original computer model pub-

lished in [74]. For the completeness of this dissertation, the core modules of Maurer

model will be introduced in this section. For the complete details of Maurer model,

we refer the reader to [75]. Note that, throughout this dissertation, we will use the

terms Maurer model and Maurer computer exchangeably to denote Maurer definition

of computers as introduced in [75].

The remainder of this section is organized as follows. Section 2.3.1 introduces the

formal definition of computers as defined by Maurer. Section 2.3.2 then discusses

the input and output regions of instructions. Section 2.3.3 defines the concepts of

affected and affecting regions. Section 2.3.4 introduces the composition and decom-
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positions of instructions. Section 2.3.5 discusses the existence of instructions. Finally,

Section 2.3.6 discusses the Maurer model with a control unit.

2.3.1 Maurer Computer

Without loss of generality, the Maurer model models computers in terms of the effects

of their instruction executions [75]. The motivation behind developing the model was

the perceived inadequacy of the existing mathematical machines to model emerging

computer architectures. Fundamentally, the Maurer model focuses on modeling how

the information stored in the computer’s memory changes over time as a result of the

execution of the computer’s instructions.

Maurer model begins with the computer’s memory, which is represented as a finite

set of memory elements that is denoted as M and defined as,

M = {mk | k = 1, 2, . . . , NM} , (2.1)

where each memory element mk is disjoint with any other element (i.e., ∀k 6= k′,mk∩

mk′ = ∅) and NM is the finite number of memory elements. Importantly, this set de-

notes the union of all components of the computer that can hold (or store) information

(i.e., RAM, CPU registers, hard drives, disk drives, hard coded memory, etc.) and

not just the computer’s main memory.

The possible contents of each memory element is determined by the base space,

which is denoted as B. In particular, Maurer defined B as the set of values that

each memory element can have (e.g., the bit is the standard memory element for

modern digital computers and its value being either 0 or 1, or alternatively, the byte

(8 bits) can be considered as the memory element, and hence, its value ranges from

0 to 255). Intuitively, if B has only one element then the memory will have only

one fixed state (because all memory elements will be assigned this single value of B).
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Nominally, under the model, B should contain at least 2 elements, then |B| ≥ 2,

where |·| denotes the set cardinality. Since digital computers are the focus of this

dissertation, then it will be assumed that |B| = 2 and B = {0, 1}.

A state, s, of the memory of the computer is defined as an arbitrary map from M

into B. Formally,

s : M → B. (2.2)

The finite set of all possible states of the computer memory M is denoted as S.

Finally, Maurer defined an instruction, i, as the method of changing from one state

to another. Formally, an instruction is defined as a map,

i : S→ S. (2.3)

The set of all instructions of the computer is denoted as I. It should be noted that

the use of the term “instructions” in the Maurer model differs from its use within

standard programming languages in that the instructions in the Maurer model denote

mappings from memory states to new memory states. A more detailed discussion

about the semantics of the instructions is provided in Section 2.3.2.1 as this requires

the introduction of the concepts of the input and output regions of instructions. The

definition of Maurer computer is formalized in Definition 2.2 as follows.

Definition 2.2 (Maurer Computer, M). A Maurer computer is denoted as M and

is defined as the tuple M = 〈M,B, S, I〉 where:

- M is a finite set representing the computer’s memory,

- B is the base set, where generally |B| ≥ 2,
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- S is the set of all possible maps, s : M → B, representing the set of all possible

states of the memory, and,

- I is the set of all instructions i : S→ S of the computer

that satisfies the following two axioms, where sj(m) denotes the content of memory

element m ∈M when M is in state sj:

• Axiom 1: (Any recombination of states is a state)

If s1, s2 ∈ S,M ′ ⊆ M and s3 : M → B such that, s3(m) = s1(m) if m ∈ M ′

and s3(m) = s2(m) if m /∈M ′, then s3 ∈ S;

• Axiom 2: (Any two states differ only in a finite way)

if s1, s2 ∈ S, then the set {m ∈M | s1(m) 6= s2(m)} is finite.

Given M ′ ⊆ M and s ∈ S, then “the content of M ′ during state s” is denoted

as s|M ′. If M ′,M ′′ ⊆ M and s, s′ ∈ S, Maurer introduced the following elementary

facts about s|M ′:

1. ∀m ∈M ′, s(m) = s′(m) if and only if s|M ′ = s′|M ′.

2. if s|M ′ = s′|M ′, M ′′ ⊆M ′ ⇒ s|M ′′ = s′|M ′′.

3. if s|M ′ = s′|M ′, then s|M ′ ∩M ′′ = s′|M ′ ∩M ′′ (since M ′ ∩M ′′ ⊆M ′).

4. if M ′ = φ, then s|M ′ = s′|M ′ is always true.

In some cases, the memory M of Maurer computer can be restructured. In par-

ticular, Definition 2.3 defines the memory structure for Maurer computer as follows.

Definition 2.3. Let M = 〈M,B, S, I〉 be a Maurer computer and let P be a partition

of M ( i.e., a class of disjoint non-empty subsets of M whose union is M). Then, P

is denoted as a memory structure for M.
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As discussed in [75, Section 6], such memory restructuring is not a physical process,

rather, it is a logical reorientation of the memory view. As will be demonstrated

later in Section 3.3, the extension of the memory in the EMM will be based on

Definition 2.3.

2.3.2 Input and Output Regions of Instructions

In [75], Maurer introduced the notion of the input and output regions of an instruction

i, which are denoted as IR(i) ⊆ M and OR(i) ⊆ M , respectively. In particular,

for s2 = i(s1) (i.e., s2 is the state of the computer resulting from the execution of

instruction i when the system state is s1), OR(i) ⊆ M is defined as: the set of

all elements of M that can be changed due to the execution of i (i.e., the set of all

memory elements whose contents before the execution of i are not the same after its

execution). Whereas, IR(i) ⊆ M is defined as: the set of all elements of M that

affect OR(i). The formalizations of IR(i) and OR(i) are presented in Definition 2.4

as follows.

Definition 2.4 (Input and Output Regions of Instructions). Let M be a Maurer

computer and let i ∈ I. For x ∈M , let s(x) be the content of a memory element x at

state s and let i(s(x)) be its content after executing the instruction i. Then the input

region of i, IR(i) ⊆M , and the output region of i, OR(i) ⊆M , are defined as:

• OR(i) = {x ∈M : ∃s ∈ S such that s(x) 6= i(s(x))}

• IR(i) = {x ∈M : ∃s1, s2 ∈ S and y ∈ OR(i) such that

s1(z) = s2(z) for all z 6= x, and i(s1(y)) 6= i(s2(y))}

As indicated in [75, Section 2], defining IR(i) in terms of OR(i) cannot be avoided.

Figure 2.1 shows an example of the input and output regions of an instruction i. As
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Figure 2.1: Input and output regions of instructions.

shown in the figure, the state of the memory changes from s1 to s2 due to the execution

of i with IR(i) and OR(i) as indicated.

Maurer also covered the case in which the instruction does not have any input or

output regions by the introduction of the identity instruction, which will be denoted

as iid. The formalization of iid is discussed in Definition 2.5 as follows.

Definition 2.5 (The Identity Instruction, iid). The identity instruction is denoted as

iid ∈ I and has the following properties:

• IR(iid) = φ, and

• OR(iid) = φ.

In fact, the identity instruction is what is commonly known as the no-operation or

no-op instruction, which performs no change to the system. Maurer also introduced

Theorem 2.1 for iid as follows.

Theorem 2.1 (A Theorem for iid). For i ∈ I, if OR(i) = φ, then IR(i) = φ, and i

is the identity instruction, iid.
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Proof. The proof can be found in [75, Theorem 2.2].

Hence, the following corollary can easily be proved.

Corollary 2.1. ∀i ∈ I, i 6= iid we have OR(i) 6= ∅.

Proof. It follows directly from Theorem 2.1 that if OR(i) 6= ∅ then i 6= iid.

2.3.2.1 Discussion

In this subsection, the instructions will be discussed. Without loss of generality, the

instructions in Maurer model differ in their nature from those in programming lan-

guages. In particular, Maurer model’s instructions are defined as general mappings

from memory states to other memory states. These mappings are uniquely charac-

terized by both their input and output regions. In particular, any change in these

regions means different instructions in the sense of Maurer model as discussed in the

following example.

Example 2.1. Consider the following instructions i1, i2, and i3 with their input and

output regions being as indicated in the table.

Instruction IR(.) OR(.)

i1: MOV R1, R2 R1 R2

i2: MOV R1, R3 R1 R3

i3: MOV R3, R2 R3 R2

In most (unless all) programming languages, the above instructions correspond to the

same instruction MOV but with different operands. In Maurer model, since these

instructions have different input and/or output memory regions as indicated in the

above table, they denote three distinct Maurer model instructions.
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As discussed above, Maurer instructions are defined in terms of the input to out-

put memory mappings they produce and, hence, by the underlying mathematical

necessities they must be defined in terms of the memory locations where these map-

pings occur. Hence, standard assembly language mnemonics and, even, higher-level

language constructs can be related to classes of composite sets of Maurer instruction

executions (i.e., Maurer instructions are loosely analogous to the µ-code instructions

that occur within CPU cores, albeit while retaining their memory location depen-

dence). Such instruction compositions are included within the Maurer computer and

their details will be discussed in Section 2.3.4. The differences and distinctions be-

tween Maurer’s use of both the terms “memory” and “instruction” and more standard

usages of these terms must be clearly appreciated if the nature of the Maurer model is

to be correctly understood. Within the remainder of this work, the terms “memory”

and “instruction” solely refer to Maurer’s definitions of these terms.

2.3.3 Affected and Affecting Regions

According to Definition 2.4, OR(i) is the set of all memory elements that are affected

by the execution of i and IR(i) is defined as the set of all memory elements affect

OR(i). This leads to several questions such as: given a specific subset M ′ ⊆ IR(i),

what is the exact output subset region that is affected by M ′? Or, given a specific

subset N ⊆ OR(i), what is the exact input subset region that affects N? To address

these questions, Maurer introduced two substructures in IR(i) and OR(i) referred

to as the affected regions and the affecting regions [75, Definition 7.1]. As shown in

Figure 2.2(a), for a region M ′ ⊆ IR(i), the subset region of OR(i) that is affected

by M ′ under the execution of i is denoted as AR(M ′, i) ⊆ OR(i). Any change in the

contents of M ′ will affect the contents of AR(M ′, i) when i is executed. Whereas, as

shown in Figure 2.2(b), for a region N ⊆ OR(i), the region in IR(i) that affects N
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under i is defined as the affecting region, denoted as RA(N, i) ⊆ IR(i). The change

in the contents of RA(N, i) will affect the contents of N under the execution of i. The

formalizations of the affected and affecting regions are presented in Definition 2.6 as

follows.

Definition 2.6 (Affected and Affecting Regions). Let M = 〈M,B, S, I〉 be a Maurer

computer, and let i ∈ I, then for a subset M ′ ⊆ IR(i) and for a subset N ⊆ OR(i):

• AR(M ′, i) = {x ∈ OR(i) : ∃s1, s2 ∈ S such that

∀z ∈ IR(i)\M ′ s1(z) = s2(z) and i(s1)(x) 6= i(s2)(x)}

• RA(N, i) = {x ∈ IR(i) : AR({x}, i) ∩N 6= φ}

Where “\” denotes the set difference operation. Maurer also introduced the fol-

lowing three lemmas about the affected and affecting regions.

Lemma 2.1. Every non-empty subset of IR(i) affects some non-empty subset of

OR(i).

Proof. The proof can be found in [75, Lemma 7.2].

Lemma 2.2. AR(∅, i) = ∅.

Proof. The proof can be found in [75, Lemma 7.3].

Lemma 2.3. RA(∅, i) = ∅.

Proof. The proof can be found in [75, Lemma 7.4].

2.3.4 Composition and Decomposition of Instructions

The composition of two instructions is also defined in [75]. In particular, if i1, i2 ∈ I

are two instructions on a Maurer computer, then:

J = i1 ◦ i2, (2.4)
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(a) Affected region AR(M ′, i) of M ′ ⊆ IR(i).

(b) Affecting region RA(N, i) of N ⊆ OR(i).

Figure 2.2: Affected and affecting regions relative to the execution of instruction i.

denotes the execution of i1 followed by the execution of i2. J can be also expressed

as J = i2(i1(s)) where s is the initial state of the system before executing the two

instructions. The composite instruction J also defines a map from S into S with its

input and output regions are defined in Theorem 2.2 as follows.

Theorem 2.2. Let M = 〈M,B, S, I〉 be a Maurer computer, and let i1, i2 ∈ I be two

instructions. Let J : S→ S be defined by J(s) = i2(i1(s)), then:

1. OR(J) ⊆ OR(i1) ∪OR(i2).
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2. OR(i1)\OR(i2) ⊆ OR(J).

3. IR(J) ⊆ IR(i1) ∪ IR(i2).

Proof. The proof can be found in [75, Theorem 5.1].

Theorem 2.2 shows that the output region of a composition of two instructions is

a subset of the union of the output regions of the two instructions forming the com-

position. Similarly, Theorem 2.2 also indicates that the input region of a composition

of two instructions is the union of the input region of the two instructions forming the

composition. In [75], Theorem 2.2 was extended by the introduction of the following

corollaries.

Corollary 2.2. Under the conditions of Theorem 2.2, if IR(i2) ∩OR(i1) = φ, then:

1. OR(J) = OR(i1) ∪OR(i2).

2. IR(i2) ⊆ IR(J).

Proof. The proof can be found in [75, Corollary 5.1].

Corollary 2.2 indicates that, if the input region of the second instruction and

the output region of the first instruction are disjoint, then: (1) the output region

of the composite instruction will equal to the union of the output regions of the two

instructions, and (2) the input region of the second instruction is a subset of the input

region of the composite instruction.

Corollary 2.3. Under the conditions of Theorem 2.2, if OR(i1) ∩ OR(i2) = φ and

OR(J) = OR(i1) ∪OR(i2), then:

IR(i1) ⊆ IR(J).

Proof. The proof can be found in [75, Corollary 5.2].
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Corollary 2.3 indicates that, if the output regions of the two instructions are

disjoint and the output region of i1 and the input region of i2 are also disjoint, then

the input region of i1 is a subset of the input region of the composite instruction J .

Corollary 2.4. Under the conditions of Theorem 2.2, if IR(i2) ∩ OR(i1) = φ and

OR(i1) ∩OR(i2) = φ, then:

IR(J) = IR(i1) ∪ IR(i2).

Proof. The proof can be found in [75, Corollary 5.3].

Corollary 2.4 indicates that, if the input region of the second instruction and the

output region of the first instruction are disjoint and the output regions of the two

instructions are also disjoint, then the input region of the composite instruction will

equal to the union of the input region of the two instructions.

Corollary 2.5. Under the conditions of Theorem 2.2, if J ′ = i1(i2(s)), then J = J ′

if OR(i1) ∩ (IR(i2) ∪OR(i2)) = φ and OR(i2) ∩ (IR(i1) ∪OR(i1)) = φ.

Proof. The proof can be found in [75, Corollary 5.4].

It should be noted that, in general, i1 ◦ i2 6= i2 ◦ i1. Hence, Corollary 2.5 indicates

the special case, for which, the order of instructions execution can be changed without

affecting the composition (i.e., i1 ◦ i2 = i2 ◦ i1). In particular, commuting instructions

are defined as follows.

Definition 2.7. The two instructions i1, i2 can commute if and only if:

1. OR(i1) ∩OR(i2) = ∅,

2. OR(i1) ∩ [IR(i1) ∪ IR(i2)] = ∅, and

3. OR(i2) ∩ [IR(i1) ∪ IR(i2)] = ∅.
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Hence, two instructions can commute in two cases: (1) if all their four regions are

disjoint, or more generally (2) if the only overlap in their four regions is in their input

regions.

In [75], Maurer also showed that the instructions, in general, can also be de-

composed into sequences of instructions. In particular, Theorem 2.3 shows that an

instruction i can be expressed as a composition of two instructions i1 and i2 as follows.

Theorem 2.3 (Decomposition of Instructions). Let x ∈ OR(i)− IR(i). Then, i can

be written as i(s) = i2(i1(s)), where IR(i1) ⊆ IR(i), IR(i2) ⊆ IR(i), OR(i1) = {x},

and OR(i2) = OR(i)− {x}.

Proof. The proof can be found in [75, Theorem 5.2].

Note that, by the application of Theorem 2.2 and Theorem 2.3, we can replace

composite instruction sequences with other arbitrary equivalent composite instruc-

tions sequences (i.e., an instruction can be decomposed into a composite sequence of

atomic instructions).

2.3.5 Existence of Instructions

For two arbitrary subset regions of the memory, Maurer showed the existence of the

instructions that have these regions as their input and output regions as follows.

Theorem 2.4 (Existence of Instructions). Let P,Q ⊂ M in a Maurer computer.

Then there exists an instruction i with IR(i) = P and OR(i) = Q if and only if

Q 6= ∅ unless P = ∅.

Proof. The proof can be found in [75, Theorem 12.1].

The existence of instructions will be also used as a part of the proof of Theorem 5.1

of Chapter 5.
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2.3.6 Maurer Computer with a Control Unit

As indicated in [93], one of the most important contributions made by Alan Turing

when he introduced the universal Turing machine (UTM) was the idea of pushing

the machine controls into the memory in what is now known as the concept of stored

programs. For Maurer’s model, to push the model’s controls into the memory, Van

Zelst in [99] proposed the introduction of the following two maps:

1. A control unit, C, that is defined as,

C : S→ I, (2.5)

which is responsible for determining the next instruction to be executed from

the current memory state.

2. A memory region denoted as NI ⊂M and defined as the next instruction sub-

set, that stores the next instruction to be executed after the executing current

instruction. Note that, in computer architecture, NI corresponds to the top of

the instruction pipeline which has the next instruction to be executed.

3. A map, DEC, that decodes the next instruction from the current state. In

particular, DEC is defined as,

DEC : {s|NI} → I. (2.6)

Hence, C(s) = DEC(s � NI).

That is to say, the next instruction to be executed is stored in the NI subset and the

control unit C fetches it from its stored location NI while executing current instruc-

tion. Maurer computer with a control unit as proposed by Van Zelst is formalized in

Definition 2.8 as follows.
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Definition 2.8 (Maurer Computer with a Control Unit). A Maurer computer with

a control unit is defined as the tuple MC = 〈M,B, S, I, C〉 where M,B, S, and I are

as defined in Definition 2.2 and:

• C : S→ I is the control unit of the computer

• NI and DEC such that DEC : {S � NI|s ∈ S} → I and also specifying that

C(s) = DEC(s � NI) to ensure that the control unit respects the stored instruc-

tions

By the introduction of C, NI, and DEC to the model, the computer now has

the capability to store and execute instructions as per the standard CPU fetch and

execute cycle. In addition, both C and NI enable the computer to express the process

of sequential execution of instructions in the memory which can be interpreted as a

sequential execution of programs. Finally, since each instruction can operate in the

whole memory, then instruction execution can potentially change the contents of the

set NI. Moreover, these constructs clearly support issues, such as, self-modifying

code.

2.4 Discussion

Throughout Section 2.3, the basic modules of Maurer model have been defined. How-

ever, several extensions are still required to make the model more suitable to modern

computers. In particular, the model should be able to provide the following concepts:

• Information flow : A wide variety of malware programs either download mali-

cious code or instructions from remote systems or send private information to

remote systems. The Maurer model does not provide a mechanism for the flow

of information into or off the system (i.e., external input and output mechanisms

should be defined).
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• Multiple control units : The Maurer model can only be used to model single

control unit systems. Hence, it should be extended to enable the modeling

of multi-control units systems such as modern multicore and multiprocessor

systems so as to support the modeling of concurrency.

• Programs : The Maurer model does not have a definition for programs and it

should be extended to support this concept.

• Security policies : A system’s security policy defines the secure states of that

system where these are then used to distinguish malware from benign programs.

Maurer’s model does not include the notion of security policies and it should

be extended to capture this concept.

• Computer networks : The modeling of computer networks is essential to enable

the modeling of specific malware categories (e.g., worms). Maurer model does

not contain a definition of networks and needed to be extended to contain these.

The Maurer model will be extended to include the above components, thereby forming

the extended Maurer model (EMM), as will be discussed in the next chapter.

2.5 Summary

This chapter provided the literature review for this dissertation has been discussed. In

particular, Section 2.2 discussed the existing formal models for both malware model-

ing and the analysis and evaluation of malware detection system. Whereas Section 2.3

provided a detailed overview of the basic building blocks of Maurer model that will

be used to develop the extended Maurer model. Section 2.3 discussed the extensions

required for the Maurer computer to make it more suitable to model malware and

malware detection approaches which will be introduced in details in the next chapter.
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Chapter 3

The Extended Maurer Model

(EMM)

3.1 Introduction

As discussed in the previous chapter, some extensions for Maurer model are needed

to enable the modeling of modern computers and networks. This chapter introduces

these extensions and defines the extended Maurer model (EMM). In particular, the

proposed EMM differs from the original Maurer model in the following:

(i) The system memory: As defined in Section 2.3.1, the size of the memory of

the Maurer computer is fixed over time, which does not take into account the

dynamic nature of the memories of today’s systems (e.g., by plugging or unplug-

ging of USB devices, etc.). Moreover, the Maurer computer has no constructs to

support the information flow into and out of the system. To handle these issues

the memory of the EMM will be made time dependent allowing the memory

size to change over time. Additionally, the structures required to support the

information flows onto and off the computer will be introduced (Section 3.3).
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(ii) The control unit: In Definition 2.8, the Maurer computers with control units

consider only systems with a single control unit, whereas modern digital com-

puters contain multiple control units. Hence, the control units of the EMM will

be extended to comprise a set of control units to enable the modeling of modern

computer systems (Section 3.4).

(iii) The programs: As shown in Section 2.3, the Maurer model only considers the

sequential executions of single instructions (i.e., does not support the concurrent

execution of instructions) and does not seek to model the concept of programs.

Hence, the EMM introduces the definition of programs as software components

as well as the modeling of concurrent execution of instruction sequences (Sec-

tion 3.5).

(iv) The security policies: As discussed in Section 2.3, the Maurer model does

not include a definition for security policies. Since the main objective of this dis-

sertation is to model malware and malware detection systems, the introduction

of the concept of security policies in the EMM is required (Section 3.6).

(v) Modeling computer networks: As discussed in Section 2.3, the Maurer

model does not include a definition for computer networks which is necessary to

model specific categories of malware (e.g., worms). The modeling of networks

via the EMM will be discussed in this chapter (Section 3.8).

The remainder of this chapter proceeds as follows. Section 3.2 previews the basic

modeling assumptions made in this dissertation. Section 3.3 introduces a detailed

view of the system’s memory M . Section 3.4 discusses the details of extending the

notion of a control unit into a set of control units. Section 3.5 introduces the definition

of programs (software components) as defined in the EMM together with all other

aspects concerning them. Section 3.6 defines the set of system security policies.
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Section 3.7 introduces the formal definition of the EMM. Section 3.8 discusses the

Turing equivalence of the EMM and discusses also the use of the EMM to model

virtual machines, stack, computer networks, etc. Finally, Section 3.9 summarizes this

chapter.

3.2 Preliminary Assumptions

To simplify the development of the framework and its notation, the following assump-

tions will be made:

1. The control units are assumed to be implemented in hardware, and for simplic-

ity, they are assumed to be tamper-proof (i.e., the control units are fabricated

in integrated circuit chips and their architectures will be assumed unchangeable

post-fabrication). This assumption guarantees that the mechanism which is re-

sponsible for determining the next instructions from the current state is outside

the influence of the attackers (i.e., the mechanism by which the CPUs perform

instruction fetches is tamper-proof). The developed EMM can be further ex-

tended to include issues such as forged circuitry, etc. However, such forms of

attacks are not within the scope of this dissertation.

2. The control units within each physical computer are assumed to operate under

a single theoretical global system clock, which acts to provide the reference time

frame.

3. As per standard computers, the EMM is assumed to be a causal system (i.e.,

the system’s past and current states cannot be affected by any of its future

states).
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4. For simplicity, the instruction outputs are assumed to be available in memory

immediately after an instruction’s execution. Note that, this assumption can

be relaxed by introducing per-instruction timing delays.

It should be noted that, as will be discussed in Section 3.8, Assumption 2 is

structured to be consistent with the modeling of computer networks. Hence, these

assumptions do not affect the generalizability of the developed EMM.

3.3 The System Memory, M

Modern computers consist of removable components (e.g., USB devices) and perma-

nent components (e.g., CPU registers). Since all of these components are included

in the model’s memory, the memory must be made time dependent. Hence, in the

EMM, the Maurer model’s definition of M is extended as follows. At any time instant

t, the EMM’s memory is denoted as M(t) and is defined as,

M(t) = {mk|k = 1, . . . , NM(t)} , (3.1)

where, as discussed in Section 2.3.1, each memory element mk is disjoint with any

other element (i.e., ∀k 6= k′,mk ∩mk′ = ∅) and NM(t) is the number of elements in

existence in the computer at the time instant t. Consequently, M(t) denotes a set

whose elements can change over time. For simplicity and as per digital computers,

the time t is assumed to be discrete.

Based on Definition 2.3, which allows the restructuring of M in Maurer computer,

the memory of the EMM is assumed to be structured as follows:

(i) Let Θ(t) = {θj| j = 1, . . . , NΘ(t)} be the set of all input devices existing within

the computer at the time instant t. For each input device θj ∈ Θ(t), define
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Mθj(t) ⊂ M(t) to be its associated memory region at t, which is denoted as

the input interface memory region (simply, input interface). Once the input

information is written to Mθj(t) by the hardware θj, this information is assumed

to become immediately available for the instructions to process. The computer’s

collection of input interfaces at t is defined as,

MΘ(t) =
⋃

∀θj∈Θ(t)

Mθj(t).

For simplicity, it is assumed that all Mθj(t) are disjoint (i.e., ∀θj, θk ∈ Θ(t),

Mθj ∩Mθk = ∅, j 6= k).

(ii) Similarly, define the set of output devices at t as Φ(t) = {φk| k = 1, . . . , NΦ(t)}.

Hence, the corresponding collection of output interfaces is defined as,

MΦ(t) =
⋃

∀φk∈Φ(t)

Mφk(t),

where all Mφk(t) are also assumed disjoint. Also, for simplicity, it is assumed

that once the information is written to an output interface region by an in-

struction’s execution, this information becomes immediately available to the

external world. Although not strictly required, for simplicity, it is assumed that

MΘ(t) ∩MΦ(t) = ∅.

(iii) The remaining portion of M(t) will be denoted as M∗(t) and will be defined as,

M∗(t) = M(t)\[MΘ(t) ∪MΦ(t)]. (3.2)
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M∗(t) denotes the memory regions that are not associated with the information

flows to/from the external world (i.e., standard memory), where “\” denotes

set difference operation.

Note that, since M(t), MΘ(t) and MΦ(t) can change with time by their definitions,

then M∗(t) can also change with time. For example, turning on the wireless network

adapter and plugging in a USB memory drive will result in a change in M∗(t). Now,

M(t) on composite can be expressed as,

M(t) = M∗(t) ∪MΘ(t) ∪MΦ(t), (3.3)

where, again for simplicity, M∗(t), MΘ(t), and MΦ(t) are assumed to be disjoint. As

M(t) is defined to be inclusive of all the computer’s information storage elements, no

loss of generality is incurred by this memory mapped view of the computer’s input

and output devices.

Let T = [−T1, T2] be the time interval starting from some t = T1 in the past when

the computer is powered on until some typically finite time t = T2 < ∞ into the

future, where T1, T2 ≥ 0. For simplicity, it is assumed that t = 0 denotes the current

time. Hence, T− = [−T1, 0] denotes the computer’s past history and T+ = (0, T2]

denotes the computer’s future operations. Since t is assumed discrete, then the set of

all memory transitions during the time interval T , denoted as M (T ) can be defined

as,

M (T ) = {M(t)| t ∈ T } , (3.4)

where |M (T )| <∞ and |.| denotes set cardinality.

Since the memory of the EMM can change over time, then the set of possible

states of the EMM also changes over time. In particular, the state of M(t) at the
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time t will be denoted as s(t) ∈ S(t), where S(t) is the set of all possible system states

at t. Note that, for t 6= t′, if NM(t) 6= NM(t′) then M(t) 6= M(t′) and S(t) 6= S(t′).

Additionally, let S(T ) be the set of all states of the EMM that occur during the time

period T , and consequently, S(T ) can be defined as,

S(T ) = {s(t)| t ∈ T } . (3.5)

Hence, S(T ) denotes the set of information that exists and can exist within the

computer during T . As t is assumed discrete, then |S(T )| < ∞. It should be

noted that, for past and current times the states of the system are known (i.e.,

∀t ∈ [−T1, 0], s(t) is known and, hence, S(T−) is known), whereas for future times

the states of the system are probabilistic (i.e., ∀t ∈ (0, T2], s(t) belongs to a probability

distribution over S(t) and, hence, S(T+) is probabilistic), as shown in Figure 3.1.

It should be noted that, this probabilistic view of the EMM’s future states con-

forms with those of real world systems where their future states are not known a

priori. For example, the outputs of programs are not known till they receive their

inputs that can vary from one run to the other. Also, other factors (e.g., attacks,

faults, etc.) can occur which, of course, cannot be exactly predicted by the defender.

Hence, although the instruction set of the EMM is deterministic in the sense that for

all i ∈ I the state of OR(i) is known if the state of IR(i) is known, both the state of

IR(i) and the execution time of i are generally not known deterministically leading

to the probabilistic view of S(T+).

Recall that, the state of any M ′ ⊆ M at t is denoted as s(t)|M ′. Then the

set of states of M ′ during T is S(T )|M ′. In particular, let the set of computer’s

input and output interfaces over T be defined as MΘ(T ) = {MΘ(t)| t ∈ T } and

MΦ(T ) = {MΦ(t)| t ∈ T } respectively. Then, their corresponding states during T

are S(T )|MΘ and S(T )|MΦ respectively. Finally, the states of the remainder of
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Figure 3.1: The EMM at past, current and future times.

M (T ), denoted as S(T )|M ∗, defines all information within the computer over T

that were not associated with information flows. Hence, S(T )|M ∗ is defined as,

S(T )|M ∗ = [S(T )|M ] \
[
S(T )|MΘ

⋃
S(T )|MΦ

]
(3.6)

Hence, this extension of the memory now allows the modeling of the dynamic

nature of the memory of modern computers as well as the information flows from

outside world into and out of the computer. But, as a result, it also requires that

S(T+) be viewed, in general, probabilistically and not deterministically.
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3.4 Multiple Control Units

Note that, the Maurer computer with a control unit (as per Definition 2.8) defines

only a single control unit for the system, and hence, can only be used to model systems

that have single processing units. It only supports the execution of single instruc-

tions and does not support the concurrent execution of sets of instructions. However,

modern computers have multiple processing units (e.g., multi-processor systems, spe-

cial purpose processors in interface cards, etc.) which execute multiple instructions

concurrently to increase processing speeds. To enable the modeling of these more

modern systems in the EMM, the single control unit C defined in Definition 2.8 is

replaced by a set of NC(t) control units, denoted as C(t), and defined as,

C(t) = {Ck | k = 1, 2, . . . , NC(t)}, (3.7)

where NC(t) is the number of control units in the system at the time t and each

Ck ∈ C(t) is a control unit as defined in Definition 2.8. Additionally, C(t) includes any

and all processing elements that can change the states ofM(T ). Hence, CPUs, GPUs,

DMA controllers, etc. are all considered as control units (i.e., they are elements in

C(t)). Due to this variety of control units, each Ck ∈ C(t) could have a different set

of instructions ICk , and consequently, the EMM’s complete set of instructions I(t) is

also extended and now defined as,

I(t) =

NC(t)⋃
k=1

ICk .

Additionally, instead of a single next instruction subset memory region NI associated

with a single controller, the memory is extended to include a set NI of NC(t) of next

instruction subset regions. Each NIk ∈ NI stores the next instruction to be executed

by the control unit Ck ∈ C(t). Hence, the composite NI is defined as,
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NI(t) = {NIk | k = 1, 2, . . . , NC(t)},

where, for simplicity, these are assumed to be disjoint. For notational simplicity, the

time notation will be omitted when denoting control units and will be used only when

needed contextually (i.e., without ambiguity, C(t) will be replaced by C, NC(t) by NC,

etc.).

As all control units are assumed to operate concurrently, concurrent changes to

the memory can occur, whereas the original Maurer model was restricted to single

sequential changes. Let ik denote the execution of an instruction i on control unit Ck ∈

C. In general, different instructions are assumed to have different execution times (i.e.,

no atomic execution time for instructions is assumed). Hence, ik’s execution can span

over multiple t time slots [100]. Let τ(ik) be the time interval needed for the execution

of ik on Ck and let min[τ(ik)] and max[τ(ik)] be, respectively, the time instants of the

beginning and the ending of ik’s execution. The ik induced memory changes can now

be viewed as being localized changes to particular spatial-temporal regions of S(T ).

The input and output regions of ik over the time period τ(ik) of ik’s execution can

be defined respectively as,

IR(ik, τ(ik)) =
⋃

∀t∈τ(ik)

IR(ik, t),

OR(ik, τ(ik)) =
⋃

∀t∈τ(ik)

OR(ik, t).

(3.8)

Therefore, as defined in Equation (3.8), IR(ik, τ(ik)) and OR(ik, τ(ik)) are sets

of spatial-temporal regions within S(T ) and not just the spatial regions as per the

original Maurer model.
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Figure 3.2: The execution of an instruction ik and the spatial-temporal subspaces
representing IR(ik) and OR(ik).

Figure 3.2 shows the system over the time period T (i.e., S(T )). In the figure,

a snapshot is taken of at a time instant t ∈ τ(ik) (i.e., at s(t)) that shows the

instantaneous input and output regions of ik, IR(ik, t) and OR(ik, t) respectively.

The figure also shows the spatial-temporal regions representing IR(ik, τ(ik)) and

OR(ik, τ(ik)). As per standard computer architectures, it will be assumed that ∀t ∈

τ(ik), IR(ik, t) ∩ OR(ik, t) = ∅ (i.e., IR(ik, t), OR(ik, t) are disjoint for all t). Note

that, this restriction enforces the EMM’s required causality properties. Moreover,

due to how Maurer instructions are defined, this is not at odds with standard models

of how instructions execute, as illustrated by the following example. Consider the

input and output regions of an exchange instruction that swaps the contents of two

memory registers. This high-level view of the instruction is represented in terms of

Maurer instructions as follows.
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Example 3.1. Consider the instruction:

i: SWAP R1, R2

that swaps the contents of registers R1 and R2. In real computers, the execution

of i occurs over a sequence of steps. Figure 3.3 shows a possible Maurer execution

of i. In particular, the figure shows that the execution of i can be considered as the

composite execution of two instructions i1 and i2. As shown in the figure, the execution

of the higher-level instruction i begins by executing the Maurer i1, which stores the

contents of R1 and R2 in the temporary locations temp1 and temp2. It is obvious that

IR(i1) = R1 ∪ R2 and OR(i1) = temp1 ∪ temp2 and, hence, IR(i1) ∩ OR(i1) = ∅

as required ( i.e., IR(i1) and OR(i1) are disjoint). The Maurer instruction i2 is then

executed to copy the contents of temp1 and temp2, respectively, into R1 and R2,

thereby completing the execution of the higher-level instruction i. Clearly, IR(i2) and

OR(i2) are also disjoint as required under the EMM. Hence, IR(i, t) and OR(i, t) are

disjoint for all t ∈ τ as a result of the higher-level instruction i’s decomposition into

its sequence of Maurer instructions. Moreover, instructions are, therefore, the atomic

constructs by which state changes to memory occur within the EMM. The closest

analogy, albeit a loose analogy, would be to the micro code instruction of modern

CPUs.

In addition, the next instruction to be executed at Ck is then given by iknext =

Ck(s(max[τ(ik)]) = DECk(s(max[τ(ik)])|NIk), where DECk and NIk respectively

denote Ck’s next instruction decoder and next instruction subset, whereNIj∩NIk = ∅

for all j 6= k.

As discussed throughout this section, the concurrent execution of instructions

via multiple control units allows the EMM to model computer systems with multiple
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Figure 3.3: The execution of the SWAP instruction.

control units, such as modern multi-processors and multi-cores systems. Additionally,

systems with dedicated processing units (e.g., GPUs, etc.) can also be modeled via the

EMM. Moreover, any hardware entity that enacts memory changes with a computer

system under the EMM is a control unit that executes instructions. Hence, the

processing done on network cards, GPU accelerators, etc. are defined in terms of

EMM control units and their actions.

Finally, it should be emphasized that, as discussed in Section 3.2, the EMM must

provide a causal system model. Hence, the input region of any instruction ik that is

executed over a time interval τ(ik) (i.e., IR(ik, τ(ik))) cannot contain regions belong

to any future states. Hence, IR(ik, τ(ik)) ∩ [S((max[τ(ik)], T2])|M ] = ∅, as will be

discussed later in Section 3.5.4.

3.4.1 Discussion

In this section, the EMM’s extensions required to allow for the modeling of con-

current execution of instructions have been introduced via the concept of multiple
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control units. For simplicity, the following assumptions are made, where these as-

sumptions agree with those implemented and enforced by standard current memory

architectures:

(i) Multiple read operations of the same memory region is allowed. Hence, the input

regions of concurrently executing instructions are not assumed to be disjoint

(i.e., IR(i1, t)∩IR(i2, t) need not to equal ∅, where i1 and i2 are two concurrently

executing instructions).

(ii) At any given time t, only a single write operation to specific memory region is

allowed. Hence, the output regions of concurrently executing instructions must

be disjoint (i.e., OR(i1, t) ∩OR(i2, t) = ∅).

(iii) Finally, in the case of concurrent read and write operations to the same memory

region, it is assumed that the write operation has the higher priority. Hence,

the read is assumed to be blocked until the write operation completes.

The above assumptions guarantee that concurrently executing instructions will

result in the correct and sound output (i.e., the computer will behave deterministically

with respect to individual atomic instruction executions), as discussed in the following

example.

Example 3.2. Consider the concurrent execution of the two instructions i1 and i2,

respectively, concurrently on control units C1 and C2 in the EMM, as shown in Fig-

ure 3.4. As shown in the figure, at a time t during the execution, IR(i1, t) and

IR(i2, t) need not to be disjoint ( i.e., IR(i1, t) and IR(i2, t) are allowed to intersect).

However, it is clear in the figure that OR(i1, t) ∩OR(i2, t) = ∅ and, hence, OR(i1, t)

and OR(i2, t) must be disjoint.

In general, computer memory hardware ensures that concurrent writes cannot

occur to yhe same memory location(s).
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Figure 3.4: The concurrent execution of instructions.

3.5 Software Components

One of the main tasks of the computers is to run programs. However, programs

have become more complex as software applications have evolved. Programs now

span the range from a simple “hello world” executables to programs running within

virtual machines. Within the EMM, the standard software engineering concept of

software components as callable sets of instructions of specific functionalities [101]

is used to represent programs. In general, a software component is defined as: “a

block of instructions and internal data that exists as a black box that performs specific

input-to-output mappings over given time frames” [102]. A simple program exists as

a software component on its own, whereas, a complex program exists as a potentially

concurrently executing set of components.

The rest of this section is organized as follows. Section 3.5.1 extends the defi-

nition of instruction compositions introduced in Section 2.3.4 from two instructions

to arbitrarily sequences of instructions. Section 3.5.2 defines software components,

with Section 3.5.3 defining execution traces and the input and output regions of these
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components. Section 3.5.4 then defines the different information sets of interest with

respect to software components. Section 3.5.5 introduces the notion of composite

software components. Finally, Section 3.5.6 provides a discussion that indicates the

modeling of stack in the EMM.

3.5.1 Instruction Composition

Before defining software components, the execution of an instruction composition pre-

sented in Equation (2.4) will be extended to cover a sequence of instruction executions.

Let IJ be a sequence of instructions that is defined by,

IJ = (ij| j = 1, 2, . . . , NJ), (3.9)

where J is an index set on I of length NJ > 2. Let the instructions in IJ be executed

sequentially in their indexed order. Note that, as per real world systems, it is possi-

ble that the instruction sequence contains instructions that will be executed within

different control units. For example, consider a sequence of instructions that includes

reading stored information from the disk and emailing it to a remote person. This se-

quence includes instructions that will be executed by the disk controllers, others that

will be executed by the network adapter controller, etc. Additionally, by extending

the composition of instructions discussed in Section 2.3.4 to instruction sequences,

then the execution of this instruction sequence can be modeled as an execution of a

single composite instruction, that is defined as,

IJ =
⊙
j∈J

ij = i1 ◦ i2 · · · ◦ iNJ . (3.10)

The execution of the instruction sequence IJ will create a series of state changes within

the system. Without loss of generality, the overall state change can be regarded as a
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single change from the initial state of the system, denoted as s, to the system state,

denoted as s′. This state change can be expressed as,

s′ ≡ IJ(s) ≡ iNJ (iNJ−1(. . . (i2(i1(s)))). (3.11)

Now consider the execution of the instruction sequence IJ as defined above in a

system with multiple control units over a time period τ ⊆ T . Concurrent execution

of IJ ’s independent instructions in different control units, of course, may occur. To

capture the timing related information, the execution trace of the IJ composition can

be defined as,

trace(IJ , τ) = {〈ij, Ck, τ(ij)〉 | ij ∈ IJ , Ck ∈ C, τ(ij) ⊆ τ} , (3.12)

where τ(ij) ⊆ τ is the time interval over which the instruction ij ∈ IJ was executed by

Ck ∈ C. Hence, trace(IJ , τ) captures the aspects related to the concurrent execution

of the instructions of IJ through the system by specifying the control units that

executed the instructions and the time intervals over which those instructions were

executed on each of the respective control units. Accordingly, trace(IJ , τ) provides

a detailed information about the control units that were involved in the execution

of the instruction sequence. Moreover, it should be noted that, there is no overt

requirement that the control units be synchronized1.

In addition, the input and output regions due to the execution of IJ during τ ,

IR(IJ , τ) and OR(IJ , τ) respectively, can be defined as,

1Within the EMM, the computer OS can be modeled as a program. Hence, it is the OS’s
responsibility to ensure the correctness of parallel high-level instruction execution orders via its
implementation of standard semaphore (or lock) constructs. Such issues though exist at much
higher levels than the Maurer instructions atomic levels.
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IR(IJ , τ) =
⋃

∀ij∈trace(IJ ,τ)
∀τ(ij)⊆τ

IR(ij, τ(ij)),

OR(IJ , τ) =
⋃

∀ij∈trace(IJ ,τ)
∀τ(ij)⊆τ

OR(ij, τ(ij)),

(3.13)

where IR(ij, τ(ij)) and OR(ij, τ(ij)) are respectively the input and output regions

of ij ∈ IJ as defined in Equation (3.8).

It should be noted that, trace(IJ , τ) is, by definition, deterministic for past times

while it is probabilistic for future times. Then, since t = 0 denotes the current time,

then all portions of IR(IJ , τ) and OR(IJ , τ) within the interval T− (i.e., the past

and current times) exist as subsets of S(T−), whereas all portions of IR(IJ , τ) and

OR(IJ , τ) within the interval T+ (i.e., the future times) exist in the probability

space S(T+). Hence, the computer’s operation is knowable when looking into its past

history and probabilistic when looking into the future, in keeping with the nature

of real-world computer operations. The construct trace(IJ , τ), therefore, defines the

spatial-temporal evolution of the subspace of S(T ) that is associated with IJ ’s exe-

cution that occurs during the executions of IJ ’s composite instructions, inclusive of

all possible concurrency ordering arising from multiple control units being used to

execute portions (or all) of the IJ instructions.

3.5.2 The Definition of Software Components

To define software components, the instruction composition defined in Equation (3.9)

is used as the building block. Let γ denote a software component that is defined as,

γ =
{
IJq | q = 1, . . . , Q

}
. (3.14)
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Each IJq is an instruction sequence as defined in Equation (3.9) that denotes the

possible input-to-output mappings that can occur by γ’s execution. Equation (3.14)

defines γ as the set of all possible sequences of instructions that can occur as a

result of executing the software component γ (i.e., inclusive of error conditions, all

possible input states, etc.). Of course, in any single instance of γ’s execution, only

one of these execution sequences will actually be run (i.e., only one set of the possible

memory state changes will actually occur each time γ is executed). Exactly which IJq

sequence executes (or runs) for any execution of (or call to) γ depends on its inputs,

as discussed in the following example.

Example 3.3. Let γ be a component (program) that calculates the roots of a quadratic

equation. Hence, it can be defined as γ = {IJ1 , IJ2 , IJ3}, where: IJ1 is the sequence of

instructions to be executed in the case of real non-equal roots, IJ2 is the sequence of

instructions to be executed in the case of real equal roots, and, IJ3 is the sequence of

instructions to be executed in the case of imaginary roots. Clearly, only one of these

sequences will be executed depending on the values of the parameters of the quadratic

equation that is passed as the input to any given call to γ.

Each software component γ must by definition occupy a memory region, which is

denoted as Mγ. In real world systems, Mγ corresponds to the memory region allocated

to programs (their storage on the disks, allocated instruction and data memory region

when they are executed, etc.). At any given time t, the contents of Mγ is denoted as

s(t)|Mγ ⊆ s(t)|M∗(t). Note that, for any two time instants t 6= t′, it is possible that

Mγ(t) 6= Mγ(t
′) (e.g., the component’s memory region changes due to the downloading

of new modules that changes the memory region required to hold the component) or

s(t)|Mγ 6= s(t′)|Mγ (e.g., the contents of the component’s memory region changes due

to the downloading of a new version). Definition 3.1 defines software components in

the EMM.
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Definition 3.1. A software component γ is defined as a set of instruction sequences

as shown in Equation (3.14) and has a memory region denoted as Mγ.

Note that, as shown in Definition 3.1, γ does not necessarily define a finite set.

Particularly, in cases when T2 → ∞, issues such as infinite loops would then cause

|γ| → ∞. More particularly, to be clear, γ defines the set of any and all possible

sequences of memory state changes that can occur whenever γ is executed.

3.5.3 The Input and Output Regions of Components

Consider the execution of γ over a time period τ ⊆ T . The execution trace of γ will

be defined by extending the prior trace construct defined in Equation (3.12) to cover

components as follows,

trace(γ, τ) = {〈ij, Ck, τ(ij)〉 | ij ∈ γ, Ck ∈ C, τ(ij) ⊆ τ}. (3.15)

In addition, γ’s input and output regions will also be defined by extending Equa-

tion (3.13) to components as follows,

IR(γ, τ) =
⋃

∀ij∈trace(γ,τ)

∀τ(ij)⊆τ

IR(ij, τ(ij)),

OR(γ, τ) =
⋃

∀ij∈trace(γ,τ)

∀τ(ij)⊆τ

OR(ij, τ(ij)),

(3.16)

where τ(ij) is the execution period of the instruction ij ∈ γ. Note that, IR(γ, τ) and

OR(γ, τ) are also spatial-temporal regions within S(T ).

Software components typically make extensive use of internal memory (e.g., pri-

vate methods and variables) that are not accessible by other components. However,
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Equation (3.16) denotes all spatial-temporal memory regions touched by γ’s execu-

tion during τ . The component’s internal memory region, denoted as EMR(γ, τ) is

defined as,

EMR(γ, τ) = IR(γ, τ)
⋃
OR(γ, τ)−

[
MΘ

⋃
MΦ

]
−

[ ⋃
∀γ′ 6=γ

(
IR(γ′, τ)

⋃
OR(γ′, τ)

)]
,

(3.17)

As defined in Equation (3.17), EMR(γ, τ) denotes all spatial-temporal input

and output regions of γ due to its execution during τ that are neither: (i) subsets of

the computer’s input or output interfaces, nor, (ii) read or written to by any other

software component γ′ that may exist on the computer. Hence, EMR(γ, τ) does

not refer to a private memory that is allocated specifically to the program and is not

written or read by other programs. Also, EMR(γ, τ) can change from one execution

to the other and, moreover, it is fully possible that EMR(γ, τ) = ∅. Importantly,

EMR(γ, τ) denotes all regions that remain private to γ during its execution and not

all regions that for security reasons should remain private (i.e., EMR(γ, τ) expressly

does not denote a security policy on γ’s execution).

Additionally, the external input region and external output region, denoted as

EIR(γ, τ) and EOR(γ, τ) respectively, are defined next as follows,

EIR(γ, τ) = IR(γ, τ) −EMR(γ, τ),

EOR(γ, τ) = OR(γ, τ)−EMR(γ, τ).

(3.18)

Hence, EIR(γ, τ) ⊆ IR(γ, τ) and EOR(γ, τ) ⊆ OR(γ, τ) denote all γ’s input and

output regions respectively during τ that are not internal regions.
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The affected and affecting regions in the context of software components are also

spatial-temporal regions, which can be defined by extending Definition 2.6 to soft-

ware components as follows. Let trace(γ, τ) be the execution trace of the software

component γ during the time period τ . Consider the two subsets M ′ ⊆ IR(γ, τ)

and N ′ ⊆ OR(γ, τ). The spatial-temporal regions that are affected by M ′ and the

spatial-temporal regions that affect N ′, respectively, under the execution of γ during

a time period τ , are then denoted as AR(M ′, trace(γ, τ)) and RA(N ′, trace(γ, τ))

respectively, and are defined as,

AR(M ′, trace(γ, τ)) =
⋃

∀M ′′∈M ′
AR(M ′′, trace(γ, τ)),

RA(N ′, trace(γ, τ)) =
⋃

∀N ′′∈N ′
RA(N ′′, trace(γ, τ)).

(3.19)

3.5.4 The Information Sets of Components

Consider the execution of the software component γ during the time period τ ⊆

[−T1, T2]. The set of information available for γ’s execution is denoted as dynamic(γ, τ)

and will be defined as the tuple,

dynamic(γ, τ) = 〈trace(γ, τ), IR(γ, τ),OR(γ, τ),S(τ)|IR(γ, τ),S(τ)|OR(γ, τ)〉 ,

(3.20)

where dynamic(γ, τ) defines the set of complete information contained within the

EMM about the execution of γ during the time period τ ⊂ T . An example of

dynamic(γ, τ) is as follows.
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Figure 3.5: The concurrent execution of the instructions of Example 3.4.

Example 3.4. Consider the software component γ that has the instruction composi-

tion IJ ∈ γ. Also, consider that IJ is defined as IJ = (i1, i2, i3) where:

i1: MOV R1, 5 (put the contents of memory region temp1 into R1).

i2: MOV R2, 10 (put the contents of memory region temp2 into R2)

i3: ADD R1, R2 (add the contents of R2 and R1 and place the result in R1)

Additionally, define C = {C1, C2} where C1, C2 are two cores in a dual-core system.

Consider that IJ is the executed instruction sequence that occurs when γ is executed

τ . Since i1, i2 are independent, they can be executed concurrently. As shown in

Figure 3.5, i1 and i2 are independent instructions and can be executed concurrently.

Then, the execution of i3 occurs after the execution of i1 and i2. Hence, a possible exe-

cution trace of γ can be as follows: trace(γ, τ) = {〈i1, C1, τ1〉 , 〈i2, C2, τ1〉 , 〈i3, C1, τ2〉},

where τ1, τ2 ⊂ τ and τ1 ∩ τ2 = ∅. Whereas, IR(γ, τ) = R1 ∪ R2 ∪ temp1 ∪ temp2,

OR(γ, τ) = R1 ∪R2, and so on.

Intuitively, dynamic(γ, τ) = 〈∅, ∅, ∅, ∅, ∅〉 if no instructions in γ have been ex-

ecuted during τ . It should be noted that, Equation (3.20) defines the full set of
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run-time information regarding γ’s execution during τ that is or can be constructed

via γ’s instruction executions. As dynamic(γ, τ) is defined in terms of instructions,

their timings, and their input to output mappings, all possible real-world program-

ming constructs are expressible within this software component notation, albeit from

an information-centric viewpoint (i.e., to define γ for an operational computer, one

must know all possible paths through a software component that can occur for all

possible inputs to that component). Hence, γ is primarily a useful theoretical con-

struct as its precise statement in practice is largely only feasible for denoting simple

components. Although it should be noted that knowing the possible paths through

software components is a common requirement of software testing regimes.

Also, from the malware detection perspective, the static information available

about each software component at time t ∈ T must be defined, where this will be

denoted as static(γ, t). Note that, static(γ, t) is the information that can be extracted

from statically analyzing γ when it is not executing. Accordingly, static(γ, t) is

defined within the EMM as,

static(γ, t) = s(t)|Mγ. (3.21)

Hence, static(γ, t) defines the static information about γ that exists at the time in-

stant t. It should be noted that, for t 6= t′, it is possible that Mγ(t) 6= Mγ(t
′) or

static(γ, t) 6= static(γ, t′). For example, if γ did not exist on the computer until the

time t then, by definition, static(γ, t′) = ∅ for all t′ < t. In general, static(γ, t) pro-

vides a snapshot of the non-execution measurable information about γ at t, whereas

dynamic(γ, τ) provides the run-time measurable information available about γ’s ex-

ecution during τ ⊂ T .
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Note that, for Maurer model, the required causality properties are preserved in

a natural way within Definition 2.4 since IR(i) for all instructions i ∈ I, it the case

that,

∀i ∈ I,∀t ∈ T , s(t)|IR(i) ∩ [S((t, T2])|M ] = ∅, (3.22)

which ensures the causality of the modeled system by ensuring the input regions of

instruction cannot come from future states.

Finally, the set of casual information regarding γ that is available within the

system during T will be denoted as Info[γ,T ] and will be defined as the tuple,

Info[γ,T ] =

〈⋃
∀t∈T

static(γ, t),
⋃
∀τ⊆T

dynamic(γ, τ)

〉
. (3.23)

Hence, Info[γ,T ] contains the complete information about all static representations

that γ has during T and contains also the complete information about all executions

of γ during T .

3.5.5 Composite Software Components

To enable the modeling of complex programs, the notion of instruction compositions

can be extended as follows. Let Γ(t) be the set of all software components that exist

in the EMM at t, and defined as,

Γ(t) = {γj | j = 1, 2, . . . , NΓ(t)}, (3.24)

where it should be noted that, for t 6= t′ it is possible that Γ(t) 6= Γ(t′). Let

P = (p | p = 1, 2, . . . NP ) be an index set defined over Γ(t). A composite software

component can then be denoted as a set γP defined as,
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γP = {γp | p ∈ P} . (3.25)

Equation (3.25) introduces the EMM’s generalized definition for representing pro-

grams as the collection of all possible γP instruction compositions that can occur

when the program is run for all possible input and output patterns, inclusive of those

that are event based and/or require user input/output. By definition, such composite

components are inclusive of components that may exist at different times within the

EMM. This is notationally important as it, for example, allows for the modeling of

executable code that is downloaded at run-time, potentially, on a just-in-time or as-

needed basis. This focus on modeling programs in terms of their possible execution

traces is necessary to account for the complexities that can arise within modern pro-

graming constructs (i.e., most programs are no longer focused on performing simple

input to output mapping as per, for example, a “hello world” program).

This approach allows complex programs to be defined in terms of their component

compositions, under the following extensions of Equations (3.15) to (3.23) as follows.

trace(γP , τ) =
⋃
∀γp∈γP
∀τ ′⊆τ

trace(γp, τ
′), (3.26a)

IR(γP , τ) =
⋃
∀γp∈γP
∀τ ′⊆τ

IR(γp, τ
′), (3.26b)

OR(γP , τ) =
⋃
∀γp∈γP
∀τ ′⊆τ

OR(γp, τ
′), (3.26c)

EMR(γP , τ) =
⋃
∀γp∈γP
∀τ ′⊆τ

EMR(γp, τ
′), (3.26d)
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EIR(γP , τ) =
⋃
∀γp∈γP
∀τ ′⊆τ

EIR(γp, τ
′), (3.26e)

EOR(γP , τ) =
⋃
∀γp∈γP
∀τ ′⊆τ

EOR(γp, τ
′), (3.26f)

AR(M ′, trace(γP , τ)) =
⋃
∀γp∈γP
∀M′′∈M′
∀τ ′⊆τ

AR(M ′′, trace(γp, τ
′)) (3.26g)

RA(N ′, trace(γP , τ)) =
⋃
∀γp∈γP
∀M′′∈N′
∀τ ′⊆τ

RA(N ′′, trace(γp, τ
′)) (3.26h)

dynamic(γP , τ) =
⋃
∀γp∈γP
∀τ ′⊆τ

dynamic(γp, τ
′), (3.26i)

static(γP , τ) =
⋃
∀γp∈γP
∀t∈τ

static(γp, t), (3.26j)

Info[γP ,T ] =
⋃
∀γp∈γP

Info[γp,T ]. (3.26k)

3.5.6 Discussion

Since the stack exists in almost all modern computer architectures and it is a source of

a number of attacks (e.g., stack overflow, etc.) [103], we will discuss the representation

of the stack in the EMM. In particular, it should be emphasized that, this work does

not propose any approach to protect the stack from malicious attacks as the EMM’s

focus is to provide a general model of all attacks. The objective of this subsection is
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Figure 3.6: The stack architecture.

to show that the stack (as an example of special memory structures) can be modeled

within the developed EMM in terms of the developed software component construct.

Figure 3.6 shows an example architecture of the stack as discussed in [100, Chap-

ter 10, pp. 401]. Data items can be added to (or retrieved from) the stack only

through its top, which is pointed to by the stack pointer (SP ). In particular, the

stack pointer points to the next empty location at the top of the stack. The data

item to be added to (or retrieved from) the stack is stored (or will be stored) in the

accumulator register A. Adding items to the top of the stack is achieved by execut-

ing a special instruction that is commonly denoted as the PUSH instruction. The

execution of the PUSH instruction includes:

(i) Copying the contents stored in the accumulator (A) to the top of the stack that

is pointed to by the stack pointer (SP ), and

(ii) Updating the contents of SP , such that, it points to the next empty location in

the top of the stack.
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Figure 3.7: Storing data in the stack

Whereas, retrieving items from the top of the stack is achieved by executing another

special instruction that is commonly denoted as the POP instruction. The execution

of the POP instruction includes:

(i) Updating the contents of SP , such that, it points to the top stored item, and

(ii) Copying the contents of the location that is pointed to by SP into the accumu-

lator register A.

In the EMM, the stack exists as a subset of the memory M . Denote the stack

as Mst ⊂ M , the stack pointer as SP ⊂ M , and the accumulator as A ⊂ M .

The PUSH and POP instructions can also be represented in the EMM. However,

as discussed in Section 2.3.2.1, the instructions in the EMM are uniquely charac-

terized by their input and output regions. Hence, each memory location in the

stack need to have its own PUSH and POP instructions that store or retrieve data

from this particular location. Accordingly, instead of a single PUSH instruction,

a set PUSH =
{
iuj |j = 1, 2, . . . , Nst

}
of PUSH instructions will be defined, where

PUSH ⊂ I and Nst is the size of stack (i.e., number of storage units in the stack).

Similarly, instead of one POP instruction, a set POP =
{
ipj |j = 1, 2, . . . , Nst

}
of

POP instructions will be defined, where POP ⊂ I, as discussed in Example 3.5.
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Figure 3.8: Retrieving data from the stack.

Example 3.5. Consider a stack as discussed above. Let SP point to a location L,

where 1 ≤ L ≤ Nst, then:

• To store a new data in the stack, the instruction iuL ∈ PUSH will be executed.

Additionally, IR(iuL) = A∪SP and OR(iuL) = Mst(L)∪SP , where Mst(L) is

the L location in the stack. Figure 3.7 shows this example of PUSH operation.

• To retrieve a stored data from the stack, the instruction ipL ∈ POP will be

executed, where IR(ipL) = Mst(L) ∪ SP and OR(ipL) = A ∪ SP . Figure 3.8

shows this example of POP operation.

As discussed above, it is clear that the stack can be simply modeled in the EMM

taking into account the nature of instructions in the model. It should be noted that,

managing PUSH and POP instruction sets is carried out by a software component

γstack, which is a component of the system’s OS.
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3.6 The System Security Policies

3.6.1 Introduction

Security policies play an important role in computer security research in general and

computer virology research in particular. Moreover, with respect to malware, security

policies define which programs are to be considered malware from the system’s per-

spective. By definition, malware must produce at least one security policy violation

(malware is defined as: “a set of instructions that causes the system’s security policy

to be violated” [104, Definition 22.1, pp. 613]). In addition, in many cases, benign

component executions could also cause information changes that are similar to what

may be considered malware in other contexts. Hence, legitimate applications could

be considered malware if security policies are not taken into account. For example,

a computer virus could copy code into a target program but so could the program’s

own update processes. Similarly, a spyware program may send passwords off the

computer but so would a standard remote login processes. The distinction between

benign components and malware in such cases need to be defined. Within the EMM,

this is accomplished by considering whether a perfectly knowledgeable defender would

authorize the component to execute given a complete knowledge of its complete in-

formation (i.e., given Info[γP ,T ], would such a defender authorize or not authorize

γP ’s execution).

It should be noted that, defining malware in terms of malicious intent is not

followed within the EMM. This is because the attacker’s intent is not a directly

defenders’ measurable quantity. Instead, intent exists within the mind of the attackers

placing it outside of the EMM’s information context. The need to quantify security

requires to focus on security constructs and models of those aspects that can be

directly measured by the defender (i.e., in this case, aspects that are within the EMM
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modeled information sets). Security cannot be quantified based on issues which are

outside of the defender’s context to measure, such as the nature of the human intent

which may have given rise to an observed event with the defended environment.

A system’s security policies should be specified such that they consider all relevant

security aspects, which are confidentiality, integrity, and availability [104, pp. 97]. If

the policies do not cover these aspects then the result would be a vulnerable system.

In general, the security policies function to partition the set of states of the system into

a set of authorized (secure) states and a set of unauthorized (non-secure) states [104,

Definition 4.1, pp. 95]. The system is secure if all of the system state transitions are

only between secure states no non-secure state is never entered, otherwise, the system

is vulnerable [104, Definition 4.2, pp. 95]. In general, the entity that is responsible

of enforcing the security policies (or a part of the security policy) is denoted as the

security mechanism(s) [104, Definition 4.7, pp. 98].

3.6.2 Formal Definition

Within the EMM, the defended environments’ security mechanisms are defined via

the constructs of the system’s set of perfect security policies, where these provide

the theoretically necessary ground-truth as to whether events are or are not attacks.

In this section, the EMM’s perfect security policies are formally defined as follows.

Without loss of generality, a security policy is denoted as π and is defined in its most

basic form as a map,

π : S(T )→ {−1, 1}. (3.27)

Hence, security policies are, in general, defined as the maps from the EMM informa-

tion space into the set {−1, 1}. In particular, in the case of software components,

security policies can be defined as,
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π : {Info[γP ,T ]} → {−1, 1}, (3.28)

given that Info[γP ,T ] ⊂ S(T ). That is to say, security policies are defined as

maps from the complete sets of information available over T about the composite

component onto the set {−1, 1}. Moreover, π[Info[γP ,T ]] = 1 denotes that an

ideal defender given perfect and complete information about S(T ) would authorize

γP , whereas π[Info[γP ,T ]] = −1 denotes that the ideal defender will not authorize

γP (i.e., given perfect and complete knowledge of γP , the defender would denote γP

as an attack).

It should be noted that, defining policies with respect to component compositions

allows the model to be inclusive of modern complex malware for which the overall

malicious functions are distributed over many individual components and where the

actions of individual components may be denoted as non-malicious nature if they were

assessed in isolation (e.g., K -ary malicious codes [95], multiprocess malware [96], etc.).

The complete set of the system’s perfect security policies is then denoted as Π∗ and

defined in Definition 3.2 as follows.

Definition 3.2. The set of perfect security policies of the EMM is defined as the set

of all policies Π∗ = {πj | j = 1, . . . , NΠ∗}, where each πj ∈ Π∗ is a security policy as

defined in Equation (3.27).

Clearly, as shown in Definition 3.2, the set of perfect security policies Π∗ is a

theoretical concept in that they are not available to a real-world system defender, i.e.,

the defender would need to possess formal method proofs of the system’s security or

have access to all future information about the defended environment. Note that, as

will be shown in Definition 4.5, the violation of any π will result in the violation of

Π∗. The formal modeling of the violations of confidentiality, integrity and availability
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will be discussed in details in Section 4.1. Moreover, this notion of Π∗ should not be

confused with the notion of a system’s operational security policies. Π∗ denotes the

perfect set of policies that could be instantiated only if the defender has perfect and

complete information about all of the defended environment’s past and future states.

Hence, the Π∗ construct solely provides the necessary theoretical ground-truth as to

whether or not an observed event is or is not associated with an attack.

3.7 The Extended Maurer Model (EMM)

Finally, after reviewing each of its components separately, the extended Maurer model

(EMM), can now be formally defined as:

Definition 3.3 (The extended Maurer Model, EMM). The EMM is defined as the

tuple EMM = 〈M, I,S, B, C,Γ,Π∗〉 where:

1. M is the finite set of the memory as discussed in Section 3.3.

2. I is the finite set of instructions as discussed in Section 3.3.

3. S is the finite set of states as discussed in Section 3.3.

4. B is the base set that as defined in Definition 2.2.

5. C is the set of control units, where |C| ≥ 1, as defined in Section 3.4.

6. Γ is the set of software components that exist on the EMM as discussed in

Section 3.5.

7. Π∗ is the system’s set of perfect security policies as defined in Section 3.6.
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3.8 Discussion

Throughout the previous sections, the details and required extensions of the EMM

have been discussed and developed. In this section, the Turing equivalence of the

EMM will be discussed. Also, the use of the EMM to model important computing

aspects will be highlighted. In particular, the use of the EMM to model virtual

machines, web browsers, self-modifying code, and computer networks will also be

discussed in more details.

3.8.1 Turing Reducibility

Since Maurer model has been shown to be a Turing equivalent model [76], it is impor-

tant to show that the developed EMM is also retain this Turing equivalency. From

Church’s thesis2, showing that the EMM is a Turing equivalent model allows its use

as a model of general computations.

The core difference between Maurer computer and the EMM is that in Maurer

computer instructions are only allowed to execute sequentially one after another (i.e.,

one instruction during the time slot), whereas, as discussed in Section 3.4, in the

EMM, up to NC instructions can be executed in parallel during any time slot. By

showing that the EMM can be reduced to the original Maurer model, it can be shown

that the EMM is also a Turing equivalent model as per the original Maurer model.

We will discuss this in the following lemma.

Lemma 3.1. The EMM is reducible to Maurer computer and, therefore, retains its

Turing-equivalency.

Proof. We will show that the instruction executions in the EMM can be reduced

to the instruction executions of the original Maurer model which implies that the

2Church’s thesis states that: every effective computation (or algorithm) can be programmed to
run on a Turing machine [105, Section 2.4, pp. 35].
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EMM is also a Turing equivalent model. Let the EMM have 1 < NC < ∞ control

units. Let i =
{
ik|k = 1, 2, . . . , NC

}
be the set of instructions to be executed by the

control units during the time instant t with IR(ik) and OR(ik) being the input and

output regions respectively of each ik as defined in Equation (3.8). Since the output

regions of concurrently executing instructions are assumed disjoint under the EMM as

discussed in Section 3.4, then the overall set of memory regions that will be changed

due to the execution of these instructions is defined by
⋃NC
k=1 OR(ik). Additionally, the

overall set of memory regions that affect the changed set of memory is
⋃NC
k=1 IR(ik).

Accordingly, without loss of generality, the overall effect of executing NC concurrent

instructions within the EMM is that the state of the EMM is simply changed from

one state to another state, and from the definition of instructions in Maurer model

introduced in Equation (2.3), this change can be considered to be a result of the

execution of a single composite instruction denoted as I. Hence, I can be expressed

as the mapping I : S → S with IR(I) =
⋃NC
k=1 IR(ik) and OR(I) =

⋃NC
k=1 OR(ik).

That is to say, the execution of the parallel instructions within the EMM can be

considered as the execution of a single composite instruction I within the original

Maurer model occurring over some period of time (i.e., where each instruction i ∈ I

now executes sequentially). As the parallel instructions executions of the EMM can

be reduced to a single composite Maurer instruction’s sequential execution over time,

then the Turing equivalence property of the Maurer model still holds as any EMM

parallel instruction execution can be reduced via the above process to the original

Maurer model.

It should be noted that, the Maurer model does not define the time required

for instructions to enact their memory state changes. Hence, within the EMM, these

sequences of individual state changes can simply be assumed to occur within one time
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slot. Lemma 3.1 shows that the EMM retains the Turing equivalence of the original

Maurer model. Hence, the EMM can also serve as a general model for computations.

3.8.2 Modeling Virtual Machines

By Lemma 3.1, the EMM can be used to model general programs and computations.

However, there is a set of programs whose modeling needs to be explained in a more

details. These programs are the virtual machines (VMs). In general, as shown in

Figure 3.9, a VM is a software application that is used to run an unmodified operating

system, which is usually denoted as the guest OS, over the existing operating system,

which is denoted as the host OS [106]. Hence, a VM running in the EMM can

be considered as a program that is being executed within the model. The most

efficient approach to model VMs within the EMM is via a hierarchical structure of

the EMMs, where the host computer is represented as first level EMM and each

VM is represented by another separate nested EMM model. Moreover, if the set of

programs within a VM includes a VM within it, another third level of models would

then be needed to model the execution of programs within this VM (i.e., the number

of levels of models has no limit). In this hierarchical organization, complex programs

such as VMs and modern browsers can efficiently represented within the EMM while

still retaining their commonly perceived natures (i.e., VMs see virtualized hardware

component as presented to them under software control, the complexities of which

are best represented via hierarchical nested EMMs). Clearly, modern multi-tabbed

browsers can also be represented by a similar hierarchical EMM approach.

3.8.3 Executing Interpreted Programs

In this subsection, we discuss the execution of the interpreted programs in the EMM.

Without loss of generality, there are two general categories of programs:
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Figure 3.9: The internal view of a computer that has a VM.

• Compiled programs: The compiler translates the program’s instructions to the

machine’s instructions that can be executed by the computer [107, Chapter 27,

pp. 511]. This translation needed to be done once and then the executable code

can run on the machine without further need to the compiler.

• Interpreted programs: The interpreter translates the program’s instructions in

instruction-by-instruction basis during the execution of the program [107, Chap-

ter 27, pp. 511]. Hence, this translation is needed as the program executed

within the interpreter.

It should be noted that, both categories have their advantages and disadvantages, i.e.,

in terms of the execution speed, platform dependency, code protection, etc. In this

dissertation, the objective is not to compare between them. The objective is to show

that the EMM is generic, in that, the execution of the programs belonging to both

categories can be represented in the model. In general, the execution of compiled

programs in the EMM was described in the preceding sections. Accordingly, this

subsection focuses on the execution of interpreted programs.

Without loss of generality, the execution of interpreted programs within the EMM

follows the same approach as the execution of the compiled programs with only one
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difference. In particular, the interpreter must first translate the higher-level instruc-

tion to be executed into the machine code sequence that actually will be executed by

the CPU as discussed in the following example.

Example 3.6. Consider the exchange instruction i discussed in Example 3.1. If i is

an instruction in a compiled program, then i will be replaced by the CPU’s machine

codes for i1 and i2 when the program is compiled. Then each time the program is run,

i1 and i2 will be executed by the system’s control units.

Now, consider that i is an instruction in an interpreted program. Then, each time

to run the program, an instruction i′ which corresponds to translating i into its associ-

ated set of machine instructions will be executed first. Hence, as per the above, OR(i′)

will then contain the machine code of i1 and i2 ( i.e., it is preceded with the transla-

tion step). The process performing this translation is the EMM software component

γinterpreter, which is responsible for mapping its higher-level language constructs into

control unit instruction sequences for their execution. As shown in Figure 3.10, i′

will be executed to translate i into i1 and i2. Then, the execution will continue as

discussed in Example 3.1. Accordingly, the execution traces of interpreted programs

contain more instructions correspond to the translation of the program’s instructions

into machine code.

That is to say, the only different is that the execution of the interpreted instruc-

tions takes more time because their execution is under the control and management

of the interpreter which is just a form of software component (or collection of com-

ponents) under the EMM. Other than that, the execution of these instruction follows

the same general process as the instruction execution discussed previously.
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Figure 3.10: Example of execution of an interpreted instruction.

3.8.4 Modeling Self-Modifying Code

Self-modifying code is used to hide the internal constructs of programs to protect,

for example, the intellectual property they contain [108]. However, viruses also can

use self-modifying code to hide their malicious functions. Within this subsection,

we will discuss the modeling of this type of code via the EMM. It should be noted

that, the objective of this work is not to propose any approaches or new models for

self-modifying code. In particular, the objective of this subsection is to show that

this type of code can be represented in the proposed EMM.

Without loss of generality, in the model of the stored-program computers, pro-

gram’s instructions and data are held in a single storage structure [108]. Because of

this, the program’s code can be treated as data and, hence, can be read and written

by the code itself. Accordingly, in the EMM, the execution of self-modifying code

instructions simply follows the EMM’s standard instruction execution model except

that the output regions of the self-modifying code instructions are the memory regions

of the component itself, as discussed in the following example.
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Figure 3.11: The execution of self-modifying code.

Example 3.7. Consider a software component γ. As discussed in Section 3.5.4, γ

is located in the memory at Mγ. Since Mγ contains the data and instructions of γ,

then Mγ can be partitioned into two regions: one for the data and the other for the

instructions, as shown in Figure 3.11. Hence, in general, if i ∈ γ is a self-modifying

code instruction, then Mγ ∩ OR(i) 6= ∅, as shown in Figure 3.11. More generally,

Mγ ∩OR(γ) 6= ∅ ( i.e., the component’s memory region intersects with the program’s

output region).

Accordingly, self-modifying code can be expressed in the EMM as instructions can

have output regions that at future times are then also fetched as next instructions.

3.8.5 Modeling Computer Networks

Finally, we discuss the use of the EMM to model computer networks. Consider a net-

work that consists at time t of 1 < Nnet(t) <∞ computers. To model this network, we

will first define an EMM (Definition 3.3) for each computer. Then the network can be

simply defined as the union over all of these individual EMMs. Hence, the network will

be defined as EMMnet(t) = 〈Mnet(t), Inet(t),Snet(t), Bnet(t), Cnet(t),Γnet(t),Πnet(t)〉

such that:
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• Mnet(t) =
⋃Nnet(t)
j=1 Mj,

• Inet(t) =
⋃Nnet(t)
j=1 Ij,

• Snet(t) =
⋃Nnet(t)
j=1 Sj,

• Bnet(t) =
⋃Nnet(t)
j=1 Bj,

• Cnet(t) =
⋃Nnet(t)
j=1 Cj,

• Γnet(t) =
⋃Nnet(t)
j=1 Γj, and,

• Π∗net(t) =
⋃Nnet(t)
j=1 Π∗j .

That is to say, the memory of the network model is the union of the memories of

all computer models and the same applies for all modules of the model. No assump-

tion is made regarding single system clock as each computer may have its own clock

where clock synchronization mechanism may or may not be used to synchronize the

clocks of the network nodes (e.g., [109]). Note that, time is still viewed as discrete.

Even without clock synchronization, as long as Nnet(t) < ∞, there will still always

exist ε > 0 such that ε is less than the minimum offset between any two clock ticks of

any two systems in Nnet(t). Therefore, ε can be used as the theoretical reference time

frame for the constructed composite EMM network model. Within this networked

EMM view, all entities that can change information within the network are viewed

as computers with respect to the EMM. Therefore, routers and other network equip-

ments are viewed as special purpose computers within the EMM as, by definition,

they contain EMM’s control units.

Clearly, this network based EMM extension can be applied to both wired and wire-

less networks as well as mixed networks. The only limit in scale is that |Nnet(t)| <∞

for all t ∈ T . Hence, the EMM can be applied to model modern enterprise and criti-

cal infrastructure networks that have wireless elements and sensors that come and go
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(e.g., modern smartphones and tablets) as well as stand-alone embedded devices (i.e.,

the EMM spans the continuum of modern computer network deployment). However,

it should be emphasized that, the EMM is limited to only the modeling of digital

information and, therefore, it cannot be used for example to model wireless jamming

attacks or other attacks that exist within analog domains (i.e., as a core result of the

definition of B within the Maurer model).

3.9 Summary

In this chapter, the details of the extensions needed for developing the EMM from

the Maurer model have been discussed. In particular, in Section 3.3, the various

components of the memory have been discussed. The input and output interfaces

were defined to enable the system to model and reason about the information flow

to and from the system, which is necessary to model security related concerns. In

Section 3.4, the modeling of multiple control systems was discussed, which enables

the EMM to model modern multi-processor and multi-core systems. The detailed

definitions of programs and their execution have been introduced in Section 3.5. The

definitions of perfect security policies have been introduced in Section 3.6. With

these extensions, the EMM is able to model different aspects of modern programs

and their executions within the a defended environment. In particular, the EMM

can be used to capture how programs interact with different memory regions during

their executions. Finally, within Section 3.8, the model has been shown to retain the

Turing equivalence property of the original Maurer model and has been also shown

to be able to model wired and wireless computer networks.
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Chapter 4

Modeling Security Policies and

Malware

In Chapter 3, the components of the EMM were developed. In this chapter, the EMM

will be used to model security policies violations and, therefore, common classes of

malware, i.e., where the modeling of the security policy violations becomes the basis

for defining malware behaviors within the EMM.

More specifically, within the EMM, malware is modeled as software components

whose execution traces cause integrity, availability, or confidentially violations within

the given modeled system. In addition, to enable the more general modeling of

bots, the unauthorized usage of the system resources will also be considered (i.e.,

assuming that, the bots are structured so as not to cause integrity, confidentiality,

or availability violations of systems that they run on and only consumes system’s

available resources without authorization). These standard security policy violations

are innately information-centric in that they deal with:

(i) When and how information is passed out from a computer system to the external

world,
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(ii) How information changes over time,

(iii) The time periods over which modifications to information occur, and,

(iv) Whether system resources (e.g., control units, memory, etc.) should be allocated

to support particular information processing tasks.

As will be highlighted, the EMM enables the modeling of the above standard security

violations viaits theoretical construct of perfect security policies (Π∗).

It should be noted that, a policy-based definitions of malware cannot be avoided.

The reason is that, in many cases, the execution of benign components can cause in-

formation changes that are identical to what may be considered malware in different

contexts. In such cases, the distinction between normal components and malware

can at least be theoretically defined in terms of whether a perfectly and completely

knowledgeable defender would authorize the component to execute given full knowl-

edge of its past and future information set. Such perfectly informed authorization

policies of course do not and cannot exist in the real-world. But such definitions are

of use theoretically to arrive at the necessary formal definitions of what constitutes

malware.

The remainder of this chapter is organized as follows. Section 4.1 proposes formal

definitions of example violations of the different security policies within the context

of the EMM. Section 4.2 introduces example EMM formal definitions for a number

of common malware classes via their enacted behaviors. Section 4.3 discusses the

completeness of the EMM, where it shows that the model can be used to model any

execution of malware. Finally, Section 4.4 summarizes the chapter.
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4.1 Modeling Security Policies Violations

In this section, the violation of the standard security policies under the EMM will be

formally defined. In particular, the violations of confidentiality, integrity, availability

and resource usage policies will be discussed. It should be noted that, we are only

concerned with violation of policies with respect to the EMM’s modeling of measur-

able digital information. For example, assume an authorized employee in a company

opened a confidential file on the computer and then used a camera to take a photo

of its contents as displayed on the screen. This employee then sells this photo to the

company’s competitors. The employee has clearly violated the company’s confiden-

tiality policy. However, the incident is also clearly outside the scope of the EMM’s

modeled and, hence, measurable information sets. Hence, such attacks are outside

the scope of attacks for which the EMM is intended to reason about.

It should be also noted that, the term policy violation as used in English is a

broad term that includes many scenarios covering a variety of possible formal defi-

nitions. Accordingly, the exact nature of how violations of different security policies

can occur within tee mathematics of the EMM can vary widely. Hence, we are not

trying to propose unique general definitions for each form of policy violation. Instead,

our objective is to demonstrate the ability of the EMM to model such violations. For

example, as will be seen, Definition 4.1 does not uniquely cover all possible definitions

of confidentiality policy violations. Specifically, Definition 4.1 covers only cases where

an unauthorized process reads a confidential information. Cases where a user that is

authorized to read the information but not authorized to copy it to another location

are not covered. Hence, at this stage, we are only seeking to introduce sample be-

havioral scenarios of how the EMM can model policy violations, whereas Section 4.3

addresses the completeness of the EMM.
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4.1.1 Modeling Confidentiality Policies Violations

Confidentiality policies are also known as Information Flow Policies [104, pp. 97].

In general, they are used to define the authorized entities (i.e., users, processes, etc.)

that have the right to access and use confidential information. In addition, confi-

dentiality policies should also clearly define the system states leading to confidential

information leaks to the unauthorized entities. As discussed in [104, pp. 97], these

states include not only the leakage of the rights to unauthorized parties but also the

illicit transmission of confidential information without an accompanying leakage of

rights.

Within the EMM, one typical form of violating the confidentiality policies can

be described and modeled as follows. The confidentiality policy associated with a

set of information can be viewed as having been violated when this information is

read by an unauthorized software component. Hence, let dynamic(γP , τ) denote the

execution of the composite component γP during the time period τ ⊆ T in the

EMM. Additionally, let N(τ) ⊂ M (T ) be a memory region that contains a set of

information that is confidential with respect to γP (i.e., γP is unauthorized to read

the information). Consequently, γP violates the confidentiality of N(τ) if it partially

or totally reads the information contained in it (i.e., if and when a subset of N(τ)

becomes a subset of the input region of γP ) and there did not exist any security

policy allowing this read access. Formally, such an EMM confidentiality violation is

described by Definition 4.1 as follows.

Definition 4.1 (Confidentiality Violation). Consider an EMM that has N(τ) ⊂

M (T ) that contains confidential information, such that, N(τ) is deemed to be con-

fidential by the defender with respect to any given composite software component γP

during the time period τ ⊆ T , where N(τ) 6= ∅. Then, the execution of γP during



82

the time period τ ( i.e., dynamic(γP , τ)) violates the confidentiality of N(τ), if the

following conditions occur:

(i) N(τ) ∩ IR(γP , τ) 6= ∅, and,

(ii) @π ∈ Π∗ such that π[dynamic(γP , τ))] = 1.

Where Π∗ is as defined in Section 3.6. As shown above, Definition 4.1 provides a

basic form of the confidentiality policies violations as represented within the EMM.

Clearly, other classes of confidentiality violation can be developed similarly. Again,

the use of Π∗ in such definitions is required as this provides the necessary theoretical

ground-truth required to differentiate between attack and normal behavior with both

perform Definition 4.1-(i) step.

4.1.2 Modeling Integrity Policies Violations

Without loss of generality, integrity policies are used to clearly identify the entities

that are authorized to alter specific elements of stored information. In addition, these

policies should also identify the authorized ways with which all authorized entities

are allowed to alter the information [104, pp. 97]. Accordingly, the violation of the

integrity policies occurs due to the alteration of the information by unauthorized

entities or in unauthorized ways.

Within the EMM, a typical form of the violation of an integrity policy is described

and modeled as follows. Since the integrity policy of a set of information is violated

when it is modified by an unauthorized software component, then again consider

a memory subset region N(τ) ⊂ M (T ) where τ ⊆ T holding information whose

integrity is to be protected. Consider also the composite component γP which is not

authorized to alter the information stored in N(τ). Then, γP clearly violates the

integrity of N(τ) during any execution during a time period τ if its output region
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intersects with N(τ). Formally, the above violation of an integrity policy scenario is

described by Definition 4.2 as follows.

Definition 4.2 (Integrity Violation). Consider an EMM in which N(τ) ⊆M(T ) has

been denoted as an information set that should not be altered by any composite software

component γP ’s execution where τ ⊆ T and N(τ) 6= ∅. Then, the execution of γP

during τ ( i.e., dynamic(γP , τ)) violates the integrity of the information contained in

N(τ) if the following conditions apply:

(i) N(τ) ∩OR(γP , τ) 6= ∅,

(ii) @π ∈ Π∗ such that π[dynamic(γP , τ))] = 1.

Definition 4.2 reflects the ability of the proposed EMM to model this example

of violations of the integrity policies, where again other classes of integrity policy

violations could also be modeled by the EMM in a similar manner.

4.1.3 Modeling Availability Policies Violations

Without loss of generality, availability policies specify what system resources are to be

allocated to entities and processes [104, pp. 97]. A program that acquires a resource

during its execution must also release that resource within a specified maximum time

after its execution begins, where such time periods are defined explicit or implicit

parameters. A subset of these types of policies are the bounded availability policies,

which specify that if a program acquires a resource during one of its executions, then it

must release that resource by some fixed finite point later in that execution [110,111].

In the EMM, one typical form of violating the availability policy of a system

resource can be described as follows. Let N(τ) ⊂ M (T ) be a memory region that

denotes a given system resource. Let N1 be the content of N(τ) which denotes that
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the resource is acquired during τ and N2 be its content which denotes that the resource

is released during τ . Then, the process of acquiring and releasing the resource can

be defined by the map (JNK = N1)
τ ′−→ (JNK = N2), where J.K denotes the contents

of a memory region and τ ′ ⊂ τ is the time period during which the component is

authorized to hold the resource. Hence, the execution of a composite component γP

violates the availability of the resource N during its execution in the time period τ if

it acquired the resource and did not release it later during the execution (i.e., did not

implement the map at all or in a timely manner). Formally, this form of availability

violation can be modeled as described in Definition 4.3 as follows.

Definition 4.3 (Availability Violation). Let N(τ) ⊂M (T ) denote a specific resource

in an EMM. Let JNK = N1 and JNK = N2 be the contents of N which denote the

acquiring and releasing of N , respectively during τ . Then, the execution of a composite

software component γP during the time period τ ⊂ T ( i.e., dynamic(γP , τ)) violates

the availability policy of N if the following conditions apply:

(i) ∃t1 ∈ τ such that N(t1) ⊆ OR(dynamic(γP , t1)) and JN(t1)K = N1,

(ii) @t2 > t1 ∈ τ such that N(t2) ⊆ OR(dynamic(γP , t2)) and JN(t2)K = N2, and,

(iii) @π ∈ Π∗ such that π[dynamic(γP , τ))] = 1.

As shown in Definition 4.3, the availability policy of the resource will be violated

when the composite component acquires the resource during its execution and does

not release it in a timing manner. Note that, the violation of bounded availability

policies can be trivially defined by restricting the time period [t1, t2] during which the

component acquires and releases the resource to be larger than the τ ′ that denotes

the upper bound on the time period required to release the resource. Again, other

forms of availability policy violations can be modeled within the EMM by similar

approaches.
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4.1.4 Modeling Resource Usage Policies Violations

In general, the role of the resource usage policies is to specify the software components

that are authorized to access specific system resources (e.g., CPUs, network interfaces,

memory, etc.) [112,113]. Those policies are important as they are necessary to model

general bot behavior which otherwise does not violate confidentiality, integrity or

availability policies. More specifically, it will be assumed that bots do not attack

the systems on which they run as they are used by attackers primarily to remotely

influence other systems (e.g., distributed denial of service (DDoS) attacks, sending

spam emails, etc.) [114, Section 2.1.10, pp. 18]. Hence, the main violation general bot

causes to local systems would be a resource usage violation.

Within the EMM, the modeling of a resource usage violation is similar to the

modeling of violations of the availability policies. However, in this case just imple-

menting the map by the unauthorized software component is the violation. Hence,

a resource will be modeled as a memory subset region N(τ) ⊂M(T ). Additionally,

the process of acquiring and releasing this resource will be modeled as the mapping

(JNK = N1)
τ ′−→ (JNK = N2). Then, an unauthorized composite component γP vio-

lates the resource usage policy of N(τ) if it implements a mapping that denotes an

unauthorized usage of N(τ). Formally, this form of resource usage violation can be

described by Definition 4.4 as follows.

Definition 4.4 (Authorized Resource Usage Violation). Let N(τ) ⊂M (T ) denote

a specific resource in the EMM and let τ, τ ′ ⊆ T . Also, let dynamic(γP , τ) denote

the execution of a composite component γP during the time period τ where τ ′ ⊆ τ in

which γP is unauthorized to access N . Then, γP violates the resource usage policy of

N(τ) if the following conditions apply:
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(i) dynamic(γP , τ) implements the mapping (JNK = N1)
τ ′−→ (JNK = N2) ( i.e.,

∃t1, t2 ∈ τ, t2 > t1 such that N(t1) ⊆ OR(dynamic(γP , t1)) where JN(t1)K = N1

and N(t2) ⊆ OR(dynamic(γP , t2)) where JN(t2)K = N2), and,

(ii) @π ∈ Π∗ such that π[dynamic(γP , τ))] = 1.

As shown above in Definition 4.4, the unauthorized component violates the re-

source usage policy of the resource even if it does not violates its availability policy.

Note that, the violation as per this definition only occurs once the unauthorized com-

ponent has acquired the access to the resource. Again, the EMM can be used in a

similar manner to define other types (or classes) of resource usage policy violations.

4.1.5 The Consistency of Π∗

In the previous sections, it has been shown that the EMM can be used to define

and model various example violations of basic security policies across the domains

of confidentiality, integrity, availability, and resource usage violations. As discussed

in [110, 111], the violation of any single security policy π ∈ Π∗ under the EMM is

deemed to imply a violation of the system’s set of perfect security policies Π∗. Hence,

the formalization of this concept is provided in Definition 4.5 as follows.

Definition 4.5. For the execution of a composite component γP during a time period

τ within the EMM, we have that

Π∗[dynamic(γP , τ)] = min {π (dynamic[γP , τ ]) |∀π ∈ Π∗} .

Accordingly, Π∗[dynamic(γP , τ)] = −1 if there exists any π ∈ Π∗ such that we have

π (dynamic[γP , τ ]) = −1. Hence, Π∗ can be seen to provide a mechanism by which

a perfectly informed defender can denote whether trace-level execution behaviors are

or are not authorized on case-by-case basis.
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It should be noted that, the approach of defining malware in terms of malicious

intent is not followed within the definition of Π∗. This is because the attacker’s intent

is not a directly measurable quantity by the defenders. Instead, such intent exists

within the mind of the attackers. The desire to formally quantify security requires a

need to focus security constructs and models that are restricted to only those aspects

which can be measured by the defender (i.e., in this case within the EMM modeled

information sets). Clearly, Π∗ as defined is useful in formally determining what is

and what is not malware (i.e., providing a theoretical ground-truth). Finally, Π∗

as defined must also denote an informed choice by the defender, which leads to the

following necessary regularity (or consistency) condition formalized in Definition 4.6

as follows.

Definition 4.6 (The consistency of Π∗). Consider an EMM. Let γP and γP ′ be

two composite software components modeled within the EMM. For any two time pe-

riods τ, τ ′ ⊂ T where dynamic(γP , τ), dynamic(γP ′ , τ
′) 6= ∅, if dynamic(γP , τ) =

dynamic(γP ′ , τ
′), then it must be the case for which we have Π∗[dynamic(γP , τ)] =

Π∗[dynamic(γP ′ , τ
′)]. Similarly, if we have the case for which Π∗[dynamic(γP , τ)] 6=

Π∗[dynamic(γP ′ , τ
′)] then it must be the case that dynamic(γP , τ) 6= dynamic(γP ′ , τ

′).

As shown in Definition 4.6, under the EMM, Π∗ must be, such that, it provides

consistent results when given identical information sets. Hence, for example, if x = y

then Π∗[x] = Π∗[y], and if Π∗[x] 6= Π∗[y] then x 6= y where x, y denoting two arbi-

trary information sets. Note that, the above definitions for the violations of different

security policies highlight the ability of the EMM to reason about computer secu-

rity. Finally, it should be noted that the EMM can also be used to model execution

monitors (EMs) which are mechanisms that monitor the execution of programs and

enforce security policies [110, 115]. Clearly, these EMs can be modeled within the

EMM following the same manner used to model VMs (i.e., via a hierarchical EMM
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structure), as was discussed in Chapter 3. What the above sections do not show is

that the EMM is capable of modeling any possible implementable security policy def-

initions, as this property follows directly from the EMM being shown to be complete

with respect to its ability to model all implementable malware and malware detection

solutions.

4.1.6 Discussion

As discussed in this section, the system’s set of perfect security policies Π∗ provides

a theoretical construct to describe and define various security and malware attacks

in terms of the violations of the security policies. In fact, Π∗ can be used as an

assessment tool to assess the system’s theoretical level of security with respect to

different types of attacks. Additionally, from practical point of view Π∗ most closely

describes an oracle that gives perfect security decisions over the sets of presented

information, while ensuring consistent decisions are given similar information sets.

Finally, known models of security policies could also be represented by the EMM

in a similar manner. For example, consider Bell-LaPadula model [104, Section 5.2,

pp. 124], which corresponds to military-style information classifications and control.

In particualr, Bell-LaPadula model defines a set of security clearances for the sets of

confidential information, where the sets of information is denoted as the objects. The

security clearances are arranged in a linear ordering, where the higher the security

clearance, the more sensitive the information. Bell-LaPadula model also defines clear-

ances for the subjects (i.e., the users or processes that access the information). Hence,

based on various clearance levels of the subjects and objects, the access to different

objects can be granted or denied. Clearly, Bell-LaPadula model can be described

within the EMM by specifying the necessary constructs associated with whether a

component initiated by a specific user can read specified confidential information



89

based on the clearances of both the subject (the user) and the object. It should be

noted that, in this case, we are defining a system’s set of operational security policies

Π and not the set of perfect security policies Π∗. Hence, the notion of the perfect

set of security policies Π∗ can be used as a necessary theoretical construct required

to formally reason about operational (or implementable) security policies and their

control.

4.2 Malware Modeling

In this section, the use of the EMM to model example classes of common malware

categories will be explored. In general, malware is defined as “any program that has

offensive features and/or purposes without the users’ awareness, and whose aim is

either: (1) to affect the confidentiality, availability and integrity of the system, or

(2) to wrongly incriminate the system’s users in the realization of a crime or an

offense” [116, Section 34.1, Definition 1, pp. 748]. The first part of the definition

refers to the portion of malware that directly attacks the security of the computers

upon which it runs (e.g., viruses, Trojan horses, etc.). Whereas, the second part refers

to the malware that only benefits from using the resources of the hosting computers

(without the owner’s awareness) to attack external entities (e.g., as in the general

case of bots). Another definition of malware which ties it directly to the system’s

security policy is: “malware is a set of instructions that cause the system’s security

policy to be violated” [104, Definition 22.1, pp. 613]. According to this definition, any

software component that violates the system’s security policy can then be reasonably

considered to be malware.

Without loss of generality, there are different categories of malware that vary in

their execution behaviors (e.g., viruses, worms, Trojan horses, spyware, etc.). As
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discussed in [55, 57, 60, 78, 117], a number of different formal definitions of some of

these malware categories have been proposed. However, these definitions tend to

focus on either specific malware categories (in particular, viruses) or are based on

specific mathematical machines and, as a result, they are not fully representative of

modern malware as discussed earlier in details in Chapter 2.

From the perspective of the EMM, consider the execution of the composite compo-

nent γP during a time period τ ⊆ T . Then, dynamic(γP , τ) defines γP ’s generalized

and full set of dynamic information. Hence, dynamic(γP , τ) denotes the execution of

malware if at least one of the following actions occurs:

• dynamic(γP , τ) causes confidentiality violation(s) to some information stored

within the EMM. A number of malware classes are known to cause confiden-

tiality violations (e.g., spyware).

• dynamic(γP , τ) causes integrity violation(s) for some information stored within

the EMM. A number of malware are known to cause integrity violation (e.g.,

viruses).

• dynamic(γP , τ) causes availability violation(s) of some information or resources

within the EMM. The malware that causes an availability violations typically

consumes the resource of the computer (e.g., rabbits) without otherwise violat-

ing integrity or confidentiality policies.

• dynamic(γP , τ) causes resource usage violation for the system resources (e.g.,

bots) without otherwise violating integrity, confidentiality, or availability poli-

cies.

In general, the most commonly agreed on malware classes are viruses, worms,

spyware, bots and Trojan horses [91,104,116]. It should be noted that, single malware

variants can contain these features from across multiple malware classes. For example,
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a replicating virus can carry a spyware payload (i.e., hard boundaries no longer

generally exist across these categories as malware instances commonly carry features

of multiple categories). Throughout this section, the modeling of malware classes will

be based on the key features that denote that class.

Note also that, the malware behavior can therefore vary considerably even within

the same malware category. Hence, it should be emphasized that, the objective of

this section is not to develop a unique definition of each malware category but to

demonstrate the ability of the proposed EMM to model various classes of malware.

Hence, the discussions that follow focus on denoting example classes of malware

behavior via the EMM’s constructs. The following sections introduce the formal

modeling of a number of common malware classes to demonstrate the ability of the

EMM to model these different malware classes. Again, these definitions should not

be taken as the universal and complete definitions for any given malware class, as the

multi-class nature of modern malware render such definition untenable.

4.2.1 Modeling Computer Viruses

In general, a computer virus is defined as “a program that inserts itself into one or

more files (programs) and then performs some (possibly null) action” [104, Defini-

tion 22.4, pp. 616]. The infected program is usually denoted as the host. In turn,

when the host is executed, the infection then spreads further into other files. Viruses

are not self-propagating malware and they cannot infect files on other computers

without active intervention. A virus in its original form before its first infection is

denoted as a germ [118, Section 2.3.5]. Viruses were the first malware to be formally

modeled when Cohen used Turing machines [55]. Generally, the virus infection cycle

has the following phases:
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(i) Replication (insertion): In this phase, upon the execution of the virus, the

virus inserts itself into the target file(s). All viruses implement some replication

mechanism which distinguishes them from other malware categories.

(ii) Activation (execution): In this phase, the virus launches its attack by executing

its payload. In general, viruses can carry a wide range of payloads which are

usually malicious.

Note that, viruses can be classified along many dimensions (e.g., the infection

strategies, the payload type, etc.) [118], and hence, there exist various definitions of

viral behaviors that differ from each other (e.g., boot sector infectors differ from exe-

cutable infectors, etc.). However, all viruses have the distinctive feature of replication.

The formalization of an example of a viral replication within the EMM is defined in

the next section. This EMM formalization focuses on capturing the replication phase

required by a viral component if it is to infect another component.

4.2.1.1 Formal Modeling of Viruses

Consider an EMM and let dynamic(γP , τ) denote the execution of a software com-

ponent γP during the time period τ ⊆ T . Then, γP behaves like a computer virus

if it partially or totally copies itself into another component, γP ′ 6= γP . Note that,

the copied version of the virus may be mutated (i.e., the virus may use obfuscation

techniques and replicates an evolved copy). This viral behavior of γP is formalized in

Definition 4.7 as follows.

Definition 4.7 (Viral Behavior). Let dynamic(γP , τ) denote the execution of γP over

the time period τ ⊆ T in an EMM. Let MγP (τ) be the memory region of γP . Then,

dynamic(γP , τ) exhibits a viral behavior if the following conditions apply:

(i) ∃Mv 6= ∅ such that Mv ⊆MγP (τ) and Mv ⊆ IR(γP , τ),
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(ii) ∃Mv′ 6= ∅ such that Mv′ ⊆MγP ′
(τ) and Mv′ ⊆ OR(γP , τ),

(iii) Mv′ = AR(Mv, γP (τ)), and,

(iv) dynamic(γP , τ) causes a security policy violation under Π∗ ( i.e., the violation

of the integrity of γP ′).

4.2.1.2 Discussion

As shown in Definition 4.7, the execution of γP exhibits a viral behavior if there exists

a subset memory region within γP that is copied into the host γP ′ in a way that violates

the system’s security policies. Fundamentally, Definition 4.7 of the viral behavior is

a special case of the integrity policy violation introduced in Definition 4.2, as it is the

integrity of the host program γP ′ that has been violated. In particular, Definition 4.2

presents an overview of the integrity violation of the contents of a general memory

region by the execution of a software component. Whereas, Definition 4.7 specifies

the details of the integrity violation in terms of the alteration of the contents of the

memory region(s) associated with γP ′ .

Finally, we should emphasize that, Definition 4.7 defines only an example subset

of the viruses which are the executable viruses which infect other executable programs

during their execution. For example, the cases of document and macro viruses (i.e.,

embedded viruses1) are not covered by the above definition. Again, the objective is

to demonstrate the ability of the EMM to formally model viruses not to propose

a single complete definition inclusive of all viruses as the later cannot be achieved

due to the wide span of features of various virus subcategories. Moreover, as the

copied virus could be packed or encrypted, the copied memory region of γP need

1In these kind of viruses, the viral instructions are included in non-executable files and they infect
other files and deliver their payload when the viral instructions are read or executed by the programs
that are dedicated to open these infected documents [11,41,42].



94

not to describe instructions (i.e., subsets of I) when it is written to γP ′ . Hence,

Definition 4.7 expressly does not define the copied information as being subsets of I.

4.2.2 Modeling Trojan Horses

In general, Trojan horses (or simply, Trojans) are computer programs with overt

(documented or known) effects and covert (undocumented or unexpected) effects. In

particular, a Trojan horse is defined as “a program which purports to do some benign

task, but secretly performs some additional malicious task” [114, Section 2.1.2, pp. 12].

One of the most common functions of a Trojan horse is to create a backdoor for an

attacker to gain access to the system [118, Section 2.3.4]. In this work, we will model

this backdoor function as a common example of Trojan behaviors.

In order to be able to perform its malicious functionality, a Trojan horse consists

of the following two functional modules: a server module and a client module [91,

Section 4.3.2, pp. 100]. The server module is secretly installed at the victim machine

in order to grant the attacker the access to that machine. Whereas the client module is

installed in an attacker controlled machine to enable the attacker to communicate with

the victim machine and to use its resources (both hardware and software resources)

via the established connection to the Trojan server module that is active on the victim

machine.

During its operation, a Trojan horse first receives the attacker’s commands through

an external input interface (typically, through the network interface), then executes

the received commands, and sends back the results of the execution through an out-

put interface (typically, the network interface). Hence, the basic operations of the

Trojan horse can be summarized in the following steps:

(i) Reading information (received commands) from a memory region that belongs

to an input interface,
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(ii) Executing these received commands to directly affect the security of the target

system, and,

(iii) Writing the results of the commands execution to a memory region that belongs

to an output interface.

Note that, more generally, Trojans can also cause confidentiality, integrity, and/or

availability violations.

4.2.2.1 Formal Modeling of Trojan Horses

Trojan behaviors under the EMM denote, most generally, the component composition

γP that accepts commands from the external world and sends information off the

computer back into the external world. The formalization of an example Trojan

behavior under the EMM is described in Definition 4.8 as follows.

Definition 4.8 (Trojan behavior). Let dynamic(γP , τ) denote the execution of the

composite software component γP over the time period τ ⊆ T within an EMM. Let

the subset MΘ
n (T ) ⊂MΘ(T ) denote the network input interface during T . Also, let

the subset MΦ
n (T ) ⊂MΦ(T ) denote the network output interface during T . Then,

γP exhibits the Trojan behavior discussed above during its execution if the following

conditions apply:

(i) ∃Mc(τ) 6= ∅ such that Mc(τ) ⊆ EIR(dynamic(γP , τ))
⋂
MΘ

n (T ),

(ii) ∃Mr(τ) 6= ∅ such that Mr(τ) ⊆ EOR(dynamic(γP , τ))
⋂
MΦ

n (T ),

(iii) Mr(τ) = AR(Mc(τ), trace(γP , τ)), and,

(iv) dynamic(γP , τ) causes integrity, confidentiality, and/or availability violations

under Π∗.
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4.2.2.2 Discussion

Unlike Definition 4.7 of viruses which focuses on capturing the viral replication mech-

anism, Definition 4.8 of Trojan horses focuses on modeling their functionality. In par-

ticular, in Definition 4.8-(i), Mc(τ) represents the commands that the Trojan receives

from the network interface through the backdoor. Whereas, in Definition 4.8-(ii),

Mr(τ) represents the results of the execution of these commands which is then sent

via the network interface to the attacker. Consequently, in Definition 4.8-(iii), Mr(τ)

is defined as the affected region of Mc(τ) under the execution of the Trojan. Finally,

in Definition 4.8-(iv), the execution of the Trojan violates at least one of confidential-

ity, integrity, and/or availability policies depending on its malicious payload. Again,

it should be noted that other Trojan behaviors may also occur that are outside of the

context of the above specific behavioral definition. Moreover, it should be recalled

that under the EMM, it is assumed that output peripherals immediately act on infor-

mation written to their memory regions. Hence, Definition 4.8-(ii) suffices formally

to have the Trojan send the information to the attacker.

4.2.3 Modeling Spyware

Broadly speaking, as discussed in [118, Section 2.4.3], spyware programs collect in-

formation from computers and then transmit it to other remote persons through the

network without the users’ awareness or consent. Spyware silently monitors the be-

havior of users and, for example, records their web surfing habits, and/or steals their

sensitive information (e.g., passwords, bank accounts information, credit card num-

bers), etc. [119]. Hence, by definition, spyware is characterized by violating the user’s

confidentiality. It should be noted that, as discussed in [120], almost 80% of malware

infections is due to spyware.
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From a functional perspective, as discussed in [119,120], the distinctive functional

characteristics of spyware are:

(i) It collects information about the user or his/her behaviors, and,

(ii) It forwards this information to a third party, possibly after being processed (e.g.,

encrypted).

4.2.3.1 Formal Modeling of Spyware

A typical example of spyware behavior is when an unauthorized entity accesses sen-

sitive information and then sends it off of the computer through the network to a

remote receiver. This behavior is modeled in the EMM as follows. A composite soft-

ware component γP exhibits spyware behavior if, during its execution, it conducts

the following two actions:

(i) Unauthorized reading of the information stored in some memory regions (i.e.,

it violates the confidentiality of some memory regions). That is to say, these

memory regions became subsets of the set of input regions of γP .

(ii) Unauthorized writing of this information to some output interfaces (e.g., net-

work interface cards, etc.) such that it is then sent off the computer through the

output devices. That is to say, this accessed information becomes subsets of the

set of output regions of γP . Note that, the spyware may process the information

before sending it off the computer (e.g., by using encryption, compression, etc.).

The formalization of this spyware behavior through the EMM is modeled in Defini-

tion 4.9 as follows.

Definition 4.9 (Spyware behavior). Let dynamic(γP , τ) denote the execution of the

composite software component γP during the time period τ ⊆ T within an EMM.



98

Let Ms(τ) 6= ∅ be the set of memory regions that are deemed to be confidential by

the system defender during τ . Let the subset MΦ
n (T ) ⊂ MΦ(T ) be the subset of

the output interfaces that is concerned with the network output interface. Then, γP

exhibits spyware behavior during its execution if the following conditions apply:

(i) Ms(τ) ⊆ IR(γP , τ),

(ii) AR(Ms(τ), trace(γP , τ)) ⊂MΦ
n (T ), and,

(iii) dynamic(γP , τ) causes confidentiality violations under Π∗.

4.2.3.2 Discussion

It should be noted that, one important difference between Trojans and spyware is

the region of the unauthorized reading. In particular, in the case of a Trojan, the

unauthorized reading is through the network interface, through which, the Trojan

receives the attacker’s commands. Whereas in the case of spyware, the unauthorized

reading occurs for confidential information contained within the EMM as indicated in

Definition 4.9-(i). This information is then leaked by the spyware to the outside world,

as illustrated by Definition 4.9-(ii). In addition, the use of AR(Ms(τ), trace(γP , τ))

instead of directly setting Ms(τ) in Definition 4.9-(ii) allows the spyware definition

to include the cases for which the spyware processes the information before leaking

it outside the system (e.g., by using encryption, compression, etc.). Again, other

definitions of spyware behaviors can also be described via the EMM, with the above

definition being just one such example.

4.2.4 Modeling Bots

In general, a bot is defined as “a compromised computer system that is used by the

attacker to perform a variety of malicious tasks without the owner’s awareness” [114,
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Section 2.1.10, pp. 18]. Bots are also denoted as zombies. To control their set of bots,

attackers use special software kits that are denoted as command and control (C&C)

kits [121,122]. The bots that are under the same C&C form a botnet. Typically, the

number of bots within a single botnet ranges from thousands to millions (e.g., the

size of the Rustock botnet has exceeded 1 million bots [123], whereas the size of the

Mariposa botnet has exceeded 12 million compromised IP addresses [124,125]).

The most common tasks for bots are in sending spam emails and participating in

coordinated large-scale denial-of-service (DoS) attacks [114, 118]. In general, a bot

does not seek to directly impact the security of the system that it runs on. Instead,

it uses the system resources (e.g., processors, network resources, etc.) to impact the

security of another remote system or network [118,126,127]. Consequently, bots only

generally violate the system’s authorized resource usage policies. From the functional

perspective, a bot performs three tasks:

(i) It receives information from a remote attacker in an unauthorized way,

(ii) It processes this information in the local machine, and

(iii) It uses the network to carry the required tasks in an unauthorized manner.

4.2.4.1 Formal Modeling of Bots

The bot functionality discussed above is very similar to that of Trojans in that it also

receives commands from the attacker through the network interface. Also, the results

of executing the attacker’s commands is sent through the network interface, however,

this is not to the attacker but instead for the purpose of attacking or spaming a third

party. However, as indicated above, bots typically would be structured generally to

only violate the authorized resource usage polices. Consequently, the bots’ formal-

ization within the EMM will be similar to that of Trojans except in the type of their



100

violated policies. In particular, the formalization of the bot behavior is introduced in

Definition 4.10 as follows.

Definition 4.10 (Bot behavior). Let dynamic(γP , τ) denote the execution of the

composite software component γP over the time period τ ⊆ T within an EMM. Let

the subset MΘ
n (T ) ⊂MΘ(T ) denote the network input interface during T . Also, let

the subset MΦ
n (T ) ⊂MΦ(T ) denote the network output interface during T . Then,

γP exhibits bot behavior, as discussed above, during its execution if the following

conditions apply:

(i) ∃Mc(τ) 6= ∅ such that Mc(τ) ⊆ IR(γP , τ)
⋂
MΘ

n (T ),

(ii) ∃Mr(τ) 6= ∅ such that Mr(τ) ⊆ OR(γP , τ)
⋂
MΦ

n (T ),

(iii) Mr(τ) = AR(Mc(τ), trace(γP , τ)), and,

(iv) dynamic(γP , τ) causes only authorized resources usage violation and not in-

tegrity, confidentiality, and/or availability violations under Π∗.

4.2.4.2 Discussion

The difference between Definition 4.10 and Definition 4.8 is in the type of policy

violated by the malware. In the case of Definition 4.8 for Trojan behavior, violations

to the system’s confidentiality, integrity, or availability occur. Whereas in the case of

Definition 4.10 for bot behavior, bots potentially only violate the system’s resource

usage policies. Clearly, other definitions of bot behaviors may also exist where these

would be EMM modelable via similar approaches.

4.2.5 Modeling Computer Worms

Without loss of generality, computer worms are defined as: “programs that copy

themselves from one computer to another” [104, Definition 22.13, pp. 623]. Unlike
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viruses, worms are self-propagating malware that can spread themselves (replicate)

without the need of any active interaction to reach new targets [104, 114, 128–130].

In addition, worms can launch destructive attacks against other computer systems.

In general, as discussed in [128, 130], the cycle of worms infection has the following

phases:

(i) Target finding : This is the first phase in the life cycle of worms, in which,

they search for their potential targets over the network (i.e., by exploiting an

operating system or application vulnerability). In general, there are various

target finding approaches that worms could implement (e.g., blind scan, hit-

list, web search, etc.).

(ii) Transferring (replication): After finding a target, a copy of the worm is then

transferred to the target computer through the network. During this and the

previous phase, worms are active over the network and, hence, their actions may

be detectable by network-based intrusion detection systems.

(iii) Activation: In this phase, worms execute their malicious payload on the targeted

machines. During this stage, the activities of worms are limited to the local

infected computers, and hence, they are only in the detection domain of host-

based malware detection systems.

4.2.5.1 Formal Modeling of Worms

Unlike the prior malware behaviors, worm-like behaviors need to be defined within

the context of a network, since worms by definition must propagate between com-

puters. Their nature though is similar to viral behaviors except that the copying

occurs between the host EMM, and a victim EMM denoted as EMM′ (or a set of



102

EMMs EMMK = {EMMk|k = 1, . . . , K}). An example of a worm like behavior is

formalized using the EMM in Definition 4.11 as follows.

Definition 4.11 (Worm Behavior). Let dynamic(γP , τ) denote the execution of a

composite software component γP during a time period τ ⊂ T in an EMM. Let

MΦ
n (T ) ⊂MΦ(T ) denote the set of memory regions correspond to the network out-

put interface in EMM. Let EMM ′ be another EMM, such that, EMM ′ 6= EMM .

Let M ′Θ
n (T ) ⊂M ′Θ(T ) denote the set of memory regions correspond to the network

input interface in EMM ′. Then, the execution of γP , dynamic(γP , τ), exhibits a

worm behavior if the following conditions apply:

(i) ∃Mw(τ) ⊆
[
OR(γP , τ)

⋂
MΦ

n (T )
]
,

(ii) RA(Mw(τ), trace(γP , τ)) ⊆ static(γP , τ),

(iii) ∃τ ′ ⊂ T such that min[τ ′] > max[τ ],

(iv) ∃Mr(τ
′) ⊆M ′Θ

n (T ) such that Mr(τ
′) = Mw(τ),

(v) ∃γP ′ such that γP ′ is a composite component in EMM ′ and static(γP ′ ,max[τ ′]) =

Mr(τ
′), and,

(vi) The execution of γP ′ in EMM ′ violates its set of policies Π′∗.

4.2.5.2 Discussion

As shown in Definition 4.11, the execution of the worm causes it to copy itself (possibly

obfuscated) to the network interface to propagate to the victim node. When it reaches

the victim node, the worm becomes a software component within the targeted machine

that when executed violates the victim machine’s security policies. It should be noted

that, Definition 4.11 models the propagation of the worm not the propagation of its

payload as the payloads can widely vary. Finally, we emphasize that Definition 4.11
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is an example of worm behaviors and there exist other worm behaviors with different

propagation details (e.g., bluetooth worms [131], etc.). Clearly, the networked EMM

model can be used to extend this definition into more complex worm behaviors in

which the actions of network-based detection solution could then also be formally

reasoned about via the constructed composite networked EMM.

4.3 The Completeness of the EMM

The previous sections have used the EMM to model example security policies’ viola-

tions and a number of example malware behaviors. In this section, the completeness

of the proposed framework with respect to malware modeling is discussed. In partic-

ular, the EMM is shown to be able to model any malware whose execution within

the system(s) it infects produces measurable changes to S(T ). The completeness of

the EMM will be formally developed and proven through Theorem 4.1 as follows.

Theorem 4.1 (The Completeness of the EMM). The EMM can be used to model all

malware executions that can occur within an EMM instance and that can be defined

in terms of the policy set Π∗.

Proof. Proof by contradiction. Consider an EMM as defined in Definition 3.3. Con-

sider the execution of γP during a time period τ that generates dynamic(γP , τ) as its

set of dynamic information. By definition, EMM is inclusive of all components that

can be modeled, their complete execution traces, etc. Hence, if γP is malware that

cannot be modeled under EMM, then one of the following must have occurred:

(i) ∃π ∈ Π∗ such that π[Info(γP , τ)] = −1 but dynamic(γP , τ) could not be

modeled as a malware. Since Info(γP , τ) is defined in Equation (3.23) to

span all available static and dynamic information about γP , then it must be

the case that dynamic(γP , τ) = ∅. Clearly, by the consistency principle, if
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dynamic(γP , τ) = ∅, then γP cannot be malware under the EMM (i.e., γP

enacts no state changes during its execution). This contradicts the assumption

that γP behaved as malware within EMM during T .

(ii) @π ∈ Π∗ such that π[Info(γP , τ)] = −1 and dynamic(γP , τ) 6= ∅ and γP is

known to be malware. As defined in Section 3.6, Π∗ is the perfect set of security

policies defined over all available static and dynamic information that exists

within the EMM about γP during the finite period T . Hence, a contradiction

occurs due to the consistency principle when γP is implementable malware yet

Π∗[Info(γP , τ)] = 1 (i.e., it cannot be defined as malware even under all of the

information modeled in EMM during T ).

Hence, both cases directly lead to contradictions.

Consequently, though Section 4.2 has only highlighted the EMM’s ability to model

specific classes of malware behaviors, Theorem 4.1 shows that any malware executing

within the system can be modeled via the EMM assuming the consistency principle

holds. In general, it can be concluded that the EMM can be used to model any

execution traces that cause changes in the information set of a modeled system (i.e.,

S(T )) as a result of its retention of the original Maurer model’s Turing-reducibility.

The ability of the EMM to model any implementable security policies will be shown

in Chapter 5 to arise via the EMM’s ability to model any and all decision processes

based on its described information sets, i.e. fundamentally Π∗ describes a two-class

decision process of distinguishing between attack and normal events.

4.4 Summary

Throughout this chapter the application of the EMM to model malware behaviors

in terms of security policy violations has been demonstrated. In particular, by Sec-
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tion 3.6, the framework has been shown to be able to model various common types

of security policy violations. Whereas, in Section 4.2, the behaviors of a number of

common malware classes have been modeled. In Section 4.3, the completeness of the

EMM with respect to these issues has been shown, with Theorem 4.1 showing that

the EMM is able to model any malware execution behaviors that enact changes to the

EMM’s modeled information sets. In the next chapter, the EMM’s ability to model

various malware detection approaches is formally developed.
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Chapter 5

Formal Analysis of Malware

Detection Solutions

5.1 Introduction

As discussed in [72], the evaluation and analysis of malware detection approaches

remains an active and open area of research. To the best of our knowledge, there

are only few attempts to establish formal malware detection evaluation frameworks

(e.g., [38]). However, as was discussed in Chapter 2, these frameworks have typically

been based on experimental evaluations where the used datasets are subjected to the

existence of artifacts as discussed by Tan et al. in [52] and McHugh in [54]. In this

chapter, a formal framework for the analysis of malware detection using the EMM is

developed.

Note that, a comprehensive analysis framework that is able to model all imple-

mentable detection approaches should be capable of formally expressing the probabili-

ties and probability distributions associated with events as many detection approaches

are based on the statistical analysis of measurable information (e.g., anomaly intru-
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sion detection systems, such as, Bro [132]). Hence, this chapter develops a measure-

theoretic model of the EMM as measure theory underlies the formal definitions of

event probabilities and their statistics [133, 134]. In particular, within this chapter,

the EMM will be extended such that it also formally defines a σ-finite measure space

and, hence, a probability space. Additionally, the analysis of various detection cat-

egories with the developed EMM measure-theoretic model will be discussed. The

EMM will also be shown to provide a general model of decision-based detection tech-

niques (i.e., the EMM will be shown to provide a complete model in the sense of

being able to model all implementable detection approaches).

The remainder of this chapter is organized as follows. Section 5.2 provides a

general model for malware detection within the EMM and motivates the need for

measure theory. Section 5.3 provides the basic definitions and concepts of measure

theory as used in this dissertation. Section 5.4 shows that the EMM can be extended

to formally describe a σ-finite measure space. Section 5.5 discusses the use of the

developed model in the analysis of anomaly-based and signature-based detection ap-

proaches. Section 5.6 discusses the use of the developed model in the analysis of static

and dynamic detection approaches. Section 5.7 then shows that all implementable de-

tectors can be modeled by the developed σ-finite measure space EMM model. Finally,

Section 5.8 summarizes the chapter.

5.2 A General Model for Malware Detection

In general, as discussed in Section 3.6, the set of perfect security policies Π∗ can

be used to classify the set of EMM states into the set of authorized (secure) states

and the set of unauthorized (non-secure) states [104, Definition 4.1, pp. 95]. If the

EMM describes a sufficiently small number of states (e.g., a small-scale embedded
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system), then it becomes feasible to implement a detection system that can monitor

all of the system’s operational states. However, the scale of modern computers and

networks, this is generally untenable. For example, a modern computing cloud com-

prising 10, 000 servers each containing a Tera byte disk and running approximately

100 VMs would result in an overall EMM system which could generate upwards of

10100 possible state changes per second. Hence, developing a detector that can observe

and analyze such a large state space is computationally untenable. To overcome such

issue, operational malware detection solutions traditionally focus on only measuring

selected subsets of the available information sets.

Let E be the set of all possible events within the EMM (i.e., E denotes a parti-

tioning over S(T )). Define E as E = E− ∪E+, where E− and E+, respectively, denote

the malicious and benign events subsets, and it is assumed that E− ∩ E+ = ∅ (i.e., E

is properly partitioned into collections of malicious and benign events). Consider a

malware detector D(.) that is deployed in the EMM in order to detect the malicious

events. To achieve its task, D(.) must measure information that exists and arises

within the EMM about those events over time. Hence, D(.) can be defined as a

mapping,

D : S(T )→ [−1, 1], (5.1)

where S(T ), as defined in Section 3.3, denotes the space of complete information

of all possible events that can occur within the EMM during any time period T .

In particular, for any event e ∈ E , D[e] = −1 means that the detector D(.) has

classified e as malicious (i.e., D(.) has assessed that e ∈ E−), whereas D[e] = 1 means

that D(.) has classified e as benign (i.e., D(.) has assessed that e ∈ E+). The case

where D[e] ∈ (−1, 1) denotes the degree to which e is believed to be in E− or in E+

from D(.)’s perspective. Hence, D[e] = 0 denotes the decision boundary that exists
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between E− and E+. As shown in Figure 5.1, the operation of D(.) can be more

precisely modeled as,

D[e] = d [f(e)] , (5.2)

where the details of the mappings f(.) and d(.) are as follows. Without loss of

generality, the mapping f(.) can be defined as,

f : S(T )→ X ∪ {∅}, (5.3)

where X denotes the spatial-temporal space that represents the abstracted feature

(or measurement) space that is extracted from S(T ) by D(.). In general, it will be the

case that |X | � |S(T )| (i.e., the amount of information represented by the abstracted

feature space X will be much less than complete set of information described by the

EMM). In this sense, standard malware detection solutions must be considered to be

information lossy solutions within the larger-scale defended environments to which

they are typically applied. In pattern recognition terminology, f(.) therefore denotes

the pattern classification features that D(.) measures from S(T ) in order to classify

whether e belongs to E− or E+. The exact nature of these features are within the

defenders’ purview to select and can span a wide variety of approaches such as control

flow graphs, system call sequences, etc. Note that, the feature space X itself is defined

simply as,

X = <n ∪ {∅} . (5.4)

That is to say, X is a standard n-dimensional euclidean space inclusive of ∅, in which

time is simply one of its n dimensions.
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Figure 5.1: Malware detection modeled as a decision problem.

It should be noted that, as indicated in Equation (5.3), there may exist cases

whereby f (e) = ∅, indicating that e is unobservable under the selected (or imple-

mented) f(.). More particularly, unobservable and observable events with respect to

a detector D(.) can be formally defined as follows.

Definition 5.1 (Unobservable and observable events under D(.)). For a detector

D(.) that uses a feature mapping f(.), an event e within the EMM ( i.e., e ∈ S(T ))

is unobservable with respect to D(.) if and only if for all t ∈ T , it is the case that

f(e) = ∅, otherwise it is observable.

Clearly, the attackers can avoid detection by D(.) if they can craft their malware

such that it becomes unobservable. Specifically, they can study or reverse engineer

D(.) to determine the information sets that it measures and then develop their new

malware or malware variant such they do not include this information. For example,

as discussed in [135], if D(.) is designed to only monitor Windows API calls, any

malware that only utilizes native Windows system calls will then become unobservable

with respect to D(.). It should be emphasized that the notion of observability is

related to the selection of the feature mapping f(.). A given malware instance can

be unobservable with respect to a specific detector D(.) but still be observable with

respect to some other detector D′(.). Hence, compositions of malware detectors can
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be implemented to reduce the risk posed by unobservable malware. Note that such

composition of detectors will be discussed in Section 5.2.1.

As indicated in Equation (5.2), in addition to f(.), D(.) also implements a map-

ping d(.) that enforces a decision boundary on X . In particular, d(.) can be defined

generally as,

d : X → [−1, 1]. (5.5)

Therefore, d(.) partitions X into the subspaces X− and X+ such that if d[x] = −1

then x ∈ X−, and if d[x] = 1 then x ∈ X+, where for simplicity it is assumed

that X−
⋂
X+ = ∅. More particularly, if d [f(e)] = −1, then D(.) has denoted

that it views e to be malicious (i.e., that e ∈ E−), whereas if d [f (e)] = 1, then

D(.) assessed e to be benign (i.e., that e ∈ E+). The case where d [f (e)] ∈ (−1, 1)

denotes the degree of belief that D(.) has in e being either malware or benign. Hence,

d [f (e)] = 0 denotes the decision boundary between X− and X+. Since typically f(.)

will be information-lossy, then d [f (e)] = −1 or d [f (e)] = 1 does not guarantee that

e ∈ S(T ) is indeed either malware or benign, but only denotes D(.)’s assessment of

e’s perceived maliciousness (i.e., it is possible for d [f(e)] = −1 for e ∈ X+ and vice

versa).

As per the above, d(.) can be seen to implement a classifier between the classes X−

and X+. Hence, the attackers can seek to evade d(.) by crafting their malware in a way

that it would be misclassified as being benign and, hence, in X+ thereby causing false

negatives. Additionally, d(.) could also wrongly classify benign events as being in X−

and, hence, as malware thereby generating false positives. For example, in [136], Mutz

et al. proposed a reverse engineering process and tool to analyze signature matching

mechanisms in network-based IDS which demonstrated the ability of attackers to craft

their attacks such that they generated false negatives. Ideally, malware detectors
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should possess low false negative and false positive rates. The notion of the ideal

detector can be captured via defining the soundness and completeness of a detector

D(.) as follows.

Definition 5.2 (The soundness and completeness of malware detectors). The mal-

ware detector D(.) is sound if for all benign events e ∈ E for which f(e) 6= ∅ then

D[e] = 1. Whereas, D(.) is complete if for all malware events e ∈ E for which

f(e) 6= ∅ then D[e] = −1. That is to say, D(.) is sound only if it has a zero false

positive rate and complete only if it has a zero false negative rate.

Ideal malware detectors clearly should be both sound and complete. It should

be noted that, from the consistency condition of Π∗ discussed in Definition 4.6, with

respect to any defined class of malicious events, the EMM guarantees that there exists

an ideal detector D∗(.) must theoretically exist that is both sound and complete (i.e.,

sufficient information always exists within the EMM for D∗(.) to be implementable).

Moreover, as the EMM defines all of the measurable information available across the

modeled systems, then D∗(.) can be further generalized to also ensure that all e ∈ E−

occurring within the EMM are also guaranteed to be observable (i.e., an existence

proof could be constructed via the EMM that perfect security against any malware

class or classes is always, at least theoretically possible). Hence, when f(.) and d(.)

are selected in a way that leads to no false positives, and no false negatives, then

D∗(.) is obtained. The definition of D∗(.) in terms of Π∗ is formalized as follows.

Definition 5.3 (Ideal detector, D∗(.)). The ideal detector is denoted as D∗(.), where

D∗(.) is defined to be sound and complete. That is to say, ∀t ∈ T , ∀e ∈ E such that

f(e) 6= ∅, for D∗(.), it is the case that:

(i) D∗ [e] = 1 if and only if Π∗ [e] = 1, and,

(ii) D∗ [e] = −1 if and only if Π∗ [e] = −1.
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The core problem for the defenders though is to determine the correct measure-

ment features f(.) and decision boundary d(.) by which to achieve D∗(.). Moreover,

for any D(.) 6= D∗(.), by definition, the attackers could adapt their attack strategies

such that for an event e ∈ E−, can be generated such that D(e) = ∅ or D(e) /∈ X+.

Clearly, operational malware detection solutions cannot be shown to be sound and

complete except within the contexts of small-scale systems. But the existence of D∗(.)

is an important theoretical construct within the EMM.

5.2.1 Compositions of Detectors

Clearly, the compositions of detectors are necessary in any actual deployment. Such

compositions can be developed within the EMM as follows. Consider a composite

malware detector D(.) that is composed of a set of ND detectors each following the

definition of D(.) above. Hence,

D = {Dk|k = 1, 2, . . . , ND} . (5.6)

Different compositions of these detectors are clearly possible. For example, D(.) could

be structured as,

D(e) = min {Dk(e)|k = 1, 2, . . . , ND} , (5.7)

which indicates majority voting is applied over the composition of detectors. Hence,

D(e) = −1 if ∃Dk ∈ D, such that, Dk(e) = −1 (i.e., an event is deemed malicious if

it is deemed malicious by at least one detector). Alternatively, a weighted detection

solution could also be used such that,

D(e) =

ND∑
k=1

wkDk(e), (5.8)
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where 0 ≤ wk ≤ 1 and
∑ND

k=1 wk = 1. Hence, each wk in this case would reflect the

level of operational value that the defenders place in each detector. Additionally,

more complex hierarchical compositions of detectors could also be modeled where,

for example, detector Dj(.)’s decision is passed onto some next detector Dk(.) for fur-

ther analysis. Hence, quite generally, the compositions of the detectors can be easily

incorporated in the above EMM model, where the selection of any given implemen-

tation is at defender’s discretion. Finally, the feature mapping F (.) of the composite

detector D(.) can be defined as the set of all feature maps f(.) across the collection

of composite detectors as follows.

F (.) = {fk(.)|k = 1, 2, · · · , ND} . (5.9)

5.2.2 Classes of Events

Now assume that the defender has defined the set of classes

ω = {ω1, ω2, . . . , ωNω} , (5.10)

associated with the events occurring within the EMM. Moreover, assume that each

ωk ∈ ω can be partitioned into the subsets ω− and ω+ denoting, respectively, mali-

cious and benign event classes. Then, from the pattern recognition perspective, the

collection of Dk(.)’s can be seen as implementing pattern classifiers between these

ωk classes. More particularly, the composite detector D(.) implements the decision

boundary between the classes ω− and ω+. In general, to model both signature (or

misuse) and anomaly detection, the probabilities of observing a given event e un-

der each class ωk must be defined. As probabilities are formally defined in terms of

measure theory constructs, it must first be shown that the EMM as structured also
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describes a σ-finite measure space as otherwise the required class probabilities cannot

be shown to exist.

Accordingly, the subsequent sections provide the necessary measure theory con-

cepts and show how the EMM can be extended to allow it to also formally define

the required σ-finite measure space. This allows us to formally define the various

probability measures that are required, as discussed above. Additionally, this then

allows the EMM to be shown to be inclusive of modeling static and dynamic, as

well as, anomaly-based and signature-based detection approaches. Moreover, via this

measure theory approach, the EMM can then be shown to be complete in the sense

of being able to model any implementable malware detection process that makes use

of the EMM measurable information.

5.3 Introduction to Measure Theory

For completeness, this section provides the basic definitions and concepts of measure

theory that will be used in the development of the EMM’s measure-theoretic model.

In particular, the concepts of σ-algebras, measurable spaces, measures and probability

spaces will be discussed. For more details about measure theory, we refer the reader to

measure theory references (e.g., [133,134,137,138]). It should be emphasized that, the

majority of the subsections 5.3.1 to 5.3.4 are paraphrased from [133], in part to ensure

the accuracy and completeness of the presented standard mathematical definitions.

Moreover, it is useful to note that measure theory and its concepts are widely used

in other domains to reason about behaviors arising within complex systems, i.e.,

as per its use in statistical physics [139], dynamical systems theory [140], ergodic

theory [140], etc. We would argue that measure theory has yet to see significant
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use in security research due to a lack of a bridge between it and Turing-equivalence

concepts and a lack of familiarity with it within the security community.

5.3.1 Notation

Let Ω be a nonempty set representing a standard sample space. Then, Ω is a finite set

if it has a finite number of elements (i.e., |Ω| <∞), otherwise, it is an infinite set [133,

pp. 391]. The symbols ∪ and ∩ refer to the standard set union and intersection

operations respectively, whereas the symbols \ and − both commonly used to refer

to the set difference operation and, hence, will be used exchangeably.

In general, for a set A ⊆ Ω, the set Ac = Ω\A is the complement of A (i.e., Ac is

the set of all elements of Ω that are not in A). The power set of Ω, denoted as P(Ω),

is the set of all subsets of Ω defined as P(Ω) = {A : A ⊆ Ω} where this by definition

includes the empty set ∅ [133, pp. 55]. A set B whose elements are subsets of the set

Ω in called a class or a family of subsets of Ω (i.e., B ⊆ P(Ω)).

Let < be the set of real numbers. The set of extended real numbers is denoted as

<∗ and is defined as <∗ = <∪ {−∞,+∞} = [−∞,+∞] [133, Appendix A, pp. 385].

Henceforth, <∗+ will be used to denote the set of non-negative extended real numbers

(i.e., <∗+ = [0,+∞]).

5.3.2 σ-Algebras and Measurable Spaces

For any non-empty set Ω, σ-algebras are special classes of subsets of Ω with specific

properties that are important in measure theory. Particularly, σ-algebras are defined

as follows [133, Definition 3.9.1, pp. 80].

Definition 5.4 (σ-algebras). Let Ω be a non-empty set. The class F ⊆ P(Ω) is a

σ-algebra (also called σ-field) of subsets of Ω if and only if it satisfies the following

properties:
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(i) ∅,Ω ∈ F ,

(ii) ∀A ∈ F , Ac ∈ F , and,

(iii) ∀Aj ∈ F ,
⋂∞
j=1Aj ∈ F .

As shown in Definition 5.4, σ-algebras are closed under complement and countable

intersection. Additionally, by applying De Morgan’s law, it can be shown that σ-

algebras are also closed under countable union. The classes {∅,Ω} and P(Ω) are

obvious examples of σ-algebras of subsets of Ω, where they respectively denote the

smallest and largest σ-algebras of subsets of Ω, [141, Section 1.3, pp. 11]. As discussed

in [141, Section 1.3, pp. 10], σ-algebras are used to define measurable spaces as follows.

Definition 5.5 (Measurable Spaces). The tuple 〈Ω,F〉 of the non-empty set Ω and

the σ-algebra F of subsets of Ω is called a measurable space.

Clearly, not all subsets of Ω are necessarily in F and, therefore, not every subset

of Ω is included in the defined measurable space.

5.3.3 Measures

Let Ω be a non-empty set and B ⊆ P(Ω) be a class of subsets of Ω. A function

µ : B → <∗ is defined as a set function [133, Definition 3.3.1, pp. 59]. As discussed

in [141, Section 1.6, pp. 19], measures are non-negative set functions that will be

defined as follows.

Definition 5.6 (Measures). Let Ω be a nonempty set and B ⊆ P(Ω) be a class of

subsets of Ω. The set function µ : B → <∗ is a measure defined on B if and only if

it has the following properties:

(i) ∀A ∈ B, µ(A) ∈ <∗+,



118

(ii) µ(∅) = 0, and,

(iii) For any countable disjoint sets A1, A2, · · · ∈ B, µ(
⋃∞
j=1 Aj) =

∑∞
j=1 µ(Aj) ( i.e.,

countable additivity holds).

5.3.4 Measure Spaces and Probability Spaces

As discussed in [141, Section 1.6, pp. 20], measure spaces and probability spaces can

be formally defined as follows.

Definition 5.7 (Measure Spaces, σ-finite measure spaces, and Probability Spaces).

Let Ω be a nonempty set, F ⊆ P(Ω) be a σ-algebra of Ω, and µ : F → <∗+ be a measure

defined on F . The tuple 〈Ω,F , µ〉 is called a measure space and the elements of F are

called measurable sets or events. A measure space is finite if µ(Ω) <∞. Finally, if

µ(Ω) = 1, then the measure µ, by definition, will also meet the axioms of probability.

Hence, the tuple 〈Ω,F , µ〉 can then also be called a probability space.

Note that, any σ-finite measure space can be converted into a probability space

by suitable normalization [141, pp. 20]. Probability spaces play important roles

in analyzing statistical experiments. Particularly, for a probability space 〈Ω,F , µ〉,

where Ω is the sample space (i.e., the set of all possible outcomes of an experiment)

and F is the collection of all events, then, for every event A ∈ F , µ(A) denotes

the probability that event A may occur (i.e., ∀A ∈ F , µ(A) = Pr(A)). Hence, an

information space must be shown o be at least a σ-finite measure space if it is to be

formally shown that event (or class) probabilities can be defined over that space.

5.4 The EMM as a Probability Space

As discussed in Section 5.2, extending the EMM by formally defining a σ-finite mea-

sure space over it allows us to define the required probability measures over the various
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event classes. It also allows the completeness of the EMM to model various categories

of malware detection approaches to be formally shown. Hence, in this section, we will

show that the EMM over any finite time period τ defines a σ-finite measure space.

5.4.1 The EMM as a σ-Finite Measure Space

As discussed in Section 3.3, the physical memory M of the EMM was defined as a

finite set M = {mk|k = 1, 2, . . . , NM} consisting NM memory elements (bits) (i.e.,

NM <∞). These elements are disjoint by the nature of their physical implementation

(i.e., ∀mj 6= mk ∈M,mj∩mk = ∅). Accordingly, M(t) is therefore a finite set defined

by the union of all these disjoint memory elements mk, and hence, M(t) =
⋃NM (t)
k=1 mk.

Each element mk ∈ M stores information according to the base set B, where B =

{0, 1} for digital computers. Accordingly, the set S(t) of all possible states of the

EMM at t is the set of all maps of the form M(t) → B by the above is necessarily

finite (i.e., |S(t)| <∞).

Now, consider the set of EMM states during a finite interval τ ⊆ T , denoted as

S(τ). Lemma 5.1 shows that a measurable space can be defined over S(τ).

Lemma 5.1. A measurable space can be defined over the set of possible EMM states

S(τ).

Proof. Denote the set of all possible EMM states during some τ ⊆ T as S(τ). Within

the EMM, time is assumed discrete. Therefore, τ as a finite interval as it must be

composed of finite number of time slots t. Accordingly, S(τ) can be defined as the

finite union of all possible states for all t ∈ τ , which can be expressed as,

S(τ) =
⋃
∀t∈τ

S(t). (5.11)
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Let R(τ) = P [S(τ)] (i.e., R(τ) is defined as the power set of S(τ)). As discussed in

Section 5.3.2, since the power set is the largest σ-algebra of subsets of any set and

since R(τ) is defined as the power set of S(τ), then by definition R(τ) is a σ-algebra.

Hence, as discussed in Definition 5.5, the tuple 〈S(τ),R(τ)〉 consists of a set S(τ) and

a σ-algebra R(τ) of subsets of S(τ). Hence, 〈S(τ),R(τ)〉 is a measurable space, and

moreover, it is also a probability space.

Lemma 5.1 shows that the EMM describes a measurable space over any finite

time interval τ and a σ-finite measure space in the limit when τ goes to infinity. This

allows to define a non-negative set function µ that satisfies the conditions of measures

(Definition 5.6), and hence, defines the EMM as the measure space 〈S(τ),R(τ), µ〉.

Consequently, all events that are defined within this EMM measure space can now be

measured. Quite generally, standard Lebesgue measures [133, Chapter 4], which gen-

eralizes the notion of cardinality, can therefore be defined over this EMM measurable

space. Alternatively, the defenders may define any other non-negative set function µ′

to use, as long as this µ′ also meets the requirements of being a measure.

Lemma 5.2. The measure space 〈S(τ),R(τ), µ〉 where µ is Lebesgue measure is σ-

finite.

Proof. Since, by definition, the set M(t) of all memory elements at any time t and

the base set B are finite, then the set S(t) of all possible maps s : M(t)→ B at any

discrete t is also finite. Define µ as the standard Lebesgue measure. Since S(t) is

finite, then µ[S(t)] < ∞. From Equation 5.11, for any t 6= t′ ∈ τ , S(t) and S(t′) are

then temporally disjoint sets within S(τ) domain and, hence, S(τ) is a finite union of

finite disjoint sets. Therefore, µ[S(τ)] =
∑
∀t∈τ µ[S(t)]. Since τ is finite, then µ[S(τ)]

is a finite sum of finite quantities, and hence, µ[S(τ)] <∞. From Definition 5.7, since

µ[S(τ)] <∞, then 〈S(τ),R(τ), µ〉 is a σ-finite measure space.
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Figure 5.2: EMM events as spatial-temporal objects arising within S(T ).

Hence, a σ-finite measure space can be defined over the EMM. Additionally, as

discussed in Section 5.3.4, 〈S(τ),R(τ), µ〉 can therefore be converted to a probability

measure with the proper normalization (i.e., as per the Axioms of Probability [142]).

Hence, the probabilities of event classes discussed in Section 5.2.2 (i.e., Prωk(e)) have

now been shown to formally exist within the EMM and, hence, can now be measured

within the EMM.

5.4.2 Defining Events within the EMM

In this section, the definition of events within the context of the EMM will be de-

veloped. In general, as discussed in Definition 5.7, the events in the measure space

are the measurable sets that are members of the σ-algebra defined by that measure

space. Similarly, in the defined EMM finite measure space 〈S(τ),R(τ), µ〉, events are
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also the members of the σ-algebra as defined by the EMM (i.e., the events within

the EMM defined measure space are the elements of R(τ)). In particular, within the

S(τ) space discussed above, all possible spatial-temporal subsets of S(τ) represent the

possible events as these are members of R(τ). Hence, an event formally denotes a

collection of states associated with of some collection of memory regions as defined

over a given time period. For example, the execution traces of software components,

received and sent packets, sequences of users’ commands, etc. all denote types of

events that can be represented as spatial-temporal subsets within S(τ). Figure 5.2

shows examples of events in the EMM. In general, events within the EMM would be

expected to have sufficiently short and strictly finite time durations such that their

durations τ are such that τ � T , i.e., as per normal expectations, events occur over

far shorted time frames than the full duration of the system’s operational time over

which security is to be achieved. Moreover, clearly, the above denotes a very gen-

eral definition of events as, for example, events may be comprised of discontinuous

memory regions, and/or discontinuous time periods. Typically, defenders, therefore,

would be only interested in specific subsets of this space of all possible events over T .

However, to define event probabilities, the entire space of the events must exist as a

measurable space. Within the EMM, events are therefore formally defined as follows,

Definition 5.8. An event e within the EMM’s σ-finite measure space 〈S(τ),R(τ), µ〉

is defined as a spatial-temporal subspace that occurs over a defined finite time period,

and therefore all events, e, exist as elements of the σ-algebra R(τ) that is described

by the EMM.

Additionally, the following lemma shows that for all events e within the EMM,

their probabilities can also be formally shown to exist.

Lemma 5.3. For all EMM events e ∈ E, there exists a mapping Pr : E → [0, 1], such

that, Pr(e) denotes the probability of the event e.
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Proof. Proof by construction. As discussed above, Lemma 5.1 and Lemma 5.2 showed

the existence of a σ-finite measure space 〈S(τ),R(τ), µ〉 over the EMM during τ , for

which all events e are members of its σ-algebraR(τ). Accordingly, as discussed in Sec-

tion 5.3.4, 〈S(τ),R(τ), µ〉 can be converted into a probability space 〈S(τ),R(τ), P r〉

by suitable normalization. Hence, there exists a mapping Pr : E → [0, 1] such that

Pr(e) denotes the probability of the event e for all events e occurring within the

σ-algebra.

Finally, it should be noted that, as defined above, events are restricted to exist

within the measurable information sets of the defined EMM. Hence, all incidents that

occur outside this defined measure space by definition cannot be measured within

or described by information contained in this space. Moreover, it should be noted

that the formal existence of event probabilities within the EMM also enables direct

linkages between the EMM and formal probability-based definitions of information

(i.e., as per information theory [143]). For example, consider the attacks described

in US vs Gorshkov [144]. In this case, the attackers enacted what would have been

considered legitimate user behaviors within each of eBay and PayPal’s isolated do-

mains, but which only became observably malicious when viewed jointly across eBay

and PayPal’s combined information sets. Such attacks would have been undetectable

within individual eBay and PayPal EMM models but would become detectable under

a joint eBay-PayPal EMM model. Hence, it should be emphasized that, the EMM

cannot model attacks (or their detection) which exist outside of the purview of the

EMM’s modeled information sets.

5.4.3 Discussion

As shown in Section 5.4, the EMM can be modeled as a σ-finite measure space, hence

probabilities associated with all events that can occur within the EMM can be defined.
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For each event e, its probability over each class ωk ∈ ω, Prωk(e), can be formally

defined. Accordingly, the defenders’ observation of a particular event e arising from

some class ωk can then be formally viewed as the observation of a particular instance

of a random variable described by Prωk(e). Hence, events within the same class are

not expected to produce identical bit changes within the EMM’s memory M (T ) or

even occur over identical time periods. Instead, stochastic variations are expected to

occur as described by the event classes underlying Prωk(e) distributions.

In a slight abuse of notation, e will now be used to denote this random variable

described by Prωk(e). Hence, f(e) now describes a random process. More particularly,

the allowable f(.)’s will now be restricted to those which preserve the σ-finite measure

space characteristics with respect to their generated feature spaces (i.e., for the map

f : S(τ )→ X , if S(τ ) defines a σ-finite measure space as per the EMM, then X must

also define a σ-finite measure space). Hence, ∀e ∈ E such that f(e) 6= ∅, if µ(e) exists

and µ(e) = Pr(e), then Pr(x) also exists for f(e) = x ∈ X . This notion of retaining

measurability across f(.) is captured in the following definition.

Definition 5.9. If f(.) is to be a feature mapping as defined in Equation (5.3), then

X must define a σ-finite measure space.

It should be noted that, it is not required that f(.) is measure preserving (i.e.,

Pr(e) need not necessarily equal Pr(x)). Additionally, the above analysis only shows

that the required Prωk(e) exists within the EMM. In particular, it does not specify

the analytical forms that these Prωk(e) or Pr(x) may take. Generally, the analytical

forms of the Prωk(e) or Pr(x) depend on the definitions of the events of interest to the

defenders. Moreover, it would not be expected that such events would, for example,

meet Central Limit Theorem tenets [145, pp. 621]. Hence, common analytical forms,

such as Gaussian distributions, cannot be assumed for the Prωk(e) or Pr(x) distribu-

tions. Specific analytical Prωk(e) and Pr(x) forms, therefore, can only be obtained
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via the detailed analysis of the actual operational system(s) the EMM is being used

to model and not via the EMM itself.

5.5 Anomaly and Signature Detection

In general, detection approaches can be classified according to the detection method

into anomaly-based and signature-based [6, 66]. Anomaly-based approaches detect

attacks by monitoring the deviations of the system from a collection of its previously

learned normal behaviors. Whereas, signature-based approaches use their knowledge

about malicious behaviors to directly detect the attacks. In this section, the EMM

modeling of anomaly and signature detectors will be discussed.

5.5.1 Modeling Anomaly-based Detection Approaches

Anomaly-based detection approaches use their knowledge about what constitutes

normal behaviors to determine the degree of the maliciousness of the analyzed event.

Typically, anomaly detectors must be trained before they can be used to detect these

malicious behaviors. During this training phase, anomaly-based detection systems

analyze the historical data of the past events in order to recognize the patterns associ-

ated with normal activities, and thereby, to establish models for the normal behavior.

Various approaches can be used to build the normal behavior models (e.g., statistical

approaches (e.g., [19, 146]), data mining approaches (e.g., [17, 147]), machine learn-

ing approaches [43, 148], etc.). After the training phase, the trained detector is then

deployed to monitor the system by detecting the deviations from its learned normal

behaviors. A core advantage of anomaly-based detection is its ability to detect novel

attacks. Whereas, their major disadvantages are its high operational false positive

rates and the difficulty of constructing the training models [149]. Numerous anomaly
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Figure 5.3: Anomaly detection as an EMM decision problem.

detection approaches have been proposed with [17,19,132,146,147,149,150] providing

some examples.

The formal EMM modeling of anomaly detection is via the fundamental construct

of standard statistical pattern classification problems [145]. Consider an anomaly

detector DA(.). Hence, DA(.) is used to classify the events into two classes: ω− and

ω+ where these represent the malicious and the benign events, respectively. More

particularly, DA(.) uses the probability distributions Pr(x|ω−) and Pr(x|ω+) of both

classes in the classification. As shown in Figure 5.3, d(.) defines a decision boundary

between Pr(x|ω−) and Pr(x|ω+). During the training phase, DA(.) uses the training

data of benign events to obtain (learn) an estimate of Pr(x|ω+), denoted as P̂ r(x|ω+).

Additionally, DA(.) also sets (or learns) d(.) such that it achieves a desired false

positive rate, i.e., such as via receiver operating characteristic (ROC) curves [145,

Section 2.8.3, pp. 49]. Moreover, if the training data also contains ground-truthed

malicious events, then DA(.) can also obtain an estimate of Pr(x|ω−), denoted as
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P̂ r(x|ω−), and d(.) can then be constructed based on knowledge of both P̂ r(x|ω+)

and P̂ r(x|ω−). Furthermore, as per standard statistical pattern recognition theory,

d(.) can be constructed through either parametric or non-parametric approaches [145,

Chapter 4], [151, Chapter 6]. As the EMM has been shown to define a σ-finite

measure space, non-probabilistic decision approaches, such as fuzzy logic, can also be

represented within the EMM, provided they operate on measurable information sets.

5.5.2 Signature-based Detection Approaches

Signature-based detection systems use signatures of known malicious behaviors to

detect attacks. The core advantage of these approaches is their high accuracy in

detecting known attacks with very low false positive rates. However, their major

disadvantage is their inability to detect novel (previously unseen) attacks [149]. In

malware detection, signature-based approaches are the most commonly used methods

of detecting malware behaviors (e.g., commercial anti-malware scanners).

The formal EMM modeling of signature-based approaches is similar to that of

anomaly-based approaches. However, the applied d(.) is now defined such that it

denotes a specific set of defined points in X , or more generally sets, where these

points then denote the known malicious event behaviors, as shown in Figure 5.4.

Consider the signature-based detector Ds(.). Hence, Ds(.) has a database of known

signatures X = {xk|k = 1, 2, · · · , K} of malware. Accordingly, for the event e ∈ E ,

Ds(.) uses its feature mapping f(.) to obtain f(e) = x. Finally, if x ∈ X, then

the decision boundary d(.) will report e as malware if x ∈ X. Otherwise, x will be

denoted as benign (i.e., d(x) = −1 if and only if x ∈X, with d(x) = 1 otherwise).
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Figure 5.4: Signature detection as an EMM decision problem.

5.5.3 Discussion

In this section, we discussed the modeling of anomaly-based and signature-based

detection approaches via the EMM. Without loss of generality, the distinction between

both categories is that signatures are specific defined elements of the X space (i.e., not

a space of elements as anomaly-based approaches), where in anomaly detection d(.) is

generalized to a more typical decision boundary. Hence, signature detection becomes

the redefinition of the decision boundary d(.) to denote only a set of specifically

defined points (or more generally regions) in the space X that represents the known

malicious events as shown in Figure 5.4, i.e., within the EMM, signature detection

represents a more informed version of anomaly detection as both can be seen to

implement different forms of decision functions on X .
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5.6 Modeling Static and Dynamic Detection Ap-

proaches

In general, malware detection approaches can also be classified according to the way

in which detection information is gathered in terms of whether they are static and

dynamic detection approaches [6, 7]. Static approaches attempt to detect malware

without executing the analyzed programs, whereas dynamic approaches detect mal-

ware during or after the execution of the analyzed programs. The formal EMM

modeling of static and dynamic malware analysis approaches is discussed as follows.

5.6.1 Static Detection Approaches

Without loss of generality, static malware detection approaches perform their analysis

without executing the analyzed programs. They use the syntactical or structural

properties of the programs to reason about their maliciousness. Examples of static

approaches are those of [1, 13, 33, 40, 42, 44, 48, 51, 152–160]. Despite the strong belief

in the research community that dynamic analysis outperforms static analysis, recent

studies showed that the strong detection capabilities of static analysis cannot be

ignored [161–166].

In general, the core advantage of static detection is that, it covers the entire

code contained in the analyzed sample, and consequently, it can provide additional

information about all possible execution traces of the analyzed programs making

it more suitable to detect specific malware classes, such as, logic and time bombs.

Whereas, the static analysis has the disadvantages of being susceptible to various

obfuscation techniques (e.g., packing, encryption, polymorphism) [22, 30, 167–170],

and of presenting a known undecidable problem [171].
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Within the EMM, to examine whether a composite software component γP is

malware or not, static analysis approaches extract their information sets from the

component’s static representation at a given time instant t (i.e., static(γP , t) as de-

fined in Section 3.5.4). However, static approaches can vary in the subsets of infor-

mation that they seek to extract from static(γP , t). Static signature scanners were

commonly used anti-malware solutions. In [29], Christodorescu et al. experimentally

showed that the commercial signature scanners can be easily evaded by using simple

obfuscation techniques. In the next subsection, we will use the EMM to provide a

formal proof conforming with this result. In particular, we will show in Theorem 5.1

that malware writers can obfuscate the malware signatures by using simple obfusca-

tions to generate novel variants with new signatures that allow the variants to escape

detection.

5.6.1.1 The Formal EMM Analysis of Signature Scanners

Signature scanners scan the systems for the signatures of known malware. As dis-

cussed in [91, Section 5.2.1, pp. 157], signatures should be able to discriminate be-

tween malware classes (i.e., each signature should uniquely characterize a class of

malware). Signatures can range from a sequence of instructions, a message displayed

by the virus, or even the infection marker itself [91, Section 5.2.1, pp. 158]. Within

the EMM, a static signature can be defined as any subset of measurable information

that is contained in static(γP , t). For simplicity but without loss of generality, we will

consider the signature to be a sequence of instructions.

Within the EMM, consider a software component γP . Consider also an anti-

malware scanner denoted as DS(.). Let DS(.) have a signature database that will be

denoted as Y , where each y ∈ Y is a signature of each different known malware sample.

To decide if γP is malware, DS(.) searches static(γP , t) and if it finds that there exists
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a y ∈ Y , such that, y ⊆ static(γP , t), then it will report γP as malware. That is

to say, DS[static(γP , t)] = −1 if and only if ∃y ∈ Y , such that, y ⊆ static(γP , t),

otherwise DS[static(γP , t)] = 1.

If the malware writers are able to change the signature of their malware without

changing its function, then DS(.) will no longer be easily able to detect the malware.

We will formally show that malware writers are able to obfuscate the instructions of

the signature without changing the function of the malware, and hence, will be able

to evade the detection. However, before discussing this issue, we must first define the

inverse of an instruction as follows.

Definition 5.10 (Inverse Instructions). Let M = 〈M,B, S, I〉 be a Maurer computer

as defined in Definition 2.2. An instruction i ∈ I is called invertible if and only if

there exists another instruction i′ ∈ I such that for any two states s, s′ ∈ S, s 6= s′,

s′ = i(s), we have s = i′(s′). Hence, i′ is called the inverse instruction of i and can

be denoted as i′ = i−1.

As shown in Definition 5.10, if i−1 is immediately executed after the execution

of i, the overall effect is that the memory will be restored back to its original state

before the execution of i. In other words, the effect of the sequential execution of i

and i−1 is similar to the effect of the execution of the identity instruction iid (e.g.,

executing “add AX,1” followed by “sub AX,1”). Of course, not all instructions are

invertible (e.g., the instruction “del AX” will delete the contents of AX that cannot

be restored). Now, Theorem 5.1 shows that malware writers can obfuscate malware

and evade signature scanners.

Theorem 5.1. Signature scanners are not resilient to attacker obfuscations.

Proof. Proof by construction. We will show that, for a software component γP ,

we can develop an equivalent software components γP ′ with the same function but
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different signature instructions. Hence, attackers can develop new malware variants

with the same malicious function, but without the defender known signature sequence

that enables the detector to recognize it. Let DS(.) be a signature scanner with a

signature database Y . Let γP be malware that has a signature y ∈ Y (i.e., DS(.) can

detect γP by the signature y). Let γP = (. . . , ik−1, ik, ik+1, . . . ) (i.e., γP is defined

as a sequence of instructions with ik−1, ik, and ik+1 being sequential instructions in

γP ). The signature y can be either: (i) a sequence of instructions of γP , or (ii) a

general indexed byte sequence in γP . We will prove the theorem for these two cases

as follows.

Case (i): The case of y being a sequence of instructions within γP . Let y be

defined as y = (ik, ik+1, · · · ) where y ⊂ γP (i.e., the signature y is a sequence of

instructions that contains ik, ik+1 from γP ). As discussed in Section 2.3.4, the two

instructions ik, ik+1 ∈ γP can be replaced by a composite instruction J = ik ◦ ik+1

that causes the same state memory changes as that caused by the execution of ik

followed by ik+1, respectively (i.e., ik, ik+1 can be replaced by an equivalent composite

instruction J). Next, we need to show that J exists. Since, as discussed in Section 3.4,

the input and output regions of instructions are assumed disjoint within the EMM,

then the conditions of Theorem 2.4 will be satisfied and, hence, J exists. Now,

with the replacement of the instructions of γP with composite equivalent ones, we

obtained another component γP ′ that is defined as γP ′ = (. . . , kk−1, J, . . . ), where γP ′

is equivalent to γP (i.e., γP ′ has exactly the same function as that of γP ). However, γP ′

does not contain the instruction sequence ik, ik+1 ∈ y and, hence, cannot be detected

by DS(.) using the same signature y (i.e., y 6⊂ γP ′).

Case (ii): The case of y being a general indexed byte sequence within γP . Let

i be an invertible instruction as defined in Definition 5.10. Hence, we can insert an

i followed by i−1 in γP and obtain γP ′ = (. . . , ik−1, i, i
′, ik, ik+1, . . . ) where, γP ′ has
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the same function as γP (because the insertion of i, i′ is the same as inserting the

identity instruction iid) but the insertion of i and i′ will change the indexes of the

bytes sequence of the signature y. Hence, γP ′ will evade detection by D(.).

As shown in the above two cases, we can easily develop a composite component

γP ′ that is equivalent to γP but consists of different instructions, where γP ′ does not

include the instructions of the signature y used by DS(.) to detect γP .

As discussed above, Theorem 5.1 provides a formal proof for the well-known ex-

perimental results reported in the literature that signature scanners can be easily

evaded by modifying the signatures’ instructions (e.g., [29,33,79]). The theorem also

formally shows that signature scanners must necessarily suffer from the lack of re-

silience against the attackers’ adaptations. Additionally, Theorem 5.1 also describes

one of the obfuscation techniques that can be used to generate novel malware variants

without changing the malicious function. Moreover, by the arbitrarily construction

of the required composite instruction J , many obfuscated variants can be obtained.

It should be noted that, the obfuscation discussed in Case (i) in the proof of

Theorem 5.1 above is commonly denoted as equivalent code obfuscation where the se-

quences of instructions can be replaced in the programs without changing the function

of the code [172]. For example, the assembly instruction inc AX which increments the

contents of the register AX can be replaced by add AX,1. The obfuscation discussed

in Case (ii) is known as junk code insertion obfuscation [172]. Other code obfusca-

tions, such as no-op insertion obfuscation where inserting the no-op instruction (i.e.,

iid) will not change the code function [172], can also be included in the above de-

scription. Additionally, if iyk and iyk+1
satisfy the conditions of Corollary 2.5, then

the order of execution of the two instructions can be exchanged without affecting

their composite function, resulting in code reordering obfuscation [172]. It should be

noted that, Theorem 2.2 and Theorem 2.3 can both be used to construct arbitrary
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Algorithm 5.1 Signature extraction algorithm.

1: function Signature(γP )
2: y ← ∅
3: for all ik ∈ γP do
4: Replace ik by any i ∈ I where i 6= ik to obtain a variant γP ′
5: if DS(γP ′) == −1 then
6: y = y + ik
7: end if
8: end for
9: return y

10: end function

sequences of instructions with the same function (i.e., by the arbitrarily composition

or decomposition of the instructions).

It should be observe that the proof of Theorem 5.1 relies on the assumption that

the attackers have the full knowledge of the defender’s known malware signatures, and

based on that, they are then able to intelligently perform the required obfuscations

necessary to generate the novel variants. Consequently, it can be argued that pro-

tecting the signature databases (e.g., by using encryption) should limit the attackers’

ability to generate novel obfuscated variants and increase the resilience of the scan-

ners. We disagree with this claim by showing that attackers can easily extract the

signatures used by the scanner to detect the malware thereby allowing them to opti-

mize their obfuscation efforts as the exact instructions needed to be obfuscated can

be specified by the attackers. In particular, attackers can use black-box analysis tech-

niques to find the signature. For example, in [136], Mutz et al. proposed a reverse

engineering process and tool for signature matching mechanisms in network-based

IDS. This can be generalized under the EMM as follows.

Let γP = (i1, i2, . . . , iN) be an instruction sequence that corresponds to malware,

where N is the number of instructions constituting γP . Algorithm 5.1 demonstrates

that the signature y that the signature scanner DS uses to detect γP can be extracted,

where + denotes the append operation. In particular, to extract a signature y used
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by the signature scanner DS(.) to detect a malware γP , Algorithm 5.1 proceeds as

follows. First, it initiate y to ∅ (i.e., y is initially empty) (Line 2). For each instruction

ik ∈ γP , Algorithm 5.1 replaces ik by another arbitrary instruction i to obtain another

component γP ′ (Line 4). Then, γP ′ will be scanned by DS(.) and if DS(γP ′) = 1 (i.e.,

DS(.) recognizes γP ′ as benign), then ik is a signature instruction that, when replaced,

caused DS(.) to be evaded (Line 5). Hence, ik will be added to y (Line 6). Note that,

Algorithm 5.1 is of order O(n) (where n is the number of instructions of the malware)

and it is similar to those discussed by Filiol in [79] and Christodorescu et al. in [29].

Clearly, by implementing a simple algorithm like that of Algorithm 5.1, malware

writers can easily extract the signatures used by the scanner to detect the malware,

under the proviso that they can know if their malware was detected, i.e., via the use

of a watch dog timer or similar constructs within the malware.

5.6.2 Dynamic Detection Approaches

Dynamic malware detection approaches attempt to detect malware during or after the

execution of the analyzed programs. The basic principle of dynamic detection is that

the behavior of a program can be described by its interactions with its surrounding

execution environment [173]. Examples of dynamic approaches are those of [16, 81,

146, 173–176]. The core advantage of dynamic detection is its relative immunity to

various binary code obfuscation techniques. Whereas, its core disadvantage is that

it only extracts the detection information from the executed traces of the analyzed

programs, and hence, it cannot obtain any information from any unexecuted code

segments. As discussed in [24], typically only limited subsets of malicious behaviors

can be observed within the short time frames of malware executions. To mitigate

this effect, approaches exist to explore and analyze all possible execution paths, such

as those of [28, 177–179]. However, as discussed in [180, 181], these approaches tend
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to offer unacceptably low operational performance. Dynamic analysis can be evaded

through special techniques, such as: crafting their malware in a way that it mimics

the behavior of the benign programs (e.g., mimicry attacks [31, 32]), delaying the

execution of the malicious payloads [27], restricting the execution of the malicious

payloads to the existence of specific triggering conditions (e.g., logic and time bombs

[91,104,114]), etc.

Note that, dynamic analysis approaches execute the analyzed components γP

over a time period τ ⊆ T and extract their detection information from the sets of

dynamic information dynamic(γP , τ) as defined in Section 3.5.4. However, dynamic

approaches will vary in the subsets of information that they seek to extract from

dynamic(γP , τ). Dynamic system calls approaches are widely used to analyze malware

(e.g., [1, 14, 49, 146, 182–185]). Hence, we will provide a formal analysis of dynamic

system call sequence as follows.

5.6.2.1 The Formal Analysis of System Call-based Dynamic Approaches

Generally, system calls are special instructions that enable programs to invoke the

OS services. For example, the instruction sequence shown in Figure 5.5 shows an

assembly code fragment from the worm variant “Bagle.J ” quoted from [1], where the

instructions i6, i11, i14, and i16 are the system calls, where the Bagle.J code serves

solely as one such example.

As shown in Figure 5.6, for each system call made by the program, the sequence

of system calls inside the window is compared against a database of known malicious

sequences to decide whether this sequence is or is not malware. Corollary 5.1 shows via

the EMM that these detection solutions can be evaded (or equivalently, call sequences

can be obfuscated) as follows.

Corollary 5.1. System call sequences malware analysis approaches can be evaded.
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I1: push ebp
I2: mov ebp, esp
I3: add esp, 0FFFFFFFCh
I4: push offset aSoftwareDatetime
I5: push 80000001h
I6: call RegDeleteKeyA
I7: lea eax, [ebp+hKey]
I8: push eax
I9: push offset SubKey
I10: push 80000001h
I11: call RegCreateKeyA
I12: push offset ValueName
I13: push [ebp+hKey]
I14: call RegDeleteValueA
I15: push [ebp+hKey]
I16: call RegCloseKey

Figure 5.5: Bagle.J code fragment quoted from [1].

Proof. Proof by construction. We will show that, for an EMM software component

γP , we can develop an equivalent software components γP ′ with the same function

but a different system call instruction sequence and, hence, attackers can develop

novel variants with the same malicious function and different system call instruc-

tions. Let DC(.) be a system call sequences malware detection system that utilizes

a database Y of known malicious sequences. Let γP be malware that is defined as

γP = (· · · , ik, ik+1, · · · ), where ik is a system call instruction. As per the proof of

Theorem 5.1 above, there will also be two possible cases to consider. Those cases are

as follows.

Case (i): The first case is when the system call instruction can be composed with

another instruction. Let y ∈ Y be the system call sequence used to detect γP , hence,

y can be defined as y = (· · · , ik, · · · ). As discussed in the proof of Theorem 5.1

(page 131), by the composition of the two instructions ik, ik+1 ∈ γP , a software
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Figure 5.6: System call sequences.

component γP ′ = (· · · , J, · · · ) that is equivalent to γP can be obtained, where J =

ik ◦ ik+1.

Case (ii): The second case is when the system call instruction cannot be com-

posed with other instructions. Hence, y can be obfuscated by inserting additional

system call instructions into γP (i.e., in a similar manner as to the idea of inserting

i and i−1 in Theorem 5.1’s proof), such that, their overall effect is as inserting iid

or performing any additional state changes that do not impact the malicious behav-

iors of γP . Hence, a software component γP ′ that is equivalent to γP can be easily

developed, such that, y 6⊂ γP ′ .

Corollary 5.1 follows directly from generalizing Theorem 5.1 and shows that, sim-

ilar to static signature scanners, dynamic system call approaches can also be easily

evaded by obfuscating the system call sequences. These results agree with those of

the prior experimental work. Particularly, as discussed in [31, 32], mimicry attacks

are equivalent sequences of system calls with the same malicious function but with

different system calls. Additionally, as discussed in [77], functional polymorphism can

also be used to obtain equivalent code sequences yet with different system calls.

Hence, using the EMM, Corollary 5.1 formally showed that dynamic malware

analysis approaches based on system call sequences are not resilient to attacker adap-

tations as these sequences can be easily obfuscated while retaining their malicious
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behavior. Accordingly, the EMM provides a useful model for reasoning about the

resilience of these forms of malware detection system.

5.6.3 Discussion

Within the EMM, the distinction between static and dynamic detection approaches

is solely in the source of the detection information. In particular, to detect whether

a composite software component γP is malware or not, static detection approaches

extract their information sets from static(γP , t) as defined in Equation (3.21), whereas

dynamic detection approaches extract their detection information from the set of

dynamic information dynamic(γP , τ) as defined in Equation (3.20). Hence, the core

difference is solely in how the feature mapping f(.) is implemented. As discussed

in Section 5.4.3, f(.) is defined generally to include any mapping f : S(T ) → X

that preserves the EMM measurability within X . Accordingly, the EMM can model

both static and dynamic approaches as well as detectors that may combine both

static and dynamic information sets. Additionally, in the previous section, the EMM

has been shown to be able to model anomaly-based and signature-based detection

approaches, where the distinction between them is in solely terms of the way the

decision boundary d(.) is defined. Hence, the EMM can cover all combinations of

signature-based, anomaly-based, static, and dynamic detection approaches via the

proper definitions of f(.) and d(.).

5.7 The Completeness of the EMM with respect

to Detection Solutions

In Section 5.6 and Section 5.5, it has been shown that, the standard categories of

detection approaches can be modeled via the EMM through its measure-theoretic
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properties as developed in this chapter. In this section we generalize this discussion

to formally showing that all implementable malware detectors can be defined in terms

of the EMM, as illustrated by the following theorem.

Theorem 5.2. The EMM is complete in the sense that it can model all malware

detection approaches that extract their detection information from the EMM.

Proof. Proof by contradiction. Assume that D(.) is a detector that only extracts its

information from a system for which an EMM has been constructed but thatD(.) itself

cannot be modeled by the EMM. By definition, D(.) as a detector, must partition

some measure space X into the subspaces X− and X+ (i.e., it must implement a

decision mapping d(.)). Therefore, assume an event e ∈ E is denoted as attack under

D(.). Assume also that there exists some e′ ∈ E where e′ 6= e and e′ is benign.

Then it should be the case that D(e) ∈ X− and D(e′) /∈ X−. Hence, from the EMM’s

consistency principle, there must exist, at least, a measurable difference in information

between e and e′ such that D(e) ∈ X− and D(e′) /∈ X−. But the existence of this

measurable information would allow D(.) to be modeled within the EMM (i.e., with

this measurable information, the required d(.) decision function can be constructed).

Therefore, it must be the case that e = e′ under the EMM. More particularly, as

per Section 5.2, a decision function d(.) is constructible between two pattern classes

ω+ and ω− as long as Prω1(.) 6= Prω2(.). By definition, the e and e′ must represent

different random variables and, by the consistency principle, Prω1(.) 6= Prω2(.) if

e ∈ ω+ and e′ ∈ ω−. If D(e) = D(e′), then given that D(.) knows that e 6= e′ whereas

as per the above, it must be the case that e = e′ under the EMM, it must be the

case that D(.) is using information that is not contained within the EMM (i.e., D(.)

by definition then cannot be modeled within the EMM). But this contradicts the

assumption that D(.) only uses information contained within the EMM to assess the

maliciousness of e and e′.
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Hence, as shown in the above theorem, the EMM measure-theoretic model of

malware detection is complete in the sense that it can be used to model all types

of malware detectors that extract their measurable detection information from the

information sets modeled by the EMM (i.e., all detection approaches based on the

analysis of measurable information are modeled under the EMM).

5.8 Summary

In the chapter, a general model of the malware detection problem using the EMM

has been developed. The EMM has been extended by defining a probability space

over it for all events that can occur within its modeled information space. This,

in turn, was shown to allow the EMM to be used to provide formal models for the

analyses of various categories of malware detection approaches. Particularly, the

EMM modeling of the anomaly-based and signature-based approaches was discussed.

Additionally, the formal EMM modeling of static and dynamic malware detectors

was also discussed. It was then formally shown via the developed EMM that static

signature scanners and dynamic system call sequence malware detection solutions can

be easily evaded. Finally, the completeness of the EMM model was developed via its

measure theory properties and it was shown to be complete in the sense of being

able to model all implementable malware detectors that extract their measurable

information from the EMM’s modeled information, where Chapter 3 showed that

this denoted all information that can exist within the modeled defended environment

over T .
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Chapter 6

Game Theoretic Analysis

6.1 Introduction

As discussed in Section 1.1, an arms-race exists in which the system defenders develop

better malware detection approaches only to have the attackers develop techniques

to bypass each next generation of deployed defenses. This motivates the study of

this ongoing confrontation. Arguably, a better understanding of the nature of the

confrontation and the analysis of the strategies of the attackers and defenders should

enable the development of more effective defenses. More particularly, game theory

provides the mathematical framework to formally reason about the interactions of

rational and intelligent adversarial decision makers. Hence, this chapter exploits the

developed EMM to construct a game-theoretic model to analyze attacker-defender

confrontations occurring within the context of malware and its detection within the

EMM defined defended environments.

Game theory typically focuses on analyzing games to find their corresponding Nash

equilibria (NE). More particularly, the NE are the set of strategies of the players in

the game under which no player is willing to unilaterally change his/her own strategy
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assuming the other players’ strategies are themselves kept unchanged [186, Chapter 2].

NE are the most widely acceptable solution concept in game theory since it captures

the eventual steady-sate solutions to which games eventually must converge [187,

Chapter 3]. Another form of optimal solutions exists in cooperative games which is

termed the Pareto optimal solution (or Pareto optimality) [188, Chapter 1, pp. 5].

Pareto optimality differs from NE in that it assumes that the players within a game

can coordinate their selection of strategies to play whereas NE presumes that all

players’ strategies are always arrived at independently. Pareto optimality is typically

applied, within social sciences and economics games, where the game should lead to

socially desirable outcomes [189, Section 3.3, pp. 57]. As this dissertation is only

concerned with attacker-defender confrontations, this work focuses solely on NE and

not on Pareto optimal solutions.

It should be noted that, much of the prior work in which game theory has been

applied to malware and intrusion detection solutions has tended to focus on the anal-

ysis of specific security games (i.e., a specific game is constructed and its NE are

computed). This work applies game theory in a different manner in that it uses the

EMM to enable the modeling of the sequence of interactions that arise as the at-

tackers and defenders adjust their strategies in light of what they learn about what

the other does. More particularly, the EMM provides a complete model of the de-

fended environment in, as has been shown in Chapters 4 and 5, in that it can model

all implementable malware and malware detection solutions deployable within the

modeled defended environment. Hence, by this EMM facilitated approach, it will

be shown that the attacker-defender confrontations can be modeled as a sequence of

games that arise as each side adapts in order to maximize their results. Using the

dynamical systems theory, this sequence of games can then be analyzed to deter-
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mine the conditions required if the sequence is to eventually converge to a defender

advantageous (or defender winnable) end-game.

The remainder of this chapter is organized as follows. Section 6.2 provides the

background materials for the game theory and dynamical systems concepts that will

be used. Section 6.3 discusses the prior work in applying game theory to the analysis

of malware and intrusion detection problems. Section 6.4 applies the developed EMM

to provide a game theory based model for the attackers-defender interactions. Sec-

tion 6.5 shows that the developed game evolves over time as an iterative sequence of

sub-games. Section 6.6 then analyzes this sequence of games to specify the scenarios

under which it could converge. Section 6.7 then studies this sequence in more detail

and formally derives the conditions required if the iterative sequence of sub-games

is to converge to a defender-advantageous end-game. Section 6.8 provides a discus-

sion of the modeled sequence and the derived analysis results. Finally, Section 6.9

summarizes this chapter.

6.2 Background Material

For the completeness of this dissertation, this section provides a brief overview of

the fundamentals of game theory (Section 6.2.1) and dynamical systems theory (Sec-

tion 6.2.2). For more detailed information about game theory, we refer the reader

to [187], [188], [186], and [189]. Whereas, for more details about dynamical systems

theory, we refer the reader to [141] and [190].
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6.2.1 Principles of Game Theory

Game theory provides a mathematical framework to analyze multi-person decision-

making scenarios. It seeks to model the interactions among rational1 decision makers

who have to choose actions that might be conflicting. Without loss of generality, a

basic assumption in game theory is that decision makers are rational and intelligent2.

In game theory, a game consists of: (i) a set of decision-makers called the players,

(ii) a set of strategy sets of the players, and (iii) a set of utility functions for the

players [187, pp. 46]. A player can be a machine, a person, a group of persons, etc.

In any game, the players are assumed to maximize their payoffs according to their

preferences, as expressed mathematically by their utility functions which map the

possible consequences of their strategies onto the real numbers.

There are different classifications of games depending on: (i) the nature of the

interactions between the players, (ii) the information the players know about each

other, and (iii) the strategy sets of the players. If the players are concerned only

with maximizing their own payoff, then the game is called a non-cooperative game,

whereas, if the players form coalitions in order to coordinate their strategies, then

the game is called a cooperative game [188, Section 1.1]. If the players have the

complete knowledge about their own strategies and payoffs as well as the other players’

strategies and payoffs, then the game is termed to be one of complete information,

whereas if at least one player does not have the complete knowledge of the strategies

and/or payoffs of any other player, then the game is termed to be one of incomplete

1The decision-makers are rational if they take decisions that consistently maximize their own
utilities [187, pp. 2].

2The decision-makers are intelligent if they know everything about the game and can make all
inferences about the situations of the game [187, pp. 4]. Hence, if a theory that describes the
behavior of intelligent players in some game has been developed and it is believed that this game
is correct, then it should be assumed that each player in the game will understand this theory and
any subsequent predictions derivable from it [187, pp. 4].
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Figure 6.1: An example of an extensive form 2-player game.

information [187, pp. 67]. Finally, if all strategy sets of the players are finite, then

the game is termed finite, otherwise, it is termed infinite [187, pp. 140].

There are two different forms for games according to the nature of the decision

making process. If all players decide their strategies simultaneously or independently

without having any information about the selected strategies of any other player,

then the game is called a normal or a matrix form game [189, Chapter 3]. Whereas

if the players decide their strategies at different times or any of them has access to

information about some of the strategies selected by any of the other players prior to

selecting their decisions, then the game is called an extensive or a tree form game [189,

Chapter 7]. Extensive form games are more suitable to capture the dynamics of

potential information exchange among the players. Figure 6.1 shows an example of

an extensive form game that has two players P1 and P2, where P1 has two strategies

({a1, a2}) and P2 has four strategies ({r1, r2, R1, R2}). As shown in the figure, P1 is

assumed to act first and then P2 acts after observing the actions of P1. Also, P2 is

assumed to perfectly observe P1’s actions and he/she can discriminate whether P1

used actions a1 or a2. This is represented by the dashed circles around P2’s nodes,

which are called the information sets of P2 (i.e., P2 has two information sets). The
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ordered pairs at the terminal nodes represent the payoffs of P1 and P2, respectively,

according to their different selections of strategies.

6.2.1.1 Formal Definition of Games

Without loss of generality the game will be denoted as G and will be defined as

follows [187, Chapter 2].

Definition 6.1 (Definition of games). A game, G, is defined as the tuple G =

〈N ,Σ,U(.)〉, where:

• N is a set of N ≥ 2 players ( e.g., attackers and network defenders, malware

and malware detection systems, etc.). Players are the basic entities of the game.

• Σ = {Σ1,Σ2, · · · ,ΣN} is a set of N strategy sets of the players. In particular,

for j = 1, 2, · · · , N , each Σj ∈ Σ is a nonempty set of the strategies that player

j can take in the game. A strategy profile is a = (a1, a2, · · · , aN) ∈ ×Nj=1Σj,

where ∀j = 1, 2, · · · , N , it is the case that aj ∈ Σj.

• U(.) is the set of N utility functions (or payoff functions) of the players. Specif-

ically, ∀j = 1, 2, · · · , N , it is the case that uj(.) ∈ U(.) where uj(.) denotes the

utility function of player j that assigns a payoff value for each combination of

the players’ strategies. Hence, uj(.) is a mapping uj : Σ1 × Σ2 × · · · × ΣN → <,

where < is the set of real numbers.

6.2.1.2 Nash Equilibrium

As discussed in [186, Chapter 2], Nash equilibria (NE) are the most commonly used

solution concept in game theory as it captures the eventual steady-state of the play

of a strategic game in which each player acts rationally. Let a∗ = (a∗1, a
∗
2, · · · , a∗N) be
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a strategy profile. Let a−j denote the profile of strategies of all players except player

j. Hence, NE is defined as follows.

Definition 6.2 (Nash Equilibrium). Nash Equilibrium is a set of strategies under

which no player is willing to unilaterally change his/her own strategy if other players’

strategies are kept unchanged [186, Chapter 2]. Formally, a∗ is an NE if and only if,

∀aj ∈ Σj, uj(a
∗
j) ≥ uj(aj, a

∗
−j), ∀j = 1, 2, · · · , N, (6.1)

where uj(a
∗
j) is the utility of j when all players in the game use their NE strategies and

uj(aj, a
∗
−j) is the utility when player j uses different strategies than the NE strategies

while all other players use their NE strategies.

In general, as discussed in [187, Theorem 3.1, pp. 95], there exists at least one

NE in mixed strategies3 for finite strategic form games, where as discussed in [187,

Section 3.12, pp. 136], the proof of this theorem relies on the fixed point theorem

of Kakutani. As will be discussed in details in Section 6.4, under the EMM, the

attacker-defender confrontation can be modeled as an extensive form, finite, two-

person, non-zero sum, non-cooperative game, hence, it is important to show that NE

exists for this game. Before discussing the existence of NE, we will first define the

notions of behavioral strategies and perfect recall for extensive form games as follows.

Definition 6.3 (Behavioral Strategies). Behavioral strategies in extensive form games

specify an independent probability distribution over the strategies of the players at each

information set [189, Definition 7.6, pp. 140].

Definition 6.4 (Perfect Recall). A perfect recall in extensive form games is the as-

sumption that, whenever a player acts, the player can perfectly remember all previous

strategies made in the game.

3A mixed strategy of a player is a set of probability distributions over the player’s action set [186,
Chapter 3, pp. 32].
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Without loss of generality, as shown in Theorem 6.1, NE exists for such extensive

form games. Particularly, when the game is repeated for a sufficiently large number

of times, the players are guaranteed to converge to using only their NE strategies.

Theorem 6.1. For any extensive form game with perfect recall, NE exists in behav-

ioral strategies.

Proof. The proof can be found in [187, Theorem 4.3, pp. 162].

As discussed in [187, Section 4.2], the proof of Theorem 6.1 of the existence of

NE in extensive form games is structured based on the existence of NE in strategic

form games, where this can be proven to hold via the application of Kakutani’s fixed

point theorem [187, Section 3.12, pp. 136]. As players repeatedly play a game for a

sufficiently large number of times, then the players will necessarily converge to only

using their NE strategies. Hence, Theorem 6.1 guarantees the existence of NE for

the forms of games of interest in this work to model attacker-defender confrontations.

Moreover, these NE denote the points of interest to study within such game as these

are the points to which the arms-race must over time converge to. Note that, as

discussed in [187, Section 3.4, pp. 106], rational and intelligent players will only use

their NE strategies in the game (or converge to use their NE strategies) since if

they were use different strategies, then they would notice that they could unilaterally

change their played strategies to NE strategies and, thereby, obtain improved payoffs.

This allows game theory-based analyses to focus on assessing the characteristics of

the NE of the games under study to the exclusion of the remainder of the game’s

strategy space.

6.2.1.3 Strategy Domination

The concept of domination in player strategies is an important concept in game

theory as it allows the players to reduce the set of strategies they need to consider
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by eliminating any strictly dominated strategies. In particular, as discussed in [187,

Section 2.5, pp. 57], a strictly dominated strategy for the player j in the game by

definition can never be j’s best response no matter what j may believe or know about

the other players’ strategies. In particular, dominated strategies are formally defined

as follows.

Definition 6.5 (Dominated Strategies). Let ak, ak′ be two strategies for the player j

in a game G. The strategy ak is termed dominated by ak′ for player j in a state of

the game [187, Section 2.5], if and only if,

uj(ak′ , a−j) > uj(ak, a−j). (6.2)

Additionally, strictly dominated strategies are defined as follows.

Definition 6.6 (Strictly Dominated Strategies). If a strategy ak of player j is a

dominated strategy in all states of the game G, then ak is termed a strictly dominated

strategy for the player j in the game G [189, Chapter 4].

As shown in Equation (6.2), j is always better off playing ak′ than playing ak

(i.e., by playing any other ak′ 6= ak, player j will receive a higher payoff irrespective

of the state of the game G). Hence, rational players will never use strictly dominated

strategies as other strategies yielding higher payoffs will always exist [189, Claim 4.1,

pp. 60]. Consequently, strictly dominated strategies can never, by definition, be

within the NE of the game G because the rational player can and would always

elect to unilaterally change his/her own strategy to obtain a higher payoff, which

contradicts the definition of NE.

Hence, strictly dominated strategies can be eliminated without affecting the struc-

ture of the game. Particularly, the iterated elimination of dominated strategies is a

weak solution concept for games in that it iteratively removes dominated strategies
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as these cannot be within the games NE4 [189, Section 4.2]. More particularly, elim-

inating strictly dominated strategies does not affect the analysis of the game as such

strategies will never by used by rational and intelligent players [187, Section 2.5,

pp. 58]. As will be seen in Section 6.4, this solution concept can be applied to simply

analyze the forms of attackers-defender confrontations of interest in this work.

6.2.2 Dynamical Systems Theory

In this section, the concept of dynamical systems and dynamical systems theory will

be discussed. This is important since, as will be shown in Section 6.6, we will use

game theory in combination with dynamical systems theory to reason about how

the attackers-defender confrontations evolve over time. In particular, the reasoning

about how the event probabilities of Chapter 5 may or may not change over time as

a result of the attackers’ adaptation requires the application of dynamical systems

theory constructs. It should be emphasized that, the majority of this subsection

is paraphrased from [141], in part to ensure the accuracy and completeness of the

presented definitions.

Let 〈Ω,F , µ〉 be a measure space, where Ω is the standard sample space denoting

all possible events, F is a σ-algebra of subsets of Ω, and µ is a measure defined

on F as discussed in Section 5.3. Without loss of generality, a dynamical system

is defined as a measure space 〈Ω,F , µ〉 equipped with a measurable transformation

T : Ω→ Ω [141, Section 2.3, pp. 42]. We will begin by introducing transformations,

measurable transformations, and measure preserving transformations in Definition 6.7

which will then be used to define dynamical systems in Definition 6.8.

4The term “weak solution concept” is used as iterative elimination of dominated strategies removes
strategies that cannot be part of the NE as opposed to directly seeking to solve for the NE.
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Definition 6.7 (Transformations, Measurable Transformations, and Measure Pre-

serving Transformations). Let 〈Ω,F , µ〉 be a probability space, then:

(i) A transformation T is defined as a map T : Ω→ Ω.

(ii) T is a measurable transformation if and only if ∀A ∈ F we have T −1(A) ∈ F ,

where T −1 is the inverse of T [190, Definition 1.1, pp. 19].

(iii) T is a measure preserving transformation if and only if T is a measurable

transformation, such that, ∀A ∈ F , µ[T −1(A)] = µ[A] [190, Definition 1.1,

pp. 19].

It should be noted that, as discussed in [141, Chapter 2, pp. 35], a typical trans-

formation T of interest in engineering domains is the one that corresponds to the

time shift operator. Since we are seeking to analyze the attacker-defender interac-

tions over time, then the transformation T of interest in this work is also this time

shift operator. Next, dynamical systems and stationary dynamical systems can now

be defined as follows.

Definition 6.8. Let 〈Ω,F , µ〉 be a measure space and T : Ω → Ω be the time shift

operator, then:

(i) If T is a measurable transformation, then the tuple 〈Ω,F , µ, T 〉 is called a

dynamical system [141, Section 2.3, pp. 42].

(ii) Furthermore, if T is a measure preserving transformation, one-to-one5, and

onto6, then the dynamical system 〈Ω,F , µ, T 〉 is a statistically stationary dy-

namical system [192, Chapter 9, pp. 429], [141, Section 5.9, pp. 152].

5A map T : Ω→ Ω is one-to-one when no two distinct inputs give the same output [191, pp. 37].
Hence, ∀x1, x2 ∈ Ω, if T (x1) = T (x2), then it must be the case that x1 = x2.

6A map T : Ω→ Ω is onto (or surjective) if the codomain is the range of T [191, pp. 39].
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As discussed in [141, Section 2.3, pp. 42], the name dynamical system comes

from the focus on the long-term dynamics (or dynamical behavior) of the repeated

application of the transformation T on the underlying measure space. As shown

in Definition 6.8 above, the probabilities of the events remain unchanged over time

within stationary dynamical systems, which is a key concern if decision functions are

to be constructed based these event probabilities.

Now, ∀A ∈ F in the dynamical system 〈Ω,F , µ, T 〉, the sets T (A) are the sets that

are produced after the application of T . Additionally, T 2(A) = T [T (A)]. In general,

for any j ∈ {1, 2, · · ·}, T j+1(A) = T [T j(A)]. Next, we introduce the important

definition of weakly wandering sets for measurable transformations as follows.

Definition 6.9. Let 〈Ω,F , µ, T 〉 be a dynamical system. A measurable set W ∈ F of

positive measure is called a weakly wandering set for the measurable transformation

T if there exists a countable sequence n → ∞, such that, T k(W ) ∩ T k′(W ) = ∅ for

all k 6= k′ where k, k′ ∈ n [193, pp. 330]. To be measure-preserving, a transformation

cannot give rise to weakly wandering sets [193, pp. 330].

Hence, from Definition 6.9, it is sufficient to show that there exists weakly wan-

dering sets for a transformation T to prove that T is not measure preserving. Ad-

ditionally, since the stationarity of a dynamical system requires T to be measure

preserving, then the existence of weakly wandering sets suffices to prove that the

dynamical system described by T is non-stationary (i.e., that the associated event

probabilities are themselves time-dependent quantities). In Section 6.7.2, we will show

that weakly wandering sets exist with the iterative sequence of sub-games that de-

scribes the attacker-defender malware arms-race. Hence, any malware measurement

features that span these wandering sets must describe (or denote) non-stationary ran-

dom processes. This observation is important as it formally states that the defenders

must track non-stationary attack behaviors if they are to successfully defend against
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the next attacker generated malware variant. Hence, by definition, any and all past

information the defender may have is not sufficient to determine how the defenses

should be improved. This is important as the EMM’s events formally described by

(or as) random variables with the detection measurement features then describing

random processes.

6.2.3 Random Variables and Random Processes

In this section, the concepts of random variables and random processes from a dy-

namical systems perspective will be discussed.

6.2.3.1 Random Variables

A random variable, X, is commonly defined as: a real function of the elements of a

sample space Ω [194, Chapter 2, pp. 41]. Let 〈Ω,F〉 be a measurable space, where F

is a σ-algebra of subsets of Ω. As discussed in [141, Section 2.1], a random variable

is called a measurable function that is defined as follows.

Definition 6.10. A measurable function g(.) defined on 〈Ω,F〉 is the mapping g :

Ω→ Ω with the property that,

if A ∈ F , then g−1(A) ∈ F . (6.3)

Hence, as discussed in [141, pp. 36], a measurable function is just a mapping with

the property that inverse images of the output events are also events in the defined

measurable space.
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6.2.3.2 Random Processes

As discussed in [142, Chapter 2, pp. 49], a random process, X(t), assigns a random

function of time as the outcome of a random experiment. By considering T to be time

shift operations, we can define random processes from the perspective of dynamical

systems as follows [141, Section 2.3, pp. 40].

Definition 6.11. Let 〈Ω,F , µ, T 〉 be a dynamical system where T is a time shift. As

discussed in [141, Section 2.3], a random process {Xn|n ∈ I}, where I is an index set,

is defined as the dynamical system 〈Ω,F , µ, T 〉 together with a measurable function

g(.). Hence, ∀A ∈ F , ∀n ∈ I,

Xn(A) = g[T n(A)] (6.4)

Additionally, a statistically stationary7 random process can also be defined as

follows.

Definition 6.12 (Stationary Random Processes). A random process is statistically

stationary if and only if its corresponding dynamical system is stationary with respect

to the shift operator T [141, Section 5.9, pp. 152]. A stationary random process is

the one for which the probability of any event is the same regardless of whenever in

time the event occurs [141, Section 5.9, pp. 152].

As shown in Definition 6.12 above, the statistical stationarity of a random process

requires the stationarity of its underlying dynamical system, which also requires the

transformation T to be a measure preserving transformation, as per Definition 6.8.

Hence, of concern in this work is to assess whether or not the defender’s measurement

features F (.) under the EMM are measure invariant with respect to the attackers’

7Stationarity as a term is assumed to include quasi-stationary processes, where for the purpose
of this dissertation, a quasi-stationary random process will be defined as the cases where a known
model can be applied to reduce a non-stationary process to a stationary process.
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adaptations, as if they are not, then ∃e ∈ E− such that Pr(e) is a time varying

function. Hence, the decision boundary d(.) is also time varying and the way it

should b adjusted cannot be learned from S(T−).

6.3 Related Work

In this section, a summary of some of the prior works in applying game theory to

intrusion and malware detection problems will be discussed. As many works exist in

this domain, only a summary of some of the key works is provided.

In [68], Alpcan et al. investigated the application of game theoretic concepts

to develop a formal decision and control framework for the analysis and decision

processes involved in network intrusion detection. Alpcan et al. developed a security

attack game that modeled and analyzed both attacker and IDS behaviors within a

two-person, nonzero-sum, non-cooperative game with dynamic information. Finally,

Alpcan et al. obtained this game’s NE solutions in closed form and provided two

illustrative examples.

In [195], Agah et al. proposed a game theoretic framework for defending nodes in

a sensor network. Agah et al. formulated the attack-defense problem as a two-player,

non zero-sum, non-cooperative game between an attacker and a sensor network. Agah

et al. analytically determined the NE of the developed game. Additionally, Agah et

al. evaluated the performance of the game and concluded that the proposed game

framework had good performance with respect to defending the sensor network.

In [196], Chen et al. targeted the intrusion detection problem in heterogeneous

networks consisting of nodes with different non-correlated security assets. In particu-

lar, the main objectives of Chen et al. were to find the expected behaviors of rational

attackers and the optimal strategy of the defending IDSes. Accordingly, Chen et al.
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modeled the network intrusion detection as a non-cooperative game and analyzed its

NE. Additionally, Chen et al. also provided an evaluation for the proposed game via

simulations that validated of the analytical results.

In [197], Lu et al. modeled active cyber-defenses taking into account strategic

attackers and/or strategic defenders. Lu et al. investigated infinite-time horizon

optimal control and fast optimal control strategies for strategic defenders against

non-strategic attackers and discussed the resulting NE.

In [198], Lye et al. presented a game-theoretic method for analyzing the security

of computer networks. Lye et al. modeled the interactions between the attacker and

the network administrator as a two-player stochastic game. Lye et al. computed

the NE strategies for the players (attacker and administrator). Finally, based on the

obtained results, Lye et al. discussed possible ways that could be used to enhance

the security of the analyzed network.

In [199], Nochenson et al. used agent-based simulation to determine the appro-

priate strategies for attackers and defenders within a simple network security game.

In the game, attackers and defenders were modeled as strategic entities in that the

attackers were assumed to seek to maximize the amount of damage they caused and

the defenders were assumed to seek to minimize their losses subject to some cost

constraints. Through simulation, Nochenson et al. derived the NE strategies for the

players under a variety of cost conditions with the goal to inform network adminis-

trators about possible attacker behaviors and their mitigations.

In [200], Alpcan et al. investigated the security aspects of vehicular networks

(VANETs) within a game-theoretic framework where the defensive measures were

optimized with respect to the threats posed by attackers. Alpcan et al. discussed the

optimal deployment of traffic control and security infrastructure in both static and
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dynamic cases. In this work, Alpcan et al. also studied multiple types of security

games under a variety of information availability assumptions for the players.

In [201], Zhu et al. proposed a model based on trust management by using game

theory for peers seeking to collaborate truthfully in an intrusion detection network

(IDN) environment. Zhu et al. showed the existence and uniqueness of a NE under

which such peers can communicate within an incentive compatible manner. Addi-

tionally, Zhu et al. developed an iterative algorithm to assess the game’s NE.

In [202], Theodorakopoulos et al. combined an epidemic model for malware prop-

agation in a network by a game-theoretic model of the users’ decisions. In this model,

users were allowed to dynamically change their decisions in order to maximize their

perceived utility. In this work, Theodorakopoulos et al. also studied the NE and

their dependence on the speed of the learning process through which the users come

to understand the state of the network. Theodorakopoulos et al. showed that faster

learning processes corresponded to higher total network costs at the game’s NE.

In [203], Zhu et al. developed a nonzero-sum stochastic game model to assess

the interactions among detection systems in networks as well as the interactions that

occur against network intruders. Zhu et al. showed the existence of NE of the game

and discussed a method for attaining the NE. Zhu et al. also proposed the notion of

security capacity as the largest achievable payoff to an agent at an NE and discussed

the mathematical approach to characterize such equilibria.

In [70, Chapter 3], Gueye introduced a game model to study the interactions

between an intelligent virus and an intrusion detection system where the virus is

attempting to infect as many computers as possible in the network. Gueye analyzed

the interactions using a zero-sum Bayesian game model. Additionally, Gueye applied a

Markov chain model to compute the NE of this game and analyze NE’s characteristics.
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In [204], Alpcan et al. developed a two-player zero-sum stochastic security game

to model the interactions between malicious attackers and IDSes. Alpcan et al. mod-

eled the operation of a sensor network that is observing and reporting the attack

information to the IDS in terms of a finite Markov chain. Alpcan et al. analyzed the

outcomes and evolution of a numerical example of this game for various game param-

eters. Additionally, Alpcan et al. also studied the cases of limited information where

the players optimize their strategies either off-line or on-line depending on the type

of available information, again using methods based on Markov decision processes.

In [71], Bensoussan et al. developed a game-theoretic approach for finding the

optimal strategies in a botnet defense model. In particular, Bensoussan et al. used a

differential game model to analyze the interactions between the botnet herder and the

network defender group and derived two closed-loop NE solutions for the developed

game.

In [69], Schmidt et al. proposed a game-theoretic approach for the malware filter-

ing and detector placement problems in network security, with their main objective

being to develop optimal detector algorithms that took into account the possible at-

tacker strategies and actions. Assuming rational and intelligent attackers, Schmidt et

al. developed a two-person, zero-sum, non-cooperative Markov security game model

as the basis for modeling the interactions between the attackers who generate mal-

ware traffic on a network and the corresponding intrusion detection systems (IDSes).

Using this model, Schmidt et al. determined the optimal strategies for both players.

In addition, Schmidt et al. also tested these optimal strategies in agent-based network

simulation environment. Finally, from the simulation results, Schmidt et al. provided

useful insights for optimally deploying malware detectors in a network environment

under the assumptions of their developed games.
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In [205], Li et al. proposed a dynamic Bayesian signaling game to model and

analyze the strategy profiles for regular and malicious nodes within mobile ad hoc

networks. In this model, regular nodes consistently updated their beliefs based on

the opponents’ behavior, whereas malicious nodes evaluate their risk of being caught

in order to decide when to flee. Additionally, some possible countermeasures for

regular nodes to impact these malicious nodes’ decisions were presented. Li et al.

also provided an analysis and simulation for the NE strategy profiles.

In [206], Patcha et al. proposed a game-theoretic model to analyze intrusion

detection approaches within mobile ad hoc networks. In particular, Patcha et al.

modeled the interactions between the nodes of an ad hoc network as a two player

multi-stage dynamic non-cooperative game. Additionally, Patcha et al. also discussed

the NE of the resulting game.

In [207], Liu et al. proposed a game-theoretic framework to analyze the interac-

tions between pairs of attacking and defending nodes within wireless ad hoc networks

also using a Bayesian game model. Liu et al. analyzed the NE for the resulting

game in both static and dynamic scenarios. Liu et al. highlighted that the developed

dynamic Bayesian game model was more realistic, as it allowed the defenders to con-

sistently update their beliefs in terms of the opponent’s maliciousness as the game

evolved.

In [208], Alpcan et al. developed a game-theoretic analysis for intrusion detection

approaches in access control systems. Alpcan et al. investigated the security game

that occurs between the attacker and the IDS both in finite and continuous-kernel

versions, where in the latter case the players are associated with specific cost functions.

The developed model also captured the scenario in which distributed virtual sensor

networks are based on software agents with imperfect detection capabilities. Alpcan et

al. then extended this model to take the dynamic characteristics of the sensor network
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into account. The properties of the resulting dynamic system and repeated games

between the players were discussed both analytically and via simulation. Alpcan et

al. also discussed the existence of a unique NE of the game.

Finally, in [209], Khouzani et al. proposed a game-theoretic framework to model

the strategic confrontations that occur between malware and the network defensive

group within wireless networks. Specifically, Khouzani et al. modeled the confronta-

tion as a zero-sum dynamic game and investigated its structural properties. Khouzani

et al. also derived the saddle-point strategies of the game and showed that these

strategies are simple threshold-based policies and, therefore, Khouzani et al. con-

cluded that a robust dynamic defense is viable.

6.3.1 Discussion

As per the above, the prior works in which game theory has been applied to malware

and intrusion detection have tended to focus on the analysis of specific security games

(i.e., were such works then focus on the derivation of that given game’s NE). More

particularly, within these prior works, the analyzed games have been structured such

that:

(i) The attacker’s strategy set ΣA is assumed fixed throughout the game.

(ii) The defender’s strategy set ΣD is assumed fixed throughout the game.

(iii) The utility function U(.) is assumed fixed throughout the game.

(iv) As a result, the game being analyzed is shown to admit NE which are then

solved for.

Clearly, if ΣA, ΣD and U(.) are allowed to change, for example as a result of the

attacker and defender’s expected intelligent and rational adaptation, then the NE
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of the analyzed game will also, almost surely, change. It is this issue of how the

NE change under such adaptation that is of interest in this dissertation and which

has not been previously addressed. In these prior works, in particularly, during the

stages of the arms-race between the attackers and system defenders, the players are

involved in playing a game G. Certain sets of actions and, therefore, the NE of this

game G will be advantageous to one of the players (i.e., the one who benefits most

from G’s current configuration). The other player therefore is motivated to adapt

thereby producing new actions (or strategies) that enable him/her to change the NE

to his/her favor. Since G is defined in terms of the players’ action sets, this process

of adaptively developing new actions (or strategies) results in the transition to a new

game G′ that is then the game being played by the players. Hence, the game G

necessarily evolves into a new game G′ with different action sets and, hence, different

NE (i.e., as a result of the player intentional changes to ΣA, ΣD, or U(.)). Moreover,

the iterative adaptation of the players’ action sets gives rise to a sequence of games

resulting between the players. In this work, this game sequence will be analyzed

to investigate the conditions under which it would converge towards a defender’s

advantageous end-game, as these are the conditions of interest if cyber-security is to

be achieved.

More specifically, the remainder of this chapter applies the developed EMM to

enable the modeling of this iterative sequence of sub-game interactions that arise as

the attackers and defenders intelligently adapt their strategies in light of what they

learn about both the defended environment itself and what the other does. By this

EMM-based approach, we will formally show that the attacker-defender confronta-

tions can be modeled as an iterative sequence of sub-games that arises as each side

adapts to the other’s actions. We will then analyze this sequence to derive the con-

ditions that are required if it is to converge to the desired defender advantageous
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(or defender winnable) end-game, where these conditions are shown to directly de-

pend on the measure invariance of the defender’s deployed measurement features F (.)

(i.e., the derivation follows from the application of the dynamical system theory of

Section 6.2.2).

6.4 The Attackers-Defender Game

In this section, a game-theoretic model for the attackers-defender interactions will

be developed. This game will be denoted as G. However, before delving into the

definitions of the various components of G, we will start by discussing the environ-

ment over which G is played (i.e., the defended environment). Consider the computer

systems run by an organization. Such systems could span a single server, a network

of computers (including mobile nodes), etc. This system defines the defended envi-

ronment that should be protected by the defender from malware attacks. For such a

system, as discussed in Chapter 3, irrespective of scale, an EMM can be constructed.

Additionally, as discussed in Chapters 4 and 5, this EMM can be used to model all

malware and malware detection approaches that are implementable within the given

EMM modeled environment. Hence, without loss of generality, the defended environ-

ment over which G is played will be modeled as in terms of an EMM as defined in

Section 3.7.

As discussed in Section 5.2, if the size of the set of all possible states |S(t)| of the

EMM is sufficiently small (e.g., as per small-scale embedded systems, etc.), then the

set E = E−∪E+ of all possible events within the EMM will also be sufficiently small to

be perfectly knowable to the defender. Accordingly, formal methods can then be used

to ensure the security of the EMM [104, Chapter 20]. However, for many of today’s

systems, |S(t)| would be very large and, consequently, formal methods are intractable
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to apply (i.e., state space can easily exceed 10100 possible state changes per second).

The EMM is assumed to be subjected to malware attacks by an unknown set of

potentially collaborating attackers and is defended from these attacks by a defender.

In general, as discussed in Section 6.2.1.1, G can be defined as the tuple G =

〈N ,Σ,U〉, where N is the set of players, Σ is the space of the action sets of all of the

players, and U is the set of utility functions for all of the players. Hence, to model

the attackers-defender confrontations as a game, we need to formally specify each of

these different components.

6.4.1 The Attackers

We will begin by discussing the attacker side of the game. In real world, computer

systems are subjected to malware attacks launched by a diverse set of attackers, where

these attackers can have different objectives, attack tools, etc. Accordingly, in this

work, we consider that the defended EMM is subjected to malware attacks conducted

by a set A of Na attackers defined as,

A = {Ak|k = 1, 2, · · · , Na} . (6.5)

Each Ak ∈ A is assumed to have his/her own set of attacks that can be used

against the EMM. These attack sets can differ across the Ak. It should be noted

that, specifying the attacker who launches an attack is not of interest in this work. In

particular, we are interested in the fact that it is the developed EMM that is under

attack, and not in determining who may have launched the attack. Hence, from the

defender’s perspective, without a loss of generality this set of attackers can be modeled

as a single attacker that attacks the system via the composite set of malware attacks

held by the Ak. Therefore, within G, the set of attackers defined in Equation (6.5)

will be modeled as a single player, denoted as A, with his/her attack set being the
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union of all of the attack sets of all attackers Ak ∈ A. It should be noted that, this

approach includes all potentially coordinated actions that can possibly occur between

sets of attackers. Also, A’s set of strategies in general will be larger than
⋃Na
k=1Ak’s

strategy sets as a result. Hence, we assume that A has a finite set α consisting of

NA unique malware attacks, that is formally defined as,

α = {αk|k = 1, 2, . . . , NA} . (6.6)

To attack the EMM, A is assumed to employ a sequence of attacks αk ∈ α.

Without loss of generality, we do not consider that A selects these attacks randomly

from α as such approaches do not require game theory to analyze. Instead, we

consider that A is intelligent and rational and selects the attacks that maximize

his/her utility function uA(.). Moreover, to launch successful attacks, A must first

gain sufficient information about the targeted system. Hence, it is assumed that A

probes the EMM in an attempt(s) to find vulnerabilities that can be used to attack

the system. This probing process is denoted as VA and is defined as the map

VA : S(T−)→
{
ÎnfoA(t)

}
, (6.7)

where ÎnfoA(t) ⊂ Înfo(T−) is the set of knowledge A has gained about the nature

of the EMM and its states. For A, ÎnfoA(t) is such that t ∈ T − as A can only gain

their knowledge from the EMM’s past states and not its future ones. Hence, VA is

a map from the set of past states of the EMM to A’s partial knowledge of these

states. Clearly,
{
ÎnfoA(t)

}
would differ from one attacker to another in ways that

would reflect each attackers knowledge and skills. It should be noted that, A applies

ÎnfoA(t) to assess the EMM’s vulnerabilities, where in the ideal defensive case these

would be the empty set.
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Figure 6.2: The state space search performed by A.

Hence, we consider that A develops an estimated ÎnfoA(t) about the state of the

EMM to be attacked8. This agrees with what occurs in the real-world where attackers

gather information about the targeted systems prior to conducting their attacks [210].

Based on this ÎnfoA(t), A can be modeled as performing a state space search9 to

determine an attack sequence to achieve their goals. Additionally, we consider that

A selects the attacks by searching his/her attack state space, as shown in Figure 6.2,

where the branching factor 10 of this state space tree is equal to |α|. The nodes in

Figure 6.2 represent the estimated states ÎnfoA(t) of the EMM as estimated by A

after αk has been enacted whereas the edges represent the enacting of an αk attack

by A. As indicated in the figure, A generally has multiple possible attack paths at

each node.

8ÎnfoA(t) follows the generally used signal processing convention of ‘̂’ denoting an estimate

to. hence, ÎnfoA(t) is A’s estimate of Info(t) for t ∈ T−.
9The state space is the set of all states reachable from the initial state [211, Chapter 3, pp. 62].

10The branching factor is the maximum number of successors of any node [211, Chapter 3, pp. 72]
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More specifically, we consider that A selects the attacks via a standard state space

search methodology. In particular, the A∗ optimal search method can be assumed,

as the A∗ search is widely known to guarantee the finding of the optimal path in

the minimum amount of work, provided an admissible heuristic ĥ(.) is used [211,

Chapter 4, pp. 97]. With this context, the required heuristic ĥ(.) can be defined as

ĥ(αk) = uA(αk, t). Accordingly, based on ÎnfoA(t), A will begin from a possible

set S = {Sj|j = 1, 2, · · · , Ns} of start nodes representing the EMM’s states at the

time when A initially attacks, and a set G = {gk|k = 1, 2, · · · , Ng} of goal nodes,

that represent the target EMM states that A wants to reach through conducting

his/her attacks. Hence, A searches this attack state space for a path P between any

node Sj ∈ S to any node gk ∈ G.11 Such a path P then represents the attacks that

should be launched by A to achieve the desired objectives. By considering this way

of attack selection, A is optimally selecting the attacks while minimizing the number

of conducted attacks (i.e., this is the best A can do to attack the EMM). Note that,

the only required conditions on uA(.) are,

uA(.) ≥ 0, and that, ĥ(n) ≤ h(n). (6.8)

Hence, we assume that there is no negative penalty on A for attacking the EMM

(e.g., we assume that the attacker will not be arrested, etc.). This assumption is rea-

sonable as real-world attackers could, for example, be attacking from other countries

and, hence, may be out of reach of the local law enforcement and its jurisdiction. For

example, in the case of US vs Gorshkov [144], the attackers launched their attacks

from Russia to target eBay and PayPal’s systems located in USA. Moreover, uA(.) ≥ 0

11Note that, by standard state space search conventions, all nodes gk ∈ G are assumed to be
equivalent from A’s perspective.
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is consistent with our assumption that we are solely focused on analyzing the defenses

with respect to the information sets as they are modeled within the EMM.

Finally, we will summarize the components of the attacking side of G as follows.

The set of attackers will be modeled as a single player A. The set ΣA of actions of A

will be α as defined in Equation (6.6). Hence, ΣA is defined as,

ΣA = α = {αk|k = 0, 1, 2, . . . , NA} , (6.9)

where the no attack action (i.e., α0 = ∅) is included within ΣA. The utility function

uA(.) of A defines the heuristic function ĥ(.) used with the A∗ search (i.e., uA(.) =

ĥ(.)) by whichA selects the next attack to enact. It should be noted thatA is assumed

to engage in this A∗ search process by model their iterative enacting of attacks against

the defended environment modeled by the EMM. Hence, A is assumed to be able in

practice to return to past nodes as represented in the state space search as required

for A∗ search and bound processes.

More particularly, it is useful to look at this state space search process in more

detail and relate it to the actions of real attackers against real defended environments.

When an attacker begins to attack a real defended environment, this environment

will be in some state Info(t), as per the EMM model of that environment at time t.

Excluding trivial environments (i.e., focusing on larger-scale IT environments), then

the attacker can only have partial knowledge of Info(t), where it is this attacker’s

partial knowledge that is denoted by ÎnfoA(t). Moreover, with respect to the state

space search process described above, this ÎnfoA(t) = Sj where Sj ∈ S and, hence,

it denotes the attackers initial knowledge about the specific defended environment

that he/she is seeking to attack but before he/she has actual enacted any attacks.

The attacker then enacts an attack αk ∈ α against the defended environment, as

selected via the A∗ search process.
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The effect of having conducted the attack αk is then what moves the attacker from

the start node Sj to some new node n within the state space graph of Figure6.2 (i.e.,

αk provides the edge that exists between Sj and this new node n). By having enacted

attack αk, the attacker by definition gains additional knowledge about the defended

environment under attack (e.g., at a minimum if αk fails then the attacker knows

that the defended environment is not vulnerable to αk, whereas if its successes the

attacker now knows the vulnerability exists and is exploitable). Hence, the attackers

new knowledge about the defended environment, post-performing αk, can be denoted

as ÎnfoA(t|n).

Clearly, node n may or may not be on the optimal path P to a goal node. Hence,

the attacker can then again apply the A∗ search process to enact the next attack αk′

in order to progress to the next node in the search tree n′. By definition, through

this iterative node-by-node application of the A∗ search process, the attacker will

discover the shortest path P that exists between any start node in S and any goal

node in G with the least amount of steps (i.e., with enacting the least number of

attacks αk). Once, such a path P is found, the attacker can of course simply re-use

this optimal path to obtain their desired objectives, until such time as the defender

changes the defenses (as described in Section 6.4.2). Hence, the described A∗ search

processes exists as the mechanism by which the modeled game theory attackers A

perform their intelligent and rational assessment of the their strategy space ΣA.

Moreover, any real-world attacker who does not perform this type of A∗ search, by

definition, must either enact more attacks than A does in finding an optimal path P

or already have prior knowledge of the sequence of attacks that P describes. Hence,

the way in which A is being considered denotes, from the defender’s perspective,

the worst-case attacker excluding only those already know how to efficiently and

effectively beat the deployed defenses.
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Further, as per above, by modeling A as possessing the composite knowledge of all

real-world attackers who may be attacking an EMM modeled defended environment,

the considered worst-case attacker A more closely models the types of attackers of

concern when skilled, motivated, and collaborating nation-state adversaries must be

considered. Other attacker models can, of course, be developed who possess lower

assumed skill sets than the described A, but the focus of the analysis is solely on this

form of worst-case attacker and not on less skilled and/or less collaborative attackers.

6.4.2 The Defender

In this subsection, the defending side of G is described. Without loss of generality,

we assume that the EMM is to be defended by a single defender. This assumption is

reasonable as real-world computer systems are under the management and control of

typically single entities (e.g., system administration, IT departments, etc.). Accord-

ingly, we will denote the defender as D, where D is a single player in G. Moreover, as

with the case of the attackers, D can be easily extended in order to model a collection

of collaborating defenders acting on the same defended environment.

Since the objective of D is to protect the EMM from the malware attacks con-

ducted by A, we consider that D has deployed a composite set of malware detection

systems D(.), as per Section 5.2.1. More particularly, we assume that the composite

detector D(.) is composed of standard collection of the types of detection systems

in existence to protect against malware. For example, D(.) may include host-based

malware detection systems, network-based IDS, etc.

Additionally, we also consider thatD has a set R ofNR event responses (automated

and/or human-centric), defined individually as,

R = {rj|j = 0, 1, 2, . . . , NR} . (6.10)
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In particular, these responses represent the defensive actions (or procedures) that are

invoked when malware is detected by D(.), where r0 = ∅ denotes the null response

(or no action) response. For example, in real world such responses span the range

from doing nothing (e.g., in the case of a received spam email message) to actively

removing the infections, updating signature databases, or patching vulnerabilities on

infected machines (e.g., in the case of worm infections), etc. We consider that D’s

responses focus only on the attacks that are expected to cause damages that exceed

some predefined value ζD > 0 and, therefore, there is no responses for attacks that

are expected to cause losses below ζD. For example, as discussed above, D can select

to do nothing to respond to a spam email message. The value of ζD is solely within

the defender purview to set and, as such, it denotes the subset of events e ∈ E− for

which D is seeking to actively defend against.

Additionally, we assume that an ideal responses r∗(.) exists within R for each

detectable attack. More particularly, these ideal responses are defined such that,

∀αk ∈ ΣA for which D(α) = −1 and cost(α) > ζD, ∃r∗(αk) ∈ R, such that,

uA[(αk, t)|(r∗(αk), t)] = 0. (6.11)

As shown by Equation (6.11), A gets zero utility when D properly react to αk us-

ing r∗. Hence, r∗(αk) defines the best possible response by D against the attack

αk. Specifically, the existence of r∗(αk) for a specific attack αk corresponds, within

Section 6.4.1’s state space search, to the defender’s elimination of the edges that rep-

resent αk in A’s state space search. For simplicity but without loss of generality, the

idealization will be assumed that r∗(e) is enacted instantaneously once D(e) = −1.

Similarly, it is also assumed that A will have non-zero utility if D improperly re-

sponds to the attack. That is to say, considering αk and r∗(αk) as discussed in Equa-

tion (6.11), then ∀rj ∈ R where rj(αk) 6= r∗(αk) we have that uA[(αk, t)|(rj(αk), t)] >
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0. Since R denotes the set of all possible actions available to D to address the attacks

conducted by A, then R also denotes the set of actions of D within the game G.

More particularly, the set ΣD of actions of D in the game G can now be defined via

Equation (6.10) as,

ΣD = R = {rj|j = 0, 1, 2, . . . , NR} , (6.12)

where again r0 = ∅ denotes the no response action. Finally, we define the utility

function uD(.) for the defender D. Without loss of generality, for any e ∈ E and

r∗(αk) as discussed in Equation (6.11), uD(.) can be defined as,

uD[r(α), t] =


≤ 0 if r 6= r∗(αk),

> 0 if r = r∗(αk).

(6.13)

Hence, D can receive negative utilities if D improperly responds to A’s attacks,

whereas D receives positive utility when the attacks are detected and the best re-

sponses are enacted or if A’s attacks go undetected. In real world, this negative

utility corresponds to, for example, the losses incurred in the system due to failing to

completely wipe out malware infection from all infected machines, etc. Accordingly,

D is necessarily motivated to properly respond to the malware attacks, where this

is based on the nature of the deployed D(.) also detecting the attacks (i.e., r∗(αk)

cannot be enacted, by definition, if αk is not detected by D(.)).

It should be noted that, quite generally, the best responses r∗(.) denote D’s cur-

rently best known responses and, hence, are based on D’s current estimate ÎnfoD(t)

about (or knowledge of) Info(t). As D’s estimate ÎnfoD(t) improves over time

then D may be able to develop better best responses. Hence, the notion of these

best responses should not be confused with the notion of the optimal theoretical re-
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Figure 6.3: The malware arms-race game G as an extensive form game.

sponses that may be possible against A’s attacks. The r∗(.) are expressly restricted

to denoting only the best responses that D currently knows based on his/her current

ÎnfoD(t) estimate.

6.4.3 Defining the Game G

The malware arms-race game G can now be defined as the tuple G = 〈N ,Σ,U〉,

where:

• The set of players of G is defined as N = {D,A}.

• The set of actions of the players is defined as Σ = {ΣD,ΣA}, as discussed in

Equations (6.9) and (6.12), therefore the space of the complete strategies is

ΣD × ΣA.

• The set of utility functions of G is defined as U = 〈uD(.), uA(.)〉, as defined in

Equations (6.8) and (6.13) above.

In real world, attackers launch their attacks and then the defenders respond to the

attacks that they were able to detect. Accordingly, both players do not act simul-

taneously and, hence, G is best described as an extensive form game as shown in
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Figure 6.3, where A attacks and D responds. That is to say, G can be idealized as a

two-person, non-zero sum, finite, extensive form, non-cooperative game of incomplete

information. Both D and A are assumed to engage in repeatedly playing G over a

some finite time period τ ⊂ T . It should be noted that, as discussed in Theorem 6.1,

assuming perfect recall, NE will, by definition, exist in behavioral strategies for G.

More particularly, when G is repeatedly played by A and D, then two possible

outcomes exist:

(i) An attack path P from a start node Sj ∈ S to a goal node gk ∈ G exists. In

this case, since A is assumed to be using an A∗ search, then A is guaranteed to

find P [211, Chapter 4, pp. 97]. Clearly, A will win G in this case (i.e., the NE

of G must be to A’s advantage).

(ii) Or, the deployed defenses D(.) are, such that, an attack path P does not exist

as a result of enacted best responses. Clearly, in this case, D will win G (i.e.,

the NE of G must be to D’s advantage).

In the next section it is discussed how G itself must be constructed to evolve over

time as a result of A and D’s intelligent adaptations as they learn about what the

other is doing. More particularly, we will show that G’s evolution over time can be

modeled as a sequence of sub-games.

6.5 The Evolution of G over Time

In the previous section, we formalized the attackers-defender ongoing confrontation

as a game. We showed that wining the game will be determined according to whether

some path P exists from a start node to a goal node within A’s state space search.

In this section, we will show that the on-going adaptations of A and D’s action sets

lead to the evolution of the game into a sequence of sub-games.
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Consider that the defended EMM is in some initial state. In real world, this initial

state corresponds to the state of the system when it is first installed and starts to

operate. This initial state with respect to the analyzed game G represents some initial

game G0 given by G0 = 〈〈A,D〉 , 〈ΣA,ΣD〉 , 〈uA(.), uD(.)〉〉. In securing the EMM,

we assume that D follows industry’s best practices and, hence, D will update and

deploy an EMM composite detector solution D(.). As part of this process, D will also

update his/her set of responses and best responses from ΣD into Σ′D. As discussed in

Section 6.2.1.1, since the utility functions are defined in terms of the players’ action

sets, then changing ΣD into this new Σ′D will also cause uD(.) to change into the

new utility function u′D(.). This change in the action sets and utility functions of

the players therefore causes the game G0 = 〈〈A,D〉 , 〈ΣA,ΣD〉 , 〈uA(.), uD(.)〉〉 to be

changed into the new game G1 = 〈〈A,D〉 , 〈ΣA,Σ1
D〉 , 〈uA(.), u1

D(.)〉〉, or,

G0 −→
D

G1,

where this change in the game is directly caused by D’s actions as discussed above.

Therefore, A and D will, by definition, be playing sub-game G1 as D’s actions have

caused the transition out of G0.

Now, assume that after engaging over G1 for a while, A decides to update his/her

attack set ΣA by:

(i) Obfuscating one or more known attacks αk. More particularly, an obfuscation

O(.) is defined as a map O : E → E in which obfuscated attacks are defined as

follows.

Definition 6.13 (Obfuscated Attacks). For any αk ∈ α, an obfuscation O :

E → E under the EMM is the construction of a new attack α̃k = O(αk) such
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that if D(αk) = −1 then D(α̃k) 6= −1 and if αk provides an edge between nodes

n and n′ in A’s state space search then α̃k provides the same edge.

Hence, A may elect to develop a set of obfuscated attacks α̃, such that,

∀α̃k ∈ α̃, F 1(α̃k) = ∅, or D1(α̃k) 6= −1.

(ii) Creating a new attack or a set of new attacks {α′k|k = 1, 2, . . . , Nαnew}, such

that,

∀α′k, F 1(α′k) = ∅ or D1(α′k) 6= −1,

where F 1(.) and D1(.) denote the measurement features and detection solutions

that exist in game G1.

In particular, we denote any such set of these newly obfuscated and/or created

attacks as αnew. The addition of αnew to A’s action set therefore creates new edges

that are exploitable in A’s state space process. The overall effect of creating these

αnew is that the A’s action set α now be changing into a new α1 that is defined by,

α1 = α ∪αnew. (6.14)

The change of α into α1 changes ΣA into Σ1
A, which also causes uA(.) to change

into u1
A(.). Hence, the change in the action sets and utility functions by A while

playing G1 will cause G1 = 〈〈A,D〉 , 〈ΣA,Σ1
D〉 , 〈uA(.), u1

D(.)〉〉 to change into the new

game G2 that is defined as G2 = 〈〈A,D〉 , 〈Σ1
A,Σ

1
D〉 , 〈u1

A(.), u1
D(.)〉〉, or:

G1 −→
A

G2,
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where this transition from G1 to G2 is caused by A’s desire to beat the deployed

defense D1(.) in order to achieve the attack goals. The players A and D will now be

engaged in playing G2. From G2, A can now either achieve a path to a goal node, or

can continue to perform attack obfuscations or develop new attacks until such a path

is created. Similarly, D can continue to improve and adapt the deployed defenses in

light of applying improved best practices, applying security patches, etc. Moreover,

by this process, the attackers-defender on-going confrontations can then be modeled

as the sequence of sub-games that occur as both players continue to adapt and is

given by,

G0 −→
D

G1 −→
A

G2 −→
D

G3 −→
A
· · · (6.15)

where importantly each game in this sequence will, by definition, have its own NE.

In this section, we showed that the players in the overall arms-race game are

motivated to update their action sets in order to arrive at a new game Gk that

has advantageous NE. these adaptations, therefore, produce a sequence of games

{Gk}Kk=0. In the next section, we will investigate the conditions required if this sub-

game sequence is to converge to a defender’s advantageous end-game.

6.6 The Game Sequence {Gk}Kk=0

As discussed in the previous section, the interactions between D and A results in a

sequence of sub-games as shown in Equation (6.15). As discussed above, we consider

that D and A can include the null or ∅ action in their set of adaptation approaches

used to update their action sets ΣD and ΣA, respectively. More specifically, if A uses

∅ to update ΣA, then the resulting change in ΣA can be expressed as,
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ΣA −→
∅

ΣA.

Hence, ΣA remains unchanged if updated with the null action ∅. Similarly, the change

in ΣD due to applying the defender’s null action ∅ can be expressed as,

ΣD −→
∅

ΣD.

By including the null actions within both D and A action sets, the defender and

attackers adaptations can be assumed to occur iteratively without in turn a loss of

generality. Hence, the sequence,

G0 −→
D

G1 −→
A
· · · −→

D
Gk −→

A
Gk+1 −→

D
· · · (6.16)

can be considered as the general form of the described sub-game in which the defender

performs every adaptation even indexed transitions and the attacker performs all odd

indexed transitions.

Denote the full game sequence as {Gk}Kk=0. Then the important issue to be ad-

dressed is whether or not {Gk}Kk=0 converges into a defender advantageous end-game.

That is to say, does a final game Gk = G∗ in which A can no longer update their

action set exist. Clearly, under the EMM, such an end-game can exist, as this end-

game would arise when Dk(.) = D∗(.) as defined in Section 5.2. Hence, within G∗,

the following conditions should be satisfied:

(i) D(α|G∗) = −1 for all α ∈ ΣA, where D(α|G∗) denotes the composite detector

D(.) applied to any attack α available to A in the sub-game G∗, and
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(ii) There does not exist an α̃k = O(αk) for all αk ∈ α in sub-game G∗ such that

D(αk) = −1 and D(α̃k) 6= −1 and there does not exist any αj ∈ E− for which

αj /∈ α and D(αj) 6= −1 or F (αj) = ∅ which A can successfully create.

Moreover, within the following analyses, the assumption is made that D(.) is such

that it only improves over time. Hence, it is assumed that if e ∈ E− is such that for

some Dk(e) = −1, then for all k′ > k we also have that Dk′(e) = −1, where Dk(.)

denotes the composite detectors D(.) in use during the sub-game Gk.

6.7 The Convergence of the Game Sequence

To discuss the issue of the convergence of {Gk}Kk=0 in more details, we need to consider

the two possible cases for the EMM. From the point of view of the EMM’s memory

M(t) either:

(i) M(t) is static (i.e., M does not change over time). Hence, ∀t, t′ ∈ T and t 6= t′,

we have M(t) = M(t′). This case represents an idealization of the real-world

where the set of all possible EMM events remain fixed for all time.

(ii) Or, M(t) is allowed to vary with time. Hence, ∃t, t′ ∈ T , such that, M(t) 6=

M(t′). More particularly, this case more accurately models real-world defended

environments in which systems come and go, etc.

In the following subsections these two cases are discussed in more details with respect

to how they impact {Gk}Kk=0 convergence.
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6.7.1 Static M(t) and Convergence of {Gk}Kk=0

In this subsection, we discuss the convergence of {Gk}Kk=0 in the case of static M(t). In

particular, the following lemma shows that {Gk}Kk=0 must converge for some sufficient

large k <∞ to a defender’s advantageous end-game.

Lemma 6.1. For sufficiently large k < ∞, {Gk}Kk=0 must converge to a defender’s

advantageous end-game.

Proof. Proof by construction. If M(t) = M(t′) for all t 6= t′ ∈ T , then the set of all

possible states S(t) will be fixed for all t ∈ T . Hence, even in the limit as T → ∞,

the set of all possible events E = E− ∪ E+ associated with S(T ) will also be fixed.

Since, by definition, M(t) is finite, then S(t) and E are also necessarily finite. Hence,

E− is finite and fixed over time. Consider that D(.) implements a decision boundary

that properly partition E− into E−detectable and E−undetectable, such that, D(e) = −1 if

e ∈ E−detectable and D(e) 6= −1 if e ∈ E−undetectable. As k is increasing and under the

assumption that D(.) is only ever improving, each defender adaptation Gk −→
D

Gk+1

can only cause E−detectable to grow and E−undetectable to decrease. Hence, D(.) can only

move in the direction of D∗(.) via the defender’s efforts to improve the defenses. But,

for the attackers A, there must then exist some Gk′ for which Gk′ −→
A

Gk′ , which

means there must exist some k′ in the game sequence after which the attackers has

exhausted their ability, within a finite EMM, to obfuscate their existing attacks or

create new ones. In the defender’s worst case, the attackers would be able to exploit

all of E− and, hence α = E−. However, as the defender improves D(.), it is the

case that D(.) −→
D

D∗(.), E−detectable −→ E−, and E−undetectable −→ ∅. Hence, in a finite

S(T ) space, the attackers must eventually run out of adaptations at some Gk′ but the

defender will still be able to adapt to Gk′ −→
D

Gk′+1, then {Gk}Kk=0 must eventually
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converge to a defender advantageous end-game (i.e., there must exist a k →∞ such

that {Gk}Kk=0 converges to a Gk possessing defender advantageous NE).

However, this addresses the question of whether {Gk}Kk=0 eventually converges to

a defender’s advantageous end-game not whether this occurs within a reasonable time

frame. The following lemma addresses this issue.

Lemma 6.2. {Gk}Kk=0 can converge in reasonable time frames if and only if the

creation of new attacks exists, at a minimum, as a computationally hard problem for

A.

Proof. Proof by construction. In order for {Gk}Kk=0 to converge into a defender’s

advantageous end-game, the convergence conditions discussed above must be satisfied.

Assume that we are in the game Gk. Let D(α|Gk) = −1 for all α ∈ ΣA (i.e., Gk is D

winnable in a NE sense). If D can show that A cannot adapt such that Gk −→
A

Gk+1,

then by definition, both convergence conditions would be satisfied. Let αk denote the

set of attacks available toA in sub-game Gk. Clearly, ifD can prove that extendingαk

constitutes a computationally hard or impossible attacker problem, then the defender

can reasonably claim that Gk −→
A

Gk. Whereas if the defender does not possess such

a proof, then D must assume that Gk −→
A

Gk+1 is possible and the defender’s claim

that {Gk}Kk=0 converges no longer holds.

As shown in Lemma 6.2, if D can show (i.e., formally prove) that the transition

to the next game Gk+1 is at least computationally hard for A to accomplish (i.e., an

NP -complete problem, etc.), then D can reasonably claim that,

G0 −→ G1 −→ G2 −→ · · · −→ G∗,

i.e., D can reasonably claim that {Gk}Kk=0 converges into a final D’s advantageous

end-game G∗ with some reasonable number K of adaptation steps. Hence, we can
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conclude from Lemma 6.2 that D’s goal should be to update D(.) in manners that

makes the next adaptations increasingly harder for A to do. It should be noted

though that arriving at a Gk for which the defender D knows that A cannot adapt

away from is equivalent to stating that D possesses a formal method proof of the

defended environment’s security.

6.7.2 Dynamic M(t) and Convergence of {Gk}Kk=0

Now, assume that M(t) is not fixed over T . As discussed above, this case more closely

models real-world computer systems in which hardware updates occur and machines

come and go. Accordingly, the set of all possible events E(t) = E−(t) ∪ E+(t) also

change over time as S(T ) is no longer fixed. Moreover, due to the changing of M(t),

E must now be modeled in terms of a dynamical system. In particular, in Sec-

tion 5.4, we showed that the EMM over a finite time period τ defines a measure space

〈S(τ),R(τ), µ′〉. Additionally, in Section 5.4.3, we discussed that the only allowable

feature maps F (.) are those which preserve the σ-finite measure space characteristics

of the EMM and, hence, the generated feature space X must also define a σ-finite

measure space. Denote this feature measurement space as 〈X ,P(X ), µ〉, where P(X )

is power set of X which is a σ-algebra by definition, as discussed in Section 5.3.2.

Consider the EMM during any finite time period τ ⊂ T over which the sequence

of games {Gk}Kk=0 is being played. The transition from any Gk to the next game Gk+1

can be viewed as the action of a time shift operator T over the event spaces Ek and

Ek+1 that are associated with sub-games Gk and Gk+1 respectively. Accordingly, as

discussed by Section 6.2.2, the tuple 〈X ,P(X ), µ, T 〉 will formally define a dynamical

system. The convergence of {Gk}Kk=0 can now be described in terms of the measure

invariance of F k(.) over T in the limit as K goes to infinity. More particularly, the

suite of defender’s measurement features F (.) can be viewed as generating random
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processes F (e) within their respective measurement spaces. If these are stationary

random processes then clearly, by definition, D can apply anomaly detection to arrive

at a D(.) such that ∀αk ∈ α, D(αk) = −1. If D can also prove that A’s adaptation

problem is at least computationally hard, then {Gk}Kk=0 must converge. Hence, in this

case, the assessment of whether or not {Gk}Kk=0 converges hinges on whether or not

the F (e) are stationary random processes. This in turn hinges on whether the F (e)

are measure invariant, or equivalently, whether or not the sequence {Gk}Kk=0 denoted

by the mapping T : E → E denotes a stationary dynamical system. In Lemma 6.3, it

is shown that T is not, in general, a measure preserving transformation and, hence,

〈X ,P(X ), µ, T 〉 is not, in general, a stationary dynamical system. Therefore, {Gk}Kk=0

cannot be, in general, assumed to converge to a defender advantageous end-game.

Lemma 6.3. The dynamical system 〈X ,P(X ), µ, T 〉 defined by the EMM is not a

stationary dynamical system unless A’s next adaptation problem is known by D to

exist as at least a computationally hard problem.

Proof. Proof by construction. Consider the EMM during any two consecutive games

Gk and Gk+1, where the EMM defines the dynamical system 〈X ,P(X ), µ, T 〉. Fur-

thermore, assume there exists a set of dominated attackers’ strategies αkdom in Gk as

well as the non-dominated strategies αknd = αk\αkdom 6= ∅. Denote αkdom as W k. Now

assume the game Gk transitions to a new game Gk+1 as Gk −→
D

Gk+1, where Gk+1

now has a set of dominated attack strategies W k+1. Clearly, W k ∩W k+1 = ∅ as these

dominated attacks denote the portions of the attack space that A discards as a result

of each new defender adaptation. Moreover, it is clear that W k+1 = T (W k), where

W k can be rewritten beginning from k = 1 as W k = T k(W 1). Clearly, in the limit

as k → ∞, W 1 ∩ T k(W 1) = ∅ and, therefore, the W k denotes, by Definition 6.9 in

Section 6.2.2, a wandering set. Moreover, as the αk ∈ W k are useful attacks within

Gk, then by definition they are also of non-zero measure (i.e., ∀αk ∈ W k, µ(αk) > 0).
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Therefore, the W k form a wandering set of non-zero measure. Hence, any measure-

ment features F (.) spanning these wandering sets, by definition, cannot be measure

invariant. Similarly, the attackers’ adaptation can create other wandering sets of non-

zero measure through the creation of the new attacks that are iteratively added at

each attacker adaptation stage. These W k can be redefined as the αnew added into

game Gk. Hence, by definition, W k = T k(W 1) and again, W k ∩W 1 = ∅ for all k in

limit k →∞ and µ(αk) > 0 for all αk ∈ αnew in each Gk. Hence, such new attacker

adaptations also cause the F (.) to fail to be measure invariant. Hence, unless the

defender can show that such obfuscations and/or new attack creation cannot occur,

then the defender cannot claim that 〈X ,P(X ), µ, T 〉 is a stationary dynamical system

as required if {Gk}Kk=0 is to converge to a defender advantageous end-game.

As discussed in the above lemma, since the dynamical system 〈X ,P(X ), µ, T 〉

cannot be considered to be a stationary dynamical system. The probabilities associ-

ated with αk change over time within the defined EMM as a result of the attackers

adaptations. Consequently, the attacker’s behavior under the defender’s measure-

ment feature F (.) constitutes a non-stationary process and, hence, D is required

to track a non-stationary attack behaviors in order to construct the next required

D(.) (i.e., Prω−(.) changes over time in manners that increases its overlaps with

Prω+(.) as a result of the attacker’s need not to use dominated strategies). Figures 6.4

and fig:ch6:weaklywandersetnewattacks show the weakly wandering set resulting from

both types of A’s adaptations as described in Lemma 6.3. Moreover, by information

theory, the time dependence of Prω−(.) means that the past histories available via

Înfo(T−) cannot be used to construct the next defender adaptation to D(.).
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Figure 6.4: The weakly wandering set created by A’s dominated attacks.

6.8 Discussion

In the previous sections, the attackers-defender on-going confrontation has been for-

malized as a game G. Then, we showed that the on-going adaptations of the players

causes G to evolve into an iterative sequence of sub-games. We then discussed this

game sequence and analyzed its potential convergence to a defender’s advantageous

end-game.

As shown by Lemma 6.1, if the EMM’s memory is static, then the game sequence

must eventually converge into a D’s advantage as the on-going updates made by D

to D(.) will eventually cause A to run out of attack adaptations. Additionally, as

discussed in Lemma 6.2, if the sequence is to converge within reasonable time frames,

then D must update D(.) in ways that can be formally make A’s next adaptations

harder to accomplish. Otherwise, A will continue to update their available attack set

thereby not allowing the sub-game sequence to converge in a defender timing manner.

Whereas, if the EMM’s memory is dynamic, Lemma 6.3 showed that the defender’s

measurement features F (.) under the EMM cannot be considered to be measure in-
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Figure 6.5: The weakly wandering set created by A’s new attacks.

variant processes unless the defender can prove that the attackers’ adaptation problem

is at least computationally hard. Hence, D is left to track a non-stationary attack

behaviors (or e ∈ E− events) in the construction of the next required D(.) (i.e., at-

tacks e ∈ E− for which D(e) = −1 can be adapted by A to become events for which

D(e) 6= −1 solely on the basis of the attackers actions). Moreover, from information

theory, it cannot be simply assumed that the required new D′(.) can be trained (i.e.,

via machine learning approaches), such that, D′(e) = −1, as the non-stationarity of

F (.) directly impose the constraint that past histories of these events e are no longer

informative as to how Pr[F (e)] changes over time. That is to say, Pr[F (e)] becomes

a time-dependent probability distribution, which changes as a direct result of the

attackers’ adaptations. Hence, D′(.) cannot be trained by simply training over past

attack histories, as required by machine learning solutions.
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6.9 Summary

In this chapter, an EMM-based game-theoretic model of the on-going confrontations

between the attackers and system defenders has been formulated. The model has

been used to explore the evolution of the resulting sequence of sub-games over time.

The analysis showed that the attackers are always motivated to develop, if possible,

malware that structured to bypass current system defenses, where this formally arises

via game theory’s strict dominance solution concept. This leads to the overall arms

race being defined in terms of a sequence of sub-games that evolve over time. This

sub-games sequence was then analyzed to determine the conditions required if it is

to converge to a defender advantageous end-game. The implications of this analysis

lead to the conclusions that either: (i) the defender must formally show that the

attackers’ next adaptation is, at least, computationally hard to achieve, or (ii) the

defender must face the problem of needing to track non-stationary attack behaviors

(i.e., past attack information is not informative with respect to the necessary re-

tuning of deployed defenses) as required to respond to the attacker’s adaptations.
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Chapter 7

Conclusions and Future Work

This chapter presents the conclusions of this dissertation and outlines the contribu-

tions of the work to the field of computer security research. Additionally, the chapter

provides some suggestions as to possible areas for future research.

7.1 Conclusions

The existing arms-race between malware authors and system defenders has motivated

the need for formal frameworks to evaluate malware detection approaches. Hence,

this dissertation has sought to address the open research area of the evaluation and

analysis of malware detection approaches by developing and applying the EMM as an

integrated formal framework for jointly modeling malware and its detection. To avoid

the limited expressive capabilities of prior mathematical machines, the EMM has been

developed as an extension to the existing Maurer model, a Turing equivalent model

which possesses a close resemblance to real computers. This dissertation showed that

the proposed EMM remains a Turing equivalent model which is able to model modern

computer constructs and computer networks, as well as more complex programs such

as virtual machines and modern multi-tabbed web browsers (Chapter 3).
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Through the proposed EMM, we provided formalizations for the violations of the

standard security policies (Chapter 4). Specifically, we provided the definitions for

violations of confidentiality policies, integrity policies, availability policies, as well as

resource usage policies. Additionally, we also provided formal definitions of a number

of common malware classes, including viruses, Trojan horses, spyware, bots, and

computer worms based on their common behaviors. It was shown that the proposed

EMM is complete in terms of its ability to model all implementable malware within

the context of a given EMM modeled defended environment.

The developed EMM was then used to evaluate and analyze the resilience of stan-

dard malware detection approaches (Chapter 5). We showed that static anti-malware

signature scanners can be easily evaded by obfuscation, a result that is consistent

with prior experimental work. Additionally, we also used the EMM to formally show

that malware authors can avoid detection by dynamic system call sequence detection

approaches, which also agrees with recent experimental work. A measure-theoretic

model of the EMM was then developed through which the completeness of the EMM

with respect to its ability to model all implementable malware detection approaches

within an EMM modeled defended environment was shown.

Finally, using the developed EMM, a game-theoretic model was developed for the

on-going confrontations between the attackers and the system defenders (Chapter 6).

Using this game model, by applying game theory’s strict dominance solution concept,

it was shown that rational attackers are always required to develop malware that is

designed to evade the currently deployed malware detection solutions. Additionally,

we showed that the attacker and defender adaptations can be modeled as an iterative

sequence of sub-games. Therefore, the question can be asked as to the conditions

required if such a sequence (or arms-race) is to converge towards a defender advanta-

geous end-game. It was shown via the EMM that, in the general context, this defender
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desirable situation requires that the attacker’s next attack adaptation problem exists

as, at least, a computationally hard problem. If this is not the case, then we showed

via modeling the EMM as a dynamical system model that the defender is left needing

to track statistically non-stationary attack behaviors. Hence, by standard informa-

tion theory constructs, past attack histories can be shown to be uninformative with

respect to the defender’s required development of the next defensive adaptations.

The major contributions of this dissertation to the field of computer security can

be summarized as:

• The development of the EMM as a novel generic formal framework for the joint

modeling and evaluation of malware and malware detection approaches which

bridges Turing-reducible models and formal measure theory constructs.

• The EMM-based formalization of the violations of common security policies and

a number of common malware classes based on their exhibited behaviors.

• The application of the proposed EMM to evaluate common malware detection

approaches.

• The verification that the proposed EMM is complete in the sense that it can be

used to both model all malware and all malware detection approaches that are

implementable within a given modeled defended environment.

• The formalization and analysis of an EMM-based game-theoretic model for

describing the time-evolution of on-going confrontations between the attackers

and system defenders within given defended environments.

• The development of a formal proof via the EMM for the defender’s need to track

statistically non-stationary attack behaviors when needing to defend non-trivial

IT environments from attacks by intelligent and rational adversaries.
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The major significance of these contributions is that, prior to this work, no generic

formal framework existed that allowed for the joint reasoning about malware and its

detection approaches. In particular, existing formal frameworks have been developed

for specific modeling objectives and have not been designed to be complete and com-

prehensive generic frameworks. As shown throughout this dissertation, the proposed

EMM framework can be used to model a wide variety of issues, such as, the viola-

tions of common security policies and the behavior of common malware classes. The

proposed EMM also provides an important bridge between Turing-reducible models

with measure theory constructs. Moreover, prior to this work, the game-theoretic

modeling of attackers and system defenders has sought to model specific games under

specified network settings and system configurations (i.e., specific security games)

and has not sought to model the wider strategic confrontation or how such games

evolve over time as the attackers and defenders necessarily adapt to what the other

is doing.

7.2 Future Work

The theoretical areas which were touched on in this work and which should be areas

of future research include but are not limited to:

• The formal modeling of malware: Formally defining other malware classes, such

as, adware, rabbits, etc [114], through the use of the proposed EMM can be

further explored. More generally, formal definitions of security attacks occurring

within enterprise-scale environments could be explored via the EMM.

• The formal evaluation of malware detection approaches: Using the EMM as

an analytical tool to evaluate the detection capabilities of potential malware

detection approaches versus intelligent adversaries can be further investigated.
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• Additionally, using the EMM to evaluate the resiliency of various existing mal-

ware detection and intrusion detection approaches could be explored.

Moreover, the EMM provides a formal framework that can be used for exploring

other relevant security issues, such as:

• Assessing the probability of developing resilient execution monitors (EMs) [110]

which monitor the execution of programs to detect if whether or not they violate

the system’s security policies. These mechanisms of enforcing security policies

can benefit from the formal definitions of malware and the violations of security

policies,as well as from the EMM’s ability to incorporate issues arising from the

presence of intelligent and rational adversaries.

• Investigating the application of the EMM to provide a formal modeling frame-

work for malware and other attacks within clouds. In particular, with the

possible continuous growth of cloud computing, a better understanding of se-

curity and attack mechanisms within clouds is needed. The scale-independent

nature of the EMM combined with its completeness properties may enable it to

provide a new analysis tool in this domain.

• Assessing the computational complexity of the attackers’ adaptation process

under various scenarios and defenses could also be explored via the EMM. This

may support to develop more resilient security defenses.

• Finally, the EMM could be applied to assess new approaches for developing

quantitative cyber-security risk metrics, which is the the third of the four grand

challenges in trustworthy computing [212].

It should be noted that the EMM is designed and intended to provide a theoretical

framework within which to reason about security issues in light of intelligent and
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capable adversaries. As such, its purpose is not to provide direct contributions to

day-to-day operational security issues, although it can be used to provide insights

into how such issues may evolve over time.
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