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ABSTRACT

This thesis examines the sensitivity of the marine controlled source electromag-

netic (CSEM) method to sub-seafloor resistivity structure, with a focus on gas hydrate

and free gas occurrences. Different analysis techniques are applied with progressive

sophistication to a series of studies based on simulated and measured data sets. CSEM

data are modelled in time domain for one-dimensional models with gas hydrate, free

gas and/or permafrost occurrences. Linearized and non-linear inversion methods are

considered to infer subsurface models from CSEM data.

One study applies forward modelling and singular value decomposition to estimate

uncertainties for permafrost models of the Beaufort Sea. This simulation study ana-

lyzes the resolution of the CSEM data for shallow water depth which is a challenging

case because the electromagnetic signature of the air-water boundary may mask the

sub-seafloor response. The results reveal a blind window as a function of water depth

in which the CSEM data are insensitive to the sub-seafloor structure. However, the
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CSEM data are sensitive to the top and the bottom of the permafrost with increasing

uncertainties with depth.

The next study applies non-linear Bayesian inversion to CSEM data acquired in

2005/2006 on the Northern Cascadia margin to investigate sub-seafloor resistivity

structure related to gas hydrate deposits and cold vents. Bayesian inversion provides

a rigorous approach to estimate model parameters and uncertainties by probabilis-

tically sampling of the parameter space. The resulting probability density function

is interpreted here in terms of posterior median models, marginal and joint marginal

probability densities for model parameters and credibility intervals. The Bayesian

information criterion is applied to determine the amount of structure (number of

layers) that can be resolved by the data. The parameter space is sampled with

the Metropolis-Hastings algorithm in principal-component space. Non-linear, proba-

bilistic inversion allows the analysis of unknown acquisition parameters such as time

delays between receiver and transmitter clocks or unknown source amplitude. The

estimated posterior median models and credibility intervals from Bayesian CSEM in-

version are compared to reflection seismic data to provide a more complete geological

interpretation. The CSEM data on the Northern Cascadia margin generally reveal a

1 to 3 layer sediment structure. Inversion results at the landward edge of the gas hy-

drate stability zone indicate a sediment unconformity as well as several potential cold

vents which were previously unknown. The resistivities generally increase upslope

due to sediment erosion along the slope. Inversion results on the middle slope infer

several vent systems close to well-known Bullseye vent in agreement with ongoing

interdisciplinary observations.

Finally, a trans-dimensional (trans-D) Bayesian inversion is applied to CSEM data

acquired in 2012 in the German North Sea to investigate possible free gas occurrences.

Trans-D inversion treats the number of layers as an additional unknown sampled

probabilistically in the inversion. Parallel tempering is applied to increase sampling

efficiency and completeness. Inversion results for the German North Sea yield resistiv-

ities at the seafloor which are typical for marine deposits, while resistivities at greater

depth increase slightly and can be correlated with a transition from fine-grained ma-

rine deposits (Holocene age) to coarse-grained, glacial sediments (Pleistocene age),

which is observed in a sediment core. The depths of layer interfaces estimated from

CSEM inversion match the seismic reflector related to the contrast between the two

depositional environments. The CSEM survey targeted a strong, phase-reversed, in-

clined seismic reflector within the glacial sediments, potentially indicating free gas.
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While interface-depth estimates from CSEM inversion do not correlate closely with

this reflector, resistivities are generally elevated above the strong seismic amplitudes

and the thickness of the resistive layer follows the trend of the inclined reflector.

However, the uncertainties of deeper interface depth estimates increase significantly

and overlap with the targeted reflector at some of the measurement sites. Relatively

low resistivities of a third layer correlate with sediments of late-Miocene origin with a

high gamma-ray count indicating an increased amount of fine-grained sediments with

organic material. The interface at the bottom of the third layer has wide uncertainties

which relates to the penetration limit of the CSEM array.
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blue and red seismic reflectors match with the colour coding on Fig. 7.10.

Relevant for this thesis is the increased gamma-ray count at the blue

reflector between seismic units (SU) 1 and 2 which indicates increased

values of fine-grained sediments. Courtesy Hauke Thöle [Fig. 5 in Thöle
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Chapter 1

Introduction

The marine controlled source electromagnetic (CSEM) method is an exploration tech-

nique to investigate the electrical resistivity of the sub-seafloor [e.g., Cheesman et al.,

1987]. In this thesis, marine CSEM is applied to study gas hydrate and shallow gas

occurrences which are electrically resistive. Gas hydrate research is relevant for slope

stability hazard assessment at continental margins, for evaluation of the global climate

response to methane gas released into the atmosphere, and for estimating energy re-

sources [e.g., Sloan and Koh, 2008]. In terms of sub-seafloor gas hydrate deposits (or

hydrocarbons in general), estimating the sub-seafloor resistivity complements more-

commonly applied seismic methods which provide high structural resolution [e.g.,

Hyndman and Spence, 1992]. However, estimating a sub-seafloor resistivity model

from CSEM data requires sophisticated inversion algorithms. Common schemes to

infer the resistivity structure are linearized inversion methods [e.g., Constable et al.,

1987]. In recent years, non-linear methods have become more popular and Bayesian

methods, which provide quantitative uncertainty analysis (at higher computational

costs), have been developed to analyze frequency-domain CSEM data [e.g., Hover-

sten et al., 2006]. As a contribution to this developing field, the goal of this thesis is

to rigorously estimate sub-seafloor resistivity models and uncertainties by applying

non-linear Bayesian inversion to time-domain CSEM data, and compare the results

to reflection seismic data to provide a more complete geological interpretation.

The marine CSEM method is based on electromagnetic fields, generated by an

electric or magnetic source close to or on the seafloor, which propagate through the

sub-seafloor and seawater. The electrical resistivity of marine sediments is mainly

controlled by the conductance of pore fluids. Resistive material like hydrocarbons (in

this study particularly free gas and gas hydrate) increases the sediment resistivity, and
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can be targeted with the CSEM method. The electromagnetic field diffuses through a

medium similar to the way heat diffuses along a temperature gradient. Diffusion time

and field strength of the electromagnetic signal depend on the electrical resistivity of

the volume between source and receiver, but direct interpretation in terms of a model

of the resistivity structure is difficult, except for halfspace models [e.g., Edwards,

2005].

The most common geophysical method for studying crustal structure and sedi-

ment lithology, as well as hydrocarbon reservoirs, is the active-source seismic method,

where the source signal is a seismic wave, which travels through the medium [e.g.,

Yilmaz, 2001]. The reflection seismic method is known for a high vertical resolution,

depending on the frequency content of the seismic signal and the seismic velocity

of the subsurface, and resolution reduces more slowly with depth than for CSEM.

Seismic waves are reflected and transmitted at impedance (product of seismic veloc-

ity and density) contrasts. The time the seismic wave needs to travel to a reflector,

reflect and travel to surface receivers at increasing offsets can be directly related to

the velocity-depth profile. In marine environments, for example, seismic methods can

image thin sediment lithology that corresponds to variations in sedimentation due to

climatic changes [e.g., Scholz and Rosendahl, 1988].

CSEM and seismic methods have very different resolution, are sensitive to differ-

ent physical parameters, and potentially complement each other. How sub-seafloor

structure from reflection seismic data and reflection amplitudes relate to bulk resis-

tivities is particularly relevant for hydrocarbon exploration. A hydrocarbon reservoir

is typically localized with seismic methods, but the amount of hydrocarbon in the vol-

ume beneath the reflector is estimated with electromagnetic and seismic methods in

combination, as small amounts of hydrocarbon can lead to a prominent reflector, but

a large amount of hydrocarbon is required to produce a strong increase in resistivity

[e.g., Ellingsrud et al., 2002; MacGregor et al., 2006].

To estimate a model of the sub-seafloor resistivity distribution for CSEM data

requires sophisticated inversion algorithms. Solutions to inversion problems for finite

data samples with noise are unfortunately non-unique [e.g., Constable et al., 1987].

Therefore, it is important to estimate not only model parameter values but also

uncertainties before comparing the results with those from other methods. Linearized

and non-linear approaches can be applied to estimate uncertainties. The linearized

approach can estimate local uncertainties about a specific sub-surface model, while

non-linear approaches provide global uncertainty estimates. In this thesis, a linearized
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approach by Edwards [1997] is carried out for permafrost models in the Beaufort

Sea. Considering CSEM implementation, the Beaufort Sea is a challenging target

area, due to the shallow water depth, and the effect of the air-water boundary on

the electromagnetic signal [e.g., Weiss, 2007]. Therefore, the uncertainty analysis is

carried out for different water depths and seawater resistivities.

The non-linear approach to estimate uncertainties implemented in this thesis is

a Bayesian inversion. A numerical implementation provides a rigorous probabilis-

tic estimate for the model parameters by sampling the posterior probability density

using Markov-chain Monte Carlo methods. The model parametrization (here, the

number of subsurface layers) is an additional unknown in the problem and, in this

study, it is estimated with the Bayesian information criterion or by including the

parametrization as an unknown in the sampling procedure. The latter is referred

to as trans-dimensional inversion, where transitions between dimensions (numbers of

layers) result in a probability density for the model parameters as well as for the

parametrization [e.g., Gelman et al., 2000; Dettmer et al., 2009; Sambridge et al.,

2006]. In this thesis, trans-dimensional inversion after Dettmer et al. [2010] is applied

to investigating uncertainties of a shallow resistivity model in the German North Sea

to evaluate possible lithological units and shallow gas occurrences.

The CSEM instrument considered in this thesis is a seafloor-towed horizontal

electric array with one transmitter dipole and several receiver dipoles in line. The

measured data are treated in the time domain. The instrument was designed to de-

tect gas hydrate accumulations in continental margin sediments [Yuan and Edwards,

2000; Schwalenberg et al., 2005]. Gas hydrates are solid compounds containing water

and gas molecules, and are also known as “the ice that burns” as their appearance is

similar to ice, but gas molecules like methane burn easily when ignited. Gas hydrates

are stable under certain pressure and temperature conditions as found in continental

margins or below permafrost regions and are distributed world wide in great abun-

dance [e.g., Kvenvolden, 1993; Collett et al., 2009].

Gas hydrates in accretionary complexes are often considered for their effect on

slope stability. Indications for gas hydrate-related sediment slumps and slides have

been observed on several continental margins [e.g., McIver, 1982; Mienert et al.,

2005; Collett et al., 2009]. Large scale slumps and slides may generate tsunamis,

which are dangerous for coastal communities [Micallef et al., 2008]. While this study

does not discuss slope failure related to gas hydrate, it does evaluate gas hydrate

occurrences on the Northern Cascadia continental margin offshore Vancouver Island,
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Canada, where slope failures have been observed [e.g., Lopez et al., 2010]. This study

analyzes CSEM data acquired at the Northern Cascadia margin at the landward edge

of the gas hydrate stability zone and at cold vent sites, ecosystems surrounding a rich

supply of methane gas that forms massive gas hydrate deposits close to the seafloor.

Massive methane release from gas hydrates may have a strong impact on global

climate [e.g., Kennett et al., 2003]. Therefore, the potential of massive release of

methane gas from gas hydrates is studied for marine and permafrost environments.

In Arctic regions permafrost degradation has been observed [e.g., Shakhova and

Semiletov, 2007; Hughes-Clarke et al., 2009] and changes in the thermal regime may

lead to gas hydrate dissociation within and beneath the permafrost realm. This thesis

contains a CSEM modelling study on the Beaufort Sea shelf offshore the Northwest

Territories where massive gas hydrates are found beneath permafrost regions. The

sensitivity of the CSEM data to possible permafrost structures with depth is analyzed

to evaluate if CSEM surveys can monitor the permafrost degradation.

Gas hydrate accumulations are categorized as unconventional gas reservoirs and

estimates of total natural gas bound in gas hydrates world-wide exceed those of all

other conventional hydrocarbon reserves, and so hydrates may represent a possible

energy source of the future [Grace et al., 2008]. A gas hydrate production test at the

Mallik site in the MacKenzie Delta, Canada, in 2007/2008 resulted in successful ex-

traction of methane gas [Dallimore et al., 2008], and the first offshore production test

was carried out successfully in 2013 in the Eastern Nankai Trough [e.g., Yamamoto

et al., 2014]. Another production test is intended for the Ulleung Basin offshore South

Korea [Ryu et al., 2013a]. This thesis contains a modelling study of the sensitivity of

CSEM to a gas hydrate reservoir in a sand layer in the Ulleung Basin. The uncertainty

analysis is carried out with a non-linear Bayesian inversion.

1.1 Introduction to controlled source electromag-

netic methods

The controlled source electromagnetic (CSEM) method is sensitive to the electrical

resistivity of subsurface structure. Electromagnetic (EM) methods are relevant to

detect conductive targets (e.g., mineral deposits) or study areas where commonly

applied seismic methods do not yield information. For example, seismic signals have

difficulty penetrating geological units such as evaporites, carbonate reefs, permafrost
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and igneous rocks as almost all the seismic energy is backscattered, while EM methods

may be sensitive to material below those units. Another example involves gradual

changes of physical properties in the subsurface where no seismic signature is observed,

such as oil to water transitions in reservoirs. The amount of hydrocarbons increases

the resistivity in the whole volume and may be detected with EM methods [e.g.,

Edwards, 2005].

Marine CSEM instruments were first developed to study the electrical signature

of the oceanic lithosphere [e.g., Cox et al., 1986] and mid-ocean ridges [e.g., Evans

et al., 1994]. They are often applied in combination with the passive magnetotelluric

methods, which lack natural-source high-frequency electromagnetic signals and cor-

responding near-surface information, due to attenuation in the water column [e.g.,

Constable, 2010]. In the last 20 years, marine CSEM has become a popular tool for

hydrocarbon exploration [e.g., Ellingsrud et al., 2002] and gas hydrate detection [e.g.,

Yuan and Edwards, 2000; Schwalenberg et al., 2005; Weitemeyer et al., 2011].

A time-domain marine CSEM system was developed by the EM group around

Edwards and Chave [1986] at the University of Toronto. The instrument involves the

use of a horizontal electric dipole (HED) transmitter (Tx) and receivers (Rx) towed

by a cable on the seafloor behind a ship as shown in Fig. 1.1. In parallel, the EM

group at Scripps Institution of Oceanography developed a frequency-domain system

[Constable and Cox, 1996] with a deep-towed transmitter dipole. Receivers are de-

ployed on the ocean floor and measure the electric and magnetic field components.

This thesis focuses on the HED time-domain system with inline receiver dipoles mea-

suring the electric field response developed by Yuan and Edwards [2000] and recently

developed systems by Schwalenberg and Engels [2012a]. A more detailed description

of the system and the theory behind it is provided in Chapter 2 and the individual

instrumentation used to acquire data for this thesis are presented in Sec. 6.2 and

Sec. 7.1.

1.2 Gas hydrates

Gas hydrates are clathrates composed of a host lattice of water molecules and guest

molecules that interact through van der Waals (nonpolar) forces. Guest molecules are

in a gaseous state and free to rotate within the lattice [e.g., Gutt et al., 1999]. The

molecular shape and size of the host lattice depends on the size of the guest molecule

[Bohrmann and Torres, 2006]. While gas hydrates can contain any gas molecule
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Tx Rx

Figure 1.1: Configuration of the horizontal electric dipole-dipole system, after
Schwalenberg et al. [2005]. Transmitter (Tx) dipole and inline receiver (Rx) dipole(s)
are pulled behind heavy weight on the seafloor.

from noble gases to halogens with heavy molecular weight, in continental margins

and below permafrost regions, gas hydrates usually contain hydrocarbons that are

produced in the sediments from organic matter, and the most abundant is methane

gas [Demirbas, 2010].

Gas hydrates were first discovered and synthesized in 1810 [Davy, 1811]. Naturally

forming gas hydrates were observed in the 1930’s clogging hydrocarbon transmission

pipelines [Hammerschmidt, 1934] and in the permafrost regions of Russia [Mako-

gon et al., 1971] and Canada [Bily and Dick, 1974], and subsequently in continental

margins all over the world [e.g., Markl et al., 1970; Kvenvolden, 1993]. Figure 1.2

illustrates the worldwide gas hydrate occurrences after Collett et al. [2009].

Gas hydrate formation depends on the abundance of water and free gas molecules,

as well as on temperature, pressure, and the composition of the pore water and gas

[e.g., Sloan and Koh, 2008]. The organic carbon in shallow sediments is decomposed

by microorganisms to produce biogenic gases such as methane. Fluid advection, dif-

fusion and the solubility of methane in pore water control the physical transport and

the availability of methane out of solution to form gas hydrates. The sedimentation

rate, the sediment thickness, water depth and heat flow control gas hydrate stability

[e.g., Wallmann et al., 2006]. Gas hydrate stability curves (GHSC) for marine and

permafrost environments are shown in Fig. 1.3.

Gas hydrate is stable on the left of the GHSC and between the two intersections of

the temperature curve and the GHSC. Gas hydrates may exist above the seafloor, but

pieces of gas hydrate and gas bubbles with a gas hydrate coating have a lower density
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than water, rise and ultimately leave the gas hydrate stability zone (GHSZ). Molecules

like carbon dioxide or ethane in the water-methane mixture shift the stability curve

to higher temperatures and stabilize the formation, while dissolved ions in the pore

water from salts like sodium chloride shift the stability curve to lower temperatures

and degrade the stability [e.g., Sloan and Koh, 2008; Bohrmann and Torres, 2006;

Wright et al., 2005].

Gas hydrates in accretionary complexes are often discussed in terms of slope sta-

bility [e.g., Hance, 2003]. They are known to stabilize the sediment matrix. However,

when gas hydrates in sediments dissolve they create a gas- and water-rich mud, which,

due to low density and increased pressure, may lift overlying sediments. In such cases,

the stability of the slope can be degraded and the gas-water mixture may even rise

to the surface [McIver, 1982]. Another issue is that changes in sedimentation rate

and tectonic activity may trigger slope failure as well as sudden release of gas from

gas hydrate. Slope failures are hazardous for underwater installations and may result

in tsunamis damaging coastal regions [e.g., Brown et al., 2006]; hazard assessment

Figure 1.2: Gas hydrate occurrences world wide in continental margins and permafrost
regions which were either recovered or inferred (courtesy of the USGS [Collett et al.,
2009]).
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requires the knowledge of the gas hydrate distribution.

Large scale dissociation of gas hydrate also needs to be analyzed in terms of

climate feedback as methane, the dominant molecule in naturally occurring gas hy-

drates [Kvenvolden, 1993], absorbs radiation at a specific wavelength and is a 72-times

stronger green house gas than carbon dioxide over a 20 year period. Even though

its life span in the atmosphere is only about 12 years, methane oxidizes into car-

bon dioxide with a life span of thousands of years [e.g., Forster et al., 2007; Archer

et al., 2009]. Kennett et al. [2003] suggest a strong impact of rapid methane hy-

drate dissociation on climate change in the past and predict the same for the future.

For example, Westbrook et al. [2009] have observed gas plumes along the landward

edge of the GHSZ off of Svalbard and suggest the relationship to decomposing gas

hydrates due to sea temperature increase which might affect all Arctic continental

margins. Buffett and Archer [2004] have estimated a general reduction of hydrates at

continental margins of about 15 % for a 3◦ C warming. Permafrost regions are most

sensitive to climate change, because a general temperature rise is most pronounced

Figure 1.3: Gas hydrate stability curve (phase boundary in red) in marine and per-
mafrost environments (after Ruppel [2007], courtesy of the USGS). The temperature
in the environment is given by the ocean water temperature (green) and the geotherm
(blue) in the sediments. Pressure to depth conversion assumes hydrostatic pressure.
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at high latitudes [Schuur et al., 2008; Shakhova et al., 2010] and because sea level

rise produces a rapid temperature increase. While marine methane hydrates may

play a less significant role as dissociated methane is dissolved in the water column,

releases from shallow water depth (< 100 m) and from permafrost regions may reach

the atmosphere [McGinnis et al., 2006], and Archer et al. [2009] point out that slow

releases of methane from oceanic methane hydrates and high-latitude wet lands will

have a long-term impact on Earth’s climate.

Another motivation to study gas hydrates is the energy resource they represent.

The volume amount of methane at standard conditions is estimated to be ∼164 times

the volume of methane bound in gas hydrates in situ [Kvenvolden, 1993]. However,

most gas hydrate occurrences are heterogeneously distributed in fine-grained marine

sediments and only a few reservoirs world wide in sand layers favour lucrative methane

extraction. Gas hydrate production was tested in the MacKenzie Delta at the Mallik

drill site [Dallimore and Collett, 2005], and 3000 m3/day were extracted over a short

period using reservoir depressurization. Dallimore et al. [2008] observed significant

changes in physical properties of the sediment following gas hydrate dissociation, re-

sulting in unconsolidated sands to gasified slurries. In the Alaskan North Slope, gas

hydrate production is stimulated by fracturing and injecting carbon dioxide to replace

methane in the hydrate lattice [Schoderbek and Boswell, 2011]. The first offshore pro-

duction test for marine gas hydrates in the Nankai Trough offshore Japan has been

successfully implemented with the depressurization method [e.g., Yamamoto et al.,

2014] and 20000 m3/day of gas were recovered for six days. However, feasible produc-

tion rates were not reached. Gas hydrate dissociation during petroleum production

also implies risks due to gas blow outs and sediment collapse [e.g., Dallimore et al.,

2008].

1.2.1 Detecting gas hydrates with geophysical methods

Seismic methods are sensitive to the contrasts in seismic impedance at the base of

the GHSZ, where the geotherm intersects with the GHSC (see Fig. 1.3). Solid gas

hydrate in the sediments above the GHSZ increases the compressional velocity, and

free gas below the GHSZ decreases it, resulting in a phase reversal of the seismic wave

compared to the seafloor reflection. The reflector at the base of the GHSZ crosscuts

strata and mimics the seafloor, and is therefore named the bottom simulating reflector

(BSR) [Shipley et al., 1979; Hyndman and Spence, 1992]. While the presence of a BSR
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does not require hydrate, it does require free gas below the GHSZ, because even small

amounts of free gas reduce the compressional velocity sufficiently [Sloan and Koh,

2008]. BSRs are often the first indication of gas hydrate occurrences, although their

presence may say little about the gas hydrate distribution in the sediment column

above.

Several theories explain gas hydrate and free gas accumulation at the base of

the GHSZ. For example, gas hydrate recycling [e.g., Kvenvolden, 1993] occurs when

sedimentation, sea level or temperature changes and tectonic uplift shift the base

of the GHSZ. If the base of the GHSZ is shifted upwards, gas hydrates underneath

dissolve and gas diffuses upwards to the new base of the GHSZ, where it may form

gas hydrates which are more concentrated than before. Another theory is the fluid-

expulsion model [e.g., Hyndman and Davis, 1992], where upward migrating pore

fluids increase the methane content in the GHSZ and gas hydrate builds up with a

gradational top, which explains the common absence of seismic signatures within the

GHSZ. The solubility-curvature mechanism of Haacke et al. [2007] suggests downward

diffusion of methane to produce a thick free gas zone below the GHSZ, but the model

is debated and restricted to specific regions.

Other seismic signatures of interest in addition to the BSR include bright spots

(strong amplitudes) and seismic blanking (weak amplitudes), which can be related

to massive gas hydrate accumulations [e.g., Hornback et al., 2003]. Riedel [2007]

relates intensified seismic blanking between sequential data acquisitions at the same

site to recent gas hydrate formation and new subsurface fluid pathways. However,

gas hydrates also exist when seismic signatures are absent [Sloan and Koh, 2008].

Accumulations of hydrate can be explained by fault systems or chimneys transporting

free gas, which results in disruption and/or blurring of the seismic image of the

sediment layering and bright spots [Holbrook et al., 2002]. Gas hydrate distributions

can be estimated using elastic property inversion and rock physical modelling [e.g.,

Dai et al., 2004]. However, gas hydrate are often heterogeneously distributed in

the sediment matrix and form as cement between grain contacts, coat grains or fill

pore spaces. Gas hydrates may grow as fracture-filling veins or can be uniformly

distributed which depends on the distribution and amount of gas and the sediment

type. Different models predict different seismic velocities and require calibration at

drill sites [e.g., Dai et al., 2008].

Downhole or well logging offers the best resolution for local gas hydrate charac-

terization. Chlorinity, infrared imagery, sonic log velocities and resistivity logs are
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all sensitive to gas hydrate occurrences [e.g., Collett and Ladd, 2000; Riedel et al.,

2006a]. Although logging is needed to verify and calibrate remote sensing methods, it

is costly and invasive. The CSEM method offers an additional non-invasive approach

to study the physical properties of gas hydrate-bearing sediments. It does not have

the structural resolution of the seismic method, but it is sensitive to changes in the

formation resistivity of a large volume instead of to the contrast alone. CSEM can

indicate gas hydrate when no BSR is present [Yuan and Edwards, 2000] and support

the existence of gas hydrate or free gas in seismic blank zones [Schwalenberg et al.,

2005]. The offshore hydrocarbon industry has recently discovered the strengths of

the electromagnetic methods to supplement the results from seismic methods. Some

companies have developed their own electromagnetic systems and inversion algorithms

[e.g., Ellingsrud et al., 2002; Hu et al., 2009].

1.2.2 Relationship between resistivity and hydrate concen-

tration

Archie’s law is an empirical relationship that relates the resistivity of the formation

ρ0 and of the pore water ρw of fully saturated sediments as

ρ0
ρw

= aφ−m, (1.1)

where φ is the porosity and m is a formation specific coefficient [Archie, 1942]. Win-

sauer and Shearin [1952] added the coefficient a to Eq. (1.1), which theoretically

should be 1 as the ratio of the resistivities becomes 1 when φ = 1. However, in

practice non-unity values determined from calibration produce better results. Small

values of m and a are linked to well-interconnected pore spaces. Hearst et al. [2000]

implemented a saturation-dependent term

ρ0
ρw

= aφ−mSnw, (1.2)

where Sw is the water saturation and n the saturation coefficient that depends on

pore shape, connectivity, and the distribution of the conducting phase [Spangenberg,

2001]. If n is large, pore connectivity is assumed to be low [Riedel et al., 2006a]. The

gas hydrate saturation Sh can be inferred from Eq. (1.2) by assuming that Sh+Sw = 1.

Equation (1.2) was developed using clean sands, but is widely used for marine
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sediments, which contain a significant amount of clay. Archie’s parameters a, m and

n can be calibrated with logging resistivities and gas hydrate estimates from chlorinity

measurements [e.g., Serra, 1984; Malinverno et al., 2008]. Ignoring calibration may

lead to over- or under-estimation of gas hydrate concentration. The effect of clay

on the resistivity in marine sediments is also studied with alternative approaches

[e.g., Ellis et al., 2010] based on the Hashin-Shtrikman (HS) bounds [Schmeling,

1986; Hashin and Shtrikman, 1963]. The conductive bounds (HS+) correspond to

resistive spherical inclusions within a conductive matrix, and the resistive bounds

(HS−) correspond to conductive spherical inclusions within a resistive matrix. Figure

1.4 shows the formation resistivity as a function of porosity for the HS bounds and

Archie’s law for fully water-saturated sand with ρw=0.31 Ωm and ρs=10000 Ωm (for

glacial sands [Palacky, 1988]) for a=1 and m=2. Figure 1.4 illustrates the exponential

increase in resistivity for decreasing porosities < 0.2, while resistivities for a large

porosity range > 0.2 differ only by a few Ωm. According to these relationships, a

large amount of free gas is required to significantly increase sediment resistivity by

replacing conductive pore fluid. In contrast, only a small amount of gas is required to

significantly reduce seismic impedance, which produces a strong seismic signal [e.g.,

Constable and Srnka, 2007]. Hence, seismic and EM methods together yield a better

estimate of the amount of free gas and gas hydrate in the sediment.

0 0.2 0.4 0.6 0.8 1

10
0

10
1

10
2

10
3

10
4

Porosity

R
es

is
tiv

ity
 [Ω

m
]

 

 

HS+
HS−
A

Figure 1.4: Hashin-Shtrikman conductive (HS+) and resistive (HS-) bounds and
Archie’s equation (A) relating formation resistivity and porosity.
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1.3 Introduction to inversion methods

Inversion methods are mathematical algorithms to estimate model parameters and

their uncertainties from geophysical data. This requires the definition and solution of

the forward problem, the physical theory that describes the system of interest (e.g.,

electric current flow in a resistive seabed). The forward problem predicts geophysical

data for a given set of model parameters and has one unique solution. However, the

solution to the inverse problem is typically non-unique: Different models may pre-

dict data that fit the observed data equally well [e.g., Tarantola, 2005]. Reasons for

this are that the observed data are limited to a finite number of observations which

inevitably include measurement errors due to ambient noise (competing sources of sig-

nal in the environment) and imperfect instrumentation. Another reason is that the

solution to the forward problem may involve approximations which are not perfectly

satisfied and introduce theory error. Additionally, the choice of parametrization (dis-

cretization) plays an important role. It describes the discretization of the model space

(for example, one-dimensional or three-dimensional, with layers or cells) that might

only be accurate to a certain degree. Finally, the solution to the inverse problem

is mathematical and might produce models which are physically unreasonable. To

overcome these difficulties, prior knowledge about the physical system is considered

carefully before defining the parametrization and the inverse problem, and generally

the simplest parametrization is preferred over complex solutions if it explains the

observed data sufficiently and agrees with prior information [e.g., Constable et al.,

1987; Menke, 2012].

Linear inversion theory for Gaussian error distributions and priors is fully de-

scribed in the literature [e.g., Tarantola, 2005], but, unfortunately, physical systems

often do not behave linearly. However, in some cases a linearized approximation for

local behaviour is adequate. The solution to the inverse problem is often one opti-

mal model, whose predicted data fit the observed data best depending on data error

assumptions and parametrization. Not knowing the parametrization properly can be

countered with regularization, which restricts the inversion search, for example, to

stay close to a starting model or sustain a smooth model if the data information does

not indicate otherwise. However, linearization and regularization degrade uncertainty

estimation. Non-linear methods based on numerical sampling of the parameter space

avoid linearization and regularization approximations, but are often computationally

expensive.
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To avoid considering only a single optimal model which might be just one of many

equally likely solutions, probabilistic approaches are developed that sample the pa-

rameter space for all possible solutions. Bayesian methods, named in honor of Rev.

Thomas Bayes (1701-1761), are based on probability theory, where a posterior prob-

ability density for all unknown quantities of interest is estimated from observed data

and prior knowledge. Bayesian probability is understood as a degree of belief. The

subjective choice of parametrization influences the inversion results, and the subsur-

face model and uncertainty estimate need to be understood as the most appropriate

solution for the observed data given the specific parametrization [e.g., Gelman et al.,

2000].

In this study, parametrization concerns the number of layers of a one-dimensional

subsurface model. Estimating the number of layers is addressed with two methods,

the Bayesian information criterion (BIC) and trans-dimensional Bayesian inversion,

which are described in Sec. 5.2. While the BIC provides a fixed estimate of the

number of layers, trans-dimensional inversion treats the number of layers as another

unknown which is sampled in the inversion [e.g., Malinverno, 2002; Sambridge et al.,

2006].

1.4 Objectives and outline of the thesis

The overall objective of this thesis is to apply methods of progressive sophistication

to simulated and observed CSEM data to investigate the sub-seafloor resistivity dis-

tribution and uncertainties. This is carried out in a series of studies. The first study

investigates the sensitivity of the CSEM data to permafrost thickness with forward

modelling and estimates model parameter uncertainties with a linearized technique.

The second study applies non-linear Bayesian inversion to observed CSEM data on

the Northern Cascadia margin to estimate parameter uncertainties and to investigate

gas hydrate occurrences. The final study applies a trans-dimensional Bayesian inver-

sion to observed data in the German North Sea to estimate parameter uncertainties

considering an unknown parametrization and to investigate possible shallow gas oc-

currences. The results from CSEM inversion are compared to reflection seismic data

to provide a more complete geological interpretation.

The thesis is organized as follows. Chapter 1 is a general introduction to the

CSEM method, gas hydrates and inverse theory. The CSEM method and theory to

solve the forward problem for a 1-D, layered subsurface model are described in detail
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in Chapter 2. Chapter 3 introduces linear and linearized inversion theory and de-

scribes methods which are often applied to invert CSEM data. Chapter 3 also covers

uncertainty estimation with linearized methods which are applied in Chapter 4 in a

simulation study on the Canadian Beaufort Sea shelf to estimate the sensitivity of

the CSEM method to permafrost thickness. Chapter 5 introduces non-linear inversion

methods focusing on Bayesian inversion which is applied to simulated and measured

data in Section 5.4 and Chapters 6 and 7 to estimate model parameters and uncertain-

ties. In Chapter 6, measured data from the Northern Cascadia margin are analyzed

with respect to gas hydrate and free gas occurrences at the landward edge of the gas

hydrate stability zone and at a cold vent site. Chapter 6 is based on the paper (to

be submitted) “Bayesian inversion of marine controlled source electromagnetic data

offshore Vancouver Island” by R. A. S. Gehrmann, K. Schwalenberg, M. Riedel, S. E.

Dosso and G. D. Spence. In Chapter 7, simulated and measured data from the Ger-

man North Sea are analyzed with a trans-dimensional Bayesian inversion to evaluate

possible shallow gas occurrences. Chapter 7 is based on the paper (to be submitted)

“Trans-dimensional Bayesian inversion of controlled source electromagnetic data in

the German North Sea” by R. A. S. Gehrmann, J. Dettmer, K. Schwalenberg, M.

Engels, S. E. Dosso and H. Keil. Chapter 8 contains the summary and conclusion of

the thesis.
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Chapter 2

Controlled source electromagnetic

theory

The controlled source electromagnetic (CSEM) method is based on electromagnetic

diffusion, and is sensitive to the electrical resistivity, which in common marine sedi-

ments is particularly related to ionic conductance of pore fluids. The marine CSEM

data in this study were acquired with the horizontal inline electric dipole-dipole tech-

nique (see Fig. 1.1). The horizontal electric dipole (HED) was first proposed by

Bannister [1968] and later described by Chave and Cox [1982], and the inline source

configuration (transmitter electrode parallel to the profile direction) is generally pre-

ferred to broadside (transmitter electrode perpendicular to the profile direction) in

marine CSEM for its better vertical resolution and sensitivity to resistive layers (e.g.,

hydrocarbon bearing sediments) [Cox, 1980; Cox et al., 1986; Key, 2009].

Figure 2.1 shows current diffusion in terms of the stream function of the current

density (derived from Ampere’s law) in a halfspace model with conductive seawater

above the source dipole and resistive seafloor below. The electric current is injected

at the transmitter dipole at time zero. After 10 ms it can be observed that the signal

diffuses faster in the resistive seafloor, and after a few seconds the steady state of the

electric field is reached. The latter is also referred to as the static limit controlled by

direct current (DC) when alternating currents (AC) are absent.

Typical continuous waveforms injected at the transmitter dipole for time-domain

are square or tristate waveforms for 100% and 50% duty cycle (the percentage when

the signal is non-zero within one cycle) respectively. More elaborate doubly symmetric

waveforms are used in the frequency domain to improve the signal-to-noise ratio for
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Figure 2.1: Stream functions of electric current density at 0.01 s (left) after current
step on (see inlay), and after reaching steady state after a few seconds (DC) on the
right. The horizontal electric dipole source on the seafloor is located 100 m to the
left of the y-axis. The seawater halfspace has a resistivity of ρw=0.33 Ωm and the
sediment halfspace of ρs=1.33 Ωm. Figure after Edwards et al. [2013] and Edwards
[1988].

higher frequencies [Myer et al., 2011]. The square wave function used in this study

(see Fig. 2.2) switches from negative to positive and vice versa within ∼1 ms, which

is called a “step on”. It remains at maximum current for a few seconds. A receiver

in the same horizontal plane as the source measures the step-on response of the

signal. The arrival time and amplitude of the response depend on the resistivity

contrast between seawater and sub-seafloor sediments. The part of the signal that

travels through the resistive seafloor arrives first (in greater water depth than a few

hundred meters). However, the step-on response is dominated by the signal that

travels through the conductive seawater when the static limit is reached [Edwards,

2005]. The electromagnetic field in a layered medium can be separated into two modes
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Figure 2.2: One cycle of a continuous square waveform.
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characterized by the absence of a vertical magnetic field (transverse magnetic (TM)

mode) and the absence of a vertical electric field (transverse electric (TE) mode).

The TE mode is defined by horizontal current loops around the depth axis that

are coupled by electromagnetic induction, while the TM mode defines current loops

perpendicular to the latter that cut across vertically changing media. The TE mode

only exists when the electric field is changing, when, according to Faraday’s law of

induction, a current is induced in the medium to counter changes in the primary field.

The TM mode also exists when the static limit is reached, but is absent in highly

resistive media (like air). Therefore, the step-on response is a composite of TE and

TM modes at early times, when AC currents control the electromagnetic field, but is

only made up of TM at late times, after the static limit is reached [Chave and Cox,

1982].

This chapter outlines the electromagnetic theory and the one-dimensional depth-

dependent forward problem for the CSEM method.

2.1 Maxwell’s equations

Maxwell’s equations relate time varying electric and magnetic fields, electric charges

and currents. An electric current I corresponds to the transport of electric charges

within a conductive medium over time and its amplitude is given in Ampere (A).

The density of electric current j ([j]=A/m2) depends on the amount of current flow

through an area. The electric field E is linearly related to the current density by

Ohm’s law

E = ρj, (2.1)

where ρ is the electrical resistivity with units of Ohm meter (Ωm), and its inverse

is the electrical conductivity σ (S/m). The unit of the electric field is given in Volt

per meter (V/m), where Volt is the unit for the potential between electric charges.

In magnetostatics the analog to electric charges are magnetic pole strengths and the

magnetic field strength H in Ampere per meter (A/m) depends on the attractive or

repulsive force between magnetic poles and the magnetic permeability µ = µrµ0, the

product of relative permeability and permeability of free space µ0 = 4π10−7 Vs/Am.

The magnetic induction is given with

B = µH, (2.2)
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and its unit is given in Tesla (T=Vs/m2). More detail can be found, e.g., in Griffiths

[2012].

In time domain (quantities are indicated by lower-case letters) Maxwell’s equation

are described by the following partial differential equations [Ward and Hohmann,

1988].

1. Faraday’s law of induction: Time varying magnetic induction creates an electric

vortex field

∇× e +
∂b

∂t
= 0. (2.3)

2. Ampere’s law with Maxwell’s correction: Electrical current and changing elec-

tric fields create a magnetic vortex field

∇× h− ∂d

∂t
= j, (2.4)

where j represents the contribution from conduction currents and d the con-

tribution from displacement currents. The dielectric displacement is given by

d = εe, where ε = εrε0, the product of the relative permittivity and permittivity

of free space ε0 = 1/(c0µ0), where c0 is the speed of light in free space.

3. Gauss’ law for magnetism: Magnetic monopoles do not exist

∇ · b = 0. (2.5)

4. Gauss’ law: Relationship between the static electric field and electric charges

causing it

∇ · d = ρq, (2.6)

where ρq is the volume charge density for free charges in a volume ([ρq]=C/m3).

In homogenous media without electric sources or sinks Eq. (2.6) simplifies to

∇ · e = 0.
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2.2 The electromagnetic wave equation

Equation (2.3) and (2.4) can be combined to yield the damped wave equation for the

electric field (there is an analogous equation for the magnetic field)

∇×∇× e + µσ
∂e

∂t
+ µε

∂2e

∂t2
= 0. (2.7)

The vector identity ∇ × ∇ × a = ∇(∇ · a) − ∆a in Cartesian coordinates and the

Laplace operator ∆ = ∂
∂x2

+ ∂
∂y2

+ ∂
∂z2

are substituted in Eq. (2.7), and the result

transformed into frequency domain to yield

∆E− iωµσE− ω2µεE = 0, (2.8)

where frequency-domain quantities are denoted in capital letters. The notation in

Eq. (2.8) helps to understand the following concepts. Electromagnetic fields in free

space (σ = 0) sustain themselves over time and space, as displacement currents govern

[Ward and Hohmann, 1988]. However, the conductivity of common rock types lies

between 10 and 10−6 S/m and the electric permittivity varies between 10−9 to 10−11

F/m depending on water content. The magnetic permeability is reduced to µ0 as

long as amounts of magnetic minerals in the rock are minor. Marine CSEM utilizes

frequencies in the range of 0.1-10 Hz. The low frequencies cause the second term

in Eq. (2.8), the attenuation term, to dominate as σ >> εω [e.g., Constable, 2010].

Conductive currents govern over displacement currents and Eq. (2.8) reduces to the

diffusion equation [Ward and Hohmann, 1988]:

∆E = iωµσE. (2.9)

2.3 The forward problem

In this study the model is a layered one-dimensional subsurface (see Fig. 2.3). Con-

sidered are the permittivity of an infinite air layer, the finite sea water thickness, its

resistivity and the resistivity of k layers with depths for k − 1 layers. The electric

dipole source and electric dipole receivers are horizontally aligned on the seafloor.

At time t = 0 s a current is induced at the source and held constant. The Laplace-
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Figure 2.3: One-dimensional model with layered sub-seafloor and homogeneous water
layer with transmitter and receiver bipoles at z = 0 (seafloor) and distance L from
each other.

transformed electric field measured at a receiver dipole a distance L is given

E(s) =
j(s)

2π
[F (s) +G(s)] , (2.10)

where s = iω is the Laplace variable, j(s) = I∆l/s the current dipole moment, I

is the maximum current and ∆l the dipole length. The field is divided into F (s)

and G(s) which are Laplace transformations of the TM and TE mode respectively

[Edwards and Chave, 1986].

The TM mode is derived from Eq. (2.9), considering an active source, for the z

component of the electric field, while the TE mode is derived for the z component of

the magnetic field. The derivations require a two-dimensional Fourier transform from

x, y into wavenumber domain and back which can be written in terms of the Hankel

transform [e.g., Ward and Hohmann, 1988; Scholl and Edwards, 2007] and F (s) and

G(s) according to Edwards [2005] become

F (s) = −
∫ ∞
0

Y0Y1
Y0 + Y1

λJ ′1(λL)dλ, (2.11)

G(s) = − s
L

∫ ∞
0

Q0Q1

Q0 +Q1

J1(λL)dλ, (2.12)
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where Y0 for the medium above the source (here, conductive seawater) and Y1 for

the medium below the source (here, seabed) relate the horizontal and vertical electric

fields in the layered medium for the TM mode, and Q0 and Q1 analogous relate the

horizontal and vertical magnetic fields for the TE mode. The Bessel function of first

order J1 and its derivative J ′1 oscillate with increasing frequency and amplitude in

regions of λL, where the kernel (e.g., (Y0Y1)/(Y0 + Y1)) decays and Eq. (2.11) and

(2.12) are numerically realized by eliminating high-frequency, high-amplitude terms

with a low-pass filter. The upward and downward recursion relationship in TM mode

for the ith layer is

Yi = θiρi

[
Yi+1 + θiρi tanh(θidi)

θiρi + Yi+1 tanh(θidi)

]
, (2.13)

where di is the layer thickness and the electromagnetic wavenumber in the ground is

θi = λ2 + sµ/ρi and in the air θair = λ2 + s2µ0ε0 (as conductive currents are negligible

compared to displacement currents in air). The starting layer for the downward

recursion relationship is air with Yair = θair/(sε0). For homogeneous seawater the

value above the source dipole becomes

Y0 = θ0ρ0

[
θair/ρ0 + sεθ0 tanh(θ0d0)

sεθ0 + θair/ρ0 tanh(θ0d0)

]
, (2.14)

The upwards recursion relationship starts at the bottom layer N with YN = ρNθN

and Y1 is calculated with Eq. (2.13), where the (i + 1)th layer is below the ith layer

as shown in Fig. 2.3. Analogously, the upward and downward recursion relationship

in TE mode for the ith layer is

Qi =
µ0

θi

[
θiQi+1 + µ0 tanh(θidi)

µ0 + θiQi+1 tanh(θidi)

]
, (2.15)

where QN = µ0/θN for the N th layer, and Q0 for a homogeneous sea becomes

Q0 =
µ0

θ0

[
θ0 + θair tanh(θ0d0)

θair + θ0 tanh(θ0d0)

]
. (2.16)

Equation (2.10) is transformed into time domain with a discrete, inverse Laplace

transform to yield the electromagnetic response, which for this study is the predicted

horizontal electric field step-on response at the receivers.

In this thesis I apply the forward code in “Marine transient electromagnetic inver-

sion program (MARTIN)” by Carsten Scholl [Scholl, 2010] written in the computing
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language Fortran 90 (except for Sec. 2.4). The code approximates a finite bipole

length by summing up the response of several mathematically infinitesimal dipoles.

Streich and Becken [2011] have shown that approximating a bipole yields uncertain-

ties especially for receivers close to the source. However, the uncertainty decreases

rapidly with distance. The shape of the electronically imperfect step-on signal in-

jected at the transmitter is accounted for by convolving the predicted exact step-on

response at each receiver with the measured source signal.

2.4 Step-on response for 3-layer model

The three major characteristics of the horizontal electric step-on response to deter-

mine the resistivity of the subsurface are the late-time variation in amplitude (1),

the early-time variation in amplitude (2), and the arrival time (3) of the signal [Ed-

wards, 2005]. The arrival time of the signal can be estimated from the maximum of

the impulse response, the time derivative of the step-on response. Edwards [2005]

demonstrates step-on responses for a double halfspace model as presented in Fig. 2.1,

where a halfspace of seawater above the source is less resistive than a homogenous

seabed below (see step-on responses in Fig. 2.4). According to Edwards [2005], the

arrival time and early-time amplitudes depend mostly on seabed resistivity (compare

to left panel of Fig. 2.1). Late-time amplitudes depend on the resistivity contrast

between the seawater and seabed resistivity and become less sensitive with increas-

ing contrast. They are mainly controlled by the current flow through the seawater

(compare to right panel of Fig. 2.1).

To understand the behavior of the step-on response for a layered sub-seafloor,

including a resistive layer that represents, e.g., gas hydrate occurrences, step-on re-

sponses are predicted with a simplified forward code from Mir [2011] (used in this

section only) that is based on the theory introduced in Sec. 2.3. The sub-seafloor

models consist of different combinations of three layers with varying thicknesses. The

transmitter is a point dipole on the seafloor which induces a maximum current of 10

A. The seawater resistivity is set to 0.31 Ωm, its thickness to 1000 m, and the receiver-

transmitter offset is 176 m similar to the offset used by Yuan and Edwards [2000].

The resistivities ρ for the three layers are chosen to be 0.8 and 1 Ωm representing

common resistivities of marine sediments and 20 Ωm for a more resistive target (e.g.,

sediments containing free gas or gas hydrate). The thickness of the middle layer th2

is chosen to be 5, 20 and 50 m.
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1)

2)

3)

Figure 2.4: Step-on responses for halfspace models, where the horizontal electric
source and receiver dipoles are located in line at the interface. The resistivity of the
sea water is ρw=0.31 Ωm and the halfspace resistivity for the sub-seafloor is ρhs =
0.31, 1, 3 and 10 Ωm. The transmitter-receiver spacing is 176 m. The difference
in sub-seafloor resistivity shows in 1) late-time amplitudes, 2) early-time amplitudes
and 3) arrival time. Figure is modified from Edwards [2005].

Increasing resistivity with depth

In the scenario of increasing resistivity with depth, the subsurface resistivity increases

from 0.8 Ωm on top, 1 Ωm in the middle to 20 Ωm on the bottom. Figure 2.5 shows

the step-on responses for three 3-layer models with an overburden thickness th1=5

m and varying thicknesses for the middle layer (th2=5, 20 and 50 m), and step on

responses for simple halfspace models ρhs=0.8, 1 and 20 Ωm for comparison.

The step-on response for a resistive halfspace model with ρhs=20 Ωm arrives ear-

liest and has the highest early-time and late-time amplitudes. The step-on response

for the 3-layer model with the smallest thickness of the middle layer (th2=5 m) is

closest to the resistive halfspace response. However, the two relatively conductive

layers with a combined thickness of 10 m above the resistive bottom layer, cause the

step-on response to arrive later and with smaller early-time amplitudes, making it

easily distinguishable from the resistive halfspace model.

Increasing the thickness of the relatively conductive middle layer most strongly
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Figure 2.5: Step-on response for three 3-layer models (th1=5 m) with increasing re-
sistivities with depth and varying thicknesses for the middle layer and three halfspace
models.

affects the early-time amplitudes (decrease) and the arrival times (signal arrives later).

The late-time amplitudes, in contrary, seem to be governed by the resistive layer on

the bottom as the step-on response for th2=5 and 20 m converge towards the step-on

response for the resistive halfspace model.

Figure 2.6 shows the variation in step-on responses for variations in the middle

layer thickness, given a first layer thickness of th1=50 m to evaluate the impact of a

thick surface layer as well as the penetration depth of the configuration. Compared to

the thin surface layer (Fig. 2.5), all curves arrive much later and early-time amplitudes

are relatively small. The step-on response for a thick middle layer is between the

responses of conductive halfspace models (close to ρhs=0.8 at early times and close to

1 Ωm at late times) showing that a contrast towards a resistive layer at 100 m depth

is difficult to resolve (> 0.5× L), which represents the penetration limit.

Resistive middle layer

The next scenario is a conductive layer ρ1 = 0.8 Ωm on top of a resistive layer

(ρ2 = 20 Ωm) with a conductive layer (ρ3 = 1 Ωm) at the bottom to represent a

simplified (1-D) vent scenario with a gas-free sediment layer on top. The step-on

responses for a thin (th1=5 m) surface layer are shown in Fig. 2.7. The step-on

response for the resistive halfspace (ρhs = 20 Ωm) arrives earliest and has highest

late-time amplitudes, but the early-time amplitudes are higher for the 3-layer model
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Figure 2.6: Step-on response for three 3-layer models (th1=50 m) with increasing re-
sistivities with depth and varying thicknesses for the middle layer and three halfspace
models.

Figure 2.7: Step-on response for three 3-layer models (th1=5 m) with resistive middle
layer and varying thicknesses for the middle layer and three halfspace models.

with the resistive middle layer being 20 or 50 m thick suggesting that the early-time

amplitudes are strongly enhanced by the contrast between the resistive middle layer

and the more conductive layers above and below. The 20 m thick resistive middle

layer results in the highest early-time amplitudes compared to a 5 m or 50 m thick

layer indicating a trade-off between a relatively large layer thickness and sensitivity

to the bottom layer (penetration depth).

The late-time amplitudes for the model with a 50 m thick resistive middle layer
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Figure 2.8: Step-on response for three 3-layer models (th1=20 m) with resistive middle
layer and varying thicknesses for the middle layer and three halfspace models.

Figure 2.9: Step-on response for three 3-layer models (th1=50 m) with resistive middle
layer and varying thicknesses for the middle layer and three halfspace models.

are closest to the resistive halfspace model. However, the conductive surface layer

seems to regulate the arrival times as they are the same for the step-on responses

for th2=20 and 50 m (thick resistive layer), but distinguishably later than for the

resistive halfspace. A thicker surface layer of th1=20 and 50 m causes the early-time

amplitudes to decrease as shown in Figs. 2.8 and 2.9. For a 50 m thick surface layer,

the response for a 3-layer model with th2=20 and 50 m become more difficult to

distinguish, probably because the penetration depth is limited to ∼100 m.
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Figure 2.10: Step-on response for three 3-layer models (th1=5 m) with resistive surface
layer and varying thicknesses for the middle layer and three halfspace models.

Resistive surface layer

The last example examines a resistive surface layer (ρ1= 20 Ωm), which represents

resistive material directly underneath the seafloor (e.g., gas hydrates may occur close

to the seafloor at vent sites as discussed in Chapter 6). Step-on responses for a thin

surface layer (th1=5 m) are shown in Fig. 2.10. The step-on response for a resistive

halfspace model (ρhs= 20 Ωm) arrives earliest and has the highest late-time ampli-

tudes. The responses for different thicknesses of the middle layer are very similar,

resulting in the two conductive sediment layers being hardly distinguishable. The

arrival time is mostly controlled by the resistive overburden. Late-time amplitudes

are between the more conductive and the resistive halfspace responses. A thicker

surface layer (th1=20 m in Fig. 2.11) results in late-time amplitudes that are closer

to the resistive halfspace response. Arrival times are completely controlled by the

resistive overburden. The 3-layer models show that the resistive surface layer has a

strong impact on the early-time amplitudes as well. Early-time amplitudes are even

higher than late-time amplitudes.

Conclusions

The observations for a 3-layer model containing one resistive layer give the follow-

ing additional insights on information content in controlled source electromagnetic

time-domain data: Arrival times are largely controlled by surface layer resistivity.
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Figure 2.11: Step-on response for three 3-layer models (th1=20 m) with resistive
surface layer and varying thicknesses for the middle layer and three halfspace models.

Electromagnetic fields arrive fastest for a resistive halfspace model and may arrive at

the same time for a 3-layer model with a relatively thin (here, th1/L >0.1) resistive

surface layer. However, an even thinner (here, th1/L >0.05) conductive surface layer

limits the arrival of the field to later times than for the resistive halfspace model.

Early-time amplitudes are controlled by the resistivity contrast between the sub-

surface layers. A large contrast above and below a resistive layer within the penetra-

tion depth of the instrument produces large early-time amplitudes. These can even

be higher than late-time amplitudes when the resistive layer is the surface layer and

relatively thick (here, th1/L >0.1).

Late-time amplitudes are largest for a resistive halfspace model. They are con-

trolled by a combination of the sub-surface layers within the penetration depth of the

instrument and approach the resistive halfspace model response for relatively thin

resistive layers even in greater depth (here th1/L >0.1 in <20 m depth).

The forward modelling study above has shown the strong sensitivity of the CSEM

method with HED transmitter and receivers to a resistive layer, which represents

sediments carrying hydrocarbons (e.g., gas hydrates). The sensitivity is especially

increased with increasing resistivity contrast between the material above and below

the resistive layer. The penetration depth of the instrument for the specific cases

above is below ∼ 0.57 × L, which is important to consider when designing a CSEM

experiment.
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Chapter 3

Linear inverse theory

Solving the geophysical inverse problem requires mathematical algorithms to estimate

a subsurface model so that the predicted data match the observed data d within the

data error assumptions. Solving the inverse problem requires solving the forward

problem first. Data d(m) is predicted given knowledge of the physical theory and

assumptions about the parametrization of the subsurface and its model parameters

m with

d(m) = f(m), (3.1)

where f(m) is a function based on the the physical theory. Many geophysical methods

require solving the inverse problem to infer the subsurface model when non-linearity

inhibits direct solutions. Solutions to inverse problems are often non-unique and

unstable depending on model parametrization and parameter choice, partly because

observed data only cover a finite number of samples of a continuous function and

have an unknown data error due to instrumentation limits and ambient noise. Linear

inversion theory is well known and solutions to the linear problem can be obtained

using linear algebra (e.g., Tarantola [2005], Meju [1994], Menke [2012]). If observed

data and model parameters are linearly related the relationship can be written as

d = Jm, (3.2)

where J is the sensitivity or Jacobian matrix. The following sections introduce se-

lected algorithms which are often applied to invert controlled source electromagnetic

data sets for a one-dimensional subsurface and will be referred to in this thesis.
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3.1 Linearized inversion

Linearized inversions solve non-linear problems by assuming local linear behavior.

Equation 3.1 is expanded in a Taylor series about a starting model m0, with higher

order terms neglected, for observed data d:

d = f(m0 + δm) = f(m0) + Jδm, (3.3)

where d− f(m0) = δd, and Eq. (3.3) can be rewritten as

δd = Jδm. (3.4)

The sensitivity matrix is evaluated about m0 as Jij = ∂fi(m0)/∂mj. If Jij is small,

the ith data sample is insensitive to a change in model parameter mj and vice versa.

The least-squares solution for δm can be estimated by minimizing the data misfit

X2 = (δd− Jδm)TC−1d (δd− Jδm) (3.5)

with respect to δm, where Cd is the data covariance matrix describing the data error

statistics and T indicates transpose. The model change becomes

δm = (JTC−1d J)−1JC−1d δd, (3.6)

and the updated model is given by m1 = m0 + δm. Since higher-order terms were

neglected in the linearization this procedure generally needs to be repeated iteratively

(m0 ←m1) until convergence.

To solve Eq. (3.6) requires (JTC−1d J) to be nonsingular (the determinant is non

zero), which is provided if the problem is even- or over-determined (data provide

enough or even more information to solve for all model parameters). However, even-

and over-determined problems can be ill-conditioned (close to singular) and under-

determined problems (data do not provide enough information for all model param-

eters) are generally singular. Linearized inversions that are based on the data misfit

alone may not yield physically meaningful results, especially when the inverse prob-

lem is ill-conditioned. Therefore, a regularization can be introduced that stabilizes

the inversion by incorporating geologic constraints and prior assumptions about the

model.
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3.1.1 Marquardt inversion

The Marquardt optimization technique [Marquardt, 1963] is an extension to the gen-

eral Gauss-Newton linearization approach that minimizes a least-square function of

the data misfit (3.5). The Marquardt algorithm implements a regularization param-

eter µ to control the deviation of the new model from the old model by minimizing

the objective function

Ψ2 = (δd− Jδm)TC−1d (δd− Jδm) + µδmT δm. (3.7)

The model change becomes

δm = (JTC−1d J + µI)−1JTC−1d δd, (3.8)

where I is the identity matrix.

The regularization parameter µ controls the step size, that decreases with increas-

ing µ. The choices are not completely subjective as they are often based on statistical

requirements. For example, µ can be estimated for X2 → N , where N is the number

of data samples and X2 the expected misfit for Gaussian distributed errors.

The inversion algorithm that will be referred to as Marquardt inversion in this

thesis is based on the Marquardt algorithm as described in Jupp and Vozoff [1975].

It computes the singular value decomposition of JTC−1d J = USVT (see details in

Sec. 3.2), then computes the generalized inverse Bg such that

δm = Bgδd, (3.9)

according to Bg = VTS−1UT , where T contains damping factors ti along its main

diagonal. The damping factors for the Marquardt method implemented in this thesis

are

ti =

{
s2i

s2i+µ
for 1 ≤ i ≤ P

0 i > P ,
(3.10)

where P is the maximum number of linearly independent rows or columns of J and

si are the singular values on the main diagonal of S. A singular value threshold

(computational limit) is defined to estimate P , so that sP/s1 >∼ 2 ·10−16 > sP+1/s1.

The Marquardt method stabilizes the iterations and provides a robust solution to the

inverse problem. However, difficulties may occur if the initial model is far from the
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optimal model, if data errors are large or include outliers and if the parametrization

is not well chosen. In practice, the threshold is adjusted throughout the inversion and

a starting model with only few layers are chosen to avoid over-parametrization.

3.1.2 Occam’s inversion

“It is vain to do with more what can be done with fewer”

William of Occam, early 14th Century

Occam’s inversion [Constable et al., 1987] aims for a minimum-structure solution

following the principle that the true model might be more complex, but the solution

of Occam’s inversion represents what the data can actually resolve. It parametrizes

the model using a large number of interfaces at fixed depths such that thicknesses

of layers are below the resolution of the data, and introduces a regularization term

minimizing the second depth derivative of the model parameters to constrain the

result to a minimum-structure model. The objective function becomes

Ψ2 = (d− Jm)TC−1d (d− Jm) + µmTRTRm (3.11)

where R is a discrete second derivative operator for the model change with depth z

mTRTRm ≈
M−2∑
i=1

d2mi

dz2i
(3.12)

The trade-off parameter µ is optimized at every iteration, but objective estimation of

the trade-off parameter can be challenging. Occam’s inversion addresses geophysical

data by smoothest-model regularization and avoids over-fitting the data, but regular-

ization does not adapt locally to the structure supported by the data, which can result

in over and/or under smoothing of parameters in various depth regions. Regulariza-

tion also discriminates against abrupt changes and precludes rigorous uncertainty

estimation.

3.2 Singular Value Decomposition

Another method to estimate an effective inverse of an ill-conditioned or singular

matrix and therefore to provide stable solutions to the inverse problem is through

singular value decomposition (SVD). In this thesis, however, the SVD is carried out
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to study model parameter intercorrelation and to estimate parameter uncertainties

after Edwards [1997]. Equation (3.4) shows the linear relationship of data changes

to a combination of model parameter changes through the sensitivity matrix J. The

solution for the model parameters is ambiguous if J is ill-conditioned or singular.

Therefore, the SVD decomposes the sensitivity matrix into three components:

J = ULVT , (3.13)

where U contains the column eigenvectors of JJT and can be used to transform

the data into eigendata space, δd∗ = UT δd. The diagonal matrix L consists of

the singular values of J (square root of eigenvalues of JJT or JTJ). The matrix V

contains the column eigenvectors of JTJ and can be used to transform the model into

eigenparameter space (also known as the principle axes system) with

δm∗ = VT δm. (3.14)

The eigenvectors are orthonormal and have the property that UTU = I and VTV =

VVT = I, where I is the identity matrix of the appropriate dimension (N ×N for the

number of data and M ×M for the number of parameters respectively). Eigendata

and eigenparameters are linearly related through singular values, which are generally

ordered to decrease along the main diagonal of L (corresponding to a decrease in

sensitivity), with

δd∗ = Lδm∗. (3.15)

To estimate the parameter resolution with the SVD according to Edwards [1997], J

is scaled in the following way. It is divided by the data error, so that the standard

deviation of the data becomes unity. Additionally Jij is multiplied by mj to transform

it into mjJij = ∂di/∂ln(mj). The logarithmic scaling is helpful for the physical

interpretation and Eq. (3.14) becomes

δln(mi)
∗ =

M∑
j=1

Vjiδln(mj). (3.16)

The eigenparameters δm∗i are therefore linearly related to the product of the param-

eters
∏M

j=1m
Vji
j , which Edwards [1997] uses to describe a well known relationship

between the resistivity and the thickness, which as a product (also called transverse
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resistance) is often well resolved. The physical interpretation of the SVD results be-

comes complicated for more than a few parameters as it is mostly a mathematical

approach. The model parameters (logarithmically scaled) can be estimated combining

Eq. (3.16) and Eq. (3.15) to

δln(m) = VL−1δd∗. (3.17)

Edwards [1997] shows that the standard deviation for the eigendata is unity if the

standard deviation of the data is unity. Therefore, the eigenparameter uncertainty

is estimated from the inverse of the singular values (derived from Eq. (3.15)) as a

function of the fractional measurement error ε (in percent) of the step-on response,

and the standard deviation on the model parameters can be estimated with VL−1

from Eq. (3.17). Edwards [1997] defines a coarse upper bound estimate (valid for

small errors) with

σ̂ln(mi) =
M∑
j=1

|Vij/Ljj|. (3.18)

If J is ill-conditioned or singular, some values of L are vanishingly small compared

to the maximum value and parameter errors become large (the solution to Eq. (3.4)

is unstable) and a non-linear approach is needed to address parameter uncertainties

instead. In this study the SVD is based on the work of Golub and Reinsch [1970] and

implemented with the “Marine transient electromagnetic inversion program (MAR-

TIN)” by Carsten Scholl.

3.2.1 SVD example

The chosen example is a three-layer model with a resistive layer 10 m below the

seafloor, 20 m thick and with a resistivity of 10 Ωm representing potential gas hy-

drate or free gas accumulations. Resistivities above and below the resistive layer

are 1 and 2 Ωm respectively. The simulated data for two receivers at 175 and 292

m offset with Gaussian random noise (2% standard deviation) and SVD results are

obtained with MARTIN. Figure 3.1 illustrates the SVD results. The matrix VT repre-

sents how the logarithm of the model parameters make up the eigenparameters. The

eigenparameters resemble a combination of parameters with weights towards certain

parameters. For example, the first eigenparameter with the smallest uncertainty is

the dot product of the first row of VT and δln(m), and is mainly represented by ρ2
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Figure 3.1: SVD analysis of a 3-layer model with resistive middle layer. Top left:
VT matrix (colourbar refers to V -values). Top right: Standard deviation of eigenpa-
rameters as a function of the fractional data error ε%. Bottom: Upper error bound
estimate for model parameters. The · in δln(·) stands for the parameters (which are
logarithmically scaled), e.g., δln(ρ1).

and to a smaller fraction by ρ1 and th1. Therefore, ρ2 has the lowest upper error

bound and can be resolved best. Conversely, ρ3 is almost only represented by the

last eigenparameter with the highest uncertainty, and therefore has the highest upper

error bound. The second eigenparameter is dominated by ρ1 and a smaller fraction

of th1, similar to the fourth eigenparameter (but the sign of the VT -component for

th1 is opposite), and both values can be resolved well. The third eigenparameter is

dominated by the thickness of the resistive layer and can also be resolved well. The

resistivity of the resistive layer is resolved best demonstrating the sensitivity of the

in-line electric dipole-dipole CSEM instrument to resistive structure.
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Chapter 4

Permafrost at the Canadian

Beaufort Sea shelf

The Beaufort Sea is a marginal sea of the Arctic Ocean north of Alaska (USA) and

of the Yukon and Northwest Territories (Canada). In the Northwest Territories, the

Mackenzie River empties into the Beaufort Sea, and forms the world’s second largest

arctic delta (∼13000 km2). The Mackenzie Delta is an active delta plain <4 m above

sea level that contains several meandering channels and lakes. The deltaic sediments

consist of interbedded silts and silty sands. The neighboring Tuktoyaktuk Coastland

is an elevated terrain (up to 30 m above sea level) that has been modified (mostly

eroded) in the late Pleistocene (glacial) and periglacial Holocene periods and contains

glacial till or glaciofluvial sand and gravel [e.g., Pelletier et al., 1987; Emmerton et al.,

2007]).

The region is abundant in permafrost at varying depths with varying thicknesses

from <100 m to >700 m. It reaches its maximum thickness in the northern Tuktoyak-

tuk Coastlands beneath Richards Island [Todd and Dallimore, 1998]. Permafrost is a

volume of constantly frozen (<0◦C for more than two years) sediment. A seasonally-

thawed active layer on top of the permafrost is usually about 0.5 to 1 m (coast to

inland) thick. The permafrost thickness is controlled by the mean temperature at the

base of the active layer, the thermal conductivity of the sediments and the local heat

flow. Water bodies that do not freeze in the winter cause the average ground temper-

ature to be locally higher and therefore the permafrost to be thinner. The permafrost

may contain sections of partially ice-bounded to non-ice-bounded sediment that may

contain free gas, called taliks [Todd and Dallimore, 1998]. Thawing permafrost due
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to climate change can have severe effects on the sustainability of coastal settlements

and integrity of infrastructure and industry [Nelson et al., 2003].

The Beaufort-Mackenzie basin is abundant in natural gas (255×109 m3) and recov-

erable crude oil (173×106 m3) [Osadetz et al., 2005]. Gas hydrate has been observed

in 20% of all exploration wells. Saturation varies from 50 to 90% and sediments are

estimated to contain 2.4×1012 to 87×1012 m3 of natural gas [Dallimore and Collett,

2005]. However, extraction implies great risks due to engineering hazards such as

ice-scouring, permafrost, gas blowouts and soil failure. To estimate risks, the Federal

Government and a segment of the Canadian petroleum industry formed the Beau-

fort Sea Project in the 1980s. Several research projects were funded to estimate the

balance between commercial exploitation of natural resources, protection of the sen-

sitive environment with a unique and versatile collection of animal species, and the

preservation of the native culture [Pelletier et al., 1987].

The shelf regions in the Beaufort Sea vary in depth from zero at the delta to

∼100 m water depth after which the water depth increases rapidly and the permafrost

pinches out due to warmer waters of ∼1°C at ∼300 m water depth. Free gas from

gas-hydrate dissociation can cause the sediments to locally extend and form widely

observed pingo-like features, which are characterized by a surface bulge and gas vent-

ing [Paull et al., 2007]. The permafrost offshore the Beaufort Sea coast degrades from

Tuktoyaktuk Peninsula to northern Yukon due to sea-level rise and ongoing erosion

of the shore. During the summer the warm discharge of the Mackenzie River thaws

the upper permafrost that is submerged under seawater. The thawing takes place

as long as the river outflow reaches the area through coastal water circulation and is

supported by slow sea level rise and sediment accumulation. However, steady sea level

rise result in larger water depths so that river discharge no longer reaches the seafloor

and thawing stops [Dyke, 1991]. Thermal modelling of ocean-bottom temperature

increase and the resulting temperature changes in the sub-seafloor suggest possible

gas hydrate dissociation at the top and at the bottom of the GHSZ and permafrost

thawing that may cause degassing at the seafloor. The vulnerable areas are shown

in Fig. 4.1. Seafloor temperature is constantly increasing since 13.5 ka before present

(BP) and the temperature subsequentially increases in the sub-seafloor changing the

thickness of the stability zone of permafrost which was accumulated in the Pleistocene

[Dallimore et al., 2011, 2012].

Seismic data are sensitive to the impedance contrast at boundaries of non-hydrate-

bearing to hydrate-bearing sediments, but BSR occurrence is only patchy due to the
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Figure 4.1: Left: Schematic drawing of the Beaufort shelf and coast with permafrost
zones and gas hydrate both in the permafrost and below, as well as zones of gas
hydrate degradation and pingo development. Right: Temperature over depth diagram
for temperature curves 13.5 kaBP (black) to present time (red) and methane hydrate
stability curve (blue), as well as resulting gas hydrate dissociation and permafrost
thawing, courtesy S. R. Dallimore and C. K. Paull [Dallimore et al., 2012].

lack of free gas underneath the gas hydrate stability zone, as modelled by Andreassen

et al. [1995]. Electromagnetic methods have been shown to be sensitive to permafrost

as the electrical resistivity increases drastically for frozen sediments [Sartorelli and

Frenc, 1982]. Todd and Dallimore [1998] conducted a transient time-domain elec-

tromagnetic (TDEM) experiment along a 30 km long transect across the Mackenzie

Delta and correlated the results with resistivity and geological information from three

boreholes (up to 451 m deep). TDEM measures the secondary electromagnetic field

after the current in a transmitter loop has been switched off. The diffusing currents

deepen and widen with time. The voltage measured at a central receiver loop over

time contains information about the resistivity structure of the subsurface. The in-

terpretation from this study for the central delta is a ∼50 m thick layer of permafrost

(40 to 300 Ωm) overlying 100-150 m unfrozen sediments (2 to 3 Ωm) at temperatures

> −1.2◦C and bedrock (siltstones and shales of the Richards Sequence with 5 to 15

Ωm). The main permafrost body (> 100 Ωm) further to the northeast extents to a

depth of 600 to 750 m, but is nerved by a thin talik section (2 to 30 Ωm) at about

100 m depth.

Scholl [2010] presents a simulation study to examine the sensitivity of the long-

offset transient electromagnetic (LOTEM) method above the Mallik test site to a gas
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hydrate layer at 800 m depth. He simulated synthetic data for two horizontal electric

fields and all three magnetic field components for broadside and inline configurations.

Scholl [2010] implements a Marquardt inversion [Marquardt, 1963; Jupp and Vozoff,

1975] with varying starting models for a known number of layers with separate and

combined inversions for the electric and magnetic fields. A few 10s of models, which

fit the data within the error estimates, are obtained from inversions with different

starting models. The results for separate inversions (broadside or inline, electric or

magnetic fields separately) show significant ambiguity, but a joint inversion seems to

improve the model resolution. The gas hydrate layer can be resolved with a joint

inversion of Hz (broadside configuration) and Ex (inline configuration) and Tx-Rx

offsets > 2 km. In all cases small-scale inhomogeneities (a 100 m thick layer with

10 Ωm in a 60 Ωm gas hydrate layer at 1 km depth) within the hydrate layer are

not detectable. Forward modelling of LOTEM inline and broadside configurations

[Scholl, 2010] show that the gas hydrate layer can only be resolved in special cases,

but the permafrost closer to the surface seems to be well resolved.

4.1 CSEM modelling study

The following study models permafrost scenarios on the Beaufort Sea shelf to estimate

the sensitivity of the CSEM HED system to the top and bottom of the permafrost, to

variations within the permafrost (e.g., ice-bonded to non-ice bonded sediment) and

to gas hydrate occurrences underneath the permafrost.

A special challenge for marine CSEM methods in relatively shallow water (com-

pared to the maximum offset of the array) is the resulting sensitivity of the instrument

response to the strong resistivity contrast between the conductive seawater and the

insulating air above. The electric field is “guided” along this resistivity contrast pro-

ducing an “airwave” which dominates the initial arrival of the electric field observed

at the receivers in the time domain and masks most of the measured data at typical

frequencies in the frequency domain [Weiss, 2007; Weidelt, 2007]. While handling

data in the time or frequency domain theoretically yields the same information, prac-

tical differences exist due to collection and processing of a selected number of data

with different sources and noise levels. For example, frequency-domain data are often

displayed in terms of real and quadrature components of the recorded electrical field

as a function of transmitter-receiver offsets for a limited number of frequencies, while

time-domain data are given by a step-on response of the electric field amplitude as
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a function of time (logarithmically spaced) for each transmitter-receiver offset [e.g.,

Cheesman et al., 1987]. Therefore, time-domain data are preferred in shallow water

as a broader frequency range is available and the static limit (DC part) is included.

The static limit contains most of the seabed response similar to DC resistivity mea-

surements on land [Weiss, 2007; Weidelt, 2007]. Weiss [2007] models the impulse

response, the derivative of the step-on response, that corresponds to the arrival of the

electromagnetic field, and points out that the airwave signature arrives earliest and

almost synchronously at several receiver locations in shallow water depth. In inter-

mediate water depth the airwave signature is eventually superimposed on the geologic

signatures of interest. Both the airwave and the signature of resistive structure cause

the electric field to arrive earlier and also increase the amplitude at the static limit

because of diminished ohmic losses.

Scott [1992] measured Beauford Sea water resistivites of 2 Ωm in 1985 and higher

variations in 1990 (1-8 Ωm) depending on the discharge of the MacKenzie River. River

discharge can cause semi-fresh water bodies to float within the shelf waters [Carmack

and Macdonald, 2002]. However, wind stress promotes upwelling of ocean water onto

the shelf, which causes the salinity to be relatively high in some regions on the shelf

[Williams and Carmack, 2008]. Therefore, resistivity varies laterally and vertically

along the shelf. An average value far from the river delta is 0.38 Ωm estimated

with the equations of Fofonoff [1985]. Therefore I choose to model “conductive” and

“resistive” seawater of 0.38 and 2 Ωm, accordingly.

Different subsurface models were chosen for the Beaufort Sea permafrost scenario.

Models 1 to 3 (Fig. 4.2) are 3-layer models with different depths to the permafrost

and different overburden and permafrost resistivities. They are based on the subsur-

face models inferred by Scott [1992], who conducted an experiment with the ship-

towed MICRO-WIP (Waterborne Induced Polarization) system in 1985. Scott [1992]

concluded that overburden resistivity varies from 1.6 to 2.6 Ωm. Resistivities in per-

mafrost depth vary from 10 to > 500 Ωm and have been correlated with ice-bounded

sediments in one borehole. The data interpretation also revealed one intermediate

layer with a lower resistivity (between 0.5 to 1.5 Ωm). There is no direct geological

correlation to explain this, but Scott [1992] suggests a pronounced increase in salinity

above the degrading permafrost.
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Depth to permafrost

To analyze the sensitivity to the depth of the permafrost zP , model 1A and 1B are

compared with zP=40 and 20 metres below seafloor (mbsf) respectively. Figures 4.3

and 4.4 show the difference of the step-on responses for a dipole-dipole CSEM array

with 10 receivers in 100 m intervals for conductive and resistive seawater. The grey

scale in the left panel is normalized with the absolute standard deviation (2% on half

of the maximum value of the step-on response). The arrival time is estimated from

the maximum of the impulse response, the time derivative of the step-on response,

which is estimated by dividing the difference of neighboring data samples by their

associated time difference. The effect of the strong resistivity contrast at the water-

air interface on the arrival time can be seen, for example, in Fig. 4.3 when comparing

the step-on response for model 1B for 10 m water depth and 1000 m water depth. In

10 m water depth the signal arrives later and only one major increase in amplitude

can be observed, while in 1000 m water depth (almost no airwave distortion) the

early-time amplitudes are larger and indicate the presence of resistive material in the

subsurface.

The difference between the step-on responses of models 1A and 1B is significant,

and even larger for resistive seawater (Fig. 4.4). Here, the signal arrives earlier and

Figure 4.2: Models 1 to 3 with conductive layer of unfrozen sediment above per-
mafrost and different depths to the permafrost as well as different resistivities for the
permafrost layer.
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the field strength is larger than for the conductive seawater case, but the early-

time amplitudes are not as pronounced as for the conductive seawater case. For

1000 m water depth the late-time amplitudes in conductive seawater are the same for

both models as they are probably governed by the field diffusing through seawater.

However, a difference in late-time amplitudes exist for resistive seawater.

The step-on responses shown in Fig. 4.3 suggest that there is a transition de-

pending on water depth between the time where the step-on responses differ most.

The major difference of the step-on response for shallow water is most pronounced in

Figure 4.3: Right: Predicted step-on responses for model 1A and model 1B with and
without Gaussian random noise for Tx-Rx offset 400 m in 10 m (top) and 1000 m
(bottom) water depth (wd). Left: Normalized deviation (colour bar) of the two
responses for Tx-Rx offset of 100 to 1000 m and time. Water resistivity is ρw=0.38
Ωm.
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Figure 4.4: Right: Predicted step-on responses for model 1A and model 1B with and
without Gaussian random noise for Tx-Rx offset 400 m in 10 m (top) and 1000 m
(bottom) water depth (wd). Left: Normalized deviation (colour bar) of the two
responses for Tx-Rx offset of 100 to 1000 m and time. Water resistivity is ρw=2 Ωm.

late-time amplitudes, while for deep water depth the difference is more pronounced

in early-time amplitudes. This is related to the superposition of the airwave signa-

ture onto the response of the geological structure demonstrated by Weiss [2007] and

depends on the depth and resistivity of the subsurface structure of interest. Figure

4.5 shows the scaled data misfit of the step-on response for water depths up to 300 m

and Tx-Rx offsets of 100 to 1000 m for conductive seawater. The scaled data mis-

fit for each receiver Rxj at increasing offsets to the source dipole is defined for the
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permafrost study by

X2
j =

1

Nj

Nj∑
i=1

((di(mp)− di(mq))/σ̂dj
)2, (4.1)

where d(mp/q) is the predicted data for model p and q respectively (for example, p=1A

and q=1B), σ̂dj
is the estimated standard deviation (2% of the step-on response at

half maximum) and Nj is the number of data for the jth receiver, which scales the

misfit for readability in this section only. If X2 < 1 the data curves do not differ

beyond the data error threshold and can hardly be distinguished.

The transition in Fig. 4.5 lies between 70 and 120 m water depth and is charac-

terized by a low data misfit between the two step-on responses. It can be called a

blind window if the data misfit falls below the threshold, where the CSEM array is

not sensitive to the difference between the two models. Model 1A and 1B can easily

be distinguished with a CSEM array with offsets >200 m for water depths <70 m

and with an increasing range around 400 m offset at water depths >120 m.

To analyze the resolution of the models individually the SVD analysis is applied.

Figure 4.5: Data misfit (colour bar) between step-on response for model 1A and 1B at
10 to 300 m water depth for Tx-Rx offsets of 100 to 1000 m. A blind window (step-on
responses cannot be distinguished) can be identified between ∼60 and 150 m water
depth.
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Figure 4.6 shows the results for models 1A and 1B for the conductive seawater case

(estimated for a CSEM array with four receivers at 150 m, 250 m, 450 m and 750 m

offset similar to an existing CSEM array [Schwalenberg and Engels, 2012a]) and 10 m

water depth. Model 1B with the shallower depth to the permafrost can be resolved

better than model 1A (the upper error bound for model 1A is almost double compared

to 1B). The resistivity of the overburden can be resolved best (upper error bounds are

small) as it is equal to the second eigenparameter (second row of VT ). The resistivity

of the permafrost layer can also be resolved well with an upper error bound of 5ε%

(fractional errors depend on the fractional measurement error ε). The resistivity of

the middle layer can only be resolved in combination with its thickness (see first and

last row of VT ) and the parameters individually have the highest upper error bounds.

Overburden and permafrost resistivity

When comparing models 1, 2 and 3 the sensitivity of the CSEM array (with HED

transmitter and receivers) to overburden and permafrost resistivity can be analyzed.

Overburden resistivities for models 2A and 3B are 2.2 Ωm and 1.6 Ωm respectively.

The deviation of the step-on responses for models 2A and 3B, shown in Fig. 4.7, for

10 m water depth show that Tx-Rx offsets <200 m are more sensitive to the overbur-

den resistivity than larger offsets. The deviation is strongest for late-time amplitudes.

Figure 4.6: SVD analysis of model 1A (left) and 1B (right) for 10 m water depth and
ρw=0.38 Ωm showing the V -values (colour bar), the eigenparameter standard error
and the upper error bounds are fractional errors depending on the fractional mea-
surement error ε. The · in δln(·) stands for the parameters (which are logarithmically
scaled), e.g., δln(ρ1).
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Figure 4.7: Right: Predicted step-on responses for model 2A to model 3B with and
without Gaussian random noise for Tx-Rx offset 400 m in 10 m (top) and 100 m
(bottom) water depth (wd). Left: Normalized deviation (colour bar) of the two
responses for Tx-Rx offset of 100 to 1000 m and time. Water resistivity is ρw=0.38
Ωm.

The larger the water depth becomes the smaller the effect on the late-time ampli-

tudes and the greater the response of the sub-seafloor on the early-time amplitudes

becomes. The difference between the responses is larger for resistive seawater, and

late-time amplitudes still deviate at 100 m water depth as shown in Fig. 4.8. Figures

4.7 and 4.8 show that the step-on response for a higher overburden resistivity arrives

slightly earlier and has higher amplitudes. In summary, the overburden resistivity

can be resolved best in shallow water depth for Tx-Rx offsets <200 m and resistive

seawater.
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Figure 4.8: Right: Predicted step-on responses for model 2A to model 3B with and
without Gaussian random noise for Tx-Rx offset 400 m in 100 m water depth (wd).
Left: Normalized deviation (colour bar) of the two responses for Tx-Rx offset of 100
to 1000 m and time. Water resistivity is ρw=2 Ωm.

The sensitivity of the CSEM array to different permafrost resisitivities is analyzed

by comparing step-on responses for models 1B and 2B (thin overburden on top of

permafrost layer with 100 Ωm and 500 Ωm respectively) which are shown in Fig. 4.9.

The step-on responses for 30 m water depth are almost identical, except for the arrival

time. Deeper water depth of about 100 m or more resistive water (see Fig. A.1 in

App. A.2) would be necessary to distinguish between different permafrost resistivities.

The misfit of the responses at different water depth is shown in Fig. 4.10, where a

blind window can be identified between 30 and 70 m water depth. Comparing the

step-on responses for conductive seawater and resistive seawater in Figs. 4.9 and A.1

suggests that the blind window is at greater water depths for resistive seawater. In

summary, the difference of the step-on responses for models with different permafrost

resistivity shows largely in the arrival time and is generally greater for longer Tx-Rx

offsets. A transition window for shallow water depths (here, between ∼30 and 70 m)

and a blind window that extends up to ∼200 m water depth makes it difficult to

distinguish the responses. The blind window shifts to deeper water depths for more

resistive seawater.
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Figure 4.9: Right: Predicted step-on responses for model 1B and model 2B with and
without Gaussian random noise for Tx-Rx offset 800 m in 30 m (top) and 100 m
(bottom) water depth (wd). Left: Normalized deviation (colour bar) of the two
responses for Tx-Rx offset of 100 to 1000 m and time. Water resistivity is ρw=0.38
Ωm.

Conductive layer underneath the permafrost

Models 4 (see Fig. 4.11) are 6-layer models that include an unfrozen sediment (con-

ductive) and a gas hydrate layer underneath the permafrost based on the model of

Scholl [2010]. The SVD analysis for models 4A and 4B (bottom of the permafrost

in 440 and 240 mbsf respectively) in Fig. 4.12 reveals high upper error bounds for

structure below the permafrost section. However, the CSEM array is sensitive to the

bottom of the permafrost and the upper error bounds for the resistivity of the conduc-

tive layer and the thickness of the permafrost are considerably smaller for model 4B
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Figure 4.10: Data misfit between step-on response for model 1B and 2B at 10 to
300 m water depth for Tx-Rx offsets of 100 to 1000 m for conductive seawater. The
transition window is between ∼30 to 70 m water depth, but the blind window extends
wider (data misfit required to be above the threshold of 1) to ∼200 m water depth.

(thinner permafrost) compared to model 4A. Additionally, larger Tx-Rx offsets (than

the chosen 750 m for the SVD study) are more sensitive to the difference between

models 4A and 4B as shown in Fig. 4.13. For intermediate water depth (here, 50 m)

the difference between the step-on responses is shown in the early-time amplitudes

for large Tx-Rx offsets (>800 m) and also slightly in the late-time amplitudes for

intermediate Tx-Rx offsets (here, 400 to 800 m).

To analyze if one can distinguish between a permafrost halfspace and a thick

permafrost layer underlain by a conductive layer interrupted by a “thin” resistive gas

hydrate layer, models 1A and 4A are compared. Figure 4.14 shows step-on responses

for 10 and 1000 m water depth for conductive and resistive seawater. For 10 m water

depth, the airwave masks the early-time amplitudes. The arrival times differ for the

resistive and conductive seawater, but the major arrival occurs at about the same time

and is the same for the two models. The difference between the step-on responses

shows mostly in the late-time amplitudes for Tx-Rx offsets >800 m (chosen spacing for

step-on responses shown in Fig. 4.14). The step-on responses for greater water depth

(here, 1000 m) differ mostly for early-time amplitudes. The early-time amplitudes for

model 4A are larger than for model 1A (especially for conductive seawater) which is
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Figure 4.11: Models 4 A, B and C with unfrozen sediment and gas hydrate layer in
∼800 mbsf below the resistive permafrost layer.

Figure 4.12: Upper error bounds on model parameter resolution from SVD analysis
for model 4A (left) and 4B (right) for 30 m water depth and 4 receivers with a
maximum Tx-Rx offset of 750 m.

likely due to the sensitivity of the CSEM array to the resistivity contrast above and

below the permafrost layer (as discussed in Sec. 2.4). The difference in early-time

amplitudes is also the major difference between the step-on responses of models 4A

and 4B, which are shown for 50 m water depth in Fig. 4.13, but early-time amplitudes

are masked by the airwave for shallower water depth (<50 m).

The data misfit between models 1A and 4A is displayed as a function of Tx-Rx

spacing and water depth for conductive seawater in Fig. 4.15. Note that there is no

blind window, but the data misfit is larger for deeper water depth.

In summary, the depth to the permafrost can be resolved best for Tx-Rx offsets
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Figure 4.13: Right: Predicted step-on responses for model 4A and model 4B with and
without Gaussian random noise for Tx-Rx offset 400 m in 50 m water depth (wd).
Left: Normalized deviation (colour bar) of the two responses for Tx-Rx offset of 100
to 1000 m and time. Water resistivity is ρw=0.38 Ωm.

>400 m, and the thickness of the permafrost as well as the resistivity of the conductive

layer beneath the permafrost are resolved better for a thinner permafrost layer. The

transition between differences in late-time amplitudes for shallow water depth to

early-time amplitudes for deeper water depth is smooth and no blind window with

low misfits is found. However, the step-on responses for models 1A, 4A and 4B are

better to distinguish in case of intermediate (here, 50 m) to deep water, conductive

seawater and large Tx-Rx offsets. The SVD analysis in Fig. 4.12 shows that the deep

gas hydrate layer cannot be resolved with the chosen CSEM array where the depth

to the gas hydrate layer is about the same as the maximum Tx-Rx offset.

Talik layer

Models 5 and 6 (see Fig. 4.16) are similar to model 1A, but include a talik section in

the permafrost, similar to what Todd and Dallimore [1998] found in the Mackenzie

Delta. The resistivity for the talik section is chosen to be 30 Ωm as inferred by Todd

and Dallimore [1998]. For models 5A, B and C the top of the talik layer is in 60 mbsf

and it is 20, 50 and 100 m thick respectively. Upper error bounds from SVD analysis

are shown in Fig. 4.17. It is difficult to determine the talik layer as the upper error

bounds are rather high. The resistivity of a thicker talik layer is easier to resolve,

but the upper error bound for the resistivity of the permafrost underneath increases
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Figure 4.14: Predicted step-on responses for model 1A and model 4A with and with-
out Gaussian random noise for Tx-Rx offset 800 m in 10 m (top) and 1000 m (bottom)
water depth (wd). Seawater resistivities: ρw=0.38 Ωm (left) and 2 Ωm (right). Tx-Rx
offset: 800 m.

with increasing talik thickness. Step-on responses for models 1A and 5C are shown

in App. A.3. Similar to analyses above, the differences between the step-on responses

for higher water resistivities are larger for late-time amplitudes. Generally, the largest

deviation for shallow water depth is in the late-time amplitudes, while deeper water

causes the arrival time to deviate stronger.

A transition window is located between 70 to 150 m water depth for conductive

seawater as seen on the left panel of Fig. 4.18, but the data misfit is generally below

the threshold of 1 and the step-on responses can hardly be distinguished. Step-on

responses for more conductive seawater or thinner talik sections are not displayed, but



54

Figure 4.15: Data misfit between step-on response for model 1A and 4A at 10 to 300 m
water depth for Tx-Rx offsets of 100 to 1000 m for conductive seawater. No transition
window can be identified, but the responses can only be distinguished for large Tx-Rx
offsets or deeper water depth (data misfit required to be above the threshold of 1).

Figure 4.16: Models 5 and 6 are similar to models 1–3 but include a less resistive
talik section within the permafrost layer.

they follow the same trend with a smaller deviation. Therefore, it is better to detect

relatively thick talik sections (here, 100 m) in shallow (<∼70 m) or deep (>∼200 m)
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water depth for more resistive seawater.

Models 6 differ mostly in depth to the talik layer within the permafrost. Model

6C and 5C have a 50 m thick talik layer in different depths. The step-on responses,

shown in Fig. 4.19, are very similar and differ only in the late-time amplitudes for

shallow water depth and in the arrival times and early-time amplitudes for deeper

water depth. Small data misfits shown in the right panel of Fig. 4.18 suggest that

the depth to the talik layer can hardly be resolved, but it would be easier in greater

water depth and with intermediate Tx-Rx offsets.

Summary

The synthetic modelling study for different permafrost models has shown that resis-

tivity of the overburden as well as the depth to the permafrost can be resolved with

relatively small uncertainty. If a more conductive layer exists above the permafrost,

as inferred by Scott [1992], it would be more difficult to constrain resistivity or thick-

ness separately. The resistivity of the permafrost is difficult to determine if it is >100

Ωm as used in this study.

More resistive seawater generally improves differentiability between the step-on

responses for different models and shallow water depth which is significant for de-

tecting deeper targets like talik layers within the permafrost and non-ice bound and

hydrate layers beneath the permafrost. The difference in the step-on response of mod-

els with shallow water depth is mainly found in late-time amplitudes. However, for

deeper water depth the difference is more pronounced for arrival times and early-time

Figure 4.17: Upper error bound on model parameter resolution from SVD analysis
for model 5A and 5C for 30 m water depth and 4 receivers with a maximum Tx-Rx
offset of 750 m.
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Figure 4.18: Data misfit between step-on response for model 1A and 5C (left) and
5C and 6C (right) at 10 to 300 m water depth for Tx-Rx offsets of 100 to 1000 m for
conductive seawater.

amplitudes, which are larger for conductive seawater. A transition as a function of

water depth between the differences shown at late times to early times causes a blind

window in intermediate water depths depending on the depth and resistivity of the

target layer and seawater (here, between ∼30 to 200 m). The transition window is

located at deeper water depths for resisitive seawater compared to conductive sea-

water. While it is easier to distinguish if a talik layer is present it is more difficult

to estimate its depth or thickness and it is required to be quite thick and relatively

close to the seafloor (here, ∼100 m, centred in ∼150 mbsf). A conductive halfspace

beneath the permafrost is easier to detect, likely due to the strong resistivity contrast,

but the depth to the bottom of the permafrost has high uncertainties. Gas hydrate

occurrences below the permafrost can likely not be resolved with the HED CSEM

system. Using a broadside configuration as well as inline as demonstrated by Scholl

[2010] and measuring magnetic and electric components in more than one direction

has been shown to improve the detectability for gas hydrate layers as well as talik

sections for measurements on land and would be worth modelling in the future for

experiments on the shelf.

It has also been recommended to measure the Ez component in shallow water

depths, as it is not sensitive to the airwave but only to resistive structures in the

subsurface [Weidelt, 2007] as, for example, demonstrated by Edwards et al. [1988].

It is important to know the resistivity profile of the water layer exactly as demon-
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Figure 4.19: Right: Predicted step-on responses for model 5C and model 6C with
and without Gaussian random noise for Tx-Rx offset 400 m in 10, 100 and 1000 m
water depth (wd). Left: Normalized deviation (colour bar) of the two responses for
Tx-Rx offset of 100 to 1000 m and time. ρw = 2 Ωm.
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strated by Key [2009] and shown in this study, because the salinity changes vertically

and laterally along the slope [Williams and Carmack, 2008]. It would be necessary

to take closely spaced measurements of the conductivity, temperature and pressure

of the water column with a CTD instrument.
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Chapter 5

Non-linear inverse theory and

simulation study on gas hydrate

occurrences

Linearized inversions are applicable if problems are linear or weakly non-linear. Chap-

ter 3 discusses how to stabilize linearized inversions in case of ill-conditioned or singu-

lar problems by introducing regularization. Section 3.2 shows one approach (singular

value decomposition) to estimate uncertainties for model parameters assuming local

linear behaviour. However, regularization or truncation of singular values lead to a

reduction in model resolution and degrade the uncertainty estimation. A non-linear

optimization technique that does not require regularization and numerically minimizes

the data misfit over the model parameters is introduced in Sec. 5.1 (called adaptive

simplex simulated annealing). A more rigorous approach to estimate uncertainties is

Bayesian inversion, which provides a fully non-linear estimate of model parameters

and uncertainties. Bayesian inversion is introduced in Sec. 5.2. In this section, the

posterior probability density of the model parameters, given the data and prior infor-

mation, is defined and estimated via numerical sampling. The model parametrization

(here, a one-dimensional layered subsurface model with varying numbers of layers)

is addressed in two ways in this thesis. One way is to apply the Bayesian informa-

tion criterion (in Sec. 5.3.1), which estimates the number of layers that the data can

resolve and requires the estimation of a global-minimum-misfit model by non-linear

optimization. Another way is a trans-dimensional inversion (described in Sec. 5.5)

that enables transitions between parametrizations and results in a more complete
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uncertainty estimation.

5.1 Adaptive simplex simulated annealing

Adaptive simplex simulated annealing (ASSA) is a hybrid algorithm which combines

a global search (simulated annealing) and a local method (downhill simplex opti-

mization) to estimate an optimal model by minimizing the data misfit over a large,

non-linear parameter space, combining a stochastic component (for a wide search)

with gradient-based information (for efficiency). ASSA is an efficient method for

problems with multiple local minima, correlated parameters and a wide range of

parameter sensitivities [Dosso et al., 2001].

Simulated Annealing

Simulated annealing (SA) is a global search that randomly perturbs the parameters

to minimize an objective function which, in geophysical inversion, can be taken to be

the data misfit function

X2 = (d− f(m))TC−1d (d− f(m)), (5.1)

where d are the observed data with their error covariance matrix Cd and f(m) are

the predicted data. The data misfit is estimated from the likelihood of the model

parameters L(m) for Gaussian distributed errors with X2 = −lnL(m) (Sec. 5.3.3 will

discuss likelihood in more detail).

SA is named after the physical process of growing crystals (annealing). When a

hot medium is cooled slowly, a single crystal can grow so that the energy end state is

at a global minimum. When the medium is cooled too fast, the end state might not

reach the global minimum, but become trapped in a local minimum. The algorithm is

based on perturbing a current model state m to obtain a state m′, which is accepted

or rejected according to the Metropolis criterion [Metropolis et al., 1953]

α = min

[
1,

(
L(m′)

L(m)

)1/T
]
, (5.2)

where T is referred to as the temperature. The new model is accepted if a uniform

random number ξ ∈ [0, 1] satisfies ξ < α.
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The temperature T is decreased slowly over the iterations. This process is called

“cooling”. The cooling ensures the algorithm accepts fewer perturbations with higher

misfits. In our implementation, the parameter perturbations are randomly drawn

from a Cauchy distribution about the current values and the distribution width is

controlled by temperature (described below). The advantage of the algorithm is that

it accepts some increases in misfit and therefore can escape from local minima. One

disadvantage of the method is that it does not remember past models. Another

disadvantage is that it is insensitive to local gradients which indicate the downhill

direction. A method called “quenching”, where T is set to zero, is usually applied

when cooling is completed to accept lower misfits only and converge to the nearest

minimum (local or global) [Kirkpatrick et al., 1983; Dosso et al., 2001; Dosso, 2009].

Downhill simplex

The downhill simplex (DHS) method is a local method based on a set of M+1 models

which construct a simplex in an M -dimensional space, where M is the number of

model parameters [Fallat and Dosso, 1999]. The goal is to use the relative information

from the misfit values at the various models to provide a rough indication of the

downhill direction (without calculating derivatives), and to make geometric steps

that favour this direction. To do so, the model with the highest misfit in the simplex

is altered in the following ways (shown for M = 2 on Fig. 5.1):

1. Reflection through the face of the simplex by a factor −1

2. Extension through the face of the simplex by a factor −2

3. Contraction towards face of simplex by a factor 0.5

4. Multiple contraction of all high misfit models towards the best fit model by a

factor 0.5

If the reflection results in a better model than the second highest misfit model then the

latter becomes the worst misfit model and the algorithm restarts with the reflection.

If the reflection results in a model with a better misfit than the former best model,

the direction is assumed to be particularly promising and an extension is executed. If

the misfit of the model is not less than the second highest misfit after the reflection,

a contraction is executed. If the contraction does not work a multiple contraction
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1. 2. 3.

4.

Figure 5.1: DHS realization of reflection (1), extension (2), contraction (3) and mul-
tiple contraction (4) of a model simplex with 2 parameters. The green dot represents
the model with the highest misfit and the green arrow the direction of model alter-
nation. The multiple contraction (4) is directed towards the model with the lowest
misfit in the right bottom corner. The red dots are the updated models.

is executed. The convergence criterion takes the difference of the highest and lowest

misfit of the models and evaluates

2(X2
high −X2

low)

(X2
high +X2

low)
< ε, (5.3)

where ε is the tolerance defined by the user.

ASSA combines DHS and SA to balance between random and gradient-controlled

perturbations. The perturbation steps consist of a DHS step (gradient based) with

a random component added. The perturbation is accepted or rejected according

to the Metropolis criterion. The method is initiated at high temperature so that

all perturbations are initially accepted. As the temperature is reduced uphill steps

are rejected at an increasing rate. A key element is that the trade-off between the

gradient-based and random components of the perturbations is controlled adaptively

by adjusting the random step size for each parameter according to a running average of

the size of recently accepted perturbations. In this procedure, randomness dominates

at high temperatures and gradient-based steps at low temperatures. Further, the

optimization retains a memory of good models within the simplex, where all but the

current highest misfit model represent the M best models encountered in the search

[Dosso et al., 2001].
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5.2 Bayesian inversion

The inversion methods described in Chapters 3 (Marquardt, Occam and SVD) and

5.1 (ASSA) are based on the assumption that the problem is deterministic (a true

model exists). In Bayesian inversion the model is a random variable that can be

described probabilistically. It is a general and scientifically rigorous solution to an

inverse problem and is described by a probability density over the model parameters.

In geophysical problems, Bayesian inversion can provide quantitative parameter and

uncertainty estimates and rigorous error treatment, and is the preferred method if

the problem is highly non-linear (e.g., Denison et al. [2002]). The distribution of the

model parameters m are given by the posterior probability density (PPD), which

combines prior knowledge about the parameters and information from the observed

data d. Bayes’ rule can be written as

P (m|d, H) =
P (d|m, H)P (m|H)

P (d|H)
, (5.4)

whereH is the model parametrization (here, indicating the number of sub-seafloor lay-

ers). The left side of Eq. (5.4) represents the PPD, P (m|d, H). The term P (d|m, H)

is the conditional probability of the data given m and H. However, for fixed observed

data this term is interpreted as the likelihood of the model parameters L(m, H). The

term P (m|H) is the prior density of the model parameters given H independent from

the observed data. In Bayesian inversion, probability is interpreted as ”degree of be-

lief”, which can be somewhat subjective. In this thesis, the priors are designed to be

relatively non-informative (so that the data primarily determine the solution), and

are taken to be uniform densities between physically-realistic lower and upper bounds

for each parameter. The conditional probability for the observed data P (d|H) can

be considered the likelihood of the parametrization H given the observed data and is

called the Bayesian evidence. Since the evidence represents a normalizing factor, it

can be written as

P (d|H) =

∫
M
P (m′)P (d|m′) dm′, (5.5)

where the integration is over the M -dimensional parameter space M. However,

Eq. (5.5) is particularly difficult to compute, and in some cases the role of evidence

in comparing different parametrization can be approximated with the Bayesian infor-

mation criterion (BIC), as described in Sec. 5.3.1. When different parametrizations
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are not being considered H can be omitted and Bayes rule can be written as

P (m|d) ∝ L(m)P (m). (5.6)

Since the PPD is a multi-dimensional distribution, it is generally interpreted

in terms of properties representing parameter estimates, uncertainties, and inter-

relationships. Parameter estimates include the maximum a posteriori (MAP) mMAP,

the mean model m̄ and the median model, all of which are identical for unimodal and

symmetric distributions, but not in general (e.g., Gelman et al. [2000]). The MAP

model is estimated for the highest probability in the PPD,

mMAP = Argmax {P (m|d)} , (5.7)

while the mean model is the average

m̄ =

∫
M

mP (m′|d) dm′, (5.8)

and the median model divides the integrated probability density so that half lies

above and half below the median with∫ mmedian
i

−∞
P (m′i|d) dm′i =

1

2
. (5.9)

Uncertainties can be expressed as the model covariance matrix, marginal probability

distributions, and credibility intervals. The model covariance matrix contains pa-

rameter variances on the main diagonal and covariances on the off-diagonal and is

estimated with

Cm =

∫
M

(m′ − m̄)(m′ − m̄)TP (m′|d) dm′. (5.10)

The marginal probability densities for model parameter mi are estimated with

P (mi|d) =

∫
δ(mi −m′i)P (m′|d) dm′, (5.11)

and the credibility intervals (CI), in this thesis, are defined as the intervals with the

highest probability density on the smallest parameter range with 95% probability.
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5.3 Fixed-dimensional Bayesian inversion

When the parametrization does not change during the inversion it is called fixed-

dimensional inversion. It is crucial to determine the appropriate model parametriza-

tion beforehand. Too many model parameters result in over-parametrization. Not all

of the model parameters are constrained and the inversion might introduce spurious

model structure and overestimate uncertainties. Too few model parameters result in

under-parametrization. Model structure can be unresolved, and parameters may be

biased and uncertainties underestimated. In this study the model parametrization is

related to the number of layers of a one-dimensional subsurface model, and, in this

section, the appropriate number of model parameters (i.e., the number of parameters

that can be resolved by the data) is estimated with the BIC [Dettmer et al., 2009;

Dosso and Dettmer, 2011].

5.3.1 Bayesian information criterion

The BIC is derived from Bayes’ rule (5.4) and can be used to estimate the most

appropriate number of model parameters (here, resistivities and thicknesses for sub-

seafloor layers) that can be resolved by the data. The misfit X2(m̂) = −lnL(m̂) of

the maximum-likelihood model m̂ decreases when additional layers are added but

at some point the model becomes over-parametrized with unconstrained structure

which can be geologically meaningless (an artifact of fitting the noise on the data).

The BIC balances a data misfit term with a penalty term which increases linearly

with the number of parameters:

BIC = 2X2(m̂) +M ln(N), (5.12)

where M is the number of parameters and N the number of data [Schwarz, 1978;

Kass and Raftery, 1995; Dettmer et al., 2009].

To compute the maximum-likelihood model for different parametrization, the data

misfit is minimized over the parameter space using, e.g., ASSA (described in Sec. 5.1).

5.3.2 Metropolis-Hastings sampling

To apply Bayesian inversion to nonlinear problems, Markov-chain Monte Carlo (MCMC)

methods are typically employed to sample the parameter space in a random walk that
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converges in the long-run to sample the PPD. Here, Metropolis-Hastings sampling

(MHS) is applied [Hastings, 1970; Metropolis et al., 1953]. In this process the pa-

rameters of the current model are perturbed from m→ m′ using a proposal density

Q(m′|m) and the proposed model is accepted with probability

α = min

[
1,
P (m′)

P (m)

(
L(m′)

L(m)

)1/T
Q(m|m′)
Q(m′|m)

]
, (5.13)

where T (referred to as the sampling temperature) is a relaxation term, taken to

be unity for unbiased sampling, but non-unity for parallel tempering (described be-

low). For uniform bounded priors and a symmetric proposal density (Q(m′|m) =

Q(m|m′)), Eq. (5.13) simplifies to the Metropolis criterion (5.2).

To ensure wide and efficient sampling of the parameter space, including isolated

regions (modes) of high probability in the PPD, parallel tempering is applied here.

Parallel tempering runs a series of Markov chains at an increasing sequence of sam-

pling temperatures T ≥ 1, which relax the likelihood term in Eq. (5.2) and allow

lower-probability models to be accepted [Earl and Deem, 2005; Dosso et al., 2012].

To combine the wide sampling of high temperature chains with the concentrated local

sampling of low temperature chains, the chains interact, probabilistically exchanging

(swapping) models. The Metropolis-Hastings acceptance criterion is evaluated for the

joint probability of model mi of the chain with temperature Ti to swap with model

mj of the chain with temperature Tj and becomes [Dettmer and Dosso, 2012]

α = min

[
1,

(
L(mj)

L(mi)

)1/Ti (L(mi)

L(mj)

)1/Tj
]

(5.14)

= min

[
1,

(
L(mj)

L(mi)

)1/Ti−1/Tj
]
. (5.15)

The chain(s) sampled at T = 1 provide unbiased sampling of the PPD. However,

interchange with higher-temperature chains provides efficient wide sampling.

Fixed-dimensional inversions are carried out for simulated data in Sec. 5.4 and for

measured data in Chapter 6. Here, MHS initially draws from a proposal distribution

based on a linearized approximation to the PPD initiated at an optimal model that

was earlier computed with ASSA. The covariance matrix of the linearized PPD esti-

mate is updated throughout the sampling. The parameters are perturbed in principal

component space [Dosso and Dettmer, 2011] to sample more efficiently as there are
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often strong relationships between parameters (e.g., thickness and resistivity).

5.3.3 Likelihood function

In this thesis, the likelihood function is based on the assumption that the data errors

are zero-mean and Gaussian distributed with an unknown covariance matrix Cd which

is estimated from the data. These assumptions are verified a posteriori by applying

statistical tests [Dosso et al., 2006; Montgomery et al., 2012]. The joint likelihood

function for a number of independent data sets with different covariance matrices (in

this thesis, data sets for each receiver), becomes

L(m,Cdi , i = 1, NRx) =

NRx∏
i=1

{
1

(2π)Ni/2 |Cdi |
1/2

· exp

[
−1

2
(di − di(m))TC−1di (di − di(m))

]}
, (5.16)

where NRx is the number of receivers, and Ni is the number of data for the ith

receiver. The measured data presented in this thesis require the inclusion of an

unknown calibration factor (CF) in the inversion, which is multiplied to the predicted

data and described in more detail in Chapter 6 and 7. The likelihood function (5.16)

is expanded to

L(m,Cdi , cf i, i = 1, NRx) =

NRx∏
i=1

{
1

(2π)Ni/2 |Cdi|
1/2

· exp

[
−1

2
(di − cf idi(m))TC−1di (di − cf idi(m))

]}
, (5.17)

where cf i represents the CF for the ith receiver. The CF is sampled implicitly

within the fixed-dimensional inversion by maximizing the likelihood with respect

to cf i. For readability the i will be dropped in the following description. Setting

∂L(m,Cd, cf )/∂cf = 0 leads to

cf =
dTC−1d d(m)

dT (m)C−1d d(m)
, (5.18)

which provides a closed form expression for the maximum-likelihood cf estimate in

terms of the model parameters m which are sampled explicitly [Dosso et al., 2006].
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5.3.4 Data covariance matrix

The fixed-dimensional inversion approach, in this thesis, estimates both the optimal

number of layers, using the BIC, and the data covariance matrix from residual analy-

sis. The difficulty is that the BIC requires an estimate of the covariance matrix, while

estimating the covariance matrix requires knowledge of the number of layers. The

approach applied here cycles twice through a set of inversions. The first inversion

cycle implements the standard deviations of the mean obtained from stacking the

raw CSEM data. The data covariance matrix consists of variable variances (squared

data standard deviations) along its main diagonal and zero covariances. The stack-

ing error, however, is only one part of the actual error in the inversion. It does not

cover deviations from model assumptions (e.g., 1-D parametrization), physical theory

and CSEM array geometry. Therefore, a scale factor δ2i is included as an unknown

in the inversion that multiplies Cdi from the stacking process of the ith receiver.

This factor is sampled implicitly by maximizing the likelihood with respect to δ2i

(∂L(m,Cdi , cf i, δ
2
i , i = 1, NRx)/∂δ

2
i = 0), where L is rewritten as

L(m,Cdi , cf i, δ
2
i , i = 1, NRx) =

1∏NRx

i=1 (2π)Ni/2

· exp

[
−1

2

NRx∑
i=1

{
(di − cf idi(m))T (δ2iCdi)

−1(di − cf idi(m))
}

−1

2

NRx∑
i=1

{
ln
∣∣δ2iCdi

∣∣}] , (5.19)

leading to (i is dropped for readability)

δ2 =
1

N

(
dTC−1d d− (dTC−1d d(m))2

dT (m)C−1d d(m)

)
, (5.20)

which is substituted back into Eq. (5.19).

One method to estimate a full covariance matrix with non-zero covariances (a

non-diagonal matrix) requires an approximation of the ensemble average from one

data set using an iterative, nonparametric procedure following the assumption that

the error process is stationary and ergodic [Montgomery et al., 2012; Dosso et al.,

2006]. The residual errors for an optimal model estimate m̂, defined as

ri = di − cf idi(m̂), (5.21)
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are considered one realization of the underlying error process (representing data and

theory errors), and a non-diagonal data covariance matrix Cdi for the ith receiver can

be obtained from the residual errors (see below). For fixed-dimensional inversions,

in this thesis, several high-likelihood models with increasing number of layers are

obtained with ASSA (see Sec. 5.1), and m̂ is estimated by selecting the model with

the smallest BIC value.

Variances from the stacking process are not constant along the main diagonal (e.g.,

standard deviations from stacking have been shown to be higher when the electric field

response is close to zero) and error correlation is especially large for early, closely-

spaced data samples, but declines quickly. Therefore, I estimate a non-diagonally

constant matrix, or non-Toeplitz matrix, from standardized residuals. Residuals are

standardized by their estimated standard deviation to r̃i = ri/σ̂i with (i is dropped

for readability)

σ̂2
j =

1

n

j+n/2∑
l=j−n/2

r2l (5.22)

for a window of data samples of width n centred at the current data point j to

accommodate standard deviations which vary slowly across the data set. The non-

Toeplitz data covariance matrix is estimated by computing the autocorrelation of the

residuals for each receiver, analogously to Dosso et al. [2006], with (i is dropped for

readability)

Ĉd jl =
1

N

N−|j−l|∑
k=1

(r̃k − ¯̃r)(r̃k+|j−l| − ¯̃r) cosp
π|j − l|

2(N − 1)
, (5.23)

where j = 1, N , l = 1, N , ¯̃r is the mean of the standardized residuals, and cosp π|j−l|
2(N−1)

is a damping function which drops off more sharply for higher p values (here, p = 16).

Damping is applied to suppress correlation values for widely spaced data samples

as these covariances are expected to be small and the available number of samples

(N − |j − l|) may be insufficient to meaningfully estimate the covariance values.

The updated non-Toeplitz covariance matrix is implemented into ASSA for a

second inversion cycle. The final estimate for the most probable number of layers is

determined by minimizing the BIC using this covariance matrix. Metropolis-Hastings

sampling is then carried out applying this number of layers and set of covariance

matrices, and starting at a good (e.g. from ASSA) model [Dosso et al., 2006].
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5.4 Ulleung Basin gas hydrate modelling

This section provides a simulation study which uses the fixed-dimensional Bayesian in-

version algorithm outlined in Sec. 5.3 to target gas hydrate occurrences in the Ulleung

Basin offshore southeast Korea. The Ulleung Basin is part of the East Sea between

Korea, Russia and Japan, a backarc basin that developed in the early Miocene. It

consists of a thick oceanic crust and ∼6 km of sediment. The Ulleung Basin under-

went periods of tectonic extension, subsidence and compression that is ongoing in the

present (e.g., Uyeda and Kanamori [1979], Yoon and Chough [1995], Gardner et al.

[1998]).

The republic of Korea started a “10-year Korean National Gas Hydrate Program”

in 2005 to explore new energy resources in the form of offshore gas hydrate accumu-

lations that would decrease the country’s dependence on imported energy. Several

2-D and 3-D seismic surveys as well as drilling expeditions have been completed to

study possible gas hydrate extraction sites [Ryu et al., 2013b]. Gas hydrates were

recovered from piston cores in seismic blank zones in 2007 containing 99% methane

[Park, 2008]. Gas hydrates occur disseminated in silts, but in large amounts locally

controlled by an enhanced methane flux in fracture systems. However, coarse grained

sediments like silty sands are preferred for large-scale gas hydrate formation in pore

spaces [Bahk et al., 2013].

For this study five sub-seafloor resistivity models were chosen to represent dif-

ferent possible scenarios in the Ulleung Basin in 2150 m water depth similar to Site

UBGH2.6, which has been chosen for a possible gas hydrate production test. Model

1 consists of a small increase in resistivity with depth for marine sediments without

gas hydrates. Models 2 to 4 contain an additional sand layer at 130 m depth carrying

gas hydrate. The thickness of the layer is 45 m and the porosity is 60%. The sand

layer in model 2 contains ∼15 % gas hydrate (of the total volume), in model 3 ∼42 %

and in model 4 ∼55 %. Archie’s law (Sec. 1.2.2) was used to convert gas hydrate

content to formation resistivity, and the Archie coefficients were chosen a = 1, m = 2

and n = 2 [Edwards, 1997]. Formation resistivities become 1.6, 10 and 100 Ωm based

on the given porosity and gas hydrate saturations. Model 5 represents a site with

massive shallow gas hydrate occurrences with a resistive layer (10 Ωm) close to the

surface (30 m thick at 5 m depth). Model parameters are listed in Tab. 5.1.

The synthetic data are calculated for four dipole receivers at 150, 300, 450 and 600

m offsets from the source dipole. Gaussian-distributed noise (2% of the average step-
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Layer\ Model 1 2 3 4 5
1 0.7 Ωm 0.7 Ωm 0.7 Ωm 0.7 Ωm 0.7 Ωm

220 mbsf 130 mbsf 130 mbsf 130 mbsf 5 mbsf
2 1.2 Ωm 1.6 Ωm 10 Ωm 100 Ωm 10 Ωm

400 mbsf 175 mbsf 175 mbsf 175 mbsf 35 mbsf
3 2 Ωm 1.2 Ωm 1.2 Ωm 1.2 Ωm 0.7 Ωm

∞ 400 mbsf 400 mbsf 400 mbsf 130 mbsf
4 - 2 Ωm 2 Ωm 2 Ωm 1.2 Ωm

- ∞ ∞ ∞ 220 mbsf
5 - - - - 4 Ωm

- - - - 270 mbsf
6 - - - - 1.2 Ωm

- - - - 400 mbsf
7 - - - - 2 Ωm

- - - - ∞

Table 5.1: Five models used in the simulation study of the Ulleung Basin. Model 1
is a background model and does not contain gas hydrate. Models 2–4 contain a sand
layer in 130 mbsf with a gas hydrate saturation of 15%, 42% and 55% of the total
volume (porosity = 60%). Model 5 contains a shallow resistive layer.

on response amplitude) is added to the data. Fixed-dimensional Bayesian inversion

is implemented according to Sec. 5.3, but the procedure for estimating non-diagonal

covariance matrices outlined in Sec. 5.3.4 is not applied to this simulation study. The

data covariance matrix is a diagonal matrix with non-varying (known) variances for

each receiver instead. Results for the number of sub-seafloor layers estimated using

the BIC and marginal probability density profiles are shown in Figs. 5.2 to 5.4.

For model 1 (see Fig. 5.2) two layers are estimated given the data, which is one less

than the true model. However, the true model lies well within the credibility intervals

(CI) down to 400 mbsf. The CIs envelop the true model closely down to 220 mbsf,

while at depths >400 mbsf the true model is outside the CIs, which are relatively

narrow (∼1 Ωm wide). The resistivity increase at 400 mbsf cannot be resolved with

these data for the chosen offsets of 150, 300, 450 and 600 m.

Two layers can be resolved for model 2 (Fig. 5.3). The small increase in resistivity

in the sand layer (130 mbsf) cannot be detected. However, the data can be explained

with a simpler model that averages the subsurface structure below 100 mbsf.

Four layers (the true parametrization) can be resolved for model 3. CIs are gener-

ally wider than for the other models and the true depth to the sand layer lies within

the CIs. However, the thickness and resistivity of the sand layer are difficult to es-
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Figure 5.2: Bayesian inversion results for model 1. Left: Two layers can be resolved
with the data (estimated with BIC from Eq. (5.12)). Right: Marginal probability
density (colour bar) profile for resistivity with depth with credibility intervals (CI),
posterior median and mean models as well as the true model.

timate independently. The probabilities for the second layer are higher for smaller

resistivity values and larger thicknesses than the true model. It is probable that only

a combination of the two can be resolved from the data. The marginal probability

profile below 200 mbsf suggests a decrease in resistivity beyond the true model and

beyond the values for the first layer. Additionally, the CIs are wide, which suggests

that the resistivity below the resistive layer is difficult to estimate from the data. The

resistivity increase at 400 mbsf can be resolved, but with a high uncertainty (>100

m) on the depth to the layer.

For model 4 the resistivities above and below the highly resistive layer can be very

well resolved, while the resistivity of the resistive layer is overestimated by ∼60 Ωm.

It seems that after reaching a certain high resistivity value, changes in this value do

not change the predicted data much. Converted into gas hydrate amounts, 100 to

160 Ωm correspond to only a few additional percent in gas hydrate as the pore space

is almost completely filled with gas hydrate. The resistivity increase at 400 mbsf

cannot be resolved.

The appropriate number of layers for model 5 is five layers as shown on the left

panel in Fig. 5.4. However, the BIC results could be misinterpreted if ASSA did

not converge to the most likely model in one or more cases. Looking at the marginal

probability distribution for three, four and five layers (Figs. 5.4 and 5.5) it seems more

probable that four is the optimal number of layers that can be resolved from the data.

The marginal probability density for four layers shows a steady increase in resistivity
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Figure 5.3: Bayesian inversion results for models 2 to 4. Left: Two to four layers can
be resolved with the data (estimated with BIC). Right: Marginal probability density
(colour bar) profile for resistivity with depth with credibility intervals (CI), posterior
median and mean models as well as the true model.
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Figure 5.4: Bayesian inversion results for model 5. Left: Three to five layers can
be resolved with the data (estimated with BIC). Right: Marginal probability (colour
bar) density profile for four layers for resistivity with depth with credibility intervals
(CI), posterior median and mean models as well as the true model..

Figure 5.5: Marginal probability density (colour bar) profile for model 5 with three
(left) and five (right) layers for resistivity with depth with credibility intervals (CI),
posterior median and mean models as well as the true model..

with depth, which fits the true model well down to 270 mbsf. The number of layers

is underestimated if only three layers are chosen as demonstrated in Fig. 5.5. The CI

widths are narrow and the true model does not lay within them. The PPD represents

an average solution over the true subsurface model that explains the data well. The

inversion result for five layers is closer to the true model down to 220 mbsf. Below

220 mbsf the inversion introduces a high resistive layer with a high uncertainty (wide

CIs). Therefore including five layers into the inversion might be overestimated. The

data and residuals for the ASSA solutions for three, four and five layers are shown in
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Figure 5.6: Data and residuals (units: V/m) of four receivers (at offsets of 150, 300,
450 and 600 m) for WP 5. Simulated data (black dotted line), predicted data for
optimal model with three (blue), four (green) and five layers (red solid line).

Fig. 5.6 and the differences between the step-on responses are relatively small. The

greatest difference to the observed data can be observed for early times of receiver

1 data, which is due to the thin conductive overburden (true model) which cannot

be resolved in the inversion. The example for model 5 demonstrates the difficulty in

estimating the appropriate number of layers.

Summary

The simulation study for five sub-seafloor models similar to the Ulleung Basin re-

sistivity structure yields the following results. Resistivities above 400 mbsf are well

resolved for most of the subsurface models. Resistivities below 400 mbsf are not well

resolved probably due to the penetration limit of the CSEM array with 600 m max-

imum Tx-Rx offset. Small to intermediate resistivity contrasts (here, 0.6 to 9 Ωm)

cannot be estimated correctly when considering the resistivity or thickness of the re-

sistive layer alone, but rather in combination. The parametrization estimated with

the BIC is simpler than the true model and model parameters, especially at greater

depths, are averaged. Depth to and thickness of a sand layer with a high resistivity

(here, 100 Ωm) and resistivities above and below are very well estimated, but the re-

sistivity of the resistive layer itself is not. In this case the resistivity difference relates
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to a few percent of gas hydrate. However, it may be relevant for production tests to

estimate the amount of gas hydrate more accurately. Another approach for smaller

amounts of gas hydrate might be to fix the depth to the gas hydrate-bearing sand

layer to reduce the number of unknown in the problem.

5.5 Trans-dimensional Bayesian inversion

This section describes a trans-dimensional Bayesian inversion to infer parameter and

uncertainty estimates in the presence of unknown layering [Green, 1995]. The ap-

proach does not require regularization or linearization, but samples probabilistically

over the parameter space based on the information content of the data. Fixed-

dimensional Bayesian inversion presented in Sec. 5.3.1 and 5.4 demonstrates how

to estimate the number of layers that can be resolved with the data with the BIC.

Other implementations of Bayesian algorithms for CSEM in fixed dimensions either

constrain the subsurface resistivity structure with seismic inferred structure like hy-

drocarbon reservoir depth [Chen et al., 2007], or constrain the prior parameter width

[Buland and Kolbjørnsen, 2012]. However, underestimating the number of param-

eters over-determines the inversion, and results in averaging the true model with

too few parameters and underestimating uncertainties. On the other hand, overes-

timating the number of parameters under-determines the inversion and additional

structure may be introduced by the inversion to fit the data error or create structural

excess in areas that the data are insensitive to. Additionally, CI widths are often

underestimated due to leaving out the uncertainty of the unknown parametrization.

Trans-dimensional inversion is a good alternative and is becoming popular for var-

ious geophysical techniques [Malinverno, 2002; Sambridge et al., 2006; Bodin and

Sambridge, 2009; Dettmer et al., 2010; Bodin et al., 2012]. Ray and Key [2012] have

implemented a trans-dimensional inversion for frequency-domain CSEM data to esti-

mate the resolution of different field components of the electromagnetic response and

illustrated the challenges for CSEM data when targeting deep-situated, thin hydro-

carbon reservoirs in anisotropic environments.

Our approach implements an algorithm similar to that described in Dettmer et al.

[2010] and addresses the unknown layering of the earth model by introducing a hyper-

parameter which indexes models with various numbers of interfaces. Transitions

(jumps) between models with differing numbers of layers are implemented by creating

a new interface (birth step) or deleting an existing interface (death step). Jumps are
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probabilistically accepted according to the Metropolis-Hastings-Green criterion. Ad-

ditionally, parallel tempering [Dosso et al., 2012; Dettmer and Dosso, 2012] is applied

to improve the acceptance rate of dimension jumps and the efficiency of parameter-

space exploration for multi-modal solutions. Ray et al. [2013] show that parallel

tempering can significantly speed up convergence to the posterior model distribution.

While Ray and Key [2012] work with diagonal data covariance matrices, in this

thesis, correlated errors are accounted for with a non-Toeplitz data covariance matrix

estimated from residual errors independent of the stacking standard deviation, and

verify inversion results by testing standardized residual errors of the posterior median

model for Gaussianity and randomness.

5.5.1 Reversible-jump MCMC sampling

Reversible-jump MCMC (RJMCMC) sampling enables transitions between dimen-

sions H → H ′, where H represents a 1-D subsurface model with the number of

interfaces k, and ensures reversibility for each transition [Green, 1995, 2003]. The

methodology is based on partition modelling (Denison et al. [2002], page 177) and

trans-dimensional jumps of the birth-death form [Geyer and Møller, 1994; Malinverno,

2002; Dettmer et al., 2010]. The acceptance criterion in Eq. (5.13) is extended to

α = min

[
1,
P (k′)P (m′k′|k′)
P (k)P (mk|k)

(
L(k′,m′k′)

L(k,mk)

)1/T
Q(k,mk|k′,m′k′)
Q(k′m′k′|k,mk)

|J|

]
, (5.24)

where k is a hyper-parameter that indexes the model choices and |J| is the determinant

of the Jacobian for the transition function [Green, 2003]. If changes in k are limited to

±1 for each dimension transition and parameter values within a new layer depend only

on the values of the originating layer, |J| is unity [Agostinetti and Malinverno, 2010].

The prior probability in Eq. (5.24) is the product of the interface probability P (k)

and the parameter probability for interface k, P (mk|k) = P (z|k)P (log10ρ|k)P (σ) for

depth partition z, layer resistivities ρ (sampled in the logarithmic domain) and the

data error model, here, represented by standard deviation σ for simplicity. The prior

probability for k is taken to be uniform in [k−, k+]:

P (k) =

{
1

k+−k− if k− ≤ k ≤ k+

0 otherwise.
(5.25)
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Likewise the prior distribution for resistivity ρ in the logarithmic domain is a bounded

uniform distribution:

P (log10ρ|k) =

{ ∏k+1
i=1

1
log10ρ

+
i −log10ρ

−
i

if log10ρ
− ≤ log10ρi ≤ log10ρ

+

0 otherwise.
(5.26)

Likewise the prior densities for the data-error model and for additional parameters

that will be introduced (for example, cf ) are bounded uniform distributions, and

illustrated for a constant standard deviation σ for each receiver with

P (σ) =

{ ∏NRx

i=1
1

σ+−σ− if σ− ≤ σi ≤ σ+

0 otherwise,
(5.27)

where NRx is the number of receivers. The prior distribution for the set of interface

depths z can be written by initially introducing a fictitious grid with G depth points:

P (z|k) =
k!(G− k)!

G!
, (5.28)

as the chance of all combinations possible of k out of G,
(
G
k

)
. The advantage for

choosing a fictitious grid is that it will cancel out in the final acceptance ratio.

5.5.2 Interface birth and death criteria

A birth step introduces a new interface at a random position drawn from a uniform

prior over [z0, zmax], where z0=0 mbsf and the maximum depth zmax is chosen to be

deeper than the penetration limit of the instrument. The parameters of the old layer

(which is being sub-divided) are transcribed into the two new layers and one layer is

randomly chosen and its parameters perturbed with a Gaussian proposal distribution.

A death step reduces the model by one randomly-chosen interface. The parameter of

the new layer is one (random draw) of the two layers that were divided by the deleted

interface. Here, the chance for a birth or death proposal is between 1/4 and 1/3. All

other times depth and resistivity parameters are perturbed for fixed dimensions. The

general form of the proposal ratio for a transition from k → k′ is

Q(k,mk|k′,m′k′)
Q(k′,m′k′ |k,mk)

=
Q(k|k′,m′k′)
Q(k′|k,mk)

Q(z|k′,m′k′)
Q(z′|k,mk)

· Q(log10ρ|k′,m’′k)

Q(log10ρ
′|k,mk)

Q(σ|k′,m′k′)
Q(σ′|k,mk)

,

(5.29)
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where the proposal ratio for k is unity and cancels out for the error parameters (here,

represented by σ) because a symmetric Gaussian proposal distribution is applied.

When proposing the birth of an interface, where k′=k + 1, the new interface can

appear at any of the G fictitious grid points except at points that are already taken.

The proposal for the depth of the interface becomes

Q(z′|k,mk) =
1

G− k
. (5.30)

The resistivity for the new layer is Gaussian distributed around the old value in this

study and the proposal becomes

Q(log10ρ
′|k,mk) =

1√
(2π)σ̂2

ρ

exp

(
−1

2

(log10ρ
′ − log10ρ)2

σ̂2
ρ

)
, (5.31)

which is simplified from Dettmer et al. [2010] as every layer has only one physical

parameter. The standard deviation of the Gaussian proposal σ̂ρ is estimated by the

prior boundaries (log10ρ
+ − log10ρ

−)2/intρ, where intρ is a constant (chosen to be 30

here). The proposal density for the depths and resistivity of the reverse move is

Q(z|k′,m′k′) =
1

k + 1
, (5.32)

and Q(log10ρ|k′,m′k′) = 1. The expressions for the proposal of a death move can be

analogously derived with k′ = k− 1 and the proposal ratio (5.29) for birth and death

become[
Q(k,mk|k′,m′k′)
Q(k′,m′k′ |k,mk)

]
birth

=
G− k
k + 1

√
(2π)σ̂2

ρ exp(
1

2

(log10ρ
′ − log10ρ)2

σ̂2
ρ

), (5.33)

[
Q(k,mk|k′,m′k′)
Q(k′,m′k′|k,mk)

]
death

=
k

G− k + 1

exp(−1
2
(log10ρ

′ − log10ρ)2/σ̂2
ρ)√

(2π)σ̂2
ρ

. (5.34)

From Eq. (5.25)-(5.28) it follows that the prior ratio for the acceptance criterion of

birth or death becomes[
P (k′,m′k′)

P (k,mk)

]
birth

=
k + 1

G− k
1

(log10ρ
+ − log10ρ

−)
(5.35)
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[
P (k′,m′k′)

P (k,mk)

]
death

=
G− k + 1

k
(log10ρ

+ − log10ρ
−) (5.36)

The acceptance ratio in Eq. (5.24) can now be calculated with Eq. (5.33-5.36). The

fictitious grid G conveniently cancels out and the acceptance ratios become

αbirth = min

[
1,

1

(log10ρ
+ − log10ρ

−)

·
√

(2π)σ̂2
ρ exp

(
1

2

(log10ρ
′ − log10ρ)2

σ̂2
ρ

)
P (d|k′,m′k′)
P (d|k,mk)

]
, (5.37)

αdeath = min

[
1, (log10ρ

+ − log10ρ
−)

· 1√
(2π)σ̂2

ρ

exp

(
−1

2

(log10ρ
′ − log10ρ)2

σ̂2
ρ

)
P (d|k′,m′k′)
P (d|k,mk)

]
. (5.38)

The likelihood function is evaluated with Eq. (5.17), but in the trans-dimensional

implementation cf is sampled explicitly and perturbed with a Gaussian distribution.

The data covariance matrix Cd is addressed in two ways for the observed data which

will be considered in Chapter 7. A preliminary PPD is obtained when sampling with a

diagonal covariance matrix with standard deviations from the stacking process of the

data and a multiplicative factor analogous to Eq. (5.19). A non-Toeplitz covariance

matrix is subsequently estimated with Eq. (5.23) from the residual errors of a median

model of the preliminary PPD. A second inversion cycle (MHS sampling) with the

non-Toeplitz covariance matrix samples the PPD to obtain parameter and uncertainty

estimates.

A simulation study was carried out to demonstrate the trans-dimensional inver-

sion for a model simulating the German North Sea environment. It is presented in

Sec. 7.3 where it forms an important part of the planned publication that the chapter

represents.

Another approach, which has not been used to estimate the sub-seafloor model,

but was examined for simulated data and North Sea data in App. B, uses an auto-

regressive (AR) error model to address correlated errors for CSEM data following

Dettmer et al. [2012]. In this case, Cd is a diagonal matrix, that consists of constant

variances along the main diagonal and error correlations are represented by a first-



81

order AR(1) process (equivalent to an exponentially-decaying covariance function).

The unknown variance and AR coefficient for each receiver are perturbed during the

inversion. The reason why this approach has been examined is because Cd is not fixed

but calculated for every evaluation of the likelihood. A simulation study in App. B

shows that the auto-regressive model accounts for error correlation if the acquisition

parameters are well known. However, if acquisition parameters are unknown the

problem becomes under-determined (the data cannot resolve the AR parameters, the

acquisition parameters and the sub-seafloor parameters) and too much subsurface

structure is introduced.
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Chapter 6

Northern Cascadia Margin CSEM

experiment

The Northern Cascadia margin, is an active subduction zone, where the oceanic Juan

de Fuca plate subducts beneath the North American plate. Most of the oceanic sed-

iments are accreted onto the continental margin, pressurized, and faulted [Davis and

Hyndman, 1989]. Ongoing fluid flow and localized cold vents have been observed via

heat flow, seismic, and borehole data [Davis et al., 1990; Hyndman et al., 1993; Riedel

et al., 2009]. Gas hydrate occurrences have been detected during various expeditions

with geophysical and geochemical techniques [Riedel et al., 2006b; Hyndman et al.,

2007; Dash and Spence, 2011]. Seismic surveys and deep sea drilling have provided

greater insights into the gas hydrate distributions in marine sediments, from gas hy-

drate recycling at the base of the gas hydrate stability zone (GHSZ) to fracture filling

and laterally-variable hydrate accumulations along major fluid conduits [Riedel et al.,

2006a; Haacke et al., 2007; Zühlsdorff and Spiess, 2004]. While drilling provides very

localized, fine-scaled information and seismic data are usually sensitive to impedance

contrasts associated with velocity and/or density changes, electromagnetic studies

allow the evaluation of bulk volumes of sediments containing gas hydrates and/or

free gas [Edwards et al., 2010]. Controlled source electromagnetic (CSEM) surveys

have been conducted previously to study gas hydrate accumulations and cold vent

systems on the Northern Cascadia margin [Yuan and Edwards, 2000; Schwalenberg

et al., 2005; Willoughby et al., 2008]. The CSEM data analyzed in this study were

acquired in the late summers of 2005 and 2006. The two survey areas are located on

the middle and upper slope of the continental margin off Vancouver Island, Canada
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(see Fig. 6.1).

This chapter is based on the paper (to be submitted) “Bayesian inversion of ma-

rine controlled source electromagnetic data offshore Vancouver Island” by R. A. S.

Gehrmann, K. Schwalenberg, M. Riedel, S. E. Dosso and G. D. Spence. The dis-

sertation author is the primary investigator and author of this paper. Schwalenberg

provided the CSEM data and helped with the development of processing codes (writ-

ten in MATLAB). Riedel and Spence provided the seismic data (upper slope) and

knowledge on tectonics and gas hydrate distribution on the Northern Cascadia mar-

gin. Dosso helped with the development of the non-linear optimization and Bayesian

inversion codes (written in Fortran 77/90).

6.1 Geology of the survey areas

A geological interpretation of the survey areas is drawn from the Integrated Ocean

Drilling Program (IODP) Expedition 311 (X311) by Expedition 311 Scientists [2005]

and Riedel et al. [2006a]. A transect of five drill sites was carried out on the conti-

nental margin offshore Vancouver Island in 2005 along multi-channel seismic (MCS)

line 89-08, which runs from the abyssal plain to the upper slope basin (Fig. 6.1). An

additional site (U1328) was drilled at Bullseye vent, an active cold vent 5 km south-

east of the transect. The main objective of the drilling expedition was to constrain

geological models for the formation of gas hydrates in an active subduction zone. The

two CSEM survey areas are located on the upper slope around Site U1329 (area 1),

and on the middle slope, around the Bullseye vent and Site U1328 (area 2).

6.1.1 Area 1: Upper slope near U1329

Site U1329 is situated 65 km from the coast of Vancouver Island, Canada, at the

edge of the gas hydrate stability field. The area is marked with multiple canyons and

topographic changes from 500 to 1300 m water depth along a 7.5 km track with an

average slope of 6°. Reflection seismic data reveal turbidite sequences and erosional

surfaces [Expedition 311 Scientists, 2005; Scherwath et al., 2006].

The detailed analysis of five boreholes from logging-while-drilling (LWD), wireline,

and core data at Site U1329 (drilled to∼220 mbsf) reveal three main lithostratigraphic

units [Riedel et al., 2006a]. Unit 1 consists of Holocene to Pleistocene clay to silty

clay to ∼40 mbsf. Unit 2 consists of Pleistocene silty clay with diatoms (>0.3 to
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Figure 6.1: Overview of the Northern Cascadia margin offshore Vancouver Island with
multi-channel seismic line 89-08 (black line), CSEM survey areas (black rectangles)
and location of IODP X311 Sites.

2 Ma) from ∼40 to 140 mbsf, and Unit 3 consists of late Miocene material (>6.7

Ma). Sediment age increases from 2 to 6.7 Ma at the boundary between Unit 2

and 3, marking this as an erosional unconformity [Expedition 311 Scientists, 2006a],

which can be observed on MCS line 89-08 (see Sec. 6.4.3). Resistivities (measured

downhole with the in-situ GeoVISION high-resolution button deep averaging tool)

increase from ∼1 Ωm above ∼170 mbsf to >4 Ωm due to a reduction in sediment

porosity.

A bottom simulating reflector (BSR) is observed on MCS line 89-08 and on single

channel seismic (SCS) line CAS05C-3 which runs perpendicular to MCS line 89-08,

but does not continue upslope of X311 Site U1329. BSR’s generally result from an

impedance contrast at the base of the GHSZ caused by either sediments containing gas

hydrate above the GHSZ or free gas beneath the GHSZ [Hyndman and Spence, 1992].

Boreholes through the GHSZ suggest only a few accumulations of gas hydrates at the

base of the GHSZ at Site U1329 in 126 mbsf. Estimates of gas hydrate saturation

based on biogenic gas production incorporating paleo-sedimentation rates also suggest

a thin gas hydrate occurrence zone (GHOZ) at the bottom of the GHSZ [Malinverno
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Figure 6.2: Bathymetry of Area 1 with data gap (gray area), CSEM way points
(black crosses with annotations for those mentioned in the article), IODP X311 Site
U1329 (red cross), MCS line PGC89-08 and SCS line CAS05C-line3 (gray lines), and
estimated landward edge of the GHSZ (black curved line).

et al., 2008]. Four CSEM lines have been collected around U1329 (see Fig. 6.2), one

line perpendicular to the slope and across the drill site, and three lines parallel to

slope. One slope-parallel line intersects at U1329 and two further up the slope at the

edge of the gas hydrate stability field.

6.1.2 Area 2: Middle slope, Bullseye vent

Bullseye vent is an extensively studied cold vent site on the middle slope of the

northern Cascadia margin. Massive gas hydrate was recovered in piston cores in the

upper 8 mbsf [Riedel et al., 2006b]. The vent site, one out of a series of blank zones

observed in reflection seismic data over a wide range of frequencies [Riedel et al., 2002],

is characterized by a prominent seismic diffraction produced by a shallow gas hydrate

cap. CSEM data collected in 2004 prior to X311 revealed highly anomalous electrical

resistivities over Bullseye vent which have been interpreted as sediments with high gas

hydrate concentrations [Schwalenberg et al., 2005]. Local gas plumes were observed
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in 2006 in the water columns with a 18 kHz echo sounder on Canadian Coast Guard

Ship (CCGS) John P. Tully during cruise 20060012PGC [Willoughby et al., 2008]

and in 2013 with the multibeam system EM710 on research vessel (RV) Falkor during

Neptune Canada cruise “Wiring the Abyss” [Römer, 2014, private communication].

The borehole analysis of U1328 revealed three major lithostratigraphic units: Unit 1

(0 to 130 m thick) contains Pleistocene sediments (<1 Ma) that consist of clay and

silty clay interbedded with thin sand layers, with few microfossils. The transition to

Unit 2 (130 to 200 mbsf) is characterized by a decrease in sand and silt content, while

diatoms and other microfossils become more abundant. Unit 3 (200 to 300 mbsf) is

0.3 to 1.6 Ma old and contains far fewer microfossils than Unit 2, but also consists of

similar clay to silty clay.

Observations of pore-water chlorinity provide information about hydrate forma-

tion within the sediment column. Between 5 and 20 mbsf, high chlorinity values
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indicate a recent and rapid formation of gas hydrates, faster than the assumed dif-

fusion rate of 5×10−6 cm2/s [Riedel et al., 2006a]. Rapid gas hydrate formation is

possible in scenarios of high methane supply, e.g., along fractures. Accumulations of

gas hydrates are also supported by LWD-deep button average resistivities from 1 to

20 Ωm between 5 to 50 mbsf [Expedition 311 Scientists, 2006b]. A strong reflector,

possibly related to the top of a solid hydrate cap, is observed on seismic lines just

below the seafloor reflection. Chlorinity values and on-board infrared thermal imag-

ing (IR) suggest little to no gas hydrate between 60 and 150 mbsf. The lack of gas

hydrate at intermediate depths is also supported by low resistivities, which increase

with depth from 1 to 2 Ωm between 50 and 150 mbsf. One exception is a thin inter-

val with elevated resistivity of up to 3 Ωm between 90 and 100 mbsf. Hydrates were

discovered at 92 mbsf in one core (0.7 to 38%), but do not seem to be laterally con-

tinuous suggesting hydrate formation along fractures. However, low chlorinity values

between 150 and 220 mbsf indicate an increased gas hydrate content just above the

base of the GHSZ, especially in the 10 m above the assumed base of the GHSZ at

220 mbsf, which is also supported by strong IR anomalies. Free gas concentrations

of 58% below the GHSZ were found in one pressure core, but could not be confirmed

by wireline acoustic logging or by vertical seismic profiles [Riedel et al., 2006a].

Four CSEM lines were collected across Bullseye vent in 2004 and 2005 [Schwalen-

berg et al., 2005; Schwalenberg, 2007]. The line analyzed here is shown in Fig. 6.3

and runs in a NE to SW direction intersecting the Bullseye vent. The insert map

in Fig. 6.3 also shows the location of the CSEM experiment that was installed at

the Ocean Networks Canada (ONC) node at Bullseye vent. Analysis of CSEM data

collected here predicts a resistivity of ∼5 Ωm in a ∼40-m thick overburden layer un-

derlain by a less resistive halfspace of ∼0.7 Ωm, and this supports shallow gas hydrate

and/or free gas occurrences [Mir, 2011].

6.2 Marine CSEM method and instrumentation

Marine CSEM measurements presented here were carried out with the time-domain

electrical dipole-dipole system shown in Fig. 6.4. The system was developed at the

University of Toronto and was particularly designed for the investigation of marine

gas hydrates [Edwards, 1997; Yuan and Edwards, 2000]. On the seafloor it consists of

a ∼123 m long electrical transmitter dipole (Tx) followed by two electrical receiving

dipoles with a length of ∼14 m at offsets of ∼174 m and 292 m from Tx measuring
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Figure 6.4: Configuration of the seafloor-towed horizontal dipole-dipole CSEM in-
strument which consists of a heavy weight (pig), a transmitter (Tx) and two receivers
(Rx), where TxRx is the offset between them [Schwalenberg et al., 2005; Yuan and
Edwards, 2000]. Figure not to scale.

the inline-component of the ambient electrical fields with silver chloride electrodes

from Woods Hole Oceanographic Institution. A heavy, plough-shaped weight, called

a “pig”, is attached to the front end of the array to keep it on the seafloor. The

array is connected to the vessel through a coaxial tow cable. The current signal has

a square waveform with a peak-to-peak amplitude of 20 A and a period of 6.6 s that

is generated by a custom-made current transverter situated on board the research

vessel. The signal is sent to the transmitter dipole on the seafloor via the coaxial

tow cable. The autonomous receiver units are equipped with a data logger, a high-

precision clock board, analog electronics and battery packs inside aluminum pressure

cylinders. An identical unit was used on the ship to record the source signal. CSEM

data are collected by aligning the CSEM system on the seafloor where it is towed

along lines making stops to record data at each way point (WP). Due to limited data

storage at the time of the experiments, data processing was carried out in two steps.

The first processing step was carried out during data recording. The analog raw time

series recorded with both receiver units and the unit recording the source current

were band-pass filtered to remove high-frequency noise and low-frequency electrode

drifts, stacked during recording and stored in equal-length data sets. The second

processing step was carried out after the experiment. The step-on response and its

standard deviation, which are used as input in the inversion described in Sec. 6.3,

were obtained when stacking periodic half periods. Figure 6.5 shows a set of step-

on responses and source signals (inset) measured on August 11th 2005. The data
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Figure 6.5: Observed data of two receivers with error bars (stacking standard devia-
tion) and source signal (step on) for five adjacent WPs (9-11) of CSEM line Aug1105.

generally have a moderate data quality. Differences in the electrical field responses

may indicate variations in the seafloor resistivity along the profile, e.g., earlier arrival

of the step-on response is related to a higher resistivity in the subsurface. Table 6.1

gives an overview of the lines analyzed in this study.

Profile Date Comments

Area 1
Aug1105 11th Aug. 2005 parallel to slope

Tx electrode corroded
Aug1205 12th Aug. 2005 perpendicular to slope

Rx1 electrode cable torn
Sep0806 8th Sept. 2006 perpendicular to slope
Sep0906 9th Sept. 2006 perpendicular to slope
Area 2
Jul3105 31st July 2005 across Bullseye vent

Table 6.1: List of CSEM data from the Northern Cascadia margin which was analyzed
in this study.



90

6.3 Inversion methods

Preliminary apparent resistivities, based on a simple model of seawater above a ho-

mogenous sediment halfspace, are obtained using a linearized Marquardt inversion

technique [Meju, 1994; Scholl, 2010]. Linearized inversion is a local method that

moves down the data misfit gradient from an initial model and converges to a global

or local minimum. When carrying out multi-layer inversions, a fundamental issue is

that the amount of vertical structure resolved by the data is not known a priori. One

approach to multi-layer linearized inversions for CSEM data is to over-parametrize

the model with many layers below the resolution of the data and include a regular-

ization (smoothing) term to avoid unconstrained resistivity structure in the model.

The most widely used algorithm is Occam’s inversion [Constable et al., 1987], which

minimizes an L2-norm of the second depth-derivative of the resistivity to fit the data

with minimal structure as introduced in Sec. 3.1.2. However, linearized inversion al-

gorithms utilizing regularization are not well suited to quantitatively estimate model

uncertainties. This section addresses the question of how much vertical structure can

be resolved with CSEM data and a 1-D non-linear Bayesian inversion technique. I first

implement a non-linear hybrid optimization (described in Sec. 5.1), which combines

simulated annealing, a global search, with a downhill simplex optimization [Dosso

et al., 2001]. The BIC is used to determine the optimal number of layers resolved

by the data, and subsequently Metropolis-Hastings sampling (MHS) with parallel

tempering is used to sample the parameter space and obtain parameter uncertainty

estimates following Dosso and Dettmer [2011] and Dosso et al. [2012] as described

in Sec. 5.3.1. The non-linear, numerical approach allows additional experimental pa-

rameters to be included in the inversion. Marginalizing over such parameters includes

the effect of their uncertainties in the total uncertainty of the resistivity model. Here,

a multiplicative calibration factor (CF) is included that scales the predicted step-on

response [Scholl, 2005]. Amplifiers and electrode calibration values are already in-

corporated in the processing. However, the CF is implemented here to compensate

for possible errors of survey parameters such as the measured source amplitude and

array geometry. Another unknown included in the inversion is a small time delay

representing drift of the Tx/Rx oven-heated crystal clocks that were synchronized on

board but found to have drifted by up to 3 ms after instrument recovery (after ∼12

hours).

In this study, the likelihood function is based on the assumption that the data
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errors are zero-mean and Gaussian distributed with an unknown covariance matrix

Cd estimated from the data according to Eq. 5.17. These assumptions are verified a

posteriori by applying statistical tests [Dosso et al., 2006; Montgomery et al., 2012].

The CF is sampled implicitly within the inversion and a non-Toeplitz data covariance

matrix is estimated as described in Sec. 5.3.4. The inversion procedure is illustrated

in Fig. 6.6.

observed
data

Cd from stacking

starting
models with
1 to 3 layers

ASSA BIC
optimal
model

Cd from residuals

MHSPPD

< 1 >

< 1 >

< 2 >

< 2 >

Figure 6.6: Inversion flow: < 1 > ASSA inversion for three models with 1 to 3
subsurface layers and a diagonal data covariance matrix from data stacking. Number
of subsurface layers that can be resolved with the data is selected with BIC. A full
non-Toeplitz data covariance matrix is estimated from residual error analysis. < 2 >
ASSA inversion for three models with 1 to 3 subsurface layers and non-Toeplitz data
covariance matrix. Number of subsurface layers that can be resolved with the data is
selected with BIC. MHS samples the parameter space to obtain the PPD.
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6.4 Inversion results and discussion

6.4.1 Number of sediment layers

As mentioned previously, the optimal number of sub-seafloor layers is estimated by

minimizing the BIC, which requires minimizing the data misfit for different numbers

of layers using ASSA. A representative example of this procedure is given in Fig. 6.7

for WP 11 from CSEM line Aug1105 where two layers are resolved. The number of

layers that can be resolved generally varies between WPs and between CSEM lines.

Over 50% of the WPs are interpreted with halfspace (1-layer) models, while about

40% of the WPs can be represented by 2-layer models according to the information in

the data, and the remaining∼10% are made up of 3-layer models. The relatively small

number of layers is due to the lack of resolution inherent to diffusion methods, the lack

of strong resistivity contrast in the shallow penetration depth of the CSEM array (to

∼200 m depth), and the relatively low signal-to-noise ratio of the survey [compared

to more recently developed instruments by Schwalenberg and Engels, 2012a].

6.4.2 Marginal probability profiles

After the number of layers is determined, MHS is applied to sample the parameter

space. The resulting PPD of WP 11 from line Aug1105 at X311 Site U1329 are

shown in Fig. 6.8 in form of marginal probability densities, joint-marginal probabil-

ity densities and a marginal probability profile. One-dimensional marginal densities
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Figure 6.7: Bayesian information criterion (BIC) to evaluate the number of layers
that are resolved with the data for WP 11 from line Aug1105. Here, two layers are
resolved.
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Figure 6.8: Inversion results for WP 11 from line Aug1105 in Area 1 close to X311 Site
U1329. Bottom: Marginal probability densities for each parameter (thickness th l and
resistivity ρl for the lth layer, as well as calibration factor cf i and time delay dt i for
the ith receiver) with 95%-credibility intervals shown as dotted lines. Middle: Joint
marginals (normalized to unit maximum) showing relationships between parameters.
Top right corner: Marginal probability density profile with posterior median model
estimate, 95% credibility interval, and deep button average resistivities from U1329A.
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represent uncertainty distributions for individual parameters, while joint marginals

indicate relationships between parameters (all distributions in Fig. 6.8 are normalized

independently for display purposes). Parameter relationships show some non-linear

behavior and parameters are both positively and negatively correlated. For instance,

ρ2 increases as th1 increases, indicating the data are sensitive to a resistivity increase

with depth, but cannot resolve the depth or the resistivity individually. Critical are

the relationships between instrument parameters such as cf and dt to the sub-seafloor

parameters, which increase ambiguity and model uncertainty. For instance, ρ1 is

negatively correlated with dt1 and dt2; hence, not knowing the time delays exactly

increases the uncertainty for ρ1. Uncertainties are quantified with 95%-credibility

intervals (CI), which contain 95% of all model samples evaluated for every depth

interval. CIs are shown for marginals densities (bottom panels of Fig. 6.8) and on

the resistivity marginal probability density profile that represents the PPD as a func-

tion of depth (top left of Fig. 6.8). The CI width for ρ1 is two orders of magnitudes

narrower than for ρ2 as the resolution of the data is limited for greater depths. The

CIs for ρ1 are by two orders of magnitudes smaller than for ρ2 as the resolution of

the data is limited for greater depths. The probability density as a function of depth

for WP 11 indicates an increase in resistivity between 220 to 250 mbsf. Within the

first 150 m depth the inversion results match well with the measured LWD-resistivity

(deep button average) at X311 Site U1329. The LWD measurements show an increase

in resistivity starting at about 175 m depth due to the lower porosity of lithological

Unit 3; this depth is not well resolved in the inversion results. The width of the

CIs for the 2-layer model may underestimate the actual range of resistivities in the

sub-seafloor, because the uncertainty on the number of layers is not included. The

posterior median model in Fig. 6.8 is represented by a similar 2-layer model with a

high likelihood to evaluate residual error statistics. Standardized residuals are esti-

mated by r̃ = S(d − cfd(m)), where S is the Cholesky decomposition of C−1d , and

are shown on Fig. 6.9. Residual errors are calculated with predicted data from one

2-layer model that is similar to the posterior median model in Fig. 6.8 and has a high

likelihood. Observed and predicted data for this model as well as standardized resid-

uals are shown in Fig. 6.9. The standardized residual errors generally pass statistical

tests [Dosso et al., 2006] for Gaussianity (Kolmogorov-Smirnov test) and randomness

(runs test). Standardized residual errors pass statistical tests if resulting p-values are

larger than a significance level of 0.025. Histograms for standardized residuals at WP

11 compared to a standard Gaussian are shown in the bottom row of Fig. 6.9.
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Figure 6.9: Top: Step-on response for WP 11 from Aug1105 with observed data
with standard deviations from Cd (crosses with error bars) and predicted data (black
line) and standardized residuals. Bottom: Histograms of standardized residuals with
p-values for runs and KS test compared to a standard Gaussian distribution.

6.4.3 Area 1: Inversion results and implications

Three CSEM lines around X311 Site U1329 were inverted with the Bayesian algo-

rithm. Line Aug1105 (Fig. 6.10) along MCS line 89-08 is perpendicular to line

Aug1205 (Fig. 6.11) along SCS line CAS05C-3, and perpendicular to line Sep0806

(Fig. 6.13) that intersects with line Aug1105 on the upper slope (see Fig. 6.2). Me-

dian posterior models for each WP are plotted in Figs. 6.10 and 6.11 (upper panel)

as coloured bars to represent the resistivity values. The bar widths correspond to the

Tx-Rx2 offset and the WP locations are approximately (max. 200 m apart) merged

with the seismic lines. The coloured bars overlap where WPs are close (generally

∼500 m apart with exception of the central part around X311 Site U1329 where they

are ∼250 m apart). At each WP the credibility intervals are plotted as black lines
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Figure 6.10: Top: CSEM median resistivity models for line Aug1105 with CI width
(black line) normalized so that the maximum width equates to the width of the colored
bars. Middle: MCS line 89-08 with X311 Site U1329, observed and extrapolated BSR
(blue line) and sediment unconformity (red line). Bottom: calibration factor (CF)
and time delay (dt) for each receiver, error bars represent 95%-credibility intervals.

at the left edge of the coloured bars. The right edge corresponds to the prior resis-

tivity bound width. Additional inversion parameters shown in the bottom panels of

Fig. 6.10 and 6.11, are cf , which accounts for unknown source amplitude, and dt ,

which accounts for time drift after synchronization of the transmitter and receiver

clocks.

Figure 6.10 shows results for CSEM line Aug1105 along MCS line 89-08. The

seismic data (middle panel) acquired in 1989 by the Geological Survey of Canada [see
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Figure 6.11: Top: CSEM median resistivity models with 95%-credibility interval
width (black lines) for line Aug1205. Middle: SCS line Cas05C-3 with Site U1329
(black line). Bottom: CF and time delay between Tx and Rx (error bars represent
95%-credibility intervals).

e.g., Hyndman et al., 1993] show parallel layering of marine sediments representing

Units 1 and 2 that lay on top of highly disturbed, accreted sediments with a rugged

surface (Unit 3). A BSR is observed on the middle slope, as far landward as Site

U1329, but it cannot be observed further up slope. The base of the GHSZ is calculated

from the observed BSR depths and extrapolated landward of U1329 [Gehrmann et al.,

2009].

The Bayesian inversion reveals that halfspace interpretations are adequate for the

data at most of the measurement sites. Exceptions on line Aug1105 are WP 16

(possible venting site) and WP 7a to 14, where 2 layers with a resistive deeper layer

are more probable. This layer may relate to the sediment unconformity seen on MCS

line 89-08, which is characterized by a decrease in porosity and increase in resistivity,

as seen in the borehole log data of X311 Site U1329. The second layer resistivity

has wide CIs, which reflects the penetration limit of the CSEM array. The same

unconformity lies relatively close to the seafloor between WP −1 and 2, but only WP

1 resolves two layers with an elevated resistivity below ∼20 mbsf.

The very pronounced resistivity anomaly at WP 16 on line Aug1105 is located

at the landward edge of the GHSZ. This might be related to gas hydrate or free gas
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accumulations. MCS line 89-08 reveals a normal fault which may support upward

migrating fluids transporting gases. There are no indications (e.g., diffractions, seis-

mic blanking) of gas hydrate or free gas in the seismic data at this location. However,

several localized venting sites have been detected along the upper slope of the margin

[Riedel et al., 2006b]. The main frequencies of MCS 89-08 were chosen to penetrate

the deep subsurface structure and may not resolve the upper 100 m in detail. To

detect small gas hydrate lenses or along-fault rising gases may require higher frequen-

cies. The resistivity anomaly at WP 16 is localized but consistent, it was observed

on two consecutive days (the profile was repeated due to technical reasons) and also

on the perpendicular line Sep0906 where it intersects with line Aug1105 (shown on

Fig. 6.2).

The CF for Aug1105 reveals that the current induced into the seafloor might have

been about half of the expected value (which was measured with a Hall sensor on

the ship). This might be due to a corroded connection to the transmitter electrode

(observed on board). The time delay is between 0 to −1 ms for Rx1 and less consistent

for Rx2 with a mean value between −1 to −3 ms. The rugged trend likely relates to

correlation between the sub-seafloor parameters and dt . However, the measured total

drift on board after the instrument was recovered was −0.2 ms for Rx1 and −1.2 ms

for Rx2 which fall within the inferred time delay range. I infer from the inversion

results that most of the drift happened during deployment, likely due to pronounced

pressure and temperature changes, and not between WPs.

CSEM line Aug1205 is perpendicular to line Aug1105 and coincident with the SCS

line CAS05C-3. Only one part has been inverted with the Bayesian inversion, WP 11

to 16a, and the results are shown in Fig. 6.11. The seismic data (middle panel) show

a strong BSR that might also coincide with the unconformity observed on MCS line

89-08. At WP 13 slight seismic blanking is observed and the CSEM inversion indicates

elevated resistivity that might be related to gas venting or hydrate accumulations.

Other WPs have lower resistivities at shallow depths, but higher resistivities at depth

of ∼150 to 200 mbsf might be related to the resistive material of geological Unit 3.

The inferred time delay for Rx2 is between −1 and −2 ms.

The southeastern part of Aug1205, WP 3 to 11, has only been inverted with

a linarized Marquardt inversion [Scholl, 2010] for halfspace resistivities due to the

rough topography, and is shown with 3.5-kHz sub-bottom profiler data on Fig. 6.12.

A pronounced resistivity anomaly is found at WP 6 which is located on the edge

of a shell-shaped topographic depression. The anomaly could be caused by free gas
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Figure 6.12: Left: Bathymetry at the south-east end of line Aug1205. Right, top:
Apparent resistivities, black solid lines represent the length of the instrument and
position (assuming a flat seafloor). Right, bottom: 3.5-kHz sub-bottom profiler data,
arrow pointing to erosional surface.

rising along a fault plane that might also have caused the depression to form during

a slide. If this is the case, this feature would be of interest for further studies of

the stability of the upper slope. The 3.5-kHz sub-bottom (chirp) profiler data show

elevated amplitudes and a reflector that might relate to an erosional surface that was

refilled (south of the anomaly itself). The resistivity anomaly at WP 6 is significantly

larger than others in this area, and is unlikely caused by the topographic effects,

whereas elevated apparent resistivities between WP 7 and 11a are difficult to interpret

due to the strong seafloor topography changes relative to the length of the CSEM

array (which may introduce large theory errors for an unknown geometry that is not

accounted for in the inversion).

Bayesian inversion results for line Sep0806 (see Fig. 6.13) reveal that at most WPs

only a single layer is resolved with generally higher resistivities on the upper slope

compared to resistivities down the slope on lines Aug1105 and Aug1205. The mean

values for the CF for Rx1 are around 1, while mean values for Rx2 are around 0.8.

The inferred time delay is only about −1 ms for the data set collected in 2006.

6.4.4 Area 2: Inversion results and implications

Resistivity median models from the Bayesian inversion are shown in Fig. 6.14 along

MCS line GeoB00-142. The CSEM WPs are projected to the seismic line with a

maximum projection distance of 1 km at WP 1 (see Fig. 6.3). The seismic section
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Figure 6.13: Line Sep0806. Top: Median models along the line. Middle: Calibration
factor (CF). Bottom: time shift, error bars represent 95%-credibility intervals

(middle panel on Fig. 7.10) shows several high amplitude reflections, and seismic

blanking at X311 Site U1328 which may relate to gas hydrates or free gas in the

sediment. Sediment reflectors at U1329 are seemingly distorted, which might be

caused by a shorter travel time through sediments containing massive gas hydrates or

by faulting. Seismic amplitudes increase west of Site U1328 at 1.92 to 1.98 s two-way

travel time (twt) close to the base of the GHSZ. Older, distorted, accretionary-wedge

sediments are uplifted on both sites of U1328 and are overlain with younger, stratified

slope deposits. Bullseye vent is the most dominant feature, centred on CSEM line

Jul3105 at WPs 14 and 15 (see Fig. 6.3). Inversion results at WPs 13 and 14 reveal

high resistivities around ∼25 Ωm within the first 70 to 100 mbsf. Observed gas plumes

and bacterial mats (see Fig. 6.3) at the same location support the presence of shallow

gas hydrate or free gas. WP 14 is close to Site U1328 and inversion results match with

the high resistivities observed during drilling (see Fig. 6.15). The high resistivities

may be caused by the massive gas hydrates, which were found during piston coring

[Riedel et al., 2006b]. The inversion at WP 15 introduces a deeper resistive layer,

which might relate to resistive material at greater depth. The seismic reflector on
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Figure 6.14: Top: CSEM median model with uncertainties (black lines) for line
Jul3105. Middle: MCS line GeoB00-142 with X311 Site U1328, where black ellipses
mark high-amplitude reflections. Bottom: CF (cf ) and time delay (dt).

MCS line GeoB00-142, that may relate to a gas hydrate cap, is also deeper at WP

15 than at WP 14. However, 3-D effects that are likely present at the vent site,

but are not accounted for, and therefore the inversion results need to be interpreted

with caution. Uncertainties at greater depths are likely higher than illustrated. The

inversion of data from WP 13 and 14 introduce low resistivities in the halfspace

below the shallow high resistivities. The geologically unreasonable trend is countered

by setting the resistivity lower bound for the second layer to 0.9 Ωm. This also applies

for WP 18 and 25 where resistivities of ∼2.5 Ωm at <150 mbsf were inferred that

may be related to the presence of free gas or gas hydrate underlain by a less resistive
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Figure 6.15: Marginal probability density profile with posterior median model esti-
mate and deep button average resistivities from U1328A.

halfspace. Comparing the vertical position of elevated resistivities to seismic data

at WP 18 suggests that the resistive material is in the shallow, younger sediments,

rather than in the older, accreted sediments. Additionally, sub-bottom profiler data

obtained with an autonomous underwater vehicle [Paull et al., 2009] show seismic

blank zones at WP 18 that may indicate the presence of fluid venting and/or gas

hydrate occurrences. WP 11 to 12 are on the eastern flank of Bullseye vent and show

elevated halfspace resistivities (1 to 2 Ωm), which are ∼500 m south and east of a

region, where high backscatter and bubble plumes were observed on sonar data from

an remotely operated vehicle [Paull et al., 2009; Furlong, 2013] that likely relate to

authigenic carbonate surfaces and free gas venting (see Fig. 6.3).

At WP 9 an interval of ∼4 Ωm at depths of 90 to 200 mbsf is inferred that might

be related to elevated seismic amplitudes and faults seen on the projected seismic

reflection line GeoB00-142. Both might be caused by the presence of free gas or gas

hydrate. The CF is around 1 which indicates only small deviations from the assumed

geometry of the CSEM array. The time delay is between −1 and −2 ms for Rx1 and

between −3 and −4 ms for Rx2.
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6.5 Conclusions

Time-domain marine CSEM data were acquired in 2005 and 2006 in two survey areas

on the middle and upper continental slope of the northern Cascadia margin in the

vicinity of IODP Expedition 311 Sites U1328 and U1329. A seafloor-towed electric

dipole-dipole system was used which records the inline electric field components with

two receivers at offsets of 174 m and 292 m from the source dipole respectively. A

one-dimensional non-linear Bayesian inversion is implemented to estimate model pa-

rameters and uncertainties. Survey parameters, i.e. time drift of the receiver clocks

and a calibration factor have been included as unknown parameters in the inversion.

The Bayesian information criterion was applied to select the number of subsurface

layers that can be resolved with the data, which was generally found to be one or two

(sometimes three) layers. The parameters were sampled in principle-component space

with Metropolis-Hastings sampling and the resulting posterior probability density

contains information about model parameter uncertainties and relationships. Param-

eter uncertainties increase significantly for deeper structure, but might be generally

underestimated due to the assumption that the number of sub-surface layers is de-

termined exactly. For example, LWD resistivities from drilling extend the inferred

CSEM resistivity range (see Figs. 6.8 and 6.15) but they match the inferred resistivity

trend with depth. The following geological interpretation can be drawn.

A major resistivity contrast found by CSEM inversion is caused by a sediment

unconformity around Site U1329. The sediment unconformity divides younger ma-

rine sediments from denser accreted sediments (∼5 Ma older). Resistivities of the

deeper layer are higher and have wider credibility intervals with widths of ∼10 to

100 Ωm. On the upper slope on the landward edge of the gas hydrate stability zone,

inversion results for two sites (WP 16 on line Aug1105 and WP 6 on line Aug1205)

show anomalously high resistivities that might be caused by gas hydrate or free gas

occurrences at possible cold vents (although, gas hydrate nor gas plumes have been

observed at these locations, yet). Generally elevated resistivity values on the upper

slope along line Aug1105 are probably due to sediment erosion that exposes deeper,

more compacted sediments. At Site U1328 on the middle slope of the margin, elevated

sub-seafloor resistivity values were determined associated with massive gas hydrates

at Bullseye vent. Additional gas venting sites on both flanks around the main vent

also cause elevated resistivity values.

Overall, the 1-D non-linear statistical inversion revealed that the data sets contain
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limited information on the vertical resistivity structure. This may be due to the lack

of strong resistivity contrasts within the penetration depth of the instrument (maxi-

mum offset 272 m), the 1-D assumption in modeling vent structures which are likely

2-D or 3-D, the relatively low signal-to-noise ratio compared to recently built instru-

ments [Schwalenberg and Engels, 2012a], and erroneous survey parameters including

array geometry, source current amplitude and clock drift. Joint marginal probability

densities additionally reveal significant parameter correlations between instrument

unknowns and sub-seafloor parameters. However, the non-linear Bayesian inversion

defines a range for unknown acquisition parameters that agree with presumptions

(e.g., measured total time drift after instrument recovery). The Bayesian inversion

also reveals well constrained, one layer models with typical seafloor resistivities be-

tween 1 and 1.5 Ωm at most sites along the lines. Other sites where the resistiv-

ity structure correlates with seismically inferred vent structures, seismic amplitude

anomalies and a sediment unconformity are more likely to be explained with a two-

(sometimes three-) layer model. Parameters and uncertainties agree at adjacent way

points and with local resistivity data from drilling during the IODP Expedition 311.



105

Chapter 7

North Sea CSEM experiment

The marine controlled source electromagnetic (CSEM) method has become a popular

tool to detect electrical resistivity contrasts in the seabed that may relate to potential

hydrocarbon reservoirs [e.g., Constable and Srnka, 2007]. The conductivity of marine

sediments is mainly controlled by conductive pore water, and resistivity contrasts

relate to changes in porosity, permeability and hydrocarbon content among other fac-

tors. CSEM is a diffusion method, sensitive to volume resistivity changes, and the

solution to the sub-seafloor resistivity structure is generally non-unique [Edwards,

2005; Constable, 2010]. To evaluate the 1-D structural resolution a trans-dimensional

Bayesian inversion approach is applied which samples probabilistically over the num-

ber of sub-seafloor resistivity layers. Furthermore, trans-dimensional Bayesian inver-

sion estimates the layering structures from the data and is consistent with the local

resolving power of the data (i.e., adapts model complexity locally as required by the

data). In addition, probabilistic sampling approaches, unlike linearized inversions,

can provide rigorous estimates of model parameter uncertainties. The CSEM instru-

ment used in this study is a seafloor-towed array consisting of a horizontal current

source dipole and four electric receiver dipoles developed recently at the German

Federal Institute for Geosciences and Natural Resources [BGR; Schwalenberg and

Engels, 2011]. This instrument targets shallow resistivity structure (to a few hundred

meters depth) and is particularly sensitive to lateral resistivity changes such as could

be caused by cold vents [Schwalenberg and Engels, 2012a] or high vertical resistivity

contrasts due to gas hydrate accumulations in sandy sediments [Schwalenberg and

Engels, 2012b].

While many multi-channel seismic profiles have been collected in the North Sea,

only a small number of CSEM surveys have been conducted there, mostly targeting
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deep natural gas reservoirs in the British and Norwegian sectors [e.g., MacGregor

et al., 2006; Ziolkowski et al., 2010]. A special challenge for marine CSEM methods in

the North Sea is the relatively shallow water (compared to the maximum offset of the

array) and the resulting sensitivity of the instrument response to the strong resistivity

contrast between the conductive seawater and the insulating air above [e.g., Weiss,

2007; Weidelt, 2007], as discussed in Chapter 4.

The time-domain CSEM data presented here were acquired in September 2012

about 30 km NWW from Heligoland in the North Sea on the rim of the Pleistocene

channel of the Elbe River (see Fig. 7.1). The time-domain CSEM data presented
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Figure 7.1: Bathymetry of the German sector of the North Sea [ (courtesy of BGR)
Schwalenberg et al., 2012]. The target area (yellow ellipse) of the CSEM survey is
northwest of Heligoland.

here were acquired in September 2012 about 30 km NWW from Heligoland in the

North Sea on the rim of the Pleistocene channel of the Elbe River (see Figure 7.1).

The CSEM survey targeted a shallow, phase-reversed reflector observed on multi-

channel seismic (MCS) line Aur03-23a acquired by the BGR in 2003 [Kudraß et al.,

2003]. This reflector may be due to shallow gas occurrences or significant lithological

changes. The experiment was part of a joint project to study the geological evolution,

stratigraphy and potential for energy resources (hydrocarbon reservoirs, locations for

wind and water power plants) of the German North Sea [Schwalenberg et al., 2012;
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Arfai et al., 2011].

The geological history of the North Sea goes back to the Permian when two large

basin systems opened up. A number of phases of stretching, subsidence, and uplift

have caused several kilometres of sediment deposition (and erosion) since then. Sev-

eral layers of salt deposits within the sediments uplifted and deformed the upper sedi-

ment layers, causing widely abundant diapir formations during the late Permian [Arfai

et al., 2011]. Northern Germany was below sea level until the late Tertiary, when the

sea retreated westward. While sedimentation during the Paleogene was dominated by

marine clays, a great influx of sediments during the Miocene was dominated by river

deposits and was followed by large sea level changes during the Pleistocene. Several

protruding glaciers deformed the landscape and deposited glacial tills, and meltwater

cut into older sediments to form tunnel valleys [e.g., Hepp et al., 2012]. After the

last ice age, sea levels rose again and supported moor and swamp development, lead-

ing to the formation of thin layers of peat within marine Holocene sediments [Kirsch

et al., 2012]. The present bathymetry of the German sector of the North Sea, which

is shaped like a duck’s bill extending towards Great Britain, is relatively shallow with

a maximum depth of ∼65 m (see Fig. 7.1).

This chapter is based on the paper (to be submitted) “Trans-dimensional Bayesian

inversion of controlled source electromagnetic data in the German North Sea” by

R. A. S. Gehrmann, J. Dettmer, K. Schwalenberg, M. Engels, S. E. Dosso and A.

Özmaral. The dissertation author is the primary investigator and author of this paper.

Schwalenberg and Engels provided pre-processed CSEM data and helped with the

development of processing codes (written in MATLAB). Dettmer provided the trans-

dimensional Bayesian inversion codes and Dosso provided knowledge about Bayesian

theory. Özmaral processed the high-frequency seismic data from the University of

Bremen and shared her knowledge on the geology of the German North Sea. In this

chapter, active seismic reflection profiles are compared with interface probabilities

estimated with trans-dimensional Bayesian inversion (described in Sec. 5.5) of CSEM

data to draw a combined geological interpretation of the sub-seafloor.

7.1 Instrumentation and processing

The CSEM array used here (see Figure 7.2) is a seafloor-towed system with four

receiver dipoles (Rx) at offsets of 150 m, 252 m, 453 m and 754 m developed at

the BGR [Schwalenberg and Engels, 2012a] with silver-chloride electrodes (Silvion
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Figure 7.2: Sketch of the CSEM array during data acquisition. The array is held
on the ground by a heavy weight (pig) which contains the transmitter and receiver
controllers as well as the Posidonia transponder and a CTD sensor. The transmitter
unit and the cable were developed at the University of Toronto (UofT). The four
receivers were developed at the BGR as part of the bottom-towed electric multi-
receiver system HYDRA II [Schwalenberg et al., 2012].

and Castle type). The array uses a high sampling rate (10 kHz) and precise timing,

a CTD to measure water resistivities, and an ultra-sound locator device (Posidonia

transponder). The observed data has a high signal-to-noise ratio due to minimal

electronic noise (signal resolution below 10 nV). A square wave signal with a maximum

amplitude of ±50 A and 6 s period is injected at the ∼100 m transmitter dipole (Tx)

that was developed at the University of Toronto. During the measurement at each way

point (WP) the horizontal electric field is recorded while the array is held stationary

for ∼5 minutes. Data processing includes the identification of stationary half periods,

timing correction, DC correction, electrode drift correction for each half period, and

an iterative scheme for the selection of accepted half periods for stacking. Figure

7.3 shows half periods for Rx1–Rx4. About 64 half periods (green) are accepted

for stacking, other half periods with erratic noise are discarded. The mean step-on

response and the standard deviation of the mean are derived from stacking of the

accepted preprocessed data. The stacked data show only a small amount of high-

frequency electronic noise; however, the electrode-drift effect cannot be completely

eliminated and imprints systematic errors onto the step-on response. Systematic data

errors (e.g., from electronics, electrodes, timing errors, geometry errors, uncertainty

in water depth) are believed to be larger for the present data set than stacking errors

and have been addressed in preliminary analyses by introducing error factors and a
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Figure 7.3: Half periods for Rx1–Rx4. About 64 half periods (green) are selected for
stacking, while others are rejected due to erratic noise (black).

minimum error floor [Schwalenberg et al., 2012].

7.2 Inversion sequence

Inversions are carried out in a two stage process. A preliminary inversion with diag-

onal data covariance matrices based on the estimated variance from data stacking is

carried out to obtain a preliminary PPD and median model estimate. Data residual

errors are computed for the preliminary median model and used to estimate a non-

Toeplitz data covariance matrix with Eq. (5.23) which accounts for correlated errors

and is then applied in a second inversion to infer the PPD used for interpretation. In-

dividual parameters from the PPD are inferred by marginalization (integrating over all
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parameters but the parameter(s) of interest). The seabed depth profile is partitioned

for plotting purposes and marginal probability densities are evaluated at each depth

interval. Highest-probability density credibility intervals (CI) displayed throughout

this work represent the narrowest interval which contains 95% of the model samples.

The new median model estimate is examined with statistical tests as the formulation

of the likelihood in equation (5.17) is based on the assumption of Gaussian-distributed

residual errors with zero mean and data covariance Cd. If assumptions are reason-

ably met, the standardized residuals should be random (uncorrelated) and Gaussian

distributed with unit standard deviation. These assumptions are tested with the

Kolmogorov-Smirnov (KS) test for Gaussianity [Massey, 1951], which is based on the

maximum difference between the cumulative marginal distributions of the residual

errors and the standard Gaussian, and the runs test (median-delta test) which tests if

the residual errors are random or serially correlated by counting the number of runs

of the residual errors on either side of the median value [Dosso et al., 2006].

7.2.1 Calibration factor

The CSEM data at the first receiver for all WPs generally exhibit a high signal-

to-noise ratio (see Figure 7.3). The standard deviation of the mean from stacking

seems to mainly result from a slight bias of the individual pre-stack data due to an

electrode drift. However, in the inversion the amplitudes of the first receiver cannot

be matched by a 1-D subsurface model within the estimated error bounds (standard

deviation of the mean). Amplitudes of the predicted data are a few percent smaller

than the observed. Deviations in amplitudes can be accounted for with a multiplica-

tive calibration factor (CF) [Scholl, 2005]. The CF was originally named after the

calibration of each electrode pair before deployment. However, receiver electronics

(offset and scale factor) were calibrated precisely during the cruise and the CF in

this inversion is implemented to account for effects of a conductive target close to

the source, 3-D structure, unknown time shift of the data, geometry variations or

topography changes. Preliminary inversions have shown that the CF at all WPs gen-

erally lies close to 1 with a higher value for the first receiver and higher uncertainties

for the other receivers (probably due to the larger distance and therefore smaller

signal-to-noise ratio). Possible causes were analyzed and the following conclusions

drawn:

• Highly conductive bodies close to the transmitter (e.g., metallic ship wrecks)
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would have been observed on images from the echo sounder EM710 and PARA-

SOUND P70 system on board and can be excluded.

• 2.5-D multi-channel seismic data indicate only very small changes in the layered

structure perpendicular to the CSEM-profile [Damm et al., 2012] and I assume

that 2-D and/or 3-D structure likely does not affect our data.

• A time shift between the transmitter and the receiver clocks was measured on

board and corrected for in the laboratory. The transmitter uses a Seascan clock,

while all receivers have chip-sized highly-precise atomic clocks installed. Hence,

I inverted for a single time shift which applies to all four receivers but did not

improve the overall data fit. I conclude that a time shift can be at most a small

part of the problem.

• A slight error in the system geometry, e.g., a deviation of only 30 cm from the

assumed receiver dipole length, can explain 2% deviations of step-on response

amplitudes. This might explain different CFs for each receiver. Values also

differ slightly from WP to WP.

• Water depth uncertainties could be another factor. The water depth is just

∼40 m and the data are strongly affected by the airwave. Water depths in the

region were found to range from ∼39 to 42 m along the whole profile. The

instrument array is ∼750 m long and small changes in topography may cause

varying CFs. Additionally, the observed water depth suffers from variable ship

draft and might deviate up to a metre from the estimated value.

Initial inversions indicated that marginal densities for CF for Rx2–Rx4 are wider than

for Rx1 and usually overlap with a value of 1. Hence, I conclude that including an

unknown CF for Rx2–Rx4 is not necessary to fit the data. Preliminary inversions also

indicate additional (unnecessary) parameters in the inversion have a detrimental effect

on the recovery of subsurface parameters: the problem becomes under-determined and

unreasonable subsurface structure can be introduced. Therefore, the inversion results

shown in this paper are based on inverting for CF at Rx1 (cf 1) only.

7.3 Simulation study

This section applies the Bayesian inversion to simulated data for a subsurface model

similar to the model estimate for WP 19 (see Sec. 7.4). The model consists of four



112

layers including a halfspace (see Table 7.1), and is chosen to examine if a thin resistive

layer at a shallow depth and a very deep resistivity contrast (relative to the maximum

offset at Rx4 of 750 m) can be resolved with the data. Random correlated errors are

added, which are generated from the data covariance matrix derived while inverting

WP 19 (see Sec. 7.4). Standard deviations are on average ∼2% of the predicted data.

A new non-Toeplitz data covariance matrix to sample the PPD for the synthetic

data is estimated with the sequence outlined in Sec. 7.2. Figure 7.4 shows Bayesian

inversion results for the simulated data in terms of interface probabilities and the

marginal probability density profile of the resistivity. Marginal probability densities

are normalized to unit area for plotting purposes. Interface probabilities as a function

of depth indicate two distinct interfaces at 20- and 60-m depth. Both interfaces are

well estimated with low uncertainty (a few metres) and are in excellent agreement with

the true model. The third interface is highly uncertain with probability extending

from ∼450 to 800 m. The 95% CIs for resistivity exhibit characteristics typical of

the resolution of EM diffusion methods and demonstrate decreasing sensitivity of

the data with depth: CIs at shallow depth (up to 400 mbsf) are narrow (<1 Ωm in

width), and widen to a maximum of 14 Ωm at about 700 mbsf. However, the trend of

the resistivity distribution follows the true model by indicating another contrast to a

halfspace with larger resistivities. Figure 7.4 also shows marginal probability density

for cf 1 which is well determined at 1 (true value), and the marginal probability

distribution for the number of interfaces k has a peak at 3 interfaces (true value)

although the distribution extends to the upper bound of 10.

To examine the impact of additional unknowns, two further simulations are carried

out. First, data were generated for different water depths for different receivers: the

water depths for Rx1, Rx2,3 and Rx4 are 40, 42 and 41.1 m respectively. However,

the assumed water depth in the inversion is taken to be 41.1 m for all receivers, and

an unknown cf 1 is included. Inversion results in Figure 7.5 show wider credibility

Layer Resistivity [Ωm] Depth [mbsf]
1 0.8 20
2 3 60
3 1 600

Halfspace 4 -

Table 7.1: Synthetic model similar to inversion results for WP 19. Sea water conduc-
tivity is 0.232 Ωm and water depth is 41.1 m.
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intervals at depths>350 mbsf. The third interface of the true model is hardly resolved.

The resistivity of the overburden is estimated higher than the true model, and cf 1 is

slightly above 1 to compensate for the water depth discrepancy.

The second test addresses a possible time shift between transmitter and receiver

clocks. The time of the receivers is shifted by 0.3 ms, and the inversion is run twice,

once with an unknown cf 1 and once with an unknown time delay dt. Inversion results

are shown in Fig. 7.6. The inversion scheme resolves the structure of the true model

when inverting for cf 1 with cf 1 slightly above 1 or dt where dt is well estimated at

−0.3 ms.

The synthetic modelling suggests that the inversion algorithm with cf 1 for the first

receiver efficiently resolves the model even in case of deviating water depth or time

shift. However, model uncertainties increase with additional systematic uncertainties

and CIs below ∼400 m become increasingly wider with depth, while a qualitative

Figure 7.4: Left: Interface probability as a function of depth. Middle: Resistivity
marginal probability profile. Colour indicates probability density for 105 samples
from the inversion of synthetic data (model in Table 7.1) with correlated errors. A
model with 4 layers closest to the posterior median model profile is chosen to evaluated
residual error statistics and is referred to as“medcl”. Credibility intervals contain 95%
of the model samples evaluated at each depth interval. Right: Marginal probability
density for cf 1 on top and for number of interfaces (bottom). Three interfaces (four
layers) are most probable.
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Figure 7.5: Interface probability and marginal probability depth profile for synthetic
data (model in Tab. 7.1) with different water depth for different receivers and with
correlated errors.

resistivity contrast similar to the true model is preserved.

7.4 German North Sea inversion results

Way point 19 has been chosen to demonstrate the trans-dimensional Bayesian algo-

rithm and results for measured CSEM data in detail. It lies in the centre west of the

profile and is representative of other WPs.

Interface probabilities and marginal probability densities are shown in Fig. 7.7.

The first two interfaces are well defined at ∼20 and 50 mbsf. The interface probability

is also increased between 180 and 520 mbsf indicating an interface with large position

uncertainty. Marginal probability profiles exhibit narrow credibility intervals down to

∼200 mbsf of width of <1 Ωm, while below this depth they extend to widths of ∼10

Ωm. The number of interfaces with the highest probability is four, while the median

model estimate has three interfaces. The CF for the first receiver is well determined

and slightly over 1 that may be related to unknown parameters such as water depth

and time shift as outlined in Sec. 7.2.1 and 7.3.

Figure 7.8 shows observed and predicted data for the median model estimate and

standardized residuals for WP 19. The runs test and KS test are applied to the stan-
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Figure 7.6: Interface probabilities and marginal probability depth profile from in-
version results for unknown cf 1 (top) and dt (bottom) for the same synthetic data
(model in Tab. 7.1) with 0.3 ms time shift and correlated errors.
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Figure 7.7: Interface probability (left) and marginal probability density (middle) as a
function of depth for WP 19, where “median” refers to the posterior median profile,
and “medcl” to the median model estimate, and credibility intervals contain 95%
of all model samples evaluated at each depth interval; right: marginal probability
densities for cf 1 and number of interfaces k.

Figure 7.8: Top: predicted (black line) and observed data (crosses with error bars)
for WP 19. Bottom: standardized residuals over time.
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Figure 7.9: Histograms of standardized residuals for Rx1 to Rx4 shown in Fig. 7.8
compared to a standard Gaussian distribution (black curve); Titles: p-values from
the runs and KS test, which are black for passing and grey for failing; Textboxes:
standard deviation σ and mean µ for stand. residuals.

dardized residuals [Dosso et al., 2006] of the median model estimate. Standardized

residuals pass tests if p-values for a two-sided test are larger than a significance level

of 0.025, and test results are shown in the bottom row of Fig. 7.8. Standard deviation

and mean value of the standardized residuals as well as p-values are shown in the text

box, and in the title (for runs and KS test) respectively. Statistical tests result in

general acceptance of the assumption of Gaussian distributed errors and the process

of addressing correlated errors.

The posterior median model profiles for all 22 WPs are shown in Figure 7.10 as

coloured bars, which are stitched together to approximately represent 2-D structure

along the CSEM line. The width of the bars corresponds to the spacing between

Tx and Rx4, and the bars are overlain with the resistivity standard deviation profile

(black line) which is normalized so that the maximum standard deviation is equal

to the width of the coloured bars. Inversion results for all WPs agree on a ∼5

to 20 m thick surface layer with resistivities of ∼0.7 to 1 Ωm. Below the surface

layer is a second layer with increased resistivity of ∼1.8 to 3.5 Ωm. The maximum

thickness of the second layer is ∼200 m at WP 1–9, and this layer thins to the west

where neighbouring resistivities become more heterogeneous. Inversions of WP 9,

11, 16, 18 and 20 include a thin conductive layer which is geologically unlikely, but

improves the fit to the observed data. Resistivities below ∼200 m decrease to ∼1 Ωm,

with increased uncertainties due to the limited penetration depth of the array. The

inversion results suggest an increase in resistivity for the deepest layer (>400 mbsf)

of ∼3 Ωm, but the CIs for the resistivity are [∼0.5 10] Ωm.

The bottom panel in Figure 7.10 shows MCS line AUR03-23a [Kudraß et al., 2003]
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Figure 7.10: Top: Posterior median profiles from CSEM inversion shown as coloured
bars that represent the Tx-Rx4 offset and whose location corresponds to the location
of the CMP of the MCS line below. Black lines: Standard deviations of the marginal
probability density profile for resistivity over depth which are normalized to width of
coloured bars. Coloured horizontal lines: Seismic horizons converted from TWT to
depth; cyan - seafloor, green - Pleistocene basin, blue/yellow - late Tortonian sedi-
ments, red - MMU. Bottom: MCS line AUR03-23a with seismic horizons. Coloured
vertical lines: Credibility interval widths for interface depths from CSEM inversion
(colour coding is subjectively chosen to match with seismic horizons).



119

which was acquired along the same line as the CSEM data. The location of the WPs

in respect to the common mid point (CMP) of the MCS line may deviate by a few

metres. Three major reflectors can be traced on the seismic profile: The red reflector

at 0.6 s two-way travel time (TWT) is related to the Mid Miocene Unconformity

(MMU). The MMU is interpreted as the base of the downlap sequence, a result of the

Eridanos Delta (Baltic river system). It has a distinct wavy structure related to rapid

dewatering of clayey sediments and is highly recognizable in gamma-ray (GR) logs due

to a high content of organic material in the clay [Arfai et al., 2011]. The blue reflector

at 0.3 s TWT is defined to be of late Tortonian age. Horizontally layered sediments

above the blue reflector are also defined as late Miocene origin. GR logs indicate an

increasing content of fine-grained sediments from the MMU towards the blue reflector

marking it as a maximum flooding surface, while the GR count decreases above the

blue reflector [Thöle et al., 2014]. Other strong reflectors also correlate with sharp

GR-count increases over thin depth intervals. The horizontally layered sediments in

the late Miocene are alternating layers of sand, silt and clay due to world-wide sea-

level changes, high basin subsidence rates, uplift and erosion of Paleogene clays, sandy

river deposits, and massive flooding events [Rasmussen, 2004; Sørensen et al., 1997].

The green reflector is a phase-reversed dipping reflector between 0.1 to 0.2 s TWT

from Pleistocene origin that was targeted by the survey because of enhanced, phase-

reversed amplitudes between CMP 12500 and 13500 which are caused by a negative

impedance contrast related to shallow gas or a boundary from course- to fine-grained

sediments. A Pleistocene valley likely filled with unsorted glacial deposits is identified

between CMP 11600 and 11800.

The reflectors are converted to depth with an average rms-velocity/twt profile

and superimposed onto the resistivity posterior median profiles. Approximated 95%-

credibility intervals for interface probabilities from CSEM inversion were converted

to twt and plotted on the seismic section with a colour coding that is chosen to

correspond to the interpreted relationship between the interfaces at adjacent WPs

and the seismic reflectors. For example, the first interface is blue for all WPs because

it is interpreted to match with the blue seismic reflector on Fig. 7.11. However,

interface probabilities from CSEM inversion are more difficult to match with seismic

reflectors at greater depth and the colour choice becomes highly subjective.

While the seismic method is highly sensitive to small-scale impedance changes, the

CSEM method has a depth-averaging character. Hence, I do not expect the seismic

reflectors to match with the median profiles perfectly. However, large-scale changes
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in sediment properties which effect both seismic impedance and resistivity should be

observed on both seismic and CSEM results. Figure 7.11 is analogous to Fig. 7.10

but focuses on the first 300 m and shows MCS line GeoB13-170 which was acquired

by the University of Bremen with a high-frequency seismic system [Keil and Hepp,

2013]. The main seismic reflectors above the green reflector (target of the CSEM

survey) are the base of the Holocene sediments (dark blue), two small and one large

tunnel valley (pink) and a reflector within the Pleistocene sediments (orange).

7.5 Discussion

This section presents a geologic interpretation of the sub-seafloor resistivity model

from CSEM inversion together with the MCS reflection data and logs from two bore-

holes (one 130 m deep with grain size information, the other several hundred metres

deep with GR information). The first 5 m of sediments below the seafloor are fine-

grained Holocene deposits observed in borehole J-14-1/2/3 (close to WP 20). The

Holocene deposits in this borehole are followed by 5 m of fine-grained Pleistocene

deposits and 120 m of middle to coarse-grained sandy Pleistocene sediments. The

CSEM inversion results support ∼10–20 m of fine-grained, highly-porous sediments

with typically low resistivities for marine sediments around 0.8–1 Ωm. The credibility

intervals for interface depths overlain on the MCS line in Figure 7.11 match the dark

blue seismic reflector which represents the transition from fine-grained overburden

sediments to course-grained, unsorted Pleistocene sediments.

The second interface from CSEM inversion is more difficult to match with a single

seismic reflector. Between WP 16 and 22 the interface correlates with the orange

reflector on Figure 7.11, and between WP 13 to 15 it correlates with irregular seismic

reflections at the same depth for the orange reflector. Uncertainties in matching

CSEM and seismic features increase with depth due to the approximate conversion

from TWT to depth (and vice versa) and due to the increase in CSEM uncertainties

with depth.

The observed elevated resistivities (2–4 Ωm) below the marine Holocene surface

layer (below ∼20 mbsf) may result from decreased porosity in sand-dominated sed-

iments. The traceable phase-reversed (green) reflector in Fig. 7.10 only partially

matches probability distributions for interface depths from CSEM inversion and the

inferred resistivities do not support the free gas hypothesis underneath the reflector.

The reflector might instead be caused by a lithological change within the Pleistocene
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Figure 7.11: Posterior median profiles from CSEM inversion overlying MCS line
GeoB13-170. Black lines on the median models represent model standard devia-
tions normalized to the Tx-Rx offset. Vertical coloured lines on the seismic profile
represent interface probability widths from CSEM inversion.
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sediments, and the phase reversal might be due to a transition from sands to a layer

rich in clayey sediment, as large amount of clays typically result in lower velocities.

A similar phase-reversed reflections can be observed in the depth of the MMU (red

reflector) which is caused by a transition of sandy river deposits to marine clays [Arfai

et al., 2011].

The boundary between Pleistocene glacial sediments and Pliocene river deposits

(kaolinitic sands) is difficult to distinguish with seismic or CSEM data, which might

be due to the similar physical characteristics of the two sediment types. The sediment

units between the yellow and red reflectors in Fig. 7.10 are dated to be of Messinian

to late Tortonian age by Thöle et al. [2014]. The GR count in borehole R-1 (see

App. C), drilled in the same geological units ∼100 km northwest of this site increases

with depth from the yellow to the blue reflector and then decreases toward the MMU.

A high GR count can be related to an increase in fine-grained silts and clays. The

increased clay content might cause larger porosities as clay minerals in sea water form

thin double layers and deposit in a flocculated (edge to face) manner. The flocculant

structure collapses under pressure to a denser dispersed structure. Erchul [1972] infers

that marine sediments with a higher percentage of clay are stable at higher porosities.

If this relationship holds at ∼300 m depth (the depth of the blue reflector shown in

Fig. 7.10), the lower resistivities of around 1 Ωm could be caused by increased porosity.

Further measurements are necessary, preferably logging-while-drilling, to investigate

the effect of clay content and composition, porosity, permeability and resistivity of

the pore water on the bulk resistivity at this location. The overall interpretation of

the grain size distribution up to 300 mbsf is summarized in Fig. 7.12.

Posterior median model resistivities tend to increase below the blue reflector to-

wards the red reflector (MMU), but interface probabilities are wide (>400 m) which

makes it difficult to relate the seismic reflector with CSEM interface depths. Resistiv-

ities from CSEM inversion beneath the blue reflector exhibit high uncertainties, and

synthetic studies (Sec. 7.3) also showed that interfaces below 500 m depth may not

be resolved. However, deep marine Paleogene clays are known to have resistivities

of 1–5 Ωm [Jørgensen et al., 2003] and the Oligocene sediments are dominated by

silts and clays [Arfai et al., 2011], so that one explanation for elevated resistivities in

greater depth might be sediment compaction.
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Figure 7.12: Sketch of the geological interpretation of CSEM inversion results. Depth
scale is only approximate.

7.6 Conclusion

This chapter examined the information content of CSEM data with trans-dimensional

Bayesian inversion where the number of sub-seafloor layers resolved by the data is

treated as an unknown in the inverse problem. Time-domain CSEM data were ac-

quired in the German North Sea with a seafloor-towed dipole-dipole array with four

receivers and a maximum offset of 750 m. The survey was carried out to study the

sub-seafloor resistivity structure and to interpret a shallow, phase-reversed reflector

observed on multi-channel seismic data which could indicate gas occurrences in the

sediments.

Simulation studies with realistic correlated errors were carried out to investigate

the ability of trans-dimensional Bayesian inversion to estimate model parameters

and uncertainties. Inversion results of simulated data show that slight biases in

water depth or time synchronization increase uncertainties and decrease the resolution

of resistivity structure with depth. Including additional unknowns such as water

depth and clock drift tend to over-parametrize the inverse problem and unreasonable

structure can be introduced into the subsurface model. Therefore, the number of

additional parameters is limited to the calibration factor for the first receiver for

observed CSEM data in the German North Sea. A non-Toeplitz (non-stationary)

data covariance matrix is estimated from residual errors to account for correlated
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errors and varying variance with time and standardized residual errors generally pass

posterior statistical test for Gaussianity and randomness. Interface probabilities from

trans-dimensional inversion demonstrate the decreasing resolution of the CSEM data

with depth, which are a few hundred metres wide below 400 mbsf. However, an

average of four layers with different resistivities to a depth of 800 m can be identified,

although the last layer has high uncertainties for depth position and resistivity, and

is probably below the penetration depth of the CSEM array. The following geological

interpretation was drawn from the CSEM inversion results together with borehole and

reflection seismic data. A thin (∼20 m) overburden layer of fine-grained Holocene (to

late Pleistocene) sediments is well encased by relatively low resistivities (0.8–1 Ωm) as

delineated by high interface probabilities in the Bayesian inversion results. Pleistocene

sediments underneath show elevated resistivities (2–4 Ωm) that may be related to the

unsorted, sand-dominated composition. Higher amounts of fine-grained materials in

Miocene sediments, again, correlate with lower resistivities (∼1 Ωm). The geological

interpretation excludes the possibility of free gas and relates the targeted seismic

reflector to a thin layer of fine grained sediments which was likely deposited upon an

erosional unconformity.
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Chapter 8

Summary and conclusions

The main goal of this thesis was to develop and apply CSEM inversions to estimate

sub-seafloor resistivity models and uncertainties and compare the results to reflection

seismic data to provide a more complete geological interpretation. The thesis focuses

on three major studies to investigate the ability of CSEM to detect subsurface resis-

tivity anomalies related to hydrocarbon accumulations (specifically, gas hydrates and

free gas).

1. A simulation was carried out for a case study of Beaufort Sea permafrost en-

vironments with a horizontal electric dipole (HED) seafloor-towed system and

variable offsets to estimate the sensitivity to permafrost and gas hydrate occur-

rences.

2. CSEM data on the upper and middle slopes of the Northern Cascadia accre-

tionary prism, acquired in 2005 and 2006 with an HED seafloor-towed system

with two receivers, were analyzed to study cold vent sites and regional gas

hydrates.

3. CSEM data, acquired in the German North Sea in 2012 with an HED seafloor-

towed system with four receivers, were analyzed to study possible free gas oc-

currences.

The various data sets were analyzed with different techniques which progressed in

sophistication. The simulation study in the Beaufort Sea is primarily a forward

modelling study, and secondly uses linearization and singular value decomposition to

evaluate model parameter uncertainties. The CSEM data from the Northern Cascadia

margin were analyzed with a probabilistic, non-linear Bayesian inversion in fixed
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dimensions, where the number of model parameters (subsurface layers) was estimated

in a preliminary inversion step with the Bayesian information criterion. Finally, the

CSEM data from the North Sea were analyzed with a trans-dimensional Bayesian

inversion to rigorously estimate model parameters and uncertainties by including the

number of parameters as an unknown which was sampled probabilistically in the

inversion.

The results can be summarized as follows.

1. The simulation study in the Beaufort Sea showed that the HED seafloor-towed

CSEM system is sensitive to the top and the bottom of the permafrost. However,

the uncertainty for the depth to the top of the permafrost can be up to one

order of magnitude smaller than the uncertainty for the depth to the bottom

of the permafrost. The uncertainty for the resistivity of the conductive layer

(non-ice bounded sediments) underneath the permafrost can even be up to two

orders of magnitudes larger than the uncertainty for the resistivity above the

permafrost. The resistivity of the permafrost and possible talik sections within

the permafrost are also difficult to estimate, and talik sections are required to

be relatively thick (∼100 m centred in 150 mbsf). It is even more challenging to

estimate gas hydrate occurrences underneath the permafrost. The shallow water

depth on the Beaufort shelf causes the step-on response at the receivers to be

overlain by the electromagnetic signature of the air-water boundary (airwave).

Depending on the sub-seafloor model, the airwave can mask the subsurface

signal at certain water depths and specific transmitter-receiver offsets (blind

window). More resistive seawater decreases the impact of the airwave, and shifts

the blind window to greater water depth. Further modelling studies are needed

to evaluate how measuring additional electromagnetic components (especially

Ez which is recommended for shallow water studies as it is insensitive to the

airwave [Weidelt, 2007]) would improve the sensitivity to the bottom of the

permafrost and possible gas hydrate occurrences.

2. The CSEM survey at the Northern Cascadia margin targeted two areas, one of

which is located on the upper slope at the landward edge of the gas hydrate

stability zone while the other is located at the middle slope which is abundant

in cold vent sites with high gas hydrate concentrations.

(a) The data analysis on the upper slope with a non-linear Bayesian inversion

method shows that the data resolve halfspace models where there is either no
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significant change in resistivity within the penetration depth of the instrument

(penetration depth is limited by the maximum offset of 292 m), or the data

error is too large to infer detailed resistivity structure. The data do resolve

two layers for some waypoints where the resistivity increase with depth can be

related to accreted sediments below younger slope sediments. The resistivity

increase can be correlated with an unconformity visible in seismic reflection

data and increasing logging resistivities. However, the resistivity of the bottom

layer has high uncertainties probably due to the depth of the unconformity, the

relatively high noise on the data and additional unknowns about the acquisition.

Indications for gas hydrate or free gas were found locally at three sites where

high resistivities were inferred. The hypothesis of local fluid venting along fault

zones (indicated by seismic reflection data) with abundant free gas needs to be

verified by additional studies, for example, with high frequency acoustic data

(3.5 kHz echo sounder data for the seabed or multibeam data to detect gas

plumes in the water column and bathymetric changes).

(b) The inversion results of the CSEM data on the middle slope reveal locally

high resistivities at the Bullseye vent, which can be related to shallow gas hy-

drates (verified with piston core data, strong seismic amplitudes and matching

logging resistivities). High-resistive, shallow layers at other way points can also

be correlated with high seismic amplitudes and/or seismic blanking at possible

vent sites close to Bullseye vent. Regionally elevated resistivities close to the

vent sites might be related to regional gas hydrate or free gas abundance in

sediment layers, where gas plumes were observed in the water column.

The non-linear Bayesian inversion has proven advantageous compared to lin-

earized inversions when inverting for additional unknowns such as acquisition

parameters (for example, the time delay) as they are simpler to implement in

non-linear inversions. Furthermore, a full analysis of their probability is pos-

sible with Bayesian inversion to understand the distribution of acquisition as

well as the sub-seafloor parameters. The Bayesian inversion also resolves the

relationship of acquisition parameters and sub-seafloor parameters, which can

be significant (e.g., between the time delay and the overburden resistivity, as

both influence the arrival time of the step-on response).

3. The CSEM data in the German North Sea were analyzed with a trans-dimen-

sional Bayesian inversion, where the number of sub-seafloor layers is another
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unknown in the inversion. The North Sea data have a higher signal-to-noise

ratio than the Northern Cascadia data. Other differences are a source ampli-

tude of 30 to 50 A compared to 10 A and a system with four receivers with

a maximum offset of 750 m, instead of two with a maximum offset of 292 m.

The challenge in inverting the North Sea data is the shallow water depth. The

modelling study for the Beaufort Sea has shown the effect of the shallow water

on the misfit between two sub-seafloor models. A blind window results from the

airwave overlying subsurface information, which depends on the water depth,

the water resistivity and the subsurface model. However, trans-dimensional

Bayesian inversion results reveal subsurface resistivity structure that correlates

with seismic reflection data in the upper few 10s of metres. The free gas hy-

pothesis at a phase-reversed, high amplitude reflector (which provided the mo-

tivation for the CSEM survey) could not be supported by the CSEM inversion

results. The layer that causes the high-amplitude reflections may be too thin or

the resistivity contrast too weak to be resolved with the CSEM data. Interface

probabilities and parameter uncertainties increase with depth, so that they can-

not be matched with seismic reflectors. However, relatively low resistivities at

∼300 mbsf can be related to a seismic reflector that correlates with an increased

gamma-ray count related to an increased amount of fine-grained sediments.

The non-linear Bayesian inversion of CSEM data has successfully resolved model pa-

rameters and uncertainties and evaluated parameter relationships, as well as examined

unknown acquisition parameters. The probabilistic approach reveals that the geom-

etry of the CSEM array, water resistivity and timing needs to be precisely known

to deduct subsurface parameters with sufficient resolution, especially if the target

layer of interest is at greater depth. A trans-dimensional Bayesian inversion offers

a more rigorous uncertainty estimation and accounts for unknown parametrization.

The CSEM inversion results have been shown to successfully detect shallow resis-

tivity anomalies which appear to be related to gas hydrates or free gas venting and

major stratigraphic changes to sediments with higher resistivities. Future studies are

needed to model cold vents in two or three dimensions to more adequately resolve the

resistive structure. Comparing interface probabilities from trans-dimensional CSEM

inversion with seismic reflection data helps to identify if, for example, seismic reflec-

tors indicate an actual change of the physical parameters which is large enough to be

detected with the CSEM method or if they indicate a thin stratigraphic boundary.

The North Sea study was challenged by the shallow water depth and it would be in-
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teresting as future research to conduct a trans-dimensional inversion on CSEM data

in greater water depth for more resistive targets.
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Appendix A

Beaufort Sea permafrost synthetic

modelling

A.1 Models

Models 1 to 6 represent possible sub-surface structure below the Beaufort Sea and

were used for the simulation study presented in Sec. 4.1 to infer the resolution of

permafrost for CSEM data in shallow water depth. Models are shown in Fig. 4.2,

4.11 and 4.16 and are listed in Tab. A.1 to A.3.

Model Layer 1 2 Halfspace
1A 2.2 Ωm, 20 m 1 Ωm, 20 m 100 Ωm
1B 2.2 Ωm, 10 m 1 Ωm, 10 m 100 Ωm
2A 2.2 Ωm, 20 m 1 Ωm, 20 m 500 Ωm
2B 2.2 Ωm, 10 m 1 Ωm, 10 m 500 Ωm
3A 1.6 Ωm, 20 m 1 Ωm, 20 m 100 Ωm
3B 1.6 Ωm, 20 m 1 Ωm, 20 m 500 Ωm

Table A.1: Chosen permafrost models (resistivity and thickness) based on Scott [1992]
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Model Layer 1 2 3 4 5 Halfspace
4A 2.2 Ωm 1 Ωm 100 Ωm 3 Ωm 30 Ωm 3 Ωm

20 m 20 m 400 m 300 m 200 m
4B 2.2 Ωm 1 Ωm 100 Ωm 3 Ωm 30 Ωm 3 Ωm

20 m 20 m 200 m 500 m 200 m
4C 2.2 Ωm 1 Ωm 500 Ωm 3 Ωm 30 Ωm 3 Ωm

20 m 20 m 400 m 300 m 200 m

Table A.2: Chosen permafrost models (resistivity and thickness) based on Scott [1992]
and Scholl [2010]

Model Layer 1 2 3 4 Halfspace
5A 2.2 Ωm 1 Ωm 100 Ωm 30 Ωm 100 Ωm

20 m 20 m 20 m 20 m
5B 2.2 Ωm 1 Ωm 100 Ωm 30 Ωm 100 Ωm

20 m 20 m 20 m 50 m
5C 2.2 Ωm 1 Ωm 100 Ωm 30 Ωm 100 Ωm

20 m 20 m 20 m 100 m
6A 2.2 Ωm 1 Ωm 100 Ωm 30 Ωm 100 Ωm

20 m 20 m 40 m 50 m
6B 2.2 Ωm 1 Ωm 100 Ωm 30 Ωm 100 Ωm

20 m 20 m 60 m 50 m
6C 2.2 Ωm 1 Ωm 100 Ωm 30 Ωm 100 Ωm

20 m 20 m 60 m 100 m
6D 2.2 Ωm 1 Ωm 100 Ωm 30 Ωm 100 Ωm

20 m 20 m 100 m 100 m

Table A.3: Chosen permafrost models (resistivity and thickness) based on Scott [1992]
and Todd and Dallimore [1998]
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A.2 Misfits for different resistivities of permafrost

layer

When comparing model 1B and 2B (thin overburden on top of permafrost layer with

100 Ωm and 500 Ωm respectively), I analyze if the resistivity of the permafrost layer

can be discriminated. Figure A.1 shows the deviation of the step-on responses for

resistive seawater.

Figure A.1: Right: Predicted step-on responses for model 1B and model 2B with
and without Gaussian random noise for Tx-Rx offset 800 m in 30 m (top) and 100 m
(bottom) water depth (wd). Left: Normalized deviation (colour bar) of the two
responses for Tx-Rx offset of 100 to 1000 m and time. Water resistivity is ρw=2 Ωm.
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A.3 Talik section in permafrost

Figures A.2 and A.3 show the difference of the step-on response for model 1A and

5C for ρw=0.38 and 2 Ωm respectively. Model 1A has no talik section, while model

5C has a relatively thick talik section. The strongest difference between the step-on

responses is for large Tx-Rx spacings because of the increasing sensitivity to deeper

layers. In shallow water depth, the late-time amplitudes deviate stronger. In 100

m water depth the step-on response for models 1A and 5C for conductive seawater

(bottom panel of Fig. A.2) differ mainly in the arrival time, while for resistive seawater

Figure A.2: Right: Predicted step-on responses for model 1A and model 5C with
and without Gaussian random noise for Tx-Rx offset 800 m in 10 m (top) and 100 m
(bottom) water depth (wd). Left: Normalized deviation (colour bar) of the two
responses for Tx-Rx offset of 100 to 1000 m and time. Water resistivity is ρw=0.38
Ωm.



134

Figure A.3: Right: Predicted step-on responses for model 1A to model 5C with and
without Gaussian random noise for Tx-Rx offset 800 m in 10 m (top) and 100 m
(bottom) water depth (wd). Left: Normalized deviation (colour bar) of the two
responses for Tx-Rx offset of 100 to 1000 m and time. Water resistivity is ρw=2 Ωm.

they also differ in their late-time amplitudes (bottom panel of Fig. A.3).
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Appendix B

Auto-regressive error model

One way of addressing correlated errors is by computing a non-Toeplitz covariance ma-

trix from the residual errors calculated for an optimal model as explained in Sec. 5.3.3.

Another way to address error correlation is by using a first-order auto-regressive

(AR(1)) model, which is equivalent to an exponential fall off of the covariances from

the variance value (diagonally constant σ2), where ϕAR represents the fall-off rate

[Dettmer et al., 2012]. The AR(1) model represents exponentially decaying error

covariances. The advantage is that the covariances change according to the model,

while a fixed covariance matrices from a point estimate does not.

The likelihood function from Eq. (5.17) becomes

L(m,Cd, cf ) =

NRx∏
i=1

{
1

(2πσ2
i )
Ni/2

exp

(
−1

2

(di − cf idi(m)− dAR
i )2

σ2
i

)}
, (B.1)

where dAR represents the prediction of the AR(1) model given by

dARi = ϕAR
i (di−1 − d(m)i−1), (B.2)

for equally-spaced data in logarithmic time. The total residuals ri = di− cf idi(m)−
dAR
i are assumed to be uncorrelated Gaussian distributed with a standard deviation

σi for the ith receiver. The unknown σi and ϕAR
i are sampled in the inversion, with

an additional birth/death procedure for the AR process (to determine if it is actually

necessary to explain the data) [Steininger et al., 2013]. The acceptance criterion is

similar to the interface birth and death. For the AR birth move (going from a model

m0 which does not include the AR process to a model m1 which does) the proposal
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density is chosen to be equal to the (uniform) prior density: P (m1) = Q(m1|m0) =

1/(ϕAR+−ϕAR−), where ϕAR− = −0.6 and ϕAR+ = 0.9999 are the prior bounds. The

prior for the death is unity, but the proposal is Q(m0|m1) = 0.5 as there is 50 %

chance that the model is perturbed instead. The acceptance criteria become

αARbirth = min

[
1,
P (m′1)

P (m0)

L(m′1)

L(m0)

Q(m0|m′1)
Q(m′1|m0)

]
= min

[
1,

1

2

L(m′1)

L(m0)

]
,

(B.3)

αARdeath = min

[
1,
P (m′0)

P (m1)

L(m′0)

L(m1)

Q(m1|m′0)
Q(m′0|m1)

]
= min

[
1, 2

L(m′0)

L(m1)

]
.

(B.4)

After the inversion, the residual errors of the median model are tested with the runs-

test for randomness and the Kolmogorov-Smirnov (KS) test for Gaussianity [Massey,

1951].

Preliminary tests with simulated data with an exponentially decaying error corre-

lation have shown that the physical model parameters as well as the error correlation

can be well resolved with the AR(1) model. In the following, simulated data with

added correlated errors (correlation level inferred from measured data) are inverted

with the AR(1) model. The correlated errors are obtained from a non-Toeplitz co-

variance matrix from residual analysis after evaluating a median model estimate from

WP 19 (North Sea data presented in Sec. 7.4). Therefore, the simulation study exam-

ines if the AR(1) model can account for correlated errors from measured data which

are not necessarily exponentially decaying. Figure B.1 compares inversion results us-

ing the AR(1) model (4 AR(1) coefficients and 4 standard deviations for 4 receivers)

and an unknown calibration factor for Rx1 (cf 1) for two cases. In one case the time

delay is 0 ms and in the other the time is shifted by 0.3 ms to test the AR(1) model

when acquisition parameters are not known precisely. The result is shown in Fig.

B.1 and shall be compared to Fig. 7.4 and 7.6. The inversion with the AR(1) model

is not as efficient as the inversion with the covariance matrix from residuals in case

of unaccounted unknowns. Sampling takes longer due to the additional parameters

and the inversion results for the subsurface model are more complicated than needed.

Compared to the inversions with a non-Toeplitz data covariance matrix the inver-

sion with the AR(1) model includes 8 more parameters to invert for. The problem
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Figure B.1: Interface probability and marginal probability depth profile for inversion
with AR(1) model of synthetic data with correlated errors without time shift (left)
and a time shift of 0.3 ms (right). Inversion for calibration factor cf1 .

appears to become under-determined. Several layers with high and low resistivities

are introduced that are geologically unreasonable. However, inversion results with an

AR(1) model pass statistical tests for Gaussian distributed errors and seem to model

error correlation well.

Inversions results of measured data at WP 19 are shown in Fig. B.2. The un-

certainties are large for model structure below ∼200 mbsf, and when comparing to

Fig. 7.7 it seems that the AR(1) model over-parametrizes the inversion and intro-

duces spurious, unconstrained subsurface structure. The synthetic modelling above

has shown that if time, instrument geometry or water depth are not known precisely,

the problem can become under-determined, which may be the case for the measured

data. Therefore the AR model is not used for inversion results in this thesis.

Figure B.2: Left: Interface probability and marginal probability depth profile for
resistivity with depth of WP 19 for inversion with AR(1) model and calibration factor
cf 1. Right: AR parameter distribution for each receiver and sliding scale to show for
how many models the AR process was used (1 refers to 100%).
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Appendix C

Selected drilling information for

the German North Sea

Several drilling and seismic reflection surveys have been conducted in the German

North Sea to evaluate the geologic evolution, hydrocarbon occurrences and the com-

position of the upper sediments for building purposes. The available seismic data is

shown on Fig. C.1. Drill sites in the vicinity of the CSEM survey presented in this

thesis (area D on Fig. C.1) cover mostly the upper ∼100 mbsf (shown in Fig. C.2)

or greater depths (>600 mbsf). The project “Geopotential in the German North

Sea” at the Federal Institute for Geosciences and Natural resources (BGR, Germany)

funded the mapping of common seismic reflection surfaces in the German North Sea.

Furthermore Thöle et al. [2014] have correlated gamma-ray logs to seismic reflectors

north of Heligoland as shown in Fig. C.3. Two seismic reflectors (blue and red) can

also be traced on AUR03-23a (shown on Fig. 7.10).
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Figure C.1: Coverage of seismic reflection surveys in the German North Sea (yellow
patches: 3-D seismic data, grey lines: 2-D seismic data, pink patches: proposed CSEM
study areas by RWE). The green ellipses are the planned CSEM survey areas A–D.
CSEM data presented in this thesis is located in area D. Courtesy BGR, Germany.
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Figure C.2: Sediment grain size from J-14-1/2/3 which is located at WP 20. Grain
sizes are silty sand (line with two cross lines in green section) of Holocene origin, fine
sand (dots in orange section) of Pleistocene origin, middle sand (crosses) and coarse
sand (circles) of Pleistocene origin. Note that the interpretation of Miocene material
in 30 m depth is likely not correct (personal communication with Lutz Reinhardt
(BGR) [2014]). Courtesy State Authority for Mining, Energy and Geology (LBEG),
Germany.
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Figure C.3: Seismic interpretation and gamma-ray log by Thöle et al. [2014]. The blue
and red seismic reflectors match with the colour coding on Fig. 7.10. Relevant for this
thesis is the increased gamma-ray count at the blue reflector between seismic units
(SU) 1 and 2 which indicates increased values of fine-grained sediments. Courtesy
Hauke Thöle [Fig. 5 in Thöle et al., 2014].
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