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ABSTRACT

An increasing number of applications ranging from multi-vehicle systems, large-

scale process control systems, transportation systems to smart grids call for the de-

velopment of cooperative control theory. Meanwhile, when designing the cooperative

controller, the state and control constraints, ubiquitously existing in the physical sys-

tem, have to be respected. Model predictive control (MPC) is one of a few techniques

that can explicitly and systematically handle the state and control constraints. This

dissertation studies the robust MPC and distributed MPC strategies, respectively.

Specifically, the problems we investigate are: the robust MPC for linear or nonlinear

systems, distributed MPC for constrained decoupled systems and distributed MPC

for constrained nonlinear systems with coupled system dynamics.

In the robust MPC controller design, three sub-problems are considered. Firstly,

a computationally efficient multi-stage suboptimal MPC strategy is designed by ex-

ploiting the j-step admissible sets, where the j-step admissible set is the set of system

states that can be steered to the maximum positively invariant set in j control steps.
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Secondly, for nonlinear systems with control constraints and external disturbances, a

novel robust constrained MPC strategy is designed, where the cost function is in a

non-squared form. Sufficient conditions for the recursive feasibility and robust sta-

bility are established, respectively. Finally, by exploiting the contracting dynamics

of a certain type of nonlinear systems, a less conservative robust constrained MPC

method is designed. Compared to robust MPC strategies based on Lipschitz conti-

nuity, the strategy employed has the following advantages: 1) it can tolerate larger

disturbances; and 2) it is feasible for a larger prediction horizon and enlarges the

feasible region accordingly.

For the distributed MPC of constrained continuous-time nonlinear decoupled sys-

tems, the cooperation among each subsystems is realized by incorporating a coupling

term in the cost function. To handle the effect of the disturbances, a robust con-

trol strategy is designed based on the two-layer invariant set. Provided that the

initial state is feasible and the disturbance is bounded by a certain level, the recur-

sive feasibility of the optimization is guaranteed by appropriately tuning the design

parameters. Sufficient conditions are given ensuring that the states of each subsys-

tem converge to the robust positively invariant set. Furthermore, a conceptually less

conservative algorithm is proposed by exploiting κ ◦ δ controllability set instead of

the positively invariant set, which allows the adoption of a shorter prediction horizon

and tolerates a larger disturbance level.

For the distributed MPC of a large-scale system that consists of several dynami-

cally coupled nonlinear systems with decoupled control constraints and disturbances,

the dynamic couplings and the disturbances are accommodated through imposing new

robustness constraints in the local optimizations. Relationships among, and design

procedures for the parameters involved in the proposed distributed MPC are derived

to guarantee the recursive feasibility and the robust stability of the overall system.

It is shown that, for a given bound on the disturbances, the recursive feasibility is

guaranteed if the sampling interval is properly chosen.
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Chapter 1

Introduction

This chapter conducts the literature review on model predictive control (MPC) and

distributed MPC. First, MPC, a control method widely adopted in cooperative con-

trol, is reviewed. Second, the state-of-the-art in distributed MPC, a specific form for

MPC-based cooperative strategies, is recalled. A brief summary of the motivations

and the main contributions of the dissertation ends the chapter.

MPC and distributed MPC have been extensively applied to cooperative control

field. On the other hand, the increasingly expanding applications of cooperative

control call for further studies on MPC and distributed MPC. In the following section,

some background on cooperative control is presented.

1.1 Cooperative Control: Overview

Cooperative control is beneficial for large-scale systems in which the control objective

is achieved by coordinating several subsystems. In recent years, the applications of

cooperative control have increased steadily [5, 14, 94]: the formation control of flying

UAVs each equipped with a sensor to form a synthetic aperture radar which can

provide high resolution pictures [43,115]; spatially distributed subsystems interacting

with each other through heat, contact, etc. [14]. These promising applications have

led to strong interest in the theoretical analysis of cooperative control methods.

Starting from the pioneering work in [114], a surge of research activities can be

observed in the control community on cooperative control [24,96,97]. A first attempt

is to apply centralized cooperative control to large-scale systems. However, when the

number of subsystems becomes large, the implementation of centralized cooperative
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control becomes challenging because: 1) it is not easy to have access to system-

wide information; 2) it is time-consuming (and prone to failure) to compute the

control signal for all the subsystems at one computing unit; 3) the overall system

scales poorly when the number of subsystems increases [100]; 4) it is more difficult to

identify the dynamics of a large-scale system than it is to identify the dynamics of one

subsystem [35]. Distributed cooperative control is a promising alternative because:

1) each subsystem needs only neighboring information and its own information; 2)

the control strategy is designed locally, and thus the computational time is reduced.

These attractive features make cooperative control a popular strategy for large-scale

systems.

Because physical constraints, like maximum actuator torques, or like state con-

straints due to the safety consideration always exist, they have to be considered when

designing the controller. MPC can handle control and state constraints explicitly.

Therefore, cooperative control using MPC is studied in this thesis.

The following section presents the practical and theoretical issues of MPC. The

section after it summarizes the current research on distributed MPC, the specific form

of MPC implemented in cooperative control.

1.2 Model Predictive Control (MPC)

1.2.1 Design Strategy

This section presents the basic framework of MPC for systems subject to control and

state constraints. Consider the following discrete-time system model:

x(k + 1) = f(x(k), u(k)), x(0) = x0, (1.1)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the control input. The system state

and the control signal are subject to the constraints

x ∈ X, u ∈ U, (1.2)

where X, U are compact, convex sets which contain the origin.

Assume that the system state can be measured, and that the system is stabilizable.

The control objective is to design an MPC controller to steer the system state to the

origin and to satisfy the state and control constraints. The design procedure is as
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follows.

2 At each successive time k, define the cost function

JN(x,u) =
N−1∑
i=0

Js(x(k + i|k), u(k + i|k)) + Jf (x(k +N |k)), (1.3)

where x(k + i|k) is the state at time k + i predicted at time k; N is the

prediction horizon; Js(·, ·) is the stage cost; Jf (·) is the terminal cost; and

u = (u(k|k), u(k + 1|k), · · · , u(k +N − 1|k)) is the control sequence computed

at time k.

2 Solve the optimization

min
u

JN(x, u), (1.4)

s.t. x(k + 1) = f(x(k), u(k)), x(0) = x0,

x ∈ X,

u ∈ U

to obtain the optimal control sequence u0
0(x) = (u0

0, u
0
1, · · · , u0

N−1).

2 Define the implicit state feedback controller as

KN(x) = u0
0(x) (1.5)

and apply the control signal in (1.5) to the system in (1.1).

The above MPC strategy can be implemented successfully if and only if: 1) the

optimization in (1.4) is recursively feasible; and 2) the closed-loop system is stable.

The following section reviews in detail the methods developed to fulfill these two

conditions.

1.2.2 Literature Review

MPC has been successfully implemented in industry [70], and thus is an attractive

control method in the control community. The advantages of MPC are that: 1) it

incorporates the system model information; 2) it handles control and state constraints
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explicitly; 3) it facilitates the design of compensation strategies for networked con-

trol systems (NCSs) because it computes a control sequence at each time instant.

Henceforth, the investigation of MPC has gained a lot of attention in academia [31].

Early work demonstrates the need for the theoretical analysis of MPC. The ex-

ample in [6] shows that a closed-loop system may not be stable even if the state

and control are unconstrained. The relationship between stability and the length of

the prediction horizon is studied in [78, 83]. For a linear system with/without state

and control constraints, the MPC control law with a large enough prediction horizon

provably stabilizes the system. However, if the prediction horizon is very large, the

computational complexity associated with the MPC strategy increases significantly.

Thus, MPC strategies with tractable computational complexity are of great value.

Various techniques have been proposed for the design of stabilizing MPC con-

trollers. We review some of the results in two categories: MPC controller design for

linear systems and for nonlinear systems.

MPC controller design for linear systems. For deterministic linear systems,

a first MPC strategy is designed by optimizing an infinite horizon cost function with

finite decision variables [92, 106]. In [92], the stability of the closed-loop system is

guaranteed by permitting violations of the state constraints for the first few time steps.

An alternative, and time-consuming, MPC method is proposed in [106] by solving a

set of finite-dimension quadratic programming problems. The typical approach to

design stable constrained MPC is to use fixed horizon N and to modify the cost

function of the optimization [105] and to introduce additional state constraints [13,18].

Modifications of the cost function include adding a terminal cost [12], a terminal

equality constraint and/or a terminal constraint set [69, 74]. Introducing a terminal

equality constraint degrade performance and the equality constraint can be satisfied

only asymptotically [18]. Introducing additional state constraints is suitable only for

controllable plants [13]. A distinct class of MPC strategies adopts the economic cost

function [2,3,19]. The feasibility of an MPC for a deterministic linear system is trivial

because the actual state at the next time instant is the same as the predicted state.

The design techniques for robust MPC for linear systems with disturbances can

be classified into two categories.

- Tube-based MPC [49, 68, 71, 89]. Tube-based MPC methods compute the con-

trol action by solving an open-loop optimal control problem for the associated

nominal system (i.e., the system without disturbances) with tightened state

and control constraints. If the nominal system with tightened state and control
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constraints is stable, then the system with disturbances is also stable.

- Min-max MPC [42,104]. Min-max MPC strategies incorporate the disturbances

explicitly into a min-max optimization and compute a control sequence which

minimizes the maximum performance index due to all possible disturbance real-

izations [42]. Alternatively, feedback min-max MPC strategies include feedback

into the min-max optimization [104] and derive a less conservative control law

which selects the control action based on the disturbance realization. Feedback

in the min-max optimization suppresses the effect of disturbances at the price

of significantly increased computational complexity.

The existing robust MPC strategies for linear systems with disturbances are de-

signed for the worst-case scenario. Therefore, the system state needs to be mea-

sured fast, and the control signal needs to be updated frequently. However, be-

cause the worst-case scenario does not always occur, the state updating and the

re-computation of the control sequence at each time instant may not be necessary.

Therefore, event-triggered MPC has been proposed recently to reduce the computa-

tional load [26,34,52]. Instead of updating the control periodically, the optimization

which computes it is triggered by the violation of some pre-defined conditions. For

systems with soft state constraints, i.e., state constraints which can be violated for a

short period of time, soft constraint MPC [117] and stochastic MPC [47] have been

introduce to reduce the conservativeness.

MPC controller design for nonlinear systems. In contrast to the well-

developed MPC schemes for linear systems, research on MPC strategies for nonlinear

systems remains challenging. Early work on MPC of nonlinear systems can be traced

back to [69], where an equality constraint in the optimization guarantees the recursive

feasibility of the optimization. The recursive feasibility further implies the nominal

asymptotic stability of the closed-loop system. A general state equality constraint

in [28] enlarges the feasible region for a fixed prediction horizon, but its robustness

is difficult to analyze. A quasi-infinite horizon MPC scheme is proposed in [12],

where an appropriate design of the terminal weighting matrix in the cost function

leads to a cost which serves as a quasi-infinite horizon cost. Initial feasibility implies

both recursive feasibility and asymptotic stability of the nominal closed-loop system.

Because the disturbances and uncertainties are ubiquitous,, it is necessary to design

the robust MPC for nonlinear systems.

In [32, 33], the inherent robustness of nonlinear MPC is analyzed, but the recur-
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sive feasibility of the optimization in the presence of disturbances, which is a key

factor in successive implementation of MPC is not investigated. In [116], the in-

herent robustness properties of quasi-infinite horizon nonlinear MPC are established.

The established recursive feasibility and robust stability results depend only on the

persistent disturbances. The inherent stability of nonlinear MPC for discrete-time

nonlinear systems is investigated in [67,91]. The robustness results are established by

showing that the cost function is continuous and, thus, in the presence of small distur-

bances, the state trajectory remains in a tube with respect to the reference trajectory

pre-designed at the initial time instant. A recent review on min-max MPC explicitly

takes into consideration the effect of the disturbances in [85], and the robustness of

nonlinear MPC under the input-to-state stability (ISS) framework is reviewed in [17].

In special cases when a Lyapunov function and a pre-designed constrained control

strategy are available, a Lyapunov-based MPC strategy [72,73] is designed by taking

advantage of the existing Lyapunov function, thus improving the system performance.

For contracting systems, contractive MPC strategies are designed by imposing sta-

bility constraints on the magnitude of the first predicted state vector [13] and on

the final predicted state vector [18], respectively. For general nonlinear systems, a

dual-mode robust constrained MPC is designed in [74] whose stability is guaranteed

by requiring that the prediction horizon at the next time instant be shorter than

that of the current time instant. In [66], robust stability is analyzed for nonlinear

discrete-time systems by introducing the ISS concept. However, since the conven-

tional quadratic cost function does not satisfy the conditions proposed in [66], the

stability is established based on the assumption that a control Lyapunov function can

be constructed.

Table 1.1 summarizes the main centralized MPC strategies.

1.3 Distributed MPC

Centralized MPC becomes impractical due to communication needs, computational

complexity, lack of scalability and the system identification issues mentioned in Sec-

tion 1.1. A straightforward extension which overcomes these difficulties is decentral-

ized MPC, where each subsystem solves its local optimization independently without

communicating with other subsystems. Decentralized MPC has been implemented

successfully when the coupling among subsystems is weak [65, 76, 86]. However, as

pointed out in [16], neglecting the interaction results in severely degraded system
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Linear MPC

Without disturbance

Infinite horizon [92,106]
Finite horizon:

Terminal cost [12]
Terminal constraints [69,74]
Economic MPC [2,3, 19]

With disturbance
Tube-based MPC [49,68,71,89]
Min-max MPC [42,104]

Nonlinear MPC

Without disturbance
Equality constraint [69]
Inequality constraint [12,28]

With disturbance

Inherent robustness [32,33,67,91,116]
ISS framework [17,66]
Lyapunov-based MPC [72,73]
Contractive MPC [13,18]
Dual-mode strategy [74]

Table 1.1: The main centralized MPC strategies.

performance or even instability when the coupling is strong.

Distributed MPC is a promising alternative which can take into account the in-

teractions among subsystems and can have computational and communication re-

quirements similar to decentralized MPC. In distributed MPC, the optimal control

signal is computed locally by solving an optimization which takes into account the

couplings among subsystems. However, the recursive feasibility of the optimization

and the stability of the closed-loop system with distributed MPC are not trivial to

guarantee [43]. Starting with the pioneering work in [114], increasing research effort

has been dedicated to distributed MPC [22, 23, 75, 94, 103, 107–109, 115]. Compre-

hensive reviews of the state-of-the-art research on distributed MPC can be found

in [1, 15, 77, 102]. Based on the interaction among subsystems, existing distributed

MPC research results can be classified into: distributed MPC for dynamically coupled

systems and distributed MPC for dynamically decoupled systems.

1.3.1 Distributed MPC of Dynamically Coupled Systems

Distributed MPC of dynamically coupled systems [20,108,109] can be found in numer-

ous control scenarios. A typical example of coupled systems is the control of processes

for which the overall plant is spatially distributed into a number of subsystems [35].
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According to the information that can be acquired by each subsystem, the control

strategies can be divided into cooperative distributed MPC and non-cooperative dis-

tributed MPC.

• Cooperative distributed MPC: In cooperative control strategies [108, 109,

112], each subsystem obtains and uses the state information of the overall sys-

tem to compute its MPC signal. In [108, 112], the cooperation is achieved

through iteratively and cooperatively optimizing the system-wide cost function.

The strategy in [109] is extended to dynamically coupled nonlinear systems

in [112]. The shared limitation is that each subsystem needs to communi-

cate with all other subsystems. The communication requirement is relaxed

in [107] through a hierarchical cooperative distributed MPC scheme. In low

level, the subsystems communicate with their neighbors at each iteration, while

the leaders of the low levels exchange information asynchronously in the high

level. For systems with pre-designed Lyapunov-based controllers, Lyapunov-

based distributed MPC strategies [37, 53–55] are designed to improve better

performance.

• Non-cooperative distributed MPC: In non-cooperative distributed MPC,

each subsystem can communicate only with its neighboring subsystems and,

thus, computes its control based on only limited information. The interaction

of the subsystem dynamics: 1) the dynamical interaction is treated as external

disturbances [11,39,40,65]. In [40], the min-max distributed MPC is applied to

discrete-time nonlinear systems by treating the effect of the system state inter-

action as additional disturbances. Similarly, by treating the state trajectory of

neighboring subsystems as bounded disturbances, contractive based distributed

MPC [65], stability constraint distributed MPC [11, 39] are investigated, re-

spectively; 2) the feasibility and stability results established rely heavily on

the consistency constraints that the predicted state trajectory at time instant

k + 1 should not deviate too much from the state trajectory predicted at time

k. In [29, 30], by restricting the difference between the future reference trajec-

tory and the actual one in a certain bound, the distributed MPC of a group of

dynamically coupled linear systems is investigated. Further extensions to the

nonlinear counterpart are studied in [24].
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1.3.2 Distributed MPC of Dynamically Decoupled Systems

Distributed MPC of dynamically decoupled subsystems finds applications in many

practical problems, including the multi-vehicle formation problem. When the subsys-

tems have decoupled dynamics, their cooperation is promoted through coupled state

and/or control constraints and/or cost functions.

• Distributed MPC of dynamically decoupled systems coordinated via

coupled state and/or control constraints: Guaranteeing the satisfaction

of the couple constraints is the main problem in distributed MPC of decoupled

subsystems with coupled constraints. In [95–97], the coupled constraints are

guaranteed by requiring the subsystems to solve their local optimizations in

sequence and then to send relevant information about their control action to all

subsystems following them in the sequence. In [110], the coupled constraints are

satisfied by designing robust tightening tubes around the ideal trajectory and

by maintaining the subsystems in those tubes through local control. In [111],

the approach in [110] is extended by including hypothetical state and control

information about neighboring subsystems in the local optimizations.

• Distributed MPC of dynamically decoupled systems coordinated via

coupled cost function: In this category, the cooperation among subsystems is

promoted through coupling terms in the cost function [23,24]. The distributed

MPC strategy requires in [24] that each subsystem not deviate too much from

its previously predicted state trajectory. The algorithm is implemented for sta-

bilizing a leader-follower formation of unmanned aerial vehicles (UAVs) in [21].

The distributed MPC for dynamically decoupled systems with coupled state

constraints and coupled cost function in [43] demands the prediction error be

small enough and the updating frequency be fast. The distributed MPC scheme

in [90] considers the delays with which the subsystems exchange information.

For a class of systems satisfying the controllability conditions [113], an easily-

verifiable constraint is imposed in the optimization solved by each subsystem.

The practical distributed MPC for linear systems in [99] enables plug-and-play

operations, i.e., only the controllers of the successor subsystems are re-designed

when removing a subsystem, and only information from the predecessor sub-

systems is used by the controller of an added subsystem.
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To reduce the communication burden and the computational complexity, recent

studies have applied event-triggered strategies to the distributed MPC of large-scale

systems [25,27]. Table 1.2 summarizes the main strategies used in distributed MPC.

Distributed MPC of dynamically coupled systems

Cooperative distributed MPC

Linear systems [108,112]
Nonlinear systems [109]
Hierarchical structure [107]
Lyapunov-based MPC

[37,53–55]

Non-cooperative control
Interaction treated as
disturbances [11, 39,40,65]

Consistency constraints [24,29,30]

Distributed MPC of dynamically decoupled systems

Coupled through state/control constraints
Sequential updating [95–97]
Tightening constraints [110,111]

Coupled cost function
Consistency constraint [21,24]
Additional constraint [113]
Plug-and-play [99]

Table 1.2: The main distributed MPC strategies.

1.3.3 Challenges and Motivations

MPC has been successfully implemented in a wide range of applications [84], and

its theoretical analysis advanced significantly [70]. As stated in [47], the developed

theories on MPC have seldom been applied to the practical applications. Motivated by

this observation, this dissertation aims to reduce the existing gap between the theory

and the industrial implementation of MPC by addressing several current challenges

as follows.

• MPC strategies for linear systems need to have a large feasible region and lim-

ited computational complexity to be practical for implementation in industrial

applications. A larger feasible region can be obtained by using a longer predic-

tion horizon. However, a long prediction horizon increases the computational

complexity of the optimization which yields the control signal. In other words,

a larger feasible region is obtained at the cost of increasing the computational

load. Chapter 2 seeks to overcome this current trade-off between the region of

feasibility and the computational load of MPC for linear systems.
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• While many research results exist for MPC of deterministic nonlinear systems,

only a few guaranteed recursively feasible and robustly stable strategy have

been reported on the robust MPC design of nonlinear systems to date. One

obstacle facing the development of practical and provably feasible and robust

stable MPC strategies is the conventional adoption of a quadratic integrand in

the optimization which yields the control signal. Specifically, cross terms arise

in the change of a cost with quadratic integrand at successive time instants and

consistency constraints or robustness constraints are added to the optimization

to bound the cross terms. The additional constraints increase the computational

complexity of the optimization and make the MPC strategy conservative and,

thus, impractical for applications. To avoid the need for consistency and/or

robustness constraints in the optimization, Chapter 3 proposes a robust MPC

strategy with non-quadratic integrand.

Another obstacle to the development of practical robust MPC methods for

nonlinear systems is the conventional reliance on only Lipschitz continuity in

feasibility and continuity proofs. This reliance leads to general but conservative

MPC strategies which seldom are practical for implementation. The Lipschitz

continuous property makes the proofs conservative in two ways: 1) the value of

Lipschitz constant used in the theoretical analysis is its maximum value over a

certain state-space region; 2) in the evaluation of the discrepancy between the

predicted and actual system state trajectories, we assume that the discrepancy

is always expanding, which is not always the case. Incorporating some intrinsic

properties of the nonlinear system into the design of the controller should yield

less conservative robust MPC strategies. Chapter 4 investigates this conjecture

for a class of nonlinear systems with contracting dynamics.

• For the large-scale systems, centralized MPC control strategies are impractical

because their central processing unit requires the access of all the state infor-

mation and solves an optimization with respect to a large number of decision

variables. Alternatively, distributed MPC can reduce the computational and

communication burden of centralized MPC and, thus, can potentially accommo-

date the practical requirements of a controller for large-scale systems. However,

the recursive feasibility of the optimization and the stability of the closed-loop

system are challenging to guarantee for distributed MPC. For large-scale sys-

tems with coupled cost function and disturbances, the few existing results are
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based on the robustness constraints and are conservative. To develop a less

conservative distributed MPC for cooperating nonlinear systems with decou-

pled dynamics, Chapter 5 adopts a non-squared integrand in the coupling cost

and takes advantage of a two-layer invariant set.

Furthermore, in the field of process control, large-scale systems usually consist of

many dynamically coupled nonlinear systems. Therefore, the economic demand

of distributed MPC strategies for large-scale systems with coupled dynamics

and external disturbances is great. However, most research treats the dynamic

couplings as external disturbances and, inevitably provides conservative results.

Intuitively, distributed MPC methods are expected to be less conservative if

they account for the dynamic couplings explicitly. Chapter 6 investigates this

hypothesis.

1.4 Objectives and Contributions of the Disserta-

tion

The objectives of this dissertation are two-fold: i) to design centralized MPC strate-

gies which are less conservative than existing methods; and ii) to present novel dis-

tributed MPC strategies. In particular, for centralized MPC, the goals are to enlarge

the feasible region, to reduce the computational demand of the optimization and to

allow the closed-loop system to tolerate larger disturbances. For distributed MPC,

the goal is to ensure cooperation through the coupling cost or in the presence of cou-

pled dynamics. The main contributions of this dissertation are summarized in the

following.

• Design of a multi-stage MPC strategy with increased computational

efficiency. A multi-stage MPC strategy which has a larger feasible region with

similar computational complexity to conventional MPC for a given horizon N

is obtained. Equivalently, the new strategy has numerical efficiency similar to

conventional MPC with a smaller horizon. Therefore, it can benefit applica-

tions that demand the control action to be derived on-line and with limited

computational effort. The proposed multi-stage MPC requires a pre-computed

sequence of j-step admissible sets, where the j-step admissible set is the set

of system states that can be steered to the maximum positively invariant set

in j control steps. Given the pre-computed admissible sets, multi-stage MPC
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first determines the minimum number of steps I required to drive the state to

the terminal set. Then, it steers the state to the (I −N)-step admissible set if

I > N , or to the terminal set otherwise. The off-line computation of the ad-

missible sets is presented. The feasibility and stability of the multi-stage MPC

for systems with and without disturbances are analyzed.

• Design of novel robust MPC methods for constrained nonlinear sys-

tems. First, a novel robust constrained MPC method for nonlinear systems

with control constraints and external disturbances is proposed whereby the con-

trol signal results from optimizing an objective function with an integral non-

squared stage cost and a non-squared terminal cost. The terminal weighting

matrix is designed such that: i) the terminal cost serves as a control Lyapunov

function; and ii) the resultant finite horizon cost can be treated as a quasi-

infinite horizon cost. Provided that the Jacobian linearization of the system to

be controlled is stabilizable and the optimization is initially feasible, sufficient

conditions for the recursive feasibility of the optimization and for the robust

stability of the closed-loop system are established. The sufficient conditions are

shown to rely on the appropriate design of the sampling interval with respect

to a certain given disturbance level. Second, a novel robust constrained MPC

strategy that exploits the contracting dynamics of a nonlinear system is pre-

sented. The proposed technique can be applied to the class of nonlinear systems

whose dynamics are contracting in a tube centered around the nominal state

trajectory predicted at time t0. Compared to robust MPC strategies based

on Lipschitz continuity, the method proposed in this thesis: 1) can tolerate

larger disturbances; and 2) is feasible for a larger prediction horizon and can

potentially enlarge the feasible region accordingly. The maximum disturbance

that can be tolerated by the proposed control strategy is explicitly evaluated.

Sufficient conditions for its recursive feasibility and for its practical asymptotic

stability are also derived.

• Design of robust distributed MPC strategies handling coupling and

disturbances. First, a robust distributed MPC of constrained continuous-time

nonlinear systems coupled by cost function is proposed whereby each subsystem

communicates only with its neighbors exchanging the assumed system state tra-

jectory. The cooperation among subsystems is achieved through incorporating

a coupling term in the cost function. To handle the disturbances, the strat-
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egy is designed based on the two-layer invariant set. Provided that the initial

state is feasible and the disturbance is bounded by a certain level, the recur-

sive feasibility of the optimization is guaranteed through appropriate tuning of

the design parameters. Sufficient conditions are derived for the states of each

subsystem to converge to the robust positively invariant set. Second, a robust

distributed MPC strategy is designed for a large-scale system which consists

of several dynamically coupled nonlinear systems with decoupled control con-

straints and with disturbances. In the second strategy, all subsystems compute

their control signals by solving local optimizations constrained by their nom-

inal decoupled dynamics. The dynamic couplings and the disturbances are

accommodated through new robustness constraints in the local optimizations.

Relationships among, and design procedures for, the parameters involved in the

proposed distributed MPC strategy are derived to guarantee its recursive feasi-

bility and the robust stability of the overall system. For a given bound on the

disturbances, the recursive feasibility is guaranteed by properly selecting the

sampling interval.

1.5 Organizations of the Dissertation

The remainder of the dissertation is organized as follows. Chapters 2, 3 and 4 present

novel robust MPC strategies which are less conservative than existing methods. Chap-

ter 2 proposes a multi-stage MPC strategy suitable for both the deterministic and the

robust cases. Chapter 3 designs a robust MPC controller for constrained continuous-

time nonlinear systems with a non-squared integrand in the cost function. Chapter

4 studies the robust MPC strategy for contracting nonlinear systems.

Chapters 5 and 6 address the distributed MPC design problems. Chapter 5 in-

troduces a robust distributed MPC strategy for dynamically decoupled nonlinear

systems which handles disturbances based on the two-layer invariant set. Chapter 6

investigates the distributed MPC controller design for nonlinear systems with weakly

coupled dynamics..

Finally, Chapter 7 summarizes the dissertation and discusses some future research

directions.
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Chapter 2

Multi-stage Suboptimal Model

Predictive Control with Improved

Computational Efficiency

2.1 Introduction

Existing research has proven the stability of unconstrained MPC [78], and of con-

strained MPC [83] with sufficiently large and fixed receding horizon N . However,

a fixed horizon N is not trivial. A large N (long horizon) generally increases the

computational complexity of the optimization and makes the implementation of con-

strained MPC impractical for applications which require the on-line computation of

the control action. In contrast, a small limited N (short horizon) may not be able

to generate a controller that can stabilize a plant in the absence of state and control

constraints [6,106]. Therefore, the selection of a fixed horizon N remains a non-trivial

problem.

For deterministic systems, guaranteed stable constrained MPC with fixed horizon

N has been achieved through modifying the cost function of the open-loop optimiza-

tion [105,106] and through introducing additional state constraints [13,18,69,74]. For

systems with disturbances, tube-based MPC [49,68,71,89] and min-max MPC [42,104]

strategies have been employed to guarantee the stability of constrained MPC with

fixed horizon N .

Feasibility is another important issue for constrained MPC with fixed horizon N

because the optimization which generates the control action may not have a solution
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for some system states for a given N . The set of feasible system states (i.e., the

operating region of constrained MPC) can be enlarged by incorporating N as an

additional decision variable in the open-loop optimization [71]. However, selecting

N at each step is computationally demanding, and leads to an optimization with

unpredictable computational time. Therefore, for applications that need to compute

the control action on-line, optimizing N at each step may be impractical. In such

applications, the operating region of constrained MPC with fixed horizon N needs to

be enlarged without sacrificing its numerical performance.

2.1.1 Objective, Contributions and Chapter Organization

This chapter proposes a multi-stage constrained MPC strategy which, for a given

horizon N , has larger feasible region than, but similar computational complexity to,

conventional constrained MPC. Equivalently, the proposed strategy has numerical

efficiency similar to conventional MPC with smaller horizon. Therefore, it can benefit

applications which demand the control action to be derived on-line and with limited

computational effort. The proposed multi-stage constrained MPC requires a pre-

computed sequence of j-step admissible sets, where the j-step admissible set is the

set of system states that can be steered to the maximum positively invariant set

in j control steps. Given the pre-computed admissible sets, the proposed technique

first determines the minimum number of steps I required to drive the state to the

terminal set. Then, it steers the state to the (I − N)-step admissible set if I > N ,

or to the terminal set otherwise. This chapter presents the off-line computation of

the admissible sets, and shows the feasibility and stability of multi-stage MPC for

systems without and with disturbances.

In the remainder of this chapter, Section 2.2 summarizes preliminary results. Sec-

tion 2.3 presents the off-line computation of the admissible sets. Sections 2.4 and 2.5

discuss the feasibility and stability of multi-stage constrained MPC for systems with-

out and with disturbances, respectively. Section 2.6 validates the analysis in Sec-

tions 2.4 and 2.5 through a numerical example. Section 2.7 concludes the chapter

with a discussion of the limitations of the technique.

Notation: Given the sets Gi, i = 1, · · · , g, G1 ⊕ G2 = {g1 + g2|g1 ∈ G1, g2 ∈
G2} (set addition), G1 ⊖ G2 = {g1|g1 + g2 ∈ G1,∀g2 ∈ G2} (set subtraction), and

⊕g
i=1Gi = G1 ⊕G2 ⊕ · · · ⊕Gg. The superscript “T” denotes matrix transposition.
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2.2 Preliminaries

In this section, relevant definitions and results for MPC with fixed horizon N are

presented for systems without disturbances and with disturbances, separately.

2.2.1 Deterministic MPC

Consider the system modeled by:

x(k + 1) = Ax(k) +Bu(k), x(0) = x0, (2.1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control input, k is the index of

the current time step, and A and B are system matrices with appropriate dimensions.

For simplicity, assume that the system state can be measured accurately. The state

and the control input are subject to the constraints:

x ∈ X, u ∈ U, (2.2)

where X, U are convex compact sets and each set contains the origin in its interior.

The control constraints are due to physical limits of the actuator, while the state

constraints arise from the physics of the system to be controlled and/or from safety

considerations [83].

Without loss of generality, the control problem for the system in (2.1) is to steer

the system state to the origin. Tracking problems can also be reduced to problems of

steering the state to the origin through appropriate state transformation [48].

For a given receding horizon N , MPC solves the following optimization at each

time step:

min
u

JN(x,u, k) =
N−1∑
i=0

Js(x(k + i|k), u(k + i|k)) (2.3)

+ Jf (x(k +N |k)),

subject to : x ∈ X,

u ∈ U

where x(k+ i|k) is the state at time instant k+ i predicted at time instant k, Js(x(k+
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i|k), u(k + i|k)) is the stage cost, i = 0, 1, · · · , N − 1, Jf (x(k +N |k)) is the terminal

cost, and u(k) = (u(k|k), u(k+1|k), · · · , u(k+N−1|k)) is a sequence of control inputs
computed at time instant k. The solution of (2.3) yields the minimum cost J0

N(x, k)

and the optimal control sequence u0(k) = (u0(k|k), u0(k+1|k), · · · , u0(k+N − 1|k)),
and only the first control action will be implemented:

KN(x(k)) = u0(k|k). (2.4)

Equation (2.4) is an implicit state feedback control law.

Definition 2.1. [7] A set Xf ⊆ X is a controlled positively invariant set for the

system in (2.1) if there exists a local state feedback Kfx ⊆ U such that x(k+1) ∈ Xf

for all x(k) ∈ Xf .

Definition 2.2. A set XfI ⊆ X is the maximum positively invariant set for the

system in (2.1) if it is the union of all controlled positively invariant sets of the

system in (2.1).

If the state and control constraints in (2.2) are convex, then the maximum pos-

itively invariant set can be characterized by a convex polyhedron or by a convex

ellipsoid [7], and can be computed using Algorithm 6.2 in [46].

If the local state feedback control law Kf is linear, and the stage and terminal

costs are:

Js(x(k + i|k), u(k + i|k)) =(1/2)[x(k + i|k)TQx(k + i|k) (2.5a)

+ u(k + i|k)TRu(k + i|k)],

Jf (x(k +N |k)) =(1/2)x(k +N |k)TPx(k +N |k), (2.5b)

with Q, R and P positive definite, and if the following properties are satisfied [70]:

• A1: (A+BKf )Xf ⊂ Xf , Xf ⊂ X, KfXf ⊂ U,

• A2: Jf ((A+BKf )x) + Js(x,Kfx) ≤ Jf (x), ∀x ∈ Xf ,

then, J0
N(x, k) is monotonically non-increasing and provides a Lyapunov function

which shows that the control in (2.4) can stabilize the system in (2.1) with the con-

straints in (2.2).
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With additional weak conditions that there exist constants c2 > c1 > 0 such that:

c1||x(k)||2 ≤ J0
N(x, k),∀x(k) ∈ IN ,

J0
N(x, k + 1) ≤ J0

N(x, k)− c1||x(k)||2,∀x(k) ∈ IN ,

J0
N(x, k) ≤ c2||x(k)||2,∀x(k) ∈ Xf ,

the system is exponentially stable [71], as shown in [70,71].

2.2.2 Robust MPC

Consider the system described by:

x(k + 1) = Ax(k) + Bu(k) + w(k), x(0) = x0, (2.6)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control input, A, B are

system matrices with appropriate dimensions, and w(k) ∈ Rw is the additive system

disturbance. The state, the control input and the system disturbance are subject to

the constraints:

x ∈ X, u ∈ U, w ∈ W, (2.7)

where X, U are convex compact sets and each set contains the origin in its interior,

and W is closed and bounded, and all three sets contain the respective origins in their

interior.

The nominal model of the system in (2.6) is:

x̄(k + 1) = Ax̄(k) +Bū(k). (2.8)

For the feedback control strategy u(k) = ū(k) +K(x(k)− x̄(k)), where K is a static

feedback gain, the error dynamics of the system in (2.6) become:

e(k + 1) = (A+BK)e(k) + w(k), (2.9)

where e(k) = x(k)− x̄(k).

Definition 2.3. [88] A set S ⊆ X is a robust positively invariant set for the system

in (2.9) if (A+BK)S⊕W ⊆ S.

Definition 2.4. A set Sf ⊆ X is the maximum robust positively invariant set for the
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system in (2.9) if it is the union of all robust positively invariant sets of the system

in (2.9).

Definition 2.5. [88] A set Z ⊆ X is the minimum robust positively invariant set for

the system in (2.9) if it is a robust positively invariant set that is contained in every

robust positively invariant set of the system in (2.9).

Solving the optimization:

min
ū

JN(x̄, ū, k) =
N−1∑
i=0

[x̄(k + i|k)TQx̄(k + i|k)

+ū(k + i|k)TRū(k + i|k)]
+x̄(k +N |k)TPx̄(k +N |k),

subject to : x̄(k + i|k) ∈ X⊖ Z, i = 0, 1, · · · , N − 1,

ū(k + i|k) ∈ U⊖KZ, i = 0, 1, · · · , N − 1,

x̄(k +N |k) ∈ Xf ⊆ X⊖ Z

(2.10)

yields the optimal control sequence ū0(k) = (ū0(k|k), ū0(k + 1|k), · · · , ū0(k + N −
1|k)). Then, the control strategy KN(x(k)) = ū0(k|k)+K(x(k)− x̄(k)) can steer the

state in (2.6) to the maximum robust positively invariant set Sf while satisfying the

constraints in (2.7) [68].

2.3 The j-Step Admissible Sets

The implementation of the multi-stage MPC strategy proposed in this chapter re-

quires a pre-computed sequence of j-step admissible sets. This section presents the

admissible sets and their off-line computation.

Definition 2.6. The j-step admissible set for the system in (2.1) is the set Ij ⊆
X which contains all system states that can be steered to the maximum positively

invariant set XfI for the system in (2.1) in j steps while satisfying the constraints

in (2.2).

From this definition, it follows that MPC with horizon N = j is feasible and can

stabilize the system in (2.1) for any x(0) ∈ Ij.
The j-step admissible set can be computed recursively, as shown conceptually in

Algorithm 1. Algorithm 1 is similar to the computation of the admissible sets for
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the infinite horizon optimal control problem in [83], but starts from the maximum

positively invariant set XfI instead of starting from the origin.

Algorithm 1 Recursive Computation of the j-Step Admissible Set

1: procedure computing the j-step admissible set ({I1, I2, · · · , Ij})
2: Compute the maximum positively invariant set XfI .
3: Set I0 = XfI .
4: for i = 0 to j − 1 do
5: Ii+1 = {x : x ∈ X,∃u, u ∈ U, Ax+Bu ∈ Ii}.
6: end for
7: end procedure

Remark 2.1. If the maximum positively invariant set XfI and the state and control

constraints in (2.2) are convex, then the j-step admissible sets are convex. In partic-

ular, if the terminal set and the state and control constraints are convex polytopes,

then the j-step admissible sets are convex polytopes.

Remark 2.2. The maximum positively invariant set XfI is a subset of any j-step

admissible set, i.e., XfI ⊆ Ij, ∀j ≥ 0.

Theorem 2.1. The sequence of j-step admissible sets of the system in (2.1) is mono-

tonically nondecreasing, i.e., it obeys I1 ⊆ I2 ⊆ · · · ⊆ Ij ⊆ · · · .

Proof. The proof is through induction. From I0 = XfI , it follows that, for any

x(k) ∈ I0, there exists a control action u(k) such that Ax(k) + Bu(k) ∈ I0. Then,

I0 ⊆ I1. Assume that Ij−1 ⊆ Ij, and consider a state x(k) ∈ Ij. Then there exists a

feasible control u(k) such that Ax(k) + Bu(k) ∈ Ij. Then Ij ⊆ Ij+1. This completes

the proof.

Define

I∞ =
∞∪
i=0

Ii. (2.11)

Similar to [83], the following theorem is given:

Theorem 2.2. Let J∞(x) denote the infinite horizon linear quadratic cost and assume

that the system in (2.1) is stabilizable. Then x ∈ I∞ ⇔ J∞(x) < ∞.

Proof. x ∈ I∞ ⇒ J∞(x) < ∞. The proof differs from [83] in that, after k steps,

the state will enter the maximum positively invariant set XfI instead of reaching the



22

origin. In this set, by implementing a local feedback control law, the state will be

steered to the origin asymptotically with a finite cost. This implies that the cost

J∞(x) is finite. This completes the sufficient part. The necessary part of the proof

readily follows from [83].

Remark 2.3. The sequence of admissible sets is upper bounded, since the system

state belongs to a compact set, i.e., I∞ ⊆ X.

In this chapter, the conceptual Algorithm 1 is implemented as shown in Algo-

rithm 2. Algorithm 2 is a modification of the algorithm given in Theorem 4.1 in [41].

Algorithm 2 computes the j-step admissible set accurately, but the number of inequal-

ities in (2.13) grows large as the dimension of the system and j grow. A large number

of inequalities leads to a computationally expensive optimization that is impractical

for applications. To reduce the numerical complexity of the optimization, this chap-

ter limits the number of inequalities in (2.13) and computes inner approximations of

the admissible sets. Efficient algorithms for computing an inner approximation of a

convex polygon or a convex polytope are presented in [62,63].

The number Imax of admissible sets that need to be pre-computed is determined

in two steps:

Step 1 : A shrinking factor α ∈ (0, 1) is computed such that ∀x ∈ X,∃u ∈ U,
Ax+Bu ∈ αX. This chapter uses the binary search with a pre-defined number

of steps to determine a sufficiently accurate α. The shrinking factor α guarantees

that ∀x ∈ αiX,∃u ∈ αiU such that Ax+Bu ∈ αi+1X for any positive integer i.

Step 2 : A factor β is determined such that βX ∈ XfM . Then, the maximum

number Imax of admissible sets that need to be pre-computed is logα β ≤ Imax ≤
logα β + 1.

2.4 Multi-stage MPC

Given the fixed receding horizon N , the initial state x(0), the maximum positively in-

variant set XfI and the sequence of pre-computed j-step admissible sets {I1, · · · , IImax},
multi-stage MPC drives the initial state to XfI in two steps (see Algorithm 3):

Step 1 : Determine II , the smallest j-step admissible set which contains the initial

state.
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Algorithm 2 Recursive Computation of the j-Step Admissible Set (Implementation)

1: procedure computing the j-step admissible set ({I0, I1, · · · , Ij})
2: Write the system state and control constraints X and U in the form

Ex+ Fu+ λ ≤ 0, (2.12)

with E, F constant matrices and λ a constant vector, all with appropriate di-
mensions.

3: Set I0 = XfI .
4: for i = 0 to j − 1 do
5: Express Ii in the form

Px+ γ ≤ 0, (2.13)

with P a constant matrix and γ a constant vector, both with appropriate dimen-
sions.

6: Remove the redundant rows of [P γ]. If needed, use an inner approximation
to limit the number of inequalities to a given maximum number.

7: Let

Ẑ = {(x, u) :
[

E
PA

]
x+

[
F
PB

]
u+

[
λ
γ

]
≤ 0}. (2.14)

8: Solve (2.14) through Fourier-Motzkin elimination [41] to get

Ii+1 = {x : (x, u) ∈ Ẑ}. (2.15)

9: end for
10: end procedure
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Step 2 : Apply MPC to steer the state to II−N if I > N , or to XfI otherwise.

Algorithm 3 Multi-stage MPC Strategy

1: procedure Multi-stage MPC
2: Determine II s.t. x(0) ∈ II and x(0) /∈ II−1.
3: if I > N then
4: for k = 0 to I −N do
5: Solve

min
u

JN(x,u, k) =
∑N−1

i=0

[
x(k + i|k)TQx(k + i|k)

+u(k + i|k)TRu(k + i|k)
]

+x(k +N |k)TPx(k +N |k),
subject to : x(k + i|k) ∈ X, i = 0, 1, · · · , N − 1,

u(k + i|k) ∈ U, i = 0, 1, · · · , N − 1,
x(k +N |k) ∈ II−N−k

(2.16)

6: Apply u0(k|k).
7: end for
8: end if
9: Apply MPC with fixed horizon N to steer the state to XI .
10: end procedure

The smallest j-step admissible set that contains the state x is the set II such that

x ∈ II and x /∈ II−1. This chapter considers admissible sets represented by convex

polytopes:

Ij = {x|aTijx ≤ bij , ij = 1j, 2j, · · · , kj},

and implements the computation of II through binary search and linear program [9].

Specifically, introducing one slack variable η leads to the linear programming:

min η, (2.17)

subject to : aT1jx+ η ≤ b1j ,

aT2jx+ η ≤ b2j ,

...

aTkjx+ η ≤ bkj

whose solution indicates that x belongs to Ij if η ≤ 0. Binary search yields I, the

minimum j for which (2.17) admits a solution η ≤ 0.
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The computation of II guarantees that MPC with fixed horizon I is feasible and

stabilizes the system in (2.1). As the following theorem shows, it also guarantees that

multi-stage MPC with fixed horizon N < I is feasible and can stabilize the system

in (2.1).

Theorem 2.3. If the initial state x(0) belongs to an admissible set II , then multi-

stage MPC with fixed horizon N is feasible and can steer the state to the maximum

robust positively invariant set XIM .

Proof. Feasibility: For x(0) ∈ II , I ≤ N , multi-stage MPC reduces to MPC with

fixed horizon N , whose feasibility and stability are ensured as in [70]. For x(0) ∈ II ,
I > N , the proof is by induction. At the initial time step k = 0, according to the

definition of II , the optimization in (2.16) is feasible, and yields a control sequence

u0(0) to steer x(0) to II−N . Multi-stage MPC applies u0(0|0) and drives the state

to II−1. Now consider that multi-stage MPC has steered the state to II−k through a

sequence of feasible control inputs {u0(0|0), u0(1|1), . . . , u0(k − 1|k − 1)}, k < I −N .

According to the definition of II−k, the optimization in (2.16) is feasible, and provides

a control sequence u0(k) to drive x(k) to II−k−N . Multi-stage MPC applies u0(k|k)
and steers the state to II−k−1. Hence, the optimization in (2.16) is feasible for all k =

0, . . . , I−N , and the control sequence {u0(0|0), u0(1|1), . . . , u0(I−N −1|I−N −1)}
drives the state to IN .

Stability: The feasibility proof shows that the system state enters IN in I − N

steps, that is, x(I −N) ∈ IN . Therefore, after I −N steps, multi-stage MPC reduces

to conventional MPC with fixed horizon N , whose stability is guaranteed [70].

Remark 2.4. The convexity of the admissible sets together with the convexity of

the state constraints, of the control constraints and of the cost function guarantee the

global minimum of the optimization in (2.16).

Remark 2.5. At each time step, multi-stage MPC solves a similar optimization as

MPC with fixed horizon N , but uses a different terminal set. Because employing

a different terminal set does not affect the numerical efficiency of the minimization

problem compared with conventional MPC, the computational complexity of multi-

stage MPC is comparable to that of conventional MPC with fixed horizon N . The

only difference from the conventional MPC is the pre-computation required to eval-

uate the smallest admissible set II which contains the initial state. The cost of this

computation is negligible given that I < Imax and that Imax has been pre-computed.



26

2.5 Multi-stage Tube-Based Robust MPC

This section extends the admissible sets and the multi-stage MPC to linear systems

with disturbances. Consider the nominal system in (2.8), and the tightened con-

straints:

Ū = U⊖KZ, X̄ = X⊖ Z, (2.18)

where Z is the minimum robust positively invariant set with respect to the feedback

controller K. Based on the tightened constraints in (2.18) and the local feedback

controller Kf (to achieve the optimality, the unconstrained linear quadratic regula-

tor (LQR) controller is usually adopted), the maximum robust positively invariant

set Sf is calculated such that Sf ⊕ Z ⊂ X. Thereafter, the sequence of admissible

sets {I1, I2, · · · , IImax} is computed using Algorithm 2 with the tightened constraints

in (2.18) and with the maximum robust positively invariant set Sf .

Now, given a receding horizon N , the initial state x(0), the minimum robust posi-

tively invariant set Z and the sequence of pre-computed admissible sets {I1, · · · , IImax},
robust multi-stage MPC drives the state to Sf in two steps (see Algorithm 4):

Step 1 : Compute II , the smallest admissible set which contains the initial state;

Step 2 : Apply robust MPC to steer the state of the nominal system to II−N if

I > N , or to steer the state of the uncertain system to Sf otherwise.

Theorem 2.4. If the initial state x(0) of the system with constraints and disturbances

in (2.7) belongs to the admissible set associated with the nominal system in (2.8) with

the tightened constraints in (2.18), the state x(k) of the system in (2.6) with the robust

controller in (2.20) will converge to the maximum robust positively invariant set Sf

while obeying x(k) ∈ X and KN(x(k)) ∈ U for all k ≥ 0.

Proof. For the nominal system, the state x̄(k) satisfies x̄(k + 1) = Ax̄(k) + Bū(k).

From Theorem 2.3, x̄(k) will converge to the origin as k → ∞. As in [49, 68, 71], the

states of the uncertain system and of the nominal system obey x(k+1)− x̄(k+1) =

(A+BK)(x(k)− x̄(k)) +w(k), so x(k) ∈ x̄(k)⊕Z. The convergence of x̄(k) implies

the convergence of x(k) to Z. Moreover, since x̄(k) ∈ X ⊖ Z and ū(k) ∈ U ⊖ KZ,
then x(k) ∈ X⊖Z⊕Z ⊆ X and u(k) = ū(k)+K(x(k)− x̄(k)) ∈ U⊖KZ⊕KZ ⊆ U,
respectively.
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Algorithm 4 Robust Multi-stage MPC Strategy

1: procedure Robust multi-stage MPC
2: Determine II such that x(0) ∈ II and x(0) /∈ II−1.
3: if I > N then
4: for k = 0 to I −N do
5: Solve

min
ū

JN(x̄, ū, k) =
∑N−1

i=0

[
x̄(k + i|k)TQx̄(k + i|k)

+ū(k + i|k)TRū(k + i|k)
]

+x̄(k +N |k)TPx̄(k +N |k),
subject to : x̄(k + i|k) ∈ X̄, i = 0, 1, · · · , N − 1,

ū(k + i|k) ∈ Ū, i = 0, 1, · · · , N − 1,
x̄(k +N |k) ∈ II−N−k

(2.19)

6: Apply

KN(x(k)) = ū0(k|k) +K(x(k)− x̄(k)). (2.20)

7: end for
8: end if
9: Apply robust MPC with fixed horizon N to steer the state to Sf .
10: end procedure
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2.5.1 Modified Multi-stage Tube-based Robust MPC

The minimum robust positively invariant set Z for the error system in (2.9) is usually

computed using:

Z = lim
i→∞

Zi = lim
i→∞

(
⊕j=i

j=0A
j
KW

)
. (2.21)

Given that Zi ⊆ Z,∀i ≥ 0, the state and control constraints in the optimization

in (2.19) can be replaced with X ⊖ Zk+i and U ⊖KZk+i, respectively, to obtain the

modified multi-stage robust MPC in Algorithm 5. This modification allows the state

and the control to take values in larger sets, and potentially improves performance.

The sets Zi are generated during the off-line computation of Z, using (2.21) and

Z0 = 0.

Algorithm 5 Modified Robust Multi-stage MPC Strategy

1: procedure Modified robust multi-stage MPC
2: Determine IM such that x(0) ∈ II and x(0) /∈ II−1.
3: if I > N then
4: for k = 0 to I −N do
5: Solve

min
ū

JN(x̄, ū, k) =
∑N−1

i=0

[
x̄(k + i|k)TQx̄(k + i|k)

+ū(k + i|k)TRū(k + i|k)
]

+x̄(k +N |k)TPx̄(k +N |k),
subject to : x̄(k+ i|k) ∈ X⊖ Zk+i, i = 0, 1, · · · , N − 1,

ū(k+ i|k) ∈ U⊖KZk+i, i = 0, 1, · · · , N − 1,
x̄(k+ N |k) ∈ II−N−k

(2.22)

6: Apply

KN(x(k)) = ū0(k|k) +K(x(k)− x̄(k)). (2.23)

7: end for
8: end if
9: Apply robust MPC with fixed horizon N to steer the state to Sf .
10: end procedure

Theorem 2.5. If the optimization in (2.22) is feasible for the initial state x(0), then

it is feasible for all time instants k ≥ 1.

Proof. The proof is through induction. Assume that the initial state x(0) ∈ II is

feasible. Then, there exists a control sequence ū0(0), such that ū0(i|0) ∈ U ⊖ KZi,
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x̄(i|0) ∈ X ⊖ Zi, x̄(N |0) ∈ II−N . The nominal system obeys x̄(0|1) = x̄(1|0). From

x̄(N |0) ∈ II−N and the definition of the (I − N)-step admissible set, it follows that

there exists a control signal u∗ ∈ U ⊖ KZN that can drive x̄(N |0) to II−N−1. So

ū(1) = (ū0(1|0), ū0(2|0), · · · , ū0(N − 1|0), u∗) can be used to drive x̄(1) = x̄(0|1) to

II−N−1 while obeying the state and control constraints. Similarly, it can be shown

that all successive optimizations are feasible.

2.6 Illustrative Example

To illustrate the effectiveness of the proposed multi-stage MPC strategy, this section

applies it to control the unmanned mini-hovercraft with system dynamics modeled

in [38]. Because the dynamics of the vehicle are decoupled and are the same along

the two directions of motion in the plane, this section considers the control of the

motion along a single direction. The control of the motion along the other direction

is similar to the one introduced here.

After zero-order hold discretization with the sampling period Ts = 0.1 s, the

discrete-time state-space dynamics of the mini-hovercraft can be written as:[
x1(k + 1)

x2(k + 1)

]
=

[
1.0000 0.0995

0 0.9900

][
x1(k)

x2(k)

]
(2.24)

+

[
0.0050

0.0995

]
u(k) + w(k),

where x1 and x2 denote the vehicle position and velocity, respectively. The state and

control constraints are:

|x1| ≤ 3, |x2| ≤ 2, |u| ≤ 10.

The disturbance is assumed bounded by w ∈ W, whereW := {w ∈ R2|||w||∞ ≤ 0.03}.
The control objective is to steer the mini-hovercraft from the initial state x(0) =

[−2.5 − 1.5]T to the origin. For this problem, the control parameters are selected as

follows: The local feedback gain is Kf = −[54.3 12.3] and is adopted when the state

enters the terminal set; the gain in (2.9) is K = [100.5 15.0], and is chosen to stabilize

the feedback matrix A+BK; the weighting matrices in the cost function in (2.5) are

Q =

[
1 0

0 1

]
, P =

[
2 0

0 2

]
and R = 3, respectively.
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Given these control parameters, the terminal set XfI is calculated as the maximum

robust positively invariant set for the closed-loop system x(k+ 1) = (A+BKf )x(k);

the minimum robust positively invariant set Z is computed using AK = A + BK

in (2.21); the tightened state and control constraints are derived as X⊖Z and U⊖KZ,
respectively; and the maximum number of j-step admissible sets that need to be pre-

computed is Imax = 30.

Figure 2.1: The initial state x(0), the maximum positively invariant set Xfm, and the
admissible sets I5, I8, I14 for the mini-hovercraft without disturbances.
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Figure 2.2: State evolution of mini-hovercraft without disturbances and controlled
using: multi-stage MPC with N = 5; multi-stage MPC with N = 8; and multi-stage
MPC with N = 14.

For the simulation of the mini-hovercraft without disturbances, MPC with mini-

mum horizon N = 14 is needed to drive the initial state [−2.5 −1.5]T to the maximum



31

0 10 20 30 40 50
−2

0

2

4

6

8

10

Time instant

u

 

 
N = 5
N = 8
N = 14

Figure 2.3: Control action of mini-hovercraft without disturbances and controlled
using: multi-stage MPC with N = 5; multi-stage MPC with N = 8; and multi-stage
MPC with N = 14.

positively invariant set XfI , and provides the benchmark for multi-stage MPC with

N = 8 and with N = 5. The initial state x(0), the maximum positively invariant

set XfI and the pre-computed j-step admissible sets I5, I8, I14 are depicted in Fig-

ure 2.1. As shown in Figure 2.1, the admissible sets are convex polygons. They are

computed without using inner approximation because 14 inequalities are sufficient to

characterize them. Note that x(0) is in I14, but is neither in I5 nor in I8. Hence, x(0)
is feasible for MPC with N = 14, but infeasible for MPC both with N = 8 and with

N = 5. Note also that the j-step admissible sets approach the set of state constraints

as j increases.

Figure 2.2 and Figure 2.3 depict the state evolution and the corresponding con-

trol action for the deterministic mini-hovercraft controlled using the multi-stage MPC

with N = 14; N = 8; and N = 5. The state trajectories validate that multi-stage

MPC with limited horizon can steer the state of the deterministic system to the

maximum positively invariant set. A limited horizon reduces the computational com-

plexity of the optimization and makes multi-stage MPC practical for implementation

in applications that demand the on-line computation of the control action. The price

paid for enlarging the feasible region of MPC with fixed horizon N without increasing

the cost of computing the control action is the larger overshoot (see Figure 2.2) and

larger oscillation of the control signal (see Figure 2.3).

For the simulation of the mini-hovercraft with disturbances, tightened state and

control constraints are required to guarantee robustness. Correspondingly, the ad-
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Figure 2.4: The initial state x(0), the maximum robust positively invariant set Sf ,
and the admissible sets I5, I8, I22 for the nominal mini-hovercraft with tightened
constraints.

Figure 2.5: State evolution of the mini-hovercraft with disturbances and controlled
using: multi-stage robust MPC with N = 5; multi-stage robust MPC with N = 8;
and robust MPC with fixed horizon N = 22.

missible sets are smaller than for the simulation of the mini-hovercraft without dis-

turbances. Therefore, robust MPC with minimum horizon N = 22 is needed to steer

the initial state to the maximum robust positively invariant set Sf , and provides the

benchmark for multi-stage robust MPC with N = 8 and with N = 5. The initial

state, the maximum robust positively invariant set Sf and the pre-computed admis-

sible sets I5, I8, I22 for the nominal mini-hovercraft with tightened constraints are

shown in Figure 2.4. As Figure 2.4 illustrates, the admissible sets are convex poly-
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Figure 2.6: Control action for the mini-hovercraft with disturbances with N = 5.
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Figure 2.7: Control action for the mini-hovercraft with disturbances with N = 8.

gons. They are computed without using inner approximation because 23 inequalities

are sufficient to characterize them.

Figure 2.5 depicts the state evolution of the mini-hovercraft affected by distur-

bances and controlled using: multi-stage robust MPC with N = 22; multi-stage

robust MPC with N = 8; and multi-stage robust MPC with N = 5. The state trajec-

tories confirm that multi-stage robust MPC with limited horizon can steer the state

of the uncertain system to the maximum robust positively invariant set Sf .

Figures 2.6, 2.7 and 2.8 plot the control actions that determine the state trajec-

tories in Figure 2.5. Note that the control applied to the simulated mini-hovercraft

affected by disturbances satisfies the control constraints regardless of the horizon
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Figure 2.8: Control action for the mini-hovercraft with disturbances with N = 22.

selected for the multi-stage robust MPC strategy. The results in Figures 2.6, 2.7

and 2.8 validate that multi-stage robust MPC can enlarge the feasible region of con-

ventional robust MPC with fixed horizon N without increasing the cost of computing

the control action.

2.7 Conclusions

This chapter has proposed a multi-stage constrained MPC method which has larger

operating region than, but similar computational complexity to, conventional MPC

for a given horizon N . Equivalently, the proposed strategy has numerical efficiency

similar to conventional MPC with smaller horizon. Therefore, it is advantageous in

applications that demand the control action to be derived on-line and with limited

computational effort. The proposed strategy relies on a pre-computed sequence of

j-step admissible sets, where the j-step admissible set is the set of states from which

the system can be driven to the terminal set in j steps. Given the pre-computed

admissible sets, multi-stage constrained MPC first determines the minimum number

I of steps required to drive the state to the terminal set. Then, it steers the state to

the (I−N)-step admissible set if I > N , or to the terminal set otherwise. The off-line

computation of the sequence of admissible sets has been presented, and the feasibility

and stability of multi-stage MPC for systems without and with disturbances have

been shown. A numerical example has validated that multi-stage MPC with N = 5

can stabilize a system that requires conventional MPC with N ≥ 14 in the absence
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of disturbances, and requires MPC with N ≥ 22 when affected by disturbances.

The limitations of the proposed multi-stage method are that the computation of

the admissible sets can be challenging, and that it cannot be extended to nonlinear

systems directly.
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Chapter 3

Robust Model Predictive Control

of Constrained Nonlinear Systems

– Adopting the Non-squared

Integrand Objective Function

3.1 Introduction

Various existing approaches have addressed the applicability of the finite horizon op-

timization and the closed-loop stability of a system with MPC. For linear systems

in particular, stabilizing MPC controllers and their synthesis have been studied ex-

tensively [42, 49, 68, 70, 71, 89, 92, 104]. In comparison to the well-developed MPC

schemes for linear systems, research on MPC strategies for nonlinear systems remains

challenging. For deterministic nonlinear systems, the recursive feasibility of the op-

timization and the closed-loop stability of the system with MPC can be guaranteed

by introducing equality constraints [69] or terminal state constraints [12] in the opti-

mization.

For nonlinear systems with disturbances, some existing works have investigated

the inherent robustness of an MPC strategy which they first designed for the system

without disturbances [32, 33, 67, 91, 116]. Other existing works have proposed vari-

ous strategies for the design of robust nonlinear MPC, including min-max MPC [85],

input-to-state-stability (ISS)-based MPC [17,66], Lyapunov-based MPC [72,73], con-

traction based MPC [13, 18]. However, those prior strategies need to introduce ad-
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ditional constraints to bound cross terms arising in the variation of the Lyapunov

function between successive time instants. The introduction of additional constraints

can be avoided by designing a Lyapunov function without cross terms.

3.1.1 Objective, Contributions and Chapter Organization

Inspired by [4,21,45], this chapter investigates the robust stability of nonlinear MPC

for continuous-time systems with control constraints and external disturbances by

adopting a non-squared cost function. Compared to [21] which uses a non-squared

stage cost and a stability equality constraint difficult to satisfy in practice [74], the

strategy proposed in this chapter uses an integral non-squared cost and a non-squared

terminal cost. The contributions of this chapter are three-fold.

• The proposed non-squared cost function provides robustness to disturbances

without imposing additional stability constraints on the state trajectory. Specif-

ically, the non-squared cost function is sufficient for robustness because no cross

terms appear when evaluating the cost variation between successive time in-

stants.

• The weighting matrix of the terminal cost function is designed to serve as a local

control Lyapunov-like function, and the invariant set is constructed accordingly.

As a result, the non-squared cost can be treated as a quasi-infinite horizon cost.

• A recursive feasibility and robust stability analysis establishes that, for a given

disturbance level, the appropriate design of the sampling interval can guarantee

that the system state enters and remains in a robust positively invariant set.

In the remainder of this chapter, Section 3.2 formulates the problem, recalls some

preliminary results and shows how to design the terminal weighting matrix associated

with the terminal cost. Section 3.3 derives sufficient conditions for the recursive

feasibility and for the robust stability of the proposed control strategy. Section 3.4

demonstrates the effectiveness of the proposed method through simulations.

Notation: The superscript “T” denotes the matrix transposition. For a matrix

A ∈ Rn×n, λ̄(A) and λ(A) denote the maximum and minimum eigenvalues of A,

respectively. For a vector x ∈ Rn, ∥x∥P denotes the P -weighted norm of the vector x

and is defined as ∥x∥P =
√
xTPx.
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3.2 Preliminaries

Consider the nonlinear system with additive disturbances

ẋ(t) = f(x(t), u(t)) + w(t), x(t0) = x0, t ≥ 0, (3.1)

where x(t) ∈ Rn represents the system state, u(t) ∈ Rm the control input, and

w(t) ∈ Rn the additive disturbances. The disturbances are bounded in a compact

set W, and 0 ∈ W ⊂ Rn. The control signal of the system in (3.1) is constrained as

follows

u(t) ∈ U, t ≥ 0, (3.2)

where U is a compact set containing the origin in its interior.

The nominal dynamics associated with the system in (3.1) are

˙̄x(t) = f(x̄(t), ū(t)). (3.3)

The following fairly standard assumptions [12, 51] are imposed on the system

in (3.1).

Assumption 3.1. (a) The function f : Rn×Rm → Rn in (3.1) is twice continuously

differentiable and satisfies f(0, 0) = 0; (b) For any initial condition x0 ∈ Rn and any

piecewise right-continuous u : [0,∞) → U, the function in (3.1) admits a unique

solution.

Remark 3.1. Assumption 3.1 implies that f(x, u) is Lipschitz continuous with respect

to x for x in a compact set. Specifically, given x ∈ D, where D is a compact set, the

following holds: ∥f(x, u)− f(x′, u)∥ ≤ L∥x− x′∥.

Assumption 3.2. The linearized dynamics of the nominal system in (3.3) around

the origin are stabilizable, i.e., for ˙̄x(t) = Ax̄(t) + Bū(t), where A = ∂f
∂x
(0, 0) and

B = ∂f
∂u
(0, 0), there exists a matrix K with an appropriate dimension such that AK =

A+BK is stable.

Before presenting the robust constrained MPC strategy, we recall some definitions

from [7] that will be used throughout the chapter.

Definition 3.1. A set Ω ⊆ Rn is a positively invariant set for the system ẋ(t) =

f(x(t)), if x(t) ∈ Ω, t ≥ t0, ∀x(t0) ∈ Ω.
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Definition 3.2. A set Ω ⊆ Rn is said to be a robust positively invariant set for the

system ẋ(t) = f(x(t)) + w(t), if x(t) ∈ Ω, t ≥ t0, ∀x(t0) ∈ Ω and ∀w(t) ∈ W.

This chapter adopts the non-squared objective function

J(tk) =

∫ tk+T

tk

(
∥x̄(s; tk)∥Q + ∥ū(s; tk)∥R

)
ds+ ∥x̄(tk + T ; tk)∥P , (3.4)

where T is the prediction horizon and Q and R are weighting matrices satisfying

Q > 0, R > 0. P is the terminal weighting matrix which is to be designed in

Lemma 3.1. At time instant tk, the following optimization is solved

min
ū(s;tk),s∈[tk,tk+T ]

J(tk) = min
ū(s;tk),s∈[tk,tk+T ]

∫ tk+T

tk

(
∥x̄(s; tk)∥Q + ∥ū(s; tk)∥R

)
ds

+ ∥x̄(tk + T ; tk)∥P , (3.5)

subject to :

˙̄x(s; tk) = f(x̄(s; tk), ū(s; tk)), s ∈ [tk, tk + T ],

ū(s; tk) ∈ U,

x̄(tk + T ; tk) ∈ Ωαε.

Here, Ωε is a positively invariant set which will be designed in Lemma 3.1, and α is

a shrinking factor satisfying α ∈ (0, 1) which will be determined in Section 3.3. After

computing the optimal control signal ū∗(s; tk), s ∈ [tk, tk + T ], the control signal

ū∗(s; tk), s ∈ [tk, tk+1) is applied to the system in (3.1). At the next time instant

tk+1, the system state is updated, and a new optimization is solved.

To launch the optimization in (3.5), we need to know a priori the positively

invariant set Ωε and construct an appropriate terminal weighting matrix P . The

lemma below provides the design procedure for P and shows that the terminal cost

∥x̄(tk + T ; tk)∥P can be treated as a control Lyapunov-like function.

Lemma 3.1. For the nominal system in (3.3), if Assumption 3.2 holds, then,

(a) there exists a unique positive definite matrix P ∗ for the following Lyapunov equa-

tion

(AK + κI)TP ∗ + P ∗(AK + κI) = −Q∗, (3.6)

where Q∗ = 2(1 + α2)
√

1
λ(Q)

Q, α2 =
√

λ̄(KTRK)
λ(Q)

; κ ∈ [0,−λ̄(AK));
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(b) a neighborhood of the origin

Ωε = {x ∈ Rn : ∥x∥P ≤ ε} (3.7)

can be constructed with P = λ̄(P ∗)P ∗ such that

1. The state feedback controller u(t) = Kx(t) within the set Ωε satisfies the

control constraints, i.e., ∀x(t) ∈ Ωε, u(t) = Kx(t) ∈ U;

2. ∀x(t0) ∈ Ωε, for the nominal system in (3.3) equipped with the state feed-

back control law u(t) = Kx(t), we have x(t) ∈ Ωε, ∀t ≥ t0;

3. ∀x(tk) ∈ Ωε, the terminal cost ∥x(tk)∥P can serve as a control Lyapunov-

like function in the sense that∫ tk+δ

tk

(∥x(t)∥Q + ∥u(t)∥R)dt ≤ ∥x(tk)∥P − ∥x(tk + δ)∥P , (3.8)

or in the differential form

d

dt
(∥x(t)∥P ) ≤ −(∥x(t)∥Q + ∥u(t)∥R). (3.9)

Proof. (a) By definition, we have Q∗ > 0. From the definition of κ, it follows that the

matrix AK + κI is stable, i.e., all the real parts of its eigenvalues are negative.

Thus, the Lyapunov equation in (3.6) admits a unique positive definite solution

P ∗.

(b) 1. Since the control constraint U is a compact set containing the origin in

its interior, and the state feedback control law u(t) = Kx(t) is a linear

mapping, we can always find a positive constant ε̄ such that within the

region specified by ε ≤ ε̄: Ωε = {x ∈ Rn : ∥x∥P ≤ ε}, Kx(t) ∈ U for all

x(t) ∈ Ωε. This completes the proof.

2. The proofs of the remaining parts are provided hereafter. Differentiation

of the terminal cost with respect to t gives

d

dt
(∥x(t)∥P ) =

x(t)T(AT
KP + PAK)x(t) + 2x(t)TPϕ(x(t))

2∥x(t)∥P
, (3.10)
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where ϕ(x(t)) = f(x(t), Kx(t))− AKx(t). Denote

Js = ∥x(t)∥Q + ∥u(t)∥R
= ∥x(t)∥Q + ∥x(t)∥KTRK .

Note that

∥x(t)∥KTRK ≤

√
λ̄(KTRK)

λ(Q)
∥x(t)∥Q, (3.11)

and

∥x(t)∥KTRK ≥

√
λ(KTRK)

λ̄(Q)
∥x(t)∥Q, (3.12)

and combine (3.11) and (3.12) to yield

(
1 +

√
λ(KTRK)

λ̄(Q)

)
∥x(t)∥Q ≤ Js ≤

(
1 +

√
λ̄(KTRK)

λ(Q)

)
∥x(t)∥Q.

For the simplicity of presentation, denote

α1 =

√
λ(KTRK)

λ̄(Q)
, α2 =

√
λ̄(KTRK)

λ(Q)
,

then,

(1 + α1)∥x(t)∥Q ≤ Js ≤ (1 + α2)∥x(t)∥Q,

i.e.,

−(1 + α2)∥x(t)∥Q ≤ −Js ≤ −(1 + α1)∥x(t)∥Q.

Thus, Inequality (3.9) holds if the following relatively conservative inequal-

ity holds
d

dt
(∥x(t)∥P ) ≤ −(1 + α2)∥x(t)∥Q. (3.13)

From (3.10), Inequality (3.13) can be further replaced by

x(t)T(AT
KP + PAK)x(t) + 2x(t)TPϕ(x(t))

2∥x(t)∥P
≤ −(1 + α2)∥x(t)∥Q. (3.14)



42

Inequality (3.14) is equivalent to

x(t)T(AT
KP + PAK)x(t) + 2x(t)TPϕ(x(t))

≤ −2(1 + α2)∥x(t)∥Q∥x(t)∥P . (3.15)

Considering that√
λ(P )

λ̄(Q)
∥x(t)∥Q ≤ ∥x(t)∥P ≤

√
λ̄(P )

λ(Q)
∥x(t)∥Q,

the right-hand side of (3.15) is upper and lower bounded by

− 2(1 + α2)

√
λ̄(P )

λ(Q)
x(t)TQx(t)

≤ −2(1 + α2)∥x(t)∥Q∥x(t)∥P

≤ −2(1 + α2)

√
λ(P )

λ̄(Q)
x(t)TQx(t).

Therefore, Inequality (3.15) holds if the following inequality holds

x(t)T(AT
KP + PAK)x(t) + 2x(t)TPϕ(x(t))

≤ −2(1 + α2)

√
λ̄(P )

λ(Q)
x(t)TQx(t). (3.16)

Inequality (3.16) can be rewritten as

x(t)T
(
AT

K

P√
λ̄(P )

+
P√
λ̄(P )

AK

)
x(t) + 2x(t)T

P√
λ̄(P )

ϕ(x(t))

≤ −2(1 + α2)

√
1

λ(Q)
x(t)TQx(t). (3.17)

Denote P ∗ = P√
λ̄(P )

and Q∗ = 2(1 + α2)
√

1
λ(Q)

Q. Since ∥ϕ(x(t))∥P∗
∥x(t)∥P∗

→ 0

as ∥x(t)∥P ∗ → 0, there exists a neighborhood around the origin such that
∥ϕ(x(t))∥P∗
∥x(t)∥P∗

≤ κ holds.
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Moreover, the left-hand side of Inequality (3.17) can be further written as

x(t)T(AT
KP

∗ + P ∗AK)x(t) + 2x(t)TP ∗ϕ(x(t))

= x(t)T[(AK + κI)TP ∗ + P ∗(AK + κI)]x(t)

− 2x(t)Tκx(t) + 2x(t)TP ∗ϕ(x(t))

= −x(t)TQ∗x(t) + 2x(t)TP ∗ϕ(x(t))− 2κx(t)TP ∗x(t). (3.18)

The last two terms in (3.18) are upper bounded as follows

2x(t)TP ∗ϕ(x(t))− 2κx(t)TP ∗x(t)

≤ 2[(P ∗)
1
2x(t)]T[(P ∗)

1
2ϕ(x(t))]− 2κx(t)TP ∗x(t). (3.19)

Substituting ∥ϕ(x(t))∥P∗
∥x(t)∥P∗

≤ κ into (3.19) leads to

2[∥x(t)∥P ∗∥ϕ(x(t))∥P ∗ − κx(t)TP ∗x(t)]

≤ 2[κx(t)TP ∗x(t)− κx(t)TP ∗x(t)]

= 0.

Therefore, provided that the condition ∥ϕ(x(t))∥P∗
∥x(t)∥P∗

≤ κ holds, Inequality

(3.17) holds. This completes the proof.

Remark 3.2. Note from (3.8) that, ∀x(tk) ∈ Ωε, we have
∫∞
tk
(∥x(t)∥Q+∥u(t)∥R)dt ≤

∥x(tk)∥P , ∀(tk). In other words,when starting from a feasible initial point x(tk), the

proposed state feedback controller effectively upper bounds the infinite horizon cost.

Therefore, the cost function in the optimization in (3.5) can be regarded as a quasi-

infinite horizon cost function.

Remark 3.3. The results in Lemma 3.1 are sufficient conditions, and thus, are most

likely conservative. To make the conditions in Lemma 3.1 less conservative, the fol-

lowing procedure is applied to enlarge the invariant set.

Step 1: Given Q, compute Q∗ as

Q∗ = 2(1 + α2)

√
1

λ(Q)
Q, where α2 =

√
λ̄(KTRK)

λ(Q)
.
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Step 2: Choose κ from [0, −λ̄(AK)), then compute P ∗ using (3.6), and thus P . In-

troduce a shrinking factor γ. Decrease γ from 1, and at the same time, compute

the corresponding ε as follows.

Denote P̄ = γP , and find the maximum ε such that the optimal value of the

following optimization is negative

Jγ = max

{
xTP̄ f(x,Kx) + ∥x∥P̄ (∥x∥Q + ∥Kx∥R)

}
, (3.20)

subject to :

∥x∥P ≤ ε,

where Equation (3.20) is obtained using (3.9) and (3.10).

Through simulations, we observe that as γ decreases, ε also decreases. Thus, a

tradeoff is required between γ and ε. The criteria we take are: 1) ε should be as large

as possible, to increase the disturbance level that can be tolerated; 2) the eigenvalues of

γP should not be too large to make the results less conservative. We select an ε in the

feasible region such that a change in ε induces a negligible change in the eigenvalues

of γP .

At each updating time instant tk, the associated trajectories for the nonlinear

system in (3.1) are defined as follows: x(s; tk) represents the actual state of the

system at time s with the control signal ū∗(s; tk); x̄
∗(s; tk) is the optimal state of the

nominal system at time s with the optimal control signal ū∗(s; tk); û
a(s; tk) is the

assumed control signal generated as

ûa(s; tk) =

ū∗(s; tk−1), s ∈ [tk, tk−1 + T ),

Kx̂a(s; tk), s ∈ [tk−1 + T, tk + T ],
(3.21)

where x̂a(s; tk) is computed using ˙̂xa(s; tk) = f(x̂a(s; tk), û
a(s; tk)) with x̂a(tk; tk) =

x(tk).

Due to the disturbances, the optimal nominal system state will deviate from the

actual system state. The following lemma which is used in [51] provides an upper

bound of the deviation.

Lemma 3.2. 1. The discrepancy between the optimal nominal system state and
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the actual system state is upper bounded by

∥x(s; tk)− x̄∗(s; tk)∥P ≤ λ̄(P
1
2 )ρ(s− tk)e

L(s−tk), s ∈ [tk, tk + T ], (3.22)

where ρ is the maximum disturbance level, i.e., maxt≥0 ∥w(t)∥P ≤ ρ, and L is

the Lipschitz constant of f(x, u) within the compact state space of interest.

2. The discrepancy between the assumed system state and the optimal nominal

system state is upper bounded by

∥x̂a(s; tk+1)− x̄∗(s; tk)∥P
≤ λ̄(P

1
2 )ρδeLδeL(s−tk+1), (3.23)

where δ is the sampling interval and L is the Lipschitz constant.
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Figure 3.1: A robust MPC diagram.

Before presenting the main results, the main idea of the proposed robust MPC

strategy is illustrated in Figure 3.1. Suppose that an optimal control signal ū∗(s; tk),

s ∈ [tk, tk + T ], given at time instant tk can steer the nominal system in (3.3) into

the positively invariant set Ωαε. Due to the disturbances, the optimal control signal

ū∗(s; tk), s ∈ [tk, tk + δ] will steer the state of the system in (3.1) x(tk+1), instead of
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x̄∗(tk+1; tk) at time tk+1. An assumed control signal ûa(s; tk+1) as in (3.21) can be

constructed. The assumed control signal will be feasible if the following conditions

hold: 1) at time instant tk + T , the assumed system state x̂a(tk + T ; tk+1) enters the

positively invariant set Ωε; 2) within the positively invariant set Ωε (contracting set),

the system state enters the terminal set Ωαε imposed in the optimization in (3.5)

during the time interval [tk + T, tk+1 + T ].

3.3 Main Results

Successful implementations of robust MPC require repeatedly solving the optimiza-

tion in (3.5). This section derives sufficient conditions for the recursive feasibility

of the proposed MPC with a non-squared cost function. It also shows that, under

some mild conditions, the system state will enter and remain in the robust positively

invariant set.

3.3.1 Recursive Feasibility

Lemma 3.3. For the system in (3.1), if the optimization in (3.5) is feasible at time

instant tk, then it is also feasible at time instant tk+1, provided that the sampling

interval satisfies the following condition

− 1

β
lnα ≤ δ ≤ (1− α)ε

ρeLT λ̄(P
1
2 )
, (3.24)

where β =

(√
λ(Q)

λ̄(P )
+
√

λ(KTRK)

λ̄(P )

)
, and that the disturbances are upper bounded by

ρmax =
−(1− α)εβ

eLT λ̄(P
1
2 ) lnα

. (3.25)

Proof. In the constrained optimization in (3.5), the terminal state satisfies

∥x̄∗(tk + T ; tk)∥P ≤ αε. (3.26)

According to Lemma 3.2, the discrepancy between the assumed system state and the

optimal nominal system state is upper bounded as in (3.23). Substituting s = tk + T
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into (3.23) gives

∥x̂a(tk + T ; tk+1)− x̄∗(tk + T ; tk)∥P ≤ λ̄(P
1
2 )ρδeLT . (3.27)

Combining (3.26) and (3.27) leads to

∥x̂a(tk + T ; tk+1)∥P
≤ ∥x̄∗(tk + T ; tk)∥P + λ̄(P

1
2 )ρδeLT

≤ αε+ λ̄(P
1
2 )ρδeLT .

Considering the condition δ ≤ (1−α)ε

ρeLT λ̄(P
1
2 )
, it follows that

λ̄(P
1
2 )ρδeLT + αε ≤ ε. (3.28)

Inequality (3.28) implies that x̂a(tk+T ; tk+1) enters the positively invariant set. Using

Lemma 3.1 together with the Lyapunov function V (x̂a(t)) = ∥x̂a(t)∥P yields

V̇ (x̂a(t)) =
d

dt
(∥x̂a(t)∥P )

≤ −
(
∥x̂a(t)∥Q + ∥ûa(t)∥R

)
≤ −

(√
λ(Q)

λ̄(P )
+

√
λ(KTRK)

λ̄(P )

)
∥x̂a(t)∥P . (3.29)

For the simplicity of notation, let β =

(√
λ(Q)

λ̄(P )
+
√

λ(KTRK)

λ̄(P )

)
, then V̇ (x̂a(t)) ≤

−βV (x̂a(t)).

From the comparison principle and (3.29) it follows that

V (x̂a(s; tk+1)) ≤ V (x̂a(tk + T ; tk+1))e
−β(s−tk−T ),

and if δ ≥ − 1
β
lnα holds, that

V (x̂a(tk+1 + T ; tk+1)) ≤ αε. (3.30)

Inequality (3.30) indicates that the terminal state of the assumed state trajectory sat-

isfies the terminal inequality constraints in the optimization in (3.5). This completes
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the proof.

Lemma 3.3 shows that the proposed MPC with non-squared cost is guaranteed

recursively feasible if the sampling interval satisfies (3.24) and the disturbances are

upper bounded as in (3.25).

3.3.2 Stability

As pointed out in [70], recursive feasibility does not necessarily ensure stability. This

section analyzes the stability of the proposed control strategy. The following theorem

states the conditions under which the state of the nonlinear system in (3.1) with the

control scheme proposed in (3.5) converges to a positively invariant set.

Theorem 3.1. Given the system in (3.1) with the control generated in (3.5), if As-

sumptions 3.1 and 3.2 hold, the sampling interval satisfies (3.24), the disturbance is

upper bounded by ρmax as in (3.25), and there exists a positive constant pair (ϵ, ζ)

satisfying ϵ+ ζ < 1 such that the following conditions hold√
λ̄(Q)

λ(P )

(1− α)ε

L
≤ (1− ϵ− ζ)

√
λ(Q)

λ̄(P )
αδε, (3.31a)

λ̄(P
1
2 )ρδeLT ≤ ϵ

√
λ(Q)

λ̄(P )
αδε, (3.31b)

then, the system state converges to the positively invariant set Ωε in finite time.

Proof. The change of the cost function along the system trajectory between time
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instants tk and tk+1 is evaluated as

J∗(tk+1)− J∗(tk) ≤ J(tk+1)− J∗(tk)

=

∫ tk+1+T

tk+1

(
∥x̂a(s; tk+1)∥Q + ∥ûa(s; tk+1)∥R

)
ds

+ ∥x̂a(tk+1 + T ; tk+1)∥P

−
∫ tk+T

tk

(
∥x̄∗(s; tk)∥Q + ∥ū∗(s; tk)∥R

)
ds

+ ∥x̄∗(tk + T ; tk)∥P

=

∫ tk+T

tk+1

(
∥x̂a(s; tk+1)∥Q − ∥x̄∗(s; tk)∥Q

+ ∥ûa(s; tk+1)∥R − ∥ū∗(s; tk)∥R
)
ds (3.32a)

+

∫ tk+1+T

tk+T

(
∥x̂a(s; tk+1)∥Q + ∥ûa(s; tk+1)∥R

)
ds

+ ∥x̂a(tk+1 + T ; tk+1)∥P − ∥x̄∗(tk + T ; tk)∥P (3.32b)

−
∫ tk+1

tk

(∥x̄∗(s; tk)∥Q + ∥ū∗(s; tk)∥R)ds. (3.32c)

Term (3.32a) is upper bounded as follows∫ tk+T

tk+1

(
∥x̂a(s; tk+1)∥Q − ∥x̄∗(s; tk)∥Q

+ ∥ûa(s; tk+1)∥R − ∥ū∗(s; tk)∥R
)
ds

=

∫ tk+T

tk+1

(
∥x̂a(s; tk+1)∥Q − ∥x̄∗(s; tk)∥Q

)
ds

≤
∫ tk+T

tk+1

∥x̂a(s; tk+1)− x̄∗(s; tk)∥Qds. (3.33)

According to Lemma 3.2, the right-hand side of (3.33) is upper bounded by

∥x̂a(s; tk+1)− x̄∗(s; tk)∥P ≤ λ̄(P
1
2 )ρδeLδeL(s−tk+1). (3.34)
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Substituting (3.34) into (3.33) yields∫ tk+T

tk+1

∥x̂a(s; tk+1)− x̄∗(s; tk)∥Qds

≤
∫ tk+T

tk+1

√
λ̄(Q)

λ(P )
∥x̂a(s; tk+1)− x̄∗(s; tk)∥Pds

≤

√
λ̄(Q)

λ(P )

∫ tk+T

tk+1

λ̄(P
1
2 )ρδeLδeL(s−tk+1)ds. (3.35)

The bound on (3.32a) can be simplified as follows∫ tk+T

tk+1

λ̄(P
1
2 )ρδeL(s+δ−tk+1)ds

= λ̄(P
1
2 )ρδ

∫ tk+T

tk+1

eL(s+δ−tk+1)ds

= λ̄(P
1
2 )ρδ

eLT − eLδ

L

= λ̄(P
1
2 )ρδ

eLT (1− e−L(T−δ))

L

≤ (1− α)ε

L
(1− e−L(T−δ))

≤ (1− α)ε

L
. (3.36)

Therefore, Term (3.32a) is upper bounded by∫ tk+T

tk+1

(
∥x̂a(s; tk+1)∥Q − ∥x̄∗(s; tk)∥Q

+ ∥ûa(s; tk+1)∥R − ∥ū∗(s; tk)∥R
)
ds

≤

√
λ̄(Q)

λ(P )

(1− α)ε

L
. (3.37)
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For Term (3.32b), according to Lemma 3.1 and (3.8), we have∫ tk+1+T

tk+T

(
∥x̂a(s; tk+1)∥Q + ∥ûa(s; tk+1)∥R

)
ds

+ ∥x̂a(tk+1 + T ; tk+1)∥P − ∥x̄∗(tk + T ; tk)∥P
≤ ∥x̂a(tk + T ; tk+1)∥P − ∥x̂a(tk+1 + T ; tk+1)∥P
+ ∥x̂a(tk+1 + T ; tk+1)∥P − ∥x̄∗(tk + T ; tk)∥P

= ∥x̂a(tk + T ; tk+1)∥P − ∥x̄∗(tk + T ; tk)∥P
≤ ∥x̂a(tk + T ; tk+1)− x̄∗(tk + T ; tk)∥P . (3.38)

In light of Lemma 3.2, Term (3.32b) is bounded by

∥x̂a(tk + T ; tk+1)− x̄∗(tk + T ; tk)∥P
≤ λ̄(P

1
2 )ρδeLT .

Term (3.32c) is upper bounded by

−
∫ tk+1

tk

(
∥x̄∗(s; tk)∥Q + ∥ū∗(s; tk)∥R

)
ds

≤ −
∫ tk+1

tk

∥x̄∗(s; tk)∥Qds. (3.39)

Considering

∥x(s; tk)− x̄∗(s; tk)∥P ≤ λ̄(P
1
2 )ρ(s− tk)e

L(s−tk),

it follows that

∥x̄∗(s; tk)∥P ≥ ε− λ̄(P
1
2 )ρδeLδ for s ∈ [tk, tk+1].
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Therefore, Term (3.32c) is evaluated to be upper bounded as

−
∫ tk+1

tk

∥x̄∗(s; tk)∥Qds ≤ −

√
λ(Q)

λ̄(P )

∫ tk+1

tk

∥x̄∗(s; tk)∥Pds

≤ −

√
λ(Q)

λ̄(P )
(ε− λ̄(P

1
2 )ρδeLδ)δ

≤ −

√
λ(Q)

λ̄(P )
αδε, (3.40)

where the last inequality follows after using (3.28).

Finally, the difference of the cost function between J∗(tk+1) and J∗(tk) satisfies

J∗(tk+1)− J∗(tk) ≤ J(tk+1)− J∗(tk)

≤ −

√
λ(Q)

λ̄(P )
αδε+

√
λ̄(Q)

λ(P )

(1− α)ε

L
+ λ̄(P

1
2 )ρδeLT . (3.41)

Substituting (3.31a) and (3.31b) into (3.41) gives

J∗(tk+1)− J∗(tk) ≤ −ζ

√
λ(Q)

λ̄(P )
αδε. (3.42)

Using ζ
√

λ(Q)

λ̄(P )
αδε > 0, it follows that any trajectory of the system in (3.1) starting

from a feasible initial point will enter the set Ωε in finite time. This completes the

proof.

Remark 3.4. The positively invariant set Ωε characterized by ε plays an important

role in proving stability, recursive feasibility and convergence to a set. However, an

extremely small positively invariant set (as in the case of [92]) could result in a small

domain of attraction, which would restrict the applicability of the proposed control

strategy. A possible remedy is to exploit the idea introduced in [36]. In [36], in order

to steer the system with initial state x0 to the target domain D0, the authors developed

the expansion sets E1
f (D0, ϵ), E2

f (D0, ϵ), · · · , (See Sections 3.1 and 3.2 in [36]), and

derived the controller by solving a set of inequalities obtained directly from the system

equation. Using the expansion sets constructed in [36], the terminal constraint Ωε

in the optimization in (3.5) can be replaced with Ei
f (Ωε, ϵ) at time t0. For the suc-

cessive optimizations, the terminal set can be updated continuously with Ei−1
f (Ωε, ϵ),
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Ei−2
f (Ωε, ϵ) until E0

f (Ωε, ϵ) = Ωε. Recursive feasibility, stability, and convergence of

this strategy deserves further research.

After the system state enters the positively invariant set Ωε, the fixed state feed-

back control law u(t) = Kx(t) will be adopted. The following theorem guarantees

that there exists a robust positively invariant set where the state will stay if the

disturbance is bounded in a certain level.

Theorem 3.2. For the system in (3.1), assume that the system state has entered the

positively invariant set Ωε, and the state feedback control law u(t) = Kx(t) is adopted

within the positively invariant set.. Then, for any positive constant β ∈ (0, 1), if the

disturbance level is further bounded by ρ̄ ≤ λ(Q∗)βε

2λ̄(P )λ̄(P
1
2 )
, using the robust MPC strategy

proposed in this chapter, the set Ωβε = {x ∈ Rn : ∥x∥P ≤ βε} will be a robust

positively invariant set for the system in (3.1).

Proof. Based on (3.6), the differential form in (3.10) is

d

dt
(∥x(t)∥P ) ≤

−x(t)TQ∗x(t) + 2x(t)TPw(t)

2∥x(t)∥P
. (3.43)

For any β ∈ (0, 1), if x(t) is not in the set Ωβε = {x ∈ Rn : ∥x∥P ≤ βε}, in view

of ∥w(t)∥ ≤ ρ̄ = λ(Q∗)βε

2λ̄(P )λ̄(P
1
2 )
, the numerator in the right-hand side of (3.43) is upper

bounded by

− x(t)TQ∗x(t) + 2x(t)TPw(t)

≤ −λ(Q∗)

λ̄(P )
∥x(t)∥2P + 2∥x(t)P

1
2∥ · ∥p

1
2∥ · ∥w(t)∥

≤ 0.

Therefore, the system state will asymptotically converge to the set Ωβε.

Once the state enters the set Ωβε, the line of thought in [74] can be followed to

show that, the system state will stay within this set. This completes the proof.

Algorithm 6 summarizes the implementation procedure for the proposed robust

MPC strategy.

Remark 3.5. When the system state enters the positively invariant set Ωε, it is

still valid to implement the MPC strategy, instead of using the dual-mode controller

u(t) = Kx(t). The robustness to disturbances of the MPC strategy relies on the
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Algorithm 6 Robust MPC-Adopting the non-squared integrand objective function

Initialization:
The system dynamics in (3.1), the control constraints u(t) ∈ U, and the
disturbance bound w(t) ∈ W; the weighting matrices Q, R in the optimization
in (3.5), and the prediction horizon T .

Step 1:

Compute the terminal weighting matrix P and the associated positively in-
variant set Ωε according to Lemma 3.1.

Step 2:

Use (3.24) to compute the values that the sampling interval δ can take; further-
more, use Theorem 3.1 to choose a sampling interval δ compatible with (3.24)
and with (3.31). In this process, determine a shrinking factor α.

Step 3:

At each time instant tk, solve the optimization in (3.5) with the P , α, Ωε and
δ computed above. Apply the resulting optimal control signal to the system
in (3.1) from tk to tk + δ.

Step 4:

Repeat Step 3 until the system state enters the positively invariant set Ωε.
Then, apply the state feedback control law u(t) = Kx(t).

continuity property illustrated in [32], where it is shown that small disturbances can

be tolerated.

Remark 3.6. When the continuous-time MPC controller proposed in this chapter is

implemented in a sampled-data fashion, several stability issues may arise as pointed

out in [79]. These issues will be addressed in further research work.

3.4 Illustrative Example

To demonstrate the effectiveness of the proposed robust constrained MPC scheme,

the results developed in Section 3.3 are applied to the numerical example adopted

in [12,69]. The system dynamics are

ẋ1(t) = x2(t) + u(t)(µ+ (1− µ)x1(t)), (3.44a)

ẋ2(t) = x1(t) + u(t)(µ− 4(1− µ)x2(t)) + w(t). (3.44b)

It can be verified that, for µ ∈ (0, 1), the linearization of the nominal system
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in (3.44) around the origin is stabilizable, which satisfies Assumption 3.2. The control

constraints are

U = {u(t) ∈ R1 : −2.0 ≤ u(t) ≤ 2.0}. (3.45)

The weighting matrices Q and R in the cost function of the optimization in (3.5) are

set as

Q =

[
0.5 0

0 0.5

]
, R = 1.0. (3.46)

In the following simulation, µ is chosen as 0.9, and then the corresponding linearized

nominal model of the system in (3.44) is

ẋ(t) =

[
0 1

1 0

]
x(t) +

[
0.1

0.1

]
u(t). (3.47)

The stabilizing state feedback control law is obtained by solving the linear quadratic

regulator problem for the system in (3.47) with the weighting matrices in (3.46)

K =
[
−1.3030 −1.3030

]
.

Then, the eigenvalues of the matrix AK = A+BK are λ1 = −1.0000, λ2 = −1.3454.

Choosing κ = 0.95 ensures that the Lyapunov equation in (3.6) admits a unique

positive definite solution

P =

[
4.9633 −0.0367

−0.0367 4.9633

]
.

According to Lemma 3.1, the positively invariant set is a ball with radius ε = 0.6,

i.e.,

Ωε = {x ∈ R2 : ∥x∥P ≤ 0.6}. (3.48)

Following the method in [44], the Lipschitz constant is calculated as L = 1.4181.

Based on (3.25), the maximum disturbance level that the system can tolerate is

w(t) ≤ ρmax = 0.004, and the sampling interval should obey 0.3332 ≤ δ ≤ 1.2234 for

guaranteed recursive feasibility. The remaining parameters are selected as T = 1.2 s,

δ = 0.34 s and α = 0.9, to satisfy Lemma 3.3 and Theorem 3.1 with ϵ = 0.2870, ζ =

0.4876.
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Figure 3.2: The control trajectory with initial point (0.4 0.55).
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Figure 3.3: The state trajectory with initial point (0.4 0.55).

The effectiveness of the proposed MPC with non-squared cost is demonstrated by

applying Algorithm 6 to two initial points: (0.4 0.55) and (0.9 0.55). The simulated

optimal control trajectories associated with the two points, depicted in Figures 3.2

and 3.4, show that the control constraints in (3.45) are satisfied. The corresponding

simulated state trajectories, shown in Figures 3.3 and 3.5, illustrate the convergence

to the origin of the nonlinear system in closed loop with the MPC with non-squared

cost.

Figures 3.3 and 3.5 also contrast the proposed nonlinear MPC strategy to the

strategy in [74] which guarantees stability by requiring that the prediction horizon
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Figure 3.4: The control trajectory with initial point (0.9 0.55).
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Figure 3.5: The state trajectory with initial point (0.9 0.55).

be shorter at time tk than at time tk−1. These figures illustrate that the algorithm

proposed in this chapter converges faster than the algorithm in [74] because it imple-

ments an MPC strategy that exploit a control effort which is initially high and then

rapidly decreases to zero.

For the deterministic case, Figures 3.6 and 3.7 compare the MPC strategy pro-

posed in this chapter to the strategy introduced in [12]. These figures show that MPC

with non-squared cost generates a higher initial control effort and therefore, converges

faster than the MPC in [12].

Since the derivations in Lemma 3.3 and Theorem 3.1 rely on the Lipschitz continu-
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Figure 3.6: The state trajectory with initial point (0.9 0.55).

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

Time (s)

u

 

 

control trajectory using the proposed method
control trajectory using the method in [12]

Figure 3.7: The control trajectory with initial point (0.9 0.55).

ity of the system dynamics, the results are likely conservative. The conservativeness

of the proposed method can be shown by setting the disturbance level ρ = 0.05. Sim-

ulation results show that the state trajectory of the closed-loop system converges to

the origin although δ is larger than the upper bound computed in Lemma (3.3).

Remark 3.7. Although the Lipschitz condition is commonly used in [24,32,33,67,91,

116] [74], the results established are conservative mainly due to the following reasons:
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1) the Lipschitz constant is estimated to be the maximum value over a certain state-

space region; the analysis always uses the maximum value; 2) the derivations assume

that the discrepancy between the predicted and the actual state trajectories is always

expanding which is not always the case.

Some promising directions that may lead to effective algorithms without exploiting

the Lipschitz continuous condition are as follows.

- For contractive nonlinear dynamics [58, 101], a robust MPC strategy can be

designed exploiting this contractive property.

- The optimization associated with the MPC strategy is solved in an open-loop

fashion, although the implementation of the strategy is essentially in a closed-

loop form. Therefore, for (locally) constrained controllable nonlinear systems,

their controllability can possibly be used to design a closed-loop form of MPC as

in the case of [104].”

3.5 Conclusions

This chapter has proposed a new robust MPC strategy for general constrained non-

linear systems with control constraints and additive disturbances. The cost function

in the optimization associated with the proposed MPC strategy includes an integral

non-squared stage cost and a non-squared terminal cost. Provided that the Jacobian

linearization of the nonlinear system around the origin is stabilizable, proper design

of the terminal weighting matrix ensures that the terminal cost is a control Lyapunov

function. Moreover, the resultant cost function serves as a quasi-infinite horizon cost.

The chapter has established sufficient conditions for the recursive feasibility of the

optimization and for the robust stability of the closed-loop system with the proposed

MPC strategy. It has shown that, for a given disturbance level, appropriate design

of the sampling interval guarantees that the system state enters and remains in a

robust positively invariant set. The effectiveness of the proposed MPC scheme has

been demonstrated through a simulation example. Because the derivations use the

Lipschitz continuity property of the nonlinear system dynamics extensively, the es-

tablished results are conservative. Strategies to reduce the conservativeness of the

proposed method will be pursued in future work.
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Chapter 4

Robust Constrained Model

Predictive Control Using

Contraction Theory

4.1 Introduction

The MPC theory for linear systems has been developed systematically. However, the

MPC methods for nonlinear systems are still ad hoc. In [69], the closed-loop stabil-

ity of a deterministic nonlinear system has been guaranteed by adding an equality

constraint to the optimization that yields the control signal. This equality constraint

is difficult to satisfy given the iterative nature of the optimization, and has been re-

placed with an inequality constraint in [74]. In [12], the closed-loop stability has been

ensured through a terminal weight matrix design which transforms the resulting cost

of the optimization into a quasi-infinite horizon cost. The strategies in [12, 69, 74]

are not suitable for nonlinear systems with disturbances. For such systems with an

available control Lyapunov function, the existing control Lyapunov function has been

incorporated into the optimization that yields the control signal [72, 73]. A common

assumption in nonlinear MPC is that the system has Lipschitz continuous dynam-

ics [50, 57, 74]. The Lipschitz continuity condition property is then used to upper

bound the deviation between state trajectories with different initial states, and, thus,

to ensure feasibility and stability. However, the upper bound on the trajectory devi-

ation grows exponentially with the receding horizon. Therefore, conventional robust

nonlinear MPC based on Lipschitz continuity is applicable to systems with small dis-
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turbances and short prediction horizon and, thus, may have limited the feasibility

region.

4.1.1 Objective, Contributions and Chapter Organization

This chapter proposes a novel robust MPC which exploits the contractive property

of a class of nonlinear systems. The new strategy aims to overcome the drawbacks

of the general Lipschitz continuity property by taking advantage of the contracting

system dynamics. Motivated by fluid mechanics, the contraction theory of nonlinear

systems has been introduced in [58], and has been extended to nonlinear distributed

systems in [61] and to resetting hybrid systems in [98]. Contraction has also been

used to analyze the stochastic incremental stability [80]. Applications of contraction

theory have been illustrated for mechanical systems in [59], and for networked systems

in [101]. This chapter assumes that there exists a tube-like region along the nominal

state trajectory predicted at time t0 and designs a robust MPC strategy which relies

on the contracting system dynamics within this tube. The contributions of this

chapter are three-fold:

- It develops a novel robust MPC method for nonlinear systems contracting in a

tube-like region along the nominal state trajectory predicted at t0. It also upper

bounds the deviation between the nominal and the actual state trajectories,

when they are both within the contraction region.

- It establishes two conditions which together are sufficient for the recursive fea-

sibility of the proposed MPC: (i) the nominal state trajectory and the assumed

state trajectory should be within the contraction region; (ii) the optimization

at time instant tk+1 should be feasible given that it is feasible at time instant

tk.

- It shows that the recursive feasibility of the control signal is sufficient for guar-

anteed stability of the contracting nonlinear system with MPC.

The remainder of this chapter is organized as follows. Section 4.2 introduces the

proposed robust MPC strategy, and upper bounds the deviation between the actual

and the predicted state trajectories. Section 4.3 establishes sufficient conditions for

the recursive feasibility of the optimization that yields the MPC signal. Section 4.4
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shows that the proposed robust MPC strategy asymptotically stabilizes the closed-

loop nonlinear system with disturbances. Section 4.5 illustrates the proposed method

through a simulation example. Section 4.6 draws the conclusions of this work.

In this chapter, the superscript “T” stands for matrix transposition; Rn denotes

the n-dimensional Euclidean space; for a matrix P , P > 0 (P ≥ 0) means that P is

real symmetric positive definite (positive semidefinite); for a vector x ∈ Rn, ∥x∥2 is

its Euclidean norm and ∥x∥P =
√
xTPx is its P -weighted norm.

4.2 Robust MPC for Contracting Systems

Consider the nonlinear system with additive disturbances

ẋ(t) = f(x(t), u(t)) + w(t), x(t0) = x0, t ≥ 0, (4.1)

where x(t) ∈ Rn is the system state, u(t) ∈ U ⊂ Rm is the constrained control

input and w(t) ∈ W ⊂ Rn is the bounded additive disturbance satisfying ρmax =

maxt ∥w(t)∥M . The sets U and W are both compact and contain the origin in their

interiors. The nominal dynamics of the system in (4.1) are

˙̄x(t) = f(x̄(t), ū(t)), (4.2)

and obey two assumptions in this work.

Assumption 4.1. The linearization around the origin of the nominal dynamics

in (4.2) is stabilizable, i.e., a matrix K with appropriate dimensions exists such that

(A+BK) is stable, where A = ∂f
∂x
|(0,0) and B = ∂f

∂u
|(0,0).

Assumption 4.1 is fairly common in nonlinear MPC [12, 20], and the following

lemma follows if Assumption 4.1 holds for the nominal dynamics in (4.2).

Lemma 4.1. A control positively invariant set Ωα = {x : ∥x∥M ≤ α} with respect to

a matrix M > 0 exists for the nominal nonlinear dynamics in (4.2) with the static

feedback control ū(t) = Kx̄(t).

Assumption 4.2. An MPC signal exists that, over the prediction horizon T , steers

the nominal dynamics in (4.2) to Ωα along a trajectory ˙̄x∗(t) = f(x̄∗(t), ū∗(t)), x̄∗(t0) =

x0, such that
∂f

∂x̄

T

M +M
∂f

∂x̄
≤ −βM, ∀x̄ ∈ Θl (4.3)
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with constant β > 0, constant l > 0, Θl =: {x̄ : ∥x̄− x̄∗(s; t0)∥M ≤ l, ∀s ∈ [t0, t0+T ]},
and Ωα and M given in Lemma 4.1.

Assumption 4.2 replaces the typical nonlinear MPC requirement that f(x, u) be

Lipschitz continuous with respect to x and u. This assumption guarantees the exis-

tence of an MPC strategy that, over the prediction horizon T , can steer the nominal

system in (4.2) to Ωα along a trajectory x̄∗ which is the medial axis of a tube-like

region Θl of the state space of (4.2). Given Assumption 4.2, Theorem 2 in [58] guaran-

tees that any nominal state trajectory which starts in the tube Θl remains in Θl and

converges exponentially to x̄∗. Assumption 4.2 uses a particular type of contraction

region, obtained from the generalized contraction region defined in [58] for a constant

metric M . The extension of the robust MPC strategy introduced here to nonlinear

systems contracting with respect to a uniformly positive definite metric M(x, t) [58]

is a topic of future work.

Given the system in (4.1) with Assumptions 4.1 and 4.2, this chapter proposes a

robust MPC control strategy whereby:

1. At the initial time instant t0, the control signal is obtained by solving

u∗(t; t0)

= arg min
ū(s;t0), s∈[t0,t0+T ]

∫ t0+T

t0

(
∥x̄(s; t0)∥Q

+ ∥ū(s; t0)∥R
)
ds+ ∥x̄(t0 + T ; t0)∥P , (4.4a)

subject to:

˙̄x(s; t0) = f(x̄(s; t0), ū(s; t0)), x̄(t0; t0) = x(t0),

s ∈ [t0, t0 + T ], (4.4b)

ū(s; t0) ∈ U, s ∈ [t0, t0 + T ],

∂f

∂x̄

T

M +M
∂f

∂x̄
≤ −βM, x̄ ∈ Θl, (4.4c)

x̄(t0 + T ; t0) ∈ Ωα, (4.4d)

where T is the prediction horizon, x̄(s; t0), s ∈ [t0, t0 + T ] is the nominal state

trajectory predicted at time t0, ū(s; t0), s ∈ [t0, t0 + T ] is the control trajectory

predicted at time t0, Q > 0 and R ≥ 0 are the stage cost weighting matrices,

and P > 0 is the terminal cost weighting matrix;
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2. At the k-th time step tk, k > 0, the control signal is obtained by solving

u∗(t; tk)

= arg min
ū(s;tk), s∈[tk,tk+T ]

∫ tk+T

tk

(
∥x̄(s; tk)∥Q

+ ∥ū(s; tk)∥R
)
ds+ ∥x̄(tk + T ; tk)∥P , (4.5a)

subject to:

˙̄x(s; tk) = f(x̄(s; tk), ū(s; tk)), x̄(tk; tk) = x(tk),

s ∈ [tk, tk + T ], (4.5b)

ū(s; tk) ∈ U, s ∈ [tk, tk + T ],

∥x̄(tk + τ ; tk)− x̄(tk + τ ; t0)∥M ≤ 1

2
(l1 + l),

τ ∈ [0, δ], (4.5c)

∥x̄(tk + τ ; tk)− x̄(tk + τ ; t0)∥M ≤ l1, τ ∈ [δ, T ], (4.5d)

where the constant l1 > 0 is designed in Proposition 4.2, and the sampling

interval δ is designed in Proposition 4.2 and Theorem 4.1.

Compared to existing robust MPC strategies, the optimizations in (4.4) and (4.5)

include new constraints in (4.4c), (4.5c) and (4.5d). The constraint in (4.4c) guar-

antees that the optimal nominal state trajectory predicted at time instant t0 is in a

tube-like region Θl, which is a contraction region with respect to M for the nominal

system in (4.2) and is centered at this trajectory. The constraints in (4.5c) and (4.5d)

bound the deviation of the nominal state trajectory predicted at time tk from the

nominal state trajectory predicted at time t0 and, thus, provide robustness for the

proposed MPC strategy.

Because the optimizations in (4.4) and (4.5) rely on the nominal dynamics and

ignore disturbances, the state x(tk+1) of the nonlinear system in (4.1) will deviate

from the predicted state x̄(tk+1; tk). This deviation is upper bounded in the following

proposition.

Proposition 4.1. Let the optimizations in (4.4) and (4.5) be feasible with x(tk),

k ≥ 0, and let the system state x(t) be in the contraction tube Θl for all t ∈ [tk, tk+T ].
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Then, the deviation between x(t) and x̄(t; tk) satisfies

∥x(t)− x̄(t; tk)∥2M ≤ 2l

β
ρmax(1− e−β(t−tk)). (4.6)

Proof. Let V (t) = (x(t)− x̄(t; tk))
TM(x(t)− x̄(t; tk)). Given that ˙̄x(t; tk) = f(x̄(t; tk), ū(t; tk)),

ẋ(t) = f(x(t), ū(t; tk)) + w(t),
x̄(tk; tk) = x(tk),

it follows that V (tk) = 0, and

V̇ (t) =(f(x(t), ū(t; tk))− f(x̄(t; tk), ū(t; tk)) + w(t))T

M(x(t)− x̄(t; tk)) + (x(t)− x̄(t; tk))
TM

(f(x(t), ū(t; tk))− f(x̄(t; tk), ū(t; tk)) + w(t)).

According to [58], a state x̃ ∈ [x̄(t; tk), x(t)] can be found such that

V̇ (t) = (x(t)− x̄(t; tk))
T

(
∂f

∂x

T

|x̃M +M
∂f

∂x
|x̃
)

(x(t)− x̄(t; tk)) + 2w(t)TM (x(t)− x̄(t; tk)) . (4.7)

Since both trajectories lie in the contraction region Θl, they obey

∥x(t)− x̄(t; t0)∥M ≤ l,

∥x̄(t; tk)− x̄(t; t0)∥M ≤ 1

2
(l1 + l) ≤ l,

where the last inequality is obtained after using (4.5c) and (4.5d). It then follows

that

∥x(t)− x̄(t; tk)∥M
≤ ∥x(t)− x̄(t; t0)∥M + ∥x̄(t; tk)− x̄(t; t0)∥M ≤ 2l, (4.8)
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and

w(t)TM(x(t)− x̄(t; tk))

= w(t)T
√
M

√
M(x(t)− x̄(t; tk))

≤ ∥
√
Mw(t)∥2 · ∥

√
M(x(t)− x̄(t; tk))∥2

≤ ∥w(t)∥M · ∥x(t)− x̄(t; tk)∥M
≤ 2l · ∥w(t)∥M , (4.9)

where (4.9) is obtained after using (4.8). Combining (4.4c) and (4.7) leads to

V̇ (t) ≤ −βV (t) + 2l · ∥w(t)∥M
≤ −βV (t) + 2lρmax.

From the comparison principle and V (tk) = 0, it follows that

V (t) ≤ 2l

β
ρmax(1− e−β(t−tk)),

and

∥x(t)− x̄(t; tk)∥M ≤

√
2lρmax

β
(1− eβ(t−tk)).

This completes the proof.

4.3 Feasibility Analysis

This section presents sufficient conditions for the recursive feasibility of the optimiza-

tion in (4.5) given that the optimization in (4.4) is feasible at the initial time. The

section first establishes sufficient conditions to bound the nominal and the actual state

trajectories in the tube-like region Θl in Proposition 4.2. Then, it exploits Θl as a

contraction region of the nominal closed-loop system with the MPC in (4.4) and (4.5)

to derive sufficient conditions for recursive feasibility in Theorem 4.1. The analysis

in this section requires the assumed control signal û(τ ; tk), τ ∈ [tk+1, tk+1 + T ], which
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is defined by

û(τ ; tk+1) =

u∗(τ ; tk), τ ∈ [tk+1, tk + T ],

Kx̂(τ ; tk+1), τ ∈ [tk + T, tk+1 + T ],
(4.10)

where u∗(τ ; tk), τ ∈ [tk+1, tk+T ] is the optimal control signal computed at time tk, and

x̂(τ ; tk+1) is the assumed nominal state, given by ˙̂x(τ ; tk+1) = f(x̂(τ ; tk+1), û(τ ; tk+1)),

τ ∈ [tk + T, tk+1 + T ] with x̂(tk + T ; tk+1) the state of the system in (4.2) with initial

state x(tk) by applying û(τ ; tk+1), τ ∈ [tk+1, tk + T ].

Proposition 4.2. Let the system in (4.1) start from a state x(tk) for which the

optimizations in (4.4) for k = 0 and in (4.5) for k > 0 are feasible. If the sampling

interval δ satisfies

δ ≤ − 1

β
ln(1− β(l − l1)

2

8lρmax

), (4.11)

with l1 < l a positive constant, then both the state trajectory x(tk+τ) and the nominal

state trajectory x̄(tk + τ ; tk) lie in the contraction region Θl for all τ ∈ [0, δ].

Proof. Applying the predicted control trajectory ū(t; t0) to the system in (4.1) with

initial state x(tk) during the time interval t ∈ [tk, tk + δ] leads to

∥x(tk + τ)− x̄(tk + τ ; t0)∥M
= ∥x(tk + τ)− x̄(tk + τ ; tk)

+ x̄(tk + τ ; tk)− x̄(tk + τ ; t0)∥M
≤ ∥x(tk + τ)− x̄(tk + τ ; tk)∥M

+ ∥x̄(tk + τ ; tk)− x̄(tk + τ ; t0)∥M .

From Proposition 4.1 and the constraint in (4.5c), it follows that

∥x(tk + τ)− x̄(tk + τ ; t0)∥M

≤

√
2l · ∥w(t)∥M

β
· (1− e−βτ ) +

1

2
(l + l1), ∀τ ∈ [0, δ], (4.12)

where the right-hand side increases with τ and, thus, attains its maximum at τ = δ

over the time interval [0, δ]. Then, the substitution from (4.11) into (4.12) yields

∥x(tk + δ)− x̄(tk + δ; t0)∥M ≤ l,
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and

∥x(tk + τ)− x̄(tk + τ ; t0)∥M
≤ ∥x(tk + δ)− x̄(tk + δ; t0)∥M
≤ l, ∀τ ∈ [0, δ].

This completes the proof.

Theorem 4.1. Let the system in (4.1) start from an initial state x0 for which the

optimization in (4.4) is feasible and the sampling interval δ satisfy (4.11). Then, the

optimization in (4.5) is feasible for all tk with k ≥ 1 if the following conditions hold

δ ≥ 2

β
ln

l + l1
2l1

, (4.13)

ρmax ≤
β(l − l1)

2 · l21
8l(l2 − l21)

. (4.14)

Proof. The proof is divided into two steps. The first step shows that, if the optimiza-

tion in (4.4) is feasible at time t0 starting from x0 and the conditions in (4.11), (4.13)

and (4.14) hold, then ∥x(t1)− x̄(t1; t0)∥M ≤ 1
2
(l + l1).

From (4.6), it follows that

∥x(t1)− x̄(t1; t0)∥M ≤

√
2l

β
∥w(t)∥M · (1− e−βδ),

which together with (4.11) leads to

∥x(t1)− x̄(t1; t0)∥M ≤ 1

2
(l − l1) <

1

2
(l + l1). (4.15)

Equation (4.15) shows that the results established in Proposition 4.1 can be used.

The second step of the proof aims to show that for any state x(tk) ∈ Ω 1
2
(l+l1)

= {x :

∥x− x̄(tk; t0)∥M ≤ 1
2
(l + l1)}, the optimization in (4.5) is feasible and the successive

state x(tk+1) ∈ Ω 1
2
(l+l1)

= {x : ∥x− x̄(tk+1; t0)∥M ≤ 1
2
(l + l1)}.

Since x(tk) ∈ Ω 1
2
(l+l1)

= {x : ∥x−x̄(tk; t0)∥M ≤ 1
2
(l+l1)}, the contraction property

holds by applying the control signal predicted at time instant t0, so the constraint

in (4.5c) always holds. Define V (t) = (x̄(t; tk)− x̄(t; t0))
TM(x̄(t; tk)− x̄(t; t0)) over the

interval t ∈ [tk, tk + T ] with V (tk) = (x̄(tk; tk) − x̄(tk; t0))
TM(x̄(tk; tk) − x̄(tk; t0)) ≤

[1
2
(l + l1)]

2.
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Similar to the derivation in Proposition 4.1, it follows that

V̇ (t) ≤ −βV (tk), with V (tk) ≤ [
1

2
(l + l1)]

2.

Using the comparison principle, it follows that

V (t) ≤ e−β(t−tk)V (tk)

≤ e−β(t−tk)[
1

2
(l + l1)]

2,

and

V (tk + δ) = ∥x̄(tk + δ; tk)− x̄(tk + δ; t0)∥2M

≤ e−βδ[
1

2
(l + l1)]

2. (4.16)

Together with (4.13), Equation (4.16) implies that

∥x̄(tk + δ; tk)− x̄(tk + δ; t0)∥M ≤ l1, (4.17)

i.e., the predicted state x̄(tk+δ; tk) is in the region Ωl1 = {x : ∥x−x̄(tk+δ; t0)∥M ≤ l1}.
After implementing the assumed control signal in (4.10) and using the contraction

property in (4.4c), the predicted state satisfies the constraint in (4.5d).

In view of Proposition 4.1 and the condition in (4.11), it follows that

∥x(tk+1)− x̄(tk+1; t0)∥M
≤ ∥x(tk+1)− x̄(tk+1; tk)∥M

+ ∥x̄(tk+1; tk)− x̄(tk+1; t0)∥M

≤ 1

2
(l + l1). (4.18)

Equation (4.18) shows that the successive system state x(tk+1) falls in the region

Ω 1
2
(l+l1)

= {x : ∥x − x̄(tk+1; t0)∥M ≤ 1
2
(l + l1)}. To satisfy (4.11) and (4.13) si-

multaneously, the maximum disturbance needs to satisfy (4.14). This completes the

proof.
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4.4 Stability Analysis

This section proves the stability of the system in (4.1) with the robust MPC ob-

tained by solving the optimization in (4.4) at time t0, and obtained by solving the

optimization in (4.5) at all consecutive time steps tk, k > 0.

Theorem 4.2. Let the sampling interval δ satisfy the conditions in (4.11) and (4.13)

and the disturbance be upper bounded by (4.14) for the system in (4.1) with As-

sumption 1 and Assumption 2. Then, for any given initial state x0 for which the

optimization in (4.4) is feasible, the state of the closed-loop system with the proposed

MPC strategy will enter a neighborhood of the origin Ωl+ϵ = {x : ∥x∥M ≤ l + ϵ}
for any infinitesimal value ϵ > 0 in finite time and then remain in this neighborhood

thereafter.

Proof. Since x̄(t0 + T ; t0) ∈ Ωα and the control ū (t; t0) = Kx̄ (t; t0) stabilizes the

nominal system to the origin for any state x̄ ∈ Ωα, any such x̄ ∈ Ωα will shrink to the

set Ωϵ in finite time. Without loss of generality, assume that, at time t∗, the system

state enters and remains within the set Ωϵ for t ≥ t∗, that is ∥x̄(t; t0)∥M ≤ ϵ, ∀t ≥ t∗.

At time t ≥ t∗, the constraint (4.5c) guarantees that

∥x̄(t; tk)− x̄(t; t0)∥M ≤ 1

2
(l + l1),

which, combined with Proposition 4.1, leads to

∥x(t)− x̄(t; t0)∥M ≤ l.

It then follows that ∥x(t)∥M ≤ ∥x(t)− x̄(t; t0)∥M + ∥x̄(t; t0)∥M ≤ l + ϵ, which means

that, from t ≥ t∗, the state of the system in (4.1) remains in the neighborhood of the

origin Ωl+ϵ = {x : ∥x∥M ≤ l+ ϵ}. In fact, as t → ∞, ∥x̄(t; t0)∥M → 0, the closed-loop

system state asymptotically approaches the set Ωl. This completes the proof.
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4.5 Simulation Example

In order to demonstrate its effectiveness, the proposed algorithm is applied to a

numerical example used in [60]. The system dynamics are

ẋ1(t) = k1x1(t) + k2x
2
1(t) + k3x2(t) + u+ w, (4.19a)

ẋ2(t) = −qx2(t) + n1x1(t)− n2x
2
2(t). (4.19b)

The Jacobian matrix of the dynamics in (4.19) is

J =
∂f

∂x
=

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]

=

[
k1 + 2k2x1(t) k3

n1 −q − 2n2x2(t)

]
. (4.20)

For M =

[
n1 0

0 −k3

]
, the contractive constraint in (4.4c) becomes

∂f

∂x

T

M +M
∂f

∂x

=

[
2n1(k1 + 2k2x1(t)) 0

0 −2k3(−q − 2n2x2(t))

]
. (4.21)

The numerical values of all parameters are chosen as follows: k1 = −0.5, k2 = 0.05,

k3 = −1, q = 0.5, n1 = 1, n2 = 0.05. The weighting matrices in the objective function

are chosen as Q =

[
1 0

0 1

]
, R = 1, and P =

[
1 0

0 1

]
. Since the Jacobian matrix

in (4.20) is stable, the state-feedback controller is selected as K = 0 and the control

positively invariant set Ωα is characterized by α = 1. The radius l and the contraction

rate β of the contraction tube Ωl are l = 0.3 and β = 0.5740. The design parameters

are chosen as l1 = 0.25, and ρmax = 0.0032. Then the upper bound for the sampling

interval is δ ≤ 0.3603 s from Proposition 4.2, and the lower bound for the sampling

interval is δ ≥ 0.3321 s from Theorem 4.1. In the simulation, the sampling interval

is chosen as δ = 0.36 s, and the receding horizon is T = 4 s. The state trajectory of

the closed-loop system in (4.19), with the proposed robust MPC in (4.4) and (4.5)

and starting from the initial state (1.90, 1.55), is shown in Figure 4.1. Also shown
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in Figure 4.1 is the nominal state trajectory predicted at t0 using the optimization

in (4.4). The control signal applied to the system and the nominal control signal

generated by the optimization in (4.4) at time t0 are depicted in Figure 4.2. Note

in these figures that the control signal satisfies the control constraints and that the

closed-loop system converges to the origin.

Remark 4.1. The system in (4.19) can be steered to the origin using a robust MPC

strategy based on the Lipschitz continuous condition instead of contracting systems.

For the same initial state and the same prediction horizon, the Lipschitz constant is

L = 2.018, and the maximum disturbance that can be tolerated is 0.00029.
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Figure 4.1: State trajectories starting from the initial state (1.90 1.55).

Remark 4.2. The system in (4.19) with the robust MPC strategy designed via the

Lipschitz condition can tolerate the same maximum disturbance ρmax = 0.0032 as the

system in (4.19) with the robust MPC proposed in this chapter if the prediction horizon

is selected as T = 2.82 s (this value results from the feasibility and stability conditions

in [57]). Typically, a larger receding horizon leads to a larger feasible region. Since the

feasible region of a nonlinear system is not trivial to compute, this work has evaluated

the feasibility of robust MPC with T = 4 s heuristically, for different initial states

of the system in (4.19). The investigation has shown that the state (4.95,−5.05)

is feasible for the system in (4.19) with the proposed robust MPC, but it is not in

the feasible region of the system in (4.19) with the robust MPC derived based on the

Lipschitz continuous condition. This result indicates that exploiting the contracting
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Figure 4.2: Control trajectories.

dynamics of a system as proposed in this chapter could enlarge the feasible region of

the robust MPC.

4.6 Conclusion

This chapter has introduced a novel robust constrained MPC strategy for nonlinear

systems whose dynamics are contracting in a tube centered around the nominal state

trajectory predicted at t0. The proposed strategy exploits the contracting dynamics

instead of the common Lipschitz continuity. The chapter has derived sufficient con-

ditions for the recursive feasibility of the optimization which generates the proposed

control signal, and has also shown that the recursive feasibility of the proposed robust

MPC guarantees that the state of the closed-loop system converges asymptotically

to a neighborhood of the origin. Simulation results indicate that, compared to the

robust MPC strategy based on Lipschitz continuity, the new technique: 1) can prac-

tically stabilize nonlinear systems with larger disturbances; and 2) could enlarge the

feasible region of the closed-loop system.
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Chapter 5

Robust Distributed Model

Predictive Control of

Continuous-Time Constrained

Nonlinear Systems Using A

Two-Layer Invariant Set

5.1 Introduction

Cooperative control has a wide range of applications in multi-vehicle systems [94],

large-scale chemical processes [14], transportation systems [5], and so on. MPC strate-

gies are a natural selection because they provide a control signal which satisfies the

state and control constraints that arise in such applications, for example due to the

physical limitations of actuators. For cooperative large-scale systems, distributed

MPC strategies are preferred to centralized MPC schemes for several reasons: (i)

they have smaller computational complexity because each subsystem solves a local

optimization with a small number of decision variables; (ii) they require less com-

munication bandwidth because each subsystem exchanges information only with a

subset of the other subsystems; and (iii) they are more robust because the large-scale

system may achieve its task even when one of its subsystems malfunctions.

Large-scale systems composed of subsystems with decoupled dynamics, like multi-

vehicle formations, cooperate either through state and/or control coupling constraints,
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or through coupled cost functions. When the subsystems are coupled through con-

straints, the recursive feasibility and stability are ensured by sequential algorithms

for solving the optimization [95–97] or by tightening methods [110, 111]. When the

cooperation is achieved through coupled cost functions, additional consistency con-

straints [21] or robustness constraints [50] are introduced in the optimization.

5.1.1 Objective, Contributions and Chapter Organization

This chapter presents a robust distributed MPC strategy for constrained continuous-

time nonlinear systems coupled by the cost function. In the proposed strategy, the

subsystems communicate only with their neighbors exchanging their assumed system

state trajectories. The cooperation among the subsystems is achieved by incorporat-

ing a coupling term in the cost function. The disturbances are handled by designing

a robust control strategy based on the two-layer invariant set. Provided that the

initial state is feasible and the disturbance is bounded by a certain level, the appro-

priate selection of the design parameters guarantees the recursive feasibility of the

optimization. The chapter also derives sufficient conditions for robust stability. A

conceptually less conservative algorithm is finally proposed which exploits κ ◦ δ con-

trollability set [81] rather than the positively invariant set and thus, allows a shorter

prediction horizon and tolerates a larger disturbance level.

The contributions of this chapter are three-fold.

• In contrast to [50], the subsystems are coupled through a non-squared integrand

cost function. As a result, no cross terms appear when evaluating the Lyapunov

function and therefore, no additional constraints are needed to bound them.

• The disturbances are addressed through a novel control strategy based on the

two-layer invariant set. The chapter also analyzes the recursive feasibility of

the optimization and the robust stability of the distributed system in closed-

loop with the proposed MPC strategy. As the simulation results illustrate,

the method proposed in this chapter leads to a stronger cooperation than the

technique in [50].

• The conservativeness of the initial robust distributed MPC strategy is reduced

by taking advantage of the κ ◦ δ controllability set. The less conservative

distributed MPC algorithm uses a shorter prediction horizon to stabilize a

continuous-time constrained nonlinear system affected by larger disturbances.
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In the remainder of this chapter, Section 5.2 formulates the problem and presents

some preliminaries. Section 5.3 establishes the main recursive feasibility and robust

stability results. Section 5.4 presents the conceptually less conservative strategy. Sec-

tion 5.5 illustrates the developed algorithm through a simulation example. Section 5.6

summarizes this chapter.

Notation: The superscript “T” stands for the matrix transposition. For a matrix

P , P > 0 denotes that the matrix P is positive definite. For a matrix A, λ̄(A)

represents the largest eigenvalue of A; λ(A) represents the smallest eigenvalue of

matrix A; ∥A∥P represents the P -weighted norm of the matrix A, defined by ∥A∥P =√
ATPA. For a given c > 0, B(c) denotes a closed ball centered at the origin and of

radius c.

5.2 Preliminaries

Consider a nonlinear system consisting of S decoupled subsystemsAi, i = 1, 2, · · · , S.
The dynamics of the subsystem Ai are

ẋi(t) = fi(xi(t), ui(t)) + ωi(t), t ≥ 0, xi(0) = x0
i , (5.1)

where xi(t) ∈ Rn, ui(t) ∈ Rm and ωi(t) ∈ Rn are the system state, the control signal

and the additive disturbances, respectively. Assume that the control input and the

external disturbances are bounded as follows

ui(t) ∈ Ui, ωi(t) ∈ Wi, (5.2)

where Ui and Wi are compact sets containing the origin in their interior.

By ignoring the disturbances, the nominal dynamics of the system in (5.1) are

˙̂xi(t) = fi(x̂i(t), ûi(t)). (5.3)

The following two fairly standard assumptions [12,24,50] are imposed on the system

in (5.1).

Assumption 5.1. For each subsystem Ai, fi(x, u) is Lipschitz continuous with re-

spect to x with Lipschitz constant Li, i.e.,

∥fi(x1, u)− fi(x2, u)∥Pi
≤ Li∥x1 − x2∥Pi

, Li > 0, Pi > 0. (5.4)



77

Assumption 5.2. For each subsystem Ai, the linearized system of the associated

nominal subsystem in (5.3) of each subsystem Ai is stabilizable, i.e., for ˙̂xi(t) =

Aix̂i(t) + Biû(t), where Ai =
∂fi
∂xi

(0, 0) and Bi =
∂fi
∂ui

(0, 0), there exists Ki such that

Ai +BiKi is stable.

Instead of adopting a quadratic integrand in the cost function [12,24,29], inspired

by the work in [21,66], this chapter adopts the non-squared integrand

Ji(x̂i(s; tk), ûi(s; tk), x̂
a
−i(s; tk))

=

∫ tk+T

tk

(
∥x̂i(s; tk)∥Qi

+ ∥ûi(s; tk)∥Ri
+
∑
j∈Ni

rij∥x̂i(s; tk)− x̂a
j (s; tk)∥Qij

)
ds, (5.5)

where Qi, Ri and Qij are positive definite matrices with appropriate dimensions, T is

the prediction horizon, and rij is a design parameter which decides the cooperation

strength among subsystems; Ni is the set of indices of all neighbors of the subsystem

Ai; x̂
a
−i(s; tk) is a compact notation for the assumed state trajectories of all subsystems

who are neighbors of the subsystem Ai and whose indices are in Ni, i.e., x̂
a
−i(s; tk) =

(· · · , x̂a
j (s; tk), · · · ), j ∈ Ni with x̂a

j (s; tk) being the assumed state trajectory obtained

by
˙̂xa
j (s; tk) = fj(x̂

a
j (s; tk), û

a
j (s; tk)), x̂

a
j (tk; tk) = xj(tk), (5.6)

where ûa
j (s; tk) is generated using (5.9); x̂i(s; tk) is the predicted nominal state tra-

jectory of the subsystem Ai

˙̂xi(s; tk) = fi(x̂i(s; tk), ûi(s; tk)), x̂i(tk; tk) = xi(tk), (5.7)

and xi(tk) is the actual state of the subsystem Ai at time tk.

Remark 5.1. The stability of the strategy proposed in this chapter is based on Lya-

punov theory. However, unlike typical distributed MPC strategies for decoupled large-

scale nonlinear systems [12, 24, 29] the strategy proposed in this chapter uses a non-

squared integrand in the coupling cost. Compared to a conventional quadratic cost

function, the cost function with non-squared integrand does not introduce cross terms

in the variation of the Lyapunov function from one time step to the next. Thus, it

sidesteps the need to compensate for such cross terms [20].

For the subsystem Ai in (5.1) with Assumption 5.2, the following lemmas holds.
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Lemma 5.1. [12,50] If the linearization around the origin of (5.3), then a constant

εi > 0 and a matrix Pi > 0 exist, such that: (1). The set Ωi(εi) = {x̂i(t) : Vi(x̂i(t)) =

∥x̂i(t)∥2Pi
≤ ε2i } is a control invariant set for the nominal subsystem in (5.3) with

the static state feedback control law ûi(t) = Kix̂i(t); (2). For any x̂i(t) ∈ Ωi(εi), the

inequality V̇i(x̂i(t)) ≤ −∥x̂i(t)∥2Q∗
i
holds, where Q∗

i = Qi +KT
i RiKi.

Lemma 5.2. Given that Ωi(εi) is a control invariant set for the nominal subsystem

in (5.3), then, for any constant 1 > α > 0, Ωi(αεi) is also a control invariant set

for the nominal subsystem in (5.3) with the static state feedback control law ûi(t) =

Kix̂i(t).

Considering the subsystem, at each sampling instant tk, each subsystem Ai solves

the constrained optimization

ûi(s; tk) = arg min
ûi(t;tk)

Ji(x̂i(s; tk), ûi(s; tk), x̂
a
−i(s; tk)), (5.8)

subject to :

˙̂xi(s; tk) = fi(x̂i(s; tk), ûi(s; tk)), s ∈ [tk, tk + T ],

˙̂xa
j (s; tk) = fj(x̂

a
j (s; tk), û

a
j (s; tk)), s ∈ [tk, tk + T ],

ûi(s; tk) ∈ Ui, s ∈ [tk, tk + T ],

∥x̂i(s; tk)− x̂a
i (s; tk)∥Q̄i

≤ δβ,

∥x̂i(tk + T ; tk)∥Pi
≤ α1iεi,

where β and α1i are parameters designed in Section 5.3; εi specifies the positively

invariant set in Lemma 5.1 for the subsystem Ai; δ is the sampling interval. The

constrained optimization in (5.8) yields the optimal control sequence û∗
i (s; tk), s ∈

[tk, tk + T ], and the associated optimal cost J∗
i (tk). The assumed control sequence is

obtained as follows

ûa
i (s; tk+1) =

û∗
i (s; tk), if s ∈ [tk+1, tk + T ],

Kix̂
a
i (s; tk+1), s ∈ [tk + T, tk+1 + T ],

(5.9)

where x̂a
i (tk+1; tk+1) = xi(tk+1).

Let the system state trajectory obtained by applying the optimal control trajectory

ûi(s; tk) to the actual system in (5.1) be xi(s; tk). Due to the disturbances, the

optimal predicted state trajectory differs from the system state trajectory xi(s; tk).

The following lemma upper bounds the difference between two trajectories.
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Lemma 5.3. [50] The discrepancy between the optimal predicted state trajectory and

the state trajectory xi(s; tk) is upper bounded by

∥xi(s; tk)− x̂i(s; tk)∥Pi
≤ λ̄(P

1
2
i )ρi(s− tk)e

Li(s−tk), s ∈ [tk, tk + T ], (5.10)

where ρi satisfies maxt≥0 ∥ωi(t)∥Pi
≤ ρi.

5.3 Main Results

The proposed distributed MPC strategy relies on the feasibility of the optimiza-

tion (5.8). The following lemma shows that the recursive feasibility of the optimiza-

tion depends on the disturbance level and on the sampling interval.

Lemma 5.4. For the subsystem Ai in (5.1), Let the constrained optimization in (5.8)

be feasible at time tk, and the sampling period δ for 1 > α2i > α1i > 0 and the

disturbance bound satisfy

−2
λ̄(Pi)

λ(Q∗
i )

ln
α1i

α2i

≤ δ ≤ (α2i − α1i)εi

ρieLiT λ̄(P
1
2
i )

, (5.11)

ρi ≤ ρmax
i = −2(α2i − α1i)εie

−LiT λ̄(P
1
2
i )

−1 λ(Qi)

λ̄(P ∗
i )

/(ln
α2i

α1i

), (5.12)

then the constrained optimization in (5.8) is feasible at time tk+1.

Proof. At time tk, it follows from (5.8) that the terminal state satisfies

∥x̂i(tk + T ; tk)∥Pi
≤ α1iεi, (5.13)

and that

∥x̂a
i (s; tk+1)− x̂∗

i (s; tk)∥Pi

= ∥xi(tk+1; tk+1) +

∫ s

tk+1

fi(xi(τ ; tk+1), û
∗(τ ; tk))dτ

− x̂∗
i (tk+1; tk)−

∫ s

tk+1

fi(x̂
∗
i (τ ; tk), û

∗
i (τ ; tk))dτ∥Pi

≤ ∥xi(tk+1; tk+1)− x̂∗
i (tk+1; tk)∥Pi

+ Li

∫ s

tk+1

∥xi(τ ; tk+1)− x̂∗
i (τ ; tk)∥Pi

dτ. (5.14)
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From Lemma 5.3,

∥x̂i(s; tk+1)− x̂∗
i (s; tk)∥Pi

≤ λ̄(P
1
2
i )ρiδe

LiδeLi(s−tk+1), (5.15)

so

∥xi(tk + T ; tk+1)− x̂∗
i (s; tk)∥Pi

≤ λ̄(P
1
2
i )ρiδe

LiT .

From

∥x̂∗
i (tk + T ; tk)∥Pi

≤ α1iεi,

it follows that

∥xi(tk + T ; tk)∥Pi
≤ α1iεi + λ̄(P

1
2
i )ρiδe

LiT .

After requiring

λ̄(P
1
2
i )ρiδe

LiT + α1iεi ≤ α2iεi,

it can be shown that

δ ≤ (α2i − α1i)εi

ρieLiT λ̄(P
1
2
i )

.

Thus ∥x∗
i (tk + T ; tk+1)∥Pi

≤ α2iεi < εi is in the control invariant set of the nominal

system in (5.3) with the state feedback control law ûi(s; tk+1) = Kix̂i(s; tk+1), s ∈
[tk + T, tk+1 + T ]. The associated Lyapunov function satisfies

V̇ (x̂i(s; tk+1)) ≤ −∥x̂i(s; tk+1)∥2Q∗
i

≤ −λ(Q∗
i )

λ̄(Pi)
Vi(x̂i(s; tk+1)).

From the comparison principle, it follows that

Vi(x̂i(s; tk+1)) ≤ Vi(x̂i(tk + T ; tk+1))e
−λ(Q∗

i )

λ̄(Pi)
(s−tk−T )

≤ α2
2iε

2
i e

−λ(Q∗
i )

λ̄(Pi)
(s−tk−T )

. (5.16)

After

Vi(x̂i(s; tk+1)) ≤ α2
2iε

2
i e

−λ(Q∗
i )

λ̄(Pi)
(s−tk−T ) ≤ α2

1iε
2
i ,
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it can be proven that

α2
2ie

−λ(Q∗
i )

λ̄(Pi)
δ ≤ α2

1i

⇔ e
−λ(Q∗

i )

λ̄(Pi)
δ ≤ α2

1i

α2
2i

⇔ δ ≥ −2
λ̄(Pi)

λ(Q∗
i )

ln
α1i

α2i

.

This completes the proof.

The following proposition will be useful for evaluating the variation of the cost

function from time tk to time tk+1.

Proposition 5.1. For each subsystem Ai satisfying Assumptions 1 & 2, let the con-

ditions in (5.11) and (5.12) hold ensuring the recursive feasibility of the optimization

in (5.8), then the following inequality holds∫ tk+T

tk+1

∑
j∈Ni

rij

(
∥x̂i(s; tk+1)− x̂a

j (s; tk+1)∥Qij
− ∥x̂∗

i (s; tk)− x̂a
j (s; tk)∥Qij

)
ds

≤

√
λ̄(Qij)

λ(Pi)

∑
j∈Ni

rij(T − δ)(α2i − α1i)εi +
∑
j∈Ni

rij

√
λ̄(Qij)

λ(Q̄i)
βδ(T − δ)

+
∑
j∈Ni

rij

√
λ̄(Qij)

λ(Pj)
(T − δ)(α2j − α1j)εj. (5.17)

Proof. Algebraic manipulations using the triangle inequality lead to∫ tk+T

tk+1

∑
j∈Ni

rij

(
∥x̂i(s; tk+1)− x̂a

j (s; tk+1)∥Qij
− ∥x̂∗

i (s; tk)− x̂a
j (s; tk)∥Qij

)
ds

≤
∫ tk+T

tk+1

∑
j∈Ni

rij∥x̂i(s; tk+1)− x̂∗
i (s; tk) + x̂a

j (s; tk)− x̂a
j (s; tk+1)∥Qij

ds

≤
∫ tk+T

tk+1

∑
j∈Ni

rij∥xi(s; tk+1)− x∗
i (s; tk)∥Qij

ds (5.18a)

+

∫ tk+T

tk+1

∑
j∈Ni

rij∥x̂a
j (s; tk)− x̂a

j (s; tk+1)∥Qij
ds. (5.18b)
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After substitutions from (5.15), Term (5.18a) becomes∫ tk+T

tk+1

∑
j∈Ni

rij∥x̂i(s; tk+1)− x̂∗
i (s, tk)∥Qij

ds

≤

√
λ̄(Qij)

λ(Pi)

∫ tk+T

tk+1

∑
j∈Ni

rijλ̄(P
1
2
i )ρiδe

LiδeLi(s−tk+1)ds

=

√
λ̄(Qij)

λ(Pi)

∑
j∈Ni

rij

∫ tk+T

tk+1

λ̄(P
1
2
i )ρiδe

Li(s+δ−tk+1)ds

≤

√
λ̄(Qij)

λ(Pi)

∑
j∈Ni

rij(T − δ)(α2i − α1i)εi. (5.19)

Term (5.18b) can be transformed to∫ tk+T

tk+1

∑
j∈Ni

rij∥x̂a
j (s; tk)− x̂a

j (s; tk+1)∥Qij
ds

=

∫ tk+T

tk+1

∑
j∈Ni

rij∥x̂a
j (s; tk)− x̂∗

j(s; tk) + x̂∗
j(s; tk)− x̂a

j (s; tk+1)∥Qij
ds

≤
∫ tk+T

tk+1

∑
j∈Ni

rij∥x̂a
j (s; tk)− x̂∗

j(s; tk)∥Qij
ds (5.20a)

+

∫ tk+T

tk+1

∑
j∈Ni

rij∥x̂∗
j(s; tk)− x̂a

j (s; tk+1)∥Qij
ds. (5.20b)

From the constraints imposed in the optimization in (5.8), it follows that the integrand

in (5.20b) obeys

∥x̂∗
j(s; tk)− x̂a

j (s; tk)∥Qij

≤

√
λ̄(Qij)

λ(Q̄i)
∥x̂∗

j(s; tk)− x̂a
j (s; tk)∥Q̄i

≤

√
λ̄(Qij)

λ(Q̄i)
βδ.
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Term (5.20a) obeys ∫ tk+T

tk+1

∑
j∈Ni

rij∥x̂a
j (s; tk)− x̂∗

j(s; tk)∥Qij
ds

≤
∑
j∈Ni

rij

√
λ̄(Qij)

λ(Q̄i)
βδ(T − δ), (5.21)

while Term (5.20b) obeys∫ tk+T

tk+1

∑
j∈Ni

rij∥x̂∗
j(s; tk)− x̂a

j (s; tk+1)∥Qij
ds

≤
∫ tk+T

tk+1

∑
j∈Ni

rij

√
λ̄(Qij)

λ(Pj)
∥x̂∗

j(s; tk)− x̂a
j (s; tk+1)∥Pj

ds

≤
∑
j∈Ni

rij

√
λ̄(Qij)

λ(Pj)

∫ tk+T

tk+1

λ̄(P
1
2
j )ρjδe

LjδeLj(s−tk+1)ds

≤
∑
j∈Ni

rij

√
λ̄(Qij)

λ(Pj)
(T − δ)(α2j − α1j)εj. (5.22)

Combining (5.19), (5.21) and (5.22) yields (5.17). This completes the proof.

The following theorem provides the conditions under which the subsystem Ai with

the MPC in (5.8) enters the positively invariant set Ωi(εi) in finite time.

Theorem 5.1. For the subsystem Ai in (5.1) with Assumptions 1 & 2, let conditions

in (5.11) and (5.12) hold. Then, the subsystem Ai with the optimization in (5.8) will

enter the positively invariant set Ωi(εi) if the following three conditions are satisfied

1. ∑
j∈Ni

rijΞij ≤ (1 + α1i − α2i − ϱi − ςi − ζi)

√
λ(Qi)

λ̄(Pi)
pεiT, (5.23)

where ϱi, ςi, ζi are positive constants satisfying ϱi + ςi + ζi ∈ (0, 1 + α1i − α2i)

and p = δ
T
;

2. [(√
λ̄(Qi)

λ(Pi)
+

√
λ̄(KT

i RiKi)

λ(Pi)
p

)
α2i−

√
λ̄(Qi)

λ(Pi)
(1−p)α1i

]
≤ ϱi

√
λ(Qi)

λ̄(Pi)
p; (5.24)



84

3. There exists β > 0 such that

∑
j∈Ni

rij

√
λ̄(Qij)

√
λ̄(Pi)√

λ(Q̄i)
√
λ(Qi)

β(1− p)T ≤ ςiεi (5.25)

holds, where

Ξij =

√
λ̄(Qij)

λ(Pi)
(1− p)(α2i − α1i)εiT +

√
λ̄(Qij)

λ(Pj)
(1− p)(α2j − α1j)εjT

+ (

√
λ̄(Qij)

λ(Pi)
α2iεi +

√
λ̄(Qij)

λ(Pj)
α2jεj)pT.

Proof. At time instant tk, each subsystem will independently solve a constrained

optimization based on its nominal system model, and obtain the optimal control

sequence and its optimal nominal state trajectory. At time instant tk+1, the cost

function by employing the assumed control signal is

Ji(x̂i, ûi(s; tk+1), x̂
a
−i(s; tk+1))

=

∫ tk+1+T

tk+1

(
∥x̂i(s; tk+1)∥Qi

+ ∥ûi(s; tk+1)∥Ri
+
∑
j∈Ni

rij∥x̂i(s; tk+1)− x̂a
j (s; tk+1)∥Qij

)
ds.

(5.26)

Since J∗
i (tk+1) ≤ Ji(tk+1), it follows that J

∗
i (tk+1) − J∗

i (tk) ≤ Ji(tk+1) − J∗
i (tk). The
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change in the cost function between the successive time instants tk and tk+1 is

Ji(tk+1)− J∗
i (tk)

=

∫ tk+T

tk+1

(
∥x̂i(s; tk+1)∥Qi

+ ∥ûi(s; tk+1)∥Ri
− ∥x̂∗

i (s; tk)∥Qi
− ∥û∗

i (s, tk+1)∥Ri

)
ds

(5.27a)

+

∫ tk+1+T

tk+T

(
∥x̂i(s; tk+1)∥Qi

+ ∥ûi(s; tk+1)∥Ri

)
ds (5.27b)

−
∫ tk+1

tk

(
∥x̂∗

i (s; tk)∥Qi
+ ∥û∗

i (s; tk)∥Ri

)
ds (5.27c)

+

∫ tk+T

tk+1

∑
j∈Ni

rij

(
∥x̂i(s; tk+1)− x̂a

j (s; tk+1)∥Qij
− ∥x̂∗

i (s; tk)− x̂a
j (s; tk)∥Qij

)
ds

(5.27d)

+

∫ tk+1+T

tk+T

∑
j∈Ni

rij∥x̂i(s; tk+1)− x̂a
j (s; tk+1)∥Qij

ds (5.27e)

−
∫ tk+1

tk

∑
j∈Ni

rij∥x̂∗
i (s; tk)− x̂a

j (s; tk)∥Qij
ds. (5.27f)

Because Ji(tk+1) is computed using the assumed state trajectory, combining the tri-

angle inequality with Term (5.27a) leads to∫ tk+T

tk+1

(
∥x̂i(s; tk+1)∥Qi

+ ∥ûi(s; tk+1)∥Ri
− ∥x̂∗

i (s; tk)∥Qi
− ∥û∗

i (s, tk+1)∥Ri

)
ds

≤
∫ tk+T

tk+1

∥x̂i(s; tk+1)− x̂∗
i (s; tk)∥Qi

ds.
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After substitution from (5.15), Term (5.27a) is upper bounded by∫ tk+T

tk+1

(
∥x̂i(s; tk+1)∥Qi

+ ∥ûi(s; tk+1)|Ri
− ∥x̂∗

i (s; tk)∥Qi
− ∥û∗

i (s, tk+1)∥Ri

)
ds

≤

√
λ̄(Qi)

λ(Pi)

∫ tk+T

tk+1

λ̄(P
1
2
i )ρiδe

LiδeLi(s−tk+1)ds

≤

√
λ̄(Qi)

λ(Pi)

∫ tk+T

tk+1

λ̄(P
1
2
i )ρiδe

LiTds

=

√
λ̄(Qi)

λ(Pi)
(T − δ)λ̄(P

1
2
i )ρiδe

LiT

≤

√
λ̄(Qi)

λ(Pi)
(T − δ)(α2i − α1i)εi. (5.28)

Lemma 5.2 provides sufficient conditions for the assumed states x̂a
i (tk + T ; tk+1)

and x̂a
i (tk+1 + T ; tk+1) to be in Ωi(α2iεi) and in Ωi(α1iε), respectively. Because the

state feedback control law ûi(s; tk+1) = Kix̂i(s; tk+1) keeps the nominal state within

the control invariant set, x̂a
i (s; tk+1) will always be in the control invariant set Ωi(α2iεi)

for s ∈ [tk + T, tk+1 + T ].

Using ∥x∥2Q ≤ λ̄(Q)∥x∥2 ≤ λ̄(Q)
λ(P )

∥x∥2P , Term (5.27b) is upper bounded by

∫ tk+1+T

tk+T

(
∥x̂i(s; tk+1)∥Qi

+ ∥ûi(s; tk+1)∥Ri

)
ds

≤
∫ tk+1+T

tk+T

(√
λ̄(Qi)

λ(Pi)
∥x̂i(s; tk+1)∥Pi

+

√
λ̄(KT

i RiKi)

λ(Pi)
∥x̂i(s; tk+1)∥Pi

)
ds

≤

(√
λ̄(Qi)

λ(Pi)
+

√
λ̄(KT

i RiKi)

λ(Pi)

)
α2iεiδ. (5.29)

Term (5.27c) is bounded by ignoring the second term in the integrant:

−
∫ tk+1

tk

(
∥x̂∗

i (s; tk)∥Qi
+ ∥û∗

i (s; tk)∥Ri

)
ds ≤ −

∫ tk+1

tk

∥x̂∗
i (s; tk)∥Qi

. (5.30)
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If the actual system state xi(s; tk) /∈ Ωi(ε), from Lemma 5.3, it follows that

∥x̂∗
i (s; tk)∥Pi

≥ ∥x̂i(s; tk)∥Pi
− λ̄(P

1
2
i )ρi(s− tk)e

Li(s−tk)

≥ εi − λ̄(P
1
2
i )ρi(s− tk)e

Li(s−tk),

and that Term (5.27c) is upper bounded as

−
∫ tk+1

tk

∥x̂∗
i (s; tk)∥Qi

ds

≤ −

√
λ(Qi)

λ̄(Pi)

∫ tk+1

tk

(εi − λ̄(P
1
2
i )ρi(s− tk)e

Li(s−tk))ds

≤

√
λ(Qi)

λ̄(Pi)

∫ tk+1

tk

[εi − λ̄(P
1
2
i ρiδe

Liδ)]ds

≤ −δ

√
λ(Qi)

λ̄(Pi)
[εi − (α2i − α1i)εi]

= −(1 + α1i − α2i)δ

√
λ(Qi)

λ̄(Pi)
εi. (5.31)

Term (5.27d) has been addressed in Proposition 5.1.

Term (5.27e) is bounded by∫ tk+1+T

tk+T

∑
j∈Ni

rij∥x̂i(s; tk+1)− x̂a
j (s; tk+1)∥Qij

ds

≤
∫ tk+1+T

tk+T

∑
j∈Ni

rij(∥x̂i(s; tk+1)∥Qij
+ ∥x̂a

j (s; tk+1)∥Qij
)ds.

Lemma 5.2 leads to

∥x̂a
i (s; tk+1)∥Pi

≤ α2iεi, for s ∈ [tk + T, tk+1 + T ];

∥x̂a
j (s; tk+1)∥Pj

≤ α2jεj, for s ∈ [tk + T, tk+1 + T ].

Therefore, ∥x̂a
i (s; tk+1)∥Qij

≤
√

λ̄(Qij)

λ(Pi)
∥x̂a

i (s; tk+1)∥Pi
≤
√

λ̄(Qij)

λ(Pi)
α2iεi and

∥x̂a
j (s; tk+1)∥Qij

≤
√

λ̄(Qij)

λ(Pj)
∥x̂j(s; tk+1)∥Pj

≤
√

λ̄(Qij)

λ(Pj)
α2jεj hold, and Term (5.27e) is
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finally upper bounded by∫ tk+1+T

tk+T

∑
j∈Ni

rij∥x̂i(s; tk+1)− x̂a
j (s; tk+1)∥Qij

ds

≤
∑
j∈Ni

rij[

∫ tk+1+T

tk+T

∥x̂i(s; tk+1)∥Qij
ds+

∫ tk+1+T

tk+T

∥x̂a
j (s; tk+1)∥Qij

ds]

≤
∑
j∈Ni

rij[δ

√
λ̄(Qij)

λ(Pi)
α2iεi + δ

√
λ̄(Qij)

λ(Pj)
α2jεj]. (5.32)

Term (5.27f) is non-positive and can be ignored.

Letting δ = pT , the change in the cost function between time instants tk and tk+1

is

Ji(tk+1)− J∗
i (tk) =− (1 + α1i − α2i)

√
λ(Qi)

λ̄(Pi)
pεiT

+ [

√
λ̄(Qi)

λ(Pi)
(1− p)(α2i − α1i) + (

√
λ̄(Qi)

λ(Pi)
+

√
λ̄(KT

i RiKi)

λ(Pi)
)α2ip]εiT

+
∑
j∈Ni

rij[

√
λ̄(Qij)

λ(Pi)
(1− p)(α2i − α1i)εiT

+

√
λ̄(Qij)

λ(Pj)
(1− p)(α2j − α1j)εjT

+ (

√
λ̄(Qij)

λ(Pi)
α2iεi +

√
λ̄(Qij)

λ(Pj)
α2jεj)pT ]

+
∑
j∈Ni

rij

√
λ̄(Qij)

λ(Q̄i)
β(1− p)pT 2.

Substituting of (5.23), (5.24) and (5.25) to the above inequality yields

Ji(tk+1)− J∗
i (tk) ≤ −ζi

√
λ(Qi)

λ̄(Pi)
pεiT. (5.33)

Thus, the state of each subsystem Ai will converge to the positively invariant set

Ωi(εi) in finite time.

Once the state of the subsystem Ai enters the positively invariant set, the state
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feedback controller will be implemented. The following theorem shows that if the

disturbance level satisfies (5.34), the state of each subsystem Ai converges to a robust

positively invariant set.

Theorem 5.2. If all conditions in Lemma 5.1 are satisfied, the sampling interval

satisfies (5.11) and the disturbance bound satisfies ρi ≤ ρ̄i ≤ ρmax
i , where

ρ̄i =
β

′
iλ(Q

∗
i )εi

2λ̄(P
1
2
i )λ̄(Pi)

, β
′

i ∈ (0, 1), (5.34)

then the system state asymptotically converges to the set Ω1(
√
β

′
1ε1)×· · ·×ΩS(

√
β

′
SεS).

Proof. The proof is similar to the Theorem 2 in [50].

Remark 5.2. The maximum disturbance that can be tolerated in Theorem 5.2 can be

relaxed through the following procedure

Step 1: Set ρ1i = ρmax
i , ρ2i = 0, set ρ̄i =

1
2
(ρ1i + ρ2i ), and set a tolerance χ = 0.001;

Step 2: Solve the optimization

max V̇i(xi(t)) =− xT
i Q

∗
ixi(t) + 2xi(t)

TPiωi(t) (5.35)

subject to :

∥xi(t)∥Pi
≤ εi,

∥ωi(t)∥2 ≤ ρ̄i;

Step 3: If the solution of (5.35) is less than 0, then set ρ2i = ρ̄i, else set ρ1i = ρ̄i;

Step 4: If |ρ1i − ρ2i | ≤ χ, then set ρ̄i = ρ2i , terminate, else, set ρ̄i =
1
2
(ρ1i + ρ2i ), go to

Step 2.

Remark 5.3. Given a disturbance level that is less than ρ̄i calculated in Remark 5.2,

Remark 5.2 can be used to determine a less conservative robust positively invariant

set ∥xi(t)∥Pi
≤ ε

′
i. Furthermore, β

′
i and ρ̄i in (5.34) can be calculated using binary

search.
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5.4 A Conceptually Less Conservative Distributed

MPC Strategy

For some nonlinear systems as in [74], the robust positively invariant set is very small,

and algorithms in Section 5.3 is conservative, in the sense that it computes a small

allowable disturbance level and small feasible region. A possible remedy, suggested

by [36] and [81], is to replace the terminal set by the κ ◦ δ controllability set defined

in [81].

Definition 5.1. (κ ◦ δ Controllability Set to Ξ) For the nominal subsystem in (5.3)

with the control constraints ui(t) ∈ Ui, a positively invariant set Ξ and a time interval

δ, the κ ◦ δ controllability set to Ξ, (C̄κ(Ξ)) is

C̄κ(Ξ) = {xi(0) ∈ Rn,∃ui[0, κ−1] ∈ Ui×Ui×···×Ui, such that x̂i(κ◦δ|xi(0)) ∈ Ξ}.

Thus, C̄κ(Ξ) includes all nominal states that can be steered to Ξ in κ ◦ δ time.

Note that Ξ is a positively invariant set, i.e., for any state x ∈ Ξ, there exists a state

feedback control u(t) = Kx(t) which keeps the successive state of the nominal system

in (5.3) in Ξ. Then, it follows that C̄κ−1(Ξ) ⊆ C̄κ(Ξ), for κ ≥ 1, where (C̄0(Ξ)) = Ξ.

Remark 5.4. The procedure to compute the κ◦δ controllability set for a specific class

of nonlinear systems illustrated in [87]. A numerical approximation algorithm for the

same class of systems is proposed in [10]. However, a systematic way to compute the

κ ◦ δ controllability set is not available yet for an arbitrary nonlinear system.

Due to disturbance, the actual state trajectory deviates from the predicted state

trajectory, as characterized in (5.10). In the sequel, the robust κ ◦ δ controllability

set Cκ(Ξ) is defined.

Definition 5.2. (Robust κ ◦ δ Controllability Set to Ξ) For the nonlinear subsystem

in (5.1) with the control constraints ui(t) ∈ Ui, a positively invariant set Ξ, and a

time interval δ, the robust κ ◦ δ controllability set to Ξ, (Cκ(Ξ)) is given by:

Cκ(Ξ) =
{
xi(0) ∈ Rn, ∃ui[0, κ−1] ∈ Ui×Ui×· · ·×Ui, such that xi(κ◦δ|xi(0)) ∈ Ξ

}
.

(5.36)

According to Lemma 5.2, α1iXf is a positively invariant set has been found. Then,

the robust κ ◦ δ controllability set Cκ(α1iXf ) can be determined as follows.
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• Let C0(α1iXf ) = α1iXf . Suppose a positive scalar c > 0 such that Cκ(α1iXf ) is

non-empty.

• Compute C̄1(α1iXf ) using Definition 5.1. Then set C1(α1iXf ) = C̄1(α1iXf ) ⊖
B(c).

• For κ ≥ 2, compute Cκ(α1iXf ) iteratively using

Cκ(α1iXf ) = C1(Cκ−1(α1iXf )).

Assumption 5.3. For each subsystem in (5.1) with the weighting matrix Pi, the

disturbance level ρi and the prediction horizon T , the following inequality holds

λ̄(P
1
2
i )ρiTe

LiT ≤ c. (5.37)

Given Definition 5.2 and Assumption 5.3 above, the following modified distributed

MPC algorithm can be defined.

Remark 5.5. Note that the optimization in (5.38) is implemented iteratively, in the

sense that at time instant tk, and for κ > 1, the constraint in (5.38c) is Cκ(α1iXf ). At

time tk+1, the robust (κ−1)◦δ controllability set Cκ−1(α1iXf ) provides the constraint

in (5.38).

Because the robust κ◦ δ controllability set is computed using the constraint tight-

ening technique, the initial feasibility of the optimization is sufficient to guarantee

the recursive feasibility of the optimization in (5.38). The following theorem states

the robust stability property when implementing the proposed algorithm.

Theorem 5.3. For the nonlinear subsystem in (5.1) with the control constraints

ui(t) ∈ Ui and the initial state xi(0), let there exist a robust κ ◦ δ controllability set

Cκ(α1iXf ) such that the optimization in (5.38) is feasible. Then, by implementing

Algorithm 1, the system state will finally converge to a robust positively invariant set

in finite time.

Remark 5.6. The distributed MPC in Algorithm 7 is less conservative than the

strategy in Section 5.3. A state of the subsystem Ai in (5.1) can be steered to the robust

positively invariant set by the proposed distributed MPC using a prediction horizon T ,

and by the optimization in (5.38) with a prediction horizon T−κδ. Because the largest
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Algorithm 7 Modified distributed MPC

Initialization:
For the nonlinear subsystem Ai in (5.1), the weighting matrices Qi, Ri, Qij,
the robust κ◦δ controllability set Cκ(α1iXf ), and the given prediction horizon
T , let the optimization in (5.38) is initially feasible.

Step 1:

Solve

ûi(s; tk) = arg min
ûi(t;tk)

Ji(x̂i(s; tk), ûi(s; tk), x̂
a
−i(s; tk)), (5.38a)

subject to :

˙̂xi(s; tk) = fi(x̂i(s; tk), ûi(s; tk)), s ∈ [tk, tk + T ];

x̂a
j (s; tk) = fj(x̂

a
j (s; tk), û

a
j (s; tk)), s ∈ [tk, tk + T ];

ûi(s; tk) ∈ Ui, s ∈ [tk, tk + T ]; (5.38b)

x̂i(tk + T ; tk) ∈ Cκ(α1iXf ). (5.38c)

Step 2:

At the next time instant, measure the updated state information.

If κ > 1, update κ , κ− 1.

Solve the optimization in (5.8) with the updated system state and apply the
first control signal to subsystem Ai. Only the first control signal is applied to
the system. Go to Step 1.

else

Go to Step 2.

Step 3:

Update the terminal constraints to C0(α1iXf ). Apply the distributed MPC
strategy proposed in Section 5.3.

possible deviation between the predicted state trajectory and the actual state trajectory

increases exponentially, a shorter prediction horizon guarantees stability for a tolerate

larger disturbance level, which is especially useful for the cases when the disturbance

is state dependent as in [82].

5.5 Illustrative Example

In this section, the distributed MPC in (5.8) is applied to the constrained nonlin-

ear system from [50], which consists of three cart-spring-damper subsystems. The
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dynamics of subsystem i, i = 1, 2, 3, are

ẋi1(t) = xi2(t), (5.39a)

ẋi2(t) = − k

m
e−xi1(t)xi1(t)−

h

m
xi2(t) +

ui(t)

m
+

ωi(t)

m
, (5.39b)

where xi1 and xi2 are the cart displacement and the velocity, respectively; ui(t) and

ωi(t) are the control signal and the external disturbance, respectively; k, h and m are

the cart stiffness, damping and mass, respectively. The cart parameters are constant

and their values are selected as: k = 1.05 N/m, h = 0.3 Ns/m, m = 1.5 kg. The

control signal is assumed to be restricted to ui(t) ∈ [−4 4]. The parameters in the

optimization in (5.8) are: Qi = diag([1.5 1.5]), Ri = 0.1, Qij = 0.1I. Placing the

eigenvalues of Ai + BiKi at [−1 − 0.95], the corresponding control law is Ki =

[−0.3750 − 2.6250]. The associated Pi =

[
3.1639 −0.9084

−0.9084 1.1161

]
is computed by

using the LQR method. The Lipschitz constant is calculated as Li = 2.1982.

The receding horizon is chosen as T = 0.8 s. Then, to ensure recursive feasibility

and robust stability, the following parameters are computed according to Lemma 5.4

and Theorem 5.1. ϱi = 0.74, ςi = 0.1340, ζi = 0.014, α1i = 0.18, α2i = 0.20,

rij = 0.20, and β = 1.3561; we take δ = 0.6 s , because its computed bounds are

0.4929 s and 1.6431 s; the maximum disturbance level from (5.12) is 0.0050.

The initial states of the three subsystems are (0.5 − 0.6), (−0.6 0.5) and (0.65 −
0.4), respectively.

The linearized cart dynamics around the origin are

ẋi(t) =

[
∂fi1
∂xi1

∂fi1
∂xi2

∂fi2
∂xi1

∂fi2
∂xi2

]
xi(t) +

[
∂fi1
∂ui
∂fi2
∂ui

]
ui(t)

=

[
0 1

− k
m

− h
m

]
xi(t) +

[
0
1
m

]
ui(t)

=

[
0 1.00

−0.70 −0.20

]
xi(t) +

[
0

0.6667

]
ui(t). (5.40)

The relationship between the parameters β and the parameter rij, for all i, j =

1, 2, 3, is illustrated in Figure 5.1. Note that a stronger cooperation, a larger rij is

required to strengthen the cooperation, and, a larger β permits the state trajectory

predicted at the current time step to deviate more from the state trajectory predicted
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Figure 5.1: Relationship between r and β.

at the precedent time step. A larger deviation between successive predicted state

trajectories, i.e., a larger β, can be tolerated if the monotonic decrease of the cost

function is ensured through selecting a smaller r = rij, ∀i, j ∈ 1, 2, 3, i ̸= j. Figure 5.1

shows the tradeoff when selecting β and r.
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Figure 5.2: The state trajectories of cart 1 controlled using the distributed MPC
strategies proposed in this chapter and in [50].

The state trajectories of the three carts coupled by the distributed MPC proposed

in Section 5.3 are shown in Figures 5.2, 5.3 and 5.4 together with their state trajecto-

ries when coupled through the algorithm proposed in [50]. The corresponding control

trajectories are plotted in Figures 5.5, 5.6 and 5.7. Lastly, the difference between the
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Figure 5.3: The state trajectories of cart 2 controlled using the distributed MPC
strategies proposed in this chapter and in [50].

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t [s]

st
at

e

 

 

x
1
 using the proposed strategy

x
2
 using the proposed strategy

x
1
 using the strategy in [50]

x
2
 using the strategy in [50]

1.4 1.6 1.8 2

0.2

0.25

0.3

0.35

Figure 5.4: The state trajectories of cart 3 controlled using the distributed MPC
strategies proposed in this chapter and in [50].

trajectories of two carts under decentralized MPC and under the distributed MPC in

this chapter and in [50] are depicted in Figures 5.8 and 5.9. As can be seen that com-

pared to the method in [50], the strategy proposed in this chapter allows a stronger

cooperation. The stronger cooperation is enforced by larger initial control efforts

applied to carts 2 and 3, as shown in Figures 5.6 and 5.7.

Remark 5.7. According to the recursive feasibility conditions in (5.11) and (5.12),

and the robust stability conditions in Theorem 5.1 and Theorem 5.2, if εi which speci-
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Figure 5.5: The distributed MPC signal for cart 1, computed using the strategies
proposed in this chapter and in [50].
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Figure 5.6: The distributed MPC signal for cart 2, computed using the strategies
proposed in this chapter and in [50].

fies the positively invariant set is enlarged, then the sampling interval δ can be chosen

larger and a larger disturbance level can be tolerated. This indicates that by adopting

the modified distributed MPC in Section 5.3 potentially yields less conservative results.

However, a systematic way to compute the κ◦δ controllability set is not available yet.

The development of a technique for determining this set will be pursued in the future.
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Figure 5.7: The distributed MPC signal for cart 3, computed using the strategies
proposed in this chapter and in [50].
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Figure 5.8: Difference between the states of cart 2 under decentralized MPC and
under distributed MPC computed via: (i) the strategy proposed in this chapter; and
(ii) via the strategy in [50].

5.6 Conclusions

This chapter has proposed a distributed MPC for constrained continuous-time non-

linear systems whose subsystems have decoupled dynamics and cooperate with each

other through a coupling term in the cost function. Because each subsystem solves a

local optimization using the state information from its neighboring subsystems only,

the proposed strategy has reduced the communication burden compared to the cen-
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Figure 5.9: Difference between the states of cart 3 under decentralized MPC and
under distributed MPC computed via: (i) the strategy proposed in this chapter; and
(ii) via the strategy in [50].

tralized control. The recursive feasibility of the optimization and the robust stability

of the proposed strategy are analyzed. Sufficient conditions for the recursive feasi-

bility and robust stability have been derived which rely on the appropriate tuning

of several design parameters. The required tuning leads to a small terminal set and,

thus, makes the proposed strategy relatively conservative. A conceptually less conser-

vative strategy can be designed by exploiting the κ◦δ controllability set. Its potential

advantages are that its prediction horizon can be smaller and that it can tolerate a

larger disturbance. The proposed distributed MPC has been illustrated through a

numerical example. In this numerical example, the fact that the simulated subsys-

tems converge to their invariant sets even without terminal constraints indicates that

the proposed distributed MPC is relatively conservative. Future research will seek to

make the proposed method less conservative.
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Chapter 6

Distributed Model Predictive

Control of Constrained Weakly

Coupled Nonlinear Systems

6.1 Introduction

For nonlinear systems, the existing distributed MPC approaches [20, 109] can be

classified into cooperative and non-cooperative strategies, based on the topology of

the communication among subsystems.

In cooperative distributed MPC, all subsystems use the state information of the

overall system and solve system-wide optimizations constrained by the nonlinear dy-

namics [109]. The requirement that all subsystems communicate with each other

imposes a heavy communication burden. One approach to relaxing the communi-

cation burden has been presented in [107], through a hierarchical cooperative dis-

tributed MPC scheme that collects all subsystems into several groups, each with its

own leader, and divides the communication into two layers. In the lower layer, the

subsystems communicate with other subsystems from the same group at the rate of

their local control. In the higher layer, the group leaders communicate with other

group leaders at an asynchronous and slower rate. Another Lyapunov-based ap-

proach to relaxing the computational burden of cooperative distributed MPC has

been introduced in [56]. The Lyapunov-based approach accounts for disturbances

and time-delayed and asynchronous measurements, but assumes that a pre-designed

Lyapunov controller is available which makes the origin of the nominal closed-loop
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system asymptotically stable.

In non-cooperative distributed MPC, all subsystems have access only to their

neighbors’ information and they use this information in two different ways. In the

first approach, all subsystems treat their dynamic interactions with their neighbors as

disturbances and compute their local control signals using a min-max strategy [40],

a contractive-based strategy [65], a stability constraint strategy [11,39], or an input-

to-state stability (ISS) strategy [86]. In the second approach, subsystems with de-

coupled dynamics use their neighbors’ information to add constraints [20, 24, 90] or

cost terms [50] to their local optimizations. The role of the added constraints is

to limit the deviation between the trajectories planned by the subsystems and their

trajectories assumed by their neighbors [20] and, thus to ensure global stability [90]

and global string stability [21]. The role of the added terms in the local cost is to

distribute the global control objective to the local controllers [50]. The additions

of a terminal constraint in the local optimizations offers robustness by guaranteeing

decreasing local costs regardless of disturbances [50].

6.1.1 Objective, Contributions and Chapter Organization

This chapter proposes a distributed model predictive control (MPC) strategy for

large-scale systems whose subsystems have weakly coupled nonlinear dynamics and

decoupled control constraints, and are affected by additive disturbances. In the pro-

posed strategy, all subsystems compute their control signals by solving local opti-

mizations constrained by their nominal decoupled dynamics. The dynamic couplings

and the disturbances are accommodated through new robustness constraints in the

local optimizations. The contributions of this chapter are three-fold.

• It proposes a new constraint to provide robustness to dynamic couplings among

neighbors and to disturbances, and computes an upper bound on the discrep-

ancy between the actual and predicted state trajectories of each subsystem.

• It analyzes the recursive feasibility of the optimization for each subsystem, and

shows that, for a given disturbance level, recursive feasibility can be guaranteed

through appropriate design of the sampling interval.

• Sufficient conditions for the state of the large-scale system to converge to a

robust positively invariant set are derived.
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In the remainder of this chapter, Section 6.2 formulates the problem and upper

bounds the discrepancy between the actual and predicted state trajectories of each

subsystem. Section 6.3 analyzes the recursive feasibility of the local optimizations

which yield the control signal for each subsystem. Section 6.4 establishes sufficient

conditions for the convergence of the overall system state to a robust positively in-

variant set. Section 6.5 illustrates the proposed MPC strategy through applying it

to a system which consists of three weakly coupled cart-(nonlinear) spring-damper

subsystems.

Notation: The superscript “T” indicates matrix transposition. Given a matrix

A: λ̄(A) and λ(A) are its maximum and minimum eigenvalues, respectively; A > 0

(A ≥ 0) shows that A is real symmetric and positive definite (positive semidefinite).

Given a vector x: ∥x∥2 is its Euclidean norm; and ∥x∥A =
√
xTAx is its A-weighted

norm. For a set N, Card{N} denotes its cardinality. diag{· · · } indicates a block-

diagonal matrix.

6.2 Problem Formulation and Preliminaries

Consider a large-scale system consisting of S interconnected nonlinear subsystems

with decoupled control constraints and affected by additive disturbances. The dy-

namics of the i-th subsystem Ai are

ẋi(t) = fi(xi(t), x−i(t), ui(t)) + ωi(t), xi(t0) = xi0, t ≥ t0, (6.1)

where xi(t) ∈ Rni is the state of the subsystem Ai; ui(t) ∈ Ui is its constrained

control signal; ωi(t) is the additive disturbance; and x−i(t) concatenates the states of

all subsystems Aj that are neighbors of the subsystem Ai, i.e.,

x−i(t) = (· · · , xj(t), · · · ) ∈ R
∑

j∈Ni
nj .

A subsystem Aj is a neighbor of Ai, i.e., Aj ∈ Ni, if the dynamics of subsystem

Ai depend on the state of subsystem Aj. The disturbance ωi(t) is assumed to be

bounded in a compact set W, W = {ω : ∥ω∥2 ≤ ρ}.
The linearized dynamics of the subsystem Ai around the origin are

ẋi(t) = Aiixi(t) +
∑
j∈Ni

Aijxj(t) +Biui(t) + ωi(t), (6.2)
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whereAii = (∂fi/∂xi)(0, 0), Aij = (∂fi/∂xj)(0, 0) for j ∈ Ni, andBi = (∂fi/∂ui)(0, 0).

The following assumptions [12] are imposed on the subsystem dynamics in (6.1)

and on their linearization around the origin in (6.2).

Assumption 6.1. a). For each subsystem Ai in (6.1), the vector field fi is twice

continuously differentiable and satisfies fi(0, 0, 0) = 0.

b). Each subsystem Ai in (6.1) has a unique absolutely continuous solution for any

initial condition (x1(t0), x2(t0), · · · , xS(t0)) and any piecewise control ui : [t0,∞) →
Ui.

c). The control constraints Ui are a compact subset of Rmi that contains the origin

in its interior.

Assumption 6.2. For each linearized subsystem in (6.2), the pair (Aii, Bi) is stabi-

lizable, i.e., there exists a matrix Ki such that Adi = Aii +BiKi is Hurwitz.

By definition, the nominal decoupled dynamics of subsystem Ai are

˙̄xi(t) = fi(x̄i(t), ūi(t)), x̄i(t0) = xi0, t ≥ t0. (6.3)

The dynamics of the overall constrained coupled nonlinear system are

ẋ(t) = f(x(t), u(t)) + ω(t), (6.4)

where x(t)T =
[
x1(t)

T · · · xS(t)
T
]T

, ω(t)T =
[
ω1(t)

T · · · ωS(t)
T
]T

, and

f(x(t), u(t)) =
[
f1(x1(t), x−1(t), u1(t))

T · · · fS(xS(t), x−S(t), uS(t))
T
]T

, and the lin-

earized dynamics of the overall system around the origin are

ẋ(t) = Ax(t) +Bu(t) + ω(t), (6.5)

where A =


A11 A12 · · · A1S

A21 A22 · · · A2S

...
...

. . .
...

AS1 AS2 · · · ASS

 , B =


B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · BS

 .

By definition, the nominal decoupled dynamics of the overall system are

˙̄x(t) = f(x̄(t), ū(t)), x̄(t0) = x0, t ≥ t0. (6.6)

Instead of steering the state of the constrained coupled nonlinear system, which
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consists of all subsystems in (6.1), to the origin through a centralized controller,

this chapter adopts a distributed MPC strategy which computes the control for each

subsystem Ai by solving

min
ūi(τ ;tk),τ∈[tk,tk+T ]

Ji(tk, xi(tk))

= min
ūi(τ ;tk),τ∈[tk,tk+T ]

∫ tk+T

tk

(
∥x̄i(τ ; tk)∥Qi

+ ∥ūi(τ ; tk)∥Ri

)
dτ

+ ∥x̄i(tk + T ; tk)∥Pi

subject to:

˙̄xi(τ ; tk) = fi(x̄i(τ ; tk), ūi(τ ; tk)), x̄i(tk; tk) = xi(tk), τ ∈ [tk, tk + T ], (6.7a)

ūi(τ ; tk) ∈ Ui, τ ∈ [tk, tk + T ],

∥x̄i(τ ; tk)∥Pi
≤ T

τ − tk−1

αiε
′

i, τ ∈ [tk, tk + T ], (6.7b)

where Qi > 0 and Ri ≥ 0 are given state stage and control stage weighting matrices,

respectively; Pi is the terminal weighting matrix designed as in Lemma 1 [57]; T is the

prediction horizon; ε
′
i is a positive constant that characterizes the positively invariant

set Ωε
′
i
that will be designed in (6.14); and αi is a shrinking factor that will be designed

in Theorem 6.1. In the distributed MPC strategy in (6.7), all subsystems predict their

trajectories based on their decoupled nominal dynamics, and the constraint (6.7b)

imposes a monotonically decreasing bound on the predicted system trajectory. This

bound is needed for the recursive feasibility of the distributed MPC controller in (6.7),

as well as for the stability of the constrained weakly coupled nonlinear system with

this controller.

Remark 6.1. The constraint in (6.7b) is inspired by the robustness constraint

∥x̄i(τ ; tk)∥Pi
≤ T

τ−tk
αiε

′
i, τ ∈ [tk+1, tk + T ] in [50], but serves a different purpose and

therefore, has a different form. The robustness constraint in [50] accommodates dis-

turbances, whereas the constraint in (6.7b) provides robustness to dynamic couplings

and to disturbances simultaneously. Therefore, the constraint in (6.7b) upper bounds

the predicted state trajectory by T
τ−tk−1

αiε
′
i over τ ∈ [tk, tk + T ], as opposed to the

robust constraint in [50], which upper bounds the predicted trajectory by T
τ−tk

αiε
′
i over

τ ∈ [tk+1, tk + T ].

For the reader’s convenience, Lemma 1 in [57] is presented below.

Lemma 6.1. [57] For the nominal decoupled subsystem in (6.3) with Assumption 6.2:
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(a) there exists a unique positive definite matrix P ∗
i which solves the following Lya-

punov equation (Adi + κiI)
TP ∗

i + P ∗
i (Adi + κiI) = −Q∗

i , where Q∗
i = 2(1 +

α2i)
√

1
λ(Qi)

Qi, α2i =
√

λ̄(KT
i RiKi)

λ(Qi)
; and κi ∈ [0,−λ̄(Adi));

(b) a neighborhood of the origin Ωεi = {x ∈ Rni : ∥x∥Pi
≤ εi} exists with Pi =

λ̄(P ∗
i )P

∗
i such that

1. the state feedback controller ūi(t) = Kix̄i(t) satisfies the control constraints

Ui for any state x̄i(t) ∈ Ωεi, i.e., ūi(t) = Kix̄i(t) ∈ Ui, ∀x̄i(t) ∈ Ωεi;

2. Ωεi is a control positively invariant set for the nominal decoupled subsystem

in (6.3) with the state feedback control ūi(t) = Kix̄i(t), i.e., x̄i(t) ∈ Ωεi,

∀x̄i(t0) ∈ Ωεi, ∀t ≥ t0;

3. the terminal cost ∥x̄i(tk)∥Pi
serves as a control Lyapunov-like function for

any state x̄i(tk) ∈ Ωεi in the sense that∫ tk+δ

tk

(∥x̄i(τ)∥Qi
+ ∥ūi(τ)∥Ri

) dτ ≤ ∥x̄i(tk)∥Pi
− ∥x̄i(tk + δ)∥Pi

, (6.8)

or, in differential form

d

dt
(∥x̄i(t)∥Pi

) ≤ − (∥x̄i(t)∥Qi
+ ∥ūi(t)∥Ri

) . (6.9)

Let

Q∗ = diag{Q∗
1 Q

∗
2 · · · Q∗

S},

P ∗ = diag{P ∗
1 P ∗

2 · · · P ∗
S},

Dκ = diag{κ1I κ2I · · · κSI},

where Q∗
i , P

∗
i and κi, i = 1, 2, · · · , S are defined in Lemma 6.1. Then the following

Lyapunov equation holds for the overall nominal decoupled system in (6.6)

(Ad +Dκ)
TP ∗ + P ∗(Ad +Dκ) = −Q∗. (6.10)

Lemma 6.1 has provided the method to determine both the terminal weighting

matrix Pi for the optimization in (6.7) and the positively invariant set Ωεi for the

nominal decoupled subsystem in (6.3). Lemma 6.2 will establish the existence of

a positively invariant set Ωε for the constrained weakly coupled nonlinear system
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in (6.4) with the state feedback control u(t) = Kx(t), K = diag{K1 K2 · · · KS}.
Lemma 6.2 and the derivations in Sections 6.3 and 6.4 use the following standard

assumptions [20].

Assumption 6.3. The inequality AT
0 P

∗ + P ∗A0 ≤ 1
2
Q∗ holds, where A0 = Ac − Ad,

with Ad = diag{Ad1 Ad2 · · · AdS}, Ac = A+BK.

Assumption 6.3 limits the strength of interconnection among subsystems.

Assumption 6.4. For each subsystem Ai in (6.1), the vector field fi satisfies the

Lipschitz condition

∥fi(xi(τ ; tk), x−i(τ ; tk), ūi(τ ; tk))− fi(x̄i(τ ; tk), ūi(τ ; tk))∥2
≤ Lfi∥xi(τ ; tk)− x̄i(τ ; tk)∥2 +

∑
j∈Ni

βij∥xj(τ ; tk)∥2

where Lfi > 0 and βij > 0.

Lemma 6.2. For the constrained weakly coupled nonlinear system in (6.4), with

Assumptions 6.1 and 6.3 and with the state feedback control u(t) = Kx(t), there

exists a neighborhood of the origin Ωε

Ωε = {x ∈ R
∑S

i=1 ni : ∥x∥P ∗ ≤ ε}

such that:

• Ωε is a control positively invariant set for the system in (6.4);

• u(t) is admissible everywhere in Ωε, i.e., u(t) = Kx(t) ∈ U, ∀x(t) ∈ Ωε.

Proof. In view of (6.9), Ωε can be shown to be a positively invariant set of (6.5) with

the feedback control u(t) = Kx(t) by showing that

d

dt
(∥x(t)∥P ∗) =

x(t)T(AT
c P

∗ + P ∗Ac)x(t) + 2x(t)TP ∗ϕ(x(t))

2∥x(t)∥P ∗
≤ 0 (6.11)

holds for ∀x(t) ∈ Ωε, where ϕ(x(t)) = f(x(t), Kx(t))− Acx(t). Using Ac = Ad + A0,
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the numerator in (6.11) can be written as

x(t)T(AT
dP

∗ + P ∗Ad)x(t) + 2x(t)TP ∗ϕ(x(t)) + x(t)T(AT
0 P

∗ + P ∗A0)x(t)

= −x(t)TQ∗x(t)− 2x(t)TDκP
∗x(t) + 2x(t)TP ∗ϕ(x(t))

+ x(t)T(AT
0 P

∗ + P ∗A0)x(t)

≤ −1

2
x(t)TQ∗x(t)− 2x(t)TDκP

∗x(t) + 2x(t)TP ∗ϕ(x(t)), (6.12)

where Equation (6.12) follows after applying Assumption 6.3.

Let κ = mini(κi), then

−2x(t)TDκP
∗x(t) ≤ −2x(t)TκP ∗x(t). (6.13)

Since ∥ϕ(x(t))∥P∗
∥x(t)∥P∗

→ 0 as ∥x(t)∥P ∗ → 0, an ε > 0 can always be found such that
∥ϕ(x(t))∥P∗
∥x(t)∥P∗

≤ κ holds when ∥x(t)∥P ∗ ≤ ε. After substitution from (6.13), Equa-

tion (6.12) yields

− 1

2
x(t)TQ∗x(t)− 2x(t)TDκP

∗x(t) + 2x(t)TP ∗ϕ(x(t))

≤ −1

2
x(t)TQ∗x(t)− 2x(t)TκP ∗x(t) + 2κ∥x(t)∥P ∗∥x(t)∥P ∗

= −1

2
x(t)TQ∗x(t) ≤ 0.

This completes the proof.

The control positively invariant set Ωε can be computed as follows:

Step 0: Set ε̄ a large enough value to include the feasible ε, ε = 0 and the tolerance

‘tol’ to satisfy the system performance;

Step 1: Set ε = 1
2
(ε̄+ ε), and compute

fmin = min
x(t)∈Ωε

(−f(x(t)))

= min
x(t)∈Ωε

(
1

2
x(t)TQ∗x(t) + 2x(t)TDκP

∗x(t)− 2x(t)TP ∗ϕ(x(t))

)
;

Step 2: If fmin > 0, set ε = ε; otherwise, set ε̄ = ε;

Step 3: If ε̄− ε > tol, go to Step 1. Otherwise, terminate and output ε = ε.
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Now, the positively invariant set Ωε
′
i
= {x ∈ Rni : ∥x∥Pi

≤ ε
′
i} required in (6.7b)

can be computed using [20]

ε
′

i = min

(
εi,

ε√
S

√
λ̄(P ∗

i )

)
, (6.14)

and Ωε′ = Ωε
′
1
× Ωε

′
2
× · · · × Ωε

′
S
becomes a positively invariant set for the overall

nominal decoupled nonlinear system in (6.6) with the control u(t) = Kx(t).

The distributed MPC signal in (6.7) is generated using the nominal decoupled

subsystem dynamics in (6.3) as the prediction model. However, the couplings among

the subsystems and the external disturbances lead to deviations of the state trajec-

tories of the subsystems Ai from their predicted state trajectories x̄i(t; tk) employed

in (6.7). Lemma 6.3 bounds these deviations.

Lemma 6.3. For each subsystem Ai in (6.1) with Assumption 6.4, the deviation of

its state trajectory from the predicted state trajectory of its nominal and decoupled

dynamics in (6.6) is upper bounded by

∥xi(t; tk)− x̄i(t; tk)∥2 ≤ λ(t− tk)e
µ(t−tk), (6.15)

where

µ = L+ βN̄, λ =

(
βγ̄N̄

Tαε
′

δ
+ ρ

)
, (6.16)

and L = maxi{Lfi}, β = maxi,j{βij}, α = maxj{αj}, ε
′
= maxi{ε

′
i}, γ̄ = maxi{

√
1

λ(Pi)
}.

N̄ is the number of neighbors that each subsystem has in the symmetric super-graph

G′ [8] of the graph G which encodes the topology of the inter-subsystem couplings,

and, N̄ ≥ maxiCard{Ni}.

Proof. Let: ūi(t; tk) be a feasible control trajectory; ū∗
i (t; tk) be the optimal control

trajectory computed in (6.7); x̄i(t; tk) be the state trajectory predicted by applying

ūi(t; tk); and x̄∗
i (t; tk) be the state trajectory predicted by applying ū∗

i (t; tk). After
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substitution from (6.1) and (6.3), (6.15) yields

∥xi(t; tk)− x̄i(t; tk)∥2

≤
∫ t

tk

(
Lfi∥xi(τ ; tk)− x̄i(τ ; tk)∥2 +

∑
j∈Ni

βij∥xj(τ ; tk)− x̄j(τ ; tk)∥2

+
∑
j∈Ni

βij∥x̄j(τ ; tk)∥2 + ∥ωi(τ)∥2
)
dτ, (6.17)

and after substitution from (6.7b), Equation (6.17) becomes

∥xi(t; tk)− x̄i(t; tk)∥2

≤
∫ t

tk

(
L∥xi(τ ; tk)− x̄i(τ ; tk)∥2 + βN̄∥xi(τ ; tk)− x̄i(τ ; tk)∥2

+ βγ̄N̄
Tαε

′

τ − tk−1

+ ρ

)
dτ

=

∫ t

tk

(
(L+ βN̄)∥xi(τ ; tk)− x̄i(τ ; tk)∥2 + βγ̄N̄

Tαε
′

τ − tk−1

+ ρ

)
dτ. (6.18)

After substitution from (6.16), Equation (6.18) yields

S∑
i=1

∥xi(t; tk)− x̄i(t; tk)∥2

≤
∫ t

tk

(L+ βN̄)
S∑

i=1

∥xi(τ ; tk)− x̄i(τ ; tk)∥2dτ +
(
βγ̄N̄STαε

′
/δ + Sρ

)
(t− tk)

=

∫ t

tk

µ
S∑

i=1

∥xi(τ ; tk)− x̄i(τ ; tk)∥2dτ + Sλ(t− tk). (6.19)

Applying the Gronwall-Bellman inequality to (6.19) leads to

S∑
i=1

∥xi(t; tk)− x̄i(t; tk)∥2 ≤ Sλ(t− tk)e
µ(t−tk). (6.20)

From (6.20), (6.15) follows based on symmetry. This completes the proof.



109

6.3 Recursive Feasibility

To successfully implement the proposed distributed MPC strategy, the optimization

in (6.7) should be recursively feasible, i.e., the feasibility of the optimization in (6.7)

at time tk should indicate its feasibility at time tk+1. This section establishes suffi-

cient conditions for the recursive feasibility of (6.7) after first determining sufficient

conditions for the satisfaction of the terminal constraints in (6.7b). The derivations

use the assumed control trajectory ûi(t; tk) which is defined by

ûi(t; tk) =

ū∗
i (t; tk−1), t ∈ [tk, tk−1 + T ),

Kix̂i(t; tk), t ∈ [tk−1 + T, tk + T ],
(6.21)

where ˙̂xi(t; tk) = fi(x̂i(t; tk), û(t; tk)) with x̂i(tk; tk) = xi(tk).

Theorem 6.1. For the subsystem in (6.1) with the control in (6.7), if the sampling

interval δ satisfies

αiε
′
i

T + δ
≥
√
λ̄(Pi)

(
βγ̄N̄Tαε

′
/δ + ρ

)
eµT , (6.22a)

T

T + δ
≥ e−ηiδ, (6.22b)

where ηi =

(√
λ(Qi)

λ̄(Pi)
+
√

λ(KT
i RiKi)

λ̄(Pi)

)
, then the assumed control signal ûi(t; tk) in (6.21)

steers the assumed state trajectory x̂i(t; tk) of the nominal decoupled dynamics of the

subsystem Ai to the positively invariant set Ω T
T+δ

αiε
′
i
within the prediction horizon T .

Proof. From (6.15), it follows that

∥xi(t; tk)− x̄i(t; tk)∥Pi
≤
√

λ̄(Pi)∥xi(t; tk)− x̄i(t; tk)∥2

≤
√

λ̄(Pi)(βγ̄N̄Tαε
′
/δ + ρ)(t− tk)e

µ(t−tk). (6.23)

The substitution t = tk+1 in (6.23) leads to

∥xi(tk+1; tk)− x̄i(tk+1; tk)∥Pi
≤
√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδ, (6.24)
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and further to

∥x̂i(τ ; tk+1)− x̄∗
i (τ ; tk)∥Pi

≤
√

λ̄(Pi)∥x̂i(τ ; tk+1)− x̄∗
i (τ ; tk)∥2

≤
√
λ̄(Pi)

(
∥x̂i(tk+1; tk+1)− x̄∗

i (tk+1; tk)∥2

+ Lfi

∫ τ

tk+1

∥x̂i(s; tk+1)− x̄∗
i (s; tk)∥2ds

)
. (6.25)

After applying the Gronwall-Bellman inequality and using (6.24), Equation (6.25)

yields

∥x̂i(τ ; tk+1)− x̄∗
i (τ ; tk)∥Pi

≤
√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδeLfi

(τ−tk+1). (6.26)

The constraints in (6.7b) together with (6.26) lead to ∥x̄∗
i (tk + T ; tk)∥Pi

≤ Tαiε
′
i

T+δ
,

and further to

∥x̂i(tk + T ; tk+1)∥Pi
≤ ∥x̄∗

i (tk + T ; tk)∥Pi
+ ∥x̂i(tk + T ; tk+1)− x̄∗

i (tk + T ; tk)∥Pi

≤
√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδeLfi

(T−δ) +
T

T + δ
αiε

′

i

≤
√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµT +

T

T + δ
αiε

′

i. (6.27)

If (6.22a) holds, then

∥x̂i(tk + T ; tk+1)∥Pi
≤ αiε

′

i, (6.28)

which shows that the assumed state x̂i(tk + T ; tk+1) of the nominal and decoupled

dynamics of the subsystem Ai are steered to the positively invariant set Ωαiε
′
i
. When

x̂i(tk + T ; tk+1) ∈ Ωαiε
′
i
, the state feedback control ui(t) = Kixi(t) is implemented.

From (6.9), it follows that

d

dt
(∥x̄i(t)∥Pi

) ≤ −(∥x̄i(t)∥Qi
+ ∥ūi(t)∥R)

≤ −

(√
λ(Qi)

λ̄(Pi)
+

√
λ(KT

i RiKi)

λ̄(Pi)

)√
x̄T
i (t)Pix̄i(t)

= −ηi∥x̄i(t)∥Pi
, (6.29)
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where ηi =

(√
λ(Qi)

λ̄(Pi)
+
√

λ(KT
i RiKi)

λ̄(Pi)

)
. Applying the comparison principle [44] to (6.29)

yields

∥x̂i(t; tk+1)∥Pi
≤ ∥x̂i(tk + T ; tk+1)∥Pi

e−ηi(t−tk−T ), t ∈ [tk + T, tk+1 + T ]. (6.30)

Combining (6.28), (6.30) and (6.22b) leads to

∥x̂i(tk+1 + T ; tk+1)∥Pi
≤ αiε

′

ie
−ηiδ ≤ T

T + δ
αiε

′

i,

which shows that the terminal state x̂i(tk+1+T ; tk+1) of the assumed state trajectory

x̂i(t; tk+1) enters the positively invariant set Ω T
T+δ

αiε
′
i
. This completes the proof.

Theorem 6.1 establishes sufficient conditions for the assumed control ûi(t; tk)

in (6.21) to steer the assumed state of the nominal decoupled dynamics of the sub-

system Ai to the positively invariant set within the prediction horizon T . Sufficient

conditions for the feasibility of the assumed control ûi(t; tk) are provided next.

Theorem 6.2. Given a feasible initial state for the subsystem Ai in (6.1), the op-

timization in (6.7) is recursively feasible if the sampling interval δ satisfies (6.22a)

and (6.22b), and if

Tηi − 1 ≥ 0. (6.31)

Proof. Assume the optimization in (6.7) is feasible at time tk. To determine its

feasibility at time tk+1, the assumed state trajectory x̂i(t; tk+1) will be investigated

over two time intervals, [tk+1, tk + T ] and [tk + T, tk+1 + T ].

Consider the time interval [tk+1, tk + T ]. From (6.26), it follows that

∥x̂i(τ ; tk+1)∥Pi
≤ ∥x̄∗

i (τ ; tk)∥Pi
+ ∥x̂i(τ ; tk+1)− x̄∗

i (τ ; tk)∥Pi

≤ Tαiε
′
i

τ − tk−1

+
√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδeLfi

(τ−tk+1). (6.32)

In view of (6.27) and (6.28), when τ = tk + T , the last term on the right-hand

side of (6.32) is bounded by√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδeLfi

(T−δ) ≤ δαi

T + δ
ε
′

i. (6.33)
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After substitution from (6.33), Equation (6.32) yields

∥x̂i(τ ; tk+1)∥Pi
≤ Tαiε

′
i

τ − tk−1

+
δε

′
iαi

(T + δ)eLfi
(T−δ)

eLfi
(τ−tk+1)

=
Tαiε

′
i

τ − tk−1

+
δε

′
iαi

T + δ
eLfi

(τ−tk+1+δ−T ).

Considering
Tαiε

′
i

τ−tk
− Tαiε

′
i

τ−tk−1
=

δTαiε
′
i

(τ−tk)(τ−tk−1)
, the recursive feasibility of (6.7) is guaran-

teed if

δαiε
′
i

(T + δ)
eLfi

(τ−tk+1+δ−T ) ≤ δTαiε
′
i

(τ − tk)(τ − tk−1)
. (6.34)

From τ − tk ≤ T and τ − tk−1 ≤ T + δ over the interval [tk+1, tk + T ], it follows

that

δTαiε
′
i

(τ − tk)(τ − tk−1)
≥ δTαiε

′
i

T (T + δ)
=

δαiε
′
i

T + δ
, (6.35)

and that (6.34) holds if

δαiε
′
i

T + δ
eLfi

(τ−tk+1+δ−T ) ≤ δαiε
′
i

T + δ
. (6.36)

In summary, Equation (6.36) holds because eLfi
(τ−tk+1+δ−T ) ≤ 1 for ∀τ ∈ [tk+1, tk+

T ] and the feasibility of û(t; tk+1) over the interval [tk+1, tk + T ] is ensured.

Now consider the time interval [tk + T, tk+1 + T ]. Define

Ti(τ) = αie
−ηi(τ−tk−T ), T o

i (τ) =
Tαi

τ − tk
.

It follows that T o
i (τ)− Ti(τ) =

Tαi

τ−tk
− αie

−ηi(τ−tk−T ) = Tαie
ηi(τ−tk−T )−αi(τ−tk)

(τ−tk)e
ηi(τ−tk−T ) , and the

substitution of τ = tk + T leads to T o
i (tk + T ) − Ti(tk + T ) = 0. After defining

∆T (t) = Tαie
ηit − αi(t+ T ), t ∈ [0, δ], it follows that d∆T (t)

dt
= Tαiηie

ηit − αi. Then,

if d∆T (t)
dt

= Tαiηie
ηit − αi ≥ 0 over the interval t ∈ [0, δ], that is, if Tηi − 1 ≥ 0, then

∆T (t) is increasing along [0, t].

From (6.31), it follows that T o
i (τ)−Ti(τ) ≥ 0, and using (6.30) that ∥x̂i(τ ; tk+1)∥Pi

≤
ε
′
iαie

−ηi(τ−tk−T ) ≤ Tαiε
′
i

τ−tk
. The feasibility over the interval [tk+T, tk+1+T ] is also guar-

anteed. This completes the proof.
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6.4 Stability

This section establishes sufficient conditions for the distributed MPC signal in (6.7)

to steer the state of the overall constrained weakly coupled nonlinear system in (6.4)

to the origin.

The optimal state cost for subsystem Ai is

J∗
i (tk, xi(tk)) =

∫ tk+T

tk

(∥x̄∗
i (τ ; tk)∥Qi

+ ∥ū∗
i (τ ; tk)∥Ri

) dτ + ∥x̄∗
i (tk + T ; tk)∥Pi

at time tk. Using the assumed control trajectory ûi(t; tk+1), the optimal cost at time

tk+1 can be upper bounded by

J∗
i (tk+1, xi(tk+1)) ≤ Ji(tk+1, xi(tk+1))

=

∫ tk+1+T

tk+1

(∥x̂i(τ ; tk+1)∥Qi
+ ∥ûi(τ ; tk+1)∥Ri

) dτ + ∥x̂i(tk+1 + T ; tk+1)∥Pi
,

and the difference between the optimal cost J∗
i (tk+1, xi(tk+1)) and J∗

i (tk, xi(tk)) can

be upper bounded by

J∗
i (tk+1, xi(tk+1))− J∗

i (tk, xi(tk)) ≤ Ji(tk+1, xi(tk+1))− J∗
i (tk, xi(tk))

=

∫ tk+T

tk+1

(∥x̂i(τ ; tk+1)∥Qi
− ∥x̄∗

i (τ ; tk)∥Qi
+ ∥ûi(τ ; tk+1)∥Ri

− ∥ū∗
i (τ ; tk)∥Ri

) dτ

(6.37a)

−
∫ tk+1

tk

(∥x̄∗
i (τ ; tk)∥Qi

+ ∥ū∗
i (τ ; tk)∥Ri

) dτ (6.37b)

+

∫ tk+1+T

tk+T

(∥x̂i(τ ; tk+1)∥Qi
+ ∥ûi(τ ; tk+1)∥Ri

) dτ

+ ∥x̂i(tk+1 + T ; tk+1)∥Pi
− ∥x̄∗

i (tk + T ; tk)∥Pi
. (6.37c)

Upper bounds on (6.37a), (6.37b) and (6.37c) are derived in the following propo-

sition.

Proposition 6.1. For the subsystem Ai in (6.1), with Assumptions 6.1 and 6.2, with

a sampling interval δ that satisfies the conditions in (6.22a) and (6.22b), and with
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the condition in (6.31), the terms in (6.37a), (6.37b) and (6.37c) satisfy∫ tk+T

tk+1

(∥x̂i(τ ; tk+1)∥Qi
− ∥x̄∗

i (τ ; tk)∥Qi
+ ∥ûi(τ ; tk+1)∥Ri

− ∥ū∗
i (τ ; tk)∥Ri

) dτ

≤

√
λ̄(Qi)

λ(Pi)

δαiε
′
i

T + δ

1− eLfi
(δ−T )

Lfi

; (6.38a)

−
∫ tk+1

tk

(∥x̄∗
i (τ ; tk)∥Qi

+ ∥ū∗
i (τ ; tk)∥Ri

) dτ

≤ −

√
λ(Qi)

λ̄(Pi)
ε
′

iδ +

√
λ(Qi)

λ̄(Pi)

δ2αi

T + δ
ε
′

ie
Lfi

(δ−T ); (6.38b)∫ tk+1+T

tk+T

(∥x̂i(τ ; tk+1)∥Qi
+ ∥ûi(τ ; tk+1)∥Ri

) dτ

+ ∥x̂i(tk+1 + T ; tk+1)∥Pi
− ∥x̄∗

i (tk + T ; tk)∥Pi
≤ δ

T + δ
αiε

′

i. (6.38c)

Proof. The integral term in (6.37a) is upper bounded by∫ tk+T

tk+1

(∥x̂i(τ ; tk+1)∥Qi
− ∥x̄∗

i (τ ; tk)∥Qi
+ ∥ûi(τ ; tk+1)∥Ri

− ∥ū∗
i (τ ; tk)∥Ri

) dτ

≤
∫ tk+T

tk+1

∥x̂i(τ ; tk+1)− x̄∗
i (τ ; tk)∥Qi

dτ

≤

√
λ̄(Qi)

λ(Pi)

∫ tk+T

tk+1

√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδeLfi

(τ−tk+1)dτ. (6.39)

In view of (6.27) and (6.28), it follows that

√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδ ≤ δαiε

′
i

T + δ
e−Lfi

(T−δ). (6.40)

Together, Equations (6.39) and (6.40) yield√
λ(Pi)

λ̄(Qi)

∫ tk+T

tk+1

∥x̂i(τ ; tk+1)− x̄∗
i (τ ; tk)∥Qi

dτ

≤ δαiε
′
i

T + δ

∫ tk+T

tk+1

eLfi
(τ−tk+1+δ−T )dτ ≤ δαiε

′
i

T + δ

1− eLfi
(δ−T )

Lfi

, (6.41)

and Equation (6.41) together with (6.39) leads to (6.38a).
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The integral term in (6.37b) is upper bounded by

−
∫ tk+1

tk

(∥x̄∗
i (τ ; tk)∥Qi

+ ∥ū∗
i (τ ; tk)∥Ri

) dτ ≤ −
∫ tk+1

tk

∥x̄∗
i (τ ; tk)∥Qi

dτ. (6.42)

From (6.20), it follows that

∥xi(τ ; tk)− x̄∗
i (τ ; tk)∥Pi

≤
√

λ̄(Pi)(βγ̄N̄Tαε
′
/δ + ρ)(τ − tk)e

µ(τ−tk). (6.43)

If xi(δ, tk) does not enter the positively invariant set Ωε
′
i
during the sampling interval

[tk, tk+1], then (6.43) guarantees that

∥x̄∗
i (τ ; tk)∥Pi

≥ ε
′

i −
√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδ. (6.44)

After substitution from (6.44), Equation (6.42) leads to

−
∫ tk+1

tk

∥x̄∗
i (τ ; tk)∥Qi

dτ

≤ −

√
λ(Qi)

λ̄(Pi)
ε
′

iδ +

√
λ(Qi)

λ̄(Pi)

∫ tk+1

tk

√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδdτ. (6.45)

Together, Equations (6.27) and (6.28) imply that√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδ ≤ δαi

T + δ
ε
′

ie
Lfi

(δ−T ), (6.46)

and, after integration over [tk, tk+1], that∫ tk+1

tk

√
λ̄(Pi)(βγ̄N̄Tαε

′
/δ + ρ)δeµδdτ

≤
∫ tk+1

tk

δαi

T + δ
ε
′

ie
Lfi

(δ−T )dτ =
δ2αi

T + δ
ε
′

ie
Lfi

(δ−T ). (6.47)

Together, Equations (6.42), (6.45), (6.46) and (6.47) imply (6.38b).

Equation (6.38c) can be shown to hold starting from Lemma 6.1, which guarantees
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that ∫ tk+1+T

tk+T

(∥x̂i(τ ; tk+1)∥Qi
+ ∥ûi(τ ; tk+1)∥Ri

) dτ

+ ∥x̂i(tk+1 + T ; tk+1)∥Pi
− ∥x̄∗

i (tk + T ; tk)∥Pi

≤ ∥x̂i(tk + T ; tk+1)− x̄∗
i (tk + T ; tk)∥Pi

. (6.48)

Together, Equations (6.26), (6.27) and (6.28) yield

∥x̂i(tk + T ; tk+1)− x̄∗
i (tk + T ; tk)∥Pi

≤ δ

T + δ
αiε

′

i,

which implies (6.38c) when combined with (6.48).

Theorem 6.3. Let the overall constrained weakly coupled nonlinear system in (6.4)

with the distributed MPC controller in (6.7), with a sampling interval δ that satis-

fies (6.22a) and (6.22b), and with the condition in (6.31) start from a feasible initial

state. If there exist ϑ > 0, ξ > 0 satisfying ϑ+ ξ ≤ 1 and if

1

1 + p
αiε

′

i

1 +

√
λ(Qi)

λ̄(Pi)
pTe−Lfi

(1−p)T +

√
λ̄(Qi)

λ(Pi)

1− e−Lfi
(1−p)T

Lfi


≤ ϑε

′

iT

√
λ(Qi)

λ̄(Pi)
, δ = pT with p ∈ (0, 1) (6.49)

holds, then the state of subsystem Ai converges to the positively invariant set Ωε
′
i
.

Proof. Together, Equations (6.37) and (6.38) lead to

J∗
i (tk+1, xi(tk+1))− J∗

i (tk, xi(tk))

≤

√
λ̄(Qi)

λ(Pi)

δαiε
′
i

T + δ

1− eLfi
(δ−T )

Lfi

−

√
λ(Qi)

λ̄(Pi)
ε
′

iδ

+

√
λ(Qi)

λ̄(Pi)

δ2αi

T + δ
ε
′

ie
Lfi

(δ−T ) +
δ

T + δ
αiε

′

i. (6.50)

After substitution from (6.49), Equation (6.50) yields

J∗
i (tk+1, xi(tk+1))− J∗

i (tk, xi(tk)) ≤ −(1− ϑ)

√
λ(Qi)

λ̄(Pi)
ε
′

iδ ≤ −ξ

√
λ(Qi)

λ̄(Pi)
ε
′

iδ.
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Hence, the system state xi(t) will enter the positively invariant set Ωε
′
i
in finite time.

This completes the proof.

Within the positively invariant set Ωε
′
i
, the state feedback controller Ki is im-

plemented. The following theorem establishes sufficient conditions for the state of

the constrained weakly coupled nonlinear system in (6.4) to enter a robust positively

invariant set.

Theorem 6.4. The state of the weakly coupled nonlinear system in (6.4) with As-

sumptions 6.1 and 6.3, with the control (6.7) and with the disturbance

∥ω(t)∥2 ≤
λ(Q∗)ϱε

4λ̄(P ∗)1/2λ̄(P ∗)
, ϱ ∈ (0, 1), (6.51)

converges to the robust positively invariant set Ω√
ϱε.

Proof. From Lemma 6.2, it follows that

V̇ (x(t)) = x(t)T(AT
c P

∗ + P ∗Ac)x(t) + 2x(t)TP ∗ϕ(x(t)) + 2x(t)TP ∗ω(t)

≤ −1

2
x(t)TQ∗x(t) + 2∥(P ∗)1/2x(t)∥2 · ∥(P ∗)1/2∥2 · ∥ω(t)∥2. (6.52)

After substitution from (6.51), Equation (6.52) leads to V̇ (x(t)) ≤ 0. The remaining

of the proof is similar to the proof in [50].

Remark 6.2. A distributed MPC strategy for a fully coupled nonlinear system has

already been proposed in [55]. If a Lyapunov-based controller exists, the strategy

in [55] has been designed by incorporating a contractive constraint in the optimization.

In [53], the results in [55] have been extended to sequential and iterative architectures

for distributed MPC for nonlinear systems in which several distinct sets of inputs

are used to regulate the process. The strategy proposed in this paper does not directly

lend itself to sequential or to iterative implementations like those introduced in [53].

The investigation would require the appropriate reconfiguration of the communication

topology, and the redesign of the optimization associated with each subsystem.

Remark 6.3. For general coupled nonlinear systems, particularly in the presence

of strong couplings, the distributed MPC strategy proposed in this chapter would be

conservative because the recursive feasibility condition depends on how close the state

trajectory of the coupled nonlinear system stays to the trajectories of the linearized
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and of the decoupled systems. Nonetheless, the proposed approach is useful for weakly

coupled nonlinear systems, for which it distributes the centralized optimization to

several smaller optimizations with reduced computational burden.

6.5 Simulation Example

This section verifies the feasibility and the stability of the proposed distributed MPC

strategy through applying it to steer to the origin a simulated system that consists

of three similar cart-(nonlinear) spring-damper subsystems connected to each other

with similar linear springs [50,64]. The schematic diagram of the system is shown in

Figure 6.1. The dynamics of the three carts are

ẋ11(t) = x12(t), ẋ21(t) = x22(t), ẋ31(t) = x32(t),

mẋ12(t) = u1 − k0e
−x11(t)x11(t)− hdx12(t)− kc(x11(t)− x21(t)) + ω1(t),

mẋ22(t) = u2 − k0e
−x21(t)x21(t)− hdx22(t)− kc(x21(t)− x11(t))

− kc(x21(t)− x31(t)) + ω2(t),

mẋ32(t) = u3 − k0e
−x31(t)x31(t)− hdx32(t)− kc(x31(t)− x21(t)) + ω3(t).

Here, xi1 and xi2 are the displacement and the velocity of cart i, i = 1, 2, 3, respec-

tively; k0 is the steady-state stiffness of the local nonlinear spring of each cart; kc is

the stiffness of the interconnecting linear springs; hd is the local damping of each cart;

m is the mass of each cart; ui(t) and ωi(t) are the control signal and the disturbance

for cart i, respectively. The numerical values selected for these system parameters are:

k0 = 1.05 N/m, kc = 0.01 N/m, hd = 0.3 Ns/m, m = 1.5 kg, ui(t) ∈ [−2 2] N. The

initial states of the three carts are x1(0) = (0.5 m 0 m/s), x2(0) = (−0.6 m 0 m/s)

and x3(0) = (0.65 m 0 m/s).

The numerical values selected for the control parameters are: Qi = Diag([1.5 1.5]),

Ri = 0.1; the eigenvalues of the matrix Ai + BiKi are λ1(Ai + BiKi) = −1 and

λ2(Ai +BiKi) = −0.95, respectively; κi = 0.90 by Lemma 6.1; T = 3 s and δ = 0.6 s

by Theorem 6.3; αi = 0.90 in (6.7b). Using these selections, the remaining control

parameters become: Ki = [−0.3750 − 2.6250], Pi =

[
3.0321 −0.8706

−0.8706 1.0696

]
, Lfi =

2.5329, for i = 1, 2, 3. β = 0.01, ∥ωmax∥2 = 0.005, ϑ = 0.2, ξ = 0.75.

The displacements, velocities and control signals of the three simulated carts are

depicted in Figures 6.2, 6.3 and 6.4, respectively. Figures 6.2 and 6.3 illustrate that
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Figure 6.1: The schematic diagram of the simulated system.
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Figure 6.2: The displacements of the three carts.
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Figure 6.3: The velocities of the three carts.
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the proposed distributed MPC drives the states of all carts to the origin despite the

dynamic couplings among them. Figure 6.4 confirms the feasibility of the proposed

distributed MPC controller. It also shows that the control effort for each cart de-

creases as the cart state approaches the neighborhood of the origin.
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Figure 6.4: The control signals of the three carts.

6.6 Conclusion

This chapter has proposed a distributed MPC strategy for a group of dynamically

weakly coupled subsystems with decoupled control constraints and external distur-

bances. In the proposed strategy, all subsystems need to compute their control signals

by solving local optimizations constrained by their nominal decoupled dynamics. The

dynamic couplings and the disturbances are accommodated through new robustness

constraints in the local optimizations. The bounds on the deviation between the ac-

tual and predicted system state trajectories have been computed and analyzed. It

has shown that, for a given bound on the disturbances, the recursive feasibility of the

proposed distributed MPC strategy depends on the appropriate choice of the sam-

pling interval. Sufficient conditions were established for the robust stability of the

overall system. The effectiveness of the proposed control strategy has been verified

by applying it to three weakly coupled cart-(nonlinear) spring-damper systems.
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Chapter 7

Conclusions and Future Work

The work concerned in this thesis can be summarized into two parts. The first part of

this thesis has investigated the MPC theory. Specifically, a few strategies aiming to

reduce the conservativeness of MPC is proposed. After the theoretical study of MPC

in the first part, the second part of the thesis has investigated distributed MPC as a

means to address the heavy computational and/or communication loads of centralized

MPC for large-scale systems.

7.1 Conclusions

The dissertation has proposed a computationally efficient multi-stage MPC strategy

in Chapter 2. Conventionally, a larger feasible region of an MPC strategy is enlarged

by lengthening the prediction horizon. However, a long prediction horizon indicates a

heavy computational load. The proposed multi-stage MPC enlarges a larger feasible

region without increasing the computational complexity for a given prediction horizon.

The recursive feasibility of the optimization and the stability of the closed-loop system

have also been analyzed in Chapter 2.

To guarantee the recursive feasibility and stability, robust MPC strategies for

nonlinear systems typically require additional constraints to be added to the opti-

mization. In turn, the added constraints increase the computational complexity of

the controller and lead to conservative feasibility and stability results. Chapter 3 has

sidestepped the need for additional constraints in the optimization by proposing a

novel robust MPC for constrained nonlinear systems whose cost function consists of

an integral non-squared stage cost function and a non-squared terminal cost. The
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proposed strategy has the advantage that its cost function serves as a quasi-infinite

horizon cost.

Most existing research results on nonlinear MPC assume only that the nonlinear

system to be controlled is Lipschitz continuous and ignores any additional proper-

ties which the nonlinear dynamics might have. This approach leads to general but

conservative results. Taking advantage of specific system properties can yield more

practical MPC strategies for certain classes of nonlinear systems. Following this

reasoning, Chapter 4 has proposed a robust MPC strategy for contracting nonlin-

ear systems. Compared to a Lipschitz continuity-based MPC, the proposed strategy

maintains closed-loop stability for larger levels of disturbance and has larger feasible

region.

For cooperating systems, distributed MPC strategies are preferred to central-

ized strategies because the computational and communication demands of centralized

MPC schemes make them impractical for implementation. Therefore, for nonlinear

systems with decoupled dynamics, Chapter 5 has developed a robust distributed

MPC which ensures their cooperation through coupling terms in the optimizations

that yield their control signals. The new technique exploits the two-layer invariant

set theory to handle the disturbances. Compared to existing results, the proposed

strategy imposes stronger cooperation among subsystems.

For large-scale systems with coupled dynamics, most prior work treats the dynam-

ical interactions as disturbances and therefore, presents results which are conservative.

Chapter 6 has proposed a novel robust distributed MPC strategy by imposing a ro-

bustness constraint in the local optimizations. Suitable for weakly coupled nonlinear

systems, the new strategy uses the robustness constraint to explicitly evaluate the

effect of the dynamical couplings. Its recursive feasibility of the optimization and the

closed-loop stability have also been investigated.

7.2 Future Work

The work presented in this dissertation has addressed some theoretical problems fac-

ing distributed MPC strategies and has developed algorithms for implementing such

algorithms. However, the results have been illustrated only through simulation ex-

amples and their experimental validation needs to be carried out in future work.

Furthermore, there are many open problems ahead in the implementation of dis-

tributed MPC strategies. Specifically, the following topics are possible directions for
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future work.

1. As pointed out in [47], theoretically developed MPC strategies have seldom

been implemented in practice. This is mainly because the theoretical algorithms yield

results which are often conservative and impractical. For example, the computational

requirement or the ability to tolerate only very limited disturbances are two key

factors which typically hinder the use of theoretically developed MPC algorithms in

applications. Future research effort will be dedicated to understanding the sources of

conservativeness and to designing less conservative MPC algorithms.

2. Another research direction is the decomposition of a centralized optimization

into several small-sized optimizations. Centralized MPC for large-scale systems is

not proper to implement either because of its the computational load or because of

its communication burden. Existing work typically proposes distributed MPC as a

remedy for centralized MPC. However, a distributed MPC strategy steers the overall

system to a Nash Equilibrium [93] rather than to the equilibrium of the centralized

MPC strategy. It would be interesting to consider how a centralized optimization, for-

mulated for the large-scale system according to the performance requirement, could be

decomposed into several small-sized optimizations whose solutions collectively yield a

good enough approximation to the solution of the centralized optimization. Such an

approach: 1) would have reduced the computational time since all subsystems would

solve small-sized optimizations in parallel; 2) would steer the large-scale system to

the same equilibrium as the centralized controller.
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Appendix A

Publications

• Refereed journal papers that have been accepted

J1. X. Liu, D. Constantinescu, and Y. Shi, “Multi-stage suboptimal model pre-

dictive control with improved computational efficiency,”ASME Journal of Dy-

namic Systems, Measurement, and Control, vol. 136, no. 3, Article Number:

031026, May 2014.

J2. X. Liu, D. Constantinescu, and Y. Shi, “Robust model predictive control of

constrained nonlinear systems adopting the non-squared integrand objective

function,”IET Control Theory & Applications, DOI: 10.1049/iet-cta.2013.1078,

2014. (in press)

J3. X. Liu, Y. Shi, and D. Constantinescu, “Distributed model predictive control

of constrained coupled nonlinear systems,”Systems & Control Letters, vol. 74,

no. 12, pp. 41-49, December 2014.

J4. M. Liu, X. Liu, Y. Shi, and S. Wang, “T-S fuzzy-model-based H2 and H∞

filtering for networked control systems with two-channel Markovian random

delays,”Digital Signal Processing, vol. 27, no. 1, pp. 167-174, April 2014.

J5. H. Li,X. Liu, and Y. Shi, “Output feedbackH∞ control of stochastic nonlinear

time-delay systems with state and disturbance-dependent noises,”Nonlinear

Dynamics, vol. 77, no. 3, pp. 529-544, August 2014.

J6. H. Zhang, X. Liu, J. Wang, and H. Karimi, “Robust H∞ sliding-mode control

with pole placement for a fluid power electrohydraulic actuator (EHA) sys-

tem,”International Journal of Advanced Manufacturing Technology, vol. 73,

no. 5-8, pp. 1095-1104, July 2014.
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• Refereed conference papers that have appeared or been accepted

C1. X. Liu, D. Constantinescu, and Y. Shi, “H2 controller design of networked

bilateral teleoperation system with Markovian time delays,”The 2012 Haptics

Symposium, Vancouver, BC, Canada, March 4-7, 2012.

C2. X. Liu, Y. Shi, and D. Constantinescu, “Robust distributed model predictive

control of constrained continuous-time nonlinear systems using two-layer in-

variant set,”The 2014 American Control Conference, Portland, Oregon, USA,

June 4-6, 2014.

C3. X. Liu, Y. Shi, and D. Constantinescu, “Robust constrained model predictive

control using contraction theory,”The 53rd IEEE Conference on Decision and

Control, accepted, Los Angeles, California, USA, December 15-17, 2014.
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