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ABSTRACT

In this dissertation, we discuss various aspects of scheduling and resource alloca-

tion in multi-user wireless systems.

This work starts from how to utilize advanced physical-layer technology to im-

prove the system performance in a multi-user environment. We show that by using

superposition coding (SPC) and successive interference cancellation, the system per-

formance can be greatly improved with utility-based scheduling. Several observations

are made as the design guideline for such system. Scheduling algorithms are designed

for a system with hierarchical modulation which is a practical implementation of SPC.

However, when the utility-based scheduling is designed, it is based on the as-

sumption that the system is saturated, i.e., users in the system always have data to

transmit. It is pointed out in the literature that in a system with stochastic traffic,

even if the arrival rate lies inside the capacity region, the system in terms of queue

might not be stable with the utility-based scheduling. Motivated by this, we have

studied the stability region of a general utility-based scheduling in a multi-user sys-

tem with stochastic traffic. We show that the stability region is generally less than

the capacity region, depends on how to interpret an intermediate control variable,

and the resultant stability region may be even non-convex and exhibits undesirable

properties which should be avoided.
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As the utility-based scheduling cannot achieve throughput-optimal, we turn our

attentions to the throughput-optimal scheduling algorithms, whose stability region

is identical to the capacity region. The limiting properties of an overloaded wireless

system with throughput-optimal scheduling algorithms are studied. The results show

that the queue length is unstable however the scheduling function of the queue length

is stable, and the average throughput of the system converges.

Finally we study how to schedule users in a multi-user wireless system with

information-theoretic security support, which is focused on the secrecy outage proba-

bility. The problem is essentially about how to schedule users, and allocate resources

to stabilize the system and minimize the secrecy outage probability. We show that

there is a tradeoff between the arrival rate of the traffic and the secrecy outage prob-

ability. The relative channel condition of the eavesdropper also plays an important

role to the secrecy outage probability.

In summary, we showed utility-based scheduling using SPC can improve the sys-

tem performance greatly, but the utility-based scheduling has limitations: the sta-

bility region might not have desired properties. On the contrary throughput-optimal

scheduling has its own drawbacks: the traffic cannot be handled properly if the system

is overloaded. The further study on the secrecy outage probability gives guideline on

how to design a scheduler in a system with information-theoretic security support.
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Chapter 1

Introduction

In this dissertation, we discuss various aspects of resource allocation in multi-user

wireless systems. Scheduling algorithms in a saturated system using superposi-

tion coding/hierarchical modulation are designed and the remarkable performance

improvement is demonstrated. The stability regions of utility-based opportunis-

tic scheduling algorithms in a system with stochastic traffic are derived and the

structure properties are obtained. The limiting properties of an overloaded system

with throughput-optimal scheduling algorithm are quantified and the corresponding

throughput is analyzed. Secrecy outage probability in a multi-user wireless system has

been investigated through a resource allocation problem and two optimal algorithms,

one online and one offline, are proposed to solve the resource allocation problem.

1.1 Background

Since the available resources in a wireless network are limited, and users are competing

for the limited resources, how to allocate the resources to users fairly and efficiently

is one of the key problems in the operation of a wireless system.

In the literatures there are different assumptions on the system. In this disser-

tation, we only consider a multi-user wireless system with one base station and N

users. Under this general assumption, the study of scheduling and resource allocation

in multi-user wireless systems has two distinct origins.

One is originated from the information-theoretic point of view. This research

aims to quantify the capacity region of the channel underlying the multi-user wireless

system. For example, with proper physical-layer technology, the equivalent channel
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of multi-carrier wireless systems can be modelled as a parallel Gaussian broadcast

channel (GBC), whose capacity region of parallel Gaussian broadcast channel was

studied in [82, 83]. In order to achieve the capacity region of parallel GBC, the

corresponding power allocation scheme was developed in [82, 83]. As the resource

allocation scheme aims to achieve the capacity region, the system is assumed to be

saturated, i.e., every user in the system always has data to transmit.

However, as the capacity region of wireless channel typically cannot be achieved

in a practical wireless system, the capacity region can be replaced by achievable

rate region which is determined by the practical constraint of wireless systems. For

example, the downlink scheduling in an OFDMA wireless system was reviewed in

[70]. Although this kind of research focus on a specific wireless system with certain

physical-layer technologies (such as OFDM technology with adaptive modulation and

coding), typically they assume that the system is saturated, which is aligning with

the research on the capacity region.

With the algorithms to achieve the capacity region or achievable region of a mul-

tiuser wireless system, it is natural to have an objective to quantify the algorithms.

As the resource allocation is about the rate allocated to users, usually a function

of the rates allocated to users is the objective of the resource allocation, and often

referred as utility. The utility-based resource allocation in wireless system is reviewed

in [96] with a unified framework considering different quality-of-service requirements.

The other is originated from the study of queueing network and stability. For a

queueing system, the arrival traffic rate should be smaller than the service rate in order

to stabilize the system (queues in the system). Correspondingly, in a wireless system,

the sufficient condition to stabilize the system is that the arrival rate lies inside the

capacity region. However, with the sufficient condition, not all scheduling algorithm

can lead to a stable system. In [80] the author showed that there is one algorithm that

can stabilize the wireless system with ON-OFF channels. Typically, if an algorithm

can stabilize the system if possible, it is referred as a throughput-optimal scheduling

algorithm. Motivated by [80], different kinds of throughput-optimal scheduling were

proposed, and were generalized in [12].

1.2 Motivation

Since the utility-based scheduling algorithm aims to maximizing the utility of the

(saturated) system, and generally the utility is a function of the throughput, which
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should lie inside the capacity region, if the capacity region can be improved by using

advanced physical-layer technology without increasing the system overhead (such as

signaling), the utility of the system can be improved.

Since the system may not be always saturated, the traffic for each user can be

modeled as a stochastic process. As a result, it is important to understand whether

the queues in the system can be stabilized for a given traffic arrival rate. It is already

known that the utility-based scheduling algorithm cannot provide the maximal stabil-

ity region, and thus it is important to quantify the stability region of the utility-based

scheduling algorithm.

In the literature, the study for throughput-optimal scheduling is generally focusing

on the scenario that the system is underloaded, or is able to be stabilized. The

system behavior for the overloaded system is not fully understood. Moreover, only

the throughput aspect of the system is studied in this area, and some other aspects,

such as security, is not studied for throughput-optimal scheduling.

These open issues motivate this dissertation.

1.3 Research Objectives and Contributions

This dissertation has made several contributions: designed scheduling algorithms aim-

ing to improve the multi-user system performance by using advanced physical-layer

technologies – SPC and HM; derived the stability region of the utility-based schedul-

ing algorithm in a system with stochastic traffic; obtained the limiting properties of an

overloaded system with throughput-optimal scheduling algorithms; designed schedul-

ing algorithms that consider the security issue in a system with information-theoretic

encoder/decoder. The detailed research objects and contributions are discussed as

follows.

1.3.1 Scheduling in SPC/HM-Aided Wireless System

The most fundamental resource in a wireless network is the physical spectrum of

the wireless channel, which is limited. In order to provide high data-rate services

for users, one of the main research objectives is maximizing the spectrum efficiency,

which is a typical objective of the research on the physical layer, i.e., increasing the

resource availability of a single point-to-point link.

While the practical system is typically a multi-user system, and recent research
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shows that the performance of a multi-user wireless system can be improved by effi-

cient scheduling algorithms [83, 85]. This motivates the research on the opportunistic

scheduling, which tries to utilize the fluctuation of the channel to improve the system

performance, mostly to increase the system throughput.

A multi-user wireless system also means the downlink channel is a broadcast

channel. It is well-known that the capacity region of a degraded Gaussian broad-

cast channel can be achieved by using superposition coding (SPC) and successive

interference cancellation (SIC) technology.

As both SPC and opportunistic scheduling need the instantaneous channel state

information (CSI), by utilizing these two technologies together, the system perfor-

mance can be improved. Motivated by this, in this work, we have designed utility-

based opportunistic scheduling algorithms in a SPC-aided multi-user wireless system,

try to improve the system utility. Moreover, we have investigated the performance

gain introduced by using SPC and SIC, and further discussed the scheduling and

resource allocation algorithm design in a system where hierarchical modulation (HM)

is used as a practical implementation of SPC.

1.3.2 Stability Region of Opportunistic Scheduling in Wire-

less Systems

Traditionally, the scheduler in a wireless network is designed based on the assumption

that the system is saturated, and the number of users in the system is a constant. The

assumption simplifies the problem, but as shown in [2], these kinds of schedulers may

lead the unsaturated system to be unstable, while the system in the same circumstance

can be stabilized by other scheduling policies, such as max-weight scheduling [80].

There is little work done to quantify the stability region of opportunistic schedul-

ing. The stability region of an opportunistic scheduling policy in a two-user wireless

network with i.i.d. Bernoulli arrival traffic was derived in [23]. In [67], the authors

discussed the two-user stability region in a static channel configuration with concur-

rent transmissions. As the above two works only considered some special scheduling

algorithms to study the stability in a two-user wireless system, they are not gen-

eral enough to observe the general properties of the stability region of utility-based

scheduling algorithms, which motivates us to study the stability region of utility-based

scheduling in a system with stochastic traffic.

In this work, we have studied the stability regions of two utility-based opportunis-
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tic scheduling policies: the utility-based (UB) scheduling and the channel-rate-based

(CRB) scheduling, with a general traffic arrival in a wireless system with N users.

For the UB scheduling, the explicit closed-form stability region generally cannot be

obtained, while we develop a theorem to examine the stability of a system given the

arrival rate, and a numerical method is provided to obtain the stability region in a

two-user system. We have further studied the properties of the stability region of the

UB scheduling, and showed that it is generally non-convex and may also exhibit some

undesirable features. For instance, decreasing the arrival rate of one user may lead

the system to be unstable. For the CRB scheduling, we have obtained the closed-form

expression of the stability region, which is a convex hull. Besides the stability region,

we have further studied the extended stability region by giving a weight to each user.

The results show that by varying the weight assigned to each user, the union of the

resultant stability region is equal to the ergodic capacity region, for both scheduling

policies. This suggests as long as the system can be stabilized, by assigning a proper

weight to each user, using a non-throughput-optimal scheduling may also stabilize

the system.

1.3.3 Overloaded Wireless System Performance

If the resource of the system is sufficient to fulfill the demand of users and maintain

the stability of the system, then there should have a resource allocation scheme to

do so, which is usually called throughput-optimal scheduling. This kind of schedul-

ing algorithms should consider the incoming traffic, and thus needs more knowledge

compared with the resource allocation schemes for a saturated system.

The performance of such throughput-optimal scheduling has been extensively in-

vestigated under the assumption that the system is stable, or underloaded. However,

it is inevitable that a system may experience overloaded periods in practice due to the

fluctuation of the traffic volume [6]. Therefore, it is important to study the system

performance with throughput-optimal scheduling algorithms if the system is over-

loaded. The state-of-the-art research in this area has concluded only for some special

throughput-optimal scheduling policies, such as MaxWeight scheduling in [9] and

general-MaxWeight scheduling in [72]. The general system behavior of an overloaded

system is still missing.

In this work, we have studied the limiting properties of overloaded multiuser

wireless systems with infinite buffer and a general throughput-optimal scheduling
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policy, quantified the network performance of two special and widely used throughput-

optimal scheduling algorithms. Furthermore, we have analyzed the performance of

a finite-buffer system with Drop-Tail queue [14] and various buffer-sharing schemes,

which is of practical interests and often missed in the literature.

The results show that the although the system is overloaded, the scheduling func-

tion of queue length converges with the infinite-buffer assumption and the average

throughput converges and can be obtained by solving a convex optimization prob-

lem. With finite buffer assumption, the system performance is highly related with

the buffer scheme and exhibit complicated relationship.

1.3.4 Secrecy Outage Probability in Multiuser Wireless Sys-

tems

More recently, information-theoretic security has been widely discussed as it quanti-

fied the fundamental system secrecy. How to allocate the resource to achieve certain

secrecy is an important issue. However, most of the works are discussed from a tradi-

tional information-theoretical perspective, i.e., quantifying the capacity region under

different network settings. All these works [98, 45, 21, 36, 62] tried to solve an opti-

mization problem, implicitly or explicitly, based on the assumption that the system

is saturated and each user in the system always has data to transmit. Only the re-

liability and security issues are considered, and the stability issue is ignored since it

is typically treated in the higher layer. However, the stability is of equal importance

with reliability and security, since it further determines whether a practical system

can work properly and desirably over a sufficiently long time period.

Motivated by this, we studied the scheduling problem in multiuser wireless sys-

tems, where one eavesdropper exists in the system. We considered minimizing the

secrecy outage probability of the system, which is a coding-delay-limited metric that

is of practical interests. Besides, we further considered the queue stability issue which

is often ignored in the work that maximizes the ergodic achievable rate. Therefore,

the scheduling problem was formulated as an optimization problem minimizing the

system secrecy outage probability (security issue) and subject to the constraints that

the queues in the system should be stable (stability issue) and the transmission rate

does not exceed the capacity region (reliability issue).

Little work has been done jointly considering these three aspects. Some works

assumed that the eavesdroppers’ channel state information at symbol level (full in-
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stantaneous CSI) can be obtained by the BS, such as [50, 22, 54], which may not

be practical. Some works, such as [64], relax the assumption on the instantaneous

CSI, however, the designed scheme is not scalable to a case with multiple legitimate

receivers, which limits the usage of the proposed algorithm.

In this work, we have discussed the secrecy outage probability in a multi-user

wireless system with stochastic traffic and channel-adaptive transmission, designed a

scalable scheduling algorithm with a weak assumption that only the distribution of

the CSI of the eavesdropper is known by the BS, and further showed that directly

applying the well-know Lyapunov optimization framework to the formulated opti-

mization problem cannot lead to the optimal solution, as the queue length is not

always a proper “online representation” of Lagrangian multiplier.

1.4 Dissertation Organization

This work focuses on the scheduling algorithm design and analysis in a multi-user

wireless system. The rest of this dissertation is organized as follows.

In Chapter 2, we discuss the resource allocation problem in an SPC-aided wireless

network. The resource allocation problem is formulated and several algorithms having

different computational complexities are proposed. Through simulations we study the

performance gain achieved by SPC and make several observations that can be used

as a guideline for the system design.

In Chapter 3, we discuss the scheduling algorithms in a two-layer HM-aided wire-

less network. We formulate the scheduling problem and propose two algorithms with

different computational complexities. The simulation demonstrates that the propose

algorithm can achieve significant performance improvement.

Chapter 4 discusses the stability region of two opportunistic scheduling algorithms,

the CRB algorithm and the UB algorithm, that were originally designed for a satu-

rated wireless system. The results show that the stability regions generally are both

smaller than the capacity region, and that of UB may even be non-convex which may

lead to certain undesired property that should be avoided in a practical system.

The system performance in an overloaded wireless system with throughput-optimal

scheduling algorithm is discussed in Chapter 5. We show that in such system setting

generally all the queues in the system are unstable, but the average throughput con-

verges. We further discuss how to obtain the average throughput, which can be used

to analyze the system performance in a temporarily overloaded system.
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The scheduling algorithm in a secrecy wireless system is presented in Chapter 6.

We extend the secrecy outage probability for a system with channel-adaptive trans-

mission. We discuss how to minimize the secrecy outage probability subject to re-

liability and stability constraint. Simulation results show that there is a tradeoff

between the arrival rate and the secrecy outage probability, and the relative channel

condition also has a great impact on the secrecy outage probability.

Chapter 7 concludes this dissertation.

In the rest of this dissertation, bold face letters represent vectors and calligraphic

letters represent sets.

1.5 Bibliographic Notes

Most of the works reported in this dissertation have appeared in research papers. The

works in Chapter 2 have been published in [90]. The works in Chapter 3 have been

published in [89]. The works in Chapter 4 have been published in [91]. The works in

Chapter 5 have been published in [88] and those in Chapter 6 have appeared in [94],

and been submitted as [93].
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Chapter 2

Resource Allocation in a K-User

Wireless Broadcast System with

N-Layer Superposition Coding

Theoretically, SPC can achieve the capacity of a degraded Gaussian broadcast chan-

nel. In this chapter, we study the resource allocation problem in a K-user wireless

broadcast system with N -layer SPC. The problem is formulated as a sum-utility

maximization problem based on the average throughput, and three algorithms are

proposed to solve the problem. The simulation results show that the SPC gain highly

depends on the variability of the channel and the SNR range of channels for different

users. SPC is more favourable in the scenario with small-variation fast-fading channel

and a wide SNR range of channels for different users.

2.1 Introduction and Related Work

It is well known that the capacity of a broadcast channel generally cannot be achieved

by an orthogonal resource allocation, such as time division multiple access (TDMA).

To achieve the capacity region of a broadcast channel, various techniques were pro-

posed for different scenarios. The simplest scenario is the Gaussian broadcast channel

(GBC), the typical channel model for many wireless communication systems, such as

single-antenna systems and zero-forcing MIMO systems. To achieve the capacity of

a GBC channel, the signals of different users are superimposed in the ascending or-

der of the received signal-to-noise ratio (SNR), and the receiver uses the successive
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interference cancellation to extract the useful signal. So long as the SNR of different

user is not identical, this SPC approach can result in an extra capacity region, com-

pared to the orthogonal resource allocations. In a multi-user wireless system, since

the distance between the user and the base station is varying, using SPC can result

in the extra capacity region and an enhanced system performance. Considering this

feature of SPC, various works have been done in the resource allocation area.

[82] studied the optimal power allocation to achieve the capacity region in a paral-

lel GBC. The parallel GBC is a more general GBC and the results are also applicable

to the GBC. From [82], the boundary of the capacity region can be achieved by solving

a weighted-sum-rate maximization problem, and an optimal algorithm was proposed.

This work was further extended in [97] by giving a minimum rate constraint. In

[61], a dual decomposition method was used to build an optimization framework to a

general resource allocation problem in a parallel GBC. These work assumed that the

capacity region of the parallel GBC is achievable, which means all the signals of users

can be superimposed together. In practical, due to the high complexity to decode the

multi-user signal, the number of signals to be superimposed should be limited, and

thus the above results may not be applicable. A more practical problem is discussed

in [1], where only two-layer SPC is used. With the proportional fairness constraint, a

guideline about how to select the user group was proposed. This work only considered

a specific resource allocation objective, and it is not extensible to multi-user cases.

In this work, we consider a more general objective of resource allocation. The

sum-utility of the users received in the long term is maximized, which includes the

weighted-sum-rate maximization and the proportional fairness maximization as two

special cases. We also use a more practical assumption of the SPC signal. We

assume that, in a K-user system, upto N -layer SPC can be used. This assumption

is general, since by varying N , all the possible settings are included. The sum-

utility in the long term is based on the average throughput, and thus it cannot be

solved directly. Based on the stochastic approximation, solving an approximated

problem iteratively can reach the optimality. Using the primal decomposition, the

approximated problem can be decomposed into a user group scheduling problem and a

weighted-sum-rate maximization problem. By solving the two problems jointly yields

the optimal solution which has a high computational complexity.

The main contributions of this chapter are three-fold. First, we formulate a general

SPC resource allocation problem, where the number of layers of SPC is arbitrary and

it may or may not be identical to the number of users. Second, we not only consider
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the optimal solution, which is of high computational complexity, but also propose

several low-complexity and low-overhead solutions, which are more practical. Third,

extensive simulation results are presented, which show the benefit of using SPC, and

the tradeoff between performance and complexity. The results provide a practical

guideline for system design.

2.2 System Model

2.2.1 Fading Broadcast Channel

We consider a K-user block fading broadcast channel, where the channel gain is a

constant within each block, and experiences independent and identical fading during

blocks. The length of the block is identical. For different users, the statistic properties

of the fading channel are not necessarily the same. The noise of each user is assumed

to be an additive white Gaussian noise. The transmitter and the receiver both can

track the channel and have the channel state information (CSI). There is a peak power

constraint P in each fading block at the transmitter.

In the fading block t, the received signal of user i is yi(t) = hi(t)xi(t)+zi(t), for i =

1, 2, ..., K, where hi(t) is the channel gain of user i, xi(t) is the transmitted signal of

user i and zi(t) is the zero-mean complex white Gaussian noise of user i, with power

N0W . The channel gain can be normalized into the noise term, so the equivalent

received signal is given by

ŷi(t) = xi(t) + ẑi(t), i = 1, 2, ..., K, (2.1)

where ẑi(t) = zi(t)/hi(t) with power ni(t) = N0W/|hi(t)|2.
The SNR can be calculated by

γi(t) = P |hi(t)|2/N0W, i = 1, 2, ..., K.

2.2.2 Achievable Rate Region

In each fading block t, the channel is a K-user GBC, whose capacity can be achieved

by a K-layer SPC. Since we assume only N -layer SPC is used, the capacity generally

is not achievable. In this subsection, we will obtain the achievable rate region of the

considered system in each fading block. In the following, all the fading block indexes
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are omitted.

We use K to denote the set of all users and N (k), k = 1, 2, ..., K!
N !(K−N)!

to denote

the k-th N -user group. Denote the power set of N (k) as S, so |S| = K!
N !(K−N)!

.

Using the signal model in (2.1), and assuming the general order n1 ≤ n2 ≤ ... ≤
nK , based on the capacity region of the N -user degraded GBC [19], the achievable

rate of K users when selecting user group N (k) is denoted as

CN (k)
K = {r :

ri ≤ log2(1 +
αiP

ni +
∑

j<i αjP
) i = 1, 2, ..., K,

∑

i

αi = 1 and αi = 0 if i /∈ N (k)},

where αi is the fraction of power allocated to user i.

The achievable rate region of the K-user GBC with N -layer SPC is the convex

hull of CN (k)
K , which can be obtained as

CK =
⋃

∑
tk=1

|S|
∑

k=1

CN (k)
K tk,

where tk ∈ R+

⋃{0} is the time sharing factor of the k-th N -user group.

Then the average achievable rate region of K users C̄K is the convex hull of all CK
of each fading block.

2.3 Problem Formulation

2.3.1 Resource Allocation Problem

The objective of resource allocation is to maximize the sum-utility of all users in the

long term, where the utility is defined as a function of the average throughput. The

average rates allocated to users can be obtained by

RK = argmax
η∈C̄K

∑

i∈K
U(ηi), (2.2)

where U(x) is the utility function which is assumed to be concave, monotonically

non-decreasing and differentiable.
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According to [96], solving the first-order approximation of (2.2) in each fading

block can solve the problem, and the convergence is guaranteed by stochastic approx-

imation [44]. Thus, the online scheduling algorithm in fading block t is

rK(t) = argmax
η∈CK(t)

∑

i∈K
U ′(Ri(t))(ηi − Ri(t)), (2.3)

where rK(t) is the allocated rate of user group K in fading block t, CK(t) is the

achievable rate region of K in block t, and R(t) is the measured average throughputs

before t. R(t) is updated by R(t) = R(t−1)+ǫ(r(t−1)−R(t−1)), where ǫ is the step

size used to control the convergence speed and accuracy. By removing the constant

term in (2.3) to simplify the objective function, the online scheduling algorithm in

each fading block can be rewritten as

rK = argmax
η∈CK

∑

i∈K
U ′(Ri)ηi, (2.4)

where the fading block index is omitted.

The problem cannot be directly solved, since the achievable rate region CK is not

likely to be written in an explicit closed form. But since the constraint set is a closed

convex hull, (2.4) can be reformulated as

rK = argmax
∑

tk=1

η∈CN (k)
K

∑

k

tk
∑

i∈K
U ′(Ri)ηi,

which can be further decomposed into two sub-problems by primal decomposition.

The first is a weighted-sum-rate maximization problem for every user group

Wk = max
η∈CN (k)

K

∑

i∈K
U ′(Ri)ηi, (2.5)

and the second is a user group scheduling problem

max∑
tk=1

∑

k

tkWk, (2.6)

where Wk is the maximal weighted-sum-rate of user group k.

The solution to (2.6) is tk∗ = 1 if Wk∗ = maxk Wk. Thus, the key is to solve (2.5).
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2.3.2 Weighted-Sum-Rate Maximization Problem

Note that if i /∈ N (k), then ηi = 0. By slightly abusing the notation, denote ηk as

the rate vector of users in user group N (k). By simplifying the notation, (2.5) is

equivalent to

max
η∈CN

N

uTη. (2.7)

By introducing an auxiliary variable power p and replacing the constraint η ∈ CN
N

with η ∈ CN
N (p) and p < P , where CN

N (p) is the achievable rate region with power

constraint p of the N -user GBC, the partial dual problem of (2.7) is

max
η,p

uTη − λp s.t. η ∈ CN
N (p). (2.8)

According to [82], the solution to problem (2.8) is

η∗i (u, λ) =

∫

Ai

1

ni + z
dz,

where Ai = {z ∈ [0,∞) : ui(z) = u∗(z)}, ui(z) =
ui

ni+z
−λ, and u∗(z) = [maxi ui(z)]

+.

By writing the above solution explicitly, for problem (2.7) we have

η∗i = log
ni + Ui

ni + Li
, (2.9)

where

Li =

{

min (P,maxuj<ui
[
uinj−ujni

uj−ui
]+), ui 6= minj uj,

0 ui = minj uj,

and

Ui =

{

min (P,minuj>ui
[
uinj−ujni

uj−ui
]+), ui 6= maxj uj,

P ui = maxj uj.

Note that, for any i 6= j, we need to find all the
uinj−ujni

uj−ui
, whose number is

N(N − 1)/2. Thus the computational complexity to solve the weighted-sum-rate

maximization problem is O(N(N − 1)/2).



15

Algorithm 1 Opt Algorithm

1: for all N (k) ∈ S do

2: solve

rk = argmax
η∈CN (k)

N (k)

∑

i∈N (k)

U ′(Ri)ηi

using (2.9).
3: obtain Wk based on (2.5).
4: end for

5: k∗ = argmaxk Wk .
6: Return: N (k∗), rk∗ .

2.4 Scheduling Algorithm

2.4.1 Optimal (Opt) Algorithm

The optimal scheduling algorithm is to find the user group N (k∗) with the maximal

weighted-sum-rate Wk∗, according to (2.5) and (2.6). Thus we need to exhaustively

search all the |S| possible user groups, and calculate the corresponding Wk. The

algorithm is shown in Algorithm 1.

When calculating Wk, (uinj − ujni)/(uj − ui) is repeatedly calculated, so we can

obtain a look-up table for (uinj − ujni)/(uj − ui) to save the computation, which

requires K(K − 1)/2 calculations. Then, the complexity to solve (2.5) is linear w.r.t.

N . Overall, the computational complexity is O(|S|N+K(K−1)/2). Be aware that if

N is small, constructing a look-up table is not efficient and costs more computation.

While with moderator N , using a look-up table can save one order of magnitude

computational complexity.

2.4.2 Iterative User Selection (IUS) ALgorithm

To reduce the computational complexity, an iterative user selection algorithm can be

used. If N = 1, then only the user with maximal U ′(Ri)ηi will be selected, where

ηi = log(1 + γi). Based on the selected first user 1∗, we search for the second user to

maximize U ′(Ri)ηi + U ′(R1∗)η1∗ . Iteratively, we can find upto N users based on the

previously selected users. Be aware that it is a greedy approach: selecting the user

that can provide the maximal additional weighted rate gain. The algorithm is shown

in Algorithm 2.
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Algorithm 2 IUS Algorithm

1: Initialize L(0) = ∅ {L(i) is the selected user group after i-th iteration.}
2: for i = 1 to N do

3: for all k ∈ K −L(i−1) do

4: T (i)
k = L(i−1)

⋃{k}.
5: solve

W
(i)
k = max

∑

j∈T (i)
k

U ′(Rj)ηj s.t. η ∈ CT (i)
k

T (i)
k

using (2.9) and (2.5). The corresponding rate is r
(i)
k .

6: end for

7: k∗ = argmaxk W
(i)
k .

8: L(i) = L(i−1)
⋃{k∗}

9: end for

10: Return: L(N), r
(N)
k∗ .

In the i-th iteration, we need to search over K − i + 1 users to solve an i-user

weighted-sum-rate maximization problem, and totally we have N iterations. By using

the look-up table as in the Opt algorithm, the overall computational complexity is

O(
∑N

i=1 i(K − i+ 1) + K(K−1)
2

) = O(N(N+1)
2

(K + 1− 2N+1
3

) + K(K−1)
2

).

2.4.3 Random User Candidate Based Algorithm

The IUS algorithm can reduce the computational complexity, but cannot reduce the

CSI feedback load, since the user is unaware whether it will be selected or not. To

reduce the overhead, we randomly select N ′ users only to feedback their CSI. By

replacing K with N ′ in the above obtained computational complexity, we can obtain

the corresponding computational complexity of the random user candidate based

algorithm. The performance of this naive approach can be considered as a lower-

bound of the low-overhead algorithms.

2.4.4 Computational Complexity Comparison

The computational complexities of the proposed algorithms are compared in Fig.2.1.

With the increment of N , the computational complexity of the Opt algorithm will

first increase, then decrease. This is because when N > K/2, |S| will decrease,
i.e. the number of user group candidate will decrease. For the IUS algorithm, the

computational complexity is increasing with the increment of N , and does not have
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Figure 2.1: Comparison of Computational Complexity, K = 20, N ′ = 10.

the decreasing feature. When N is close to K, the computational complexity can be

higher than the optimal solution. This is because the iterative user selection approach

does not have the full knowledge of N , and when N is large, the IUS algorithm will

test many unnecessary sub-user groups with the size less than N. For the random user

candidate based algorithm, the computational complexity is scaled down significantly,

compared with the corresponding original algorithm, especially for the Opt algorithm.

2.5 Performance Evaluation

In this section, extensive simulations are conducted to evaluate the performance of

the proposed algorithms, several remarkable observations are presented.



18

2.5.1 Simulation Setting

Utility Function

The utility function chosen to be evaluated is the α-fairness [58],

U(x) =

{

log(x), α = 1,

(1− α)−1x1−α others,

where x is the average throughput, whose unit is bps/Hz in this chapter. The deriva-

tive is

U ′(x) = x−α.

By choosing different α, the objective is to maximize the fairness measurement

based on different principles, and the relative value of the measurement is of more

interests. For instance, if α = 0, then the objective is to maximize the system

throughput; if α = 1, then it is to maximize the proportional fairness; if α → ∞,

then it is to maximize the max-min fairness.

Channel Model and Parameters

The raw SNR of user i can be modelled as the product of two random variables, i.e.

γi = aibi, where ai represents the large-scale path loss and shadowing component, and

bi represents the small-scale fast-fading component. We assume that the envelop of

the small-scale fast-fading component follows a Nakagami fading, so the distribution

of bi is a gamma distribution, i.e.

f(x) = (
m

Pr
)m

xm−1

Γ(m)
exp(−mx

Pr
), (m ≥ 0.5)

where m is the fading parameter, Pr is the average received power in the Nakagami

fading which is fixed to one. Note that, m is used to control the variability of bi,

and a small m results in a large variation of bi. When m = 1, the Nakagami fading

becomes the Rayleigh fading.
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Other Parameters

Monte Carlo simulation is used to evaluate the system performance. The step size ǫ

is used to control the accuracy and speed of convergence, and we use ǫ = 0.001 in the

simulation. The initial value of the estimated average throughput R also affects the

convergence speed, and we choose it as Ri = log2(1 + ai)/K. During the simulation,

we find that roughly after 3000 fading blocks, R can weakly converge, while the

average throughput obtained by calculating the average of rK converges much faster

than R. Thus, for each SNR, we run 10000 fading blocks, and collect the results from

the last 5000 fading blocks.

2.5.2 Scenario One: Homogeneous Fading Channel

In a homogeneous AWGN broadcast channel (every user has the identical SNR), using

SPC cannot result in an extra capacity region. We are interested in whether SPC can

improve the system performance in a homogeneous broadcast block fading channel

(the instantaneous SNR of each user is i.i.d.). Here we assume ∀i, ai = γ. The system

utility of a special case is compared in Table 2.1. The utilities obtained by Opt

algorithm and IUS algorithm only have a small difference. The system utility almost

does not change with the increment of N , and the utility difference is negligible. Also,

such utility difference is irrelative to the SNR γ. This reflects that although in each

fading block, using SPC can result in an extra capacity region, this instantaneous gain

cannot result in a noticeable average gain. This also suggests under the peak power

constraint in a homogeneous fading channel, using SPC cannot obviously improve the

performance of a single-user point-to-point link, which is different from the results in

[52], where the average power constraint is used.

2.5.3 Scenario Two: Heterogeneous Fading Channel

In this scenario, we assume that the large-scale path loss and shadowing component

for different user is different, but it is fixed for each user. Specifically, we assume

ai = a(i− 1) + 1 dB, where a is used to tune the SNR range of users.

Utility Comparison

First we compare the system utilities of the Opt algorithm and the IUS algorithm

under different settings, and the results are shown in Table 2.2. With the increment
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Table 2.1: System Utility Comparison: Homogeneous Broadcast Fading Channel.
m = 1, K = 10, α = 1

γ (dB) 5 10 15 20 25 30

Optimal Algorithm

N = 1 -11.24 -7.35 -4.43 -2.17 -0.28 1.27

N = 2 -11.24 -7.34 -4.43 -2.14 -0.27 1.30

N = 3 -11.22 -7.34 -4.43 -2.14 -0.27 1.29

N = 4 -11.21 -7.35 -4.43 -2.15 -0.28 1.30

N = 5 -11.21 -7.35 -4.43 -2.14 -0.29 1.29

IUS

N = 1 -11.25 -7.34 -4.44 -2.16 -0.28 1.28

N = 2 -11.22 -7.33 -4.42 -2.16 -0.27 1.31

N = 3 -11.22 -7.35 -4.42 -2.16 -0.27 1.30

N = 4 -11.24 -7.32 -4.41 -2.15 -0.26 1.30

N = 5 -11.23 -7.37 -4.44 -2.14 -0.29 1.30

of N , the system utility is increasing. When a = 1, N = 2 can provide almost optimal

utility; while for a = 3, the utility is close to optimal when N ≥ 3. This suggests

that SPC can provide more gain when the SNR range of users is large, and in order

to fully exploit such gain, the number of layers should also be large. Next, comparing

different m, a large m means a small variability of the SNR, and results in a small

utility. When m is larger, the utility gain provided by SPC is larger. This suggests

that SPC is more valuable in a small-variation fast-fading channel. Considering the

IUS algorithm, all the trends observed from the Opt algorithm are preserved, and its

utility is slightly lower than that of the Opt algorithm.

The utilities of random user candidate based algorithms (R-Opt and R-IUS) are

shown in Table 2.3. All the trends observed in Table 2.2 also exist, but the absolute

value of utility is small when N ′ is small. In order to reduce the feedback overhead,

the resulting utility loss is significant.

System Throughput Comparison

The system throughputs of the Opt algorithm and the IUS algorithm are compared

with different utility functions, and the results are shown in Figs. 2.2 and 2.3. The
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Table 2.2: System Utility Comparison: Heterogeneous Broadcast Fading Channel.
K = 10, α = 1

N 1 2 3 4 5

m=1

a=1
Opt -11.01 -10.56 -10.55 -10.54 -10.54

IUS -11.01 -10.72 -10.73 -10.71 -10.71

a=3
Opt -5.66 -3.63 -3.35 -3.32 -3.32

IUS -5.66 -3.98 -3.96 -3.96 -3.97

m=10 a=3
Opt -7.37 -4.86 -4.33 -4.19 -4.14

IUS -7.37 -5.09 -4.95 -4.96 -4.95

Table 2.3: System Utility of Random User Candidate Based Algorithm, K = 10,
α = 1, m = 1, a = 3.

N 1 2 3 4 5

N ′ = 6
R-Opt -6.24 -4.43 -4.30 -4.25 -4.25

R-IUS -6.24 -4.85 -4.86 -4.83 -4.86

N ′ = 8
R-Opt -5.88 -3.98 -3.76 -3.71 -3.69

R-IUS -5.89 -4.34 -4.34 -4.34 -4.35

unit of throughput is bps/Hz and is omitted in all figures.

In Fig. 2.2, the system throughput with α = 1 is compared. The impact of fast

fading is tuned by changing m, and the results show that SPC can provide a large

gain for a large m. By comparing different a, the throughput of different SNR range

is compared. When a is small, the throughput gain due to SPC is quite marginal. A

larger N means more SPC layers and a higher complexity. In all cases, when N > 2,

further increase N cannot provide significant throughput gain, which suggests N = 2

is a reasonable value.

Comparing Fig. 2.3 with Fig. 2.2, we can see all the trends observed when α = 1

can also be observed when α = 10, while the values are different since different

objectives are used. By comparing the normalized SPC gain in the two figures, α has

no great impact on it.

Comparing the results of the Opt algorithm and the IUS algorithm, whether the

IUS algorithm has a larger throughput or not depends on α, while the throughput

difference between the two algorithms is less than 2%.

Fig. 2.4 shows the system throughput of random user candidate based algorithms.
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When N ′ = 10, the R-Opt and R-IUS become Opt and IUS respectively. By decreas-

ing N ′, the performance loss is enlarged. Comparing different N , a larger N results in

a larger performance loss, but the performance gains of using SPC with R-Opt/R-IUS

are still substantial.

2.5.4 Summary

By investigating the performance under two scenarios, we have the following remarks.

First, SPC cannot provide much gain in a homogeneous fading channel, when the

system is subject to the peak power constraint. Second, the gain introduced by SPC

depends on the variability of the channel. SPC can provide a higher gain when the

channel experiences a less variable fast-fading. Third, how to determine the number

of SPC layers mostly depends on the SNR range of users. Generally N = 2 or 3 is

a reasonable value. Fourth, the normalized throughput gain provided by SPC is not

highly related to the utility objective parameter α. Fifth, the performance of the

IUS algorithm is close to that of the Opt algorithm, and the throughput difference

is less than 2% in all simulated environments. When N = 2, their utility difference

is negligible. Last, using random user candidate based algorithms will degrade the

system performance, but they still can achieve a remarkable SPC gain.

2.6 Conclusion

In this chapter, we have investigated the resource allocation in a K-user wireless

broadcast system with N -layer superposition coding. The problem has been formu-

lated as a general sum-utility maximization problem where the utility is a function of

the average throughput. Based on stochastic approximation and primal decomposi-

tion, the problem can be decomposed into two online problems: a user group selection

problem and a weighted-sum-rate maximization problem. An optimal scheduling al-

gorithm, a low complexity iterative user selection algorithm and a random user can-

didate based algorithm are proposed. Based on simulation, we find several important

observations, which can be used as design guidelines for practical deployment of SPC

(such as hierarchical modulation and network modulation [89, 8, 101]) in a multiuser

wireless communication system.



23

1 2 3 4 5
3.45

3.5

3.55

3.6

N

m=1, a=1

S
ys

te
m

 T
hr

ou
gh

pu
t

 

 

1 2 3 4 5
2.7

2.8

2.9

3

N

m=10, a=1

S
ys

te
m

 T
hr

ou
gh

pu
t

1 2 3 4 5
6

6.5

7

7.5

8

N

m=1, a=3

S
ys

te
m

 T
hr

ou
gh

pu
t

1 2 3 4 5
5

6

7

8

N

m=10, a=3

S
ys

te
m

 T
hr

ou
gh

pu
t

IUS
Opt

Figure 2.2: Comparison of System Throughput, K = 10, α = 1.
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Chapter 3

Proportional Fair Scheduling in

Hierarchical Modulation Aided

Wireless Networks

From Chapter 2, we know that SPC is more favourable in the scenario with small-

variation fast-fading channel and a wide SNR range of users. In this chapter, we

further study the SPC scheduling problem in a practical system. A practical im-

plementation of SPC, hierarchical modulation (HM), has been adopted. We only

consider the utility defined by proportional fairness as it is widely used in current

wireless networks. An optimal algorithm and a low complexity suboptimal algorithm

are proposed to solve the practical scheduling problem combining the opportunistic

PFS and HM.

3.1 Introduction

Wireless channels are time-varying and broadcast in nature. How to optimize wireless

scheduling algorithms to maximize system efficiency and ensure fairness, considering

the wireless channel characteristics, is both challenging and promising.

Traditionally, a scheduler (in the link layer) divides the wireless resources into

orthogonal logic links. For each logic link, the physical (PHY) layer deals with channel

impairments (e.g., fading, shadowing, path loss) aimed to maximize the spectrum

efficiency under certain bit error rate (BER) constraint. Using the services provided

by the PHY layer, upper layer protocols can be designed without considering the
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wireless channel characteristics.

Such layered solutions are not most efficient. In [39], an opportunistic scheduling

was proposed for multiple users with independent, time-varying channel conditions

sharing the uplink in a cellular network. The scheduler avoids to select the users in

deep-fading to transmit to improve the system efficiency. Instead of concealing the

fast-fading in the PHY layer, the opportunistic scheduling utilizes the randomness

of channel conditions to improve system performance. This approach has also been

extended for the downlink case in [83].

To ensure fairness among competing users, the proportionally fair (PF) rate allo-

cation for wired networks was proposed in [35]. Using the channel state information

(CSI) from the receiver, the opportunistic PF scheduling (PFS) algorithm for wireless

networks was proposed in [85].

On the other hand, as discussed in chapter 2, SPC can achieve the capacity

bound of a degraded Gaussian broadcast channel [10], and can improve the system

performance in multi-user wireless systems. Recently, SPC has been implemented as

HM using embedded constellation, which requires CSI from the receiver to select the

suitable modulation.

Ideally, a wireless scheduler should exploit the multi-user diversity and the spatial

diversity gain (using HM) while maintain fairness (using opportunistic PFS). Since

the opportunistic PFS and HM both need the CSI feedback in a similar frequency in

a block fading channel (per-block feedback), using these two technologies together,

system performance can be improved by taking the advantage of both gains without

increasing signaling message complexity. However, how to design an efficient and fair

scheduler for HM-aided wireless networks is an open, challenging issue, since the user

selection and resource allocation should be jointly optimized.

The main contributions of this chapter are three-fold. First, we formulate the

two-user opportunistic PFS scheduling problems: an SPC-based theoretical problem

using Shannon capacity and an HM-based practical problem. Second, we propose

an optimal algorithm and a suboptimal algorithm to solve the practical scheduling

problem using opportunistic PFS and HM. Third, extensive simulations have been

conducted to evaluate the performance of the proposed algorithms. Simulation results

have demonstrated that the proposed algorithms can achieve substantial throughput

gain compared to the existing single-user PFS solution and have better fairness per-

formance compared to the existing HM based solutions.
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3.2 Preliminaries and Related Work

3.2.1 Proportional Fair Scheduling

In a wireless network, as the channels of different users are independent and hetero-

geneous, opportunistic scheduling was proposed to exploit the multi-user diversity

gain to improve system efficiency [85, 99]. In a practical wireless system, a greedy

algorithm that selects the user with the best channel quality to transmit tends to

always select the users near the base station (BS) which is unfair and leads to the

starvation problem.

The PFS was proposed to make the tradeoff between the multi-user diversity gain

and fairness. A scheduling policy P is proportionally fair, if and only if the sum of the

logarithmic average user throughput is maximized after the scheduling decision [85]:

P = argmax
S

∑

i∈U
logR

(S)
i , (3.1)

where U is the active user set and R
(S)
i is the average throughput of user i under

scheduling policy S.
If only one user is allowed to transmit in any time slot t, (3.1) is degenerated to

selecting the user with the largest ri(t)/Ri(t) among all active users, where ri(t) is the

instantaneous rate of user i in slot t, and Ri(t) is its average throughput before slot

t. Typically, the average throughput can be updated by an exponentially weighted

moving average algorithm [85]:

Ri(t+ 1) =

{

(1− 1
T
)Ri(t) +

1
T
ri(t), for i = i∗,

(1− 1
T
)Ri(t), for i 6= i∗,

(3.2)

where T corresponds to the window size to smooth the throughput, and i∗ is the

index of the scheduled user at time t. To simplify the notation, we omit (t) in R(t)

and r(t) hereafter.

Similar to the results in [37] (which extended the PFS to a multi-carrier system),

if in a system where multi-users can transmit simultaneously, the proportional fair

scheduling policy P should satisfy

P = argmax
S

∏

i∈US

(1 +
ri

(T − 1)Ri
), (3.3)
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where US is the set of the selected users by scheduling policy S.

3.2.2 Superposition Coding

Superposing signals for multiple users to achieve the capacity of degraded Gaussian

broadcast channel was first introduced in [10] and named SPC. SPC is of great interest

to enhance the downlink performance in various scenarios [74, 92]. By using SPC

together with SIC, the capacity bound of a downlink degraded Gaussian broadcast

channel can be achieved [19]. In a general order |h1| ≤ |h2| ≤ ... ≤ |hN |, where |hi| is
the channel gain of user i, the capacity bound of user i is defined by

ri = log2 (1 +
Pi|hi|2

N0B +
∑K

j=i+1 Pj |hi|2
) bps/Hz, (3.4)

where Pi is the power allocated to user i, N0 is the noise spectral density and B is

the channel bandwidth.

3.2.3 Related Work

Although SPC and PFS have been proposed in 1970’s and 1990’s, respectively, there is

very limited cross-domain work on the combination of these two powerful techniques.

Recently, an implementation of SPC, called HM, has been adopted in Digital Video

Broadcasting (DVB) and several other standards [79], which generates new interests

in this promising area.

Different from the SPC-related problem [61], the scheduling problem for HM is

more difficult due to the discrete feature of the number of bits allocated and their BER

requirements. In [25, 26], two opportunistic scheduling algorithms were proposed for

a wireless network using two-layer HM, which allows two users to transmit simulta-

neously, namely two-best-user opportunistic scheduling (TBS) and hybrid two-user

opportunistic scheduling (HTS) respectively. TBS selects two users with the first and

second highest channel gain to transmit; HTS selects the first user with the highest

channel gain and the second user with the highest relative channel gain, defined as

the instantaneous channel gain normalized to its short-term average channel gain.

TBS can be viewed as a direct extension of the single-user throughput-maximized

opportunistic scheduling, and HTS is aimed to achieve a better max-min fairness.

However, the bit allocation scheme in TBS/HTS may not fully explore the benefit of

SPC/HM, since the constellation size is determined by the first user only.
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In [33], a hybrid two-user opportunistic scheduling algorithm named HTS2 was

proposed. It selects the first user based on the proportional fairness and the second

user based on whether there are higher channel gain users in the same subcarrier.

After user selection, transmission power is reallocated among the selected users to

achieve better fairness.

The above HM-based scheduling algorithms separated the user selection and power

allocation, which cannot achieve proportional fairness. In [1], an analytical approach

was given to study PFS with SPC, jointly considering user selection and power allo-

cation according to the sum-rate gain. Since multi-user PFS is not necessarily lead to

a sum-rate gain, the resultant user selection may deviate from the optimal one based

on multi-user PFS.

3.3 System Model and Problem Formulation

3.3.1 System Model

We consider a two-layer SPC-aided single-cell wireless cellular network. The channel

is assumed to be a quasi-static flat fading channel, i.e., in each time slot, the channels

are static and independent of each other, and among different time slots, the channel

fading follows a specific probability distribution (such as Rayleigh fading). We focus

on the downlink case, and assume that the BS can obtain the instantaneous CSI for

each slot.

3.3.2 Proportional Fair Scheduling Problem

With HM, a scheduler can allocate a slot to at most two receivers. According to (3.3),

the PFS problem is to find the user pair (i∗, j∗) that satisfies (i∗, j∗) = argmax(i,j) U(i,j)

at each time slot, where U(i,j) is the PF-utility of the selected user pair (i, j).

Based on (3.3), we define U(i,j) as

U(i,j) =











(1 +
ri
(i,j)

(T−1)Ri
)(1 +

rj
(i,j)

(T−1)Rj
), if i 6= j,

1 +
ri
(i,j)

(T−1)Ri
, if i = j,

(3.5)

where ri(i,j) is the instantaneous rate of user i when user pair (i, j) is selected. For

i 6= j, w.l.o.g, user i is assumed to have a higher or equal channel gain than user j.
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3.3.3 Theoretical Capacity Based PF-Utility Maximization

Problem

First, we consider the theoretical Shannon capacity based PF-utility maximization

problem when using PFS in SPC-aided wireless networks.

The PF-utility maximization problem is to maximize the PF-utility function (3.5)

where the instantaneous rates lie in the capacity region. Since the capacity region is

a closed convex set and the PF-utility function (3.5) is also convex, the problem is to

maximize a convex function on a closed convex set. The maximum can be obtained

in the boundary of the convex set [66]. Thus, for our problem, full power should be

allocated to maximize the PF-utility.

Define the channel SNR of user i as γi = P |hi|2/N0B, where P is the system

power constraint. Based on (3.4), the instantaneous rates of paired user i and j can

be written as, respectively,

ri(i,j) = log(1 + qi(i,j)γi), (3.6)

rj(i,j) = log(1 + γj)− log(1 + qi(i,j)γj), (3.7)

where qi(i,j) = Pi/P is the portion of power allocated to user i.

For i 6= j, by substituting (3.6) and (3.7) into (3.5), after some manipulations and

simplifications, the PF-utility maximization problem is formulated as follows.

Problem 3.1.

max
log(1 + qi(i,j)γi)

Ri

−
log(1 + qi(i,j)γj)

Rj

+
log(1 + qi(i,j)γi) log(

1+γj
1+qi

(i,j)
γj
)

(T − 1)RiRj
, (3.8)

s.t. 0 ≤ qi(i,j) ≤ 1.

When qi(i,j) = 0 or 1 the Problem 3.1 also includes the case that a single user is

scheduled.

Due to the duality of Gaussian multiple-access and broadcast channels [34], Prob-

lem 3.1 also formulates the two-user SIC based multi-user uplink scheduling problem

when the sum uplink power is fixed. In practice, individual power constraint is a more

realistic assumption, and our approach is not directly applicable and needs further

extension.
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3.3.4 HM-Based PF-Utility Maximization Problem

The optimal solution of Problem 3.1 may not be feasible in a practical system, and

an uncoded HM based system is considered in this subsection. Since in an uncoded

system with block fading, BER and BLER (Block Error Rate) have a direct one-to-

one mapping, in the following, we only consider the PF-Utility maximization in the

symbol level.

The HM-based PAM (or QAM) is a generalized PAM (or QAM) with flexible

Euclidean distance among constellation points. Here, we consider a system deploying

two-layer HM based square QAM (HMsQAM) with Gray mapping, which has been

well investigated in [86] and the reference therein. Since square QAM can be viewed

as two identical and orthogonal PAM modulations, we first analyze the two-layer HM

based PAM (HMPAM) with Gray mapping, having n bits in the first layer and m−n

bits in the second layer, named 2n/2m-HMPAM.

Decision boundary for first bit

2d
1

10

11 100100

2d
2

Decision boundaries for second bit

Second bit

First bit

Figure 3.1: 2/4-HMPAM with Gray mapping. The filled circles represent the fictitious
symbols which are not actually transmitted. The open circles represent the real trans-
mitted symbols. The digits attached to the symbols represent the bits information of
the symbols (real or fictitious).

As discussed in [86], a 2n/2m-HMPAM has m levels of constellation points. The

constellation points in level-i (i < m) are fictitious and represent the symbols corre-

sponding to the i-th bit. The constellation points in level-m represent real symbols.

The Euclidean distance between the constellation points in level-i is 2di. The first

n bits belongs to the first layer and the rest m − n bits belong to the second layer.

Within each layer, we have di = 2di+1 (here level-i and level-(i + 1) belong to the

same layer.). A sample of 2/4-HMPAM is shown in Fig. 3.1, which has two layers

and also two levels.

The Euclidean distance between the constellation points in level-i of 2n/2m-HMPAM
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is

2di =







(1
2
)i−12d1, for i ≤ n,

(1
2
)i−n−12dn+1, for n + 1 ≤ i ≤ m.

(3.9)

The exact closed-form BER expression of generalized PAM and QAM is derived

in [86]. Based on the constellation diagram of each modulation scheme, the decision

region can be obtained for each bit. Thus by taking the integral over the decision

region for each bit, the probability that the bit is decoded successfully as well as the

error probability can be obtained. As the exact BER expression is very complicated, it

is not easy to be used to formulate and solve our problem, and also the computational

complexity of the resultant algorithm will be too high for an online scheduler. So, a

BER approximation is needed. Since the exact BER expression is a summation of a

series of complementary error function erfc(), which decades very fast, thus the BER

is mainly determined by the shortest Euclidean distance between the corresponding

constellation points to the decision boundaries.

For instance, the BER of the first and second bit in a 2/4-HMPAM are, respec-

tively

P
(1)
b,2 =

1

4
[erfc (

d1 + d2√
N0

) + erfc (
d1 − d2√

N0

)],

P
(2)
b,2 =

1

2
erfc (

d2√
N0

) +
1

4
[erfc (

2d1 − d2√
N0

)− erfc (
2d1 + d2√

N0

)].

The BER of the first bit is mainly determined by the Euclidean distance between

symbol 01 and 11, and similarly, the BER of the second bit is by that between

symbol 00 and 01 (or symbol 11 and 10). Hence, their BER can be approximated by,

respectively,

P̃
(1)
b,4 =

1

4
erfc (

d1 − d2√
N0

), P̃
(2)
b,4 =

1

2
erfc (

d2√
N0

).

Fig. 3.2 shows the BER approximation for 2/4-PAM. From the figure, in all three

configurations of 2/4-PAM, the approximations are close to the analytical results.

Such approximation only considers the dominant term in the exact BER expres-

sion, which can be named dominant term approximation. Given that the typical BER
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Figure 3.2: Validation of BER approximation for 2/4-HMPAM with Gray mapping.
q is the energy portion of layer-1 signal. By different q, we have different constellation
diagram setting, which has different Euclidean distance among constellation points.
The choice of q is limited since ∀i < j, di > dj.

requirement is below 10−3, it is reasonable to use the dominant term approximation,

whose accuracy has been confirmed in [100] for QAM in the low BER region.

Using the dominant term approximation and the constellation point distance (3.9),

the BER of each bit in 22n/22m-HMsQAM can be calculated by

P̃
(i)
b,m =







1
2m+1−i erfc (

di−
∑m

j=i+1 dj√
N0

), for i = 1, ..., m− 1,

1
2
erfc ( di√

N0
), for i = m,

(3.10)

where P̃
(i)
b,m is the BER of the i-th bit in in-phase or quadrature and m is the total

number of bits transmitted in in-phase or quadrature. As layer-1 bits and layer-2 bits

are transmitted to different users, whose received signal powers can be different, i.e.,

the Euclidean distances of the received signals of different users are different, thus

we need to differentiate the corresponding Euclidean distances. In the following, di

and di,(j) (j ∈ {1, 2}) are used to represent the Euclidean distance in the transmitted

signal constellation diagram and that in the received signal constellation diagram of

layer-j user, respectively.
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The BER of the layer-1 bits is

P̃ (1)
e =

1

n

n
∑

i=1

P̃
(i)
b,m. (3.11)

Substituting (3.10) into (3.11) with di,(1) replacing di, after some manipulations, we

obtain

P̃ (1)
e =

1

n
[(
1

2
)m−n − (

1

2
)m] erfc (

dn,(1) − (2m−n − 1)dm,(1)√
N0

). (3.12)

Similarly, the BER of the layer-2 bits is

P̃ (2)
e =

1

m− n
[1− (

1

2
)m−n] erfc (

dm,(2)√
N0

). (3.13)
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Figure 3.3: Validation of BER approximation for 4/16-HMPAM with Gray mapping.

A sample validation of BER based on the dominant term approximation for 4/16-

PAM is shown in Fig. 3.3. The dominant term approximation is accurate as long as

the BER is lower than a threshold, e.g., 10−3.
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The average symbol energy of the transmitted signal is E
(t)
s = 2

∑m
i=1 d

2
i , which

consists two parts, the average symbol energy of layer-1 signal and that of layer-2

signal,

E
(t)
s,1 = 2

n
∑

i=1

d2i , (3.14)

E
(t)
s,2 = 2

m
∑

i=n+1

d2i . (3.15)

For the average symbol energy of the transmitted signal and the received signal,

we have

E
(t)
s,jBN0

P
=

E
(r)
s,j

γ(j)
, j = 1, 2, (3.16)

where γ(j) is the channel SNR of layer-j user.

Since the transmitted signal should satisfy the energy constraint, we have E
(t)
s ≤

P/B. By substituting (3.9), (3.14), (3.15) and (3.16) into the energy constraint, we

obtain

4m−n − 1

3
(
dm,(2)√
N0

)2
2

γ(2)
+

4n − 1

3
(
dn,(1)√
N0

)2
2

γ(1)
≤ 1. (3.17)

Substituting (3.9) and (3.16) into (3.11), the BER of layer-1 bits is

P̃ (1)
e =

2n − 1

n2m
erfc (

dn,(1)√
N0

− (2m−n − 1)

√

γ(1)

γ(2)

dm,(2)√
N0

). (3.18)

Thus, the PF-utility maximization problem for a system with HMsQAM modula-

tion can be formulated as follows.

Problem 3.2.

max (1 +
2n

(T − 1)R(1)
)(1 +

2(m− n)

(T − 1)R(2)
)

s.t. P̃ (1)
e < Pe1, P̃

(2)
e < Pe2 and (3.17),

m ≥ n, m, n ∈ [0, 1, ..., K],

where R(j) is the average rate of layer-j user, Pe1 and Pe2 are the BER requirements
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of user 1 and 2, respectively, and 22K-HMsQAM is the maximal modulation scheme.

Using the dominant term approximation, the BER of the higher layer (generally

for users with higher channel SNR) does not rely on the constellation distance in the

lower layer, which dramatically simplifies the problem, not only for BER calculation,

but also for modulation configuration.

3.4 Scheduling Algorithm Design

For the optimal scheduling algorithm design, the convexity of Problem 1 may not

be equivalent to the convexity of PF-utility function (3.5) and is generally unknown.

Since Problem 1 is a one-dimensional problem in a closed set, the optimum solution

can be obtained straightforwardly by comparing the points with zero derivative and

the boundary points. In the following, we mainly focus on Problem 3.2, which is a

more practical and difficult problem.

3.4.1 Optimal Solution: O2U HM PFS Algorithm

Problem 3.2 is a mixed-integer programming problem which is generally hard to solve.

However as the number of the available modulation schemes is limited in practice, it

is feasible to solve such a problem by the searching algorithm shown in Algorithm 3.

Based on possible bit allocation to different layer and the BER requirement of layer-2,

we can obtain the Euclidean distance requirement of layer-2 signal (lines 2 - 8). Based

on the energy constraint and the BER constraint of layer-1 signal (lines 9 -11), we can

decide whether it is a feasible solution. If it is feasible, then the utility is calculated

and updated (lines 12 - 14). By searching all the possible bit allocation, we can find

one with the maximal utility, which is the desired one.

Using Algorithm 3 to maximize the PF-utility of any given user pair, the schedul-

ing problem can be solved by Algorithm 4, which is a simple exhaustive search over

all user pairs. Note that in Algorithm 4, we do not explicitly calculate the maximal

PF-utility when a single user is chosen to transmit. This is because the single user

PF-utility can be calculated with Algorithm 3 when n = 0 or m = n.

Both Algorithm 3 and Algorithm 4 can be further improved in reducing the com-

putation time. For instance, if a BER look-up table is used to deal with the single

user case in Algorithm 3, the computation time can be slightly reduced, but the order

of computational complexity remains the same. Thus, we only present the original
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Algorithm 3 MaxUtil

Require: (R(1), R(2), Pe1, Pe2, γ
(1), γ(2), T ) {R(1) and R(2) are the average throughput of

user 1 and user 2 respectively. Pe1 and Pe2 are the required BERs of user 1 and user 2
respectively. γ(1) and γ(2) are the channel SNRs of user 1 and user 2 respectively. T is
the window size to average the throughput.}

1: U = 0
2: for n = 0 to K do

3: for m = n to K do

4: if m− n = 0 then

5:
dm,(2)√

N0
= 0

6: else

7: calculate
dm,(2)√

N0
based on P̃

(2)
e < Pe2;

8: end if

9: if (3.17) is feasible to solve then

10: calculate
dm,(1)√

N0
;

11: if
dn,(1)√

N0
− (2m−n − 1)

√

γ(1)

γ(2)

dm,(2)√
N0

> 0 and P̃
(1)
e < Pe1 or n = 0 then

12: if U(n,m) = (1 + 2n
(T−1)R(1) )(1 +

2(m−n)

(T−1)R(2) ) > U then

13: U = U(n,m)
14: set (n,m) as the index of HMsQAM modulation scheme
15: end if

16: end if

17: end if

18: end for

19: end for

20: Return: U , (n,m)

algorithm here.

The computational complexity of Algorithm 3 is O(K2), where K is the number of

available modulation schemes, and it is generally a small number (typically less than

10 in a practical system). The computational complexity of Algorithm 4 is O(N2K2),

where N is the number of active users and can be a large number, so lower complexity

algorithms with comparable performance to Algorithm 4 are desirable for the online

scheduler.

3.4.2 Suboptimal Solution: S2U HM PFS Algorithm

In order to reduce the computational complexity of the proposed optimal algorithm,

we reconsider the PF-utility maximization Problem 3.1. Note that if T is sufficiently

large, the problem is approximated by a maximal weighted sum rate problem as

follows.
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Algorithm 4 Optimal Two-User PFS with SPC

Require: ({Ri : i ∈ S}, {γi : i ∈ S}, Pe1, Pe2, T ) {Ri is the average throughput of user i.
S is the set of user. Pe is the required BER. γi is the channel SNR of user i. T is the
window size to average the throughput.}

1: U = 0, (n,m) = (0, 0), I = (0, 0)
2: sort users according to their channel SNR. Using index (i) to represent the user with

i-th lowest channel SNR.
3: for i = 1 to N do

4: for j = i+ 1 to N do

5: (U ′, (n′,m′)) = MaxUtil(R(i), R(j), Pe, Pe, γ(i), γ(j), T )
6: if U ′ > U then

7: (n,m) = (n′,m′), U = U ′

8: if n = 0 then

9: set I = ((j), (j)) as the user index.
10: else if m = n then

11: set I = ((i), (i)) as the user index.
12: else

13: set I = ((i), (j)) as the user index.
14: end if

15: end if

16: end for

17: end for

18: Return: I, (n,m)

Problem 3.3.

max
log(1 + qi(i,j)γi)

Ri
−

log(1 + qi(i,j)γj)

Rj

s.t. 0 ≤ qi(i,j) ≤ 1

By taking the derivative of the objective function and setting it to zero, we can

obtain the optimal power allocation qi∗(i,j) and the corresponding maximal PF-utility

U∗
(i,j). When two users are selected, i.e., qi∗(i,j) ∈ (0, 1), the maximal PF-utility is

U∗
(i,j) =

log(1 + γj)

Rj
+GSPC

i,j , (3.19)

where

GSPC
i,j =

1

Ri
log(

Rj

γj

γi − γj
Ri − Rj

)− 1

Rj
log(

Ri

γi

γi − γj
Ri − Rj

)

is the SPC gain.
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Algorithm 5 Suboptimal Two-User PFS with SPC

Require: ({Ri : i ∈ S}, {γi : i ∈ S}, Pe1, Pe2, T ) {Ri is the average user rates of user i.
S is the set of user. Pe is the required BER. γi is the channel SNR of user i. T is the
window size to average the throughput.}

1: U = 0, (n,m) = (0, 0), I = (0, 0)
2: sort users according to their channel SNR. Using index (i) to represent the user with

i-th lowest channel SNR.
3: find i∗ = argmaxi log(1 + γi)/Ri

4: find (k) = i∗

5: if k = N then

6: find n based on BER Lookup Table. I = (i∗, i∗).
7: end if

8: for j = k + 1 to N do

9: (U ′, (n′,m′)) = MaxUtil(R(i∗), R(j), Pe, Pe, γ(i∗), γ(j), T )
10: if U ′ > U then

11: (n,m) = (n′,m′), U = U ′

12: if n = 0 then

13: set I = ((j), (j)) as the user index.
14: else if m = n then

15: set I = ((i∗), (i∗)) as the user index.
16: else

17: set I = ((i∗), (j)) as the user index.
18: end if

19: end if

20: end for

21: Return: I, (n,m)

Recall that the single user PFS is to select the user with the largest log(1+ γ)/R,

which is identical to the first term of (3.19). Thus, we can separate the user selection

and resource allocation by using single-user PFS to find the first user, which is the low

SNR user (lines 2 - 4) and by using multi-user PFS to find the second user which is

the high SNR user (lines 8 - 20). Note that such decomposition cannot guarantee the

optimality, since the largest log(1+γ)/Rmay not necessarily lead to the maximal PF-

utility among all possible user pairs, so it is a suboptimal solution. Following a similar

approach, a heuristic suboptimal algorithm can be developed to solve Problem 3.2,

as shown in Algorithm 5. Note that, if the user selected by single-user PFS has the

maximal channel SNR, only one user will be selected and the bit allocation can be

done by a single-user BER look-up table (lines 5 - 7). The computational complexity

of Algorithm 5 is O(NK2) only, which is one order lower than that of Algorithm 4.
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3.4.3 Further Discussion: J-Layer HM problem

We can further consider a more general scheduling problem with J-layer HM, which

becomes much more complicated as discussed below. To find the optimal solution,

we need to search all the possible resource allocation strategies and test whether it is

feasible under the energy and BER constraints. By observing the procedure of BER

approximation, we can conclude that, the expression of the approximated BER of a

higher layer is not related to the lower layers. Thus, for any bit allocation scheme (al-

locating the number of bits to each layer (user)), we can tell whether the bit allocation

is feasible by iteratively solving the BER constraints and test the energy constraint.

The computational complexity for a given group of users is at least Ω(log(K)J) for the

J-Layer HM. To find the optimal utility, we need to search all N !
J !(N−J)!

user groups,

thus the overall computational complexity is at least Ω(log(K)J N !
J !(N−J)!

). Note that,

without the BER approximation, the problem is even much harder since it is not easy

to test whether the bit allocation is feasible due to the coupled BER expressions for

different layers.

We can also generalize the sub-optimal Algorithm 5 for J-layer HM, by selecting

the layer-1 user based on the single-user PFS first, then selecting the higher layer’s

users sequentially based on the previously selected users and the i-user PFS criteria.

On average, the number of candidate users for the first layer user is N , and the number

of candidate users for the second layer user is N/2 (since only the users having higher

SNRs than the first user will be searched), and the number of candidate users for the

J-th layer user is N/2J−1. Thus, on average the number of candidate user groups is
NJ

2(J−1)J/2 . The average computational complexity is then at least Ω(log(K)J NJ

2(J−1)J/2 ),

which is much smaller compared to that of the optimal solution. Obviously, this

heuristic solution is suboptimal and its performance requires further investigation.

3.5 Performance Evaluation

Extensive simulations have been conducted to evaluate the performance of the pro-

posed algorithms. For comparison, the performance of four existing state-of-the-art

scheduling algorithms, including the single-user PFS [85], HTS [26], TBS [25] and

HTS2 [1] is also evaluated by simulations.
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Table 3.1: Parameter Setting.

Parameters C β σφdB
l0 ht

Values -31.45dB 3.71 3.5dB 1m 10m

Parameters hr Pt N0 B r

Values 1m 10dBm -174 dBm/Hz 500 KHz 300m

3.5.1 Simulation Setting

We consider the downlink of a single-cell narrowband cellular network and assume

the wireless channel is a quasi-static Rayleigh fading channel. A classic path loss and

shadowing model is used to model the large-scale propagation effects [19]: Pr

Pt
(dB) =

10 log10C − 10β log10
l
l0
− φdB, where Pr is the received power, Pt is the transmitted

power, C is a unit-less constant which depends on the characteristics of the antenna

and the average channel attenuation, β is the path loss exponent, l is the distance

between the transmitter and the receiver, l0 is the reference distance, and φdB is a

Gaussian distributed random variable with zero mean and variance of σ2
φdB

.

Table 3.1 summarizes the parameters of an urban macro-cell given in [19] and

other parameters used in simulation, including antenna height of the transmitter (ht)

and the receiver (hr), maximal transmission power (Pt), noise spectral density (N0),

channel bandwidth (B) and radius of cell (r). The single-user modulation schemes

considered are 22n-QAM and 2n-PAM, ∀n ∈ {1, 2, 3, 4}, and the multi-user modula-

tion schemes are 22n/22m-HMsQAM, ∀n,m ∈ {1, 2, 3, 4}, m > n. The BER require-

ments are all set to be 10−3. The simulation evaluates 400 random user deployments

and each deployment has 2000 time slots. The throughput for each deployment is

calculated by taking the average of 2000 time slots. The window size T for the PFS

algorithms is 1000 as suggested in [32]. We also vary the number of users, Nu, to

simulate a wide range of scenarios.

3.5.2 System PF-Utility Comparison

In Sec. 3.4, we propose an optimal algorithm and a suboptimal algorithm to solve

Problem 3.2. The optimality of the algorithms can be judged by the system PF-utility.

From the definition, the maximal system PF-utility leads to the best proportional

fairness, which measures the tradeoff between efficiency and fairness. The system PF-

utilities are compared in Fig. 3.4, where the y-axis is the system PF-utility and the
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Figure 3.4: System PF-utility Comparison.

x-axis represents the probability that the PF-utility is below certain value. A higher

curve indicates a higher PF-utility. As shown in Fig. 3.4 (a), the system PF-utility of

the optimal O2U HM PFS is strictly higher than that of the suboptimal S2U HM PFS.

Both of the proposed algorithms outperform the single-user PFS substantially, as

they can use HM to explore the extra capacity, which moves the system operating

point towards a higher PF-utility. On the other hand, the system PF-utilities of the

proposed scheduling algorithms are much higher than that of HTS and TBS, the two

greedy scheduling algorithms for HM transmissions. Thus, without PFS, even though

HTS and TBS can use HM to achieve a higher throughput for some users, the overall

system PF-utility is not improved. The proposed algorithms also outperform HTS2

which is the best multi-user scheduling algorithm in the literature. Although HTS2

can utilize the extra capacity region thanks to HM, it is unable to achieve the best

PF-utility, due to the choice of the second user. The average system PF-utilities w.r.t.

the number of users are compared in Fig. 3.4 (b). It can be seen that, the PF-utilities

of PFS-based algorithms are higher with the increment of Nu. For the two greedy

algorithms, TBS and HTS, Nu has almost no positive impact on the PF-utility. Next,

we compare their performance in terms of fairness and system throughput separately.

3.5.3 Fairness Comparison

Jain’s Fairness Index

Jain’s fairness index has been widely used to measure the fairness, which is represented

as J (x1, x2, . . . , xNu) =
(
∑Nu

i=1 xi)
2

Nu·
∑Nu

i=1 x
2
i

, where xi is user i’s throughput.

In Fig. 3.5 (a), where the y-axis is the Jain’s fairness index in terms of per-
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Figure 3.5: Jain’s Fairness Index Comparison.

user throughput and the x-axis is its Cumulative Distribution Function (CDF). Each

point in the curve illustrates the probability that the fairness index is below certain

threshold. The scheduler corresponding to a higher curve achieves better fairness.

Overall, the proposed HM PFS and PFS schemes have the best fairness performance

among all multi-user scheduling algorithms. For the TBS, HTS, and HTS2 algorithms,

they all tend to favor the users with better channel quality, which results in worse

fairness performance.

The average Jain’s fairness index w.r.t. the number of users is compared in Fig. 3.5

(b). The Jain’s index of all schemes except PFS and O2U HM PFS will decrease with

a larger number of users, which means more unfairness for the users with a low SNR.

The PFS and O2U HM PFS can maintain a good Jain’s fairness independent of the

number of users.

The limitation of Jain’s fairness index is that it does not consider the heterogene-

ity of users, and it is not desirable for the system where the user is not charged solely

based on the throughput. In a practical system, the distribution of per-user through-

put is a more meaningful metric for both fairness and user-perceived QoS. Next, we

consider the CDF function of per-user throughput.

CDF Function of Per-User Throughput

If the performance of the worst-user is improved, there will be more satisfied users

with higher overall user-perceived QoS. Given the performance of the α% worst users

(who have the throughput lower than 1−α% of the total users), we can judge whether

the scheduler is worst-user friendly or not.
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Figure 3.6: Per-user Throughput Distribution, Nu = 10.

In Fig. 3.6, the y-axis represents the per-user throughput, and the x-axis is its

CDF. As shown in the figure, with the TBS algorithm, about 30% users in the sys-

tem can be starving (with zero throughput), as TBS focuses on maximizing the total

throughput only. Compared to TBS, HTS uses a different second-user selection crite-

rion which significantly reduces the percentage of starving users, so its performance is

close to PFS. HTS2, which is a modified algorithm of HTS, can achieve an even better

performance than that of PFS when α is small. However, the per-user throughput of

about 80% of users under HTS2 is below 0.5 bps/Hz, which is worse than PFS.

Overall, in terms of α% worst-user friendliness, the proposed O2U HM PFS and

S2U HM PFS algorithms are the best two algorithms, for majority of cases when

α ≤ 60. It means that the users with worse channel conditions can achieve higher

throughput using the proposed two algorithms than the previous solutions. The

question is whether they achieve the worst-user friendliness at the cost of the system

efficiency, which will be investigated in the following subsection.

3.5.4 System Throughput

Here, system throughput is used to measure the efficiency. The comparison is based

on two network configurations with different number of users Nu, and the results are
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Figure 3.7: System Throughput.

shown in Fig. 3.7. The y-axis represents the system throughput, and the x-axis is

its CDF, and a higher curve corresponding to better throughput performance. In

Fig. 3.7 (a), the two best-user selection based greedy scheduling algorithms, HTS

and TBS, achieve almost identical throughput so the two curves overlap with each

other. Since both of the schemes cannot fully explore the benefit of SPC/HM, the

throughput is not always the best. The HTS2 achieves the highest throughput for

about 60% of the cases. The throughputs of TBS, HTS and HTS2 converge in the

tail part. O2U HM PFS can achieve the highest system throughput for 30% cases.

The average system throughput gap between S2U HM PFS and O2U HM PFS is less

than 5%.

Comparing the results in Figs. 3.7 (a) and (b), with the increment of the number

of users, Nu, using the four multiuser scheduling algorithms can substantially increase

the system throughput (more than 50% on average). The throughput increment of

TBS, HTS and HTS2 are larger than the two proposed PFS algorithms. This is

because a greedy algorithm tends to select the user with the best channel quality,

which leads to a higher throughput. Comparing Figs. 3.7 (a) and 3.6, the higher

system throughput of HTS2 is contributed mainly by 15% of the best users, which

concludes the fairness concern for HTS2.

In summary, by using multi-user scheduling with HM, the system throughput

can be improved substantially. For instance, as shown in Fig. 3.7 (b), on average, the

system throughput with HM is increased by 80% compared with the case without HM

(i.e., single-user PFS). Furthermore, the proposed O2U HM PFS and S2U HM PFS

can achieve a comparable system throughput as the other three multi-user scheduling

algorithms, TBS, HTS and HTS2. Different from TBS, HTS and HTS2, which suffer
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from starvation and unfairness problems, the proposed scheduling algorithms can

maintain good fairness, so users can experience more consistent and satisfactory QoS.

3.5.5 Access Delay

Beside the throughput and fairness, delay is also an important QoS metric. The

link-layer delay includes queueing delay, transmission delay and access delay. The

queueing delay and transmission delay depend on the per-user throughput, i.e., a

higher throughput means a higher service rate, which results in a smaller queueing

plus transmission delay. Since the proposed algorithms are worst-user friendly in

terms of per-user throughput, they should be worst-user friendly in terms of queueing

and transmission delay too. Thus, here we focus on the access delay.

Access delay is defined as the number of time slots that a head-of-queue packet

has to wait till it is transmitted. A large access delay may have adverse impacts

on upper-layer protocol performance, such as leading to a time-out event of a TCP

connection.

The average access delay performance is compared in Fig. 3.8. The y-axis repre-

sents the average access delay of a user, and the x-axis is its CDF. Overall, the access

delay using a multi-user scheduling (except TBS) can be reduced as two users are

scheduled to transmit per-slot. TBS suffers severe unfairness and starvation problem:

around 30% of the users have a very small access delay while the majority of the users

have the access delay even longer than that with single-user PFS.

3.6 Conclusion

In this chapter, we have investigated the opportunistic PFS scheduling in an HM-

aided wireless network. A Shannon capacity-based theoretical utility maximization

problem considering SPC and an HM-based utility maximization problem have been

formulated. The former provides insights on theoretical system performance bounds

and guidelines for solving the latter which is the focus of this work. An optimal

scheduling algorithm O2U HM PFS and a low-complexity suboptimal scheduling al-

gorithm S2U HM PFS have been proposed. We have evaluated the performance of

the proposed algorithms, compared with other state-of-the-art HM based multi-user

scheduling algorithms and the single-user opportunistic PFS algorithm. Simulation

results have shown that both O2U HM PFS and S2U HM PFS can increase the system
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Figure 3.8: Access Delay, Nu = 10.

throughput substantially, while the fairness which is critical to user-perceived QoS

can be well maintained.
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Chapter 4

Stability Region of Opportunistic

Scheduling in Wireless Networks

In previous chapters, we have discussed special utility-based scheduling algorithms

in SPC/HM-aided saturated wireless systems. In this chapter, we study the behav-

ior of utility-based scheduling algorithms in a general unsaturated wireless systems

with stochastic traffic. It is pointed in the literature that the utility-based scheduling

may not be able to stabilize the system under some circumstances even if the arrival

rate lies inside the capacity region. Thus it is important to quantify the stability

region of these utility-based scheduling algorithms proposed based on saturated sys-

tem assumption. By treating an intermediate variable differently, the utility-based

scheduling previously proposed can be classified into two types: the utility-based

(UB) scheduling and the channel-rate-based (CRB) scheduling. The UB scheduling

is a generalized proportional fair scheduling in an unsaturated system, and the CRB

scheduling is a variant of the UB scheduling. We give the closed-form expression of

the stability region of the CRB scheduling, and a numerical method to obtain the

stability region of the UB scheduling. Both of the two scheduling policies are not

throughput-optimal, and thus in general their stability regions are smaller than the

ergodic capacity region. With the CRB scheduling, the stability region is a convex

hull, while with the UB scheduling, the stability region is generally even non-convex

and may exhibit some undesirable properties, such as decreasing the traffic of one

flow may lead another flow being unstable, and proportionally decreasing the traffic

of all flows may lead a stable system to be unstable. We further show that, as long as

the arrival rate lies inside the ergodic capacity region, we can assign a proper weight
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to each user, and based on the weighted UB/CRB scheduling policies, the system can

be stabilized. Detailed numerical examples and simulations are given to illustrate the

stability region of the two policies and validate our analysis.

4.1 Introduction and Related Work

In [96], the utility-based scheduling was proposed as a generalization of the oppor-

tunistic scheduling proposed in [39, 83], whose objective is to maximize a pre-defined

utility based on the long-term achievable throughput. Based on the stochastic ap-

proximation, the convergence of such policy is guaranteed under a mild condition

[77, 43]. The work has been further extended to different network scenarios, such as

cooperative networks [38], or networks with different wireless techniques, such as the

downlink and the uplink of an orthogonal frequency-division multiplexing (OFDM)

system [95, 27, 28].

All these works designed the scheduler based on an assumption that each user

always has sufficient data to transmit. The assumption simplifies the problem, but as

shown in [2], these kinds of schedulers may lead the system to be unstable, while the

system in the same circumstance can be stabilized by other scheduling policies, such

as max-weight scheduling [80]. The key reason here is because, without considering

the stochastic characteristic of incoming traffic, although the arrival rate lies inside

the ergodic capacity region, the tie-breaking rule used in the above utility-based

scheduling policies is not efficient as these policies schedule some users too frequently

and lose the chance to explore the multi-user diversity gain, and thus they are not

throughput-optimal.

Little work has been done in quantifying the stability region of the opportunis-

tic scheduling policies. The stability region of an opportunistic scheduling policy in

a two-user wireless network with i.i.d. Bernoulli arrival traffic was derived in [23].

Different from the general utility-based scheduling, the scheduler discussed in [23] is

a normalized SNR one, where the user is scheduled based on the normalized instan-

taneous SNR. The author observed that the stability region is less than the ergodic

capacity region, while by varying the normalized factor, the union of the resultant

stability region is equal to the ergodic capacity region. Note that, with the identical

normalized factor, the scheduler is able to explore the maximal multi-user diversity,

but is not easy to explore other features, such as fairness. By changing the normalized

factor, the fairness feature can be implicitly explored, while it is unclear how to design
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the normalized factor for a specific fairness objective. Also, the prior knowledge as-

sumption of the channel in [23] may bring difficulty to implement such policy. In [67],

the authors discussed the two-user stability region in a static channel configuration

with concurrent transmissions. The scheduler discussed is a partial distributed sched-

uler, combining the user coordination with an Aloha media access control (MAC),

which may not be a suitable choice for a centralized wireless network due to the low

channel efficiency of the Aloha MAC.

In this chapter, we quantify the stability region of two opportunistic scheduling

policies with a general traffic arrival in a wireless system with N users. The two

scheduling policies include a UB one and a CRB one. The CRB scheduling can

be viewed as a variant of the UB scheduling, by treating an intermediate control

variable differently. For the UB scheduling, the explicit closed-form stability region

generally cannot be obtained, while we develop a theorem to examine the stability

of a system given the arrival rate, and a numerical method is provided to obtain the

stability region in a two-user system. We further study the properties of the stability

region of the UB scheduling, and show that it is generally non-convex and may also

exhibit some undesirable features. For instance, decreasing the arrival rate of one

user may lead the system to be unstable. For the CRB scheduling, we obtain the

closed-form expression of the stability region, which is a convex hull. Besides the

stability region, we further study the extended stability region by giving a weight

to each user. The results show that by varying the weight assigned to each user,

the union of the resultant stability region is equal to the ergodic capacity region, for

both scheduling policies. This suggests as long as the system can be stabilized, by

assigning a proper weight to each user, using a non-throughput-optimal scheduling

may also stabilize the system.

It is further noted that, the results of the CRB scheduling is similar to the work in

[23], while our work is more general. We use a more general traffic model, consider a

general N user system, and discuss a scheduling algorithm that can be easily designed

to achieve certain utility objective.

In the following of this chapter, bold face letters represent vectors, and calligraphic

letters represent sets.
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4.2 System Models

4.2.1 Channel Model

The system has one server who has packets to transmit through a shared wireless

channel to N independent users. The set of users is denoted by N = {1, 2, ..., N}.
The power set of N is denoted by S, and the cardinality of S is |S| = 2N . We use Si

to denote the i-th element in S.

We assume that the shared wireless channel is time slotted block fading channel.

The set of channel state is finite, which is represented as M = {1, 2, ...,M}. Within

each time slot, the channel state is constant. Crossing time slots, certain rule is

used to govern the transition of the channel state. There is a vector of rates um =

(um
1 , u

m
2 , ..., u

m
N) associated with each channel state m ∈ M. The element um

i ∈
N
⋃{0} means the number of packets that can be transmitted if the time slot is all

allocated to user i in state m.

We further assume that the shared wireless channel state process is an irreducible

discrete-time Markov chain with the state space M. The stationary distribution of

this Markov chain is denoted as π = (π1, π2, ..., πM).

The capacity region of the system in state m is denoted as

Cm
N =

⋃

∑
i t

m
i =1

(um
1 t

m
1 , ..., u

m
Nt

m
N ),

where tmi is the time portion allocated to user i in state m.

The ergodic capacity region of the system is obtained as:

C̄N =
⋃

∑
i t

m
i =1

(
∑

m

um
1 t

m
1 π

m, ...,
∑

m

um
N t

m
Nπ

m). (4.1)

Given the user set A, the corresponding capacity region in statem and the ergodic

capacity region can be obtained by assigning tmi = 0 for all i /∈ A, and are denoted

by Cm
A and C̄A respectively. Denote CA(t) as the capacity region of user set A in time

slot t. Since state m and time slot t are associated, so if the state in t is m, we have

Cm
A = CA(t).
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4.2.2 Queueing Model

Data packets are arrived randomly and queued up in an infinite buffer reserved for

each user. The packet arrival process is considered as a stationary ergodic stochastic

process with finite moments. The state of the i-th buffer is the queue length and

denoted by qi(t). All queue states form a vector q(t) ∈ RN
+ , and are updated by

q(t + 1) = [q(t)− r(t) + a(t)]+, (4.2)

where [x]+i = max{0, xi},∀i ∈ N , r(t) ∈ RN
+ is the amount of transmitted data that is

determined by the scheduling decision, and a(t) ∈ RN
+ is the amount of arrived data

in time t, which is a bounded random variable. The average arrival and service rates

are λ = Et[a(t)] and µ = Et[r(t)], respectively.

4.2.3 Scheduling Policy

We assume that at the beginning of each time slot, the server can observe the state

of the channel and allocate the resource based on the observation.

Under the assumption that each user always has enough data to transmit, a utility-

based scheduling policy, which is a generalized proportional fair scheduling [96, 43],

allocates the rate to user in time slot t based on the following problem:

r(t) = argmax
η∈CN (t)

∑

i∈N
f(Ri(t))ηi, (4.3)

with ties being broken randomly, where function f is a derivative of a strictly concave

smooth utility function U , Ri(t) is the smoothed rate measurement of user i in time

slot t, which can be updated by an exponentially weighted moving average algorithm

[43]

R(t) = R(t− 1) + ǫ(r(t)−R(t− 1)),

where ǫ is the step size.

According to [77, 43], by choosing a proper step size ǫ, R(t) weakly converges to

the average allocated rate RN which can be obtained based on the following problem

RN = argmax
η∈C̄N

∑

i∈N
U(ηi).
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Note that the online algorithm (4.3) cannot be directly used in a system without

the assumption of enough backlogs, since it may allocate the resource to users with

no packet to transmit. With some modifications to (4.3), two scheduling policies, the

UB and the CRB scheduling, can be obtained for a system with stochastic arrival

traffic.

The UB Scheduling

In time slot t, a user set A(t) is selected satisfying the condition that the queue length

of each user in A(t) is sufficiently large, for instance qi(t) ≥ qthi , where qthi is the queue

length threshold for user i. This treatment avoids the wireless resource been wasted

that choosing a user without enough data to transmit. The specific value of qthi does

not affect the stability region, as long as it is sufficiently large. With such treatment,

the queue length dynamic in (4.2) becomes

q(t+ 1) = q(t)− r(t) + a(t). (4.4)

Then the rate allocated to the user in A(t) is

rUB
A(t)(t) = argmax

η∈CA(t)(t)

∑

i∈A(t)

f(RUB
i (t))ηi, (4.5)

with ties being broken randomly, and the rate allocated to the user in N|A(t) is 0.

Using rUB(t) to denote the allocated rate in time slot t, then RUB
i is updated based

on

RUB(t) = RUB(t− 1) + ǫ(rUB(t)−RUB(t− 1)),

which is used to track the average throughput of the system.

The CRB Scheduling

For the CRB scheduling, in time slot t, based on the same method as the UB schedul-

ing, we select the candidate user set A(t). The rate allocated to the user in A(t) is

based on

rCRB
A(t) (t) = argmax

η∈CA(t)(t)

∑

i∈A(t)

f(RCRB
i (t))ηi, (4.6)
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with ties being broken randomly, and the rate allocated to user in N|A(t) is 0. We

use rCRB(t) to denote the allocated rate in time slot t.

Different from the UB scheduling, in the CRB scheduling, RCRB(t) is used to track

the average channel-rate, and is updated by

RCRB(t) = RCRB(t− 1) + ǫ(r(t)−RCRB(t− 1)),

where r(t) is the solution to (4.3).

How to update RUB(t) and RCRB(t) is the only difference between the UB and

the CRB scheduling policies. For the CRB scheduling, the update is independent

of the scheduling decision, while for the UB scheduling, the update depends on the

scheduling decision in each time slot.

As shown in [43], under a mild condition, RUB(t) and RCRB(t) are both weakly

converge. In the following, we only consider the case that RUB(t) and RCRB(t) con-

verge.

By abusing the notation a bit, we also use RA to denote the rate vector of N users

and satisfies ∀j /∈ A, Rj = 0, i.e., RT
A = [RT

A RT
N|A], where RN|A = 0.

4.2.4 Stability

We apply the stability definition as it is used in [47].

Definition 4.1. A system of queues is said to be strongly stable if

lim
t→∞

supE[‖q(t)‖] < ∞,

where ‖q(t)‖ is the norm of vector q(t).

Since we only consider the case that RCRB(t) or RUB(t) converges, and after the

convergence of RCRB(t) or RUB(t), the scheduling decision is only related to the

current channel state and the queue state. Therefore, we can simplify the stability

condition.

First, for the CRB scheduling we assume that at time slot 0, RCRB(t) has con-

verged. Due to (4.4), when t is sufficiently large, we have

q(t) = q(0)−
t−1
∑

τ=0

r(τ) +
t−1
∑

τ=0

a(τ)

= q(0)− µt + λt ≥ 0,
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which suggests for all i, λi ≥ µi.

Since the dimension of q(t) is finite, here we only consider L1 norm of q(t), and

we have

‖q(t)‖ = t
∑

i

(λi − µi) +
∑

i

qi(0).

Therefore

lim
t→∞

supE[‖q(t)‖] < ∞,

requires

lim
t→∞

supE[t
∑

i

(λi − µi) +
∑

i

qi(0)]

= lim
t→∞

t
∑

i

(λi − µi) +
∑

i

E[qi(0)] ≤ ∞,

which suggests
∑

i(λi − µi) ≤ 0.

In summary, the stability of the system requires λ = µ, i.e., the average arrival

rate is identical to the average throughput. For the UB scheduling, based on the same

argument, we can have the same result.

We further define the stability region of the system as follows:

Definition 4.2. The stability region of a system with scheduling policy p is defined

as Λp, and we have ∀λ ∈ Λp, the system is strongly stable; ∀λ 6∈ Λp, the system is

not strongly stable;

Without confusing, we also use the stability region of scheduling policy p to refer

to the stability region of a system with scheduling policy p.

4.3 Stability Region of the CRB scheduling

We first tackle a simple case, the static channel case (M = 1), to obtain the stability

region. Thereafter, the general stochastic channel case is discussed. We show that by

replacing the capacity region with the ergodic capacity region, all the discussions for

the static channel case also hold for the stochastic channel case.
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4.3.1 Static Channel Case

Since the channel only has one state, we have ∀A ∈ S, C̄A = C1
A and CA(t) = C1

A.

Theorem 4.1. The stability region of the CRB scheduling policy is ΛCRB, and

ΛCRB =
⋃

∑
i ti=1

|S|
∑

i=1

RCRB

Si
ti, (4.7)

where ti ∈ R+

⋃{0},

RCRB

Si
= argmax

r∈C̄Si

∑

j∈Si

f(RCRB

j )rj , (4.8)

and RCRB = RCRB

N .

Proof. Since the scheduler is the CRB one, the update of RCRB(t) is independent

of the scheduling decision in each time slot, and RCRB(t) converges to RCRB
N , i.e.,

RCRB = RCRB
N .

Comparing (4.6) with (4.8), we can conclude that

Et[r
CRB
A(t) (t)] = Ei[R

CRB
Si

]

if RCRB(t) converges. This is because RCRB
Si

is the average throughput of user set Si

over time, and by taking the expectation over i, Ei[R
CRB
Si

] is the average throughput

of the system. Since rCRB
A(t) (t) is the throughput of the system in time slot t, by taking

expectation over time, Et[r
CRB
A(t) (t)] is also the average throughput of the system.

If the system is stable, the average arrival rate should be equal to the average

throughput, i.e.,

λ = Et[r
CRB
A(t) (t)] = Ei[R

CRB
Si

],

and consequently, the necessary condition for the system to be stable is that we can

find a t (
∑

i ti = 1) such that

λ =

|S|
∑

i=1

RCRB
Si

ti = Ei[R
CRB
Si

],

which is equivalent to λ ∈ ΛCRB.
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The sufficient condition can be proved by contradiction. Suppose λ ∈ ΛCRB,

but the system is not stable, and therefore at least one queue is unstable. Suppose

that the queues in set Q are unstable, and the queues in set N|Q are stable. Since

queue i ∈ Q is unstable, we have E[qi(t)] → ∞ which suggests that user i is always

scheduled. Suppose that user set D is the scheduled user set, then we have Q ⊆ D.

We further construct a set D which is made up of all D. Therefore the average

throughput of the system is

R̄ =
∑

D∈D
πDR

CRB
D ,

and
∑

D∈D πD = 1. Because D is nonempty, we have

R̄ ∈ ΛCRB,

and for any ǫ, with
∑

i ǫi > 0, ǫi ∈ R+

⋃{0},

R̄+ ǫ 6∈ ΛCRB.

Due to the assumption of the stability of the system, we have

{

R̄i < λi, ∀i ∈ Q,

R̄i = λi, ∀i ∈ N |Q.

Consequently, there exists an ǫ that R̄ + ǫ = λ ∈ ΛCRB, which is contradicted with

(4.9). Thus the assumption cannot hold, and we have proved ∀λ ∈ ΛCRB, the system

is stable.

In summary, the stability region of the system is ΛCRB.

Here, due to the special property of the capacity region, the stability region equals

the capacity region. Note that the capacity region is a Euclidean simplex with N +1

vertices and each vertex represents a rate vector. Suppose the N + 1 vertices make

up a set V. Since RSi
is on the boundary of the capacity region CSi

, it lies in the

hyperplane determined by the points in V. The stability region is the convex hull of

RSi
, which equals the convex hull of V, i.e., the capacity region.
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4.3.2 Stochastic Channel Case

For the stochastic channel case, we have a similar result to the static channel case.

Theorem 4.2. Theorem 4.1 holds for the stochastic channel case.

Proof. Similar to the static channel case, RCRB(t) converges to

RCRB = argmax
r∈C̄N

∑

j∈N
U(rj),

and we have

rCRB
Si

(t) = argmax
r∈CSi

(t)

∑

j

f(RCRB
j )rj .

Taking expectation over time, we have

RCRB
Si

= argmax
r∈C̄Si

∑

j

f(RCRB
j )rj.

Also as

RCRB = RCRB
N ,

and based on the same approach as in the static channel case, we can prove that

Theorem 4.1 holds for the stochastic channel case.

Worth to note that, different from the static channel case where the stability region

is identical to the capacity region, the stability region in the stochastic channel case

is generally less than the capacity region due to the fact that the ergodic capacity

region is a convex polytope, but not necessarily a Euclidean simplex.

4.4 Stability Region of the UB scheduling

Similar to the discussion of the CRB scheduling, we first discuss the simple case,

the static channel case, and then study the complicated stochastic channel case.

Furthermore, we show that, the results obtained in the static channel case can be

directly used in the stochastic channel case, by replacing the capacity region with the

ergodic one. Different from the CRB scheduling, whose stability region can be easily
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obtained in closed-form, the stability region of the UB scheduling generally cannot

be obtained in closed-form, and therefore we develop a numerical method to tackle

the two-user case.

4.4.1 Static Channel Case

According to [43], RUB(t) converges to the average throughput. Once RUB(t) con-

verges, we have

RUB
Si

= argmax
r∈C̄Si

∑

j

f(RUB
j )rj,

and

RUB = Ei[R
UB
Si

].

Note that generally

RUB 6= argmax
r∈C̄N

∑

i∈N
U(ri),

and RUB may not lie on the boundary of the capacity region.

We have the following theorem to verify whether a system with a specific arrival

rate vector is stable or not.

Theorem 4.3. A system using the UB scheduling policy with average arrival rate λ

is stable if and only if λ ∈ Λ̃UB(λ), where

Λ̃UB(λ) =
⋃

∑
i ti=1

|S|
∑

i=1

RUB

Si
ti,

and

RUB

Si
= argmax

r∈C̄Si

∑

j

f(λj)rj .

Proof. Suppose that the system is stable, and then we have λ = RUB. Thus, the
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average rate allocated to user set Si is

RUB
Si

= argmax
r∈C̄Si

∑

i

f(RUB
i )ri = argmax

r∈C̄Si

∑

i

f(λi)ri,

if Si is scheduled. Since RUB = Ei[R
UB
Si

], we have λ = Ei[R
UB
Si

] ∈ Λ̃UB(λ).

Based on the same argument as that in Sec. 4.3, we can prove that ∀λ ∈ ΛUB, the

system is stable. Thus, the theorem is proved.

Based on the above theorem, we have the following corollary.

Corollary 4.4. If λ = argmax
r∈C̄N U(ri), then the system is stable.

Proof. Since

λ = argmax
r∈C̄N

U(ri), (4.9)

we have

λ = RUB
N = argmax

r∈C̄N

∑

i∈N
f(λi)ri,

which means λ ∈ Λ̃UB(λ), and thus the system is stable.

The corollary states that at least one point on the outer-bound1 of the capacity

region can be stabilized by the UB scheduling.

Based on Theorem 4.3, we have the following theorem to quantify the stability

region of the UB scheduling.

Theorem 4.5. The stability region of the UB scheduling policy is ΛUB, and for any

λ ∈ ΛUB, Theorem 4.3 holds; for any λ 6∈ ΛUB, Theorem 4.3 does not hold.

Proof. The theorem can be directly obtained based on the definition of the stability

region and Theorem 4.3.

Similar to the CRB scheduling in the static channel case, the stability region of

the UB scheduling also equals to the capacity region in the static channel case.

1A point lies on the outer-bound of a set should satisfy two conditions: first is that the point lies
on the boundary of a set; second is that the point is no longer belongs to the set if any increment in
any dimension is made to the point.
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4.4.2 Stochastic Channel Case

Theorem 4.6. Theorem 4.3 and Theorem 4.5 hold for the stochastic channel case.

Proof. Similar to the static channel case, RUB(t) converges to the average throughput

of the system. Then we have

rUB
Si

(t) = argmax
r∈CSi

(t)

∑

i

f(RUB
i )ri.

Taking expectation over time, we have

RUB
Si

= argmax
r∈C̄Si

∑

i

f(RUB
i )ri,

and RUB = Ei[RSi
]. Then we can follow the same approach as in the static chan-

nel case. By replacing the static capacity region with the ergodic capacity region,

the discussions in the static channel case also hold for the stochastic channel case.

Therefore we can prove that Theorem 4.3 holds for the stochastic channel case. Then

based on the definition of the stability region, we can show that Theorem 4.5 holds

for the stochastic channel case.

While different from the static channel case, where the stability region can be

obtained in closed-form, the stability region in the stochastic channel case is hard to

be derived in closed-form. But we discover two properties as follows.

Proposition 4.7. The stability region of the UB scheduling policy can be non-convex.

Proposition 4.8. With the UB scheduler, even though the system is stable when the

arrival rate is λ, the system can be unstable when the arrival rate is reduced to xλ,

where 0 < x < 1.

For these two properties, we only need to show that they hold for some scheduling

policies with specific function f . This will be done in the Sec. 4.6.

Remark. These two properties make the UB scheduling very undesirable if the func-

tion f is selected improperly. The non-convexity means if one user decreases its arrival

rate, the system may be unstable which is harmful for the quality of service. The

second property means that reducing the traffic intensity may bring a stable system

to an unstable system which will also damage the QoS for all on-going traffic.
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Although the closed-form expression of the stability region is difficult to obtain, a

numerical method can be used to obtain the stability region. Here, we give the method

to obtain the stability region of two-user systems, and it can be easily extended to a

more general case.

Numerical method to obtain the stability region of two-user systems

Since the ergodic capacity region is a compact, convex, coordinate convex polyhedron,

it can be represented as

C = {(r1, r2) : akr1 + r2 ≤ bk, k = 1, 2, ..., K},

where ak is in the increasing order w.r.t. k, and if ak = ∞, then the corresponding

equation is r1 = bk.

Let rk = (rk1 , r
k
2) be the solution of

{

akr1 + r2 = bk,

ak+1r1 + r2 = bk+1,

where 0 < k < K, r0 be the solution of

{

a1r1 + r2 = b1,

r1 = 0,

and rK be the solution of
{

aKr1 + r2 = bK ,

r2 = 0.

Geometrically, rk is the vertex on the outer bound of the capacity region.

If f(λ1)/f(λ2) ∈ (ak, ak+1), i.e.,

λ ∈ Zk = {(λ1, λ2) : f(λ1)/f(λ2) ∈ (ak, ak+1)},

the stability region is the convex hull of {0, r0, rk, rK}, which is represented as

Λk = {(r1, r2) = β1r
0 + β2r

k + β3r
K :

∀i, βi > 0,
∑

i βi ≤ 1}.
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If f(λ1)/f(λ2) = ak, then the stability region is

Λk = {(r1, r2) : akr1 + r2 ≤ bk, f(r1)/f(r2) = ak}.

Overall, the stability region can be represented as

ΛUB =
⋃

k

(Λk

⋂

Zk)
⋃

Λk.

Remark. The key idea of the numerical method is to partition the capacity region

into zones (Zk) and partition curves (Λk). Each partition curve is the curve along the

boundary of two neighboring zones. Since the capacity region is a convex polyhedron,

the number of zones is finite2. For each zone, the allocated rate is identical, and thus

the stability region for the arrival rate in each zone can be obtained. Examples are

given in Sec. 4.6 to show how to use the proposed method to obtain the stability

region.

4.5 Extended Stability Region

4.5.1 Extended Stability Region of the CRB Scheduling

If we give a weight to each user, then a more general CRB scheduling policy is to

allocate the rate based on the following optimization problem if user set A(t) is

selected:

rw,CRB
A(t) (t) = argmax

η∈CA(t)(t)

∑

i∈A(t)

wif(R
CRB
i (t))ηi,

where wi ∈ R+

⋃{0} is the normalized weight, satisfying
∑

iwi = 1.

Since with the CRB scheduler, RCRB(t) converges to

Rw,CRB = argmax
r∈C̄N

∑

i∈N
wiU(ri). (4.10)

2Note that if the outer bound of the capacity region is strict convex, then the number of zones is
infinite, and this method cannot work.
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Similar to (4.8), we have

Rw,CRB
Si

= argmax
r∈C̄Si

∑

j∈Si

wjf(R
w,CRB
j )rj ,

and Rw,CRB = Rw,CRB
N .

Similar to (4.7), for any given weight w, the corresponding stability region is

obtained as

Λw,CRB =
⋃

∑
i ti=1

|S|
∑

i=1

Rw,CRB
Si

ti,

where ti ∈ R+

⋃{0}, and we have the following theorem.

Theorem 4.9.

C̄N =
⋃

∑
i wi=1

Λw,CRB,

where Λw,CRB is the stability region of the CRB scheduling with weight w assigning

to users.

Proof. In order to prove that the union of the weighted stability region is the ergodic

capacity region, essentially we need to show that, all the boundary points of the

capacity region are the solutions to (4.10) by varying the weight w.

By mapping C̄N to C̄U
N through U(x), i.e.,

C̄U
N = {(U(x1), U(x2), ..., U(xN ))|x ∈ C̄N },

(4.10) can be represented as

yw,CRB = argmax
y∈C̄U

N

∑

i∈N
wiyi. (4.11)

If C̄U
N is a closed convex set, then according to the supporting hyperplane theorem

[7], for any point y lies on the boundary of C̄U
N , we can find the corresponding w

such that y = yw,CRB. Thus all the boundary points of C̄U
N are the solutions to (4.11)

by varying w. Since U(x) is a monotonic non-decreasing function, the images of the

boundary points of C̄U
N in C̄N are still the boundary points. Then, the theorem can
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be proved if C̄U
N is a closed convex set.

For any xm,xn ∈ C̄N whose image in C̄U
N is m,n, respectively, we have

αm+ (1− α)n

=α(U(xm

1 ), ..., U(xm

N )) + (1− α)(U(xn

1 ), ..., U(xn

N ))

=(y1, ..., yN),

where

yi = αU(xm

i ) + (1− α)U(xn

i ).

Without loss of generality, we assume xm

i ≥ xn

i . Because U(x) is monotonically

non-decreasing, yi ∈ [U(xn

i ) U(xm

i )]. i.e., xi = U−1(yi) ∈ [xn

i xm

i ]. Consequently,

x ∈ C̄N due to the convexity of C̄N , and therefore y ∈ C̄U
N and the convexity of C̄U

N is

proved. Since C̄N is closed, C̄U
N is also closed. Therefore C̄U

N is indeed a closed convex

set.

4.5.2 Extended Stability Region of the UB Scheduling

Similar to the CRB scheduling, for the UB scheduling, a slight modification to the

scheduling policy by giving a weight to each user, the resultant stability region is

denoted by Λw,UB, and we have the following theorem.

Theorem 4.10.

C̄N =
⋃

∑
i wi=1

Λw,UB,

where Λw,UB is the stability region of the UB scheduling with weight w assigning to

users.

Proof. First, based on the supporting hyperplane theorem, for any given λ and any

boundary point of C̄Si
, we can find a w such that the boundary point Rw,UB

Si
is the

solution to the following problem,

Rw,UB
Si

= argmax
r∈C̄Si

∑

j∈Si

wjf(λj)rj ,
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where
∑

j wj = 1. Also note that the boundary points of C̄Si
also lie on the boundary

of C̄N ; therefore, we have

C̄N =
⋃

∑
i wi=1

Co{Rw,UB
Si

: i ∈ N},

=
⋃

∑
i wi=1

Λ̃w,UB(λ)

where Co means convex hull, and

Λ̃w,UB(λ) =
⋃

∑
i ti=1

|S|
∑

i=1

RUB
Si

ti.

According to Theorem 4.5, we know that

λ ∈ Λw,UB ⇔ λ ∈ Λ̃w,UB(λ).

So we have

λ ∈
⋃

∑
i wi=1

Λw,UB ⇔ λ ∈
⋃

∑
i wi=1

Λ̃w,UB(λ) = C̄N ,

which suggests

⋃

∑
i wi=1

Λw,UB = C̄N .

4.5.3 Discussion

Although the stability regions of the CRB and the UB scheduling policies are less

than the capacity region, respectively, by assigning the weights to users, the resultant

scheduling algorithms can stabilize the system. Further note that, by giving the

weights to users, the equivalent utility function has changed from a homogeneous one

(U(.)) to a heterogeneous one (wiU(.)). Therefore, for any given w, the discussion in

Sec. 4.3 and Sec. 4.4 can still be used to analyze the stability of the system.

The advantage of the weighted opportunistic scheduling is that when the arrival
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rate lies outside the capacity region, the operation point (the throughput) is deter-

mined by the utility function U (in both UB and CRB scheduling policies), which is

typically designed based on the fairness concern. Therefore the weighted opportunis-

tic scheduling can provide a better fairness.

Although the approach is promising, it may not be easy. The weight-design is to

find the supporting hyperplane (weight) of a closed convex set (capacity region) in a

specific boundary point (the intersection of the arrival rate vector and the capacity

region). Since the solution highly depends on the shape of the closed convex set,

we lack a general analytic method. Further work should be done to obtain a simple

method to design the weight.

4.6 Examples and Sample Validation

In this section, we give examples about the stability region of the UB scheduling and

the CRB scheduling policies. Simulation is conducted to compare the two policies,

and validate the analytic results.

4.6.1 Channel Assumption

Considering a two-user four-state channel, the transmission rate vector is

um =



























[RON
1 , 0]T , m = 1,

[0, RON
2 ]T , m = 2,

[RON
1 , RON

2 ]T , m = 3,

[0, 0]T , m = 4,

and the stationary distribution is π = (1/4, 1/4, 1/4, 1/4). Note that this is a channel

model for a two-user system, where each user has two states (ON and OFF), and the

channel states for different users are independent. The achievable throughput of user

i is RON
i when its channel state is ON, and 0 if its channel state is OFF. Without loss

of generality, we assume RON
1 ≥ RON

2 .

Based on (4.1), we can obtain the ergodic capacity region as:

C̄ = {(R1, R2) : R1/R
ON
1 +R2/R

ON
2 ≤ 3/4,

R1/R
ON
1 ≤ 1/2, R2/R

ON
2 ≤ 1/2}.



69

4.6.2 Utility Function

α-Fairness Utility

The utility function chosen to be evaluated is the α-fairness ones [58]:

U(x) =

{

log(x), α = 1,

(1− α)−1x1−α, otherwise,

where x is the average throughput, whose unit is bps/Hz and is omitted in the fol-

lowing. The derivative of U(x) is

f(x) = x−α.

By choosing different α, the objective is to maximize the fairness measurement

based on different principles, and the relative value of the measurement is of more

interests. For instance, if α = 0, then the objective is to maximize the system

throughput; if α = 1, then it is to maximize the proportional fairness; if α → ∞,

then it is to maximize the max-min fairness.

Exponential Utility

Another utility function chosen to be evaluated is exponential utility [13]:

U(x) = −1

a
e−ax,

and

f(x) = e−ax.

For the exponential utility, the marginal utility is exponentially decreasing, and the

changing rate of the marginal utility is a constant and independent of x.

4.6.3 Stability Region of the UB Scheduling

α-Fairness Utility

Based on the numerical method proposed in Sec. 4.4, we can obtain the stability

region, as shown in Fig. 4.1, Fig. 4.2 and Fig. 4.3.
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The point P in the figure is the intersection of the boundary of the capacity region

and curve f(λ1)
f(λ2)

= β where β = RON
2 /RON

1 . With the increasing of α, P moves along

the boundary of the capacity region, and results in the shape changing of the stability

region. From the figure we also can observe that the stability region is non-convex all

the time. When the value of α is proper, the stability region is the union of a convex

set and a line segment. When α is large or small, P moves to the line R1 = RON
1 /2

or R2 = RON
2 /2, then the stability region is a trapezoid minus a triangular. The non-

convex property of the stability region makes the system behavior hard to predict

and the QoS hard to meet, since decreasing the arrival rate of one flow may lead the

system changing from stable to unstable.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

λ
1

λ 2

 

 

Capacity Region

Stability Region (α=1)

P

Figure 4.1: Stability Region of a system with four-state channel and α-fairness UB
scheduling, RON

1 = 6, RON
2 = 2, α = 1

Exponential Utility

We already know that, with the UB scheduler, for a stable system with arrival rate λ,

decreasing any element in λmay lead the system to be unstable. Here we give another

example to show that, proportionally decreasing all the elements in λ (down-scale λ)
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Figure 4.2: Stability Region of a system with four-state channel and α-fairness UB
scheduling, RON

1 = 6, RON
2 = 2, α = 0.5

may also lead the system to be unstable.

Based on the same approach as in α-fairness utility, the stability region can be

obtained. Since we change the function f , so the curve f(λ1)
f(λ2)

= β, which determines

P , is λ2 − λ1 = 1/a log β. If the arrival rate λ is downscaled by x, the new arrival

rate is no longer lies in the partition curve f(λ1)
f(λ2)

= β. Therefore the stability cannot

be guaranteed, and the stability property should be examined by finding which zone

the new λ lies in. As illustrated in Fig. 4.4 and Fig. 4.6, when a = 1 or 3, if the

system is stable at point P, then ‘down-scale’ λ by x, the system becomes unstable,

i.e., suffering the ‘down-scale’ unstable; but as illustrated in Fig. 4.5, when a = 0.4,

the ‘down-scale’ unstable situation does not happen.
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Figure 4.3: Stability Region of a system with four-state channel and α-fairness UB
scheduling, RON

1 = 6, RON
2 = 2, α = 4

4.6.4 Stability Region of the CRB Scheduling

α-Fairness Utility

We enumerate S as S = {(1), (2), (1, 2), ∅}. For each A ∈ S, we have R(1) =

[RON
1 /2, 0]T , R(2) = [0, RON

2 /2]T , R∅ = [0, 0]T , and

R(1,2) =















[RON
1 /2, RON

2 /4]T , α < αl,

[
3RON

1 /4

1+β1/α−1 ,
3RON

2 /4

1+β1−1/α ]
T , αl ≤ α ≤ αh,

[RON
1 /4, RON

2 /2]T , α > αh,

where αl = log β/ log β
2
, αh = log β/ log 2β.

The capacity region and the stability region are illustrated in Fig. 4.7. By varying

α, R(1,2) is moving on the outer bound of the capacity region, and the stability region

is always a convex hull.

Comparing Fig. 4.1, Fig. 4.2, Fig. 4.2 with Fig. 4.7, under the four-state channel

assumption in a two-user system, the CRB scheduling policy can always provide a

larger stability region than the UB scheduling policy if using the same utility function.
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Figure 4.4: Stability Region of a system with four-state channel and exponential UB
scheduling, RON

1 = 6, RON
2 = 2, a = 1.

4.6.5 Scheduling Policy Comparison

We have conducted simulation to compare the UB and the CRB scheduling policies.

We choose α-fairness as the utility function, and α = 0.5. We use Poisson traffic as

the arrival traffic, ǫ is chosen as 0.01, and we run simulation 10 times to take the

average. We set λ1 = RON
1 /2 for all 20000 time slots, set λ2 = RON

2 /4 for the first

10000 time slots and λ2 = RON
2 /10 for the second 10000 time slots. This is used to

simulate the arrival-rate decreasing of one flow.

The throughput comparison is shown in Fig. 4.8. From the figure, after 10000

time slots, the throughput of Q1 with the UB scheduler (the curve UB Q1) starts

to decrease and is less than the throughput of Q1 with the CRB scheduler. For

the throughput of Q2, both schedulers can maintain the same throughput, which

equals the arrival rate of the second flow. Here we can conclude, by decreasing the

arrival rate of one flow, the throughput of another flow can be decreased, if the

UB scheduler is used. This phenomenon can be explained by examining the system

stability based on Theorem 4.6 with the new arrival rate. An intuitive explanation is

as follows: as the utility function U(x) is strictly concave, the derivative function f(x)
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Figure 4.5: Stability Region of a system with four-state channel and exponential UB
scheduling, RON

1 = 6, RON
2 = 2, a = 0.4

is a decreasing function. Since RUB
i (t) is used to estimate the average throughput of

user i and if the arrival rate of user i decreases, the estimated average throughput

should also decrease, i.e., RUB
i (t) decreases. Therefore, f(RUB

i (t)) will increase. From

(4.5) we can see, this generally results in the increase of rUB
i (t), i.e., the increase of

the instantaneous rate of user i. The probability that the system stays in a state

without user i will increase, as a joint results of the decreasing of the arrival rate

and the increasing of the instantaneous rate. As the number of users has decreased,

the system will lose certain multi-user diversity, i.e., the achievable rate region will

shrink. This may lead to a situation that the average throughput of a user except i

is less than its arrival rate, and therefore leads to an unstable flow.

If we give weights to users3, we can see the weighted UB scheduler can maintain

the throughputs for both users. But further note that, although the specific weighted

UB scheduling can stabilize the system with the arrival-rate decreasing of one flow

in the given scenario, there will exist some scenarios that the system still cannot be

3Here we assign weight 0.75 to user 1 and 0.25 to user 2, and the corresponding curves are UBw

Q1 and UBw Q2. The weight is specifically designed in order to stabilize the system, and such design
is also non-unique.
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Figure 4.6: Stability Region of a system with four-state channel and exponential UB
scheduling, RON

1 = 6, RON
2 = 2, a = 3.

stabilized if one flow decreases its arrival rate, as the stability region of the weighted

UB scheduling is still less than the capacity region.

The queue length is compared in Fig. 4.9. The y-axis is in the logarithm form.

After 10000 time slots, while the arrival rate of Q2 is reduced, with the UB scheduler,

the queue length of Q1 starts to increase. From the increasing trend we could tell

that, the system cannot be stabilized. But with a proper weight assigning to each

user, the system can be stabilized by the weighted UB scheduling policy. These results

validate our analytical conclusion.

4.7 Discussion and Conclusion

In this chapter, the stability regions of two opportunistic scheduling policies have

been discussed. One is the UB scheduling policy and the other is a variant of the UB

scheduling policy, called the CRB scheduling policy. We have proposed a numerical

method to obtain the stability region of the UB scheduling policy, and the results

show that the stability region of the UB scheduling policy is generally non-convex
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Figure 4.7: Stability Region of a system with four-state channel and α-fairness CRB
scheduling, RON

1 = 6, RON
2 = 2, αl = 0.61, αh = 2.71.

and may exhibit some undesirable properties, such as decreasing the arrival rate

of one flow may lead the system to be unstable, and proportionally decreasing the

arrival rates of flows may lead the system to be unstable. Such properties suggest

that in a system using the UB scheduling policy, reducing the traffic intensity may

have a negative impact on the QoS for all on-going traffic, which is contradict to the

intuition. Different from the UB scheduling policy, the stability region of the CRB

scheduling policy is derived in closed-form, and is a convex hull. In addition to the

stability region, we have further discussed the extended stability region. The results

show that by assigning a proper weight to each user, the weighted scheduling policy

can stabilize the system if the arrival process is stationary and the average arrival

rate lies inside the capacity region. Simulation and numerical examples have been

given to explain the analytical results and validate our analysis.

Although the CRB scheduling policy is better than the UB scheduling policy in

terms of the stability region, it needs explicit knowledge of the number of users in

the system, which may bring some difficulties to implement, since how frequently to

update this information may be hard to design.
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Chapter 5

Limiting Properties of Overloaded

Multiuser Wireless Systems with

Throughput-Optimal Scheduling

In the previous chapters, the scheduling algorithms we discussed are in the class of

algorithms that originally designed based on the assumption that the system is satu-

rated. However, in practice, the system is not always saturated. If taking the traffic

arrived in the system into account, we have shown that the stability regions of these

utility-based scheduling algorithms are generally less than the capacity region. There

is one type of algorithms whose stability region is equal to the capacity region. This

type of algorithms is usually called throughput-optimal scheduling. In this chapter,

we discuss the limiting properties of the throughput-optimal scheduling algorithms

in a overloaded scenario which is generally missed in the literature.

5.1 Introduction

Throughput-optimal scheduling [68] is a class of important scheduling polices in mul-

tiuser wireless systems. It not only can explore the link quality variation as those

utility-based scheduling policies discussed in [96, 77], but also can provide the max-

imal stability region in a network with stochastic traffic, which is superior to the

utility-based scheduling whose stability region is smaller than the capacity region in

general [91].

The first throughput-optimal scheduling algorithm was proposed two decades ago
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[80]. The authors studied the link scheduling problem in a centralized wireless system

with ON-OFF channel and proposed a MaxWeight scheduling algorithm to stabilize

the system. Later, different kinds of throughput-optimal scheduling algorithms were

proposed to provide diverse features under various system assumptions. The probabil-

ity of max-queue overflow is asymptotically minimized by the scheduling algorithms

proposed in [73, 78], [84]. The queueing delay is minimized by the algorithms proposed

in [68, 69], [102, 59]. Scheduling algorithms that can provide better delay performance

compared with MaxWeight were proposed in [71, 106]. The system in the presence of

heavy-tailed traffic can be stabilized by the algorithms proposed in [30, 55]. General

guidelines about the necessary and sufficient conditions of the throughput-optimal

scheduling were discussed in [3, 12], [105, 57].

The performance of such throughput-optimal scheduling has been extensively in-

vestigated under the assumption that the system is stable, or underloaded. However,

it is inevitable that a system may experience overloaded periods in practice due to

the fluctuation of the traffic volume [6]. Therefore, it is important to characterize

the system behavior in overloaded periods which has not received sufficient attention

yet. The state-of-the-art research in this area has concluded only for some special

throughput-optimal scheduling policies, such as MaxWeight scheduling in [9] and

general-MaxWeight scheduling in [72]. The general system behavior of an overloaded

system is still missing.

To fit the gap, in this work, we have studied the limiting properties of overloaded

multiuser wireless systems with infinite buffer and a throughput-optimal scheduling

policy similar to [12]. We have quantified the network performance of two throughput-

optimal scheduling algorithms, the generalized MaxWeight (GMW) [12, 57] and the

Log-Rule scheduling [68]. With the same throughput-optimal scheduling policy, we

have further analyzed the performance of a finite-buffer system with Drop-Tail queue

[14] and various buffer-sharing schemes, which is of practical interests and often missed

in the literature.

We have made the following key observations: first, with infinite buffer, when

the system is overloaded, all the queues in the system are unstable and the network

converges to a fixed point formed by the average throughput and the scheduling

function of queue length. Furthermore, the average throughput can be easily obtained

by solving a convex optimization problem. Second, with the GMW algorithm, strict

priority can be given to users by a proper parameter, so the QoS of users can be tuned

easily. If all the users have the same priority, the system fairness in terms of Jain’s
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index [31] cannot be guaranteed, but the scheduler can achieve certain fairness for the

blocked/queued traffic which echoes the results in [9]. With the Log-Rule scheduling,

the average throughput is identical to that with an asymptotic GMW scheduling.

Third, if the system is subject to a shared buffer constraint, i.e., the buffer is shared

among queues, then the average throughput converges to a value which is not related

to the type of the throughput-optimal scheduling algorithm. If each queue has its

dedicated buffer, some users might suffer starvation, and some might achieve rate

stability (average throughput equals its average arrival rate), depending on their

buffer sizes.

5.2 Related Work

There are two categories of work discussing the system behavior in an overloaded

network. One is to design a scheduling policy towards some specific objectives, such

as providing a desired throughput in [81], aiming to stabilize part of the queueing

system in [24], and dynamic routing to balance the overloaded traffic in [16]; the

other is to discuss the system behavior under certain scheduling policies. In [11], the

system behavior of an overloaded network with α-fair scheduling was analyzed, and

the asymptotic growth rate was obtained, which is a fixed-point of the system. In

[72], the network behaviors of general-MaxWeight and α-fair scheduling policies in

a multi-hop switched network were discussed. It showed that the queue size grows

linearly with time for both scheduling policies, and the corresponding growth rates

were characterized. In [9], the authors characterized the queue-size growth rate of

the MaxWeight scheduling in parallel queues, and showed that the weight parameter

can be tuned to achieve a certain fairness which is defined as a function of the growth

rate.

Our work is different from the existing work in several aspects. First, different from

[11] and [72], where a multi-hop network with fixed link service rate was discussed,

we discuss a multiuser wireless system with time-varying service rate, which is similar

to the network setting in [9]. Second, the throughput-optimal scheduling discussed

in our work is more general than that in [72] and [9], where (general)-MaxWeight

scheduling policy only was discussed. Third, we focus on the average throughput

of the overloaded system, while the previous work focused on the queue size of the

overloaded system. Fourth, we not only obtain the results for the infinite buffer case

which is a similar assumption to the previous work, but also consider the finite buffer
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case, which is missed in the literature.

5.3 System Models and Preliminaries

5.3.1 N-User Fading Broadcast Channel

We consider a system where N users communicate with a base station through a

block fading broadcast channel. Within each time slot, the channel for each user is

an additive white Gaussian noise (AWGN) one with a constant channel gain. Across

time slots, the channel gain for each user is independent and identically distributed.

The user set is denoted by N . For users in N , the fading processes are independent

of each other, jointly stationary and ergodic, but the statistical properties are not

necessarily the same. We further assume that the base station can obtain the channel

state information (CSI) at the beginning of each time slot.

In time slot t, the achievable rate region is denoted by C(t), which is determined

by the MAC layer and the physical layer protocols jointly. We further assume that

time-sharing is always possible among users within each time slot (multiple users can

be scheduled in one slot). Therefore no matter what kind of MAC and PHY layer

technology is used, C(t) is always a convex and coordinate convex region, and no

larger than the capacity region of the corresponding channel. For instance, if time

division multiple access is used, C(t) is a convex and coordinate convex simplex; if

superposition coding and successive interference cancellation is used, C(t) equals to

the capacity region of an N -user degraded Gaussian broadcast channel. In addition,

we assume that the maximal transmission rate for any user in time slot t is always

positive, and therefore C(t) is always an N -dimensional region. By taking an average

over time, we can obtain the average achievable rate region, which is the weighted

Minkowski sum of C(t), denoted by C, and is convex and coordinate convex.

5.3.2 Queueing Model

The network under consideration is a collection of queues, and each queue has a

FIFO queue discipline. Data packets arrive randomly and are queued up in a buffer

reserved for each user, and the arrival processes for different users are independent

with each other. The resource is allocated at the beginning of each time slot based

on the scheduling algorithm. Here, we first assume that the buffer size of each queue
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is infinity, and the finite buffer case will be discussed in Sec.5.6. The state of the

i-th buffer is the queue length and denoted by qi(t). Assume that the amount of

allocated data to user i in time slot t is ri(t), whose vector form is r(t) and satisfies

r(t) ≥ 0; the amount of arrived data in user i in time slot t is ai(t), whose vector

form is a(t) and satisfies a(t) ≥ 0. All queue states form a vector q(t) ≥ 0, which

is updated by: q(t + 1) = [q(t) − r(t) + a(t)]+, where [x]+i = max{0, xi}, ∀i ∈
N . We further assume that {ai(t), t = 1, 2, ...} is a sequence of independent and

identically distributed random variables, and ai(1) has finite moments and satisfies

limA→∞
∑N

i Afi(A)Pr{ai(1) > A} = 0 where fi(.) is the scheduling function to

be explained later. This condition is used to guarantee that the tail of the arrival

distribution decays fast enough compared to the scheduling function. The average

arrival rate is defined as λ = E[a(1)], where E is to take expectation.

5.3.3 Scheduling Policy

In this paper, we mainly focus on the throughput-optimal scheduling policy proposed

in [12], as it is one of the most general scheduling policy. In order to simplify our

analysis, we slightly modify the original scheduling policy, and show it as follows.

The rate allocated to users in time slot t is based on the solution to the following

weighted-sum-rate-maximization problem:

r(t) ∈ argmax
η∈C(t)

∑

i

fi(qi(t))ηi, (5.1)

and the ties are broken randomly, where ηi is the possible transmission rate of user i

in slot t, and η is the possible transmission rate vector lies inside the instantaneous

achievable rate region C(t), fi(x) is the scheduling function with x ≥ 0 and satisfies

the following conditions:

1) fi(x) is a non-negative strictly increasing continuous function with limx→∞ fi(x) =

∞.

2) Given any C1, C2 > 0 and 0 < σ < 1, there is some M > 0 such that for all

x > M , we have (1− σ)fi(x) ≤ fi(x− C1) ≤ fi(x+ C2) ≤ (1 + σ)fi(x).

Let f̄(x) be the normalized weight in vector form, whose i-th component is denoted

by f̄i(x) =
fi(xi)∑
i fi(xi)

. Equivalently, the optimization problem (5.1) can be represented

as follows:

r(t) ∈ argmax
η∈C(t)

∑

i

f̄i(q(t))ηi. (5.2)
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5.3.4 Stability

We adopt the definitions of stability presented in [46], which are shown as follows.

Definition 5.1. A queue q is weakly stable if, for every ǫ > 0, there exists B > 0

such that lim supt→∞ Pr{q(t) > B} < ǫ, where q(t) is the queue length in time t.

Definition 5.2. A system of queues q is weakly stable if, for every ǫ > 0, there exists

B > 0 such that lim supt→∞ Pr{‖q(t)‖ > B} < ǫ, where ‖q(t)‖ is the Euclidean norm

of q(t).

From the definition we can conclude that, if q is unstable, then for any B > 0, we

have lim supt→∞ Pr{q(t) < B} < ǫ, where ǫ > 0 and is arbitrarily small; if q is stable,

we can find a B such that for all the t, Pr{q(t) < B} > 1 − ǫ, where ǫ > 0 and is

arbitrarily small. If a system of queues is unstable, we can conclude that at least one

queue is unstable.

5.4 Limiting Properties

As shown in [12], with scheduling policy (5.1), if the queueing system is an aperiodic

Markov chain and the mean arrival rate lies inside the achievable rate region, then

the Markov chain is positive recurrent, or the system of queues is weakly stable.

Whether the system is able to be strongly stable further depends on function fi. As

indicated in [46], weak stability implies that the offered load can be processed by the

server, but the delay performance cannot be guaranteed. Consequently, if the system

is overloaded, the system is unable to be weakly stable. Without confusion, stable

means weakly stable, and unstable means unable to be weakly stable in the following.

5.4.1 Stability Property

From the definition of weak stability, it is unclear whether all the individual queues

in the system are unstable, or only part of the queues in the system are unstable. We

have Theorem 5.1 to answer this question.

Theorem 5.1. Given infinite buffer, for a multiuser wireless system with throughput-

optimal scheduling as (5.1), if the system is overloaded, then all the queues are un-

stable.
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Proof. Suppose that queue 1 is stable, and queue 2 is unstable. Then, we can find a

B1 such that for all t, Pr{f1(q1(t)) < B1} > 1− ǫ1, where ǫ1 > 0. Because queue 2 is

unstable, then for any B > 0, we have lim supt→∞ Pr{q2(t) < B} < ǫ2, where ǫ2 > 0.

So we have lim inf t→∞ Pr{q2(t) > B} > 1 − ǫ2. Because f2 is a strictly increasing

continuous function, we have lim inft→∞ Pr{f2(q(t)) > f2(B)} > 1 − ǫ2. By choosing

B2 = B, we have lim inft→∞ Pr{f2(q2(t)) > B2} > 1− ǫ2.

Suppose that the optimal solution for the following problem is η∗(t),

max
η∈C(t)

∑

i

wiηi,

where for all the i, wi > 0. Because C(t) is an N -dimensional region, i.e., we can

always increase the rate of one user by decreasing the rates of other users. Therefore,

by increasing w1 and decreasing w2, η
∗
1(t) will increase and η∗2(t) will decrease.

So we have, when t → ∞, with probability (1 − ǫ1)(1− ǫ2), the rate allocated to

user 1 is upper-bounded by r∗1(t), and r∗(t) is the solution to the following problem,

max
η∈C(t)

B1η1 +B2η2 + f3(q3(t))η3 + ... + fN(qN (t))ηN . (5.3)

Since for any B2 and ǫ2, we have limt→∞ Pr{f2(q2(t)) > B2} > 1 − ǫ2. Conse-

quently, for any given ǫ1 and the corresponding B1, with any given ǫ2, we can choose

a B2 such that B2 >> B1. Then based on (5.3), we have r∗1(t) → 0 as B2 → ∞ and

B2 >> B1.

We conclude that with probability (1 − ǫ1)(1 − ǫ2), when t → ∞, the aver-

age rate allocated to user 1 is upper-bounded by limT→∞
1
T

∑t+T−1
τ=t r∗1(τ), where

limt→∞ r∗1(t) → 0.

Since the average rate allocated to user 1 is always upper-bounded by the average

achievable rate which is a finite value, with probability 1−(1−ǫ1)(1−ǫ2), the average

rate allocated to user 1 is upper-bounded by a finite value.

In summary, we can conclude that the average rate allocated to user 1 is upper-

bounded by a value which approaches to 0 as the increment of time. As a result,

queue 1 is not possible to be stable, which contradicts the assumption. Thus we

proved Theorem 5.1.

As all the queues are unstable, then based on the stability properties shown in

Sec.5.3.4, when t → ∞, q(t)− r(t) + a(t) > 0 holds with probability 1− ǫ, where ǫ is

arbitrarily small, which suggests that the allocated rate will not be wasted due to the
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shortage of data in the queue. Therefore, when obtaining the average throughput, we

can use the allocated rate instead of the transmitted data size in each slot.

5.4.2 Average Throughput and Fixed Point of the System.

Theorem 5.2. For an overloaded multiuser wireless system with scheduling and re-

source allocation algorithm as in (5.1), the corresponding average throughput of users

in the system converges, i.e., for any t0, limT→∞
1
T

∑T−1
t=0 r(t0 + t) → µ. µ is a

solution to the following problem

max
η̄∈Cλ

∑

i

lim
t→∞

f̄i((λ− µ)t+ µ
′

(t))η̄i, (5.4)

where η̄i is the possible average throughput of user i, and η̄ is the possible average

throughput vector, Cλ = {η̄|η̄ ∈ C, η̄ ≤ λ} is the constrained average achievable rate

region, as the average throughput should be no larger than the average arrival rate,

and µ
′

(t) is an auxiliary variable with limt→∞ µ
′

(t)/t = 0. Furthermore, µ is unique,

and is the solution to the following problem

lim
t→∞

max
η̄∈Cλ

∑

i Fi((λi − η̄i)t), (5.5)

where Fi(x) is an antiderivative of fi(x).

Proof. First we prove that the average throughput of the system converges.

For any n > 0 we can always find C1,i and C2,i > 0 such that qi(t) − C2,i ≤
qi(t + n) ≤ qi(t) + C1,i. Since fi is a non-negative increasing continuous function, we

have fi(qi(t)− C2,i) ≤ fi(qi(t+ n)) ≤ fi(qi(t) + C1,i).

Since qi is unstable, with probability 1−ǫ, for anyM > 0, there exists a T such that

for all t > T , we have qi(t) > M . Further based on condition 2) of the scheduling

algorithm, for any i and 0 < σi < 1, for all t > T , we have (1 − σi)fi(qi(t)) ≤
fi(qi(t+ n)) ≤ (1 + σi)fi(qi(t)).

Then we have

(1− σi)fi(qi(t))
∑

i(1 + σi)fi(qi(t))
≤ f̄i(q(t+ n)) ≤ (1 + σi)fi(qi(t))

∑

i(1− σi)fi(qi(t))
.
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Define ∆i(t, n) , f̄i(q(t+ n))− f̄i(q(t)), and choose σi = σ, so we have

(
1− σ

1 + σ
− 1)f̄i(q(t)) ≤ ∆i(t, n) ≤ (

1 + σ

1− σ
− 1)f̄i(q(t)).

Equivalently, we have

|∆i(t, n)| ≤ max(
2σ

1 + σ
,

2σ

1− σ
)f̄i(q(t)) =

2σ

1− σ
f̄i(q(t)).

Define δi ,
2σ
1−σ

, since f̄i(q(t)) ≤ 1, we have |∆i(t, n)| ≤ δi.

So for any δi and n we can find a corresponding σ that satisfies |∆i(t, n)| < δi.

In summary, with probability 1 − ǫ, for any i and δi, we can find a T such that

for all t > T and any n > 0,

|f̄i(q(t + n))− f̄i(q(t))| ≤ δi,

and then we can conclude that for any i, f̄i(q(t)) is a Cauchy sequence indexed by t,

thus Cauchy converges in probability.

Suppose that f̄(q(t)) converges to w. According to (5.2), r(t) converges to a

solution to the following problem

max
η∈C(t)

∑

i

wiηi,

which is only related to the capacity region in time slot t (C(t)) and a weight vector

(w). Consequently, the convergence of the average throughput,

lim
T→∞

1

T

T
∑

t=0

r(t0 + t),

only requires the existence of the average capacity region, which is guaranteed by the

assumption that the fading channel process is ergodic. Thus, the average throughput

converges in probability, and we use µ to denote it.

Then we prove that µ is the solution to an optimization problem.

Since all the queues are unstable, with probability 1 − ǫ, for any M > 0, there

exists a T such that for all t > T , we have mini qi(t) > M . So for all t > T ,

q(t) = q(t− 1)− r(t− 1) + a(t− 1),
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by taking summation from T to t, we have

q(t) = q(T ) + a(T ) + a(T + 1) + ... + a(t− 1)

−(r(T ) + r(T + 1) + ... + r(t− 1)).

Note that

λ = lim
t→∞

1

t− T
(a(T ) + a(T + 1) + ...+ a(t− 1)),

µ = lim
t→∞

1

t− T
(r(T ) + r(T + 1) + ...+ r(t− 1)),

so we have

q(t) = (λ− µ)t+ µ
′

(t) + q(T )− (λ− µ)T,

where

lim
t→∞

µ
′

(t)

t
= 0.

As q(T )− (λ− µ)T is finite, hence, with probability 1− ǫ, when t > T ,

(1− σ)fi((λi − µi)t + µ
′

i(t)) ≤ fi(qi(t))

≤ (1 + σ)fi((λi − µi)t+ µ
′

i(t)),

then based on the identical approach as to prove the convergence of f̄i(q(t)), we can

first prove the convergence of f̄i((λ − µ)t + µ
′

(t)) and then by using the squeeze

theorem to prove that limt→∞ f̄i(q(t)) = limt→∞ f̄i((λ − µ)t + µ
′

(t)) in probability.

Therefore r(t) is the solution to the following problem,

max
η∈C(t)

∑

i

lim
t→∞

f̄i((λ− µ)t+ µ
′

(t))ηi.

Then we can conclude that the average throughput µ converges in probability and is

a solution to the following problem,

max
η̄∈Cλ

∑

i

lim
t→∞

f̄i((λ− µ)t+ µ
′

(t))η̄i.
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Next, we prove µ is unique.

The antiderivative of fi((λi − µi)t + µ
′

i(t)) is −tFi((λi − µi)t + µ
′

i(t)). Since

limt→∞
∑

i fi((λi − µi)t+ µ
′

i(t))µi ≥ limt→∞
∑

i fi((λi − µi)t + µ
′

i(t))η̄i, i.e.,

lim
t→∞

∑

i

fi((λi − µi)t + µ
′

i(t))(µi − η̄i) ≥ 0.

Furthermore because fi(x) is a strictly increasing continuous function, µ is the solu-

tion to the following problem [4]

lim
t→∞

max
η̄∈Cλ

∑

i Fi((λi − η̄i)t + µ
′

i(t)).

As limt→∞ µ
′

i(t)/t = 0, the above problem is further equivalent to

lim
t→∞

max
η̄∈Cλ

∑

i Fi((λi − η̄i)t),

whose solution exists and is unique.

From Theorem 5.2, although the system is overloaded, the average throughput

exists and converges to µ which is a solution to (5.4). From (5.4), it is noted that

µ cannot be directly obtained. Also, by observing (5.4), we can conclude that the

average throughput and the scheduling function of queue length form a unique fixed

point of the system.

Since the average throughput of the system converges to the solution of (5.5),

based on the above approach, we can obtain the average throughput by giving the

detailed system assumptions. Note that in [9], the author obtained a similar result

for the MaxWeight scheduling, which is a special case of (5.5). However, the result

obtained in [9] cannot be extended to a system with a general throughput-optimal

scheduling algorithm, as the result relies on the linear structure of the MaxWeight

scheduling.

The scheduling algorithm according to (5.1) is an online algorithm to solve (5.5).

Since Fi((λi− η̄i)t) is a function of the average arrival rate, and η̄i is linearly impacted

by λi, we can conclude that the average throughput is also related to the arrival rate

in general. This suggests that, in the overloaded system with scheduling algorithm as

(5.1), if Jain’s index (which is a function of the average throughput) is used to quantify

the system fairness, then it is likely that such a fairness index is not only related to
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the throughput, but also impacted by the arrival rate. This fairness issue will be

elaborated in the following section, by studying two sample scheduling algorithms.

5.5 Examples: the GMW and Log-Rule Schedul-

ing Algorithms

In this section, we study two representative throughput-optimal scheduling algo-

rithms, the GMW [12, 57] and the Log-Rule [68]. We first discuss how to solve

the optimization problem to obtain the average throughput and the impact of the

parameters on the average throughput, followed by the fairness issue.

5.5.1 Generalized MaxWeight

For the GMW, we have fi(x) = bix
αi , where bi > 0 and αi > 0. Then, Fi((λi− η̄i)t) =

− bi
αi+1

(λi − η̄i)
αi+1tαi , and the average throughput is the solution to the following

problem

lim
t→∞

min
η̄∈Cλ

∑

i

bi
αi + 1

(λi − η̄i)
αi+1tαi . (5.6)

Easily we can see that αi is critical to solve the problem, and the user with the

largest αi dominates the objective of (5.6). Therefore, we can adopt an iterative

greedy approach to solve (5.6) as follows.

First we divide the user set N into K groups {Gk}, k = 1, 2, ..., K. The users in

the same group have the same αi, i.e., ∀i ∈ Gk, αi = αGk
. The groups are ordered

decreasingly according to αi. i.e., if m < n, then αGm > αGn.

Suppose that the average throughput of user i ∈ ⋃k−1
m=1 Gm is η̄∗i . Then the solution

to problem (5.6) is the solution to the following problem

lim
t→∞

min
∑

i

bi
αi + 1

(λi − η̄i)
αi+1tαi−αGk ,

s.t. η̄ ∈ Cλ, ∀i ∈
k−1
⋃

m=1

Gm, η̄i = η̄∗i ,
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which is further equivalent to

lim
t→∞

min
∑

i∈⋃k−1
j=1 Gj

bi
αi + 1

(λi − η̄i)
αi+1tαi−αGk +

∑

i∈Gk

bi
αi + 1

(λi − η̄i)
αi+1,

s.t. η̄ ∈ Cλ, ∀i ∈
k−1
⋃

m=1

Gm, η̄i = η̄∗i .

For the obtained average throughput η̄∗i , we have either ∀i ∈ ⋃k−1
j=1 Gj , η̄

∗
i = λi, or

∃i ∈ ⋃k−1
j=1 Gj, η̄

∗
i 6= λi. For the first case, the solution to (5.6) is the solution to the

following problem

min
∑

i∈Gk

bi
αi+1

(λi − η̄i)
αi+1, (5.7a)

s.t. η̄ ∈ Cλ, ∀i ∈ ⋃k−1
m=1 Gm, η̄i = η̄∗i . (5.7b)

For the second case, it implies that η̄∗i < λi, which further implies that η̄∗ lies on the

boundary of Cλ, where η̄∗ = {η̄i : η̄i = η̄∗i , if i ∈
⋃K

j=k+1 Gj ; η̄i = 0, if other wise}. By

summarizing the above two cases, we can conclude that the solution to (5.6) is also

the solution to the following problem

min
∑

i∈⋃k
j=1 Gj

bi
αi+1

(λi − η̄i)
αi+1,

s.t. η̄ ∈ Cλ, ∀i ∈ ⋃k−1
m=1 Gm, η̄i = η̄∗i ,

which further implies that the average throughputs of users in group Gk can be ob-

tained by solving the above problem, as the solution is unique.

Iteratively, the average throughput is obtained.

Impact of Scheduling Parameters

By observing the algorithm structure to obtain the average throughput, we can see

that the parameters αi and bi are important to the performance of users.

Note that in a stable system, αi can be used to control the priority of the queue and

improve the delay performance [84]. This priority only affects the delay performance,

and it does not change the average throughput which equals the average arrival rate

in an underloaded system. But in an overloaded system, since the scheduler allocates

the available resource to the users in the decreasing order of αi, a user with a larger

αi has a ‘hard’ higher priority. Therefore by increasing αi of a user to a proper value



91

(for instance, larger than all the other αj, where j 6= i), its average throughput can

be improved. This behavior suggests that the QoS of a user can be improved by

assigning a larger αi. In summary, if the system is stable, then a larger αi can result

in a smaller delay; if the system is unstable, then it can result in a higher throughput.

Similar to αi, bi can also be used to differentiate the users, but within a group

of users with the identical αi. Note that the throughput of users in Gk is either all

zero, or can be obtained from problem (5.7). As ∀i ∈ Gk, αi are identical. Fixing bj

where j 6= i, ri is possible to be increased w.r.t. bi. A larger bi generally means a

possible larger average throughput, but it cannot guarantee the user gets served first.

Therefore we consider the priority associated with bi as a ‘soft’ priority.

Fairness

Since αi is used to control the priority of user, and the incoming traffic is served

strictly according to the priority, the fairness should only be considered within each

group. Considering the scheduling algorithm with αi = α, the average throughput is

the solution to the following problem minη̄∈Cλ

∑

i bi(λi− η̄i)
α+1, which is a Lα+1-Norm

minimization problem in a scaled space with constraint η̄ ∈ Cλ, and b
1/α
i is the scale

factor in dimension i.

Suppose that the scale factor for each dimension is identical, i.e., ∀i, bi = 1, and

then geometrically, the average throughput is a point in the constraint set Cλ and

has the minimal Lα+1 distance to the point λ. Since C and {η̄|η̄ ≤ λ} are both

convex, the constraint set Cλ is also convex, so we can conclude that, as long as λ is

not scaled proportional to λ− µ(λ), where µ(λ) is the solution for the given λ, the

average throughput will change based on the change of λ. As a result, the fairness

(in terms of Jain’s index) only makes sense for a given λ. For a system where λ is

not under control, fairness cannot be guaranteed as any user can change the Jain’s

index by increasing the arrival rate.

Although the fairness of the throughput cannot be guaranteed, the scheduling

algorithm actually guarantees the fairness of the queued/blocked traffic. This can

be seen from two asymptotic cases easily. When α → 0, the problem approaches

maxη̄∈Cλ

∑

i η̄i which means the user with a larger possible transmission rate will be

satisfied first and users with smaller possible transmission rates may starve. Such a

greedy allocation can also be interpreted as that the scheduling algorithm does not

consider the fairness at all. The problem approaches minη̄∈Cλ maxi |λi − η̄i| when
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α → ∞, which means the queued traffic satisfies a min-max fairness, which is defined

as the dual of the max-min fairness [65, 15]. From the above two asymptotic cases we

can conclude that, the fairness of the blocked traffic can be guaranteed by choosing

a proper α.

A more detailed discussion on the fairness issue in a similar system can be found in

[9], where the author proposed a fairness metric using the backlog growth direction,

which is identical to the fairness of the queued/blocked traffic. Furthermore, the

author showed that, for a specific backlog growth direction, by designing a proper

bi, the backlogged traffic is also minimized. As [9] only discussed the fairness within

each group, it is unable to find the critical impact of αi on the fairness.

5.5.2 Log-Rule

By a slight modification to the original policy presented in [68], we have the equivalent

Log-Rule which has fi(x) = bi log(1 + aix) with ai > 0 and bi > 0. Then

Fi((λi − η̄i)t) =
bi
ait

+ (λi − η̄i)bi − (
bi
ait

+ bi(λi − η̄i)) log(1 + ai(λi − η̄i)t),

and the average throughput is the solution to the following problem

lim
t→∞

min
η̄∈Cλ

∑

i

− bi
ait

− (λi − η̄i)bi + (
bi
ait

+ bi(λi − η̄i)) log(1 + ai(λi − η̄i)t),

which is equivalent to

lim
t→∞

min
η̄∈Cλ

∑

i

bi(λi − η̄i) log(1 + ai(λi − η̄i)t), (5.8)

by ignoring the terms that do not increase with t as they have no impact on the

solution.

Note that the solution to (5.8) is also the solution to the following problem

lim
t→∞

min
η̄∈Cλ

∑

i

bi(λi − η̄i) log(1 + ai(λi − η̄i)t)/ log(1 + t),

which is further equivalent to

max
η̄∈Cλ

∑

i biη̄i, (5.9)
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since limt→∞ log(1 + ai(λi − η̄i)t)/ log(1 + t) = 1.

Problem (5.9) and problem (5.8) are not equivalent. But if (5.9) has a unique

solution, then it is also the solution to (5.8).

Note that (5.9) is not related to ai, the average throughput of the Log-Rule is only

affected by parameter bi. Comparing (5.9) to the GMW with α → 0 we can see that

both schedulers have the same average throughput. Consequently, the discussions on

the impact of bi on the average throughput and the fairness issue are identical to the

GMW with α → 0 case.

5.6 Performance In a Finite Buffer System

In the previous sections, we have discussed the limiting properties of the overloaded

system with throughput-optimal scheduling. All the queues in the system are un-

stable, and each queue length increases to infinity. While with a more practical

assumption that the buffer for the queue should be finite, the overloaded packets will

be dropped by the queue management scheme. In this section, we give a discussion

on the system performance in a finite buffer system.

5.6.1 System Assumption

Since the system is a collection of queues, all the queues can either share the same

buffer, such as the downlink case of a wireless communication system, or each queue

has its own dedicated buffer, such as the uplink of a wireless communication system.

We further assume that the system uses the Drop-Tail scheme as the queue manage-

ment scheme, and the arrival traffic for i-th flow (for user i) is a Poisson traffic with

average arrival rate λi.

5.6.2 Shared Buffer Case

As the queue has finite buffer, the incoming packet will be dropped if it encounters

the event that the buffer is full. The packet drop in a queueing system with a shared

buffer is identical to that in a single queue with buffer size Bmax and the aggregated

arrival traffic.

As the incoming traffic of each flow is Poisson traffic, the aggregated traffic is also

Poisson. According to the Poisson Arrival See Time Average (PASTA) property, each
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packet encounters the event that the buffer is full with the same probability. So the

packet dropping probability for each flow is identical and denoted as k∗. Consequently

the packet dropping rate d is proportional to the packet arrival rate λ, and we have

d = k∗λ. For the average throughput µ, we have µ = λ − d. As the system is

overloaded and throughput-optimal scheduling is used, we further assume the buffer

size is large enough and the probability that the buffer is empty is negligible, µ should

lie on the boundary of the capacity region C, i.e., µ ∈ bd(C). Consequently, we have

µ = (1− k∗)λ, and k∗ is obtained from k∗ = argmin(1−k)λ∈C k.

The average throughput is not affected by the type of the throughput-optimal

scheduling algorithm, and is determined by the statistical properties of the arrival

traffic and the queue management scheme. Furthermore, the average throughput is

proportional to the average arrival rate, which is different from the infinite buffer case

where some users may starve (such as GMW with heterogeneous αi). In other words,

for an overloaded system with finite shared buffer, the long-term (permanent) fairness

may be improved, despite the fairness may be poor during the transient period (as

the performance during the transient period is similar to the infinite buffer case),

such as in a system using the GMW scheduling with heterogeneous αi as discussed

in Sec. 5.5.1.

Note that as long as the packet dropping probability is identical for different flows,

the above argument holds. Even though in a system with Drop-Tail scheme and bursty

arrival traffic, the above property may not hold in general, however, certain active

queue management (AQM) scheme can be used, such as Random Early Detection

[14], to retain this property.

5.6.3 Dedicated Buffer Case

As discussed in [56], the system can be modeled as a controlled random walk and

can be further approximated by a deterministic fluid model, where the data packets

for each user are modeled as a continuous fluid flow that enter and leave the buffer

[42]. Each flow has its dedicated buffer with size Bmax
i , then all the Bmax

i will jointly

determine the average throughput and therefore fairness. The corresponding fluid

scheduling model is represented as q(t) = q(0)−z(t)+λt, where z(t) is the cumulative

allocated fluid resource up to time t.

As the system is overloaded and the fluid model is used to approximate the system,

the system cannot be idle at the time it loses fluid. Therefore, the average throughput
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should be equal to the average allocated rate, i.e., µ = limt→∞ z(t)/t. We have

z(t) = µt+ µ
′

(t), where limt→∞µ
′

(t)/t = 0. Consequently, we have

q(t) = q(0)− µt− µ
′

(t) + λt. (5.10)

Suppose that the queues in set S can achieve rate stability, i.e., the average through-

put equals the average arrival rate, and the queues not in S cannot achieve rate

stability. We have ∀i ∈ S, µi = λi and ∀i /∈ S, µi < λi. Therefore, based on (5.10),

∀i /∈ S there exists a tb such that for all t > tb, fi(qi(t)) = fi(B
max
i ), i.e., the buffer

of queue i is full after it has been filled up. Consequently the allocated rate in t is

based on the following problem

max
η∈C(t)

∑

i/∈S fi(B
max
i )ηi +

∑

i∈S fi(qi(t))ηi,

with random tie-breaking. By taking an average over time, we have µ to be the

solution to the following problem

max
η̄∈Cλ

∑

i/∈S fi(B
max
i )η̄i +

∑

i∈S limT→∞
1
T

∑tb+T
t=tb+1 fi(qi(t))η̄i. (5.11)

Since ∀i ∈ S, µi = λi and fi(qi(t)) ≤ fi(B
max
i ), substituting fi(B

max
i ) for fi(qi(t)) does

not change the solution. Thus, problem (5.11) is identical to the following problem

max
η̄∈Cλ

∑

i fi(B
max
i )η̄i, (5.12)

with uniform tie-breaking.

In the above analysis, the key argument is that ∀i /∈ S and t > tb, fi(qi(t)) =

fi(B
max
i ). Therefore, for any arrival traffic as long as the above condition can approx-

imately hold, the average throughput is close to the solution to (5.12).

Note that if the average arrival rate λ is sufficiently large, the constraint set Cλ

will be equal to the capacity region C. Based on (5.12), the average throughput is no

longer related to λ. Consequently, the system fairness in terms of Jain’s index can

be guaranteed by a properly designed buffer size Bmax
i .

By studying the system with the finite buffer assumption, we can see that the

system behavior is quite different from that with infinite buffer assumption, which

is typically used in the literature. The user starvation problem can be alleviated by

the shared buffer scheme, while certain queues may achieve rate stability if the buffer
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size is set properly in the dedicated buffer case and we will demonstrate it with an

example in Sec. 5.7.1.

5.7 Performance Evaluation

In this section, we validate our analytical results and compare the system performance

based on different throughput-optimal scheduling algorithms and different system

assumptions. During the evaluation, Poisson arrival traffic is used if not specified.

For each simulation setting, we repeat the simulation multiple runs and the results

demonstrate that the average throughput can converge to the theoretical value. Then,

we take one run as a sample-path of the system to plot the results in the figures. The

average throughput in time slot t is calculated by taking the average over the results

of the previous 2000 time slots.

5.7.1 Two-User Static Channel Case

First considering a two-user static Gaussian broadcast channel (GBC), the signal-to-

noise ratio of user i is γi, and assume γ1 > γ2. Then the achievable rate region is [19]

C = {r|r1 = log2(1 + qγ1), r2 = log2(1 + γ2)− log2(1 + qγ2), 0 ≤ q ≤ 1}.
This channel is a special case of the general N -user fading broadcast channel, since

the stochastic process governing the transition of the channel state is deterministic.

Such channel is discussed because of the strictly convex property of the resultant

achievable rate region, and therefore the average throughputs for different simulation

settings are always unique. Also by using the two-user GBC channel first and then

the Markov channel in Sec. 5.7.2, we are able to demonstrate that the convergence of

f̄i(q(t)) and average throughput does not depend on whether the channel is stochastic

or not.

During the evaluation, we set γ1 = 100 and γ2 = 10.

Infinite Buffer Case

We first validate that with the GMW or Log-Rule scheduling, the average through-

put and f̄(q(t)) converge. The results are shown in Figs. 5.1 - 5.3. In the figures

illustrating the average throughput, the solid curve represents the throughput of user

1 and the dashed curve represents that of user 2. The analytical results are shown by

points “×” in all figures.
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Fig. 5.1 illustrates the system behavior with the GMW scheduler and identical α.

The average throughputs and f1(q1)/f2(q2) quickly converge, and different b results

in different converged value. Fixing b1 = 1 and increasing b2 from 1 to 10, the average

throughput of user 2 also increases, but the network does not give a ‘hard’ priority

to user 2. From the trend of throughput changes, with the further increasing of b2,

the average throughput of user 2 will increase to the same as its arrival rate. Since

f1(q1)/f2(q2) is no more informative than the average throughput and the convergence

of average throughput indicates the convergence of f1(q1)/f2(q2), in the following we

only show the comparison of the average throughput.

Fig. 5.2 shows the behavior of a system with GMW scheduler and different α.

With α = [1 1.3], the average throughput converges slowly, and cannot converge to

the analytical results within 50000 time slots. Changing α to [1 1.6], the system

converges much fast, and the average throughput of user 2 converges to its arrival

rate, which suggests that user 2 has a strictly higher priority compared with user 1.

We compare the Log-Rule with the asymptotic GMW in Fig. 5.3. For the asymp-

totic GMW, we choose α = 0.1. The average throughputs of GMW and Log-Rule

are identical and equal to the analytical results. Also we observe that the average

throughput of user 1 equals its arrival rate, which is a result that the Log-Rule or the

asymptotic GMW degrades to an algorithm which schedules the user with a larger

channel rate first.

Finite Buffer Case

The system behavior under the finite buffer assumption is presented here. In order to

observe the transient network behavior, we set the buffer size to be a relatively large

value in different scenarios.

First we show the results of the shared buffer with the Drop-Tail queue scheme

case. Fig. 5.4 shows the results of a network with the GMW scheduler with different

b. As shown in the figure, the average throughput first converges to a transient

value which is determined by the infinite buffer case, and thereafter converges to

a permanent value. The transient value is determined by the parameters of GMW

(parameter b), while the permanent fixed value is identical and independent of these

parameters.

Similar to the shared buffer with the Drop-Tail queue scheme case, in the dedi-

cated buffer with the Drop-Tail queue scheme case, the network first converges to a
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Figure 5.1: The convergence of the average throughput and f̄(q(t)) of an infinite
buffer network with GMW scheduler, α = [1 1], λ = [4 3].

transient value, then converges to the permanent value, which is illustrated in Fig. 5.5.

By changing the parameter b, not only the transient value changes, but also the per-

manent value changes. Since the permanent throughput of user 2 equals its average

arrival rate, user 2 achieves rate stability.

5.7.2 Markov Channel Model

We further use a Markov channel model to illustrate the system dynamics with

temporarily overloaded arrival traffic. The channel of each user is independent of

each other, and has two states (G and B). The transmission rate of user i in state

G and B are RG
i and RB

i , respectively. Assume that the probability of user i in

state G is πG
i , then πB

i = 1 − πG
i . The ergodic capacity region can be obtained as
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Figure 5.2: The average throughput of an infinite buffer network with GMW sched-
uler, b = [1 1], λ = [4 3].
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Figure 5.3: The average throughput of an infinite buffer network, comparing Log-Rule
scheduler with asymptotic GMW scheduler, b = [1 1], λ = [4 3].

C = {r : ri ≤
∑

i t
G
i π

G
i R

G
i + tBi π

B
i R

B
i ,

∑

i t
B
i + tGi ≤ 1}.

The behavior of a temporarily overloaded system is illustrated in Fig. 5.6. Here we

simulate a 6-user system in 100000 time slots, and choose ∀i, RB
i = 1, RG

i = 3, πG
i =

1/2. During the first 30000 time slots and the last 40000 time slots, the system

has a Poisson arrival traffic with arrival rate λ, where λ1 = λ2 = λ3 = 8/3 and

λ4 = λ5 = λ6 = 2. From time slot 30001 to time slot 60000, there is no traffic arrived

in the system.

For the shared buffer case, by investigating Fig. 5.6a, first the average throughput

converges to a point determined by the infinite buffer case. After the time slot 10000,
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Figure 5.4: The average throughput of a finite shared buffer network with GMW
scheduler and Drop-Tail scheme, α = [1 1], λ = [4 3], Bmax = 104.
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Figure 5.5: The average throughput of a finite dedicated buffer network with GMW
scheduler and Drop-Tail scheme, α = [1 1], λ = [4 3], Bmax = [5000 12500].

as the buffer is full, the average throughput converges to the point determined by the

finite buffer case. After the time slot 30000, since there is no new arrival traffic, the

system can be stabilized and the average throughput converges to the same value,

which is due to the symmetric channel. After the time slot 60000, a similar pattern

as that during time slots 1 - 30000 can be found.

The results of the dedicated buffer case are shown in Fig. 5.6b. The curves from

top to down in the buffer usage figure are for user 1 to user 6, respectively. The

average throughput exhibits a similar trend as that in the shared buffer case. The

buffer usages of different users in the transient period (none of the buffer is full) are
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identical, which is a result of the symmetric channel assumption.

In summary, the simulation results have validated our analytical model and con-

firmed our analytical results and conclusions.

5.8 Conclusion and Further Discussion

In this chapter, we have studied the limiting properties of an overloaded multiuser

wireless system with throughput-optimal scheduling. By studying a general throughput-

optimal scheduling, we have found that certain results obtained in a system with spe-

cial throughput-optimal scheduling is possibly universal. More specifically, we have

shown that if the system is subject to infinite buffer assumption, all the queues in

the network are unstable, but the average throughput and the scheduling function of

queue length converges, respectively. By studying GMW and Log-Rule algorithms,

we have found that the fairness of the corresponding system generally cannot be

guaranteed. The Log-Rule can be viewed as a special GMW, and GMW can provide

user differentiation by choosing parameters properly. If the buffer size is finite, then

the buffer and queue management schemes play an important role on the network

performance, and a proper design may alleviate the potential starvation problem.
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(a) Shared Buffer, Bmax = 105.
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i
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Figure 5.6: The system behavior of a finite buffer network with GMW scheduler and
Drop-Tail scheme. α = 1, b = 1.
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Chapter 6

Secrecy Outage Probability in

Multiuser Wireless Systems with

Stochastic Traffic

In Chapter 2 and Chapter 3, we have discussed how to design scheduling algorithms

that improve the system performance by using advanced physical layer technologies.

Due to the broadcast nature of the wireless channel, the security is also an important

aspect in multi-user wireless systems that needs to be considered. In this chapter,

we study the scheduling problem in a system using the information-theoretic security

encoder/decoder, which is one of the key physical layer security technologies. We

first extend the definition of the secrecy outage probability to wireless systems with

adaptive transmission rates. The scheduling problem in the aforementioned system,

jointly considering the reliability, security and stability, is studied. Stochastic network

optimization framework is used to decompose the problem and an online algorithm

ONE is proposed. We further consider an offline alternative problem, discuss the

optimal solution and show that the aforementioned algorithm ONE cannot lead to

optimal solution in some scenarios. By comparing the offline algorithm with algo-

rithm WSSTRM, we have proposed a refined online algorithm WSSTRM-R which is

an optimal algorithm. Extensive simulations are conducted to show the impact of

the information arrival rate and the channel conditions on the system secrecy out-

age probability. These observations provide important insights and guidelines for the

design and resource management of future wireless networks using secure communi-

cation technologies.
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6.1 Introduction

In a wireless system, there are several aspects that affect the system performance,

such as capacity, reliability and security. Traditionally, security is a high-layer issue,

and is designed independently of the network protocol. But this approach may have

some drawbacks. For instance, an application-layer solution may require a higher

computational complexity that may not be desirable for energy-limited devices such

as smart phones. Recently, physical-layer security became an attractive research

area, since it can provide different kinds of security solutions in wireless systems, by

exploring the physical-layer features such as channel conditions that are traditionally

overlooked.

Physical-layer security in wireless systems has been widely discussed from different

aspects [76]. For instance, due to the unique randomness of the channel, the channel

information can be used to generate a secret key in a wireless network, which is dis-

cussed in [20, 87, 51]. The uniqueness feature can also be used as the link signature

for authentication as discussed in [63, 103, 53]. The spread spectrum communication

has been revisited as a physical-layer security approach in [48, 29]. Cooperative jam-

ming and artificial noise are used to improve the secrecy capacity region as discussed

in [18, 75].

Although these designed security schemes utilize the uniqueness of the physical-

layer information, most of them are designed from a traditional security viewpoint.

In this chapter, we adopt a more fundamental treatment towards the security issue,

i.e., from the information-theoretical security viewpoint towards the confidentiality

issue in multiuser wireless systems.

We study the scheduling problem in multiuser wireless systems, where one eaves-

dropper exists in the system. The traditional approach tries to maximize the ergodic

achievable rate of the system (see, e.g., [21, 36]), which captures the fundamental ca-

pacity limits under perfect secrecy, but may exhibit a large delay due to the inherent

requirement of the coding scheme for the perfect secrecy over a fading channel. Differ-

ently, we consider minimizing the secrecy outage probability of the system, which is a

coding-delay-limited metric that is of practical interests. Besides, we further consider

the queue stability issue which is often ignored in the work that maximizes the ergodic

achievable rate. Therefore, the scheduling problem is formulated as an optimization

problem minimizing the system secrecy outage probability (security issue) and sub-

ject to the constraints that the queues in the system should be stable (stability issue)
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and the transmission rate does not exceed the capacity region (reliability issue).

Little work has been done jointly considering these three aspects. Some works

assume that the eavesdroppers’ channel state information (CSI) at symbol level (full

instantaneous CSI) can be obtained by the BS, such as [50, 22, 54], which may not

be practical. Some works, such as [64], relax the assumption on the instantaneous

CSI, however, the designed scheme is not scalable to a case with multiple legitimate

receivers, which limits the usage of the proposed algorithm. In our work, we design

a scalable scheduling algorithm with a weak assumption that only the distribution of

the CSI of the eavesdropper is known by the BS, which is more practical.

The contributions of this chapter are four-folds. First we have extended definition

of the secrecy outage probability to wireless systems with channel-adaptive transmis-

sion. Second, we have proposed two online algorithms for the aforementioned schedul-

ing problem, and showed that directly applying the stochastic network optimization

framework cannot yield an optimal solution and some modifications should be done.

Third, we have discussed an alternative offline problem, proposed an optimal offline

algorithm which motivates us to design the online optimal algorithm. Fourth, we

have elaborated the impact of the information arrival rate and the channel conditions

on the system secrecy outage probability through extensive simulations.

The rest of this chapter is organized as follows. The preliminaries about the

physical-layer security and the related work are presented in Section 6.2. System

models are introduced in Section 6.3. Secrecy outage probability is revisited and the

problem is formulated in Section 6.4. Online and offline algorithms are discussed in

Section 6.5. A case study that the eavesdropper’s channel is a non-fading additive

white Gaussian noise (AWGN) channel is presented in Section 6.6, followed by the

evaluation in Section 6.7. We conclude this chapter in Section 6.8.

6.2 Preliminaries and Related Work

6.2.1 Physical-Layer Security

Security is an important issue in communications, which typically include confiden-

tiality, integrity, authentication, and nonrepudiation. The confidentiality guarantees

the legitimate receivers can obtain the information, while eavesdroppers are unable

to understand the information. Traditionally, confidentiality is achieved by crypto-

graphic techniques, which are based on the computational complexity theory and
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key distribution techniques. While for a wireless network, due to the broadcast na-

ture of the wireless medium, the secret key distribution becomes a difficult problem

[49]. The information-theoretical security, one branch of the physical-layer security,

which aims to provide an alternative solution to the confidentiality, treats the secrecy

communication from an information entropy point of view.

Typically, the eavesdropping in a wireless network can be captured by a wire-tap

channel as shown in Fig. 6.1. The transmitter Alice has a message W intended to

transmit to a legitimate receiver Bob, through a channel. The message W is mapped

to the codeword X by a physical-layer security encoder, which jointly considers the

security and reliability. Then X is transmitted to Bob through a wireless channel.

Due to the broadcast nature of the channel, both Bob and the eavesdropper Eva can

observe the corrupted messages, Y and Z. The decoder in Bob maps the received Y

to an estimated message W ′. The purpose of the encoder and decoder is to ensure

that the estimated message is the same as the original one, i.e., W ′ = W , and the

corrupted message Z received by Eva contains no information about W .

In a more practical scenario, if the channel is an AWGN channel, i.e., X is cor-

rupted by an additive white Gaussian noise, the secrecy capacity of such a system is

[45]

Cs = [CY − CZ ]
+,

where CY and CZ are the capacity of the Bob’s channel X − Y and Eva’s channel

X − Z, respectively.

This result suggests that a perfect secrecy can be achieved if the entropy of the

original message W is no greater than the secrecy capacity, i.e., H(W ) ≤ Cs. Other-

wise, part of W can be decoded from Z.
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6.2.2 Related Work

Scheduling and resource allocation in a secure wireless communication system has

been widely discussed in the literature. However, most of the works took a tradi-

tional information-theoretical perspective, i.e., quantifying the capacity region under

different network settings. These works tried to solve an optimization problem, im-

plicitly or explicitly, based on the assumption that the system is saturated and each

user in the system always has data to transmit. For instance, the secrecy capacity

region of a wire-tap channel is discussed in [98]; that of a Gaussian wire-tap channel

in [45]; that of a fading channel in [21]; that of a fading broadcast channel in [36];

that of a MIMO broadcast channel in [62]. All these works only considered the reli-

ability and security issue in communications, and ignored the stability issue which is

typically treated in the higher layers. However, the stability is of equal importance

with reliability and security, since it further determines whether a practical system

can work properly and desirably over a sufficiently long time period.

There is little work jointly considering these three aspects. In [50], authors studied

how to transmit confidential messages to users in a fast-fading broadcast wireless

network, subject to three constraints: the reliability constraint that the message can

be perfectly decoded, the security constraint that the message is perfectly secured

and the stability constraint that the system is queue-length stable. An achievable

secrecy rate region was obtained and a max-weight type of scheduling algorithm

along with the optimal power control policy was designed so to satisfy these three

requirements. In [22], a secure communication system was designed to achieve a

constant transmission rate. In this design, the developed scheme sends the key with

the data when the system is perfectly secured, and uses the key to protect the data

when the system is subject to a secrecy outage. A power control scheme has also been

designed to maximize the transmission rate. A work similar to [22] was reported in

[54] where a different objective is used. All the above works share the same system

assumption that the instantaneous CSI of the eavesdropper should be known by BS,

which may not be practical.

In [64], the power allocation problem of a secure wireless communication system

in the presence of statistical queueing constraints was studied. The effective secure

throughput region is obtained through an effective capacity method, and a power al-

location scheme that achieves such a region has been obtained. The obtained scheme

implicitly considers the stability issue of the system, since a queue constraint is em-
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ployed. However, the authors only considered the single legitimate receiver, and the

designed scheme is not scalable to a multi-legitimate-receiver case, which limits the

usage of the algorithm.

6.3 System Models

We consider the downlink of a wireless network, with one base station (BS), N inde-

pendent legitimate receivers and one eavesdropper. The multiple eavesdropper case

can be easily extended as discussed in [94]. There are confidential data that arrive at

the BS and need to be transmitted to the legitimate receivers through a shared wire-

less fading channel. In order to protect the data against the eavesdropper, the data

have been encoded using the physical-layer security technology before transmission.

The system is a time-slotted one and without loss of generality, we further assume

that the slot length is 1 second. The system model is shown in Fig. 6.2.

6.3.1 Queueing Model

We assume that the data packets arrive at the end of each time slot and are queued

in an infinite-size virtual buffer reserved for each legitimate user. The amount of the

data arriving in time slot t for user i, ai(t), is a random variable with finite moments

and cannot be transmitted until slot t + 1. Assume that the amount of the data of

user i being transmitted in the same time slot to the physical-layer security encoder

is si(t). The queue dynamic is as follows

Qi(t + 1) = Qi(t)− si(t) + ai(t),
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where Qi(t) is the amount of the data buffered in queue i in time slot t, and si(t) ≤
Qi(t) since the transmitted data size cannot be larger than the buffered data size.

6.3.2 Physical-Layer Security Encoder

The encoder uses Wyner’s encoding scheme [98] to encode the input data si(t), and

the output data size is ri(t), which should be equal to the available channel resource

that is allocated to user i in time slot t. The output data size should be no less than

the input data size, i.e., ri(t) ≥ si(t), and the difference ri(t) − si(t) quantifies the

ability to secure against the eavesdropper.

6.3.3 Channel Model

The output data from the physical-layer security encoder have been directly sent

through a wireless channel. For any time slot t, the received signals by legitimate

receiver i, denoted by yi(t), and by the eavesdropper, denoted by ye(t), are given by,

respectively

yi(t) = gi(t)xi(t) + wi(t),

ye(t) = ge(t)xi(t) + we(t),

where gi(t) and ge(i) are the complex fading coefficients from the BS to the legitimate

receiver i and the eavesdropper, respectively. wi(t) and we(t) represent the indepen-

dent and identically distributed (i.i.d.) additive Gaussian noise with unit variance at

the legitimate receiver i and the eavesdropper, respectively. Therefore, the channel

gains from the BS to the legitimate receiver i and the eavesdropper are γi(t) = |gi(t)|2
and γe(t) = |ge(t)|2, respectively.

Furthermore, we assume that the channel of each user is independent and each

channel experiences a block fading, i.e., the channel gain remains constant during

each time slot and changes independently across time slots. The fading process is

assumed to be ergodic and the distribution is bounded. The duration of each time

slot is long enough and Wyner’s encoding scheme can be performed within each time

slot.

The BS can obtain the instantaneous CSI of the legitimate receivers in each time

slot, but can only know the distribution of the channel fading between the BS and the

eavesdropper. As a result, {γe(·)} are i.i.d. random variables and {γi(·)} are known
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by the BS.

Assume that in each time slot, only one user can transmit its data, but the user

is not necessarily use all the time portion in one slot. The resource allocated to user

i in time slot t used for transmission is ri(t) satisfying

ri(t) ≤ τi(t) log(1 + p(t)γi(t)),

where p(t) is the allocated power in time slot t and τi(t) is the time portion used

for transmission. Note that τi(t) ≤ 1, so the above equation guarantees the reliable

communication between legitimate users and the BS. We further assume that the

system is subject to a peak power constraint in each time slot, i.e., p(t) ≤ 1 and we

assume that the maximal power is one.

6.4 Secrecy Outage Probability Revisited and Prob-

lem Formulation

Since the BS does not know the instantaneous CSI of the eavesdropper’s channel, it

is inevitable that secrecy outage happens. In this section we first revisit the secrecy

outage probability defined in the literature for a single-user wireless system with a

constant transmission rate, and discuss how the existing definition can be extended

to a single-user wireless system with channel-adaptive transmission rates.

For the system illustrated in Fig. 6.1, in the literature, there are two distinct

definitions of secrecy outage probability. In [5], the secrecy outage event is defined as

O(s) := {Cs < s}, where s is the target secrecy rate from Alice to Bob. The secrecy

outage probability is defined as

P out = P(Cs < s). (6.1)

As pointed out in [107], such a definition of the secrecy outage event does not distin-

guish between reliability and security, therefore may not be a proper design metric.

In [107], the author designed an alternative secrecy outage probability, which is a

conditional probability as

P out = P(Ce > r − s|message transmission), (6.2)
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where r is the transmission rate from Alice to Bob, and Ce is the channel capacity

from Alice to Eva.

The above two definitions of the secrecy outage probability only suit for the case

that s is a constant during transmission. But in practice, if Alice can observe Bob’s

channel and obtain the channel state information, then Alice can adaptively choose

s to minimize the secrecy outage probability. In the following, we extend the secrecy

outage probability to such a case.

6.4.1 Block-Level Secrecy Outage Probability

First note that, the data are transmitted block-by-block in a time-slotted wireless

communication system. A direct extension of the secrecy outage probability with

constant transmission rate is obtaining the secrecy outage probability slot by slot

and taking the average to obtain the average secrecy outage probability.

Consequently the secrecy outage probability in time slot t can be obtained as

P out(t) = P(Ce(t) > r(t)− s(t)|message transmission). (6.3)

Since the message transmission means s(t) > 0, and we further have

Ce(t) = τ(t) log(1 + p(t)γe(t)), (6.4)

r(t) = τ(t) log(1 + p(t)γ(t)), (6.5)

where p(t) and τ(t) is the power and time portion allocated to the user, so (6.3) can

be further simplified as

P out(t) = 1− F (
(1 + p(t)γ(t)) exp(− s(t)

τ(t)
)− 1

p(t)
), for s(t) > 0 (6.6)

where F is the cumulative distribution function (CDF) of γe
1, and Pout(t) is not

defined for s(t) = 0.

Then, the average secrecy outage probability at block level can be obtained as

P̄ out,BL = lim
T→∞

1

T

T
∑

t=1

P out(t). (6.7)

1Since {γe(·)} are i.i.d. random variables, t can be ignored.
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6.4.2 Bit-Level Secrecy Outage Probability

Note that (6.7) can only quantify how frequently the message is leaked to the eaves-

dropper and cannot quantify the percentage of the information that is leaked to the

eavesdropper, which can be quantified by the average secrecy outage probability at

bit level as

P̄ out,b = lim
T→∞

∑T
t=1 s(t)P

out(t)
∑T

t=1 s(t)
, (6.8)

where P out(t) is the same as (6.6).

Note that due to the special structure of (6.8), when obtaining P̄ out,b, the defined

domain of (6.6) is relaxed to s(t) ∈ [0,+∞).

6.4.3 Comparison

If s(t) is a constant for different t, then P̄ out,b is identical to P̄ out,BL, and the two

secrecy outage probabilities coincide with each other. If s(t) can change over time,

then generally the two probabilities are different, and the block-level secrecy outage

probability might not be a good metric in a system with adaptive transmission rates.

Suppose that the average target secrecy rate is R̄s, γ(t) = γ, and p(t) = 1.

From (6.6) and (6.7), we can observe that in order to minimize P̄ out,BL, τ(t) = 1.

Consider the following two transmission schemes. The first one is that for every slot

t, we have s(t) = R̄s. The second one is that we choose s(t) = ǫ with probability
log(1+γ)−R̄s

log(1+γ)−ǫ
and choose s(t) = log(1 + γ) with probability R̄s−ǫ

log(1+γ)−ǫ
. If (6.3) is a

concave function, then the second scheme can achieve a smaller average secrecy outage

probability, but only negligible data are transmitted to Bob without leaking the data

to Eva. Consequently, the block-level secrecy outage probability cannot properly

reflect whether the information is leaked to the eavesdropper or not in some scenarios.

On the contrary, the bit-level secrecy outage probability is a direct, quantitative

measure of the information leak, which is a more proper performance metric. In the

following, we only discuss the bit-level secrecy outage probability, and the superscript

‘b’ is omitted.
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6.4.4 Problem Formulation

We are interested in how to provide a best-effort security solution, since the secrecy

outage may be inevitable.

In each time slot, the scheduler determines how much data (si(t)) should be fetched

from the queue and sent to the encoder, and determines how to protect the data by

choosing an appropriate output data size of the encoder (ri(t)). Meanwhile, the

system should be stabilized if possible, i.e., queues in the system should be stable

and the average queue length over time is bounded.

In order to achieve a high level of secrecy, we need to minimize the secrecy outage

probability of the system, which is defined as the average weighted secrecy outage

probability of each user, i.e.,
∑

i uiP̄
out
i /N , where ui is the weight assigned to user i,

and

P̄ out
i = lim

T→∞

∑T
t=1 Ii(t)si(t)P

out
i (t)

∑T
t=1 si(t)

, (6.9)

P out
i (t) = 1− F (

(1 + p(t)γi(t)) exp(−si(t)
τi(t)

)− 1

p(t)
), (6.10)

where Ii(t) ∈ {0, 1} indicates which user is selected in time slot t for transmission,

and satisfies
∑

i Ii(t) ≤ 1.

Therefore, the scheduling problem can be formulated as:

min
∑

i uiP̄
out
i /N (6.11a)

s.t. ∀i, Qi is stable, (6.11b)

∀i, si(t) ≤ min(τi(t) log(1 + p(t)γi(t)), Qi(t)), (6.11c)

∀i, τi(t) ≤ 1, (6.11d)
∑

i Ii(t) ≤ 1, Ii(t) ∈ {0, 1} (6.11e)

p(t) ≤ 1. (6.11f)

Because ∀i, Qi is stable and every user achieves the rate stability, we have

lim
T→∞

1

T

T
∑

t=1

si(t) = lim
T→∞

1

T

T
∑

t=1

ai(t) = λi.

Further, we can observe that the optimum is obtained only if p∗(t) = 1. This
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is because the CDF function F is a monotonically increasing function, and ((1 +

p(t)γi(t)) exp(−si(t)/τi(t)) − 1)/p(t) is a monotonically increasing function of p(t).

Therefore P̄ out
i is minimized when p(t) is maximized. As a result, problem (6.11) can

be reformulated as

max limT→∞
1
T

∑T
t=1

∑

i
uiIi(t)si(t)

λiN
F ((1 + γi(t))e

− si(t)

τi(t) − 1)

s.t. ∀i, Qi is stable,

∀i, si(t) ≤ min(τi(t) log(1 + γi(t)), Qi(t)),

∀i, τi(t) ≤ 1,
∑

i Ii(t) ≤ 1, Ii(t) ∈ {0, 1},

which is a special case of the weighted-sum secure transmission rate maximizing

problem as follows

max limT→∞
1
T

∑T
t=1

∑

i wiIi(t)R
s
i (t) (6.12a)

s.t. ∀i, Qi is stable, (6.12b)

∀i, si(t) ≤ min(τi(t) log(1 + γi(t)), Qi(t)), (6.12c)

∀i, τi(t) ≤ 1, (6.12d)
∑

i Ii(t) ≤ 1, Ii(t) ∈ {0, 1}, (6.12e)

where Rs
i (t) = si(t)(1 − P out

i (t))|p(t)=1 is defined as the secure transmission rate of

user i in time slot t, and wi is the weight assigned to user i.

Note that in the above formulation we assume that the arrival rate λi is known to

the scheduler. If λi is unknown, by substituting λi with
1
t

∑t
k=1 ai(k), we can obtain

the equivalent problem formulation.

6.5 Weighted-Sum Secure Transmission Rate Max-

imization

6.5.1 Online Algorithm

According to the stochastic network optimization theory [60], in order to stabilize

the system, we can minimize the Quadratic-Lyapunov-drift bound. If the drift bound

satisfies certain conditions, then with the drift-bound-minimizing method, the system
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is stable.

Define the quadratic Lyapunov function of the system as

L(Q(t)) =
1

2

∑

i

Qi(t)
2,

then the one-slot conditional Lyapunov drift is

∆(Q(t)) = E[L(Q(t + 1))− L(Q(t))|Q(t)].

After calculation, we have

∆(Q(t)) ≤ E[
∑

i
ai(t)

2+si(t)
2

2
+Qi(t)(ai(t)− si(t))|Q(t)].

If the RHS of the above inequality is minimized, we have

∆(Q(t)) ≤ B − ǫ
∑

iQi(t),

where ǫ ≥ 0 is a constant and B is a constant that satisfies

B > E[
∑

i

ai(t)
2 + si(t)

2

2
|Qi(t)].

Then, based on Theorem 4.1 in [60], the system is stable.

By treating problem (6.12) as a multi-objective (maximizing secure transmission

and stabilizing queues) problem and using the penalty method, problem (6.12) is

solved by solving the following online problem in each time slot

max
∑

i IiQisi + V wiIiR
s
i (6.13a)

s.t. ∀i, si ≤ min(τi log(1 + γi), Qi), (6.13b)

∀i, τi ≤ 1, (6.13c)
∑

i Ii ≤ 1, Ii ∈ {0, 1}, (6.13d)

where V is a weight assigned to the secure transmission rate, which is used to show

the importance of such an objective. For presentation simplicity, the time slot index

t is omitted.

Note that the method used here is often referred to as the drift-plus-penalty
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method, and the optimality can be guaranteed according to [60]. However, in the

system under consideration, due to the subtle difference between the queueing model

presented in Sec. 6.3 and [60], the optimality cannot be guaranteed under some cir-

cumstances, which will be discussed later. But by using the stochastic network op-

timization to decompose the problem, it is possible to obtain an online algorithm

without the detailed knowledge of the channel information, which is of practical in-

terests.

Algorithm WSSTRM

Define ki = si/τi, gi(ki) = (1 + γi) exp(−ki)− 1 and Ui(ki) = Qiki + V wikiF (gi(ki)).

Problem (6.13) can be reformulated as

max
∑

i τiIiUi(ki) (6.14a)

s.t. ∀i, ki ≤ log(1 + γi), kiτi ≤ Qi (6.14b)

∀i, τi ≤ 1, (6.14c)
∑

i Ii ≤ 1, Ii ∈ {0, 1}. (6.14d)

Note that the above problem is solved by selecting user i∗ to transmit, where

i∗ ∈ argmax
i

U∗
i (k

∗
i ), (6.15)

and

U∗
i (k

∗
i ) = max

ki≤min(Qi,log(1+γi))
Ui(ki). (6.16)

The portion of time user i∗ used is τ ∗i = 1.

U∗
i (k

∗
i ) is obtained by solving (6.16) which might not be a convex problem, since

the convexity depends on function F and is generally unknown. But since (6.16) is

a one-dimensional problem in a closed set, the optimum solution can be obtained by

one-dimensional line search algorithms [7].

In order to perform the line search algorithm efficiently, it is important to know

the trend of Ui(ki), which is critical to the choice of the initial point. Define F̂ (ki) =
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F (gi(ki)), and G(ki) = kiF̂ (ki). We have

G
′

(ki) = kiF̂
′

(ki) + F̂ (ki),

G
′′

(ki) = kiF̂
′′

(ki) + 2F̂
′

(ki),

g
′

i(ki) = −1− gi(ki),

g
′′

i (ki) = gi(ki) + 1,

F̂
′

(ki) = F
′

(gi(ki))g
′

i(ki),

F̂
′′

(ki) = (gi(ki) + 1)2(F
′′

(gi(ki)) +
F

′

(gi(ki))

gi(ki) + 1
).

Typically, for a wireless channel, the distribution of the SNR has the property:

when γ < γt, F
′′

(γ) > 0; when γ > γt, F
′′

(γ) < 0, where γt is a SNR threshold.

As a result, when ki < kt1
i , F

′′

(gi(ki)) < 0; when ki > kt1
i , F

′′

(gi(ki)) > 0. Since
F

′
(gi(ki))

gi(ki)+1
> 0 always holds, we have when ki < kt2

i , F̂
′′

(ki) < 0; when ki > kt2
i ,

F̂
′′

(ki) > 0.

Note that F̂
′

(ki) < 0, so if F̂
′′

(ki) < 0, then G
′′

(ki) < 0. If F̂
′′

(ki) > 0, then

for ki < kt3
i , G

′′

(ki) < 0, and for ki > kt3
i , G

′′

(ki) > 0. In summary, we have that

G
′

(ki) first decreases and then increases. Since G
′

(0) > 0 and G
′

(log(1 + λi)) < 0,

so G
′

(ki) decreases from a positive value to a negative value, and then increases to

another negative value. So G(ki) should be first increasing and then decreasing, the

local maximum of G(ki) is the global maximum, and near the local maximum, G(ki)

is concave.

Since Ui(ki) = Qiki + V wiG(ki), Ui(ki) only has three possible trends. First is

that Ui(ki) first increases and then decreases. Second is that it increases. Third is

that it has an increase-decrease-increase trend.

Based on the above observation, (6.16) can be solved by finding the first local

maximum starting from 0, and comparing it with the boundary value to choose the

larger one.

6.5.2 Alternative Relaxed Offline Problem and Optimal So-

lution

Note that we have show that Rs
i |τi=1 first increases and then decreases, and near the

maximum of Rs
i |τi=1 it is concave. Although this cannot guarantee the objective is

concave, as the local maximum of Rs
i |τi=1 is also the global maximum, by solving
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the following relaxed problem, it yields the maximum secure transmission in the long

term.

The relaxed problem is as follows

max
∑

i wiE[R
s
i (γ)Ii(γ)] (6.17a)

s.t. ∀i, si(γ) ≤ τ(γ) log(1 + γi), (6.17b)

∀i, τi(γ) ≤ 1. (6.17c)

E[si(γ)Ii(γ)] = λi, (6.17d)
∑

i Ii(γ) ≤ 1, Ii(γ) ∈ {0, 1}, (6.17e)

where γ is the instantaneous channel gain vector. The partially augmented La-

grangian dual problem is

min
u

max
∑

i(wiE[Ii(γ)R
s
i (γ)] + uiE[Ii(γ)si(γ)]− uiλi) (6.18a)

s.t. ∀i, si(γ) ≤ τ(γ) log(1 + γi), (6.18b)

∀i, τi(γ) ≤ 1, (6.18c)
∑

i Ii(γ) ≤ 1, Ii(γ) ∈ {0, 1}. (6.18d)

Using the primal decomposition, and denoting ki(γ) = si(γ)/τi(γ), for each γ, we

need to solve the following problem

max
∑

i Ii(γ)τi(γ)ki(γ)(wiF ((1 + γi)e
−ki(γ) − 1) + ui) (6.19a)

s.t. ki(γ) ≤ log(1 + γi), (6.19b)

∀i, τi(γ) ≤ 1, (6.19c)
∑

i Ii(γ) ≤ 1, Ii(γ) ∈ {0, 1}. (6.19d)

The optimal solution to the above problem is selecting user i∗(γ) and use all the time

portion for transmission (τ ∗i∗(γ)(γ) = 1), where i∗(γ) ∈ argmaxi Ũ
∗
i (k

∗
i (γ)),

Ũ∗
i (k

∗
i (γ)) = max

ki(γ)≤log(1+γi)
Ũi(ki(γ)), (6.20)

and

Ũi(ki(γ)) = ki(γ)(wiF ((1 + γi)e
−ki(γ) − 1) + ui). (6.21)
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Since k∗
i∗(γ)(γ) should further satisfy

E[k∗
i∗(γ)(γ)|i = i∗(γ)] = λi, (6.22)

and k∗
i (γ) is a function of ui, as a result we can obtain u∗

i . A typical algorithm to

obtain u∗
i is the gradient descent method, and ui is updated based on

u
(l+1)
i = u

(l)
i − ǫ(l)(E[k

(l)
i (γ)τ

(l)
i (γ)]− λi),

where ǫ(l) is a step sequence and square summable [7], and k
(l)
i (γ) and τ

(l)
i (γ) are the

solutions of step l.

Discussion

Noting that u∗
i can be any value as long as u∗

i +wi > 0, this results that the solution to

(6.20) is not necessarily always positive. For some γ and u, k∗
i∗(γ)(γ) = 0, which means

that the user should not transmit in order to achieve a better secure transmission rate

in the long term. However, the online algorithm WSSTRM always selects a user to

transmit as long as the user has data to send, and hence it is not always optimal.

Comparing function Ui(ki) in the online algorithm with function Ũi(ki(γ)) in the

offline optimal algorithm, we can see that the purpose of Qi/V in Ui(ki) is similar to

ui in Ũi(ki(γ)) and conceptually Qi/V can be considered as an “online” Lagrangian

multiplier. However, as Qi/V ≥ 0 and u∗
i can be negative, conceptually the two

algorithms are not identical, if u∗
i < 0. As u∗

i < 0 only if λi is small, which suggests

that the algorithm WSSTRM cannot achieve optimality if λi is small. The algorithm

WSSTRM tries to make a tradeoff between two objectives: maximizing the secure

transmission rate and stabilizing the queues in the system. Note that when the arrival

rate is small, the requirement for stabilizing the queue becomes less important, as it

is possible any resource allocation algorithm can stabilize the queue. Consequently,

the scheduler only has one objective: to maximize the secure transmission rate and

the algorithm WSSTRM is failed to do so.

6.5.3 Refined Online Algorithm: Algorithm WSSTRM-R

Based on the above analysis, if we can replace Qi/V by another term which is a more

proper “online representation” of ui, then the resulting algorithm is possible to be an
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optimal online algorithm.

Replacing Ui(ki) in Algorithm WSSTRM by

Ûi(ki) = (Qi − V wi)ki + V wikiF (gi(ki)), (6.23)

with the same iteration structure as that in Algorithm WSSTRM, we have a queue-

length-shifted online algorithm, which is referred to as Algorithm WSSTRM-R later.

Note that Algorithm WSSTRM-R needs to solve

Û∗
i (k

∗
i ) = max

ki≤min(Qi,log(1+γi))
Ûi(ki), (6.24)

for each user which is slightly different from Algorithm WSSTRM, as the possible

increasing trend of Ûi(ki) = (Qi−V wi)ki+V wiG(ki) might be different from Ui(ki) =

Qiki+V wiG(ki), which depends on the value of Qi. But because G
′

(ki) first decreases

and then increases, if Qi−V wi < 0, then Ûi(ki) either decreases or first increases and

then decreases. As a result, if Û
′

i (ki) < 0 then the global maximum is achieved at

ki = 0, otherwise the algorithm to solve problem (6.24) is identical to the one solving

problem (6.16).

Note that Algorithm WSSTRM-R solves the following problem in each time slot:

max
∑

i IiQisi + V wiIi(R
s
i − si) (6.25a)

s.t. ∀i, si ≤ min(τi log(1 + γi), Qi), (6.25b)

∀i, τi ≤ 1, (6.25c)
∑

i Ii ≤ 1, Ii ∈ {0, 1}, (6.25d)

which is a decomposed sub-problem of the following problem

max limT→∞
1
T

∑T
t=1

∑

i wiIi(R
s
i (t)− si(t)) (6.26a)

s.t. ∀i, Qi is stable, (6.26b)

∀i, si(t) ≤ min(τi(t) log(1 + γi(t)), Qi(t)), (6.26c)

∀i, τi(t) ≤ 1, (6.26d)
∑

i Ii(t) ≤ 1, Ii(t) ∈ {0, 1}. (6.26e)
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Due to the stability constraint, we have

lim
T→∞

1

T

T
∑

t=1

∑

i

wiIi(t)si(t) =
∑

i

wiλi, (6.27)

which is a constant. As a result, problem (6.26) is equivalent to problem (6.12).

Consequently, Algorithm WSSTRM-R can stabilize the system and the performance

in terms of maximizing the weighted-sum secure rate should be no worse than Algo-

rithm WSSTRM. Furthermore, comparing Ûi(ki) with Ũi(ki(γ)), the feasible region

of Qi/V − wi is identical to ui, and as a result, Qi/V − wi can be considered as a

proper “online representation” of ui. In Sec. 6.7 we will show that indeed Algorithm

WSSTRM-R is an online optimal algorithm.

6.6 Case Study: Eavesdropper with an AWGN

channel

6.6.1 Algorithm WSSTRM

If the eavesdropper has an AWGN channel without fading, the secure transmission

rate of user i in time slot t becomes

Rs
i (t) = si(t)δ(ri(t)− si(t)− Ce(t)),

= si(t)δ([log(
1 + γi(t)

1 + γe(t)
)]+ − si(t)

τi(t)
),

where δ(x) is an indicator function. δ(x) = 1 if x ≥ 0 and δ(x) = 0 if otherwise.

Thus we have

Ui(ki) = Qiki + V wikiδ([log(
1 + γi
1 + γe

)]+ − ki). (6.28)

Denote Ri
e = max(log(1 + γi) − log(1 + γe), 0), which is the maximal supported

secure data size2 of user i that does not lead to secrecy outage. The transmission

2Ri

e
can also be viewed as the maximal supported secure rate, as we assume the slot length is

one second.
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strategy for user i is as follows

U∗
i (k

∗
i ) = (Qi + V wi)k

∗
i (6.29)

if Qi ≤ Ri
e or min( Qi

V wi
log(1 + γe),

Q2
i

Qi+V wi
) ≤ Ri

e ≤ Qi, where k∗
i = min(Qi, R

i
e);

otherwise

U∗
i (k

∗
i ) = Qik

∗
i , (6.30)

where k∗
i = min(Qi, log(1 + γi)).

The above transmission strategy can be explained as follows. When the available

data (Qi) is smaller than the maximal supported secure data size (Ri
e), the user should

use all the resources to transmit all the available data, and the data are fully protected

by the physical-layer encoder. If the SNR of the user is larger than a threshold, the

maximal supported secure data size is chosen and all the data are fully protected by

the physical-layer encoder; if the SNR of the user is worse, then the user should use

all the available resource or transmit all the available data, but the data are not fully

protected and secrecy outage happens with probability one.

6.6.2 Algorithm WSSTRM-R

Similar to Algorithm WSSTRM, the transmission strategy for user i is as follows:

U∗
i (k

∗
i ) = Qik

∗
i (6.31)

if Qi ≤ Ri
e or (Qi − V wi)min( log(1+γe)

V wi
, 1) ≤ Ri

e ≤ Qi, where k∗
i = min(Qi, R

i
e);

otherwise

U∗
i (k

∗
i ) = (Qi − V wi)k

∗
i , (6.32)

where k∗
i = min(Qi, log(1 + γi)).

Comparing Algorithm WSSTRM-R with Algorithm WSSTRM we can find that

the key difference lies in a threshold and such difference results in that the long-term

secure transmission rate can be improved when λi is small, i.e., Qi is small due to

Little’s law. If λi is small, Qi − V wi < 0 should almost always hold. Consequently

the data transmitted are always fully protected and the secure transmission rate is

identical to λi. While for Algorithm WSSTRM, when λi is small but Qi > Ri
e,
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whether the data can be fully protected also depends on the channel condition of

user i, and the transmitted data are not always fully protected and thus cannot be

optimal.

6.6.3 Offline Problem and Analysis

Similarly, we can obtain the solution to the relaxed offline problem as in Sec. 6.5.2,

and the transmission strategy for each user depends on the Lagrangian multiplier u∗
i

and is shown as follows.

Case 1 when u∗
i > 0: if γi ≥ (1 + γe)

1+u∗
i /wi − 1, then U∗

i (k
∗
i ) = (u∗

i + wi)k
∗
i (γi) and

k∗
i (γi) = Ri

e; otherwise U∗
i (k

∗
i ) = u∗

ik
∗
i (γi) and k∗

i (γi) = log(1 + γi).

Case 2 when u∗
i = 0: if γi ≥ γe then U∗

i (k
∗
i ) = wik

∗
i (γi) and k∗

i (γi) = Ri
e; otherwise

U∗
i (k

∗
i ) = 0 and k∗

i (γi) ∈ [0, log(1 + γi)].

Case 3 when −wi < u∗
i < 0: if γi ≥ γe then U∗

i (k
∗
i ) = (u∗

i + wi)k
∗
i (γi) and k∗

i (γi) = Ri
e;

if γi ≤ γe then U∗
i (k

∗
i ) = 0 and k∗

i (γi) = 0.

Case 4 when u∗
i ≤ −wi: U

∗
i (k

∗
i ) = 0 and k∗

i (γi) = 0.

Furthermore, the Lagrangian multiplier is determined by the arrival rate λ through

(6.22).

First we can see that Case 4 should never happen as using this transmission

strategy cannot achieve the rate stability. Second, if γi ≥ (1+ γe)
1+[u∗

i ]
+ − 1, then the

strategy is to always transmit data in Ri
e to achieve the maximal secure transmission

rate. Third, if γi < (1+γe)
1+[u∗

i ]
+ −1, then depending on the value of u∗

i , the strategy

decides whether to transmit and how many data to transmit. If u∗
i ≥ 0 then the user

transmits at a positive rate in order to achieve the rate stability; if u∗
i < 0, then the

user does not transmit as the rate-stable condition can be satisfied by the transmission

strategy when γi ≥ γe, which implies that the traffic load should be small. Fourth,

by comparing the offline optimal transmission strategy with the online algorithm,

the key difference is how to transmit data if the legitimate receiver’s channel is bad.

The online algorithm always tries to empty the queue, while the offline strategy will

stop transmission if the traffic load is small, which utilizes the information about the

traffic load explicitly.

In order to analyze the property of the solution, we restrict our attention to the

single legitimate receiver case.
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Denote

λth1
i =

∫ ∞

γe

log(
1 + γi
1 + γe

)fi(γi)dγi,

λth2
i = E[log(1 + γi)]− log(1 + γe)[1− F (γe)],

R̄i = E[log(1 + γi)],

R̄th
i (γ) =

∫ γ

0

log(1 + γi)fi(γi)dγi,

Re = log(1 + γe).

after some calculations, the maximal secure transmission rate can be obtained as:

if λi ≤ λth1
i ,

Rs∗
i = λi, (6.33)

and u∗
i < 0; if λth1

i ≤ λi ≤ λth2
i ,

Rs∗
i = λth1

i , (6.34)

u∗
i = 0; if λi ≥ λth2

i ,

Rs∗
i = λi − R̄th

i (γth) (6.35)

where γth is the solution to R̄i−λi

Re
= 1− F (γth) and u∗

i > 0.

As the secrecy outage probability for a single user is P̄ out
i =

λi−Rs∗
i

λi
, we have

P̄ out
i =















0, λi ≤ λth1
i ,

1− λth1
i

λi
, λth1

i ≤ λi ≤ λth2
i

R̄th
i (γth)

λi
, λth2

i ≤ λi.

From the above equation we can see that when the arrival rate is small, the user does

not experience secrecy outage, as the arrival traffic lies inside the secrecy capacity

region. When the arrival rate further increases, the secrecy outage probability also

increases, but with two different increasing speeds, related to the arrival rate.
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6.7 Evaluation and Discussion

6.7.1 Simulation Setting

In the simulation, we consider a system that contains N legitimate receivers and one

eavesdropper. Although the number of eavesdropper is limited to one, it is sufficient to

quantify the performance of the proposed algorithms and investigate the relationship

between the system performance and different network configurations. The channel

gains of the receivers and the eavesdropper are modeled as Nakagami fadings. So, γi

and γe are Gamma distributed random variables. The probability density function of

γi is

f(x) = (
mi

γ̄i
)mi

xmi−1

Γ(mi)
exp(−mix

γ̄i
), (mi ≥ 0.5),

and the CDF of γi is

F (x) =

∫ mix/γ̄i
0

tmi−1e−tdt

Γ(mi)
, (mi ≥ 0.5),

where mi is the fading parameter of user i, and γ̄i is the average channel gain of user

i. Note that, mi is used to control the variability of γi, and a small mi results in a

large variation of γi. When mi = 1, the Nakagami fading becomes a Rayleigh fading.

When mi → ∞, γi = γ̄i, the channel becomes an AWGN channel.

The amount of traffic arrival in each time slot ai(t) is a Poission random variable,

and the system frequency bandwidth is normalized to 1. So the units of the secure

transmission rate and the arrival rate are both bps/Hz and are omitted hereinafter.

We choose the parameter V as 100. During the simulation, we have run a sufficient

large number of time slots in order to ensure that the system converges to its steady

state, and the results are collected from the steady state. For each simulation setting,

we repeat ten times and take the average. Other parameters used for different network

configurations are listed in the caption of each figure.

6.7.2 Single Legitimate Receiver

We assume that the legitimate receiver experiences Rayleigh fading (mi = 1) with

mean SNR as 10dB (γ̄i = 10dB). By changing the channel setting for the eavesdropper

and the arrival rate of the data for the legitimate receiver we can investigate the
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Figure 6.3: Secrecy outage probability, single legitimate receiver, γ̄i = 10dB, mi = 1

performance of the secrecy outage probability.

When the eavesdropper experiences a Rayleigh fading channel (me = 1), the

corresponding secrecy outage probability is illustrated in Fig. 6.3-a. With the increase

of the arrival rate λ, the secrecy outage probability increases. However, with different

γ̄e, i.e., the SNR of the eavesdropper’s channel, the increasing speed is different.

When γ̄e = 7dB, the secrecy outage probability is roughly linear with λ. With a large

γ̄e, when λ is small, the secrecy outage probability increases quickly w.r.t. λ, and a

small increment of λ results in a large secrecy outage probability increase.

When the eavesdropper experiences Nakagami fading with me = 10, the results

are shown in Fig. 6.3-b. A similar trend as in Fig. 6.3-a can be observed. But note

that when γ̄e is small and λ is also small, the secrecy outage probability is almost

zero and is not related to λ.

Fig. 6.3-c illustrates the secrecy outage probability when the eavesdropper expe-

riences an AWGN channel without fading (me = ∞). Similar to Fig. 6.3-b, we can

see when λ is small, the system is able to achieve zero secrecy outage, which confirms

the analysis in Sec. 6.6.

From all the above three figures we can see that, Algorithm WSSTRM cannot

achieve the optimal secrecy outage probability when the arrival rate is small, which

validates our analysis in Sec. 6.5, as when the arrival rate is small, Qi/V wi is not

a proper “online representative” of the Lagrangian multiplier. But when the arrival

rate is large, Algorithm WSSTRM can achieve the optimal secrecy outage probability,

as under this circumstance Qi/V wi can properly represent the Lagrangian multiplier

as it is positive. Further note that the curves of Algorithm WSSTRM-R are always

overlapped with the curves of the optimal results, which indicates that Algorithm

WSSTRM-R is optimal.



127

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arrival Rate (λ)

S
ec

re
cy

 O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

WSSTRM−R
Optimal

γ
e
 = 7dB

γ
e
 = 13dB

γ
e
 = 10dB

Figure 6.4: Secrecy outage probability, multiple legitimate receivers, γ̄i = 10dB,
mi = 1, me = ∞

6.7.3 Multiple Legitimate Receivers

As Algorithm WSSTRM cannot achieve optimality even in a system with a single

legitimate receiver, in this subsection, we only discuss Algorithm WSSTRM-R and

the optimal results, showing that in the multiple legitimate receivers case, Algorithm

WSSTRM-R is also optimal.

During the simulation, we use N = 5, λ = [1, 2, 3, 4, 5]/15 × λ, where λ is the

aggregated arrival rate. We assume that all legitimate receivers experience Rayleigh

fading (mi = 1) and have identical γ̄i = 10dB. The result that when the eavesdropper

experiences an AWGN channel is illustrated in Fig. 6.4. Firstly, comparing with

Fig. 6.3-c, the trend in Fig. 6.3-c is preserved in the multiple legitimate receivers case.

Furthermore, in the multiple legitimate receivers case, the secrecy outage probability

is smaller than that in the single legitimate receiver case when the system is subject

to the same arrival rate, because of the capacity increasing thanks to the multi-user

diversity. Secondly, the curve of AlgorithmWSSTRM-R is overlapped with that of the

optimal result suggests that Algorithm WSSTRM-R is an optimal online algorithm

in the multi-legitimate-receiver case, and is able to stabilize the queues in the system,

achieve reliable communication and minimize the secrecy outage probability.
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6.8 Conclusions

In this chapter, we investigated the secrecy outage probability in multiuser wireless

systems with stochastic traffic. We defined the secrecy outage probability in a system

with channel-adaptive transmissions and discussed how to minimize it subject to

the communication reliability and queue stability constraints. Stochastic network

optimization framework has been used to decompose the problem into an online

problem, and an online algorithm WSSTRM was proposed. We further discussed an

alternative offline problem and based on the study of the offline problem, we found

that the first proposed online algorithm may not be optimal. Motivated by this,

we proposed a refined online algorithm WSSTRM-R. Furthermore, We discussed and

analyzed the transmission strategy if the eavesdropper experiences an AWGN channel

and further compared the proposed algorithms. Simulation results confirmed that

when the traffic load is small, Algorithm WSSTRM is not optimal, but the algorithm

WSSTRM-R is indeed optimal. Furthermore, several observations were obtained on

the relationship between the secrecy outage probability of the system and traffic

load, channel conditions, etc. These observations provide important insights and

guidelines for the design and resource management of future wireless systems using

secure communication technologies.
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Chapter 7

Conclusions and Further Research

Issues

7.1 Conclusions

In this dissertation, we have discussed various aspects of scheduling and resource

allocation in multi-user wireless systems.

1. We have discussed the resource allocation problem in a saturated multi-user

wireless system using superposition coding to fully explore the capacity of the

broadcast channel, and proposed scheduling algorithms in a practical system

with hierarchical modulation and demonstrated the remarkable performance

improvement.

2. The stability regions of utility-based opportunistic scheduling algorithms in a

multi-user wireless system with stochastic traffic are derived and the structure

properties have been discussed. The results show that the stability region might

be non-convex which is harmful for the operation of wireless systems.

3. The limiting properties of an overloaded multi-user wireless system with throughput-

optimal scheduling algorithm have been quantified and the corresponding through-

put is analyzed. The results can be used to quantify the transient system per-

formance in a temporary overloaded system which is of practical interests.

4. Secrecy outage probability in a multi-user wireless system has been investigated

through a resource allocation problem and we have proposed two optimal al-

gorithms, one online and one offline. We have further investigated the impact
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of channel condition and arrival rate on the secrecy outage probability which

can be further used as design guideline in a system using information-theoretic

security technologies.

7.2 Further Research Issues

There are many open issues beckon for further research in the topics we discussed in

this dissertation.

1. For the work on the scheduling in a SPC/HM-aided wireless system, we list

the possible further research issues as follows. First, the algorithm proposed in

Chapter 2 can be easily extended to a system with parallel GBC, by adding

an iterative multi-user water-filling algorithm associating the power allocation

to each parallel channel, as in [82, 61]. This will further increase the compu-

tational complexity and the low complexity solution should be investigated in

the future. This work also opens up many cross-layer problems beckoning for

further research, e.g., how to optimize resource allocation with SPC considering

the application layer traffic characteristics and multicast scenarios [41, 104, 40].

Second, although CSI feedback in PFS has been well investigated in [17], the

discussion should be extended to the multi-user case, as in SPC/HM-aided

wireless system, multiple users may get scheduled in each time slot. Third,

the performance of the heuristic algorithm for J-layer HM case discussed in

Chapter 3 should be further investigated. As the optimal algorithm for J-layer

HM requires to search for all the possible combination, which leads to a high

computational complexity, it is important to study the tradeoff between the

throughput gain and the computational complexity. Fourth, how to extend the

solution in Chapter 3 to a coded HM-based system and to consider HARQ re-

quires further investigation. A possible approach is by discretizing the power

allocation to constrain the number of transmission modes (i.e., modulation and

coding schemes given the power allocation) then obtaining a SNR-transmission

mode mapping. However, this approach cannot be applied to the case with

coded modulation (such as trellis-coded modulation) directly.

2. For the work on the stability region on the opportunistic scheduling, we have the

following directions should be studied in the future. First, what is the impact

of ǫ when updating the smoothed rate measurement. If ǫ is not proper, the
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smoothed rate measurement may not be able to converge, especially if the flow

exhibits a bursty feature. Thus the rate allocation is not stationary, and the

resultant impact on the stability region is unclear. Second, given the average

arrival rate, how to design the weight to each user to stabilize the system and

how the designed weight affects the system performance needs to be investigated

further.

3. Regarding the limiting properties in overloaded wireless systems with throughput-

optimal scheduling, there are several open issues left behind. First, we have

assumed the achievable rate region C(t) is always an N -dimension region. But

in practice, if the channel is deep faded, the corresponding user may have zero

achievable rate, and we cannot always increase the allocated rate of one user by

decreasing the rates of other users. Second, the throughput-optimal schedul-

ing considered is only queue-length based, which excludes the delay-driven

throughput-optimal scheduling. Given the linear relationship between delay

and queue length[3], the analysis for delay-driven throughput-optimal may have

a similar result. Third, some queue-length based throughput-optimal schedul-

ing algorithms, such as EXP-rule [73], are excluded from the discussion. How

to extend our work to consider a more general throughput-optimal scheduling,

such as the one proposed in [105] remains an open issue.

4. In Chapter 6, we have shown that directly apply stochastic network optimiza-

tion framework may not lead to the optimal results, since the queue length

might not be a proper representation of the Lagrangian multiplier. However,

we have also shown that by reformulating the original problem, stochastic net-

work optimization framework can be directly used and leads to the optimal

results. It is important to revisit the stochastic network optimization to un-

derstand this interesting behavior, which might improve the theory and lead to

more applications.
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