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ABSTRACT

Exploiting signal sparsity has recently received considerable attention in a variety

of areas including signal and image processing, compressive sensing, machine learning

and so on. Many of these applications involve optimization models that are regular-

ized by certain sparsity-promoting metrics. Two most popular regularizers are based

on the ℓ1 norm that approximates sparsity of vectorized signals and the total variation

(TV) norm that serves as a measure of gradient sparsity of an image.

Nevertheless, the ℓ1 and TV terms are merely two representative measures of spar-

sity. To explore the matter of sparsity further, in this thesis we investigate relaxations

of the regularizers to nonconvex terms such as ℓp and TVp “norms” with 0 ≤ p < 1.

The contributions of the thesis are two-fold. First, several methods to approach

globally optimal solutions of related nonconvex problems for improved signal/image

reconstruction quality have been proposed. Most algorithms studied in the thesis fall

into the category of iterative reweighting schemes for which nonconvex problems are

reduced to a series of convex sub-problems. In this regard, the second main contribu-

tion of this thesis has to do with complexity improvement of the ℓ1/TV-regularized

methodology for which accelerated algorithms are developed. Along with these in-

vestigations, new techniques are proposed to address practical implementation issues.

These include the development of an ℓp-related solver that is easily parallelizable, and
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a matrix-based analysis that facilitates implementation for TV-related optimizations.

Computer simulations are presented to demonstrate merits of the proposed models

and algorithms as well as their applications for solving general linear inverse problems

in the area of signal and image denoising, signal sparse representation, compressive

sensing, and compressive imaging.
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Chapter 1

Introduction

In this thesis, we consider solving linear inverse problems using nonconvex ℓp and TVp

regularizers with 0 < p < 1, and applications of the proposed optimization models in

the general area of signal recovery including signal denoising and compressive sensing

of 1-D signals and 2-D images. The purpose of this chapter is to introduce the

literature relevant to the problems considered, discuss the motivations for improving

the existing methods, and describe the main contributions and structure of the thesis.

1.1 The ℓ1-ℓ2 Problem and its Nonconvex Relax-

ation

Modeling signals by exploring sparsity through ℓ1-norm has emerged as an effective

framework in signal processing over the last several decades. The rationale of sparse

modeling is that, in many instances, the signal we wish to recover is sparse by itself

or sparse in a certain transformation domain. The ℓ1 norm was adopted as early as

in 1979 by Taylor, Banks and McCoy [104] to deconvolve seismic trace signals. In

late 1980’s, initial theoretical support was provided by Donoho and Stark in [45],

and more rigorous analysis was refined in subsequent years [44,54,65,107]. Advanced

algorithms as the LASSO [105] and basis pursuit [39] for ℓ1 minimization began to

broaden in mid 1990’s.

The use of ℓ1-regularization is arguably considered the “modern least squares” [24]

because of its wide applications, especially during the recent development in the field

of compressive sensing (CS) [21, 22, 47]. In brief, CS reconstructs a signal from a

relatively small number of linear measurements which appear to be highly incomplete
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compared to that dictated by the Shannon-Nyquist sampling theory. Most of the

recovery problems have led to an ℓ1-ℓ2 formulation as

minimize
s

F (s) = λ∥s∥1 + ∥Θs− y∥2 (1.1)

where s is a sparse representation of signal x under sparsifying transformation Ψ,

namely x = Ψs, and y denotes the measurement vector.

An attractive feature of the formulation in (1.1) is that F (s) is convex and its

global minimizer can be identified using a convex-program solver. Various classical

iterative optimization algorithms exist for the ℓ1-ℓ2 sparse approximation problem,

e.g., homotopy solvers and greedy techniques like matching pursuit and orthogonal

matching pursuit [80]. Over the past several years, iterative-shrinkage algorithms have

emerged as a family of highly effective numerical methods for ℓ1-ℓ2 problems, and are

shown to be efficient and practical for large-scale image processing applications [124].

Of particular interest is a proximal-point-function based algorithm known as the fast

iterative shrinkage-thresholding algorithm (FISTA) developed in [8,9], which is shown

to provide a convergence rate of O(1/k2) where k denotes the number of iterations,

compared to the rate of O(1/k) by the well-known iterative shrinkage-thresholding

algorithm (ISTA), while maintaining practically the same complexity as the ISTA. A

more comprehensive discussion of the iterative-shrinkage algorithms will be provided

in Chapter 2.

Let the sparsity of vector s be defined as the number of nonzero entries in s

and denote it by K. Obviously the sparsity of s is connected to its “ℓ0 norm” by

∥s∥0 = K, and this explains why the ℓ0 norm is inherently involved in many signal

processing problems as long as sparsity plays a role. Nevertheless, it is well known

that optimization problems with ℓ0 regularizers are NP-hard [83]. In this regard, the

convex relaxation of “ℓ0 norm” to ℓ1 norm is a natural way to convert an NP-hard

problem to a convex problem of polynomial complexity. Through the work of Candès,

Romberg, and Tao [21,23,27], the ℓ1-norm based convex relaxation methodology has

been theoretically justified and gained a great deal of attention as it finds wide range

of applications.

Between the ℓ1 norm and “ℓ0 norm” there is wide range of “ℓp norm” with 0 <

p < 1. On one hand, the “ℓp norm” more accurately approximates the “ℓ0 norm”

as p gets smaller hence such an “ℓp norm” is expected to better promote sparsity.

On the other hand, ∥s∥p is nonconvex as long as p < 1, hence the problem with
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such an ℓp regularizer is nonconvex and the optimization procedure for such problems

becomes much more involved. It is with this motivation the nonconvex relaxation of

the problem in (1.1), namely,

minimize
s

F (s) = λ∥s∥pp + ∥Θs− y∥2 (1.2)

has been investigated and improved performance relative to its ℓ1-ℓ2 counterpart is

reported in [35, 36, 57, 91, 92, 114–116]. In this thesis we study the ℓp-ℓ2 formulation

with orthogonal bases and overcomplete dictionaries, respectively. With a variety of

system settings we demonstrate that compared to classical ℓ1-regularized optimiza-

tion, finding satisfactory local minimizers for an ℓp-regularized problem enables us to

exactly reconstruct sparse signals with fewer measurements and to denoise corrupted

signals with improved signal-to-noise ratio (SNR).

1.2 The TV-regularized Problem and its Noncon-

vex Relaxation

The total variation (TV) model introduced by Rudin, Osher and Fatemi (ROF) [98]

is a regularization approach for image processing in which the standard ℓ2-norm fi-

delity is regularized by the TV of the image. This model has proven to be capable

of properly preserving image edges and successful in a wide range of image recov-

ery/reconstruction applications. The discrete model of TV regularization can be cast

into an unconstrained optimization problem

minimize
U

TV(U) +
µ

2
∥A(U)−B∥2F (1.3)

or in constrained formulation

minimize
U

TV(U) (1.4a)

subject to: ∥A(U)−B∥2F < σ2 (1.4b)

where A is a linear operator applied to image U and B ∈ Rm×n corresponds to the

observed image. The discretized anisotropic and isotropic TV of image U are defined
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as [9]

TV(A)(U) =
m−1∑
i=1

n∑
j=1

|Ui,j − Ui+1,j|+
m∑
i=1

n−1∑
j=1

|Ui,j − Ui,j+1| (1.5)

and

TV(I)(U) =
m−1∑
i=1

n−1∑
j=1

√
|Ui,j − Ui+1,j|2 + |Ui,j − Ui,j+1|2

+
m−1∑
i=1

|Ui,n − Ui+1,n|+
n−1∑
j=1

|Um,j − Um,j+1|
(1.6)

respectively.

The ROF model has received a great deal of attention for image denoising, image

deblurring, and compressive imaging which allows images to be reconstructed from

relatively few sampled data [21, 26, 47]. In this thesis, we consider the TV-based

denoising problem for which A is simply the identity operator I, and the compres-

sive imaging problem where A corresponds to the sampling operation adopted in a

magnetic resonance imaging (MRI) application.

Solving a TV-based regularization appears to be challenging because the TV norm

is nonsmooth. Furthermore, it is inherently of large scale which renders the task of

developing time and memory efficient methods nontrivial. Sustained research efforts

have been made in developing first-order algorithms that require less memory but

exhibit faster convergence for large-scale computation. Chambolle [28, 29] developed

a gradient-based algorithm to solve the denoising problem and established faster con-

vergence than primal-based schemes, see [30, 33,67]. Beck and Teboulle [8] extended

the dual-based approach of Chambolle to constrained optimization problems, that

combines the acceleration mechanism FISTA with a fast gradient projection (FGP)

method which demonstrates a faster rate of convergence than traditional gradient-

based methods. Of particular interest is an algorithm named Split Bregman method

developed by Goldstein and Osher [60]. The algorithm leverages the Bregman iter-

ation scheme [19, 34, 89, 90, 120] for ℓ1-regularized problems and can be extended to

problems involving TV regularization term. The Split Bregman method has been

recognized as one of the fastest solvers for problems considered herein.

Inspired by the ability of ℓp-regularized algorithms [35,36,57,91,92,114–116] and

the close connection of TV to the ℓ1 norm, we extend the concept of conventional TV

to a generalized TV (GTV) that involves pth power (with p < 1) of the discretized
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gradient of the image, and study the TVp-regularized problems as

minimize
U

TVp(U) +
µ

2
∥A(U)−B∥2F (1.7)

or in constrained formulation

minimize
U

TVp(U) (1.8a)

subject to: ∥A(U)−B∥2F < σ2 (1.8b)

The reader is referred to Chapter 5, Sec. 5.1 for definition of TVp(U). Because the

term TVp(U) is nonconvex, the problems in (1.7) and (1.8) are generally difficult

to tackle directly within existing TV-regularization framework. In the thesis, we

propose a weighted TV (WTV) iterative strategy to locally approximate the TVp-

regularized problem, and demonstrate its ability to handle large-scale images. We

present numerical examples to demonstrate improved performance for image denoising

and image reconstruction of the new algorithms with p < 1 relative to that obtained

by the standard TV minimization.

1.3 Contributions and Organization of the Thesis

1.3.1 Contributions of the Thesis

The work presented in the thesis is concerned with ℓp/TVp regularized optimization

with a focus on two aspects of the problems, namely, to improve signal reconstruction

performance by finding nearly global minimizer of relaxed problems and to develop

accelerated algorithms and demonstrate their efficiency for large-scale problems. In

summary, the main contributions of the thesis include

• Development of a fast solver for global minimization of ℓp-ℓ2 problem in case of

an orthogonal basis;

• Design of a power-iterative strategy in conjunction with FISTA-type minimiza-

tion framework to solve the ℓp-ℓ2 problem and reach solution likely globally

optimal in case of an overcomplete basis;

• Development of a smoothed ℓp-ℓ2 solver which exhibit less oscillation in SNR

profiles of denoised signals;
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• Development of a dual-based linearized Bregman method to accelerate com-

putation of signal reconstruction based on compressed samples, especially for

large-scale signals;

• Proposal of the concept of generalized total variation (GTV), or pth-power TV,

and development of an iteratively reweighting algorithm to approximate global

solution of nonconvex GTV-regularized problem for image denoising;

• Development of a matrix-based analysis for the sparse MRI reconstruction prob-

lem and a weighted TV minimization framework using a Split Bregman type

iteration to solve the nonconvex GTV minimization problem for compressive

imaging.

1.3.2 Organization of the Thesis

The thesis is organized as follows

Chapter 2 - Preliminaries

In this chapter, background information and preliminary knowledge of direct relevance

to the problems to be examined in the thesis are introduced. These include an iter-

ative shrinkage-thresholding algorithm and an accelerated method, an optimization

model of the ℓ1-ℓ2 problem and its applications, a framework of compressive sens-

ing for signal/image reconstruction, the Bregman iteration and linearized Bregman

algorithm for equality constrained nonsmooth convex programming, and total varia-

tion regularized optimization with applications to image denoising and compressive

imaging.

Chapter 3 - Methods for ℓp-ℓ2 Regularized Problems

The chapter investigates a nonconvex extension of the ℓ1 norm to an ℓp regularization

term with 0 ≤ p < 1. We first propose a fast solver for global solution of the ℓp-ℓ2

problem where an orthogonal basis is considered. In the case of an overcomplete

dictionary, we integrate the global solver into a FISTA-type iteration framework, and

develop a power-iterative strategy to reach solutions that are likely globally optimal.

Performance of the proposed techniques is evaluated for signal sparse representation

and compressive sensing. The second part of this chapter is presented with a smoothed

ℓp-ℓ2 solver for signal denoising, using which oscillations in the ℓp SNR profiles by
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the conventional global solver are suppressed as much as possible. We simulate the

algorithm on 1-D and 2-D signals and show its usefulness in signal denoising.

Chapter 4 - Fast Dual-Based Linearized Bregman Algorithms for Com-

pressive Sensing

An equality constrained nonsmooth convex problem that is central to compressive

sensing is examined in this chapter. We start with an analysis of its dual problem

that is followed by discussing a dual-based linearized Bregman method. We then

propose a fast algorithm to accelerate the conventional linearized Bregman iterations

by introducing additional steps adopted in FISTA-type iterations. It is shown that

the convergence rate is improved from O(1/k) to O(1/k2) where k is the number of

iteration. Experimental results are presented to support the proposed algorithm’s

efficiency in converging to globally optimal solution and its capability for large-scale

compressive sensing.

Chapter 5 - Image Denoising by Generalized Total Variation Regulariza-

tion

This chapter investigates a nonconvex extension of the TV-regularization problem

for image denoising. First, we generalize the standard TV to a pth-power TV with

0 ≤ p < 1 that promotes sparser gradient information. Next, we propose to ap-

proximate solution of the nonconvex generalized TV (GTV)-regularized problem by

solving iteratively reweighted TV (IRTV) convex subproblems. In particular, a power-

iterative strategy is developed for the IRTV algorithm to converge to a reasonably

good local solution if not the global solution, and a modified Split Bregman method is

developed to properly handle the presence of nontrivial weights in weighted TV. Final-

ly, we demonstrate improved performance compared to several well-known methods

for image denoising.

Chapter 6 - Compressive Imaging by Generalized Total Variation Regu-

larization

This chapter examines the sparse MRI reconstruction problem as an application of

compressive sensing for images, also named as compressive imaging. We first present

a matrix-based analysis of TV regularization model for which image variables are



8

regarded as matrices rather than column-stacked vectors, and demonstrate its com-

putational efficiency in terms of time and memory requirements. We then apply the

GTV regularizer to a Fourier-based MRI reconstruction problem. The chapter con-

cludes with experimental studies on reconstructing a variety of synthetic and natural

images using the proposed method. Significant performance gain relative to existing

algorithms is exhibited.

Chapter 7 - Conclusions

Finally, this chapter concludes the thesis and suggests several directions for future

research.
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Chapter 2

Preliminaries

In this chapter, we present preliminaries that provide background information for the

problems to be studied in the subsequent chapters of the thesis. These include it-

erative and fast iterative shrinkage-thresholding algorithms, ℓ1-ℓ2 optimization prob-

lem and its applications, signal acquisition and recovery with compressive sensing,

linearized Bregman algorithm, and total variation regularized problems for image

denoising and compressive imaging.

2.1 The ℓ1-ℓ2 Optimization Problem

Over the last two decades, modeling signals exploring sparsity has emerged as an

effective technique in signal processing. A central point in sparse signal processing is

to identify an approximate solution to an ill-posed or under-determined linear system

while requiring that the solution has fewest nonzeros entries. This problem arises in

various areas across engineering and science [39,108]. Many applications in signal and

image processing, such as denoising, inpainting, deblurring and compressive sensing,

all lead to a mixed ℓ1-ℓ2 unconstrained convex problem as

minimize
s

F (s) = λ||s||1 + ||Θs− y||2 (2.1)

where s ∈ RN , Θ ∈ RM×N and y ∈ RM . Parameter λ > 0 in (2.1) is a regularization

parameter that controls the tradeoff between the sparsity of s and the approximation

error ||Θs− y||2. The ℓ1 norm of vector s is defined as ∥s∥1 =
∑N

i=1 |si|.
As a variant of the well-known basis pursuit (BP) problem [39], (2.1) is a nons-

mooth (because ∥s∥1 as a function of s is nondifferentiable), convex, unconstrained
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problem for which many efficient global solution techniques exist [124]. In principle,

the ℓ1-ℓ2 problem can be solved using various classical iterative optimization algo-

rithms [39], homotopy solvers [51, 53] and greedy techniques like matching pursuit

and orthogonal matching pursuit [123]. However, these algorithms are often imprac-

tical in high-dimensional problems, as often encountered in image processing appli-

cations [124]. One of the state-of-the-art techniques in dealing with large-scale ℓ1-ℓ2

problems is the fast iterative-shrinkage-thresholding algorithm (FISTA) [8] which will

be introduced in Sec. 2.4.

On the application front, several authors have successfully applied the ℓ1-ℓ2 model

to a variety of problems encountered in signal and image processing, such as denoising,

deblurring, compressive sensing, sparse representation, source-separation and more.

Several applications of the ℓ1-ℓ2 model that are relevant to this thesis are described

below.

Signal Denoising

Let y be the observation of a signal x that is contaminated by Gaussian white noise

w, i.e., y = x + w. Without loss of generality, assume that x admits a sparse or

nearly sparse representation in a suitable dictionary Ψ, namely x = Ψs where s is

sparse. The well-known basis pursuit denoising (BPDN) [39] to recover signal x from

noisy measurement y refers to the solution of

minimize
s

λ||s||1 + ||Ψs− y||2

where parameter λ > 0 depends on the variance of noise w as well as the cardinality

of dictionary Ψ [39]. As we can see, the objective function fits into the model (2.1)

with Θ = Ψ.

Compressive Sensing

As an alternative and effective data acquisition strategy, compressive sensing (CS)

acquires a signal by collecting a relatively small number of linear measurements. The

signal is later recovered with a nonlinear process [21, 47]. More specifically, rather

than direct sampling with a Nyquist rate, compressive sensing suggests that we sense

the vector y = Φx where Φ ∈ RM×N contains a set of M ≪ N projection directions

onto which the signal is projected [22,47]. In this way, compressive sensing facilitates

us to sample a signal while compressing it. Reconstruction of the signal from its
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samples, i.e., y, is achieved by solving

minimize ||s||1
subject to: ||ΦΨs− y||2 ≤ ε

assuming that x can be sparsely represented under basis (or dictionary)Ψ. Regardless

of whether or not the measurements are noise-free, the recovery problem can be solved

in the ℓ1-ℓ2 formulation (2.1) with Θ = ΦΨ.

The relationship between the ℓ1-ℓ2 model and signal recovery through compressive

sensing will be elaborated further in Sec. 2.2.

Signal Sparse Representation

Another typical sparse representation problem is to find the sparsest representation

of a discrete signal x under a (possibly overcomplete) dictionary Ψ. The sparsity

of a vector s refers to the number of nonzero entries in s, which is often expressed

as the ℓ0 norm of s defined by ∥s∥0, although strictly speaking the ℓ0 norm is not

a vector norm. With this notation, the problem considered here can be described

as minimizing ∥s∥0 subject to x = Ψs. Another version of the problem permits a

small amount of perturbation in the measurements, i.e., x = Ψs+w and the problem

becomes

minimize
s

∥s∥0
subject to: ∥Ψs− x∥ ≤ ε

Unfortunately, both problems are nonconvex and known to be NP hard. This moti-

vates the development of efficient algorithms for suboptimal solutions of the problem.

An appealing solution method is the basis pursuit (BP) algorithm [39] which solves

a modified version of the above problem with the ℓ0 norm replaced by a convex ℓ1

norm. The problem thus modified can be formulated as a quadratic convex problem,

known as second order cone programming (SOCP) problem, which admits a unique

global solution. In principle, the BP problem can be solved using a standard solver

for convex problems. Recent studies exploring the specific structure of the problem

have led to more efficient algorithms [80,106]. Among these, the ℓ1-ℓ2 optimization is

a popular approach that converts the constrained minimization into an unconstrained
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convex problem as

minimize
s

λ||s||1 + ||Ψs− x||2

which is the same as the ℓ1-ℓ2 model in (2.1).

In summary, the ℓ1-ℓ2 model in (2.1) is fundamental to these applications thus we

are strongly motivated to develop new algorithms to deal more efficiently with this

optimization problem.

2.2 Signal Acquisition and Recovery with Com-

pressive Sensing

The foundation of current compressive sensing (CS) theory, also known as compressive

sampling or compressed sensing, was laid by three papers [21], [47] and [22] in 2006

that, together with several other papers, have inspired a burst of intensive research

activities in CS in the past several years [77].

The classical sampling method requires sampling a bandlimited signal at a rate

(known as the Nyquist rate) greater than or equal to twice the bandwidth of the

signal. Rather than evenly sampling at the Nyquist rate which can be prohibitively

high for signals with broad spectrum, compressive sensing acquires a signal of interest

indirectly by collecting a relatively small number of its projections. In particular,

compressive sensing (CS) based signal acquisition computes M linear measurements

of an unknown signal x ∈ RN with M < N . This acquisition process can be described

as

y = Φx with Φ = [ϕ1 ϕ2 . . . ϕM ]T (2.4)

where ϕk ∈ RN(k = 1, 2, . . . ,M). Suppose signal x is K-sparse with respect to an

orthonormal basis {ψj}Nj=1 (ψj ∈ RN), then x can be expressed as

x = Ψs (2.5)

where Ψ = [ψ1 ψ2 . . . ψN ] is an orthogonal matrix and s is a K-sparse signal with

K ≪ N nonzero elements. The CS theory mandates that if matrix Θ = ΦΨ obeys

the restricted isometry property (RIP) of order 2K, i.e. the inequality

(1− δ2K)||s||22 ≤ ||Θs||22 ≤ (1 + δ2K)||s||22
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holds for all 2K-sparse vectors x with δ2K <
√
2− 1, then s can be exactly recovered

via the convex optimization

minimize ||s||1 (2.6a)

subject to: Θs = y (2.6b)

and x is recovered by Eq. (2.5).

A sensing matrix Φ obeys RIP of order 2K with δ2K <
√
2− 1 if it is construct-

ed by (i) sampling i.i.d. entries from the normal distribution with zero mean and

variance 1/M , or (ii) sampling i.i.d. entries from a symmetric Bernoulli distribution

(i.e. Prob(ϕij = ±1/
√
M) = 1/2), or (iii) sampling i.i.d. from other sub-Gaussian

distribution, or (iv) sampling a random projection matrix P that is incoherent with

matrix Ψ and normalizing it as Φ =
√
N/MP, with M ≥ CK log(N/K) and C a

constant [23].

In practice, x is likely only approximately K-sparse under Ψ. In addition, mea-

surement noise may be introduced in the sensing process as y = Φx+w. In this case

the procedure of reconstructing s is performed by solving convex problem

minimize ||s||1 (2.7a)

subject to: ||Θs− y||2 ≤ ε (2.7b)

where ε stands for the permissible deviation. This problem was first discussed in [39]

as basis pursuit (BP). A variant of problem (2.7) mixes ℓ1 and ℓ2 expressions in the

form of (2.1) where the constraint is replaced with a penalty term. The parameter λ

replaces the threshold ε in (2.7) which controls the tradeoff between the reconstruction

error and signal sparsity.

2.3 Iterative Shrinkage-Thresholding Algorithm

Over the past several years, a family of iterative-shrinkage algorithms have emerged

as highly effective numerical methods for the ℓ1-ℓ2 problem. We begin with reviewing

an algorithm, known as the iterative shrinkage-thresholding algorithm (ISTA), which

also bears the names of “proximal-point method” and “separable surrogate functionals
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method” [124]. Consider the general formulation

minimize
x∈Rn

F (x) = f(x) + g(x) (2.8)

and make the following assumptions on functions f(·) and g(·):

• f(·) : Rn → R is a smooth convex function and is continuously differentiable

with Lipschitz continuous gradient, i.e., there exist a constant L such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

for every x,y ∈ Rn where ∥ · ∥ denotes the standard Euclidean norm and L > 0

is called the Lipschitz constant for gradient ∇f(x).

• g(·) : Rn → R is a continuous convex function which is possibly nonsmooth.

Consider the following quadratic approximation of F (x) = f(x) + g(x) at a given

point y:

QL(x,y) = f(y) + ⟨x− y,∇f(y)⟩+ L

2
∥x− y∥2 + g(x)

which is convex quadratic, hence admits a unique minimizer as pL(y) = argminQL(x,y).

The unique minimizer pL(y) can be equivalently cast as

pL(y) = argmin
x

{g(x) + L

2
∥x− (y − 1

L
∇f(y))∥2}

At the kth iteration, the key step of the algorithm for solving problem (2.8) is given

by

xk = pL(xk−1) (2.9)

where 1/L plays the role of a step-size. The algorithmic steps are presented below.

In what follows, we refer this general method to the iterative shrinkage-thresholding

algorithm (ISTA).

Algorithm 2.1 ISTA

1: Input: L, the Lipschitz constant of ∇f .
2: Step 0: Take x0 ∈ Rn.
3: Step k: (k ≥ 1) Compute

xk = pL(xk−1)
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Note that ISTA reduces to the classical gradient method when g(x) ≡ 0. It is

known that for the gradient method the sequence of function values F (xk) converges

to the optimal function value F (x∗) at a rate which is bounded from above by O(1/k)

– a “sublinear” rate of convergence. It can be shown that ISTA shares the same rate

of convergence as stated in the following theorem.

Theorem 1 (in [8]). Let {xk} be the sequence generated by (2.9). Then for any k ≥ 1

F (xk)− F (x∗) ≤ L∥x0 − x∗∥2

2k

where x∗ is the minimizer of F (x).

From the theorem it follows that the number of iterations of ISTA required to

obtain an ε-optimal solution, that is, an xk such that F (xk)− F (x∗) ≤ ε, is at most

⌈L∥x0 − x∗∥2/2ε⌉.

ISTA and the ℓ1-ℓ2 Optimization Problem in (2.1)

It is not hard to observe that the ℓ1-ℓ2 regularization problem (2.1) is a special instance

of the general problem (2.8) when we set f(s) = ∥Θs − y∥2 and g(s) = λ∥s∥1. The

proximal-point (P-P) function in the case of an ℓ1-ℓ2 problem is given by

QL(s, sk−1) = λ∥s∥1 +
L

2

∥∥∥∥s− (
sk−1 −

1

L
∇f(sk−1)

)∥∥∥∥2

+ const (2.10)

where L is the smallest Lipschitz constant of ∇f , i.e., L = 2λmax(ΘΘT ). The kth

iteration of ISTA finds the next iterate sk by minimizing QL(s, sk−1), i.e.,

sk = pL(sk−1) = argmin
s

QL(s, sk−1)

Because of the introduction of ℓ1 term, both terms in QL(s, sk−1) are coordinate-

separable. It can be readily verified that the minimizer of QL(s, sk−1) can be calcu-

lated by a simple soft shrinkage with a constant threshold λ/L as

sk = Tλ/L

(
sk−1 −

1

L
∇f(sk−1)

)
where operator T applies to a vector pointwisely with Ta(·) = sign(·)max{|·|−a, 0} [8].
Once iterate sk is obtained, it is used to obtain the next iterate by shrinkage. The

iteration continues until certain stopping criterion is met.
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2.4 Fast Iterative Shrinkage-Thresholding

Algorithm

Evidently, the complexity of ISTA is quite low. However, the algorithm only provides

a slow convergence rate of O(1/k). A new proximal-point-function based algorithm,

known as the fast iterative shrinkage-thresholding algorithm (FISTA), is proposed

in [8, 9]. It is shown that FISTA provides a much improved convergence rate of

O(1/k2) whereas the complexity of each iteration is practically the same as that of

ISTA. The steps in the kth iteration of FISTA are outlined in Algorithm 2.2.

Algorithm 2.2 FISTA (in [8])

1: Input: L, the Lipschitz constant of ∇f .
2: Step 0: Take y1 = x0 ∈ Rn and t1 = 1.
3: Step k: (k ≥ 1) Compute

xk = pL(yk)

tk+1 =
1 +

√
1 + 4t2k
2

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1)

We see that the FISTA is built on ISTA with an extra step in each iteration that,

with the help of a sequence of scaling factors tk, creates an auxiliary iterate yk+1 by

moving the current iterate xk along the direction of xk − xk−1 so as to improve the

subsequent iterate xk+1. In each round of iteration, the main computational effort in

both ISTA and FISTA remains the same while the requested additional computation

to obtain tk+1 and yk+1 is quite light. A much improved convergence rate of O(1/k2)

for FISTA is established in the following theorem.

Theorem 2 (in [8]). Let {xk}, {yk} be generated by FISTA. Then for any k ≥ 1

F (xk)− F (x∗) ≤ 2L∥x0 − x∗∥2

(k + 1)2

where x∗ is the minimizer of F (x).

In other words, the number of iterations required by FISTA to obtain an ε-optimal

solution, that is, an xk such that F (xk)−F (x∗) ≤ ε, is at most ⌈
√

2L∥x0 − x∗∥2/ε−
1⌉. Clearly, this is a much improved result over ISTA.
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Furthermore, by including an additional step to FISTA, the algorithm is enhanced

to possess desirable monotone convergence [9]. The modified algorithm is known as

the monotone FISTA or MFISTA, which is presented in Algorithm 2.3. It turns out

that MFISTA possesses the same convergence rate O(1/k2) as that for FISTA, see [9]

for a detailed proof.

Algorithm 2.3 MFISTA (in [9])

1: Input: L, the Lipschitz constant of ∇f .
2: Step 0: Take y1 = x0 ∈ Rn and t1 = 1.
3: Step k: (k ≥ 1) Compute

zk = pL(yk)

tk+1 =
1 +

√
1 + 4t2k
2

xk = argmin {F (x) : x = zk,xk−1}

yk+1 = xk +

(
tk
tk+1

)
(zk − xk) +

(
tk − 1

tk+1

)
(xk − xk−1)

FISTA and the ℓ1-ℓ2 Optimization Problem in (2.1)

By setting f(s) = ∥Θs − y∥2 and g(s) = λ∥s∥1 in the general problem (2.8),

FISTA applies to the ℓ1-ℓ2 problem in (2.1). By Algorithm 2.2, the steps in the kth

iteration of FISTA as applied to the ℓ1-ℓ2 problem (2.1) are outlined as follows.

1. Perform shrinkage sk = Tλ/L

(
bk −

1

L
∇f(bk)

)
;

2. Compute tk+1 =
1 +

√
1 + 4t2k
2

;

3. Update bk+1 = sk +

(
tk − 1

tk+1

)
(sk − sk−1).

The program starts with initial b1 = s0 and t1 = 1 and terminates when the

iteration number is greater than a prescribed integer or the ℓ2 distance between the

two most current iterates is less than a convergence tolerance.
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2.5 Linearized Bregman Algorithm

As introduced in Sec. 2.2, a central problem in compressive sensing [21,22,47] is the

recovery of a sparse signal from a relatively small number of linear measurements.

A successful approach in the current CS theory deals with this signal reconstruc-

tion problem by means of nonsmooth convex programming (NCP). A representative

formulation in the NCP setting examines the equality constrained problem

minimize
x

J(x) (2.11a)

subject to: Ax = b (2.11b)

where J(x) is a continuous but non-differentiable objective function.

Concerning the computational aspects of the problem, a rich variety of algorithms

is now available. In particular, when J(x) = ∥x∥1, (2.11) can be solved by linear

programming (LP) for real-valued data or by second-order cone programming (SOCP)

for complex-valued data [4]. Reliable LP and SOCP solvers are available, but they

are not tailored for CS problems involving large-scale data such as digital images.

Another representative NCP formulation (2.11) with J(x) = ∥x∥1 is associated

with the unconstrained ℓ1-ℓ2 problem (see Sec. 2.1)

minimize
x

λ∥x∥1 + ∥Ax− b∥2 (2.12)

where ∥ · ∥ denotes the ℓ2 norm and parameter λ regularizes signal sparsity while tak-

ing signal fidelity into account. Gradient-based algorithms that are especially suited

for large-scale CS problems have been developed [124]. Of particular interest are those

based on proximal-point functions in conjunction with iterative shrinkage techniques.

These include the fast iterative shrinkage-thresholding algorithm (FISTA) and mono-

tone FISTA (MFISTA) [8], which have been discussed in Sec. 2.4. A problem with

these algorithms is that, for a solution of (2.12) to be a good approximate solution

of (2.11), parameter λ in (2.12) must be sufficiently small that inevitably slows down

the FISTA as a large number of iterations are required for the algorithm to converge.

In [19, 119, 120], solution methods for problem (2.11) based on the concept of

Bregman distance [12] are proposed. These methods are known as linearized Bregman

(LB) algorithms that are suited for large-scale problems and shown to be able to

identify global minimizer of (2.11) efficiently. In addition, the LB algorithm is shown

to be equivalent to a gradient descent algorithm applied to a dual formulation [119].
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Bregman iteration uses Bregman Distance for finding extrema of convex function-

als [12] in functional analysis, and was first applied in image processing in [89]. It has

also been applied to solve the basis pursuit problem in [19, 90, 120] for compressive

sensing and sparse denoising, and medical imaging problems in [34]. It is also estab-

lished in [119,120] that the original Bregman method is equivalent to the augmented

Lagrangian method (the method of multipliers) [66, 96]. The Bregman distance [12]

with respect to a convex function J(·) between points u and v is defined as

Dp
J (u,v) = J(u)− J(v)− ⟨p,u− v⟩ (2.13)

where p ∈ ∂J(v), the subdifferential [4] of J at v. Apparently, this is not a distance

in the usual sense because it is not in general symmetric. On the other hand, it

does measure the closeness between u and v in the sense that Dp
J (u,v) ≥ 0, and

Dp
J (u,v) ≥ Dp

J (w,v) for w on the line segment between u and v [60].

The linearized Bregman (LB) method proposed in [120] is a variant of the original

Bregman method introduced in [89, 120]. Its convergence and optimality properties

are investigated in [15] and [19]. An LB algorithm for problem (2.11) as presented

in [120] is sketched below as Algorithm 2.4, where we have adopted the notation

of [69] for presentation consistency.

Algorithm 2.4 LB ( [120])

1: Input: x0 = p0 = 0, µ > 0 and τ > 0.
2: for k = 0, 1, ...K do

3: xk+1 = argminx{D
pk

J (x,xk) + τ⟨AT (Axk − b),x⟩+ 1
2µ
∥x− xk∥2};

4: pk+1 = pk − τAT (Axk − b)− 1

µ
(xk+1 − xk);

5: end for

Several important results of the LB method are summarized below as Propositions

1 and 2.

Proposition 1 (in [19]). Suppose J(·) is convex and continuously differentiable, and

its gradient satisfies

∥∇J(u)−∇J(v)∥2 ≤ β⟨∇J(u)−∇J(v),u− v⟩ (2.14)

for ∀u,v ∈ RN . Then the sequence {xk}k∈N generated by Algorithm 2.4 with 0 < τ <



20

2

µ∥AAT∥
converges. The limit of {xk}k∈N is the unique solution of

minimize
x

J(x) +
1

2µ
∥x∥2 (2.15a)

subject to : Ax = b (2.15b)

Note that if µ is sufficiently large, problem (2.15) is basically equivalent to (2.11)

such that Algorithm 2.4 is able to converge to the global minimizer of (2.11). How-

ever, Proposition 1 is not applicable when J(·) = ∥ · ∥1 because the ℓ1-norm is not

differentiable. For the ℓ1-norm case, we have the following proposition.

Proposition 2 (in [15]). Let J(·) = ∥ · ∥1. Then the sequence {xk}k∈N generated by

Algorithm 2.4 with 0 < τ <
1

µ∥AAT∥
converges to the unique solution of problem

(2.15). Let S be the set of all solutions of problem (2.11) when J(x) = ∥x∥1 and

define x1 as the unique minimum ℓ2-norm solution among all the solutions in S, i.e.,
x1 = argminx∈S∥x∥2. Denote the solution of (2.15) to be xµ. Then ∥xµ∥ ≤ ∥x1∥ for

all µ > 0 and limµ→∞ ∥xµ − x1∥ = 0.

Proposition 2 is introduced and proved as the main theorem in [15]. It demon-

strates that for non-differentiable function J(·) = ∥ · ∥1, the linearized Bregman

algorithm still converges to the unique solution of problem (2.15), which is essentially

the solution of (2.11) that has the minimal ℓ2-norm among all the solutions of (2.11).

2.6 Total Variation Regularized Problems

In this section we introduce total variation (TV) regularized problems for image

denoising, deblurring and compressive imaging. Investigated by Rudin, Osher and

Fatemi (ROF) in [98], the total variation model is a regularization approach capable

of handling edges properly and has been successful in a wide range of applications

in image processing. The TV-based model is formulated, in general terms, as an

unconstrained convex minimization problem of the form

minimize
U

TV(U) +
µ

2
∥A(U)−B∥2F (2.16)

where ∥ · ∥F denotes the Frobenius norm, B ∈ Rm×n is the observed data and U ∈
Rm×n denotes the desired unknown image to be recovered. The operator A is a linear
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map and has various representations in different applications. For instance, in an

image denoising setting, A simply corresponds to the identity operator, whereas A
represents some blurring operator in the case of an image deblurring setting.

A great deal of research has been focused on developing efficient methods to solve

(2.16). Variants of the ROF algorithm with improved performance and complexity

are now available [9, 28, 31]. In particular, a main focus has been on the denoising

problem, where the algorithms developed often cannot be readily extended to handle

deblurring or compressive imaging problems that are more involved. On the other

hand, the literature abounds on numerical methods for solving (2.16), including par-

tial differential equation (PDE) and fixed point techniques, primal-dual Newton-based

methods, primal-dual active methods, interior point algorithms and second-order cone

programming, see [28–30,33,59,67,109] and the references therein.

The discretized anisotropic and isotropic TV of image U are defined as [9]

TV(A)(U) =
m−1∑
i=1

n∑
j=1

|Ui,j − Ui+1,j|+
m∑
i=1

n−1∑
j=1

|Ui,j − Ui,j+1| (2.17)

and

TV(I)(U) =
m−1∑
i=1

n−1∑
j=1

√
|Ui,j − Ui+1,j|2 + |Ui,j − Ui,j+1|2

+
m−1∑
i=1

|Ui,n − Ui+1,n|+
n−1∑
j=1

|Um,j − Um,j+1|
(2.18)

respectively.

Image Denoising by TV Minimization

Image denoising is probably the most successful application of TV minimization [98].

Let the image model be given by

B = U∗ +W (2.19)

where B denotes noisy measurement of desired image U∗ ∈ Rm×n and W is the

noise term with independently and identically distributed (i.i.d.) Gaussian entries of

zero mean and variance σ2. The denoising of B is carried out by solving the convex
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TV-regularized problem

minimize
U

TV(U) +
µ

2
∥U−B∥2F (2.20)

where µ > 0 is a regularization parameter. Clearly, model (2.16) recovers (2.20) when

A is taken to be the identity operator.

Compressive Imaging by TV Minimization

Compressive Sensing (CS) is now well known for more effective signal reconstruction

using fewer samples, compared with the conventional Nyquist sampling. One of

its significant achievements is its application in magnetic resonance imaging (MRI),

due to its capability of producing high quality images with reduced imaging time.

Consequently, efficient algorithms for this problem are extremely desirable.

Suppose we want to recover an MRI imageU ∈ Rn×n based on randomized Fourier

samples. If TV is used as the sparsifying transform, the optimization model can be

expressed as

minimize
U

TV(U) (2.21a)

subject to: ∥R ◦ (FU)−B∥2F < σ2 (2.21b)

where F denotes the 2-D Fourier transform operator, R represents a random sampling

matrix whose entries are either 1 or 0, B stores the compressive sampled measure-

ments, and symbol ◦ denotes the Hadamard product or the entrywise product between

two matrices. Problem (2.21) is a general formulation for sparse MRI reconstruction

as presented and discussed in [34, 71, 78]. It is important to note that unlike other

formulations, (2.21) deals with matrix variables that facilitates efficient analysis and

fast computation as will be demonstrated later in the thesis.
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Chapter 3

Methods for ℓp-ℓ2 Problems

The results reported in this chapter are related to a nonconvex extension of the pop-

ular ℓ1-ℓ2 formulation (presented in Sec. 2.1) in the general area of sparse signal

processing. The specific nonconvex problem we propose to solve is an ℓp-ℓ2 problem

with 0 ≤ p < 1. A fast solver for global minimization of the problem in case of an or-

thogonal basis is devised. Built on a recent algorithm, known as the (monotone) fast

iterative shrinkage/thresholding algorithm (FISTA/MFISTA), we are able to develop

algorithms for solving the ℓp-ℓ2 problem where an overcomplete dictionary is adopted.

The key ingredient of the algorithm is a parallel global solver that replaces the soft

shrinkage within FISTA/MFISTA. Due to the nonconvex nature of the problem, we

develop a power-iterative strategy for the local algorithms to reach solutions which

are likely globally optimal. We also present experimental studies that evaluate the

performance of the proposed techniques for signal sparse representation and compres-

sive sensing. In the second part of the chapter, we present a practical signal denosing

technique by virtue of the ℓp norm. A smoothed ℓp-ℓ2 solver is proposed to deal with

the oscillations that often occur in the ℓp SNR profiles when the conventional global

solver is employed. The usefulness of the algorithm is demonstrated by simulations

in denoising a variety of 1-D and 2-D signals.

3.1 Fast Iterative Algorithm for ℓp-ℓ2 Optimization

A nonconvex variant of the basis pursuit (BP) problem can be formulated by replacing

the ℓ1 norm term in BP with an ℓp norm with 0 < p < 1 [35, 36]. The ℓp norm of

vector s is defined as ∥s∥p = (
∑N

i=1 |si|p)1/p. We remark that with p < 1, the “ℓp
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norm” is no longer a norm because it does not satisfy the triangle inequality condition

required to be a norm, however ∥s∥pp =
∑N

i=1 |si|p satisfies the triangle inequality and

remains to be a meaningful distance measure. It was demonstrated by numerical

experiments [35] that fewer measurements than that of BP are required by the ℓp-ℓ2

BP for exact reconstruction of a sparse signal. Naturally, an ℓp-ℓ2 problem can be

formulated as an unconstrained problem:

minimize F (s) = λ||s||pp + ||Θs− y||2 (3.1)

where s ∈ RN , Θ ∈ RM×N and y ∈ RM .

Our algorithm for (3.1) is built on a recent algorithm, known as the fast iterative

shrinkage/thresholding algorithm (FISTA) [8], where the key soft shrinkage step is

replaced by a new solver for global minimization of a 1-D nonconvex ℓp problem.

Unlike a typical ℓ1-ℓ2 proximal-point (P-P) objective function [124], we associate

each iteration of our algorithm to a P-P objective function given by

Qp(s,bk) = λ∥s∥pp +
L

2
∥s−

(
bk −

1

L
∇f(bk)

)
∥2 (3.2)

where f(s) = ∥Θs− y∥2. At a glance, function Qp(s,bk) differs from Q1(s,bk) only

slightly with its ℓ1 term replaced by an ℓp term. However, this change turns out to be a

rather major one in several aspects. On one hand, with p < 1 (3.2) provides a problem

setting closer to the ℓ0-norm minimization, where the ℓ0-norm denotes the number of

nonzero elements of the vector. The ℓ0-norm based signal recovery is attractive as it

can facilitate exact recovery of sparse signal. Consequently, with the ℓp variation for

p less than 1, improved sparse signal recovery performance is expected. And this is

indeed the very reason of the studies reported in this chapter. On the other hand,

with p < 1 the problem in (3.2) becomes nonconvex, hence conventional technique

like soft shrinkage fails to work in general, and this technical difficulty motivates the

development of a new solver for problem (3.2).

For notational simplicity, the problem of minimizing Qp(s,bk) can be cast as

minimize λ||s||pp +
L

2
||s− c||2 (3.3)

where c = bk−
1

L
∇f(bk). With p < 1, the minimization problem (3.3) is nonconvex.

By taking advantage of the objective function in (3.3) being separable in coordinates
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of s, below we devise a fast parallel solver [115, 116] to secure the global minimizer

of (3.3), then incorporate this solver into an FISTA framework by replacing the

conventional soft shrinkage operator.

3.1.1 A Parallel Global Solver for the ℓp-ℓ2 Problem (3.3)

The objective function in (3.3) consists of two terms, both of which are separable.

Consequently, (3.3) is reduced to a series of N 1-D problems of the form

minimize u(s) = λ|s|p + L

2
(s− c)2 (3.4)

In the following, we first present an algorithm for finding the global solution s∗ of

(3.4) [116].

Global Solver for the 1-D Problem (3.4)
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a(s)=L(s−c)2/2

b(s)=λ|s|p

u(s)=a(s)+b(s)

Figure 3.1: Function u(s) with c > 0.

To begin with, we examine function u(s) with respect to parameter c. If c = 0, it

is obvious that s∗ = 0. Next, we consider the case of c > 0. To illustrate the current

circumstance, Fig. 3.1 plots a(s) =
L

2
(s − c)2, b(s) = λ|s|p and u(s) = a(s) + b(s)

for some L, c, λ and p. It can be observed that when variable s is in the region

(−∞, 0), functions a(s) and b(s) are both monotonically decreasing; in addition when
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s ∈ (c,+∞), a(s) and b(s) are both monotonically increasing. Hence the global

minimizer s∗ lies in [0, c] where the function of interest becomes

u(s) = λsp +
L

2
(s− c)2 for s ∈ [0, c] (3.5)

As mentioned earlier, gradient information is not sufficient to identify the global

minimizer. The convexity property of function u(s) can be analyzed by examining

the 2nd-order derivative of (3.5), i.e.,

u′′(s) = L+ λp(p− 1)sp−2 (3.6)

By solving the equation u′′(s) = 0, we obtain

sc =

[
λp(1− p)

L

]1/(2−p)

Clearly, sc > 0. For 0 ≤ s < sc, u(s) is concave as u′′(s) < 0; for s > sc, u(s) is

convex as u′′(s) > 0. For s in interval [0, c], two cases need to be examined.

1. If sc ≥ c, u(s) is concave in [0, c]. As a result, s∗ must be either 0 or c. Namely,

s∗ = argmin {u(s) : s = 0, c}. This case is illustrated in Fig. 3.2. From

sc ≥ c, it can be derived that Lc2−p ≤ λp(1 − p) ≤ λ/4, which further gives
L

2
c2 < 4Lc2 ≤ λcp, i.e., u(0) < u(c). Therefore, s∗ = 0 for sc ≥ c.

2. If sc < c, as illustrated in Fig. 3.3, u(s) is concave in [0, sc] and convex in

[sc, c]. More specifically, if u′(sc) ≥ 0, u(s) is monotonically non-decreasing in

the interval [0, c], thus s∗ = 0. On the other hand if u′(sc) < 0, we argue that s∗

must be either at the boundary point 0, or at the point st that minimizes convex

function u(s) in [sc, c]. Point st can be identified by several rounds of iterations

based on bisection search method. Hence the global minimizer is obtained as

s∗ = argmin {u(s) : s = 0, st}.

Based on this, a global solver of (3.4) for c ≥ 0 can readily be generated. If we

denote the solution of this solver by s∗ = gsol(c, L, λ, p), then it is evident that the

global solution of (3.4) for c < 0 can be obtained as s∗ = −gsol(−c, L, λ, p).

In spite of its plain structure, a drawback of this solution method is its low effi-

ciency, especially for large-scale problems, as one needs to solve N 1-D problems in
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scc0

  

Figure 3.2: Function u(s) when sc ≥ c (with c > 0).

sc c0

  

Figure 3.3: Function u(s) when sc < c (with c > 0).

order to minimize (3.3). Below we describe an improved algorithm which employs a

parallel processing technique to accelerate the global solver.

Fast Implementation of the Global Solver for Problem (3.3)

The following notations are adopted. We denote by a◦b the component-wise product

of vectors a and b, by a.p the vector whose ith component is |ai|p, and by 1 and 0 the

all-one and all-zero vectors, respectively. Let Λ be a length-K subset of {1, 2, ..., N}, c
be a vector of length N and b be a vector of length K. We use c(Λ) to denote a vector

of length K that retains those components of c whose indices are in Λ; c(Λ) = b to

denote a vector of length N obtained by updating the components of c, whose indices

are in Λ, with those of b; d = c(Λ) denotes a vector of length K that retains those
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components of c whose indices are in Λ. We use [a > b] ([a < b]) to denote a vector

whose ith component is 1 if ai > bi (ai < bi) and 0 otherwise; and [a ≥ b] ([a ≤ b])

is similarly defined.

A step-by-step description of the algorithm through a parallel implementation

is described in Table 3.1 as Algorithm 3.1 where it is quite obvious that the data

are processed in a vector-wise rather than component-wise manner. The parallel

processing of data is made possible by taking the advantage of the separable structure

of the objective function in (3.3) and playing a technical trick about the signs of c

as illustrated for the scalar case earlier. In particular, the signs of c are recorded

into a vector θ, which is used to accommodate the negative-sign cases simply by a

component-wise product at the last step.

Most of the steps in Algorithm 3.1 can be parallel implemented in MATLAB based

on vector operations so that “for loops” are avoided as much as possible. We remark

that the proposed ℓp-ℓ2 solver is highly parallel with exception only in Step 3.4 where

a total of |Ω| calls for bisection search are made. Since |Ω| is typically much smaller

than N , overall the complexity of the proposed solver is considerably reduced com-

pared with that required by applying 1-D solver gsol N times.

3.1.2 Performance of the Parallel ℓp-ℓ2 Solver for Denoising

a 1-D Signal with Orthogonal Basis

In this section, problem (3.1) is investigated with an orthogonal Θ, i.e., ΘΘT =

ΘTΘ = I. Then with

∥Θs− y∥2 = ∥Θ(s−ΘTy)∥2 = ∥s−ΘTy∥2

we write the objective function in (3.1) as

F (s) = λ∥s∥pp + ∥s− c∥2. (3.7)

where c = ΘTy. Evidently in case of an orthogonal basis, global solution of (3.1)

can be easily identified by minimizing (3.7) using Algorithm 3.1. We carry out an

experiment for a 1-D signal denoising with orthogonal basis in the following.

A test signal of lengthN = 256 known as “HeaviSine” [50] (with maximum ampli-

tude normalized to 1) was corrupted with additive white Gaussian noise w with zero
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Algorithm 3.1

Input Data c, L, λ and p.

Output Data s∗ = argmin

{
λ||s||pp +

L

2
||s− c||2

}
.

Step 1 Set θ = sign(c) and c = θ ◦ c.

Step 2 If p = 0, compute ϑ =

[
L

2
c.2 > (λ · 1)

]
, set s∗ = c ◦ ϑ and do

Step 4; otherwise do Step 3.

Step 3 1. Compute sc = [λp(1− p)/L]1/(2−p), set ϑ = [(sc ◦ 1) < c].

2. Define Λ = {i : ϑi = 1} and update c = c(Λ).

3. Compute v = L(sc ◦ 1− c) + λpsp−1
c ◦ 1, update ϑ = [v < 0].

4. Define Ω = {i : ϑi = 1}. For each i ∈ Ω, replace ϑi by the
minimizer of (3.4) over [sc, ci], which can be computed through
bisection search.

5. Set c̃ = c(Ω) and ϑ̃ = ϑ(Ω). Compute β =[
L

2
c̃.2 >

L

2
(ϑ̃− c̃).2 + λϑ̃.p

]
and set ϑ(Ω) = β ◦ ϑ̃.

6. Set s∗ = ϑ.

Step 4 Compute s∗ = θ ◦ s∗.

Table 3.1: A Fast ℓp-ℓ2 Global Solver for Problem (3.3)

mean and standard deviation σ = 0.08. The signal-to-noise ratio (SNR) of the noisy

signal was found to be 19.71dB. MatrixΨ represents an orthogonal 8-level Daubechies

wavelet D8 basis. With p fixed as one of the six values {1, 0.8, 0.6, 0.4, 0.2, 0}, the
parallel ℓp-ℓ2 global solver in Algorithm 3.1 was applied to obtain global solutions

to problem (3.1) (where Θ = Ψ) with uniformly placed λ from 0 to 0.1. The SNR

obtained versus λ for each p are depicted as six curves in Fig. 3.4. It is observed that

in most cases, using p < 1 offers improved SNR relative to that obtained with p = 1

(BPDN). The best performance was achieved with p = 0.4 at λ = 0.1 offering an S-

NR of 25.78dB. Fig. 3.5 illustrates the clean “HeaviSine” signal, the noise-corrupted

signal, the denoised signal obtained by BPDN at λ = 0.1, and the ℓp denoised signal

with p = 0.4 at λ = 0.1.

Although in general using a smaller p in the algorithm produces improved recovery,

the denoising performance cannot be guaranteed. This is illustrated in Fig. 3.4 by

the SNR profiles associated with p = 0.2 and p = 0. We shall deal with this technical
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Figure 3.4: SNR produced by denoising signal “HeaviSine” by the parallel global
ℓp-ℓ2 solver with orthogonal Ψ

difficulty in Sec. 3.2 by developing a smoothed ℓp-ℓ2 solver.

3.1.3 Fast Iterative Algorithms ℓp-FISTA and ℓp-MFISTA

In previous sections, we have shown that global minimizer of Qp(s,bk) can be effi-

ciently identified using Algorithm 3.1. By replacing the conventional soft shrinkage

operator with the parallel ℓp-ℓ2 solver in the framework of FISTA/MFISTA, two

algorithms for a (local) solution of problem (3.1) can be constructed. One of the

algorithms is called the ℓp-FISTA, and the other, which is enhanced with the mono-

tone convergence property, is called the ℓp-MFISTA. These algorithms are outlined

in Tables 3.2 and 3.3 as Algorithms 3.2 and 3.3, respectively.
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Figure 3.5: From top to bottom: original HeaviSine; its noisy version; denoised
signal with p = 1 and λ = 0.1; and denoised signal with p = 0.4 and λ = 0.1.

A Signal Sparse Representation Example

To evaluate the fast iterative iterative algorithms for ℓp-ℓ2 optimization, in this ex-

periment we seek sparse representation for a bumps signal [50] x of length N = 256

as shown in Fig. 3.6. The sparse representation dictionary adopted here is a com-

bination of three orthonormal bases Ψ = [Ψ1 Ψ2 Ψ3] ∈ RN×3N where Ψ1 is the

Dirac basis, Ψ2 is the DCT basis and Ψ3 is the wavelet basis generated by orthogonal

Daubechies wavelet D8. Our objective is to find a representation vector s ∈ R3N×1

for signal x such that x ≈ Ψs with s as sparse as possible. The problem can be cast

as the ℓp-ℓ2 problem

minimize λ||s||pp + ||Ψs− x||2 (3.8)
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Algorithm 3.2

Input Data λ, p, Θ and y.

Output Data Local solution of problem (3.1).

Step 1 Take L = 2λmax(ΘΘT ) as the Lipschitz constant of ∇f .
Set initial iterate s0 and the number of iterations Km. Set
b1 = s0, k = 1 and t1 = 1.

Step 2 Compute the global minimizer sk of Qp(s,bk) using the par-
allel ℓp-ℓ2 solver. Then update

tk+1 = (1 +
√

1 + 4t2k)/2,

bk+1 = sk +
tk − 1

tk+1
(sk − sk−1)

Step 3 If k = Km, stop and output sk as the solution; otherwise set
k = k + 1 and repeat from Step 2.

Table 3.2: The ℓp-FISTA

Algorithm 3.3

Input Data λ, p, Θ and y.

Output Data Local solution of problem (3.1).

Step 1 Take L = 2λmax(ΘΘT ) as the Lipschitz constant of ∇f .
Set initial iterate s0 and the number of iterations Km. Set
b1 = s0, k = 1 and t1 = 1.

Step 2 Compute the global minimizer zk of Qp(z,bk) using the par-
allel ℓp-ℓ2 solver. Then update

tk+1 = (1 +
√

1 + 4t2k)/2,

sk = argmin {F (s) : s = zk, sk−1},

bk+1 = sk +
tk
tk+1

(zk − sk) +
tk − 1

tk+1
(sk − sk−1).

Step 3 If k = Km, stop and output sk as the solution; otherwise set
k = k + 1 and repeat from Step 2.

Table 3.3: The ℓp-MFISTA

Obviously, the problem is equivalent to (3.1) up to notational changes with y = x

and Θ = Ψ. To this end we apply the ℓp-MFISTA to solve problem (3.1) with

p = 1, 0.95, 0.9, 0.85, 0.8 and 0.75, respectively. For each ℓp-ℓ2 problem with a partic-

ular p, the experiment was carried out by the steps outlined below.
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Figure 3.6: Bumps signal of length N = 256.

Step 1

Set s0 = 0 and i = 1. Generate a vector λ = [λ1 λ2 · · · λT ] with λ1 > λ2 > · · · > λT .

The number of iterations of the modified MFISTA was set to be K = 200.

Step 2

Apply the ℓp-MFISTA to solve problem (3.8) with initial point si−1 and parameter

λ = λi to obtain the solution ŝ. Set si = ŝ.

Step 3

Compute relative equation error

Ri =
∥Ψsi − x∥

∥x∥
.

Compute the percentage of zeros in si and denote it by Zi (a component of si was

regarded as zero if its absolute value falls below 1e-5).

Step 4

If i = T , stop; otherwise set i = i+ 1 and repeat from Step 2. �

It should be stressed that the parameter vector λ consists of decreasing compo-

nents λ1 > λ2 > · · · > λT . Take p = 1 for instance, the λi’s were set to be an

arithmetic progression from λ1 = 5e − 2 to λT = 5e − 3 with a common difference
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of 5e-3. The components of λ were tuned for each individual value of p so that the

same level of relative equation error is attained, i.e., for each individual p, we seek

its solution with relative equation error on the magnitude between 1e-2 and 1e-1.

As a result, for a given value of power p, two sequences R = [R1 R2 · · · RT ] and

Z = [Z1 Z2 · · · ZT ] were produced.
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Figure 3.7: Comparison of ℓp-ℓ2 sparse representation of bumps signal for p =
1, 0.95, 0.9, 0.85, 0.8, 0.75 in terms of relative equation error and signal sparsity in
the dictionary domain.

The quality of a sparse representation may be evaluated by two criteria as

1. How sparse the coefficient vector s is in the dictionary domain;

2. How well the reconstruction Ψs resembles x.

In the experiment, sparsity was measured by computing the percentage of zeros in

s (as seen in vector Z), and the signal reconstruction precision was measured by

the relative equation error ∥Ψs − x∥/∥x∥ (as seen in vector R). Since the value

of regularization parameter λ controls the tradeoff between sparsity and equation

error of the solution, a curve generated with the sparsity as its x-coordinates and

the reconstruction precision as its y-coordinates provides a performance profile of the

solution that shows how the sparsity/equation error evolves as parameter λ varies.
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A total of six such curves for p = 1, 0.95, 0.9, 0.85, 0.8 and 0.75 for signal bumps are

depicted in Fig. 3.7. From Fig. 3.7, several observations can be made:

1. For a fixed relative equation error, the sparsity improves as a smaller power p

was used, and this justifies the usefulness of the proposed ℓp pursuit algorithm;

2. For a fixed level of sparsity, the relative equation error appears to decrease as

power p decreases, a clear indication that justifies the ℓp pursuit algorithm;

3. The performance improvement appears to be non-proportional with respect to

the change in power p. Starting from p = 1 (the BP pursuit), a 0.05 decrease in

p leads to a significant performance improvement. As p continues to decrease,

the performance continues to gain but the incremental gain becomes gradually

less significant. In this simulation, the best performance is achieved at p = 0.75.

For further illustration, Fig 3.8 depicts the signals obtained by solving problem

(3.8) with p = 1 and p = 0.75, respectively. For a fair comparison, the values of

parameter λ were chosen such that both solutions yield the same relative equation

error of 0.00905. Note that these two instances correspond to the two leftmost points

on the two curves in Fig. 3.7 that are associated with the above two p values. The

sparsity achieved was found to be 87.24% for p = 0.75 versus 81.77% for p = 1. The

improvement in sparsity with p = 0.75 over that of p = 1 is visually clear in Fig. 3.8.

Note that in Fig. 3.8 the components of two sparse signals are plotted over a value

range of [−0.03, 0.03] for better visualization.

3.1.4 A Power-Iterative Strategy for ℓp-ℓ2 Optimization To-

wards Global Solution

Although in each iteration the ℓp-FISTA or ℓp-MFISTA minimizes the P-P function

Qp(s,bk) globally, a solution of problem (3.1) obtained is not guaranteed globally

optimal because (3.1) is a nonconvex problem for 0 < p < 1. In what follows we

propose a power-iterative strategy that promotes a local algorithm ℓp-FISTA or ℓp-

MFISTA to converge to a solution that is likely globally optimal.

The power-iterative strategy is based on the intuitive observation that for a non-

convex problem, a gradient based algorithm is not expected to converge to a global

solution unless it starts at an initial point that is sufficiently close to the global so-

lution. Specifically, for a given power p < 1 and an appropriate value of λ, the
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Figure 3.8: Sparse representation of the bumps signal based on ℓ1 and ℓ0.75 recon-
struction. Both representations yield the same relative error of 0.00905. The sparse
representation computed with p = 1 shown in the upper graph has 81.77% zeros,
while the one computed with p = 0.75 shown in the lower graph has 87.24% zeros.

global solutions of (3.1) associated with powers p and p + ∆p are close to each oth-

er as long as the power difference ∆p is sufficiently small in magnitude. The pro-

posed power-iterative strategy begins by solving the convex ℓ1-ℓ2 problem based on

FISTA/MFISTA where a conventional soft-shrinkage operation is carried out in each

iteration. The global solution s(0) is then used as the initial point to start the next

ℓp-ℓ2 problem with a p close to but slightly less than one. This problem is solved

by the ℓp-FISTA (or ℓp-MFISTA) and the solution obtained is denoted as s(1). The

iterate s(1) is then served as an initial point for the next ℓp-ℓ2 problem (3.1) with

p further reduced slightly. This process continues until the target power value pt is
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reached. It is worthwhile to mention an algorithm named iterative reweighted ℓ1 (IR-

L1) minimization method [84]. Empirical studies and provable results have suggested

the reweighting version outperforms the standard method. On the other hand, the

IRL1 essentially performs ℓ0-regularization by jumping from ℓ1-regularization directly

to ℓ0-regularization as opposed to the power-iterative strategy where ℓp regulariza-

tion is implemented with a warm-start strategy and power p is reduced slightly each

time. In the following, we evaluate the proposed power-iterative algorithm for signal

recovery in compressive sensing.

3.1.5 Performance of the Power-Iterative Strategy on Com-

pressive Sensing

In our simulations, each K-sparse test signal s was constructed by assigning K values

randomly drawn from N (0, 1) to K randomly selected locations of a zero vector of

length N = 32. A total of 20 values of K from 1 to 20 were used. The number

of measurements was set to M = 20 and a measurement matrix Φ of size M × N

was constructed with its elements drawn from N (0, 1) followed by normalizing each

column to unit ℓ2 norm. Since the test signals were exactly K-sparse, we have Θ = Φ

in (3.1) and the power-iterative strategy in conjunction with ℓp-MFISTA was applied

to reconstruct s.

A sequence of power p was set from 1 to 0 with a decrement of d = 0.1. For each

p, the ℓp-MFISTA was executed in a successive manner with a set of decreasing λ’s

such that the equality constraint was practically satisfied. A total of 50 ℓp-MFISTA

iterations was chosen for each λ. A recovered signal ŝ was deemed perfect if the

relative solution error ∥ŝ− s∥2/∥s∥2 was found to be less than 1e-5. For each value of

K, the number of perfect reconstructions were counted over 100 runs. Figs. 3.9 and

3.10 depict the results with p = 1, 0.9, 0.8, 0.7, 0.4 and 0. It is observed that

1. For a fixed sparsity K, the rate of perfect reconstruction increases and the

average relative reconstruction error reduces as a smaller power p was used.

This justifies the usefulness of the proposed ℓp pursuit algorithm;

2. The performance improvement tends to be nonlinear with respect to the change

in power p, experiencing considerable improvement as p reduces from 1 to 0.9.

As p decreases further, the performance continues to gain but the incremen-

tal gain becomes gradually less significant. It is also observed that the best
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reconstruction performance was achieved at p = 0.

The reconstruction results of a K-sparse signal are illustrated in Fig. 3.11 for

K = 10 with p = 1 and p = 0, respectively. As can be seen from the curves in

Fig. 3.9, the rate of perfect reconstruction with p = 0 when K = 10 is 80%, much

higher than a rate of 20% using p = 1. Fig. 3.11 supports this observation by a

single instance, as we show that an ℓ0-based method perfectly recovers a signal which

however cannot be successfully recovered by the conventional ℓ1-based technique.

Among other things, Figs. 3.12 and 3.13 compare the ℓ0 (and ℓ0.9) solution ob-

tained by the power-iterative strategy described above with an ℓ0 (and ℓ0.9) solution

obtained by ℓp-MFISTA with the least-squares (LS) solution or the zero vector as

the initial point, showing considerable performance gain achieved by the proposed

method. In particular, it can be seen that the ℓ0 recovery performance when an LS

solution is utilized as the initial point is even worse than the ℓ1 benchmark. This sug-

gests that choosing an adequate initial point constructed through the power iterative

strategy greatly affects signal recovery performance, as different initial points lead to

different local solutions. The simulations conducted so far have indicated that the

proposed power-iterative method has the potential in approaching a global solution

of the nonconvex problem (3.1).
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Figure 3.9: Rate of perfect reconstruction for ℓp-ℓ2 problems with p =
1, 0.9, 0.8, 0.7, 0.4 and 0 over 100 runs for signals of length N = 32 and number
of random measurements M = 20.
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Figure 3.10: Average relative reconstruction errors for ℓp-ℓ2 problems with p =
1, 0.9, 0.8, 0.7, 0.4 and 0 over 100 runs for signals of length N = 32 and number
of random measurements M = 20.
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Figure 3.11: The original K-sparse signal versus the CS reconstructed signal with (a)
p = 1; (b) p = 0.



41

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

sparsity, K

p
e

rf
e

ct
 r

e
co

n
st

ru
ct

io
n

 r
a

te

 

 

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

sparsity, K

p
e

rf
e

ct
 r

e
co

n
st

ru
ct

io
n

 r
a

te

 

 

l
1

l
0

l
0(LS)

l
0(ZERO)

l
1

l
0.9

l
0.9(LS)

l
0.9(ZERO)

Figure 3.12: Rate of perfect reconstruction for ℓp-ℓ2 problems for p = 0 and 0.9
obtained with different initial points over 100 runs with N = 32 and M = 20. The
upper graph compares the ℓ0 solution obtained by the proposed method with the ℓ0
solution obtained by ℓp-MFISTA with the least-squares solution or the zero vector as
the initial point. The lower graph does the comparison for the p = 0.9 counterpart.
The curve corresponding to p = 1 is also shown as a comparison benchmark.
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Figure 3.13: Average relative reconstruction errors for ℓp-ℓ2 problems for p = 0 and
0.9 obtained with different initial points over 100 runs with N = 32 and M = 20. The
upper graph compares the ℓ0 solution obtained by the proposed method with the ℓ0
solution obtained by ℓp-MFISTA with the least-squares solution or the zero vector as
the initial point. The lower graph does the comparison for the p = 0.9 counterpart.
The curve corresponding to p = 1 is also shown as a comparison benchmark.
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3.2 Smoothed ℓp-ℓ2 Solver for Signal Denoising

3.2.1 A Smoothed ℓp-ℓ2 Solver and Its Fast Implementation

Although the ℓp-ℓ2 problem (3.1) turns out to be a good model for signal denoising,

there are issues to deal with. To start, we recall problem (3.1) given by

minimize F (s) = λ||s||pp + ||Θs− y||2

As demonstrated in Fig. 3.4, the denoising performance is significantly improved

using a p less than 1. However, some ℓp SNR curves produced therein exhibit con-

siderable oscillations with respect to a varying parameter λ, rendering the denoising

performance unpredictable. The oscillations have to do with the fact that model (3.1)

is designed for promoting sparsity, but not necessarily for higher SNR.

As a remedy to this problem, in this section we propose a smoothed ℓp-ℓ2 solver

that is able to produce stable recoveries for signal/image denoising. Let us first

illustrate this concept by considering the case with Θ orthogonal, which is initially

analyzed in Sec. 3.1.2 where F (s) in (3.1) is reduced to a simplified form in (3.7) as

F (s) = λ∥s∥pp + ∥s− c∥2.

Without loss of generality, we examine the single-variable function

u(s;λ) = λ|s|p + (s− c)2 (3.9)

with c > 0 so that the absolute value sign of |s| can be removed. By combining the

graphs of λsp and (s − c)2, the presence of term λsp yields a notch at s = 0 which

is either a local or a global minimizer, depending on the value of λ. In effect, there

is a value λ̂ > 0 at which the two minimizers are equal, hence both become global

minimizers. The critical value λ̂ and the locations of the two global minimizers, 0

and ŝ, can be determined by solving the following simultaneous equations.

∂u

∂s

∣∣∣∣
s=ŝ,λ=λ̂

= 0 and u(ŝ; λ̂) = u(0; λ̂)
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In doing so, we obtain

ŝ =
2(1− p)c

2− p
and λ̂ =

c2−p

1− p
·
[
2(1− p)

2− p

]2−p

(3.10)

Note that ŝ and λ̂ computed from (3.10) satisfy 0 < ŝ < c and
∂2u

∂s2

∣∣∣∣
s=ŝ,λ=λ̂

= 2−p > 0,

hence ŝ is indeed a minimizer inside [0, c].

On one hand, for a λ < λ̂, the interior minimizer s∗ determined by
∂u

∂s
= 0 and

∂2u

∂s2
> 0 is the unique global minimizer of u(s;λ); on the other hand for a λ > λ̂, the

origin s∗ = 0 becomes the unique global minimizer. As a result, the global minimizer

s∗ jumps between the origin and the interior point ŝ as λ varies across the critical

value λ̂ given by (3.10). Fig. 3.14 illustrates our analysis for the case of p = 0.5 and

c = 1 in that (3.10) produces λ̂ = 1.0887. Fig. 3.14(a)-(c) show the global minimizers

of u(s;λ) for (a) λ = 1.08 < λ̂, (b) λ = λ̂, and (c) λ = 1.09 > λ̂. The global minimizer

of u(s;λ), denoted by s∗(λ), as a function of λ is depicted in Fig. 3.14(d) where its

discontinuity at λ̂ = 1.0887 is evident.

The discontinuity of s∗(λ) is undesirable as it degrades the stability and pre-

dictability of the solution from (3.7). As illustrated in Fig. 3.4, the SNR curves

exhibit unpleasant jumps out of such discontinuity. As a remedy, below we propose a

strategy that prefers a stable minimizer s∗ rather than a global minimizer for (3.7) in

case parameter λ is in a vicinity of the discontinuity point λ̂. By assuming the value

of λ falls within an interval [λL, λH ] and using (3.10) to evaluate the critical λ̂i for

each component ci, each component s∗i of the solution vector s∗ is found as follows:

1. If λ̂i /∈ [λL, λH ], solution jump will not occur, hence the global solution s∗i can

be found with stability: if λ̂i < λL, set s∗i = 0; if λ̂i > λH , set s∗i as the

minimizer inside [0, ci] which can be efficiently identified using the ℓp-ℓ2 solver

gsol developed in Sec. 3.1.1.

2. If λ̂i ∈ [λL, λH ], to prevent solution jump, we take the unique global solution of

u(s) with p = 1 as s∗i , which is simply the result of a soft-shrinkage operation

as s∗i = sign(ci) ·max{|ci| − λ/2, 0}.

Although not a truly global solver, the solution procedure proposed above elimi-

nates the jump phenomenon and offers a stable yet nearly global solution s∗. With

the same technique as that described in Sec. 3.1.1, the smoothed solver admits a
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λ = λ̂ = 1.0887, (c) λ = 1.09, (d) discontinuity of s∗(λ) at λ̂ = 1.0887.

Algorithm 3.4

Input Data c, λ, p, λL and λH .

Output Data s∗.

Step 1 Compute c+ = sign(c) ◦ c.

Step 2 Compute λ̂ =
c+.

2−p

1− p
·
[
2(1− p)

2− p

]2−p

.

Step 3 Define J = {i : λ̂i ∈ [λL, λH ]} and C =
{i : λ̂i /∈ [λL, λH ]}. Define cJ = c(J ) and
cC = c(C).

Step 4 Compute sJ = sign(cJ )◦max(|cJ |−λ/2, 0)
and sC = argmin {λ∥s∥pp + ∥s− cJ ∥2}.

Step 5 Set s∗(J ) = sJ and s∗(C) = sC . Return s∗.

Table 3.4: A smoothed ℓp-ℓ2 solver for stable minimizer of (3.1) with orthogonal
dictionary Θ
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fast implementation which solves the N single-variable ℓp-ℓ2 problems in parallel. A

step-by-step description of a parallel implementation of the smoothed ℓp-ℓ2 solver is

described in Table 3.4 as Algorithm 3.4 where the data are processed in a vector-wise

manner.

To investigate the circumstance that Θ ∈ RM×N with M < N is an overcomplete

dictionary, we deal with the non-orthogonality of Θ by an iterative technique that is

in spirit similar to a proximal-point method employed in [8]: to update iterate sk in

the kth iteration to

sk+1 = argmin
s

{λ∥s∥pp +
L

2
∥s− ck∥22} (3.11)

where ck = sk −
2

L
ΘT (Θsk − y) and L is the Lipschitz constant of the gradient of

∥Θs− y∥22 given by L = 2λmax(Θ
TΘ). Note that for an orthogonal basis Θ, we have

L = 2, ck = ΘTy = c and (3.11) becomes s∗ = argmins {λ∥s∥pp + ∥s − c∥22} which

is exactly the case addressed in Sec. 3.2. Also note that the formulation differs from

that of [8] as here we deal with a nonconvex objective function because p ∈ (0, 1).

The primary reason to employ (3.11) is that it is again a separable objective function

whose solution was analyzed in detail in Sec. 3.2. Furthermore, formulation (3.11)

allows us to incorporate FISTA [8] type of iteration into this formulation so as to

accelerate the algorithm without substantial increase in computational complexity.

Essentially a FISTA iteration modifies vector ck to ck = bk −
2

L
ΘT (Θbk − y) where

bk is updated using two previous iterates sk−1 and sk−2. More algorithmic details are

provided in Table 3.5.

3.2.2 Performance of the Smoothed ℓp-ℓ2 Solver in 1-D Signal

Denoising with Orthogonal Dictionary

The smoothed ℓp-ℓ2 solvers have so far been applied to denoising 1-D measurements.

In this section, the results obtained from various simulation settings are compared

with each other. The same noise-corrupted “HeaviSine” [50] signal as generated

in Sec. 3.1.2 was adopted here for the simulation. Matrix Θ was chosen as the

same orthogonal 8-level Daubechies wavelet D8 basis. Standard deviation of the

noise is σ = 0.08. The lower and upper bounds for λ were set to λL = 0 and

λH = 2σ
√
2 lgN ≈ 0.35, which corresponds to the universal soft shrinkage threshold

[39]. With p fixed as one of the six values {1, 0.8, 0.6, 0.4, 0.2, 0}, Algorithm in Table
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Algorithm 3.5

Input y, Θ, λ, p, λL, λH and s0.

Output s∗.

Step 1 Compute the Lipschitz constant L = 2λmax(Θ
TΘ).

Set the number of iterations K.

Step 2 Set b1 = s0, t1 = 1 and k = 1.

Step 3 Compute ck =
2

L
ΘT (y−Θbk)+bk, apply Algorithm

3.4 to solve sk = argmins {2λ
L
∥s∥pp + ||s − ck||22} and

compute

tk+1 =
1 +

√
1 + 4t2k

2

bk+1 = sk +

(
tk − 1

tk+1

)
(sk − sk−1)

k = k + 1

Step 4 If k = K, output sk as solution s∗ and terminate;
otherwise repeat from Step 3.

Table 3.5: A smoothed ℓp-ℓ2 solver for stable minimizer of (3.1) with overcomplete
dictionary Θ

3.4 was applied to solve problem (3.1) with λ uniformly placed between λL and λH

with a 0.01 interval.

The SNRs obtained versus λ for each p are depicted as six curves in Fig. 3.15.

It is observed that for each fixed λ, using a p < 1 offers improved SNR relative to

that obtained with p = 1 (BPDN); more importantly, for a fixed p the SNR is a

smooth function of λ, and the value of λ achieving peak SNR gradually increases

as p decreases. In comparison, we show in Fig. 3.16 the SNR profiles obtained by

global solutions of (3.1). Most of the SNRs associated with p < 1 exhibit considerable

oscillations – a sharp departure from the smooth concave SNR profiles as shown in

Fig. 3.15.
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Figure 3.15: SNRs produced by denoising signal “HeaviSine” by Algorithm 3.4 with
orthogonal Θ.
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Figure 3.16: SNRs produced by denoising signal “HeaviSine” by global solution with
orthogonal Θ.
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3.2.3 Performance of the Smoothed ℓp-ℓ2 Solver for Image

Denoising

We end this chapter by demonstrating the effectiveness of our proposed technique for

large-scale problems in image denoising. The simulation is carried on a number of

images in MATLAB. For experimental purposes, each 256 × 256 clean image (nor-

malized with gray level between 0 and 1) was corrupted with Gaussian noise with

zero mean and standard deviation σ = 0.08, 0.10 and 0.12 separately. An 8-level

2-D Daubechies D8 wavelet was used as the sparsifying basis. The lower and upper

bounds for λ were set to λL = 0 and λH = 2σ
√
2 lg 2562, which corresponds to the

universal soft shrinkage threshold [39]. The universal threshold is the optimal thresh-

old in the asymptotic sense. In practice, the best empirical thresholds are much lower

than this value, independent of the wavelet used. It therefore seems that the universal

threshold is not useful to determine a threshold, but useful for obtain a starting value

when nothing is known of the signal condition. Fast 2-D wavelet transform is used to

avoid the large-scale matrix-vector multiplication.

To restore the images, the global ℓp-ℓ2 solver in Algorithm 3.1 and the smoothed

ℓp-ℓ2 solver in Algorithm 3.4 were respectively applied to problem (3.1) with the

threshold chosen as λ = λH/2. For different σ, SNRs (in dB) of the noisy image, the

denoised image by basis pursuit (p = 1), the denoised image by global solver with

p = 0 and the denoised image by smoothed solver with p = 0 are listed in Tables 3.6

and 3.7. By observing the data, we see that the image denoised by the global ℓp-ℓ2

method with p = 0 has the smallest SNR. On the other hand, the smoothed ℓp-ℓ2

method with p = 0 significantly outperforms the global one in terms of the SNR. It

is further found that the SNR obtained through the smoothed method is consistently

higher than that obtained by the BP benchmark for different images and noise levels.

For better visual observations, images of “zelda”, “reschart”, “lena” and

“circles” denoised using different algorithms are illustrated in Fig. 3.17, where each

row from left to right is composed of the noisy image, the BP denoised image, the

denoised image by the global ℓp-ℓ2 solver with p = 0 and the denoised image by the

smoothed ℓp-ℓ2 solver with p = 0. From Fig. 3.17, we see that the ℓ0 global solution

corresponds to the worst image quality. On the other hand, by using Algorithm 3.4

to reach a smoothed solution for the p = 0 case, quality of the denoised image is

superb. The observation is indeed in agreement with the SNRs given in Tables 3.6

and 3.7.
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Original Images Noisy Images BP Global ℓ0 Smoothed ℓ0

cameraman 18.8546 22.2438 18.2188 22.4178

zelda 14.8966 19.6889 16.0739 19.8399

shuttle 16.3139 17.3914 12.9512 17.4999

reschart 23.8479 26.5138 21.9062 26.9276

crosses 9.2532 13.0662 7.7553 13.3254

man 16.8351 17.8921 13.8777 17.9965

fruits 19.6682 24.7864 20.9545 25.0135

lena 17.2656 21.0194 17.1351 21.2199

circles 18.4722 24.0046 19.7252 24.3100

Table 3.6: Comparison between basis pursuit, global ℓp-ℓ2 solver and smoothed ℓp-
ℓ2 solver for denoising images corrupted by Gaussian noise with standard deviation
σ = 0.06

Original Images Noisy Images BP Global ℓ0 Smoothed ℓ0

cameraman 16.3558 20.7632 17.5960 20.9249

zelda 12.3978 18.2712 15.4430 18.4179

shuttle 13.8151 15.9141 12.4373 16.0195

reschart 21.3491 24.5732 20.8815 24.9332

crosses 6.7545 11.1173 6.8332 11.2881

man 14.3364 16.5181 13.3481 16.6211

fruits 17.1694 23.2176 20.1135 23.4441

lena 14.7668 19.5276 16.5046 19.7487

circles 15.9734 22.1335 18.7916 22.4024

Table 3.7: Comparison between basis pursuit, global ℓp-ℓ2 solver and smoothed ℓp-
ℓ2 solver for denoising images corrupted by Gaussian noise with standard deviation
σ = 0.08
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Figure 3.17: Denoised images for “zelda”, “lena”, “circles” and “reschart”. S-
tandard deviation of the Gaussian noise is 0.06.
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3.2.4 Performance of the Smoothed ℓp-ℓ2 Solver in 1-D Signal

Denoising with Overcomplete Dictionary

In this part of the simulations, we investigate denoising of 1-D noisy signal with

overcomplete dictionary. The “HeaviSine” signal x of length N = 256 was corrupted

with additive Gaussian white Gaussian noise n with zero mean and standard deviation

σ = 0.3.

A dictionary Θ = [Θ1 Θ2] of size 256 × 512 with Θ1 the 8-level Daubechies D8

wavelet basis and Θ2 the 1-level Haar wavelet basis was used as an overcomplete dic-

tionary. The lower and upper bounds of λ were set to λL = 0 and λH = 1.4. Because

both Θ1 and Θ2 are orthogonal, the Lipschitz constant L = 2λmax(ΘΘT ) = 4. Algo-

rithm in Table 3.5 was applied to each of the six cases of p ∈ {1, 0.8, 0.6, 0.4, 0.2, 0},
where problem (3.1) was solved for each of 141 λ’s that were equally placed over

[0, 1.4]. In our implementation, the solution s(λ) obtained from a given λ was used

as the initial point for the algorithm to proceed with the subsequent value of λ. The

use of this better initial point was found helpful in reducing the number of iterations

required. The SNRs obtained are shown in Fig. 3.18.

We see that the observations made in Sec. 3.2.2 for the case of orthogonal basis

also hold here, except that the best performance in the present case was achieved with

p = 0.4 at λ = 1.17, offering an SNR of 27.12 dB which is 0.9 dB higher than the

maximum SNR obtained by Algorithm 3.4 for the orthogonal basis. For comparison,

Fig. 3.19 depicts the SNRs obtained by replacing the 2nd sub-step in Step 3 of

Algorithm 3.5 with sk = global minimizer of {2λ
L
∥s∥pp + ||s − ck||22}. Like the case

when Θ is orthogonal, the SNRs with p < 1 show a great deal of instability with

respect to λ.
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Figure 3.18: SNRs produced by denoising signal “HeaviSine” by Algorithm 3.5 with
overcomplete Θ.
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Figure 3.19: SNRs produced by denoising signal “HeaviSine” by replacing the 2nd

sub-step in Step 3 of Algorithm 3.5 by sk = global minimizer of {2λ
L
∥s∥pp+ ||s−ck||22}

with overcomplete Θ.
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Chapter 4

Fast Dual-Based Linearized

Bregman Algorithm for

Compressive Sensing

A central problem in compressive sensing is the recovery of a sparse signal using a

relatively small number of linear measurements. The basis pursuit (BP) [39] has been

a successful formulation for this signal reconstruction problem. Among other things,

linearized Bregman (LB) [90,119,120] methods proposed recently are found effective

to solve BP. In this Chapter, we examine the equality constrained problem

minimize
x

J(x) (4.1a)

subject to: Ax = b (4.1b)

where J(x) is a continuous (but non-differentiable) objective function. As introduced

in Sec. 2.5, linearized Bregman (LB) algorithms based on Bregman distance [12]

are efficient techniques for above-mentioned problems, especially when the problem

considered is of large scale.

The chapter is organized as follows. The dual problem and a dual-based linearized

Bregman method are first discussed in Sec. 4.1 and 4.2, respectively. A fast linearized

Bregman algorithm applied to the dual formulation that accelerates the conventional

LB iterations is proposed in Sec. 4.3. Finally, the performance of the proposed algo-

rithm is evaluated and compared with the conventional LB algorithm in compressive

sampling of 1-D sparse signals and digital images.
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4.1 Lagrangian Dual of Problem (2.15)

Recently, the LB method for problem (4.1) is shown to be equivalent to a gradient

descent algorithm applied to the Lagrangian dual of (2.15) [119]. The Lagrangian

dual of problem (2.15) assumes the form

max
y

min
x

J(x) +
1

2µ
∥x∥2 − ⟨y,Ax− b⟩ (4.2)

The dual function [4, 10] is

D(y) = inf
x

{J(x) + 1

2µ
∥x∥2 − ⟨y,Ax− b⟩} (4.3)

where y is the dual variable or Lagrange multiplier. The dual problem equivalent to

(4.2) is expressed as

minimize
y

E(y) (4.4)

where E(y) = −D(y).

The gradient ∇E(y) can be evaluated assuming that E(y) is differentiable. It is

first defined that

x̃ = argmin
x

{J(x) + 1

2µ
∥x∥2 − ⟨y,Ax− b⟩} (4.5)

then ∇E(y) = Ax̃− b which corresponds to the residual for the equality constraint

(see [10] for background). It is known that E(y) is continuously differentiable. If

J(·) = ∥ · ∥1, then ∇E is Lipschitz continuous with the smallest Lipschitz constant

L = µ∥AAT∥. Consequently, the dual problem can be solved by means of gradient-

based techniques such as limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm [74], conjugate gradient [99], and Nesterov’s methods [86], possibly in con-

junction with efficient line search (e.g., Barzilai-Borwein [42,56]) techniques.

4.2 A Dual-Based Linearized Bregman Method

The ℓ1-norm related optimization is an essential component in compressive sensing

applications. In this section, we focus on the ℓ1 case, i.e., J(x) = ∥x∥1. Because E(y)
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is convex with Lipschitz continuous ∇E(y), it follows that

E(y) ≤ E(yk) + ⟨y − yk,∇E(yk)⟩+ L

2
∥y − yk∥2 (4.6)

for any y and yk. In a steepest descent method [4], iterate yk is updated to yk+1

with

yk+1 = yk − αk∇E(yk) (4.7)

where αk > 0 is a scalar step size. Note that iterate yk+1 may be interpreted as the

solution to a quadratic problem

yk+1 = argmin
y

H(y,yk)

where

H(y,yk) = E(yk) + ⟨y − yk,∇E(yk)⟩+ 1

2αk

∥y − yk∥2.

By comparing the equation above with (4.6), we see that the quadratic function

H(y,yk) serves as a reasonable approximation of E(y) at y = yk if αk is set to 1/L

where L = µ∥AAT∥. Thus, at the (k + 1)th iteration, we compute

yk+1 = yk − 1

L
∇E(yk) = yk − 1

L
(Axk+1 − b) (4.8)

where xk+1 is computed by

xk+1 = argmin
x

{∥x∥1 +
1

2µ
∥x∥2 − ⟨yk,Ax− b⟩}

= argmin
x

{∥x∥1 +
1

2µ
∥x− µATyk∥2}.

By defining Tα : RN → RN as the soft-shrinkage operator, i.e., Tα(z) = sgn(z) ◦
max{|z| − α, 0}, we have

xk+1 = Tµ(µA
Tyk) = µT1(A

Tyk). (4.9)

The above algorithm is described below as Algorithm 4.1, where the initial iterate

has been specified as y0 = 1
L
b. Note that the iteration (4.9) corresponds to the con-

ventional gradient-descent method, or the iterative shrinkage-thresholding algorithm

(see Sec. 2.3), and is known to possess a worst-case convergence rate of O(1/k) where



57

k refers to the number of iterations.

Algorithm 4.1 Dual-Based LB

1: Input: µ > 0, A, b, L = µ∥AAT∥ and y0 =
1

L
b.

2: for k = 0, 1, ... do
3: xk+1 = µT1(A

Tyk);
4: yk+1 = yk − 1

L
(Axk+1 − b);

5: end for

It has been established in [69, 119] that the dual-based LB method (Algorithm

4.1) and the conventional LB in Algorithm 2.4 are equivalent. In the following, we

provide a convergence proof for Algorithm 4.1. Since E(y) is convex, it follows that

E(y) ≥ E(yk) + ⟨y − yk,∇E(yk)⟩. (4.10)

The above inequality together with (4.6) when y = yk+1 produces

E(y)− E(yk+1)

≥ ⟨y − yk+1,∇E(yk)⟩ − L

2
∥yk+1 − yk∥2

=
L

2
∥yk+1 − yk∥2 + L⟨y − yk,yk − yk+1⟩.

(4.11)

In particular, by substituting y = y∗ (the global minimizer of E(y)) and y = yk in

(4.11) respectively, the following two inequalities hold,

E(y∗)− E(yk+1) ≥ L

2
(∥y∗ − yk+1∥2 − ∥y∗ − yk∥2), (4.12)

and

E(yk)− E(yk+1) ≥ L

2
∥yk+1 − yk∥2. (4.13)

Summing inequality (4.12) over k = 0, · · · , K − 1 produces

KE(y∗)−
K−1∑
k=0

E(yk+1) ≥ L

2
(∥y∗ − yK∥2 − ∥y∗ − y0∥2). (4.14)

In a similar way, we multiply (4.13) by k, then sum the terms over k = 0, · · · , K − 1
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to obtain
K−1∑
k=0

k(E(yk)− E(yk+1)) ≥ L

2

K−1∑
k=0

k∥yk+1 − yk∥2. (4.15)

The term on the left-hand side of (4.15) gives

K−1∑
k=0

k(E(yk)− E(yk+1))

=
K−1∑
k=0

(
kE(yk)− (k + 1)E(yk+1) + E(yk+1)

)
= −KE(yK) +

K−1∑
k=0

E(yk+1),

hence we have

−KE(yK) +
K−1∑
k=0

E(yk+1) ≥ L

2

K−1∑
k=0

k∥yk+1 − yk∥2. (4.16)

Adding (4.16) to (4.14) yields

KE(y∗)−KE(yK) ≥ −L

2
∥y∗ − y0∥2 + c

where c ≥ 0. Therefore,

E(yk)− E(y∗) ≤ L∥y0 − y∗∥2

2k
(4.17)

The estimate in (4.17) indicates that Algorithm 4.1 shares a convergence rate of

O(1/k). That is, yk is an ε-optimal solution if k ≥ ⌈C/ε⌉ with C = L∥y0 − y∗∥2/2.
When {yk} converges to y∗, with the same rate the sequence {xk} converges to xµ,

the unique minimizer of (2.15). In addition, we observe that the sequence of function

values {E(yk)} produced by Algorithm 4.1 is non-increasing, as shown by (4.13).

Furthermore, if we define the Lagrangian function for (2.15) as

Lµ(x,y) = ∥x∥1 +
1

2µ
∥x∥2 − ⟨y,Ax− b⟩, (4.18)
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then Algorithm 4.1 implies that

E(yk) = −Lµ(x
k+1,yk), (4.19a)

E(y∗) = −Lµ(xµ,y
∗). (4.19b)

Hence

Lµ(xµ,y
∗)− Lµ(x

k+1,yk) ≤ L∥y0 − y∗∥2

2k
. (4.20)

Thus, (xk+1,yk) is an ε-optimal solution to problem (2.15) with respect to the La-

grangian function if k ≥ ⌈C/ϵ⌉ with C = L∥y0 − y∗∥2/2.

4.3 A Fast Dual-Based Linearized BregmanMethod

In [119], Yin considered several techniques such as Barzilai-Borwein line search and

limited memory BFGS (L-BFGS) to accelerate the classical gradient descent method.

In addition, a very recent manuscript [69] deals with the CS problem in the dual

space by utilizing the acceleration technique proposed by Nesterov [86]. On the other

hand, Beck and Teboulle devise a faster method called FISTA [8]. While both FISTA

and Nesterov’s method are proven to converge with the same rate, the two schemes

are remarkably different both conceptually and computationally [8]. Since FISTA

is a proximal subgradient algorithm, it is simpler than Nesterov’s method from an

implementation perspective.

Inspired by Beck and Teboulle [8], we propose a fast iteration scheme by carrying

out FISTA type of iterations in the dual space. Specifically, we perform gradient

projection with a new iterate zk+1 as

yk+1 = zk+1 − 1

L
∇E(zk+1) (4.21)

where

zk+1 = yk +
tk − 1

tk+1

(yk − yk−1). (4.22)

and the balancing parameter tk has an iterative formula

tk+1 = (1 +
√
1 + 4t2k)/2 (4.23)

starting from the initial t0 = 0. The main difference between (4.21) and (4.7) is that
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the current iteration is not involved in the point yk, but rather in point zk+1 which

uses a very specific linear combination of two preceding points {yk,yk−1}. Obviously

the additional computation required for the fast algorithm is insignificant. The new

iteration however possesses a faster convergence rate of O(1/k2) as opposed to the

conventional O(1/k). We remark that the specific formula of the linear combination

(4.22) and the computation of parameter tk in (4.23) are the same as in FISTA [8].

With ∇E(y) = Ax̃− b, we therefore set ∇E(zk+1) in (4.21) to

∇E(zk+1) = Axk+1 − b (4.24)

where, as suggested by (4.5), xk+1 is obtained by

xk+1 = argmin
x

{∥x∥1 +
1

2µ
∥x∥2 − ⟨zk+1,Ax− b⟩}

= Tµ(µA
Tzk+1) = µT1(A

Tzk+1)

Summarizing the iteration procedures described above, we have the fast dual-based

linearized Bregman algorithm as Algorithm 4.2.

Algorithm 4.2 Fast Dual-Based LB

1: Input: µ > 0, A, b, L = µ∥AAT∥, y−1 = y0 = 1
L
b and t0 = 1.

2: for k = 0, 1, ..., K do

3: tk+1 =
1+
√

1+4t2k
2

;
4: zk+1 = yk + tk−1

tk+1
(yk − yk−1);

5: xk+1 = µT1(A
Tzk+1);

6: yk+1 = zk+1 − 1
L
(Axk+1 − b);

7: end for

In the following, we sketch a proof to show that Algorithm 4.2. has a convergence

rate of O(1/k2). The proof is based on the fact [8] that if {ak, bk} are positive

sequences of reals satisfying

ak − ak+1 ≥ bk+1 − bk and a1 + b1 ≤ c (4.25)

for some c > 0 and k ≥ 1, then ak < c.

Let {yk} be a sequence generated by Algorithm 4.2, ak = 2t2kvk/L, bk = ∥uk∥2,
c = ∥y0−y∗∥2 with vk = E(yk)−E(y∗) and uk = tky

k− (tk−1)yk−1−y∗. It can be

shown that with the above assignments (4.25) is satisfied (readers are referred to [8]
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for more details). Hence ak < c which implies that

E(yk)− E(y∗) <
L(∥y0 − y∗∥2)

2t2k
. (4.26)

It can also be verified that the sequence tk produced by Algorithm 4.2 satisfies tk ≥
(k + 1)/2, which in conjunction with (4.26) shows that for k ≥ 1

E(yk)− E(y∗) <
2L∥y0 − y∗∥2

(k + 1)2
. (4.27)

Hence yk is an ϵ-optimal solution with respect to the dual function E(y) if k >

⌈C/
√
ε− 1⌉ where C =

√
2L∥y0 − y∗∥. As {yk} converges to y∗, the sequence {xk}

converges to xµ, the unique minimizer of (2.15) with the same rate of O(1/k2).

We remark that Algorithm 4.2 has the advantage over FISTA in the sense that

FISTA is only limited to minimizing the unconstrained ℓ1-ℓ2 problem [115], while (4.1)

models a broader class of problems. In addition, it typically takes a large number

of iterations for FISTA to converge to a solution that satisfies equality constraints

Ax = b. Unlike FISTA, the proposed Algorithm 4.2 is associated with a dual problem

of (2.15). As a result, the method is able to efficiently deal with equality constrained

CS problem with fast convergence.

4.4 Performance Evaluation of Fast Dual-Based Lin-

earized Bregman Method

4.4.1 Compressive Sensing of 1-D Signals

In the first set of examples, a partial discrete cosine transform (DCT) matrix A ∈
RM×N was used as the measurement matrix whose M rows were chosen randomly

from an N ×N DCT matrix with N = 4× 103, 2× 104 and 5× 104 respectively, and

M = 0.5N . In each case, a K-sparse test signal x∗ ∈ RN , with K = 0.05N and 0.02N

respectively, was constructed by assigning K values that are randomly drawn from

U(−1, 1) (i.e., 2*rand(K,1)-1) to K randomly selected locations in an otherwise zero

vector of length N . We remark that partial DCT matrix is known to be efficient for

compressive sensing, and both Ax and ATu can be carried out efficiently by fast

DCT or the inverse DCT. The observed data b was set to b = Ax∗.
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Algorithm 4.2 was implemented and compared with the conventional LB method

[120]. The measurement matrix constructed above implies that L = µ where µ was set

to 10 in the simulation. The algorithms were terminated when ∥Axk−b∥/∥b∥ < 10−5

or the number of iterations exceeds 104. The performance of the algorithms was

measured in terms of number of iterations (NoI) and CPU time using a PC laptop with

a 2.67 GHz Intel quad-core processor. The results are summarized in Tables 4.1 and

4.2, where the reconstructed signal is denoted as xp, which clearly indicate improved

performance offered by Algorithm 4.2 relative to the conventional LB method.

N M ∥x∗∥0 NoI ∥xp−x∗∥
∥x∗∥ time (s)

4000 2000
0.05N

4011 1.0355e-5 10.7
20000 10000 10000+ N/A 90.2+
50000 25000 10000+ N/A 238.4+
4000 1000

0.02N
7096 1.1380e-5 17.3

20000 5000 10000+ N/A 84.6+
50000 12500 10000+ N/A 223.1+

Table 4.1: Conventional LB [120]

N M ∥x∗∥0 NoI ∥xp−x∗∥
∥x∗∥ time (s)

4000 2000
0.05N

219 1.0299e-5 0.6
20000 10000 1008 9.7563e-6 9.1
50000 25000 759 9.5520e-6 19.0
4000 1000

0.02N
345 1.0664e-5 0.8

20000 5000 1727 9.2210e-6 14.7
50000 12500 1201 1.0275e-5 27.4

Table 4.2: Fast Dual-Based LB (Algorithm 4.2)

In addition, Fig. 4.1 illustrates the number of iterations for Algorithm 4.2 to

achieve a precision of ∥Axk − b∥/∥b∥ < 10−5 versus µ from 1 to 100 where the

parameters were set to N = 5 × 104, M = 0.5N , K = 0.02N . It is observed that

the number of iterations increases approximately linearly with respect to µ. Unlike

parameter λ involved in the ℓ1-ℓ2 unconstrained problem (2.12) that needs to be tuned

diligently, Fig. 4.1 indicates that the number of iterations w.r.t. µ for a given solution

accuracy is rather predictable. In effect, the iteration number required by Algorithm

4.2 for a highly accurate solution remains fairly small relative to that required by

FISTA.
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Figure 4.1: Number of iterations required by Algorithm 4.2 (with N = 5 × 104,
M = 0.5N , K = 0.02N) versus parameter µ.

4.4.2 Compressive Sensing of a Synthetic Image

To evaluate the proposed Algorithm 4.2 for large-scale data, we applied it to a test

image X∗ of size 512 × 512 (see Fig. 4.2(a)) which was produced by retaining its

K = 7 × 103 largest (9-level 2-D Haar) wavelet coefficients of an original image

known as “man”. Thus X∗ is sparse in the wavelet domain as 97.33% of its wavelet

coefficients are zero. Image X∗ was then normalized so that its components are in

between 0 and 1.

To apply Algorithm 4.2, we adopted a sampling matrix to measure the wavelet

coefficients of the image. The measurement matrix A was a partial 2-D DCT matrix

of size M ×N with M = ⌈0.2N⌉ and N = 5122. The M rows were chosen randomly

from an N × N 2-D DCT matrix. We remark that A needs not to be explicitly

produced or stored as any matrix-vector product involving A can be carried out by

fast 2-D DCT. Parameter µ was set to 100. Note that ∥AAT∥ = 1, hence L = µ.

The algorithm was terminated as soon as the relative constraint error ∥Axk−b∥/∥b∥
falls below 10−2. It took the proposed fast algorithm 217 iterations (41.1 seconds) to

converge. The relative reconstruction error as measured by (∥Xp−X∗∥2)/∥X∗∥2 was
found to be 0.0116, where Xp represents the reconstructed image and ∥ · ∥2 denotes

the matrix Frobenius norm. By comparison, a total of 3168 iterations (601.6 seconds)

were needed for the conventional LB algorithm to reconstruct an image with a relative

reconstruction error 0.0118. The original and the reconstructed images are illustrated

in Fig. 4.2. The visual difference between the two is hardly noticeable.
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Figure 4.2: (a) Synthesized image “man” with 97.33% zero wavelet coefficients; (b)
Reconstructed image “man” with 20% of DCT sampled coefficients by fast dual-based
LB algorithm with 217 iterations.

4.4.3 Compressive Sensing of Natural Images

In the last set of experiments, we demonstrate efficiency of the proposed algorithm

in solving large-scale problems by performing reconstructions of several 256 by 256

natural images based on compressive measurements. In the simulations, vector x∗,

the column version of the original image, is sampled by the following

b = Ax∗

The measurement matrix is defined as A = CΨT , with C the partial 2-D DCT

matrix and Ψ corresponding to the (8-level 2-D Haar) inverse wavelet transform

matrix. Since wavelet coefficients s of natural image x are sparse by x = Ψs, it

follows that an ℓ1 minimization problem can be formulated to reconstruct wavelet

coefficient vector s in a CS framework

minimize ||s||1 (4.28a)

subject to: AΨs = b (4.28b)
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Furthermore, by substitution of A = CΨT , Problem (4.28) is equivalent to

minimize ||s||1 (4.29a)

subject to: Cs = b (4.29b)

It can be observed that measurements b were essentially the same as the data obtained

by sampling wavelet coefficients of the image under a partial 2-D DCT matrix.

In this experiment, partial 2-D DCT matrix C of size M × N was specified as

M = 20000 and N = 65536. Parameter µ was set to 100. The proposed acceler-

ated algorithm was applied to solve the large-scale optimization problem (4.29). In

practice, matrix-vector multiplications involving big matrices like C or CT are per-

formed by fast 2-D DCT or inverse 2-D DCT. This makes it unnecessary to explicitly

store C in memory. The algorithm was terminated when ∥Csk − b∥/∥b∥ < 10−2.

After obtaining the global minimizer sp of (4.29), an additional step was employed to

reconstruct the image by

xp = Ψsp

The number of iterations (NoI), the relative reconstruction error, and the CPU

time required for reconstruction of a number of digital images are listed in Tables 4.3

and 4.4 for the conventional LB method and the proposed fast algorithm, respectively.

It can be seen that the proposed algorithm converges with number of iterations signif-

icantly less than those obtained from the conventional algorithm. As a matter of fact,

it takes less than 10% of the time for the fast dual-based LB algorithm to achieve sim-

ilar reconstruction performance compared with the conventional LB method. Figs.

4.3-4.8 illustrate reconstruction performance of 6 images by the proposed fast algo-

rithm. Besides the SNRs computed, a visual inspection further supports that good

reconstruction quality can be achieved with number of measurements less than 1/3 of

size of image by the proposed fast algorithm rather efficiently in the CS framework.

In summary, we in this chapter have proposed a fast dual-based linearized Breg-

man algorithm. Our analysis is focused on the Lagrangian dual function for which a

fast iterative scheme is developed in identifying the global minimizer of the problem.

This method accelerates the linearized Bregman method and shares a convergence

rate of O(1/k2). Experimental results are presented to demonstrate the superior-

ity of the proposed algorithm compared with the conventional LB method for CS

recovery of large-scale signals and images.
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Images NoI ∥xp−x∗∥2
∥x∗∥2 time (s)

cameraman 6951 0.0988 167.4

lena 7547 0.1311 185.1

barbara 6302 0.1721 147.6

fruits 6928 0.0716 163.9

boats 6641 0.1013 152.6

circles 3016 0.0112 69.1

building 5269 0.0695 117.0

crosses 7562 0.0146 173.8

bird 8654 0.0428 225.1

Table 4.3: Wavelet coefficients reconstruction by conventional LB

Images NoI ∥xp−x∗∥2
∥x∗∥2 time (s)

cameraman 515 0.1014 14.7

lena 526 0.1335 12.7

barbara 478 0.1723 11.5

fruits 510 0.0751 12.1

boats 500 0.1039 12.2

circles 249 0.0097 6.0

building 438 0.0728 10.7

crosses 401 0.0126 9.8

bird 597 0.0475 14.7

Table 4.4: Wavelet coefficients reconstruction by fast dual-based LB
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Figure 4.3: Left: image cameraman. Right: reconstructed image (SNR = 19.88 dB)

Figure 4.4: Left: image lena. Right: reconstructed image (SNR = 17.49 dB)
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Figure 4.5: Left: image fruits. Right: reconstructed image (SNR = 22.48 dB)

Figure 4.6: Left: image boats. Right: reconstructed image (SNR = 19.66 dB)
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Figure 4.7: Left: image building. Right: reconstructed image (SNR = 22.76 dB)

Figure 4.8: Left: image bird. Right: reconstructed image (SNR = 26.47 dB)
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Chapter 5

Image Denoising by Generalized

Total Variation Regularization

A breakthrough for denoising (especially piecewise smooth) images is made in the

work of Rudin, Osher and Fatemi (ROF) [98] in which the standard ℓ2-norm fidelity

optimization is regularized by the total variation (TV) of the image. Variants of the

ROF algorithm with improved performance and complexity are available [9, 28, 31].

In [32], a TV-ℓ1 model for image denoising is proposed and the model is shown to be

contrast invariant which in turn suggests a data driven scale selection technique, see

also [2,3] for in-depth mathematical analysis of TV-regularized denoising algorithms.

Reference [111] deals with the denoising problem based on a model that involves a

generalized TVq regularizer with q ∈ [1, 2) and an ℓp-norm fidelity term with p ≥
1, and an iteratively-reweighted-norm algorithm is proposed to carry out the TV-

ℓp minimization. Adaptive TV denoising has also been developed [38] in that the

regularization term acts like a TV norm at object edges while approximating ℓ2-norm

in flat and ramp regions so as to avoid staircase effect. In [41], recovery of blocky

images with improved performance over existing PDE-based approaches is addressed

using a spatially adaptive TV model where a carefully designed penalization function

is incorporated. Recently, the methodology for TV-based denoising is extended to a

local TV-filtering scheme by employing the ROF model in a given neighbourhood of

each pixel [75], and the concept of higher degree total variation (HDTV) is introduced

in [68] in order to deal with the staircase and ringing artifacts that are common in TV

and wavelet based schemes. It is also interesting to note that the anisotropic HDTV

regularizer is found to provide consistently better reconstruction performance over the
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isotropic counterpart [68]. Very recently, a computational framework was proposed

in [73] that incorporates a TV minimization formulation into a moving least squares

method for image denoising in order to overcome drawbacks of both approaches.

In this chapter, we first generalize the standard TV to a pth-power TV with

0 ≤ p ≤ 1 for further promoting gradient sparsity. Next a generalized TV (GTV) reg-

ularized least squares problem for image denoising is proposed. The GTV-regularized

least squares problem is nonconvex, thus one contribution of this chapter is the de-

velopment of a two-step solution method to solve the problem at hand - by intro-

ducing weighted TV (WTV) in which each element of discretized TV is weighted

along the horizontal and vertical directions, then approximating the solution of the

GTV-regularized problem by solving iteratively reweighted TV (IRTV) convex sub-

problems. In addition, new techniques are also developed to deal with technical

difficulties encountered. These include a power-iterative warm-start technique for

the proposed IRTV algorithm to reach a target power value pt < 1 and a modified

Split Bregman method in order to overcome the difficulties arising from the presence

of the nontrivial weights in WTV. Numerical results are presented to demonstrate

improved denoising performance in comparison with BPDN, IRL1, TV-ℓ1 as well as

several more recent denoising methods.

5.1 Generalized Total Variation Regularization

5.1.1 Generalized pth Power Total Variation

TV can be related to the ℓ1 norm in two ways. Conceptually, both constrained ℓ1-norm

and TV minimization are found effective in signal processing, including denoising [39],

deblurring [9, 80], and signal reconstruction [21]. The discretized anisotropic and

isotropic TV of image U are given in Eqs. (2.17) and (2.18), respectively.

Analytically, the anisotropic total variation TV(A)(U) may be interpreted as the

ℓ1 norm of the discretized gradient of U [21], namely, TV(A)(U) = ∥∇xU∥1+∥∇yU∥1
where (∇xU)i,j = Ui,j − Ui+1,j, (∇yU)i,j = Ui,j − Ui,j+1 and ∥ · ∥1 denotes the sum of

magnitudes of the matrix’s entries. Moreover, if we define (DU)i,j = (Ui,j −Ui+1,j)+√
−1(Ui,j − Ui,j+1), then the isotropic TV becomes ∥DU∥1. In addition, when the

size of U is reduced to m× 1 or 1×n, both TV(A)(U) and TV(I)(U) become ∥DU∥1.
We now propose a generalized pth power total variation, denoted as TVp, as
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follows. For the anisotropic case, TV
(A)
p is defined as

TV(A)
p (U) =

m−1∑
i=1

n∑
j=1

|Ui,j − Ui+1,j|p +
m∑
i=1

n−1∑
j=1

|Ui,j − Ui,j+1|p (5.1)

Note that TV
(A)
p (U) is related to ℓp “norm” by TV

(A)
p (U) = ∥∇xU∥pp + ∥∇yU∥pp. For

the isotropic case, the generalized TV is defined by

TV(I)
p (U) =

m−1∑
i=1

n−1∑
j=1

√
|Ui,j − Ui+1,j|2p + |Ui,j − Ui,j+1|2p

+
m−1∑
i=1

|Ui,n − Ui+1,n|p +
n−1∑
j=1

|Um,j − Um,j+1|p
(5.2)

The value of power p in (2.17) and (2.18) is in the range 0 < p ≤ 1. Obviously,

with p = 1, TV
(A)
p and TV

(I)
p recover the standard TV(A) and TV(I) respectively. We

remark that reference [111] presents a TVq-ℓp model for image restoration, hence is

relevant to the TVp model considered in this chapter. The main difference between the

two is that the model in [111] is with q ∈ [1, 2) and p ≥ 1, hence it is a convex model,

while the present paper investigates a nonconvex TVp regularizer with 0 < p < 1,

which turns out to offer improved performance. We shall revisit this point in Sec. 5.3

where experimental results are reported.

With the generalized TVp defined, we propose to study image denoising problem

with a model that incorporates TVp as the regularizer, namely,

minimize
U

TVp(U) +
µ

2
∥U−B∥2F (5.3)

where TVp(U) can be taken as TV
(A)
p (U) or TV

(I)
p (U) with 0 < p < 1. With p < 1

solving the nonconvex problem in (5.3) is far from trivial and only local solutions

can be retrieved. In what follows, an iterative reweighting technique is proposed to

address the problem at hand.

5.1.2 Weighted TV and Iterative Reweighting

The idea of reweighting in the context of sparsity enhancement is originated in [24]

where an iteratively reweighted ℓ1-minimization (IRL1) technique is developed that

connects an ℓ0-regularized nonconvex problem directly to an ℓ1-regularized convex
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problem. With p < 1 the generalized pth power TV proposed in Sec. 5.1.1 is also

nonconvex. Here we propose an iterative reweighting which is tailored to tackle the

TVp-regularized denoising problem in (5.3) in a convex setting. As such, the proposed

reweighting technique may be regarded as a natural extension of the method in [24]

to models with total variation regularizers.

We proceed by introducing weighted TV (WTV), denoted by TVw(U), which for

anisotropic TV is defined as

TV(A)
w (U) =

m−1∑
i=1

n∑
j=1

αi,j|Ui,j − Ui+1,j|+
m∑
i=1

n−1∑
j=1

βi,j|Ui,j − Ui,j+1| (5.4)

and for isotropic TV is defined as

TV(I)
w (U) =

m−1∑
i=1

n−1∑
j=1

√
(αi,j|Ui,j − Ui+1,j|)2 + (βi,j|Ui,j − Ui,j+1|)2

+
m−1∑
i=1

αi,n|Ui,n − Ui+1,n|+
n−1∑
j=1

βm,j|Um,j − Um,j+1|
(5.5)

In the above definitions, αi,j > 0 and βi,j > 0 are weights to weigh the first or-

der differences along the vertical and horizontal directions, respectively. Apparently

TVw(U) becomes TV(U) when all the weights are set to unity.

To see the critical role the TVw plays in the new algorithm, notice that function

TVw(U) remains convex as long as the weights are fixed. Now if in the lth round of

TVw(U) minimization one assigns the weights to

αi,j = (|U (l)
i,j − U

(l)
i+1,j|+ ε)p−1, βi,j = (|U (l)

i,j − U
(l)
i,j+1|+ ε)p−1 (5.6)

where ε > 0 is a small constant to prevent the weights from being zero, then for U in

a small neighborhood of iterate U(l) (5.4) and (5.6) in conjunction with the continuity
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of TVw(U) imply that

TV(A)
w (U) ≈ TV(A)

w (U(l))

=
m−1∑
i=1

n∑
j=1

|U (l)
i,j − U

(l)
i+1,j|

(|U (l)
i,j − U

(l)
i+1,j|+ ε)1−p

+
m∑
i=1

n−1∑
j=1

|U (l)
i,j − U

(l)
i,j+1|

(|U (l)
i,j − U

(l)
i,j+1|+ ε)1−p

≈
m−1∑
i=1

n∑
j=1

|U (l)
i,j − U

(l)
i+1,j|p +

m∑
i=1

n−1∑
j=1

|U (l)
i,j − U

(l)
i,j+1|p

= TV(A)
p (U(l))

(5.7)

With a similar argument, we can also see that TV(I)
w (U) ≈ TV(I)

p (U(l)) forU in a small

vicinity of U(l). Consequently, nonconvex minimization of TVp(U) can practically be

carried out by convex minimization of TVw(U) with reweighting strategy (5.6) for

each iteration. In other words, the introduction of weighted TV with the weights in

(5.6) allows an effective convexification of the nonconvex TVp. We note that in [75],

the ROF model is examined in a given neighborhood of each image pixel with a local

filter and weights are introduced to a local window to construct a locally weighted

TV denoiser in order to reduce staircase effect, while the reweighting in the proposed

algorithm is performed globally on the TV norm to enhance the image’s gradient

sparsity.

Based on above analysis, we propose an iteratively reweighted TV (IRTV) algo-

rithm as Algorithm 5.1. The core of the proposed algorithm is the WTV-regularized

problem (5.8) for given sets of weights {αi,j} and {βi,j}. We reiterate that problem

(5.8) is convex. The algorithmic details of solving (5.8) for both weighted anisotropic

and isotropic TV by Split Bregman type iterations are given in Sec. 5.2.

Algorithm 5.1 Algorithm for IRTV Regularized Minimization

1: Select parameters µ, pt (a target value for power p) and ε. Set iteration count
l = 0 and αi,j = βi,j = 1.

2: Solve the WTV-regularized problem

minimize
U

TVw(U) +
µ

2
∥U−B∥2F (5.8)

for U(l+1).
3: With U(l+1) update the weights {αi,j} and {βi,j} in (5.6).
4: Terminate if l + 1 reaches a maximum number of iterations L. Otherwise, set

l = l + 1 and repeat from step 2.
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Implementation Issues

Suppose we are given a target value pt < 1 for power p. Although the subproblem

(5.8) involved in each round of iteration is convex, the TVp-regularized problem with

p = pt is nonconvex that admits many local minimizers.

The nonconvex nature of the problem at hand is reflected in Algorithm 5.1 by the

way the initial weights {αi,j} and {βi,j} are selected. The IRTV algorithm proposed

in Sec. 5.1.2 is implemented using a power-iterative warm-start strategy, which may

be explained by looking at the case of pt = 0.4. The power-iterative strategy suggests

that we start the algorithm with p = 1. So the problem at hand is convex and

the solution is unique and global regardless of the initial point used. Now we use

the solution just obtained as the initial point for a slightly reduced power value, say

p = 0.8. Although TVp-regularization with p = 0.8 is nonconvex, its global solution

cannot be too far away from the solution with p = 1. So with an ℓ1 solution as a

“warm” initial point, the IRTV algorithm will converge to a reasonably good local

solution if not the global solution. Once the second solution is obtained, it is used

as the initial point for the problem in (5.8) with a further reduced power value, say

p = 0.6. Doing the same thing one more time will reach the target power value

p = 0.4. Numerical experiments have indicated that decreasing the power value each

time by 0.2 is adequate to secure an excellent local solution for any target power

between 0 and 1. Additional implementation details will be given in Sec. 5.3.

5.2 Split Bregman Type Iterations for the WTV-

Regularized Problem

It turns out that efficient methods such as those based on Split Bregman (SB) iter-

ations [60] are not applicable to (5.8) as long as nontrivial weights {αi,j} and {βi,j}
are present. This section describes algorithmic details of a technique for solving (5.8)

for both the weighted anisotropic and isotropic TVs based on modified SB iterations

where the standard SB iterations are revised in a major way to make the proposed

algorithms work.
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5.2.1 Solving (5.8) for Anisotropic TV

By the definition of anisotropic WTV in (5.4), the problem in (5.8) can be explicitly

expressed as

minimize
U

{
m−1∑
i=1

n∑
j=1

αi,j|Ui,j −Ui+1,j|+
m∑
i=1

n−1∑
j=1

βi,j|Ui,j −Ui,j+1|+
µ

2
∥U−B∥2F} (5.9)

If we introduce Dx and Dy with each element in the vector defined as

(Dx)i,j = (∇w
xU)i,j = αi,j(Ui,j − Ui+1,j) (5.10a)

(Dy)i,j = (∇w
yU)i,j = βi,j(Ui,j − Ui,j+1) (5.10b)

where ∇w
xU and ∇w

yU denote the weighted first-order differences along the x and y

directions, respectively, then we can write

∥Dx∥1 =
m−1∑
i=1

n∑
j=1

αi,j|Ui,j − Ui+1,j|, ∥Dy∥1 =
m∑
i=1

n−1∑
j=1

βi,j|Ui,j − Ui,j+1| (5.11)

Consequently, a splitting strategy can be applied using (5.10) and (5.11) to formulate

the problem at hand as

minimize
U

{∥Dx∥1 + ∥Dy∥1 +
µ

2
∥U−B∥2F} (5.12a)

subject to: Dx = ∇w
xU, Dy = ∇w

yU (5.12b)

Enforcing the constraints in (5.12b), we obtain

minimize
U,Dx,Dy

{
∥Dx∥1 + ∥Dy∥1 +

µ

2
∥U−B∥2F

+
λ

2
∥Dx −∇w

xU− E(k)
x ∥2F +

λ

2
∥Dy −∇w

yU− E(k)
y ∥2F

}
where E

(k)
x and E

(k)
y are updated through Bregman iterations as follows. In the kth

iteration, we solve three subproblems to obtain U(k+1), D
(k+1)
x , and D

(k+1)
y as

U(k+1) =argmin
U

{µ

2
∥U−B∥2F

+
λ

2
∥∇w

xU+ E(k)
x −D(k)

x ∥2F +
λ

2
∥∇w

yU+ E(k)
y −D(k)

y ∥2F
} (5.13)
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D(k+1)
x = argmin

Dx

∥Dx∥1 +
λ

2
∥Dx −∇w

xU
(k+1) − E(k)

x ∥2F (5.14a)

D(k+1)
y = argmin

Dy

∥Dy∥1 +
λ

2
∥Dy −∇w

yU
(k+1) − E(k)

y ∥2F (5.14b)

and E
(k)
x and E

(k)
y are updated by

E(k+1)
x = E(k)

x +∇w
xU

(k+1) −D(k+1)
x (5.15a)

E(k+1)
y = E(k)

y +∇w
yU

(k+1) −D(k+1)
y (5.15b)

Initially, D
(0)
x = D

(0)
y = E

(0)
x = E

(0)
y = 0.

The problems in (5.14) can be solved effectively by soft shrinkage [124] as

D(k+1)
x = T1/λ(∇w

xU
(k+1) + E(k)

x ) (5.16a)

D(k+1)
y = T1/λ(∇w

yU
(k+1) + E(k)

y ) (5.16b)

where T1/λ applies pointwisely as

T1/λ(z) = sgn(z) ·max{|z| − 1/λ, 0} (5.17)

Solving problem (5.13) is however far from trivial as the conventional method

in [60] is not applicable to the WTV due to the presence of nontrivial weights {αi,j}
and {βi,j}. The technique we propose to solve (5.13) starts by writing the first-order

optimality condition for problem (5.13) as

µU+ λ
[
(∇w

x )
T∇w

x + (∇w
y )

T∇w
y

]
U = C(k) (5.18)

where

C(k) = µB+ λ[(∇w
x )

T (D(k)
x − E(k)

x ) + (∇w
y )

T (D(k)
y − E(k)

y )], (5.19)
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(∇w
x )

T and (∇w
y )

T denote the adjoint operators of ∇w
x and ∇w

y , respectively, and[
(∇w

x )
T∇w

xU
]
i,j

=


α2
1,j(U1,j − U2,j) for i = 1, 1 ≤ j ≤ n

−α2
m−1,j(Um−1,j − Um,j) for i = m, 1 ≤ j ≤ n

α2
i,j(Ui,j − Ui+1,j)− α2

i−1,j(Ui−1,j − Ui,j) elsewhere

and [
(∇w

y )
T∇w

yU
]
i,j

=


β2
i,1(Ui,1 − Ui,2) for 1 ≤ i ≤ m, j = 1

−β2
i,n−1(Ui,n−1 − Ui,n) for 1 ≤ i ≤ m, j = n

β2
i,j(Ui,j − Ui,j+1)− β2

i,j−1(Ui,j−1 − Ui,j) elsewhere

As the matrix involved in the linear system in (5.18) is symmetric and diagonally

dominant, using a standard argument (see Section 10.2 of [72]) the iterations gener-

ated by the Gauss-Seidel method as applied to (5.18) can be shown to converge to

the solution of (5.18). From the above analysis, it follows that the linear system in

(5.18) can be expressed componentwisely as

[µ+ λ(α2
i,j + α2

i−1,j + β2
i,j + β2

i,j−1)]Ui,j = C
(k)
i,j +

λ(α2
i,jUi+1,j + α2

i−1,jUi−1,j + β2
i,jUi,j+1 + β2

i,j−1Ui,j−1)

which naturally suggests a Gauss-Seidel iteration scheme for Ui,j as

U
(r+1)
i,j =

ρ
(r,r+1)
i,j

τi,j
for r = 0, 1, · · · , R (5.20)

where

ρ
(r,r+1)
i,j = C

(k)
i,j +

λ
[
α2
i,jU

(r)
i+1,j + α2

i−1,jU
(r+1)
i−1,j + β2

i,jU
(r)
i,j+1 + β2

i,j−1U
(r+1)
i,j−1

]
τi,j = µ+ λ(α2

i,j + α2
i−1,j + β2

i,j + β2
i,j−1)
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In words, U
(r+1)
i,j is computed using iterates U

(r)
i+1,j, U

(r)
i,j+1 from the preceding iteration

while iterates U
(r+1)
i−1,j , u

(r+1)
i,j−1 are computed from the current iteration. The conver-

gence of the proposed Gauss-Seidel iterations in (5.20) is guaranteed by the diagonal

dominance of the linear system involved.

5.2.2 Solving (5.8) for Isotropic TV

We now consider solving the convex problem in (5.8) with weighted isotropic TV (see

(5.5) for its definition) using the Split Bregman technique. The weighted TV in this

case can be written as TV(I)
w (U) = ∥(Dx,Dy)∥F where

∥(Dx,Dy)∥F =
∑
i,j

√
(Dx)2i,j + (Dy)2i,j

By using the splitting strategy, the problem at hand can be formulated as

minimize
U

∥(Dx,Dy)∥F +
µ

2
∥U−B∥2F (5.21a)

subject to: Dx = ∇w
xU, Dy = ∇w

yU (5.21b)

By enforcing the equality constraint in (5.21b), the problem becomes

minimize
U,Dx,Dy

{
∥(Dx,Dy)∥F +

µ

2
∥U−B∥2F

+
λ

2
∥Dx −∇w

xU− e(k)x ∥2F +
λ

2
∥Dy −∇w

yU− e(k)y ∥2F
} (5.22)

Note that unlike the weighted anisotropic TV, here the variables Dx and Dy are

coupled. We propose to tackle the problem as follows. In the kth iteration, we find

a set of new iterate {U(k+1),D
(k+1)
x ,D

(k+1)
y } for the problem in (5.22) in two steps:

First, with fixed D
(k)
x and D

(k)
y we solve the subproblem

U(k+1) =argmin
U

{µ

2
∥U−B∥2F

+
λ

2
∥∇w

xU+ E(k)
x −D(k)

x ∥2F +
λ

2
∥∇w

yU+ E(k)
y −D(k)

y ∥2F
} (5.23)
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Then we fix U = U(k+1) in (5.22) and solve it for D
(k+1)
x and D

(k+1)
y , namely,

(D(k+1)
x ,D(k+1)

y ) = argmin
Dx,Dy

{
∥(Dx,Dy)∥F +

λ

2
∥Dx −∇w

xU
(k+1) − E(k)

x ∥2F

+
λ

2
∥Dy −∇w

yU
(k+1) − E(k)

y ∥2F
} (5.24)

Despite the fact that the variables Dx and Dy are coupled, the subproblem (5.24)

above can still be explicitly solved using a generalized shrinkage formula [60,110]

D(k+1)
x = max (S(k) − 1/λ, 0)

∇w
xU

(k+1) + E
(k)
x

S(k)
(5.25a)

D(k+1)
y = max (S(k) − 1/λ, 0)

∇w
yU

(k+1) + E
(k)
y

S(k)
(5.25b)

where the divisions are pointwisely operated and

S(k) =

√
|∇w

xU
(k+1) + E

(k)
x |2 + |∇w

yU
(k+1) + E

(k)
y |2 + ε2

where the term ε2 is to prevent the elements of S(k) from being zeros. On comparing

the modified SB iteration for weighted isotropic TV with its anisotropic counterpart,

the main difference is the way the next iterate {D(k+1)
x ,D

(k+1)
y } is obtained: the

anisotropic case uses standard soft shrinkage while the isotropic case requires general

shrinkage formulas.

5.3 Experimental Studies

In this section, we apply the IRTV algorithm proposed in Secs. 5.1 and 5.2 to a variety

of synthetic and natural images and its performance was evaluated in comparison with

several algorithms in the literature that are known to be effective for image denoising.

As argued in Sec. 5.1.2, both TV(A) and TV(I) are closely related to the ℓ1 norm of

the image gradient. As such, denoising performance based on them are expected to

be similar to each other. As a matter of fact, in [9], both TVs were found to yield

very similar results, while the simulations reported in [68] were slightly in favor of

TV(A). Under these circumstances, the simulations reported below were carried out

using anisotropic type of TV and TVp.

The denoising performance was evaluated by peak signal-to-noise ratio (PSNR)



81

which is defined by

PSNR = 10 log10

(
2552

MSE

)
(dB) (5.26)

with

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[Ui,j − U∗
i,j]

2 (5.27)

where {Ui,j} and {U∗
i,j} denote the processed and desired (clean) images, respectively.

Note that MSE (5.27) represents the variance of the noise remained in the processed

image. Consequently, if the variance of the residual noise can be estimated (e.g. using

a certain patch of the denoised image), PSNR remains to be a feasible measure in

case the clean image is not available.

In what follows, the term “standard TV” (as well as term “TV” in Table 5.1)

is referred to as an algorithm that solves problem (2.20). In our simulations, this

problem was solved by the Split Bregman method [60]. Throughout the chapter, the

term “TV-ℓ1” is referred to as an algorithm that solves the problem

minimize
U

TV(U) + µ∥U− b∥1 (5.28)

Since (5.28) is convex, in our simulations (5.28) was solved using CVX [63,64].

5.3.1 Denoising with Different Rounds of Reweighting

In this part of experimental studies, effectiveness of the reweighting strategy (5.6)

on denoising performance was examined. Shepp-Logan phantom of size 256 × 256

was chosen as the test image in the study, where the image was normalized to within

[0, 1] and corrupted with zero-mean additive white Gaussian noise with standard

deviation 0.1. The PSNR of the noisy phantom was found to be 20.00 dB. To test

the reweighting performance, power p was fixed to 0.9, ϵ was set to 10−3, and µ in

(5.8) varied in the range [4, 25]. For each µ in that range, λ was set to 2µ and the

maximum number of Bregman iterations was set to 30.

For the first round of iterations of the IRTV algorithm, i.e., l = 0, the weights

were all set to one, and the image computed from (5.8) simply corresponds to the

standard TV denoising result. The weights in the following rounds of iterations were

updated using (5.6), and the WTV-regularized problem was solved accordingly. Note

that in solving (5.8) at the (l + 1)th iteration, we passed the previous iterate U(l) as

the initial point U0. The IRTV algorithm was applied for each µ with the number
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of reweighting rounds set to 1, 2, and 3, respectively. The three PSNR-versus-µ

curves together with the PSNR curve of the standard TV denoising (i.e., l = 0) are

depicted in Fig. 5.1. We observe that the algorithm practically converges in 3 rounds

of reweighting, yielding a peak PSNR of 36.44 dB relative to 34.32 dB offered by the

conventional TV denoising. Also note that the first round of reweighting (i.e., l = 1)

yields largest performance gain.

5.3.2 Denoising with Different Power p

Next, the IRTV algorithm was applied to the same phantom image with the value of

power p reduced from 1 by 0.2 each time down to 0. The experiment’s set-up was the

same as in Experiment 1 except that the range of µ was extended to [4, 50] to cope

with the wide range of power values, and only one round of reweighting was used for

each given power p since it provides most performance gain (see Sec. 5.3.1). In the

experiment, the IRTV algorithm for a given power value p starts with the solution

obtained with a slightly larger p as an initial point so as to facilitate the algorithm

to converge to a satisfactory solution with a small number of iterations.

The PSNR curves associated with p = 1, 0.8, 0.6, 0.4, 0.2 and 0 are plotted in Fig.

5.2. We observe that the algorithm yields better performance for smaller power p,

with the best performance of 39.39 dB achieved when p = 0 and µ set to 34 that is

considerably higher than the peak PSNR of 34.32 dB by the standard TV denoising.

The denoised images by the standard TV and IRTV algorithms are depicted in Fig.

5.3(a) and (c), respectively. To visualize the performance difference between the

two algorithms, the difference between the original and denoised phantoms from the

standard TV and IRTV algorithms are shown in Fig. 5.3(b) and (d), respectively. It

is noticed that the difference after IRTV denoising is considerably less visible relative

to that by the standard TV-based denoising.

5.3.3 Denoising of Natural and Synthetic Images

The proposed algorithm was tested on a variety of images of size 256 by 256 for

different power p. Each image was normalized to be within [0, 1], and was corrupted

by zero-mean Gaussian noise with standard deviation 0.1, which corresponds to a

PSNR of 20.00 dB.

For comparison purposes, several known denoising methods were also applied to

the same set of test images. These include the well-known basis-pursuit denoising
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Figure 5.1: Denoising Shepp-Logan phantom with 3 rounds of reweighting for p = 0.9,
compared with the standard TV denoising which corresponds to the curve with l = 0.
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Figure 5.2: Denoising Shepp-Logan phantom with one round of reweighting and p =
1, 0.8, 0.6, 0.4, 0.2 and 0. The PSNR with p = 1 coincides the standard TV denoising.
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Denoised Phantom with p=1: PSNR=34.32dB

(a) (b)

Difference between Denoised Phantom

with p=1 and Original Phantom      

Denoised Phantom with p=0: PSNR=39.39dB

(c) (d)

Difference between Denoised Phantom

with p=0 and Original Phantom      

Figure 5.3: Denoising Shepp-Logan phantom (a) by the standard TV minimization
(i.e. p = 1), and (c) by the IRTV algorithm with p = 0. Difference between the
denoised and original images are shown in (b) for the standard TV and (d) for IRTV.

(BPDN) [39], iteratively reweighted ℓ1 algorithm (IRL1) [24], ℓ2-ℓp minimization based

denoising [35,36,57,114,116], the TV-ℓ1 model [32], and the standard TV-regularized

algorithm. For fair comparisons, when an algorithm was applied, the parameter(s)

involved were tuned to optimize the performance of that particular algorithm. As was

in Sec. 5.3.1 and 5.3.2, here the proposed IRTV algorithm was implemented using the

power-iterative and warm-start strategy described in Secs. 5.1.2. The performance of

the five algorithms in terms of PSNR before and after denoising for a total of sixteen

natural and synthetic test images are shown in Table 5.1. For each test image, the

best PSNR achieved is indicated with a bold-faced number. The pair of numbers in

the columns ℓp-ℓ2/p and IRTV/p denote the PSNR (in dB) achieved and the value

of power p utilized to obtain that PSNR, respectively. For visual inspection, Figs.
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5.4-5.8 depict the IRTV-denoised natural images of “axe”, “church”, “jet”, as well

as a synthetic image “phantomdisk” and texture image “fence”, respectively, as

compared with their original versions and noisy counterparts.

Images
PSNR in dB

IRL1 BPDN ℓp-ℓ2/p TV-ℓ1 TV IRTV/p
axe 25.22 28.51 28.77/0.6 31.09 33.03 33.21/0.6

building 21.57 25.42 25.54/0.0 26.47 27.85 28.08/0.8
bird 24.92 28.07 28.20/0.4 30.33 31.87 31.94/0.6

circles 24.05 28.35 28.71/0.2 33.87 37.35 43.65/0.2
church 21.43 25.34 25.49/0.6 27.10 28.42 28.60/0.6
camera 21.83 25.46 25.54/0.4 26.02 27.74 27.98/0.8
crosses 21.45 26.33 26.39/0.8 23.54 29.23 32.20/0.4
dome 20.00 22.47 19.68/0.6 18.18 24.00 24.22/0.8
fence 21.55 25.40 25.52/0.2 26.75 28.24 28.45/0.8
jet 21.40 24.96 25.03/0.4 26.05 27.45 27.62/0.8

liftingbody 25.63 28.56 28.71/0.4 30.49 32.06 32.27/0.8
phantomdisk 23.38 27.23 27.51/0.2 31.12 32.87 33.20/0.8

pool 22.84 25.83 25.93/0.6 27.45 28.55 28.62/0.6
reschart 20.56 25.56 25.86/0.4 25.45 29.11 30.51/0.8
satellite 21.69 25.50 25.63/0.4 25.95 27.95 28.36/0.8
squares 40.62 40.58 46.36/0.0 37.20 42.44 47.41/0.0
tower 22.93 25.78 25.86/0.4 26.74 27.88 27.91/0.6
text 20.36 25.88 26.22/0.6 27.31 30.38 33.84/0.0

Table 5.1: PSNRs of test images denoised by the proposed algorithm and several
existing denoising algorithms. In each row, the boldfaced numerical value indicates
the best PSNR for the image.

Based on the experimental results, we remark that

(1) The IRTV algorithm consistently outperforms the other algorithms. Especially

for the synthetic images such as “circles”, “squares” and “text”, its performance

gain over the second best performer, the standard TV denoising, is found to be sig-

nificant. We note that for these images the best power p is zero or close to zero, while

the standard TV algorithm corresponds to the case of p = 1. For natural images,

although IRTV is found to offer decent gains over the standard TV for some images

such as “satellite” (0.41 dB) and “camera” (0.24 dB), the improvement over natu-

ral images are obviously less impressive relative to that achieved for synthetic images.

The reason for this is that for most natural images the optimal power p, is found to
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be fairly close to 1, which implies that for natural images the standard TV denoising

performs nearly optimally. In this regard the proposed IRTV algorithm tries to push

the envelop to offer even better performance.

(2) The IRL1 algorithm does not seem to perform well relative to the other algo-

rithms evaluated. There are several reasons for the outcome. Recall that the IRL1

essentially performs ℓ0-regularization without leaving convex programming environ-

ment. As argued earlier, however, this is not suited for denoising natural images as

the best power for these image appears to be close to 1. This explains why the BPDN,

which is an ℓ1-regularized algorithm, outperforms IRL1 for most instances. For the

synthetic images, the IRL1 was expected to perform well. The reason it fails to do so

has to do with its way to perform ℓ0-regularization - it jumps from ℓ1-regularization

directly to ℓ0-regularization as opposed to the proposed IRTV algorithm where TVp

regularization is implemented with a power-iterative warm-start strategy. As a result,

it leads to a suboptimal solution with degraded performance.

Figure 5.4: Denoising axe (up to bottom, left to right) (a) original image (b) noisy
image (c) denoised image by the TV-ℓ1 (d) denoised image by the IRTV (e) difference
image between the TV-ℓ1 denoised image and original image (f) difference image
between the IRTV denoised image and original image
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Figure 5.5: Denoising church (up to bottom, left to right) (a) original image (b)
noisy image (c) denoised image by the TV-ℓ1 (d) denoised image by the IRTV (e)
difference image between the TV-ℓ1 denoised image and original image (f) difference
image between the IRTV denoised image and original image

Figure 5.6: Denoising jet (up to bottom, left to right) (a) original image (b) noisy
image (c) denoised image by the TV-ℓ1 (d) denoised image by the IRTV (e) difference
image between the TV-ℓ1 denoised image and original image (f) difference image
between the IRTV denoised image and original image
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Figure 5.7: Denoising phantomdisk (up to bottom, left to right) (a) original image
(b) noisy image (c) denoised image by the TV-ℓ1 (d) denoised image by the IRTV (e)
difference image between the TV-ℓ1 denoised image and original image (f) difference
image between the IRTV denoised image and original image

Figure 5.8: Denoising fence (up to bottom, left to right) (a) original image (b)
noisy image (c) denoised image by the TV-ℓ1 (d) denoised image by the IRTV (e)
difference image between the TV-ℓ1 denoised image and original image (f) difference
image between the IRTV denoised image and original image
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(3) By visual inspection of Figs. 5.4-5.8, the IRTV algorithm is found to well preserve

edges as well as textures (see Fig. 5.8) relative to the well-established TV-ℓ1 algorithm

[32] that uses ℓ1-norm as a measure of fidelity. It was argued that the TV-ℓ1 model

offers several advantages: the ℓ1 regularization is more geometric, the TV-ℓ1 model is

contrast invariant, and the ℓ1-regularized model suggests a data-driven scale selection

mechanism. Experimental results on TV-ℓ1 denoising and deblurring were reported

in [111]. Note that in this regard IRTV also performs better than the TV-ℓ1 algorithm

as can be seen from Figs. 5.4-5.8.
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Chapter 6

Compressive Imaging by

Generalized Total Variation

Regularization

Compressive imaging (CI) is a natural branch of compressive sensing (CS). The design

of efficient CI system remains a challenging problem as it involves a large amount of

data, which has far-reaching implications for the complexity of the optical design,

calibration, data storage and computational burden. A step towards overcoming

the memory requirements is accomplished recently in [52, 95] with development of

CI methods by employing a separable sensing matrix. In [95], a two-dimensional

separable sensing operator is used to reduce the storage of matrices of size m2 × n2

produced by the Kronecker product of two m× n matrices. Another example is the

work in [102] on TV minimization using a Split Bregman approach where a separable

sensing operator is utilized.

The exact formulation of the CI optimization problem depends on the application

being considered. For demonstration purposes, we focus on the application of CI to

sparse magnetic resonance imaging (MRI). The general form for the sparse MRI re-

construction problem is presented and discussed in [34,78]. We recall the formulation

in Eq. (2.21) given by

minimize
U

TV(U)

subject to: ∥R ◦ (FU)−B∥2F < σ2



91

where F represents the 2-D Fourier transform operator, B represents the observed

“k-space” data [60], and σ represents the variance of the signal noise. It was shown

in [120] that using a Bregman iteration technique, problem (2.21) can be reduced to

a sequence of unconstrained problems that can be solved using the Split Bregman

technique [60]. It is important to note that unlike other formulations presented in the

literature, in this chapter problem (2.21) is addressed to deal with images by regard-

ing them as matrix variables instead of column-stacked vectors. Such formulation

implicitly applies the separable sensing operator [95, 102] which facilitates efficien-

t analysis, reduces storage complexity, and makes fast computation possible. The

matrix-based analysis of TV regularization model is the author’s main contribution

in this chapter.

In Chapter 5, it is demonstrated that the standard TV can be generalized to a pth-

power TV with 0 ≤ p ≤ 1, and the generalized TV (GTV) regularized least squares

problem produces improved denoising performance relative to the classical methods

in the literature. In this chapter, the GTV regularizer is applied to the Fourier-based

MRI reconstruction problem, as a result we have to deal with a nonconvex model.

There are existing algorithms for nonconvex compressive imaging [36, 37] where the

ℓ1 norm is replaced by the ℓp quasi-norm. Unlike the ℓ1 or ℓp regularization, the

algorithm proposed in this chapter solves GTV-regularized optimization problem that

turns out to perform better than existing algorithms in preserving image edges.

6.1 TV, Generalized TV and Weighted TV with

Matrix Representations

The total variation (TV) of an image U is defined and discussed in Sec. 2.6. In

particular, the discretized anisotropic and isotropic TV are defined in (2.17) and

(2.18), respectively. Since both TVs are found to yield similar reconstruction results

with the performance often slightly in favor of the anisotropic one (see Sec. 5.3), our

analysis will be carried out using anisotropic type of TV.

In this section, we shall demonstrate that the TV in (2.17) can be expressed with

simple matrix operations. Suppose U ∈ Rn×n, we define D ∈ Rn×n as a circulant

matrix with the first row [1 −1 0 · · · 0]. Under the periodic boundary condition [87],
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it can be verified that the TV can be expressed as

TV(U) = ∥DU∥1 + ∥UDT∥1 (6.2)

where ∥X∥1 denotes the sum of magnitudes of all the entries in X, i.e.,
∑

|xi,j|. It

follows that the generalized pth power total variation, denoted as TVp (see Eq. (5.1)),

can be written as

TVp(U) = ∥DU∥p + ∥UDT∥p

with 0 ≤ p ≤ 1. Note that notation ∥X∥p resembles but slightly differs from an ℓp

norm. Specifically, it expresses the sum of pth power magnitudes of all the entries

in X, i.e.,
∑

|xi,j|p. The performance improvement using an ℓp norm over the ℓ1

norm established in [35, 36, 114, 115] inspired us to investigate the generalized total

variation, TVp, for compressive sensing image recovery.

The problem considered in this chapter can be cast as

minimize
U

TVp(U) (6.3a)

subject to: ∥R ◦ (FU)−B∥2F ≤ σ2 (6.3b)

The regularizer TVp is known for promoting a sparser TV when p is less than one.

However, TVp related problem is nonconvex in nature. The idea of reweighting was

proposed in Sec. 5.1.2 where we introduced the weighted TV (WTV). In the following,

we reformulate WTV of image U with a matrix representation as

TVw(U) = ∥Wx ◦ (DU)∥1 + ∥Wy ◦ (UDT )∥1 (6.4)

where ◦ is the Hadamard product operator, and Wx and Wy are weights matrices

along the horizontal and vertical direction respectively. Clearly, TVw(U) becomes

the conventional TV(U) when all entries in Wx and Wy are equal to unity.

6.2 A Power-Iterative Reweighting Strategy for Prob-

lem (6.3)

Theoretically, solving (6.3) with p = 0 promotes the solution with the sparsest TV.

In order to approach the solution for a TV0-regularized optimization problem, we
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adopt a power-iterative strategy [115] by gradually reducing the power p, updating

the weights, and solving a WTV-regularized problem at each iteration. The power-

iterative strategy not only properly updates the weights to approach the correspond-

ing TVp minimization, but also provides the convex WTV-regularized problem with

a good initial state based on the previous round of iteration. As a result, the present

WTV-regularized problem is found to converge considerably faster as long as the

initial state is closer to the globally optimal solution.

In what follows, we denote by 1 the matrix with each of its element one, by |X|.p

a matrix whose (i, j)th entry is |xi,j|p, and by ◦/ the pointwise division. The steps of

the power-iterative strategy are summarized in Algorithm 6.1.

Algorithm 6.1 Power-Iterative Strategy for TVp Minimization (6.3)

1: Set p = 1, l = 1, Wx = Wy = 1.
2: Solve the WTV-regularized problem for U(l)

minimize
U

TVw(U) (6.5a)

subject to: ∥R ◦ (FU)−B∥2F ≤ σ2 (6.5b)

3: Terminate if p = 0; otherwise, set p = p − 0.1 and update the weights Wx and
Wy as

Wx = |DU(l) + ϵ|.p−1, Wy = |U(l)DT + ϵ|.p−1 (6.6)

Then set l = l + 1 and repeat from step 2.

By observing Algorithm 6.1, we remark that TVw(U) essentially becomes TVp(U)

for U in a neighborhood of iterate U(l), by the reweighting formula (6.6) (refer to

(5.7)). The parameter ϵ in (6.6) is a small constant to prevent the weights from being

zero. In this way, nonconvex minimization of TVp(U) can practically be achieved by

a series of convex minimization of TVw(U) using the above power-iterative strategy.

6.3 WTV-Regularized Minimization for Problem

(6.5)

The analysis has led to a WTV-regularized problem as seen in (6.5). We propose to

solve the problem using a Split Bregman [60] approach, but with important changes

as will be described in the following. Note that the Split Bregman method is found to

be equivalent to the augmented Lagrangian method in the context of total variation
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minimization [55, 103]. Unlike vector operations in the literature, the entire analysis

presented below is carried out in terms of matrix operations.

6.3.1 Split Bregman Type Iteration

First let us apply the Bregman iteration [120] to (6.5) which reduces the problem to

U(k+1) = argmin
U

TVw(U) +
µ

2
∥R ◦ (FU)−B(k)∥2F (6.7a)

B(k+1) = B(k) +B−R ◦ (FU(k+1)) (6.7b)

With Eq. (6.4), problem (6.7) can be expressed as

U(k+1) = argmin
U

∥Wx ◦ (DU)∥1 + ∥Wy ◦ (UDT )∥1 +
µ

2
∥R ◦ (FU)−B(k)∥2F (6.8a)

B(k+1) = B(k) +B−R ◦ (FU(k+1)) (6.8b)

Next, a splitting strategy applied to (6.8a) leads to the formulation

minimize
U

∥Wx ◦Dx∥1 + ∥Wy ◦Dy∥1 +
µ

2
∥R ◦ (FU)−B(k)∥2F (6.9a)

subject to: Dx = DV,Dy = VDT ,U = V (6.9b)

Note that in (6.9) we have applied the Split Bregman technique [60] for the splitting

Dx = DV and Dy = VDT , and introduce an additional split as U = V. The

condition U = V guarantees that this is, in fact, the same one variable; however

such a split allows us to decompose the most computationally expensive step of the

algorithm into two much simpler steps [102], as will be demonstrated in the following.

Applying Bregman method again to (6.9) to enforce constraints in (6.9b), we

instead minimize the following function with respect to {U,V,Dx,Dy}

minimize ∥Wx ◦Dx∥1 + ∥Wy ◦Dy∥1 +
µ

2
∥R ◦ (FU)−B(k)∥2F

+
λ

2
∥Dx −DV − E(h)

x ∥2F +
λ

2
∥Dy −VDT − E(h)

y ∥2F

+
ν

2
∥U−V −G(h)∥2F

where E
(h)
x , E

(h)
y and G(h) are updated through Bregman iterations. In the hth
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iteration, we solve four subproblems to obtain U(h+1), V(h+1), D
(h+1)
x and D

(h+1)
y as

U(h+1) = argmin
U

µ

2
∥R ◦ (FU)−B(k)∥2F +

ν

2
∥U−V(h) −G(h)∥2F (6.10)

V(h+1) = argmin
V

ν

2
∥V −U(h+1) +G(h)∥2F

+
λ

2
∥DV + E(h)

x −D(h)
x ∥2F +

λ

2
∥VDT + E(h)

y −D(h)
y ∥2F

(6.11)

D(h+1)
x = argmin

Dx

∥Wx ◦Dx∥1 +
λ

2
∥Dx −DV(h+1) − E(h)

x ∥2F (6.12a)

D(h+1)
y = argmin

Dy

∥Wy ◦Dy∥1 +
λ

2
∥Dy −V(h+1)DT − E(h)

y ∥2F (6.12b)

where the iterates G(h), E
(h)
x and E

(h)
y are updated by Bregman iteration as

G(h+1) = G(h) +V(h+1) −U(h+1) (6.13a)

E(h+1)
x = E(h)

x +DV(h+1) −D(h+1)
x (6.13b)

E(h+1)
y = E(h)

y +V(h+1)DT −D(h+1)
y (6.13c)

Typically, it takes a small number of iterations of (6.10), (6.11), (6.12) and (6.13) for

the algorithm to converge to the minimizer of (6.7a) as mandated by the theory of

Bregman iterations.

Note that the problems in (6.12a) and (6.12b) can be solved by soft shrinkage as

the unknowns are separate from each other. Specifically,

D(h+1)
x = TWx/λ(DV(h+1) + E(h)

x ) (6.14a)

D(h+1)
y = TWy/λ(V

(h+1)DT + E(h)
y ) (6.14b)

where soft shrinkage operator T applies pointwisely as

Twi,j/λ(z) = sgn(z) ·max{|z| − wi,j/λ, 0} (6.15)
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6.3.2 Solving Problems (6.10) and (6.11)

Solving the remaining problems (6.10) and (6.11) are however far from trivial. To

this end, we first write first-order optimality condition of (6.10) as

µFTR ◦ FU+ νU = µFTR ◦Bk + ν(V(h) +G(h)) (6.16)

Multiplying both sides of (6.16) by F on the left and applying the orthogonality of

Fourier transform, i.e., FTF = I, we have

µR ◦ FU+ νFU = µR ◦Bk + νF(V(h) +G(h)) (6.17)

Furthermore, the Fourier transform of U can be derived as

FU =
[
µR ◦Bk + νF(V(h) +G(h))

]
◦ / (µR+ ν) (6.18)

Finally, by taking the inverse Fourier transform on both sides of (6.18), the solution

of problem (6.10) has the following representation

U(h+1) = FT
{[

µR ◦Bk + νF(V(h) +G(h))
]
◦ / (µR+ ν)

}
(6.19)

Solving problem (6.11) is more involved. First, using matrix calculus [62] we write

its first-order optimality condition as

νV + λDTDV + λVDTD = C(h) (6.20)

where

C(h) = ν(U(h+1) −G(h)) + λDT (D(h)
x − E(h)

x ) + λ(D(h)
y − E(h)

y )D (6.21)

Since the periodic boundary condition is used, matrix D is circulant and can be

diagonalized by the 2-D Fourier transform as [87,121]

D = FTΛF (6.22)

where Λ is a diagonal matrix. By substitution of (6.22) into (6.20), we have

νV + λFTΛ∗ΛFV + λVFTΛ∗ΛF = C(h) (6.23)
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which can be further reduced to the following by multiplying both sides by F on the

left and FT on the right

νṼ + λ(TṼ + ṼT) = FC(h)FT (6.24)

where Ṽ = FVFT and T = Λ∗Λ. Since T is also a diagonal matrix, it can be verified

that

TṼ = Tr ◦ Ṽ, ṼT = Tc ◦ Ṽ

where Tr has each element in its ith row as Ti,i and Tc has each element in its ith

column as Ti,i. Thus, Eq. (6.24) can be expressed as

(ν + λTr + λTc) ◦ Ṽ = FC(h)FT (6.25)

In consequence, we obtain solution of (6.11) as

V(h+1) = FT
{
(FC(h)FT ) ◦ / (ν + λTr + λTc)

}
F (6.26)

We now summarize the algorithm for solving the WTV-regularized problem (6.5)

as Algorithm 6.2.

Algorithm 6.2 Algorithm for WTV-regularized problem (6.5)

1: Set µ, λ and ν. Set maximum inner and outer iteration number K and H.
Initialize B(0), V(0), G(0), D

(0)
x , D

(0)
y , E

(0)
x and E

(0)
y .

2: for k = 0, ..., K − 1 do
3: for h = 0, ..., H − 1 do
4: Compute U(h+1), V(h+1), D

(h+1)
x , D

(h+1)
y by Eqs. (6.19), (6.26) and (6.14),

respectively. Update G(h+1), E
(h+1)
x , E

(h+1)
y through Eq. (6.13).

5: end for
6: Set U(k+1) = U(H). Update B(k+1) by Eq (6.7b).
7: end for

Since the computational steps involved in Algorithm 6.2 are linear operations, we

remark that the time and space complexity of the algorithm also scales linearly to

the size of the image. In the following section, we demonstrate the performance of

proposed Algorithms 6.1 and 6.2 in image reconstruction from compressive samples

on a series of synthetic and natural images of size 256 by 256.
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6.4 Performance on Compressive Imaging

6.4.1 MRI of the Shepp-Logan Phantom

The Shepp-Logan phantom is a standard test image created by Larry Shepp and Ben-

jamin F. Logan [101]. It serves as the model of a human head in the development and

testing of image reconstruction algorithms [70,82], and is used widely by researchers

in tomography. An original 256 × 256 Shepp-Logan phantom is illustrated in Fig.

6.1.

Figure 6.1: A Shepp-Logan phantom

In this experiment, a normalized Shepp-Logan phantom of size 256 × 256, was

measured at 2521 locations (as low as 3.85%) in the 2D Fourier plane (k-space); the

sampling pattern was a star-shaped pattern consisting of only 10 radial lines, see Fig.

6.2(a). The ℓ1-magic toolbox [25] was utilized to create the star-shaped sampling

pattern. Based on the 2521 star-shaped 2D Fourier samples, a minimum ℓ2 norm

reconstruction result is shown in Fig. 6.2(b).

We carried out the power-iterative strategy for GTV minimization by Algorithm

6.1 with implementation in MATLAB. Initially, we set p = 1 and Wx and Wy as

all one matrices. In each round of iteration, the WTV-regularized problem (6.5) was

solved by Algorithm 6.2. Parameters µ, λ and ν were all set to 5. We remark that

these parameters were chosen arbitrarily and the problem considered was tolerant to

the values to a great extent by virtue of the Split Bregman algorithm. The inner and

outer iterations were set to H = 10 and K = 100, where the number of iterations were

chosen to be more than sufficient for convergence of the algorithm. It is worthwhile
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(a) (b)

(c) (d)

Figure 6.2: (a) Star-shaped sampling pattern (b) Minimum energy reconstruction (c)
Minimum TV reconstruction (d) Minimum GTV reconstruction with p = 0

to remark that other than presetting the maximum number of iterations, convergence

criteria of the algorithm can also be prescribed as the magnitude difference between

two adjacent iterates becoming less than a certain tolerance. In this way, similar

level of reconstruction quality can be achieved depending on the pre-defined tolerance

value. The initial values for B(0), V(0), G(0), D
(0)
x , D

(0)
y , E

(0)
x and E

(0)
y were all set to

zero matrices. The minimizer of problem (6.5) was then used to update Wx and Wy

for the next round when p = 0.9 in Algorithm 6.1. It is important to remark that

starting from the 2nd round in solving problem (6.5), B(0), V(0), G(0), D
(0)
x , D

(0)
y ,

E
(0)
x and E

(0)
y were initialized using the most recent iterates from the last cycle. Such

an initialization ensures problem (6.5) start with an initial point not far away from
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the global minimizer, reducing the iteration number for convergence as a result. The

steps were carried on for p = 0.8, 0.7, 0.6, ... and so forth until the result for p = 0 is

achieved.

It took a PC laptop with a 2.67 GHz Intel quad-core processor 770.7 seconds to

produce the reconstructed phantom for p = 0 shown in Fig. 6.2(d). The signal to noise

(SNR) ratio was found to be 16.3 dB. For a fair comparison, we set Wx = Wy = 1,

and minimize problem (6.5) by Algorithm 6.2 with the outer iteration number K

set as 1100. The computational time was found to be 756.8s. The solution simply

corresponds to the conventional TV minimization recovery (2.21). The maximum

SNR conventional TV minimization can achieve was found to be 8.8 dB, as illustrated

in Fig. 6.2(c). Therefore, using the proposed method to approach the TV0 solution,

we have observed better reconstruction performance relative to the conventional TV

minimization.

6.4.2 Compressive Imaging of Natural Images

To further examine the proposed GTV minimization algorithm, we extend the simu-

lation to compressive sensing of several natural images - cameraman, building, milk

and jet. Each test image of size 256 by 256 was measured at 13107 random locations

(i.e., 20% of size of image) in the 2D Fourier plane. The random sampling pattern R

was shown as a black and white image in Fig. 6.3, where a dark pixel represents 0,

and a white pixel represents 1.

Figure 6.3: Random sampling pattern
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The parameter setting was the same as in Sec. 6.4.1. The power iterative technique

was also applied to reduce the power p from 1 to 0 with a 0.1 step each time, in order

to ensure a decent initial point. Reconstruction performance of the proposed GTV

(p = 0) algorithm compared with ℓ2 and TV based minimization were illustrated in

Figs. 6.4-6.7.

It was found that the images reconstructed using the proposed GTV minimization

method possess consistently higher SNRs than those from the conventional minimum

TV reconstruction. Visual inspection of Figs. 6.4-6.7 further demonstrates that the

proposed GTV minimization algorithm has an edge on the conventional TV model in

reconstructing images from compressive measurements.
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(a) (b)

(c) (d)

Figure 6.4: (a) Image cameraman (b) Minimum energy reconstruction (c) Minimum
TV reconstruction (SNR = 14.3 dB) (d) Minimum GTV reconstruction with p = 0
(SNR = 19.5 dB)
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(a) (b)

(c) (d)

Figure 6.5: (a) Image building (b) Minimum energy reconstruction (c) Minimum
TV reconstruction (SNR = 15.2 dB) (d) Minimum GTV reconstruction with p = 0
(SNR = 18.3 dB)
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(a) (b)

(c) (d)

Figure 6.6: (a) Image milk (b) Minimum energy reconstruction (c) Minimum TV
reconstruction (SNR = 12.1 dB) (d) Minimum GTV reconstruction with p = 0 (SNR
= 14.5 dB)
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(a) (b)

(c) (d)

Figure 6.7: (a) Image jet (b) Minimum energy reconstruction (c) Minimum TV
reconstruction (SNR = 16.2 dB) (d) Minimum GTV reconstruction with p = 0 (SNR
= 18.3 dB)
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Chapter 7

Concluding Remarks

This thesis investigates several new techniques for ℓ1-regularized problem, TV-regularized

problem, and their nonconvex relaxations. The algorithmic issues and performance of

the proposed methods have been investigated and applied to the general area of sig-

nal reconstruction, including signal and image denoising, signal sparse representation,

compressive sensing and compressive imaging. The objectives of this thesis are two-

fold. Firstly, by extending models from convex to nonconvex, several methods have

been analyzed to approach globally optimal solution and to improve quality of recon-

structed signal (in Chapters 3, 5, 6). Secondly, the thesis has also addressed practical

application of the mathematical models by developing a solver for parallel process-

ing, designing accelerated algorithms with faster convergence rate, and presenting a

matrix-based analysis for convenient implementation and coding (in Chapters 3, 4,

6).

In Chapter 3, a power-iterative strategy has been proposed for compressive sens-

ing in an ℓp-ℓ2 minimization setting. The methodology is built on a modified FISTA

developed for local solution of the ℓp-ℓ2 problem, in which a parallel global solver is

devised for the proximal-point function. Experimental results are presented to show

the superiority of the algorithms compared with the conventional BP benchmarks,

and to demonstrate that the solutions obtained are highly likely to be globally opti-

mal. In addition, a smoothed ℓp-ℓ2 solver for signal spaces with orthogonal basis or

overcomplete dictionary have been proposed. The solver is computationally efficient

because the solver with orthogonal basis is non-iterative while the solver with over-

complete dictionary admits FISTA type iterations for fast convergence. The proposed

solver is demonstrated to outperform its ℓ1-ℓ2 counterpart for signal denoising.

In Chapter 4, a fast dual-based linearized Bregman algorithm has been proposed
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for the equality constrained nonsmooth convex programming. The algorithm is car-

ried out for a dual problem, making the selection and adjustment of the regularization

parameter rather straightforward. The algorithm’s acceleration is made possible by

enhancing each gradient descent iteration in a way similar to that employed in FISTA.

Performance and complexity of the fast algorithm are evaluated and compared with

the conventional LB algorithm by applying to CS reconstruction of 1-D sparse signals.

In addition, performance of the proposed algorithm in dealing with large-scale data

is demonstrated by accurately reconstructing several test images.

We stress that matrix A = CΨ was adopted as the measurement matrix for ob-

taining the compressive sampled data b = Ax∗. Nevertheless, if we were to design a

compressive digital camera, matrix A would be implemented as a digital micromirror

device (DMD) of an array of N tiny mirrors for light reflection that further focuses

onto a single photodiode (the single pixel). The process would be repeated M times,

where at the kth time, the array of N tiny mirrors corresponds to instantiation of

the kth row of A. The reader is referred to [6, 7] for more details with regard to

the practicality of the “single-pixel” CS camera. Compared to a 0/1 random matrix,

implementation of A = CΨ as arrays of tiny mirrors is costly in both computation

and storage. Therefore, measurement matrix with simpler structure yet guaranteeing

exact recovery performance is one major element in CS from a hardware implemen-

tation point of view. A notable contribution has been made by Yin, Morgan, Yang

and Zhang [121], who discovered that optimal incoherence can be achieved by ran-

dom Toeplitz and circulant matrices. Furthermore, [113] learns a circulant matrix

from training data and demonstrates that the learned matrix outperforms random

ones. It appears worthwhile to explore hardware implementation of circulant matrix

for obtaining compressive sampled data, as well as fast computational methods with

prior knowledge of such measurement matrices for practical compressive imaging.

The concept of TV has been generalized to a pth power TV in Chapter 5. Due to

the nonconvex nature of the TVp-regularized problem, we deal with the image denois-

ing problem by proposing a weighted TV minimization where the weights are updated

iteratively to solve the problem in a convex-programming setting. The technical diffi-

culties of WTV minimization are addressed in a modified Split Bregman framework.

Numerical results have indicated that, with an appropriate power p < 1, the proposed

IRTV algorithm enhances denoising performance relative to several recent denoising

algorithms from the literature.

Chapter 6 presents an algorithm for the reconstruction of digital images from un-
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dersampled measurements, where the concept of generalized TV (GTV) that involves

pth power of the discretized gradient of the image is utilized. To deal with the non-

convex issue arising from this new formulation, a weighted TV-regularized problem

has been solved in the Split Bregman framework with additional splitting technique.

The algorithm adopts a power-iterative strategy that gradually reduces the power

p from 1 to 0. In particular, the MRI problem considered in this chapter is ad-

dressed by regarding image variables as matrices rather than column-stacked vectors.

Numerical simulations have been performed using a variety of medical and natural

images. The proposed technique is found to be superior relative to the conventional

TV minimization method in terms of the quality of the reconstructed images.

The thesis has been focused on denoising and compressive sensing. Neverthe-

less, the concept of ℓp or TVp-regularization and techniques developed here can be

extended to a broad range of applications including signal deconvolution, image de-

blurring, and other related problems. In the literature, linearized Bregman method

is used to solve the matrix completion problem in [16], as well as image deblurring

in [17, 18, 20]. Split Bregman method is another popular building block for solving

optimization model involving TV, which has been applied to image segmentation

problems [61] and to estimate nonsmooth probability densities [81]. It appears to

be worthwhile to investigate broader applications of sparse optimization problems

involving ℓp, TVp, or a combination of those regularization terms. Very recent work

considers sparse optimization in a parallel and distributed manner that closely mim-

ics the computational environment nowadays. Several methods have been proposed

to deal with very large-scale basis pursuit problem [43], distributed LASSO, sparse

logistic regression [94], and study of decentralized gradient descent for consensus opti-

mization problems in multi-agent networks [122]. Because of the complexity involved

and generally large-scale nature of these problems, faster and easily manageable al-

gorithmic and software solutions are vital for real-world applications where a tradeoff

normally needs to be attained in consideration of time, space, and cost requirements.
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