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ABSTRACT

In the last several years the number of computer network attacks has increased

rapidly, while at the same time the attacks have become more and more complex

and sophisticated. Intrusion detection systems (IDSs) have become essential security

appliances for detecting and reporting these complex and sophisticated attacks. Se-

curity officers and analysts need to analyze intrusion alerts in order to extract the

underlying attack scenarios and attack intelligence. These allow taking appropri-

ate responses and designing adequate defensive or prevention strategies. Intrusion

analysis is a resource intensive, complex and expensive process for any organization.

The current generation of IDSs generate low level intrusion alerts that describe

individual attack events. In addition, existing IDSs tend to generate massive amount
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of alerts with high rate of redundancies and false positives. Typical IDS sensors re-

port attacks independently and are not designed to recognize attack plans or discover

multistage attack scenarios. Moreover, not all the attacks executed against the target

network will be detected by the IDS. False negatives, which correspond to the attacks

missed by the IDS, will either make the reconstruction of the attack scenario impossi-

ble or lead to an incomplete attack scenario. Because of the above mentioned reasons,

intrusion analysis is a challenging task that mainly relies on the analyst experience

and requires manual investigation.

In this dissertation, we address the above mentioned challenges by proposing a

new framework that allows automatic intrusion analysis and attack intelligence ex-

traction by analyzing the alerts and attacks semantics using both machine learning

and knowledge-representation approaches. Particularly, we use ontological engineer-

ing, semantic correlation, and clustering methods to design a new automated intrusion

analysis framework. The proposed alert analysis approach addresses many of the gaps

observed in the existing intrusion analysis techniques, and introduces when needed

new metrics to measure the quality of the alerts analysis process. We evaluated ex-

perimentally our framework using different benchmark intrusion detection datasets,

yielding excellent performance results.
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Chapter 1

Introduction

Webster (online dictionary) defines the word intrusion as the act of wrongfully en-

tering upon, seizing, or taking possession of the property of another. In the realm of

computer networks an intrusion is the act of violating a security policy by an unau-

thorized entity. Intrusion alert analysis or alert correlation is one of the most active

research topics in the field of intrusion detection systems (IDS). IDS alert analysis

focuses on interpreting intrusion alerts and extracting attack intelligence.

1.1 Context

The recent growth in computer networks and their applications made them very

appealing target for intrusions. An intrusion or an attack 1 represents an external

or internal malicious activity that violates an organization security policy [32, 5, 75].

One of the most popular and severe classes of cybercrimes is network intrusion. In

general, this class of attacks is based on the flaws and vulnerabilities that exist in

network protocols and software components. Network intrusions can result in loss of

1In this dissertation, the terms intrusion and attack have the same meaning, thus they are used
interchangeably.
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confidentiality, loss of integrity, or unavailability of the target. The target could be

any resource such as a computer, a network device, or other assets that belong to an

individual or an organization.

To protect computers and networks from intrusions we need to detect and un-

derstand intrusion attempts. Intrusion detection refers to the set of approaches to

detect malicious actions against the target. Intrusion analysis refers to the process

of establishing a clear understanding of intrusion occurrences or attempts. The most

common approach to detect intrusions is by using an intrusion detection system (IDS),

which is a security appliance that can automatically monitor computers and networks

to detect intrusion attempts. The most common approach for intrusion analysis is

IDS alert analysis or alert correlation. IDS alert analysis or alert correlation is a

sub-branch of event correlation.

There are many ways to categorize intrusion detection systems (IDSs). One way is

based on the scope of detection, where an IDS can be either a network-based intrusion

detection system (NIDS) or a host-based intrusion detection system (HIDS). Network-

based IDS monitors network traffic to detect intrusions and malicious activities that

are carried over the network. Host-based IDS monitors local host activities and

resources such as local processes, system calls, and file systems to detect intrusion

attempts. Here it is important to note that some intrusions can only be detected by

NIDS while others can only be detected by HIDS. It is also important to mention

that the detection of some complex or multistage intrusions requires using both NIDS

and HIDS.

Another categorization of IDS, based on the detection approach, identifies three

categories of IDS, namely, signature-based IDS, anomaly-based IDS, and specification-

based IDS. Signature-based IDS uses an intrusion signature database to detect intru-

sion attempts. An intrusion attempt occurs if the network traffic or the system calls
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match some of the signatures in the database. Anomaly-based IDS learns the normal

behaviors of a target system, and then monitors this target for abnormal behaviors,

which are flagged as intrusions. Specification-based IDS uses a set of rules to decide

if a set of actions violates a specification of how the system should work. It consid-

ers any violation of the system specification as an intrusion attempt. Each of these

categories has its strengths and weaknesses. More details about intrusion detection

approaches and taxonomies can be found in [51, 10].

An important aspect of an organization protection strategy is to detect malicious

behaviors and analyze the intrusion patterns. Usually, organizations deploy firewalls

and NIDSs to protect their networks from network intrusions. Firewalls operate over

the the network and transport layers. They allow or deny incoming or outgoing traffic

using sets of rules. An IDS will analyze the traffic that was allowed by the firewall

to go through the network. When the IDS suspects that the network traffic involves

an intrusion or a security threat to the target, it raises an alarm. The IDS reports

intrusion attempts by generating intrusion alert messages. As we can see, the IDS

is only responsible for reporting intrusion attempts but it does not do anything to

prevent these attempts.

An extension to IDS, known as intrusion prevention system (IPS), attempts to

prevent intrusions. In fact, most IDSs can work as intrusion prevention systems

(IPSs). Despite the differences between IDSs and IPSs, both types of systems generate

alert messages to report detected or prevented intrusion attempts. In this dissertation

we focus on IDS alert analysis and correlation, without making any distinction on the

origin of the alerts, whether generated by an IDS or an IPS.
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1.2 Limitations of Intrusion Detection Systems

The current generation of intrusion detection systems suffers from several drawbacks

that reduce the effectiveness of the intrusion detection process. Here we will focus on

the limitations that are related to IDS alert messages. This is because these are the

problems that raise the need of IDS alert analysis. In general, there are four major

problems related to IDS alert messages, namely, alerts flooding, false positives, lack

of interoperability, and isolated alerts, that we discuss in this section.

1.2.1 Alerts Flooding

Alerts flooding is a well known problem in IDS. Because of the rapid growth of

network traffic, bandwidth, and size, an IDS sensor may potentially generate a huge

number of alerts. For instance, it has been shown in a real case study that a single

IDS sensor in an enterprise could generate over 400 alerts per minute and 400,000

alerts on average per day [47], while the network was not really under attack. If the

network was under real attack, the IDS could generate hundred of thousands of alerts

per hour. Responding to this massive number of alerts in reasonable time is almost

impossible and resource-intensive. Even with a large team of intrusion and security

analysts, managing alert flooding remains expensive and challenging. Therefore, it

is important to develop new techniques that can manage effectively and efficiently

alerts flooding.

1.2.2 False Positives

Another major problem with current IDSs is the massive number of false positives

generated on a daily basis as shown by several studies [8, 16, 53, 80]. False positives

occur when a normal behavior is considered by the IDS as malicious, and a false alert
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is generated as a consequence. There are many reasons that can cause the IDS to

generate false alerts. For instance, normal behaviors not seen in the learning phase

of an anomaly-based IDS system will likely be treated as malicious. A network appli-

cation that does not follow the Request for Comments (RFC) might seem malicious.

Also, a signature-based IDS might use broad or weak signatures that would be trig-

gered by both normal and malicious actions. In addition, a malicious action that is

not harmful to the target can result in false alerts. This is because the IDS lacks

environmental information such as the target network configuration information. For

instance, the lack of environmental information may cause an attack that is relevant

only to Windows platform, to trigger an IDS alert, even if the target is a Unix system

or patched against this attack.

False positives can significantly decrease the quality of the attack intelligence

extracted from the alerts. For example, false positives can result in reconstructing

false attack scenarios that never happened while missing the true attack scenarios.

Likewise, investigating false positives is a time consuming and expensive process for

the intrusion analyst, because rather than focusing on true attacks, the analyst will

spend most of his time investigating malicious events that never happened. Therefore,

it is important to create effective techniques for reducing the number of false positives.

This will allow improving the quality of the extracted attack intelligence and the

effectiveness of the attack response and mitigation process.

1.2.3 Interoperability Challenge

The third major problem with IDS alert messages is the lack of interoperability be-

tween different IDS sensors. Today with the large variety of attack methods and

software available, it is common to use heterogeneous (different types of) IDS sensors

to cover the different stages of a typical attack. Alerts generated by heterogeneous
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IDS sensors may use different keywords, vocabularies, and formats, which poses an

interoperability challenge when it comes to investigating heterogeneous multi-sensor

alerts as a response to intrusion attempts. For example, the same attack may trigger

an alert generated by a network-based IDS and another alert generated by a host-

based IDS. Now, because the two IDS sensors use different vocabularies and formats,

the two alerts may look as if they are describing different attacks. This lack of inter-

operability between the sensors complicate the task of the intrusion analyst during

the investigation of intrusion attempts.

Many efforts have been done to support interoperability in heterogeneous IDS. To

our knowledge, the greatest effort made so far to address the interoperability problem

is the definition of the Intrusion Detection Message Exchange Format (IDMEF).

The IDMEF is a common formatting scheme proposed by the Internet Engineering

Task Force (IETF) as a solution to address the interoperability challenge in IDSs.

However, the IDMEF provides only a syntax for formatting (in a unified way) IDS

alerts produced by different IDS sensors. The IDMEF does not provide or specify

the keywords and vocabularies used by the alerts to describe the attacks. In other

words IDMEF lacks the semantics constructs, which limits its ability to capture the

link between similar alerts formatted using syntactically different message structures.

Therefore, the IDMEF does not provide a robust solution for the interoperability

problem.

1.2.4 Isolation

The last major problem with IDS alerts is isolation. IDSs generate isolated low-level

alerts that describe individual attack events. However, most of these low-level alerts

are actually related to a larger intrusion pattern that involves either a single intru-

sion instance or a multistage intrusion. This means that there is some logical relation
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between these individual or isolated alerts, which could be explicit or implicit. Intru-

sion detection systems are not designed to detect or report such relationships between

individual alerts, because trying to detect them can be a bottleneck and significantly

decrease the IDS performance. However, discovering the relationships between alerts

is very important for an intrusion analyst, as these are essential in understanding the

intrusion pattern or scenario, and in order to take adequate response.

1.3 Intrusion Alert Analysis

As we mentioned before, an IDS reports intrusion attempts and relies on other se-

curity tools and analysis to investigate and respond to these attempts. An intrusion

analyst is an individual who has the knowledge and expertise to interpret, investi-

gate, and understand IDS alerts and other security log files. The intrusion analyst

investigates IDS alerts to extract attack intelligence, which allows identifying the com-

promised resources, spotting the system vulnerabilities, and determining the intruder

objectives and the attack severity. Using this information, the analyst can define

the necessary security policies, take appropriate responses, and design or recommend

adequate defensive and preventive strategies.

In general, IDS alert analysis process includes at least four main tasks, namely,

alert normalization, alert verification, alert aggregation, and alert correlation. Some-

times the term alert correlation is used to refer to the IDS alert analysis process. An

intrusion analyst is responsible for performing these tasks. We describe each of these

tasks in the following.

Alert Normalization: consists of converting the alerts generated by heteroge-

neous IDS sensors into a common format that take into account both the syntax

and the semantic of the alerts. This is a required and essential step when dealing
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with heterogeneous IDS sensors, and allows addressing the underlying interoperability

challenge.

Alert Verification (also known as alert filtering): consists of examining IDS

alerts in order to remove false positives. In practice, this may consist of examining

the intrusion target to look for any sign of compromise, and then deciding accordingly

whether or not an alert should be classified as true or false positive.

Alert Aggregation (also known as alert fusion): consists of grouping sim-

ilar alerts generated by one or more IDS sensors and summarizing these alerts by

generating high-level views of the intrusion attempts. It is important that the alert

aggregation does not result in losing important information such as security relevant

information. The main objective of alert aggregation is to manage the alert flooding

problem and reduce the cost of alert analysis process.

Alert Correlation: consists of finding relevant IDS alerts by discovering implicit

and explicit relations between them. Relevant alerts are alerts that belong to the

same intrusion pattern or are part of a single multistage intrusion. Alert correlation

is used to handle the problem of isolated alerts in intrusion detection systems. Alert

correlation allows the reconstruction of intrusion scenario and discovery of intrusion

patterns.

As we can see IDS alert analysis is an after the fact process that aims at investi-

gating intrusion attempts and extracting useful intelligence information. Therefore,

we can view intrusion alert analysis as an intrusion forensics task.

1.4 Research Problem

IDS alert analysis is a critical process for organizations and IDS users. Unfortunately,

IDS alert analysis is a very expensive, time consuming, and resource intensive process.
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The currently available IDS alert analysis systems are limited to query engines

capabilities without advanced investigation and analysis techniques. As a result, in

many cases, IDS alert analysis is performed manually by a team of intrusion ana-

lysts. Although there are tools that can assist the human operator in collecting and

interpreting the alerts, the task of verifying the existence of malicious activities, es-

tablishing underlying scenarios, and identifying their sources is currently based to a

large extent on a manual and adhoc process that falls on the shoulder of the human

analyst. Considering the massive amount of data to analyze and the different data

sources to cover, we can easily understand why IDS alert analysis is a complex and

time consuming process. In this context, the automation of the IDS alert analysis

becomes a necessity.

Several approaches have been proposed in the research literature to automate the

alerts analysis process. However, these approaches are limited to specific intrusion

analysis task, such as alert verification, alert aggregation or correlation, and fail to

address several major challenges in IDS alert analysis, such as noisy data, uncertainty,

novel attack scenarios, etc.

Automating the alert analysis process raises some key challenges as this requires

converting the existing ad-hoc approaches into systematic analysis techniques and

converting existing expert knowledge into intelligent analysis and decision-making

mechanisms. In this dissertation, a new framework for IDS alert analysis using

knowledge-based and machine learning approaches is proposed. The proposed frame-

work provides new techniques for alert normalization, verification, aggregation, and

correlation. The framework proposed in this dissertation is expected to help intru-

sion analysts by improving the intrusion analysis process, enhancing the intrusion

response or mitigation, and reducing the cost of the intrusion analysis process. The

framework addresses in particular a specific set of key intrusion analysis challenges
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summarized as follows:

1. Proposing a knowledge representation technique that enables alert messages

interoperability between heterogeneous IDS sensors.

2. Defining a robust and systematic technique to describe and measure the simi-

larity between alert messages, that works both for known and novel intrusions.

3. Developing a technique allowing the discovery of implicit and explicit logical

relations between isolated alerts that belong to the same intrusion pattern or

multistage intrusion.

4. Integrating in a coherent fashion the different tasks involved in a typical intru-

sion analysis process.

1.5 General Approach

In our opinion, intrusion alert analysis is a process that totally depends on the in-

vestigator knowledge and experience. Therefore, we believe that the most promising

method to automate this process is by combining knowledge representation (KR) and

machine learning techniques to design a robust IDS alert analysis framework. Our

approach focuses on taking basic expertise or knowledge about intrusion alerts anal-

ysis shared by intrusion analysts and representing such information in a form that is

systematic and machine-readable.

The recent developments in semantic web and ontology engineering have opened

the door to applying ontology and semantic analysis in the area of intrusion alert

analysis. We use an ontology to represent the domain of intrusion analysis, and

develop new techniques for intrusion alert analysis using semantic correlation based

on semantic similarity, semantic relevance, and semantic reasoning.
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On top of the intrusion analysis knowledge base, we introduce several techniques

that use this knowledge for automated intrusion alert analysis. To build these new

analysis techniques we apply different machine learning and knowledge-representation

methods, including example-based learning, clustering, graph mining, and inductive

and deductive reasoning.

1.6 Research Contributions

The following key contributions are made in this dissertation:

1. An ontology-based approach to handle intrusion alerts interoperability chal-

lenges. The ontology allows us to propose a common IDS alert message format

that takes into account both the semantic and syntax of the alert. The use

of ontology enables the use of semantic analysis to correlate IDS alerts based

on their semantic characteristics. The proposed model can easily be integrated

with other IDS standards such as IDMEF. The use of an ontology provides the

ability to build an intrusion analysis knowledge-base that is flexible and extensi-

ble, and facilitates the integration of the different intrusion alert analysis tasks

highlighted earlier. This contribution has been published in two conference

papers [66] and [67]

2. A new technique for false positives reduction and alert verification. We proposed

two new methods for alert verification. The first method uses alert context and

semantic similarity with a nearest neighbors classifier to eliminate false positives.

The second method applies a computational model inspired by human immune

system and uses ontology and rule induction for alert verification. The proposed

technique requires less environmental-awareness in comparison to previous alert

verification techniques. This contribution has been published in one conference
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paper [81] and a submitted journal paper [71].

3. A new technique for aggregating intrusion alerts and managing alert flooding

that measures the semantic similarity between intrusion alerts using new se-

mantic similarity metrics. The proposed technique has several advantages over

previous techniques, such as actual alerts reduction and summarization. In ad-

dition, we propose a new metric to measure the amount of information loss

resulting from aggregating alerts. This allows better evaluation of the alert ag-

gregation process and avoiding loss of security relevant information. None of the

existing alert aggregation techniques have dealt with the impact of information

loss on the aggregation process. We designed two methods for alert aggrega-

tions. The first method applies a hill climbing method to aggregate raw alert

based on the taxonomic structure of the intrusion ontology. The second method

uses semantic similarity to aggregate alerts. The second method is effective in

detecting information loss and avoid losing important security relevant informa-

tion during the alert aggregation process. This contribution has been published

in two conference papers [65, 64], and one journal paper [68].

4. A new intrusion scenario reconstruction technique. The proposed technique

applies semantic-based clustering to build alert correlation graph and a clique-

based analysis to extract attack patterns from the correlation graph. In addition

we proposed a new method for attack causality analysis using attack impact and

semantic correlation. Finally, we proposed a new method to tolerate false neg-

atives and predict missing attack steps. This contribution has been published

in one conference paper [69] and one journal paper [70].
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1.7 Dissertation Organization

The remainder of this dissertation is structured as follows:

Chapter 2 reviews major work in the field of intrusion alert analysis. A dis-

cussion of the strengths and weaknesses of related work on alert verification,

aggregation and correlation is presented.

Chapter 3 identifies the requirements and challenges of IDS alert analysis

process, and then introduces the proposed alert analysis framework.

Chapter 4 introduces our intrusion analysis knowledge-base. The chapter

summarizes the requirements involved in designing and developing an intrusion

analysis knowledge-base. It also illustrates the use of ontology and semantic

correlation for intrusion analysis.

Chapter 5 introduces novel techniques for alert normalization, verification,

aggregation, and correlation. It also explains how these new techniques address

the challenges and requirements discussed in Chapter 3.

Chapter 6 presents the experimental evaluation of the proposed framework and

techniques, by describing the evaluation method and datasets, and discussing

the obtained performance results. In addition, it presents the details of the

framework prototype and its implementation.

Chapter 7 makes some concluding remarks and outlines some ideas for future

work.
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Chapter 2

Related Work

Intrusion alert analysis techniques can be categorized into the following three main

categories: alert verification, alert aggregation, and alert correlation. Alert verifi-

cation focuses on classifying alerts as either true positives or false positives. Alert

aggregation focuses on managing alerts volume and reducing the effect of the alert

flooding problem. Alert correlation focuses on finding related alerts that belong to

the same attack pattern or scenario. Several works have been proposed under each

category. In this chapter we discuss some of the notable works proposed in each

category.

2.1 Alert Verification

Several alerts verification and false positives reduction techniques have been proposed

in the literature. Most of the proposed techniques mainly use environmental knowl-

edge to classify alerts as true positives or false positives. Other alerts verification

techniques in the literature use heuristics and statistical analysis.
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2.1.1 Techniques based on Environmental Awareness

Alerts verification techniques using environmental knowledge can be subdivided into

passive and active methods according to how they obtain environmental knowledge.

Active methods collect the environmental knowledge directly after the generation of

the alert. This means when the alert verification system receives a new alert, the

system will start gathering environmental knowledge and use it to decide whether or

not the alert is a false positive. On the other hand passive techniques only gather

the environmental knowledge statically, usually at the deployment time and then use

the gathered information to verify incoming alerts. On one hand, the information

collected with active methods always reflect the current state of the target, while

the information collected with passive methods can be outdated and less accurate.

For example, passive methods will lack information about new services or updates

that happened after the deployment. On the other hand active methods are more

expensive than passive methods and usually slower than passive methods.

Eschelbeck and Krieger proposed a false positive reduction technique using an

active method [24]. The proposed technique combines an IDS sensor, namely Snort,

with a vulnerability assessment scanner (named QualysGuard). The verification of

an alert generated by the IDS simply consists of using the vulnerability scanning tool

to check whether or not the target system is vulnerable to the attack reported by the

IDS. If the system is not vulnerable the alert will be considered as a false positive.

Shimamura and Kono proposed a false positive reduction technique using an active

method [74] that is built around a new Network Intrusion Detection System (NIDS)

that stores, in addition to the attack signatures, knowledge about the behaviors of

compromised systems for different types of attacks. When the NIDS detects an in-

trusion attempt it will delay the alert and monitor the target system for any sign of

compromise. An alert will be generated only if the NIDS detects any behavior that
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matches the successful attack consequence.

Kruegel and Robertson proposed a false positive reduction technique using an

active method [35] that combines the Snort IDS with a Nessus vulnerability scanner.

The proposed system can be used for real-time IDS alerts verification, and an attempt

is made to minimize the gap between the time of detection by the IDS and the time

of verification by the vulnerability scanning tools. This is very important for online

alerts verification.

Xiao and Debao proposed an alert verification technique that combines active

and passive methods [89], with the goal of minimizing the cost of the active compo-

nent. The passive component of the proposed technique consists of a knowledge-base

that describes the target network by storing information about the target Operating

System (OS), running services, network topology, user account, etc. The active com-

ponent of the technique consists of the Nessus vulnerability scanner. They classified

the alerts into two categories based on whether the corresponding attack require an

active method or a passive method. If an alert is classified as a true positive by the

passive method, then it will be double checked with the active method. This allows

reducing the impact of outdated knowledge base.

2.1.2 Techniques based on Heuristics and Statistical Analysis

A few alert verification techniques do not depend on environmental awareness knowl-

edge directly, and instead, use machine learning and statistical analysis to learn the

characteristics of true and false alerts.

The work by Viinikka and colleagues falls under this category. Specifically, the

authors proposed a false positive alerts reduction technique by analyzing the time

characteristics of alerts stream [86]. Alerts are categorized into trend alerts, periodic

alerts and random alerts based on the time characteristics of the alerts, and it is
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shown that most of the time trend and periodic alerts are false positives. The pro-

posed theory, however, is illustrated using specific attack signatures, and therefore

can hardly be generalized. As a matter of fact, some malicious software can cause an

IDS to report alerts in a periodic manner.

Pietraszek proposed an alerts verification technique using machine learning [58].

In the proposed technique, each alert message is represented by a set of features and

each message is labeled as either true or false alert. Then the labeled messages are fed

into RIPPER, a rule learner algorithm, to construct a rule based classifier that can

distinguish between true and false alerts. The main issue with this technique is that

the features representing the alerts are very specific (e.g. source IP and destination IP

addresses). This is likely to make the classifier very sensitive to specific target network

and as a result will limit the ability to use the rules generated by the classifier with

other targets.

Ning and colleagues proposed an alerts correlation technique using alerts causality

analysis to extract attack scenario and reduce false positives [52]. They assume that

true attacks typically trigger more than one attack signatures and therefore the IDS

will likely generate several alerts that are causally related. This means that the alerts

that cannot be correlated with other alerts are mostly false positive alerts. This

assumption might be true for a multi-step attack, but there are many cases (e.g. a

denial of service attack such as the land attack) where an attacker can simply attack

the system by sending a single or a few packets that will trigger at most one signature.

2.1.3 Limitations of Existing Alert Verification Techniques

As mentioned above, the majority of the existing works on alert verification relies

primarily on the use of environmental knowledge to distinguish between false and

true positives. However, the reliability of these techniques is questionable because
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of their reliance on vulnerabilities scanning tools. Likewise, existing vulnerabilities

scanner tools suffer from both false positives and false negatives in their outputs. In

other words, the scanning tools can easily provide misleading information that can

flaw the verification process. In addition, using an active verification technique that

relies on vulnerability scanning tools can be unsafe. In this case, to check whether the

system is vulnerable to a certain attack, the scanning tool needs to execute the attack

against the target, and this can crash the target or disturb its operations. Moreover,

building and maintaining a database of the target system environmental information

(e.g. configuration, running services, policies, installed software, updates and patches)

or even building a vulnerability database using a vulnerability assessment tool is

expensive and often not possible when dealing with large and complex networks.

While most of the existing alert verification techniques rely on environmental

awareness, the remaining techniques either entirely ignore environmental information

or use assumptions and heuristics about the characteristics of the false positives. Un-

fortunately, this also results in unreliable alert verifications because it is not possible

to define all the heuristics that are necessary to detect all possible false positives. In

addition, it is important to be careful when generalizing these heuristics, because the

chance of missing true attacks can increase. This represents a serious security threat

for the target and decreases the reliability of the alert analysis process.

2.2 Alert Aggregation

A significant amount of papers on alerts aggregation based on single IDS sensor has

been produced in the literature. In contrast, only a few papers on multi-sensor alerts

aggregation have been published. Single sensor alerts aggregation techniques assume

that the alerts have the same format and attributes because they were reported by
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the same IDS sensor or sensors from the same vendor. Multi-sensor alerts aggregation

take into account the fact that the alerts may have different formats and attributes

because they could be generated by different IDS sensors, possibly from different

vendors. In this section, we summarize and discuss related works under each of these

two categories of alerts aggregation techniques.

2.2.1 Single Sensor Alerts Aggregation

Zhigong proposed a real-time alert aggregation and correlation System [95] that uses

five attributes, namely, source IP, source port, destination IP, destination port and

intrusion signature. Three metrics are defined to capture attributes similarity. These

metrics, however, are very trivial. For instance, one of the metrics, which captures the

similarity between intrusion signatures, simply returns 1 if two signatures are equal

and zero otherwise. With the proposed technique, alerts based on different intrusion

patterns would probably not be aggregated.

Xu and colleagues proposed a graph-based technique to aggregate alerts based on

the intrinsic order between them referred to as happened before relation [92]. The

technique was evaluated with the DARPA 2000 dataset yielding an alerts reduction

rate of 64.2%. The main issue with this technique is the high runtime required to

construct an alert graph and the assumption of low false positive rate of the IDS

which is not always the case in practice.

Hofmann and Sick proposed an online intrusion alert aggregation system [30] in

which alerts attributes are divided into two types: categorical attributes and continu-

ous attributes. Examples of categorical attributes are intrusion class, IP address and

port number. Examples of continuous attributes are alert time and packet size. Sev-

eral metrics were defined to capture the similarity between categorical attributes. It

is assumed that categorical attributes have a multinomial distribution while continu-
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ous attributes have a normal distribution. A maximum-likelihood estimation (MLE)

method is used to design a parametrized probabilistic model that clusters or aggre-

gates alerts. Experimental evaluation of the proposed technique with the DARPA

dataset and two private datasets yielded alerts reduction rates above 98%.

Wen et al. proposed a lightweight intrusion alert fusion system [88]. The pro-

posed system, called cache-based alert fusion scheme, was inspired from the working

mechanism of the CPU cache by applying the concept of Least Recently Used (LRU).

The authors believe that the cache-based mechanism can improve the run-time of

the aggregation algorithm. Experimental evaluation of the proposed technique with

different IDS datasets (DARPA, Treasure hunt and Defcon) yielded an average alert

reduction rate of about 91%.

Two other alerts aggregation techniques have been proposed in [85]. The first

technique, known as attack thread reconstruction, aggregates a series of raw IDS

alerts into a hybrid alert if there is a perfect match between raw alerts attributes,

which as mentioned above is limited. Experimental evaluation of this technique using

the DARPA 2000 dataset yielded an alerts reduction rate of 6.61%. The second tech-

nique, known as attack focus recognition, can aggregate IDS alerts based on different

intrusion patterns such as one-to-many or many-to-one attack scenarios. However,

the technique cannot aggregate alerts that are the results of the same intrusion at-

tempt but have different intrusion signatures. Experimental evaluation of this second

technique yielded an alerts reduction rate of 49.58% with the DARPA 2000 dataset.

Mohamed and colleagues [48, 49] proposed a target centered alerts aggregation

technique based on three alert attributes, namely, the destination IP address, the

attack signature (type), and the alert message timestamp. An attempt is made to

improve the runtime of the technique by comparing the hash value of the attributes

values instead of the actual attributes values. A subset of the DARPA dataset was
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used to evaluate the technique yielding an alert reduction rate of 86.49%. There are

two main problems with this technique. First the aggregated alerts are simply grouped

into clusters rather than being converted into hybrid alerts. Therefore, the number

of alerts messages is not really reduced with this technique. The second problem

is due to the fact that the technique ignores other important alerts attributes such

as the source of the attack and the destination port, which will result in the loss of

important information required in other alerts analysis tasks such as false positives

reduction.

Mahboubian and colleagues proposed an alert verification and aggregation tech-

nique inspired by the human immune system [45]. The authors use a set of predefined

attack patterns such as one-to-one, many-to-one, and one-to-many to aggregate alerts.

After grouping the alerts based on the attack patterns, an artificial immune system

combined with a threshold is used to check whether or not the alerts groups relate to

dangerous activities. The aggregated alerts that do not trigger the threshold are con-

sidered false positives. Experimental evaluation of the approach using the DARPA

2000 dataset yields alerts reduction rates of 97.02% and 98.5% for the LLDOS2.0

and LLDOS1.0 subsets, respectively. No information regarding the false positives

reduction rate was provided. The proposed approach suffers from several drawbacks.

Firstly, the aggregation is limited to predefined patterns. Secondly, it is possible that

there are overlapping alerts between different attack patterns. Thirdly, the fact that

alerts verification depends on the attack pattern confidence or threshold introduces

risk of misclassification where true alerts are considered as false positives.

Zhuang and colleagues proposed an alerts aggregation technique using a set of

similarity metrics to capture the similarity between alerts attributes [96, 90]. Experi-

mental evaluation of the technique yielded an alerts reduction rate of 98.7% with the

DARPA 2000 dataset. The proposed technique, however, cannot be used to aggregate
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alerts generated by different IDS sensors.

Jie and colleagues proposed an alerts aggregation model that uses binary matching

to aggregate alerts, and groups alerts based on whether or not there is a perfect match

between their attributes [44]. Evaluation with the DARPA dataset shows that the

proposed technique can reach an alerts reduction rate of 90%.

Julisch and colleagues proposed an alerts aggregation technique that uses hier-

archical clustering algorithm [33]. Using their own dataset they showed that the

proposed approach can reach up to 90% alert reduction rate. This proposed ap-

proach has some similarity to our alert aggregation approach we propose in this

dissertation. However, there are several features in our approach that distinguish our

from the Julisch’s approach. For instance, our approach use an ontological engineer-

ing method to build attribute taxonomy, while Julisch’s approach did not describe

a systemic method to build the hierarchical structure. Our approach uses seman-

tic clustering using a new semantic similarity metric proposed in this dissertation.

Julisch’s approach use the hierarchical structure and shortest path distance to sum-

marize alerts. Therefore, Julisch’s approach in our opinion can overgeneralize the

summarized alerts and loss security relevance information. In our alert aggregation

approach we proposed a model to measure information loss rate and evaluate the

quality of the aggregation process.

2.2.2 Multi-Sensor Alerts Aggregation

To our knowledge, the first multi-sensor alert aggregation technique was proposed

by Valdes and colleagues. [84]. The proposed technique uses a similarity function

to aggregate alerts that match closely but not necessarily perfectly. Meta alert and

alert templates are defined and used to describe IDS alerts. Given a pair of alerts, the

similarity function returns for each alert attribute a value between 0 and 1 that reflects
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the similarity between corresponding attributes. To deal with different intrusion

patterns a set of rules referred to as Situation-Specific Similarity Expectation are

defined. It is not clear, however, how the authors measure the distance between

different intrusion classes. Likewise the proposed technique seems to lack a general

mechanism to measure the similarity between different intrusion classes. Evaluation

of the technique using a private dataset collected from the lab of the authors, yielded

alerts reduction rates between 50%-67%. However, an important limitation of the

evaluation process was that while the proposed technique was intended for multi-

sensor alerts aggregation only a single IDS sensor was used to generate the alerts

involved in the evaluation dataset.

Xu and colleagues proposed an alerts aggregation and fusion technique that can

aggregate alerts generated by multiple IDS sensors [91]. The technique uses a multi-

keywords scheme to cluster IDS alerts and route clustered alerts to a sensor fusion

center (SFC). Each SFC aggregates received alerts based on their source, destination,

and attack class. This technique, however, cannot process alerts generated from dif-

ferent intrusion patterns. Although a dataset obtained from the DShield project was

used to illustrate the technique, no quantitative performance measure was provided.

Fan and colleagues proposed a distributed IDS alert aggregation technique [25]. In

the technique, raw IDS alerts collected from different IDS sensors are first converted

to IDMEF format. Then, the converted alerts are processed by an alerts aggregation

algorithm that categorizes them into four intrusion classes named discovery, scan,

DOS, and privilege escalation. For each class of intrusions a similarity function is

used to measure the similarity between alerts attributes. Alerts that belong to the

same category will be aggregated or fused into meta-alerts. Experimental evaluation

of the technique using the DARPA 99 dataset yields an alert reduction rate of about

43.42%.
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Debar and colleagues proposed an alerts aggregation and correlation technique for

alerts generated by sensors from different vendors [19]. Alerts received from different

sensors are expected to be in a standard format such as the Intrusion Detection Mes-

sage Exchange Format (IDMEF). Four alerts attributes are used for the aggregation,

namely, the source, target, alert class, and alert severity. The received alerts are

aggregated based on a set of aggregation rules called aggregation situations. Each

aggregation rule generates a different meta-alert for the same set of raw IDS alerts,

which leads to different aggregation views for the same set of raw IDS alerts. One of

the main limitations of the proposed technique is the requirement of perfect match

which means that alerts based on different intrusion patterns may not be aggregated.

The proposed technique was illustrated only through a case-study. The lack of exper-

imental evaluation meant that no information was provided about the alert reduction

rate.

Taha and colleagues proposed a multi-agent system for alerts aggregation and

correlation [78] for decentralized IDS architecture. The proposed system consists of

a collection of agents. The agent collects the alerts from the different IDS sensors in

the network and converts the raw alerts format to the Intrusion Detection Message

Exchange Format (IDMEF). In addition, the agent uses a set of rules to handle the

alert reformatting process. These rules are initially defined by the administrator.

The agent is responsible for choosing the appropriate filter that will process the

alerts. The filters are used to aggregate and correlate the alerts based on specific

attack patterns. Five filters or attack patterns are used, namely, Fusion, One-to-

One, Network-Host, One-to-Many, and Many-to-One. The proposed technique was

evaluated using the DARPA 2000 dataset and other public IDS dataset, yielding an

average alerts reduction rate between 0.7% and 59.5%.
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2.2.3 Limitations of Existing Alert Aggregation

As discussed above, only a small number of multi-sensor alerts aggregation techniques

have been proposed in the literature. These techniques mostly use a common format

to represent alert messages from different sensors such as IDMEF. However, this only

solves the alert message format problem, but cannot ensure that the keywords used

by the different sensors to describe the same alert attributes have the same meanings.

This of course will limit the performance of the aggregation technique. Likewise, the

few existing multi-sensor aggregation techniques either achieved relatively low alert

aggregation rates or simply did not report any quantitative performance results. This

raises the need of formal alerts representations that consider both the structures and

semantics of the alert messages.

Several of the existing alerts aggregation techniques require perfect match of the

alerts attributes in the aggregation process. While these techniques do not suffer

from information loss, they have very poor performances and do not really address

the alert flooding problem. In fact their capability is limited to the elimination of

redundant alerts only. On the other hand aggregation techniques that use attribute

similarity yield promising performances with alert reduction rates reaching 99% for

some techniques. However, none of these techniques consider the quality of the gener-

ated hybrid or meta alerts. All the proposed techniques lack an appropriate method

to assess the effect of information loss that occur in the aggregated alerts. While the

problem of information loss has been pointed out in the literature [13, 30], no metric

or technique has been proposed to handle this aspect.

On the other hand, techniques that aggregate alerts by grouping every set of

similar alerts into one cluster avoid information loss. However, these techniques do

not really reduce the amount of generated alerts, because the number of alerts before

the aggregation remains the same after the aggregation. Therefore, these techniques
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only perform alert clustering but not alerts reduction, which should be the primary

goal of alert aggregation.

2.3 Attack Scenario Reconstruction

As we mentioned before, it is common in the literature to use the term alert correlation

to refer to the attack pattern and attack scenario reconstruction. There are two

commonly used metrics to evaluate the majority of the proposed techniques in the

literature. These two metrics are the completeness (also known as the true detection

rate) and the soundness of the alerts correlation. The two metrics were proposed

by Ning et al [52]. Completeness is computed as the ratio between the number of

correctly correlated alerts by the number of related alerts (i.e. that belong to the same

attack scenario). Soundness is defined as the ratio between the number of correctly

correlated alerts by the number of correlated alerts. The completeness metric captures

how well we can correlate related alerts together while the soundness metric assesses

how correctly the alerts are correlated. Several techniques have been proposed in

the literature for attack scenario reconstruction. The proposed techniques fall into

one of three main categories based on the type of data analysis methods involved as

explained below.

2.3.1 Similarity and Data Mining Techniques

The first category of attack scenario reconstruction techniques use data clustering

and data mining methods either to cluster alerts based on their attributes similarity

or to mine alerts sequences in specific time interval. Under this category fall the

techniques proposed by Li et al., Ding et al, and Al-Mamory and Zhang, respectively.

Li and and colleagues investigated multi-step attack scenario reconstruction using
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association rule mining algorithms [40]. The authors assumed that multi-step attacks

often happen in a certain time interval and based on this assumption an attack

sequence time window is defined and used for association rule mining. The DARPA

2000 dataset was used to evaluate the proposed technique yielding attack scenario

detection rate of 92.2%.

Ding and colleagues proposed an attack scenario reconstruction model by extend-

ing the apriori association rule mining algorithm to handle the order of intrusion alerts

occurrence [22]. The authors introduced, more specifically, a time sequence apriori

algorithm for mining intrusion alerts with respect to their order of appearance. The

DARPA 1999 dataset was used to evaluate the proposed algorithm. The evaluation

results show that the true scenario detection rate is 76% while the soundness of the

technique is 53%.

Al-Mamory and Zhang proposed a lightweight attack scenario reconstruction tech-

nique by correlating IDS alerts based on their statistical similarity [3]. In the proposed

technique, similar raw IDS alerts are grouped into meta-alert (MA) messages. An at-

tack scenario is generated by correlating MA messages using a relation matrix (RM)

that defines the similarities between every two MA messages. Using the DARPA

2000 dataset, it was shown that the completeness and the soundness of the proposed

technique were 86.5% and 100%, respectively.

2.3.2 Machine Learning Techniques

The second category of attack scenario reconstruction techniques use machine learning

methods to learn attack patterns from existing dataset. We found in the literature

that few techniques used machine learning methods to reconstruct the attack scenario.

Here we cover some these techniques.

Oliver and Cunningham proposed an attack scenario reconstruction technique us-
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ing machine learning method based on n-gram analysis [17]. The proposed technique

combines alerts produced by one or more heterogeneous IDS sensors into scenarios,

and use positive and negative training to build attack scenario membership functions.

The scenario membership of a new alert is determined in time proportional to the

number of candidate scenarios. The technique was evaluated using a dataset obtained

from the DEFCON 8 hacker conference "capture the flag", yielding attack scenario

reconstruction accuracy of 88.81%.

Ourston and colleagues proposed a multi-step attack scenarios reconstruction tech-

nique using Hidden Markov Model (HMM) [55]. The proposed technique builds one

HMM for each attack category involved in the different phases of a multi-step attack.

The IDS alerts collected from one or more sensors are stored in a database, and then

preprocessed to remove false positives. The preprocessed alerts are assembled into

examples to be used by the HMM. Finally, the results of the HMM classification are

presented to a human expert who can modify them in case of errors and then store

them back into the database. The model was evaluated with a dataset collected by

the authors; the results show that the technique can reconstruct correctly 90% of the

attack scenarios.

Zhang and colleagues used a fuzzy clustering algorithm coupled with an attack

knowledge base for attack scenario reconstruction [94]. The fuzzy clustering algo-

rithm uses several fuzzy distance functions to measure the similarity between alerts

signatures, intrusion sources, intrusion targets, application protocols, and intrusions

time. Given a set of alerts, the corresponding attack scenario is reconstructed by

correlating the alerts based on the prerequisites and the consequences of the attack

defined in the attack knowledge base. The intrusion (or attack) prerequisites are the

necessary conditions for the intrusion to occur and the intrusion consequences are the

outcomes of successful intrusions. The technique was evaluated using the DARPA
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LLDOS 2.0 2000 dataset. The performance of this technique was not evaluated using

the completeness and soundness metrics. Therefore, it is difficult to compare it to

other alert correlation techniques in the literature.

Anbarestani and colleagues proposed an alert correlation technique for attack

scenario reconstruction using Bayesian network [7]. The proposed technique uses

Bayesian network (BN) model to capture the causal relationship between alerts. The

approach consists of generating for a given a set of alerts, all possible orders or se-

quences of the alerts in this set. Each sequence of alerts represents a candidate

attack scenario. Candidate attack scenarios are validated by computing their proba-

bility using the BN model and selecting the candidate with the highest probability as

the correct attack scenario. The proposed technique was evaluated using the DARPA

2000 LLDOS1.0 dataset achieving 96.72% completeness and 100% soundness.

2.3.3 Knowledge-based Techniques

The third category of techniques use, in most cases, rules for attack scenario recon-

struction, and represent attack scenarios and attack knowledge using formal methods.

In addition to rule-based methods, some techniques use expert systems and prede-

fined attack scenario templates to process the IDS alerts and reconstruct the attack

scenarios.

Ning and colleagues proposed an attack scenario reconstruction technique by cor-

relating intrusion alerts based on the prerequisites and the consequences of the intru-

sion [52]. The proposed technique involves the following five components: knowledge

base, alert preprocessor, correlation engine, alert correlation graph generator, and

graph visualization module. The alert preprocessor processes the raw intrusion alerts

and converts them into high-level intrusion alert referred to as hyper alert. The

knowledge base contains the intrusion prerequisites and consequences, as well as a
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predefined template for hyper alerts. The correlation engine correlates the produced

hyper alerts to reconstruct the attack scenario. The alert correlation graph generator

converts the attack scenario into a graph structure. Finally, the graph visualization

module visualizes the graph representing the attack scenario. The DARPA 2000 DOS

1.0 attack scenario dataset was used to evaluate the proposed technique yielding an

equal value for the completeness and soundness of 93.96% .

An attack scenario reconstruction technique based on knowledge representation

and expert system was proposed by Ding [21]. The proposed technique uses a rule-

based hierarchical model where the rules describe the properties of the attacks. The

hierarchical model consists of three main layers: scenario layer, rule layer, and at-

tribute layer. The scenario layer is used to describe the different stages of the attack

in abstract form. The rule layer is a formal description of the scenario layer imple-

mented using the CLIPS expert system engine [15]. The rule layer involves two main

types of rules named initial rules and clustering rules. The attribute layer contains

facts describing the scenarios. The attack scenario is reconstructed by extracting at-

tributes values from the IDS alerts and creating the facts of the attribute layer using

the initial rules from the rule layer. Then, the created facts are used in matching

clustering rules in the rule layer to reconstruct the attack scenario. The authors did

not provide any experimental results about the correctness of the proposed system.

Liu and colleagues proposed a multi-step attack scenario reconstruction technique

using predefined attack models [42]. The proposed technique defines attack models

that an attacker may follow to break in the system. Each defined attack model

follows a general attack pattern involving four phases: probe, scan, intrusion, and

goal. The attack scenario reconstruction is executed over three main stages, namely,

preprocessing stage, attack graph construction stage, and scenario generation stage.

The proposed technique was evaluated using the DARPA 2000 LLDOS1.0 dataset
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achieving 87.12% completeness and 86.27% soundness.

Ebrahimi and colleagues proposed an attack scenario reconstruction technique

using intrusion prerequisites and consequences [23]. The proposed technique uses five

alert attributes, namely, the source IP address, source port, destination IP address,

destination port, attack type, and alert timestamp. Based on these attributes, similar

alerts are grouped using binary matching into different groups where each group

of similar alerts represents a candidate attack scenario. For each candidate attack

scenario, a set of rules is used to analyze the causality between the corresponding

alerts and reconstruct the attack scenario. The technique was evaluated qualitatively

using the DARPA 2000 dataset. Since, no quantitative metrics (e.g. completeness

and soundness) was used in the evaluation, it is difficult to compare it to other

alert correlation techniques in the literature. The idea of grouping similar alerts into

candidate attack scenarios and then processing these candidate attack scenarios to

reconstruct the attack scenario enhances the efficiency of the reconstruction process

by reducing the cost of the attack causality analysis. However, the use of simple

similarity metrics such as binary match reduces the effectiveness of the technique and

limits it to simple attack scenarios.

Yan and colleagues proposed FAR-FAR as a frame-based and first-order logic tech-

nique for attack intelligence gathering [93]. The FAR-FAR technique represents IDS

alerts in normalized and semantic form, and uses backward-chaining reasoning using

semantic rules to reconstruct attack scenarios. It is based on four stages: aggregation,

normalization, correlation, and visualization. For each collection of alerts generated

by the same sensor the FAR-FAR technique aggregates the alerts to remove redundant

alerts. The aggregated alerts from different sensors are normalized and converted into

uniform frame structure using linguistic case grammar and intrusion domain ontol-

ogy. Then, in the correlation phase the normalized alerts are processed using attack
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scenario production rules (collection of if-then statements) and facts obtained from a

knowledge base to infer the hidden attack scenario. Finally, the visualization mod-

ule creates an attack graph to represent the inferred attack scenario. The DARPA

1999 and 2000 datasets were used to evaluate the FAR-FAR technique. The evalu-

ation results show that the technique can reconstruct correctly 92.9% of the attacks

scenarios.

Rekhis and Boudrga proposed another formal method-based technique for the re-

construction of attack scenarios [61]. They designed a logic-based digital investigation

model using Temporal Logic of Actions (TLA) in which the attack scenario is defined

as a series of recurrent and reusable actions. The attack scenario inference process

involves the following three phases: initialization phase, forward-chaining phase, and

backward-chaining phase. Using both forward and backward chaining, the technique

can identify all possible attack scenarios. The forward-chaining identifies a specific

attack scenario based on the collected evidences. On the other hand the backward-

chaining identifies alternative attack scenarios that lead to the last action in the attack

scenario produced in the forward-chaining phase.

Li and colleagues proposed the use of semantic web techniques to design an

ontology-based attack scenario reconstruction technique [39]. The knowledge base

in the proposed technique contains the attacks prerequisites, attack consequences,

and predefined attack scenarios. The attacks knowledge is used to create an alert

correlation ontology frame in which the attacks scenarios are represented. The pro-

posed technique focuses only on the representation of the attack knowledge using

ontology and other semantic web technologies but it does not describe how to use the

knowledge base to identify attacks scenarios during the investigation. The authors

mentioned that they will implement a correlation reasoner as part of their future

work.
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Al-Mamory and Zhang proposed an attack scenario reconstruction technique in-

spired by lexical analyzers and formal grammar [4]. An attribute grammar is used to

construct the attack scenario and represent the causality between the attack steps.

The attribute grammar also carries the information about the attack scenarios and,

the prerequisites and consequences of the attacks. The proposed technique was eval-

uated using the DARPA 2000 LLDOS1.0 dataset achieving 96.41% completeness and

100.00% soundness.

2.3.4 Limitations of Existing Alert Correlation Techniques

Attack scenario reconstruction techniques that use similarity and data mining meth-

ods can handle large amount of IDS alerts and in general can reconstruct novel and

unknown attack pattern. They suffer, however, from several limitations. One of these

limitations is the inability of the techniques to reconstruct complex or sophisticated

multi-step attack scenarios. This is because similarity and data mining methods can-

not detect causality between individual attacks. Another important issue is their

proneness to construct incorrect attack scenarios. For instance, the alert clustering

process may lead to overlapping alerts clusters. Alerts from the same scenario may

end up in different alerts clusters, while alerts from different scenarios may be placed

in the same cluster. It is not possible, however, for one alert instance to belong to

two different attack scenarios at the same time. Such situation can occur because

either an alert actually belongs to one scenario and is falsely clustered into the other

scenario, or there is only one real attack scenario, and the reconstruction technique

falsely assumes that there are two scenarios.

Attack scenario reconstruction techniques that use machine learning can recon-

struct both simple and complex attack scenarios from the alerts stream. However,

these techniques are unable to reconstruct novel attack scenarios unseen during the
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training phase and they require re-training for each new deployment; likewise these

techniques are limited to known attack scenarios. Of course, it is impossible to find a

training dataset that covers all possible attack scenarios. This means novel and un-

known attacks scenarios can not be detected unless the system is retrained. The cost

of learning new attack scenarios is usually expensive with machine learning methods.

Also, the risk of overfitting the model can result in a poor attack scenario reconstruc-

tion system. Detecting overfitting with complex problems such as attack scenario

reconstruction is expensive. Moreover, some of these techniques are not fully auto-

mated and require, as a result, significant human supervision. On the other hand,

the reliance on predefined attack scenarios helps minimize the number of false attack

scenarios generated.

Attack scenario reconstruction techniques that use knowledge-based methods can

detect the causality relations between attacks and reconstruct multi-step attacks.

These techniques use hard coded knowledge to represent causality relations and attack

models or scenarios. This hard coded knowledge has several problems. For instance,

some techniques store templates or descriptions for possible attacks scenarios. In

this case a minor difference between the attacks and the templates can prevent the

construction of the attack scenario. The same problem exists with causality relations

since these techniques rely on explicit knowledge. These techniques are unable to

detect hidden and implicit relations between attacks, which makes it difficult for

them to recognize attack scenarios with implicit causal relationships. For instance,

they do not tolerate false negatives (i.e. missing alerts). Another major problem with

knowledge-based techniques is related to the implementation and maintenance of the

knowledge base. To represent the knowledge required to reconstruct the attacks,

most of the techniques rely on complex methods that are not easy to use. This limits

the ability of intrusion analysts and security experts to update and maintain the



35

knowledge-base.

2.4 Summary

In this chapter we presented the state of the art in IDS alert correlation and analysis.

In the literature we found that previous works in the area of alert correlation focus

on three main tasks, namely, alert verification, alert aggregation, and attack scenario

construction. In alert verification, the majority of the proposed techniques apply en-

vironmental awareness knowledge to filter alerts and eliminate false positives. Alert

aggregation techniques mainly apply extraction methods based on known attack pat-

terns and focus on alerts generated in single sensor environment. Attack scenario

construction is the most active problem in alert correlation. Many approaches were

proposed in the literature. These approaches applied data mining, machine learning

and knowledge-based techniques to analyze alerts and reconstruct attack scenarios.

We explained the limitations of existing alert correlation techniques. In the next

chapters we present our novel approach to tackle the limitations of existing IDS alert

correlation approaches.
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Chapter 3

Intrusion Alert Analysis

Intrusion alert analysis is one of the most active research directions in the field of in-

trusion detection system. In general, there are four main tasks in IDS alert analysis,

namely, alert normalization, alert verification, alert aggregation, and alert correlation.

There are some other tasks, such as attack attribution, attack profiling, intent recog-

nition, and impact analysis but these tasks are less common and greatly depend on

the other four main tasks. Actually, the majority of the research contributions in alert

analysis focus on alert correlation, and more specifically, on attack plan recognition

and multistage attack scenario reconstruction.

It is common in the literature to use the term alert correlation to refer to the

entire alert analysis process. This may be because alert analysis is a sub-category of

event correlation. The field of alert analysis lacks common terminologies, which can

hinder collaboration between researchers.

In this chapter we introduce the terminologies we are using in our research to

avoid possible confusion. Then, we revisit the main challenges in IDS alerts analysis.

We focus on the challenges that affect the correctness and the automation of the

alert analysis process. At the end of this chapter we propose an IDS alert analysis
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framework that can handle the alert analysis challenges.

3.1 Terminology

The field of IDS alert analysis is filled with inconsistent terminologies. This makes

it difficult to discuss, understand, and relate the various works published on this

topic. For this reason we introduce in this section the terminologies used through

this dissertation.

Attack: an event, that violates an organization security policy through the exploita-

tion of some existing vulnerability. An attack can be either an intrusion (event de-

tected in the inbound traffic) or an extrusion (event detected in the outbound traffic).

In practice, the term intrusion is used to refers to both intrusion due to inbound traffic

and extrusion due to outbound traffic. Similarly, we will use in the rest of the thesis

the term intrusion to refer interchangeably to refer to either type of attacks".

Attack Pattern: a collection of events or actions that are known to be taken gener-

ically by an individual with malicious intent to execute an attack.

Alert: a message generated by the IDS to report an intrusion/extrusion attempt.

Each alert message is expressed by a set of n alert attributes that convey specific

information.

Alert Attribute: a field in the alert message that describes a characteristic of the

intrusion reported by the alert, such as the source IP address or port of the intrusion,

or the time or type of intrusion. The value of the alert attribute could be numerical

or symbolic; the majority of alert attributes values are symbolic data.

Alert Fingerprint: the set of alert attributes that are sufficient to distinguish be-

tween different alerts. This set of alert attributes usually contains the intrusion source

and destination addresses, and the intrusion type and timestamp. In multi-IDS en-
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vironment, additional information such as the IDS sensor name or ID may be added

to this set of attributes.

Normalized Alert: any raw IDS alert formatted using a common format that con-

siders both the syntax and the semantic of the alert attributes.

Verified Alert: is a normalized alert that has been validated using one or more alert

verification technique. A normalized alert can be a true or false alert. On the other

hand a verified alert is an alert that the analyst or the alert analysis system believes

to be a true alert.

Raw Alert: an alert generated directly by a specific IDS sensor. In other words it is

an alert described using the default format and vocabularies of the IDS sensor, before

any normalization or preprocessing.

Alerts Stream: a collection or a sequence of intrusion alerts generated by hetero-

geneous IDS sensors. Usually an alerts stream consists of raw IDS alerts.

Hybrid Alert: a high-level (in terms of abstraction) alert message that represents

and summarizes a set of normalized alerts. Hybrid alerts are obtained by aggregating

low level (or more specific) alerts.

3.2 IDS Alert Analysis Challenges

The main objective of alert analysis techniques is to automate as much as possible

any of the tasks involved. This means designing for each task a mechanism that can

perform one or more alert analysis tasks correctly with a minimum human supervision

or assistance. In general, there are two categories of challenges that limit the ability

to automate intrusion alert analysis. The first category refers to challenges that

affect the correctness of the alert analysis techniques. The second category refers to

challenges that affect the automation of the alert analysis techniques.
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3.2.1 Alert Analysis Correctness Challenges

The first category of alert analysis challenges consists of a series of challenges that

affect the correctness of the output of the alert analysis. These include challenges

related to noisy data, decision under uncertainty, and novel attack patterns.

Impact of Noisy Data

Usually false positives and redundant alerts are the main sources of noisy data.

An alert is generated by the IDS because either it has detected an actual attack

(a true positive) or it is considering a normal event as an attack (a false positive).

A false positive could also be generated because an unsuccessful attack has occurred.

For instance, a code red attack can make the IDS generate one or more alerts even if

the target Operating System is incompatible with the attack. For instance, an alert

triggered by a code red attack on a Unix system is most likely a false positive since

such attack is only relevant to Windows platform. Although, some organizations

could be interested in knowing about unsuccessful attacks against their networks,

alerts triggered by such attacks are in general categorized as false positives.

It is essential to prune the alerts to remove noisy data such as false positives.

However, filtering false positives is very challenging for the following reasons:

1. It requires information about the target system configuration, running services,

security policy, etc.

2. It requires understanding the attack impacts and outcomes, and its relations to

other attacks under investigation.

If poorly designed, a false positive filtering technique could fail to eliminate a sig-

nificant number of false positives or incorrectly consider true alerts as false positives.

In both cases, this will affect negatively the attack intelligence gathering and the
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attack scenario reconstruction. The occurrence of false positives means that the in-

trusion analyst will spend time investigating attacks that did not occur or reconstruct

false attack scenarios. At the same time, incorrectly flagging true alerts as false posi-

tives and consequently removing them will result in reconstructing incomplete attack

scenarios and missing important attack intelligence.

As mentioned above, besides false positives, redundant alerts represent the second

type of noise in IDS alert analysis. In general an alert aj is a duplicate or redundant

instance of another alert ai, if a common subset of the attributes of ai and aj have the

same values. Usually this subset of attributes includes the source of the attack, the

destination of the attack, and the attack signature or type. We will call this subset

of alert attributes the alert key attributes.

There are three types of redundant alerts. The first type occurs when several alerts

are triggered by the same malicious event. For example, a brute force password attack

against an online account could generate several alerts triggered by the different login

attempts. This type of redundant alerts can easily be eliminated by grouping the

redundant alerts into a hybrid alert that represents the redundant alerts during the

attack phase.

The other two forms of redundant alerts are more complex. This is because the

redundancy relation between the alerts is not explicit. This happens when the alerts

do not have exactly the same key attributes. This could happen, for instance, when

the alerts convey the same information but use different data formats or structures.

For instance, the Snort IDS version 2.9.21 [77] generates for a land attack2 at least

two alerts with two different signatures shown by Figure 3.1.

As we can see from Figure 3.1 a single packet can trigger more than one attack

1Based on the default Snort rule-set and configuration.
2A land attack is a denial-of-service (DOS) attack where the attacker crafts and sends a packet

containing the same source and destination IP address to the victim machine to crash the TCP/IP
stack.
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(a) Snort Alert for a land attack attempt.

(b) Aother Snort Alert for the same land attack attempt as in Figure 3.1a.

Figure 3.1: Two Redundant Alerts Generated by the Same Snort Sensor. As
we can see the alert in 3.1a and the alert in 3.1b have the same source ad-
dress (192.168.10.2:0), destination address (192.168.10.2:0), and time stamp (05/04-
08:53:52.824985). However, they have different attack signatures, namely, (116:151:1)
and (1:527:8). It is clear that the two alerts are redundant but this obvious fact is
not easily detected by a machine.
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signature and trigger for the same IDS sensor many alerts.

Handling redundant alerts becomes even more complex when those alerts are gen-

erated by heterogeneous IDS sensors. In this case, the lack of interoperability between

the sensors can make it difficult to detect redundant alerts even for human investiga-

tors. For instance, there is a known attack against SGI Telnet servers that come with

a default account where the username and password are 4Dgifts. This attack will

be detected and reported by the Bro IDS [56] with the message "Sensitive Username

In Password", while Snort IDS will generate for the same attack an alert with the

message "TELNET 4Dgifts SGI account attempt". Even if the two IDSs use IDMEF

(format) to report this intrusion they will use their own language/vocabularies to

describe the intrusion. It is not clear or obvious how these two messages are related

even though they are actually referring to the same intrusion instance.

Failing to process adequately noisy data will cost time and affect the performance

of the alert analysis system. Considering that the source of noise in intrusion alerts

information consists of redundant alerts and false positives, given an IDS log file, we

calculate the amount of noisy data N involved using the following equation:

N = | (A ∪ B)− (A ∩ B) | (3.2.1)

Where A is the set of redundant intrusion alerts and B is the set of false positives

involved in the log file3. One of the main objectives of an IDS alert analysis system

is to minimize the amount of noisy data N as mush as possible.

Decision under Uncertainty

The reliability of the output of the alert analysis process is greatly impacted in the

presence of uncertain information. Decision under uncertainty occurs when the an-

3|X | denote the cardinality of set X
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alyst has to make a decision based however on incomplete or inaccurate input or

information.

uncertain information involved in IDS analysis process is commonplace. For in-

stance, when the analyst tries to decide whether a given alert is a false or true positive,

it is very common that some information required for this decision (e.g. target con-

figuration and running services) is inaccurate or outdated. In this case, the analyst

does not have all the information he needs to decide the state of the alert. Therefore,

this lack of confidence will affect the reliability of the alert analysis process.

Another major source of uncertainty in IDS alert analysis is related to false nega-

tives. False negatives refer to cases where the IDS fails to detect one or more malicious

events, which complicate the attack scenario reconstruction process. False positives

lead to incorrect attack scenarios, while false negatives either make the reconstruction

of the attack scenario impossible or lead to an incomplete attack scenario. The ana-

lyst is responsible for considering possible attack steps against the target and classify

which ones were potentially missed by the IDS as false negatives. Of course, if there

are more than one possible missing event or attack step, this means that there are

different possible attack scenarios, in which case, only one scenario should be selected

at the end as the reconstructed attack scenario.

Uncertainty also arises in deciding the attack impact. While an IDS can detect

the occurrence of an attack, it is not equipped to determine objectively the impact

of the attack. Such determination is usually made by the human analyst. Knowing

the attack impact is important in reconstructing adequately the attack scenario.

The fact that part of the data used during the alert analysis contains some uncer-

tainties (i.e. inaccurate or incomplete) is a major challenge in alert analysis. Overall,

it is essential to develop effective methods to handle missing or inaccurate data in

the alert analysis process. These methods should allow the analyst to measure the
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confidence of the alert analysis process and reduce the underlying uncertainty.

Novel Attack Pattern or Scenario

The correctness of alert analysis techniques can severely be limited when faced with

novel attack scenarios. The problem with novel attack scenarios is that the attacker

uses unknown strategy to the analyst to compromise or attack the target. This does

not mean that the IDS will fail to detect all the steps involved in the attack scenario.

The IDS could even detect all the attack steps without revealing these (to the analyst)

because of its novelty.

An attack scenario is novel to the analyst because it contains a set or a subset of

attack steps that are not known to the analyst to be part of a single attack scenario.

An attack scenario can also be considered as novel if to the analyst knowledge the

order or sequence of attack steps do not seem to form a valid attack strategy against

the target. This is because some of the relationships (if not all) between the attack

steps are unknown to the analyst.

Detecting novelty in IDS alert analysis is challenging because a novel attack sce-

nario often involves implicit relations between corresponding alerts that appear as

isolated alerts. Finding these implicit relations is the key to reconstructing novel

attack scenario. In addition, besides the challenge posed by attack scenario that are

truly novel, it is possible that because of the noise and false negatives, a known at-

tack scenario could appear as a novel one. Therefore, handling adequately noise and

uncertainty is a prerequisite for detecting and reconstructing novel attack scenarios.

3.2.2 Alert Analysis Automation Challenges

The second category of challenges in IDS alert analysis consist of challenges that limit

the ability to automate the alert analysis tasks. These include challenges related to
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machine readability and data complexity.

Machine Readability

One of the major difficulties in automating alert analysis is the fact that the alerts are

expressed in a format that cannot easily be interpreted by computers. In general, the

alert details such as the attack impact, severity, and affected systems are expressed in

natural language. Such information is generated primarily toward human consump-

tion and not to be processed by a program. The lack of machine readability of the

alerts is worsen by the fact there are no restrictions on the vocabularies used by most

intrusion detection systems to express the alerts. It is not unusual that the same

IDS sensor uses different vocabularies and keywords to describe the same intrusion

attempts. For instance, Figure 3.2 shows an alert generated by Snort to report a

privilege escalation attack attempt against a Sendmail server.

Figure 3.2: Snort Alert for a Privilege Escalation Attack Against Sendmail

The alert references the attack signature number 1:671 whose description in the

Snort (generic) signature database is depicted by Figure 3.3.

As we can see neither the alert information in Figure 3.3 nor the one in Figure 3.2

is machine readable. Moreover, sometimes the attack information may be edited by

different intrusion analysts, in which case the same information at some point may

become difficult to interpret by other analysts.

Because of the limited machine readability of IDS alerts, it is difficult to design a

system that can automatically analyze and extract attack intelligence from the alerts.
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Figure 3.3: Example of alert information expressed in natural language.

Achieving such objective will require specifying along with alerts their semantics. This

semantic specification is important to enable a machine to understand and interpret

the meaning of the IDS alerts.

Complex and Symbolic Data

IDS alerts are encoded using complex and symbolic data format. In particular alert

attribute values are non-numerical; instead they are based on complex (i.e. composite)

and categorical data. Furthermore, while an IDS alert message may consist of a small

set of attributes, the knowledge required to analyze the alerts and extract attack

intelligence is implicit in this attribute set. For instance, while it is customary to

represent explicitly the destination of an attack by an IP address and port number,

implicit information (not expressed in the attributes list) such as the platform of the

destination host and the service running on the targeted port may be required for

adequate analysis of corresponding alert. For instance, the attack signature, which

in general is explicitly referenced by the alert, hides more complex data such as the

vulnerability exploited in the attack, the system(s) affected by the attack, the impact

of the attack and other information related to attack intelligence extraction.

Working with complex and symbolic data is challenging, in particular, when it
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comes to measuring the similarity or relevance between alerts, which is very important

in alert aggregation and correlation.

The IDS domain is a dynamic domain, the concepts and the data involved in this

domain change over time. For instance, new exploits are being created while some

existing exploits are becoming obsolete on a regular basis. This means the similarity

and the relations between the different concepts in the IDS domain are also dynamic

and expected to change over time. Therefore, we cannot assume that the similarity

between alerts and concepts in the IDS domain are fixed. This requires designing

new methods that can express the similarity between complex data while taking into

account conceptual changes in corresponding domain.

3.3 Proposed Alert Analysis Framework

In our opinion an IDS alert analysis framework should support alert normalization,

alert verification, alert aggregation and alert correlation. The correctness of any

intrusion alert analysis task depends largely on the ability to capture and represent

the intrusion analyst knowledge and expertise. Therefore, we believe that the most

promising method to automate the different alerts analysis tasks is by combining

knowledge representation with machine learning approaches. We use machine learning

and knowledge representation to design an intrusion alert analysis framework that can

capture and reuse experiences and expertise from intrusion analysts.

The proposed alerts analysis framework consists of the following five components:

knowledge base, alert normalization, alert verification, alert aggregation and alert

correlation. The framework receives a stream of raw alerts stream as input, analyzes

these alerts to eliminate false positives and redundant alerts, summarizes the alerts

and reduces the effect of alerts flooding, and finally correlates the alerts to reconstruct
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attack patterns and attack scenarios. The overall structure of the proposed alert

analysis framework is shown in Figure 3.4.

Figure 3.4: Intrusion Alert Analysis Framework

A key component in the proposed alert analysis framework is the intrusion analy-

sis knowledge base, which is used by all the other components of the framework. The

intrusion analysis knowledge base is a machine readable knowledge base that con-

sists of an intrusion ontology and complementary knowledge. The intrusion ontology

provides semantic specification for the intrusion analysis domain by describing the

structure and the semantics of the concepts in the intrusion analysis domain and the

different relations between these concepts.

The complementary knowledge is a collection of different intrusion analysis re-

lated knowledge such as the IDS profiles, context and environmental knowledge,

evaluation metrics, alerts verification and classification rules, and semantic inference

rules. The context-awareness is similar to environmental-awareness. However, while
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environmental-awareness focuses on describing the network software and hardware

assets, context-awareness focuses on network operational knowledge in addition to

the network assets. For example, the fact that an employee e1 is not permitted to

access the customer payment records is an example of contextual knowledge

The first phase in our alert analysis framework is the alert normalization. As

illustrated in Figure 3.4 the normalization component receives the raw alerts stream

as an input and convert the raw alerts to normalized alerts. The raw alerts stream

is usually collected from heterogeneous IDS sensors (e.g; Snort, Bro, etc). Each IDS

sensor is represented by a profile consisting of a set of formating rules that define how

to convert a raw alert message generated by a given IDS sensor to a normalized alert

message that uses a common syntax and semantic based on the intrusion ontology

vocabularies.

The alert normalization component uses IDS sensor profiles and the intrusion

ontology vocabularies to format the raw alerts into a common format that takes

into account the syntax and semantics of the alerts. This phase is important to

achieve interoperability and convert the alerts into a machine-readable format. The

construction of the IDS sensor profiles and the knowledge-base is not an automated

process in our framework. However, the remaining processes such as alert verification,

aggregation, and correlation are fully automated.

The second phase in our alert analysis framework is the alert verification, which

consists of identifying and eliminating false positives. We use alert context and en-

vironmental awareness to identify and eliminate false positives. The proposed tech-

niques use example-based learning and rule-induction. Specifically, from training

examples the characteristics of false positives are learned using rule induction. After

eliminating the false positives, the output of the alert verification component will

consist only of alerts flagged as true positives.
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The third phase in our alert analysis framework is the alert aggregation, during

which verified alerts are aggregated into hybrid alerts by eliminating redundant alerts

and summarizing semantically similar alerts. The semantic similarity between alerts is

computed using the intrusion ontology. Alerts that share semantic similarity measure

less than a predefined threshold value are fused into the same hybrid alert. An hybrid

alert is generated for a set of alerts by replacing corresponding attributes values by

more general concepts from the intrusion ontology.

The final phase in our alert analysis framework is the alert correlation. The alert

correlation component can take as input either the hybrid alerts generated by the

aggregation component or the verified alerts without aggregation. This is because it

is possible for one or more hybrid alerts to summarize alerts that belong to different

attack scenarios or patterns. Therefore, detecting the causality between the hybrid

alert is not possible. In this case the alert correlation component cannot effectively

correlate these hybrid alerts.The alert correlation component correlates the alerts by

clustering them based on their semantic relevance. The clusters obtained provide the

basis to derive the attack patterns and scenarios.

3.4 Alert Analysis Evaluation

Each of the main tasks involved in the proposed alert analysis framework requires

different evaluation methods and metrics.

As mentioned before alert normalization is important to enable interoperability

and to convert the alert into machine-readable format. To evaluate the performance

of an alert normalization technique we need to determine the number of unique alerts

generated by each IDS sensor that the normalization technique fails to convert into

machine readable format. Such failure is an indication that the knowledge base is
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incomplete in terms of vocabularies and concepts. Furthermore, it is possible that an

alert is converted to machine readable format while the obtained normalized alert is

considered not to be semantically equivalent to the raw alert by an intrusion analyst.

In this case the knowledge-base is assumed by the analyst to be inaccurate. Of course,

this case is difficult to measure because it relies on the subjective judgment of the

analyst.

Alert verification is commonly evaluated by measuring the number of false pos-

itives identified by the alert verification technique. However, such metric is limited

by the possibility that some true alerts could mistakenly be labeled as false positives

during the verification. This means the alert verification can cause false negatives.

Therefore, when evaluating an alert verification technique it is important to consider

the number of false positive alerts that have been correctly detected as well as the

number of true positive alerts that have been mistakenly considered false positives.

In the literature alert aggregation is evaluated based on only the alert reduction

rate (ARR). The alert reduction rate is computed as the difference between the orig-

inal number of alerts and the alerts remaining at the end of the aggregation process

over the original number of alerts. Despite its popularity, we believe, however, that

the ARR is not enough to evaluate the effectiveness of the aggregation process. In

fact, the ARR captures well the quantitative aspect of the alert aggregation process

but misses altogether the qualitative perspective. It is important to be able the eval-

uate if the summarized or the fused version of the alert is not missing important

security relevant information from corresponding raw alerts. Likewise, the amount

of information loss that result from summarizing the alerts is an important factor in

evaluating the alert aggregation as well.

The alerts correlation groups related alerts that belong to the same attack scenario

in one cluster. The main factor to evaluate an alert correlation technique is how
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accurately the technique can identify related alerts. This means we should consider

both the number of alerts that were correctly correlated and the number of alerts

that were incorrectly correlated. For incorrectly correlated alerts it is possible that

an alert that belong to one attack scenario to be incorrectly correlated into another

attack scenario. It is also possible that a truly isolated alert (i.e. not part of an attack

scenario or pattern) to be mistakenly correlated with other alerts. It is important to

distinguish between these two cases, because, the first case will result in generating

two attack scenarios, including one false attack scenario and one true but incomplete

attack scenario. While the second case will result in generating only one attack

scenario, which is false. Hence, it is important to propose an evaluation method for

alert correlation that can measure the confidence of the generated attack scenario and

not only the accuracy of the correlation.

3.5 Summary

In this chapter we explained the key challenges in building an IDS alert analysis

system. Then, we introduced our alert analysis framework that can tackle these chal-

lenges. The proposed framework supports four alert analysis tasks, namely, normal-

ization, verification, aggregation, and correlation. The framework relies on semantic

knowledge and ontologies to perform these tasks. We also discussed the available

methods for evaluating IDS alert analysis and correlation system and mentioned the

different metrics that can measure the performance of alert analysis systems. In the

next chapter, we will discuss in detail how we use semantic knowledge and ontology

engineering to build a knowledge-based alert analysis system.
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Chapter 4

Knowledge-Based Alert Analysis

The intrusion analyst uses prior knowledge to analyze alerts and intrusion attempts.

Most of the time, the analyst uses existing knowledge to make inferences about attacks

under investigation. For instance, an analyst could infer the impact of a novel attack

from the impact of known attacks by finding the most similar known attack to the

novel one. Here, the analyst believes that the impact of two similar attacks is mostly

the same. What the analyst is doing is to use what he knows, i.e. the "impact of

known attacks", to infer what he does not know, i.e. "the impact of a novel attack"

given that the novel attack is closely similar to the known attack. The facts and

beliefs are the key elements of a knowledge-based system.

In our opinion, the intrusion knowledge representation is a key component to ex-

ecute any alert analysis task or extract any form of attack intelligence. Likewise,

it is an established fact in the literature that the performance of knowledge-based

alert analysis techniques is generally better than other techniques that do not rely on

knowledge representation. However, knowledge-based alert analysis techniques face

two major challenges, namely, the selection of the knowledge representation method,

and the adaptability of the knowledge. The first challenge arises as a result of using
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either complex or simple knowledge representation method. Maintaining and updat-

ing the knowledge becomes very expensive with complex knowledge representation

methods. On the other hand, simple knowledge representation methods cannot ef-

fectively describe the intrusion analysis domain. In addition, usually the knowledge

base is not constructed to support different intrusion analysis tasks. This lack of

knowledge adaptability limits the use of the same knowledge base for different alert

analysis tasks. As a result, using knowledge-based technique for alert analysis become

expensive.

In this chapter we propose a new knowledge base for intrusion alert analysis using

ontology. We describe the construction of the proposed ontology, and use semantic

analysis and correlation to investigate IDS alert similarity and relevance.

4.1 Knowledge-Based System

The main components of a knowledge-based system are a knowledge base, an inference

engine, and a user interface. The knowledge base is a collection of machine-readable

concepts related to specific domain. The knowledge is usually collected from one or

more domain experts and fed into the knowledge base by a knowledge engineer. The

inference engine is the component that mimics the reasoning or the human intelli-

gence allowing the domain expert to solve problems. The inference engine uses the

knowledge base to infer logical consequences and derive new conclusions. In other

words the inference engine answers queries and questions about the domain described

in the knowledge base. The user interface is a human-machine interaction component

allowing the user to formulate questions and queries for the knowledge-based system.

The knowledge stored in the knowledge base is a set of vocabularies and facts

ranging from simple facts to complex facts about the domain. The first step to build
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a knowledge base is to define the vocabularies that will be used to describe the domain.

The vocabularies are then used to state facts that describe the domain. The next step

is to select a knowledge representation technique to express the knowledge stored in

the knowledge base. There are many different knowledge representation techniques

such as rules, frames, and semantic networks. There are also many different knowledge

representation languages to implement these techniques. In our work, as mentioned

above, we use ontologies to build our intrusion alert analysis knowledge base, and as

consequence, we use ontologies languages as our knowledge-representation technique

and language.

4.2 Ontology and Ontology Engineering

It is only in 2001 that Raskin and Nirenburg have proposed for the first time the

use of ontologies in computer and information security [59]. They focused their work

on highlighting the advantages of using ontology to represent the domain of informa-

tion security. Since then, more and more researchers have started to use ontologies

in various fields of computer security. Currently, ontologies are being used to de-

velop various security tools such as intrusion detection systems, anti-virus, and other

malware detection systems [60, 31].

4.2.1 What is an Ontology

In the field of computer science there are many definitions for the word ontology.

Perhaps, the most quoted definition for the term ontology is the one proposed by

Gruber [26] as "an explicit specification of a conceptualization". In other words, an

ontology is a formal representation of a set of concepts, the relations between these

concepts in a domain of interest. The basic building blocks of an ontology are classes,
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properties (also known as relations), and individuals. The classes are used to represent

concepts in a given domain.

Ontologies play a major role in building knowledge representation systems and

Artificial Intelligence (AI) systems in general. In fact, ontologies are the core of any

knowledge representation system because at minimum they provide the conceptual-

ization of the vocabularies within a specific domain. Of course, without a strong

conceptualization we end up with a weak knowledge base that cannot distinguish be-

tween concepts within the domain. In this case, reasoning about the domain will be

difficult and perhaps useless. Ontologies allow clarifying the structure of knowledge

and concepts in the domain which improves reasoning systems.

Ontologies are commonly categorized into lightweight and heavyweight ontologies.

This categorization is based on the formality and the granularity of the knowledge

represented by the ontology. Heavyweight ontologies allow more complex and mean-

ingful description of a domain of interest by adding axioms and constraints to the

ontology. Intelligent systems such as expert and reasoning systems require heavy-

weight ontologies.

Kruegel and Christopher argued that an ontology for intrusions is a prerequisite for

true interoperability between different IDSs [34]. In the last few years, several network

intrusion ontologies and taxonomies have been proposed [36, 29, 82, 57, 28, 1]. All of

these ontologies can be used to provide common vocabularies and make knowledge

shareable by encoding domain knowledge. Hence, they could be used (to some extent)

as knowledge bases for an intrusion detection system, but we think they lack the

necessary conceptualization for intrusion analysis and attack intelligence extraction.
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4.2.2 Ontology Engineering

There are many methods to build an ontology that represents a domain of knowledge

and supports reasoning over such knowledge. To build our ontology we used a hyper

approach that combines different key features from several ontology development

approaches, such as the METHONTOLOGY approach which is based on the work

of Lopez and Perez [43]. Most of the ontologies developed today are based on this

approach. METHONTOLOGY divides the ontology development process into eleven

main tasks. In addition, the process itself is based on evolving prototypes. While we

use METHONTOLOGY as our main ontology development approach we also select

some key features from other approaches mainly the work of Uschold and King [83]

and the work of Gruninger and Fox [27].

Ontology engineering refers to the set of methods and techniques to build and

represent the ontologies. Selecting the appropriate methods and techniques to build

and represent an ontology depends on the type of the ontology and the intended use of

it. There are many knowledge representation paradigms that can be used to represent

ontology such as first-order logic, frames, etc. Usually, lightweight ontologies can be

represented using software modeling techniques or relational database. Heavyweights

ontologies are usually represented using frames or description logic languages.

4.3 Proposed Intrusion Analysis Ontology

Our ontology development lifecycle consists of four main stages, namely, specification,

conceptualization, formalization, and verification.
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4.3.1 Specification

The purpose of the specification stage is to identify the scope of the ontology and the

intended use of the ontology. There are two main ontology engineering activities in

the specification stage as follows:

• Specification of the characteristics of the ontology such as its type and knowl-

edge representation paradigm;

• Identification of the scope and the intended use of the ontology.

Our ontology is a heavyweight ontology in terms of formality and granularity

and its domain of interest is intrusion analysis. Our intrusion analysis ontology is

a method or a task ontology that represents knowledge about the network intru-

sion domain including concepts and their relations, and attributes and facts about

these concepts. Method and task ontologies are special types of ontologies that store

problem solving knowledge required to solve a problem or to accomplish a specific

task. This means our ontology contains knowledge that represent the network intru-

sion domain and the knowledge required for intrusion analysis and attack intelligence

extraction. The knowledge representation paradigm that we use to formalize our

ontology is Description Logic (DL) [11].

To build a method or a task ontology for intrusion analysis, we need to consider

the following two types of knowledge:

• Domain and Factual Knowledge (DFK): This type of knowledge includes the

concepts of the domain and the conceptual relations within the domain. In other

word this type of knowledge contains the sufficient and necessary concepts and

relations needed to represent the domain of interest.

• Problem Solving Knowledge (PSK): This type of knowledge includes the knowl-

edge required to perform a specific task or achieve a specific goal using the
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domain and factual knowledge. The problem solving knowledge usually con-

sists of a set of complex constraints on the domain and factual knowledge.

We describe the scope and the intended use of our intrusion analysis ontology

by creating a set of competency questions that are specific to the intrusion domain

and the intrusion analysis. The competency questions are grouped by tasks and

structured in hierarchical tree structure or taxonomic structure such that the answer

of any parent competency question (usually a complex question) requires the answers

from all its children competency questions (less complex questions), as shown in

Figure 4.1. Finding the answer of the root question for each competency questions

tree means we can simply perform the task correctly. This hierarchical structure

helps understanding the dependency between questions and explaining how to find

the answer of complex questions by finding the answer of simple ones.

Figure 4.1: Example of Competency Questions Tree

The competency questions can be used to evaluate the ontology by ensuring that

the implemented ontology is able to answer all the competency questions identified

during the ontology specification stage. Examples of competency questions used to

develop our ontology are as follows:

• What vulnerabilities exist in the target system?

• What are the critical attack assets?
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• What privileges does the attack require?

• What are the evidences of the attack?

• What are the impacts of the attack?

• Given a set of assets, which assets are vulnerable assets?

• Given a set of privileges, what is the attacker capable of?

• Given a set of attack impacts, what are the attacks that result in these impacts?

• Given an alert, has the compromised host been used to attack other hosts

(stepping stones)?

• Given a set of attacks, what evidences are sufficient to prove occurrences of

these attacks?

• Given an alert stream, what are the attacks reported by this alert stream?

• Given an alert stream, what are the (attack) targets specified in this alert

stream?

• Given an alert stream, what are the attackers specified in this alert stream?

• Given an alert stream, what are the vulnerabilities characterized in this alert

stream?

• Given a set of attacks, what are the commonalities between these attacks?

• Given a set of alerts stream, what are the commonalities between these alerts?

• Given a set of vulnerabilities, what are the commonalities between the related

attacks?
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• Given a set of attacks, what are the vulnerabilities used to execute these attacks?

• Given a set of attacks, what are the impacts of these attacks?

It is important to understand that the ontology stores the knowledge (e.g. classes,

relations, constraints) that allow finding the answer to the competency questions, but

we need to design the algorithms that can retrieve the answers from the ontology.

4.3.2 Conceptualization

After setting our ontology specification, we move to the conceptualization stage. In

this stage we identify the basic concepts or classes, and the relations between these

classes in the network intrusion domain. The main ontology engineering activities

in the conceptualization stage are to identify the ontology classes, build the classes

taxonomy, identify the relations between the classes, describe the classes, and finally

define the inference rules.

Ontology Classes

The first activity is to identify the ontology classes. Uschold and King discussed three

techniques to identify the classes in the ontology, namely Top-Down, Middle-Out, and

Bottom-Up approaches [83]. They recommended the middle-out technique because

experience with ontology design shows that middle-out is the most effective one. The

middle-out method is very simple to apply. It begins by the key middle-level (not very

generalized and not very specialized ) classes that exist in the domain, followed by

the definition of the more general and more specific classes. However, the middle-out

technique does not explain how to define the middle-level classes or the classes that

should be included in the ontology. To solve this problem we use the competency

questions and their hierarchical structures to decide what are the classes that are
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related to the intended use and scope of our ontology.

Using the competency questions we define the key classes in our ontology and then

we apply the middle-out technique. For example, we can say that the class alert is

a middle class in the evidence class taxonomy, while the class evidence is more

abstract and the class intrusion alert is more specific. In addition, to cover a wide

range of classes in the network intrusion domain, we studied several network intrusion

taxonomies and ontologies [36, 29, 82, 57].

The next activity is to build the class taxonomies by grouping similar classes that

share the same properties and definitions in the same taxonomy. A taxonomy is a

hierarchical structure for the classification or organization of a set of classes that are

connected by subclass and superclass relations. Figure 4.2 shows a partition of the

attack taxonomy in our intrusion analysis ontology. The root of the attack taxonomy

is the class Attack .

Figure 4.2: A Partition of the Attack Taxonomy
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Ontology Relations

The relations between classes in the ontology represent important pieces of informa-

tion that enable reasoning over the domain. Therefore, the next activity focuses on

defining the relations between classes and their characteristics.

There are two types of relations in our intrusion analysis ontology, namely, taxo-

nomic relations and ontological relations. The taxonomic relations are binary relations

(2-ary relations) used to categorize classes in our ontology in a taxonomic structure.

The taxonomic relations are important for discovering the class subsumption in the

ontology. The taxonomic relations in our ontology are listed in Table 4.1.

Relation-Name Transitive Reflexive anti-symmetric
is-A

√ √ √

superclass-Of
√ √ √

subclass-Of
√ √ √

instance-Of
√ √ √

Table 4.1: Taxonomic Relations and their Properties

From Table 4.1 we can see that we use in our intrusion ontology four taxonomic

relations. All of these relations are transitive, reflexive, and anti-symmetric. The

first relation is-A is used to identify the type of a property. For instance, the class

attack has the property "tool" , where "tool is-A Malicious". The superclass-

Of and subclass-Of relations are used to express inheritance. For instance, the

class "location" is the superclass-Of "remote-location" and "local-location" and so

both "remote-location" and "local-location" are subclass-Of "location". Finally, the

instance-Of relation is used to link an individual to specific class. For instance, the

"code-red" is instance-Of "computer-worm".

Ontological-relations are the relations that link classes from different taxonomies

together. These ontological-relations are divided into general relations and specific
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relations. General ontological relations are strictly binary relations. On the other

hand specific ontological relations are N-ary relations (an N-ary relation is a mapping

between a subject and two or more subjects/values).

To define the general ontological relations we use a task-centered technique. We

select one or more key classes and define the relations between these classes by con-

structing a concept graph. Figure 4.3 shows the concept graph obtained from de-

scribing the alert concept.

Figure 4.3: The Alert Concept Graph

The relations between the Alert class and the other classes in the concept graph

were identified by answering the following competency questions:

• What are the alerts attributes?

• What is the alert source?

• What is the alert destination?

• What is the alert time?

• Which attack was reported by the alert?

In the concept graph in Figure 4.3, a class is shown as an ellipse and a primitive

data type as a rectangle. A relation between classes or primitive data types is repre-

sented by an arc. The only relations shown in the concept graph are the ones between
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the alert and the other concepts. In addition, we need to determine and add to the

concept graph any other relations that possibly may exist between the other concepts

pairs. Then, we refine the concept graph iteratively by selecting and describing one

of the other concepts using the competency questions. For example, if we select the

attack (concept) and then target (concept) as the second and the third concepts to

describe, respectively, our concept graph will grow as shown in Figure 4.4.

Figure 4.4: Adding Attack and Target Description to the Concept Graph

Every time a new class is added to the graph, the relations between this new

class and the existing classes in the concept graph must be identified. Classes are

selected (for description) by their order of importance, starting by the most important

ones. A class A is more important than a class B if A is shared by more intrusion

analysis tasks than B. The process ends when all the relations required to answer

the competency questions are defined and the intrusion analysis goals are achieved.

The upper level classes in our intrusion ontology and the relations between them are

illustrated in Figure 4.5.

It is also important to describe the characteristics and properties of the onto-
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Figure 4.5: Ontology Upper Level Classes Snapshot

logical relations. A relation in the ontology can have one or more of the following

characteristics:

• Inversive: any relation could have a corresponding inverse relation. If a rela-

tion rj is an inverse relation of ri, then the domain concept of rj is the range

concept of ri and the range concept of rj is the domain concept of ri. For

instance, the relation attackedBy is an inverse relation of the relation attack.

• Transitive: let us assume that relation r links class a to class b, and class b

to class c. Relation r is a transitive relation if we can infer that r links a to c.

An example of transitive relation in our ontology is the subclass-Of relation.
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Based on the transitivity of the characteristic of the the subclass-Of relation,

a reasoning engine can infer, for instance, that Botnet is a subclass of Attack

(see Figure 4.2).

• Symmetric: If relation r is a symmetric relation and r links entity x to entity

y, then we can infer that r links entity y to entity x. An example, of sym-

metric relation in our intrusion ontology is the isRelevanceAlert relation that

connects an alert instance to another alert instance.

• Asymmetric: If relation r is an asymmetric (anti-symmetric) relation and

r links individual x to individual y, then y cannot be linked to x via r. An

example of asymmetric relation is the nextStage that connects an attack stage

instance to another attack stage instance (see Figure 4.7).

• Reflexive: If relation r is a reflexive relation, then r must link individual

x to itself. An example of reflexive relation in our intrusion ontology is the

isSimilarTo relation that links an alert instance x to another alert instance y.

This means that alert instance x is at least similar to itself.

• Irreflexive: If relation r is an irreflexive relation, and r links an instance x to

instance y, then we can infer that x and y are not the same1. An example of

irreflexive relation in our ontology is the attack relation. If x attack y then x

and y are not the same, because an attacker does not attack himself.

• Functional: If relation r is a functional relation, then there can be at most

one individual y linked to an individual x via r. For example, if r is functional

and individual x is related to individuals y and z, then y and z are the same

(refer to the same individual).

1In ontology unique names are not sufficient to distinguish between instances (individuals). The
names Alice and Bob might refer to the same individual unless we explicitly state that they refer to
different individuals.
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Binary relation is the most common type of relations in ontology. However, heavy-

weight method and task ontologies mostly require the use of N-ary relations. For

instance, the representation of the following knowledge: "Apache web server is a tar-

get of denial of service attack with high confidence and high severity" requires the

use of N-ary relations and cannot be represented by two binary relations because the

relations in this case are all interconnected. To represent specific ontological relations

(N-ary relations) we use two patterns. The first pattern is by creating a new class

with N properties to represent the N-ary relation. The second pattern is by using lists

of arguments to identify a N-ary relation that represents a sequence of arguments.

For instance, we represent the N-ary relation in the above statement using the first

pattern by defining a relation called attack diagnosis , which describes the relation

between asset (Apache web server), attack (DOS), attack confidence , and

attack severity . In our ontology we create a new class to represent this relation as

depicted in Figure 4.6.

Figure 4.6: Attack Diagnosis Relation

Another intrusion analysis task that requires N-ary relations is when we attempt

to describe the scenario of a multistage intrusion. A multistage intrusion scenario is

a collection of attacks executed in specific order. To describe this case we need to

use the second N-ary relation representation pattern mentioned above. To do that

we will define two classes named MultistageIntrusion and AttackStage . The
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MultistageIntrusion class encapsulates a scenario that consists of a collection of

AttackStage instances. The AttackStage class is linked to itself via the nextStage

and previousStage relations, which are used to describe sequence of attacks in the

scenario. In addition, the AttackStage class is linked to an attack instance via the

hasAttack relation, used to describe the attack executed in each stage. To determine

the beginning and end of the attack scenario, we define the classes FirstAttackStage

and FinalAttackStage as subclasses of AttackStage with an additional restriction

that set the value of the nextStage link in FinalAttackStage to null and the value of

the previousStage link in FirstAttackStage to null. Figure 4.7 illustrates the attack

scenario relation.

Figure 4.7: Attack Scenario Relation

The last step in this activity is to create the ontological relations dictionary. The

relations dictionary lists the names of the relations, the domain, the range, and other

characteristics. Table 4.2 shows an example of an entry in the relations dictionary.

Attribute Value
Relation Name hasAttack
Domain Attacker
Range Target
Properties Inversive, Irreflexive
Description Relate the source and the destination of an attack.

Table 4.2: Example of Entry in the Relations Dictionary
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Class Semantic Description

The next activity in the conceptualization stage is to formally describe the classes

in our ontology. To this point we only created a collection of named classes where

each class has a name which is a set of characters. This is only useful for humans,

but a machine cannot interpret or understand the meaning of these names without a

formal description. In other words, an inference engine cannot really infer anything

using solely classes names. Class formalization requires defining the restrictions on

the properties of the classes. In general, there are three types of property restrictions

as follow:

• Quantifier Restrictions: this type of restrictions is divided into two subtypes,

namely, existential restrictions and universal restrictions, which are denoted by

the symbols ∃ and ∀, respectively.

• Cardinality Restrictions: this type of restriction is used to describe a class,

which has at least, or at most, or exactly a specified number of relations with

other classes or data.

• Value Restrictions: a value restriction is used to specify that a class has a

relation with a specific instance/individual of another class.

The above different types of restrictions allows describing formally the classes in

the ontology by defining necessary and sufficient conditions. A class described with

necessary conditions is a primitive class. On the other hand a class described with

both necessary and sufficient conditions is a defined class. Based on the intended use

of the ontology, we can decide which class is going to be primitive and which one

is going to be defined. But in general, the top level or abstract classes are usually

primitive classes and the low level or more concrete classes are defined classes.
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To explain the difference between the use of necessary conditions on one hand and

the use of necessary and sufficient conditions (primitive and defined classes) on the

other hand, and how they affect the inference process, we will use in the following a

simple example consisting of providing the semantic description of the class Attack .

Simply, we will say that an Attack must have at least an Impact and at least

affect an Asset . The formal description of class Attack can be constructed using

existential restriction as follows:

Attack ⊑ [∃ hasImpact.Impact ]

[∃ affect.Asset ]

The above semantic description uses only necessary conditions to formally ex-

presses the fact that for some activity to be an attack it is necessary for it to be in

relationship with an instance of the class Impact via the relation hasImpact and

to be in relationship with an instance of the class Asset via the relation affect .

However, this does not mean if an individual x is in relationship with an individual

y, which is a member of the class Impact via the relation hasImpact and with an

individual z, which is a member of the class Asset via the relation affect , that an

individual x is a member of the class Attack . The inference engine will not infer

that x is a member of Attack . This is because the class Attack is described with

necessary conditions.

On the other hand using necessary and sufficient conditions to define a class

C allows inferring that if an individual x fulfills these conditions then it must be

a member of the class C. For example, the class DOSAttack is described below

using necessary and sufficient conditions, as an attack that at least has an impact

LossOFAvailability :

DOSAttack
.
= [Attack

⋂

∃ hasImpact.LossOFAvailability]
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The above description of the class DOSAttack means that if x is a member of

the DOSAttack class then x must be a subclass of Attack and have a relationship

with an individual y that is a member of the class LossOFAvailability via the

relation hasImapct . It also means if an individual x is subclass of Attack and has a

relationship with an individual y that is a member of the class LossOFAvailability

via the relation hasImapct , then x must be a member of the class DOSAttack .

Of course, necessary and sufficient conditions are not limited to existential restric-

tions. In most cases we use existential, universal, and cardinality restrictions. For

example, we could describe a MultiImpactWebAttack as follows:

MultiImpactWebAttack
.
= [Attack

⋂

∃ min(2) hasImpact.Impact
⋂

∃ affect.WebServer
⋂

∀ affect.WebServer ]

It is important to document the classes and their ontological characteristics. This

is performed by creating the class dictionary. Table 4.3 depicts an example of entry

in the class dictionary.

Attribute Value
Class Name DOSAttack
Type Defined
Domain Relations result-In, hasMitigation, affect
Range Relations execute, report, victim-Of
Description an attack that results in loss of

the availability of the target or
one of its assets

Table 4.3: Example of Entry in the Class Dictionary

The final activity in the conceptualization stage is to define the inference rules.

The inference rules play an important role in extracting implicit knowledge from

the ontology. The inference engine processes the inference rules to identify new or
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implicit knowledge from asserted and explicit knowledge. Managing and maintaining

inference rules is a key challenge in ontology engineering. Therefore, it is important

to define only the inference rules which support the intended use of the ontology.

To define the inference rules required for intrusion alerts analysis and attack intel-

ligence extraction, we begin by informally describing the rules using natural language

(NL) and make sure that the rules satisfy the ontology specification, e.g., the rules

should help in answering the competency questions. Then, for each inference rule we

identify the ontology classes and relations required to describe the rule. It is possible

at this point that we will need to define new relations and classes to satisfy the de-

scription of the inference rules. Finally, we need to identify the variables for each rule.

Each inference rule consists of two parts, namely, the antecedent or the body of the

rule, and the consequence or head of the rule. Whenever the conditions specified in

the antecedent hold, then the conditions specified in the consequent must also hold.

4.3.3 Formalization

The third stage in the ontology development lifecycle is the formalization stage, where

the ontology is implemented using an ontology language. The selection of the ontology

language depends on the ontology specification and the intended use of the ontology.

In our case we have a heavyweight method ontology, therefore we can either use frames

or description logic languages. As mentioned before, to carry out the formalization,

we use description logic as our ontology knowledge representation paradigm.

Description logic (DL) is a family of knowledge representation languages. We use

description logic to describe the main components of the ontology. The knowledge

base in description logic is divided into two parts, the TBox and the ABox. The

TBox contains terminological knowledge consisting of the definition of concepts and

relations. The Abox contains the assertional knowledge consisting of the definitions
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of instances. We use in this work the Web Ontology Language (OWL) as our on-

tology encoding language. OWL is a description logic based language for developing

ontologies and representing knowledge in semantic web. To describe our inference

rules we use the Semantic Web Rule Language (SWRL).

The following is an example of an inference rule that finds if two alerts have the

same attacker:

Alert(?x) ∧Alert(?y) ∧ Attacker(?a) ∧ hasSource(?x, ?a) ∧ hasSource(?y, ?a) →

hasSameAttacker(?x, ?y)

The above inference rule is encoded using SWRL and stored as XML files in the

knowledge base. In SWRL, all rules are expressed in terms of OWL concepts (classes,

properties, individuals, literals, etc). Table 4.4 shows some of the predicate sentences

(used to define the rules) and their meanings.

Predicate Sentence Description
Alert(?x) check if variable x is an Alert in-

stance
Attack(?a) check if variable a is an Attack

instance
report(?x,?a) check if variable a which is an

attack instance is reported by x
which is an alert instance

Impact(?m) ∧ resultIn(?a,?m) check if variable a which is an at-
tack instance has an impact m
which is an instance of attack im-
pact class

Table 4.4: Predicate Examples

A chain of rules can be used to infer an indirect relation between two alerts. For

example, it can be established by inference that two different alerts that report two

different attack types while having the same impact are relevant. An example of

SWRL rule to infer alerts with similar attack impact is given by:
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Attack(?a) ∧ Attack(?b) ∧ Impact(?m) ∧ resultIn(?a, ?m) ∧ resultIn(?b, ?m) →

hasSameImpact(?a, ?b)

Alert(?x) ∧ Alert(?y) ∧ Attack(?a) ∧ Attack(?b) ∧ report(?x, ?a) ∧ report(?y, ?b) ∧

hasSameImpact(?a, ?b) → reportSameImpact(?x, ?y)

4.3.4 Validation

The last stage in our ontology development lifecycle is the validation stage. The

goal of this stage is to make sure that the developed ontology satisfies its intended

use. Usually, the ontology validation can be accomplished using one or more of the

following methods:

• Competency Checking: if we can answer all the competency questions then we

can claim that the ontology contains sufficient components (classes, relations,

etc) to represent the domain of interest with respect to the competency ques-

tions. Hence, we can think of the competency questions as kind of requirements

specification for the ontology.

• Tell and Ask: the tell and ask method simply consists of designing a set of logical

assertions (tell) and then issuing queries (ask). Then, the answers provided by

the ontology to the queries are evaluated against the logical assertions.

• Field Testing: consist of testing the developed ontology in the target applica-

tion environment and observing how the ontology performs with respect to its

intended use.

It is important to point out that the process of ontology development is an iterative

process. This means we might find at the end of the validation that we need to

add new classes, relations, or restrictions to the ontology or redo a stage in the

development lifecycle.
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4.4 Reasoning with Ontology

Ontology in itself is only a sophisticated knowledge representation approach. Like-

wise, we still need a reasoning system or an inference engine that can make use of the

knowledge encoded in the ontology. Reasoning over ontology is the process of finding

implicit facts given explicitly stated facts in the ontology. Ontology reasoning is useful

for generalization, prediction, diagnosis, and drawing conclusions from facts. In gen-

eral there are three main forms of reasoning that can be implemented over ontologies,

namely, deductive reasoning, inductive reasoning, and abductive reasoning.

4.4.1 Deductive Reasoning

Deductive reasoning is the most common reasoning approach over ontologies. De-

ductive reasoning is used to draw a conclusion by narrowing down general domain

knowledge encoded in the ontology. A key property of deductive reasoning is that the

inferred result is guaranteed to be true as long as the assertions used in the inference

process are true. For instance, let us consider the following premises: P1: all DOS

attacks result in loss of availability and P2: Land is a DOS attack . Given

the above premises, using deductive reasoning, we can conclude that: Land attack

results in loss of availability .

To our knowledge all the existing inference engines for DL-based ontologies sup-

port only deductive reasoning. Using deductive reasoning and the available inference

engine for DL-based ontology, a reasoner can perform the following tasks:

• Calculate Entailment: using the asserted knowledge (explicit facts and axioms)

the reasoner infers logical consequences. In this case the inferred knowledge

(implicit) is a logical consequence of the premises.

• Calculate Subsumer: given a set of classes the reasoner discovers the least com-
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mon subsumer (LCS), which is the class that subsumes the given set of classes.

• Instance Realization: given an instance x and assertions about x the reasoner

finds the classes that x belongs to.

• Instance Checking: given a class C and an instance x the reasoner decides

whether x is an instance of C or not.

• Consistency Checking: the reasoner checks the ontology to detect any contra-

dictory axioms. An ontology O is consistent if there is at least one model M

that satisfies the facts F in O.

• Conjunctive Query Answering: given an ontology O and a conjunctive query q,

the reasoner returns the answer of q with respect to O

4.4.2 Inductive Reasoning

Inductive reasoning is a bottom-up reasoning approach that is based on observing

instances, recognizing patterns and making generalizations based on those patterns.

An important difference between inductive reasoning and deductive reasoning is that

in inductive reasoning the truth of the premises does not guarantee the truth of the

conclusion. For example, let us assume that we have n number of intrusions and all

of these intrusions are instance-of Privilege Escalation attack. In addition, each of

these instances Affects a FTP server and has the impact of root privileges. Given

these facts and using inductive reasoning we can conclude that all privilege escalation

attacks that target FTP servers will allow the intruder to gain root privileges.
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4.4.3 Abductive Reasoning

Abductive reasoning aims at finding the best explanation for an observed case or fact.

Specifically, abduction reasoning allows the precondition a to be inferred from the

consequence b . For instance, let us consider three intrusion instances A, B , and C ,

respectively, executed in sequence by the same intruder. Let us also assume that from

the ontology we know that the intrusion instance A is an FTP probing attack and

that the intrusion instance C is based on an FTP exploit that requires the intruder

to have root privileges. Given these facts we can infer that the intrusion instance B

is a privilege escalation attack that has the impact of root privileges.

4.5 Semantic Analysis and Correlation

The word Semantics means the study of meanings 2. Semantics analysis refers to

the process of extracting and representing knowledge about classes. In the discipline

of artificial intelligence, semantics analysis aims at representing knowledge that is

understandable by machines, so that they can perform tasks that require human

intelligence. In fact, the use of semantics analysis can enable software programs to

intelligently reason about their content and goals.

The idea of using semantic analysis to design intelligent systems dates back to

the late 1990s. However, the emergence of semantic web in the last decade made the

development of sophisticated semantic-based intelligent systems possible. Perhaps

today the most notable use of semantics analysis is in the semantics web, biomedical

applications, and e-commerce applications [20, 54, 9, 87].

As we mentioned in Chapter 3, intrusion alerts consist of complex and symbolic

data. In our opinion using the semantic analysis to investigate IDS alerts will improve

2Merriam-Webster’s Collegiate Dictionary
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the intrusion alert analysis process. The first step to apply semantic analysis is to

create semantic description. In other word we need to provide semantic description

for every concept and individual in the intrusion analysis domain to be able to use

semantic analysis in IDS alert analysis. This first step was accomplished by the

creation of our proposed intrusion analysis ontology.

In general, alerts correlation consists of relating any number of alerts with some

identifiable patterns. A set of alerts are correlated based on the relationships occurring

between them. These relations could be captured based on statistical measurements,

a set of rules or some similarity measurements. In our work, alerts are correlated based

on their semantics relationships. There are three forms of semantic correlations [50].

The first form is based on the semantic equivalence between classes, attributes and

instances. The second form of semantic correlation is based on the taxonomic relations

(e.g. inheritance relation) that exist between classes. The third form of semantic

correlation is based on the ontological relations that exist between the components

of the ontology (classes, attributes, and individuals).

Semantic-based alerts correlation is the process of correlating alerts using the

semantic of their attributes with respect to the taxonomic and ontological relations

that occur between their attributes in a given intrusion ontology. To build an effective

semantic-based alert analysis or correlation system, it is important to be able to

measure the semantic similarity and the semantic relevance between IDS alerts.

4.5.1 Ontology-based Semantic Similarity

Semantic similarity provides an objective measure of the closeness between two or

more concepts based on the similarity of their meanings or semantic descriptions.

Similar concepts or classes in an ontology are structured in a taxonomy structure

also referred to as concept tree. A concept tree describes the abstraction relation-
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ship (i.e. generalization/specialization) between similar concepts using a hierarchical

structure. The root of the tree corresponds to the most abstract form of the concept,

while intermediary nodes correspond to refined concepts, and leaf nodes correspond

to instances.

The similarity between two concepts in an ontology depends on the commonali-

ties and the differences between the two concepts. The commonalities between two

concepts are represented by their relations to their lowest common ancestor in the

ontology. On the other hand the differences between them is based on their locations

within the ontology structure. Based on the above considerations, given two concepts

a and b we define our semantic similarity metric between a and b as follows:

sim(a, b) = 1− (path(a, LCA(a, b)) + path(b, LCA(a, b)))

(depth(a) + depth(b))
(4.5.1)

Where path(a, LCA(a, b)) is the length of the shortest path from concept a to the

least common ancestor (LCA) of a and b in the concept tree, and depth(a) is the

depth of concept a in the concept tree. The proposed similarity measure is a number

between [0, 1] where 1 corresponds to exact match and 0 corresponds to no match

between the concepts.

The metric has two important properties. The first property is that the semantic

similarity between higher-level concepts are less than the semantic similarity between

lower-level concepts. This reflects the fact that two general concepts are less simi-

lar than two specialized ones. The second property is that the semantic similarity

between a parent concept and any child concept of this parent is greater than the

similarity between this child concept and any other child concept of the same parent.

To illustrate the use of semantic similarity in IDS alert analysis, we will use a

simple example to measure the similarity between different classes of attacks. Let
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us assume we have a concept tree that represents the information gathering attack.

Figure 4.8 is a subtree that describes part of Information Gathering attack taxonomy.

Figure 4.8: Information-Gathering Attack Ontology (Partial)

Given the concept tree, the computation of the semantic similarity between any

two concepts in the ontology is straightforward. For instance, using equation 4.5.1,

the semantic similarity between the IIS Dir-List class and the Apache Dir-List is

computed as sim(IISDir − List, ApacheDir − List) = 0.8. In this example, the

class HTTP Directory-List is the first common ancestor of IIS Dir-List and Apache

Dir-List, and the depth of IIS Dir-List and Apache Dir-List equal 5.

We use the notion of concept tree to measure the similarity between symbolic alert

attribute values as explained in the following. Let a1, ..., an denote a set of IDS alerts,

where each alert ai is represented using a p-dimensional attribute vector [ai1, ..., aip]

and only the first s attributes are symbolic attributes (1 ≤ s ≤ p).

Given two alerts ai = [ai1, ..., aip] and aj = [aj1, ..., ajp], the semantic similarity

between symbolic attribute values aik and ajk (1 ≤ k ≤ s) can be calculated using

equation 4.5.1 as following:
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sim(aik, ajk) = 1− (path(aik, LCA(aik, ajk)) + path(ajk, LCA(aik, ajk)))

(depth(aik) + depth(ajk))
(4.5.2)

We define the semantic similarity between two alerts ai and aj as follows.

sim(ai, aj) =

s
∑

k=1

sim(aik, ajk)

s
(4.5.3)

The semantic similarity between any pair of alerts or between any pair of alert

attributes is a value between 0 and 1. Where 1 indicates the maximum similarity

and 0 indicates that there is no similarity at all between the two attributes or alerts.

The computation of semantic similarity based on the ontology structure has two

advantages. First, we can easily measure the similarity between symbolic data (e.g.

classes and complex concepts) in the intrusion analysis domain. Second, previous

techniques in alert analysis define the similarity between alerts using ad-hoc meth-

ods. In contrast, ontology-based semantic similarity provides a systematic method

to measure similarity between alerts and other concepts in the intrusion analysis do-

main. Now, if we add, remove, or modify any concept in the ontology we can easily

calculate the similarity between this concept and other concepts in the ontology.

4.5.2 Ontology-based Semantic Relevance

In knowledge engineering and information retrieval, the notion of relevance expresses

how two objects are related with respect to the matter at hand. Semantic relevance

occurs between classes and individuals in the same ontology either by explicit relations

or implicit relations. Several approaches have been proposed to calculate the semantic
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relevance between concepts, objects or resources in specific domain of knowledge

[63, 62].

The notion of semantic relevance might seem equal to the notion of semantic

similarity, however, they are different. Semantic similarity between two concepts can

be measured based on the similarity of their contents or based on the taxonomic

relations (e.g is-A, subclass, instance-of) between them in a given ontology. On the

other hand two concepts can be semantically relevant as long as there is an explicit

or implicit relation between them even if their contents are completely different and

they are not connected by any taxonomic relation.

Using semantic relevance we can measure relatedness between a group of concepts

or a group of instances in the ontology. For example, we can measure how two or

more alerts are relevant to each other or how two or more attacks are relevant to each

other. Calculating the semantic relevance between concepts or instances depends

on the relations that exist between these concepts or instances. For example, let x

and y be two IDS alert instances, where alert x reports a scan attack against a web

server and alert y reports a buffer overflow attack against a database server. Now,

x and y are semantically similar because both are IDS alerts. But, whether x and y

are semantically relevant will depend on the ontological relations that exist between

them. If x and y are connected by ontological relations then they can be considered

as semantically relevant.

The ontological relations could be explicit or implicit. Based on explicit rela-

tionships and inference rules, semantic inference can be used to discover the implicit

relationships between intrusion instances, alerts, and other alerts attributes. Both

the explicit and (discovered) implicit relations are used to calculate the semantic rel-

evance. A subset of the ontological relations used to calculate the semantic relevance

between alerts are shown in Figure 4.9.



84

Figure 4.9: Ontological Relations between Alerts, Attack, Attacker and Target

In Figure 4.9 the explicit relations have different domain and range (e.g re-

port(Alert, Attack), while implicit relations have the same domain and range (e.g.

hasSameSource(Alert, Alert).

The semantic relevance between two alerts is based on the relations occurring

between them. Hence, we compute the semantic relevance between two alerts x and

y as the summation of the weights of all the relations occurring between them divided

by the summation of the weights of all the relations that can occur between any two

alerts.

Given two alerts x ∈ A, y ∈ A, let Rxy denote the set of all relations between x
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and y. Let R denote the set of all relations between two alerts from A, i.e., R =

∪x∈A,y∈ARxy. Given a relation r ∈ R, let w(r) denote the weight associated with r.

We define the semantic relevance between alerts x and y as follows:

semrel(x, y) =

∑

r∈Rxy

w(r)

cardinality(R)
(4.5.4)

It is important to understand that the semantic or the interpretation of the in-

ferred relations (e.g. hasSameSource, reportSameAttack, useSameV ulnerability,

etc.) is not limited to equality or perfect match. For example, two IDS alerts could

be related to each other by hasSameSource as long as their sources belong to the

same subnet, domain or even the same geographical location. The same applies for

reportSameAttack, where the attacks reported by the alerts might appear different

(e.g have different signatures), however, they affect the same system, result in the

same impact, etc. In fact modifying the the semantics of the ontological relations can

allow designing different alerts analysis and attack intelligence extraction.

In, addition the semantic relevance between two concepts ci and cj can be inferred

even if there is no direct ontological relation between them. For example, ci has an

ancestor concept that shares an ontological relation with another concept that is an

ancestor of concept cj . In this case we can say that ci and cj are semantically relevant

to each other through inheritance.

4.6 Summary

In this chapter we introduced a novel intrusion ontology. The proposed ontology

is a heavyweight ontology in terms of formality and granularity. In addition, our

intrusion ontology is a method ontology that contains problem solving knowledge.
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We explained the ontology engineering process to build our intrusion ontology. The

proposed ontological engineering process can be used to build method ontologies for

other domains such as network forensic, vulnerability analysis, etc. We also intro-

duced the use of semantic analysis and semantic correlation to analyze IDS alerts and

explained how the semantic correlation can take advantage of the proposed intrusion

ontology to measure semantic similarity and semantic relevance. Our ontology-based

semantic similarity metric has several appealing characteristics over other semantic

similarity metrics proposed in the literature.
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Chapter 5

Novel Alert Analysis Techniques

As we mentioned in Chapter 4, the intrusion analysis ontology provides the knowledge

required for IDS alerts analysis. However, the ontology by itself cannot perform any

of the alert analysis tasks. Therefore, it is important to design techniques that can

use the knowledge encoded in the ontology to perform these tasks.

In this chapter, we propose new algorithms for IDS alert filtering/verification, IDS

alert aggregation/summarization, predicting missing attack (false negative), detecting

attack patterns and reconstructing attack scenarios. The techniques we developed in

our work use machine learning and benefit from the rich knowledge structure (classes

and their relations) from the intrusion ontology.

5.1 Target Network Example

To explain the proposed alert analysis techniques we will use a simple example of

target network in a small e-commerce company. This target network receives both

normal and malicious traffic. An abstract network topology of the target network is

illustrated by Figure 5.1.

As illustrated in Figure 5.1, the target network consists of three subnets. The first
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Subnet-01

Subnet-02

DMZ
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web-server
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DNS-server

file-server
windows-host linux host

mail-server mail-server

DB-server DB-server Transaction-serverTransaction-server

The Internet

Figure 5.1: Target Network Topology

subnet (labeled subnet-01) contains file servers, mail servers and hosts used by the

company employees. The database and transaction servers are not accessible from the

Internet; they can only be accessed by the web servers in the DMZ and the machines

in "subnet-02". The customers’ purchases and orders are processed and stored in

database servers located in a secured subnet (labeled subnet-02). The third subnet

(labeled DMZ) is a DMZ (demilitarized zone), in which there are two web servers

and a domain name server; these servers can be accessed by the public (e.g. from the

Internet). The customers can access the web server, and purchase company products.

Table 5.1 lists the characteristics of the hosts in the target network including their IP

addresses, subnets, operating systems, running services and roles in the network. As

we can see, the target network consists of heterogeneous platforms, including hosts

OS and services.
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Now, using the ontology we will extract several concept trees describing the taxo-

nomic relations between the key classes (concepts) in the target network. Here, in our

example we will use simple concept trees to explain our IDS alert analysis techniques.

We will assume that our ontology contains the following key concepts: Attack, Asset,

Address, and Time.

Network Machine IP Platform Service Role

DMZ
192.168.20.70 Windows XP MS IIS v6.0 Web Server
192.168.20.80 Windows 7 MS IIS v7.5 Web Server
192.168.20.90 Windows 2008 Bind 8.2 DNS Server

Subnet-01

192.168.70.50 Windows 7 Exchange 2010 Mail Server
192.168.70.20 Fedora 10 Sendmail 8.14.4 Mail Server
192.168.70.33 Ubuntu 10.4 SSH Host
192.168.70.31 Ubuntu 11.4 SSH Host
192.168.70.22 Windows XP RDP Host
192.168.70.25 Windows 7 RDP Host
192.168.70.21 Windows 7 RDP Host
192.168.70.30 Windows XP FileZilla 0.9.31 File Server

Subnet-02

92.168.10.17 Windows 7 MS SQL 2005 DB Server
192.168.10.12 Windows 2000 MySQL 4.5.2 DB Server
192.168.10.84 FreeBSD SSH, RSH Transaction Server
192.168.10.88 FreeBSD SSH, RSH Transaction Server

Table 5.1: Description of the hosts in the target network

Figure 5.2 shows an example for the attack concept tree. The leaf nodes in the tree

represent the attack signature-id. IDS tools use signature-id in the alerts to represent

the reported attack instances.

Figure 5.3 shows an example for the address concept tree. The address concept

tree illustrates how we understand the similarity between IP addresses. The tree

consists of two main subtrees, one for internal addresses and the other for external

addresses. The first subtree organizes the target network IP addresses based on their

location in the network topology and their roles in the network. The second subtree

organizes the external IP addresses based on their geographical locations. Figures 5.4
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Figure 5.2: Attack Concept Tree Example
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and 5.5 show examples for the assets and the time concept trees, respectively.

5.2 IDS Alert Verification

IDS alerts verification is a classification problem. We try to classify alerts either as

true positive or false positive. The challenge when we deal with IDS alerts is how do we

represent the alerts features that are suitable for building a robust classifier. Selecting

the features or the attributes to represent alerts messages is the most important step

for distinguishing between false and true alerts.

An alert message contains a set of attributes that vary from one IDS sensor to

another. However, alert messages from different IDS sensors try to provide the same

information. The most common alert message attributes are the attack, the source of

the attack, the target of the attack, and the detection timestamp. The alert message

itself does not contain sufficient information to distinguish between true and false

alerts. In other words, the attributes are not suitable for building an alert classifier.

The intrusion analyst interprets the alert message and translates the alert message

attributes to more complex attributes that are useful for alerts classification.

In our alert verification approach we apply instance-based learning (example-based

learning). Our approach begins with a set of training examples consisting of raw

IDS alerts labeled as either true positive or false positive. An intrusion analyst can

provide the labels for the training examples. Then, using the ontology we represent

the context of each alert in the training example by calculating a set of features.

Using the alert context we can classify new unlabeled alerts as true or false positive

using one of two possible techniques. The first technique uses an instance-based

learning algorithm such as k-nearest neighbors with semantic distance metric. The

second technique uses inductive reasoning and a novel ontology-based rule induction
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Figure 5.3: IP Addresses Concept Tree Example
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Figure 5.4: Asset Concept Tree Example
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Figure 5.5: Time Concept Tree Example
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algorithm introduced in this work to learn appropriate classification rules.

5.2.1 Alerts Context

Context is defined in Webster dictionary as "the interrelated conditions in which

something exists or occurs". In other words, it is the circumstances that surround an

event and can throw light on its meaning. Here, we try to distinguish between false

and true alerts using their context.

When an intrusion analyst tries to decide if a given alert is either a false positive

or true positive, he looks at the context of that alert. In other words, he thinks about

the semantic of the attack reported by this alert, the semantic of the target, and the

characteristics of the alerts stream (information about alerts that occur with the alert

in-question). All of this information is used by the analyst to construct the context

of the alert.

In our work each alert message (or shortly alert) consists of seven attributes,

namely, the source IP address, source port, destination IP address, destination port,

attack signature, protocol, and timestamp. Using the knowledge base we process the

raw alerts and extract useful features that we can use to represent the alerts in a form

useful for building a classifier.

Using the attributes in the raw alerts we can extract additional features from the

knowledge base about the attack and target semantics to describe the alerts. We

extract attack semantic features from the signature attribute associated with the raw

alert. Attack semantic features describe the meaning of the attack. These include

information such as the attack type, the required privileges to execute the attack and

the services exploitable through the attack. This information can be obtained from

the IDS documentation or any online vulnerability database such as Open Source Vul-

nerability Database (OSVDB) and Common Vulnerabilities and Exposures (CVE).
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Table 5.2 shows some examples attack semantic features.

Feature Name Possible Feature Values

impact information gathering, code execution, etc

vulnerability protocol flow, implementation bug, etc

privilege any, local user, root, etc.

services web, ftp, dns, mail, etc.

platforms Windows, Mac, Linux, etc.

protocols ICMP, TCP, UDP, etc.

Table 5.2: Attack Semantic Features

The target semantic information includes basic information about the target, e.g.

the target operating system, running services and the access policy to the services,

the general topology of the network like what IP addresses belong to the DMZ or

private subnet, etc. Using the target IP address and port number attributes in the

raw alerts, we can extract the above information from the knowledge base. Note

that our technique does not require detailed information about the target network

like configuration files, installed software, updated, patches, etc. Collecting this basic

information can be easily achieved using a network reconnaissance or other network

scanning tools. Table 5.3 shows some examples of target semantic features.
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Feature Name Possible Feature Values

running service web, ftp, dns, mail, ssh, etc

service access any, local, remote, remote-root, etc

platform Windows, Linux, Solaris, etc.

type Firewall, IDS, Server,Host, etc

countermeasure firewall, IPS, etc

Table 5.3: Target Semantic Features

It is important here to explain that we are not using the network scanning tools

to check or to verify that a vulnerability exists in the network or that an attack is

successful in the target network.

The last group of features is extracted from the characteristics of the alerts stream.

This group of features contains numerical values about other alerts in the same

alerts stream that are semantically similar and semantically relevance to the alert

in-question. We calculate these features using the raw alert attributes and the attack

semantic. For each alert we analyze the surrounding alerts (alerts with detection

timestamp less than, greater than, or equal to the current alert timestamp) looking

for the semantically similar alerts.

We consider two alerts ai and aj to be related if they satisfy one of the following

semantic relatedness conditions:

• C1: ai and aj share the same source IP address and destination IP address

• C2: ai and aj share the same source IP address and the same attack semantic

• C3: ai and aj share the same destination IP address and the same attack

semantic
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• C4: ai and aj share the same source IP address and destination IP address and

their attacks have different impact and/or privileges.

For each alert ai in a given alerts stream we process this alerts stream and count the

number of alerts that satisfy at least one of the alert semantic relatedness conditions.

The number of alerts that satisfy one condition is divided by the number of all similar

alerts (for normalization purpose) and counts as one feature. We calculate the number

of related alerts over different time windows. The time window is defined based on

the average inter-arrival time between alerts.

5.2.2 Alert Verification Using Nearest Neighbors Algorithm

The first technique to verify IDS alerts and detect false positives uses the k-nearest

neighbors (KNN) algorithm, and is very simple to implement. It begins with a set of

labeled IDS alerts were each alerts is labeled as either false positive or true positive,

as illustrated in Table 5.4.

Index Time Src IP Dst IP Attack Signature Label
1 1299078650 B.B.B.12 192.168.20.70 SID-19 FP
2 1299078650 B.B.B.12 192.168.20.70 SID-19 FP
3 1299078830 C.C.C.97 192.168.20.80 SID-27 TP
4 1299078950 C.C.C.21 192.168.20.80 SID-83 TP
5 1299079250 192.168.70.33 192.168.70.50 SID-08 FP
6 1299035930 192.168.70.25 192.168.70.50 SID-08 FP
7 1299036010 C.C.C.10 192.168.20.80 SID-54 FP
8 1299036138 C.C.C.10 192.168.20.80 SID-63 FP
9 1299288650 192.168.70.22 192.168.10.12 SID-31 FP
10 1299288770 192.168.70.25 192.168.10.12 SID-31 FP
11 1299289250 C.C.C.21 192.168.20.70 SID-83 TP

Table 5.4: Example of labeled raw IDS alerts

We calculate the alert context for each labeled alert in the training set. For

instance, the alert context for the alert with index number 7 in Table 5.4 is shown in
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Figure 5.6.

Figure 5.6: Example of alert context features

After calculating the context of each alert in the labeled alerts set, we use these

labeled alerts to classify new unlabeled alerts. A new unlabeled alert can be classified

as false positive or true positive based on its k nearest neighbors in the labeled alerts

set. For any unlabeled raw alert we calculate the alert context and then calculate the

semantic distance between the context of the unlabeled alert and each alert context in

the labeled alert set. Note that in our approach we associate with each alert feature

a concept tree in which the feature itself is the root node while the feature values

correspond to the leaves of the tree.

The semantic distance between two alerts ai and aj is given by equation 5.2.1.

Where sim(ai, aj) is the semantic similarity between ai and aj , given in equation
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4.5.3. Note that the more semantically similar two alerts are, the lower their semantic

distance and vice-versa.

SemanticDistance(ai, aj) = 1− sim(ai, aj) (5.2.1)

To explain how the classification of new unlabeled alerts works, let us assume that

the IDS in the target network example generated the three alerts in Table 5.5.

Index Time Src IP Dst IP Attack Signature Label

1 1299078650 A.A.A.65 192.168.20.70 SID-95 ??

2 1299078650 B.B.B.12 192.168.20.80 SID-54 ??

3 1299078830 H.H.H.201 192.168.70.50 SID-27 ??

Table 5.5: Example of unlabeled raw IDS alerts

Using the concept trees for the target network example in Section 5.1 we can

calculate the semantic distance between each new unlabeled alert in Table 5.5 and

each labeled alert in Table 5.4. For example the semantic distances between alert

with index 1 in Table 5.5 and each labeled alert in Table 5.4 are shown in Table 5.6.

The semantic distances in Table 5.6 are calculated based on five features (src IP, Dst

IP, attack, target OS, running service) that represent the alert context.

Based on the semantic distance values in Table 5.6, and using nearest neighbors

(where k=1 or k=3) the unlabeled alert will be classified as True Positive (TP). Note

that alert 1 and alert 2 in Table 5.4 are duplicated alerts, therefore we consider them

as one alert when we count the k-nearest neighbors.

Looking at our technique we can see that the proposed semantic distance metric

assumes the alert context features have equal importance. However, this assumption

is not always true as some of the alert context features may be more important than
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the others. Moreover, from the intrusion analyst view, some of the context features

are not important at all, specifically when they relate to some intrusion attempts.

For this reason we suggest the use of a weighted semantic distance metric.

Labeled Alert Semantic Distance Predicated Label

alert 1 0.20 FP

alert 2 0.20 FP

alert 3 0.21 TP

alert 4 0.21 TP

alert 5 0.64 FP

alert 6 0.64 FP

alert 7 0.28 FP

alert 8 0.28 FP

alert 9 0.59 FP

alert 10 0.59 FP

alert 11 0.11 TP

Table 5.6: Semantic distances between unlabeled alert 1 in Table 5.5 and each labeled
alert in Table 5.4

A weighted semantic distance metric will assign for each semantic feature a weight

that represents the importance of the feature. Given an alert ai let aik denote the kth

feature of alert ai. We modify Equation 5.2.1 to include the weight of each semantic

feature by defining the semantic distance of two alerts ai and aj as follows:

SemanticDistance(ai, aj) = 1−













s
∑

k=1

wk · sim(aik, ajk)

s













(5.2.2)
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Where wk is the weight assigned to feature k (1 ≤ k ≤ s).

5.2.3 Alert Verification Using Rule Induction

The k-nearest neighbor is known to be an expensive classifier. The runtime complexity

for the KNN algorithm is O(m · n) where m is the number of features and n is the

number of instances in the labeled training set. This is because we compute the

distance between the unlabeled instance (alert) and every labeled instances (alerts)

in the training set.

Considering the massive number of labeled/unlabeled alerts we need to deal with,

a KNN classifier might not be the best choice for online alert verification. For this

reason we propose a different technique to verify IDS alerts that eliminates false

positives using rule induction [37].

Rule Induction

Rule induction is a machine learning method that learns classification rules from a

set of labeled instances. It is another form of instance-based learning. The learning

process with rule induction uses a set of training examples (labeled instances) to

extract a set of rules that can classify new unlabeled instances. The classification

rules are extracted by generalizing the training examples.

One of the main advantages of rule induction over other machine learning methods

is the generated rules are easy to interpret and most of the time are human readable.

The main components of a rule induction system are:

• Description Language: to describe the training dataset and the extracted rules.

• Training examples: a set of labeled instances that will be used to extract the

classification rules.
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• Cover function: a method to decide if an instance (labeled or unlabeled) is

covered by the rule or not.

The extracted rule set should have two properties, namely, consistency and com-

pleteness. Consistency means each rule in the rule set should cover only one class

(label) in the training set. Completeness means the rule set should cover all the

examples in the training set. However, the above definition of consistency and com-

pleteness is very strict and unrealistic in any real learning problem. Most of the

time if the rule set is complete, it is mostly not consistent and vice-versa. Therefore,

usually the completeness and consistency properties are relaxed using a threshold or

other form of measurements.

Ontology-based Rule Induction (ORBI)

Using ontologies and the theory of rule induction we propose a new rule induction

algorithm to learn classification rules using an ontology and a set of training examples.

The proposed algorithm is useful for learning classification rules where the domain of

the learning problem is represented by an ontology. It is assumed that each feature in

the training examples is associated with a concept tree (a taxonomy in the learning

problem domain ontology).The root node of the concept tree is the feature itself while

the feature values correspond to the leaves of the tree.

Using an ontology-based rule induction will allow us to transform the massive

number of IDS alerts into a compressed set of rules. In our case, the description logic

serves as the description language to express the rules for the rule induction system

and the taxonomic relations serve as the cover function.

Our proposed ontology-based rule induction algorithm performs two basic oper-

ations to learn classification rules from training examples. The first operation is a

generalization operation and the second operation is a fusion operation. The result
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of the two operations is a new hybrid-alert that we can use as an alert classification

rule. Usually each generated rule is evaluated based on its classification accuracy. If

the classification accuracy is more than a predefined threshold the rule will be added

to the rules set otherwise the rule will be dropped.

In general, a hybrid alert has the same format, and therefore the same types of

attributes as a raw alert. The main difference between the attributes in a hybrid alert

and those in the raw alert is the level of abstraction. Hybrid alert attribute values

(i.e. concepts) will be equal or more abstract than corresponding raw alert attribute

values.

Before we explain our ontology-based rule induction technique in details, let us

illustrate the general idea of the technique. Let Table 5.7 represent the alert training

set.

Src Dst SID Service OS Label

C.C.C.97 192.168.20.70 SID-19 IIS-6.0 WinXP FP

C.C.C.10 192.168.20.80 SID-83 IIS-7.5 Win7 FP

A.A.A.47 192.168.20.70 SID-27 IIS-6.0 WinXP FP

Table 5.7: Example of alert training set for rule induction

Now, using the labeled alert set in Table 5.7 we can apply a simple generalization

and fusion step to learn the classification rule. One possible generalization operation

is to replace the values of each feature in the labeled alert set (excluding the label)

by their lowest common ancestor (LCA)[2] in the concept tree associated with that

feature. Then, we fuse redundant alerts (including their labels). By applying these

two operations on the alerts in Table 5.7, it will result in one new alert (hybrid alert)

that represents the alert set as illustrated in Table 6.4
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Src Dst SID Service OS Label

Egypt Public-Web Web-App-Exploit MS IIS WinNT FP

Table 5.8: Alert training set after applying the OBRI technique

The generalization and fusion operations produce a high-level (hybrid) alert. We

can think of this high-level alert as a classification rule. This classification rule says

that for any given alert if the alert features satisfy a set of conditions then this alert

is a false positive. The conditions are simply taxonomic relations instance-of and

subclass-of. The conditions in this case are:

• Egypt(?src): the source of the alert is an instance/subclass of the class Egypt.

• Public-Web(?dst): the destination of the alert is an instance/subclass of the

class Public-Web.

• Web-App-Exploit(?sid): the attack reported in the alert is an instance/subclass-

of the class Web-App-Exploit.

• MS-IIS(?service): the service attacked during the attack in the alert is an

instance/subclass of the class MS-IIS.

• WinNT(?os): the target operating system of the alert destination is an in-

stance/subclass of the class WinNT.

Finally, this high-level alert can be rewritten as a classification rule R1 using

SWRL as follows:

Alert(?x) ∧ Egypt(?c) ∧ PublicWeb(?v) ∧WebAppExp(?a) ∧WindowsNT (?o) ∧

IIS(?s) ∧ hasSource(?x, ?y) ∧ hasGeoLoc(?y, ?c) ∧ hasTarget(?x, ?z) ∧

hasV irLoc(?z, ?v) ∧ report(?x, ?a) ∧ hasOS(?z, ?o) ∧ hasService(?z, ?s) →

FalsePositive(?x)
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It is clear that the extracted classification rule is complete and consistent with

respect to the training set in Table 5.7. In addition, the idea of ontology-based rule

induction allows us to generalize beyond the examples that have been provided during

the training phase. In other words the extracted classification rules can classify novel

alerts that were not present during the training phase. For example, let us consider

the alert in Table 5.9:

Src Dst SID Service OS Label

C.C.C.21 192.168.20.80 SID-79 IIS-7.5 Win7 ??

Table 5.9: Unlabeled novel alert example

The alert in Table 5.9 is a novel alert (i.e. not existing in the training set); however

it is covered by the extracted classification rule. This means using the classification

rule R1 we can predict the class of this novel alert, which is false positive.

While we were able to learn a classification rule that is complete and consistent

with respect to the training set, this is not always possible. Moreover, using the lowest

common ancestor to generate the rule is not applicable with real alert set. In most

cases using LCA will result in learning overgeneralized classification rules that are

neither consistent nor complete and have poor accuracy. Therefore, it is important to

design a new algorithm that can extract accurate classification rules using the OBRI

approach.

A Brute-Force OBRI Algorithm

For a given training set of alerts A, we can learn the optimal (complete and consistent)

set of classification rules R using a brute-force technique. In fact, the only method

to find an optimal R for any given A is using a brute-force search. The runtime

complexity of applying a brute-force search for finding R is T (n) = n · r, where n
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is the number of alerts in A, and r is the number of all possible classification rules.

The number of all possible classification rules for a given alert set A is given by the

following equation:

r =
m
∏

i=1

|ci| (5.2.3)

Where ci denote the set of classes involved in the concept tree associated with

an alert feature of index i; | ci | denote the cardinality of ci and m denote the total

number of alert features.

For instance, the number of all possible classification rules r for the alert set in

Table 5.4 is r = 14 × 8 × 13 × 4 × 13 = 75712 rules. Using the concept trees in the

Target network example and the training set we will have 14 concepts in the source

feature, 8 concepts in the destination feature, 13 concepts in the attack feature, 4

concepts in the OS feature, and 13 concepts in the services feature.

Using a brute-force search we can find the optimal set of classification rules for

the alerts in Table 5.4. By testing the 75712 possible classification rules we will end

up with four rules that are consistent and complete as shown in Figure 5.7.

Figure 5.7: Alert Verification Rules
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An Immune Inspired OBRI Algorithm

Using a brute-force method to learn the classification rules is computationally expen-

sive. For this reason we have decided to design an OBRI algorithm using a computa-

tional intelligence technique inspired by the human immune system. Our algorithm

can learn classification rules with an accepted level of completeness and consistency

without the need to perform a brute-force search.

To learn classification rules and design an efficient ontology-based rule induction,

we based our technique on the clonal selection theory. Clonal selection is the the-

ory that explains how the human immune system responds to infection or antigens.

In short when an antibody recognizes an antigen (nonself) with a certain affinity

(degree of matching), this antibody is selected by the immune system proliferation.

The objective of this proliferation process is to select those antibodies that can de-

tect pathogens with a high detection rate. The immune system clones the selected

antibodies and then the clones enter a mutation operation that results in new anti-

bodies with higher affinity than the original antibodies. In other words, the generated

antibodies after the proliferation are more capable of recognizing antigens than the

original antibodies.

Before we explain our immune inspired technique let us review some basic immune

terminologies and the general description of the clonal selection algorithm as explained

by De Castro[14] .

• Affinity: a measurement to capture the degree of binding (relatedness) be-

tween an antibody (Ab) and antigen (Ag). The stronger the binding, the higher

the affinity.

• Affinity Maturation: the process that increases the antibodies affinity for

antigens through selection and hypermutation as part of the adaptive immune
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response

• Antibody:a Y-shaped protein generated by the B-cells in response to antigen.

Antibodies are used by the immune system to detect and eliminate antigens.

• Antigen: any micro-organism (pathogen or infectious agent) that when pre-

sented into the body triggers the immune system response (production of anti-

bodies)

• Bone Marrow: a soft tissue, which as indicated by the name is located in the

interior of bones. This soft tissue is the site responsible for the generation of all

the blood cells including the immune cells (lymphocyte).

• Clonal Selection: the theory that explains how the immune system clones

selected antibodies and mutates these antibodies to produce new antibodies

with higher affinity.

• Clone: an organism or a group of cells that is genetically identical to another

organism (ancestor) from which it was created.

• Gene: a hereditary unit of a living organism; consists of a sequence of DNA

that defines a specific characteristic in the organism.

• Mutation: the process of changing the DNA sequence within a gene, which

results in the creation of a new gene with new characteristics that do not exist

in the original gene.

The general clonal selection algorithm can be described using the following basic

steps:

1. Generate an initial set AB of antibodies.

2. Given set AG of antigens, for each antigen in AG.
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2.1. Calculate the affinity between this antigen and each antibody in AB.

2.2. Select a set X of antibodies, where X contains the antibodies with highest

affinity in AB.

2.3. For each antibody in X, clone this antibody m times. The number of clones

depends on the affinity of the antibody; the higher the affinity the higher

the number of clones and vice-versa.

2.4. Mutate each generated clone in the previous step. The mutation rate

also depends on the clone affinity; the higher the affinity the smaller the

mutation rate and vice-versa.

2.5. Add the mutated clones to AB; select the antibodies with highest affinity

as the memory of the antigen.

2.6. Select m number of antibodies with lower affinity in AB and replace them

with X.

3. If stopping criteria are met, then stop, else go to step 2

Now, after explaining the clonal selection theory and the general algorithm, the

key question is how do we use this computational technique to learn classification

rules and eliminate false positive alerts. The first step to apply clonal selection is to

represent our alert verification process as a clonal selection computational process.

In other words, we need to map the alert verification steps and the immune system

model. Table 5.10 summarizes the mapping between the alert verification process

and the immune system.

As indicated in Table 5.10 each concept tree is a gene library. Since an alert

message contain m features and each feature is associated with one concept tree

then we have m gene libraries. We use these gene libraries to generate candidate

classification rules (hybrid alert). We want to avoid the generation of overgeneralized
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Alert Verification Immune System
Hybrid Alert (Rule) Antibody
Rule Coverage & Consistency Affinity
False Alert Antigen
True Alert Self (body cell)
Concept Tree Gene Library
Alerts Generalization Bone Marrow, Affinity Maturation, and Mutation

Table 5.10: Mapping Between Alert Verification and Immune System

classification rules. To achieve that, we do not use the entire concept tree in the

ontology as a gene library but only a subtree of this concept tree is used as the gene

library for a given alert feature. This subtree is extracted from the original concept

tree in the ontology by applying two simple rules as follows.

R1: The root of the subtree for a given feature f is the highest common ancestor of

all the values of f in the training set.

R2: Any concept in the subtree must be an ancestor for at least one feature value

in the training set.

Using the labeled alert set in Table 5.4 and the concept tree in Figure 5.4 we can

extract the subtree for any feature in the alert message. For example, let us con-

sider the OS feature; the subtree for the OS feature includes the following concepts:

WinNT , Win7 , WinXP , and Win2000 . Limiting the gene library for the OS

feature to these four concepts means any generated rule that say anything about the

OS will only contain one of these four concepts. This prevents our rule induction al-

gorithm from generating overgeneralized rules that are not supported by any training

example. In addition, it reduces the size of the gene library and therefore the rule

space which will improve the runtime of the algorithm.

In our OBRI technique we use the gene library to generate candidate antibodies.

Each candidate antibody is tested against the training set. Those candidate antibod-
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ies that show a specific level of affinity with the training set are selected as mature

antibodies. The set of mature antibodies represents the learned classification rules.

Generating the set of mature antibodies or the classification rules requires that we

define a method for calculating the affinity and another method to perform affinity

maturation.

The goal of the rule induction is to learn a set of rules that is consistent (high

accuracy) and complete (high coverage). For this reason the affinity of the antibody is

determined based on the accuracy and the coverage of the antibody. The accuracy and

coverage of an antibody ab for a given class X are given by the following equations:

accuracy(ab,X) =
cardinality(ab → X,E)

cardinality(ab, E)
≤ 1 (5.2.4)

coverage(ab,X) =
cardinality(ab → X,E)

cardinality(X,E)
≤ 1 (5.2.5)

Where cardinality(C, S) is the number of examples in set S that satisfy condition

C. For example, cardinality(ab → X,E)| is the number of the examples in the

training set E that are covered by ab and belong to the class X. Given the accuracy

and coverage of an antibody ab, we can calculate the affinity of ab with X by the

following equation:

affinity(ab,X) = wa · accuracy(ab,X) + wc · coverage(ab,X) (5.2.6)

Where wa and wc are weights assigned to accuracy and coverage, respectively and

wa + wc = 1

When we calculate the affinity between ab and X, we use weights wa and wc to

control how the accuracy and the coverage affect the overall affinity. The affinity is a
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value between 0 and 1, where 0 indicates no affinity at all and 1 indicates maximum

affinity.

To perform affinity maturation we need to select a subset of the candidate an-

tibodies and mutate these antibodies to obtain mature antibodies (i.e, have higher

affinity with X). It is possible to select n number of antibodies with highest affinity

or to select all the antibodies with an affinity greater than a predefined maturation

threshold. Then, the selected antibodies are cloned and mutated. Each selected can-

didate antibody is cloned for m times based on the antibody affinity, the length of

the antibody, and the size of the gene libraries. The number of clones that will be

produced for each antibody ab is calculated using equation 5.2.7.

clone(abi) =

⌊

L× |G|
i

⌋

, (1 ≤ i ≤ n) (5.2.7)

Where abi is the ith antibody in n number of selected antibodies, and 1 ≤ i ≤ n.

These selected antibodies are sorted based on their affinity, such that ab1 is the

antibody with the maximum affinity and abn is the antibody with the minimum

affinity. Finally, L is the length of the antibody (the number of alert features) and G

is the sum of sizes of the gene libraries (the total number of concepts in the concept

trees). Note that during the generation of the antibodies we update the gene libraries

by removing genes that are completely covered. In other words we continue pruning

the concept trees and remove the concepts that are completely covered by the matured

antibodies. This means we always make sure that any concept in the concept trees

(gene libraries) is at least an ancestor for one feature value in the uncovered training

examples.

After cloning the selected antibodies; the next step in the affinity maturation is

to mutate the clone in order to produce matured antibodies with higher affinity. The

mutation is usually a random process where we randomly select some genes (alert fea-
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tures) and replace them with other genes from the gene libraries (concepts from the

concept trees). The strength of the mutation depends, in general, on the affinity and

can be guided using the coverage and the accuracy of the cloned antibody. For exam-

ple, if the coverage of the antibody is low and the accuracy is high then the mutation

tends to generalize the genes in the antibody (superclasses replace subclasses) and if

the coverage is high and the accuracy is low then the mutation tends to specialize the

genes in the antibody (subclasses replace superclasses).

When the affinity maturation completes, we calculate the affinity of the mutated

antibodies and add them to the original antibodies population. Then, we select the n

antibodies with the maximum affinity or greater than a predefined affinity threshold.

Any training example in the training set that is covered by the selected antibodies

will be removed from the training set. We continue repeating the clonal selection

process as we described until all the training examples are covered or in other word

until the training set is empty.

At the end of the clonal selection we will have a set of matured antibodies (classi-

fication rules) that cover all the examples (alerts) in the training set. At this point, it

is possible that some of the generated rules are semantically redundant. Two classifi-

cation rules ri and rj are semantically redundant if ri is covered by rj or rj is covered

by ri. This means the training examples covered by one rule are covered by the second

rule. The way to deal with semantically redundant classification rules is by looking

at the rule accuracy and coverage. We always select the most generalized rule if it

has better or the same accuracy as the least generalized rule. A less generalized rule

will be selected over a more generalized one if it has better accuracy and dropping the

more generalized rule does not prevent satisfying the required level of coverage. The

main steps of our semantic similarity based alerts verification process are illustrated

by Algorithm 1.
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Algorithm 1: Ontology-based Rule Induction
/* E a set of labeled alerts (training examples) */

/* R a set of alert classification rules */

Input: E
Output: R

1 begin

2 R ← ∅ ;
3 while E has more Examples do

4 P ← generate antibodies population;
5 affinity(P , E) ;
6 Let be S a subset of P with maximum affinity ;
7 foreach ab in S do

8 C ← clone(ab)
9 end

10 foreach clone in C do

11 X ← Mutate (clone)
12 end

13 affinity(X, E) ;
14 insert(X, P );
15 Let S a subset of P with maximum affinity ;
16 foreach e in E do

17 if e covered by S then

18 remove e from E ;
19 end

20 end

21 insert(S, R)

22 end

23 R ← refine(R);
24 return R;

25 end

The input to our ontology-based rule induction algorithm is E, a set of labeled

alerts (training examples). The output of the algorithm is R, a set of alert classi-

fication rules. The algorithm terminates when it generates rules that cover all the

examples in the training set. In every iteration the algorithm generates P , a popu-

lation of candidate antibodies. Each antibody in P is evaluated with E to calculate

its affinity. Then, a set S of antibodies in P with maximum affinity are selected for

affinity maturation. Each antibody selected for affinity maturation is cloned and its

clones are added to the set C and then each cloned antibody is mutated and added to

the set X. After that, the algorithm calculates the affinity of each mutated clone and

adds all the clones in X to the original population P . Again, the algorithm selects

the antibodies with the highest affinity and puts them in the set S. Next, each alert

(example) in the training set E that is covered by at least one antibody from S is

removed from E. At the end of the iteration, the antibodies in S are added to the
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set R. Finally, when all the examples are covered, we refine the set R to eliminate

semantically redundant rules and return the refined set of rules R.

5.3 IDS Alert Aggregation

We think of the problem of alert aggregation or alert fusion as a special case of auto-

matic text summarization problem [18]. In automatic text summarization we usually

have one or more sources of information and we try to produce a summary that re-

tains the most important information. In general, there are two main methods for

automatic summarization, namely, extraction and abstraction. Extraction methods

identify important knowledge or key phrases in the text and use them as a sum-

mary. Abstraction methods on the other hand produce important information and

key points in a new way. Usually the quality of summary generated by abstraction

methods is better than the one generated by extraction methods. However, devel-

oping abstraction methods for automatic summarization is harder than extraction

methods and usually requires the use of artificial intelligence and natural language

processing techniques.

We propose an automatic alert aggregation and summarization technique. Our

technique is an abstraction-based technique. We process the raw IDS alerts (regardless

of their true/false labels) and generate hybrid alerts. Each generated hybrid alert

fuse/summarize a set of semantically similar alerts. Our technique relies on the

intrusion ontology to generate the hybrid alerts. In particular, raw alerts that share

semantic similarity are fused together into a hybrid alert that summarizes these raw

alerts.

The basic operations of the alert aggregation are similar to the basic operations of

the alert verification, namely, generalization and fusion, that produce a hybrid alert.
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This hybrid alert is a high level alert that summarizes a set of raw alerts. To illustrate

our alert aggregation technique, let assume we have the set of raw IDS alert in Table

5.11.

Index Src Dst SID Service OS

1 A.A.A.97 192.168.20.70 SID-27 IIS-6.0 WinXP

2 A.A.A.65 192.168.20.80 SID-19 IIS-7.5 Win7

3 A.A.A.65 192.168.20.70 SID-83 IIS-6.0 WinXP

4 A.A.A.97 192.168.20.80 SID-19 IIS-7.5 Win7

5 A.A.A.65 192.168.20.80 SID-79 IIS-7.5 Win7

Table 5.11: Raw IDS Alerts before Aggregation

Aggregating the raw alerts in Table 5.11 can be achieved by generalizing and

fusing the alerts. For instance, we can aggregate this subset of alerts into one hybrid

alert, as in Table 5.12 or into 2 hybrid alerts as in Table 5.13. As we can see from

Table 5.12 and Table 5.13 there are at least two different possible aggregations for

the raw alerts in Table 5.11.

Src Dst SID Service OS

Alex Public-Web Web-App-Exploit MS IIS WinNT

Table 5.12: Summarizing Raw Alerts Using One Hybrid Alert

Src Dst SID Service OS

Alex 192.168.20.70 Dir-List IIS 6.0 Win XP

Alex 192.168.20.80 XSS IIS 7.5 Win 7

Table 5.13: Summarizing Raw Alerts Using Two Hybrid Alerts
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Now, how can we select the appropriate aggregation results for the raw alerts in

Table 5.11 ? In other words, how can we measure the quality of the generated hybrid

alerts ? In general, the alert aggregation is usually evaluated using the alert reduction

rate (ARR), which is computed as the difference between the original number of alerts

and the alerts remaining at the end of the aggregation process over the original number

of alerts. The alert reduction rate (ARR) is given by the following equation.

ARR = 1− |H|
|A| (5.3.1)

Where H is the set of hybrid alerts resulting from the aggregation process and

A is the original set of raw alerts before the aggregation. Despite its popularity, we

believe, however, that the ARR is not enough to evaluate the effectiveness of the

aggregation process. In fact the ARR captures well the quantitative aspect of the

alert aggregation process but misses altogether the qualitative perspective. The use

of one hybrid alert to aggregate the raw alerts in Table 5.11 yields better ARR than

using two hybrid alerts. However, it is clear that the use of two hybrid alerts as

in Table 5.13 is more informative. For example, when using two hybrid alerts we

know that only the web server with the IP address 192.168.20.80, was attacked by

XSS attacks. To bridge this gap, we assess the quality of our aggregation process by

measuring objectively the information loss occurring during this process.

The main challenge with alert aggregation is how we control the generalization

and fusion operations. In the alert verification, this was less complex because the

alerts were labeled either false positives or true positives. In other words, the alerts

were sorted into two classes. Therefore, in the alert verification we try to generate

hybrid alerts that do not fuse alerts from different classes. This means the labels of

the alerts play a major role in controlling the generalization and the fusion of the
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alerts. Moreover, the end objective of the alert verification is to learn a set of rules

that we can use in the future to classify alerts. On the other hand, in the alert

aggregation there is no learning; the generated hybrid alerts summarize a specific set

of raw alerts and is not suitable to describe another set of raw alerts. In addition, not

all the alert context features are necessary for aggregating the alert. For example, the

features from the related surrounding alerts (alert context feature) are not important.

Therefore, we believe that for aggregation purpose it is enough to use only the raw

alert features in addition to some selected features from the attack semantic and

target semantic.

5.3.1 A Lightweight Alert Aggregation Method

If our objective is to aggregate raw alerts to achieve a specific alert reduction rate

like previous work in the area, then using the intrusion ontology we can develop an

efficient lightweight alert aggregation algorithm. The proposed algorithm applies a hill

climbing technique to generalize and fuse the raw alerts. This lightweight aggregation

algorithm only guarantees that the raw alerts will be aggregated to reach a specific

alert reduction rate. It does not consider the similarity between the alert or the

information loss rate when it performs the aggregation.

To explain the main idea of our lightweight alert aggregation algorithm let us say

that we have n number of raw IDS alerts. Each alert consists of m number of features.

Again, each feature is associated with a concept tree where the feature itself is the

root node while the feature values correspond to the leaves of the tree. Now, let us

assume that we want to aggregate the raw alerts and reduce them to u number of

hybrid alerts, where u < n. To reach the target alert reduction u we process the raw

alerts as follows.

Because we want to reach a specific alert reduction rate by reducing the number
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of alerts from n to u, we must make sure that each alert feature has only u number

of unique feature values. This is because if the number of unique feature values for

any alert feature is greater than u, then the total number of alerts must be greater

than u. To reduce the number of unique feature values in each feature to u or less,

our technique iterates over each alert feature and performs the two basic operations

of generalization and fusion. In the generalization operation, each feature value is

replaced by its least ancestor in the concept tree associated with that feature. After

each generalization operation, we check the alert set and fuse redundant alerts.

After reducing the number of unique feature values in each alert feature to u, it

is possible that the total number of remaining alerts is more than u. This means we

did not reach the required reduction rate. This also means further generalization and

fusion operations are required. Because each alert feature has only u unique feature

values, then it is possible to select one or more alert features to perform additional

generalization until we reach the desired alert reduction. It is important that we do

not perform all the additional generalization operations on the same alert feature,

as, this mostly will result in overgeneralizing this alert feature. Therefore, in each

iteration we should select the alert feature that has the larger number of unique

feature values or the one whose concept tree has the maximum depth. The main

steps of our lightweight alert aggregation are summarized in Algorithm 2

As mentioned before, the lightweight aggregation algorithm focuses only on achiev-

ing a specific alert reduction rate. In general, it does not give any promise on the

quality of the aggregation process. To avoid overgeneralization, the lightweight ag-

gregation algorithm always starts by the feature value with the maximum depth in

the concept tree. In addition, when the number of unique feature values is less than

the desired alert reduction value it will select the feature with the maximum number

of unique values whose concept tree has the maximum depth.
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Algorithm 2: Lightweight Alert Aggregation
/* A a set of raw IDS alerts (training examples) */

/* H a set of hybrid IDS alerts (aggregated alerts */

/* r the desired alert reduction */

Input: A
Output: H

1 begin

2 foreach feature fi in F do

3 while number of unique feature values in fi > r do

4 let v the feature value with maximum depth ;
5 replace v by its least ancestor in concept tree;
6 fuse redundant alerts in A ;

7 end

8 end

9 while number of alerts in A > r do

10 select feature f where f is a good candidate for generalization ;
11 let v the feature value with maximum depth ;
12 replace v by its least ancestor in concept tree;
13 fuse redundant alerts in A ;

14 end

15 H ← A;
16 return H;

17 end

5.3.2 Alerts Aggregation Using Semantic Similarity

Despite the fact that lightweight alert aggregation algorithm can summarize raw IDS

alerts and reach the target alert reduction rate, it does not really take full advantage

of the intrusion ontology. One way to improve the alert aggregation process is to

aggregate alerts based on their semantic similarity. This means a group of raw IDS

alert will be fused into one hybrid alert if only their semantic similarity is no less than

a given threshold.

Using the intrusion ontology and the semantic similarity metrics introduced in

Chapter 4, we can measure the semantic similarity between a group of alerts. Then,

if the semantic similarity between these alerts is greater than a given threshold, we

can fuse these alerts into one hybrid alert. In other words, each hybrid alert will

summarize a subset of the raw IDS alerts that share the same meaning (semantic).

To aggregate the raw alerts using their semantic similarity we need to cluster the

alerts first using their semantic similarity.

The main steps of our semantic similarity based alerts aggregation process are
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illustrated by Algorithm 3. The algorithm performs two main operations, namely,

clustering and fusion. The clustering operation groups semantically similar alerts

into a single cluster based on a predefined similarity threshold. The fusion operation

fuses the alerts that belong to the same cluster and generates a corresponding hybrid

alert.

Algorithm 3: IDS Alerts Aggregation Algorithm
/* A a set of intrusion alerts of size n */

/* T semantic similarity threshold vector of size p */

Input: A,T
Output: H

1 begin

/* Th: threshold vector of size p */

/* C: set of alerts clusters */

2 Th← [1, ...,1] ;
3 i← 0;

4 A
′

← A;
5 C ← ∅ ;
6 while i ≤ p do

7 for j = 1 to n do

8 x← true;
9 if C 6= ∅ then

10 for s = 1 to size(C) do

11 c← C[s];
12 h← hybrid-alert of cluster c;

/* h = [h1, ..., hp], where hs is the sth attribute of h */

13 for l = 1 to p do

14 if (sim(ajl , hl]) ≤ Th[l]) then

15 x← false;
16 break;

17 end

18 end

19 if x = true then

20 c← c ∪ {aj};
21 h ← fuse aj with h;
22 H ← H ∪ {h};
23 break;

24 end

25 end

26 end

27 if (x = false) or (C = ∅) then

28 let c new cluster such that c = {aj};
29 let h hybrid-alert of c such that h = aj ;
30 H ← H ∪ {h};

31 end

32 end

33 A
′

← H;
34 i← i+ 1;
35 Th[i]← T [i];

36 end

37 return H;

38 end

The algorithm takes two inputs. The first input is a set of raw IDS alerts sorted
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by increasing order of occurrence time. The second input is a thresholds vector,

where each element represents a predefined semantic similarity threshold for one of

the symbolic attributes.

The output of the algorithm is a set of hybrid alerts that represents the original set

of raw IDS alerts. In our work, an hybrid alert has the same format, and therefore the

same types of attributes as a raw alert. The main difference between the attributes

in a hybrid alert and those in the raw alert is the level of abstraction. Hybrid alerts’

attributes values (i.e. concepts) will be equal or more abstract than corresponding

raw alerts’ attributes values. In addition, we associate with each hybrid alert its own

information loss rate which depends on the level of abstraction of its attributes values.

The algorithm performs several rounds; during each round the alerts are grouped

into one ore more clusters and one hybrid alert is generated for each cluster. An alert

will be assigned to a cluster if the attributes similarities between the alert and the

hybrid-alert that represent this cluster are greater than some predefined thresholds.

Each time an alert is assigned to a cluster, we fuse that alert with the hybrid alert

that represents this cluster and regenerate the hybrid alert of the cluster. The hybrid

alert is regenerated by fusing the attributes of the hybrid alert with the attributes

of the new alert. The fusion of two attributes from two different alerts consists of

replacing them with their least common ancestor in their concept tree in the ontology.

For example, let us assume that we have two alerts a1 and a2. If we fuse the attribute

attack-type where the value of that attribute in a1 is IISDir − List and in a2 is

ApacheDir − List then the result will be HTTPDirectory − List, which is their

least common ancestor according to the concept tree in Figure 4.8. At the end of

each round, the hybrid alerts along with the remaining alerts (not aggregated yet)

are sorted and passed as input to the next round of the algorithm and go through

the same process outlined above.
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The different rounds of the algorithm are determined by the similarity threshold

vector used in the clustering. The rounds are designed so as to aggregate first the

alerts that are most likely to have greater semantic similarity, and by setting the

similarity threshold vector accordingly. This is performed by clustering the alerts for

which a subset of attributes match perfectly (i.e. threshold = 1). The clustering is

carried out iteratively by decreasing in each iteration the required number of alerts

attributes that match perfectly, and lowering the thresholds for the remaining at-

tributes to predefined levels. Hence, while in the first round the similarity thresholds

are all set to one, in the last round they are set to the predefined values provided as

input to the algorithm.

5.3.3 Information Loss Metric

When we summarize IDS alerts or any security log data, it is important to avoid losing

security relevant data. Alert aggregation is like any other data aggregation process at

least when it comes to information loss. Any process that gathers and expresses data

in a summary form, results in information loss. Therefore, it is important to measure

the amount of information loss resulting from aggregating the raw alerts into hybrid

alerts. Measuring the amount of information loss in aggregated data is a complex

problem. However, because of the existence of an ontological representation for the

network intrusion domain, measuring information loss becomes much easier

In our aggregation technique, two concepts that belong to the same concept tree

are aggregated by replacing them by their least common ancestor (LCA) from the

corresponding concept tree. This will lead unavoidably to loss of information. To

capture the information loss we need to measure the amount of information repre-

sented by each concept or class in the ontology. The difference between the amount of

information of concept c1 and its subclass c2 represents the information loss occurred
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by replacing c2 by c1. The information content (IC) of a concept c can be used to

measure the amount of information represented by c. Recently several approaches in-

spired by information theory have been proposed to measure the IC of a given concept

in an ontology based on the taxonomic structure of the concept within the ontology

[72, 73]. We use in our work the IC metric proposed by Sánchez and colleagues [72]

and defined as follows:

IC(c) = −log









|leaves(c))|
|subsumers(c)| + 1

maxleaves+ 1









(5.3.2)

Where subsumers(c) is a function that returns the set of subsumers concepts of

concept c (these include concept c as well as all its parents concepts), leaves(c) is

a function that returns all the leaf concepts that are subclasses of concept c, and

maxleaves is the total number of leaf concepts of the concept tree. The subsumers

of a given concept and the leaves of that concept reflect the information content of

that concept. Based on the principle of cognitive saliency1, concepts are specialized

when it is necessary to differentiate them from already existing ones [72]. So, concepts

with more sub-concepts provide less information than concepts at lower levels of the

hierarchy (such as leaf concepts).

Now, given a set of concepts C, we define the information loss rate (ILR) resulting

from replacing the concepts in C by their least common ancestor a as follows:

ILR(C) =

∑

c∈C

(IC(c)− IC(LCA(C)))

∑

c∈C

IC(c)
(5.3.3)

1The salience or saliency of an object or a concept corresponds to its relative standing or quality
with respect to its neighbors.
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Where LCA(C) corresponds to the least common ancestor of the concepts in C.

Using the above formula and given two alerts ai = [ai1, ..., aip] and aj = [aj1, ..., ajp],

the information loss rate occurring from aggregating symbolic attribute values aik and

ajk (1 ≤ k ≤ s) is defined as shown in equation ??. The information loss rate is a

value between 0 and 1, where 0 corresponds to no information lost and 1 corresponds

to 100% loss of information.

The information loss rate resulting from the aggregation of a set of alerts into

a hybrid alert h is computed as the summation of the information loss rate of each

attribute of H over the total number of attributes in h.

The information loss rate for an entire aggregation process generating a set of

hybrid alerts H may be obtained as the average of the information loss rate over all

the hybrid alerts in H . However, we take in this work a more conservative approach

by defining the information loss rate for an entire aggregation process as the maximum

information loss over the hybrid alerts involved in H .

Now, let us assume that we want to calculate the information loss rate result-

ing from aggregating the two classes BOF −Web and Web − App − Exp from the

attack concept tree in Figure 5.2. The first common ancestor of the two classes

in the ontology is the class Web − Exp. Using equation 5.3.2, we obtain the fol-

lowing: IC(BOF-Web)=1.3, IC(Web-App-Exp)=1.2 IC(Web-Exp)=0.96. Using the

above metric, the information loss rate from aggregating the two classes BOF −Web

and Web− App− Exp is 0.23.

5.4 Attack Scenario Reconstruction

The alerts resulting from the previous phases (alert verification and alert aggregation)

are grouped into several clusters based on their semantic relevance. The obtained
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clusters are analyzed using semantic inference to detect the causality relation be-

tween corresponding alerts. Then, the attack scenarios are extracted using semantic

inference.

5.4.1 Semantic-based Alerts Clustering

The objective of semantic-based alerts clustering is to find groups of alerts that are

semantically relevant with respect to particular attack scenarios. A cluster of se-

mantically relevant alerts represents a candidate attack scenario. Given a set A of n

number of alerts there are 2n− 1 possible alerts groupings, where each alert grouping

corresponds to a candidate attack scenario. A generated candidate attack scenario

may correspond to a true or false attack scenario.

Based on the inferred relations between alerts, we calculate the semantic relevance

between them and construct what we refer to in this work as the alerts correlation

graph (ACG). The ACG is an undirected weighted graph G = (V,E), where V is a

set of vertices representing alerts and E is a set of edges representing the relations

between alerts. The edges in the ACG are labeled by the values of the semantic

relevance between the alerts corresponding to adjacent vertices.

We illustrate the ACG concept through an example based on the set of alerts

given in Table 5.14.

We will assume, in this example, that only three types of relations can occur

between any two alerts, namely, hasSameSource , hasSameTarget and report-

SameAttack , and also that each relation has a weight value equal 1.

We also restrict for simplicity sake the semantic of the inferred relations to equal-

ity. For instance, hasSameSource relation between a pair of alerts means their

source IP addresses have equal values. But, we can redefine the semantic of the has-
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ID Source Target Attack
a1 B.B.B.12 192.168.20.70 SID-03
a2 B.B.B.12 192.168.20.80 SID-03
a3 H.H.H.78 192.168.20.80 SID-13
a4 B.B.B.12 192.168.20.70 SID-54
a5 H.H.H.78 192.168.20.80 SID-03
a6 B.B.B.12 192.168.20.70 SID-63
a7 H.H.H.78 192.168.20.80 SID-19

Table 5.14: Alerts Examples

SameSource relation by considering two IP addresses to be relevant if they belong

to the same subnet, domain, or even geographical location. Similarly, the semantic

of the reportSameAttack relation can be extended from a strict definition where

reported attacks (by related alerts) are exactly the same to a broader definition where

the reported attacks have similar impact (e.g. loss of availability), affect similar assets

(e.g. Web Server), or require the same privilege.

The semantics of the inferred relations affect the structure of the alerts correlation

graph and can be used to find similarity between attack patterns or scenarios.

In the example, the maximum number of relations between any two alerts is 3,

since as indicated above there are exactly three possible types of relations between

the alerts.

Based on the above considerations, the constructed ACG for the alerts set in Table

5.14 is shown in Figure 5.8.

The edges of the ACG in Figure 5.8 are labelled by the semantic relevance values

between corresponding alerts. For instance, alerts a1 and a6 being linked by two rela-

tions (i.e. hasSameSource and hasSameTarget), the semantic relevance between

them is 2/3.

Algorithm 4 illustrates the steps to build the Alerts Correlation Graph. The

algorithm takes a set A of hybrid or commonly formatted alerts as an input and
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Figure 5.8: Example of Alerts Correlation Graph
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generates the alerts correlation graph as an n × n matrix G where n is the total

number of alerts in A. The entry G[i, j] is zero if the semantic relevance between

alerts ai and aj in A is less than a predefined semantic relevance threshold θ. If the

semantic relevance value w is greater than or equal θ the algorithm set the value of

G[i, j] equal to w, which indicates that there is an edge e between ai and aj in G with

weight w. The runtime complexity of Algorithm 4 is O(n2).

Algorithm 4: Constructing Alerts Correlation Graph
/* A a set of IDS alerts */

/* G a matrix representing the ACG */

/* w semantic relevance measure between a pair of alerts in A */

/* θ semantic relevance threshold */

/* n number of alerts in A */

Input: A, θ
Output: G

1 begin

2 for i← 1 to n− 1 do

3 for j ← i+ 1 to n do

4 w ← sem_rel(ai, aj);
5 if w ≥ θ then

6 G[i, j]← w ;
7 end

8 end

9 end

10 return G;

11 end

The constructed ACG is used to extract candidate attack scenarios. In graph

theory a clique in an undirected graph is a subset of its vertices such that every

two vertices in the subset are connected by an edge. In our case a clique in the

ACG represents a subset of semantically relevant alerts. Therefore, we consider every

maximum clique in the ACG as a candidate attack scenario or attack pattern. We use

the well-known Bron-Kerbosch algorithm to find all maximum cliques in the ACG.

In the ACG shown in Figure 5.8, there are three maximum cliques as illustrated by

Figure 5.9.

Now, let c1, c2 and c3 denote the three maximum cliques in the ACG of Figure 5.9,

where c1 = {a1, a2, a4, a6}, c2 = {a1, a2, a3, a5} and c3 = {a2, a3, a5, a7}. By looking

closely at the above three candidate attack scenarios, we notice that they have some



131

Figure 5.9: Maximum Cliques in an Alerts Correlation Graph
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common vertices (alerts). For example, a2 belongs to all three of them. Considering

that an alert can belong to only one attack scenario, we need to refine our set of

candidate attack scenarios by removing common alerts between them.

To remove a common alert from different candidate attack scenarios, we calculate

the total semantic relevance of the common alert with respect to each candidate

attack scenario, and assign it to the candidate attack scenario yielding the maximum

total semantic relevance. This process will be repeated until each alert is assigned to

only one candidate attack scenario.

The total semantic relevance of an alert with respect to a specific attack scenario

is the sum of the semantic relevance between this alert and other alerts in the same

attack scenario. For example, in Figure 5.9 the total semantic relevances of vertex

a1 in c1 and c2 are (2/3 + 2/3 + 2/3 = 2) and (2/3 + 1/3 + 1/3 = 1.3), respectively.

Therefore, a1 will be removed from c2 and reassigned to only c1. By applying the

same method to other common vertices, we will end up with only two candidate

attack scenarios s1 and s2, where s1 = {a1, a2, a4, a6} and s2 = {a3, a5, a7}.

Algorithm 5 illustrates the main steps to extract the candidate attack scenarios

from an alert correlation graph. The algorithm takes as input an alert correlation

graph G generated by Algorithm 4. First, the set C of maximum cliques are extracted

from G using the Bron-Kerbosch algorithm. The alerts (or vertices) in each clique

are sorted based on the alert number. To detect alerts that belong to more than one

clique we apply a simple set intersection method, where each clique in C is treated

as a set. The set intersection returns a list A
′

of alerts (vertices) that belong to more

than one clique. Then, the algorithm iterates for n times, where n is the total number

of alerts in A
′

. In each iteration the algorithm calculates the alert membership to

each clique in C based on the total semantic relevance. At the end of each iteration

an alert a is assigned to a clique c, where the membership of a with c is maximum.
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Then, a is removed from the other cliques in C. Finally the algorithm removes

a from A
′

and terminates when A
′

is empty. In addition to extracting candidate

attack scenarios, Algorithm 5 addresses also the problem of shared alerts between the

candidate scenarios.

Algorithm 5: Extracting Candidate Attack Scenario from ACG
/* A a set of IDS alerts */

/* G a matrix representing the ACG */

/* C a set of maximum cliques in ACG */

/* A
′

a set of alerts that belong to more than one clique */

/* m membership value between an alert a and clique c */

/* n number of alerts or vertices in ACG */

/* s number of alerts in A
′

*/

/* l number of maximum cliques in ACG */

Input: G
Output: C

1 begin

2 C ← BronKerbosch(G);
3 for i← 1 to n do

4 β ← 0 ;
5 for j ← i to l do

6 if ai ∈ cj then

7 β ← β + 1;
8 if β ≥ 2 then

9 add ai to A
′

;
10 Break ;

11 end

12 end

13 end

14 end

15 while A
′

6= ∅ do

16 max← −1;
17 for i← 1 to s do

18 for j ← 1 to l do

19 m← sum of the weights of all adjacent edges of ai in cj ;
20 if m ≥ max then

21 max ← m ;
22 sAlert← ai ;
23 sClique← cj ;

24 end

25 end

26 end

27 remove sAlert from A
′

;
28 foreach clique c ∈ C do

29 if c 6= sClique and sAlert ∈ c then

30 remove sAlert from c;
31 end

32 end

33 end

34 return C;

35 end

The run time complexity of Algorithm 5 is O(3n/3) +O(n× l) +O(s2 × l), where

n is the number of alerts, s is the number of alerts shared between candidate attack
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scenarios, and l is the number of candidate attack scenarios in ACG.

5.4.2 Attack Causality Analysis

The main outcome of the attack scenario reconstruction process is the identification

of the sequence of steps and actions taken by the intruder to breach the system. Our

candidate attack scenarios generated from the semantic clustering phase lack such

information. An effective technique to elicit the attack sequence consists of analyzing

the causality between the individual attacks reported in the IDS alerts.

Existing attack scenario construction approaches use attack prerequisites and con-

sequences to establish the causality between attacks or alerts. The attack prerequi-

sites are the set of logical conditions to be satisfied for the attack to succeed while

the attack consequences are the set of logical conditions that will become true when

the attack succeeds. Two attacks a and b are causally related if at least one of the

consequences of one of them is among the prerequisites of the second one.

Figure 5.10: Prerequisites and consequences for a buffer overflow attack against a
FTP service.

The problem with using prerequisites and consequences to capture causality is

the number of conditions that need to be defined for each attack instance, which

sometimes can be overwhelming, and the validation of these conditions, which may
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not be straightforward. Figure 5.10 illustrates a set of prerequisites and consequences

involved in a buffer overflow attack against an FTP service. As we can see from the

Figure, the prerequisites and consequences consist of different types of conditions.

In Figure 5.10, the condition FTPAccessibleV iaF irewall(IP, Port) is related to the

network configuration, while the condition ExistHost(IP, Port) is related to the net-

work topology. Defining the prerequisites and consequences of every attack instance

with respect to the network topology, the network configuration, and vulnerability

information is time consuming. Moreover, validating these conditions is very difficult.

For instance, checking whether the FTP service is vulnerable to a buffer overflow at-

tack or not is not an obvious task. This requires using at least some vulnerability

scanning tool, and analyzing the scanning results using heuristics.

In our work, we use a different approach to establish the causality between alerts.

Specifically, we determine whether two alerts are causally related by considering the

impacts of corresponding attacks. The attack impact refers to the outcome of the

attack, such as, discovering a host, discovering a service, accessing confidential data,

gaining root access, etc. For any two attack instances a and b, if p is an attack impact

created by a that is also an enabler for successful execution of b, then there is a causal

relationship between a and b. In other words the intruder will execute first a and

then b. For instance, the outcome of a scanning attack that detects the presence of

an FTP server may enable the execution of a buffer overflow attack against this FTP

server (provided of course that the server is also vulnerable to such exploit).

Using the concept of attack impact, we capture the strength of the causal relation

between a and b by defining a new causality metric. Let A denote the set of created

impacts of attack a and let B denote the set of required impacts for attack b. We

define the strength of the causal relation between a and b as a value between 0 and

1 given by equation 5.4.1, where 0 indicates no causality and 1 indicates maximum
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causality:

causality(a, b) =
|A ∩B|
|A ∪B| (5.4.1)

One benefit feature of using semantic correlation for reconstructing attack sce-

nario and detecting attack causality is taking advantages of inheritance and semantic

similarity. Two attack instances a and b are causally related if their ancestor classes

are causally related or if one of them has a semantic similar instance/class that is

causally related to the other. For example, if a is semantically similar to c and c is

causally related to b (e.g. enabler of b) then we can say that a is causally related to

b as well.

The process of detecting attack causality and reconstructing the attack scenario

graph can be described as a graph transformation operation. The attack causality

detection algorithm converts the complete graph representing the candidate attack

scenario into a directed acyclic graph representing the reconstructed attack scenario.

The transformation consists of simply replacing the edges in the alerts correlation

graph corresponding to the semantic relevance relations between alerts with new

edges that represent the causal relations between the attacks reported by the alerts.

To illustrate the transformation of the alert correlation graph into the attack

scenario graph let us consider the set of alerts given in Table 5.15. These alerts

represent a subset of alerts generated during an attack conducted against our lab

honeynet [6]. The alerts were generated using Snort IDS; likewise, the snort signatures

triggered by the attack are listed in the third column of Table 5.15. Each of these

signatures corresponds to different attack instance. However, they are all semantically

relevant because they represent attacks that affect the same service, which in this case

is the FTP service.
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(a) Alerts Correlation Graph (b) Attack Scenario Graph

Figure 5.11: Transforming Alerts Correlation Graph (a) to Attack Scenario Graph
(b) using the Attack Causality Relation

ID Source Target Snort Attack-Signature

a1 211.42.48.148 192.168.100.102 1:533

a2 211.42.48.148 192.168.100.102 1:1622

a3 211.42.48.148 192.168.100.102 1:1378

a4 211.42.48.148 192.168.100.102 1:1672

Table 5.15: IDS alerts generated by an FTP vulnerability exploitation attempt.

Figure 5.11-(a) shows the alerts correlation graph for the alerts in Table 5.15. The

edges in Figure 5.11-(a) represent the semantic relevance relations between the alerts.

Figure 5.11-(b) shows a graph, referred to as an attack scenario graph (ASG), for the

alerts in Figure 5.11-(a). The undirected edges in Figure 5.11-(a) are replaced by new

directed edges representing causal relations between the attacks in Figure 5.11-(b).

The labels on the edges in the ASG in Figure 5.11 -(b) indicate the impact created by

the attack instance in node 553 that is required by the attack instances in the other

nodes.

Algorithm 6 describes the key steps of the attack causality analysis. The algorithm

takes a clique (i.e. a candidate attack scenario) as an input and generates an attack
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scenario graph as an output. The input clique is represented by a vector V of alerts

sorted in ascending order based on their timestamps. The output of the algorithm is

an attack scenario graph represented by a set of matrices denoted M . The algorithm

starts by creating an empty matrix m1 and inserts the first alert in V into m1. Then

the algorithm iterates n − 1 times, where n is the size of V . In each iteration, the

algorithm checks the causality between one alert ai from V and every alert b in every

matrix mj in M using equation 5.4.1. If the causality measure equal zero for every

alert in every matrix mj in M , the algorithm creates a new matrix mj+1 and adds ai

to this matrix. If the causality is different from zero then the algorithm will add ai

to the matrix that returns the maximum causality with ai.

Algorithm 6: Attacks Causality Analysis
/* V a sorted vector of alerts that belong to one clique */

/* M a set of matrices that represent the attack scenario graph */

/* n number of alerts in V */

/* l number of matrices in M */

Input: V
Output: M

1 begin

2 create m1 as an empty matrix in M ;
3 add V [1] to m1;
4 l← 1;
5 for i← 2 to n do

6 max← 0;
7 for j ← 1 to l do

8 foreach alert b ∈ mj do

9 δ ← causality(ai,b);
10 if δ > max then

11 max ← δ ;
12 sMatrix← mj ;
13 sAlert← b;

14 end

15 end

16 end

17 if max 6= 0 then

18 add ai to mj at sAlert;
19 else

20 l← l+ 1;
21 create ml as an empty matrix in M ;
22 add ai to ml;

23 end

24 end

25 return M ;

26 end

The ideal output of the algorithm is the case where M contains a single matrix,
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which means that the attack scenario graph is a connected graph. The case where

M contains more than one matrix indicates that the attack scenario graph is not a

connected graph, which corresponds either to a false negative, a novel attack, or some

missing causality information.

5.4.3 Identifying Missing Attacks and False Negatives

To identify missing attacks or potential false negatives, our approach uses in combi-

nation the attack causality information and environmental awareness knowledge.

By analyzing an attack scenario graph, we can easily detect missing causality

links by identifying disconnected components involved in the graph, which indicate

possible missing attacks. It is important, however, to verify that the predicted attacks

are valid with regard to the target environment. This means that our assumptions

about the missing attacks should match the target system information. For example,

a prediction that the missing attack is related to an FTP-exploit will be valid only if

the environmental awareness knowledge shows that there is an FTP server running

on the target system. This validation is important to avoid the generation of false

attack scenarios.

We developed an algorithm with linear time complexity to predict missing attacks.

The algorithm takes as inputs two attacks α and δ belonging to two disconnected

components in the same attack scenario graph. The output of the algorithm is an

attack path p that connects α to δ. The attack path p contains one or more attacks

that were most likely missed by the IDS causing the disconnection in the attack

scenario graph.

The algorithm defines β as a potentially missed attack between α and δ and set β

equal α. Then, using the causality relation it validates one at a time every attack γ

that is causally related to β. If the attack γ is valid according to the environmental
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Algorithm 7: Predicting Missing Attacks
/* α an attack step in an attack scenario graph */

/* δ an attack step in an attack scenario graph where δ 6= α */

/* β an attack step connects α and δ */

/* γ an attack step that possibly connect α and δ */

/* p the set of all attack steps that connect α and δ */

Input: α and δ
Output: p

1 begin

2 Let p be an empty attack path;
3 β ← α;
4 while β 6= α or β has causally-related attacks do

5 if β has no causally-related attacks then

6 if β 6= α then

7 remove β from p ;
8 β ← last attack in p;

9 end

10 else

11 γ ← a causally-related attack of β;
12 remove γ from β causally-related attacks set;
13 add γ to p ;
14 if γ = δ then

15 return p;
16 end

17 if valid(γ) then

18 β ← γ;
19 end

20 end

21 end

22 return p;

23 end

awareness knowledge, the algorithm will add β to the attack path p and set γ as

the new β and start checking the attacks that directly depend on the new β by

repeating the same steps for the new β. If the attack is not valid or the attack has

no further causally related attacks, the algorithm will perform a backtracking step.

The backtracking step removes the current attack represented by β from the attack

path p and set the attack that β depends on (predecessor attack of β) as the new β.

The algorithm will terminate when it reaches the final attack δ where the new β

equal δ. In this case it will return the attack path p that contains all the causally

related attacks between α and δ. If the backtracking returns to the starting attack α

and examines all the attacks that depend on α but never reaches δ, the algorithm will

terminate and return the path p equal null. This indicates that the missing attack is

either a novel attack or there is a missing causality relation in the knowledge-base.
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Another well-known problem in IDS that affect the attack scenario reconstruction

is the impact of false positives. False positives occur when a normal behavior is

considered by the IDS as malicious, and a false alert is generated as a consequence.

Usually, attack scenario reconstruction from a set of alerts involving false positives

will generate false attack scenarios or assume the existence of an attack stage that

did not really exist.

Our attack scenario reconstruction process does not handle intrinsically false pos-

itives. It relies instead on the alert verification component to handle the problem

of false positives. This component uses either environmental awareness information

or a set of classification rules to eliminate false positives. False positives affect the

accuracy of any attack scenario reconstruction technique.

5.5 Summary

In this chapter we tackled the three main tasks in IDS alert analysis, namely alert

verification, alert aggregation, and attack scenario reconstruction. We proposed sev-

eral methods using semantic correlation, ontology and machine learning to overcome

the limitations of existing alerts analysis techniques in the literature.

For alert verification, we proposed the use of alert context and semantic analysis

to build a robust alert verification technique. We designed two methods for alert

verification. The first method uses semantic similarity and KNN to verify alerts and

eliminate false positives. The second method is based on a computational model

inspired by human immune system and uses ontology and rule induction for alert

verification.

For alert aggregation, we proposed an abstraction technique for alert fusion and

summarization. The proposed technique relies on using ontology and semantic simi-
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larity. We designed two novel methods for alert aggregation. The first method uses

hill climbing technique to generalize and fuse the raw alerts based on the intrusion on-

tology. This method guarantees any desired alert reduction rate. The second method

uses semantic similarity to fuse and aggregate raw alerts. The proposed method is

effective in detecting information loss and avoids losing important security relevant

information during the alert aggregation process.

Finally, we proposed an attack scenario and attack pattern detection and recon-

struction technique using semantic-based clustering technique. The proposed tech-

nique clusters semantically relevant alerts to build a correlation graph and extracts

attack pattern using graph analysis methods. In addition, we proposed a new method

to detect causality relation between attacks using attack impact analysis and seman-

tic correlation. Finally, we proposed a new method to detect missing attack steps

and mitigate the effect of false negatives in IDS systems.
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Chapter 6

Experiments

Finding a dataset to evaluate the proposed alert analysis techniques is a challenge.

To fully utilize or demonstrate the benefits of the proposed techniques, we need a

dataset that contains multistage computer network attacks. It is important that

the dataset is labeled and the attack scenarios are known in advance. Working with

unlabeled dataset will not allow us to evaluate the accuracy of our approach. It is also

important that the dataset contains attack instances that represent modern attacks

and network threats. Finally, it is critical that the dataset contains realistic network

traffic. However, to the best of our knowledge all the available benchmark datasets

for network intrusions are designed to evaluate intrusion detection systems and not

to evaluate IDS alert correlation or post IDS alert analysis. Multistage attacks are

not very common in the available benchmark intrusion datasets and most of the

labeled datasets contain outdated intrusion instances. In general, it is important

to validate any proposed IDS alert correlation technique using different datasets to

ensure that the technique does not overfit a particular dataset. For that reason we

tested our technique using four different datasets. In this chapter we only discuss the

evaluation results with two datasets. However, in our published papers we discussed
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the evaluation results with the other datasets [68, 70].

This chapter is organized as follows. First, we introduce the benchmark datasets

used in our evaluation. Then, we show the evaluation results and compare our results

to the previous work in the literature. Finally, we discuss our results and make some

observations.

6.1 Benchmark IDS Datasets

To evaluate our techniques we used two IDS evaluation datasets:

1. UNB ISCX Intrusion Detection Evaluation Dataset: This is one of the most

recent intrusion detection evaluation datasets. It was released in 2011 by the

ISCX research lab from UNB [76]. It has a realistic network configuration

and network traffic. It contains different multistage attacks and modern intru-

sion instances, such as botnet and DDoS attacks. The dataset contains much

larger network traffic compared to other existing benchmark IDS datasets. The

dataset was collected over 7 days and it is labeled (marked). The ISCX dataset

is the closest dataset to our evaluation requirements. To our knowledge the

ISCX IDS dataset has not been used to evaluate any alert correlation or alert

analysis technique in the literature. This is because it is a new dataset. We

mainly use it to demonstrate how our technique can handle massive number of

IDS alerts.

2. DARPA Intrusion Detection Data Sets: Perhaps the DARPA dataset is the most

commonly used dataset in the literature to evaluate IDS and alert correlation

techniques [41]. In our experiment we are using the DARPA 2000. The DARPA

2000 contains two different simple multistage attacks. It does not really contain

realistic network traffic. We evaluate our approach using the DARPA 2000



145

dataset to compare our results to previous work in the literature, since it is the

most commonly used dataset to evaluate alert correlation techniques.

6.2 Evaluation Results

We evaluate how our techniques will perform with a massive number of IDS alerts

(alert flooding) as in the ISCX dataset. In particular, we focus on the alert verification

and elimination of false positives. In addition, we look at alerts fusion/aggregation

and attack scenario construction. Next, we compare our alert fusion and attack sce-

nario reconstruction techniques against the previous works in the literature using the

DARPA 2000 dataset. We were not able to compare our alert verification technique to

other techniques, because all the alert verification techniques in the literature did not

provide enough data for comparison. The network traffic of the three datasets were

analyzed using Snort IDS version 2.9.2 to obtain the IDS alerts. We also used Bro

IDS to analyze the DARPA dataset in addition to Snort IDS. This additional analysis

step allows us to test that how our technique can work in multi-sensor (multiple and

different IDSs) environment.

6.2.1 Handling Massive IDS Alerts

Part of our alert analysis framework is a log analyzer that we implemented to un-

derstand the characteristics of the generated alerts and to provide basic IDS alerts

analysis features. Using our alerts log analyzer we extracted the basic characteristics

of the alerts such as the number of alerts in the dataset, the number of hosts, the

number of intrusions. Table 6.1 list the properties of the intrusion alerts found by

SNORT in the ISCX dataset.
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Property Total Number

raw alerts 339027

intrusion signature 177

IP address 5946

Ports 20858

Table 6.1: ISCX Intrusions Properties

Table 6.2 categorizes the intrusion alerts from the ISCX dataset into true positives

and false positives.

Properties True Positives False Positives

raw alerts 6972 3,332,055

intrusion signature 34 147

IP address 58 5924

Ports 5578 16927

Table 6.2: Numbers of false positives versus true positives in the ISCX dataset

As we can see from Table 6.2, the number of false positives overwhelms the true

positives. Only 2% of the alerts represent true intrusion attempts. We found that 36

out of the 58 IP addresses that were part of true positives intrusions were also linked

to false positives.

The above situation illustrates well the alerts flooding problem in intrusion detec-

tion systems. Even if we assume that the intrusion analyst will study the alerts on a

daily basis, it is highly possible that the analyst will miss the genuine (true positives)

alerts. Using our log analyzer we plot the alerts in the ISCX dataset grouped by day

and category. As shown in Figure 6.1 the true positives on any day in the dataset are

unnoticeable compared to the false positives.
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Figure 6.1: ISCX Alert Grouped By Day and Category.

To evaluate our alert verification technique we need to put some constraints in

place. This is because the ISCX data set has four different attack scenarios and each

scenario is executed only once. Therefore, using this dataset to train any classifier

is mostly difficult. In addition, the fact that false positives overwhelm true positives

makes it more challenging to learn classification rules. In our evaluation we decide to

use a subset of the false positives to train our alert verification techniques. We only

use the false positives that share the IP addresses of the true positives. In other words

if any host in the network was not part of (attacker/target) a true attack attempt

we ignore its alerts, since all of them are known to be false positives. Now if we plot

the true positives and the selected subset of false positives, we can see that the false

positives still overwhelm the true positives, as shown in Figure 6.2. In our evaluation

we have 95,954 false positives and 6972 true positives alerts.
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Figure 6.2: ISCX Alert Grouped By Day and Category.

Alert Verification

To evaluate our alert verification technique we divide the IDS alerts into 10 groups

where each group has between 18000-21000 IDS alerts. We ensure that each group

has both false positives and true positives. Half of the alerts in each group were used

for training and the other half for testing. First, we evaluate our alert verification

technique that uses KNN (see section 5.2.2), then we evaluate our ontology-based

rule induction technique (see section 5.2.3). Table 6.3 shows the results of the alert

verification using KNN and our semantic similarity metric. As we can see in Table 6.3

on average our KNN technique reduces 96.58% of the false positives and on average

detects 98.84% of the true positives alerts. These results were obtained using k=9.

We noticed a major drop in the detection rate of true positives when we set k greater

than 9. For instance, when we set k=11, the average detection rate for true positives

was 92.71%. This is because the amount of false positives is overwhelming compared
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to the true positives. Therefore, increasing the number of neighbors we use to classify

the alerts is not a good decision. The last column in Table 6.3 shows the time (in

minutes) required to classify the alerts. It is clear that the runtime is not suitable for

online alert verification.

ID
K1 K3 K5 K7 K9

Time
TP FP TP FP TP FP TP FP TP FP

1 83.63 92.49 92.85 94.55 96.52 95.38 98.85 95.90 98.88 95.90 70.56

2 81.70 88.79 84.90 89.59 95.94 92.36 97.81 92.83 97.84 92.84 67.24

3 83.52 91.42 96.81 94.68 99.29 95.29 99.29 95.29 99.29 95.29 109.71

4 83.60 90.36 96.80 93.66 97.69 93.88 99.28 94.28 99.28 94.28 60.29

5 82.91 94.45 97.02 98.14 98.42 98.92 98.42 98.92 98.42 98.92 83.36

6 84.55 92.50 86.33 92.91 96.00 95.18 97.20 95.46 98.95 95.87 62.93

7 83.69 89.28 84.70 89.52 92.17 91.28 96.71 92.35 98.30 92.72 64.77

8 83.49 84.72 95.60 93.94 96.42 97.61 97.33 99.94 98.73 99.97 76.89

9 85.57 96.58 87.35 98.64 94.03 99.46 98.22 99.99 99.97 99.99 90.48

10 85.36 96.55 86.37 96.79 93.84 98.55 97.38 99.62 98.72 99.99 78.28

avg 83.80 91.71 90.87 94.24 96.03 95.79 98.05 96.46 98.84 96.58 76.45

min 83.63 84.72 86.37 89.52 93.84 91.28 97.38 92.35 98.72 92.72 60.29

max 85.57 96.58 97.02 98.64 99.29 99.46 99.29 99.99 99.97 99.99 109.71

Table 6.3: Alert Verification Using KNN and Semantic Similarity

Using the same 10 groups of IDS alerts and the same settings we evaluate our

ontology-based rule induction technique for IDS alert verification. Table 6.4 shows

the results of the alert verification using our ontology-based rule induction technique.

As we can see using rule induction on average we were able to reduce 98.21% of the

false positives and detect 98.43% of the the true positives. One obvious advantage of

the rule induction over the KNN is the runtime. While the (learning) time required

to generate the rules is close to the time of the KNN , we can see in Table 6.4 that

the matching time for the rule induction is about 7 times less than the time required
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for the KNN. Therefore, we think that a rule induction approach is suitable for online

alert verification.

While our rule induction technique has a better on average detection rate for

both false positives and true positives alerts we do not claim that the rule induction

in general is better than the KNN for alert verification. After all, the results in Tables

6.3 and 6.4 are only observed from a single evaluation run on a single dataset.

Finally, an interesting observation we found in the results is about the botnet

attack scenario in the dataset. This attack scenario contains an IRC bot: the C&C

communications of the bot are detected by Snort as normal IRC traffic (Snort con-

sider it a possible site policy violation) not as bot C&C or malicious IRC. Since the

dataset contains massive amount of IRC traffic that are not labeled malicious (i.e. not

related to the IRC bot), Snort fires the same alert for both the malicious IRC (bot

related)traffic and the none malicious IRC traffic. However, our techniques (KNN

and OBRI) were able to distinguish between the false positive and the true positive

alerts. This is mainly because the use of alert context features and semantic analysis.
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ID
Rule Induction Detection Accuracy Time

Gene Library Rules TP FP Learning Matching

1 182.00 481.00 97.69 98.63 55.08 9.76

2 173.00 473.00 98.62 98.31 51.80 7.31

3 282.00 499.00 98.15 98.84 94.29 15.51

4 155.00 472.00 97.38 95.68 44.87 9.19

5 214.00 483.00 98.62 96.98 67.96 10.11

6 162.00 470.00 97.69 99.04 47.48 9.78

7 215.00 478.00 98.77 98.70 67.98 13.03

8 198.00 480.00 98.97 97.18 61.32 10.66

9 225.00 483.00 99.29 99.37 72.16 12.80

10 198.00 473.00 99.15 99.41 61.48 15.06

avg 200.40 479.20 98.43 98.21 62.44 11.31

min 155.00 470.00 97.38 95.68 44.87 7.31

max 282.00 499.00 99.29 99.41 94.29 15.51

Table 6.4: Alerts Verification Using Ontology and Rule Induction

Alert Aggregation

To test our alert aggregation technique we used the set of true positives alerts, which

contains 6972 IDS alerts. Again, each raw IDS alert is processed and described using

seven attributes, namely, alert source, alert destination, attack class, attack impact,

affected service, affected application, and affected platform. In the first part of our

experiment we tested our lightweight alert aggregation technique that uses a hill

climbing approach. In this part we set the desired number of hybrid alerts between

130 to 150 hybrid alerts. In other words we represent the 6972 raw IDS alerts using

only between 130-150 hybrid alert which will give us an alert reduction rate (ARR)

between [97%-98%]. We run our experiment seven times, where each time a different

alert attribute is used to start the generalization process. Table 6.5 shows the results
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of our experiment. Note that the average runtime of each round of the seven rounds

in our experiment was close to 1 minute.

ID Alerts Reduction Rate (ARR)
information Loss Rate (ILR)

minimum loss average loss maximum loss

1 97.83 27.31 40.66 55.98

2 97.87 26.90 40.40 53.40

3 97.99 24.66 40.59 53.40

4 97.84 24.98 40.98 54.64

5 97.80 26.29 40.39 54.79

6 97.75 27.76 40.66 55.98

7 97.86 24.29 40.56 54.64

min 97.75 24.29 40.39 53.40

avg 97.85 26.03 40.61 54.69

max 97.86 27.31 40.66 55.98

Table 6.5: A Lightweight Alerts Aggregation Using Hill Climbing Approach

As we can see from Table 6.5 our algorithm was able to fuse the raw alerts to

reach the desired number of hybrid alerts. For each of the seven rounds, we calculate

the information loss rate (ILR) for each generated hybrid alert. It is clear that while

the algorithm can reach the desired alert reduction rate, it is possible to generate

hybrid alerts with high information loss rate. For example the hybrid alert with the

maximum information loss in our experiment was generated in round six, with an

ILR equal 55.98%. This means more than 55% of the information in the raw alerts

are missed by representing them using this hybrid alert. Here is the hybrid alert with

the maximum information loss:

{ Source: North_America, Destination: Internal_Network, Attack: Implementation_Bug,

Impact: System_Compromise, Application: Web_App, Service: Web_Server, OS: Windows }
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In our opinion judging the quality or the usefulness of the above hybrid alert is

up to the intrusion analyst and the intended use of the aggregation results.

In the second part of our experiment with alert aggregation we aggregate the alerts

based on their semantic similarity using the algorithm proposed in Section 5.3.2. Table

6.6 shows the results of aggregating the alerts based on their semantic similarity. The

results in Table 6.6 are obtained with semantic similarity threshold equal 0.8. This

means only alerts with semantic similarity above 0.8 can be aggregated/fused into

one hybrid alert. Based on experiments conducted using other datasets (see section

6.2.2) a semantic similarity threshold less than 0.7 or greater than 0.9 most likely

will give poor aggregation results, by either yielding very high information loss or

failing to aggregate the majority of the raw alerts. We discuss threshold selection in

connection to one such experiments later using the DARPA dataset.

ID Alerts Reduction Rate (ARR)
Information Loss Rate (ILR)

minimum loss average loss maximum loss
1 92.84 0.00 1.86 9.41
2 94.00 0.00 2.19 11.71
3 92.07 0.00 1.49 7.93
4 91.43 0.00 1.13 6.97
5 94.43 0.00 2.36 12.76
6 93.40 0.00 2.05 10.46
7 93.78 0.00 2.18 11.69
min 91.43 0.00 1.13 6.97
avg 93.13 0.00 1.89 10.13
max 94.43 0.00 2.36 12.76

Table 6.6: Alerts Aggregation Based on Alerts Semantic Similarity

From Table 6.6 we can see that aggregating IDS alerts based on their semantic

similarity improves the information loss rate and reduces on average 93% of the raw

IDS alerts. Note that for all the rounds of our experiment the minimum ILR equal

0.00; this is because some alerts will not be aggregated at all. These alerts were not

fused or generalized with any other alerts in the raw alerts set because their semantic

similarity does not meet the predefined threshold. It is clear from the results in
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Table 6.6 that when the alert reduction increases the information loss increases as

well. However, it is possible that the alert reduction increases without increasing the

information loss rate. For instance, aggregating a group of identical alerts can give us

99.0% alert reduction rate and zero information loss rate. The maximum information

loss rate (12.76%) is recored in round 5. Here is the hybrid alert with the maximum

information loss:

{ Source: Internal_Sub_Network_2, Destination: Internal_Network, Attack:

Abnormal_IRC_Traffic, Impact: Policy_Violation, Application: IRC_Client, Service: IRC ,

OS: Windows }

Attack Patterns and Scenario Extraction

Here we evaluate the ability of our proposed technique to extract attack patterns and

reconstruct attack scenarios from a set of true positive alerts. In the ISCX dataset

there are four main attack scenarios, each consisting of several attack steps. The

attack steps of each attack scenario can be grouped into two or more attack patterns.

At the beginning, we use our technique to build the alert correlation graph for each

attack scenario. Then, from each alert correlation graph we extract attack patterns

and apply attack causality analysis to reconstruct the attack scenario.

The first attack scenario in the ISCX dataset is titled "Infiltrating the network

from the inside". This attack scenario consists of 7 attack stages. Figure 6.3 shows

the alerts correlation graph of this attack scenario. As we can see from Figure 6.3 the

ACG is a disconnected graph and has 3 maximal cliques. Here we use colors and node

numbers to improve the visualization of the graph and easily distinguish between the

different cliques (candidate attack stages/patterns).
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Figure 6.3: Alert Correlation Graph for the first Attack Scenario from the ISCX
dataset

The vertices in Figure 6.3-(c), labeled from 0 to 21 represent one attack stage

which is malware invasion . The vertices in Figure 6.3-(a) labeled from 22-178

represent the second attack stage which is port scan . Finally, the vertices in Figure

6.3-(b), labeled from 179 to 210 represent the third attack scenario which is SMB

exploit . We can see that vertex 137 is shared between two cliques/attack stages, the

port scan and the SMB exploit. However, our algorithm clusters this vertex with the

port scan attack not the SMB exploit. This is because the total semantic relevance

between the alert represented by vertex 137 and the alerts in the port scan attack is

greater than the semantic relevance between this alert and the SMB attack. In fact,

the alert represented by vertex 137 only shares the destination with the alerts in the

SMB attack.
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By applying our attack causality analysis algorithm on the attack stages in the

ACG we were able to construct the attack scenario graph as illustrated in Figure

6.4. Based on the constructed attack scenario graph, we can describe the scenario

corresponding to the "Infiltrating the network from the inside" attack. The attack

begins with a malware invasion from the Internet to subnets 1, 2, and 4 inside the

ISCX network. One host from subnet 1 was successfully infected by the malware and

started a port scanning attack against subnets 1 and 2. Then this host executed an

SMB buffer overflow exploit against one of the hosts in subnet 2 that was discovered

during the port scan attack (previous attack stage).

Malware Invasion SMB ExploitPort Scan

Figure 6.4: Attack Scenario Graph for the First Attack Scenario from the ISCX
dataset

We mentioned before that the "Infiltrating the network from the inside" attack

scenario consists of 7 attack stages, as stated in the ISCX dataset documentation.

However, here our technique only constructs an attack scenario consisting of 3 stages.

Therefore, our technique successfully constructs part of the actual attack scenario.
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In other words, the attack scenario constructed here is incomplete. We try to under-

stand why we end up with an incomplete attack scenario. In particular, we want to

determine whether or not this a limitation in our technique.

Our technique missed the following four attack stages: external network probe,

Adobe Reader exploit, SQL Injection and backdoor installation. The external network

probe occurred before the malware invasion, while Adobe Reader exploit occurred

after the malware invasion and before the port scan. The SQL Injection and the

backdoor installation both occurred after the SMB exploit. Now, the network probe

was a passive information gathering attack (e.g. collecting information on the target

using search engine), where the attacker did not directly interact with the ISCX

network to gather intelligence about the network. Therefore, this attack stage cannot

be detected by the IDS and as a result it cannot be reconstructed by our technique.

The Adobe Reader exploit cannot be detected by the network IDS since it is executed

on a victim host and not over the network. However, it can be detected using a host-

based IDS. Therefore, if relevant host-based IDS alerts log is provided, our technique

should be able to reconstruct this stage. The remaining stages can be detected by

NIDS and other security appliances such as web-application proxies. However, Snort

did not detect these attack stages, because the default rule-set and attack signature

that come with Snort are not build to detect insider attacks. Since, none of the

missing attack stages were detected by the IDS, it is not possible for our technique

to reconstruct these missing attack stages.

The second attack scenario in the ISCX dataset is "HTTP Denial of Services". The

attacker used the back-door installed in the first scenario to gain access to the network.

Then, he exploited an SMB vulnerability on a host in subnet 3. Then, through a a

connection started from the ISCX network, he downloaded the famous malicious

HTTP DOS tool "Slowloris". Slowloris was installed inside the ISCX network and
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used to attack the main web server in subnet 5. Figure 6.5 shows the Attack Scenario

Graph of the second attack scenario "HTTP Denial of Services".

Snort detects the "Slowloris" download as a binary/exe file download. This trig-

gers Snort to generate abnormal traffic alerts to describe this download action. We

had to write our own Snort rules to enable Snort to detect Slowloris DOS attack.

This is because the default Snort rule-set does not come with Slowloris signature.

Slowloris DOSSMB Exploit Abnormal Traffic

Figure 6.5: Attack Scenario Graph for ISCX Second Attack Scenario

The third attack scenario is a "Distributed Denial of Service using an IRC Bot-

net". Our attack scenario reconstruction technique was able only to reconstruct the

invasion of the ISCX by the IRC bot client/server, and the abnormal IRC traffic. The

reconstructed attack scenario missed the final stage where the bots execute a DDOS

attack against the ISXC web server. This is mainly because the IDS fails to detect

the bot attack behaviors. Figure 6.6 shows the reconstructed attack scenario graph
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of this "Distributed Denial of Service using an IRC Botnet" attack.

Malware Invasion 1

Malware Invasion 2

Abnormal IRC Traffic

Figure 6.6: Attack Scenario Graph for ISCX Third Attack Scenario

The fourth and last attack scenario in the ISCX dataset is "Brute Force SSH"

attack that executes a password dictionary attack against an ssh account in the ISCX

network. There is not much details about this attack scenario in the description of

the ISCX dataset. However, by analyzing the result of our alert analysis techniques

we can tell that the attack consists of one stage which is the dictionary attack.

What is interesting about the "Brute Force SSH" attack in our opinion is the alert

correlation graph. After constructing the alert correlation graph we discovered that it

consists of 5888 node/vertex where each vertex represents one raw IDS alert. None of

these alerts has any causal relation with the other alert in the graph. This indicates

that they all belong to a single attack pattern/stage and that the raw alerts share

a high semantic similarity. When we try to visualize (draw) the alert correlation

graph, our tool (the code invokes graphviz to visualize graph) crashes with out of

memory exception. So, we thought it might be useful instead of constructing the

alert correlation graph using raw IDS alerts, we could use the hybrid alerts that result
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from the alert aggregation. Figure 6.6 shows the alert correlation graph constructed

based on the hybrid alerts instead of the raw alerts.

Using the hybrid alerts result from the alert aggregation phase not only makes it

possible to visualize the alert correlation graph but it improves the visualization of

the graph. We summarize in the following the information extracted from the alert

correlation graph. Each vertex in the graph represents a hybrid alert and is labeled

by the source of the hybrid alerts. All the hybrid alerts share the same destination

which is the victim of the ssh brute force attack. The size of the vertex indicates the

number of raw alerts generated by the IDS and fused in one hybrid alert.

subnet-1

Fredericton, NB

subnet-3

subnet-4

subnet-2

Figure 6.7: Alert Correlation Graph for ISCX Fourth Attack Scenario

As, we can see more than 5000 raw IDS alerts can be represented by only 5 hybrid

alerts. In addition, from the ACG we can see that the vertex "Fredericton, NB" has

a larger number of alerts compared to the other vertices. Therefore, it is clear that
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the source represented by this vertex played the main role in the "SSH Brute Force"

attack.

6.2.2 Performance Comparison Using DARPA IDS Dataset

Because the ISCX dataset is new dataset, it is not yet commonly used in evaluat-

ing alert correlation techniques. We found that the majority of the alert correlation

techniques in the literature use the DARPA 2000 dataset to evaluate their perfor-

mance. For this reason and for the sake of comparison we test our techniques with

the DARPA 2000 dataset and compare our results with those obtained in the litera-

ture. However, in our the DARPA 2000 dataset is not the best dataset to evaluate

intrusion alert correlation techniques. This is because the dataset contains two basic

network attack scenarios, that can easily be recognized by an intrusion analyst and

it does not contains realistic network traffic. In addition, the DARPA 2000 dataset,

shares most of the limitations of its predecessor datasets DARPA 98 and DARPA 99

[46].

We will use the DARPA dataset in evaluating our alert aggregation/fusion and

attack scenario reconstruction technique. By running Snort on the DARPA dataset,

only few false positive alerts are found, which is not useful in testing our alert verifi-

cation technique. This is mainly because the DARPA dataset is very old (created in

2000) and today Snort detection engine and rule-set are well written and should not

fail to detect old attacks such as the ones involved in the DARPA dataset. Table 6.7

shows some statistics about the DARPA dataset after analyzing it with Snort such

as the number of raw alerts, number of hosts, durations and numbers of different

intrusion instances.



162

Properties Value

raw alerts 2170

intrusion signature 16

IP address 1055

Duration ≈ 100 min

Table 6.7: DARPA 2000 DOS1.0 Dataset Statistics

Alert Aggregation

We run our semantic-based alert aggregation algorithm 10 times, using each time a

different semantic similarity threshold vector. Here we are investigating the relation

between the alert reduction rate and the information loss rate with respect to the

semantic similarity threshold. Each time, we calculate the alerts reduction rate and

the maximum information loss rate. In addition we try to test the performance of

the alert aggregation when the raw alerts are generated by a single sensor (IDS) and

when it is generated by multiple sensors (IDS from different vendors).

In our evaluation, we used (without loss of generality) three different symbolic

attributes to represent IDS alerts, namely, the attack source, the attack target, and

the intrusion type. Note that several other attributes can be added to this list such

as attack time.

We considered for each attribute five different semantic similarity threshold values

between zero and one. Using the threshold values we can generate up to 125 different

threshold vectors which correspond to all possible combinations of the selected values.

In our experiment, we used a subset of 10 different threshold vectors listed in Table

6.8.
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Vector ID Source Target Intrusion Type

V0 1 1 1

V1 0.8 0.7 1

V2 0.8 0.8 0.9

V3 0.8 0.8 0.8

V4 0.8 0.7 0.8

V5 0.6 0.7 0.8

V6 0.6 0.6 0.8

V7 0.6 0.6 0.75

V8 0.4 0.4 0.45

V9 0.16 0.16 0.12

Table 6.8: Semantic Similarity Threshold Vectors

Table 6.9 shows the results of our experiment with the single sensor alert aggre-

gation. We plot for each dataset what we refer to as the Aggregation Performance

Curve (APC), which shows the relation between the alert reduction rate and the

information loss rate when the threshold values vary.
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Threshold Vector ARR ILR

V0 32.00 0.00

V1 32.00 0.00

V2 83.00 16.00

V3 91.00 17.00

V4 92.00 28.00

V5 99.00 32.00

V6 99.00 32.00

V7 99.00 32.00

V8 99.00 63.00

V9 99.00 91.00

Table 6.9: DARPA Semantic-based Alert Aggregation Results
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Aggregation Performance Curve (APC)

Figure 6.8: APCs for single sensor IDS alerts aggregation

By analyzing the results we find that in general higher alerts reduction rate means
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higher information loss rate. We also find that changing the semantic similarity

threshold vector will result in one of the following three outcomes. The first outcome

is a notable change in the ARR and the ILR; this occurs, for instance, when the

threshold vector changes from V 2 to V 3. As we can see there is a notable change in

the ARR and ILR. The second outcome is no change at all in the ARR and ILR;

for instance, this is the case when we change the thresholds from V 1 to V 2 or from

V 6 to V 7. The reason for that is because the semantic similarity values between the

alerts are less than the semantic similarity threshold values. The third outcome is a

notable change in the ILR while the ARR barely changes. For instance, as we can

see from Table 6.9, changing from V 7 to V 8 or V 9 does not cause any notable change

in the ARR, however, there is a major change in the ILR.

Also the attack pattern has a significant impact on the alerts reduction rate,

the information loss rate and the selection of the semantic similarity threshold. For

example, we found that different attack patterns require different adjustments of the

semantic similarity threshold for each alert attribute. For instance, 38.4% of the

DARPA 2000 raw IDS alerts are related to the Mstream DDoS attack where all the

alerts have spoofed, random source IP addresses. Snort uses 2 intrusion signatures

to represent that DDoS attack pattern. Since the source IP address in the alerts are

spoofed and random we had to set the semantic similarity of the source attribute to

lower value to be able to aggregate the alerts that belong to that attack pattern. In

fact several existing works in the literature set the similarity thresholds between alert

attributes based on the intrusion pattern [25] or define a set of rules to aggregate the

alerts based on the type of attack pattern (see for instance, [84, 19]).

High value of alerts reduction rate should not be considered the main factor to

judge the performance of any alerts aggregation approach. An intrusion analyst

should also consider the amount of information loss in the generated hybrid alerts.
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In our experiment we found that the acceptable level of information loss rate can be

defined based on the attack pattern. For instance, when aggregating the alerts of

the DDoS attack in the DARPA 2000 dataset we obtained an information loss rate

of 32%. This rate is mainly the result of aggregating alerts with different source IP

addresses. However, these IP addresses are randomly spoofed by the Mstream worm.

In this case, the 32% of information loss is acceptable because the randomly spoofed

IP addresses do not really bring any useful knowledge to the intrusion analyst. In

general, we found that when applying the same semantic similarity threshold to the

same intrusion pattern (e.g. DDoS attack, scan attack, etc) in different datasets we

obtain the same performance rates (i.e. same ARR and ILR values).

Figure 6.9 depicts the hybrid alert generated for the DDoS attack in the DARPA

2000 dataset from the aggregation process. The source of the hybrid alert is an

aggregate attribute value that represents a set of IP addresses that belong to the

local network. The target of the attack is an off-site IP address. The intrusion type

is Mstream-DDoS, which is also an aggregation of the two original Snort signatures

in the raw IDS alerts.
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Figure 6.9: Hybrid alert obtained from the DARPA 2000 dataset; the hybrid alert
represents a mstream DDoS Attack.

As indicated earlier, the DARPA dataset is the most widely used dataset for the

evaluation of alert aggregation approaches. Table 6.10 shows a comparison between

our approach and previous approaches from the literature that used the DARPA 2000

dataset.
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It is important to point out that the approaches proposed in the literature used

either different IDS sensors or IDS rulesets to generate the alerts from the DARPA

dataset. This means Table 6.10 does not give a fully accurate comparison. Another

important point is that none of the existing multi-sensor aggregation approaches have

used the DARPA 2000 dataset in their evaluation. Likewise, all the approaches listed

in Table 6.10 are single sensor ones. Also none of the existing approaches provided

explicitly the ILR measure. The only existing approaches for which the ILR can

be inferred are the ones that use perfect match to aggregate the alerts; in this case

the information loss rate is always zero. The attack thread reconstruction approach

proposed in [20] fits under this category and yields (ARR = 6.61%, ILR = 0%). Our

approach achieves ILR = 0% when the semantic similarity threshold vector is set to

ones as shown by the case of vector V0 in Table 6.8, which is also a case of perfect

match. It must be noted that approaches based on perfect match can only aggregate

duplicated alerts, in which case the ARR will depend on the number of duplicated

alerts available in the dataset.

Approach Reference ARR ILR

Xu et al. [92] 64.20% not measured

Hofmann and Sick [30] 99.00% not measured

Wen et al [88] 91.00% not measured

attack thread recon [85] 6.61% 0%

attack focus recognition [85] 49.58% not measured

Zhuang et al [96, 90] 98.70% not measured

Jie et al [44] 90.00% not measured

Our approach Current 99.0% 32%

Table 6.10: Comparison of alerts aggregation approaches using the DARPA 2000
dataset in their evaluation.
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In order to evaluate our approach for multi-sensor IDS alerts aggregation, in ad-

dition to the Snort IDS, we used Bro IDS to analyze the network traffic and generate

the IDS alerts. In the multi sensor experiment we only used the DARPA 2000 dataset.

As mentioned earlier, the DARPA 2000 dataset contains one attack pattern which

is a multi-steps DDoS attack. The intruder probed the network and exploited a

Solaris OS services vulnerability to gain root access. He then installed a malware

on 3 machines and then used the malware via telnet to attack a remote site. The

malware executed a mstream DoS attack.

Using our aggregation tool, the raw alerts generated by Snort and Bro were pre-

processed and reformatted to provide unified alerts messages based on our ontology.

Each attack step was reported in Snort and Bro by one or more attack signatures.

Table 6.11 shows the number of raw alerts and intrusions generated by Snort and Bro

based on the DARPA dataset and the number of alerts and intrusion after preprocess-

ing the alerts messages and reformatting them based on the ontology vocabularies.

Bro IDS detected five different attack types and generated 880 corresponding raw

IDS alerts when analyzing the DARPA dataset. Bro IDS, however, failed to detect

the final step of the attack, which is the mstream DoS; this was the only step that was

not detected by Bro. From Table 6.11 we can notice that after preprocessing Snort

and Bro alert messages the number of intrusions increases to 18. This is because only

3 intrusions were commonly detected by both Snort and Bro.

Alerts Format Alerts Count Intrusions

Snort 2170 16

Bro 880 5

Ontology-Based 3094 18

Table 6.11: DARPA dataset preprocessing statistics
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Table 6.12 shows the results of our experiment for multi-sensor alert aggregation,

when varying the thresholds; Figure 6.10 illustrates the corresponding APC. The

results of aggregating the DARPA dataset alerts generated by Snort and Bro are

very close to the results of aggregating the alerts generated by Snort only. The main

reason for that is because Bro failed to detect the mstream DDoS attack.

Vector DARPA

ARR ILR

V0 0.37 0

V1 0.37 0

V2 0.87 0.16

V3 0.94 0.17

V4 0.99 0.32

V5 0.99 0.32

V6 0.99 0.32

V7 0.99 0.32

V8 0.99 0.63

V9 0.99 0.91

Table 6.12: Multi-sensor Alerts Aggregation Evaluation Results
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Aggregation Performance Curve (APC) with Multisensor IDS

Figure 6.10: APCs for single sensor IDS alerts aggregation

Using V 4 as threshold vector allows us to achieve (ARR = 99%, ILR = 32%).

As mentioned above, ILR = 32% can be considered acceptable because the loss is

related to spoofed IP addresses, which do not bring any useful information.

It is important to emphasize that none of the existing multi-sensor aggregation

approaches from the literature have actually been evaluated experimentally in true

multi-sensor settings. While the proposed approaches were presented as being able

to aggregate multi-sensor alerts, experimental results have been provided only for

single-sensor alerts. No quantitative performance results were provided for multi-

sensor alerts, which make it difficult to compare objectively our approach against

these approaches.

Attack Patterns and Attack Scenario Extraction (AKA Alert Correlation)

We applied our attack scenario reconstruction approach to the 2170 alerts generated

by Snort for the DARPA dataset. We obtained at the end of the process, an alert cor-
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relation graph consisting of two disconnected subgraphs, containing 1333 nodes and

837 nodes, respectively. The first subgraph involves four cliques, each containing a set

of nodes (alerts) representing one attack stage. Likewise, the first subgraph yields the

first four attack stages consisting of Ping Sweep, Service Probe , Buffer Over-

flow , and Privilege Escalation . Figures 6.11 and 6.12 shows the alert correlation

graph of the Ping Sweep and Privilege Escalation attack stages.

The second subgraph contains three cliques corresponding to the following attack

stages: Flood Attack , Protocol Exploit , and Host Probe .

ICMP Ping

ICMP Unreachable

Ping Reply

Figure 6.11: Ping Sweep Alerts Clique
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Telnet Login Attempt

Login Fail

Login Pass

RSH Login Attempt

Figure 6.12: Privilege Escalation Alerts Clique

Our approach allows successfully finding causal relations between the four cliques

from the first subgraph as shown in Figure 6.13. The attack scenario graph in Figure

6.13 shows the attacks and the underlying causal relationships. The arcs in Figure

6.13 depict causal relations and are labeled by the attack impacts used to detect the

causality.

Figure 6.13: Reconstructed Attack Scenario Graph

However, no causality relation was detected between the other three attack stages

from the second subgraph (i.e. Flood Attack , Protocol Exploit , and Host Probe).

Since the LLDDOS1.0 dataset contains exactly one attack scenario, the gap be-

tween the two subgraphs certainly corresponds to missing attacks (i.e. false negatives)

that the Snort IDS failed to detect. Furthermore, the alerts that belong to Proto-
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col Exploit and Host Probe are false positives (generated by the Snort IDS) and

thereby irrelevant. This is consistent with the fact that no causality relation was

found by our approach between the elements of the second subgraph.

We removed the false positives (related to Protocol Exploit and Host Probe),

and rerun our algorithms in order to predict the missing attacks (false negatives).

Using our tool we detect several paths that link the disconnected subgraphs. Here

our tool cannot recommend one path over the others due to the lack of environmental

information. For that reason we enabled all Snort rules related to the predicted

attack paths and reanalyzed the LLDDOS1.0 dataset with Snort. The MStream

DDOS ruleset from Snort caused the generation of 26 new alerts containing three

unique Snort intrusion signatures, namely, 243, 244, and 246. These alerts indicate

communication patterns of MStream DDOS attack. Hence, the MStream infection

and the MStream DDOS attack were the missing attacks steps.

Table 6.13 shows our evaluation performance for the LLDOS1.0 dataset using the

soundness and completeness metrics. The table also summarizes the results obtained

by other approaches that used the LLDOS1.0 dataset.

Approach Completeness Soundness

Ning et al [52] 93.96% 93.96%

Liu et al [42] 87.12% 86.27%

Al-Mamory and Zhang [3] 86.5% 100%

Li et al [40, 38, 79] 92.2% not provided

Bateni et al [12] 94.1% 95.0%

Our Approach 97.3% 99.70%

Table 6.13: Comparison of Attack Scenario Reconstruction Approaches Using the
LLDDOS1.0 Dataset
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As shown by Tables 6.13 our approach outperforms many of the previous ap-

proaches. The completeness of our approach is promising and shows that our approach

can correlate alerts that belong to the same attack scenario with high detection rate.

At the same time the soundness of our approach is in general better than most of the

previous approaches. The main reason our approach for alert correlation yields higher

completeness and soundness in comparison to previous approach is the semantic clus-

tering based on semantic relevance tends to maximize the number of correlated alerts,

which increases the number of correlated alerts over the total number of related alerts.

The clique analysis tends to group only highly similar alerts into optimum number

of clusters, which increases the number of correctly correlated alerts over the total

number of correlated alerts.

6.3 Summary

In this chapter we evaluated our semantic-based alert correlation approach using

different datasets to show the validity of our proposed approach. Our experiment

shows that the proposed techniques can effectively handle massive number of IDS

alerts and complex multistage attacks. In addition, the performance of our approach

in comparison to previous approaches in the literature is very promising.

Our experiment with alert verification shows that both the KNN algorithm with

semantic similarity metric and the ontology-based rule induction algorithm are effi-

cient techniques for detecting false positives with a detection accuracy above 96.00%.

The use of semantic similarity and ontological structure to aggregate and fuse IDS

alerts show an outstanding alert reduction rate that can reach 99.00%. In addition,

we take into account the information loss rate, which is an important factor in eval-

uating any alert fusion or aggregation technique. Reconstructing a multistage attack
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and discovering the attack scenario is the most challenging task in IDS alert corre-

lation. Our technique that is based on semantic analysis and semantic correlation

was able to reconstruct attack scenario either completely or partially. In addition, we

were able to partially tolerate false negatives in IDS.

NOTE: Our intrusion ontology can be downloaded from the ISOT lab web site:

http://www.uvic.ca/engineering/ece/isot/datasets/index.php
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Chapter 7

Conclusion

Nowadays, with the rapid size and complexity growth of cyberattacks, intrusion and

security analysts have to analyze a massive number of security alerts generated by het-

erogeneous security appliances. Analyzing this massive number of alerts is a resource-

intensive task. Therefore, manual analysis for IDS alerts is not possible anymore.

However, modern security threats and sophisticated attacks raise the need for alert

analysis to filter, summarize, and detect relevant alerts. Alert correlation systems

are proposed to analyze alerts from IDS and security appliances. In our research we

proposed a novel approach to build alert correlation systems that can handle massive

number of alerts generated by heterogeneous environment.

7.1 Work Summary

Using semantic analysis and ontological engineering to build alert correlation systems

distinguishes our work from previous work in the area of alert correlation. We pro-

posed a general approach to build method ontologies that support problem solving

tasks and can effectively be used in building alert correlation systems. In addition,

the proposed approach can be adapted or extended to other security-related analysis
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and investigation tasks, such as network/computer forensics, vulnerability analysis,

malware analysis, etc. There are two key advantages of using ontology in alert corre-

lation or other security-related analysis tasks. The first advantage is interoperability

between heterogeneous systems. The second advantage is representing the IDS alerts

in a machine-readable format. This second advantage in particular made the semantic

correlation and analysis of intrusion alerts possible.

Using semantic correlation and instance-based learning techniques such as KNN

and rule induction, in addition to computational intelligence paradigms, we devel-

oped a new IDS alert verification methods that can eliminate false positive alerts.

The experimental results demonstrate the promises of the proposed technique. The

proposed technique can eliminate up to 98% of false positive alerts and only miss

less than 2% of true positive alerts.

Controlling alert flooding in intrusion detection system is critical. We developed

a novel technique for IDS alert fusion and summarization. The proposed technique

relies on semantic similarity and the intrusion ontology as the key to cluster and

abstract IDS alerts, and to generate a high level summarized representation of a

massive number of alerts. The proposed technique also provides a mean for measuring

information loss resulting from the aggregation of IDS alerts. Our experimental results

shows that our technique can effectively reach up to 93% alert reduction rate, with

an information loss rate less than 11%. The use of semantic correlation allows us to

measure the quality of the aggregation process, which to our knowledge makes our

technique the first alert aggregation technique that can express the quality of the

aggregation process in a measurable manner.

A new technique for attack scenario and attack pattern reconstruction was pro-

posed. The proposed technique uses semantic clustering and clique analysis to extract

attack patterns and candidate attack scenarios. We also designed an attack causality
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analysis technique that detects causality between attack steps/stages using attack

impact. In addition, the proposed technique can detect missing attack steps and tol-

erate false negatives in IDS. The proposed technique showed promising results that

encourage us to continue working on it. The main issue with our technique is that

it is limited by the performance of the IDS. While we can argue that this limitation

applies to all the attack reconstruction techniques in the literature, we believe we can

extend the proposed technique to mitigate this limitation.

7.2 Future Work

The characteristics of the alerts generated by IDS and other security appliances are

clear examples of the three V’s (Volume, Velocity, Variety). The generated alerts are

massive in volume, hundreds of thousands of alert are generated in few minutes, and

the alerts come from many sources in different formats. Of course this means alert

correlation is a clear case of big data analysis. In fact, recently a new term "Big

Data Security Analysis" have been coined that refers to the analysis of security data

using big data analysis techniques. Therefore, transforming our semantic correlation

approach into the realm of big data analysis will be most likely the focus of our future

work. Our alert verification, aggregation, and scenario reconstruction techniques need

to be modified to work in big data environment, for example, using a Map-Reduce

model to redesign and implement the algorithms proposed in our research.

Bridging the gap between alert correlation and other areas of cyberattacks analy-

sis and response, such as network forensics, attack mitigation, and incident response

is very important. To achieve that, we need a correlation framework that correlates

alerts from different security appliances. Therefore, it is possible to extend our work

to propose a security information and event management (SIEM) system using se-
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mantic correlation that automates the aggregation and correlation of security events,

provides threat analysis, and recommends mitigation/response based on previously

investigated attacks and security incidents.

Finally, during our research and mainly in the experiment phase we reached several

interesting observations. We found an interesting relation between alert correlation

and visualization; both of them can benefit from each other. Visualization can largely

improve the understanding of the data under investigation and the correlation can

improve the visibility of the data. It will be interesting in the future to study the use

of data visualization in alert correlation.
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